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Preface

The purpose of this short course is to introduce some models of infectious dis-
eases that are expressed as systems of ordinary differential equations (ODEs). The
background expected of the reader is the introductory knowledge of ODEs that
students usually acquire in calculus courses, together with matrix theory through
eigenvalues and eigenvectors. Three good texts for furthering your knowldge of
differential equations are Perko (2001), Schaeffer and Cain (2016), and Sotomayor
(1979). However, we will introduce ideas about ODEs that may be new to you as
they are needed.

The motivation for the course is the Covid-19 pandemic. During the pandemic
the general public has become aware of the importance of mathematical models,
both to anticipate the course of the pandemic and to evaluate possible interven-
tions.

Researchers in mathematical epidemiology attempt to model a wide variety of
infectious diseases using a variety of mathematical tools. To give some context
for the course, we will describe some of this variety of both diseases and tools, and
then describe our focus in this course.

Infectious diseases

Infectious diseases are disorders caused by organisms such as bacteria, viruses,
fungi, or parasites. They have been responsible for enormous suffering and death
throughout recorded history.

New infectious diseases have emerged continually during recorded history and



will continue to emerge in the future. The source is often some sort of transmission
of diseases of other species.

Infectious diseases and their spread can be viewed as byproducts of human
progress. Domestication of animals and human penetration into all global biomes
have helped diseases to migrate from other species to humans. Global trade, which
has existed since ancient times, has helped diseases to spread.

Progress in scientific understanding, sanitation, preventionmeasures, and treat-
ments has led to improved control of many infectious diseases in most parts of the
world. Our increased knowledge and experience have given us remarkable tools
to bring to bear on the Covid-19 pandemic and on the infectious diseases that will
emerge in the future.

Modes of transmission

We will give a few examples of especially deadly infectious diseases and their
modes of transmission.

Plague is caused by a bacterium that is typically transmitted by the bite of a
flea that previously bit an infected animal. It can also be transmitted from person
to person by coughing. Plague pandemics have been among the most devastat-
ing episodes in human history (Frith 2012). The Justinian Plague originated in
Ethiopia and reached Constantinople (now Istanbul) in 541 AD. It killed some
5,000 to 10,000 people per day in the city, and ultimately killed perhaps 100 mil-
lion people in Africa, Asia and Europe over the next few years. There were re-
peated outbreaks over the next 200 years. In Europe, according to Frith (ibid.),
“the social and economic disruption caused by the pandemic marked the end of
Roman rule and led to the birth of culturally distinctive societal groups that later
formed the nations of medieval Europe.”

Plague reappeared in Europe in 1347 (the Black Death), brought from Asia
Minor to Crimea by a Tartar army. It killed a quarter of the population of Europe,
25 million people, by 1350. Outbreaks continued in Africa, Asia and Europe for
over 300 years. The Black Death led to the breakdown of medieval society and
the growth of a middle class.

Plague reemerged in China in 1855 and was not fully controlled for a hundred
years, by which time it had killed 15 million people, mostly in India.

Smallpox is caused by a virus that is spread by contact with patients’ sores, by
contact with contaminated objects such as bedding or clothing, and by coughing
and sneezing. It was already present in 3rd century BC Egypt. It was brought to



the Americas, where it was unknown and there was no immunity, by Europeans
starting in the 1520s. It is estimated that OldWorld diseases, principally smallpox,
killed 90 to 95% of the indigenous population of the Americas. Although vacci-
nation campaigns began in the 19th century, smallpox still killed 300 million to
500 million people during the 20th century. Smallpox was declared eradicated in
1979 (Wikipedia 2021e).

Malaria is caused by a parasite that is transmitted by mosquito bites. There
were 229 million cases of malaria in 2019, leading to 409,000 deaths. 94% of
cases and deaths were in Africa (CDC 2021).

Cholera is a bacterial disease usually spread through contaminatedwater. There
have been seven cholera pandemics since the 19th century. Cholera currently kills
at least 21,000 people per year (WHO 2021). A cholera epidemic in Haiti that be-
gan in 2010, following an earthquake, sickened almost 800,000 people (Wikipedia
2021b).

Acquired immunodeficiency syndrome (AIDS) is caused by the human im-
munodeficiency virus (HIV). It is transmitted sexually, by contact with infected
blood or contaminated needles, and from mother to child. AIDS has killed around
33 million people since it was first identified in the 1980s (Wikipedia 2021f). It
probably jumped from chimpanzees or gorillas to humans in Central Africa in the
1920s (Wikipedia 2021d).

Whilemathematical epidemiologists attempt tomodel all these diseases, in this
course we shall be concerned with infectious diseases that are principally transmit-
ted directly from one person to another.

Influenza is the prime example. It is caused by a family of viruses that are
spread by coughing or sneezing. The first documented flu pandemic began in Asia
in 1510 and spread along trade routes (Wikipedia 2021a).

The so-called Spanish flu pandemic of 1918–1920 killed as many as 100 mil-
lion people worldwide. It was first observed in the state of Kansas in the United
States in January 1918 (Wikipedia 2021h). It rapidly spread to other parts of the
United States and Europe, and then around the world, reaching Brazil by August
1918. In Rio de Janeiro, the Spanish flu killed about 15,000 people and sickened
another 600,000—about 66% of the city’s population. “The city soon saw itself
poised on the verge of collapse. There was not enough food, not enough medicine,
not enough doctors, and not enough hospitals to take in the sickest. …The city
streets gradually were transformed into a sea of unburied bodies, as there were
not enough gravediggers to inter the bodies or caskets in which to place them.”
(Goulart 2005)

Mutations of the 1918 virus are responsible for most influenza cases since then



(Taubenberger and Morens 2006). Flu pandemics in 1957–58 and 1967–68 killed
1 to 4 million people worldwide (Wikipedia 2021g).

Coronaviruses are spread like influenza viruses. SARS-CoVwas first reported
in China in February 2003 and probably originated from bats. It spread to the
Americas, Europe, andAsia and killed almost 800 people. MERS-CoVwas first re-
ported in Saudi Arabia in 2012. It emerged from bats via camels as an intermediate
host, and has killed over 800 people. SARS-CoV-2, first reported inWuhan, China,
in December 2019, causes the syndrome known as Covid-19, which is presently a
global pandemic. It is also generally believed to have emerged from bats. It has
caused almost three million deaths as of mid-April 2021 (Wikipedia 2021c).

Models used in mathematical epidemiology

Our course will describe the use of ODEs to model the spread of diseases like in-
fluenza and the coronavirus diseases. ODE models are the ones most commonly
used to anticipate the spread of these diseases and to explore the likely effect of
countermeasures. ODEmodels divide a population into categories, called compart-
ments, and describe the evolution of the populations fractions in the compartments
over time. There may be just two compartments, infected and not infected, or a
large number of compartments that divide the population in whatever ways seem
important.

Here are some other types ofmodels used inmathematical epidemiology, which
we will not discuss.

Stochastic models

Especially at the start of an epidemic, when only a few people are infected, the
element of chance is important in whether the epidemic spreads or dies out. ODE
models are deterministic. Stochastic models take the probabilistic aspect of epi-
demics into account. An introductory reference is Allen (2008).

Network models

Both ODE models and stochastic models divide a population into compartments,
and assume that members of compartments encounter each other at certain rates.
Network models by contrast represent individuals as nodes in a network, and rep-
resent their contacts with each other by edges that connect the nodes. Similar to



stochastic models, disease is transmitted across edges probabilistically. Such mod-
els achieve added realism but are hard to analyze unless strong assumptions are
made. A good reference is Kiss, Miller, and Simon (2017).

Another type of network model uses two types of nodes, one for individuals
and one for mixing locations such as workplaces, stores, and schools. Edges con-
nect individuals to mixing locations. These models have become important during
the Covid-19 pandemic due to the availability of aggregate cellphone data that
records the movement of people from homes to mixing locations (Chang et al.
2021).

Agent-based models

Agent-based models are computer programs that simulate the interactions of indi-
viduals (agents) in a given society over a period of time. They can be remarkably
realistic.

In 2006 a group at Imperial College (London) created agent-based models to
simulate flu epidemics in the United Kingdom and United States, based on data
about population density, household size and age structure, schools, workplaces,
and commuting; see Ferguson, Cummings, et al. (2006). The models were repur-
posed in a report of Ferguson, Laydon, et al. (2020) to predict the possible course
of the Covid-19 pandemic in the UK and US. This report greatly influenced the
response of the UK and US governments to the pandemic (Booth 2020).

COMORBUSS, an agent-based model developed in Brazil, is intended to care-
fully model a single city in order to advise which disease mitigation efforts would
bemost effective there (https://comorbuss.org, http://www.cemeai.icmc.
usp.br/ModCovid19/comorbuss).

Problems with agent-based models include the effort required to build them,
the time required to run them, and the fact that their interactions are probabilistic,
so many runs may be required to get good predictions.

PDE models

In ODE models the variables are functions of time only. In partial differential
equation (PDE) models the variables are functions of time and space. Thus PDE
models can be used to study the spread of an epidemic in space. For example,
Berestycki, Roquejoffre, and Rossi (2021) used a PDE model to study the early
spread of Covid-19 by road networks in Italy.

https://comorbuss.org
http://www.cemeai.icmc.usp.br/ModCovid19/comorbuss
http://www.cemeai.icmc.usp.br/ModCovid19/comorbuss


ODE models in mathematical epidemiology
The fundamental ODE model of mathematical epidemiology is the SIR model,
whose name represents its compartments, susceptible, infective, and recovered.
It was introduced in a 1927 paper by A. G. McKendrick, a Scottish physician
with experience fighting malaria in Sierra Leone and dysentery and rabies in India,
and W. O. Kermack, a blind Scottish chemist (Kermack and McKendrick 1927).
We shall discuss their model in Chapter 2. The SIS model (susceptible, infective,
susceptible) is even simpler; we discuss it in Chapter 1.

A basic result underpinning a large part of applied mathematics is the Perron–
FrobeniusTheorem, which says, roughly speaking, that the principal eigenvalue of
a positive matrix is positive and corresponds to a positive eigenvector. It is behind
two important results of mathematical epidemiology. One explains why in many
epidemiological models, if the susceptible population is renewed by a mechanism
such as loss of immunity or births, a disease can become endemic; see Hethcote
(1978). Another, the next generation matrix method, shows how to calculate the
basic reproduction number in a complicated model.

The Perron–Frobenius Theorem is beyond the scope of this course. However,
in Chapter 3, we use simpler arguments to show how renewal of the susceptible
population in a simple SIR model can lead to a disease becoming endemic. And in
Chapter 4 we explain the next generation matrix and how to use it, without going
into proofs. Our main example in that chapter is an extension of the SIR model
that represents the main features of Covid-19.

Chapter 5 introduces spontaneous human behavioral change. You know from
experience that when infection levels rise, many people who can stay home will do
so, and many will practice stricter hygiene and social distancing. When infection
levels fall, people relax. This evident fact greatly affects the spread of an infectious
disease, but is rarely accounted for in epidemiological models. How to deal with
human behavioral change is at the research frontier in mathematical epidemiology.
We explain an approach that uses imitation dynamics, an idea from game theory.



1 SIS Model

1.1 The model

In a human population, an infectious disease such as measles, influenza, or Covid-
19 spreads due to a combination of pathogen characteristics and human behavior.
Pathogen characteristics determine the circumstances under which an infective
person can readily infect another. Human behavior determines how frequently
those circumstances occur.

Aword about English terminology. Infectious diseases are disorders caused by
organisms such as bacteria, viruses, fungi, or parasites. Those that can be passed
from person to person are called contagious diseases. This course will consider
only contagious diseases. However, in mathematical epidemiology the term “con-
tagious disease” is rarely used; the broader term “infectious disease” is almost
always used instead. We will follow this tradition. An infected individual who is
able to pass on the disease to another person is called contagious, infectious, or
infective. These words all have the same meaning. In ordinary spoken English,
only the first two are commonly used, but in mathematical epidemiology, the third
is most common. We will follow this tradition by almost always using the word
“infective” when referring to an individual or a collection of individuals.

In this chapter we consider an infectious disease for which no one has immu-



2 1. SIS Model

nity and immunity is never acquired. The common cold is an example. We assume
that the population under consideration can be divided into two groups: the sus-
ceptibles (those who do not have the disease) and the infectives (those who have
the disease; we assume they are all infective). In epidemiology these groups are
called compartments.

A susceptible individual can acquire the disease from an infective individual.
The susceptible individual then becomes infective, and remains so until the disease
runs its course. Once the disease has run its course, the infective individual returns
to being susceptible, since there is no immunity.

We assume that the population has a constant size. In Section 2.6 we will
discuss epidemiological models for populations with changing size.

Let S.t/ denote the fraction of the population that is susceptible at time t , and
let I.t/ denote the fraction of the population that is infective at time t . We of
course have S.t/ > 0, I.t/ > 0, and S.t/ C I.t/ D 1. A susceptible individ-
ual becomes infective due to a contact with an infective individual that has the
appropriate characteristics for transmission of the disease. These characteristics
may relate to the length of the contact, the closeness of the individuals during the
contact, where the contact occurs, whether the sick individual sneezes, etc. Such
contacts are sometimes called adequate contacts. Of course there is also an el-
ement of probability in whether a contact actually results in transmission of the
disease. We will address this aspect of adequate contacts in Section 1.5.

It is perhaps reasonable to assume that if we multiply I.t/ by a number k, then
we will multiply the rate at which such contacts occur by k; and if we multiply
S.t/ by a number k, then we will also multiply the rate at which such contacts
occur by k. This means that the rate at which the disease is transmitted at time t is
proportional to the product S.t/I.t/.

