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Preface

The idea of this book and course originated from the experience of a joint project
started in 2019, where the first two authors were visiting the university of Rome La
Sapienza under the invitation of Prof. Filomena Pacella. At first glance, working
with Dynamical Systems seemed challenging, mostly because it was not the area of
expertise for any of us. But we developed a huge amount of research, linked to our
previous experience, and ended up with a rather good knowledge on the theory. In
these notes we present in a simple form the essential tools in Ordinary Differential
Equations and Dynamical Systems to solve Partial Differential Equations of fully
nonlinear type in the radial regime.

The book is aimed for graduate students interested in Partial Differential Equa-
tions and/or Dynamical Systems. We tried to gather a self contained and detailed
analysis on the subject, in addition to several references, in such a way to ease the
experience of the reader.

Here we exploit the classification of radial positive solutions for a class of
fully nonlinear problems. Our approach is entirely based on the analysis of the
dynamics induced by an autonomous quadratic system, which is obtained after a
suitable transformation. This method allows us to treat both regular and singular
solutions in a unified way. It applies to define critical exponents, from which
existence and nonexistence of solutions are completely characterized.

It is our goal to enable the reader to identify all trajectories produced by the dy-
namical system and translate it into positive radial solutions of the corresponding
second order partial differential equations problem. We will deal with solutions in
a ball, the whole space, exterior domains, and annuli.
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Introduction

In this book we study existence, uniqueness, nonexistence, and classification of
radial positive solutions for some nonlinear problems, subject to a Lane–Emden
coupling with Hénon type power weight, and driven by fully nonlinear operators.

Let us recall some history on the development of these problems. Semilinear
equations like

��u.x/ D f .jxj; u.x// in RN ; N > 3; (0.0.1)

have long been studied, in special by arising in the context of Astrophysics. Here
� is the standard Laplacian operator in the Euclidean space RN ,

�u D
PN

iD1 ei ; feig
N
iD1 D spec.D2u/;

which is just the sum of the eigenvalues of the Hessian D2u whenever u is a C 2

function. In some cases, the admissibility of stationary and spherically symmet-
ric stellar dynamic models is equivalent to the solvability of an equation in the
form (0.0.1) when N D 3, see (Batt, Faltenbacher, and Horst 1986; Mercuri and
Moreira dos Santos 2019; Yi Li 1993) and references therein.

In particular, the Lane–Emden equation in the space

��u.x/ D ju.x/jp�1u.x/ in R3; p > 1:

refers to the description of certain self-gravitating spherically symmetric stellar
systems.
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JonathanHomer Lane (American, 1819–1880) andRobert Emden (Swiss, 1862–
1940) were two astrophysicists who lead similar mathematical investigations on
stellar structures modeled by polytropic fluids. These were the first stellar models
studied in the end of the 19 century (Lane 1870), although are still useful for un-
derstanding the basic structure of astrophysical objects. For instance, they apply
to stars possessing a spherical symmetry, not varying with time, and without no
internal motions. As in (Meier 2012, Section 5.2.4.1), polytropic stellar structures
can be derived from Newtonian fluid equations, in which three conservation laws
yield to the second order differential equation

1

r2

d
dr

�
r2 du

dr

�
C up

D 0;

such that u satisfies a polynomial relation in the form � D �c u
p; where �c is

the central mass density, and p stands for the polytropic index. More general
equations like

d
dr

�
r
 du

dr

�
C r�up

D 0;

are also called Emden–Fowler in the literature, see the survey (Wong 1975).
TheGeneral Relativity theory of Albert Einstein hasmade impressive and even

apocalyptic predictions about the space-time structure of the universe, among them
the existence of black holes. Since the important work of the German astronomer
Karl Schwarzschild, over the past decades astrophysicists and mathematicians
have been devoted to understand their properties, from the ones which possess
the same mass as stars up to recent photographed discoveries of supermassive ob-
jects lying in the Milky Way’s center, by culminating at the Physics Nobel prize
awards in 2019, see (Hawking and Ellis 1973; Meier 2012; Overbye and Taylor
2020; Peebles 1972; Rhode 2007; The Event Horizon Telescope Collaboration et
al. 2019; Wald 1984).

A related model problem is the so called Hénon equation,

��u.x/ D jxj
a

ju.x/jp�1u.x/ in R3: (0.0.2)

Michel Hénon (French, 1931-2013) was a mathematician and astronomer who
developed an analysis of the stability of spherical steady state stellar systems nu-
merically, in what concerns the concentric shell model, see (Hénon 1973). In the
case a < 0 this equation is also known as Hardy-Hénon (see for instance (Phan
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and Souplet 2012)), because its relation with the Hardy inequality by referring to
the mathematician Godfrey Harold Hardy (English, 1877-1947).

On the other hand, in this text we will be interested in second order prob-
lems with fully nonlinear nature, which means the operator depends on the second
derivatives entry in a nonlinear way. In particular, we will look at the following
Pucci extremal operators

MC

�;�
.D2u/ D �

P
ei >0 ei C �

P
ei <0 ei ;

M�
�;�

.D2u/ D �
P

ei >0 ei C�
P

ei <0 ei ;

for 0 < � < �, which is a weighted sum of the eigenvalues feig
N
iD1 of the Hessian

D2u whenever u is a C 2 function. They are named so due to the mathematician
Carlo Pucci (Italian, 1925-2003), see (Pucci 1966). They are extremal operators,
in the sense that MC

�;�
.X/ is the supremum of all linear linear operators in the

form tr.AX/ over all matrices with eigenvalues between � and �, while M�
�;�

is the infimum one, see the next chapter for details. In this sense, they define
the whole class of fully nonlinear uniformly elliptic operators, see (Caffarelli and
Cabré 1995). Hence they play, in the fully nonlinear context, the same role as the
Laplace operator in the linear case.

To make matters precise, we study positive radial solutions of the following
class of fully nonlinear elliptic equations involving the Pucci’s operators,

M˙
�;�.D

2u/C jxj
aup

D 0; u > 0 in ˝; (0.0.3)

where a > �1, p > 1. The set˝ 2 RN ,N > 3, is a radial domain such as RN , a
ball BR of radius R > 0 centered at the origin, the exterior of BR, or an annulus.

We deal with both regular and singular solutions u of (0.0.3) which are C 2 for
r > 0. In the singular case˝ will be either RN n f0g or BR n f0g, and we assume
the condition

limr!0 u.r/ D C1; r D jxj: (0.0.4)

Finally, whenever ˝ has a boundary, we prescribe on it the Dirichlet condition

u D 0 on @˝; or u D 0 on @˝ n f0g under (0.0.4):

Our solutions are understood in the classical sense out of 0 and they are of
class C 1 up to 0, since a > �1, as shows our Proposition 3.1.7 ahead.
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Let us have in mind the so called dimension-like numbers zN˙ as

zNC D
�
�
.N � 1/C 1; zN� D

�
�
.N � 1/C 1 ;

whenever zNC > 2.
A general existence result in bounded domains ˝, not necessarily radial, was

obtained in (Quaas and Sirakov 2006) under the condition

1 < p 6 zNC

zNC�2
forMC

�;�
; 1 < p 6 zN�

zN��2
forM�

�;�

These intervals come from the optimal range for existence of supersolutions to
M˙ when a D 0, see Theorem 1.2.8 in the next chapter.

When the Pucci’s operators reduce to the Laplacian (i.e. for � D �, and
zN˙ D N ) the previous exponents are equal to N

N �2
which is known as the Serrin

exponent. They do not provide optimal bounds in terms of solutions of (0.0.3)
when a D 0, which is clear by considering the semilinear case.

Nevertheless, as far as the radial setting is concerned, critical exponents which
represent the threshold for the existence of solutions to (0.0.3) can be defined when
N > 3. They were introduced for a D 0 by Felmer and Quaas in the seminal work
(Felmer and Quaas 2003) for establishing existence and classification of radial pos-
itive solutions inRN . These are also the watershed for existence and nonexistence
of positive solutions in the ball. In the case the dimension is N D 2 no critical
exponent exists for the Laplacian or for the MC

�;�
operator, while it can still be

defined for the M�
�;�

case, see (Pacella and Stolnicki 2021a). However here we
only consider the dimensions N > 3.

Note that every positive solution in the ball when a D 0 is radial, by (Da Lio
and Sirakov 2007), while this is not true in general for a ¤ 0, even in the semilinear
case. In fact, for the Dirichlet problem associated to the standard Hénon equation
(0.0.2), in (Willem 2002) it was obtained the existence of a radial solution, in
addition to a least energy solution which is not radially symmetric. Moreover, the
power weight jxja as the parameter a gets large induces symmetry breaking and
concentration phenomena, see (Mercuri andMoreira dos Santos 2019; Wang 2006;
Yan 2009).

When � D � the corresponding critical exponents are the same, both in radial
and nonradial settings; see (Caffarelli, Gidas, and Spruck 1989) for a D 0, and
(Gladiali, Grossi, and Neves 2013) for a ¤ 0. The identification of critical expo-
nents in the nonradial case for fully nonlinear operators, in turn, remains open.

For p > 1 and a > �1, we set
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˛ D
2Ca
p�1

.

In the study of the standard Hénon equation (0.0.2), two classes of radial positive
solutions are important: the fast decaying and the slow decaying ones. Namely,

limr!1 rN �2u.r/ D c, and limr!1 r˛u.r/ D c,

respectively, for some c > 0 whenever N > 2. It is known that fast decaying
solutions exist at the critical exponent

pa
� D

N C2C2a
N �2

,

while slow decaying solutions emerge for p > pa
�.

In the aforementioned work (Felmer and Quaas 2003) it was shown for the
operators M˙, when a D 0, and � < �, the existence of critical exponents
p�

˙
as far as zNC > 2. They play the role of pa

� for Laplacian in the sense of
being the threshold for existence and nonexistence of regular solutions in RN , see
Theorem 1.2.9 in the next chapter. A new class of solutions was also detected,
namely pseudo-slow decaying solutions, which satisfy

c1 D lim infr!1 r˛u.r/ < lim supr!1 r˛u.r/ D c2 ,

for some 0 < c1 < c2, see Definition 1.2.3.
In the case of the operator MC the authors also made precise the range of

the exponent p for which pseudo-slow decaying solutions exist. The proof of
this result in (Felmer and Quaas 2003) is involved. It is a combination of the
Emden–Fowler phase plane analysis and the Coffman Kolodner technique. The
latter consists in differentiating the solution with respect to the exponent p, and
then studying a related nonhomogeneous differential equation, from which they
derive the behavior of the solutions for p on both right and left hand sides of p�

˙
,

as well as the uniqueness of the exponent p for which a fast decaying solution
exists.

The existence of a critical exponent unveils an important feature of the Pucci’s
operators. It reflects some intrinsic properties of these operators and induces con-
centration phenomena besides of energy invariance, see (Birindelli et al. 2018), as
it happens in the classical semilinear case.

In this book we show how to derive critical exponents, for both regular and sin-
gular solutions, of the respective weighted problem (0.0.3), in light of our recent
paper (Maia, Nornberg, and Pacella 2020). In what concerns regular solutions our
results are similar to those in (Felmer and Quaas 2003), a little bit improved, but
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with the difference that we exploit much more the strength provided by the dynam-
ical system itself, which makes the proofs simpler. This approach has further been
used in (Pacella and Stolnicki 2021a) to refine the bounds given in (Felmer and
Quaas 2003) for the critical exponents even more.

Another advantage of our approach is that it treats in a unified way several
kind of solutions to (0.0.3). We refer the reader to Figures 4.1 to 4.7 where, for
a given value of the exponent p, all the orbits of the system corresponding to dif-
ferent types of solutions of (0.0.3) are displayed simultaneously. Our proofs do
not involve energy functions, except for showing a center configuration which ap-
pears at the critical exponents, in addition to a particular existence result in annuli
for weighted equations.

We highlight that the strategy of introducing an associated quadratic system
to treat radial Lane–Emden problems, with or without weight, has long been man-
aged, see for instance (Chicone and Tian 1982; Wong 1975) and references therein.
We will follow more closely the ideas applied in (Bidaut-Véron and Giacomini
2010). Finally, we point out that the quadratic system approach can be extended
to treat systems with Lane–Emden configuration, in the spirit of (Bidaut-Véron
and Giacomini 2010). In the fully nonlinear context, it is the subject of our recent
work (Maia, Nornberg, and Pacella 2021).

The text is organized as follows. In Chapter 1 we introduce notations and
give an overview of the prerequisites on Dynamical Systems and second order
partial differential equations that will be used throughout the text. In particular, in
Section 1.2.1 we write down equation (0.0.3) in the radial form. In Chapter 2 we
introduce the quadratic system associated to (0.0.3), and study its intrinsic flow
properties. In Chapter 3 we classify the different solutions of (0.0.3) in terms of
orbits of the corresponding dynamical systems. In the last chapter, Sections 4.1
and 4.2 are devoted to the proofs of the main results for the Pucci MC and M�

operators, respectively.



1 Preliminaries

In this chapter we review some preliminary facts. From ODEs we recall some
results for two dimensional first order autonomous systems such as the stable and
unstable manifold theorem, Poincaré–Bendixson theorem, Dulac’s type criteria,
and extension of local trajectories. From PDEs we establish the radial form of
(0.0.3) and discuss its difficulties. We also revisit some comparison principles,
Hopf lemma, symmetry properties of solutions, and state some theorems men-
tioned in the Introduction.

1.1 ODEs overview
We first recall some standard definitions from the theory of dynamical systems.
Consider the system of ordinary differential equations (ODEs for short),

Px D F.x/; where x D .X;Z/; F.x/ WD .f .x/; g.x//: (1.1.1)

with Px D . PX; PZ/. Solutions of ODE problems in the form (1.1.1) will be called
trajectories or orbits, and they are differentiable in the variable t in their interval
of definition.

Here and onward in the text we deal with F as a locally Lipschitz function
on the variable x. In particular, it implies the so called existence and uniqueness
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property of trajectories in the sense: given any point x0, there exists a unique
trajectory �.t/ solving (1.1.1) and passing through the point x0 at time t D 0, i.e.
such that P�.t/ D F.�.t// and �.0/ D x0. Moreover, such orbits are continuous
with respect to the initial condition x0, and with respect to possible additional
parameters involved in the problem, see (Hale 1980). The latter will appear in
terms of the exponent p in (0.0.3).

Definition 1.1.1. A stationary point Q of (1.1.1) is a zero of the vector field F .
If �1 and �2 are the eigenvalues of the Jacobian matrix DF.Q/, thenQ is hyper-
bolic if both �1; �2 have nonzero real parts. If this is the case, Q is a source if
Re.�1/;Re.�2/ > 0, and a sink if Re.�1/;Re.�2/ < 0; Q is a saddle point if
Re.�1/ < 0 < Re.�2/.

Next we recall an important result from the theory of dynamical systems which
describes the local stable and unstable manifolds near saddle points of the system
(1.1.1); see (Hale and Koçak 1991, theorems 9.29, 9.35). Here the usual theory
for autonomous planar systems applies since each stationary pointQ possesses a
neighborhood which is strictly contained in RC

�
or R�

�
where the vector field F is

C 1.

Proposition 1.1.2. LetQ be a saddle point of (1.1.1). Then the local stable (resp.
unstable) manifold atQ is locally a C 1 graph over the stable (resp. unstable) line
of the linearized vector field. In this case, if the linearized system has a stable
line direction L, then there exists exactly two trajectories �1 and �2 arriving atQ
which admit the same tangent at the pointQ D �1 \ �2 given by L. Analogously
there are only two trajectories coming out fromQ with the same property.

We sometimes use the following notation to describe the limit of trajectories
in the phase plane.

Definition 1.1.3 (˛ and ! limits). We call ˛-limit of the orbit � , and we denote it
by ˛.�/, as the set of limit points of �.t/ as t ! �1. Similarly one defines !.�/
i.e. the !-limit of � at C1.

We recall the classical theorem of Poincaré–Bendixson (see Theorems 12.1
and 12.5 in (Hale and Koçak 1991)), which classifies all possible ˛ and ! limits
of autonomous dynamical systems in the plane.

Theorem 1.1.4 (Poincaré–Bendixson). Suppose that Px D F.x/, x.0/ D x0, is
a planar system with the existence and uniqueness property of trajectories. As-
sume the system has a finite number of stationary points. If the orbit � is bounded
forward in time, then one of the following is true:
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� !.�/ D Nx for a stationary point Nx, such that �.t/ ! Nx as t ! C1;

� !.�/ D � , where � is a periodic orbit such that either the trajectory itself
is periodic � D � , or the trajectory spirals with increasing forward time
toward � on one side of � ;

� !.�/ consists of stationary points and periodic orbits whose ˛ and ! limits
are the stationary points.

The statement is similar for trajectories bounded backward in time with respect to
the ˛ limit.

In order to exclude the existence of periodic orbits, the following criteria of
Bendixson and Dulac (Theorems 12.8 and 12.9 in (Hale and Koçak 1991)) are
useful.

Theorem 1.1.5. Let D be a simply connected open of R2. Set x D .X;Z/, and
F D .f; g/. If either:

� .Bendixson0s criterium/ divF D @Xf C @Zg is of constant sign and not
identically zero inD;
or

� .Dulac0s criterium/ div.BF / D @X .Bf /C @Z.Bg/ is of constant sign and
not identically zero inD, where B.x/ is a real-valued C 1 function inD;

then Px D F.x/ has no periodic orbit lying entirely in the regionD.

Here, B is called a Dulac’s function, and if B � 1 it recovers the Bendixson
criterium.

We finish the section with a result in (Hale 1980, p.18) about extensions of
maximal interval of existence of trajectories.

Proposition 1.1.6. Assume F D F.x/ is defined and locally Lipschitz continuous
in Œ0; C0� for some C0 > 0. If a certain solution x.t/ of Px D F.x/ satisfies
jx.t/j 6 C < C0 for all values of t > t0 in which x.t/ is defined, then necessarily
x.t/ is defined for all t > t0.



10 1. Preliminaries

1.2 PDEs overview

In this section we obtain the ODE problems associated to the second order PDE
problem (0.0.3), which are satisfied by Pucci’s operators in the radial regime. We
also recall some known theorems and change of variables from PDEs theory which
will be fundamental to understand the difficulties originated both from the fully
nonlinear nature of the problem and from the weighted power term. We split the
sections into subsections to better situate the reader each time a check up on the
notation or result is necessary.

1.2.1 Pucci’s operators in the radial form

We start the section by recalling the definition of Pucci’s extremal operatorsM˙
�;�

for 0 < � 6 �,

MC

�;�
.X/ WD sup

�I6A6�I

tr.AX/ ; M�
�;�.X/ WD inf

�I6A6�I
tr.AX/;

where A;X are N �N symmetric matrices, and I is the identity matrix. Equiva-
lently, if we denote by feig16i6N the eigenvalues ofX , we can define the Pucci’s
operators as

MC

�;�
.X/ D �

X
ei >0

ei C �
X
ei <0

ei ; (1.2.1)

M�
�;�.X/ D �

X
ei >0

ei C�
X
ei <0

ei :

From now on we will drop writing the parameters �;� in the notations for the
Pucci’s operators.

Definition 1.2.1 (Radial function). We say that u, defined in˝ � RN , is a radial
function with respect to the point x0 2 ˝ if there exists ' such that u.x/ D '.r/

where r D jx � x0j.

Throughout the text we will consider x0 D 0 and, with an abuse of notation,
most of the times we write simply u.x/ and u.r/ for r D jxj interchangeably.

