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Introduction

This book is an introduction to gauge theory in dimensions greater than 4. It is
organised as a reader’s guide to Gang Tian’s landmark article Gauge theory and
calibrated geometry, I, published in the Annals of Mathematics, Tian (2000). That
paper carries out to substantial lengths the programme outlined by Simon Donald­
son and Richard Thomas in the seminal paper Donaldson and Thomas (1998), by
extending the fundamental notion of instanton in Yang–Mills theory to higher di­
mensional special geometries. Moreover, his bubbling theorem relates instanton
compactness to the theory of calibrated submanifolds, the celebrated work by Har­
vey and Lawson (1982). This work expresses our admiration for all of these key
authors.

The text is aimed at graduate students and advanced undergraduates, as well as
specialists in other areas of Mathematics and Physics, with an interest in modern
Differential Geometry. We adopt a fast­paced but self­contained exposition of the
background on connections and curvature on bundles, special geometric structures,
analysis on manifolds and geometric measure theory, alongside the proof of Tian’s
bubbling theorem. We also highlight some links with other important works in
contemporary Geometry and Topology.

This version was commissioned as supporting material to an advanced course
by the authors at the 32nd Brazilian Colloquium of Mathematics, hosted by the
Institute for Pure and Applied Mathematics (IMPA) from July 29th to August 2nd,
2019. The contents are almost entirely adapted from the first­named author’s Mas­
ters dissertation Fadel (2016), at the University of Campinas (Unicamp).

We hope that the reader will share in our enthusiasm for this beautiful and
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fast­evolving subject.
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A brief history of gauge theory.

The advent of Yang–Mills theory in the mid­1970s had a strong influence on
the development of differential geometry and topology Donaldson (2005). The
basic concept in the theory is the Yang–Mills functional, defined on bundle con­
nections r over a given Riemannian manifold as the square of theL2­norm of the
curvature:

YM.r/ WD kFrk
2
L2 :

Its critical points are characterised by a second­order condition on r called the
Yang–Mills equation: d�

rFr D 0. In four­dimensions, an important type of mani­
fest solutions consists of so­called (anti­)selfdual connections, satisfying

�Fr D ˙Fr ;

under the Hodge star operator. This is a first­order condition, which implies the
Yang–Mills equation. The space of equivalence classes of such solutions, modulo
symmetries, is called the (A)SD instanton moduli space (respectively). In par­
ticular, outstanding results on topology of 4�manifolds derive from the study of
moduli spaces of anti­selfdual (ASD) instantons.

Building upon analytical works of Taubes (1982) and Uhlenbeck (1982a,b),
Donaldson (1983) was able to show that certain intersection forms could not be
realised by compact, simply­connected smooth 4�manifolds. One year earlier,
Freedman (1982) had classified all compact, simply­connected topological 4�manifolds,
so that Donaldson’s result automatically gave several examples of previously un­
known nonsmoothable 4�manifolds. Later on, Taubes (1987) proved a general­
ization of Donaldson’s theorem for oriented asymptotically periodic 4�manifolds.
This implied the existence of uncountably many exotic smooth structures on R4,
i.e. the existence of an uncountable family of diffeomorphism classes of oriented
4�manifolds homeomorphic to R4 (see also the earlier work of Gompf (1985)).
Ultimately, Donaldson extended his work significantly and produced deep new
invariants distinguishing smooth 4�manifolds with the same intersection form
Donaldson (1990), Donaldson and Kronheimer (1990), and Freed and Uhlenbeck
(1984).

In the late­90s, the hugely influential work by Donaldson and Thomas (1998)
outlined profound insights towards extending the theory to higher dimensions (i.e.
greater than 4), in the presence of special geometric structures. Such a general­
isation of the notion of instanton was first considered by physicists in Corrigan
et al. (1983) and further discussed in Baulieu, Kanno, and Singer (1998) and Car­
rión (1998). While the classification of differentiable structures is much better
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understood in higher dimensions Scorpan (2005), one may optimistically expect
gauge theory to lead to new invariants for special holonomy manifolds, such as
Calabi–Yau, G2 and Spin.7/ manifolds.

In order to carry out the Donaldson–Thomas program rigorously, one would
like to have higher­dimensional analogues of the compactness results by Uhlen­
beck. In fact, the possible failure of compactness is a major issue: for any se­
quence frig of Yang–Mills connections on aG�bundle E ! M , with uniformly
boundedL2�energy kFri

k2
L2 6 �, there exists a closed ‘blow­up set’ S � M , of

Hausdorff codimension at least 4, such that, up to gauge transformations, a subse­
quence of ri converges to a Yang–Mills connection in C1

loc�topology away from
S Nakajima (1988), Price (1983), and Uhlenbeck (n.d.).

Instanton bubbling and calibrated geometry.

Tian (2000) initiated this programme by proving foundational regularity re­
sults concerning blow­up loci of general sequences of Yang–Mills connections,
notably showing that these are rectifiable, admit a natural geometric structure, and
that at each point of this subset the sequence loses energy via bubbling and possi­
bly also develops a singularity. Tian’s analysis is similar to the work of Lin (1999)
on the analogous compactness problem for harmonic maps, and his key tools are
Price’s monotonicity formula Price (1983) and a curvature estimate due to Uhlen­
beck and Nakajima (1988).

The paper begins with a very general formulation of anti­selfduality, for con­
nections on a G�bundle E over an oriented Riemannian manifold .M; g/ en­
dowed with a closed .n�4/�form� . A connection r is called a��anti­selfdual
instanton if

�.� ^ Fr/ D �Fr :

This first­order condition still implies the Yang–Mills equation. Moreover, when
the manifold M is closed, each ��ASD instanton has an a priori L2�energy
bound, depending only on E,M and � . For suitable choices of � , the ��ASD
equation generalises the familiar ASD equations in 4�dimensions, the Hermitian
Yang–Mills equations on Kähler manifolds, and the higher­dimensional equations
of G2� and Spin.7/�instantons (in particular, complex ASD instantons). Tian’s
major breakthrough was the discovery of a specific relation between gauge theory
and calibrated geometry: when� is a calibration, the blow­up set of a sequence of
��ASD instantons defines a��calibrated integer rectifiable current Tian (2000,
Theorem 4.3.2), and thus a (possibly very singular) ��calibrated submanifold.
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The present text offers a comprehensive treatment of Tian’s � ­instanton bub­
bling theory, specifically Chapters 1 � 4 of Tian (ibid.), which we organise in the
following two theorems:



6 Introduction

Theorem A (Uhlenbeck, Price, Nakajima, Tian). Let .M n; g/ be a connected,
closed, oriented Riemannian manifold, with n > 4. Let E ! M be a G�bundle
with compact structure group, and let frig be a sequence of smooth Yang–Mills
connections on E with uniformly bounded energy YM.ri / WD kFri

k2
L2 6 �.

Then, after passing to a subsequence, the following assertions hold:

(i) There exist a closed subsetS � M with finite Hausdorff measureHn�4.S/ <

1, a smooth Yang–Mills connection r onEjM nS , and a sequence of gauge
transformations fgig � G.EjM nS /, such that g�

i ri converges to r in
C1
loc�topology onM n S .

(ii) There exist a constant "0 > 0, depending only on .M n; g/ and G, and a
bounded upper semi­continuous function � W S ! Œ"0;1Œ such that, as
Radon measures,

�i WD jFri
j
2dVg * � D jFr j

2dVg C�Hn�4
bS:

(iii) S decomposes as S D � [ sing.r/ with

� WD supp.�Hn�4
bS/ and

sing.r/ WD

(
x 2 M W lim sup

r#0

r4�n

Z
Br .x/

jFr j
2dVg > 0

)
I

� is countably Hn�4�rectifiable, i.e. Tx� is well­defined at Hn�4�a.e.
x 2 � , and sing.r/ isHn�4�negligible.

(iv) If x 2 � is a smooth point, i.e. Tx� exists and x … sing.r/, then there is a
non­flat Yang–Mills connection I.x/ on Tx�

?, with YM.I.x// 6 �.x/,
whose pull­back to TxM is gauge­equivalent to the limit of a blowing­up of
frig around x.
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Theorem B (Tian). Let .M n; g/ be a connected, closed, oriented Riemannian
manifold, with n > 4. Let � be a smooth calibration .n � 4/�form onM , i.e. �
is closed and has comass bounded by 1:

kj� j
�
kL1.M/ 6 1;

where

j� j
�
x WD sup fh�x; v1 ^ : : : ^ vn�4i W vi 2 TxM; jvi j D 1g :

Let E ! M be an SU.r/�bundle overM , and let frig be a sequence of smooth
��anti­selfdual instantons. Then one has the a priori energy bound YM.ri / D

hc2.E/[ Œ��; ŒM �i, so that Theorem A holds, and furthermore we have the follow­
ing:

(i) The limit connection r is also a ��anti­selfdual instanton away from S .

(ii) For any smooth point x 2 � , the .n � 4/�form �x WD � jTxM restricts
to one of the volume forms induced by g on Tx� , and I.x/ is a non­trivial
ASD instanton on .Tx�

?; gj
Tx� ?/ with respect to the orientation given by

��xjTx� ? . Equivalently, B.x/ is a �x�ASD instanton on .TxM;gjTxM /.

(iii) The .n � 4/�current given by

C.�;�/.'/ WD
1

8�2

Z
�

h';� j� i�d
�
Hn�4

b�
�
; 8' 2 ˝n�4.M/;

is a ��calibrated integer rectifiable current satisfying conservation of in­
stanton charge density, in the following sense: for every ' 2 ˝n�4.M/,

lim
i!1

Z
M

tr.Fri
^Fri

/^' D

Z
M

tr.Fr^Fr/^'C8�2C.�;�/.'/: (B1)

In particular, the L2�energy is conserved:

hc2.E/ [ Œ��; ŒM �i D YM.r/C

Z
�

�d
�
Hn�4

b�
�
:
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Remark. In the situation of Theorem B:

• The function � measures the energy density lost by the sequence around a
point x 2 � . If, instead of a single ASD instanton bubbling off transversely
at x 2 � , there is actually a whole bubbling tree of ASD instantons, then
the inequality in (iv) of Theorem A is necessarily strict.

• Tao–Tian Tao and Tian (2004) further show that r extends to a ��anti­
selfdual instanton on aG�bundle zE overM n sing.r/ which is isomorphic
to E overM n S .

• In the simplest case, the singularities of r are removable, � is a smooth
��calibrated submanifold, and the bubbling trees of ASD instantons con­
sist of single ASD instantons forming a smooth section I of an instanton bun­
dle associated to the normal bundle of� and the restrictionEj� of the ambi­
ent bundle. Conjecturally, in case .M; g;�/ is a G2� or Spin.7/�manifold,
I should satisfy a certain non­linear Dirac equation associated to� and the
restrictionrj� called the Fueter equation, see Haydys (2017) andWalpuski
(2017a,b).

Overview of the book.

In Chapter 1 we introduce the terminology of connections on G�bundles,
their curvatures, and some related differential operators. This includes a classi­
cal Bochner–Weitzenböck formula Bourguignon and Lawson Jr (1981) for the
generalised Hodge–de Rham Laplacian on gE �valued 2�forms, and a review
on Sobolev spaces of connections (Section 1.1). We also provide some material
on holonomy groups and basic Chern–Weil theory (Sections 1.2 and 1.3). Next,
we explain the weak and strong formulations of the Yang–Mills equation over
Riemannian manifolds, discuss some of its symmetries and give a brief account
of gauge fixing (Section 1.4). We illustrate the chapter with a basic survey of
4�dimensional gauge theory, reviewing classical (anti­)selfdual instantons, topo­
logical energy bounds via Chern–Weil theory, and their relation to Kähler geome­
try (Section 1.5).

In Chapter 2, we introduce the language of calibrated geometry, following Har­
vey and Lawson (1982), and the notion of instanton in higher dimensions, from
Baulieu, Kanno, and Singer (1998), Corrigan et al. (1983), Donaldson and Thomas
(1998), and Tian (2000). Since these notions naturally arise in the context of man­
ifolds with special holonomy, we begin with a brief discussion of Riemannian
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holonomy groups and Berger’s classification theorem, as well as some important
geometries associated to special groups, such as Kähler for U.m/, Calabi–Yau for
SU.m/, and the exceptional cases G2 and Spin.7/ (Section 2.1). Next, a quick
review of minimal submanifolds motivates the introduction of calibrations and
calibrated submanifolds, highlighting the classical examples on special holonomy
manifolds (Section 2.2). Finally, we present two approaches for the generalization
of the familiar 4�dimensional notion of instanton. The first approach is that of
Tian (2000), based on the presence of a closed differential form � 2 ˝n�4.M n/

(Section 2.3). The second approach, originally introduced by Carrión (1998), is
formulated in terms of anN.H/�structure onM n, whereN.H/ is the normaliser
of some closed Lie subgroup H � SO.n/. Both points of view are shown to co­
incide in cases of interest, drawing various analogies between such instantons and
calibrated submanifolds.

Chapter 3 establishes the analytical backbone of bubbling theory, leading up
to the proof of claim (i) in Theorem A. We review Uhlenbeck’s compactness the­
orems Uhlenbeck (1982a,b) (Section 3.1), and we study two core results in the
analysis of Yang–Mills fields: a monotonicity formula, by Price (1983) (Section
3.2), and a local pointwise estimate with sufficiently small normalised L2�norm
over small balls, by Nakajima (1988) and Uhlenbeck (1982b) (Section 3.3). In par­
ticular, these results are used to show that sequences of Yang–Mills connections
with uniformly bounded L2�energy are C1

loc�convergent away from a blow­up
set of Hausdorff codimension at least 4, along which the normalised L2�energy
concentrates (Section 3.4).

Finally, Chapter 4 addresses the structure of blow­up loci of sequences of
Yang–Mills connections with uniformly bounded L2�energy. The main results
correspond to claims (ii)�(iv) in Theorem A and Theorem B. Fixing such a se­
quence frig, with limit connection r away from the blow­up set S (subsequen­
tially and modulo gauge), we will see that S decomposes into two closed pieces:
one, denoted by � , which involves energy loss, and sing.r/, on which the forma­
tion of singularities occurs. The latter is readily shown to be aHn�4�negligible set
(Section 4.1). Next, we show a first regularity result: � is (countably)Hn�4�rectifiable,
i.e. the approximate .n � 4/�dimensional tangent space Tx� of � exists, for
Hn�4�almost every x 2 � (Section 4.2). Then we move on to the behavior of ri ,
for i sufficiently large, near a smooth point x 2 � , at which Tx� is well­defined.
Applying blow­up analysis techniques that go back to Lin (1999), and following
the more recent approach Walpuski (2017c), we can find a non­flat Yang–Mills
connection I.x/ on Tx�

? satisfying the energy inequalityYM.I.x// 6 �.�; x/

and whose pull­back to TxM is gauge­equivalent to the limit of a blowing up of
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the sequence frig near x (Section 4.3).
Then we turn to the case in which frig is a sequence of ��anti­selfdual in­

stantons (Section 4.4). We show that, for any x 2 � , the approximate tangent
space Tx� is calibrated by � , and an ASD instanton ‘bubbles off’ transversely;
indeed I.x/ is a (non­flat) ASD instanton. Finally, we conclude the proof of The­
orem B by showing that, for G � SU.r/, the natural .n � 4/�current C.�;�/,
defined by the triple .�;�; 1

8�2�/, is a ��calibrated integer rectifiable current
satisfying (B1).

Original contributions.

While our exposition follows Tian (2000) very closely, in the course of writ­
ing we took a few opportunities to streamline the argument, in the light of more
recent literature, aimed at improving the reader’s experience. Of course we bear
full responsibility for those deviations, and the author of the source paper is in
absolutely no way liable for any shortcomings deriving from our whim. Let us
explain the main points at which our account diverges from the source.

In Sections 3.2­3.4 andChapter 4we adopt the general framework ofn�manifolds
of bounded geometry up to order 1, to which themonotonicity formula, �­regularity,
convergence outside the blow­up set, and the actual blow­up analysis can be car­
ried over. Besides compact manifolds, this includes symmetric spaces and mani­
folds with noncompact ends, such as asymptotically cylindrical (ACyl) and asymp­
totically conical (AC) manifolds. Over the past decade, the latter geometries have
attracted significant interest in higher­dimensional gauge theory, e.g. Sá Earp
(2015) and Sá Earp and Walpuski (2015) and Jacob and Walpuski (2018), and
Clarke and Oliveira (2019) and Lotay and Oliveira (2018), respectively. In par­
ticular, the proof of �­regularity and the blow­up analysis follow a slightly more
direct approach, formulated by Walpuski (2017c).

Finally, we stop short of reproducing in this exposition some claims from the
original source. In particular, the claim that the current onM defined by

8�2c2.r/ D tr.Fr ^ Fr/ � tr.Fr/ ^ tr.Fr/

is closed Tian (2000, Corollary 2.3.2), which turns out to be equivalent to the
assertion that C.�;�/ is closed Tian (ibid., Theorem 4.2.3 (3)); in general this
may not be true, see Petrache and Rivière (2017, §1.12.4). Moreover, we do not
reproduce Tian’s original proof that � takes values in 8�2Z in the ��instantons
case. Instead, we refer the reader to the more general energy identity result of A.
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Naber and Valtorta (2016) which easily implies the claim (see Theorem 4.35 and
the discussion preceding Theorem 4.39).



1 Geometry and
gauge theory

We begin by reviewing the basic terminology onG�bundles, connections and cur­
vature, as well as some important associated differential operators over Rieman­
nian manifolds, such as the Hodge­de Rham and the rough Laplacians, in Section
1.1. We proceed to two special topics that will be needed in Chapter 3: a corre­
sponding Bochner–Weitzenböck formula and Sobolev spaces of connections. In
Section 1.2, we review the holonomy of connections on real vector bundles, the so­
called holonomy principle, and the Ambrose–Singer theorem, which relates holon­
omy and curvature. Section 1.3 gives a quick exposition of basic Chern–Weil rep­
resentation of characteristic classes, which underlies the topological Yang–Mills
energy bounds obtained in Section 1.5. In Section 1.4 we explore some variational
aspects of the Yang–Mills equation, the ‘Euler–Lagrange’ condition for the Yang–
Mills functional, and we bring in a brief discussion of gauge fixing. Finally, in
Section 1.5, we recall the 4�dimensional notion of (A)SD instantons, as special
first order solutions of the corresponding Yang–Mills equation, and we provide
two well­known interpretations of this notion; one topological, via Chern–Weil
theory, and one geometrical, in the context of complex geometry.
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1.1 Connections and curvature
We will work with connections exclusively from the point of view of vector bun­
dles. There are many good references for this topic, we will followmostly Donald­
son and Kronheimer (1990, §2.1) and Freed and Uhlenbeck (1984, §2). The last
two topics, a Bochner–Weitzenböck formula and Sobolev spaces of connections,
call for more specific references, which are pointed out in the text.

G�bundles. Let � W E ! M be a K�vector bundle of rank r and structure
group G � GL.r;K/; henceforth, we will say simply that E is a G�bundle. This
means that E admits a bundle atlas f.U˛; '˛/g, of local trivialisations

'˛ D .�; �˛/ W �
�1.U˛/ ! U˛ � Kr ;

whose transition functions fg˛ˇ g take values in G. In other words, on each non­
trivial intersection U˛ˇ WD U˛ \ Uˇ ¤ ;, the changes in trivialisation

'˛ ı '�1
ˇ W

�
U˛ \ Uˇ

�
� Kr

!
�
U˛ \ Uˇ

�
� Kr

.x; v/ 7! .x; g˛ˇ .x/v/;

define maps g˛ˇ W U˛ˇ ! G, by g˛ˇ .x/ D �˛ ı
�
�ˇ jEx

��1. This type of atlas is
also known as a G�atlas for E. A local trivialisation

' D .�; �/ W ��1.U / ! U � Kr

is compatible with such a G�atlas when � ı
�
�˛jEx

��1
2 G, for any ˛ with

U \ U˛ ¤ ; and x 2 U \ U˛; in this case, ' is called a G�trivialisation.
Examples of structure groups G of wide popular interest include SU.2/ and

SO.3/. More generally, we will be interested in the groups U.r/ and SU.r/, when
K D C, and SO.r/, r > 3, when K D R. In any case, we will suppose G to be
a compact Lie group, so that the Lie algebra g of G admits some AdG�invariant
inner product h�; �ig. In fact, in Yang–Mills theory it is common to take G to be
a compact semi­simple Lie group, in which case there is a canonical choice of
AdG�invariant inner product on g: minus the (negative definite) Cartan–Killing
form1 of g. However, because of our interest in the unitary groups U.r/ (e.g. when

1If Kg W g � g ! g denotes the Cartan–Killing form of g, i.e. the (symmetric) bilinear form on
g given byKg.X; Y / WD tr .ad.X/ ı ad.Y //, for eachX; Y 2 g, then the compactness ofG implies
Kg is a negative semi­definite bilinear form; in general,Kg is non­degenerate if, and only if, g is a
semi­simple Lie algebra.
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working with Hermitian­Yang–Mills connections), in general we will not impose
semi­simplicity for G. Instead, since G is compact, we assume2 G � O.r/ or
G � U.r/, according to the respective cases K D R or C, and fix once and for
all the AdG�invariant inner product on g to be the one induced by the canonical
trace inner product:

hX; Y ig WD �tr.XY /; 8X; Y 2 g: (1.1)

It is worth noting that minus the Cartan–Killing form of su.r/ (resp. so.r/) differs
from the above choice of inner product by the constant factor 2r (resp. r � 2).
Remark 1.2. The condition G � U.r/ (resp. O.r/) implies that our bundle
E ! M is endowed with a Hermitian (resp. Euclidean) metric h, i.e. a smooth
assignment of a Hermitian (resp. Euclidean) inner product hx on Ex , for each
x 2 M . Indeed, given a trivialisation �˛ around x 2 U˛, define

hx WD
�
�˛jEx

��
h0;

where h0 is the canonical Hermitian (resp. Euclidean) inner product on Cr (resp.
Rr ). To see that this is well­defined, note that, whenever x 2 U˛ˇ , we have
g˛ˇ .x/ D �˛ ı

�
�ˇ jEx

��1
2 G � U.r/ (resp. O.r/), therefore�

�ˇ jEx

��
h0 D

�
�ˇ jEx

ı
�
�˛jEx

��1
ı �˛jEx

��

h0

D
�
gˇ˛.x/ ı �˛jEx

��
h0

D
�
�˛jEx

��
h0:

One may readily check that h W x 7! hx is a smooth assignment, i.e. for each
pair of smooth local sections s; t 2 � .EjU / over a neighbourhood U � M , the
map h.s; t/ W x 7! hx.s; t/ is a smooth K�valued function on U . Moreover, since
each �˛jEx

is aK�linear isomorphism, it is clear that each hx is a Hermitian (resp.
Euclidean) inner product on Ex .

Conversely, if we start with a complex (resp. real) vector bundle E ! M en­
dowed with a Hermitian (resp. Euclidean) metric h, then the usual Gram–Schmidt
process ensures the existence of local orthonormal frames for E, which are just
another way to speak of U.r/� (resp. O.r/�) local trivialisations forE. In partic­
ular, a U.r/�bundle E ! M is just a complex vector bundle of rank r overM ,

2Every continuous representation � W G ! Aut.V / of a compact Lie group G into a finite­
dimensional K�vector space V is unitary, i.e. the G�module V admits a �.G/�invariant inner
product.
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endowed with a Hermitian metric h, also referred to as a unitary (or Hermitian)
vector bundle.

Similarly, a SU.r/�bundle E is just a U.r/�bundle endowed with a fixed
trivialisation � on its top exterior power �rE� (i.e., a section � 2 � .�rE�/

assigning to each x 2 M an orientation 0 ¤ �.x/ 2 �rE�
x on Ex); a local

SU.r/�trivialisation is one for which the associated local frame is orthonormal
and oriented. ˙

Wedenote byAutG.E/ the bundle ofG�automorphisms ofE, i.e. AutG.E/
is the ‘bundle of groups’ over M whose fibre at x 2 M consists of all GL.Ex/,
acting asG�isomorphisms onEx , that is, all g 2 GL.Ex/whose matrix represen­
tation with respect to some (and therefore any) local G�trivialisation of E lies in
G � GL.r;K/. The space of smooth sections of AutG.E/ is denoted byG.E/, and
is called the group of gauge transformations ofE. We note thatG.E/ is endowed
with a natural group structure given by pointwise composition. Alternatively,
G.E/ is naturally identified (as a group) with the set of all G�bundle automor­
phisms g W E ! E (i.e. diffeomorphisms g W E ! E covering the identity map
1M W M ! M such that, for each x 2 M , the restriction gx WD gjEx

W Ex ! Ex

lies in AutG.E/x) with the group structure given by the composition of maps.
Another important bundle in this setting is the adjoint bundle gE of E, the

real vector subbundle of End.E/ D E� ˝ E whose fibre at a point x 2 M

consists of all those endomorphisms T W Ex ! Ex whose matrix representation
with respect to a G�trivialisation of E lies in the (real) Lie algebra g � gl.r;K/.
Alternatively, if fg˛ˇ W U˛ˇ ! Gg is a family of transition functions for E, then
gE is the real vector bundle determined by the transition functions

Ad.g˛ˇ / W U˛ˇ ! GL.g/;

where Ad W G ! GL.g/ is the canonical adjoint action of G on g.
Now, since G is a compact Lie group, the Lie algebra g is reductive, meaning

that its Levi decomposition3 has the form

g D s ˚ z.g/; (1.3)

where s is a semi­simple ideal and z.g/ is the centre of g. (In particular, if Z.G/
denotes the centre of G, the compact Lie group G=Z.G/ is semi­simple, with Lie
algebra s.) Furthermore, since G � GL.r;K/, we have explicitly:

s D g \ sl.r;K/ and z.g/ D g \ l;

3If r.g/ denotes the (solvable) radical of a finite­dimensional (real) Lie algebra g, then g is the
semi­direct product of r.g/ and a (necessarily semi­simple) subalgebra s.
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where l � gl.r;K/ denotes the Lie algebra of scalar matrices. Every element
X 2 g decomposes accordingly as

X D

�
X �

1

r
tr.X/1

�
˚

�
1

r
tr.X/1

�
2 s ˚ z.g/:

The s�component (or trace­free component) of X will be denoted by X0.
It follows from decomposition (1.3) that the adjoint bundle gE splits as

gE D g
.0/
E ˚ z.g/; (1.4)

where g
.0/
E is the adjoint bundle of E �G G=Z.G/, consisting of trace­free endo­

morphisms in gE , and z.g/ is the trivial bundle with fibre z.g/.

Connections. We now recall the definition of a connection on E from the co­
variant derivative (Koszul) point of view.

Definition 1.5. Asmooth connection (or covariant derivative)r onE is aK�linear
map

r W � .E/ ! � .T �M ˝E/

satisfying the Leibniz rule

r.f s/ D df ˝ s C f rs; for each f 2 C1.M/; and s 2 � .E/: (1.6)

Remark 1.7. When E is a complex vector bundle (K D C), its space of sec­
tions � .E/ has a natural C1.M;C/�module structure. This induces a natu­
ral C1.M;C/�module structure on � .T �M ˝ E/, which canonically identi­
fies it with � .T �MC ˝C 1.M;C/ E/. For instance, when .M; J / is an almost
complex manifold, one may think of r as an operator on � .E/ taking values in
� .T �MC ˝C 1.M;C/ E/, instead of � .T �M ˝ E/ (we will do so in §1.5). In
this case, it makes sense to write df ˝ s D df1 ˝ s C df2 ˝ .is/ for each
f D f1 C if2 2 C1.M;C/, with fi 2 C1.M/, so that the Leibniz rule (1.6)
holds more generally for complex­valued smooth functions. ˙

In what follows we list some important properties of connections:

(i) The difference of two connections is a tensor. It follows from (1.6) that
r � r 0 is an algebraic operator (i.e. C1.M/�linear), hence it defines an
element A 2 ˝1.M;End.E// such that�

r � r
0
�
s D As; for each s 2 � .E/ � ˝0.M;E/:
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Here A acts algebraically on sections, by contraction: 4

˝0.M;E/ �˝1.M;End.E// ! ˝1.M;E/:

Conversely, given a connection r on E and A 2 ˝1.M;End.E//, one
immediately verifies linearity and the Leibniz rule for

r
0
WD r C A W ˝0.M;E/ ! ˝1.M;E/;

hence it defines another connection on E. Therefore, the space of connec­
tions on E ! M is an affine space5 modeled on ˝1.M;End.E//.

(ii) Connections are local operators. Another consequence of Definition 1.5 is
that a connectionr is a local operator, in the sense that it decreases support:
if s 2 � .E/ vanishes on some open subset U � M , then rs also vanishes
on U . By linearity, this amounts to saying that the value of rs at x depends
only on the values of s near x. Indeed, let x 2 U and pick a cutoff function
� 2 C1.M/ supported on U and equal to 1 in a neighbourhood V b U of
x, i.e. supp.�/ � U and �jV � 1, for some open V 3 x, V � U . Then,
�s � 0 and, by linearity,

r.�s/ � 0:

On the other hand, as s.x/ D 0 and �.x/ D 1, by the Leibniz rule,

r.�s/.x/ D .d�/.x/˝ s.x/C �.x/.rs/.x/

D .rs/.x/:

Therefore .rs/.x/ D 0, as claimed.
In particular, if r is a connection on E, then it restricts to a connection on
EjU over any open set U � M . Thus if fU˛g is an open cover ofM , then
r is completely determined by the induced connections r˛ on each of the
restrictions EjU˛

.

(iii) Connections are covariant. Connections can be pulled back by a smooth
mapf W M 0 ! M . If fg˛ˇ g is a family of transition functions for aG�bundle
E, subordinated to an open cover fU˛g of M , then the induced bundle

4e.g. .s; ! ˝ T / 7! ! ˝ .T s/, for ! 2 ˝1.M/, T 2 � .End.E// and s 2 ˝0.M;E/.
5The existence of connections on a vector bundle over a paracompact manifold follows by a

standard application of partitions of unity, so we adopt that assumption henceforth.
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f �E ! M 0 is also a G�bundle, determined by the family ff �g˛ˇ g, sub­
ordinated to the cover ff �1.U˛/g ofM 0, with total space

f �E D f.x0; v/ 2 M 0
�E W f .x0/ D �.v/g:

Each local section s 2 � .EjU / induces f �s 2 � .f �Ejf �1.U //, defined
by �

f �s
�
.x0/ WD s.f .x0//; 8x0

2 f �1.U /:

If fe1; : : : ; erg is a local frame of E over U , it is quite easy to see that
ff �e1; : : : ; f

�erg is a local frame for f �E over f �1.U /.
Given a connection r on E and a G�atlas f.U˛; '˛/g for E, the pull­back
connection f �r on f �E is defined, in each induced local frame ff �e˛

i W

i D 1; : : : ; rg, by
.f �

r/.f �e˛
i / WD f �.re˛

i /; (1.8)
where in the RHS of the last equation f � acts as the natural extension of
f �.! ˝ s/ WD .f �!/˝ .f �s/, for ! 2 ˝1.U˛/ and s 2 � .EjU˛

/. This
means that, if fA˛g is the collection of ‘gauge potentials’ associated to r,
then ff �A˛g is the collection of ‘gauge potentials’ associated to f �r on
the induced local trivialisations for f �E; see the next paragraph.

Local description of connections. Combining properties (i) and (ii) above, we
get the following local description of connections. Consider an atlas f.U˛; '˛/g

of local trivialisations for E. Then, we may write

r˛ D d C A˛; (1.9)

where d is the trivial product connection on U˛ � Kr , which takes a section
s D .s1; : : : ; sr/ to6 ds D .ds1; : : : ; dsr/, and7 A˛ 2 ˝1 .U˛;gl.r;K//. The
meaning of the above equality is that, identifying (via '˛) local sections of EjU˛

with (column) vector­valued functions, the induced covariant derivative on EjU˛

acts on sections as the sum dCA˛. The matrix A˛ of local 1�forms is called the
connection matrix or gauge potential of r with respect to .U˛; '˛/.

In an overlap U˛ \ Uˇ ¤ ;, a straightforward computation shows that the
gauge potentials A˛ and Aˇ are related by

A˛ D g˛ˇAˇg
�1
˛ˇ C g˛ˇdg�1

˛ˇ : (1.10)
6we also denote by d the exterior derivative operator.
7We think of gl.r;K/ as the trivial bundle U˛ � gl.r;K/ over U˛ .
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G�connections. A connection r on E is called a G�connection if its associ­
ated gauge potentials A˛ with respect to localG�trivializations .U˛; '˛/ of E lie
in ˝1 .U˛;g/. For example, if G D U.r/ and h�; �i is the associated metric on E,
then the condition for r to be a G�connection may be rephrased globally as:

dhs1; s2i D hrs1; s2i C hs1;rs2i; 8s1; s2 2 � .E/:

Here h�; �i is naturally extended so that

h! ˝ s; ti D hs; ! ˝ ti D hs; ti!;

whenever ! 2 ˝1.M/ and s; t 2 � .E/.
We see thatG�connections differ by an element of˝1.M;gE / rather than just

˝1.M;End.E//, so that the space of smoothG�connections onE, hereafter de­
noted byA.E/, is an (infinite­dimensional) affine space modeled on˝1.M;gE /.
Thus, when we fix a smooth reference G�connection r0,

A.E/ D fr0 C A W A 2 ˝1.M;gE /g:

We use this affine structure to endow A.E/ with the C1
loc�topology coming from

the model˝1.M;gE /. By definition, a sequence frig � A.E/ converges to r 2

A.E/ if, and only if, fri �rg � ˝1.M;gE / converges to zero inC1
loc�topology8

onM .

Convention 1.11. Unless otherwise stated, from now on we drop the prefix G�

and assume we are dealing only with G�objects. For instance, ‘a connection on
E’ will actually mean ‘a G�connection on E’, a ‘local trivialisation for E’ will
actually mean a ‘a local G�trivialisation of E’, and so on.

Now we turn attention to some important differential operators induced by
a connection r 2 A.E/. We have from the outset the collection of covariant
exterior derivatives

dr W ˝k.M;E/ ! ˝kC1.M;E/; k > 0;

uniquely determined by the following properties (seeMadsen and Tornehave (1997,
p. 170, Lemma 17.6)):

8See the first paragraph of Section A.6 for a construction of such topology in a simplified context.
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(i) dr is K�linear, for each k > 0;

(i) dr D r on ˝0.M;E/;

(ii) dr.! ^ �/ D d! ^ � C .�1/k! ^ dr�, for each ! 2 ˝k.M/ and � 2

˝l.M;E/.

Here ^W ˝k.M/ �˝l.M;E/ ! ˝kCl.M;E/ is the naturally extended wedge
product acting trivially on the E�component.

The curvature of a connection. Moreover, the composition

dr ı dr W ˝0.M;E/ ! ˝2.M;E/

is C1.M/�linear: indeed, for f 2 C1.M/ and s 2 � .E/ we have

dr ı dr.f s/ D dr.df ˝ s C f rs/

D d2f ˝ s � df ^ rs C df ^ rs C f dr ı drs

D f dr ı drs:

Hence, there exists a unique section Fr 2 ˝2.M;End.E//, called the curvature
of r, such that

Frs D .dr ı dr/s; 8s 2 � .E/:

Local description of the curvature. Consider an atlas of local trivialisations
.U˛; '˛/ for E. Let again A˛ be the associated gauge potentials of r and let
F˛ WD ŒFr �˛ be the local matrix representations of Fr . Then, a local computation
gives the following Cartan formula:

F˛ D dA˛ C A˛ ^ A˛; (1.12)

where A˛ ^ A˛ is the matrix of local 2�forms

.A˛ ^ A˛/
i
j WD

X
k

.A˛/
i
k ^ .A˛/

k
j ; 1 6 i; j 6 r:

Here, � i
j denotes the local components of some element � 2 � .End.E//, with re­

spect to the local frame induced by '˛ on End.E/; more intrinsically, there is a nat­
ural extension of thewedge product to˝�.M;End.E// D

L
k>0˝

k.M;End.E//,
such that

.! ˝ T / ^ .�˝ S/ D .! ^ �/˝ .T ı S/;
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for each !; � 2 ˝�.M/ and S; T 2 � .End.E//.
Using (1.12) and (1.10), one further shows that

F˛ D g˛ˇFˇg
�1
˛ˇ D Ad.g˛ˇ /Fˇ ; on U˛ˇ ¤ ;: (1.13)

ShrinkingU˛ if necessary, we can also consider local coordinates .x1; : : : ; xn/

and write
A˛ D A˛;i ˝ dxi ; for A˛;i 2 g; (1.14)

and
F˛ D

1

2
F˛;ij ˝ dxi

^ dxj ; for F˛;ij 2 gl.r;K/: (1.15)

It then follows from (1.12) that

F˛;ij D @iA˛;j � @jA˛;i C ŒA˛;i ; A˛;j �; (1.16)

where Œ�; �� is the commutator of g � gl.r;K/. In particular, we have F˛;ij 2 g
for each i; j D 1; : : : ; n. Thus, the curvature Fr lies actually in ˝2.M;gE /.

Furthermore, r also induces a connection on the bundle End.E/, still denoted
by r, which acts on T 2 � .End.E// by the tautological Leibniz’s rule

.rT /.s/ WD r.T s/ � T .rs/; for each s 2 � .E/; (1.17)

where T .rs/ denotes the action of the endomorphism T on the E component of
rs. This connection in fact reduces to a connection on gE � End.E/, since r is
a G�connection. As before, this induces operators

dr W ˝k.M;gE / ! ˝kC1.M;gE /; k > 0:

If � 2 ˝p.M;gE / and �˛ WD Œ��˛ is the local representation via a local trivi­
alisation .U˛; '˛/, then one can show that

Œdr��˛ D d�˛ C ŒA˛; �˛�; (1.18)

where Œ! ˝ T; � ˝ S� WD .! ^ �/ ˝ ŒT; S�g is the graded commutator; more
generally, if � 2 ˝q.M;gE /,

Œ�; �� WD � ^ � � .�1/pq� ^ �: (1.19)
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Lemma 1.20 (Bianchi identity). A smooth connection r 2 A.E/ satisfies

drFr D 0: (1.21)

Proof. It suffices to check the identity in a local trivialisation. By (1.18) and Car­
tan’s formula (1.12), we have

ŒdrFr �˛ D dF˛ C ŒA˛; F˛�

D d.dA˛ C A˛ ^ A˛/C ŒA˛; dA˛ C A˛ ^ A˛�:

Now, by the Leibniz rule and (1.19),

d.dA˛ C A˛ ^ A˛/ D dA˛ ^ A˛ � A˛ ^ dA˛

and
ŒA˛; dA˛ C A˛ ^ A˛� D A˛ ^ dA˛ � dA˛ ^ A˛:

Summing these equations we get the desired result.

Gauge equivalence. Let us recall the concept of gauge equivalence for connec­
tions on E, in terms of the canonical action of G.E/ on � .E/: a gauge transfor­
mation g 2 G.E/ acts on a section s 2 � .E/, giving rise to the new section
gs 2 � .E/ defined by

.gs/.x/ WD gx.s.x//; 8x 2 M:

This extends to an action ofG.E/ on˝k.M;E/ by acting trivially on the form part.
We can define the following ‘pullback’ action9 of G.E/ on the space of smooth
G�connections A.E/: an element g 2 G.E/ acts on r 2 A.E/ by

g�
r WD g�1

ı r ı g;

i.e. g�r W ˝0.M;E/ ! ˝1.M;E/ is the map given by

.g�
r/.s/ WD g�1

r.gs/; 8s 2 ˝0.M;E/:

9Here, the term ‘pullback’ alludes to the fact this is a right­action. Some authors defines the
action of G.E/ on A.E/ to be the corresponding ‘pushforward’ left­action: g � r WD g ı r ı g�1.
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This defines indeed a G�connection on E. First of all, g�r is clearly a K�linear
map. To check the Leibniz rule, let f 2 C1.M/ and s 2 ˝0.M;E/; since the
actions of C1.M/ and G.E/ on ˝k.M;E/ commutes, we have

.g�
r/.f s/ D g�1.rg.f s// D g�1.rf .gs//

D g�1.df ˝ .gs/C f r.gs// D df ˝ s C f .g�1
r.gs//

D df ˝ s C f .g�
r/s:

Moreover, if .U; '/ is a local (G�)trivialisation forE and we letA and g�A be the
respective gauge potentials of r and g�r, then we the following transformation
law is easy to compute:

g�A D g�1Ag C g�1dg D Ad.g�1/AC g��MC ; (1.22)

where g; g�1 W U ! G are seen here as sections of U � G ' Aut.EjU / via ',
and �MC is the Maurer–Cartan form10 of G. This shows that g�r is in fact a
G�connection. Finally, one checks directly from the definition that g�.h�r/ D

.h ı g/�r for each g 2 G.E/ and r 2 A.E/, characterizing a right action.
We say that connections r;r 0 2 A.E/ are gauge equivalent if they lie in the

same G.E/­orbit, i.e. if there exists g 2 G.E/ such that r 0 D g�r. Clearly,

Fg�r D g�1Frg; 8g 2 G.E/;r 2 A.E/: (1.23)

Laplacians induced by connections. We now introduce some other important
differential operators induced by connections on real vector bundles defined over
(oriented) Riemannian manifolds.

Let .M; g/ be an oriented Riemannian manifold, and let F ! M be a real
vector bundle endowed with a fibre metric h�; �i. Recall that g distinguishes a Levi­
Civita connection, the unique torsion­free O.n/�connectionDg on TM . Tensor­
ing withDg , a connection r 2 A.F / on F ! M induces connections

r W ˝k.M;F / ! � .T �M ˝�kT �M ˝ F /; for each k > 0: (1.24)

Recalling the definition of the covariant exterior differential operator dr on˝k.M;F /,
we see that dr D ^ ı r, under the natural map ^W �1 ˝�k ! �kC1.

The metric g naturally induces metrics on every tensor bundle ofM . In par­
ticular, we get (Euclidean) metrics on every exterior power �kT �M . Tensoring

10�MC 2 ˝1.G;g/ is the unique g­valued left­invariant 1�form on G such that .�MC /1 W g !

g is the identity map.
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with the metric h�; �i on F gives rise to (Euclidean) metrics, still denoted by h�; �i,
on the bundles �kT �M ˝ F . One readily checks that the induced connections
defined in the above paragraph are compatible with the respective induced metrics.

