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Preface

This book was written as lecture notes for a mini-course on the Einstein constraint
equations (ECE) delivered in the 33rd Brazilian Colloquium of Mathematics. It is
directed to a wide audience of students and researchers interested in the overlap of
Riemannian geometry, geometric analysis and physics. The focus of these notes is
to provide a quite thorough description of the so-called conformal method, which
translates the geometric ECE into an elliptic system of partial differential equa-
tions (PDEs) in a nearly self contained presentation, ranging from classical results
to recent progress. This is a subject which intersects several traditional problems in
geometric analysis, such as scalar curvature prescription and the Yamabe problem,
and which has its roots in the evolution problem of initial data in general relativ-
ity (GR). As such, it has become a whole area of research within mathematical
GR and its intersection with classic problems in geometric analysis has produced
plenty of feedback between these areas. We shall assume the reader is familiarised
with classical topics and language in both differential geometry and Riemannian
geometry as well as with standard functional analysis, which is used within PDE
theory. We do not assume the reader to be necessarily acquainted with elliptic
equations and, with this in mind, we have built an appendix compiling the neces-
sary tools which are used in the core of the book. Also, some of the most recurrent
functional analytic tools are also compiled within the first appendix of the book,
with emphasis on Sobolev space theory, which provides the reader with all the
necessary tools to follow the main chapters without many outside references.

The organisation of the book is intended to deliver a clear exposition highlight-
ing the relevance of the analysis of the ECE, theirmany subtleties and an up-to-date



presentation of the results available in this area. In doing so, we have been inspired
by recent literature in the subject, most notably the monograph of Choquet-Bruhat
(2009) and several recent papers such as Holst, Nagy, and Tsogtgerel (2009) and
Maxwell (2005a,b, 2009). We have gone through the classical constant mean cur-
vature (CMC) classifications on closed manifolds originated in Isenberg (1995),
but putting them in light of these recent advances, and thus presented them in
low regularity and also contemplating non-vacuum situations. Along these lines,
we have complemented several of these recent references. Furthermore, we have
made emphasis in the analysis on asymptotically Euclidean (AE) manifolds, incor-
porating boundary value problems, and, as a novelty in a book on the subject, we
have introduced recent advances on far-from-CMC existence of solutions.

Chapter 1 is meant to be an introduction to general relativity with the objective
of setting up the problem, reviewing the context in which the ECE arise, producing
some intuitions and motivating the analysis of boundary problems associated to
black hole solutions as well as highly coupled systems exemplified by charged
fluids. Also, in this chapter we set most of our notational conventions. The topics
here included are standard for any specialist in GR, but are intended to serve as
a good introduction for the unfamiliarised reader, from whom we do not assume
any sophisticated knowledge of physics.

Chapter 2 starts by presenting the conformal method and translating the ECE
into a geometric elliptic system. In doing so, we contemplate very general sit-
uations which incorporate the conformal formulation of the Gauss–Codazzi con-
straints coupled with a further electromagnetic constraint. Then, we start our anal-
ysis with the CMC case admitting sources which allow the system to be fully de-
coupled and thus the core of the analysis is devoted to the associated Lichnerowicz
equation. During this chapter we will give a near state-of-the-art presentation of
this problem following Maxwell (2005a), and therefore establishing an Lp-low-
regularity complete CMC classification on closed manifolds which incorporates
several physical sources. In the process of doing so, we shall review results con-
cerning the Yamabe classification in this low regularity setting.

In Chapter 3, we move to the analysis of the Lichnerowicz equation on AE
manifolds and introduce boundary value problems which model black hole initial
data within the conformal method. We deliver a quite self-contained presentation
of the necessary elliptic theory on AE manifolds, which appeals to analysis on
weighted Sobolev spaces. We introduce the basic machinery associated to these
problems merely assuming basic acquaintance of the reader with the correspond-
ing theory on compact manifolds. We shall present a wide variety of results asso-
ciated to classical papers such as Bartnik (1986), Cantor (1981), Choquet-Bruhat



and Christodoulou (1981), Lockhart (1981), McOwen (1979), and Nirenberg and
Walker (1973). After doing this, the main results related to the ECE will be an
exposition of Maxwell (2005b).

Chapter 4 is devoted to a presentation of far-from-CMC results. These are
quite recent advances in the analysis of the ECE which rely on the application
of some fixed-point-theorem ideas and make use of the full machinery developed
in previous chapters. We shall first review some near CMC results, attainable
through implicit function techniques, and then provide a presentation of the far-
from-CMC results established in Maxwell (2009), which followed the pioneering
work of Holst, Nagy, and Tsogtgerel (2009). These results concern the coupled
ECE in vacuum on closed manifolds. Finally, we will move towards the analysis
of the ECE for a charged perfect fluid on AE manifolds with black hole boundary
data and present the far-from-CMC results of Avalos and Lira (2019).

Although during the main core of the text the reader is assumed to be famil-
iarised with elliptic theory on closed manifold, in order to provide a self-contained
presentation, we have provided most of the necessary tools within two appendixes,
where the reader can consult all the results which are used in the main chapters.
The first of these appendixes is concernedwith some functional analytic tools while
the second one with elliptic theory. Since these are extensive areas on their own
right, our presentation has been more expository in nature, attempting to provide
the reader with full proofs whenever possible, and, when the details exceed the
scope of these notes, provide full references as well as the basic intuitions on the
ideas behind the actual proofs.

We expect these notes to help researchers within theoretical physics and pure
and appliedmathematics to become familiarised with some of themany interesting
problems in the analysis of the ECE. Some related topics had to be left outside
due to time constraints for our course, but a thorough list of references has been
provided which the interested reader can use to substantially expand the scope of
this book.



Contents

Preface i

1 Introduction to general relativity 1
1.1 Some elements of Lorentzian geometry . . . . . . . . . . . . . . . 2
1.2 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 General Relativity - The Einstein equations . . . . . . . . . . . . . 21

1.3.1 Field Sources . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 The Schwarzschild solution . . . . . . . . . . . . . . . . . . 30
1.3.3 Some cosmological solutions . . . . . . . . . . . . . . . . . 36

1.4 The initial value formulation . . . . . . . . . . . . . . . . . . . . . 39
1.5 Black hole solutions . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 An overview of classical results 60
2.1 The conformal method . . . . . . . . . . . . . . . . . . . . . . . . 61

2.1.1 Some Model Sources . . . . . . . . . . . . . . . . . . . . . 68
2.1.2 Conformal covariance . . . . . . . . . . . . . . . . . . . . . 75

2.2 CMC-solutions on closed manifolds . . . . . . . . . . . . . . . . . 78
2.2.1 The monotone iteration scheme . . . . . . . . . . . . . . . . 80
2.2.2 The Yamabe classification . . . . . . . . . . . . . . . . . . . 87
2.2.3 Non-existence and uniqueness . . . . . . . . . . . . . . . . 97
2.2.4 Existence results for the Lichnerowicz equation . . . . . . . 100



3 Solutions on AE manifolds 110
3.1 AE manifolds - Analytical tools . . . . . . . . . . . . . . . . . . . 111
3.2 Some elliptic theory on AE manifolds . . . . . . . . . . . . . . . . 120
3.3 Some boundary value problems . . . . . . . . . . . . . . . . . . . 128

3.3.1 Conformally formulated black hole initial data . . . . . . . . 128
3.3.2 The Poisson and Conformal Killing operators . . . . . . . . 133

3.4 Maximal black hole vacuum initial data . . . . . . . . . . . . . . . 154
3.4.1 The Lichnerowicz equation . . . . . . . . . . . . . . . . . . 155

4 Far from CMC solutions 166
4.1 Near CMC-solutions . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.2 Vacuum solution with freely specified mean curvature . . . . . . . 172
4.3 Far-from-CMC solutions for charged fluids . . . . . . . . . . . . . 190

4.3.1 Existence results . . . . . . . . . . . . . . . . . . . . . . . . 197

A Some Analytic Tools 222
A.1 Functional analytic results . . . . . . . . . . . . . . . . . . . . . . 222
A.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B Elliptic Operators 241

Bibliography 263

Index 275



1 Introduction to
general

relativity

Theobjective of these notes is to analyse the so-called Einstein constraint equations
(ECE). Naturally, these equation arise in the context of general relativity (GR),
more specifically within the initial value formulation of this theory. In particular,
solution to the ECE provide us with suitable initial data which we can then evolve
into solutions of the space-time Einstein equations. Being GR the best known
description of gravitational phenomena up to this date, this alone provides enough
motivation for the analysis of the ECE. Nevertheless, from a purely mathematical
standpoint, they relate with classical problems in Riemannian geometry, such as
scalar curvature prescription problems and related geometric partial differential
equation (PDE) problems, which further motivates their analysis.

The aim of this first introductory chapter is to provide a review of the setting
where the ECE appear naturally, which is the initial value formulation of GR. In
this way we canmost effectively motivate their relevance, present model situations
of interest and provide intuitions about what is expected to occur in their analysis.
Since this is a topic which gathers researchers and students ranging from theoret-
ical physics to geometric analysis, we intend to review several notions which are
well-known to experts in each of these areas and should be within reach without
too much effort for those who are not. In doing so, we will assume acquaintance
with differential geometry as well as Riemannian and semi-Riemannian geome-



2 1. Introduction to general relativity

try.1 As a remark regarding notational conventions, let us highlight that, besides
standard notations within geometry, we will use whenever it may be more con-
venient Einstein’s index and summation conventions for coordinate expressions,
without further comments.

With the above in mind, the organisation of this chapter will be as follows.
First, we will review some definitions and results related specifically to Lorentzian
geometry. Our main motivations here will be to introduce enough language from
causality theory so that, later on, we can introduce notions such as black hole
solutions as well as those of Cauchy hypersurfaces and global hyperbolicity. Then,
we will present the skeleton of the theory of special relativity. There, the aim is
to introduce notions that will be of relevance in subsequent analysis, such us the
basic fields which we shall couple to gravity and for which we shall analyse the
existence of appropriate initial data. After this, we will promote this discussion to
the context of GR, introducing the Einstein equations and presenting these relevant
systems in this general context. Also, we will try to develop some intuitions by
presenting a few classical well-known exact solutions. In particular, we intend to
provide some rudimentary intuitions concerning black hole solutions by describing
the Schwarzschild solution. The objective at this point will be to provide us with
the right notions to motivate our discussion on black hole initial data. But, before
doing this, we will describe the initial value formulation of general relativity. This,
in particular, is a topic which deserves a complete book on its own due to its many
subtleties (which the interested reader can actually find, for instance, in Ringström
(2009)),2 and therefore we will merely review those results which are of most
relevance to us.

1.1 Some elements of Lorentzian geometry

Let us now introduce some notions related to Lorentzian geometry, most of which
can be found in standard references, such as Choquet-Bruhat (2009), Hawking and
Ellis (1973), and O’Neill (1983) as well as references therein. Let us first state that,

1If needed, the interested reader can consult differential geometric topics in classic textbooks
such as J. M. Lee (2013) and Spivak (1999e), Riemannian geometry topics in do Carmo (1992)
and Spivak (1999a,b,c,d) and textbooks adapted to semi-Riemannian geometry such as Bishop and
Goldberg (1980) and O’Neill (1983).

2We further recommend references such as Choquet-Bruhat (2009) for a self-contained presen-
tation of the general problem, as well as Christodoulou and Klainerman (1993) and Klainerman and
Nicolò (2003) for issues related to the stability of Minkowski and Dafermos and Rodnianski (2013)
for topics related with black hole evolution and stability.
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during all this text, manifolds will be assumed to be Hausdorff and second count-
able and, whenever specifying the dimensionality of a manifoldM is relevant, we
writeM d for a d -dimensional manifold.

Definition 1.1.1. A semi-Riemannian manifold .V; g/ will be called Lorentzian if
the metric g has constant index equal to 1.

Let us recall that the index of a symmetric bilinear form on a vector space is
defined to be the dimension of the largest subspace where its restriction is negative
definite. Therefore, using a local orthonormal frame f�gn˛D0, we can write g as

g D ��0 ˝ �0 C

nX
iD1

� i ˝ � i :

As above, we will typically reserve the 0-th direction to be the one over which g is
negative definite. In particular, the above shows that one can split tangent vectors
v 2 TpV into three cases, which determine their causal character.

Definition 1.1.2. Let .V; g/ be a Lorentzian manifold and let p 2 V . We will say
that a vector v 2 TpV , v ¤ 0, is time-like if gp.v; v/ < 0; light-like (or null)
if gp.v; v/ D 0 and space-like if gp.v; v/ > 0. Along these lines, we define the
light-cone (or null-cone) at p as the subset of TpV formed by all the null-vectors.

Whenever we consider a smooth curve 
 W I � R 7! V , if its causal character
is constant, that is, if 
 0 is everywhere time-like, null or space-like, then we will
say that 
 is time-like, null or space-like respectively. Clearly, an arbitrary curve
will not fall into any of these categories since its causal character may change, but,
in particular, geodesics have a fixed causal character.3 In order to clarify some
of this terminology, let us anticipate that, in the context of relativity theory, mas-
sive particles trace time-like paths in space-time while massless particles (such as
photons) trace light-like paths. On the other hand, since no signal can travel faster
than light, space-like paths do not represent the dynamics of any kind of particles.
In particular, points which are space-like related do not have the possibility of in-
fluencing each other. We will therefore say that a curve is causal if it is either
time-like or light-like.

Let us now highlight the special role played the the following Lorentzian man-
ifold.

3During these notes, we will always work with Riemannian (metric compatible and torsion-free)
connections, and therefore parallel transport is an isometry.



4 1. Introduction to general relativity

Definition 1.1.3. The manifold RnC1 equipped with the Lorentzian metric � given
by

� D �dx0 ˝ dx0 C

nX
iD1

dxi ˝ dxi ;

where fx˛gn˛D0 stand for (global) canonical coordinates for Rn, is referred to as
the Minkowski space-time, and we will denote it by MnC1.

Therefore, just as Euclidean space is the local model of a Riemannianmanifold,
in a Lorentzian manifold .V nC1; g/ we have .TpV; gp/ Š MnC1. In particular,
the Minkowski space-time is the arena where special relativity takes place.

We will now endow our Lorentzian manifolds with further structure than the
minimal one imposed above. In particular,wewill always consider time-orientable
Lorentzian manifolds, which we shall also refer to as space-times.

Definition 1.1.4. (O’Neill 1983, Page 145) Let .V; g/ be a Lorentzian manifold.
At each point p 2 V , in TpV we have two null-cones. A choice of one of these
null-cones is a time-orientation for TpV . A smooth function � on V which assigns
to each p 2 V a null-cone in TpV is said to be a time-orientation for V . We say
.V; g/ is time-orientable if it admits such a time-orientation function.

It is straightforward to see that a Lorentzian manifold is time-orientable if and
only if it admits a (global) time-like vector field (see, for instance, O’Neill (ibid.,
Lemma 32, Chapter 5).) Although in time-orientable Lorentzian manifolds there
is a consistent way to distinguish past from future, these are still quite general
structures which may inherit some exotic (maybe undesirable) properties. For
instance, any compact Lorentzian manifold admits a closed time-like curve (see,
for instance, O’Neill (ibid., Lemma 10, Chapter 14)). Since, within physics, causal
paths represent the history of actual particles, this property is typically deemed
as pathological allowing for potential travels to the past, and therefore excluded.
Such exclusion is made by appealing to topological properties which guarantee a
good causal structure on our space-time. Let us therefore introduce the relevant
concepts.

Let .V; g/ be a (time-orientable) Lorentzian manifold and p; q 2 V .4 Then,
we will write:

1. p � q if there is a future-pointing time-like curve in V from p to q;
4From now on, the time-orientability hypothesis will be implicitly assumed.
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2. p < q if there is a future-pointing causal curve in V from p to q;

3. p 6 q if either p < q or p D q;

4. Given a subset A � V , we define the chronological future IC.A/ and past
I�.A/ of A by

IC.A/
:

D fq 2 V W 9 p 2 A with p � qg;

I�.A/
:

D fq 2 V W 9 p 2 A with q � pg;

and the causal future J C.A/ and past J �.A/ of A by

J C.A/
:

D fq 2 V W 9 p 2 A with p 6 qg;

J �.A/
:

D fq 2 V W 9 p 2 A with q 6 pg:

There are several immediate consequences of these definitions, such as the fact
the � is always an open relation, implying that IC.A/ is always open, and also
some subtleties, such as the fact that J C.A/ is not always closed (for a simple
counter example, see O’Neill (ibid., Example 4, Chapter 14)). Nevertheless, since
we shall only use this language to introduce relevant concepts and results, we will
not be concerned with such subtleties and refer the interested reader to standard ref-
erences, such as O’Neill (ibid.) or Hawking and Ellis (1973). Let us now introduce
the following causality condition, which is related to our previous discussion.

Definition 1.1.5. Let .V; g/ be a Lorentzian manifold. We will say that the strong
causality condition holds at p 2 V if for any given neighbourhood U of p there is
a neighbourhood V � U of p such that every causal curve with endpoints in V is
entirely contained in U .

The above causality condition is basically tailored to exclude the possibility
of almost closed causal-curves, since it implies that causal curves which leave
a fixed neighbourhood of p 2 V cannot return to arbitrarily close to p. Again,
deleting appropriate subsets of simple Lorentz manifolds can be shown to create
a Lorentzian manifold without closed causal curves but with causal curves which
are almost closed, and we intend to avoid this. In fact, it can be seen that if the
strong causality condition holds in a compact subsetK of a space-time .V; g/, then
future-inextendible causal curves in K eventually leave K and never return to it
(O’Neill 1983, Lemma 13, Chapter 14).
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p

L0

L

Delete

Delete

˛

˛

Figure 1.1: S1 � R obtained from identification of sides L and L0 and equipped
with the metric �d�2 C dx and with the highlighted regions deleted. It possesses
almost closed time-like curves although no closed ones.

Given two points p; q 2 V and p < q, we use the notation J .p; q/ :
D

J C.p/ \ J �.q/, which is the smallest set containing all future-pointing causal
curves from p to q. Then, we have the following important definition.

Definition 1.1.6. We say that a Lorentzian manifold .V; g/ is globally hyperbolic
if:

1. The strong causality condition holds in V ;

2. If p; q 2 V and p < q, then J .p; q/ is compact.

In particular, in globally hyperbolic space-times, the relation6 is closed (O’Neill
1983, Lemma 22, Chapter 14). Furthermore, globally hyperbolic space-times have
a particularly nice topological structure, which makes them natural in the context
of evolution problems. To make this precise, let us introduce one further defini-
tion.

Definition 1.1.7. A Cauchy hypersurface in a Lorentzian manifold .V; g/ is a
subsetM that is met exactly once by every inextendible time-like curve in V .

The following result links the two notions of global hyperbolicity and Cauchy
surfaces:
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Theorem 1.1.1. (Bernal and Sánchez 2003) Any globally hyperbolic space-time
.V; g/ admits a smooth space-like Cauchy hypersurface M .5 Furthermore, V is
diffeomorphic to R �M .

The above theorem stands as an improvement to the smooth category of the
corresponding topological result, which is a classical celebrated result by Geroch
(1970). In this last result, the author obtained a topological Cauchy surface and
an homemorphism with R � M . There is a rich history concerning the evolution
of these kinds of results which can be consulted in Bernal and Sánchez (2003).
Furthermore, the above result can be strengthened, establishing that .V; g/ is iso-
metric to .R �M;�N 2dT 2 C Ng/, with T W R �M 7! R the natural projection,
N W R �M 7! .0;1/ a smooth function, Ng a symmetric .0; 2/-tensor field which,
for each T D cte, restricts to a Riemannian metric on fT g �M Š M , and where
rT is time-like and past-pointing, i.e, T is a time-function (Bernal and Sánchez
2005). A further generalisation of these ideas can be obtained for globally hyper-
bolic manifolds with (appropriate) boundary. For such results, we refer the reader
to Hau, Dorado, and Sánchez (2021).

There are a couple of interesting consequences of the above theorem. First,
notice that any non-trivial topology in a globally-hyperbolic space-time must be
contained within its Cauchy surface. Second, and more directly related with our
discussions to come, a Cauchy hypersurface in a globally hyperbolic space-time is
a suitable subset where we can pose initial conditions for evolution problems. In
fact, our task will be to start with a Cauchy surfaceM and initial data on it, and
then show that we can evolve such initial data to create space-time solutions to
the Einstein equations. Although general existence results only provide us with a
slab Œ0; T ��M on which the space-time solution is guaranteed to exist, whenever
solutions are guaranteed to exist for all times, we recover a globally-hyperbolic
space-time by evolution.

We shall return and appeal to the above causality-theory ideas in Section 1.5
when we discuss general black hole space-times and singularity theorems.

1.2 Special Relativity

We shall now introduce some elements from the theory of special relativity which
will be useful in upcoming sections. Along the lines of the previous section, we

5By space-like hypersurface, we mean that the induced metric h by g on M is a properly Rie-
mannian metric.
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will not enter into details and instead refer the interested reader to standard refer-
ences in the subject.

Newtonian space-time
Let us start by briefly describing the Newtonian picture of physics and its space-
time formulation. In this setting, one starts assuming that the notions of space and
time and fixed and, in particular, do not play any dynamical role. Physical particles
interact and evolve within 3-dimensional Euclidean space E3 D .R3; �/, which
represents the physical space and time is universal, in particular there is a universal
agreement on which events are simultaneous. In this context, one distinguishes the
set of inertial reference frames (special coordinate systems) being those in uniform
rectilinear motion, all of which move with constant velocity with respect to each
other. On these frames, Newton’s laws of mechanics are valid and the principle of
Galilean relativity holds. That is, the physical laws of mechanics are the same in all
inertial frames. Then, the coordinate transformations that relate different inertial
frames define the Galilean group, whose action preserves the laws of mechanics.

Already in this context we can introduce the notion of space-time, which sim-
ply refers to the collection of all physical events. Galilean space-time is therefore
given by the manifold R � R3, where the first factor refers to time and second one
to space and where events are labelled by their space and time coordinates. Since
particles are described by curves ˛ W R 7! E3, within space-time the same parti-
cles are described by worldlines, which are curves of the form 
 W R 7! R � R3,
given by 
.t/ D .t; ˛.t//. Also, Galilean transformations act on space-time relat-
ing the coordinate systems adopted by different (Galilean) inertial frames.

In pre-relativistic physics, the above description of mechanics was supple-
mented by Maxwell’s description of electromagnetic phenomena. This already
presents a tension in the physical description, since electromagnetic phenomena
do not respect the same kind of Galilean invariance alluded to above. In particu-
lar, such tension led physicists of the time to believe that there was a preferred
reference frame (the aether frame) with respect to which Maxwell’s equations
were written in their usual form and which provided a medium for electromagnetic
waves to propagate. Nevertheless, this hypothesis became increasingly difficult to
hold in light of experimental results failing to detect such aether frame and need-
ing of certain additional ad hoc hypotheses to account for their negative results.
These discussions seem to have been at the core of Einstein’s reasoning towards
relativity theory.6

6For some historical discussions and description of experiments shifting the physical paradigm
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R (time)

E3 (space)

Non acelerated

Acelerated
worldline

Not a worldline

Figure 1.2: Newtonian space-time

Special Relativity and the Minkowski space-time
In the context described above and in order to reconcile the tensions alluded to,
Einstein proposed the following two principles, which are now known as the pos-
tulates of special relativity:

1. All the laws of nature have the same form in every inertial frame;

2. The speed of light is equal to the same universal constant in every inertial
frame, independent of the motion of the source.

The first of the above two principles is an extension of the Galilean principle of rel-
ativity to include electromagnetic phenomena. When the above principles are put
together, they can be used to lead us to the transformation rules relating different
inertial systems, which are no longer the Galilean transformations. In turn, they
are now the Lorentz transformations. In order to introduce them, if we assume
that we have two inertial Cartesian systems S D .t; xi / and S 0 D .t 0; x0i /, whose
origins coincide initially and we assume that the direction of relative motion of

of the time, we refer the reader to references such Møller (1952, Chapter 1) and Jackson (1999,
Chapter 12).
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S 0 with respect to S coincides with a particular coordinate axis, say x1, then the
relation between these inertial systems is given by

0 00

x2 x02

x1

x01

S S 0
x3 x02

Ev

Figure 1.3: Inertial systems in relative motion

t 0 D
t �

v
c2x

1�
1 �

�
v
c

�2� 1
2

;

x01
D

x1 � vt�
1 �

�
v
c

�2� 1
2

;

x02
D x2;

x03
D x3;

(1.1)

where v D jEvj stands for the magnitude of the relative speed between the two
systems and c for the speed of light. The above relations readily extend to a general
situation by composing with rotations (on R3) and space-time translations. Many
well-known consequences of special relativity now follow by direct application of
physical invariance under Lorentz transformations. Effects such as those of time-
dilation and Lorentz-contraction are two such examples. Furthermore, the above
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relations between inertial frames impose a paradigm-shift concerning the notion
of simultaneity, since, clearly from the first of the above relations, observers in
relative motion do not agree on this concept although their perspectives are all
equally valid. In this context, in order to avoid the recurrent appearances of the
factor c in every expression, the speed of light is set equal to c D 1 and physical
units are redefined accordingly. From now on, we will follow this convention.
Detailed discussions on all these physical effects can be found in the previously
cited references, both on special and general relativity.

One further important consequence of the above principles of relativity and
the corresponding Lorentz group L, is that these transformations are precisely the
linear isometries associated to the Minkowski metric. That is,

L.R4/ D fA 2 GL.R4/ W �.Ax;Ay/ D �.x; y/ for all x; y 2 R4g:

Allowing for space-time translations, we arrive at the Poincaré group representing
the full isometry group ofMinkowski’s spaceM4 (see, for instance, O’Neill (1983,
Proposition 10, Chapter 9)). All this motivates us to introduce the Minkowski
space-time M4 D .R4; �/ as the space-time model of special-relativity. Several
further modifications must be imposed to the Newtonian paradigm to make the
physical description compatible with the principles of relativity, in particular with
the new needed invariance of physical laws for inertial systems under the action of
Lorentz transformations. Let us attempt to describe the main setting, which will
become useful latter on.

First of all, inMinkowski’s space-time, light-rays clearly represent null-curves.
On the other hand, massive particles are represented by time-like worldlines. This
last fact is based on the empirical evidence that no massive particle has ever been
detected to travel at the speed of light or faster. Although whether this is ultimately
possible is up to Nature to decide, there are also strong a priori arguments against
this possibility. For instance, a particle (massive or not) that appears to be travel-
ling faster-than-light in one inertial frame will appear to be travelling backwards in
time in some other inertial frame, as can be seen by appealing to the above Lorentz
transformations. Furthermore, a massive particle which starts with velocity lower
than that of light, cannot be accelerated up to the speed of light as a consequence
of relativistic effects (although it can be brought as close as we want to it). Be
it as it may, this universal speed limit is a tenant of contemporary physics which
has passed every test to this day. With this in mind, we can introduce the notion
of proper time associated to a massive particle with worldline 
 , simply as its
arch-length between two events along its history. That is, given a time-like curve

 W I 7! M4 and two events p D 
.s1/ and q D 
.s2/, p � q, we define the
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elapsed proper-time �� as measured by 
 as

�2 � �1
:

D

Z s2

s1

p
��.
 0; 
 0/ds; (1.2)

which is independent of the parametrisation used for 
 . Basically, proper-time
is the Lorentzian analogue of arch-length for time-like curves. We know from
standard arguments that any such curve can be reparametrised by proper-time
and that this reparametrisation is precisely the one which normalises its veloc-
ity. That is, given a time-like curve 
 , if we reparametrise by proper-time, then
�.
 0.�/; 
 0.�// D �1. This normalisation is standard for time-like particles and
therefore, when we consider massive particles, we will assume it. In fact, such
preferred parametrisation also has a clear physical interpretation, since it repre-
sents the elapsed time as experienced by a 
 itself.7 This kind of language spreads
within relativity theory. For instance, the mass of a particle as measured by an
observer for which the particle is at rest, is referred to as proper mass. Similarly,
the charge of a particle measured under these conditions is referred to as proper
charge, and so on.

Let us highlight that, although in this context things such as simultaneity be-
come relative to a reference frame, causality relations are universal. That is, us-
ing the language of the previous section, the causal relations between events rep-
resented by � and 6 depend only on the Lorentzian structure of Minkowski’s
space-time, and are therefore invariant by Lorentz transformations. Therefore, we
see how the geometric structure of Minkowski space now plays a fundamental role
in determining physical relations.

The above geometric description of a worldline of a massive particle allows
us to replace Newton’s second law in this context quite naturally. This is neces-
sary since Newton’s second law, which is invariant under Galilean transformations
between inertial frames, is not invariant under the full group of Lorentzian trans-
formations. In this context, given a point-like particle with worldline 
� and of
proper mass m0 > 0, the well-known Newtonian second law is replaced by

D

d�
.m0


0
� / D f; (1.3)

where the left-hand side stands for the covariant derivative of m0
 0 along 
 and
the right-hand side for a space-time force field, typically referred to as a 4-force.

7Recall that, in contrast to Newtonian physics, time intervals between fixed events are relative
to the observer in relativity, as seen by using Lorentz transformations.
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Let us notice that, in absence of forces (and with m0 D cte), the above reduces
to the geodesic equation for 
 . Furthermore, the vector field p D m0


0
� plays

also a special role. Above, it is actually playing an analogue role to that of the
Newtonian linear momentum, and that is why p is referred to as the 4-momentum
of such particle. Let us fix an inertial coordinate system .t; xi / and consider the
dynamics of 
 with respect to it.8 Let us first notice that we can always parametrise

 by the coordinate time t , since

dt

d�
D ��.@t ; 


0
� / > 0 along 
� :

This kind of reparametrisation is typically useful to make contact between the rela-
tivistic description inMinkowski space-time and the Newtonian perspective which
can help us develop intuitions of new concepts in their low-velocity limit. Then,
notice that


 0
� D

dt.�/

d�

@

@t

ˇ̌̌

�

C
dxi .�/

d�

@

@xi

ˇ̌̌

�

D
dt

d�

 
@

@t

ˇ̌̌

�

C
dxi .t/

dt

@

@xi

ˇ̌̌

�

!
;

where

dt

d�
D

�
1 �

ˇ̌̌d Ex

dt

ˇ̌̌2�� 1
2

;

and Ev D
d Ex
dt

is the Newtonian velocity of the alleged particle as seen in the .t; xi /
reference frame. That is,


 0
� D

�
1 �

ˇ̌̌d Ex

dt

ˇ̌̌2�� 1
2

 
@

@t

ˇ̌̌

�

C
dxi .t/

dt

@

@xi

ˇ̌̌

�

!
: (1.4)

Therefore, for a point-like particle of proper mass m0, the 4-momentum can
be written as

p D

0BB@ m0�
1 �

ˇ̌
d Ex
dt

ˇ̌2� 1
2

;
m0Ev�

1 �
ˇ̌
d Ex
dt

ˇ̌2� 1
2

1CCA :
8To avoid confusion, we adopt the convention that when we refer to a time-like curve represent-

ing a physical particle, we assume its parametrisation is chosen so that it is future pointing.
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The space-part of the above vector field looks as a suggestive modification of the
Newtonian momentum Ep D m0Ev. In fact, recalling that we set c D 1 and thus for
Newtonian particles we have v � 1, we see that

m0�
1 � v2

� 1
2

D m0

�
1C

1

2
v2 C o.v4/

�
D m0 C

1

2
m0v

2
C o.v4/;

m0Ev�
1 � v2

� 1
2

D Ep

�
1C

1

2
v2 C o.v4/

�
D Ep C o.v3/:

The usual interpretation of the above relations is that the 4-momentum p repre-
sents the energy-momentum vector field associated with the point-like mass m0.
Its time-component converges to its Newtonian kinetic energy with an added en-
ergy contribution due its mass as v ! 0, while its space-component approaches its
Newtonian momentum in this limit. Therefore, the energy-momentum vector field
p associated with m0 is actually understood as the suitable relativistic generalisa-
tion of the associated Newtonian concepts of energy and momentum, and recovers
these last concepts in the low velocity limit. Thus, in (1.3), the time-component of
the 4-force f can be understood as the relativistic generalisation of the work done
on m0 while the space-part can be understood as the relativistic generalisation of
the usual Newtonian force acting on it. Typically, understanding the situation in
the Newtonian limit v ! 0 and appealing to a Lorentz-covariant generalisation
work as the guiding principles to obtain the suitable relativistic 4-force f .

Let us finally notice that, although now we see that the energy and momentum
associated to a particle of mass m0 depend on our reference frame, and therefore
their values in different inertial systems are linked by Lorentz transformations, the
proper massm0 is a universal invariant quantity, which, in any inertial frame, reads

m20 D ��.p; p/ D E2 � j Epj
2: (1.5)

Furthermore, the concept of energy-momentum vector can be generalised to mass-
less particles, for which the above relation also holds, establishing that for such
particles (for instance photons) we have E2 D j Epj2.

Energy-Momentum tensors and continuous matter

Above, among other things, we described the basic elements entering in the dy-
namics of point-like particles in the relativistic context, which represents a useful
idealisation in many situations. Nevertheless, when we deal with systems of many
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particles, we can typically neglect details of the specific individual particles and
consider certain coarse-grained properties which dictate the overall dynamics of
the systems. In these situations, we can idealise such systems as continuous matter
distributions, typically modelled as a fluid, whose dynamics is controlled by the
corresponding dynamics of certain hydrodynamical parameters, such as its energy
density, pressure density and velocity field. These fluid parameters evolve obey-
ing conservation laws relating their rates of change in a given region with their
flux in and out of it. All these conservation relations of energy and momentum are
best captured by introducing an energy-momentum tensor field T 2 � .T 02 M4/

associated with the fluid. This is a symmetric tensor field, which, in a given iner-
tial coordinate system .x0 D t; xi /, relates to the energy density � and momentum
density J of the fluid via

� D T .@t ; @t / D T00;

Ji D �T .@t ; @xi / D �T0i
(1.6)

and the conservation laws are expressed via

div�T D 0
�
���@�T�� D 0

�
: (1.7)

In an inertial coordinate system, the time component of the above equation put
together with Stokes theorem implies an energy-conservation law, while the space-
components a momentum conservation law.

In this context, let us introduce one further useful notation. We can fix a refer-
ence frame (maybe not inertial) by considering the flow of a time-like vector field
v with flow-lines 
s . We could think about such fame as attached to an idealised
fluid with these flow-lines. In case such fluid is inertial, i.e, it moves with con-
stant velocity with respect to our inertial frame, then both frames are related via
Lorentz transformations and the coordinates of the energy-momentum tensor field
T in both frames are also related via these coordinate changes. In case the frame
given by v is not inertial, we can nevertheless present the physical description
as experienced by such observers by simply applying the appropriate coordinate
change between these two frames. Therefore, in this more general setting, we de-
fine the energy andmomentum densities of the fluid with energymomentum tensor
T as seen by 
 0

s as

� D T .
 0
s; 


0
s/;

J.X/ D �T .
 0
s; X/; for all X ?� 


0
s;

(1.8)
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which reduces to (1.6) when we consider 
 0
s D @t .

The above treatment via continuous fluids and hydrodynamic equationsmodels
situations ranging from the classical dynamics of fluids, to stellar physics and up
to the overall dynamics of the universe, where its matter content is modelled in
this way. Below, we will provide a few examples of these situation, limiting to
those which we shall encounter in our future analysis. The interested reader may
consult the physical details as well as more exhaustive discussion in references
such as Weinberg (1972).9

Perfect fluids

Perfect fluids are among the simplest examples we can present within the above
discussion. These are fluids characterised by their 4-velocity field u, its energy
density � and pressure density p and are defined by the condition that an observer
moving along with the fluid should see it as isotropic (see, for instance, Weinberg
(ibid., Section 10, Chapter 2)). In an arbitrary inertial frame, the corresponding
energy-momentum tensor field is deduced to have the form:

T D .�C p/u[ ˝ u[ C p�; (1.9)

where u[ denotes the 1-form metrically equivalent to u. The equations of motion
for such a fluid, known as the Euler equations, are obtained through (1.7), and
typically have to be supplemented by a suitable state equation, which provides a
relation between the state variables p and �. Such an equation of state depends on
the characteristics of the kinds of matter of which the fluid is made, and is typically
derived via methods of statistical mechanics.

The above procedure is particularly simple when p D 0. Such a pressureless
perfect fluid is known as as dust. In this case, the equations of motion read

0 D �˛ˇr˛.�uˇu� /

D div�.�u/ u� C �u˛r˛u� ;
(1.10)

The above equation is simplified by projecting it parallel and orthogonal to u. Re-
calling the normalisation convention �.u; u/ D �1 for massive particles, the par-
allel component gives

0 D �div�.�u/C ��.u;ruu/;

9To obtain a quite direct acquaintance with the topic of hydrodynamics, the interested reader can
find a mathematically oriented brief presentation in Abraham, Marsden, and Ratiu (1988, Chapter
9) in the Newtonian context and, in the other end, a detailed presentation in the general relativistic
context in Choquet-Bruhat (2009, Chapter IX).
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which can be further simplified, since the normalisation condition on u implies
that �.u;ruu/ D 0. Thus, we obtain

div�.�u/ D 0 (1.11)

Using this information in (1.10), we find (� 6� 0)

ruu D 0: (1.12)

That is, the flow lines of a dust fluid are given by geodesics. Furthermore, (1.11)
is simply a continuity equations, representing the conservation of matter.

Maxwell’s equations
The idea of this section is to set up the notations for the Maxwell equations con-
sistently while presenting their formulation in the context of special relativity.
The usual Maxwell equations, written in some inertial coordinate system .t; x/

on R � R3 are given by10

@tE � Curl B D �j; ; @tB C CurlE D 0

divE D �; ; divB D 0;
(1.13)

where � and j represent, respectively, the total charge and current densities pro-
duced by sources. These two quantities are not independent, since putting together
the two equations in left column provides us with the continuity equation

@t�C divj D 0; (1.14)

which simply expresses the conservation of charge. In modern form, the above
equations are recast as equations on tensor fields defined on Minkowski’s space-
time. This is part of an interesting analysis revealing the Maxwell equations as
Lorentz invariant. In fact, after applying the corresponding Lorentz transforma-
tions to (1.13) relating two inertial frames, say .t; x/ and .t 0; x0/, we discover that,
if these equations are to hold in every inertial frame, then certain transformation
rules must be inherited by the physical fields E;B; � and j .11 In particular, these
transformation rules suggest that � and j can be put together to form the vector

10In writing the Maxwell equations, we are adopting suitable conventions on the definitions of
the fields and systems of units so as to avoid introducing universal physical constants.

11For a review on this topic, we refer the reader to classic text books, such as Jackson (1999) and
references therein. Also, for an interesting and relevant discussion on this topic, see Redžić (2016).
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field on space-time defined by J :
D .�; j /, which reproduces the charge and cur-

rent densities on any inertial frame transforming via Lorentz transformations. In
fact, that this should be the case is strongly suggested by the continuity equation
(1.14),12 which now reads as the space-time equation

div�J D r�J �
D 0: (1.15)

On the other hand, the suggested transformation rules for E and B are not
understood in so simple terms, but they can be elegantly shown to the consequence
of these fields being special decompositions of an electromagnetic 2-form. Thus,
let us introduce the following definition.

Definition 1.2.1. LetM D .R�R3; �/ be theMinkowski space-time. Consider an
inertial coordinate system .x0; xi / and define the Faraday electromagnetic 2-form
F D

1
2
F˛ˇdx

˛ ^ dxˇ by

F˛ˇ
:

D

2664
0 �E1 �E2 �E3
E1 0 B3 �B2
E2 �B3 0 B1
E3 B2 �B1 0

3775
whereE andB stand for the electric andmagnetic fields associated to theMaxwell
equations on M.

According to the above definition, for a given space-time family of observers
with flow lines 
s , the space-time tensor field F is resolved as

E˛
:

D F˛ˇ

0ˇ
s ;

Fij
:

D F.ei ; ej /;

where E is the electric 1-form as measured by such observers, Fij the magnetic
part of the electromagnetic 2-form and f
 0

s; eig
3
iD1 denotes a frame along 
s . In

fact, with this terminology, we can show that following holds.

Proposition 1.2.1. TheMaxwell equations (1.13) written on a fixed inertial system
.x0; xi / are equivalent to the exterior system

ı�F D J [; dF D 0; (1.16)

where ı�F denotes the 1-form defined by ı�F�
:

D ��˛ˇ@˛Fˇ�.
12For a discussion related to this topic, we refer the reader, for instance, to Appendix 2 in Møller

(1952).
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Proof. First, in our inertial coordinate system we can compute

�ı�Fˇ D �@0F0ˇ C @iFiˇ ;

which splits as

�ı�F.@0/ D @iFi0 D @iEi ;

�ı�F.@j / D �@0F0j C @iFij D @0Ej C �ijk@iBk D @0Ej � �j ik@iBk :

where �ijk denote the completely antisymmetric Levi–Civita symbols, allowing
us to write Fij D �ijkBk in our inertial system. These relations imply

�ı�F.@0/ D divE D �;

�ı�F.@k/ D @tEk � Curl Bk D �jk;

where � and j stand by the electric charge and current densities as measured by
this particular inertial system. Therefore, we find that

ı�F D J [; (1.17)

where J [ is the 1-form metrically isomorphic to J , which, in an inertial inertial
frame has components J [ D ��dx0 C jkdx

k .
For the second half of the Maxwell equations, compute

dF D
1

2
@
F˛ˇdx



^ dx˛ ^ dxˇ ;

D
1

2

�
@0Fijdx

0
^ dxi ^ dxj C 2@iF0jdx

i
^ dx0 ^ dxj C @iFjldx

i
^ dxj ^ dxl

�
;

D
1

2

�
�kij @0Bk C 2@iEj

�
dx0 ^ dxi ^ dxj C

1

2
�jlk@iBkdx

i
^ dxj ^ dxl

D
1

2

�
2@0B Ok

C 2
�
@iEj � @jEi

��
dx0 ^ dx.i ^ dxj / C

1

2
�jlk@iBkdx

i
^ dxj ^ dxl ;

where the convention aijdx.i ^ dxj / implies the summation is to be done only
for i < j and the index Ok stands for the only space index different to both i and j .
Also, from the antisymmetry properties, it follows that �jlkdxi ^ dxj ^ dxl D

2�jlkdx
i ^ dx.j ^ dxl/ and �jlk@iBkdxi ^ dx.j ^ dxl/ is non-zero only for

k D i . Thus,

dF D

�
@tB Ok

C CurlE Ok

�
dx0 ^ dx.i ^ dxj / C

3X
iD1

�ijl@iBidx
i

^ dx.j ^ dxl/;

D

�
@tB Ok

C CurlE Ok

�
dx0 ^ dx.i ^ dxj / C divB dx1 ^ dx2 ^ dx3:
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Therefore, we get that13

��dF D �k .@tBk C CurlEk/ dxk � divB dt;

where �k D ˙1. Therefore, the second half of the Maxwell equations hold iff
�dF D 0 , dF D 0, which establishes the final claim.

From the above discussion, the conclusion is that on the 4-dimensional flat
space-time of special relativity, the Maxwell equations (1.13) can be rewritten as
tensor equations for the electromagnetic 2-form F , given by (1.16). Furthermore,
the dynamical equation ı�F D J ˇ contains the charge conservation statement
(1.15), since ı�J [ D ı2�F D 0, which is a restatement of the same fact.

In order to complete our description of electromagnetic phenomena in the rela-
tivistic context, we introduce the electromagnetic energy-momentum tensor field:

T EM˛ˇ D F˛
�Fˇ� �

1

4
�˛ˇF

��F��: (1.18)

In particular, the energy density as observed by the inertial system .x0; xi / of the
electromagnetic field is computed as

E :
D T EM .@0; @0/ D F0

iF0i C
1

4
F ��F�� D jEj

2
C
1

4

�
�2F0

iF0i C F ijFij

�
;

D
1

2

�
jEj

2
C
1

2
j zF j

2

�
;

where zF denotes the magnetic part of the electromagnetic 2-form, where j zF j2 D

2jBj2. Similarly, the momentum density J is given by

Ji
:

D �T EM .@0; @i / D �F0
jFij D FijE

j ;

D �ijkE
jBk D .E � B/i :

That is, we arrive at the usual expression for the pointing vector S D E � B as
the electromagnetic momentum density.

Finally, let us notice how the Maxwell-equations (1.16) relate to the energy-
momentum conservation equations associated to the above energy-momentum ten-
sor field.

13The operator �� denotes the Hodge star operator, associated to the volume form dV� D dt ^

dx1 ^ dx2 ^ dx3.
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Proposition 1.2.2. Consider the 2-form F on Mikowski’s space-time satisfying
Maxwell’s equations, then

div�T EM D J yF; (1.19)

where J yF :
D F.J ; �/ is known as the Lorentz force.

Proof. Direct computation shows that

��˛r�T
EM
˛ˇ D �J �Fˇ� C F ��r�Fˇ� �

1

2
F ��rˇF��;

D �J �Fˇ� C
1

2
F ��

�
r�Fˇ� � r�Fˇ�

�
�
1

2
F ��rˇF��;

D �J �Fˇ� C
1

2
F ��

�
�rˇF�� � r�F�ˇ � r�Fˇ�

�
�
1

2
F ��rˇF��;

D �J �Fˇ� �
1

2
F ��rˇF�� �

1

2
F ��rˇF��;

D �J �Fˇ� C
1

2
F ��rˇF�� �

1

2
F ��rˇF��;

D F�ˇJ �;

where in the first line we used ı�F D J [, in the second one the antisymmetry
of F , in the third one the fact that dF D 0 is equivalent to the local expression
written in arbitrary coordinates r˛Fˇ
 C rˇF
˛ C r
F˛ˇ D 0, and finally we
appealed again to the antisymmetry of F .

The above proposition shows that the changes in the energy and momentum
of an electromagnetic field are due to the work done on a system of charges and
currents J . In the following section, we will come back to the description of
electromagnetic field already within the context of general relativity and push this
description a little bit further. In particular, let us only comment that the current
density J is itself produced by some sort of charged matter. Such matter will be
described by its own energymomentum distributions, represented by some energy-
momentum tensor field T matter and the full energy-momentum tensor of the com-
plete system will consist of the sum T total D T EM CT matter. This last tensor must
obey (1.7), so that the total energy-momentum contributions are balanced.

1.3 General Relativity - The Einstein equations
Similarly to the starting point of the previous section, the starting point of GR was
to resolve the existing tensions between the principles of special relativity with
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Newtonian theory of gravitation. In contrast to the case of electromagnetism pre-
viously described, this turned out to be radically more subtle, and again produced
another paradigm shift within physics. There is a long and rich history describing
the state of affairs concerning the status of Newtonian gravity at the time when
Einstein came along. Besides subtle discrepancies with Mercury’s perihelia, this
theory had been extremely successful in describing solar system physics, and we
refer the interested reader to references such as Poisson andWill (2014) and Wein-
berg (1972) for discussions concerning this history. For us, it is enough motivation
to realize that the Newtonian theory of gravity is not compatible with the kind of
Lorentz invariance described in the previous section.

As the guiding principle of GR, Einstein put forward the principle of equiva-
lence. There are actually at least three versions of such principle. The weakest one,
going back to Galileo and known as the weak equivalence principle, is a recogni-
tion of the experimentally verified fact that the inertial mass (the one responsible
for its resistance to change its inertial state) and the gravitational mass (the one ap-
pearing in the Newtonian universal law of gravitation, and therefore responsible
for its gravitational interaction) are the same for any body.14 This principle has
as a consequence the well-known universality of free-fall, which states that freely
falling test bodies15 fall at the same rate in an homogeneous external gravitational
field. In fact, under such conditions, one can go from an inertial system which
sees a system of (possibly interacting) particles falling in a uniform gravitational
field, to a non-inertial freely-falling coordinate system, which falls along with such
particles. In both frames observers will agree on the laws of mechanics, although
they will disagree on the existence of a gravitational field. That is, in a uniform
(and static) gravitational field, the equivalence of inertial and gravitational masses
allows us to cancel the effects of gravity by moving to an accelerated frame.

In reality, no truly homogeneous gravitational field exists and, therefore, in
the above discussion, some locality hypothesis has to be added. That is, we must
consider that the above cancellation of gravity by acceleration is valid (to a suf-
ficiently high degree of approximation) only locally, within a space-time region
where the inhomogeneities and time-variation of the gravitational field can be ne-
glected, which leads us to actual equivalence principle used in GR. This states that
given a space-time point, there is a sufficiently small neighbourhood of it where
we can cancel out the effects of gravitation by moving to a locally inertial coordi-

14See Poisson and Will (2014) for a detailed account of the precision to which this has been
verified.

15These are bodies free of any other interaction than gravity and whose own gravitational field
can be neglected in such an experiment.
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nate system, where the laws of nature are described by those of special relativity.
In this context there is still some discussion on whether such principle should refer
to laws of nature for test particles (with negligible gravitational self-interaction) or
whether it applies to all phenomena. The stronger version is known as the strong
equivalence principle. The subtle distinction between all these versions of the
equivalence principle relies on the degree to which each of them has been ex-
perimentally verified, and for these discussion, we refer the interested reader to
Weinberg (1972, Chapter 3) and Poisson and Will (2014, Chapters 1 and 13).

Accepting the above principle of equivalence leads us to the conclusion that,
locally, physics is sufficiently well approximated by special relativity and there-
fore space-time is nearly Minkowskian. The picture that is then adopted is that
space-time is actually modelled by a Lorentzian manifold .V; Ng/, and then the ex-
istence normal coordinates provides us with the locally inertial coordinate systems,
where, up to second order in a neighbourhood of an arbitrary point, physics looks
Minkowkian. Then, higher-order effects due to gravitation are codified in the cur-
vature of space-time. Since, after all, the choice of a particular coordinate system
is for our benefit but does not affect the actual physical happenings, the guiding
principle is now to appeal to special relativity locally, and then find coordinate-free
laws which generalise for any frame of reference, which is sometimes referred to
as the principle of general covariance. For instance, freely-falling particles at any
particular point will obey (1.3) with f D 0, and then their generalisation is taken
to be the geodesic equation for the space-time metric Ng. Although powerful, this
principle does not always lead to a unique possible generalisation, as is illustrated
inWald (1984, Chapter 4, Section 3) and in such cases further considerations must
be taken into account.

From the above discussion, we see that in our new picture space-time is mod-
elled as a (a-priori arbitrary) Lorentzian manifold .V; Ng/ and that gravitational ef-
fects are encoded in the choice of Lorentzian metric Ng. Therefore, Newton’s uni-
versal law of gravitation has to be upgraded to some equation on Ng. The equiva-
lence principle provides a strong guide towards the correct equations. In particular,
an appeal to such a principle put together with a comparison in the low-velocity
weak-field limit with Newtonian gravity (which we know to be an extremely good
approximation in this limit) and an appeal to certain conservation principles guide
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us towards the Einstein equations:16

Ric Ng �
1

2
R Ng Ng C� Ng D T . Ng; N /; (1.20)

where in the left-hand side Ric Ng and R Ng denote the Ricci tensor and scalar curva-
ture associated to Ng, while � denotes a constant referred to as the cosmological
constant. On the right-hand side T denotes the energy-momentum tensor field as-
sociated to the matter fields which are sourcing the gravitational field, which (as
seen in previous sections) will typically depend on the space-time metric Ng and
some collection of physical fields, here collectively denoted by N . Let us be clear
concerning our notations and explicitly write down our curvature conventions:

R Ng.X; Y /Z
:

D NrX
NrYZ � NrX

NrYZ � NrŒX;Y �Z; 8X; Y;Z 2 � .T V /

R˛��ˇ . Ng/
:

D dx˛.R Ng.@ˇ ; @�/@�/;

Ric��. Ng/
:

D R˛��˛. Ng/;

R Ng
:

D Ng��Ric��. Ng/;

(1.21)

where Nr denotes the Riemannian connection associated with Ng and fx˛g4˛D0 is an
arbitrary coordinate system on V . Let us also point out that the left-hand side of
(1.20) contains the Einstein tensor

G Ng
:

D Ric Ng �
1

2
R Ng Ng (1.22)

which obeys the local conservation law

div NgG Ng D 0: (1.23)

This directly implies that the right-hand side of (1.20) obeys the same kind of

16For this kind of derivation of the Einstein equations see Weinberg (1972, Chapter 7) or Wald
(1984, Chapter 4) for somewhat different approach making use of the geodesic deviation equations.
Along these lines, we would like to further point the interested reader to the insightful notes of
Geroch (2013). Furthermore, let us highlight that the Einstein equations can be obtained as the Euler-
Lagrange equations of a Lagrangian involving R Ng (see Choquet-Bruhat (2009, Chapter 3, Section
7) or Wald (1984, Appendix E)). Clearly such a procedure, although elegant, requires impositions
on boundary and asymptotic conditions.
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conservation law, given by17

div NgT . Ng; N / D 0: (1.24)

The above equations are necessary conditions for (1.20) and therefore have to be
coupled to the system. In particular, they will imply conservation laws for the
matter fields, which complement the Einstein equations. Notice that the system
(1.20)-(1.24) has to be solved simultaneously, and thus we have a strong (non-
linear) coupling between matter fields sourcing the gravitational field (described
by Ng) and the space-time geometry dictating how matter should move. That is, as
was famously put by John A. Wheeler, “space-time tells matter how to move and
matter tells space-time how to curve”.

Let us highlight that the above discussion, both on general and special relativity
has only been limited to 4-dimensional space-times because this is actually the
(main) object of interest in physics, but the mathematical tools and model work
fine for any number of space-dimensions with almost no modifications. Since
higher-dimensional space-times are objects of interest in contemporary theoretical
physics, let us from now on work on space-times .V nC1; Ng/, with n > 3 being the
number of space-dimensions. We can condense the above presentation as follows.

Definition 1.3.1. An .nC 1/-dimensional space-time is defined to be an .nC 1/-
dimensional time-oriented Lorentzian manifold .V nC1; Ng/ satisfying the Einstein
equations (1.20).

Typically in physics there are underlying hypotheses concerning what consti-
tutes a physically reasonable solution, and this reduces some of the above freedom.
For instance, along the lines of Section 1.1, reasonable causality conditions maybe
imposed a priori on space-time demanding V to be globally hyperbolic and there-
fore V nC1 Š R � M n. This will be the situation that we will have in mind in
the future.18 Furthermore, as we have commented when describing the electro-
magnetic interaction in the context of special relativity, in case we have further

17We have already claimed that, according to the equivalence principle, free-falling test particles
follow geodesics of the space-timemetric Ng. Noticing that such a test particle arises as an idealisation
of some matter distribution whose motion is already dictated by (1.24), we should be able to prove
that in some idealised limit these last equations predict the geodesic equation for the test particle.
This intuitive statement is not actually trivial, and two nice versions of it have been established in
Ehlers and Geroch (2004) and Geroch and Weatherall (2018).

18We should caution the reader that there are interesting solutions of the Einstein equations which
are not globally hyperbolic, such as the Anti de Sitter space-time, which plays a distinguished role
in many discussions in contemporary physics.
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fundamental fields (such as the electromagnetic one) coupled with gravity, such
fields will carry over their own field equations (for instance, Maxwell’s equations
(1.16)) which must be further coupled to (1.20)-(1.24). Below, we shall exemplify
this for a few cases of interest.

1.3.1 Field Sources
Let us now present a few examples of energy-momentum tensor fields which
model interesting situations and for which we shall construct initial data sets in
upcoming chapters.

Scalar fields

Scalar fields are used both within particle physics (for instance the Higgs field) and
cosmology (for instance the inflaton field of inflationary cosmology). In our case
of interest, let us consider a real-valued scalar field N� on a space-time .V nC1; Ng/.
Such a field is described by an energy-momentum tensor field of the form

T . Ng; N�/
:

D d N� ˝ d N� �
1

2
Nghd N�; d N�i Ng � U. N�/ Ng; (1.25)

where U W I 7! R is a real valued function referred to as the potential of the field
N�. An elementary computation shows that

div NgT . Ng; N�/ D
�
� Ng

N� � U 0. N�/
�
d N�;

where � Ng
:

D Ng˛ˇ Nr˛
Nrˇ denotes the wave operator in the metric Ng. Therefore, the

full system of equations for such a scalar field coupled with gravity is given by

Ric Ng �
1

2
R Ng Ng C� Ng D d N� ˝ d N� �

1

2
Nghd N�; d N�i Ng � U. N�/ Ng;

� Ng
N� � U 0. N�/ D 0:

(1.26)

Fluid sources

We have already introduced these kind of sources in the case of special relativity.
Here, we shall focus on the case of perfect fluids, described by their energy density,
pressure density and velocity field, given by N D . N�; Np; Nu/ and whose energy
momentum tensor field on the space-time .V nC1; Ng/ is given by

T D . N�C Np/ Nu[ ˝ Nu[ C Np Ng: (1.27)
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Along the same lines discussed in Section 1.2, the equations of motion for the
fluid are given by the conservation law (1.24), which explicitly read as

Nr Nu. N�C Np/ Nu[ C . N�C Np/.div Ng Nu Nu[ C Nr Nu Nu[/C d Np D 0:

We can simplify the above equation by splitting it into its parallel and orthogonal
components to Nu. The parallel one gives

Nu. N�/C . N�C Np/div Ng Nu D 0:

Feeding this back into the original equation, it reduces it to

.�C p/ Nr NuuC Nu.p/uC Nr Np D 0;

Nu. N�/C . N�C Np/div Ng Nu D 0;
(1.28)

where we can check that the left-hand side of the first equation is orthogonal to Nu.19
Now these equations must be coupled with (1.20) and must typically be supple-
mented by a state equation. We refer the reader to Choquet-Bruhat (2009, Chapter
IX) for such details.

Similarly to the case analysed in Section 1.2, the case of a dust fluid ( Np D 0)
is particularly simple. Along the same lines described there, in such a case we find
that the equation for the fluid reduce to

div Ng. N� Nu/ D 0; Nr Nu Nu D 0;

which we must couple with the Einstein equations (1.20) to obtain

Ric Ng �
1

2
R Ng Ng C� Ng D � Nu[ ˝ Nu[;

div Ng. N� Nu/ D 0;

Nr Nu Nu D 0:

(1.29)

Electromagnetic fields

We have already introduced the basic elements concerning the description of the
electromagnetic field in Section 2.1. In particular, equations (1.16) are already
written in a coordinate independent fashion and are regarded as the correct equa-
tions describing the electromagnetic interaction, in the absence of gravitation, via

19Recall that we use the convention Ng. Nu; Nu/ D �1.
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the 2-formF . Therefore, via the equivalence principle, on a general 4-dimensional
physical space-time V these equations still represent the appropriate electromag-
netic field equations, obviously coupled to the Einstein equations. In this case,
any time-like curve 
 resolves the the electromagnetic 2-form into its electric and
magnetic parts via

E D F.�; 
 0/ ; Fij D F.ei ; ej /: (1.30)
Finally, we can extend these notions to general dimensions by considering that,

on a space-time .V; Ng/ of arbitrary (space) dimensions, the electromagnetic field is
represented by a space-time 2-form, say F , which is decomposed into its electric
part and magnetic parts by space-time observers with flow lines 
s according to
(1.30), and which satisfies the field equations

ı NgF D J [ ; dF D 0 (1.31)
coupled to the Einstein equations through the generic energy-momentum tensor of
an electromagnetic field, given by

T EM˛ˇ D F˛
�Fˇ� �

1

4
Ng˛ˇF

��F��; (1.32)

where indices are, as usual, raised and lowered with the space-time metric Ng. Let
us highlight that the electromagnetic current J must be generated by charged par-
ticles, which are themselves described by some energy-momentum tensor field.
As an illustrative example, let us consider the simplest case of charged dust. This
model is defined by a dust fluid described by an energy-momentum tensor of the
form

T f luid D N� Nu[ ˝ Nu[; (1.33)
where N� represents the proper mass density of the fluid and Nu stands for the time-
like vector field whose integral curves are the flow lines of the fluid. We assume
that this fluid contains charged particles, and the proper charge density is given by
a function Nq and therefore, the associated electromagnetic current is given by

J D Nq Nu: (1.34)
This gives us all the ingredients to write down a closed system of equations, given
by

G Ng C� Ng D T f luid C T EM ;

ı NgF D Nq Nu[;

dF D 0:

(1.35)
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Furthermore, the conservation laws associated to the dynamics of the fluid are
given by

div NgT
f luid

C div NgT
EM

D 0:

In particular, we known from Section 1.2 that div NgT
EM
ˇ

D Fˇ
�J�, implying that

0 D Nr
˛. N� Nu˛ Nuˇ /C Fˇ

�J� D Nr
˛. N� Nu˛/ Nuˇ C N� Nu˛ Nr

˛
Nuˇ C Fˇ

�J�:

The parallel component to Nu gives us that

0 D � Nr
˛. N� Nu˛/C N� Nu˛ Ng. Nr˛ Nu; Nu/C Fˇ

�J�uˇ ;

where the condition Ng. Nu; Nu/ D �1 implies Ng. Nr˛ Nu; Nu/ D 0. Also, Fˇ�J� Nuˇ D

NqFˇ
� Nu�u

ˇ D NqF. Nu; Nu/ D 0. Thus,

div Ng. N� Nu/ D 0: (1.36)

Therefore, the system of equations for the fluid is

div Ng. N� Nu/ D 0;

N� Nr Nu Nu � Nq NuyF D 0:
(1.37)

where the first equation represents the local conservation of mass and last equation
one stands for the Lorentz force-law in this generalised context. We finally see that
the the full system of space-time equations is given by

G Ng C� Ng D T f luid . Ng; N�; Nu/C T EM . Ng; F /;

dF D 0;

div NgF
:

D �ı NgF D � Nq Nub;

div Ng. N� Nu/ D 0;

N� Nr Nu Nu � Nq NuyF D 0:

(1.38)

The case where Nq � 0 reduces to a dust fluid with no charge and, if furthermore
N� � 0, we fall into the so-called Einstein–Maxwell system, also referred to as
electro-vacuum.
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1.3.2 The Schwarzschild solution

In this subsection, we will review some useful properties and constructions related
to the so-called Schwarzschild solution, which represents the appropriate geometry
describing the exterior of an isolated spherically symmetric massive body, such as
an idealised star. In this case, the exterior is taken to be vacuum, that is, Ric Ng D 0,
and the resulting solution has the form

NgSc D �

�
1 �

2m

r

�
dt2 C

1

1 �
2m
r

dr2 C r2gS2 : (1.39)

In the above form, the solution is defined in an exterior region, given by r > 2m,
and an interior region, given by 0 < r < 2m, where the parameterm is called the
mass of the associated spherically symmetric body generating our gravitational
field. We will limit our discussion to the case m > 0.

Let us highlight that the restriction of the above solution to r > 2m does not
represent a substantial initial drawback, since the above solution was intended to
model the exterior region of an idealised star. In particular, the so-called Schwarzs-
child radius rSc

:
D 2m, in appropriate units, produces a value which would be

deep inside the interior of any star. A model taking into consideration the interior
of the star must be a non-vacuum solution, which, in idealised situations, would
have compactly supported sources.20 Such an interior solution would have to be
glued to (1.39) to provide a complete description of a model situation. Neverthe-
less, the above exterior solution is good enough to test, for instance, solar system
gravitational phenomena. In fact, it provided the tools to produce the first predic-
tions of general relativity, such the advances in the perihelion of Mercury and the
deflection of light by the sun.21

On the other hand, the existence of sufficiently dense objects living inside its
Schwarzschild radius is by now very well-known: such objects represent black
holes. In order to understand this terminology, let us point out that, in the interior
region 0 < r < 2m, the dynamics of particles and light-rays is really peculiar. In
particular, all future directed causal curves end within a finite proper time and no
causal signal can escape this region (see O’Neill 1983, Proposition 30 in Chapter
13). This last property is what gives the name of black hole region to such interior

20For discussion of such idealised models, we refer the interested reader to Wald (see 1984, Chap-
ter 6) and Weinberg (see 1972, Chapter 10).

21See O’Neill (1983, Chapter 13) for a particularly nice geometric treatment of the problem and
Poisson and Will (2014) for an quite exhaustive treatment of the physics involved.
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solution. Black holes represent extremely interesting objects within physics, be-
ing a probe for the most extreme gravitational phenomena we are aware of, and,
also, they have been the subject of extensive mathematical research. Being the
Schwarzschild black hole, modelled by (1.39), the simplest example of such situa-
tion, how to appropriately join the interior and exterior regions to construct single
vacuum solution becomes an interesting question. Since the Schwarzschild black
hole solution serves as a building block in many problems within mathematical
general relativity, we will make a brief review of this construction.

Let us start by denoting the exterior solution associated to (1.39) by .N; NgSc/

and the interior black hole solution by .B; NgSc/. Both these solutions can be de-
scribed as warped products Pi �r S2, i D 1; 2, where Pi stands for the restriction
of the .t; r/ half-plane R � RC to the domains r > 2m and r < 2m respectively.
These planes are furnished with the metric b D �h.r/dt2 C h�1.r/dr2, where
h.r/

:
D 1 �

2m
r
. Now, the appropriate way to join these two solutions is through

the so-called Kruskal space-time. We will follow closely O’Neill (ibid.) in this
topic and refer the interested reader to Wald (1984) for several intuitions behind
these constructions.

Let us start by defining the function f W RC 7! .�2m
e
;1/ by

f .r/ D .r � 2m/e
r

2m
�1: (1.40)

Since f 0 > 0, f defines an diffeomorphism. Let Q be the region in the .u; v/-
plane given by uv > �

2m
e
, then r.u; v/ :

D f �1.uv/ defines a smooth positive
function of Q, implicitly defined by f .r/ D uv. Let us notice that the level sets
of the function r are given by the hyperbolas uv D cte, except for r D 2m, which
corresponds to the coordinate axes. Furthermore, the function r approaches the
value r D 0 as we move towards the boundary hyperbola uv D �

2m
e
, which is

not part of Q. In this setting, by deleting the coordinate axes we will divide Q
into four open quadrants Q1; � � � ;Q4 as depicted in Figure 1.4. We now define
theKruskal plane of massm > 0 as the regionQ endowedwith the metric tensor22

gK D
8m2

r
e1� 2m

r .du˝ dv C dv ˝ du/ (1.41)

22Notice that the case m D 0 is trivial, since in this case we reduce to Minkowski space-time.
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Figure 1.4: Kruskal’s Plane

Let us point out a couple of direct consequences of the above definitions. First,
the null geodesics of theKruskal plane are given parametrizations of the coordinate
lines u D cte and v D cte. Furthermore, the mapping .u; v/

�
�! .�u;�v/ is an

isometry ofQ, since it preserves r , and, actually, restricts to an isometry between
Q1 and Q3 as well as between Q2 and Q4. Finally, let us define the function
t
:

D 2m ln j
v
u

j outside the coordinate axes. Let us notice that the level sets of
this function are given by rays from the origin in Q (see Figure 1.4). It is now a
straightforward procedure to prove that the mapping  W Q1 [ Q2 7! P1 [ P2,
given by .u; v/ 7! .t.u; v/; r.u; v// is an isometry which maps Qi onto Pi , i D

1; 2, and restricts to an isometry there (see Proposition 24 Chapter 13 O’Neill
(1983)). Therefore, having found that Qi Š Pi , i D 1; 2, where that Q1 and Q2
fit nicely together in Q, we have provided isometric embeddings of P1 and P2
into a single manifold.