Lemma 1.2.2. If u is a radial C 2 function, the eigenvalues of the Hessian matrix
D2u are given by u00 which is simple, and u0.r/

r
with multiplicity N � 1.
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Proof. We write u.x/ D '.r/, with x D .x1; : : : ; xN /. Let us prove that

spec.D2u/.x/ D

�
'0.r/

r
; : : : ; '0.r/

r
; '00.r/

�
.

We have uxi
.x/ D '0.jxj/ xi

jxj
, and so Du.x/ D

'0.jxj/
jxj

x with jDu.x/j D

j'0.r/j. Also, uxi xj
.x/ D '00.r/

xj xi

r2 C '0.r/
ıij

r
� '0.r/

xi xj

r3 .

For the vector � D .�1; : : : ; �N /, we denote � ˝ � D .�i�j /
N
i;j D1: We claim

that

spec.� ˝ �/ D .0; : : : ; 0; j�j2/: (1.2.2)

Indeed, observe that if A WD � ˝ � D � �T and RN is the direct sum of V and
W , for V D span �, W D spanfwig

n�1
iD1 , then A� D � .�T �/ D .� � �/ � and

Awi D 0. Hence � � � is an eigenvalue associated to the eigenvector �, while 0 is
an eigenvalue with multiplicity N � 1.

Now it is just a question of applying (1.2.2) to the matrix

D2u.x/ D '00.r/x˝x
jxj2

C
'0.r/

r

�
I �

x˝x
jxj2

�
.

�

Next, we define the Lipschitz functions

mC.s/ D

(
�s if s 6 0

�s if s > 0
and MC.s/ D

(
s=� if s 6 0

s=� if s > 0I
(1.2.3)

m�.s/ D

(
�s if s 6 0

�s if s > 0
and M�.s/ D

(
s=� if s 6 0

s=� if s > 0:
(1.2.4)

The equations MC.D2u/ C raup D 0 and M�.D2u/ C raup D 0, for
r ¤ 0, in radial coordinates for positive solutions then become, respectively,

u00
D MC.�r

�1.N � 1/mC.u
0/ � raup/, u > 0I (PC)

u00
D M�.�r

�1.N � 1/m�.u
0/ � raup/, u > 0; (P�)

which are understood in the maximal interval where u is positive.
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We recall the definition of the dimension-like numbers

zNC D
�
�
.N � 1/C 1; zN� D

�
�
.N � 1/C 1: (1.2.5)

For instance, in terms of positive solutions, when u00 6 0 and u0 < 0, (PC) is
reduced to

�u00.r/ �
N �1

r
u0.r/ D ra up.r/

�
,

where the left hand side is the standard radial Laplacian operator. Meanwhile for
u00 > 0 and u0 < 0, (PC) reads as

�u00.r/ �
zNC�1

r
u0.r/ D ra up.r/

�
,

where, in turn, the LHS is the Laplacian in the possible noninteger dimension zNC

from (1.2.5). Now, when u0 > 0 then u00 < 0, and so (PC) becomes

�u00.r/ �
zN��1

r
u0.r/ D ra up.r/

�
,

for which we recover the Laplacian operator in the possible noninteger dimension
zN� from (1.2.5).

Analogously one treats the problems involving the operatorM�. In this case
it appears the Laplacian operator in dimensions N and zN� when u0 < 0, while
zNC takes place when u0 > 0.

Therefore, our system is the union of equations driven by different Laplacian-
like operators, in dimensionsN , zNC or zN�. This explains the difficulty in dealing
with fully nonlinear operators.

1.2.2 Types of decay and blow-up for solutions

In this section we define the decay and blow-up properties for the solutions of
(PC) and (P�) we will be interested in.

Definition 1.2.3. Let u be a solution of (PC) or (P�) defined for all r > r0, for
some r0 > 0. Set ˛ D

2Ca
p�1

. Then u is said to be:

(i) fast decaying if there exists c > 0 such that

lim
r!1

r
zN �2u.r/ D c ,
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where zN is either zNC if the operator isMC or zN� forM� in (1.2.5);

(ii) slow decaying if there exists c > 0 such that

lim
r!1

r˛u.r/ D c ,

(iii) pseudo-slow decaying if there exist constants 0 < c1 < c2 such that

c1 D lim inf
r!1

r˛u.r/ < lim sup
r!1

r˛u.r/ D c2.

The definitions (i) and (ii) are classical from the theory of Lane–Emden equa-
tions. In turn (iii) was introduced in (Felmer and Quaas 2003) and is peculiar of
the fully nonlinear case. It corresponds to solutions oscillating atC1 by changing
concavity infinitely many times.

Definition 1.2.4. Let u be a solution of (PC) or (P�) defined for r 2 .0; r0/ for
some r0 > 0, and such that limr!1 u.r/ D 0. Then the singular solution u is
said to be:

(i) . zN � 2/–blowing up if there exists c > 0 such that

lim
r!0

r
zN �2u.r/ D c,

where zN is either zNC if the operator isMC or zN� forM� in (1.2.5);

(ii) ˛–blowing up if there exists c > 0 such that

lim
r!0

r˛u.r/ D c ,

with ˛ as in (1.2.6);

(iii) pseudo–blowing up if there exist constants 0 < c1 < c2 such that

c1 D lim inf
r!0

r˛u.r/ < lim sup
r!0

r˛u.r/ D c2.

We highlight that Definition 1.2.4 (iii) corresponds to a type of solutions which
change concavity infinitely many times in a neighborhood of zero. The existence
of such a type of singular solution was already detected for a more general class
of uniformly elliptic equations, for values of the exponent p close to the critical
one, see (Felmer and Quaas 2006, Section 6).
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1.2.3 Known results
We start the section by recalling some maximum and comparison principles from
Proposition 2.1 in (Quaas 2004).

Proposition 1.2.5. Let ˝ � RN be a bounded domain, and let u; v 2 C 2.˝/ \

C.˝/. If M˙.D2u/ > M˙.D2v/ in ˝, and u 6 v on @˝, then u 6 v in ˝.

The next proposition is the Hopf lemma from (Bardi and Da Lio 1999), see
also (Sirakov 2017) for a more general context.

Proposition 1.2.6. Let ˝ � RN be a bounded C 1;1 domain. If u 2 C 2.˝/ \

C 1.˝/ is such thatM˙.D2u/ > 0, u > 0 in˝, with u D 0 on @˝, then @�u > 0

on @˝, where � is the inward unit normal derivative.

The following is a radial symmetry result of positive solutions for equations
driven by the Pucci’s operators from (Da Lio and Sirakov 2007).

Proposition 1.2.7. Let B be a ball in RN , and p > 1. Every positive solution of
�M˙.D2u/ D up in B , with u D 0 on @B , is radially symmetric and strictly
decreasing with the radius.

In the unbounded domain setting, additional conditions on decay are needed
to establish symmetry (Gidas, Ni, and Nirenberg 1981; Li 1991). On the other
hand, this result fails to be true in the presence of a positive weight a > 0. More
generally, in the Laplacian case symmetry breaking occurs when a ! C1, see
(Mercuri and Moreira dos Santos 2019).

We finish the section by recalling some important theorems in the theory of
fully nonlinear equations regarding existence of radial solutions, which were pre-
viously mentioned in the Introduction.

Theorem 1.2.8 (Cutrì and Leoni 2000). If u > 0 is a solution of M˙.D2u/ C

jxjaup 6 0 in RN with p 6 zN˙Ca

zN˙�2
then u � 0 in RN .

Even though this theorem can be stated in terms of viscosity solutions, we pre-
fer to skip it in the present text since we are concerned just with classical solutions.
Other extensions and related results can be found in (Armstrong and Sirakov 2011;
Armstrong, Sirakov, and Smart 2011).

Theorem 1.2.9 (Theorems 1.1 and 1.2 in (Felmer and Quaas 2003)). Consider the
problem M˙.D2u/ C up 6 0 in RN , zNC > 2, and � < �. Then there exist
critical exponents p�

C, p�
� satisfying the bounds
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max
n

zNC

zNC�2
; N C2

N �2

o
< p�

C <
zNCC2

zNC�2
and zN�C2

zN��2
< p�

� <
N C2
N �2

,

such that the following holds for ˝ D RN :

(i) if p 2 .1; p�
˙
/ there is no nontrivial radial solution;

(ii) if p D p�
˙
there exists a unique fast decaying radial solution;

(iii) Ifp > p�
˙
there exists a unique radial solution, which is either slow decaying

or pseudo-slow decaying.

In (i) and (ii) uniqueness is meant up to scaling.

In addition, in the case ofMC the authors showed that pseudo-slow decaying
solutions exist in the range

p 2

�
p�

C;
zNCC2

zNC�2

i
.

The respective question of pseudo-slow decaying solutions for the operator M�

was left open there. Here we will give a partial result for this question, see also
the improvements done more recently in (Pacella and Stolnicki 2021b).

1.2.4 Weighted notation
Let us fix some notations, depending on the number a > �1 which characterizes
the weight in (3.4.1):

p
p;a
˙

D
zN˙ C 2aC 2

zN˙ � 2
; p

s;a
˙

D
zN˙ C a

zN˙ � 2
; pa

� D
N C 2C 2a

N � 2
; ˛ D

2C a

p � 1
:

(1.2.6)

Now we recall the usual change of variables which transforms Hénon type
problems into non weighted ones when � D � in (Bidaut-Véron and Giacomini
2010; Clément, de Figueiredo, and Mitidieri 1996; Gladiali, Grossi, and Neves
2013).

Remark 1.2.10 (Change of variable for the Laplacian operator). Assume u solves
the following Hénon (weighted) equation

u00 C
N �1

r
u0 D �rajujp�1u:

Set A D
2

p�1
, and define
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U.s/ D �Au.r/, where r D s� , � D
ON �2

N �2
,

for ON D
2.N Ca/

2Ca
. That is, � D

ON
N Ca

D
2

2Ca
.

Since U 0.s/ D �AC1u0.r/s��1 and U 00.s/ D �AC2u00.r/s2��2 C �AC1.� �

1/s��2u0.r/, with dr
ds

D �s��1, we compute

U 00.s/C
ON �1
s
U 0.s/ D �AC2u00.r/s2��2

C �AC1.� � 1/s��2u0.r/C . ON � 1/�AC1s��2u0.r/

D �AC2s2��2
˚
u00.r/C

N �1
s� u0

	
D ��AC2s2��2rajujp�1u

D ��Ap
juj

p�1u D �jU j
p�1U

by using the definition of A, � D
2

2Ca
, and

� � 1C ON � 1 D
ON �2

N �2
C ON � 2 D

ON �2
N �2

.N � 1/ D �.N � 1/;

Hence, U becomes a solution of a (non weighted) Lane–Emden equation.

When � D �, the classification result in Theorem 1.2.9 can be immediately
extended for weighted equations using the above change of variable.

However, this change does not seem to work for Pucci’s operators in the gen-
eral case � ¤ �, because it depends on the dimension. Recall that radial Pucci
operators in the radial form change their expressions accordingly to the regions
where solutions change monotonicity and concavity, by assuming radial Laplacian
forms in dimensions N and zN˙ from (1.2.5), see Section 1.2.1.

One of main goals will be to obtain classification results when � < �. As we
already said we will improve Theorem 1.2.9 a bit in the sense of regular solutions.
But we go much further by exploiting also singular, annular, and exterior domain
solutions.



2 The dynamical
system

In this chapter we introduce the dynamical system associated to the problems

u00
D MC.�r

�1.N � 1/mC.u
0/ � raup/, u > 0I (PC)

u00
D M�.�r

�1.N � 1/m�.u
0/ � raup/, u > 0; (P�)

for m˙ andM˙ given by (1.2.3) and (1.2.4). We also investigate their first local
and global properties. Recall that the solutions of (PC) and (P�) correspond to
positive radial solutions of the PDE problem

�M˙.D2u/ D jxj
aup ; u > 0; (2.0.1)

with p > 1 and a > �1, in some radial domain ˝.

2.1 The new variables

In this section we define some new variables which allow to transform the radial
fully nonlinear equations into a quadratic dynamical system.
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Let u be a positive solution of (PC) or (P�). Thus we can define the new
functions

X.t/ D �
ru0.r/

u.r/
; Z.t/ D �

r1Ca up.r/

u0.r/
for t D ln.r/; (2.1.1)

whenever r > 0 is such that u.r/ ¤ 0 and u0.r/ ¤ 0.
We consider the phase plane .X;Z/ 2 R2. Since we are studying positive

solutions, the points .X.t/; Z.t// belong to the first quadrant when u0 < 0; or to
the third quadrant when u0 > 0. We denote the first and third quadrants by 1Q,
3Q respectively, i.e.

1Q D f.X;Z/ 2 R2
W X;Z > 0g; 3Q D f.X;Z/ 2 R2

W X;Z < 0g:

As a consequence of this monotonicity, the problems (PC) and (P�) become
in 1Q:

forMC : u00
D MC.��r

�1.N � 1/u0
� raup/, u > 0 in 1Q;

(2.1.2)

forM� : u00
D M�.��r

�1.N � 1/u0
� raup/, u > 0 in 1Q:

(2.1.3)

On the other hand, since u0 > 0 implies u00 < 0, one finds out in 3Q:

forMC : �u00
D ��r�1.N � 1/u0

� raup, u > 0 in 3Q; (2.1.4)

forM� : �u00
D ��r�1.N � 1/u0

� raup, u > 0 in 3Q: (2.1.5)

Observe that from u00 D MC.��.N � 1/u0

r
� raup/ in 1Q, and Pr D

dr
dt

D

et D r , we get

PX.t/ D �r
d
dt

�
u0

u

�
� Pr

u0

u
D �r2 u

00u � .u0/2

u2
� r

u0

u

D �
r2

u

�
�
u0

r

�
MC

�
�.N � 1/C r1Cau

p

u0

�
C

�
�r
u0

u

�2

� r
u0

u

D �XMC.�.N � 1/ �Z/CX2
CX;
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since u0 < 0 in 1Q and MC is 1-homogeneous. Analogously one computes PX

in 3Q and PZ. Thus, in terms of the functions (2.1.1), we derive the following
autonomous dynamical systems:

in 1Q,
�

PX D X ŒX C 1 �MC.�.N � 1/ �Z/ �;
PZ D Z Œ 1C a � pX CMC.�.N � 1/ �Z/ �I

(2.1.6)

in 3Q, PX D X ŒX � . zN� � 2/CZ=� �; PZ D Z Œ zN� C a � pX �Z=� �;

(2.1.7)

corresponding to (2.1.2), (2.1.4) for MC, where the dot Pstands for d
dt
. Similarly

one has

in 1Q,
�

PX D X ŒX C 1 �M�.�.N � 1/ �Z/ �;
PZ D Z Œ 1C a � pX CM�.�.N � 1/ �Z/ �I

(2.1.8)

in 3Q, PX D X ŒX � . zNC � 2/CZ=� �; PZ D Z Œ zNC C a � pX �Z=� �;

(2.1.9)

associated to (2.1.3), (2.1.5) forM�.
We stress that (2.1.6), (2.1.8) correspond to positive, decreasing solutions of

(PC), (P�). We will see in Chapter 3 that this holds for regular and singular solu-
tions of (2.0.1) in RN or in a ball.

On the other hand, given any trajectory � D .X;Z/ of (2.1.6)-(2.1.9) either
in 1Q or 3Q, we define

u.r/ D r�˛.X.t/Z.t//
1

p�1 ; where r D et : (2.1.10)

Then we deduce

u0.r/ D �˛r�˛�1.XZ/
1

p�1 C
r�˛

p � 1
.XZ/

1
p�1

�1
PXZ CX PZ

r

D �Xr�˛�1.XZ/
1

p�1 D �
Xu.r/

r
;

from which we recover (2.1.1). Since X 2 C 1, then u 2 C 2. From this, one
immediately sees that u satisfies either (PC) or (P�) from the respective equations
for PX; PZ in the dynamical system.
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An important role in the study of our problem is played by the lines `˙, defined
by

`C D f.X;Z/ W Z D �.N � 1/g \ 1Q for MC; (2.1.11)
`� D f.X;Z/ W Z D �.N � 1/g \ 1Q for M�:

For each of the two systems (2.1.6) and (2.1.8) respectively, the lines `˙ splits 1Q
into two regions, up and down:

RC

�
D f.X;Z/ W Z > �.N � 1/g \ 1Q; (2.1.12)

R�
� D f.X;Z/ W Z < �.N � 1/g \ 1Q;

for the operatorMC, and

RC
� D f.X;Z/ W Z > �.N � 1/g \ 1Q; (2.1.13)

R�
� D f.X;Z/ W Z < �.N � 1/g \ 1Q;

forM�.
In terms of .P˙/, `˙ is the line where a decreasing solution u changes concav-

ity in the sense that, when .X.t/; Z.t// 2 RC

�
(orRC

�) then the corresponding solu-
tion u through the transformation (2.1.10) is concave, while for .X.t/; Z.t// 2 R�

�
(or R�

�), u is convex. Hence, these regions are essential to determine the precise
expressions of (PC) and (P�) according to MC and M� in (1.2.3), (1.2.4). For
instance, in view of what was discussed in Section 1.2.1, problem (PC) in 1Q as-
sumes the form of either a standard radial Laplacian operator in dimensionN , or a
Laplacian in the possible noninteger dimension zNC, see (1.2.5). Analogously one
treats M�. Note that in 3Q we always obtain Laplacian operators in dimensions
zN� (for MC) and zNC (for M�), see (2.1.4), (2.1.5), and Section 1.2.1. As we
said, our system is then the union of equations involving Laplacian-like operators.

We stress that Lane–Emden–Hénon problems for Laplacian operators were
already studied in (Bidaut-Véron and Giacomini 2010) in terms of the dynamical
system (2.1.6) in the case � D � D 1 subject to the transformation (2.1.1).

At this stage it is worth observing that the systems (2.1.6) and (2.1.8) are con-
tinuous on `˙. More than that, the right hand sides are locally Lipschitz functions
of X;Z, so the usual ODE theory applies, as mentioned in Section 1.1. That is,
one recovers existence, uniqueness, and continuity with respect to initial data as
well as continuity with respect to the parameter p. Any trajectory � D .X;Z/ is
automatically differentiable in t in each quadrant.
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Remark 2.1.1 (The study of concavity). Let us see what happens with an arbitrary
trajectory � in the plane .X;Z/when it intercepts the concavity line `˙ in 1Q. We
consider the operatorMC and the respective line Z D �.N � 1/.

We start noticing that PX is a continuous function of t such that PX D X.X C

1/ > 0 on `C. Hence, if PX.t0/ > 0 then t 7! X.t/ is strictly increasing near
t0. By the inverse function theorem one may write t as a C 1 function of X in a
neighborhood of X.t0/. So Z.t/ D Z.X/ there, namely

Z.t/ D
e.2Ca/t up�1.t/

X.t/
D

e.2Ca/t.X/up�1.t.X//
X

D Z.X/.

Therefore, to analyze concavity properties of u one needs to look at dZ
dX

on `C.
Note that

dZ
dX

D
PZ
PX

D
�.N �1/ .1Ca�pX/

X .XC1/
on `C : (2.1.14)

This expression is positive for X < 1Ca
p

, and it is negative for X > 1Ca
p

.

A concavity change from RC

�
to R�

�
verifies X > 1Ca

p
. It must be transversal

if it occurs when X > 1Ca
p

. In this case Z is strictly decreasing with respect to
X ; and so the corresponding solution u00 changes sign from � to C.