Let dVg be the Riemannian volume n�form on .M; g/ determined by the ori­
entation. The Hodge star operator

�W �kT �M ! �n�kT �M

isomorphically interchanges forms of complementary degree by the relation ˛ ^

�ˇ D .˛; ˇ/gdVg , where ˛; ˇ 2 �kT �M and .�; �/g denotes the induced met­
ric on �kT �M . More generally, given any vector bundle W ! M , we define
�W ˝k.M;W / ! ˝n�k.M;W / by acting trivially on the W part: �.˛ ˝ s/ WD

.�˛/˝ s.
If �; � 2 ˝k.M;F /, at least one of which has compact support, we define

their L2�inner product by

h�; �iL2 WD

Z
M

h�; �idVg :

This gives rise to formal L2�adjoint operators for r and dr :

r
�

W � .T �M ˝�kT �M ˝ F / ! ˝k.M;F /;

d�
r W ˝kC1.M;E/ ! ˝k.M;E/:

For example, d�
r is characterised by the equation

hdr�; �iL2 D h�; d�
r�iL2 ;

which is valid for forms �; � at least one of which has compact support. Further­
more, using Stokes’ theorem, one can show that

d�
r D .�1/n.kC1/C1

� dr�; on ˝k.M;F /:

The above notions naturally induce two important second order operators act­
ing on ˝k.M;F /:

• the generalised Hodge–de Rham Laplacian

�r WD drd�
r C d�

rdr W ˝k.M;F / ! ˝k.M;F /;



1.1. Connections and curvature 25

• the covariant (or rough) Laplacian

r
�
r W ˝k.M;F / ! ˝k.M;F /:

In terms of an orthonormal local frame .e1; : : : ; en/ of TM , we have

r
�
r� D �

nX
j D1

r
2.ej ; ej /�;

where r2.X; Y / WD rXrY � rD
g
X Y is the invariantly defined Hessian operator.

A Bochner–Weitzenböck Formula. (cf. Bourguignon and Lawson Jr (1981,
pp. 199­200)) Consider now our K�vector bundle E ! M with compact struc­
ture group G, and fix a smooth connection r 2 A.E/. By Ad�invariance, the
inner product h�; �ig naturally induces a metric 11 on the real vector bundle gE .
Then, letting F D gE in the discussion of the previous paragraph, and consider­
ing the induced connection, still denoted byr, on gE (see 1.17), the corresponding
operators �r and r�r act on gE �valued k�forms.

These operators have the same principal symbol and their difference is a zero­
order (algebraic) operator, i.e. it is C1.M/�linear. The precise difference be­
tween these operators on the space˝2.M;gE / is identified by aBochner–Weitzenböck
formula, which we will now state.

Fix an orthonormal local frame fe1; : : : ; eng of TM . Recall that the Ricci
transformation Ricg

W TxM ! TxM is given by

Ricg.X/ D

nX
j D1

Rg.X; ej /ej ;

where Rg stands for the Riemann curvature tensor of g. We extend the Ricci
transformation to act on 2�forms by

.Ricg
^ I /.X; Y / WD Ricg.X/ ^ Y CX ^ Ricg.Y /; 8X; Y 2 X.M/:

11In a local trivialisation, elements of gE are represented by matrices in g. Moreover, any two
such representations differ by the adjoint action ofG on g. Thus there is well­defined inducedmetric
h�; �i on gE such that, for all T; S 2 ˝0.gE /, we have locally

hT; SijU˛
D hŒT �˛ ; ŒS�˛ig:
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Now define a zero­order operator Fr W ˝2.M;gE / ! ˝2.M;gE / by

Fr.�/.X; Y / WD

nX
j D1

˚
ŒFr.ej ; X/; �.ej ; Y /� � ŒFr.ej ; Y /; �.ej ; X/�

	
;

for all X; Y 2 X.M/. For each � 2 ˝2.M;gE /, we write

.� ı Ricg
^ I /.X; Y / WD �.Ricg.X/; Y /C �.X;Ricg.Y //; and

.� ı 2Rg/.X; Y / WD

nX
j D1

�.ej ; R
g.X; Y /ej /; 8X; Y 2 X.M/:

The following formula can be found in Bourguignon and Lawson Jr (1981, Theo­
rem 3.10, p. 200).

Theorem 1.25 (Bochner–Weitzenböck formula).
For any � 2 ˝2.M;gE /, we have

�r� D r
�
r� C � ı .Ricg

^ I C 2Rg/C Fr.�/:

Sobolev spaces of connections. In this paragraph, we supposeM is a compact
manifold. Let E ! M be a G�bundle. Given k 2 N and 1 6 p < 1, we want
to introduce the Sobolev space Ak;p.E/ of W k;p connections on E. Our main
reference for this topic is Wehrheim (2004, Appendix A and Appendix B))

The metric on the adjoint bundle gE (determined by the AdG�invariant inner
product on g), combined with the metric induced by g on T �M , gives rise to a
natural (tensor product) metric on the bundle T �M ˝ gE . If we fix a smooth
connection r0 2 A.E/, this induces (twisting by the Levi­Civita connection)
a compatible connection on T �M ˝ gE . Thus, we can speak of the Sobolev
spaces W k;p.M; T �M ˝ gE /, for each 1 6 p < 1 and k 2 N0 (cf. Section
B.2 of Appendix B). In this context, we can define the Sobolev space of W k;p

connections on E by

Ak;p.E/ WD fr0 C A W A 2 W k;p.M; T �M ˝ gE /g:

Since M is compact, we know from Theorem B.12 that W k;p.M; T �M ˝ gE /

does not depend on the choices of metrics and compatible connections on the in­
volved bundles. Moreover, since any two smooth reference connections r0;r

0
0 2

A.E/ differ by an element of ˝1.M;gE / and, by compactness of M , there is a
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bounded inclusion ˝1.M;gE / ,! W k;p.M; T �M ˝ gE /, we see that Ak;p.E/

is well­defined.
We topologize Ak;p.E/ using its affine structure: by definition, a sequence

frig � Ak;p.E/ converges to r 2 Ak;p.E/ if, and only if, kri � rkp;k ! 0 as
i ! 1.

We know that a smooth gauge transformation g 2 G.E/ acts on a smooth
connection r D r0 C A 2 A.E/ by

g�
r D g�1

ı r ı g D r0 C g�1
r0g C g�1Ag:

Naturally enough, the relevant group of gauge transformations in the context of
W k;p�connections is 12

GkC1;p.E/ WD W kC1;p.M;Aut.E//:

In fact, using the Sobolev embedding theorem, one can prove the following
Wehrheim (ibid., Lemma A.5, p. 175 & Lemma A.6, p. 176):

Proposition 1.26. For k 2 N0 and 1 6 p < 1 such that .k C 1/p > n,
the inclusion GkC1;p.E/ � C 0.M;AutG.E// makes GkC1;p.E/ a topological
group with respect to composition. Moreover, the pullback action GkC1;p.E/ �

Ak;p.E/ ! Ak;p.E/ is a continuous map. In particular, for p > n
2
, G2;p.E/

acts continuously in A1;p.E/.

The curvature (or field strength) of a smooth connection r D r0 CA 2 A.E/
is

Fr D r
2

D Fr0
C dr0

AC ŒA;A� 2 ˝2.M;gE /:

More generally, we have Uhlenbeck (1982a, Lemma 1.1):

Lemma 1.27. Let 1 < p < 1 be such that 2p > n. Then, the curvature map
r 7! Fr on A.E/ extends to a quadratic map

A1;p.E/ ! Lp.M;�2T �M ˝ gE /:

Sketch of proof. We know that Fr D Fr0
C r0AC ŒA;A�, with Fr0

2 C1 and
r0A 2 Lp. By the Sobolev embedding (Theorem B.13), we haveW 1;p � Lq for
1
q

> 1
p

�
1
n
; in this case, by Hölder’s inequality, the quadratic term A 7! ŒA;A�

lies in Lq=2. In order to obtain Lq=2 � Lp, the Sobolev embedding requires
1
p

> 2
q

> 2
p

�
2
n
, i.e. 2p > n.

12The heuristic is that we need one more order of regularity on g in order to g�A D g�1r0g C

g�1Ag lie in W k;p whenever A 2 W k;p .
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1.2 Holonomy groups

Fix E ! M a real vector bundle of rank r endowed with a smooth connection r.
We now briefly review the basics about holonomy groups, fixing terminology and
notation which will be used in Chapter 2. The main references for this section are
Joyce (2006, 2007) and Clarke and Santoro (2012).

Parallel transport. Let 
 W Œ0; 1� ! M be a smooth path from x D 
.0/ to
y D 
.1/. A section s 2 � .E/ is said to be r�parallel along 
 when the
composition s ı 
 2 � .
�E/ is 
�r�parallel 13, i.e. when�


�
r
�
.s ı 
/ D 0: (1.28)

Since Œ0; 1� is contractible, the induced bundle 
�E ! Œ0; 1� is trivial, i.e. it
admits a global frame fEig. Writing s ı 
 D xjEj and denoting by A D .Ai

j /

the gauge potential of 
�r with respect to fEig, equation (1.28) translates into the
linear ODE:

Px C Ax D 0;

where x D .x1; : : : ; xn/ W Œ0; 1� ! Rr . Thus, invoking the well­known existence
and uniqueness theorem for ODE’s, given an initial incidence condition v 2 Ex ,
there exists a uniquer�parallel section s
;v along 
 satisfying s
;v.x/ D v. More­
over, by linearity of the equation, the solution depends linearly on the initial con­
dition. This allows us to define the linear map

P
 W Ex ! Ey

v 7! s
;v.y/;

called the parallel transport along 
 with respect to r. This map is invertible,
with inverse given by P
�1 , where 
�1.t/ WD 
.1 � t/ for each t 2 Œ0; 1�.

We can also define P
 for a (continuous) piecewise smooth path 
 simply
as the composition of the parallel transport maps along its smooth pieces (in the
appropriate order). One can show this is well­defined by the uniqueness part of

13This pull­back notation is not entirely rigorous since Œ0; 1� is a manifold with boundary. Now,
the smoothness of 
 means that there exists a smooth path z
 W � � "; 1 C "Œ! M , for some " > 0,
such that z
 jŒ0;1� D 
 . So when we talk about 
�r we mean in fact the restriction z
�rjŒ0;1� (one
can show this is independent of the extension z
 ).
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the above cited ODE theorem. Finally, if ˛ is a (piecewise) smooth path starting
at ˛.0/ D y, then P˛ ı P
 D P˛�
 , where ˛ � 
 is the concatenation of 
 and ˛:

˛ � 
.t/ WD

(

.2t/; if t 2 Œ0; 1=2�;

˛.2t � 1/ if t 2 Œ1=2; 1�:

The holonomy principle. We can now recall the definition of the holonomy
group of r.

Definition 1.29 (Holonomy group). Given x 2 M , the subgroup of GL.Ex/ given
by

Holx.r/ WD fP
 W 
 is a piecewise smooth loop based at xg

is called the holonomy group of r at x.

Lemma 1.30. If x; y 2 M are connected by a piecewise smooth path 
 W Œ0; 1� !

M , 
.0/ D x and 
.1/ D y, then

Holy.r/ D P
 � Holx.r/ � P
�1 :

It is easy to see that if 
 W Œ0; 1� ! M is a continuous path connecting x D


.0/ and y D 
.1/, then there exists a smooth path z
 W Œ0; 1� ! M connecting
x D z
.0/ and y D z
.1/. In fact, we can take z
 in the same homotopy class of

 with fixed end points (see e.g. Kosinski (2007, p. 8, Theorem 2.5)). Thus, the
above lemma gives us a precise relation between the holonomy groups of r at any
two points lying in the same connected component ofM .

If M is connected, we conclude that the holonomy group Holx.r/ is
independent of the base point x in the following sense. A choice of basis on
Ex induces an identification GL.Ex/ ' GL.r;R/, and therefore a faithful
representation Holx.r/ ,! GL.r;R/; a different choice of basis will change
this identification by conjugation in GL.r;R/. Thus, up to equivalence, there is
a well­defined faithful representation of Holx.r/ on the typical fibre Rr of E,
called the holonomy representation. In this language, the above lemma shows
that Holx.r/ and Holy.r/ have the same holonomy representation. In other
words, when regarded as a subgroup of GL.r;R/ defined up to conjugation, the
holonomy group is independent of the choice of base point.

Convention 1.31. From now on, we assumeM is connected, and wewrite Hol.r/
(omitting the base point), implicitly regarding the holonomy group of r as a sub­
group of GL.r;R/, defined up to conjugation.
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One outcome of the above discussion is that the holonomy group is a global
invariant of the connection. The next result shows that Hol.r/ ‘controls’ the exis­
tence ofr�parallel sections (rt D 0) on tensors of 14 E Joyce (2007, Proposition
2.5.2, p. 33).

Theorem 1.32 (Holonomy principle). Let E ! M be a vector bundle over a
connected smooth manifold and denote its .r; s/–tensor bundle by T r

s .E/ WD�Nr
E
�

˝
�Ns

E�
�
. Fix a base point x 2 M , so that Holx.r/ acts on Ex ,

and therefore also on T r
s .Ex/. Then, any .r; s/�tensor tx 2 T r

s .Ex/ that is
invariant under Holx.r/ is the value at x of a r�parallel .r; s/�tensor field
t 2 �

�
T r

s .E/
�
. Conversely, any parallel tensor field t 2 �

�
T r

s .E/
�
is fixed

in the fibre over x by the action of Holx.r/.

Corollary 1.33. If G � GL.Ex/ is the subgroup which fixes t jx for all parallel
tensors t onM , then Holx.r/ � G.

The following result shows that the holonomy group Hol.r/ is a connected
Lie group whenM is simply­connected Joyce (ibid., Proposition 2.2.4, p. 26).

Proposition 1.34. SupposeM is simply­connected andr is a connection on a real
vector bundle E ! M . Then Hol.r/ is a connected Lie subgroup of GL.r;R/.

This leads us to consider the notion of restricted holonomy groups.

Definition 1.35 (Restricted holonomy group). The restricted holonomy group
of r at x 2 M is the subgroup of Holx.r/ given by

Hol0x.r/ WD fP
 W 
 is a null­homotopic piecewise smooth loop based at xg:

As for the case of the holonomy group, we can regard Hol0x.r/ as a subgroup
of GL.r;R/, defined up to conjugation, so that we can omit the base point x and
write Hol0.r/. The next proposition gathers some properties of Hol0.r/ Joyce
(ibid., Proposition 2.2.6, p. 27).

Proposition 1.36. Hol0.r/ is the connected component of Hol.r/ containing the
identity and a Lie subgroup ofGL.r;R/. Moreover, ifM is simply­connected then
Hol0.r/ D Hol.r/.

14The statement in Joyce’s book is given forE D TM but the proof is clearly valid for any vector
bundle E ! M
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The Ambrose–Singer theorem. Having in mind the above Proposition:

Definition 1.37 (Holonomy algebra). The holonomy algebra holx.r/ of r at
x 2 M is the Lie algebra of Hol0x.r/.

Up to the adjoint action of GL.r;R/, we can also speak of the holonomy al­
gebra hol.r/ as a Lie subalgebra of gl.r;R/. Actually, the holonomy algebra
constrains the curvature Fr , in the following sense Joyce (ibid., p. 30, Proposi­
tion 2.4.1):

Proposition 1.38. For each x 2 M , the curvature Fr jx of r at x lies in
�2T �

x M ˝ holx.r/.

In fact, a result due to W. Ambrose and I. M. Singer shows that hol.r/ is
determined by Fr Joyce (ibid., p. 31, Theorem 2.4.3. (a)):

Theorem 1.39 (Ambrose–Singer). SupposeM is a connected manifold, E ! M

is a vector bundle over M , and r is a smooth connection on E. Then, for each
x 2 M , the holonomy algebra holx.r/ is the Lie subalgebra of End.Ex/ spanned,
as a vector space, by all elements of End.Ex/ of the form

P�1

 Œ.Fr/.v; w/�P
 ;

where 
 W Œ0; 1� ! M varies on the collection of all piecewise smooth paths start­
ing at 
.0/ D x, and v;w 2 T
.1/M .

Remark 1.40 (Flat connections). It immediately follows from the Ambrose–Singer
theorem that, if r is a flat connection, i.e. if Fr D 0, then the restricted holonomy
group Hol0x.r/ is trivial for each x 2 M . This implies that the parallel transport
P
 W Ex ! Ey depends only on the homotopy class (with fixed end­points) of the
path 
 between x and y. In fact, if 
 is homotopic to another path z
 , which without
loss of generality we can assume to be piecewise smooth 15, then the concatenation
z
�1 � 
 is a null­homotopic (piecewise smooth) loop based at x. Thus, from the
triviality of Hol0x.r/, we get that 1TxM D Pz
�1�
 D P�1

z

ı P
 , i.e. P
 D Pz
 ,

as claimed.
In particular, at every base point x 2 M , each flat connection on a G�bundle

induces a holonomy representation �1.M; x/ ! Aut.Ex/ D G. Ultimately, this
leads to the well­known one­to­one correspondence between gauge­equivalence
classes of flat G�connections over M and conjugacy classes of representations
�1.M/ ! G (cf. Donaldson and Kronheimer (1990, pp. 49­50)). ˙

15See the paragraph following Lemma 1.30.
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1.3 Chern–Weil characteristic classes

Here we give a brief account on the Chern–Weil polynomials representing charac­
teristic classes. This section is based on Milnor (1974, Appendix C).

Fundamental lemma of Chern–Weil theory. LetE ! M be a K�vector bun­
dle of rank r and f.U˛; '˛/g an atlas of local trivialisations for E with associated
transition functions

g˛ˇ W U˛ \ Uˇ ! GL.r;K/:

If r is an arbitrary connection on E ! M , its curvature Fr is locally described
by curvature matrix­valued 2�forms F˛ WD ŒFr �˛ 2 ˝2.U˛;gl.r;K// on M .
Compounding the wedge product with matrix multiplication, these objects form a
graded multiplicative ring. In particular, we can evaluate a polynomial function
P W gl.r;K/ ! K on F˛, giving rise to a sum of exterior forms of even degree on
U˛.

Now recall from (1.13) that, on overlaps U˛ˇ ¤ ;, the F˛ and Fˇ are related
by the adjoint action of GL.r;K/: in fact,

F˛ D g˛ˇFˇg
�1
˛ˇ ; on U˛ \ Uˇ :

So if P is a GL.r;K/�invariant polynomial, i.e.

P.gXg�1/ D P.X/; 8g 2 GL.r;K/;

then we can associate a globally defined element

P.Fr/ 2 ˝even
K .M/ WD

M
k>0

˝2k
K .M/;

locally given by:
P.Fr/jU˛

WD P.F˛/; for each ˛:

Of course, in general, P.Fr/ will be a sum of exterior forms of various even
degrees. But, if we suppose further that P is a homogeneous polynomial, i.e. a
sum of monomials of a fixed degree m, then P.Fr/ 2 ˝2m

K .M/. In fact, we
could relax the hypothesis of P being invariant to just P being a sum of invariant
homogeneous polynomials of increasing degrees, since we know thatQ.Fr/ D 0

whenever 2deg .Q/ > dimM .
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An important point about P.Fr/ is its functorial behaviour, with respect to
induced bundles. This means that, if f W M 0 ! M is a smooth map, then

P.f �
r/ D f �P.r/:

This is a direct consequence of the definition of f �r: if .U˛; '˛/ is a local trivi­
alisation of E, then it follows from (1.8) and (1.12) that

ŒFf �r �˛ D f �ŒFr �˛;

where ŒFf �r �˛ denotes the trivialised local form of Ff �r .
Crucially, P.Fr/ defines a de Rham cohomology class onM , which is inde­

pendent of the actual connection r on E. This is the content of the next result,
which is the core of Chern–Weil theory Milnor (ibid., pp. 296­298):

Proposition 1.41 (Fundamental Chern–Weil Lemma). Let P be a homogeneous
GL.r;K/�invariant polynomial of degree m, and r a connection on a K�vector
bundle E ! M of rank r . Then:

(i) P.Fr/ is a closed 2m�form, defining a cohomology class ŒP.Fr/� 2

H 2m
dR
.M;K/;

(ii) The class ŒP.Fr/� is independent of the choice of connection r, i.e. if r0

and r1 are connections onE, then the 2m­form P.Fr0
/�P.Fr1

/ is exact.

Proof. (i) Let P 0.M/ W gl.r;K/ ! K be the derivative of P at an elementM 2

gl.r;K/. If X 2 gl.r;K/ and g W ��"; "Œ ! GL.r;K/ is given by g.t/ D etX ,
then

0 D
d
dt
P.gMg�1/jtD0 (by the invariance of P )

D P 0.M/.XM �MX/; (1.42)

where in the last equation we used the fact that .gMg�1/0.0/ D XM � MX .
Now take M D ŒFr �˛ � F˛ and X D A˛, where rjU˛

D d C A˛ on the
local trivialisation '˛. Then, operating with ^ in place of the usual multiplication,
equation (1.42) reads:

P 0.F˛/ ^ ŒA˛; F˛� D 0: (1.43)

On the other hand, the chain rule gives

d.P.F˛// D P 0.F˛/ ^ dF˛: (1.44)
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Now, the Bianchi identity (1.21) says that dF˛ C ŒA˛; F˛� D 0; therefore,

d.P.F˛// D �P 0.F˛/ ^ ŒA˛; F˛� D 0;

as claimed.
(ii) Supposer0 andr1 are different connections onE. Writep W M�R ! M

for the canonical projection, and consider the induced connections r 0
l

WD p�rl ,
l D 0; 1, on p�E ! M and their convex combination

r WD tr 0
1 C .1 � t /r 0

0;

where t W M � R ! R is the natural projection. If il W M ! M � R denotes the
function x 7! .x; l/, l D 0; 1, then we can identify i�

l
r with rl , l D 0; 1, as

connections on E. Being a smooth map, it follows that

i�l .P.Fr// D P.Frl
/:

Now, the maps i0 and i1 are clearly homotopic, so they induce the same map in
cohomology. In particular,

P.Fr0
/ D i�0 .P.Fr// D i�1 .P.Fr// D P.F.r1//:

In summary, each invariant homogeneous polynomial P on gl.r;K/ deter­
mines a characteristic cohomology class cP .E/ D ŒP.Fr/� in H�

dR
.M;K/, de­

pending only on the isomorphism class of the vector bundle E, and such that, if
f W M 0 ! M is smooth, then

cP .f
�E/ D f �cP .E/:

Here the left­hand side represents the cohomology class of the pull­back bundle
f �E and the right­hand side is the image of the cohomology class associated to
E under the pull­back map induced by f in cohomology.

Chern classes in de Rham cohomology. Let K D C. For each X 2 gl.r;C/
and 1 6 k 6 r , write �k.X/ for the k�th elementary symmetric polynomial
function on the eigenvalues of X , so that

det.1 C tX/ D 1C t�1.X/C : : :C tr�r.X/:

More explicitly, if �1; : : : ; �r 2 C are the eigenvalues of X 2 gl.r;C/, then

�k.X/ D
X

16i1<:::<ik6r

�i1
: : : �ik

;
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for each 1 6 k 6 r . In particular, �1.X/ D tr X and �r.X/ D detX .
Every symmetric polynomialP W gl.r;C/ ! C has a unique representation as

a polynomial in these elementary functions �1; : : : ; �r . From this, one has Milnor
(1974, p. 299, Lemma 6):

Proposition 1.45. The ring of GL.r;C/�invariant polynomials is CŒ�1; : : : ; �r �,
i.e. every invariant polynomial on gl.r;C/ can be expressed as a polynomial
function of �1; : : : ; �r .

Definition 1.46 (Chern classes and Chern character in de Rham cohomology). Let
E ! M be a complex vector bundle of rank r and let r be a smooth connection
on E. For 1 6 k 6 r ,

1. the k­th Chern class of E is the element:

ck.E/ WD

�
�1

2� i

�k

Œ�k .Fr/� 2 H 2k
dR.M;C/:

2. the k­th Chern character of E is the element:

chk.E/ WD
.�1/k

.2� i/kkŠ
Œtr.Fr ^ : : : ^ Fr/� 2 H 2k

dR.M;C/:

For instance, the first two Chern classes are represented as follows:

c1.E/ D
i
2�
Œtr.Fr/� (1.47)

and
c2.E/ D

�1

8�2
Œtr.Fr/ ^ tr.Fr/ � tr.Fr ^ Fr/�: (1.48)

1.4 Yang–Mills equation on Riemannian manifolds

In this section we review the variational formulation of the (weak/strong) Yang–
Mills equation on a Riemannian n�manifold, by means of the Yang–Mills energy
functional, and we point out some of its basic symmetries. The references for this
section are Wehrheim (2004, pp. 141­142, 172–173) and Uhlenbeck (1982b, §1).



36 1. Geometry and gauge theory

Yang–Mills functional. Let .M; g/ be an oriented Riemannian n�manifold and
let E ! M be a G�bundle. Denote by h�; �i the natural tensor product metric on
�2T �M ˝ gE induced by g and the AdG�invariant inner product (1.1) on g.
Then, for each �; � 2 ˝2.M;gE /, we have

h�; �idVg D h� ^ ��ig D �tr.� ^ ��/;

where h� ^ ��ig represents the contraction of � ^ �� by the induced invariant
metric on gE .

If j�j denotes the induced pointwise norm on sections of �2T �M ˝ gE , then
for each r 2 A.E/ we get a function jFr j W M ! R. By the AdG�invariance of
h�; �ig and (1.23), it follows that

jFg�r j D jFr j; for each g 2 G.E/ and r 2 A.E/: (1.49)
In other words, the function r 7! jFr j is invariant under the action of G.E/
(gauge invariant).
Definition 1.50. The Yang–Mills functional

YM W A.E/ ! Œ0;1�

associates to each connection r 2 A.E/ its L2�energy:

YM.r/ WD kFrk
2
L2 D

Z
M

jFr j
2dVg D �

Z
M

tr.Fr ^ �Fr/:

If the base manifoldM is not compact, theL2�energy of a smooth connection
r might be infinite, and natural Sobolev spaces of connections might be hard to
define. On the other hand, ifM is compact, thenYM is clearly finite on the whole
space of smooth connections A.E/. Moreover, one can prove that YM extends
to A1;p.E/, for each 2 6 p < 1 such that 16 p > 4n

4Cn
.

It follows directly from (1.49) that YM is a gauge­invariant functional on
A.E/, i.e.

YM.g�
r/ D YM.r/; for each g 2 G.E/ and r 2 A.E/: (1.51)

Furthermore, YM is conformally invariant if, and only if, n D 4. Indeed, if we
scale g by some positive smooth function f onM , then the pointwise inner prod­
uct on 2�forms scales by f �2, while the Riemannian volume n�form scales by
f n=2. Thus, an integral

R
M jFr j2dVg transforms to

R
M f

n
2

�2jFr j2dVg , which
stays invariant precisely when n D 4.

16The latter condition comes from the Sobolev embedding W 1;p ,! L4 (Theorem B.13) which
ensures that ŒA;A� and hence Fr D Fr0

C dr0
A C ŒA;A� lie in L2, whenever r D r0 C A 2

A1;p.E/.
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Yang–Mills equation. Let us derive the first variational formula of YM, with
respect to compactly supported variations:

Proposition 1.52. Let r 2 A.E/ with YM.r/ < 1. If frtgt2��";"Œ is a com­
pactly supported smooth variation of r, then

d
dt

YM.rt /jtD0 D 2
˝
d�

rFr ; B
˛
L2 ;

where 17

B WD
d
dt

rt

ˇ̌̌
tD0

2 �0.T
�M ˝ gE /:

In particular, r is a critical point of YM with respect to compactly supported
smooth variations if, and only if, r satisfies the (strong) Yang–Mills equation 18:

d�
rFr D 0: (1.53)

Proof. Recall that a smooth variation of r is just a smooth path t 7! rt on
A.E/ starting at r0 D r. We say that a smooth variation frtg is compactly
supported provided there exists a precompact open subset U b M such that, writ­
ing rt D r C At , where At 2 ˝1.M;gE /, then each At has compact support
contained in U . The statement that r is a critical point of YM with respect to

compactly supported variations means simply that
d
dt

YM.rt /jtD0 D 0 for all
such variations.

By the affine space structure of A.E/, we may restrict ourselves to variations
of the form rt D r C tB , where B 2 �0.T

�M ˝ gE /. In this case, locally, we
have:

ŒFrt
�˛ D d.A˛ C tB/C .A˛ C tB/ ^ .A˛ C tB/

D F˛ C t .dB C B ^ A˛ C A˛ ^ B/C t2.B ^ B/

D ŒFr C t.drB/C t2.B ^ B/�˛:

17Henceforth, �0.�/ � � .�/ denotes the subset of compactly supported sections.
18If M is a compact manifold with (possibly empty) boundary @M , the Yang–Mills equation

becomes the system: (
d�

r
Fr D 0

�Fr j@M D 0:
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Hence, globally,
Frt

D Fr C t .drB/C t2.B ^ B/:

In particular,

d
dt

YM.rt /jtD0 D
d
dt

hFrt
; Frt

iL2 jtD0

D 2

�
d
dt
Frt

jtD0; Fr

�
L2

D 2 hdrB;FriL2

D 2
˝
B; d�

rFr

˛
L2 ;

where in the second equality we use 19 YM.r/ < 1, and the last equality follows
from the definition of d�

r as a formal L2�adjoint of dr (provided the compact
support of B does not intersect a nonempty @M ).

Remark 1.54. Since d�
r D ˙ � dr�, the Yang–Mills equation can be rewritten as

dr � Fr D 0:

This condition does not depend on the choice of orientation onM ; indeed, a change
in orientation only causes the ��operator to change sign, clearly not affecting the
equation. ˙

Definition 1.55 (Yang–Mills connections). A smooth connection r 2 A.E/ sat­
isfying the Yang–Mills equation (1.53) is called a Yang–Mills connection; its
curvature tensor is called a Yang–Mills field.

Another important class of connections consists of weak Yang–Mills connec­
tions, which are critical points of the Yang–Mills action on appropriate Sobolev
spaces:

Definition 1.56 (Weak Yang–Mills connections). Suppose M n is compact. Let
1 6 p < 1 be such that p > n

2
, and if n D 2 assume moreover p > 4

3
.

A connection r 2 A1;p.E/ is called a weak Yang–Mills connection when it
satisfies the weak Yang–Mills equation:Z

M

hFr ; drBidVg D 0; 8B 2 �0.T
�M ˝ gE /: (1.57)

19Indeed, we need this to ensure that Frt
is L2�integrable so we can apply the standard theorem

of differentiation under the integral sign, e.g. as in Folland (2013, Theorem 2.27).
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Remark 1.58. The Yang–Mills functional need not be finite, nor even defined, on
weak Yang–Mills connections. The assumptions on p, stemming from Sobolev
embedding (TheoremB.13), ensure both that theweakYang–Mills equationmakes
sense for those connections and that the equation is preserved by the action of
G2;p.E/ (the latter requires the strict inequalityp > n

2
). Moreover, it is not a priori

clear whether weak Yang–Mills connections satisfy the strong Yang–Mills equa­
tion, although this is true for sufficiently regular connections (see e.g. Wehrheim
(2004, Lemma 9.3, p. 142)). ˙

We note that both the weak and strong Yang–Mills equations are invariant
under gauge transformations. For the weak equation this is more subtle, and we
refer the reader to Wehrheim (ibid., Lemma 9.2, p. 142). For the strong equation,
in the light of Proposition 1.52, one can deduce this fact from the invariance (1.51)
of the Yang–Mills functional on A.E/. Alternatively, one can check directly that,
for each r 2 A.E/ and g 2 G.E/,

dg�r � Fg�r D g�1.dr � Fr/g:

In particular, the solutions of the Yang–Mills equation, seen as either Yang–
Mills connections or fields, are an invariant set under gauge transformations. This
gauge freedom turns out to be the main difficulty in treating the regularity theory
of these equations.

Gauge fixing. Our reference for this section is the landmark article Uhlenbeck
(1982b, §1). Let us take a closer look at the Yang–Mills equation (1.53), in a local
gauge .U˛; '˛/ of the G�bundle E. Suppose we have coordinates .x1; : : : ; xn/

onU˛; write r˛ D dCA˛, F˛ D dA˛ CA˛ ^A˛ and recall the local expressions
(1.14) and (1.15). For simplicity, assume also that .gij / D .ıij /, i.e. g is flat on
U˛. Then,

d�
rFr D d�F˛ � �ŒA˛;�F˛�

and

d�F˛ D �
X
i;j

@F˛;ij

@xi
˝ dxj :

Hence

d�
rFr D �

X
i;j

�
@F˛;ij

@xi
C ŒA˛;i ; F˛;ij �

�
˝ dxj :
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Therefore, in the gauge .U˛; '˛/, equation (1.53) readsX
i

@F˛;ij

@xi
C ŒA˛;i ; F˛;ij � D 0; 8j D 1; : : : ; n:

Of course, for general g, a similar (more complicated) equation holds. Now, if
the gauge group G is an Abelian Lie group (and therefore all brackets on g are
zero; in particular, F˛ D dA˛), the Bianchi identity and the Yang–Mills equation
for r˛ reduce to dF˛ D d2A˛ D 0 and d�F˛ D 0, respectively. This pair of
equations then forms an elliptic system for F˛. This is the basic linear model for
the regularity theory.

In the non­Abelian case, a non­smooth gauge transformation g can turn a
smooth field F˛ into a discontinuous field gF˛g

�1. Thus, the choice of a ‘good’
gauge is much more important to the non­linear theory. The linearised Yang–Mills
equations for A˛ are d�dA˛ D 0. By the last paragraph, this is exactly the Yang–
Mills equation if G is Abelian. This single system for A˛ is not elliptic and, just
as in Hodge theory for exact forms on manifolds, one usually adds a second equa­
tion such as d�A˛ D 0 to remedy the situation. In the Abelian case, this involves
solving the linear equation d�.A˛ C du/ D d� zA˛ D 0 for u W U˛ ! g. Here
zA˛ WD g�A˛ D g�1A˛g C g�1dg, where g D eu 2 C1.U˛; G/ ' G.EjU˛

/.
The equation d�A˛ D 0 can also be added to the non­linear theory as a method

of choosing a good gauge. In general, to find such a gauge we need to solve the
non­linear elliptic equation: d�.g�1A˛g C g�1dg/ D 0 for g 2 C1.U˛; G/.
Such a solution is often called a Coulomb gauge. In the seminal works Uhlenbeck
(1982b, Theorems 2.7 and 2.8) and Uhlenbeck (1982a, Theorem 1.3), K. Uhlen­
beck solves the general problem of constructing Coulomb gauges over model do­
mains of interest under, respectively, L1 and Ln=2�boundedness hypothesis on
the curvature norm. In Section 3.1, we will see more about the latter (cf. Theorem
3.3).

Finally, notice that one can also study the Yang–Mills equation on Lorentzian
manifolds, its original formulation from Physics, as a generalisation of Maxwell’s
equations on Minkowski space­time R3C1. The resulting equation is weakly hy­
perbolic, and it turns out to be very hard to analyse.
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1.5 Instantons in four dimensions

Let us illustrate the previous concepts in action, by reviewing the basic aspects of
the classical 4�dimensional theory. Themain references are, of course, Donaldson
and Kronheimer (1990, §2.1.3­2.1.5) and Freed and Uhlenbeck (1984, pp. 36­37),
see also Scorpan (2005, Chapter 9, pp. 351­354).

Let .M 4; g/ be an oriented Riemannian 4�manifold. A special feature of this
setting is that the Hodge star operator on 2�forms,

�W �2T �M ! �2T �M;

is an involutive 20 self­adjoint 21 automorphism. Hence, �j�2T �M has eigenval­
ues ˙1 and it splits �2T �M orthogonally into the corresponding eigenbundles
�2

˙
T �M :

�2T �M D �2
CT

�M ˚�2
�T

�M; (1.59)

where �2
˙
T �M WD

˚
! 2 �2T �M W �! D ˙!

	
. Fibrewise, this phenomenon

corresponds to the exceptional Lie algebra isomorphism

so.4/ ' so.3/˚ so.3/;

which, at the level of Lie groups, reads

Spin.4/ D SU.2/ � SU.2/:

Indeed, as SO.4/�modules, one has �2.R4/� ' so.4/, and this isomorphism
maps the ��eigenspaces �2

C and �2
� onto the two 3�dimensional commuting

ideals in so.4/, isomorphic to so.3/. We note that the SO.4/�modules �2
C and

�2
� are both irreducible and 3�dimensional, but not SO.4/�isomorphic Besse

(2008, §1.123­1.125, p. 50).
Defining˝2

˙
.M/ WD � .�2

˙
T �M/, we get anL2�orthogonal decomposition

of ˝2.M/ as
˝2.M/ D ˝2

C.M/˚˝2
�.M/:

20In general, �2 D .�1/k.4�k/1 when acting on �kT �M (see e.g. Petersen (2006, Lemma 26,
p. 203)).

21with respect to the natural metric .�; �/g on �2T �M induced by g; recall that � is defined as
the unique bundle isomorphism �kT �M ' �n�kT �M such that ˛ ^ �ˇ D .˛; ˇ/gdVg for all
˛; ˇ 2 �kT �M .
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Accordingly, every ! 2 ˝2.M/ can be written as ! D !C ˚ !�, with

!˙
WD

! ˙ �!

2
2 ˝2

˙.M/:

Definition 1.60. A 2�form ! 2 ˝2.M/ is called anti­selfdual (resp. selfdual)
if !C D 0 (resp. !� D 0). We adopt the obvious abbreviations (A)SD.

Remark 1.61. A change of orientation on M changes the Hodge star operator �

by a sign and thus reverses the roles of �2
CT

�M and �2
�T

�M . Moreover, as
the action of � on 2�forms in dimension 4 is conformally invariant, the (A)SD
condition is also conformally invariant. ˙

Given aG�bundleE overM , theL2�orthogonal splitting (1.59) immediately
extends to gE �valued 2�forms:

˝2.M;gE / D ˝2
C.M;gE /˚˝2

�.M;gE /;

where ˝2
˙
.M;gE / WD � .�2

˙
T �M ˝ gE /. For r 2 A.E/, we write

Fr D FC
r

˚ F�
r 2 ˝2

C.M;gE /˚˝2
�.M;gE /:

This gives rise to a very important class of solutions for the Yang–Mills equation
in four dimensions.

Definition 1.62. Let .M; g/ be an oriented Riemannian 4�manifold and let E !

M be a G�bundle with compact semi­simple structure group 22. A smooth con­
nection r 2 A.E/ is called an ASD (resp. SD) instanton when FC

r
D 0 (resp.

F�
r

D 0).

A few observations are in order.

• The (A)SD equation �Fr D ˙Fr is both gauge invariant and conformally
invariant. For the gauge invariance, note that if r 2 A.E/ is an (A)SD
instanton and g 2 G.E/, then

�Fg�r D �.g�1Frg/ D g�1.�Fr/g D ˙Fg�r :

As to conformal invariance, it follows from the conformal invariance of the
Hodge star � on 2�forms in four dimensions.

22In Chapter 2 we will extend this definition allowing G to be any compact Lie group; see Defi­
nition 2.80 (ii) and the subsequent discussion.



1.5. Instantons in four dimensions 43

• Every (A)SD instanton is a Yang–Mills connection. Indeed, by the Bianchi
identity (1.21):

�Fr D ˙Fr ) dr.�Fr/ D ˙drFr D 0:

Notice also that the (A)SD equation F˙
r

D 0 is a (nonlinear, unless G is
Abelian) first­order p.d.e. on the connection, while the Yang–Mills equation
d�

rFr D 0 is a (nonlinear, unless G is Abelian) second­order p.d.e. on the
connection. One moral is that (A)SD instantons provide a fertile source
of examples of Yang–Mills connections. Nonetheless, one can construct
examples of Yang–Mills connections which are neither SD nor ASD. For
instance, L. M. Sibner, R. J. Sibner, and Uhlenbeck (1989) were the first to
give such examples, forM D S4 and G D SU.2/; two years later, Sadun
and Segert (1991) showed that non­selfdual Yang–Mills connections exist
on all SU.2/�bundles over S4 with second Chern number 23 not equal to
˙1. See also Wang (1991), for examples onM D S3 � S1 (and S2 � S2)
with G D SU.2/.

Topological energy bounds from Chern–Weil theory. SupposeM is a closed
oriented Riemannian 4�manifold and let E ! M be an SU.r/�bundle. We will
show thatYM W A.E/ ! R is bounded below by a number depending only on the
topology of E. Furthermore, the sign of such lower bound obstructs the existence
of either SD or ASD instantons on E, which are shown to be the absolute minima
of YM.

Given r 2 A.E/, by the basic Chern–Weil theory from Section 1.3, we know
that the topological characteristic class c2.E/ is represented by

c2.E/ D �
1

8�2
Œtr.Fr/ ^ tr.Fr/ � tr.Fr ^ Fr/�

D
1

8�2
Œtr.Fr ^ Fr/�: (since Fr 2 ˝2.M; suE / is trace­free)

We define the topological charge �.E/ ofE by pairing c2.E/with the fundamen­
tal class ŒM �:

�.E/ WD hc2.E/; ŒM �i D
1

8�2

Z
M

tr.Fr ^ Fr/:

23The second Chern number of a complex vector bundle E ! M over an oriented compact
4�manifold is the integer C2.E/ given by the natural pairing hc2.E/; ŒM �i.
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From the L2�orthogonal decomposition

Fr D FC
r

˚ F�
r 2 ˝2

C.M;gE /˚˝2
�.M;gE /;

it follows that

8�2�.E/ D �hFr ;�FriL2

D �hFC
r

C F�
r ; F

C
r

� F�
r iL2

D �kFC
r

k
2
L2 C kF�

r k
2
L2 :

On the other hand,

YM.r/ D kFrk
2
L2 D kFC

r
k

2
L2 C kF�

r k
2
L2 :

Thus we get two identities:

YM.r/ D 2kF˙
r k

2
L2 ˙ 8�2�.E/:

In particular, YM.r/ > 8�2j�.E/j, and we distinguish the following cases:

• if �.E/ D 0 then the absolute minima for YM are precisely the (A)SD flat
connections;

• if �.E/ > 0 then E does not admit SD instantons and
r is an absolute minima for YM () YM.r/ D 8�2�.E/ () r

is an ASD instanton;

• if �.E/ < 0 then E does not admit ASD instantons and
r is an absolute minima for YM () YM.r/ D �8�2�.E/ () r

is an SD instanton.

ASD instantons on R4. Here we present some concrete constructions, drawn
from Jardim (2005, §2.3), Martino (2011, §3.2) and G. L. Naber (2011, §6.3).

Consider the Euclidean spaceM D R4, with its standard oriented Riemannian
manifold structure, and let E ! M be a (necessarily) trivial G�bundle with
compact semi­simple structure group. In Euclidean coordinates x1; : : : ; xn, any
connection r 2 A.E/ can be written globally as r D d C A, for some

A D

4X
iD1

Ai ˝ dxi ; Ai W R4
! g:
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Furthermore, from (1.16),

Fr D
1

2

X
Fij ˝ dxi

^ dxj ;

with
Fij D @iAj � @jAi C ŒAi ; Aj �:

In this context, we have explicitly:

r is an ASD instanton ()

8̂<̂
:
F12 C F34 D 0

F13 C F42 D 0

F14 C F23 D 0

: (1.63)

The first non­trivial explicit examples of ASD instantons on R4, with finite
L2�energy and gauge group G D SU.2/ ' Sp.1/, were given in the classical
paper Belavin et al. (1975). The simplest solution, called the basic instanton, has
the potential

A.x/ WD
1

jxj2 C 1
Im.qdq/;

where q is the quaternion x1 C x2i C x3j C x4k, while Im.qdq/ denotes the
imaginary part of the product quaternion qdq. Here we are regarding i; j;k as a
basis of the Lie algebra su.2/ ' Im.H/. Computing the curvature of r D dCA,
one gets

Fr.x/ WD
1�

jxj2 C 1
�2 dq ^ dq:

Note that the action density function

jFr j
2.x/ D

48�
jxj2 C 1

�4
has a bell­shaped profile, centred at the origin and decaying like r�8. Furthermore,
one can show that r has topological charge 1, i.e.

