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The intention of this book is to provide a self-contained presentation of new approaches
in the mathematical studies of nonlinear dispersive evolution equations on metric graphs.
We are interested in the nonlinear dynamic generated by two fundamental models with
applications in chemistry, engineering, blood pressure waves and several other physical
fields: The nonlinear Schrédinger equation and the Korteweg—de Vries equation. It will
be in our interest to study the local well-posedness problem of the Cauchy problem, the
existence and stability of standing wave and/or stationary solutions in different geometries
of the metric graph. Although many results may be found in the literature, in this book we
offer a new approach to study this kind of fascinating structures and some new results are
established. We also hope with this notes to fill in a little the gap in the literature related
to the analytical study of soliton propagation through networks.

This book has also been designed to be instructive as well to be a new source of ref-
erence for students and researches interested in nonlinear wave phenomena on quantum
graphs. Simplicity and concrete applications are set throughout the book in order to make
the material easily assimilated. Also, we hope that it may inspire future projects in this
new field of action for the nonlinear dispersive evolution equations.

The preparation of this book had partial support from O Conselho Nacional de De-
senvolvimento Cientifico e Tecnologico (CNPq) and Fundag¢do de Amparo a Pesquisa do
Estado de Sdo Paulo (FAPESP), which support Brazilian research. The authors would
like to thank their Mathematical Departments of the State University of Sao Paulo (USP)
and the Federal University of Alagoas (UFAL), where this book was written and finished.

We are indebted to many friends and collaborators who gave us the support, encour-
agements, and suggestions to complete this book.

J. Angulo would like to dedicate this work to his daughter Victoria Mel (por supuesto)
and that this may serve as an inspiration in her future academic activity.

M. Cavalcante would like to dedicate this work to his parents Marcos Cavalcante and
Maria Silva.



Jaime Angulo Pava Marcio Cavalcante de Melo
State University of Sdo Paulo Federal University of Alagoas

May 2019



A quantum graph is a metric graph, i.e., a network-shaped structure of vertices con-
nected by edges, with a linear Hamiltonian operator (such as a Schrédinger-like operator or
a Airy-like operator) suitably defined on functions that are supported on the edges. It arises
as a simplified models for wave propagation, for instance, in a quasi one-dimensional
(e.g. meso- or nanoscale) system that looks like a thin neighborhood of a graph. Quan-
tum graph have been used to describe a variety of physical problems and applications,
such as in chemistry and engineering (see Berkolaiko and Kuchment ; Blank, Exner,
and Havlic¢ek ; Burioni et al. ; Kuchment ; Mugnolo , for details and
references). Recently, they have attracted much attention in the context of soliton trans-
port in networks and branched structures (see Sobirov, Matrasulov, et al. ; Sobirov,
Babajanov, and Matrasulov ) since wave dynamics in networks can be modeled by
nonlinear evolution equations suitably defined on the edges.

Soliton and other nonlinear waves in branched systems appear in different system, for
instance, condensed matter, Josephson junction networks, polymers, optics, neuroscience,
DNA, blood pressure waves in large arteries or in shallow water equation to describe a

fluid network (see Adami and Noja ; Ali Mehmeti, von Below, and Nicaise ;

Berkolaiko, Carlson, et al. ; Berkolaiko and Kuchment ; Brazhnyi and Konotop
; Burioni et al. ; Cao and Malomed ; Fidaleo ; Kogan, Clem, and

Kirtley ; Kuchment ; Mugnolo ; Noja , and references therein).

To address these issues, in general the problem is difficult to tackle because both the
equation of motion and the geometry are complex. A first direction in the analysis is to
look at what happens in a simpler geometry and to examine a linear evolution equation,



4 1. Introduction

such as a ) junction (see Figure 1.1) and models as the linear Schrodinger equation or the
linear Korteweg—de Vries equation. In many cases however the nonlinearity can not be
neglected, by instance, in fluid system to describe a fluid network.

(_OO’ 0)

Figure 1.1: Y junction: a star graph with three edges

Thus, in the last years the study of nonlinear dispersive models on metric graph has
attracted a lot of attention of mathematician and physicists. In particular, the prototype of
framework (graph-geometry) for description of these phenomena have been a star graph
G, namely, a metric graph with N half-lines of the form (0, +00) connecting at a common
vertex v = 0 (see Figure 1.2), together with a nonlinear equation suitably defined on the
edges such as a nonlinear Schrédinger equation or the Benjamin-Bona-Mahony equation
(BBM) (see J. L. Bona and Cascaval ; Mugnolo and Rault ). The sine-Gordon
equation is also other basic model which also have been worked on the framework of a
junction.

Figure 1.2: Star graph with 5 edges

We note that with the introduction of the nonlinearity in the dispersive model, the
network provides a nice field where one can looking for interesting soliton propagation



and nonlinear dynamics in general. However, there are few exact analytic study of soliton
propagation through networks by the nonlinear flow induced by the equation. Results
on the stability or instability mechanism of these profiles are still unclear. One of the
objectives of these notes is to provide the reader with several new analytical tools for
this study. A central point that makes this analysis a delicate problem is the presence
of a vertex where the underlying one-dimensional star graph should bifurcate (or multi-
bifurcate in a general metric graph). We note that not branching angles but the topology
of bifurcation is essential. Indeed, a soliton-profile coming into the vertex along one of
the bonds (edge of the graph) shows a complicated motion around the vertex such as
reflection and emergence of the radiation there, moreover, in particular one cannot see
easily how energy travels across the network. Therefore, the study of the existence and
stability of specific soliton-profile will depend heavily on the conditions on the vertex to
have a fruitful description of the dynamic of these profiles. For instance, in the case of the
following nonlinear (vectorial) Schrodinger model on a star graph G

i9,U(t, x) — AU(t, x) + |U(t, x)|P~'U(¢, x) = 0, (1.1

where U(?, x) = (u; (t,x))ﬁ.v=l :Ry xR — CV, p > 1, and the nonlinearity acts by
components, i.e. (|[U[?~1U); = |u;|?~'u;, the function U has been assumed to satisfy
specific boundary conditions such as either Kirchhoff, or §, or §’-interaction at the vertex
v = 0, such that the diagonal-matrix Hamiltonian operator

d2

A= (- z=)o)

dx2 )
remains a self-adjoint operator on L2(G). For instance, in the case of a §-interaction we
have that A is a self-adjoint operator on L2(G) acting as (AV)(x) = (—=v (x))j-vzl, x>
0, on the domain D, s(.A) defined by & € R as

N
Dy s(A) = {v = ()Y € HAG) : v1(0) = ... = vy (0). Y_ v;(0) = avl(O)}. (1.2)
j=1

Other more general coupling conditions at the vertex v = 0, those set up above, it can be
considered in such a way that the dynamics of the quantum system in (1.1) is described
also by unitary operators (see Chapter 2). The soliton dynamics for the NLS equation
(1.1) with a §- §’-interaction, and the free Kirchoff condition at the vertex (@ = 0 in (1.2))
is studied in ( , ) and

( ; )-
Other interest model is that of the Korteweg—de Vries equation (KdV)

Oiie(x,1) = aeaiue(x, t) + Bedxue(x,t) + 2ue(x,1)0xuc(x, 1), (1.3)

x # 0,¢t € R, on a metric graph G with a structure represented by finite or countable
collections of semi-infinite edges e parametrized by (—oo, 0) or (0, 400). The half-lines
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are connected at a unique vertex v = 0. Here (a.) and (B.) are two sequences of real
numbers. G is sometimes also called a star-shaped metric graph (see Figure 1.3).

- @ ~
7
N

1

Figure 1.3: A star-shaped metric graph with 6 edges

We recall that the KdV equation was first derived by
in 1895 as a model for long waves propagating on a shallow water surface. Recently, the
KdV equation have been appearing in other context. More precisely, this equation has
been used as a model to study blood pressure waves in large arteries. In this way, for
example, proposed a new computer model for systolic pulse waves
within the cardiovascular system based on the KdV equation. Also,

showed that some particular solutions of the KdV equation, more exactly, the 2
and 3-soliton well-known solutions, seem to be good candidates to match the observed
pressure pulse waves. This new applications for KdV equations suggest your study on
star-shaped metric graphs.

We empathize that the study of the Korteweg—de Vries equation in star-shaped metric
graphs is relatively underdeveloped. The principal difficulty in studying this model is
the fact of differently of the NLS equation (1.1) is not clear which boundary conditions
at the vertex v = 0 should be appropriate for physical applications and an analytical
mathematical study. On the mathematical context a result of local well-posedness on the
case of specific vertex-conditions on a ) junction was obtained recently by

(see Chapter 5). On the other side, the non-existence of conserved functionals
(energy or charge) for the system makes the study of the dynamics very complicated. One
of the main interest of exposition here with regard to the KdV model is to establish a linear



instability criterium for stationary profiles on a star-shaped metric graph G (see
). A starting point for the one previously described, it is to determine
when the Airy type operator

d3 d
A() . (ue)eeE — (aeﬁue + ’BeEue)eeE (14)
being seen as an unbounded operator on a certain Hilbert space, it will have extensions
Aexs on L2(G) such that the dynamics induced by the linear evolution problem

Zr = AextZ,
1.5
{ 2(0) = up € D(4ext), (1.5)

it is given by a Cyp-group.

The tools used in the next chapters will be those usual in the study of the dynamics of
nonlinear dispersive equations. In a general way, our approach will not be of variational
type, so a more local analysis around the objects of our interest will be done. One of
the main tools in our study will be one based on the theory of extension for symmetric
operators developed by Krein and von Neumann. In this way we will dedicate a section of
these notes to recall the basic results of this theory (although several of them are relatively
well known) and to see its deep importance in the study of the dynamics of nonlinear
dispersive equations on metric graphs.

Now we describe how this book has been divided. In Chapter 2, we give the defi-
nitions associated with metric graphs and the class of objects that will be of our study
interest here. Chapter 3 provides basic results of extension theory for closed symmetric
operators from von Neumann and Krein, and we give many specific applications to linear
operators that arise in several places of our exposition. In Chapter 4, we introduce the
main models of our study; the nonlinear Schrodinger equation and the Korteweg—de Vries
equation on metric graphs. In Chapter 5, we study local well-posedness for the Korteweg—
de Vries equation on Y junction on the Sobolev spaces, with low regularity. In Chapter
6 we study local well-posedness for nonlinear Schrédinger equation on star graph. In
Chapter 7, we construct standing waves solutions for nonlinear Schrodinger models on
star graphs, stationary solutions for the Korteweg—de Vries equation on star-shaped met-
ric graphs and for the sine-Gordon equation on ) junction. In Chapter 8 we study the
stability of soliton-profile for the Korteweg—de Vries equation on the half-line. Chapter
9 develops a linear instability criterium of stationary solutions for the Korteweg—de Vries
model on a star-shaped metric graph and we obtain the linear instability of tail and bump
profiles on balanced star-shaped metric graphs. Chapter 10 is dedicated to the stability
theory of standing wave solutions for nonlinear Schrédinger models on star graphs. We
finish these notes with three appendices. The first one establishes the basic tools of the
Theory of distributions. The second appendix we define the classical Sobolev spaces on
the half-line and the Bourgain spaces and we describe the fundamental properties of them.
Finally, the third appendix contains explanation of the spectrum and resolvent for linear
operators. One specific self-contained exposition is given to the Riesz projection and its
relation with the decomposition of the spectrum.



In this chapter, we introduce the main framework objects that appear in our study:
metric graphs and quantum graphs. We recall that a graph consist of a set of point (vertices)
and a set of segments (edges) connecting some of the vertices. More notions and results
concerning graph theory can be found in (Berkolaiko and Kuchment ).

In the following we collect a few results necessary about metric graph and quantum
graph in a self-contained presentation as possible. For further details we refer to (Berko-
laiko and Kuchment ; Post ) and references therein. In a metric graph attention
is focused on the edges. Quantum graphs are essentially metric graphs equipped with
differential operators.

We start with the following definition.

Definition 2.1. A discrete graph G = (V, E, 0) consists of a finite or countably infinite
set of vertices ={v;}, a set of adjacent edges at the vertices E = {e;}, internal and/or
external, and a orientation map 0 : E — V x V which associates to each internal e ; edge
the pair (0—e;, 04e;), of its initial and terminal vertex, and to an external edge its initial
vertex only.

Each internal edge e of the graph can be identified with a finite segment /; = [0, £;]
of the real line, such that O correspond to its initial vertex and £; to its terminal one; each
external edge e;, with the half-line [0, +-00) (for instance), with O corresponding to its
initial vertex. This defines a natural topology on G (the space of union of all edges).



Definition 2.2. 4 metric graph is a discrete graph together with the set of edge lengths
{€;} ;. equipped with a natural metric, with the distance of two points to be the length of
the shortest path in G linking the points.

Roughly speaking, now we will see the edges of G not as abstract relations between
vertices, but rather as physical “wires” or “networks” connecting them.
In these notes we will consider two class of metric graphs:

1) Star graph: A metric graph G given by finite number n € N*, n = 3, of infinite
length edges attached to a common vertex, v = 0, having each edge identified with
a copy of the half-line [0, +00) (see Figure 1.2).

2) Star-shaped metric graph: A metric graph G with a structure represented by a
finite or countable edges attached to a common vertex, v = 0, having each edge
identified with a copy of the half-line (—o0, 0] or [0, +00)(see Figure 1.3).

In the case of a star-shaped metric graph is usual to use the notation for the edge’s set
Eas E = E_ U E4, where E_ represents the collection of negative semi-infinite edges
and E represents the collection of positive semi-infinite edges. We will use the notation
|E| for the number of edges.

A star-shaped metric graph G with E = E_ U E; and |[E_| = |E4| it is called a
balanced star-shaped metric graph.

By the abuse of language, we will call a star-shaped metric graph as a star graph
also or a star-shaped graph.

Now, the notation e € E will be taken to mean that ¢ is a edge of G. This identification
introduced a coordinate x, along the edge e.

The reader should note that we do not assume the graph to be embedded in any way into
a Euclidean space or a Riemann manifold. In some applications such a natural embedding
does exist (e.g., in modeling quantum wires circuits, carbon nanotubes), and in such cases
the coordinate along an edge is usually the induced arc length. In some other applications
(e.g., in quantum chaos) the graph does not need to be embedded anywhere and can be
considered as an abstract complex.

We identify any function u on G (notation: u : G — C) with a collection (u¢)ecg 0f
functions u, defined on the edges ¢ of G. Each u, can be considered as a function on the
interval (finite or semi-infinite) /.. Thus, we will use the same notation u. for both the
function on the edge e and the function on the interval /. identified with e.

Definition 2.3. 4 Quantum graph is a metric graph equipped with a differential operator
‘H (Hamiltonian), accompanied by “appropriate” vertex conditions.

Former definition deserve some comments: a metric graph becomes a quantum one
after being equipped with an additional structure: assignment of a differential operator
acting on each edge of G, denoted by H. In most cases, but not always, # is required to be
self-adjoint. In many (probably most) cases # acts as the negative second order derivative

acting on each edge:
2

Ue(x) = ——Fue(X).
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where x is the coordinate along the edge e. Thus, for G being a star graph determined by
N half-lines, (0, +00), attached to the common vertex v = 0, the action of second order
derivate can be represented by the diagonal-matrix Schrodinger operator

d2
#=((- 7))
where §; j, 1 <i,j < N, itdenotes the delta de Kronecker. Thus, for a functionu : G —
C,u= (uj)ﬁ.‘lzl, we have the action

2

Hu(x) = (( jz”/ (x)))jvzl, x > 0.

In the next chapter, via the extension theory of symmetric operators, we will determine
several vertex conditions for 7 becomes a self-adjoint operator. By instance, the domain
Dy 5(A) in (1.2) becomes H a self-adjoint operator.

The following example shows that the Hamiltonian H on a quantum graph can be more
general. It considers G to be a star-shaped graph determined by the structure E = E_UE ..
Thus for a functionu : G — C, u = (u4¢)ceg We obtain the following Airy type operator

3

d d
AO : (“e)eEE - (ae Ue + ,Be e)eeE’ (21)

dx3
where (tte)eer and (Be)ceg are two sequences of real numbers.

In the next chapter, via the extension theory of symmetric operators, we will determine
several vertex conditions for Ap becomes a skew-self-adjoint operator. By instance, the
domain D(HZz) in (4.24) becomes (Ao, D(Hz)), in a family of skew-self-adjoint opera-
tors for Ay parametrized by Z € R.

Now, such as in the classical case of differential operators on a single segment (i.e., a
graph with one edge) makes clear that the definition of the quantum graph Hamiltonian is
not complete until its domain is described. Our experience shows that the domain descrip-
tion should involve smoothness conditions along the edges and some junctions conditions
at the vertices. Moreover, for the self-adjoint property of the Hamiltonian H will require
a more delicate study such as is established in the next chapter.

Next, we give a first step for domain description of a Hamiltonian 7 on a quantum
graph with regard to some smoothness conditions along the edges. Indeed, the Lebesgue
measures on the intervals /. (being (—oo, 0) or (0, +00)) induce a Lebesgue measure
on the space G. We introduced the Hilbert space L2?(G) as the space of measurable and
square-integrable functions on each edge of G, i.e.

L@ =@ LU, lulisg =2 / Jue(x)*dox

e€E e€E

with u = (4¢)eer, where u, € L2(I,) is a complex valued function. The inner product
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(-,-) is the one induced by the usual inner product in L2(R), i.e

(u,v) = Z/I ue(x)mdx,

e€E ¢

with u = (Ue)ece and v = (Ve)ecg. Analogously, given 1 < p < oo one can defined

L7 (G) as the set of functions whose components are elements of L? (/) and the corre-
sponding norm for I < p < oo by

L@ =@LU). Il =Y [ Wewlrax

e€E ecE V" '¢

and for p = oo as

LG =@ L®Ue). |ullzoe(g) = sup,egllitell ooy

e€E

with u = (Ue)eek -
The Sobolev space H"(G), n = 1 an integer, it is defined by

H"G) =@ H "), Nulling = D el

e€E e€E

where H" (1) is the classical Sobolev space on /.. We emphasize that in this definition
we are not assuming any condition on the values of the functions at the joint point v = 0.
Moreover, each component u. of u is a continuous function on /., but for u being see as a
function on G does not need to be continuous at v = 0.

In order to prove a well-posedness result in Chapter 6 we need to generalize standard
one-dimensional Gagliardo-Nirenberg inequality to graphs, i.e

lUll, < CIVIE7ul e, g>2,C >0, 22)
The proof of (2.2) follows immediately from the analogous estimates for functions of the

real line, considering that any function in H!(R™) can be extended to an even function
in H1(R), and applying this reasoning to each component of U.



von Neumann
and Krein
Theory and its
Applications

In this chapter we give the basic theory of extension for closed, symmetric operators of
von Neumann and Krein. This theory give us one way to construct extensions of a given
closed, symmetric operator A densely defined. Two fundamental issues will be established
here, which are related to our stability theory for stationary solutions for the Korteweg—
de Vries model or standing waves solutions for the nonlinear Schrédinger equation on
quantum graphs. The first one issue is about the problem of setting up conditions under
which an closed, symmetric operator shall have self-adjoint extension and how to construct
all the self-adjoint extensions. The second one issue is concerned about how to estimative
the Morse Index of every self-adjoint extension.

3.1 Self-adjoint extensions of symmetric operators

3.1.1 Statement of the problem

One of the fundamental problems in the theory of symmetric operators is to construct
all those extensions of a given symmetric operator A which are themselves symmetric
operators. A special case of this situation is the problem of setting up conditions under
which an operator shall have a self-adjoint extension and to construct all the self-adjoint
extensions when these conditions hold.
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If B is a symmetric extension of a symmetric operator A, then A C B (namely,
D(A) € D(B) and Bx = Ax for every x € D(A)), and so B* C A*. But Bis a
symmetric operator, i.e., B C B*; and so we have

ACBCB*CA", 3.1

i.e., every symmetric extension of an operator A is a restriction of the operator A*.

A symmetric operator A is said to be maximal if it has no proper symmetric exten-
sion. So, we obtain from (3.1) that every self-adjoint operator A4 is a maximal, symmetric
operator

3.1.2 Deficiency subspaces and deficiency indices of a symmetric op-
erator

For A being a densely defined symmetric operator on a Hilbert space H and A* its
adjoint, we consider the subspaces

Dy =ker(A* —i), and D_ = ker(A* +i), (3.2)

D~ and D_ are called the deficiency subspaces of A. The pair of numbers n4, n_, given
by
ny(A) = dim[Dy], and n_(A) = dim[D_]

are called the deficiency indices of A.
Theorem 3.1. Let A be a closed, symmetric operator, then
D(A*)=D(A) ®D_® D.. 3.3)

Therefore, foru € D(A*) andu = x +y +z € D(A) ® D_ & D4 we have the following
complete description of the operator A*

A*u = Ax + (—i)y +iz. (3.4)
Remark 3.1. The direct sum in (3.3) is not necessarily orthogonal.
Proof. We start by proving that for
x+y+z=0, xeD(A),yeD_,ze Dy (3.5)
we obtain, x = y = z = 0. Indeed, applying (A* — i) to both sides of (3.5), we get
(A—=i)x+ (=2i)y =0. (3.6)
Now, since (ImB)* = ker(B*), we have (4 —i)x_Ly andso (A —i)x = 0and y = 0.

Since i belongs to the resolvent set of the symmetric operator A we also obtain x = 0.
Therefore, from (3.5) it follows z = 0.



14 3. von Neumann and Krein Theory and its Applications

For the formula (3.3), since each of the subspaces D(A4), D_ and D are contained
in D(A*) it follows
D(A) @ D_ & D4 € D(AY). 3.7)

Next we prove the converse relation in (3.7). Since the operator A4 is closed, R = Im(A—
i) is a closed subspace and so we have the standard decomposition

R&D_=H. (3.8)

Now, let u € D(A*) then from (3.8): v = (A4* —i)u = v; + v, € R & D_ where

vy =(A—i)x, v, =-2iy, xe€ D(A), yeD_. 3.9
Since A*x = Ax and A*y = —iy we obtain
A" =i u=A—-i)x —2iy = (A" —i)(x + ). (3.10)

Therefore, for z = u — (x + y) we have (A* —i)z = 0 and so z € D4. Hence,
u=x+y+zeD(A)SD_dDy4.

O

Corollary 3.1. A closed, symmetric operator is self-adjoint if and only if its two deficiency
spaces are equal to 0, i.e., D_ = D4 = {0}.

Proof. From formula (3.3) follows immediately that in this case, and only in this case,
D(A*) = D(A). O

Next we give some generic result that will be used later in Chapters 8 and 9 (see
Naimark , Chapter 4 for the proof).

Proposition 3.1. Let A be a closed, symmetric operator.

1) Let o > 0 and B € R. Then the deficiency spaces of the operators A and B =
aA + BI have the same dimension.

2) For every complex number A with ReA > 0 define
Dy, =ker(A* —AI), D_, =ker(A* — ).
Then, dim[D. ;] = dim[D4 ;] = n4(A), dim[D_,i] = dim[D_ _;] = n_(A).

3) If B is a bounded, self-adjoint operator defined in the whole space H, then the
operator A and A + B have the same deficiency indices.
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3.1.3 Construction of the symmetric extensions of a given symmetric
operator

The theory to be established in the following represents the heart of the extension
theory for symmetric operators developed by Krein and von Neumann . We shall consider
only closed, symmetric extensions. We note that every such extension is at the same time
an extension of the closure A of the operator A; hence, without loss of generality, we will
suppose A to be closed, symmetric operator.

The proof of the following result can be found in

Theorem 3.2. The closed, symmetric extension of a given closed, symmetric operator A
are in one-to-one correspondence with the set of partial isometries of Dy in D_.

More exactly, if U is such an isometry whose domain of definition 1(U) is a closed sub-
space of Dy and whose range R(U) is a closed subspace of D_, then the corresponding
closed symmetric extension Ay has domain

D(Ay) ={x+z+Uz:x € D(A),z € I(U)}, (3.11)

and the relation
Ay(x +z4+Uz)=Ax+iz—iUz, (3.12)

holds.
Conversely, for each such operator U these formulas determine a certain closed, sym-
metric extension Ay of the operator A and the deficiency spaces of Ay, D+,u are

Dyy =Dy —I(U)=1U), D_y=D-—-RU)=RU)™ (3.13)
Here X — Y represents the orthogonal complement of Y in X.

The most important case of Theorem 3.2 for us here will be when Ay is a self-adjoint
extension of A.

Theorem 3.3. An extension Ay of a closed, symmetric operator A is self-adjoint if and
only if the domain I(U) of the isometric operator U coincides with Dy and its range
R(U) with D_.

A closed, symmetric operator A has a self-adjoint extension if and only if its defi-
ciency spaces D4 and D_ have the same dimension, i.e. if its deficiency indices are equal

ni(A) = ni(A).

Proof. By Corollary 3.1, an extension Ay of A4 is self-adjoint if and only if Dy yy = {0}
and D_y = {0}, i.e. ifand only if (U) = D4 and R(U) = D_. This finishes the proof.
O

Theorem 3.3 is the basis for our strategy in studying stability properties of stationary
waves for the Korteweg—de Vries model or standing waves solutions for the nonlinear
Schrodinger equation on metric graphs. Thus, we will construct specific self-adjoint ex-
tension of the Laplace operator on start graphs.
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We start with a general construction when D4 and D_ have the same dimension 7,
namely, every extension is self-adjoint. We choose in D4 any orthonormal basis B+ =
{e1, €2, -+, ey} and in D_ an orthonormal basis 5_ = { f1, f2,---, fn}. Thenforz € D

we have
n
zZ = E Ejej,
j=1

and so for every isometric operator U with domain D and the range D_ is given by the

formula
Uz = Z (Zu]ksk)fj,

j=1 k=1
where u = [u;;] is a unitary matrix. Thus, in the case considered, D(Ay ) consist of all
vectors

w_x+Z§,e]+Z(Zu,kgk)f,, x € D(4) (3.14)

=1 j=1 k=1
AUw=Ax+izg,-e,-_i2(2u,-ksk)fj (3.15)
j=1 j=1 k=1

We remember that the following conditions are equivalent:
1) u is a unitary matrix .
2) u* is a unitary matrix .

*

3) wu is invertible with =1 = u*.

4) The columns of u form an orthonormal basis of C” with respect to the usual inner
product.

5) The rows of u form an orthonormal basis of C" with respect to the usual inner
product.

6) u is an isometry with respect to the usual norm of C”.

The following particular case will be very useful in our stability approach in Chapters
9 and 10.

Proposition 3.2. Let A be a densely defined, closed, symmetric operator in some Hilbert
space H with deficiency indices equal n1(A) = 1. All self-adjoint extensions Ag of A
may parametrized by a real parameter 6 € [0, 27) where

D(Ag) = {x + cpy +ce'®¢_: x € D(A),c e C},
Ag(x + cop+ + ceiegb_) =Ax +icod4+ — iceigqb—,
where A*¢1 = Fi¢y, and [P+ | = |||
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Proof. From Theorem 3.3 all the symmetric extension Ay of A are self-adjoint and deter-
mined by the unitary operator U : Dy = [¢p+] — D_ = [¢_]. Since U is represented by
a unitary matrix u = [w] of order 1 x 1, we have that w® = 1 andso w = €%, 6 € [0, 27).
This finishes the proof.

O

3.1.4 Self-adjoint extensions for point interactions

Next, we give some examples of self-adjoint extensions associated to point interactions
on the line and on star graphs.

Example 1. §-point interactions on the line

Theorem 3.4. Let H = —% be the self-adjoint operator acting in the Hilbert
space H?*(R). Then the restriction A = H|p(a), where

D(A) = {y € H*(R) : ¥(0) = 0}, (3.16)
is a densely defined symmetric operator with deficiency indices equal to 1. Namely,
(a) symmetric: (A, @) = (Y, Ap) for ¥, ¢ € D(A),
(b) dense: D(A) = L2(R);

(c) deficiency elements:

for A =1, gi(x)zeiﬁ‘xl, Im\i>0

. (3.17)
for A =—i, g = e’ﬁ‘xl, Im~—i >0,

satisfy g+i € D(A*) and A*gy; = tigy;. Moreover, we have ny(A) =
n_(A) =1L

(d) D(A*) = H*R —{0}) N H'(R) and A* = —4°,.

(e) All the self-adjoint extension of A can be parametrized by a parameter Z € R,
Az, such that

2
D(Az) ={ue H*R —-{0) N H'(R) :
u' (04+) —u'(0—) = Zu(0+)}.

Azu = —
(3.18)

The case Z = 0 just leads to the self-adjoint operator H with domain H?(R).

Proof. 1) The symmetric property of A follows immediately from that of the
definition of the operator H.
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The operator H is densely defined and thus for every f € L?(R) there exists
{fn} C H*(R) such that lim,— 4 || f — fn || = 0. The functional § of Dirac
is not a bounded functional on the space L?(R). Then there exists a sequence

{Wn} C Hp,, with ||| = 1 such that §(¥n) = (8, Yu) = ¥ (0) — oo,

as n — oo. Now, since § is a bounded linear functional on H2(R), we can
choose this sequence such that

i (S _
=0 (8.)

Define the sequence {, = fi, — (8, fu)¥n/(S8, ¥n). Then {,} C D(A) and

(8, fn)
(8, Yn)
Thus, the operator A is densely defined in L2(R).

Since (H — i)' € B(H 2(R); L>(R)) and § € H2(R) we have g; =
(H —i)~'8 € L?(R), represents the fundamental solution associated to the
operator (H —i). Since g(k) =1, fory € D(A) C D(H) we obtain

— 0 as n — oo.

160 = SIS 1 n = f11 4|

+oo
(AY. gi) = (Hy. (H —i)"16) = / K25
oo - (3.19)
=y (0) + v(k)igi(kydk = (V,ig;).

—0Q
So, g; € D(A*) and A*g; = ig;. A similar analysis show g_; € D(A*) and

A*g_; = —ig_;. Lastly, it is well known that g4; = ei“/gp", Im£i >
0.

The deficiency element g; is unique (up to multiplication by complex num-
bers). We introduce the following norm || - ||2.« in the space H?(R), which is
equivalent to the standard norm in this space,

+o0 .
1A 12 = 103 =) f1* = / (k> —i) f (k)|*dk
=((0% + D2 L@ + D2 S).
Since § is a bounded linear on (H2(R), || - ||2,+), the kernel

ker(8) ={f € H*[R) : §(f) = f(0) = 0} = D(A),

it is a hyperplane of codimension 1. Next for by = (H + i) 'g; € H*>(R)
we have hg L ker(8). In fact, for f € ker(§)

(3.20)

(@F + 1R, (0 + )V2f) = /_m%dk —7(0) = 0.
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4)

3)

Next, suppose fo € D(A*) such that A* fo = ify. Let v € D(A) C D(H),
then

(AY, fo) = (V. A" fo) = (V. ifo).
Therefore, ((A + i)V, fo) = 0. Now, we show that for hy = (A +i)" f €

H?(R) satisfies h; L ker(8). Let ¥ € ker(8), then from the above analysis
we obtain

+o0 —
(@ + D2y (0% + DY) = / K + )9 (k) folk)dk

—0o0

= ((A+ D). fo) =0.

So, there exists A € C such that fo = Ag;.

From Theorem 3.1 we have
D(A*) = D(A) & [Vi] @ [¥—i],

where Vi (x) = #Egii (x). Since D(A) C H?>(R — {0}) N H'(R) and
g+i € H*(R —{0}) N H'(R) we obtain D(A*) C H*(R — {0}) N H'(R).
Next, let z € H2(R — {0}) N H'(R) and ¥/ € D(A) then the relation
(Ay, z) = ¥ (0-)z'(0-) = Y (0+H)z'(0+) + (¥, —z")
= (.—2")

shows H2(R — {0}) N H'(R) C D(A*) and A* = —4

dx2’

From Proposition 3.2 every self-adjoint extensions Ag of A may parametrized
by a real parameter 6 € [0, 277) where
D(Ag) = {¢ + cyi +ce®y_; 1 ¢ € D(A),c € C}, (3.21)
d2
AgV¥(x) = —ﬁl//(x), for x # 0. (3.22)

Next, we characterize D(Ag). Indeed, for

¥ =¢+cyi + ey
we obtain that '
¥/ (0+4) — ¢/ (0-) = —c(1 + €'),
with
I

v (0+) = 0(217 + 2—\/__iei9)'
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Therefore, by defining Z = Z(6) as

0 — 2cos(%) 9
Z()=——>%——. 0€[0.27)
cos 37 7

we obtain —oo < Z < 400 and so
¥'(0+) = ¥'(0-) = Zy(0+).

This completes the proof of the theorem.

Example 2. §-point interactions on a star graph

The following result will be used in the study of the nonlinear stability of standing
wave solutions for the nonlinear Schrodinger model (10.1) in Chapter 10.

Theorem 3.5. Let G be a star graph determined by N half-lines, (0, +00), attached
to the common vertex v = 0. The diagonal-matrix Schrédinger operator on L?(G)

d2
o= (- )
with domain
N
D(Lo) = {v € H*G):01(0) = .. =y (0) = 0. Y v(0) = o}, (3.23)
j=1

is a densely defined symmetric operator with deficiency indices ny(Lg) = 1.

Moreover, all the self-adjoint extension of Lo can be parametrized by a parameter
Z € R, Lz, such that

o= (- o))

D(Lz) = {V e H2G): 1i(0) = .. = iy (0), (324)

N
3 05(0) = Zui(0). Z € R}.
j=1

Proof. The property of Ly to be a densely defined symmetric operator follows the
same strategy as in the proof of Theorem 3.4. Next we determine that the adjoint
operator of (Lo, D(Ly)) is given by

Ly =Lo, D(L§) ={VeH*G) :vi(0)=..=uvy(0)}. (3.25)
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It is immediate to see that D(L}) C H?(G) and the action L§ = Lo. Next, by
denoting

vi={Ve H*G):v1(0) =--- = vy (0)},

we easily arrive at Dg € D(Lg). Indeed, for any U = (u])J | € DgandV =
(v,)j=1 € D(Lg) denoting U* = Lo(U) € L?(G), we get

N
o0
(LoV.U) = (V.Lo(U)) + Y _ [-v)u; + vu];
j=1

= (V.Lo(U)) = (V. U"),
which, by definition of the adjoint operator, means that U € D(Lg) or Dy € D(Ly).

Let us show the inverse inclusion D5 2 D(Lg). Take U € D(Lg), then for any
V € D(Lg) we have

M=

Il
—

(LoV.U) = (V.Lo(U)) + Y [~V + vjuy ]

J
= (V,LgU) = (V,Lo(U)).

Thus, we arrive at the equality

N N
D [=uy 4 v ] =D 00, (0) =0 (3.26)
j=1 j=1

forany V € D(Ly). LetW = (wJ)N 1 € D(Ly) such that w5 (0) = w;(0) =

w)y (0) = 0. Then for U € D(Lg) from (3.26) we get that

N
> w(0)u; (0) = w}(0)u1(0) + wh(0)u(0) = 0. (327)
j=1

Recalling that
N
> w)(0) = wi(0) + wh(0) =0
j=1

and assuming w5(0) # 0, we obtain from (3. 27) the equality u1(0) = u,(0). Re-
peating the similar arguments for W = (w ]) _1 € D(Lo) such that wy(0) =
ws5(0) = ... = wy (0) = 0, we get u;(0) = uz(O) = u3(0) and so on. Finally, tak-
ing W = (w,) —1 € D(Lo) such that w), (0) = 0, we arrive at u;(0) = u2(0) =
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... = un—1(0), and consequently 11 (0) = u2(0) = ... = un(0). Thus, U € D§ or
D¢ 2 D(Ly), and (3.25) holds.

Now, it is not difficult to see that D4 = ker(L§ F i) = [V+;] where

Vi = (ei«/Ex)ﬁYzl’ Im~/+£i > 0.

Thus, due to Proposition 3.2 every self-adjoint extensions Ly g of Ly may parametrized
by a real parameter 6 € [0, 277) where

D(Log) = {F — Fo + cFi 4+ ce®F_; : Fy € D(Lo), ¢ € c} , (3.28)

with
Fu = (ﬁei@ﬂﬁ’:l, Im~/=i > 0.

Now, it is easily seen that for F = (Fj)i.v=1 € D(Ly,g), we have
N
DOFj0+) = =Ne(1 +¢®), Fj(0) = ¢ (/4 1 O7/9).
j=1

From the last equalities it follows that

—N(1 + €'%)

N
/ _ _
Z F(0) = ZF;(0), where Z = (ein/4 1 ¢i@-n/a)

Jj=1

€ R.

This finishes the proof.

J-point interactions on a balanced star graph

The following result will be used in the study of the stability of stationary solutions
for the Korteweg—de Vries model (1.3) on a balanced metric star graph G in Chapter
9. Thus, we consider G with a structure represented by the set

E=E_UE,

where E and E_ are finite or countable collections of semi-infinite edges e parame-
trized by (—o0,0) or (0, +00), respectively, and [E_| = |E4| (a balanced star
graph). The half lines are connected at a unique vertex v = 0.

For u = (u¢)eeg we will use the following abbreviations,
u(0—) = (Ue(0—))eee_. u'(0-) = (U,(0—))eck_,
similarly for the terms u(0+) and u’(0+), and also

(Ue)eeE = (Ml,—, s Up, —, UL 4, ---,Mn,+)~
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Theorem 3.6. Let G be a balanced star graph with a structure represented by the
setE = E_UEy and |E_| = |E4+| = n. The 2n x 2n-diagonal-matrix Schrédinger

operator on L*(G)
2
n=((- )

D(Fo) = {u € H*(G) : u(0—) = u(0+) = 0,
Y ul(0) = > ul(0) =0}, (3.29)

e€E4 e€E_

with domain

is a densely defined symmetric operator with deficiency indices ny(Fo) = 1. There-
fore, we have that all the self-adjoint extensions of (Fo, D(Fo)) can be parametrized
by Z € R, namely, (Lz, D(Lz)), with the action Lz = Fo andu € D(Lz) if and

only ifu € C,
€ ={uoeer € LAG) 111 (0) = . =un - (09) =11 (04) 35
= u2,+(0+) = ... = un,+(o+)}
andu € Dz,
Dzs= {u € H*(G) : u(0—) = u(0+),
(3.31)

3 ul04) - Y ulo-) = Znu1,+(0+)}.

e€E e€E_
Proof. The symmetric property of (Fo, D(Fp)) is immediate. Since,

P c(—00.00 & @ C2(0.+00) C D(Fo)

e€E_ e€E4

we obtain the density property of D(Fp). Now, by following the same ideas in
the proof of Theorem 3.5, we can see that the adjoint operator (Fg, D(Fy)) of
(Fo, D(Fp)) is given by

Fo=Fo, DFy)={ueH*G):uecC. (3.32)

From (3.32) is not difficult to see that the deficiency indices for (Fy, D(Fp)) are
n+(Fo) = 1. Indeed, Dy = ker(F§ —i) = [¥4] where for ¥ = (¥)cer We
have

forec E_, ¥, = (kl—eik—x, kl—eik—x), x <0, (3.33)
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fore € Ep, W, = (kl—e—”‘—X, k’—e—ik—X), x>0 (334

withk? =i and Im(k_) < 0. For D_ = ker(Fg +i) = [W_] with W_ = (Pe)cer
defined by

fore e E_, &, = (kl—e‘”‘H, k’—e—ik+X), x<0, (335
+ +
i ikyx i ikyx
forece By, @, = (k—e LA k—e ), x>0 (3.36)
+ +

with k3 = —i and Im(ky) > 0.

Thus, due to Proposition 3.2 every self-adjoint extensions Fy g of o may be parame-
trized by a real parameter 6 € [0, 277) where

D(Fop) = {u € H*(G) 1 u = ug + c¥_ + ce' v,
up € D(Fp),c € C}.

Thus, it is easily seen that for u € D(Fy9), we have

Z ul(0+)— Z ul(0—) = 2cn(1 —e'%), and (3.37)
e€B4 ecE_
up 1+ (04) = —c(e' ¥ — =1, (3.38)

From the last equalities it follows that

> ul(04) = > ul(0-) = Znuy 1 (04) (3.39)
e€E4 e€E_
where »
—2(1 —¢€')
This finishes the proof. O

§’-point interactions on a star graph

The following result will be used in the study of the nonlinear stability of standing
wave solutions for the nonlinear Schrodinger model (10.1) in Chapter 10.

Theorem 3.7. Let G be a star graph determined by N half-lines, (0, +00), attached
to the common vertex v = 0. The diagonal-matrix Schrodinger operator on L*(G)

, d?
o (- o)
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with domain

N
D(Ly) = {V € HX(G): v{(0) = ... = vjy(0) = 0. ) v,;(0) =0} (3.40)
j=1
is a densely defined symmetric operator with deficiency indices n+(Ly) = 1.

Moreover, all the self-adjoint extension of Ly, can be parametrized by a parameter
A € R, Ly, such that

= (o)

D(Li) = {V € H2(G) : v}(0) = ... = v}y (0), (3.41)

N
3 0 (0) = Av}(0), A € R}.

j=1

Proof. The symmetric property of (Lj,, D(Ly)) is immediate. Since

N
@ €0, +00) € D(Ly).

i=1

we obtain the density property of D(L{). The same strategy as in the proof of
Theorem 3.5 shows that the adjoint operator of Ly, is given by the action (Ly)* = Ly
with domain given by

D((Ly)*) = {V € H*(G) : v{(0) = ... = vy (0)} . (3.42)
Now, it is not difficult to see that D+ = ker((Ly)* F i) = [V4;] where

Vi = @VESN  n(JEi) > 0.

j=1>

Thus, due to Proposition 3.2 every self-adjoint extensions L; of L{, may be parame-
trized by A € R determined in (3.41). This finishes the proof. O

3.1.5 Behavior of the spectrum of self-adjoint extensions of a symmet-
ric operator

Many results of the spectral theory of self-adjoint extensions of a symmetric operator
will be established in the following. Many of these results are classical from the extension
theory of symmetric operator (see Naimark ). Two main issues related with these ones
are related with our stability theory for standing wave solutions for nonlinear Schrédinger
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equations and stationary solutions for the Korteweg—de Vries equation on metric graphs.
The first one is associated with the continuous spectrum of each self-adjoint extension and
an estimative for the Morse index of each one of these extensions.

The proof of the following statements can be found in (Naimark ).

Theorem 3.8. All self-adjoint extensions of a closed, symmetric operator which has equal
and finite deficiency indices have one and the same continuous spectrum.

Theorem 3.9. In the extension of a closed, symmetric operator which has the equal and
finite deficiency indices (m,m) to a self-adjoint operator, the multiplicity of each of its
eigenvalues can increase at most by m units; in particular, the new eigenvalues have a
multiplicity of at most m.

Theorem 3.10. If A is a closed, symmetric operator with finite deficiency indices (m,m),
and if A is a real number belonging to the discrete spectrum of the operator A, then the
equation A*x = Ax has at most m linearly independent solutions.