Nowwe infer that a change of concavity does not happen atX D
1Ca

p
. Indeed,

if � D .X;Z/ changed concavity at t0 such that �.t0/ D .1Ca
p
; �.N � 1//, then

@XZ.
1Ca

p
/ D PZ.t0/ D 0. Since we are assuming � crosses `C transversely,

we have lim
X!

1Ca
p

� @XZ.t/ < 0, while lim
X!

1Ca
p

C @XZ.t/ D 0. But this

contradicts the fact that � is a differentiable trajectory.
In what concerns trajectories which start in RC

�
, the first (strict) change of

concavity must occur when X > 1Ca
p

. Indeed, Z decreases strictly at such point
with respect to X when moving from RC

�
to R�

�
in 1Q. If a second concavity

change occurs, then dZ
dX

> 0, which is only admissible when X < 1Ca
p

, see also
Proposition 2.2.2(1) ahead.

The same reasoning applies to the operatorM� with respect to the line `�.

2.2 Local analysis

In this section and onward in the text it will be convenient to write the dynamical
systems (2.1.6) and (2.1.8) in terms of the following ODE first order autonomous
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equation

Px D F.x/; where x D .X;Z/; F.x/ WD .f .x/; g.x//: (2.2.1)

with Px D . PX; PZ/. For instance, in the case of the operator MC, then f; g are
given by

f .x/ D

(
X.X � .N � 2/C

Z
�
/ in RC

�

X.X � . zNC � 2/C
Z
�
/ in R�

�

and

g.x/ D

(
Z.N C a � pX �

Z
�
/ in RC

�

Z. zNC C a � pX �
Z
�
/ in R�

�
:

2.2.1 Stationary lines and points

We start this section investigating the sets where PX D 0 and PZ D 0. Let us focus
our analysis on 1Q, since the only stationary point on the boundary of 3Q is the
origin.

We observe that both X and Z axes are invariant by the flow. In particular,
each quadrant is an invariant set for the dynamics. Moreover, let us keep in mind
the following segments in the plane .X;Z/. For the system (2.1.6), we define

`C
1 D f .X;Z/ W Z D �. zNC � 2/ ��X g \ 1Q (2.2.2)

which is the set where PX D 0 and X > 0; also

`C
2 D `C

2C [ `C
2� (2.2.3)

with `C
2C D f.X;Z/ W Z D �.N C a � pX/g \ RC

�
, `C

2� D f.X;Z/ W Z D

�. zNCCa�pX/g\R�
�
, which is the set where PZ D 0 andZ > 0; see Figures 2.1

to 2.3.
Notice that `C

1 is a segment entirely contained in R�
�
, since there are no other

points in 1Q where PX D 0 in the interior of the region RC

�
. Moreover, (2.2.3) is

the union of two segments which join at the point .1Ca
p
; �.N � 1// 2 `C \ `

C

2 ,
see Figure 2.1. The analogous sets forM� are

`�
1 D f .X;Z/ W Z D �. zN� � 2/ � �X g \ 1Q (2.2.4)
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which is the set where PX D 0 and X > 0 (contained in R�
�); and

`�
2 D `�

2C [ `�
2� (2.2.5)

with `�
2C D f.X;Z/ W Z D �.N� C a � pX/g \ RC

� , `�
2� D f.X;Z/ W Z D

�. zN� C a � pX/g \R�
�, which is the set where PZ D 0 and Z > 0.

Lemma 2.2.1. The stationary points of the dynamical systems (2.1.6)–(2.1.9) are:

for MC: O D .0; 0/, N0 D .0; �N C �a/, A0 D . zNC � 2; 0/,
M0 D .X0; Z0/,

where X0 D ˛, and Z0 D �. zNC � p˛ C a/ D �. zNC � 2 � ˛/, see Figure 2.1;

for M�: O D .0; 0/, N0 D .0;�N C�a/, A0 D . zN� � 2; 0/,
M0 D .X0; Z0/,

where X0 D ˛ and Z0 D �. zN� � p˛ C a/ D �. zN� � 2 � ˛/.

Proof. We just show the MC case. First notice that the system does not admit
stationary points in 3Q nor on the line `C. In the regionRC

� we have already seen
that PX D 0 implies X D 0, since `C

1 does not intersect RC

�
. By PZ D 0 we obtain

Z D �.N C a � pX/ since Z ¤ 0 in RC

�
. Hence we reach the equilibrium point

N0. In R
�

� , from PX D 0 we have either X D 0 or Z D �. zNC � 2 � X/, while
by PZ D 0 we deduce that either Z D 0 or Z D �. zNC C a� pX/. Therefore we
obtain the points O , A0, M0, and .0;�. zNC C a//. However, the latter does not
belong to R�

� as long as a > �1. �

Next we analyze the directions of the vector fieldF in (2.2.1) on theX;Z axes,
on the concavity line `˙, and also on `˙

1 , `˙
2 ; see (2.1.11), and (2.2.2)–(2.2.5).

Proposition 2.2.2. The systems (2.1.6) and (2.1.8) enjoy the following properties
(see Figures 2.1 to 2.3):

(1) Every trajectory of (2.1.6) in 1Q crosses the line `C transversely except at
the point

P D .1Ca
p
; �.N � 1//.
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Moreover, it passes from RC

�
to R�

�
if X > 1Ca

p
, while it moves from R�

�
to

RC

�
if X < 1Ca

p
. The vector field at P always points to the right. A similar

statement holds for M� via the system (2.1.8) considering respectively `�,
.1Ca

p
; �.N � 1//, RC

� , R�
�;

(2) The flow induced by (2.2.1) on theX axis points to the left forX 2 .0; zN˙�2/,
and to the right when X > zN˙ � 2. On the Z axis it moves up between O
and N0, and down above N0;

(3) The vector field F on the line `˙
1 is parallel to the Z axis whenever X ¤ ˛.

It points up if X < ˛, and down if X > ˛. Further, on the set `˙
2 the vector

field F is parallel to the Z axis for X ¤ ˛. It moves to the right if X < ˛,
and to the left if X > ˛.

Proof. (1) We just observe that PX D X.X C 1/ > 0, and PZ D Z .1C a � pX/

on `˙.
(2) For instance consider MC. Since the X axis is contained in R�

�
, then

PX D X.X � . zNC � 2// which is positive for X < zNC � 2 and negative for
X > zNC � 2: Now, PZ D Z.N C a � Z=�/ in RC

�
is positive if Z < �.N C a/

and negative forZ > �.N Ca/. On the other hand, PZ D Z. zNC Ca�Z=�/ > 0

in R�
�
, since �. zNC C a/ > �.N � 1/ for a > �1.

(3) Notice that PZ D .p � 1/Z.˛ �X/ on `˙
1 and PX D .p � 1/X.˛ �X/ on

`˙
2 . Both are positive quantities for X < ˛, and negative when X > ˛. �

Remark 2.2.3. An orbit can only reach the point P in Proposition 2.2.2 (1) from
R�

�
, see Remark 2.1.1. See also the vector field at P in Figures 2.1 to 2.3.

The next proposition gathers the crucial dynamics at each stationary point.

Proposition 2.2.4 (M˙). The following properties are verified for the systems
(2.1.6) and (2.1.8),

1. The origin O is a saddle point. The stable and unstable directions of the
linearized system are the X and Z axes respectively;

2. N0 is a saddle point. The tangent unstable direction is parallel to the line

Z D
�p�.N Ca/
N C2C2a

X if the operator is MC,

Z D
�p�.N Ca/
N C2C2a

X for M�;
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3. A0 is a saddle point for p > ps;a
˙

. The linear stable direction is parallel to
the line

Z D
�p. zNC�2/C2Ca

zNC�2
�X in the case ofMC,

Z D
�p. zN��2/C2Ca

zN��2
�X for M�,

while the unstable tangent direction lies on the X axis. For p < ps;a
˙
A0 is

a source;
At p D p

s;a
˙
A0 coincides withM0 and belongs to the X axis. In this case,

it is not a hyperbolic stationary point.

4. For p < ps;a
˙
M0 belongs to the fourth quadrant. Also,M0 2 1Q , p >

p
s;a
˙

in which case:

(i) M0 is a source if ps;a
˙

< p < p
p;a
˙

;

(ii) M0 is a sink for p > pp;a
˙

;

(iii) M0 is a center at p D p
p;a
˙

.

Proof. The dynamics at each stationary point depends upon the linearization of the
system (2.1.6). Since the point N0 belongs to RC

�
where the system corresponds

to the Hénon equation for the standard Laplacian, we could just refer to (Bidaut-
Véron and Giacomini 2010) for the local analysis ofN0, as long as p > pp;a

˙
. The

other points O;N0; A0 instead belong to R�
�
where the system now corresponds

to the Hénon equation for the Laplacian in dimension zN˙. In this last case some
variations with respect to (Bidaut-Véron and Giacomini 2010) are needed.

The linearization forMC, zN D zNC, is given by

L.X;Z/ D

�
2X � .N � 2/C

Z
�

X
�

�pZ N C a � pX �
2Z
�

�
in RC

�
,

L.X;Z/ D

�
2X � . zN � 2/C

Z
�

X
�

�pZ zN C a � pX �
2Z
�

�
in R�

� .

For instance, at N0 D .0; �.N C a// and A0 D . zN � 2; 0/ one has
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Figure 2.1: The flow behavior in 1Q forMC when p > ps;a
C .

L.N0/ D

�
2C a 0

�p�.N C a/ �N � a

�
;

L.A0/ D

 
zN � 2

zN �2
�

0 zN C a � p. zN � 2/

!
:

The eigenvalues for N0 are 2 and �N � a, while for A0 are �1 D zN˙ � 2 and
�2 D zN˙ C a � p. zN � 2/. Recall thatM0 D .X0; Z0/, where X0 D ˛ D

aC2
p�1

and Z0 D �. zN � p˛ C a/ D �. zN � 2 � ˛/,

L.M0/ D

�
˛ ˛

�

�p�. zN � p˛ C a/ �. zN � p˛ C a/

�
:

In order to analyze the eigenvalues of L.M0/ one needs to look at the roots of
the equation

�2 C �
�

Z0

�
�X0

�
CX0.p � 1/Z0

�
D 0:



2.2. Local analysis 27

Figure 2.2: The flow behavior in 1Q forMC at p D p
s;a
C .

They are given by 2�˙ D X0 �
Z0

�
˙

p
�, where � D

�
Z0

�
�X0

�2
� 4.2 C

a/Z0

�
.

Note that X0 D
Z0

�
is equivalent to ˛ D

zN �2
2

, i.e. p D p
p;a
C . In this case

Re.�˙/ D 0 and the roots are purely imaginary. Moreover, X0 >
Z0

�
, p <

p
p;a
C , and X0 <

Z0

�
, p > p

p;a
C .

If Im.�˙/ ¤ 0, this already determines the sign of Re.�˙/. Assume then
Im.�˙/ D 0 i.e. �˙ 2 R. Observe that� < .X0 �

Z0

�
/2 as far asM0 stays in 1Q.

This yields �� > 0 for ps;a
C < p < p

p;a
C (so �˙ > 0 andM0 is a source); while

�C < 0 if p > pp;a
C (so �˙ < 0 andM0 is a sink).

It is possible to prove that M0 is a saddle point in the fourth quadrant when
1 < p < p

s;a
C . However, this would correspond to solutions of the absorption

problemMCu� up D 0. See (Bidaut-Véron and Giacomini 2010) in the case of
the Laplacian operator. �

On the other hand, in both cases, some deeper analysis is required when p 6
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Figure 2.3: The flow behavior in 1Q forMC for 1 < p < ps;a
C .

p
p;a
˙

. We will treat this case in Proposition 4.1.9 by using the dynamics of the
system. The proof p D p

p;a
˙

will be presented in Section 2.2.3 ahead, which we
restate in Proposition 2.2.7 there.

2.2.2 Local uniqueness
A local uniqueness result follows directly from Propositions 1.1.2 and 2.2.4.

Proposition 2.2.5. For every p > 1 there is a unique trajectory coming out from
N0 at �1, which we denote by �p. Further, for p > p

s;a
˙

there exists a unique
trajectory arriving atA0 atC1 that we denote by�p. In terms of Definition 1.1.3,

for all p > 1, �p is such that ˛.�p/ D N0; (2.2.6)

for all p > ps;a
˙

, �p is such that !.�p/ D A0. (2.2.7)

Remark 2.2.6. Notice that these trajectories uniquely determine the global un-
stable and stable manifolds of the stationary points N0 and A0 respectively. In
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particular, by Proposition 1.1.2 they are graphs of functions in a neighborhood
of the stationary points in their respective ranges of p. The tangent directions at
N0; A0 are displayed together in Figure 2.1 for p > ps;a

˙
. In fact, they both belong

to the region where PX > 0 and PZ < 0 in their respective ranges of p.

Alternatively, we can obtain the uniqueness of the tangent lines for regular and
fast decaying trajectories by using directly the properties of the flow. Take in what
follows the operatorMC.

We first consider a trajectory � D .X;Z/ leaving N0. We know that PX > 0

in RC

�
. So, by the inverse function theorem, t D t.X/ is a C 1 function in a

neighborhood of X D 0, and so is Z. The limit L D Lp coincides with the limit
of secant lines passing through the point N0, i.e.

L WD @XZ .0/ D limX!0
Z.X/�Z.0/

X�0
D limX!0

Z��.N Ca/
X

.

In order to calculate this limit, we compute it in RC

�
,

L D limX!0
PZ
PX

D lim
X!0

Z

X �N C 2C
Z
�

lim
X!0

N C a � pX �
Z
�

X

D
�.N C a/

2C a
.�p �

L

�
/;

and so L D �
p�.N Ca/
N C2C2a

:

Analogously, for a trajectory arriving at A0 one takes into account

� D lim
X! zNC�2

@XZ.X/ D lim
X! zNC�2

Z

X�. zNC�2/
.

Observe that Z is a strictly decreasing function of X from this moment on. Near
the point A0 in the region R�

�
we pass to limits under X ! zNC � 2 to obtain

� D lim PZ
PX

D lim
zNC C a � pX �

Z
�

X
lim

Z

X � . zNC � 2/C
Z
�

D
zNC C a � p. zNC � 2/

zN � 2
lim

1

X�. zNC�2/
Z

C
1
�

:

From this one derives that � D 0 if and only ifp D p
s;a
C . Thus � D

�p. zNC�2/C2Ca

zNC�2
�

if p ¤ p
s;a
C .

These illustrate the conclusions of Proposition 1.1.2 in terms of @XZ.X/.
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2.2.3 Center configuration

In this section we show thatM0 is a center at p D p
p;a
˙

. This peculiar configura-
tion propagates to the whole region below the concavity line `˙.

Let us consider the energy functional E of the operatorMC in the region R�
�
,

which is a slight variation of the energy of the Laplacian operator in dimension
zNC treated in (Bidaut-Véron and Giacomini 2010),

E.t; X;Z/ D et. zNC�2�2˛/X.XZ/˛
n

X
2

C
Z

�.pC1/
�

zNC

pC1

o
in R�

�
[ `C

understood as natural extension up to `C. We stress that this is the only place
where energy considerations will be used in the text. In terms of u, the energy
functional E forMC reads as

E.r/ D E.r; u/ D r
zNC

�
.u0/2

2
C

1
�

raupC1

pC1

�
C

zNC

pC1
uu0r

zNC�1 if u00 > 0:

Of course these two expressions are equivalent after the transformation (2.1.1).
Moreover,

E 0.r/ D r
zNCCa�1.u0/2

�
zNCCa
pC1

�
zNC�2

2

�
if u00 > 0;

and so the following monotonicity holds in R�
�

[ `C:

PE < 0 if p > pp;a
C ; PE D 0 if p D p

p;a
C ; PE > 0 if p < pp;a

C : (2.2.8)

Now we investigate the precise behavior of the trajectories close to M0 at
p D p

p
˙
. Here, � 6 � and the result gives an alternative proof in the case of the

Laplacian operator � D � D 1 in (Bidaut-Véron 1989).

Proposition 2.2.7. M0 is a center when p D p
p;a
˙

.

Proof. We present the proof forMC; forM� it is the same in light of Section 4.2.
Let � D .X;Z/ be an orbit contained in R�

�
[ `C. Let us show that � is periodic.

To simplify notation let a D 0, zN D zNC. The energy of � on the line `C
2 is given

by

Ej
`

C
2

\R�
�

D E�
j
`

C
2

.X/ D �
�˛

zN
X˛C2 . zN � pX/˛ at p D p

p
C D p

p;0
C :
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Since the energy is a constant function of t when p D p
p
C with ˛C2

˛
D p, then

. zN � pX/Xp
� c > 0 on `C

2 : (2.2.9)

Now we may translate the information from (2.2.9) in terms of the function h
defined as

h.X/ D . zN � pX/Xp, for X 2 Œ 1=p; zN=p �, where p D p
p
C,

for which (2.2.9) represents its level curves. The domain Œ 1=p; zN=p � entails the
behavior of h in the respective interval delimited by `C

2 onR�
�
, up to the boundary.

Let us analyze the function h; it is positive at 1=p, and equals to zero at zN=p.
Since

h0.X/ D pXp.
zN
X

� 1 � p/, with zN
1Cp

D
zN �2

2
D ˛, p D p

p
C,

then h is increasing when X < ˛, decreasing for X > ˛, and it assumes the
positive maximum value h.˛/ D ˛pC1 WD c1 at X D ˛. Moreover, note that
h.1=p/ D . zN � 1/.1=p/pC WD c1.

Here h is a polynomial function which prescribes the value of the energy on
`C

2 \ R�
�
, namely h D �E1=˛ � c. For any k 2 N with ck 2 Œ c1; c1 /, the

line h � ck intersects the graph of h at exactly two points Xk
1 ; X

k
2 such that

Xk
1 < ˛ < X

k
2 . Also, they satisfy

ck D h.Xk
1 / D h.Xk

2 / ! h.˛/ D c1 (2.2.10)

when Xk
i ! ˛ as k ! C1, i D 1; 2. Furthermore, the line h D c1 intersects

the graph of h only once at the point X D ˛.
In our phase plane context, this means that any trajectory � contained inR�

�
[

`C bisects the line `C
2 at exactly two points P1 D .X1; Z1/, P2 D .X2; Z2/, with

X1 < ˛, X2 > ˛. By Proposition 2.2.2 (3) the flow moves horizontally on `C
2 ,

namely to the right for X < ˛, and to the let when X > ˛.
Observe that `C

2 is a transversal section to the flow, on which any trajectory
approaching M0 must pass across, either in the past or in the future. Hence, the
trajectory � has to be closed, by moving clockwise. Since this dynamics is realized
for any trajectory contained on R�

�
[ `C, and (2.2.10) holds, in particular any

trajectory close toM0 is periodic, soM0 is a center. �
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2.3 Periodic orbits

Recall the Poincaré–Bendixson theorem (Hale and Koçak 1991) for planar au-
tonomous systems which says that the only admissible ! and ˛ limits of bounded
trajectories are either a stationary point or a periodic orbit. We have already been
acquainted to the stationary points, so we are left to study the periodic orbits as
limit sets for our trajectories.

More precisely, in this section we investigate in which intervals of p the dy-
namical systems (2.1.6) and (2.1.8) allow the existence of periodic orbits.

When � D �, the exponents defined in (1.2.6) are such that

pa
� D

N C2C2a
N �2

D p
p;a
˙

, p
s;a
˙

D
N Ca
N �2

,

while when � ¤ � we have the following ordering

pp;a
� < pa

� < p
p;a
C .

Theorem 2.3.1 (Dulac’s criterion).

� If � D �, the system (2.1.6) does not admit periodic orbits for p ¤ pa
�.