Similarly, it is perhaps reasonable to assume that the rate at which infectives
become well at time t , and return to being susceptible, is proportional to I.t/.

These assumptions lead to the following pair of equations for the rates:

dS

dt
D �ˇS.t/I.t/ C 
I.t/; (1.1)

dI

dt
D ˇS.t/I.t/ � 
I.t/: (1.2)

In these equations, ˇ and 
 are positive proportionality constants. Notice the sign
of each term.

In Sections 1.5 and 1.6 we will give a more careful derivation of (1.1)–(1.2),
and we will explain the interpretation of the constants ˇ and 
 .



1.2. How to do Western science 3

We will often use a dot to denote derivative with respect to t . Thus the equa-
tions (1.1) and (1.2) can be rewritten like this:

PS.t/ D �ˇS.t/I.t/ C 
I.t/; (1.3)
PI .t/ D ˇS.t/I.t/ � 
I.t/: (1.4)

Usually the equations are written more simply, like this:

PS D �ˇSI C 
I; (1.5)
PI D ˇSI � 
I: (1.6)

Equations (1.5)–(1.6) constitute the SIS model.
By adding (1.5) and (1.6), we find that PS C PI D 0, so if S C I D 1 initially,

then S C I remains 1 always. This makes sense since S and I are population
fractions.

1.2 Differential equations background: how to do West-
ern science

Equations (1.5) and (1.6) tell us that if we know the values of S and I at time
t , then we know the rates at which S and I change at time t . The formulas just
describe in mathematical terms a concept of how disease transmission works.

However, the equations do not tell us what happens over a long time. We do
not know if the disease will die out, or spread until the entire population is always
infected, or oscillate in prevalence, or tend toward being always present in the
population at some intermediate level.

Equations (1.5) and (1.6) constitute a system of differential equations. Solu-
tions of the system will tell us what happens.

The idea that Isaac Newton introduced intoWestern science in the 17th century
is that our understanding of how the world works is usually an understanding about
rates. Such an understanding can be expressed as a system of differential equations.
The solutions of the system will tell us what happens.

1.3 Differential equations background: basics
Before we go on, we will give some basic notions and facts about differential
equations from the rather geometric point of view that we will use.



4 1. SIS Model

Suppose x.t/ D .x1.t/; : : : ; xn.t// is a moving point in Rn. At time t , its
velocity vector is Px.t/ D . Px1.t/; : : : ; Pxn.t//. The velocity vector is usually drawn
with its tail at the point x.t/.

For example, suppose x.t/ D .cos t; sin t /, a moving point in R2. The point
x.t/ runs around the circle of radius 1, centered at the origin. We have Px.t/ D

.� sin t; cos t/. Therefore x.0/ D .1; 0/, Px.0/ D .0; 1/, x.�
2

/ D .0; 1/, and
Px.�

2
/ D .�1; 0/. These facts are illustrated in Figure 1.1.

Px.0/
Px.�=2/

x1

x2

Figure 1.1: The curve x.t/ D .cos t; sin t/ in gray and the velocity vectors Px.0/

and Px.�
2

/ in black.

As we have seen, a scientific idea often tells us that if we know x, a point
that represents the state of the system, at some time, then we know Px, how x is
changing, at that time. In other words, the velocity vector Px is a function of the
state x, i.e., Px D f .x/ or

Px1 D f1.x1; : : : ; xn/; (1.7)
:::

Pxn D fn.x1; : : : ; xn/: (1.8)

An equation of the form Px D f .x/ is a first-order autonomous ordinary differential
equation.

• First-order: there are only first derivatives, not higher derivatives.

• Autonomous: the derivative only depends on the state of the system x, not
on the time t .

• Ordinary: there are only ordinary derivatives, not partial derivatives.



1.3. Differential equations background: basics 5

When a differential equation Px D f .x/ on Rn with n > 1 is written in the form
(1.7)–(1.8), it is called a system of differential equations.

You surely remember Newton’s Second Law of Motion, F D ma, or force
equals mass times acceleration. Let x be the position of an object at time t , let
v D Px be its velocity, and let a D Pv D Rx be its acceleration. Newton’s Second
Law of Motion is the second-order differential equation Rx D F=m. However, we
can rewrite it as a system of first-order differential equations in the variables .x; v/:

Px D v;

Pv D F=m:

F can depend on x and v in various ways, depending on whether you are consid-
ering a spring, a pendulum, gravity, or whatever. Once you have an equation for
F , you have a system of differential equations. If x is in R, this is a system of two
differential equations. If x is in R3, we have a system of six differential equations.
(If the force depends on time, the system is nonautonomous. We do not consider
nonautonomous systems in these notes.)

To use the differential equation Px D f .x/ to make a prediction of what will
happen, i.e., to predict x.t/, we need to solve an initial value problem

Px D f .x/; x.t0/ D x0:

In other words, given the differential equation Px D f .x/ and the state of the
system at time t0, x.t0/ D x0, we need to find a function x.t/ such that x.t0/ D x0

and, at every time t , Px.t/ D f .x.t//.
For example, the system

Px1 D �x2; (1.9)
Px2 D x1; (1.10)

with the initial condition .x1.0/; x2.0// D .1; 0/, has the solution .x1.t/; x2.t// D

.cos t; sin t /. To check that this is indeed a solution of the system, just substitute
Px1.t/ and Px2.t/ into the left side, and substitute x1.t/ and x2.t/ into the right side:

� sin t D � sin t;

cos t D cos t:

To check that .x1.0/; x2.0// D .1; 0/, just notice that cos 0 D 1 and sin 0 D 0.
The following theorem gathers some fundamental facts about differential equa-

tions:



6 1. SIS Model

Theorem 1.1. Let U be an open set in Rn, let f W U ! Rn be a continuously
differentiable function, and let x0 2 U . Then:

1. The initial value problem

Px D f .x/; x.t0/ D x0;

has a unique solution.

2. If x.t/ stays in a compact (closed and bounded) subset of U as t increases
(respectively decreases), then x.t/ is defined for t0 6 t < 1 (respectively
�1 < t 6 t0).

Our differential equations Px D f .x/ will always have f continuously differ-
entiable, so that this theorem applies.

The set U on which the differential equation is defined is called phase space.
The solution that Theorem 1.1 says exists may not be one that you, or any-

one, can give an explicit formula for, but it is there, and it can be approximated
numerically.

A point x0 at which f .x0/ D 0 is an equilibrium of Px D f .x/.

Corollary 1.1. If x0 is an equilibrium of Px D f .x/, then the unique solution of
the initial value problem

Px D f .x/; x.t0/ D x0;

is x.t/ D x0 for �1 < t < 1.

To prove this, just check that the formula for x.t/ gives a solution of the initial
value problem, and recall that solutions are unique.

Corollary 1.2. Let x.t/ be a solution of Px D f .x/. Suppose that at one time t0,
the point x.t0/ is not an equilibrium. Then at every time t , the point x.t/ is not an
equilibrium.

This is an immediate consequence of the previous corollary.
Theorem 1.1 and its corollaries have important consequences that wewill begin

to see in the following section.
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1.4 Phase line for the SIS system

For the SIS system (1.5)–(1.6), we saw at the end of Section 1.1 that S.t/CI.t/ D

1 at every time t . Hence we do not really need both equations, since if we can
calculate I.t/, we can find S.t/ from S.t/ D 1�I.t/. We shall therefore use (1.5)
only, after the substitution S D 1 � I :

PI D ˇ.1 � I /I � 
I D .ˇ � 
/I � ˇI 2: (1.11)

This is a single differential equation. You can find the general solution by writing
it in the form dI

dt
D .ˇ � 
/I � ˇI 2 and using separation of variables and par-

tial fractions (or an integral table or your favorite software). We shall do this for
particular values of ˇ and 
 in the problems at the end of the chapter.

An easier way to see what is going on is to draw the phase line, which is the
I -axis with dots where equilibria are located and arrows to show where solutions
are increasing and decreasing. Where PI > 0, I.t/ is increasing; where PI < 0, I.t/

is decreasing; and where PI D 0, there is an equilibrium.
To draw the phase line, it may help you to first draw the graph of PI as a function

of I , i.e., draw the graph of

PI D .ˇ � 
/I � ˇI 2
D I.ˇ � 
 � ˇI/: (1.12)

It is a parabola. You can use the graph to draw the phase line, since it helps you to
see where PI is positive, negative, and zero. For example, there are two equilibria,
at I D 0 and I D

ˇ�

ˇ

D 1 �


ˇ
. See Figure 1.2.

Actually, since I is a population fraction, only the interval I D fI W 0 6 I 6
1g is important. In other words, this interval is our phase space. When we restrict
the phase line to the interval I, we obtain the phase portrait.

Remembering that ˇ and 
 are positive, we see that there are two cases:

• If 

ˇ

> 1, the nonzero equilibrium is not in I.

• If 

ˇ

< 1, the nonzero equilibrium is in I.

(Of course there is a third case, 

ˇ

D 1, but we will always ignore such unlikely
intermediate cases.) See Figure 1.2.

By Corollary 1.2, solutions that start away from equilibria cannot pass through
equilibria. Theorem 1.1 says that solutions that stay bounded are defined for infi-
nite time. Another important fact is that in one dimension, bounded solutions must
approach equilibria. Therefore:
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I

PI

01�


ˇ

1

(a) 
=ˇ > 1.

I

PI

0 1�


ˇ

1

(b) 
=ˇ < 1.

Figure 1.2: Phase portrait of the one-dimensional SIS equation (1.11) for 

ˇ

> 1

and 

ˇ

< 1. The parabola (1.12) is used to draw the phase line; then we restrict to
the interval 0 6 I 6 1. The arrows point left where PI < 0, and point right where
PI > 0:

• If 

ˇ

> 1, all solutions in I approach 0 as t ! 1.

• If 

ˇ

< 1, all solutions in I with I.0/ > 0 approach 1 �


ˇ
as t ! 1.

Solutions with 0 < I.0/ < 1 �


ˇ
approach 0 as t ! �1.

The interpretation of the phase portraits is as follows.

• If 

ˇ

> 1 and the disease enters the population, the disease dies out.

• If 

ˇ

< 1 and the disease enters the population, the fraction of the population
with the disease tends toward the positive number I D 1 �



ˇ
, so eventually

its prevalence in the population is roughly this value

In the second case the disease is said to be endemic, and the equilibrium at
I D 1 �



ˇ
is called the endemic equilibrium. The other possibilities we imagined,

that I.t/ might tend to 1 or might oscillate, do not occur. (In general we do not
consider the case 
 D 0; we assumed 
 > 0. The case 
 D 0 would correspond
to a disease from which one never gets well. In the case 
 D 0 we would indeed
have I.t/ ! 1.)
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The fact that solutions of differential equations take infinite time to approach
equilibria can lead to confusion. In the case 


ˇ
> 1, for example, solutions take

infinite time to approach 0. It thus appears that the epidemic never quite dies out.
In reality, however, population size is finite, so once the population fraction is
sufficiently small, in fact no infected persons remain. It is for this reason that we
say “the disease dies out.” Similarly, in the case 


ˇ
< 1, we will sometimes say

that the disease eventually reaches the endemic equilibrium.
Epidemiologists do not distinguish the cases using the fraction 


ˇ
as we just

did. Instead they use the fraction ˇ


; they say that if ˇ



< 1, the disease dies out,

and if ˇ



> 1, the disease is endemic. To explain why epidemiologists prefer ˇ


to



ˇ
, we will look more deeply into the meaning of the constants ˇ and 
 .
The common cold is supposed to be a disease to which the SIS model applies.

The model predicts that the prevalence of the common cold is constant throughout
the year. Is that not true where you live? Perhaps where you live ˇ is not constant
but varies with the season. If we replace ˇ with a time-varying given function
ˇ.t/, then the SIS system is nonautonomous, so our analysis does not apply.

1.5 The constant ˇ and the derivation of the SIS model

In this section we give a careful derivation of the SIS model and explain the mean-
ing of the constant ˇ. To achieve these goals we look at the actual size of the
population instead of population fractions.

Recall that we are considering a population of constant size, i.e., we ignore
births, deaths, immigration, and emigration. Let N be the population size. Let
s.t/ denote the number of susceptibles and let i.t/ denote the number of infectives,
so that s.t/ C i.t/ D N . The disease spreads due to contacts with appropriate
characteristics for transmission of the disease. For simplicity we just use the word
“contacts” to mean contacts with the right characteristics. If we multiply the rate at
which an infected person has contacts with others by the fraction of the population
that is susceptible, which is s.t/=N , we obtain the rate at which an infective person
has contacts with susceptible persons. If time is measured in days, we have

contacted persons
infective person � day

�
s.t/

N
D

contacted susceptible persons
infective person � day

:

Multiplying this rate by the probability that contact results in disease, we obtain
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the rate at which an infective person creates new infective persons:

new infective persons
infective person � day

D
contacted persons

infective person � day
�

s.t/

N
� probability of transmission: (1.13)

We define

ˇ D
contacted persons

infective person � day
� probability of transmission: (1.14)

We use the symbolˇ because this will turn out to be themeaning ofˇ in the SIS
system (1.5)–(1.6). Inmathematical epidemiologyˇ is called the adequate contact
rate. It is the rate of new infections per infective when all contacted persons are
susceptible (i.e., when s.t/ D N ), as occurs at the beginning of an epidemic. The
term “adequate contact” was already used in Section 1.1.

By definition, ˇ is the product of two terms. Under normal circumstances,
when individuals are not taking steps such as mask-wearing to protect against dis-
ease, the second term, the probability of transmission, is a property of the disease
itself, i.e., how contagious it is. The first term, however, depends of the mode of
life of the population. For example, it may be higher in an urban area, in which
individuals typically come into contact with many others in the course of a day,
than in a rural area.