A symmetric operator A is said to be semi-bounded from below if there is a number
M such that, for all x € D(A) we have the inequality

{(Ax,x) = M||x|.

We define a positive (or non-negative), symmetric operator as the special case of an op-
erator semi-bounded from below when the number M = 0; i.e., a positive, symmetric
operator satisfies (Ax, x) = 0.

Theorem 3.11. If A is a positive, closed, symmetric operator with finite deficiency indices
(n,n), then the negative part of the spectrum of every self-adjoint extensions of A can
consist only of a finite number of negative eigenvalues, and the sum of their multiplicities
is at most equal to n.

Next, we give some examples related to the Morse index for the self-adjoint operators
of point interaction type established in section 3.1.4. We recall that since these self-adjoint
operators may have at most a finite collection of negative eigenvalues, its continuous spec-
trum coincides with its essential spectrum (see Appendix C).

In subsection 3.1.6 we give a different approach for obtaining the number of nega-
tive eigenvalue of self-adjoint extensions for a symmetric operator based in the notion of
Nevanlinna pairs (see Behrndt and Luger , and reference therein).

Example 1. Spectrum for §-point interactions on the line

Theorem 3.12. Let (Az, D(Az)) be the family of self-adjoint operators defined in
d2

(3.18) and being the self-adjoint extensions for the symmetric operator A = -3

with domain

D(A) = {y € H*(R) : ¥(0) = 0}, (3.43)
and deficiency indices equal to 1. Then, n(Az) < 1forall Z € R. For Z > 0,
n(Az) = 0and for Z < 0, n(Az) = 1. Moreover, the continuous spectrum
(essential spectrum) is [0, +00) for all Z.
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Example 2.

Proof. From the relation (Ay,v) = [° |¥(x)[?dx = 0, for ¢ € D(A), we
get immediately from Theorem 3.11 that n(Az) < 1 for all Z € R. Now, for
Y € D(Az) and Z > 0 follows from (3.18)

(Az v ) =/ W ()Pdx + ZIYOP =0

—0o0

and so n(Az) = 0. Since for Z < 0, yz(x) = eS¢ D(Az) and satisfies
2

Azvz = —4-Yz, wegetn(Az) = 1.

Lastly, for Z = 0 we have that 4y = —j—xzz
H?(R) and from the spectral theorem (via Fourier transform) we obtain that the
continuous spectrum (essential spectrum) is given by [0, +00). Then, from Theo-
rem 3.8 we get that all self-adjoint extension for A have continuous spectrum being
[0, +00). O

is a self adjoint operator with domain

Spectrum for §-point interactions on a star graph

Theorem 3.13. Let (Lz, D(Lz)) be the family of self-adjoint extensions operators
defined in (3.24) associated to the symmetric operator Ly defined in Theorem 3.5.
Then, for Z > 0,n(Az) = Oand for Z < 0,n(Az) = 1. Moreover, the continuous
spectrum (essential spectrum) is [0, +00) for every extension Lz.

Proof. ForV = (1)]~)§.V=1 € D(Ly), the relation

N o
> [ wwpax

N
(LoV. V) = Y v (0+)v,; (0+) +
j=1 Jj=1

N o
=3 [ wwrdrzo
j=1"0

implies immediately from Theorem 3.11 that n(Lz) < 1 for all Z € R. Now, for
V = (vj)}_; € D(Lz) and Z > 0 follows from (3.24)

(LzV,V) = i/

j=1""

o

[V () [dx + Z|v1 (0+)]> 2 0
o0

and so n(Lz) = 0. Since for Z < 0, and x > 0,

_ (oKX \N 3 72
Dz = (e )j=l € D(Lz), and Lz®z = —W(DZ

we getn(Lz) = 1.
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Example 4.

3. von Neumann and Krein Theory and its Applications

Next, we note that the self-adjoint operator L;;, = Lo with homogeneous Dirichlet
boundary conditions

D(Lygiy) = {v € H*G): v1(0) = ... = vy (0) = o}, (3.44)

belongs to the family of self-adjoint extension of (Ly, D(Lg)) given in Theorem 3.5
(it is sufficient to take Z = +o00 in (3.24)). Since (Lg;i,, D(Lg;) posses no point
spectrum and it is a positive definite self-adjoint operator, ess (Lgir) = 0 (Lgir) C
[0, +00). Now, by the criteria of Weyl (Reed and Simon ) we get the reverse
inclusion [0, +00) C 0ess(Lgir). Then, from Theorem 3.8 we get that all self-
adjoint extension for (Lo, D(Lg)) have continuous spectrum being [0, +00).

We recall that since the self-adjoint operator (Lz, D(Lz)) may have at most a finite
collection of negative eigenvalues, its continuous spectrum, o, (L) coincides with
its essential spectrum o,55(Lz) and 0(Lz) = 0ess(Lz) U0 zi5¢(Lz). This finished
the proof. O

Spectrum for §-point interactions on a balanced star graph

Theorem 3.14. Let (Lz, D(Lz)) be the family of self-adjoint extensions operators
defined in (3.30)-(3.31) associated to the symmetric operator (Fo, D(Fy)) defined
in Theorem 3.6. Then, for Z > 0,n(Lz) = Oandfor Z < 0,n(Lz) = 1. Moreover,
the continuous spectrum (essential spectrum) is [0, +00) for every extension Lz.

Proof. For V = (ve)eeg € D(Fp) we get immediately
(FoV,V) 2 0.

Moreover, forany Z € R and V = (ve)eeg € D(Lz) the relation

0 400
LV = 2 [ mwPax+ Y [T pimpax

eeE_ " e€E

+ Zn|v1,4(0+)%,

it is non-negative for Z > 0 and so n(Lz) = 0. Following a similar reasoning
as in the proof of Theorem 3.13, we get the other statements in the Theorem. This
finishes the proof. O

Morse index associated to stationary solutions for the KdV model on a balanced
start graph

We consider a balanced metric star graph G with a structure represented by the set
E = E_ U E4 where E4, E_ are finite or countable collections of semi-infinite
edges e parametrized by (—o0, 0) or (0, +00), respectively, and |E| = |[E—| = n.
The half-lines are connected at a unique vertex v = 0.
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Suppose (Pe)cek 1s a nontrivial solution of the following set of 2|E| = 2n nonlin-
ear elliptic equations

d2
— e e+ e — ¢2 =0, eckE, (3.45)
where (a)ceg 1S a positive sequence of real numbers and ¢.(+00) = 0, ¢ € E4,
¢Pe(—00) =0,e € E_.
We consider the 2n x 2n-diagonal-matrix Schrodinger operator
2

Eo = ((—ae% | —2¢>e)5,-,,-). (3.46)

Then from Proposition 3.1 we obtain that the symmetric operators & and Fy,

d2
Fo = (( - aeﬁ)si,,), (3.47)
with the common domain D(&y) = D(Fy) defined by

D(&) = {u € H*(G) : u(0—) = u(0+) = 0,
=Y w0 - Y aal (=05 (48

e€E4 ecE_

Thus, we obtain from Proposition 3.1 that n4 (&) = n+(Fg) = 1 (see Theorem
3.6). Moreover, all self-adjoint extensions of (£, D(&p)) can be parametrized by
Z € R, (Ez,D(Ez)),asbeing Ez = & and D(Ez,) = Dz s NC, where C is
defined in (3.30) and

Dzgs =1{uec H*G): u(0-) = u(0+) =
> el (0) — Y el (0) = Znuy 1 (0+)}. (3.49)

e€E e€E_

Next, by following a similar analysis as in Theorem 3.14, for ¢.(+00) = 0, (¢.) €
L*°(G) and Weyl’s essential theorem (Reed and Simon ) we obtain immedi-
ately that 0,55(Ez) = [1, +00).

The following result will be very useful in the study of instability properties of sta-
tionary solutions for the Korteweg—de Vries equation (1.3) to be developed in Chap-
ter 9.

Theorem 3.15. Let (Ez, Dz g s N C) be the family of self-adjoint extensions oper-
ators associated to (Ey, D(Ep)) in (3.46)-(3.48). Suppose that the solution-profiles
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¢e € L for (3.45) satisfy ¢p.(£00) = 0, e € Ex, and for every e € E, ¢.(x) # 0
Jor x # 0, with ¢!/ (0£) # 0 if ¢.(0+) = 0. Then, for

> / 2 (x)dx > 0,
e€E
we obtain that the Morse index of Ez is exactly one.

Proof. For V = (ve)ece € D(E) we will see (EgV, V) = 0. Indeed, since the

relation )

d B 5 )
e 3 Ve + Ve = 2peve = — ¢e I [(¢>) (qbe)}’

holds for every e € E and x # 0, it follows from integrating by parts,

(EoV. V) Zae/(qs 25 (%)

e€E

2

dx

E)Too 1.50
o) Lo (3.30)

The integral terms in (3.50) are non-negative and equal zero if and only if V = 0.
Due to the conditions V(0—) = V(0+) = 0, @ > 0, and ¢, (0+) # 0if ¢, (0+) =
0, non-integral term vanishes, and we get & = 0.
Due to Theorem 3.11 and n(&) = 1, we have that the self-adjoint extensions Ez
of & satisfy n(Ez) < 1. Next, by taking into account the notation @ = (¢¢)cer We
have

Ez® =V

with ¥ = (—¢2)cek, and so we obtain
(Ez®, D) Z/¢ (x)dx < 0.
e€E

Therefore, from minimax principle we arrive at n(Ez) = 1. This finishes the The-
orem. O
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3.1.6 Nevanlinna pairs and self-adjoint extensions of the Laplacian
operator

In the last sections we have seen some of the classical results of the extension theory
for symmetric operators developed by von Neumann and Krein, and several applications
have been given for the Laplacian operator on metric star graphs where the matching
(boundary) conditions at the vertex v = 0 were of §-interaction type.

Next, we will see other way to parametrize all self-adjoint realizations L of —A in the
L?(G) space on a metric star graph G with N half-lines of the form (0, +o00) attached to
the common vertex v = 0. We will make use of the notion of Nevanlinna pairs given in
the next definition (see Kostrykin and Schrader ).

Definition 3.1. 4 pair {A, B} of N x N matrices is said to be a Nevanlinna pair if;
(a) AB* = BA*,
(b) The horizontally concatenated N x 2N matrix [A, B] has maximal rank N .

Letu : G — C and we write u as a column-vector u = (uq,...,un)’, each uj
being defined on the interval (0, +00). We express the conditions at the vertex v = 0 as
u(0) = (1 (0+), ..., un(0+))" and v’ (0) = (4 (0+), ..., u’y (0+))". In the following we
introduce the Laplacian —A (A4, B) with the the domain

D(—A(A, B)) = {u € H*(G) : Au(0) + Bu'(0) = 0}, (3.51)
acting as the second derivate along the edges
— A(A, Byu = (—uf, ... —uy)". (3.52)

A crucial result concerning the parametrization of all self-adjoint extensions of the
Laplace operator in L.2(G) in terms of the boundary conditions, it was obtained in (Kostrykin
and Schrader ). Indeed, we have the following proposition.

Proposition 3.3. Let A, B be N x N matrices. The next two assertions are equivalent:
(a) The operator —A(A, B) defined in (3.51)~(3.52) is self-adjoint;
(b) {A, B} is a Nevanlinna pair.

The most used type of couplings induced by a Nevanlinna pair { A, B} are the following
ones :

(1) Kirchhoff-coupling: For V € H?(G) such that

v1(0) = ... = v,(0). Y _v(04) =0
j=1
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where the Nevanlinna pair {A, B} is defined by A = Ag, B = Bk as

1 -1 0 .. O 0 0
o 1 -1 .. O 0 0
Ag=1| : = . |.Bxk=| : . (353)
0 O o .. -1
0 O 0 0 1 1

We note AB* = BA* = 0.
(2) 8-coupling: For V € H?(G) and a € R such that

v1(0) = ... = v,(0). Y (04) = avy(0);

Jj=1

where the Nevanlinna pair {4, B} is defined by A = Ag, B = Bs as

1 -1 0 .. O 0 0
o 1 -1 .. O 0 0
A= : = |.B=] N T
0 O 0 —1
@ o o o 1 1
N N N N

(3) &'-coupling: For V € H?(G) and A € R such that

v1(0) = ... = v,(0), Y v;(04) = Avj(0+):
j=1

where the Nevanlinna pair {4, B} is defined by A = Ays = —Bg, B = By as

1 -1 0 .. O
0 1 -1 ... 0
By=| 1 e (3.55)
0 O 0 -1
A A A A
N N N N

The subject of self-adjoint Laplacians on metric graphs has become popular under the
name of “quantum graphs”, such as was established in Chapter 2 and it is well known for
its wide applications in quantum mechanics (see Berkolaiko and Kuchment ). We
note that most of the literature has been concerned with Hamiltonians 7{ on metric graphs
being self-adjoint operators and so the dynamic of the quantum system

Zy = HZ,
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it is described by unitary operators by the Stone’s Theorem.

As we have seen in subsection 3.15, Theorem 3.11 is a power tool for estimating the
Morse index of all self-adjoint extensions of a positive, closed symmetric operator with
deficiency indices equal and finite. In the case of the Laplacian operator defined by a
Nevanlinna pair there is the following nice criterium for determining the Morse index of
these self-adjoint realization of the Laplacian in L2(G). This information is very important
for obtaining representations and dispersive estimatives of the unitary group associated to
the linear Schrédinger evolution equation

ius(t,x) = A(A, B)u(x,t), t #0, x € (0,400),
u(x,0) = up(x) € D(A(A, B)).
The proof of the following result can be seen in

Theorem 3.16. Let —A(A, B) be a self-adjoint realization of the Laplacian in L*(G),
that is, {A, B} is a Nevanlinna pair. The number of negative eigenvalues of —A(A, B)
(the Morse index, n(—A(A, B))) is given by

n(—A(A, B)) = ny(ABY),

(3.56)

where ny (J) represents the number of positive eigenvalues of the matrix J. In particular,
—A(A, B) is nonnegative if and only if the matrix AB* is nonpositive.

Next, we determine the Morse index n(—A(A, B)) of the Laplacian —A(A, B) asso-
ciated to the Nevanlinna pair {4, B} given above.

(1) Kirchhoff-coupling: for the pair {Ax, Bx} in (3.53) we have that AB* = 0. Then,
the Morse index, n(—A(Ag, Bg)) = 0 and so —A(A, B) = 0.

(2) §-coupling: for the pair {Ag, Bs} in (3.54) we have

0 0 0
0 0 0
AsBf =| X . (3.57)
0 0 .. —o
Then, the Morse index n(—A(Ag, Bg)) = 0 for ¢ > 0, and n(—A(4s, Bg)) = 1

fora < 0.
(3) &’-coupling: for the pair {Ag/, Bs:} in (3.55) we have
00
00
As'Bs, = By Ay, = | ¢ : . (3.58)
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Then, the Morse index n(—A(Ag/, Bs/)) = 0 for A > 0, and n(—A(Ag/, Bsr)) = 1
for A <O.



In this Chapter, we establish some specific models of nonlinear dispersive equations
on metric graphs. Special attention is given to non-linear Schrodinger models and the
Korteweg—de Vries equation. The main point of the exposition will be transform our met-
ric graphs in quantum graphs for these models. The rich dynamic associated to these
models will be the focus of the following Chapters. The local and global well-posedness
of the Cauchy problem, the existence and stability of standing waves and/or stationary
solutions will be some of our interest.

4.1 Schrodinger models on star graphs

In this section we provide a brief description of point interactions on a star graph G for
the nonlinear Schrodinger model (1.1).
From Theorem 3.5 we have that for the Halmiltonian Hg acting on G for V(x) =

(0 ()Y as

HV)(x) = (=0 (). x >0,

and with domain D(H?) = Dy s,

N
Dys = {V € H(G): v1(0) = ... = vy (0), Y v;(0) = avl(())}, (4.1)

j=1
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we obtain that (H‘g, Dy s) represents a self-adjoint operator on L2(G).
In this way, we obtain the following nonlinear Schrédinger equation with §-interaction
on the star graph (quantum graph) G (NLS-§ equation)

i9,U—HU + |UP~lU = 0. (4.2)
We note from subsection 3.1.6 that V € Dy, 5 iff
AV(0) + BV'(0) = 0,

for A and B defined in (3.54).

Model (4.2)-(4.1) has been extensively studied in (Adami, Cacciapuoti, et al. ,

) and (Angulo and Goloshchapova ). In particular, the authors showed well-

posedness of the corresponding Cauchy problem. Moreover, they investigated the exis-
tence and the particular form of standing waves, as well as their variational and stability
properties (see Chapter 10 below).

The second model we are interested is the nonlinear Schrédinger equation with &'-
interaction on the graph G (NLS-§’ equation)

i9,U—H{ U+ |UP~ U =0, (4.3)
it is given by the self-adjoint operator (Hi’, D, /) with
H] V)(0) = (=0} ()}, x>0,
and

N
Dj.s = {v € H(G): v}(0) = ... = vy (0), Y v;(0) = xv;(())}. (4.4)
j=1

We note from subsection 3.1.6 that V € D, ¢/ iff
Ag'V(0) + Bg/V/(O) =0,

for Ass = —Bg in (3.53) and Bg/ in (3.58), namely, {As/, Bs/} forms a Nevanlinna pair.
To our knowledge such type of §’-interaction has been few studied for the NLS equa-
tion on star graphs. In Chapter 10 we establish some results on the Cauchy problem and
the existence and orbital stability of standing wave solutions to (4.3) (see Angulo and
Goloshchapova ).
More general coupling conditions for the Laplace operator can be considered on a star
graph by using a framework based in the Nevanlinna pairs described in subsection 3.1.6.



4.2. Korteweg—de Vries on star graphs 37

4.2 Korteweg—de Vries on star graphs

In this section we give a description of interactions on metric star-shaped graphs for
the Korteweg—de Vries model (1.3). We start by giving a characterization of all skew-self-
adjoint extensions of the Airy operators associated to (1.3) and so we obtain the existence
of specific dynamics given by unitary groups. Our strategy will follow the theory recently
established in (Mugnolo, Noja, and Seifert ).

For sequences of real numbers (o )ceg and (Be)ecg, we consider the following Airy

operator
3

d d
AO . (uC)CGE e (acﬁuc + ﬂcauc)eeE (45)
as an unbounded operator on a certain Hilbert space belong to L2(G), we want to obtain
skew-self-adjoint extensions (Aexs, D(Aexr)) of Ag in such a way that the generated dy-
namics induced by the linear evolution equation

Zy = AextZ,
4.6
{ 2(0) = up € D(4ext), (4.6)

it is given by a Cy-unitary group.

Since the Airy operator A is of odd order, changing the sign of each constant «, it is
equivalent to exchange the positive and negative half line and so we can choose o, > 0
for every e € E = E_ U E; without loss of generality.

The following proposition from give us an answer
about the problem associated to (4.6).

Proposition 4.1. Let G be a star graph consisting of finitely many half-lines E = E_UE 4
and let (ate)eer, (Be)eck be two sequences of real numbers with a. > 0 for all e € E.
Consider the operator Ay defined in (4.5) with

D(Ay) = P € (-0.0) & @ (0. +00).

e€E_ e€E4

Then, i Ay is a densely defined symmetric operator on the Hilbert space

L*(G) = P L (—o0,00 & P L(0, +00),

e€E_ e€E4

with deficiency indices (2|E_| + |E+|, |E=| 4+ 2|E+|). Therefore, Ao has skew-self-adjoint
extension on L*(G) if and only if |[E_| = |E|.

we recall that for |[E_| = |E4|, i.e. the number of incoming half-lines is the same of
outgoing half-lines, the graph G is balanced.

Some comments about the former Proposition deserve to be made which will be very
useful in our stability study of stationary solutions for the KdV model.
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Remark 4.1. 1) From Proposition 4.1 and from the classical von Neumann-Krein ex-
tension theory (see Theorem 3.1 in Chapter 3) the operator (Ag, D(Ag)) admits
a 9|E_|?-parameter family of skew-self-adjoint extension generating each one a
unitary dynamics on L*(G) associated to the linear evolution equation (4.6). More-
over, every skew-self-adjoint extension (A, D(A)) is obtained as a restriction of
(—Ag. D(AF)) with —A§ = Ao and

D(Ay) = €P H3(—00.0) & @ H?(0.+00). (4.7)

e€E_ e€E4

by Theorem 3.1.

2) From the von-Neumann decomposition Theorem 3.1 follows for the symmetric op-
erator i Ay that the domain D(A{) can be written as

D(AY) = D(Ag) @ ker(Af — 1) @ ker(Af + 1). (4.8)

Now, the complete characterization of all skew-self-adjoint extensions of (4¢, D(Ap))
is a bit complex and one strategy for finding these was obtained recently by
via Krein spaces (see also Schubert et al. ). The central idea of the
process is given in Theorem 3.7 and Theorem 3.8 in (Mugnolo, Noja, and Seifert )
where skew-self-adjoint extensions of (Ag, D(Ay)) are parametrized through relations be-
tween boundary values, a strategy very similar to that established above in the case of
the Laplacian operator via Nevanlinna pairs. Here we will use the approach in (Mugnolo,
Noja, and Seifert ), and for convenience of the reader we briefly explain this one. For
abbreviating our notations, for u = (u.)cece € D(A) we denote

u(0—) = (Ue(0—))eee—, and u(04) = (ue(0+))eer

and so we consider the space of vectors boundary values in C3", (u(0—), u’(0—), u” (0—))
and (u(0+),u’(0+),u”(0+)), spanning respectively subspaces G_ and G, with n =
|E+|. The boundary form of the operator Ay is easily seen for u, v € D(Ag) to be (where
we are identifying a vector with its transpose)

u(0-) u(0-)
(Agu,v)+<u,Agv>=(B, u(((())—)) , ":8_; )@ (4.9)
u — u — -
u(0+) u(0+)
—(B+ W0+ || wod ) (4.10)
u”(0+) ' (04) )7+

where for I = I,,x, representing the identity matrix of order n x n, we have

—Ip- 0 —la_ —IBy 0 —lag
B_ = 0 Jo. O By = 0 JTay O (4.11)
—la_ 0 0 —Jlay O 0
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and oy = (ae)geEi, B+ = (ﬂe)éeEi. Thus by considering the (indefinite) inner product
(|):|: . Gi X Gi — C by

(x|y)x = (Bxx.y)G, x,y€Gy

we obtain that (G4, (-|-)+) are Krein spaces and (-|-)+ is non-degenerate (for x € Gy
with (x|x)+ = 0 follows x = 0). Thus from Theorem 3.8 of

we have that for a linear operator L : G_ — G, the operator (Ar, D(AL))
defined by

Apu = —Aju;
u € D(AL) ifand only if u € D(Af) and (4.12)
Lu(0-),u'(0-),u"(0-)) = u(0+),u'(0+),u”"(0+)),

it is a skew-self-adjoint extension of (Ao, D(Ap)) if and only if L is (G_, G )-unitary,
namely,
(Lx|Ly)+ = (B+Lx,Ly)g, = (x]y)- = (B-x.y)G_, (4.13)

namely, L*B1 L = B_. Indeed, For u,v € D(Ay) it follows from (4.9)

(—Aru,v) + (u,—Apv) = (Agu,v) + (u, Agv)
= (u(0-)[v(0-))- — (u(0+)[v(+))+
= (u(0-)[v(0-))- — (Lu(0-)[Lv(—))+.

Then, (A7)* = —Ay ifand only L is (G_, G4 )-unitary.

Next, we consider two family of skew-self-adjoint extension of (Ag, D(Ap)) which
will use in the existence and stability of stationary solutions for the KdV model.

The first one for the case of two half-lines is induced by a singular §-type interac-
tion at the origin. Thus, our metric star graph G has a structure represented by the set
E = (—00,0) U (0,00) and since |[E_| = |E4| = 1 follows that the Airy operator
(Ao, D(Ap)) admits a 9-parameter family of skew-self-adjoint extensions. Moreover,
since each u € H3(—00,0) @ H3(0, +00) can be write as the pair u = (u_,uy) we
have that the subspaces G_ and G are given by the triplets

(u—(0—),u_(0-),u”(0-)) and (u+(0+),u'y (0+),u’ (0+)).
Proposition 4.2. Let E = (—00,0) U (0,00) and for Z € R — {0} we define the linear
operator Lz : G_ — G4 by

(4.14)

N —o
- O O

1
Ly=| Z
Z2
2
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Then we obtain a family (Az, D(Az)) of skew-self-adjoint extension of (Ao, D(Ay))
parametrized by Z and which are defined by

3
Azu = (ae#ue + ﬂej_xue)eeEv u= (ue)eGE
D(Az) = {u = (u—,uy) € H3(—00,0) & H3(0, +00) :

(4.15)
u—(0-) = uy(0+),u’ (0+) —u’ (0—) = Zu_(0-),

Z2u_(0-) + Zu'_(0-) = u/.(04) — u” (0-)}.

Moreover, for o, = (a—, a4 ) and B = (B, B+) weneedto havea_ = a4 and f— = B.
By defining
u_(x), x <0,
U(x) =13 uyg(x), x>0
u_(0-), x=0

we obtain that each element in D(Az) can be seen as a element in H'(R).

Proof. From the extension theory framework established above, we see from (4.13) that
L*B+L = B_ ifand only if «— = a4 and f— = B4. Then the operator Az = Ay
defined foru = (u_,uy) € H3(—00,0) @ H3(0, +00) such that L(u_(0—), u’_(0-),
u” (0-)) = (u4+(0+), u’, (04), u’y (0+)) will represent a skew-self-adjoint extension of
(Ao, D(Ap)). This finishes the proof. O

Proposition 4.2 deserves some comments.
1) It is well know from the theory of extension for the closable symmetric operator

Hy = —j—xzz defined on the space C§° (R — {0}), that all the self-adjoint extensions
are completely determined by the family of self-adjoint boundary conditions

a b vO-) \ _( v(O+)

’( ¢ d )( ¥'(0-) ) - ( yo+) ) (310
with ¥ : R — C, a,b,c,d and t satisfying the conditions (see (Albeverio and
Kurasov , Theorem 3.2.3) or formula (K.1.2) from Appendix of (Albeverio,
Gesztesy, et al. )

{a,b,c,d e R, 1€ C:ad —bc =1, |t| =1} 4.17)

The parameters (4.17) label all the self-adjoint extensions of the closable symmetric
operator Hy.
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2)

3)

4)

Thechoicet =a=d =1,b=0,c = Z, Z € R— {0}, in (4.16) corresponds to
the so-called §-interaction of strength Z which gives rise to the family of self-adjoint
operators (H%, D(HZ)) on L2(R) acting as (Hv)(x) = —v”(x), for x # 0, on
the domain

D(HS) = {ve H'([R) N H2R —{0}) : v/(0+) — v/ (0-) = Zv(0)}.

We note that this is exactly our choice for the first 2 x 2-matrix block defining the
matrix Lz in (4.14).

The other choice of parameters is givenbyt =a =d =1,¢c =0,b = -8, €
R — {0} corresponding to the case of so-called §'-interaction of strength —8. It
gives rise to the family of self-adjoint operators (H & D(H g/)) on L2(R) acting as

(Hg/v)(x) = —v"(x), for x # 0, on the domain

D(Hg/) ={ve H’R\ {0}) : v(0+) — v(0—) = —Bv(0),
4.18)
v'(0+) = v'(0-)}.

Now, the interesting point about this self-adjoint boundary condition lies on that
the skew-self-adjoint extensions of (A4g, D(Ap)) do not give the existence of non-
trivial stationary solutions for (full) Korteweg—de Vries models in (1.3). Indeed, by
considering the matrix

1 - 0
Lg=(o0o 1 o] (4.19)
e f g

*

we obtain that the unitary condition L B BiLg = B_ implies for ay = 0 that
a— = 0and for o # Othata_ = 0.

The choice of parameters T = 1, a = y,d = %, ¢c=b=0,y € R—{0} cor-
responding to the case of so-called dipole-interaction of strength . It gives rise to
the family of self-adjoint operators (H,,, D(H,)) on L*(R) acting as (H,v)(x) =
—v”(x), for x # 0, on the domain

DH,)={ve H2R —{0}) : yv(0—) = v(0+),v'(0—) = yv(0+)}.

Thus, for
y 0 0 2
L,=[0 L o] .= B-—vh+ (4.20)
e 0 % Zyay

we obtain the unitary condition L;B+ L, = B_ ifand only if a4 = y?a_. The
constants B+ can be chosen arbitrary. Then we obtain a family (4,, D(A4,)) of
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skew-self-adjoint extension of (Ag, D(Ao)) parametrized by y such that 4, = Ay
and

D(Ay) = fu = (u_us) € HY(~00,0) @ H(0, +00) :
yu—(0-) = u4.(0+), yu1(0+) = u’ (0-) (4.21)
eu—(0-) + 55u” (0-) = w/ (0+H)}.
Then, we have only two skew-self-adjoint extension of (Ag, D(Ayp)), for a4, c—

positive, y = ,/Z‘—*_’ (the continuous dipole-interaction), and for o4, — negative,

y =— ‘;‘—J_r (the discontinuous dipole-interaction).

The second one case of skew-self-adjoint family of extensions for (Ag, D(Ag)) is for
a balanced metric star graph G with a structure E = E_ U E; where |[E4| = |[E_| = n,
n 2 2, and with a §-interaction at the vertex. Thus by following the notation above, we
have for I = I,,x, being the identity matrix of order n x n, that for

-l 0 —al —-BI 0 —al
B_ = 0 of O , By = 0 af O . (4.22)
—al 0 0 —al 0 0
with B+ = (B)eece and @+ = («)ceg are constants sequences, and the matrix L =

Liyx3n : G- — G4 of order 3n x 3n, Z € R, defined by

I 0 0
= zr 1 o], (4.23)
21 71 1
we obtain
L*BiL = B_

and so L is (G_, G )-unitary. Therefore we have the following result.

Proposition 4.3. Let E = E_ U E; where |Ex| = |E_| = n, n 2 2. For L defined
in (4.23) we obtain the following family (Hz, D(Hz)) of skew-self-adjoint extension of
(Ao, D(Ag)) parametrized by Z and defined by

Hzu = —Afu = Aou
D(Hz) = {u € D(AY) : Lu(0-),u'(0-),u”"(0-)) = (4.24)
(u(04),u'(0+), u” (0+))}.
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Thus, for each u = (ue)ceg € D(Hz) and from the abbreviations
u(0=) = (Ue(0—))eer_, u'(0—) = (Ue(0—))eer_,
u”(0—) = (ud(0—))eer—

(similarly for the terms u(0+), u’(04) and u”(01)), we obtain the following system of
boundary conditions

u(0—) = u(0+), u'(04+)—u'(0-) = Zu(0-),
. (4.25)
Z-u(0-) + Zu'(0—) = u”(04) —u”(0-).

4.3 sine-Gordon equation on star graphs

Next we consider a metric graph G with a structure represented by the set E = E_ U
E; = (—00,0) U (0, +00) U (0, +00), namely, a ) junction.

The focus of this section is to give a quantum graph framework for the following
vectorial sine-Gordon model

Btzue(x, t) — cgaiue(x,t) + sin(ue(x,t)) =0, e€E (4.26)

and (c.)eek, a sequence of real numbers. We rewrite the sine-Gordon model as a first-order
system for e € E,

4.27)

atuc = Ve
D ve = c202u. + sin(ue).

We consider the following symmetric diagonal-matrix Schrodinger operator on L2(G)

a= (o)

with dense domain

Do) = {V = v))}=1 € HA(G) : v1(0) = v2(0) = v3(0) =0,
3 (4.28)
Z cjzv;- 0) — v} (0) = 0}.
J=2
By following a similar argument as in the proof of Theorem 3.6, we can see that the adjoint

operator (Jy", D(Jy")) of (Jo, D(Jp)) is given by

Js =TJo, D(J3) ={(v))i=; € H*(G) : v1(0) = v2(0) = v3(0)}.



44 4. Basic Models

Thus, it is not difficult to see that the deficiency indices for (Jy, D(Jp)) are n+(Jp) = 1.
Therefore due to Proposition 3.2 every self-adjoint extension 7z of Jy may be parametrized
by Z € R, such that

o= (65 gz )oe)

D(Tz) = {())} 1 € H*(©) :01(0) = 12(0) = v3(0). (4.29)

3
> cv(0) — i (0) = Zvl(O)}.
Jj=2

In Chapter 6, section 6.3, we give a novel family of stationary solutions for sine-
Gordon equations on the ) junction describe above.



The
Korteweg—de
Vries Equation
on ay Junction

In this chapter, we shall study the KdV equation on a star graph J = (—o00,0) U
(0, +00) U (0, +00) with three semi-infinite edges given by one negative half-line and
two positives half-lines attached to a common vertex, also known as ) junction. More
precisely, we consider the following problem

Up + Uyxx +Uuxu =0, (x,1) € (—00,0) x (0, 7),
Ul‘ + Uxxx + vxv = 07 (xs[) € (07 +OO) X (Oa T)v (51)
W + Wxxx + WxW =0, (X,t) € (0,+OO)X(O, T),

with initial conditions
u(x,0) = up(x), v(x,0) = vo(x) and w(x,0) = wo(x), (5.2)

where
(1o, vo, wo) € HXR™) x HS(RY) x H¥(R™) := H*(Y). (5.3)

Here, our goal in studying Cauchy problem (5.1)-(5.2) is to obtain results of local well-
posedness in Sobolev spaces with low regularity.
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5.1 Choices of boundary conditions

In this section, we will choice appropriate boundary conditions for the KdV equation
on a Y junction. Determining the number of boundary conditions necessary for a well-
posed problem is a nontrivial issue. As far we know, it’s not at all clear which boundary
conditions should be appropriate for physical applications, and therefore here we will
consider two classes of boundary conditions that are coherent with uniqueness calculations
for smooth decaying solutions of a linear version of the Cauchy problem (5.1). In this
sense, suppose that (u(x,?),v(x,t), w(x,t)) is a smooth decaying solution of a linear
version of (5.1), i.e.

Up + Uxxx =0, (x’t) € (_OO’O) X (07 T)»
Vr +Uxxx =0,  (x,7) € (0,+00) x (0, 7), 5.4)
W + Wxxx =0, (x,1) € (0, +00) x (0,7),

with homogeneous initial condition (u¢, vg, we) = (0, 0, 0). Multiplying the equations in
(5.4) by u, v and w respectively, and integrating by parts we obtain

0 +o0 400
/ u?(x, T)dx +/ v2(x, T)dx +/ w?(x, T)dx
0 0

—00

T
= [ 0200 = 20.0 ~ wio.ar
0 (5.5)

T
- 2/ u(0, 1)Uy (0,¢)dt
0

T T
+ 2/ v(0,)vxx(0,2)dt + 2/ w(0, H)wyxx(0,2)dt.
0 0

By analyzing (5.5), we are interested in the boundary conditions for Cauchy problem
(5.1)-(5.2) such that the right hand side of (5.5) would have a non positive sign.

For this, we can choice, for example, the following particular boundary conditions

u(0,1) = axv(0,7) = azw(0,1), t € (0,T), (5.6)

Uux(0,1) = Bovx(0,1) + B3wx(0,¢), t € (0,T) (5.7)
and

1 1
Uxx(0,1) = a—zvxx(O,t) + a—3wxx(0,t), t €(0,7), (5.8)
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where o, a3, B> and B3 are real constants satisfying Sﬂiz < 1 fori = 2,3 we have that

0 +o00 +o00
/ u?(x,T)dx + / v2(x, T)dx + / w?(x, T)dx
0 0

.

- / [(B2vs (0.1) + Bawy (0.1)) — v2(0.1) — w2(0. 1)dr

0

T
12 / 2(0. 1) (=t (0.1) + e (0.1) + ~—1022(0.1) (5.9)
0 (6% o3

T
- / (82 — DV2(0.1) + 2B2B30x (0. Ywx (0.1) + (B2 — D (0.0)]d1

0

T
< / (382 — Du2(0.1) + 362 — Dw?(0.1)]dr,
0

where we have used the Cauchy-Schwarz inequality. It follows that u(x,7) = v(x,T) =
w(x, T) = 0, which implies the uniqueness argument.
In the same way, the following particular boundary conditions

u(0,t) = Lv(O,t) + Lw(O,l), te€(0,7), (5.10)
(6% o3
Ux(0,1) = Bavx(0,1) + B3wx(0,¢), t € (0,T) (5.11)
and
Uxx (0,1) = 02054 (0,1) = a3wxx(0,2), t € (0, T), (5.12)

where a2, &3, B2 and B3 are real constants satisfying 387 < 1 for i = 2,3 imply the
uniqueness argument.

We now define the following two classes of boundary conditions that is coherent with
the approach used here, which involves the particular boundary conditions (5.6)-(5.8) and
(5.10)-(5.12).

Definition 5.1. Given a,, asz, by, b3, ¢z and c3 real constants, we call type 1 bound-
ary conditions for the Cauchy problem (5.1)-(5.2) if these satisfy the following boundary
conditions at the vertex:

u(0,1) = av(0,t) = azw(0,1), t € (0,7T), (5.13)
Mx(o, t) = bzvx(ovt) +b3wx(07t)v re (07 T) (514)

and
Uxx(0,1) = c2vxx(0,7) + C3wxx(0’t)v t€(0,7). (5.15)

Definition 5.2. Given ay, as, b, b3, c; and c3 real constants, we call type 2 boundary
conditions for the Cauchy problem (5.1)-(5.2) if these satisfy

u(0,t) = av(0,t) + azw(0,t), t € (0,T), (5.16)



48 5. The Korteweg—de Vries Equation on a Y Junction

Ux(0,7) = bovx(0,) + b3wy(0,1), t € (0,T) (5.17)

and
Uxx(0,1) = c20xx(0,1) = c3wyx(0,2), t € (0, 7). (5.18)

It is well-known that the trace operator yq : u(x) +— u(0) is well-defined on H*(R™)
fors > % Hence, on the case s > % we will assume the following additional condition

u0(0) = azv0(0) = azwo(0) (5.19)
for initial data for the Cauchy problem (5.1)-(5.2) with type 1 boundary conditions and
uo(0) = a2v9(0) + azwo(0) (5.20)

for type 2 boundary conditions.

(_OO’ 0)

Figure 5.1: A star graph with three edges () junction)

In order to simplify the enunciate of the principal theorem we give an auxiliary defini-
tion of some parameters. To do this we fix the following notations,

dy; = 2sin (%M + %) , €3; = 2sin (%M - %) .

(5.21)
g g
d fi; = 2sin (Thi = ).
and f3, sin 345
We also define the following matrices,
Mi1(A1, 42,43, 44) =
dj, —azei”’13 0 dj,
dy, 0 —azel™4  d;, (5.22)
e, _bzein(h—l) _b3ein()t4—1) e,

f)n _Czezn(lg,—Z) _C3ezn'(}t4—2) sz
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and
Ma(A1,A2,A3,A4) =

dy, —aze"”’13 —a3ei”)‘4 dj,

e, —bae!mHTD  _prein@a=) oy (5.23)
f)tl _Czezn(/13—2) fi,

o 0 —c3el ™72

Now, we state principal result of the chapter obtained by
Theorem 5.1. Let —% <s§s < % with s # % Assume that ug, vy and wq satisfy (5.3).
(i) For a fixed s suppose that there exists a real constant A; (s) satisfying

11
max{s — 1,0} < A;(s) < min %s + 3 5} fori =1,2,3,4, (5.24)
such that the matrix My defined in (5.22) is invertible. Then there exists a positive
time T > 0 and a distributional solution (u, v, w) in the space C([0, T], H*()))),
for the Cauchy problem (5.1)-(5.2) with type 1 boundary conditions, satisfying the
additional compatibility condition (5.19) on the case % <s§s< % Furthermore the

data-to-solution map (ug, vo, Wo) —> (U, v, w) is locally Lipschitz continuous from

H*(Y) o C([0. T]. H*())).

(it) For a fixed s suppose that there exists a real constant A; (s) with

max{s — 1,0} < A;(s) < min %s + % %%fori =1,2,3,4,
such that the matrix M, defined in (5.23) is invertible. Then there exists a positive
time T > 0 and a distributional solution (u, v, w) in the space C([0, T], H*(})))),
for the Cauchy problem (5.1)-(5.2) with type 2 boundary conditions, satisfying the
additional compatibility condition (5.20) on the case % <s§s < % Furthermore the
data-to-solution map (ug, vo, Wo) = (U, v, w) is locally Lipschitz continuous from

H*(Y) 1o C([0, T], H* ().

Remark 5.1. In Theorem 5.1 the indexes A, i = 1,2,3, 4, are associated to the Duhamel
boundary operator classes associated to linear version of the KdV equation and depend
of the regularity index s.

Remark 5.2. The inversion of the matrix (5.22) and (5.23) condition is necessary in order
to reformulate the Cauchy problem (5.1)-(5.2) in an integral version by using the Duhamel
boundary forcing operators.

As the consequence of Theorem 5.1, we can obtain the following result for the special
boundary conditions (5.6)-(5.8) and (5.10)-(5.12), which is appropriate for our formal
uniqueness calculations associated to the linear version of the KdV equation on a star
graph.
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Corollary 5.1. Let —% <5 < % with s # % and oy, az, B2, B3 € R satisfy aLZ +
2

é + g—; + 5—; # —1. Assume that ug, vy and wy satisfy (5.3). Then there exists a

positive time T > 0 and a distributional solution (u,v,w) € C([0,T], H5(})) for the
Cauchy problem (5.1)-(5.2) with boundary conditions (5.6)-(5.8), and the initial condi-
tions satisfying additional conditions (5.19) for % <s§ < % Furthermore the data-to-
solution map (Ug, vo, Wo) +> (U, v, w) is locally Lipschitz continuous from H*())) to

C(0.T], H* (V).

Corollary 5.2. The same result of the Corollary 5.1 is valid for the Cauchy problem (5.1)-
(5.2) with boundary conditions (5.10)-(5.12), and the initial conditions satisfying addi-
tional condition (5.20) for % <s < %

Remark 5.3. Note that, in Corollary 5.1 and Corollary 5.2 we don t need of the assump-
tions ,812 < 1,i = 2,3, obtained in the previous formal uniqueness calculations for the
associated linear problem (5.4).

The approach used to prove the main result is based on the arguments developed by

( )’ ( )7 ( ), and

( , ). The main idea to prove Theorem 5.1 is the construction of an
auxiliary forced Cauchy problem in all R, analogous to the (5.1); more precisely:

U + Uxxx + uxtt = Ti(X)h1(2) + T2(x)h2 (1), (x,1) e Rx(0,7),
Vr 4 Uxxx + Ux¥ = T3(x)h3(2), (x,1) e R x(0,7), (5.25)
Wy + Wyxxx + Wxw = Ta(x)ha(2), (x,1) e Rx(0,7), .

u(x,0) = up(x), v(x,0) =Vo(x) w(x,0) = Wo(x), x €R.

where 77 and 7, are distributions supported in a positive half-line R, 73 and T are
distributions supported in the negative half-line R™, %o, Uy and Wy are nice extensions
of ug, vg and wg in R. The boundary forcing functions /1, ko, hz and h4 are selected to
ensure that the vertex conditions are satisfied.
The solution of forced Cauchy problem (5.25) satisfying the vertex conditions is con-
structed using the classical restricted norm method of Bourgain (see and
) and the inversion of a Riemann-Liouville fractional inte-
gration operator .