� Let � < �. For MC there are no periodic orbits of (2.1.6) when 1 < p 6
pa

� or p > p
p;a
C . For M� no periodic orbits of (2.1.8) exist if 1 < p <

pp;a
� or p > pa

�. Moreover,

(i) there are no periodic orbits strictly contained inRC

�
[`C .resp. .RC

� [

`�/, for any p > 1;
(ii) periodic orbits contained in R�

�
[ `C .resp. R�

� [ `�/ are admissible
only at p D p

p;a
˙

. Also, no periodic orbits at pp;a
˙

can cross the
concavity line `˙ twice.

As in (Bidaut-Véron and Giacomini 2010), Theorem 2.3.1 immediately im-
plies the whole classification when � D �, as we illustrate in Proposition 3.4.3 in
the next chapter.

Proof. Define '.X;Z/ D X˛Zˇ , where ˇ D
3�p
p�1

and ˛ as in (1.2.6). Set

˚.X;Z/ D @X .'f /C @Z.'g/,
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with f and g defined in (2.2.1).
When � D �, as in (Bidaut-Véron and Giacomini 2010) we have

˚.X;Z/ D @X .'f /C @Z.'g/

D X˛Zˇ Œ ˛.X �N C 2C
Z
�
/C ˇ.N C a � pX �

Z
�
/C .2 � p/X C 2 �

Z
�
�

D '.X;Z/.p � 1/�1 Œ�p.N � 2/C .N C 2C 2a/ �;

this expression is positive if 1 < p < pa
� and is negative if p > pa

�.
If � < �, for the operatorMC D MC

�;�
we have

˚.X;Z/ D

8̂̂̂<̂
ˆ̂:
X˛Zˇ Œ ˛.X � .N � 2/C

Z
�
/C ˇ.N C a � pX �

Z
�
/

C.2 � p/X C 2 �
Z
�
� in RC

�
,

X˛Zˇ Œ ˛.X � . zNC � 2/C
Z
�
/C ˇ. zNC C a � pX �

Z
�
/

C.2 � p/X C 2 �
Z
�
� in R�

�
,

D

(
'.X;Z/.p � 1/�1 Œ�p.N � 2/C .N C 2C 2a/ � in RC

�
,

'.X;Z/.p � 1/�1 Œ�p. zNC � 2/C . zNC C 2C 2a/ � in R�
�
.

Both expressions are positive if 1 < p < min.pp;a
C ; pa

�/ D pa
�; and both are

negative if p > max.pp;a
C ; pa

�/ D p
p;a
C .

Anyway one concludes by the same argument as in the classical Bendixson–
Dulac criterion, see also (González-Melendez and Quaas 2017, Theorem 3.1). In-
deed, the vector field F D .f; g/ is Lipschitz continuous in .X;Z/, so Green’s
area formula for the domain D enclosed by a periodic trajectory applies. For
� D �, Z

@D

' ff dZ � g dXg D

Z
D

˚.X;Z/ dXdZ:

The RHS is nonzero whenever p ¤ pa
�, but the LHS is zero because

dX D f dt; dZ D g dt: (2.3.1)

Now, for � < �,Z
@D

' ff dZ � g dXg D

Z
D

˚.X;Z/ dXdZ

D

Z
R

C

�
\D

˚.X;Z/ dXdZ C

Z
R�

�
\D

˚.X;Z/ dXdZ:

(2.3.2)
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The RHS is nonzero for p 2 .1; pa
�/ [ .p

p;a
C ;1/, but the LHS is zero by (2.3.1).

Further, at pa
� one has ˚ D 0 in RC

�
and so the first integral in (2.3.2) (in the

RHS) vanishes, while the second one is positive. For M� the computations are
similar by using that min.pp;a

� ; pa
�/ D pp;a

� and max.pp;a
� ; pa

�/ D pa
�.

Next we look at the interval Œpa
�; p

p;a
C � for MC when � < �. Note that

Poincaré–Bendixson theorem guarantees the existence of a stationary point in the
domainD inside a periodic orbit. Since the only admissible stationary point in the
interior of 1Q isM0 2 R�

�
for p > ps;a

C , while for p 6 p
s;a
C M0 is not an option

(see Figures 2.2 and 2.3), then .i/ follows.
To prove .i i/ let us observe that if a periodic orbit is contained in R�

�
[ `C

then by Proposition 2.2.2 (1) it may intersect the line `C only at one point, namely
the point P . Hence we can repeat the previous argument, neglecting the integral
expression in RC

�
. Then we get that there are no periodic orbits in R�

�
[ `C for

every p ¤ p
p;a
C . To finish, if a periodic orbit existed which crossed twice the line

`C at pp;a
C , then the first integral of (2.3.2) (in the RHS) would be positive, while

the second one is equal to zero because ˚ D 0 in R�
�
. The case forM� and pp;a

�

is analogous. �

Notably Dulac’s criterion brings out the critical exponents pa
� and pp;a

˙
. They

correspond to critical exponents for the two Laplacian operators�N and� zN˙
, in

dimensions N and zN˙.
Other limit cycles � are admissible by the dynamical system as far as they

cross `˙ twice. They do appear for M˙ as we shall see in Sections 4.1 and 4.2.
This happens because Dulac’s criterion is inconclusive in a whole interval when
� < �. Formally, the Pucci problem opens space for new periodic orbits in order
to appropriately glue both Laplacian operators.

Remark 2.3.2. The result of Theorem 2.3.1 has been recently improved in (Pacella
and Stolnicki 2021b) giving new bounds for the range of p for which periodic
orbits exist. The proof in (Pacella and Stolnicki 2021b) is technically complicated,
therefore we prefer to state and prove only Theorem 2.3.1. The same applies to
the case of the operatorM�

�;�
.

2.4 A priori bounds and blow-up

We prove ahead important bounds for trajectories of (2.1.6) or (2.1.8) which are
defined for all t in intervals of type .Ot ;C1/ or .�1; Ot /.



2.4. A priori bounds and blow-up 35

By Poincaré–Bendixson theorem, if a trajectory of (2.1.6) or (2.1.8) does not
converge to a stationary point neither to a periodic orbit, either forward or back-
ward in time, then it necessarily blows up in that direction. In the next propositions
we prove that a blow up may only occur in finite time. The first result is obtained
in the first quadrant.

Proposition 2.4.1. Let � be a trajectory of (2.1.6) or (2.1.8) in 1Q, with �.t/ D

.X.t/; Z.t// defined for all t 2 .Ot ;C1/, for some Ot 2 R. Then

X.t/ < zN˙ � 2, for all t > Ot . (2.4.1)

If instead, � is defined for all t 2 .�1; Ot /, for some Ot 2 R, then

Z.t/ < �.N C a/ in the case ofMC,
Z.t/ < �.N C a/ for M�, for all t 6 Ot . (2.4.2)

In particular, if a global trajectory is defined for all t 2 R in 1Q then it is contained
in the box .0; zNC � 2/ � .0; �.N C a// in the case of MC, while it stays in
.0; zN� � 2/ � .0;�.N C a// for M�.

Proof. Let us first prove (2.4.1) when the operator isMC, zNC 6 N . Arguing by
contradiction we assume that for some t1 > Ot we have X.t1/ > zNC � 2. Notice
that PX > 0 on the half line LC D f.X;Z/ W X D zNC � 2g \ 1Q, see (2.2.2).
Therefore X.t/ > X.t1/ > zNC � 2 for all t > t1.

We claim that X.t/ ! C1 as t ! C1. To see this, first notice that Z
is bounded from t1 on, since PZ < 0 to the right of LC, see (2.2.3). If we had
X.t/ 6 C for some C > 0 for t > t1, then � would be a bounded trajectory from
t1 on. Then by Poincaré–Bendixson theorem it should converge to a stationary
point as t ! C1. Notice that periodic orbits are not allowed to the right of LC

by the direction of the vector field, see Figure 2.1. This proves the claim, since no
stationary points exist on the right of LC.

Thus, we can pick a time t2 such that X.t2/ > N � 2 > zNC � 2. Again by
monotonicity, X.t/ > zNC � 2 for all t > t2.

Then we have two cases: either the trajectory � reaches the region R�
�
for

some t3 > t2, or it stays in RC

�
for all time. If the first holds, then �.t/ remains

there for all t > t3, since PZ < 0 to the right of LC, see Figure 2.1. Observe that
the first equation in (2.1.6) yields PX

XŒX�. zNC�2/�
> 1. Hence,

d
dt
ln
�

X.t/� zNCC2

X.t/

�
D

PX

X�. zNC�2/
�

PX
X

D
. zNC�2/ PX

XŒX�. zNC�2/�
> zNC � 2 (2.4.3)
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for all t > t3. Therefore, by integrating (2.4.3) in the interval Œt3; t � we get

X�. zNC�2/
X

X.t3/

X.t3/�. zNC�2/
> e. zNC�2/.t�t3/

and so

X.t/ >
zNC � 2

1 � ce. zNC�2/.t�t3/
where c D 1 �

zNC�2

X.t3/
2 .0; 1/: (2.4.4)

In particular, X blows up in the finite time t1 D t3 C
ln.1=c/
zNC�2

.

If instead � stays in RC

�
from t2 on, then the same computations developed

with N in place of zNC imply, using the first equation in (2.1.6), that X blows up
in finite time. Both ways one gets a contradiction.

Let us now prove (2.4.2) for MC. Notice that PZ < 0 in the region above
the line Z D �.N C a/ which is contained in RC

�
, see Figure 2.1. Now, if Z D

�.N C a/ occurs at some point for the orbit � , then in particular there is some t0
such that Z > �.N C a/ for all t 6 t0, thus PZ 6 Z.N C a�Z=�/. In particular
� remains in the region RC

�
up to the time t0. Moreover,

�.N Ca/ PZ
�.N Ca/�Z

D
PZ

Z
�

PZ
Z��.N Ca/

D
d
dt
ln
�

Z.t/
Z.t/��.N Ca/

�
for all t 6 t0. Integration in Œt; t0� as before gives us that the trajectory blows up
in finite time.

The proof of (2.4.1) and (2.4.2) for the operatorM� is analogous if one uses
zN� > N . �

Now, a similar argument as in Proposition 2.4.1 allows us to characterize all
the orbits in 3Q.

Proposition 2.4.2 (The flow in 3Q). Every orbit of (2.1.7) or (2.1.9) in 3Q blows
up in finite time, backward and forward. The vector field in there always point to
the right and down, with PX > 0 and PZ < 0.

Proof. Recall that in 3Q we have X;Z < 0. Let us consider MC. Hence, by
the first equation in (2.1.7) one gets PX > X.X � . zN� � 2//, which is positive.
Similarly, by the second equation in (2.1.9) one figures out that PZ 6 Z. zN� Ca�

Z=�/, which is now negative. Then integration as in (2.4.3), (2.4.4) gives us the
result. ForM� it is analogous. �
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Now we are able to characterize all the admissible types of blow-up for trajec-
tories of (2.1.6) or (2.1.8) in the first quadrant.

Proposition 2.4.3 (Blow-up types in 1Q). Let u be a positive solution of (PC) or
(P�) in an interval .R1; R2/, 0 < R1 < R2, and � D .X;Z/ be a corresponding
trajectory of (2.1.6) or (2.1.8) lying in 1Q through the transformation (2.1.1).
Then the following holds:

(i) there exists r1 2 .R1; R2/ such that u0.r1/ D 0 , there exists t1 2 R such
that Z.t/ ! C1 as t ! tC1 . In addition, X.t/ ! 0 as t ! tC1 ;

(ii) there exists r2 2 .R1; R2/ such that u.r2/ D 0 , there exists t2 2 R such
that X.t/ ! C1 as t ! t�2 . Further, Z.t/ ! 0 as t ! t�2 .

Moreover, no other blow-up types other than those of .i/ and .i i/ are admissible
for � in 1Q.

Proof. Let us first observe that u and u0 can never be zero at the same point r1.
Otherwise, by the uniqueness of the initial value problem we would have u � 0

in a neighborhood of r1, which is not possible by the strong maximum principle.
.i/ Assume that there exists r1 > 0 such that u0.r1/ D 0. Thus u.r1/ > 0

and by (2.1.1) it is easy to deduce the limits of X.t/ and Z.t/ as t ! tC1 , for
t1 D ln.r1/. Vice versa if Z.t/ ! C1 as t ! tC1 , by (2.1.1) we immediately
get u0.r/ ! 0 as r ! r1 D et1 , because u is continuous in .R1; R2/. This in turn
gives that X.t/ ! 0 as t ! tC1 , and no other asymptote parallel to the Z axis is
admissible.

.i i/ Suppose that u.r2/ D 0 for some r2 > R1. Then u0.r2/ < 0 and by
(2.1.1) we easily obtain the behavior of X and Z as t ! t�2 , where t2 D ln.r2/.
Vice versa ifX.t/ ! C1 as t ! t�2 then necessarily u.r/ ! 0 as r ! r2 D et2 ,
because u0 is continuous in .R1; R2/. Thus Z.t/ ! 0 as t ! t�2 as before.

The arguments above also show that, in finite time, no other blow-up types
are possible for � in 1Q. Indeed, as soon as X or Z tends to infinity, then u or u0

vanishes at a positive radius. Recall that a blow up in infinite time is not admissible
by Proposition 2.4.1. �

Corollary 2.4.4. Let u be a solution of (PC) or (P�), and � be a corresponding
trajectory of (2.1.6) or (2.1.8) starting above the line `˙ in 1Q. Then u changes
concavity at least once.

Proof. Consider the MC operator, for M� is the same. If u never changed con-
cavity, then � D .X;Z/ would remain inside the region RC

�
for all time. By
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Lemma 2.2.1 and Theorem 2.3.1 there are no stationary points or periodic orbits
in RC

�
. Recall that PX > 0, PZ < 0 in RC

�
, see Figure 2.1. Then � must blow up at

a finite forward time Ot such that X.t/ ! C1 andZ.t/ ! Z1 as t ! Ot , for some
Z1 > �.N �1/ > 0. But this blow-up is not admissible by Proposition 2.4.3. �

Remark 2.4.5 (Blow-up in 3Q). Every orbit � D .X;Z/ of (2.1.7) or (2.1.9) in
3Q verifies

X.t/ ! 0, Z.t/ ! �1 as t ! t�1

for some t1 2 R such that r1 D et1 and u0.r1/ D 0. Moreover,

X.t/ ! �1, Z.t/ ! 0 as t ! tC3

for some t3 2 R where r3 D et3 and u.r3/ D 0.
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In this chapter we classify the solutions of the second order equations (PC) and
(P�) and we show that this induces a classification of the orbits of the dynamical
systems (2.1.6)-(2.1.9). We investigate four kinds of solutions of (PC) and (P�):
regular solutions, singular solutions, and solutions in annuli and exterior domains.

In the end of the chapter we state the main theorems conceived by the dynam-
ical system analysis.

3.1 Regular solutions

Let us consider the following initial value problem:(
u00 D M˙

�
�r�1.N � 1/m˙.u

0/ � rajujp�1u
�
;

u.0/ D 
; u0.0/ D 0; 
 > 0;
(3.1.1)

whereM˙ and m˙ are defined in (1.2.3), (1.2.4).

Definition 3.1.1. By regular solutionwemean a solution u D up of (3.1.1) which
is twice differentiable for r > 0, and C 1 up to 0.
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Remark 3.1.2. Any regular radial solution of the differential equation in (PC) or
(P�) must satisfy u0.0/ D 0. Indeed, from the definition of radial function u.x/ is
symmetric with respect to any axis passing through the origin so that ru.0/ D 0.

We denote byRp, withRp 6 C1, the radius of the maximal interval Œ0; Rp/

where u is positive.
Hence, in such interval u is a solution of .P˙/. Obviously, if Rp D C1 then

u corresponds to a radial positive solution of (2.0.1) in RN . When Rp < C1

it gives a positive solution of the Dirichlet problem (2.0.1) in the ball BRp
, with

u D 0 on @BRp
.

Remark 3.1.3. Given a regular positive solution u D up in Œ0; Rp/ satisfying
(3.1.1) for some 
 > 0, then the rescaled function v.r/ D �u.�

1
˛ r/, for ˛ as in

(1.2.6) and � > 0, is still a positive solution of the same equation in Œ0; �� 1
˛Rp/

with initial value v.0/ D �
 , see also (Felmer and Quaas 2003, Lemma 2.3).
If u is defined in the whole interval Œ0;C1/, thus there is a family of regular

solutions obtained via v D v� , for all � > 0. In this case we say that u is unique
up to scaling.

On the other hand, a solution in the ball of radius Rp automatically produces
a solution for an arbitrary ball, by properly choosing the parameter � > 0.

Remark 3.1.4. Note that, by rescaling a fast decaying solution, we get infinitely
many fast decaying solutions which give a different value for the constant c in
Definition 1.2.3(i), see (3.1.7) ahead. The same happens for the . zN � 2/–blowing
up solution in Definition 1.2.4(i). Instead it is easy to see that for the slow decay-
ing solutions or ˛–blowing up solutions in Definitions 1.2.3(ii) and 1.2.4(ii), the
constant c is independent of the rescaling, see (3.1.8) again.

Now, using the transformation (2.1.1) our goal is to characterize the regular
solutions of (PC) or (P�) as trajectories of the dynamical systems (2.1.6) and
(2.1.8) in the first quadrant.

Proposition 3.1.5. Let u D up be any positive regular solution of (PC) .resp.
(P�)/. Then the corresponding trajectory belongs to 1Q and is the unique trajec-
tory of (2.1.6) .resp. (2.1.8)/ whose ˛-limit is N0.

Proof. The proof is the same for both operatorsM˙. The solution u D up satis-
fies limr!0 u.t/ D u.0/ D 
 and limr!0 u

0.t/ D u0.0/ D 0, for some 
 > 0. In
terms of the trajectory .X;Z/, by the definition of X in (2.1.1) we easily find

limt!�1X.t/ D 0: (3.1.2)



3.1. Regular solutions 41

Moreover, in the simpler case when a D 0 we have

lim
t!�1

Z.t/ D lim
r!0

�rup.r/

u0.r/
D �
p lim

r!0

r

u0.r/ � u0.0/
D �


p

u00.0/
2 .0;C1/;

since it is easier to check from the equation that u00.0/ < 0. When a ¤ 0 we need
some other argument to show that Z.t/ has a finite limit as t ! �1. First let us
show that

there exists R1 > 0 such that u0
¤ 0 for all r 2 .0; R1/: (3.1.3)

If this was not true, then there would exist a sequence of positive radii rn ! 0

such that u0.rn/ D 0. By the mean value theorem this yields the existence a se-
quence sn 2 .rn; rnC1/ such that u00.sn/ D 0. Thus, since u0 cannot be identically
zero in a neighborhood of 0 by the equation (PC), then u changes infinitely many
times its concavity in a neighborhood of 0.

In terms of the dynamical system, say (2.1.6) for MC, this means that the
respective trajectory intersects the line `C (see (2.1.11)) more than once as t !

�1. In particular it should pass from RC

�
to R�

�
infinitely many times, which,

by Proposition 2.2.2 (1), may only occur at X.sn/ > 1Ca
p

for a > �1. This
contradicts the fact that X.sn/ ! 0 for large n from (3.1.2).