The rate at which new infective persons in the entire population are created is
obtained multiplying (1.13) by i.t/:

new infective persons
day

D ˇ �
s.t/

N
� i.t/:

The rate at which infectives become well is proportional to i.t/ with the same
proportionality constant 
 used previously.

We obtain the system of differential equations

Ps D �
ˇ

N
si C 
i; (1.15)

Pi D
ˇ

N
si � 
i: (1.16)
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Remember that S and I are population fractions, so S D
s
N

and I D
i

N
. To

derive the system (1.5)–(1.6) from (1.15)–(1.16), in (1.15)–(1.16) just make the
substitutions s D NS , i D NI , Ps D N PS , and Pi D N PI . Try it!

It is interesting to check the units in (1.15)–(1.16). Let us just look at the first
equation. If time is measured in days, then the unit of Ps is persons/day. Since N ,
s and i all have the unit persons, the unit of ˇ must be 1/days. This is correct:
ˇ represents new infected persons per infected person per day when everyone is
susceptible. The person units cancel.

Similarly, the unit of 
 is 1/days. But what does 
 mean exactly?

1.6 The constant 


A probability distribution on an interval J is a function g.t/ defined on J such
that g.t/ > 0 and

R
J g.t/ dt D 1. If K is a subinterval of J , then the probability

that t lies in that subinterval is
R

K g.t/ dt . The mean of t is
R

J tg.t/ dt . This
is analogous to how the mean, or average, of a finite probability distribution is
calculated.

Let us ignore recruitment into the infective compartment, and for simplicity
we assume that the entire population is infected at time 0. Then (1.6) simplifies to
the initial value problem

PI D �
I; I.0/ D 1:

The solution is I.t/ D e�
t .
PI .t/ D �
e�
t is the rate at which I.t/ changes. It is negative since I.t/

decreases as people becomewell. The rate at which people becomewell (expressed
as a population fraction per unit of time) is � PI .t/ D 
e�
t , which is positive.

Eventually everyone becomes well:Z 1

0

� PI .t/ dt D

Z 1

0


e�
t dt D 1: (1.17)

You should check this calculation. Since the integral is 1, � PI .t/ D 
e�
t is a
probability distribution on the interval 0 6 t < 1.

Since people who become well at time t were ill for time t , the average length
of time that people are ill is just the mean value of t on the interval 0 6 t < 1.
This mean value is Z 1

0

�t PI .t/ dt D

Z 1

0


 te�
t dt D
1



: (1.18)
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You should check this calculation too.
Thus we have our interpretation of 
 : 1=
 is the average length of time that

people are ill with the disease being modeled. Notice that if the unit of 
 is 1/days,
as in the previous section, then the 1=
 is time in days, which makes sense.

1.7 The basic reproduction number R0

The basic reproduction numberR0, pronounced “R naught” in English, is the most
important value calculated in epidemiological models. It has become known to the
general public during the Covid-19 pandemic through countless news articles.

The basic reproduction number R0, pronounced “R naught” in English, is the
most important value calculated in epidemiological models. It has become known
to the general public during the Covid-19 pandemic through countless news arti-
cles.

R0 is the average number of people infected by an infective individual when
a disease is introduced into a population, under the assumption that the entire
population, in particular everyone that individual encounters, is susceptible to
the disease. In the SIS model, R0 is the adequate contact rate (i.e., the number
of new infections caused per day by one infective when the entire population is
susceptible) times the average number of days that an individual is infective. In
symbols,

R0 D ˇ �
1



D

ˇ



:

When a disease is introduced into a population, by the time an infective individual
recovers, she has replaced herself with R0 other infective individuals. Thus if
R0 > 1, the disease spreads; if R0 < 1, it dies out.

Let us look again at the phase portraits in Figure 1.2. Consider a solution I.t/

that starts near I D 0, so very few people are infective and almost everyone is
susceptible.

• If 

ˇ

> 1, then R0 D
ˇ



< 1. You can see that I.t/ declines toward 0.

• If 

ˇ

< 1, then R0 D
ˇ



> 1. You can see that if I.t/ starts near 0, I.t/

increases toward the nonzero equilibrium value, which is

I D 1 �



ˇ
D 1 �

1

R0
:
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Sample solutions are shown in Figure 1.3.

0 5 10 15 20 25 30 35 40
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

t

I.t/

(a) ˇ D 0:3, 
 D 0:4, so R0 D 3=4. All
solutions approach 0.

0 5 10 15 20 25 30 35 40
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

t

I.t/

(b) ˇ D 0:6, 
 D 0:4, so R0 D 3=2.
There is an equilibrium at 1 � 2=3 D 1=3.
All solutions with I.0/ > 0 approach 1/3.

Figure 1.3: Solutions of the one-dimensional SIS equation (1.11) for initial values
0:001, 0:01, 0:1, 0:2, 0:4, 0:6, and 1.

You may want to google estimated values of R0 for infectious diseases that
interest you.

1.8 The effective reproduction number Re

As an epidemic proceeds, the susceptible population fraction changes, so the num-
ber of people infected by a single infective individual also changes. The effective
reproduction number at a given time, denoted Re, is defined to be the average
number of people infected by a single infective individual at that time.

For the SIS model, when the susceptible population fraction is S , equations
(1.13) and (1.14) imply that the average rate at which a single infective individual
infects others is ˇS . Therefore at a time when the susceptible population fraction
is S ,

Re D ˇS �
1



D

ˇS



: (1.19)

One expects that when Re < 1, the number of infectives is falling, and when
Re > 1, the number of infectives is rising. This is correct for the SIS model in the
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region I > 0. From (1.19),

Re < 1 $
ˇS



< 1 $

ˇ.1 � I /



< 1 $ ˇ � ˇI < 
 $ ˇ � 
 � ˇI < 0:

On the other hand, from (1.11),

PI D .ˇ � 
 � ˇI/I:

Therefore in the region I > 0, Re < 1 if and only if PI < 0. Similarly, in the
region I > 0, Re > 1 if and only if PI > 0.

The formula (1.19) can also be used to calculate Re at an equilibrium. How-
ever, the interpretation of Re at the endemic equilibrium I D 1 �



ˇ
differs from

the interpretation at the disease-free equilibrium I D 0.
At the endemic equilibrium I D 1�



ˇ
we have Re D 1 and, of course, PI D 0.

This makes sense: at the endemic equilibrium, each infected individual replaces
himself with exactly one new infective individual, so the value of I remains con-
stant.

However, the same logic cannot be applied to the disease-free equilibrium
I D 0. At the disease-free equilibrium there are no infectives, so it does not make
sense to discuss of the number of people infected by each infective individual.

At I D 0, Re D R0, and we saw in the previous section that R0 can be less
than or greater than 1. At the disease-free equilibrium, Re should be interpreted
as the the approximate number of people infected by a single infective individual
near the equilibrium.

1.9 Discussion of the SIS model

The assumption that a disease spreads at a rate proportional to the product of the
infective and susceptible population fractions is sometimes called the law of mass
action. This law comes from chemistry. If a well-stirred solution contains two
reactants, the law of mass action says that the rate of the reaction is proportional
to the product of the concentrations of the two reactants. In epidemiology the
analog of a well-stirred solution in chemistry is a well-mixed population, in which
people encounter each other randomly.

Human populations are rarely well-mixed in the modern world. People pref-
erentially encounter certain subgroups of the population: family or roommates,
friends, neighbors, coworkers or fellow students, people who ride the same bus,
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etc. Epidemiologists use network models and agent-based models to capture these
complications. They are harder to develop, run, and analyze than differential equa-
tions models. Another way to model these complications is to introduce more com-
partments into differential equations models to represent different social groups,
age groups, etc. We will look at a model with subgroups in Problem 4.4.

Another assumption of the SIS model is that no one enters or leaves the popu-
lation being modeled. A good exercise is to try to figure out other assumptions.

A differential equation model such as the SIS model can be misleading at the
start of an epidemic. If R0 > 1, the SIS model predicts that if even a single indi-
vidual somehow contracts the infectious disease, it will spread until the endemic
equilibrium is reached. In fact there is a degree of chance involved in whether
a single infective individual infects anyone else, and if so how many. Stochastic
models are used to quantify the probability that a disease that is initially contracted
by a small number of people will actually spread.

According to statistician George Box, “All models are wrong, but some are
useful.” Extensions of the SIS model that we will explore in subsequent sections
are certainly wrong but definitely useful: they have been used by governments
throughout the Covid-19 pandemic to predict the progression of the epidemic un-
der possible government policies or changes in population behavior.

1.10 Problems

Problem 1.1 Phase lines

Draw the phase lines for the following differential equations.

1. Px D .x � 1/.x � 2/.x � 3/.

2. Px D x2.1 � x/.

Problem 1.2 Derivation of SIS in dimensionless form

Derive the system (1.5)–(1.6) from (1.15)–(1.16) by making the substitutions s D

SN and i D IN in (1.15)–(1.16).

Problem 1.3 Probability distribution

Show that for 
 > 0,
R1

0 
e�
t dt D 1.
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Problem 1.4 Mean time

Show that for 
 > 0,
R1

0 
 te�
t dt D
1


. (You may want to find a table of

integrals on the web.)

Problem 1.5 Endemic equilibrium

The endemic equilibrium in the SIS model is I D 1 �


ˇ
. Thus I depends on ˇ

and 
 . Suppose you are in charge of public health and you think that the endemic
equilibrium is too high, i.e. too many people are sick at any given time. How
might you try to reduce the value of the endemic equilibrium?

Problem 1.6 SIS with disease importation

In the SIS model (1.1)–(1.2), suppose people sometimes get sick due to visitors
from outside the population who arrive with the disease and transmit it. Wemodify
the model as follows:

PS D �ˇSI C 
I � �S;

PI D ˇSI � 
I C �S:

The modified model just says that susceptibles can contract the disease at a rate
proportional to their population fraction, independent of the number of infectives
in the population, due to visitors.

1. Since PS C PI D 0, we should only need one equation. Use the PI equation
with the substitution S D 1 � I , and multiply out to express the equation as
a polynomial in I . Answer:

PI D � C .ˇ � 
 � �/I � ˇI 2:

2. The graph of PI as a function of I is a parabola. Since the coefficient of I 2

is negative, the parabola opens downward. Show that when I D 0, PI is
positive, and when I D 1, PI is negative.

3. Use the facts in part 2 to explain why there is a unique equilibrium in I, and
all solutions in I approach it.
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Problem 1.7 Solutions of the SIS system

We consider (1.11) with ˇ D 2 and 
 D 1 (so R0 > 1), and we rewrite PI as dI
dt
:

dI

dt
D I � 2I 2:

1. In the interval 0 < I < 1
2
, find the general solution using separation of

variables and partial fractions. Answer:

ln
I

1 � 2I
D t C C:

We chose an interval where you would not have to worry about absolute
values when you used the natural logarithm function.

2. We want I as a function of t , so solve for I and write your answer as simply
as you can. Answer:

I D
A

2A C e�t
; A > 0:

3. Check by substitution into the differential equation that in fact all functions
of this form are solutions, whether or not A > 0. The constant A is deter-
mined by the initial condition I.0/ D I0.

4. From the answer in part 2 it appears that limt!�1 I.t/ D 0 and that
limt!1 I.t/ D

1
2
. From the phase line, this is correct if 0 < I.0/ < 1

2
.

However, if I.0/ > 1
2
, we see from the phase line that as t decreases,

I.t/ ! 1. What is wrong? Suggestion: for definiteness, look at the solu-
tion with I.0/ D 1. (This problem shows that the phase line can be easier
to understand than the general solution.)



2 SIR model

2.1 The model
In this chapter we consider an infectious disease that is not fatal and that confers
permanent immunity on people who contract it. To model such a disease we di-
vide the population into three compartments: susceptible, infective, and recovered
(hence immune). As with the SIS model we consider a population of constant size;
we will discuss changing population size in Section 2.6. Let S.t/, I.t/, and R.t/

denote the population fractions in each compartment at time t . We of course have
S.t/ > 0, I.t/ > 0, R.t/ > 0, and S.t/ C I.t/ C R.t/ D 1. Assuming the law
of mass action, the governing system of differential equations is similar to the SIS
system:

PS D �ˇSI; (2.1)
PI D ˇSI � 
I; (2.2)
PR D 
I: (2.3)

The constants ˇ > 0 and 
 > 0 have the same meaning they had in the SIS model.
Equations (2.1)–(2.3) constitute the SIR model. The only difference from the SIS
model is that when infectives recover they do not return to the susceptible com-
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partment; instead they move into the recovered compartment and can no longer
contract the disease.

The SIRmodel can also be usedwhen some fraction of the population is not sus-
ceptible to the disease for a reason such as genetics, behavior, previously acquired
immunity, etc. This population fraction is included in the recovered compartment.

In addition, the SIR model can be used for a disease such as Covid-19 that is
sometimes fatal. Those who die are included in the R compartment, and the com-
partment is called “removed.” The constant ˇ > 0 has almost the same meaning
as in the SIS model, but the constant 
 now represents the rate at which infectives
either recover or die. We show how to derive the SIR model for this case in Sec.
2.6.

Recall the basic reproduction number R0, which for the SIS model was given
by

R0 D ˇ �
1



D

ˇ



:

For the model (2.1)–(2.3), R0 has the same formula.
You can check that PS C PI C PR D 0, so if S C I C R D 1 initially, then

S C I C R remains 1 always. Thus we do not need all three equations, since if we
can calculate S.t/ and I.t/, we can find R.t/ from R.t/ D 1 � S.t/ � I.t/. We
shall therefore use (2.1) and (2.2) only:

PS D �ˇSI; (2.4)
PI D ˇSI � 
I: (2.5)

For the SIS model we could calculate formulas for solutions, but the phase
portrait was more helpful. For the SIR model it is not possible to find formulas for
solutions. We therefore turn to the phase portrait. The system is 2-dimensional, so
we need some more differential equations background.

