
C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

ISBN 978-65-89124-33-7

9 786589 124337

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 313 C

First steps into
Model Order Reduction

Alessandro Alla

impa

a

Alessandro Alla

First steps into
Model Order Reduction

First steps into Model Order Reduction
Segunda impressão, março de 2022
Copyright © 2021 Alessandro Alla.
Publicado no Brasil / Published in Brazil.

ISBN 978-65-89124-33-7
MSC (2020) Primary: 62H25, Secondary: 65N06, 37M99, 37M05, 65D05

Coordenação Geral Carolina Araujo

Produção Books in Bytes Capa Izabella Freitas & Jack Salvador

Realização da Editora do IMPA
IMPA
Estrada Dona Castorina, 110
Jardim Botânico
22460-320 Rio de Janeiro RJ

www.impa.br
editora@impa.br

Contents

1 Finite Differences method 3
1.1 Finite Differences for parabolic PDEs 6
1.2 Matlab code . 7

2 The POD method 12
2.1 Singular Values Decomposition . 13
2.2 Proper Orthogonal Decomposition 15

2.2.1 Offline–online decomposition 16
2.2.2 Matlab code and comments 18

3 Discrete Empirical Interpolation Method 23
3.1 Matlab code and comments . 26

Bibliography 31

Preface

Model order reduction (MOR) methods are of growing importance in scientific
computing as they provide a principled approach to approximate many modern
mathematical models of real-life processes, replace high-dimensional PDEs, with
low-dimensional models. The dimensionality reduction provided by MOR helps
to reduce the computational complexity and time needed to solve large-scale en-
gineering systems enabling simulation based scientific studies not possible even a
decade ago.

Examples of real-time simulation settings include control systems in electron-
ics and visualization of model results while examples for a many-query (param-
eterized) setting can include optimization problems and design exploration. In
order to be applicable to real-world problems, often the requirements of a reduced
order model are:

• a small approximation error compared to the full order model,

• conservation of the properties and characteristics of the full order model,

• computationally efficient and robust reduced order modelling techniques.

Mathematically, MOR constructs low-dimensional subspaces, typically generated
by the Singular Value Decomposition (SVD), where the evolution dynamics is
projected. Thus, a high-dimensional system of differential equations is replaced by
a low-rankmodel in a systematic fashion. Three steps are required for this low-rank
approximation: (i) snapshots of the dynamical system for some time instances, (ii)
dimensionality-reduction of this solution data typically produced with an SVD,

2

and (iii) projection of the dynamics on the low-rank subspace. The first two steps
are often called the offline stage of the MOR architecture whereas the third step is
known as the online stage. Offline stages are exceptionally expensive, but enable
the (cheap) online stage to potentially run in real time. This approach has been
successfully applied to e.g. parametrized PDEs and optimal control problems.

A popular and well-established technique in MOR is Proper Orthogonal De-
composition (POD) which, in these notes, is introduced in a discrete setting. The
notes can not replace a text book or research papers on the topic. Hopefully, they
will be enough to get the reader excited and motivated to learn the topic more.
Throughout the notes, we will discuss the method and its Matlab implementation.
More information will be provided by the references1 cited in the manuscript. At
the end of the notes, we will list some possible applications of model order reduc-
tion methods.

The notes are structured as follows: In Chapter 1 we recall the finite difference
method for a parabolic equation. In Chapter 2 we present the Proper Orthogo-
nal Decomposition method and in Chapter 3 the Discrete Empirical Interpolation
Method.

Acknowledgments. The author wishes to acknowledge IMPA for this opportu-
nity, Carlos Tomei to support and revise this work. A deep gratitude to the col-
leagues who helped to discover, learn and appreciate this topic: Maurizio Falcone,
Michael Hinze, J. Nathan Kutz and Stefan Volkwein.

Alessandro Alla
Università Ca’ Foscari Venezia

March 2022
alessandro.alla@unive.it

1The list of references is by far not complete.

alessandro.alla@unive.it

1 Finite
Differences

method

In this chapter we focus on the discretization of evolutive Partial Differential Equa-
tions (PDEs). We review some numerical schemes for PDEs, with emphasis on the
finite difference method. We refer to the manuscripts Falcone and Ferretti (2013),
Leveque (2002, 2007), and Quarteroni and Valli (1994), for finite differences, fi-
nite elements, semi-lagrangian and finite volume methods.

The semi-discretization of a PDE, say the spatial discretization, leads to a sys-
tem of ordinary differential equations

M Py.t/ D Ay.t/C F.t; y.t//; t 2 .0; T �;

y.0/ D y0;
(1.1)

where y0 2 Rd is a given initial data, M;A 2 Rd�d given matrices and F W

Œ0; T �� Rd ! Rd a continuous function in both arguments and locally Lipschitz
with respect to the second variable. It is well–known that under these assump-
tions there exists an unique solution for (1.1). Throughout these notes, we always
assume that the model is given and known.

This wide class of problems arises in many applications, such as e.g. heat
transfer or wave equations. In such cases, the dimension d is the number of grid
points in the spatial discretization of the PDE and can be very large. The solution

4 1. Finite Differences method

of system (1.1) may be computationally demanding and we will consider reduced
order modeling techniques in the next chapters.

Let y.t/ be a smooth function of one variable. We approximate the time deriva-
tive yt .Ot / by a finite difference approximation based only on values of y in a neigh-
bourhood of Ot . For �t > 0, the standard one sided approximations are given by

yt .Ot / �
y.Ot C�t/ � y.Ot/

�t
; (1.2)

yt .Ot / �
y.Ot/ � y.Ot ��t/

�t
: (1.3)

Approximations (1.2) and (1.3) are of first order, whereas the following centered
approximation

yt .Ot / �
y.Ot C�t/ � y.Ot ��t/

2�t

is of order two. The verification uses the Taylor expansion of y at Ot .
The centered approximation to the second derivative

yt t .Ot/ �
y.Ot C�t/ � 2y.Ot/C y.Ot ��t/

�t2
(1.4)

is also of order two.

Exercise. Compute approximations for the first and second derivative of y.t/ D

et at Ot D 1 for �t D f0:1; 0:05; 0:025; 0:0125g. Verify the order of convergence.
The time discretization of (1.1) might be done in several ways, see Quarteroni,

Sacco, and Saleri (2007). We begin by setting a temporal step size �t > 0 and
defining tk D k�t 2 Œ0; T �, with k D 0; : : : ; m and tm D T . We will denote
by y.tk/ the continuous solution of (1.1) at time tk , whereas by yk the numerical
approximation at time tk . If the method converges yk ! y.tk/ when �t ! 0:

To build a numerical scheme for (1.1) onemight use formula (1.2), say a Taylor
expansion around tk for the time derivative and get the explicit Euler method:

M
ykC1 � yk

�t
D Ayk

C F.tk; y
k/; y0

D y0; k D 0; : : : ; m � 1: (1.5)

This method is explicit: the unknown ykC1 only depends on the solution at the
previous step yk:

MykC1
D yk

C�t.Ayk
C F.tk; y

k//; y0
D y0; k D 0; : : : ; m � 1:

5

IfM is not the identity matrix, this is a linear system at each iteration k.
The implicit Euler method is, on the contrary, built using a Taylor expansion

around tkC1:This leads to

M
ykC1 � yk

�t
D AykC1

C F.tkC1; y
kC1/; y0

D y0; k D 0; : : : ; m � 1

(1.6)
where it has been used (1.3) to discretize the time derivative.