By (3.1.3) we have that Z.t/ is well defined in some interval .�1; Ot/ so
that (2.4.2) in Proposition 2.4.1 yields Z.t/ < �.N C a/ for all t < Ot . Hence
limt!�1Z.t/ < C1. Note that the trajectory cannot belong to 3Q when blow-
up in finite time occurs both backward and forward, by Proposition 2.4.2. More-
over, it cannot converge to O by Propositions 2.2.2 (2) and 2.2.4(1). Indeed, the
unstable manifold atO is on theZ axis which cannot correspond to the solution u
in any interval .0; r/. Hence it converges toN0, independently of the initial datum

 > 0. �

Remark 3.1.6. Thus, by Propositions 3.1.5 and 2.2.5 one concludes that a regular
solution up, corresponds to the unique trajectory �p labeled in (2.2.6), for all
p > 1. Here, �p is defined in a maximal interval Œ0; Tp/, Tp D lnRp 6 C1.

Note that the fact that �p does not depend on the initial datum of up is not a
surprise since we already observed that the change of initial datum is equivalent
to rescaling the radius. This, in turn, is equivalent to shifting the time for the
systems (2.1.6), (2.1.8), which does not produce any change in the trajectory since
the system is autonomous.
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We now prove the monotonicity and concavity properties of the regular solu-
tions, deriving them directly by the dynamical systems (2.1.6) or (2.1.8), and not
from the second order ODEs.

Proposition 3.1.7. All regular solutions u of (PC) or (P�) are concave in an
interval .0; r0/ for some r0 > 0 and change concavity at least once. Moreover,
they are decreasing as long as they remain positive. In addition,

u0.r/ D O.�r1Ca/, u00.r/ D O.�ra/ as r ! 0,

whenever a > �1.

Proof. Let us consider the MC case; for M� is the same. By Proposition 3.1.5
the corresponding trajectory �p starts at �1 from the stationary point N0 and
enters the region RC

�
which is above the concavity line `C; see Proposition 2.2.4

(item 2) and Remark 2.2.6. Then we immediately deduce that u is concave near
r D 0 and changes concavity at least once; see Corollary 2.4.4. Next, since 1Q
is invariant by the flow and corresponds to positive decreasing solutions of (PC)
we get the monotonicity claim. For the asymptotics one computes

�
p lim
r!0

r1Ca

u0.r/
D lim

t!�1
Z.t/ D �.N C a/,

from which

lim
r!0

u00

ra
D �


p

�

aC 1

N C a
,

which concludes the proof. �

Given an exponent p > 1, for a regular solution up of (PC) or (P�), which
is positive in Œ0;C1/, Definition 1.2.3 holds according to its behavior at infinity.
Taking into account that up is unique, up to rescaling, as in (Felmer and Quaas
2003) we define the following sets:

F D fp > 1 W up is fast decaying gI

S D fp > 1 W up is slow decaying gI (3.1.4)
P D fp > 1 W up is pseudo-slow decaying g:

Then we add the set

C D fp > 1 W .P˙/ has a solution up with up.Rp/ D 0 g; (3.1.5)
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where, as before, Rp is the radius of the maximal positivity interval for up. We
characterize the previous sets in terms of the orbits of the dynamical systems (2.1.6)
or (2.1.8).

Proposition 3.1.8. In terms of the dynamical systems (2.1.6) or (2.1.8), the previ-
ous sets can be equivalently defined as follows:

F D fp > 1 W !.�p/ D A0 gI

S D fp > 1 W !.�p/ D M0 gI

P D fp > 1 W !.�p/ is a periodic orbit aroundM0 gI

C D fp > 1 W lim
t!T

X.t/ D C1 and lim
t!T

Z.t/ D 0 for some T > 0 g;

(3.1.6)

where �p.t/ D .X.t/; Z.t// is as in Remark 3.1.6. In particular,

.1;C1/ D C [ F [ P [ S .

Proof. The proof is the same for both operatorsM˙, i.e. for both systems (2.1.6)
and (2.1.8).

In the case of the sets F ;S and P , up (as in Proposition 3.1.5) is positive in
.0;C1/ which implies that �p is defined for all t 2 R. By Proposition 2.4.1
this trajectory is bounded, and so by Poincaré–Bendixson theorem it converges as
r ! C1 either to a stationary point or to a periodic orbit. In the first case only
A0 andM0 are admissible. Moreover, via the transformation (2.1.1),

!.�p/ D A0 , lim
r!C1

u.r/r
zN˙�2

D Cp;
 for some Cp;
 > 0; (3.1.7)

and u D up has fast decay at C1. On the other hand u is slow decaying at C1

when

!.�p/ D M0 , lim
r!C1

u.r/r˛
D Cp with Cp D .X0Z0/

1
p�1 ; (3.1.8)

whereM0 D .X0; Z0/ is given explicitly in Lemma 2.2.1.
Indeed, (3.1.8) comes from the identity X.t/Z.t/ D r2Caup�1 for all t 2 R.

On the other hand,

limt!C1X.t/ D zN˙ � 2

is equivalent to
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d
dr

ln.u.r// D
u0.r/

u.r/
� �

zN˙ � 2

r
as r ! C1.

Then, integration in Œr0; r� for a fixed large r0 implies (3.1.7) with

Cp;
 D u.r0/ r
zN˙�2

0 , u D up;
 .

Now, by rescaling, the function v D v� in Remark 3.1.3 satisfies

limt!C1 v.r/r
zN˙�2 D �1�

zN
˙

�2

˛ Cp;
 under (3.1.7);

limr!C1 v.r/r˛ D Cp under (3.1.8).

Thus Cp is independent of the initial value 
 > 0 in (3.1.1).
Finally, assume that !.�p/ is a periodic orbit � . Note that the region inside �

is bounded, and by Poincaré–Bendixson theorem it must containM0. Using again
XZ D r2Caup�1 one defines

c
p�1
1 WD inft2R fX.t/Z.t/ W .X;Z/ 2 �g,

c
p�1
2 D supt2R fX.t/Z.t/ W .X;Z/ 2 �g.

Therefore we deduce

!.�p/ D � , 0 < c1 D lim
r!C1

u.r/r˛ < lim
r!C1

u.r/r˛
D c2: (3.1.9)

Nowwe consider the set C. The corresponding trajectory�p cannot be defined
for all time since u.Rp/ D 0. So it must blow up at the finite time Tp D ln.Rp/

by Proposition 2.4.3
Vice versa if F ;S;P; C are defined in terms of the property of the trajectory

�p of the dynamical system then they give exactly the same sets as defined for up,
by using (2.1.1) and (2.1.10), and arguing in a similar way. �

Remark 3.1.9 (C is open). When p 2 C, the trajectory �p crosses the line L D

f.X;Z/;X D zNC�2g and next blows up in finite time. This property is preserved
for p0 close to p.
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3.2 Singular solutions

As mentioned in Introduction, by singular solution we mean a radial solution u D

u.jxj/ D u.r/ of (2.0.1) in a domain ˝ n f0g (and hence a solution of .P˙/)
satisfying limr!0 u.r/ D C1. It may be either positive for all r 2 .0;C1/, or
be equal to zero at a certain radius R > 0. In the first case it produces a solution
in RN n f0g, while in the latter a solution in BR n f0g.

In terms of the systems (2.1.6), (2.1.8), this means that the corresponding tra-
jectory, say ˙p, will be defined either in R or in an interval .�1; T /, for some
T < 1. Under the latter, as in the characterization of C in (3.1.6) we have that
˙p blows up forward in a finite time T < C1. Otherwise, by Proposition 2.4.1
the global trajectory ˙p is contained in the box

QC D .0; zNC � 2/ � .0; �.N C a// forMC;

Q� D .0; zN� � 2/ � .0;�.N C a// forM�.

Then the ˛ and ! limits can be either a periodic orbit or a stationary point.
We point out that˙p cannot converge toN0, neither backward nor in forward

time, because the stable direction at N0 is the Z axis, while the unstable direction
corresponds to the regular trajectory �p, for all p > 1. So all possible ˛ and !
limits of ˙p areM0; A0, or a periodic orbit.

By the analysis of the stationary pointsM0 and A0, and of the periodic orbits
given in Section 2.3, the ˛ and ! limits of ˙p depend on the exponent p. Then
a classification of the singular solutions, according to Definition 1.2.4 can be eas-
ily formulated in terms of the dynamical systems (2.1.6), (2.1.8), analogously to
Proposition 3.1.8. Obviously if˙p is defined in R they are also classified accord-
ing to the behavior at C1, as in Definition 1.2.3. Here we just emphasize that,
as for the regular solutions, the so called pseudo–blowing up solutions, see Defi-
nition 1.2.4 (iii), may only occur at the values of p for which ˙p has a periodic
orbit as ˛-limit.

3.3 Annuli and exterior domain solutions

By solution in annulus or exterior domain solution we mean a solution u of (PC)
or (P�) defined in an interval Œa; ��, for a 2 .0;C1/ and � 6 C1, and verifying
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the Dirichlet condition u.a/ D 0. We look at the initial value problem(
u00 D M˙

�
�r�1.N � 1/m˙.u

0/ � rajujp�1u
�
;

u.a/ D 0; u0.a/ D ı; ı > 0;
(3.3.1)

The equations (PC), (P�), together with (3.3.1) were studied in (Galise, Ia-
copetti, and Leoni 2020), (Galise, Leoni, and Pacella 2017), and more recently in
(Maia and Nornberg 2021) for weighted equations. In this section we follow the
sketch in (Maia and Nornberg 2021).

For any p > 1 and for each ı > 0 there exists a unique solution u D uı

defined in a maximal interval .a; �ı/ where u is positive, a < �ı 6 C1.
If �ı D C1 we get a positive radial solution in the exterior of the ball Ba. In

the second case, a positive solution in the annulus .a; �ı/ is produced. Note that
equations (3.3.1) are not invariant by rescaling.

Our first main result in this section is the following existence in annuli, whose
proof will be enlightening to illustrate the existence of exterior domain solutions
of (3.3.1) from the shooting parameter point of view.

Theorem 3.3.1. For any p > 1, and 0 < a < b < C1, the problem (3.4.1) has
both a positive and a negative radial solution in the annulus

˝ D Aa;b D fx 2 RN
W a < jxj < bg.

Note that the positive solutions obtained in Theorem 3.3.1 may not be radial,
since the Gidas–Ni–Nirenberg type symmetry result of (Da Lio and Sirakov 2007)
does not hold for annular domains.

Remark 3.3.2. All results obtained for ı > 0 will be also true for ı < 0. Indeed,
negative shootings for an operator F can be seen as positive shootings for the
operator G defined as G.x;X/ D �F.x;�X/, which is still elliptic and satisfies
all the properties we considered so far. In particular, the negative solutions ofMC

are positive solutions ofM� in the same domain, and vice versa.

Remark 3.3.3. All zeros of u are simple, that is, it does not exist a point r1 > a
with u.r1/ D u0.r1/ D 0. This follows by the ODE existence and uniqueness
with respect to the initial conditions at r1, since the function h.s/ D rajsjp�1s is
locally Lipschitz continuous as long as p > 1 and r > a. Indeed, its derivative
h0.s/ D p rajsjp�1 is globally bounded for r 2 Œa; r1 C "� and v � 0 is also a
solution.
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Remark 3.3.4. The functionu has atmost one extremumbetween two consecutive
zeros: a maximal point when u > 0, and a minimum point when u < 0. Indeed,
at a critical point r0, i.e. u0.r0/ D 0, we have m.u00/.r0/ D �jujp�1.r0/ u.r0/

and so u00.r0/ has the opposite sign of u.r0/. By Remark 3.3.3, zeros r1 > a with
u.r1/ D u0.r1/ D 0 are not admissible.

Proposition 3.3.5. For each ı > 0, and uı solution of (3.3.1), we set

E� .r/ D
1

2ra .u
0/2 C

1
�.pC1/

jujpC1 for � > 0: (3.3.2)

Then the energy function

E.r/ D

(
E�.r/ if uu0 > 0

E�.r/ if uu0 < 0

is piecewise monotone decreasing in fu0 ¤ 0g whenever zNC > 3=2.

Proof. To fix the ideas let ı > 0 and the operatorMC. For simplicity, we write

u00 C
ra

mu00
jujp�1u D �

mu0

mu00

N �1
r
u0

where ms is the step function defined through mss D mC.s/, for s D u0.r/ or
s D u00.r/, whenever u00 ¤ 0. Here mC.s/ is the Lipschitz function given in
(1.2.3).

Set ON �1 WD
mu0

mu00
.N �1/which is eitherN �1, zNC �1 or zNC �1, whenever

u00 ¤ 0. We have � D � > mu00 when uu0 > 0; while � D � 6 mu00 when
uu0 < 0. Anyways it yields uu0

�
6 uu0

mu00
, then

E 0
� .r/ D �

a
2
r�a�1.u0/2 C r�au0u00 C

1
�

jujp�1uu0

6 �
a
2
r�a�1.u0/2 C r�au0 fu00 C

ra

mu00
jujp�1ug

D �r�a�1.u0/2.a
2

C ON � 1/ < 0

whenever u00 ¤ 0 and u0 ¤ 0 and 2. ON � 1/ C a > 0. The latter is ensured for
instance when a > �1 and zNC > 3=2. Note that at a point r0 where u00.r0/ D 0 it
happens that u0.r0/ has the opposite sign of u.r0/, and they cannot be both equal
to zero by Remark 3.3.3. �

Proposition 3.3.6. Let p > 1 be fixed and assume zNC > 3=2. For any ı > 0, the
local solution uı of (3.3.1) is extended to the whole interval Œa;C1/.
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Proof. To fix the ideas we consider operatorMC. By Proposition 3.3.5 we know
that the energy function E.r/ is piecewise differentiable and continuous, being
strictly decreasing in each interval of consecutive extrema. Note that at the zeros
of u, the energy is continuous and strictly decreasing (recall that u0 ¤ 0 at a zero,
see Remark 3.3.3).

We first claim that if u is oscillatory, that is, if u has infinitely many zeros
�k > a, then necessarily �k ! C1, and so u is automatically defined for all r .
In fact, if �k ! N� 2 .0;C1/, then by the mean value theorem there would exist a
sequence sk 2 .�k; �kC1/ such that u0.sk/ D 0, and so u. N�/ D u0. N�/ D 0, which
is impossible (see Remark 3.3.3).

We then may assume that u has a finite number of zeros. In particular, it has
a finite number of critical points �k by Remark 3.3.4. In this case, as in (Kajikiya
2001) our goal is to show that the energy (3.3.2) is bounded. This will imply that
u is defined for all time by Proposition 1.1.6. By the monotonicity of the energy,

E.a/ D E�.a/ > E�.�1/ D
�
�
E�.�1/ >

�
�
E�.�1/ > : : : CE.r/ for all r 2 I ,

where I is the maximal interval of definition for u. The claim is proved since
(3.3.2) bounded gives an upper bound for juj and ju0j for all r 2 I . �

Remark 3.3.7. We have already seen that regular solutions have corresponding
trajectories issued from N0, and by the dynamical system either exist for all time
or blow-up in finite time. In this latter case, they give positive regular solutions
in a ball, and are further extended to the whole line (by means of sign changing
solutions). In fact, positive solutions in a ball BR are such that ı D u0.R/ < 0

by Hopf lemma. Then we apply Proposition 3.3.6 and Remark 3.3.2, whenever
zNC > 3=2. The same holds for negative solutions in a ball.

From the dynamical system we obtain a complete characterization of mono-
tonicity for solutions uı of (3.3.1) as follows. Specially in this section we keep
the notation in (Galise, Leoni, and Pacella 2017) for � D �ı as a radius (and not
for trajectories as in the rest of the text).

Lemma 3.3.8. For any ı > 0 such that uı is a positive solution of (3.3.1) in Œa; ��,
with � D �ı 6 C1, there exists a unique number � D �.ı/ with � 2 .a; �/, such
that

u0.r/ > 0 for r 2 Œa; �/ , u0.�/ D 0 , u0.r/ < 0 for r 2 .�; �� :

Proof. Let us observe that a first critical point exists for u. To see this we look
at the dynamical system driven by X;Z. In this case, the behavior at the third
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quadrant X;Z < 0 is given by PX > 0 and PZ < 0, with a blow up at finite time
T such that u0.eT / D 0 by Remark 2.4.5, and so � D eT . The uniqueness of �
follows by Remark 3.3.4. �

Remark 3.3.9. Alternatively, for the existence of � in Lemma 3.3.8 one could
have argued via the second order PDE problem in the following way: if u were
strictly increasing and concave for all r > a (see Proposition 3.3.6), then u would
be positive, increasing and concave for all r > a. In this case it would be allowed
to use the change of variables in Remark 1.2.10 to transform the weighted problem
into a non weighted one, and apply the proof of Lemma 2.1 in (Galise, Leoni, and
Pacella 2017).

If �ı D C1 then limr!1 uı.r/ D 0. This comes from the a priori bounds in
Proposition 2.4.1. Thus, for any ı > 0 either �ı D C1 and limr!1 uı.r/ D 0,
or there exists some �ı < C1 such that u.�ı/ D 0. Moreover, by continuous de-
pendence on the initial data, the function ı 7! �ı is continuous in a neighborhood
of any ı > 0 where �ı < C1 whenever p > 1.

We shall omit the dependence on the parameter ı > 0 whenever it is clear
from the context.

Proposition 3.3.10. For any pair ı > 0, and u of (3.3.1), the energy functions

E�.r/ D r2. zN��1/Ca E�.r/ in Œa; � �

E�.r/ D r2. zN��1/Ca E�.r/ in Œ�; ��

are monotone increasing, where E� is given in (3.3.2) for � 2 f�;�g.

Proof. Let us consider the operator MC. We recall that in the interval Œa; � � we
have u0 > 0, u00 6 0, and

u00u0 C
ra

�
upu0 D �

. zN��1/
r

.u0/2:

On the other hand, in Œ�; �� we have u0 6 0, and

u00u0 C
ra

�
upu0 > u00u0 C

ra

mu00
upu0 D �

. ON �1/
r

.u0/2 > �
. zN��1/

r
.u0/2,

where .mu00 ; ON/ is either .�;N / or .�; zNC/.
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Set � D � if r 2 Œa; � � and � D � if r 2 Œ�; ��. In any case, forA D 2. zN��1/

we obtain

E 0
� .r/ D ArA�1

n
1
2
.u0/2 C

ra

�.pC1/
upC1

o
C rA

n
u00u0 C

ra

�
upu0 C

ara�1

�.pC1/
upC1

o
> rA�1.u0/2 f

A
2

� . zN� � 1/g > 0

since 2. zN� � 1/C a > 0, which holds for a > �1 and N > 2. �

The idea for proving Theorem 3.3.1 is to show that, for any given C1 > b >
a > 0, there exists a parameter ı > 0 such that �ı D b in addition to u.b/ D 0.

From now on we start analyzing the behavior of the solutions uı as ı ap-
proaches the extremum values 0 and C1.

Lemma 3.3.11. When ı ! 0 then we have u.�ı/ ! 0 and �ı ! C1 :

Proof. By Proposition 3.3.5 we have E�.r/ 6 E�.a/ for all r 6 � , that is,

ra

pC1
upC1.r/ 6 �

2
ı2 for all r 2 Œa; � �; (3.3.3)

since uu0 > 0 in Œa; � �. In particular, at r D � D �ı ,

upC1.�ı/ 6 �.pC1/
2aa ı2 ! 0 when ı ! 0:

Next we write the equation for u in Œa; � � as .u0r
zN��1/0 D �

ra

�
up r

zN��1,
and so integrating from a to � produces

0 D u0.�/ �
zN��1

D ı a
zN��1

�
1

�

Z �

a
s

zN��1Ca up : (3.3.4)

By combining the estimate for u in (3.3.3) and equality (3.3.4) we obtain

ı D
1

�a zN��1

Z �

a
s

zN��1Ca up 6
C

zN� C a
ı

2p
pC1 �

zN�Ca

and so

�
zN�Ca

ı
>

C0

ı
p�1
pC1

! C1 as ı ! 0 :

In particular, �ı > �ı ! C1 as ı ! 0. �
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Lemma 3.3.12. When ı ! C1 then �ı ! a and u.�ı/ ! C1. More-
over, for every C0 > 0 there exists a positive constant c0 depending only on
C0; a; N; p; �;� such that

ı 6 C0 implies �ı > a C c0.