Let us now define the Kruskal space-time as the warped productK :
D Q�r S2,

each factor with its natural metric. Then, in the above figures, we can visualise K
by replacing each point by a 2-sphere of radius r.u; v/. In this context we denote
the corresponding open quadrants by Ki , i D 1; � � � ; 4, and we can now extend
the isometries � and  to � � id and  � id in an obvious way and therefore get
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isometries

K3 Š K1 Š N and K4 Š K2 Š B: (1.42)

Therefore, we have found isometric embeddings of the interior and exterior solu-
tions B andN into a single Ricci-flat (vacuum) space-timeK. In order to produce
some more intuitions about the special behaviour of this solution in its black hole
regions, let us notice that we can give a consistent time orientation to K, since
@v � @u is a globally defined non-vanishing time-like vector field. We chose the
orientation that makes @t future pointing in the region K1. This, in particular, im-
plies that @v and �@u are future pointing null vector fields (see Figure 1.5).

�@u

@v

�@u

@v

�@u

@v

�@u

@v

@v � @u

r D 0

r D 0

u

v
Q1Q2

Q3 Q4

Figure 1.5: Kruskal’s space-time orientation

In the above figure, it is clear that the future of any particle beyond this horizon
inevitably ends at the central singularity, while only light-like particles can hover
over the horizon without falling in. We can make use of the isometry  to map
Q1 [ Q2 7! P1 [ P2 and see how, in our chosen orientation, light-cones are
actually tilting as we approach the horizon r D 2m (see Figure 1.6).
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@t @t

@t

r D 2m r

t
P1P2

O

Figure 1.6: Tilting of future cones

In order to finish our discussion on the Schwarzschild solution, let us make one
further observation. Above, we have embedded the usual Schwarzschild exterior
solution into the Kruskal space-time, which not only contains the additional inte-
rior black hole solution, but also an additional copy of each of these parts in the
quadrantsK3 andK4 respectively. Let us fix our attention to the space-like t D 0

hypersurfaces highlighted in Figure 1.4. We can see that they belong to a single
well-behaved hypersurface which contains a copy of the exterior Schwarzschild
solution on each side. We will now rewrite the space-time metric adapted to this
hypersurface. The aim behind this exercise is that we will obtain a complete Rie-
mannian metric gSc on this t D 0 slice, which (together with some extrinsic in-
formation) provides us with initial data which describes the full Schwarzschild
black hole. This turns out to be the most useful analytic picture and is part of the
standard analytic tool kit of general relativity. Thus, let us start by considering the
exterior solution at the t D 0 slice. The induced Riemannian metric on this slice
is given by

gSc D
1

1 �
2m
r

dr2 C r2gS2 : (1.43)

Spherical symmetry implies that this metric is actually conformally-flat. Actually,
we can compute such conformal factor explicitly. If we write gSc D u4.jxj/ı D

u4.�/
�
d�2 C �2gS2

�
, appealing to a coordinate change of the form � D �.r/, we

straightforwardly find that u2� D r and�
u2.�/

d�

dr

�2
D

1

1 �
2m
r
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are the necessary conditions. Imposing d�
dr
> 0, we obtain an ordinary differential

equation of the form
1

�

d�

dr
D

1

r

q
1 �

2m
r

: (1.44)

We can apply the change of variable given by r D m.1 C cosh!/, with ! > 0,
which implies ln � D ! C c. That is � D Ce! , for some constant C > 0. From
this, we get

r

�
D m

�
1

�
C

1

2C
C

C

2�2

�
D m

0B@
q
C
2

�
C

1
p
2C

1CA
2

: (1.45)

Finally, imposing that r
�

! 1 as � ! 1, we find m D 2C , which implies that

u2.�/ D
r

�
D

�
1C

m

2�

�2
: (1.46)

Therefore, we see that

gSc D

�
1C

m

2jxj

�4
ı (1.47)

where the above change of variable corresponds tomapping the exterior region r >
2m to jxj > m

2
. Nevertheless, clearly, (1.47) is well-defined for all x ¤ 0. In fact,

an inversion of coordinates z D
�
m
2

�2 x
jxj2

, maps the punctured ball 0 < jxj < m
2
,

to its exterior R3nB m
2
.0/ while it preserves the sphere S2m

2

.0/. Furthermore, we

find that jzj D
�
m
2

�2 1
jxj

and thus x D
�
2
m

�2
jxj2z D

�
2
m

�2 �m
2

�4 z
jzj2

D
�
m
2

�2 z
jzj2

.
Therefore,

@zi D

�
m

2jzj

�2 �
ıki � 2jzj�2zizk

�
@xk ;

implying

gSc.@zi ; @zj / D

�
1C

m

2jxj

�4 � m

2jzj

�4
ıij D

�
1C

2jzj

m

�4 � m

2jzj

�4
ıij ;

D

�
1C

m

2jzj

�4
ıij ;
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which proves that the punctured ball is isometric the exterior solution. That is,

the Riemannian manifold
�

R3nf0g; gSc
:

D

�
1C

m
2jxj

�4
ı

�
, is a complete man-

ifold which contains the two copies of the t D 0 initial data for the exterior
Schwarzschild solution of the quadrants K1 and K3 smoothly glued along their
boundaries, and is thus isometric to the t D 0 slice of the Kruskal space-time. For
completeness, let us highlight that, in these coordinates, the space-time Schwarzschild
solution reads

NgSc D �

�
1 �

m
2jxj

�2
�
1C

m
2jxj

�2dt2 C

�
1C

m

2jxj

�4
ı (1.48)

where the appeal to the time-coordinate t clearly excludes the coordinate axes
separating the quadrants Ki in the Kruskal space-time.

Finally, let us point out that there are analogous higher-dimensional generalisa-
tions of all of the above constructions, which can be obtained along the same lines.
Just for the record and future reference, let us point out the the n-dimensional com-
plete t D 0 slice of an .nC 1/-dimensional Schwarzschild space-time is given by

the Riemannian manifold
�

Rnnf0g; gSc D

�
1C

m
2jxjn�2

� 4
n�2

ı

�
.

1.3.3 Some cosmological solutions
Let us now present another set of physically relevant solutionswhich can beworked
out explicitly. These solutions concern cosmological situations, which is a setting
in which we analyse the dynamics of the universe as a whole. In order to be able
to do this several idealisations have to be made. Along these lines, if we are con-
cerned only with analysing the overall dynamics of the universe, we can average
its properties over large scales and produce a very course-grained description of it.
In such a situation a point in space-time is meant to represent large regions in the
universe such as a whole galaxy of even clusters of them. In particular, going to
sufficiently large distances, there seems to be compelling experimental evidence
in favour of the fact that the universe (in such scales) is highly symmetric. More
explicitly, in cosmological scales the universe is approximately homogeneous and
isotropic. As we will see below, the presence of these symmetries allows us to
reduce our problem to a very compact system of ordinary differential equations
which can be dealt with explicitly in some situations, and, more generally, can be
used to describe a general picture concerning the overall evolution of the universe.
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Let us start considering a 4-dimensional space-time .V; Ng/ and comment on
how the above hypotheses translate into the mathematical model. First of all, the
assumption of isotropy actually singles out a distinguished global time-like vector
field @t whose simultaneity spacesMt globally split .V Š I �M; Ng D �dt2 C

Ngt /, where t 2 I � R and whose orthogonal space-like hypersufaces .Mt ; Ngt /

are isotropic in the usual sense. That is, they have no preferred direction. This
last conditions implies that, for every p 2 M , the sectional curvatures of all the
planes in TpMt must be equal. Thus, the sectional curvature Kt of .Mt ; Ngt / at p
depends only on p, i.e,Kt D Kt .p/. Then, the contracted Bianchi identities imply
that a Riemannian manifold which is isotropic at every point must have constant
sectional curvature, that is Kt D cte (see, for instance, Choquet-Bruhat (2009,
Chapter V, Theorem 3.4)). To simplify our discussion, let us then assume that
space is simply connected. In such a case, for each time t we have .Mt ; Ngt / Š E3

if K D 0, and if K 6� 0 we can consider the conformal scaling Ng D jKj�1
�,
which implies that 
� has constant sectional curvature equal to � D sign.K/, and
therefore

.Mt ; 
1/ Š S3;

.Mt ; 
�1/ Š H3;

where S3 stands for the round unit 3-sphere and H3 for the standard hyperbolic 3-
space of constant curvature �1. Therefore, to contemplate the three cases at once,
the space-time metric for can be written as

Ng D �dt2 C a2.t/
�; (1.49)

where now 
0 D ı the standard flat Euclidean metric, and in the cases � D ˙1

we have a2.t/ D jKt j
�1. The warping factor a.t/ is referred to as the scale factor

and becomes the only geometric degree of freedom in the problem. To determine
it and have our cosmological description complete, we have to assume something
for the matter content of the universe. In this setting of homogeneous and isotropic
cosmologies, it is typical to model the matter content as a perfect fluid with flow
lines Nu D @t and therefore homogeneous and isotropic, implying that the energy
and pressure densities are functions only of time. Now, plugging all this into the
Einstein-perfect-fluid equations gives a set of ordinary differential equations which
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dictate the dynamics of the system (see Choquet-Bruhat (2009, Chapter V)):

�3
Ra

a
D
1

2
. N�C 3 Np/ ��;

Ra

a
C 2

�
Pa

a

�2
C 2

�

a2
D
1

2
. N� � Np/C�;

.�C p/ Nr NuuC Nu.p/uC Nr Np D 0;

Nu. N�/C . N�C Np/div Ng Nu D 0;

where a dot over a quantity denotes a derivative with respect to time. These equa-
tions can be further simplified by using the first one to eliminate the second order
term in the second one, which gives

3

�
Pa

a

�2
C 3

�

a2
D N�C�:

The fluid equations can also be simplified under our hypotheses. Actually, the
first one is a tautology, since our construction implies that the flow-lines @t are
geodesics, so the equation actually read as Nr Np D � Pp@t , which is the definition of
the gradient since Np D Np.t/. Also the second fluid equation can be simplified to
give

PN�C 3. N�C Np/
Pa

a
D 0:

Therefore, the full system of Einstein equations gets reduced to the so calledFriedman–
Lemaître equations:

�3
Ra

a
D
1

2
.�C 3p/ ��;

3

�
Pa

a

�2
C 3

�

a2
D N�C�;

PN�C 3. N�C Np/
Pa

a
D 0:

(1.50)

The above system can be integrated explicitly for some simple state equations
relating N� and Np, such as for dust ( Np D 0), radiation ( N� � 3 Np D 0) and also the
�-vacuum cases which lead to deSitter and anti-deSitter solutions. Some of these
cases model specific stages in the history of the universe. More importantly, under
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reasonable assumptions of N� and Np, equations (1.50) are good enough to give us
an overall picture of the dynamics of the system. To a first approximation, this
gives a good cosmological qualitative description. We refer the interested reader
to Wald (1984, Chapter 5) for discussions of this kind.23

1.4 The initial value formulation

Let us now enter into the core of this chapter and present the main ideas concern-
ing the initial value formulation of the Einstein equations. As was stated in the
beginning of the chapter, this is a subtle topic which involves ongoing research
in geometric analysis and PDE theory. Any self-contained presentation needs to
appeal to a decent amount of hyperbolic PDE theory, in particular of non-linear
wave equations. The interested reader can find such presentations in references
such as Choquet-Bruhat (2009) and Ringström (2009) and the many references
therein. Our presentation will be merely expository, appealing to the main ideas
and skipping completely the hyperbolic PDE issues.

Let us start by putting forward a couple of strong motivations for the analysis
to come. First, it is within the standard paradigm of physics that physical theories
should be useful to make predictions concerning the future evolution of a system.
This is done typically by evolving initial data sets, and works in models ranging
from classical Newtonian mechanics to relativistic electrodynamics and even the
Schrödinger equation of quantum mechanics. Clearly, this is quite useful for the
physicist, who can then model a specific situation at a particular time via suitable
initial conditions and find out how physics plays out by evolving such system,
and permeates deeply into the issue of predictability of a physical theory. Fur-
thermore, let us notice that the complicated and non-linear nature of the Einstein
equations does not allow us to solve them explicitly unless appealing to idealised
highly symmetrical situations, of the kind we have reviewed in previous sections.
Moreover, one would like to have information concerning generic properties of
solutions, their stability against perturbations, global properties of generic solu-
tions and also to have some systematic way of producing more general solutions.
Some experience in PDE theory can anticipate that some of these questions could
be settled by providing a suitable PDE treatment of the Einstein equations. Let us
use this as motivation for the following analysis.

23Let us also point out to the reader the discussion presented in the lecture notes of Blau (2020),
which can be quite useful for an understanding of the physical consequences of these cosmological
models.
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Let us start by considering globally hyperbolic vacuum .n C 1/-dimensional
space-times .V nC1 D R �M n; Ng/ so that the Einstein equations get reduced to

Ric Ng D 0: (1.51)

The objective is to be able to give initial data on M and guarantee that we can
evolve it into such a solution. But, as we will see below, there are some immediate
subtleties in this procedure. First, notice that in this analysis we will have to make
a clear space-time splitting and therefore, let us introduce a time parameter t along
the R factor, and the global future pointing time-like vector-field @t tangent to the
time-curves t 7! .t; x/ 2 V . Then, let us denote the tangential component of @t
to Mt by X , which is a time-dependent vector field tangent to M known as the
shift vector and the normal component toMt will be denoted by a functionN > 0

referred to as the lapse function. These objects allow us to build adapted local
frames fe˛gn˛D0 of the form

e0 D @t �X ? Mt ;

ei D @xi ;
(1.52)

for any coordinate system fxigniD1 onM , and their dual co-frames f�˛gn˛D0 then
read as

�0 D dt;

� i D dxi CX idt;

as can be readily checked. Using such frames, the space-time metric can be locally
put in the form

Ng D �N 2dt ˝ dt C Ngt ; (1.53)

where the induced metric Ngt onMt has the local form Ngt D Ngij �
i ˝ �j .
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Mt

X

N n

@t

t

V D M � R

Figure 1.7: Lapse–Shift space-time splitting

Notice that the future pointing unit normal to eachMt can then be written as

n D
1

N
.@t �X/ (1.54)

In the above space-time splitting, the choice of our family of time-like curves
defined by the vector field @t is uniquely determined by the choice of lapse and
shift, since @t D Nn C X . So, each choice of N > 0 and X satisfying �N 2 C

jX j2
Ngt
< 0 determines a unique such family of space-time observers and vice-versa.

So, as could be suspected from the beginning, our choice of space-time splitting
according to a preferred @t should work as a gauge choice, not playing a major
role at the end of our analysis.

Now, notice that as PDE operator on the space-time metric Ng, the Ricci tensor
is a second order operator. In fact, in an arbitrary coordinate system reads as

Ric��. Ng/ D �
1

2
Ng˛ˇ@˛ˇ Ng�� C f��. Ng; @ Ng/C

1

2

�
Ng��@�F

�
C Ng��@�F

�
�
;

(1.55)

where f��. Ng; @ Ng/ are smooth functions of their arguments, in particular quadratic
on @ Ng, and the functions F � are given by

F �
:

D Ng˛ˇ N� �˛ˇ :

As we will see, it is precisely the last two terms involving derivatives of F that
pose some extra difficulties in this problem. For now, let us notice that, if we
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are to have a well-posed evolution problem associated to the vacuum field equa-
tions, then we will have to prescribe initial data for both Ng�� and @t Ng�� at t D

0. The geometric picture here is to split the initial data geometrically into the
induced metric on t D 0, given by Ngt jtD0, the initial data for lapse and shift
N jtD0; X jtD0 (completing the initial data NgjtD0) and then the first order initial
data, @t Ngt jtD0; @tN jtD0; @tX jtD0. It is well-known from standard submanifold
theory that in such a situation @t Ngt jtD0 is related with the extrinsic curvature
K 2 � .T 02M/ of M Š ft D 0g � M as an embedded hypersurface in .V; Ng/.
Explicitly, we have

K D �
1

2N
.@t Ngt � LX Ngt / jtD0; (1.56)

where LX Ngt stands for the Lie derivative of Ngt with respect toX , and our conven-
tions for the extrinsic curvature are

K.X; Y /
:

D Ng.II.X; Y /; n/; for all X; Y 2 � .TM/

II.X; Y /
:

D
�

Nr NX
NY
�? (1.57)

and where NX; NY denote arbitrary extensions of X; Y to V and II W � .TM/ �

� .TM/ 7! � .TM?/ denotes the second fundamental form of M ,! .V; Ng/.
Therefore, we see that the geometric problem becomes more transparent. We
attempt to prescribe a Riemannian manifold .M n; g/ equipped with a symmet-
ric .0; 2/-tensor field K and initial data for the lapse-shift .N;X; @tN; @tX/jtD0
(which determine the family of observers along whose integral curves we intend to
evolve the initial data), and then find an isometric embedding � W .M; g/ 7! .V D

I �M; Ng/ with I � Rn such that:

1. Ng solves the space-time Einstein equations. In the vacuum case given by
Ric Ng D 0;

2. K stands as the extrinsic curvature ofM ,! .V; Ng/.
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.M; g;K/
i

! .V; Ng/

Mt

t

V D M � R

Figure 1.8: Geometric picture associated to the vacuum Cauchy problem

By leaving the data .N;X; @tN; @tX/jtD0 outside of the above requirements,
we intend to exploit the freedom in choosing the flow lines along which we shall
evolve. This demands having enough freedom so as to guarantee that at the end
of the problem @t jtD0 D .Nn C X/jtD0 is time-like. In fact, we will see that
.N;X/jtD0 are completely free for us to prescribe, but .@tN; @tX/jtD0 will be
fixed in terms of .g;K;N;X/ conveniently.

Now that we have stated clearly what is our geometric problem, we immedi-
ately have to realise that, in contrast to classical situations in physics, the initial
data for the evolution problem in GR is not free! This follows from the well-known
Gauss–Codazzi equations for hypersurfaces, which for a space-like hypersurface
.M; g;K/ isometrically immersed in a Lorentzian manifold .V; Ng/ read as:

Ng. NR.X; Y /Z;W / D g.R.X; Y /Z;W / (Gauss’ Eq.)
� .K.X;Z/K.Y;W / �K.Y;Z/K.X;W // ;

Ng. NR.X; Y /Z; n/ D .rXK/.Y;Z/ � .rYK/.X;Z/ (Codazzi’s Eq.) ;
(1.58)

where X; Y;Z 2 � .TM/; n stands for the future-pointing unit normal vector
field toM and the quantities without a bar on top are constructed with the intrinsic
induced Riemannian metric g onM . That is, for instance, r refers to the Rieman-
nian connection onM associated to g. The above equations are a priori necessary
conditions that .g;K/ must satisfy. In fact, they imply the following constraint
equations:

Proposition 1.4.1. Let .M; g;K/ be a space-like hypersurface isometrically im-
mersed in a Lorentzian manifold .V; Ng/ satisfying the Einstein equations G Ng C
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� Ng D T for some energy-momentum tensor T . Then, g and K satisfy the follow-
ing constraint equations onM :

Rg � jKj
2
Ng C .trgK/2 � 2� D 2�;

divgK � d.trgK/ D J;
(1.59)

where � :
D T .n; n/ and J :

D �T .n; �/ 2 � .TM/ denote the energy and momen-
tum densities induced onM .

Proof. Given any local orthonormal frame fn; eig
n
iD1, from the Gauss equation

we can compute that

nX
i;jD1

Ng. NR.ei ; ej /ej ; ei / D

nX
i;jD1

g.R.ei ; ej /ej ; ei /

�

nX
i;jD1

�
.K.ei ; ej /K.ej ; ei / �K.ej ; ej /K.ei ; ei //

�
;

D Rg �

nX
i;jD1

�
K.ei ; ej /K.ej ; ei / �K.ej ; ej /K.ei ; ei /

�
;

D Rg � jKj
2
g C .trgK/2:

Furthermore, since

Ric Ng.ei ; ej / D

nX
˛D0

Ng.e˛; e˛/ Ng. NR.e˛; ei /ej ; e˛/;

D � Ng. NR.n; ei /ej ; n/C

nX
kD1

Ng. NR.ek; ei /ej ; ek/;
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we get that

Rg � jKj
2
g C .trgK/2 D Ric Ng.n; n/C

nX
iD1

Ric Ng.ei ; ei /

D 2Ric Ng.n; n/C

 
�Ric Ng.n; n/C

nX
iD1

Ric Ng.ei ; ei /

!
;

D 2Ric Ng.n; n/CR Ng D 2

�
Ric Ng �

1

2
NgR Ng

�
.n; n/;

D 2.T �� Ng/.n; n/ D 2T .n; n/C 2�:

Thus, from the definition T .n; n/ :D �, we get

Rg � jKj
2
g C .trgK/2 D 2.� C�/: (1.60)

Now, consider the Codazzi equation, so that

Ric Ng.n; ei / D

nX
˛D0

Ng.e˛; e˛/ Ng. NR.e˛; n/ei ; e˛/ D

nX
jD1

Ng. NR.ej ; n/ei ; ej /;

D

nX
jD1

Ng. NR.ei ; ej /ej ; n/;

D

nX
jD1

.rei
K/.ej ; ej / �

nX
jD1

.rej
K/.ei ; ej / D trg.rei

K/ � divgK.ei /;

D rei
trgK � divgK.ei /:

Thus, since Ric Ng.n; ei / D T .n; ei /, we get that

d
�
trgK

�
.ei / �

�
divgK

�
.ei / D T .n; ei /:

Now, from the definition of the physical momentum density is J D �T .n; �/ we
arrive at the momentum constraint:

divgK � d
�
trgK

�
D J: (1.61)
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The above proposition establishes (1.59) as necessary conditions to be satisfied
by any initial data set for which we may attempt to find a well-posed evolution
problem. It is a remarkable fact that in all of the situations of interest for us, these
are also sufficient conditions. This last statement goes back to the pioneering work
of Y. Choquet-Bruhat (see Choquet-Bruhat (1962) and Y. Fourès-Bruhat (1952)).
We shall now briefly describe the main steps in this construction, where we shall
follow the exposition of Choquet-Bruhat (2009, Chapter VI). Thus, let us equip
M with a some fixed smooth and complete Riemannian metric e,24 then trivially
embedM into V D R�M and fix a background Riemannian metric Oe D dt2Ce

on V . From now on, quantities constructed from Oe will be denoted with a hat on
top. For instance, its Riemannian covariant derivative will be denoted by OD. Then,
similarly to (1.55), we can write the Ricci tensor as

Ric��. Ng/ D �
1

2
Ng˛ˇ OD˛ ODˇ Ng�� C Of��. Ng; OD Ng/C

1

2

�
Ng�� OD� OF � C Ng�� OD� OF �

�
;

(1.62)

where now OF denotes the vector field defined via

OF �
:

D Ng
�
�
� �
� . Ng/ � O� �
�

�
; (1.63)

and Of . Ng; OD Ng/ denotes a tensor field, depending smoothly on its arguments, which
is in particular a quadratic function on OD Ng. Then, let us consider the reduced Ricci
tensor, given by

Ric. Oe/��. Ng/
:

D �
1

2
Ng˛ˇ OD˛ ODˇ Ng�� C Of��. Ng; OD Ng/: (1.64)

The idea is first to consider the reduced Einstein equations given by

Ric. Oe/
Ng D 0: (1.65)

The advantage now is that this is a set of quasi-linear wave equations where some
standard PDE theory theorems guarantee that, for appropriate initial data on Ng, the
system possesses one and only one solution. By appropriate initial data we mean
.g;K;N / in some appropriate

ı

H s
loc

-Sobolev space and .K; @tN jtD0; @tX jtD0/ in

24The initial-boundary value problem for manifolds with boundary is more subtle than what we
will describe. We refer the interested reader to references such as Friedrich (2009), Friedrich and
Nagy (1999), Kreiss et al. (2009), and Reula and Sarbach (2011) for further discussion on this topic.
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the corresponding
ı

H s�1
loc

, with s > n
2

C1 (see, for instance, Choquet-Bruhat (ibid.,
Theorem 7.4, Chapter VI) for detailed statements). The solution to this problem
provides us with a Lorentzian metric Ng on Œ0; T / �M for some T > 0. We now
intend to show that if our initial data set .M; g;K/ solves the vacuum constraint
equations (1.59) (with � D � D 0 and J D 0), then an appropriate choice of the
gauge data @tN jtD0; @tX jtD0 guarantees that OF D 0, which implies that Ric Ng D 0

and .V; Ng/ is therefore our desired Cauchy development of .M; g;K/. For this, let
us first notice that (1.62) implies that our solution Ng to (1.65) satisfies

G��. Ng/ D
1

2

�
Ng�� OD� OF � C Ng�� OD� OF � � OD� OF � Ng��

�
;

Therefore, the contracted Bianchi identities imply that OF must satisfy the equation

0 D Ng˛� Nr˛G��. Ng/ D Ng˛� OD˛G��. Ng/ � Ng˛�S�˛�G��. Ng/ � Ng˛�S�˛�G�� . Ng/;

where S�˛�
:

D � �˛�. Ng/ � O� �˛�. Then, with some computational effort, the above
can be rewritten as

Ng˛� OD˛ OD� OF� C B˛�� . Ng/ OD˛ OF� C C�� . Ng/ OF� D 0:

This last equations reads as a linear wave equation on OF , where the explicit ex-
pressions for the coefficients and the regularity properties of Ng guarantee that the
solution to such an equation is unique in appropriate functional spaces. Therefore,
if in particular OF jtD0; @t OF jtD0 D 0, then we have OF � 0. These conditions can
be further simplified by a straightforward computation which show that if

A) The initial data for the solution Ng to (1.65) solves the vacuum constraints
associated to (1.59);

B) OF jtD0 D 0,

then @t OF jtD0 D 0 (ibid., Lemma 8.2, Chapter VI). Since we know that the con-
straints already are a necessary hypotheses we must assume on our initial data, it is
only the second condition that is posing an obstruction. But now, let us consider an
adapted frame fe˛gn˛D0 of the form of (1.52) and assume that we have constructed
Ng out of initial data .M; g;K/ satisfying the constraints and with N jtD0 D 1 and
X jtD0 D 0. Then, a straightforward computation gives us

F 0jtD0 D �.@tN jtD0 C gijKij /;

Fi jtD0 D �@tXi jtD0 C gijg
kl.�

j

kl
.g/ � �

j

kl
.e//:
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Therefore, we can fix the initial conditions @tN jtD0; @tXi jtD0 onM so as to sat-
isfy OF jtD0 D 0. Then, from the above discussion, we see that the corresponding
solution Ng to (1.65) with initial data satisfying:

1. .M; g;K/ solve the vacuum constraint equations;

2. N jtD0 D 1 and X jtD0 D 0;

3. @tN jtD0; @tXi jtD0 are picked so as to satisfy OF jtD0 D 0,

solves the full vacuum Einstein equations on V and is therefore an appropriate
(short-time) Cauchy development of .M; g;K/ (see Choquet-Bruhat (2009, Theo-
rem 8.3, Chapter VI) for a precise statement involving the precise regularity prop-
erties).

The above presentation leaves the following question open: Does our choice
of special observers picked by conditions 1)-2) above onN;X at t D 0 play some
fundamental role? As the geometric picture suggests, the answer to this question
is no. In particular, if we have two Cauchy developments .Vi ; Ngi /, i D 1; 2, of
the same geometric data .M; g;K/, and therefore implying that their initial data
can differ only via the initial data of N;X which selects the space-time observers,
then these developments are isometric (see Choquet-Bruhat (ibid., Theorem 8.4,
Chapter VI) and also Ringström (2009,Theorem 14.3)). This is sometimes referred
to as geometric uniqueness. Furthermore, a celebrated result by Choquet-Bruhat
and Geroch (1969) states that there is unique (up to isometries) maximal globally
hyperbolic development of any such vacuum initial data set.25 Let us also highlight
that, as might be expected, the solutions to these problems have the right causality
behaviour. That is, they exhibit the finite-speed propagation associated to solutions
of wave equations inherited via hyperbolic theory applied to (1.65). In particular,
the limit speed of propagation is given by that of that of the null curves of Ng (see
Choquet-Bruhat (2009, Theorems 8.8 and 8.9, Chapter VI)).

Finally, let us notice that the above discussion can be readily extended along
the same lines to non-vacuum situations. The case for scalar fields can be consulted
explicitly in Ringström (2009) and fluid sources are analysed in Choquet-Bruhat
(2009, Chapter IX), including cases such as perfect fluids and charged fluids. But,
let us highlight that these last cases which involve an electromagnetic field actu-
ally present one further subtlety, which is that the Maxwell equations of electro-
magnetism also impose constraints on the admissible initial data for the electro-
magnetic 2-form F . Below, we will derive such enlarged system of constraints

25See also Chruściel (2013) for a version of this result under weaker regularity conditions.
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constraints, which in Chapter 4 will work as a model for the analysis of a highly
coupled system of constraints for realistic initial data. As we will see in Chap-
ter 2, the Gauss–Codazzi constraints (1.59) admit a nice PDE formulation which
decouples them in a variety of interesting situations. In contrast, the constraints
associated to a charged fluid will not decouple and thus present a more delicate
well-motivated problem, which is analysed in Section 4.3 of Chapter 4.

Electromagnetic sources
Let us consider the constraint equations associated to a charged fluid, for instance,
such as that considered in equations (1.38). Notice that the initial data for such a
system would consist not only on the initial data for Ng, but also on the initial data
for F; Nu and N�. The initial data for Nu and N� is not subject to any constraints, but the
initial data for F is. This is clear since the space-time 2-form F induces a 2-form
on M , say zF , given by the restriction of F to tangent vectors to M . Then, the
equation dF D 0 also implies d zF D 0 onM . That is, zF onM has to be closed.
This is an additional constraint whichmust be coupled to the above Gauss–Codazzi
constraints.

Furthermore, the evolution equation ı NgF D J [, when projected orthogonally
to M also gives us a constraint on the initial data. To see this, consider a space-
time orthonormal frame adapted toM . That is, a frame fn; eig

n
i , where n is future

pointing unit normal and ei are tangent toM . Then, we get

�ı Ng F.n/ D div NgF.n/ D

nX
˛D0

Ng.e˛; e˛/ Nre˛
F.e˛; n/

D

nX
˛D0

Ng.e˛; e˛/
�
e˛ .F.e˛; n// � F. Nre˛

e˛; n/ � F.e˛; Nre˛
n/
�
:

Now, since Ng.n; n/ D �1, it follows that Ng. Nrei
n; n/ D 0. Therefore Nrei

n is
tangent to M . Also, since Ng. Nrej

n; ei / D � Ng.n; Nrej
ei / D �Kij , it holds that

Nrei
n D �

Pn
iD1Kij ej . Using this in the above expression we get that

�ı Ng F.n/ D �n .F.n; n//C

nX
iD1

�
ei .F.ei ; n// � F. Nrei

ei ; n/ � F.ei ; Nrei
n/
�
;

D

nX
iD1

0@ei .F.ei ; n// � F.
�

Nrei
ei
�>
; n/C

nX
jD1

KijF.ei ; ej /

1A ;



50 1. Introduction to general relativity

where in the second identity we used that Nrei
ei D

�
Nrei
ei
�>

� K.ei ; ei /n and,
since F.n; n/ D 0, it follows that F. Nrei

ei ; n/ D F.
�

Nrei
ei
�>
; n/. On the other

hand, we know that
�

Nrei
ei
�>

D rei
ei , where we are denoting by r the Rie-

mannian connection associated to each t -dependent Riemannian metric Ngt onMt ,
which establishes

�ı Ng F.n/ D

nX
iD1

�
ei .F.ei ; n// � F.rei

ei ; n/
�

C hK;F i Ngt
;

D

nX
iD1

�
ei .F.ei ; n// � F.rei

ei ; n/
�
;

where the last step is a consequence of the symmetry of K and antisymmetry of
F .

Recalling the definition of the electric 1-form field, we conclude that the t -
dependent 1-form onM given by

NE.X/
:

D F.X; n/ D N�1F.X; e0/; 8 X 2 � .TM/: (1.66)

represents the electric field as measured by observers whose flow lines are the
integral curves of the future oriented unit normal field n to eachMt . This, implies
that

�ı Ng F.n/ D

nX
iD1

�
ei . NE.ei // � NE.rei

ei /
�

D div Ngt
NE:

Thus, defining E :
D NEjtD0, we get the constraint

divgE D �J [.n/jtD0
:

D �; (1.67)

where � denotes the charge density at t D 0 as measured by observes following
the integral curves of n. Since the above equation depends only on initial data,
then it represents a constraint.

We have therefore found the two electromagnetic constraints, given by

divgE D �; ; d zF D 0; (1.68)
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which must be coupled to the Gauss–Codazzi constraints. That is, for a charged
fluid, the corresponding constraint equations on M for the full system of space-
time field equations is given by

Rg � jKj
2
g C

�
trgK

�2
� 2� D 2�;

divgK � d.trgK/ D J;

divgE D �;

d zF D 0;

(1.69)

where �; J and � are fields dependent on the specific model for the charged fluid.

1.5 Black hole solutions
In the next chapters we will treat in some detail the problem of constructing initial
data for black hole solutions to the Einstein equations in a wide variety of situ-
ations. We have already encountered the most basic and illustrative example of
a black hole solution in Section 1.3.2 and, there, the relevance of the analysis of
such objects within general relativity was pointed out. In this section we would
like to introduce some notions concerning general black hole solutions, which gen-
eralise the discussion of Section 1.3.2. This subject has received plenty of attention
both within mathematics and physics, which, unfortunately, we will not be able to
cover and give its deserved detailed treatment. We refer the interested reader to
references such us Choquet-Bruhat (2009), Hawking and Ellis (1973), and Wald
(1984) for further details.

In what follows, we will be particularly interested in describing properties
within initial data sets which signal the presence of black holes in their associ-
ated evolutions. This is highly motivated by (at least) two facts. On the one hand,
it is a fact that these objects are out there in reality and therefore their understand-
ing as well as modelling becomes essential for physics. On the other hand, many
deeply interesting mathematical problems are related to these solution. In partic-
ular, it has been part of the folklore in general relativity that generic solutions of
the Einstein equations possess black hole regions. We will actually use this last
point as the starting point for our discussion and motivation to introduce models
of black hole initial data sets.

We should start our discussion by defining more precisely what is meant by a
black hole region within a solution of the Einstein equations. A large part of the
necessary intuitions for such concept can be extracted from the analysis presented
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for the Schwarzschild solution. There, we noticed that the black hole region B
was somehow characterised by its impossibility of sending signals to its exterior.
Nevertheless, this property alone is not what captures the essence of what is going
on in the region B . Notice that the interior of any light cone in Minkowski space
also shares this property, although nothing special is going on there, and therefore
we must be more careful. In particular, what is special about the region B is that
this is a bounded regionwhich can never send signals to its exterior. This is actually
what captures the essence behind what a black hole is.

Usually, the formal definition of the the black hole region B of a space time
.V; Ng/ is given in terms of certain properties of a conformal completion of such
space-times. More concretely, the idea is to consider those null geodesics whose
canonical parametrisations can be extended indefinitely (geodesics that escape to
infinity), and add to V idealised endpoints to such geodesics. These endpoints
represent a kind of boundary for V within a conformally related space-time, which
is commonly referred to as the null-infinity, denoted by S . In such situations, if we
consider the future null-infinity SC, we could then define the black hole region of
V as the complement of the past of SC, which, appealing to some causality theory
is denoted as J �.SC/, where J �.A/ denotes the causal past of a set A.26 Then,
the event horizon of B is taken to be the boundary of B. This procedure is depicted
for the Schwarzschild space-time in Figure 1.9 below.

u

v
SCSC

S�S�

i0i0

iCiC

i�i�

r D 0

r D 0

Figure 1.9: Schwarzschild’s conformal completion

26In this context, the causal past J �.SC/ is taken with respect of the unphysical conformally
related space-time.
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The above procedure for defining black holes within a space time works well in
a range of interesting situations, typically restricted to asymptoticallyMinkowskian
space-times which are asymptotically simple, this last concept being related to the
existence of the necessary conformal compactification used above. The existence,
properties and usefulness of such compactifications are not at all trivial, and things
such are the appropriate regularity of the conformal factor at infinity are key. Nev-
ertheless, assuming their existence together with certain properties gives a pow-
erful machinery which allows one to prove very nice theorems (see, for instance,
Chruściel, Delay, et al. 2001; Hawking and Ellis 1973; Wald 1984). We refer
the interested reader to Wald (1984, Chapter 12) and Hawking and Ellis (1973,
Chapter 9) for more details concerning all these concepts.

Besides the above comments, one of the major drawbacks of the characterisa-
tion of black holes via conformal completions, is that, in order to find out whether
(or where) a space time has a black hole region, we need to know the complete
space-time beforehand. This is particularly inconvenient if we want to model black
hole space-times evolving appropriate initial data, which is the paramount proce-
dure in physics. Therefore, in what follows, we will look for some characterisation
related to initial data sets that signals the existence of a black hole region in the
evolving space-time. In this direction, we will appeal to two very important prob-
lems in general relativity: the existence of singularities and their relation to black
hole formation. The precise definition of singular space-time is given by geodesic
incompleteness. In particular, through the foundational work of Roger Penrose
(Penrose 1965) and subsequent collaborations with Steven Hawking (Hawking
and Penrose 1970), it was shown that under a wide variety of compelling hypothe-
ses, a space-time must be singular. In particular, Penrose’s singularity theorem
states the following (Penrose 1965):

Theorem 1.5.1 (Penrose). Let .V; Ng/ be a space-time satisfying the following con-
ditions: (1)Ric Ng.v; v/ > 0 for all null tangent vectors v; (2) V has a non-compact
Cauchy surfaceM ; (3)There is a closed trapped surface in V . Then, .V; Ng/ cannot
be null geodesically complete.

In the above theorem we have introduced the concept of a trapped surface,
which we will define and characterise precisely below. For now, let us say that
a trapped surface is an .n � 1/-dimensional closed space-like submanifold of V
along which all future pointing null orthogonal geodesics are converging. That is,
this is a submanifold along which future pointing light rays are focusing. Let us
also point out that condition (1) on the Ricci tensor is known as the null energy
condition (NEC) and belongs to a family of energy conditions used in general
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relativity. Notice that through the Einstein equations, the NEC gets translated into
a condition on the energy-momentum tensor, and thus it becomes a hypothesis
on the matter fields present in a physical model. In particular, the NEC is a very
compelling condition to be imposed, at least on classical fields.

The above singularity theorem has played a foundational role in general relativ-
ity, being the first of a series of results which showed that the formation of singu-
larities is a typical behaviour for general solutions in general relativity and not an
artefact of idealised highly symmetrical situations, as was once believed. In partic-
ular, several generalisations and complementary theorems have been proven con-
templating, for instance, compact Cauchy surfaces (Geroch 1966; Hawking 1966,
1967; Hawking and Penrose 1970), averaged energy conditions (Borde 1987; Chicone
and Ehrlich 1980) and low regularity space-times (Graf 2020; Graf et al. 2017).

Let us now notice that the premises of Theorem 1.5.1 can be translated into
hypotheses of an initial data set. As was highlighted above, condition (1) can be
cast as a condition of the energy-momentum sources .�; J / of an initial data set.
For instance, initial data for sources which are meant to satisfy the dominant or
weak energy conditionwill satisfy the null energy condition. Also, in the context of
the evolution problem for initial data sets, condition (2) has a trivial interpretation,
while condition (3) can be imposed on an initial data set .M; g;K; �; J /. Therefore,
we can try to generate initial data sets which will evolve into singular space-times.
In practice, this would imply having a good characterisation of what a trapped
surface looks like within an initial data set. Such a characterisation is actually the
main objective in this section, and will be done in detail below. But, before doing
this, let us explain why all this discussion is relevant in the context of black hole
initial data sets.

The singularity theorems alluded to above prove the existence of a patholog-
ical behaviour of probably most physically reasonable solutions to the Einstein
equations. Physically, they imply that certain particles would either cease to exist
or come out of nowhere at a singularity. Such a pathological behaviour would also
have implications for the breakdown of predictability from initial data. Whether
these are actually problematic points depends on the nature of the singularities.
Although the singularity theorems themselves do not tell us much about what is
actually going wrong near the singularity, if, for instance, it happens to be true that
singularities are hidden within black holes, it is by now widely accepted that quan-
tum effect should kick in at some point in such extreme gravitational situations
and thus, the generic existence singularities would be one further signal about the
break down of general relativity as an accurate description of gravitational phe-
nomena in these extreme situations, rather an actual pathology existing in Nature.
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These undesirable physical problems led Roger Penrose to pose two conjectures
about the nature of singularities, which are known as the Cosmic Censorship Con-
jectures (Penrose 1969).

Intuitively, the weak cosmic censorship conjecture states that, outside certain
special cases, generic singularities should be hidden within black holes. This
would imply that observers outside the black holes do not see any pathological
behaviour in space-time. The precise formulations available of this conjecture are
posed on asymptotically Euclidean initial data sets, and, in particular, the most
common of them make use of conformal completions. The idea is that adding
some completeness criteria to the future conformal null infinity SC, can be used
to guarantee that light rays which can escape to infinity are actually complete to
the past, i.e, they cannot appear at a singularity out of nowhere, avoiding what are
called naked singularities, which are singularities visible from infinity.

Clearly, there are many subtleties related to the above conjecture. For instance,
there are known counterexamples (see Christodoulou 1994),27 although they have
been shown to be unstable (see Christodoulou 1999b), which proves that a kind of
genericity hypothesis is needed for the conjecture to be sensible. In this context,
a property is typically said to be non-generic if it is not stable under small pertur-
bations, which seems to be a good physical criterion. Another subtlety related to
the above conjecture is, once more, the appeal to a conformal completion, which
brings about all the same concerns we commented before. Thus, another formula-
tion of the same conjecture which retains the same physical intuitions but does not
appeal to conformal completions has been proposed in Christodoulou (1999a). In
particular, the author has been able to show what is, to the best of our knowledge,
the only concrete proof of weak cosmic censorship, although limited to spheri-
cally symmetric solutions (see Christodoulou 1999b). We refer the reader to Wald
(1999) for a very nice review of this topic, which presents a positive case for the
validity (of a suitable version) of this conjecture.

If we accept weak cosmic censorship (at least as a good working hypothesis),
then, from the singularity theorems, we can conclude that the presence of a trapped
surface in a non-compact initial data set is a signal of the existence of a black hole
region. In fact, from the very definition of a trapped surface, we may venture that
this is the case in general. Furthermore, as we will now see, trapped surfaces (and
analogous geometric objects) can be very nicely characterised within initial data
sets in a manner which is amenable to be treated be standard analytic tools, and
therefore we will appeal to them to distinguish black hole initial data sets.

27See also the related work of Christodoulou (1987, 1991, 1993).
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Trapped Surfaces

Let us now characterise the trapped surface condition in concrete terms. Along
this process, we will fix some notation that will be used in subsequent chapters.

Let .M; g;K; �; J / be an initial data set whose evolution results in a time-
orientable space-time .V; Ng/. Let us assume thatM is a manifold with boundary
@M D [miD1˙i , consisting of m compact connected components f˙ig

m
iD1. Let

us now concentrate on a particular component ˙ and introduce some geometric
concepts associated to it.

Since .V; Ng/ is time orientable, we have a time-like future pointing vector field
T defined along˙ . SinceM is space-like, then T �T> ? M and future pointing.
Normalising this vector field we construct a unit normal future pointing vector
field toM , which will be denoted by n, and can be restricted to ˙ . Furthermore,
since˙ is a boundary component ofM , we necessarily have a space-like outward
pointing unit normal vector field �. That is, the normal bundle of ˙ is orientable.
Let us then define the future pointing null vector fields N˙ 2 � .T˙?/, given by

N˙
:

D n� �;

and therefore fNC; N�g produce a basis of Tp˙? at each p 2 ˙ .

NC N�

˙

M

NC
nN�

�

Let us now consider the null space-time geodesics starting on ˙ with initial
conditions given by N˙ and denote by

˚˙ W ˙ � .��; �/ 7! V;

.x; s/ 7! expx.sN˙/
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the associated geodesic flows. At least near ˙ , this defines two n-manifolds N˙

embedded in V . We can extendN˙ to null vector fields tangent to the correspond-
ing geodesics rulingN˙ via the fields d

ds
expx.sN˙.x//, and then we can extend

these fields to a neighbourhood in V of N˙. To simplify notation, we will still
denote all these extensions as N˙.

Definition 1.5.1. In the above setting, we define the null extrinsic curvatures �˙ 2

� .T 02˙/ by

�˙.X; Y /
:

D Ng. Nr NX
NY ;N˙/; for all X; Y 2 � .T˙/; (1.70)

where NX; NY 2 � .T V / denote arbitrary extensions of X; Y to V in a neighbour-
hood of ˙ . Furthermore, let us denote by h the Riemannian metric induced by Ng

on ˙ and define the expansion scalars (null mean curvatures) by

�˙
:

D �trh�˙: (1.71)

The above definitions are standard in the analysis of the extrinsic geometry of
submanifolds, and it is an easy exercise to check that the definition of � does not
depend on how we extend the fields X and Y . Thus, in the future, we will not
differentiate notationally the fields on ˙ (such as X and Y ) from their extensions
to V .

Proposition 1.5.1. Consider the above setting and notations. Then, the expansion
scalars satisfy the following identity

�˙ D div NgN˙; (1.72)

and they can be computed in terms of the initial data .M; g;K/ as

�˙ D K.�; �/ � trgK ˙ trhk; (1.73)

where we have defined the extrinsic curvature of ˙ as a hypersurface of M as
k.X; Y / D g.rXY; �/, for any vector fields X; Y tangent to ˙ .28

Proof. Let us first extend � to a vector field in a neighbourhood of a point p 2 ˙

such that Ng.�; �/ D 1 and Ng.�; n/ D 0. Then, consider an orthonormal frame
28To facilitate comparison with other references, let us highlight that, under our conventions,

trhk D �divg�.
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around p 2 ˙ ,! V of the form fn; �; Eig
n
iD1, with fEig

n�1
iD1 tangent to˙ . Since

N˙ belong to the normal bundle of ˙ , it holds that

�˙ D �

n�1X
iD1

Ng. NrEi
Ei ; N˙/ D

n�1X
iD1

Ng.Ei ; NrEi
N˙/;

D div NgN˙ � Ng.�; Nr�N˙/C Ng.n; NrnN˙/;

D div NgN˙ � Ng.�; Nr�N˙/C Ng.n; Nrnn/� Ng.n; Nrn�/

But, since Ng.n; n/ D �1, we know that Ng.n; Nrnn/ D 0 and thus

�˙ D div NgN˙ � Ng.�; Nr�N˙/˙ Ng.�; Nrnn/:

Also, since Ng.�; �/ D 1, it follows that Ng. Nrn�; �/ D 0, and thus Ng.�; Nrnn/ D

Ng.�; NrnN˙/. Therefore, we find that

�˙ D div NgN˙ ˙ Ng.�; Nrn��N˙/:

But since Nrn��N˙ D NrN˙
N˙ D 0 by construction ofN˙, the first claim follows.

In order to establish the second claim, let us use the notation En
:

D � and notice
that

��˙ D

n�1X
iD1

Ng. NrEi
Ei ; N˙/ D

nX
iD1

Ng. NrEi
Ei ; n� �/ � Ng. Nr��; n� �/;

D

nX
iD1

Ng. NrEi
Ei ; n/�

n�1X
iD1

Ng. NrEi
Ei ; �/ � Ng. Nr��; n/;

D trgK � trhk �K.�; �/;

andwe have used that Ng. Nr NEi

NEj ; �/ D Ng.rEi
EjCII.Ei ; Ej /; �/ D g.rEi

Ej ; �/ D

k.Ei ; Ej /, where II is the second fundamental form of M as a hypersurface of
V .

In this context we can introduce the following definitions.

Definition 1.5.2. In the above setting, we will say that ˙ is a trapped surface if
�˙ < 0; is marginally trapped if �˙ 6 0; is outer marginally trapped if �C 6 0

and is an apparent horizon if �C D 0.
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From (1.72) we see that all of the above conditions have the interpretation we
were looking for. That is, they represent conditions which show that light rays
(even those emitted pointing away from ˙ ) cannot scape towards infinity. For
weakly censored space-times, due to singularity theorems, this translates into the
existence of black hole regions. Furthermore, the characterisation (1.73) is pre-
cisely of the kind we were looking for since it is expressed solely in terms in the
initial data set.

After having established the above criteria for black hole initial data, it is in-
structive to go back to the Schwarzschild case and compare. From (1.47), we
know that the initial data for the two ended Schwarzschild space-time is given by
.R3nf0g; gSc D

�
1C

m
2jxj

�4
ı;K � 0/. Let us analyse the location of what we

know to be the event horizon, that is the sphere connecting the two ends given by
r D

m
2
. It is straightforward to compute that this surface is totally geodesic in

R3nf0g. That is, k � 0, and therefore we see that this surface satisfies �C D 0

and represents a apparent horizon.
Actually, trapped surfaces tend to appear inside black hole regions, and, al-

though in the kind of models we will analyse the hope is that putting trapped sur-
faces sufficiently far apart from each other inside initial data sets will produce a
corresponding black hole associated to each of them, this is far from obvious as
can be seen from the discussion presented in Chruściel andMazzeo (2003). Never-
theless, this is a canonical way to address this problem in a systematic way which
is amenable to a very nice analytic treatment (see Maxwell 2005b).



2 An overview of
classical results

During this chapter we will start our analysis of the constraint equations for the
general relativistic initial data sets presented in Section 1.4. The first objective will
be to cast the ECE as system of geometric elliptic PDEs. With this aim in mind,
the first thing to realise (for instance looking at (1.59)) is that the ECE seen as equa-
tions for .g;K/ onM n are a highly under-determined system. Thus, in particular,
we have some freedom to look for a useful decomposition of g and K into pre-
scribed data and unknowns which may turn it into a determined (elliptic) system.
The ideal objective would be that such splitting is natural both from a geometric
and a physical stand point. The best known method to achieve these goals is the
so called conformal method, which goes back to ideas of Bruhat (1944) and was
developed by Choquet-Bruhat (1962), Y. C. Fourès-Bruhat (1957), Ó Murchadha
andYork Jr. (1974), and York Jr. (1973). This method splits g into a prescribed con-
formal class and an unknown conformal factor, while it splits K into a prescribed
trace part (mean curvature) and unknown traceless part, which itself undergoes a
further slitting allowing to write the momentum constraint as an elliptic equation
on some vector field X .1

1Let us further refer the reader to some more recent developments and other splitting proposals
related to the conformal method, such as Pfeiffer and York Jr. (2003) and York Jr. (1999), and, in
particular to the discussion presented in Maxwell (2014). Furthermore, let us also highlight the
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We will begin this chapter by describing the above conformal method in detail.
As we will see, under special geometric conditions which involve a constant mean
curvature (CMC) hypothesis, the conformal method decouples the Gauss–Codazzi
constraints of (1.59). It is in such situations that this method is most effective.
The analysis of the resulting equations relies on the application of analytic tools
such as those described in Appendix B. Therefore, in this chapter, we will start by
analysing the ECE on closed manifolds where the tools of that appendix readily
apply. In particular, we will present results which include the CMC vacuum clas-
sification of Isenberg (1995) as well as the more recent remarkable developments
of Maxwell (2005a). Our discussion also contemplates CMC results appearing in
Choquet-Bruhat (2004). In subsequent chapters we shall extend this analysis to
special non-compact manifolds called asymptotically Euclidean manifolds, which
in particular model isolated gravitational systems. In Chapter 3 we will extend the
analysis for CMC initial data to such non-compact case and, furthermore, include
boundary conditions modelling black hole initial data. In Chapter 4 we will anal-
yse the coupled system allowing for freely prescribed mean curvature initial data
in this last non-compact setting.

2.1 The conformal method

The idea of this section is to rewrite the constraint equations we encountered in
Section 1.4 in a manner which is amenable to PDE analysis. In doing so, we will
follow closely the presentation given in Choquet-Bruhat (2009, Chapter 7). Let
us start by recalling the Gauss–Codazzi constraints (with � D 0), given on a
Riemannian manifold .M n; g/ by2

Rg � jKj
2
g C

�
trgK

�2
D 2�;

divgK � d
�
trgK

�
D J;

(2.1)

where � :D T .n; n/ and J D �T .n; �/ stand for the energy and momentum densi-
ties on the initial data set, with n being the future pointing unit normal vector field.
In what follows, we will adopt the notation � :

D trgK for the mean curvature. For
a fixed matter model, the above equations could be thought of as equation for the
geometric data g and K, with � and J prescribed, and this works well in a series

modifications proposed in Maxwell (2021), aiming to deal with specific issues of the conformal
method in the non-CMC setting.

2The necessary modification to contemplate � ¤ 0 are straightforward in most cases.
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of situations we shall encounter below. As we commented in the introduction, in
such context equations (2.1) stands as a highly under-determined system posed
for .g;K/, and we attempt to exploit this freedom to split .g;K/ in some clever
way into prescribed data and unknowns for the system following the the confor-
mal method, which translates (2.1) into a determined elliptic PDE systems. Let
just highlight that, in this context, the energy constraint in (2.1) has the form of a
generalised scalar curvature prescription problem, and therefore it is not surpris-
ing that conformal deformations work quite nicely. Let us start by recalling the
following computational result.
Proposition 2.1.1. Let .M n; g/ be a Riemannian manifold with n > 3. Suppose
that g D '

4
n�2 
 for some other Riemannian metric 
 onM . Then, the following

transformation rule for the scalar curvature holds

Rg D '�
nC2
n�2

�
R
' �

4.n � 1/

n � 2
�
'

�
; (2.2)

where �
 stands for the negative Laplace operator.
In the above context we will denote by r the Riemannian connection asso-

ciated to g and by D the corresponding connection associated to 
 , so that, for
instance, �
' D 
 ijDiDj'. Also, the second order linear operator appearing in
the right hand side of (2.2), given by Lg

:
D �
 � cnR
 will be referred to as the

conformal Laplacian. This language is standard, since Lg is a very well-known
operator playing a key role in conformal scalar curvature deformation problems.
Equation (2.2) transforms the energy constraint in (2.1) into

�
' � cnR
' C cn
�
jKj

2
g � �2 C 2�

�
'

nC2
n�2 D 0; (2.3)

where cn D
1
4
n�2
n�1

.
We now need to stipulate a splitting for the extrinsic curvature. To begin with,

we will split it into its trace and traceless parts. In doing so, the aim is to leave the
trace as a parameter which is free for us to specify. As is typical in geometric PDE
problems, this will lead to natural geometric conditions which greatly simplify a
difficult non-linear problem. Now, the trace part � D trgK of K will naturally
inherit some scaling under conformal deformations. Nevertheless, we will need
to impose some good ad hoc scaling for the traceless part under conformal trans-
formations. In doing so, we will follow the so-called York splitting. Explicitly, let
us split the extrinsic curvature as follows:

K D '�2 zK C
�

n
g;
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where zK is a 
 -traceless (and thus g-traceless) .0; 2/-tensor field, where we take
the convention that zK moves its indices with the conformal metric 
 , while the
physical extrinsic curvature K moves its indices with the physical metric g. That
is,

Kij D '�2 zKij C
�

n
gij ;

Kij D '�2nC2
n�2 zKij C

�

n
gij :

(2.4)

This in particular implies that

jKj
2
g D '� 4n

n�2 j zKj
2

 C

1

n
�2;

and therefore we can make a further decomposition to the conformally formulated
energy constraint (2.3) and rewrite it as

�
' � cnR
' C cnj zKj
2

'

� 3n�2
n�2 C cn

�
1 � n

n
�2 C 2�

�
'

nC2
n�2 D 0: (2.5)

We will refer to the above equation as the Lichnerowicz equation in general.
This equation will take different forms depending of our physical model, which
determines the form of � and J , as well as the remaining geometric data, related
to the extrinsic curvature.

Let us now concentrate on how to obtain a similar form for the momentum
constraint in (2.1). In particular, the aim is to rewrite (2.1) as a determined elliptic
PDE system, and therefore, we shall attempt to rewrite the momentum constraint
as a PDE on some vector field linked to K (actually zK) in a natural way. The first
step in this direction is the following computational result.
Proposition 2.1.2. Let us consider the Riemannian manifold .M; g/, with g D

'
4

n�4 
 for some other Riemannian metric 
 onM . LetK 2 � .T 02M/ be symmet-
ric and let us split it as in (2.4). Then the g and 
 divergences ofK are related via
the following expression

divgK D '� 2n
n�2 div
 zK C

1

n
d�: (2.6)

Proof. First, using (2.4), we can compute

riK
ij

D ri

�
'�2nC2

n�2 zKij
�

C
1

n
gijri�;

D '�2nC2
n�2 ri zKij � 2

nC 2

n � 2
'�2nC2

n�2
�1 zKijri' C

1

n
gijri�:
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Also, the covariant derivatives of zK in the metrics g and 
 are related via

ri zKij D Di zKij C S iil
zKlj C S

j

il
zKil

where

Skil D
2

n � 2
'�1
ka .Di'
la CDl'
ia �Da'
il/ :

Thus, it follows that

ri zKij D Di zKij C
2.nC 2/

n � 2
'�1 zKijDi':

Putting together the above, we find

riK
ij

D '�2nC2
n�2Di zKij C

1

n
gijri�:

Then, the claim follows lowering the free index and remembering g D '
4

n�2 
 ,
where zK moves indices with 
 .

The above proposition explains the choice of scaling imposed for the traceless
part ofK under conformal transformations. That is, just as much as we the choice
g D '

4
n�2 
 is good to get rid of the first order derivatives of the conformal factor

in (2.2), the choice given in (2.4) avoids the first order contributions in (2.6). Also,
appealing to the above proposition, we can rewrite the momentum constraint in
(2.1) as

div
 zK �

�
n � 1

n
d� C J

�
'

2n
n�2 D 0: (2.7)

We have therefore, thus far, rewritten the constraints (2.1) as the system

�
' � cnR
' C cnj zKj
2

'

� 3n�2
n�2 C cn

�
1 � n

n
�2 C 2�

�
'

nC2
n�2 D 0;

div
 zK �

�
n � 1

n
d� C J

�
'

2n
n�2 D 0;

(2.8)

where, above, the input geometric data would be the metric 
 , which fixes the
conformal class of physical metric g, the mean curvature � as well as the physical
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information � and J . Then, the equations (2.8) are posed for the conformal factor
u and the traceless tensor zK. Let us point out that in the case of vacuum (�; J D 0)
maximal (� D 0) initial data, the system (2.8) decouples. In such a case, we must
first find a traceless tensor which is 
 -divergence free (such tensors are called
TT-tensors),3 which works as an input in the resulting equation for the conformal
factor. In such a case, all of the analysis falls on the associated Lichnerowicz
equation. On the other hand, for non-vacuum and/or non-maximal solutions, in
general, we have coupled system.

In order to get the final decomposition for K associated with the conformal
method we need to impose one further splitting for zK. We will introduce such final
decomposition assuming thatM is closed, since in that case it follows naturally.

Let .M n; 
/ be a Riemannian manifold as above, with n > 3, and assume
that 
 2 W 2;p , with p > n

2
. Then, define the conformal Killing Laplacian (CKL)

operator

�
;conf W W 2;p.TM/ 7! Lp.T �M/;

X 7! div

�
L
;confX

�
;

(2.9)

where L
;confX
:

D LX
 �
2
n

 div
X stands for the conformal Lie derivative,

whose kernel is given by conformal Killing fields (CKF) of the metric 
 . Also, let
us recall from Appendix B that (2.9) is an elliptic operator. In this context, the fol-
lowing theorem follows the lines of Berger and Ebin (1969) and it was introduced
in the context of general relativity by York Jr. (1974).

Theorem 2.1.1. Let .M n; 
/ be a smooth closed Riemannian manifold, n > 3.
Then, for any 1 < p < 1, the following splitting holds

W 1;p.
ı

S2M/ D Ker .L1/˚ Im .L2/ ; (2.10)

where L1 W W 1;p.
ı

S2M/ 7! Lp.T �M/ is given by L1W
:

D div
W , while L2 W

W 2;p.TM/ 7! W 1;p.
ı

S2M/ is given by L2X D L
;confX , and we have denoted

by
ı

S2M the vector bundle whose fibres consist of traceless symmetric .0; 2/ tensor
fields onM .

Proof. Let us first notice that �
;conf D L1 ı L2 and thus, appealing to Theo-
rem A.1.1, we need to show that Ker.�
;conf/ D Ker .L2/ and Im.�
;conf/ D

3TT stands for traceless and transverse tensors.
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Im.L1/. In order to deal with the first identity, it is clear that Ker.�
;conf/ �

Ker .L2/ and therefore we just need to show the other opposite inclusion. Never-
theless, the Kernel of �
;conf W W 2;p 7! Lp is actually smooth by Theorem B.4.
Thus, through Theorem B.8, X 2 Ker�
;conf iff X is a conformal Killing field of

 , which is equivalent to X 2 Ker.L2/. Similarly, the inclusion Im.�g;conf/ �

Im.L1/ is trivial, so we need only consider the opposite one. In this case, from
Theorem A.1.3, X 2 Im.�
;conf/ iff X 2 Ker?.��


;conf/, where �
�

;conf W Lp

0

7!

W �2;p0 . In particular, anyX 2 Ker?.��

;conf/ is anL

p0-weak solution to�
;confX D

0 and is therefore smooth due to elliptic regularity results. In particular, this again
implies through Theorem B.8 that any such X is a smooth CKF of 
 . Let us then
consider Y 2 Im.L1/. That is

Y D div
U;

for some U 2 W 2;p.
ı

S2M/. Then, for any X 2 Ker.��
g;conf/, it follows thatZ

M

hX; Y i
dV
 D �

Z
M

hDX;U i
dV
 ;

D �
1

2

Z
M

hLX
; U i
dV
 ;

D �
1

2

Z
M

hL
;confX;U i
dV
 ;

D 0;

where the first identity comes from integration by parts, the second one from the
symmetry of U , the third one from its traceless property and the final one from X

being a CFK. Therefore Im.L1/ � Ker?.��
g;conf/ D Im.�g;conf/, which finishes

the proof.

Therefore, at least for smooth data 
 on closed manifolds, we can always split
the traceless-part of our extrinsic data via

zK D L
;confX C U; (2.11)

where X is a vector field and U is the T T -part associated to it by the above the-
orem. We will keep this decomposition for 
 in any regularity and even for M
non-compact as an ad hoc one, although analogue versions can be established in
some of these related situations (see Cantor 1981). Using (2.11) as the imposed
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decomposition for zK in (2.8), we finally arrive at the standard form of the confor-
mally formulated Gauss–Codazzi constraints, explicitly given by

�
' � cnR
' C cnj zKj
2

'

� 3n�2
n�2 C cn

�
1 � n

n
�2 C 2�

�
'

nC2
n�2 D 0;

�
;confX �

�
n � 1

n
d� C J

�
'

2n
n�2 D 0:

(2.12)

Above, fixing a given physical model determining the form of the sources � and
J , the above equations form an elliptic system posed for .';X/ with geometric
data I :

D .
; �; U /, where 
 is a fixed W 2;p-Riemannian metric, � a fixed W 1;p-
function standing for the mean curvature of the initial set and U is a fixed W 1;p


 -T T tensor.
Let us point out that the physical sources will typically inherit some natural

scaling under conformal transformation of the initial data .g;K/. This is easy to re-
alise in themodels introduced in Section 1.3. The dependence of the corresponding
energy-momentum tensor on the space-time metric Ng will naturally induce some
scaling for .�; J /. Below, we will make this precise for some cases of interest, but,
before, let us highlight the following interesting case.

Definition 2.1.1. We will say that the physical sources .�; J / in an initial data
set .g;K; �; J / are York-scaled if, under the conformal decomposition of .g;K/
described above, their scaling on the initial data set induces a change in the mo-
mentum density of the form J D '� 2n

n�2 zJ , where zJ is a 1-form constructed with
the conformal data .
; �; U / plus additional prescribed data.

The feature that makes York-scaled sources special is that, under an additional
CMC-condition, they transform the conformally formulatedmomentum constraint
into

�
;confX D zJ ; (2.13)

which is completely decoupled from the associated Lichnerowicz equation. There-
fore, in some sense, this generalises the CMC vacuum case mentioned above. In
this case, appealing to the analysis in Appendix B, we can deal with this linear
PDE, solve forX , which completes all the information in zK, and then, once more,
the core of the analysis falls on the corresponding Lichnerowicz equation.
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2.1.1 Some Model Sources
Let us now analyse the explicit form of the induced energy-momentum densities in
a few cases which will appear in the following sections and chapters, together with
their conformal scaling in the above decomposition. During such decompositions,
we will adopt the convention of putting tildes on top of freely specified quantities
on .M; 
/, which, after some scaling, correspond to their physical counterparts on
the initial data set .M; g/.

Remark 2.1.1. Since notation will get heavier as we move along, we will avoid
putting bars on top of space-time quantities when there is no danger of confusion
between them and their evaluations on M at t D 0. Also, we will use the nota-
tions related to the space-time splitting introduced in Section 1.4, but, in order to
avoid confusion between the shift vector and the vector field X introduced in the
conformal splitting of the TT part of K, we will denote the shift vector by ˇ.

