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This book was written as lecture notes for a mini-course on the Einstein constraint
equations (ECE) delivered in the 33" 4 Brazilian Colloquium of Mathematics. It is
directed to a wide audience of students and researchers interested in the overlap of
Riemannian geometry, geometric analysis and physics. The focus of these notes is
to provide a quite thorough description of the so-called conformal method, which
translates the geometric ECE into an elliptic system of partial differential equa-
tions (PDEs) in a nearly self contained presentation, ranging from classical results
to recent progress. This is a subject which intersects several traditional problems in
geometric analysis, such as scalar curvature prescription and the Yamabe problem,
and which has its roots in the evolution problem of initial data in general relativ-
ity (GR). As such, it has become a whole area of research within mathematical
GR and its intersection with classic problems in geometric analysis has produced
plenty of feedback between these areas. We shall assume the reader is familiarised
with classical topics and language in both differential geometry and Riemannian
geometry as well as with standard functional analysis, which is used within PDE
theory. We do not assume the reader to be necessarily acquainted with elliptic
equations and, with this in mind, we have built an appendix compiling the neces-
sary tools which are used in the core of the book. Also, some of the most recurrent
functional analytic tools are also compiled within the first appendix of the book,
with emphasis on Sobolev space theory, which provides the reader with all the
necessary tools to follow the main chapters without many outside references.

The organisation of the book is intended to deliver a clear exposition highlight-
ing the relevance of the analysis of the ECE, their many subtleties and an up-to-date



presentation of the results available in this area. In doing so, we have been inspired
by recent literature in the subject, most notably the monograph of Choquet-Bruhat
(2009) and several recent papers such as Holst, Nagy, and Tsogtgerel (2009) and
Maxwell (2005a,b, 2009). We have gone through the classical constant mean cur-
vature (CMC) classifications on closed manifolds originated in Isenberg (1995),
but putting them in light of these recent advances, and thus presented them in
low regularity and also contemplating non-vacuum situations. Along these lines,
we have complemented several of these recent references. Furthermore, we have
made emphasis in the analysis on asymptotically Euclidean (AE) manifolds, incor-
porating boundary value problems, and, as a novelty in a book on the subject, we
have introduced recent advances on far-from-CMC existence of solutions.

Chapter 1 is meant to be an introduction to general relativity with the objective
of setting up the problem, reviewing the context in which the ECE arise, producing
some intuitions and motivating the analysis of boundary problems associated to
black hole solutions as well as highly coupled systems exemplified by charged
fluids. Also, in this chapter we set most of our notational conventions. The topics
here included are standard for any specialist in GR, but are intended to serve as
a good introduction for the unfamiliarised reader, from whom we do not assume
any sophisticated knowledge of physics.

Chapter 2 starts by presenting the conformal method and translating the ECE
into a geometric elliptic system. In doing so, we contemplate very general sit-
uations which incorporate the conformal formulation of the Gauss—Codazzi con-
straints coupled with a further electromagnetic constraint. Then, we start our anal-
ysis with the CMC case admitting sources which allow the system to be fully de-
coupled and thus the core of the analysis is devoted to the associated Lichnerowicz
equation. During this chapter we will give a near state-of-the-art presentation of
this problem following Maxwell (2005a), and therefore establishing an L?-low-
regularity complete CMC classification on closed manifolds which incorporates
several physical sources. In the process of doing so, we shall review results con-
cerning the Yamabe classification in this low regularity setting.

In Chapter 3, we move to the analysis of the Lichnerowicz equation on AE
manifolds and introduce boundary value problems which model black hole initial
data within the conformal method. We deliver a quite self-contained presentation
of the necessary elliptic theory on AE manifolds, which appeals to analysis on
weighted Sobolev spaces. We introduce the basic machinery associated to these
problems merely assuming basic acquaintance of the reader with the correspond-
ing theory on compact manifolds. We shall present a wide variety of results asso-
ciated to classical papers such as Bartnik (1986), Cantor (1981), Choquet-Bruhat



and Christodoulou (1981), Lockhart (1981), McOwen (1979), and Nirenberg and
Walker (1973). After doing this, the main results related to the ECE will be an
exposition of Maxwell (2005b).

Chapter 4 is devoted to a presentation of far-from-CMC results. These are
quite recent advances in the analysis of the ECE which rely on the application
of some fixed-point-theorem ideas and make use of the full machinery developed
in previous chapters. We shall first review some near CMC results, attainable
through implicit function techniques, and then provide a presentation of the far-
from-CMC results established in Maxwell (2009), which followed the pioneering
work of Holst, Nagy, and Tsogtgerel (2009). These results concern the coupled
ECE in vacuum on closed manifolds. Finally, we will move towards the analysis
of the ECE for a charged perfect fluid on AE manifolds with black hole boundary
data and present the far-from-CMC results of Avalos and Lira (2019).

Although during the main core of the text the reader is assumed to be famil-
iarised with elliptic theory on closed manifold, in order to provide a self-contained
presentation, we have provided most of the necessary tools within two appendixes,
where the reader can consult all the results which are used in the main chapters.
The first of these appendixes is concerned with some functional analytic tools while
the second one with elliptic theory. Since these are extensive areas on their own
right, our presentation has been more expository in nature, attempting to provide
the reader with full proofs whenever possible, and, when the details exceed the
scope of these notes, provide full references as well as the basic intuitions on the
ideas behind the actual proofs.

We expect these notes to help researchers within theoretical physics and pure
and applied mathematics to become familiarised with some of the many interesting
problems in the analysis of the ECE. Some related topics had to be left outside
due to time constraints for our course, but a thorough list of references has been
provided which the interested reader can use to substantially expand the scope of
this book.
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The objective of these notes is to analyse the so-called Einstein constraint equations
(ECE). Naturally, these equation arise in the context of general relativity (GR),
more specifically within the initial value formulation of this theory. In particular,
solution to the ECE provide us with suitable initial data which we can then evolve
into solutions of the space-time Einstein equations. Being GR the best known
description of gravitational phenomena up to this date, this alone provides enough
motivation for the analysis of the ECE. Nevertheless, from a purely mathematical
standpoint, they relate with classical problems in Riemannian geometry, such as
scalar curvature prescription problems and related geometric partial differential
equation (PDE) problems, which further motivates their analysis.

The aim of this first introductory chapter is to provide a review of the setting
where the ECE appear naturally, which is the initial value formulation of GR. In
this way we can most effectively motivate their relevance, present model situations
of interest and provide intuitions about what is expected to occur in their analysis.
Since this is a topic which gathers researchers and students ranging from theoret-
ical physics to geometric analysis, we intend to review several notions which are
well-known to experts in each of these areas and should be within reach without
too much effort for those who are not. In doing so, we will assume acquaintance
with differential geometry as well as Riemannian and semi-Riemannian geome-



2 1. Introduction to general relativity

try.! As a remark regarding notational conventions, let us highlight that, besides
standard notations within geometry, we will use whenever it may be more con-
venient Einstein’s index and summation conventions for coordinate expressions,
without further comments.

With the above in mind, the organisation of this chapter will be as follows.
First, we will review some definitions and results related specifically to Lorentzian
geometry. Our main motivations here will be to introduce enough language from
causality theory so that, later on, we can introduce notions such as black hole
solutions as well as those of Cauchy hypersurfaces and global hyperbolicity. Then,
we will present the skeleton of the theory of special relativity. There, the aim is
to introduce notions that will be of relevance in subsequent analysis, such us the
basic fields which we shall couple to gravity and for which we shall analyse the
existence of appropriate initial data. After this, we will promote this discussion to
the context of GR, introducing the Einstein equations and presenting these relevant
systems in this general context. Also, we will try to develop some intuitions by
presenting a few classical well-known exact solutions. In particular, we intend to
provide some rudimentary intuitions concerning black hole solutions by describing
the Schwarzschild solution. The objective at this point will be to provide us with
the right notions to motivate our discussion on black hole initial data. But, before
doing this, we will describe the initial value formulation of general relativity. This,
in particular, is a topic which deserves a complete book on its own due to its many
subtleties (which the interested reader can actually find, for instance, in Ringstrom
(2009)),” and therefore we will merely review those results which are of most
relevance to us.

1.1 Some elements of Lorentzian geometry

Let us now introduce some notions related to Lorentzian geometry, most of which
can be found in standard references, such as Choquet-Bruhat (2009), Hawking and
Ellis (1973), and O’Neill (1983) as well as references therein. Let us first state that,

U1f needed, the interested reader can consult differential geometric topics in classic textbooks
such as J. M. Lee (2013) and Spivak (1999¢), Riemannian geometry topics in do Carmo (1992)
and Spivak (1999a,b,c,d) and textbooks adapted to semi-Riemannian geometry such as Bishop and
Goldberg (1980) and O’Neill (1983).

2We further recommend references such as Choquet-Bruhat (2009) for a self-contained presen-
tation of the general problem, as well as Christodoulou and Klainerman (1993) and Klainerman and
Nicolo (2003) for issues related to the stability of Minkowski and Dafermos and Rodnianski (2013)
for topics related with black hole evolution and stability.
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during all this text, manifolds will be assumed to be Hausdorff and second count-
able and, whenever specifying the dimensionality of a manifold M is relevant, we
write M ¢ for a d-dimensional manifold.

Definition 1.1.1. 4 semi-Riemannian manifold (V, g) will be called Lorentzian if
the metric g has constant index equal to 1.

Let us recall that the index of a symmetric bilinear form on a vector space is
defined to be the dimension of the largest subspace where its restriction is negative
definite. Therefore, using a local orthonormal frame {0}} _,, we can write g as

n
g=-0"00°+> 0 ®0".

i=1

As above, we will typically reserve the O-th direction to be the one over which g is
negative definite. In particular, the above shows that one can split tangent vectors
v € T,V into three cases, which determine their causal character.

Definition 1.1.2. Let (V, g) be a Lorentzian manifold and let p € V. We will say
that a vector v € TpV, v # 0, is time-like if gp(v,v) < 0; light-like (or null)
if gp(v,v) = 0 and space-like if g ,(v,v) > 0. Along these lines, we define the
light-cone (or null-cone) at p as the subset of T,V formed by all the null-vectors.

Whenever we consider a smooth curve y : I C R — V, ifits causal character
is constant, that is, if Y’ is everywhere time-like, null or space-like, then we will
say that y is time-like, null or space-like respectively. Clearly, an arbitrary curve
will not fall into any of these categories since its causal character may change, but,
in particular, geodesics have a fixed causal character.® In order to clarify some
of this terminology, let us anticipate that, in the context of relativity theory, mas-
sive particles trace time-like paths in space-time while massless particles (such as
photons) trace light-like paths. On the other hand, since no signal can travel faster
than light, space-like paths do not represent the dynamics of any kind of particles.
In particular, points which are space-like related do not have the possibility of in-
fluencing each other. We will therefore say that a curve is causal if it is either
time-like or light-like.

Let us now highlight the special role played the the following Lorentzian man-
ifold.

3During these notes, we will always work with Riemannian (metric compatible and torsion-free)
connections, and therefore parallel transport is an isometry.
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Definition 1.1.3. The manifold R* T equipped with the Lorentzian metric n given
by

n
n=—dx° ®dx0+2dxi ® dx’,

i=1

where {x*}7 _ stand for (global) canonical coordinates for R", is referred to as
the Minkowski space-time, and we will denote it by M" 1,

Therefore, just as Euclidean space is the local model of a Riemannian manifold,
in a Lorentzian manifold (V"*!, ¢) we have (T,V, g,) = M"*!. In particular,
the Minkowski space-time is the arena where special relativity takes place.