Following and we consider the distributions 77 =
Ap—1 Ap—1 A3—l Aa—l
X =i Ti=t —and T = S, where
r> 27~ TO) 37 TQs) 4T Ty

A—1 +o0 [ A—1
<;ﬂ+@),¢> =/0 ?(A)q&(x)dx, for Re A > 0. (5.26)

Al k yA+k—1 . Cn
For other values of A we can define );f( = Z—xm, for any integer k satisfying

A—1 . —x)A~1
k 4+ ReA > 0. Finally, we define );:(_A) = e’“%.
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The crucial point here are the appropriate choices of the parameters A; and the func-
tions h;, fori = 1,2, 3, 4, that will depend on the regularity index s.

Remark 5.4. We believe that the same approach used to prove Theorem 5.1 can provide
similar vesults for the KdV equation in other star graphs and possibly for other nonlinear
dispersive equations. For example, a treatment for the nonlinear Schrondiger equation
on a star graphs can be done using the classes of Duhamel boundary operators developed
by and

We denote by X*? the so called Bourgain spaces associated to linear KdV equation;
more precisely, X is the completion of §”(R?) with respect to the norm

lwlixso = IE) (= £ DE Dl 5.2

To obtain our results we also need define the following auxiliary modified Bougain spaces
of . Let U*? and V® the completion of S’(R2) with respect to the norms:

lwllgss = ( [ [ -giae r>|2dsdr)2

and

lwllye = (//(T)Z“I@(E, f)lzdédf)é.

Fore more details about the Bourgain spaces see Appendix B.
Next nonlinear estimates, in the context of the KdV equation, for b < %, was derived

by
Lemma5.1. (a) Givens > —%, there exists b = b(s) < % such that for all @ > % we
have

10 (1v2) | gsms S V1l xsbnve V2l xsbnpe.

(b) Given —% <5 < 3, there exists b = b(s) < % such that for all o > % we have

18 (102) | gsms S V1l xsbnpe V2l xssnpe-

5.2 The linear versions

5.2.1 Linear group associated to the KdV equation

The linear unitary group e’ N (R) — S’(R) associated to the linear KdV equation
is defined by

R = (°5®) .
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that satisfies s
(0 +03)e % ¢p(x,t) =0 for (x,1) e R xR,

e~103 (x,0) = o (x) for x € R. (5-27)

The next estimates were proven by Holmer (2006).

Lemma5.2. Lets € Rand 0 < b < 1. If ¢ € H*(R), then we have

(a) (space traces)
—103 < :
”e ¢(x)||C(Rt;HS(Rx)) ~ ”¢”HY(R)’

(b) (time traces)

. _ 3 .
1O W (g, riorr-sey) S 19lm®). J €N

(c) (Bourgain spaces)
—+93
I (e ¢ I xspave < 19]ms @)

Remark 5.5. The spaces V* introduced in (Holmer 2006) give us useful auxiliary norms
of the classical Bourgain spaces in order to validate the bilinear estimates associated to
the KdV equation for b < % (see Lemma 5.1).

5.2.2 The Duhamel boundary forcing operator associated to the lin-
ear KdV equation

Now, we give the properties of the Duhamel boundary forcing operator introduced by
Colliander and Kenig (2002), namely

t
Ve(x.1) = 3 / RS (VT a5 ()
0

5.28
! X 1.72/3g(t/) ’ ( )
=3/ A dt’,
0 (t —t’)1/3 (t —t’)1/3
defined forall g € C$°(R™) and A denotes the Airy function
1 . .
A(x) = —/e’x5e153dg.
2 £
From definition of V it follows that

0 + 33)Vg(x,t) = 350(x)1'_%g(t) for (x,t) €e R xR, (5.29)

Vg(x,0) =0 for x eR. '

The proof of the results exhibited in this section was shown by Holmer (2006).
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Lemma 5.3. Let g € CS°(R™) and consider a fixed time t € [0, 1]. Then,
(a) the functions Vg(-,t) and 0, Vg(-,t) are continuous in x for all x € R. Moreover,
they satisfy the spatial decay bounds
Ve (x, 0] + 18:Ve(x, )] < cellgll a1 ()™ forall k > 0;

(b) the function 32V g(x, 1) is continuous in x for all x # 0 and has a step discontinuity
of size 312 g(t) at x = 0. Also, 32Vg(x, 1) satisfies the spatial decay bounds
3

102Vg(x. )| < il f Nl sz (x)7F forallk > 0.

Since A(0) = 3; from (5.28) we have that Vg(0,1) = g(¢).

r(3)

5.2.3 Applications of the operator V

For the convenience to the reader, we present here an application of the operator V to
solve a linear version of the IBVP associated to the KdV equation on the positive half-line,
given by . Set

v(x,t) = e_’aiqﬁ(x) + V(g — e_'a)3f¢|x:0)(x, 1), (5.30)

where g € C°(R™T) and ¢ € S(R).
Then from (5.27) and (5.29) we see that v solves the linear problem

(0 + 3)v(x,t) =0 for (x,7) € R* xR,
v(x,0) = ¢(x) for x eR, (5.31)
v(0,¢) = g(¢t) for t € (0,4+00),

in the sense of distributions, and then this would suffice to solve the IBVP on the right
half-line associated to linear KdV equation.

Now, we consider the second boundary forcing operator associated to the linear KAV
equation:

T 1g(t
al ) 180 (5.32)

t
—1 _ _ /
V g(x,t) = BXVI%g(x,t) = 3/0 A ((t i) ()

From Lemma 5.3, for all g € C$°(R™) the function V~!g(x,7) is continuous in x on
x € R; moreover using that A’(0) = —31,1( Iy We get the relation V"1g(0,1) = —g(¢).

3
Also, the definition of V™! g(x, t) allows us to ensure that

@ +33)Vlg(x,1) = 35(’)(x)I_%g(t) for (x,t) €e R xR,

) B (5.33)
V7 'g(x,0) =0 for x e R,
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in the sense of distributions.
Furthermore, Lemma 5.3 implies that the function 9,V f(x, t) is continuous in x for
all x € R and, since 4’(0) = —

1
3ar$)’
0,Vg(0,t) = —I_%g(t). (5.34)

Also, 0,V g(x,1) = 8)2‘VI%g(x, t) is continuous in x for x # 0 and has a step discon-
tinuity of size 3Z_ 1 g(t) at x = 0. Indeed,

+00 +o0
lim 8)2€Vg(x,t) = —/ 83”,Vg(y,t)dy =/ 2 Vg(y,t)dy
x—0t 0 0

+o00 t
-3 / Ay)dy / 8T 2g(t)dt' =T »g(1).
0 0 3 3

then from Lemma 5.3 -(b) we have

lim 0,V 'g(x,t) =—2Z 1g(t) and lim 3,V 'g(x,t) =7 _1g(t).
x>0~ 3 x—0t 3

Now, for convenience, we give an application of the operator V™! to solve a IBVP
linear associated to the KdV equation on the negative half-line with two boundary condi-
tions given by . Let i1 (1) and h(¢) belonging to C$°(R™) we have the
relations:

Vhi(0.1) + V' ha(0,1) = hy(r) — ha(1),
XE)I{)I_ I%ax(Vhl(x» D+ 0V ha(x, ) (1) —hy(t) — 2h2(1),

lir(1)1+ I%ax(Vhl(x» )+ 0xV  ha(x,))(1) —hy(2) + h2(2).

For given vg(x), g(¢) and h(t) we assigned

[hl} 1[ 2 _1][ g —e R vglxzo }
ho 3 -1 -1 I% (h — 8xe_'a)3f UO|x=0)

Then, taking v(x, 1) = e %% vg(x) + Vhi(x.1) + V" ha(x, 1) we get

(0 + 3)v(x,1) =0 for (x,7) € R* xR,
v(x,0) = vo(x) for x eR,
v(0,¢) = g(¢t) for t eR,
XE%L dxv(x,t) = h() for teR,

(5.35)

in the sense of distributions.
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5.2.4 The Duhamel boundary forcing operator classes associated to
linear KdV equation

In order, to get our results in low regularity (see Remark 5.6), we need to work with
two classes of boundary forcing operators in order to obtain the required estimates for the
second order derivative of traces. In this way, we define the generalization of operators V
and V™! given by Holmer (2006)

Let A € C withReA > —3 and g € C{°(R™). Define the operators

A1
A _ | X .
Vaglnn) = | Fas V(I 0) 0 | ()
and _ .
) X
Vigten) = | T # VT )60 | (o).
:e"”)‘% Then, using (5.29) we have that
r(x TGy - ) g .
. A1
3 _
(3 + VA g(0) =3 15T 5 420)
and
3l 3 )L 1
d; + 0 =3=
(0 + 0)Vig(x, 1) = T T 3 28@).

The following lemmas state properties of the operators classes Vi. For the proofs we
refer the reader Holmer (2006).

Lemma 5.4. Let g € C(;’O(R+). Then, we have
ViPg =0V g, ViTlg =0V T1g and Vig=Vg.

Also, V;Zg(x, t) has a step discontinuity of size 3g(t) at x = 0, otherwise for x # 0,
V;zg(x, t) is continuous in x. For A > =2, Vig(x, t) is continuous in x for all x € R.
For -2<A<1land0 <t <1, Vﬂg(x, t) satisfies the following decay bounds:

VA (x, )] < emoag(x)™, forall x <0 and m > 0,
WAg(x.1)] < g (x)*" forall x > 0.
IVig(x, D < cmag(x)™™, forall x > 0andm > 0,

and

Vig(x.0)] < cag(x)*™! forall x <0
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Lemma 5.5. ForReA > —2and g € C{°(R™) we have

VEg(0.1) = 2sin (T + 7) g(0)
and

Vig(0,1) = e g(r).

Lemma 5.6. Let s € R. The following estimates are ensured:

(a) (space traces) |[V%g(x, l)”C(R[;HS(RX)) S ||g||H(()s+1)/3(R+)for alls —3 < A <

s+ % A< % and supp(g) C [0, 1].

(b) (time traces) ||W(f)3§cvig(x,f)||C(Rx;Hés+n/3(Rt+)) S cllgll go+vr3 gty for all
24+ j<A<l+4j,forjei{0,1,2}

(¢) (Bourgain spaces) ||w(t)Vig(x,t)||Xsy,,nVa < c||g||Hés+1>/3(R+)f0r alls — 1 <
k<s+%,k<%,a<HT+2and0<b<%.
Remark 5.6. Note that for A = 0 the second derivative time traces estimate is not ob-
tained, for this reason we need to work with the family Vi. Also note that the set of
regularity where the spaces traces and Bourgain spaces estimates are valid depends of

the index A, for example, for A = 0 we have the Bourgain spaces estimates on the set
—1/2<s< 1.

5.3 The Duhamel inhomogeneous solution operator

The classical inhomogeneous solution operator K associated to the KdV equation is
given by

t
Kw(x, 1) =/ e_(t_t/)aiw(x,t/)dt/,
0
that satisfies

0; + 3)Kw(x,1) = w(x,r) for (x,1) € RxR,

5.36
Kw(x,t) =0 for x eR. (5:36)

Now, we summarize some useful estimates for the Duhamel inhomogeneous solution
operators /C that will be used later in the proof of the main results and its proof can be seen
in (Holmer ).
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Lemma 5.7. For all s € R we have the following estimates:

(a) (space traces) Let —% <d <0, then

W OK0 O 5, s y) < 0l

(b) (time traces) Let —% <d <0andj €{0,1,2}, then

[vO%RKwE D (g gornnm,)

w]| ys.a if—1+j<s<3+J.
~ wl xs.a + ||wllys.e foralls e R.

(c) (Bourgain spaces estimates) Let 0 < b < % and o > 1 — b, then

IV @OKwx, Dl xsoave S lwlxs.-.

Remark 5.7. We note that the time-adapted Bourgain spaces U*? used in Lemma 5.7-
(¢)-(d) are introduced in order to cover the full values of regularity s.

5.4 Proof of Theorem 5.1

Now, we show the proof of the main result announced of this work. We only prove
the part (i) of Theorem 5.1, since the proof of part (ii) is very similar. We follow closely
the arguments in (Holmer ) (see also Cavalcante ; Cavalcante and Corcho ).
The proof will be divided into five steps.

Step 1. We will first obtain an integral equation that solves Cauchy problem (5.1)-
(5.2), with type 1 boundary conditions, satisfying (5.19) for % <s§s < %

We start rewriting the vertex conditions (5.13), (5.14) and (5.15) in terms of matrices:

o ][ e

0 0 03 v(0,1) | =0, (5.37)

0 o o |LwOD

00T men

1 —b, —b vx(0.7) | =0 (5.38)
2 3 wy (0,1)

0 0 0 L
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and
0 0 0
uxx(o’t)
0 0 0
Vyx(0,2) | =0.
0 0 0 N
1 —c —c3 XA

Let ug, Vg and Wy nice extensions of ug, vo and wy, respectively satisfying

ol s ®) < clluoll gs®w+), Vollas®) < cllvoll s w+)

and ||w0||Hv(1R) c”wO”HV(]R"F)
Initially, we look for solutions in the form
u(x.1) = VA (x,0) + V2pa(x.0) + Fi(x.0),

v(x, 1) = Vys(x, 1) + Falx, 1),
w(x,1) = Vi'ya(e,1) + F3(x,1),

where y; (i = 1,2, 3, 4) are unknown functions and

Fi(x,t) = e”axuo + Kuuy)(x,1),
Fa(x.1) = €37, + K(vve)(x. 1).
F3(x,1) = ey + K(wwy)(x, ).

By using Lemma 5.5 we see that

u(0,1) = 2 sin (%AI n %) yi(t) + 2 sin (%xz n %) Va(t) + F1(0,1),

v(0,1) = ™3 y3(t) + F2(0,1),
w(0,1) = ey, (1) + F3(0.1).

(5.39)

(5.40)

(5.41)
(5.42)

Now we calculate the traces of first derivative functions. By Lemmas 5.4 and 5.5 we see

that

Z . bia Z . bia

Ux(0,1) =2sin (511 — E) Z_%yl(t) +2sin (gkz — E) I_%yz(t)
+ axFl(Ovt)v

0x(0.0) = e THTVL_ ya(6) + 05 Fa(0.1),

wx(0,1) = e HTDL_yy(1) + 85 F3(0.1).

(5.43)

(5.44)
(5.45)
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In the same way, we calculate the traces of second derivatives functions,

. b/ T . g v
U (0,1) = 2sin (EAI - E) T ayi(0) +2sin (EAZ . E> ya(t) + 22 FL(0,1),
(5.46)
vxx(0.0) = €TRTIT 5 ys3(1) + 93 F2(0.0), (5.47)
Wiy (0,7) = ei”u“_z)I_%n(t) + 32 F3(0,1). (5.48)

Note that by Lemmas 5.4 and 5.5 these calculus are valid for Re A > 0.

By substituting (5.40), (5.41) and (5.42) into (5.37); (5.42), (5.43) and (5.44) into
(5.38), and (5.46), (5.47) and (5.48) into (5.39) we see that the functions y; and indexes
Ai, fori = 1,2, 3, 4, satisfy the expressions

I —a, 0 dy, 0 0 dj, n
1 0 —as 0 einl_g 0 0 V3
0 O 0 i Va
000 P e e 2 (5.49)
} —612 _0 F1(0,1)
= - 0 0 03 FZ(Ov t) s
F3(0,1)
0o o0 0.
0 0 0 ekl 0 0 6/12 ] Y1
0 0 0 0 ei(n/l.gfl) 0 0 V3
1 —by —b3 0 0 Pima—1) V4
0 o 0. - 2 (5.50)
0 0 0 0:T1 F1(0.1) ] '
0 0 0 3
=—| b b BXI% F5(0,1)
—D3 —b3
0 0 0. 8xI%F3(O,l‘) ]
and
8 8 8 f/h 0 0 fl\z "
0 ei(:’t/\3—2) 0 0 V3
° 00 0 0 eilma2 v
—C2 —C3 V2
(5.51)
0 0 0 agz%Fl(o,z)
—_ 8 8 8 9213 F5(0,1)
1 —¢y —cs agz%fg(o,t)
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It follows that,
dy, —aze’™3 0 d), 71
d;, 0 —asze’™4  d,, V3
0 0 0 0 Ya
0 0 0 0
v (5.52)
Fi(0,1) —ax F>(0,1)
_ FI(O,[)—CI3F3(O,[)
- 0
0
0 0 0 0 "
0 0 0 0 Vs
en, —breTITD  _pipin(al) g, ”
0 0 0 0 V2 553
0 (5.53)
_ 0
- axI%Fl(O,l)—bzaxI%Fz(O,l)—b3axZ%F3(0,l)
0
and
0 0 0 0 "
0 0 0 0 Vs
0 0 0 0 va
5y —C2eiTATD _egpin(Re=D) p V2
T 2 (5.54)
0
0
= 0

8)%1% F (0, t) — czafcI% Fz(o,l) — C38)ZCI% F3(O, I)

From (5.52), (5.53) and (5.54) we need to obtain functions y; (i = 1,2,3,4) and
parameters A; (i = 1,2, 3, 4) satisfying

d), —azei”)L3 0 d), Y1
d, 0 —aze’™  dy, V3
e _bzein(k3—1) _b3eirr()k4—1) e, Va
fll _czeiﬂ(l3—2) _c3eiﬂ(l4—2) f)uz yz

F1(0,1) —ay F»(0,1) (5.55)

Fl(()’t) _a3F3(Ovl)
=- 8XI%F1(0,t)—bzaxI%F2(0,t)—b38xI%F3(0,t)
aﬁz'% F1(0,1) — czagz'% F>(0,1) — c3a§1§ F5(0,1)
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We denote a simplified notation of (5.55) as
M(A1,A2,43,44)y =F, (5.56)

where M(A1, A2, A3, A4) is the first matrix that appears in (5.55), p is the matrix column
given by vector (y1, ¥2, ¥3, Y4) and F is the last matrix in (5.55). By using the hypothesis
of Theorem 5.1 we fix parameters A;, fori = 1,2, 3, 4 such that

11
max{s — 1,0} < A;(s) < min {s + > 5} . (5.57)

and the matrix M(A1, A2, A3, A4) is invertible.

Step 2. We will define the truncated integral operator and the appropriate func-
tions space.

Given s as in the hypothesis of Theorem 5.1 we fix the parameters A; and the functions
yi (i = 1,2,3,4) chosen as in the Step 1. Letb = b(s) < % and a(b) > 1/2 such that
the estimates given in Lemma 5.1 are valid.

Define the operator

A = (A1, Az, A3) (5.58)
where

Aqu(x, 1) = YOV y1(x.0) + Y (OVE2y2(x. 1) + Fi(x, 1),

Au(x.1) = YOV ys(x.1) + Fa(x. 1),

Azw(x,1) = YOV ya(x.1) + F(x.0),
where

Fi(x.1) = Y1) (e + K(uux) (x. 1)),
Fa(x.1) = Y1) (T + K(vox)(x,1)),
F3(x.1) = Y1) (€5 Ty + K(wwy)(x,1)).
We consider A on the Banach space Z(s) = Z;1(s) x Z,(s) x Z3(s), where
Zi(s) ={w € CRy; H*(R2)) N CR: H'F (R)) N X*0 0 Ve,
wx € C(Rx: HI(Ry)). way € CRx: H'T (R))} (0 = 1.2,3),

with norm
v, w)llzesy = ullz, ) + IVl zoi) + Wl z565)
where
Iz =Bl eon + 1l o5 s+ il
+ [Juxl + [l x|l

CR:H 3 R))) CRyHT ®R))
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Step 3. We will prove that the functions VA1 y, (x, 1),
VA2y,(x, 1), Vf y1(x.1) and V4 y,(x, t) are well defined.

By Lemma (5.6) it suffices to show that these functions are in the closure of the spaces
C§°(R™). By using expression (5.55) we see that the functions y; (i = 1,2, 3, 4) are lin-
ear combinations of the functions F1 (0, t)—as F>(0,¢), F1(0,t)—a3 F5(0,t), dx Il F1(0,1)—
b0y I1 F>(0,t)—b30y I1 F5(0,¢) and 821'2 Fi(0,1)— czé)zIz F5(0,1)— 038212 F3(O 1).
Thus, we need to show that the functions F (0,1), 0xZ 1 F; (0 1), 3212 F; (0, t) are in ap-
propriate spaces. By using Lemmas 5.2, 5.6, 5.7 and 5. l we obtain

15001 s o < ol sy + ulliss + lullye). (5.60)
||Fz(o,t>||H%R+) <c(lvoll gs@y + 10len + I0IFe).  (5:61)
I1F:0.01 <cllwoll sy + lwles + Iwlfe).  (5.62)

If—l <s<3i 5> we have that ¢ 1 S+1 1 Thus Lemma B.1 implies that H™S (]R+) =

2
H, .h (R+) It follows that F;(0,1) € H, (R+) (fori =1,2,3) for—1 <5 < 1.

If i 5 <8< 2, then 1 5 < 4l %. Using the compatibility condition (5.19) we have

3
that

F](O, 0) —aze(O, 0) = M(O, 0) —azv(0,0) = MQ(O) —azv()(()) =0,
F1(0,0) —Cl3F3(0,0) = M(0,0) —a3w(0,0) = uo(()) —a3w0(0) =0.

Then Lemma B.2 implies

B A'Jsrl +
Fi(0,1) — a22F,(0.1) € H, (R) (5.63)

Fi(0,1) —a3F5(0,t) € H (R+)
Now using Lemmas 5.2, 5.6, 5.7 and 5.1 we see that

102 F1 (0. 0)ll 5 gy < cClltoll prs ey + ullsn + Ntlle),

102 F200. D) 5 gy < €UVl s ety + 01150 + [V1170)-

2 2
195 F30. )l 5 vy < cUwoll s @+) + 1wl + lwlye)-
Since —% <s§s < % we have —é < % < %, then Lemma B.1 implies that the functions

0 F;(0,1) € H(? (RY), fori =1,2,3,4. Then using Lemma A.14 we have that

[0xZ1 F1(0,2)|| s < c(luoll gs@+y + el yss + lulFe).
3 H R+)

07 (
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19xZy Fz(o,t)||H(:+3-n . < c(lvoll grsw+y + 1055 + [0IIFe).
||3xI%F3(0J)||H(%(R+ < c(lwoll grs+y + lwlss + lwlFe)

Thus, we have
8xI% Fi(0,1) — bzaxI% F(0,1) — b33xI% F5(0,1) € H(;ng R™). (5.64)
In the same way we can obtain
TR OO0 gt S cluollsey + el + uli7e).
1053 2001 s o< ol + Vs + IolF),
1033 Fz(O,Z)IIHosg-l . < c(lwoll gs @ty + lwliyes + lwlia)
(5.65)

It follows that
s—1
aiz% Fi(0,1) — czaiz% F2(0.1) = ¢39x T3 F5(0.1) € Hy (R™).

Thus, (5.63), (5.64) and (5.65) imply that the functions V21 y; (x, 1), VA2 y5 (x, 1), V2 y1 (x, 1)

and V*4y,(x, ) are well defined.
Step 4. We will obtain a fixed point for A in a ball of Z.
Using Lemmas A.14, 5.2, 5.6, 5.7 and 5.1 we obtain
(5.66)

[A(uz, v2, w2) — A(ur, v, w1l z
< c(|[(uz, v, wo)llz + ([, v, w) | 2) (U2, v2, w2) — (U1, v, wr)llz

and
[AQu, v, w)llz < c(luoll gs®+) + Vol s ®+) + l[woll gs w+) (5.67)
+ lul%ss + MulFe + 01500 + 1017 + wlss + [w]Fa).
By taking |[uoll gs+) + [voll gs@+y + llwoll gs®+ < & for § > 0 suitable small, we

obtain a fixed point A(W,V, w) = (&, vV, w) in a ball
B ={(u,v,w) e Z,||(u,v,w)||z < 2cb}.

(5.68)

It follows that the restriction
(v, w) = (”V|fo(o,1)’ v|]R+x(O,l)’ w|R+x(o,1))
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solves the Cauchy problem (5.1)-(5.2) with 1 boundary conditions in the sense of distribu-
tions.

Existence of solutions for any data in H*()) follows by the standard scaling argument.
Suppose we are given data g, Vg and Wy with arbitrary size for the Cauchy problem (5.1)-
(5.2) with 1 boundary conditions. For A << 1 (to be selected after) define ug(x) =
A%o(Ax), vo(x) = A%Tp(Ax) and wo(x) = A?Wy(Ax). Taking A sufficiently small so
that

luollars + llvoll s + lwollas

3 _ — —_
< A2+ A%)([do [l s r+y + Vol s+ + 1ol s w+))
< 4.

Then using the previous argument, there exists a solution u(x, ¢) for the problem (5.1)-
(5.2), with type 1 boundary conditions, on 0 < ¢ < 1. Then u(x,t) = A 2u(A"1x,173)
solves the Cauchy problem for initial data 7o, T and @y on time interval 0 < ¢ < A3.

Step 5. Proof of locally Lipschitz continuity of map data-to-solution.

Let {(4on. Von, Wo,n) }nef1,2y two initial data in H*()) such that ||ug,|| + ||von| +
lwon| < 8, (i = 1,2) where § is sufficiently small.

Let (upn, vy, wy) (n = 1,2) the solution of Cauchy problem (5.1)-(5.2) with 1 bound-
ary condition on the space C([0, 1] : H*()’)) with initial data (u¢,, Vo, Won ). According
to Step 4 the lifespans of these solutions is [0, 1].

By using the arguments used in Step 4 we have that

||(MZa V2, w2) - (M], V1, w1)||Z|[0_1]
< ¢|| (o2, vo2, wo2) — (Uo1, Vo1, Wor) || s () +
c(|(uz2, v2, wa) + (U1, v1, w1l zjo,1) (U2, v2, w2) — (1, v1, w1)ll Z|[0,1],

where Z|[o,1] denotes the restrictions of functions of Z in the interval [0, 1]. In a ball of
Z|[0,1] we have that

||(u2’ V2, wz)_(u15 V1, wl)”Zl[O']]

(5.69)
< cf[(uo1, voz2, wo2) — (Uo1, Vo1, Wor) | Hs (y)-

which completes the proof for small data assumptions. The local Lipschitz continuity for
any data can be showed by a scaling argument.

5.5 Proof of Corollary 5.1

By using Theorem 5.1 given a regularity index s it suffices to get scalars A, (s) satis-
fying (5.24) such that the matrix M (L1, Az, A3, A4) given by (5.22) is invertible. These
choices of scalars is a crucial point to get Corollary 5.1. We will divide this analysis in 2
cases.
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Case 1. Regularity: —1 <s < 1, fors # 1.
Taking A; = 0fori =1,3,4and0 < A, = %6 << 1, a simple computations gives
that the determinant of M is given by

detM (0, 26,0, 0)
b4

1 8 8 (5.70)

=2«/§a2a3sin(e)(l+—+—+—3+ 2) #0,

Ol2 O[3 o3

where we have used the hypothesis of Corollary 5.1 about the parameters «; and 8; (i €
{1,2}), and the fact 0 < € << 1. Note that the condition (5.24) given in Theorem 5.1 is
not valid for A = 0. Then, by a continuity argument we will take the parameters A; (i =
1,3, 4) close to zero. In fact, for ﬁxed as, a3, B3 and B4 satisfying the hypothesis, we have
that the function A +— detM()u 2¢, A, A) is continuous from R to C. It follows that there
exists a positive number §(¢€) << 1, depending of €, such that det M(A, 3: ,A,A) # 0, for
0<A<é.

Thus, given —% < s < 1 we can choice (A1, A2, A3,14) = (A Z¢, A, A) satisfying

0<3€< in{s + 1}
— < min{s + —, —
27 22

| (5.71)
0<A <min{5(e),s+ 5}

Note that with this choice the all hypothesis of Theorem 5.1 part (i) are valid and the proof
of Corollary 5.1 on the Case 1 is complete.

Case 2. Regularity: 1 <s < %

Taking A; = %forz =1,3,4and 0 < A, =
calculation shows that the determinant is given by

11 3¢ 11
detM —_ =, =
22 7’22

1 1
:2«/§a2a3sin(e)(1+—2+—2+_+_)
a o
#0,

13 i
E—f,foro < € << 1. A simple

(5.72)

where we have used the hypothesis a% + a% + 5—2 + 5—; # —1 and the fact 0 < € << 1.
2 3

As the estimate condition (5.24) in part (i) of Theorem (5.1) is not valid for A = %,
then we shall make a few perturbation in A.

For fixed o, a3, B3 and B4 satisfying the hypothesis, we have that the function A —
detM(A, 1 — %e, A, A) is continuous from R to C. It follows that there exists a positive
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number §(¢) << 1, depending of €, such that det M(A, %—%e,)&,k) # 0, for0 < %—)L <

8.

Thus, given 1 < s < % we can choice

1 3
A, A2,23,00) = (A, = — —€,1, Q)
2 7

satisfying

1 1  3e P 1
s—l<-——<s+ -,
2z 2 (5.73)

1 1
—1,- =8y <A< —.
max%s 3 } s+2

This finish the proof of Corollary 5.1.

5.6 Proof of Corollary 5.2

For the regularity —% < s < 1 theresult follows a similar idea of the proof of Corollary
5.1, by using the fact

3 I
detM (07 —E€, 070) = 2\/3052063Si1’1(€) (1 + =+ 5+ & + &) #£0,
T %

2 o3 a3 (6%

Similarly, the case 1 < s < % with s # % follows from the fact

I 1 3¢ 11 1 1
detM(— € —)22\/§a2a3sin(e) (1+—2+—2+é+&)7§0

2°2 7’2’2 aj o3 o3 o)



In this Chapter we study the local and global well-posedness problem on a star graph
G of the initial value problem for the nonlinear Schrodinger models

i3, U(t, x) — AU(t, x) + F(U(t, x)) = 0, 6.1)

for specific choice of A and the nonlinearity F, in such a way to be used in our study of
the stability of standing wave solution in Chapter 10.
The self-adjoint operator A will be for V = (v j)lNzl € G defined as

(AV)(x) = (=], x>0

with D(A) determined by the § and §’ interactions in (4.1) and (10.39). The nonlinearity
being F(U) = |U|?~'U, p > 1, and F(U) = Ulog|U|?. Thus by the Stone’s Theorem we
have that the linear flow, W(t), associated to (6.1) is determined by the unitary group on
L*(9),

W(t) = e A,

To determine a explicit formulation for the group {W(¢)};<Rr is not an easy job, because on
a star graph we do not have the useful tools of Fourier analysis (Fourier transform), thus
we need to use an abstract approach based on the functional calculus of operators (see
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). Moreover, the boundary conditions on the vertex v = 0
will produce different behavior of the group.

For more general coupling conditions for the Schrodinger model (6.1) on a star graph
such as that given by Nevanlinna pairs (see subsection 3.1.6), local well-posedness theo-
ries in either L2(G) or in the energy space generated by these ones coupling conditions, it
can seen in Theorem B and Theorem C of

6.1 Local well-posedness for the NLS-6
Next we establish our local well-posedness result in the space
EQ) = {(v))j=; € H'(G) 1 v1(0) = ... = vy (0)},

for (6.1) with F(U) = [U|?7'U, p > 1, A = HY and D(H$) being defined in (4.1).
We note that £(G) emerges naturally as being the energy space associated to the NLS-§
equation.

Theorem 6.1. Let p > 1. Then for any Uy € E(G) there exists T > 0 such that equation
(4.2) has a unique solution U € C([-T,T],E(G))NC ([T, T). £(G)) satisfying U(0) =
Uy. For each Ty € (0,T) the mapping Uy € £(G) — U € C([-Ty, To], £(G)), is

continuous. In particular, for p > 2 this mapping is at least of class C2. Moreover, for
meN,

LG ={VeLXG):vi(x) = .. = (X)), Umt1(x) = ... = vn(X)},

and En(G) = E(G) N L2,(G), we have for Uy € En(G) that U(t) € En(G) for all
te[-T,T].

We divide the proof of Theorem 6.1 in several Lemmas. First, we establish an expres-
sion for the unitary group associated to NLS-§ model as well as a commutator property.

Lemma 6.1. Let {e M5 },cr be the family of unitary operators associated to NLS-8
model (4.2), o > 0. Then, for every V = (vj)f.v=l € H'(G) we have

de(e7 S V) = —e7 SV 4 B(V)), (6.2)
where B(V') = (2¢!19% 5,-)?’:1, with

~ v (x), x >0,
v (x) = 6()x<0 ’

and ¢''%% s the unitary group associated with the free Schrédinger operator on R.



6.1. Local well-posedness for the NLS-6 69

Proof. Leta > 0. Using functional calculus for unbounded self-adjoint operators and the
classical expression for the resolvent of —% on the positive half-line we get the formulas

o0
e SV (x) = ﬁ/ e IR V(x)d T, (6.3)

—00

where the resolvent R,V = (H§ + u?7)~"V has the components

1 o0
(RV); ) = Ze 4 5 [T, e beay, (64

The coefficients ¢; are determined by the condition R,V € Dy s in (4.1). Thus, from
section 3.1 (Nevanlinna pairs) we need to have the relation

AV(0) + BV'(0) = 0,
where A and B are defined in (3.54). Let
1 o0
=5 [ o0,
0
then from (6.4) we get (R, V);(0) =¢; + ﬁtj (1) and 0[(R, V) ;](0) = —uc; 4+t ().
Therefore, (Ej)?'zl is the unique solution to the system

- t () — t2 ()

C1 .
Mml o ]=2] (6.5)
: wl tv—1(p) —in () '
N
CN (F — 1) 2 ti(w)
j=1
with
1 —1 0 0
1 —1 0
M = : : : : . (6.6)
0 0 0 —1
Ntu ytu gAu o g tu

Below we find R, V'. Suppose initially that v; € C$°(R1), 1 < j < N, then there
are coefficients d; such that

~ 1 S
RV, () = T + 2 [ u ey
e 6.7)

] o0
=dje™ - 5/ vi(y)sign(x —y)e > 1dy,
0
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where in the last equality we have used integration by parts. Thus, we obtain (R, V') (0) =
d; + tj (). Moreover, since

~ 1 ro°
xRV j(x) = —pdje ™™ — z/ v (y)sign(x — e HEYlgy,
0

it follows from integration by parts 9, (R, V") ; (0) = —MJ ;i + wtj(n). Hence from the

uniqueness of solution to system (6.6) it follows that R, V' € Dy 5 iff d; = puc;. There-
fore, we obtain from (6.4) and the second equality in (6.7)

o0
(R V), (1) = ~(R V), ) = [y 0)signte = ey
0
1 o0
— R0+ [0y,
KmJo
Thus, from representation (6.3) we get

8x(e_”HgV) — —e_itHgV/ + B(V/),

where
o0

B = [

—00

emite? /00 v (e T gydr.
0

Below we find B(V’). Itis well-known that e’? 9 canbe represented as e’ % ¢ = Syx¢,
where S, (£) = e~*¢”. Since for / # 0 and x € R

S (x) = L/oo e_itrzeirxdl’ _ iﬁeiﬂﬂei% _ ( 1 )l/zei%
27 J oo 2m =t 4mit

s

it follows for

v (x), x >0,
— J
() % 0, x<0,
that
1 % —itt? *® it(y—x)
1 = e & (V) x1o.x1(¥)e dydr
o °° (6.8)
= / B 10,400 — )51 (x — Y)Y = 2((0.400) 1) * B().
Similarly,
] R .2 0 .
I =— —itt / iT(x=¥) gy, d
[ b0t ()€ dyar 6

=2()(=o0,0)St) * P(X).
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Thus, from (6.8)-(6.9) we have
(BOV))j(x) =T + 1T =28; % (x) = 2% p(x).

Hence relation (6.2) follows provided that each component of V has compact support. The
general case follows from a density argument. O

Remark 6.1. The case ¢ < 0 in Lemma 6.1 deserve a little care when being studied.
Indeed, from spectral theory we have for any V € L2(G) that

R i i
e ”HSV:e ltH‘S]P)CV—i-e itHg ]P>p\/7

where P, and P, are L2-orthogonal projections onto the subspaces corresponding to the
continuous (essential in our case) and the discrete spectral part of Hf. For o > 0, we have

oc(H§) =[0,00) and o,(Hf) =0,

therefore P, = 0 and P,V = V and so formula (6.2) is obtained. For « < 0, we have

052

oc.(H§) =[0,00) and o,(Hf) = {z0} = {—m (6.10)

where the corresponding eigenfunction for zg is V;,(x) = (e%x);v:l, and therefore
e~itHg P,V = ei'7d (V,Vz,)Vy,. In this case the formula (6.3) takes the form

o0
M V(x) = L / e TP IRV (X)AT 4 €170 (V, V) Vag (X). (6.11)

—00

Then, formula (6.2) is transformed for« < 0 and V = (v j)fvz L€ HY(G) as

8x(eTMV) = —e TV 4 B(V)) + "B (V, V)V, (6.12)

The proof of the spectral properties of Hf (continuous spectrum and discrete spectrum
characterization) follows from Theorem 3.13.

Lemma 6.2. The family of unitary operators {e_itH? Yier on L%(G) preserves the space
E(G), ie. for V € £(G) we have e SV e £(G).

Proof. Assume o > 0. Let V € £(G), then it follows from (6.2) that e M5V e HY(G).
Further, since R,V € Dgy s, we get from (6.3) the equality (e_”HglV)l(O) = ... =
(e‘”“g V)N (0). The case o < 0 follows from (6.11) and (6.12) . O

Proof of Theorem 6.1. The local well-posedness result in £(G) follows from standard
arguments of the Banach fixed point theorem applied to non-linear Schrédinger equations
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(see ). We will give the sketch of the proof for the case o« > 0. Consider
the mapping Jy, : C([-T, T].£(G)) — C([-T.T],£(G)) given by

t
Jog[U10) = U + i [ eI U P UG ds,
0

where e 75 is the unitary group given by (6.3). One needs to show that the mapping Jy,
is well-defined ( we note immediate that the nonlinearity satisfies the continuity condition
at the graph vertex v = 0). Next, we estimate the nonlinear term |U(s)|?~1U(s). Using
the one-dimensional Gagliardo-Nirenberg inequality one may show (see formula (2.2))

U, < CIIUI2-a U2 e, ¢>2,C > 0. (6.13)
q

Using (6.13), the relation |(| £|?~! f)'| < Co| f]P7!| f'| and Hélder’s inequality, we ob-
tain for U € Hl(g)

1017~ g1 gy < C1lIU]| (6.14)

p
H(G)
Let Up, U € £(G), then from Lemmas 6.1-6.2 and (6.14) it follows that Jy, [U](¢) € £(G).
Moreover, using (6.2), (6.14), L?-unitarity of e~ THE and 193 , we get

1Ju U1 r1(gy < CallUollg1(gy + C3T S[up ] UGI51g):
selo0,T

where the positive constants C,, C3 do not depend on Uy. The continuity and contraction
property of Jy, are proved in a standard way. Therefore, we obtain the existence of a
unique solution to the Cauchy problem associated to (4.2) on £(G).

Next, we recall that the argument based on the contraction mapping principle above
has the advantage that if F(U, U) = |U|?~!U has a specific regularity, then it is inherited
by the mapping data-solution. In particular, following the ideas in the proof of

, we consider for (Vo, V) € B(Ug;€) x C([-T, T],E(G)) the
mapping
I'(Vo, V)(t) = V(1) — Jy,[V]Q@), te[-T,T].

Then I'(Ugy, U)(¢) = O forall t € [T, T]. For p — 1 being an even integer, F (U, U) is
smooth, and therefore I" is smooth. Hence, using the arguments applied for obtaining the
local well-posedness in £(G) above, we can show that the operator dy 1" (Ug, U) is one-to-
one and onto. Thus, by the Implicit Function Theorem there exists a smooth mapping A :
B(Uyg;8) — C([-T,T],E(G)) such that I'(Vg, A(Vg)) = 0 for all Vo € B(Up;8). This
argument establishes the smoothness property of the mapping data-solution associated to
equation (4.3) when p — 1 is an even integer.

If p — 1 is not an even integer and p > 2, then F(U, U) is C[?)-function, and conse-
quently the mapping data-solution is of class C?] (see ( , Remark
5.7)). Therefore, for p > 2 we conclude that the mapping data-solution is at least of class
Cc2
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Next, we show that the unitary group e~ iHy preserves the subspace &,,(G). Indeed,

let V= (v;) € £Ex(G), then we obtain ¢ (i) = ... =ty () and ty41 (1) = ... =ty (@),
where

1 [*° _
b =35 [ vmeay.

Hence, from (6.6) it follows ¢; = ... = ¢, and C;41 = ... = ¢n. Thus, by (6.3) we get
TSV € &, (G). Lastly, the well-posedness in &, (G) follows from the uniqueness of
the solution to the Cauchy problem in £(G) and the invariance of the space &,,(G) for the
unitary group e "’ H§ shown above. O

The following global well-posedness result for the NLS-§ model is an immediate con-
sequence of Theorem 6.1 and the existence of the conservation of charge and energy , i.e.,
forV = (v,-)}v=1 € £(G) the quantities

+1
Eo(V) = SIIVII? = 5 1IVIDE + & i O,

and
QUQ)) = U@,
satisfy Q(U(1)) = ||Uo||? and E(U(t)) = E4(Uy), fort € [T, T].

Theorem 6.2. Let 1 < p < 5. Then for any Uy € E(G), equation (4.2) has a unique
global solution U € C(R,E(G)) N CY(R, £(G)) satisfying U(0) = Uyq. Similarly for
Up € & (9).

Remark 6.2. (i) Using the Sobolev embedding theorem, Gagliardo-Nirenberg inequality
(6.13), the above conservation laws, one can see that Ey : £(G) — R is well defined.
(ii) Observe that E, € C*(£(G),R) since p > 1. This fact allows us to apply the
results by in our instability analysis in Chapter 6.
(iii) The property of the data-solution mapping to be of class C? for p > 2, it will a
tool for showing that the linear instability property of standing wave solution for (4.2) in
fact to be nonlinear instability (see Chapter 10).

6.2 Local well-posedness for the NLS-¢'

Next we establish our local well-posedness result in the space H!(G) for (6.1) with
FU) = UP U, p>1, A= H‘j\/ and D(H‘i/) being defined in (10.39). We note that
H'(G) emerges naturally as being the energy space associated to the NLS-§" equation.
Moreover, this space is the natural framework for studying the orbital stability of standing
wave solutions for this model.

First, we establish the following property for the unitary group associated to the NLS-
8’ model.
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Lemma 6.3. Let {e_itﬁﬁ/},eR be the family of unitary operators assoczated to NLS 8’
model. Then for every V. € H'(G) we have the relation d,(e™ ionf V) = *”HA AV S
B(V'), where B(V') = (2¢1'%%% )N L with

- v (x), x =0,
vj(x) - 6 x <0

)

itd2

and e'*% is the unitary group associated with the free Schrodinger operator on R.