2.2 Differential equations background: vector fields and
nullclines

Geometrically, a differential equation Px D f .x/, with x 2 Rn and f a function
from an open setU inRn toRn, defines a vector field onU . The vector f .x/ at the
point x is drawn with its tail at x. When n D 2, as for the SIR system (2.4)–(2.5),
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it is often not hard to get an idea what the vector field looks like. One can begin
by finding the curves where Px1 D 0 or Px2 D 0 (the nullclines).

For the system (2.4)–(2.5), we see that PS D 0 when S D 0 or I D 0, i.e., on
the two axes is the SI -plane. We also see that PI D 0 when I D 0 or S D



ˇ
. We

have equilibria where both PS D 0 and PI D 0. We conclude that the line I D 0

(the S -axis) consists of equilibria, and there are no other equilibria.
The vector field is vertical on the PS D 0 nullclines and horizontal on PI D 0

nullclines (except where they intersect). The nullclines divide the plane into open
regions on which PS and PI each has a constant sign. The signs in each region
determine whether the vectors in that region point northeast, northwest, southwest,
or southeast. Usually you can tell the direction in the open region by looking at
which way the vectors point (up or down, right or left) on the nullclines that bound
it.

We are only interested in the triangle

T D f.S; T / W S > 0; I > 0; S C I 6 1g;

which is our phase space. Thus there are two cases: R0 D
ˇ



< 1 andR0 D
ˇ



> 1.
In the first case, 


ˇ
> 1, so the line S D



ˇ
does not meet T ; in the second case,



ˇ

< 1, so it does.
The vector field on T in the two cases is shown in Figure 2.1.

• First notice the equilibria along the S -axis in both cases.

• Next, look at the I -axis in both cases. On it PS D 0 and PI < 0, so the vectors
point straight down.

• In the case R0 < 1, the positive part of the triangle

TC D f.S; T / W S > 0; I > 0; S C I 6 1g

lies in a single region, since no nullclines cut it. In this region it is easy to
check that PS < 0 and PI < 0, so vectors point southwest (to the left and
down).

• Finally, in the case R0 > 1, TC is cut in two by the nullcline S D


ˇ
, on

which PI D 0. You can check that PS < 0 throughout TC. On the other hand,
PI is positive when S > 


ˇ
and negative when S < 


ˇ
.
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As with the SIS model, the sign of PI is related to the effective reproduction
number Re (see Section 1.8.). The effective reproduction number for the SIR
model has the same formula as for the SIS model, Re D

ˇS


. From (2.2) you

can easily check that in the region I > 0,

• Re < 1 if and only if PI < 0.

• Re D 1 if and only if PI D 0.

• Re > 1 if and only if PI > 0.

I

S

R0 < 1

I

S

ˇ

R0 > 1

Figure 2.1: Nullclines, equilibria, and vector field for (2.4)–(2.5) in the triangle
T .

2.3 Differential equations background: functions and dif-
ferential equations

Consider the differential equation Px D f .x/ on Rn. Let x.t/ be a solution. Let
V W Rn ! R be a continuously differentiable function. Then V.x.t// gives the
value of V along the solution as a function of t . According to the chain rule, the
rate of change of V along the solution is

PV D
@V

@x1
.x.t// Px1.t/ C : : : C

@V

@xn
.x.t// Pxn.t/ D rV.x.t// � Px.t/ D

D rV.x.t// � f .x.t//:
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where rV.x/ D

�
@V
@x1

.x/; : : : ; @V
@xn

.x/
�
is the gradient of V at the point x, and �

represents dot product.
A nice way to think of this formula is like this: if a solution of Px D f .x/

passes through a point x, then the derivative of V along the solution at that point
is

PV .x/ D rV.x/ � f .x/: (2.6)
For example, consider the SIR system (2.4)–(2.5) in the case R0 > 1. If a

solution starts on the line S C I D 1 at a point with 

ˇ

< S < 1, we know that
the vector there points northwest. But does it point into T or out of T ? It would
be very bad if it pointed out of T . That would mean that solutions that start on
S C I D 1 soon have S C I > 1. This would not make sense since S and I are
supposed to be population fractions. We would have a bad model.

To see if this can really happen, we write the SIR system (2.1)–(2.2) in vector
form as

. PS; PI / D f .S; I / D .�ˇSI; ˇSI � 
I /;

and consider the function V.S; I / D S C I . We compute:

rV.S; I / � f .S; I / D .1; 1/ � .�ˇSI; ˇSI � 
I / D �
I < 0 if I > 0:

Thus the function S C I is decreasing along solutions of the SIR system in the
region I > 0. Hence we can be sure that if a solution starts in TC on S C I D 1,
S C I will immediately decrease, so the solution will enter the interior of T .

Often it is easier not to use the formula (2.6) to compute PV . For the example
we just considered, with V.S; I / D S C I and . PS; PI / D .�ˇSI; ˇSI � 
I /, we
could just calculute

PV D PS C PI D �ˇSI C ˇSI � 
I D �
I:

As another example, for V.S; I / D S2 C I 2 and the same differential equation,
we could just use the chain rule to compute

PV D 2S PS C 2I PI D 2S.�ˇSI/ C 2I.ˇSI � 
I / D .2I � 2S/ˇSI � 2
I 2:

Another use of the equation for PV is the following theorem:

Theorem 2.1. Suppose that whenever V.x/ D c, we have rV.x/ ¤ 0 and
PV .x/ D rV.x/ � f .x/ D 0. Then the set V.x/ D c is invariant under Px D f .x/,
i.e., a solution of Px D f .x/ that starts in the set V.x/ D c stays in the set
V.x/ D c.
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For example, for the SIR system (2.4)–(2.5), I D 0 implies PI D 0. According
to Theorem 2.1, it follows that the line I D 0 is invariant. (The function V is
V.S; I / D I:)

2.4 Orbits and phase portrait of the SIR system
An orbit of a differential equation is the curve in phase space that is traced out by
a solution. The word “curve” in this definition should be interpreted generously;
an equilibrium is an orbit.

We can find the orbits of the SIR system (2.4)–(2.5) by a method you learned
in calculus. We rewrite the SIR system as

dS

dt
D �ˇSI; (2.7)

dI

dt
D ˇSI � 
I: (2.8)

You learned in calculus that you can divide the second equation by the first to get
a differential equation for the orbits in SI -space that are traced out by solutions.
Dividing, we get

dI

dS
D �1 C




ˇS
: (2.9)

Integrating, we obtain the family of curves

I D �S C



ˇ
lnS C C: (2.10)

You can check that all these curves attain their maximum value at S D


ˇ
, as we

would expect from Figure 2.1.
Figure 2.2 shows one of these curves in the case R0 > 1. Let us consider a

solution .S.t/; I.t// that starts at a point on this curve that is in TC. The curve
traced out by the solution is not the entire curve I D �S C



ˇ
lnS C C , because

by Corollary 1.2, solutions cannot pass through the equilibria on the S -axis. The
curve traced out by this solution is just the part of the curve I D �S C



ˇ
lnS CC

that is in I > 0. The curve I D �S C


ˇ
lnS C C intersects the S -axis in two

points .S�; 0/ and .SC; 0/, with SC < 

ˇ

< S�, and

lim
t!�1

.S.t/; I.t// D .S�; 0/ and lim
t!1

.S.t/; I.t// D .SC; 0/:
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I

S

SC



ˇ
S�

Figure 2.2: One orbit of the SIR system with R0 D
ˇ



D 3, so 

ˇ

D
1
3
. We have

chosen S� D 0:95, so SC (computed as below) is 0.0672.

Remark 2.2. Thus the curves (2.10) we found by solving the differential equation
(2.9) are not orbits of the SIR system (2.7)–(2.8); they are invariant curves. A
curve is invariant if a solution that starts on the curve stays on the curve. In general,
invariant curves are unions of orbits, i.e., they may consist of more than one orbit.
For example, each curve (2.10) contains two equilibria where it crosses the S -axis.
InTheorem 2.1 we described another way that one can find invariant curves. There
we noted that the line I D 0 is invariant for the SIR system. It also consists of
more than one orbit, since the origin is an equilibrium.

A phase portrait of Px D f .x/ is a sketch of phase space that shows all un-
usual orbits and examples of typical orbits, together with arrows on the orbits that
indicate the direction of movement.

For the SIR system, the equilibria on the S -axis and the vertical orbit along
the I -axis qualify as unusual; the curves in Equation (2.10) qualify as typical. The
formula (2.10) shows that the phase portrait of the SIR system depends only on
the ratio 


ˇ
, or equivalently, it depends only on R0 D

ˇ


. Figure 2.3 shows the

phase portrait of the SIR system in the two cases R0 < 1 and R0 > 1. The second
phase portrait uses a value of 
 that is reasonable for Covid-19, and a value of ˇ

that was considered reasonable for Covid-19 in urban areas near the start of the
pandemic.
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I

S

(a) R0 D 1=3 (ˇ D 0:1, 
 D 0:3).

I

S



ˇ

(b) R0 D 3 (ˇ D 0:3, 
 D 0:1).

Figure 2.3: Phase portraits of the SIR system. In phase portrait (b), 

ˇ

D
1
3
.

2.5 Interpretation of the orbits

In the case R0 > 1, many of the orbits (2.10) of the SIR system are like the
one shown in Figure 2.2: they connect an equilibrium .S; I / D .S�; 0/, with


ˇ

< S� 6 1, to an equilibrium .S; I / D .SC; 0/, with 0 < SC < 

ˇ
. One can

interpret such an orbit as follows. An epidemic starts at a population state near
.S; I / D .S�; 0/ with 


ˇ
< S� 6 1. In other words, the population fraction

S� is susceptible and no one is yet infected. The remaining population fraction
R� D 1 � S� is not susceptible to the disease for a reason such as those men-
tioned in Section 2.1. When the disease is introduced, so that I becomes slightly
positive, the number of infectives increases, and the number of susceptibles drops.
Eventually the number of susceptibles falls below 


ˇ
, and the number of infectives

starts to drop. The disease then dies out.
In terms of the effective reproduction number Re D

ˇS


, the epidemic begins

near an equilibrium .S�; 0/ with 

ˇ

< S� 6 1; these equilibria have Re > 1. The
number of infectives therefore rises, and the number of susceptibles falls, which
causes the effective reproduction number Re to fall. After Re passes 1 at S D



ˇ

and falls below 1, the number of infectives falls, and the epidemic dies out.
At the end of the epidemic the susceptible population fraction is SC with 0 <

SC < 

ˇ
. Thus S��SC is the fraction of the population that contracted the disease

during the epidemic.
It is therefore of interest of compute SC when S� is given. We can do this as
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follows. If the curve (2.10) passes through the point .S�; 0/, then

0 D �S� C



ˇ
lnS� C C H) C D S� �




ˇ
lnS�:

Then if the curve also passes through the point .SC; 0/, we have

0 D �SC C



ˇ
lnSC C C D �SC C




ˇ
lnSC C S� �




ˇ
lnS�

More concisely,

�.SC � S�/ C



ˇ
.lnSC � lnS�/ D 0:

Given S� you can find SC by writing

F.S/ D �.S � S�/ C



ˇ
.lnS � lnS�/ D 0:

and solving for S using a numerical method. In Figure 2.2, S� D 0:95 and SC D

0:0672.
Of particular interest is the value of SC when S� D 1, i.e., when initially the

entire population is susceptible to the disease. Then 1 � SC gives the fraction of
the population infected during the epidemic. For S� D 1, Figure 2.4 shows 1�SC

as a function of R0 D
ˇ


for 1 < R0 6 5.
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Figure 2.4: Total population fraction infected by the end of the epidemic as a
function of R0 for the SIR model with S� D 1 and 0 6 R0 6 5.
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Also of interest is the maximum value of I on the orbit, which gives the max-
imum fraction of the population infected at one time during the epidemic. This
number helps tell whether the hospital system will be overwhelmed at some point.
The maximum value of I occurs at S D



ˇ
. In Figure 2.2, the maximum value of

I is 0.2676. For S� D 1, Figure 2.5 shows the maximum value of I as a function
of R0.
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Figure 2.5: Maximum value of I as a function of R0 for the SIR model with
S� D 1 and 0 < R0 6 20.

Let us pause for a moment to consider some implications of Figure 2.5. For
R0 D 3, which was considered a reasonable estimate for Covid-19 in urban areas
near the start of the pandemic, the maximum value of I is 0:3005. This means
that 30% of the population could be infected at one time. The population of Brazil
is about 211 million, and 30% of 211 million is about 63 million. About 3.5%
of Covid-19 patients require hospitalization; 3.5% of 63 million is 2,205,000. So
over two million Brazilians could require hospitalization simultaneously. By com-
parison, the number of hospital beds in Brazil is about 410,000. One could also
ask, if 30% ofmedical workers were infected with Covid-19 and others were afraid
they could be, how many of these hospital beds would actually be available.

Actually, experience tells us that the reality would be somewhat less dire than
that described in the previous paragraph. People react to a dramatic epidemic,
even in the absence of government orders, by staying home, wearing masks, etc.
Their behavior reduces the value of ˇ, and hence the value of R0. We will further
discuss how humans respond to an epidemic in Chapter 5.
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2.6 Changing population size
In this section we introduce the subject of epidemiological models with changing
population size. The change could be due to any combination of births, natural
deaths, deaths due to the disease being modeled, immigration, or emigration.