The solution (1.6) is defined implicitly and requires the solution of a nonlinear
equation. If we define the function

F.x/ WD M.x � yk/ ��t .Ax C F.tkC1; x// ; (1.7)

our approximation problem at time tkC1 reads F.ykC1/ D 0.
Due to the nonlinearity of the problem, we use Newton’s method to compute

ykC1. Here, we recall the standard Newton’s method, which makes use the com-
putation of JF .x/ the full Jacobian of F.x/. There is a large literature describing
faster variants for inexact Newton’s method (see e.g. Quarteroni, Sacco, and Saleri
(ibid.)).

The Jacobian with respect to x is

JF .x/ WD M ��t .AC JF .tkC1; x// ; (1.8)

where JF is the Jacobian of the nonlinear term F in (1.1).
Newton’s method gives rise to the iteration below, with initial condition x0,

JF .xi /ıi D F.xi / (1.9)
xiC1 D xi � ıi : (1.10)

We iterate until kxiC1 � xik 6 " for a prescribed tolerance ". Each iteration
requires the solution of a linear system of dimension d � d . The choice of x0

is crucial: it is well-known that the method converges quadratically if the initial
condition is close to the solution, e.g. to compute ykC1 one might set the initial
condition x0 D yk .

The explicit Euler method (1.5) and the implicit Euler method (1.6) have order
of convergence equal to one. However, in the rest of the paper we will work with
the implicit scheme which is more stable than the explicit method.

6 1. Finite Differences method

1.1 Finite Differences for parabolic PDEs

Let us now consider a one dimensional two points boundary value problem:

zyt .x; t/ D ˛ zyxx.x; t/C f .t; zy.x; t//; .x; t/ 2 .a; b/ � .0; T /;

zy.x; 0/ D zy0.x/

zy.a; t/ D 0 D zy.b; t/

(1.11)

where zy.x; t/ W Œa; b� � Œ0; T � ! R is the unknown, satisfying zero-Dirichlet
boundary conditions, y0.x/ W Œa; b� ! R is the initial condition and f W Œ0; T � �

R ! R is given.

Semi-discretization. Let us start with the spatial discretization of equation (1.11).
We first choose a spatial step size �x > 0 and set xi D a C .i � 1/�x for
i D 1; : : : n and xn D b. We denote by yi .t/ the semi-discrete approximation of
the continuous solution zy.xi ; t / at xi with y.t/ W Œ0; T � ! Rn, and approximate
the second derivative by the centered finite difference (1.4)

zyxx.xi ; t / �
yi�1.t/ � 2yi .t/C yiC1.t/

�x2
; i D 2; : : : ; n � 1: (1.12)

From the boundary conditions in (1.11), y1.t/ D 0 D yn.t/. The semi-discretization
in space of (1.11) leads to a system of ODEs as in equation (1.1), where

A D
1

�x2

0BBBBBB@
�2 1

1 �2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

1CCCCCCA ; F .t; y.t// D

0BBBBBBB@

f .t; y2.t//

f .t; y3.t//
:::
:::

f .t; yn�2.t//

f .t; yn�1.t//

1CCCCCCCA ;

of dimension d D n � 2, A 2 Rd�d ; F .t; y.t// 2 Rd and the matrix M is the
identity matrix of dimension d � d in this context.

Exercise. How does the matrix A and the vector F.t; y.t// look like in case of
nonzero Dirichlet boundary conditions zy.a; t/ D ˇ; zy.b; t/ D
 and ˇ;
 2 R?

1.2. Matlab code 7

Let us now consider a two dimensional two points boundary value problem,

zyt .�; t/ D ˛�zy.�; t/C f .t; zy.�; t// .�; t/ 2 ˝ � Œ0; T �;

zy.�; 0/ D zy0.x/;

zy.�; t/ D 0 .�; t/ 2 @˝ � Œ0; T �

(1.13)

where ˝ � R2 is an open set, � D .�1; �2/ 2 ˝, zy.�; t/ W ˝ � Œ0; T � ! R is the
unknown, y0.�/ W ˝ ! R is the initial condition and f .t; zy.�; t// W Œ0; T �� R !

R is a given function. The Laplace operator is �y.�; t/ D y�1�1
C y�2�2

. We
discretize the derivatives in space following the one dimensional example. We
use the same step�� > 0 for both �1 and �2, the notation �ij D ..�1/i ; .�2/j / and
approximate y

�
�ij ; tk

�
� yk

i;j . Then

�y
�
�i;j ; tk

�
�
yk

i�1;j � 2yk
i;j C yk

iC1;j

��2
C
yk

i;j �1 � 2yk
i;j C yk

i;j C1

��2
:

Using compact notations, we obtain the matrix A 2 Rn2�n2

A D
1

��2

0BBBBBBB@

T I
I T I

I T I

: : :
: : :

: : :

I T I
I T

1CCCCCCCA ; T D

0BBBBBBB@

�4 1
1 �4 1

1 �4 1

: : :
: : :

: : :

1 �4 1
1 �4

1CCCCCCCA ; (1.14)

with I; T 2 R.n�2/�.n�2/ and I is the identity matrix. Now, the dimension of
the problem is d D .n � 2/2. The order of the matrix A follows the natural
row-wise ordering where we take the unknowns along the bottom row from left
to right, fy11; y21; y31; : : : ; yn1g followed by the unknowns in the second row,
fy12; y22; y32; : : : ; yn2g, and so on.

1.2 Matlab code
In this section we provide the Matlab code for (1.13) with

˛ D 0:05;

zy0.�/ D sin.��1/ sin.��2/;
f .t; y.t// D �.y.t/2 � y.t/3/;

� D 10:

(1.15)

8 1. Finite Differences method

We set ˝ D Œ0; 1�2; T D 2;�� D 0:0125;�t D 0:05:The solution at time t D 0

and t D 2 is given in the top of Figure 1.1, whereas the contour lines in the bottom
of the same figure.

Contour lines at time 0

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Figure 1.1: Top: Numerical approximation of (1.13) at time t D 0 (left) and t D 2

(right). Bottom: contour lines of (1.13) at time t D 0 (left) and t D 2 (right).

In the first part of the code we set the parameters used to define the problem.

clear
clc
close all

%Parameters
dx =0.0125;
PDE.mu = 10;
alpha = 0.05;
dt = 0.05;

1.2. Matlab code 9

x_tmp = 0:dx:1;
x = x_tmp(2:end-1);
y = x;
n = length(x);
t = 0:dt:2;
PDE.tol = 1e-5; %tolerance Newton's method

%Initial Condition
ic_cond_1 = sin(pi*x);
ic_cond = ic_cond_1'*ic_cond_1;
sol(:,1) = ic_cond(:);

Next, we discretize the Laplace operator. We note we used sparse matrices Matlab
tools.