Proof. The proof repeats the one of Lemma 6.1. The only difference is that §’-interaction
on G is induced by the following condition

Ve DMHY) iff AV(0)+ BV'(0) =0
where A and B are defined by A = —Bg in (3.53) and B = By in (3.55). O

Theorem 6.3. Let p > 1. Then for any Uy € H'Y(G) there exists T > 0 such that
equation (4.2) has a unique solution U € C([-T,T], H'(G)) N C (=T, T],[HY ()]
satisfying U(0) = Uy. For each Ty € (0,T) the mapping Uy € H'(G) — U €
C([~To, To], HY(G)), is continuous. In particular, for p > 2 this mapping is at least
of class C2.

Moreover, the conservation of energy and charge holds:

E;(U(1) = Ex(Uo), and QU(1) = [[UM)I* = [[Uo|I?, t € [-T.T],

where the energy E is defined for V = (1),-)§-V=1 € HY(G) by

N
2
+1
Ex(V) = HIVIP = S IIVIBE + %[ v

Consequently, for 1 < p < 5, we can choose T = +o0.

Proof. The prove repeats the one of Theorem 6.1. In particular, it essentially uses Lemma 6.3
and the Banach contraction theorem. O

Remark 6.3. Analogously to the case of NLS-§ equation the following equality holds
eiitﬂg’V = eiitﬁg’]P’CV + eiimg’]P’I,V.

Similarly, for A > 0, we have o, (H(’},) = [0, 00) and o, (Hf},) = @, therefore P, = 0.
For A < 0, 0.(H}) = [0,00) and 0,(H},) = {zo} = {—IX;} where the corresponding

eigenfunction is V;,(x) = (e% }=1, and therefore e ”H«VIP’ V = eit7 (V,Vz))Vz,.
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The proof of the spectral properties of Hf}, can be obtained via the one of Albeve-
rio, Gesztesy, et al. , Theorem 4.3 for the case of the Schrédinger operator with &'-
interaction on the line. But, by using the extension theory in Chapter 3, we can describe the
spectrum for A < 0 seeing Hg, as the self-adjoint extension of the symmetric non-negative
operator (Ly, D(Lj)) defined in Theorem 3.7 with deficiency indices n+ (L) = 1 and
then to apply Theorem 3.11 (see also Example 1 in subsection 3.1.5 and the Nevanlinna
pairs approach in subsection 3.1.6).

6.3 Global well-posedness for NLS-log-§

Next we establish a global well-posedness result for (6.1) with F(U) = ULog|U|?,
A = Hf and D(HY) being defined in (4.1).

In this case the natural space of energy is less immediate than in the two cases above.
On G we define the following weighted Hilbert spaces

N
WG =@PW Ry). W Ry =1{feH Ry):x! feL2Ry)),
ji=1

Wl (G) =W/ (G NLL(G), jell2}

and the Banach space

N
WG) =P WRL), WRy)={fe€H Ry):|fPLoglf” € L'(R4)}.
j=1

In particular, We (G) = W(G)NE(G), WL (G) = WHG)NE(G), and ng,k(g) = W& (9N

Lz (9).

‘ We are interested in the global well-posedness theory for the NLS-log-§ model in the
space W (G) because of our stability theory for the Gaussian tail and bump profiles in
(7.18) to be given in Chapter 10.

In (Ardila ) the following well-posedness result in We (G) was proved (see

Proposition 6.1. For any Uy € We(G) there is a unique solution
U e C(R,We(9) N CH (R, Wg(G))

of (10.53) such that U(0) = Ug and sup ||U(t)|lw, ) < oo. Furthermore, the conser-
teR

vation of energy and charge holds, that is,

Ea,log(U(t)) = Ea,log(UO)’ and Q(U(t)) = ||U(t)||2 = ||U0||2’
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where the energy Eq 1og is defined for V.= (vj)ﬁ»\':1 € We(G) by
N o
FajoeV) = HIVIP =13 /0 1o, [2Loglv; 2dx + £ [v1 (0) 2.
j=1

Using the above result, we obtain well-posedness in W2 (G).

Theorem 6.4. IfU, € ng (G), there is a unique solution U(t) of (10.53) such that U(¢t) €
C(R, W2(G)) and U(0) = U.

Proof. The proofcan be found in (Angulo and Goloshchapova ). Basically it follows
from Proposition 6.1 and two additional facts. The first one is that W2 (G) C We(G) (see

( , Lemma 3.1)). And the second one is the continuity
of the mapping ¢ > ||xU(z)||> on R. O

We note that the proof of Proposition 6.1 and Theorem 6.4 uses a strategy based on

regularization of the nonlinear term of the NLS-log-§ and convergence of solutions (see

). Therefore the Banach contraction theorem is not used. As will be seen

in our study of the orbital stability theory of standing wave solutions for models in (6.1)

(Chapter 10, Remarks 10.1 and 10.7), this type of situation can put a “smokescreen” to a
full picture about the nonlinear instability problem.



Existence of
Soliton Profiles
on Start Graphs

In this chapter we construct some special solutions for the nonlinear Schrédinger equa-
tion, the Korteweg—de Vries equation and the sine Gordon equation. As described before,
these equations has important applications Soliton and other nonlinear waves in branched
systems appear in different system of condensed matter, Josephson junction networks,
polymers, optics, neuroscience, DNA, blood pressure waves in large arteries or in shallow
water equation to describe a fluid network.

7.1 Existence of standing waves for NLS models on start
graphs

In this section we consider the following vectorial nonlinear Schrédinger equation on

g
i9,U(t,x) — AU(¢, x) + F(U(z, x)) = 0, (7.1)
where U(z, x) = (u (¢, x))ﬁ.\;1 : RxRy4 — CV thenonlinearity F(U) satisfies F(e!U) =
¢'?F(U), 0 € [0,27). The star graph G will be composed by N positive half-lines attached
to the common vertex v = 0, and A is a self-adjoint operator with D(A) C L?(G) which
represents the coupling conditions in the graph-vertex (see section 3.1).
Next, we consider the so-called standing wave solutions for (7.1), i.e. the solutions of

the form _
U(t, x) = e’ d(x), (7.2)
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with the profile @ € D(A). By substituting this profile in (7.1) with we arrive to the
nonlinear (vectorial) system

AP + wd —F(P) = 0. (1.3)

The equality in (7.3) should be understood in a distributional sense.
In the following for specific self-adjoint operators .A and nonlinearity F we determine
formulas for the profile @. In Chapter 8 we study the stability properties of these solutions.

7.1.1 Standing waves for NLS-§ model

We consider the NLS-§ model in (7.1), namely, F(U) = |U|?7'U, p > 1, A = H
with domain D(H‘Z) = D, s and acting for V = (v_/)ﬁ-\]:1 as

HV)(x) = (=] ()N, x>0,

. v (7.4)
Do s = {V € H*(G): v1(0) = ... = vy (0). Y v(0) = avl(O)}.

j=1
The nonlinearity acts componentwise, i.e. ([U[?71U); = [u;|?"1u;.

In (Adami, Cacciapuoti, et al. ) was obtained the following description of all
solutions to equation

H @ + 0® — |07 1d =0, (7.5)
Theorem 7.1. Let [s] denote the integer part of s € R, anda # 0. Then equation (7.5) has
[%] + 1 (up to permutations of the edges of G) vector solutions @), = ((p;’r‘l’j)f’:l , m=
0,..., [%] which are given by

1

|:(p+21)w sech2 ((P—lz)«/ax _am):lﬁ’ ] = 1, L m;

0% (x) = L (7.6)
[(‘”21)“’ sech? ((p712)vwx+am)]ﬂ ; Jj=m+1._..N,
where
m = @2m—N)Jo'’ (N—2m)Z* '

Remark 7.1. (i) Note that in the case @ < 0 vector @5 = (¢, j);v:l has m bumps
and N — m tails. ®§ is called the N-tail profile. Moreover, the N -tail profile is the only
symmetric (i.e. invariant under permutations of the edges) solution of equation (7.5). In
the case N = 5 we have three types of profiles: 5-tail profile, 4-tail/l-bump profile and
3-tail/2-bump profile. They are demonstrated on Figure 7.1 (from the left to the right).

(i7) In the case o > 0 vector @ = (¢, j)ﬁ-v=1 has m tails and N — m bumps respec-
tively. @ is called the N-bump profile. For N = 5 we have: 5-bump profile, 4-bump/1-
tail profile, 3-bump/ 2-tail profile. They are demonstrated on Figure 7.2 (from the left to
the right).
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Figure 7.1: Bumps and tails for NLS

Figure 7.2: Bumps for NLS
Proof. Let ® = (¢ J'>§V=1 € D(Hg) satisfying the vectorial elliptic system (7.5). Thus
every component of @ on every edge must seek L?(0, +00)-solution to the equation
—y + oy — Iy =0, >0, (7.8)

The most general L2(0, 4o00)-solution is ¥ (x) = oys(x — y) witho € C, |o| = 1,
y € R and

Vs (x) = [@]ﬁsech% (p > ! @x). (1.9)

Therefore, the components ¢; are given by
@j(x) = 0j¥s(x = yj). (7.10)
In order to have a solution for (7.5) it is sufficient to impose boundary conditions (7.4).
The continuity condition in (7.4) implies 6y = --- = oy and y; = yja with y; = %1

and a > 0. We can consider o1 = 1 without losing generality. Now, we determine y;.
The second boundary condition in (7.4) rewrites as

p—1 -
tanh(T \/aa) Z Vi =

j=1

(7.11)

ok
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Equation (7.11) implies that Zj-v:l yj must have the same sign of «. Moreover, a choice

of the set {y; }7=1, condition (7.11) fixes uniquely a. Now, by referring to the bell shape
of the function s, we say that in the j-th edge there is a bump if y; > 0, thatis y; = 1;
there is a fail if y; < O, thatis, if y; = —1. Thus we choose to index the solutions by the
number j of bumps. Thus, we obtain a unique solution to (7.11) which we call a;. In this
way we arrive at (7.6) and (7.7). This finishes the proof. O

It was shown by that for —N /o < a < a* < 0,
the vector tail-solution @§ = (¢o, j)ﬁ-vzl, with @g,; = @o ¢ for all j and

®o0,a(x) = [@ sech? (W.}C + tanh™! (N_ja»]pl_l (7.12)

it is the ground state associated to (7.5). The parameter a* guarantees the minimality of
the action functional

Sa(V) = 3IVII> + 2IIVI? = S5 IIVIETT + 401 (0)]%, (7.13)
for V.= ()Y, € £G) = {V € HY(G) : v1(0) = - = v;(0)}, at D with the

constraint given by the Nehari manifold
N =V e E@\10}: [IV'IIP + ol VI = [IVI[7 11 + elvi (0 = 0},

Note that @2 € N for any m. In (Adami, Cacciapuoti, et al. ) it was proved that
form # 0 and @ < 0 we have

Sa(Pg) < Sa(Pyy) < Sa(Ppyi1)-

This fact justifies the name excited states for the stationary states @5, m # 0.
For a > 0 and any m nothing is known about variational properties of the profiles @;.
In particular, one can easily verify that

S(@Y) > S(PL) > S(PL, ), m #0.

We will see in Chapter 8, Theorems 10.2 and 10.3, that when the profile @7 has mixed
structure (i.e. has bumps and tails), they are “almost always” nonlinearly unstable.

7.1.2 Standing waves for NLS-§' model
We consider the NLS-§’ model in (7.1), namely, F(U) = |[U|?7'U, p > 1, A = Hi’
with domain D(Hi/) =D, s and acting for V = (vj)j\;l as
(HV)(x) = (=vj()_;. x>0,

R ) ) N ) (7.14)
Dy = {V € H(G): v} (0) = ... = vy (0), Y ;(0) = Avl(())}.

J=1
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Figure 7.3: 5-tail profile for the NLS-§" model

Thus, the profile @ in the standing wave solution (7.2) satisfies the equation
H @ + wd — 0?71 =0, (7.15)

The following result establishes a family of continuous tail profiles to equation (7.15)
(see figure 7.1.2 below).

Theorem 7.2. For A < Oand w > Y2, the equation (7.15) has a vector solution @ s/ =

A2
((p,\,j)ﬁ.v:l under the conditions )1 = ... = pa v = a5 and Ng, ;j(0) = k(pi,j(O),
with
1
_[(p+ Do 2 ((p—DVo 1 (—N -1
0a5 () = [T sech (Tx + tanh (m))] . (1.16)

Moreover, ) 50 € Dy s/

Proof. The proof follows immediately from (7.8), (7.9) and (7.10).
O

Remark 7.2. The description of the set of all solutions to the stationary equation (7.15)
is unknown. We note that any L2 (0, +00)-solution to (7.15) has the form

D(x) = (9, NNy = (0;¥s(x +x,) 7y,

whereo; € C,|oj| = 1,x; € R, and ¥, defined in (7.9). Hence, denoting ¢; = tanh(x;),
from (7.14) we get the relations

(1 =1)7 Tty = ... = oy (1 — ty) 7T iy,
N
S 0, (1—1,)7T = —AJwoi(1 — 1) 711y,

Jj=1



82 7. Existence of Soliton Profiles on Start Graphs

In (Adami and Noja ), for the case of G = R (&’ interaction on the line), the authors
established the existence of two families (odd and asymmetric) of solutions to (7.15). For
N > 3, it seems to be very nontrivial problem to determine a complete description of the
solutions to (7.15). Observe that in the case of NLS-§ equation the situation is easier since
the continuity condition ¢ (0) = ... = @ (0) implies |¢] (0)| = ... = |¢), (0)], therefore,
o1 =..=oyandx; = £a, a > 0.

We will see in Chapter 10, Theorem 10.7, the stability properties of the continuous-tail
profile @, s by the flow of the NLS-§" model.

7.1.3 Standing waves for NLS-log-6 model

We consider the NLS-log-§ model in (7.1), namely, F(U) = Ulog|U|, A = HZ with
domain D, s defined in (7.4).
Thus, the profile ¥ in the standing wave solution (7.2) satisfies the equation

H W + 0¥ — WLog|¥|?> =0, (7.17)

The following result establishes all the family of profiles to equation (7.1). The proof
is immediate.

Theorem 7.3. Let a # 0. Then equation (7.17) has [%] + 1 vector solutions W, =
(wf,‘l,j 9;1, m=0,..., [%] , given by

w+1 _(x_am)z |
. e 2 e 2 , Jj=1,..,m;
Ui =4 i1 eram)? (7.18)

e 2 e 2 , j=m+1,..,N,

where aym = 55

We should note that the structure of the profiles that solve (7.17) is similar to the one
in the case of NLS-§ equation (see Remark 7.1). It was proved in (Ardila ) that for
o< otl"(‘)g < 0, the vector tail solution ¥§ = (wa,g)yzl defined by

wtl _(x—%)2
Vas =Yg, (x) =e 2 e 2 (7.19)

is the ground state. The condition @ < aj, ¢ guarantees constrained minimality of the
following action functional for V € We(G),

N oo
Satog(V) = 2IV/I2+ €2 V)2 -1 3 / v, 12 Log|v, |dx + £[v1(0)[?, (7.20)
N 0
j=1
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by the constraint given by the Nehari manifold N, namely, V € N if and only if V €
We(G) \ {0} and

N 00
IVIE +lIVIE =Y [ losPLoglyyPdx + al P =0.
j=17°

In (Ardila ) the author proved that the standing wave e'®’¥, s is orbitally stable in
We(G) fora < al’;g <0Oand w € R.

We will see in Chapter 10, Theorem 10.8, the stability properties of the continuous tail
and bump profile ¥§, o # 0, by the flow of the NLS-log-§ model.

7.2 Stationary solutions for the Korteweg—de Vries equa-
tion

Next we consider a metric graph G with a structure represented by the set E = E_UE
where E and E_ are finite or countable collections of semi-infinite edges e parametrized
by (—o00,0) or (0, +00), respectively. The half-lines are connected at a unique vertex
v=0.

The focus of this section is to determined stationary type solutions for the following
vectorial KdV model

Orte(x,1) = aeaiue(x, t) + BeOxue(x, 1) + 2ue(x, 1)0xue(x, 1), (7.21)

e € E =E_UE,, and (@e)eek, (Be)ecE are two sequences of real numbers. Thus, we are
interested in the existence of solutions of type

(Ue(x,1))eeE = (Pe(X))ccE

where for e € E_ the profile ¢, : (—00,0) — R satisfy ¢po(—0c0) = 0, and fore € E
¢ 1 (0,00) — R satisfy ¢.(+00) = 0. The existence of profiles of stationary type,
namely, solutions of the following nonlinear elliptic equation

d2
aem‘pe(x) + Bepe(x) + ¢52(x) =0, e€kE, (7.22)
are well know and the profile depend of the soliton associated to the KdV on the full line,

$e(x) = c(e, IBe)seChz(d(aev Be)x + p.), e€E. (7.23)

For instance, for @, > 0 and 0 > f,, for each e € E, we can obtain different family of
profiles satisfying the conditions ¢.(+00) = 0, e € E1. The specific value of the shift p,
will depend which other (or others) condition(s) imposed on the profile ¢, is determined
on the vertex of the graph v = 0.
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The following subsections give us examples of specific stationary profiles, and also
show the rich variety of these profiles that may emerge for the KdV model on metric
star graphs. The main point in our analysis is to determine which stationary solutions
(¢e)ceg With ¢ defined in (7.23) belong to the domain D(Aey;) of some skew-self-adjoint
extension A.y; of the Airy operator Ay (see (4.5)).

7.2.1 Stationary solutions for a §-type interaction on two half-lines

Our first example of solutions for (7.21) will be on a start graph G with a structure
represented by the set E = (—o0, 0) U (0, +00). We will consider that the profile belongs
to the family of skew-self-adjoint extension (Az, D(Az)) of Ay defined in (4.15). Thus,
from Proposition 4.2 we obtain that for ¢o z = (¢, ¢p4+) € D(Az), Z # 0,04 = a— >

0, B+ = B— < 0, the profiles ¢ satisfy the same equation in (7.22) and from (7.23) and
Z2

forw = —B4+ > %~ we obtain

Vo

_ 3w 2 (2
dt(x) = 7sech ( 5 x —tanh (—

2J5)) x>0 (7.24)
and ¢_(x) = ¢4 (—x) for x < 0. Since ¢p_(0—) = ¢+ (0+) (continuity in zero), we note
the condition

ZZ
¢4 (0+) —¢”(0-) = - - (0-) + Z¢_(0-) (7.25)

in (4.15) is satisfied immediately.

Figures 7.4 and 7.5 below show the profiles of ¢4 for Z # 0. For Z < 0 we obtain
the so-called tail profile on the all line and for Z > 0 the so-called bump profile on the all
line. We note that is not difficult to show that the only stationary solutions (modulo sign)
for the KdV model (7.21) and that belong to the domain D(Az) in (4.15) are exactly the
tail and bump profiles defined by formula (7.24).

We will see in Chapter 9, Theorem 9.3, the linear instability property of the continuous
tail and bump profile ¢ z, Z # 0.

7.2.2 Stationary solutions for a §-type interaction on a balanced star
graph

In this subsection will be consider the KdV model (7.21) on a metric star graph G with
astructure E = E_ UE where |E4| = |E_| = n, n = 2. We consider that the stationary
profile (¢e)ceg belongs to the family of skew-self-adjoint extension (Hz, D(Hz)) of Ay
defined in (4.24). For u = (u¢)ece € D(Hz) we have used the abbreviations

M(O—) = (ue(o_))eeEfv u/(o_) = (ué(o_))eeEf’ M”(O—) = (Mé/(O—))eeE,,
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Figure 7.4: (¢p—,¢p4+) for Z <0

Figure 7.5: (¢—,¢p4+) for Z > 0

(similarly for the terms u(0+), u’(0+) and u”(0+)). Thus, we obtain the following sys-
tem of conditions
u(0—) = u(0+), u'(0+)—u'(0-) = Zu(0-),
2 (7.26)
7u(0—) + Zu'(0—) = u”(0+) — u”"(0-).

Now, we consider the constants sequences (e )ecg = (¢+) and (Be)ece = (B+), With

ay > 0and B+ < 0. Then, for Z # 0 and —f4 > ZTz we consider the half-soliton
profile ¢4 defined in (7.24) and ¢—_(x) = ¢+(—x) for x < 0. We define the constants
sequences of functions

U— = (Pp-)eek_,» U+ = (P+)eecE, »
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and so Uz = (u—, u4) represents one family of stationary profiles for the KdV model and
satisfying the boundary conditions (7.26). The case Z > 0, Uz represents one family of
stationary bump profiles in a balanced star graph (see Figure 7.6). The case Z < 0, Uz 4

(—00.0) (0, +00)

(—o0,0) (0, +00)

Figure 7.6: Bump profiles in a balanced star graphs with four edges

represents the corresponding family of stationary tail profiles (see Figure 7.7).
We will see in Chapter 9, Theorem 9.4, the linear instability property of the continuous
tail and continuous bump profiles Uz, Z # 0.

7.3 Stationary solutions for the sine-Gordon equation

Next we consider a metric graph G with a structure represented by the set E = E_ U
E+ = (—00,0) U (0, +00) U (0, +00), namely, a ) junction.

The focus of this section is to determined stationary type solutions for the following
vectorial sine-Gordon model

8t2ue(x, t) — cezaiue(x,t) + sin(ue(x,t)) =0, e€E (7.27)

and (ce)eek, a sequence of real numbers. We rewrite the sine-Gordon model as a first-order
system for e € E,

atue = Ve

7.28
D ve = c202ue + sin(ue). (7.28)

Our stationary type solutions will be

(ue(x,1))eek = (Pe(X))eck. and (ve(x.7))eck = (0)cek- (7.29)

Thus, every component satisfies the equation

—c2p! + sin(pe) = 0, (7.30)
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(—C)QU) (U—!—OO)

Figure 7.7: Tail profiles in a balanced star graphs with four edges.

it which have a profile depending of the kink-soliton profile for the sine-Gordon on the
full line

#(x )
Pe(x) = 4arctan<e Vet i ) (7.31)

The specific value of the shift y. will depend of the conditions ¢.(£00) = 0, ¢ € E4, and
other (or others) condition(s) determined on the vertex of the graph v = 0.

7.3.1 Stationary solutions for a §-type interaction on the ) junction

In this subsection, we consider the stationary profile (¢.(x)).cg belongs to the family
of self-adjoint operators (Jz, D(Jz)) in (4.29).
Then, for (¢e)ecr = (¢j)§=1 € D(Jz), we obtain from (7.31) that

d1(x) = 4arctan(e et (= al)) x <0,
(7.32)
¢i(x) = 4arctan(e fegl e )), x>0, i =2,3,
with ﬁal -1 cl w12 = T |a3 by continuity at the vertex v = 0. The other condition
in (4.29) implies the followmg relation for ay,
_ a1 3
e el _ar
v Z lc;| = Zarctan(e '”1‘). (7.33)
l+e Tal j=1

From (7.33) we deduce that Z < 0. Next, from the behavior of the function

y2
arctan(y), y =20

fo) =1
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3
we obtain that Z € (— > |c;|,0). Moreover, we need to have a; > 0 providing Z €
j=1
3 3
> cj|,—% > lej]) and a1 < 0 providing Z € (—% > |cjl,0). The case Z =
J

3
I
=1 j=1 j=1
3
—% > |cj| implies a; = 0. For a; > 0 we have the typical tail profile (see Figure 7.8).
j=1

For a; < 0 we have a “smooth” profile around the vertex v = 0.

(0. +o0)

(0, +00)

Figure 7.8: Tail profiles in a ) junction

Remark 7.3. The study of stability properties for stationary solutions of the sine-Gordon
equation 7.27 has been recently done in (Angulo and Plaza ).



Stability of KdV
Solitons on the
Half-Line

Many physical problems arises naturally as initial boundary value problems (IBVP),
because of the local character of the corresponding phenomenon (Zabusky and J. 1971).
However, the IBVP for the KdV equation has been considerably less studied than the
corresponding IVP posed in all R. For example, there are at least two interesting IBVP
for KdV still in unbounded domains: the one posed on the right half-line, and a second
one posed on the left portion of the line, which we consider in this chapter.

8.1 Unbounded initial boundary value problems

The IBVP for the KdV equation posed on the right half-line is the following: for
R* := (0, 4+00) and T > 0, find a solution u to

deu + 0, (%u+u?) =0, (x,1) e RT x(0,7),
u(x,0) = up(x), x e RT, 8.1
u(0,1) = f(1), te€(0,7),
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while the IBVP for the KdV equation posed on the left half-line is the following: for
R~ := (—00,0) and T > 0, find a solution u to

du + 0x(2u +u?) =0, (x,1) e R™x(0,7),

u(x,0) = up(x), x eR™,
u(0,1) = f(t), t€(0,7), (8.2)
axu(0,1) = f1(1), te€(0,T).

Both problems differ in the sense that the one on the left half-line needs an additional
boundary condition (see ( ) and ( )), mak-
ing this problem more challenging from almost every point of view. As an example, our
results differ from (8.1) to (8.2). More in general, for IBVPs, an important issue, both
from the mathematical and physical point of view, is the study of the effect of the bound-
ary condition(s) at x = 0 on the asymptotic behavior of the solution.

In the recent literature, the mathematical study of IBVPs (8.1) and (8.2) is usually
considered in the following setting

(o, /) € H*(RT) x H'5 (RF), (8.3)
or
s+1 s

(o, /. f1) € H(RT) x H 3 (RT) x H3(R™), (8.4)
respectively. These assumptions are in some sense sharp because of the following local-
ized smoothing effect for the linear evolution (Kenig, Ponce, and Vega )

_+93
¥ (@)e taxff’(x)”C(RX; HE+D/3R))) < cllellax )

and

1@< RSO o, girscey) < NP lascey:

where v/ (¢) is a smooth cutoff function and ¢~9% denotes the linear homogeneous solution
group on R associated to the linear KdV equation. Therefore, in what follows we will
certainly follows both settings (8.3)-(8.4).

8.1.1 Known results for the IBVPS (8.1) and (8.2)

The mathematical study of the IBVP (8.1) began with the work of . He
showed existence and uniqueness by assuming that the initial datum u¢ is smooth and the
boundary data is f = 0. Later, considered (8.1) and proved
global existence and uniqueness solutions in L5 (R*; H*(R")), for dataug € H*(R™)

and f € H? (R™). In(J. L. Bona and Winther ), they continued the study of (8.1)

loc
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and proved continuous dependence. Next, considered a generalization
of IBVP (8.1) and obtained well-posedness in weighted H'(R™) Sobolev spaces. After
this work, obtained conditional local well-posedness,

in the sense that solutions are only known to be unique if they satisfy some additional

auxiliary conditions. This was done for data ug € H*(R%) and f € H = (R™) with
3547

s > 2. They also proved global well-posedness for ug € H*(R™) and f € H 1z (R™),
with 1 < < 3.

The fundamental contribution of introduced a more dis-
persive PDE approach for the generalized Korteweg—de Vries (gKdV) equation posed on
R, based on writing the original IBVP (8.1) as a superposition of three initial value
problems on R x R. In particular, for KdV (8.1) this result gives conditional local well-

posedness in L2(RT) x H 3 (R), in which solutions are only known to be unique if they
satisfy additional auxiliary conditions. By the same time, de-

rived a global a priori estimate and for a non-optimal boundary condition f € H e (R),
and a conditional global well-posedness was obtained for the case s = 0. Recently,

(using some of the Colliander-Kenig techniques) showed conditional local
well-posedness for the IVP associated to the KdV equation on a simple star graph given
by two positive half-lines and a negative half-line attached in a common vertex.

Later, improved the global results of (Colliander and Kenig )
and obtained global results by assuming more natural boundary conditions (See Theorem
8.2 below for more details). The local well-posedness of the IBVP (8.1) above s = —%,
which is the critical Sobolev exponent for the KdV initial value problem, was obtained by

and . Surveys describing these results

and others are (J. L. Bona, Sun, and Zhang ; Fokas, Himonas, and Mantzavinos ).

As for the left half-line case, obtained local well-posedness in H*(RT)
fors > —%. Then, obtained global well-posedness in H*(R™) fors > 0
for boundary conditions assuming natural conditions.

Another point of view for (8.1) and (8.2) is given by using Inverse Scattering tech-
niques. introduced a new approach known as the unified transform method
(UTM), which provides a proper generalization of the Inverse Scattering Transform (IST)
method for solving IBVPs. For example, it is mentioned in (Fokas and Its ) that,
under suitable decay and smoothness assumptions, just as in the infinite-line setting, the
solution on the right half-line should describe (for large times) a collection of (standard
KdV) solitons traveling at constant speeds. These techniques were further improved in
(Fokas, Himonas, and Mantzavinos ), where well-posedness is proven in Sobolev
spaces using the UTM method.

8.1.2 Main result

Before of to state the main result of the chapter, we explain the notion of soliton that
we will use. First of all, as far as we know, no exact canonical soliton solution is available
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for problems (8.1) and (8.2), except for some very particular cases. For example, for a
classical soliton in the full line

Qc = gc(x —ct — Xo),

where Q ¢ 1s the classical soliton in R given by the formula

~ 3
0.(s) = —Csech2 @ , 8.9
2 2
with ¢ > 0 as the propagation speed of the wave and x( an arbitrary constant.
Let us define the natural half-line soliton as
Qc = Qc|gy . right half-line case, (8.6)

Note that this definition induces a “natural” trace f(¢) = Qc (—ct—xg)of Q. atx = 0in
(8.1) (see e.g. for more details on this point of view). However,
this trace assumption strongly depends on the original soliton itself, and because of some
energetic conditions, we will need a more suitable boundary condition which will have
important consequences on the stability property.

Instead, we will adopt the following approach: given any standard KdV soliton (8.5),
restricted to the half-line as in (8.6), and placed far enough from the corner x = 0, we will
show that this solution is stable in the energy space under perturbations that preserve the
zero boundary condition.

Theorem 8.1 (Stability for the right half-line). Let ¢ > 0 be a given constant. There exist
constants ag, Co, Lo > 0 such that, for all 0 < o < ag, and all L > Ly, the following is
satisfied. Assume thatug € H'(R™) is such that

up(x =0) =0,

8.7
||u0_Qc(‘_L)||H1(R+) <. (8.7)

Then the solution u = u(x,t) for the IBVP (8.1) with boundary data u(0,t) = f(¢) =0,
given by Theorem 8.2, satisfies the global estimate

sup l(t) = Qc (- = p(t) = L) g1 e+ < Coler + V), (8.8)

for a C'-function p(t) € R satisfying

sup |[p'(t) — ¢| < CCya, (8.9)
>0

for some constant C > 0.
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This result shows strong stability of KdV soliton for the IBVP (8.1), which was, as
far as we know, an open problem, even in the zero boundary condition case. Note that
in Theorem 8.1 we do not prove the existence of a soliton solution for (8.1), instead we
show that the KdV soliton is the natural candidate to be the standard object appearing in
the long-time dynamics, even if it is not an exact solution of the problem.

The proof of this result is in some sense more dynamical than variational, because
the half-line border introduces some important restrictions on the dynamics itself, which
need to be controlled separately by using a particular extension property, as well as local
estimates of the mass and energy of the KdV soliton (see Lemma 8.1), which is only an
approximate solution of the problem. We recall that in a general setting, (8.1) has no
conserved quantities, but we are still able to find some almost conserved quantities. For
that reason, estimate (8.8) in Theorem 8.1 accounts how far the soliton is placed at the
initial time.

At the more technical level, we follow the approach introduced by

for the study of the stability of generalized KdV multi-solitons in the energy
space. This approach is based in the introduction of suitable almost conserved quantities
and monotonicity properties, which are of proper interest. For the (8.1) case, we follow
a simplified version described in (Muifloz ), which deal with the case of soliton-like
objects of dispersive problems with no exact soliton solution. We will take the advantage
of a hidden dissipative mechanism of the model introduced through imposition of the
homogeneous boundary condition at x = 0, see Lemma 8.1 for more details.

Let us mention that the stability of KdV and more general objects is a large research
area lasting for the past thirty years and more.
and many others are important references in the field. In the case of KdV multi-
solitons, it has also been proved stability even for L? perturbations in (Alejo, Mufioz,
and Vega ). For a simple introduction to subject, we also refer to the monograph of
, see also (Muiioz ) for a short review.

Remark 8.1 (On the zero boundary condition). Note that the conditionu(x = 0,¢) = 0is
assumed because of several important reasons. First of all, from energetic considerations
most conserved quantities require the same flux at both sides of the boundary (i.e. zero net
flux), and therefore the condition u(t) € H'(R™) naturally imposes the zero boundary
condition at x = 0. Another reason to impose this condition is the fact that the exact 2-
soliton solution of KAV U(x, t) composed of exactly two large solitons but well-separated
at the initial time (one on the right half-line, the other one on the left half-line), is an
example of nonzero boundary data for which the corresponding evolution on the right half-
line is far from being one soliton and a small perturbation. This shows that f(t) could
not be “arbitrary” (not even small for arbitrarily large times, and not even integrable in
time probably). However, we believe that the stability property does hold for any f(t)
sufficiently small, as far as one can control a second derivative in space, integrated in
time. However, this control should require more regularity on the solution, and therefore
higher order conserved quantities.
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Remark 8.2 (On the zero boundary condition, 2). Note that one may think that u(x =
0,t) = 0 forallt > 0 could lead to an odd extension of (8.1) to the real line, where we
know that KdV has stable solitons. However, this approach fails because KdV does not
preserve the oddness property.! In Section 8.3 (Definition 8.2) we will introduce a new
extension of u(x,t) to the real line, which has, as far as we understand, no dynamical
meaning, but only a variational purpose. In that sense, this extension seems to be the
“least energy extension” for the problem, that is to say, it acts only at the linear spectral
level.

8.1.3 Existence and continuity for the right half-line

For our study of stability, we need of the following result of existence and continuity
for the IBVPs (8.1).

Definition 8.1. Forany T > Oands > 0, let Z}, (R) be the space given by the functions
u(x,t) satisfying

aMu € C([0,T], H*>™(R™)) for any integer 0 < m < i
3 (8.10)
_|_

FueCRT H 1.

<l <

A definition for Z7.(R™) can be given analogous to that for Z3 (]R+)

Theorem 8.2 ( ). Consider the IBVP on the right half-line (8.1). Fix a

timeT > 0asin(8.1). Letug € H(RT)and f € H e (RY), such that the following
conditions are satisfied.:

1. The regularity s > 0 is such that 5 — ¢ is not an integer,

6

2. The parameter € > 0 is arbitrary small in the case s < 1, and € can be taken equals
zero in the case s > 1.

3. The boundary datum f satisfies the compatibility conditions

f(m)(t =0) = ¢n(x =0), foranyinteger 0 <m < 3 — %,
where ¢o(x) := uo(x) and for 0 <m < $ — 1,
" = m—1 ,
om(x) == () =D |, |40, (). (8.11)
=0

'Note that the well-known nonlinear Schrodinger equation, which has solitary waves, preserves this oddness
condition, therefore the odd extension of a zero boundary data is trivial. Additionally, standard conserved quan-
tities such as mass and energy are conserved under the assumption #(0,¢) = 0, a nice property unfortunately
not shared by the KdV dynamics.
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Then there exists a solution u(x,t) of the IBVP (8.1) in the space Z3 (RY). Moreover,

the mapping (ug, f) + u is Lipschitz continuous on any ball in the norm of the mapping
HSRY) x H'T +€(0,T) — Z5.(RY).

Remark 8.3. The previous result is not only important in view of the GWP result, but also
because of the compatibility conditions (8.11), that lead to (8.10).

8.2 Mass and energy estimates

In this section, we obtain several dispersive properties for the solutions of IBVPs (8.1)
and (8.2). These properties will involve suitable definitions of mass and energy. Unlike
standard KdV on the line, in general mass and energy will not be conserved anymore, but
under some additional assumptions, we will be able to prove that, even if they are not
precisely conserved, at least they obey suitable estimates.

First, we deal with the case of equation (8.1).

Lemma 8.1. Consider the following mass and energy functionals

+o00
Mul(t) := %/0 u?(x,t)dx, (8.12)

+o00
Eu](t) :=/0 (%(8xu)2(x,t)—%u3(x,t))dx, (8.13)

well-defined according to the initial conditions given. Then the solution u = u(x,t) of
the IBVP (8.1) with
u(0,t) =0 forall timet > 0, (8.14)

and initial datum uy € H'(R™T) satisfies, for allt > 0,
Mu](t) < Muo], (8.15)

and
ER(t) < Eluol. (8.16)

Proof. First, we assume that u is sufficiently smooth and decays fast enough. A simple

calculation shows that a smooth solution u(x, ¢) of IBVP (8.1) satisfies the identity

d [T 1 2
E/o u?(t)dx = —E(axu)z(o,r) + u(o,z)(aiu + §uz)(o, 1). (8.17)

Indeed, multiplying the equation in (8.1) by u and integrating on (0, co) in x we get

1d

+o00 +o00
——/ u?(x,t)dx = —/ 8x(8)2€u + u?)udx. (8.18)
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Integrating by parts,

oo

1d +o00 +o00
—/O u?(x,t)dx = /0 (02u + u?)d udx — (32u + u?)u

2dt
+ood 1 u3
_ Lo+ L) a
/0 dx(2( ”)+3)x

+ (02u(0,1) + u?(0,1))u(0,1)

0

1 1
= 380,12 = 3u(0,1)’ (8.19)

+ (32u(0, 1) + u?(0,¢))u(0,t)

= 00’00
+u(0, z)(agu(o, £) + %uz(o,t)).

We recall this last estimate again because it will be important for later purposes:

400
%%/0 w2 (x, 1)dx = —%(axu)z(o,z) + u(o,z)(aiu(o,:) + %uz(o,t)). (8.20)

Note that, unless u (0, t) = 0, we will have a source term in the mass coming from a second
derivative term at x = 0. This term is certainly very harmful and difficult to control by
using only data in H!. This fact certainly supports our choice of zero boundary condition
on the corner x = 0.

Now, after integration in time in (8.17), we obtain

+o0 +oo 1 t
/ w?(t)dx = / u%dx - —/ (0,u)(0, 5)ds
0 0

/ (0, s)(azu + Zu )(0 5)ds.

0

(8.21)

Now we deal with the energy estimate. Indeed, we multiply the equation in (8.1) by (32u+
u?) and integrate on (0, co) in x:

+o0 ) ) 1 o 4 ) -
/0 ru(du +u )dx—i—z/o E(axu—i-u ) =0
Integrating by parts,

/+°O( 2 udyu + u*d;u)dx — 9,u(0,1)dxu(0, t)——(82u+u2) 0,1) = 0.
0
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Therefore, we obtain a new identity for the energy

d [®(1. , 1,
E/o SO = 307 ) dx = = 3,u(0.)3,u(0.1)

X (8.22)
— E(aiu(o, 1) +u?(0,1))>%.

This identity essentially says that, unless d,u(0,¢#) = 0, then the energy E[u] has no
definite dynamics. Once again, controlling the term d,1(0, ¢) in (8.22) is hard because it
is related through the original equation with third order derivatives in space.

Consequently, replacing the equation (8.1) and integrating in time,

/0+°°( (0yu)? — = )(r)dx
- /0 "~ (%(3%0)2—%“3)‘“

Lt (8.23)
— 5/0 (aiu(O, ) + u%(0, 5))%ds

t
+/ 8xu(0,s)8x(3)26u(x,s) +u?(x,5)) Ods.
0 x=

Now we justify the last mass and energy computations for the case of H! data. Assume
that u(x, ¢) is a solution for the IBVP (8. l) With initial data ug € H*(R™), with uo(0) =

9ue(0) = 0, and boundary data f € H 5 (R+) for a given s satisfying 2 < s < 1

given by Theorem 8.2 (the condition for the third derivative of 1y comes from the case
m = 1 in Theorem 8.2). From (8.10) we have that

w(0,1) € H S (RY), 9,u(0,1) € HI(R™),
Pu(0.rye H'S “(RY) and Bu0.1)ye H3 3 (RT).

It follows that for fixed ¢ we have that d,u(x,¢) € HS3(R™) has a well-defined trace at
x = 0. Hence for homogeneous boundary condition u(0,¢) = f(¢#) = 0 we have that

0=0u(x.1)| _y = —0x@Fulx.t) + u’(x.0)| _,- (8.24)
Consequently, the identities for the mass (8.21) and the energy (10.5) take the form

(r=0)
+o0 +o00 t 1
2 _ 25, 1 2
/0 u-(t)dx —/0 ugdx /0 2(E)xu) (0, s)ds, (8.25)

/Om( (0u)? — = )dx - /0+<><> (%(axuo)z—éu(%)dx

. (8.26)
_ 2 2
; /0 @rxi(0,5) + u2(0, 5))2.
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From (8.25) and (8.26) we have the following dissipative mechanism for the mass and the

ener
i +oo +o0o
/ uz(t)dx < / u(z)dx,
0 0

/0+°° (%(8x“)2 — %u3)dx < /0+OO (%(33&!0)2 - %ug)dx.

+
Now assume 1o € H'(R¥). Let {ugn} be a bounded sequence in H3 (RT) such that
10, (0) = 3310, (0) = 0 and

and

luon — woll g1 w+y — 0, when n — +o0. (8.27)

It follows from the previous analysis that the identities (8.15) and (8.16) are valid for all
u,. Now letting n — o0 and using the continuity of flow data to solution given in
Theorem 8.2 the result follows. O

Remark 8.4. Note that (8.25) and (8.26) can be recast as hidden trace smoothing effects
for bounded in time solutions in the energy space. Indeed, under the boundary value
condition u(0,t) = 0 for all t, we have

t
| @005 5 500 10 ey

and
t
| @2 ©.9)dx S sup O 1

Now we deal with the left half-line case.

8.3 Start of proof of Theorem 8.1: Extension to the entire
line

The proof is based on the classical argument of , with some minor
changes coming from the fact that we do not work on the whole line, but only on R™, and
the KdV soliton is not an exact solution of the problem by itself. See also (Mufioz ,

) for a fully explained, similar argument.

The idea behind Weinstein’s result is to show a coercivity estimate, which is obtained
using spectral properties of a well-chosen linear unbounded operator. In the next sections,
we will find a suitable operator for the half-line case, to then extend it to the entire space
to make use of the standard Weinstein’s theory of stability.
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Take ¢ > O fixedand L > Lo > 0, where L will be taken as large as needed. Assume
that (8.7) is satisfied for an initial datum u, and for a certain @ < « to be chosen later.
Letu(t) be the corresponding solution of the IBVP (8.1), with boundary data u (0, ¢) =
0, and given by Theorem 8.2. For Cy > 1, consider the tubular neighborhood

MICo] = {v e H'®™) : inf |[v = Qc(-=po— D)l ria)
po (8.28)

Jc
< Cola + e_TL)}.

Note that from (8.7) we have ug € MJ[Cy]. We want to prove that for L and Cy large
enough, and o < g small, u(¢) € M[Cy] foralt > 0.