The key issue is whether and how the adequate contact rate ˇ changes as the
population changes. We said in Section 1.5 that ˇ depends on the mode of life of
the population being modeled, and would differ in rural and urban areas. Kermack
and McKendrick (1927) suggest that ˇ should be related to population density.

With Kermack and McKendrick (ibid.)’s suggestion as motivation, we con-
sider two situations.

1. “Urban Island.” On an urban island a change in population would produce a
corresponding change in population density, and might be expected to pro-
duce a corresponding change in the rate of human contacts. In this case we
shall assume that ˇ changes proportionally with population. Thus if N.t/ is
population at time t and ˇ.t/ is adequate contact rate at time t , then in the
Urban Island case

ˇ.t/ D
N.t/

N.0/
ˇ.0/: (2.11)

2. “Rural Settlement.” In a rural settlement a population increase might result
in an expansion of the settled area without a corresponding increase in popu-
lation density or the rate of human contact. Thus in the rural settlement case
we shall assume that ˇ does not change as the population changes.

We shall illustrate these two situations by considering two epidemiological
models with changing populations: (1) SIR for a disease that is sometimes fatal
on an urban island, and (2) SIS in a rural settlement with an exponentially growing
population.

2.6.1 SIR with fatalities on an urban island
In this section we consider the SIR model for a disease that is sometimes fatal on
an urban island.

Consider a population of initial sizeN.0/. At time t let s.t/ denote the number
of susceptibles, let i.t/ denote the number of infectives, letw.t/ denote the number
of peoplewho have recovered and are now immune, and let d.t/ denote the number
who have died of the disease. Then the population at time t isN.t/ D s.t/Ci.t/C

w.t/, and the adequate contact rate ˇ.t/ is given by (2.11).
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As in Sec. 1.5, the rate at which an infective person creates new infective
persons at time t is ˇ.t/ times the fraction of the population at time t that is sus-
ceptible, which is s.t/

N.t/
. To get the rate at which new infective persons in the entire

population are created at time t , we then multiply by i.t/. We obtain

Ps.t/ D �ˇ.t/
s.t/

N.t/
i.t/ D �

N.t/

N.0/
ˇ.0/

s.t/

N.t/
i.t/ D �

ˇ.0/

N.0/
s.t/i.t/:

We assume that infectives recover at the rate 
i and die at the rate ıi . (The
relative values of 
 and ı could depend on the availability of high-quality medical
care.) Then the entire system of differential equations is

Ps D �
ˇ.0/

N.0/
si; (2.12)

Pi D
ˇ.0/

N.0/
si � 
i � ıi; (2.13)

Pw D 
i; (2.14)
Pd D ıi: (2.15)

If we combine the w and d compartments into a single compartment r D

w C d , called the removed compartment, we have

Pr D Pw C Pd D 
i C ıi D .
 C ı/i:

The system becomes

Ps D �
ˇ.0/

N.0/
si; (2.16)

Pi D
ˇ.0/

N.0/
si � .
 C ı/i; (2.17)

Pr D .
 C ı/i: (2.18)

Finally, we note that Ps C Pi C Pr D 0, so s C i C r is always N.0/. We let S ,
I , and R denote population fractions: S D

s
N.0/

, I D
i

N.0/
, and R D

r
N.0/

. In
(2.16)–(2.18) we make the substitutions

s D N.0/S; i D N.0/I; r D N.0/R; Ps D N.0/ PS; Pi D N.0/ PI ; Pr D N.0/ PR:
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After a little algebra we obtain

PS D �ˇ.0/SI; (2.19)
PI D ˇ.0/SI � .
 C ı/I; (2.20)
PR D .
 C ı/I: (2.21)

This system is identical to the SIR system (2.1)–(2.3) if we set ˇ D ˇ.0/ and
replace 
 C ı by 
 . For this reason the SIR system (2.1)–(2.3) can be used for a
disease that is sometimes fatal, provided theR compartment is renamed “removed”
and we keep in mind that the constants ˇ and 
 have new interpretations.

From our study of the SIR system we see that in the system (2.19)–(2.19),
epidemics can occur if R0 D

ˇ.0/

Cı

> 0.

2.6.2 SIS in a rural settlement with a growing population
We consider the SIS model in a rural settlement with adequate contact rate ˇ, birth
rate � > 0, and death rate � > 0. We assume � > �, so the population is growing
exponentially: PN D .� � �/N , so N.t/ D e.���/tN.0/. Recall that in a rural
settlement the adequate contact rate ˇ does not grow as the population grows.

As we saw in Section 1.5, if we ignore births and deaths, the system of differ-
ential equations is (1.15)–(1.16). This system still correctly models the effects of
the disease; however, in interpreting it, we must remember that N D N.t/, the
population at time t , which is changing. To take into account births and deaths,
we assume (1) all newborns are susceptible (not initially infected) and (2) both
susceptibles and infectives have the same death rate �. With these assumptions,
three terms are added to (1.15)–(1.16), and we obtain

Ps D �
ˇ

N
si C 
i C �N � �s; (2.22)

Pi D
ˇ

N
si � 
i � �i: (2.23)

Next, we define population fractions S D
s
N
and I D

i
N
. In (2.22)–(2.23) we

make the substitutions s D NS and i D NI . When we substitute for Ps and Pi we
must remember that the population N is changing:

Ps D N PS C PN S D N PS C .� � �/NS;

Pi D N PI C PN I D N PI C .� � �/NI:
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After making these substitutions we have

N PS C .� � �/NS D �
ˇ

N
N 2SI C 
NI C �N � �NS;

N PI C .� � �/NI D
ˇ

N
N 2SI � 
NI � �NI:

In each equation, we move the second term on the left hand side to the right hand
side, cancel like terms, and divide by N . We obtain

PS D �ˇSI C 
I C � � �S;

PI D ˇSI � 
I � �I:

Finally, we recall that the population fractions S and I add up to 1, so that in the
first equation, � � �S D �.S C I / � �S D �I . Therefore we have

PS D �ˇSI C 
I C �I D �ˇSI C .
 C �/I; (2.24)
PI D ˇSI � 
I � �I D ˇSI � .
 C �/I: (2.25)

Notice that the death rate � does not appear in the simplified system (2.24)–(2.25).
The reason is that both compartments have the same death rate, so deaths do not
affect the population fractions in the compartments.

The system (2.24)–(2.25) is identical to the SIS system (1.1)–(1.2) if we replace

 C � by 
 . Therefore the dynamics of the two systems are the same.

In particular, if we reduce to one equation by setting S D 1 � I in (2.25), we
obtain

PI D .ˇ � 
 � � � ˇI/I: (2.26)

There are equilibria at I D 0 and I D 1 �

C�

ˇ
. If ˇ


C�
< 1, then the sec-

ond equilibrium is negative, and all solutions in the biologically relevant region
0 6 I 6 1 approach 0.

There are two points one should be careful of in this problem with a growing
population.

1. In the previous paragraph we did not refer to ˇ

C�

as R0. That is because it
cannot be interpreted as the number of new infections caused by a single in-
fective individual when the entire population is susceptible, which remains
ˇ


.
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2. If I.t/ ! 0 as in the previous paragraph, one should be careful before
concluding the the disease dies out. Since I is a fraction of a growing pop-
ulation, I can approach 0 while the number of infectives actually increases.
We will return to this issue in Problem 3.3.

2.7 Discussion of the SIR model

We see from Figure 2.3 that

• The epidemic dies out when R0 < 1.

• The epidemic can grow when R0 > 1.

WhenR0 > 1, the number of infectives grows until the susceptible population
fraction has fallen to 


ˇ
D

1
R0

. At this time the remaining population fraction
(recovered plus infective) is 1 �

1
R0

, and the number of infectives begins to fall.
The population fraction 1�

1
R0

is the herd immunity fraction. Once this population
fraction is no longer susceptible to the disease, the disease begins to die out.

A vaccination program reduces the susceptible population and thereby helps
to achieve herd immunity. For Covid-19, if we use the estimate R0 D 3 from
Section 2.5, the herd immunity fraction is about 1 �

1
3

D
2
3
.

It is important to point out that the constant ˇ, the adequate contact rate, is
under human control. Let us look again at the definition of ˇ in formula in Equa-
tion (1.14):

ˇ D
contacted persons

infective person � day
� probability of transmission:

The first factor, the number of contacted persons per infective person per day,
can be reduced if infective persons realize that they are infective (because they
have symptoms) or that theymay be infective (because they came into contact with
an infective person), and then choose, or are required, to quarantine themselves.
If infectives may not have symptoms, as with Covid-19, then they may not realize
they are infective. In this case, in order to reduce the number of contacted persons
per infected person per day, it may be necessary for the entire population to stay
home as much as possible and maintain social distance when they do not. Recall
that whether a contact is adequate can depend on the location, for example indoor
vs. outdoor. Thus it may be necessary to close businesses, schools, places of
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worship, etc., or institute various restrictions, in order to reduce the number of
crowded indoor contacts.

The second factor, the probability that a susceptible contacted person is in-
fected, might be reduced by mask-wearing by both possible infectives and suscep-
tibles.

When 
 remains constant, reducing ˇ reduces R0.
Figure 2.4 shows how the ultimate number of individuals infected in an epi-

demic can be reduced by reducing R0. Figure 2.5 shows how the maximum num-
ber of people infected at one time, and hence the maximum stress on the health
care system, can be reduced by reducing R0.

We shall return to the issue of controlling Covid-19 in Chapter 4 using a more
detailed model.

2.8 Problems

Problem 2.1 Orbits of the SIR system

For R0 > 1, we have seen that the curve (2.10) that passes through the point
.S; I / D .S�; 0/ is I D �.S � S�/ C



ˇ

.lnS � lnS�/.

1. Find the value of S where I attains its maximum, and obtain a formula for
the value of I at the maximum, Imax .

2. Your formula gives the maximum population fraction infected at one time
during the epidemic. It gives Imax as a function of ˇ, 
 and S�. Assuming
S� > 


ˇ
, show that:

(a) @Imax

@S�
> 0. Does this make sense in epidemiological terms? Is it

consistent with Figure 2.3?
(b) @Imax

@ˇ
> Does this make sense in epidemiological terms?

(c) @Imax

@

< 0. Does this make sense in epidemiological terms?

Problem 2.2 Practice with phase portraits I
Consider the system

Px D �x; (2.27)
Py D �2y: (2.28)
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1. Find all equilibria.

2. Divide (2.28) by (2.27) to obtain a differential equation for invariant curves
in the xy-plane. Find the general solution and simplify. (Answer: y D

Cx2.)

3. Explain why the line x D 0 is also invariant.

4. Use your answers to parts 1–3 to draw the phase portrait. Refer back to the
differential equation for the direction of the arrows.

5. How many orbits does each invariant curve contain?

Problem 2.3 Practice with phase portraits II
Consider the system

Px D �˛x � !y; (2.29)
Py D !x � ˛y; (2.30)

with ˛ > 0 and ! > 0.

1. Find all equilibria.

2. Let V.x; y/ D x2 C y2. Show that PV D �2˛V . It follows that V.t/ D

e�2˛tV.0/, which implies that all solutions approach the origin.

3. Let �.x; y/ D arctan y
x
, the usual angular coordinate. Show that P� D !.

Since ! > 0, it follows that all solutions circle counterclockwise around the
origin. (Actually arctan y

x
is only defined in the right half plane; you may

ignore this technicality.)

4. Parts 2 and 3 imply that all solutions spiral counterclockwise around the
originwhile approaching the origin. Use this information to sketch the phase
portrait.



3 SIR model with
loss of

immunity

3.1 The model

In this chapter we consider an infectious disease for which immunity can be lost
over time. The model we shall use, which is sometimes called the SIRS model, is
the SIR model with two additional terms:

PS D �ˇSI C �R; (3.1)
PI D ˇSI � 
I; (3.2)
PR D 
I � �R: (3.3)

The new terms indicate that individuals transfer from the recovered compartment,
where they are immune to the disease, to the susceptible compartment at a rate
proportional toR. Themeaning of the proportionality constant � is that the average
length of time before immunity is lost is 1=�. This model is not yet used for the
Covid-19 pandemic because no estimate for 1=� is known.

You can check that PS C PI C PR D 0, so if S C I C R D 1 initially, then
S C I C R remains 1 always. Thus we do not need all three equations, since if we
can calculate S.t/ and I.t/, we can find R.t/ from R.t/ D 1 � S.t/ � I.t/. We
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shall therefore use (3.1) and (3.2) only, after the substitution R D 1 � S � I :

PS D �ˇSI C �.1 � S � I /; (3.4)
PI D ˇSI � 
I: (3.5)

We are only interested in the triangle T defined in the previous chapter, which is
our phase space.

As with the SIS and SIR models,

R0 D ˇ �
1



D

ˇ



and Re D

ˇS



:

Moreover, as with the SIS and SIR models, in the region I > 0,

• Re < 1 if and only if PI < 0.

• Re D 1 if and only if PI D 0.

• Re > 1 if and only if PI > 0.

3.2 Phase portraits
We first find the nullclines:

• PS D 0 when I D
���S
�CˇS

(a pair of hyperbolas).

• PI D 0 when I D 0 or S D


ˇ
(two lines).

You learned to graph the pair of hyperbolas in calculus using derivatives, asymp-
totes, and intercepts.

Because we are only interested in the triangle T , there are two cases, 

ˇ

> 1

(i.e. R0 < 1) and 

ˇ

< 1 (i.e. R0 > 1). Figure 3.1 shows the configuration of the
nullclines in the entire SI -plane in the second case.

There are equilibria where PS D PI D 0, i.e., where the PS and PI nullclines
intersect. Thus there are two equilibria, .S; I / D .1; 0/ and

.S; I / D .S�; I�/ D

�



ˇ
;

�.ˇ � 
/

ˇ.� C 
/

�
: (3.6)

The second is in T only when R0 > 1, i.e. 