We will now endow our Lorentzian manifolds with further structure than the
minimal one imposed above. In particular, we will always consider time-orientable
Lorentzian manifolds, which we shall also refer to as space-times.

Definition 1.1.4. (O’Neill 1983, Page 145) Let (V, g) be a Lorentzian manifold.
At each point p € V, in T,V we have two null-cones. A choice of one of these
null-cones is a time-orientation for T,V . A smooth function t on V which assigns
to each p € V a null-cone in T,V is said to be a time-orientation for V. We say
(V, g) is time-orientable if it admits such a time-orientation function.

It is straightforward to see that a Lorentzian manifold is time-orientable if and
only if it admits a (global) time-like vector field (see, for instance, O’Neill (ibid.,
Lemma 32, Chapter 5).) Although in time-orientable Lorentzian manifolds there
is a consistent way to distinguish past from future, these are still quite general
structures which may inherit some exotic (maybe undesirable) properties. For
instance, any compact Lorentzian manifold admits a closed time-like curve (see,
for instance, O’Neill (ibid., Lemma 10, Chapter 14)). Since, within physics, causal
paths represent the history of actual particles, this property is typically deemed
as pathological allowing for potential travels to the past, and therefore excluded.
Such exclusion is made by appealing to topological properties which guarantee a
good causal structure on our space-time. Let us therefore introduce the relevant
concepts.

Let (V, g) be a (time-orientable) Lorentzian manifold and p,q € V.* Then,
we will write:

1. p K q if there is a future-pointing time-like curve in V' from p to ¢;

#From now on, the time-orientability hypothesis will be implicitly assumed.
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2. p < q if there is a future-pointing causal curve in V' from p to ¢;
3. p < gqifeither p <qgorp=gq;

4. Given a subset A C V, we define the chronological future Z(A) and past
Z7(A) of Aby

It A)={geV : Ipe Awith p < q},
I (A)={qeV :3peAwithqg < p},

and the causal future 7 (A) and past 7~ (A) of 4 by

JtA)={qeV :IApe Awithp <gq},
J (A)={qeV :3Ipe Awithq < p}.

There are several immediate consequences of these definitions, such as the fact
the < is always an open relation, implying that Z7 (A4) is always open, and also
some subtleties, such as the fact that 7+ (A) is not always closed (for a simple
counter example, see O’Neill (ibid., Example 4, Chapter 14)). Nevertheless, since
we shall only use this language to introduce relevant concepts and results, we will
not be concerned with such subtleties and refer the interested reader to standard ref-
erences, such as O’Neill (ibid.) or Hawking and Ellis (1973). Let us now introduce
the following causality condition, which is related to our previous discussion.

Definition 1.1.5. Let (V, g) be a Lorentzian manifold. We will say that the strong
causality condition holds at p € V' if for any given neighbourhood U of p there is
a neighbourhood V C U of p such that every causal curve with endpoints in 'V is
entirely contained in U.

The above causality condition is basically tailored to exclude the possibility
of almost closed causal-curves, since it implies that causal curves which leave
a fixed neighbourhood of p € V cannot return to arbitrarily close to p. Again,
deleting appropriate subsets of simple Lorentz manifolds can be shown to create
a Lorentzian manifold without closed causal curves but with causal curves which
are almost closed, and we intend to avoid this. In fact, it can be seen that if the
strong causality condition holds in a compact subset K of a space-time (V, g), then
future-inextendible causal curves in K eventually leave K and never return to it
(O’Neill 1983, Lemma 13, Chapter 14).
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Figure 1.1: S! x R obtained from identification of sides L and L’ and equipped
with the metric —d0? + dx and with the highlighted regions deleted. It possesses
almost closed time-like curves although no closed ones.

Given two points p,q € V and p < ¢, we use the notation J(p,q) =
J1(p) N T (q), which is the smallest set containing all future-pointing causal
curves from p to ¢. Then, we have the following important definition.

Definition 1.1.6. We say that a Lorentzian manifold (V, g) is globally hyperbolic

1. The strong causality condition holds in V ;
2. If p,q € Vand p < q, then J(p, q) is compact.

In particular, in globally hyperbolic space-times, the relation < is closed (O’ Neill
1983, Lemma 22, Chapter 14). Furthermore, globally hyperbolic space-times have
a particularly nice topological structure, which makes them natural in the context
of evolution problems. To make this precise, let us introduce one further defini-
tion.

Definition 1.1.7. 4 Cauchy hypersurface in a Lorentzian manifold (V, g) is a
subset M that is met exactly once by every inextendible time-like curve in V.

The following result links the two notions of global hyperbolicity and Cauchy
surfaces:



1.2. Special Relativity 7

Theorem 1.1.1. (Bernal and Sanchez 2003) Any globally hyperbolic space-time
(V. g) admits a smooth space-like Cauchy hypersurface M .> Furthermore, V is
diffeomorphic to R x M.

The above theorem stands as an improvement to the smooth category of the
corresponding topological result, which is a classical celebrated result by Geroch
(1970). In this last result, the author obtained a fopological Cauchy surface and
an homemorphism with R x M. There is a rich history concerning the evolution
of these kinds of results which can be consulted in Bernal and Sanchez (2003).
Furthermore, the above result can be strengthened, establishing that (V, g) is iso-
metricto (R x M, —N2dT? + g), with T : R x M + R the natural projection,
N :Rx M — (0, o00) a smooth function, g a symmetric (0, 2)-tensor field which,
for each T = cte, restricts to a Riemannian metric on {7} x M =~ M, and where
VT is time-like and past-pointing, i.e, T is a time-function (Bernal and Sanchez
2005). A further generalisation of these ideas can be obtained for globally hyper-
bolic manifolds with (appropriate) boundary. For such results, we refer the reader
to Hau, Dorado, and Sanchez (2021).

There are a couple of interesting consequences of the above theorem. First,
notice that any non-trivial topology in a globally-hyperbolic space-time must be
contained within its Cauchy surface. Second, and more directly related with our
discussions to come, a Cauchy hypersurface in a globally hyperbolic space-time is
a suitable subset where we can pose initial conditions for evolution problems. In
fact, our task will be to start with a Cauchy surface M and initial data on it, and
then show that we can evolve such initial data to create space-time solutions to
the Einstein equations. Although general existence results only provide us with a
slab [0, T'] x M on which the space-time solution is guaranteed to exist, whenever
solutions are guaranteed to exist for all times, we recover a globally-hyperbolic
space-time by evolution.

We shall return and appeal to the above causality-theory ideas in Section 1.5
when we discuss general black hole space-times and singularity theorems.

1.2 Special Relativity

We shall now introduce some elements from the theory of special relativity which
will be useful in upcoming sections. Along the lines of the previous section, we

By space-like hypersurface, we mean that the induced metric 4 by g on M is a properly Rie-
mannian metric.
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will not enter into details and instead refer the interested reader to standard refer-
ences in the subject.

Newtonian space-time

Let us start by briefly describing the Newtonian picture of physics and its space-
time formulation. In this setting, one starts assuming that the notions of space and
time and fixed and, in particular, do not play any dynamical role. Physical particles
interact and evolve within 3-dimensional Euclidean space E3 = (R3,-), which
represents the physical space and time is universal, in particular there is a universal
agreement on which events are simultaneous. In this context, one distinguishes the
set of inertial reference frames (special coordinate systems) being those in uniform
rectilinear motion, all of which move with constant velocity with respect to each
other. On these frames, Newton’s laws of mechanics are valid and the principle of
Galilean relativity holds. That is, the physical laws of mechanics are the same in all
inertial frames. Then, the coordinate transformations that relate different inertial
frames define the Galilean group, whose action preserves the laws of mechanics.

Already in this context we can introduce the notion of space-time, which sim-
ply refers to the collection of all physical events. Galilean space-time is therefore
given by the manifold R x R3, where the first factor refers to time and second one
to space and where events are labelled by their space and time coordinates. Since
particles are described by curves o : R +— E3, within space-time the same parti-
cles are described by worldlines, which are curves of the form y : R — R x R3,
given by y(¢) = (¢, «(t)). Also, Galilean transformations act on space-time relat-
ing the coordinate systems adopted by different (Galilean) inertial frames.

In pre-relativistic physics, the above description of mechanics was supple-
mented by Maxwell’s description of electromagnetic phenomena. This already
presents a tension in the physical description, since electromagnetic phenomena
do not respect the same kind of Galilean invariance alluded to above. In particu-
lar, such tension led physicists of the time to believe that there was a preferred
reference frame (the aether frame) with respect to which Maxwell’s equations
were written in their usual form and which provided a medium for electromagnetic
waves to propagate. Nevertheless, this hypothesis became increasingly difficult to
hold in light of experimental results failing to detect such aether frame and need-
ing of certain additional ad hoc hypotheses to account for their negative results.
These discussions seem to have been at the core of Einstein’s reasoning towards
relativity theory.®

For some historical discussions and description of experiments shifting the physical paradigm
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Not a worldline TR (time)

Acelerated
worldline

Non acelerated

E3 (space)

[/

Figure 1.2: Newtonian space-time

Special Relativity and the Minkowski space-time

In the context described above and in order to reconcile the tensions alluded to,
Einstein proposed the following two principles, which are now known as the pos-
tulates of special relativity:

1. All the laws of nature have the same form in every inertial frame;

2. The speed of light is equal to the same universal constant in every inertial
frame, independent of the motion of the source.

The first of the above two principles is an extension of the Galilean principle of rel-
ativity to include electromagnetic phenomena. When the above principles are put
together, they can be used to lead us to the transformation rules relating different
inertial systems, which are no longer the Galilean transformations. In turn, they
are now the Lorentz transformations. In order to introduce them, if we assume
that we have two inertial Cartesian systems S = (¢, x') and S’ = (¢/, x"*), whose
origins coincide initially and we assume that the direction of relative motion of

of the time, we refer the reader to references such Meller (1952, Chapter 1) and Jackson (1999,
Chapter 12).
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S’ with respect to S coincides with a particular coordinate axis, say x', then the
relation between these inertial systems is given by

3 2
ANX AX
S S/

7,

1)
1
0 0 x/l

2 x/2

Figure 1.3: Inertial systems in relative motion

v .1
t/ == - sz 1
v 2) 2
(1 - (2) )
1
X == 2 l k) (1‘1)
v 2
(1-7)
x/z — xz’
x/3 — x3’
where v = |v] stands for the magnitude of the relative speed between the two

systems and ¢ for the speed of light. The above relations readily extend to a general
situation by composing with rotations (on R3) and space-time translations. Many
well-known consequences of special relativity now follow by direct application of
physical invariance under Lorentz transformations. Effects such as those of time-
dilation and Lorentz-contraction are two such examples. Furthermore, the above
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relations between inertial frames impose a paradigm-shift concerning the notion
of simultaneity, since, clearly from the first of the above relations, observers in
relative motion do not agree on this concept although their perspectives are all
equally valid. In this context, in order to avoid the recurrent appearances of the
factor ¢ in every expression, the speed of light is set equal to ¢ = 1 and physical
units are redefined accordingly. From now on, we will follow this convention.
Detailed discussions on all these physical effects can be found in the previously
cited references, both on special and general relativity.