Similarly, by the continuity of the KdV flow, we have u(t) € M|[Cy] for sufficiently
small time ¢. Using a bootstrap argument, we will show the implication

t 20, u()eM[C)l = u(t) e M[Co/2], (8.29)

which will prove (8.8).

8.3.1 Modulation

By taking o, L smaller, we can ensure the following decomposition argument:

Lemma 8.2 (Modulation). Assume that u(t) € M[Cy| for all t > 0. Then, by taking
oo smaller and Lo larger if necessary, there exists p = p(t) € R such that we have the
following decomposition:

ux,t) = Qc(x —pt) — L) + z(x,1), (8.30)

where z(x,t) satisfies, for all t > 0,

+o00
/ z2(x,1)QL(x — p(t) — L)dx = 0, (8.31)
0
and p(t) satisfies the estimate
0@ = el S Nz 1) + eV (8.32)
Finally,
Izl @+ S @ +e Ve (8.33)

with an implicit constant independent of C.
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Proof. The proof of this result is standard, but since we are working in the case of the
half-line, we need some small changes in the proof. We have from (8.29) that for all
t 20,

nf u(0) = Qe = po = Dl @+) < Cole + e h). (8.34)
0
if Cy is large. Therefore, if we define the functional F = F[v, po] by

HY'(RT) x (=L, 00) 3 (v, po) —

+o0
|00 = 0ct = po = L) Qi o — Lidx € B,

it is not difficult to see that it is of class C! and F[Q.(- — po — L), po] = 0 for all
po € (—L, 00). Consequently, since

0 +o00 )
f , = ! — — L d
aPO [v pO] v=0c(—po—L) 0 ¢ (x po ) o
+o0 +o0
=/ 0¢ > &0,
—po—L 0

by the Implicit Function Theorem we have that forallv € H'(R™) such that v — Q. (- —
po — L) || g1 r+) < o, there exists pg = po(v) > —L for which

+o00
/0 (v(x) = Qe(x — po— L)) QL (x — po — L)dx = 0.

Using (8.34) for small « and large L if necessary, we have Co(a + e~ L) < 8y, from which
there exists p(¢) such that for all ¢ > 0,

400
A 2(x.)Qu(x = p(t) = L)dx = 0. z(x.1) :=u(x.1) = Qc(x — p(t) — L).

The rest of the proof is standard, see e.g. (Martel, Merle, and Tsai ).

Remark 8.5. From (8.32) we have the lower bound

N
p(t) = p(0) + ct —tCola + e~ 2 F),

which for small a and large L ensures that p(t) is always an increasing function of time,
t = 0. This fact will be used several times through the computations below.
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8.3.2 [Extension to the whole line

The following step in the proof is a suitable extension of the spectral problem to the
whole line. We will see that not every extension is useful, but a mild one will satisfy all
the requirements.

Definition 8.2 (Zero extension, right half-line case). Let v € H'(R™) such that v(x =
0) = 0. We define its (zero) extension U as the function

v(x) x>0

O =90 L <o,

(8.35)

Remark 8.6. Note that this extension makes sense in H'(R™), and gives a new function
b € H'(R) since v(x = 0) = 0 (cf. Lemma B.2). Also, note that Q. in (8.5) cannot
be considered as the zero extension of Q. in (8.6). This interesting difference will be
important for the stability proof.

We will apply the extension property to the function u(¢) in (8.30). More precisely,
foreach t > 0, let i = 7i(x,t) be the zero extension function of u(#) defined using (8.35).
Also, recall Q. (x—p(t)— L), the natural extension of Q. (x —p(t)— L) obtained reversing
(8.6).

For further purposes, let us define
Z(x.1) = 1(x.1) — Oc(x — p(t) — L). (8.36)

Note that both Z and QC (x — p(t) — L) obey somehow “natural” extensions, however i
follows a completely different extension (by zero). More precisely, note that

Z(x.t) = —0c(x —p(t) — L), x <0. (8.37)
We have the following useful set of estimates:
Lemma 8.3. For Z(t) defined in (8.36)-(8.37) and t > 0, we have
Z(t) € H'(R), (8.38)

as well as
12| g1 @y + 1) || Loo—y S e~ VEIPOFL (8.39)

Finally, we have the global estimate

IZO N1 @y S 12Oy + e VPO, (8.40)
with implicit constants independent of t > 0 and Cy.
Proof. Direct from (8.37) and (8.5). O
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8.4 Almost conserved quantities

Consider the decomposition of the dynamics (8.30). Under the condition u(t) €
M]Co] in (8.29), we know that z(¢) is a small perturbation of Q.. Now we prove

Lemma 8.4 (Energy and Mass expansions). Recall the Mass M [u] and Energy E[u] de-
fined in (8.12)-(8.13). We have

+o0 1 +o0
Mu](t) = M[Q.](@) + Qczdx + —/ z2dx, (8.41)
0 2 Jo

where MQ.1(t) = MQe( — p(t) — L)) and Q¢ = Qo — plt) — L). Similarly
+o0
E[ul(t) = E[Q:](1) — /0 ¢Qezdx — Qe(—p(t) — L)OL(p(1) + L)

1 +o0 +o0 1 +oo
+ —/ (0,2)%dx —/ Q.z%dx — —/ 23dx.
2 Jo 0 3Jo

(8.42)

Here, E[Q.](t) := E[Q¢(- — p(t) — L)]. Finally, we have the following combined esti-
mate:

E[ul(t) + cMu](t) — E[Qc](t) —cM[Q.](t) =

1 +o00
— O(e*Zﬁlp(tHL\) _ g/ 23dx
0

. oo | [t 8.43
+ 3/ 22dx + -/ (8,2)2dx (8.43)
2 Jo 2 Jo

+o00
— Q.z%dx.
0

Proof. We compute: by definition of z we see that
+00 ¢ [t
cMul(t) = cM[Q.] + ¢ Qczdx + 5/ z2dx. (8.44)
0 0
On the other hand,

+o00

B0 =E(Q + [ Qlaadx— [ 02zdx
0 0

1 +o0 e} 1 +o0 (845)
+ —/ z2dx —/ Qcz%dx — —/ z3dx.
2 Jo 0 3Jo



8.4. Almost conserved quantities 103

Integrating by parts and using (8.5) we see that
+oo ~+o0
| @iz - 02dx = | (-0~ 0Bz - L-p) - Lz(0.1)
0 0

+o00
- /0 (—0! — 02)zdx
+ Qu(—p(t) — L)(f(t) — Qc(—p(t) — L)),
therefore
+o0 +oo
/0 (QLze — Q22)dx = — /0 ¢Qezdx — Qo(p(t) + L)QL(p(t) + L). (8.46)
Combining (8.45), (8.46) and (8.44) we get
EMu]@) + cM[u](t) — (E[Q]() + cM[Q (1)) =
1 +o0
= = Qel=p(1) = )QL(—p() = L) = 5 /0 Sdx

+ E/ z2dx + —/ z2dx
2 Jo 2 Jo

+00
— Q.z%dx.
0

Note now that we easily have the pointwise estimate
|Qc(=p(t) = L) Qu(=p(t) = L)| < Ce >VlPOFEL,

Replacing this last estimate in (8.47), we get the desired bound (8.43). The proof is com-
plete. O

Let us continue with the proof. Let Z as in (8.36). We have from (8.43),
Efu](r) + cMu](r) — E[Qc](t) —cM[Q](1) =

1 +o0
0

1 ~
+< / Pdx + - / (0,3)2dx — / 0.32dx

2 Jr 2 Jr R

c [0 1 o 0o _
——/ Ezdx——/ (BxE)zdx—i—/ Q.7%dx.

2 —00 2 —00 —0Q

Using (8.37) and (8.39), we have

c [0 1 [0 0o _
-3 / Pdx — - / (0:%)2dx + / 0.32dx

< e 2Velp(+LI|
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Consequently,

Eu](?) + cMu](t) — E[Qc)(t) —cM[Q.](2) =
— 0(3—2f\p(t)+L|) 1 /+°o Sdx

/~2dx+ /(a %) dx—/Qc

Now we need some control on the terms E[Q.](¢) and M[Q.](¢t). Note that these terms
are not conserved in time (because Q. in (8.5) does not satisfy the zero boundary condition
at x = 0), and we cannot use the Lemma 8.1 and (8.15). However, with some standard
procedure we can get independent estimates.

(8.48)

Lemma 8.5. Recall the terms M [Q.] and E[Q.] in (8.12)-(8.13) and Q. = Q. (-—p(t)—
L). We have, forallt > 0,

MIQc](1) Z M(Qc)(0) — ¢ 2V/etbpl) — 2Vello©),

E[Qe](t) 2 E(Qe)(0) — e 2VELAPD) — gm2/elloO), o
Moreover, for all t > 0,
~(E10(0) + cM[Q:]0) 5 = (E(Qo)O + eM[Q:]0) 850

+ e—Zﬁ(L+p(t)) + e—Zx/E(L-HJ(O)).
Proof. We easily have
M -5 Lydx — " 5 L)d
1010) = 5 [ Q2= pt)=Lyax— 3 [ 2= pio) ~ Lydx
1 ~ 1 [ ~
=5 [ Qi —p0) ~ Ly =5 [ G2x—pi) - Lydx
| B P
= MIQO) + 5 [ 02— p(0) - Lydx
1[0 ~
—3 | G- Lyax.

Thus the first estimate follows by Lemma 8.3. On the other hand, E[Q.](¢) can be easily
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estimated by

Flodn = [ (3020~ 3020)ax— [ (3020~ 3820)ax

—0o0

- [ (3020 =0- 382 =0)as

[ Goro - ta20)a

— E[0.](0) + /_(; (502¢ =0~ 302 =0))dx
-/ OOO (3020~ 3020)ax

Recall QC = QC (x — p(t) — L), where Qc is given in (8.5). It follows naturally from
Lemma 8.3 that for each ¢ > 0,

E(Qo)(t) Z E(Qc)(0) — ¢ 2VebAnl) o 2ellbto©),

This proves the last estimate in (8.49). O

Now, combining (8.48) and (8.50), we obtain that

Eu](t) + cMu](r)

1 ~\2 ~2 I~ )
— - + -2
2(/}R(axz) dx C/RZ dx /RQCZ dx) 8.51)
1 +o0
3/0 Sy — O(e—zﬁ(p(l)-‘rL) e—2ﬁ(p(0)+L)).

On the other hand, Lemma 8.1 implies
Mu](t) < M[up] and E[u](t) < E[uo], (8.52)

so that

E[u](t) + cM[u](r) — (E[u](0) + cM[u](0)) <O.
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Therefore, from this last inequality, (8.51), (8.40) and (8.33),

+00
/R((axaz + 022 = 20.2)dx S IZO)3)1 @ +/0 |2 dx
+ e 2VeLAp®) 4 ,—27/e(L+p(0)

S ”Z(O)“?ql(R-F) + ”Z(t)”?ql(R-F)
4 e 2VeLAp) 4 p=24/e(L+p(0)

5 052 + ”Z(t)”;{l(]RJr)
4 e 2VeLAp®) 4 (=2/c(L+0(0)

Consequently,
/R ((3@2 . ZQCEZ)dx S 2 + 20031 gy + €2V (8.53)
The purpose of the next paragraph is to get a suitable lower bound on the term
/ ((axz)2 + 7% - 2§sz)dx =: / ZLZdx,
R R

where _
L7 = —02F + % —20,.%. (8.54)

Note that we have reduced the problem on the half-line to an extended spectral problem
on the whole line, and where we have good estimates on the left half-line portion of Z ().

8.5 End of proof of Theorem 8.1

Let us start out with the following easy estimate:

Claim 8.1. We have, for allt > 0,

0
‘ / Z(x.1) 0L (x — p(t) — L)dx| < e 2VelP@+LI (8.55)
—0o0
Proof. Direct from Lemma 8.3 and (8.39). O
From (J. L. Bona, Souganidis, and W. A. Strauss ; Weinstein ) (see also
Muiioz , for more details), we have the standard coercivity estimate valid for each

Ze H'(R), Q. = Qc(x — p(t) — L) and L as in (8.54):
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2
ZLZdx 2 Z)12 — /zx,t /Cx—,ot—l,dx

2

/R Z(e.1) 00 (x — plt) — L)dx

(Note that both quadratic reminder terms above are not zero in our case, but both are very
small.) Using Lemma 8.2 and (8.55) , we have

/ ZLZdx
R

2
Z ”E”%il(R) - '/};Z(X,Z)QC(X - ,O(Z) - L)dx

— e 2Velp(®)+ L]

2

+o0
> ”Z”le(RJr) - ‘ /0 z(x,8)Qc(x — p(t) — L)dx| — e 2Velp(®+LI|

On the other hand we have
+o0 +o0
/ 22(x,t)dx =/ u?(x,t)dx + M[Q.](t)
0 0
+o00
2[00l = p(0) - L.
0

Using this last expression, (8.15) and (8.49) we obtain

+o00
| = i00et=p0)~Lydx| £ 12Oy 1O sy e L 856

Therefore, for o small and L large,
/R”z’ﬁ”z'dx 2 12151 sy — Clo® + e72Y6E),
Combining this last estimate (8.43) and (8.53), we obtain

Iz @y S @+ eV + 12013 @4y (8.57)

with constants independent of Co, which implies u(¢) € M[Cy/2] for Cy, L large enough,
and o small.



In this chapter, we establish a general linear instability criterium of stationary solutions
for the vectorial KdV model

Oiue(x, 1) = aeaiue(x, t) + Bedxue(x,t) + 2ue(x,1)0xue(x, 1), 9.1

x # 0, t € R, onametric star graph G with a structure represented by the set E = E_UE ;.
where E_ and E. are finite or countable collections of semi-infinite edges e parametrized
by (—o00,0) or (0, +00), respectively. The half-lines are connected at a unique vertex
v = 0. Here (t.)ccg and (B.)ccE are two sequences of real numbers.

Thus, we are interested in the dynamics generated by the flow of the KAV model (9.1)
around solutions of stationary type, namely,

(ue(x,1))eek = (Pe(X))eeE
where for e € E_ the profile ¢, : (—00,0) — R satisfy ¢.(—00) = 0, and fore € E

¢e 1 (0,00) — R satisfy ¢po(+00) = 0. The existence of profiles of stationary type for
the KdV, namely, solutions of the following nonlinear elliptic equation

d2
aemfpe(x) + ,3e¢e(x) + ¢62(x) =0, 9.2)
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on every semi-infinite edge are well know and will depend of the profile of the classical
soliton associated to the KdV on the full line and for specific conditions on . and B, (see
Chapter 7-section 7.2).

Our linear instability criterium of stationary profiles for (9.1) will be based on a spec-
tral study of linear operators of self-adjoint type associated with the profile of the stationary
solution and therefore specific boundary conditions on that profiles will be necessary to
be impose at the vertex of the graph. A starting point for our study is that the Airy type

operator
3

d
AO . (ue)eeE - (aed 3

have extensions A.y; on L2(G) such that the dynamics induced by the linearized KdV
model (9.1)

Ue + ﬂe e)eeE 9.3)

Zy = AextZ,
{ 2(0) = o € D(Aexr), 4

it is given by a Co-group, z(t) = e'4extuq (see Chapter 4-section 4.2). In this point the
theory in (Mugnolo, Noja, and Seifert ; Schubert et al. ) give us that properties of
the induced dynamics can be obtained by studying boundary operators in the correspond-
ing boundary space induced by the vertex of the graph.

9.1 Linearized equation for KdV on a start graph

Let (Aexs» D(Aexr)) be a extension for the Airy operator Ag in (9.3) on L2(G), such
that the dynamics induced by the linear evolution problem (9.4) is given by a Cy-group.

Suppose for (¢e)ecer € D(AL) we have that (i (x,1))eceg = (Pe(X))cer is a nontrivial
solution of (9.1), thus we obtain the following set of |E4 | 4+ |E_| nonlinear equations

d ¢c + lgc ¢c + 2¢c ¢c =0, e€kE. 9.5)

Then, since ¢.(+00) = 0 we obtain for e € E that each component of the stationary
solution satisfies the elliptic equation (9.2).
Next, we suppose for e € E, that u, satisfy formally equality in (9.1) and we define

Ve(x, 1) = ue(x, 1) — Pe(x). 9.6)
Then, for (ve)ecg € D(Aex:) We have for each e € E the equation
Ve = @03 Ve + BedxVe + 20x (Vedpe) + 0x (v2), 9.7
Thus, we have that the system (abusing the notation)

8tve(x»t) = aeaive(xv[) + ﬂeaxve(xv[) + zax(ve(xv t)¢e(x))7 (9.8)
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represents the linearized equation for (9.1) around (¢c(X))cek.

Our objective in the following will be to give sufficient conditions for obtaining that
the trivial solution v = 0, e € E, it is unstable by the linear flow of (9.8). More exactly,
we are interested in finding a growing mode solution of (9.8) with the form

ve(x,t) = e'uwe and Re(1) > 0.
In other words, we need to solve the formal system for e € E,
Mo = —0xLeWe, Lo = —0e02 — e — 26, (9.9)

with ¥, € D(0xLe).
Next, we write our eigenvalue problem in (9.9) in an Hamiltonian matrix form and we
establish formally the meaning of this eigenvalue problem. Indeed, we made the following

abbreviations: for ¥ = (Y_, ¥4) with ¥_ = (Ye)eeg_ and Y = (We)eeEJr, we write
(Le)ece = (L1, L2) where

Ly = (—O{eail//e - ,Bel/fe —2¢eVe)ecE_»
(9.10)
Loyy = (_aeail//e — Bee — 2¢e1//e)e€E+~

Thus, the eigenvalue problem in (9.9) can be written in a Hamiltonian vectorial form

(/. _ —0xL— 0 (/. _ (/.
A(W+)_( 0 —3x£+)(W+)_NE(W+) ©-11)

by identifying £_ as a E_ x E_-diagonal matrix defined for
(ae)eEE_ = (al,—v (XY} Oln,—)» (ﬂe)eeE_ = (ﬁl,—» eeey ﬂn,—)»
and (¢e)ect_ = (P1,—. ... Pn,—) aS

] d? 2
L= dlag( - al,,ﬁ - ﬁlf — 2¢1,7, ceny —an,,ﬁ

and £ being a E4 x E. -diagonal matrix being define similarly for (cte)eek, » (Be)eek,
and (@e)eek,. - Thus, we have that N and E in (9.11) are (|[E—| + [E[) x (|[E-| + [E+])-
diagonal matrix defined by

= A (L. 0
N_( 5 —8x1+)’ E_(O £+), (9.13)

with It being the E4 x E. -identity matrix.

Next, if we denote by 6 (NE) the “spectrum” of NE, namely, A € o(NE) if there is a
¥ # 0 satisfying NEy = Ay. The later discussion suggests the utility of the following
definition:

Y ) R CA )
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Definition 9.1. The stationary vector solution (¢e)eeg € D(Aext) is said to be spectrally
stable for model (9.1) if the spectrum of NE, o (NE), satisfy c(NE) C iR. Otherwise,
the stationary solution (P¢)cck is said to be spectrally unstable.

It is standard to show that o (NE) is symmetric with respect to the real and imaginary
axes (see, for instance, (Grillakis, Shatah, and W. Strauss , Lemma 5.6)) providing
that N is skew-symmetric and E self-adjoint. Hence it is equivalent to say that (¢)ceg €
D(Agy;) is spectrally unstable if o (NE) contains point A with Re(A) > 0.

9.2 Linear instability criterium

In this section we establish a linear instability criterium of stationary solutions for the
KdV model (9.1) on a star graph G with a structure represented by the set E = E_ U E
where E_ and E are finite or countable collections of semi-infinite edges e parametrized
by (—o0,0) or (0, +00), respectively. The half-lines are connected at a unique vertex
v =0.

From (9.11) our eigenvalue problem to solve is reduced to,

NEY =AYy, Re(A) >0, ¥ € D(E). (9.14)

Next, we establish our theoretical framework and assumptions for obtaining a nontrivial
solution to problem in (9.14):

S1) Let (Aexs, D(Aext)) be a extension of (Ag, D(Ap)) such that the solution of the
linearized KdV model (9.4) is given by a Cy-group.

S>) Suppose 0 # ¢ = (¢e)eee € D(Aexs) such that (#e(x,1))cer = (¢e(X))cek is a
stationary solution for the KdV model (9.1).

S3) Let E be the matrix-operator in (9.13) defined on a domain D(E) C L?(G) on
which E is self-adjoint and such that we have the property D(Aex;) C D(E).

S4) Since for every u € D(Aex:) we have Eu € D(N) = H'(G), we suppose
(NEu,¢) = 0foreveryu € D(Aex:).

Ss) Suppose E : D(E) — L?(G) is invertible with Morse index n(E) such that:

a) forn(E) = 1, o(E) = {Ao} U Jy with Jy C [rg, +00), for r¢ > 0, and
A() < 0,

b) for n(E) = 2, 06(E) = {A1, A2} U J with J C [r, +00), for r > 0, and
A1, A2 < 0. Moreover, for @1, ®,,€ D(E)—{0} with E®; = 1, d; (i = 1,2)
we have (N¢, @1) # 0 or (Ng, D) # 0.

Se¢) For ¢ € D(E) with Evyr = ¢, we have (, ¢) # 0.
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S7) Suppose the operator N : D(N) N D(E) — L?(G) is a skew-symmetric operator.
We recall that N on D(N) is always one-to-one.

We note immediately that the following matrix-operator relation
NEY = Aexi ¥ + diag((20x(¢e¥))8ij). 1 =i.j = [E-|+[Eq].

together with assumption Si), ¢, ¢’ € L*°(G) and from semigroup theory (see (Pazy
)) imply that the linear Hamiltonian equation

d
() = NEu(1) (9.15)

generates a Co-group {S(t)};er on L2(G).

Some of the former assumptions deserve specific comments which will be very useful
in the development of our stability theory.

Remark 9.1.

1) By depending of the context we identify u = (u_,uy) € L*(G) as a element in
Hl-”zle(—oo,O) X Hl-mzle(O, 400), withn = |E_| and m = |E4| or as (n + m) x 1-
matrix column as in (9.15).

2) For a balanced graph, namely, n = m, and f = (f—, f+) € D(N) with f—(0—) =
f+(0+) we can identify f as a element of @ H'(R) in the obvious way.
e€E4

3) In contrast to the classical stability theories for solitary waves solutions on all line, in
the case of a star graph we have in general that N ¢ D(E) (see Lemma 9.1 below). But
from (9.5) we will have always that (see (9.12))

Li¢l(x)=0, for x>0, L_¢/(x)=0 for x <0,

where we are writing (¢e)eee = (P—, P+), With p— = (¢e)ece_ and ¢+ = (¢e)eek,, -

4) From Proposition 4.2 (the case of two half-lines) and ¢4 being either the tail or the
bump profiles in (7.24), we have for ¢ = (¢p—, ¢+ ) that the second part of assumption Sy),
(NEu,¢) = 0 foreveryu € D(AL), it is true in the case of a §-interaction. Indeed, for
u = (uU_,us) € D(Az) defined in (4.15) follows from integration by parts (without loss



9.2. Linear instability criterium 113
of generality we consider a— = oy = 1 and p— = By = —1in (9.5))

Sl 0x(@2u_)p-dx + [ 0:(02us)pdx

= — [0 u—¢"dx — [ u i dx

+[u” (0-) — u"(040)]p4 (04) + u, (04, (04) — u_(0—)¢p.(0-)

= — [ u_gVdx — [ usddx + [-ZEu_(0-) — Zu_(0-)]p4+(0+) (9.16)

+Zu’ (0-)¢+(0+) + Zu—_(0—)¢/, (0+)

= = [0 u-¢dx — [P usgdx + u_(0-)[Z, (0+) — 5 ¢4(0+)]

= —ffoo u_¢"dx — [°uy¢!dx,

where in the equality we use the “even-property” of (¢—, ¢+), namely, ¢, (0+) = %¢+ (0+4).
Next, since u_(0—) = u(0+) and ¢p—(0—) = ¢ (0+) we obtain

S 0 = 26 u)pdx + [)° (s — 2w )y dx

(9.17)
= — [ ou-(1=2¢_)¢" dx — [;"®us(1 - 2¢,)), dx.
Thus from (9.16) and (9.17) we obtain for u € D(AL)
(NEM’ ¢) = <_ax£—”—s ¢—) + <_ax£+u+v ¢+>
= [ u— (=g + ¢. —26_¢! )dx (9.18)

+ P us (¢ + ¢y — 24 ¢/ )dx =0,

5) From Proposition 4.2 we see that our assumption S3) in the case of a 8-interaction for
two half-line is not empty. Indeed, for E = diag(L1, L»), with ¢+ being either the tail or
the bump profiles in (7.24) and with

D(E) ={ue H?*(—00,0) ® H?*(0,400) : u_(0—) = u4(0+),
and u', (0+) —u’_(0—) = Zu_(0-)},

we have the self-adjoint property of E and D(AL) C D(E) (see remarks after Proposition
4.2). Moreover, assumption S7) is immediately satisfied in this case.

Next, we give the preliminaries for establishing our instability criterium in Theorem
9.1 below. We start by considering the orthogonal projection Q : L2(G) — L2(G)

0w) = u— (u.g)—>

W (9.19)
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associated to the nontrivial stationary solution ¢, and we consider X, = Q(L?*(G)) =
{f € L2(G) : fLl¢} = [¢]*. We also define the closed skew-adjoint operator Ny :
D(No) C X2 — X2, D(No) = D(N) N D(Aexr) N Xa, for f € D(No) by

Nof =QONf =Nf = (Nf.¢)i— (9.20)

||§15||2
and the reduced self-adjoint operator for E, F : D(F) — X5, D(F) = D(E) N X, by

Ff=QEf =Ef —(Ef.¢):—3 9.21)

||¢||2

We note that Ny is no necessarily one-to-one. Now, for f € D(NE)NX, = D(Aex)NX2
(Ef € D(N)), assumptions S4) and S7) we get the relation

NoFf = NEf —(Ef.¢)f% — (NEf —(Ef.) 5% ¢) o
(9.22)

= NEf — (Ef ¢> ||¢||2'
Our first result is the following,

Proposition 9.1. NoF : D(NoF) C X5 — Xa, D(NoF) = D(Aext) N X2 C D(E) N
X», it is the infinitesimal generator of a strongly continuous Co-group of operators So(t)
in the space X».

Proof. We divide the proof in two steps:

a) Define C = ONQEQ : D(C) C L*(G) — L*(G), D(C) = D(Aex;). Then for
f € D(Aext)

Cf =NEf —{f)]5¢ —(ELo) Tl + (/.9) 1 E58 L0 ©9.23)
= NEf — Bf ’

where B : L?(G) — L?(G) defined by

(E¢.¢) No
II¢II2 ||</’>|I2 lel> ligl>”

it is a bounded operator. Here was used that E is a self-adjoint operator on D(E) 2
D(Agx:). Thus, from the theory of semigroups (see (Pazy )) C generates a
strongly continuous Co-group of operators S1(¢) on L?(G). Since C commutes
with 0, S1(¢) also commutes with Q.

Bf = (f¢) + (/. ¢) —(/.¢)

b) Define Sy(¢) : X — X5 by So(t) = 0S1(¢). Then Sy is a strongly continuous
Co-group of linear operators on X, and it is not difficult to see that its infinitesimal
generator is No F.
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This finishes the Proposition. O
Next, we have the following basic assumption.

(H) There is a real number 7, satisfying n > 0, such that the operator F : D(F) — X>,
D(F) = D(E) N X,, it is invertible with exactly one negative eigenvalue and all
other eigenvalues are contained in [, +00).

Our instability criterium for stationary solutions of the KdV model (9.1) on star graphs
is the following:

Theorem 9.1. Suppose the assumptions S1) — S7) above and the basic assumption (H),
then the operator NE has a real positive and a real negative eigenvalue.

The proof of Theorem 9.1 is based in ideas from and from the following
result on closed convex cone (Krasnosel’skii , Chapter 2).

Theorem 9.2. Let K be a closed convex cone of a Hilbert space (X, | - ||) such that there
are a continuous linear functional @ and a constant a > 0 such that ®(u) = alu| for
anyu € K. If T : X — X is a bounded linear operator that leaves K invariant, then T
has an eigenvector in K associated to a nonnegative eigenvalue.

Proof. Next we give a sketch of the proof, for more details we suggest the reader to see
. We divide our analysis in several steps:

(1) The operator NoE : D(NoE) C X, — X> has a real positive and a real negative
eigenvalue. Indeed, from assumption (H) we consider v € D(F) = D(E) N X»,
l¥|| = 1 and A9 < O such that Fy = Agyr. We define,

K={z€D(F):(Fz,z) £0, and (z,¥) = 0}
then K is a nonempty closed convex cone in L2(G). Moreover, by using a density
argument we can see that this cone is invariant under the group So(¢). Indeed, for

f € K and smooth enough we obtain that the reduced hamiltonian equation

= NoFz
z2(0) = f

has solution z(t) = Sy(¢) f that such for all ¢,

(9.24)

%(FZ(K),Z(I)) = (FNoFz(1),z(t)) + (Fz(1), NoFz(1)) = 0,

where we use the self-adjoint property of F and the skew-symmetric property of
No. Then for all ¢,

(Fz(t).z(1)) = (Ff. f) = 0.
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Next, we suppose ( f, ¥) > 0 and that there is 7o such that (So (o) /. ¥) < 0. Then
by continuity of the flow ¢t — Sy(¢) f there is © € (0,1) with (So(7) f,¥) =
0. Now, from assumption (H) we have from the spectral theorem for self-adjoint
operators the orthogonal decomposition for f; = So(7) f

m
fr= Za,-h,- +g, glh;, forall i,

i=1

where Fh; = Aihi, |hill = 1, A; € 04(F) with A; = 1, and (Fg, g) = 0| g%,
6 > 0. Therefore

02 (Ffe. fo) ZnY_a}+0|gl* = 0.

i=1

Thus, it follows ¢ = 0 and a; = 0 for i. Therefore, So(z) f = 0 and since So(¢)
is a group we obtain f = 0 and so (f, %) = 0 which is a contradiction. Now we
suppose { f, ¥) = 0, then the former analysis shows f = 0 and so Sy (¢) f = 0 for
all z. It shows the invariance of K by So(?).

From semigroup’s theory, we have for pu large the following integral representation
of the resolvent

Tz = (uly — NoF) (z) = / e M So(t)zdt
0

and by the former analysis it also leaves K invariant.

Next, we consider the continuous linear functional @ : L2(G) — R by @(z) =
(z,¥) and we will see that there is @ > 0 such that @(z) = a|z|| for any z € K.
Indeed, suppose for ||g]| = 1, (g.¥) =y > 0and (Fg, g) < 0. Since ker(P) is
a hyperplane we obtain g = z + yy with (z, %) = 0. So, —Ay? = (Fz,z). Now,
from the orthogonal decomposition

m
z = Z(z,hi)hi + g, glh;, forall i,
i=1
follows for ,0 > 0, (Fz,z) = min{n, 0}(1 — y?). Then,

_ min{n,0}
(gV¥)=y = \/m=a>0-

Therefore, from Theorem 9.2 there are an @ = 0 and a nonzero element wy € K
such that
(I — NoF)™ ! (o) = axanp.
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It is immediate that & > 0 and so Nog Fwg = {wy with

o —1
¢ = :

o

Next we see that ¢ # 0. Suppose that { = 0, then from (9.22) and the injectivity of
N we obtain

¢
E(x)o = (Ew0,¢)—.
11>
From assumption Ss), let ¥ € D(FE) with Eyy = ¢, then since E is invertible

follows
(EwOv(ob) <EO)0,¢)

= — d = N = s .
wo TE ¥ and 0 = (wo. ) TIE (V. 9)

Since (¥, ¢) # 0 follows (Ewy, ¢) = 0. Hence Ewg = 0 and so wy = 0, which is
a contradiction. Then, Ny F' has a nonzero real eigenvalue .

Now, since 0 (Ng F') = —o (N F) we have —( also belongs to o (N F'). Thus from

Theorem 5.8 of (Grillakis, Shatah, and W. Strauss ), the essential spectrum of
Ny F lies on the imaginary axis and then —( is an eigenvalue of Ny F and this proves
the claim.

(2) Thus, for wg € D(NoF), wg # 0, and ¢ > 0 we have,
N
NEwy = (Ewo,qb)ﬁ + Cwp. (9.25)

Next we consider the following cases:

a) Suppose (Ewg,¢) = 0, then NEwy = {wy and the proof of the criterium
finishes.

b) Suppose r = W(Ewo, ¢) # 0 and Assumption S5) with n(E) = 2. Let
Uu=wy+aP +bd,, E®; =1;®;, 1 =i <2,
with ||®; ]| = 1, &1 L &,. We will find @, b € R, not both zero, such that
NEu =¢u, u#0.
Thus, we obtain initially the relation
IN$ + aliNOy + bAy NPy = al Py + bl Ds. (9.26)
Therefore, from the skew-symmetric property of N we obtain the system

aé‘ + bkz(N@], @2) = r(N¢, @1)

Al {N®y, @) — b = —r(N¢, D,). 9.27)
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Thus, since the determinant of the coefficients is different of zero
{2+ A (NDy, D)2 # 0

r # 0 and from Assumption S5), we obtain a nontrivial solution for (9.27).

Next we see u # 0. Indeed, suppose u = 0. Then, from relation wy =
—a®; — bd, and by substituting in (9.25) we obtain the relation

arr(Ng, D) + bhyr (N, ;) = 0. (9.28)

Then, by using system (9.27) in (9.28) we arrive to the relation ¢(a?A; +
b215) = 0, it which is a contradiction.

¢) Suppose n(E) = 1 in Assumption S5). Then from Theorem 9.2 applied to
T = (uI — NE)™!, p large, implies that NE has a real positive and a real
negative eigenvalue. This finishes the proof.

O

9.2.1 One application of Theorem 9.1

Suppose that assumptions S;) — S7) above hold and for ¢ such that £y = ¢ we have
(¥, ¢) < 0. Then assumption (H) is true. Indeed, from assumption Ss) we obtain that F'
is invertible. Next, let A1, A, < 0, @1, @, € D(E) with E®; = A;®;, &1 1L D,. Suppose
that for some i we have @; 1 ¢, then &; € D(F) and

F(®;)=E®d =1;9;

and so n(F) = 1. Now suppose that for all i, (®;, ¢) # 0, then there are a,b € R — {0}
such that (a®; + b®d,, ¢) = 0, and

(F@®y + b®s),ad®y + bdy) = 11a%||®1|* + L1207 D2 < 0.

Then via min-max principle we also have n(F) = 1. Next, suppose that n(F) = 2 and
consider z1, 25 € Xp, 21122, 1, 2 <0, and Fz; = uiz;. Then we get

(EZi,Zi) = Mi”Zi”z < 0, and (EZ],Zz) =0.

Moreover, since ¥ ¢ X, follows that set {y, z1, 22} C E is linearly independent and we
have the relations

(Ezi, ) = (zi.¢) =0, and, (EY.¥) = ($.¥) <O0.

Therefore (E(ay + Bz + 0z2), % + Bzy + 0z3) < 0 and so n(E) = 3, it which is
not true. Then n(F) = 1 and all other eigenvalues (and the remain of the spectrum) are
contained in 7, +00). Thus, from Theorem 9.1 follows that NE has a real positive and a
real negative eigenvalue.
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9.3 Linear instability of tail and bump on two half-lines

The focus of this section is to apply the linear instability criterium in Theorem 9.1 to
the KdV on a star graph with two half-lines and a §-interaction-type at the vertex v = 0.
Our main result is the following,

Theorem 9.3. For Z # 0, a— = a4 > 0, - = B+ < 0, =B+ > ZTz, let p7 =
(p—, d+) € D(Az) defined for ¢4 (x) by the formula (7.24) with x > 0 and ¢_(x) =
¢4+ (—=x) for x < 0. We consider the following family of stationary solutions for the
Korteweg—de Vries model (9.1) on the star graph G with E = (—o0, 0) U (0, +00),

U(x,1) = (¢-(x), ¢+(x)), 1€R.
Then, this family of tail (Z < 0) and bump (Z > Q) profiles are linearly unstable.

Next, we consider the casesv— = a— = 1,_ = B4 =—land 1 > 4 w1th0ut loss
of generality. From Proposition 4.2, assumption S1) is filled by (4z, D(A4 Z)) defined in
(4.15). The linear eigenvalue problem to be solve (9.14) for A > 0, it is determined by the
matrices N, E in (9.13) with the Schrédinger operators

d2
Ly = e +1-—2¢4.
The domain for E = Ez is given in H2(G) = H?*(—00,0) & H?(0, +o0) for Z € R by

D(Ez) = {(u_,uy) € H*G) : u_(0—) = uy (0+),
', (04) — ' (0-) = Zu_(0-)}.
and so (Ez, D(Ez)) represents a self-adjoint family of operators for each Z € R with
D(Az) C D(Ez) (assumption S3)). From Remark 4.2-item 2) we have assumption Sy).

Assumption S7) is immediate by continuity.
The following lemma implies that £z is invertible (assumption Ss)).

(9.29)

Lemma 9.1. For every Z # 0 we have ker(Ez) = {0}. Moreover, since 0ess(Ez) =
[1,400) we obtain Ez : D(Ez) — L*(R) is invertible.

Proof. Letu = (u_,uy) € D(Ez), Ezu = 0. Since L+¢/, = 0, we need to have
u_(x) = a¢’ (x),x <0,and uy(x) = b¢, (x), x > 0 (see Berezin and Shubin ).
From the continuity property at zero, ¢/, (04+) = —¢” (0—) and ¢/} (0+) = ¢”(0—) we
have that

a=-b, and —2a¢} (0+) = Zuy(0+) = Zu_(0—-) = Zag. (0-). (9.30)

Supposea # 0. Then, by using condition (7.25) and (9.30) we have ¢} (0+) = z2 S ¢+(0+),
then from (7.22) we obtain

Z2
1—¢(0+) === Z> =4
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which does not happen. Soa = b =0andu = 0.

Next, by Weyl’s theorem see Theorem XIII.14 of Reed and Simon , the essential
spectrum of Ez coincides with [1, +00). Then Ez is an invertible operator. This finishes
the proof. O

Lemma 9.2. For Z > Owe have n(Ez) =2 and for Z < 0 thatn(Ez) = 1.

Proof. Our strategy is to use perturbation theory. For this purpose we define the self-
adjoint operator on L2(R)

2

Lo=——=
0 dx?

+1—=2¢9. D(Lo) = H*(R) (9.31)

where ¢ denotes the soliton for the KdV equation on the full line,

3 |
do(x) = Esech2(§x), x eR. (9.32)
From classical Sturm-Liouville Theory (see Berezin and Shubin )

ker(Lo) = [¢gl. n(Lo) =1, Tess(Lo) = [1,+00)
Now, we consider the domain
D(Eo) = {(u—,us) € H*(G) : u—(0-) = u4(0+),u_(0-) = u/, (0+)}.  (9.33)

on which the following “limit” operator Ey is self-adjoint

d2

—4 41— 2 0

Eo = dx2 o, e B , (9.34)
0 dx2 + 1 2¢0,+

with ¢o,— = ¢0|(~c0,0) ad ¢o,+ = ¢o|(0,+00)- Thus, by considering the following unitary
operator U : D(Egy) — H?(R) defined foru = (u_,uy) € Eg byU(u) = it € H*R)
where
u_(x), x <0
=4 up(x), x>0 (9.35)
u4(0+), x =0,

we obtain 0 (Eg) = 0(Lg) and A € 04;5c(Ep) if and only if A € 04;5.(Lo) with the
same multiplicity. Moreover, 05 (Eg) = [1, +00). Therefore, ker (Eo) = [®}], Po =
(¢o,—. do,+), and n(Eo) = 1.
The theory of analytic perturbation will be to follow our strategy in the study of the
instability property of ¢z (see Angulo and Goloshchapova , ; Le Coz et al.
) for an application of this strategy in the study of standing wave solutions for the
nonlinear Schrodinger equation on the all line and on star graphs). Therefore we will give
a sketch of the main points of these analysis. Indeed,
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)

if)

iii)

vi)

It is not difficult to see the convergence ¢z = (p—,¢p4+) — Py, as Z — 0, in

H'(9).

The family { £z} zegr represents a real-analytic family of self-adjoint operators of
type (B) in the sense of

Since Ez converges to Eg as Z — 0 in the generalized sense, we obtain from
Theorem IV-3.16 from and from Kato-Rellich Theorem ((Reed and
Simon ), Theorem XII.8) the existence of two analytic functions §2, IT defined
in a neighborhood of zero with §2 : (—=Z¢, Zo) — R and IT : (—Zg, Zo) — L2(G)
such that £2(0) = 0 and IT(0) = @. Forall Z € (—Zy, Zy), $2(Z) is the simple
isolated second eigenvalue of £z, and I1(Z) is the associated eigenvector for £2(Z).
Moreover, Z, can be chosen small enough to ensure that for Z € (—Z¢, Zy) the
spectrum of Ez in L2(G) is positive, except at most the first two eigenvalues.

If A is an simple eigenvalue for £z then the eigenfunction associated is either even
or odd. Therefore since N®g is odd we have IT(Z) € H?*(R) and it is a odd
function for Z € (—o00, 00). Thus we obtain that

(Npz.I1(Z)) #0, Z €R. (9.36)

Indeed, since limz _o(N¢z, [T(Z)) = |[N®y||?> > 0, we have for Z small property
(9.36). Thus, an continuation argument shows (9.36).

From Taylor’s theorem there exists 0 < Z; < Zg such that £2(Z) > 0 for any
Z € (=Z1,0),and 2(Z) < 0 forany Z € (0, Z;). Thus, in the space L?(G) for
Z small, we haven(Ez) =las Z < 0,andn(Ez) =2as Z > 0.

Recall that ker (Ez) = {0} for Z # 0. Thus, we define Z, by

Zoo = sup{Z > 0 : Ez has exactly two negative 9.37)
eigenvalues for all Z € (0, Z )} .

Item iv) above implies that Z ., is well defined and Z, € (0, oc]. We claim that
Z s = 00. Suppose that Z, < 00. Let M = n(Ez_ ) and I" be aclosed curve (for
example, a circle or a rectangle) such that 0 € I C p(Ez_ ), and all the negative
eigenvalues of Ez__ belong to the inner domain of I". The existence of such I" can
be deduced from the lower semi-boundedness of the quadratic form associated to
Ez..

Next, from item ii) above follows that there is € > 0 such that for Z € [Z —
€.Zoo +€|wehave I' C p(Ez)and for§ € I', Z — (Ez — £I4)7! is analytic.
Therefore, the existence of an analytic family of Riesz-projections Z — P(Z)
given by

1 _
PZ) =5 b (Fz —e10) 7t
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implies that (see Lemma C.3 in Appendix C)
dim(Im(P(Z))) = dim(Im(P(Zx))) = M

forall Z € [Zoo —€, Zoo +€]. Next, by definition of Z,, Ez__— has two negative
eigenvalues, and M = 2, hence Ez has two negative eigenvalues for Z € (0, Zoo+
€], which contradicts with the definition of Z,. Therefore, Z, = oc.