ˇ

< 1.
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I

S

1

1



ˇ

�
�
ˇ

�
�
ˇ

Figure 3.1: Nullclines of the system (3.4)–(3.5) in the case 

ˇ

< 1 (i.e. R0 > 1).
The PS D 0 nullclines are black and the PI D 0 nullclines are gray. In the case


ˇ

> 1 (i.e. R0 < 1) the vertical gray nullcline would be to the right of S D 1.

Figure 3.2 shows the nullclines, equilibria, and vector field in the triangle T
in the two cases R0 < 1 and R0 > 1.

In the case R0 < 1, all solutions in T with I > 0 have I decreasing every-
where. It appears that they all approach the equilibrium .S; I / D .1; 0/. We will
see shortly that this is correct. At this equilibrium the entire population is suscepti-
ble to the disease (because of loss of immunity) but no one is infected; the disease
is no longer present in the population.

The case R0 > 1 is less straightforward. Solutions appear to circle around
the equilibrium .S�; I�/, but we cannot tell if they spiral toward .S�; I�/, spiral
away from .S�; I�/, or join back up with themselves to form periodic solutions. It
also appears possible that some solutions could join up with themselves to form
periodic solutions, and others could spiral toward or away from those periodic
solutions.

We can get more information about our system using linearization. Differ-
ential calculus is based on the idea that it is helpful to approximate a nonlinear
function by a linear function. Similarly, it is sometimes helpful to approximate a
nonlinear differential equation by a linear one. Linearization can tell us whether
solutions near an equilibrium head toward it or away from it.
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T

I

S

(a) R0 < 1, ˇ D 0:6, 
 D 1:2, � D 0:15.



ˇ

T

I

S

(b) R0 > 1, ˇ D 0:6, 
 D 0:2, � D 0:15.

Figure 3.2: Nullclines, equilibria, and vector field for (3.4)–(3.5) in the triangle T .
The PS D 0 nullclines are black and the PI D 0 nullclines are gray.

3.3 Differential equations background: linear differential
equations

A linear differential equation is a system of the form

Px1 D a11x1 C a12x2 C � � � C a1nxn; (3.7)
Px2 D a21x1 C a22x2 C � � � C a2nxn; (3.8)

:::

Pxn D an1x1 C an2x2 C � � � C annxn; (3.9)

with all the aij ’s constants.
Let

x D

0BBB@
x1

x2
:::

xn

1CCCA ; Px D

0BBB@
Px1

Px2
:::

Pxn

1CCCA ; A D

0BBB@
a11 a12 : : : a1n

a21 a22 : : : a2n
:::

:::
: : :

:::

an1 an2 : : : ann

1CCCA : (3.10)

Then the system (3.7)–(3.9) can be written as the single equation Px D Ax (matrix
product).

One fact we see immediately is that every linear differential equation has an
equilibrium at x D 0.
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In the case n D 1, (3.7)–(3.9) reduces to Px D ax, with x 2 R and a a constant.
The solution with x.0/ D x0 is x D x0eat . If a < 0, every solution approaches
the equilibrium at x D 0 as t ! 1. If a > 0 and x0 ¤ 0, solutions grow as t

increases, but they approach the equilibrium at x D 0 as t ! �1.
With this example inmind, it is reasonable to ask whether the linear differential

equation Px D Ax has any solutions of the form x D x0e�t . (Here x and x0 are in
Rn, � is a constant, and x0 should be a nonzero vector to get an interesting result.)
To answer this question, we substitute x D x0e�t into both sides of Px D Ax and
obtain

�e�tx0 D Ae�tx0 or �x0 D Ax0 or .A � �I/x0 D 0:

Here I is the n � n identity matrix.

I D

0BBB@
1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

1CCCA ;

which has the property Ix D x for any x 2 Rn.
The equation .A � �I/x0 D 0 has solutions other than x0 D 0 if and only if

the determinant of the matrix A � �I is 0, i.e., det.A � �I/ D 0. The numbers �

such that det.A � �I/ D 0 are called eigenvalues of A. If � is an eigenvalue of
A, the nonzero vectors x0 such that .A � �I/x0 D 0 are called eigenvectors for
the eigenvalue �. The set of all solutions of .A � �I/x0 D 0, including x0 D 0,
is a subspace of Rn called the eigenspace for the eigenvalue �. Eigenvalues and
eigenvectors may be complex.

The equation det.A��I/ D 0 turns out to be a polynomial equation of degree
n (the characteristic equation of A), so there are exactly n eigenvalues, counting
multiplicity.

Example. Consider the linear system

Px1 D x2; (3.11)
Px2 D x1: (3.12)

Written as a matrix equation, it is�
Px1

Px2

�
D

�
0 1

1 0

��
x1

x2

�
:
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The characteristic equation is

det
��

0 1

1 0

�
� �

�
1 0

0 1

��
D det

�
�� 1

1 ��

�
D �2

� 1 D 0:

Therefore the eigenvalues are � D �1 and � D 1.
To find eigenvectors for the eigenvalue � D �1, we look for solutions to the

equation
�
A � .�1/I

�
x0 D 0, with A D

�
0 1

1 0

�
:��

0 1

1 0

�
� .�1/

�
1 0

0 1

���
x1

x2

�
D

�
0

0

�
or

�
1 1

1 1

��
x1

x2

�
D

�
0

0

�
:

The solutions of this equation are all multiples of the vector
�

�1

1

�
. They constitute

a line, i.e., a 1-dimensional subspace of R2. This line is the eigenspace for the

eigenvalue � D �1. If x.0/ D x0 is a point on this line (a multiple of
�

1

�1

�
),

then x.t/ D e�tx0. This formula implies that x.t/ is always a point on the line,
x.t/ ! 0 as t ! 1, and, if x0 ¤ 0, kx.t/k ! 1 as t ! �1.

Similarly, for the eigenvalue� D 1, the eigenspace is all multiples of the vector�
1

1

�
. It is again a line. If x.0/ D x0 is a point on this line, then x.t/ D etx0. This

formula implies that x.t/ is always a point on the line, x.t/ ! 0 as t ! �1, and,
if x0 ¤ 0, kx.t/k ! 1 as t ! 1.

Using this information the phase portrait of the linear system (3.11)–(3.12)
can be sketched; see Figure 3.3. The line x2 D �x1 is the eigenspace for the
eigenvalue�1; on it the direction of movement is toward the origin. The line x2 D

x1 is the eigenspace for the eigenvalue 1; on it the direction of movement is away
from the origin. Other initial conditions can be regarded as a linear combination of�

�1

1

�
and

�
1

1

�
. As t increases, the component in the

�
�1

1

�
direction decreases,

while the component in the
�

1

1

�
direction increases.

You could also try to sketch the phase portrait of (3.11)–(3.12) using nullclines,
or by finding a formula for the invariant curves.

The linear differential equation Px D Ax is called hyperbolic if all eigenvalues
of A have nonzero real part. There are three types of hyperbolic linear differential
equations.
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x1

x2

Figure 3.3: Phase portrait of the linear system (3.11)–(3.12).

1. All eigenvalues have negative real part: all solutions approach the origin as
t ! 1.

2. All eigenvalues have positive real part: all solutions approach the origin as
t ! �1.

3. Counting multiplicity, k eigenvalues have negative real part and n�k eigen-
values have positive real part. Then there are subspaces Es of dimension k

and Eu of dimension n � k such that:

• a solution x.t/ of Px D Ax approaches the origin as t ! 1 if and only
if x.0/ 2 Es;

• a solution x.t/ of Px D Ax approaches the origin as t ! �1 if and
only if x.0/ 2 Eu.

Es and Eu are called the stable subspace and the unstable subspace respectively
of Px D Ax.

The linear system (3.11)–(3.12) is an example of the third type. The subspaces
Es and Eu both have dimension one.

We will not discuss nonhyperbolic linear differential equations.
Even in just two dimensions, linear differential equations of the first type (all

eigenvalues have negative real part) come in several flavors. We will look at exam-
ples of the two most common flavors: (a) two different negative real eigenvalues
and (b) complex eigenvalues with negative real part.

Linear differential equations in two dimensions of the second type (all eigen-
values have positive real part) have two analogous flavors: (a) two different pos-
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itive real eigenvalues and (b) complex eigenvalues with positive real part. Their
phase portraits look like those we will draw below with the arrows reversed.

3.3.1 Two different negative real eigenvalues
As a simple example, we consider the system�

Px1

Px2

�
D

�
�1 0

0 �2

��
x1

x2

�
: (3.13)

The eigenvalues are �1 and �2. You drew the phase portrait of this system in
Problem 2.2. See Figure 3.4.

x1

x2

Figure 3.4: Phase portrait of the linear system (3.13).

All the invariant curves you found, except the x2-axis, are tangent to the x1-
axis. To understand this, notice that the x2-axis is the eigenspace for the eigenvalue
�2, and the x1-axis is the eigenspace for the eigenvalue �1. Since �2 < �1 < 0,
the x2-coordinate of any solution goes to 0 faster than the x1-coordinate (like e�2t

instead of e�t ), so solutions end up tangent to the x1-axis (except for solutions
along the x2-axis, which have no x1-coordinate).

In general, in two dimensions, if the eigenvalues are ��2 < ��1 < 0, then al-
most all solutions approach the origin tangent to the eigenspace for the eigenvalue
��1.

3.3.2 Complex eigenvalues with negative real part
As a simple example, we consider the system�

Px1

Px2

�
D

�
�˛ �!

! �˛

��
x1

x2

�
: (3.14)
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with ˛ > 0 and ! > 0. The eigenvalues are �˛ ˙!i . You drew the phase portrait
in Problem 2.3. See Figure 3.5.

x1

x2

Figure 3.5: Phase portrait of the linear system (3.14).

In general, in two dimensions, if the eigenvalues are �˛ ˙ !i with ˛ > 0

and ! > 0, then solutions approach the origin while spiraling either clockwise or
counterclockwise.

3.4 Differential equations background: asymptotic stabil-
ity and linearization

An equilibrium x0 of Px D f .x/ is asymptotically stable if solutions that start near
x0 stay near x0 in future time, and in addition approach x0 as t ! 1.

Asymptotically stable equilibria are states that one expects to observe persist-
ing in the natural world. If some perturbation takes the state of the system a small
distance away from an asymptotically stable equilibrium, the state returns to the
equilibrium.

Suppose Px D f .x/ has an equilibrium at x0. To study solutions near x0, we
make the substitution x D x0 C y. Then small y corresponds to x near x0. We
obtain Py D f .x0 C y/. By Taylor’s Theorem

Py D f .x0/ C Df .x0/y C : : : D Df .x0/y C : : :

because x0 is an equilibrium. Here Df .x0/ is the n � n matrix whose ij -entry is
@fi

@xj
evaluated at the point x0.
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The linearization of the differential equation Px D f .x/ at the equilibrium x0

is the linear differential equation Py D Df .x0/y. We can determine the phase
portrait of Py D Df .x0/y by finding eigenvalues and eigenvectors.

The equilibrium x0 of Px D f .x/ is called hyperbolic if the linear differential
equation Py D Df .x0/y is hyperbolic.

To state the following theorem, we need the notion of a manifold. A k-dimen-
sional manifold in Rn is a subset of Rn that, near each of its points, looks like a
k-dimensional subspace of Rn. A 1-dimensional manifold is just a curve, and a
2-dimensional manifold is just a surface.

Theorem 3.1 (Linearization Theorem). If x0 is a hyperbolic equilibrium of Px D

f .x/, then the phase portrait of Px D f .x/ near x0 looks just like the phase portrait
of Py D Df .x0/y near the origin. In particular:

• If all eigenvalues of Df .x0/ have negative real part, then x0 is an asymp-
totically stable equilibrium of Px D f .x/. The equilibrium x0 is called an
attractor.

• If all eigenvalues of Df .x0/ have positive real part, then x0 is an asymptot-
ically stable equilibrium of Px D �f .x/. In other words, for Px D f .x/, all
solutions that start near x0 stay near x0 in backward time, and approach
x0 as t ! �1. The equilibrium x0 is called a repeller.

• If Df .x0/ has k eigenvalues with negative real part and n � k eigenvalues
with positive real part (0 < k < n), then there are invariant manifolds
W s.x0/ of dimension k and W u.x0/ of dimension n � k through x0 such
that:

– W s.x0/ contains all solutions that approach x0 as t ! 1;
– W u.x0/ contains all solutions that approach x0 as t ! �1.

The equilibrium x0 is called a saddle. W s.x0/ and W u.x0/ are called the
stable manifold of x0 and the unstable manifold of x0 respectively. At x0,
W s.x0/ and W u.x0/ are tangent respectively to the stable and unstable
subspaces of Py D Df .x0/y, translated to x0.

See Figure 3.6.
A particularly simple case is the SIS model PI D f .I / D .ˇ � 
/I � ˇI 2, for

which the dimension is one. We have seen that there are equilibria at I D 0 and
I D 1 �



ˇ
. We have f 0.I / D ˇ � 
 � 2ˇI . You can check that f 0.0/ D ˇ � 
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W s W u

x0

Figure 3.6: Stable manifold of x0 in gray and unstable manifold of x0 in black.

and f 0.1 �


ˇ

/ D �.ˇ � 
/. Thus we see that in the case R0 D
ˇ



> 1, the
equilibrium at I D 0 is repeller, and the one at I D 1 �



ˇ
is an attractor. In

the case R0 D
ˇ



< 1, the equilibrium at I D 0 is an attractor, and the one
at I D 1 �



ˇ
is a repeller (but it is not in the interval 0 6 I 6 1). Compare

Figure 1.2
On the other hand, Theorem 3.1 does not apply to the SIR model (2.4)–(2.5),

because the equilibria are not hyperbolic. You will check this in the problems.

