
C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

ISBN 978-65-89124-21-4

9 786589 124214

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 313 C

Visualizing Thurston’s geometries

Tiago Novello
Vinícius da Silva

Luiz Velho

impa

a

Tiago Novello
Vinícius da Silva

Luiz Velho

Visualizing Thurston’s geometries

Visualizing ๠urston’s geometries
Primeira impressão, julho de 2021
Copyright © 2021 Tiago Novello, Vinícius da Silva e Luiz Velho.
Publicado no Brasil / Published in Brazil.

ISBN 978-65-89124-21-4
MSC (2020) Primary: 68U05, Secondary: 65D18, 53A35, 57M60, 57M50, 57K35

Coordenação Geral Carolina Araujo

Produção Books in Bytes Capa Izabella Freitas & Jack Salvador

Realização da Editora do IMPA
IMPA
Estrada Dona Castorina, 110
Jardim Botânico
22460-320 Rio de Janeiro RJ

www.impa.br
editora@impa.br

Contents

1 Background on Manifolds and Orbifolds 1
1.1 History . 1

1.1.1 Henri Poincaré . 1
1.1.2 William P. Thurston . 2
1.1.3 Grigori Perelman . 3

1.2 2-Manifolds . 3
1.2.1 Classification of compact surfaces 3
1.2.2 Geometrization of compact surfaces 4

1.3 3-Manifolds . 5
1.3.1 Classification of compact 3-manifolds 5
1.3.2 Geometrization of compact 3-manifolds 6

1.4 8 Thurston Geometries . 8
1.4.1 Classical geometries . 9
1.4.2 Product geometries . 12
1.4.3 “Twisted” product geometries 13

2 Immersive Visualization in Virtual Reality 21
2.1 3D Visualization . 21

2.1.1 The Viewing Transformation Pipeline 21
2.1.2 Inside Views in Non-Euclidean Spaces 22
2.1.3 Types of Algorithms . 23
2.1.4 Rendering Acceleration . 25

2.2 GPU Ray Tracing using RTX / Falcor 3.2.1 25
2.2.1 RTX Ray Tracing . 26
2.2.2 Falcor 3.2.1 . 28

2.3 Ray Tracing and Stereo Rendering 29
2.3.1 Simple Ray Tracer . 29
2.3.2 Stereo Rendering . 30

2.4 Integrating Ray Tracing and VR . 30
2.4.1 Stereo Convergence . 30
2.4.2 Ray Tracing Overhead . 34

3 Riemannian Ray Tracing 36
3.1 Core Concepts . 36

3.1.1 Geodesics and Fundamental Domain 36
3.1.2 Non-Euclidean Ray tracing 37
3.1.3 Riemannian Manifolds . 38

3.2 Visualization of Riemannian manifolds 39
3.2.1 Visualization approaches 39
3.2.2 Riemannian ray tracing . 40

3.3 Ray tracing in Riemannian manifolds 41
3.3.1 Overview of the Method . 41
3.3.2 Algorithm in CPU . 42
3.3.3 Ray Marching . 43
3.3.4 RTX Pipeline . 43
3.3.5 GPU Implementation . 45

4 Visualization of Classical Non-Euclidean Spaces 47
4.1 Euclidean . 48

4.1.1 Flat Torus . 48
4.1.2 Mirrored Cube . 50

4.2 Spherical . 51
4.2.1 Poincaré sphere . 51

4.3 Hyperbolic . 53
4.3.1 Seifert–Weber dodecahedral space 53
4.3.2 Mirrored Dodecahedron . 54

4.4 Analysis . 55
4.4.1 Performance . 56
4.4.2 Interaction . 57
4.4.3 Space Perception . 57

5 Visualization of Nil, BSL2.R/, and Sol 60
5.1 Visualizing Nil space . 61
5.2 Visualizing Sol space . 64
5.3 Visualizing BSL2.R/ space . 66
5.4 Experiments and comparisons . 66

Bibliography 70

Index 78

Preface

In 2018, NVidia introduced the RTX series of GPUs enabling the implementation
of real-time ray-tracing algorithms in Euclidean spaces, which allows visualization
applications with a high degree of photorealism. In the same year, Luiz Velho and
Vinícius da Silva started the Ray-VR project, at IMPA’s Visgraf Laboratory, to
integrate Virtual Reality (VR) and ray tracing. In 2019, Tiago Novello joined the
project, which started using the developed framework to visualize non-Euclidean
spaces in an immersive and interactive way.

Examples of non-Euclidean spaces date back to Thurston’s geometrization
conjecture, which states that any three-dimensional compact manifold one decom-
poses into geometrically modeled pieces by just eight geometries. Ray-VR gave
rise to a system for immersive and interactive visualization (in VR) of spaces mod-
eled by the classic Thurston geometries (Euclidean, spherical, and hyperbolic),
later, the results were extended to manifolds modeled by the ”twisted” geometries
(Nil, Sol, and SL2): the least trivial Thurston’s geometries.

This book presents a compilation of Ray-VR results in the intrinsic visualiza-
tion of Thurston’s geometries. This is an active research topic in mathematical
visualization that combines the areas of geometry and topology, with concepts
of computer graphics. The content of this book serves both experts and students.
Although this is a short book, it is self-contained since it considers all the ideas,
motivations, references, and intuitive explanations of the required fundamental
concepts.

It is important to highlight that several conditions made this a special moment
for such a topic. On one hand, the development of mathematical research and

graphics algorithms has provided the theoretical framework. On the other hand,
the evolution of media technologies allows us to be immersed in three-dimensional
spaces using VR.

The target reader of this book would be interested in geometry, topology, math-
ematical education, and also interested in new visualization techniques to explore
abstract spaces. For the public interested in media, this work offers the possibility
to explore new mathematical scenarios. These visualizations have the potential to
be applied in entertainment, arts, education, cinema, and games.

We thank the Organizing Committee of the 33rd Brazilian Colloquium of
Mathematics for the opportunity to present our results in mathematical visualiza-
tion.

1 Background on
Manifolds and

Orbifolds

1.1 History

This chapter sets the stage with an historical account of the quest to investigate
2D and 3D spaces, as well as the context related to the Poincaré Conjecture in-
spiring the classification / geometrization of compact two and three dimensional
manifolds.

1.1.1 Henri Poincaré

In 1895, Henri Poincaré published his Analysis situs (Poincaré 1895), in which
he presented the foundations of topology by proposing to study spaces under con-
tinuous deformations; position is not important. The main tools for topology are
introduced in this paper: manifolds, homeomorphisms, homology, and the funda-
mental group. He also discussed about how three-dimensional geometry was real
and interesting. However, there was a confusion in his paper: Poincaré treated
homology and homotopy as equivalent concepts.

In 1904, Poincaré wrote the fifth supplement 1904 to Analysis situs, where he
approached three-dimensional manifolds. This paper clarified that homology was
not equivalent to homotopy in dimension three. He presented the Poincaré dodec-

2 1. Background on Manifolds and Orbifolds

ahedron as an example of a 3-manifold with trivial homology but with nontrivial
homotopy. In Section 1.4.1, we present an inside view of such space. Poincaré
proposed the conjecture: Is the 3-sphere the unique compact connected 3-manifold
with trivial homotopy?

Poincaré stimulated a lot of mathematical works asking whether some mani-
fold exists. Works on this question were awarded three Fields medals. In 1960,
Stephen Smale proved 2007 the conjecture for n-manifolds with n > 4. In 1980,
Michael Freedman proved 1982 Poincaré conjecture for 4-manifolds. The prob-
lem in dimension three was open until 2003 when Grigori Perelman proved (Perel-
man 2002, 2003a,b) Thurston’s geometrization conjecture, and consequently the
Poincaré conjecture as a corollary.

Poincaré also worked on an important problem in dimension two, the uni-
formization theorem. This states that every simply connected Riemann surface
(one-dimensional complex manifolds) is conformally equivalent to the unit disc,
the complex plane, or the Riemann sphere. This was conjectured by Poincaré in
1882 and Klein in 1883, and proved by Poincaré and Koebe in 1907. The history
details can be found in the recent book by Ghys (2017). A big step in the history of
the geometry was the generalization of this result for dimension three, Thurston’s
geometrization theorem.

1.1.2 William P. Thurston

Thurston’s works in 3-manifolds have a geometric taste with roots in topology. He
tried to generalize the uniformization theorem of compact surfaces to dimension
three. Five more geometries arise; the hyperbolic still playing the central role.

In 1982, Thurston stated the geometrization conjecture (Thurston 1982) with
solid justifications. It is a three-dimensional version of the uniformization theo-
rem, where hyperbolic geometry is the most abundant because it models all sur-
faces with genus greater than one. In dimension three, Thurston (ibid.) proved
that the conjecture holds for a huge class of 3-manifolds, the Haken manifolds,
implying that hyperbolic plays, again, the central role. The result is known as the
hyperbolization theorem. Thurston received in 1982 a Fields medal for his con-
tributions to 3-manifolds. The Elliptization conjecture, the part which deals with
spherical manifolds, was open at that time.

1.2. 2-Manifolds 3

1.1.3 Grigori Perelman

In 2000, the Clay Institute selected seven problems in mathematics to guide math-
ematicians in their research, the seven Millennium Prize Problems (Jaffe 2006).
Poincaré conjecture was one of them. They did not know that the Poincaré con-
jecture was about to be solved by Grigori Perelman as a corollary of the proof of
the geometrization conjecture.

In 2003, Perelman published three papers (Perelman 2002, 2003a,b), in arXiv
solving the Geometrization conjecture. He used tools from geometry and analysis.
Specifically, he used the Ricci flow, a technique introduced by Richard Hamilton
to prove the Poincaré conjecture. Hamilton proved the conjecture for a special case
when the 3-manifold has positive Ricci curvature. The idea is to use Ricci flow to
simplify the geometry along time. However, this procedure may create singular-
ities since this flow expands regions with negative Ricci curvature and contracts
regions of positive Ricci curvature. Hamilton suggested the use of surgery before
the manifold collapse. The procedure gives rise to a simpler manifold, and we can
evolve the flow again. Perelman, proved that this algorithm stops and each con-
nected component of the resultingmanifold admits one of the Thurston geometries.
In other words, Perelman proved the geometrization conjecture, and consequently
the Poincaré conjecture.

1.2 2-Manifolds

We present some results involving topology and geometry of surfaces. We assume
all surfaces been compact, connected, and oriented. Startingwith the classification
theorem in terms of the connected sum, one can represent a surface through a poly-
gon with an appropriate edge gluing. This polygon can be embedded in one of the
three two-dimensional geometry models (Euclidean, spherical, and hyperbolic).
The resulting surface has the geometry modeled by one of these geometries.

1.2.1 Classification of compact surfaces

The classical way to state the classification theorem is by the connected sum. Re-
moving disks D1 and D2 from surfaces S1 and S2, one obtains their connect sum
S1#S2 by identifying the boundaries @D1 and @D2 through a homeomorphism.
The theorem says that any compact surface is homeomorphic to a sphere or a con-
nected sum of tori. The theorem proof uses a computational representation of a
compact surface S through an appropriate pairwise gluing of edges in a polygon:

4 1. Background on Manifolds and Orbifolds

• Take a triangulation T of S ; it is a well-known result;

• Cutting along edges in T we obtain a list of triangles embedded in the plane
without intersection; the edge pairing must be remembered;

• We label each triangle edge with a letter according to its gluing orientation;

• Gluing the triangles through their pairwise edge identifications without leav-
ing the plane produces a polygon P . The boundary @P is an oriented se-
quence of letters;

• Let a and b be a couple of edges in @P . If the identification of a and b

reverses the orientation of @P we denote b by a�1, and simply a otherwise;

• A technical result states that by cutting and gluing P leads us to an equiva-
lent polygon Q with its boundary having one of following configurations:

– aa�1, which is a sphere;

–
X

aba�1b�1, a connected sum of tori aba�1b�1.

To model the geometry of those surfaces, we embed, in a special way, the polygon
in one of the two-dimensional model geometries.

1.2.2 Geometrization of compact surfaces
We remind the well-known geometrization theorem of compact surfaces which
states that any topological surface can be modeled using only three geometries.

Theorem 1 (Geometrization of surfaces). Any compact surface admits a geomet-
ric structure modeled by the Euclidean, the hyperbolic, or the spherical space.

The Euclidean space E2 models the geometry of the 2-torus through the quo-
tient of E2 by the group of translations. The sphere is modeled by the spherical
geometry.

For a hyperbolic surface, consider the bitorus, which topologically is the con-
nect sum of two tori. The bitorus is presented as a regular polygon P with 8

sides aba�1b�1cdc�1d�1 as discussed above. All vertices in P are identified
into a unique vertex v. Then, the 8 corners of P are glued together producing a
topological disk. Considering P with the Euclidean geometry, the angular sum
around v equals to 6� . To avoid such a problem, let P be a regular polygon cen-
tered in the hyperbolic plane, with an appropriate scale, its angles sum �=4. The

1.3. 3-Manifolds 5

edge pairing of P induces a group action � in the hyperbolic plane H2 such that
H2=� is the bitorus. In terms of tessellation, � tessellatesH2 with regular 8-gons.
Analogously, all surfaces represented as polygons with more than four sides are
hyperbolic. Implying that hyperbolic is the most abundant geometry.

The above discussion handled all orientable surfaces. The well-known Gauss–
Bonnet theorem implies that these geometric structures must be unique.

1.3 3-Manifolds
It took time to formulate the modern idea of a manifold in a higher dimension. For
example, a version of Theorem 1 for 3-manifold seemed not possible until 1982,
when Thurston proposed the geometrization conjecture 1982. There are exactly
eight geometries in dimension 3, which are presented in more detail in Section 1.4.
Scott (1983) is a great text on this subject.

1.3.1 Classification of compact 3-manifolds
As for surfaces, there is a combinatorial procedure to build three-dimensional man-
ifolds from identifications of polyhedral faces. To do so, endow a finite number
of polyhedra with an appropriate pairwise identification of its faces. Each cou-
ple of faces has the same number of edges and it is mapped homeomorphically to
each other. Such gluing gives a polyhedral complex K, which is a 3-manifold iff
its Euler characteristic is equal to zero (Theorem 4.3 in (Fomenko and Matveev
2013)).

We now take the opposite approach. Let M be a compact 3-manifold, we
represent M as a polytope P endowed with a pairwise identification of its faces.
The following algorithm mimics the surface case presented in Section 1.2.1.

• Let T be a triangulation of M ; endorsed by the triangulation theorem;

• Detaching every face identification in T gives rise to a collection of tetrahe-
dra which can be embedded in E3. Remember the pairwise face gluing;

• Gluing in a topological way each possible coupled tetrahedra without leav-
ing E3 produces a polytope P . The faces in @P are pairwise identified.

The combinatorial problem of reducing P to a standard form, as in the surface
case, remains open (see page 145 in Lee (2010)). Although there is not (yet) a
classification of compact 3-manifold in the sense presented for compact surfaces,

6 1. Background on Manifolds and Orbifolds

it is still possible to decompose the given manifold into simpler pieces. Thurston
conjectured that these pieces can be modeled by eight geometries.

The decomposition used in the geometrization theorem (to be presented in Sec-
tion 1.3.2) has two stages: the prime and the tori decomposition. The first is similar
to the inverse of the connected sum. It consists of cutting the 3-manifold along a
2-sphere such that the resulting two disconnected 3-manifolds are not balls. After
attaching balls to the boundary of these parts, one obtains two simpler 3-manifolds.
A prime 3-manifold does not admit such sphere decomposition. Kneser proved
that, after a finite number of steps, a manifold factorizes into prime manifolds,
and Milnor proved that the decomposition is unique (Milnor 1962) up to homeo-
morphism.

Tori decomposition (Jaco and Shalen 1979; Johannson 1979) consists of cut-
ting a prime 3-manifold along “certain incompressible” tori embedded. The result
is a 3-manifold bounded by tori that are left as boundaries because there is no
canonical way to close such holes.

Decomposing a 3-manifold through the above procedure produces a list of
simpler manifolds, which resembles an evolutionary tree (McMullen 2011) (see
Figure 1.1). Thurston conjectured that it is possible to choose the separating tori
so that the simplest pieces can be modeled by one of the eight geometries. This
is the 3-dimensional case of Theorem 1: the Thurston-Perelman geometrization
theorem.

1.3.2 Geometrization of compact 3-manifolds

The geometrization of surfaces is controlled by the Euler characteristic. 3-manifolds
are more complicated. Thurston (1982) proposed that the simpler manifolds given
by the prime and tori decomposition can be modeled by eight geometries. These
geometries include Euclidean, hyperbolic, and spherical spaces.

Theorem 2 (Geometrization). Any compact, orientable, prime 3-manifold can be
constructed using just 8 geometry models.

The other five geometries are the product spaces S2 � R and H2 � R, en-
dowed with the product metric, and the “twisted” product geometries Nil, Sol, and
BSL2.R/. All the eight geometries are homogeneous, that is, for every pair of
points, there is a local isometry sending one to another. Only Euclidean, hyper-
bolic, and spherical spaces have isotropic geometries, that is, isometries on the
tangent space at every point can be realized as isometries of the underlying mani-
fold. We give more details of Thurston geometries in Section 1.4.

1.3. 3-Manifolds 7

Let M be an oriented, compact 3-manifold and M D M1#M2# � � � #Mn be
its prime decomposition. A more formal statement of Theorem 2 is the following.
There is a finite collection of disjoint, embedded, incompressible tori in each prime
3-manifold Mi , so that each component of the complement admits a geometric
structure modeled on one of the eight Thurston’s geometries. Remember that a
3-manifold is geometrically modeled by one of Thurston geometries if it is the
quotient of one of these spaces by a discrete group. Therefore, the geometrization
theorem factorizes the manifold M into pieces (the leaves in Figure 1.1) modeled
by the eight geometries. The inverse of the above procedure explains the word
construct in Theorem 2.

In the surface case, hyperbolic geometry played a central role. The same hap-
pens in dimension three, most of the eight geometries are required to describe
particular manifolds. Thurston (ibid.) said that hyperbolic geometry is by far the
most interesting, the most complex, and the most useful among the eight geome-
tries. In Section 1.4, we present some ideas explaining the abundance of manifolds
modeled by hyperbolic geometry.

The geometrization theorem implies the Poincaré conjecture. A compact sim-
ply connected 3-manifold is prime and does not contain a torus non-trivially em-
bedded (its fundamental group is trivial). The theorem implies that the manifold
is modeled by one of the eight geometries. As the fundamental group is finite,
the manifold must be the quotient of the sphere by a discrete group (Elliptization
theorem), which should be trivial since it is isomorphic to the fundamental group.

At this point, we should clarify two hard questions. Why are there exactly
eight geometries? How can Theorem 2 be proved? We present some informal
intuitions and ideas of the proofs. The first question is approached in Section 1.4.
The technique using Gauss–Bonnet theorem does not work in this case.