Analogously we can prove that n(Ez) = 1 in the case Z < 0. This finishes the
proof.

O

The following lemma shows assumption Sg) in the case n(E) = 2. Initially, the pro-
files ¢+ in (7.24) represent a differentiable family of stationary solutions a one-parameter
® = —f+ > 0. Thus we will denote it dependence as ¢, = (¢— 0, P+,0). From (9.5) we
obtain after derivation in @ that

2

(i) = (o 0 20)(pin) = b O39)

Next, by denoting ¥, = (—%qﬁ_,w, —%qb_hw) is not difficult to see that ¥, € D(Ez)
and so we can assure that for Z, w fixed, that the expression Ez v, = ¢, makes sense.

Lemma 9.3. Let Z # 0. The smooth curve of profiles w € (ZTZ, +00) > ¢ € D(EZ)

with formula (7.24) satisfies for V¥, = —%qﬁw the relations

EzV¥y = ¢0, and, (Vo,dy) <O. (9.39)
Proof. From Proposition 3.19 in (item (ii), p = 2) we
have for every Z € R, the relation (%q&w, ¢o) > 0and so (¥, dy) < 0. This finishes
the proof. O

Proof of Theorem 9.3. Let Z # 0. From Lemmas 9.1, 9.2 and 9.3, and (9.36), follows
from Theorem 9.1 that the profiles of type tail and bump for the KdV are linear unstable.
This finishes the proof. O

9.4 Linear instability of tail and bump on balanced star
graphs
We consider the KdV model (9.1) on a metric star graph G with a structure E = E_ U

E+ where |[E4| = |E-| = n, n 2 2, and with a §-interaction at the vertex. Thus, from
Proposition (4.3) we consider the skew-self-adjoint family (Hz, D(Hz)) of extensions
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for (Ao, D(Ap)) defined in (4.24). Thus, for for u = (uc)eeg € D(Hz) we obtain the
following system of conditions

u(0—) = u(0+), u'(0+)—u'(0-) = Zu(0-),

72 (9.40)
Tu(O—) + Zu'(0-) = u”(0+) — u”(0-).

Now, for Z > 0,0 > B4+ and -4 > ZTz we consider the half-soliton profile ¢
defined in (7.24) and ¢—(x) = ¢+ (—x) for x < 0. We define the constants sequences of
functions

u_ = (¢—)e€E_7 Uy = (¢+)e€E+q

and so Uz, = (u—,uy) represents a family of stationary bump profiles for the KdV

model in (9.1) (see 7.5) and satisfying the boundary conditions (9.40). The case Z < 0,

Uz ., represents the corresponding family of stationary tail profiles (see Figure 7.4).
With the notations above, the main result of this section is the following.

Theorem 9.4. Let Z # 0. Foray > 0and0 > B4, w = —f4+ > Z—z, we consider the
profiles ¢4 in (7.24). Define Uz 4 = (Ppe)ece € D(Hz) with ¢p. = ¢_ for e € E_ and
¢ = ¢+ fore € Ey. Then,

(pZ,w(xal) = UZ,w(x)

defines a family of linearly unstable stationary solutions for the Korteweg—de Vries model

©.1).

The linear instability of the continuous tail and bump profile Uz «,, Z # 0, it will be
a consequence of Theorems 9.1 with a framework determined by the space D(Hz) N C
where

C = {(ue)eer € L*(G) :uy —(0—) = ... = up—(0=) = uy +(0+) ©.41)
Thus, by following the notation in section 5 ((¢¢e)ecg = (1)eeg, (Be)ecg = (—1)ceE, With-
out loss of generality) we start our analysis by considering the 2n x 2n-matrix derivate
operator N in (9.13) and the 2n x 2n-matrix Schrodinger operator

_f Lz - 0
£y = ( 7 g ) (9.42)
with
dz 2
Lz :diag(—ﬁ 12— + 1 —2¢i), (9.43)

being n x n-diagonal matrices.
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From Theorem 3.6 and from Krein-von Neumann extension theory £z is self-adjoint
with domain D(€z) = Dz s NC C H*(G) with

ueDzs < u0-)=u0+), Z ul(0+) — Z ul(0-) = Znuy +(0+). (9.44)
e€E4 ecE_

It is immediate from (9.40) that D(Hz) N C C D(Ez) and so assumption S3) holds.
From Remark 4.2-item 2) we obtain again assumption S4). Assumption S7) is immediate
by the definition of D(Hz) N C. Moreover, from we have
that subspace D(Hz) N C is invariant by the unitary group {W(t)};cr generated by Hz.

The proof of the following result follows the same strategy as in Lemma 9.1.

Lemma 9.4. Let Z # 0 and the operator £z : D(Ez) — L*(G) defined in (9.42) with
D(Ez) = Dz NC. Then, £z is invertible with 6¢s5(Ez) = [1, +00).

Proposition 9.2. Let £z : D(Ez) — L?(G) defined in (9.42) with D(Ez) = Dz N C.
Define the following closed subspace on L*(G),

Lﬁ(g) ={u = (Ue¢)eeg : Ue = f,foralle e E_,u. = g, foralle € E.}
Then, ”(5Z|L3,(g)) =2 for Z >0, andn(€Z|L%(g)) =1,for Z <O.

The proof of Proposition 9.2 follows from the perturbation theory and the extension
theory of symmetric operator (Angulo and Cavalcante ). We note that in the case
Z < 0 (tail case) can be given an argument based exclusively in the extension theory of
symmetric operator. Moreover, in this case is obtained that n(£z) = 1 in L%(G).

The proof of Proposition 9.2 will be divide in several lemmas.

Lemma 9.5. Define the self-adjoint matrix Schrédinger operator in L*(G) with Kirch-
hoff’s type condition atv = 0

(Lo O
50_( 5 £0,+) (9.45)

with
2 2

d d
Lo = diag( = 5 + 1= 200, .. ——— + 1= 2y ). 9.46
04 =diag| — -7 + $o Pl $o (9.46)
being n x n-diagonal matrices, ¢g the soliton defined in (9.32), and

D(&) ={u € H*(G) :u(0-) = u(0+), > u,(0+)— Y ul(0-) =0}. (9.47)

e€E e€E_

1) In the space L%(G) we have ker(Ey) = [®(], where @) = (¢})cek.

2) The operator (£y, D(Ey)) has one simple negative eigenvalue in L>(G). Moreover,
we have also n(& |le1 (g)) =1
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3) The rest of the spectrum of &y is positive and bounded away from zero.

Proof. The proof of item 1) follows from a similar analysis as in Lemma 9.1. Indeed, let
v = (Ve)eer € ker(Eop) N L2(G), then

— ) 4+ ve —2¢ove =0, e€E. (9.48)

Then, ve = c.¢ for e € E and so ve(0—) = ve(0+) = 0. Now, since v € L2(G), we
obtain for e € E_ that v. = co¢ with ¢ = ¢, and for e € E; that ve = c1¢; with
c1 = ce. Then from (9.47) we obtain nci¢g (0) = ncopy (0). Therefore, v = co®y).

For item 2), we used Theorem 3.6, von Neumann and Krein extension theory and
Theorem 3.11. This finishes the proof. O

Remark 9.2. We observe that, when we deal with deficiency indices, the operator & is
assumed to act on complex-valued functions which however does not affect the analysis
of negative spectrum of &y acting on real-valued functions.

Combining Lemma 9.5 and the framework of the perturbation theory as in Lemma 9.2
(see (Angulo and Goloshchapova )) we obtain the following Lemma. We note that
foru— = (¢-)eeg_, U+ = (P+)eek,. , it is not difficult to see the convergence Uz , =

(u—,uy) = Do = (¢o)eer, as Z — 0,in HY(G) N L2(G).

Lemma 9.6. There exist Zo > 0 and two analytic functions © : (—Zy, Zo) — R and
T :(=Zo,Zo) —> Li(g) such that

(i) ©(0) = 0and T (0) = @, where Dy = (Pg)cek-

(ii) Forall Z € (—Zo, Zo), O(Z) is the simple isolated second eigenvalue of £z in
L% (9), and Y (Z) is the associated eigenvector for ©(Z).

(iii) Zg can be chosen small enough to ensure that for Z € (—Zg, Zy) the spectrum of
Ez in L2(G) is positive, except at most the first two eigenvalues.

(iv) Sincelimz—o(NUz 4, [(Z)) = ||[N®y||* > 0 we obtain that
(NUzw.11(Z2)) # 0, (9-49)
at least for Z small. Thus, an continuation argument shows (9.49) for all Z.

By using the Taylor’s theorem and by following a similar argument as in Proposition
3.9 in (Angulo and Goloshchapova ) we establish how the perturbed second eigen-
value moves depending on the sign of Z.

Proposition 9.3. There exists 0 < Z1 < Zg such that O(Z) > 0 for any Z € (—Z1,0),
and ©(Z) < 0 forany Z € (0,Z1). Thus, in the space L2(G) for Z small, we have
n€z)=1lasZ <0,andn(Ez) =2as Z > 0.
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Proof of Proposition 9.2. From Proposition 9.3 we have for Z small that n(€z) = 1 as
Z < 0,andn(€z) = 2 as Z > 0. Thus for counting the Morse index of £z for any Z we
use a classical continuation argument based on the Riesz-projection as in step vi)-proof
of Lemma 9.2- and Lemma 9.4. This finishes the proof. O

The following lemma shows assumption S¢) (case Z > 0). Similarly to the case of
two half-lines we have the smooth curve ® — ¢, = (¢— 0. P+.0)ecr, foro = -4 >0
such that Lz 4 (%gbi,w) = —¢+ . Thus we obtain the following result.

Lemma 9.7. The smooth curve of profiles w € (ZTz, +00) = ¢ € D(Ez) N L2(G)
satisfies for ¥, = —%gbw the relations

EzVw = ¢, and, (Vu.¢o) <O. (9.50)

Proof of Theorem 9.4. Let Z # 0. From Lemmas 9.4 and 9.7, Proposition 9.2, relation
(9.49) and Theorem 9.1 we obtain the linear instability property of the profiles tail and
bump Uz, for the KdV model (9.1). This finishes the proof. O

Remark 9.3. 1) Theorem 9.3 about the linear instability of the tail and bump profiles
on two-half-lines for KdV model, it shows the delicate dynamic of these profiles.
We note that in the case of the nonlinear Schriodinger equation on all the line, the
dynamic of these type of profiles is well known and it is completely different (Angulo

and Goloshchapova » Angulo and Ponce ; Fukuizumi and Jeanjean
Fukuizumi, Ohta, and Ozawa s Goodman, Holmes, and Weinstein ; Le
Coz et al. , see).

2) The existence and stability of other families of stationary solutions profiles for the
KdV model (9.1) and their generalizations (for instance, the modified KdV) defined
on a different graph geometry is being the goal of some works in progress. As well
as, the study of the local well-posedness for the Cauchy problem.



In this chapter we study the nonlinear stability of standing waves solutions for the
following vectorial nonlinear Schrédinger equation on a star graph G,

i9,U(t,x) — AU(t, x) + [U(t, x)|P7'U@t,x) =0, x>0 (10.1)

where U(t, x) = (u,(t, x))j.\'=1 RxRy — C¥ | and p > 1. The nonlinearity acts
componentwise, i.e. (JU|?71U); = |u;|P~'u;. Here, we will consider the star graph G
being composed by N positive half-lines attached to the common vertex v = 0, and A is
a self-adjoint operator with D(A) C L?(G) which represents the coupling conditions in
the graph-vertex (see section 4.1).

In the case of A representing the Laplace operator with boundary conditions of type
38, we have that A = H‘gl with domain D(H‘g[) = g is acting for V = (1)}-)§-V=1 as

HV)(@) = (=), x>0,

N 10.2
Dys = {v € H*(©): v1(0) = ... = vy (0), Y v(0) = avl(O)}. (102)

j=1

We recall that quantum graphs (metric graphs equipped with a Hamiltonian linear
evolution equation) have been a very developed subject in the last couple of decades.
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They give simplified models in mathematics, physics, chemistry, and engineering, when
one considers propagation of waves of various type through a quasi one-dimensional
(e.g. meso- or nanoscale) system that looks like a thin neighborhood of a graph. More-
over, equation (10.1) models propagation, for instance, through junctions in nonlinear op-
tics, Bose-Einstein condensates (BEC) on networks (see Berkolaiko and Kuchment ;
Brazhnyi and Konotop ; Burioni et al. ; Cacciapuoti, Finco, and Noja ;
Cao and Malomed ; Fidaleo ; Kuchment ; Mugnolo ; Noja ,and
references therein).

The analysis of the behavior of NLS equation on general networks is not yet fully
developed, but it is currently growing (see ( ),

( ; ), (2017), (2014), and (2014)
and references therein).

Various recent analytical works (see Adami, Cacciapuoti, et al. ; Angulo and
Goloshchapova , ; Noja , and references therein) deal with special solu-
tions of (10.1) called standing wave solutions, i.e. the solutions of the form (see Chapter
6)

U(t, x) = ' ®(x), (10.3)

with the profile @ satisfying specific coupling conditions in the vertex v = 0. In the
case of a d-interaction condition, namely, @ € D, s (see (10.2)) in (Adami, Cacciapuoti,
et al. ) was obtained a complete description of the profiles @ for any @ € R such
as was established in Theorem 7.1 of Chapter 7. Here, we are interested in the stability
investigation of all that [%] + 1 standing wave solutions in each case of « < 0 and
o > 0, respectively.
Since our stability approach is based in the classical theory of

, in the next section we will give the corresponding stability framework

by convenience of the reader.

10.1 Stability framework for the NLS on star graphs

The NLS model (10.1) is invariant under the rotation-symmetry of the group 7'(0)¥ =
e’ forany 0 € [0,27), namely, if U is a solution of (10.1) then ?®U is also a solution.
Thus, the standing wave solutions in (10.3) can be write as U(z, x) = T (wt)@(x). We note
that the classical translation-symmetry does not hold on G. Thus, we have the following
orbital stability definition.

Definition 10.1. The standing wave U(t, x) = e'®*®(x) for model (10.1) is said to be
orbitally stable in a Hilbert space X if for any ¢ > O there exists n > 0 with the following
property: if Uy € X satisfies |[Ug — @||x < 1, then the solution U(t) of (10.1) with
U(0) = Uy exists for any t € R and

sup inf ||U(t) — P ®||x < e.
reR 9€R

Otherwise, the standing wave U(t, x) = e'®' ®(x) is said to be orbitally unstable in X .
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In particular, for the NLS model (10.1) with a boundary condition of §-type (see (10.2))
the space X coincides with the continuous energy-space £(G),

£(G) ={w)N_, € H'(G) : v1(0) = ... = vy (0)}. (10.4)

Next, we assume the existence of a C2(X, R)-conserved functional E : X — R
(interpreted as the “energy” in certain applications) i.e., for V. = (v ]-)7=1 eX

E(U(t)) = E(Uy), for t € [-T,T), (10.5)

and Q : L?(G) — R (interpreted as the “charge” in certain applications) defined by
O(V) = ||V||? also a conserved functional, i.e., Q(U(¢)) = |[U®)||?, fort € [T, T].
Moreover, we also assume that E is invariant under 7" (obviously Q satisfies this property);
that is

E(T(0)V) = E(V), for 6 €[0,27), V€ X.

Now, by substituting the standing wave profile in (10.3) with @ € D(A) we arrive to the
nonlinear system

AD + 0® — |97 = 0. (10.6)

The equality in (10.6) should be understood in a distributional sense. We suppose that the
vector @ is a critical point of the action functional S = E +wQ. For a stability study of @
amain information will be given by the the second variation of S at @, S”(&). We suppose
thatforU = Uy +iU and V = V; +iV;, where the vector functions U;, V;, j € {1, 2},
are assumed to be real valued, we have the following equality

S"(®)(U,V) = (LU, Vi) + (LU, Va), (10.7)
here (-, -) represents for us the inner product in L2(G), and L; are self-adjoint operators

with D(L;) = D(A) C L?(G).
Formally S”(®) can be considered as a self-adjoint 2N x 2N matrix operator

L,y 0
H=( 01 Lz). (10.8)

Next, we suppose the existence of C! in @ standing wave solutions for (10.6), w €
J C R — @,. Define

1 if3y||Pw||* > 0atw = w,
p(a)o)—{ 0 ifdy||Pw||* <0atw = wp.

Lastly, we suppose the well-posedness of the associated Cauchy problem for (10.1) in the
energy space X. The next stability/instability result follows from (Grillakis, Shatah, and
W. Strauss ).
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Theorem 10.1. Let n(H) be the number of negative eigenvalues of H (the Morse index ).
Suppose also that

1) ker(Ly) = span{®,},

2) ker(Ly) = {0},

3) the Morse index of L1 and L, consists of a finite number of negative eigenvalues
(counting multiplicities),

4) therest of the spectrum of Ly and Ly is positive and bounded away from zero. Then
the following assertions hold.

(i) If n(H) = p(w) = 1, then the standing wave e'®*®,, is orbitally stable in the
energy space X .

(ii) Ifn(H) — p(w) is odd, then the standing wave e'®*®,, is orbitally unstable in the
energy spaceX .

Remark 10.1. The instability part of the above theorem needs some additional comments.
() It is known from (Grillakis, Shatah, and W. Strauss ) that when n(H) — p(w)
is odd, we obtain only spectral instability of e!“?@,,. To obtain orbital instability due to
(Grillakis, Shatah, and W. Strauss , Theorem 6.1), it is sufficient to show estimate
(6.2) in (Grillakis, Shatah, and W. Strauss ) for the semigroup e’ generated by

{0 L,
a=( 0%

In the case of Schrodinger models on star graphs it is not clear how to prove estimate (6.2).
(ii) When n(H) = 2 (which usually happens in many applications), we can apply the
results by ( , Corollary 3 and 4) to get the instability part of the above Theorem.
We note that in this case the orbital instability follows without using spectral instability.
(ii7) Generally, to imply the orbital instability from the spectral one, the approach by
can be used (see Theorem 2). The key point of this
method is to use the fact that the mapping data-solution associated to the model is of class
C?2. We note in particular, for the NLS-§ (and NLS-§") model (10.1)-(10.2) the mapping
data-solution is of class C? as p > 2 (see Theorem 6.1). The approach by
have been applied successfully in (Angulo, Lopes, and Neves )
and (Angulo and Natali ) for models of KdV-type.

10.2 Stability theory for the NLS-§ on star graphs

In this section we study the orbital stability of the standing wave U(z, x) = e!“! ®(x)
of the Schrédinger model (10.1) for the case of A = Hi defined in (10.2) (henceforth, the

NLS-§ equation) with the profile ® = %, m = 0, ..., [ %51 ] determined by the formulas

in Theorem 7.1. We recall that in the case & < 0, vector @ has m bumps and N — m
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tails (see Figure 7.1). ®§ is the N-tail profile which is the only symmetric (i.e. invariant
under permutations of the edges) solution of equation

S5 —
HO® + w® — @77 'd = 0. (10.9)

In the case « > 0, vector @5 has m tails and N — m bumps respectively (see Figure 7.2).
@f is the N-bump profile which is the only symmetric solution of equation (10.9).

We will investigate orbital stability in the energy space X = £(G) defined in (10.4).
Thus the functional Ey : £(G) — R defined for V = (v_,-)ﬁyzl € £(G) by

Eo(V) = $IIVI]> = Z5IIVIPL] + 4 [ (0. (10.10)
is well defined by the Sobolev embedding theorem and Gagliardo-Nirenberg inequality
(6.13). Thus, by using Theorem 6.1 (continuous dependence property) follows that Ey
is a conservation law for the NLS-§ and so as Q(V) = || V||2. Moreover, for the action
Se = Ey + wQ follows from (10.9) the critical point property of @2, S/, (®2) = 0, for
anyo #Oandm =0, ..., [%] Also, for @7 = ((Pm,j)?]:p we consider the following
two self-adjoint diagonal matrix operators

e = (= g+ Pom™ i),
Loma = ((_ j_; to— (wm,j)p—l>8i’j>7 (10.11)

D(Ll,m,a) = D(Lz,m,a) = Da,S,

where §; ; is the Kronecker symbol. The operators L; ,, o are associated with the second
variation S), (®%) and satisfy the relation in (10.7).

It was shown in (Adami, Cacciapuoti, et al. ) that for =N /o < a < a* < 0,
the vector tail-solution @§ = (o, j)?lzl, with @g,; = @o, for all j and

®o0,a(x) = [@ sech? (W}C + tanh™! (N_ja))]pll (10.12)

it is the ground state. The parameter o* above originates from the variational problem
associated with equation (10.9), and it guarantees the minimality of the action functional

Sa(V) = LIV/|I* + 2IIVIP = S5 VIR + i 0)]%, (10.13)
forV= (v j)jyzl € £(G), at &§ with the constraint given by the Nehari manifold

N ={Ve&@\{0}: IV +ol[VI? = |IVIIT] + alv1(0) = 0}.
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We will see below that when the profile @;, has mixed structure (i.e. has bumps and
tails), they are “almost always” unstable. More exactly, for the space

L2(9) ={V =) € L*(G) : vi(x) = ... = vp(x).

(10.14)
Um+1(x) = ... = vy (x), x > 0},

and £,(G) = £(G) N L2,(G), we obtain the following orbital stability/instability of the
excited states. The case of tail and bump profiles (m = 0) will be study separately.

Theorem 10.2. Leta # 0, m € {1,....[252]}, and 0 > ﬁ Let also the profile

@y be defined by (7.6), we consider the spaces € = E(G) and £y = Ey(G). Then the
following assertions hold.

(i) Leta <O, then
1) for 1 < p < 5 the standing wave e'®' ®2 is orbitally unstable in E;

2) for p > 5 there exists w,;, > 2 such that the standing wave '®' @2 is

o
(N—2m
orbitally unstable in £ as w € (ﬁ wp).
(ii) Leta > 0, then
1) for 1 < p < 3 the standing wave e'®' ®2 is orbitally stable in Ep;
> ﬁ such that the standing wave e'®' @2
is orbitally unstable in £ as v € ((Nf%)z,c?)m), and €' @ is orbitally

2) for3 < p < 5there exists Op

stable in &, as w € (O, 00);

3) for p > 5 the standing wave e'“' @2 is orbitally unstable in E.

In the case of p > 5, @ < 0, and w > w,;, our approach does not provide any infor-
mation about the stability of the excited states @p,. The proof of Theorem 10.2 is based
on the extension theory of symmetric operators, the analytic perturbations theory, and
Weinstein-Grillakis-Shatah-Strauss approach established in Theorem 10.1.

Next we establish the results of stability for the cases of tail and bump profiles.

Theorem 10.3. Let o # 0 and @ be defined by (10.12).

(1) Bump case: Leta > 0,1 < p <5, and o > 1‘:‘,—22

hold.

. Then the following assertions

(i) If1 < p < 3, then €' ® is orbitally unstable in E(G).

(ii) If3 < p <5, then there exists w, > 1"\‘]—22 such thatei“’t<15(‘)" is orbitally unstable
in £(G) for w > w,.
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(2) Tail case: Let ¢ < 0 and w > 3. Then the following assertions hold.

i) If1 < p <5, then eiwtéa is orbitally stable in £(G).
0
ii) If p > 5, then there exists w1 > —“22 such that e*®* ®¢ is orbitally stable in
N 0

E(G) for w < w1, and ei“”<1§°‘ is orbitally unstable in £(G) for v > w;.

In the bump case, we have that for p > 5and 3 < p < 5 (withw € (&5 N2 , 7)) that

our method does not provide any information about orbital stability of e/’ d&.
The proof of Theorems 10.2 and Theorems 10.3 will be developed in the following
subsections. We start with the conditions in Theorem 10.1.

10.2.1 Kernel of operators L; ,, o, i = 1,2,in (10.11)

Let the profile @, = @2 be defined by (7.6), including the case m = 0 (tail and bump
profiles), and we consider the domain Dg s in (10.2).

Proposition 10.1. Leta # 0, m € {0,1, ..., [b]} and w >

> Then the follow-

a2
(N—2m)?"
ing assertions hold for L; o = L; m o
(i) ker(Lz,o) = span{®m} and Ly 4 > 0.
(ii) ker(L1,o) = {0}.

(iii) The positive part of the spectrum of the operators L; o, i = 1,2, is bounded away
from zero.

Proof. (i) Itisclearthat @,, = (¢, ])ﬁv 1 € ker(L2 o). Toshow the equality ker(L2,) =
span{®,,} let us note that any V = (v ]) _, € H?(G) satisfies the following identity

-1 d d ( v
"+ ov; — p_.lv~=—— 2 = I , x>0.
J J (pm,] J (pm,] dx (pm’J dx (pm,]

Thus, for V € D, s we obtain
v ()
dx \ om,j

N o0
(L2,4V. V) Z/(gom,j)z
Y (@m.;)
+ Z [—U}Uj + |U]|2 2 :| Z/(‘/’m,;)z

2

dx

2

Jj=1 0
Jj=1

@)

+ 30,000 - oy 0 L2
2 v (0)v; v;j o © |
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Using boundary conditions (10.2), we get

N

m,j (0
]; [v;(O)vj(O) - |v,~(0>|2%} = ol (O
m N
+ Vv ()] | Y tanh(-ar) + Y tanh(ay)
j=1 j=m+1

= alv1(0)]* + Vo v (0)*(N — 2m) N)f =0,

which induces (L oV, V) = 0. Moreover, since (Lz,aV, V) =0ifand only if V = ¢ @y,
we obtain immediate that ker(L, o) = span{®,}and L, 4 = 0.
(ii) Concerning the kernel of L; 4, the only L2(R 4 )-solution of the equation

” ) p—1
—v; + v —pg, ;v =0

isv; = <p;n ; up to a factor (see ). Thus, any element of
ker(L;,y) has the form V = (v,) = (c,(pmj) —1» ¢; € R. Continuity condition
v1(0) = ... = vy (0) induces that c; = ... = ¢y, i.e.
N P j=1.m
v,(x)—c%(p;n,j’ S=mAl,. N c eR.

N
Condition )’ v;(0) = av;(0) is equivalent to the equality

ji=1

w(1—p) p—1 o? _
( + 2 N— 2m)2)_0'

The last one induces that either v = ﬁ (which is impossible) or ¢ = 0, and there-
fore V.= 0.

(iii) By Weyl’s theorem (see (Reed and Simon )) the essential spectrum of L; 4
coincides with [w, 00). Thus, there can be only finitely many isolated eigenvalues in
(=00, ") for any @’ < w. Then (iii) follows easily. O

10.2.2 Morse index for L, ,, , in (10.11) with m # 0

Let L2,(G) be defined in (10.14) and consider the matrix operator H defined in (10.8)
associated with operators L; ,, o = L; ¢ in (10.11). The main theorem of this subsection
is the following.

Theorem 10.4. Leta # 0, m € {1,....,[27]} and & >
assertions hold.

(Nf—zzm)z. Then the following
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(i) Ifa <0, thenn(H) = 2in L2/(G), i.e. ”(H|L%n(g)) =2
(i) Ifa > 0, thenn(H) = 1 in L2,(G), i.e. n(H|L3ﬂ(g)) =1

The proof of Theorem 10.4 will be based on the perturbation analytic theory and the
extension theory of symmetric operators developed in Chapter 3. For this purpose let us
define the following self-adjoint matrix Schrodinger operator on L2(G) with Kirchhoff
conditionatv =0

LY = (( - ;1_; +o-— Pﬁﬂé)—l)&,j) :

N (10.15)
D(LY) = {V e H*G) :v1(0) = ... = vy (0), Y _v;(0) =0,
j=1
where @q represents the half-soliton solution for the classical NLS model,
1
1 -1 =T
0o(x) = [@ sech? (wx)} . (10.16)

We note that the self-adjoint property of (L%, D(L?)) is a consequence of Theorem

3.5 with Z = 0 and from the property that B = w — pgf ~! is a bounded operator (see
Proposition 3.1). Next, from definition of the profiles @,, in (7.6) it follows

&y = Py — Py, as o — 0, on Hl(g),

where @y = (¢, ..., 9o). As we intend to study negative spectrum of L; o, we first need
to describe spectral properties of LY (which is “limit value” of L1 4 as @ — 0).

Theorem 10.5. Let LY be defined by (10.15) andm € {1, ..., [252]}. Then
(i) ker(L?) = span{Po.1..... Po.n_1}, where

@o,j = (0,....,0, ¢, —¢}, 0, ..., 0).
joogtl

(ii) In the space L2 (G) weitave ker(L9) = span{ao,m}, i.e. for any m we have
ker(L(l)|L%q(g)) = span{Po m}, where

Pom = (Nm;mga(/),..., Nm;mgo(/),—go(l),...,—(pé) : (10.17)
1 m m+1 N
(iii) The operator LY has one simple negative eigenvalue in L*(G), i.e. n(L?) = 1.

Moreover, LY has one simple negative eigenvalue in L% (G) for anym, i.e. n(LY| 2, (g)) =

1.
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(iv) The positive part of the spectrum of L(l’ is bounded away from zero.

Proof. The proof repeats the one of Theorem 3.6 in (Angulo and Goloshchapova ).
We give it for self-contentedness.
(i) The only L2(R)-solution to the equation

" ) p—1
—v; +ovi—pp, vi=0

isv; = ¢ (up to a factor). Thus, any element of ker(L?) has the form V = (v j)?':l =
(cj QD(’));V:l, cj € R. Itis easily seen that continuity condition is satisfied since ¢;,(0) = 0.

N
Condition '21 v} (0) = 0 gives rise to (N — 1)-dimensional kernel of L. It is obvious
ji=
that functions @ ;, j = 1,..., N — 1 form basis there.
(ii) Arguing as in the preV10us item, we can see that ker(LO) is one-dimensional in
L2 (G), and it is spanned on <1§0 m-
(iii) By following a similar analysis as in the proof of Theorem 3.5 and Proposition
3.1, we have that the symmetric operator (L3, D(LJ)) with

1= (- oot ).

and
D(LY) = {VeH*G):v1(0) =..=vn(0) =0, Y v;(0)=0¢.
j=1

has deficiency indices n+ (L)) = 1. Moreover, (LY, D(LY)) in (10.15) belongs to the
one-parameter family of self- adjomt extension of the symmetric operator (L3, D(LJ)).

Let us show that operator Lg is non-negative on D(Lg). First, note that every compo-
nent of the vector V = (v j)j.v=1 € H?(G) satisfies the following identity

-1 —1 d 2d Uj
—v] 4+ wv; — pp§ V= T dx (90)* o)) x> 0.

Using the above equality and integrating by parts, we get for V € D(LJ) the equality

vj 2%
— )| dx + [—v Vi 4 v —]
(ﬁ%) Z ! ‘Po 0

2
dx >0,

(LIV. V) / ) |-

e

o

N
=ZO/<0>2

j=1
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where the non-integral term becomes zero by the boundary conditions for V and the fact
that x = 0 is the first-order zero for ¢}, (i.e. ¢g(0) # 0). Indeed,

N / 20 (x)v (X)pg (x) + Uz(x)ﬁﬂm(x)
Z |:—Uj vj + U2¢_0:| - Z x—>0+ - O(X)

j=1
= O.

Since n4 (L)) = 1, by Theorem 3.11 follows that 7(L?) < 1. Taking into account that

(Lo, @0) = —(p = |0l [ 1) < 0.
we arrive at n(LY) = 1. Finally, since @y € L2 (G) for any m, we have ”(L(l)|L3,,(g)) =1.
(iv) Follows from Weyl’s theorem.

Remark 10.2. Observe that, when we deal with deficiency indices, the operator LY is
assumed to act on complex-valued functions which however does not affect the analysis
of negative spectrum of LY acting on real-valued functions.

Theorem 10.5 give us a good framework for applying tools from analytic perturbation
theory on space L2,(G) for operator LY and so the main point in the analysis will be deter-
mine which is the direction that the simple eigenvalue zero for LY will jump, to the right
or to the left (we recall from Proposition 10.1 that ker(L ) is trivial for any « # 0).

We start our analytic perturbation theory framework with other one characterization
of the self-adjoint operators (10.11). Indeed, for U, V € & written like real and imaginary
parts U = U; + iUy and V = V1 + i V;, then it is easily seen that S”(&,,) (U, V) can be
formally rewritten as

S"(®m)(U,V) = BY,,(U1, V1) + B3 ,,(Uz, V2). (10.18)
Here bilinear forms BY ,,, and B5 ,, are defined for F = (f]) —1,G (g]) ', €Eby

N oo
BT ,,(F,G) = Z / Lt wfigi — plem )P fi81)dx + af1(0)21(0),

i=19

e (10.19)
ma®=2/f&+ﬁ& (om, )P f187)dx + af1 (0)g1(0).

i=lyp

Next, we determine the self-adjoint operators associated with the forms B"‘ in order

to establish a self-contained analysis. First note that the forms B"‘m, j € {1 2}, are
bilinear bounded from below and closed. Thus, there appear self- adjomt operators L ;.
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and L3 », o associated (uniquely) with BY ,, and B ,, by the First Representation Theorem
(see Chapter VI, Section 2.1 Kato ), namely,

LimaV =W, je{l2},
D(Ljma) ={VeE:IW e LAG) s.1. VZeE (10.20)
BY,,(V.Z) = (W.Z)}.

In the following theorem we describe the operators Ly o and L 5, o in more explicit
form and its relation with the operators L; ,,, o, j = 1,2, 1n (10.11).

Theorem 10.6. The operators Ly o and Ly m o defined by (10.20) are given on the
domain D(LLj ;) = Dg.5 by

ILl,m,ot = Ll,m,a, L2,m,a = L2,m,oz

Proof. Since the proof for LLj ;o is similar to the one for Ly ,, o, we deal with Ly 4.
Let BY,,, = BY + Bi,m, where B* : £ x £ — R and By, : £ x £ — R are defined by

N o0
B%(U,V) = Z/ Vidx + o1 (0)v1(0),
j=17

N
Bim(U,V) = Z / w — p((pm,j)p_l)ujvjdx'
Jj=1 0

We denote by L¥ (resp. L ) the self-adjoint operator on L?(G) associated (by the First
Representation Theorem) with B* (resp. By,m). Thus,

LYV = W,
D(LY) ={Ve&:IWe L2(G) s.t. VZ € £, B*(V,Z) = (W, Z)}.

The operator ¢ belong to the family of self-adjoint extensions in (3.24) of the symmetric
operator (Lo, D(Lg)) defined in Theorem 3.5. Indeed, initially we see Ly C L¢. Let
V € D(Ly) and we consider W = (— v”(x))N | € L*(G). Then for every Z € £ we
have B*(V,Z) = (W,Z). Thus, V € D(L*) and L*V = W = (— v”(x)) *_1» wWhich
yields the claim. Therefore (L%, D(IL%)) is a self-adjoint extension for (LO, D(Lo)) and
so Theorem 3.5 implies the existence of Z € R such that D(L¥) = D(Lz).

Finally, we need to prove that Z = «. Take V € D(LL*), with V(0) = (v; (0))?’=l #*
0, then we obtain

N oo
(L*V,V) = Z/(v})zdx + Z(v1(0))%,

J=10
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N oo
which should be equal to B*(V,V) = Y f(v})zdx + a(v1(0))? for all V € £. There-
j=10
fore, Z = «.
Next, we have that L ,, is the self-adjoint extension of the following multiplication

operator
p—1 N
LomV = (@ = plom)? 0;0) . DLom) = £.

Indeed, for V € D(ILg,;m), V = (v,-)?;l, we define
p—1 N 2
W= (@ = plon)"™0i0) | € L%O).

Then for every Z € &£ we get By, (V,Z) = (W,Z). Thus,V € D(L;,,) and L,V =
N
W = ((w — p((pm,_/)p_l)v_,-(-)) - Hence, Lo, € Lj,m,. Since Loz, is self-adjoint,

j =
L1,m = Lom. The Theorem is proved. O

The following lemma states the analyticity of the family of operators L1 ,;, «-

Lemma 10.1. As a function of &, (L1 .« ) is real-analytic family of self-adjoint operators
of type (B) in the sense of Kato.

Proof. By Theorem 10.6 and (Kato , Theorem VII-4.2), it suffices to prove that the
family of bilinear forms (BY,,) defined in (10.19) is real-analytic of type (B). Indeed, it
is immediate that it is bounded from below and closed. Moreover, the decomposition of
BY ,, into BY and By y,, implies that « — (Bf,, V., V) is analytic. O

Combining Lemma 10.1 and Theorem 10.5, in the framework of the perturbation the-
ory we obtain the following proposition.

Proposition 10.2. Let m € {1, s [%]} Then there exist ag > 0 and two analytic

functions A : (—ag, ag) — R and Fp, : (=g, 9) = L2,(G) such that
(i) Am(0) =0andF,,(0) = 50,,,,, where 50,,,, is defined by (10.17).

(ii) Forall o € (—ag, ®p), Am(e) is the simple isolated second eigenvalue of L o in
L2,(G), and Fpy (@) is the associated eigenvector for Ay (ct).

(iii) g can be chosen small enough to ensure that for o € (—ay, ) the spectrum of
L1,m.a in L2/(G) is positive, except at most the first two eigenvalues.

Proof. Using the structure of the spectrum of the operator L‘l’ given in Theorem 10.5(ii)—
(iv), we can separate the spectrum o (L?) in Li (G) into two parts o9 = {19,0}, A9 <0,
and o; by a closed curve I (for example, a circle), such that oy belongs to the inner
domain of I" and o7 to the outer domain of I" (note that o7 C (e, +00) for € > 0).
Next, Lemma 10.1 and the analytic perturbations theory imply that I" C p(Lj ) for
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sufficiently small ||, and 6 (L1 ,«) is likewise separated by I” into two parts, such that the
partof 0 (L; ¢ ) inside I consists of a finite number of eigenvalues with total multiplicity
(algebraic) two. Therefore, we obtain from the Kato-Rellich Theorem (see (Reed and
Simon , Theorem XII.8)) the existence of two analytic functions A,,, IF,, defined in
a neighborhood of zero such that the items (i), (ii) and (iii) hold. O

Now we investigate how the perturbed second eigenvalue moves depending on the
sign of .

Proposition 10.3. There exists 0 < a7 < o such that A (@) < 0 for any a € (—ay,0),
and Ay () > 0 for any a € (0,a1). Thus, in L2,(G) for o small, we have n(Lq m o) = 2
asa <0, andn(Ly ;o) =1lasa > 0.

Proof. From Taylor’s theorem we have the following expansions
Am(@) = Aome + O@?) and Fp(a) = Bom + aFom + 0@, (10.21)

where Lo,m = A,,(0) € R and Fon = 0oFm () |a=0 € Li(g). The desired result will
follow if we show that Ag ,, > 0. We compute for L1 .6 = L1, (L1,oFm (@), Po,m) in

two different ways.
Note that for @, = @5, defined by (7.6) we have

Dp(a) = Po + aGom + O?),

2 ! / / / (10'22)
Gom = 00 Pm()|a=0 = —DWv—=mwe | Po> - Por —Po> - —Po | -
1 m m+l N

From (10.33) we obtain
(L1.aFm (@), Pom) = romal|Pomll3 + O?). (10.23)
By L% » = 0 and (10.33) we get

Ll,aao,k = p ((@)? ! — (@m)?7") 50,k

T ; (10.24)
=—ap(p — 1)(Po)? “GomPom + O(a”).

The operations in the last equality are componentwise. Equations (10.36), (10.34), and
Do m € Dy induce

(Ll,aFm(a)v 5O,m) = ([Fm(a)7Ll,a50,m)

= —(Bom.ap(p — 1)(Po)?2Gom®om) + O(?)
(10.25)

o0
= —2qpi-m / (0) 2ol 2dx + 0(a?).
0
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Finally, combining (10.37) and (10.35), we obtain

2p(N m)
AO,m = -
ma)”(DOmHZ

/(%)3 P720x + O().

It follows that A¢ s, is positive for sufficiently small |«| (due to negativity of ¢ on Ry),
which in view of (10.33) ends the proof. O

Now we can count the number of negative eigenvalues of Ly,  in L2,(G) for any «,
using a classical continuation argument based on the Riesz projection (see Appendix C).

Proposition 10.4. Letm € {1,....[231]} and 0 >

5 Then the following asser-
tions hold.

__ar
(N—2m)2"

(l) ]fOt > O, then n(Ll,m,alL%n(g)) =1
(ii) Ifa <O, thenn(Limalr2 g) = 2.

Proof. We consider the case @ < 0. Recall that ker(Ly o) = {0} by Proposition 10.1.
Define oo by

Qoo =iInf{& < 0 : L1 m ¢ has exactly two negative eigenvalues

forall « € (@,0)}. (10.26)
Proposition 10.3 implies that oo is well defined and a € [—00,0). We claim that
Qoo = —00. Suppose that dee > —00. Let M = n(L; u,0.,) and I" be a closed curve
(for example, a circle or a rectangle) such that 0 € I C p(L .., ), and all the negative
eigenvalues of L ,, ., belong to the inner domain of I". The existence of such I" can be
deduced from the lower semi-boundedness of the quadratic form associated to Ly s ¢, -

Next, from Lemma 10.1 it follows that there is € > 0 such that for ¢ € [otoo—€, 0o €]
we have I' C p(Lymq) and for £ € I', @ — (L1 mq — &) ! is analytic. Therefore, the
existence of an analytic family of Riesz-projections « — P () given by

_ PR
P(a)——zmgﬁlr(u,m,a £ ldt

implies that (see Lemma C.3 in Appendix C)
dim(RanP(a)) = dim(RanP(as)) = M, forall @ € [ooo — €, 000 + €]-
Next, by definition of t/oo, L1 m,an+e has two negative eigenvalues and M = 2, hence

Li,m,o has two negative eigenvalues for @ € (¢ — €,0), which contradicts with the
definition of oo. Therefore, oo = —00. O
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10.2.3 Slope analysis for m # 0

In this subsection we evaluate p(w) defined in section 9.1.

Proposition 10.5. Leta # 0, m € {1, ..., [%]} and w > Let also Jp,(0) =

0o ||PLI13. Then the following assertions hold

__o?
(N-2m)?"

(i) Leta < 0, then

1) for1 < p <5, we have J,(w) > 0;
2) for p > 5, there exists w;, such that J,(w;,) = 0, and Ju(w) > 0 for
w € (ﬁ,w;) while Jy, (@) < 0 for o € (w;),, 00).