Scalar fields

Recall from Chapter 1 that the energy-momentum tensor of a (real) scalar field �
on a space-time .M � R; Ng/ with self-interacting potential V W R 7! R, is given
by

T D d� ˝ d� �
1

2
jd�j

2
Ng Ng � V.�/ Ng: (2.14)

From this, we immediately get T .n;X/ D d�.n/d�.X/ for all X 2 � .TM/,
which implies J D �d�.n/d�. In this context, we denote by � :

D d�.n/, so that

J D ��d�: (2.15)

Similarly,

� D
1

2

�
�2 C jr�j

2
g

�
C V.�/: (2.16)

Notice that in order to analyse the scaling properties of (2.15)-(2.16), we need
to analyse the scaling of the normal vector n to M , which basically depends on
the scaling of the lapse function (see Section 1.4). In fact, since n D N�1.@t �ˇ/,
with ˇ D .@t /

>, we see that ˇ is independent of the conformal class of Ng since @t
is. On the other hand, our conformal transformations on the geometric initial data
.g;K/ do not, a priori, imply any specific transformation rule for the lapse function.
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In fact, recalling that the choice of initial data for N is a gauge choice, we have
some freedom to impose a convenient transformation rule. Although imposing
N 2 to scale in the same way as g might seem a first sensible possibility, the choice

N
:

D '
2n

n�2 zN; (2.17)

turns out to be more convenient in several situations, where zN is the freely spec-
ified function on the initial data set. This choice implies n D '� 2n

n�2 zn, with
zn
:

D zN�1 .@t � ˇ/ and therefore

�� D
1

2

�
'� 4n

n�2 z�2 C '� 4
n�2 jr�j

2



�
C V.�/;

J� D �'� 2n
n�2 z�d�;

(2.18)

where z�
:

D d�.zn/. Denoting zJ
:

D z�d�, we see that (with the choice (2.17)) the
initial data of a self-interacting real scalar field are York-scaled.

Fluid sources

Let us consider a perfect fluid, of the kind introduced in Chapter 1, which is de-
scribed by an energy-momentum tensor field of the form

T D .�C p/u[ ˝ u[ C p Ng; (2.19)

where �; p are scalar functions on space-time denoting the mass and pressure den-
sities of the fluid, while u denotes the fluid’s velocity field. It is straightforward to
compute

Ji D �.�C p/ Ng.u; n/ui D Nu0.�C p/ui ;

� D .�C p/. Ng.u; n//2 � p D .�C p/.Nu0/2 � p:
(2.20)

In order to analyse the scaling properties of these fields, let us first notice that
the fluid’s velocity field is subject to the normalisation condition Ng.u; u/ D �1,
which makes it metric-dependent. In an adapted frame, we have that

�. NNu0/2 C Ngiju
iuj D �1: (2.21)

We have to give initial data for both u0 and ui , where their combination must
satisfy the above relation at t D 0. In particular, considering the conformal scaling
for g, we can put

zui D '
2

n�2ui ; (2.22)
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which implies that gijuiuj D 
ij zui zuj . Picking the scaling for u0 satisfying

.Nu0/2 D 1C jzuj
2

 ; (2.23)

we will get a pair consisting of a scalar and vector field onM satisfying (2.21). In
particular, for the choice of densitised lapse (2.17), we get

u0 D '� 2n
n�2 zu0; (2.24)

so that the pair .zu0; zu/ is of unit speed with respect to zg D � zN 2�0 ˝ �0 C 
 .
Using these conventions, we find

Ji D '
2

n�2 zN zu0.�C p/zui D '
2

n�2

�
1C jzuj

2



� 1
2 .�C p/zui ;

� D .�C p/. zN zu0/2 � p D .�C p/
�
1C jzuj

2



�
� p:

(2.25)

As they stand, the above sources are not York-scaled. Clearly, we can impose any
ad hoc convenient scaling we want for � and p, for instance to force J to be York-
scaled and induce some scaling in �. Nevertheless, if such a scaling is not well-
motivated, maybe via somemicroscopic theory that gives us� and p as the correct
averagedmacroscopic data, it might be desirable to have the freedom to control the
final densities. Notice that if we impose some scaling for � and p and write these
quantities in terms of some prescribed densities z� and zp, unless we have some a
priori strong control on ', we lose any kind of control on the behaviour of� and p,
which might be an undesirable feature in physical modelling. Thus, if we attempt
to gain such a freedomwhen modelling the sources, the momentum constraint will
not decouple from the hamiltonian constraint, even under CMC assumptions. We
will follow this last choice.

Electromagnetic sources

Let us now analyse the electromagnetic case, described by the energy momentum
tensor

T˛ˇ D F˛
�F�ˇ �

1

4
Ng˛ˇF

��F�� :

Straightforward computations of the kind done in Section 1.2, give us

� D
1

2

�
jEj

2
g C

1

2
j zF j

2
g

�
;

Jk D � zFikE
i :

(2.26)
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We can analyse how these sources scale under conformal transformations. First,
since zF is metric independent, it does not scale with conformal transformations.
On the other hand, from the definition of the electric field, if the initial data N for
the lapse function NN scales, thenE will also scale. For the choice of the densitized
(2.17), we fix the electric field scaling is as follows

Ei D '� 2n
n�2 zEi : (2.27)

Above, we regard zE as the variable we have to solve for in the electric constraint
in (1.69). Taking into consideration (2.27), we see that the conformally formulated
energy momentum sources of the electromagnetic field scale as

� D
1

2

�
j zEj

2

'

�4n�1
n�2 C

1

2
j zF j

2

'

� 8
n�2

�
;

Jk D � zFik zEi'� 2n
n�2 ;

(2.28)

which shows that the momentum J is York-scaled. Also, all this implies that

divgE D '� 2n
n�2 divg zE �

2n

n � 2
'� 2n

n�2
�1Di' zEi ;

D '� 2n
n�2

�
div
 zE C

2n

n � 2
'�1Di� zEi

�
�

2n

n � 2
�� 2n

n�2
�1Di' zEi ;

D '� 2n
n�2 div
 zE:

This shows that in the electro-vacuum case, the constraint

divgE D 0

is conformally invariant. Thus, in such a case, in the conformally formulated ver-
sion of the system (1.69), the electric constraint reads div
 zE D 0. Therefore, in
this situation and for this particular scaling for the lapse function, the electromag-
netic constraints decouple from the Gauss–Codazzi constraints. Then, we can first
choose zE being 
 -divergence-free and zF being closed, which can be solved inde-
pendently, and then put this information in the Gauss–Codazzi constraints, where
now zE and zF become data. On the other hand, if we have electromagnetic sources,
then we need to analyse how they scale and solve for the electric constraint coupled
to the conformally formulated Gauss–Codazzi constraints.
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Charged fluids

In view of the discussion presented above, let us formulate the conformal problem
associated to the full constraint system (1.69) for a charged fluid. In this case, we
assume the energy momentum tensor is given by

T D .�C p/u[ ˝ u[ C p Ng C T EM ; (2.29)

which implies

� D .�C p/
�
1C jzuj

2



�
� p C

1

2

�
j zEj

2

'

�4n�1
n�2 C

1

2
j zF j

2

'

� 8
n�2

�
;

Ji D '
2

n�2

�
1C jzuj

2



� 1
2 .�C p/zui � zFik zEi'� 2n

n�2 :

(2.30)

Also, in this context, we need to evaluate how the current J scales. In fact, from
(1.69), we need to consider the scaling of � D �J [.n/. Typically, one writes the
current density associated to the flow of charged particles with velocity field u as

J D quC j; (2.31)

where qu is referred to as the convective current, with q the proper charge den-
sity of the fluid, while j ? u as the conductive current, which, for instance, for
conductive fluids with linear response can be written as j D �Eu, where � is the
conductivity of the fluid andEu denotes the electric field as observed by u. In what
follows, we shall assume that j D 0 and therefore the fluid has zero conductivity
and we may write J D qu, implying4

� D �J [.n/ D � Ng.J ; n/ D qNu0 D q
�
1C jzuj

2



� 1
2 : (2.32)

Putting (2.32) together with the scaling divgE D '� 2n
n�2 div
 zE, we see that the

electric constraint reads as follows.

div
 zE D q.1C jzuj
2

 /

1
2�

2n
n�2 ; (2.33)

where we have chosen not to scale the charge density q under the same arguments
as with � and p.

4In a more general case we should add a contribution from the conductive current, which would
further couple the electric field. For instance, if j D �Eu, then �J [.n/ D �F.n; u/ D ��uiEi .
Along these lines, we could also notice from Section 1.4 that our choice of space-time splitting is
arbitrary, and if we chose to evolve the initial data along u, that is n D u, then in all the above
expressions we would find u0 D 1, ui D 0 which could be used to simplify the analysis of a
conductive fluid.
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Full system of constraints

Above, we presented the analysis related to some of the most common classical
physical sources of energy-momentum densities. Scalar fields find applications in
different scenarios in astrophysics and cosmology, for instance within inflationary
cosmology, and are typically a test case for more elaborated constructions. Fluid
sources are the fundamental tool to model continuous matter distributions, ranging
from star-modelling to cosmologicalmodels for theUniverse. In particular, perfect
fluids find several applications, for instance, within homogeneous and isotropic
cosmological models. Finally, electromagnetism represents the second (besides
gravitation) fundamental classical field in physics. Therefore, putting of all of
above together we can present a quite general situation given by a charged perfect
fluid which couples with a self-interacting scalar field, besides the electromagnetic
one. For such a system, we have found that

� D
1

2

�
'� 4n

n�2 z�2 C '� 4
n�2 jr�j

2



�
C
1

2

�
j zEj

2

'

�4n�1
n�2 C

1

2
j zF j

2

'

� 8
n�2

�
C V.�/C .�C p/

�
1C jzuj

2



�
� p;

Ji D �'� 2n
n�2 z�d� � zFik zEi'� 2n

n�2 C '
2

n�2

�
1C jzuj

2



� 1
2 .�C p/zui ;

(2.34)

and therefore, we can write down the associated conformally formulated system
(1.69) as

�
' � f .';X; zE; zF / D 0;

�
;confX � F.';X; zE; zF / D 0;

div
 zE � q.1C jzuj
2

 /

1
2'

2n
n�2 D 0;

d zF D 0;

(2.35)

where, denoting by  :
D .';X; zE; zF /, we have defined

f . /
:

D r' � cn

�
j zKj

2

 C z�2

�
'� 3n�2

n�2 C a�'
nC2
n�2 � cnj zEj

2

'

�3
�
cn

2
j zF j

2

'

n�6
n�2 ;

F. / :D !� � zEy zF C !�'
2n

n�2 C !�'
2nC1

n�2 ;
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with

r
:

D cn
�
R
 � jr�j

2



�
; a�

:
D
n � 2

4n
�2 � 2cn�0; !�

:
D
�
1C jzuj

2



� 1
2 .�C p/zu[;

�0
:

D V.�/C .�C p/
�
1C jzuj

2



�
� p; !�

:
D �z�d�; !�

:
D
n � 1

n
d�;

Notice that the only equation that always decouples in the above system is the
magnetic constraint d zF D 0, which demands us to chose a closed 2-form onM .
After that, zF becomes a datum in the remaining system, and therefore we will
disregard this last equation.

On the other hand, the remaining system, consisting on the first three equations
in (2.35) will in general be completely coupled, even under a CMC assumption,
since the presence of non-York scaled momenta such as !� couples the momen-
tum constraint with the conformal factor explicitly, but also the York-scaled mo-
mentum zFij zEi couples the momentum constraint with the electric one, which is
explicitly coupled with the conformal factor. Therefore, unless we decide to ne-
glect all fluid contribution, that is �;p; q D 0, the system will be fully coupled.
In the case we switch-off the fluid’s contributions and adopt the CMC hypothesis,
we obtain the decoupled system given by

�
' � r' C aT T '
� 3n�2

n�2 � a�'
nC2
n�2 C aE'

�3
C a zF

'
n�6
n�2 D 0;

�
;confX D !� � zEy zF ;

div
 zE D 0;

d zF D 0

(2.36)

where we have introduced the additional notations

aT T
:

D cn

�
j zKj

2

 C z�2

�
; aE

:
D cnj zEj

2

 ; a zF

:
D
cn

2
j zF j

2

 :

System (2.36) is completely decoupled. We must first choose a closed 2-form
zF and a divergence-free vector field zE on .M; 
/ to satisfy the source-free elec-
tromagnetic constraints. Then, the right-hand side in the momentum constraint
becomes a source, fixed by the chosen free data. The well-posedness of the sys-
tem relies on this last equation being solvable. Assuming it is, we findX and then
the TT-part of the extrinsic curvature becomes fixed by the free data, which im-
plies that all of the coefficients appearing in the associated Lichnerowicz equation
are fixed by the free data, and the remaining work must be devoted to the analysis
of this semi-linear PDE.
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2.1.2 Conformal covariance
It may seem intuitive that there should be some nice relation between two dif-
ferent conformal initial data sets built from conformally related metrics 
 and

 0 D �

4
n�2 
 . This can be explicitly seen to be the case as follows. First, no-

tice that associated to conformal data # :
D .
; �; U; zN; �; z�;�; p; zu0; zu; zF /, we

have the solution .';X; zE/, from which we construct the physical initial data

g D '
4

n�2 
; K D '�2
�
L
;confX C U

�
C
�

n
g; E D '� 2n

n�2 zE;

N D '
2n

n�2 zN; � D '� 2n
n�2 z�; u D '� 2n

n�2 zu0 e0 C '� 2
n�2 zu;

(2.37)

and we have adopted the notation zK
:

D L
;confX C U . Such a solution to the
constraint equations solves the system

L
' D � cnjd�j
2

' � cn

�
j zKj

2

 C z�2

�
'� 3n�2

n�2 C a�'
nC2
n�2 � cnj zEj

2

'

�3

�
cn

2
j zF j

2

'

n�6
n�2 ;

div
 zK D � z�d� � zEy zF C !�'
2n

n�2 C
�
1C jzuj

2



� 1
2 .�C p/zu['2

nC1
n�2 ;

div
 zE Dq.1C jzuj
2

 /

1
2'

2n
n�2 ;

d zF D0;

(2.38)

and associated to each solution of such a system with ' > 0, we have the physical
data (2.37) solving the physical constraint equations (1.69) with sources given by
a charged perfect fluid interacting with a scalar field. Now, let us consider the
conformally related data


 0 :
D �

4
n�2 
; U 0 :

D U; � 0 :
D �; zN 0 :

D �
2n

n�2 zN; �0 :
D �; z� 0 :

D �� 2n
n�2 z�;

�0 :
D �; p0 :

D p; zu00 :
D �� 2n

n�2 zu0; zu0i :
D �� 2

n�2 zui :
(2.39)

Below, we will show that  :
D .'; zK; zE; zF / is a solution of (2.38) associated to

free data given by # iff  0 :
D .'0; zK 0; zE 0; zF 0/ is a solution of the same system

associated to free data # 0 related to # via (2.39), where

'0 :
D ��1'; zK 0 :

D ��2 zK; zE 0 :
D �� 2n

n�2 zE; zF 0 :
D zF : (2.40)
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In either case, the physical solution is constructed from . ; #/ (or . 0; # 0/) via the
relations (2.37) using primed or unprimed variables consistently. That is,

g0
D '0 4

n�2 
 0
D '

4
n�2 
 D g; K 0

D '0�2 zK 0
C
� 0

n
g0

D '�2 zK C
�

n
g D K;

N 0
D '0 2n

n�2 zN 0
D '

2n
n�2 zN D N; � 0

D '0� 2n
n�2 z� 0

D '� 2n
n�2 z� D �;

u0
D '0� 2n

n�2 zu00 e0 C '0� 2
n�2 zu0

D '� 2n
n�2 zu0 e0 C '� 2

n�2 zu D u;

E 0
D '0� 2n

n�2 zE 0
D '� 2n

n�2 zE D E; zF 0
D zF :

(2.41)

Therefore, the physical solution is the same in both cases. That is, we find an
action of the conformal group on the conformal data . ; #/, which makes it a kind
of gauge group.

With the above in mind, let us first present the following computational result.

Proposition 2.1.3. Let us consider a Riemannian manifold .M n; 
/, 
 2 W 2;p,
p > n

2
, and a conformally related Riemannian metric 
 0 D �

4
n�2 
 with � 2 W 2;p .

The conformal Laplacian operatorsL
 andL
 0 associated to 
 and 
 0 respectively
satisfy the following conformal covariance property:

L
' D �
nC2
n�2L
 0'0

8 ' 2 W 2;p: (2.42)

where '0 D ��1' 2 W 2;p .

Proof. First, notice that L
 and L
 0 are well-defined mappings from W 2;p 7!

Lp (see Appendix B). Furthermore, since W 2;p is an algebra under point wise
multiplication under our hypotheses, we have '0 2 W 2;p . Now, the proof follows
by straightforward local computations. First, notice that the following formulae
hold:

r
0
i'

0
D ��1

r
0
i' � ��2'r

0
i�;

�
 0'0
D ��1

�
�
 0' � ��1

�
'�
 0� C 2hr�;r'i
 0

�
C 2��2'jr� j

2

 0

�
;

� kij .

0/ D � kij .
/C

2

n � 2
��1

�
@i�ı

k
j C @j �ı

k
i � 
kl@l�
ij

�
:

Therefore

�
 0' D �� 4
n�2�
' C 2��1

hr�;r'i
 0 ;

�
 0� D �� 4
n�2�
� C 2��1

jr� j
2

 0 ;
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and we recall from Proposition 2.1.1 that

R
 0 D ��
nC2
n�2

�
�R
 �

4.n � 1/

n � 2
�
�

�
:

Putting all the above together, we find

L
 0'0
D �� 4

n�2
�1�
' � �� 4

n�2
�2'�
� �

n � 2

4.n � 1/
��

nC2
n�2R
' C ��

nC2
n�2

�1'�
�;

D ��
nC2
n�2

�
�
' �

n � 2

4.n � 1/
R
'

�
;

D ��
nC2
n�2L
';

which establishes the claim.

We can now use Propositions 2.1.2 and 2.1.3 to establish the following.

Lemma 2.1.1. The tuple .'; zK; zE; zF / is a solution to (2.38) associated to the
freely prescribed conformal data # iff .'0; zK 0; zE 0; zF 0/ is a solution to (2.38) as-
sociated to the freely prescribed data # 0, where # and # 0 are related via (2.39),
while .'0; zK 0; zE 0; zF 0/ are related via (2.40).

Proof. First, notice that the relations (2.39) imply

j zKj
2

 D �

4n
n�2 j zK 0

j
2

 0 ; j zEj

2

 D �4

n�1
n�2 j zE 0

j
2

 0 ; jzuj

2

 D jzu0

j
2

 0

zuj D �� 2
n�2 zu0

j ; !� D �� 2
n�2!0

�:

Using the above relations together with (2.39), from Proposition 2.1.3, the follow-
ing holds:

�
nC2
n�2L
 0'0

D � cnjr�j
2

' � cn

�
j zKj

2

 C z�2

�
'� 3n�2

n�2 C a�'
nC2
n�2 � cnj zEj

2

'

�3

�
cn

2
j zF j

2

'

n�6
n�2 ;

D � cn�
4

n�2 jd�j
2

 0' � cn�

4n
n�2

�
j zK 0

j
2

 0 C z� 02

�
'� 3n�2

n�2 C a�'
nC2
n�2

� cn�
4n�4
n�2 j zE 0

j
2

 0'

�3
�
cn

2
�

8
n�2 j zF j

2

 0'

n�6
n�2 ;

D�
nC2
n�2

�
� cnjd�j

2

 0'

0
� cn

�
j zK 0

j
2

 0 C z� 02

�
'0� 3n�2

n�2 C a�'
0

nC2
n�2

� cnj zE 0
j
2

 0'

0�3
�
cn

2
j zF j

2

 0'

0 n�6
n�2

�
;
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Similarly, from Proposition 2.1.2, we find

�
2n

n�2 div
 0 zK 0
D �z�d� � zEy zF C !�'

2n
n�2 C !�'

2nC1
n�2 ;

D �
2n

n�2

�
�z� 0d� � zE 0y zF C !�'

0 2n
n�2 C !0

�'
02nC1

n�2

�
;

and we have already seen that the relation div
 0 zE 0 D �� 2n
n�2 div
 zE holds, which

implies

�
2n

n�2 div
 0 zE 0
D q.1C jzuj

2

 /

1
2'

2n
n�2 D �

2n
n�2 q.1C jzuj

2

 /

1
2'0 2n

n�2

Putting together the above relations proves the claim.

The above lemma becomes very useful, for instance, when we can find some
preferred element in a conformal class which simplifies the problem (2.38). As we
will see, this tends to be the case when we split the space of Riemannian metrics on
M into its disjoint Yamabe classes. In such a case, our conformal class will belong
to exactly oneYamabe class, and that allows us to select a conformal representative
in Œ
� with fixed sign on the scalar curvature, which can be used to control the
behaviour of L
 as well as the existence of simple barriers for the Lichnerowicz
equation, as we shall see in the next section. In such a case, we first fix a useful
conformal representative to solve our problem, knowing that the final physical
initial data will remain unaltered by these gauge choices.

2.2 CMC-solutions on closed manifolds

Let us now start with the analysis of the decoupled system (2.36), which corre-
sponds to the choices � D cte and q; �; p � 0. Through this section we will
consider M to be a closed n-dimensional manifold, with n > 3. Since the elec-
tromagnetic constraints are completely decoupled, we assume that we have fixed
a priori a closed 2-form zF and a 
 -divergence-free vector field zE together with
the remaining free data .
; U; �; �; z�/. Let us first concentrate on the decoupled
momentum constraint given by

�
;confX D �z�d� C zEy zF
:

D zJ : (2.43)

Let us organise our functional hypotheses corresponding to the above equation in
the following proposition.
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Proposition 2.2.1. Let .M n; 
/, n > 3, be a closed Riemannian manifold with

 2 W 2;p and assume that � 2 W 2;p, z�; zE; zF 2 W 1;p, with p > n

2
. Then, zJ in

equation (2.43) is in Lp.

Theproof of the above proposition is a straightforward application of the Sobolev
multiplication properties.5 With the aid of the above proposition and appealing to
Theorem B.8, we see that (2.43) is solvable iff zJ is L2.M; dV
 / orthogonal to the
set of CKF of 
 . Therefore, we obtain the following result.

Lemma 2.2.1. Let .M n; 
/, n > 3, be a closed Riemannian manifold with 
 2

W 2;p with p > n
2
and assume that � 2 W 2;p, z�; zE; zF 2 W 1;p. Then, (2.43) is

solvable for X 2 W 2;p iff zJ is L2-orthogonal to the space of CKF of 
 . In such
a case, the solution is unique up to the addition a CKF.

From the above lemma, we find a minor obstruction in order to be able to
find solutions to the ECE in this setting, which is given by the necessity to choose
�; z�; zE and zF so that zJ ? Ker.�
;conf/. This is not a dramatic constraint on the
admissible free data, since it is also a condition that can be satisfied generically.
This follows since, as might be expected, metrics with no non-trivial CKF are
generic. This means that, within suitable topologies for the space of Riemannian
metrics on M , metrics with no CKF can be shown to be dense. We refer the
reader to Beig, Chruściel, and R. Schoen (2005) for detailed statements and also
to Liimatainen and Salo (2012) for a proof in the case of closed manifolds and
smooth metrics. Therefore, unless we are faced with a rather exotic situation, we
will not face any obstructions of the sort described in the above lemma. In fact,
we do not loose much generality in assuming that 
 possesses no CKF from the
start, from which we find unique solutions to (2.43) for any zJ 2 Lp. This kind of
hypothesis will be exploited, for instance, in upcoming chapters.

Finally, let us also highlight that there are tangible geometric conditions which
guarantee the non-existence of CKF on a closed Riemannian manifold. One such
condition is that Riemannian metrics with negative definite Ricci tensor do not
have any CKF (see Choquet-Bruhat 2009, page 203). A beautiful related result is
that any manifoldM n, n > 3, carries a metric with negative definite Ricci tensor
(see Lohkamp 1994, Theorem A).

In what follows we will focus on the associated Lichnerowicz equation, where
the core of the analysis for this CMC problem relies.

5See Appendix A.2.
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The Lichnerowicz equation
We now need to consider the equation

�
' � ar' C aT T '
� 3n�2

n�2 � a�'
nC2
n�2 C aE'

�3
C a zF

'
n�6
n�2 D 0; (2.44)

where we recall the notations

ar
:

D r D cn
�
R
 � jr�j

2



�
; a� D

n � 2

4n
�2 � 2cnV.�/; aT T

:
D cn

�
j zKj

2

 C z�2

�
;

aE
:

D cnj zEj
2

 ; a zF

:
D
cn

2
j zF j

2

 :

Let us summarise our functional choices in the following proposition.

Proposition 2.2.2. Let .M n; 
/, n > 3, be a Riemannian manifold with 
 2 W 2;p

and assume that �;X 2 W 2;p, �; z�; zE; zF ;U 2 W 1;p and V W W 2;p 7! Lp, with
p > n

2
. Then, all the coefficients aI in (2.44) are in Lp.

Proof. First, notice that 
 2 W 2;p implies R
 2 Lp through multiplication prop-
erties. Also, �;X 2 W 2;p imply r�;L
;confX 2 W 1;p and the continuous mul-
tiplication propertyW 1;p ˝W 1;p ,! Lp, p > n

2
, shows that the quadratic terms

are in Lp. Finally, V.�/ 2 Lp by definition of V as a map W 2;p 7! Lp.

Remark 2.2.1. Notice that the choice X 2 W 2;p is the natural choice from the
other functional hypotheses put together with Lemma 2.2.1.

With the above proposition in mind, we now aim to analyse a generic scalar
equation on a closed Riemannian manifold .M n; 
/, 
 2 W 2;p, of the form

�
' D
X
I

aI'
I ; (2.45)

where the exponents I determine the type of non-linearities present in a specific
problem, and we assume aI 2 Lp. In the following section, we will present the
technical tools used to prove existence results to equations of this form.

2.2.1 The monotone iteration scheme
During this section we will describe an iterative method used to prove existence
results associated to equations of the form of (2.45), which is based on the exis-
tence of barrier functions. Methods of this type are well-known within elliptic
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PDE theory and encounter several applications in geometric analysis. In partic-
ular, they were introduced by Isenberg (1995) to analyse the Lichnerowicz equa-
tion associated to vacuum CMC initial data. Subsequently this method has gone
through several improvements and generalisations, due to Choquet-Bruhat (2004)
and Maxwell (2005a,b, 2006). Before establishing the main result of this section,
given by Theorem 2.2.1 below, let us introduce the following forms of the maxi-
mum principle adapted to our regularity setting. In particular, in the next lemmas,
we follow ideas of Maxwell (2005a,b, 2006).

Lemma 2.2.2 (Weak Maximum Principle). Let .M n; 
/ be a closed Riemannian
manifold with 
 2 W 2;p and p > n

2
. Let us also consider a function V 2 Lp and

assume that V > 0 a.e, V 6� 0. Then, given ' 2 W 2;p the following implication
holds

�
' � V' > 0 H) ' 6 0: (2.46)

Proof. Let us consider the function 'C :
D maxf'; 0g and then the equation

'C�
' � V'C' > 0 a.e (2.47)

The idea is to integrate the above equation overM and then justify an integration
by parts procedure. Let us concentrate in this last step. First, let us consider the
cases where n

2
< p < n since they contain the general statement. Then, the first

claim is that the embedding W 2;p ,! W 1;2 holds. This is obvious for n > 3 and
in the case n D 3 it follows from Theorem A.2.5 as long as 2 6 np

n�p
, which is

equivalent to p > 2n
nC2

. Since n
2
> 2n

nC2
for n > 3, then this embedding holds

under our hypotheses. Now, notice that ' 2 W 1;2 implies 'C 2 W 1;2 (Kesavan
1989, see, for instance, Theorem 2.2.5). We furthermore claim thatW 1;2 ,! Lp

0 .
Once more appealingTheoremA.2.5, we know that this holds as long as p0 6 2n

n�2
,

which is equivalent to

1

p0
D 1 �

1

p
>
n � 2

2n
D
1

2
�
1

n
()

1

2
>
1

p
�
1

n
D
n � p

np
() 2 6

np

n � p
;

which we already knows that hols under our present hypotheses, and therefore this
second claim also follows. In particular, all this implies that 'C�
' 2 L1.M/.

Now, consider sequences f'C

k
g1
kD0

; f'kg1
kD0

� C1.M/ such that

'C

k

W 1;2

���! 'C; 'k
W 2;p

����! '; (2.48)
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and then computeˇ̌̌ Z
M

'C�
'dV
 �

Z
M

'C

k
�
'kdV


ˇ̌̌
6
Z
M

j'C
� 'C

k
jj�
'jdV


C

Z
M

j'C

k
jj�
 .' � 'k/jdV
 ;

6 k'C
� 'C

k
kLp0 k�
'kLp

C k'C

k
kLp0 k�
 .' � 'k/kLp :

The right-hand side of the above expression goes to zero due to (2.48) put together
with the embedding W 1;2 ,! Lp

0 and the continuity of �
 W W 2;p 7! Lp (see
Proposition B.2). Therefore, we find thatZ

M

'C�
'dV
 D lim
k!1

Z
M

'C

k
�
'kdV
 ;

D � lim
k!1

Z
M

hr'C

k
;r'ki
dV
 ;

(2.49)

where in the last step, the integration by parts now follows from arguments of
Theorem B.7. In order to establish that the right-hand side of the above expression
converges to the corresponding limit, now notice thatW 2;p ,! W 1;2 implies that

r'k
L2

��! r' and (2.48) implies r'C

k

L2

��! r'C. Therefore, proceeding as above,
we findˇ̌̌ Z
M

hr'C;r'i
dV
 �

Z
M

hr'C

k
;r'ki
dV


ˇ̌̌
6
Z
M

jhr.'C
� 'C

k
/;r'i
 jdV


C

Z
M

jhr'C

k
;r.' � 'k/i
 jdV
 ;

6 kr.'C
� 'C

k
/kL2kr'kL2

C kr'C

k
kL2kr.' � 'k/kL2 ;

where the right-hand side again goes to zero by previous arguments. Putting all
this together, we justified the integration by parts of (2.47):Z

M

�
'C�
' � V'C'

�
dV
 D �

Z
M

�
hr'C;r'i
 C V'C'

�
dV
 > 0:
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Since ' D 'C on supp.'C/, we find

�

Z
M

�
jr'C

j
2

 C V

�
'C
�2�

dV
 > 0:

The above implies, in particular, that 'C is constant. If 'C D c ¤ 0, then by
continuity of ', we find ' D c > 0 over all ofM . But then �Vc > 0 a.e, which
implies V D 0 a.e, which contradicts our hypotheses. Therefore, it follows that
'C � 0 and the claim holds.

The above maximum principle is robust enough to allow us to establish the
monotone iteration scheme which is used in the analysis of semi-linear equations
of the form of (2.45). Nevertheless, for geometric problems, we sometimes need a
stronger version which excludes the possibility of ' vanishing. This is the content
of the following lemma.

Lemma 2.2.3 (Strong Maximum Principle). Let .M n; 
/ be a closed Riemannian
manifold with 
 2 W 2;p and p > n

2
. Let us also consider a function V 2 Lp and

assume that V > 0 a.e, V 6� 0. Then, given ' 2 W 2;p satisfying the inequality

�
' � V' > 0; (2.50)

if '.x/ D 0 for some x 2 M , then ' � 0.

Proof. The proof done via a connectivity argument. That is, if we show that the
subset ofM were ' D 0 is open, then the result follows sinceM is assumed to be
connected. In order to establish this last claim, we follow arguments of Maxwell
(see 2006, Lemma 5.3), which appeals to the so-called weak Harnack inequality
presented in Trudinger (1973, Theorem 5.2). The argument goes as follows. Let
us consider a coordinate ball B inM , where we can write

�
' � V' D @i

�
gij @j'

�
�

�
@ig

ik
C gij� kij

�
@k' � V': (2.51)

In Trudinger (ibid., Section 5), the author studies elliptic operators of the form

Lu D �@i

�
aij @iuC aiu

�
C bi@iuC au (2.52)

under very general hypotheses on the coefficients aij ; ai ; bi and a on domains
˝ � Rn. In particular, for ˝ bounded, the choices aij continuous, ai ; bi 2 Lt

and a 2 L
t
2 , with t > n, satisfy the hypotheses of Trudinger (ibid., Theorem 5.2).
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Under these conditions, if u 2 W 1;2.˝/ satisfies Lu > 0 (weakly) and u > 0 on
a ball B5R.x0/ � ˝, then, for a sufficiently large s > 0 it follows that

kukLs.B2R.x0// 6 CR
n
s inf
BR.x0/

u; (2.53)

where the constant C depends on the operator, the dimension and s, but not on
u. We intend to apply the above inequality to '. First, notice that since p > n

2

by hypothesis, the Sobolev embeddings imply W 2;p.B/ ,! W 1;2.B/. Also, by
hypothesis gij 2 W 2;p and is therefore continuous. Furthermore, comparing
the operators in (2.51) and (2.52), we see that aij D gij satisfies the imposed
conditions. Also, ai � 0 in our case, while bi D @kg

ki C gkl� i
kl

2 W 1;p.
Again, using Sobolev embeddings, if p > n, we directly have W 1;p ,! Lt , with
t > n. In case n

2
< p < n, then this last embedding holds if n < t 6 np

n�p
.

Such number t exists iff p > n
2
, which proves that bi also satisfies the required

conditions. Finally, a D V 2 Lp, with p > n
2
already satisfies the requirements.

Finally, ' 6 0 due to Lemma 2.2.2 and therefore '0 :D �' > 0 satisfies

�@i

�
gij @j'

0
�

C

�
@ig

ik
C gij� kij

�
@k'

0
C V'0 > 0

together will all the requirements to apply (2.53). In particular, if there some
x0 2 M where '.x0/ D 0, picking B containing x0 and applying (2.53) in a
ball BR.x0/ � B, we find k'kLs.B2R/.x0/ D 0, and therefore 'jB2R.x0/ � 0,
proving that the set '�1.0/ is open and establishing the claim.

Remark 2.2.2. We would like to highlight that similar (more general) versions of
the above twomaximum principles have been established in the literature. We refer
the reader to Holst, Nagy, and Tsogtgerel (2009), Holst and Tsogtgerel (2013), and
Maxwell (2006) for further references.

Let us now introduce the following concepts concerning barriers of an equation
of the form (2.45). First, let us define

f W M � I 7! R;

.x; y/ 7! f .x; y/
:

D
X
I

aI .x/y
I ; (2.54)

where I � R stands for an interval, and, as in (2.45), the coefficients aI 2 Lp.
Furthermore, we assume that @yf .x; y/ exists and is continuous on I. Notice that
this is an imposition on I more than on f , since, due to the form of f , this is
satisfied by any interval I D Œl; m� � RC with l > 0.
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Definition 2.2.1. Let .M n; 
/ be a W 2;p-Riemannian manifold, with p > n
2
. We

say that '� 2 W 2;p is a subsolution of the equation �
' D f .x; '/ if

�
'� > f .x; '�/: (2.55)

Analogously, we say that 'C 2 W 2;p is a supersolution of the same equation if

�
'C 6 f .x; 'C/: (2.56)

We can now establish the following theorem.

Theorem2.2.1. Let .M n; 
/ be a closed Riemannianmanifold with 
 2 W 2;p and
p > n

2
. Consider the equation �
' D f .x; '/, with f given as in (2.57). If this

equation admits a pair of W 2;p sub and supersolutions 0 < l 6 '� 6 'C 6 m

with Œl; m� � I, then there is a solution ' 2 W 2;p satisfying '� 6 ' 6 'C.

Proof. Let us construct the solution by iterations of solutions to linear problems.
That is, we will start considering the sequence f'kg1

kD0
� W 2;p generated via

�
'kC1 � a'kC1 D f .x; 'k/ � a'k; (2.57)

where a 2 Lp is a function satisfying a > 0 a.e, a 6� 0, to be fixed below, and, in
order to start the iteration we fix '0

:
D '�. Since the right hand side of the above

equation remains in Lp at any step due to Sobolev multiplication properties, the
non-negativity of the coefficient a 2 Lp guarantees that our sequence is well-
defined through Theorem B.7, since �
 � a W W 2;p 7! Lp is an isomorphism.
Let us now fix a choice for a 2 Lp. This will be done imposing the function

fa W M � Œl; m� 7! R;

.x; y/ 7! fa.x; y/
:

D f .x; y/ � ay

to be a decreasing function on y 2 Œl; m�. We achieve this by choosing a satisfying

a >
X
I

jIaI j sup
y2Œl;m�

yI�1;

noticing that supy2Œl;m� y
I�1 is going to be given in terms of a power of either l or

m depending on the sign of I �1. Let us now show that our sequence of solutions
is trapped between the barriers '� and 'C. With this in mind, consider

�
 .'1 � '�/ � a .'1 � '�/ D f .x; '�/ � a'� ��
'� C a'�;

D �
�
�
'� � f .x; '�/

�
6 0;
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and therefore Lemma 2.2.2 implies '1 > '�. Similarly,

�
 .'1 � 'C/ � a .'1 � 'C/ D f .x; '�/ � a'� ��
'C C a'C;

D �
�
�
'C � f .x; 'C/C f .x; 'C/ � f .x; '�/

�
C a .'C � '�/ ;

D �
�
�
'C � f .x; 'C/

�
� .f .x; 'C/ � a'C � .f .x; '�/ � a'�// > 0;

where the last inequality comes from y 7! fa.x; y/ being a decreasing function
of y 2 Œl; m�. Once more, the weak maximum principle gives us '1 6 'C.

We now proceed by induction. Let us now assume that '� 6 'k�1 6 'k 6
'C for some k > 1, and notice that the case k D 1 has just been established. Then

�
 .'kC1 � 'k/ � a .'kC1 � 'k/ D f .x; 'k/ � a'k � f .x; 'k�1/C a'k�1;

D fa.x; 'k/ � fa.x; 'k�1/ 6 0;

where the last inequality comes from the inductive hypothesis and the decreasing
property of fa.x; y/ on y. Therefore, 'kC1 > 'k . Similarly

�
 .'kC1 � 'C/ � a .'kC1 � 'C/ D f .x; 'k/ � a'k ��
'C C a'C;

D �
�
�
'C � f .x; 'C/C f .x; 'C/ � f .x; 'k/

�
C a .'C � 'k/ ;

D �
�
�
'C � f .x; 'C/

�
� .f .x; 'C/ � a'C � .f .x; 'k/ � a'k// > 0;

from which we find 'kC1 6 'C and therefore the inductive proof is finished,
establishing that the sequence f'kg1

kD0
satisfies '� D '0 6 '1 6 � � � 6 'k 6

'kC1 6 � � � 6 'C. That is, f'kg � W 2;p is bounded in C 0. Since W 2;p ,! C 0

is compact for p > n
2
, there must be a C 0-convergent subsequence, to which we

now restrict. Let us show that such subsequence is Cauchy isW 2;p by considering
the following elliptic estimates

k'k � 'lkW 2;p 6 Ck�
 .'k � 'l/ � a .'k � 'l/ kLp ;

D Ckf .�; 'k�1/ � f .�; 'l�1/ � a .'k�1 � 'l�1/ kLp ;

6 C
X
I

kaIkLp k'Ik�1 � 'Il�1kC0 C kakLp k'k�1 � 'l�1kC0 :
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The C 0-convergence of f'kg implies that the right-hand side of the above expres-
sion goes to zero as k; l go to infinity and therefore f'kg is Cauchy inW 2;p . Thus,
there is some ' 2 W 2;p, such that

'k
W 2;p

����! ':

Since �
 � a W W 2;p 7! Lp is continuous, passing to the limit in (2.57) we
see that ' solves �
' D f .x; '/. Furthermore, by construction we must have
'� 6 ' 6 'C.

The above theoremwill be our main tool when proving existence results for the
Lichnerowicz equation. Therefore, we see that our task will be reduced to finding
suitable barrier functions '� 6 'C to our associated equation. In doing so, wewill
see that the behaviour of the linear term ar in (2.45) plays a particularly special
role. Therefore, certain classification results concerning conformal deformations
of scalar curvature are specially useful, which motivates the analysis presented in
the next section concerning the Yamabe problem. Finally, let us close this sec-
tion by referring the interested reader to some refined low-regularity versions of
Theorem 2.2.1, such as Maxwell (2005a, Proposition 6.2).

2.2.2 The Yamabe classification
Given a smooth closed Riemannian manifold .M n; 
/, n > 3, the Yamabe prob-
lem in Riemannian geometry consists in finding a conformal deformation of 
 into
a metric of constant scalar curvature. From (2.2), we know that this amounts to
finding a smooth positive solution to the equation

�an�
' CR
' D zR'
nC2
n�2 ; (2.58)

for some constant zR, where an
:

D
4.n�1/
n�2

. If we can achieve this goal, then the
metric g D '

4
n�2 
 has constant scalar curvature Rg D zR. Yamabe observed that

the above equation is actually the Euler–Lagrange equation of the functional

Q.g/ D

R
M RgdVg

Volg.M/
2

p�

; (2.59)

where 2� :
D

2n
n�2

denotes the critical exponent for the Sobolev embeddingW 1;2 ,!

Lp
� ,6 and we consider a minimization problem in a conformal class Œ
�. That is,
6Notice that this is precisely the exponent where the embedding looses its compactness.
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we consider the above functional on metrics on the form g D '
4

n�2 
 , and write

Q.'/ D
E.'/

k'k2
L2�

.M;dV
 /

; (2.60)

where

E.'/
:

D

Z
M

�
R
'

2
� an'�
'

�
dV
 ;

D

Z
M

�
anjr'j

2

 CR
'

2
�
dV
 :

(2.61)

A now straightforward computation shows that a critical point ' of (2.60) is a weak
solutions to (2.58), with zR

:
D

E.'/

k'k2�

L2�

. Notice that Hölder’s inequality put together

with W 1;2 ,! L2
� implies that

E.'/ > �

ˇ̌̌ Z
M

R
'
2dV


ˇ̌̌
> �kR
kLq0 k'2kLq D �kR
kLq0 k'k

2
Lp� ;

where q :
D

n
n�2

and q0 D
q
q�1

. Therefore, Q.'/ admits an infimum, given by

Y.Œ
�/ :D inf
'2C1.M/

' 6�0

Q
 .'/; (2.62)

and we will refer to Y.Œ
�/ as the Yamabe invariant, which is clearly a confor-
mal invariant. The core of the standard analysis at this stage is to use variational
techniques to find a positive smooth minimizer for this problem. The fact that the
problem involves the critical (non-compact) embedding W 1;2 ,! Lp

� presents
an additional difficulty, which is part of the rich history around this problem. We
refer the reader to J. M. Lee and Parker (1987) and Aubin (1998, Chapter 5) for
detailed reviews on this topic, where the final resolution is due to the remarkable
work of several authors, most notably Aubin (1976), R. Schoen (1984), Trudinger
(1968), and Yamabe (1960). In these works, the problem was solved by Trudinger
(1968) in non-positive Yamabe case, then it was shown by Aubin (1976) that the
problem was solvable as long as Y.Œ
�/ < Y.Sn/, where Sn here represents the
round sphere, obviously with positive Yamabe invariant. This lead to the resolu-
tion of the Yamabe problem in dimensions n > 6 for non-locally conformally flat
manifolds. The remaining cases were addressed by R. Schoen (1984), using a strat-
egy which links the Yamabe problems with the positive mass theorem of general
relativity (R. Schoen and S. T. Yau 1979; R. M. Schoen and S.-T. Yau 1979, 1988).
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The resolution of the Yamabe problem implies that smooth metrics on closed
manifolds get classified into three disjoint classes given by the sign of their Yam-
abe invariant, where Y.Œ
�/ > 0 (resp. D 0;< 0) iff 
 admits a conformal defor-
mation to constant positive (resp. zero and negative) scalar curvature. This kind
of control over the sign of the scalar curvature in a conformal class is what we
want to exploit when constructing barrier functions for the Lichnerowicz equation
(2.44). In what follows, our aim is to provide a similar classification in our low-
regularity setting. The subtlety of the problem described above should caution us
not to be overambitious, and, actually, we will attempt to simply control the sign
of the scalar curvature, rather than guaranteeing the existence of conformal defor-
mations to constant scalar curvature, which, in the low regularity setting seems to
still be a partially open problem to the best of our knowledge. The results we will
present are based on developments given by Holst, Nagy, and Tsogtgerel (2009)
and Maxwell (2005a).

Let us consider a Riemannian manifold .M n; 
/ with n > 3, 
 2 W 2;p and
p > n

2
. Then, let us define

A W W 1;2
�W 1;2

7! R

.'1; '2/ 7!

Z
M

�
anhr'1;r'2i
 CR
'

2
�
dV


(2.63)

Notice that the Sobolev embedding W 1;2 ,! L2q for all 1 6 q 6 n
n�2

implies
that if '1; '2 2 W 1;2, then j'1j

q; j'2j
q 2 L2, implyingZ

M

j'1'2j
qdV
 6 k'1kL2q k'2kL2q :

That is, '1'2 2 Lq for all 1 6 q 6 n
n�2

. Furthermore, R
 2 Lq
0 if q0 6 p and

q0 6 p ()
1

p
6
1

q0
D 1 �

1

q
6
2

n
;

that is q0 6 p if p > n
2
, which satisfies our hypotheses. Thereforeˇ̌̌ Z

M

R
 0'1'2dV


ˇ̌̌
6 kR
 0kLq0 k'1'2kLq 6 CkR
 0kLq0 k'1kW 1;p k'2kW 1;p :

That is, A W W 1;p � W 1;p 7! R is a continuous bilinear functional. In what
follows, we will keep the notation E.'/ :D A.'; '/ for the associated quadratic
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form and define

J
;q.'/
:

D
E.'/

k'k2
L2q

D

R
M

�
anjr'j2
 CR
'

2
��R

M '2q
� 1

q

: (2.64)

We know get the following simple result.

Lemma 2.2.4. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Then, the functionals J
;q are all bounded from below for any

1 6 q 6 n
n�2

.

Proof. Notice that under our hypotheses R
 2 Lq
0 from the discussion presented

above. Therefore, it follows that

A.'; '/ > �

ˇ̌̌ Z
M

R
'
2dV


ˇ̌̌
> �kR
 0kLq0 k'2kLq D �kR
 0kLq0 k'k

2
L2q ;

which implies

J
;q.'/ > �kR
 0kLq0 ;

and the claim follows.

Using the above lemma, we can introduce the following notation for the infima
of these functionals:

Y
;q
:

D inf
'2W 1;p

' 6�0

J
;q.'/: (2.65)

We will refer to the numbers Y
;q as the q-th Yamabe number. In particular, we
write �


:
D Y
;1 for the first eigenvalue of the conformal Laplacian and note that

the Yamabe quotient is given byQ
 .'/ D J
; n
n�2

.'/. Thus, the Yamabe invariant
is Y.Œ
�/ D Y
; n

n�2
. Let us now present the following useful analytical property

associated to J
;1.

Lemma 2.2.5. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Then, the map W 1;2 7! R given by

u 7!

Z
M

R
u
2dV
 (2.66)

is weakly continuous.
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Proof. Considering 1 6 q < n
n�2

, we know that that W 1;2 ,! L2q is compact.
Then,W 1;2 7! Lq , u 7! u2, is weakly continuous. To see this, consider a weakly
convergent sequence fukg � W 1;2 with limit u 2 W 1;2. Since such a sequence
must be W 1;2-bounded, we know that fukg has an L2q-convergent subsequence
with limit zu 2 L2q . But then uk * zu and since L.2q/0 ,! W �1;2, we must have
zu D u. Then, for all f 2 Lq

0 it follows thatˇ̌̌ Z
M

f .u2k � u2/
ˇ̌̌

D

ˇ̌̌ Z
M

f .uk.uk � u/C u.uk � u//
ˇ̌̌
;

6 kf kLq0 .kuk.uk � u/kLq C ku.uk � u/kLq / ;

6 kf kLq0

�

jukj
q
juk � uj

q


 1

q

L1 C


juj

q
juk � uj

q


 1

q

Lq

�
;

6 kf kLq0

�
kukk

1
q

L2q kuk � uk

1
q

L2q C kuk

1
q

L2q kuk � uk

1
q

L2q

�
;

where we have appealed to Hölder’s inequality in the second line and Cauchy–

Schwartz’s inequality in the last one. Then, the strong convergence uk
L2q

��! u

proves our initial claim.
Finally, let us fix q such that R
 2 Lq

0 . From Hölder’s inequality this follows
if q0 6 p, which is equivalent to 1

p
6 1 �

1
q
, where

1 �
1

q
6 1 �

n � 2

n
D
2

n
:

That is q0 6 p () p > n
2
, which is satisfied under our hypotheses. Therefore

R
 2 Lq
0 , for any such choice of q and it follows thatZ

M

R
u
2
k !

Z
M

R
u
2:

The following theorem is key in the low-regularity Yamabe classification.

Theorem 2.2.2. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Then, there exists a W 2;p function ' > 0 such that

�an�
' CR
' D �
': (2.67)

In particular, 
 is conformal to a metric with continuous scalar curvature having
the same sing as �
 .
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Proof. Let us first notice that (2.67) is the Euler–Lagrange equation associated
to the functional J
;1. Consider then a minimizing sequence f'kg � W 1;2 of
J
;1, which we take to be L2-normalised (i.e jj'kjjL2 D 1). Such sequence must
be bounded in W 1;2 and thus, by compactness of the embedding W 1;2 ,! L2,
there is an L2 convergent subsequence to which we now restrict, with limit '0 2

L2. Furthermore, since W 1;2 is reflexive, it is weakly sequentially compact, and
therefore we can extract a subsequence which converges weakly to some '1 2

W 1;2. Since strong convergence implies weak convergence, 'k * '0, and since
the weak limit is unique, we must have '0 D '1

:
D ' 2 W 1;2. Also, it follows

that jj'jjL2 D 1 and thus ' ¤ 0. Also, using Theorem A.1.4, we see that

jj'jjW 1;2 6 lim inf
k!1

jj'kjjW 1;2 :

Since jj'kjjL2 D jj'jjL2 D 1 for all k, the above implies

jjr'jj
2
L2 6 lim inf

k!1
jjr'kjj

2
L2 :

Since the map u 2 W 1;2 7!
R
M R
u

2 is weakly continuous, we see that

�
 D lim
k!1

Z
M

�
anjr'kj

2

 CR
'

2
k

�
dV
 ;

>
Z
M

anjr'j
2

dV
 C lim

k!1

Z
M

R
'
2
kdV
 ;

D

Z
M

�
anjr'j

2

 CR
'

2
�
dV
 :

This implies that J
;1.'/ 6 �
 , with ' 2 W 1;2, therefore J
;1.'/ D �
 and hence
' 2 W 1;2 is a minimizer. This, in particular, proves that ' is a weak solution of
(2.67) and since J
;1.'/ D J
;1.j'j/ there is no loss in generality assuming that
' > 0. Then, elliptic regularity gives us ' 2 W 2;p , which finishes the first part of
the proof.

Finally, to prove the scalar curvature statement, we can consider the Rieman-
nian metric g D '

4
n�2 
 , where ' 2 W 2;p is the minimizer just constructed above.

Appealing to Proposition 2.1.1, we know that

Rg D '�
nC2
n�2

�
�an�
' CR
'

�
D �
'

1�
nC2
n�2 D �
'

� 4
n�2 ; (2.68)

which, since ' > 0 is continuous, proves that Rg is continuous and has the same
sing as �
 .
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We can now state the main result of this section.

Theorem 2.2.3. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Then, the following statements hold:

1. Y.Œ
�/ > 0 iff 
 is conformal to a metric of continuous positive scalar cur-
vature;

2. Y.Œ
�/ D 0 iff 
 is conformal to a metric of constant zero scalar curvature;

3. Y.Œ
�/ < 0 iff 
 is conformal to a metric of continuous negative scalar
curvature,

where in the three cases above the conformal deformation is of the form g D

'
4

n�2 
 , with ' 2 W 2;p .

Proof. Let us start for establishing all the “backwards” implications. That is, as-
sume that 
 is conformal to a metric of continuous scalar curvature with fixed sign,
and since Y.Œ
�/ is a conformal invariant, we can actually assume that 
 is such a
metric. Then, ifR
 < 0, testingQ
 on constant functions we findQ
 .c/ < 0, and
therefore Y.Œ
�/ < 0. In caseR
 > 0, it follows thatQ
 .'/ > 0 for all ' 2 W 1;2.
In particular, if R
 � 0, again testing Q on constant functions gives Q.c/ D 0,
and therefore Y.Œ
�/ D 0. On the other hand, ifR
 > 0, thenE.'/ represents and
equivalent norm to the standard one in W 1;2, and therefore we have 1 6 CE.'/

for all ' 2 W 1;2 such that k'kL2� D 1, with C > 0, which shows that Y.Œ
�/
must be positive in this case, since we can write

Y.Œ
�/ D inf
'2W 1;2

k'k
L2� D1

E.'/:

Let us now prove the “forward” implications. First assume that Y.Œ
�/ < 0.
This means that there is some ' 2 W 1;2� such that E.'/ < 0. Since W 1;2�

,!

W 1;2, we can use the same function ' to test J
;1.'/ < 0. Therefore, we must
have Y
;1 < 0 and Theorem 2.2.2 guarantees the existence of the corresponding
conformal deformation to a metric with continuous and negative scalar curvature.

Now, let us consider the case Y.Œ
�/ > 0. In particular, since L 2n
n�2 ,! L2q

for all 1 6 q 6 n
n�2

, then jj'jj2
L2q 6 C jj'jj2

L
2n

n�2

Q
 .'/ D
E.'/

jj'jj2
L2�

6 C
E.'/

jj'jj2
L2q

;
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which implies

Y.Œ
�/ D inf
'2C1

' 6�0

E.'/

k'k2
L2�

6 inf
'2C1

' 6�0

E.'/

k'k2
L2q

D CY
;q; 1 6 q 6
n

n � 2
:

In particular, since Y.Œ
�/ > 0 ) Y
;1 > 0. Once more Theorem 2.2.2 finishes
the proof in this case.

Now assume that Y.Œ
�/ D 0, which, as a first step implies Y
;1 > 0. Since
Y.Œ
�/ is a conformal invariant, we do not loose any generality in fixing 
 within
its conformal class so that R
 is continuous and has fixed (non-negative) sign,
according to Theorem 2.2.2. First, notice that R
 > 0 is not possible, since in this
case E.'/ is an equivalent norm to standard one inW 1;2 and Y.Œ
�/ D 0 implies
the existence of a sequence f'kg � W 1;2 of L2� normalized functions satisfying
E.'k/ ! 0. But this implies that 'k ! 0 inW 1;2 ,! L2

� , and so k'kkL2� ! 0,
which contradicts the fact that the sequence is L2�-normalized. Thus, R
 D 0,
which finishes the proof.

The extended scalar-Yamabe classification

As we have already explained, the Yamabe classification will prove to be a useful
tool in controlling the linear part of the Lichnerowicz equation appealing to some
a priori conformal deformation. This will become clear in subsequent sections.
Nevertheless, let us notice that when dealing with the Lichneroiwicz equation as-
sociated to the constraints with a scalar field as a source, the corresponding linear
operator appearing in (2.44) has a contribution coming from the scalar field in the
linear (scalar-curvature) term. That is, the linear part of (2.44) is given by

zL

:

D �
 � cn
�
R
 � jr�j

2



�
; (2.69)

where � is the prescribed scalar field and we denote by r

:

D R
 � jr�j2
 . In this
case, we would like to have a classification such as that given by Theorem 2.2.3
involving r
 instead of R
 . Actually, most of the work we did in the previous
section can be translated mutatis mutandis to achieve this goal. Namely, let us
consider the following modifications. Let us fix � 2 W 2;p, so that jr�j2
 2 Lp

and define zE
 W W 1;2 7! R by

zE
 .'/
:

D

Z
M

�
anjr'j

2

 C r
'

2
�
dV




2.2. CMC-solutions on closed manifolds 95

which is well defined using the same arguments that were used for E.'/ in the
previous section. In particular, we can also introduce the quotients

zJ
;q.'/
:

D
zE
 .'/

k'k2
L2q

; for 1 6 q 6
n

n � 2
; (2.70)

and, again following the arguments of the previous section, we know that these
invariants are bounded from below, which allows us to introduce the corresponding
invariants

SY
;q
:

D inf
'2W 1;2

' 6�0

zJ
;q.'/: (2.71)

One substitute we need in order to parallel the discussion of the previous sec-
tion is the fact that SY
; n

n�2
is a conformally invariant. Let us define g :

D �
4

n�2 
 ,
for � 2 W 2;p with � > 0 and '0 :D �' with ' 2 C1.M/, and notice that

zEg.'/ D

Z
M

�
anhr';r'ig CRg'

2
� jr�j

2
g'

2
�
dVg ;

D

Z
M

�
�an'Lg' � jr�j

2
g'

2
�
dVg ;

D

Z
M

�
�an'

0L
'
0
� jr�j

2

'

02
�
dV
 ;

D zE
 .'
0/:

Similarly, Z
M

'
2n

n�2dVg D

Z
M

'0 2n
n�2dV
 :

Therefore

zJg; n
n�2

.'/ D zJ
; n
n�2

.'0/; 8 ' 2 C1.M/; (2.72)

which implies the infima of both functionals over functions inW 1;2 are equal. That
is, SY
; n

n�2
is actually a conformal invariant, andwe can thus refer to it asSY.Œ
�/,

which we refer to as the scalar Yamabe invariant. Also, the first eigenvalue �
 is
replaced by z�


:
D SY
;1. In this context, we consider the equations

�an�
' C r
' D z�
'; (2.73)
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and look for positive W 2;p solutions. We see that the first part of Theorem 2.2.2
establishes the existence of such positive solutions without any further modifica-
tions. Then, considering the metric g D '

4
n�2 
 constructed with such positive

solution, we have the following conformal covariance property

rg D '�
nC2
n�2

�
R
' � an�
'

�
� '� 4

n�2 jr�j
2

 ;

D '�
nC2
n�2

�
R
' � an�
'

�
� '�

nC2
n�2 jr�j

2

';

D '�
nC2
n�2

�
r
' � an�
'

�
D z�
'

�
nC2
n�2

C1;

D z�
'
� 4

n�2 :

(2.74)

That is, rg is continuous with the same sign as the first eigenvalue z�
 . Therefore,
we have all the tools to establish the following result, which corresponds to Theo-
rem 2.2.3.

Theorem 2.2.4. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Then, the following statements hold:

1. SY.Œ
�/ > 0 iff 
 is conformal to a metric with continuous positive scalar
r
 ;

2. SY.Œ
�/ D 0 iff 
 is conformal to a metric of constant zero scalar r
 ;

3. SY.Œ
�/ < 0 iff 
 is conformal to a metric of continuous negative scalar r
 ,

where in the three cases above the conformal deformation is of the form g D

'
4

n�2 
 , with ' 2 W 2;p .

The following proposition refines the classification in non-negative case.

Proposition 2.2.3. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. If r
 > 0, then SY.Œ
�/ D 0 if and only if r
 D 0.

Proof. First, notice that the “backwards” implication is trivial, since if r
 � 0,
then SY.Œ
�/ > 0 and then testing against constant functions gives zJ
; n

n�2
.cte/ D

0, implying SY.Œ
�/ D 0. Thus, let us concentrate on the “forward implication”.
Since the sign of SY.Œ
�/ is the same as of z�
 , we find SY.Œ
�/ D 0 iff z�
 D 0

and we will work with this last condition. Let us consider a minimizing sequence
f'kg � W 1;2 for zJ
;1 ! z�
 , which we can take to be non-negative and nor-
malised via k'kkL2 D 1. Since such sequence must be bounded in W 1;2, we
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have a weakly convergent subsequence with limit ' 2 W 1;2. We must then have
k'kL2 D 1 and

k'kW 1;2 6 lim inf
k!1

k'kkW 1;2 ;

which then implies kr'kL2 6 lim infk!1 kr'kkL2 and the conditions r
 > 0

and z�
 D 0 imply

kr'kL2 6 lim inf
k!1

kr'kkL2 D 0:

That is, r' D 0 a.e and therefore ' is constant. But then, weak continuity of

W 1;2
7! R;

f 7!

Z
M

r
f
2dV
 ;

implies that zJ
;1.'/ D 0. Which, since ' is constant, givesZ
M

r
dV
 D 0;

and therefore r
 D 0 a.e.

2.2.3 Non-existence and uniqueness
Before embarking on the analysis of existence results, let us first consider the cases
of non-existence and uniqueness of solutions for (2.44). The following theorem
concerns some straightforward non-existence results.

Theorem 2.2.5 (Non-Existence). Let .M n; 
/ be a closed Riemannian manifold
with 
 2 W 2;p, p > n

2
and n > 3 and let us consider the Lichnerowicz equation

(2.44), given by

�
' � ar' C aT T '
� 3n�2

n�2 � a�'
nC2
n�2 C aE'

�3
C a zF

'
n�6
n�2 D 0: (2.75)

If all the coefficients are in L1, then, if either of the following situations

1. ar ; a� > 0 and aT T ; aE ; a zF
6 0;

2. ar ; a� 6 0 and aT T ; aE ; a zF
> 0,
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and not all of these coefficients vanish identically. Then, the above equation admits
no positive solutions.

Proof. The proof is quite straightforward. Since the coefficients in (2.75) are in-
tegrable and we are assuming ' 2 W 2;p, ' > 0, we can integrate this equation
overM . In particular, Stokes’ theorem and an approximation argument of the type
given in Theorem B.7 prove that �
' integrates to zero. Then, in case .1/ above,
we have

0 6
Z
M

�
ar' C a�'

nC2
n�2

�
dV
 D

Z
M

�
aT T '

� 3n�2
n�2 C aE'

�3
C a zF

'
n�6
n�2

�
dV


6 0;

which implies that all coefficients must vanish. The same arguments applies to
case .2/ with opposite inequalities.

Remark 2.2.3. Firstly, let us highlight that for the physically motivated equation
(2.44), the condition aT T ; aE ; a zF

6 0 is actually equivalent to aT T ; aE ; a zF
� 0,

since these coefficients are non-negative by definition. Secondly, let us highlight
that in case we allowed all coefficients to vanish, then ' must equal a positive
constant.

Let us now present the following uniqueness result, which makes use of the
geometric origin of Lichnerowicz’s equation.

Theorem 2.2.6 (Uniqueness). Let .M n; 
/ be a closed Riemannian manifold with

 2 W 2;p , p > n

2
and assume that the coefficients of equation (2.44) satisfy the

hypotheses of Proposition 2.2.2. Suppose, furthermore, that n 6 6 and a� > 0,
and let '1 and '2 be two positiveW 2;p-solution of (2.44), then either '1 � '2 or
aT T ; a� ; aE ; a zF

� 0, SY.Œ
�/ D 0 and '1 D c'2 for some constant c > 0.

Proof. Under our hypotheses, define ' :
D '2'

�1
1 and let g1

:
D '

4
n�2

1 
 . Then,
from conformal covariance

Lg1
' D � cnjd�j

2
g1
' � cn

�
j zK1j

2
g1

C z�21

�
'� 3n�2

n�2 C

�
n � 2

4n
�2 � 2cnV.�/

�
'

nC2
n�2

� cnj zE1j
2
g1
'�3

�
cn

2
j zF jg1

'
n�6
n�2
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where zK1 D '�2
1

zK, z�1 D '
� 2n

n�2

1 z� and zE1 D '� 2n
n�2 zE. Furthermore, by

construction
�
g1; K1 D zK1 C

�
n
g1; �; �1 D z�1; E1 D zE1; zF

�
solve the Gauss-

constraint. In particular,

Rg1
D z�21 C jd�j

2
g1

C 2V.�/C j zE1j
2
g1

C
1

2
j zF j

2
g1

C jK1j
2
g1

� �2;

D z�21 C jd�j
2
g1

C 2V.�/C j zE1j
2
g1

C
1

2
j zF j

2
g1

C j zK1j
2
g1

�
n � 1

n
�2

which implies

�g1
.' � 1/ D � cn

�
j zK1j

2
g1

C z�21

� �
'� 3n�2

n�2 � '
�

C

�
n � 2

4n
�2 � 2cnV.�/

��
'

nC2
n�2 � '

�
� cnj zE1j

2
g1

�
'�3

� '
�

�
cn

2
j zF jg1

�
'

n�6
n�2 � '

�
:

(2.76)

Let us multiply the above equation by .' � 1/C
:

D maxf' � 1; 0g 2 W 1;p. Ap-
plying the arguments of Lemma 2.2.2, we can integrate the left-hand side by parts
with respect to dVg1

to getZ
M

.' � 1/C�g1
.' � 1/dVg1

D �

Z
M

hr.' � 1/C;r.' � 1/ig1
dVg1

;

D �

Z
'>1

jr.' � 1/j2g1
dVg1

6 0:

On the other hand, since n�2
4n
�2 � 2cnV.�/ > 0, all the coefficients in the right-

hand side of (2.76) are non-negative. Furthermore, for ' > 1, .'� 3n�2
n�2 � '/ < 0,

.'�3 � '/ < 0, while .'
nC2
n�2 � '/ > 0 and .' n�6

n�2 � '/ < 0 if n 6 6. This means
that Z

M

.' � 1/C�g1
.' � 1/dVg1

D

Z
'>1

.' � 1/C�g1
.' � 1/dVg1

> 0;

and therefore

0 D

Z
M

.' � 1/C�g1
.' � 1/dVg1

D

Z
'>1

jr.' � 1/j2g1
dVg1

(2.77)
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We can apply a similar argument to .' � 1/�
:

D minf0; ' � 1g 2 W 1;p and
we get the same results, that is

0 D

Z
M

.' � 1/��g1
.' � 1/dVg1

D

Z
'<1

jr.' � 1/j2g1
dVg1

: (2.78)

Since ' is continuous, it follows that ' � 1 � cte and therefore '1 D c'2. If
c ¤ 1, then

0 D

Z
M

n
� cn

�
j zK1j

2
g1

C z�21

� �
'� 3n�2

n�2 � '
�
.' � 1/

C

�
n � 2

4n
�2 � 2cnV.�/

��
'

nC2
n�2 � '

�
.' � 1/ � cnj zE1j

2
g1

�
'�3

� '
�
.' � 1/

�
cn

2
j zF jg1

�
'

n�6
n�2 � '

�
.' � 1/

o
dVg1

:

Since ' D c ¤ 1, by the same type of arguments used above, all the terms are
non-negative a.e, implying that each coefficient must identically vanish. That is
zK; z�; zE; zF � 0 and n�2

4n
�2 � 2cnV.�/ � 0. This, in turn, implies that Rg1

�

jd�j2g1
� 0, which gives us SY.Œ
�/ D 0 through Theorem 2.2.4.

Remark 2.2.4. Notice that in the above theorem the dimensional restriction n 6 6

relates only to the magnetic term j zF j2
 .