Perelman’s proof of the geometrization theorem involves geometry and anal-
ysis tools that are beyond the scope of this paper. Informally, Perelman’s argu-
ment consists of starting from a 3-manifold endowed with a Riemannian metric
g0. Then running Hamilton’s Ricci flow @gt

dt
D �2Ric.gt /, where gt is the met-

ric which evolves along time controlled by the Ricci curvature. This smooths the
metric giving a more “uniform” shape to the manifold (similar to the heat equa-
tion). This procedure may produce singularities since (in some sense) the differ-
ential equation may create critical elements. Perelman overcomes this by cutting
the manifold into certain pieces (prime and tori decomposition) just before the
collapse appears. Then he repeats the method on each of the individual pieces.
He proved that this algorithm decomposes the manifold in a “tree” with each leaf
been a manifold with geometry modeled by one of the Thurston geometries, see

8 1. Background on Manifolds and Orbifolds

Figure 1.1.

Figure 1.1: Evolutionary tree of a compact orientable 3-manifold. It operates like
an algorithm. The first two layers indicate the prime and tori decomposition of the
3-manifold. The last two is the geometrization theorem.

1.4 8 Thurston Geometries

We provide the definitions and some features of the geometries that appear in the
geometrization theorem. We also justify why the hyperbolic geometry is the rich-
est, presenting all the manifolds modeled by the Thurston geometries. Other great
presentations of the eight geometries include (Martelli 2016; Scott 1983; Thurston
1982; Weeks 2020b).

The classification mentioned above uses the Seifert manifolds: closed man-
ifolds admitting a decomposition in terms of disjoint circles. Martelli (2016)
describes two results. The first states that a closed orientable 3-manifold can
be modeled by one of the following six geometries: R3; S3; S2 � R; H2 �

R; N il; BSL2.R/ iff it belongs to a special class of Seifert manifolds. It has a
Sol geometric structure iff it admits a particular torus bundle, called torus .semi-
/bundle of Anosov type.

The second result states that if a 3-manifold is geometrically modeled by one
of Thurston geometries, it is specified by the manifold fundamental group:

1.4. 8 Thurston Geometries 9

Fundamental group Model geometry
Finite S3

Virtually cyclic S2 � R
Virtually abelian R3

Virtually nilpotent N il

Virtually solvable Sol

Contains a normal cyclic group
Quotient lifts
a finite-index subgroup H2 � R

Otherwise BSL2.R/

Otherwise H3

The seven classes of fundamental groups aforementioned represent a restricted
portion of the set of all possible fundamental groups, which implies that the hyper-
bolic manifolds are more abundant. We skip these group definitions because they
deviate from the scope of this paper.

Thurston geometries can be divided in three classes. The classical geometries
which consist of isotropic spaces: Euclidean, spherical, and hyperbolic spaces.
The remaining are the non-isotropic geometries and are composed of the product
geometriesS2�R andH2�R and the “twisted” product geometriesN il , Sol , and
BSL2.R/. All these spaces are homogeneous, every pair of points admits similar
neighborhoods. The classical geometries admit constant sectional curvature since
they are isotropic (Carmo 1992).

1.4.1 Classical geometries

For dimension n > 2 exists a unique complete, simply connected Riemannian
manifold having constant sectional curvature 1, 0, or �1. These are the isotropic
geometries: the sphere, the Euclidean space, and the hyperbolic space. Conversely,
if a complete manifold has constant sectional curvature 1, 0, or �1, it must be the
quotient of such models geometries by a discrete group (Proposition 4.3 in (ibid.)).
We present these geometries, examples of manifolds modeled by them, and the
behavior of rays in such spaces.

Euclidean space

In dimension two, every orientation preserving isometry in Euclidean space is a
translation. Then, if E2=� is a compact orientable surface, it must be the torus

10 1. Background on Manifolds and Orbifolds

(see Sec 6.2 of (Martelli 2016)). In dimension three the list is increased by five
more orientable manifolds since we can compose rotations with translations.

The Euclidean space E3 is R3 endowed with the Euclidean inner product
hu; viE D ux � vx C uy � vy C uz � vz , where u and v are vectors in R3. The
distance between two points p and q is dE.p; q/ D

p
hp � q; p � qiE. The curve

.t/ D p C t � v describes a ray leaving a point p in a direction v. Analogously,
for any n > 0 the Euclidean space En is constructed.

The flat torus T3 is a 3-manifold modeled by E3, it is obtained by gluing
opposite faces of the unit cube in E3. T3 is also the quotient of E3 by its group of
translation spanned by .x; y; z/ ! .x ˙ 1; y; z/, .x; y; z/ ! .x; y ˙ 1; z/, and
.x; y; z/ ! .x; y; z ˙ 1/. The unit cube is the fundamental domain.

A ray leaving a point p 2 T3 in a direction v is parameterized as r.t/ D

p C t �v. For each intersection between r and a face F of the unit cube, we update
p by p � n in the opposite face; n is normal to F . The direction v does not need
to be updated.

Then, we have the ingredients for an inside view of T3. The fundamental
domain receives the scene and the rays in T3 can return to it, resulting in many
copies of the scene. The immersive perception is E3 tessellated by scene copies.
Section 4.1.1 will present inside views of the flat torus.

Beyond the torus, there are exactly five more compact oriented 3-manifold
with geometry modeled by the Euclidean geometry, see Figure 1.2.

Hyperbolic space

Here we present the hyperboloid and Klein models of the hyperbolic geometry.
There are plenty of hyperbolic manifolds, making this concept a central actor in
the topology of 3-manifolds (ibid.).

The Lorentzian space is R4 with the product hu; viH D uxvx C uyvy C

uzvz � uwvw , where v; u 2 R4. The hyperbolic geometry H3 is represented by
the hyperboloid fp 2 R4j hp; piH D �1g endowed with the metric

dH.p; q/ D cosh�1.�hp; qiH/;

where p and q are points in H3. Due to its similarity to the sphere definition, H3

is also known as pseudosphere.
A tangent vector v to a point p inH3 satisfies hp; viH D 0. Moreover, the tan-

gent space TpH3 coincides with the set fv 2 R4j hp; viH D 0g. The Lorentzian
inner product is positive on each tangent space.

1.4. 8 Thurston Geometries 11

Figure 1.2: The six compact oriented flat manifolds. These are built through pair-
wise gluing: faces are identified isometrically according to their labels, otherwise,
it is glued to its opposite in an obvious way. From (Martelli 2016).

Rays in H3 arise from intersections between H3 and planes in R4 containing
the origin. A ray leaving a point p 2 H3 in a tangent direction v is the intersection
between H3 and the plane spanned by the vectors v and p. Its parameterization is
r.t/ D cosh.t/p C sinh.t/v. Thus, rays in H3 can not be straight lines.

It is possible to model H3 in the unit open ball in R3 — known as the Klein
model K3—such that in this model the rays are straight lines. More precisely, each
point p 2 H3 is projected in the space f.x; y; z; w/ 2 R4j w D 1g by considering
p=pw , the space K3 is obtained by forgetting the coordinate w.

The hyperbolic space is a model of a Non-Euclidean geometry, since it does
not satisfy the Parallel Postulate: given a ray r and a point p … r , there is a unique
ray parallel to r . In hyperbolic space, within a two-dimensional hyperbolic plane,
for a ray r and a point p … r there is an infinite number of rays going through p

which do not intersect r .
For a compact 3-manifold geometrically modeled by hyperbolic geometry con-

siders the Seifert–Weber dodecahedral space. It is the dodecahedron with an iden-
tification of its opposite faces with a clockwise rotation of 3�=10. The face pairing
groups edges into six groups of five, making it impossible to use Euclidean geom-
etry. The regular Euclidean dodecahedron has a dihedral angle of � 116 degrees.
The desired dodecahedron should have a dihedral angle of 72 degrees, which is

12 1. Background on Manifolds and Orbifolds

possible in hyperbolic space considering an appropriate dodecahedron diameter.
Then, we ray trace Seifert–Weber dodecahedron. A ray leaving a point p 2 M

in a tangent direction v is given by
.t/ D p C tv since we are using Klein’s
model. For each intersection between
 and a dodecahedron face, we update p

and v through the hyperbolic isometry that produces the face pairing above. This
isometry is quite distinct from Euclidean isometries (Gunn 1993). The immersive
perception of M using this approach is a tessellation of H3 by dodecahedra with
a dihedral angle of 72 degrees. Section 4.3.1 will illustrate inside views of the
Seifert–Weber dodecahedron.

Spherical space

The 3-sphere S3 is fp 2 E4j hp; piE D 1g with the metric
dS.p; q/ D cos�1

hp; qiE:

As in the hyperbolic case, a tangent vector v to a point in S3 satisfies hp; viE D 0.
The tangent space TpS3 corresponds to the set of vectors fv 2 S3jhp; viE D 0g.
The space TpS3 inherits the Euclidean inner product of E4.

A ray in S3 passing through a point p in a tangent direction v is the arc pro-
duced by intersecting S3 with the plane spanned by v, p, and the origin of E4.
Such ray is parameterized as r.t/ D cos.t/p C sin.t/v.

S3 is a Non-Euclidean geometry because it fails the Parallel Postulate: given a
ray r and a point p … r , there is a unique ray parallel to r . In S3, within a 2-sphere
S2, each pair of distinct rays always intersects at exactly two points.

Gluing the opposite faces of the dodecahedron with a clockwise rotation of
�=5 we get the Poincaré dodecahedral space (or Poincaré homological sphere);
its first homological group is trivial. The face pairing groups edges into ten groups
of three edges. Then, we need a dodecahedron with dihedral angle of 120. In this
case, we use spherical geometry by finding a dodecahedron in the 3-sphere with
an appropriate diameter. The immersive visualization of Poincaré dodecahedral
space is a tessellation of S3 by 120 dodecahedra. This is a 4-dimensional regular
polytope: the 120-cell. Section 4.2.1 will give inside views of the Poincaré sphere.

1.4.2 Product geometries
The eight three dimensional geometries include products of lower-dimensional
geometries, which areS2�R andH2�R endowed with the product metric. We do
not focus on visualizing these spaces because they model few manifolds (Martelli
2016). Visualizations of these geometries are given by (Weeks 2006).

1.4. 8 Thurston Geometries 13

S2 � R space

The geometry S2 � R models very few manifolds. The sectional curvature is 1

along with horizontal directions and 0 along with verticals. Recall that sectional
curvature of a plane is the Gauss curvature associated with the surface generated
by such a plane.

The manifold S2 � S endowed with the product metric can be modeled by
S2 � R. The geometry of S2 � S can not be modeled by classical geometries,
since S2 � S has S2 � R as its universal covering and it is not isotropic.

H2 � R space

The geometry H2 � R is given by the product metric. Analogous to the S2 � R,
horizontal and vertical planes have sectional curvature �1 and 0.

1.4.3 “Twisted” product geometries

The remaining three non-isotropic geometries to analyze are not products, but they
admit a kind of “bundle structure”. The first attempt to visualize these geometries
in real-time (using VR) appeared in 2019 (Novello, V. da Silva, and Velho 2020e).
We give a brief introduction of these geometries. In Chapter 5, we present inside
views of these geometries. See (Coulon et al. 2020a,b,c; Kopczyński and Celińska-
Kopczyńska 2020; Rogue 2020; Skrodzki 2020) for other great works.

Nil space

We follow the definitions of (Martelli 2016). Nil space is a Lie group consisting
of all 3 � 3 real matrices 24 1 x z

0 1 y

0 0 1

35
with the multiplication operation. We identify R3 and N il using

.x; y; z/ 2 R3
!

24 1 x z

0 1 y

0 0 1

35 2 N il

14 1. Background on Manifolds and Orbifolds

as a parameterization (for ray tracing, we set up our scene in R3). Then, the mul-
tiplication of .x; y; z/ and .x0; y0; z0/ is given by:

.x; y; z/ � .x0; y0; z0/ D

24 1 x z

0 1 y

0 0 1

35 24 1 x0 z0

0 1 y0

0 0 1

35
D .x C x0; y C y0; z C z0 C xy0/:

In other words, the multiplication of elements in N il is the sum of its coordinates,
with an additional term in the last one. This termmakes all the difference, since, to
put geometry in N il , we consider the left multiplication .x; y; z/ ! p � .x; y; z/,
for each p 2 N il , being an isometry.

We construct a metric in Nil. The origin of N il is e D .0; 0; 0/, and TeN il D

R3 is the tangent space at e with the Euclidean product hu; vie D uxvx Cuyvy C

uzvz . Let p be a point in N il , we define a scalar product h�; �ip in TpN il . Since
p�1 D .�px; �py ; �pz C pxpy/ we have the isometry that translates p to the
origin e:

'.x; y; z/ WD Lp�1.x; y; z/ D .x � px; y � py ; z � pz C px.py � y//:

The differential of the map ' at a point p in the tangent direction v is given by
d'p.v/ D vx �d'p.e1/Cvy �d'p.e2/Cvz �d'p.e3/, where fe1; e2; e3g is standard
base ofR3. The partial derivatives are d'p.e1/ D .1; 0; 0/, d'p.e2/ D .0; 1; px/,
and d'p.e3/ D .0; 0; 1/, hence d'p.v/ D .vx; vy ; vypx C vz/. The following
equation defines the product between two tangent vectors u and v at p:

hu; vip D hd'pu; d'pvie D uT

24 1 0 0

0 p2
x C 1 �px

0 �px 1

35 v:

The 3�3matrix above defines ametric gij in the tangent space atp. Varyingp

we obtain a Riemannian metric h�; �i, since each matrix entry is differentiable. The
vectors .1; 0; 0/, .0; 1; x/, and .0; 0; 1/ form an orthogonal basis at p D .x; y; z/.
Also, the volume form of Nil space coincides with the standard one from the Eu-
clidean space, since det

�
gij

�
D 1:

To compute the Christoffel symbols of N il at .x; y; z/, we use its well-known
formula from Riemannian geometry (Carmo 1992). Their are all zero except

1.4. 8 Thurston Geometries 15

for (Martelli 2016):

� 1
22 D �x; � 1

23 D � 1
32 D

1

2
;

� 2
12 D � 2

21 D
x

2
; � 2

13 D � 1
31 D �

1

2
;

� 3
12 D � 3

21 D
.x2 � 1/

2
; � 3

13 D � 3
31 D �

x

2
:

The computation (Szilágyi and Virosztek 2003) can be done using the software
Maple. Replacing the Christoffel symbols of N il in the formula of the geodesic
flow (Carmo 1992), we obtain the geodesic flow of N il . This admits a solu-
tion (Szilágyi and Virosztek 2003). A ray
.t/ D .x.t/; y.t/; z.t// starting at
.0; 0; 0/ in the unit tangent direction v D .c cos.˛/; c sin.˛/; w/ has the following
form:

x.t/ D
c

w
.sin.wt C ˛/ � sin.˛//

y.t/ D �
c

w
.cos.wt C ˛/ � cos.˛//

z.t/ D t.w C
c2

2w
/�

c2

4w2
.sin.2wt C 2˛/ � sin.2˛//

C
c2

2w2
.sin.wt C 2˛/ � sin.2˛/ � sin.tw//:

To compute a geodesic ˇ.t/ starting at p in the direction v, we translate ˇ to
the origin using the left multiplication '.x; y; z/ D .�px; �py ; �pz C pxpy/ �

.x; y; z/. Observe that, '.0/ D e and d'p.v/ D v � .0; 0; pxvy/. Therefore,
the curve ' ı ˇ.t/ D .x.t/; y.t/; z.t// is a ray starting at e in the direction v �

.0; 0; pxvy/, and it can be computed using the above closed formula. To compute
ˇ.t/ we simply apply Lp to ' ı ˇ.t/ to obtain the desired formula

ˇ.t/ D p � .x.t/; y.t/; z.t// D .px C x.t/; py C y.t/; pz C z.t/ C pxy.t//:

BSL2.R/ space

We follow the definitions of (Gilmore 2008). The special linear group SL2.R/

consisting of all 2 � 2 matrices with unit determinant is a Lie group. Indeed, the
product of two matrices with unit determinant has unit determinant, the same for
the inverse matrix. To understand the richness of SL2.R/, we present two inter-
pretations: one geometrical and another more topological.

16 1. Background on Manifolds and Orbifolds

Geometrical interpretation: We can interpret SL2.R/ as a 3-manifold in R4

using the expression f.a; b; c; d/ 2 R4j ad � bc D 1g. Moreover, rephrasing
ad � bc D 1 we obtain:�

a C d

2

�2

�

�
a � d

2

�2

C

�
b � c

2

�2

�

�
b C c

2

�2

D 1;

which describes the equation of a 3-hyperboloid in R4.

Topological interpretation: We can also identify SL2.R/ with the product of
the (hyperbolic) upper half plane H D fz 2 Cj Im.z/ > 0g and the unit circle

S1. Before, we provide some additional definitions. An element g D

�
a b

c d

�
2

SL2.R/ induces an action in H:

gz D

�
a b

c d

� �
z

1

�
D

�
az C b

cz C d

�
D

az C b

cz C d
: (1.1)

We used homogeneous coordinates in Equation (1.1).
The action in Equation (1.1) is well defined, that is cz Cd ¤ 0 and Im.gz/ >

0. As ad � bc D 1, either c or d are non null, so is cz C d . To verify that the
imaginary part of gz is greater than zero we multiply the numerator and denomi-
nator of gz by c Nz C d , where Nz is the conjugate of z. After some calculations we
get Im.gz/ D Im.z/=jcz C d j2, which is greater than zero.

We now provide a decomposition of g in two components AN and K, known
as Iwasawa decomposition. Where K will be responsible by rotations around the
point i 2 H2 and AN will be translations of i . This procedure provides the
decomposition of SL2.R/ into the product S1 � H2. Specifically, define

AN D

264 1
p

c2 C d2

ac C bd
p

c2 C d2

0
p

c2 C d2

375 ; K D

�
d �c

c d

�
�

1
p

c2 C d2
:

It can be verified that the product between AN and K gives rise to the matrix g.

Observe that K can be written as
�
cos� � sin�

sin� cos�

�
, for some angle 0 6 � 6

2� . Thus, the matrices K can be parameterized by S1. We now verify that AN

parameterize H2.

1.4. 8 Thurston Geometries 17

Let z D x C iy be a point in H2, then

z D

24 p
y xp

y

0 1p
y

35 �
i

1

�
D x C iy: (1.2)

Every point in H2 can be written as the action of some matrix of the linear special
group SL2.R/ on i . Taking y D c2 C d2 and x D ac C bd the correspondence
between AN and H2 follows.

The identification of SL2.R/ with H2 � S1 provides a topological interpre-
tation of SL2.R/: its fundamental group is S1. Then SL2.R/ is not simply con-
nected, hence it is not a model geometry. However, its universal cover BSL2.R/ is
a model geometry(Thurston 1979). We focus on SL2.R/ since they have identical
geometry and we are dealing with visualization.

We could use the above parameterization of SL2.R/ byH2 �S1, however, we
take an easier coordinate system. We parameterize a neighborhood of the identity
of SL2.R/ by a neighborhood of the origin of R3 using the map (Gilmore 2008):

X.x; y; z/ D

24 1 C x y

z
1 C yz

1 C x

35 : (1.3)

Observe that the element X.0; 0; 0/ is the identity of SL2.R/, and that in the plane
x D 1 the map is not well defined. We use the map X to push-back the metric of
SL2.R/ to R3. In other words, we construct a metric in the SL2.R/ and use the
map defined in Equation (1.3) to push it to R3.