(ii) Leta > 0, then

1) for1 < p < 3, we have J,(w) > 0;
2) for3 < p <5, there exists @py such that Jy,(0n) = 0, and J, (@) < 0 for
w € (ﬁ,cﬁm) while Jy, (@) > 0 for w € (&, 00);
3) for p = 5, we have J,(w) < 0.
Proof. Recall that @ = (¢, j)7=1 , where ¢ . is defined by (7.6). Changing variables
we have

1 2
[ A=Hpr-lde, j=1,..,m;

o0 —a
N
[ crax =6 CDE
0 [ Q—=t>)rt dt, j=m+1,..,N.
e N
21 2 1
with G(w) = (”T'H) p %a) p—1 2 Therefore, we obtain
|23 |* = G(w) P(w) (10.27)

with
1 1

P(w) =m / (1—t2)ﬁ_ldt+(N—m) / (1—r2)%‘1dr. (10.28)

o o
(2m—N)Jo (2m—N)Jw



10.2. Stability theory for the NLS-§ on star graphs 143

Thus we get,
Im(@) = cwz7(p31) 57 o) - Ca? 2 (1 &2 )%
Vo Ao (N=2me (10.29)
7-3p
= Cw2(-D 1)J (w),
2
where C = —15 (”Tﬂ)p_l > 0 and
3-p
Tn(@) = 3£ P() - 2% (1 _ m)p—l _
Thus,
3—_P
@) = —g52 3% (1 - m)p [1 + m] (10.30)

(i) Let « < 0. It is immediate that J,,(w) > 0 for 1 < p < 5 which yields 1).
Consider the case p > 5. It is easily seen that

1
lim_ Im(®) = oo, Jim Tm(@) = 5—’1’N/(1 2)p 1dt<0
0

Lo P
(N—2m)?

Moreover, from (10.52) it follows that .7;;1(0)) < 0 forw > ﬁ and consequently

Jm(w) is strictly decreasing. Therefore, there exists a unique w;;, > ﬁ such that
Tm(@}) = Jm(wp) =0,

consequently J,, (@) > 0 forw € (ﬁ a),*;l) and J,;,(w) < 0 for w € (w},, 00), and
the proof of (i) — 2) is completed.
(ii) Let o > 0. It is easily seen that Tm (w) < 0 for p > 5, thus, 3) holds. Let

1 < p < 5. It can be easily verified that

lim Jp(w) = N/ (1- 2)p 1dt>0 (10.31)
w—>—+00
and
5 1 3-p
w—>—22 —00, p € (3,5).

(N—2m)2
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Let 1 < p < 3, using the fact that JN,’n(a)) < 0 we get from (10.31)-(10.32) the inequality
Jm(®) > 0,and (ii) —1) holds. Let3 < p < 5, then J,, (w) > 0, therefore, from (10.31)-

(10.32) it follows that there exists @, > ﬁ such that J,, (&) = Jm(@m) = 0,

moreover, J,,(w) < 0 for (ﬁ W), and J,, (@) > 0 for (&, 00), i.e. (ii) —2)is
proved. O

10.2.4 Proof of Theorem 10.2

In this subsection we proof our main Theorem 10.2 via the framework established in
section 8.1 above.

Proof. From Theorem 6.1 we obtain the local well-posed in £ and &, of the Cauchy
problem for (10.1) in the case of a §-interaction at the vertex v = 0.

(i) Let o < 0. Due to Theorem 10.4, we have n(H) = 2 in L2(G). Therefore, by
Proposition 10.10(i) we obtain

n(Hy) — plw) =1
forl < p<5w> (Nix—22m)2’ and for p > 5, w € (ﬁw;) Thus, from Theorem
10.1 we get the assertions (i) — 1) and (i) — 2) in &,. Since &, C &, we get the results
in€.
(ii) Let @ > 0. Due to Theorem 10.4, we have n(H) = 1 in L2,(G). Therefore, by
Proposition 10.10(ii) we obtain

n(H) - pl) =1

forp > 5w > 2 and3 < p < 5,0 € (ﬁd)’”) Therefore, we obtain

0[2
i (N—2m
instability of e'®’®% in &, and consequently in €. From the other hand, for I < p <

3,0 > ﬁandi% < p<5wce€ (dy,o0),wehave

n(H) — p(w) =0,

which yields stability of e!“’ ®% in &,,. Thus, (ii) is proved. This finishes the proof. [J

Remark 10.3. From Remark 10.1 we recall that when n(H) — p(w) is odd, we obtain
initially from (Grillakis, Shatah, and W. Strauss ) only spectral instability of e'®' ®Z.
To conclude orbital instability from spectral instability we use from Theorem 6.1 that the
mapping data-solution is of class C? for p > 2.
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10.2.5 Morse index for L, ,, o in (10.11) withm =0
The main result of this subsection associated to the tail and bump profiles &§ =
((/)0,,1)97:1 defined in (10.12) is the following.

Proposition 10.6. Letm € {1, ....[Y>1]}, o # 0 and w > 1"\;—22 Then for Lioq = L1

@) fora >0,nL1y) =2in Lf,,(g), ie., n(Ll,a|L(zg)) =2,

(ii) fora <0,n(Ly4) = 1in L2(G), ie, ”(Ll,ot|L3n(g)) =1

Proof. The proof of Proposition 10.6 follows the same strategy as in the prove of Propo-
sition 10.4. We note that Theorem 10.5, Theorem 10.6, Lemma 10.1 and Proposition 10.2
remain true. Thus, there exist &g > 0 and two analytic functions i : (—ag, @9) — R and
F : (—ao,a9) — L2,(G) such that

(i) 11(0) = 0and F(0) = Py, where Py, is defined by (10.17).

(ii) Forall o € (—ap, ), u(x) is the simple isolated second eigenvalue of L; o in
L2 (G), and F () is the associated eigenvector for ().

(iii) oo can be chosen small enough to ensure that for « € (—ay, ®tg) the spectrum of
L1 in L2 (G) is positive, except at most the first two eigenvalues.

Thus, it is enough to investigate how the perturbed second eigenvalue (o) moves
depending on the sign of &. Next we will see that in the space L2,(G) for o small, we have
n(L1g) = lasa < 0,and n(L;4) = 2 as« > 0. Indeed, from Taylor’s theorem we
have the following expansions

w(@) = poa + O(@?) and F(a) = 50,,” + aFy + O(a?), (10.33)

where o = ©'(0) € R, Fo = 04F (@) |o=0 € L,Z,,(g), and 50,,” is defined by£10.17).
The desired result will follow if we show that o < 0. We compute (L; o F (), @o m) in
two different ways.

In what follows, we will use the following decomposition for K(«) = @§ = (fpo,a)jy:l
defined by (10.12) around ¢ = 0

K(a) = @ + aGy + O(a?) (10.34)

where
N

Go = da(K(@)la=0 = -rwa (¢0) /=1 -
From (10.33) we obtain

(L1,oF (@), Bom) = poa||®oml> + O(?). (10.35)
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By L1,0®Po.m = 0and (10.33), we get
Lio@om = p ((@0)P ™" — (6P ™") o m (10.36)
= —ap(p — 1)(Po)? *GoPo,m + O(a?).

The operations in the last equality are componentwise. Equations (10.36) and (10.34)
induce

(L1.aF (@), Bom) = —(Pom, ap(p — 1)(Po)? 2GoBom) + O(?) (10.37)
— Z(XP(N m)/ ((p0)3 2dx + 0(“2)

Finally, combining (10.37) and (10.35), we obtain form € {1,..., N — 1}
2p(N m)

Mo =
mol| o |2

/ (00) 20l 2 dx + O(a).

It follows that 1 is negative for sufficiently small || (due to the negativity of ¢y on Ry).
Thus by using an argument based on the Riesz projection we obtain the statements
”(Ll,a|L3,,(g)) = 2 for any & > 0 and also n(L15a|L%1(g)) = 1forany o < 0. O

The item (i7) in Proposition 10.6 can be obtained without an perturbation analysis and
to be generalized via the extension theory for symmetric operators. That is the objective
of the following.

Proposition 10.7. Leta < 0and w > %5. Thenn(Ly4) = 1 in L?(G).

Proof. We need to repeat the arguments of the proof of Theorem 10.5-(ii i) (i.e. L‘l) has
to be replaced by L; o, and @ by @§). Namely, (L1,o, Dy, s) has to be considered as the
family of self-adjoint extensions of the non-negative symmetric operator

Ly = (( - f—xzz +ow-— P(fﬂo,a)p_1>3i,j),
DY) = {V e HXG) : v1(0) = ... = oy (0) =0, ﬁl v;(0) =0},
i=

with deficiency indices n4 (L) = 1. Note that since & < 0, we have Po.o(x) < 0 for
x > 0 and so the following basic equality is well defined for all x > 0,

_ -1 d
_v”+a)v—p<pg,alv = o |:( 0O{)z < v ):| (10.38)
¢0,a

0,0

Therefore, for V = (v ])l_l € D(LY) the equality

LIV, V) = Z/( M)Z

Jj=1 0
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it is immediate.
By Theorem 3.11 follows that n(L; o) < 1. Taking into account that &F € D(L,q),

(L1.o®g. @) = —(p — DI|®gIIE1] <0,

we arrive at n(Ly 4) = 1 in L2(G). This finishes the proof. O

Remark 10.4. The extension symmetric approach in the proof of Proposition 10.7, by
using the symmetric operator (Lg, D(Lg)), it is not clear that can be used in the case of
bump profiles (o > 0). Although equality (10.38) is still right, at least for x > 0 and
x # zo with ¢} ,(z0) = 0, it is not obvious that the quadratic form (LSV, V) continues
being non-negai‘ive.

10.2.6 Slope analysis for m = 0

The proof of the following Proposition follows the same ideas as the case m # 0 (see

).

Proposition 10.8. Let w > 1“\‘,—22 and J(®) = 0||®&||*. Then the following assertions
hold.

(i) Leta <0, then
1) for 1 < p <5, we have J(w) > 0;
2) for p > 5, there exists w1 such that J(w,) = 0, and J(w) > 0 forw € (N2 , a)l)
while J(w) < 0 for w € (w1, 00).
(ii) Leta > 0, then
1) for 1 < p < 3, we have J(w) > 0,
2) for 3 < p < 5, there exists w, such that J(wz) = 0, and J(w) < 0 for w €
(;—22 wz), while J(@) > 0 for w € (w3, 00);
3) for p = 5, we have J(w) < O.

10.2.7 Proof of Theorem 10.3

In this subsection we proof Theorem 10.3 via the framework established in section 8.1
above.

Proof. (1) For a > 0, from Proposition 10.6-(i ), Proposition 10.1, and Proposition 10.8
-(ii), we obtain

”(H|L3n(g)) —plw) =1
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asp e (1,3, w > X‘,—zz, and p € (3,5), ® > w,. Thus, from Theorem 10.1 we get orbital
instability of e’®’ @g in £, (G) and consequently in £(G).

(2) For @ < 0, from Proposition 10.6-(i i), Proposition 10.1, Proposition 10.8 -(i), we

obtain the orbital stability e'“’®¢ for 1 < p < 5and any w > 1‘1’,—22 and for p > 5 and
w € (;‘]—22, w1). Moreover, applying the approach by

(see Remark 10.1 and Theorem 6.1) we may deduce the orbital instability of e?®? @F from
the spectral one for p > 5 and w > w;.

This finishes the proof. O

10.3 Stability theory for the NLS-§’ on star graphs

In this section we study the orbital stability of standing wave U(z,x) = €'®’®(x)
of the Schrédinger model (10.1) for the case of the self-adjoint operator A = Hi’ (see
Theorem 3.7) acting as

HY V)(x) = (=0 (), x>0,

on the domain D(Hi/) =D, s, where

N
Dy 1= {V € H(9): v}(0) = .. = vj(0). 3 v;(0) = /\v’l(O)}. (10.39)
j=1
In particular, we study the orbital stability of standing wave with the particular N -
tail profile @, 5 = ((pl,j);v=1 under the conditions @3 1 = ... = ¢a, v = @i, and
N, ;(0) = Ag) j (0). Thus we need to have the profile

015 (x) = [@ sech? (wx + tanh ™! (_—\75))]ﬁ (10.40)

. 2 . . .
with w > 1/\{—2 and A < 0. Moreover, @, s € D, s/ and satisfies the stationary equation
HY'® + 0d — @710 =0,

We will investigate orbital stability of U(z, x) = €!®’®; g in the energy space X =
H'(G) inside the framework established in section 8.1.
Next, it consider the following two self-adjoint matrix operators

Lia = (=5 40— plasr”)as).

1 (10.41)

Lot = ((— o5 0= (207 )51,
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with D(L;,2) = D(Ly,) = D, s. Here §;; is the Kronecker symbol. These opera-
tors are associated in a standard way with the second derivative of the following action
functional

N
2
SAV) = HIVIE = ZIVIEE + %) v + 2IvIP,
Z

where V = (vj)ﬁ.vzl € H'(G). Namely,
(S1)"(®;,5)(U, V) = (L1 23Uy, Vi) + (L2 32Uz, V2)

with U = Uy + iUz and V = V; + i V,. Next, we consider the form (S;)" (P, s/) as a

linear operator
. Lix 0
H; = ( 0 Ly, ) (10.42)

The energy functional £, defined by (6.3) belongs to C 2(H'(G),R) and so the analog
of stability/instability Theorem 10.1 is true for e'®* @, s .

The following is the orbital stability/instability properties of the continuous tail profiles
D) 5.

Theorem 10.7. Let A < 0, and v > 11—22 Let also @), s/ be defined by (10.40), and the
space Helq (G) be defined by

HYL(G) =)o) € HY(G) 1 vi(x) = ... = vy (x), x > O},
Then the following assertions hold.

(i) Let1 < p <5.

DIfw < A2 I;+;, then e''® ®, g is orbitally stable in H'(G).

D lfw > 25 T_'l and N is even, then e''®®, g is orbitally unstable in H'(G).

2 2 .
(ii) Let p > 5and w ;é N pﬂ. Then there exists w* > 11—2 such that e"'®®, g is

orbitally unstable in H (G) for v > w*, and e"'® ®; g is orbitally stable in Helq (9
forw < w*.

The relative position of w* and —f}—f} is discussed in Remark 10.6. In the case

N = 2 the above result coincides with Proposition 6.9(1) (partially) and Theorem 6.11 in
(Adami and Noja ).
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10.3.1 Spectrum of operators L; 1,7 = 1,2,1in (10.41)
Next we give the description of the spectrum of the operators L ; and L, 3 defined
in (10.41).

Proposition 10.9. Let A < 0 and w > then the following results hold.

12’
(i) ker(Lp,z) = span{®, s/}, and L, 5 > 0.

(i) Ifo < X5 Pfl then ker(Ly ;) = {0}, and n(L ;) = 1.

@(iii) If o = N—zp—ﬂ then n(Ly ;) = 1, and the kernel of L, , is given by ker(L; ;) =

span{du’l, - QA’A,N—l}, where

¢A ] - (0, ,0 (px 8 (px 8§ O, . ,O) (1043)
j j+1

@iv) Ifo > 12 §+}, thenker(Ly 3) = {0}, and n(L; 1) < N. Moreover, for N even in

the space
Lz%(g) ={V = (Uj)ﬁ-vzl IS Lz(g) 1v1(x) = ... = vn(x), x > 0},

we have n(Ll,)LILZ%(g)) =2

(v) The rest of the spectrum of Ly ) and L, , is positive and bounded away from zero.

Proof. (i) Itisclearthat @ 5/ € ker(L, 3 ). Toshow the equality ker(L, 1) = span{®, s/}
let us note that any V = (v ]) _, € H?(G) satisfies the following identity

1 d d oF
Y R [ J ] > 0. 10.44
Vit ov; —(as)" v, GDA 5 dx a8 dx <§0A,6’> » X ( )

Thus, for V € D, s/, we obtain from (10.44), (10.39), and (10.40)

(LyaV.V) = i /0 ) wf,y[;—x( YN + R, (10.45)
j=1

Pr,8
where

N N
RN = %[ > v (0)]2 - % > v3(0). (10.46)
j=1 j=1

The term R,y if positive for A < 0 by Jensen’s inequality applied to f(x) = x2. Thus,
(Ly AV, V) = 0for Ve D, s N[span{d; s3]+ which proves (i).
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(ii) Concerning the kernel of L, 3, we recall that the only L?(R)-solution of the
equation
v 4+ wv; - p(pas)? v, =0

is given by v; = ¢ , (up to a factor). Thus, any element of ker(L;,3) has the form

V=), =(c;e)s))=1. cj €R.

If v{(0) = ... = v}y (0) # 0, then by (10.39) we get c; = ... = ¢y # 0, and conse-
quently N <,0)L 8'(0) = )L(,a)L 5/(0). Therefore, v = 1)\{—22, which is impossible. Otherwise,
the condition v’; ’.(0) = 0 implies that ¢} 4, (0) = 0, which is equivalent to the identity

_N?p+1
A2 p—1
Thus, we getthatc; = ... =cy =0and V=0 forw # ])\(22 pfl
The proof of the equality n(L, ;) = 1 forw < 1}’2 1’+1 is similar to the one in the

case of the operator L ¢ defined by (10.15). Namely, denotmg

n=((- j22+w @)™ )81). (10.47)

we define the following symmetric operator Lj, = I; with
N
D(L}) = {V € H*(G): v}(0) = . = vy (0) = 0. 3 v;(0) = 0}.
j=1

From Theorem 3.7 follows that L, ; is the family of self-adjoint extension of L;,. Let us
show that the operator L;, is non-negative. First, note that any V = (vj)ﬁ-vzl e H?*(G)
satisfies the following identity

— d Vi
—v/~/+a)v~— /p_IU'Z—_[ ! /2_( ! ):I’ x> 0.
Jj J p((p)ﬁ.,(g ) J (p/ ’ ((pA,(S ) X (pi’s/

Using the above equality and integrating by parts, we get for V € D(L;)

v = 3 [k [ e S0 e

Taking into account that

150 ) Aw N2
02(0) 28 s
() 00 j(@ﬁ(ﬁ—l—(p—i- 1)%), (10.48)
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. 2 .
we get non-negativity of Ly for v < N= 2+l By extension theory follows that n (Lip) £

A% p—1
1. Moreover, due to
(Lia®rs, Pas) = —(p— Dl|Pasllhl) <0,

we finally arrive at n(L; 3) = 1, and (i7) is proved.
(iii) From the proof of item (i i) we induce that n(L; ;) = 1, and the kernel of L, 3 is

nonempty as w = IX—; z—fll. Moreover, we know that any element of the kernel has the form
V= (vj)ﬂ.\;1 = (cjfpi’a,);v:l, cj € R, and it is necessary that v (0) = ... = vj(0) = 0.

Hence, the condition

N
Aj(0) = ;(0) =0 (10.49)
j=1

givesrise to (N —1)-dimensional kernel of L; ;. Since the functions (IS;L’]-, 1<j<N-1,
defined in (10.43) are linearly independent and satisfy the condition (10.49), they form the
basis in ker(L; ), and (i77) is proved.

(iv) Theidentity ker(L; 1) = {0} wasshownin (i7). To show the inequality n(L; ) <
N we introduce the following minimal symmetric operator L, = I; with

v1(0) = ... = v} (0) =0,

D(Lmin) = Ve H* @) Vo) N0y =0 (°

(10.50)

where ) is defined in (10.47). The operator L; , is self-adjoint extension of Ly;,. From the
formula (10.48) it follows that L., is a non-negative operator. Itis obvious thatL*. =1,
DL:.)=H 2(G). Then, due to the von Neumann formula (for L, acting on complex-
valued functions)
D(LE) = D(Luin) & span{Vl, .. VVy @ span{V',, .. VY3,
where ) o
VL =0,.., e‘JjEX, 0,...0), Im(J%i) >0,

and consequently 74+ (Liin) = N. By extension theory, n(L; 2) < N.
Let N be even. It is easily seen that 74 (L) = 2 in L2, (G). Indeed,
>

D(L:lin) = D(Liin) ® SPa”{V,'l,viz} @ Span{vl_i,vii},
where
VL = (ei‘/gx LeiVER g 0)
4+ 1 ) ’ N/2 7N/2+1’ 7N ’
and
Vi, =(0,.., 0 eiVEX ei“/gx).
*i U7UON2 N2+ DTN
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By extension theory, we get n(L; ;) < 2 in L2 ).

Next, we introduce the following quadratic form IFy,, associated with the operator L;

N 00
Fia®V) = VI +olVIP=p / (@257 [0, Pdx + &
170

with D(F; ;) = H(G). Let

— / / / /
Dy = (Ph s Pasr Do Do)
1 N/2  N/2+1 N

then integrating by parts we obtain

00
Fl,k(cp;) = N/ 901,5/ (_('03(:8/ + w‘/’i,g/ - p((pk,tg’)p_lgoi,(g/) dx
0

- N@i,g/(O)wi’,g/(O)

- gro[(52) (- )] (-1-0 0%,

N2 p+1

) . Since (L1 2P 5, Pas7) < 0, we get by orthogonality

which is negative for v >
of @;" and &, s

Fia(s®ags +r®;) = [sPFi(®15) + [rPF{,(®7) < 0.

Thus, we obtain thatIFy ; is negative on two-dimensional subspace M = span{®, s, ®; }.
Therefore, by minimax principle, we get n(L; ;) > 2. The assertion (iv) is proved. The
proof of item (v) is standard and relies on Weyl’s theorem. This finishes the proof of the
Proposition. O

10.3.2 Slope analysis

Next we study the sign of 9, || @, s/||*.

Proposition 10.10. Let w > A <0, and J(0) = 3,||Py 5

&

(i) If1 < p <5, then J(w) > 0.

(ii) If p > 5, then there exists ™ such that J(w*) = 0, and J(w) > Oforw € (y—;,a)*),
while J(w) < 0 for w € (w*, 00).
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Proof. Recall that @; 5 = (¢; 5).
change of variables

i=1> where ¢, s/ is defined by (10.40), we have via

2 2 1
o0 1\7P-1 2wP-1 2 [l 2
/ (rg (0)2dx = (£ = / (=271 'dr.
0 ’ 2 P — 1 N
Alve
From the last equality, we get
7-3p ) 2
_1=3p_ 1
J@) = Co?P D i), €= (%) . (10.51)
where
s, ! , =P N 3=p
Ji(w) = p—_’l’/ N (1—=t7)r-1dr + Iklf(] )Lza)) -1,
AlVe
Thus,
2 3__117 2 2 —2(p_12)
3— N2\ - N N =
Ji(w) = ‘Ww%/z P 11)[(1 - m) + m(l - m) ] (10.52)

It is immediate that J(w) > 0 for 1 < p < 5. Consider the case p > 5. It is easily seen

—-p 1 3=p
lim Jy(w) = —/ (1—13)Pr-1dt <0, hm Ji(w) =
w—>+00 -1 Jo PN 2

A

Moreover, from (10.52) it follows that J{(w) < 0 for v > JX—;, and consequently Jq ()
is strictly decreasing. Therefore, there exists a unique w* > 11—22 such that Jy(w*) =
J(w*) = 0, consequently J(w) > 0 forw € (1)\(—22,0)*), and J(w) < 0 for w € (w*, 00).

O

10.3.3 Proof of Theorem 10.7

In this subsection we proof Theorem 10.7 via the framework established in section
10.1 above.

Proof. (i) 1) Combining Theorem 6.3, Theorem 10.1 (adapted to the case of the NLS-§’
equation), Proposition 10.9 (items (i), (ii) and (v)), and Proposition 10.10-(i), we get
stability of !’ @, s in H'(G).
2) Combining Theorem 10.1, Proposition 10.9 (items (i), (iv) and (v)), and Proposi-
tion 10.10-(i), we get orbital instability of e’®’®;, s in HY, (G) (compare with Remark
2

10.1-(i7)). We note that well-posedness of the Cauchy problem associated with equation
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(4.3) in HY, (G) follows from the uniqueness of the solution to the Cauchy problem in
k3

H'(G) and the fact that the group e"mi/ preserves the space H ), (G). Finally, instability
z
in the smaller space H } (G) induces instability in all H'(G).
z

(i) Relative position of ®* and w = IX—; ‘;—1'11 is not clear (see Remark 10.6), which

complicates the analysis in the framework of Theorem 10.1. But we can overcome this
difficulty restricting the operator L; ; onto the space qu (G). Moreover, we introduce

H,,(G) = H'(G) N LZ,(G). We note that H,, (G) is also preserved by the group ity
(see (Angulo and Goloshchapova ) -

Recall that L, ; is the self-adjoint extension of the minimal symmetric operator L, de-
fined by (10.50). It is easily seen that the operator Ly, | 12,(9) satisfies D+ (Liin| 12, ©) =

spani(e’ ‘/Ex)ﬁ.v:l}. The last equality, implies by extension theory and relation
(Lia®Prs . Prs) <O,
with @, 5/ € qu(g), thatn(Ll,A|qu(g)) =1

. . 2
Without loss of generality we can assume that w* # M- ptl

A2 p—1°
conclusions about orbital stability are based on Theorem 10.1 for the spaces H!(G) and
H elq (9), Remark 10.1, Theorem 6.3, Proposition 10.9, and Proposition 10.10. Consider 2
cases.

1. Suppose that w* <

All our forthcoming

N2 p+1
22 p—1°

Letw < 0* < IX—;’;—:I, then n(Ly 1) = 1in L?(G) and we have 3, ||®; s[> > 0.

Therefore, e'®! @, s is orbitally stable in H'(G), and hence in H,', ().

fo* <o < Y28 then n(Ly,1) = 1in L2(G) and 3|51 < 0, which
induces orbital instability of e’“’®; s in H!(G).

Letw > [X—jf,—ﬂ > w*. Then n(Ll,A|qu(g)) = 1 and also ,||® ¢||*> < 0, which
induces orbital instability of e’®’®; 5 in H} (G) and consequently in H!(G).

q
2. Suppose that w* > N2 pH1

A2 p-1
Ifo < 1}’—;5’}—3 < w*,thenn(L; ) = 1in L2(G) and 9, ||®; s||* > 0, consequently

e'®'®, s is orbitally stable in H'(G), and therefore in H,,(G).

Iffj—j;—f; < < o*, then n(Ly |2, () = 1 and d,|®, 57| > 0, which induces
stability of e'®*®; s in Helq Q).

Letw > o* > ]X—j;—fll, thenn(Lyalz2, (g) = 1and dw||®; s||* < 0, which induces
orbital instability of e’ ®; 5 in H,,(G) and consequently in H'(G).

Summarizing all the cases, we get for > w* nonlinear instability of e!“’®; 5 in
H'(G), and for o < w* stability of e'®’ @, s at least in H,,(G). This finishes the proof.
O
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Remark 10.5. (i) It is worth mentioning that the orbital instability result follows easily
for 2 < p < 5 from the spectral instability using the fact that the mapping data-solution
for (4.3) is of class C? (see Theorem 6.3 and Remark 10.1-(iii)).

(ii) Observe that for p > 5 the orbital instability results are obtained via classical
approach by without using spectral instability.
Otherwise, the orbital instability can be deduced from the spectral one since for p > 5 the
mapping data-solution for (4.3) is of class C2.

Remark 10.6. Note that the integral appearing in (10.51) (via change of variables) is
related to the incomplete Beta function

N _ [ - b—1
B(y,z,b)_/o x 2(1—x)"""dx,

with b = —=. Using basic numerical simulations, one can show that for p = 6,7, ...,
relation w* > {;’2 2 J_rl holds. By the continuity of the function J as a function of p, we

N2 p+1
get the relation w™* > = p I

We conjecture that w* >

in the neighborhood of every integer p > 5.

N2 p+1
)»2
10.1 implies the following stablhty propertles of e'®! @, g in the case p > 5:

holds for any p > 5. This conjecture by Theorem
(i) ifwe (11—22, y—;g—f}), then e/®!®; g is stable in H'(G);
(ii) ifw € (X—;‘;—J_r}, w*) and N is even, then e!*’ &, g is unstable in H'(G).

(iii) Inthe case w = @™ and p > 5 we conjecture due to (Ohta , Corollary 2) that
the standing wave '’ @, s/ is unstable.

10.4 Stability theory for the NLS-log-§ on a star graph

In this section we consider the following NLS equation with logarithmic nonlinearity
on star graph G (NLS-log-§ ),

i9,U—H3U + ULog|U|? =0, (10.53)

with the §-interaction operator Hg defined in (10.2). ‘
We are interested here in the stability properties of the standing wave e’“* ¥, 5 € Dy s
where ¥, s = (1//0,,3)?;1 is of Gaussian type

wt1  G-x)?
Yas(x)=e 2 ¢ 2 , a#0,0eR. (10.54)

Our main result is the following.
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Theorem 10.8. Let w € R, and ¥y 5 = (1//0,,5)?':1 be defined by (10.54). Then the

standing wave ei“’tsl/a,,g is orbitally stable in ng (G) for any a < 0, and ei“”llfa,g is
spectrally unstable for any a > 0.

The strategy of the proof of Theorem 10.8 is analogous to the one in the previous case
of the NLS model (10.1) with power nonlinearity. In particular, we will use the adapted
(weaker) version of the stability/instability Theorem 10.1 (to the specific Gaussian profile
¥, s and the space ng (9)).

Consider the following two harmonic oscillator self-adjoint matrix operators with do-
main D(T} ) = D(T2,4) = D% defined by

To = (-5 + - 22 -3)a)).
oo = (= g+ 0= 5= 1)) 1059
D% : = {v e W2(G) : v1(0) = ... = vy (0), i v(0) = avl(o)},

ji=1
where §;, ; is the Kronecker symbol. These operators are associated with Hy 105 1= (Sa,l0g)” (Wa.6)>
where +1
1)
S(x,log (V) = Ea,Log (V) + T ” V” 2

_( Tia O
Hot,log = ( 0 T2,oz ) .

Noting that for any @, 9 ||¥a.5]|* > 0, Eq,loe € C(W2(G), R) (see

( , Proposition 2.3)), and combining ( , Theo-
rem 3.5) with ( , Theorem 5.1), we can formulate
the stability/instability theorem for the NLS-log-§ equation.

and in a standard way,

Theorem 10.9. Let o # 0, and n(Hg,1o5) be the number of negative eigenvalues of Hy jog.
Suppose also that

1) ker(|Ta,q) = span{Ws},

2) ker(T1q) = {0},

3) the negative spectrum of Ty, and T, o consists of a finite number of negative
eigenvalues (counting multiplicities),

4) the rest of the spectrum of T2 o and T o is positive and bounded away from zero.
Then the following assertions hold.

i n(Hg.10z) = 1, then the standing wave e'®* W, s is orbitally stable in .
(i) Ifn(Ha,10g) = 1, then th d 7% bitall bl ng(g)

(i) Ifn(Ha,l0g) = 2 in Li (G), then the standing wave e'“* W, s is spectrally unstable.
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Remark 10.7. (i) By saying ¢'®'¥, s is spectrally unstable we mean that the spectrum

of the linear part
0 T
Aa,log = ( —Tl . 6,0( )

of the linearization of the NLS-log-§ equation around ¥, s contains an eigenvalue with
positive real part.

(ii) Initem (ii) of Theorem 10.9 we affirm only spectral instability since we can’t ap-
ply neither ( , Corollary 3 and 4) (since we don’tknow if Eq 1o € C2(W5l (9),R)),
nor ( , Theorem 2 Remark, Section 2) (since we don’t
know if the mapping data-solution associated to the NLS-log-§ equation is at least of class
C? around ¥, 5) to prove orbital instability (see Remark 10.1 above). We recall that global
well-posedness Theorem 6.4 was not obtained via the Banach Contraction Principle.

10.4.1 Spectrum of operators T; o, = 1,2, in (10.55)

Next we study the spectral properties of T; o and T o. To investigate the spectrum
of the operator T; o we will use the perturbation theory analogously to the previous case
of the NLS-§ equation with power nonlinearity. In particular, define the following self-
adjoint Schrodinger operator on L2(G) with Kirchhoff condition at v = 0

Ty = (( - ;—; - 3)5,~,,-), (10.56)
D(T10) = {V e W2G) : 11(0) = ... = vy (0), i‘ v (0) = o}.
j=1

As above T; o “tends” to Ty ¢ for « — 0. In the next Theorem we describe the spectral
properties of Ty .

Theorem 10.10. Let Ty o be defined by (10.56) and k € {1,..., N — 1}. Then the follow-
ing assertions hold

(l) kel'(Tl’()) = span{i’o,l, cees @0,N—1 }, where

x2

o, = (0,...,0,95, —5,0,...,0), Yo(x) =e 2.
] j+1

(ii) In the space Li(g) we have ker(T1,0) = span{@iogk}, where

Tox = (NT—’C%,..., NT—"%,—%,...,—%), (10.57)
1 k k+1 N

ie. ker(Tl,OlL%(g)) = span{¥ i }.
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(iii) The operator T,0 has one simple negative eigenvalue, i.e. we have n(T19) = 1.
Moreover, operator T1,o has one simple negative eigenvalue in L,2c (9), i.e. we have

n(T1,0|L%(g)) =1
(iv) The spectrum of T1 g is discrete.

Proof. The proof of items (i)-(i i) repeats the one of Theorem 10.5 (i)-(ii).
(iii) We will follow the ideas of the proof of item (i i7) of Theorem 10.5 and Lemma
4.11 in (Angulo and Goloshchapova ) (see Chapter 3). Denote

th) = (<— ;l—xzz +x2—3>5,~,1~>.

First, one needs to show that the operator Ty acting as To = #y on
N
D(To) = {v € WG) 1 01(0) = ... = vy (0) = 0.3 v/(0) = o}.
j=1
is non-negative. The proof follows from the identity
—-1d d [v;
v+ (x? =3, = ——[(1//’)2—<—])], x >0,

J P e dx LT dx Ny

forany V = (v;)ﬁy:l e W2(G).
Next we need to prove that n1(Tg) = 1. We use the ideas of the proof of
( , Lemma 4.11). First, we establish the scale of Hilbert spaces
associated with the self-adjoint non-negative operator T = ¢y + 3/ defined on

N
D(T) = {v € WG): 01(0) = ... = vy (0), Y (0) = o}.
j=1
Define for s > 0 the space

(1) = {V e L2@) : [Vls2 = [ T+ 1)2V] < o0} .

The space $(T) with norm || - ||5,2 is complete. The dual space of $4(T) is denoted by
$_5(T) = $5(T)’. The norm in the space $_;(T) is defined by the formula

IVl-s2 = 1T+ D72V
The spaces $;(T) form the following chain

' ©52(T) € H1(T) € LA(G) = Ho(T) € H_1(T) C H_,(T) C ...
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The norm in the space $1(T) can be calculated as follows

IVIZ, = (T+ DYV (T + 1)'/?V)

N 00
Z/O (V@) + [0, 0)P + x2[v; () 2) dox,
j=1

Therefore, we have the embedding $1(T) — H'(G) and, by the Sobolev embedding,
$H1(T) — L°°(G). From the former remark we obtain that the functional §; : $;(T) — C
acting as 81(V) = v1(0) belongs to $1(T) = $_1(T), and consequently §; € $H_»(T).
Therefore, it follows that the restriction Ty of the operator T onto the domain

D(To) = {V € D(T) : §;(V) = v1(0) = 0} = D(To)

is a densely defined symmetric operator with equal deficiency indices ni("fo) = 1. By
extension theory we obtain that the operators Ty and Ty have equal deficiency indices.
Therefore, n(T;,9) < 1. Since Ty 0¥y = —2¥,, where ¥ = (Wo)ﬁ-vzl, we get n(Ty,0) =
1. As ¥y € LZ(G) for any k, we getn(Tiol2(g) = 1.
(iv) With slight modifications we can repeat the proof of ( ,
Theorem 3.1, Chapter II) to show that the spectrum of T ¢ is discrete by lirf (x2=3) =
X—>T00

400, i.e.
0(T1,0) = 0p(T1,0) = {io,j}jeN-
In particular, we have the following distribution of the eigenvalues
Mo, < Ho2 << Ho,j <o
with pg,; — 400 as j — 4o0. [
Proposition 10.11. Letk € {1,.... N — 1}, o # 0, and ¥, s be defined by (10.54). Then
(i) ker(T2,q) = span{Wo,s} and To,q > 0,
(i) ker(Tyq) = {0},
(@ii) fora > 0,n(Tiq) =2in Li(g), ie. n(Tl,a|L%(g)) =2,
(iv) fora <0, n(T14) = 1in L*(G),
(v) the spectrum of the operators Ty o and To 4 in L*(G) is discrete.

Proof. (i) We only need to note that any V = (v j)ﬁ.v:l € W?2(G) satisfies the following
identity

-1 d d / vj
" _ o 2_1 - 2 J .
Vi + ((x = )7 = D; Vg dx [1/4,,,3 dx(W(x,B)} x>0
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(ii) The proof is standard. It is sufficient to note that any vector from the kernel of
T}, has the form V = (vj)?’:l, where v; = c;¥, 5 ¢j €R.

(iii) The proof of this item is analogous to the one of the item (i i i) of Proposition 10.4.
It suffices to note that for the operator T 4 the coefficient (o in the decomposition (10.33)
is negative. Indeed, (see the proof of Proposition 4.17 in (Angulo and Goloshchapova

)
2N k) [

k1o k> Jo
where Wy . is defined by (10.57).
(iv) To show the equality in the whole space L?(G), we need to repeat the arguments

of the proof of Theorem 10.10-(i77) (i.e. T1,0 has to be replaced by T o, and ¥ by ¥, 5).
(v) The proof follows from (Berezin and Shubin , Chapter II, Theorem 3.1). [

o = x(Y)2dx + O(@),

Proof. [Proof of Theorem 10.8.] Combining Theorem 6.4, Theorem 10.9, Proposition
10.11, we get orbital stability of e’“’ ¥, s in ng (G) for @ < 0 and spectral instability of
ey, s fora > 0. O



In this Appendix, we will give some basic notions about distributions.

Definition A.1. Let X C R”. A4 linear form u : C.(R") — C is called a distribution, if
for every compact set K C X, there is a real number C > 0 and a nonnegative integer

N such that
[(u.g)| <C Y supd“e (A1)
le| <N
SJorall ¢ € CZ°(X) with suppp C X. The vector space of distributions on X is denoted
by D'(X).

Inequalities such as (A.1) are called semi-norm estimates.
The vector space structure of D’(X) is defined in the natural way:

(u+v,¢)=(u,¢)+ (v,¢), u,v e D'(X), p € CZ(X) A
(cu,¢) = c(u,¢), u e D'(X), c € C, ¢ € CZ(X) (A-2)

A simple, but important example of a distribution is the following.

Example A.1. Let X C R” be an open set, and let f € C°(X). We have that
(£:0) = [ foas (A3)

is a distribution.
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The fact of f be a distribution follows from

o

where K C X is a compact set and

< sup|¢|/K|f|dx, b € C(K).

CO(K)={¢p: ¢ C[R"), suppgp C K}.
Remark A.1. Note that the function locally integrable are also distributions.

Another basic example is the Dirac distribution.

Example A.2. Let X an open set of R" and y a point of X, then the §,, € D'(X) is defined
by
(8y.¢) =9 (»). ¢ € C(X). (A.4)

Now, we define the notion of convergence to zero in C°(X).

Definition A.2. Let X C R”" an open set. A sequence {¢;}jen in CX°(X) is said to
converge (or tend) to zero in CZ°(X) if

(i) the supports of the ¢; are contained in a fixed compact subset K of X ;
(ii) for each multi-index o, the 0%¢ converge to zero uniformly as j — oo.

Definition A.3. Let X C R”" be an open set, and let u € D'(X). The support of u, written
as supp u, is the complement of the set

{x € X; u = 0 on a neighbourhood of x}.

Note that this is a closed set of X. For example, the support of §g is the origin. It
follow that § = 0 in R” \ {0}.

Proposition A.1. Letu € D' and ¢ € CX(X). If the supports of u and ¢ are disjoints,
then (u,¢) = 0.

Now, we define the notion of convergence of distributions.

Definition A.4. Let X C R” an open set, and let {uy, }neN be a sequence of distributions
on X. The sequence is said to converge in D'(X) tou in D'(X) if

lim (uj,¢) = (u,¢) forall p € CX(X). (A.5)

n—+oo

The following classical example of convergence of functions in D’ is a direct conse-
quence of dominated convergence theorem.
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Example A.3. If{f;}eN is a sequence which converges almost everywhere to a function
f, and there is a function g € L} (X) such that | f;j| < g forall j, then f € L} (X)

loc loc

and f; — finD'(X)as j — oo.

Remark A.2. Note that this includes the simple case of a sequence of continuous functions
which converges uniformly on compact sets.

Now, we define the derivative of distributions.
If u € CY(X), then the distribution which is equal to the derivative dy,u, where
i=1,2,..,n,is

(0x,u. ¢) = /qbax,.udx = —/uaxl.qbdx, ¢ € CX(X),

by an integration. One can write this as
(iu, @) = —(u,0ip),i =1,...,n, ¢ e CX(X). (A.6)

Note that, the expression (A.6) makes sense for any u € D’(X) and it is not difficult to
show that 0, u is a distribution if u is a distribution.

Definition A.5. Let u € D'(X). The distributions 0, u defined by (A.6), are called the
first order derivatives of u.

We empathize that a distribution has derivatives of all orders. For one can iterate (A.6)
to obtain

(0°u.¢) = (D (. 5%¢). ¢ € CX(X)
Example A.4. Take X = R. The Heavside function H is given by

I, ifx >0,

A7
0, ifx<0. (A7)

H(x) = %
To compute his derivative, one has
o
(0H. ) = ~(H.08) == [ d:p()dx = 90). ¢ < CX(R).
Hence, 0, H = 6.

A.1 Tempered distributions

Now, we give the definition of a special class of distributions.
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Definition A.6. The space of tempered distributions S'(R") is the subspace of D' (R")
consisting of distributions which extend to continuous linear forms on the Schwartz space
SR™).

We shall define Fourier transform on S’(R”).

Definition A.7. The Fourier transform of u € S'(R") is the distribution i € S’'(R")

given by
(n,d) = (u,9), p € SR™). (A.8)
a—1
For Re o > 0, the tempered distribution gf(—a) is defined as a locally integrable function
by
191 1 teo
)= [ e,
I'(a) I'(@) Jo
where I denotes the classical gamma function (see Stein and Shakarchi ).

Example A.5. The simplest example is the Fourier transform of Dirac distribution on R".
Indeed an easy calculation gives

(6.0) = (5.8) = $(0) = (1.§), ¢ S'(R")R").

For more details about the tempered distributions we refer the reader (Friedlander

).

A.2 Adistribution obtained by an analytical continuation

Now, we will define a distribution, by analytic continuation, that was used to study the
KdV equation on a Y junction on the Chapter 5.
Take X = R and define a function x > x4 by setting

A.
0, ifx<O. (A9)

%x, ifx >0
X4 =

IfA € Cand Re A > 0, then x — xi‘l is locally integrable and so determines a
distribution,

(xi—1,¢> - /Ooo Plp()dx, ¢ € CP(R). (A.10)

By using a theorem of Lebesgue integral we can differentiate with respect to A under
the integral sign. The second member of A.10 is C! and satisfies the Cauchy-Riemann
equations, hence is analyticon C* = {1 € C : Re A > 0}. Thus (A.10) gives an analytic
function from C* to D’'(R).
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We easily have
8xi = )Lx_’}__l, whenRe A > 0 (A.11)

. Let us now define the distribution x*~! by setting

A1 1 k Atk—1
+ AMA+D ... A+k=1) ~7F

where k is a nonnegative integer chosen so that Re k + A > 0. Explicitly, one has

a1\ (=¥ % atk—1qk
<x+ ’¢>_A(A+1)...(A+k—l)/0 g (dx,

for ¢ € C°(R).