2.2.4 Existence results for the Lichnerowicz equation

During this section we will present a sequence of results which completely clas-
sify the low regularity CMC vacuum constraint equations and also provide par-
tial classifications for the decoupled system in the presence of different sources.
The vacuum classification follows from the classical foundational work of Isen-
berg (1995) for smooth coefficients and its low regularity version, in the vacuum
case, has been obtained by Maxwell (2005a), who we will follow closely. In par-
ticular, we will adapt the results presented in Maxwell (ibid.) to account for our
selected sources and also present them in the Lp-setting, which does not require
much work starting from the low regularity L2-theory presented there. First, let
us rewrite (2.44) as follows:

�an�
' C r
' D aT T '
� 3n�2

n�2 C j zEj
2

'

�3
C
1

2
j zF j

2

'

n�6
n�2 � a�'

nC2
n�2 (2.79)
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where we have redefined the coefficients aT T
:

D j zKj2
 C z�2 and a�
:

D bn�
2 �

2V.�/, where bn
:

D
n�1
n

.
During all this section we will restrict ourselves to the case a� > 0, which,

in particular, contains the vacuum case. Some results can be translated to settings
where this condition is weakened and we refer the interested reader to Choquet-
Bruhat, Isenberg, and Pollack (2007). The following lemma deals with the exis-
tence of solutions to the above equation when SY.Œ
�/ > 0.

Lemma 2.2.6 (Existence - SY > 0; a� > 0). Let .M n; 
/ be a closed Riemannian
manifold with 
 2 W 2;p, p > n

2
, and n > 3. If SY.Œ
�/ > 0, then equation (2.79)

admits a positive solution ' 2 W 2;p if and only if one of the following conditions
hold:

1. SY.Œ
�/ D 0, aT T ; a� ; zE; zF � 0;

2. SY.Œ
�/ > 0, aT T C j zEj2
 C j zF j2
 6� 0 and a� � 0;

3. aT T C j zEj2
 C j zF j2
 6� 0 and a� 6� 0.

Proof. Let us first consider the backwards implications. If 1/ holds, then we must
solve the equation �an�
'C r
' D 0 for some positive element inW 2;p. Such
solution is guaranteed to exist via Theorem 2.2.4 since SY.Œ
�/ D 0 and therefore
the claim follows. Let us therefore concentrate in cases 2/ and 3/. In both of these
cases, let us start considering a conformal deformation 
1 D '

4
n�2

1 
 fixing the
sign of r
1

according to the sign of SY.Œ
�/. From Lemma 2.1.1, we know that
there is a solution of (2.79) iff there is a solution of

�an�
1
' C r
1

' D a
.1/
T T '

� 3n�2
n�2 C j zE1j

2

1
'�3

C
1

2
j zF j

2

1
'

n�6
n�2 � a�'

nC2
n�2 ;

(2.80)

where r
1
D R
1

� jd�j2
1
, a.1/T T D '

� 4n
n�2

1 aT T and zE1 D '
� 2n

n�2

1
zE. Let us

then analyse existence of solutions to (2.80), where we now control the sign of r
 ,
from which we know that r
 C a� > 0 and r
 C a� 6� 0. Therefore, Theorem B.7
guarantees a solution '2 2 W 2;p to

�an�
1
'2 C .r
1

C a� /'2 D a
.1/
T T C j zE1j

2

1

C
1

2
j zF j

2

1

> 0: (2.81)

Lemma 2.2.2 implies that '2 > 0 and Lemma 2.2.3 applied to �'2 implies that
either '2 > 0 or '2 � 0, but the second case contradicts our hypotheses, since
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a
.1/
T T C j zE1j

2

1

C
1
2
j zF j2
1

6� 0. Therefore '2 > 0 and we can consider one further

conformal deformation 
2
:

D '
4

n�2

2 
1. Appealing to Equation (2.35) once more,
we know that (2.80) admits a positive W 2;p-solution iff

�an�
2
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2

' D a
.2/
T T '
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n�2 C j zE2j
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2
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'
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(2.82)

admits a positiveW 2;p-solution, where r
2
D R
2

� jd�j2
2
, a.2/T T D '

� 4n
n�2

2 a
.1/
T T

and zEi2 D '
� 2n

n�2

2
zEi1. Furthermore, our choice of '2 implies that
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a
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Then, 'C is a constant supersolution if�
a
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2 C '32 j zE2j
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2
'
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Consider 'C to be a constant sufficiently large so as to satisfy

'
3n�2
n�2

C1

C D '
4n�1

n�2

C > max
M

'
� 3n�2

n�2

2 ; '4C > max
M

'�3
2 ;

'
1� n�6

n�2

C D '
4

n�2

C > max
M

'
n�6
n�2

2 ; '
4

n�2

C > max
M

'
� 4

n�2

2 :

which is always possible, since '2 is continuous and positive, and, since all the
powers on 'C are positive, the above are all conditionwhich bound 'C from below.
Thus, for a large enough constant, we find a constant supersolution associated to
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(2.82). To find a constant subsolutions, we must reverse inequalities and change
maxM ! minM . That is, let us chose a constant '� > 0 satisfying

'4
n�1
n�2

� 6 min
M
'

� 3n�2
n�2

2 ; '4� 6 min
M
'22 ; '

4
n�2
� > min

M
'

n�6
n�2

2 ; '
4

n�2
� 6 min

M
'

� 4
n�2

2 ;

It is also clear that under these conditions '� 6 'C and therefore we have pro-
vided barriers satisfying the conditions ofTheorem 2.2.1 for equation (2.82). Thus,
there is a positive solution ' 2 W 2;p to these last equations, which proves via
Lemma 2.1.1 that the original equation admits a positiveW 2;p solution.

Let us now prove the necessity of conditions 1/ � 3/. We need to show that
under the condition SY.Œ
�/ > 0, then the following claims follows:

• aT T C j zEj2
 C j zF j2
 � 0 H) SY.Œ
�/ D 0 and all the coefficients vanish;

• aT T C j zEj2
 C j zF j2
 6� 0 and a� � 0 H) SY.Œ
�/ > 0.

Notice that if the above claims hold, then, the first one implies that if aT T Cj zEj2
C

j zF j2
 � 0, then we are in case 1/. On the other hand, if aT T C j zEj2
 C j zF j2
 6� 0,
then either a� � 0 or a� 6� 0. In the latter case we are in case 3/, while in the
former case the second item above implies SY.Œ
�/ > 0 and therefore we must
fall into case 2/ and the necessity of conditions 1/� 3/ follows. Let us then prove
the above two claims.

Assume that we have a positive solution ' 2 W 2;p to (2.79), which implies
that the metric g D '

4
n�2 
 satisfies

rg D '�
nC2
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�
r
' � an�
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2
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2

'

n�6
n�2 � a�'

nC2
n�2

�
:

Considering the first item, we see that rg D �a� 6 0. Therefore, it follows that
SY.Œ
�/ 6 0, implying that SY.Œ
�/ D 0. Furthermore, if a� 6� 0, we must
have SY.Œ
�/ < 0, simply by testing zJ
; n

n�2
on constant functions. Since this

contradicts our hypotheses, we find a� � 0 and the first claim follows.
In order to establish the second claim, notice that if a� � 0, then

rg D '�
nC2
n�2

�
aT T '

� 3n�2
n�2 C j zEj

2

'

� 3n�2
n�2 C

1

2
j zF j

2

'

n�6
n�2

�
> 0:
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Now, Proposition 2.2.3 implies that if SY.Œg�/ > 0 and rg > 0, then SY.Œg�/ D 0

iff rg D 0 a.e. Since by hypotheses aT T C j zEj2
 C j zF j2
 6� 0, then rg 6� 0 and
we cannot have SY.Œg�/ D 0, which proves that SY.Œg�/ > 0 and finishes the
proof.

The Yamabe negative case demands us to sharpen our classification of Theo-
rem 2.2.4 in the negative case. This will be done in Lemma 2.2.7 below, but let
us first present the following proposition which explicitly tells us when equation
(2.79) admits solutions in this setting. Both results below, just as the lemma above,
rely on mild adaptations from the results presented in Maxwell (2005a).

Proposition 2.2.4. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. If SY.Œ
�/ < 0, then ' 2 W 2;p is a solution of (2.79) if and

only if there is a conformal deformation 
1
:

D '
4

n�2 
 with '1 2 W 2;p such that
R
1

D �a� .

Proof. First, notice that if aT T ; zE; zF � 0, then the Lichnerowicz equation is
precisely given by

�an�
' C r
' D �a�'
nC2
n�2 :

Then, the existence of a positive solution is equivalent to a deformation to r
'

4
n�2 


D

'�
nC2
n�2

�
�an�
' C r
'

�
D �a� , and therefore this case is trivial. Thus, from

now on, let us assume that aT T C j zEj2
 C j zF j2
 6� 0. Let us now start assuming

that there is a conformal deformation 
1 D '
4

n�2

1 
 to r
1
D �a� and analyse the

existence of solutions to

�an�
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' D a
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(2.83)

where r
1
D R
1

� jd�j2
1
, a.1/T T D '

� 4n
n�2

1 aT T and zE1 D '
� 2n

n�2

1
zE. Since

SY.Œ
�/ < 0 and r
1
D �a� 6 0, we must have a� 6� 0 to avoid SY.Œ
�/ D 0.

Let us first rewrite (2.83) using our hypothesis

�an�
1
' � a�' D a
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(2.84)
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In order to prove the existence of a solution, we will exhibit barriers for this equa-
tion. First, consider the unique solution '2 2 W 2;p to the equation
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1
;

which is guaranteed to exist via Theorem B.7 since a� > 0 and a� 6� 0. Also,
since a.1/T T C j zE1j

2

1

C
1
2
j zF j2
1

> 0 and does not vanish identically, we can use the
maximum principles to guarantee that '2 is strictly positive. Then, we consider
the metric 
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and we intend to solve the conformally related equation
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2
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(2.85)

looking for constant barriers. For the supersolution we must find�
�2a�'

� 4
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In order to satisfy these conditions, pick a constant 'C satisfying
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Similarly to the analysis of Lemma 2.2.6, we can find a constant subsolution '� >
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Therefore, through Theorem 2.2.1 we have a positive solution to (2.85) and there-
fore, via Lemma 2.1.1 we have a solution of (2.83).

For the converse, let us assume the existence of a positive W 2;p solution to
(2.79) and solve the prescribed curvature problem rg D �a� , with g conformal

to 
 . We know that, our hypotheses, we can start deforming 
 to 
1 D '
4

n�2

1 


so that r
1
< 0 and '1 2 W 2;p . Let us then consider the conformal deformation


1 D '
4

n�2

1 
 and look for a conformal deformation to rg D �a� but starting from

1. That is, we search for a positive W 2;p-solution to

��
1
' C r
1

' D �a�'
nC2
n�2 : (2.86)

The existence of a solution to (2.79) implies the existence of a positive solution
' 2 W 2;p to (2.83). Then, set 'C

:
D '1 and notice that this is a supersolution to

(2.86), since
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A subsolution can be constructed considering the family of equations

��
1
'� � r
1

'� D �r
1
� �a� ; (2.87)

with � in a neighbourhood of zero. Since r
1
< 0, we know that there is a unique

solution to this equation for any such � and, in particular, '0 � 1. Furthermore,

k'�1
� '�2

kC0 6 Ck'�1
� '�2

kW 2;p 6 C 0
ka�kLp j�1 � �2j;

which implies that for � sufficiently small '� > 0, and we now restrict to a neigh-
bourhood of � D 0 such that '� > 1

2
. Let us now consider a positive constant

� > 0 and the function '�
:

D �'� > 0. First, pick such � so that '� < 'C and
notice that
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and 0 < '� 6 'C is a subsolution. Therefore, via Theorem 2.2.1 we have a
solution to (2.86), which finishes the proof.

Lemma 2.2.7. Let .M n; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > n

2
, and n > 3. Let SY.Œ
�/ < 0 and assume that a� 2 Lp satisfies a� > c >

0 a.e for some positive constant c. Then, there is a a positive function ' 2 W 2;p

such that g :
D '

4
n�2 
 has rg D �a� .

Proof. First, we start considering a deformation 
1 D '
4

n�2

1 
 into a metric with
r
1

< 0 and continuous, with '1 2 W 2;p. Then, there are constants c1; c2 > 0

such that

�c1.1C a� / 6 r
1
6 �c2.1C a� /:

We intend to prove the existence of a positiveW 2;p-solution to

�an�
1
' C r
1

' D �a�'
nC2
n�2 : (2.89)

With this in mind, consider '� a positive constant. Then,

�an�
1
'� C r
1

'� D r
1
'� 6 �c2.1C a� /'� 6 �a�c2'�:

Then, choosing 0 < '
4

n�2
� < c2, we find �an�
1

'� C r
1
'� 6 �a�'

nC2
n�2

� .
Similarly, let 'C be a a positive constant. Then,

�an�
1
'C C r
1

'C D r
1
'C > �c1.1C a� /'C

We intend to fix 'C so that

a�'
nC2
n�2

C > c1 .a� C 1/ 'C a:e;

which, since a� > c > 0 a.e, is equivalent to

'
4

n�2

C > c1

�
1C

1

a�

�
a:e:

Then, if '
4

n�2

C > c1
�
1C

1
c

�
> c1

�
1C

1
a�

�
> 0, it follows that

�an�
1
'C C r
1

'C > �a�'
nC2
n�2

C

and therefore such 'C gives us a superoslution to (2.89). Therefore, once more via
Theorem 2.2.1, we have proven the existence of a solution to (2.89) and the main
claim follows.
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Remark 2.2.5. Let us highlight that the above Lemma improves the Yamabe classi-
fication given in Theorem 2.2.4, since it guarantess that SY.Œ
�/ < 0 if and only if
there is a conformally related metric g D '

4
n�2 
 with constant negative curvature

r
 D �c.

We can now state the main result of this section, which classifies the solutions
to the Lichnerowicz equation (2.79).

Theorem 2.2.7 (Existence - a� > 0). Let .M n; 
/ be a closed Riemannian mani-
fold with 
 2 W 2;p , p > n

2
, and n > 3. Then, equation (2.79) admits a positive

solution ' 2 W 2;p if of the following conditions hold:

1. SY.Œ
�/ D 0, aT T ; a� ; zE; zF � 0;

2. SY.Œ
�/ > 0, aT T C j zEj2
 C j zF j2
 6� 0 and a� � 0;

3. SY.Œ
�/ > 0, aT T C j zEj2
 C j zF j2
 6� 0 and a� 6� 0;

4. SY.Œ
�/ < 0 and a� > c > 0.

In case a� is constant, then the above conditions are also necessary conditions for
existence.7

Proof. Notice that the first three cases correspond to Lemma 2.2.6. The last one
follows from Lemma 2.2.7 put together with Proposition 2.2.4. Finally, the neces-
sity of these conditions follows from Lemma 2.2.6 for the first three cases and, if
a� is constant, since a� > 0, then either a� � 0 or a� � c > 0. But, if a� � 0

and ' solves (2.79), then

�an�
' C r
' D aT T '
� 3n�2

n�2 C j zEj
2

'

� 3n�2
n�2 C

1

2
j zF j

2

'

� n�6
n�2 > 0:

But then

r
'

4
n�2 


D '�
nC2
n�2

�
�an�
' C r
'

�
;

D '�
nC2
n�2

�
aT T '

� 3n�2
n�2 C j zEj

2

'

� 3n�2
n�2 C

1

2
j zF j

2

'

� n�6
n�2

�
> 0;

which would imply that SY.Œ
�/ > 0, contradicting our hypotheses. Therefore,
we must have a� � c > 0.

7Notice that the necessity part of the theorem in cases .1/� .3/ holds without CMC assumptions
due to Lemma 2.2.6.
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Let us highlight that if we neglect the physical sources and consider only the
vacuum CMC case, then the momentum constraint becomes

�
;confX D 0; (2.90)

which implies thatX is aW 2;p-conformal Killing field and thus zK D U becomes
a TT-tensor, which is freely prescribed. Then, (2.79) is given by

�an�
' CR
' D jU j
2

'

� 3n�2
n�2 � bn�

2'
nC2
n�2 (2.91)

with bn D
n�1
n

. Then, the above theorem gives us the following classification for
the existence of solutions to (2.91):

� D 0 U D 0 � D 0 U ¤ 0 � ¤ 0 U D 0 � ¤ 0 U ¤ 0

Y
 > 0 No Yes No Yes
Y
 D 0 Yes No No Yes
Y
 < 0 No No Yes Yes

The content of the above table is well-known from Isenberg (1995) when the
coefficients are smooth and from Maxwell (2005a) when the coefficients are of
low (even rough) regularity.



3
Maximal

Solutions on
asymptotically

Euclidean
manifolds

In this Chapter we want to analyse a somehow complementary case to the one
considered in the previous one. In particular, we would like to analyse initial data
modelling isolated systems. In physics, many times, a system which at large dis-
tances interacts sufficiently weakly with the rest of the Universe can be idealised
as isolated. In such situations, we have a compact core region where fields and
matter may be interacting (even very strongly) but, as we move away, fields will
fall off as we approach a vacuum condition at infinity. In the context of gravita-
tional systems, we consider that the vacuum condition at (space) infinity is given
by approaching (in some sense to be made precise below) the Minkowski solution.
Thus, being concerned with initial data sets, we will attempt to construct initial
data which outside some compact set falls to Minkowski’s initial data. This is
made precise by first fixing our manifold structure to be a non-compact manifold,
which, outside some compact set, consists of a finite number of ends diffeomorphic
to the exterior of a compact set in Rn. Then, we shall impose decaying conditions
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for our fields.
During this section, we will restrict ourselves to the vacuum CMC case and, in

order to make such initial data sets more realistic, we will consider boundary value
problems with boundary conditions on some (possibly multiply connected) inner
compact boundary ˙ . Whatever lies inside such a boundary could be thought of
as the source of our gravitational field. It is particularly interesting to consider
boundary conditions which model black hole initial data, which gives us the op-
portunity to analyse quite general black hole solutions. These boundary conditions
will be extracted from the analysis of Section 1.5. In such a case, the removal of
the compact region inside the black hole would not present problems from the
point of view of predictability of the exterior region. Finally, let us highlight that
the not necessarily vacuum case will be treated in the next chapter, in the context
of freely prescribed mean curvature initial data sets.

3.1 AE manifolds - Analytical tools

Let us now introduce some definitions and technical results concerning AE man-
ifolds. First, as has been stated above, we will consider manifoldsM n (possibly
with boundary) which consist of a compact core K such thatMnK is the disjoint
union of a finite number of open sets Ui , such that each Ui is diffeomorphic to
the complement of a closed ball in Euclidean space. Such manifolds, in part of
the classic literature, are referred to as Euclidean at infinity (see Choquet-Bruhat
and Christodoulou (1981)). The diffeomorphisms ˚i W Ui � M 7! RnnB induce
charts, which are referred to as end coordinate systems and are said to provide a
structure of infinity (Bartnik 1986).

On these model manifolds we want to control the behaviour of fields near in-
finity. This can be done in different ways. For instance, some authors opt to fix
the end coordinate systems and impose decay rates for fields written in those co-
ordinates.1 Another common option is to introduce function spaces with weights
adapted to our manifold structure which provide good controls of the asymptotic
behaviour of the fields (see, for instance, Bartnik (1986), Cantor (1981), Choquet-
Bruhat and Christodoulou (1981), and Maxwell (2005b)). For our purposes, the
latter option is best, since, as we will see below, we can also tailor such weighted
spaces to have good analytic properties useful for our PDE analysis. Such spaces

1This option is quite common within the analysis of conserved quantities, such as the analysis
of the positive mass theorem (D. A. Lee 2019; R. Schoen and S. T. Yau 1979; R. M. Schoen and
S.-T. Yau 1979).
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have been investigated for a long time by different authors, such as Bartnik (1986),
Choquet-Bruhat and Christodoulou (1981), Lockhart (1981), McOwen (1979),
and Nirenberg and Walker (1973). In what follows, we will adopt the conven-
tions given in Bartnik (1986) for the weight parameters, which has become the
most common one in current literature and comment on how translate to the more
classical notations of Choquet-Bruhat and Christodoulou (1981). Let us start with
the following definition on Rn.
Definition 3.1.1 (Weighted Spaces). Let E ! Rn be vector bundle over Rn. The
weighted Sobolev space W k;p

ı
, with k a non-negative integer, 1 < p < 1 and

ı 2 R, of sections u of E, is defined as the subset of W k;p

loc
for which the norm

kuk
W

k;p

ı
.Rn/

:
D

X
j˛j6k

k��ı� n
p

Cj˛j@˛ukLp.Rn/ (3.1)

is finite, where �.x/ :D .1C jxj2/
1
2 and ˛ denotes an arbitrary multi-index.

Similarly, the weighted C k
ı
-spaces are given by sections u 2 � .E/, whose

components are k-times continuously differentiable and which satisfy

kukCk
ı

:
D

X
j˛j6k

sup
x2Rn

��ıCj˛j
j@˛u.x/j < 1: (3.2)

The two types of spaces introduced above are easily seen to be Banach spaces.
Let us in particular notice the duality

�
L
p

ı

�0
Š L

p0

�ı�n
, from which we see that

these spaces are reflexive. Also, u 2 L
p

ı

˚
�! ��ı� n

p u 2 Lp provides an isometry
between Lp

ı
and ˚.Lp

ı
/, which is a closed subspace of Lp, proving that Lp

ı
is

separable. Then, a standard argument shows that W k;p

ı
are also separable and

reflexive (see, for instance, Adams (1975, page 46)). Furthermore, for k > 0,
we define W �k;p

�ı�n
.Rn/

:
D .

ı

W
k;p

ı
.Rn//0, where

ı

W
k;p

ı
.Rn/ denotes the closure of

C1
0 .R

n/ in the W k;p

ı
-norm. In particular,

ı

W
k;p

ı
.Rn/ D W

k;p

ı
.Rn/, for any p; ı

and k.
Remark 3.1.1. In the definition given above, for a section u 2 � .E/, locally, over
any trivialization E Š U � RN , we have u D .u1; � � � ; uN /, with N D dim.Ex/
for any x 2 U . Induced onEjU we have the Euclidean norm on the vector valued
function u, which we denote simply by juj and the Lp.U /-norm of u is given by

kuk
p

Lp.U /
D

Z
U

juj
pdx:
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The weight parametrization chosen in (3.1), introduced by Bartnik (1986), has
the advantage to give us an heuristic estimate on the the behaviour of fields at infin-
ity. Morally speaking, u 2 L

p

ı
\C 0 will behave like juj D o.jxjı/. This is made

precise via Sobolev embeddings associated to these weighted spaces, presented
below.

Remark 3.1.2. Many classical references, such as Cantor (1981), Choquet-Bruhat
and Christodoulou (1981), Lockhart (1981), McOwen (1979), and Nirenberg and
Walker (1973) adopt a different convention for the weight parameter, which is
given by introducing the related norms:

kuk zW
k;p

�

:
D

X
j˛j6k

k��Cj˛j@˛ukLp : (3.3)

Therefore, these weighted Sobolev spaces relate to the ones introduce in (3.1) by

zW k;p
� D W

k;p

�.�C n
p
/
: (3.4)

There is one further equivalent norm, introduced by Bartnik (1986), which
proves to be very useful to translate results valid for compact manifold, and further-
more exploits some natural scaling properties associated these weighted spaces. In
order to introduce this new norm, let us first introduce the scaling operator

SR W L
p

loc
7! L

p

loc
;

u.x/ 7! u.Rx/

for some given R > 0. Also, let us denote by Ar the annuli defined by BrnB r
2
.

Since �
jxj

is continuous, positive and bounded on RnnB 1
2
, then, there are constants

m;M > 0 such that

m 6
�.x/

jxj
6 M; for all x 2 RnnB 1

2
;

which implies that mjxj 6 �.x/ 6 M jxj for all x 2 RnnB 1
2
, and therefore there

are constants c1; c2 > 0 (independent of r > 0) such that for any fixed ˛ 2 R, it
holds that

c1r
˛ 6 �˛.x/ 6 c2r

˛; for all x 2 Ar :
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This, in particular, implies that for any u 2 W
jˇ j;p

ı
it holds that

r�ı� n
p

Cjˇ j
k@ˇukLp.Ar / . k��ı� n

p
Cjˇ j@ˇukLp.Ar / . r�ı� n

p
Cjˇ j

k@ˇukLp.Ar /

Let us also notice thatZ
A1

j@ˇx .Sru/.x/j
pdx D r�nCpjˇ j

Z
Ar

j@ˇxu.x/j
pdx;

implying that k@ˇukLp.Ar / D r
n
p

�jˇ j
k@ˇ .Sru/ kLp.A1/. Putting together these

inequalities, we find

c1.ˇ/r
�ı

k@ˇ .Sru/kLp.A1/ 6 k��ı� n
p

Cjˇ j@ˇukLp.Ar / 6 c2.ˇ/r
�ı

k@ˇ .Sru/kLp.A1/:

Let us also notice that, for any multi-index ˇ, we also have positive constants
c3.ı; p; n; ˇ/ and c4.ı; p; n; ˇ/, so that

c3.ı; p; n; ˇ/k@
ˇukLp.B1/ 6 k��ı� n

p
Cjˇ j@ˇuk

p

Lp.B1/
6 c4.ı; p; n; ˇ/k@

ˇukLp.B1/:

Rewriting

kuk
p

W
k;p

ı
.Rn/

D kuk
p

W
k;p

ı
.B1/

C

1X
jD1

kuk
p

W
k;p

ı
.A

2j /
;

the above estimates imply that the norm

kuk
p

NW
k;p

ı
.Rn/

:
D kuk

p

W k;p.B1/
C

1X
jD1

2�jıp
kS2juk

p

W k;p.A1/
; (3.5)

is an equivalent norm on W k;p

ı
.Rn/. Using this alternative norm, the following

properties are derived from those in Appendix A.2 quite straightforwardly.

Theorem 3.1.1. Let E ! Rn be a vector bundle as in Definition 3.1.1. Then, the
following continuous embeddings hold:

1. If 1 < p 6 q < 1 and ı2 < ı1, then Lqı2
,! L

p

ı1
;

2. If kp < n, then W k;p

ı
,! L

q

ı
for all p 6 q 6 np

n�kp
;
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3. If kp D n, then W k;p

ı
,! L

q

ı
for all q > p;

4. If kp > n, then W kCl;p

ı
,! C l

ı
for any l D 0; 1; 2 � � � ;

5. For any given � > 0 there is a constant C� > 0 such that, for all u 2 W
2;p

ı
,

1 < p < 1 the following inequality holds

kuk
W

1;p

ı

6 �kuk
W

2;p

ı

C C�kukLp

ı
: (3.6)

6. If 1 < p 6 q < 1 and k1 C k2 > n
q

C k where k1; k2 > k are
non-negative integers, then, we have a continuous multiplication property
W
k1;p

ı1
˝W

k2;q

ı2
7! W

k;p

ı
for any ı > ı1 C ı2. In particular, W k;p

ı
is an

algebra under multiplication for k > n
p
and ı < 0.

The first five of the above properties can be found, for instance, in Bartnik
(1986, Theorem 2.1), while the multiplication property can be found in Cantor
(1981, Lemma 5.5) and the correspondingL2-version can also be found inChoquet-
Bruhat and Christodoulou (1981, Lemma 2.5).2 Furthermore, we have a version
of the Rellich–Kondrachov theorem, given by:

Theorem 3.1.2. Under the same assumption as in Theorem 3.1.1, if k > 1 and
ı0 < ı, the W k;p

ı 0 ,! W
k�1;p

ı
is compact.

Proof. Let us consider a normalised sequence fuj g � W
k;p

ı 0 and highlight that
it is enough for us to prove any such sequence has a convergent subsequence in
W
k�1;p

ı
. Let BR.0/ � Rn be the ball of radius R (to be fixed latter) with cen-

ter at the origin. Let � be a cut-off function equal to one in BR and supported
in B2R, and write uj D �uj C .1 � �/uj . Then, it follows that f�uj g �

W k;p.B2R/ is a bounded sequence, and therefore fromTheoremA.2.1, the embed-
dingW k;p.B2R/ ,! W k�1;p.B2R/ is compact and thus there is aW k�1;p.B2R/-
convergent subsequence, to which we now restrict. Let us now show that the cor-

2Some of these proofs are done for scalar functions in the cited references. The adaptation for
the case of vector valued functions follows the same lines as those commented in Appendix A.2.
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responding subsequence fuj g � W
k�1;p

ı
is Cauchy.

kuj � ulk
p

W
k�1;p

ı

D
X

j˛j6k�1

Z
Rn

��.ıC n
p
/p

j@˛.uj � ul/j
pdx;

6 C 0
X

j˛j6k�1

Z
BR

j@˛.uj � ul/j
pdx

C C
X

j˛j6k�1

Z
RnnBR

jxj
�.ı�ı 0/p

jxj
�.ı 0C n

p
/p

j@˛.uj � ul/j
pdx;

6 C 0
kuj � ulk

p

W k�1;p.BR/

C CR�.ı�ı 0/p
kuj � ulk

p

W
k�1;p

ı0 .RnnBR/
;

where we have used that outside BR we can estimate �.x/ . jxj, while inside of
BR this quantity is bounded. Also, in the last inequality, we used that ı � ı0 > 0.
Now, since f�uj g is convergent in W k�1;p.B2R/, there is a limit function zu 2

W k�1;p.B2R/, and since � � 1 on BR, we know that fuj g � W k�1;p.BR/

is Cauchy. Therefore, given � > 0, we can pick j; l sufficiently large so that
C 0kuj � ulk

p

W k�1;p.BR/
6 �. Also, since fuj g � W

k;p

ı 0 is bounded, then

X
j˛j6k

Z
RnnBR

jxj
�.ı 0C n

p
/p

j@˛.uj � ul/j
pdx 6 C 00;

for some fixed constant C 00 > 0 independent of R. We can then chose R in our
argument so that R�.ı�ı 0/ < �

CC 00 . Therefore,

kuj � ulk
p

W
k�1;p

ı

6 2�; (3.7)

which proves that fuj g is Cauchy in W k�1;p

ı
, and is therefore convergent, estab-

lishing the compactness of the embeddingW k;p

ı 0 ,! W
k�1;p

ı
.

Let us now present the following result result, due to Choquet-Bruhat (2009,
Theorem 3.5, Appendix I), which gives us a more subtle interpolation inequality in
this context. Such inequality is useful when dealing with low regularity problems.
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Theorem 3.1.3. Let 1 < q < 1, k;m be integers 0 6 k < m, � be a real number
in the interval k

m
6 � 6 1 and

1

p
D
k �m�

n
C
1

q
; (3.8)

If m� k �
n
q

62 N, then, for any given � > 0 there is a constant C� > 0 such that,
for all u 2 W

m;q

ı
.Rn/,

k@kukLp

ı�k
.Rn/ 6 �kukWm;q

ı
.Rn/ C C�kukLq

ı
.Rn/; (3.9)

where @ku denotes any k-th order derivative of u.

Proof. Wewill prove the claim for the norm (3.5). Thus, let us first fix some multi-
index ˇ with jˇj D k, and notice that

kS2j @ˇuk
p

Lp.A1/
D

Z
A1

j@ˇu.2jx/jpdx D 2�jpjˇ j
k@ˇ .S2ju/k

p

Lp.A1/
:

Now, using (A.30) on A1, we see that

kS2j @ˇuk
p

Lp.A1/
6 C2�jpjˇ j

kS2juk
�p

Wm;q.A1/
kS2juk

.1��/p

Lq.A1/
;

where the constant C depends on A1, which is fixed. Also, we know from Theo-
rem A.2.7 that

k@ˇuk
p

Lp.B1/
6 Ckuk

p�

Wm;q.B1/
kuk

p.1��/

Lq.B1/
:

Therefore, from (3.5), we find

k@ˇuk
p
NL

p

ı�jˇj

:
D k@ˇuk

p

Lp.B1/
C

1X
jD1

2�j.ı�jˇ j/p
kS2j .@ˇu/k

p

Lp.A1/
;

. kuk
p�

Wm;q.B1/
kuk

p.1��/

Lq.B1/
C

1X
jD1

2�jıp
kS2juk

�p

Wm;q.A1/
kS2juk

.1��/p

Lq.A1/
:

Now, recall that for any given �0 > 0 and for any fixed 1 < �; �0 < 1

satisfying 1
�

C
1
�0 D 1, there is a constant C�0 > 0 such that for all a; b > 0 it

holds that

ab 6 �0a� C C�0b�
0

: (3.10)
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Let us then chose 1
�

:
D � , 1

�0

:
D 1�� and apply this inequality to a D kuk

p�

Wm;q.B1/

and b D kuk
p.1��/

Lq.B1/
to get

kuk
p�

Wm;q.B1/
kuk

p.1��/

Lq.B1/
6 �0

kuk
p��

Wm;q.B1/
C C�0kuk

p.1��/�0

Lq.B1/

D �0
kuk

p

Wm;q.B1/
C C�0kuk

p

Lq.B1/
:

Similarly, let us apply (3.10) to aj
:

D kS2juk
�p

Wm;q.A1/
and bj

:
D kS2juk

.1��/p

Lq.A1/
to get

kS2juk
�p

Wm;q.A1/
kS2juk

.1��/p

Lq.A1/
6 �0

kS2juk
p

Wm;q.A1/
C C�0kS2juk

p

Lq.A1/
:

Putting all the above together, we find

k@ˇuk
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NL

p

ı�jˇj

. �0
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p

Wm;q.B1/
C C�0kuk

p

Lq.B1/

C

1X
jD1

2�jıp
�
�0

kS2juk
p

Wm;q.A1/
C C�0kS2juk

p

Lq.A1/

�
:

Also, notice that q 6 p since

1

p
D
k � �m

n
C
1

q
D
1

q
C .

k

m
� �/

m

n
6
1

q
:

Then, recall that `q ,! `p, which implies that

k@ˇuk NL
p

ı�jˇj
.
�
�0

q
p
�
kuk

q

Wm;q.B1/
C

1X
jD1

2�jıq
kS2juk

q

Wm;q.A1/

�
C C

q
p

�0

�
kuk

q

Lq.B1/
C

1X
jD1

2�jıq
kS2juk

q

Lq.A1/

�� 1
q

where the right-hand side is finite by hypothesis. Thus, for some fixed constant
C > 0 independent of u, it holds that

k@ˇuk NL
p

ı�jˇj
6 C

�
�0 1

p kukWm;q

ı
C C

1
p

�0 kukLq

ı

�
; (3.11)

from which we obtain our statement after the choice �0 1
p D

�
C
.
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Let us now consider a manifoldM n Euclidean at infinity (recall that this only
fixed the topological structure of the ends of M ) which may have non-empty
boundary within the compact region K. Notice that we have a finite number of
end charts, say fUi ; ˚ig

N0

iD1, with ˚.Ui / ' RnnB , and a finite number of coordi-
nate charts covering the compact regionK, say fUi ; ˚ig

N
iDN0C1. We can consider

a partition of unity f�ig
N
iD1 subordinate to the coordinate cover fUi ; ˚ig

N
iD1, and

let Vi be equal to either Rn or RnC, depending on whether Ui , i > N0 C 1, is an
interior or boundary chart respectively. Then, given a vector bundle E

�
�! M , we

can define W k;p

ı
.M IE/ to be the subset of W k;p

loc
.M IE/ such that

kuk
W

k;p

ı

:
D

N0X
iD1

k˚�1
i

�
.�iu/kW k;p

ı
.Rn/

C

NX
iDN0C1

k˚�1
i

�
.�iu/kW k;p.Vi /

< 1:

(3.12)

We can now extend the embedding andmultiplication properties ofTheorems 3.1.1
and 3.1.2 to a general manifoldM n Euclidean at infinity by an appeal to localiza-
tion of fields using a partition of unity and using Theorems 3.1.1, 3.1.2 and A.2.1.
That is, the following holds:
Theorem 3.1.4. LetM n be a manifold Euclidean at infinity andE ! M a vector
bundle over M . Then, all the properties of Theorem 3.1.1 as well as the com-
pact embedding of Theorem 3.1.2 hold for W k;p

ı
.E/ under the same conditions

stated in those theorems. Furthermore, for all k > 1
p
, we have a continuous

trace map � W W
k;p

ı
.M;E/ ! W k� 1

p
;p.˙;E/ and a continuous extension map

ext W W k� 1
p
;p.˙;E/ 7! W

k;p

ı
.M;E/.

The last claim in the above theorem concerning the trace and extension prop-
erties of these W k;p

ı
-spaces follows directly from the corresponding properties

stated in Theorem A.2.1, since the boundary ˙ :
D @M is assumed to be compact

and the trace and extension properties depend only on the field in neighbourhood
in ˙ , not on what happens at infinity. Let us also clarify that, in order to avoid
introducing unnecessarily heavy notation, in the theorem above we have denoted
the bundle obtained by the restriction of E to ˙ by the same symbol E. Finally,
let us highlight that the same type of localization properties prove that C1

0 .M/

(M with its boundary) is dense in W k;p

ı
for all k > 0, 1 < p < 1 and ı 2 R.

Now that we canmeasure the behaviour of fields at infinity appealing to Sobolev
spaces, let us introduce the key concept of AE manifolds,
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Definition 3.1.2 (AE manifolds). We will say that a Riemanian manifold .M n; g/

is asymptotically Euclidean if:
1. M n is Euclidean at infinity, with end charts f˚ig;

2. g 2 W
k;p

loc
for some k > n

p
;

3. g � ˚�
i e 2 W

k;p

ı
.Ei / for some ı < 0 and all end charts ˚i ,

where, above, “e” denotes the Euclidean metric on Rn.

3.2 Some elliptic theory on AE manifolds
Besides providing us with a precise way to control fields near infinity, the above
weighted Sobolev spaces provide us with an appropriate context to prove good
mapping properties for elliptic operators on manifolds Euclidean at infinity. In
particular, it has been known for a long time that, in general, elliptic operators
do not have good mapping properties acting on (unweighed) Sobolev spaces on
non-compact manifolds (Cantor 1979; Lockhart 1981). This can be exemplified
by considering the Euclidean Laplacian � on Rn.

Although � has good mapping properties acting on W 2;p
0 .˝/ for bounded

domains (Fredholm properties), it does not have such nice properties acting over
all of Rn and, in particular, it does not have closed range. This has been explained
very nicely in Maxwell (2004) and can be seen as follows. First, notice that any
W 2;p.Rn/ solution to �u D 0, must be zero. This follows by multiplying the
equation by u and integrating by parts (combined with a suitable approximation
argument to get rid of the boundary term). Therefore, if � had closed range X �

Lp, then X would be a Banach space with the Lp norm and we would have an
isomorphism

� W W 2;p
7! X;

with the inequality

kukW 2;p.Rn/ . k�ukLp.Rn/ 8 u 2 W 2;p.Rn/: (3.13)

But this can be seen to be impossible from the following argument. Consider the
scaling operator Sr W Lp 7! Lp, .Sru/.x/

:
D u.rx/ for r > 0. Then, for any

u 2 W 2;p, it follows that

�.Sru/.x/ D r2�u.rx/ D r2.Sr�u/.x/ and kSrukLp.Rn/ D r� n
p kukLp.Rn/:
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Therefore, if (3.13) were to hold, we would find that

kukLp.Rn/ D r� n
p kS 1

r
ukLp.Rn/ 6 r� n

p kS 1
r
ukW 2;p.Rn/;

. r� n
p k�.S 1

r
u/kLp.Rn/ D r� n

p
�2

kS 1
r
.�u/kLp.Rn/ D r�2

k�ukLp.Rn/;

for all u 2 W 2;p and any r > 0. But this last inequality can be falsified for
any u 6� 0 by taking r sufficiently large. Therefore, we must conclude that �
is not Fredholm on W 2;p.Rn/. This shows that, in order to get good Fredholm
properties, we must appeal to spaces with better scaling properties. The weighted
Sobolev spaces introduced above are such spaces.

In this context of AE manifolds and weighted spaces, it is possible to develop
linear elliptic PDE analysis with the same level of completeness as was presented
in Appendix B for compact manifolds. Since the appropriate theory for boundary
value problems is more delicate (the same is true in the compact case), we will
develop such analysis explicitly for the kind of second order operators involved
in the constraints, subject to natural boundary conditions in this context. In the
case where @M D ; the full theory can be developed following lines similar to
those of Appendix B, first establishing the appropriate estimates for trivial sec-
tions on Rn and operators acting between weighted spaces and then localising the
problem via a partition of unity argument to apply such estimates together with
estimates for compact manifolds, such as those of Theorem B.4. We will pro-
vide the main arguments in this section and also refer the reader to Bartnik (1986),
Cantor (1979, 1981), Choquet-Bruhat and Christodoulou (1981), Lockhart (1981),
Maxwell (2006), McOwen (1979), and Nirenberg andWalker (1973) and Choquet-
Bruhat (2009, Appendix II) for several details.

Let us first start the analysis considering a constant coefficient elliptic operator
of order m of the form

L1
:

D
X

j˛jDm

A1
˛ @

˛
W W

m;p

ı
.Rn/ 7! L

p

ı�m
.Rn/: (3.14)

Then, the following result holds:

Lemma 3.2.1. For any given real number �, if u 2 W
m;p

loc
.Rn/\Lp� , 1 < p < 1,

and L1u 2 L
p
��m, then u 2 W

m;p
� and

kukWm;p
�

6 C
�
kL1ukLp

��m
C kukLp

��m

�
(3.15)
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Proof. Wewill again appeal to the scaling properties associated toweighted spaces.
First, letAr D BrnB r

2
and notice that using .Sru/.x/ D u.rx/ and @ˇx .Sru/.x/ D

r jˇ j@ˇu.rx/ for all jˇj 6 m, we find that r jˇ jp�nk@ˇuk
p

Lp.Ar /
D k@ˇ .Sru/k

p

Lp.A1/
.

Then, use interior elliptic estimates to writeZ
Ar

r jˇ jp�n
j@ˇxu.x/j

pdx D

Z
A1

j@ˇx .Sru/.x/j
pdx 6 kSruk

p

Wm;p.A1/
;

6 C

Z
1
4

6jxj64

�
jL1.Sru/.x/j

p
C j.Sru/.x/j

p
�
dx;

D C

Z
r
4

6jxj64r

�
rmp�n

jL1u.x/j
p

C r�n
ju.x/jp

�
dx;

where the important point is that C > 0 depends on L1; p; n but neither on u nor
r > 0. Let us now multiply the above inequality by r��p, to getZ

r6jxj62r

ˇ̌
r�.��jˇ jC n

p
/
j@ˇxu.x/j

ˇ̌p
dx 6

6 C

Z
r
4

6jxj64r

�ˇ̌
r�.��mC n

p
/
jL1u.x/j

ˇ̌p
C
ˇ̌
r��� n

p ju.x/j
ˇ̌p�

dx;

Notice now that above implies that there is another constant C 0, which may now
also depend on � and jˇj 6 m (but is still independent of r), for which we haveZ

r6jxj62r

ˇ̌
jxj

�.��jˇ jC n
p
/
j@ˇxu.x/j

ˇ̌p
dx 6

6 C 0

Z
r
4

6jxj64r

�ˇ̌
jxj

�.��mC n
p
/
jL1u.x/j

ˇ̌p
C
ˇ̌
jxj

��� n
p ju.x/j

ˇ̌p�
dx:

For r > 1, by modifying C 0 we can replace in the above inequality jxj by �.x/.
Then, we can pick r D 2j , j 2 N, and sum over j to getZ

RnnB1

ˇ̌
j�.x/j�.��jˇ jC n

p
/
j@ˇxu.x/j

ˇ̌p
dx 6 C 0

�
kL1uk

p

L
p
��m.Rn/

C kuk
p

L
p
� .Rn/

�
;

where the right-hand side is finite by hypotheses. Summing over jˇj 6 m, we find

kuk
p

W
m;p

� .RnnB1/
6 C 00

�
kL1uk

p

L
p
��m.Rn/

C kuk
p

L
p
� .Rn/

�
; (3.16)

for some other constant C 00 > 0, which implies the desired statements.
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Let us now consider operators

L D
X

j˛j6m
A˛@

˛; (3.17)

with coefficients satisfying the following hypotheses

1. A˛ � A1
˛ 2 W

m;p

ım
, m > n

p
and ım < 0 for all j˛j D m;

2. A˛ 2 W
j˛j;p

ıj˛j
, ıj˛j < ım �mC j˛j for all j˛j < m.

Lemma 3.2.2. The operator (3.17) satisfying the above conditions is continuous
from W m;p

ı
7! L

p

ı�m
, for any p > n

m
and ı 2 R.

Proof. Consider u 2 W
m;p

ı
and write

Lu D L1uC
X

j˛jDm

�
A˛ � A1

˛

�
@˛uC

X
j˛j<m

A˛@
˛u:

We already know that kL1uk . kukWm;p

ı
. Now, the multiplication property

guarantees that
�
A˛ � A1

˛

�
@˛u 2 L

p

ı�m
if m > n

p
and ı � m > ım C ı �

m and both conditions are satisfied by hypothesis. Then, the continuity of the
multiplication property implies


 X

j˛jDm

�
A˛ � A1

˛

�
@˛u





L

p

ı�m

.
X

j˛jDm

kA˛ � A1
˛ kWm;p

ım

k@˛ukLp

ı�m
;

.

0@ X
j˛jDm

kA˛ � A1
˛ kWm;p

ım

1A kukWm;p

ı
:

Similarly, for j˛j < m, A˛@˛u 2 L
p

ı�m
if m > n

p
and ı �m > ı˛ C ı � j˛j.

The first of these conditions is obviously satisfied, and for the second notice that
it is equivalent to ı˛ < �m C j˛j, which is also satisfied by hypothesis, since
ım < 0. The continuity of the multiplication property implies


 X

j˛j<m

A˛@
˛u




L

p

ı�m

.
X

j˛j<m

kA˛k
W

j˛j;p

ıj˛j

kuk
W

m�j˛j;p

ı�j˛j

;

.

0@ X
j˛j<m

kA˛k
W

j˛j;p

ıj˛j

1A kukWm;p

ı
:
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Putting together all the above estimates, we find kLukLp

ı�m
6 CkukWm;p

ı
, where

the constant C depends on the norms of the coefficients.

We can now present the following result for an operator of the form of (3.17).

Theorem 3.2.1 (Nirenberg–Walker). Consider the operator L0 D
P

j˛jDmA
0
˛@
˛

of the form of (3.17) consisting only of terms of order m. If p > n
m
, then, for all

u 2 W
m;p

loc
\ L

p
��m satisfying L0u 2 L

p
��m, it holds that u 2 W

m;p
� and there is

a constant C > 0 such that for all such u we have the following elliptic estimate:

kukWm;p
�

6 C
�
kL0ukLp

��m
C kukLp

��m

�
: (3.18)

Remark 3.2.1. 1. Let us first notice that the condition p > n
m
is used to guar-

antee that W m;p

ım
,! C 0

ım
, with ım < 0, which implies A0˛ � A1

˛ 2 C 0
ım
.

This condition allows us to appeal to the “freezing of coefficients” technique,
where, within some sufficiently large compact set we can use the techniques
of Appendix B, while at infinity the appeal is to Lemma 3.2.1 and notice that
sup jA0˛ � A1

˛ j is controlled via the decay of L0 to L1;

2. In Nirenberg and Walker (1973, Theorem 3.1), the authors consider opera-
tors admitting lower order terms, but ask for all coefficients to be continuous,
which is a stronger condition than what we intend to use. Below, we will use
Theorem 3.2.1 to obtain results for operators with less regular coefficients;

3. Also, in Nirenberg and Walker (ibid., Theorem 3.1), the result is stated for
sections u 2 W m;p.Rn/ \ L

p
� .R

n/. Nevertheless, as has been previously
noted by other authors such as Choquet-Bruhat and Christodoulou (1981,
see the remark after Theorem 4.1), the proof of Theorem 3.1 in Nirenberg
and Walker (1973) works perfectly for u 2 W

m;p

loc
.Rn/ \ L

p
� .R

n/.

We can now establish the following result, for more general operators.

Theorem 3.2.2. Consider the operator L of the form of (3.17). If m > n
p

C 1,
then, there is a constant C > 0 such that for all such for all u 2 W

m;p
� we have

the following elliptic estimate:

kukWm;p
�

6 C
�
kLukLp

��m
C kukLp

�

�
: (3.19)
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Proof. Denote by L0 D
P
˛DmA˛@ the top order part of L. Then, clearly L0u 2

W
m;p
��m and we can apply the previous theorem to get

kukWm;p
�

6 C

0@



0@L �

X
j˛j<m

A˛@
˛

1Au



L

p
��m

C kukLp
�

1A ;
6 C

0@


Lu



L

p
��m

C
X

j˛j<m




A˛@˛u



L

p
��m

C kukLp
�

1A : (3.20)

Now, from the multiplication property, if j˛j Cm � j˛j � 1 D m � 1 > n
p
for all

0 6 j˛j 6 m � 1 and � �m > ıj˛j C � � j˛j, then

kA˛@
˛ukLp

��m
6 C 0

kA˛k
W

j˛j;p

ıj˛j

k@˛uk
W

m�1�j˛j;p

��j˛j

;

6 C 0
kA˛k

W
j˛j;p

ıj˛j

k@˛uk
W

m�1;p

��j˛j

:
(3.21)

The first of the above conditions is precisely m > n
p

C 1, satisfied by hypothesis.
Similarly, the condition for the weights is equivalent to ı˛ < j˛j �m, which also
follows by the hypothesis 2 on the coefficients of (3.17). Thus, (3.21) holds and
implies for some other constant C 0

X
j˛j<m




A˛@˛u



L

p
��m

6 C 0

0@ X
j˛j<m

kA˛k
W

j˛j;p

ıj˛j

1A k@˛uk
W

m�1;p
�

;

6 �C 00
kukWm;p

�
C C�C

00
kukLp

�
;

where we have used interpolation and absorbed the norms of the coefficients within
C 00 > 0. Going back to (3.20), picking � > 0 sufficiently small, and relabelling
the constant C , we get the inequality

kukWm;p
�

6 C
�
kLukLp

��m
C kukLp

�

�
8 u 2 W m;p

� .Rn/: (3.22)

Let us highlight that the condition m > n
p

C 1, which implies A˛ 2 C 1;�, for
j˛j D m and some � 2 .0; 1/, is quite common in classic literature (Bartnik 1986;
Cantor 1981; Choquet-Bruhat and Christodoulou 1981). In the above proof, this
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condition becomes necessary to get the estimates (3.21) through the multiplication
property. One important aspect of (3.21), is that the norms of u in the right-hand
side go only up to order m � 1. This allows us to use interpolation and chose �
small enough so as to absorb the term of orderm into the left-hand side. If we were
to attempt the same proof but relaxing to m > n

p
, the multiplication property, in

the case of j˛j D 0, would incorporate aW m;p
� -norm of u in the right-hand side of

(3.21), which we would not be able to handle via interpolation. Nevertheless, there
is a way around this, appealing to more subtle estimates. Let us simply exemplify
this here for our main case if interest, which are equation of second order. Thus,
assume m D 2, p > n

2
and consider the term A0u, with A0 2 L

p

ı0
and u 2 W

2;p
� .

Let us assume p < n, since the other cases have been covered above. Then, let us
appeal to the Sobolev embeddings of Theorem 3.1.4 to notice

W 1C1;p
� ,! W 1;q

� for any p < q <
np

n � p
; (3.23)

which implies u 2 W
1;q
� . Also, the multiplication property says that

L
p

ı0
˝W 1;q

� ,! L
p
��2;

as long as 1 > n
q
, q > p and ı0 C � < � � 2. To guarantee the first of these

conditions, notice that

1

p
�
1

n
<
1

q
<
1

p
;

and the assumption n
2
< p < n, implies 1

n
< 1
p
and 1

p
< 2
n
, which gives us

1

p
�
1

n
<
1

n
<
1

p
:

Therefore, we can chose q in the range allowed by (3.23) and satisfying

1

p
�
1

n
<
1

q
<
1

n
<
1

p
;

which implies our first condition, equivalent to q > n, where the second condition
q > p is also satisfied. The last condition, ı0 C � < � � 2, holds since ı0 < �2

by hypotheses 2 following (3.17). Therefore, we find

kA0ukLp
��2

. kA0kLp

ı0

kuk
W

1;q
�
:



3.2. Some elliptic theory on AE manifolds 127

Now, since m � 1 �
n
p

D 1 �
n
p
< 1, then m � 1 �

n
p

62 N and we can use
Theorem 3.1.3 with k D 1, m D 2 and 1

q
D

1�2�
n

C
1
p
as long as we can find �

satisfying

1

p
�
1

n
<
1

q

:
D
1 � 2�

n
C
1

p
<
1

n
: (3.24)

Notice that since � is restricted to 1
2

6 � 6 1, then �1 6 1�2� 6 0 and therefore

0 <
1

p
�
1

n
6
1

p
C
1 � 2�

n
;

which implies that, for any choice of � in the interval 1
2
< � 6 1 the first inequality

in (3.24) is satisfied. For the second one, notice that it is equivalent to

1 � 2� C
n

p
< 1 ()

n

2p
< �:

Since n
2p
< 1 by hypotheses, then, there is some 1

2
< � < 1which satisfies (3.24).

Therefore, we find

kA0ukLp
��2

. kA0kLp

ı0

.�kuk
W

2;p
�

C C�kukLp
�
/;

and then we can proceed as in the above proof. The interested reader may find fur-
ther details in Choquet-Bruhat (2009, see Lemma 3.2 and Theorem 3.3, Appendix
II). The final result, is the following:

Theorem 3.2.3. Consider a second order elliptic operator L of the form of (3.17)
satisfying the hypotheses 1 and 2 following (3.17). Then, there is a constantC > 0

such that

kuk
W

2;p
�

6 C
�
kLukLp

��2
C kukLp

�

�
8 u 2 W 2;p

� : (3.25)

Remark 3.2.2. Let us notice that, along the same lines of Remark 3.2.1, once the
(3.25) has been established, under the hypotheses of the above theorem, the proof
of Nirenberg and Walker (1973, Theorem 3.1) can be used to obtain the following
regularity result:

If u 2 W
2;p

loc
\ Lp� and Lu 2 L

p
��2 H) u 2 W 2;p

� : (3.26)
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Let us now simply point out that, using what by now are standard localisation
arguments, applying the interior estimates of Appendix B to a covering by small
balls of the compact region of an AE manifold with no boundary, and combin-
ing this with the above theorems, we get the precise analogues of Theorems 3.2.2
to 3.2.3, but for sections on the whole AE-manifold. We leave these small ad-
justments to the reader, who can consult different versions of these statements in
previously cited references.

3.3 Some boundary value problems

The objective of this section is to introduce the corresponding analysis associated
to the boundary value problems which play a role within the conformally formu-
lated ECE. The general elliptic theory of boundary value problems is quite subtle
and will not be treated here. In particular, there are admissible types of boundary
conditions which complement the equations. Boundary conditions which arise nat-
urally in well-motivated physical problems tend to fall into this class, and this is
the case in the context of the conformal problem associated to the ECE. Below, we
will first introduce the so-called black hole boundary conditions and present their
conformal formulation. This will provide us with natural boundary conditions for
the conformal Laplacian and Killing Laplacian involved in the analysis of the ECE.
Then, we will show how to modify the above general elliptic theory in this context,
and finally present the general properties of these two boundary value problems.
Most of this section, as well as the remaining parts of this chapter, is based upon
Maxwell (2005b).

3.3.1 Conformally formulated black hole initial data

From Section 1.5 in Chapter 1, if M n is a manifold with compact boundary ˙ ,
n > 3, we have a characterisation of the appropriate boundary conditions that an
initial data set .M n; g;K/ for Einstein equations should satisfy on ˙ in order to
evolve into a space-time containing black holes. These conditions were given by

�˙ D K.�; �/ � � ˙ trhk 6 0; on ˙ (3.27)

wherewe recall that �˙ denote the expansion coefficients and the condition �˙ 6 0

represents a convergence condition on future pointing light-rays within the evolv-
ing space-time, signalling the presence of a black hole, andwe denote by � :

D trgK
the mean curvature of the initial data set. Also, we denoted by h D gj˙ and k the



3.3. Some boundary value problems 129

extrinsic curvature of ˙ ,! .M; g/, with respect to the outward-pointing g-unit
normal � (see Proposition 1.5.1).

Now, we would like to re-express (3.27) in terms of the conformal data de-
scribed in Chapter 2. Let us first notice that

�� D �C � 2trhk: (3.28)

We will now consider boundary conditions for the conformal problem arising
by imposing restrictions on the expansion coefficients �˙ so as to satisfy (3.27).
Such types of conditions have been analysed by different authors, amongwhich we
would like to highlight Avalos and Lira (2019), Dain (2004), Holst and Tsogtgerel
(2013), and Maxwell (2005b). Along these lines, we will consider two different
possibilities below. The first one consists in freely prescribing �� 6 0, which
implies that

trhk C �� C � �K.�; �/ D 0 (3.29)

is our boundary condition. In this case, we can rewrite

�C D �� C 2trhk D �� � 2.�� C � �K.�; �//;

D ��� � 2� C 2K.�; �/:

Then,

�C 6 0 () K.�; �/ 6
1

2
�� C �: (3.30)

Therefore, our boundary conditions are

trhk C �� C � �K.�; �/ D 0;

K.�; �/ 6
1

2
�� C �:

(3.31)

Using our conventions for the conformal problem (see Section 2.1),3 we write
g D �

4
n�2 
 and K D ��2.L
;confX C U/C

�
n
�

4
n�2 
 , which implies that

K.�; �/ D �� 4
n�2

�2.L
;confX. O�; O�/C U. O�; O�//C
�

n
;

3During this chapter, since we will not include scalar field sources, we will denote the conformal
factor in the conformal method by � instead of '. The advantage of this change in notation will
become clear as we move forward.
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with � D �� 2
n�2 O�, where O� is the outward point unit normal with respect to 
 .

Furthermore, since

trhk D �divg� D �ri�
i

D ��� 2
n�2 ri O�

i
C

2

n � 2
�� 2

n�2
�1

O�.�/;

D ��� 2
n�2 . Ori O�

i
C S iik O�k/C

2

n � 2
�� 2

n�2
�1

O�.�/;

where Sj
ik

D
2
n�2

��1
jl .
kl@i� C 
il@k� � 
ik@l�/, implying that S i
ik

O�k D

2n
n�2

��1 O�.�/, which, in turn, implies that

trhk D ��� 2
n�2

�1

�
� Ori O�

i
C 2

n � 1

n � 2
O�.�/

�
D ��� 2

n�2
�1

�
2
n � 1

n � 2
O�.�/C �H

�
;

where H D div
 O� is the mean curvature of .˙; h/ as an embedded hypersurface
of .M; 
/, taken with respect to �O�. This implies

1

2
an O�.�/CH� � .�� C bn�/ �

n
n�2 C zK. O�; O�/�� n

n�2 D 0; (3.32)

recalling that an D 4n�1
n�2

, bn D
n�1
n

and zK D L
;congX C U is our TT-part
of the extrinsic curvature. The above boundary conditions now looks quite nicely
like an appropriate (Robin-type) complementing condition for the Lichnerowicz
equation.

Now, the additional condition K.�; �/ 6 1
2
�� C � translates naturally to a

boundary condition for the conformally formulated momentum constraint, since,
explicitly, it reads

L
;confX. O�; O�/ 6 �

�
1

2
j��j � bn�

�
�

2n
n�2 � U. O�; O�/: (3.33)

In order to satisfy such an inequality, we use shall impose a link between ��

and � on ˙ , given by 1
2
j��j � bn� > 0. Then, under this assumption we consider

the boundary condition

L
;confX. O�; �/ D �

�
1

2
j��j � bn�

�
v

2n
n�2 O� � U. O�; �/;

v > �j˙ ;

(3.34)

where we have introduced the function v on˙ and imposed the a priori inequality
v > �j˙ . Notice that (3.34) implies (3.33) and hence it implies �C 6 0.
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Also, let us highlight that (3.34) is a good complementing boundary condition
for the conformally formulated momentum constraint. We should observe that the
condition v > �j˙ being a priori, is a constraint on an admissible solution. Part of
the work in the associated PDE analysis is related to proving the resulting solution
satisfies this condition and therefore satisfies the (marginally) trapped condition
�C 6 0.

We have thus found the following conformal formulation of the black hole
boundary conditions (3.31), given by

1

2
an O�.�/CH� � .�� C bn�/ �

n
n�2 C zK. O�; O�/�� n

n�2 D 0;

L
;confX. O�; �/ D �

�
1

2
j��j � bn�

�
v

2n
n�2 O� � U. O�; �/;

v > �j˙ ;

1

2
j��j � bn� > 0

(3.35)

recalling that the third condition is merely used to guarantee that �C 6 0 and the
last one is a condition between two free parameters of the problem (which is trivial
for maximal initial data), which can always be satisfied a priori.

Remark 3.3.1. Notice that, in general, (3.35) couples the conformally formulated
Gauss–Codazzi constraints (2.12) through the boundary conditions even for vac-
uum.

Taking into account the above remark, we can present a simplifying case which
is of particular interest. Notice that if we impose decaying conditions on the initial
data at infinity, in particular for � , then the CMC condition implies � � 0. In this
case, we can pose black hole boundary conditions which decouple proceeding as
follows.

First, notice that appealing to the above computations, the apparent horizon
condition �C D 0 can be conformally formulated as

1

2
an O�.�/C �H � zK. O�; O�/�� n

n�2 D 0: (3.36)

Furthermore, in this case, from (3.28), one finds that

�� D �2trhk; (3.37)
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which, put together with (3.27), implies that

�trhk D K.�; �/: (3.38)

Therefore, we see that the condition �� 6 0 is implied by

trhk > 0 () K.�; �/ 6 0 () zK. O�; O�/ 6 0

where the last of the above three conditions is independent of the conformal factor.
Therefore, in this case, we impose

1

2
an O�.�/C �H � zK. O�; O�/�� n

n�2 D 0;

zK. O�; O�/ 6 0;

(3.39)

where these boundary conditions correspond to the black hole boundary conditions
given by �C D 0 and �� D 2K.�; �/ 6 �C D 0.

Notice that the above conditions, having been imposed for the system (2.12)
with � � 0, in the vacuum case, give us the following boundary value problem:(

�an�
� CR
� � j zKj2
�
� 3n�2

n�2 D 0;
1
2
an O�.�/C �H � zK. O�; O�/�� n

n�2 D 0; on ˙;
(3.40)

(
�
;confX D 0;

zK. O�; O�/ 6 0; on ˙:
(3.41)

In the above system, the equation (3.41) can be solved independently of (3.40),
and then the analysis of the boundary value problem for Lichnerowicz becomes
the main object of analysis. The pair of equations (3.40)-(3.41) was analysed in
the context of AE manifolds in detail by Maxwell (2005b), and, in this chapter,
we will present the results obtained in this reference. This will give us the opportu-
nity to introduce the necessary analytical tools related to the conformal Laplacian,
conformal Killing operator and Yamabe problem in the context of AE manifolds
with boundary. Then, in Chapter 4, we shall analyse the fully coupled system with
boundary conditions (3.35).
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3.3.2 The Poisson and Conformal Killing operators

In this section we shall present the analytical tools associated to the boundary value
problems described in the previous one. The roadmap for this analysis is basi-
cally the same as the one presented in Section 2.2, adapted to AE manifolds with
boundary. Thus, one our main goals will be to establish a version of the monotone
iteration scheme in this context. Let us recall that, in the compact case, the iso-
morphism properties associated to the operators�
 �a, with a > 0 a.e, were one
of the key elements. Thus, in what follows, we shall investigate these properties
in the context of AE manifolds. This will allow us to deal with the Lichnerowicz
equation. Also, we shall analyse the mapping properties of the conformal Killing
Laplacian in order to deal with the momentum constraint. Let us start by present-
ing the following estimates, which replace Equation (3.25) in the context of AE
manifolds with boundary.

Proposition 3.3.1. Let .M; 
/ be a W p
2;�-AE manifold with p > n

2
and � < 0.

Consider ı < 0 and let a 2 L
p

ı�2
. Consider the operators L :

D �
 � a W

W
p

2;ı
.M/ 7! L

p

ı�2
.M/,�
;conf W W

p

2;ı
.M/ 7! L

p

ı�2
.M/, as well as the boundary

operators

B1 W W
p

2;ı
.M/ 7! W 1� 1

p
;p.˙/; u 7! �.u/j˙ ;

B2 W W
p

2;ı
.M/ 7! W 1� 1

p
;p.˙/; X 7! L
;confX.�; �/j˙

(3.42)

Then, there is a constant C > 0 such that the following estimates hold

kuk
W

2;p

ı

6 C

�
kLukLp

ı�2
.M/ C kukLp

ı
.M/ C kB1uk

W
1� 1

p ;p
.˙/

�
;

kXk
W

2;p

ı

6 C

�
k�
;confXkLp

ı�2
.M/ C kXkLp

ı
.M/ C kB2Xk

W
1� 1

p ;p
.˙/

�
;

(3.43)

for all u and X in W 2;p

ı
.M/.

The proof of the above proposition can be consulted, for instance, in Maxwell
(ibid.). Let us merely notice that the only thing we have missing up to now are
the boundary estimates. These are obtained by working in a neighbourhood of
a boundary point and appealing to techniques such as those of Appendix B and
Section 3.2. In particular, the proof appeals to the freezing of coefficients technique,
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since the corresponding boundary estimates for the associated constant coefficient
operators are valid due to foundational work of Agmon, Douglis, and Nirenberg
(1964). It is a this point that having good complementing boundary conditions
plays a key role. Then, once the freezing of coefficients technique gives us the
above estimates near the boundary, a standard localisation procedure combined
with the interior estimates of Appendix B and the estimates on Rn of Section 3.2
(which provide the estimates at infinity) complete the proof.

The Poisson operator

Let us recall from Chapter 2, that one of our main tools in the analysis of the
Lichnerowicz equation were the maximum principles of Lemmas 2.2.2 and 2.2.3.
Thus, let us start our analysis presenting their corresponding analogues for AE
manifolds.

Lemma 3.3.1 (Weak maximum principle). Consider an AE manifold .M n; 
/,
n > 3, and let  be a W 2;p

loc
-solution to the boundary problem:

�
 � a 6 0; onM;
��. / � b 6 0; on ˙;

(3.44)

where ˙ is compact, 
 2 W
2;p

ı
, p > n

2
, ı < 0, a 2 L

p

ı�2
.M/, a > 0 a.e, �

stands for the outward unit normal on ˙ and b 2 W 1� 1
p
;p.˙/ satisfies b > 0

a.e. Furthermore, suppose that tends to constantsAj > 0 on each endEj , then
 > 0 onM .