The identity matrix is the identity e of SL2.R/. Let TeSL2.R/ be the tangent
space at e with the well known (ibid.) matrix scalar product hu; vie D T r.u � v/

between two 2�2matricesu and v inTeSL2.R/. T r is thematrix trace. We define
a scalar producth�; �ip in TpSL2.R/ for a point p using the left multiplication ',
where

p�1
D

24 1 C pypz

1 C px
�py

�pz 1 C px

35 :

Therefore we obtain the parameterization '.x; y; z/ D p�1 � X.x; y; z/. Its differ-
ential atp, applied to the tangent vector v, can be expressed by the form d'p.v/ D

18 1. Background on Manifolds and Orbifolds

vx � d'p.e1/ C vy � d'p.e2/ C vz � d'p.e3/. The partial derivatives are:

d'p.e1/ D

26664
1 C pypz

1 C px

py C p2
ypz

.1 C px/2

�pz �
1 C pypz

1 C px

37775 ;

d'p.e2/ D

24 0
1

1 C px

0 0

35 ; d'p.e3/ D

264 �py �
p2

y

1 C px

�1 C px py

375 :

After some computations using the scalar product at TeSL2.R/ we obtain the met-
ric tensor at p: 26666664

2
.1 C pypz/

.1 C px/2
�

pz

1 C px

�
py

1 C px

�
pz

1 C px

0 1

�
py

1 C px

1 0

37777775 : (1.4)

To compute a ray in SL2.R/ we need the Christoffel symbols at each point
'.p/, which are all zero except for

� 1
11 D �

1 C pypz

1 C px
; � 1

12 D
pz

2
; � 1

13 D
py

2
; � 1

23 D �
1 C px

2

� 2
11 D �

py C p2
ypz

.1 C px/2
; � 2

12 D
pypz

2 C 2px
; � 2

13 D
p2

y

2 C 2px
; � 2

23 D �
py

2

� 3
11 D �

pz C p2
zpy

.1 C px/2
; � 3

12 D
p2

z

2 C 2px
; � 3

13 D
pypz

2 C 2px
; � 3

23 D �
pz

2
:

Remember that � k
ij D � k

ji . We obtain the geodesic flow by replacing the Christof-
fel symbols in the general geodesic flow formula (Carmo 1992).8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

x0
k

D yk; k D 1; 2; 3:

y0
1 D

.1 C pypz/y2
1

1 C px
� pzy1y2 � pyy1y3 C .1 C px/y2y3

y0
2 D

.1 C pypz/pyy2
1

.1 C px/2
�

pzpy

1 C px
y1y2 �

p2
y

1 C px
y1y3 C pyy2y3

y0
3 D

.1 C pypz/pzy2
1

.1 C px/2
�

p2
z

1 C px
y1y2 �

pypz

1 C px
y1y3 C pzy2y3

1.4. 8 Thurston Geometries 19

We use Euler’s numerical method to integrate this equation.

Sol space

Sol is the least symmetric one among Thurston geometries. As in the Nil space, we
follow the definitions of Martelli (2016). The Sol space is a Lie group consisting
of all matrices 24 ez 0 x

0 e�z y

0 0 1

35
with the multiplication operation. Sol identifies with R3, since

.x; y; z/ 2 R3
!

24 ez 0 x

0 e�z y

0 0 1

35 2 Sol

defines a parameterization. We push-forward the differentiable structure of R3 to
Sol and use R3 to set our scene for ray tracing.

Let .x; y; z/ and .x0; y0; z0/ be elements in Sol space, their multiplication is
given by the formula:

.x; y; z/ � .x0; y0; z0/ D

24 ez 0 x

0 e�z y

0 0 1

35 24 ez0

0 x0

0 e�z0

y0

0 0 1

35
D .x0ez C x; y0e�z C y; z C z0/:

Specifically, the multiplication in Sol is the sum of the coordinates of the
elements with an additional exponential term. We now define a geometry in Sol .

The element e D .0; 0; 0/ is the identity of Sol . We consider the tangent space
TeSol at e to be endowed with the Euclidean scalar product. Let p be a point in
Sol , we define a scalar product h�; �ip in TpSol as in Nil geometry case. Then,
we use the left multiplication ' WD Lp�1 , and its differential d'p, to transpose
vectors from TpSol to TeSol . As p�1 D .�pxepz ; �pye�pz ; �pz/, we have
'.x; y; z/ D .xe�pz � pxepz ; yepz � pye�pz ; z � pz/.

The differential of themap' applied to a tangent vector v has the form d'p.v/ D

vx � d'p.e1/ C vy � d'p.e2/ C vz � d'p.e3/. Computing the partial derivatives,
d'p.e1/ D .e�pz ; 0; 0/, d'p.e2/ D .0; epz ; 0/, and d'p.e3/ D .0; 0; 1/, we
obtain d'p.v/ D .vxe�pz ; vyepz ; vz/.

20 1. Background on Manifolds and Orbifolds

We derive the scalar product between two tangent vectors u and v at p as

hu; vip D hd'p.u/; d'p.v/ie D uT

24 e2pz 0 0

0 e�2pz 0

0 0 1

35 v:

The 3 � 3 matrix above defines a metric at p. Varying p we obtain a Riemannian
metric h�; �i, since each matrix entry is differentiable. The volume form of Sol

coincides with the standard one fromR3, since the determinant of the abovematrix
is one. To compute a ray in Sol we need the Christoffel symbols at each point
.x; y; z/, which are all zero except ((Martelli 2016)):

� 1
13 D � 1

31 D 1; � 2
23 D � 2

32 D �1;

� 3
11 D �e2z; � 3

22 D � 3
31 D e�2z :

We use the Christoffel symbols of Sol to obtain its geodesic flow:8̂̂̂<̂
ˆ̂:

x0
k

D yk; k D 1; 2; 3:

y0
1 D �2y1y3

y0
2 D 2y2y3

y0
3 D e2pz y2

1 � e�2pz y2
2

(1.5)

Let p 2 Sol and v 2 TpSol be an initial condition for Equation (1.5). Then,
there is no solution for this problem in terms of elementary functions (Bölcskei and
Szilágyi 2007). To overcome this we use Euler’s numerical method to integration
as described in Section 3.3.3.

We believe that the development of Computer Graphics techniques in Rieman-
nian geometry could be an ally in the mathematical research in low dimension. In
particular, several works have been using Virtual Reality to interactively visualize
the eight Thurston geometries (Novello, V. da Silva, and Velho 2020d,e; Weeks
2020a,c). In the next chapters we introduce the new ray tracing techniques which
allow (real-time) visualizations of Thurston geometries.

2 Immersive
Visualization in
Virtual Reality

2.1 3D Visualization

A 3D visualization algorithm renders an image of a three-dimensional scene ac-
cording to a view specification. The input of the algorithm is a scene description
composed of ambient three-dimensional space, 3D shapes placed in this ambient
space, and a viewpoint, among other parameters. The output is a two-dimensional
view. In that sense, the rendering process transforms geometric three-dimensional
information into visual two-dimensional information.

2.1.1 The Viewing Transformation Pipeline

In order to understand this process, let us recall the viewing transformation pipeline,
which relates the different spaces and coordinate systems involved in the compu-
tation of a rendered image. To introduce the reader to the visualization of non-
Euclidean spaces using computer graphics techniques, we consider the ambient
space to be a Riemannian 3-manifold M .

We describe a scene S inside M — the world space. Each object o 2 S has
a position p 2 M and an orthogonal transformation T in the tangent space TpM .
Thus TpM is a natural candidate to be the object space, and the exponential map

22 2. Immersive Visualization in Virtual Reality

expp W TpM ! M provides the object coordinate system. The object can be
described parametrically or implicitly in TpM . All the objects are placed in M by
a modeling transformation. Specifically, we embed each object o 2 S in the world
space using the map expp ıT : composition of the transformation T encoding the
object orientation with the exponential map expp associated with the object space.

Let q be the camera position in the 3-manifold M . The view is specified
in TqM (the camera space) using the exponential map expq which defines the
camera coordinate system relative to the world. The objects that are visible from
the camera are mapped to the image coordinate system (which implements the
viewing window). More precisely, we model a view frustum V directly in the
tangent space TqM . The exponential map is used to release the rays, which in this
case, will be geodesics. Thus objects of the scene inside the projected view frustum
expq.V / are mapped to the image space. This pipeline is shown in Figure 2.1.

Object

Space

World

Space

Camera

Space

Image

Space

Modeling

Transformation

Camera

Transformation

Perspective

Transformation

Figure 2.1: Viewing Transformation Pipeline .

Since Molnár (1997) presented a projective interpretation of the Thurston ge-
ometries, the transformations of the viewing pipeline can be defined in such space
by real projective mappings using homogeneous coordinates in P3. This scheme
has been adopted as a standard in most graphics systems (in Euclidean space) be-
cause it unifies all the transformations involved using 4�4 projective matrices. In
that way, the 3D objects are immersed in projective space, transformed and then,
projected to a 2D image space.

This particular way in which the viewing pipeline is defined opens up the pos-
sibility to render views of ambient spaces different than the Euclidean space. For
example, Weeks (2002b) describes the above pipeline in detail for the spherical
and hyperbolic geometries.

2.1.2 Inside Views in Non-Euclidean Spaces

With a few exceptions, most 3D visualization software support only rendering
of scenes in the Euclidean space E3. However, exploiting the fact that the visu-

2.1. 3D Visualization 23

alization process resorts to projective transformations in order to create images
of three-dimensional spaces, it is possible to render different model geometries
without structural changes to the visualization algorithm, by using the appropriate
transformations in the viewing pipeline.

Thus, besides the Euclidean space E3, other model geometries, such as spheri-
cal and hyperbolic, can be rendered by the above visualization algorithms without
difficulty. The specialization required in the pipeline amounts to taking care of
the correct transformations that respect the intrinsic metric of the model geometry,
as discussed previously.

The isometries for a given model geometry define the set of model transforma-
tions in the viewing pipeline. They are combined with the camera and perspective
transformations, which are defined by the view specification. Perspective transfor-
mations are examples of projective transformation which are presented in (Molnár
1997) for the eight Thurston geometries.

These transformations are subsumed as elements ofP GL.R; 4/, the projective
general linear group, and represented as 4 � 4 transformations matrices in the
visualization algorithm (see (Gunn 1993; Molnár 1997; Phillips and Gunn 1992)).

To render inside views of three-dimensional spaces, we generate images that
would be seen by an observer (e.g. a camera) placed in that space. Light paths
follow geodesics and reveal the geometry/topology of the space. Chapter 3 will
discuss the visualization of 3-manifolds in more details.

2.1.3 Types of Algorithms

There are two main types of three-dimensional visualization algorithms. They can
be classified into:

• Object space;

• Image space.

Object space algorithms apply the direct viewing transformation to points of
the objects, while image space algorithms apply the inverse viewing transforma-
tion to rays originating from the camera and corresponding to image pixels.

The structure of these two types of algorithms is described by the pseudocodes:

24 2. Immersive Visualization in Virtual Reality

Algorithm 1: Object-Space Visualization
for each o 2 S do
Map o from scene to camera space
if o is visible then
Project o to image space

end if
end for

The object-space algorithm is widely adopted in Computer Graphics and is the
one used in the OpenGL standard.

Algorithm 2: Image-Space Visualization
for each pixel p 2 I do
Generate a ray r in camera space
Transform r to scene space
Find the intersection i.r/ with visible object o 2 S

if i.r/ ¤ ; then
Paint pixel

end if
end for

The image-space algorithm is the basis of ray tracing rendering methods. In
these algorithms, rays are launched toward the pixels, andwhen they hit an object’s
surface the shading is computed. This is a very convenient technique to render
inside views of Riemannian 3-manifolds, we just have to set the view frustum in
the tangent space of the observer and use the exponential map to release the rays.
The visualizations presented in this book are outputs of a generalization of the ray
tracing algorithm to Riemannian geometry, see Chapter 3 for the details.

Note that object-space algorithms work at geometric precision and, in princi-
ple, must perform full evaluation when transforming objects in the scene, while
image-space algorithms work at image resolution and may perform a lazy evalua-
tion of transformations required by each ray.

Furthermore, the opposite nature of these two algorithms has a determinant
impact on the complexity of the visualization process and on the strategies used
to make them more efficient. This depends on various factors, such as scene and
depth complexity, among others.

2.2. GPU Ray Tracing using RTX / Falcor 3.2.1 25

2.1.4 Rendering Acceleration

Rendering accelerationmethods exploit some kind of coherence in different classes
of scenes embedded in three-dimensional spaces.

In the case of object space rendering for immersive views of 3-manifolds (mod-
eled by the classical geometries), transformed copies of the objects to be drawn
need to be computed first because these algorithms operate in the universal cover-
ing of themanifold. Thus we have to tessellate the universal covering space, which
is the considered model geometry, by copies of the scene using the underlying dis-
crete group. As a result, object-space algorithms generate many occluded objects
which may not be needed, because they are not visible. Therefore, object-space
acceleration techniques, such as occlusion culling do not help much, because of
the burden of generating and transforming the objects in the scene.

For this reason, attempts to adapt traditional object-space acceleration meth-
ods, or even develop new ones, will not be very effective. In most cases, the lim-
ited efficiency gains will not justify the complexity of implementing such methods.
Perhaps, this is the reason that most existing object-space algorithms rely mainly
on the GPU acceleration of OpenGL.

On the other hand, image-space algorithms for inside views of 3-manifolds
take full advantage of the classical ray tracing accelerationmethods based on space
subdivision (see (Arvo and Kirk 1989)). This is because to render inside views of a
scene embedded in a 3-manifold (modeled by one of Thurston geometries), we can
define the scene inside the fundamental domain of themanifold and launch the rays
from the observer. Each time a ray intersects a face of the fundamental domain, we
update it using the discrete group. Thus, these methods are naturally incorporated
into the algorithm and do not require additional memory. Furthermore, they can
take full advantage of modern programmable GPU’s.

We will return to this point further in Chapter 3, regarding the immersive vi-
sualizations of Riemannian 3-manifolds using an image-space algorithm.

2.2 GPU Ray Tracing using RTX / Falcor 3.2.1

Computer Graphics history has several examples of important hardwaremilestones.
They changed the way real time algorithms could be designed and implemented
and created vast opportunities for advances in research.

One aspect of graphics cards that has been advancing consistently in the last
decades is shader flexibility. In the beginning we had graphics libraries using
a fixed rendering pipeline, which could only receive data and instructions from

26 2. Immersive Visualization in Virtual Reality

the CPU. No GPU side programming could be done at that time. This aspect
was changed later, with the advent of programmable shaders. Vertex and Pixel
Shaders were introduced, creating a revolution in the possibilities for real time
graphics. Later on, those capabilities were increased with the exposition of more
programmable rendering stages (Fernando R. 2004). Applications could imple-
ment Tesselation and Geometry Shaders to have access to customizable geometry
resolution and primitive connectivity.

Recently, the same approach was used to create a solution for Real time Global
Illumination. The so-called RTX platform can produce faithful images using Ray
Tracing (RT), which is historically known to have prohibitive performance for real
time applications. This landmark creates interesting opportunities for new visual-
ization applications. In particular, content makers for Virtual Reality (VR) can
greatly benefit from the added realism to create immersive, meaningful experi-
ences.

Thus, the demand for a VR/RT integrated solution is clear. However, realistic
VR needs stereo images for parallax sensation. The obvious consequence is a du-
plication of the performance hit caused by ray tracing. A good algorithm should
balance performance and image quality, something that can be done using RTX
Ray Tracing and a proper trace policy. The recent announcement of ray tracing
support for older architectures (Burnes 2019) emphasizes even more the necessity
of a flexible algorithm for such task. Another point that must be taken into con-
sideration is stereo camera registration. Depending on how the ray directions are
calculated based on camera parameters, the stereo images may diverge when seen
in a head mounted display (HMD).

2.2.1 RTX Ray Tracing

Historically, GPUs process data in a predefined rendering pipeline, which has sev-
eral programmable and fixed processing stages. The main idea is to start with a
group of stages that process the vertices, feeding a fixed Rasterizer, which in its
turn generates data for pixel processing in another stage group. Finally, the result
image is output by the final fixed stage.

Currently, programmable shaders are very flexible in essence. The Vertex
Shader works on the input vertices, using transformation matrices to map them
to other spaces. The Hull, Tesselator and Domain Shaders subdivide geometry
and add detail inside graphics memory, optimizing performance. The Geometry
Shader processes primitives and mesh connectivity, possibly creating new primi-
tives in the process. The Fragment Shader works on the pixels coming from the

2.2. GPU Ray Tracing using RTX / Falcor 3.2.1 27

Rasterizer and the Output stage outputs the resulting image. Figure 2.2 shows the
rendering pipeline in detail.

Figure 2.2: Rendering pipeline in depth. The gray boxes are programmable
shaders and the black boxes are fixed stages. Adapted from (Wyman and Marrs
2019).

NVidia RTX is a hardware and software platform with support for real time
ray tracing. The ray tracing code of an application using this architecture consists
of CPU host code, GPU device code, the memory to transfer data between them
and the Acceleration Structures for fast geometry culling when intersecting rays
and scene objects.

Specifically, the CPU host code manages the memory flow between devices,
sets up, controls and spawn GPU shaders and defines the Acceleration Structures.
On one hand, the bottom level Acceleration Structure contains the rendering prim-
itives (triangles for example). On the other hand, the top level Acceleration Struc-
ture is a hierarchical grouping of bottom level ones. Finally, the GPU role is to
run instances of the ray tracing shaders in parallel. This is similar to the well-
established rasterization rendering pipeline.

The ray tracing GPU device code runs in a pipeline to the rasterization scheme
discussed previously. The differences are the stages taken. The goal of the first
stages is to generate the rays. Afterwards, a fixed intersection stage calculates the
intersection of the rays with the scene geometry. Then, the intersection points are
reported to the group of shading stages. Notice that more rays can be created at
this point, resulting in a recursion in the pipeline. The final fixed stage outputs the
generated image.

The details of the pipeline are as follows. A Ray Generation Shader is re-
sponsible for creating the rays, which are defined by their origins, directions and
payloads (custom user-defined data). A call to TraceRay() launches a ray. The
next stage is a fixed traversal of the Acceleration Structure, which is defined by
the CPU host code beforehand. The Acceleration Traversal uses an Intersection
Shader to calculate the intersections. All hits found pass by tests to verify if they
are the closest hit or if they must be ignored because of transparent material. In

28 2. Immersive Visualization in Virtual Reality

case a transparent material is detected, the Any-Hit Shader is called for all hits so
shading can be accumulated, for example. After no additional hits are found, the
Closest-Hit Shader is called for the closest intersection point. In case no hits are
found, the Miss Shader is called as a fallback case. It is important to note that
additional rays can be launched in the Closest-Hit and Miss shaders. Figure 2.3
shows an in-depth pipeline scheme. More detailed information about RTX Ray
Tracing can be seen in (Wyman and Marrs 2019) and applications can be found in
(Haines and Akenine-Möller 2019b).

Figure 2.3: Ray tracing pipeline in depth. Fixed stages are in light gray and pro-
grammable shaders are in dark grey. Modified from (Wyman and Marrs 2019).

2.2.2 Falcor 3.2.1

RTX Ray Tracing can be accessed in four ways. On one hand there are the low
level APIs Vulkan (Bailey 2018) (Sellers and Kessenich 2016), DirectX 12 (Luna
2016) (Wyman and Marrs 2019) and OptiX (Parker et al. 2010). They provide
more flexibility but less productivity. On the other hand there is Falcor (Benty et al.
2018b), an open-source real-time rendering framework designed specifically for
rapid prototyping. It has support for ray tracing shaders and is the recommended
way to use RTX Ray Tracing in a scientific environment.