%Laplace discretization
e = ones(n,1);
A = spdiags([e -2*e e],-1:1,n,n);
A = kron(A,speye(n))+kron(speye(n),A);
PDE.A = alpha*A/dx/dx;

The functions F.x/; JF .x/ in (1.7) and (1.8) are defined below. The Jacobian
here is computed exactly, and defined as a sparse matrix due to the structure of the
nonlinearity which is polynomial.

%Function and Jacobian for Newton's Method
full_sol =@(y,tmp,PDE)...
(tmp-y-dt*(PDE.A*tmp+PDE.mu*(tmp.^2-tmp.^3)));

df_full_sol = @(tmp,PDE)(speye(size(PDE.A))-...
dt*(PDE.A+spdiags(2*PDE.mu*tmp-3*PDE.mu*tmp.^2,0,n^2,n^2)));

Loop over time. We note that the initial condition in the Newton’s method
to compute ykC1 is the solution at the previous time yk . That is true for k D

0; : : : ; m � 1.

%Loop over time
tic
for i =k:length(t)-1

10 1. Finite Differences method

sol(:,k+1) = calc_newton(sol(:,k),PDE,full_sol,df_full_sol);
end
toc %CPU time for the online stage

A way to show the picture of the solution of (1.13) over time.

%% Video PDE
close all
fmin = min(min(sol));
fmax = max(max(sol));
nsteps = length(t);
fig = figure;
for i = 1:nsteps

matrix = reshape(sol(:,i),length(x),length(y));
matrix = [zeros(length(x),1) matrix zeros(length(x),1)];
matrix = [zeros(1,length(x_tmp));...

matrix; zeros(1,length(x_tmp))];
surf(x_tmp,x_tmp, matrix);
zlim([fmin fmax]);
archivo = strcat('FULL SOLUTION time = ',num2str(dt*(i-1)));
title(archivo,'FontSize',16);
set(gca,'FontSize',16)
drawnow;
pause(0.2)

end

To conclude the function for the Newton’s method.

function xnew = calc_newton(x0,PDE,f,JF)

tol = PDE.tol;
err = 1;
count = 0;
tmp=x0;
xnew = x0;
while err>tol && count<500

err_sol(count+1) = err;
JF_c = JF(xnew,PDE);

1.2. Matlab code 11

F_c =f(tmp,xnew,PDE);
deltax = JF_c\F_c; %DO NOT INVERT MATRICES
xnew = xnew - deltax;
err = norm(deltax)
count = count+1;

end

err_sol(count) = err;

end

2 The POD
method

The aim of this chapter is to present a fast and accurate method to approximate (1.1)
which reduces the dimension of the problem by means of orthogonal projections.
In particular, we discuss the Proper Orthogonal Decomposition (POD), the key
ingredient of these notes. More details can be found, e.g. in Benner, Gugercin,
and Willcox (2015) and Gräßle, Hinze, and Volkwein (2020). We will only focus
on the discrete version of POD. A continuous version is described in Gräßle, Hinze,
and Volkwein (2020).

A numerical method to approximate a PDE already reduces the dimension of
the problem: we pass from an infinite dimensional problem to a finite dimensional
problem of the form (1.1). However, the dimension d of the semi discretized
problem is usually very large. The focus of model order reduction is to accurately
approximate (1.1) reducing the dimension of the problem, say ` � d . Clearly, the
computational speed to approximate our problem will benefit from the reduction
of the dimension. In these notes, ` will be the dimension of the reduced problem.

Let us consider a fixedmatrix	 2 Rd�` such that its columns are orthonormal
vectors. Then, 	T	 D I 2 R`�` and the columns f g`

iD1 of 	 form a basis
for an `�dimensional subspace V ` D spanf 1; : : : ; `g � Rd . An appropriate
choice of V ` would be such that the solution y.t/ of (1.1) can be approximated

2.1. Singular Values Decomposition 13

by a linear combination of 	 :

y.t/ � 	y`.t/; (2.1)

where y`.t/ are functions from Œ0; T � to R`:

If we plug assumption (2.1) into our reference problem (1.1) we obtain:

M	 Py`.t/ D A	y`.t/C F.t; 	y`.t//;

	y`.0/ D y0:
(2.2)

Multiplying (2.2) by 	T on the left,

	TM	 Py`.t/ D 	TA	y`.t/C 	TF.t; 	y`.t//;

	T	y`.0/ D 	T y0:
(2.3)

This multiplication imposes theGalerkin condition, i.e. orthogonality with respect
to residual of (2.2). In a compact notation, the reduced order model (ROM) takes
the following form:

M `
Py`.t/ D A`y`.t/C 	TF.t; 	y`.t//;

y`.0/ D y`
0

(2.4)

whereM ` D 	TM	;A` D 	TA	 , so thatM `; A` 2 R`�`, and y`
0 D 	T y0 2

R`. If the dimension of the system is ` � d , then a significant dimensionality
reduction is accomplished. System (2.4) formally is the same problem of (1.1)
with the huge gain of having reduced its dimension. The structure of the matrices
in (2.4) is usually not preserved, e.g. ifA is large and sparse, its projectionA` will
be small but dense. The ROM (2.4) might be solved by an implicit Euler method
as explained in Chapter 2.

Exercise. Write the Euler implicit scheme for (2.4) and define the projection of
F in (1.7) and JF in (1.8)

2.1 Singular Values Decomposition
We briefly recall the Singular Value Decomposition (SVD) of a matrix since it is
strictly linked to the POD method as we will see in the next section. We refer to
Golub and Loan (1996) for further details on SVD.

14 2. The POD method

Definition 1 (Singular values and vectors). Let Y 2 Rd�m be a matrix of rank
r 6 m with d > m: Let 	 WD f ig

d
iD1 � Rd and V WD fvig

m
iD1 � Rm be the set

of orthonormal vectors such that:

Yvi D �i i and Y T i D �ivi for i D 1; : : : ; r: (2.5)

Then, �1; : : : ; �r are called singular values, and the vectors 2 	; v 2 V are
called: right and left singular vectors respectively.

Theorem 1 (Existence of SVD). Let Y D Œy1; : : : ; ym� be a given matrix with
real value d � m of rank r 6 minfd;mg: Then, there exists a singular value
decomposition of Y , with real numbers �1 > �2 > : : : > �r > 0 and orthogonal
matrices 	 D Œ 1; : : : ; d � 2 Rd�d and V D Œv1; : : : ; vm� 2 Rm�m such that:

Y D 	˙V T ; ˙ D

�
D 0

0 0

�
2 Rd�m; (2.6)

whereD is the diagonal matrix with singular values.

The following Lemma provides a uniqueness result for SVD.

Lemma 1. For any matrix Y 2 Rd�m the singular values are uniquely defined.
The singular vectors corresponding to the singular values greater than zero of
multiplicity one are unique up to a change of the sign.