Proof. Let � > 0 be a given (small) number and define v :
D . C �/�. Since

 ! Aj > 0 on each end, then v must have compact support. Now, notice that
W
2;p

loc
,! W

1;2
loc

. Since p > n
2
and n > 3, this last statement is not obvious

only for n D 3 and 3
2
< p < 2. But in this case we can appeal to the Sobolev

embedding W 2;p

loc
,! W

1;q

loc
for q D

np
n�p

, where p > 3
2
implies that q > 3, thus

W
1;q

loc
,! W

1;2
loc

, which implies that W 2;p

loc
,! W

1;2
loc

. Therefore, this first claim
follows. Furthermore, since in the support of v we know that  6 0, we get that
v > 0 a.e. Finally, notice that on the support of v, it holds that r D rv, and
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then compute the following

krvk
2
L2 D

Z
M

hr ;rvi
dV
 D

Z
M

.�v/�
 dV
 C

Z
˙

.�v/.��. //d˙;

6 �

Z
M

av dV
 �

Z
˙

bv d˙ 6 0;

where in the second line we used equations (3.44). From the above, we get that v
is constant and has compact support, hence v � 0, which implies that  > �� 8

� > 0. Thus,  > 0.

As noted in Maxwell 2005b, quite general existence results for solutions to
semi-linear equations whose linear part obeys the (weak) maximum principle as
stated above can be derived by applying the above version of the weak maximum
principle. Nevertheless, in the investigation of the Lichnerowicz equation we will
need the following version of the strong maximum principle.

Lemma 3.3.2 (Maxwell (ibid.)). Suppose that .M n; 
/ is a W 2;p
� -AE manifold

with p > n
2
and � < 0 and let a 2 L

p
��2 and b 2 W 1� 1

p
;p.˙/ satisfy a; b > 0

a.e. Suppose that u 2 W
2;p

loc
is non-negative and satisfies

�
u � au 6 0;

��.u/ � bu 6 0; on ˙;
(3.45)

then, if u.x/ D 0 for some x 2 M , it follows that u � 0.

The proof of the above lemma can be consulted in Maxwell (ibid., Lemma 4),
which follows the lines of Lemma 2.2.3, where the objective is to prove that the
the subset u�1.0/ is open inM . If x is an interior point, then the proof runs as in
Lemma 2.2.3 appealing to the weak Harnack inequality of Trudinger (1973). The
new part is the analysis of the case when x is a boundary point. This is achieved
by considering the corresponding equations in an hemisphere B1.0/ \ RnC (a co-
ordinate neighbourhood of x) and constructing a related equation on the whole
ball B1.0/ to which we can apply the Harnack inequality of Trudinger (ibid.). The
details can be consulted in the previously cited reference.

Let us now establish the following notation. Consider the linear operator

P1 W W
2;p

ı
.M/ 7! L

p

ı�2
.M/ �W 1� 1

p
;p.˙/;

u 7! .�
u � au;�.�.u/C bu/j˙ /;
(3.46)
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where 
 is W 2;p

ı
-AE, with p > n

2
, ı < 0, a 2 L

p

ı�2
.M/, b 2 W 1� 1

p
;p.˙/, and

� is the outward pointing normal to ˙ . Then, we get that the following holds.4

Theorem 3.3.1. Let .M n; 
/ be a W 2;p

ı
-AE manifold with p and ı satisfying the

above conditions and n > 3. If 2� n < ı < 0, then the operator P1 as defined in
(3.46) is an isomorphism as long as a > 0 and b > 0 a.e.

Proof. First, notice that Lemma 3.3.1 implies that u 2 Ker.P1/ H) u > 0,
but the same argument applies to �u implying �u > 0. Thus, u � 0 and P1 is
injective. In order to establish the surjectivity claim, let us show that the adjoint
operator

P�
1 W L

p0

2�n�ı
.M/ �W �1C 1

p
;p0

.˙/ 7! W
�2;p0

�ı�n
.M/;

is injective. Thus, consider .v; w/ 2 Ker.P�
1 /, which implies h.v; w/;P1ui D 0

for all u 2 W
2;p

ı
.M/. That is,

0 D hv;�
u � aui
L

p0

2�n�ı
�L

p

ı�2

C hw;��.u/ � bui
W

�1C 1
p ;p0

�W
1� 1

p ;p
:

Considering u 2 C1
0 .

ı

M/, we find that v is a weak solution to�
v�av D 0 in
ı

M ,
implying through elliptic regularity that v 2 W

2;p0

loc
\L

p0

2�n�ı
and�
v� av D 0

then that v 2 W
2;p0

2�n�ı
is a strong solution. Then,

hv;�
u � aui
L

p0

2�n�ı
�L

p

ı�2

D

Z
M

v
�
�
u � au

�
dV
 ;

D �

Z
M

�
hrv;rui
 C auv

�
dV
 C

Z
˙

v�.u/d˙;

D

Z
M

�
�
v � av

�„ ƒ‚ …
D0

udV
 C

Z
˙

.v�.u/ � �.v/u/d˙;

D

Z
˙

.v�.u/ � �.v/u/d˙ 8 uW
2;p

ı
;

where the above identities hold classically for smooth compactly supported func-
tions, and an approximation argument shows that they also hold in this case. Now,

4To the best of our knowledge, Theorem 3.3.1 is due to Maxwell (2005b, Proposition 1).
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since the trace map

� W W 2;p.U / 7! W 2� 1
p
;p.˙/ �W 1� 1

p
;p.˙/;

u 7! .�.u/; �.�.u///

is surjective, where U denotes a neighbourhood of˙ , then the above implies that

0 D

Z
˙

.v�1 � �.v/�2/d˙ C hw;��1 � b�2i
W

�1C 1
p ;p0

�W
1� 1

p ;p
; (3.47)

for all �1 2 W 1� 1
p
;p.˙/ and �2 2 W 2� 1

p
;p.˙/. Fixing �2 D 0, we find

hw;�i
W

�1C 1
p ;p0

�W
1� 1

p ;p
D

Z
˙

v�d˙; 8 � 2 W 1� 1
p
;p.˙/:

Feeding this information in the previous expression with �1 D 0, we find

0 D

Z
˙

�.v/�2d˙ C hw; b�2i
W

�1C 1
p ;p0

�W
1� 1

p ;p
;

D

Z
˙

�.v/�2d˙ C

Z
˙

bv�2d˙; ;

D

Z
˙

.�.v/C bv/�2d˙; 8 �2W
2� 1

p
;p.˙/:

Theabove implies that .�.v/Cbv/j˙ D 0. That is, v 2 Ker
�
P1 W W

2;p0

�n�ıC2
.M/ 7!

L
p0

�n�ı
.M/�W

1� 1
p0 ;p.˙/

�
. But, actually, elliptic regularity gives us v 2 W

2;p

loc
\

L
p0

2�ı�n
, which implies that u D o.1/ at infinity. Then, just as the beginning of

the proof, the fact that v 2 W
2;p

loc
solves

�
v � av D 0;

�.�.v/C bv/ D 0
(3.48)

and v ! 0 at infinity, implies that both v;�v > 0 due to Lemma 3.3.1, and
therefore v � 0. That is, the condition 2�n < ı, implies thatP1 W W

2;p0

2�n�ı
.M/ 7!

L
p0

�n�ı
.M/�W

1� 1
p0 ;p.˙/ is injective. With this information, we now know that

hw;��.u/ � bui
W

�1C 1
p ;p0

�W
1� 1

p ;p
D 0; 8 u 2 W

2;p

ı
.M/: (3.49)



138 3. Solutions on AE manifolds

Once more, this implies that

0 D hw;�1i
W

�1C 1
p ;p0

�W
1� 1

p ;p
C hw; b�2i

W
�1C 1

p ;p0
�W

1� 1
p ;p

for all �1 2 W 1� 1
p
;p.˙/ and �2 2 W 2� 1

p
;p.˙/. Setting �2 D 0, implies that

w D 0, and proves that P�
1 is injective, finishing the proof.

Remark 3.3.2. Notice that, under the conditions of the above theorem, the elliptic
estimates of Proposition 3.3.1 are improved to

kuk
W

2;p

ı

6 CkP1uk
L

p

ı�2
.M/�W

1� 1
p ;p

.˙/
8 u 2 W

2;p

ı
.M/: (3.50)

In particular, fixing a; b D 0 above, we see that

kuk
W

2;p

ı

6 C

�
k�
ukLp

ı�2
.M/ C k�.u/k

W
1� 1

p ;p
.˙/

�
8 u 2 W

2;p

ı
.M/:

(3.51)

Finally, let us highlight the following useful result concerning the kernel of
P1.

Lemma 3.3.3. Let .M n; 
/ be an AE manifold satisfying the hypotheses of The-
orem 3.3.1 and suppose that u 2 W

2;p
� , � < 0, is in the kernel of P1. Then,

u 2 W
2;p
�0 for all �0 2 .2 � n; 0/.

Proof. Since a 2 L
p

ı�2
.M/ and b 2 W 1� 1

p
;p.˙/, then au 2 L

p

ı 0�2
.M/ for any

ı0 > ı C � and bu 2 W 1� 1
p
;p.˙/. Actually, if 2 � n < �, since ı < 0, this

implies that there is some maxf�C ı; 2� ng < ı0 < � such that .�
u;��.u// D

.au; bu/ 2 L
p

ı 0�2
�W 1� 1

p
;p. But the above theorem guarantees that .�
 ;��/ W

W
2;p

ı 0 7! L
p

ı 0�2
�W 1� 1

p
;p is an isomorphism for all 2� n < ı0 < 0. That is, we

have found u 2 W
2;p

ı 0 .M/ with maxf� C ı; 2 � ng < ı0 < � and we can iterate
the argument starting with 2 � n < ı0 < � < 0 in order to establish that, given
any 2 � n < �0 < 0, u 2 W

2;p
�0 .
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The conformal Killing Laplacian

Let us analyse the behaviour of the CKL in the context of AE manifolds. The
ultimate objective is to prove an isomorphism result of the type of Theorem 3.3.1,
but, first, we need some tool to replace the maximum principle in the proof of
injectivity. That is, as a first step we are looking for a proof of the claim that
AE metrics have no CKF which decay at infinity. The intuition for this comes
from the fact that this is case for the Euclidean metric in Rn and this has been
established under different hypotheses by Christodoulou and O’Murchadha (1981)
and Maxwell (2005b). Since the latter proof extends to less regular metrics, we
shall follow Maxwell (2005b). Let us first review a few basic facts concerning the
CKF of .Rn; �/. First, recall the following general fact.

Proposition 3.3.2. Let .M n; g/ be a smooth Riemannian manifold. If X is a
Killing field, then it obeys the following equation

rirjXk D RiljkX
l : (3.52)

Proof. By definition, we have that riXj D �rjXi , implying

rkriXj D �rkrjXi D �

�
RiljkX

l
C rjrkXi

�
which we rewrite as

rkriXj C rjrkXi D �RiljkX
l : (3.53)

Now, notice that the first Bianchi identity implies that�
Rlijk CRljki CRlkij

�
X l D 0:

Rewriting this explicitly in terms of covariant derivatives of X , and using the fact
that X is Killing, we have

rkrjXi C rjriXk C rirkXj D 0:

Putting the above equation together with (3.53), we find (3.52).

Corollary 3.3.1. Any Killing field X of .˝; � /, ˝ � Rn an open set endowed
with the Euclidean metric, is of the form

Xi .x/ D ci C !ijx
j ; (3.54)

where fxigniD1 are rectangular coordinates, ci and!ij are constants, where!ij D

�!j i . That is, ! 2 o.n/ is an antisymmetric matrix.
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Proof. From (3.52), we see that in the case of .˝; �/ we have

@xk@xjXi D 0; for all k; j; i D 1; � � � ; n;

thus the solution must be of the form Xi D ci C !ijx
j and plugging this in the

Killing equation we find that !ij D �!j i .

The following is also an easy result related to the conformal field of Rn.

Proposition 3.3.3. LetX be a conformal Killing field of .˝; � /,˝ � Rn an open
set endowed with the Euclidean metric, n > 3. Then

divX.x/ D aC bix
i ; (3.55)

where fxigniD1 are rectangular coordinates and a and bi are constants.

Proof. Recall that X is a CKF iff @iXj C @jXi D
2
n
divX ıij . Thus,

2

n
ıij�.divX/ D @ik.@kXj /C @jk.@kXi / D 2@ik

�
�@jXk C

2

n
divX ıjk

�
;

D 2

�
�@ij .divX/C

2

n
@ij .divX/

�
;

D 2
2 � n

n
@ij .divX/;

implying .2�n/@ij .divX/ D ıij�.div.X//. Tracing the equation, we find�.div.X// D

0, which in turn implies @ij .div.X// D 0 for all i; j D 1; � � � ; n, implying
(3.55).

We can reduce the analysis of CKF to that of Killing fields as follows.

Proposition 3.3.4. Any conformal Killing field X of .˝; � /,˝ � Rn an open set
endowed with the Euclidean metric and n > 3, is of the form

Xi .x/ D ci C !ijx
j

C
1

n
b � x xi �

1

2n
jxj

2bi C
1

n
axi ; (3.56)

where fxigniD1 are rectangular coordinates, ci and !ij are as in Proposition 3.3.4
while a and b are as in (3.55).



3.3. Some boundary value problems 141

Proof. Set Yi
:

D Xi �
1
n
b � x xi C

1
2n

jxj2bi �
1
n
axi . We claim that this is an

Euclidean Killing field. This follows computationally, since

@jYi D @jXi �
1

n

�
bjx

i
� xj bi C b � xıij

�
�
1

n
aıij ;

@iYj D @iXj �
1

n
.bix

j
� xibj C b � xıij / �

1

n
aıij ;

implying

@jYi C @iYj D @jXi C @iXj �
2

n
.aC b � x/„ ƒ‚ …

Ddiv.X/

ıij D 0;

where the last equality if the definition of X being a CKF. Thus, from Proposi-
tion 3.3.4 we find that Y must have the form Yi D ci C !ijx

j , which implies the
final result.

The above proposition provides a proof for our original claim that in Euclidean
space there are no CKF decaying at infinity. Furthermore, it gives us the tool to
prove the following proposition (seeMaxwell (2005b, Lemma 6) for another proof
in the same spirit).

Proposition 3.3.5. Suppose that X is a non-trivial CKF on .B1.0/; � /, where
B1.0/ denotes the unit ball in Rn, n > 3. If X.0/ D 0 and rX.0/ D 0, then
X.x/ ¤ 0 if x ¤ 0. 5

Proof. From Proposition 3.3.4, we write

Xi .x/ D ci C !ijx
j

C
1

n
b � x xi �

1

2n
jxj

2bi C
1

n
axi :

Since X.0/ D 0, then ci D 0 for all i D 1; � � � ; n. Also, from

0 D @kXi .0/ D !ik C
1

n
aıik C

1

n

�
bkx

i
� xkbi C b � x ıik

�
jxD0;

D !ik C
1

n
aıik for all i; k D 1; � � � ; n:

5In this statement r denotes the Euclidean Riemannian connexion.
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But the above implies that !ik D �
a
n
ıik , which, due to the symmetries of each

side, can be satisfied iff ! D 0 and a D 0. Thus,

Xi .x/ D
1

n
b � x xi �

1

2n
jxj

2bi :

Since X 6� 0 by assumption, then b ¤ 0. Assume that there is some x0 ¤ 0 such
that Xi .x0/ D 0. That is

b � x0 x0 �
1

2
jx0j

2b D 0: (3.57)

Taking inner product with x0, we find

b � x0 jx0j
2

�
1

2
jx0j

2b � x0 D
1

2
jx0j

2b � x0 D 0:

Since x0 ¤ 0 by hypothesis, we find that b � x0 D 0. But then (3.57) implies
that jx0j

2b D 0 from which, for x0 ¤ 0, we must have b D 0, which implies
that X � 0 and therefore we have a contradiction. Thus, no such x0 2 B1.0/ can
exist.

We will combine the above result with the following one (due to Maxwell
(2005b, Lemma7)) to prove the injectivity of conformal Killing Laplacian in this
context.

Lemma 3.3.4. Let .M n; g/ be an AE manifold of class W 2;p
� , p > n

2
, � < 0 and

n > 3. Suppose that X 2 W
2;p

ı
is a conformal Killing field with ı < 0. Then X

vanishes identically in a neighbourhood of infinity.

Proof. Let us fix an end ofM and denote it byE1 Š RnnB1.0/. Then, let fxigniD1
be rectangular end coordinates and denote by e the euclidean metric on E1. Con-
sider the sequence of metrics fgkg1

kD1
on E1 defined via gk.x/

:
D g.2kx/ and

notice that

kgk � ek
W

2;p
� .E1/

. 2k�kg � ek
W

2;p
� .RnnB

2k .0//
����!
k!1

0:

The above implies that, as maps on W 2;p
� .E1/,

�gk ;conf ! �e;conf;

Lgk ;conf ! Le;conf:
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Now, assume that X is a CKF of g which does not vanish identically outside
a compact set. Set ER to be the exterior of BR.0/ in E1 and consider OXk.x/

:
D

X.2kx/, which by hypotheses does not vanish identically. Then, consider NXk
:

D
OXk

k OXkk
W

2;p
�

, which is well-defined due to our last assumption. Then, sinceW 2;p
� ,!

W
1;p
�0 for any � < �0, we know that NXk ! NX in W 1;p

�0 . Now, let us apply the
elliptic estimates of Proposition 3.3.1 to the conformal Killing Laplacian (and its
boundary operator) constructed with the Euclidean metric e, so that

k NXk � NXlkW 2;p
� .E1/

. k�e;conf. NXk � NXl/kW 2;p
� .E1/

C k NXk � NXlkLp
� .E1/

C kLe;conf. NXk � NXl/k
W

1� 1
p ;p

.@B1/
;

. k�e;conf NXkk
W

2;p
� .E1/

C k�e;conf NXlkW 2;p
� .E1/

C kLe;conf. NXk � NXl/kW 2;p
� .E1/

C k NXk � NXlkLp
� .E1/

;

. k.�e;conf ��gk ;conf/
NXkk

W
2;p

� .E1/

C k.�e;conf ��gl ;conf/
NXlkW 2;p

� .E1/

C k.Le;conf � Lgk ;conf/
NXkk

W
2;p

� .E1/

C k.Le;conf � Lgl ;conf/
NXlkW 2;p

� .E1/
C k NXk � NXlkLp

�0
;

. k�e;conf ��gk ;confkOp C k�e;conf ��gl ;confkOp

C kLe;conf � Lgk ;confkOp C kLe;conf � Lgl ;confkOp

C k NXk � NXlkLp

�0
;

where in the second inequality we used the continuity of the trace map and in the
third one we used that OXk is a gk-CKF and thus �gk ;conf

OXk D Lgk ;conf
OXk D 0

and also that Lp� ,! L
p
�0 for � < �0. From our construction, the right-hand side

of the above expression goes to zero and therefore f NXkg is Cauchy in W 2;p
� .E1/

and therefore NX
W

2;p
�

����! NX 2 W
2;p
� , but then Lgk ;conf

NXk ! Le;conf NX , which
implies that NX is an Euclidean CKF since Lgk ;conf

NXk D 0 for all k, and since
NX 2 W

2;p
� , with � < 0, we conclude that NX � 0 since there are no Euclidean

CKF decaying at infinity. But this contradicts the fact that NXk ! NX and NXk is
normalised. Therefore, we have a contradiction and no such CKFX can exist.

We can now prove the following non-existence result for CKF decaying at



144 3. Solutions on AE manifolds

infinity. The proof we shall present is due to David Maxwell, who has established
the result under different functional hypotheses in Maxwell (2005b, Theorem 4)
and Maxwell (2006, Proposition 4.5).

Theorem 3.3.2. Let .M n; g/ be an AE manifold of classW 2;p
� , p > n, � < 0 and

n > 3. Then, there are no non-trivial CKF inW 2;p

ı
for any ı < 0.

Proof. We intend to prove that if X 2 W
2;p

ı
is a CKF of g, then X�1.0/ D M .

First, notice that Lemma 3.3.4 implies that X�1.0/ contains an open neighbour-
hood of infinity in M . Thus, due to the continuity of X , if the claim is not true
there must be an interior point p0 2 @X�1.0/ \

ı

M and p0 must be contained
within a compact set. Let us then fix a coordinate ball B1.0/ centred at p0, with
coordinates fxigniD1, x.p/ D 0, and from now on work on such a neighbourhood.
Furthermore, chose coordinates so that gij .0/ D ıij . Finally, in this construction,
notice thatX is a CKF of g in B1.0/ and, sinceW 2;p.B1/ ,! C 1.B1/ for p > n,
continuity of X and rX shows that X.0/;rX.0/ D 0.

The idea now is to show that the assumption that @X�1.0/ ¤ ; is contradictory.
We shall do this by proving that, if this were true, then would be able to construct
a CFK for the Euclidean metric which violates Proposition 3.3.5. For this, first
notice that if p0 2 @X�1.0/ \

ı

M , then X 6� 0 for any neighbourhood of p0 and
also, for each 0 < rk 6 1 there is some xk 2 B rk

2

.0/ \ X�1.0/. We therefore
consider a sequence frkg1

kD1
, with rk & 0 and rk 6 1, and a corresponding

selection of points f Oxkg1
kD1

� B1.0/, such that j Oxkj D
rk

2
and X. Oxk/ D 0.

Now, construct the sequence of metrics fgkg1
kD1

on B1.0/ defined by

gk.x/
:

D g.rkx/; x 2 B1.0/;

which is well-defined since rk 6 1 for all k. It follows from g 2 W 2;p.B1/ that

gk
W 2;p.B1/
�������! e, where e stands for the Euclidean metric on B1. Similarly to the

above lemma, this implies that

�gk ;conf ! �e;conf;

Lgk ;conf ! Le;conf

as operators on W 2;p.B1/. Therefore, to construct an Euclidean CKF in B1.0/
we follow the same ideas as in Lemma 3.3.4 and consider the sequence f OXkg1

kD1
defined by

OXk.x/
:

D X.rkx/; x 2 B1.0/:
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Since, by hypothesis, X 6� 0 on any ball centred at 0, it holds that OXk 6� 0

for any k and therefore we can construct the W 2;p-normalised sequence NXk
:

D
OXk

k OXkk
W 2;p.B1/

. By compactness of W 2;p.B1/ ,! W 1;p.B1/ we have a subse-

quece, to which we restrict, satisfying NXk
W 1;p.B1/
�������! NX0 2 W 1;p.B1/. We can

now apply the same reasoning as in Lemma 3.3.4 to show (through elliptic esti-
mates) that f NXkg is Cauchy W 2;p.B1/ and achieve strong W 2;p-convergence to
NX0 2 W 2;p.B1/. Following also such arguments, we again find that NX0 is an
Euclidean CKF and, also, p > n implies C 1-convergence and therefore

NX0.0/;r NX0.0/ D 0: (3.58)

But now notice that our sequence f Oxkg � B1 selected above, provides us with
a sequence fxkg � B1.0/, satisfying jxkj D

1
2
and NXk.xk/ D OXk.xk/ D 0

for all k. Now, being bounded in B1.0/, the sequence fxkg has a convergent
subsequence (to which we restrict) with limit x satisfying jxj D

1
2
, and, along such

sequence, we find NX0.x/ D 0. But, this last result together with (3.58) contradict
Proposition 3.3.5, proving the non-existence of p0 2 @X�1.0/ \

ı

M .

Remark 3.3.3. Let us highlight that, in the above proof, the condition p > n was
only used within a fixed ball B1.0/ centred at p0, with p0 contained in a compact
subset of M , where this last statement only requires p > n

2
due to Lemma 3.3.4.

Thus, the same conclusion follows for any metric g 2 W
2;q

loc
which is W 2;p

� .M/-
AE with p > n

2
, q > n and � < 0. Thus, for instance, if g 2 C1 isW 2;p

� -AE with
p > n

2
and � < 0, the result follows and we conclude that g possesses no CKF in

W
2;p

ı
for any ı < 0.

The above theorem will allow us to guarantee injectivity of the conformal
Killing Laplacian under the corresponding regularity hypotheses. Therefore, in
order to analyse the corresponding analogue to Equation (3.46), let us consider an
AE manifold .M n; 
/ and introduce the notation

P2 W W
2;p

ı
.M/ 7! L

p

ı�2
�W 1� 1

p
;p.˙/;

X 7! .�
;confX;L
;confX.�; �//
(3.59)

where, as usual, where 
 is W 2;p
� -AE, with p > n

2
, � < 0 and � is the outward

pointing normal to ˙ . Let us now present the following result.



146 3. Solutions on AE manifolds

Theorem 3.3.3 (Maxwell (2005b)). Let .M n; 
/ be an AE manifold satisfying the
above hypotheses and consider the operator (3.59). If 2 � n < ı < 0, then P2 W

W
2;p

ı
7! L

p

ı�2
�W 1� 1

p
;p.˙/ is a Fredholm operator of index zero. Furthermore,

its kernel consists of W 2;p

ı
-CKF and therefore it is an isomorphims if p > n.

Theproof of the above theorem follows the basic steps of those ofTheorem3.3.1
with some subtle modifications. Due to their similarities, and since the interested
reader can find it completely spelled out inMaxwell (ibid., Proposition 6), we omit
the proof and merely comment on its basic ingredients.

The first step is to establish the claim for smooth metrics, which admit one
further reduction. That is, if g 2 C1 is W 2;p

ı
-AE and if we denote by P the

action of P2 onW 2;2
ı
.M/, that is P :

D P2 W W
2;2
ı
.M/ 7! L2

ı�2
.M/�W

1
2
;2.˙/,

if P is isomorphism, then (due to elliptic regularity arguments) so is P2 acting as
in (3.59). Then, we proceed to prove the isomorphism claim for P . The injectivity
follows by an integration by parts procedure on any elementX 2 Ker.P/ (justified
via approximation arguments). This establishes that any such X is actually a CKF
of the smooth metric, and, in such a case, we know that X must vanish due to our
previous discussion and references. Then, the surjectivity follows by the injectivity
of the adjoint map under the bound 2�n < ı, where the analysis is quite parallel to
that of Theorem 3.3.1. Thus, this establishes the isomorphism of P and therefore
also of P2 for smooth metrics, which shows that P2 is a Fredholm operator of
zero index in this case. Then, we use Fredholm stability properties to derive the
corresponding claim under the more general hypotheses of the theorem, which
is achieved approximating g by smooth metrics and using Theorem A.1.2. This
establishes the Fredholm claims of the theorem. Finally, we can useTheorem 3.3.2
to finish.

Remark 3.3.4. Let us point out that the same comments made in Remark 3.3.2
hold also for P2 under the conditions of Theorem 3.3.3 which guarantee that P2
is an isomorphism.

The monotone iteration scheme

When investigating solutions for the conformal problem associated to the ECE on
AEmanifold we attempt to use the above analytic theory. Nevertheless, notice that
the conformal factor (for which the Lichnerowicz equation is posed) should not
vanish at infinity. Therefore, the idea is to split it as � D ! C ', with ' 2 W

2;p

ı
,

ı < 0, and ! capturing some prescribed behaviour of � at infinity. In order for
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! not to interfere significantly in the analysis, we shall construct it according to
the following lemma, which follows the ideas of Dilts, Isenberg, et al. (2014) and
Holst and Meier (2014).

Lemma3.3.5. Let .M n; g/ be aW 2;p
� -AEmanifold, with � < 0with ends fEj gNjD1

and let fAj gNjD1 be bounded functions onM with �gAj 2 L
p

ı�2
for some ı < 0.

Then, there is a unique solution to the equation

�g! D 0;

�.!/ D 0 on ˙;
(3.60)

such that ! tends to Aj in Ej as we go to infinity.6 Furthermore,

min
16j6N

inf
M
Aj 6 ! 6 max

16j6N
sup
M

Aj : (3.61)

Proof. Let !1 D
PN
jD1 �jAj , where �j is a cutoff function equal to 1 on Ej

and supported in a neighbourhood of Ej . Thus, since �gAj 2 L
p

ı�2
for all j D

1; � � � ; N , we get that�g!1 2 L
p

ı�2
and also �.!1/ 2 W 1� 1

p
;p.˙/, which, from

Theorem 3.3.1, implies that there is a unique !2 2 W
2;p

ı
satisfying �g!2 D

�g!1 with boundary condition �.!2/ D �.!1/, implying that ! :
D !2 � !1 is

harmonic, satisfies �.!/ D 0 along @M and tends asymptotically toAj on eachEj
as we move towards infinity, which guarantees the existence of a solution to (3.60).
Now, for the uniqueness claim, consider two such solutions !1 and !2, then their
difference satisfies (3.60) but now !1 � !2 ! 0 at infinity. Then, Lemma 3.3.1
implies that both !1 � !2 > 0 and �.!1 � !2/ > 0 and therefore !1 D !2.

In order to establish (3.61), consider � < min16j6N infM Aj and consider
v
:

D .! � �/�. Then, by definition of �, since ! is asymptotic to Aj on each Ej ,
there must be a compact setK such that vjMnK � 0. That is, vmust have compact
support. Thus, we have the following

krvk
2
L2 D

Z
M

hr!;rvigdVg D �

Z
M

v�g!dVg D 0;

6This means that, given � > 0, there exists a compact set K � M such that

sup
Ej \.MnK/

j! � Aj j < �:
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which implies that v � 0. Therefore ! > � 8 such � < min16j6N infM Aj , im-
plying that! > min16j6N infM Aj . Similarly, if we consider � > max16j6N supM Aj
and we define v :

D .� � !/�, then, again, this implies that v must have compact
support. Then, the same kind of integration by parts argument as above implies
that v � 0, and hence implies that for any such � it holds that � > !, implying
that max16j6N supM Aj > !.

We will now consider the existence of positive solutions to Lichnerowicz-type
semilinear equations of the form

�
 D f1.�;  / D
X
I

aI 
I onM;

��. / D f2.�;  / D
X
J

bJ 
J on ˙;

(3.62)

where f1 W M � I1 7! R and f2 W ˙ � I2 7! R are functions of the form:

f1.x; y/
:

D
X
I

aI .x/y
I ;

f2.x; y/
:

D
X
J

bJ .x/y
J ;

(3.63)

where the summation is carried out along exponents I; J 2 R, we consider aI 2

L
p

ı�2
.M/ and bJ 2 W 1� 1

p
;p.˙/, with ı < 0, for all I and J , and I1 and I2

are intervals in the real line on which the functions y 7! yI and y 7! yJ are
smooth for all the exponents I; J involved. Let us notice that, since we shall split
� D ! C ' according to Lemma 3.3.5, then (3.62) is recast as the following
boundary problem for ' 2 W

2;p

ı
:

�
' D f1.�; ! C '/ onM;
��.'/ D f2.�; ! C '/ on ˙;

(3.64)

where we have used that ! is constructed to satisfy (3.60). In this context, we
refine the notion of barriers introduced in Definition 2.2.1 as follows.

Definition 3.3.1. Let .M n; 
/ be a W 2;p

ı
-AE manifold, with p > n

2
. We say that

�� 2 W
2;p

loc
is a subsolution of the equation (3.62) if

�
�� > f1.x; ��/;

��.��/ > f2.x; ��/:
(3.65)
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Analogously, we say that �C 2 W
2;p

loc
is a supersolution of the same equation if

�
�C 6 f1.x; �C/;

��.�C/ 6 f2.x; �C/:
(3.66)

Let us highlight that, in practice, we shall consider barriers which have the
form �˙ D !˙ C '˙, where !˙ are constructed according to Lemma 3.3.5 and
prescribe the behaviour of the barriers at infinity, while '˙ 2 W

2;p

ı
and satisfy

the corresponding inequalities. In this context we have the following analogue of
Theorem 2.2.1.7

Theorem 3.3.4. Consider equation (3.62) where 
 isW 2;p

ı
-AE, p > n

2
and ı < 0.

Suppose that this equation admits a pair of sub and supersolutions �� 6 �C such
that

l 6 �� 6 �C 6 m;

where l 6 m are some non-negative real numbers satisfying Œl; m� � I1 \ I2
and also �� � c� 2 W

p

2;ı
and �C � cC 2 W

p

2;ı
for some numbers c� 6 cC.

Furthermore, let ! be as in Lemma 3.3.5, where each Aj satisfies c� 6 Aj 6 cC.
Then, equation (3.62) admits a solution � satisfying ��! 2 W

2;p

ı
and �� 6 � 6

�C.

Proof. Thefirst step, just inTheorem 2.2.1, is to introduce shifts on the equation the
gain certain monotonicity properties. That is, we consider functions a 2 L

p

ı�2
.M/

and b 2 W 1� 1
p
;p.˙/ such that

a.x/ >
X
I

jI jjaI .x/j
ˇ̌̌

sup
y2Œl;m�

yI�1
ˇ̌̌
; b.x/ >

X
J

jJ jjbJ .x/j
ˇ̌̌

sup
y2Œl;m�

yJ�1
ˇ̌̌
;

with these choices of a and b, consider the operator Pa;b given by P1 in (3.46).
Then, rewrite � :

D ! C ', with ' 2 W
2;p

ı
so that ! captures the asymptotics

of � and then pose (3.62) for '. Then, use Theorem 3.3.1 to build the sequence
f�k D ! C 'kg1

kD1
with 'k defined iteratively via

Pa;b'kC1 D .f1.x; �k/ � a�k; f2.x; �k/ � b�k/ 2 L
p

ı�2
.M/ �W 1� 1

p
;p.˙/;

7Different versions of Theorem 3.3.4 with slightly different hypotheses can be found in the liter-
ature, some of these with weaker hypotheses than ours. For further references, we refer the reader
to Choquet-Bruhat (2009), Holst and Meier (2014), and Maxwell (2005b, 2006).
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starting with '0
:

D �� � c�. We can in fact use the maximum principle of
Lemma 3.3.1 to guarantee that �� 6 �1 6 � � � 6 �k 6 � � � 6 �C. This is
seen inductively as follows. First, consider �1 and notice that

�
 .�1 � ��/ � a.�1 � ��/ D f1.x; ��/ � a�� ��
�� C a��;

��.�1 � ��/ � b.�1 � ��/ D f2.x; ��/ � b�� C �.��/ � b��:

Now, since �� is a subsolution, from (3.65), we have

��
�� 6 �f1.x; ��/;

�.��/ 6 �f2.x; ��/;

implying

�
 .�1 � ��/ � a.�1 � ��/ 6 f1.x; ��/ � f1.x; ��/ D 0;

��.�1 � ��/ � b.�1 � ��/ 6 f2.x; ��/ � f2.x; ��/ D 0:

Finally, notice that �1 � �� ! Aj � c� > 0 at infinity in each end. Therefore,
the maximum principle of Lemma 3.3.1 implies that �1 > ��. Similarly, let us
analyse

�
 .�C � �1/ � a.�C � �1/ D �
�C � a�C � .f1.x; ��/ � a��/;

��.�C � �1/ � b.�C � �1/ D �.�.�C/C b.�C// � .f2.x; ��/ � b��/:

Since �C is a supersolution, then

�
�C 6 f1.x; �C/;

��.�C/ 6 f2.x; ��/;

implying

�
 .�C � �1/ � a.�C � �1/ 6 f1.x; �C/ � a�C � .f1.x; ��/ � a��/;

��.�C � �1/ � b.�C � �1/ 6 f2.x; �C/ � b.�C/ � .f2.x; ��/ � b��/:

In this case, since by hypotheses �� 6 �C and by construction of a and b the
functions y ! f1.x; y/ � ay and y ! f2.x; y/ � by are decreasing functions
for all y 2 Œl; m�, then

�
 .�C � �1/ � a.�C � �1/ 6 0;

��.�C � �1/ � b.�C � �1/ 6 0:
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Again, �C � �1 ! cC � Aj > 0 at infinity and therefore Lemma 3.3.1 implies
�C > �1. Then, assume that for some k > 1 it holds that �� 6 �k�1 6 �k 6 �C

and notice that

�
 .�kC1 � �k/ � a.�kC1 � �k/ D f1.x; �k/ � a�k � .f1.x; �k�1/ � a�k�1/ 6 0;

��.�kC1 � �k/ � b.�kC1 � �k/ D f2.x; �k/ � b�k � .f2.x; �k�1/ � b�k�1/ 6 0;

where the final inequalities come from the fact that, by our choice of functions
a and b, y 7! f1.x; y/ � ay and y 7! f2.x; y/ � by are decreasing for any
y 2 Œl; m�, and by the inductive hypothesis, l 6 �k�1 6 �k 6 m. Therefore, the
Lemma 3.3.1 implies �kC1 > �k . Similarly

�
 .�C � �kC1/ � a.�C � �kC1/ 6 f1.x; �C/ � a�C � .f1.x; �k/ � a�k/ 6 0;

��.�C � �kC1/ � b.�C � �kC1/ 6 f2.x; �C/ � b�C � .f2.x; �k/ � b�k/ 6 0;

where we have used that since �C is a supersolution then (3.66) is satisfied by hy-
potheses, and also the decreasing properties of the right-hand side put together
with the inductive hypothesis �k 6 �C. Therefore, we find �kC1 6 �C by
Lemma 3.3.1, and the inductive claim is obtained.

Next, the idea is to prove that f'kg1
kD0

� W
2;p

ı
,! C 0.M/ is bounded.

As in Theorem 2.2.1, this is achieved via elliptic estimates. Thus, appealing to
Equation (3.43) we have

k'kC1kW 2;p

ı
.M/

6 C
nX
I

kaIkLp

ı�2
.M/k�

I
k kC0.M/ C kakLp

ı�2
.M/k�kkC0.M/

C
X
J

kbJ�
J
k k

W
1� 1

p ;p
.˙/

C kb�kk
W

1� 1
p ;p

.˙/

o
:

(3.67)

Notice that the first line in the above inequality if uniformly bounded for all k
since the functions y 7! yI are smooth for y 2 Œl; m� by hypotheses and l 6
�� 6 �k 6 �C 6 m by construction. Bounding the second line is more subtle.
In this case, let U be a bounded neighbourhood of ˙ (which we fix from now on)
and consider extensions zbJ 2 W 1;p.U / of the coefficients bJ , so that zbJ�

J is a
W 1;p.U / extension of bJ�J 2 W 1� 1

p
;p.˙/. Then

kbJ�
J
k k

W
1� 1

p ;p
.˙/

. kzbJ�
J
k kW 1;p.U /:

We can now appeal to an analysis analogous to that precedingTheorem 3.2.3. That
is, let us restrict our attention to the case n

2
< p < n, since this case implies the
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general one. Then, notice that from Lemma A.2.1 we know that �I
k

2 W 2;p.U /.
Therefore, from Sobolev embeddings W 2;p.U / ,! W 1;q.U / for any q in the
interval

1

p
�
1

n
<
1

q
<
1

n
<
1

p
; (3.68)

where the last inequality follows from our restriction to p < n. Thus, in particular,
q > n > p and then Sobolev multiplication implies thatW 1;p.U /˝W 1;q.U / ,!

W 1;p.U /, and therefore

kbJ�
J
k k

W
1� 1

p ;p
.˙/

. kzbJ�
J
k kW 1;p.U / . kzbJ kW 1;p k�Jk kW 1;q.U /;

. k�Jk kLq.U / C kJ�J�1
k r�kkLq.U /;

where in the last inequality the implicit constant depends on the coefficient bJ and
on U (which is fixed), but not on k. Then, since we already know that 0 < l 6
�� 6 �k 6 �C 6 m, the first term in the last inequality is also uniformly bounded,
and we can actually write

kbJ�
J
k k

W
1� 1

p ;p
.˙/

. 1C k�kkW 1;q.U / 6 1C k!kW 1;q.U / C k'kkW 1;q.U /

Now, from the discussion preceding Theorem 3.2.3, we know that we can chose
1
q

D
1�2�
n

C
1
p
, with 1

2
< � < 1 so that q satisfies (3.68) and therefore, through

the Gagliardo–Nirenberg interpolation, for any � > 0, we find

kbJ�
J
k k

W
1� 1

p ;p
.˙/

. 1C �k'kkW 2;p.U / C C�k'kkLp.U /;

where we can once more bound the last term using the barriers, so that

kbJ�
J
k k

W
1� 1

p ;p
.˙/

. 1C C� C �k'kkW 2;p.U /; (3.69)

where the implicit constant in front of the right-hand side depends on the coeffi-
cients bJ ; U; ! and the barriers, but is independent of k and also of �. We can now
use the above estimate in (3.67) to get

k'kC1kW 2;p

ı
.M/

. �k'kkW 2;p.U / C C� C 1:

Therefore, we can chose � > 0 sufficiently small so that

k'kC1kW 2;p

ı
.M/

6
1

2
k'kk

W
2;p

ı
.M/

C C; (3.70)
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for some constant C > 0 which depends on the barriers, the coefficients of the
equation, the neighbourhood U and our choice of � > 0, but is independent of k.
Thus, inductively, the above implies

k'kC1kW 2;p

ı
.M/

6 k'�k
W

2;p

ı
.M/

C C

kX
iD0

2�i 6 k'�k
W

2;p

ı
.M/

C 2C;

which proves that the sequence f'kg1
kD1

� W
2;p

ı
is uniformly bounded. There-

fore, by reflexivity of W 2;p

ı
, we now that it admits a weakly convergent subse-

quence, implying that there exists some ' 2 W
2;p

ı
such that 'k ! ' weakly in

W
2;p

ı
. Let us now show that ' solves the equation. For this, first notice that we

have a compact embeddings W 2;p

ı
,! W

1;p

ı 0 , with ı < ı0, implying that 'k ! '

strongly inW 1;p

ı 0 , and also we have C 0-convergence on compacts, due to the com-
pact embeddings for compact manifolds. Therefore,Z

M

.f1.x; 'k/ � a'k/  dV
 !

Z
M

.f1.x; �/ � a'/ dV
 ;Z
˙

.f2.x; 'k/ � b'k/  d˙ !

Z
˙

.f2.x; �/ � b'/ d˙;Z
M

�
hr'k;r i
 C a'k 

�
dV
 !

Z
M

�
hr';r i
 C a' 

�
dV
 ;

for all  2 C1
0 .M/. Therefore, we findZ

M

�
hr';r i
 C a' 

�
dV
 D lim

k!1

n
�

Z
M

�
�
'k � a'k

�
 dV
 C

Z
˙

�.'k/ d˙
o

D lim
k!1

n
�

Z
M

.f1.x; �k�1/ � a'k�1/  dV


C

Z
˙

.�f2.x; �k�1/C b'k�1 � b'k/  d˙
o

D �

Z
M

.f1.x; �/ � a'/ dV
 �

Z
˙

f2.x; �/ d˙:

Also, integrating by parts the left-hand side and cancelling out the shift terms, we
find Z

M

�
�
' � f1.x; �/

�
 dV
 C

Z
˙

.��. / � f2.x; �//  d˙ D 0;
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for all  2 C1
0 .M/ and with ' 2 W

2;p

ı
.M/, which implies that ' solves the

original boundary value problem.

3.4 Maximal black hole vacuum initial data
The tools developed above will play a important role in the analysis of very general
versions of the conformally formulated ECE.Themore general case, which allows
for far from CMC initial data, further constraint coupled to the Gauss–Codazzi
ones as well as coupling through boundary conditions and interactions with matter
fields will be dealt with in Chapter 4. For now, let us analyse the decoupled system
(3.40)-(3.41), which we rewrite below for the reader’s convenience.8(

�an�
� CR
� � j zKj2
�
� 3n�2

n�2 D 0;
1
2
an O�.�/C �H � zK. O�; O�/�� n

n�2 D 0; on ˙;
(3.71)

(
�
;confX D 0;

L
;confX. O�; �/ D ˛; on ˙:
(3.72)

where ˛ is a 1-form defined on a neighbourhood of˙ , which we shall chose so that
˛.�/ 6 0. Then, we shall consider that zK

:
D L
;confX in the conformal problem.

This implies that the boundary conditions satisfy (3.40) and therefore solutions
(with � > 0) to (3.71)-(3.72) which follow these conventions will provide us with
initial data

g D �
4

n�2 
;

K D ��2L
;confX;
(3.73)

which solve (recall � D 0)

Rg � jKj
2
g C �2 D 0;

divgK � d� D 0;

�C D 0 on ˙;
�� 6 0 on ˙;

(3.74)

providing us with appropriate black hole vacuum initial data for the evolution prob-
lem. Similarly to the case for closed manifolds, the analysis of the momentum
constraint is now quite straightforward.

8The results we shall present concerning the analysis of (3.71)-(3.72) are due toMaxwell (2005b).
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Lemma 3.4.1. Let .M n; 
/ be a W 2;p

ı
-AE manifold with compact boundary ˙

satisfying p > n
2
, n > 3 and 2�n < ı < 0. Let us assume that either 
 possesses

no CKF or that p > n. If ˛ in (3.72) is W 1;p

loc
.M/, then (3.72) admits a unique

solution X 2 W
2;p

ı
.

Proof. The proof is a direct application of Theorem 3.3.3. Since we are under
its hypotheses, it follows that if 
 has no CKF or if p > n (which excludes the
possibility of CKF in W 2;p

ı
), then the operator on the left-hand side of (3.72) is

an isomorphism acting from W
2;p

ı
7! L

p

ı�2
.M/ �W 1� 1

p
;p.˙/. Thus, since the

condition ˛ 2 W
1;p

loc
.M/ implies ˛j˙ 2 W 1� 1

p
;p.˙/, the claim follows from the

isomorphism property.

3.4.1 The Lichnerowicz equation

Let us now analyse the boundary value problem (3.71). First, let us present the fol-
lowing proposition which shows that (3.71) is of the form of the equations treated
in Theorem 3.3.4.

Proposition 3.4.1. Let .M n; 
/ be a W 2;p

ı
-AE manifold with n > 3, p > n

2
and

ı < 0. Let zK D L
;confX , with X 2 W
1;p

ı
. If H 2 W 1� 1

p
;p.˙/, then the

coefficients of (2.75) satisfy the hypotheses of Theorem 2.2.1.

Proof. Notice that we just need to show that R
 ; j zKj2
 2 L
p

ı�2
.M/ and zK 2

W 1� 1
p
;p.˙/. The condition on the scalar curvature follows directly from 
 being

W
2;p

ı
-AE and the multiplication property. Also, zK 2 W

1;p

ı�1
, which implies that

j zKj2
 2 L
p

ı�2
from the multiplication property and zKj˙ 2 W 1� 1

p
;p.˙/ from the

trace theorem.

Therefore, just as in Chapter 2, we see that we have reduced our task to con-
structing barriers for (3.71). In this case, the sign of both the scalar curvature of

 and the mean curvature of ˙ � .M n; 
/ play an important role. Therefore, let
us introduce the following elements concerning the analysis of the Yamabe prob-
lem on AE manifolds with boundary.9 Let us consider the following Yamabe-type

9Wewould like to point the interested reader to Escobar (1992, 1996) for the analysis of the Yam-
abe problem on compact manifolds wit boundary and to Dilts and Maxwell (2018) for the analysis
of the Yamabe problem on AE manifolds.
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quotient

Q
 .f /
:

D

R
M

�
anjrf j2
 CR
f

2
�
dV
 C

R
˙ 2Hf

2d˙


kf k2
L2�

.M;dV
 /

; (3.75)

for all f 2 C1
0 .M/, and, following Maxwell (2005b), we define

�

:

D inf
f 2C1

0 .M/
f 6�0

Q
 .f /: (3.76)

Let us first show that this is a conformal invariant. First, let us define

E
 .f /
:

D

Z
M

�
anjrf j

2

 CR
f

2
�
dV
 C

Z
˙

2Hf 2d˙
 ;

D

Z
M

�
R
f � an�
f

�
fdV
 C 2

Z
˙

�
1

2
an�.f /CHf

�
fd˙
 :

Given a conformal metric 
 0 :D u
4

n�2 
 , from Proposition 2.1.3, we know that

f
�
R
f � an�
f

�
D u

nC2
n�2

C1f 0
�
R
 0f 0

� an�
 0f 0
�
; f 0 :

D u�1f:

This implies thatZ
M

�
R
f � an�
f

�
fdV
 D

Z
M

u
2n

n�2

�
R
 0f 0

� an�
 0f 0
�
f 0dV
 ;

D

Z
M

�
R
 0f 0

� an�
 0f 0
�
f 0dV
 0 :

Let us now analyse the boundary terms. From the computations of Section 3.3.1,
we know that �0 D u� 2

n�2 � andH 0 D u� n
n�2

�
an

2
�.u/CHu

�
, whereH 0 denotes

the mean curvature of ˙ ,! .M n; 
 0/. Then,

f 0

�
1

2
an�

0.f 0/CH 0f 0

�
D u� n

n�2
�1f

�1
2
an�.f /CHf

�
;

D u�
2.n�1/

n�2 f
�1
2
an�.f /CHf

�
:

Then, noticing that d˙
 0 D u
2.n�1/

n�2 d˙
 , we findZ
˙

�
1

2
an�

0.f 0/CH 0f 0

�
f 0d˙
 0 D

Z
˙

�
1

2
an�.f /CHf

�
fd˙
 :
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Finally, we already know that kf 0k2
L2�

.M;dV
0 /
D kf k2

L2�
.M;dV
 /

, and therefore
we have established that

Q
 0.f 0/ D Q
 .f /; (3.77)

which proves the infimum among all C1
0 .M/ is a conformally invariant number.

Let us now present the following characterisation for �
 > 0. First, define the
1-parameter family of operators

P� W W
2;p

ı
.M/ 7! L

p

ı�2
.M/ �W 1� 1

p
;p.˙/;

u 7! .�an�
uC �R
u;
an

2
�.u/C �Hu/;

(3.78)

for each � 2 Œ0; 1�.

Proposition 3.4.2. (ibid., Proposition 3) Let .M n; 
/ be a W 2;p

ı
-AE manifold,

with p > n
2
, 2 � n < ı < 0 and n > 3. Then, the following conditions are

equivalent:

1. There is a conformal factor � > 0 such that 1 � � 2 W
2;p

ı
and such that

.M n; 
 0 D �
4

n�2 
/ is scalar flat and has minimal surface boundary;

2. �
 > 0;

3. P� W W
2;p

ı
.M/ 7! L

p

ı�2
.M/ � W 1� 1

p
;p.˙/ is an isomorphism for each

� 2 Œ0; 1�.

We now have the following straightforward corollary.

Corollary 3.4.1. (ibid., Corollary 1) Let .M n; 
/ be a W 2;p

ı
-AE manifold, with

p > n
2
, 2 � n < ı < 0 and n > 3. If �
 > 0, then there is a conformal factor

� > 0, such that 1 � � 2 W
2;p

ı
and such that 
 0 :D �

4
n�2 
 satisfies R
 0 D 0 and

˙ ,! .M n; 
 0/ has negative mean curvature.

Proof. Using Proposition 3.4.2, we can start assuming that R
 D 0 and H
 D 0,
since, if this were not the case, we could achieve it via a a conformal transformation
which preserves �.Œ
�/ > 0. Thus, we intend to find a positive function � > 0,
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with 1 � � 2 W
2;p;

ı
solving

��
� D 0

�
R
�

4
n�2 


D 0

�
;

�.�/ < 0

�
H
�

4
n�2 


< 0

�
:

(3.79)

With this in mind, fix � > 0 and consider the equation for ' 2 W
2;p

ı

��
' D 0;

�.'/ D ��;

which has a unique solution '� 2 W
2;p

ı
due to Theorem 3.3.1. From the embed-

ding W 2;p

ı
,! C 0

ı
for p > n

2
and elliptic estimates, we know that '� depends

continuously on � in the C 0
ı
topology. Thus, since '0 � 0, we see that for � suffi-

ciently small '� > �1, implying that ��
:

D 1C '� > 0 for all such small � > 0

and .��
��; �.��// D .0;��/. Thus, �� solves (3.79) and 
 0 D �
4

n�2
� 
 satisfies

our claims.

We will now present the main result of the section, which proves the existence
of solutions to (3.71) when the conformal data is Yamabe positive. This is also a
consequence of Maxwell (2005b, Theorem 1)

Theorem 3.4.1. Let .M n; 
/ be aW 2;p

ı
-AE manifold, with p > n

2
, 2�n < ı < 0

and n > 3. Suppose �
 > 0, R
 D 0, H
 6 0 and zK is a W 1;p

ı�1

 -T T tensor.

If H
 6 zK. O�; O�/ 6 0 along ˙ , then there is a conformal factor � solving (3.71),
with � � 1 2 W

2;p

ı
, and therefore .g D �

4
n�2 
;K D ��2 zK/ solve (3.74).

Proof. Appealing toTheorem 3.3.4, we know that what we need to do is to exhibit
barriers for (3.71). Since we are assuming R
 D 0 the system becomes

�an�
� D j zKj
2

�

� 3n�2
n�2 ;

1

2
an O�.�/ D �H� C zK. O�; O�/�� n

n�2 ; on ˙:
(3.80)

Notice that zK. O�; O�/ �H
 > 0 along ˙ by assumption. Then �� � 1 is a subso-
lution. Let us now look for a supersolution �C > 1. With this in mind, consider
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the family of equations

�an�
' D j zKj
2

 > 0;

1

2
an O�.'/C �H' D ��H > 0;

(3.81)

with � 2 Œ0; 1�, which have unique solutions '� 2 W
2;p

ı
from Proposition 3.4.2.

Then, ��
:

D 1C '� satisfy

�an�
�� D j zKj
2

 ;

1

2
an O�.��/C �H�� D 0:

(3.82)

We first want to prove that �1 > 0. Notice that since H might be negative, we
cannot apply the maximum principle directly. Nevertheless, we know that �0 > 0

due to the weak maximum principle, and due to the strong maximum principle
of Lemma 3.3.2, we know that �0 > 0, since if it vanishes at one point it must
then vanish identically and would contradict that �0 ! 1 at infinity. Thus, the
set I :

D f� 2 Œ0; 1� W �� > 0g ¤ ;. We intend to show that I D Œ0; 1� by
showing that I is both open and closed. To see that it is open, we use a similar
argument to the one in the above corollary. That is, the embedding W 2;p

ı
,! C 0

ı
and elliptic estimates prove that the family '� is continuous with respect to � in
the C 0

ı
topology. Therefore, the condition '� > �1 , �� > 0 is open in �. To

see that it is closed, assume that �0 2 NI � Œ0; 1�. Then ��0
> 0 and satisfies

�an�
��0
D j zKj

2

 > 0;

1

2
an O�.��0

/ > ��0H��0
> 0;

and, again, since ��0
! 1 at infinity, Lemma 3.3.2 implies that ��0

> 0. That is,
�0 2 I and therefore I is closed, implying by connectedness that I D Œ0; 1�. That
is, we have established that �1 > 0. But now this implies that

�an�
'1 D j zKj
2

 > 0;

1

2
an O�.'1/ D �H�1 > 0;
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showing that '1 > 0 through the weakmaximum principle of Lemma 3.3.1. There-
fore, setting �C

:
D �1 D 1C '1 > �� D 1 and notice that

�an�
�C D j zKj
2

 > j zKj

2

�

� 3n�2
n�2

C ; .�C > 0/

an

2
O�.�C/ D �H
�C > �H
�C C zK. O�; O�/�

� n
n�2

C ; . zK. O�; O�/ 6 0/;
(3.83)

proving that we have constructed barriers 0 < �� 6 �C satisfying the hypotheses
ofTheorem 3.3.4, and thus we have a positive solution � to (3.71), with �� 6 � 6
�C and � � 1 2 W

2;p

ı
.

At first sight, the geometric hypotheses in the above theorem may not seem
easy to satisfy. Nevertheless, notice that we can always proceed as follows. If
.M n; 
/ is Yamabe positive, then (if necessary), first deform to 
 0 D �

4
n�2 
 ac-

cording to Equation (3.79), so that R
 0 � 0 and H
 0 < 0. Then, on .M n; 
 0/,
solve the momentum constraint (3.72) using Lemma 3.4.1 and fixing ˛ :

D h�0[,
where �0 is the 
 0 unit normal to ˙ and h 2 W

1;p

loc
.M/ is any function satisfying

H
 0 6 h 6 0 along ˙ . This implies that

zK
 0.�0; �0/ D L
 0;confX.�
0; �0/ D h > H
 0 : (3.84)

Therefore, the data .M n; 
 0; zK
 0/ satisfy all the hypotheses of Theorem 3.4.1 and
we can find a solution to our problem. Furthermore, we have a conformal covari-
ance property which allows us to build a related solution starting with 
 which
gives rise to the same physical data .g;K/ as follows.

Lemma 3.4.2. Let .M n; 
/ be a Rimannian manifold, 
 2 W
2;p

loc
, n > 3, p > n

2
.

Consider a positive function � 2 W
2;p

loc
and define the Riemannian metric 
 0 D

�
4

n�2 
 . Then, given a TT-tensor zK 2 W
1;p

loc
and a positive function � 2 W

2;p

loc
, the

pair .�; zK/ is a solution of

�an�
� CR
� � j zKj
2

�

� 3n�2
n�2 D 0;

1

2
an�.�/CH
� � zK.�; �/�� n

n�2 D 0; on ˙;

zK.�; �/ 6 0;

(3.85)
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if and only if �0 D ��1� satisfies

�an�
 0�0
CR
 0�0

� j zK 0
j
2

�

0� 3n�2
n�2 D 0;

1

2
an�

0.�0/CH
 0�0
� zK 0.�0; �0/�0� n

n�2 D 0; on ˙;

zK 0.�0; �0/ 6 0;

(3.86)

where zK 0 D ��2 zK. Furthermore, both solutions give rise to the same maximal
vacuum physical initial data

g D �0 4
n�2 
 0

D �
4

n�2 
; K D �0�2 zK 0
D ��2 zK (3.87)

solving the problem

Rg � jKj
2
g D 0;

divgK D 0;

�C D 0 on ˙;
�� 6 0 on ˙;

(3.88)

Proof. From Lemma 2.1.1, we know that

� an�
 0�0
CR
 0�0

� j zK 0
j
2

�

0� 3n�2
n�2 D 0 ()

� an�
 0�0
CR
 0�0

� j zK 0
j
2

�

0� 3n�2
n�2 D 0:

Furthermore, since �0 D �� 2
n�2 �, then, by definition of zK 0,

zK.�; �/ 6 0 , zK 0.�0; �0/ 6 0:

Therefore, we must concentrate on the boundary condition. But we already know
that

an

2
�0.�0/CH
 0�0

D �� n
n�2

�an
2
�.�/CH
�

�
;

which we can put together with

zK 0.�0; �0/�0� n
n�2 D �� 4

n�2
�2 zK.�; �/�

n
n�2�� n

n�2 ;

D �� n
n�2 zK.�; �/�� n

n�2 ;
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to get

an

2
�0.�0/CH
 0�0

� zK 0.�0; �0/�0� n
n�2 D

D �� n
n�2

�an
2
�.�/CH
� � �� n

n�2 zK.�; �/�� n
n�2

�
:

implying that the boundary conditions are satisfied in one set of variables iff they
are satisfied in the other. Therefore, we have established that (3.85) , (3.86),
and then (3.87) follows immediately by our definitions of �0 and zK 0. Also, since
trgK D tr
 zK D tr
 0 zK 0 D 0 by definition, from Proposition 2.1.2 we know that

divgK D 0 , div
 zK D 0 , div
 0 zK 0
D 0:

Finally, we know from Section 3.3.1 that8̂<̂
:
Rg D jKj2g ;

�C D 0 on ˙;
�� 6 0 on ˙;

()

8̂<̂
:

�an�
� CR
� � j zKj2
�
� 3n�2

n�2 D 0;
1
2
an�.�/CH
� � zK.�; �/�� n

n�2 D 0; on ˙;
zK.�; �/ 6 0; on ˙:

In Chapter 4 we will return to the analysis of black hole initial data in the
presence of matter fields and also without invoking CMC assumptions.

Finally, let us notice that the above results immediately extend to the case
˙ D ;, simply by ignoring the analysis on the boundary while working only
on the bulk (See Maxwell 2005b, Theorem 2). In this context, we can present a
uniqueness result which is quite close to the one presented in Theorem 2.2.6.

Theorem3.4.2 (Uniqueness). Let .M n; 
/ be aW 2;p

ı
-AEmanifold without bound-

ary satisfying p > n
2
, ı < 0 and n > 3. Furthermore, assume that zK 2 W

1;p

ı�1
in

(3.71). Let�1 and�2 be two positiveW 2;p

loc
-solutions of (3.71), with�i�1 2 W

2;p

ı
,

i D 1; 2, then either �1 � �2 or zK � 0, �
 > 0 and �1 D c�2 for some constant
c > 0.

Proof. Under our hypotheses, define � :
D �2�

�1
1 and let g1

:
D �

4
n�2

1 
 . Then,
from conformal covariance

an�g1
� �Rg1

� D � j zK1j
2
g1
�� 3n�2

n�2 ;
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where zK1 D ��2
1

zK and, by construction,
�
g1; K1 D zK1

�
solve theGauss-constraint.

In particular,

Rg1
D j zK1j

2
g1
;

which implies

an�g1
.� � 1/ D � j zK1j

2
g1

�
�� 3n�2

n�2 � �
�
; (3.89)

Notice that j zK1j
2
g1

2 L
p

ı�2
and therefore, since �� 3n�2

n�2 � � 2 W
2;p

ı
, we find

j zK1j
2
g1

�
�� 3n�2

n�2 � �
�

2 L
p

ı 0�2
for any 0 > ı0 > 2ı. Hence, there is some

maxf2ı; 2 � ng < ı0 < ı such that the right-hand side of equation (3.89) lies
in Lp

ı 0�2
. Therefore, from Theorem 3.3.1, we have � � 1 2 W

2;p

ı 0 . Similarly to
Lemma 3.3.3, we can iterate the procedure to get ��1 2 W

2;p

ı 0 for any ı0 > 2�n.
Let us nowmultiply the above equation by .��1/C

:
D maxf��1; 0g 2 W

1;2
ı 0 .

We would like to integrate the left-hand side of the resulting equality by parts with
respect to dVg1

. Let us spell out this procedure considering the case n
2
< p < n

which implies the other ones. In this case, we have

W
1;2
ı 0 ,! L

p0

2�ı 0�n
; (3.90)

as long as p0 6 2n
n�2

and we can pick 2 � ı0 � n > ı0 > 2 � n. The first of these
conditions is equivalent to

1 �
1

p
>
1

2
�
1

n
()

1

2
C
1

n
>
1

p
()

nC 2

2n
>
1

p
() p >

2n

nC 2
;

and since n > 3, then n
2

> 2n
nC2

. Thus, from p > n
2
, this conditions is fulfilled.

Concerning the second one, it can be satisfied as along as we can pick ı0 in the
range

1 �
n

2
> ı0 > 2 � n;

which we can always do. Then, consider sequences f'C

k
g; f'kg � C1

0 .M/ con-
verging to 'C :

D .� � 1/C and ' :
D .� � 1/ inW 1;2

ı 0 andW 2;p

ı 0 respectively. This
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implies thatˇ̌̌ Z
M

'C�g1
'dVg1

�

Z
M

'C

k
�g1

'kdVg1

ˇ̌̌
6
Z
M

j.'C
� 'C

k
/�g1

'jdVg1

C

Z
M

j'C

k
�g1

.' � 'k/jdVg1
;

6 k'C
� 'C

k
k
L

p0

2�ı0�n

k�g1
'kLp

ı0�2

C k'C

k
k
L

p0

2�ı0�n

k' � 'kkLp

ı0�2
;

where the right-hand side goes to zero. Therefore,Z
M

'C�g1
'dVg1

D lim
k!1

Z
M

'C

k
�g1

'kdVg1
;

D � lim
k!1

Z
M

hr'C

k
;r'kig1

dVg1

(3.91)

To deal with the right-hand side in the last identity, we must apply a similar reason-
ing to that given above. That is, notice that W 1;p

ı 0�1
,! L2

ı 0�1
as long as 2 6 np

n�p
,

which is equivalent to p > 2n
nC2

, where this last condition is now known to be sat-
isfied due to the previous discussion. Therefore r'C;r' 2 L2

ı 0�1
. Notice that

L2
ı 0�1

,! L2
1�ı 0�n

as long as 1 � ı0 � n > ı0 � 1, implying that the embedding
holds as long as 1 �

n
2
> ı0 > 2 � n, which is the case. Therefore, the same

argumentation as above shows that the right-hand side in (3.91) also converges to
its limit, justifying the integration by parts:Z

�>1

.� � 1/C�g1
.� � 1/dVg1

D

Z
M

.� � 1/C�g1
.� � 1/dVg1

;

D �

Z
�>1

jr.� � 1/j2g1
dVg1

6 0:

On the other hand, if � > 1, then �� 3n�2
n�2 � � < 0, implyingZ

�>1

.� � 1/C�g1
.� � 1/dVg1

D �

Z
'>1

.� � 1/Cj zK1j
2
g1

�
�� 3n�2

n�2 � �
�
dVg1

> 0;

and therefore

0 D

Z
M

.' � 1/C�g1
.' � 1/dVg1

D

Z
'>1

jr.' � 1/j2g1
dVg1

: (3.92)
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That is, � � 1 D cte on the open subset � > 0.
Applying a similar argument to .� � 1/�

:
D minf0; � � 1g 2 W

1;2
ı 0 we get the

same results, that is

0 D

Z
M

.� � 1/��g1
.� � 1/dVg1

D �

Z
�<1

jr.� � 1/j2g1
dVg1

; (3.93)

implying ��1 D cte on � < 1. Since � is continuous, it follows that ��1 � cte

and therefore �1 D c�2. If c ¤ 1, then

0 D

Z
M

j zK1j
2
g1

�
�� 3n�2

n�2 � �
�
dVg1

Since � D c ¤ 1, then zK � 0. This, in turn, implies that Rg1
� 0, which implies

�
 > 0 through Proposition 3.4.2.

Let us end this chapter with a brief note on the status of the analysis of the
Lichnerowicz equation on non-compact manifolds. In particular, we would like
to point out to the reader that this equation has been analysed on non-compact
manifolds with other interesting asymptotic geometries, such as asymptotically
cylindrical and/or hyperbolic ends, for instance in Chruściel and Mazzeo (2015).
Also, general complete non-compact manifolds were analysed in Albanese and
Rigoli (2016) and, more generally, metrically complete manifolds (which may ad-
mit even non-compact boundaries) were studied in Albanese and Rigoli (2017).
Also, useful results on Yamabe-type equations on non-compact manifolds can be
found in Mastrolia, Rigoli, and Setti (2012).