One further important consequence of the above principles of relativity and
the corresponding Lorentz group L, is that these transformations are precisely the
linear isometries associated to the Minkowski metric. That is,

L(R*) = {4 € GL(R*) : n(4x, Ay) = n(x,y) forall x, y € R*}.

Allowing for space-time translations, we arrive at the Poincaré group representing
the full isometry group of Minkowski’s space M* (see, for instance, O’Neill (1983,
Proposition 10, Chapter 9)). All this motivates us to introduce the Minkowski
space-time M# = (R*, n) as the space-time model of special-relativity. Several
further modifications must be imposed to the Newtonian paradigm to make the
physical description compatible with the principles of relativity, in particular with
the new needed invariance of physical laws for inertial systems under the action of
Lorentz transformations. Let us attempt to describe the main setting, which will
become useful latter on.

First of all, in Minkowski’s space-time, light-rays clearly represent null-curves.
On the other hand, massive particles are represented by time-like worldlines. This
last fact is based on the empirical evidence that no massive particle has ever been
detected to travel at the speed of light or faster. Although whether this is ultimately
possible is up to Nature to decide, there are also strong a priori arguments against
this possibility. For instance, a particle (massive or not) that appears to be travel-
ling faster-than-light in one inertial frame will appear to be travelling backwards in
time in some other inertial frame, as can be seen by appealing to the above Lorentz
transformations. Furthermore, a massive particle which starts with velocity lower
than that of light, cannot be accelerated up to the speed of light as a consequence
of relativistic effects (although it can be brought as close as we want to it). Be
it as it may, this universal speed limit is a tenant of contemporary physics which
has passed every test to this day. With this in mind, we can introduce the notion
of proper time associated to a massive particle with worldline y, simply as its
arch-length between two events along its history. That is, given a time-like curve
y : I — M* and two events p = y(s1) and ¢ = y(s2), p < ¢, we define the
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elapsed proper-time At as measured by y as

52
et = f =G )ds, (12)
S1

which is independent of the parametrisation used for y. Basically, proper-time
is the Lorentzian analogue of arch-length for time-like curves. We know from
standard arguments that any such curve can be reparametrised by proper-time
and that this reparametrisation is precisely the one which normalises its veloc-
ity. That is, given a time-like curve y, if we reparametrise by proper-time, then
n(y’(z),y'(r)) = —1. This normalisation is standard for time-like particles and
therefore, when we consider massive particles, we will assume it. In fact, such
preferred parametrisation also has a clear physical interpretation, since it repre-
sents the elapsed time as experienced by a y itself.” This kind of language spreads
within relativity theory. For instance, the mass of a particle as measured by an
observer for which the particle is at rest, is referred to as proper mass. Similarly,
the charge of a particle measured under these conditions is referred to as proper
charge, and so on.

Let us highlight that, although in this context things such as simultaneity be-
come relative to a reference frame, causality relations are universal. That is, us-
ing the language of the previous section, the causal relations between events rep-
resented by < and < depend only on the Lorentzian structure of Minkowski’s
space-time, and are therefore invariant by Lorentz transformations. Therefore, we
see how the geometric structure of Minkowski space now plays a fundamental role
in determining physical relations.

The above geometric description of a worldline of a massive particle allows
us to replace Newton’s second law in this context quite naturally. This is neces-
sary since Newton’s second law, which is invariant under Galilean transformations
between inertial frames, is not invariant under the full group of Lorentzian trans-
formations. In this context, given a point-like particle with worldline y; and of
proper mass mg > 0, the well-known Newtonian second law is replaced by

D
E(moyé) =/ (1.3)

where the left-hand side stands for the covariant derivative of mgy’ along y and
the right-hand side for a space-time force field, typically referred to as a 4-force.

7Recall that, in contrast to Newtonian physics, time intervals between fixed events are relative
to the observer in relativity, as seen by using Lorentz transformations.
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Let us notice that, in absence of forces (and with my = cte), the above reduces
to the geodesic equation for y. Furthermore, the vector field p = mgy, plays
also a special role. Above, it is actually playing an analogue role to that of the
Newtonian linear momentum, and that is why p is referred to as the 4-momentum
of such particle. Let us fix an inertial coordinate system (¢, x?) and consider the
dynamics of y with respect to it.® Let us first notice that we can always parametrise
y by the coordinate time ¢, since

dt
dt

This kind of reparametrisation is typically useful to make contact between the rela-
tivistic description in Minkowski space-time and the Newtonian perspective which
can help us develop intuitions of new concepts in their low-velocity limit. Then,

notice that
_ dt [0
iz o dt \ ot Y ’

dr . dx 2\~
dr dt '
and ¥ = 4% is the Newtonian velocity of the alleged particle as seen in the (¢, x*)

dt
) . (1.4)
141

reference frame. That is,
I |
)/ =11= d_x 7\ ° i
’ dt ot
Therefore, for a point-like particle of proper mass mg, the 4-momentum can
be written as

= —n(d,y;) > 0 along yr.

, _di(®)d dxi(r) 8

.\ dxi(t) 9
Vo= 77 ol T T dr ox

v T Tdr o

where

=

LX) 3
e dt  0xt

-

mo mov

[ RN
(-1P) (- 15P)’

8To avoid confusion, we adopt the convention that when we refer to a time-like curve represent-
ing a physical particle, we assume its parametrisation is chosen so that it is future pointing.
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The space-part of the above vector field looks as a suggestive modification of the
Newtonian momentum p = mgu. In fact, recalling that we set ¢ = 1 and thus for
Newtonian particles we have v < 1, we see that

1 1
L, = my (1 +-v? + 0(v4)) = mo + —mov? + 0(v4),
(1-v2)° 2 2

T 5 (1 + %vz + 0(v4)) = 7 +o(v?).

(1-v2)}
The usual interpretation of the above relations is that the 4-momentum p repre-
sents the energy-momentum vector field associated with the point-like mass myg.
Its time-component converges to its Newtonian kinetic energy with an added en-
ergy contribution due its mass as v — 0, while its space-component approaches its
Newtonian momentum in this limit. Therefore, the energy-momentum vector field
p associated with m is actually understood as the suitable relativistic generalisa-
tion of the associated Newtonian concepts of energy and momentum, and recovers
these last concepts in the low velocity limit. Thus, in (1.3), the time-component of
the 4-force f can be understood as the relativistic generalisation of the work done
on mg while the space-part can be understood as the relativistic generalisation of
the usual Newtonian force acting on it. Typically, understanding the situation in
the Newtonian limit v — 0 and appealing to a Lorentz-covariant generalisation
work as the guiding principles to obtain the suitable relativistic 4-force f.

Let us finally notice that, although now we see that the energy and momentum
associated to a particle of mass m¢ depend on our reference frame, and therefore
their values in different inertial systems are linked by Lorentz transformations, the
proper mass mg is a universal invariant quantity, which, in any inertial frame, reads

m3 = —n(p,p) = E? —|p|%. (1.5)

Furthermore, the concept of energy-momentum vector can be generalised to mass-
less particles, for which the above relation also holds, establishing that for such
particles (for instance photons) we have E? = |p|?.

Energy-Momentum tensors and continuous matter

Above, among other things, we described the basic elements entering in the dy-
namics of point-like particles in the relativistic context, which represents a useful
idealisation in many situations. Nevertheless, when we deal with systems of many
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particles, we can typically neglect details of the specific individual particles and
consider certain coarse-grained properties which dictate the overall dynamics of
the systems. In these situations, we can idealise such systems as continuous matter
distributions, typically modelled as a fluid, whose dynamics is controlled by the
corresponding dynamics of certain hydrodynamical parameters, such as its energy
density, pressure density and velocity field. These fluid parameters evolve obey-
ing conservation laws relating their rates of change in a given region with their
flux in and out of it. All these conservation relations of energy and momentum are
best captured by introducing an energy-momentum tensor field 7 € I'(TLM*)
associated with the fluid. This is a symmetric tensor field, which, in a given iner-
tial coordinate system (x® = ¢, x?), relates to the energy density € and momentum
density J of the fluid via

€ = T(0:,9¢) = Too,

(1.6)
Ji = _T(at’ axi) = _TOi
and the conservation laws are expressed via

In an inertial coordinate system, the time component of the above equation put
together with Stokes theorem implies an energy-conservation law, while the space-
components a momentum conservation law.

In this context, let us introduce one further useful notation. We can fix a refer-
ence frame (maybe not inertial) by considering the flow of a time-like vector field
v with flow-lines ys. We could think about such fame as attached to an idealised
fluid with these flow-lines. In case such fluid is inertial, i.e, it moves with con-
stant velocity with respect to our inertial frame, then both frames are related via
Lorentz transformations and the coordinates of the energy-momentum tensor field
T in both frames are also related via these coordinate changes. In case the frame
given by v is not inertial, we can nevertheless present the physical description
as experienced by such observers by simply applying the appropriate coordinate
change between these two frames. Therefore, in this more general setting, we de-
fine the energy and momentum densities of the fluid with energy momentum tensor
T as seen by y/ as

e =T(yg.v5),

1.8
J(X)=-T(y;, X), forall X L yi, (18
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which reduces to (1.6) when we consider y; = 0;.

The above treatment via continuous fluids and hydrodynamic equations models
situations ranging from the classical dynamics of fluids, to stellar physics and up
to the overall dynamics of the universe, where its matter content is modelled in
this way. Below, we will provide a few examples of these situation, limiting to
those which we shall encounter in our future analysis. The interested reader may
consult the physical details as well as more exhaustive discussion in references
such as Weinberg (1972).°

Perfect fluids

Perfect fluids are among the simplest examples we can present within the above
discussion. These are fluids characterised by their 4-velocity field u, its energy
density u and pressure density p and are defined by the condition that an observer
moving along with the fluid should see it as isotropic (see, for instance, Weinberg
(ibid., Section 10, Chapter 2)). In an arbitrary inertial frame, the corresponding
energy-momentum tensor field is deduced to have the form:

T = (u+ pu’ ®u’ + pn, (1.9)

where u” denotes the 1-form metrically equivalent to u. The equations of motion
for such a fluid, known as the Euler equations, are obtained through (1.7), and
typically have to be supplemented by a suitable state equation, which provides a
relation between the state variables p and . Such an equation of state depends on
the characteristics of the kinds of matter of which the fluid is made, and is typically
derived via methods of statistical mechanics.

The above procedure is particularly simple when p = 0. Such a pressureless

perfect fluid is known as as dust. In this case, the equations of motion read
0 = 1"’ Va(uuguo) (1.10)
= divy(nu) ug + pu*Voue, '

The above equation is simplified by projecting it parallel and orthogonal to u. Re-
calling the normalisation convention n(u,u) = —1 for massive particles, the par-
allel component gives

0 = —divy(uu) + un(u, Vyu),

9To obtain a quite direct acquaintance with the topic of hydrodynamics, the interested reader can
find a mathematically oriented brief presentation in Abraham, Marsden, and Ratiu (1988, Chapter
9) in the Newtonian context and, in the other end, a detailed presentation in the general relativistic
context in Choquet-Bruhat (2009, Chapter IX).
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which can be further simplified, since the normalisation condition on u implies
that n(u, Vyu) = 0. Thus, we obtain

divy(uu) =0 (1.11)
Using this information in (1.10), we find (i # 0)
Vyu = 0. (1.12)

That is, the flow lines of a dust fluid are given by geodesics. Furthermore, (1.11)
is simply a continuity equations, representing the conservation of matter.