3.5 Equilibria of the SIR model with loss of immunity
For the SIR model with loss of immunity (3.4) –(3.5), the linearization matrix is 

@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

�
�ˇI � � �ˇS � �

ˇI ˇS � 


�
: (3.15)

We saw that there are equilibria at .S; I / D .1; 0/ and, when R0 > 1, at
.S; I / D .S�; I�/ D

�


ˇ

; �.ˇ�
/
ˇ.�C


�
. At .S; I / D .1; 0/, you can check by substi-

tuting into (3.15) that  
@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

�
�� �ˇ � �

0 ˇ � 


�
: (3.16)

You can easily check that the eigenvalues of (3.16) are �� and ˇ � 
 . The first is
negative. The second is negative when R0 D

ˇ



< 1 and positive when R0 > 1.
Thus the equilibrium at .1; 0/ is an attractor when R0 < 1 and a saddle when
R0 > 1. In particular:
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Proposition 3.1. For R0 < 1, solutions of (3.4)–(3.5) that start near .1; 0/ ap-
proach .1; 0/ as t ! 1.

At .S; I / D .S�; I�/, you will find with a little more work that 
@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

 
�� ˇ�


�C

� � �
 � �

� ˇ�

�C


0

!
: (3.17)

You could try to find the eigenvalues of this matrix, but there is another approach
that is a little easier.

You can check that the eigenvalues of�
a11 a12

a21 a22

�
(3.18)

are the solutions � D �1 and � D �2 of the equation

�2
� .a11 C a22/� C .a11a22 � a12a21/ D 0: (3.19)

Therefore

�2
� .a11 C a22/� C .a11a22 � a12a21/ D .� � �1/.� � �2/

D �2
� .�1 C �2/� C �1�2:

Thus we have

a11 C a22 D �1 C �2 and a11a22 � a12a21 D �1�2: (3.20)

The expression a11 C a22 is the trace of the matrix (3.18), and the expression
a11a22 � a12a21 is its determinant.

Formula (3.20) helps us determine the signs of �1 and �2 if we can find the
signs of a11 C a22 and a11a22 � a12a21. For example,

• If a11a22 � a12a21 < 0, then one of �1, �2 is positive and one is negative.

• If a11a22 � a12a21 D 0, then at least one of �1, �2 is 0.

• If a11a22 � a12a21 > 0 and a11 C a22 < 0, then either �1, �2 are both
negative, or �1, �2 are a complex conjugate pair ˛ ˙ ˇi with ˛ < 0.
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For the matrix (3.17), you can easily check that

a11 C a22 D ��
ˇ � 


� C 

� � and a11a22 � a12a21 D �.ˇ � 
/:

If R0 D
ˇ



> 1, we see immediately that

a11 C a22 < 0 and a11a22 � a12a21 > 0:

Therefore either �1, �2 are both negative, or �1, �2 are a complex conjugate pair
˛ ˙ ˇi with ˛ < 0. In either case the equilibrium .S�; I�/ is an attractor.

We conclude:

Proposition 3.2. For R0 > 1, solutions of (3.4)–(3.5) that start near .S�; I�/

approach .S�; I�/ as t ! 1.

Proposition 3.1 and Proposition 3.2 do not give the whole truth; more solutions
approach these equilibria than just those that start near them. To show this we first
need some background about differential equations in the plane.

3.6 Differential equations background: planar theory

Recall that for a differential equation in one dimension, solutions that stay bounded
approach equilibria. The situation is a little more complicated in two dimensions.
To explain the situation in two dimensions, we need a few concepts.

If a solution of a differential equation is periodic in time, the corresponding
orbit is called closed because it is always a simple closed curve. For example, in
Section 1.3 we saw that the differential equation Px1 D �x2, Px2 D x1 has the
solution .cos t; sin t/, which has period 2� . The corresponding orbit, shown in
Figure 1.1, is the circle x2 C y2 D 1, which is a simple closed curve.

Theorem 3.2 (Poincaré–Bendixson Theorem). Let Px D f .x/ be a differential
equation with n D 2 that is defined on an open set U . Then a solution of Px D

f .x/ that stays in a compact (closed and bounded) subset of U as t increases
approaches either

• a set that contains an equilibrium; or

• a closed orbit.
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.a/ .b/ .c/

Figure 3.7: (a) A solution approaches a closed orbit. (b) A solution approaches a
separatrix cycle that consists of two nontrivial orbits and two equilibria. (c) A so-
lution approaches a graphic that consists of two separatrix cycles. Each separatrix
cycle consists of a single nontrivial orbit and a single equilibrium.

A differential equation Px D f .x/ is called polynomial if, when we write it as
a system

Px1 D f1.x1; : : : ; xn/;

:::

Pxn D fn.x1; : : : ; xn/;

all the function f1; : : : ; fn are polynomials. The differential equations we en-
counter in this course are all polynomial.

For polynomial differential equations with n D 2, we can give more detail
than is in Theorem 3.2.

It can happen that one or more orbits that connect equilibria, together with
the equilibria, form a simple closed curve. If the differential equation gives a
consistent direction of motion around the closed curve, it is called a separatrix
cycle. A graphic is a connected union of two or more separatrix cycles. See
Figure 3.7. Don’t worry too much about these notions. We mostly need them
to state the following theorem.

Theorem 3.3 (Generalized Poincaré–Bendixson Theorem). Let Px D f .x/ be a
polynomial differential equation with n D 2 that has only isolated equilibria. Then
a solution of Px D f .x/ that stays in a compact (closed and bounded) set as t

increases approaches either

• an equilibrium;
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• a closed orbit;

• a separatrix cycle; or

• a graphic.

For both versions of the Poincaré–Bendixson Theorem, see Perko (2001), p.
245.

The existence of separatrix cycles and graphics is often easy to rule out. In
addition, one can sometimes rule out the existence of closed orbits using Bendix-
son’s Criterion or Dulac’s Criterion, which we shall discuss shortly. Once it is
known that there are no separatrix cycles or closed orbits, a solution that stays in
a compact set must approach an equilibrium.

Bendixson’s Criterion and Dulac’s Criterion are based on the 2D Divergence
Theorem, a version of Green’s Theorem, which you learned in calculus.

Suppose

Px1 D f1.x1; x2/;

Px2 D f2.x1; x2/

is defined on an open set U in the plane. We write Px D f .x/ for short. Let C be
a simple closed curve in U , oriented counterclockwise. At each x on C , let n.x/

be the unit outward-pointing normal vector.
The divergence of f , r � f , is defined by

r � f .x1; x2/ D
@f1

@x1
.x1; x2/ C

@f2

@x2
.x1; x2/:

Theorem 3.4 (2D Divergence Theorem). Suppose C and its interior, IntC, are
contained in U . Then“

IntC
r � f .x/ dA D

Z
C

f .x/ � n.x/ ds:

The first integral is an ordinary double integral of a function over a region in
the plane. The second integral is the integral of a function around a curve with
respect to arc length.

Corollary 3.1 (Bendixson’s Criterion). Assume (1) the open set U has no holes,
and (2) r � f is always positive on U , or r � f is always negative on U . Then
Px D f .x/ has no closed orbits in U .
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Proof. If Px D f .x/ had a closed orbitC inU , then by the 2DDivergenceTheorem
we would have“

IntC
r � f .x/ dA D

Z
C

f .x/ � n.x/ ds D

Z
C

0 ds D 0 (3.21)

since f .x/ is tangent to C and n.x/ is perpendicular to C . However, if r � f is
always positive, then the double integral is positive; and ifr�f is always negative,
then the double integral is negative. This is a contradiction.

Remark 3.5. A similar argument shows that under the same assumptions, there are
no separatrix cycles or graphics in U . See Perko (2001), p. 266, Problem 1.

Corollary 3.2 (Dulac’s Criterion). Assume (1) the open set U has no holes, and
(2) there is a positive function g.x/ such that r � gf is always positive on U , or
r � gf is always negative on U . Then Px D f .x/ has no closed orbits in U .

Proof. By Bendixson’s Criterion, Px D g.x/f .x/ has no closed orbits in U . But
Px D f .x/ and Px D g.x/f .x/ have the same orbits. (The vectors f .x/ and
g.x/f .x/ point in the same direction, they just have different lengths.) Therefore
Px D f .x/ has no closed orbits in U .

Remark 3.6. As with Bendixson’s Criterion, a similar argument shows that under
the same assumptions, there are no separatrix cycles or graphics in U .

3.7 Global stability of the SIR model with loss of immu-
nity

Our triangle T is a closed and bounded subset of the plane. For the system (3.4)–
(3.5), solutions that start in T stay in it. To see this one just has to check that
solutions cannot escape through the boundary. Solutions that start on I D 0 stay
on I D 0 and approach the equilibrium .0; 1/. You can check solutions that start
on the other sides of T using the derivatives of V.S; I / D S and V.S; I / D S CI

along solutions.
Dulac’s Criterion (Corollary 3.2) and the remark that follows it can be used to

show that for any values of the positive parameters ˛, ˇ, and 
 , the system (3.4)–
(3.5) has no closed orbits, separatrix cycles or graphics in the open set I > 0. The
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function g.S; I / D
1
I
is positive in I > 0. If we multiply (3.4)–(3.5) by 1

I
, we

obtain

PS D �ˇS C �
1 � S � I

I
;

PI D ˇS � 
:

The divergence is

@ PS

@S
C

@ PI

@I
D �ˇ �

�

I
; (3.22)

which is negative in I > 0. Then Dulac’s Criterion (Corollary 3.2) and the re-
mark that follows it imply that (3.4)–(3.5) has no closed orbits, separatrix cycles
or graphics in the open set I > 0.

By Theorem 3.2, all solutions in T approach equilibria. More precisely:
1. For R0 < 1, there are no equilibria in T except .1; 0/, so all solutions in T

approach .1; 0/ as t ! 1.
2. For R0 > 1, the equilibrium .S; I / D .1; 0/ is a hyperbolic saddle. Its sta-

ble manifold is the line I D 0. Thus solutions that start in I > 0 cannot approach
it as t ! 1 (see the explanation of Theorem 3.1). The only other equilibrium in
T is .S�; I�/. Therefore all solutions in T with I > 0 approach the equilibrium
.S�; I�/ as t ! 1.

3.8 Discussion of the SIR model with loss of immunity
The SIR model with loss of immunity has much in common with the SIS model of
Chapter 1.

1. For R0 < 1 there is a single equilibrium at which the entire population is
susceptible and no one is infected. All solutions approach that equilibrium.

2. For R0 > 1 that equilibrium is still present but is no longer asymptotically
stable. A new equilibrium appears in the interior of phase space, at which the
disease is present in the population at an intermediate level. The new equi-
librium is asymptotically stable, and in fact almost all solutions approach
it.

Models with these properties are called endemic models, and the interior equilib-
rium is called an endemic equilibrium. Endemic models often arise because of
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some mechanism that replenishes the susceptible compartment, such as loss of
immunity or, as we shall see in the problems, births. These processes are not im-
portant at the start of an epidemic but become important over the long haul.

By contrast, models such as the SIR model, in which there are many equilibria,
are called epidemic models. They ignore long-term process such as loss of immu-
nity and births. They are often used at the start of an epidemic of a new disease
when length of immunity is not known and births are not important.

In the next chapter and its problems you will see more examples of both types
of models.

Let us take another look at the endemic equilibrium for the SIR model with
loss of immunity:

.S�; I�/ D

�



ˇ
;

�.ˇ � 
/

ˇ.� C 
/

�
:

You should recognize 

ˇ
, the value of S�. As we would expect from Section 1.8, it

is the value of S at which Re D 1. For the usual SIR model (2.4)–(2.5) with R0 >

1, the line S D


ˇ
separates the region where I is rising from the region where I is

falling; see Figure 2.3. In the usual SIR model, herd immunity is reached when the
susceptible population fraction declines to 


ˇ
. As for I�, the population fraction

that is infected at the endemic equilibrium, notice that as � ! 0, I� ! 0. The
constant � is near 0 when the average length of time until immunity is lost is very
large. Thus when the average length of time until immunity is lost is very large,
the equilibrium .S�; I�/ is close to . 


ˇ
; 0/. For the usual SIR model (2.4)–(2.5),

. 

ˇ

; 0/ is the equilibrium that separates equilibria near which the epidemic grows
from equilibria near which the epidemic dies; see Figure 2.3.

3.9 Problems

Problem 3.1 Equilibria of the SIR system

1. Compute the linearization matrix of the SIR system (2.4)–(2.5).

2. Evaluate your matrix at an equilibrium .S; 0/.

3. Find the eigenvalues of the matrix in part 2. You should get � D 0; ˇS � 
 .

4. Are any of the equilibria hyperbolic?
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Problem 3.2 SIR with births and natural deaths

We consider the SIR model with births and natural deaths. (Natural deaths are
those that are not caused by the disease being modeled.) The birth rate is �, and
all newborn individuals are susceptible. We will assume that the death rate is also
� and in each compartment the death rate is� times the population fraction of that
compartment. Thus we get the following system for the population fractions:

PS D � � ˇSI � �S; (3.23)
PI D ˇSI � 
I � �I; (3.24)
PR D 
I � �R: (3.25)

1. Show that if S C I C R D 1, then PS C PI C PR D 0. Then explain the
following statement: therefore by Theorem 2.1, if S C I C R D 1 initially,
then S C I C R remains 1.