4 Far from CMC
solutions

In Chapters 2 and 3 we have seen how to produce solutions to the ECE both on
closedmanifolds andAEmanifolds under a CMC condition, which allows us to de-
couple their conformal formulation. In this chapter, the ultimate goal is to analyse
the existence of solutions to systems of the form of (1.69) through their confor-
mal formulation (2.38).1 This will demand us to deal with a fully coupled sys-
tem of semi-linear PDEs. As was noted in Chapter 2, the system (2.38) does not
even decouple under CMC assumptions, which makes it substantially more subtle.
Furthermore, if we attempt to produce black hole initial data as in Chapter 3, us-
ing the results of Section 3.3.1, in particular (3.31), we will add further coupling
through the boundary conditions. All this provides us with a strong motivation to
attempt to prove robust existence theorems, which can deal with general systems
of this kind, which will be the content of Section 4.3. But, before that, we will re-
view some recent remarkable results from Holst, Nagy, and Tsogtgerel (2009) and
Maxwell (2009) where the authors were able to establish far-from-CMC results
for the Gauss–Codazzi system (2.1).

In order to present the results referred to above, this chapter will be organised
as follows. In Section 4.1, we will start by describing implicit function techniques

1In Section 4.3, we will analyse a slightly less general system, which arises by neglecting the
scalar field and the pressure terms arising from the perfect fluid in (2.38).
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(due to Choquet-Bruhat (2004)) which allow us to build non-CMC solutions in a
neighbourhood of CMC-data (see also Isenberg and Moncrief (1996)). Then, we
will actually exhibit the results of Maxwell (2009) to produce vacuum solutions
to (2.1) with freely prescribed mean curvature. These result belong to a family of
recent results, which started with the work of Holst, Nagy, and Tsogtgerel (2009),
and have systematically improved existence results for (2.1) allowing for far-from-
CMC constructions under different assumptions on the coefficients and the man-
ifoldM (see Dilts, Isenberg, et al. (2014), Holst and Meier (2014), Holst, Meier,
and Tsogtgerel (2018), Nguyen (2016), Premoselli (2014), and Vâlcu (2020)).2
Building on ideas of these authors, we will analyse the conformally formulated
system (2.38), and present far-from-CMC results results for black hole initial data
on AE manifolds, which are due to Avalos and Lira (2019). Finally, let us just no-
tice that, contrary to Chapters 2 and 3, uniqueness results in this setting are much
more subtle and non-uniqueness is known to occur (see, for instance, Isenberg and
ÓMurchadha (2004), Maxwell (2011), and Premoselli (2015) as well as references
therein).

4.1 Near CMC-solutions

Let us start by recalling the conformal formulation of the constraints (2.1) with
sources given by a self-interacting scalar field and a perfect fluid. Such a systems
can be derived from (2.35) by setting to zero the electromagnetic contributions.3
Explicitly, we find

�
' � r
' C aT T '
� 3n�2

n�2 � a�'
nC2
n�2 D 0;

�
;confX � !�'
2n

n�2 � !�'
2nC1

n�2 � !� D 0;
(4.1)

2Let us also point out to the reader the non-CMC existence and non-existence results obtained
by Dahl, Gicquaud, and Humbert (2012) on closed manifolds as well as the related analysis on
asymptotically hyperbolic manifolds of Gicquaud and Sakovich (2012).

3Neglecting electromaagnetic contributions is not really a restriction for tools presented in this
section, but allows for a cleaner and more straightforward presentation. Similar results can be ob-
tained in those cases, and, since the main objective of this chapter is to obtain far-from-CMC results,
we leave suchmodifications for the reader, who can find some of these extensions in Choquet-Bruhat
(2004) as well as Choquet-Bruhat (2009, Chapter VII, Section 8).
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with

r

:

D cn
�
R
 � jr�j

2



�
;

a�
:

D
n � 2

4n
�2 � 2cn�0; �0

:
D V.�/C .�C p/

�
1C jzuj

2



�
� p;

aT T
:

D cn

�
j zKj

2

 C z�2

�
;

!�
:

D �z�d�;

!�
:

D
n � 1

n
d�;

!�
:

D
�
1C jzuj

2



� 1
2 .�C p/zu[;

and recalling that zK.X/ D L
;confX C U , where U is a freely prescribed TT-
tensor field.

Let us consider the above system on a closed manifoldM n, n > 3 and rewrite
the above system more compactly, slitting the conformal data for the unknowns.
That is, consider  :

D .
; �; U; �; z�;�; p; zu/ 2 B2, where

B2
:

D M2;p
�W 1;p

�W 1;p
�W 2;p

�W 1;p
�W 1;p

�W 1;p
�W 2;p; (4.2)

where M2;p denotes the open cone of W 2;p-Riemannian metrics on M , where
p > n

2
. Finally, let us also assume that the potential function V W R 7! R is

smooth, so that from our choice of � 2 W 2;p and Lemma A.2.1, we know that
V.�/ 2 W 2;p . Then, denote by X :

D .';X/ 2 B1
:

D W 2;p �W 2;p , and also

˚ W B1 � B2 7! B3;
.X ;  / 7! .H.X ;  /;M.X ;  // ;

(4.3)

where we havev denoted

H.X ;  / :D �
' � r
' C aT T '
� 3n�2

n�2 � a�'
nC2
n�2 ;

M.X ;  / :D �
;confX � !�'
2n

n�2 � !�'
2nC1

n�2 � !� ;
(4.4)

and also B3
:

D Lp � Lp. The fact that the map (4.3) is well-defined and acts be-
tween the stated functional spaces is a consequence of the Sobolev multiplication
properties, which by now arewell-known. Then, the system (4.1) can be compactly
rewritten as

˚.X ;  / D 0: (4.5)
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The strategy to produce near-CMC solutions is a classical one, following from
implicit function arguments. That is, suppose we start with a known CMC solution
.X0;  0/ to (4.5), and consider the linearisation of˚ with respect toX at the point
.X0;  0/, which is given by the linear map

DX˚.X0; 0/ W B1 7! B3;
Y 7!

�
DXH.X0; 0/ � Y;DXM.X0; 0/ � Y

�
;

(4.6)

where Y D .v; Y / 2 B1 and the linear maps DXH.X0; 0/ W B1 7! B3 and
DXM.X0; 0/ W B1 7! B3 can be deduced from (4.1) to be

DXH.X0; 0/ � Y D D'H.X0; 0/ � .v; 0/CDXH.X0; 0/ � .0; Y /;

D �
0
v �

�
0
r
 C

3n � 2

n � 2

0
aT T '

�4n�1
n�2

0 C
nC 2

n � 2

0
a�'

4
n�2

0

�
v

C '
� 3n�2

n�2

0 .DXaT T / 0
� Y;

DXM.X0; 0/ � Y D D'M.X0; 0/ � .v; 0/CDXM.X0; 0/ � .0; Y /;

D �
0;confY �

�
2n

n � 2

0
!�'

nC2
n�2

0 C 2
nC 1

n � 2

0
!�'

nC4
n�2

0

�
v;

(4.7)

where the quantities with a zero on top a computed with the data  0, and one can
check that all the operators are well defined and act between the corresponding
functional spaces using Sobolev multiplication properties. In this context, if we
show that DX˚.X0; 0/ is an isomorphism, then, the implicit function theorem
(see Abraham, Marsden, and Ratiu (1988, Theorem 2.5.7)) guarantees that there
are neighbourhoods U of  0 in B2 and V of X0 in B1, and a unique C 1-map

h W U 7! V; (4.8)

such that

˚.h. /;  / D 0; 8  2 U : (4.9)

Furthermore, if '0 > 0, then since W 2;p ,! C 0 for p > n
2
, then the solution '

given above is also positive if we take U small enough. Therefore, our task is to
show that this linearisation is actually an isomorphism around appropriate CMC-
data. Before presenting the corresponding result, let us highlight the following
fact. Let .M n; g;K; �; �; �; p; u/ be a solution to the Einstein - scalar field -
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perfect fluid system associated to (2.1), withM n closed, g 2 W 2;p , K 2 W 1;p,
� 2 W 2;p , �;�; p 2 W 1;p and u 2 W 2;p . If g has no CKF, then, the splitting
K D

ı

K C
�
n
g, where

ı

K stands for the traceless part of K, admits one further
decomposition. Explicitly, let X 2 W 2;p be the unique solution to (guaranteed to
exist and be unique due to the no CKF condition and Theorem B.8)

�g;confX D divg
ı

K;

and define U :
D

ı

K � Lg;confX , which guarantees that divgU D 0 and therefore
U is a g-TT tensor. Then, we can write

K D Lg;confX C U C
�

n
g; (4.10)

with U the T T -part associated to K. Notice then, that the conformal problem
(4.1) with conformal data .g; �; U; �; �; �; p; u/ has the obvious solution .' D

1;X/, with X given by (4.10). Therefore, given such a CMC solution, we have
conformal data  0

:
D .g; �; U; �; �; �; p; u/ 2 B2 with the associated solution

X0
:

D .1;X/ 2 B1, and shall therefore linearise at .X0;  0/.

Theorem 4.1.1. Let .M n; g;K; �; �; �; p; u/ be a CMC -solution to the Einstein
- scalar field - perfect fluid system associated to (2.1), with M n closed, n > 3,
g 2 W 2;p, K 2 W 1;p, � 2 W 2;p , � 2 W 1;p with smooth potential function
V W R 7! R for the scalar field and trivial fluid data � D 0; p D 0; u D 0. If 4

n � 2

4n
�2 � 2cnV.�/ > 0;

and g possesses no CKFs, then there is a B2-neighbourhood U of the conformal
data 0 D .g; �; U; �; �; � D 0; p D 0; u D 0/, whereU is the TT-tensor defined
by (4.10), such that (4.8)-(4.9) are satisfied and h. / 2 B1 solve the conformal
problem (4.1).

Proof. From our previous discussion, we need to show that DX˚.X0; 0/ is an
isomorphism with  0 taken as in the theorem and X0

:
D .1;X/ 2 B1, where X is

given by (4.10). Using our assumptions on such a background solution .X0;  0/,
this is equivalent to proving that the system

�gv � av C .DXaT T / 0
� Y D f;

�g;confY D F;
(4.11)

4Recall from Chapter 2 that cn D
1
4
n�2
n�1 .
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has a unique solution .v; Y / 2 W 2;p �W 2;p for .f; F / 2 Lp � Lp, where

a
:

D
0
rg C

3n � 2

n � 2

0
aT T C

nC 2

n � 2

0
a� 2 Lp (4.12)

Since the second equation above decouples, we know that the no CKF condi-
tion guarantees that it is uniquely solvable for each F 2 Lp. This makes the last
term in the left-hand side of the first equation a datum and therefore, the problem
is reduced to proving that �g � a W W 2;p 7! Lp is an isomorphism. From our
hypotheses, notice that if 0rg > 0 a.e, then a > 0 a.e. and then the isomorphism
property follows from Theorem B.7. In the general case, notice that .g;K; �; �/
by hypothesis solve

Rg D jKj
2
g � �2 C �2 C jr�j

2
g C 2V.�/;

D j
ı

Kj
2
g C

1 � n

n
�2 C �2 C jr�j

2
g C 2V.�/;

which is equivalent to

rg D cn.Rg � jr�j
2
g/ D cn

�
j

ı

Kj
2
g C �2

�
� cn.

n � 1

n
�2 � 2V.�//;

D
0
aT T �

0
a� :

This implies that

a D 4
n � 1

n � 2

0
aT T C

4

n � 2

0
a� > 0 a.e;

and therefore the isomorphism claim follows.

With the aid of the above theorem, we can can construct low-regularity near
CMC initial data for the Einstein - scalar field - perfect fluid system in a neigh-
bourhood of some prior CMC solution with zero fluid data. Furthermore, the tech-
niques described above can clearly be used to accommodate other kinds of mat-
ter fields, and can also be extended outside the case of closed manifolds as long
as the corresponding functional analytic and linear PDE properties remain valid,
which is the case, for instance, for AE-manifolds appealing the weighted spaces of
Chapter 3. We leave such modifications for the reader, who can also consult a sim-
ilar version of the above theorem in this non-compact context in Choquet-Bruhat
(Chapter VII 2009, Theorem 12.2).
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4.2 Vacuum solutionwith freely specifiedmean curvature

Let us nowmove to the core is this chapter, which is the analysis of initial data with
freely prescribed mean curvature. First, let us highlight the effectiveness of the
conformal method described in Chapter 2 to deal with the ECE when these equa-
tions decouple, which always involves a CMC condition. On closed manifolds,
such effectiveness is reflected by the detailed description of space of solutions pro-
vided in Theorem 2.2.7. In this case, we needed to impose strong conditions on
the coefficients of (2.35) which introduce coupling between the equations (among
them, the mean curvature) but, besides that, the restrictions on the remaining co-
efficients were mild. In the previous section we have widened this description by
allowing for near CMC data, but it has actually been a challenge in the analysis of
the ECE to be able to produce initial data with freely prescribed mean curvature,
which is something that inevitably faces us with the difficulty of having to deal
with the coupled system.

Although outside the CMC context the conformal method has proven to be
less effective that in the CMC-case, there have been recent advances in this new
direction starting with the work of Holst, Nagy, and Tsogtgerel (2009), where
the authors were able to produce low-regularity far-from-CMC initial data. Not
surprisingly, this new freedom on the mean curvature comes at the expense of de-
manding certain smallness conditions on the remaining coefficients of the system.
Furthermore, in this original work, the authors also needed to exclude the vacuum
case and considered certain phenomenological sources which can accommodate
some classical fields. Nevertheless, the vacuum case has been shown not be out-
side the scope of their techniques, and has been dealt with in Maxwell (2009). In
this last case, the analysis trades the CMC-condition for some smallness condition
of the TT-part of the extrinsic curvature. Below, we shall present these vacuum
results which exemplify the ideas introduced in these two foundational papers. We
shall follow Maxwell (ibid.), since the techniques used in this last paper are closer
to those we have presented in Chapter 2, allowing for a more direct presentation.
Besides, in the following section (through slightly different techniques), we will
incorporate matter fields, which can even include further coupling with electro-
magnetic sources and boundary data. In order to provide a cleaner presentation,
we shall restrict to the 3-dimensional case, a restriction which shall be lifted in the
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final section. Therefore, we now intend to analyse the system

�8�
' CR
' D �
2

3
�2'5 C jL
;confX C U j

2'�7;

�
;confX D
2

3
'6d�;

(4.13)

posed on a 3-dimensional Riemannian manifold .M 3; 
/, and following our con-
ventions we will denote by zK.X/ D L
;confX C U .

In order to describe the strategy adopted in Maxwell (ibid.) to deal with the
system (4.13), let us first present the following characterisation for the solutions
of the Lichnerowicz equation

�8�
' CR
' D �
2

3
�2'5 C j zKj

2'�7 (4.14)

for fixed .
; �; zK/.

Theorem 4.2.1. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3. Then, equation (4.14) with �; zK 2 W 1;p admits a positive solution ' 2

W 2;p if and only if one of the following conditions hold:

1. Y.Œ
�/ > 0 and zK 6� 0;

2. Y.Œ
�/ > 0, zK 6� 0 and � 6� 0;

3. Y.Œ
�/ < 0 and there is a conformal deformation of 
 to 
 0 withR
 0 D
2
3
�2;

4. Y.Œ
�/ D 0, zK; � � 0.

Furthermore, in the first three cases the solution is unique, while in the last one
any two such solutions solutions '1 and '2 are of the form '2 D c'1, with c > 0.

Proof. the uniqueness claim is a direct application of Theorem 2.2.6. Concerning
existence, cases .1/; .2/ and .4/ are also a direct application of Lemma 2.2.6, and
case .3/ a direct application of Proposition 2.2.4.

A few remarks are now in order. First, notice that we have presented the above
theorem appealing to more regularity than what is actually necessary. This is be-
cause in our analysis of the coupled system (4.13) we will need to have some point
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wise control over zK.X/. If p > 3, then W 1;p is an algebra under multiplication,
and therefore if zK.X/ 2 W 1;p, we can estimate

j zK.X/j2





W 1;p . k zK.X/k2

W 1;p 6 2
�
kL
;confXk

2
W 1;p C kU k

2
W 1;p

�
;

. kXk
2
W 2;p C kU k

2
W 1;p :

Also, we have W 1;p ,! C 0, which allows us to estimate

j zK.X/j2
 . k zK.X/k2
W 1;p . kXk

2
W 2;p C kU k

2
W 1;p ;

and therefore we gain point wise control of the coefficient j zK.X/j2
 in terms of
kXk2

W 2;p , which, in turn, whenever X is constructed from a solution of the mo-
mentum constraint with fixed source ', can be estimated appealing to elliptic esti-
mates on the conformal Killing Laplacian.

Also, let us notice that item .4/ in the above theoremwill not play an important
role in subsequent analysis, since this case falls back on the CMC analysis of
Chapter 2.

Finally, fixing our conformal data .
; �; U / with � 6� 0, the above theorem
provides a clear description of the domain D
;� of the map5

L1 W D
;� � W 1;p
7! W 2;p;

zK 7! ' D L1. zK/;
(4.15)

which assigns to zK 2 D
;� � W 1;p the corresponding solution to (4.14) according
to Theorem 4.2.1. That is, according to Theorem 4.2.1, such map is well-defined
on

D
;� D

(
W 1;pnf0g; if Y.Œ
�/ > 0;

W 1;p; if Y.Œ
�/ < 0 and 9 
 0 2 Œ
� such that R
 0 D �
2
3
�2;

(4.16)

furthermore (from the “only if” part of the theorem) these are maximal domains
of definition for L1 in W 1;p. This motivates the following definition.

Definition 4.2.1. Let .M 3; 
/ be a closed Riemannian manifold and �; zK 2 W 1;p

a function and a symmetric tensor field respectively. We will say that 
 and �
are Lichnerowicz compatible is they satisfy one the conditions of cases 1-3 in
Theorem 4.2.1 and we will say that zK is admissible is it satisfies the corresponding
condition of this theorem.

5Notice that, the uniqueness claim in Theorem 4.2.1 is key to guarantee that the map L1 is well-
defined.
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Going back to the strategy we shall adopt to deal with the system (4.13), Sup-
pose we fix our conformal data .
; �; U / 2 W 2;p �W 1;p �W 1;p, p > 3, assume
that 
 has no CKF. Then, given any positive ' 2 L1

C , the momentum constraint
in (4.13) is uniquely solvable. That is, we get a map

L2 W L1
C 7! W 2;p;

' 7! X'
(4.17)

which assigns to ' 2 L1
C the corresponding unique solution to themomentum con-

straint X' D L2.'/, where are have denoted by L1
C the set of positive elements

in L1. This map is well-defined, since under the above hypothesis the right-hand
side of the momentum constraint in (4.13) is in Lp and the no CKFs condition
implies that �
;conf W W 2;p 7! Lp is an isomorphism through Theorem B.8.
Proposition 4.2.1. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and assume that 
 possesses no CKFs. Let � 2 W 1;p be a function
and U 2 W 1;p a TT-tensor. Assume that 
 and � and Lichnerowicz compatible
and that U is admissible. Then, given any ' 2 L1

C , the symmetric tensor field
zK.X'/ D L
;conf.X'/C U is Lichnerowicz admissible.
Proof. Since 
 has no CKF, the map L2 is defined on all of L1

C and therefore
zK.X'/ D L
;conf.X'/ C U is well-defined for all ' 2 L1

C . Notice that if
Y.Œ
�/ < 0 with 
 and � Lichnerowicz compatible, then zK.X/ is Lichnerow-
icz admissible since in this case D
;� D W 1;p. On the other hand, if Y.Œ
�/ > 0,
since U is admissible by hypothesis, it must be the case that U 6� 0. Let us show
that zK.X'/ is admissible is this case as well. Since U is 
 -T T , it follows thatZ
M

j zK.X'/j
2

dV
 D

Z
M

jL
;confX' j
2

dV
 C

Z
M

jU j
2

dV


C 2

Z
M

hL
;confX' ; U i
dV
 ;

D

Z
M

jL
;confX' j
2

dV
 C

Z
M

jU j
2

dV
 C 4

Z
M

hDX' ; U i
dV
 ;

where, in the second line, we have used the traceless condition of U as well as its
symmetry. Integrating by parts the last term, the transverse condition on U shows
that this term vanishes. That is, L
;confX' and U are L2-orthogonal. Therefore,
we find Z

M

j zK.X'/j
2

dV
 >

Z
M

jU j
2

dV
 > 0; (4.18)
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since U 6� 0. Thus, zK.X'/ is Lichnerowicz admissible.

From the above proposition, we immediately get the following

Corollary 4.2.1. Under the assumptions of the above proposition, Im.L2/ �

D
;� .

Therefore, under the assumptions of Proposition 4.2.1, the map

N W L1
C 7! W

2;p
C � L1

C ;

' 7! O' D N .'/ :D L1.L
;conf.L2.'/„ƒ‚…
X'

/C U/ (4.19)

is well-defined. Furthermore, the solutions of (4.13) are in 1-1 correspondence
with fixed point of the above map. Therefore, our task will be to guarantee the ex-
istence of such fixed point. For this, we will appeal to the following well-known
fixed point theorem by Leray–Schauder (see, for instance, Taylor (2011c, Corol-
lary B.3)).

Theorem 4.2.2. Let U be a closed, convex set in a Banach space V and let F W

U 7! U be a continuous map such thatF.U/ is compact. ThenF has a fixed point.

In order to appeal to the above theorem to extract a fixed point out of N , we
need to find an appropriate closed and convex subset U � L1

C , invariant under
the action ofN , and also prove thatN is continuous.6 In previous chapters, when
analysing the decoupled Lichnerowicz equation, we saw that the existence of bar-
riers 0 < '� 6 'C permitted us to trap solutions to the Lichnerowicz equation
in Œ'�; 'C� � L1, where by Œ'�; 'C�, we mean those elements ' of W 2;p

C sat-
isfying '� 6 ' 6 'C. We intend to find a similar subset in this context to be
the domain of N . But recall that the invariance property of L1 on Œ'�; 'C� in the
context of the decoupled Lichnerowicz equations relied on these endpoints being
sub and super-solution, which depend on the coefficients of the equation. But in
our new context, the coefficient zK.X'/would depend on ' 2 Œ'�; 'C�. From this
discussion, we see that, in order for similar method to succeed in this context, we
would need a fixed set of barriers which works for every such zK.X'/ obtained as
a solution of the momentum equation with source ' 2 Œ'�; 'C�. This motivates
the following definition.

6Notice that, although such a fixed point ' is a priori found in L1
C
, since ' D N .'/ and

N .L1
C
/ � W

2;p
C

� L1
C
, then actually ' 2 W

2;p
C

.
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Definition 4.2.2. We say that 'C 2 W 2;p, p > 3, is a global supersolution of
(4.13) if, whenever 0 < ' 6 'C, ' 2 W 2;p, then

�8�
'C CR
'C > �
2

3
'5C C jL
;confX' C U j

2

'

�7
C ; (4.20)

where X' D L2.'/ is the solution obtained via (4.17). Similarly, we say that
'� 2 W 2;p is a global subsolution if, whenever ' > '�, ' 2 W 2;p , then

�8�
'� CR
'� 6 �
2

3
'5� C jL
;confX' C U j

2

'

�7
� : (4.21)

With the above definitions in mind, we shall attempt to construct the invariant
subset U � L1 ofTheorem 4.2.2 forN to be of the form Œ'�; 'C�, with '˙ global
barriers for (4.13). Notice that such subset is automatically closed and convex in
L1, and the remaining properties will be a consequence of the mapping properties
of N .

Now that the strategy to deal with (4.13) is clear, we will devote the next two
subsections to construct the invariant subset U for the mapN and then prove that
N is a continuous mapping. With these results at hand, we shall present the exis-
tence results for (4.13) of Maxwell (2009).

The invariant subset U
Following Maxwell (ibid.), let us start with the following conformal covariance
property for barriers.

Lemma 4.2.1. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and consider the Lichnerowicz equation (4.2.1) with �; zK 2 W 1;p and
let � 2 W

2;p
C . Then, � is a subsolution (respectively supersolution) of (4.2.1) iff

�0 :D ��1� is a subsolution (respectively supersolution) of the conformally related
equation

�8�
 0�0
CR
 0�0

D �
2

3
�2�05

C j zK 0
j
2

 0�

0�7; (4.22)

where, as usual, 
 0 D �4
 and zK 0 D ��2 zK.

Proof. For any � 2 W
2;p

C and �0 D ��1� we know from Proposition 2.1.3 that

�8�
 0�0
CR
 0�0

D ��5
�
�8�
� CR
�

�
;
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and it follows directly that

�
2

3
�2�05

C j zK 0
j
2

 0�

0�7
D ��5

�
�
2

3
�2�5 C j zKj

2

�

�7

�
;

implying

� 8�
 0�0
CR
 0�0

C
2

3
�2�05

� j zK 0
j
2

 0�

0�7
D

��5

�
�8�
� CR
� C

2

3
�2�5 � j zKj

2

�

�7

�
: (4.23)

Therefore, the claim follows since both sides have the same sign.

As usual, the above lemma guarantees that we can look for barriers in some
preferred element in our conformal class where the task may be simplified.

The follows result guarantees that if we have a pair of sub and super-solutions
'˙, there is no real obstruction in making them compatible. More precisely, the
following holds.7

Lemma 4.2.2. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and consider the Lichnerowicz equation (4.2.1) with �; zK 2 W 1;p. If
'C 2 W

2;p
C is a supersolution of (4.14), then so is 'C

˛
:

D ˛'C for all ˛ > 1.
Similarly, if '� 2 W

2;p
C is a subsolution of (4.14), then so is '�

˛
:

D ˛'� for all
0 < ˛ 6 1.
Proof. By direct computation we see that for ˛ > 1,

�8�
'
C
˛ CR
'

C
˛ C

2

3
�2'C

˛

5
� j zKj

2

'

C
˛

�7
D ˛

�
�8�
'C CR
'C

�
C ˛5

2

3
�2'5C

� ˛�7
j zKj

2

'

�7
C

> ˛
�
�8�
'C CR
'C

�
C ˛

2

3
�2'5C

� ˛j zKj
2

'

�7
C

> ˛
�

� 8�
'C CR
'C C
2

3
�2'5C

� j zKj
2

'

�7
C

�
> 0:

The proof in the subsolution case follows along the same lines.
7Although we will not use it, the claims of Lemma 4.2.2 clearly hold under weaker regularity

assumptions.
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Let us now introduce the following lemma, which guarantees that any super-
solution to (4.14) provides an upper bound for the map L1 of (4.15).

Lemma 4.2.3. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and consider the Lichnerowicz equation (4.14) with �; zK 2 W 1;p. Suppose
that .
; �/ are compatible, zK is admissible and that 'C 2 W

2;p
C is a supersolution

to (4.14), then L1. zK/ 6 'C. Similarly, under these conditions, if '� 2 W
2;p

C is
a subsolution of (4.14), then L1. zK/ > '�.

Proof. Let us start with the supersolution. First, recall from the proofs of
Lemma 2.2.6 and Proposition 2.2.4 that if .
; �/ are compatible and zK is admis-
sible, then the Lichnerowicz equation (4.14) admits a compatible pair of sub and
super solutions N'˙. Let us now consider the subsolution and, using a constant
˛ 6 1 sufficiently small, we can fix '0

�

:
D ˛ N'� 6 'C. Then, from Theorem 2.2.1,

we have a solution '0 2 W
2;p

C to (4.14) with '0
� 6 '0 6 'C. But, since from

Theorem 4.2.1 the solution associated to our conformal data is unique, it follows
that '0 D L1. zK/ 6 'C.

Similarly to what we did above, if we know chose ˛ > 1 sufficiently large
so that '0

C

:
D ˛ N'C > '�, then through the monotone iteration scheme we find

a solution '0 2 W
2;p

C to (4.14) satisfying '� 6 '0 6 '0
C. Again, since the

solution to this problem is unique under our compatibility-admissibility conditions,
we must have L1. zK/ D '0 > '�.

Corollary 4.2.2. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and assume that 
 possesses no CKFs. Consider the system (4.13) with
�; U 2 W 1;p. Suppose that .
; �/ are compatible, U is admissible and that 'C 2

W
2;p

C is a global supersolution to (4.13). If ' 2 L1
C satisfies ' 6 'C, then

N .'/ 6 'C.

Proof. First, from our hypotheses, from Corollary 4.2.1, we know that N is de-
fined over all of L1

C . Now, consider ' 2 L1
C and define N' D N .'/, so that it

solves

�8�
 N' CR
 N' D �
2

3
�2 N'5 C jL
;confX' C U j

2

 N'�7; (4.24)

whereX' D L2.'/ 2 W 2;p . Now, since 'C is a global supersolution and ' 6 'C,
by hypothesis, it holds that 'C is a supersolution of (4.24). But then Lemma 4.2.3
guarantees that N' D N .'/ 6 'C, which establishes the claim.
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The objective now is to show that, given a global supersolution 'C to (4.13),
there is a constant global subsolution '� D K0, so that N is invariant on U :

D

f' 2 L1
C W K0 6 ' 6 'Cg, which reduces the task of finding barriers to that

of finding just a global supersolution. In order to establish this claim, we need to
split the cases Y.Œ
�/ > 0 from Y
 < 0. Let us start with the first of these two
cases, which is more delicate. For this, we need the following technical result.

Proposition 4.2.2. (Maxwell 2009, Porposition 8) Let .M 3; 
/ be a closed Rie-
mannian manifold with 
 2 W 2;p, p > 3, and let V 2 Lp be a function such that
V > 0 a.e, V 6� 0. Then, the Poisson operator ��
 CV admits a Green function
G, which satisfies a lower bound

G.x; y/ > mG (4.25)

for some constant mG > 0.

Remark 4.2.1. First, let us recall that the Green function associated to a��
CV

is a function G defined onM �M satisfying

��
;yG.x; y/C V.y/G.x; y/ D ıx; (4.26)

where ıx stands for the ı-distribution with support on x 2 M . In particular, it
satisfies that if ' is a solution of ��
' C V' D f 2 Lp, then

'.x/ D

Z
M

G.x; y/f .y/dV
 .y/: (4.27)

We refer the reader to Druet, Hebey, and Robert (2004, Appendix A) or Aubin
(1998, Chapter 4) for the general properties and constructions related to such a
Green function. Furthermore, under the regularity properties of the above propo-
sition, the Green function is continuous outside the diagonal ofM �M .

The proof of the above proposition, relies on properties of the Green function
of the Laplacian of 
 plus some elliptic properties, all of which can be consulted
in the above references. Appealing to the above proposition we can now establish
the following result.

Proposition 4.2.3. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and let V 2 Lp be a function such that V > 0 a.e, V 6� 0. There are
positive constants C1; C2 such that for every f 2 Lp, f > 0 a.e, the solution of

��
� C V� D f (4.28)
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satisfies

max
M

� 6 C1kf kLp ;

min
M
� > C2kf kL1 :

(4.29)

Proof. First, notice that the first estimate in (4.29) follows from the isomorphism
property of the Poisson operator presented in Theorem B.7 and the embedding
W 2;p ,! C 1. The second one follows from Proposition 4.2.2, since from (4.28)
it follows

�.x/ D

Z
M

G.x; y/f .y/dV
 .y/ > mG

Z
M

f .y/dV
 .y/ D mGkf kL1 ;

where we have used that f is non-negative.

Using the results presented above, we can now prove the following.

Proposition 4.2.4. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, with Y.Œ
�/ > 0, and assume that 
 possesses no CKFs. Consider the sys-
tem (4.13) with �; U 2 W 1;p. Suppose that .
; �/ are compatible, U is admissible
and that 'C 2 W

2;p
C is a global supersolution to (4.13). Then, there is a constant

K0 > 0 such that for all ' 2 L1
C satisfying 0 < ' 6 'C, it follows that

N .'/ > K0: (4.30)

Proof. The elegant strategy adopted in Maxwell (2009) is the following one. Fix
any '0 2 L1 such that 0 < '0 6 'C, associate the corresponding solution to the
momentum constraint X'0

D L2.'0/ 2 W 2;p and then consider the equation

�8�
' CR
' D �
2

3
�2'5 C jL
;confX'0

C U j
2

'

�7: (4.31)

The objective now is to show that the above equation admits a subsolution '�

which is bounded from below by a constantK0 where this constant is independent
of the specific choice '0. Below, we shall see that such K0 can be found as long
as ' 6 'C. Once this is established, Lemma 4.2.3 guarantees that K0 6 N .'/
for any ' 2 L1

C such that ' 6 'C, and the claim follows.
To prove the statements in the above paragraph, let us first appeal to the con-

formal covariance for the barriers established in Lemma 4.2.1. Since Y.Œ
�/ > 0,
we know from Theorem 2.2.3 that there is a conformal deformation 
 0 D �4
 ,
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� 2 W
2;p

C , such that R
 0 is continuous and has the same sign as Y.Œ
�/. Now,
appealing to Lemma 4.2.1, let us first find a subsolution of the conformally related
equation:

�8�
 0'0
CR
 0'0

D �
2

3
�2'05

C j zK 0
j
2

 0'

0�7; (4.32)

where zK 0 D ��2.L
;confX'0
CU/. For this, let � 2 W

2;p
C be the unique solution

to

�8�
 0�C

�
R
 0 C

2

3
�2
�
� D j zK 0

j
2

 0 : (4.33)

From our hypotheses R
 0 C
2
3
�2 > 0 and R
 0 C

2
3
�2 6� 0 (recall that � 6�

0), Theorem B.7 guarantees the existence of such a solution and the maximum
principles of Lemmas 2.2.2 and 2.2.3 guarantee that � > 0. We claim that for
˛ > 0 sufficiently small ˛� is a subsolution of (4.32). Using (4.33), we find that

�8�
 0.˛�/CR
 0.˛�/C
2

3
�2.˛�/5 � j zK 0

j
2

 0.˛�/

�7
D �

2

3
�2˛�C ˛j zK 0

j
2

 0

C
2

3
�2.˛�/5 � j zK 0

j
2

 0.˛�/

�7;

D
2

3
..˛�/4 � 1/�2˛�

C j zK 0
j
2

 0.˛ � ˛�7��7/:

We therefore see that if ˛ 6 minM .��1/ and also satisfies ˛8 6 minM .��7/, then
the right-hand side of the above expression in non-positive and ˛� becomes a sub-
solution. The choice ˛ :

D minf1; .maxM �/�1g satisfies both of these conditions.
Let us now show that˛� D minf1; .maxM �/�1g� > K 0

0withK
0
0 independent

of '0. This implies showing that � is bounded by above and below by numbers
independent of '0.8 For this, applying Proposition 4.2.3, we know that

max
M

� 6 C1


j zK 0

j
2

 0




Lp ;

min
M
� > C2



j zK 0
j
2

 0




L1 ;

(4.34)

8Notice that the definition of � via (4.33) depends on '0 in the right-hand side.
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for constants C1; C2 > 0 independent of '0. Let us now work with the first in-
equality above. First, notice that j zK 0j2
 0 D ��12jKj2
 , which implies

j zK 0

j
2

 0




Lp 6 k��12

kC0



j zKj
2






Lp :

Also, it holds that

j zKj
2

 6 2

�
jL
;confX'0

j
2

 C jU j

2



�
and therefore

j zK 0

j
2

 0




Lp 6 2k��12

kC0

�

jL
;confX'0
j
2






Lp C



jU j
2






Lp

�
: (4.35)

Now, from the Sobolev multiplication property we have W 1;p ˝ W 1;p ,! Lp,
which implies

jL
;confX'0

j
2






Lp .



jDX'0
j
2






Lp .



DX'0



2
W 1;p 6 kX'0

k
2
W 2;p ;

kjU j
2

kLp . kU k

2
W 1;p :

But now, since �
;conf W W 2;p 7! Lp is an isomorphism under our hypotheses, it
follows that

kX'0
kW 2;p 6 Ck'60d�kLp 6 Ckd�kLp k'6CkL1 ; (4.36)

where we have used that '0 2 L1 satisfies '0 6 'C. Putting all of the above
together, we find that for some other constant C > 0 independent of '0 it holds

j zK 0

j
2

 0




Lp 6 Ck��12

kC0

�
kd�kLp k'6CkL1 C



U 

2
W 1;p

�
; (4.37)

which provides an upper bound for the first inequality in (4.34) which is indepen-
dent of '0 6 'C. Let us now work with the lower bound of the second inequality
in (4.34). This inequality is easier, since

j zK 0

j
2

 0




L1 D

Z
M

��12
j zKj

2

dV
 0 D

Z
M

��6
j zKj

2

dV
 ;

> min
M
��6

Z
M

j zKj
2

dV
 ;

D min
M
��6

�Z
M

jL
;confX'0
j
2

dV
 C

Z
M

jU j
2

dV


�
;

> min
M
��6

Z
M

jU j
2

dV
 > 0;
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where the last inequality holds since U is admissible and we have used the L2 or-
thogonality ofL
;confX'0

and the TT-tensorU . Therefore, we have a lower bound
for the second inequality in (4.34) which is independent of '0. Therefore, we have
established that '0

�

:
D ˛� is a subsolution for (4.32) which is bounded from be-

low by a constant K 0
0 independent of '0. From Equation (4.22), we now that

'� D �'0
� is a subsolution of (4.31) bounded from below byK0 D .minM �/K 0

0,
and then Lemma 4.2.3 implies that N .'/ > K0 for all ' 2 L1 satisfying
0 < ' 6 '0.

Let us now show the corresponding result to the above proposition in the Yam-
abe negative case.

Proposition 4.2.5. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, with Y.Œ
�/ < 0, and assume that 
 possesses no CKFs. Consider the
system (4.13) with �; U 2 W 1;p. Suppose that .
; �/ are compatible and U is
admissible. Then, there is a constant K0 > 0 such that for all ' 2 L1

C it follows
that

N .'/ > K0: (4.38)

Proof. Since .
; �/ are compatible, then there is a conformal deformation 
 0 D

�4
 , � 2 W
2;p

C , has scalar curvature R
 0 D �
2
3
�2, which implies that

�8�
� CR
� D �
2

3
�2�5;

Therefore, for any ' 2 L1, it follows that

�8�
� CR
� C
2

3
�2�5 � jL
;confX' C U j

2

�

�7
D �jL
;confX' C U j

2

�

�7 6 0;

implying that'�
:

D � is a subsolution for (4.14) for any coefficient zK D L
;confX'C

U constructed from any ' 2 L1
C , and therefore setting K0

:
D minM � > 0

Lemma 4.2.3 implies N .'/ > K0.

Using the results of this subsection, we have established the following.

Corollary 4.2.3. Let .M 3; 
/ be a closed Riemannian manifold with 
 2 W 2;p,
p > 3, and assume that 
 possesses no CKFs. Consider the system (4.13) with
�; U 2 W 1;p. Suppose that .
; �/ are compatible, U is admissible and that 'C is
a global supersolution of (4.13). Then, there is a constant K0 > 0 such that the
set U :

D f' 2 L1
C W K0 6 ' 6 'Cg is invariant under N . That is, N W U 7! U .
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Proof. Corollary 4.2.2 shows that under our hypotheses, for any given ' 2 U ,
N .'/ 6 'C regardless of our Yamabe class. Now, if Y.Œ
�/ > 0, then pick K0
according to Proposition 4.2.4 to obtain N .'/ > K0, while if Y.Œ
�/ < 0 pick
such K0 from Proposition 4.2.5 to obtain the same result. Therefore, we find that
in any case N .'/ 2 U , which proves our claim.

The above corollary establishes the existence of the invariant set needed for
the application of Theorem 4.2.2, and in particular this set is already convex and
closed by construction.

Mapping properties of the solution map N
With the results of the previous subsection at hand, in order to applyTheorem 4.2.2,
we see that we need to prove thatN W U 7! U is continuous and thatN .U/ � L1

is compact, where U refers to the invariant set constructed in Corollary 4.2.3. Let
us start with the continuity claim, which is the one that requires a little bit of more
work.

Proposition 4.2.6. Under the hypotheses of Corollary 4.2.3, the mapN W U 7! U
is continuous.

Proof. Recall that N D L1 ı L2, where L1 and L2 are defined via (4.15) and
(4.17) respectively. In the case of L2, since 
 has no CKF, we know from Theo-
rem B.8 that �
;conf W W 2;p 7! Lp is a continuous isomorphism, and therefore it
follows that L2 D ��1


;conf is also continuous. The case for the solution map of the
Lichnerowicz equation is a little bit more delicate and the idea goes as follows.

We intend to show that L1 W D
;� 7! W 2;p is continuous. Fix any zK0 2 D
;�
and let us analyse continuity at this point. Let '0

:
D L1. zK0/ 2 W

2;p
C . Then,

consider 
 0
0 D '40
 and the corresponding Lichnerowicz equation

�8�
 0
0
' CR
 0

0
' D �

2

3
�2'5 C j zK 0

0j
2

 0

0
'�7; (4.39)

where, as usual, K 0
0 D '�2

0
zK0 and, by conformal covariance, we know that this

equation is also uniquely solvable and we denote by L0
1 W D
 0;� D D
;� 7! W

2;p
C

its solution map. Then, we know that the two solution maps L1 and L0
1 are related

via

L1. zK/ D '0L0
1.'

�2
0

zK/: (4.40)
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This implies that L1. zK/ is continuous at zK0 iff L0
1 is continuous at zK 0

0 D '�2
0

zK0.
Furthermore, let us notice that (4.40) implies that

'0 D L1. zK0/ D '0L0
1.'

�2
0

zK0/;

implying L0
1.'

�2
0

zK0/ D 1, which through (4.39) implies

R
 0
0

D �
2

3
�2 C j zK 0

0j
2

 0

0
: (4.41)

Let us now write the Lichnerowicz equation (4.39) in operator form as

	.'; zK 0/ D 0; (4.42)

where 	 W W
2;p

C �W 1;p 7! Lp is defined via

	.'; zK 0/ D �8�
 0
0
' CR
 0

0
' C

2

3
�2'5 � j zK 0

j
2

 0

0
'�7; (4.43)

where the solution map L0
1 W D
;� 7! W

2;p
C satisfies 	.L0

1.K
0/;K 0/ D 0 for

all K 0 2 D
;� . The map (4.43) is easily seen to be a C 1-Frechét map between the
above functional spaces, whose partial derivative on its first argumentD1	.'; zK0/

W

W
2;p

C 7! Lp at a point .'; zK 0/ is given by

D1	.'; zK0/
� v D �8�
 0

0
v C

�
R
 0

0
C
10

3
�2'4 C 7j zK 0

j
2

 0

0
'�8

�
v

Therefore, at the point .1; zK 0
0/, we have

	.1; zK 0
0/ D 0;

D1	.1; zK0
0/

� v D �8�
 0
0
v C

�
R
 0

0
C
10

3
�2 C 7j zK 0

0j
2

�
v:

(4.44)

Using (4.41), we find that

D1	.1; zK0
0/

� v D �8�
 0
0
v C

�
8

3
�2 C 8j zK 0

0j
2

 0

0

�
v; (4.45)

which is an isomorphism fromW 2;p 7! Lp since 8
3
�2C 8j zK 0

0j
2

 0

0

> 0 and 8
3
�2C

8j zK 0
0j
2

 0

0

6� 0. Therefore, the implicit function theorem (see, for instance, Abraham,
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Marsden, and Ratiu (1988, Theorem 2.5.7)) implies that there are neighbourhoods
V � W 1;p and W � W 2;p of zK 0

0 and 1 respectively, and a unique C 1-map
˚ W V 7! W such that

	.˚. zK 0/; zK 0/ D 0; 8 zK 0
2 V : (4.46)

The uniqueness of the above map implies that ˚ D L0
1, which proves that L0

1 is
C 1 in a neighbourhood of zK 0

0, implying then through (4.40) that L1 is C 1 in a
neighbourhood of zK0 and finishing the proof.

Let us now establish the pre-compactness property of U :

Proposition 4.2.7. Under the hypotheses of Corollary 4.2.3, the subset N .U/ �

L1
C is compact.

Proof. Let ' 2 U be arbitrary. Then, using elliptic estimates associated to�8�
C

R
 , we have that

kN .'/kW 2;p 6 C

�


 �
2

3
�2'5 C jL
;confX' C U j

2

'

�7




Lp

C k'kLp

�
;

6 C

�
K�7
0




jL
;confX' C U j
2







Lp

C
2

3
k�2kLp k'5CkL1 C k'CkLp

�
;

where we have used that K0 6 ' 6 'C. From Sobolev multiplication, we know
that


jL
;confX' C U j

2







Lp

. kDX'k
2
Lp C kU k

2
Lp 6 kX'k

2
W 2;p C kU k

2
Lp ;

. kd�k
2
W 2;p k'6Ck

2
L1 C kU k

2
Lp ;

where we have used the estimates kX'kW 2;p 6 Ckd�'6kLp for a solution of
the momentum constraint. Putting all of the above together, we see that N .U / is
bounded in W 2;p

C . Since the inclusion W 2;p
C ,! L1

C is compact, it follows that
N .U / is compact in L1

C .

Solutions to the coupled system

We now have all the ingredients to apply Theorem 4.2.2 to the map N W U 7! U .
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Theorem 4.2.3. (Maxwell 2009) Let .M 3; 
/ be a closed Riemannian manifold
with 
 2 W 2;p, p > 3 and assume that 
 has no CKFs. Consider the system
(4.13) with �; U 2 W 1;p and suppose that one of the following conditions holds:

1. Y.Œ
�/ > 0 and U 6� 0;

2. Y.Œ
�/ > 0, U 6� 0 and � 6� 0;

3. Y.Œ
�/ < 0 and there is a conformal deformation of 
 to 
 0 withR
 0 D
2
3
�2.

If (4.13) admits a global supersolution 'C, then the system admits a solution
.';X/ 2 W

2;p
C �W 2;p .

Proof. Under our conditions the data .
; �/ are compatible and U is admissible.
Thus, Corollary 4.2.3 implies that there is a constant K0 > 0 such that the set
U D f' 2 L1

C W K0 6 ' 6 'Cg satisfiesN W U 7! U . Then Proposition 4.2.6 im-
plies thatN is continuous acting on U (which is closed and convex) while Proposi-
tion 4.2.7 implies thatN .U / is compact inL1. We can then applyTheorem 4.2.2
to guarantee the existence of a fixed point ' 2 U . Since N .U/ � W

2;p
C � L1

C ,
then ' D N .'/ 2 W 2;p , and (by construction) .';X' D L2.'// 2 W 2;p�W 2;p

solve (4.13).

We have therefore reduced the task of finding solutions to (4.13) to that of prov-
ing existence of global supersolutions. The following Proposition, due to Holst,
Nagy, and Tsogtgerel (2009), provides such a supersolution in the Yamabe posi-
tive case.

Proposition 4.2.8 (Supersolution Y > 0). Let .M 3; 
/ be a closed Riemannian
manifold with 
 2 W 2;p , p > 3, with Y.Œ
�/ > 0, and assume that 
 possesses
no CKFs. Consider the system (4.13) with �; U 2 W 1;p. If kU kL1 is sufficiently
small, then there is a global supersolution to (4.13).

Proof. FromTheorem 2.2.3, we know that there is a conformal deformation 
 0 D

�4
 , � 2 W
2;p

C , such that R
 0 > 0 is continuous. Then, � satisfies

�8�
� CR
� D R
 0�5

The claim is now that 'C
:

D �� is a global supersolution if � is sufficiently small.
To prove this consider 0 < ' 6 'C, ' 2 L1, let X' D L2.'/ 2 W 2;p and
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compute

�8�
'C CR
'C C
2

3
'5C � jL
;confX' C U j

2

'

�7
C D �R
 0�5 C

2

3
�2'5C

� jL
;confX' C U j
2

'

�7
C ;

> �R
 0�5 � 2jU j
2

'

�7
C

� 2jL
;confX' j
2

'

�7
C :

Let us now estimate the last term above as follows. Sincep > 3, then jL
;confX' j
 .
jDX' j 2 W 1;p ,! C 0. Therefore

jL
;confX' j . max
M

jDX' j . kDX'kW 1;p 6 kX'kW 2;p ;

6 Ckd�kLp k'6CkL1 D �6Ckd�kLp max
M

�6;

for some constant C > 0 independent of ' 6 'C. Then,

�R
 0�5 � 2jU j
2

'

�7
C � 2jL
;confX' j

2

'

�7
C > �min.R
 0/min.�5/

� �5C 2kd�k
2
Lp .max �//5

� 2jU j
2

'

�7
C :

(4.47)

Now, since

�min.R
 0/min.�5/ � �5C 2kd�k
2
Lp .max �//5 D �C 2kd�k

2
Lp .max �//5� 

min.R
 0/.min.�//5

C 2kd�k2Lp .max �//5
� �4

!
;

let us pick � small enough so that the right-hand side of the above expression is
positive. Once such an � is fixed, if jU j
 is small enough, then the right-hand side
of (4.47) remains non-negative, and therefore 'C is global supersolution of our
system.

We therefore get the following existence result as a corollary ofTheorem 4.2.3
and Proposition 4.2.4.

Corollary 4.2.4. Under the conditions of Proposition 4.2.4 the system (4.13) ad-
mits a solution .';X/ 2 W

2;p
C �W 2;p .
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We refer the reader to Holst, Nagy, and Tsogtgerel (2009) for a variety of con-
structions of global barriers that allows one to deal with other Yamabe classes,
sometimes invoking a near-CMC assumption. Furthermore, although we have
presented results addressing the vacuum case, the above methods translate nicely
to different non-vacuum situations, such as scalar fields (Premoselli 2014; Vâlcu
2020) andYorked-scaled sourceswhich do not add further constraints (Holst, Nagy,
and Tsogtgerel 2009). Also, they translate to boundary value problems (Holst,
Meier, and Tsogtgerel 2018) as well as AE-manifolds (Dilts, Isenberg, et al. 2014;
Holst and Meier 2014).9 In the next section we will deal with a broad generali-
sation of many of these problems, including sources which are not York-scaled,
black hole boundary conditions for AE-initial data, and further constraints arising
from charged fluids.

Finally, let us highlight that above we have produced techniques which allow
us to establish existence results, but, contrary to the CMC case, we do not have in
general information about uniqueness, which is still an open important problem in
mathematical general relativity. Furthermore, as was anticipated at the beginning
of the section, in order to gain freedom on the mean curvature, we have imposed
strong smallness conditions on the T T -part U . This seems to be a feature of the
techniques presented above which will reappear in the next section. Therefore,
the analysis of the constraint equations (4.13) is still an open problem for general
conformal data.

4.3 Far-from-CMC solutions for charged fluids

The idea of this section is to extend the analysis presented for the coupled system
of constraints in the previous one tomore general situations, which can incorporate
realistic matter fields as well as natural boundary conditions. Along these lines, as
we have already described in Section 2.1 of Chapter 2, coupling charged matter
will typically couple further constraints to the our systems. In particular, the case
of a charged perfect fluid was discussed in detail and its conformal formulation

9The kind of fixed point map may vary among the cited references, but the main ideas and tech-
niques are similar.
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was given by (2.35), which we explicitly recall below:

an�
� D R
� � j zK.X/j2
�
� 3n�2

n�2 C a��
nC2
n�2 � j zEj

2

�

�3
�

j zF j2


2
�

n�6
n�2 ;

�
;confX D � zEy zF C !��
2n

n�2 C !��
2nC1

n�2 ;

div
 zE D zq�
2n

n�2 ;

(4.48)

with

a�
:

D bn�
2

� 2�0; �0
:

D .�C p/
�
1C jzuj

2



�
� p;

!�
:

D
n � 1

n
d�; !�

:
D
�
1C jzuj

2



� 1
2 .�C p/zu[; zq

:
D q.1C jzuj

2

 /

1
2

where we recall that �;p and zu denote initial data for the energy density, pressure
density and velocity field of the fluid respectively, while zF stands for a closed 2-
form which represents the initial data for the magnetic-part of the electromagnetic
field. Finally, zE stands for the initial data for the electric part of the electromag-
netic field.

Comparing with (2.35), we should notice that we have neglected the contri-
butions arising from the scalar field. We have chosen to do this, since the more
general case can be dealt with along the same lines. Actually, the scalar field intro-
duces no further coupling between the equations, which is our main interest during
this section. Therefore, we prefer to omit this contribution in favour of a slightly
cleaner presentation.

Along the lines of the above paragraph, let us highlight once more that the
system (4.48) is by nature more subtle than (4.13) or (2.12), since, in particular, it
cannot be decoupled without losing its defining properties. That is, as long as we
intend to analyse a charged fluid, we cannot decouple the above three equations,
since to achieve this we must set to zero q and !�. The first of these conditions,
neglects the charge of the (charged!) fluid, while the second one demands setting
either zu D 0 or � D �p. The first of these choices is puts the totality of the fluid
at rest and is therefore a very special and non-generic situations, while the second
one can be satisfied for instance by a “cosmological constant case”, this is not the
case of interest here, since this case is not charged by definition and, furthermore,
equations of state for conventional (relativistic) matter or radiation do not satisfy
this condition (see, for instance, Poisson and Will (2014)). Therefore, as long as
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we want to analyse a realistic charged fluid, we are stuck from the go with the fully
coupled system (4.48).

As an additional motivation, let us notice that the initial data for more general
charged Yang-Mills fields interacting with gravity obey similar constraints to those
described above (see, for instance, Choquet‐Bruhat (1992) and Holm (1987)). Be-
ing these fields the building blocks of modern fundamental physics, we see that
the understanding of systems of the above kind is extremely well-motivated both
for its relevance within physics and its mathematical subtlety.

Boundary conditions

Along the lines of our analysis in Chapter 3, we intend to analyse the system (4.48)
with black hole boundary data. Let us therefore recall the conformal formulation
of the black hole boundary conditions (3.27), deduced in Section 3.3, to which we
add a corresponding condition for the electric field as follows:

1

2
an O�.�/CH� � .�� C bn�/ �

n
n�2 C zK. O�; O�/�� n

n�2 D 0;

.L
;confX. O�; �/ D �

�
1

2
j��j � bn�

�
v

2n
n�2 O� � U. O�; �/;

h zE; O�i
 D E O� ;

v > �j˙ ;

1

2
j��j � bn� > 0;

(4.49)

where the functions �˙ stand for the expansion coefficients; O� is the outward-
pointing 
 -unit normal;H stands for themean curvature of the boundary˙ D @M

with respect to �O� and we introduced an a priori arbitrary function E O� , which
stands for the prescribed value of the normal component of the electric field across
˙ .10 Below, we will see that this leads to a Neumann-type condition for the elec-
tric potential. All the definitions related to the dimensional coefficients can be
consulted in Section 3.3.

Full constraint system

Our aim is to rewrite our PDE system (4.48)-(4.49) as an elliptic system such that
we can construct solutions by iteration. In order to rewrite the electric constraint as

10From well-known theory of electromagnetism, prescribing the normal components of the elec-
tric field across the boundary is a natural condition (Jackson 1999).
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a second order equation, we will apply a Helmholtz decomposition of the electric
field so as to decompose it as the sum of an exact and co-exact 1-forms. In our
main case of interest this is quite straightforward. In fact, let .M n; 
/ be a W 2;p

ı
-

AE manifold with compact boundary ˙ , assume p > n
2
, n > 3 and ı < 0, and,

for � 2 R, define

r
N

 W W

2;p
�C1.M/ 7! W 1;p

� .TM/ �W 1� 1
p
;p.˙/;

� 7! .r
�; �.�//;

L W W
2;p
�C1.M/ 7! L

p
��1.TM/ �W 1� 1

p
;p.˙/;

� 7! .�
�; �.�//:

(4.50)

where � stands for the outward point 
 -unit normal to ˙ . Therefore, since �
 D

div
 ı r
 W W
2;p
�C1 7! L

p
��1, we see that

L D L2 ı L1;

whereL1 D rN
 W W
2;p
�C1.M/ 7! W

1;p
� .TM/�W 1� 1

p
;p.˙/ andL2 D .div
 ; Id/ W

W
1;p
� .TM/�W 1� 1

p
;p.˙/ 7! L

p
��1.M/�W 1� 1

p
;p.˙/. In this setting, we have

the following decomposition.

Theorem 4.3.1 (Helmholtz decomposition). Let .M n; 
/ be an n-dimensional
W
2;p

ı
-AE, with n > 3, p > n

2
and ı < 0. If 2 � n < � < 0, then the follow-

ing decomposition holds:

W
1;p
��1.M ITM/ �W 1� 1

p
;p.˙/ D r

N

 .W

2;p
� /˚ Ker.L2/: (4.51)

Proof. Appealing toTheoremA.1.1, we need to show that Ker.L/ D Ker.L1/ and
Im.L/ D Im.L2/. Clearly, the inclusion Ker.L1/ � Ker.L/ holds. To see the op-
posite, notice that under our hypothesesL is an isomorphism due toTheorem 3.3.1,
which now clearly implies that Ker.L/ D Ker.L1/ D ;. Similarly, the inclusion
Im.L/ � Im.L2/ is also trivial and the converse also follows fromTheorem 3.3.1,
since if .f; h/ 2 Im.L2/ � L

p
��2.M/�W 1� 1

p
;p.˙/, thenTheorem 3.3.1 implies

that the there is some u 2 W
2;p
� such that L.u/ D .f; h/. Therefore the theorem

holds.

Remark 4.3.1. The above theorem holds under weaker conditions to those stated
in it, which in particular allow for the operators involved to have kernel. Never-
theless, in those cases the proof is more involved, although it appeals to strategies
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similar to those used in the proof of Theorem 3.3.1. In the case of AE-manifolds
without boundary such a decomposition was addressed in Cantor (1981) and in
the case of manifolds with boundary in Avalos and Lira (2019). In these weaker
scenarios there are some subtleties (even in the case ˙ D ;) whenM has more
than one end, which allows for harmonic functions in Ker.L/ to be non-constant,
which is something that can be observed from Equation (3.60). We refer the reader
to Avalos and Lira (ibid.) for a discussion concerning these problems.

Let us now apply the above theorem to the electric 1-formE 2 W
1;p

ı�1
in (4.48).

Since we treat the case of .M n; 
/ being W 2;p

ı
-AE satisfying the hypotheses of

Theorem 4.3.1, we obtain that

E D df C # (4.52)

for some f 2 W
2;p

ı
and # 2 W

1;p

ı�1
such that div
# D 0. In this scenario, we can

rewrite the electric constraint as follows

�
f � zq�
2n

n�2 D 0; (4.53)

where we must solve for f . Taking this into account, we get that the PDE system
(4.48) reads as a semi-linear second order PDE system for .�; f;X/, which is
explicitly given by

an�
� D R
� � j zK.X/j2
�
� 3n�2

n�2 C a��
nC2
n�2 � j zEj
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�
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f D zq�
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n�2 ;

�
;confX D � zEy zF C !�'
2n

n�2 C !�'
2nC1

n�2 ;

(4.54)

and is subject to the boundary conditions
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2
an O�.�/CH� � .�� C bn�/ �

n
n�2 �

�
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j��j � bn�

�
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2n
n�2�� n
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O�.f / D E O� ;
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�
1

2
j��j � bn�

�
v

2n
n�2 O� � U. O�; �/;

(4.55)
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where, in order for a solution to the above system to represent initial data with
(marginally) trapped boundary conditions, we must impose 1

2
j��j � bn� > 0 a

priori (which is something we control) and we need to guarantee that the solution
satisfies the bound v > �j˙ . Since v is a datum which must be fixed a priori, we
need to show that this is an attainable a priori bound at least for those solutions
which are meant to represent black hole initial data.

Along the same lines as in the analysis presented in Chapter 3, regarding the
hamiltonian constraint, we are looking for bounded solutions with some prescribed
asymptotic behaviour. Taking into account Lemma 3.3.5, we know that we can
capture the behaviour at infinity of a solution of the Lichnerowicz equation by con-
sidering a harmonic function ! with zero Neumann boundary conditions, which
is asymptotic to some positive values fAj gNjD1 on each end fEj gNjD1, and let-
ting � D ! C ' with ' 2 W

2;p

ı
. With this in mind, define the vector bundle

E
:

D .M � R/ ˚ .M � R/ ˚ TM , and consider W 2;p

ı
-sections of this vector

bundle. Then, we get the following differential operator

P W W
2;p

ı
.M IE/ 7! L

p

ı�2
.M IE/ �W 1� 1

p
;p.@M IE/;

.'; f;X/ 7! .�
';�
f;�
;confX;��.'/j@M ;��.f /j@M ;L
;confX.�; �/j@M /

Now, denote by F the map taking .�; f;X/ ! F.�; f;X/, where F.�; f;X/
stands for the function appearing in the right hand side of (4.54)-(4.55). In this
setting, we rewrite the above system more compactly as

P. / D F. /; (4.56)

where  2 W
2;p

ı
.M IE/. At this point the idea is to solve the above problem by

solving a sequence of linear problems. In particular, given  0 2 W
2;p

ı
.M IE/, if

we get a unique solution for P. / D F. 0/, which is given by  1 D P�1F. 0/,
we can begin an iteration scheme, where we could now use  1 as a source and
solve the linear problem for this source and begin an iteration procedure. If we
find a fixed point N in this iteration, then such fixed point solves

P. N / D F. N /;

which is equivalent to solving the original system (4.54)-(4.55). If, furthermore,
we get that � > 0, then such solution actually solves the conformal problem asso-
ciated to a charged fluid. In order to satisfy this last condition, we will need to pro-
duce barriers �� and �C, and make sure that the iteration stays within Œ��; �C�C0 .
This idea will be made precise in the upcoming sections.
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Shifted system

Before going into the analysis of the constraint system, we should note that the
analysis of (4.56) shall be done through the corresponding analysis of the following
shifted system:

an�
' � a' D R
� � j zK.X/j2
�
� 3n�2

n�2 C a��
nC2
n�2 � j zEj

2

�

�3

�
j zF j2


2
�

n�6
n�2 � a'

�
f D zq�
2n

n�2 ;

�
;confX D
n � 1

n
D��

2n
n�2 C !1�

2nC1
n�2 � !2;

(4.57)

with boundary conditions

O�.'/ � b' D �anH� C .dn� C dn��/�
n

n�2 C

�
1

2
j��j � rn�

�
v

2n
n�2�� n

n�2 � b';

O�.f / D E O� ;

L
;confX. O�; �/ D �

��
1

2
j��j � cn�

�
v

2n
n�2 C U. O�; O�/

�
O�;

(4.58)

with a 2 L
p

ı�2
.M/, b 2 W 1� 1

p
;p.˙/ satisfying a; b > 0 a.e, � D !C' and ! is

a harmonic function with zero Neumann boundary conditions which captures the
behaviour of � at infinity (see Lemma 3.3.5). Following analogous conventions to
those of (4.56), we will denote the linear operator appearing in the left-hand side
by

Pa;b W W
2;p

ı
7! L

p

ı�2
.M;E/ �W 1� 1

p
;p.˙;E/;

and Fa;b. / by the right-hand side of (4.57)-(4.58). Furthermore, we will con-
straint the choices of �� and � so as to satisfy the constraint (4.49), and we need
to show that, given some v 2 W 1� 1

p
;p.˙/, the solutions of the above boundary

value problem satisfy .v��/j˙ > 0, so as to satisfy the marginally trapped surface
condition. Then, we can rewrite the shifted system as

Pa;b. / D Fa;b. /: (4.59)
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Notice that the operator Pa;b as defined above is invertible for p > n and 2�n <

ı < 0, so that fixing some  0 2 W
2;p

ı
, the sequence f kg1

kD0
� W

2;p

ı
given

inductively by  kC1
:

D P�1
a;b
.Fa;b. k// is well-defined. Furthermore, continu-

ity of both Pa;b and Fa;b implies that, if we can extract a W 2;p

ı
-convergent sub-

sequence with limit  , then this limit will solves P. N / D F. N /. Now, since
.�
'; O�.'/j˙ / D .�
�; O�.�/j˙ /, we see that such procedure provides us with a
solution to the full constraint system with marginally trapped boundary conditions.

4.3.1 Existence results

Motivated by the discussion presented above, we intend to analyse the system
(4.59). Let us first rewrite this system in the following form, which suggest pos-
sible generalisations that the reader can find available in Avalos and Lira (2019).
Fixing the relevant vector bundleE D .M � R/˚ .M � R/˚TM , we will write
the corresponding sections as .�; Y /, with Y D .f;X/, and let us rewrite (4.59)

�
� D
X
I

a0I .Y /�
I ;

Li .Y i / D
X
J

aiJ .Y /�
J ; i D 1; 2;

�O�.�/ D
X
K

b0K.Y /�
K ; on ˙

B i .Y i / D
X
L

biL.Y /�
L; i D 1; 2 ˙;

(4.60)

where .Li ; B i / represent continuous linear elliptic second order operators with
boundary conditions, acting between W 2;p

ı
.M/ 7! L

p

ı�2
.M/ � W 1� 1

p
;p.˙/,

which are invertible for appropriate choices of p > n and ı < 0. In order to prove
an existence theorem based on the ideas described in the previous section, we will
need a couple of properties concerning the coefficients of the above system, and,
to establish these properties, we will appeal to the following results.

Proposition 4.3.1. The embedding W 1;p

ı
.Rn/ ,! C 0

ı 0.Rn/ is compact for any
ı < ı0 and p > n.

Proof. Consider the ball B2R � Rn which is a compact manifold with smooth
boundary. Then, consider a cut off function �R, which is equal to one on NBR,
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equal to zero on RnnB2R and 0 6 �R 6 1. Then, let fukg1
kD1

� W
1;p

ı
be a

bounded sequence, i.e, uk 6 1 for all k, and split uk D �RukC.1��R/uk . Thus,
since �Ruk is a bounded sequence supported inB2R, then f�Rung � W 1;p.B2R/.
Now consider

kun � umkC0
ı0

D sup
Rn

jun � umj.1C jxj
2/�

ı0

2

6 sup
B2R

j�R.un � um/j.1C jxj
2/�

ı0

2

C sup
RnnBR

j.1 � �R/.un � um/j.1C jxj
2/�

ı0

2 ;

6 .1C 4R2/�
ı0

2 sup
B2R

j�Run � �Rumj

C sup
RnnBR

j.1 � �R/.un � um/j.1C jxj
2/�

ı
2

C ı�ı0

2 :

Now, since ı � ı0 < 0 and j1 � �Rj 6 1, we get

kun � umkC0
ı0

6 .1C 4R2/�
ı0

2 sup
B2R

j�Run � �Rumj

C .1CR2/
ı�ı0

2 sup
RnnBR

j.1 � �R/.un � um/j.1C jxj
2/�

ı
2 ;

6 .1C 4R2/�
ı0

2 sup
B2R

j�Run � �Rumj

C .1CR2/
ı�ı0

2 sup
Rn

jun � umj.1C jxj
2/�

ı
2 ;

Also, under our hypotheses, we have a continuous embedding W 1;p

ı
,! C 0

ı
,

which implies that there is a fixed constant C > 0 such that

kun � umkC0
ı0

6 .1C 4R2/�
ı0

2 k�Run � �RumkC0.B2R/

C C.1CR2/
ı�ı0

2 kun � umk
W

1;p

ı
.Rn/

;

6 .1C 4R2/�
ı0

2 k�Run � �RumkC0.B2R/
C 2C.1CR2/

ı�ı0

2 :
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Now, fixing � > 0, since ı � ı0 < 0, there is a radius R� sufficiently large such
that .1 C R2/

ı�ı0

2 < �
4C

. Once we have fixed such an R� > 0, since for p > n

W 1;p.B2R/ is compactly embedded in C 0.B2R/, there is a subsequence which
is convergent in C 0.B2R/, which we will still denote in the same way. After re-
stricting to a such subsequence, f�R�ung � W 1;p.B2R�

/ is Cauchy inC 0.B2R�
/,

which implies that there is an N D N.�/, such that 8 n;m > N it holds that
k�Run � �RumkC0.B2R� /

< �
2
.1C 4R2� /

ı0

2 . Thus, we get

kun � umkC0
ı0
<
�

2
C
�

2
D �;

proving that this subsequence is Cauchy in C 0
ı 0 , and therefore convergent.