Observation 1. SVDmay be interpreted as a pair of diagonalizations. If we insert
the first equation in (2.5) into the second and vice versa we see the right singular
vectors f ig

r
iD1 are eigenvectors of Y Y T with eigenvalues �i D �2

i and the left
singular vectors fvig

r
iD1 are eigenvectors of Y T Y with eigenvalues �i D �2

i .
Then the following equalities hold:

Y Y T i D �2
i i ; and Y T Yvi D �2

i vi ; for i D 1; : : : ; r

and for i > r we have Y Y T i D 0 D Y T Yvi :

Another important result for SVD concerns the optimal approximation in the
Frobenius norm, defined for a matrix A 2 Rn�m as

kAkF D

vuuut dX
iD1

mX
j D1

jaij j2:

2.2. Proper Orthogonal Decomposition 15

Theorem 2. Let Y 2 Rd�m be a matrix of rank r 6 m; with d > m, Let
Y D 	˙V T be the SVD with singular values �1; : : : ; �m: We define Y ` of rank
`, obtained by setting �`C1 D �`C2 D : : : D �m D 0 in the matrix ˙ .
Then, Y ` is the best approximation with respect to the Frobenius-norm of Y among
the matrices of rank `:

ˇ̌̌ˇ̌̌
Y � Y `

ˇ̌̌ˇ̌̌
F

D min
rank(B)D`

jjY � BjjF D

vuuut0@ rX
iD`C1

�2
i

1A:

2.2 Proper Orthogonal Decomposition

In this section, we explain one popularmethod proposed by Sirovich (1987), known
as the Proper Orthogonal Decomposition (POD), to obtain an appropriate matrix
	 in (2.1).

We first need to collect data from (1.1), say the solution or approximate solu-
tion y.tj / for some time instances ft0; : : : ; tmg. This set of data is usually called
snapshots. To determine the columns of 	 we solve the following minimization
problem:

min
 1;:::; `2Rd

mX
j D0

y.tj / �
X̀
iD1

hy.tj /; i i i

2

2

such that h i ; j i D ıij ;

(2.7)
with ıij being the Kronecker delta. The vector norm, here and in the sequel, is
hu; vi D uT v and kuk2 D hu; ui.

The optimization problem (2.7) looks for orthonormal basis f ig
`
iD1 for the

subspace of Rd which minimizes the distance between the snapshots and their
projection onto these unknown basis. In other words, we search for the best ap-
proximation between our dataset and a set of linearly independent vectors f ig

`
iD1

with ` elements.
Let Y D Œy.t0/; : : : ; y.tm/� 2 Rd�.mC1/ consists of columns given by the

snapshots. The solution of (2.7) is given by the left singular vectors of the (re-
duced) singular value decomposition of Y D 	˙V T , where 	 2 Rd�`; ˙ 2

R`�`; V 2 RK�`:Thus, wewill callPODbasis of rank ` the columns f 1; : : : ; `g

of the matrix 	 solution of (2.7).

16 2. The POD method

To apply the POD method in concrete problems, the choice of the truncation
parameter ` plays a crucial role. There are no a priori estimates which guarantee
the ability to build a coherent reduced order model (ROM), but one can focus on
heuristic considerations, introduced by Sirovich (1987), and ask for the following
ratio to be close to one:

E.`/ D

P̀
iD1

�2
i

rP
iD1

�2
i

; (2.8)

where r is the rank of the snapshots matrix Y , and �i ’s are the singular values of
Y . This indicator is motivated by the fact that the error in (2.7) is given by the
singular values we neglect:

mX
j D0

y.tj / �
X̀
iD1

hy.tj /; i i i

2

F

D

rX
iD`C1

�2
i : (2.9)

Usually, one requires E.`/ � 0:999.
We note that the error (2.9) is strictly related to the computation of the snap-

shots and it is not linked to the reduced dynamical system. We refer to Kunisch and
Volkwein (2001) for a study of the POD error in the context of parabolic equations.
In Section 2.2.2 we will show and comment on the relevance of the snapshots in
model order reduction.

2.2.1 Offline–online decomposition

In this section we resume and comment all the steps needed to get and solve a
reduced model. Four steps are required for this low dimensional approximation:

1. Computation of the snapshots y.tj /. It might happen that those data are
already available or they can be computed by a numerical approximation of
the original high-dimensional system (1.1).

2. Computation of the POD basis f 1; : : : ; `g of rank `. This is usually done
by a SVD or eigenvalue decomposition of the snapshots matrix. The or-
thonormal vectors f ig

`
iD1 will be a base for the `�dimensional subspace

of Rd .

2.2. Proper Orthogonal Decomposition 17

3. Projection of the dynamics on the low-rank subspace, i.e. compute A`,M `,
y`

0 in (2.4).

4. Solution of the ROM (2.4) by a numerical scheme for ODEs.

The first three steps are often called the offline stage of the ROM architecture,
whereas the fourth step is known as the online stage. Offline stages are excep-
tionally expensive, but enable the (cheap) online stage to potentially run in real
time. Randomized numerical linear algebra methods help to reduce the computa-
tional cost of the offline cost as done in Alla and Kutz (2019). Recently, a matrix-
oriented approach that reduces the offline stage has been introduced in Kirsten and
Simoncini (2020).

The offline part for the POD method is summarized in Algorithm 1. We first
compute snapshots from the high dimensional problem (1.1). Then, we either com-
pute the eigenvalues of Y T Y or the singular value decomposition of Y to obtain
the POD basis. The choice of the critical parameter ` depends on the dimension
of the problem d and the number of snapshots m C 1. For instance, if m � d

then it is faster to solve the eigenvalue problem for Y T Y . We note that we only
compute the reduced SVD for a given `, that is also in general efficient if we do
not consider d � m. Finally, we store the projected quantities A`; y`

0;M
` to set

(2.4).

Algorithm 1 offline part for POD
Require: snapshots matrix Y 2 Rd�m, `, flag,A;M; y0.
1: if flag ==0 then
2: Compute the reduced SVD of rank `; Y D 	˙˚

3: else if flag == 1 then
4: Determine R D Y Y T 2 Rd�d

5: Compute R D 	�	�1

6: else
7: Determine K D Y T Y 2 Rk�k

8: Compute K D ˚�˚�1

9: 	 D Y˚��1=2

10: end if
11: Compute A` D 	TA	; y`

0 D 	T y0;M
` D 	TM	 .

18 2. The POD method

2.2.2 Matlab code and comments

We provide a Matlab code for the computation of the POD basis. The function
svds computes a reduced version of rank `1 of the SVD. Then, we project the
matrix A and the initial condition y0.