Maxwell’s equations

The idea of this section is to set up the notations for the Maxwell equations con-
sistently while presenting their formulation in the context of special relativity.
The usual Maxwell equations, written in some inertial coordinate system (¢, x)
on R x R3 are given by'”

OE—CulB=—j,, B+ CurlE=0

1.13
divE = p, , divB =0, ( )

where p and j represent, respectively, the total charge and current densities pro-
duced by sources. These two quantities are not independent, since putting together
the two equations in left column provides us with the continuity equation

d:p +divj =0, (1.14)

which simply expresses the conservation of charge. In modern form, the above
equations are recast as equations on tensor fields defined on Minkowski’s space-
time. This is part of an interesting analysis revealing the Maxwell equations as
Lorentz invariant. In fact, after applying the corresponding Lorentz transforma-
tions to (1.13) relating two inertial frames, say (¢, x) and (¢’, x”), we discover that,
if these equations are to hold in every inertial frame, then certain transformation
rules must be inherited by the physical fields E, B, p and j.'! In particular, these
transformation rules suggest that p and j can be put together to form the vector

19T writing the Maxwell equations, we are adopting suitable conventions on the definitions of
the fields and systems of units so as to avoid introducing universal physical constants.

1 For a review on this topic, we refer the reader to classic text books, such as Jackson (1999) and
references therein. Also, for an interesting and relevant discussion on this topic, see Redzi¢ (2016).
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field on space-time defined by J = (p, j), which reproduces the charge and cur-
rent densities on any inertial frame transforming via Lorentz transformations. In
fact, that this should be the case is strongly suggested by the continuity equation
(1.14),'? which now reads as the space-time equation

divyJ = V,J* = 0. (1.15)

On the other hand, the suggested transformation rules for £ and B are not
understood in so simple terms, but they can be elegantly shown to the consequence
of these fields being special decompositions of an electromagnetic 2-form. Thus,
let us introduce the following definition.

Definition 1.2.1. Let M = (R XR3 , 1) be the Minkowski space-time. Consider an
inertial coordinate system (x°, x*) and define the Faraday electromagnetic 2-form
F = %Faﬂdx“ A dxP by

0 —E, —E, —E;
Ei 0 By —B,
E, —Bs 0 B
Esy B, —-B; 0

Fop =

where E and B stand for the electric and magnetic fields associated to the Maxwell
equations on M.

According to the above definition, for a given space-time family of observers
with flow lines y;, the space-time tensor field F is resolved as

@ = Faﬂy/f,
Fij = Flei.ej),

where E is the electric 1-form as measured by such observers, F;; the magnetic

part of the electromagnetic 2-form and {y{, e; }l?’:l denotes a frame along y;s. In

fact, with this terminology, we can show that following holds.

Proposition 1.2.1. The Maxwell equations (1.13) written on a fixed inertial system
(x©, x*) are equivalent to the exterior system

§,F = J°, dF =0, (1.16)

where 6, F denotes the 1-form defined by 6, F,, = —n*B 3, Fg,,.

12For a discussion related to this topic, we refer the reader, for instance, to Appendix 2 in Moller
(1952).
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Proof. First, in our inertial coordinate system we can compute
—8yFg = —doFop + 0i Fig,
which splits as
—8, F (o) = 0; Fio = 0; Ej,
—8pF(0j) = —doFo; + 0; Fjj = 00E; + €;jx0; By = 00Ej — € 0; By.

where €;;; denote the completely antisymmetric Levi—Civita symbols, allowing
us to write Fj; = € By in our inertial system. These relations imply

—8, F(30) = divE = p,

—0, F(0x) = 0; Ex — Curl By = — i,
where p and j stand by the electric charge and current densities as measured by
this particular inertial system. Therefore, we find that

§pF = J°, (1.17)

where J? is the 1-form metrically isomorphic to 7, which, in an inertial inertial
frame has components J” = —pdx® + jrdxk.
For the second half of the Maxwell equations, compute

1
dF = anFaﬂdx” Adx® A dxP,

1 . . . . . .
5 (aOF,-,-de Adxt A dxT 4 20; Fojdx’ A dx® Adx! + 0 Fjdx' Adx/ ndx'),
1 . o . _
= 5 (€kijdo Bi + 20, E) dx® Adx' A dx? + S€itkdi Bedx' Adx! A dx!
1 0 @i ) 1 i j I
= 5(2803@ +2(3,’Ej —8_,’E,‘)) dx® Adx" Adx?) + EEjlkaindx Adx? ANdx*,

where the convention a;;dx A dx/) implies the summation is to be done only

fori < j and the index k stands for the only space index different to both i and ;.

Also, from the antisymmetry properties, it follows that € j;pdx' A dx/ A dx! =

ieﬂkdxi A dxU A dx? and €1k 0 Brdx® A dxU A dx? is non-zero only for
= i{. Thus,

3
dF = (3;312 + Curl Ek) dx® A dxC ndx? +Y €8 Bidx' AdxU A dxD,

i=1

= (31‘313 + Curl EIE) dx® Adx® Adx?) + divB dx' A dx? A dx3.



20 1. Introduction to general relativity

Therefore, we get that'?
sydF = e (3; By + Curl Ex) dx* —divB d1,

where €, = =£1. Therefore, the second half of the Maxwell equations hold iff
*dF = 0 < dF = 0, which establishes the final claim. O

From the above discussion, the conclusion is that on the 4-dimensional flat
space-time of special relativity, the Maxwell equations (1.13) can be rewritten as
tensor equations for the electromagnetic 2-form F, given by (1.16). Furthermore,
the dynamical equation §, F = J P contains the charge conservation statement
(1.15), since 6, J b= S%F = 0, which is a restatement of the same fact.

In order to complete our description of electromagnetic phenomena in the rela-
tivistic context, we introduce the electromagnetic energy-momentum tensor field:

1
TEM = F,* Fgy — 2B FMFy,. (1.18)

In particular, the energy density as observed by the inertial system (x°, x?) of the
electromagnetic field is computed as

. 1 1 ; ..
&= TEM (39,90) = Fo' Foi + ZF’WF;W =|E* + - <_2F01F0i + F”Fij>’

4
1 1 ~
=—(|E*+ =|F|?),
2(I "+ 5 I)

where F denotes the magnetic part of the electromagnetic 2-form, where |ﬁ > =
2| B|?. Similarly, the momentum density J is given by

Ji = =TFM (39, 8;) = —Fo’ Fij = F;j E7,
= €ij E/ B* = (E x B);.

That is, we arrive at the usual expression for the pointing vector S = E x B as
the electromagnetic momentum density.

Finally, let us notice how the Maxwell-equations (1.16) relate to the energy-
momentum conservation equations associated to the above energy-momentum ten-
sor field.

3The operator *5 denotes the Hodge star operator, associated to the volume form dVy, = dt A
dx1 A dx? A dx3.
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Proposition 1.2.2. Consider the 2-form F on Mikowski's space-time satisfying
Maxwells equations, then

div, TEM = 7F, (1.19)
where J1F = F(J,-) is known as the Lorentz force.

Proof. Direct computation shows that
0uy TEM — _ 7hFy, 4 FOMVy Fgy — ~ FAV,F
n alyp BA al'g ) BL A
1 1
= —j'lFlg,x + EFGA (VUF[;,\ — VAFBJ) — EFMLV/SFML»
A 1 aA 1 Al
=-J F/S)L"‘EF (—VﬁFAU—VAFgﬂ—VAFﬂg)—EF V,gF)W,
1 1
=—J"Fg) — EF“VﬂFAo - EF’”‘VﬂFAw
1 1
= —jAFﬂ)L + EFUAVlgFg)L — EFMLVﬁFAM,
= FpJ"%,

where in the first line we used 6, F = J b in the second one the antisymmetry
of F, in the third one the fact that dF = 0 is equivalent to the local expression
written in arbitrary coordinates Vo Fg, + Vg Fyq + V) Fog = 0, and finally we
appealed again to the antisymmetry of F. 0

The above proposition shows that the changes in the energy and momentum
of an electromagnetic field are due to the work done on a system of charges and
currents 7. In the following section, we will come back to the description of
electromagnetic field already within the context of general relativity and push this
description a little bit further. In particular, let us only comment that the current
density J is itself produced by some sort of charged matter. Such matter will be
described by its own energy momentum distributions, represented by some energy-
momentum tensor field 7™ and the full energy-momentum tensor of the com-
plete system will consist of the sum 7% = 7EM 4 matter Thiq Jast tensor must
obey (1.7), so that the total energy-momentum contributions are balanced.

1.3 General Relativity - The Einstein equations

Similarly to the starting point of the previous section, the starting point of GR was
to resolve the existing tensions between the principles of special relativity with
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Newtonian theory of gravitation. In contrast to the case of electromagnetism pre-
viously described, this turned out to be radically more subtle, and again produced
another paradigm shift within physics. There is a long and rich history describing
the state of affairs concerning the status of Newtonian gravity at the time when
Einstein came along. Besides subtle discrepancies with Mercury’s perihelia, this
theory had been extremely successful in describing solar system physics, and we
refer the interested reader to references such as Poisson and Will (2014) and Wein-
berg (1972) for discussions concerning this history. For us, it is enough motivation
to realize that the Newtonian theory of gravity is not compatible with the kind of
Lorentz invariance described in the previous section.

As the guiding principle of GR, Einstein put forward the principle of equiva-
lence. There are actually at least three versions of such principle. The weakest one,
going back to Galileo and known as the weak equivalence principle, is a recogni-
tion of the experimentally verified fact that the inertial mass (the one responsible
for its resistance to change its inertial state) and the gravitational mass (the one ap-
pearing in the Newtonian universal law of gravitation, and therefore responsible
for its gravitational interaction) are the same for any body.'* This principle has
as a consequence the well-known universality of free-fall, which states that freely
falling test bodies'” fall at the same rate in an homogeneous external gravitational
field. In fact, under such conditions, one can go from an inertial system which
sees a system of (possibly interacting) particles falling in a uniform gravitational
field, to a non-inertial freely-falling coordinate system, which falls along with such
particles. In both frames observers will agree on the laws of mechanics, although
they will disagree on the existence of a gravitational field. That is, in a uniform
(and static) gravitational field, the equivalence of inertial and gravitational masses
allows us to cancel the effects of gravity by moving to an accelerated frame.

In reality, no truly homogeneous gravitational field exists and, therefore, in
the above discussion, some locality hypothesis has to be added. That is, we must
consider that the above cancellation of gravity by acceleration is valid (to a suf-
ficiently high degree of approximation) only /ocally, within a space-time region
where the inhomogeneities and time-variation of the gravitational field can be ne-
glected, which leads us to actual equivalence principle used in GR. This states that
given a space-time point, there is a sufficiently small neighbourhood of it where
we can cancel out the effects of gravitation by moving to a locally inertial coordi-

14See Poisson and Will (2014) for a detailed account of the precision to which this has been
verified.

I3These are bodies free of any other interaction than gravity and whose own gravitational field
can be neglected in such an experiment.
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nate system, where the laws of nature are described by those of special relativity.
In this context there is still some discussion on whether such principle should refer
to laws of nature for test particles (with negligible gravitational self-interaction) or
whether it applies to all phenomena. The stronger version is known as the strong
equivalence principle. The subtle distinction between all these versions of the
equivalence principle relies on the degree to which each of them has been ex-
perimentally verified, and for these discussion, we refer the interested reader to
Weinberg (1972, Chapter 3) and Poisson and Will (2014, Chapters 1 and 13).