�.r/ WD
1

8�2

Z
M

tr.Fr ^ Fr/

D
1

8�2

Z
R4

48�
jxj2 C 1

�4 dx
D

1

8�2
Vol.S3/

Z 1

0

48r3�
r2 C 1

�4 dr D 1:
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More generally, given x0 2 R4 and � 2 RC, denoting by tx0;� W R4 ! R4

the isometry
tx0;�.x/ WD ��1.x � x0/; 8x 2 R4;

then the pull­back connection rx0;� WD t�
x0;�

r is still an ASD instanton; more
explicitly, letting x0 correspond to the quaternion q0, we can write

Ax0;�.x/ D
1

jx � x0j2 C �2
Im ..q � q0/dq/

and
Frx0;�

.x/ D
�2�

jx � x0j2 C �2
�2 dq ^ dq:

The action density function

jFrx0;�
j
2.x/ D

48�4�
jx � x0j2 C �2

�4
has a bell­shaped profile centred at x0, and one still has

�.rx0;�/ D
1

8�2
YM.rx0;�/

D
1

8�2
Vol.S3/

Z 1

0

48�4r3�
r2 C �2

�4 dr D 1: (indep. of x0 and �)

On the other hand, for fixed x0,

sup
x2R4

jFrx0;�
j
2.x/ D jFrx0;�

j
2.x0/ D ��448

�#0
��! 1:

Thus, as � # 0, the action density function jFrx0;�
j2 concentrates more and more

at x0. We shall refer to x0 as the centre and � as the scale of the potential Ax0;�.
Instantons of topological charge k, also called pseudoparticles, can be ob­

tained by “superimposing” k basic instantons, via the so­called ’t Hooft Ansatz.
Given yi 2 R4 and �i 2 RC, i D 1; : : : ; k, consider the positive harmonic
function � W R4 ! R given by

�.x/ WD 1C

kX
iD1

�2
i

jx � yi j
2
:
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Then the potential A D A� ˝ dx�, with

A� WD i
X

�

���
@

@x�
ln.�/;

defines an ASD instanton; here, ��� , �; � D 1; 2; 3; 4, are the skew­symmetric
matrices

�jl WD
1

4i
Œ�j ; �l �; �j 4 WD

1

2
�j ; j; l D 1; 2; 3;

where �1; �2; �3 are the Pauli matrices. This is interpreted as a configuration with
k instantons, where �i are constants that correspond to the size of the instanton at
the point yi .

In a certain sense, SU.2/�instantons are also the ‘building blocks’ for instan­
tons with general structure group. More precisely, letG be a compact semi­simple
Lie group, and let � W su.2/ ! g be any injective Lie algebra homomorphism.
Then, for example,

�.A0;1/ D
1

jxj2 C 1
�.Im.qdq//

indeed defines a G�instanton on R4. While this guarantees the existence of
G�instantons on the Euclidean space R4, observe that this instanton might be re­
ducible (e.g. � can simply be the obvious inclusion of su.2/ into su.r/ for some
r > 3) and that its charge depends on the choice of representation �. Furthermore,
it is not clear whether every G�instanton can be obtained in this way.
Remark 1.64 (ADHM construction). For each k 2 N, the so­called ‘ADHM
construction’, due to Atiyah et al. Atiyah et al. (1978), gives a correspondence
between gauge­equivalence classes of ASD instantons r with group SU.r/ and
fixed topological charge �.r/ D k, and equivalence classes of certain systems
of finite­dimensional algebraic data, for group SU.r/ and index k Donaldson and
Kronheimer (1990, §3.3). This gives a complete description of finite­energy ASD
instantons over R4 with gauge group SU.r/. ˙

Holomorphic structures and connections. We recall very briefly the
Nirenberg–Newlander integrability theorem, relating holomorphic structures and
certain types of connections on complex vector bundles over complex manifolds.
In particular, this will serve as background material for the final paragraph §1.5
on ASD instantons and holomorphic structures.

Notation: We adopt the following conventions in this paragraph and the next one:
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• Z: complexmanifold of complex dimensionm, i.e. a smooth 2m�manifold
endowed with an integrable almost complex structure J ;

• E ! Z: (smooth) complex vector bundle over Z;

• ˝p;q.Z;E/ WD � .�p;qT �ZC ˝ E/: .p; q/�forms on Z with values on
E;

• ˝k.Z;E/ D
L

pCqDk ˝
p;q.Z;E/: complex k�forms on Z with values

on E.

Definition 1.65. A holomorphic structure E on a complex vector bundle
� W E ! Z is an additional complex manifold structure on the total space of
E in such a way that � is a holomorphic map and the bundle admits an atlas of
biholomorphic trivialisations. We callE endowed with the holomorphic structure
E a holomorphic vector bundle, and we denote it by E ! Z.

Alternatively, a holomorphic vector bundle E ! Z is a complex vector bun­
dle E ! Z determined by a GL.r;C/�cocycle fg˛ˇ g of holomorphic transition
functions g˛ˇ W U˛ \ Uˇ ! GL.r;C/.

Given a holomorphic structure E on E ! Z, we can associate a unique
C�linear operator

@E W ˝0.Z;E/ ! ˝0;1.Z;E/

such that, for each f 2 C1.Z;C/ and s 2 � .E/, we have

(i) @E.f s/ D .@f /˝ s C f .@Es/;

(ii) If U � Z is an open subset, then
�
@Es

�
jU D 0 if, and only if, s is a

holomorphic map over U .

The construction of @E is as follows. By assumption, E admits an atlas of local
frames f.e˛;1; : : : ; e˛;r/g˛, whose associated transition functions fg˛ˇ g are holo­
morphic maps. Given s 2 � .E/, write

sjU˛
D
X

i

si
˛ ˝ e˛;i ; si

˛ 2 C1.U˛;C/; i D 1; : : : ; k:

and define �
@Es

�
jU˛

WD
X

i

.@si
˛/˝ e˛;i : (1.66)
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This operator clearly satisfies (i) and (ii). To see that it is well­defined, note that

@.gv/ D .@g/v C g.@v/ D g.@v/;

whenever g is a holomorphic change of coordinates and v is the local representa­
tion of a section of E.

Of course, such operator @E can be extended to give rise to C�linear operators

@E W ˝p;q.Z;E/ ! ˝p;qC1.Z;E/; for all p; q > 0;

such that
@E.! ^ s/ D .@!/˝ s C .�1/pCq! ^ .@Es/;

whenever ! 2 ˝p;q.Z/ and s 2 ˝0.Z;E/. Since Z is a complex manifold
(therefore @2

D 0), it follows from the definition of @E (1.66) that @
2

E WD @E ı@E D

0.
Now let r be a (smooth) connection on the complex vector bundle E ! Z.

Here we regard r as a map from � .E/ D ˝0.Z;E/ to ˝1.Z;E/ (see Remark
1.7). Then, the bi­degree splitting of˝1.Z;E/ induces a corresponding splitting
of r as

r D @r ˚ @r W ˝0.Z;E/ ! ˝1;0.Z;E/˚˝0;1.Z;E/:

The C�linear operator @r W ˝0.Z;E/ ! ˝0;1.Z;E/ automatically satisfies (i),
by the Leibniz rule:

@r.f s/ D @f ˝ s C f @rs;

for f 2 C1.Z;C/ and s 2 � .E/.

Definition 1.67. A C�linear operator @E W ˝0.Z;E/ ! ˝0;1.Z;E/ is called a
partial connection on E if it satisfies the ‘@�Leibniz rule’:

@E .f s/ D @f ˝ s C f @E s;

for each f 2 C1.Z;C/ and s 2 � .E/.

Given a holomorphic structure E onE, it is clear that the induced operator @E is
a partial connection. The non­trivial question is whether a given partial connection
@E comes from a holomorphic structure E on E, in the following sense:

Definition 1.68 (Integrability). A partial connection @E onE is called integrable
if it is equal to the partial connection @E induced by a holomorphic structure E on
E.
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In these terms, we quote the following crucial result from Donaldson and Kro­
nheimer (1990, §2.2.2)):

Theorem 1.69 (Nirenberg–Newlander). If @E is a partial connection on E, then

@E is integrable () @
2

E D 0:

If r D @r ˚ @r is a connection on E ! Z, then

Fr D @2
r ˚ .@r@r C @r@r/˚ @

2

r :

In particular,
F

0;2
r

D 0 () @
2

r D 0:

Definition 1.70 (Compatibility). A connection r on E ! Z is said to be com­
patible with a holomorphic structure E on E when @r is an integrable partial
connection with @r D @E .

In conclusion, Theorem 1.69 implies the following relation between holomor­
phic structures and connections:

Corollary 1.71. A connection r on E ! Z is compatible with a holomorphic
structure E on E if, and only if, F 0;2

r
D 0.

If, moreover, E ! Z is Hermitian, a U.r/�connection (unitary connection)
is compatible with a holomorphic structure on E (i.e. F 0;2

r
D 0) if, and only if,

Fr 2 ˝1;1.Z;E/. Indeed, if r is unitary then Fr 2 ˝2.Z;u.r/E /, hence

F
0;2
r

D �.F
2;0
r
/�:

On Hermitian bundles, a holomorphic structure distinguishes a unique compatible
U.r/�connection Donaldson and Kronheimer (ibid., Lemma 2.1.54):

Proposition 1.72. Suppose E is a U.r/�bundle over Z. Then, a holomorphic
structure E on E induces a unique compatible connection r 2 A.E/, called the
Chern connection of the holomorphic U.r/�bundle E ! Z.
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ASD instantons and holomorphic structures. To end this chapter, we now re­
call an important interpretation of the ASD instanton equation in the context of
SU.r/�bundles over complex Hermitian surfaces. The references are Donaldson
and Kronheimer (ibid., pp. 46­47) and Scorpan (2005, pp. 369­370).

Let Z be a Hermitian surface, i.e. a (smooth) 4�manifold endowed with an
integrable complex structure I and a Riemannian metric g with respect to which
I is an orthogonal transformation. In particular, Z is a Riemannian 4�manifold
with a preferred orientation fixed by I .

In this context, we have two decompositions of the complexified 2�forms of
Z:

˝2.Z/ D ˝2;0
˚˝1;1

˚˝0;2 and ˝2.Z/ D ˝2
C ˚˝2

�:

Denote by ! the fundamental 2­form of .1; 1/�type induced by the pair .g; I /:

!.X; Y / WD g.IX; Y /; 8X; Y 2 X.Z/:

Then ! induces a decomposition ˝1;1.Z/ D ˝
1;1
0 ˚ ˝0 � !, where ˝1;1

0 WD

.˝0 � !/? \˝1;1.
By a straightforward local computation, the relation between the above decom­

positions is given by Donaldson and Kronheimer (1990, Lemma 2.1.57):

Proposition 1.73. Let Z be a Hermitian complex surface as above. Then:

• ˝2
C D ˝2;0 ˚˝0 � ! ˚˝0;2.

• ˝2
� D ˝

1;1
0 .

Therefore Donaldson and Kronheimer (ibid., Proposition 2.1.59):

Theorem 1.74. Let E ! Z be an SU.r/�bundle over a Hermitian surface Z. If
r 2 A.E/, then

r is an ASD instanton ()

(
F

0;2
r

D 0 (integrability condition)
OFr WD Fr � ! D 0

Combining this result with the discussion of the last paragraph, one concludes
that, in complex geometry, the ASD instanton condition splits naturally into two
pieces, one of which has a simple geometric interpretation as an integrability con­
dition. In particular, this suggests that ASD instantons, rather than SD instantons,
are preferable in this setting. This is one of the reasons why one chooses to work
with ASD, rather than SD, when doing gauge theory, even in the general context of
oriented Riemannian 4�manifolds. From now on, we also adopt this perspective.



2 Instantons in
higher

dimensions

In the presence of suitable geometric structures on the manifold M n, the
4�dimensional notion of instanton (cf. Section 1.5) can be generalised to higher
dimensional contexts for n > 4. We present two approaches for such generalisa­
tion. The approach first explored by physicists Baulieu, Kanno, and Singer (1998)
and Corrigan et al. (1983) is based on the presence of an appropriate .n�4/�form
onM . The second approach, originally introduced by Carrión (1998), one needs
M to be equipped with an N.H/�structure, where N.H/ denotes the normaliser
of some closed Lie subgroup H � SO.n/. These two points of view turn out
to coincide in cases of interest, namely special holonomy manifolds, and were
further popularized by the works of Donaldson and Thomas (1998), Tian (2000),
Donaldson and Segal (2011) et al.

We begin with a discussion of Berger’s classification theorem of Riemannian
holonomy groups (Section 2.1). In particular, we give short descriptions of the
special geometries associated to the holonomy groups U.m/ and SU.m/, respec­
tively Kähler and Calabi–Yau, as well as G2 and Spin.7/. Next, in Section 2.2, we
introduce the language of calibrated geometry and its relations with special holon­
omy manifolds. Then, in terms of both aforementioned approaches, in Section
2.3 we explain generalisations of the notion of instanton for oriented Riemannian
n�manifolds, n > 4, endowedwith an appropriate geometric structure. In fact, we
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will be interested in those cases for which the holonomy group of g is realised as
a normaliserN.H/ ¨ SO.n/ appearing in Berger’s list of special geometries. We
pay particular attention to the corresponding notions of instanton associated to the
holonomy reductions SU.m/ D N.U.m// � SO.2m/, G2 D N.G2/ � SO.7/
and Spin(7) D N.Spin(7)/ � SO.8/, with an emphasis on the last two ‘excep­
tional’ cases.

2.1 Riemannian metrics with special holonomy group
The main references for this section are Bryant (1986) and Joyce (2000, 2006,
2007).

Riemannian holonomy groups and Berger’s classification. Let .M; g/ be a
Riemannian n�manifold and denote byDg its Levi­Civita connection on the real
O.n/�bundle TM . Recall thatDg is uniquely determined by the following prop­
erties Joyce (2000, Theorem 3.1.1):

(i) Dg is torsion­free, i.e. Dg
XY �D

g
YX D ŒX; Y � for all X; Y 2 X.M/;

(ii) Dg is compatible with g, i.e. Dgg D 0.

Write Holx.g/ WD Holx.Dg/ for the holonomy group of g at x (cf. Section 1.2).
Since the subgroup of GL.TxM/ preserving gjTxM is O.TxM/, the metric com­
patibility (ii) implies, via Theorem 1.32, that Holx.g/ � O.TxM/. In partic­
ular, we can regard Hol.g/ WD Hol.Dg/ as a subgroup of O.n/, well­defined
up to conjugation in O.n/. By connectedness, the restricted holonomy group
Hol0.g/ WD Hol0.Dg/ is a subgroup of SO.n/, defined up to conjugation (by
O.n/), and the holonomy algebra hol.g/ is a Lie subalgebra of so.n/, defined up
to the adjoint action (by O.n/).

The Riemann curvature tensor Rg WD FDg of g has a number of symmetries,
besides the obvious skew­symmetry in its first two arguments. To express such
symmetries it is convenient to lower the last index of Rg :

Rmg.X; Y;Z;W / WD g.Rg.X; Y /Z;W /; 8X; Y;Z;W 2 X.M/:

We shall refer to both Rg and Rmg as the Riemann curvature of g. In terms of
components, with respect to any local frame, the tensorRg is represented byRi

jkl

and the tensor Rmg is represented by Rijkl . Also, we denote the total covariant
derivative DgRmg in components by RijklIm. The following result summarises
important symmetries of Rmg andDgRmg Joyce (2007, Theorem 3.1.2).
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Proposition 2.1. Let .M; g/ be a Riemannian manifold with Riemann curvature
Rijkl . Then:

Rijkl D �Rijlk D �Rj ikl D Rklij ; (2.2)
Rijkl CRjkil CRkijl D 0; (algebraic/1st Bianchi identity) (2.3)
RijklIm CRijlmIk CRijmkIl D 0: (differential/2nd Bianchi identity) (2.4)

Remark 2.5. (2.4) is simply a rephrasing of the Bianchi identity (1.21) in this
context. ˙

At each point x 2 M , regarding holx.g/ as a subspace of the anti­symmetric
endomorphisms so.TxM/ of TxM , it follows from Proposition 1.38 that Ri

jkl

lies in �2T �
x M ˝ holx.g/. By equation (2.2), we see that Rijkl is an element of

�2T �
x M ˝�2T �

x M , so that identifying so.TxM/ with�2T �
x M using g, we can

also think of Rijkl as an element of �2T �
x M ˝ holx.g/. Furthermore, using the

first Bianchi identity (2.3), we get Joyce (2007, Theorem 3.1.7):

Proposition 2.6. Let .M; g/ be a Riemannian manifold with Riemann curvature
Rijkl . ThenRijkl lies in the subspace S2holx.g/ of�2T �

x M ˝�2T �
x M at each

point x 2 M .

Together with the Bianchi identities of Proposition 2.1, this result gives quite
strong restrictions on the curvature tensor of a Riemannian metric g with a pre­
scribed holonomy groupHol.g/ Joyce (ibid., p. 43). Combinedwith theAmbrose–
Singer theorem 1.39, this is the basis of the (algebraic) classification of Rieman­
nian holonomy groups.

A theorem due to de Rham Joyce (ibid., Theorem 3.2.7)) shows that if .M; g/
is a complete, simply­connected Riemannian manifold, then there exist complete,
simply­connected Riemannian manifolds .Mj ; gj / for j D 1; : : : ; k, such that
the holonomy representation of Hol.gj / is irreducible, .M; g/ is isometric to the
Riemannian product .M1�: : :�Mk; g1�: : :�gk/, and Hol.g/ D Hol.g1/�: : :�

Hol.gk/. Thus, in looking for a classification of the possible holonomy groups of
.M n; g/, we are mainly interested in the cases where Hol0.g/ acts irreducibly on
Rn.

In 1955, Berger (1955) gave a list of all the possible irreducible holonomy
groups for Riemannian metrics Bryant (1986):

Theorem 2.7 (Berger). LetM be a connected, simply­connected1 n�dimensional
manifold, and let g be a Riemannian metric onM . Suppose that, for some x 2 M ,

1If �.M/ ¤ 1 then the universal cover . zM; zg/ of .M; g/ has Hol.zg/ D Hol0.g/.
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Holx.g/ acts irreducibly on TxM . Then either g is a locally symmetric metric or
else one of the following holds:

(i) Hol.g/ D SO.n/,

(ii) n D 2m, m > 2 and Hol.g/ D U.m/,

(iii) n D 2m, m > 2 and Hol.g/ D SU.m/,

(iv) n D 4m, m > 2 and Hol.g/ D Sp.m/,

(v) n D 4m, m > 2 and Hol.g/ D Sp.m/ � Sp.1/,

(vi) n D 7 and Hol.g/ D G2,

(vii) n D 8 and Hol.g/ D Spin.7/.

Remark 2.8. A Riemannian metric g on M is called locally symmetric if every
point p 2 M admits an open neighbourhood Up inM , and an involutive isometry
�p W Up ! Up with unique fixed point p. For more on this we refer the reader to
Joyce (2007, §3.3). ˙
Remark 2.9. Later on, Simons (1962) gave another proof of Theorem 2.7. See
also the more recent proof by Olmos (2005). ˙

From now on we shall refer to the list of groups (i)­(vii) as Berger’s list. A
very thorough discussion of Berger’s theorem, including discussions of each of
the geometries associated to the groups in Berger’s list, analogies with the four
normed division algebras, and the principles behind Berger’s original proof, can
be found in Joyce’s book Joyce (2007, §3.4).

It can be shown that the space of Riemannian metrics g on M n for which
Hol.g/ D SO.n/ is both open and dense in the space of Riemannian metrics on
M . Thus, one says that SO.n/ is the holonomy group of a generic metric onM .
The other groups on Berger’s list are called special holonomy groups. In what
follows, we give brief descriptions of metrics with these holonomy groups, except
the cases (iv) and (v) which will not be fundamental for our later purposes.

Metrics with holonomy U.m/ � O.2m/.
(cf. S. Salamon (1989, Chapter 3))

Let .z1; : : : ; zm/ be complex coordinates on Cm. The unitary group U.m/
may be defined as the set of complex linear endomorphisms of Cm preserving the
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Hermitian form

�0 D

mX
j D1

dzj
˝ dzj :

Defining real coordinates .x1; : : : ; x2m/ on Cm ' R2m by

zj
D x2j �1

C ix2j ; j D 1; : : : ; m;

we can write

�0 D

mX
j D1

dxj
˝ dxj

� 2i
mX

j D1

dx2j �1
^ dx2j :

The real part g0 D Re.�0/ is the standard Euclidean inner product on R2m, so
that U.m/ acts on R2m as the subgroup of O.2m/ which fixes the real 2�form
�2!0 WD Im.�0/. The group U.m/ also commutes with the real endomorphism
I0 of R2m such that I0dx

2j �1 D dx2j and I0dx2j D �dx2j �1 (j D 1; : : : ; m).
It can be shown that !0 and I0 are equivalent in the presence of the inner product
g0; for instance, !0.x; y/ D g0.I0x; y/ for all x; y 2 R2m.

It follows from the holonomy principle (Theorem 1.32) that a Riemannian
metric g on a 2m�dimensional manifold Z2m has holonomy Hol.g/ � U.m/ if,
and only if, Z admits natural tensors I 2 End.TZ/ and ! 2 ˝2.Z/, parallel
with respect to the Levi­Civita connection Dg , such that g, I , and ! can be writ­
ten in the form g0, I0, and !0 at each point of Z. A Riemannian metric g on a
2m�dimensional manifold Z2m with Hol.g/ � U.m/ is called a Kähler metric.

A U.m/�structure on a smooth 2m�manifold Z is specified by a pair .I; !/,
where I 2 End.TZ/ is an almost complex structure, I 2 D �1, and ! 2 ˝2.Z/

is a non­degenerate real 2�form such that g.�; �/ WD !.�; I � / defines a Rieman­
nian metric on Z. A U.m/�structure .I; !/ on Z2m is torsion free when both I
and ! areDg�parallel with respect to the induced metric g. A 2m�dimensional
manifoldZ2m endowed with a torsion­freeU.m/�structure .I; !/ is called aKäh­
ler m�fold and ! its Kähler form. The following facts are standard Joyce (2000,
§4.4):

Proposition 2.10. Let .I; !/ be a U.m/�structure on Z2m. Denote by g the
natural Riemannian metric induced by .I; !/. Then the following are equivalent:

(i) g is a Kähler metric.

(ii) .I; !/ is torsion­free.
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(iii) I is integrable2 and d! D 0.

Note that Kähler m�folds are essentially Riemannian 2m�manifolds with
holonomy contained in U.m/. Henceforth, we will denote a Kähler m�fold by
a pair .Z2m; !/, omitting the underlying complex structure I and metric g.

Metrics with holonomy SU.m/ � O.2m/.
(cf. Corti et al. (2013, §2))

As before, we identify R2m ' Cm, with complex coordinates .z1; : : : ; zm/,
and define a complex m�form �0 on Cm by

�0 WD dz1
^ : : : ^ dzm:

The subgroup of U.m/ � O.2m/ preserving g0, !0 and �0 is SU.m/.
By the holonomy principle, a Riemannianmetric g on a 2m�dimensional man­

ifoldZ2m has holonomyHol.g/ � SU.m/ if, and only if, g is a Kähler metric, say,
with associated complex structure I and Kähler form !, and further Z admits a
naturalDg�parallel complex .m; 0/�form � such that g, I , ! and � have point­
wise models g0, I0, !0 and �0. A Riemannian metric g on a 2m�dimensional
manifold Z2m with Hol.g/ � SU.m/ is called a Calabi–Yau metric.

An SU.m/�structure on a smooth 2m�manifold Z is specified by a triple
.I; !; � /, where .I; !/ defines a U.m/�structure on Z, and � is a nowhere van­
ishing complex .m; 0/�form on .Z; I / satisfying

!m

mŠ
D im

2

2�m� ^ � : (2.11)

This is a normalisation condition that the natural volume forms induced by! and�
are equal, or equivalently that j� j2 D 2m with respect to the induced metric3. An
SU.m/�structure .I; !; � / on Z2m is called torsion­free whenDg� D Dg! D

0 with respect to its induced metric g. A 2m�manifold Z2m endowed with a
torsion­free SU.m/�structure .I; !; � / is called a Calabi–Yau m�fold.

One can show that given an SU.m/�structure .I; !; � / on Z2m, then d� D

0 implies that the complex structure I is integrable and � is a holomorphic
.m; 0/�form. In particular, � holomorphically trivialises the canonical bundle
KZ D �m.T 1;0Z/� of .Z; I /. Since the first Chern class c1.Z/ WD c1.T

1;0Z/

turns out to be a characteristic class of KZ , namely �c1.KZ/, it follows that
2i.e. I is induced from a complex manifold structure on Z
3This implies that Re.� / has comass 6 1 (cf. Section 2.2.2).
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c1.Z/ D 0. If also d! D 0 then Z is a Kähler manifold, so that the induced
metric g has Hol.g/ � U.m/. Furthermore, since � is a holomorphic form of
constant norm, the later condition forces Dg� D 0, so that the holonomy of g
reduces further to Hol.g/ � SU.m/. In particular, an SU.m/�structure .I; !; � /
is torsion­free if, and only if, d� D d! D 0.

The well­known linear relation between the curvature of the canonical bundle
and the Ricci curvature of a Kähler metric implies Joyce (2007, Proposition 7.1.1):

Proposition 2.12. Suppose .Z2m; !/ is a Kähler m�fold and let g be its associ­
ated compatible Riemannian metric. Then Hol0.g/ � SU.m/ if, and only if, g is
Ricci­flat (Ricg

� 0).

Finally, a fundamental result in this context is Yau’s solution of the Calabi con­
jecture Yau (1978), which has the following important consequence Joyce (2007,
Theorem 7.1.2):

Theorem 2.13. Let .Z2m; I / be a compact complex manifold admitting someKäh­
ler metric and such that c1.Z/ D 0. Then there is a unique Ricci­flat Kähler metric
in the cohomology class of each Kähler form on Z.

Since a generic Kähler metric on a complex m�fold has holonomy U.m/, in
the light of Proposition 2.12 we see the above theorem constructs metrics with
special holonomy � SU.m/ on compact complex m�folds.

Henceforth, we will denote a Calabi–Yau m�fold by a triple .Z; !; � /, omit­
ting the underlying complex structure I and metric g.

The exceptional cases G2 � SO.7/ and Spin.7/ � SO.8/.
(cf. Bryant (1986, 1987) and Joyce (2007, Chapter 11))

We start with a definition of the Lie group G2 due to Bryant [ibid.]:

Definition 2.14. Let .x1; : : : ; x7/ be Euclidean coordinates on R7. Define a
3�form �0 on R7 by

�0 WD dx123
� dx145

� dx167
� dx246

C dx257
� dx347

� dx356: (2.15)

Here we write dxij :::l as shorthand for dxi ^ dxj ^ : : : ^ dxl . The subgroup of
GL.7;R/ preserving �0 under the standard (pull­back) action is the exceptional
Lie group G2:

G2 WD fg 2 GL.7;R/ W g��0 D �0g:
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Remark 2.16. Our definition of �0 differs from the one given by Bryant by an
orientation­preserving change of coordinates. Our sign conventions follows D. A.
Salamon and Walpuski (2017) and Walpuski (2013b).

A useful way to interpret �0 is to write R7 ' R3 ˚ R4, with respective coor­
dinates .x1; x2; x3/ and .x4; x5; x6; x7/, and the standard choice of orientations

vol3 WD dx123 and vol4 WD dx4567;

on R3 and R4, respectively. Note that the 2�forms

�C
1 WD dx45

C dx67;

�C
2 WD dx46

C dx75;

�C
3 WD dx47

C dx56;

give us an orthogonal basis for the selfdual 2�forms on R4. With these identifica­
tions, we can write

�0 D vol3 � dx1
^ �C

1 � dx2
^ �C

2 � dx3
^ �C

3 :

˙
By definition, G2 is a closed Lie subgroup of GL.7;R/. Moreover, one can

check directly that for every x; y 2 R7, we have

.x y �0/ ^ .y y �0/ ^ �0 D 6g7.x; y/vol7; (2.17)

where g7 and vol7 denotes, respectively, the standard metric and orientation ofR7.
In particular, we see that G2 � SO.7/.

The following theorem summarises some general facts about the Lie group G2
Bryant (1987, Theorem 1, p. 539).

Theorem 2.18. G2 is a 14�dimensional compact, 2�connected, simple Lie group.

Definition 2.19. Let V be a 7�dimensional real vector space. A 3�form � 2

�3V � is said to be positive if there exists a linear isomorphism u W V ! R7 so
that � D u��0, where �0 2 �3.R7/� is given by (2.15). The set of positive
3�forms on V is denoted by �3

CV
�.

Remark 2.20. Note that �3
CV

� ' GL.7;R/=G2, so straightforward dimension
counting shows that �3

CV
� � �3V � is an open subset. ˙



60 2. Instantons in higher dimensions

Definition 2.21. Let Y 7 be a smooth manifold and denote by �3
C.T

�Y / be the
(open) subbundle of�3T �Y whose fibre over y 2 Y is�3

C.T
�
y Y / and by˝3

C.Y /

its space of smooth sections. An element � 2 ˝3
C.Y / is called a positive 3�form

on Y .

By the holonomy principle (Theorem 1.32), it follows that a (connected) Rie­
mannian manifold .Y 7; g/ has Hol.g/ � G2 if, and only if, Y possesses a parallel
positive 3�form � 2 ˝3

C.Y /.
Note that a positive 3�form on Y 7 is equivalent to a G2�structure on (the

frame bundle F of) Y 7. Indeed, given � 2 ˝3
C.Y / we can form

P� WD fu 2 F W u��0 D �y ; where u W TyY ! R7
g:

It is easy to see P� defines a principal subbundle of F with fibre G2, i.e. a
G2�structure on Y . Conversely, a G2�structureP � F on Y determines a unique
positive 3�form � 2 ˝3

C.Y / by

�y WD u�
y�0;

where uy 2 Py , for all y 2 Y . This is well­defined precisely because P is a
principal G2�subbundle: two frames uy ; u

0
y 2 Py are related as u0

y D g�1 ı uy ,
for some g 2 G2 D Stab.�0/. It is clear that such constructions are inverse of
each other. Henceforthwewill not distinguish betweenG2�structures and positive
3�forms on Y 7.

Since G2 � SO.7/, a G2�structure � on Y 7 determines a Riemannian metric
g� and an orientation vol� on Y . Indeed, these are uniquely determined pointwise
by the relation (2.17). In particular, � determines a ��Hodge operator on��T �Y .

Definition 2.22. AG2�structure � on Y 7 is called torsion­freewhen it is parallel
with respect to the induced Levi­Civita connection:

Dg�� D 0: (2.23)

If � is a torsion­free G2�structure on Y 7, the pair .Y 7; �/ is called a
G2�manifold.

Thus, a G2�manifold .Y 7; �/ is essentially a Riemannian manifold .Y 7; g�/

with Hol.g�/ � G2.
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Remark 2.24. The torsion­free condition (2.23) turns out to be a very complicated
non­linear p.d.e. on �. The non­linearity is due to the dependency of the metric
g� itself (hence the Levi­Civita connection) on �. ˙

Example 2.25. .R7; �0/, with �0 given by (2.15), is the model example of
G2�manifold.

The following theorem from Fernández and Gray (1982, Theorem 5.2) (see
also S. Salamon (1989, Lemma 11.5, p. 160)) gives a non­trivial characterisation
for the torsion­free condition (2.23):

Theorem 2.26 (Fernández–Gray). Let Y 7 be a connected manifold and let � 2

˝3
C.Y /. Denote by � the Hodge star operator induced by � on Y . Then the

following are equivalent:

(i) .Y; �/ is a G2�manifold.

(ii) d� D 0 D d � �.

Remark 2.27. Again, since � depends on �, d � � D 0 is a non­linear condition
on �. ˙

Exploring curvature restrictions imposed by the holonomy group, just as in
Theorem 2.6, and using some representation theory, one can prove the following
S. Salamon (ibid., Proposition 11.8):

Proposition 2.28. If g is a Riemannian metric on a (connected) 7�manifold Y 7

with Hol.g/ � G2, then g is Ricci­flat (Ricg
� 0).

Moreover, from the classification of Riemannian holonomy groups (Theorem
2.7), one has Joyce (2007, Theorem 11.1.7):

Theorem 2.29. The only non­trivial connected Lie subgroups of G2 which can
occur as holonomy of a Riemannian 7�manifold are:

(i) SU.2/, acting on R7 ' R3 ˚ C2, trivial on R3, standard on C2,

(ii) SU.3/, action on R7 ' R ˚ C3, trivial on R, standard on C3.

Thus, if � is torsion­free G2�structure on a 7�manifold, then Hol0.g�/ is one of
f1g, SU.2/, SU.3/ or G2.

This theorem implies that we can obtain G2�manifolds from certain lower
dimensional geometries. More precisely, the inclusions SU.2/ � G2 and SU.3/ �

G2 imply that from each Calabi–Yau 2� or 3�fold we can make a G2�manifold.
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Example 2.30 (G2�manifolds from Calabi–Yau 2�folds). Let .Z4; !; � / be a
Calabi–Yau 2�fold, and let .x1; x2; x3/ be coordinates on R3 or T 3 WD S1 �

S1 � S1. Then the 3�form

� WD dx123
� dx1

^ ! � dx2
^ Re.� / � dx3

^ Im.� /

defines a torsion­free G2�structure on Y 7 WD R3 � Z4 or T 3 � Z4 compatible
with the natural product metric and orientation structures.

Example 2.31 (G2�manifolds from Calabi–Yau 3�folds). Let .Z6; !; � / be a
Calabi–Yau 3�fold. Let t be a coordinate on R or S1. Then the 3�form

� WD dt ^ ! C Re.� /

defines a torsion­free G2�structure on Y 7 WD R � Z6 or S1 � Z6, compatible
with the natural product metric and orientation structures.

Note that the above examples have holonomy strictly contained in G2. Exam­
ples of metrics with holonomy exactly G2 are much harder to come by. In fact,
for almost three decades after Berger’s classification (Theorem 2.7), the excep­
tional holonomy groups G2 and Spin.7/ posed a mystery, as to whether examples
existed at all. Eventually, Bryant (1987) proved the local existence of such met­
rics, and constructed some explicit incomplete examples. Then, Bryant–Salamon
Bryant and S. Salamon (1989) constructed the first examples of complete metrics
with holonomy (exactly) G2 and Spin.7/ on noncompact manifolds. Later, Joyce
(1996) constructed the first examples of metrics with holonomy (exactly) G2 and
Spin.7/ on compact manifolds; also see Joyce (2000).

Another particularly important method in the construction of compact
G2�manifolds, with full holonomy G2, is the so­called twisted connected sum con­
struction. From a pair of smooth asymptotically cylindrical Calabi–Yau 3�folds
V˙ Haskins, Hein, and Nordström (2015), there is a non­trivial way to glue the
products S1�V˙, truncated sufficiently far along one tubular end, so as to produce
a compact G2�manifold Y 7 WD

�
S1 � VC

�
z#
�
S1 � V�

�
with holomomy exactly

G2. This method was first developed by Kovalev (2003), based on an insight by
Donaldson. Then the construction was improved by Kovalev and Lee (2011) and,
more recently, corrected and extended significantly by Corti et al. (2015). The
twisted connected sum construction provided a major breakthrough in the study
of G2�manifolds, allowing for hundreds of thousands of diffeomorphism types of
examples to be mass­produced.
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At the time of writing, there are only two other methods for the production
of compact manifolds with holonomy exactly G2, by Joyce (2000, §§11, 12) and
Joyce–Karigiannis Joyce and Karigiannis (2017). Both are based on orbifold res­
olution techniques yielding G2­structures with small torsion, which can then be
perturbed into a torsion­free solution by an elliptic p.d.e. argument.

We now turn to a brief discussion of the holonomy group Spin.7/ (cf. Joyce
(2000, §10.5)).

Definition 2.32. Define a 4�form ˚0 on R8 D R � R7, in coordinates
.x0; x1; : : : ; x7/, by

˚0 WD dx0
^ �0 C  0; (2.33)

where �0 is the 3�form (2.15), and  0 WD �7�0. The GL.8;R/�stabiliser of ˚0

under the (standard) pull­back action is the Lie group Spin.7/:

Spin.7/WD fg 2 GL.8;R/ W g�˚0 D ˚0g:

Note that˚0 is manifestly selfdual with respect to the Euclidean metric on R8.

Theorem 2.34 (Bryant (1987, Theorem 4)). Spin.7/ is a simple, compact and
1�connected Lie group of dimension 21. Furthermore, Spin.7/ is a subgroup of
SO.8/.

Definition 2.35. Let W 8 be a 8�dimensional real vector space. A 4�form ˚ 2

�4W � is called definite if there exists a linear isomorphism u W W ! R8 such
that ˚ D u�˚0. We denote by �4

C.W
�/ the set of definite 4�forms on W .

Let X8 be a smooth manifold. Define the bundle �4
C.T

�X/ of definite
4�forms onX to be the subbundle of�4T �X whose fibre at x 2 X is�4

C.T
�
x X/.

A smooth section˚ 2 � .�4
C.T

�X// is called a definite 4�form onX . The space
of definite 4�forms on X is denoted by ˝4

C.X/.

Note that a definite 4�form ˚ 2 ˝4
C.X/ determines and is determined

by a unique Spin.7/�structure on X . Thus, it is customary to call such ˚ a
Spin.7/�structure on X .

Since Spin.7/ � SO.8/, a Spin.7/�structure˚ onX determines a unique Rie­
mannianmetric g˚ and orientation vol˚ onX ; in particular, we have an associated
��operator acting on ��T �X .

Definition 2.36. A Spin.7/�structure ˚ on a smooth 8�manifold X is called
torsion free if Dg˚˚ D 0. A pair .X8; ˚/ where ˚ is a torsion­free
Spin.7/�structure on X8 is called a Spin.7/�manifold.
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By the holonomy principle (Theorem 1.32), a connected Riemannian
8�manifold .X8; g/ has Hol.g/ � Spin.7/ if, and only if, .X; g/ has a torsion­free
Spin.7/�structure˚ . Thus, a Spin.7/�manifold .X8; ˚/ is essentially a Rieman­
nian 8�manifold .X8; g˚ / with Hol.g˚ / � Spin.7/.

Example 2.37. .R8; ˚0/ where ˚0 is given by (2.33) is the model example.

The next results are analogues of Theorem 2.26, Proposition 2.28 and Theorem
2.29.

Theorem 2.38 (S. Salamon (1989, Lemma 12.4)). Let ˚ be a Spin.7/�structure
on X8. Then the following are equivalent:

(i) .X;˚/ is a Spin.7/�manifold.

(ii) d˚ D 0.

Proposition 2.39 (S. Salamon (ibid., Corollary 12.6)). Let .X8; g/ be a connected
Riemannian manifold, with Hol.g/ � Spin.7/. Then g is Ricci­flat.

From Berger’s classification theorem (Theorem 2.7), one deduces:

Theorem 2.40 (Joyce (2007, Theorem 11.4.7)). The only non­trivial connected
Lie subgroups of Spin.7/ which can be holonomy groups of Riemannian metrics
on 8�manifolds are:

(i) SU.2/, acting on R8 ' R4 ˚ C2, trivial on R4 and standard on C2;

(ii) SU.2/ � SU.2/, acting on R8 ' C2 ˚ C2, in the obvious way;

(iii) SU.3/, acting on R8 ' R2 ˚ C3, trivial on R2 and standard on C3;

(iv) G2, acting on R8 ' R ˚ R7, trivial on R and standard on R7.

(v) Sp.2/, acting as usual on R8 ' H2.

(vi) SU.4/, acting as usual on R8 ' C4.

Therefore, if ˚ is a torsion­free Spin.7/�structure on an 8�manifold, then
Hol0.g˚ / is one of f1g, SU.2/, SU.2/ � SU.2/, SU.3/, G2, Sp.2/, SU.4/ or
Spin.7/.

We give two particularly interesting instances of the use of these inclusions to
obtain Spin.7/�manifolds (with holonomy strictly contained in Spin.7/).
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Example 2.41 (Spin.7/�manifolds from G2�manifolds). Let .Y 7; �/ be a
G2�manifold. Let t be a coordinate on R or S1. Then the 4�form

˚ WD dt ^ � C  ;

where  D �Y �, defines a torsion­free Spin.7/�structure on X8 WD R � Y or
S1 � Y , compatible with the canonical product metric and orientation.

Example 2.42 (Spin.7/�manifolds from Calabi–Yau 4�folds). Let .Z8; !; � /

be a Calabi–Yau 4�fold. Then the 4�form

˚ WD
1

2
! ^ ! C Re.� /

defines a torsion­free Spin.7/�structure on Z8 compatible with its metric and
orientation.

2.2 Calibrated Geometry

This section is based on Joyce (ibid., §4.1­4.2), Harvey and Lawson (1982), and
the lecture notes Lotay (2014) and Nordström (2012).

2.2.1 Minimal Submanifolds

We give a brief recap on the basic definitions concerning minimal submanifolds.
We follow the exposition of Joyce’s book Joyce (2007, §4.1) and also Lotay’s
lecture notes Lotay (2014). A classical good reference on this subject is Lawson’s
lecture notes Lawson (1980).

Definition 2.43 (Submanifold). Let M be smooth manifold. A submanifold of
M is a one­to­one immersion � W N ,! M , where N is some smooth manifold.
When N is oriented, we say that � W N ,! M is an oriented submanifold. Two
submanifolds � W N ,! M and �0 W N 0 ,! M are isomorphic if there exists a
diffeomorphism ' W N ! N 0 such that � D �0 ı '.