[Psi,Sigma,V]=svds(sol,ell);
PDE.Psi = Psi(:,1:ell);
PDE.A_ell = PDE.Psi'*PDE.A*PDE.Psi;
coeff_pod(:,1) = PDE.Psi'*sol(:,1);

Later, we compute the projection of the function F in (1.7) and its jacobian
(1.8) to set an implicit scheme.

pod_sol =@(y,tmp,PDE)(tmp-y-dt*(PDE.A_ell*tmp+...
PDE.Psi'*PDE.mu*((PDE.Psi*tmp).^2-(PDE.Psi*tmp).^3)));

df_pod_sol = @(tmp,PDE)(speye(size(PDE.A_ell))-...
dt*(PDE.A_ell+PDE.mu*PDE.Psi'*(spdiags(2*PDE.Psi*tmp-...
3*PDE.Psi*tmp.^2,0,n^2,n^2)*PDE.Psi)));

We switch finally to the online stage. Note that Newton’s method uses the es-
sentially same function of Chapter 1, for the projection of F and its projected
Jacobian.

for i =1:length(t)-1
coeff_pod(:,i+1) = ...

calc_newton(coeff_pod(:,i),PDE,pod_sol,df_pod_sol);
end
sol_pod = PDE.Psi*coeff_pod; %high dimensional solution

In Figure 2.1 we provide the POD solution, contour lines for equation (1.13)
and absolute difference between the POD solution and the exact solution2. The
snapshots are computed with �t D 0:05 whereas, for the POD solution, we set
�t D 0:025. The quality of the POD approximation for ` 2 f1; 2; 6g is clear, if
compared with Figure 1.1. In the bottom line of Figure 2.1 the z� scale is different.

1In the Matlab script we use the notation ell
2We assume that the exact solution is the approximate solution of (1.1)

2.2. Proper Orthogonal Decomposition 19

POD Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

POD Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

POD Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Figure 2.1: Top: POD Numerical approximation of (1.13) at time t D 2 for ` 2

f1; 2; 6g (left to right). Middle: POD contour lines of (1.13) at time t D 2 for
` 2 f1; 2; 6g (left to right). Bottom: Absolute difference (1.13) at time t D 2 for
` 2 f1; 2; 6g (left to right).

20 2. The POD method

1 2 3 4 5 6

Number of POD basis

10
-4

10
-3

10
-2

10
-1

10
0

POD error

1 2 3 4 5 6

Number of POD basis

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

Singular Values of the snapshots

Figure 2.2: Error analysis of the POD solution for the approximation of
(1.13)(left), indicator (2.8) and a possible threshold (right).

For completeness, we show the reduced matrix A` for ` D 5.

A`
D

0BBBB@
1:0123 0:0000 �0:0000 �0:0000 �0:0000

0:0000 16:8132 0:0502 0:0420 �0:0954

0:0000 0:0502 16:9314 �0:0482 0:1405

�0:0000 0:0420 �0:0482 17:1884 �0:0496

�0:0000 �0:0954 0:1405 �0:0496 17:0287

1CCCCA
ThematrixA in (1.14) is sparse, but this is not the case for its projected counterpart,
e.g. the POD projection.

The quality of our POD approximation is shown in the left panel of Figure 2.2.
Wemeasure it using the infinity-norm, max

t2Œ0;T �
ky.t/�	y`.t/k1. As expected, the

error decreases monotonically. On the right panel, we show the behaviour of the
quantity of interest E.`/, introduced in (2.8) which converges to 1 as ` increases.
The threshold value E.`/ D 0:999 for the choice of basis dimension ` is indicated
in red. In this case, ` D 2 would suffice. As already mentioned, this indicator is
very heuristic and is more related to the dataset than to the approximation of the
dynamical system.

The `�dimensional model (2.4) has to be solved in real time and should allow
for faster computations with respect to the high dimensional problem (1.1). Actu-
ally, the right panel of Figure 2.3 shows that the online stage in the POD approxi-
mation is slower than approximating the high dimensional problem. On the other
hand, we see that when f .t; y.t// D 0, i.e. for the linear heat equation (� D 0

in (1.15)), POD is way faster than the high dimensional problem. Is something

2.2. Proper Orthogonal Decomposition 21

1 2 3 4 5 6

Number of POD basis

3

4

5

6

7

8

9

10
CPU time online

POD

High Dimensional

1 2 3 4 5 6

Number of POD basis

10
0

CPU time online

POD

High Dimensional

Figure 2.3: CPU time of the POD approximation for (1.13) with � D 10 (left) and
� D 0 (right).

going wrong? The issue is discussed in the next chapter: why is the simulation
with f .t; y.t// ¤ 0 in (1.13) so expensive?

It is highly suggested to compute a few number of snapshots, e.g. m � d

which is how information on the system gives rise to the the ROM. How crucial
are the snapshots? Let us try to approximate (1.13) with � D 10 in (1.15), by
computing the snapshots with � D 0: In other words, we compute snapshots from
the linear problem and we want to see how PODworks with snapshots not directly
related to the problem we want to deal with. First we can compare in the left and
middle panel of Figure 2.4 the POD solution with ` D 6 at time t D 2. It is visually
clear that this solution is way different from the pictures provided in Figure 1.1.
Furthermore, we make a study of the error in the infinity norm which is around
0:47. We do not state the CPU time since the POD approximation is not accurate.
As already mentioned, this is a snapshots based approach where the computation

POD Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

1 2 3 4 5 6

Number of POD basis

0.46721

0.467215

0.46722

0.467225

0.46723

0.467235

0.46724

0.467245

0.46725

0.467255

POD error

Figure 2.4: POD solution at time t D 2 with ` D 6 (left), contour lines (middle),
erro decay (right) with wrong snapshots.

22 2. The POD method

of the snapshots is the state of the art of this approach. This example should not
surprise the reader but should be considered as a confirmation that the snapshots
are the key fact in this approach.

Exercise. Look for extrapolation properties of the POD basis. In other words,
compute snapshots in Œ0; T � and then evaluate the POD approximation in Œ0; TC
�

with
 > 0. How does the POD changes with
?

Exercise. Consider equation (1.13) where the parameters in (1.15) considers
˛ 2 Œ˛min; ˛max� and � 2 Œ�min; �max�. Thus, we are interested in approximat-
ing the problem for a set of parameters. How could one extend the optimization
problem (2.7)‹

3 Discrete
Empirical

Interpolation
Method

The focus of this chapter is an efficient and accurate approximation of the nonlinear
function F W Œ0; T ��Rd ! Rd in (1.1). In principle, computations are performed
in dimension dimension d of the problem, and the reduced order model (ROM)
introduced in (2.4) does not reduce the complexity of these evaluations. Indeed,
consider the nonlinearity in (2.4):

F `.t; y`.t// WD 	TF.t; 	y`.t//:

The variable y`.t/ 2 R` is first multiplied by	 obtaining a d�dimensional vector
	y`.t/ 2 Rd , then F.t; 	y`.t// is evaluated and, at the end, we return back to
low dimension, multiplying by 	T . Thus the evaluation of the nonlinear term
requires computing the full, high-dimensional model: the reduced model is not
independent of the full dimension d .