Note that, by partial integration this coincides with (A.10) when Re A > 0.
The gamma function has the same poles that the distribution xi‘l, and its residues at

the point A = —k is (—1)¥ / k! (see Stein and Shakarchi ). Define E) € D’ by
Ey=x2"Yr(), Ae@; E =08 k=01,...

Then A — E is analytic in £2 and continuous in C. An elementary argument shows
that £ is analytic on C (see Stein and Shakarchi ). Note that one has, by (A.11)

0xE) = E)_1. (A.12)
Can be proved that £, € S’(R) for A € C and your Fourier transform is given by

E, = e 7 e —i0)h,

A.3 Riemann-Liouville fractional integral

The method used on Chapter 5 for constructing solutions of certain Cauchy problems
for the KdV equation on star graphs exploits properties of a fractional integration operator
whose properties are described in this section.

For Re o > 0, integration by parts implies that

a1 toz+k—l
+ — ak +
I'(a) ! (F(a—l—k))
for all k € N. This expression allows to extend the definition, in the sense of distributions,

t()l*]

of%toalla eC.
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The integration of an appropriate contour yields us

. A(r) — e 2T _ ()@ (A.13)
' () N ' ’

where (7 —i0)7¢ is the distributional limit.
Definition A.8. If f € CS°(R™), we define

a—1
t+

Iof = I'(@)

* f.

Thus, for Re @ > 0,

_ 1 ! _ a1
LSO = 7 /0 (t — )% f(s)ds
and notice that

Lf=f DO = [ f6s Taf = ad LTy =Turs.

The following results state important properties of the Riemann-Liouville fractional
integral operator . The proof of them can be found in (Holmer ).

Lemma A.l. If f € CP(RY), then I, f € CP(RY) foralla € C.

Lemma A.2. I[f0 <a < oo, s € Rand ¢ € Cg°(R), then we have

IT-ahll gy < il goba gy (A14)
and

loZahll my@+) < ol my—e@+)- (A.15)

a—1
For more details on the distribution tlf(—a) we refer the book (Friedlander ).



In this appendix, we give the principal definitions and properties of the functions
spaces used in this book.

B.1 Sobolev spaces

We start by defining the L2-based Sobolev spaces on the positive half-line.

Definition B.1. For s > 0 we say that ¢ € H*(RY) if exists 5 € H*(R) such that
¢ = @|r+. In this case we set || P gsw+) := inf ||| gsw). Fors > 0 define
¢

Hy®®) = (¢ € H'R): supp(9) C [0.+00)].

Fors < 0, define H*(R%) and H§(R") as the dual space of Hy*(RY) and H—*(RY),
respectively.

Now, in a similar we define the Sobolev spaces posed on a star graphs given by two
positive half-lines and a negative half-line, that was used in Chapter 5.

Definition B.2. We define the usual Sobolev spaces for functions defined on the junction

Yas
HS(Y) = HR™) x H*(RT) x H*(R™). (B.1)
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Also define
CERY) = {¢ e C®(R); supp($) C [0, +oo)}

and C§% (R™) as those members of C§° (R ™) with compact support. We recall that 5% (R™)

is dense in H3(R™) forall s € R. A definition for H*(R™) and H§(R™) can be given
analogous to that for H5(R*) and H§(R™).

The following results summarize useful properties of the Sobolev spaces on the half-
line. For the proofs we refer the reader (Colliander and Kenig ).

Lemma B.1. Forall f € H*(R) with —% <s< % we have
X0, 400) f 1 Hs®) S 1 f Il Fs (R)-
Lemma B.2. If% <s< % the following statements are valid:

(@ HSR™) = {f e HS®R"); £(0) = 0},

(®) If f € H*(RT) with £(0) = 0, then || x0,+00) [ | g @+) S If |l s @+)-
Lemma B.3. If f € H§(RT) with s € R, we then have
1A sy S 1 s
Remark B.1. /n Lemmas B.1, B.2 and B.3 all the constants ¢ only depend on s and .

Fore more details about the Sobolev spaces on the half-line, we refer the reader the
work of

B.2 Bourgain spaces

We next briefly review the main ingredients of the Bourgain method (Bourgain )
in its simplest form, which will be sufficient for our purpose (see (Ginibre ) for a more
detailed pedagogical account), in order to locate precisely the estimates that are required
on the nonlinear interaction. We consider the case of a single equation

vy = ¢(—iViyu + f(u), (B.2)

where ¢ is a real function. The Cauchy problem for (B.2) with initial data u(0) = ug is
rewritten in a standard way as the integral equation

u(r) = U(t)ug —i/ot U(t—1)f (u(t))dr
= U(tuo —iU xg f(u),

(B.3)



170 B. Some Function Spaces

where U(t) = exp[—it¢(—iV)] is the unitary group that solves the underlying linear
equation and *g denotes the retarded convolution in time. One wants to use function
space norms defined in terms of the space time Fourier transform of u while solving the
Cauchy problem locally in time in some interval [T, T']. For that purpose, it is convenient
to introduce a time cut off in (B.3). Let ¥y € C®(R,R™) be even, with 0 < ¥ < 1 and

1, ifj7] <1
1) = B.4
V1 {o, if |¢] > 2. (B4)
We also, define 7 (t) = ¢1(¢t/T), for0 < T < 1.
One replaces the equation (B.3) by the cut off equation
t
u(t) = Y1 (OUt)uo —in(t)/ U(t—1') f(u())dt’

0 (B.5)

= Y1(OU@uo — iyr ()U. *g f(u),

Solving the equation (B.5) for all # € R solves the equation (B.3) locally in time for
|t| < T,sothat T will be the time of local resolution of (B.3). The basic spaces X where
to solve the equation (B.5) are defined as spaces of functions u such that U(#)u belongs
to some classical (in the present case Sobolev) space H

lullx = [U(=0)ul#. (B.6)

The immediate effect of the choice (B.6) is to eliminate the free evolution U(¢)ug from
the linear estimates. Clearly,

V1 (O)U@uollx = l[V1uollH- B.7)

In the present case, we shall primarily take for H the simplest Sobolev spaces H =
H*P . The corresponding spaces X defined by (B.6) will be denoted X*?. In that case
the equality (B.7) becomes

[ Uo7

= s 4] = st @
While the estimate of the nonlinear part is given by the following lemma.

Lemma B4. Let —1 <b' <0< b < b +1and T €[0,1]. Then for F € X5 (¢) we
have that

|91 () Wy (1) o ||Xx.h(¢) < C [lwol| g+

e - B.9
HwT(t)foth,(t—t)F(t,-)dt) < CTYP | Flyong (B.9)

XS~b(¢)

Finally, we fix the notation in context of KdV equations. Denote by X **? the so called
Bourgain spaces associated to linear KdV equation; more precisely, X := X*? is the
completion of S’(R?) with respect to the norm

Il = IE) (= £ DE Dl 212



Spectrum and
the Riesz
Projection

In this Appendix we introduce the basic definitions of the spectrum and resolvent for
linear operators. The Riesz projection is defined and its relation with the decomposition
of the spectrum is also established.

C.1 The spectrum

Let (X, || - ||) be a Banach space on C and A a linear operator on X with domain
D(A) C X, A: D(A) C X — X. Associated with A we have two linear subspaces;

a) The image (or range) of A:
Ran(A) ={y e X : y = Ax, forsome x € D(A)}.
Sometimes we use Ran(A) = Im(A).
b) The kernel of A: ker(A) = {x € D(A) : Ax = 0}.
Let Y C X. We denote by Iy the identity function on Y.

Definition C.1. 4 linear operator B : Ran(A) — D(A) is called the inverse of A if
BA = ]D(A) and AB = IRan(A)'

Remark C.1. The operator B in the above definition is denoted by A™!.
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Theorem C.1. A4 linear operator A has an inverse if and only if ker(A) = {0}.

Proof. Suppose Ker(A) = {0}. Then for every y € Ran(A) there is a unique x € D(A)
such that Ax = y. Therefore we can define a operator A~! : Ran(A) — D(A) by
A™'y = x, where Ax = y. Itis easy to see that A~ is well defined and linear. Moreover,
since Ay = A71(Ax) = x forall x € D(A) we have A™'4 = Ip(4). Lastly, since
fory € Ran(A), AA™'y = Ax = y, we obtain AA™! = Irgn(a)-

Now, suppose that A= : Ran(A) — D(A) exists. Then for x € ker(A) we have
x = A7!(Ax) = 0. Hence, ker(A) = {0}. It finishes the Theorem. O

The last Theorem shows one condition for the existence of the inverse A~! of A as a
well defined function, and for our interest it is few information. More precisely, we would
like that A~! is a bounded linear operator on X, namely, Ran(A4) = X and there exists
K > 0 such that

AT FI S K| f|l. forall f € D(A™Y) = Ran(A) = X. (C.1)

Definition C.2. A4 linear operator A : D(A) C X — X is invertible if A has an bounded
inverse defined on X .

Remark C.2. If A is invertible, then A™" is unique.

Example C.1. Let X = C([0,1]) = {f :[0,1] — C : f is continuous} with the norm
| Nl = supxeqo,l f (x)|. Then is easy to see that (X, || - ||) is a Banach space. We define
the linear operator A : X — X by

AfH)@) = /0 f(s)ds, te][0,1].

Then we have the following properties;

1) A has an inverse: let f € X such that Af = 0, then the Fundamental Theorem of
the Calculus implies that f(t) = 0 forallt € [0, 1]. Hence, ker(A) = {0}.

2) Determination of A™': Let g € Ran(A), then there exists a unique f € X such
that

(Af) (@) :/0 f(s)ds = g(t), for t €[0,1].

Then, since f is integrable we obtain that g is absolutely continuous and g'(t) =
f@) forallt €0,1]. Moreover, g(0) = 0. Therefore, we have

d
A7)0 = 0. for 1 €[0.1],
D(A™Y) = {g € X : g is absolutely continuous,
g € X and g(0) = 0}.

(C2)
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3) Ais not invertible: Suppose that A~ defined in (C.2) can be extended as a bounded
linear operator on X and satisfying (C.1). Next, we consider the sequence g, (t) =
t" n=1,2,3,--- andt € [0, 1]. Then we obtain that g, € D(A™") with ||g,| = 1
foralln 2 1, and
147 gnll = llgnl =n S K.

It which is a contradiction.

By using the operator A in the example above, we consider the following eigenvalue
problem for A € C:
Af = Af,

fex—1o). €3)

Next we show that the operator A has not eigenvalues. Suppose A = 0, then the equation
Af = 0 has the unique solution f = 0. Now, for A # 0 we obtain the linear differential
equation of first order Af'(¢) = f(t), for ¢t € [0, 1], it which has the general solution
f@) = cedt, Hence, since f(0) = 0 we obtain that f(¢) = 0.

By considering the property of the operator A — Alx, for A € C, to be invertible, we
obtain one decomposition disjoint of C in two sets that characterize many deep properties
of the operator A.

Definition C.3. Let A be a linear operator on X with domain D(A).

1) The spectrum of A, o(A), is the set of all points A € C such that A — Al x is not
invertible.

2) The resolvent set of A, p(A), is the set of all points A € C such that A — A x is
invertible. If A € p(A), the inverse of A — Al x is called the resolvent of A in A and
it is denoted by

RA(A) = (A—=AlIx)™".

Remark C.3. By Definition C.3 we have: C = p(A) U o and p(A) No(A) = @. In the
following we will denote the identity operator on X, Ix, only by I.

Definition C.4. Let O be an open subset of C and L(X) be the set of bounded operators
on X. Amapping A € O — B(A) € L(X) is called analytic (in norm) in Ay € O, if there
are operators B,, € L(X) and § > 0 such that

o0
B() =Y By(A—2o)". fordeOand|L—Lo|<S8.

n=0

Remark C.4. By using the uniform boundedness principle (or Banach-Steinhaus theo-
rem) and the Cauchy integral formula, the Definition C.4 has the following equivalence
statements for X being a Hilbert space with inner product (-, -):

a) the mapping A € O — B(A) € L(X) is analytic in Ay,
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b) the mapping A — B(A)u € X is analytic in Ao for allu € X,
¢) the mapping A — (B(A)u, v) is analytic in A for allu,v € X.
The proof of the following classical result can be found in

Lemma C.1. Let T € L(X) with | T| = supyy=1IT(W)|l < 1. Then, I —T is invertible
and its inverse is given by the following absolutely convergent Neumann series

—T)' = Z T".

In other words, limy _, o Z,ILO Tk converges in norm to (I — T)™1.
Theorem C.2. Let A be a linear operator on X with domain D(A). Then,
1) p(A) is a open set of C.
2) 0(A) is a closed set of C.
3) If p(A) # @, the mapping L € p(A) — Ra(A) is analytic.

Proof. 1) Let Ag € p(A) and € < m. Then the open disk D(Ag; €) is contained in
p(A). Indeed, for A € D(A¢; €), the relation

A=A =[I — ROo)A — A0)|(A — Aol) (C.4)

and Lemma C.5 imply that A € p(A). Therefore, p(A) is an open set of C.

2) It follows immediately from item 1).

3) Let Ag € p(A) and A € D(A¢;¢€), with € being chosen as in the proof of item 1).
Then relation (C.4) and Lemma C.5 imply

R() = R(Ao) Y (A=20) A= 20)* =) (4= 20)7*'(A - 10)*.

k=0 k=0
It finishes the proof. O

Remark C.5.  a) The spectrum of a linear bounded operator A : X — X, 0(A), is
not empty and compact. Moreover, 6(A) C {z € C : |z| < ||A||}. Indeed, suppose
o (A) = 0. Then the mapping A € p(A) = C — R(A) is entire. Next, we consider
A such that |A| > || A||. Then from the following relation

o

RO) =3 307 A,
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we have that

RV £ ———.
OIS 5T

Therefore, limj;| o0 [|[R(A)|| = 0 and so ||R(A)|| < M for all A € C. Then from
the vectorial Liouville Theorem (Theorem C.12 we have that R(A) = O for all A. But
our argument above shows that for A sufficiently large we have A € p(A). Therefore

o(A) # 0.

b) The spectrum of a unbounded linear operator A : D(A) C X — X can be empty
or all C. Indeed, it consider X = C(|0, 1]) and the following two linear operators
A1 and Az.’

o D(Ay) ={feC(0.1]): ffeC(0. 1D}, Arf=f"

o D(A2) ={f € C([0.1]) : [ € D(A1), f(0) = O} with A [ = f".
Then following a similar argument as in Example 4.1.1 above, we have that A,
and A, are unbounded operators on X. Now, since e’ € ker(A; — 1) we obtain
immediately that 0(A;1) = C. Next we show that 6(A;) = @ and p(A2) = C.
Indeed, it follows from Example 4.1.1 that for all A we have ker(A — Ay) = {0}.
Next, we show that A — A, has a bounded inverse com domain all X. For that, let

g € X and we determine [ € D(Ay) such that (A — Ay) f = g. The classical
theory of edo’s shows that f has the formula

f@ =e“f(0)—/t A g (s)ds, 1t €[0,1].
0

Then, for f(0) = 0 we have that f € D(A3) and A — A, has an inverse given for
allg € X by

(A—Ay) 7 'g(r) = —/t Mg (s)ds, 1t €[0,1].
0

Now we show that (A — A2)™! : X — D(A,) is bounded: for g € X we obtain
easily that

Ir = A2) 7' gll < supegone™ gl
Therefore, p(A,) = C.

Next we establish some basic properties of the resolvent R4(A) = (4 — A1), A €
p(A) (see )-

Theorem C.3. For i, A € p(A) we have:

1) RA)R(w) = R()R(A).
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2) The first identity of the resolvent:
R(A) = R(p) = (A — W) R(AA)R(w).
3) The second identity of the resolvent: for A € p(B)
R4(A) — Rp(A) = Ra(A)(A — B)Rp(A) = Rp(A)(B — A)Ra(R).

There are three reasons for A — A not to be invertible,
a) ker(A—2A) # {0};

b) ker(A — A1) = {0} and Ran(A — 1) is dense. Then A — A has a inverse densely
defined but it is not bounded.

c) ker(A—L) = {0} and Ran(A — 1) is not dense. In this case, (4 —A)~! exists and
it can be bounded on Ran(A — 1), but it is not densely defined and so it can not be
uniquely extended to a bounded operator on X .

Definition C.5 (Classification of the spectrum). Let A : D(A) — X be a linear opera-
tor. Then,

1) If A € 0(A) satisfies that ker(A — A) # {0}, then A is called an eigenvalue of A,
and everyu € ker(A—2AL), u # 0, it is called an eigenvector of A for A and satisfies
Au = Au. The dimension of the linear subspace ker(A — L), dim(ker(A — 1)) ,is
called the geometric multiplicity of .

2) The discrete spectrum of A, a4(A), is the set of all eigenvalues of A with finite
(algebraic) multiplicity and that are isolated points of o (A).

3) The essential spectrum of A, 0ess(A), is defined as the complement of o4(A) in
0(A); 0ess(A) = 0(A) — 04(A). Therefore, 6(A) = 04(A) U Oess(A).

Remark C.6. Ifdim(X) < oo, the only reason for A— A not to be invertible is that A — A
is not injector. Then, 6(A) = 04(A). We recall that the algebraic multiplicity of A, (1),
is the multiplicity of A as being a root of the characteristic equation F(A) = det(A — A).
1t is well known that the geometric multiplicity of A, m(A) = dim(ker(A — 1)), satisfies

m(d) = p(d).

C.2 Linear operators on Hilbert spaces

The existence of a inner product on a Hilbert space have many consequences for the
structure of linear operators defined on it. One of the most important is the existence of the
adjoint operator defined on the same Hilbert space. We recall that on a Banach space the
adjoint operator is defined on its dual, it which in general is different of the initial space.
By the Representation Theorem of Riesz, the dual space of a Hilbert space is identified
with itself.
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Definition C.6. Let (H, (-,-)) a Hilbert space. For M being a closed subspace of H, we
define the orthogonal complement of M, denoted by M+, as the set

Mt ={xeH:(x,m)=0, forallm € M}.
Remark C.7. M~ can be defined if M is not a closed subspace.
The proof of the following Proposition is immediate.
Proposition C.1. Let M be a closed subspace of H. Then,
1) M* is a closed subspace of H (therefore it is a Hilbert space).
2) M N M+ =/{0}.
3) M+ =M.

Remark C.8. if M is not a closed subspace we still have that M L is a closed subspace
and we have M+ = M. Therefore, a subspace M C H is dense in H if M+ = {0}.

Theorem C.4 (The Projection Theorem). Let M C H a closed subspace. Then, H is
the direct sum of M and M~, H = M & M. Therefore, every x € H has a unique
decomposition in the form

xX=y+z, yeM,zeMJ‘.

Proof. Letx € H and we consider y € M the unique vector such thatd (x, M) = ||x—y]|.
Then we have that z = x — y satisfies z € M*. Indeed, forr € R and m € M we obtain
the relation

d*(x, M) < |lx = (y +tm)||> = ||z)* + 2|lm||* — 2%z, m).
Then for all # € R we obtain, t2|m|| — 2t0R(z,m) > 0. Therefore, (z,m) = 0, otherwise,

form #0andt = ””gfl’”’;’) we have

(Rfz.m)?>  (Rz.m))> _ (R(z.m))?

= < 0.
[[m]|? [[m]|? [lm |2

C.2.1 Adjoint operators on Hilbert spaces

Let A € L(H). For y € H we define the linear functional f, : H — C by f,(x) =
(Ax, y). Then, we have the following;

a) f is bounded: By Cauchy-Schwartz, | £, (x)| < ||Ax|[|¥]| < |Alllx]/|l¥]l. Then

Ifyll = sup [fy ()l = Al

lIxl=1
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b) By Riesz representation theorem there is a unique y* € H such that for x € H

(Ax,y) = fy(x) = (x,y%).
Moreover, || fy || = [|y*|l.

¢) We define the operator A* : H — H by A*y = y*. Hence, for x € H we have
(Ax,y) = (x, A%y).

Moreover, A* is linear and satisfies ||[A*y| < ||A|||ly|l. Therefore, A* € L(H)
with [|A*[| = [ 4]

d) Therelation || Al| = supjyj=jyj=1|{Ax, y)|, it will imply that || A[| < [|4™||. There-
fore, [|A]| = [|4™].

From the items above we have the following definition.

Definition C.7. Let A € L(H). Then the bounded linear operator A* : H — H defined
by the relation
(Ax,y) = (x,A%y), forx,y € H,

it is called the adjoint operator associated to A.

The proof of the following Proposition is immediate.
Proposition C.2. Let A, B € L(H). Then we have,

1) (@A + B)* =wA* + B*, fora € C.

2) A** = A, (AB)* = B*A*.

3) ker(A) = (ImA*)* (ker(A)t = TmA*), ker(A*) = (ImA)* ((ker(A*)*t =
ImA.

Definition C.8. A € L(H) is called self-adjoint if A = A*.
From Proposition C.2 we have immediate the following theorem.

Theorem C.5. Let A € L(H) be self-adjoint. Then ker(A)t = ImA. Therefore, H =
ker(A) ® ImA.

There is a very important class of self-adjoint operators in the spectral theory of linear
operators, the orthogonal projections.

Definition C.9. Let M C H a closed subspace. A operator P : H — H is called the
orthogonal projection on M if

Pm+y)=m, forall meMandy e M*.
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The proof of the following proposition is immediate from Definition C.9.

Proposition C.3. Let M C H be a non-trivial closed subspace and P : H — H the
orthogonal projection on M. Then,

1) P is a bounded linear operator with || P|| = 1.
2) ImP =M, kerP = ML, and Pm = m forallm e M.
3) I — P is the orthogonal projection on M+ with K(I — P) = M.

4) For x € H, we have Px = y where y is the unique vector satisfying d(x, M) =
llx =yl

Definition C.10. P € L(H) is called a projection if P> = P.
Theorem C.6. P € L(H) is a orthogonal projection if and only if P> = P and P* = P.
Proof. Suppose P being a orthogonal projection on a closed subspace M C H. Then
forx =m+ye H=M@& M, wehave P(Px) = Pm = Px, hence P2 = P.
Moreover, forz =m; + y; € H = M & M+ we have

(Px.y) = (m.y1) = (m+y Pz) = (x, Pz),

andso P* = P.

Suppose P2 = P and P* = P. Let M = ImP. Since M = ker(I — P) we have
that M is closed. Then M+ = (ImP)*+ = ker(P*) = ker(P). Next we see that P is
a orthogonal projection on M. Letm € M and y € M+, then

Pm+y)=Pm)+ P(y)=P(m)=m
since for m = P(r) we have P(m) = P2(r) = P(r) = m. It finishes the Theorem. [J
The proof of the following Theorem is immediate.
Theorem C.7. Let P be a projection on H. Then,
1) ImP = ker(I — P). Therefore, ImP is closed.
2) Allv € H has a unique decomposition in the form
v=x+y, xekerPand Py =y.

Therefore, H has the decomposition (not necessary orthogonal) H = kerP &
ImP.
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C.2.2 Adjoint of unbounded operators

In this subsection we define the adjoint operator of an unbounded operator A : D(A) C
H — H. We start with the definition of a closed operator.

Definition C.11. Let (X, || - ||) be a Banach space and A a linear operator on X with
domain D(A) C X. A is called a closed operator if

o for {x,}tnen C D(A) such that x, — x, and
o Axy, =y,
we have that x € D(A) and Ax = y.
Remark C.9. a) IfA € L(H) then A is closed.
b) If A: D(A) C X — X isinvertible then A is closed.
¢) The graph of A, G(A), is defined as the following linear subspace of X x X
G(A) = {(x,Ax) : x € D(A)}.
Then it is easy to show that A is closed if and only if G(A) is closed in X x X.
d) For x € D(A) we define the norm (called the graph-norm on A)

Ixlla = (el + [14x]%) 2.

Then, if A is closed we have that (D(A), || - || 4) is a Banach space and so we have
that A : (D(A), ||-1la) = X is a bounded linear operator. The basic importance of
the graph-norm, || - || 4, on D(A) is that well known results for bounded operators
can be established to the case of closed operators. For instance, from the closed
graph theorem we obtain the following deep result: if A : D(A) C H — H is
a closed linear operator with ker(A) = {0} and ImA = H then A is invertible,
namely, A™' : H — D(A) is bounded.

Example C.2. The operator A, f = f' defined in Remark C.5 satisfies 0(A3) = .
Hence A is invertible and therefore it is a closed operator.

Definition C.12. Let (H, (-,-)) be a Hilbert space and A : D(A) C H — H a linear
operator with domain D(A) dense in X. The adjoint of A, A*, is defined by
D(A*) ={y € H :3z € H suchthat (Ax,y) = (x,z), Yx € D(4)},

Ay (C.5)

Remark C.10. z in Definition C.12 is unique satisfying (Ax,y) = (x,z) for all x €
D(A).
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The proof of the following properties of A* are immediate.
Proposition C.4. We have the following properties of A*.
1) A* is a closed operator.
2) If A is invertible then A* is invertible with (A*)™! = (A™1)*.
3) (ImA)* = ker(4*).
4) H has the following orthogonal decomposition,

H =ker(A*) ® ImA.

Definition C.13. A4 linear operator A : D(A) C H — H densely defined, it is called
self-adjoint if A* = A. In other words, D(A) = D(A*) and (Ax,y) = (x, Ay), for
x,y € D(A).
Remark C.11. For A self-adjoint we have:

a) Ais closed.

b) Let A be to be invertible. Then A7 is self-adjoint.

c) (ImA)*+ = ker(A). Therefore, H = ker(A) ® ImA.

d) R(A:A)* = R(A; A).

The next Theorem gives a characterization of the spectrum of unbounded self-adjoint
operator. Initially we give the following definition.

Definition C.14. Let A be a linear operator A : D(A) C H — H. The residual spectrum
of A is defined as

Ores(A) ={A € C : ker(A—A) = {0}, and Im(A — X) is not dense}.
Theorem C.8. Let A be a self-adjoint operator. Then,
1) All eigenvalues of A are real.
2) o0(A) C R
3) Ores(A) = 0.

4) Eigenfunctions associated to different eigenvalues are orthogonal.
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Proof. The proof of item 1) is immediate. Next, we only establish Item 2) because Items
3) and 4) follows immediately from it. So, we will see that for z = A + i, with u # 0,
we obtain z € p(A). The following inequality

(A = 2)ull” = (A= Dul® + p?ull® = p?|lull®,  ne D(A).

show that A — z is one-to-one, Im (A —z) is closed and (4 —z)™' : Im(A—z) — D(A)
is bounded. Next we show that /m(A — z) = H. Indeed, suppose that it is not true, then
by Theorem C.4 there exists / # 0 such that f € Im(A—z)*. Hence, forall x € D(A)
follows that

(Ax. f) = (x.Zf)
and therefore f € D(A*) = D(A) and Af = Z f. Hence item 1) implies that u = 0.
This contradiction shows that z € p(A4) and the proof is complete. O

Corollary C.1. 1) If A = A* and there exists M > 0 such that
I(A=2)x| 2 Mllull forall x € D(A),
then A € p(A). Moreover, the disc D(A; M) is contained in p(A).
2) If A = A* then for z € C, with Imz # 0, we have |R(z; A)| < |1sz|
The proof of the following theorem can be found in
Theorem C.9. For A = A* and A € p(A) we have

1 1

C.3 Riesz projection

We start with some results of the classical complex analysis for the case of vector-
valued mappings (with values in a Banach space), more exactly, the vectorial version of
the Cauchy and Liouville Theorems.

The proof of the following existence theorem can be prove by following the same ideas
as in the classical complex theory (see Theorem 1.4 in (Conway ).

Theorem C.10. Let (Z, ||-||) be a Banach space and y : [a, b] — C a simple closed path
by part with G(y) = {y(t) : t € [a,b]} = I"' and g : ' — Z continuous. Then there
exist I € Z such that for all € > 0 there is a § > 0 such that for P = {tg = a < t; <
-+« < tyy = b} being a partition of [a, b] with | P|| = max{|ty —tr_1]: 1 Sk <m} <§
we have

[1= 3 ey — il < <
k=1
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for every chosen of sy € [tp—1,tr].
I is called the Riemann-Stieltjes integral of g on I' and it is denoted by

I =/Fg(x)dx.

Remark C.12. @) The value of I in Theorem C.10 is independent of the path y such
that G(y) =T

b) By definition, I is the uniform limit on all chose of partitions P of [a, b] and on all
chosen s;. Moreover,

m b
1= [ gtar= tim 3z = [ eandyo

i=1 a
b
= [ v
a
¢) For F : Z — C a bounded linear functional, we have

F( /F g()d2) = /F F(g(A)dA.

d) Let Z = L(X) with X a Hilbert space and g : I' — Z continuous. Then, we have
in this case that I in Theorem C.10 is a bounded linear operator such that for all

xeX
Ix = (/Fg(/\)d/\>x - /Fg(x)xdx.

Moreover, for X; Banach spaces and A : X1 — X and B : X — X, bounded
linear operators, we have

BIA:/ Bg(A)AdA.
r

Theorem C.11 (Vectorial Cauchy Integral Theorem). Let §2 be a non-empty set in C
and g : §2 — Z an analytic mapping. Then, for I' being a simple closed path such that
I' and its inner domain are contained in §2 we have that [ g(A)dA = 0.

Proof. Lety = [ g(A)dA and f : Z — C abounded linear functional. Then f o g :
§2 — C is an analytic mapping. Hence by the classical Cauchy Integral Theorem

£o) = /F Flg())dA =o.

Therefore, the Hahn-Banach theorem implies that y = 0. O
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Theorem C.12 (Vectorial Liouville Theorem). Let g : C — Z be an analytic mapping
such that ||g(M)|| £ M forall A € C. Then, the mapping g is constant.

Proof. Let f : Z — C be abounded linear functional. Then fog : C — C is an analytic
mapping such that |(f o g)(2)| < || fllllg@)] £ ||fIM forall z € C see Stein and
Shakarchi . Therefore, from the classical Liouville Theorem we have f(g(z)) = zo
for all z € C (see Stein and Shakarchi ). Let yo € Z such that f(yg) = zg, then
f(g(z) — yo) = 0. Therefore, the Hahn-Banach theorem implies that g(z) = y, for all
zeC. O

Riesz-projections

Theorem C.13 (Riesz Projection). Let A be a closed linear operator on a Hilbert space
H. Let A € 0(A) an isolated point such that for € > 0 we have D(A;¢) N a(A) = {A}.
Let I'c =dD(A;e) ={nu € C : | —A| = €} such that I No(A) = 0. Then,

1) Forallr suchthatO <r < e
1 -1
i (A—p) "du
L Jry

there exists and it is independent of r.

Py =-

2) P2 = Py. Hence Py is a projection (it is not necessarily orthogonal).
3) The subspaces Gy = ImP) and F) = kerP) satisfy:

i) G, and F) are closed complementary subspaces (they are not necessarily or-
thogonal),
H =G, o F,, Gy N F), = {0}.

ii) Gy and Fy are A-invariant:
G, C D(A) and AG), C Gy,
F, N D(A) is dense in F,, and A[F) N D(A)] C Fy.
iii) Alg, : G — G, is bounded.
) o(Alg,) = {A} and o(AlFnpy) = o(A4) —{A}
4) Gy =1ImP) D ker(A—2A).

5) If A is self-adjoint, then P, is a orthogonal projection on ker(A — A) [ImP) =
ker(A — 1))

Remark C.13. P, defined in Theorem C.13 is called the Riesz projection for A and A
(see , ).
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Proof. 2). Lets € (r,¢€), then from the first resolvent identity (Theorem C.3), from the
continuity of the mapping (i, v) € I, xI's — (s1—v) "' R(v) and from the index theorem
of a curve with respect to a point, we have

1
2 _
P2 = TENE 51% y%s R(wW)R(v)dvdu

1 1 d 1 d
- Comi T, R(M)(% }Z%s v —vu)dv B (2mi)? y%s R(U)(y% 7 iLv)dv

1
=—>— ¢ R(wdu = P,.
2mi

r

1). Let § € (0, r) and we consider for x € H the element

1
Prsx =y = sy R(p)xdpu.
Tl Jry
Next, let £2 be a open set contained in D(A;€) — {A} such that I's, I, C §2. For f
a bounded linear functional on H, we define the mapping G : 2 — C by G(n) =
Sf(R(u)x). Therefore, since G is analytic it follows from the Cauchy Integral Theorem
that

515 FRGux)dp :56 FRGux)dp.
r, Iy

Hence we obtain that f(P; ,x) = f(y),forall f € H*. Therefore, P) ,x =y = Py sx
forallx € H,andso Py, = Py s.

3) Since P, is a projection we have immediately that G, and F) are closed comple-
mentary subspaces. Now we see that Gy C D(A) and AG, C G,. Let ¥ € G,, then
since ¢ = P,y it follows from the closedness of A that that v € D(A) and

1 1
Ay =5 ARG =5 b RGOV (€O

where we are used the relation AR(u) = I 4+ uwR(u). Now, since A and its resolvent
R(1t) commute we obtain from (C.6) that for all ¥ € G, Ay = AP)¥ = P, Ay. We
note that the later analysis show also that P, and A commute on D(A), namely, for all
x € D(A) wehave AP)x = Py Ax.

The prove that F), N D(A) is dense in F} is immediately. Next, for v € F) N D(A)
we see that Ay € F). Indeed, the equality

(I = PR AY = Ay — APy = AY,
implies that Py Ay = 0.
3) —iii) We obtain from (C.6) that for ¢ € G,

1 1
Ay = E?%[III//II + Miyllldp] = — 1+ M) [y
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where M = maxger, ||| R()|| < oo because of I being compact and the mapping
e Iy — |p]||R(w)]| continuous.
3)—iv) Letv ¢ I, and define the following bounded linear operator S(v) : H — H
by
1

SW)=——
®) 2ri Jp,v—p

R(u)dpu. (C.7)

Similarly as the prove of item 3) we obtain that for all x € H, S(v)x € D(A). Next we
prove that G, and F) are invariant by S(v). Indeed, since R(y)P, = P, R(y) for all
y € p(A) we have that S(v) commute with P;. Therefore we obtain that S(v)G, C G,
and S(v)F), C Fj. In fact, for € G, we have P,S(v)¥ = S() P,y = S(v)¥, and
for € F) we obtain (I — Py)S(v)¥ = S(v)y¥ and so P, S(v)y = 0.

Now, since A and its resolvent commute we obtain from the relation S(v)(4 —v) =
(A —v)S(v) that

SW)(A —v) = —%(ﬁ - iﬂdu)l + ﬁ}é R(w)dps. (C.8)

Therefore,

S)(A )= (A )S(v) = I — P,, forv inside of I} (.9)
Y Y= VI = — P,, for v outside of I. ’

Next we see that 0 (A|g,) C {A} = 0. Suppose that v € 0(A4|g, ) and v # A. Then for
r small enough we can choose v outside of I} and so for x € G, we have

(A—=v)S()x =SW)(A—v)x = —x.

Now, since S(v)G) C G, weobtainthat A—v : G — G is one to one and onto and so by
the closed graph theorem 4 — v is invertible and (4 —v|g,) ™' = S(v)|g, . Therefore v €
p(A|g, ) which is a contradiction. Similarly, we show thato (A4|r,np(a)) C 0(A)—{A} =
o1. By denoting N = Fj N D(A) we show now that 0(4) C o(4|g,) Uo(A|n,). Let
v € 0(A) and suppose that v ¢ [0(A|g,)Uc(A|n,). Thenwehavethat A—p : Gy — Gy,
and A — u : Ny — F) are one to one and onto. Since H = Gy & F) then A — u :
D(A) — H isoneto one and onto and so i € p(A). The later analysis shows that o (4) C
o0(Alg,) Ua(A|y,) CooUoy =0(A). Theno(A) = oo Uor = 0(4lg,) Uoa(Aln,),
where we obtain that 09 = 0(A4|g,) and 01 = 0(A) —{A} = 0 (A|F,nD))-

4) Let € ker(A — A), then for all u € I, we have that (A — w)y = (A — )y
implies that R(u)y = ﬁw. Next we see that P,y = . Indeed,

1 1 1
Py = —2—y§ R(Wydp = —5— T vdu=1y.
i Jr, 2wi S, A—p

5)Letr > Oand u = A +re'?, with @ € [0,27] and A € R. Initially, we have that P,
is a orthogonal projection (P, = P,). Indeed, since A is self-adjoint we have for x € H
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that the relation .

1 o
Pix=—=— [ RA+re¥re®xas,
2

7T

implies immediately
1 [7 ; ;
Pix = ——/ RO+ re yre ¥xdo,
27 J_n

and so the change of variable ¢ — — implies that Pyx = P;x. Next we show that
ImP; C ker(A — 1), namely, (A — A)P), = 0. Indeed, by using the relation (4 —
MR(n) =1 + (u— A)R(i) we obtain

1 1
(A-D)Py =~ - 5’% [+ (o~ DR =~ gﬁr (11— MR,

Next, we consider By, = D(A;r) — {A} and the analytic mapping f (1) = (u — A)R(w)
for u € Bj. Then for all u € I'; follows from (C.9) that

=2
—AlIR < — .
s

So, by choosing r small enough such that A is the nearest point from o (A4) to I, we obtain
d(u,o0(A)) 2 d(Iy,0(A)) = r, that for all . € I',. Hence,

=Al _ le=Al
d(.0(4) = d(I;.0(4)

Then, we obtain that f : B} — H is uniformly bounded and therefore the Riemann
removable singularities theorem (extended to the vectorial case) implies that f can be ex-
tended to a analytic function on D(A;r). Hence, The Vectorial Cauchy Integral Theorem
implies that

b fondn=o.
r
This complete the proof of the theorem. O
Definition C.15. Let A be a closed linear operator A : D(A) C H — H.
1) A point A € o(A) is called discrete (or an eigenvalue of A of finite type) if

e ) is a isolated point of 6 (A) and,

e The Riesz projection P) determined by A is finite dimensional: dim(ImP)) <
0.

2) Ifdim(ImPy) = 1, A is called a simple or non-degenerate eigenvalue for A.
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3) The discrete spectrum of A, o4(A), is the set of all eigenvalues of A of finite type.

Remark C.14. @) The number dim(ImP)) is called the algebraic multiplicity of A.
The vectors in ImP), are called generalized eigenvectors of A, in the sense that there
is n > 0, the algebraic multiplicity of A, such that (A — A)" = 0 for y € ImPy.

b) The number dim(ker(A — 1)) is called the geometric multiplicity of A

¢) Since Gy = ImP) is finite dimensional and {1} = o(A|g, ) (by Theorem C.13) we
obtain that A is an eigenvalue of A.

d) If Gy = 1 then G) = [¢]. Moreover, by c) there exists f # 0 such that f €
ker(A—A) C Gy. Then f = yy, y € C. Therefore [y] C ker(A — A1) C [y].
Hence, in this case we obtain that ImP) = ker(A — 1).

The next theorem give us a good tool for locating some part of the discrete spectrum
of a closed operator.

Theorem C.14. Let A be a closed linear operator such that I = {u € C : |p —A| =
r} C p(A). Then,

1) The bounded linear operator

2mi

1 _
P=——y§ (A — )\ du
I

it is a projection.

2) Ifn = dim(ImP) < oo, then A has at most n points of its spectrum in { € C :
| — A| < r} and each is discrete.

3) If n = 1, there is exactly one spectral point in {;x € C : |u — A| < r}anditis
nondegenerate.

Proof. 1) The proof of Theorem C.13-2) carries through without change to prove that P
is a projection and the proof of 3) implies that G = ImP and F = kerP are closed
complementary invariant subspaces.

2) Let A1 = A|g : G — G. Then Aj has eigenvalues A1, A5, - -+, Ar (k < n). Now,
for A» = A|Fnp(a), we see that if v satisfies [V — A| < r then v ¢ 0(A2). Indeed, let
S(v) be the bounded linear operator defined in (C.8), then S(v)F C F and from (C.9)
we have S(v)(A —v) = (A —v)S(v) = I — P. Hence for x € F N D(A), we have
SWw)(A—v)x =xandforx € F,(A—v)S(v)x = x. Then,A—v: FND(A) —> F
is one-to-one and onto. Therefore, A — v is invertible and so v ¢ o (A4>).

Now, since H = G @& F we obtain from the later analysis that v € p(A) for v such
that [v — A| < r ifand only if v € p(A4y).
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Next we show that A, A,, - - -, Ax belong to the open disc D(A;r). Indeed, since A;
are eigenvalues of A we have that A; ¢ I.. By considering ¥; € G — {0} such that
Ay = A; ¥, we obtain from the relation (A — )y = (A; — u)y for every u € I, that

w-—Pvf——%%(A " wdu—%(yﬁ — Adu)w,

Therefore, since ¥; # 0 we need to have that A; € D(A;r). Hence, from the analysis
above we obtain 0(4) N D(A;r) = {A1, Az, -+, Ak }k<n) = 0(A1) N D(A;7), and so
A has at most n points of its spectrum in D(A;r). Now we see that each A; (i < n) is
discrete. Let © = dD(A;;€) C D(A;r) and define

1 _
P;, :_T (A=v) ldV-
Tl J©,

Then, from the index theorem of a curve with respect to a point, we obtain Py, P =
PP), = Py, andso ImP,; C ImP andsodim(ImPy;,) < dim(ImP).
3) It follows immediately from 2). O

We finish this Appendix with two “innocent results” from linear algebra, it which have
deep consequences in perturbation theory.

Lemma C.2. Let M and N be two subspaces of H withdimM > dimN. Then there is
x € M such that x LN.

Proof. By considering a subspace of M, if necessary, we can assume that dimM and
dimN are finite. We consider orthonormal bases {x;}j, and {y;}}_,, m > n, for M

and N. Letx = Zi:l a;x;, and we solve homogeneous linear system

(x,y;) Za, (xi,y;)=0, forj=1,...n

i=1

Since the matrix A = [{x;, y;)] is an n x m matrix with n < m, the homogeneous system
of linear equations AX = 0 has a non-trivial solution X = (ay,as, ..., a,)". Therefore,
there is x € M — {0} such that (x,y;) =0,for j =1, ...,n. O

Lemma C.3. Let P,Q : H — H be projections. If dim(ImP) # dim(ImQ), then
[P—0ll =1

Proof. Suppose dim(ImP) < dim(ImQ). Let F = Ker(P)and E = ImQ. Then,
from Theorems C.7 and C.4 we have the relations

H=F®ImP, and H=F & F*.
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Therefore, there is a linear isomorphism ¢ : F+ — I'mP. Then, we deduce thatdim(FL) =
dim(ImP) < dim(E). Hence, from Lemma C.2 thereisx € ENF+L = ENF,x # 0.
Then the relations Qx = x and Px = 0 imply

1P = )x] = x|

Hence |P — Q] = 1.
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