We regard isomorphic submanifolds as the same object. In particular, endow­
ing �.N /with the manifold structure ofN via �, we do not distinguish between the
submanifolds � W N ,! M and �.N / ,! M (i.e. one can think of N as a subset of
M whose inclusion map is �).
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Remark 2.44. We do not require a submanifold � W N ,! M to have the induced
topology of the ambient manifold M , i.e. � W N ,! M is not necessarily a topo­
logical embedding. Anyway, by the implicit function theorem, we know that any
point p 2 N has an open neighborhood V such that �jV is a topological embed­
ding. Thus, when addressing local questions, we can suppose N is an embedded
submanifold ofM . ˙

In order to formulate the variational approach to minimal submanifolds includ­
ing noncompact submanifolds, we need the following:
Definition 2.45 (Variations with compact support). Let � W N ,! M be a submani­
fold and let S � N be an open subset whose closure inN is compact. A (smooth)
variation of � supported in S is a smooth map

F W N � ��1; 1Œ ! M

such that, writing �t WD F.�; t /, the following holds:
(i) �0 D �;

(ii) �t W N ! M is a submanifold, for all t ;

(iii) �t jN nS � �jN nS , for all t .
In this case, VF 2 X.N / defined by

VF .p/ WD F.p; �/�
@

@t

ˇ̌̌
tD0

; 8p 2 N;

is called the variational vector field associated to the variation F D f�tg.
Definition 2.46 (Minimal submanifolds). Let .M; g/ be a Riemannian manifold
and let � W N ,! M be an oriented submanifold ofM . Denote by dV��g the induced
Riemannian volume form onN . Then, for each precompact open set S b N , it is
well­defined the volume of S with respect to � W N ,! M :

Vol.�jS / WD

Z
S

dV��g < 1:

We say that � W N ,! M is a minimal submanifold ofM when for each precom­
pact open subset 4 S b N we have

d
dt
Vol.�jS /

ˇ̌̌
tD0

D 0;

for all variations f�tg of � supported in S .
4If @N ¤ ; one requires S to be in the interior of N .
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Thus, a minimal submanifold of M is just a stationary point, with respect to
compactly supported variations, of the natural volume functional on oriented sub­
manifolds ofM . We can also give a p.d.e. approach to minimal submanifolds by
means of the mean curvature vector of submanifolds:
Definition 2.47 (Second fundamental form and the mean curvature vector). Let
.M; g/ be a Riemannian manifold and let � W N ,! M be a submanifold of M .
Then, the tangent bundle ofM restricted to N decomposes orthogonally as

��TM D ��TN ˚ ��.N /;

where ��.N /, called the normal bundle of � W N ,! M , is the vector subbundle
of ��TM whose fibre at a point q 2 N is the orthogonal complement of ��TqN in
.��TM/q ' TqM with respect to g. The second fundamental form of � W N ,!

M is the section B � of
�J2

T �N
�

˝ ��.N / such that, for all X; Y 2 X.N /,

B �.X; Y / D ���.N / ı

h
D

g
��X .��Y /

i
;

where ���.N / W ��TM ! ��.N / is the orthogonal projection map.
The mean curvature vectorH � of � W N ,! M is the section of ��.N / given

by
H �

WD tr��gB
�:

A straightforward calculation gives the following characterisation of minimal
submanifolds Lawson (1980, Theorem 1).
Theorem 2.48. � W N ,! M is a minimal submanifold of .M; g/ if, and only if,
H � � 0.

Note that, by the definition, B � depends nonlinearly on the second derivatives
of �, thus so doesH �. Therefore, the above theorem implies the minimal subman­
ifold condition can be seen as a (nonlinear) p.d.e. of second order on �, namely,
H � � 0.
Example 2.49. For immersed curves 
 W I ! M , the zero mean curvature condi­
tionH 
 � 0 is equivalent to the geodesic equation .
�Dg/ . P
/ D 0.
Example 2.50. Let f W U � Rk ! Rn�k be a smooth map from an open subset
U of Rk . Then, the graph � .f / of f is a submanifold of Rn by means of the
natural inclusion map � W � .f / ,! Rk � Rn�k . One can show that H � D 0 (i.e.
� W � .f / ,! Rn is a minimal submanifold) if, and only if,

div

 
grad.f /p

1C jgrad.f /j2

!
D 0:
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2.2.2 Calibrated Submanifolds

The notion of calibration was introduced by Harvey–Lawson (1982) in their semi­
nal paper Harvey and Lawson (1982). Throughout this section, .M n; g/ will be a
Riemannian manifold. For each x 2 M , we denote by GrC.k; TxM/ the Grass­
mannian of oriented k�planes in TxM , i.e.

GrC.k; TxM/ WD fV 6 TxM W V is an oriented k�subspace of TxM g;

and we set
GrC.k; TM/ WD

[
x2M

GrC.k; TxM/:

Elements of GrC.k; TM/ are called oriented tangent k­planes ofM . Note that g
induces an inner product gjV on each V 2 GrC.k; TM/, which, together with the
orientation of V , gives rise to a preferred volume form volV on V . In particular,
for each x 2 M , we get an inclusion

GrC.k; TxM/ ,! �kTxM

mapping eachV 2 GrC.k; TxM/ into the unit simple k�vector �V WD e1^: : :^ek ,
where feig is any oriented orthonormal basis of V .

Recall that each �x 2 �kT �
x M defines a linear functional

h�x; �i W �kTxM ! R by means of the natural pairing

h�; �i W �kT �
x M ˝�kTxM ! R;

defined on simple elements by

h˛1 ^ : : : ^ ˛k; v1 ^ : : : ^ vki WD det
�
˛i .vj /

�
:

For � 2 ˝k.M/, the comass of � at x 2 M is the quantity

k�k
�
x WD supfh�x; �V i W V 2 GrC.k; TxM/g:

More generally, if A � M is any subset, we define the comass of � on A by

k�k
�
A WD supfk�k

�
x W x 2 Ag:

When A D M , we simply write k�k� for the comass of � onM .
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When � 2 ˝k.M/ and V 2 GrC.k; TM/, the restriction �jV is a scalar
multiple �V 2 R of volV by dimension reasons. In case �V 6 1, we write
�jV 6 volV . Note that

k�k
�
x D supf�V W V 2 GrC.k; TxM/g:

In particular, k�k� 6 1 if, and only if, �jV 6 volV for all V 2 GrC.k; TM/.

Definition 2.51. A k�form � 2 ˝k.M/ is called a calibration on .M; g/ if

(i) (� is closed) d� D 0.

(ii) (� has comass 6 1) k�k� 6 1.

In this case, we define the ��Grassmannian G .�/ as the collection of oriented
tangent k�planes ofM where � assumes its maximum, i.e.

G .�/ WD fV 2 GrC.k; TM/ W �jV D volV g:

An element V 2 G .�/ is called a ��calibrated (tangent) k�plane.

Remark 2.52. Under the Euclidean identification �kRn ' �k.Rn/�, em­
bed GrC.k;Rn/ ,! �k.Rn/�. The Hodge star operator gives isometries
�W �k.Rn/� ! �n�k.Rn/� and �W �kRn ! �n�kRn. Then, for an oriented
k�plane V 2 GrC.k;Rn/ its Hodge star dual �V is the unique orthogonal ori­
ented .n� k/�plane V ? such that if � 2 �k.Rn/� with �jV D ˛volV for ˛ 2 R
then ��jV ? D ˛volV ? .

This has the following consequence. Fixing an orientation on .M; g/, let � 2

˝k.M/ be a harmonic form (i.e. d� D 0 D d � �). Then, � is a calibration if,
and only if, �� is a calibration, and in this case we have further �G .�/ D G .��/.

˙

Example 2.53. Any k�form � ¤ 0 on Rn with constant coefficients (hence
d� D 0) can be rescaled so that it becomes a calibration with at least one oriented
k�plane V0 6 Rn for which V0 2 G .�/. Indeed, since GrC.k;Rn/ is compact,
the comass � WD k�k�

Rn ¤ 0 of � on Rn is attained at some oriented k�plane
V0 6 Rn. Thus, whenever �0 6 � WD 1=�, the k�form �0� is a calibration in Rn,
and in case �0 D � we have ��jV0

D volV0
.

Although there are usually many calibrations, as the above example shows,
it may occur that a calibration just admits a few calibrated tangent k�planes, i.e.
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the ��Grassmannian G .�/ may be ‘too small’. The interesting calibrations are
the ones for which G .�/ is ‘big enough’ to distinguish a meaningful collection
of k�submanifolds of M whose tangent spaces lie in G .�/. This motivates the
following.

Definition 2.54. Let � 2 ˝k.M/ be a calibration on .M; g/. If � W N ,! M is
an oriented k�dimensional submanifold ofM , then N is called a ��calibrated
submanifold (or a ��submanifold for short) when ��TN � G .�/ (as bundles),
i.e. when

��� D dV��g ;

where dV��g is the Riemannian volume form on N induced by ��g and the orien­
tation of N . The collection of ��submanifolds of M is called the ��geometry
ofM .

Asking for ��submanifolds greatly restricts the calibrations � one wants to
consider. The next result gives us a key distinguished property of ��submanifolds
(at least in the compact case).

Proposition 2.55. Let � 2 ˝k.M/ be a calibration on .M; g/. If � W N ,! M is a
compact ��submanifold, then its volume is the topological invariant hŒ����; ŒN �i,
and it is a minimal submanifold, minimizing volume in its homology class.

Proof. Let �0 W N 0 ,! M be another compact oriented k�submanifold ofM such
that @N D @N 0 and ŒN � D ŒN 0� in Hk.M;R/ (i.e. N � N 0 D @X , for some
.k C 1/�submanifold X ofM ). Then,

Vol.�/ WD

Z
N

dV��g D

Z
N

��� D

Z
N 0

.�0/�� 6
Z

N 0

dV.�0/�g DW Vol.�0/;

where the second equality follows from the condition ofN being a �­submanifold,
in the third equality we used the homology condition on N 0 together with Stokes’
theorem and the fact that � is closed, and in the last inequality we used the fact
that � has comass 6 1.

To see that this implies � W N ,! M is a minimal submanifold, note that for
small t a variation �t W N ,! M (cf. Definition 2.45) of � determines the same
homology class insideM . Thus, the last inequality shows that

Vol.�/ 6 Vol.�t /;

so that � is a critical point of the volume functional on compact oriented
k�submanifolds.
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Corollary 2.56. There are no compact calibrated submanifolds in a contractible
Riemannian manifold .M; g/. (e.g. .Rn; g0/)

Proof. Let 1 6 k 6 n. By Poincaré’s lemma, if � 2 ˝k.M/ is a calibration,
then there exists � 2 ˝k�1.M/ such that � D d� (indeed, d� D 0). Thus,
if � W N ,! M is a compact (without boundary) ��submanifold, using Stokes’
theorem we get a contradiction:

0 < Vol.�/ D

Z
N

��� D

Z
N

d.���/ D 0:

The ��submanifold condition (Definition 2.54) for an oriented compact
k�dimensional submanifold � W N ,! M depends upon its tangent spaces; it is
a first order p.d.e. on the immersion �. On the other hand, as we have already
seen in the previous section (Theorem 2.48), the minimal submanifold condition
for such a submanifold turns out to be a second order p.d.e. on the immersion �
(H � � 0). This suggests, via Proposition 2.55, that calibrated geometry is a great
source of examples of minimal submanifolds. This fact is quite analogous to the
relation, in the realm of gauge theory, between ASD instantons and Yang–Mills
connections (Section 1.5). Indeed, in the next section we shall extend this analogy,
by means of the general notion of ��ASD instantons.

Furthermore, we shall see a striking concrete relation between gauge theory
and calibrated geometries in dimensions greater than four (cf. Tian (2000)). This
will require generalising the notion of ��submanifold inM to the more general
measure­geometric setting of currents onM . In what follows we use some nota­
tion and terminology which are introduced in Appendix A (see §A.6).

Definition 2.57 (��currents). Let � 2 ˝k.M/ be a calibration on .M; g/. Then
an integral k�current T D .�; �;�/ 2 Ik.M/ (cf. Definition A.67) is said to be
a ��calibrated current (or simply ��current) if

�jTx� D �.x/; forHk
� a.e. x 2 �:

Definition 2.58 (Mass­minimizing currents). A current T 2 Ik;loc.M/ is called
mass­minimizing if

M.S/ 6 M.S 0/

whenever S; S 0 2 Ik.M/, kT k D kSk C kT � Sk (i.e. S is a piece of T ) and
@S D @S 0.

We have the following result in parallel with Proposition 2.55.
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Proposition 2.59. Let � 2 ˝k.M/ be a calibration on .M; g/. Then any com­
pactly supported ��calibrated cycle T 2 Zk.M/ � Ik.M/ is mass­minimizing
in its homology class.

Proof. Write T D .�; �;�/ and let T 0 D .� 0; � 0; �0/ 2 Zk.M/ be a compactly
supported cycle homologous to T , say T �T 0 D @R, whereR 2 IkC1.M/. Then,
unraveling definitions, we have:

M.T / D

Z
�

�dHk
D

Z
�

h�; �i�dHk (T is ��calibrated)

D

Z
� 0

h�; � 0
i�0dHk

CR.d�/ (T � T 0
D @R)

6
Z

� 0

�0dHk
D M.T 0/: .k�k

� 6 1/

In this context, it is worth mentioning the following deep interior regularity
result due to Almgren (1984).

Theorem 2.60 (Almgren). If T 2 Ik;loc.M/ is mass­minimizing, then VT WD

supp.T / n supp.@T / is a smooth k�dimensional minimal submanifold ofM , ex­
cept by a singular set ˙ � VT of Hausdorff dimension at most k � 2.

Calibrations and Riemannian holonomy groups. There is a natural method
to construct interesting calibrations � on Riemannian manifolds .M; g/ with spe­
cial holonomy, in such a way that G .�/ contains families of calibrated tangent
k�planes with reasonably large dimension.

LetH � SO.n/ be a possible holonomy group for a Riemannian metric. Thus
H acts on the k�forms�k.Rn/� ofRn. Suppose that �0 2 �k.Rn/� is a nonzero
H�invariant k�form on Rn. Up to rescaling, we can assume that k�k� 6 1 and
that G .�0/ ¤ ;, i.e. �0jV D volV for at least one k�plane V 6 Rn (see Example
2.53). Thus, from theH�invariance of �0, if V 2 G .�0/ then h � V 2 G .�0/ for
every h 2 H . This usually means G .�0/ is reasonably big.

Now suppose .M; g/ is a connected Riemannian n�manifold with Hol.g/ D

H . Then, by the holonomy principle (Theorem 1.32), there exists a global par­
allel (hence closed) k�form � on M which is pointwise linearly identified with
�0. It follows that � also has comass 6 1 and, therefore, is a calibration on M .
Moreover, for each x 2 M , we have G .�/\TxM ' G .�0/, so that by the above
invariance we may expect the ��geometry ofM is non­trivial.



2.2. Calibrated Geometry 73

In what follows, we explore the above procedure for the holonomy groups
U.m/, SU.m/, G2 and Spin.7/, introducing corresponding interesting calibrated
geometries.

Complex submanifolds. Let H D U.m/ � SO.2m/. Then H preserves the
standard Kähler 2�form !0 on R2m. The following classical lemma shows that
!k

0 =kŠ has comass 6 1 for each 1 6 k 6 m Lawson (1980, Proposition 4).

Lemma 2.61 (Wirtinger’s inequality). Consider Cm D R2m with complex coor­
dinates zj D x2j �1 C ix2j , j D 1; : : : ; m, and let !0 be the standard Kähler
form

!0 D
i

2

mX
j D1

dzj
^ dzj D

mX
j D1

dx2j �1
^ dx2j :

Then, for each 1 6 k 6 n, given any collection of 2k unitary vectors v1; : : : ; v2k 2

R2m, we have
!0

kŠ
.v1; : : : ; v2k/ 6 1:

Corollary 2.62. Let .Z2m; I; !/ be a Kähler m�fold. Then, for each 1 6

k 6 m, the 2k�form
!k

kŠ
is a calibration on Z. Moreover, an oriented

real 2k�submanifold N in Z is calibrated if, and only if, N is a complex
k�dimensional submanifold of .Z2m; I /, i.e. I.TxN/ D TxN for all x 2 N .

There are lots of examples in this setting. For instance, the complex projective
spaces CPm have many complex submanifolds defined as the zero set of a collec­
tion of homogeneous polynomials. These are called complex algebraic varieties,
and are the subject of complex algebraic geometry. It is worth mentioning that
the motivation for the general calibration condition comes from the long­known
properties enjoyed by complex submanifolds as minimal submanifolds of Kähler
manifolds. For more details and examples of complex submanifolds in Kähler
manifolds, we refer the reader to Lawson (ibid., Chapter 1, §6).

Special Lagrangians. LetH D SU.m/ � SO.2m/. ThenH preserves not only
the standard Kähler form !0 but also the holomorphic volume form �0. It turns
out that Re.�0/ is a calibration on Cm. In fact, the following holds Harvey and
Lawson (1982, Theorem 1.14, p. 89):
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Lemma 2.63. Consider Cm D R2m with complex coordinates .z1; : : : ; zm/, let
!0 be the standard Kähler form and let �0 be the holomorphic volume form

�0 WD dz1
^ : : : ^ dzm:

Then
j� .e1; : : : ; em/j 6 1;

for all unit vectors e1; : : : ; em 2 Cm with equality if, and only if, V D

spanRfe1; : : : ; eng is a Lagrangian plane, i.e. !0jV � 0.

Corollary 2.64. Let .Z2m; !; � / be a Calabi–Yau m�fold. Then Re.ei�� / is a
calibration on Z for any � 2 R.

Definition 2.65. Let .Z2m; !; � / be a Calabi–Yau m�fold, and let L be an ori­
ented real m�submanifold of Z. We call L a special Lagrangian submanifold
(or SLm�fold for short) if L is calibrated with respect to Re.� /. More generally,
if L is calibrated with respect to Re.ei�� /, for some real number � 2 R, then L
is called special Lagrangian with phase ei� .

Remark 2.66. Let L be an oriented real m�submanifold of Cm. Then it is easy
to see that L is a SL m�fold with phase ei� if, and only if, e�i�L is a SL m�fold.

˙
By Lemma 2.63, a m�submanifold L of a Calabi–Yau m�fold .Z2m; !; � /

admits an orientationmaking it a SLm�fold (with phase 1) if, and only if,!jL � 0

(i.e. L is Lagrangian) and Im.� /jL � 0. More generally, from Remark 2.66, it
follows thatL admits an orientation making it a special Lagrangian with phase ei�
if, and only if, !jL � 0 and .cos � Im.� /C sin �Re.� // jL � 0.

For more on special Lagrangian geometry, including several examples, we
refer the reader to Joyce (2007, Chapter 8).

Associative and coassociative submanifolds. LetH D G2 � SO.7/. The next
result follows from Harvey and Lawson (1982, Theorem 1.4, p. 113) and Remark
2.52.

Lemma 2.67. The 3�form �0 given by (2.15) and the 4�form  0 D ��0 are
calibrations on R7.

Corollary 2.68. Let .Y; g�/ be a G2�manifold. Then � and  D �� are calibra­
tions.
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Definition 2.69. An oriented 3�submanifold P (resp. 4�submanifold Q) of Y
is called associative (resp. coassociative) if P (resp. Q) is a ��calibrated (resp.
 �calibrated) submanifold (cf. Definition 2.54).

Example 2.70. Consider the model G2�manifold .R7; �0/ of Example 2.25 and
the natural orthogonal decomposition R7 D R3 ˚ R4, as in Remark 2.16. Then,
from the definition (2.15) of �0, with the natural choices of orientation ­ as pre­
scribed in Remark 2.16, it is easy to see that

P WD R3
� f0g � R3

˚ R4
D R7 is associative and

Q WD f0g � R4
� R3

˚ R4
D R7 is coassociative:

More generally, if .Z4; !; � / is a Calabi–Yau 2�fold and we let .Y 7 WD R3 �

Z; �/ be the G2�manifold of Example 2.30, then (with the obvious orientations)

P WD R3
� f0g � R3

˚Z D Y is associative and
Q WD f0g �Z � R3

˚Z D Y is coassociative:

The following result, which we state without proof, gives us a good source of
examples of associative and coassociative submanifolds.

Proposition 2.71. Let .Y; �/ be a G2�manifold with an isometric involution � ¤

1. If ��� D � (resp. if ��� D ��), then

Fix.�/ WD fp 2 M W �.p/ D pg

is a closed embedded associative (resp. coassociative) submanifold in Y .

We refer the reader to Joyce (2007, pp. 268­269) for a proof of the above result,
as well as examples of associative and coassociative submanifolds arising in this
way.

Example 2.72. The recent work by Corti et al. (2015) contains various concrete
examples of associative submanifolds in G2�manifolds, arising from the twisted
connected sum construction.

Next we state a reduction result to lower­dimensional calibrated geometries.
Its proof follows rather easily from the compatibility of the involved structures.

Proposition 2.73. Let .Z6; !; � / be a Calabi–Yau 3�fold and consider the cylin­
drical G2�manifold .Y WD R �Z; �/ of Example 2.31. Then:
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(a) N WD R � ˙ � Y associative (resp. coassociative) if and only if ˙ is a
complex curve (resp. special Lagrangian 3�fold with phase �i ).

(b) N � fxg �Z � Y is associative (resp. coassociative) if and only if N is a
special Lagrangian 3�fold (resp. complex surface).

Cayley submanifolds. LetH D Spin.7/ � SO.8/.

Lemma 2.74 (Harvey and Lawson (1982, Theorem 1.24)). The 4�form ˚0 given
by (2.33) is a calibration on R8.

Corollary 2.75. Suppose .X8; ˚/ is a Spin.7/�manifold. Then˚ is a calibration
on .X; g˚ /.

Definition 2.76. An oriented 4�submanifold L of X is called Cayley if L is a
˚�submanifold.

We can produce examples of Cayley 4�folds from lower dimensional simpler
calibrations cf. Examples 2.41 and 2.42.

Example 2.77. Let .Y 7; �/ be aG2�manifold and consider the Spin.7/�manifold
.X8 WD R � Y 7; ˚/ given by Example 2.41. Then:

(i) L is an associative 3�fold in Y if and only if R � L is Cayley in X .

(ii) For each x 2 R, L is a coassociative 4�fold in Y if and only if fxg � L is
Cayley in X .

Example 2.78. Let .Z8; !; � / be a Calabi–Yau 4�fold and consider the

Spin.7/�manifold
�
X8 WD Z8; ˚ WD

1

2
! ^ ! C Re.�0/

�
of Example 2.42.

Then:

(i) L is a holomorphic surface in Z if and only if L is Cayley in X .

(ii) L is a special Lagrangian 4�fold in Z if and only if L is Cayley in X .

2.3 Anti­selfduality in higher dimensions
We present two well established approaches to the notion of instanton in higher di­
mensions, which in fact coincide for (connected) Riemannian manifolds .M n; g/

whose holonomy group Hol.g/ is one of the following: U.m/ (n D 2m > 4), G2
(n D 7) and Spin.7/ (n D 8).



2.3. Anti­selfduality in higher dimensions 77

Instantons via closed .n � 4/�forms. This approach was originally explored
by physicists in Corrigan et al. (1983), for flat spaces; see also Baulieu, Kanno,
and Singer (1998), and further Tian (2000, Section 1.2). Suppose n > 4 and let
.M n; g/ be an oriented Riemannian manifold. Given � 2 ˝n�4.M/, we define
the following ��Hodge­type operator acting on 2�forms:

�� W �2T �M ! �2T �M

! 7! �.� ^ !/: (2.79)

We note that �� is trace­free, self­adjoint and satisfies �� D 0 if, and only if,
� D 0. Of course, for a givenG�bundleE ! M , there is also a natural extension
of �� to gE �valued 2�forms, acting trivially on the gE �component. This leads
to the following generalisation of the 4�dimensional notion of anti­selfduality.

Definition 2.80 (��ASD instantons). Let .M; g/ be an oriented Riemannianman­
ifold endowed with a closed .n � 4/�form � 2 ˝n�4.M/. Let E ! M be a
G�bundle, where G is a compact Lie group.

(i) Suppose that G is a semi­simple Lie group. In this case, a connection r 2

A.E/ on E is called a ��anti­selfdual instanton (��ASD instanton) if

� .� ^ Fr/ D �Fr : (2.81)

(ii) With no semi­simplicity hypothesis onG, it is convenient to relax the above
definition as follows (cf. Walpuski (2013b, Remark 1.90, p. 30)). Re­
calling the decomposition (1.4), a connection r 2 A.E/ on E is called
a ��anti­selfdual instanton (��ASD instanton) if the g

.0/
E �component

of Fr , instead of Fr , satisfies (2.81) and the z.g/�component of Fr is a
z.g/�valued harmonic 2�form5.

Remark 2.82. While (ii) indeed generalises (i), ��ASD instantons on a
G�bundle E are essentially equivalent to ��ASD instantons on the associated
G=Z.G/�bundle E �G G=Z.G/. In other words, we can always reduce to the
semi­simple case (i). ˙

5The g
.0/
E

�component of Fr is simply its trace­free component F 0
r
, and the z.g/�component

of Fr is simply
1

r
tr.Fr/˝ 1. Thus, r is a ��ASD instanton if, and only if, �.� ^ F 0

r
/ D �F 0

r

and tr.Fr/ is a harmonic 2�form.
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Remark 2.83. A case of particular interest encompassed by (ii) is G D

U.r/. For later purposes, we introduce some terminology. The quotient group
U.r/=Z.U.r// ' U.r/=U.1/, denoted henceforth by PU.r/, is called the pro­
jective unitary group of rank r . We call E a PU.r/�bundle when E is the
associated bundle zE �U.r/ PU.r/ of a U.r/�bundle zE. ˙

In the classical case of an oriented Riemannian 4�manifold .M; g/, there is
a natural choice of 0­form � , namely � D �dVg D 1, for which �� D �. Of
course, the corresponding ��anti­selfduality notion is precisely the familiar one
explained in Section 1.5.

For generic� , the algebraic equation (2.81) is an over­determined system and
admits no solutions at all (i.e. �1 need not be an eigenvalue of �� ; for instance,
when n D 4, let � be any constant function ¤ 1 and �1). In any case, similarly
to the classical 4�dimensional notion, if r 2 A.E/ is a ��ASD instanton, then
r is automatically a Yang–Mills connection. Indeed, for the case (i) of Definition
2.80, this is an immediate consequence of d� D 0 and the Bianchi identity (1.21):

dr � Fr D �dr.� ^ Fr/ D �. d�„ƒ‚…
D0

^Fr C .�1/n�4� ^ drFr„ƒ‚…
D0

/ D 0:

As for the general case (ii) of Definition 2.80, we have (compare with Tian (2000,
Lemma 1.2.1)):

Proposition 2.84. Let E be a G�bundle, where G is a compact Lie group, and
let r 2 A.E/. If r is a��ASD instanton (Definition 2.80 (ii)) then r is a Yang–
Mills connection. Moreover, if G D U.r/ andM is closed, we have the following
a priori L2�energy bound on r:

kFrk
2
L2 �

1

r
jtr.Fr/j

2
L2 D 4�2

��
2c2.E/ �

r � 1

r
c1.E/

2

�
[ Œ��; ŒM �

�
:

Proof. Since d.tr.Fr// D tr.drFr/ and r1 D 0, it follows from the Bianchi
identity (1.21) and the Leibniz rule that drF

0
r

D 0. Furthermore,

d�
rFr D d�

r

�
1

r
tr.Fr/˝ 1

�
˙ �dr

�
�F 0

r

�
D
1

r

�
d�tr.Fr/

�
˝ 1 � �dr

�
� ^ F 0

r

�
(F 0

r is ��ASD)

D 0� �
�
d� ^ F 0

r C .�1/n�4� ^ drF
0
r

�
(tr.Fr/ is harmonic)

D 0: (d� D 0 and drF
0
r D 0)
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This proves that r is Yang–Mills.
Suppose G D U.r/ andM is a compact manifold without boundary. First, by

(1.47) and (1.48), we have

4�2

�
2c2.E/ �

r � 1

r
c1.E/

2

�
D tr.Fr ^ Fr/ �

1

r
tr.Fr/ ^ tr.Fr/: (2.85)

Note that the decomposition Fr D F 0
r C

1

r
tr.Fr/˝1 is L2�orthogonal; indeed,

hF 0
r ; tr.Fr/˝ 1iL2 D �

Z
M

tr
�
F 0

r ^ �.tr.Fr/˝ 1/
�

D �

Z
M

tr.F 0
r ^ �tr.Fr//

D �

Z
M

tr.F 0
r/ ^ �tr.Fr/

D 0:

Thus

kFrk
2
L2 D kF 0

rk
2
L2 C k

1

r
tr.Fr/˝ 1k

2
L2 D kF 0

rk
2
L2 C

1

r
jtr.Fr/j

2
L2 : (2.86)

Now, F 0
r
is ��ASD, so

kF 0
rk

2
L2 D �

Z
M

tr.F 0
r ^ �F 0

r/ D

Z
M

tr.F 0
r ^ F 0

r ^�/:

On the other hand,

F 0
r ^ F 0

r D Fr ^ Fr �
2

r
tr.Fr/ ^ Fr C

1

r2
tr.Fr/ ^ tr.Fr/˝ 1:

Therefore,

kF 0
rk

2
L2 D

Z
M

tr.Fr ^ Fr ^�/ �
2

r

Z
M

tr.Fr/ ^ tr.Fr/ ^�

C
tr.1/
r2

Z
M

tr.Fr/ ^ tr.Fr/ ^�

D

Z
M

tr.Fr ^ Fr ^�/ �
1

r

Z
M

tr.Fr/ ^ tr.Fr/ ^�

Plugging this last equation in (2.86) and comparing with (2.85) gives the desired
result.
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Remark 2.87. Comparing the previous result, for e.g. G D SU.r/, with Propo­
sition 2.55 brings forth various similarities between ��ASD instantons and
��calibrated submanifolds: both are first order solutions of second order Euler–
Lagrange equations. Furthermore, these solutions in fact minimise their respec­
tive defining (energy/volume) functionals, attaining topological (energy/volume)
lower bounds. ˙

The following result, albeit straightforward from linear algebra, underlies the
relevance of calibrated submanifolds in the study of gauge theory, via the bubbling
phenomena in Chapter 4. In fact, it is the reason why the bubbling locus of a se­
quence of ��ASD instantons is ��calibrated, and why ASD instantons bubbles
off transversely (cf. Theorem B).
Proposition 2.88 (ASD instantons bubbles off transversely). Suppose n > 4 and
consider .Rn; g0/ with the standard flat metric g0. Let � 2 ˝n�4.Rn/ be a
calibration and let Rn D Rn�4 ˚ R4 be an orthogonal decomposition, with asso­
ciated projection map � W Rn ! R4. Let E be a G�bundle over R4 where G is
a compact Lie group. If I 2 A.E/ is a non­flat connection then the following are
equivalent:

(i) r WD ��I is a ��ASD instanton.

(ii) There exists an orientation on Rn�4 with respect to which it is calibrated
by � and I is an ASD instanton on R4.

Proof. Let us assume, without loss of generality, thatG is semi­simple, so that we
are in case (i) of Definition 2.80 (see Remark 2.82).

Let x1; : : : ; xn be oriented orthonormal coordinates of Rn such that
x1; : : : ; xn�4 are coordinates for Rn�4. Set

˚n�4 WD dx1
^ : : : ^ dxn�4 and ˚4 WD �˚n�4 D dxn�3

^ : : : ^ dxn;

and
� D ˛˚n�4 C�0;

for some ˛ 2 R and �0 2 ˝n�4.Rn/, such that �0jRn�4 D 0. Then, it is clear
that

� .� ^ Fr/ D ˛ � .˚n�4 ^ Fr/: (2.89)
(i))(ii): Choose (temporarily) ˚4 to be the orientation of R4. Then, from (2.89)
and the assumption of (i) we get6

�FI D ˛ �R4 FI :

6Recall that Fr D ��FI and that � is a submersion.
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Since FI ¤ 0, it follows that ˛ D ˙1 (the possible eigenvalues of � on�2.R4/�).
If ˛ D 1, we are done. If ˛ D �1, just choose the reverse orientation on R4 (note
that this changes �R4 by a minus sign).
(ii))(i): We can assume that ˚n�4 is positively oriented, with respect to the
orientation on Rn�4 predicted by (ii). For, otherwise, recalling that n > 4,
we can simply make the coordinate change .x1; : : : ; xn�4; xn�3; : : : ; xn/ 7!

.x1; : : : ;�xn�4;�xn�3; : : : ; xn/.
Thus, by assumption, ˛ D 1. Also, we fix the compatible orientation given by

˚4 on R4. Then, using (2.89) and the hypothesis that FI is ASD, we get

�.� ^ Fr/ D ��.�R4FI / D ���FI D �Fr ;

as claimed.

Appropriate .n � 4/�forms and Riemannian holonomy groups.
(cf. Alekseevsky, Cortés, and Devchand (2003, pp. 8­9) and S. Salamon (1989, p.
61))

Wewill show that manifolds with reduced holonomy are an appropriate setting
to find natural closed .n� 4/�forms � , for which the ��ASD criterion (2.81) is
meaningful.

On M n, n > 4, an appropriate .n � 4/�form � 2 ˝n�4.M/ is such that
the symmetric operator �� (2.79) admits �1 as one of its (necessarily real) eigen­
functions.

Suppose H � SO.n/ is a Lie subgroup preserving a nonzero 4�form 	0 2

�4.Rn/�. Then, ifM is endowed with aH�structure P � F.M/, we automati­
cally get a corresponding well­defined nowhere zero 4�form ˚ onM , pointwise
linearly identified with 	0. Explicitly, ˚ 2 ˝4.M/ is defined by

	x WD .u�1
x /�	0;

for any chosen frame ux 2 Px , for all x 2 M . This is well­defined, since any
two frames ux; zux 2 Px are related by the right multiplication of an element in
H : zux D h�1 ı ux , for some h 2 H . Thus, the H�invariance of 	0 ensures
.u�1

x /�	0 D .zu�1
x /�	0.

By the same reasoning, sinceH � SO.n/, it follows thatM has the structure
of an oriented Riemannian manifold. In particular, we are able to define � WD

�	 2 ˝n�4.M/. Notice that the matrix of �� with respect to any H�frame
u 2 P is constant and equal to the matrix of the operator ��0

acting on�2.Rn/�,
where �0 WD �	0 2 �n�4.Rn/�. Since ��0

is a nonzero symmetric operator
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(indeed, �0 ¤ 0), it admits a nonzero eigenvalue 0 ¤ � 2 R. Thus, it follows
that ���1� is an appropriate .n � 4/�form onM .

There are several examples of subgroups H � SO.n/ admitting nonzero
H�invariant 4�forms. Suppose H � SO.n/ is a closed Lie subgroup with Lie
algebra h � so.n/ ' �2.Rn/�. Then, the Killing form Kh of h can be seen
as an H�invariant element of S2.h/ � S2

�
�2.Rn/�

�
. Thus, we can define a

correspondingH�invariant 4�form 	H
0 on Rn by

	H
0 WD alt.Kh/ 2

�
�4.Rn/�

�H
;

where alt W S2
�
�2.Rn/�

�
! �4.Rn/� denotes the alternation map. If a manifold

M is endowed with a H�structure, we denote by 	H the induced 4�form on
M . When H is the holonomy group of a Riemannian manifold, this yields the
following result S. Salamon (1989, Lemma 5.3).

Lemma 2.90. Let .M; g/ be a Riemannian manifold with holonomy group H �

SO.n/. Then, the above procedure defines a nowhere zero parallel 4�form	H on
M , except possibly whenH is the isotropy representation of a symmetric space.

	H is often called the fundamental 4�form associated to the holonomy reduc­
tion. Since 	H is Dg�parallel, it follows that it is a harmonic 4�form, so that
�H WD �	H defines a closed .n � 4/�form onM . As observed earlier, modulo
rescaling, �H defines an appropriate .n � 4/�form onM .

Now suppose H � SO.n/ is a simple Lie group, e.g. H D G2 � SO.7/ or
Spin.7/ � SO.8/ (cf. Theorems 2.18 and 2.34). Since �H

0 is by construction
H�invariant, the operator ��H

0
trivially commutes with the action of H , so by

Schur’s lemma the irreducible representations of H in �2.Rn/� are eigenspaces
for ��H

0
. SinceH is simple, it follows that the Lie algebra h � so.n/ ' �2.Rn/�

is an eigenspace for ��H
0
.

In the situation of Lemma 2.90, it follows that the natural subbundle zh �

�2T �M determined by h is one of the eigenbundles of the operator ��H . If 0 ¤

� D const. is the corresponding eigenvalue, then scaling �H by ���1 yields an
appropriate closed .n�4/�form z�H onM , whose �1 eigenbundle is precisely zh.
The corresponding z�H �anti­selfduality notion is then a natural constraint coming
from the holonomy reduction of .M; g/, in analogy with the constraints imposed
by the holonomy group on the Riemann curvature tensor (cf. Proposition 2.6).
This leads us to another the notion of instanton in higher dimensions, which we
will now briefly describe.
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Instantons via Lie groups. There is a generalised notion of instanton available
for any oriented Riemannianmanifold .M n; g/ equippedwith anN.H/�structure
Carrión (1998). LetH � SO.n/ be a closed Lie subgroup. Then we can write

�2.Rn/� ' so.n/ D h ˚ h?: (2.91)

Recall that
�2T �M D F.M/ �SO.n/ �

2.Rn/�:

If M has an H�structure, then the decomposition (2.91) readily goes over to
2�forms onM . However, in practice, one often has aN.H/�structure instead of
aH�structure, whereN.H/ � H denotes the normaliser ofH in SO.n/. So, sup­
pose .M; g/ has an N.H/�structure P � F.M/. Since H is closed, it follows
that N.H/ is a closed Lie subgroup of SO.n/. Moreover, one can easily verify
that h � n.h/ DW Lie.N.H// is invariant under the adjoint action of N.H/. This
means that the lie algebra h determines a distinguished subbundle zh of �2T �M :

zh WD P �N.H/ h � �2T �M:

In particular, if E ! M is a G�bundle, using the metric g we get an associated
orthogonal projection map

�h W �2T �M ˝ gE ! zh ˝ gE :

Definition 2.92. SupposeM is endowed with aN.H/�structure, and letE ! M

be a G�bundle with compact semi­simple structure group. A connection r 2

A.E/ is called anH�instanton if

�hFr D Fr ;

i.e. if the curvature 2�forms F i
j lies in the subspace h � �2.

For instance, in the classical case of a 4�manifold, M comes equipped with
a N.H/ D SO.4/�structure, for H D SU.2/. Then a SU.2/�instanton corre­
sponds to the ordinary notion of (A)SD instanton: h D su.2/ ' �2

˙
.

When looking for manifolds endowed with an N.H/�structure, a natural
guess consists of Riemannian manifolds with reduced holonomy. In particular,
we are led to consider each N.H/ arising in Berger’s list (2.7) of special geome­
tries.
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n H N.H/ � SO.n/
4 SU.2/ SO.4/

2m > 4 SU.m/ U.m/
7 G2 G2

8 Spin.7/ Spin.7/

Table 2.1: Certain Lie groups H � SO.n/ whose normaliser N.H/ in SO.n/ is
a Lie group appearing in Berger’s list.

Let .M; g/ be an oriented Riemannian n�manifold with Hol.g/ D N.H/ ¨
SO.n/, whereN.H/ ¤ SO.4/ is one of the groups in Table 2.1 (cf. Carrión (1998,
p. 6, Table 1)). By the construction of the last paragraph, we have a naturally
associated parallel 4�form ˚N.H/ arising from the holonomy reduction. It turns
out that the corresponding notions of H�instanton and z�N.H/�ASD instanton
induced on auxiliary G�bundles E ! M are coincident, provided z�N.H/ is an
appropriate rescaling of�N.H/. In the next sections we briefly study each of these
cases.

2.3.1 Hermitian–Yang–Mills connections
The following definition is motivated by the discussion in Section 1.5:

Definition 2.93. Let .Z; !/ be a Kähler manifold and let E ! Z be a SU.r/�
or a PU.r/�bundle. A connection r 2 A.E/ is called Hermitian–Yang–Mills
(HYM) if

F
0;2
r

D 0 and �!Fr D 0: (2.94)
Here �! is the dual of the Lefschetz operator L! WD ! ^ �.

Remark 2.95. Recalling Definition 2.80 (ii) and Remark 2.82, one can also work
with U.r/�bundles and, instead of the second part of (2.94), require that�!Fr D

�1E , for some � 2 iR. In this case, if we suppose .Z; !/ is a compact (without
boundary) Kähler manifold, the value of � is topologically determined, as follows.
Denote by g the underlying Riemannian metric of .Z; !/; thus,

dVg D
!m

mŠ
and � ! D

!m�1

.m � 1/Š
:

Recalling (1.47), it follows that

c1.E/ ^ �! D �r
!m

mŠ
:
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Therefore
� D

mhc1.E/ [ Œ!�m�1; ŒZ�i

rhŒ!�; ŒZ�i
:

˙
It follows from Corollary 1.71 that a HYM connection r 2 A.E/ induces a

holomorphic structure E on E.
In order to highlight the importance of HYM connections, let us briefly review

the so­called Donaldson–Uhlenbeck–Yau correspondence, after Donaldson (1985)
and Uhlenbeck and Yau (1986). While a thorough discussion of this result (and its
far­reaching repercussions in geometric analysis and algebraic geometry) would
be awfully beyond the scope of this text, we kindly refer the interested reader to
the excellent books by Kobayashi (2014) and Lübke and Teleman (1995).

Let E ! Z be a holomorphic vector bundle over the compactKähler manifold
.Z; !/. For a coherent subsheaf F � E , we define respectively the first Chern
class, the !­degree, and the !­slope, by 7

c1.F/ WD c1.detF��/;

deg!.F/ WD

Z
Z

c1.F/ ^ !m�1;

�!.F/ WD
deg!.F/
rank.F/

:

E is then called:

• stable if �!.F/ < �!.E/, for each coherent subsheaf F � E with 0 <
rank.F/ < rank.E/.

• polystable if E D
L

i Ei where each Ei is stable and satisfies �!.Ei / D

�!.E/.

The following deep result was proved by Donaldson (1985) for complex alge­
braic surfaces, and again by Uhlenbeck and Yau (1986) for compact Kähler man­
ifolds. It gives a very general relation between Yang–Mills theory over Kähler
manifolds and Mumford–Takemoto’s theory of stability:

Theorem 2.96 (Donaldson–Uhlenbeck–Yau). Let E be an SU.r/� or a
PU.r/�bundle over a compact Kähler manifold .Z; !/. There exists a one­to­
one correspondence between gauge equivalence classes of HYM connections on

7F� WD Hom.F ;OZ/, where OZ is the structure sheaf of Z.
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E and isomorphism classes of polystable holomorphic bundles E whose underly­
ing bundle is E.

The following straightforward result realises HYM connections as a particular
instance of ��ASD instantons, for suitable choice of � .

Lemma 2.97. Let E be an SU.r/� or a PU.r/�bundle over a Kähler manifold
.Z2m; !/ of complex dimension m > 2. Consider the following closed .2m �

4/�form � on Z:

� WD
!m�2

.m � 2/Š
:

Then, a connection r 2 A.E/ is a ��ASD instanton if, and only if, r is HYM.

Finally, let H D SU.m/ � SO.2m/, so that N.H/ D U.m/. If !0 is the
standard Kähler form on R2m, then S. Salamon (1989, Chapter 3):

�2.R2m/� D ŒŒ�2;0��˚ Œ�
1;1
0 �˚ h!0i;

where ŒŒ�2;0�� ˝ C D �2;0 ˚ �0;2 and Œ�1;1
0 � ˝ C D �

1;1
0 WD ker .�!0

j�1;1/.
Furthermore, via the isomorphism so.2m/ ' �2.R2m/�, one has

h D su.m/ ' Œ�
1;1
0 �:

It follows that, for SU.r/� or PU.r/�bundles, the notions of SU.m/�instantons
(Definition 2.92) and HYM connections coincide.
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2.3.2 G2�instantons

This section is based on Walpuski (2013b, Chapter 1) and D. A. Salamon and
Walpuski (2017).