Accepting the above principle of equivalence leads us to the conclusion that,
locally, physics is sufficiently well approximated by special relativity and there-
fore space-time is nearly Minkowskian. The picture that is then adopted is that
space-time is actually modelled by a Lorentzian manifold (V, g), and then the ex-
istence normal coordinates provides us with the locally inertial coordinate systems,
where, up to second order in a neighbourhood of an arbitrary point, physics looks
Minkowkian. Then, higher-order effects due to gravitation are codified in the cur-
vature of space-time. Since, after all, the choice of a particular coordinate system
is for our benefit but does not affect the actual physical happenings, the guiding
principle is now to appeal to special relativity locally, and then find coordinate-free
laws which generalise for any frame of reference, which is sometimes referred to
as the principle of general covariance. For instance, freely-falling particles at any
particular point will obey (1.3) with f = 0, and then their generalisation is taken
to be the geodesic equation for the space-time metric g. Although powerful, this
principle does not always lead to a unique possible generalisation, as is illustrated
in Wald (1984, Chapter 4, Section 3) and in such cases further considerations must
be taken into account.

From the above discussion, we see that in our new picture space-time is mod-
elled as a (a-priori arbitrary) Lorentzian manifold (V, g) and that gravitational ef-
fects are encoded in the choice of Lorentzian metric g. Therefore, Newton’s uni-
versal law of gravitation has to be upgraded to some equation on g. The equiva-
lence principle provides a strong guide towards the correct equations. In particular,
an appeal to such a principle put together with a comparison in the low-velocity
weak-field limit with Newtonian gravity (which we know to be an extremely good
approximation in this limit) and an appeal to certain conservation principles guide
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us towards the Einstein equations:'°

. | _ -
Ricg — - Rz& + Ag =T(2. V). (1.20)

where in the left-hand side Ricg and Rz denote the Ricci tensor and scalar curva-
ture associated to g, while A denotes a constant referred to as the cosmological
constant. On the right-hand side T denotes the energy-momentum tensor field as-
sociated to the matter fields which are sourcing the gravitational field, which (as
seen in previous sections) will typically depend on the space-time metric g and
some collection of physical fields, here collectively denoted by ¥. Let us be clear
concerning our notations and explicitly write down our curvature conventions:

Rg(X,Y)Z =VxVyZ —VxVyZ —-Vixy1Z, VXY, Z e I (TV)
RS 5(8) = dx*(Rg(3p,8v)du),
Ricpw(g) = sza(g)?
Rg = _MURiCMv(g),

(1.21)

where V denotes the Riemannian connection associated with g and {x® 3:0 is an
arbitrary coordinate system on V. Let us also point out that the left-hand side of
(1.20) contains the Einstein tensor

1
Gz = Ricz — iRgg (1.22)
which obeys the local conservation law
divgGz = 0. (1.23)

This directly implies that the right-hand side of (1.20) obeys the same kind of

16For this kind of derivation of the Einstein equations see Weinberg (1972, Chapter 7) or Wald
(1984, Chapter 4) for somewhat different approach making use of the geodesic deviation equations.
Along these lines, we would like to further point the interested reader to the insightful notes of
Geroch (2013). Furthermore, let us highlight that the Einstein equations can be obtained as the Euler-
Lagrange equations of a Lagrangian involving Rz (see Choquet-Bruhat (2009, Chapter 3, Section
7) or Wald (1984, Appendix E)). Clearly such a procedure, although elegant, requires impositions
on boundary and asymptotic conditions.
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conservation law, given by'”
divgT(g,¥) = 0. (1.24)

The above equations are necessary conditions for (1.20) and therefore have to be
coupled to the system. In particular, they will imply conservation laws for the
matter fields, which complement the Einstein equations. Notice that the system
(1.20)-(1.24) has to be solved simultaneously, and thus we have a strong (non-
linear) coupling between matter fields sourcing the gravitational field (described
by £) and the space-time geometry dictating how matter should move. That is, as
was famously put by John A. Wheeler, “space-time tells matter how to move and
matter tells space-time how to curve”.

Letus highlight that the above discussion, both on general and special relativity
has only been limited to 4-dimensional space-times because this is actually the
(main) object of interest in physics, but the mathematical tools and model work
fine for any number of space-dimensions with almost no modifications. Since
higher-dimensional space-times are objects of interest in contemporary theoretical
physics, let us from now on work on space-times (V"1, g), with n > 3 being the
number of space-dimensions. We can condense the above presentation as follows.

Definition 1.3.1. An (n + 1)-dimensional space-time is defined to be an (n + 1)-
dimensional time-oriented Lorentzian manifold (V*T1, g) satisfying the Einstein
equations (1.20).

Typically in physics there are underlying hypotheses concerning what consti-
tutes a physically reasonable solution, and this reduces some of the above freedom.
For instance, along the lines of Section 1.1, reasonable causality conditions maybe
imposed a priori on space-time demanding V' to be globally hyperbolic and there-
fore V"1 >~ R x M". This will be the situation that we will have in mind in
the future.'® Furthermore, as we have commented when describing the electro-
magnetic interaction in the context of special relativity, in case we have further

17We have already claimed that, according to the equivalence principle, free-falling test particles
follow geodesics of the space-time metric g. Noticing that such a test particle arises as an idealisation
of some matter distribution whose motion is already dictated by (1.24), we should be able to prove
that in some idealised limit these last equations predict the geodesic equation for the test particle.
This intuitive statement is not actually trivial, and two nice versions of it have been established in
Ehlers and Geroch (2004) and Geroch and Weatherall (2018).

18We should caution the reader that there are interesting solutions of the Einstein equations which
are not globally hyperbolic, such as the Anti de Sitter space-time, which plays a distinguished role
in many discussions in contemporary physics.
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fundamental fields (such as the electromagnetic one) coupled with gravity, such
fields will carry over their own field equations (for instance, Maxwell’s equations
(1.16)) which must be further coupled to (1.20)-(1.24). Below, we shall exemplify
this for a few cases of interest.

1.3.1 Field Sources

Let us now present a few examples of energy-momentum tensor fields which
model interesting situations and for which we shall construct initial data sets in
upcoming chapters.

Scalar fields

Scalar fields are used both within particle physics (for instance the Higgs field) and
cosmology (for instance the inflaton field of inflationary cosmology). In our case
of interest, let us consider a real-valued scalar field ¢ on a space-time (V" T1, g).
Such a field is described by an energy-momentum tensor field of the form

. I _
T(g.¢)=dp®d¢—-5(d¢.d¢)g —U®)3. (1.25)

where U : I — R is a real valued function referred to as the potential of the field
¢. An elementary computation shows that

divgT(g.¢) = (Oz¢ — U'($)) d .

where Oz = 3PV, ?ﬂ denotes the wave operator in the metric g. Therefore, the
full system of equations for such a scalar field coupled with gravity is given by

1 A D _
Ricg = SRgg + Ag =d¢p ®@d¢—-g(d¢.do)z — U$)3.
Oz —U'(9) =0.

(1.26)

Fluid sources

We have already introduced these kind of sources in the case of special relativity.
Here, we shall focus on the case of perfect fluids, described by their energy density,
pressure density and velocity field, given by ¥ = (ji, p, i) and whose energy
momentum tensor field on the space-time (V" T1, g) is given by

T =+ pii’ Qu’ + pg. (1.27)
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Along the same lines discussed in Section 1.2, the equations of motion for the
fluid are given by the conservation law (1.24), which explicitly read as

Vil + p)i® + (i + p)(divgui® + Vgia®) + d p = 0.

We can simplify the above equation by splitting it into its parallel and orthogonal
components to u. The parallel one gives

A() + (i + p)divgii = 0.
Feeding this back into the original equation, it reduces it to

(u+ p)Vau +ii(p)u+Vp =0, (1.28)
u(it) + (o + p)divgu =0, ’

where we can check that the left-hand side of the first equation is orthogonal to 7.

Now these equations must be coupled with (1.20) and must typically be supple-
mented by a state equation. We refer the reader to Choquet-Bruhat (2009, Chapter
IX) for such details.

Similarly to the case analysed in Section 1.2, the case of a dust fluid (p = 0)
is particularly simple. Along the same lines described there, in such a case we find
that the equation for the fluid reduce to

divg (jiit) = 0, Vgzii =0,
which we must couple with the Einstein equations (1.20) to obtain

. | S - - -
Ricz — ERgg + Ag = Mub ® i,
divz (uit) = 0, (1.29)

?,;L_t =0.

Electromagnetic fields

We have already introduced the basic elements concerning the description of the
electromagnetic field in Section 2.1. In particular, equations (1.16) are already
written in a coordinate independent fashion and are regarded as the correct equa-
tions describing the electromagnetic interaction, in the absence of gravitation, via

19Recall that we use the convention g (if, it) = —1.
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the 2-form F. Therefore, via the equivalence principle, on a general 4-dimensional
physical space-time V' these equations still represent the appropriate electromag-
netic field equations, obviously coupled to the Einstein equations. In this case,
any time-like curve y resolves the the electromagnetic 2-form into its electric and
magnetic parts via

E=F(.y) . Fj = Fle.ej). (1.30)

Finally, we can extend these notions to general dimensions by considering that,
on a space-time (V, g) of arbitrary (space) dimensions, the electromagnetic field is
represented by a space-time 2-form, say F', which is decomposed into its electric
part and magnetic parts by space-time observers with flow lines y; according to
(1.30), and which satisfies the field equations

§;F=7J", dF =0 (1.31)

coupled to the Einstein equations through the generic energy-momentum tensor of
an electromagnetic field, given by

of

where indices are, as usual, raised and lowered with the space-time metric g. Let
us highlight that the electromagnetic current 7 must be generated by charged par-
ticles, which are themselves described by some energy-momentum tensor field.
As an illustrative example, let us consider the simplest case of charged dust. This
model is defined by a dust fluid described by an energy-momentum tensor of the
form

1.
TEM — F,*Fg; — 2 8ap FM Fy,, (1.32)

T/l = hpb i, (1.33)

where [i represents the proper mass density of the fluid and u stands for the time-
like vector field whose integral curves are the flow lines of the fluid. We assume
that this fluid contains charged particles, and the proper charge density is given by
a function ¢ and therefore, the associated electromagnetic current is given by

J = gi. (1.34)

This gives us all the ingredients to write down a closed system of equations, given
by

Gg +A§ — Tfluid +TEM,
8z F = qit”, (1.35)
dF =0.
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Furthermore, the conservation laws associated to the dynamics of the fluid are
given by

divg T/ 1 dive TEM = 0.
In particular, we known from Section 1.2 that divg TﬂE M_F B A 7., implying that
0 = V¥(juiigiig) + Fg*J5 = V¥(juila)ilg + fuiigV¥iig + Fg*Jj.
The parallel component to u gives us that
0 = —V¥(jiita) + i®g(Voit, @) + Fg* Tpu,

where the condition g(ii, 1) = —1 implies g(Vgqit, %) = 0. Also, Fﬂxj,xﬁ/’) =
GFp*i uP = GF (i, i) = 0. Thus,

divg (pu) = 0. (1.36)
Therefore, the system of equations for the fluid is

divz (uu) = 0,
o deew) (1.37)
aVau —quoF = 0.

where the first equation represents the local conservation of mass and last equation

one stands for the Lorentz force-law in this generalised context. We finally see that
the the full system of space-time equations is given by

Gg + Ag =T/ (g, ia) + TEM (g, F),

dF =0,
divg F = —§z F = —qii®, (1.38)
divg (i) = 0,

aVaii — g, F = 0.