Falcor code and installation instructions can be found at Github 1 (ibid.). It
is important to use version 3.2.1 because version 4.0 onward do not support VR
anymore. All mentions to Falcor from now on refer to this version. The bundle
comes with a Visual Studio solution, structured in two main components: a library
project called Falcor with high level components and Sample projects which use
those components to perform computations, effects or to provide tools for other
supportive purposes.

1https://github.com/NVIDIAGameWorks/Falcor

2.3. Ray Tracing and Stereo Rendering 29

Each Sample project consists at least of a main class inheriting from Renderer
and a Data folder. The Renderer class defines several relevant callbacks which
can be overridden as necessary. Examples include onLoad(), onFrameRender(),
onGuiRender(), onMouseEvent() and so forth. The Data folder is where non-C++
files necessary for the Sample (usually HLSL Shaders) should be placed. Falcor
automatically copies them at compilation time to the binary’s folder so programs
have no access problems.

2.3 Ray Tracing and Stereo Rendering
Our goal is to build a stereo-and-ray-tracing-capable renderer for VR. For this pur-
pose, we will exploit the functionalities of Falcor that provide support for Stereo
Rendering and Simple Ray Tracing.

Falcor is designed to abstract scene and Acceleration Structure setup so our
focus will be on describing Shader code and the CPU host code to set it up. The
next subsections explain the logic for two Falcor Samples with the objective of
using their components later on as building blocks for our new renderer. We refer
to code in the Falcor Samples, so it is advisable to access it in conjunction with
this section for a better understanding.

2.3.1 Simple Ray Tracer

HelloDXR is a simple ray tracer with support for mirror reflections and shad-
ows only. As would be expected, the Sample specifies two ray types: primary
and shadow.

The ray generation shader rayGen() is responsible of converting pixel coor-
dinates to ray directions. This is done by a transformation to normalized device
coordinates followed by another transformation using the inverse view matrix and
the camera field of view. The function TraceRay() is used to launch the rays. The
ray type index and the payload are provided as parameters.

The Closest-Hit Shader primaryClosestHit () computes the pixel final color. It
has two components: an indirect reflection color and a direct color. The reflection
color is calculated by getReflectionColor () , which reflects the ray direction using
the surface normal and shoots an additional ray in that direction. The payload
has a ray depth value used to limit recursion. The direct color is the sum of the
contributions of each light source at the pixel, conditioned by the shadow check
checkLightHit () . If the light source is not occluded, the contribution is calculated
by evalMaterial () , a Falcor built-in function to shade pixels based on materials.

30 2. Immersive Visualization in Virtual Reality

2.3.2 Stereo Rendering

The StereoRendering Sample is an application to render stereo image pairs using
the rasterization algorithm. The CPU host code ensures connection with the HMD
(initVR()), issues the Shaders to generate the images and transfers them to the
device (submitStereo ()). Specifically, it maintains a struct containing the camera
matrices and properties for both eyes. The geometry is drawn once, but it is du-
plicated inside the GPU by the Shaders. A frame buffer array with two elements
is maintained for that purpose (mVrFbo). When a frame finishes, each array slice
has the view of one eye.

The GPU code consists of a Vertex Shader, a Geometry Shader and a Pixel
Shader. The Vertex Shader (StereoRendering .vs . hlsl) just passes ahead the ver-
tex positions in world coordinates and additional rendering info such as normals,
colors, bitangent, texture and light map coordinates, if available.

The projection is left to theGeometry Shader (StereoRendering .gs . hlsl), which
is also responsible for duplicating the geometry. It receives as input three vertices
of a triangle and outputs six vertices. Each input vertex is projected twice, once for
each of the view-projection matrices available at the camera struct. The geometry
for each eye is output into the related array slice by setting a render target index at
struct GeometryOut.

Finally, the Pixel Shader (StereoRendering .ps . hlsl) samples material data us-
ing the built-in function prepareShadingData() and accumulates the contributions
of each light source using the built-in function evalMaterial () .

2.4 Integrating Ray Tracing and VR

Now we have the tools to develop a new renderer that combines the capabilities
described in the previous section. It should be capable of stereo rendering and ray
tracing in real time. This section describes the process and the possible choices
and alternatives to address the problems encountered.

2.4.1 Stereo Convergence

One key problem of integrating VR and RT is the stereo image registration. De-
pending on how this process is done, the images may diverge and it can be impossi-
ble for the human vision to focus correctly on the scene objects. This phenomenon
may result in viewer discomfort or sickness.

2.4. Integrating Ray Tracing and VR 31

To understand the ray generation process it is good to think about perspective
projection and the several related spaces it involves. (Pharr, Jakob, andHumphreys
2016b) contains an exceptional explanation of this topic, which will be summa-
rized here.

Conceptually, the process consists of a chain of transformations starting at the
world space, passing through the camera space and the normalized device coordi-
nate space and ending at the raster space. The camera space is the world space with
a translated origin to the camera position. The normalized device coordinate space
is the camera space with the near and far planes transformed. The near plane is at
the square with top-left corner at (0,0,0) and bottom-right corner at (1,1,0) and the
far plane is at the square with top-left corner at (0,0,1) and bottom-right corner at
(1,1,1). Finally, the raster space is the normalized device coordinate space scaled
by the image resolution. Figure 2.4 shows how the spaces relate to each other.

Figure 2.4: Several camera-related coordinate spaces: camera, normalized device
coordinates and raster. As in (Pharr, Jakob, and Humphreys 2016b).

The transformation for a projection camera can be constructed in two steps.
First, building a canonical perspective matrix with distance to the near plane n

and distance to the far plane f . The projected coordinates x0 and y0 are equal to
the original ones divided by the z coordinate. z0 is remapped so the values in the
near plane have z0 D 0 and the values in the far plane have z0 D 1:

32 2. Immersive Visualization in Virtual Reality

x0
D

x

z
; y0

D
y

z
; z0

D
f .z � n/

z.f � n/
:

This operation can be encoded as a 4 � 4 matrix using homogeneous coordinates:2664
1 0 0 0

0 1 0 0

0 0 f
f �n

�f �n
.f �n/

0 0 1 0

3775
As a side note, the original position of the projection planes would be impor-

tant for rasterization because the map of z to z0 is not linear, what could result in
numerical issues at depth test, for example. However, we are only interested in the
projection directions for ray tracing, thus those distances can be totally arbitrary.

The second step is scaling the matrix so points inside the field of view project
map to coordinates between Œ�1; 1� on the view plane. For square images, both x

and y lie between the expected interval after projection. Otherwise, the direction
in which the image is narrower maps correctly, and the wider direction maps to a
proportionally larger range of screen space values. The scaling factor that maps
the wider direction to the range Œ�1; 1� can be computed using the tangent of half
of the field of view angle. More precisely, it is equal to 1= tan.fov

2
/, as can be

seen in Figure 2.5.
To launch rays from pixels we use the inverse transformation chain. We start

at the raster space, passing through the normalized device coordinate and camera
spaces and ending at the world space. More specifically, to compute a ray direction
we must convert the raster coordinates of its associated pixel to normalized device
coordinates, scale by the reciprocal of the factor used to map the field of view
to the range Œ�1; 1� and use the inverse view transformation matrix to map the
result to the world space. The conversion from raster coordinates r 2 Œdx; dy �

to normalized device coordinates n 2 Œ�1; 1�, given the image dimensions d D

.dx; dy/, is expressed by the following equation:

n D
2.r C 0:5/

d
� 1I

which is composed of a normalization by the image dimensions and operations
to map the resulting image space from the interval Œ0; 1� to Œ�1; 1�.

The remains of the transformation chain can be done in a optimized way, using
a precomputed tangent of half the field of view angle f (in dimension y), the

2.4. Integrating Ray Tracing and VR 33

Figure 2.5: Relation between a field of view and normalized device coordinates.
As in (Pharr, Jakob, and Humphreys 2016b).

aspect ratio a and the basis vectors of the inverse view matrix I D Œujvjw�. The
operation is done by the expression:

normalize.af .nxu/ � .f .nyv// � w/;

As can be seen, this expression transforms the normalized device coordinates
using the parts of the inverse view matrix that would affect each of the coordinates
and scales them using the tangent of the field of view for dimension y. The scale
value is corrected by the aspect ratio for the x dimension.

In our tests we could not generate correctly registered stereo images using this
optimized expression, because it does not take into account stereo rendering. For
this reason, we used two other approaches: the inverse of the projection matrix,
and a rasterization G-Buffer prepass. Both options ensure correct stereo images,
with different pros and cons. The first option does not need any additional raster-
ization pass or memory for the required texture. However, the G-Buffer provides
more flexibility for the algorithm as will be discussed in Section 2.4.2. It is impor-
tant to note that the positions in the texture are equivalent to intersection points of
rays launched from the camera position. This property comes from the fact that the
camera position is equivalent to the projection center and each ray is equivalent to
the projection line for the associated pixel.

34 2. Immersive Visualization in Virtual Reality

2.4.2 Ray Tracing Overhead

The major drawback of usual stereo rendering is the overhead caused by the ad-
ditional camera image. This problem is emphasized even more in ray tracing,
which demands heavy computation to generate the images. Several techniques
have been proposed to address this issue. They usually create the additional im-
age by transforming the contents of the original or by temporal coherence using
previous frames. However, artifacts not present when the scene is rendered twice
can be introduced in the process.

The RTX platform opens new ways to explore this problem. Additionally, the
extension of the ray tracing support for older graphics card architectures (Burnes
2019) encourages new algorithms based on smart ray usage. We benefit from
Falcor’s design to explore and evaluate the possibilities using amethodology based
on fast cycles of research, prototyping, integration and evaluation. The result is
a list of several possible approaches, generated by changing component routines
of a ray tracing algorithm. In summary, those changes result from the following
questions.

1. How the first intersections are calculated?

(a) Rays shot from camera position.
(b) G-Buffer prepass.

2. Which effects are applied?

(a) Direct light and shadows only.
(b) Perfect-mirror specular reflections and shadows only.

The different algorithms are created by combining the different functionalities
described in Section 2.3. We start by integrating Simple Ray Tracing and Stereo
Rendering. On one hand, Stereo Rendering includes all logic to connect with the
HMD and to control the data flow between the ray tracing shaders and the device.
On the other hand, Simple Ray Tracing features a ray tracing shader, which is
modified to launch rays based on two view matrices or two position G-Buffers,
one for each eye. On the G-Buffer case a rasterization prepass is also performed.

We benefit from Falcor’s RenderGraph, which is extremely useful for algo-
rithms with multiple rendering passes. The changes needed are listed next.

1. Adding an additional mirror ray type, equivalent to the primary ray type.

2.4. Integrating Ray Tracing and VR 35

2. Including a function to compute direct light with shadows only. If the G-
Buffer is available, the direct contribution comes for free from it.

3. Adding a branch in the RayGeneration Shader to choose between the effects:
raster, direct light plus shadows, specular reflections.

An interesting question arises when we analyse the current algorithm. A ray
tracing procedure with a G-Buffer prepass is actually a hybrid algorithm based on
both rasterization and ray tracing. What if we extrapolate this hybrid paradigm and
allow materials to be raster or ray-traced in the scene? This question generated an
additional change in the integrated renderer. We introduced a material ID to enable
support for per-material effect selection. With this feature, an user can control per-
formance by changing the material IDs of objects in the scene from more complex
to simpler effects and vice versa. The final algorithm is very flexible and suited
for stereo ray tracing or for older graphics card architectures, environments where
performance matters.

3 Riemannian
Ray Tracing

3.1 Core Concepts

To visualize Riemannian manifolds it is important to understand two related core
concepts: geodesics and fundamental domains. They are related to the manifold
geometry and topology, respectively. This section gives an informal intuition for
both, preparing the reader for details in forthcoming sections.

3.1.1 Geodesics and Fundamental Domain

Geodesics are the equivalent to straight lines in the Euclidean space: paths locally
minimizing lengths. They are a consequence of the manifold geometry, causing
the perception of deformation that a viewer has when exploring the space. Fig-
ure 3.1 shows a geodesic
.t/ in a Riemannian manifold M . It passes through
a point p in a tangent direction v lying in the tangent space TpM : the set of all
possible directions for geodesics passing through p. Note the parametric notation
for the geodesic, such as a line in Euclidean space.

The fundamental domain is a “polyhedron” such that a special face identifi-
cation describes the topology of the manifold. Remember that in dimension 2,
for example, a 2D Torus is obtained by identifying the opposing edges of a square,

3.1. Core Concepts 37

Figure 3.1: We illustrate the manifold M and the tangent space TpM at the point
p as two-dimensional objects. The geodesic
.t/ starts at p in the direction v.

which is the fundamental domain. Embedding this square in R2 and “interpreting”
the identifications as translations we get a tessellation of R2 by squares, which is
called the covering space of the torus. Figure 3.2 shows the 2D Torus in the cov-
ering space.

3.1.2 Non-Euclidean Ray tracing

Ray tracing (Whitted 1980) consists of following the path traveled by light in the
space to evaluate the contribution of light sources to pixels in an image. The classic
algorithm assumes linear paths in Euclidean space.

Novello, V. da Silva, and Velho (2020e) proposed a more general approach by
abstracting how light travels through space. Instead of following linear rays, the
former now follows geodesics imposed by the latter. In other words, it suffices to
know the geodesics of a space to ray trace it. Note that the Euclidean space is a
particular case in this model, where the geodesics are lines.

ARiemannianmanifold can be visualized using ray tracing because its geodesics
propagate on the fundamental domain deforming and tessellating themanifold cov-
ering space. Figure 3.2 shows a ray that exits and enters the fundamental domain
as it travels the covering space.

38 3. Riemannian Ray Tracing

Figure 3.2: 2D torus. Each edge of the square (fundamental domain) is identified
with the opposing one. Because of that, everything inside the square is replicated
in the entire R2 (covering space). Image from (Berger, Laier, and Velho 2014).

3.1.3 Riemannian Manifolds
To motivate the mathematical definitions used in this work we remember that it
deals with an immersive visualization of curved spaces— rays may not be straight
lines — using ray tracing. Then the space must satisfy at least three properties:

• Being locally similar to a Euclidean space, a manifold. This allows us to
model the viewer/scene inside the space;

• To simulate effects produced between the lights and the scene we need the
tangent space with a scalar product at each point, a Riemannian metric;

• The ray leaving a point in any direction; the geodesic. The ray-object inter-
sections are also required.

Riemannian manifolds carry the above properties. We are interested in a specific
class of them— themodel geometries, presented in Section 1.4. These spaces have
simple topology (simply connected and complete) and each pair of points admits
neighborhoods with similar geometry (homogeneous spaces). In dimension two,
there are exactly three models: Euclidean, hyperbolic, and spherical. Chapter 4
will present inside views of three-dimensional spacesmodeled by these geometries.
In dimension three, there are five more model geometries. We explore three of

3.2. Visualization of Riemannian manifolds 39

them: Nil, Sol, and BSL2.R/; these were defined in Section 1.4.3. Visualizations
of these spaces will be presented in Chapter 5. The remaining geometries are
S2 � R and H2 � R with the product metric. Since they are simpler and model
fewer manifolds, we opt to omit them here.

The model geometries in dimension 3 were described in Section 1.4. Again,
these spaces date back to the geometrization conjecture which states that every
compact three-dimensional manifold decomposes into pieces with the geometry
modeled by Thurston geometries. Remember that a manifold N has its geometry
modeled by a model geometry M if it can be expressed as a quotient N D M=� ,
where� is a discrete group of isometries acting onM . ThemanifoldN inherits the
metric of M — and it is called a geometric manifold. The fundamental domain of
N is the region in M containing a point for each orbit (the images of a single point
under the action of �). Great texts on this subject are (Martelli 2016; Thurston
1979).

3.2 Visualization of Riemannian manifolds

There are two obstacles when visualizing a manifold. First, it is necessary to com-
pute rays, since light propagates along them. The geodesic flow is perfect for that,
providing a ray for each point and direction. The second obstacle is the dimension;
our eyes only see up to dimension three.

3.2.1 Visualization approaches

Two-dimensional manifolds can be visualized using two approaches: extrinsic or
intrinsic. In the extrinsic setting, we consider the manifold M embedded in a
higher-dimensional space, typically R3. In this way, M can be seen from the out-
side using a virtual camera. In the intrinsic setting, we consider the manifold as
an abstract independent space. Therefore, M can only be seen from the inside. It
is also possible to visualize the universal covering, i.e., the tessellation produced
by the group action through views of the covering space itself. In any case, these
visualizations can be based on classical CG algorithms: rasterization or ray trac-
ing.

The problem of visualizing 3-manifolds is harder. In 1998, Thurston published
How to see 3-manifolds (Thurston 1998), discussing ways to “see” a 3-manifold
using our spatial imagination and computer aid. Many tools in Riemannian 3-
manifold are inspired in human mind geometrical instincts. Thus, the human mind

40 3. Riemannian Ray Tracing

is trained to understand the kinds of geometry that are needed to model certain 3-
manifolds.

Since higher-dimensionalmanifolds “can not” be used to visualize 3-manifolds,
we take an immersive approach based on a ray tracing algorithm. It follows the
ideas from (Berger, Laier, and Velho 2014). Rasterization is not appropriate for
this scenario because perspective projection in Non-Euclidean spaces is nontriv-
ial. On the other hand, a scene in a 3-manifold can be ray traced: given a point
(eye) and a direction (pixel), we trace a geodesic (ray). When it hits an object we
compute its shading.

3.2.2 Riemannian ray tracing

In computer graphics, Shading is the process of assigning a color to a pixel. Classic
approaches to perform such tasks are not suited for Riemannian manifolds. Thus,
we propose a more general definition for ray tracing Riemannian geometry.

Consider a point p (the eye) in a 3-manifold M , and also consider the set of
directions within the observer’s field of view Vp (the view frustum). We compute
a color by tracing rays in the directions associated with image pixels. Specifically,
p is the origin of TpM , and for each direction v 2 Vp we attribute a color c by
launching a ray
.t/ from p in the direction v. Each time
 intersects a visible
object at a point q we define an RGB color. Therefore, we have c W Vp ! C,
where C is a color space. We call this procedure Riemannian shading. Figure 3.3
presents a schematic view of the above procedure in dimension two.

Let q be a point in an embedded surface S � M . The Riemannian illumina-
tion of q comes from direct geodesics connecting q to the light sources and indirect
geodesics connecting other Riemannian-illuminated points to q. The radiant in-
tensity at q can be modeled using the Lambertian reflectance, which depends on
the inner product, or more generally from a BRDF. Thus, it is natural to adapt
this model to the Riemannian geometry by replacing the standard inner product
with the Riemannian metric of the underlying 3-manifold. For a given point p in
M we compute the Riemannian shading c W Vp ! C using ray tracing and the
Riemannian illumination.

In classic approaches, ray tracing (Whitted 1980) approximates physical illu-
mination. Our ray tracing model for Riemannian 3-manifolds can be also used to
compute a Riemannian shading function for local or global illumination.