Proposition 2.98 (D. A. Salamon and Walpuski (ibid., Theorem 8.4)). �2.R7/�

decomposes orthogonally into

�2.R7/� D �2
7 ˚�2

14;

where�2
7 and�2

14 are irreducible representations ofG2, with dim �2
d

D d , given
by

�2
7 WD f˛ W ��0

˛ D 2˛g D fv y �0 W v 2 R7
g ' �1

7; and
�2

14 WD f˛ W ��0
˛ D �˛g D f˛ W ˛ ^  0 D 0g ' g2 � Lie.G2/;

where  0 WD ��0, and the last isomorphism comes from the metric identification
�2.R7/ ' so.7/ � g2.

It follows that we have an analogous splitting of �2T �Y for every almost
G2�manifold .Y 7; �/. By slight abuse of notation, we will also denote the corre­
sponding summands by �2

d
. Moreover, we can now extend for general compact

Lie groups G the notion of G2�instanton on G�bundles given in Definition 2.92
as follows.

Definition 2.99. Let .Y 7; g�/ be a G2�manifold and let E be a G�bundle over
a Y , where G is a compact Lie group. A connection r 2 A.E/ is called a
G2�instanton if r is a ��ASD instanton (Definition 2.80).

Remark 2.100. In the above situation, suppose further thatG is semi­simple. Then,
by Proposition 2.98, a G2�instanton r 2 A.E/ is characterised by the following
equivalent conditions:

(i) �.� ^ Fr/ D �Fr ;

(ii) Fr ^  D 0;

(iii) �7.Fr/ D 0, for the orthogonal projection �7 W �2T �Y ! �2
7;

(iv) Fr lies in g2 ˝ .gE /y � �2T �
y Y ˝ .gE /y , at each y 2 Y . ˙
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Example 2.101. By Proposition 2.6 and Remark 2.100 (iv), the Levi­Civita con­
nectionDg� of a connected G2�manifold .Y 7; g�/ is a G2�instanton on the tan­
gent bundle T Y .

In the next example, we give an extension to the case n D 7 and � D �0 of
Proposition 2.88.

Example 2.102 (G2�instantons from ASD instantons). Let .Z4; !; � / be a
Calabi–Yau 2�fold and consider the G2�manifold .Y 7; �/ of Example 2.30,
where Y 7 WD R3 �Z4 (resp. Y 7 WD T 3 �Z4); write �Z W Y ! Z for the natural
projection map. The following result relates R3�invariant (resp. T 3�invariant)
G2�instantons over Y with ASD connections over Z:

Proposition 2.103. Let E ! Z be a G�bundle with compact semi­simple struc­
ture group. A connection I 2 A.E/ is an ASD instanton if, and only if, r WD ��

ZI

is a G2�instanton.

Proof. Note that

�.� ^ Fr/ D �.dx123
^ Fr/ D ��

Z.�ZFI /;

using ! ^ Fr D Re.� / ^ Fr D Im.� / ^ Fr D 0, and the compatibility of �
with the product structures on Y . Since �Z is a submersion and Fr D ��

ZFI , the
result follows.

Remark 2.104 (G2�instanton equations inR7). Consider the model G2�manifold
.R7; �0/ of Example 2.25. Let zE ! R7 be a (necessarily) trivial G�bundle with
compact semi­simple structure group, and letr 2 A. zE/. In Euclidean coordinates
x1; : : : ; x7,

Fr D
1

2

X
Fij ˝ dxi

^ dxj ; Fij W R7
! g:

By Remark 2.100, r is a G2�instanton if, and only if, Fr ^  0 D 0, with  0 WD

��0 given by

 0 D dx4567
� dx1247

� dx1256
� dx2345

� dx2367
� dx3146

� dx3175:

By a straightforward computation:

Fr ^  0 D .�F16 C F25 � F34/˝ dx123456
C .�F17 C F24 C F35/˝ dx123457

C .�F14 � F27 C F36/˝ dx123467
C .�F15 � F26 � F37/˝ dx123567

C .F12 � F47 � F56/˝ dx124567
C .F13 C F46 � F57/˝ dx134567

C .F23 � F45 � F67/˝ dx234567:
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Hence, r is a G2�instanton if, and only if,8̂̂̂<̂
ˆ̂:
F25 D F16 C F34I F12 D F47 C F56I

F17 D F24 C F35I F57 D F13 C F46I

F27I F23 D F45 C F67I

F62 D F15 C F37:

(2.105)

Now write R7 D R3 ˚ R4 as in Remark 2.16. Denoting by � W R7 ! R4

the natural projection, suppose that zE D ��E is the pull­back of a G�bundle
E ! R4 and that r D ��I , for some I 2 A.E/. Then, it follows explicitly
from (2.105) and (1.63) that r is a G2�instanton if, and only if, I is an ASD
instanton. Recalling from Example 2.70 that R3 � f0g � R7 is �0�calibrated,
this gives an explicit instance of Proposition 2.88 (for n D 7 and � D �0).

Example 2.106 (G2�instantons from HYM­connections). Let .Z6; !; � / be a
Calabi–Yau 3�fold and consider the G2�manifold .Y 7; �/ of Example 2.31,
where Y 7 WD R �Z6 (resp. Y 7 WD S1 �Z6); denote by �Z W Y ! Z the natural
projection map. The following result relates R�invariant (resp. S1�invariant)
G2�instantons over Y with HYM connections over Z (cf. Sá Earp (2015, Propo­
sition 8) or Sá Earp and Walpuski (2015, Proposition 3.10)):

Proposition 2.107. LetE be an SU.r/� or a PU.r/�bundle overZ. A connection
r 2 A.E/ is HYM if, and only if, ��

Zr is a G2�instanton.

Sketch of proof. The main point is to note that, in this context of a Calabi–Yau
3�fold, the HYM condition (2.94) is equivalent to

Fr ^ Im.� / D 0 and Fr ^ ! ^ ! D 0:

The claim follows from

 D �.dt ^ ! C Re.� // D
1

2
! ^ ! � dt ^ Im.� /;

since ��
Zr is a G2�instanton precisely when F��

Zr ^  D 0.

Remark 2.108. This basic result gives a way to obtain G2�instantons on the ACyl
building blocks Y 7

˙
WD S1 � Z6

˙
of the twisted connected sum construction, by

solving the HYM problem on Z6
˙
. This is indeed the stated motivation for the

construction of HYM connections on such spaces (see below). ˙
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Over the past decade, non­trivial examples of G2�instantons have gradually
been constructed, in several contexts. Let us review some significant examples.

The first non­trivial construction appeared in Sá Earp (2009), initiating a
project to construct G2�instantons over twisted connected sums. A method to
produce large amounts of examples, by means of the Hartshorne–Serre correspon­
dence on 3­folds, was described in Jardim et al. (2017). A gluing theorem for
such solutions, under suitable compatibility and transversality assumptions, was
formulated in Sá Earp andWalpuski (2015), and explicit examples satisfying those
conditions were further found in Menet, Nordström, and Sá Earp (2015) and Wal­
puski (2016). A thorough survey of this track can be found in Sá Earp (2018).

Along a different track, Walpuski (2013a,b) presented a method for construct­
ing G2�instantons over G2�manifolds arising from Joyce’s generalised Kummer
construction Joyce (1996, 2000), providing some concrete examples with structure
group SO.3/.

More recently, Jacob and Walpuski (2018) proved an analogue of the
Donaldson–Uhlen beck–Yau theorem (cf. Theorem 2.96) for asymptotically cylin­
drical Kähler manifolds, handling reflexive sheaves. This provides examples of
(singular) HYM connections over a certain class of complete noncompact Kähler
manifolds, generalizing the result of Sá Earp (2015).

Another interesting construction of G2�instantons, due to Clarke (2014), pro­
vides non­trivial examples on the trivial SU.2/�bundle over the total space of
the spinor bundle S.S3/ of the round 3�sphere S3, as in Bryant and S. Salamon
(1989).

Finally, a recent exciting trend consists of constructions of G2­instantons on
spaces with symmetries, in particular cohomogeneity­one actions. Instances can
be found in Ball and Oliveira (2019), Clarke and Oliveira (2019), and Lotay and
Oliveira (2018).

Topological energy bounds from Chern–Weil theory. Suppose .Y 7; g�/ is a
compact G2�manifold and let E be an SU.r/�bundle over Y . For r 2 A.E/,
write Fr D F 7

r
˚ F 14

r
according to the decomposition of �2 induced by �� .

Define the topological number

�.E; Œ��/ WD hc2.E/ [ Œ��; ŒY �i :
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Then we have:

8�2�.E; Œ��/ D

Z
Y

tr.Fr ^ Fr/ ^ �

D �hFr ;�.Fr ^ �/i

D �hF 7
r C F 14

r ; 2F 7
r � F 14

r i

D �2kF 7
rk

2
L2 C kF 14

r k
2
L2

On the other hand, YM.r/ D kF 7
r

k2
L2 C kF 14

r
k2

L2 . Therefore

YM.r/ D 3kF 7
rk

2
L2 C 8�2�.E; Œ��/ D

1

2

�
3kF 14

r k
2
L2 � 8�2�.E; Œ��/

�
:

Hence, if �.E; Œ��/ > 0 then G2�instantons are absolute minima ofYM attaining
the topological energy bound 8�2�.E; Œ��/; if �.E; Œ��/ < 0 then E does not
admit G2�instantons at all.

2.3.3 Spin.7/�instantons

This section is based on Walpuski (2013b, Chapter 1) and D. A. Salamon and
Walpuski (2017).

The following result can be found in D. A. Salamon and Walpuski (ibid., p.
52, Theorem 9.5).

Proposition 2.109. �2.R8/� decomposes orthogonally into

�2.R8/� D �2
7 ˚�2

21;

where �2
7 and �2

21 are irreducible representations of Spin.7/, with dim �2
d

D d ,
given by

�2
7 WD f˛ W �˚0

˛ D 3˛g

�2
21 WD f˛ W �˚0

˛ D �˛g ' spin.7/;

where the last isomorphism comes from the metric identification �2.R8/ '

so.8/ � spin.7/.
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It follows that we have an analogous eigenspace decomposition of �2T �X

with respect to �˚ for every almost Spin.7/�manifold .X8; ˚/. By slight abuse
of notation, we will also denote the corresponding summands by �2

d
.

In the light of the above result, we now extend for general compact Lie groups
G the notion of Spin.7/�instanton on G�bundles given in Definition 2.92.

Definition 2.110. Let .X8; ˚/ be a Spin.7/�manifold and let E be a G�bundle
over X where G is a compact Lie group. A connection r 2 A.E/ is called a
Spin.7/�instanton if r is a ˚�ASD instanton (cf. Definition 2.80).

Remark 2.111. In the above situation, suppose further thatG is semi­simple. Thus,
by Proposition 2.109, a connection r 2 A.E/ is a Spin.7/�instanton precisely
when one of the following equivalent conditions holds:

(i) �.˚ ^ Fr/ D �Fr ;

(ii) �7.Fr/ D 0, where �7 denotes the orthogonal projection from �2T �X to
�2

7;

(iii) The curvature tensorFr lies in the subspace spin.7/˝.gE /x � �2T �
x X˝

.gE /x at each x 2 X . ˙

Example 2.112. It follows from Proposition 2.6 and Remark 2.111 (iii) that if
.X8; g˚ / is a connected Spin.7/�manifold, thenDg˚ is a Spin.7/�instanton on
TX .

Example 2.113 (Spin.7/�instantons from G2�instantons). Let .Y 7; �/ be a
G2�manifold and consider the associated Spin.7/�manifold .X8; ˚/ of Exam­
ple 2.41, where X8 WD R � Y 7 (resp. X8 WD S1 � Y 7). The following re­
sult relates R�invariant (resp. S1�invariant) Spin.7/�instantons over X with
G2�instantons connections over Y :

Proposition 2.114. Let E be a G�bundle over Y , where G is a compact semi­
simple Lie group. A connection r 2 A.E/ is a G2�instanton if, and only if, ��

Y r

is a Spin.7/�instanton.

Proof. By Remark 2.111, we know that r is a G2�instanton () � ^ Fr D

� �Y Fr ()  ^ Fr D 0. Thus, noting that

�.˚ ^ F��
Y r/ D �.dt ^ ��

Y .� ^ Fr/C ��
Y . ^ Fr//

D ��
Y .�Y .� ^ Fr//C ���

Y . ^ Fr/;

we are done.
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Example 2.115. Spin.7/�instantons were the subject of Lewis’ Ph.D. thesis,
Lewis (1999). He constructs a non­trivial example on a SU.2/�bundle over a par­
ticular compact Riemannian 8�manifold, obtained by Joyce (1996), with holon­
omy exactly Spin.7/. More recently, a construction for Spin.7/�instantons on
8�manifolds arising from Joyce (1999) was given by Tanaka (2012), and Wal­
puski (2017b) proved an existence theorem that applies to the construction of
Spin.7/�instantons on Spin.7/�manifolds with suitable local K3 Cayley fibra­
tions and in particular recovers the example constructed by Lewis. Moreover,
Clarke (2014) constructed a (symmetric) Spin.7/�instanton with structure group
SU.2/ on the Bryant–Salamon Bryant and S. Salamon (1989) negative spinor bun­
dle S�.S4/, which is smooth away from the Cayley base (zero section) S4, and
blows up along the later.

Complex ASD instantons. In this brief paragraph, we introduce the notion of
complex ASD instanton over Calabi–Yau 4�folds and realise it as a particular
instance of the notion of Spin.7/�instanton. Complex ASD instantons and its
underlying ‘complex gauge theory’ was notably studied by R. Thomas in his
Ph.D. thesis, Thomas (1997); see also Donaldson and Thomas (1998).

Let .Z8; !; � / be a Calabi–Yau 4�fold and consider the following operator:

�� W ˝0;p.Z/ ! ˝0;4�p.Z/

! 7! �.! ^ � /;

where �W �p;qT �Z ! �n�p;n�qT �Z is the usual anti­linear Hodge star opera­
tor on Kähler manifolds. It follows that �� gives an endomorphism

�� W ˝0;2
! ˝0;2

which is self­adjoint and squares to the identity, splitting ˝0;2 orthogonally into
real subspaces ˝0;2

˙
corresponding to the eigenvalues ˙1, in complete analogy

with the familiar real 4�dimensional case.

Definition 2.116. A connection r 2 A.E/ on an SU.r/� or a PU.r/�bundle E
over Z8 is called a complex ASD instanton if

�� F
0;2
r

D �F
0;2
r
: (2.117)

We can fit this notion into the context of ��ASD instantons as follows. Con­
sider on .Z8; !; � / the natural Spin.7/�structure ˚ of Example 2.42. Then we
have:
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Lemma 2.118. Let E be an SU.r/� or a PU.r/�bundle over Z8 and let r 2

A.E/. Thenr is a complex ASD instanton if, and only if,r is a Spin.7/�instanton
with respect to ˚ .

The proof of this lemma is just a matter of unraveling the definitions and taking
account of bi­degrees.

Topological energy bounds from Chern–Weil theory. Suppose .X8; ˚/ is a
compact Spin.7/�manifold and letE be a SU.r/�bundle overX . Let r 2 A.E/
and write Fr D F 7

r
˚F 21

r
according to the decomposition of�2 induced by �˚ .

Define the topological number

�.E; Œ˚�/ WD hc2.E/ [ Œ˚�; ŒX�i :

Then

8�2�.E; Œ˚�/ D

Z
X

tr.Fr ^ Fr/ ^ ˚

D �hFr ;�.Fr ^ ˚/i

D �hF 7
r C F 21

r ; 3F 7
r � F 21

r i

D �3kF 7
rk

2
L2 C kF 21

r k
2
L2

On the other hand, YM.r/ D kF 7
r

k2
L2 C kF 21

r
k2

L2 . Therefore

YM.r/ D 4kF 7
rk

2
L2 C 8�2�.E; Œ˚�/ D

1

3

�
4kF 21

r k
2
L2 � 8�2�.E; Œ˚�/

�
:

Hence, if �.E; Œ˚�/ > 0 then Spin.7/�instantons are the absolute minima ofYM,
which attains the topological energy bound 8�2�.E; Œ˚�/; if �.E; Œ˚�/ < 0 then
E does not admit Spin.7/�instantons at all.



3 Analytical
aspects of

Yang–Mills
connections

In this chapter we shall be interested in the analytical study of the weak­
convergence and regularity theory of Yang–Mills connections in dimensions
higher than (or equal to) four, following the seminal works of Uhlenbeck (1982a,b),
Price (1983), Nakajima (1988) and Tian (2000).

Section 3.1 briiefly surveys weak and strong Uhlenbeck compactness results
for connections with uniform Lp�bounds on curvature, where 1 < p < 1,
2p > n (Theorems 3.2 and 3.7). The section ends with a consequent compact­
ness result for Yang–Mills connections with locally uniformly bounded curva­
tures (modulo passing to a subsequence) allowing for noncompact base manifolds.
Thenceforth we leave the general setting of arbitrary dimensions and consider only
higher dimensional base manifolds.

In Section 3.2 we deduce Price’s monotonicity formula for Yang–Mills fields
(Theorem 3.24), as well as its interesting corollary implying that there is no non­
flat Yang–Mills connection with finite L2�energy over the standard (flat) Eu­
clidean space Rn for n > 5. Next, in Section 3.3, we derive a local estimate,
due to Uhlenbeck and Nakajima, for the L1�norm of Yang–Mills fields with
sufficiently small normalized L2�norm on small geodesic balls (Theorem 3.33).
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Then in Section 3.4 we derive a noncompactness phenomenon along sets of Haus­
dorff codimension at least four, for general sequences of Yang–Mills connections
with uniformly L2�bounded curvatures (Theorem 3.48).
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Convention 3.1. Throughout this chapter, unless otherwise stated, .M; g/ denotes
a connected, oriented, Riemannian n�manifold, and E denotes a G�bundle over
M , where G is a compact Lie group.

3.1 Uhlenbeck’s compactness theorems

In her seminal paper Uhlenbeck (1982a), Uhlenbeck proved the local existence
of the so­called Coulomb gauges for connections with local Ln=2�norm of the
curvature sufficiently small. In particular, this enabled her to prove a global weak
compactness theorem for arbitrary fields with bounded Lp�norm, for some p >
n=2.

Let us now review the so­called compactness results of Uhlenbeck, following
closely the excellent book by Wehrheim (2004). Our exposition will in fact be
rather sketchy, because the results we recall here require a fair amount of back­
ground outside of our intended scope. This section is intended only to organise,
for future reference, the main ideas of some important compactness results.

Weak Uhlenbeck compactness. Unless otherwise stated, we suppose our base
manifoldM to be compact, with (possibly empty) boundary.
Recall from Proposition 1.26 that for 1 < p < 1 such that p > n

2
, the

space of W 2;p gauge transformations G2;p.E/ forms a topological group (with
respect to composition) which acts continuously on the space of W 1;p connec­
tions A1;p.E/. In particular, we may consider the topological quotient Mp WD

A1;p.E/=G2;p.E/. In this context, Uhlenbeck’s weak compactness theorem as­
serts the weak compactness of subsets of the form fŒr� 2 Mp W kFrkp 6 �g,
for any constant � > 0. Indeed, we can state it as follows (cf. Uhlenbeck (1982a,
Theorem 1.5) and Wehrheim (2004, Theorem 7.1, p. 108)):

Theorem 3.2 (Uhlenbeck). Suppose 1 < p < 1 is such that 2p > n. Let
frig � A1;p.E/ be a sequence of connections such that kFri

kp is uniformly
bounded. Then, after passing to a subsequence, there exist gauge transformations
gi 2 G2;p.E/ such that g�

i ri converges weakly in A1;p.E/.

The main step in the proof of this weak compactness theorem is to show
that ‘Coulomb gauges’ exist over small trivializing neighborhoods U � M

of E. In a fixed local trivialization EjU ' U � Kr , note that the spaces
A1;p.EjU / and G2;p.EjU / are represented, respectively, byW 1;p.U; T �U ˝ g/
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andW 2;p.U;G/. In the following theoremWehrheim (2004, p. 91, Theorem 6.1),
for A 2 W 1;p.U; T �U ˝ g/ and g 2 W 2;p.U;G/, we use the notations:

FA WD dAC A ^ A;

Eq.A/ WD kFAk
q

Lq.U /
; and

g�A WD g�1Ag C g�1dg:

Theorem 3.3 (Local Coulomb gauge). Let 1 < q 6 p < 1 be such that q > n
2
,

p > n
2
and, in case q < n, assume in addition p 6 nq

n�q
. Then there exist

constants �0 > 0 and 
0 > 0 such that the following holds: for each x 2 M ,
given any neighborhood zU of x inM there exists a geodesic ball U � zU around
x such that for every A 2 W 1;p.U; T �U ˝ g/ with Eq.A/ 6 
0 there exists a
gauge transformation g 2 W 2;p.U;G/ such that g�A is in Coulomb gauge, i.e.
the following holds:

(i) d�.g�A/ D 0.

(ii) � .g�A/ j@U D 0.

(iii) kg�AkW 1;q.U / 6 �0kFAkLq.U /.

(iv) kg�AkW 1;p.U / 6 �0kFAkLp.U /.

Remark 3.4. In Wehrheim (ibid., Remark 6.2 (a), p. 91), it is shown that the
theorem also holds for the case q D p D

n
2
provided n > 3. In this way, the above

theorem is a generalization of Uhlenbeck’s original version Uhlenbeck (1982a,
Theorem 1.3), which corresponds to the case q D

n
2
and n > p > n

2
of the above

result1. ˙
The above theorem is proved by first solving the boundary value problem

given by (i)­(ii) and then deducing (iii)­(iv) from a priori bounds. Such a priori
bounds are given by the following regularity result.

Theorem 3.5 (Regularity for d ˚ d�). Let .M; g/ be a compact n�manifold with
(possibly empty) boundary and let 1 < p < 1. Then, there exists a constant
C > 0 such that for every A 2 W 1;p.M; T �M/ satisfying �Aj@M D 0 we have

kAk1;p 6 C
�
kdAkp C kd�Akp C kAkp

�
:

1“(...) it seems that in order to obtain aW 1;p�control in (iv) for p > n, one needs small energy
for q > n

2 .” Wehrheim (2004, Remark 6.2 (c), p. 92).



3.1. Uhlenbeck’s compactness theorems 99

Moreover, if in addition H 1.M;R/ D 0, then we can drop the kAkp term on the
RHS of the above estimate.

In fact, given the local aspect of Theorem 3.3, one actually first reduces the
general setting to model cases. Given x 2 M and ı > 0, according to weather
x 2 int.M/ or x 2 @M , we may find an appropriate domain B � Rn, a constant
� 2�0; 1� and a chart  � W B ! M centered at x such that2

k��2 �
�g � 1k2;1 6 ı:

Thus, by working in such special local coordinates, it suffices to prove the local
Coulomb gauge theorem whenM D B is equipped with a smooth metric g satis­
fying kg � 1k2;1 6 ı, for some sufficiently small ı > 0, and then examine the
effect of rescaling the metric.

A key property of a local Coulomb gauge, explored in the proof of Theorem
3.2, is that in such a gauge we can pass the uniform Lp�control on the curva­
tures Fri

to a uniform W 1;p�control on the connections matrices (cf. Theorem
3.3 (iv)). Thus, by the reflexiveness of the Sobolev spaces W 1;p, in each local
Coulomb gauge we can extract a weakly W 1;p�convergent subsequence of the
connections ri (as a consequence of the Banach–Alaoglu theorem ­ see Appendix
B). Ultimately, one has to patch together these local gauges in a suitable way to
complete the proof of the weak compactness theorem.

For the sake of completeness, we state below a general patching result. First,
fix in G the natural bi­invariant Riemannian metric induced by h�; �ig and let dG

denote the Riemannian distance function in G with respect to such metric. Next,
let �exp > 0 be the radius of a convex geodesic ball B�exp.1G/ � G centered at
1G , such that the following holds:

1. The exponential map exp restricted to B�exp.0/ � g is a diffeomorphism
onto B�exp.1G/.

2. For all g; h 2 B�exp.1G/ there exists a unique minimal geodesic from g to
h and this lies within B�exp.1G/.

Lemma 3.6 (Wehrheim (2004, p. 111, Lemma 7.2)). LetM be an n�manifold and
let p > n

2
. Suppose fU˛g is a locally finite open covering ofM by precompact sets

U˛, where ˛ runs a countable index set I . Then there exist open subsets V˛ � U˛

still coveringM such that the following holds.
2Here we are identifying  �

� g with its matrix representation in canonical coordinates, and 1

denotes the identity matrix of order n.
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(i) Let k 2 N and let g˛ˇ ; h˛ˇ 2 GkC1;p.U˛ \ Uˇ / be two sets of transition
functions satisfying the cocycle conditions and

dG.g˛ˇ ; h˛ˇ / 6 �exp; 8˛; ˇ 2 I:

Then there exist local gauge transformationsh˛ 2 GkC1;p.V˛/ for all˛ 2 I

such that on all intersections V˛ \ Vˇ we have

h�1
˛ h˛ˇhˇ D g˛ˇ :

(ii) Let the h˛ˇ in (i) run through a sequence hi
˛ˇ

of sets of transition functions
such that g˛ˇ ; h

i
˛ˇ

2 GkC1;p.U˛ \ Uˇ / for all k < K, where K > 2 is an
integer or K D 1. Assume that for every ˛; ˇ 2 I and k < K there is a
uniform bound on k.hi

˛ˇ
/�1dhi

˛ˇ
kW k;p.U˛\Uˇ/.

Then the gauge transformations hi
˛ in (i) are constructed in such a way that

for every ˛ 2 I and k < K they satisfy hi
˛ 2 GkC1;p.V˛/ and

sup
i2N

k.hi
˛/

�1dhi
˛kW k;p.V˛/ < 1:

StrongUhlenbeck compactness. In this paragraph, unless otherwise stated, we
suppose our base manifoldM is a compactmanifold with (possibly empty) bound­
ary3.
Besides the generality and power of the weak compactness theorem, it can be
greatly improved when we restrict ourselves to sequences of (weak) Yang–Mills
connections.

Theorem 3.7 (Strong Uhlenbeck compactness). Let 1 < p < 1 be such that
p > n

2
and, in case n D 2, assume in addition p > 4

3
. Let frig � A1;p.E/

be a sequence of weak Yang–Mills connections such that kFri
kp is uniformly

bounded. Then, after passing to a subsequence, there exist gauge transformations
gi 2 G2;p.E/ such that fg�

i rig � A.E/ is a sequence of smooth Yang–Mills
connections that converges to a smooth Yang–Mills connection r 2 A.E/ in
C1�topology.

The key result in the proof of the strong Uhlenbeck compactness is the exis­
tence of global relative Coulomb gauges.

3It is important to note that, in such context, we consider the Yang–Mills equation d�
r
Fr D 0

with the boundary condition �Fr j@M D 0 (see the footnote of number 18 in Chapter 1).
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Theorem 3.8 (Relative Coulomb gauge). Let 1 < p 6 q < 1 be such that
p > n

2
and 1

n
> 1

q
> 1

p
�

1
n
. Fix a reference connection r0 2 A1;p and let a

constant c0 > 0 be given. Then there exist constants ı > 0 and C > 0 such that
the following holds. For every r 2 A1;p with

kr � r0kq 6 ı and kr � r0k1;p 6 c0;

there exists a gauge transformation g 2 G2;p.E/ such that

(i) d�
r0
.g�r � r0/ D 0.

(ii) kg�r � r0kq 6 Ckr � r0kq .

(iii) kg�r � r0k1;p 6 Ckr � r0k1;p.

By iteration of regularity results, one of the consequences of the relative
Coulomb gauge theorem is the following:

Theorem 3.9 (Regularity of weak Yang–Mills connections). Let 1 < p < 1 be
such that p > n

2
and, in case n D 2, assume in addition p > 4

3
. Then, for every

weak Yang–Mills connection r 2 A1;p.E/ there exists a gauge transformation
g 2 G2;p.E/ such that g�r is a smooth connection.

Once one proves such results, the strong Uhlenbeck compactness (Theorem
3.7) is basically reduced to the weak Uhlenbeck compactness (Theorem 3.2) with­
out using a further patching argument4. The argument, due to Dietmar Salamon,
can be outlined as follows (cf. Wehrheim (2004, p. 153)). First, by the weak
compactness theorem, after passing to a subsequence, we may find gauge trans­
formations gi 2 G2;p.E/ such that g�

i ri converges in the weak W 1;p�topology
to some r 2 A1;p.E/. It can be shown that r also is a weak Yang–Mills con­
nection5, so that after a gauge transformation we can suppose it is smooth (by
Theorem 3.9). Moreover, after passing to a further subsequence, we can suppose
that kri � rk1;p is bounded and that, for a suitable 1 < p 6 q < 1 such that
the Sobolev embedding W 1;p ,! Lq is compact, the ri converges to r in the
Lq�norm. Finally, one puts the connections ri in relative Coulomb gauge with

4The ‘standard’ proof of the strong compactness theorem essentially follows the same line of
argument of the proof of the weak compactness: one finds local Coulomb gauges in which one
has convergent subsequences and then use a patching construction to obtain global gauges (see e.g.
Donaldson and Kronheimer (1990, §4.4.2�4.4.3)).

5Here one needs p > 4
3 in case n D 2.
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respect r (Theorem 3.8). The C1�convergence follows from the fact that the
Yang–Mills equation together with the relative Coulomb gauge condition form an
elliptic system, thus provide uniform bounds on all W k;p�norms of the connec­
tions, and the compactness then follows from the compact Sobolev embeddings
(Theorem B.13 (ii)).

Compactness theorem for smooth Yang–Mills connections. We finish this
section with a compactness result for smooth Yang–Mills connections whose proof
follows the same line of argument of the proof of the weak Uhlenbeck compact­
ness.

Theorem 3.10. Let frig � A.E/ be a sequence of smooth Yang–Mills connec­
tions with the following property. For each x 2 M , there exist a neighborhood
U of x and a subsequence fi 0g � fig such that jFri0 j is uniformly bounded on
U . Then there exist a single subsequence fi 00g � fig, a sequence of smooth gauge
transformations fgi 00g � G.E/ and a smooth Yang–Mills connection r 2 A.E/
such that the sequence g�

i 00ri 00 converges to r in C1�topology on compact sub­
sets ofM .

The proof of Theorem 3.10 uses the local Coulomb gauge Theorem 3.3, ellip­
tic regularity, Arzelà­Ascoli and the following standard patching argument from
Donaldson and Kronheimer (1990, Corollary 4.4.8, p. 160):

Proposition 3.11. Let frig � A.E/ be a sequence of smooth connections with
the following property. For each x 2 M , there exist a neighborhood U of x, a
subsequence fi 0g � fig, and gauge transformations fgi 0g � G.EjU / such that
g�

i 0ri 0 is convergent in C1�topology on compact sets in U . Then there exist a
single subsequence fi 00g and smooth gauge transformations gi 00 2 G.E/ such that
g�

i 00ri 00 converges in C1�topology on compact sets over all ofM .

One of the goals of the next two sections is to achieve a compactness the­
orem for Yang–Mills connections in dimension n > 4 assuming only that the
L2�norm of the curvatures are uniformly bounded. (Recall from Proposition
2.84 that we have a priori L2�energy bound for ��ASD instantons, provided
G is semi­simple.) One then needs to use a priori estimates to bound the point­
wise norm of curvature and the convergence will be possible only away from a
blow­up set where the L2�energy of the sequence concentrates (cf. Section 3.4,
Theorem 3.48).
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3.2 Price’s monotonicity formula
For the rest of this chapter, we assume that n WD dimM > 4.

Price’s monotonicity formula Price (1983) is a key result in the analysis
of Yang–Mills fields in higher dimensions. In particular, it allows normalized
L2�energy estimates on balls to pass down to smaller balls. Following Tian (2000,
§2.1), in this section we derive (a slightly modified version of) Price’s result that
will play a pivotal role in the rest of this work.

A variational formula. We start by deriving a variational formula for the Yang–
Mills action along vector fields with compact support (cf. Tian (ibid., pp. 208­210)
and Price (1983, pp. 141­146)).

Let X 2 X.M/ be a vector field with compact support and denote by f�tg the
flow ofX , i.e. the induced 1�parameter family of diffeomorphisms �t W M ! M .
Note that each �t restricts to the identity map outside the support of X .

Given a smooth connection r 2 A.E/ with YM.r/ < 1, the flow of
X induces a compactly supported variation frtg of r as follows. Denote by
Pt W Ex ! E�t .x/ the parallel transport, with respect to r, along the path
f�s.x/g06s6t (cf. Section 1.2). Note that Pt acting on sections of E gives rise to
sections of the induced bundle ��

t E, in such a way that

Pt .f s/ D .��
t f /Pts; (3.12)

for each f 2 C1.M/ and s 2 � .E/.
For each t , consider the pull­back connection ��

t r on ��
t E ! M (see 1.1)

and define:

rts WD .Pt /
�1
�
��

t r
�
.Pts/; for each s 2 � .E/:

It is clear that r0 D r. To verify that each rt indeed defines a connection,
note first that linearity follows from the fact that Pt (therefore .Pt /

�1) and ��
t r

are linear maps. Moreover, for every f 2 C1.M/ and s 2 � .E/ we have:

rt .f s/ D .Pt /
�1
�
��

t r
�
.Pt .f s//

D .Pt /
�1
�
��

t r
�
..��

t f /Pts/ (by (3.12))
D .Pt /

�1
�
d.��

t f /˝ .Pts/C ��
t f .�

�
t r/.Pts/

�
(��

t r is a connection)
D ��

�t

�
d.��

t f /
�

˝ s C ��
�t

�
��

t f
�
.Pt /

�1
��
��

t r
�
.Pts/

�
(by (3.12))

D df ˝ s C f rts:
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Now, for each t , we have F��
t r D ��

t Fr , so that the associated curvature Frt

is given by
Frt

D .Pt /
�1

ı .��
t Fr/ ı Pt :

Therefore:

Frt
.Y;Z/ D .Pt /

�1
� Fr.d�t .Y /; d�t .Z// � .Pt /; 8Y;Z 2 X.M/: (3.13)

We now wish to calculate
d
dt

YM.rt /
ˇ̌̌
tD0

. Given a local orthonormal frame
feig of TM , we have

jFrt
j
2.x/ D

X
i;j

jFrt
.ei .x/; ej .x//j

2
g

D
X
i;j

jFr.d�t .ei .x//; d�t .ej .x///j
2
g (by (3.13) and Adinvariance):

Thus, we can write6

YM.rt / D

Z
M

X
i;j

jFr.d�t .ei .x//; d�t .ej .x///j
2
gdVg.x/:

By changing variables, we get

YM.rt / D

Z
M

X
i;j

jFr.d�t .ei .�
�1
t .x///; d�t .ej .�

�1
t .x////j2gJac.�

�1
t /dVg.�

�1
t .x//:

Now note that
d
dt
�
d�t .ej .�

�1
t .x///

� ˇ̌̌
tD0

D �ŒX; ei �.x/;

and
d
dt
�
Jac.��1

t /.x/dVg.�
�1
t .x//

� ˇ̌̌
tD0

D
d
dt
�
.��1

t /�dVg

�
.x/
ˇ̌̌
tD0

D
�
L�XdVg

�
.x/

D �.div X/.x/dVg.x/:

6Note that we can always cover M with open subsets over which TM trivializes by means
of orthonormal frames ­ the tangent bundle of a Riemannian manifold is an O.n/�bundle; pick a
partition of unity subordinate to such a cover to localize the integrand.
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Thus, the Leibniz rule and the chain rule give (cf.Tian (2000, pp. 209­210)):

d
dt

YM.rt /
ˇ̌̌
tD0

D �

Z
M

0@jFr j
2div X C 4

nX
i;j D1

hFr.ŒX; ei �; ej /; Fr.ei ; ej /ig

1A dVg :

IfD denotes the Levi­Civita connection of .M; g/, note that we can write

nX
i;j D1

hFr.ŒX; ei �; ej /; Fr.ei ; ej /ig

D �

nX
i;j D1

�
hFr.Dei

X; ej /; Fr.ei ; ej /ig � hFr.DXei ; ej /; Fr.ei ; ej /ig

�
(D is torsion­free)

D �

nX
i;j D1

 
hFr.Dei

X; ej /; Fr.ei ; ej /ig �

nX
kD1

g.DXei ; ek/hFr.ek; ej /; Fr.ei ; ej /ig

!
:

Further, sinceD is compatible with g,

nX
i;j;kD1

g.DXei ; ek/hFr.ek; ej /; Fr.ei ; ej /ig

D �

nX
i;j;kD1

g.DXek; ei /hFr.ek; ej /; Fr.ei ; ej /ig

D �

nX
i;j;kD1

g.DXek; ei /hFr.ei ; ej /; Fr.ek; ej /ig (symmetry of h�; �ig)

D �

nX
i;j;kD1

g.DXei ; ek/hFr.ek; ej /; Fr.ei ; ej /ig: (interchanging names of i and k)

So we conclude that
nX

i;j D1

hFr.ŒX; ei �; ej /; Fr.ei ; ej /ig D �

nX
i;j D1

hFr.Dei
X; ej /; Fr.ei ; ej /ig:

Summing up the above calculations, we have the following formula for the
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first variation of YM along X :

d
dt

YM.rt /
ˇ̌̌
tD0

D �

Z
M

0@jFr j
2div X � 4

nX
i;j D1

hFr.Dei
X; ej /; Fr.ei ; ej /ig

1A dVg :

(3.14)
If r is a Yang–Mills connection, recalling Proposition 1.52, we deduce the varia­
tional formula:Z

M

0@jFr j
2div X � 4

nX
i;j D1

hFr.Dei
X; ej ; Fr.ei ; ej /i

1A dVg D 0: (3.15)

We shall see that this stationary condition turns out to be the main ingredient in
the proof of Price’s monotonicity.

A word on notation. Henceforth, we will use the following notations concern­
ing any (connected) Riemannian manifold .M; g/:

• dg : Riemannian distance function on .M; g/ (see e.g. Aubin (1982, §2.1)).

• Br.p/ � Br.pIg/: open dg�ball of radius r > 0 and center p.

• Br.p/ � Br.pIg/: closed dg�ball of radius r > 0 and center p.

• injg.p/: injectivity radius of .M; g/ at p.

• injg.M/ WD inffp 2 M W injg.p/g.

• �g : natural Radon measure on M associated to the Riemannian metric g
and a given orientation7.

The monotonicity formula. We prove a monotonicity formula for Yang–Mills
fields due to Price (1983); its proof follows Price’s original arguments with almost
no modifications.

The metric g enters into the problem as follows. For each fixed point p 2 M ,
we let 0 < rp < injg.p/ be a small enough radius with the following prop­
erties: there are normal coordinates x1; : : : ; xn centered at p in the geodesic
ball Brp

.p/ such that, for some constant c.p/ > 0, the metric components
gij WD g.@=@xi ; @=@xj / satisfies the following estimates:

7see Example A.11 of Appendix A.
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1. jgij � ıij j 6 c.p/jxj2.

2. j@kgij j 6 c.p/jxj.

Note that, from the key properties gij .p/ D 0 and @kgij .p/ D 0 of normal
coordinates, the Taylor expansions of gij and @kgij at p show that the constants
rp and c.p/ can be chosen depending only on injg.p/ and the curvature of g; thus,
for instance, when g is flat we can take any rp < injg.p/ and c.p/ D 0.

It will then be convenient to introduce the following class of Riemannian man­
ifolds:

Definition 3.16 (Bounded Geometry). Let .M n; g/ be a complete Riemannian
n�manifold and let k 2 N0. We say that .M n; g/ has bounded geometry up to
order k when the following conditions are satisfied:

(I ) the global injectivity radius of .M n; g/ is positive:

injg.M/ > 0: (3.17)

(Bk) the Riemannian curvatureRg and its covariant derivatives up to order k are
uniformly bounded: for each j 2 f0; : : : ; kg, there exists cj 2 RC such
that

k.Dg/jRg
kL1.M/ 6 cj : (3.18)

Example 3.19. (Manifolds of bounded geometry) The following are examples of
manifolds with bounded geometry of any (i.e. infinite) order:

• .Rn; gE /, where gE is the standard Euclidean metric;

• Any compact Riemannian manifold .M n; g/; indeed, both the injectivity
radius and the (derivatives of the) curvature are continuous functions, so
these attain maxima and minima onM .

• Riemannian manifolds with a transitive group of isomorphisms (in partic­
ular, symmetric spaces). Indeed, the finite injectivity radius and estimates
on (derivatives of) the curvature at any single point translate to a uniform
estimate for all points under isomorphisms;

• Asymptotically conical (AC) and asymptotically cylindrical (ACyl) Rie­
mannian manifolds with one end. An AC (resp. ACyl) manifold is a non­
compact complete Riemannian manifold which outside a compact subset
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K � M is diffeomorphic to a product manifold .1;1/r �N , where .N; gN /

is a closed connected Riemannian manifold, and such that the pullback of g
outsideK by such diffeomorphism converges (in all derivatives) to the cone
metric dr2Cr2gN at a polynomial rate (resp. cylindrical metric dr2CgN at
an exponential rate). For precise definitions, see e.g. Pacini (2013, §6). For
the ACyl case the bounded geometry is a simple consequence of the defini­
tion together with the fact that a Riemannian product of spaces of bounded
geometry is of bounded geometry. As for the AC case, one can appeal to
the formulas for the curvature of a warped product metric, cf. Gromoll and
Walschap (2009, Proposition 2.2.2).

In this general setup of Riemannian manifolds of bounded geometry, we have
the following result on uniform geometric control of small geodesic balls (cf. Eich­
horn (1991)):

Theorem 3.20. Let .M n; g/ be a complete Riemannian n�manifold of bounded
geometry up to order k > 1. Then there exists a constant ı0 with 0 < ı0 <

injg.M/, such that the metric up to its k�th order derivatives and the Christoffel
symbols up to its .k� 1/�th order derivatives are bounded in normal coordinates
of radius ı0 around each p 2 M , and the bounds are uniform in p.

In particular, in the base case of manifolds of bounded geometry up to order 1,
one can prove the following more precise result (cf. Hebey (2000, p. 16, Theorem
1.3)):

Theorem 3.21. Let .M n; g/ be a complete Riemannian n�manifold of bounded
geometry up to order 1, i.e. satisfying (3.17) and (3.18) with k D 1. Then there
are positive constants c D c.n; c0; c1/ and ı D ı.n; c0; c1/ depending only on
n, c0 and c1, such that the components gij of g in geodesic normal coordinates
at p satisfy: for any i; j; l D 1; : : : ; n and any x 2 Bı0

.0/ � Rn, with ı0 WD

minfı; injg.M/g,

(i) 4�1ıij 6 gij .expp.x// 6 4ıij (as bilinear forms);

(ii) jgij .expp.x// � ıij j 6 cjxj2 and

(iii) j@lgij .expp.x//j 6 cjxj.

Moreover, one has that

lim
.c0;c1/!0

ı.n; c0; c1/ D C1 and lim
.c0;c1/!0

c.n; c0; c1/ D 0:
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Convention 3.22. From now on, whenever .M n; g/ is of bounded geometry up
to order 1, we let 0 < ı0 < injg.M/ be given by Theorem 3.21.

Notation 3.23. In what follows we will always denote byO.1/ a quantity bounded
by a constant depending only on n WD dimM .