To circumvent this inconvenience, the Empirical Interpolation Method (EIM,
Barrault et al. (2004)) and its discrete counterpart, the Discrete Empirical Interpo-
lation Method (DEIM, Chatarantabut and Sorensen (2010)), were introduced. We
note that DEIM is built upon EIM: the two methods are essentially equivalent and

24 3. Discrete Empirical Interpolation Method

are based on a POD approach combined with a greedy algorithm. In this chap-
ter we consider the DEIM. The interested reader is referred to Chatarantabut and
Sorensen (2010) for further details. We want to approximate the nonlinear func-
tion by interpolating onto the empirical1 basis f�1; : : : ; �kg for the k�dimensional
subspace of Rd as follows:

F.t; 	y`/ � ˚c.t/ D

kX
iD1

ci .t/�i (3.1)

with unknown coefficients c.t/ W Œ0; T � ! Rk and ˚ D Œ�1; : : : ; �k� 2 Rd�k .
Typically, the dimension k is much smaller than the full dimension d .

To compute the empirical basis f�1; : : : ; �kg � Rd , we first define the snap-
shots matrix of the nonlinear terms:

N D ŒF .t0; y.t0//; : : : ; F .tm; y.tm//� 2 Rd�.mC1/ (3.2)

where the (pre-computed) snapshots y.tj / from (1.1) are evaluated in the nonlinear
part F.tj ; y.tj //:Then, we compute the POD basis from N as for Algorithm 1 in
Section 2.2.1. We emphasize that the empirical bases �1; : : : ; �k are computed by
taking information from the nonlinear part in (1.1).

Let us define a matrix P 2 Rd�k by taking k columns of a d �d permutation
matrix2. Then, to compute c.t/, we multiply (3.1) by P T such that

P TF.t; 	y`/ � P T˚c.t/ (3.3)

and if the matrix P T˚ 2 Rk�k is non-singular, we obtain

c.t/ � .P T˚/�1P TF.t; 	y`/:

As P is a truncated permutation matrix, the product P TF.t; 	y`/ selects k rows
of the nonlinear term. This selection is made by LU decomposition algorithm with
pivoting (see Chatarantabut and Sorensen (ibid.)), or following the QR decompo-
sition with pivoting (see Drmac and Gugercin (2016)) of the matrix˚T . The latter
is called Q-DEIM and it is shown to be more stable and accurate (see Drmac and
Gugercin (ibid.)) than the method provided in Chatarantabut and Sorensen (2010).

1The term empirical means the basis will be computed by some data as will show in this section.
2A permutation matrix is a reordering by rows (or columns) of the identity matrix.

25

DEIM is particularly powerful when the function F can be evaluated componen-
twise, so that P TF.t; 	y`.t// D F.t; 	P T y`.t//, which is directly evaluated
only at k components.

The DEIM approximation of F.t; y.t// reads

F.t; y.t// � F `;k.t; y`.t// WD ˚.P T˚/�1F.t; P T	y`.t//:

The matrices

P T	 2 Rk�`; .P T˚/�1
2 Rk�k and 	T˚.P T˚/�1

2 R`�k; (3.4)

can be pre-computed independently of the full dimensiond:This allows the reduced-
order model to be completely independent of the full dimension as follows:

M `
Py`.t/ D A`y`.t/C 	T˚.P T˚/�1F.t; P T	y`.t//

y`.0/ D y`
0:

(3.5)

We note that the only difference with respect to (2.4) is the low-rank approximation
of the nonlinear term, i.e. we replace F ` in (2.4) by F `;k in (3.5). Whenever we
mention the POD-DEIM approach, we refer to the system (3.5) wherre it has been
used ` POD basis for the projection and k DEIM basis in the approximation of the
nonlinearity.

At time t 2 Œ0; T �, the error between F.t; y.t// and its DEIM approximation
F `;k.t; y`.t// is given by

kF.t; y.t// � F `;k.t; y.t//k2 6 NCk.I � ˚˚T /F.t; y.t//k2

with
NC D k.P T˚/�1

k2;

where different error performances are achieved depending on the choice of the
matrix P as shown in Drmac and Gugercin (2016) and the term .I �˚˚T / mea-
sures the error in the projection over the basis f�1; : : : ; �kg for the subspace of
Rd :

To summarize, the main ingredients for the DEIM approach are f�1; : : : ; �kg

and the matrix P . The algorithm is below.

26 3. Discrete Empirical Interpolation Method

Algorithm 2 DEIM algorithm
Require: snapshots matrix N 2 Rd�.mC1/, k, flag

Output: ˚ , P,
1: Compute the POD basis ˚ of rank k from Algorithm 1,
2: Compute the QR with pivoting such that zP˚T D QR,
3: Store the first k columns of zP in P .

3.1 Matlab code and comments
Equation (2.4) can be, again, approximated with an Implicit Euler scheme. To set
the Newton’s method, we solve the following nonlinear equation at time tj W

F`;k.x/ WD M `.x � yj / ��t
�
A`x C 	T˚.P T˚/�1F.t; P T	x/

�
D 0;

(3.6)
with Jacobian

J
`;k
F .x/ D M `

��t
�
A`

C 	T˚.P T˚/�1JF .t; P
T	x/P T	

�
; (3.7)

We stress again that F.t; P T	x/ 2 Rk and JF .t; P
T	x/ 2 Rk�k :

We then provide a Matlab code for the computation of the POD-DEIM ap-
proach detailed in Algorithm 2 for our reference problem (1.13).

N = PDE.mu*(sol.^2-sol.^3); %evaluation of the nonlinearity
how_many = 2; %we consider half as many snapshots
[PDE.Psi,Sigma,~]=svds(sol(:,1:how_many:end),ell); %POD basis
[PDE.Phi,Sigma2,~] = svd(N(:,1:how_many:end),k); %DEIM basis
[~,~,P] = qr(Phi','vector'); %Selection Operator
P = P(1:k);

TheMatlab function qr providesP as a vector, which means thatP T	 selects
k rows of 	 associated to the values of P , i.e. with Matlab notations ˚.P; W/. The
quantities in (3.4) are precomputed.

PDE.A_ell = PDE.Psi'*PDE.A*PDE.Psi;
ic_ell = PDE.Psi'*sol(:,1);
PDE.deim_basis1 = PDE.Psi(P,:);

3.1. Matlab code and comments 27

PDE.deim_basis2 = PDE.Psi'*(PDE.Phi*pinv(PDE.Phi(P,:)));

Then, we provide the Matlab handle functions for (3.6) and (3.7).

poddeim_sol =@(y,tmp,PDE)(tmp-y-dt*(PDE.A_ell*tmp+...
PDE.deim_basis2*PDE.mu*((PDE.deim_basis1*tmp).^2...
-(PDE.deim_basis1*tmp).^3)));

df_poddeim_sol = @(tmp,PDE)(speye(size(PDE.A_ell))-...
dt*(PDE.A_ell+...