Proof. We denote Ar;s D Br n Bs for any r > s and fix the operator MC (the
case forM� will be analogous).

Step 1) u.�ı/ ! C1 when ı ! 1.
Assume by contradiction that there exists a sequence ık ! 1 with respective

solutions uk D uık
of (3.3.1), with �k D �ık

, �k D �ık
, and uk 6 M for all k.

Since E�.r/ > E�.a/ for all r 2 Œa; �k� by Proposition 3.3.10, then

�
2. zN��1/Ca

k
u

pC1

k
.�k/ > �.pC1/

2
a2. zN��1/ ı2

k
! C1: (3.3.5)

Since uk 6 M , then �k ! 1 as k ! 1. In particular, �k > a C 1 for large k.
Take " 2 .0; 1/ with " 6 a

zN��1
and r 2 Œa; a C "� � Œa; �k�. Then we use Taylor

expansion of uk at the point a to write

uk.r/ D uk.a/C u0
k
.a/.r � a/C

1
2
u00

k
.ck/.r � a/2; for some ck 2 .a; r/.

(3.3.6)

Now we notice that
zN��1

ck
u0

k
.ck/ 6 zN��1

a ık since u0
k
.ck/ 2 .0; ık/.

Moreover, since u0
k
is decreasing in .a; r/, we have u0

k
.ck/ 6 ık and so, by the

second order PDE in (PC) and the fact that uk is increasing in .a; r/, we deduce

u00
k
.ck/ D �

zN��1
ck

u0
k
.ck/ �

ca
k

�
u

p

k
.ck/ > �

zN��1
a ık �

.aC1/a

�
u

p

k
.r/:

Putting this estimate into (3.3.6) one finds

uk.r/ > ık.r � a/ �
zN��1

2a ık.r � a/2 �
.aC1/a

2�
u

p

k
.r/ .r � a/2:

Finally, by evaluating it at r D aC " it yields

uk.a C "/C
.aC1/a"2

2�
u

p

k
.a C "/ > ık"

n
1 �

zN��1
2a "

o
> 1

2
ık" for sufficiently large k;

since zN��1
2a " 6 1

2
. But this is impossible since ık ! C1 and uk is bounded.

This shows Step 1.
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Step 2) �ı ! a as ı ! C1.
We first show that �ı ! a as ı ! C1. This will be a consequence of Step 1

and the estimate

u
p�1

2

ı
.�ı/ 6 C .�ı � a/�1: (3.3.7)

In order to prove (3.3.7), we write for r 2 Œa; � �,

�
1
2
. u0.r/2/0 > �u00u0 �

zN��1
r

.u0/2 > ra

�
upu0 > aa

�
upu0,

and by integrating it in Œr; � �, for r 2 Œa; �/, one gets

u0.r/ > C fupC1.�/ � upC1.r/g1=2.

Another integration in Œa; � � yieldsR �
a

u0 drp
upC1.�/�upC1.r/

> C�;p

R �
a dr D C�;p .� � a/:

By using s D u.r/ and u0dr D ds we get

C�;p .� � a/ 6
R u.�/

0
dsp

upC1.�/�spC1
D

1

u
pC1

2 .�/

R 1
0

u.�/ d�
p

1��pC1
D

C

u
p�1

2 .�/

by taking � D
s

u.�/
and d� D

ds
u.�/

, from which we deduce (3.3.7).

Now it is enough to prove that

lim
ı!1

�ı

�ı

D 1.

If not, then there exists � > 0 and a sequence ık ! 1, with �k D �ık
6 C1

and �k D �ık
such that �k > .1C �/�k for the solutions uk D uık

of (3.3.1). In
particular, uk is positive and decreasing in the interval Œ�k; .1C �/�k�.

For r 2 .�k; .1C �/�k� we consider the annulus Ak D A�k ;r where uk solves

�M˙.D2uk/ > tkjxjauk in Ak , uk > 0 in Ak ,

where

tk D minAk
u

p�1

k
D u

p�1

k
.r/.
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Now, by the definition of first eigenvalue �C
1 .D/ D �C

1 .MC;D/ for the fully
nonlinear Lane–Emden equation driven by MC in the domain D with respect to
the weight jxja (see (Busca, Esteban, and Quaas 2005; Moreira dos Santos et al.
2020; Quaas and Sirakov 2008)), we have

u
p�1

k
.r/ 6 �C

1 .Ak/; for all r 2 .�k ; .1C �/�k/: (3.3.8)

Note that the following scaling holds

�C
1 .As; s.1C�/ / D

1

s2Ca
�C

1 .A1;1C�/, for all s > 0. (3.3.9)

In fact, if �C
1 ; �

C
1 are a positive eigenvalue and eigenfunction for the operatorMC

with weight jxja in A1;1C� i.e.

MC.D2�C
1 /C �C

1 jxja�C
1 D 0, �C

1 > 0 in A1;1C�, �C
1 D 0 on @A1;1C�

then �C
1 ;  

C
1 , where �C

1 D �C
1 s�2�a and  C

1 .x/ D �C
1 .

x
s / are a positive eigen-

value and eigenfunction in As;s.1C�/ forMC with weight jxja.
Then, by combining (3.3.8) and (3.3.9) one finds

u
p�1

k
.r/ 6 1

a2Ca �
C
1 .A1;1C �

2
/; for all r 2 Œ.1C

�
2
/�k; .1C �/�k�: (3.3.10)

Using E�.�k/ 6 E�.r/ for r 2 Œ�k; �k/, it comes

r2. zN��1/
n

ra

�.pC1/
u

pC1

k
.r/C

1
2
.u0

k
/2.r/

o
> �

2. zN��1/Ca

k

�.pC1/
u

pC1

k
.�k/

> a2. zN��1/Ca

�.pC1/
u

pC1

k
.�k/: (3.3.11)

Since �k ! a as k ! C1 then

r 6 .1C �/�k 6 .1C �/.a C 1/ for large k.

Now, by putting the latter and (3.3.10) into (3.3.11) we derive

.u0
k
/2.r/ > Jk ,

where

Jk WD C�;p;N;�f.aC1/�2. zN��1/a2. zN��1/Ca uk.�k/
pC1�.aC1/aa

�.2Ca/.pC1/
p�1 g

and Jk ! C1 as k ! 1 by Step 1. Hence
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�u0
k
.r/ > J

1=2

k
! C1 as k ! 1, for all r 2 Œ.1C

�
2
/�k ; .1C �/�k�.

Via integration we get

uk..1C
�
2
/�k/ > uk..1C

�
2
/�k/ � uk..1C �/�k/

D �

Z .1C�/�k

.1C�=2/�k

u0
k.r/dr > ��k

2
J

1=2

k
! C1

which contradicts (3.3.10).
Step 3) ı 6 C0 implies �ı > a C c0.
Let us prove the contrapositive, that is, if �ı ! a then ı ! C1.
As in Step 2, if s D maxAa;�

up�1 D up�1.�/ then u solves

�M˙.D2u/ 6 jxjajujp�1u 6 s jxjau in Aa;� , u D 0 on @Aa;� .

Now, by the maximum principle for the fully nonlinear equation through the
characterization of the first eigenvalue in (Busca, Esteban, and Quaas 2005; Quaas
and Sirakov 2008) (see also (Moreira dos Santos et al. 2020) for the weighted
version) yields

up�1.�/ > �C
1 .M

C; Aa;� /: (3.3.12)

In fact, if we had s < �C
1 .MC; Aa;� / then by the mentioned maximum principle

we would obtain u 6 0 in Aa;� which is impossible.
Using the scaling for the eigenvalue in (3.3.9), (3.3.3), and (3.3.12), we derive

�C
1 .MC; A1; �=a / D a2Ca �C

1 .MC; Aa;� / 6 a2Ca . �.pC1/
2aa ı2 /

p�1
pC1 :

Again by the scaling as in Step 2, �C
1 .MC;D/ ! C1 as jDj ! 0. Then �ı ! a

implies ı ! C1. As a consequence, the ratio �ı=a remains bounded away from
1 whenever ı is bounded from above. �

Proof of Theorem 3.3.1. We fix the annulus Aa;b for some 0 < a < b. For every
ı > 0, recall that uı is the unique radial solution of the initial value problem (3.3.1)
defined for all r > a (by Proposition 3.3.6), with a maximal radius of positivity
given by �ı 2 .a;C1�. Here, u.�ı/ D 0 if �ı < C1, while u.r/ ! 0 as
r ! C1 is �ı D C1.

The mapping ı ! �ı is continuous by ODE continuous dependence on initial
data. In particular, the set

D D D .p/ WD f ı 2 .0;C1/ W �ı < C1 g (3.3.13)
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is open. By Lemma 3.3.12, D is nonempty and contains an open neighborhood of
C1.

Let ı� D ı�.p/ be the infimum of the unbounded connected component of
D. Since D is open, if ı� > 0 then �ı� D C1. If ı� D 0 then limı!0 �ı >
limı!0 �ı D C1 by Lemma 3.3.11.

The function ı 7! �ı is well defined and leads the interval .ı�;C1/ onto
.a;C1/ by the second part of Lemma 3.3.12. Then there exists ı > 0 such that
�ı D b. The existence of negative solutions follows by Remark 3.3.2. �

Remark 3.3.13. For the non weighted case a D 0, in (Galise, Iacopetti, and Leoni
2020) it was shown that ı� D infD for all p, that is D D .ı�;C1/ is an open
interval. Moreover, they prove there that at ı� only a fast decaying solution is
admissible.

Nowwewould like to describe the trajectories of the dynamical systems (2.1.6)-
(2.1.8) which correspond to uı through the variables X;Z in (2.1.1).

Proposition 3.3.14. Let p > 1 and uı D uı;p be a positive solution of (PC)
.resp. (P�)/ satisfying (3.3.1). Then there exists a unique trajectory �ı;p in 1Q
for the system (2.1.6) .resp. (2.1.8)/ which blows up backward in a finite time tı .
More precisely, if �ı;p.t/ D .X.t/; Z.t// then

lim
t!t

C

ı

Z.t/ D C1 and lim
t!t

C

ı

X.t/ D 0; (3.3.14)

where tı D ln.�ı/, �ı given in Lemma 3.3.8. The trajectory �ı;p corresponds,
after the transformation (2.1.1) to the restriction of uı to the interval Iı D .�ı ; �ı/,
with �ı 6 C1.

Proof. The proof works for both operatorsM˙. We fix p and ı. By Lemma 3.3.8,
uı is positive and decreasing in the interval Iı . Then, after (2.1.1), to uı corre-
sponds a unique trajectory �ı D �ı;p contained to 1Q and is defined for all
t 2 .tı ; ln.�ı//. Thus, by Proposition 2.4.3 we get (3.3.14). �

When �ı D C1 we can classify the solutions accordingly to their behavior
at C1, i.e. uı is fast, slow, or pseudo-slow decaying via the limits (i)-(iii) as
r ! C1 in Definition 1.2.3.
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3.4 Main results
In this section we state the main theorems produced by the dynamical system ap-
proach we are studying. The proofs will be presented in Chapter 4.

We recall our second order PDE problems

M˙
�;�.D

2u/C jxj
aup

D 0; u > 0 in ˝; (3.4.1)

where a > �1, p > 1.
In the singular case ˝ is either RN n f0g or BR n f0g, and we assume the

condition

limr!0 u.r/ D C1; r D jxj: (3.4.2)

Whenever ˝ has a boundary, we prescribe the Dirichlet condition

u D 0 on @˝; or u D 0 on @˝ n f0g under (3.4.2): (3.4.3)

Theorem 3.4.1 (MC regular solutions). Assume zNC > 2, and � < �. Then there
exists a critical exponent p�

aC such that

maxfp
s;a
C ; pa

�g < p�
aC < p

p;a
C ; (3.4.4)

and the following assertions hold:

(i) if p 2 .1; p�
aC/ there is no nontrivial radial solution of (3.4.1) in the whole

RN , while for any R > 0 there exists a unique radial solution in the ball
BR;

(ii) if p D p�
aC there exists a unique fast decaying radial solution of (3.4.1) in

RN ;

(iii) if p 2 .p�
aC; p

p;a
C � there is a unique pseudo-slow decaying radial solution

to (3.4.1) in RN ;

(iv) if p > pp;a
C there exists a unique slow decaying radial solution of (3.4.1) in

RN ;

(v) if p > p�
aC there is no nontrivial solution to (3.4.1), (3.4.3) when˝ is a ball.

In (ii)–(iv) uniqueness is meant up to scaling.
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Theorem 3.4.2 (M� regular solutions). If � < �, then there exists a critical
exponent p�

a� satisfying

pp;a
� < p�

a� < p
a
�; (3.4.5)

and there exists " > 0 such that:

(i) if p 2 .1; p�
a�/ there is no nontrivial radial solution of (3.4.1) in the whole

RN , while for anyR > 0 there exists a unique radial solution of the Dirichlet
problem (3.4.1), (3.4.3) in BR;

(ii) if p D p�
a� there exists a unique fast decaying radial solution of (3.4.1) in

RN ;

(iii) if p 2 .p�
a�; p

a
� � "� there is a unique pseudo-slow or slow decaying radial

solution of (3.4.1) in RN ;

(iv) if p > pa
� � " there exists a unique slow decaying radial solution of (3.4.1)

in RN ;

(v) if p > p�
a� there is no nontrivial solution to (3.4.1), (3.4.3) when˝ is a ball.

In (ii)–(iv) uniqueness is meant up to scaling.

In the sequel we illustrate the power of the classification results via Theo-
rem 2.3.1 when � D �, inspired by the analysis in (Bidaut-Véron and Giacomini
2010).

Proposition 3.4.3 (The case of the Laplacian). pa
� is the critical exponent for the

Laplacian operator, in the sense of Theorems 3.4.1 and 3.4.2 with p�
aC D p�

a� D

pa
� in which P D ;.

Proof. We first observe that, by Theorem 2.3.1, there are no periodic orbits of
the system (2.1.6) (which coincides with the system (2.1.8)) when p ¤ pa

�. In
particular,

..1; pa
�/ [ .pa

�;C1// \ P D ;.

Step 1) If p > pa
� then p 2 S .

For p > pa
�,M0 is a sink by Proposition 2.2.4. Let us show that p 62 C [ F .

If p 2 C, then �p crosses the line L WD f.X;Z/;X D N � 2g, and blows
up in finite time. Then the region D enclosed by �p, L and the X;Z axes is a
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bounded domain from which an orbit can only leaveD forward in time throughL.
Thus, an orbit arriving atM0 2 D cannot go anywhere in backward time, giving
a contradiction with Poincaré–Bendixon theorem.

If insteadp 2 F , then the bounded set whose boundary is given by�p together
with the X and Z axes, is invariant and containsM0. Again the orbits arriving at
M0 cannot escape in backward time. Therefore p 2 S .

Step 2) For p 2 .1; pa
�/ we have p 2 C.

If 1 < p < N Ca
N �2

, then A0 is a source andM0 62 1Q. No periodic orbits exist
in this case as we already known.

At the Serrin exponent p D
N Ca
N �2

we point out that the proof of Theorem 2.3.1
also shows the nonexistence of homoclinics (i.e. orbits � with !.�/ D ˛.�/ D

A0 D M0). Therefore, if we had !.�p/ D A0 then the orbits which come out
from A0 could not go anywhere, see also Proposition 4.1.9.

Now, if N Ca
N �2

< p < pa
� then M0 is a source by Proposition 2.2.4. The

trajectory �p cannot be bounded, otherwise it could only converge to A0 as t !

C1. As in the proof of Proposition 4.1.5 this would produce a contradiction,
because the region D enclosed by �p, and the X , Z axes would be an invariant
set from which any trajectory issued fromM0 cannot exit.

In any case �p blows up in finite time, and so p 2 C.

Step 3) pa
� 2 F .

First, pa
� 62 C since C is open. Moreover, by the center configuration around

M0 proved in Proposition 2.2.7 we deduce that pa
� 62 S . We only need to exclude

the casep 2 P . If we hadp 2 P , then forp < pa
� close topa

�, a regular trajectory
�p would need to cross the line `1 D `˙

1 by continuity of the ODE problem with
respect to the parameter p. However, since p 2 C we know that these solutions
do not cross it. This concludes the proof. �

For � < �, in the M� case our Theorem 3.4.1 slightly improves the corre-
sponding one in (Felmer and Quaas 2003) for a D 0. Our point (iv) of Theo-
rem 3.4.2 shows that, for p near pa

�, only a slow decaying solution is allowed to
exist. As stated in the Introduction, the bounds (3.4.4) and (3.4.5) regarding the
range of p’s for which pseudo-slow decaying solutions exist were further refined
in (Pacella and Stolnicki 2021b), see Remark 2.3.2.

The proofs of the previous theorems rely entirely on a careful analysis of an
autonomous quadratic dynamical system that we obtain after a suitable transforma-
tion, see Chapter 2. It was used in (Bidaut-Véron and Giacomini 2010) to study the
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Figure 3.1: The dynamical system configuration in the case � D � when ps;a
˙

<

p < pa
�. The stationary set `

˙
2 in this case is a smooth line.

Figure 3.2: The dynamics at � D � when p > pa
�. The regular trajectory is

always slow decaying.

classical semilinear Lane–Emden system. Once the correspondence between the
radial solution of (3.4.1) and the orbits of the dynamical systems (2.1.6) and (2.1.8)
is made (see Chapter 3), all existence and classification results of Theorems 3.4.1
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Figure 3.3: The case � D � at p D pa
�. The regular trajectory is a line connecting

the points A0 and N0.

and 3.4.2 are derived by studying the stationary points and the flow lines of these
systems. In particular, the uniqueness of the critical exponent and the behavior of
the solutions, by varying the exponent p, are obtained as a direct consequence of
the properties of the vector fields which define the dynamical systems.

Note that these systems are derived from the Pucci fully nonlinear equations
and are piecewise C 1. This, in particular, allows the presence of several periodic
orbits which produce regular and singular solutions with different features like
pseudo-slow decay or pseudo–blowing up behavior at infinity or at the origin.

One reason why our approach is quite simple is that the most relevant sets
which determine the flow generated by (2.1.6) and (2.1.8) are just straight lines;
see Figures 2.1 to 2.3. Moreover, the presence of the weight jxja in (3.4.1) does
not produce additional difficulties, while it could be complicated via the method
of (Felmer and Quaas 2003).

On the other hand, by the same analysis of the dynamics induced by (2.1.6) and
(2.1.8) we also get the classification of singular solutions of (3.4.1) in a punctured
ball or in RN n f0g.

Remark 3.4.4. For all p > p
s;a
C in the case of MC, resp. p > ps;a

� for M�,
the function up.r/ D Cp r

�˛, Cp as in (3.1.8), is a singular solution of (3.4.1) in
RN n f0g. We call it trivial singular solution.