We are now in position to state and prove Tian (2000, Theorem 2.1.2, p. 212):

Theorem 3.24 (Price). Let p 2 M , and let rp and c.p/ be as above. Then there
exists a nonnegative constant a > O.1/c.p/ such that the following holds. Let
r 2 A.E/ be a Yang–Mills connection with finite L2�energy. Then for all 0 <
s < r 6 rp we have:

ear2

r4�n

Z
Br .p/

jFr j
2 dVg � eas2

s4�n

Z
Bs.p/

jFr j
2 dVg

> 4

Z
Br .p/nBs.p/

ea�2

�4�n

ˇ̌̌̌
@

@�
y Fr

ˇ̌̌̌2
dVg :

Here � WD dg.p; �/. Furthermore:

(i) If .M; g/ D .Rn; g0/, where g0 denotes the standard flat metric, then we
can take a D 0 and the above inequality holds for every p 2 M and r 2

�0;1Œ.

(ii) More generally, if M is of bounded geometry up to order 1, then we can
choose a uniform constant a > 0 depending only on the geometry of .M; g/,
so that the above inequality holds for every p 2 M and 0 < s < r 6 ı0.

Proof. Without loss of generality we can suppose r < rp; the case r D rp follows
by the obvious approximation argument. Let � be a C1 cut­off function on the
interval Œ0; rp�, and define the cut­off radial vector field

X D X� WD �.�/�
@

@�
:

Let feig16i6n be an orthonormal local frame of TM near p such that e1 D
@

@�
.

Recalling that the unit radial vector field
@

@�
is the velocity of a (radial) geodesic,

it follows that
D @

@�

@

@�
D 0:
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Thus

D @
@�
X D .��/0

@

@�
D .� 0�C �/

@

@�
:

Moreover, for i > 2, we have

Dei
X D ��Dei

@

@�
D �D�ei

@

@�
D �

nX
j D2

bij ej ;

where

bij WD g

�
D�ei

@

@�
; ej

�
.j D 2; : : : ; n/

satisfies
jbij � ıij j D O.1/c.p/�2:

By straightforward computations, we get

jFr j
2div X � 4

nX
i;j D1

hFr.Dei
X; ej /; Fr.ei ; ej /ig (3.25)

D � 0�jFr j
2

C .n � 4/�jFr j
2

CO.1/c.p/�2�jFr j
2

� 4� 0�

ˇ̌̌̌
@

@�
y Fr

ˇ̌̌̌2
:

We choose, for � 2 Œs; r�, �.�/ D �� .�/ D �
��

�

�
with � D �" 2 C1.Œ0;1Œ/,

" > 0 small so that .1 C "/r < rp (recall that r < rp), satisfying: �.t/ D 1 for
t 2 Œ0; 1�, �.t/ D 0 for t 2 Œ1C ";1Œ, and �0.t/ 6 0. Then

�
@

@�
.�� .�// D ��� 0

� .�/: (3.26)

Noting that �� .�/ ¤ 0 precisely when � 6 .1 C "/� , it follows from equations
(3.25), (3.26) and the variational formula (3.15) that

�
@

@�

Z
M

�� jFr j
2dVg C

�
.4 � n/CO.1/c.p/�2

� Z
M

�� jFr j
2dVg

D 4�
@

@�

Z
M

��

ˇ̌̌̌
@

@�
y Fr

ˇ̌̌̌2
dVg :



3.2. Price’s monotonicity formula 111

Choosing a nonnegative number a > O.1/c.p/, and multiplying the above equa­
tion by ea�2

�3�n, we get

@

@�

�
ea�2

�4�n

Z
M

�� jFr j
2dVg

�
D 4ea�2

�4�n @

@�

Z
M

��

ˇ̌̌̌
@

@�
y Fr

ˇ̌̌̌2
dVg (3.27)

C .�O.1/c.p/C 2a/ ea�2

�5�n

Z
M

�� jFr j
2dVg :

Since the second term of the RHS of (3.27) is nonnegative (therefore can be
dropped), the result follows by integrating over Œs; r� and letting " # 0.

The final assertions (i) and (ii) follows from Theorem 3.21.

Remark 3.28. Following the same arguments of the above proof, Tian (2000, The­
orem 2.1.1) proves a slightly generalized version of Theorem 3.24. He needs such
version of the formula to perform a proof of the existence of tangent conemeasures
of blow­up loci Tian (ibid., Lemma 3.2.1). By the direct way we will prove the
rectifiability of blow­up loci in Chapter 4, we will not need to provide a separated
proof for such existence result; see Theorem 4.14 and Remark 4.15. ˙

It follows from Price’s monotonicity that the map

r 7! r4�near2

Z
Br .p/

jFr j
2dVg

is non­decreasing for r 2 �0; rp�. This will be important in Chapter 4. Moreover,
we have the following curious corollary, showing in particular that for n > 5 every
finite­energy Yang–Mills connection over the Euclidean space Rn is necessarily
flat (see Price (1983, Corollary 2, p. 148)).

Corollary 3.29. Let r 2 A.E/ be a Yang–Mills connection with YM.r/ < 1

on a (necessarily trivial) G�bundle E over .Rn; g0/, where g0 is the standard
flat metric. If there is some x 2 Rn such that8

kFrk
2
L2.BR.x//

D o.Rn�4/ as R ! 1; (3.30)

then r is a flat connection. In particular, if n > 5 then r is flat.
8Here we use the standard little­o notation.
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Proof. Suppose, by contradiction, that Fr ¤ 0. Then there exists some R0 > 0

large enough so that

� WD R4�n
0 kFrk

2
L2.BR0

.x//
> 0:

On the other hand, for each R > R0, Theorem 3.24 (i) implies that

� 6 R4�n
kFrk

2
L2.BR.x//

:

Thus, makingR ! 1 and using the hypothesis (3.30) we conclude� 6 0 ()().
This proves the main statement.

For the final assertion, simply note that the constant function is o.Rn�4/when
n > 5, and that kFrk2

L2.BR.x//
6 YM.r/ D const. < 1 (by hypothesis) for

every x 2 Rn and R > 0.

Remark 3.31. The normalized L2�norm

r4�n

Z
Br .p/

jFr j
2dVg (3.32)

is also known as the scaling­invariant L2�norm of Fr . Indeed, scale g by �2, for
some � 2 RC, and let zg WD �2g. It follows easily that B�r .xI zg/ D Br.xIg/, for
all x 2 M . Furthermore, the pointwise inner product on 2�forms scales by ��4,
and the Riemannian volume n�forms scales by �n; thus,

.�r/4�n

Z
B�r .pIzg/

jFr j
2
zgdVzg D r4�n

Z
Br .p/

jFr j
2dVg :

˙

3.3 "�regularity theorem
Motivated by Schoen’s method Schoen (1984, Theorem 2.2) in proving the a pri­
ori pointwise estimate for stationary harmonic maps, Nakajima (1988, p. 387,
Lemma 3.1) combined Price’s monotonicity formula together with an appropri­
ate Bochner–Weitzenböck formula to obtain a localL1�estimate for Yang–Mills
fields satisfying a smallness condition on their normalized L2�norm over a suf­
ficiently small geodesic ball. Similar results also appears in earlier works by Uh­
lenbeck, see e.g. Uhlenbeck (1982b, Theorem 3.5) and Uhlenbeck and Yau (1986,
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Theorem 5.1)9. The following statement of Nakajima’s result, which we will re­
fer to as the "�regularity theorem, is adapted from Tian (2000, Theorem 2.2.1, p.
213).

Theorem 3.33 (Uhlenbeck–Nakajima). Let .M n; g/ be a complete oriented Rie­
mannian n�manifold of bounded geometry up to order 1, with dimension n > 4,
and let E be a G�bundle over M where G is a compact Lie group. Then there
exist scale invariant constants "0 > 0 and C0 > 0 such that the following holds.
Let r 2 A.E/ be a Yang–Mills connection with finite L2�energy. If p 2 M and
0 < r 6 ı0 are such that

" WD r4�n

Z
Br .p/

jFr j
2dVg < "0;

then
sup

x2B r
4

.p/

jFr j
2.x/ 6 C0r

�4":

This theorem is of fundamental importance in compactness theory of Yang–
Mills connections in higher dimensions. Following Tian (ibid.), in the next sec­
tion we will provide a key application of such result (cf. Theorem 3.48) which
implies that a sequence of Yang–Mills connections with uniformly L2�bounded
curvatures may fail to have a C1

loc�convergent subsequence modulo gauge trans­
formations. Indeed, the associated curvatures of such sequences of connections
satisfy the hypothesis of the above a priori estimate, provided we look at balls
outside a suitable subset S � M of Hausdorff codimension10 at least 4, where
the curvatures ‘blows up’. Only away from S we get uniform local bounds on the
curvatures, so that we can apply the standard techniques (cf. section 3.1) to extract
a C1�convergent subsequence.

The rest of this section is devoted to give a proof of Theorem 3.33. Our proof is
based on Tian (ibid., pp. 213­215), which explores the samemethod of Nakajima’s
proof Nakajima (1988, Lemma 3.1, pp. 387­388) but fits better in our present
notation. We will need the following preliminary lemmas.

Lemma 3.34 (Bochner type estimate). Suppose .M; g/ is an oriented Riemannian
n�manifold, and let E is a G�bundle over M . Given p 2 M and 0 < r <

injg.p/, there are constants c0; c00 > 0, where c0 depends at most on n and the

9The latter refers the reader to a paper by Uhlenbeck (n.d.) that was never published.
10See Definition A.14 for the notion of Hausdorff dimension.
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supremum bound of the Riemannian curvature Rg on Br.p/, and c00 depends at
most on n and G, such that the following holds. If r is a Yang–Mills connection
on E, then

��
g jFr j

2 > �c0
jFr j

2
� c00

jFr j
3 on Br.p/; (3.35)

where��
g WD �d�d W C1.M/ ! C1.M/ is the Laplace–Beltrami operator with

respect to g. In particular, if .M n; g/ is of bounded geometry up to order 1 (thus
satisfying (3.18) with k D 1), then (3.35) holds on Bı0

.p/ for any p 2 M , and
c0 D c0.n; c0/ depends only on n and c0.

Proof. We start noting that, for any � 2 ˝k.M;gE /, we have

��
g j�j2 D �d�dh�; �i D �2d�

hr�; �i

D 2 � d � hr�; �i D 2 � dh�r�; �i

D 2 � .hr � r�; �i C h�r�;r�i/ D 2
�
jr�j2 � hr

�
r�; �i

�
:

On the other hand, recalling the Bochner–Weitzenböck formula (1.25), for any
� 2 ˝2.M;gE / we can write

�r� D r
�
r� C fR; �g C fFr ; �g;

where the brackets f; g indicate algebraic multilinear expressions. Combining
these facts and using that �rFr D 0, i.e. r is a Yang–Mills connection, we
get:

0 D �2h�rFr ; Fri D �2hr�
rFr ; Fri C fR; Fr ; Frg C fFr ; Fr ; Frg

D ��
g jFr j

2
� 2jrFr j

2
C fR; Fr ; Frg C fFr ; Fr ; Frg

6 ��
g jFr j

2
C fR; Fr ; Frg C fFr ; Fr ; Frg:

Therefore
��

g jFr j
2 > �c0

jFr j
2

� c00
jFr j

3 on Br.p/;

where c0 > 0 is a constant depending only on n and the supremum bound of the
Riemannian curvature Rg on Br.p/, and c00 > 0 is a constant depending only on
n and G.

The next lemma, which we state without proof, is a standard mean­value type
inequality; see Gilbarg and Trudinger (2001, Theorem 9.20) andHohloch, Noetzel,
and D. A. Salamon (2009, Step 2 in the Proof of Theorem B.1).
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Lemma 3.36 (Mean­value inequality). Suppose .M n; g/ is a complete oriented
Riemannian n�manifold of bounded geometry up to order 1 (thus satisfying (3.18)
with k D 1). Then there exist c000 > 0, depending only on n, c0 and c1, with
the following significance. For every p 2 M , r 2 .0; ı0� and smooth function
f W Br.p/ ! Œ0;1/, one has

��
gf > �C H) f .p/ 6 c000

�
r�n

Z
Br .p/

f C Cr2

�
:

Now we prove Theorem 3.33. We start noting that since both the normalized
L2�energy of r and the stated L1�bound on jFr j2 are scale invariant (see e.g.
Remark 3.31), we can suppose r D 1. So we have

" WD

Z
B1.p/

jFr j
2dVg < "0; (3.37)

and we want to prove that for a sufficiently small "0 > 0, depending at most on
the geometry of .M n; g/ and G, we get the estimate

sup
x2B 1

4
.p/

jFr j
2.x/ 6 C0"; (3.38)

for some constant C0 > 0 depending at most on the geometry of .M n; g/ and G.
The proof we give here is based on the so­called ‘Heinz trick’ and follows

Walpuski (2017c, Appendix A). Consider the function � W B1=2.p/ ! Œ0;1/

given by

�.x/ WD

�
1

2
� d.p; x/

�4

jFr j
2.x/:

By continuity, � attains a maximum. Since � is non­negative and vanishes on the
boundary @B1=2.p/, it achieves its maximum

M WD max
B1=2.p/

�

in the interior of B1=2.p/. Now it will be convenient to introduce the following

Notation 3.39. Henceforth, we write x . y for x 6 cy, where c > 0 is a
generic constant which depends only on the geometry of .M n; g/ and possibly
on the structure group G of E.
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We will derive a bound forM of the formM . ", from which the assertion
of the theorem follows. Let x0 2 B1=2.p/ be a point with �.x0/ D M , set

F0 WD jFr j
2.x0/

and
s0 WD

1

2

�
1

2
� d.p; x0/

�
:

Note that
x 2 Bs0

.x0/ )

�
1

2
� d.p; x/

�
> s0:

Therefore,

x 2 Bs0
.x0/ ) jFr j

2.x/ 6 s�4
0 �.x/ 6 s�4

0 �.x0/ . F0:

In particular, it follows from Lemma 3.34 that

�g jFr j
2 . jFr j

2
C jFr j

3 . F0 C F
3=2
0 on Bs0

.x0/: (3.40)

(Here �g WD ���
g D d�d.) Now it follows from Lemma 3.36 that

F0 . s�n

Z
Bs.x0/

jFr j
2

C s2.F0 C F
3=2
0 /; 8s 6 s0:

Hence, the monotonicity (Theorem 3.24) implies

F0 . s�4"C s2.F0 C F
3=2
0 /; 8s 6 s0;

which we rewrite as

s4F0 . "C s6.F0 C F
3=2
0 /; 8s 6 s0: (3.41)

We now have two cases.

F0 6 1: in this case F 3=2
0 6 F0; hence, for each s 6 s0, it follows from (3.41)

that s4F0 6 c"C cs6F0, i.e.

s4F0 6
c"

1 � cs2
: (3.42)
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If cs2
0 6 1=2 then we obtain s4

0F0 . ", so that

M D �.x0/ . s4
0F0 . "I

otherwise, setting s WD .2c/�1=2 6 s0 and plugging into (3.42) yields F0 . ",
and thusM . s4

0F0 . ", since s0 6 1.

F0 > 1: in this case F0 6 F
3=2
0 , so that from (3.41) we derive

s4F0 6 c"C cs6F
3=2
0 ; 8s 6 s0: (3.43)

Thus, setting t D t .s/ WD sF
1=4
0 , the inequality (3.43) can be expressed as

t4.1 � ct2/ 6 c":

Now we can choose "0 > 0 sufficiently small, relatively to an amount depending
only on c, hence only on the geometry of .M; g/ and G, so that, for " 6 "0,
the corresponding equation t4.1� ct2/ D c" has four small (real) roots t1; : : : ; t4,
which are approximately˙.c"/1=4, and two large (complex) roots. Since t .0/ D 0

and t is continuous, t .s/must be less than the smallest positive (real) root for each
s 2 Œ0; s0�. Therefore, t .s/ . "1=4 for all s 2 Œ0; s0�; in particular,M . ". This
completes the proof of the theorem.

3.4 Convergence away from the blow­up locus

Let .M n; g/ be a complete oriented Riemanniann�manifold of bounded geometry
up to order 1 and dimension n > 4, and letE be aG�bundle overM whereG is a
compact Lie group. As we have seen in the last section, the "�regularity theorem
(Theorem 3.33) provides a priori local L1�bounds on the curvature of a Yang–
Mills connection r onE provided its normalizedL2�energy is sufficiently small.
Given a sequence frig of Yang–Mills connections with uniformly L2�bounded
curvatures, this previous result allows us to define a closed subset of points inM
around which the C 1�convergence (modulo gauge) of any subsequence necessar­
ily has to fail and outside of which there is a subsequence converging (modulo
gauge) in C1

loc . (cf. Nakajima (1988) and Tian (2000, Lemma 3.1.3)).
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Definition 3.44. The blow­up locus (or energy concentration set11) S D

S .frig/ of frig is the set

S WD
\

0<r6ı0

�
x 2 M W lim inf

i!1
ear2

r4�n

Z
Br .x/

jFri
j
2dVg > "0

�
; (3.45)

where a > 0 is the constant given by the monotonicity formula (Theorem 3.24
(ii)) and "0 > 0 is the constant given by the "�regularity theorem (Theorem 3.33).

Remark 3.46. We caution the reader that the notation and terminology used here
differ from those used in the main reference Tian (2000). Indeed, Tian denotes
the set S .frig/ by Sb .frig/ and reserves the name ‘blow­up locus’ for a certain
subset of Sb .frig/ which he denotes by Sb . The latter, in turn, is what we will
define to be the ‘bubbling locus’ � of frig (see Definition 4.9 and Remark 4.12).
In fact, we follow the terminology and notations used in a more recent work of
Walpuski (2017c), which makes the same sort of blow­up analysis explored in
Tian’s paper, based on Lin’s paper Lin (1999), albeit in the context of Fueter sec­
tions. The reader will find out in Chapter 4 the main reason for the terminology
‘bubbling locus’ (cf. Theorem 4.31 and Proposition 4.37). ˙

Notation 3.47. Henceforth, we denote by Hn�4 the .n � 4/�dimensional Haus­
dorff measure12 of the connected Riemannian n�manifold .M; g/.

Theorem 3.48 (Uhlenbeck–Nakajima). Let .M n; g/ be a complete oriented Rie­
mannian manifold of bounded geometry up to order 1 and dimension n > 4, and
letE ! M be aG�bundle with compact structure group. Suppose frig � A.E/
is a sequence of Yang–Mills connections with uniformly L2�bounded curvatures,
say YM.ri / 6 �. Then:

(i) The blow­up locus S of frig (cf. Definition 3.44) is a closed subset of M
andHn�4.S/ 6 C.n; g;G;�/ < 1.

(ii) There exist a subsequence of frig, still denoted by frig, a sequence of gauge
transformations gi 2 G.EjM nS /, and a smooth Yang–Mills connection r

on the restriction EjM nS , such that g�
i ri converges to r in C1

loc�topology
outside S .

(iii) M n S is the maximal open subset on which a subsequence frigi2I�N can
converge in C1

loc .
11This terminology is used in the context of harmonic map theory, see e.g. Lin (1999, p. 787).
12See Definition A.10 and Example A.11 of Appendix A
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Proof. (i): We divide the proof into two parts:

(a) S is closed.

(b) Hn�4.S/ 6 C.n; g;G;�/ < 1.

To prove (a), pick x0 2 M n S ; there exist 0 < r0 6 ı0 and a sequence
ij ! 1 such that

sup
j

r4�n
0

Z
Br0

.x0/

jFrij
j
2dVg < "0:

Applying the curvature estimate (3.33), we get

sup
j

sup
x2B r0

4

.x0/

jFrij
.x/j2 < C0"0r

�4
0 :

Thus, if we let K > 0 be such that �g.Br.x0// 6 rnK for all r 6 r0=8, we have

sup
j

sup
x2B r0

8

.x0/

ear2

r4�n

Z
Br .x/

jFrij
j
2dVg 6 ear2

r4KC0"0r
�4
0

D const.ear2

r4:

In particular, there exists some 0 < r 6 r0=8 small enough that

sup
j

sup
x2B r0

8

.x0/

ear2

r4�n

Z
Br .x/

jFrij
j
2dVg <

"0

2
;

whence we conclude that B r0
8
.x0/ � M n S .

Now we prove (b). Let 0 < ı < minf1; ı0g be arbitrary. Then we can find a
countable covering fB5r˛

.x˛/g of S such that x˛ 2 S and 10r˛ 6 ı for each ˛,
and .�/ the Br˛

.x˛/ are pairwise disjoint (see Theorem A.16). Thus
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X
˛

rn�4
˛ 6

ear2
˛

"0

X
˛

lim inf
i!1

Z
Br˛ .x˛/

jFri
j
2dVg (x˛ 2 S and r˛ 6 ı0)

6
ear˛

2

"0
lim inf
i!1

X
˛

Z
Br˛ .x˛/

jFri
j
2dVg

6
ear˛

2

"0
lim inf
i!1

Z
S

˛ Br˛ .x˛/

jFri
j
2dVg (�)

6
ea

"0
lim inf
i!1

Z
M

jFri
j
2dVg (r˛ 6 ı 6 1)

6
ea�

"0
: (YM.ri / 6 � for all i )

Since fB5r˛
.x˛/g covers S and 10r˛ 6 ı, we get

Hn�4
ı .S/ 6

X
˛

5n�4rn�4
˛ 6

5n�4ea�

"0
DW C;

where C D C.n; g;G;�/ > 0 is independent of ı. Thus, it follows that

Hn�4.S/ D lim
ı#0

Hn�4
ı .S/ 6 C:

(ii): By the proof of (i)­(a) above, for each x 2 M n S there exist a neigh­
borhood Ux of x in M n S and a subsequence fi

.x/
j g � fig such that jFr

i
.x/
j

j

is uniformly bounded on Ux . Thus, invoking Theorem 3.10, we can find a sin­
gle subsequence fij g � fig, gauge transformations gij

of E over M n S and a
smooth Yang–Mills connection r on EjM nS such that g�

ij
rij

converges to r in
C1
loc�topology outside S .
(iii): We prove that if S 0 is a closed subset of M such that a subsequence

frigi2I�N converges in C1
loc outside S 0, then S 0 � S . Indeed, suppose that

frigi2I�N converges inC 1 in a neighborhood of x 2 M . Then jFri
j is uniformly

bounded in this neighborhood. Hence, by the same reasoning of the proof of (i)­
(a), there is a slightly smaller neighborhood of x which is contained in X n S ; in
particular, x 2 X n S .
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Remark 3.49 (Uhlenbeck compactness of the moduli space of flat connections).
An easy application of the above theorem shows that the moduli space of flat
connections Mflat.E/ WD fr 2 A.E/ W Fr D 0g=G.E/ is compact in the natural
topology of C1

loc�convergence modulo gauge transformations. Indeed, if frig is
a sequence of flat connections on the G�bundle E, then frig trivially satisfies
the hypothesis of Theorem 3.48 and, furthermore, S.frig/ D ; (cf. Definition
3.45). Thus, after passing to a subsequence, we can find a Yang–Mills connection
r 2 A.E/ and gauge transformations gi 2 G.E/ such that g�

i ri converges to r

inC1
loc�topology onM . Clearly, the limit connectionr is necessarily flat, thereby

proving the claim. ˙
Remark 3.50. A special case is when n D 4: hereHn�4 D H0 is simply the count­
ing measure, hence Theorem 3.48 (i) implies that the blow­up set of any sequence
of Yang–Mills connections with uniformly bounded L2�energy on a G�bundle
over a complete, oriented Riemannian 4�manifold of bounded geometry is neces­
sarily finite. ˙

In the next chapter, we will examine the causes of this noncompactness phe­
nomenon along the blow­up set.



4 Structure of
blow­up loci

In this chapter we will make use of some basic results in geometric measure
theory. For the sake of completeness and textual linearity, we collect these results
together with the relevant definitions in Appendix A.

Let us study the structure of the blow­up set S of a sequence of Yang–Mills
connections frig with uniformly bounded energy. More specifically, we examine
the causes of the formation of S , its rectifiability and some of its geometry. We
follow mainly chapters 3 and 4 of Tian’s paper Tian (2000), with some adaptations
guided by the blow­up analysis approach in Walpuski (2017c).

In Section 4.1, we start noting that, after passing to a subsequence if necessary,
the Radon measures �i WD jFri

j2dVg have a weak* limit � D jFr j2dVg C �,
where r is the C1

loc�limit of ri outside S (after passing to a subsequence and
modulo gauge) and � � Hn�4bS is some (nonnegative) Radon measure singular
with respect to �g . Moreover, the .n � 4/�dimensional density function � of �
exists, is upper semi­continuous, vanishes outside S , is bounded and �.x/ > "0

for all x 2 S , where "0 > 0 is given by Theorem 3.33. We then proceed to show
that S decomposes into two closed pieces:

S D � [ sing.r/;
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where � WD supp.�/ and sing.r/ is the support of the .n�4/�dimensional upper
density of jFr j2dVg . Further, sing.r/ is shown to be an Hn�4�negligible set.
Next, in Section 4.2, we show a first regularity result for the blow­up locus: �
is a countably Hn�4�rectifiable set, i.e. at Hn�4�a.e. x 2 � the approximate
.n � 4/�dimensional tangent space Tx� exists, and � can be written as � D

�.�; �/Hn�4b� .
Section 4.3 is the core of this chapter. We analyze the behavior ofri for i � 1

near a smooth point x 2 � , i.e. a point x … sing.r/ at which Tx� is well­defined.
The main result is that, at any such x, there is a blowing up of the sequence frig

around the point x whose limitB.x/ is a non­flat Yang–Mills connection on TxM

which is, modulo gauge, the pull­back of a connection I.x/ on Tx�
? satisfying

the energy inequality
YM.I.x// 6 �.�; x/:

At this stage, we know that at each point x of the blow­up locus S the sequence
frig loses energy via bubbling and/or develops a singularity.

In Section 4.4 we turn to the case in which frig is a sequence of ��anti­
selfdual instantons, for some smooth .n� 4/�form� assumed to be a calibration
on the base manifold. In this case, we are able to show that, at any smooth point
x 2 � , the tangent space Tx� is calibrated by � , and each bubble I.x/ is a
non­flat ASD instanton. Moreover, when G D SU.r/, we prove that the natural
.n� 4/�current C.�;�/ defined by the triple .�;�; 1

8�2�/ satisfy the following
conservation of the instanton charge density:

tr.Fri
^ Fri

/ * tr.Fr ^ Fr/C 8�2C.�;�/:

These results, due to G. Tian (2000), show a striking relationship between gauge
theory and calibrated geometry: if � is a calibration then the blow­up locus of a
sequence of��anti­selfdual instantons defines a��calibrated integer rectifiable
current, i.e. a generalized (possibly very singular) ��calibrated submanifold.
Convention 4.1. Throughout this chapter, unless otherwise stated, .M; g/ denotes
a connected, complete, oriented Riemannian n�manifold of bounded geometry up
to order 1, with n > 4, andE denotes aG�bundle overM , whereG is a compact
Lie group.

4.1 Decomposition of blow­up loci

From now on we consider a sequence of Yang–Mills connections frig such that
YM.ri / 6 �; (4.2)
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for some uniform constant � > 0. By Uhlenbeck–Nakajima’s Theorem 3.48, we
may assume, after passing to a subsequence if necessary, that the ri converges
(modulo gauge) to a Yang–Mills connection r in C1

loc outside the blow­up locus
S D S.frig/ (cf. Definition 3.44). In this section, we shall investigate the causes
of the formation of the set S .

A key idea to study S is to consider the sequence of Radon measures f�ig

defined by
�i WD jFri

j
2�g :

Indeed, note that we can write S as

S D
\

0<r6ı0

�
x 2 M W lim inf

i!1
ear2

r4�n�i .Br.x// > "0

�
:

By the uniform L2�energy bound hypothesis (4.2), the sequence f�ig is of
bounded mass; therefore, it converges weakly* to a Radon measure � on M (cf.
Theorem A.28). Then, by Fatou’s lemma we getZ

M

f jFr j
2dVg 6 lim inf

i!1

Z
M

f jFri
j
2dVg D

Z
M

f d�;

for all f 2 C 0
c .M/. Thus, applying Riesz’s representation theorem (see Remark

A.26), there exists a unique (nonnegative) Radon measure � onM such that1

� D jFr j
2�g C �:

� is called the defect measure.

Lemma 4.3. �.M n S/ D 0. In particular, supp.�/ � S and � is singular with
respect to �g .

Proof. SinceM n S is an open set, by Theorem A.24 it suffices to prove that for
every f 2 C 0

c .X/ such that supp.f / � M n S and kf k1 6 1, we have

lim
i!1

Z
M

f jFri
j
2dVg D

Z
M

f jFr j
2dVg :

1More explicitly, � is the unique Radon measure onM such thatZ
M
f d� D

Z
M
f d� �

Z
M
f jFr j

2dVg ; 8f 2 C 0
c .M/:
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Denote by K the (compact) support of f inM n S , and consider, for each i 2 N,
the functions

�i WD f jFri
j
2 and  i WD �K jFri

j
2:

It’s clear that j�i j 6  i for each i 2 N.
By hypothesis, there exists a sequence fgig � G.EjM nS / such that g�

i ri !

r in C1
loc on M n S . Thus, using the invariance jFri

j D jFg�
i

ri
j, (and the fact

that �g.S/ D 0 � see below,) when i ! 1 we have

�i ! � WD f jFr j
2 �g�a.e. onM;

and
 i !  WD �K jFr j

2 uniformly onM:

Moreover, from the uniform bound YM.ri / 6 �, we automatically have
�i ; �;  i ;  2 L1.�g/.

Finally, note that the uniform convergence  i !  implies

lim
i!1

Z
M

 idVg D

Z
M

 dVg ;

since the  i are supported in a compact set and �g is Radon. Therefore, from a
well­known version of the dominated convergence theorem (see Folland (2013, p.
59, exercise 20.)), it follows that

lim
i!1

Z
M

�idVg D

Z
M

�dVg ;

as we wanted.
The assertion that supp.�/ � S follows from the fact that M n S is an open

subset with �.M nS/ D 0 (cf. Definition A.2). Moreover, the fact that S is closed
and has finite .n�4/�dimensional Hausdorff measure (cf. Theorem 3.48) implies
that �g.S/ D Hn.S/ D 0, so that � is singular with respect to �g .

In what followswewill see that the weak* limit measure�, and its components
jFr j2�g and �, play a fundamental role in the study of S . The next lemma states
some crucial facts about � (compare with Tian (2000, (proof of) Lemma 3.1.4, pp.
221­223)).

Lemma 4.4. The measure � and its density function �.�; �/ have the following
properties:
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(i) � inherits the monotonicity property: for all x 2 M ,

0 < s < r 6 ı0 ) eas2

s4�n�.Bs.x// 6 ear2

r4�n�.Br.x//;

where a > 0 is the constant given in Theorem 3.24. In particular, the .n �

4/�density of � at x,

�.�; x/ WD �n�4.�; x/ D lim
r#0

r4�n�.Br.x//;

exists and is bounded by eaı2
0 ın�4

0 � for every x 2 M .

(ii) �.�; �/ defines an upper semi­continuous function on M which vanishes
outside S and satisfies �.x/ > "0 for all x 2 S .

Proof.

(i) Let x 2 M and 0 < s < r 6 ı0. Then, for each i 2 N, we know from
Price’s monotonicity (Theorem 3.24) that

eas2

s4�n�i .Bs.x// 6 ear2

r4�n�i .Br.x//: (4.5)

Also, since �i * �, we have (cf. Theorem A.29 (i)):

�.Bs.x// 6 lim inf
i!1

�i .Bs.x//: (4.6)

Now let Rx;ı0
.�/ � �0; ı0� be defined as in Theorem A.29 (iv). If r …

Rx;ı0
.�/, then (4.5) and (4.6) immediately imply

eas2

s4�n�.Bs.x// 6 ear2

r4�n�.Br.x//:

The general case follows by an approximation argument. Indeed, since
Rx;ı0

.�/ is countable, if r 2 Rx;ı0
.�/ then we can find frj g � �s; r�,

with rj " r , such that rj … Rx;ı0
.�/ for all j 2 N. Therefore, on the one

hand, by the monotone convergence theorem,

�.Br.x// D lim
j !1

�.Brj
.x//: (4.7)

On the other hand, since rj … Rx;ı0
.�/ for all j 2 N,

eas2

s4�n�.Bs.x// 6 ear2
j r4�n

j �.Brj
.x//; 8j 2 N:
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Now make j ! 1 in the above inequality and use (4.7). This completes
the proof of the monotonicity property.
From the above it is immediate that

0 6 ��.�; x/ D ��.�; x/ 6 eaı2
0 ı4�n

0 �; 8x 2 M:

This completes the proof of (i).

(ii) To see that �.�; �/ is upper semi­continuous, suppose fxmg is a sequence
of points inM with xm ! x 2 M as m ! 1. Let " > 0 and 0 < r 6 ı0.
Then, by the monotonicity (i), for m � 1 we have

�.�; xm/ 6 ear2

r4�n�.Br.xm// 6 ear2

r4�n�.BrC".x//:

Hence, lim supm!1�.�; xm/ 6 ear2

r4�n�.Br.x//. Taking the limit as
r # 0, we arrive at the desired conclusion.
Now let x 2 S . We shall prove that �.�; x/ > "0; in fact, we claim that

ear2

r4�n�.Br.x// > "0; 8r 2 �0; ı0�: (4.8)

Indeed, if r … Rx;ı0
.�/ then (cf. Theorem A.29 (iv))

ear2

r4�n�.Br.x// D lim
i!1

ear2

r4�n�i .Br.x//;

so that the inequality (4.8) holds due to x 2 S . If r 2 Rx;ı0
.�/, we can

proceed by an approximation argument just as in the proof of (i): since
Rx;ı0

.�/ is countable, we can find frj g � �0; rŒ, with rj " r , such that
rj … Rx;ı0

.�/ for all j 2 N. Then, on the one hand, by the monotone
convergence theorem,

�.Br.x// D lim
j !1

�.Brj
.x//:

On the other hand, by the choice of the sequence frj g and the first part,

ear2
j r4�n

j �.Brj
.x// > "0; 8j 2 N:

Thus, letting j ! 1 proves (4.8) as we wanted.
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Finally, let x … S . We want to show that �.�; x/ D 0. By definition of S ,
there exists r0 2 .0; ı0� and a subsequence ij ! 1 such that

ear2
0 r4�n

0 �ij
.Br0

.x// < "0:

By the "�regularity theorem it follows that

sup
j

sup
y2B r0

4

.x/

jFrij
j
2.y/ 6 C"0r

�4
0 :

Therefore, for every r 2 �0; r0=4Œ one has

r4�n�ij
.Br.x// . r�4

0 r4:

Thus

�.�; x/ D lim
r#0

r4�n�.Br.x//

6 lim
r#0

lim inf
i!1

r4�n�i .Br.x//

. lim
r#0

r�4
0 r4

D 0;

as we wanted. This concludes the proof of (ii).

With the above results in mind, we now introduce some terminology.

Definition 4.9. Let frig, r, f�ig and � D jFr j2�g C � be as above. Then

� WD supp.�/

is called the bubbling locus, and �.�; �/ is itsmultiplicity. We call

sing.r/ WD

(
x 2 M W ��.r; x/ WD lim sup

r#0

r4�n

Z
Br .x/

jFr j
2dVg > 0

)
the singular set of r.

Proposition 4.10. Hn�4.sing.r// D 0 forHn�4�a.e. x 2 M .
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Proof. Given " > 0, we set

E" WD
˚
x 2 M W ��.r; x/ > "

	
:

By arbitrariness of " > 0, it suffices to show that Hn�4.E"/ D 0. Given ı > 0,
we can find a countable covering of E" by balls B5r˛

.x˛/ with centers x˛ 2 E"

and radius 5r˛ 6 ı, such that the balls Br˛
.x˛/ are pairwise disjoint. Moreover,

we can arrange that

r4�n
˛

Z
Br˛ .x˛/

jFr j
2dVg > ":

Since r is smooth onM n S , we must have E" � S . Thus,X
˛

rn�4
˛ 6

1

"

X
˛

Z
Br˛ .x˛/

jFr j
2dVg 6

Z
Nı.S/

jFr j
2dVg ;

where Nı.S/ WD fx 2 M W dg.x; S/ < ıg. SinceHn.S/ D 0, the right­hand side
goes to 0 as ı ! 0. ThereforeHn�4.E"/ D 0, completing the proof.

Proposition 4.11 (Decomposition of the blow­up locus). The blow­up locus S
decomposes as

S D � [ sing.r/:

Proof.

(�) : By Lemma 4.3, we have � � S . So, it suffices to prove that sing.r/ � S .
Now, clearly ifr is smooth in a neighborhood of x, then x … sing.r/. Since
S is closed and r is smooth onM n S , the desired inclusion follows.

(�) : Let x 2 S . Then, by Lemma 4.4 (ii), we know that �.�; x/ > "0 > 0.
Since � D jFr j2�g C �, we have:

• if x … � , then �.�; x/ D 0 (cf. Remark A.20) and, therefore,
��.r; x/ D �.�; x/ > "0 > 0; thus x 2 sing.r/.

• if x … sing.r/, i.e. if ��.r; x/ D 0, then �.�; x/ D �.�; x/ >
"0 > 0, so that x 2 � (again by Remark A.20).
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Notice that, by the gauge invariance of jFr j, the singular set sing.r/ is in­
variant under gauge transformations, so that it consists of non­removable singular­
ities of r. On the other hand, since we can write the energy concentration set as
S D fx 2 M W �.�; x/ > "0g (cf. Lemma 4.4 (ii)), one should interpret �.�; x/
as the energy density lost by the sequence frig around x 2 S . Thus, the above
result shows that the noncompactness along S has two sources: one involving loss
of energy and one involving the formation of non­removable singularities.
Remark 4.12. As a consequence of Proposition 4.11, we can now establish the
equality between Tian’s definition of the blow­up locus (cf. Tian (2000, (3.1.11),
p. 223)) and our definition of the bubbling locus (cf. Definition 4.9), as claimed
in Remark 3.46. Define2

Sb WD fx 2 S W ��.r; x/ D 0g:

We want to show that
� D Sb:

Since S is closed and sing.r/ � S , it immediately follows from the definitions
of Sb and sing.r/ that

S D Sb [ sing.r/:
Moreover, using the characterization of Lemma 4.4 (ii) for S and that � D

jFr j2dVg C �, we have:

Sb D fx 2 M W 0 < �.�; x/ D �.�; x/g:

Recalling Remark A.20 and the fact that � D supp.�/ is closed, it follows that
Sb � � . Now, by Proposition 4.11, we know that S D � [sing.r/. So it remains
to show that sing.r/ n Sb � sing.r/ n � . Let x 2 sing.r/ n Sb . Then, there
exists an open subset U ofM such that x 2 U \ S � sing.r/. Thus�

Hn�4
bS
�
.U / 6 Hn�4.sing.r// D 0;

where in the last step we used Proposition 4.11. Now since ��.�; �/ 6 �.�; �/ <

1, we have � � Hn�4bS (by TheoremA.21 (ii)). Hence, �.U / D 0. This means
that x … supp.�/ D � , as we wanted. ˙
Remark 4.13. When n D 4, Propositions 4.10 and 4.11 imply that S D � , so
that the causes of the noncompactness along S only involves energy loss in this
case. This is in accordance with the classical removable singularity theorem of
Uhlenbeck (1982b). ˙

2Since x 2 S implies �.�; x/ > 0 (Lemma 4.4 (ii)), this is precisely Tian’s original definition
of Sb .
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4.2 Rectifiability of bubbling loci
As a first step towards understanding the noncompactness phenomenon involving
energy loss, in this short section we show an important regularity result about the
set � at which this phenomenon occurs.

Theorem 4.14 (Rectifiability of the bubbling locus). The bubbling locus � is
countablyHn�4­rectifiable (cf. Definition A.40) and

� D �.�; �/Hn�4
b�:

Proof. By Lemma 4.4 and Proposition 4.10, we know that

0 < "0 6 �n�4.�; x/ 6 eaı2
0 ı4�n

0 � < 1; forHn�4
� a.e. x 2 S:

Also, in general, ��.�; �/ 6 �.�; �/ < 1, which implies that � � Hn�4bS (cf.
Theorem A.21 (ii)). Since � D supp.�/, we get

0 < "0 6 �n�4.�; x/ 6 eaı2
0 ı4�n

0 � < 1; for � � a.e. x 2 �:

Therefore, we can apply Theorem A.51 to conclude that � is countably
Hn�4�rectifiable and � can be written as � D z�Hn�4b� , for some Borel measur­
able function z�. In fact, since �n�4.�; x/ D �n�4.�; x/ forHn�4�a.e. x 2 � ,
we conclude that z�.x/ D �.�; x/ forHn�4�a.e. x 2 � .

Remark 4.15. Theorem 4.14 corresponds to Tian (2000, Proposition 3.3.3); Tian
devotes the whole §3.3 of his paper for an independent proof of this result without
relying on Preiss’ theorem A.51. ˙
Remark 4.16. This theorem is trivial for n D 4: a set is countablyH0�rectifiable
if, and only if, it is at most countable, and according to Remark 3.50 this is indeed
the case. In truth, as expected, the analysis of this chapter has content only when
n > 4. ˙

Since Hn�4.S n � / D 0 (cf. Propositions 4.10 and 4.11), it follows that the
blow­up locus itself is countablyHn�4�rectifiable, and forHn�4�a.e. x 2 S the
energy density lost by the sequence around the point x is measured by�n�4.�; x/.

Using Theorem A.50, we get the following consequence of Theorem 4.14:

Corollary 4.17. At Hn�4­a.e. x 2 � , the bubbling locus has a well­defined
tangent space Tx� � TxM and � has a unique tangent measure, i.e. the limit

Tx� WD lim
�!0

�4�n.expx ı��/
��
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exists and
Tx� D �.�; x/Hn�4

bTx�:

Here �� denotes the scaling map on TxM taking v to �v.

Definition 4.18. We will say that x 2 � is a smooth point when the following
holds:

(i) The tangent space Tx� � TxM is well­defined.

(ii) x … sing.r/.

By Theorem 4.14 and Proposition 4.10, it follows that the set of points in �
which are not smooth in the above sense isHn�4�negligible.

4.3 Bubbling analysis

In this section we analyze the structure of ri near smooth points of � when i � 1.
We deduce the existence of non­trivial connections bubbling off transversely to
� . The main reference for the approach here is Walpuski (2017c, §7), adapted to
the context of Tian (2000, §3.2 ­ §4.1).

Fix a smooth point x 2 � . Given a scale factor � > 0, we define a rescaled
sequence of connections on TxM by

ri;x;� WD .expx ı��/
�
ri ; (4.19)

with ��.v/ WD �v for all v 2 TxM . Then the ri;x;� are Yang–Mills connections
with respect to rescaled metric

gx;� WD ��2 exp�
x g (4.20)

on TxM . We note further that gx;� converges in C1
loc to the flat metric gx;0 D

gjTxM on TxM as � # 0. With the above notations, we introduce the following:

Definition 4.21 (Bubbling). A bubble (or a bubbling connection) B at x 2 � is
a smooth Yang–Mills connection on the trivialG�bundle over TxM Š Rn which
is invariant (modulo gauge) under translation with respect to the .n�4/�subspace
Tx� � TxM and which is the limit of a blowing­up of the sequence frig around



4.3. Bubbling analysis 133

the point x, i.e. there exists null­sequences3 fuig � TxM and frig � �0; 1
2
Œ such

that the blow­ups ri;x;ri
.r�1

i ui C �/ converge in C1
loc to B as i ! 1.