Depending on what we want to see, we can take a mathematical visualization
where we consider pseudocolor based either on properties of the space, such as

3.3. Ray tracing in Riemannian manifolds 41

Figure 3.3: Shading in a Riemannian manifold M . Let p be the observer and Vp

be the view frustum (gray region) in the tangent space TpM . We launch a ray

towards each vector v 2 Vp. If
 hits a visible object (red triangle) in
.jvj/ we
define a RGB color (red) for the corresponding point in the near plane of Vp.

curvature, or attributes of the objects, such as surface normal, to define the Rie-
mannian shading function.

3.3 Ray tracing in Riemannian manifolds
We provide an algorithm to compute a Riemannian shading that synthesizes in-
side views of Non-Euclidean spaces. This generalizes the classical ray tracing.
In Chapters 4 and 5, we will apply this algorithm to visualize the classical and
“twisted” product geometries, respectively.

We focus on a geometric manifold M=� since the rays in the model geometry
M are well behaved and its topology is given by � . Our algorithm computes a
Riemannian shading of the visible surfaces. We discuss the basic principles of ray
tracing in these manifolds, as well as the general algorithm in CPU. Section 3.3.4
shows the map of the computation to the RTX pipeline.

3.3.1 Overview of the Method

Ray tracing is a natural method to visualize 3-manifolds. It is necessary to adapt
the traditional ray tracing to consider the geometry/topology of the space. The first

42 3. Riemannian Ray Tracing

aspect of this task is to simulate the ray path as it travels inside the space. The sec-
ond aspect amounts to a shading procedure, which computes the illumination and
evaluates the light scattered from the environment in the ray direction. Because of
the topology, the ray path is updated as it exits the fundamental domain.

3.3.2 Algorithm in CPU

Algorithm 3 belongs to the class of image-space algorithms (Algorithm 2) and
presents the basic Ray tracing procedure for a geometric manifoldM=� . The rays
are generated from the observer’s point of view (lines 1-4), intersected with visible
objects (line 6) and if there is a hit (line 7), shading is done (line 8). Because of
practical computational reasons, we cannot continue the ray path indefinitely and
set the maximum recursion level (line 13).

These steps are common to any ray tracing algorithm, including the traditional
one for the Euclidean space. To trace rays in a geometric manifold M=� , we need
extra steps to guide the ray as it iterates in the fundamental domain (lines 9-11).

When � is the empty set, the ray tracing algorithm coincides with the classical
(line 9). In this case, the trace ray function (line 4) will trace curved rays. The
most important and critical step is the group action (line 11), which depends on
the geometry/topology of the manifold. It is specific for each space type.

Algorithm 3: Ray tracing a Riemannian manifold M=�

1: for each pixel � 2 I do
2: Let p WD 0 and v be the direction associated to � ;
3: Let � be the fundamental domain polyhedron;
4: Trace a ray
 from .p; v/ inside �;
5: repeat
6: Find closest intersection
.t/ with objects O in �;
7: if
.t/ ¤ ; then
8: Shade pixel break;
9: else if � ¤ ; then
10: Find intersection of
 with faces of � ;
11: Compute the new ray .p0; v0/, and C C i ;
12: end if
13: until i 6 maxlevel

14: end for

3.3. Ray tracing in Riemannian manifolds 43

3.3.3 Ray Marching

To launch a ray we need to solve the geodesic flow and subsequently compute
the intersection of the given ray with the scene objects. In general, our rays will
be curved rays that fall into two cases: i) for a few manifolds the flow admits a
closed solution resulting in a parametric curve
.t/; ii) for most manifolds, how-
ever, the geodesic flow does not have a closed-form solution and we have resort
to numerical integration methods.

In case i) we generate a polygonal curve by discretizing the parameter t , such
that
.t/ � fpig. In case ii) we use Euler’s method for integration in the parame-
terization image, since there we use the Euclidean metric.

The Euler’s numerical integration method approximates a ray
 starting at p

in the direction v by a polygonal fpig, where:(
piC1 D pi C h � e
 0.0/

viC1 D vi C h � e
 00.0/
(3.1)

where h is the integration step and e
.t/ is the ray satisfying e
.0/ D pi ande
 0.0/ D vi . We use the geodesic flow to computee
 00.0/.
In any case, the polygonal curve fpig is used to ray trace a scene in .M; g/.

When h ! � the scene is rendered with more accuracy. To compute the intersec-
tion between a ray and the scene objects we test the intersection of each segment of
the polygonal approximation given by the above computation (i.e., ray marching).

The implementations considered in this book are testing the intersection with
each segment sequentially. An interesting exercise would be using many segments
of the polygonal approximation fpig to increase the GPU occupancy and optimize
the intersection computations.

The Runge–Kutta method could also be used to approximate solutions of the
geodesic flow. Instead, we take the Euler method since it uses fewer computations
giving GPU performance.

3.3.4 RTX Pipeline

NVidia RTX is a hardware and software platform with support for real-time ray
tracing. The ray tracing code of an application using this architecture consists of
CPU host code and GPU device code.

The ray tracing GPU device code runs under a pipeline scheme composed of
a sequence of stages specifically designed for ray tracing operations. The goal
of the first stages is to generate the rays. Afterwards, a fixed stage calculates the

44 3. Riemannian Ray Tracing

intersection of the rays with the scene geometry. Then, the intersection points are
reported to the group of shading stages. Notice that more rays can be created at
this point, resulting in a recursion in the pipeline. The final fixed stage outputs the
generated image.

Each shader can be correlated with the tasks performed by the general CPU
procedure described in Algorithm 3. The Ray Generation Shader is responsible
for creating the rays (line 1), which are defined by their origins, directions and the
custom user-defined data, called payloads (line 2). A call to TraceRay() launches a
ray (line 3). The next stage is a fixed traversal of the Acceleration Structure which
will describe only at high level here. This traversal uses an Intersection Shader
to calculate the intersections (line 5). All hits found pass by tests to verify if they
are the closest hit. After no additional hits are found, the Closest-Hit Shader is
called for the closest intersection point (line 7). In case no hits are found, the Miss
Shader is called as a fallback case. It is important to note that additional rays can
be launched in the Closest-Hit and Miss shaders.

Figure 3.4 shows a simplified scheme of the pipeline, where the association of
pipeline stages with the steps of the algorithm are indicated by the line numbers.
More detailed information about RTX Ray Tracing can be seen in (Wyman and
Marrs 2019) and applications can be found in (Haines and Akenine-Möller 2019a).

Figure 3.4: Ray Tracing Pipeline - main stages of the RTX GPU computation flow
(the numerical labels correspond to line numbers of Algorithm 1).

The above is the general ray tracing GPU pipeline. In the case of ray tracing in-
side a manifold/orbifold we have two classes of objects: i) the scene objectswhich
are embedded in the space; and ii) the boundary of the fundamental domain that is

3.3. Ray tracing in Riemannian manifolds 45

represented by the polyhedron �. They are treated differently when mapping the
algorithm to the RTX pipeline — while the scene objects are tested and shaded in
the regular way (lines 5 and 7), the boundary of the fundamental domain is used to
transport the rays by the group action (lines 9 and 10). This is implemented with
a custom designed Miss Shader.

Another important point is related to the Acceleration Structure. The RTX plat-
form defines a hierarchical structure in order to efficiently guide the intersection of
rays with scene objects. Bottom-level cells store the actual scene geometry while
top-level cells hold pointers of the graph structure. In the diagram of Figure 3.4,
this is encapsulated by the block for ray intersection (lines 5 and 6). Note however,
that in the algorithm for visualization of manifolds/orbifolds, rays travel through
the covering space entering and exiting the fundamental domain multiple times, In
that respect, the fundamental domain acts as an special higher-level acceleration
structure that defines the topology of the space.

The above description makes clear that the RTX platform potentially opens up
new research directions for ray tracing applications, with an impact similar to the
introduction of programmable shaders. In particular, for the visualization of non-
Euclidean spaces it allows non-trivial advances related to efficient and modular
architectures for interactive and immersive exploration of scenes with complex
geometry and topology, not possible until now.

3.3.5 GPU Implementation

The implementation of the visualization platform in GPU is build on top of Falcor
using DirectX 12 onWindows 10. The Falcor development framework consists of
a library with support for DXR at high level and a built-in scene description format.

We use the software Blender to create the scene objects and model the funda-
mental domains, including their boundaries.

The core functionality of our system’s architecture consists of a set of shaders
that are mapped to the RTXGPU pipeline as described above. In order to make the
design of the system extensible and modular, we have adapted the metric neutral
approach of (Guimarães, Mello, and Velho 2015) to ray tracing and extended it to
3D geometrical structures. In this context, we have developed generic shaders for
each stage of the GPU ray tracing pipeline that are independent of the geometric
structure of the manifold/orbifold. They are specialized and instanced based on
the metric and topological properties of each individual space. That includes the
model of the fundamental domain.

We now describe the tasks performed by the different shader classes, as well

46 3. Riemannian Ray Tracing

as, the mathematical operations necessary for the visualization of non-Euclidean
spaces. Note that these operations are dependent of the model geometry being
used in the space.

Ray Generation Shader: Creates camera rays. For this purpose it has to use
the isometries of the space to transform the ray origin and direction to the camera
coordinate system.

Intersection Shader: Computes the intersection between the ray and the scene
objects. For this purpose it uses the parametric description of the ray. Both the ray
and objects are defined according to the model geometry.

Closest Hit Shader: Performs the shading operation. This includes comput-
ing the local and global illumination. The local illumination amounts to direct
contribution of light sources that is based on angles between the light direction
and the surface normal, as well as, the distance to the light. All these operations
are performed using the model geometry.

Miss Shader: Deals with the transport of rays in the covering space, as they
leave and enter the fundamental domain. For this, the rays are tested for inter-
section with the boundary of the polyhedron �. Here, both the geometric and
topological aspects of the embedding space have to be taken into account.

The distinction of scene objects and the fundamental domain is handled through
a feature of Falcor’s scene description, i.e., object and material ID’s. These two
types of entities have different ID’s that causes the assignment of the appropri-
ate specific shader classes. In this way, only objects in the scene are processed
by the standard ray intersection operations, while the polyhedron representing the
fundamental domain is processed only by ray-path propagation mechanism.

In addition, for the development of virtual reality applications, we employ and
extend to Non-Euclidean spaces the Ray-VR algorithm (presented in Section 2.3)
that implements stereo ray tracing on top of Falcor.

4 Visualization of
Classical

Non-Euclidean
Spaces

This chapter presents some expressive output images rendered using the imple-
mentation (given in Chapter 3) of the ray tracing algorithm in GPU that is build on
top of the RTX platform. We consider examples of well-known 3-manifolds and
orbifolds modeled by the Thurston classical geometries: Euclidean, spherical, and
hyperbolic. For interesting visualizations using classical rasterization techniques,
see Weeks (2002a).

Recall that 3-manifolds are topological spaces such that each point have a
neighborhood that is homeomorphic to the Euclidean space. In other words, man-
ifolds are abstract spaces locally similar to the Euclidean space. We present some
classical well-known examples—Sections 4.1.1, 4.2.1 and 4.3.1—of such spaces
with their geometry modeled by the classical model geometries.

The rays in such spaces have a particular behavior that can be explained in
two ways. Topologically, these space are not simply connected: their fundamental
group is nontrivial. Then by Cartan’s theorem (Carmo 1992), there is a closed ray
for each nontrivial element in the fundamental group. Algebraically, these spaces
are the quotient of the model geometries by some discrete groups, producing thus a
tessellation view inside themodel geometry. These arguments explain themultiple

48 4. Visualization of Classical Non-Euclidean Spaces

copies of the scene in the examples below.
Orbifolds are modeled locally by quotients of a model geometry by discrete

groups. Let M be a Euclidean, hyperbolic, or spherical space. The quotient M=�

of M by a discrete group acting on it could be a non-manifold. In this case, M=�

is called an orbifold.
We present two simple orbifold examples: the mirrored cube, and mirrored

dodecahedron— Sections 4.1.2 and 4.3.2.

4.1 Euclidean
This section presents and illustrates two classical examples of three-dimensional
spaces with their geometries modeled by the Euclidean geometry: the flat torus
and the mirrored cube, which are examples of manifold and orbifold, respectively.

4.1.1 Flat Torus

Probably the most famous and easiest example of a compact 3-manifold is the flat
torus T3. Topologically, this manifold is obtained by identifying, in the obvious
way, opposite faces of the unit cube Œ0; 1� � Œ0; 1� � Œ0; 1� in E3. It is trivial to
verify that the neighborhood of each point in T3 is a 3-ball of the Euclidean space
therefore homeomorphic to E3. Thus, the flat torus is indeed a 3-manifold.

The 3-manifoldT3 admits a geometric structure modeled byE3 since it is also
the quotient of the three-dimensional Euclidean space by the group of translation
spanned by the isometries .x; y; z/ ! .x ˙ 1; y; z/, .x; y; z/ ! .x; y ˙ 1; z/,
and .x; y; z/ ! .x; y; z ˙ 1/. Thus, the face Œ0; 1� � Œ0; 1� � 0 is identified to its
opposite face Œ0; 1� � Œ0; 1� � 1 by the translation map .x; y; z/ ! .x; y; z C 1/.
The remaining two pairs of faces of the unit cube can be identified in an analogous
way. The unit cube is clearly the fundamental domain of T3.

A ray leaving a point p 2 T3 towards a tangent direction v can be parameter-
ized by the formula r.t/ D p C t � v in E3. For each intersection between r and
a face F of the unit cube, we update p by its corresponding point p � n in the
opposite face, where n is the unit vector normal to F . The ray direction v does
not need to be updated.

Therefore, we have all of the necessary ingredients for a simple immersive
visualization of the 3-manifold T3. The scene objects can be set inside the unit
cube because it is the fundamental domain of the manifold. A ray launched inside
T3 can return to its starting point. Such behavior gives rise to many copies of
the scene in the rendered image. The inside perception of the flat torus T3 is the

4.1. Euclidean 49

Euclidean space E3 tessellated by unit cubes, each cube containing one copy of
the scene.

Figure 4.1 provides an immersive visualization of the 3-dimensional torus T3

using the shader described in Section 3.3.5. Besides the edges (in red, green,
and blue) of the unit cube, there is only one monkey’s head, the Suzanne clas-
sical Blender mesh, and a unique pair of hands composing the scene. We attach
Suzanne’s position and orientation to the camera. The closed rays produce many
scene copies of the scene. Algebraically, this image describes the action of the
group of translation in the Euclidean space which covers T3, explaining thus the
copy pattern.

Figure 4.1: Immersive view in the 3-dimensional flat torus. The space is obtained by
identifying the opposite faces of a cube (fundamental domain). We use the cube to set up
our scene: a unique mesh (Suzanne) endowed with hands, and the cube’s edges. The face
pairing makes the rays that leave a face return from its opposite face, giving rise to many
copies of the scene, tessellating the Euclidean space.

50 4. Visualization of Classical Non-Euclidean Spaces

4.1.2 Mirrored Cube

The mirrored cube Q3 is an example of an orbifold with the geometric structure
modeled by Euclidean geometry E3 through a special group of reflection � . Such
group is generated by the reflections of the planes x D ˙1, y D ˙1, and z D ˙1

inE3. The unit cube is the fundamental domain ofQ3. Each time a ray r intersects
a face of the fundamental domain ofQ3 it is reflected, creating a polygonal curve in
Q3: exactly what happened with the lights in a mirrored room. These polygonal
curves suspend to rays in E3, thus we see a tessellation of E3 by reflected unit
cubes when immersed in Q3.

Figure 4.2: Immersive visualization of the mirrored cube, obtained by considering the
faces of a regular cube to be perfect mirrors. A unique mesh (Suzanne) and the cube’s
edges provide the scene. The perfect mirrors make the rays iterate, producing the sensation
of being inside a cube tessellation of Euclidean space.

4.2. Spherical 51

Figure 4.2 gives an immersive visualization of the mirrored cube. Again, there
is a single Suzanne in the scene attached to the camera. The image is the view of
a group of reflection acting on the Euclidean space.

4.2 Spherical

4.2.1 Poincaré sphere

If the opposite faces of a dodecahedron are identified with a clockwise rotation
of �=5 we obtain Poincaré sphere. This is a 3-manifold discovered by Poincaré
which is also known as Poincaré homological sphere because its first homological
group is trivial, but it is not homeomorphic to the 3-sphere.

The face pairing in the Poincaré sphere construction forces many identifica-
tions. The edges are grouped into ten groups of three edges. Then, to model
the geometry of such space the dihedral angle of the dodecahedron must be 120

degrees. Therefore, it is not possible to model such space using the Euclidean
geometry. In this case, we use spherical geometry.

To find the desired dodecahedron we consider it embedded in the 3-sphere. If
the dodecahedron is very small its dihedral angle is very close to the flat dodeca-
hedron. Then, with an appropriate scale, the dodecahedron dihedral angle equals
to 120 degrees. This dodecahedron can be parameterized by a flat dodecahedron
centered at the origin ofE3 using .x; y; z/ ! .x; y; z; 1/=j.x; y; z; 1/jE. To move
points and directions between the settings, just apply the parameterization to the
points and its differential to the directions.

If a ray intersects a face of the dodecahedron we update its position and direc-
tion using the face transformation in the spherical setting. Specifically, to compute
the intersections between a spherical ray and a dodecahedron’s face, we observe
such face is contained in a 2-sphere, which can be written as fp 2 S3j hp; niE D

0g, where n 2 S3 is the suspension of the normal vector of a flat dodecahedron
face. The intersections between a 2-sphere and a ray
.t/ D cos.t/ � p C sin.t/ � v

leaving p 2 S3 towards v 2 TpS3, are given by the solutions of hcos.t/ � p C

sin.t/ � v; niE D 0, which is equivalent to tan t D �hp; niE=hv; niE.
The immersive visualization of the Poincaré sphere is a tessellation of S3 by

120 dodecahedra. This is one of the 4-dimensional polytopes, known as 120-cell
and shown for the first time here.

Figure 4.3 presents an immersive view of Poincaré dodecahedral space. A
unique Suzane with hands and the dodecahedron edges compose the scene. For
a better understanding of the spherical geometry, we do not attach Suzane to the

52 4. Visualization of Classical Non-Euclidean Spaces

Figure 4.3: Inside view of Poincaré dodecahedron space, which is obtained by identi-
fying, with a rotation of �=5, the opposite faces of a regular dodecahedron embedded
in 3-sphere. We use a parameterization of the spherical dodecahedron to set our scene:
Suzane with hands and the dodecahedron’s edges. The faces pairing make the rays that
leave a face return, with an additional rotation, from its opposite face, giving rise to many
copies of the scene: a tessellation of sphere, the 4-dimensional regular polytope known as
120-cell.

camera. Note that as the distance increases, Suzanne’s size first decreases and then
begins to increase: there is a large Suzanne upside down at scene background. This
image describes the icosahedron group acting on the 3-sphere.

4.3. Hyperbolic 53

4.3 Hyperbolic

This section presents and illustrates two classical examples of three-dimensional
spaces with their geometries modeled by the hyperbolic geometry.

4.3.1 Seifert–Weber dodecahedral space

We describe a compact 3-manifold with its geometric structure modeled by the
hyperbolic geometry. For this, we consider, again, a dodecahedron. Identifying
each pair of opposite faces of the dodecahedron with an additional clockwise ro-
tation of 3�=10 gives rise to a 3-manifold which is better know as Seifert–Weber
dodecahedral space M .