Theorem 3.4.5 (MC singular solutions). Assuming zNC > 2 and � < �, for
(3.4.1)–(3.4.2) it holds:



3.4. Main results 61

(i) for any p 6 p
s;a
C there is no singular radial solution in RN n f0g, while for

each R > 0 there are infinitely many . zNC � 2/–blowing up radial solutions
of (3.4.1)–(3.4.3) in BR n f0g;

(ii) if ps;a
C 6 pa

� then for any p 2 .p
s;a
C ; pa

�� there is a unique ˛–blowing up
radial solution in RN n f0g with fast decay at C1. Also, for any R > 0

there are infinitely many ˛–blowing up radial solutions of (3.4.1)–(3.4.3) in
BR n f0g;

(iii) for each p 2 . pa
�C; p�

aC/ there exists a unique singular radial solution
in RN n f0g with fast decay at C1. Moreover, for any R > 0 there exist
infinitely many singular radial solutions of the Dirichlet problem (3.4.1)–
(3.4.3) in BR n f0g;

(iv) if p D p�
aC there exist infinitely many pseudo–blowing up radial solutions

in RN n f0g with pseudo-slow decay at C1, and infinitely many ˛–blowing
up in RN n f0g with pseudo-slow decay at C1. Also, there is no singular
radial solution of (3.4.1)–(3.4.3) in BR n f0g;

(v) ifp 2 .p�
aC; p

p;a
C / there are infinitely many ˛–blowing up radial solutions in

RN n f0g with pseudo-slow decay at C1, and there is a pseudo–blowing up
radial solution with pseudo-slow decay at C1. Further, there is no singular
radial solution of (3.4.1)–(3.4.3) in BR n f0g;

(vi) if p 2 Œ p
p;a
C ;C1/ there are no nontrivial singular radial solutions, cf. Re-

mark 3.4.4.

Here, uniqueness in RN n f0g is meant up to scaling.

Theorem 3.4.6 (M� singular solutions). If � < �, for the problem (3.4.1)–(3.4.2)
we have:

(i) if p 6 ps;a
� there is no singular radial solution in the whole RN n f0g, while

for anyR > 0 there are infinitely many . zN��2/–blowing up radial solutions
of (3.4.1)–(3.4.3) in BR n f0g;

(ii) for each p 2 .ps;a
� ; pp;a

� / there exists a unique ˛–blowing up radial solu-
tion in RN n f0g with fast decay at C1. Further, for any R > 0 there
exist infinitely many ˛–blowing up radial solutions of the Dirichlet problem
(3.4.1)–(3.4.3) in BR n f0g;
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(iii) for any p 2 .pp;a
� ; p�

a�/ there are infinitely many pseudo–blowing up radial
solutions in RN nf0g. Among them there is a unique fast decaying, a pseudo-
slow decaying, and infinitely many with slow decay at C1. Moreover, for
each R > 0 there exist infinitely many pseudo–blowing up radial solutions
of (3.4.1)–(3.4.3) in BR n f0g;

(iv) if p D p�
a� there exist infinitely many pseudo–blowing up radial solutions in

RN nf0g. Among them there are infinitely many with slow-decay atC1, and
infinitely many pseudo-slow decaying at C1. Further, there is no singular
radial solution of (3.4.1)–(3.4.3) in BR n f0g;

(v) there exists " > 0 such that for p 2 Œ pa
� � ";C1/ no nontrivial singular

radial solution exists.

Here, uniqueness in RN n f0g is meant up to scaling.

Our results on singular solutions are obtained by complementing the analy-
sis of the flow lines of the dynamical systems (2.1.6) and (2.1.8). To the best
of our knowledge they are the first global classification results on singular so-
lutions found for this class of fully nonlinear equations. In (Felmer and Quaas
2003, Remark 3.2) it is pointed out that, in the case a D 0, periodic orbits of the
Emden–Fowler system would produce singular solutions, while in (Felmer and
Quaas 2006, Theorem 6.3) the existence of singular solutions is proved near the
critical exponent.

For the critical exponents p�
a˙

, our dynamical systems (2.1.6) and (2.1.8) fur-
nish infinitely many periodic orbits. On the other hand, for pp;a

˙
infinitely many

periodic orbits appear which do not correspond to C 2 solutions for r > 0, see
Remark 4.1.10. For p 2 .p�

a�; p
a
� � "/ the existence of singular solutions cannot

be deduced directly from the dynamical system approach.
Let us underline the fact that obtaining periodic orbits is in general a very

difficult task in the theory of dynamical systems. Even in the very particular case
of a polynomial autonomous system this question is not completely understood,
see (Chicone and Tian 1982; Hale and Koçak 1991).

Finally, as a byproduct of the study of regular radial solutions of (3.4.1), either
in RN or in a ball, we easily get the range of the exponents p for which a positive
radial solution of the Dirichlet problem in the exterior of a ball does not exist.
Indeed, we get the following result.
Theorem 3.4.7. Let p > 1. Then there are no radial solutions of

M˙.D2u/C jxj
aup

D 0; u > 0 in RN
n BR; u D 0 on @BR (3.4.6)
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if p 6 p�
a˙

for each R > 0.

In the case of a D 0, Theorem 3.4.7 has been recently proved in (Galise, Ia-
copetti, and Leoni 2020) with different arguments which rely both on the study of
the second order ODE and on the analysis of the Emden–Fowler system. Their
work presents a complete picture of existence and nonexistence of solutions for
distinct intervals for the values of the parameter p. However, through our argu-
ments we get their nonexistence result by a considerably shorter proof. Indeed, we
will see in Sections 4.1 and 4.2 that the result of Theorem 3.4.7 becomes a straight-
forward consequence of the characterization of the critical exponentsp�

a˙
in terms

of the associated quadratic system we consider. Let us point out that in (Galise,
Iacopetti, and Leoni 2020) also the existence and classification of the solutions of
(3.4.6) are provided when a D 0. Alternatively, this could be done through our
methods. Since this is not the main goal of our research we just refer to Section 4.1
for further comments.

Remark 3.4.8. LetD.p/ be the set defined in (3.3.13), and ı�.p/ the infimum of
the unbounded connected component ofD.p/. By the dynamical system approach
(see the main theorems), we automatically deduce ı�.p/ D 0 D infD.p/ for all
p 6 p�

a˙
(since no exterior domain solutions exist in this range), while ı�.p/ > 0

when p > p�
a˙

(here we have exactly one fast decaying exterior domain solution,
and infinitely many slow decaying exterior domain solutions).

Remark 3.4.9. Positive exterior domain solutions are not allowed to exist in the
rangewhere positive solutions of the ball do (check in the figures). That is, the exis-
tence of a blow-up regular solution creates an invariant set through which exterior
domain trajectories cannot pass, and in turn remain bounded forward in time by
Proposition 2.4.1, forward in time. Moreover, negative exterior domain solutions
of MC are the positive exterior domain solutions of M�. In particular, the solu-
tions produced by the shooting method (3.1.1) when p < minfp�

aC; p
�
a�g D p�

a�,
which are sign-changing solutions for all r > 0 by Proposition 3.3.6, need to oscil-
late indefinitely. We refer to (Galise, Iacopetti, Leoni, and Pacella 2020) for more
details on sign-changing solutions to fully nonlinear operators.



4 The flow study

This chapter is devoted to the proofs of the theorems in the preceding chapter. We
split our analysis in two cases, accordingly to the operators MC and M�. The
first Section 4.1 concerning MC gathers the main tools of our approach, while
in Section 4.2 we just complement by inserting the differences from the previous
case.

4.1 TheMC case

In this section we study the solutions of the equations involving the Pucci MC

operator. Hence we refer to the dimension-like parameter zNC and the relevant
exponents forMC defined in (1.2.5) and (1.2.6), as well as their ordering:

maxfp
s;a
C ; pa

�g 6 p
p;a
C :

4.1.1 Some properties of regular trajectories

We first consider the case of a regular solution of (PC) whose corresponding tra-
jectory for the system (2.1.6) will be denoted by �p D �p.t/ as in Section 3.1.
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We also keep the other notations already introduced, in particular for the sets
F ;S;P; C defined in (3.1.4), (3.1.5), and Proposition 3.1.8.

Lemma 4.1.1. For any p > 1, with �p D .Xp; Zp/, we have:

(i) if �p reaches the line `C
1 .see (2.2.2)/ at some t0 with Xp.t0/ > ˛, then

p 2 S [ P , i.e. the corresponding solutions up of (PC) are either slow
decaying or pseudo-slow decaying. In the latter case �p crosses `C

1 and `C
2

.see (2.2.3)/ infinitely many times;

(ii) if �p does not intersect the line `C
1 , then it intersects the concavity line `C

exactly once. Moreover, PXp > 0 and PZp < 0 for all time. In particular this
happens for p 2 F [ C.

Proof. We recall that �p starts at �1 from the stationary pointN0 and must cross
the concavity line `C at least once, see Proposition 3.1.7.

.i/ If �p reaches `C
1 for Xp.t0/ D ˛ then clearly limt!C1 �p.t/ D M0,

whenever M0 belongs to 1Q (see Figure 2.1). If instead Xp.t0/ > ˛, by taking
into account Proposition 2.2.2 (3) (see again Figure 2.1) and that �p cannot self
intersect, we have that �p is contained in a bounded region from which it cannot
leave. Thus, by Poincaré–Bendixson theorem the !-limit of �p is eitherM0 or a
periodic orbit � which containsM0 in its interior. In the latter case �p goes around
� clockwise according to the direction of the vector field, intersecting `C

1 and `C
2

infinitely many times.
.i i/ If�p does not intersect `C

1 then it cannot turn back and cross the concavity
line `C another time because of the direction of the flow. Moreover, it can neither
intersect nor be tangent to the line `C

2 where PZ D 0, since a C 1 trajectory of
(2.1.6) may only intersect the line `C

2 transversely by passing from left to right,
see Proposition 2.2.2 (3) and Figure 2.1. This fact and item .i/ conclude the final
assertion. �

The next proposition is crucial to study the behavior of �p for different values
of p.

Proposition 4.1.2. Assume that p1 2 F [C, and let �p2
be any regular trajectory

with p2 ¤ p1. Then �p1
and �p2

can never intersect.

Proof. Both �p1
and �p2

have their ˛-limit at the stationary point N0 which is a
saddle point. By Proposition 2.2.4(2) the tangent unstable directions for �p1

and
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�p2
at N0 are given, respectively, by

Z D �
p1�.N Ca/
N C2C2a

X and Z D �
p2�.N Ca/
N C2C2a

X: (4.1.1)

Assume by contradiction that�p1
.t/ D .X1.t/; Z1.t// and�p2

.t/ D .X2.t/; Z2.t//

intersect. Let us denote byQ the first intersection point. Since the dynamical sys-
tem (2.1.6) is autonomous, one may assume that the intersection happens at the
same time for both trajectories, i.e.Q D .X1.t0/; Z1.t0// D .X2.t0/; Z2.t0//.

To fix the ideas assume p1 < p2. Then, by (4.1.1), at least in a neighborhood
of N0, �p1

is above �p2
because X ! 0C (from the right). Moreover, from

(2.1.6) and Lemma 4.1.1(ii) we have

PX1.t0/ D PX2.t0/ > 0; PZ2.t0/ < PZ1.t0/ < 0; (4.1.2)

since only PZ depends on p. In particular �p1
remains above �p2

after intersecting.
Thus the two trajectories must have the same tangent at the pointQ, which is not
possible by (4.1.2). The case p2 < p1 is analogous. �

From the previous results we immediately get that a fast decaying solution can
exist for only one value of p.

Corollary 4.1.3. There exists at most one p in the interval .ps;a
C ;C1/ such that

p 2 F .

Proof. Assume by contradiction that p1; p2 2 F for some ps;a
C < p1 < p2. This

means that the corresponding trajectories �p1
and �p2

both come out from N0 at
�1 and converge to A0 at C1. We have already observed by (4.1.1) that �p1

stays above �p2
in a neighborhood of N0.

On the other hand, sinceA0 is a saddle point for p > ps;a
C , looking at the linear

stable directions given by Proposition 2.2.4(3), we have that �p1
and �p2

arrive
atA0 with a reversed order; i.e. �p2

is above �p1
. This is becauseX ! . zNC �2/

from the left.
Hence,�p1

and�p2
should intersect, but this is not possible by Proposition 4.1.2.

�

Another important consequence of Proposition 4.1.2 is the following result.

Corollary 4.1.4. Let p0 2 F , p0 > p
s;a
C , then p 2 C for ps;a

C < p < p0, and
p 2 P [ S for p > p0.
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Proof. If p0 2 F then �p0
cannot intersect any other regular orbit �p for p ¤ p0,

by Proposition 4.1.2. This means that if �p is above or below �p0
in a neigh-

borhood of N0, it remains so for all time. Moreover, p 62 F for p ¤ p0 by
Corollary 4.1.3.

Thus, if p < p0, �p lies above �p0
and so cannot converge toM0 D M0.p/

neither to a periodic orbit around it, since the line `C
1 is below �p0

. Notice that
`C

1 does not depend on p. So p 2 C.
On the other hand, if p > p0 then �p lies below �p0

and therefore cannot
cross the line L D f.X;Z/ W X D zNC � 2g in order to blow up in finite time.
Hence p 62 C and so must be in P [ S . �

4.1.2 The critical exponent
Our goal here is to define and characterize the critical exponent which will be
proved to have all properties listed in Theorem 3.4.1.

We start by showing thatS and C contain the intervals .pp;a
C ;C1/ and .1; p�/

respectively.

Proposition 4.1.5. If p > pp;a
C then p 2 S .

Proof. In case p > p
p;a
C , by Theorem 2.3.1 we know that there are no periodic

orbits of the system (2.1.6), hence p 62 P . Moreover, M0 is a sink by Proposi-
tion 2.2.4. Let us show that p 62 C [ F .

If p 2 C, then �p crosses the line L WD f.X;Z/;X D zNC � 2g, and blows
up in finite time. Then the regionD enclosed by �p, L and the X;Z axes form a
bounded domain from which an orbit can only leaveD forward in time throughL.
Thus, an orbit arriving atM0 2 D cannot go anywhere in backward time, giving
a contradiction with Poincaré–Bendixon theorem.

If insteadp 2 F , then the bounded set whose boundary is given by�p together
with the X and Z axes, is invariant and containsM0. Again the orbits arriving at
M0 cannot escape in backward time. Therefore p 2 S . �

Proposition 4.1.6. For p 2 .1;maxfp
s;a
C ; pa

�g/ it holds that p 2 C.

Proof. If 1 < p < ps;a
C , then A0 is a source andM0 62 1Q. In particular there are

no periodic orbits contained in 1Q. Hence p 62 F [S[P , so if maxfp
s;a
C ; pa

�g D

p
s;a
C the proof is complete.
Assume ps;a

C < pa
�. Then, at p D p

s;a
C no periodic orbits are allowed by

Theorem 2.3.1, whose proof also shows nonexistence of homoclinics atA0 D M0
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(i.e. orbits � with !.�/ D ˛.�/ D A0). Therefore, if we had !.�p/ D A0 then
the orbits which come out from A0 could not go anywhere. Alternatively, see
Proposition 4.1.9. In particular, ps;a

C 62 F [ S [ P .
Finally, if ps;a

C < p < pa
�, then M0 is a source by Proposition 2.2.4. The

trajectory �p cannot be bounded, otherwise it could only converge to A0 as t !

C1. As in the proof of Proposition 4.1.5 this would produce a contradiction,
because the region D enclosed by �p, and the X , Z axes would be an invariant
set from which any trajectory issued fromM0 cannot exit.

In any case �p blows up in finite time, and so p 2 C. �

By Propositions 4.1.5 and 4.1.6 we have that the set C is nonnempty and
bounded from above. Therefore we define

p�
aC D sup C (4.1.3)

and obviously

p�
aC 2 Œmaxfp

s;a
C ; pa

�g; p
p;a
C �.

From now on we refer to p�
aC as the critical exponent for the Pucci operatorMC

with weight jxja. The next result characterizes p�
aC.

Theorem 4.1.7. The number p�
aC defined in (4.1.3) belongs to F . Thus it is the

only exponent in the equation (PC) for which there exists a unique, up to scaling,
fast decaying solution.

Moreover, if � < �, thenp�
aC ¤ pa

�, p�
aC ¤ p

p;a
C , and (3.4.4) holds. Further,

P D .p�
aC; p

p;a
C �, and for any p 2 P the corresponding trajectory �p crosses the

concavity line `C infinitely many times.

Proof. First, p�
aC 62 C i.e. C does not have a maximum because C is open, see Re-

mark 3.1.9. By Proposition 2.2.4 we know that M0 is a source for every p 2

Œ pa
�; p

p;a
C /; and M0 is a center at p D p

p;a
C . Whence p 62 S for all p 2

Œ pa
�; p

p;a
C �, and in particular p�

aC 62 S . On the other side, if p�
aC 2 P then

�p�
aC

would cross the line `C
1 by Lemma 4.1.1(ii). Thus, by continuity with re-

spect to p, the trajectory �p should also cross `C
1 for p close to p�

aC. But every
trajectory �p for p 2 C does not cross `C

1 , by Lemma 4.1.1. Therefore p�
aC 62 P .

Hence p�
aC belongs to F and the trajectory �p�

aC
together with the X and

Z axes enclose a bounded invariant region D which contains M0 in its interior.
Since M0 is a source for p 2 Œpa

�; p
p;a
C /, and a center for p D p

p;a
C , the set
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D contains periodic orbits which cross the line `C twice. Indeed, the flow is
subjected to Poincaré–Bendixson theorem, see Figure 4.6. This implies that p�

aC

can be neither pa
� nor pp;a

C if � < �, by Theorem 2.3.1. In fact, at pa
� there are

no periodic orbits at all, while at pp;a
˙

no periodic orbits cross `C twice.
Note that we obtain (3.4.4) as long as pa

� > p
s;a
C . If pa

� < p
s;a
C we still need

to prove that p�
aC ¤ p

s;a
C . For instance this follows by the known Liouville results

recalled in Theorem 1.2.8. Alternatively, a proof of this fact is accomplished in
Proposition 4.1.9 which give nonexistence of entire positive solutions for p D

p
s;a
C .
Next, by Corollary 4.1.4 we get .p�

aC; p
p;a
C � D P , since we have already

observed that Œpa
�; p

p;a
C / \ S D ;. By the definition of P , the corresponding

trajectory �p goes around a periodic orbit � . By Theorem 2.3.1, if p < pp;a
C then

� must necessarily intersect both RC

�
and R�

�
, while for p D p

p;a
C the maximal

periodic orbit �0 does not intersect RC

�
.

We claim that �0 is tangent to `C at the pointP D .1Ca
p
; �.N �1// 2 `C \`C

2

when p D p
p;a
C . If this was not the case, then � D �p

p;a
C

would belong to
the region R�

�
for all t 2 I D ŒT;C1/ for some T > 0. Let us consider the

restriction of � to I , namely � . Since � is a part of a trajectory for the Laplacian
operator in dimension zNC, we may follow � backward in time as a trajectory of
the respective Laplacian-like dynamical system. However, the characterization
of pp;a

C as the critical exponent there immediately contradicts the existence of � .
Indeed, at the critical exponent only periodic trajectories are admissible around
M0, see for instance the proof of Proposition 2.2.7.