We define the energy of the bubble B to be

E.B/ WD

Z
Tx� ?

jFB j
2:

Remark 4.22. Note that (modulo gauge) one may write a bubble B at x as the
pullback to TxM of a Yang–Mills connection I on Tx�

? Š R4, so that E.B/ D

YM.I /. In fact, it is common to not distinguish between B and I and refer to
them indistinctly as a bubble. One says that I bubbles off transversely to � .

Our goal in this section is to show that part (iv) of Theorem B holds, i.e. we
want to show that at any smooth point x 2 � there is a non­trivial bubble B.x/
whose energy is bounded by �.x/.

We start with the following easy consequence of Corollary 4.17, which fixes
a suitable null­sequence of scales f�ig to work with.

Lemma 4.23 (Scale fixing). If x 2 � is a smooth point, then we can find a null­
sequence f�ig � �0; 1Œ such that

jFri;x;�i
j
2�gx;�i

* Tx� D �.�; x/Hn�4
bTx� : (4.24)

Proof. By Corollary 4.17, � has a unique tangent measure Tx� WD

lim
�#0

�4�n.expx ı��/
�� D �.�; x/Hn�4

bTx� . Since x … sing.r/, we have

lim
�#0

�4�n.expx ı��/
�� D lim

�#0
�4�n.expx ı��/

��:

Thus, since �i * �,

Tx� D lim
�#0

lim
i!1

�4�n.expx ı��/
��i D lim

i!1
�4�n

i .expx ı��i
/��i ;

for some null­sequence f�ig. This shows the claim since

�4�n
i .expx ı��i

/��i D jFri;x;�i
j
2�gx;�i

:

3A sequence fxi g in a topological vector space X is called a null­sequence if it converges to
0 2 X .
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Henceforth, we use the following notations. We write Nx� WD Tx�
? �

TxM and use .z; w/ to denote points in Tx� � Nx� D TxM . Moreover, we
shall work with generalized cubes of the form

Qr;s.z0; w0/ WD Br.z0/ � Bs.w0/ � Tx� �Nx� D TxM:

The following is essentially Tian (2000, Lemma 4.1.2, p. 235).

Proposition 4.25 (Asymptotic translation invariance). Let x 2 � be a smooth
point and let f�ig be the null­sequence given by Lemma 4.23. Then after passing
to a subsequence there is a null­sequence fzig � B1.0/ � Tx� so that

lim
i!1

sup
s61

s4�n

Z
Qs;1.zi ;0/

ˇ̌̌̌
@

@v
y Fri;x;�i

ˇ̌̌̌2
dVgx;�i

D 0: (4.26)

for any unit tangent vector v 2 Tx� .

We shall split the proof of Proposition 4.25 into the following lemmas.

Lemma 4.27 (Tian (ibid., Lemma 3.3.2, p. 231)). Under the hypothesis of Propo­
sition 4.25,

lim
i!1

Z
Q2;1.0;0/

ˇ̌̌̌
@

@v
y Fri;x;�i

ˇ̌̌̌2
dVgx;�i

D 0:

Proof. Fix gjTxM �orthogonal coordinates fylg
n�4
lD1

on Tx� , with @yl
having

length 4. Let @�i
denote the radial vector field emanating from the point @yl

as­
sociated with the metric gx;�i

. Then the monotonicity formula (Theorem 3.24)
implies that for 0 < s 6 rZ

Br .@yl
/nBs.@yl

/

ea�2
i
�2

i �4�n
i

ˇ̌̌
@�i

y Fri;x;�i

ˇ̌̌2
6 ea�2

i
r2

r4�n

Z
Br .@yl

/

ˇ̌̌
Fri;x;�i

ˇ̌̌2
� ea�2

i
s2

s4�n

Z
Bs.@yl

/

ˇ̌̌
Fri;x;�i

ˇ̌̌2
:

Now note that as i ! 1 the two terms of the right­hand side both converge to
�.�; x/ by Lemma 4.23. SinceQ2;1.0; 0/ � B8.@yl

/ n B1.@yl
/, we get

lim
i!1

Z
Q2;1.0;0/

ˇ̌̌
@�i

y Fri;x;�i

ˇ̌̌2
dVgx;�i

D 0:

Furthermore, at the origin the @�i
generate Tx� and, as the metrics gx;�i

converge
to gjTxM , we may state the result in terms of it. The lemma is proved.
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Lemma 4.28. Under the hypothesis of Proposition 4.25, for Hn�4�a.e. z 2

B1.0/ � Tx� one has

lim
i!1

sup
s61

s4�n

Z
Qs;1.z;0/

ˇ̌̌̌
@

@v
y Fri;x;�i

ˇ̌̌̌2
dVgx;�i

D 0:

Proof. Define fi W B2.0/ � Tx� ! Œ0;1/ by

fi .z/ WD

Z
B1.0/�Nx�

ˇ̌̌
@v y Fri;x;�i

ˇ̌̌2
.z; �/

and denote by Mfi W B1.0/ � Tx� ! Œ0;1/ the Hardy–Littlewood maximal
function associated with fi :

Mfi .z/ WD sup
s61

s4�n

Z
Bs.z/�Tx�

fi :

We then want to show that the set

A WD fz 2 B1.0/ W lim inf
i!1

Mfi .z/ > 0g

is such thatHn�4.A/ D 0. For each j 2 N, define

Ai;j WD fz 2 B1.0/ W Mfi .z/ > j�1
g:

Then we can write
A D

[
j >1

[
n>1

\
i>n

Ai;j :

For each j , on the one hand, by the weak­type L1 estimate for the maximal oper­
ator, we have

Hn�4.Ai;j / . j kfikL1 :

On the other hand, by Lemma 4.27, it follows that kfikL1 ! 0 as i ! 1. There­
fore, for each j and n we get

Hn�4

 \
i>n

Ai;j

!
D 0;

which in turn implies that Hn�4.A/ D 0 by monotone convergence. This com­
pletes the proof of the lemma.
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Proof of Proposition 4.25. By Lemma 4.28, for each j 2 N we can find zj 2

B1=j .0/ � Tx� such that

lim
i!1

sup
s61

s4�n

Z
Qs;1.zj ;0/

ˇ̌̌̌
@

@v
y Fri;x;�i

ˇ̌̌̌2
dVgx;�i

D 0:

The conclusion then follows by applying a standard diagonal sequence argument.

The next proposition is the last preparation for the main theorem of this section.

Proposition 4.29 (Bubble detection). Let x 2 � be a smooth point, f�ig be the
null­sequence given by Lemma 4.23 and fzig � Tx� the null­sequence given by
Proposition 4.25. Then there exists a null­sequence fıig � �0; 1

2
Œ such that, for

each i � 1,

max
w2B 1

2
.0/

ı4�n
i

Z
Bıi

.zi ;w/

ˇ̌̌
Fri;x;�i

ˇ̌̌2
dVgx;�i

D
"0

8
: (4.30)

Moreover, ifwi 2 B 1
2
.0/ denotes a point at which this maximum is achieved, then

fwig is a null­sequence.

Proof. On the one hand, by Lemma 4.23,

lim inf
i!1

max
w2B 1

2
.0/

ı4�n

Z
Bı.zi ;w/

ˇ̌̌
Fri;x;�i

ˇ̌̌2
dVgx;�i

D �.x/ > "0;

for all ı > 0. On the other hand, for fixed i 2 N and w 2 B 1
2
.0/ by smoothness

one has
lim
ı#0

ı4�n

Z
Bı.zi ;w/

ˇ̌̌
Fri;x;�i

ˇ̌̌2
dVgx;�i

D 0:

Therefore, we can find a null­sequence fıig � �0; 1
2
Œ such that (4.30) holds.

As for the last assertion, note that if we could find � > 0 so that fwig �

B 1
2
.0/nB� .0/, then the density of Tx� at .0; wi /would be positive, contradicting

Lemma 4.23.

Now we can state and prove the main theorem of this section (cf. Tian (2000,
Proposition 4.1.1, p. 235)).
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Theorem 4.31 (Bubbling). Let x 2 � be a smooth point, i.e. Tx� exists and
x … sing.r/. Then there exists a non­trivial bubble B.x/ at x whose energy is
bounded by�.x/. More precisely, there is a non­flat Yang–Mills connection I.x/
on Nx� satisfying

YM.I.x// 6 �.�; x/ (4.32)

and whose pullback B.x/ to TxM is (modulo gauge) the limit of a blowing­up of
frig around x (cf. Definition 4.21).

Proof. Let f�ig; fıig � �0; 1
2
Œ and f.zi ; wi /g � Tx� � Nx� D TxM be the

null­sequences given by the previous results of this section. Define the sequence
of blow­ups

zri .�/ WD ri;x;ıi �i
.ı�1

i .zi ; wi /C �/ D ri;x;ri
.r�1

i ui C �/;

where ui WD �i .zi ; wi / and ri WD ıi�i . By construction

max
w2B

. 1
2

�jwi j/ıi
.0/

Z
B1.0;w/

ˇ̌̌
Fzri

ˇ̌̌2
dVgx;0

D
"0

8
; (4.33)

with the maximum achieved at w D 0. It then follows from Theorem 3.33, and
standard elliptic techniques, that zr converges in C1

loc to a Yang–Mills connection
B.x/ over B1.0/�Nx� with the flat metric gx;0. Moreover, by Proposition 4.25,
one has

vyFB.x/ D 0; 8v 2 Tx�:

This implies that B.x/ is gauge­equivalent to the pullback of a Yang–Mills con­
nection I.x/ on Nx� . The convergence together with (4.33) shows that I.x/ is
non­flat and that (4.32) holds.

Remark 4.34. Taking into account the results that have been proven so far, this
completes the proof of Theorem A stated in the introduction of this work.

Given the above bubble­detection result at a smooth point x 2 � , one is then
tempted to ask about whether �.x/ can actually be written as a finite sum of en­
ergies of non­flat Yang–Mills connections on R4 Š Nx� (or, by transforming
conformally, Yang–Mills connections on S4) arising as bubbles at x. Indeed, we
know that each concentration generating a bubble like in Theorem 4.31 has a cost
of energy bounded from below by the Uhlenbeck­constant of R4 (the "0 of Theo­
rem 3.33 applied to the flat R4), thus the inequality (4.32) shows that the number
of possible distinct bubbles is uniformly bounded.
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This energy identity question was first positively answered by Rivière Rivière
(2002) assuming an uniformL1 hessian bound on the curvatures kr2FrkL1.M/ 6
C.�;G;M/. More recently, Naber–Valtorta A. Naber and Valtorta (2016) proved
the energy identity in tandem with the fact that such hessian bound always holds
automatically. This is a deep result and we will just cite it below as follows:

Theorem 4.35 (A. Naber and Valtorta (ibid.)). For Hn�4�a.e. x 2 � , there
exists a finite collection of distinct bubbles B1.x/; : : : ; Bl.x/ at x such that

�.x/ D

lX
j D1

E.Bj .x//:

This means that there is no loss of energy between bubbles; this is called the
no neck property. This property was previously established in four dimensions for
sequences of ASD connections an was an important step towards the compactifi­
cation of the moduli space of instantons on compact 4�manifolds, cf. Donaldson
and Kronheimer (1990).

4.4 Blow­up loci of instantons and calibrated geometry
Throughout this section we assume further that M is endowed with a smooth
.n � 4/�form � which is a calibration on .M; g/ and that frig is a sequence
of ��ASD instantons on the G�bundle E (cf. Definition 2.80). Our aim is to
show stronger conclusions in this setting for the results derived so far for general
Yang–Mills connections. We remark that in case M is closed (compact without
boundary) and G D SU.r/, it follows from Proposition 2.84 that we have the a
priori energy bound YM.ri / D 8�2hc2.E/ [ Œ��; ŒM �i.

We begin with the following simple

Lemma 4.36. In the above setting, the limit connection r on EjM nS is in fact a
��ASD instanton onM n S .

Proof. By assumption, there exists a sequence of gauge­transformations fgig �

G.EjM nS /, S D S.frig/, such that g�
i ri converges to r in C1

loc�topology out­
side S . In particular, it follows that tr.Fri

/ converges to tr.Fr/ in C1
loc�topology

outside S , and tr.Fr/ is harmonic o M n S . Since �� D �.� ^ �/ is clearly a
continuous operator with respect to the C1

loc�topology, and each ri is ��ASD,
the result follows from the equivariance of �� .
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We actually know more about the bubbling connections prescribed in Proposi­
tion 4.31, cf. Tian (2000, Theorem 4.2.1).

Proposition 4.37 (Bubbling ��ASD connections). Let B.x/ be a bubble con­
nection at a smooth point x 2 � (cf. Proposition 4.31). Then B.x/ is a non­flat
�x�ASD instanton on .TxM;gx;0/ with tr.FB.x// D 0.

Proof. Recall that Bi .x/ WD ��
i exp�

x ri , where �i W TxM ! TxM is of the form
v 7! �i .zi ; wi / C �iıiv, with .zi ; wi / ! 0 and �i ; ıi ! 0 as i ! 1. Since
tr.Fri

/ ! tr.Fr/ uniformly on compact subsets outside S as i ! 1, it follows
that tr.FBi .x// ! 0 uniformly on compact subsets as i ! 1.

On the other hand, note that Bi .x/ is .�iıi /
4�n��

i exp�
x ��ASD with re­

spect to the metric gx;�i ıi
. Moreover, since �i converges to zero, we have that

��
i exp�

x � ! �x as i ! 1.
In conclusion, recalling that gx;�i ıi

! gx;0 as i ! 1, it follows that the limit
connectionB.x/ is�x�ASDwith respect to the flat metric gx;0, and tr.FB.x// D

0.

The combination of this last result with Proposition 2.88 immediately yields:

Corollary 4.38. At each smooth point x 2 � there is a choice of orientation on
.Tx�; gjTx� /with respect to which it is calibrated by�x . Furthermore, ifB.x/ is
a bubbling connection at x then B.x/ is gauge­equivalent to the pullback to TxM

of a non­trivial ASD instanton I.x/ on .Nx�; gjNx� / with respect to the induced
orientation ��xjNx� .

Now, combining Corollary 4.38 with the energy quantization of ASD instan­
tons on S4 (cf. §1.5), the following is immediate from Theorem 4.35:

Theorem 4.39. Suppose G D SU.r/. Then �.x/ 2 8�2Z for all smooth points
x 2 � .

Finally, we conclude the proof of Theorem B (stated in the introduction), by
proving the following (cf. Tian (ibid., Theorem 4.3.2, eq. (4.2.5))):

Theorem 4.40. Suppose G D U.r/ and let C.�;�/ 2 Dn�4.M/ be defined by

C.�;�/.'/ WD
1

8�2

Z
�

h';� j� i�d
�
Hn�4

b�
�
; 8' 2 Dn�4.M/:

Then C.�;�/ satisfy the following weak convergence of currents:

c2.ri / * c2.r/C C.�;�/: (4.41)
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Remark 4.42. Here we let c2.r.i// 2 Dn�4.M/ be defined by

c2.r.i//.'/ WD
1

8�2

Z
M

' ^
�
tr.Fr.i/

^ Fr.i/
/ � tr.Fr.i/

/ ^ tr.Fr.i/
/
�
;

for all ' 2 Dn�4.M/. Now note that

tr.Fr.i/
^ Fr.i/

/ D tr.F 0
r.i/

^ F 0
r.i/

/C
1

r
tr.Fr.i/

/ ^ tr.Fr.i/
/:

Since tr.Fri
/ converges to tr.Fr/ in C1

loc�topology outside S , we get:

8�2 Œc2.ri / � c2.r/� .'/ D lim
i!1

Z
M

' ^

�
tr.F 0

ri
^ F 0

ri
/ � tr.F 0

r ^ F 0
r/
�
;

(4.43)
for all ' 2 Dn�4.M/. In particular, equation (4.41) is equivalent to

1

8�2
lim

i!1

Z
M

' ^ tr.F 0
ri

^ F 0
ri
/ D

1

8�2

Z
M

' ^ tr.F 0
r ^ F 0

r/C C.�;�/.'/;

(4.44)
for all ' 2 Dn�4.M/. Of course, if G D SU.r/ then F 0

r.i/
D Fr.i/

and we get
precisely (B1). Finally, in caseM is closed note that we can apply equation (4.44)
in 8�2� to deduce the L2�energy conservation:

lim
i!1

Z
M

jFri
j
2dVg D

Z
M

jFr j
2dVg C

Z
�

�d
�
Hn�4

b�
�
;

i.e.
Z

�

�dHn�4
b� is precisely the L2�energy lost by the sequence frig along

� as i ! 1. ˙

Proof of Theorem 4.40. By Remark 4.42, it suffices to show that (4.44) holds. In
fact, theC1

loc�convergence tr.Fri
/ ! tr.Fr/ outside S allow us to suppose, with­

out loss of generality, that G D SU.r/.
For each i 2 N, define the current Ti 2 Dn�4.M/ given by

Ti WD c2.ri / � c2.r/:

Since YM.ri / 6 �, note that the total massM.Ti / of Ti is uniformly bounded:
indeed, for any ' 2 Dn�4.M/ with k'kC 0 6 1 we have:

jTi .'/j . kFri
k

2
L2 C kFrk

2
L2 . �:
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Therefore, by Lemma A.63, up to taking a subsequence if necessary we may sup­
pose that Ti * T for some T 2 Mn�4;loc.M/. We then need to prove that
T D C.�;�/, and in order to do so we shall first verify that T satisfies the hy­
pothesis of Theorem A.68.

By the weak convergence, it follows thatM.T / 6 lim infM.Ti / . �. More­
over, note that k@T k.W / < 1 for all W b U ; indeed, @T D �@c2.r/ and

@T .'/ D �

Z
M

d' ^ tr.Fr ^ Fr/ 6
�
sup
W

jd'j

�
� < 1;

for all ' 2 Dn�5.M/ with supp.'/ � W . Hence, T 2 Nn�4;loc.M/.
Now we show that

��n�4
.kT k; x/ > 0 for kT k � a.e. x 2 M: (4.45)

First note that the convergence (modulo gauge) of ri to r in C1
loc away from S

immediately implies that supp.T / � S . In particular, we have that supp.kT k/ �

S . We claim further that
kT k � Hn�4

b�: (4.46)

Indeed, let 0 < r 6 ı0 and x 2 � . Then, whenever ' 2 Dn�4.M/ is such that
k'kC 0 6 1 and supp.'/ � Br.x/ we have

jTi .'/j .
�Z

Br .x/

jFri
j
2dVg C

Z
Br .x/

jFr j
2dVg

�
:

Recalling that�.�; �/ is bounded and �i * � D jFr j2�g C�.�; �/Hn�4b� , it
follows that

kT k.Br.x// .
�Z

Br .x/

jFr j
2dVg C Hn�4.� \ Br.x//

�
:

Now Proposition 4.10 ensures that ��.r; x/ D 0 for Hn�4�a.e. x 2 M , and
since Hn�4.� / < 1 it follows from Theorem A.23 that ��n�4.�; x/ 6 1 for
Hn�4�a.e. x 2 � . Thus

��n�4
.kT k; x/ . 1 forHn�4

�a.e. x 2 � :

Therefore, the claim (4.46) follows by Theorem A.21.
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Now let f 2 D.M/ and take ' D f � ; then:

T .f �/ D lim
i!1

Ti .f �/

D
1

8�2
lim

i!1

Z
M

f
�
tr.Fri

^ Fri
/ � tr.Fr ^ Fr/

�
^�

D
1

8�2
lim

i!1

Z
M

f
�
�tr.Fri

^ �Fri
/C tr.Fr ^ �Fr/

�
D

1

8�2
lim

i!1

Z
M

f
�
jFri

j
2

� jFr j
2
�

D
1

8�2

Z
�

f�.�; �/d
�
Hn�4

b�
�
: (4.47)

Thus, if x 2 � and r > 0, we get

kT k.Br.x// >
1

8�2

Z
B r

2
.x/\�

�.�; �/d
�
Hn�4

b�
�

>
"0

8�2
Hn�4.� \ B r

2
.x//:

SinceHn�4.� / < 1, by Theorem A.23 we know that��n�4.�; x/ > 24�n > 0

for Hn�4�a.e. x 2 � . Thus, it follows that ��n�4.kT k; x/ > 0 for Hn�4�a.e.
x 2 � . Together with (4.46) this implies (4.45).

Now we may apply Theorem A.68 to conclude that we can find a triple
.� 0; �0; �/ such that

T .'/ D
1

8�2

Z
� 0

h'; �i�0d
�
Hn�4

b� 0
�
; 8' 2 Dn�4.M/

where
1. � 0 � M isHn�4�measurable and countablyHn�4�rectifiable;

2. �0 W � ! Œ0;1Œ is locallyHn�4�integrable;

3. � W � ! �kTM is Hn�4�measurable and such that �.x/ orients the ap­
proximate .n � 4/�tangent space Tx�

0 forHn�4�a.e. x 2 � 0.
In particular, for every f 2 D.M/ we have

T .f �/ D
1

8�2

Z
� 0

f h�; �i�0d
�
Hn�4

b� 0
�
:

Comparing with (4.47), we conclude that � D � 0 and h�; �i�0 D �.�; �/.
Finally, since � j� is one of the volume forms of � we get �0 D �, so that
T D C.�;�/.
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Remark 4.48. Note that in the situation of Theorem 4.40 it follows directly that

@C D 0 () @c2.r/ D 0; (4.49)

in which case C would be a ��calibrated cycle, therefore the bubbling
locus would be mass­minimizing by Proposition 2.59, and its components
��submanifolds except for singular sets of Hausdorff codimension at least 2 by
Theorem 2.60. Nevertheless, we note that this may not be true in general, and refer
the reader to Petrache and Rivière (2017, §1.12.4).

Now that we finished the proof of both Theorems A and B, we note that we
get obvious important corollaries in each special case where .M; g/ is a Rieman­
nian manifold with one of the special holonomy groups Hol.g/ D U.m/, G2 or
Spin.7/(� SU.4/). In particular, in the Kähler context, we have the following:

Theorem 4.50. Let .Z; !/ be a compact Kähler m�fold, and let frig be a se­
quence of Hermitian–Yang–Mills connections with uniformly boundedL2�energy
on a G�bundle E over Z. Then, by taking a subsequence if necessary, ri con­
verges modulo gauge to a Hermitian–Yang–Mills connection r outside the bub­
bling locus .�;�/, where � D [˛�˛ and �j�˛

D 8�2m˛, where each �˛ is a
codimension­4 complex subvariety in Z and m˛ is a positive integer. Moreover,

c2.ri /.'/ * c2.r/.'/C
X

˛

m˛

Z
�˛

':

Proof. By Lemma 2.97 we can apply Theorems A and B to the sequence frig.
Then, using Corollary 2.62 and a result of Harvey–Shiffman Harvey and Shiffman
(1974, Theorem 2.1) the theorem follows.

Interesting current problems stem from trying to see Tian’s result in practice,
to understand the regularity of the limiting configurations .r; �;�/ and also to
reverse the process: given a ‘generic’ ��calibrated submanifold � ,! M of a
closed special holonomy Riemannian manifold .M n; g;�/, and a ‘generic’ con­
nection r on a G�bundle overM , one may ask when does � appear as the bub­
bling locus of a sequence of ��ASD instantons, smoothly converging to r out­
side � .

Concerning explicit non­trivial examples of instanton bubbling, and remov­
able singularity phenomena in the limit, the reader may consult the recent works
of Lotay–Oliveira Lotay and Oliveira (2018) for the G2 case and Clarke–Oliveira
Clarke and Oliveira (2019) for the Spin.7/ case.
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As to the regularity of limiting connections, and an analytical framework anal­
ogous to the space of Sobolev connections, yet adapted to this higher dimensional
context, the recent work of Petrache–Rivière Petrache and Rivière (2018) intro­
duces a space of so­called ‘weak connections’. They prove a weak sequential
closure property, under Yang–Mills energy control, and they establish a strong ap­
proximation property of any weak connection by smooth connections away from
polyhedral sets of codimension 5. In direct relation to this theory, partial regular­
ity results and removable singularity theorems for general stationary Yang–Mills
4 connections, satisfying some approximability property, see Meyer and Rivière
(2003) and Tao and Tian (2004).

Now, in the direction of the ‘reverse process’ of bubbling, Walpuski (2017a,b)
gave sufficient conditions for an unobstructed associative (resp., Cayley) subman­
ifold in a G2–(resp., Spin.7/–)manifold to appear as the bubbling locus of a se­
quence of G2–(resp. Spin.7/–)instantons, related to the existence of a Fueter sec­
tion of a bundle of ASD instanton moduli spaces over said submanifold. Thus
associative (resp. Cayley) submanifolds, and connections on them, arise as
building blocks for constructing G2–(resp., Spin.7/–)instantons by gluing meth­
ods. This has been successfully implemented on both Joyce’s construction and
Kovalev­CNHP twisted connected sums Sá Earp and Walpuski (2015) and Wal­
puski (2013a).

One can also attempt to construct invariants of G2�manifolds by “counting”
G2�instantons and associative submanifolds together, as first suggested inDonald­
son and Thomas (1998). In fact, Donaldson and Segal (2011) proposed a conjec­
tural programme to define Casson­type invariants of G2�instantons, which would
hopefully be unchanged under deformations of the G2�structure, and would be
analogues of the invariants of Calabi–Yau 3�folds defined by Donaldson and
Thomas (1998), see also Thomas (1997). They observed that the naive count
of G2�instantons on a compact G2�manifold might not produce a deformation­
invariant number, but rather this number will jump in a finite number of points
as one changes the G2�metric in a 1�parameter family. These jumps are closely
related to degenerations of G2�instantons to Fueter sections supported on certain
associative submanifolds. Thus, completing such programme and defining invari­
ants of a G2�manifold .Y 7; �/ that remain unchanged under deformations of �,
would require the inclusion of ‘compensation terms’, counting solutions of some
‘Dirac type’ equation on associative 3�folds in Y , to balance out the bubbling of
G2�instantons. At the time of writing, this is mostly conjectural and currently un­

4A connection r 2 A1;2 \ A0;4 is said to be stationary Yang–Mills if it is weak Yang–Mills
and satisfies equation (3.15).
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der investigation, see e.g. Doan (2019), Doan andWalpuski (2017), Haydys (2012,
2017), Haydys and Walpuski (2015), Joyce (2017), and Walpuski (2013b).



A Geometric
measure theory

We collect here some basic facts from Geometric Measure Theory (GMT) which
are evoked in Chapter 4. We stress that we have no intention to make a complete
systematic exposition here, but rather just organise the main definitions and results,
and fix some notation and conventions. We will therefore omit almost all proofs
and refer the reader to standard texts. Good references for the material in this
appendix are notes by Simon (1983), the classic Federer (1969), and the more
recent books Mattila and Falconer (1996) and De Lellis (2008).

Notation. Throughout X will denote a metric space with distance function d .
For any subset A � X , we denote by A, VA and @A, respectively, the topological
closure, interior and boundary ofA. For each x 2 X and r 2 RC, we writeBr.x/,
Br.x/ and @Br.x/ to denote, respectively, the open ball with center x and radius r ,
its closure and its boundary. IfB is an open (resp. closed) ball inX of center x and
radius r , then for each positive real number � > 0 we write �B for the open (resp.
closed) ball in X of center x and radius �r . The distance between two subsets
A;B � X is denoted by d.A;B/, and the diameter of A is denoted by diam.A/.
Finally, we shall use the extended real number system R D R [ f1;�1g with
the obvious ordering and aritheoremetical operations partially extended, e.g., as in
Folland (2013, p. 11).
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A.1 Basic concepts

Definition A.1 (Measures, ��additivity and measurable sets). A measure (or
outer measure) on X is a set function � W 2X ! Œ0;1� satisfying the following
conditions:

(i) �.;/ D 0;

(ii) (Monotonicity) A � B; A;B � X ) �.A/ 6 �.B/;

(iii) (Subadditivity) For each countable collection fAigi2N � X ,

�

 
1[

iD1

Ai

!
6

1X
iD1

�.Ai /:

Given a family F of subsets of X , we say that � is ��additive on F whenever

�

 
1[

iD1

Ai

!
D

1X
iD1

�.Ai /;

for each countable collection of disjoint sets fAigi2N � F .
Finally, we say that a subset A � X is ��measurable if

�.E/ D �.E n A/C �.E \ A/; for each E � X:

We denote byM� the collection of all ��measurable sets.

Definition A.2. Let � be a measure on X . We define the support of � to be the
following closed subset of X :

supp.�/ WD X n
[

fU � X W U is open and �.U / D 0g:

Given a measure � on X , a sentence of the form

“(...) holds for ��almost every point x 2 X”

or, briefly,

“(...) holds for ��a.e. x 2 X”
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means that the subset, say A, of X for which (...) doesn’t hold is a ��negligible
set, i.e. �.A/ D 0.

Recall that a ��algebra ˙ on a set Y is a collection of subsets of Y , contain­
ing the empty set ; and Y itself, that is closed under the set operations of taking
complements and countable unions. When Y is a topological space, the smallest
��algebra B.Y / containing the topology of Y is called the Borel ��algebra and
its elements are the Borel sets.

In the next result we collect some well­known basic facts about general mea­
sures (see e.g. Folland (2013, §1)).

Theorem A.3. If � is a measure on X , thenM� is a ��algebra on X . Moreover,
we have the following properties:

(1) If �.A/ D 0, A � X , then A 2 M� (i.e., every ��negligible set is
��measurable).

(2) � is ��additive onM�.

(3) If fAig � M�, then

(3.a) �

 
1[

iD1

Ai

!
D lim

i!1
�.Ai / provided A1 � A2 � : : :.

(3.b) �

 
1\

iD1

Ai

!
D lim

i!1
�.Ai / provided A1 � A2 � : : : and �.A1/ <

1.

In particular, given a measure � on X we can always find a ��algebra M�

restricted to which � is ��additive. Reciprocally, given a ��algebra ˙ and a
��additive measure � W ˙ ! Œ0;1�, we can extend � to the whole power set of
X as follows: for each A � X , define

�.A/ WD inf

(X
i

�.Si / W fSigi>1 � ˙ with A �
[

i

Si

)
:

It is straightforward to check this indeed defines a measure onX whose restriction
to ˙ is the originally given measure.

Definition A.4 (��measurable functions). Let Y be a topological space and � a
measure onX . A function f W X ! Y is said to be��measurablewhen f �1.U /

is a ��measurable set in X for every open subset U � Y .
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Given a measure � on X , we do integration theory with respect to � by re­
stricting ourselves to the natural measure space .X;M�; �jM�

/ determined by
�. The reader interested in the details of Lebesgue integration theory on measure
spaces is kindly referred to Folland (ibid.).

Definition A.5. Let � be a measure on X ; we say that � is:

• locally finite if �.K/ < 1 for each compact subset K � X ;

• metric if �.A [ B/ D �.A/ C �.B/, for each A;B � X such that
d.A;B/ > 0;

• Borel if all Borel sets are ��measurable, i.e. B.X/ � M�;

• Borel regular if it is a Borel measure and if for every A � X there is a
Borel set B � X such that A � B and �.A/ D �.B/;

• Radon if it is a locally finite and Borel regular measure.

Let � be a measure on X . If f W X ! R is a nonnegative (f > 0)
��measurable function, then we can form a new measure f� on X such that

Œf��.A/ WD

Z
A

f d�; 8A 2 M�:

In particular, when A � X is a ��measurable subset, we denote by �bA the
measure �A�, i.e.

Œ�bA�.E/ WD �.A \E/; 8E � X:

As one may check directly, all ��measurable sets are .�bA/�measurable sets.
Also, if � is a Borel regular measure, then so is �bA. Moreover, it is not difficult
to show the following:

Lemma A.6. If � is a Radon measure and f 2 L1.�/ is a nonnegative function,
then f� is a Radon measure.

Akey tool to check Borel sets are��measurable is the following Simon (1983,
p. 3, Theorem 1.2):

Theorem A.7 (Carathéodory’s criterion). Let � be a measure on the metric space
X . Then,

� is a Borel measure () � is a metric measure:
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Finally, we state a very useful approximation result for Borel regular measures
Simon (1983, Theorem 1.3 and Remark 1.4):

TheoremA.8 (Inner and outer approximation). Suppose� is a Borel regular mea­
sure on X and X D [j >1Vj , where �.Vj / < 1 and Vj is open for each j 2 N.
Then:

(i) �.A/ D inff�.U / W U � A; U openg, for any A � X .

(ii) �.A/ D supf�.C/ W C � A; C closedg, for any A 2 M�.

In particular, if X is a second countable and locally compact metric space1 (e.g.
when X is a manifold) and � is a Radon measure on X then (i) holds and (ii) can
be improved to

(ii’) �.A/ D supf�.K/ W K � A; K compactg, for any A 2 M�.

1In particular, X admits an open covering fVj g such that V j is compact and contained in Vj C1,
for each j 2 N; see e.g. Warner (2013, proof of Lemma 1.9, p. 9).
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A.2 Hausdorff measure and dimension
We start describing a standard general process for constructing metric measures on
metric spaces, called Carathéodory’s construction. The input for this method is
the following. Suppose we are given a pair .F ; �/, where F is a collection of
subsets of X , � W F ! Œ0;1� and

(i) for each ı > 0, there exists a countable cover fEigi2N � F of X such that
diam.Ei / 6 ı.

(ii) for each ı > 0, there exists an element E 2 F such that �.E/ 6 ı and
diam.E/ 6 ı.

For example, ifF contains all non­empty open balls ofX andX is separable, then
(i) is easily seen to be verified. If, moreover, one has �.�/ D Cdiam.�/, for some
uniform constant C 6 1, then (ii) is also checked trivially.

For each ı > 0, define

Fı WD fE 2 F W diam.E/ 6 ıg;

and construct preliminary measures �ı on X putting, for each A � X ,

�ı.A/ WD inf

(
1X

iD1

�.Ei / W A �

1[
iD1

Ei and fEigi2N � Fı

)
:

We note that 0 < ı 6 ı0 implies Fı � Fı 0 , so that �ı > �ı 0 . Therefore, it is
well­defined (possibly 1)

�.A/ WD lim
ı&0

�ı.A/ D sup
ı>0

�ı.A/; for each A � X:

It is straightforward to check that � is a measure on X . Moreover, we claim that
� is in fact a metric measure (therefore, by Theorem (A.7), � is Borel): indeed, if
A;B � X are such that d.A;B/ > ı > 0, then

�ı.A [ B/ > �ı.A/C �ı.B/;

because whenever C D fEig is a covering of A [ B with diam.Ei / < ı, the
collections

C \ fE W E \ A ¤ ;g and C \ fE W E \ B ¤ ;g

are clearly disjoint, covering A and B respectively. Thus the claim follows from
the definition of �.
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Example A.9 (Lebesgue measure). Let X D Rn and d be the usual Euclidean
distance:

d.x; y/ D

 
nX

iD1

.yi � xi /
2

!1=2

; for each x; y 2 Rn:

Define

F WD

(
nY

iD1

Œai ; bi � W ai ; bi 2 R; ai < bi ; i D 1; : : : ; n

)
;

i.e. F is the collection of all (non­degenerated) closed n�cubes on Rn, and take
� W F ! Œ0;1� defined by

�.

nY
iD1

Œai ; bi �/ WD

nY
iD1

.bi � ai /:

Then, the resulting measure of Carathéodory’s construction applied to .F ; �/ is
the n�dimensional Lebesgue measure Ln on Rn.

A well­known characterization forLn is the following: Ln is the unique Borel
regular, translation­invariant measure onRn, normalized so that themeasure of the
unit cube Œ0; 1�n is 1 (see Federer (1969) and Simon (1983, p. 8)).

We now proceed to define the Hausdorff s�dimensional measure Hs on an
arbitrary separable metric space .X; d/.

Definition A.10 (Hausdorff measure). Let s 2 R>0. The s�dimensional Haus­
dorff measure Hs of a separable metric space .X; d/ is the measure on X gen­
erated by Carathéodory’s construction when F is taken to be the collection of all
non­empty subsets of X and � is given by

�.A/ WD 2�sdiam.A/s; for each ; ¤ A � X:

More explicitly, for each A � X ,

Hs.A/ WD lim
ı#0

Hs
ı.A/;

where, for each ı > 0,

Hs
ı.A/ WD 2�s inf

(
1X

iD1

.diam.Ei //
s

W A �

1[
iD1

Ei ; and diam.Ei / 6 ı

)
:
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Example A.11 (n�dimensional Hausdorff measure of a connected Riemannian
n�manifold). Let .M; g/ be a connected Riemannian n�manifold. Then, on
the one hand, viewing M as a metric space with the natural Riemannian dis­
tance function dg induced by g (see e.g. Aubin (1982, §2.1)), we get associated
s�dimensional Hausdorff measures Hs on M for each nonnegative real number
s; in particular, we getHn.

On the other hand, supposing further thatM is oriented, we get a Riemannian
volume n�form dVg on .M; g/, which in turn induces a canonical Radon measure
�g on M resulting from the application of Riesz’s representation theorem (see
Remark A.26) on the integration functional

Ig W Cc.M I R/ ! R

f 7!

Z
M

f dVg :

Now, for all s 2 R>0, we define

˛s WD
�

s
2

�
�

s
2

C 1
� ;

where� .z/ WD

Z 1

0

xz�1e�xdx (defined for each z 2 C with positive real part) is

the so­called Euler gamma function. Note that when s D k 2 N0 is a nonnegative
integer, ˛k is precisely the Lebesgue measure Lk.B1.0// of the unit ball in Rk .

In this setting, we can state the following relation betweenHn and �g :

Proposition A.12. On a connected, oriented, Riemannian n�manifold .M; g/,
the n�dimensional Hausdorff measure Hn multiplied by the constant factor ˛n

equals the Riemannian volume measure �g .

The reader interested in a proof of this fact may consult D. Burago, Y. Burago,
and Ivanov (2001, p. 196, Theorem 5.5.5) (see also Simon (1983, p. 10, Theorem
2.6) for theM D Rn case).

The following proposition is immediate from the above definitions:

Proposition A.13. Let A � X and s 2 R>0. Then:

(i) Hs.A/ < 1 ) Hs0

.A/ D 0, 8s0 > s.

(ii) Hs.A/ > 0 ) Hs00

.A/ D 1, 8s00 < s.
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We can then make the following definition:

Definition A.14 (Hausdorff dimension). The Hausdorff dimension dimH.A/ of
a subset A � X is the extended real number given by

dimH.A/ WD inffs 2 R>0 W Hs.A/ D 0g D supfs 2 R>0 W Hs.A/ D 1g:

In other words, if A � X then the Hausdorff dimension dimH.A/ of A is the
unique extended real number in Œ0;1� such that

s < dimH.A/ ) Hs.A/ D 1;

s > dimH.A/ ) Hs.A/ D 0:

A priori, in case s D dimH.A/, all the three possibilities Hs.A/ D 0, 0 <

Hs.A/ < 1 and Hs.A/ D 1 are admissible. On the other hand, if we can
find s such that 0 < Hs.A/ < 1, then certainly dimH.A/ D s. Also, if s 2 R>0

is such thatHs.A/ < 1 then dimH.A/ 6 s.
Some immediate properties the Hausdorff dimension satisfies are the follow­

ing:

• (Monotonicity) If A � B � X , then dimH.A/ 6 dimH.B/;

• (Stability w.r.t. countable unions) If fAig is a countable collection of subsets
Ai � X , then

dimH.
[

i

Ai / D sup
i

dimH.Ai /:

In particular, if S � X , is such that S D
S

i>1Ai with Hs.Ai / < 1 (for each
i > 1), then dimH.S/ 6 s.

A.3 Densities and covering theorems

We start this section summarizing the covering theorems that are particularly useful
for this work and then introduce the notion(s) of (lower and upper) density(ies)
of measures. We finish with results relating appropriate information about the
upper density of a measure and relations between such measure and the Hausdorff
measure, as well as estimates on the upper density of the Hausdorff measure on
appropriate sets.
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Covering theorems. The first lemma we shall prove is a simple but useful result
on metric space topology.

Lemma A.15. Let K be a compact subspace of a metric space .X; d/. Given
r > 0, we can find a finite set of points fx1; : : : ; xmg � K such that the following
holds:

(i) K �

m[
iD1

B2r.xi /, and

(ii) Br.xi / \ Br.xj / D ;, for each i ¤ j , i; j 2 f1; : : : ; mg.

Proof. We describe an explicit algorithm to construct the fxig. In the first step,
fix some x1 2 K. In the second step, consider

C2 WD K n B2r.x1/:

If C2 D ;, stop the algorithm; the set fx1g will do the job. If C2 ¤ ;, then choose
x2 2 C2 and go to the next step. In general, when we arrive at the j�th step,
j > 2, the first j � 1 points x1; : : : ; xj �1 2 K are already constructed, so we
consider

Cj WD K n

j �1[
iD1

B2r .xi /:

If Cj D ;, stop the algorithm; the set fx1; : : : ; xj �1g is clearly the set of points
in K we are looking for. If Cj ¤ ;, choose xj 2 Cj and go to the next step.

We claim this process ends in a finite number of steps, i.e. we always arrive
at the case Cj D ;, for some j 2 N large enough. Otherwise, the algorithm
just described would give rise to a sequence fxig

1
nD1 inK which does not admit a

convergent subsequence: if n;m 2 N are such that n < m, then d.xn; xm/ > 2r

because xm 62

m�1[
iD1

B2r.xi / � B2r .xn/ by construction. This contradicts the

compacity of K.

Another important covering theorem is the following (cf. Simon (1983, Theo­
rem 3.3)).

TheoremA.16 (5r�covering lemma). Suppose .X; d/ is a separablemetric space.
If B is an arbitrary family of (closed or open) balls in X satisfying

sup
B2B

diam.B/ < 1;
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then there exists a countable and (pairwise) disjoint subcollection B0 � B such
that [

B2B

B �
[

B2B0

5B;

where 5B denotes a ball with the same center as B and five times the radius of B .

Densities. Wenow introduce the notions of upper and lower k�dimensional den­
sity of a measure at a point. The reference for this part is Simon (1983, §3).

Definition A.17 (Upper and lower densities). Let s 2 R>0 and let � be a measure
on X . We define the upper (resp. lower) s�dimensional density of � at x 2 X

by
��s

.�; x/ WD lim sup
r#0

r�s�.Br.x//:

�
resp. ��

s.�; x/ WD lim inf
r#0

r�s�.Br.x//:

�
Whenever ��s.�; x/ D ��

s.�; x/, we denote the common value by

�.�; x/ WD lim
r#0

r�s�.Br.x//

and simply speak of the s�density of � at x.
For an arbitrary subset A � X , we define the upper (resp. lower)

s�dimensional density of A at x by

��s
.A; x/ WD ��s

.Hs
bA; x/:�

resp. ��
s.A; x/ WD ��

s.Hs
bA; x/:

�
When the upper and lower s�dimensional densities of A at x are equal we write
the common value by �s.A; x/.