The case where ¢ = 0 reduces to a dust fluid with no charge and, if furthermore
[ = 0, we fall into the so-called Einstein—-Maxwell system, also referred to as
electro-vacuum.
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1.3.2 The Schwarzschild solution

In this subsection, we will review some useful properties and constructions related
to the so-called Schwarzschild solution, which represents the appropriate geometry
describing the exterior of an isolated spherically symmetric massive body, such as
an idealised star. In this case, the exterior is taken to be vacuum, that is, Ricg = 0,
and the resulting solution has the form

2m 1
8Sc =—(1——) dt® + - dr + r? gs2. (1.39)

r
-

In the above form, the solution is defined in an exterior region, given by r > 2m,
and an interior region, given by 0 < r < 2m, where the parameter m is called the
mass of the associated spherically symmetric body generating our gravitational
field. We will limit our discussion to the case m = 0.

Let us highlight that the restriction of the above solution to » > 2m does not
represent a substantial initial drawback, since the above solution was intended to
model the exterior region of an idealised star. In particular, the so-called Schwarzs-
child radius rg. = 2m, in appropriate units, produces a value which would be
deep inside the interior of any star. A model taking into consideration the interior
of the star must be a non-vacuum solution, which, in idealised situations, would
have compactly supported sources.”’ Such an interior solution would have to be
glued to (1.39) to provide a complete description of a model situation. Neverthe-
less, the above exterior solution is good enough to test, for instance, solar system
gravitational phenomena. In fact, it provided the tools to produce the first predic-
tions of general relativity, such the advances in the perihelion of Mercury and the
deflection of light by the sun.”!

On the other hand, the existence of sufficiently dense objects living inside its
Schwarzschild radius is by now very well-known: such objects represent black
holes. In order to understand this terminology, let us point out that, in the interior
region 0 < r < 2m, the dynamics of particles and light-rays is really peculiar. In
particular, all future directed causal curves end within a finite proper time and no
causal signal can escape this region (see O’Neill 1983, Proposition 30 in Chapter
13). This last property is what gives the name of black hole region to such interior

20For discussion of such idealised models, we refer the interested reader to Wald (see 1984, Chap-
ter 6) and Weinberg (see 1972, Chapter 10).

21See O’Neill (1983, Chapter 13) for a particularly nice geometric treatment of the problem and
Poisson and Will (2014) for an quite exhaustive treatment of the physics involved.
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solution. Black holes represent extremely interesting objects within physics, be-
ing a probe for the most extreme gravitational phenomena we are aware of, and,
also, they have been the subject of extensive mathematical research. Being the
Schwarzschild black hole, modelled by (1.39), the simplest example of such situa-
tion, how to appropriately join the interior and exterior regions to construct single
vacuum solution becomes an interesting question. Since the Schwarzschild black
hole solution serves as a building block in many problems within mathematical
general relativity, we will make a brief review of this construction.

Let us start by denoting the exterior solution associated to (1.39) by (N, gsc)
and the interior black hole solution by (B, gs.). Both these solutions can be de-
scribed as warped products P; %, S2,i = 1,2, where P; stands for the restriction
of the (¢, r) half-plane R x R to the domains r > 2m and r < 2m respectively.
These planes are furnished with the metric b = —h(r)dt?> + h='(r)dr?, where
h(ry=1- 27'" Now, the appropriate way to join these two solutions is through
the so-called Kruskal space-time. We will follow closely O’Neill (ibid.) in this
topic and refer the interested reader to Wald (1984) for several intuitions behind
these constructions.

Let us start by defining the function f : R4 +— (—— 0) by
f(r) = (r —2m)ezn !, (1.40)

Since f/ > 0, f deﬁnes an diffeomorphism Let Q be the region in the (u, v)-
plane given by uv > —7, then r(u,v) = f~!(uv) defines a smooth positive
function of Q, implicitly defined by f(r) = uv. Let us notice that the level sets
of the function r are given by the hyperbolas uv = cte, except for r = 2m, which
corresponds to the coordinate axes. Furthermore, the function r approaches the
value r = 0 as we move towards the boundary hyperbola uv = —22 which is
not part of Q. In this setting, by deleting the coordinate axes we will d1v1de (0]
into four open quadrants Q1,---, Q4 as depicted in Figure 1.4. We now define
the Kruskal plane of mass m > 0 as the region Q endowed with the metric tensor’”

8
gK = iel_i (du ® dv + dv ® du) (1.41)
,

22Notice that the case m = 0 is trivial, since in this case we reduce to Minkowski space-time.
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Figure 1.4: Kruskal’s Plane

Let us point out a couple of direct consequences of the above definitions. First,
the null geodesics of the Kruskal plane are given parametrizations of the coordinate

lines u = cte and v = cte. Furthermore, the mapping (u, v) g (—u,—v) is an
isometry of Q, since it preserves r, and, actually, restricts to an isometry between
01 and Q3 as well as between O, and Q4. Finally, let us define the function
t = 2mln |5| outside the coordinate axes. Let us notice that the level sets of
this function are given by rays from the origin in Q (see Figure 1.4). It is now a
straightforward procedure to prove that the mapping ¢ : Q1 U QO +— P1 U P;,
given by (u,v) — (¢(u,v), r(u,v)) is an isometry which maps Q; onto P;,i =
1,2, and restricts to an isometry there (see Proposition 24 Chapter 13 O’Neill
(1983)). Therefore, having found that Q; =~ P;, i = 1,2, where that Q0; and Q»
fit nicely together in Q, we have provided isometric embeddings of P and P>
into a single manifold.

Let us now define the Kruskal space-time as the warped product K = Q x, S?,
each factor with its natural metric. Then, in the above figures, we can visualise /C
by replacing each point by a 2-sphere of radius r (u, v). In this context we denote
the corresponding open quadrants by K;, i = 1,---,4, and we can now extend
the isometries ¢ and ¥ to ¢ x id and ¥ x id in an obvious way and therefore get
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isometries

Kz~ K; =N and K4 = K, = B. (1.42)

Therefore, we have found isometric embeddings of the interior and exterior solu-
tions B and N into a single Ricci-flat (vacuum) space-time K. In order to produce
some more intuitions about the special behaviour of this solution in its black hole
regions, let us notice that we can give a consistent time orientation to /C, since
dy — 0y is a globally defined non-vanishing time-like vector field. We chose the
orientation that makes d, future pointing in the region Kj. This, in particular, im-
plies that d,, and —d,, are future pointing null vector fields (see Figure 1.5).

Figure 1.5: Kruskal’s space-time orientation

In the above figure, it is clear that the future of any particle beyond this horizon
inevitably ends at the central singularity, while only light-like particles can hover
over the horizon without falling in. We can make use of the isometry ¥ to map
01U Qs — P; U P, and see how, in our chosen orientation, light-cones are
actually tilting as we approach the horizon r = 2m (see Figure 1.6).
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d

t 81‘
= 8’

0 r=2m r

Figure 1.6: Tilting of future cones

In order to finish our discussion on the Schwarzschild solution, let us make one
further observation. Above, we have embedded the usual Schwarzschild exterior
solution into the Kruskal space-time, which not only contains the additional inte-
rior black hole solution, but also an additional copy of each of these parts in the
quadrants K3 and K4 respectively. Let us fix our attention to the space-like t = 0
hypersurfaces highlighted in Figure 1.4. We can see that they belong to a single
well-behaved hypersurface which contains a copy of the exterior Schwarzschild
solution on each side. We will now rewrite the space-time metric adapted to this
hypersurface. The aim behind this exercise is that we will obtain a complete Rie-
mannian metric gg. on this + = 0 slice, which (together with some extrinsic in-
formation) provides us with initial data which describes the full Schwarzschild
black hole. This turns out to be the most useful analytic picture and is part of the
standard analytic tool kit of general relativity. Thus, let us start by considering the
exterior solution at the t = 0 slice. The induced Riemannian metric on this slice
is given by

&Sc = " _lz_mdr2 + r?ggo. (1.43)

r

Spherical symmetry implies that this metric is actually conformally-flat. Actually,
we can compute such conformal factor explicitly. If we write gs. = u*(|x|)§ =
u*(p) (d,o2 + p? ggz), appealing to a coordinate change of the form p = p(r), we
straightforwardly find that u?p = r and

dp 2 1
2 _

r
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are the necessary conditions. Imposing % > 0, we obtain an ordinary differential
equation of the form

ldp 1

g . 1.44
i (1.44)

r r

We can apply the change of variable given by r = m(1 + coshw), with w > 0,
which implies Inp = w + ¢. Thatis p = Ce?®, for some constant C > 0. From

this, we get
C
r (1+ 1 +C) \/7+ 1 (1.45)
—=m|l-+——=+—)=m| —+—=1] . .
0 0 2p? P v2C

2

Finally, imposing that % — 1 as p — oo, we find m = 2C, which implies that

2
u?(p) = (1 + ) : (1.46)
P 2p

Therefore, we see that

4
gse=(1+2) s (1.47)
2|x]|

where the above change of variable corresponds to mapping the exterior region » >
2m to |x| > 2. Nevertheless, clearly, (1 47) is well-defined for all x # 0. In fact,

2
an inversion of coordinates z = (%) Ix\z’ maps the punctured ball 0 < |x| < 3

to its exterior ]R{3\§m (0) while it preserves the sphere S, (0). Furthermore, we
2
2 2 27 4 2
find that |z| = (%) |x| and thus x = (2)” x|’z = (2)"(2) _|ZZ|2 =(%2)" =

m |z|2

2
m k -2 k
321' = (m) (81 —2|Z| 2ZlZ )axk,
implying

B m 221\ ( m \* .

gSC(azi»azj) _( | ) (2_) o (1 +7) (M) 81],
m

= (l +m) 51/7

Therefore,
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which proves that the punctured ball is isometric the exterior solution. That is,

2]x]
ifold which contains the two copies of the t = 0 initial data for the exterior
Schwarzschild solution of the quadrants K; and K3 smoothly glued along their
boundaries, and is thus isometric to the # = 0 slice of the Kruskal space-time. For
completeness, let us highlight that, in these coordinates, the space-time Schwarzschild
solution reads

4
the Riemannian manifold (R3\{O}, gsc = (1 + i) 8), is a complete man-

) 4
Fse = —(—"‘Z')zdﬂ + (1 n %) 5 (1.48)
L+

where the appeal to the time-coordinate ¢ clearly excludes the coordinate axes
separating the quadrants K; in the Kruskal space-time.

Finally, let us point out that there are analogous higher-dimensional generalisa-
tions of all of the above constructions, which can be obtained along the same lines.
Just for the record and future reference, let us point out the the n-dimensional com-
plete = O slice of an (n + 1)-dimensional Schwarzschild space-time is given by

4
the Riemannian manifold (R”\{O}, gsc = (1 + _2|x7|7}l1_2) n=2 5).