PDE.mu*PDE.deim_basis2*(spdiags(2*PDE.deim_basis1*tmp-...
3*(PDE.deim_basis1*tmp).^2,0,k,k)*PDE.deim_basis1)));

Finally, the online stage will be given as in the previous cases just updating
the nonlinear functions with (3.6) and (3.7).

for i =1:length(t)-1
coeff_pod(:,i+1) = calc_newton(coeff_pod(:,i),...
PDE,poddeim_sol,df_poddeim_sol);

end
sol_pod = PDE.Psi*coeff_pod;

In Figure 3.1 we provide the POD-DEIM solutions and contour lines for equa-
tion (1.13), together with the absolute difference between the POD-DEIM solution
and the exact solution. DEIM is applied for k D 8, i.e., we only evaluate the non-
linear term in 8 points out of 10201. The snapshots are computed with�t D 0:05

whereas, for the POD solution, we set �t D 0:025. The quality of the POD ap-
proximation for ` 2 f1; 2; 6g is clear, if compared with Figure 1.1. In the case of
` D 1 and k D 8, the POD-DEIM solution is completely wrong. Then, we see
how the approximation improves by increasing the number `. This is confirmed in
the bottom panels of Figure 3.1 (the z�axis scale is different).

In Figure 3.2, we show the error decay for 1 6 ` 6 8 and k D 8. We can
see on the left panel that the POD approximation reaches its plateau for ` > 6

which means the basis have extrapolated all the information. On the other hand
it is also possible to see that, as expected, the POD error is a lower-bound for the
POD-DEIM approach. On the right panel, we then show the CPU time in second.
It is clear the huge computational gain given by the POD-DEIM method. It is

28 3. Discrete Empirical Interpolation Method

POD-DEIM Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

POD-DEIM Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

POD-DEIM Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Figure 3.1: Top: POD-DEIM Numerical approximation of (1.13) at time t D 2

for k D 8, ` 2 f1; 2; 6g (left to right). MIDDLE: POD contour lines of (1.13) at
time t D 2 for ` 2 f1; 2; 6g (left to right). BOTTOM: Absolute difference (1.13)
at time t D 2 for ` 2 f1; 2; 6g (left to right).

1 2 3 4 5 6 7 8

Number of POD basis

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

POD error

POD

POD-DEIM k=8

1 2 3 4 5 6 7 8

Number of POD basis

10
-3

10
-2

10
-1

10
0

10
1

CPU time online

POD

POD-DEIM k=8

High Dimensional

Figure 3.2: Error analysis of the POD solution for the approximation of
(1.13)(left), indicator (2.8) and a possible threshold (right).

3.1. Matlab code and comments 29

Figure 3.3: 3D plot for the first 3 POD basis (top) and DEIM basis (bottom).

important to note that the accuracy of themethod is kept although its computational
efficiency.

For completeness we also show in the first row of Figure 3.3 the first three
POD basis for (1.13) with parameters taken in (1.15). In the second row we also
show the first 3 DEIM basis.

Miscellaneous

We conclude these notes with a list of other model order reduction techniques and
possible applications of the methods.

Model order reduction methods
• Reduced Basis – RB, Quarteroni, Manzoni, and Negri (2015)

• Balance Truncation – BT, Antoulas (2005)

• Iterative Rational KrylovAlgorithm – IRKA,Antoulas, Beattie, andGügercin
(2020)

• Dynamic Mode Decomposition – DMD, Kutz et al. (2016)

• Gauss–Newton with approximated tensors – GNAT, Carlberg et al. (2013)

• Proper Generalized Decomposition – PGD, Chinesta, Ladeveze, and Cueto
(2011)

Applications of model order reduction
• Parametrized problems

• Optimal control problem (open-loop and closed-loop)

• Shape optimization

• Bifurcation problems

Bibliography

A. Alla and J. N. Kutz (2019). “Randomized model order reduction.” Advances
in Computational Mathematics 45, pp. 1251–1271. Zbl: 1418.65193 (cit. on
p. 17).

A. C. Antoulas (2005). Approximation of Large-Scale Dynamical Systems. SIAM.
Zbl: 1112.93002 (cit. on p. 30).

A. C. Antoulas, C. A. Beattie, and S. Gügercin (2020). Interpolatory Methods for
Model Reduction, SIAM (cit. on p. 30).

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera (2004). “An empirical
interpolation method: application to efficient reduced-basis discretization of
partial differential equations.” Comptes Rendus Mathematique 339, pp. 667–
672. MR: 2103208. Zbl: 1061.65118 (cit. on p. 23).

P. Benner, S. Gugercin, and K. Willcox (2015). “A Survey of Projection-Based
Model ReductionMethods for Parametric Dynamical Systems.” SIAMRev. 57,
pp. 483–531. MR: 3419868. Zbl: 1339.37089 (cit. on p. 12).

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem (2013). “The GNAT method
for nonlinear model reduction: Effective implementation and application to
computational fluid dynamics and turbulent flows.” Journal of Computational
Physics 242, pp. 623–647. MR: 3062051. Zbl: 1299.76180 (cit. on p. 30).

S. Chatarantabut and D. Sorensen (2010). “Nonlinear Model Reduction via Dis-
crete Empirical Interpolation.” SIAM J. Sci. Comput 32, pp. 2737–2764. Zbl:
1217.65169 (cit. on pp. 23, 24).

http://dx.doi.org/https://doi.org/10.1007/s10444-018-09655-9
http://zbmath.org/?q=an:1418.65193
http://dx.doi.org/https://doi.org/10.1137/1.9780898718713
http://zbmath.org/?q=an:1112.93002
http://dx.doi.org/https://doi.org/10.1016/j.crma.2004.08.006
http://dx.doi.org/https://doi.org/10.1016/j.crma.2004.08.006
http://dx.doi.org/https://doi.org/10.1016/j.crma.2004.08.006
http://www.ams.org/mathscinet-getitem?mr=MR2103208
http://zbmath.org/?q=an:1061.65118
http://dx.doi.org/https://doi.org/10.1137/130932715
http://dx.doi.org/https://doi.org/10.1137/130932715
http://www.ams.org/mathscinet-getitem?mr=MR3419868
http://zbmath.org/?q=an:1339.37089
http://dx.doi.org/10.1016/j.jcp.2013.02.028
http://dx.doi.org/10.1016/j.jcp.2013.02.028
http://dx.doi.org/10.1016/j.jcp.2013.02.028
http://www.ams.org/mathscinet-getitem?mr=MR3062051
http://zbmath.org/?q=an:1299.76180
http://dx.doi.org/https://doi.org/10.1137/090766498
http://dx.doi.org/https://doi.org/10.1137/090766498
http://zbmath.org/?q=an:1217.65169

32 Bibliography

F. Chinesta, P. Ladeveze, and E. Cueto (2011). “A Short Review on Model Or-
der Reduction Based on Proper Generalized Decomposition.” Arch Computat
Methods Eng 18, pp. 395–404 (cit. on p. 30).

Z. Drmac and S. Gugercin (2016). “A new selection operator for the discrete em-
pirical interpolation method - improved a priori error bound and extensions.”
SIAM J. Sci. Comput. 38, A631–A648. MR: 3465424 (cit. on pp. 24, 25).

M. Falcone and R. Ferretti (2013). Semi-Lagrangian Approximation Schemes for
Linear and Hamilton—Jacobi Equations, SIAM. MR: 3341715 (cit. on p. 3).

G. H. Golub and C. F. V. Loan (1996). Matrix computations. The Johns Hopkins
University Press. MR: 1417720. Zbl: 0865.65009 (cit. on p. 13).