Remark A.18. Some authors (including L. Simon) define the Hausdorff measure
multiplying the one in Definition (A.10) by the constant factor ˛s of Example
A.11. In this case, it is convenient to modify the above definition multiplying the
densities by ˛�1

s . ˙
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Remark A.19. We note that when � is a Borel measure then ��s.�; �/ and
��

s.�; �/ are ��measurable functions. In fact, for each fixed r > 0, the func­
tion on X defined by

x 7! �.Br.x//

is upper semi­continuous whenever � is a Borel measure. Indeed: fix x 2 X and
r > 0; we want to show

�.Br.x// > lim sup
y!x

�.Br.y//:

If �.Br.x// D 1 the assertion is clearly true, so suppose �.Br.x// < 1. Let
.xn/ be a sequence inX such that xn ! x. Then, given " > 0, there exists n0 2 N
such that

n > n0 ) Br.xn/ � BrC".x/:

Thus, on one hand we have

lim sup
n!1

�.Br.xn// 6 �.BrC".x//:

On the other hand, for "0 > 0 small enough, Theorem A.3 (3.b) implies

�.Br.x// D �

0@ \
0<"<"0

BrC".x/

1A D lim
"#0

�.BrC".x//:

Therefore
lim sup
n!1

�.Br.xn// 6 �.Br.x//:

The claim follows. ˙
Remark A.20. If x … supp.�/ then �s.�; x/ D 0 for every 0 6 s < 1. Indeed,
when x … supp.�/ there exists an open subset U � X such that x 2 U and
�.U / D 0. Thus, for all sufficiently small r > 0 we have �.Br.x// D 0. In
particular, �s.�; x/ D 0 for every 0 6 s < 1. ˙

The next result tells us that appropriate information about the upper
s�dimensional density function of a given Borel­regular measure gives estimates
of this measure with respect to the s�dimensional Hausdorff measure.

Theorem A.21. Let � be a Borel regular measure on X , and let s; t 2 R>0.



158 A. Geometric measure theory

(i) If A1 � A2 � X and ��s.�bA2; x/ > t for all x 2 A1, then

tHs.A1/ 6 �.A2/:

(ii) If A � X and ��s.�bA; x/ 6 t for all x 2 A, then

�.A/ 6 2stHs.A/:

In particular, (i) and (ii) imply

t1Hs.A/ 6 �.A/ 6 2st2Hs.A/;

whenever A � X is such that 0 6 t1 6 ��s.�bA; x/ 6 t2 for all x 2 A.

The proof of the above result uses Theorem A.16 for (i) and is elementary for
(ii); see Simon (1983, Theorem 3.2). As a corollary of Theorem A.21 (i), one can
prove the following useful result Simon (ibid., Theorem 3.5):

Theorem A.22. If � is Borel­regular and A � X is ��measurable with �.A/ <
1 then

��s
.�bA; x/ D 0 forHs

� a.e. x 2 X n A:

Restricting attention to Hausdorff measures, there are some useful estimates
for the density on sets of finite measure Simon (ibid., Theorem 3.6).

Theorem A.23. Let s 2 R>0. Then the following assertions holds.

(i) IfHs.A/ < 1 then ��s.A; x/ 6 1 forHs�a.e. x 2 A.

(ii) IfHs
ı
.A/ < 1 for each ı > 0, then ��

s.A; x/ > 2�s forHs�a.e. x 2 A.

In particular2, if Hs.A/ < 1 then

2�s 6 ��s
.A; x/ 6 1 forHs

� a.e. x 2 A:

2Note thatHs > Hs
ı

> Hs
1.
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A.4 Radon measures
In this subsection we assume X is a locally compact and separable metric space.

Let H denote a finite dimensional real Hilbert space with inner product h�; �i

and induced norm k � k. Denote by C 0
c .X IH/ the space of continuous functions

X ! H with compact support in X . We endow C 0
c .X IH/ with the topology of

uniform convergence on compact sets: if ffngn2N � C 0
c .X IH/, then fn ! f 2

C 0
c .X IH/ if, and only if,

1. there exists a compact subset K � X such that supp.fn/ � K, for each
n 2 N; and

2. sup fkfn.x/ � f .x/k W x 2 Kg ! 0 as n ! 1.

Given a Radon measure � on X and a ��measurable function v W X ! H with
kv.x/k D 1 for �­a.e. x 2 X , then

L W f 7!

Z
X

hf; vid�

defines a continuous linear functional on C 0
c .X IH/: indeed, let K � X be a

compact set and suppose f 2 C 0
c .X IH/ is such that supp.f / � K. Since

f is continuous and � is Radon, we have kf k1 D supx2K kf .x/k < 1 and
CK WD �.K/ < 1. Moreover, by the hypothesis on v and the Cauchy–Schwarz
inequality,

jhf .x/; v.x/ij 6 kf .x/kkv.x/k D kf .x/k; for �­a.e. x 2 X:

Therefore,
jL.f /j 6

Z
K

jhf .x/; v.x/ijd�.x/ 6 CKkf k1:

Conversely, we have Simon (ibid., Theorem 4.1, p.18):

Theorem A.24. (Riesz) Let L W C 0
c .X IH/ ! R be a linear functional such that

supfL.f / W f 2 C 0
c .X IH/; kf k1 6 1; supp.f / � Kg < 1; (A.25)

for each compact K � X . Then there is a Radon measure � on X and a
��measurable function v W X ! H with kv.x/k D 1 for �­a.e. x 2 X such
that

L.f / D

Z
X

hf; vid�; 8f 2 C 0
c .X IH/:
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Moreover, the Radon measure� is unique; in fact, in the above conditions we have

�.V / D supfL.f / W f 2 C 0
c .X IH/; kf k1 6 1 and supp.f / � V g;

for every open subset V � X ; � is called the total variation measure associated
with the functional L.

Remark A.26. When H D R, if we replace the hypothesis (A.25) in Theorem
A.24 by the condition that Lf > 0 whenever f > 0 (in case L is called a nonneg­
ative functional), then we can in fact find v W X ! R such that v � 1 ��a.e. and,
therefore, conclude that

L.f / D

Z
X

f d�; 8f 2 C 0
c .X I R/:

Such version of the Riesz representation theorem can be found, for example, in
Folland’s book Folland (2013, Theorem 7.2, p.212) (see also Rudin (1986, Theo­
rem 2.14, p.40)). In particular, we can identify the set of Radon measures on X
with the set of nonnegative linear functionals on C 0

c .X/ WD C 0
c .X I R/. ˙

It is then natural to endow the space of Radon measures on X with the weak*
topology of the topological dual of C 0

c .X/:

DefinitionA.27 (Weak* convergence). Given a sequence of Radonmeasures f�ig

we say that �i converges weakly* to a Radon measure �, and we write �i * �,
when

lim
i!1

Z
X

f d�i D

Z
X

f d�; 8f 2 C 0
c .X/:

Having Remark A.26 in mind, the following theorem is a fairly easy applica­
tion of the general Banach–Alaoglu theorem.

Theorem A.28 (Weak* Compactness of Radon Measures). If f�ig is a sequence
of Radon measures on X satisfying

supf�i .U / W i > 1g < 1; 8U b X;

then f�ig admits a weakly* convergent subsequence.

The following basic result is of fundamental importance and will be used re­
peatedly in Chapter 4 De Lellis (2008, Proposition 2.7, p.8).

Theorem A.29. Let f�ig be a sequence of Radon measures on X such that �i *

�.
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(i) If U � X is an open subset then

�.U / 6 lim inf
i!1

�i .U /:

(ii) If K � X is a compact subset then

�.K/ > lim sup
i!1

�i .K/:

In particular,

(iii) If U b X is a precompact open subset with �.@U / D 0, then

�.U / D lim
i!1

�i .U /:

(iv) Given x 2 X and ı > 0, then

Rx;ı.�/ WD fr 2 �0; ı� W �.@Br.x// > 0g

is at most countable and

�.Br.x// D lim
i!1

�i .Br.x//; 8r 2 �0; ı� n Rx;ı.�/:

We end this section with a theorem which requires the following definitions.

Definition A.30. LetB be a collection of balls inX . We define the set of centres
of B to be

CB WD fx 2 X W Br.x/ 2 B for some r > 0g:

A subset A � X is said to be covered finely by B if for every x 2 A and every
" > 0 there exists a ball B 2 B such that x 2 B and diam.B/ < ".

Definition A.31. Let� be a Radon measure onX . We say thatX has the symmet­
ric Vitali property relative to � if for every collection of balls B which covers
its set of centres CB finely and with �.CB/ < 1, there is a countable pairwise
disjoint subcollection B0 � B covering ��almost all of CB .

Example A.32. If X is locally compact, Hausdorff and second countable (e.g. if
X is a manifold) thenX has the symmetric Vitali property relative to every Radon
measure on X .
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The following is a useful result about differentiation of measures due to Besi­
covitch Simon (1983, p. 24, Theorem 4.7).

Theorem A.33 (Besicovitch differentiation of measures). Suppose �1 and �2 are
Radon measures on X , where X has the symmetric Vitali property with respect to
�1. Then

d�2

d�1
.x/ WD lim

r#0

�2.Br.x//

�1.Br.x//

exists (possibly1)�1�almost everywhere and defines a�1�measurable function
on X . Furthermore, the Radon–Nikodým decomposition of �2 with respect to �1

is given by

�2 D
d�2

d�1
�1 C �2bZ; (A.34)

where Z is a Borel set of �1�measure zero. Moreover, in case X also has the

symmetric Vitali property with respect to �2 then
d�2

d�1
also exists �2�almost ev­

erywhere and we may take Z D

�
x W

d�2

d�1
.x/ D 1

�
in (A.34).
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A.5 Rectifiable sets and measures

Perhaps the most relevant class of functions in the context of geometric measure
theory is the class of Lipschitz functions.

Definition A.35 (Lipschitz maps). A map f W .X; d/ ! .X 0; d 0/ between metric
spaces is called ��Lipschitz, for some � 2 Œ0;1Œ, when

d 0.f .x/; f .y// 6 �d.x; y/; 8x; y 2 X:

Whenever

Lip.f / WD inff� 2 Œ0;1ŒW f is � � Lipschitzg < 1;

f is called a Lipschitz function.

Lemma A.36. Let X and X 0 be metric spaces and E � X an arbitrary subset. If
f W E ! X 0 is a Lipschitz map, then

Hs.f .E// 6 Lip.f /sHs.E/:

In particular, a Lipschitz map takesHs�negligible sets toHs�negligible sets.

Next, we give a simple extension result.

Lemma A.37. Let A � X and n 2 N. Then, every ��Lipschitz map admits a
p
n��Lipschitz extension f W X ! Rn.

Sketch of proof. For n D 1, we simply define

f .x/ WD infff .a/C �f .x/ W a 2 Ag; 8x 2 X:

It is straightforward to verify f is well­defined and satisfy the desired properties.
For n > 2 one writes f D .f1; : : : ; fn/ and extends each fi W A ! R sepa­

rately as above.

For Lipschitzmaps between Euclidean spaces we have the following important
result Simon (ibid., Theorem 5.2, p.30).

Theorem A.38 (Rademacher). If f W Rn ! Rm is a Lipschitz map, then f is
differentiable for Ln�a.e. x 2 Rn.
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Using the above theorem (and other results), one can prove Simon (1983, The­
orem 5.3, p.32):

Theorem A.39. If U � Rn is open and if f W U ! R is differentiable Ln�a.e.
in U , then for each " > 0 there is a closed set A � U and a C 1�function
g W Rn ! R such that

Ln.U n A/ < ", f jA D gjA and .grad f /jA D .grad g/jA.

We now introduce a concept of great importance in geometric measure theory,
which can be seen as a measure­theoretic notion of smoothness.

Definition A.40 (Rectifiable sets and measures). Let k 2 N0. A subset � � X

is called countably Hk�rectifiable if there exists a sequence of Lipschitz maps
fi W Ai � Rk ! X such that

Hk

 
� n

[
i

fi .Ai /

!
D 0:

A Radon measure � on X is called Hk�rectifiable if � D �Hkb� for some
countablyHk�rectifiable set � and some Borel function � W � ! Œ0;1Œ.

By Lemma A.36, it follows that if � � X is a countably Hk�rectifiable set
then Hkb� is ��finite and, therefore, dimH� 6 k. Note also that any Borel
subset of a countably Hk�rectifiable set is countably Hk�rectifiable. More­
over, a countable union of countably Hk�rectifiable sets is again a countably
Hk�rectifiable set.
Remark A.41. By definition, the property of being countably Hk�rectifiable is
intrinsic, i.e. if .X; d/ is isometrically embedded in another metric space .X 0; d 0/,
then � � X is countably Hk�rectifiable in X if, and only if, � is countably
Hk�rectifiable in X 0. ˙

Here is a slightly different characterization of rectifiable sets that uses as Ai

compact sets and that shows that the collection ffi .Ai /g can be disjoint Lang
(2007, Proposition 9.2, p.20).

Theorem A.42. Suppose X is a locally complete metric space and � � X an
Hk�measurable and countablyHk�rectifiable set. Then there exists a countable
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family of bi­Lipschitz3 maps fi W Ki ! f .Ki / � � , with Ki � Rk compact,
such that the images fi .Ki / are pairwise disjoint and

Hk

 
� n

[
i

fi .Ki /

!
D 0:

For subsets of Euclidean spaces, using Theorem A.39, one has the follow­
ing characterization of countably Hk�rectifiable sets Simon (1983, Lemma 11.1,
p.59).

Theorem A.43. LetE � Rn, where n > k. Then, E is countablyHk�rectifiable
if, and only if, there exists a sequence of k�dimensional C 1�submanifolds Ni of
Rn such that

Hk

 
E n

[
i

Ni

!
D 0:

More generally, in arbitrary complete Riemannian manifolds, one has impor­
tant characterizations of rectifiability for both sets and measures in terms of ap­
proximate tangent spaces. In what follows, we will give a brief account of this
topic. For a detailed discussion of the concept of rectifiability and its characteriza­
tions in Euclidean spaces the reader is encouraged to see DeLellis’ lecture notes
De Lellis (2008) (also see Simon’s notes Simon (1983, p.60­66)). Here we will
adapt the relevant definitions and results to the context of Riemannian manifolds.

In what follows, let .M; g/ be a connected, complete, Riemannian n�manifold.
For each s 2 R>0, we letHs denote the s�dimensional Hausdorff measure onM
associated to the induced Riemannian distance function dg .

Definition A.44 (s�tangent measures). Let � be a Radon measure onM , and let
s 2 R>0. Given x 2 M and � 2 RC, we write �� for the linear scaling map
on TxM taking v to �v, and define the scaled and translated measure �x;� WD

.expx ı��/
�� on TxM by

�x;�.E/ D �.expx.�E//; 8E � TxM:

We say that a Radon measure � on TxM is a s�tangent measure of � at x when
there exists a null­sequence f�ig � RC such that

��s
i �x;�i

* �:

We let Tans.�; x/ denote the set of all s�tangent measures of � at x.
3i.e. fi is Lipschitz, injective and such that f �1

i jfi .Ki / is Lipschitz.



166 A. Geometric measure theory

Remark A.45. Note that if .M; g/ D .Rn; g0/, where g0 is the standard Euclidean
metric, then �x;�.E/ D �.x C �E/. ˙

Theorem A.46 (Marstrand). Let � be a Radon measure on M , let s 2 R>0 and
let � � M be a Borel set with �.� / > 0. Suppose

0 < �s
�.�; x/ D ��s

.�; x/ < 1 for ��a.e. x 2 � :

Then s D k 2 N0. Moreover, for ��a.e. x 2 � , there exists a k�dimensional
subspace Vx 6 TxM such that �k.�; x/HkbVx 2 Tank.�; x/.

From now on k will denote a nonnegative integer.

Definition A.47 (Approximate tangent spaces). Let � � M be an
Hk�measurable set, and let� W � ! �0;1Œ be a locallyHk�integrable function.
A k�dimensional subspace Vx 6 TxM is called the approximate k�tangent
space for � at x with multiplicity �.x/ if Tank.�Hkb�; x/ D f�.x/HkbVxg,
i.e. if

��k.�Hk
b� /x;� * �.x/Hk

bVx as � # 0:

Let � be a Radon measure onM . A k�dimensional subspace Vx 6 TxM is called
the approximate k�tangent space for � at x with multiplicity �.x/ 2 �0;1Œ if
Tank.�; x/ D f�.x/HkbVxg, i.e. if

��k�x;� * �.x/Hk
bVx as � # 0:

Remark A.48. Let � be a Radon measure on M and let x 2 M . We claim
that if � WD �.x/HkbVx 2 Tank.�; x/ for some �.x/ 2 �0;1Œ and some
k�dimensional subspace Vx 6 TxM , then �k.�; x/ exists and equals �.x/.

Pick r 2 RC such that �.@Br.0// D 0. Then

�.x/rk
D �.Br.0// D lim

�#0
��k�x;�.Br.0//

D lim
�#0

��k�.B�r .x//:

Therefore,

�.x/ D lim
�#0

.�r/�k�.B�r.x// D lim
ı#0

ı�k�.Bı.x//;

from which our claim follows, since �.x/ 2 �0;1Œ. ˙
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We are now in position to state a number of rectifiability criteria.

Theorem A.49. Let � � M be an Hk�measurable set. Then, � is countably
Hk�rectifiable if, and only if, there exists an Hk�integrable function � W � !

�0;1Œ such that � WD �Hkb� has approximate k�tangent space Vx forHk�a.e.
x 2 � .

Theorem A.50. Let � be a Radon measure on M . Then, � is Hk�rectifiable if,
and only if, for ��a.e. x 2 M , there exist a positive constant�.x/ 2 �0;1Œ and a
k�dimensional subspace Vx 6 TxM such that Vx is the approximate k�tangent
space for � at x with multiplicity �.x/.

The last result we cite is highly non­trivial and was proved in Preiss (1987) by
David Preiss.

Theorem A.51 (Preiss). Let � be a locally finite Borel measure on M . Suppose
that, for k 2 N, k 6 n,

0 < �k
�.�; x/ D �k�

.�; x/ < 1; for ��a.e. x 2 supp.�/:

Then � isHk�rectifiable.
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A.6 Currents

In this section we introduce the basics about de Rham’s theory of currents. Our
goal is to establish the rectifiability Theorem A.68. We develop the theory in the
framework of open subsets of Rn and at the end we explain how to pass from this
context to arbitrary smooth manifolds.

The spaces ˝k.U / and Dk.U /. Let U be an open subset of Rn. For each
˛ D .˛1; : : : ; ˛n/ 2 Nn

0 we associate the differential operator

D˛
WD

�
@

@x1

�˛1

ı : : : ı

�
@

@xn

�˛n

;

whose order is
j˛j WD ˛1 C : : :C ˛n:

If j˛j D 0, thenD˛ D 1.
As usual, we denote by ˝k.U / the real vector space of smooth k�forms on

U . We topologize ˝k.U / with the C1
loc�topology which makes ˝k.U / into a

Fréchet space4. This is done by choosing an exhaustion of U by compact sets
fKigi2N and defining, for each i 2 N, the semi­norm pi W ˝k.U / ! R>0 given
by

pi .'/ WD sup
˚ˇ̌
.D˛'j1;:::;jk

/.x/
ˇ̌

W x 2 Ki ; j˛j 6 i; 1 6 j1 < : : : < jk 6 n
	
;

for all
' D

X
j1<:::<jk

'j1;:::;jk
dxj1:::jk 2 ˝k.U /:

Then P WD fpig, being a countable separating family of semi­norms on ˝k.U /,
defines a metrizable locally convex topology on ˝k.U / admitting a translation­
invariant compatible metric (see Rudin (1991, Theorem 1.37 and Remark (c) of
Section 1.38)). A local base for 0 is given by the sets

Vi WD

�
' 2 ˝k.U / W pi .'/ <

1

i

�
; i 2 N:

4i.e. a locally convex topological vector space whose topology is induced by a translation­
invariant metric which makes the space complete.
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One may readily check that every Cauchy sequence on ˝k.U / has a limit in
˝k.U /, so that ˝k.U / is in fact a Fréchet space.

For each compact K � U ,

Dk
K.U / WD ˝k.U / \ f' W supp.'/ � Kg

is a closed subspace of ˝k.U /, and therefore is also a Fréchet space. The union
of the spaces Dk

K.U /, as K ranges over all compact subsets of U , is denoted by

Dk.U / WD ˝k.U / \ f' W ' has compact support in U g:

This is clearly a vector space under the usual operations. We endow Dk.U / with
the largest topology making the inclusion maps Dk

K.U / ,! Dk.U / continuous
(cf. Federer (1978, §6)); this is called the C1�topology on Dk.U /. It can be
shown that this topology makes Dk.U / into a locally convex topological vector
space. Moreover:

Proposition A.52. Given f'igi2N � Dk.U /, where5

'i
D
X

J

'i
J dx

J ; for each i 2 N;

then 'i ! 0 in Dk.U / if, and only if, the following holds:

(i) there exists a compact subset K � U with supp.'i / � K, for all i 2 N.

(ii) sup
x2K

j.D˛'i
J /.x/j ! 0 as i ! 1, for all J and ˛ 2 Nn

0 .

Proposition A.53. Let T W Dk.U / ! Y be a linear map into a locally convex
space Y . Then the following are equivalent:

(a) T is continuous.

(b) If 'i ! 0 in Dk.U / then T 'i ! 0 in Y .

Remark A.54. The approach given above for the spaces ˝k.U / and Dk.U / is
an adaptation of Rudin’s approach Rudin (1991, §1.46 and §6.2­6.8) for the corre­
sponding spaces of functions. In this spirit, the reader interested in a proof of the
above results may want to compare Proposition A.52 with Rudin (ibid., Theorem
6.5 (f), pp. 154­155), and Proposition A.53 with Rudin (ibid., Theorem 6.6 (a),
(c), p. 155). ˙

5Here the sum runs over all J D f1 6 j1 < : : : < jk 6 ng.
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An element ' 2 Dk.U / is also known as a test form.

Definition A.55 (Current). A k�current T on U is an element of the topological
dual Dk.U / WD

�
Dk.U /

�0

, i.e. a continuous linear functional of Dk.U /. When
k D 0 we use the notations D.M/ WD D0.U / and D 0.M/ WD D0.U /.

0�currents are also known as distributions.

Definition A.56 (Weak* convergence). A sequence of k�currents fTig � Dk.U /

converges weakly* to T 2 Dk.U /, and we write Ti * T , if

lim
i!1

Ti .'/ D T .'/; 8' 2 Dk.U /:

Let T 2 Dk.M/. The support supp.T / of T is the intersection of all closed
subsets F � M satisfying:

supp.'/ \ F D ;; ' 2 Dk.M/ H) T .'/ D 0:

Note that every compactly supported k�current extends to a continuous linear
functional on ˝k.U /.

Definition A.57 (Boundary). Let k 2 N. If T 2 Dk.U /, the boundary of T is
the current @T 2 Dk�1.U / given by

@T .'/ WD T .d'/; 8' 2 Dk�1.U /:

We define the boundary of a 0�current to be the zero function. A current T 2

Dk.U / is said to be closed if @T D 0.

Remark A.58. We list some elementary observations concerning Definition A.57.

• @ ı @ D 0, as a direct consequence of d ı d D 0. In particular, there is an
associated complex:

: : : ! DkC1.U /
@
�! Dk.U /

@
�! Dk�1.U / ! : : :

• supp.@T / � supp.T / (since supp.d�/ � supp.�/);

• Ti * T H) @Ti * @T : indeed, given ' 2 Dk�1.U / we have

@Ti .'/ D Ti .d'/ ! T .d'/ D @T .'/;

whenever Ti * T . ˙
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The concept of a k�current on U is the measure­geometric generalization of
the concept of an oriented k�submanifold onU with locally finite k�dimensional
Hausdorff measure. This is the motivation for the definition of boundary for cur­
rents we have given above, as the following example illustrates:

Example A.59. For k > 1, let N k � U be an oriented k�submanifold with
boundary @N in U and orientation � . Suppose HkbN is locally finite (or, equiv­
alently, a Radon measure). Then, N naturally induces a k�current ŒŒN �� on U
given by

ŒŒN ��.'/ WD

Z
N

h'; �.x/i˛kdHk
D

Z
N

'; 8' 2 Dk.U /:

Analogously, the boundary of N with the induced orientation induces a .k �

1/�current ŒŒ@N �� on U . Now, for each � 2 Dk�1.U /, by Stokes’ theorem we
have

ŒŒ@N ��.�/ D

Z
@N

� D

Z
N

d� D ŒŒN ��.d�/ D @ŒŒN ��.�/:

This shows that the boundary of the current determined by N , as per Definition
A.57, equals the current determined by the boundary @N of N .

Definition A.60 (Total variation measure and mass of a current). Let T 2 Dk.U /.
For an open subset W � U and any A � U , we define

kT k.W / WD supfT .'/ W supp.'/ � W; k'kC 0 6 1g;

kT k.A/ WD inffkT k.W / W A � W; W openg:

The resulting Borel regular (outer) measure kT k is called the total variational
measure of T . The (extended) number

M.T / WD kT k.U / D supfT .'/ W k'kC 0 6 1; ' 2 Dk.U /g 2 Œ0;1�:

is called themass of T .

Note that when T D ŒŒN �� is induced by a k�submanifold N � U as in the
above example, the total variation measure of T is simply kT k D HkbN , which
shows that the mass generalizes the area of a submanifold.
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Definition A.61 (Finite mass currents). Let k 2 N0. We define the spaceMk.U /

of finite mass k�currents on U by

Mk.U / WD fT 2 Dk.U / W kT k is a finite measureg:

Mk.U / has a natural structure of normed space induced by the mass norm
M.T / WD kT k.

More generally, we define the space Mk;loc.U / of locally finite mass
k�currents on U by

Mk;loc.U / WD fT 2 Dk.U / W kT k is a Radon measureg:

Mk;loc.U / has a natural topology induced by the family of semi­norms
fMW gW bU , whereMW .T / WD kT k.W /.

A current T 2 Dk.U / is said to be representable by integration when there
exist a Radonmeasure�T overU and a�T �measurable function � W U ! �kRn,
with j�j D 1 �T �a.e., such that

T .'/ D

Z
U

h'; �id�T :

In such case, one may prove that �T D kT k. In particular, when T is repre­
sentable by integration then T 2 Mk;loc.U /. The converse follows from the Riesz
representation theorem (Theorem A.24). Thus:

Theorem A.62 (Integral representation). Let T 2 Dk.U /. Then, T is repre­
sentable by integration if, and only if, T 2 Mk;loc.U /.

Moreover, we have the following standard weak* compactness result, which
follows from the standard Banach–Alaoglu theorem (cf. Simon (1983, Lemma
26.14, p. 135)).

Lemma A.63. Let fTig � Mk;loc.U / be such that

sup
i>1

kTik.W / < 1; for each W b U:

Then, after passing to a subsequence, there exists T 2 Mk;loc.U / such that Ti *

T .

Next we introduce various important spaces of currents.
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Definition A.64 (Normal currents). Let k 2 N0. We define the space Nk.U / of
normal k�currents on U by

Nk.U / WD fT 2 Dk.U / W kT k C k@T k is a finite measureg:

Nk.U / has a natural structure of normed space induced by N.T / WD M.T / C

M.@T /.
More generally, we define the space Nk;loc.U / of locally normal k�currents

on U by

Nk;loc.U / WD fT 2 Dk.U / W kT k C k@T k is a Radon measureg:

Nk;loc.U / has a natural topology induced by the family of semi­norms fNW gW bU ,
where NW .T / WD MW .T /C MW .@T /.

Definition A.65 (Integer rectifiable currents). A k�current T 2 Dk.U / is called
locally integer rectifiable if there is a triple .�; �;�/ such that:

(i) � � U isHk�measurable and countablyHk�rectifiable;

(ii) � W � ! Œ0;1Œ is locally Hk�integrable and such that �.x/ 2 Z for
Hk�a.e. x 2 � ;

(iii) � W � ! �kRn is Hk�measurable and such that �.x/ orients the approxi­
mate k�tangent space Tx� forHk�a.e. x 2 � , that is, forHk�a.e. x 2 � ,
�.x/ 2 �kRn is simple, unitary and represents the approximate k�tangent
space Tx� ;

(iv) the current T is given by

T .'/ WD

Z
�

h'; �i�dHk; 8' 2 Dk.U /:

We call � the multiplicity of T and � the orientation of T ; we write T D

.�; �;�/.
The set of locally integer rectifiable k�currents on U is denoted byRk;loc.U /.

The set of integer rectifiable k�currents on U is defined by

Rk.U / WD Rk;loc.U / \ Mk.U /:

Remark A.66. In the literature, the space Rk;loc.U / is sometimes simply called
the space of locally rectifiable k�currents on U (note the missing of ‘integer’).

˙
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In general, if T 2 Rk;loc it need not be true that @T 2 Rk�1;loc.

Definition A.67 (Integral currents). The space of locally integral k�currents on
U is defined by

Ik;loc.U / WD fT 2 Rk;loc W @T 2 Rk�1;locg; if k > 1;

and we set
I0;loc.U / WD R0;loc:

The space Ik.U / of integral k�currents on U is defined by

Ik.U / WD Ik;loc.U / \ Nk.U /:

The following theorem gives an important criterion for a k�current to be rec­
tifiable Simon (1983, Theorem 32.1, pp. 183­187).

Theorem A.68 (Rectifiability Theorem). If T 2 Dk.U / is such that

(i) T 2 Nk;loc.U / (i.e. kT k.W /C k@T k.W / < 1, 8W b U ), and

(ii) ��k.kT k; x/ > 0 for kT k�a.e. x 2 U ,

then T is rectifiable, i.e. T is defined by a triple .�; �;�/, in the sense that

T .'/ D

Z
�

h'; �i�dHk
b�; 8' 2 Dk.U /;

where

1. � � U isHk�measurable and countablyHk�rectifiable;

2. � W � ! Œ0;1Œ is locallyHk�integrable;

3. � W � ! �kRn is Hk�measurable and such that �.x/ orients the approxi­
mate k�tangent space Tx� forHk�a.e. x 2 � .

Definition A.69 (Cycles, boundaries, etc.). For k > 1, define the abelian groups

Zk.U / WD fT 2 Ik.U / W @T D 0g;

Bk.U / WD f@S W S 2 IkC1.U /g � Zk.U /:

An element ofZk.U / is called a cycle; an element of Bk.U / is called a boundary.
Two cycles T; T 0 2 Ik.U / are called homologous if T � T 0 is a boundary.
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Currents on manifolds. We now explain how the definition of currents on
open subsets of Euclidean spaces can be transported to general manifolds. The
key observation is the following. Let F W U ! V be a coordinate change between
two coordinate systems .U; x1; : : : ; xn/ and .V; y1; : : : ; yn/, where U; V � Rn

are open subsets. Thus, F is a diffeomorphism such that xi D yi ı F , for each
i D 1; : : : ; n.

Claim. Let F W U ! V be a diffeomorphism; then the natural induced map

F �
W Dk.V / ! Dk.U /

is an isomorphism of topological vector spaces.

Since F is a diffeomorphism, it is clear that F � is a linear isomorphism. More­
over, since .F �/�1

D
�
F�1

��, in order to prove F � is a homeomorphism it suf­
fices to show that F � is continuous (then the same argument will apply to the
inverse map switching the roles of F and F�1). By Proposition A.53, showing
the continuity of F �, in turn, boils down to proving the following: if �i ! 0 in
Dk.V / then 'i WD F �.�i / ! 0 in Dk.U /.

Now suppose that �i ! 0 in Dk.V /. In particular, by Proposition A.52 (i),
there exists a compact subset zK � V such that supp.�i / � zK for each i . It
follows that the compact subset K WD F�1. zK/ � U is such that supp.'i / � K,
for each i . We write

�i
D
X

J

�i
J dy

J ;

so that
'i

D
X

J

�
�i

J ı F
�
dxJ

DW
X

J

'i
J dx

J :

Since
@

@yi
D F�

@

@xi
;

it follows from Proposition A.52 (ii) that

sup
x2K

j.D˛'i
J /.x/j D sup

y2 zK

j. zD˛�i
J /.y/j ! 0 as i ! 1;
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for all J and ˛ 2 Nn
0 , where

D˛
WD

�
@

@x1

�˛1

ı : : : ı

�
@

@xn

�˛n

; and

zD˛
WD

�
@

@y1

�˛1

ı : : : ı

�
@

@yn

�˛n

:

Therefore, by Proposition A.52, 'i WD F �.�i / ! 0 in Dk.U /. This proves the
continuity of F �, completing the proof of the claim.

Now letM be a smooth n�manifold. Then, by making use of local charts on
M , and the above observation, we get a well­defined C1�topology on the space
Dk.M/ of smooth compactly supported k�forms onM . Thus we can define:

Definition A.70. A k�current T on M is an element of the topological dual
Dk.M/ WD

�
Dk.M/

�0

, i.e. a continuous linear functional T W Dk.M/ ! R.
Dk.M/ endowed with the weak* topology is called the space of k�currents

onM .

The previous definitions and results of this section are then obviously adapted
to this context.



B Partial
differential

operators and
Sobolev spaces

In this brief appendix we collect some basic terminology and facts on partial differ­
ential operators and Sobolev spaces which are specially used in Sections 1.1, 1.4
and 3.1. The main references for this appendix are Wehrheim (2004) and Nico­
laescu (2014­03­20).

B.1 Partial differential operators

In this section, we provide some definitions concerning (linear) partial differ­
ential operators (PDO) on manifolds. We follow the algebraic point of view of
Nicolaescu’s lecture notes Nicolaescu (ibid., Chapter 10).

LetEi ! M be a K�vector bundle over a smooth manifoldM , i D 1; 2. We
start letting Op.E1; E2/ be the natural K�vector space whose underlying set is
given by

Op.E1; E2/ WD fP W � .E1/ ! � .E2/ W P is K � linearg:
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In what follows, we will regard PDO’s from sections ofE1 to sections ofE2 as ele­
ments ofOp.E1; E2/ that interact in a specific way with the C1.M;K/�module
structure of � .E1/ and � .E2/.

Let Hom.E1; E2/ denote the space of vector bundle homomorphisms fromE1

to E2, i.e. the space of all P 2 Op.E1; E2/ such that P is C1.M;K/�linear.
Then we can write

Hom.E1; E2/ D fP 2 Op.E1; E2/ W ad.f /P D 0;8f 2 C1.M;K/g

DW ker ad;
where

ad.f / W Op.E1; E2/ ! Op.E1; E2/

P 7! ŒP; f � WD P ı f � f ı P:

Here we are regarding f as the natural C1.M;K/�module multiplication opera­
tor it induces on � .E1/ and � .E2/ where appropriate.
Definition B.1 (PDO’s). Let E1; E2 ! M be K�vector bundles. For each m 2

N0, we let PDO.m/.E1; E2/ be the set of all P 2 Op.E1; E2/ such that
ad.f0/ad.f1/ � � � ad.fm/P D 0; 8fi 2 C1.M;K/

and we set
PDO.E1; E2/ WD

[
m>0

PDO.m/.E1; E2/:

An element P 2 PDO.E1; E2/ is called a partial differential operator from E1

to E2.
Definition B.2 (Formal adjoint). Suppose .M; g/ is an oriented Riemannian man­
ifold and letEi ! M be a K�vector bundle overM endowed with a metric h�; �ii ,
i D 1; 2. Given P 2 PDO.E1; E2/, we say that Q 2 PDO.E2; E1/ is a formal
adjoint of P wheneverZ

M

hPu; vi2dVg D

Z
M

hu;Qvi1dVg ;

for each u 2 � .E1/ and v 2 � .E2/ one of which has compact support1 inM .
Proposition B.3 (Existence and uniqueness of formal adjoints). Suppose .M; g/
is an oriented Riemannian manifold and let Ei ! M be a K�vector bundle over
M endowed with a metric h�; �ii , i D 1; 2. Then for any P 2 PDO.E1; E2/ there
exists a unique formal adjoint P � 2 PDO.E2; E1/ of P .

1When @M ¤ ;, one assumes that the compact support lies in the interior of the manifoldM .
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B.2 Sobolev spaces
We now introduce Sobolev spaces of sections of vector bundles, and state the
corresponding so­called Sobolev embedding theorems. This is the minimal
background material to deal with Sobolev spaces of connections on G�bundles
(see §1.1 of Chapter 1). For a definition of Sobolev spaces of sections of general
fiber bundles2, as well as other details, we refer the reader to Wehrheim (2004,
Appendix B).

LetM be an oriented n�manifold endowed with a Riemannian metric g, and
let � W F ! M be a K�vector bundle overM endowed with a metric h D h�; �i

and associated pointwise norm j�j. Henceforth, we use the notations introduced in
Chapter 1.

Definition B.4 (Lp�sections). Let 1 6 p 6 1. We define the Lebesgue space
Lp.M;F / of Lp�sections of F ! M to be the natural K�vector space whose
underlying set consists of all (equivalence classes, modulo the relation of equality
�g�almost everywhere, of) Borel measurable maps u W M ! F such that the
following holds.

(i) .� ı u/.x/ D x, for �g�almost all x 2 M .

(ii) The function juj W M ! R defines an element in Lp.�g/.

The Lp�norm k � kp on Lp.M;F / is given by

kukp WD

8̂̂<̂
:̂
�Z

M

juj
pdVg

�1=p

; if 1 6 p < 1;

ess sup
M

jsj; if p D 1:

More generally, we define the spaceLp
loc.M;F / of locallyL

p�integrable sections
of F ! M by

L
p
loc.M;F / WD fu W f u 2 Lp.M;F / for all f 2 C1

c .M/g:

Given an exhaustion f˝ig ofM by precompact open subsets ˝i b M , the space
L

p
loc.M;F / is endowed with the natural Fréchet topology induced by the family
2This would cover, for instance, the case of Sobolev spaces of gauge transformations of

G�bundles.
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of semi­norms
˚
k � kp;˝i

	
i2N given by

kukp;˝i
WD

Z
˝i

juj
pdVg ; 8u 2 L

p
loc.M;F /:

Remark B.5. Suppose 1 6 p; q 6 1 are Hölder conjugate, i.e. 1=p C 1=q D 1,
and let u 2 Lp.M;F / and v 2 Lq.M;F /. Then, using the Cauchy–Schwarz
inequality together with Hölder’s inequality for functions, one getsZ

M

jhu; vijdVg 6 kukpkvkq:

More generally, let Fi ! M (i D 1; : : : ; l) be vector bundles with metrics and
consider F �

1 ˝ : : :˝F �
l
endowed with the induced tensor product metric. If˝ 2

Lp0.F �
1 ˝ : : :˝F �

l
/ for some 1 6 p0 6 1, then for every 1 6 p1; : : : ; pl 6 1

such that
1 �

1

p0
D

1

p1
C : : :C

1

pl

;

and for every ui 2 Lpi .M;Fi /, i D 1; : : : ; l , one can prove thatZ
M

j˝.u1; : : : ; ul/j dVg 6 k˝kp0
ku1kp1

� � � kulkpl
:

˙

Lemma B.6. The Lebesgue space .Lp.M;F /; k � kp/ is a Banach space which is
reflexive for 1 < p < 1.

Now fix a smooth connection r on F compatible with h. In what follows,
we still denote by r the tensor product connections (1.24) induced by r and the
Levi­Civita connectionDg of .M; g/.

Definition B.7. Let u 2 L1
loc.M;F / and let v 2 L1

loc.M;
Nj

T �M ˝ F /. We
say that rju D v weakly ifZ

M

hu; .rj /��idVg D

Z
M

hv; �idVg ; 8� 2 �0.

jO
T �M ˝ F /;

where .rj /� denotes the formal adjoint of rj 2 PDO.j /.F;
Nj

T �M ˝ F /.
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Definition B.8 (W k;p�sections). Let 1 6 p 6 1 and let k 2 N0. We define
the Sobolev space W k;p.M;F / of W k;p�sections of F ! M to be the natural
K�vector space whose underlying set consists of all u 2 Lp.M;F / such that, for
each 1 6 j 6 k, there exists vj 2 Lp.M;

Nj
T �M ˝ F / satisfying rju D vj

weakly. The Sobolev W k;p�norm k � kp;k on W k;p.M;F / is given by

kukk;p WD

kX
j D0

kr
jukp:

Note that, by definition,W 0;p.M;F / D Lp.M;F /. Moreover:

Theorem B.9. W k;p.M;F / is a Banach space which is reflexive for 1 < p < 1.

By the Banach–Alaoglu theorem of functional analysis, one gets:

Corollary B.10. If 1 < p < 1, then every bounded sequence in W k;p.M;F /

has a weakly convergent subsequence.

Let �0.F / denote the space of compactly supported sections of F ! M . The
next result implies that we could have defined W k;p.M;F / as the norm comple­
tion of .�0.F /; k � kk;p/.

Proposition B.11. If 1 6 p < 1, then �0.F / is dense on W k;p.M;F /.

Contrary to what our notation suggests so far, the spaces W k;p.M;F / may
heavily depend on the choices of a metric g onM , a metric h on E and, in case
k > 1, the choice of a compatible connection r on F . In fact, whenM is noncom­
pact, this dependence has to be seriously taken into account. On the other hand, it
turns out that for compact base manifoldsM these spaces are independent of these
choices and, although their norms always depend on the various choices of g; h
and (possibly) r (all of which will be clear in the context), a change of choices
always gives equivalent norms. Indeed, we have the following (cf. Nicolaescu
(2014­03­20, p.251, Theorem 10.2.36)):

Theorem B.12. Let F ! M be a vector bundle over a compact, oriented,
n�manifold M . Suppose that gi is a Riemannian metric on M , hi is a metric
on F and that ri is a smooth connection on F compatible with hi , where i D 1; 2.
Then we have the set equality

W k;p.M;F Ig1; h1;r1/ D W k;p.M;F Ig2; h2;r2/

and the identity map between these Banach spaces is a bounded linear map.



182 B. Partial differential operators and Sobolev spaces

We finish this appendix stating the so­called Sobolev embeddings (cf.
Wehrheim (2004, Theorem B.2, p. 182)). In what follows, we suppose M to be
a compact, oriented, n�manifold. Moreover, for each j 2 N0, we let C j .M;F /

be the space of C j �sections of F ! M , i.e. the space of all maps u W M ! F

of class C j such that � ı u D 1M . We endow C j .M;F / with the uniform
C j �topology induced by the W j;1�norm.

Theorem B.13 (Sobolev embeddings). Let 0 6 j < k be integers and let 1 6
p; q < 1 be real numbers.

(i) If k �
n
p

> j �
n
q
then the natural inclusion

W k;p.M;F / ,! W j;q.M;F /

is a bounded linear map. Moreover, if strictly inequality holds this inclusion
map is compact.

(ii) If k �
n
p
> j then there is a compact bounded inclusion map

W k;p.M;F / ,! C j .M;F /:

As a consequence, we have the following multiplication theorem.

Theorem B.14. Let k 2 N0 and let 1 6 p; r; s < 1 be such that either

r; s > p and
1

r
C
1

s
<
k

n
C
1

p

or
r; s > p and

1

r
C
1

s
6
k

n
C
1

p
:

Then, the (pointwise) multiplication map

W k;r .M/ �W k;s.M/ ! W k;p.M/

is well­defined and continuous.
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