From this, we get the following corollary.

Corollary 4.3.1. The embedding W 2;p

ı
.Rn/ ,! C 1

ı 0.Rn/ is compact for any ı <
ı0 and p > n.

Proof. Let fukg1
kD1

� W
2;p

ı
be a bounded sequence and recall

kukkC1
ı0

D kukkC0
ı0

C k@ukkC0
ı0�1

:

From the above proposition, we know that uk admits a C 0
ı 0-convergent subse-

quence, to which we restrict. But then, f@ukg1
kD1

� W
1;p

ı�1
satisfies p > n and

ı�1 < ı0 �1, and therefore using again the above proposition, we can extract one
further subsequence so that f@ukg1

kD1
converges in C 0

ı 0�1
. This last subsequence

is therefore convergent in C 1
ı 0 and therefore the claim follows.

In order to extend the above compact embeddings to AE-manifolds, we just
need to appeal to an argument using cut-offs.

Lemma 4.3.1. Let .M n; 
/ be an AE-manifold, possibly with smooth compact
boundary ˙ . Then, W 2;p

ı
.M/ ,! C 1

ı 0.M/ is compact for p > n and ı < ı0 < 0.

Proof. Consider a bounded sequence fukg1
D1 � W

2;p

ı
, p > n and ı < 0, take

a compact set K with smooth boundary given by spheres sufficiently far away
in the ends of M , then pick a cut-off function 0 6 � 6 1 equal to one in the
compact core of M (where ˙ is contained) and zero outside of K and write
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uk D �uk C .1 � �/uk . On K the norms C 1
ı 0.K/ and C 1.K/ are equivalent and

the same is true forW 1;p

ı 0 .K/ andW 1;p.K/. Also, we have a compact embedding
W 2;p.K/ ,! C 1.K/, and therefore f�ukg1

kD1
admits a C 1

ı 0.K/-convergent sub-
sequence f�ukj

g1
jD1, to which we now restrict. But then, due to Corollary 4.3.1,

f.1 � �/ukj
g1
jD1 � W

2;p

ı
.Rn/ admits one further C 1

ı 0.Rn/-convergent subse-
quence to which we restrict and denote in the same way. Therefore, for i; j; large
enough

kuki
� ukj

kC1
ı0 .M/ 6 k�.uki

� ukj
/kC1

ı0 .K/
C k.1 � �/.uki

� ukj
/kC1

ı0 .Rn/ ! 0;

proving that fukj
g1
jD1 � W

2;p

ı
.M/ has a C 1

ı 0.M/ convergent subsequence, and
therefore W 2;p

ı
.M/ ,! C 1

ı 0.M/ is also compact in this case.

Finally, using the Sobolev embedding W 1;p

ı
,! C 0

ı
, valid for p > n, we see

that for u 2 W
1;p

ı
it holds that

juj D �ı juj��ı 6 �ıkukC0
ı

. �ıkuk
W

1;p

ı

:

Notice that if r is a smooth function which in the ends, sufficiently near infinity,
agrees with the euclidean radial function jxj, then there are constants C1 and C2,
such that C1r.x/ 6 �.x/ 6 C2r.x/. Thus, using the above relations, we get the
following.

Proposition 4.3.2. Let .M n; 
/ be aW 2;p

ı
-AE manifold, n > 3, p > n and ı < 0.

Consider a function r onM which near infinity, in each end, agrees with jxj. Then,
there is a constant C > 0 such that

juj.x/ 6 Crı.x/kuk
W

1;p

ı

; 8 u 2 W
1;p

ı
: (4.61)

We can now extract the following properties concerning the coefficients of the
system (4.54)-(4.55)

Lemma 4.3.2. Let .M n; 
/ be a W 2;p

ı
-AE manifold with p > n, n > 3, ı < 0

and consider the system (4.54)-(4.55). Suppose that the prescribed data for the
problem satisfies the functional hypotheses �;p; zu; zq 2 W

1;p

ı�2
.M/, U; �; #; zF 2

W
1;p

ı�1
.M/,H; ��; E O� 2 W 1� 1

p
;p.˙/ and v 2 W 2� 1

p
;p.˙/. LetMY D

P
i MY i ,
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where BM
Y i

� W
2;p

ı
.M IEi /, i D 1; 2, denotes the closed ball of radiusMY i >

0, then there are functions fI 2 L
p

ı�2
.M/, gK 2 W 1� 1

p
;p.˙/ and constants

CK > 0, independent of Y D .f;X/, such that

ja0I .Y /j 6 fI for any Y 2 BMY
;

jb0K.Y /j 6 gK for any Y 2 BMY
;

kb0K.Y /kW 1� 1
p ;p

6 CK for any Y 2 BMY
;

(4.62)

Proof. Notice that if�; p; zu 2 W
1;p

ı�2
, then so is �0. Also, under our hypotheses on

ı and p we get that j zF j2
 2 W
1;p

ı�2
from the multiplication property and the same

holds for �2 2 W
1;p

ı�2
. Clearly, we also have that R
 2 L

p

ı�2
, and none of these

coefficients depends on f or X . Now, let us consider the coefficients zK and j zEj2
 .
Notice that

j zKj
2

 D jL
;confX j

2

 C 2hU;L
;confXi
 C jU j

2

 ;

j zEj
2

 D jdf j

2

 C 2h#; df i
 C j#j

2

 :

The multiplication property implies that both these coefficients are in W 1;p

ı�2
. No-

tice that (4.62) is clear for the coefficients a� ; j zF j2
 and R
 which all belong to
L
p

ı�2
and are independent of Y . Also, according to Proposition 4.3.2, a function

u 2 W
1;p

ı�1
satisfies juj . rı�1kuk

W
1;p

ı�1

. Then, in the case of j zKj2
 , we have the
following estimate:

j zK.Y /j2
 D jL
;confX j
2

 C 2hU;L
;confXi
 C jU j

2

 . 2jDX j

2

 C 2jU j

2

 ;

. r2.ı�1/.kDXk
2

W
1;p

ı�1

C kU k
2

W
1;p

ı�1

/;

. .M 2
Y C kU k

2

W
1;p

ı�2

/rı�2rı 8 Y 2 BMY
:

Then, since under our hypotheses rı�2rı 2 L
p

ı�2
, we see that j zKj2
 satisfies (4.62).

A similar result holds for j zEj2
 , implying that they both satisfy (4.62). Now, let
us examine this property for the boundary coefficients. First, notice that none of
these coefficients depend on f or X . Also, from our choices of functional spaces,
we know that U and � have W 1� 1

p
;p-traces on ˙ and ��;H 2 W 1� 1

p
;p. All

this together implies that b0J .Y / 2 W 1� 1
p
;p for all J , and these coefficients are

actually independent of Y . Therefore, (4.62) holds.
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Also, the following property will prove to be very useful in our analysis.

Lemma 4.3.3. Let us consider the system (4.54)-(4.55) under the same assump-
tions as in Lemma 4.3.2. Given a boundedW 2;p

ı
-sequence fYkg1

kD1
and ı < ı0 <

0, if Yk
C1

ı0

��! Y , then it holds that

a˛I .Yk/
L

p

ı�2
����!
k!1

a˛I .Y /; ˛ D 0; 1; 2

b˛J .Yk/
W

1� 1
p ;p

������!
k!1

b˛J .Y /; ˛ D 0; 1; 2:

(4.63)

Proof. Considering a bounded sequence fYkg1
kD1

� W
2;p

ı
, such that Yk

C1
ı0

��! Y ,
we get thatˇ̌̌
j zK.Y /j2
 � j zK.Yk/j

2



ˇ̌̌
6 jhL
;confX;L
;confX � L
;confXki
 j

C jhL
;confXk;L
;confX � L
;confXki
 j

C 2jhU;L
;confX � L
;confXki
 j;

. jDX j
 jD.X �Xk/j
 C jDXkj
 jD.X �Xk/j


C jU j
 jD.X �Xk/j
 ;

. rı�1rı
0�1

�
kDXk

W
1;p

ı�1

C kDXkk
W

1;p

ı�1

C kU k
W

1;p

ı�1

�
�

kD.X �Xk/kC0
ı0�1

;

thus, since ı0 < 0, then rı�2rı
0

2 L
p

ı�2
, which, since fXkg � W

2;p

ı
is supposed

to be bounded, implies that


j zK.Y /j2
 � j zK.Yk/j
2







L

p

ı�2

.
�
kDXk

W
1;p

ı�1

C kDXkk
W

1;p

ı�1

C kU k
W

1;p

ı�1

�
�

kX �XkkC1
ı0

�! 0:

The same line of reasoning proves the analogous statement for j zEj2
 , and the coef-
ficients which are independent of Y trivially satisfy this property. We also need to
analyse the coefficient zEy zF D zF .Df; �/C zF .#; �/. Clearly under our hypotheses
zEy zF 2 L

p

ı�2
and also

j zEy zF .Y / � zEy zF .Yk/j
 . rı�2rı
0

k zF k
W

1;p

ı�1

kDf �DfkkC0
ı0�1

:
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Thus, using again the fact that rı�2rı
0

2 L
p

ı�2
, we get that

k zEy zF .Y / � zEy zF .Yk/kLp

ı�2
. k zF k

W
1;p

ı�1

kDf �DfkkC0
ı0�1

! 0:

Finally, concerning the b˛J -coefficients associated with the boundary conditions,
since we have already noticed that none of these coefficients depend on f or X ,
we conclude that (4.63) holds for them as well, which establishes the lemma.

Before presenting the main existence theorem, let us explain the relevance of
the above Lemmas in our discussion. First, let us situate ourselves in the discussion
presented in the previous section concerning the sequence of solutions f kg1

kD1
�

W
2;p

ı
associated to shifted system (4.59). The objective of Lemma 4.3.2 is to pro-

vide monotonicity properties associated to the corresponding Lichnerowicz equa-
tion which allow us to trap the sequence of conformal factors f�kg1

kD1
between

a priori (suitable) barriers. On the other hand, following the lines of the tradi-
tional monotone iteration scheme, the idea will be to first show that the sequence
is bounded (appealing to elliptic estimates) and the extract a convergent subse-
quence. Lemma 4.3.3 is tailored to help us in this task. That is, once we know that
our sequence of solutions is actually bounded, we can use Lemma 4.3.1 to obtain
a C 1

ı 0-convergent subsequence. It is then that Lemma 4.3.3 becomes useful when
put together with elliptic estimates to recover W 2;p

ı
-convergence. The one piece

that is still missing here is an appropriate way to trap the sequence of conformal
factors. Notice that if we were to use barriers such as those of Chapter 3, since
the coefficients of the equation change at each step of the iteration procedure, then
the barriers would also typically change. A similar issue was encountered in Sec-
tion 4.2, where we introduced the stronger notion of global barriers. Inspired in
this idea, let us introduce the following notion of barriers.

Definition 4.3.1. Consider the Lichnerowicz equation associated to the conformal
problem for the Einstein constraint equations, and let us write it as follows.

�
� D
X
I

aI .Y /�
I ;

�O�.�/ D
X
J

bJ .Y /�
J on ˙

(4.64)

where 
 2 W
p

2;ı
; O� is the outward pointing unit normal with respect to 
 , Y D

.f;X/, and “I” and “J” denote the exponents which define the non-linearities
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of the Lichnerowicz equation. We will say that �� is a strong global subsolution
if there are positive numbersMf andMX such that

�
�� >
X
I

aI .Y /�
I
� 8 Y 2 �iBMYi

�O�.��/ >
X
J

bJ .Y /�
J
� on ˙ 8 Y 2 �iBMYi

(4.65)

where BMf
; BMX

denote the closed balls inW 2;p

ı
of radiusMf andMX respec-

tively. A strong global supersolution is defined in the same way with the opposite
inequality. Also, if the same set of numbers Mf and MX serve for both the sub
and supersolution, and 0 < �� 6 �C we will say the the barriers are compatible.

Before presenting the following existence theorem, let us fix some notation. In
Lemma 3.3.5 we established that given aW 2;p

ı
-AE manifold we can always find a

harmonic function, say !, which tends to some fixed constants, say fAj gNjD1, on
each end of the manifold fEj gNjD1 and satisfies homogeneous Neumann boundary
conditions. Furthermore, we can use such harmonic functions in order to capture
the behaviour of our barriers at infinity. That is, we will say that �˙ is asymptotic

to !˙ if �˙ � !˙ 2 W
2;p

ı
, which implies that �˙

Ej

��! A˙
j . With this in mind,

when a function � 2 W
2;p

loc
is asymptotic to such a harmonic function ! we write

it as � D ! C ', with ' 2 W
2;p

ı
, where ! is capturing the behaviour at infinity

of �.

Theorem 4.3.2. Let .M n; 
/ be a W 2;p

ı
-AE manifold, with p > n, n > 3 and

2 � n < ı < 0, and consider the system (4.54)-(4.55) on M . Assume that the
Lichnerowicz equation admits a compatible pair of strong global sub and super-
solutions given by �� and �C, which are, respectively, asymptotic to harmonic
functions !˙ tending to positive constants fA˙

j gNjD1 on each end fEj gNjD1. Fix
a harmonic function ! asymptotic to constants fAj gNjD1 on each end satisfying
0 < A�

j 6 Aj 6 AC
j , and suppose that the solution map

Fa;b W W
p

2;ı
.M IE/ 7! W

p

2;ı
.M IE/;

 D .'; Y / 7! Fa;b. /
:

D P�1
a;b ı Fa;b. /:

is actually invariant on the setBMf
�BMX

� W
2;p

ı
�W

2;p

ı
given in the definition

of the barriers ��; �C for any �� 6 ' C ! 6 �C. Then, the system admits a
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solution .� D ! C '; f;X/, with .'; f;X/ 2 W
2;p

ı
.M IE/, and, furthermore,

� > 0.

Proof. First, consider the shifted system associated with (4.60), where we will
pick the shift functions a 2 L

p

ı�2
and b 2 W 1� 1

p
;p below. We have our strong

global sub and supersolutions fixed together with the ballsBM
Y i

� W
2;p

ı
.M;Ei /.

From our hypotheses on the barriers �˙, we know that these are bounded functions,
which implies that there are positive numbers, say l 6 m, such that l 6 �� 6
�C 6 m. Thus, consider Y 2 �iBM

Y i
, and define the functions

haY .�/
:

D hY .�/ � a.� � !/ D
X
I

a0I .Y /�
I

� a.� � !/;

gbY .�/
:

D gY .�/ � b.� � !/ D
X
K

b0K.Y /�
K

� b.� � !/ on ˙:

We want to pick the functions a and b such that both hY .y/; gY .y/ are decreasing
functions on y 2 Œl; m�, for all Y 2 �iBM

Y i
. Appealing to Lemma 4.3.2, notice

that

@

@y

X
I

a0I .Y /y
I 6

X
I

jI jja0I .Y /jy
I�1

6
X
I

jI jfIy
I�1 6

X
I

jI j sup
l6y6m

yI�1 fI 2 L
p

ı�2
; 8 Y 2 BMY

From similar arguments, we get that

@

@y

X
K

b0K.Y /y
K 6 sup

l6y6m

X
K

jKjjb0K.Y /jy
K�1 6 sup

l6y6m

X
K

jKjgKy
K�1;

6
X
K

jKj sup
l6y6m

yK�1 gK 2 W 1� 1
p
;p; 8 Y 2 BMY

;

where we have again used the boundedness property (4.62). Thus, if we pick a 2

L
p

ı�2
.M/ and b 2 W 1� 1

p
;p.˙/ satisfying

a >
X
I

jI j sup
l6y6m

yI�1 fI I b >
X
K

jKj sup
l6y6m

yK�1 gK ; (4.66)



206 4. Far from CMC solutions

we get that

@

@y
haY .y/ 6 0; and

@

@y
gbY .y/ 6 0; for all .y; Y / 2 Œl; m� �i BM

Y i
;

implying thathaY .�/ andh
b
Y .�/ are decreasing functions on the interval Œ��; �C�C0 .

Now, consider  0 D .�0; Y0/ with �0 D �� and Y0 2 �iBM
Y i
, and consider

the sequence f k D .�k D ! C 'k; Yk/g
1
kD1

defined by an iteration procedure
of the form:

Pa;b k D Fa;b. k�1/:

From the linear properties associated with the operator Pa;b we know that the
sequence is well-defined, since for each step Fa;b. k�1/ 2 L

p

ıC2
. Furthermore,

from our hypotheses, we know that Yk 2 �iBM
Y i

for all k as long as we guarantee
that �k D !C'k stays in the interval Œ��; �C�C0 . We can prove this last statement
inductively along the lines of the proof of Theorem 3.3.4. First consider �1, which
satisfies

�
 .�1 � ��/ � a..�1 � !/ � .�� � !// D haY0
.��/ ��
�� C a.�� � !/

�. O�.�1 � ��/C b.�1 � ! � .�� � !// D gbY0
.��/C O�.��/C b.�� � !/:

Then, since haY0
.�0/ D hY0

.��/�a.���!/ and gbY0
.��/ D gY0

.��/�b.���!/,
we find

�
 .�1 � ��/ � a..�1 � !/ � .�� � !// D �.�
�� � hY0
.��// 6 0

�. O�.�1 � ��/C b.�1 � ! � .�� � !// D �.�O�.��/ � gY0
.��// 6 0;

where the final inequalities is a consequence of �� being a strong global subso-
lution. Notice that �� is in W 2;p

loc
and is asymptotic to !�, which itself tends to

positive constants fA�
j gNjD1 in each end fEj gNjD1 respectively, and, by construc-

tion, �1 is asymptotic to ! which tends to positive constants fAj gNjD1 in each end,
satisfying Aj > A�

j . Thus, we get that �1 � �� ! Aj � A�
j > 0 in each end

Ej . Then, we can apply the weak maximum principle given in Lemma 3.3.1, and
conclude that �1 > ��. Similarly, we have that

�
 .�C � �1/ � a..�C � !/ � .�1 � !// D �
�C � a.�C � !/ � haY0
.��/;

� O�.�C � �1/ � b..�C � !/ � .�1 � !// D �O�.�C/ � b.�C � !/ � gbY0
.��/:
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We can rearrange the right-hand side in the above expression as

�
�C � a.�C � !/ � haY0
.��/ D �
�C � hY0

.�C/C hY0
.�C/ � a.�C � !/

� haY0
.��/;

D �
�C � hY0
.�C/C haY0

.�C/ � haY0
.��/ 6 0;

and similarly,

�O�.�C/ � b.�C � !/ � gbY0
.��/ D �O�.�C/ � gY0

.�C/C gY0
.�C/ � b.�C � !/

� gbY0
.��/;

D �O�.�C/ � gY0
.�C/C gbY0

.�C/ � gbY0
.��/ 6 0

where the final inequalities follows from �C being a strong global supersolution,
and also haY .�/ and g

b
Y .�/ being a decreasing functions of � 2 Œ��; �C�C0 for any

Y 2 �iBM
Y i
. All this implies

�
 .�C � �1/ � a..�C � !/ � .�1 � !// 6 0;

� O�.�C � �1/ � b..�C � !/ � .�1 � !// 6 0

Then, noticing again that�C is asymptotic to!C, which tends to constants fAC
j gNjD1

in each end, satisfying AC
j > Aj , we get that �C � �1

Ej

��! AC
j �Aj > 0, which

implies through the maximum principle that �C > �1.
Now, suppose that �� 6 �k D ! C 'k 6 �C and Yk 2 �iBM

Y i
, and then

consider

�
 .�kC1 � ��/ � a..�kC1 � !/ � .�� � !// D �

�
�
�� � hYk

.��/

C haYk
.��/ � haYk

.�k/
�

6 0

�O�.�kC1 � ��/ � b..�kC1 � !/ � .�� � !// D �

�
� O�.��/ � gYk

.��/

C gbYk
.��/ � gbYk

.�k/
�

6 0

where the last inequality holds since �� is, by hypothesis, a strong global subso-
lution. Furthermore, haY and gbY are decreasing functions of � 2 Œ��; �C�C0 for
any Y 2 BMf

� BMX
, and because of the inductive hypothesis �� 6 �k 6 �C
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and Yk 2 BMf
� BMX

. Thus, since �kC1 � ��

Ej

��! Aj � A�
j > 0, from the

maximum principle we get �kC1 > ��. Similarly,

�
 .�C � �kC1/ � a..�C � !/ � .�kC1 � !// D �
�C � hYk
.�C/

C haYk
.�C/ � haYk

.�k/ 6 0

�O�.�C � �kC1/ � b..�C � !/ � .�kC1 � !// D �O�.�C/ � gYk
.�C/

C gbYk
.�C/ � gbYk

.�k/ 6 0

where the last inequality holds because �C is a strong global supersolution; haY .�/
and gbY .�/ are decreasing function of � 2 Œ��; �C�C0 for all Y 2 �iBM

Y i
and

the inductive hypothesis. Then, the maximum principle implies that �C > �kC1.
All this implies that �� 6 �kC1 6 �C, which finishes the inductive proof. Hence
we have produced the sequence of solutions f.'k; Yk/g

1
kD0

� W
p

2;ı
.M IE/, where

we know that Yk 2 �iBM
Y i

and that �k D 'kC! 2 Œ��; �C�C0 for all k. Notice
that this implies that

k'kk
W

2;p

ı

.
X
I

ka0I .Yk�1/kLp

ı�2
jj�Ik�1jjC0 C kakLp

ı�2
k�k�1kC0

C
X
K

kb0K.Yk�1/�
K
k�1kW 1� 1

p ;p
C kb�k�1k

W
1� 1

p ;p
;

.
X
K

kb0K.Yk�1/�
K
k�1kW 1� 1

p ;p
C kb�k�1k

W
1� 1

p ;p

C
X
I

kfIkLp

ı�2
k�I˙kC0 C kakLp

ı�2
k�CkC0 ;

We proceed to estimate the boundary terms in a similar (somewhat simpler) man-
ner to Theorem 3.3.4. Since b0K.Yk�1/ 2 W 1� 1

p
;p.˙/ for any k and any K, we

know that there are (non-unique) extensions zb0K.Yk�1/ 2 W 1;p.U /, where U
is some smooth neighbourhood of ˙ with compact closure, and we also know
that both the extension operator and the trace map are continuous. Therefore,
kb0K.Yk�1/k

W
1� 1

p ;p
.˙/

. kzb0K.Yk�1/kW 1;p.M/, and, clearly, zb0K.Yk�1/�
K 2

W 1;p.U / is an extension of b0K.Yk�1/�
K j˙ . Therefore, using the fact thatW 1;p.U /

is an algebra under multiplication for p > n, we see that

kb0K.Yk�1/�
K
k�1kW 1� 1

p ;p
.˙/

. kzb0K.Yk�1/�
K
k�1kW 1;p.U /;

. kzb0K.Yk�1/kW 1;p.U /k�
K
k�1kW 1;p.U /:
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Also,

k�Kk�1kW 1;p.U / . k�Kk�1kLp.U / C kr�Kk�1kLp.U /;

. k�K˙ kC0 C k�K�1
˙ kC0kr�k�1kLp.U /;

. 1C k�k�1kW 1;p.U / 6 1C k!kW 1;p.U / C k'k�1kW 1;p.U /;

where in the second line �˙ stands for the subsolution is the exponents are negative
are the supersolution if they are non-negative, and the implicit constant depends
on the barriers, but not on k. We can now proceed just us in Theorem 3.3.4 and
appeal to interpolation inequalities in the above estimates, and then go back to
k'kk

W
2;p

ı

to obtain

k'kk
W

2;p

ı

6
1

2
k'k�1kW 2;p

ı

C C; (4.67)

where C is a fixed constant that only depends on the parameters of the problem.
That is, it depends on the barriers, the functions fI , the shift functions a and b,
the constants CK and the choice of � in the interpolation inequalities, but not on
k. Similarly to Theorem 3.3.4, we can iterate the above procedure to get that

k'kk
W

2;p

ı

6 k'�k
W

2;p

ı

C 2C 8 k: (4.68)

The above estimate implies that there is a constantM' > 0, depending on the barri-
ers �˙, the norms of the functions fI and the constants CK , such that f'kg1

kD0
�

BM'
� W

2;p

ı
, where BM'

stands for the closed ball of radiusM' . This implies
that the sequence f.'k; Yk/g

1
kD0

� BM'
�BMf

�BMX
. Then, since the embed-

ding W 2;p

ı
,! C 1

ı 0 is compact for any ı < ı0 < 0 (see Lemma 4.3.1), we get that,
up to restricting to a subsequence,

.'k; Yk/
C1

ı0

����!
k!1

.'; Y /:

Finally, the aim is to show that f.'k; Yk/g
1
kD0

is Cauchy in W 2;p

ı
. This is done

appealing to the estimates associated to the linear parts of the shifted system in very
much the sameway as inTheorem 2.2.1, but now incorporating the boundary terms.
The main difference is now that the coefficients of the system also depend on the
previous step of the sequence. This can be circumvented appealing to Lemma 4.3.3,
which guarantees the Lp

ı�2
-convergence of the coefficients a˛I .Yk/ ! a˛I .Y /.
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Since the details of this procedure are quite direct although lengthy, we leave them
to the reader, who can also consult them in Avalos and Lira (2019).

From the above theorem we see that we have once more reduced our task
to constructing (strong) global barriers for the constraint system, and to proving
invariance of the solution map Fa;b.'; �; �/ on the balls BMf

� BMY
for any ' 2

Œ'�; 'C�C0 . Let us do this construction in the Yamabe positive case, which is the
one that allows for far-from-CMC results.

A priori estimates on the electromagnetic constraint

Going back to the constraint system, within the kind of iteration scheme described
above, we need to get a global fixed estimates for solutions of linear equations of
the form

�
f D zq N�
2n

n�2 ;

�O�.f / D E O� on ˙;
(4.69)

where, in the right-hand side, the functions N� D ! C ', ' 2 W
2;p

ı
.M/; zq 2

L
p

ı�2
.M/ and E O� 2 W 1� 1

p
;p.˙/, with p > n and 2� n < ı < 0, are considered

as given data. Thus, the right-hand side is in Lp
ı�2

.M/ �W 1� 1
p
;p.˙/. With all

this settled, we notice that anyW 2;p

ı
-solution of (4.69) satisfies the the following

a priori elliptic estimate.

kf k
W

2;p

ı

6 C
�
kzqkLp

ı�2
k N�

2n
n�2 kC0 C kE O�k

W
1� 1

p ;p

�
: (4.70)

In particular, notice that in the above estimate we can get rid of the dependence
on the specific N� by admitting the existence of global barriers for the hamiltonian
constraint, more specifically, by admitting the existence of a global supersolution.

A priori estimates on the momentum constraint

Similarly to what we did above, we want to get uniform estimates on the sequence
of solutions generated by the momentum constraint. Notice that the momentum
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constraint read as follows

�
;confX D � zEy zF C !�'
2n

n�2 C !�'
2nC1

n�2 ;

L
;confX. O�; �/ D �

�
1

2
j��j � bn�

�
v

2n
n�2 O� � U. O�; �/;

(4.71)

where !� D .�Cp/
�
1C jzuj2


� 1
2 zu[. Let us assume that �; U 2 W

1;p

ı�1
and that 


being aW p

2;ı
-AE metric are given, where, as above, p > n and 2�n < ı < 0, and

consider that � D ! C ', with ' 2 W
2;p

ı
, and finally that f 2 W

2;p

ı
, # 2 W

1;p

ı�1
,

�� 2 W 1� 1
p
;p and v 2 W 2� 1

p
;p. Also, suppose that�; p 2 L

p

ı�2
and zF 2 W

1;p

ı�1
,

which implies that zF ˝ zE 2 W
1;p

ı�2
, since zE D df C # 2 W

1;p

ı�1
. Then, since the

right-hand side of the above equation is in Lp
ı�2

� W 1� 1
p
;p we can associate a

unique solution to it, sayX�;f 2 W
2;p

ı
, and we can then estimate theW 2;p

ı
-norm

of X�;f in terms of �, f and the free data. That is,

kX�;f k
W

2;p

ı

. kd�kLp

ı�2
k�

2n
n�2 kC0 C k!�kLp

ı�2
k�2

nC1
n�2 kC0 C k zEf y zF kLp

ı�2
;

C k
1

2
j��j � bn�k

W
1� 1

p ;p
kv

2n
n�2 kC0 C kU k

W
1� 1

p ;p
;

where we have used that W 2;p

ı
,! C 0. Notice that

k zEf y zF kLp

ı�2
. k zF k

W
1;p

ı�1

kdf k
W

1;p

ı�1

C k zF k
W

1;p

ı�1

k#k
W

1;p

ı�1

which explicitly gives us that

kX�;f k
W

2;p

ı

6 �
n
kd�kLp

ı�2
k�

2n
n�2 kC0 C k!�kLp

ı�2
k�2

nC1
n�2 kC0C

C k zF k
W

1;p

ı�1

kdf k
W

1;p

ı�1

C k zF k
W

1;p

ı�1

k#k
W

1;p

ı�1

C

C k
1

2
j��j � bn�k

W
1� 1

p ;p
kv

2n
n�2 kC0 C kU k

W
1� 1

p ;p

o
:

(4.72)

In case we have a pair of compatible strong global barriers �� 6 �C, then,
there are radii Mf ;MY � W

2;p

ı
such that Definition 4.3.1 works for the Lich-

nerowicz equation for any f 2 BMf
and any X 2 BMX

. In such a case, notice
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that for any f 2 BMf
and any �� 6 � 6 �C, we get that

kX�;f k
W

2;p

ı

. kd�kLp

ı�2
k�

2n
n�2 kC0 C k!�kLp

ı�2
k�2

nC1
n�2 kC0C

C k zF k
W

1;p

ı�1

Mf C k zF k
W

1;p

ı�1

k#k
W

1;p

ı�1

C

C k
1

2
j��j � bn�k

W
1� 1

p ;p
kv

2n
n�2 kC0 C kU k

W
1� 1

p ;p
;

Regarding the momentum constraint, we we will need one further estimate.
Suppose that X�;f is a solution of the momentum constraint for source functions
.�; f /. Since p > n and X 2 W

2;p

ı
, we can appeal to Proposition 4.3.2 to

estimate jDX�;f j
 . rı�1kX�;f k
W

2;p

ı

, which implies that

jL
;confX�;f j
 . rı�1
n
kd�kLp

ı�2
k�

2n
n�2 kC0 C k!�kLp

ı�2
k�2

nC1
n�2 kC0

C kzqkLp

ı�2
k zF k

W
1;p

ı�1

k�
2n

n�2 kC0 C kE O�k
W

1� 1
p ;p

k zF k
W

1;p

ı�1

C k zF k
W

1;p

ı�1

k#k
W

1;p

ı�1

C k
1

2
j��j � bn�k

W
1� 1

p ;p
kv

2n
n�2 kC0

C kU k
W

1� 1
p ;p

o
;

(4.73)

where we have assumed that the function f (appearing in the right-hand side of
the momentum constraint through the electric field zE) is a solution of the electric
constraint for the same fixed source � 2 W

2;p

ı
.

Barriers for the Lichnerowicz equation

Let us now consider the Lichnerowicz equation associated to system (4.54)-(4.55),
explicitly given by:

an�
� �R
� C j zKj
2

�

� 3n�2
n�2 �

�
bn�

2
� 2�0

�
�

nC2
n�2 C j zEj

2

�

�3
C

j zF j2


2
�

n�6
n�2 D 0;

1

2
an O�.�/CH� � .�� C bn�/ �

n
n�2 �

�
1

2
j��j � bn�

�
v

2n
n�2�� n

n�2 D 0; on ˙

(4.74)
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where we fix the assumptions that .M n; 
/ is a W 2;p

ı
-AE manifold with n > 3,

p > n, 2 � n < ı < 0 as well as

�; U; #; zF 2 W
1;p

ı�1
; �; p 2 W

1;p

2.ı�1/
; zu 2 W

1;p

ı�1
;

�� 2 W 1� 1
p
;p; v 2 W 2� 1

p
;p:

(4.75)

where we will assume �0 > 0, which is physically reasonable.
According to the analysis made in the previous sections, we need to show the

following two properties:

• Equation (4.74) admits a compatible pair of strong global sub and super-
solutions 0 < �� < �C, where �˙ D !˙ C '˙ with '˙ 2 W

p

2;ı
and

!˙ are given harmonic functions, satisfying Neumann boundary conditions,
asymptotic to positive constants fA˙

j gNjD1 in each end fEj gNjD1 respec-
tively, and these barriers work for any f 2 BMf

andX 2 BMX
for suitable

Mf ;MY > 0.

• The solution map Fa;b W Œ��; �C�C0 � BMf
� BMX

7! W
p

2;ı
.M IE/ as-

sociated to the shifted system must be invariant on BMf
� BMX

for any
� 2 Œ��; �C�C0 .

If the above two properties hold, then, the iteration scheme should work for the
complete system.

As usual, the construction of the barriers will strongly depend on the Yamabe
class of 
 . Appealing to results of Chapter 3, in particular Proposition 3.4.2, the
Yamabe positive case allows for a far-from-CMC construction, which we will de-
scribe below. Our construction is taken from Avalos and Lira (2019) and arises
as a modification of Holst and Meier 2014 to our present context. Let us high-
light that the marginally trapped condition required that the data �� and � satisfy
1
2
j��j � bn� > 0 and recall that �� 6 0. Then, notice that

j��j � bn� >
1

2
j��j � bn� > 0; (4.76)

under these black hole boundary conditions.

Lemma 4.3.4. Let .M; 
/ be a W 2;p

ı
-Yamabe positive AE-manifold, with p > n

and 2 � n < ı < 0. Consider the system (4.54)-(4.55) and let � be an arbitrary
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datum. If
�
1
2
j��j � bn�

�
> 0 along ˙ and v > 0, then, under smallness assump-

tions on the remaining coefficients of the system,11 the Lichnerowicz equation asso-
ciated to the coupled Einstein–Maxwell system for a charged perfect fluid admits
compatible strong global barriers 0 < �� < �C, such that �˙ � !˙ 2 W

2;p

ı
for

some harmonic functions !˙ which tend to positive constants fA˙
j gNjD1 on each

end. Furthermore, the solution map associated to the shifted system is invariant
on balls BMf

; BMX
� W

p

2;ı
where the strong global barriers work.

Proof. Since the construction of these barriers is quite long and delicate, we will
present the main ideas behind it a refer the reader to Avalos and Lira (2019) for the
complete details.12 The basic idea goes as follows. First, appealing to the Yamabe
positive condition and to Proposition 3.4.2 we can start assuming that R
 � 0 on
M and H � 0 along ˙ . Then, we will present a 1-parameter family of W 2;p

loc
-

strong global subsolutions �� D ˛.'� C !/ > 0, ˛ 2 .0; ˛max/, where these
subsolutions work for any f;X 2 W

2;p

ı
. That is, there are no restrictions of the

radii Mf ;MX imposed by this family. After this, we will present a 1-parameter
family of candidateW 2;p

loc
-strong supersolutions of the form�C D ˇ.'CC!/ > 0.

To make these candidate barriers compatible with ��, we fix the choice ˛ to satisfy

0 < ˛ < min
n
˛max; ˇmin

M

! C 'C

! C '�

o
; (4.77)

which is only fixed after choosing ˇ. Also, we fix the choice of (ˇ-dependent)
radii

Mf D C
n
kzqkLp

ı�2
k�

2n
n�2

C kC0 C kE O�k
W

1� 1
p ;p

o
;

MX D �
n
kd�kLp

ı�2
k�

2n
n�2

C kC0 C k!�kLp

ı�2
k�
2nC1

n�2

C kC0C

C k zF k
W

1;p

ı�1

�
Mf C k#k

W
1;p

ı�1

�
C

C


1
2

j��j � bn�



W

1� 1
p ;p

kv
2n

n�2 kC0 C kU k
W

1� 1
p ;p

o
(4.78)

11The smallness conditions can be made to fall with different strengths on each coefficient. For
instance, it is enough to assume that �;p; zq; zF ; v and U are small enough on their corresponding
functional spaces.

12We caution the interested reader that in Avalos and Lira (2019) the conventions of the dimen-
sional coefficients, as well as the weight parameters are slightly different.
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where C and � are the constant appearing in the estimates (4.70) and (4.72) re-
spectively, and consider the balls BMf

and BMX
in W p

2;ı
. Thus, once ˇ is fixed,

the radii (4.78) as well as ˛ are fixed. Notice that with these choices for the balls
BMf

and BMX
, given Nf 2 BMf

, NX 2 BMX
and N� 6 �C, it follows from the a

priori elliptic estimates (4.70)-(4.72) that the solution map Fa;b associated to the
shifted system (4.57) taking . N�; Nf ; NX/ 7! .�; f;X/ D Fa;b. N�; Nf ; NX/ satisfies
that f 2 BMf

and X 2 BMX
, implying the desired invariance property. There-

fore, in this scenario, all that is left to do is to chose ˇ appropriately so that �C is
a strong global supersolution for these choices of balls BMf

and BMX
, and then

follow the choices (4.77) and (4.78) for the subsolution and the radii.
Let us begin by considering the existence of a strong global subsolution. We

need to satisfy13

H1
f;X .��/

:
D an�
�� �

�
bn�

2
� 2�0

�
�

nC2
n�2

� C j zK.X/j2
�
� 3n�2

n�2
� C �2.f /�

�3
�

C �3�
n�6
n�2
� > 0;

H2
f;X .��/

:
D �

an

2
O�.��/C .bn� C ��/�

n
n�2
� C

�
1

2
j��j � bn�

�
v

2n
n�2�� n

n�2
� >

> 0 on ˙;

for all f 2 BMf
and X 2 BMX

, where we have denoted by �2.f /
:

D j zE.f /j2


and by �3
:

D
j zF j2

2

. Since � 2 W
1;p

ı�1
, we get that �2 2 L

p

ı�2
, also, since .j��j �

bn�/ > 0, we can define '� 2 W
2;p

ı
as the unique solution to

an�
'� � bn�
2'� D bn!�

2;

�
an

2
O�.'�/ � .j��j � bn�/'� D !.j��j � bn�/;

(4.79)

and ! is a harmonic function with homogeneous Neumann boundary conditions,
asymptotic to positive constants fAj gNjD1 on each end. Then, define ��

:
D ˛.!C

'�/, where ˛ > 0 is a constant to be fixed, and notice that

an�
�� � bn�
2�� D 0;

�an O�.��/ � .j��j � bn�/�� D 0:
(4.80)

13Recall we started assuming R
 � 0 andH
 � 0 due to the Yamabe positive condition.
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Then, the weak maximum principle given in Lemma 3.3.1, we known that �� > 0,
and then the strong maximum principle, given in Lemma 3.3.2, guarantees that
�� > 0 since �� ! ˛Aj > 0 in each end Ej . Now, consider

H1
f;X .��/ D bn�

2
�
�� � �

nC2
n�2

�

�
C non-negative terms;

H2
f;X .��/ D .j��j � bn�/

�
�� � �

n
n�2
�

�
C non-negative terms

Since ! and '� are independent of ˛, we can pick ˛ sufficiently small so that
the highlighted terms in the above expressions are non-negative. Such choice of
˛ > 0 guarantees that H1;2

f;X
.��/ > 0 8 f;X 2 W

p

2;ı
, proving that �� is a strong

global subsolution.
Now, let us consider the supersolution. In this case, we need to find �C satis-

fying

H1;2
f;X

.�C/ 6 0; 8 f 2 BMf
; X 2 BMX

;

for our choice of radii Mf ;MX of (4.78). With this in mind, let � 2 L
p

ı�2

be a positive function which agrees with rırı�2 in a neighbourhood of infinity,
in each end, and � 2 W 1� 1

p
;p.˙/ a positive function on the boundary. Define

'C 2 W
2;p

ı
as the unique solution to

an�
'C D ��;

1

2
an O�.'C/ D � on ˙;

(4.81)

and then define �C
:

D ˇ.! C 'C/, where ˇ is some positive constant to be deter-
mined. Since then it holds that

an�
�C D �ˇ� 6 0;

�
an

2
O�.�C/ D �ˇ� 6 0 on ˙;

(4.82)

appealing to the maximum principles given in Lemmas 3.3.1 to 3.3.2, we find
�C > 0. Being aware of the existence of strong global subsolutions of the form
�� D ˛.! C '�/ whenever ˛ is sufficiently small, we us fix the relation between
˛ and ˇ obeying (4.77) so that �� < �C. Now, consider the following

H1
f;X .�C/ 6 �ˇ�C 2�0�

nC2
n�2

C C j zK.X/j2
�
� 3n�2

n�2

C C �2.f /�
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C C �3�

n�6
n�2

C ;

H2
f;X .�C/ D �ˇ� � .j��j � bn�/�

n
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C C

�
1

2
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�
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2n
n�2�

� n
n�2

C ;
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First, let us apply the estimate
j zK.X/j2
 6 2jL
;confX j

2

 C 2jU j

2

 :

Then, since jL
;confX j
 . jDX j
 , we get that for anyX 2 BMX
, it holds that

jL
;confX j
2

 . r2.ı�1/

kXk
2

W
2;p

ı

6 r2.ı�1/M 2
X :

Since the objective is to produce a far-from-CMC barrier, the idea is now to sepa-
rate the d� -term inMX from all the remaining ones. We can do this appealing to
the elementary estimate .a C b/2 6 2.a2 C b2/. Using this in (4.78) to compute
M 2
X and then using jU j2
 . r2.ı�1/kU k2

W
1;p

ı�1

, we find

j zK.X/j2
 . r2.ı�1/
n
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o
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(4.83)
Going back to the estimate on the Lichnerowicz equation, introducing the im-

plicit constant in the above estimate as Cn and also using the explicit expression
ofMf given by (4.78), we get that
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Also, recall that for any f 2 BMf
it holds that
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Before introducing this explicit expression in the previous estimate, let us also
highlight that the choices�; p 2 W

1;p

2.ı�1/
, zu 2 W

1;p

ı�1
(which imply �0 2 W

1;p

2.ı�1/
)

and zF 2 W
1;p

ı�1
that we have made, imply the estimates
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(4.85)

and therefore we get
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(4.86)

The first objective is now to show that the first line in the above expression is
negative for a suitable choice of ˇ > 0. Since this is trivial of d� D 0, we shall
assume that d� 6� 0 in what follows. With this in mind, notice that

k�
4n

n�2

C kC0�
� 3n�2

n�2

C D ˇ
nC2
n�2 k.! C 'C/

4n
n�2 kC0.! C 'C/

� 3n�2
n�2 :

Near infinity we know that � D r2.ı�1/. Thus, if we pick ˇ sufficiently small,
independently of how large kd�kLp

ı�2
might be, we get that
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In fact, from kd�k ¤ 0, we just need to satisfy
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Therefore, the first line in the above H1.�C/-estimate is negative from our
choice of ˇ Furthermore, since � D r2.ı�1/ near infinity, we see that this decay
controls all the terms in this estimate. Thus, under smallness assumptions all the
remaining coefficients, we can keep the right-hand side non-positive over all of
M .

Concerning the boundary inequality, since�ˇ��.j��j�an�/�
n

n�2

C < 0 along
˙ , under a smallness assumptions on v 2 W 1� 1

p
;p, we get that H2

f;X
.�C/ 6 0

for any f 2 BMf
and any X 2 BMX

. All this implies that, under the present
assumptions and with the choices of balls BMf

and BMX
made above, �� and

�C form a compatible pair of strong global barriers for the Hamiltonian constraint.
Moreover, due to the arguments put forward at the beginning of this proof, the
solution map Fa;b. N�; �; �/ is invariant on these balls and therefore the construction
is finished.

The above lemma provides us with appropriate barriers to applyTheorem 4.3.2
to the system (4.54)-(4.55). Nevertheless, we haven not yet satisfied the black
hole boundary conditions, since for this we need to guarantee the a priori estimate
�j˙ 6 v for the solution delivered byTheorem 4.3.2. We can achieve this arguing
as follows.

In the above lemma, the definition of the strong global supersolution is inde-
pendent of the boundary function v. Thus, after defining �C just as in (4.81)-(4.82),
fix v :

D �Cj˙ 2 W 1� 1
p
;p.˙/. This only demands us to substitute this choice for

v in the final inequalities forH1;2
f;X

.�C/. In the case of (4.86), this only affects the
first term in the fourth line, which is of the form
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In order to control the size of this term, we can now appeal to a smallness condition
on k
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. On the other hand, concerning the boundary estimates,

this choice implies
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and therefore the boundary inequality is automatically verified. Thus, we conclude
that adding a smallness condition on k

1
2
j��j � bn�k

W
1� 1

p ;p
makes the a priori

choice v D �Cj˙ admissible in the construction presented in Lemma 4.3.4. The
interesting point to be made at this point, is that Theorem 4.3.2 guarantees that the
solution .�; f;X/ obtained for system (4.54)-(4.55) from these barrier functions
satisfies the a priori bound � 6 �C, implying �j˙ 6 v D �Cj˙ , and therefore
.�; f;X/ satisfy the full (marginally) trapped surface boundary conditions (4.49).
That is, we have established the following:

Theorem 4.3.3. Consider the same assumptions as in Lemma 4.3.4 and the strong
global barriers constructed therein. Then, under the additional assumption that

1
2
j��j�bn�




W

1� 1
p ;p

is sufficiently small, the choice of data v D �Cj˙ is compat-
ible with the construction, and under these choices the resulting barriers �� and
�C provide initial data which satisfy the (marginally) trapped conditions (4.49).

We can therefore present the main result of this section:

Theorem 4.3.4. Let .M n; 
/ be a W 2;p

ı
-Yamabe positive AE manifold with com-

pact boundary ˙ , p > n, n > 3 and 2 � n < ı < 0. Consider the system (4.54)-
(4.55) with conformal data �; U; zF ; # 2 W

1;p

ı�1
, �;p 2 W

1;p

2.ı�1/
; zu 2 W

1;p

ı�1
; zq 2

L
p

ı�2
and ��; E O� 2 W 1� 1

p
;p.˙/. If 1

2
j��j � bn� > 0 and �� < 0 along ˙ , and

U; zF ;E O� ; #; �; p; zq and


1
2
j��j � bn�




W

1� 1
p ;p

are sufficiently small, then, there

is a W 2;p

ı
-solution to the conformal problem (4.54)-(4.55) satisfying marginally

trapped boundary conditions.

Proof. Let us begin by fixing a harmonic function!0 tending to positive constants
fAj gNjD1 on each end fEj gNjD1 respectively. Then, fromTheorem 4.3.3, we know
that under our smallness assumptions we can produce a compatible pair of strong
global barriers �˙ asymptotic to ˛!0 and ˇ!0 for sufficiently small constants ˛
and ˇ. Furthermore, we know that the solution map Fa;b associated to the shifted
system (4.57) is invariant on the balls BMf

and BMX
in W p

2;ı
. Then, the result

follows from Theorem 4.3.2.

Let us finally highlight that there are corresponding results for the other Yam-
abe classes which the interested reader may find in Avalos and Lira (2019), al-
though they also demand a near-CMC condition. Nevertheless, let us once more
point out that contrary to the the vacuum case (or cases without charge), even the
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CMC case associated with (4.54)-(4.55) is fully coupled and therefore such near-
CMC results forY 6 0 should be appreciated in this light. For instance, we cannot
in this case consider a close CMC solution obtained by decoupling the equations
and then consider this result as a consequence of a perturbation technique of the
kind discussed at the beginning of the chapter. We are free to assume the existence
of such a CMC solution and apply these techniques, but we cannot obtain this first
CMC solution by analysis a decoupled system. As we anticipated in the beginning
of the section, we are stuck with the fully coupled systems from the first moment,
and hence even near CMC solutions are quite delicate.

Finally, along the lines of the final comments of Section 4.2, notice that we do
not have any claims about uniqueness, which is an important open problem, and,
also, results for general data (without smallness assumptions) do not seem to be
within reach with current techniques. Both these problems relate to the objective
of using the conformal method as a way of parametrising the space of solutions of
the ECE.



A Some Analytic
Tools

In this appendix we shall collect several analytic results which are useful in the
analysis of the elliptic problems treated in the core in this book. First, to provide
a presentation as self-contained as possible, we shall collect some well-known
functional analytic results for future reference and then we will collect several very
important results concerning Sobolev spaces. This will be essential in Appendix B
in the analysis of linear elliptic partial differential operators.

A.1 Functional analytic results
Let us start recapitulating a few useful results from functional analysis which shall
play a role in our constructions. The proof of the following theorem can be found,
for instance, in Cantor (1981, Lemma 2.2).

Theorem A.1.1. Let T W X 7! Y and S W Y 7! Z be bounded linear operators
between Banach spaces. Then, the following are equivalent:

1/ Ker.S ı T / D Ker.T / and Im.S ı T / D Im.S/:
2/ Y D Im.T /˚ Ker.S/:

Furthermore, in case one of the above holds, then Im.T / is closed in Y .
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Let us now introduce the notion of a Fredholm map. First, let us consider a
bounded linear map T W X 7! Y acting between Banach spaces X; Y and intro-
duce the following definition. If Im.T / � Y is closed, then we can define the
quotient space Coker.T / :

D Y=Im.T / (see Abraham, Marsden, and Ratiu 1988,
for instance, Proposition 2.1.13).

Definition A.1.1. A bounded linear operator T W X 7! Y acting between Banach
spaces X and Y is said to be a Fredholm map if (1) Ker.T / is finite dimensional,
(2) Im.T / is closed and (3) Coker.T / is also finite dimensional. In case only (1)
and (2) hold, we say that T is semi-Fredholm. Furthermore, the Fredholm index
of a Fredholm map T is defined to be the number

Ind.T / D dim.Ker.T // � dim.Coker.T //: (A.1)

Fredholm maps, as well as their index, have particularly nice stability prop-
erties, as can be seen from the following result (see Hörmander 2007, Corollary
19.1.6):

TheoremA.1.2. LetX; Y be Banach spaces andL.X; Y / denote the set of bounded
linear maps from X 7! Y . Then, the set of Fredholm operators in L.X; Y / is
open. Furthermore, if T 2 L.X; Y / is Fredholm, then dim.Ker/.T / is upper
semi-continuous and Ind.T / is constant on each component.

Our interest in Fredholm operators relies on the fact that, very generally, el-
liptic operators are Fredholm, we will sometimes exploit this property appealing
to the above theorem. For a complete discussion on the Fredholm properties of
elliptic operators, we refer the reader to Hörmander (ibid.).

Duals, Weak Convergence and Compactness
Let us now collect a few well-known definitions and results concerning duality
relations which are useful in the analysis of linear PDEs. For details, we refer the
reader, for instance, to Rudin (1991, Chapter 4).

Definition A.1.2. Let X; Y be Banach spaces with dual spaces X 0 and Y 0 respec-
tively. Let T W X 7! Y be a bounded linear map, then we define its dual (or
adjoint) T � W Y 0 7! X 0 by hT �y0; xi

:
D hy0; T xi for all y0 2 Y 0 and x 2 X . That

is, T �y0 D y0 ı T 2 X 0.

Adjoint maps of linear partial differential operators play an important role in
the existence of solutions to PDE problems, as we shall see shortly. This can be
anticipated by introducing the following notions.
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Definition A.1.3. Let X be a Banach space and let M � X and N � X 0 be
subspaces. We define their annihilator spacesM? and N? by

M? :
D fx0

2 X 0
W hx0; xi D 0 for all x 2 M g;

N? :
D fx 2 X W hx0; xi D 0 for all x0

2 N g:
(A.2)

Using this terminology, the following classical result is now obtained obtained
by putting togetherTheorem 4.7, Theorem 4.12 andTheorem 4.14 of Rudin (1991).

Theorem A.1.3. Suppose that T W X 7! Y is a bounded linear transformation
between reflexive Banach spaces and that T has closed range. Then, if T � W Y 0 7!

X 0 denotes the adjoint of T , it holds that Ker.T /? D T �.Y 0/. Furthermore, the
range of T � is closed and Ker.T �/? D T .X/.

In the above theorem, if we think of T as a partial differential operator acting
between appropriate functional spaces T W X 7! Y , then, existence of solutions to
equations of the form T x D y, with y 2 Y can be analysed by having information
on Ker.T �/, which is something we shall exploit. Notice that, in doing so, we will
have to show (a priori) that the range of T is closed, which is something we will
prove to hold for elliptic partial differential operators (see Appendix B).

Let us also notice the following property related to the above theorem and Fred-
holm operators. Let T W X 7! Y be a Fredholm operator acting between Banach
spacesX; Y . Then, due to its Fredholmness, we know that Coker.T / D Y=Im.T /
is finite dimensional and that Im.T / is closed. This last condition guarantees that
the following spaces are isomorphic (see ibid., Theorem 4.9(b))

.Y=Im.T //0 Š Im.T /?:

But also, it follows directly from its definition that Im.T /? D Ker.T �/ (see ibid.,
Theorem 4.12), which implies

.Y=Im.T //0 Š Ker.T �/:

Now, since Coker.T / D Y=Im.T / is finite dimensional, then .Y=Im.T //0 Š

Coker.T /, which finally implies

Coker.T / Š Ker.T �/: (A.3)

Therefore, we find that

Ind.T / D dim.Ker.T // � dim.Ker.T �//: (A.4)
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The above formula is again useful when dealing with elliptic PDE problems.

Let us now recall some definitions and results concerning weak convergence
and compactness.

Definition A.1.4. A sequence fxig
1
iD1 in a normed linear space .E; k � k/, is said

to converge weakly to x 2 E if u.xi / ! u.x/ for every u 2 E
0 . A subset

B � E is said to beweakly sequentially compact, if every sequence inB contains
a subsequence which converges weakly to a point in B .

Theorem A.1.4. (Brezis 2011, Chapter 3, Section 3.2) A weakly convergent se-
quence fxig

1
iD1 in a normed linear space E has a unique limit x, is bounded, and

jjxjj 6 lim inf
i!1

jjxi jj: (A.5)

Theorem A.1.5. (ibid., Theorem 3.17) A Banach space E is reflexive iff its closed
unit ball B1.0/ is weakly sequentially compact.

Distributions

We fix our notation for distributions as follows: We denote by D.˝/ the space of
test functions on some domain˝, by S D S.Rn/ the Schwartz space of functions
of rapid decrease and by D0 and S 0 the corresponding dual spaces of distributions
with domains implicitly understood. Also, we denote by E 0 the set of distributions
of compact support (see Hörmander 1990, Chapter 2). Let us also introduce the
following useful concepts.

Definition A.1.5. A distribution u in Rnnf0g is called homogeneous of degree a
if

hu; �i D tahu; �t i 8 � 2 C1
0 .R

n
nf0g/; (A.6)

where �t .x/
:

D tn�.tx/ with t > 0. If, furthermore, u is a distribution in Rn and
the above property holds for all � 2 C1

0 .R
n/, then u is said to be homogeneous

of degree a in Rn.

Notice that this is motivated, as usual, by the case where u 2 L1
loc
.Rnnf0g/.

In this case, u is homogeneous of degree a if u.tx/ D tau.x/, when x ¤ 0 and
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t > 0. This implies that

ta
Z

Rn

u.x/�t .x/dx D ta
Z

Rn

u.x/tn�.tx/dx;

D ta
Z

Rn

u
�y
t

�
„ƒ‚…

Dt�au.y/

�.y/dy D hu; �i 8� 2 C1
0 .R

n
nf0g/:

Our main interest related to homogeneous distributions is that symbols asso-
ciated to differential operators define homogeneous functions (see Appendix B).
Therefore let us recall a few useful results.

Theorem A.1.6. (Hörmander 1990, Theorem 7.1.16) If u 2 S 0.Rn/ is homoge-
neous of degree a, then Ou 2 S 0 is homogeneous of degree �a�n, where Ou denotes
the Fourier transform of u.1

Theorem A.1.7. (ibid., Theorem 7.1.18) If u 2 D0.Rn/ and the restriction to
Rnnf0g is homogeneous of degree a, then u 2 S 0. If, addition u 2 C1.Rnnf0g/,
then Ou 2 C1.Rnnf0g/.

Remark A.1.1. The above two theorems imply that the Fourier transform is a
bijection from the set of distributions in S 0 \C1.Rnf0g/ which are homogeneous
of degree a onto the set of distributions S 0 \C1.Rnf0g/ which are homogeneous
of degree �a � n.

Theorem A.1.8. (ibid., Theorem 7.9.5) Let k 2 S 0.Rn/ and assume that Ok 2 L1
loc

satisfies X
j˛j6s

Z
R
2
<j�j<2R

jRj˛jD˛ Ok.�/j2
d�

Rn
6 C < 1 R > 0; (A.7)

where s > n
2
is an integer. Then, for any 1 < p < 1, it follows that

kk � ukLp 6 CpkukLp 8 u 2 Lp \ E 0

: (A.8)

In addition,

��fxI jk � u.x/j > �g 6 CkukL2 8 u 2 L2 \ E 0: (A.9)
1Moving forward, we will keep this notation for the Fourier transform.
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A.2 Sobolev spaces
In this section we will compile several useful results concerning the theory of
Sobolev spaces on compact manifolds, possibly with boundary. Since this is a
very rich subject in analysis, we do not intend to prove the large amount of content
that will be introduced, rather give a presentation which allows the unacquainted
reader to become a user of this theory. We will provide several references where
the interested reader can consult detailed proofs. In particular, let us highlight the
classic book by Adams (1975), to which we will frequently refer. This reference
presents an exhaustive analysis of Sobolev theory for scalar function on domains
of Rn. Several of the necessary generalisations to scalar functions on manifolds
(not necessarily compact) can be found in Aubin (see 1998, Chapter 2), in par-
ticular for spaces of integer degree of regularity. There, in the case of compact
manifolds, the necessary localisation techniques are highlighted explicitly. Along
these lines, we also refer the reader to Schwarz (see 1995, Chapter 1) and Holst,
Nagy, and Tsogtgerel (see 2009, Appendix A.4) for an account of how to use these
localisation techniques to extend the results to vector bundle sections. Finally, we
would also like to refer the reader to Palais (1968, Section 9) for a exhaustive
treatment of the general problem. In this case, interpolating spaces are defined via
complex interpolation, resulting in different spaces with similar properties. Along
these lines, we also refer the interested reader to Taylor (2011a, Chapter 4) and
(Taylor 2011c, Chapter 13)

Local Theory
Definition A.2.1. Let U � Rn be an arbitrary domain, k be a non-negative inte-
ger and 1 6 p 6 1 a real number. We define the Sobolev spaceW k;p.U / as the
space of functions f 2 Lp.U / which possess weak derivatives f@˛f g06j˛j6k of
order up to k in Lp.U /. That is,

W k;p.U /
:

D ff 2 Lp.U / W @˛f 2 Lp.U / 8 0 6 j˛j 6 kg: (A.10)

We equip this vector subspaces of Lp with the norm

kf kW k;p.U /
:

D

0@ kX
j˛jD0

k@˛f kLp.U /

1A 1
p

if 1 6 p < 1;

kf kW k;1.U /
:

D max
06j˛j6k

k@˛ukL1.U /:

(A.11)
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Let us start by collecting a few well-known facts about these spaces. First of
all, these are Banach spaces. Furthermore, they are separable for 1 6 p < 1

and reflexive for 1 < p < 1. In particular, W k;2.U /
:

D H 2.U / is a separable
Hilbert space with inner product

.u; v/Hk.U /
:

D
X

06j˛j6k
.@˛u; @˛v/L2.U /:

Furthermore,W k;p.U / coincides with the closure of C1.U / in the norm (A.11).
Let us then define the spaceW k;p

0 .U / as the closure ofC1
0 .U / in the norm (A.11).

ClearlyW k;p
0 .U / � W k;p.U /, but the equality is not true in general. In particular,

it is a standard result thatW k;p
0 .Rn/ D W k;p.Rn/.

Let us now introduce some notation concerning the duals of these Sobolev
spaces. In particular, for 1 6 p < 1 and k a non-negative integer, we de-

fine W �k;p0

.U /
:

D

�
W
k;p
0 .U /

�0

, where p0 D 1 �
1

p
denotes the conjugate

exponent to p. These spaces have a clear characterization: since the space of
test functions D.U / is continuously embedded in W k;p

0 .U / and it is also dense,
W �k;p0

.U / consists of all the distributionsD0.U /which posses continuous exten-
sions to W k;p

0 .U /. On the other hand, whenever W k;p
0 ¤ W k;p, the latter space

does not admit a characterisation of this type. In particular, in such situations
.W k;p/0 contains objects which are not distributions.

Let us comment on one further useful property of the spaces W �k;p0

.U /. As
a consequence of Hölder’s inequality, any given v 2 Lp

0

.U / defines an object
�v 2 W �k;p0

.U / via

�v.u/
:

D .u; v/L2 8 u 2 W
k;p
0 .U /:

It can be checked straightforwardly that the map � W Lp
0

.U / 7! W �k;p0

.U / is an
isometry. That is,

kvkLp0
.U / D sup

kuk
W

k;p
0

.U /
61

j�v.u/j D k�vkW �k;p0
.U /:

Furthermore, V :
D f�v W v 2 Lp

0

.U /g � W �k;p0

.U / can easily be seen to be
a dense subset. Therefore, for each L 2 W �k;p0

.U /, there is a sequence fvkg �

Lp
0

.U / such that

L.u/ D lim
k!1

�vk
.u/ D lim

k!1
.u; vk/L2 8 u 2 W

k;p
0 .U /:
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Since C1
0 .U / is dense in both W

k;p
0 .U / and Lp0

.U /, then, actually, we see that
the bilinear map

C1
0 .U / � C1

0 .U / 7! R;

.v; u/ 7! .u; v/L2

extends by continuity to a dual pairingW �k;p0

.U / �W
k;p
0 .U / 7! R.

The above spaces have several nice properties which make them, for instance,
particularly useful in PDE analysis. Among these, we find the celebrated Sobolev
embedding theorems which are presented below. Let us point out that their validity
depends on some regularity assumptions on the boundary of our domains, such as
having the cone property or Lipschitz properties. A domain ˝ � Rn is said to
have the cone property if there exists a finite cone C such that each point x 2 ˝

is the vertex of a finite cone Cx contained in ˝ and congruent to C . We refer
the reader to Adams (1975, page 66) for the precise definitions of all the relevant
related regularity assumptions, which take more space to define. We highlight
the useful fact that bounded domains with smooth boundary satisfy all of these
properties. For the proof of the following theorem, see Adams (ibid., Theorem
5.4)

Theorem A.2.1. Let ˝ � Rn be a domain with the cone property. Let j and m
be non-negative integers and p a real number satisfying 1 6 p < 1. Then, the
following embeddings hold and are continuous

1. If mp < n, then W jCm;p.˝/ ,! W j;q , whenever p 6 q 6 np
n�mp

;

2. If p D
n
m
, then W jCm;p.˝/ ,! W j;q.˝/, for all p 6 q < 1;

3. If m > n
p
, then W jCm;p.˝/ ,! C j .˝/;

4. If ˝ has the strong local Lipschitz property and mp > n > .m � 1/p then
W jCm;p.˝/ ,! C j;˛.˝/, for all 0 < ˛ < m �

n
p
;

5. If˝ has the strong local Lipschitz property and n D .m�1/p then it follows
that W jCm;p.˝/ ,! C j;˛.˝/, for all 0 < ˛ < 1.

Furthermore, all the above conclusion are valid on arbitrary domains if we replace
W -spaces by W0-spaces.
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Remark A.2.1. In the above theorem, in the third embedding we understand the
space C r.U / as the space of r-times continuously differentiable functions on U ,
equipped with the norm

kukC r .U /
:

D
X

06jˇ j6r
sup
x2U

j@˛uj:

In the fourth and fifth embedding we denoted by C r;˛.U / the space of C r.U /
functions satisfying the Hölder condition of order ˛. That is, their Hölder norms

kukC r;˛.U / D
X

06jˇ j6r
k@ˇukC0;˛.U /;

kukC0;˛.U / D sup
x2U

ju.x/j C sup
x¤y

ju.x/ � u.y/j

jx � yj˛
;

are finite.

Another crucial result in this direction comes from the fact that, under suit-
able restricting assumptions, the above embeddings are actually compact. This
turns out to be an essential property when analysing PDE operators acting between
Sobolev function spaces. For the proof of the following theorem, seeAdams (1975,
Theorem 6.2)

TheoremA.2.2 (Rellich–Kondrachov). Let˝ be a domain inRn and˝0 a bounded
subdomain of ˝. Let j;m be integers with j > 0, m > 1 and let 1 6 p < 1.

1. If ˝ has the cone property and mp 6 n, the embeddings W jCm;p.˝/ ,!

W j;q.˝0/ are compact if either 0 < n�mp < n and 1 6 q < np
n�mp

, or if
n D mp and 1 6 q < 1;

2. If ˝ has the cone property and mp > n, the following embeddings are
compact:

W jCm;p.˝/ ,! C j .˝/;

W jCm;p.˝/ ,! W j;q.˝0/; if 1 6 q 6 1

3. If˝ has the strong local Lipschitz property, then the following embeddings
are compact:

W jCm;p.˝/ ,! C j .˝0/; if mp > n;

W jCm;p.˝/ ,! C j;˛.˝0/; if mp > n > .m � 1/p and 0 < ˛ < m �
n

p
:
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If ˝ is an arbitrary domain in Rn, all the above embeddings are compact if we
replace W -spaces by W0-spaces.

Along the lines of the above comments concerning compactness properties and
their use in PDE analysis, let us highlight that, when analysing the range a PDE
operator, specially in those cases where the coefficients belong to some Sobolev
space, we need to know to what space do products of Sobolev functions belong.
The following theorem, which follows from the above Sobolev embedding theo-
rems, gives a useful characterisation for the answer to this question.