C. Gräßle, M. Hinze, and S. Volkwein (2020). Snapshot-Based Methods and Algo-
rithms, Volume 2 of Model Order Reduction. De Gruyter (cit. on p. 12).

G. Kirsten and V. Simoncini (2020). “A matrix-oriented POD-DEIM algorithm
applied to nonlinear differential matrix equations.” arXiv: 2006.13289 (cit.
on p. 17).

K. Kunisch and S. Volkwein (2001). “Galerkin proper orthogonal decomposi-
tion methodsfor parabolic problems.” Numer. Math. 90, pp. 117–148. MR:
1868765. Zbl: 1005.65112 (cit. on p. 16).

J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor (2016). Dynamic
Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM.
MR: 3602007. Zbl: 1365.65009 (cit. on p. 30).

R. J. Leveque (2002). Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press. MR: 1925043. Zbl: 1010.65040 (cit. on p. 3).

— (2007). Finite Difference Methods for Ordinary and Partial Differential Equa-
tions, Steady State and Time Dependent Problems, SIAM. MR: 2378550. Zbl:
1127.65080 (cit. on p. 3).

A. Quarteroni, A. Manzoni, and F. Negri (2015). Reduced Basis Methods for Par-
tial Differential Equations, Springer, Cham. MR: 3379913 (cit. on p. 30).

A. Quarteroni, R. Sacco, and F. Saleri (2007). Numerical Mathematics, Springer.
MR: 2265914. Zbl: 0913.65002 (cit. on pp. 4, 5).

A. Quarteroni and A. Valli (1994). Numerical Approximation of Partial Differen-
tial Equations, Springer Series in Computational Mathematics. MR: 1299729.
Zbl: 0803.65088 (cit. on p. 3).

L. Sirovich (1987). “Turbulence and the dynamics of coherent structures. Parts I-
II.”Quarterly of Applied Mathematics, pp. 561–59. MR: 0910462. Zbl: 0676.
76047 (cit. on pp. 15, 16).

http://dx.doi.org/https://doi.org/10.1007/s11831-011-9064-7
http://dx.doi.org/https://doi.org/10.1007/s11831-011-9064-7
http://dx.doi.org/https://doi.org/10.1137/15M1019271
http://dx.doi.org/https://doi.org/10.1137/15M1019271
http://www.ams.org/mathscinet-getitem?mr=MR3465424
http://www.ams.org/mathscinet-getitem?mr=MR3341715
http://www.ams.org/mathscinet-getitem?mr=MR1417720
http://zbmath.org/?q=an:0865.65009
http://dx.doi.org/doi:10.1515/9783110671490
http://dx.doi.org/doi:10.1515/9783110671490
http://arxiv.org/abs/2006.13289
http://arxiv.org/abs/2006.13289
http://arxiv.org/abs/2006.13289
http://dx.doi.org/https://doi.org/110.1007/s002110100282
http://dx.doi.org/https://doi.org/110.1007/s002110100282
http://www.ams.org/mathscinet-getitem?mr=MR1868765
http://zbmath.org/?q=an:1005.65112
http://dx.doi.org/https://doi.org/10.1137/1.9781611974508
http://dx.doi.org/https://doi.org/10.1137/1.9781611974508
http://www.ams.org/mathscinet-getitem?mr=MR3602007
http://zbmath.org/?q=an:1365.65009
http://www.ams.org/mathscinet-getitem?mr=MR1925043
http://zbmath.org/?q=an:1010.65040
http://www.ams.org/mathscinet-getitem?mr=MR2378550
http://zbmath.org/?q=an:1127.65080
http://dx.doi.org/https://doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/https://doi.org/10.1007/978-3-319-15431-2
http://www.ams.org/mathscinet-getitem?mr=MR3379913
http://www.ams.org/mathscinet-getitem?mr=MR2265914
http://zbmath.org/?q=an:0913.65002
http://www.ams.org/mathscinet-getitem?mr=MR1299729
http://zbmath.org/?q=an:0803.65088
http://dx.doi.org/10.1090/qam/910462
http://dx.doi.org/10.1090/qam/910462
http://www.ams.org/mathscinet-getitem?mr=MR0910462
http://zbmath.org/?q=an:0676.76047
http://zbmath.org/?q=an:0676.76047

Títulos Publicados — 33º Colóquio Brasileiro de Matemática

Geometria Lipschitz das singularidades – Lev Birbrair e Edvalter Sena

Combinatória – Fábio Botler, Maurício Collares, Taísa Martins, Walner Mendonça, Rob Morris e
Guilherme Mota

Códigos Geométricos – Gilberto Brito de Almeida Filho e Saeed Tafazolian

Topologia e geometria de 3-variedades – André Salles de Carvalho e Rafał Marian Siejakowski

Ciência de Dados: Algoritmos e Aplicações – Luerbio Faria, Fabiano de Souza Oliveira, Paulo
Eustáquio Duarte Pinto e Jayme Luiz Szwarcfiter

Discovering Euclidean Phenomena in Poncelet Families – Ronaldo A. Garcia e Dan S. Reznik

Introdução à geometria e topologia dos sistemas dinâmicos em superfícies e além – Víctor León
e Bruno Scárdua

Equações diferenciais e modelos epidemiológicos – Marlon M. López-Flores, Dan Marchesin,
Vítor Matos e Stephen Schecter

Differential Equation Models in Epidemiology –Marlon M. López-Flores, Dan Marchesin, Vítor
Matos e Stephen Schecter

A friendly invitation to Fourier analysis on polytopes – Sinai Robins

PI-álgebras: uma introdução à PI-teoria – Rafael Bezerra dos Santos e Ana Cristina Vieira

First steps into Model Order Reduction – Alessandro Alla

The Einstein Constraint Equations – Rodrigo Avalos e Jorge H. Lira

Dynamics of Circle Mappings – Edson de Faria e Pablo Guarino

Statistical model selection for stochastic systems – Antonio Galves, Florencia Leonardi e Gui-
lherme Ost

Transfer Operators in Hyperbolic Dynamics – Mark F. Demers, Niloofar Kiamari e Carlangelo
Liverani

A Course in Hodge Theory Periods of Algebraic Cycles – Hossein Movasati e Roberto Villaflor
Loyola

A dynamical system approach for Lane–Emden type problems – Liliane Maia, Gabrielle Norn-
berg e Filomena Pacella

Visualizing Thurston’s Geometries – Tiago Novello, Vinícius da Silva e Luiz Velho

Scaling Problems, Algorithms and Applications to Computer Science and Statistics – Rafael
Oliveira e Akshay Ramachandran

An Introduction to Characteristic Classes – Jean-Paul Brasselet

C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

ISBN 978-65-89124-33-7

9 786589 124337

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 313 C

First steps into
Model Order Reduction

Alessandro Alla

impa

a

	Finite Differences method
	Finite Differences for parabolic PDEs
	Matlab code

	The POD method
	Singular Values Decomposition
	Proper Orthogonal Decomposition
	Offline–online decomposition
	Matlab code and comments

	Discrete Empirical Interpolation Method
	Matlab code and comments

	Bibliography