Thus, in both cases �p for p 2 P must cross the concavity line `C infinitely
many times. �

Remark 4.1.8 (�p D �p). The critical exponent p�
aC is the unique value of p for

which �p and �p coincide, see Proposition 2.2.5.
Proof of Theorem 3.4.1. One establishes the conclusion of Theorem 3.4.1 by com-
bining (4.1.3), Corollary 4.1.4 and Propositions 4.1.5 and 4.1.6, together with The-
orem 4.1.7. �

4.1.3 Singular and exterior domain solutions
Here we show how the analysis of the regular trajectories performed in the previ-
ous sections almost completely determines the behavior of the other orbits of the
dynamical system (2.1.6).
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Let us start by considering singular solutions. When p 6 p
s;a
C we saw in

Proposition 4.1.6 that p 2 C. On the other hand, there is not a unique trajectory
arriving at the stationary point A0 as in Proposition 2.2.5. Indeed, for p < p

s;a
C ,

A0 is a source andM0 belongs to the fourth quadrant, see Proposition 2.2.4. The
case p D p

s;a
C is a bit more involved. The point A0 D M0 is not a hyperbolic

point, and we complement its local study in what follows.

Figure 4.1: Case p < ps;a
˙

for M˙; A0 is a source andM0 belongs to the fourth
quadrant. Below �p trajectories corresponding to infinitely many . zN˙ � 2/–
blowing up solutions in a ball are shown, while above �p there are orbits cor-
responding to solutions in an annulus.

Proposition 4.1.9. At p D p
s;a
C , there exist infinitely many unstable orbits issued

from M0 D A0 below the line `C
1 . They move clockwise and blow up in finite

forward time.

Proof. Atp D p
s;a
C the eigenvalues ofA0 D M0 are . zNC�2/ and 0. In particular,

A0 is not hyperbolic and Proposition 1.1.2 no longer applies. The linear direction
corresponding to . zNC �2/ lies on theX axis, while the one corresponding to 0 co-
incides with the line `C

1 . However, through the flow analysis in Proposition 2.2.2
(3) (see Figure 2.2) it is easy to conclude that M0 has infinitely many repulsive
directions between these two lines. In this case, the orbits are issued fromA0, with
respective tangent lines between the X axis and the line `C

1 .
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To see this let us first observe that `C
1 and `C

2 intersect at A0. Then note that
PX > 0 in the region above `C

1 . On the other hand, an orbit coming out from
A0 needs to increase its Z values, so staying below `C

2 . If it started between `C
1

and `C
2 , then it should initially decrease its X values, which gives a contradiction.

Hence the only way to come out from A0 is below the line `C
1 .

We have already deduced in the proof of Proposition 4.1.6 that periodic orbits
at ps;a

C are not admissible if ps;a
C < pa

� by Dulac’s criterion (Theorem 2.3.1).
However, this is true even if ps;a > pa

� by the flow direction, see Figure 2.2.
Indeed, the region PX; PZ < 0 does not intersect 1Q. By the same reason, the
trajectories nearM0 D A0 move clockwise, by intersecting both lines `C

1 and `C
2

exactly once.
To conclude we infer that the behavior of the flow on the lines `C

1 and `C
2 does

not allow any orbit to reach A0 D M0 in forward time. Assume on the contrary
that there exists a homoclinic orbit � with !.�/ D ˛.�/ D A0. In this case � cre-
ates a bounded invariant regionD such that any orbit insideD is also homoclinic,
by Poincaré–Bendixson theorem. Fix a point Q0 2 R�

�
\ `C

2 \D, and consider
the unique trajectory �0 passing through this point at time t D 0. By construction,
�0 lies entirely in the regionR�

�
. However, the proof of Theorem 2.3.1(ii), applied

to the regionD0 enclosed by the trajectory �0, yields a contradiction with the fact
that ps;a

C ¤ p
p;a
C . �

It is interesting that when p 6 p
s;a
C these results give a simple proof of some

Liouville theorems in (Cutrì and Leoni 2000) (namely Theorem 1.2.8), concerning
radial solutions. The same holds forM�, as we shall see in Section 4.2.

Remark 4.1.10. For all p > p
s;a
C , as already mentioned in Introduction, there

exists a singular trivial solution given by up D Cp r
�˛, Cp as in (3.1.8). This

corresponds to the stationary trajectory ˙p � M0. Moreover, any periodic or-
bit of the dynamical system (2.1.6) which intersects the concavity line `C twice
corresponds to a classical pseudo–blowing up solution for the problem (PC). In-
stead, in the case p D p

p;a
C , periodic orbits around the center configuration ofM0

lying entirely in the region R�
�
(see Proposition 2.2.7) cannot correspond to C 2

solutions, since they oscillate between the two functions c1r
�˛ and c2r

�˛ indef-
initely for some 0 < c1 < c2, without never changing convexity. We stress that
these two types of solutions originated from periodic orbits do exist in the case of
the Laplacian in dimensions N and zNC, for the critical exponents pa

� and pp;a
C

respectively, see Theorem 6.1(iii) in (Bidaut-Véron 1989).
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Figure 4.2: Case p D p
s;a
˙

: p 2 C and A0 D M0 has infinitely many unstable
directions. Below �p are the orbits corresponding to infinitely many . zN˙ � 2/–
blowing up solutions in a ball.

Figure 4.3: Case p > ps;a
˙

, p 2 C without periodic orbits.

Lemma 4.1.11. If p > p�
aC then �p (see Proposition 2.2.5) blows up in finite

backward time. In particular, �p does not correspond to a singular solution for
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Figure 4.4: Case p > ps;a
˙

, p 2 S without periodic orbits.

Figure 4.5: Case p 2 P for MC, p 2 .p�
aC; p

p;a
C /. Here M0 is a source. The

orbits inside the displayed periodic orbit correspond to infinitely many ˛–blowing
up solutions with pseudo-slow decay atC1. All trajectories above�p correspond
to solutions either in the exterior of a ball or in an annulus.

any p > p�
aC.
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Figure 4.6: Case p D p�
aC 2 F . HereM0 is a source and �p D �p, see Remark

4.1.8. There are infinitely many ˛–blowing up solutions with pseudo-slow decay
(inside the minimal periodic orbit), and infinitely many pseudo–blowing up solu-
tions with pseudo-slow decay (periodic orbits). Moreover, there are no solutions
in the exterior of a ball.

Proof. If p 2 .p�
aC; p

p;a
C � we have p 2 P , and there exists a maximal periodic

orbit �p around M0 such that !.�p/ D �p. If ˛.�p/ D �p, then �p and �p

would cross somewhere. Indeed, this comes from the fact that the stable linear
tangent direction at A0 is above the line `C

2 (see Figure 2.1), and the vector field
on `C

2 points down for X > ˛, by Proposition 2.2.2 (3). Obviously crossings
are not admissible by uniqueness of the ODE problem. On the other side, for
p > p

p;a
C , M0 is a sink and periodic orbits are not allowed by Theorem 2.3.1.

Thus, in both cases, using Proposition 2.4.1, we get that �p blows up backward in
finite time. �

Proof of Theorem 3.4.5. .i/ First we recall that for p 2 .1; p
s;a
C � there are no pe-

riodic orbits, by Theorem 2.3.1 and the proof of Proposition 4.1.9. Moreover, we
know by Corollary 4.1.4 and Theorem 4.1.7 that the regular trajectory �p blows
up forward in finite time. Hence, �p together with the line L D f.X;Z/ W X D

zNC � 2g and the X , Z axes, create a bounded region D from which an orbit of
(2.1.6) may only leave through L.

Thus, if p < ps;a
C , any trajectory issued from A0 (which is a source by Propo-
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sition 2.2.4) crosses the line L and then blows up in finite time. If p D p
s;a
C the

same holds, by Proposition 4.1.9. In both cases there are infinitely many such
trajectories which correspond to singular solutions in an interval .0; R/, R > 0,
see Proposition 2.4.3. They are . zNC � 2/–blowing up, cf. (3.1.7) with the !-limit
exchanged by ˛-limit. Therefore there cannot be singular solutions in RN n f0g

for this range of p.
.i i/-.i i i/ For p 2 .p

s;a
C ; p�

aC/, as in .i/, the trajectory �p, the line L and the
X;Z axes determine a bounded region D from which an orbit may only leave
through L. Recall that for these values of p, A0 is a saddle point and M0 is
a source, see Proposition 2.2.4. Thus, the unique orbit �p arriving at A0 (see
Proposition 2.2.5) can either converge to M0 or to a periodic orbit around M0,
backward in time. If p 6 pa

� there are no periodic orbits (Theorem 2.3.1), so �p

corresponds to ˛–blowing up solution of (PC); in particular this is the case for
each p 2 .p

s;a
C ; pa

�� if p
s;a
C 6 pa

�.
If in turn p 2 .pa

�; p
�
aC/ there could be periodic orbits aroundM0, so that �p

corresponds to either a pseudo–blowing up or a ˛–blowing up solution of (PC).
All the other orbits coming out from M0 or from a periodic orbit � around

M0 (whenever such � exists) must necessarily leave D by crossing the line L in
forward time, and therefore blow up in finite time. This gives infinitely many
singular solutions of (PC); they are either ˛–blowing up or pseudo–blowing up
in intervals .0; R/, R > 0.

If � exists, we have in addition infinitely many orbits � issued from M0 and
converging to a minimal periodic orbit (which is � if the system has only one limit
cycle). Each � crosses infinitely many times the line `C when t ! C1, and so
corresponds to a ˛–blowing up solution of (PC) with pseudo-slow decay at C1

as in (3.1.9). On the other hand, a periodic orbit itself in this range of p’s crosses
`C twice, so corresponds to a pseudo–blowing up solution to (PC), see Remark
4.1.10; they are pseudo-slow decaying and change concavity infinitely many times
both as r ! 0 and r ! C1.

.iv/When p D p�
aC, the regular trajectory �p�

aC
together with the X and Z

axes delimit an invariant set D containing M0. Since M0 is a source, we have
already seen that there exists a periodic orbit around M0; say � is the minimal
one. We then infer that there exist infinitely many periodic orbits in the region
D n int.�/, at least in a neighborhood of @D, see Figure 4.6. Indeed, the existence
of a maximal periodic orbit �0 insideD would create a bounded regionDn int.�0/

in which the orbits issued from �0 could not go anywhere, thus violating Poincaré–
Bendixson theorem.
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.v/ When p 2 .p�
aC; p

p;a
C /, we have that M0 is a source and there exists a

minimal periodic orbit � aroundM0. In this case, � crosses the line `C twice since
p < p

p;a
C , see Theorem 2.3.1. Thus, all trajectories issued fromM0 converge to

� in forward time. These and the periodic orbits give us singular solutions as in
the last part of the proof of .i i i/. Finally, note that no singular solutions converge
to A0 by Lemma 4.1.11, so the assertion holds.

.vi/ By Propositions 2.2.4 and 2.2.7 and Theorem 2.3.1 we have that for
p D p

p;a
C the stationary pointM0 is a center while for p > pp;a

C M0 is a sink with-
out periodic orbits. These and the fact that A0 is a saddle point, whose unstable
manifold is the X axis, imply that no singular nontrivial solutions are admissi-
ble. �

Finallywe consider the case of exterior domain solutions, proving Theorem 3.4.7
forMC. The proof forM� turns out to be the same.

In Section 3.3we have observed that a solutionu of (3.3.1) necessarily satisfies
the monotonicity in Lemma 3.3.8. Hence the corresponding trajectory �p blows
up backward in finite time, see Proposition 3.3.14. Thus, to prove Theorem 3.4.7
it is enough to show that for p 2 .1; p�

aC� there are no orbits of the dynamical
system (2.1.6) defined in .T;C1/ for some T > 0 with this kind of blow-up
behavior.

Proof of Theorem 3.4.7. By the definition and properties of the critical exponent
in Sections 4.1.1 and 4.1.2, we know that p 2 C for p 2 .1; p�

aC/, while p
�
aC 2 F .

In the first case the regular trajectory �p together with the X and Z axes and the
line L D f.X;Z/ W X D zNC � 2g bound a region D from which any trajectory
can only escape in forward time through L. In the second case �p and the X and
Z axes enclose a bounded invariant region D. In both cases the closure of D
contains the pointsM0 (for p > p

s;a
C ) and A0.

By contradiction assume that a radial solution of (3.4.6) exists. Then, by
Proposition 3.3.14 the corresponding trajectory�p is defined in an interval .tı ;C1�

for some tı > �1, and blows at tı satisfying (3.3.14). Since it does not blow up in
forward time, by Proposition 2.4.1 (see (2.4.1)) and Poincaré–Bendixson theorem
the !-limit !.�p/ is either M0 (if p > p

s;a
C ), or A0, or a periodic orbit around

M0. In any case �p should cross �p which is not possible. �

Remark 4.1.12. It is proved in (Galise, Iacopetti, and Leoni 2020), when a D 0,
that for every p 2 .p�

aC;C1/ both a fast decaying and infinitely many slow or
pseudo-slow decaying solutions of (3.4.6) exist. In terms of our quadratic system
(2.1.6) this could be proved using Lemma 4.1.11 for the fast decaying solutions,
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or studying the trajectories arriving at M0 or at a periodic orbit for the slow or
pseudo-slow decaying solutions. However, since the proof of (Galise, Iacopetti,
and Leoni 2020) easily extends to the case a ¤ 0, we prefer to omit the details.

Note that with the analysis of the trajectories blowing up backward in finite
time one can only get the existence of a solution u satisfying the conclusion of
Lemma 3.3.8 at some radius � D �ı > 0. Then the solution should be continued
(in 3Q) to reach a positive radius �0 > a where u.�0/ D 0, so to verify the
Dirichlet problem in the exterior of a ball. This is possible by using a shooting
argument from �, as done for instance in (Galise, Iacopetti, and Leoni 2020, proof
of Theorem 6.1).

4.2 TheM� case
In this section we analyze the complementary case for the operatorM�. Recall its
respective dimension-like parameter from (1.2.5) satisfying zN� > N . The main
difference with the case of MC is the reverse ordering of the exponents pa

� and
pp;a

� from (1.2.6), with ps;a
� 6 pp;a

� 6 pa
�. Also, if � < � then the stationary

pointM0 is a sink in the interval .pp;a
� ; pa

�/, see Proposition 2.2.4 (4).
We start by pointing out that all properties stated forMC in Section 4.1.1 also

hold for M�. In particular, one gets that the set F possesses at most one point,
which splits the interval .1;C1/ into two components C and P [ S accordingly
to Corollary 4.1.4. Moreover, each of these components is nonempty, since one
verifies, as in Propositions 4.1.5 and 4.1.6, the following result.

Proposition 4.2.1. If p > pa
� then p 2 S , and for p < pp;a

� it holds that p 2 C.
This allows us to define, as in Section 4.1, the critical exponent p�

a� as follows

p�
a� D sup C.

Then, by Proposition 4.2.1,

p�
a� 2 Œ pp;a

� ; pa
� �

and, as for MC, we call it the critical exponent for M�. Next we show that
p�

a� 2 F and p�
a� is in the interior of the previous interval.

Theorem 4.2.2. The critical exponent p�
a� belongs to F . Thus it is the only ex-

ponent in the equation (P�) for which there exists a unique, up to scaling, fast
decaying solution.

Moreover, if � < �, then (3.4.5) holds and there exists " > 0 such that
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.pa
� � ";C1/ � S .

Proof. Obviously p�
a� 62 C because C is open, see Remark 3.1.9. Moreover, p�

a�

cannot belong to P; otherwise �p�
a�

should cross the line `�
1 by Lemma 4.1.1(ii),

while �p for p 2 C never does it.
Finally we show that p�

a� 62 S . Indeed, if this was the case then p�
a� > p

p;a
�

becauseM0 is a center at pp;a
� , see Proposition 2.2.7. Hence M0 D M0.p/ is a

sink for every p in a neighborhood I" D .p�
a� � "; p�

a� C "/ for some " > 0,
by Proposition 2.2.4 (4). Then there exists a maximal ball B�p

centered atM0.p/

with the property that any trajectory �p entering in B�p
satisfies !.�p/ D M0.p/,

see (Hale and Koçak 1991). Since we are assuming that p�
a� 2 S then!.�p�

a�
/ D

M0.p
�
a�/. By the continuity of the dynamical systemwith respect to the parameter

p, also !.�p/ D M0.p/ for p 2 I" (up to diminishing "). But this contradicts the
definition of p�

a�, since �q blows up in finite time when q 2 C.
Hence, p�

a� 2 F . The proof that p�
a� cannot be pp;a

� nor pa
� is the same as

the one for MC, see Theorem 4.1.7. It relies on Theorem 2.3.1 which states, in
particular, that there are no periodic orbits of (2.1.8) for pa

�. This also proves that
the regular trajectory �pa

�
converges toM0 D M0.p

a
�/, so that p

a
� 2 S . Next, a

continuity argument as in the first part of this proof shows that p 2 .pa
� � "; pa

�/

also belongs to S for sufficiently small " > 0. Consequently, for such p’s it does
not exist a periodic orbit aroundM0, and the proof is complete. �

Proof of Theorem 3.4.2. All previous results obtained forM� prove the theorem.
In particular, the statements .i i i/–.iv/ follow from Theorem 4.2.2. �

We finish the section with the proof of Theorem 3.4.6 about singular solutions.

Proof of Theorem 3.4.6. It is enough to prove .i i i/ and .v/, since the proof of the
other items are the same as for Theorem 3.4.5. Let us analyze the whole interval
p 2 .pp;a

� ; pa
��.

Recall thatM0 is a sink whenever p > pp;a
� . Therefore, there is no trajectory

coming out from M0 in the range p 2 .pp;a
� ; pa

��. In particular, ˛.�p/ is never
M0 in this range of p.

For p 2 .pp;a
� ; p�

a�/ we have p 2 C. In this case the regular trajectory �p

and the line L D f.X;Z/ W X D zN� � 2g, together with the X andZ axes, create
a bounded region from which any orbit may only leave forward in time through
L; recall that the flow is going out on L, see Figure 2.1. Therefore, Poincaré–
Bendixson theorem implies the existence of a periodic orbit �p around M0 such
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that ˛.�p/ D �p. This immediately determines four types of nontrivial positive
pseudo–blowing up solutions of (3.4.1)–(3.4.2) (in the case ofM�):

(1) a fast decaying solution corresponding to the trajectory �p;
(2) solutions with slow decay, whose corresponding orbits lie inside a minimal

periodic orbit �0 aroundM0; here �0 crosses `� twice due to Theorem 2.3.1;
(3) solutions of the Dirichlet problem in BR n f0g, such that the corresponding

orbits are issued from �p and blow up in finite forward time;
(4) pseudo-slow decaying solutions, which correspond to the periodic orbits.

All of these singular solutions change concavity infinitely many times in a neigh-
borhood of r D 0. Further, there are infinitely many solutions of types (2) and (3);
see Figure 4.7. Thus, .i i i/ holds.

To prove .v/, let us recall that at pa
� no periodic orbits are admissible by The-

orem 2.3.1. Also, by Theorem 4.2.2 there exists " > 0 such that p 2 S for all
p 2 .p� � ";C1/. Now, arguing as in Lemma 4.1.11 one sees that �p blows up
in finite backward time for p > p�

a�, so .v/ is proved. �

Remark 4.2.3. In the case ofM� the existence of singular solutions in the range
.p�

a�; p
a
� � "/ is not guaranteed, though solutions as in the cases .2/–.4/ in the

proof above are admissible.

Concerning the exterior domain solutions, we have already observed in Sec-
tion 4.1.3 that the proof of Theorem 3.4.7 is the same for both operatorsM˙.
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Figure 4.7: Case p 2 .pp;a
� ; p�

a�/ for M�, M0 is a sink. There are infinitely
many pseudo–blowing up solutions: a unique fast decaying (given via the orbit
�p); a pseudo-slow decaying (periodic orbit � ); infinitely many in a ball (outside
� ); infinitely many slow decaying (inside � ).
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