Theorem A.2.3. Consider a bounded domain U � Rn having the cone property.
Let k; l and s be non-negative integers and 1 < p 6 q 6 1, then the following
continuous multiplication property holds

W k;p.U /˝W l;q.U / ,! W s;p.U / (A.12)

as long as kC l > n
q

C s, k > s and l > s. In particular,W k;p.U / is an algebra
under multiplication whenever k > n

p
.

Proof. We will follow closely Choquet-Bruhat and DeWitt-Morette (2000, Chap-
ter VI). Let us first establish the claim for s D 0. That is, given 1 < p 6 q 6 1

and l; k non-negative integers satisfying l C k > n
q
it must hold that

W k;p.U / �W l;q.U / 7! Lp.U /;

.f; g/ 7! fg
(A.13)

and jjfgjjLp 6 C jjf jjW k;p jjgjjW l;q . If either k > n
p
or l > n

q
, then the claim fol-

lows trivially from the embedding of the corresponding Sobolev spaces in C 0.U /
and the inclusion Lq ,! Lp for U bounded. Thus, let us assume that k 6 n

p
and

l 6 n
p
. Then, the condition k C l > n

q
guarantees the existence of real numbers

r; t > 1 satisfying

i/ k >
n

p
�
n

r
i i/ l >

n

q
�
n

t
i i i/

1

r
C
1

t
D
1

p
:

Also, from the Sobolev embeddings and the boundedness of U , we know that

W k;p.U / ,! L Np.U /; 8 Np 6
np

n � kp
;

W l;q.U / ,! L Nq.U /; 8 Nq 6
nq

n � lq
:
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Therefore, we haveW k;p.U / ,! Lr.U / andW l;q.U / ,! Lt .U /. Thus, f 2 Lr

and g 2 Lt , which, together with Hölder’s inequality, implies

kfgkLp.U / 6 kf kLr .U /kgkLt .U / 6 Ckf kW k;p.U /kgkW l;q.U /; (A.14)

which establishes our preliminary claim. For the general case, consider first f; g 2

C1.U / and notice that @˛f 2 Lp.U / for all j˛j 6 k, @ˇg 2 Lq.U / for all
jˇj 6 l and

@˛.fg/ D

j˛jX
jˇ jD0

Cˇ@
jˇ jf @j˛j�jˇ jg; (A.15)

where Cˇ denote constants and @jˇ j stands for some derivative of order jˇj while
the summation runs through all multi-indices of each order up to j˛j, for some
j˛j 6 s. Notice that, for any given term in (A.15), we have

@jˇ jf 2 W k�jˇ j;p
I @j˛j�jˇ jg 2 W l�j˛jCjˇ j;q:

Thus, from our preliminary claim, we know that @jˇ jf @j˛j�jˇ jg 2 Lp and, as long
as kC l > n

p
C j˛j (which holds by hypotheses for j˛j 6 s 6 k; l) the continuity

estimate (A.14) holds. Therefore, in this case it follows that

kfgkW s;p.U / 6 Ckf kW k;p.U /kgkW l;q.U /: (A.16)

Finally, for f 2 W k;p.U / and g 2 W l;q.U / arbitrary, we can approximate by
smooth functions ffj g; fgj g � C1.U / converging to f and g respectively in

W k;p.U / and W l;q.U / and use (A.16) to show that fjgj
W s;p.U /
������! fg where

the same estimate holds when we pass to the limit.

Closely related to the above theorem, we will now present another useful result
when analysis the rage of non-linear mappings acting on Sobolev functions.

LemmaA.2.1 (Composition Lemma). LetU be a bounded domain Rn having the
cone property. Let F W I 7! R be a function of class Cm on some open interval
I � R and f 2 W m;p.U / with m > n

p
and 1 6 p < 1, satisfying f .U / � I .

Then, F ı f 2 W m;p.U /.
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Proof. First, let us notice that since m > n
p
, then f .U / is bounded in I and

hence F 2 Cm.f .U //. Therefore, F ı f 2 Lp.U /. Similarly, any first weak
derivative @i .F ı f / D F 0.f /@if 2 Lp.U /, since F 0 2 L1.U / and @if 2

Lp.U /. Let us then consider the case of derivatives of order 2 6 k 6 m and let
us start assuming that f 2 C1.U /. In this case, given any multi-index 
 such
that j
 j D k, any weak derivative @
 .F ı f / is given by a sum of terms of the
form F .l/.f /@ˇ1f � � � @ˇj f , with 0 6 l; j 6 k an integer and ˇi multi-indices
satisfying jˇi j > 1 and ˇ1 C � � � C ˇj D 
 . For any such term, it holds that

jF .l/.f /@ˇ1f � � � @ˇj f j 6 C j@ˇ1f � � � @ˇj f j;

where the constant C depends on the Cm.f .U //-norm of F . Also, if we fix num-
bers qi

:
D

k
jˇi j

, we see that

jX
iD1

1

qi
D 1:

Furthermore, if we assume that 1C
n
p
> m > n

p
, then .m � jˇi j/p < n and

qip 6
np

n � .m � jˇi j/p
() k.n �mp C pjˇi j/ 6 njˇi j

() k .n �mp/„ ƒ‚ …
<0

6 .n � kp/ jˇi j„ƒ‚…
6k

()
k

jˇi j
.n �mp/ 6 n � kp;

Since k
jˇi j

> 1 and .n�mp/ < 0, then k
jˇi j
.n�mp/ 6 n�mp. In turn, n�mp 6

n� kp iffm > k, which is satisfied. This implies that k
jˇi j
.n�mp/ 6 n� kp and

therefore qip 6 np
n�.m�jˇi j/p

. Thus, under this restricting condition, we can appeal
to the Sobolev embedding W m�jˇi j;p ,! Lri , with ri

:
D qip. In particular,

jX
iD1

1

ri
D
1

p
:

From this, we conclude that @ˇif 2 Lri and we can apply Hölder’s generalised
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inequality combined with the Sobolev continuous embedding to get

k@ˇ1f � � � @ˇj f kLp 6
jY
iD1

k@ˇif kLri 6
jY
iD1

Cik@
ˇif kWm�jˇi j;p :

The above shows that the multi-linear mapping

W m�jˇ1j;p.U / � � � � �W m�jˇj j;p.U / 7! Lp.U /;

.@ˇ1f; � � � ; @ˇj f / 7! @ˇ1f � � � @ˇj f;

is continuous for any f 2 W m;p.U /. Therefore, for a general f 2 W m;p.U /,
we can approximate it by a sequence ffig � C1.U /, which sincem > n

p
we can

take so that fi .U / � I . Then, the above analysis shows that we can pass to the
limit and the weak derivatives up to orderm of F ıf are given by the usual chain
rule. Finally, the same estimates proved above hold in the limit, and therefore we
see that the claim holds for 1C

n
p
> m > n

p
, since we can estimate eachLp-norm

of the weak derivatives of F ı f , up to orderm, in terms of the Cm.f .U //-norm
of F together with the W m;p.U /-norm of f . The general case follows trivially
since, for m > m

p
C 1, W m;p.U / ,! W t;p.U / for 1C

n
p
> t > n

p
.

Let us now consider a domain ˝ in Rn with boundary ˙ :
D @˝. Notice that

if we intend to analyse a boundary value problem on ˝, we will have boundary
values in some Sobolev space intrinsic to ˙ , while we will have PDE operators
acting on Sobolev spaces on˝. In particular, a given solution in˝ should induce
the appropriate boundary values on˙ . Therefore, the relation between the Sobolev
spaces on˝ to those on˙ is key to be able to present well-posed problems within
this functional framework. A sharp characterisation in this direction is provided
introducing Sobolev spaces of fractional order.

Definition A.2.2. Let˝ be a domain in Rn and fix a real number s 2 .0; 1/. For
any 1 6 p < 1, define the space

W s;p.˝/
:

D

(
u 2 Lp.˝/ W

u.x/ � u.y/

jx � yj
n
p

Cs
2 Lp.˝ �˝/

)
; (A.17)

endowed with the norm

kukW s;p.˝/
:

D

�
kuk

p

Lp.˝/
C

Z
˝

Z
˝

ju.x/ � u.y/jp

jx � yjnCsp
dxdy

� 1
p

: (A.18)
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For these spaces, we also have a couple of nearly immediate properties. First,
these are also Banach spaces which satisfy W s2;p.˝/ ,! W s1;p.˝/ for any 0 <
s1 < s2 < 1, and this can be extended to s2 D 1 if ˝ has Lipschitz boundary Di
Nezza, Palatucci, and Valdinoci (see 2012, Propositions 2.1 and 2.2). Therefore,
we can genuinely regard the spaces W s;p defined above as interpolating spaces
between Lp and W 1;p. Similarly, we define

Definition A.2.3. Let ˝ be a domain in Rn and fix a real number s > 0 and,
whenever s is not an integer, we write s D mC� , withm an integer and � 2 .0; 1/.
For any 1 6 p < 1, define the space

W s;p.˝/
:

D fu 2 W m;p.˝/ W @˛u 2 W �;p
8 j˛j D mg ; (A.19)

endowed with the norm

kukW s;p.˝/
:

D

8<:kuk
p

Wm;p.˝/
C

X
j˛jDm

k@˛uk
p

W �;p.˝/

9=;
1
p

: (A.20)

The above define a family of Banach spaces which interpolate in between the
usual Sobolev spaces with integer values. In particular, the following corollary
holds (see ibid., Corollary 2.3)

Corollary A.2.1. Let 1 6 p < 1 and 0 6 s1 6 s2 < 1 real numbers. Let˝ be
a domain in Rn with Lipschitz boundary. Then, the following continuous inclusion
holds W s2;p.˝/ ,! W s1;p.˝/.

Furthermore, it still holds thatC1
0 .R

n/ is dense inW s;p.Rn/ for all real s > 0

(see ibid., Theorem 2.4). We keep the notationW s;p
0 .˝/ for the closure ofC1

0 .˝/

in the W s;p.˝/-norm, and for s < 0, we still define W �s;p.˝/
:

D
�
W
s;p
0 .˝/

�0.
Let us also highlight that, for 1 < p < 1, W s;p.˝/ is a reflexive space (Adams
(1975, page 205) and Behzadan and Holst (2017, Theorem 7.33 for a direct ap-
proach)).

Finally, we can characterise the traces of these spaces on the boundary of ˝.
For this, let us first consider ˝ a bounded domain in Rn with smooth boundary
@˝

:
D ˙ . For a given m 2 N, we define the trace map as


 W C1.˝/ 7! �
n�1
iD0C

1.˙/;

u 7! 
u D .
0u; � � � ; 
m�1u/;
(A.21)
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where 
ju
:

D @
j
�uj˙ denotes the j -th derivative of u in the (outward pointing)

normal direction �. Then, the following theorem holds (see Adams 1975, Theorem
7.53)

Theorem A.2.4. Let˝ be a bounded domain in Rn with smooth boundary @˝ :
D

˙ . Also, let 1 < p < 1 and m 2 N. Then, the trace map (A.21) extends by
continuity to a linear homeomorphism of W m;p.˝/=Ker.
/ onto

m�1Y
jD0

W m�j� 1
p
;p.˙/: (A.22)

Let us highlight that the above theorem can be extended to domains with much
weaker assumptions. For instance, the smoothness of boundary can be relaxed
substantially (see ibid., Theorem 7.53). Nevertheless, the above theorem will be
enough for our purposes.

Compact Manifolds
Let us now extend the above constructions to spaces on compact manifolds M ,
possiblywith smooth boundary˙ , in which case˙ represents a closed (potentially
multiply connected) manifold. We will start by fixing some smooth Riemannian
metric g on M . Considering a Riemannian vector bundle E ! M over M , we
can define Lp.E; dVg/ spaces using the Riemannian measure dVg as the set of
measurable sections u 2 � .E/ onM such that

kukLp.E/ D

�Z
M

juj
p
EdVg

� 1
p

< 1; (A.23)

which have all the standard properties associated to Lp-spaces. Let us notice that,
if fUi ; 'ig

r
iD1 is an open covering by coordinate systems ofM trivialising E, and

f�ig
r
iD1 is a partition of unity subordinate to this cover, then, since the components

of g and h�; �iE (together with its derivatives to all orders) in any coordinate system
are uniformly bounded, it holds that

u 2 Lp.E; dVg/ () �iu
j

2 Lp.Ui ; dx/ 8 i D 1; � � � ; r and j D 1; � � � ; k:

Therefore, for compact manifolds, we see that Lp-spaces and independent of our
choice of smooth Riemannian metrics g and h�; �iE . Thus, let us consider the triv-
ialisations EjUi

Š Ui � Rk , and, putting the Euclidean metric on the fibres, we
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denote by Lp.Ui /
:

D Lp.EjUi
; dx/ the corresponding space of Lp vector-valued

functions on Ui . Then, the norm

kuk zLp.E/

:
D

rX
iD1

k�iukLp.Ui / (A.24)

is an equivalent norm to (A.23) for any such coordinate cover and any such parti-
tion of unity. Seeing that we can localise the definition of Lp spaces, let us define
Sobolev spaces W s;p.E/ as follows. Let 1 6 p < 1 and s > 0 real numbers,
define the spaces W s;p.E/ as

W s;p.E/ D fu 2 Lp.E/ W �iu 2 W s;p.Ui ;R
k/ for all i D 1; � � � ; rg: (A.25)

equipped with the norm

jjujjW s;p.E/
:

D

rX
iD1

jj�iujjW s;p.Ui ;Rk/: (A.26)

For integer values of s D k, these spaces are seen to be equivalently defined as
the space ofLp.E; dVg/ sections having weak covariant derivatives in the metric
g up to order k in Lp.E; dVg/. Let us highlight that these equivalences do not
hold for general non-compact manifolds.

Let us now point out that, via the above localisation, we can reduce most prop-
erties of W s;p.E/ to the corresponding properties for functions on domains of
Rn (see Schwarz (1995, Chapter 1) for several of these explicit constructions). In
particular, note that if .Ui ; 'i / is an interior chart, then �iu 2 W

s;p
0 .Ui /, while

if is a boundary chart, then �iu ı '�1 2 W s;p.RnC/, where RnC denotes the half-
space xn > 0 where '�1

i fxn D 0g D ˙ \ Ui . In particular, writing as usual
u D

P
i �iu for any u 2 W s;p.E/, we deduce that C1.E/ is dense in W s;p.E/

for all s > 0 and 1 6 p < 1 and these spaces remain reflexive for 1 < p < 1.
Furthermore, under these conditions, ifM is closed, then the dual paring

C1.E/ � C1.E/ 7! R;

.u; v/ 7!

Z
M

hu; viEdVg
(A.27)

extends by continuity toW �s;p.E/�W
s;p
0 .E/ 7! R, and every f 2 W �s;p can

be computed as a limit f .v/ D limk!1.fk; v/L2.E/, with fn 2 C1.E/ and
v 2 W s;p.E/.
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Finally, the embedding, compactness, multiplication and trace properties for
E can be deduced quite straightforwardly from those of each �iu. We collect these
properties in the following theorem:

Theorem A.2.5. Let M be a compact manifold with smooth boundary ˙ ; � W

E 7! M be a vector bundle overM and letW s;p.E/ denote the Sobolev space of
section of E where 1 < p < 1 and s > 0 is a real number. Then, it follows that

1. If 0 < s < n
p
and p 6 q 6 np

n�sp
, thenW sCm;p ,! W m;q . If, furthermore,

q < np
n�sp

, then the embedding is compact;

2. If s D
n
p
, then W s;p D Lq for all p 6 q < 1;

3. If s > n
p

C ˛, ˛ 2 .0; 1/ and j 2 N, then W sCj;p ,! C j;˛ . Further-
more, if s is a non-negative integer satisfying the previous hypotheses, the
embedding is actually compact.

4. If j C l > k C
n
p
where j; l > k are non-negative integers, then, the

multiplication mapping .u; v/ ! u˝ v, defines a continuous bilinear map
between W j;p �W l;p ! W k;p;

5. If s > 1
p
the trace map u 7! uj˙ defines a continuous map � W W s;p.M/ 7!

W s� 1
p
;p.˙/. Also, under the same conditions, we have a continuous exten-

sion map from E W W s� 1
p
;p.˙/ 7! W s;p.M/.

For completeness, let us explicitly highlight a useful corollary of item 1. If,
under its hypotheses, we impose p D q, then the restrictions for the compact
embedding W sCm;p ,! W m;p become 0 < s < n

p
. But, in case s > n

p
, then

W mCs;p is continuously embedded in W mCs0;p for some 0 < s0 < n
p
< s, and

we have the chain of embeddings

W mCs;p ,! W mCs0;p
compact
,! W m;p:

Since the composition of a continuous map with a compact one gives a compact
map, we find that W mCs;p ,! W m;p is compact for all s > 0.

Finally, let us finish by presenting the following interpolation inequality.

Theorem A.2.6. Let M be a compact manifold with boundary ˙ ; � W E 7! M

be a vector bundle overM and let W k;p.E/ denote the Sobolev space of section
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of E where 1 < p < 1 and k > 0 is a non-negative integer. For any � > 0 there
is a number C� > 0, such that for all u 2 W k;p, if and j < k, then

kukW j;p 6 �kukW k;p C C�kukLp : (A.28)

Proof. Assume the statement does not hold. Then, given � > 0 and any constant
C > 0, there must be some uC 2 W k;p for which the estimate fails. That is, for
such a section u it holds that

kuC kW j;p > �kuC kW k;p C CkuC kLp :

Let us then consider the sequence of fumg � W k;p generated in this way by the
increasing selectionC D m 2 N at each step. Since clearly wemust have um ¤ 0,
we can divide by jjujjW k;p the above inequality and get the analogous version for
the normalised sequence. Thus, there is no loss in generality in assuming that if
the statement fails, then there is a normalised sequence fumg � W k;p for which
the inequality

1 > kumkW j;p > � CmkumkLp

holds for all m 2 N. But since in our setting the embedding W k;p ,! W j;p is

compact, then, there is some u 2 W k;p such that um
W j;p

����! u, which in particular
implies that um

Lp

��! u. Then, for the above inequality to hold for all m 2 N, we
must have u D 0, which contradicts the normalisation condition for fumg and we
have found a contradiction, and thus the claim of the theorem follows.

The above interpolation inequalities can be deduced from more subtle interpo-
lating properties, such as those given in the following theorem:

TheoremA.2.7 (Gagliardo–Nirenberg). Let˝ be a compact manifold with smooth
boundary, let 1 6 q; r 6 1, j;m be integers 0 6 j < m, � be a real number in
the interval j

m
6 � 6 1 and

1

p
D
j

n
C �

�
1

r
�
m

n

�
C .1 � �/

1

q
: (A.29)

If m � j �
n
r
is not a non-negative integer, then there is a constant C > 0 such

that, for all u 2 W m;r.˝/ \ Lq.˝/,

kDjukLp.˝/ 6 Ckuk
�
Wm;r .˝/kuk

1��
Lq.˝/: (A.30)

If m � j �
n
r
is a non-negative integer, then (A.30) holds for � D

j
m
.
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The above theorem is originally due to Gagliardo (1958) and Nirenberg (1959)
and can also be found in Friedman (1969) and Leoni (2017).

Let us notice that using the above theorem, if we fix q D r , then

1

p
D
j � �m

n
C
1

q
D .

j

m
� �/

m

n
C
1

q
6
1

q
:

Then, for any such p > q, as long as m � j �
n
q
and � satisfies the constraints

of the above theorem, we have (A.30). This always holds for p D q and � D
j
m
,

then

kDjukLq.˝/ 6 Ckuk

j
m

Wm;q.˝/
kuk

1�
j
m

Lq.˝/
:

Let us now recall the following well-known inequality. For any 1 < �; �0 < 1

satisfying 1
�

C
1
�0 D 1, given � > 0 there is a constant C� > 0 such that, for any

a; b > 0, it holds that

ab 6 �a� C C�b
�0

; (A.31)

Let us then chose � D
m
j
, 1
�0 D 1 �

j
m
, a D kuk

j
m

Wm;q.˝/
and b D kuk

1�
j
m

Lq.˝/
, to

arrive, once again, at

kDjukLq.˝/ 6 C
�
kukWm;q.˝/ C C�kukLq.˝/

�
; (A.32)

valid for all j 6 m.



B Elliptic
Operators

Let us start this section considering linear partial differential operators (PDO) act-
ing between sections of vector bundles, sayE ! M andF ! M , over amanifold
M n and let r be a connection on E. Then, let us consider PDOs of the form

L D

mX
lD0

Al � r
l ; (B.1)

where Al 2 � .Hom..˝TM/l ˝E;F // and Hom.E; F / denotes the vector bun-
dle of linear transformations between fibres of E and F . That is, Homx.E; F / D

L.Ex; Fx/, where Ex and Fx denote the fibres of E and F over x 2 M . These
operators can be written locally, in some coordinate system .U; x/, as

L D
X

j˛j6m
A˛.x/@

˛
x ; (B.2)

where ˛ D .˛1; � � � ; ˛n/ denotes amulti-index, @˛x D
@j˛j

.x1/˛1 ���.xn/˛n
, j˛j D

P
i ˛i .

We will refer to the set of such m-th order PDO as PDOm.E; F /.
In the analysis of PDOs, their highest order part (its principal part) plays a

special role. Notice that for anm-th order linear PDO such as (B.1), associated to
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its principal part, we can define the map

�.L/ W T �M 7! Hom.��E;��F /;

� 7! �.L/.�/
:

D Am.�/
(B.3)

where Am.�/ denotes the contraction between Am and .˝�/m along the obvious
indices, and ��E;��F denote the corresponding pullback bundles. We will refer
to this map as the principal symbol of the PDO L.

Definition B.1. We will say that a PDO of the form of (B.1) is elliptic if �.L/
defines an isomorphism at each point x 2 M for all � ¤ 0.

Let us illustrate the use of this definition by introducing two elliptic operators,
which are actually the ones analysed in detail during the main part of this text.
Consider a smooth Riemannian manifold .M; g/ and define the Laplacian operator
acting on functions as�g

:
D trgr2 D gijrirj , wherer denotes the Riemannian

connection compatible with g. Then, it is a trivial exercise to see that �.�g/.�/
equals the operator which multiples a given function by j�j2g , which proves that
�g is elliptic.

A slightly less trivial example is given the conformal Killing Laplacian. This
operator is defined on Riemannian manifold .M n; g/ as the map

�g;conf W � .TM/ 7! � .T �M/;

X 7! divg
�
Lg;confX

� (B.4)

where Lg;confX
:

D LXg�
2
n
divgXg denotes the conformal Lie derivative. It is

quite straightforward to see that �.�g;conf /x.�/ is injective for all � ¤ 0 and ev-
ery x 2 M , which establishes the isomorphism property by dimensional analysis.
These statements can be consulted explicitly in Choquet-Bruhat (2009, Appendix
II).

Although the above two operator serve us as the motivating examples to anal-
yse elliptic operators, we should highlight that elliptic operator form an extremely
rich family and have been found to have deep geometric applications. For instance
the Hodge Laplacian on differential forms, given by dd� C d�d , is an elliptic
operator, where d W � .�k.T �M// 7! � .�kC1.T �M// denotes the exterior dif-
ferential, d� W � .�kC1.M// 7! � .�k.M// its dual operator and �k.T �M/ the
bundle of differential k-forms overM . The application of elliptic theory to these
operators finds geometric applications, for instance, in cohomology theory (see
Jost 2005; Schwarz 1995; Taylor 2011a, for instance). Another extremely rich
application is found in the analysis of Dirac operators (Taylor 2011b, see).
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Formal Adjoints

Let us introduce the notion of formal adjoints for operators in PDOm.E1; E2/.
Recall that, whenever we have a continuous mapL acting between Banach spaces
B1 7! B2, we have an adjoint map T � W B

0

2 7! B
0

1, given by hT �u; vi
:

D hu; T vi,
for all u 2 B

0

2 and v 2 B1. Typically, we will consider PDO acting between theses
type of Banach spaces and define the adjoint map just in this way. Nevertheless,
C1
0 is typically a dense subspace of useful function spaces for PDE theory, and,

therefore, having L defined as a continuous map on the closure of C1
0 in some

norms, it tends to be the case that we can compute its adjoint on this dense subspace
more explicitly, which motivates the following definition.

Definition B.2. Consider L 2 PDO.E1; E2/ acting between sections of Rieman-
nian vector bundlesE1; E2 ! M over some smooth Riemannianmanifold .M; g/.
An operator P 2 PDO.E2; E1/ is said to be the formal adjoint of L ifZ
M

hPu; viE1
dVg D

Z
M

hu;LviE2
dVg ; 8 u 2 C1

0 .E2/ and 8 v 2 C1
0 .E1/:

(B.5)

The following lemma is an easy, but important consequence of the definition.

Lemma B.1. An operator L 2 PDO.E1; E2/ acting between sections of Rieman-
nian vector bundlesE1; E2 ! M over some smooth Riemannian manifold .M; g/
can admit, at most, one formal adjoint.

Proof. Assume that L admits two formal adjoints P1; P2 2 PDO.E2; E1/. Then,
it must follow thatZ

M

h.P1 � P2/u; viE1
dVg D 0 8 u 2 C1

0 .E2/ and 8 v 2 C1
0 .E1/:

Since supp..P1�P2/u/ � supp.u/ (this property of PDO is called locality), then
.P1�P2/u 2 C1

0 .E1/. Thus, the above identity being valid for all v 2 C1
0 .E1/

clearly implies that .P1�P2/u D 0 for each u 2 C1
0 .E2/. Now, if u 2 C1.E2/

is not compactly supported, use a partition of unity f�˛g˛2I subordinate to some
open cover ofM to write

.P1 � P2/u D
X
˛

.P1 � P2/.�˛u/„ ƒ‚ …
D08 ˛

D 0;

since �˛u 2 C1
0 .E2/ for all ˛ 2 I.
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Another direct consequence of the above definition is related to the adjoint of
a composition of PDOs. If L1 W C1.E1/ 7! C1.E2/ and L2 W C1.E2/ 7!

C1.E3/ admit formal ajoints L�
1 W C1.E2/ 7! C1.E1/ and L�

2 W C1.E3/ 7!

C1.E2/ , then L2 ıL1 W C1.E1/ 7! C1.E3/ admits a formal adjoint given by

.L2 ı L1/
�

D L�
1 ı L�

2 :

Furthermore, we have the following result concerning existence of formal adjoints.

Proposition B.1. Let E1; E2 ! M be two Riemannian vector bundles over a
smooth Riemannian manifold .M n; g/. Then, any L 2 PDO.E1; E2/ admits a
formal adjoint L�.

Proof. Let us start by localising the problem. Thus, consider a covering fU˛g˛2I
of M by coordinate systems such that, on each of them, we have orthonormal
frames feig

k1

iD1 and ffI g
k2

ID1 for E1 and E2 respectively, with ki D dim.Ei /. Let
f�˛g˛ be a partition of unity subordinate to such a covering and consider ui 2

C1
0 .Ei /, i D 1; 2. Then, write ui D

P
˛ �˛ui and computeZ

M

hLu1; u2iE2
dVg D

X
˛

Z
U˛

hL.�˛u1/; u2iE2
dVg ;

where, locally, we have

L.�˛u1/
I

D
X

jˇ j6m

k1X
jD1

AIjˇ@
ˇ .�˛u

j
1/; �˛u1 2 C1

0 .U˛/:

and I D 1; � � � ; k2. We can thenwrite hAˇ@
ˇ .�˛u1/; u2iE2

D h@ˇ .�˛u1/; A
�
ˇ
u2iE1

,
where A�

ˇ
stands for the adjoint of the linear map Aˇ . Therefore, it follows thatZ

U˛

hL.�˛u1/; u2iE2
dVg D

X
jˇ j6m

Z
U˛

h@ˇ .�˛u1/; A
�
ˇu2iE1

dVg :

We can simplify computations by writing u1 andA�
ˇ
u2 in components correspond-

ing to fej g
k1

jD1, so thatZ
U˛

h@ˇ .�˛u1/; A
�
ˇu2iE1

dVg D

k1X
iD1

Z
U˛

@ˇ .�˛u1/
i
�
A�
ˇu2

�i p
det.g/dx;
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Since �˛u1 2 C1
0 .U˛/, classical integration by parts shows that each @xi has a

(local) ajoint given by �@i � @i ln.
p
det.g//, therefore givingX

jˇ j6m

Z
U˛

h@ˇ .�˛u1/; A
�
ˇu2iE1

dVg D

Z
U˛

hu1; �˛

k1X
iD1

X
jˇ j6m

.@ˇ /�
�
A�
ˇu2

�i
ei iE1

dVg :

Let us then define

.L�
˛�/

i :
D �˛

X
jˇ j6m

.@ˇ /�
�
A�
ˇ�
�i

8� 2 C1.E2jU˛
/:

Summing over ˛, we findZ
M

hLu1; u2iE2
dVg D

Z
M

hu1; L
�u2iE2

dVg ;

where L� W C1.E2/ 7! C1.E1/ is defined by

L�.u/ D
X
˛2I

L�
˛u; 8u 2 C1.E2/:

Notice that the uniqueness of L� establishes that L� is consistently defined in-
dependently of the choices of our open coordinate cover, partition of unity or or-
thonormal frames.

Remark B.1. Let us highlight the dependence of the formal adjoint in the above
proposition on the Riemannian structures of both E1 and E2 as well as .M; g/.

We can extract an important corollary from the above computations. Notice
that if L 2 PDOm.E1; E2/, then the principal part of L� is given (up to a sign) in
any coordinate system by X

jˇ jDm

A�
ˇ@
ˇ ;

from which we find that

�.L�/ D ˙ .�.L//� ; (B.6)

where in the right hand side the adjoints are taken as linear maps between finite
dimensional inner product spaces. That is, .�.L//� is basically the point wise
transpose of the matrix representation of �.L/ as a linear map from .E1/x 7!

.E2/x for each x 2 M . In particular, this shows that L elliptic implies L� elliptic.
All of the above translates equally well for complex vector bundles overM with
hermitian metrics (see Nicolaescu 2020, Chapter 9).
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Analysis on closed manifolds
Let us know introduce part of the basic skeleton of the theory of linear elliptic op-
erators restricting ourselves for the most part to closed manifolds. This will allow
us to localise the analysis and reduce it to its analysis onRn by standard arguments
and, at the same time, have at our disposal all the standard functional analytic prop-
erties associated to appropriate function spaces, such as Sobolev spaces, which are
specially well-suited to serve as appropriate domains for PDE operators to act on.

The objective of this section is to exhibit results such as elliptic estimates, basic
regularity theory and Fredholm properties of linear elliptic operators in the above
restricted framework. Some extensions of this analysis, involving boundary value
problems and non-compact manifolds are explicitly treated in the main part of
this text. Finally, let us highlight a few standard extremely detailed references
for the interested reader, such as Taylor (2011a, Chapter 5 for a detailed analysis
of the corresponding L2-theory), Gilbarg and Trudinger (2001, for an exhaustive
analysis of second order scalar elliptic equations) and Hörmander (2007, for a
thorough analysis through pseudo-differential operator techniques).

Taking into consideration the above comments, let us start with the analysis
of local theory in Rn and consider a trivial vector bundle E ! Rn over Rn with
fibre Rk . Then consider an elliptic operator of the form

L D
X

j˛j6m
A˛.x/@

˛
W C1.E/ 7! C1.E/ (B.7)

whereA˛ are smooth maps from Rn to the set of k�k matrices. For fixed r 2 N0

and R > 0 define

kAkk;R
:

D
X

j˛j6m
ˇ6rCm�j˛j

sup
x2BR.0/

k@ˇA˛.x/k

Theorem B.1. Consider an operator such as (B.7) which has the special form
L0 D Am@

m and Am W Rn 7! GL.Rk;Rk/ is a constant matrix. Fix p 2 .1;1/

and R > 0. Then, there is some constant C D C.L; p; n;R/ > 0 such that for all
u 2 C1

0 .EjBR.0// the following estimate holds

kukWm;p 6 C .kLukLp C kukLp / : (B.8)

Proof. For this special case, we can start by considering v D L0u, with u; v 2

C1
0 .EjBR.0//. Since L0 has constant coefficients, it holds that

@ˇv D L0.@
ˇu/
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for any multi-index ˇ. In particular, we are interested in the case jˇj D m. Now,
let us apply (component wise) the Fourier transform to this identity, that is map

v D

�
v1; � � � ; vk

�
7! Ov

:
D

�
Ov1; � � � ; Ovk

�
so that

� .Am/ .�/ �
�@ˇu D �ˇ Ov:

Since L0 is elliptic, then � .Am/ .�/ is an isomorphism for all � ¤ 0 which is
homogeneous of degree m in � . In particular, its inverse is homogeneous of de-
gree �m and therefore Om

:
D � .Am/ .�/

�1�ˇ is homogeneous of degree zero. In
particular, the components Omij are in L1

loc
.Rn; d�/ and therefore, through Theo-

rem A.1.7 they define tempered distributions, and therefore there exist mij 2 S 0

such that Omij 2 S 0 are their Fourier transforms. Then, since Ovj 2 S , the equation�@ˇui D
X
j

Omij Ovj (B.9)

can be rewritten in convolution terms as @ˇui D
P
j mij � vj . Also, the dis-

tributions mij satisfy the hypotheses of the distribution k in Theorem A.1.8 and
v 2 Lp \ E 0 for all p 2 .1;1/. Then, we can estimate

k@ˇuikLp 6
X
j

kmij � vj kLp 6 C.m; p/kvkLp D C.m; p/kL0ukLp

(B.10)

for all jˇj D m. With this we get estimates for the top derivative norms in
kukWm;p in terms of kL0ukLp . Now, the intermediary derivatives can be esti-
mated via interpolation, so as to get

kukWm;p 6 C.A; p/kL0ukLp C c.n;m/�kukWm;p

C c.n;m/C�kukLp C kukLp :
(B.11)

Finally, let us pick � < 1
c.n;m/

, and pick C D
1
1��

maxfC.A; p/; c.n;m/C� C 1g,
we find the desired estimate

kukWm;p 6 C .kL0ukLp C kukLp / : (B.12)
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Theorem B.2 (Local Elliptic estimates). Consider the operator (B.7), fix p 2

.1;1/ and R > 0. Then, there is some constant C D C.L; p; n;R/ > 0 such
that for all u 2 C1

0 .EjBR.0// the following estimate holds

kukWm;p 6 C .kLukLp C kukLp / : (B.13)

Proof. The proof runs as follows. Let us first cover BR.0/ by a finite number of
small balls of the form Br.xi /, centred at points fxig

M
iD1 � BR.0/ and with radii

r > 0 small, to be fixed latter. Then, consider a partition of unity subordinate to
this cover of the form f�ig

M
iD1 and localise any such u via

u D
X
i

�iu; (B.14)

where we will denote ui
:

D �iu. Then, defining vi
:

D Lui and Li
:

D Am.xi /@
m

we can rewrite

vi D Liui C .Am.x/ � Am.xi // @
mui C

X
j˛j<m

A˛.x/@
˛ui : (B.15)

Let us then apply (B.8) to ui and Li , so as to get1

kuikWm;p.Br .xi // 6 C
�
kvikLp.Br .xi // C k .Am.x/ � Am.xi // @

muikLp.Br .xi //

C
X

j˛j<m

kA˛.x/@
˛uikLp.Br .xi // C kuikLp.Br .xi //

�
;

6 C.kvikLp.Br .xi // C k .Am.x/ � Am.xi // @
muikLp.Br .xi //

C kuikWm�1;p.Br .xi //
C kuikLp.Br .xi ///;

where the constantC in the second line depends on the norms of theA˛ coefficients
on BR.0/. Notice that we can use the mean value inequality to estimate jAm.x/�

Am.xi /j 6 C 0r on Br.xi /, where the constant C 0 can be made independent of
r by taking C 0 D supy2BR.0/

jDAm.y/j, which is bounded by hypothesis. Thus,
we find that

kuikWm;p.Br .xi // 6 C.kvikLp.Br .xi // C rk@muikLp.Br .xi // C kuikWm�1;p.Br .xi //

C kuikLp.Br .xi ///;

1The constants C can change from line to line.
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where C D C.L; p; n;m/. Notice that the above expression can be simplified
since k@muikLp.Br .xi // 6 kuikWm;p.Br .xi // and then, we can fix r so that Cr <
1
2
for instance, so that

kuikWm;p.Br .xi // 6 C.kvikLp.Br .xi // C kuikWm�1;p.Br .xi //
C kuikLp.Br .xi ///;

Let us now estimate the first term in the right-hand side. Notice that vi D L.�iu/ D

�iLu C ŒL; �i �u and that ŒL; �i �u is an operator of order m � 1 whose coeffi-
cients are smooth and bounded to all orders. In fact, we can bound the deriva-
tives of all the �i up to order m by some constant. Then, kŒL; �i �ukLp.Br .0// 6
CkukWm�1;p.Br .xi //

6 CkukWm�1;p.BR.0//
, where C depends on the norm ofL

but not on r . Also k�iLukLp.Br .xi // 6 kLukLp.Br .xi //, therefore, we find that

kuikWm;p.Br .xi // 6 C.kLukLp.BR.0// C kukWm�1;p.BR.0//
C kukLp.BR.0///:

Summing all the contributions we get

kukWm;p.BR.0// 6 C.kLukLp.BR.0// C kukWm�1;p.BR.0//
C kukLp.BR.0///;

(B.16)

We can then use interpolation to get rid of the intermediate spaces, so that

kukWm;p.BR.0// 6 C.kLukLp.BR.0// C kukLp.BR.0///; (B.17)

which is the desired estimate.

Let us notice that, given u 2 C1
0 .EjBR.0//, differentiating the equationLu D

v we get a linear elliptic equation of the form L.@ˇu/ D vˇ , where vˇ involves
derivatives up to order jˇj of the coefficients A˛. As long as these derivatives
remain uniformly bounded, we can apply the above estimates to @ˇu and get
W kCm;p estimates in terms ofW k;p norm of Lu. Below, we will present another
related result which provides local interior estimates for an arbitrary u 2 C1.E/.
Its proof relies on an application of the above elliptic estimates to a function of
the form �u, where � is a cut-off function equal to one on Br.0/ for some chosen
0 < r < R and compactly supported inside of BR.0/. In this case, a more careful
choice of our cut-off function �, put together with interpolation inequalities estab-
lishes the following corollary. Such a construction can be consulted explicitly in
Gilbarg and Trudinger (2001,Theorem 9.11) for the case of second order operators,
and analogous arguments work for the general case.
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Corollary B.1. Consider the operator (B.7), fix p 2 .1;1/ and 0 < r < R. Then,
there is some constant C D C.L; p; n;R/ > 0 such that for all u 2 C1.E/ the
following estimate holds

kukWm;p.Br .0// 6 C
�
kLukLp.BR.0// C kukLp.BR.0//

�
: (B.18)

Another consequence of Theorem B.2 is that, since C1
0 .EjBR

/ is dense in
W
m;p
0 .EjBR

/, and, furthermore, operators such as B.7 define continuous maps
L W W

m;p
0 .EjBR

/ 7! Lp.EjBR
/, then the following results also follows.

Corollary B.2. Consider the operator (B.7), fix p 2 .1;1/ and R > 0. Then,
there is some constantC D C.L; p; n;R/ > 0 such that for allu 2 W

m;p
0 .EjBR.0//

the following estimate holds

kukWm;p 6 C .kLukLp C kukLp / : (B.19)

Now, let us notice that the above analysis for trivial bundles over Rn can be
readily extended to closed manifolds by standard localisation arguments. That is,
let E;F ! M be vector bundles over a closed manifoldM . Let us fix some (fi-
nite) covering by small coordinate balls fBr.xi /g trivialising bothE and F . Then,
any linear differential operator with smooth coefficients acting between sections
of E and F can be locally written as an operator of the form (B.7), but with co-
efficients in Hom.E; F /. In particular, if this operator is elliptic, then the fibres
of both bundles are isomorphic to some fixed Rk and, over any of these common
trivialisations, we can see L as an operator acting from W

m;p
0 .E 0

i / 7! Lp.E 0
i /,

with E 0
i D Br.xi / � Rk and the coefficients are smooth k � k matrices such

as is (B.7), and therefore we reduce, locally, the general case to the analysis of
(B.7). Also, given a partition of unity f�ig subordinate to our coordinate cover,
we can localise any section u D

P
i �iu and apply the above local results to each

ui D �iu 2 W
m;p
0 .E 0

i /. In particular, we get estimates of the form of (B.19) of
reach ui and adding them up we get the analogous estimate for u, where the ellip-
tic constant is the (finite) sum of all the local ones. That is, the following theorem
holds:

Theorem B.3. Let M be a smooth compact manifold (possibly with boundary),
E;F ! M Riemannian vector bundles over M and L an elliptic linear partial
differential operator of order m with smooth coefficients acting between section
of E and F . Then, the following elliptic estimate holds for all u 2 W

m;p
0 .E/

kukWm;p.E/ 6 C
�
kLukLp.F / C kukLp.F /

�
: (B.20)

In particular, ifM is closed, then the same estimate holds for all u 2 W m;p.E/
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Remark B.2. In the above theorem, notice that if @M ¤ ; then W m;p
0 ¨ W m;p ,

since W m;p
0 is the closure of C1

0 .
ı

M/.

From the above theorem, we can deduce the following regularity result.

Theorem B.4. Let .M; g/ be a smooth compact Riemannian manifold (possibly
with boundary), E;F ! M be Riemannian vector bundles over M and let L W

W
m;p
0 .E/ 7! Lp.F /, 1 < p < 1, be an elliptic linear partial differential

operator of order m with smooth coefficients. Then, for any u 2 W
m;p
0 .E/, the

following implication holds

Lu 2 W
k;p
0 .F / ) u 2 W

mCk;p
0 .E/; k > 1; (B.21)

accompanied by the corresponding improved interior estimate

kukWmCk;p.E j˝/
6 C

�
kLukW k;p.F jV /

C kukLp.E jV /

�
; (B.22)

for any open sets ˝ �� V ��
ı

M .

Proof. Consider any cut-off function � supported in a small ball Br trivialising
both E and F within a coordinate system with coordinates fxigniD1 and write
'
:

D �u, u satisfying the hypotheses of the theorem. Then, it follows that L' 2

W
k;p
0 .EjBr

/. Let us assume k D 1 and establish ' 2 W
mC1;p
0 .EjBr

/. For h a
sufficiently small real number and j D 1; � � � ; n, consider the operatorsDj;h'.x/ D

'.xChej /�'.x/

h
D

.�j;h'/.x/�'.x/

h
, where ej denotes the j -th canonical basis vec-

tor. We clearly have Dj;h'.x/ 2 W
m;p
0 .EjBr

/ and we can apply to it interior
elliptic estimates to get2

kDj;h'kWm;p
0 .E jBr /

6 C
�
kL

�
Dj;h'

�
kLp.F j

Br
// C kDj;h'kLp.E jBr /

�
;

6 C.kDj;h .L'/ kLp.F jBr //
C kŒDj;h; L�'kLp.E jBr /

C kDj;h'kLp.E jBr /
/:

Notice that for an operator of the form of (B.7) it holds that ŒDj;h; A˛@˛�' D

.Dj;hA˛/@
˛.�j;h'/.x/ for any j˛j 6 m. Since the coefficients A˛ are smooth,

2During this proof, as well as other parts of the text, a constant C appearing in estimates may
change from line to line, avoiding the introduction of new constants, C 0; C 00; � � � .
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we can estimate kDj;hA˛kC0.Br /
6 C˛ by a constant depending of the norm of

the derivative of A˛ and independent of h. We can therefore estimate

kŒDj;h; L�'kLp.F jBr //
6 Ck'kWm;p.E jBr /

;

for some constant C depending on L but independent of h. We therefore get

kDj;h'kWm;p
0 .E jBr /

6 C.kDj;h .L'/ kLp.F jBr /
C k'kWm;p.E jBr /

C kDj;h'kLp.E jBr /
/;

(B.23)

for some other constant C > 0 independent of h. This shows that we can take the
limit h ! 0 and see that, for any j D 1; � � � ; n, the weak derivative @j' satisfies
a bound of the form

k@j'kWm;p
0 .E jBr /

6 C
�
kL'kW 1;p.F jBr /

C k'kWm;p.E jBr //

�
;

and therefore ' 2 W
mC1;p
0 .EjBr

/. Now, a partition-of-unity type argument
proves that u 2 W

mC1;p
0 .E/. Furthermore, the same line of reasoning that estab-

lishes the interior estimates of Corollary B.1, establishes their improvedW mC1;p-
local version. Finally, fixing our choices ˝ �� V ��

ı

M , and covering ˝ by
sufficiently small balls where these improved interior estimates work, we get

kukWmC1;p.E j˝/
6 C

�
kL'kW 1;p.F jV /

C k'kLp.E jV //

�
(B.24)

This now establishes an inductive proof, which establishes the claim.

Remark B.3. It follows from the proof above that, in case the manifold M in
the above theorem is closed, then, the interior estimate (B.22) holds on M itself.
Furthermore, let us highlight that if @M ¤ ;, our restriction to W m;p

0 can be
understood as the analysis for boundary value problems with trivial boundary
conditions. The more general case of non-trivial boundary conditions and the
corresponding analysis on W m;p-spaces with W m� 1

p
;p-traces on @M relies on

the analysis of boundary estimates. This will be treated explicitly when necessary.

Let us now appeal to the above theorem to prove another fundamental result.

Theorem B.5. Let M be a closed manifold and consider an elliptic operator L
satisfying the hypotheses of Theorem B.3 the following claims follow:
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1. Ker.L/ is finite dimensional and Im.L/ is closed;

2. If Ker.L/ D 0, then there is a constant C D C.L; n; p/ such that the
following estimate holds for all u 2 W m;p.E/

kukWm;p.E/ 6 CkLukLp.E/ (B.25)

3. A function f 2 Lp.E/ 2 Im.L/ if and only ifZ
M

hf; �iEdVg D 0 8 � 2 Ker.L�/: (B.26)

In particular, L is surjective iff L� is injective.

Proof. In order to prove the first claim, notice that Ker.L/ � W m;p is closed and
therefore a Banach space in its own right, equipped with the W k;p norm. Let us
show that under the hypotheses of item (1) the closed unit ball B in Ker.L/ is
compact. Thus, let fukg � Ker.L/ be a normalised sequence. From the elliptic
estimates, it then follows that kuk � ulkWm;p 6 Ckuk � ulkLp . Since the em-
bedding W m;p ,! Lp is compact, then we can restrict to a subsequence which
converges in Lp, establishing that the sequence is Cauchy inW m;p and therefore
there is a limit u 2 W m;p. This establishes that B � Ker.L/ is compact. Let us
now show that Im.L/ is closed. First, let us prove the following claim:

Claim: Let Ker?.L/ be a complement for Ker.L/ in W k;p.3 Then, there is a
constant C > 0 such that following estimate holds for all u 2 Ker?.L/

kukWm;p.E/ 6 CkLukLp.E/: (B.27)

Assume the above estimate does not hold. Then, there must be a normalised
sequence fukg � Ker?.L/ such that kLukkLp.E/ ! 0. Since Lp is com-
plete, fLukg admits a Cauchy subsequence and let us restrict form now on to
the corresponding subsequence fukg. Since fukg admits a convergent Lp sub-
sequence, to which we once more restrict, applying the elliptic estimates to it,
we find that kuk � ulkWm;p 6 C .kLuk � LulkLp C kuk � ulkLp /, where the
right hand side goes to zero and thus fukg is Cauchy in W m;p with limit denoted
by u 2 W m;p . Since Ker?.L/ is closed, then u 2 W m;p \ Ker?.L/ and, also,

3Notice that, since Ker.L/ is finite dimensional, we know that such complement exists due to an
application of the Hahn–Banach theorem (see, for instance, Brezis (2011, Section 2.4, Chapter 2)).
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we must have jjujjWm;p D 1. But, by continuity of L and construction of fukg,
it also holds that Lu D 0, which contradicts u 2 Ker?.L/. Thus, the estimate
(B.27) must hold.

Having established (B.27), first notice that we need only show thatL.Ker?.L//
is closed in Lp. Then, given a convergent sequence in Im.L/ is a sequence of the
form Luk , with limit say v 2 Lp and with uk 2 W k;p , above estimate implies
that the sequence fukg converges inW m;p, say to u 2 W m;p. But then, by conti-
nuity of L, we have Luk

Lp

��! Lu D v, which establishes the claim. Also, notice
that (B.25) follows from (B.27) whenever L is injective.

Finally, let us notice that (B.26) follows from Theorem A.1.3, since L� W

Lp
0

7! W �m;p0 where the action of Lp0

D .Lp/
0 on Lp is given by the dual

pairing

Lp
0

� Lp 7! R;

.�; f / 7! �.f / D

Z
M

hf; �iEdVg

Let us highlight that the above theorem proves that the contemplated class of
elliptic operators are semi-Fredholm maps. In fact, we can say more than that.
If L is an elliptic operator satisfying the hypotheses of the above theorem, then
we know that the formal adjoint L� of L is an elliptic m-th order operator with
smooth coefficients, which satisfies all the hypotheses of the above theorem as
well. In particular, L� W C1.E/ 7! C1.E/ extends by continuity to the actual
adjoint operator on Lp0

7! W �m;p0 , described the duality hL�u; vi D hu;Lvi

for all u 2 Lp
0

.E/ and all v 2 W m;p.E/. If we knew that Ker.L� W Lp
0

7!

W �m;p0

/ D Ker.L� W W m;p0

7! Lp
0

/, then the above theorem would imply
that these spaces are finite dimensional. Then, through Theorem A.1.3, we would
conclude that CokerL is finite dimensional and henceLwould be a Fredholmmap.
Up to this point, such a claim is conditional upon a regularity claim concerning
the kernel of the elliptic operator L�. The fact that such regularity claim is valid
under very general assumptions, is known as elliptic regularity (see Hörmander
2007, Chapter XIX).

Using the above paragraph as a motivation, let us briefly discuss some regular-
ity properties associated to elliptic equations. First, recall the following definitions
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concerning different notions of solutions to a PDE of the form

Lu D v; (B.28)

where L is given as a linear operator of the form of (B.8).

Definition B.3. Let u 2 � .E/ and v 2 � .F / be measurable sections of the vector
bundles E;F ! M over a smooth Riemannian manifold .M; g/. We say that: 1)
u is classical solution of the (B.28) if there is some ˛ 2 .0; 1/ such that v 2 C

0;˛
loc

,
u 2 C

2;˛
loc

and the equation holds everywhere. 2) u is said to be a strong Lp

solution if v 2 L
p

loc
and u 2 W

m;p

loc
and (B.28) holds almost everywhere. 3) u is

said to be an Lp weak solution if u; v 2 L
p

loc
andZ

M

hu;L��iEdVg D

Z
M

hv; �iF dV vg 8 � 2 C1
0 .F /: (B.29)

Let us first highlight that Theorem B.4 implies that the regularity of strong so-
lutions to (B.28) is controlled by Lu. Also, clearly, any strong solution is a weak
solution and a family of results within elliptic regularity prove the converse under
different degrees of smoothness on the coefficients and the original weak solution.
In particular, if L has smooth coefficients, Lu D f weakly and f 2 C1, then
u 2 C1. Nevertheless, these results (even for operator with smooth coefficients)
rely on more subtle constructions than those presented above. In particular, they
rely on the construction of parametrices and fundamental solutions associated to
the elliptic constant coefficient operator obtained by freezing the coefficients of
the principal part of L. In this context the notion of fundamental solution is well-
known, and a parametrix is basically a distribution which differs from the funda-
mental solution via smooth functions (Hörmander 1990, Definition 7.1.21). For
details on these constructions, we refer the reader to references such as Hörmander
(2005, 2007) and Taylor (2011a,c).

The tools presented above are good enough to analyse existence and regularity
of solutions to linear elliptic PDEs with smooth coefficients on closed manifolds,
which contemplates a wide variety of interesting situations. Nevertheless, we will
be interested in more particular situations, such as operator with low regularity
coefficients. Below, we will comment on these cases. Let us notice that achieving
elliptic estimates, which are the key to establishing Theorem B.5, actually relied
in Theorem B.1 plus a standard localisation technique and the idea of freezing co-
efficientswith these localisations around a finite fixed set of points. In this process
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the extra regularity of the coefficients is only necessary to obtain extra regular-
ity for the solutions. In case we have less regular coefficients, the same method
of proof works fine, but paying attention to multiplication properties of the coef-
ficients, which can be based, for instance, on Sobolev multiplication properties.
In this scenario, the above theory for linear systems of arbitrary order adapted
to low regularity coefficients can be found in the L2-regularity case in Choquet-
Bruhat and Christodoulou (see 1981, Section 3) and for even lower regularity (so
called rough coefficients) in Maxwell (see 2006, Section 3), while the correspond-
ing W m;p-regularity theory for rough coefficients can be found, for instance, in
Holst, Nagy, and Tsogtgerel (see 2009, Appendix A.5). In the case of second or-
der equations with low regularity coefficients, a very nice presentation is given
Choquet-Bruhat (see 2009, Appendix II). More specifically, these extensions to
low regularity have the following form.

Consider a linear elliptic operator L on a closed manifold M which can be
locally written as an operator of the form (B.8) and whose coefficients satisfy the
following regularity requirements

A˛ 2 W j˛j;p.Rn;Rk�k/; 8 0 6 j˛j 6 m; (B.30)

where, as usual, k is the dimension of the fibre of E. A priori, we can think of L
as a map from C1.E/ 7! D0.E/. But actually, the following holds:

Lemma B.2. Consider a linear elliptic operator L W C1 7! D0.E/ of order m
whose coefficients satisfy (B.30) on a closed manifold M n. Then, for p > n

m
, L

extends to a bounded map from W m;p.E/ 7! Lp.E/.

The proof of the above Lemma is basically an application of the Sobolev mul-
tiplication properties. A more general version of the same result, which extends
L to less regular spaces, can be found in Holst, Nagy, and Tsogtgerel (see 2009,
Lemma 31). Then, as explained above, via localisation and freezing of coefficients
arguments, the following result follows, which generalises Theorem B.5.

Theorem B.6. Let M n be a closed manifold and L a linear elliptic operator of
order m satisfying the regularity conditions (B.30). Then, for p > n

m
, there is a

constant C > 0 such that

jjujjWm;p 6 C .jjLujjLp C jjujjLp / 8 u 2 W m;p.E/: (B.31)

Furthermore,L W W m;p.E/ 7! Lp.E/ is semi-Fredholm. Finally, ifKer.L/ D 0,
then there is a constant C > 0 such that

jjujjWm;p 6 C jjLujjLp 8 u 2 W m;p.E/: (B.32)
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The above theorem, whose proof can be consulted, for instance, in Holst, Nagy,
and Tsogtgerel (see ibid., Lemma 34), is the extension of Theorem B.5 to the low
regularity scenario. Basically, since the proof of Theorem B.5 depends on the el-
liptic estimates plus general functional analytic arguments, once the first part of
the above theorem is established, the second part follows along the same lines as
in Theorem B.5. Finally, along the lines of the remark following Theorem B.5,
notice that we can approximate the coefficients of an operator satisfying the regu-
larity hypotheses in the above theorem by smooth ones, and then consider elliptic
operators with smooth coefficients converging to L. It is typically the case that
computing the index along this sequence is easier than dealing directly with the
low regularity coefficient operator. This will be exemplified when dealing with
the Laplace operator of a metric with low regularity.

Let us now apply the above machinery to the two operators given by the
Laplace–Beltrami operator associated to closed Riemannian manifold .M; g/ and
the conformal Killing operator introduced in (B.4).

The Poisson and conformal Killing operators

Let .M n; g/ be a closed Riemannian manifold with g 2 W 2;p and p > n
2
, so that

g is continuous. Then define

�g W W 2;p
7! Lp;

f 7! trgr
2f D gijrirjf

(B.33)

where r denotes the associated Riemannian connection, where the range of�g in
the above definition follows from the Sobolev multiplication properties. Then, for
any fixed function a 2 Lp.M/, let us define the Poisson operator Lg as

Lg W W 2;p
7! Lp:

f 7! �gf � af
(B.34)

Proposition B.2. In the above context, the Poisson operator Lg defines a contin-
uous map from W 2;q 7! Lq for all 1 < q 6 p.

Proof. Let us simply write �gu D gij @iju C gij� lij @lu on a small coordinate
ball B , for u 2 W 2;q . We can apply Theorem A.2.3 to guarantee that W 2;p ˝

Lq is continuously embedded in Lq for p > n
2
, implying kgij @ijukLq.B/ 6

Ckg�1kW 2;p.B/kukW 2;q.B/. Also, gij� lij 2 W 1;p for similar reasons, with the
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estimate kgij� lij kW 1;p.B/ 6 Ckg�1kW 2;p.B/k@gkW 1;p.B/. Now, the multiplica-
tion property ofTheoremA.2.3 again guarantees thatW 1;p˝W 1;q ,! Lq forp >
n
2
and 1 < q 6 p, implying kgij� lij @lukLq.B/ 6 Ckgij� lij kW 1;p.B/k@ukW 1;q.B/.

Therefore, we locally get

k�gukLq.B/ 6 C
�
kg�1

kW 2;p.B/.1C kgkW 2;pB//
�

kukW 2;q.B/:

Finally,Lp˝W 2;q ,! Lq holds oncemore viaTheoremA.2.3, implying kaukLq 6
CkakLp kukW 2;q . A partition of unity argument establishes the final claim.

Let us now highlight the following classical property for smooth metrics. If
g and a are smooth, then coefficients of Lg are smooth and classical elliptic reg-
ularity guarantees that if Lgu D 0 weakly for any u 2 D0, then actually u is a
strong smooth solution. In particular Ker.Lg W W 2;p 7! Lp/ � C1.M/ is inde-
pendent of p 2 .1;1/. This implies that Ker.L�

g W Lp
0

7! W �2;p0

/ D Ker.Lg W

W 2;p0

7! Lp
0

/ D Ker.Lg W W 2;p 7! Lp/, and therefore Index.Lg/ D 0 in this
smooth case. We can exploit this to compute properties of L�

g in low regularity
appealing to index properties of Fredholm operators, as we will exemplify in the
following theorem.

Theorem B.7. Let .M n; g/ be a closed Riemannian manifold with g 2 W 2;p,
p > n

2
. Let a 2 Lp.M/ be a fixed function and consider the associated Poisson

operator Lg D �g � a. If a > 0 a.e and not identically zero, then Lg W W 2;p 7!

Lp is an isomorphism.

Proof. First, let us prove that the theorem is true if the coefficients are smooth. In
that case, we can use the associated Riemannian measure dVg to induce a the L2-
dual pairing betweenW 2;p andW �2;p0 in a standard way. Then, from a standard
integration by parts argument, we see that Lg is formally self-adjoint. Thus, if
Ker.L/ D 0 we are done. Therefore, assume that u 2 Ker.Lg/ � C1.M/ so
that �gu � au D 0. Multiplying this equation by u and integrating by parts with
respect to dVg , we see thatZ

M

�
jruj

2
g C au2

�
dVg D 0 8 u 2 Ker.Lg/:

Since a > 0 and a 6� 0, the above implies u � 0 and the conclusion follows.
Let us now address the general case. First, approximate g inW 2;p be smooth

metrics fgkg, a in Lp by smooth functions fakg satisfying ak > 0 and put some
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fixed background smooth metric 
 into the picture, denote by D its Riemannian
connection, so that

�gf D gijriDjf D gij
�
DiDjf � S lijDlf

�
D gijDiDjf � gijS lijDlf;

(B.35)

where S lij D � lij .g/ � � lij .
/ D
gla

2

�
Digaj CDjgai �Dagij

�
. Then,

.�g ��gk
/f D .gij � g

ij

k
/DiDjf � .gij � g

ij

k
/S lij .g/Dlf

� g
ij

k

�
S lij .g/ � S lij .gk/

�
Dlf:

Therefore

k.Lg � Lgk
/f kLp 6

�
kg�1

� g�1
k kW 2;p .1C kS.g/kW 1;p /

C kg�1
kW 2;p kS.g/ � S.gk/kW 1;p C ka � akkLp

�
kf kW 2;p :

Theabove shows thatLgk
! Lg in the operator norm. Thus, fromTheoremA.1.2,

we see that Lg is also a Fredholm map with the same index as Lgk
. Since each

Lgk
is an isomorphism, we see that Lg has zero index and therefore its injectivity

proves the general claim. This follows similarly to the smooth case, but via an
initial approximation argument. To start with, we know thatZ

M

fkLgk
fkdVgk

D �

Z
M

�
jrfkj

2
gk

C akf
2
k

�
dVgk

; 8 fk 2 C1.M/:

(B.36)

Consider f 2 W 2;p.M/ and a sequence fk
W 2;p

����! f . We want to show that
both sides of the above equation converge to their limits. First assume thatM is
orientable so that dVg D hgdV
 and dVgk

D hgk
dV
 , with hg ; hgk

positive
continuous functions. Also, notice that since p > n

2
, the multiplication

C 0 � Lp 7! Lp

.u; v/ 7! uv

is a continuous bilinear map and W 2;p ,! C 0. Since Lp ,! L1 because M is
compact, then these maps are continuous from C 0 � Lp 7! L1. This proves that

fkLgk
fkhgk

L1

��! fLgf hg , and similarly that akf 2k hgk

L1

��! af 2hg . Similarly,
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we have a continuousmultiplication propertyW 1;p˝W 1;p intoLp ,! L1, which
can be put together with the continuous multiplication C 0 ˝ Lp into L1 we just

discussed to prove jrfkj2ghgk

L1

��! jrf j2ghg . All this implies that we can take
limits in (B.36) and get L1 convergence on both side to prove the identityZ

M

fLgfdVg D �

Z
M

�
jrf j

2
g C af 2

�
dVg ; 8 f 2 W 2;p.M/: (B.37)

Once more, this implies Ker.Lg/ D 0 in this more general case.
The remaining case is that ofM non-orientable. In this case, the above argu-

ments holds in the orientable double cover. Since each of the integrals in (B.36)
and (B.37) can be computed as half of the pulled-back integrals in the orientable
double cover manifold, then this case gets reduced to the previous one.

Let us now comment on one further regularity property associated toLg . Con-
sider Lg satisfying the hypotheses of the above theorem but acting onW 2;q with
1 < q 6 p. We know that Lg is continuous on theses spaces. Also, since
W 2;p ,! W 2;q , we know that V1

:
D Ker.Lg W W 2;p 7! Lp/ � Ker.Lg W

W 2;q 7! Lq/
:

D V2 and therefore dim.V1/ 6 dim.V2/. From the above proof,
we also know that Lg W W 2;p 7! Lp has index zero, and thus dim.V1/ D

dim
�
Ker.L�

g W Lp
0

7! W �2;p0

/
�
, where we will denote V3

:
D Ker.L�

g W Lp
0

7!

W �2;p0

/. But let us also notice that, in the same manner we did in the above proof,
if f 2 W 2;q and fgkg and fakg are a sequence of smooth metrics and functions
converging to g and a in W 2;p and Lp respectively, then

jj.Lg � Lgk
/f jjLq 6

�
jjg�1

� g�1
k jjW 2;p .1C jjS.g/jjW 1;p /

C jjg�1
jjW 2;p jjS.g/ � S.gk/jjW 1;p C jja � akjjLp

�
jjf jjW 2;q :

follows from (B.35) using arguments such as those of Proposition B.2. Again,
this shows that

Lgk
�! Lg for any 1 < q 6 p;

in the space of bounded linear maps from W 2;q to Lq . Then, Theorem A.1.2
guarantees that Lg W W 2;q 7! Lq is a Fredholm map of index zero. This implies
that dim.V2/ D dim

�
Ker

�
L�
g W Lq

0

7! W �2;q0
��

, where we will denote V4
:

D

Ker
�
L�
g W Lq

0

7! W �2;q0
�
. Now, recalling that L�

g W Lq
0

7! W �2;q0 is defined
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via the identity hL�
gu; vi D hu;Lgvi for all u 2 Lq

0 and v 2 W 2;q , notice that if
u 2 V4, then since W 2;p ,! W 2;q , we have

hL�
gu; vi D 0; for all v 2 W 2;p:

That is V4 � V3, which now implies

dim.V1/ 6 dim.V2/ D dim.V4/ 6 dim.V3/ D dim.V1/; (B.38)

and therefore all the inequalities become equalities, and the inclusions V1 � V2
and V4 � V3 imply V1 D V2 and V3 D V4. Finally, if u 2 V1 and v 2 W 2;p

is arbitrary, then, integration by parts of the type justified in the above theorem,
shows that

hu;Lgvi D

Z
M

uLgvdVg D

Z
M

vLgudVg D 0;

implying that u 2 V3. That is, V1 � V3 which implies V1 D V3 since the index is
zero. Putting everything together, we have found V1 D � � � D V4, which implies

Ker.Lg W Lq
0

7! W �2;q0

/ D Ker.Lg W W 2;p
W7! Lp/ for all 1 < q 6 p:

(B.39)

That is, any weak Lq solution to Lgu D 0 is a strong Lp-solution for any 1 <
q 6 p.

Along the same lines as the above theorem, let us consider the following result
concerning the conformal Killing Laplacian (CKL) introduced in (B.4).

TheoremB.8. Let .M n; g/ be a closed Riemannian manifold with g 2 W 2;p , p >
n
2
and n > 3. Let us consider the operator �g;conf W W 2;p.TM/ 7! Lp.T �M/.

Then,�g;conf is a Fredholm map whereKer.�g;conf / equals the space ofW 2;p-
conformal Killing field of the metric g. It is in particular an isomorphism if g does
not posses any conformal Killing field.

Proof. This proof follows the lines of the proof of the previous theorem. Thus, first
consider the smooth case, that is, g 2 C1.M/. Then, we know that �g;conf is
Fredholm fromTheorem B.6 and we can proceed as in the above theorem to show

that, given a sequence fgkg of smooth metrics such that gk
W 2;p

����! g, it follows
that �gk ;conf ! �g;conf in the operator norm. Therefore, we conclude from
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Theorem A.1.2 that �g;conf is a Fredholm map. Now, consider X 2 W 2;p and

take a sequence fXkg � C1 such that Xk
W 2;p

����! X and notice thatZ
M

h�gk ;confXk; Xkigk
dVgk

D �

Z
M

jLgk ;confXkj
2
gk
dVgk

: (B.40)

Just as we did above, we want to prove that both sides in the above expression both
side converge to the corresponding limits and the same multiplication properties
described in the previous theorem establish this claim. So, we get thatZ

M

h�g;confX;XigdVg D �

Z
M

jLg;confX j
2
gdVg : (B.41)

Then, the above equation shows that

X 2 Ker.�g;conf / () Lg;confX D 0;

which finishes the proof.

Let us just highlight that similar remarks to those followingTheorem B.7, con-
cerning the regularity of solutions, apply to the conformal Killing Laplacian as
well.
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