The face pairing in the Seifert–Weber space construction produces many iden-
tifications, for example, you can verify that edges are grouped into six groups of
five. Therefore, it is not possible to fit Euclidean geometry into such a 3-manifold,
since the regular Euclidean dodecahedron has a dihedral angle of approximately
116 degrees. The desired dodecahedron should have a dihedral angle of 72 de-
grees.

We use the hyperbolic geometry tomodel the geometry of Seifert–Weber space.
Let the dodecahedron be centered at the origin of H3. The dihedral angle of the
dodecahedral in the hyperbolic space is smaller than in the Euclidean case. In fact,
with an appropriate scale, the dodecahedron admits a dihedral angle of 72 degree
as desired.

Using Klein’s model ofH3, the rays are straight. So to compute a ray leaving a
pointp 2 M in a direction v, we use r.t/ D pCtv. For each intersection between
r and a dodecahedron face, we update p and v through the hyperbolic isometry
that produces face pairing above. This isometry is quite distinct from Euclidean
isometries (see (Gunn 1993)). For shading purposes, we use the Lorentzian scalar
product.

The immersive perception of M using ray tracing is a tessellation of H3 by
dodecahedra with a dihedral angle of 72 degrees.

Figure 4.4 illustrates an immersive view of Seifert–Weber dodecahedral space.
Again, there is only one Suzanne endowed with hands attached to the camera. The
image describes the action of a special discrete group on the hyperbolic space,
which provides a dodecahedron tessellation of the hyperbolic space.

54 4. Visualization of Classical Non-Euclidean Spaces

Figure 4.4: Inside view of Seifert–Weber space obtained by gluing, with a rotation of
3�=10, the opposite faces of a special dodecahedron in the hyperbolic space. We use the
dodecahedron to set up our scene: a unique Suzane with hands and the dodecahedron’s
edges. The face pairing make the rays that leave a face return, with an additional rotation,
from its opposite face, giving rise to many copies of the scene.

4.3.2 Mirrored Dodecahedron

For an example of an orbifold modeled by the hyperbolic space, consider the do-
decahedron embedded in H3. Let � be the group of reflections generated by the
dodecahedral faces. With an appropriate scale, the dihedral angle of the dodec-
ahedron reaches 90 degrees. The quotient H3=� is the mirrored dodecahedral
space. The group � tessellates H3 with right-angle dodecahedra, thus each edge
has exactly 4 adjacent cells.

Figure 4.5 provides an immersive visualization of the mirrored dodecahedron
using the reflection definition in the hyperbolic space. Again, Suzanne model is

4.4. Analysis 55

attached to the camera. The image is the view of the group of reflection acting on
the Hyperbolic space.

Figure 4.5: Inside view of the mirrored dodecahedron obtained by considering the faces
of a hyperbolic dodecahedron to be perfect hyperbolic mirrors. A unique mesh (Suzanne)
and the dodecahedron’s edges provide the scene. The mirrors make the rays iterate in the
scene, producing the sensation of being inside a tessellation of the hyperbolic space.

4.4 Analysis

In this section we present a quantitative and qualitative analysis of the results de-
veloped using our framework. This includes computational performance, interac-
tivity and space perception.

56 4. Visualization of Classical Non-Euclidean Spaces

4.4.1 Performance

Here we show the experiments to evaluate our algorithm in respect of performance
in current Virtual Reality (VR) devices. The hardware setup consists of a computer
with a NVIDIA GeForce 2080 Ti for RTX Ray Tracing support and a HTC Vive
for VR visualization. The resolution is set to 1512 � 1680 for each eye, resulting
in a total resolution of 3024 � 3360. A mono version of the algorithm is used as
control. Figure 4.6 shows the results.

167

167

167

91

83

77

77

43

125

83

91

63

59

42

45

22

83

63

63

48

43

29

22

22

Frame rate (frames per second)

Torus

Seifert-Weber
Dodecahedron

Mirrored
Dodecahedron

Poincaré
Sphere

0 50 100 150 200

3 bounces (mono)

3 bounces (stereo)

5 bounces (mono)

5 bounces (stereo)

7 bounces (mono)

7 bounces (stereo)

Performance X Number of ray bounces

Figure 4.6: Performance X Number of ray bounces. The algorithm can generate high
resolution stereo images of the spaces, performing up to 80 fps.

Our algorithm achieves performances near 80 fps (frames per second) in high
resolution for the frat torus, Seifert–Weber space, and hyperbolic mirrored dodec-
ahedra when using 3 or less bounces. This value is near 90 fps, the peak frame
rate recommended for VR experiences in Vive, and ensures a smooth experience
for users immersed in those spaces.

4.4. Analysis 57

4.4.2 Interaction
To give the user a better perception of the torus and the mirrored room, we attach,
besides Suzanne’s head to the camera, models of the left/right hands to the left/right
controls of the HTC Vive (see Figure 4.2). Thus interacting in the fundamental
domain provides a better sense of being immersed in the quotient spaces. However,
we used a very simple approach to map the positions from the physical laboratory
to the abstract spaces. For a great discussion about this topic we refer to Weeks
2021.

A good exercise would be to include the motion capture of the user whole
body skeleton, using techniques reminiscent from computer vision and artificial
intelligence (L. J. S. Silva et al. 2019) (see Figure 4.7). This will allow to include
in the scene complete avatars of the users, instead of only the head and hands used
in the current implementation.

4.4.3 Space Perception
To produce a better understanding of the Non-Euclidean space structures we in-
clude the edges of their fundamental domains to the scene. The result images
provide a perception of a tessellation of their covering spaces by copies of the
fundamental domain polyhedron.

In the examples presented in this chapter, the complete cell structure of their
covering spaces is readily apparent since we explicitly marked the boundary edges
of the fundamental domain, see Figures 4.1 to 4.5.

More subtle perceptions arise if only some static objects are placed in key land-
marks of the domain. Moreover, adding a dynamic behavior may give a transient
or pulsating character to the space (i.e., with random or periodic motion, respec-
tively). See Figure 4.8.

Asmentioned above,Weeks 2021 has deeply investigated the problem of track-
ing the user’s head and hands from the physical lab. In particular, he discovered
that the space holonomy would lead to violations of the coherence between the
head and hands. However, the used visualization framework was based on raster-
ization, therefore, implementing this using ray tracing would be a great exercise.

In addition, when the viewer is placed inside an opaque cell with a few open-
ings (e.g., a cube with doors and windows), the perception of an infinite space
changes to that of a maze.

Another important ingredient in the understanding of the space structure is
the scale, which is related to the fundamental domain volume. In Figures 4.1
to 4.3, for example, we are able to see many copies of the fundamental domain,

58 4. Visualization of Classical Non-Euclidean Spaces

Figure 4.7: Pose Detection and Motion Capture: currently Head and Hands are captured
using HTC Vive Headset and Controllers; in future implementations the user’s pose (in-
dicated by the superimposed skeleton) will be estimated and tracked by the AI method
described in (L. J. S. Silva et al. 2019).

which produce, again, the view of its covering space. However if we consider a
fundamental domain sufficiently larger, the user will be able to visualizemostly the
immediate surroundings of the scene restricted to the fundamental domain. This
leads us to the philosophical question: what is the shape of the Universe? or could
we be living inside a 3D torus?

4.4. Analysis 59

Figure 4.8: Inside view of the mirrored dodecahedron. This is the same space depicted
in Figure 4.5 without showing the structure of the fundamental domain.

5 Visualization of
Nil, BSL2.R/,

and Sol

This chapter explores the Riemannian ray tracing (introduced in Chapter 3) in the
non-isotropic geometries to render inside views of the most non-trivial Thurston
Geometries: Nil, Sol, and BSL2.R/. These Riemannian manifolds are fundamental
in the Geometrization conjecture as we saw in Chapter 1.

Nil, Sol, and BSL2.R/ geometries were described in Section 1.4.3 as examples
of non-isotropic spaces: their geometries are not the same in all directions because
local two-dimensional slides admit different curvatures. As a consequence, their
geodesics are not (in general) straight lines in the Euclidean sense, only a few
exceptions are, for example, the geodesics in Nil geometry towards the z axis.
Another property is that these spaces are Lie groups: a class of group admitting
manifold structures. Geodesics in Lie groups can be calculated on the identity of
the group and then translated to each element. Such property is very suitable for
ray tracing.

For theNil space, we have the analytical solution of the geodesic flow (Szilágyi
and Virosztek 2003), i.e., case i) of Section 3.3.3. In (Divjak et al. 2009; Marenitch
2008), the authors provide the geodesics of SL2.R/, however, they use a different
parameterization of the space. An exercise would be to explore those formulas to
increase performance in the visualizations. (Troyanov 1998) obtained a formula
for geodesics in Sol , however, it contains many coefficients that can not be com-

5.1. Visualizing Nil space 61

puted in a closed formula. Therefore, for the Sol and BSL2.R/ spaces we only
approximate the geodesics by numerical integration of the flow ODE’s, i.e., case
ii) of Section 3.3.3.

To visualize Nil, Sol, and BSL2.R/ geometries, we consider manifolds geomet-
rically modeled by them. For Nil and Sol spaces, we choose compact manifolds
created by taking the quotient of these spaces by “simple” discrete groups: “trans-
lations” in the direction of axis x, y, and z. We use the edges of the respective
fundamental domains to visualize the structure of Nil and Sol. The result is a
tiling produced by the fundamental domain edges. For BSL2.R/ space, we take a
different approach, we visualize the well-known special linear group of the 2 � 2

real matrices (with unit determinant) SL2.R/ which has the geometry modeled by
BSL2.R/. To explore the distortions of such a manifold, we consider rendering a
grid defined in the domain of a parameterization of SL2.R/ by .x; y; z/ coordi-
nates.

However, expressing the structures of those spaces with static images is not
trivial. We recommend the use of VR for better understanding them, due to their
non-isotropic properties. Being inside allows a person to better explore and control
variations in point-of-view and position, and understand how they change visual-
ization. An intermediate solution is to explore them through a video. In the figures,
we will illustrate several points of view inside these geometries commenting on
how the underlying structures vary.

5.1 Visualizing Nil space

Nil geometry was briefly described in Section 1.4.3. To visualize this space, we
consider a compact manifold M D N il=� modeled by N il . Here � is a discrete
group of isometric actions on N il . Then, setting a camera inside such abstract
space we obtain images of Nil space (universal covering space of M) tessellated
by copies of the fundamental domain of M . Each of these copies corresponds to
elements of the discrete group � .

Specifically, let � be the discrete group generated by the “translations” in the
direction of axis x, y, and z: ˚1.p/ D .x C 1; y; y C z/, ˚2.p/ D .x; y C 1; z/,
and ˚3.p/ D .x; y; z C 1/. We use the word translation in quotes because ˚1 is
a translation in the axis x composed with a shear transformation. The manifold
M D N il=� inherits the geometry of the Nil space. Moreover, it provides a 2-
torus for each fixed x, resulting in M admitting a foliation by tori. The unit cube
of R3 is the fundamental domain.

62 5. Visualization of Nil, BSL2.R/, and Sol

We set the scene inside the unit cube and ray trace it using the geodesic (ray)
formula of N il defined in Section 1.4.3. Each time a ray intersects a face of the
fundamental domain, we update the ray position and ray direction using the corre-
sponding element of discrete group � . Specifically, to visualize the scene objects
we define the shading function cN il W Vp ! C, where Vp is the observer’s field
of view in the tangent space at the observer position and C is the RGB color space.
The function cN il is defined using N il rays and N il metric, and the definitions
discussed in Section 3.2.2.

Figure 5.1 illustrates four points of view inside of the 3-manifoldM D N il=� .
The scene is composed of thickening in 2D of the boundary of the fundamental do-
main faces. Opposite faces receive the same shading. Red, green, and blue for the
faces parallel to the axis, x, y, and z. In the images, the lines shaded with red
and green are extended to the infinite as straight lines. These lines are geodesics
of N il and are perpendicular to the plane yz; lines with such property foliate the
space N il .

In the top left image, the camera points towards z-axes, where the gluing of the
cube faces are trivial (like in the 3D torus). This gives copies of the cube by left
translation along z-axes. Looking towards the direction of the green faces would
provide a similar result, thus we avoid this perspective. In top right and bottom
left, the camera points toward x-axes, in both senses. The identification of the
cube faces in this direction if nontrivial, producing this tessellation of Nil. Finally,
in the bottom right a view towards the diagonal of the cube.

Ray-plane intersection

Let ˇ.t/ be a geodesic in the Nil space, such that ˇ.0/ D p and ˇ0.0/ D v. In
Section 1.4.3, we saw that ˇ.t/ D .px C x.t/; py C y.t/; pz C z.t/ C pxy.t//;
.x.t/; y.t/; z.t// is a ray leaving the origin.

We compute the intersection between the geodesic ˇ.t/ and the planes x D c

and y D c, where c is a constant. For the plane x D c, we have to solve the
equation x.t/Cpx D c, which is equivalent to c

w
.sin.wt C˛/�sin.˛//Cpx D c.

After some computations, we obtain t D
�
arcsin..c � px/w

c
C sin.˛// � ˛

�
=w:

In an analogous way we compute the intersection between ˇ.t/ and the plane
y D c. The parameter is t D

�
arccos..c � py/�w

c
C cos.˛// � ˛

�
=w:

We could not compute (yet) explicitly the intersection of ˇ.t/ and the plane
z D c, which is given by the solution of the equation pz Cz.t/Cpxy.t/ D c. We
avoid this problem by computing the intersections of rays and the fundamental do-
main faces using a binary search algorithm. This is reachable because we have the

5.1. Visualizing Nil space 63

Figure 5.1: Inside views of a Nil manifold. The cube’s edges compose the scene. In the
top left, the camera point towards z-axes, where the group transformation are translations.
Thus we see translated copies of the cube distorted by the Nil geometry. To highlight the
distortions we mark (black dotted line) the corner of the cube’s bottom face (in green): as
the fundamental domain is translated the green face receives an anticlockwise torsion. In
the top right and bottom left, the observer looks toward x-axes, in both senses respectively.
The identification of the cube faces in this direction if nontrivial producing this tessellation
of Nil. In the bottom right, we set the camera towards the cube diagonal.

analytic expression of the geodesics of Nil space. This algorithm results in better
rendering performance in comparison with the other geometries (Sol and BSL2.R/

spaces), which do not have analytic expressions (using elementary functions) for
their geodesics.

64 5. Visualization of Nil, BSL2.R/, and Sol

5.2 Visualizing Sol space

To visualize Sol geometry, we consider a compact 3-manifold M D Sol=� mod-
eled by Sol . Here � is a discrete group of isometries acting on Sol . Defining a
camera inside such space, we obtain images of Sol space tessellated by the funda-
mental domain of M .

Let � be the discrete group spanned by the translations along x- and y-axes,
the maps ˚1.p/ D .xC1; y; z/ and ˚2.p/ D .x; y C1; z/, and the map ˚3.p/ D

.x � e�2 ln� ; y � e2 ln� ; z C 2 ln�/; where p D .x; y; z/ is a point in R3 and � is
the well-known golden ratio number. The 3-manifold M D Sol=� inherits the
geometry of Sol space, and for each fixed z0, it provides a 2D torus which is the
quotient of the plane R2 � fz0g by the discrete group generated by the translation
maps ˚1 and ˚2. Thus the 3-manifold M is foliated by tori. The parallelepiped
D � Œ0; 2 ln�/ is the fundamental domain of M ; where D is the unit square Œ0; 1�2.

We explain the role of the element ˚3.p/ D .x � e�2 ln� ; y � e2 ln� ; z C 2 ln�/

in the discrete group � discussed above. It is an automorphism between the planes
R2 � f0g and R2 � f2 ln�g. Observe that the numbers �2 ln� and 2 ln� are the
eigenvalues of the 2 � 2 matrix A D

�
2 1
1 1

�
, which is an automorphism of R2 pre-

serving the lattice Z2 � R2. Thus the matrix A induces a homeomorphism of the
2D torus. Lining up the .x; y/-coordinates of Sol space with the eigenvectors ofA,
we get an identification of A with ˚3. This procedure to create the Sol manifold
M seems to be naïve, however, it can be extended for every automorphism of R2

preserving Z2. For details see (Thurston 1997) and (Coulon et al. 2020b).
We set the scene inside the fundamental domain (the parallelepipedD�Œ0; 2 ln�/)

of M and ray trace it using Sol rays. Each time a ray hits a parallelepiped face it
is updated by the discrete group � . As in the Nil section, we define a Rieman-
nian shading for Sol and create the scene by thickening the boundary of the fun-
damental domain faces and opposite faces receive the same shading. Figure 5.2
provides four points of view of M D Sol=� . We look toward the fundamental
domain faces and vertex to explore the non-isotropic nature of Sol which is the
most non-symmetric geometry. In the top left and right of the image, the cam-
era points towards z-axes, in both senses, respectively. Here the identification of
the parallelepiped faces is nontrivial, producing together with its geometry, this
tessellation of Sol. The space looks compressed horizontally and vertically, de-
pending on the sense. These regions are highlighted with green dotted lines in the
figure. In the bottom left, the camera points in the direction of x-axes, the iden-
tification of the cube faces in this direction is trivial (like in the 3D torus). This
gives the impression of translated copies of the fundamental domain very distorted

5.2. Visualizing Sol space 65

Figure 5.2: Inside views of a Solmanifold. The parallelepiped’s edges compose the scene.
The borders of each face are shaded with different colors. In the top, the camera points
towards z-axes, in both senses. In this direction the gluing of the parallelepiped faces
is nontrivial, producing together with its geometry, this tessellation of Sol. The space
looks compressed horizontally and vertically, depending on the sense. We highlight these
regions with dotted lines. In the bottom left, the camera points in the direction of x-axes,
the group transformation in this direction is trivial. Thus we see copies of the fundamental
domain distorted by Sol geometry, they surround the horizontal compressed region. On
the bottom right side, a view towards the diagonal of the fundamental domain.

by Sol geometry, surrounding the vertically compressed region. Looking towards
y-axis is similar, however, the copies surround the horizontal compressed region.
Finally, on the bottom right side of the image, a view towards the diagonal of the
fundamental domain. The non-symmetry of Sol is remarkable.

66 5. Visualization of Nil, BSL2.R/, and Sol

5.3 Visualizing DSL2.R/ space

Here we are not visualizing a 3-manifold generated by taking quotients of BSL2.R/

by discrete groups. Instead, we focus on the visualization of the special linear
group SL2.R/ which is modeled by BSL2.R/; see Section 1.4.3 for the details.
This 3-manifold corresponds to the set of 2 � 2 matrices with unit determinant.
This space is well known due to its variety of properties, therefore its visualization
is interesting.

As in the Nil and Sol spaces, we define a Riemannian shading for SL2.R/

and we illustrate it in Figure 5.3. This image refers to an immersive view of a grid
defined in the domain of a parameterization of SL2.R/ by .x; y; z/ coordinates.
The parameterization distorts the 3D grid following the geometry of SL2.R/. We
choose empirically the RGB color to be the .x; y; z/ coordinates of the hit points.
In future work, we intend to explore the rendering using the sectional curvature of
SL2.R/.