1.3.3 Some cosmological solutions

Letus now present another set of physically relevant solutions which can be worked
out explicitly. These solutions concern cosmological situations, which is a setting
in which we analyse the dynamics of the universe as a whole. In order to be able
to do this several idealisations have to be made. Along these lines, if we are con-
cerned only with analysing the overall dynamics of the universe, we can average
its properties over large scales and produce a very course-grained description of it.
In such a situation a point in space-time is meant to represent large regions in the
universe such as a whole galaxy of even clusters of them. In particular, going to
sufficiently large distances, there seems to be compelling experimental evidence
in favour of the fact that the universe (in such scales) is highly symmetric. More
explicitly, in cosmological scales the universe is approximately homogeneous and
isotropic. As we will see below, the presence of these symmetries allows us to
reduce our problem to a very compact system of ordinary differential equations
which can be dealt with explicitly in some situations, and, more generally, can be
used to describe a general picture concerning the overall evolution of the universe.
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Let us start considering a 4-dimensional space-time (V, g) and comment on
how the above hypotheses translate into the mathematical model. First of all, the
assumption of isotropy actually singles out a distinguished global time-like vector
field 9, whose simultaneity spaces M; globally split (V = I x M,g = —dt> +
gt), where t € I C R and whose orthogonal space-like hypersufaces (M;, g;)
are isotropic in the usual sense. That is, they have no preferred direction. This
last conditions implies that, for every p € M, the sectional curvatures of all the
planes in 7, M; must be equal. Thus, the sectional curvature K; of (M;, g;) at p
depends only on p, i.e, Ky = K;(p). Then, the contracted Bianchi identities imply
that a Riemannian manifold which is isotropic at every point must have constant
sectional curvature, that is K; = cte (see, for instance, Choquet-Bruhat (2009,
Chapter V, Theorem 3.4)). To simplify our discussion, let us then assume that
space is simply connected. In such a case, for each time t we have (M;, g;) =~ E3
if K = 0, and if K # 0 we can consider the conformal scaling g = |K| ™!y,
which implies that y has constant sectional curvature equal to € = sign(K), and
therefore

(M;,y1) = S3,
(M, y—1) = H3,

where S3 stands for the round unit 3-sphere and H? for the standard hyperbolic 3-
space of constant curvature —1. Therefore, to contemplate the three cases at once,
the space-time metric for can be written as

g = —dt*> +a*()ye, (1.49)

where now Yo = § the standard flat Euclidean metric, and in the cases ¢ = =+1
we have a2(¢) = | K;|~!. The warping factor a(¢) is referred to as the scale factor
and becomes the only geometric degree of freedom in the problem. To determine
it and have our cosmological description complete, we have to assume something
for the matter content of the universe. In this setting of homogeneous and isotropic
cosmologies, it is typical to model the matter content as a perfect fluid with flow
lines # = d; and therefore homogeneous and isotropic, implying that the energy
and pressure densities are functions only of time. Now, plugging all this into the
Einstein-perfect-fluid equations gives a set of ordinary differential equations which
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dictate the dynamics of the system (see Choquet-Bruhat (2009, Chapter V)):

i 1
—3-=(r+3p)— A,
a 2

. N2
a a € 1
—+2(—) +2—2=—([L—]3)+A,
a a a 2
(1 + p)Vau +i(pu +Vp =0,

() + (i + p)divgil = 0.

where a dot over a quantity denotes a derivative with respect to time. These equa-
tions can be further simplified by using the first one to eliminate the second order
term in the second one, which gives

* N\ 2
3(f) +35 =i+ A
a a

The fluid equations can also be simplified under our hypotheses. Actually, the
first one is a tautology, since our construction implies that the flow-lines d; are
geodesics, so the equation actually read as V p = — pd;, which is the definition of
the gradient since p = p(¢). Also the second fluid equation can be simplified to
give

. _ . _a
u+3(u+1))5=0-

Therefore, the full system of Einstein equations gets reduced to the so called Friedman—
Lemaitre equations:

i 1
—3-=(u+3p)—A,
a 2

.\ 2
3(‘—1) +35 =i+ 4, (1.50)
a [4)

. _ _a
u+3(u+p)5=0-

The above system can be integrated explicitly for some simple state equations
relating & and p, such as for dust (p = 0), radiation (it — 3p = 0) and also the
A-vacuum cases which lead to deSitter and anti-deSitter solutions. Some of these
cases model specific stages in the history of the universe. More importantly, under
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reasonable assumptions of ji and p, equations (1.50) are good enough to give us
an overall picture of the dynamics of the system. To a first approximation, this
gives a good cosmological qualitative description. We refer the interested reader
to Wald (1984, Chapter 5) for discussions of this kind.?

1.4 'The initial value formulation

Let us now enter into the core of this chapter and present the main ideas concern-
ing the initial value formulation of the Einstein equations. As was stated in the
beginning of the chapter, this is a subtle topic which involves ongoing research
in geometric analysis and PDE theory. Any self-contained presentation needs to
appeal to a decent amount of hyperbolic PDE theory, in particular of non-linear
wave equations. The interested reader can find such presentations in references
such as Choquet-Bruhat (2009) and Ringstrém (2009) and the many references
therein. Our presentation will be merely expository, appealing to the main ideas
and skipping completely the hyperbolic PDE issues.

Let us start by putting forward a couple of strong motivations for the analysis
to come. First, it is within the standard paradigm of physics that physical theories
should be useful to make predictions concerning the future evolution of a system.
This is done typically by evolving initial data sets, and works in models ranging
from classical Newtonian mechanics to relativistic electrodynamics and even the
Schrodinger equation of quantum mechanics. Clearly, this is quite useful for the
physicist, who can then model a specific situation at a particular time via suitable
initial conditions and find out how physics plays out by evolving such system,
and permeates deeply into the issue of predictability of a physical theory. Fur-
thermore, let us notice that the complicated and non-linear nature of the Einstein
equations does not allow us to solve them explicitly unless appealing to idealised
highly symmetrical situations, of the kind we have reviewed in previous sections.
Moreover, one would like to have information concerning generic properties of
solutions, their stability against perturbations, global properties of generic solu-
tions and also to have some systematic way of producing more general solutions.
Some experience in PDE theory can anticipate that some of these questions could
be settled by providing a suitable PDE treatment of the Einstein equations. Let us
use this as motivation for the following analysis.

23LLet us also point out to the reader the discussion presented in the lecture notes of Blau (2020),
which can be quite useful for an understanding of the physical consequences of these cosmological
models.
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Let us start by considering globally hyperbolic vacuum (n + 1)-dimensional
space-times (V71 = R x M", g) so that the Einstein equations get reduced to

Ricz = 0. (1.51)

The objective is to be able to give initial data on M and guarantee that we can
evolve it into such a solution. But, as we will see below, there are some immediate
subtleties in this procedure. First, notice that in this analysis we will have to make
a clear space-time splitting and therefore, let us introduce a time parameter ¢ along
the R factor, and the global future pointing time-like vector-field d; tangent to the
time-curves ¢t — (¢, x) € V. Then, let us denote the tangential component of d;
to M; by X, which is a time-dependent vector field tangent to M known as the
shift vector and the normal component to M; will be denoted by a function N > 0
referred to as the lapse function. These objects allow us to build adapted local
frames {eq |}, of the form

eo =0 — X L My,

1.52
e = ax,-, ( )

for any coordinate system {x’ 7=, on M, and their dual co-frames {6*} _ then
read as

0° = dt,
0 = dx' + X'dt1,

as can be readily checked. Using such frames, the space-time metric can be locally
put in the form

g=-N*di®dt + g, (1.53)

where the induced metric g; on M; has the local form g, = g;; 0! ® 6.
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V=MxR

Figure 1.7: Lapse—Shift space-time splitting

Notice that the future pointing unit normal to each M; can then be written as
! (0: — X) (1.54)
n—— —_ .
N o

In the above space-time splitting, the choice of our family of time-like curves
defined by the vector field d; is uniquely determined by the choice of lapse and
shift, since 3; = Nn + X. So, each choice of N > 0 and X satisfying —N? +
| X |§;t < 0 determines a unique such family of space-time observers and vice-versa.
So, as could be suspected from the beginning, our choice of space-time splitting
according to a preferred d; should work as a gauge choice, not playing a major
role at the end of our analysis.

Now, notice that as PDE operator on the space-time metric g, the Ricci tensor
is a second order operator. In fact, in an arbitrary coordinate system reads as

1

Ricuv (g) = 7

. _ N e .
8 dap B + Suv(.08) + 5 (Zurdv F* + 8200 F*).
(1.55)

where f;,,(g, dg) are smooth functions of their arguments, in particular quadratic
on dg, and the functions F A are given by

FY =gy
As we will see, it is precisely the last two terms involving derivatives of F that
pose some extra difficulties in this problem. For now, let us notice that, if we
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are to have a well-posed evolution problem associated to the vacuum field equa-
tions, then we will have to prescribe initial data for both g, and 9,8, att =
0. The geometric picture here is to split the initial data geometrically into the
induced metric on ¢t = 0, given by g;|;=0, the initial data for lapse and shift
N|¢t=0, X |t=0 (completing the initial data g|;=¢) and then the first order initial
data, 0;g¢|r=0, 0¢ N |r=0, 0: X |s=0. It is well-known from standard submanifold
theory that in such a situation d;g;|;=0 is related with the extrinsic curvature
K € F(TZOM) of M =~ {t = 0} x M as an embedded hypersurface in (V, g).
Explicitly, we have

1 _ _
K = “IN (0:81 — ZLx &1) lt=0, (1.56)

where Ly g; stands for the Lie derivative of g; with respect to X, and our conven-
tions for the extrinsic curvature are

K(X,Y) = g(II(X,Y),n), forall X,Y € I'(TM)

o 1.57
II(X.Y) = (Vg¥)" (17

and where X, Y denote arbitrary extensions of X, Y to V and II : I'(TM) x
I'(TM) — I'(TM>) denotes the second fundamental form of M < (V, g).
Therefore, we see that the geometric problem becomes more transparent. We
attempt to prescribe a Riemannian manifold (M", g) equipped with a symmet-
ric (0, 2)-tensor field K and initial data for the lapse-shift (V, X, 0; N, 9; X)|s=o0
(which determine the family of observers along whose integral curves we intend to
evolve the initial data), and then find an isometric embedding ¢ : (M, g) > (V =
I x M, g) with I C R” such that:

1. g solves the space-time Einstein equations. In the vacuum case given by
Ricz = 0;

2. K stands as the extrinsic curvature of M — (V, 2).
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V= M xR
P —— /7
m/

(M.g.K) > (V. )

Figure 1.8: Geometric picture associated to the vacuum Cauchy problem

By leaving the data (N, X, 9; N, 0; X)|;=¢ outside of the above requirements,
we intend to exploit the freedom in choosing the flow lines along which we shall
evolve. This demands having enough freedom so as to guarantee that at the end
of the problem d¢|;=¢9 = (Nn 4+ X)|s=¢ is time-like. In fact, we will see that
(N, X)|t=0 are completely free for us to prescribe, but (d; N, 9; X)|s=0 will be
fixed in terms of (g, K, N, X) conveniently.

Now that we have stated clearly what is our geometric problem, we immedi-
ately have to realise that, in contrast to classical situations in physics, the initial
data for the evolution problem in GR is not free! This follows from the well-known
Gauss—Codazzi equations for hypersurfaces, which for a space-like hypersurface
(M, g, K) isometrically immersed in a Lorentzian manifold (V, g) read as:

Zg(RX,Y)Z, W) =g(R(X,Y)Z,W) (Gauss’ Eq.)
—(K(X,Z)K(Y, W) — K(Y,Z)K(X,W)),

Z(R(X,Y)Z,n) = (VxK)(Y,Z)— (VyK)(X,Z) (Codazzi’s Eq.),
(1.58)

where X,Y,Z € I'(TM); n stands for the future-pointing unit normal vector
field to M and the quantities without a bar on top are constructed with the intrinsic
induced Riemannian metric g on M. That is, for instance, V refers to the Rieman-
nian connection on M associated to g. The above equations are a priori necessary
conditions that (g, K) must satisfy. In fact, they imply the following constraint
equations:

Proposition 1.4.1. Let (M, g, K) be a space-like hypersurface isometrically im-
mersed in a Lorentzian manifold (V, g) satisfying the Einstein equations Gz +
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Ag = T for some energy-momentum tensor T. Then, g and K satisfy the follow-
ing constraint equations on M :

Re — |K|Z + (trg K)* — 24 = 2e,

) (1.59)
dive K —d(trg K) = J,

where € = T(n,n) and J = —T(n,-) € I'(TM) denote the energy and momen-
tum densities induced on M.