We give four point of views in Figure 5.3. To explain the images, we use
the correspondence between the spaces SL2.R/ and H2 � S with an appropriate
metric (Martelli 2016). We consider the half-plane model of the hyperbolic plane
H2. In the top left image, we look towards the direction of the x-axes (the red
edge). This is a geodesic and coincides with a straight line in the Euclidean sense.
It also matches with the line .0; t; 0/ in the model H2 � S. We avoid looking at
the other sense because the parameterization of SL2.R/ that we are using is not
defined for the plane x D 1. In the top right image, the camera points towards y-
axes, which coincides with the green line. In themodelH2�S, it is the line .t; 1; 0/.
In the bottom left image, the observer is aligned to the z-axes (the blue edge). In
the model H2 � S, this line is .t; t2 C 1; �/, where cos.�/ D 1=

p
t2 C 1. Finally,

in the bottom right image, the camera points towards the diagonal direction.

5.4 Experiments and comparisons

To evaluate the proposed model, we consider the implementation, discussed in
Chapter 3, using NVIDIA’s Falcor (Benty et al. 2018a). Falcor provides a plat-
form that supports many features for real-time visualization, including OpenVR
and DirectX Raytracing. However, ray tracing and virtual reality do not work
originally in an integrated way there. Thus, we relied on an integration extension
which was presented in Chapter 2. The test system is a i7-8700 CPU at 3.20GHz
with 16GB RAM and a RTX 2080 Ti GPU.

5.4. Experiments and comparisons 67

Figure 5.3: Inside views of a parameterization of SL2.R/. The scene is composed of a
regular grid in R3 deformed by SL2.R/ metric. The RGB colors are given by the x, y,
z-coordinates of the hit points. In the top left, we set the camera towards the x-axes (the
red line); this is a geodesic and coincides with a straight line in the Euclidean sense. In
the top right, the camera points towards y-axes, which coincides with the green line. In
the bottom left, the observer points at the z-direction (the blue edge). In the bottom right,
the camera is aligned with the grid’s diagonal.

The experimental methodology consists of varying the number of ray bounces
and the step size for the numerical integration and evaluating how performance
and display quality are affected. Figure 5.4 shows the performance results. The
image resolution for each eye is 1360�1512. It is important to emphasize that the
scene is effectively ray-traced two times, one for each eye. The model succeeds
in rendering high definition images in rates compatible with VR devices (90 fps)
for Nil, Sol, and SL2.R/, depending on proper parameter setup. The frame rate

68 5. Visualization of Nil, BSL2.R/, and Sol

of SL2.R/ is slower than that of Sol because it performs more computations in
the shader since SL2.R/ has more non-zero Christoffel symbols.

125

143

70
83

43

92 86

45 45
29

73 68

30
45

23

Space (integration step in scene units)

Fp
s

0

50

100

150

Nil (N/A) Sol (0.01) Sol (0.005) Sl2 (0.01) Sl2 (0.005)

3 bounces 5 bounces 7 bounces

Resolution: 1360x1512 (each eye)

Performance X number of ray bounces

Figure 5.4: Performance evaluation. We test two parameters: the number of ray
bounces and the ray integration step size. Performance scales with number of
bounces and the algorithm can be set to render all spaces at VR rates (near 90 fps).
Resolution is 1360x1512 for each eye. Note that step size does not apply to Nil
because we have used a closed form expression for the geodesics.

Given that performance is dependent on parameters, we evaluate how they
affect the final image. Figure 5.5 shows the results for Sol. As expected, the
number of bounces controls how far we see the tessellation of the covering space
by replication of the fundamental domain. Even a small value is useful for giving
an intuition of the manifold. As expected, varying the integration step size is a
trade-off between performance and precision.

5.4. Experiments and comparisons 69

(a) Step:0.01. Bounces:3. (b) Step:0.01; Bounces:5. (c) Step:0.01; Bounces:7.

(d) Step:0.005; Bounces:3. (e) Step:0.005; Bounces:5. (f) Step:0.005; Bounces:7.

(g) Step:0.001; Bounces:3. (h) Step:0.001; Bounces:5. (i) Step:0.001; Bounces:7.

Figure 5.5: Rendering evaluation of Sol manifold. Figures show variations on
the integration step (vertical) and number of bounces (horizontal). As bounces
increase, more parallelepipeds tessellating space become visible. Even 3 bounces
provide a good space intuition: (a), (d) and (g). The rectangles in (b), (e) and (h)
highlight approximation improvements resulting from finer integration step.

Bibliography

J. Arvo and D. Kirk (1989). “A Survey of Ray Tracing Acceleration Techniques.”
In: An Introduction to Ray Tracing. GBR: Academic Press Ltd., pp. 201–262
(cit. on p. 25).

M. Bailey (2018). “Introduction to the Vulkan Graphics API.” In: ACM SIG-
GRAPH 2018 Courses. Ed. by C. Kaplan. SIGGRAPH ’18. Vancouver, British
Columbia, Canada: ACM, 3:1–3:146 (cit. on p. 28).

A. H. Barr (1986). “Ray tracing deformed surfaces.” ACM SIGGRAPH Computer
Graphics 20.4, pp. 287–296.

N. Benty, K.-H. Yao, T. Foley, M. Oakes, C. Lavelle, and C. Wyman (May 2018a).
The Falcor Rendering Framework (cit. on p. 66).

— (2018b). The Falcor Rendering Framework (cit. on p. 28).
P. Berger, A. Laier, and L. Velho (2014). “An image-space algorithm for immersive

views in 3-manifolds and orbifolds.” Visual Computer 31.1, pp. 93–104 (cit.
on pp. 38, 40).

M. Boileau, S. Maillot, and J. Porti (2003). Three-dimensional orbifolds and
their geometric structures. Vol. 15. Panoramas et Synthèses [Panoramas
and Syntheses]. Paris: Société Mathématique de France, pp. viii+167. MR:
2060653(2005b:57030). Zbl: 1058.57009.

A. Bölcskei and B. Szilágyi (2007). “Frenet formulas and geodesics in Sol ge-
ometry.” Contributions to Algebra and Geometry 48.2, pp. 411–421. MR:
2364799. Zbl: 1167.53021 (cit. on p. 20).

M. R. Bridson and A. Haefliger (1999). Metric spaces of non-positive curvature.
Vol. 319. Grundlehren der Mathematischen Wissenschaften [Fundamental

http://dx.doi.org/10.1145/3214834.3214848
http://dx.doi.org/10.1145/15886.15918
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
http://dx.doi.org/10.1007/s00371-013-0913-2
http://dx.doi.org/10.1007/s00371-013-0913-2
http://www.ams.org/mathscinet-getitem?mr=MR2060653 (2005b:57030)
http://zbmath.org/?q=an:1058.57009
http://www.ams.org/mathscinet-getitem?mr=MR2364799
http://zbmath.org/?q=an:1167.53021

Bibliography 71

Principles of Mathematical Sciences]. Berlin: Springer-Verlag, pp. xxii+643.
MR: 1744486(2000k:53038). Zbl: 0988.53001.

A. Burnes (Mar. 2019). Accelerating The Real-Time Ray Tracing Ecosystem: DXR
For GeForce RTX and GeForce GTX (cit. on pp. 26, 34).

B. Burton (2004). “Introducing Regina, the 3-manifold topology software.” Exper-
imental Mathematics 13.3, pp. 267–272. MR: 2103324. Zbl: 1090.57003.

M. P. d. Carmo (1992). Riemannian geometry. Birkhäuser. MR: 1138207. Zbl:
0752.53001 (cit. on pp. 9, 14, 15, 18, 47).

X.-W. Chen and X. Lin (2014). “Big data deep learning: challenges and perspec-
tives.” IEEE access 2, pp. 514–525.

M. Cicconet (2007). “Visualização Relativística Usando Ray Tracing.”
S. Cook (2013). CUDA Programming: A Developer’s Guide to Parallel Comput-

ing with GPUs. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

R. Coulon, E. A. Matsumoto, H. Segerman, and S. Trettel (2020a). “Non-
Euclidean Virtual Reality III: Nil.” arXiv: 2002.00513 (cit. on p. 13).

— (2020b). “Non-Euclidean Virtual Reality IV: Sol.” arXiv: 2002.00369 (cit. on
pp. 13, 64).

— (2020c). “Ray-marching Thurston geometries.” arXiv: 2010.15801 (cit. on
p. 13).

B. Divjak, Z. Erjavec, B. Szabolcs, and B. Szilágyi (2009). “Geodesics and
geodesic spheres in SL(2,R) geometry.” Mathematical communications 14.2,
pp. 413–424. MR: 2743187. Zbl: 1193.53103 (cit. on p. 60).

e. Fernando R., ed. (2004). GPU gems: programming techniques, tips, and tricks
for real-time graphics. Vol. 590. Addison-Wesley Reading (cit. on p. 26).

A. T. Fomenko and S. V. Matveev (2013). Algorithmic and computer methods for
three-manifolds. Vol. 425. Springer Science & Business Media. MR: 1486574
(cit. on p. 5).

G. K. Francis, C. M. A. Goudeseune, H. J. Kaczmarski, B. J. Schaeffer, and J. M.
Sullivan (2003). “ALICE on the Eightfold Way: Exploring Curved Spaces in
an Enclosed Virtual Reality Theatre.” In: Visualization and Mathematics III.
Ed. by H.-C. Hege and K. Polthier. Berlin, Germany: Springer Berlin Heidel-
berg, pp. 305–315. Zbl: 1097.68650.

M. H. Freedman et al. (1982). “The topology of four-dimensional manifolds.” J.
Differential Geom 17.3, pp. 357–453. MR: 0679066. Zbl: 0528.57011 (cit.
on p. 2).

http://www.ams.org/mathscinet-getitem?mr=MR1744486 (2000k:53038)
http://zbmath.org/?q=an:0988.53001
https://www.nvidia.com/en-us/geforce/news/geforce-gtx-ray-tracing-coming-soon/
https://www.nvidia.com/en-us/geforce/news/geforce-gtx-ray-tracing-coming-soon/
http://dx.doi.org/10.1080/10586458.2004.10504538
http://www.ams.org/mathscinet-getitem?mr=MR2103324
http://zbmath.org/?q=an:1090.57003
http://www.ams.org/mathscinet-getitem?mr=MR1138207
http://zbmath.org/?q=an:0752.53001
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://lvelho.impa.br/i3d07/demos/cicconet
http://arxiv.org/abs/2002.00513
http://arxiv.org/abs/2002.00513
http://arxiv.org/abs/2002.00513
http://arxiv.org/abs/2002.00369
http://arxiv.org/abs/2002.00369
http://arxiv.org/abs/2010.15801
http://arxiv.org/abs/2010.15801
http://www.ams.org/mathscinet-getitem?mr=MR2743187
http://zbmath.org/?q=an:1193.53103
http://www.ams.org/mathscinet-getitem?mr=MR1486574
http://dx.doi.org/10.1007/978-3-662-05105-4_16
http://dx.doi.org/10.1007/978-3-662-05105-4_16
http://zbmath.org/?q=an:1097.68650
http://dx.doi.org/10.4310/jdg/1214437136
http://www.ams.org/mathscinet-getitem?mr=MR0679066
http://zbmath.org/?q=an:0528.57011

72 Bibliography

M. von Gagern and J. Richter-Gebert (n.d.). “Hyperbolization of Euclidean Orna-
ments.” The Electronic Journal of Combinatorics 16.2 (). MR: 2515775. Zbl:
1168.51310.

E. Games (Oct. 2017).Unreal Engine Sun Temple, Open Research Content Archive
(ORCA).

É. Ghys (2017). A singular mathematical promenade. ENS Éditions Lyon. MR:
3702027. Zbl: 06797578 (cit. on p. 2).

R. Gilmore (2008). Lie groups, physics, and geometry: an introduction for physi-
cists, engineers and chemists. CambridgeUniversity Press.MR: 2398213. Zbl:
1157.00009 (cit. on pp. 15, 17).

E. Gröller (1995). “Nonlinear ray tracing: Visualizing strange worlds.” The Visual
Computer 11.5, pp. 263–274.

F. Guimarães, V. Mello, and L. Velho (Aug. 26, 2015). “Geometry independent
game encapsulation for Non-Euclidean geometries.” In: Proceedings of the
28th SIBGRAPI Conference on Graphics, Patterns and Images: Workshop of
Works in Progress. Ed. by R. Rios and A. Paiva. Salvador, BA, Brazil (cit. on
p. 45).

C. Gunn (1993). “Discrete groups and visualization of three-dimensional mani-
folds.” In: Proceedings of the 20th annual conference on Computer graphics
and interactive techniques. Ed. by M. Whitton. SIGGRAPH ’93. Anaheim,
CA: ACM, pp. 255–262 (cit. on pp. 12, 23, 53).

— (2010). “Advances in Metric-neutral Visualization.” In: GraVisMa 2010 Pro-
ceedings. Ed. by V. Skala and E. Hitzer. Eurographics. Brno, Czech Republic:
GraVisMa, pp. 17–26.

C. Gunn and D. Maxwell (1991). Not Knot. MR: 1176795.
E. Haines and T. Akenine-Möller, eds. (2019a). Ray Tracing Gems. Apress (cit. on

p. 44).
— eds. (2019b). Ray Tracing Gems. Apress (cit. on p. 28).
A. J. Hanson, T. Munzner, and G. Francis (July 1994). “Interactive methods for

visualizable geometry.” Computer 27.7, pp. 73–83.
V. Hart, A. Hawksley, E. Matsumoto, and H. Segerman (2017). “Non-euclidean

Virtual Reality I: Explorations of H3.” In: Proceedings of Bridges 2017: Math-
ematics, Art, Music, Architecture, Education, Culture. Ed. by D. Swart, C. H.
Séquin, and K. Fenyvesi. Phoenix, Arizona: Tessellations Publishing, pp. 33–
40. MR: 3702013.

J. F. P. Hudson (1969). Piecewise linear topology. University of Chicago Lecture
Notes prepared with the assistance of J. L. Shaneson and J. Lees. New York–

http://dx.doi.org/10.37236/78
http://dx.doi.org/10.37236/78
http://www.ams.org/mathscinet-getitem?mr=MR2515775
http://zbmath.org/?q=an:1168.51310
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple
http://perso.ens-lyon.fr/ghys/promenade/
http://www.ams.org/mathscinet-getitem?mr=MR3702027
http://zbmath.org/?q=an:06797578
http://www.ams.org/mathscinet-getitem?mr=MR2398213
http://zbmath.org/?q=an:1157.00009
http://dx.doi.org/10.1007/BF01901044
http://urlib.net/rep/8JMKD3MGPBW34M/3JRL3EB
http://urlib.net/rep/8JMKD3MGPBW34M/3JRL3EB
http://dx.doi.org/10.1145/166117.166150
http://dx.doi.org/10.1145/166117.166150
http://gravisma.zcu.cz/GraVisMa-2010/GraVisMa-2010-proceedings.pdf
http://www.geom.uiuc.edu/video/NotKnot/
http://www.ams.org/mathscinet-getitem?mr=MR1176795
http://raytracinggems.com
http://raytracinggems.com
http://dx.doi.org/10.1109/2.299415
http://dx.doi.org/10.1109/2.299415
http://archive.bridgesmathart.org/2017/bridges2017-33.pdf
http://archive.bridgesmathart.org/2017/bridges2017-33.pdf
http://www.ams.org/mathscinet-getitem?mr=MR3702013

Bibliography 73

Amsterdam: W. A. Benjamin, Inc., pp. ix+282. MR: 0248844(40\#2094).
Zbl: 0189.54507.

W. Jaco and P. B. Shalen (1979). “Seifert fibered spaces in 3-manifolds.” In: Geo-
metric topology. Ed. by J. C. Cantrell. Elsevier, pp. 91–99. MR: 0537728. Zbl:
0471.57001 (cit. on p. 6).

A. M. Jaffe (2006). “The millennium grand challenge in mathematics.” Notices
Amer. Math. Soc. 53.6, pp. 652–660. MR: 2235325. Zbl: 1130.01012 (cit. on
p. 3).

K. Johannson (1979). Homotopy equivalences of 3-manifolds with boundaries.
Vol. 761. Lecture Notes in Mathematics. Springer, Berlin, pp. ii+303. MR:
551744. Zbl: 0412.57007 (cit. on p. 6).

C. V. Johnson (2002). D-branes. Cambridge university press. MR: 1960004. Zbl:
1026.81047.

J. T. Kajiya (1986). “The Rendering Equation.” In: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. Ed. by D. C.
Evans and R. J. Athay. SIGGRAPH ’86. New York, NY, USA: ACM, pp. 143–
150.

S. Klimenko, I. Nikitin, V. Burkin, V. Semenov, O. Tarlapan, and H. Hagen (2000).
“Visualization in string theory.” Computers & Graphics 24, pp. 23–30.

E. Kopczyński and D. Celińska-Kopczyńska (2020). “Real-Time Visualization in
Non-Isotropic Geometries.” arXiv: 2002.09533 (cit. on p. 13).

J. Lee (2010). Introduction to topological manifolds. Vol. 202. Springer Science
& Business Media. MR: 2766102 (cit. on p. 5).

A. Lumberyard (July 2017). Amazon Lumberyard Bistro, Open Research Content
Archive (ORCA).

F. Luna (2016). Introduction to 3D Game Programming with DirectX 12. USA:
Mercury Learning & Information (cit. on p. 28).

V. Marenitch (2008). “Geodesic Lines in SL2(R) and Sol.” Novi Sad J. Math 38.2,
pp. 91–104. MR: 2526032. Zbl: 1289.53094 (cit. on p. 60).

B. Martelli (2016). “An introduction to geometric topology.” arXiv: 1610.02592
(cit. on pp. 8, 10–13, 15, 19, 20, 39, 66).

C. T. McMullen (2011). “The evolution of geometric structures on 3-manifolds.”
Bull. Amer. Math. Soc. (N.S.) 48.2, pp. 259–274. MR: 2774092. Zbl: 1214.
57017 (cit. on p. 6).

J. Milnor (1962). “A unique decomposition theorem for 3-manifolds.” American
Journal of Mathematics 84.1, pp. 1–7. MR: 0142125. Zbl: 0108.36501 (cit.
on p. 6).

U. of Minnesota (1994). The Geometry Center.

http://www.ams.org/mathscinet-getitem?mr=MR0248844 (40 \#2094)
http://zbmath.org/?q=an:0189.54507
http://www.ams.org/mathscinet-getitem?mr=MR0537728
http://zbmath.org/?q=an:0471.57001
http://www.ams.org/mathscinet-getitem?mr=MR2235325
http://zbmath.org/?q=an:1130.01012
http://www.ams.org/mathscinet-getitem?mr=MR551744
http://zbmath.org/?q=an:0412.57007
http://www.ams.org/mathscinet-getitem?mr=MR1960004
http://zbmath.org/?q=an:1026.81047
http://dx.doi.org/10.1145/15922.15902
http://dx.doi.org/10.1016/S0097-8493(99)00134-X
http://arxiv.org/abs/2002.09533
http://arxiv.org/abs/2002.09533
http://arxiv.org/abs/2002.09533
http://www.ams.org/mathscinet-getitem?mr=MR2766102
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://www.ams.org/mathscinet-getitem?mr=MR2526032
http://zbmath.org/?q=an:1289.53094
http://arxiv.org/abs/1610.02592
http://arxiv.org/abs/1610.02592
http://dx.doi.org/10.1090/S0273-0979-2011-01329-5
http://www.ams.org/mathscinet-getitem?mr=MR2774092
http://zbmath.org/?q=an:1214.57017
http://zbmath.org/?q=an:1214.57017
http://dx.doi.org/10.2307/2372800
http://www.ams.org/mathscinet-getitem?mr=MR0142125
http://zbmath.org/?q=an:0108.36501
http://www.geom.uiuc.edu/

74 Bibliography

E. Molnár (1997). “The Projective Interpretation of the Eight 3-dimensional
Homogeneous Geometries.” Contributions to Algebra and Geometry 38.2,
pp. 261–288. MR: 1473106. Zbl: 0889.51021 (cit. on pp. 22, 23).

A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg (2011). OpenCL program-
ming guide. Pearson Education.

H. Nguyen (2007). Gpu gems 3. Addison-Wesley Professional.
J. Nickolls, I. Buck, M. Garland, and K. Skadron (2008). “Scalable Parallel Pro-

gramming with CUDA.” Queue 6.2, pp. 40–53.
T. Novello, V. da Silva, and L. Velho (2020a). “Design and visualization of Rie-

mannian metrics.” arXiv: 2005.05386.
— (2020b). “Global illumination of non-Euclidean spaces.”Computers &Graph-

ics 93, pp. 61–70.
— (2020c). “How to see the eight Thurston geometries.” arXiv: 2005.12772.
— (2020d). “Immersive Visualization of the Classical Non-Euclidean Spaces us-

ing Real-Time Ray Tracing in VR.” In: Proceedings of Graphics Interface
2020. Ed. by D. I. Levin, F. Chevalier, and A. Jacobson. GI 2020. University
of Toronto, 423–4f30 (cit. on p. 20).

— (2020e). “Visualization of Nil, Sol, and SL2 geometries.”Computers &Graph-
ics 91, pp. 219–231 (cit. on pp. 13, 20, 37).

S. G. Parker et al. (2010). “OptiX: A General Purpose Ray Tracing Engine.” ACM
Trans. Graph. 29.4 (cit. on p. 28).

G. Perelman (2002). “The entropy formula for the Ricci flow and its geometric
applications.” arXiv: math/0211159 (cit. on pp. 2, 3).

— (2003a). “Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds.” arXiv: math.DG/0307245 (cit. on pp. 2, 3).

— (2003b). “Ricci flowwith surgery on three-manifolds.” arXiv: math/0303109
(cit. on pp. 2, 3).

M. Pharr and R. Fernando (2005). Gpu gems 2: programming techniques for high-
performance graphics and general-purpose computation. Addison-Wesley
Professional.

M. Pharr,W. Jakob, andG. Humphreys (2016a).Physically based rendering: From
theory to implementation. Morgan Kaufmann.

— (2016b). Physically based rendering: From theory to implementation. Morgan
Kaufmann (cit. on pp. 31, 33).

M. Phillips and C. Gunn (1992). “Visualizing hyperbolic space: unusual uses
of 4x4 matrices.” In: Proceedings of the 1992 symposium on Interactive 3D
graphics. Ed. by M. Levoy, E. Catmull, and D. Zeltzer. I3D ’92. Cambridge,
Massachusetts, United States: ACM, pp. 209–214 (cit. on p. 23).

http://www.ams.org/mathscinet-getitem?mr=MR1473106
http://zbmath.org/?q=an:0889.51021
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://arxiv.org/abs/2005.05386
http://arxiv.org/abs/2005.05386
http://arxiv.org/abs/2005.05386
http://dx.doi.org/https://doi.org/10.1016/j.cag.2020.09.014
http://arxiv.org/abs/2005.12772
http://arxiv.org/abs/2005.12772
http://dx.doi.org/10.20380/GI2020.42
http://dx.doi.org/10.20380/GI2020.42
http://dx.doi.org/https://doi.org/10.1016/j.cag.2020.07.016
http://dx.doi.org/10.1145/1778765.1778803
http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math.DG/0307245
http://arxiv.org/abs/math.DG/0307245
http://arxiv.org/abs/math.DG/0307245
http://arxiv.org/abs/math/0303109
http://arxiv.org/abs/math/0303109
http://dx.doi.org/10.1145/147156.147206
http://dx.doi.org/10.1145/147156.147206

Bibliography 75

H. Poincaré (1904). “Cinquième complément à l’analysis situs.” Rendiconti del
Circolo Matematico di Palermo (1884-1940) 18.1, pp. 45–110 (cit. on p. 1).

H. Poincaré (1895). Analysis situs. Translation to English by John Stillwell in
Poincaré (2010). Gauthier-Villars (cit. on pp. 1, 75).

— (2010). Papers on topology. Vol. 37. History of Mathematics. Translation
from the original in French in Poincaré (1895) by John Stillwell. American
Mathematical Society, Providence, RI; London Mathematical Society, Lon-
don, pp. xx+228. MR: 2723194 (cit. on p. 75).

C. Y. Ren and I. Reid (2011). “gSLIC: a real-time implementation of SLIC super-
pixel segmentation.” University of Oxford, Department of Engineering, Tech-
nical Report.

E. Riegel, T. Indinger, and N. A. Adams (2009). “Implementation of a Lattice–
Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA
technology.” Computer Science-Research and Development 23.3–4, pp. 241–
247.

Z. Rogue (2020). Experiments with geometry (cit. on p. 13).
J. Sanders and E. Kandrot (2010). CUDA by example: an introduction to general-

purpose GPU programming, portable documents. Addison-Wesley Profes-
sional.

P. Scott (1983). “The geometries of 3-manifolds.” Bulletin of the London Mathe-
matical Society 15.5, pp. 401–487. MR: 0705527. Zbl: 0561.57001 (cit. on
pp. 5, 8).

G. Sellers and J. Kessenich (2016). Vulkan Programming Guide: The Official
Guide to Learning Vulkan. Always learning. Addison-Wesley (cit. on p. 28).

L. J. S. Silva, D. L. S. da Silva, A. B. Raposo, L. Velho, and H. C. V. Lopes (2019).
“Tensorpose: Real-time pose estimation for interactive applications.” Comput-
ers & Graphics 85, pp. 1–14 (cit. on pp. 57, 58).

V. da Silva and L. Velho (2020). “Ray-VR: Ray Tracing Virtual Reality in Falcor.”
arXiv: 2006.11348.

M. Skrodzki (2020). “Illustrations of non-Euclidean geometry in virtual reality.”
arXiv: 2008.01363 (cit. on p. 13).

S. Smale (2007). “Generalized Poincaré’s conjecture in dimensions greater than
four.” In: Topological Library: Part 1: Cobordisms and Their Applications.
Ed. by S. P. Novikov and I. A. Taymanov. World Scientific, pp. 251–268 (cit.
on p. 2).

J. E. Stone, D. Gohara, and G. Shi (2010). “OpenCL: A parallel programming
standard for heterogeneous computing systems.” Computing in science & en-
gineering 12.3, p. 66.

http://dx.doi.org/10.1007/BF03014091
http://dx.doi.org/10.1090/hmath/037
http://www.ams.org/mathscinet-getitem?mr=MR2723194
http://dx.doi.org/10.1007/s00450-009-0087-3
http://dx.doi.org/10.1007/s00450-009-0087-3
http://dx.doi.org/10.1007/s00450-009-0087-3
http://www.roguetemple.com/z/hyper/geoms.php
http://dx.doi.org/10.1112/blms/15.5.401
http://www.ams.org/mathscinet-getitem?mr=MR0705527
http://zbmath.org/?q=an:0561.57001
https://books.google.com.br/books?id=kUJujwEACAAJ
https://books.google.com.br/books?id=kUJujwEACAAJ
http://dx.doi.org/10.1016/j.cag.2019.08.013
http://arxiv.org/abs/2006.11348
http://arxiv.org/abs/2006.11348
http://arxiv.org/abs/2008.01363
http://arxiv.org/abs/2008.01363
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69

76 Bibliography

B. Szilágyi and D. Virosztek (2003). “Curvature and torsion of geodesics in three
homogeneous Riemannian 3-geometries.” Studies of the University of Žilina,
Math. Ser 16, pp. 1–7 (cit. on pp. 15, 60).

W. Thurston (1979). The geometry and topology of three-manifolds. Princeton Uni-
versity (cit. on pp. 17, 39).

— (1982). “Three dimensional manifolds, Kleinian groups and hyperbolic geom-
etry.” Bulletin of the American Mathematical Society 6.3, pp. 357–381. MR:
0648524. Zbl: 0496.57005 (cit. on pp. 2, 5–8).

— (1997). Three-dimensional geometry and topology. Vol. 35. Princeton univer-
sity press. MR: 1435975. Zbl: 0873.57001 (cit. on p. 64).

— (1998). “How to see 3-manifolds.” Classical and Quantum Gravity 15.9,
p. 2545. MR: 1649658. Zbl: 0932.57017 (cit. on p. 39).

M. Troyanov (1998). “L’horizon de SOL.” Exposition. Math. 16.5, pp. 441–479.
MR: 1656902. Zbl: 0939.53042 (cit. on p. 60).

L. Velho, L. Carvalho, and D. Lucio (2018). VR Tour: Guided Participatory Meta-
Narrative for Virtual Reality Exploration. Technical Report TR-06-2018. VIS-
GRAF Lab - IMPA.

L. Velho, T. Novello, V. da Silva, and D. Lucio (2019). Visualization of Non-
Euclidean Spaces using Ray Tracing. Tech. Report TR-09-2019. Visgraf-Impa.

J. Weeks (2021). “Body coherence in curved-space virtual reality games.” Com-
puters & Graphics (cit. on p. 57).

J. Weeks (1995). The Shape of Space. MR: 1875835. Zbl: 0858.57021.
— (1999). Snappea.
— (Nov. 2002a). “Real-Time Rendering in Curved Spaces.” IEEE Comput.

Graph. Appl. 22.6, pp. 90–99 (cit. on p. 47).
— (2002b). “Real-time rendering in curved spaces.” IEEE Computer Graphics

and Applications 22.6, pp. 90–99 (cit. on p. 22).
— (2006). “Real-Time Animation in Hyperbolic, Spherical, and Product Ge-

ometries.” In: Non-Euclidean Geometries. Ed. by A. Prékopa and E. Molnár.
Vol. 581. Mathematics and Its Applications. Springer US, pp. 287–305. MR:
2191253. Zbl: 1116.68653 (cit. on p. 12).

— (2020a). “Non-Euclidean billiards in VR.” In: Proceedings of Bridges 2020:
Mathematics, Art, Music, Architecture, Education, Culture. Ed. by C. Yackel,
R. Bosch, E. Torrence, and K. Fenyvesi. Phoenix, Arizona: Tessellations Pub-
lishing, pp. 1–8 (cit. on p. 20).

— (2020b). The shape of space. 3rd ed. CRC Press. MR: 0806764. Zbl: 1432.
57001 (cit. on p. 8).

http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://www.ams.org/mathscinet-getitem?mr=MR0648524
http://zbmath.org/?q=an:0496.57005
http://www.ams.org/mathscinet-getitem?mr=MR1435975
http://zbmath.org/?q=an:0873.57001
http://dx.doi.org/10.1088/0264-9381/15/9/004
http://www.ams.org/mathscinet-getitem?mr=MR1649658
http://zbmath.org/?q=an:0932.57017
http://www.ams.org/mathscinet-getitem?mr=MR1656902
http://zbmath.org/?q=an:0939.53042
http://dx.doi.org/https://doi.org/10.1016/j.cag.2021.04.002
http://www.geom.uiuc.edu/video/sos/
http://www.ams.org/mathscinet-getitem?mr=MR1875835
http://zbmath.org/?q=an:0858.57021
http://www.geometrygames.org/SnapPea/
http://dx.doi.org/10.1109/MCG.2002.1046633
http://dx.doi.org/10.1109/MCG.2002.1046633
http://www.ams.org/mathscinet-getitem?mr=MR2191253
http://zbmath.org/?q=an:1116.68653
http://archive.bridgesmathart.org/2020/bridges2020-1.html
https://doi.org/10.1201/9781315162553
http://www.ams.org/mathscinet-getitem?mr=MR0806764
http://zbmath.org/?q=an:1432.57001
http://zbmath.org/?q=an:1432.57001

Bibliography 77

— (2020c). “Virtual reality simulations of curved spaces.” arXiv: 2011.00510
(cit. on p. 20).

D. Weiskopf (2001). “Visualization of four-dimensional spacetimes.”
T. Whitted (June 1980). “An Improved Illumination Model for Shaded Display.”

Commun. ACM 23.6, pp. 343–349 (cit. on pp. 37, 40).
Wikipedia (2010). 4K resolution standard.
C. Wyman and A. Marrs (2019). “Introduction to DirectX Raytracing.” In: Ray

Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other
APIs. Ed. by E. Haines and T. Akenine-Möller. Berkeley, CA, USA: Apress,
pp. 21–47 (cit. on pp. 27, 28, 44).

https://arxiv.org/abs/2011.00510
http://dx.doi.org/10.1145/358876.358882
http://en.wikipedia.org/wiki/4K%5C_resolution
http://dx.doi.org/10.1007/978-1-4842-4427-2_3

Index

BSL2.R/ geometry, 17
3-sphere, 12
120-cell, 12, 52
S2 � R geometry, 13

B
bitorus, 4

C
camera space, 22
classical geometries, 9

E
Euclidean space, 10

F
flat torus, 10, 48
fundamental domain, 36, 39

G
geodesic, 36, 38
geometric manifold, 39
geometrization theorem, 6, 39

H
homogeneous space, 38
hyperbolic geometry, 10

I
isotropic geometry, 6

K
Klein model, 11

L
Lorentzian space, 10

M
manifold, 38
mirrored cube, 50
mirrored dodecahedron, 54

N
Nil space, 13

O
object space, 21
orbifold, 48

78

Index 79

P
Poincaré sphere, 12, 51
polyhedral complex, 5
product geometries, 9

R
ray, 38
ray tracing, 24
ray tracing pipeline, 44
Riemannian illumination, 40
Riemannian manifold, 38
Riemannian metric, 38
Riemannian shading, 40

S
Seifert manifold, 8
Seifert–Weber space, 11, 53

shading, 40
Sol space, 19
special linear group, 15, 61

T
tori decomposition, 6
twisted product geometries, 9

U
upper half plane, 16

V
view frustum, 22
viewing transformation pipeline, 21

W
world space, 21

Títulos Publicados — 33º Colóquio Brasileiro de Matemática

Geometria Lipschitz das singularidades – Lev Birbrair e Edvalter Sena
Combinatória – Fábio Botler, Maurício Collares, Taísa Martins, Walner Mendonça, Rob Morris e

Guilherme Mota

Códigos geométricos, uma introdução via corpos de funções algébricas – Gilberto Brito de Al-
meida Filho e Saeed Tafazolian

Topologia e geometria de 3-variedades, uma agradável introdução – André Salles de Carvalho
e Rafał Marian Siejakowski

Ciência de dados: algoritmos e aplicações – Luerbio Faria, Fabiano de Souza Oliveira, Paulo
Eustáquio Duarte Pinto e Jayme Luiz Szwarcfiter

Discovering Poncelet invariants in the plane – Ronaldo A. Garcia e Dan S. Reznik
Introdução à geometria e topologia dos sistemas dinâmicos em superfícies e além – Víctor León

e Bruno Scárdua

Equações diferenciais e modelos epidemiológicos – Marlon M. López-Flores, Dan Marchesin,
Vítor Matos e Stephen Schecter

Differential Equation Models in Epidemiology –Marlon M. López-Flores, Dan Marchesin, Vítor
Matos e Stephen Schecter

A friendly invitation to Fourier analysis on polytopes – Sinai Robins
PI-álgebras: uma introdução à PI-teoria – Rafael Bezerra dos Santos e Ana Cristina Vieira
First steps into Model Order Reduction – Alessandro Alla
The Einstein Constraint Equations – Rodrigo Avalos e Jorge H. Lira
Dynamics of Circle Mappings – Edson de Faria e Pablo Guarino
Statistical model selection for stochastic systems with applications to Bioinformatics, Linguis-

tics and Neurobiology – Antonio Galves, Florencia Leonardi e Guilherme Ost
Transfer operators in Hyperbolic Dynamics - an introduction – Mark F. Demers, Niloofar Kia-

mari e Carlangelo Liverani

A course in Hodge Theory: Periods of Algebraic Cycles – Hossein Movasati e Roberto Villaflor
Loyola

A dynamical system approach for Lane-Emden type problems – Liliane Maia, Gabrielle Norn-
berg e Filomena Pacella

Visualizing Thurston’s geometries – Tiago Novello, Vinícius da Silva e Luiz Velho
Scaling problems, algorithms and applications to Computer Science and Statistics – Rafael

Oliveira e Akshay Ramachandran

An introduction to Characteristic Classes – Jean-Paul Brasselet

C

M

Y

CM

MY

CY

CMY

K

C

M

Y

CM

MY

CY

CMY

K

ISBN 978-65-89124-21-4

9 786589 124214

impa

a Instituto de
Matemática
Pura e Aplicada

PANTONE Solid Coated 313 C

Visualizing Thurston’s geometries

Tiago Novello
Vinícius da Silva

Luiz Velho

impa

a

	Background on Manifolds and Orbifolds
	History
	Henri Poincaré
	William P. Thurston
	Grigori Perelman

	2-Manifolds
	Classification of compact surfaces
	Geometrization of compact surfaces

	3-Manifolds
	Classification of compact 3-manifolds
	Geometrization of compact 3-manifolds

	8 Thurston Geometries
	Classical geometries
	Product geometries
	``Twisted" product geometries

	Immersive Visualization in Virtual Reality
	3D Visualization
	The Viewing Transformation Pipeline
	Inside Views in Non-Euclidean Spaces
	Types of Algorithms
	Rendering Acceleration

	GPU Ray Tracing using RTX / Falcor 3.2.1
	RTX Ray Tracing
	Falcor 3.2.1

	Ray Tracing and Stereo Rendering
	Simple Ray Tracer
	Stereo Rendering

	Integrating Ray Tracing and VR
	Stereo Convergence
	Ray Tracing Overhead

	Riemannian Ray Tracing
	Core Concepts
	Geodesics and Fundamental Domain
	Non-Euclidean Ray tracing
	Riemannian Manifolds

	Visualization of Riemannian manifolds
	Visualization approaches
	Riemannian ray tracing

	Ray tracing in Riemannian manifolds
	Overview of the Method
	Algorithm in CPU
	Ray Marching
	RTX Pipeline
	GPU Implementation

	Visualization of Classical Non-Euclidean Spaces
	Euclidean
	Flat Torus
	Mirrored Cube

	Spherical
	Poincaré sphere

	Hyperbolic
	Seifert–Weber dodecahedral space
	Mirrored Dodecahedron

	Analysis
	Performance
	Interaction
	Space Perception

	Visualization of Nil, SL2(R)0K0I0d"0365 SL2(R)0K0I0d"0365 SL2(R)0K0I0d"0365 SL2(R)0K0I0d"0365 , and Sol
	Visualizing Nil space
	Visualizing Sol space
	Visualizing SL space
	Experiments and comparisons

	Bibliography
	Index