Proof. Given any local orthonormal frame {n,e;}’_,, from the Gauss equation
we can compute that

n n

> &(R(eiej)ej.ei) = > g(Rei.ej)e;.ei)
i,j=1 i,j=1
n

— Y ((K(ei.ej)K(ej.e;) — K(ej.e;)K(ei.e))).
i,j=1

=Rg— Y (K(ei.ep)K(ej.e) — K(ej.ej)K(ei.er)).
i,j=1

= Ry — |K|2 + (rg K)?.

Furthermore, since

n
Ricg (e, ej) = Z g(ea,eq)Z(R(eq, i)e;, eq),

a=0

n
= —2(R(n,en)ej.n) + Y g(Rlex. eie;. ex),
k=1
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we get that

n
Rg — K| + (trg K)* = Ricg (n.n) + Y _Ricg(ei. e;)

i=1

n
= 2Ricz(n,n) + (—Rng (n,n) + ZRng (ei,ei)) ,

i=1
= 2Ricg(n,n) + Rz =2 (Ricg-, — %(@Rg) (n,n),
=2(T — Ag)(n,n) =2T(n,n) + 2A.
Thus, from the definition 7'(n,n) = €, we get
Ry — K| + (rg K)* = 2(e + A). (1.60)
Now, consider the Codazzi equation, so that

Rng(l’L,ei) = Z g(ea,ea)g(ﬁ(ea,n)ei,ea) = Z g(l_e(ej’n)eivej)’
=1

a=0

=Y §(Reiej)ej,n),

j=1
=Y (Ve K)(ej.ej) = Y (Ve K)(einej) = trg (Ve K) — divg K(e;),
j=1 j=1

= V, trg K — divg K(e;).
Thus, since Ricg (n,e;) = T'(n, e;), we get that
d (trgK) (ei) — (dngK) (ei) = T(n,e;).

Now, from the definition of the physical momentum density is J = —T'(n, ) we
arrive at the momentum constraint:

divg K —d (trgK) = J. (1.61)

O
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The above proposition establishes (1.59) as necessary conditions to be satisfied
by any initial data set for which we may attempt to find a well-posed evolution
problem. It is a remarkable fact that in all of the situations of interest for us, these
are also sufficient conditions. This last statement goes back to the pioneering work
of Y. Choquet-Bruhat (see Choquet-Bruhat (1962) and Y. Fourés-Bruhat (1952)).
We shall now briefly describe the main steps in this construction, where we shall
follow the exposition of Choquet-Bruhat (2009, Chapter VI). Thus, let us equip
M with a some fixed smooth and complete Riemannian metric e,’* then trivially
embed M into V = R x M and fix a background Riemannian metric é = dt? +e
on V. From now on, quantities constructed from é will be denoted with a hat on
top. For instance, its Riemannian covariant derivative will be denoted by D. Then,
similarly to (1.55), we can write the Ricci tensor as

. — 1_ ey oy - ~ - A 1 — A A _ A A
Rlcll«v(g) = _EgaﬂDaDﬂguv + fuv(g’ Dg) + B (gluleF)L + gvADMFA) )
(1.62)

where now F denotes the vector field defined via
Fr=gro (p)}a(g) - ﬁy"g) : (1.63)

and f (g, D g) denotes a tensor field, depending smoothly on its arguments, which
is in particular a quadratic function on D g. Then, let us consider the reduced Ricci
tensor, given by

Ric{{)(g) = ——g“ﬂ DaDpguv + fuv(@. D). (1.64)
The idea is first to consider the reduced Einstein equations given by
Ric = 0. (1.65)

The advantage now is that this is a set of quasi-linear wave equations where some
standard PDE theory theorems guarantee that, for appropriate initial data on g, the
system possesses one and only one solution. By appropriate initial data we mean

(g, K, N) insome appropriate Hj  -Sobolev space and (K, 9; N |¢=0, d; X |¢=0) in

24The initial-boundary value problem for manifolds with boundary is more subtle than what we
will describe. We refer the interested reader to references such as Friedrich (2009), Friedrich and
Nagy (1999), Kreiss et al. (2009), and Reula and Sarbach (2011) for further discussion on this topic.
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the corresponding H f;cl, with s > % + 1 (see, for instance, Choquet-Bruhat (ibid.,
Theorem 7.4, Chapter VI) for detailed statements). The solution to this problem
provides us with a Lorentzian metric g on [0, 7)) x M for some 7" > 0. We now
intend to show that if our initial data set (M, g, K) solves the vacuum constraint
equations (1.59) (withe = A = 0 and J = 0), then an appropriate choice of the
gauge data d; N |;=0, 0; X |s=0 guarantees that F = 0, which implies thatRicz = 0
and (V, g) is therefore our desired Cauchy development of (M, g, K). For this, let
us first notice that (1.62) implies that our solution g to (1.65) satisfies

1 N
Guw(@ = 5 (GuaDvF* + 8ua Db = Dy FAg).

Therefore, the contracted Bianchi identities imply that F must satisfy the equation
0 = 2% VoGuv(@) = 8 DaGuv(@) — 2S5, Gov(8) — 8 S5, Guo (@),

where S§,, = I,(8) — Iifu. Then, with some computational effort, the above
can be rewritten as

This last equations reads as a linear wave equation on F, where the explicit ex-
pressions for the coefficients and the regularity properties of g guarantee that the
solution to such an equation is unique in appropriate functional spaces. Therefore,
if in particular F lt=o0, 8;F lt=0 = 0, then we have F = 0. These conditions can
be further simplified by a straightforward computation which show that if

A) The initial data for the solution g to (1.65) solves the vacuum constraints
associated to (1.59);

B) Fli=o =0,

then 9; F |t=0 = 0 (ibid., Lemma 8.2, Chapter VI). Since we know that the con-
straints already are a necessary hypotheses we must assume on our initial data, it is
only the second condition that is posing an obstruction. But now, let us consider an
adapted frame {ey }}, _, of the form of (1.52) and assume that we have constructed
g out of initial data (M, g, K) satisfying the constraints and with N|;=9 = 1 and
X ;=0 = 0. Then, a straightforward computation gives us

F%—0 = —(0Nl|r=0 + g Kij),
Fili=o = —0: Xili=o0 + 8i; 8" (I}, (&) — I}, (e)).
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Therefore, we can fix the initial conditions 0t N |¢=0, 0¢ Xi|s=0 on M so as to sat-
isfy F|;=¢0 = 0. Then, from the above discussion, we see that the corresponding
solution g to (1.65) with initial data satisfying:

1. (M, g, K) solve the vacuum constraint equations;
2. N|t=o =l and X |;=¢ = 0;
3. 0¢N|t=0, 0¢ Xi|s=0 are picked so as to satisfy ﬁ|,=0 =0,

solves the full vacuum Einstein equations on V' and is therefore an appropriate
(short-time) Cauchy development of (M, g, K) (see Choquet-Bruhat (2009, Theo-
rem 8.3, Chapter VI) for a precise statement involving the precise regularity prop-
erties).

The above presentation leaves the following question open: Does our choice
of special observers picked by conditions 1)-2) above on N, X att = 0 play some
fundamental role? As the geometric picture suggests, the answer to this question
is no. In particular, if we have two Cauchy developments (V;, g;), i = 1,2, of
the same geometric data (M, g, K), and therefore implying that their initial data
can differ only via the initial data of N, X which selects the space-time observers,
then these developments are isometric (see Choquet-Bruhat (ibid., Theorem 8.4,
Chapter VI) and also Ringstrom (2009, Theorem 14.3)). This is sometimes referred
to as geometric uniqueness. Furthermore, a celebrated result by Choquet-Bruhat
and Geroch (1969) states that there is unique (up to isometries) maximal globally
hyperbolic development of any such vacuum initial data set.”> Let us also highlight
that, as might be expected, the solutions to these problems have the right causality
behaviour. That is, they exhibit the finite-speed propagation associated to solutions
of wave equations inherited via hyperbolic theory applied to (1.65). In particular,
the limit speed of propagation is given by that of that of the null curves of g (see
Choquet-Bruhat (2009, Theorems 8.8 and 8.9, Chapter VI)).

Finally, let us notice that the above discussion can be readily extended along
the same lines to non-vacuum situations. The case for scalar fields can be consulted
explicitly in Ringstrom (2009) and fluid sources are analysed in Choquet-Bruhat
(2009, Chapter I1X), including cases such as perfect fluids and charged fluids. But,
let us highlight that these last cases which involve an electromagnetic field actu-
ally present one further subtlety, which is that the Maxwell equations of electro-
magnetism also impose constraints on the admissible initial data for the electro-
magnetic 2-form F. Below, we will derive such enlarged system of constraints

25See also Chrusciel (2013) for a version of this result under weaker regularity conditions.
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constraints, which in Chapter 4 will work as a model for the analysis of a highly
coupled system of constraints for realistic initial data. As we will see in Chap-
ter 2, the Gauss—Codazzi constraints (1.59) admit a nice PDE formulation which
decouples them in a variety of interesting situations. In contrast, the constraints
associated to a charged fluid will not decouple and thus present a more delicate
well-motivated problem, which is analysed in Section 4.3 of Chapter 4.

Electromagnetic sources

Let us consider the constraint equations associated to a charged fluid, for instance,
such as that considered in equations (1.38). Notice that the initial data for such a
system would consist not only on the initial data for g, but also on the initial data
for F,u and ft. The initial data for u and & is not subject to any constraints, but the
initial data for F is. This is clear since the space-time 2-form F' induces a 2-form
on M, say F, given by the restriction of F to tangent vectors to M. Then, the
equation d F = 0 also implies dF = 0on M. Thatis, F on M has to be closed.
This is an additional constraint which must be coupled to the above Gauss—Codazzi
constraints.

Furthermore, the evolution equation 6z F = J b when projected orthogonally
to M also gives us a constraint on the initial data. To see this, consider a space-
time orthonormal frame adapted to M. That is, a frame {n, e; }', where n is future
pointing unit normal and e; are tangent to M. Then, we get

—8z F(n) =divgF(n) = Y _ Z(ea.ea) Ve, F(eq.n)

a=0

= ) 2(ea,eq) (ea (Flea,n) = F(Veyeq,n) — Fleq, Veyn)) .

a=0
Now, since g(n,n) = —1, it follows that g(?ein_, n) = 0. Therefore @ein is
tangent to M. Also, since g(Ve,n,e;) = —g(n,Ve;e;) = —Kjj, it holds that
?ein = — > 7_, Kije;. Using this in the above expression we get that

—8z F(n) = —n (F(n.n)) + Y _ (ei(F(ei.n)) — F(Vesei.n) — Flei, Veyn)) .
i=1
=" ei(Fleim) = F(Veyei) .n) + Y KijFleie)) |.
j=1

i=
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where in the second identit