2. Since S C I C R D 1 always, we only need the first two equations:

PS D � � ˇSI � �S; (3.26)
PI D ˇSI � 
I � �I: (3.27)

Find the equilibria of (3.26)–(3.27). Answer: .1; 0/ and

.S�; I�/ D

�

 C �

ˇ
; �

�
1


 C �
�

1

ˇ

��
: (3.28)

3. Show: If 
C�
ˇ

< 1, then .S�; I�/ is in T ; if 
C�
ˇ

> 1, then .S�; I�/ is not
in T .

4. Compute the linearization matrix of (3.26)–(3.27). Answer:�
�ˇI � � �ˇS

ˇI ˇS � 
 � �

�
: (3.29)

5. Show that the eigenvalues of the linearization matrix at the equilibrium
.1; 0/ are �� and ˇ � 
 � �. Then explain the following: if 
C�

ˇ
< 1,

so that .S�; I�/ is in T , then .1; 0/ is a saddle; if 
C�
ˇ

> 1, so that .S�; I�/

is not in T , then .1; 0/ is an attractor.
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6. Show that if 
C�
ˇ

< 1, so that .S�; I�/ is in T , then .S�; I�/ is an attractor.
Hint: it is enough to show that for the matrix�

�ˇI� � � �ˇS�

ˇI� ˇS� � 
 � �

�
; (3.30)

the trace is negative and the determinant is positive.

7. Use Dulac’s Criterion (Corollary 3.2) and the remark that follows it as in
Section 3.7 to show that for any values of the positive parameters ˇ, 
 , and
�, there are no closed orbits, separatrix cycles or graphics in I > 0. What
conclusions can you draw?

Problem 3.3 SIS with a growing population revisited
Recall our discussion in Section 2.6.2 of the SIS model in a rural settlement with
a growing population. We assumed birth rate � > 0 and death rate � > 0, so that
the population at time t was N.t/ D N.0/e.���/t . We also assumed � > �, so
the population is growing. The model reduced to

PI D f .I / D .ˇ � 
 � � � ˇI/I:

As in Section 2.6.2 we shall assume ˇ

C�

< 1.

1. Show that f 0.0/ D ˇ � 
 � �. Explain why this calculation shows that the
equilibrium at 0 is an attractor.

2. From part 1, if I.0/ is near 0, the solution of PI D f .I / is approximately
I.t/ D I.0/e.ˇ�
��/t . Since I is a population fraction, the actual number
of infectives at time t is i.t/ D I.t/N.t/. Under what condition is i.t/

increasing?



4 A Covid-19
model and the

next generation
matrix

In this chapter we explain the next generation matrix, which is used to calculateR0

in more complicated compartmental models than those we have considered so far.
The next generation matrix can be used to calculate Re at any disease-free equi-
librium. Two nice introductions to the next generation matrix are Blackwood and
Childs (2018) and van den Driessche (2017). The main example we will consider
is a compartmental model that captures the principal features of Covid-19.

4.1 The model

Our model for Covid-19 is based on the SEIR model, which adds an exposed
compartment between the susceptible compartment and the infective compartment.
Susceptibles who contract the disease first pass through the exposed compartment
before entering the infective compartment. The SEIR model is used when indi-
viduals who contract a disease take a while before they develop symptoms and
become infective.

We consider a modified version of the SEIR model that includes the most
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salient features of Covid-19. Susceptibleswho contract Covid-19 are asymptomatic
and not infective for about 2.5 days. They then become infective for about 2.5 days
before any of them develop symptoms. After this period about a third of Covid
sufferers continue to be asymptomatic but remain infective; the other two thirds de-
velop symptoms while remaining infective. The asymptomatic group ceases to be
infective after about five days, the symptomatic group after about ten days. (Data
from Ngonghala, Iboi, and Gumel (2020).)

For modeling purposes we shall assume that all individuals in both the asymp-
tomatic and symptomatic groups enter the recovered compartment when they cease
to be infective. We shall assume that individuals in the recovered compartment
have permanent immunity; the actual average length of immunity for Covid-19 is
not known.

More detailed Covid-19 models have additional compartments for hospital-
ized, ICU, and deceased patients. Even more detailed models divide each com-
partment by age, behavior, social position, or other factors.

The model we shall describe has six compartments:

• S : susceptible.

• E: exposed but not yet infective or symptomatic.

• C : infective but not yet symptomatic.

• I : infective and symptomatic.

• A: infective and asymptomatic.

• R: recovered.

See Figure 4.1.
The system of differential equations for the population fractions is:

PS D �ˇC SC � ˇI SI � ˇASA; (4.1)
PE D ˇC SC C ˇI SI C ˇASA � 
E E; (4.2)
PC D 
E E � 
C C; (4.3)
PI D p
C C � 
I I; (4.4)
PA D .1 � p/
C C � 
AA; (4.5)
PR D 
I I C 
AA: (4.6)
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S E

I

C

A

R

Figure 4.1: SECIAR Model.

The positive constants ˇC , ˇI , and ˇA represent the rate of potential new infec-
tions caused directly by individuals in the compartments C , I , and A respectively.
For Covid-19, ˇC is known to be the largest of the three. ˇI is smaller than might
be expected since individuals in the I compartment know they are sick and are
likely to stay home. The positive constants 
E , 
C , 
I , 
A are the rates at which
individuals move out of various compartments. The constant p, 0 < p < 1, is the
probability that an individual in compartment C develops symptoms.

You can check that

PS C PE C PC C PI C PA C PR D 0:

Thus if S C E C C C I C A C R D 1 initially, then S C E C C C I C A C R

remains 1.
As in the earlier chapters we do not need the equation for R. In this chapter,

however, we will retain it, since a reduction from six equations to five is not very
helpful. The correct phase space for this model is

f.S; E; C; I; A; R/ W

S > 0; E > 0; C > 0; I > 0; A > 0; R > 0; S CE CC CI CACR D 1g:

However, we will ignore this and just focus on the six-dimensional system (4.1)–
(4.6).
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4.2 Equilibria of the Covid-19 model
To find equilibria, we begin by setting the last four equations equal to 0. We obtain
a system of four linear equations in the four unknownsE, C , I , A. In matrix form,
the system of linear equations is0BB@


E �
C 0 0

0 p
C �
I 0

0 .1 � p/
C 0 �
A

0 0 
I 
A

1CCA
0BB@

E

C

I

A

1CCA D

0BB@
0

0

0

0

1CCA :

You can check that the determinant of the matrix is 
E 
C 
I 
A, which is positive.
Therefore the only solution is E D C D I D A D 0.

Thus all equilibria have E D C D I D A D 0. These values also make
the first two equations equal to zero. The set of equilibria of the six-dimensional
system (4.1)–(4.6) is therefore

f.S; E; C; I; A; R/ W E D C D I D A D 0g:

The infected states in this model areE,C , I andA. The equilibria are precisely
the states in which the values of all infected variables are 0. Thus all equilibria are
disease-free.

The linearization of the system (4.1)–(4.6) at an equilibrium .S; 0; 0; 0; 0; R/

has the matrix 0BBBBBB@
0 0 �ˇC S �ˇI S �ˇAS 0

0 �
E ˇC S ˇI S ˇAS 0

0 
E �
C 0 0 0

0 0 p
C �
I 0 0

0 0 .1 � p/
C 0 �
A 0

0 0 0 
I 
A 0

1CCCCCCA : (4.7)

To find the eigenvalues, you would subtract � from the diagonal terms and take
the determinant. A reasonable first step would be to expand by the first column,
and a reasonable second step would be to expand by the last column. If you do
this you will find that the eigenvalues of (4.7) are 0, 0, and the eigenvalues of the
submatrix

K D

0BB@
�
E ˇC S ˇI S ˇAS


E �
C 0 0

0 p
C �
I 0

0 .1 � p/
C 0 �
A

1CCA : (4.8)
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4.3 Differential equations background: normally hyper-
bolic manifolds of equilibria

The SIR system (2.4)–(2.5) has a line of equilibria. We saw in Problem 1 of the
previous section that they all have at least one 0 eigenvalue.

The system (4.1)–(4.6) has a plane of equilibria. We saw above that they all
have at least two 0 eigenvalues.

Suppose the differential equation Px D f .x/ on Rn has a k-dimensional sub-
space E of equilibria. An equilibrium x0 in E is said to be normally hyperbolic if
the matrix Df .x0/ has exactly k 0 eigenvalues, and the remaining n � k eigenval-
ues all have nonzero real part.

Theorem 4.1. Suppose the differential equation Px D f .x/ on Rn has a k-dimen-
sional subspace E of equilibria. Let E0 be subset of E such that all equilibria in E0

are normally hyperbolic. Suppose that for all x0 in E0, Df .x0/ has ` eigenvalues
with negative real part and m eigenvalues with positive real part, k C ` C m D n.
(` or m may be zero.) Then

• Each x0 in E0 has a stable manifold W s.x0/ of dimension `.

• Each x0 in E0 has an unstable manifold W u.x0/ of dimension m.

• The union of the manifolds W s.x0/ in a manifold called W s.E0/ of dimen-
sion k C `.

• The union of the manifolds W u.x0/ in a manifold called W u.E0/ of dimen-
sion k C m.

The SIR system (2.4)–(2.5) provides an example of this theorem. We have
n D 2. There is a 1-dimensional space of equilibria .S; 0/, so k D 1. In Problem
3.1 you calculated that at .S; 0/, one eigenvalue of the linearization matrix is 0,
and the other is ˇS �
 . In the case R0 D

ˇ



> 1, equilibria with 

ˇ

< S 6 1 have
their second eigenvalue positive, so ` D 0 and m D 1. Each equilibrium has a 1-
dimensional unstable manifold, namely (a portion of) the curve (2.10) that passes
through it. These curves fit together to form a manifold of dimension k C m D 2,
namely an open subset of the plane. Similarly, equilibria with 0 6 S < 


ˇ
have

their second eigenvalue negative, so ` D 1 and m D 0. Each equilibrium has
a 1-dimensional stable manifold. These curves fit together to form a manifold of
dimension k C ` D 2, an open subset of the plane.
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Recall from Section 2.2 that for the SIRmodel, the effective reproduction num-
ber isRe D

ˇS


. From this formula you can easily see that equilibria withRe > 1

(those with 

ˇ

< S 6 1) have their second eigenvalue positive, and equilibria with
Re < 1 (those with 0 6 S < 


ˇ
) have their second eigenvalue negative. This

makes sense. As we mentioned in Section 1.8, at a disease-free equilibrium (all
the equilibria of the SIR-model have I D 0), Re should be interpreted as the the
approximate number of people infected by a single infective individual near the
equilibrium. It therefore makes sense that an equilibrium with Re > 1 has an
unstable manifold, and an equilibrium with Re < 1 has a stable manifold.

The equilibrium .S; I / D . 

ˇ

; 0/ is not normally hyperbolic since both eigen-
values are zero. Many different things can happen at equilibria that are not nor-
mally hyperbolic. This is an example of the Anna Karenina Principle in mathemat-
ics. The Russian novelist Tolstoy’s 1877 novel Anna Karenina begins, “All happy
families are alike; each unhappy family is unhappy in its own way.” The reason is
that in happy families, the spouses sufficiently agree about issues such as money,
religion, child-raising, division of labor, cleanliness standards, and so on. Dis-
agreement in any of these areas can occur in many ways and lead to an unhappy
marriage. Similarly, all normally hyperbolic equilibria are alike (Theorem 4.1),
but normal hyperbolicity can fail in many ways, resulting in many different types
of behavior.

Theorem 4.1 also applies to differential equations that have a k-dimensional
manifold of equilibria, but we do not need this level of generality.

4.4 Digression: estimating R0 at the start of an epidemic

Problem 3.1 showed in particular that in the SIR model, at the equilibrium .1; 0/,
the nonzero eigenvalue is ˇ � 
 . This implies that at the start of an epidemic in
which the entire population is susceptible, I should increase andS should decrease
(more precisely, 1 � S should increase) at the exponential rate e.ˇ�
/t .

For ˇ D 0:3 and 
 D 0:1 (R0 D 3), the orbits of the SIR system were graphed
in Figure 2.3. The orbit through .1; 0/ has the equation

I D �.S � 1/ C



ˇ
lnS D �.S � 1/ C

1

3
lnS:

Figure 4.2 shows the graph of I.t/ for a solution that starts at a point on this
orbit near .1; 0/. (The point has S D 0:9999.) I.t/ appears to grow exponentially
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at first. This can be checked by plotting ln I.t/; see Figure 4.2b. Initially the graph
is approximately linear with upward slope. This is the sign of exponential growth.
(The end of the graph is also approximately linear with downward slope. This is
the sign of exponential decay to the final state.)
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Figure 4.2: SIR model with ˇ D 0:3 and 
 D 0:1.

The exponential rate of growth can be checked by finding the slope of the line.
The portion of the graph in Figure 4.2b from t D 0 to t D 30 is approximately
linear. Using the start and end points of this portion of the graph yields a slope of
0:198, which is approximately equal to ˇ � 
 D 0:3 � 0:1 D 0:2.

At the beginning of an epidemic, the number of cases is often observed to grow
exponentially. For example, case data for the United Kingdom during the first
month of the Covid-19 pandemic, and the natural logarithm of the case data, are
shown in Stevens et al. (2020). The authors calculate an exponential growth rate
for cumulative cases of 0:251. The rate of growth of cumulative cases is precisely
the rate of growth of 1�S , and so can be compared to the SIRmodel. We therefore
obtain ˇ � 
 D 0:251.

Can this information be used to estimate R0 for Covid-19 in the United King-
dom? Not immediately; since R0 D

ˇ


, we need one more piece of information,

for example ˇ or 
 . For example, if it was estimated at the time that the aver-
age duration of infectiousness with Covid-19 was ten days, then we would have

 D 0:1, so ˇ D 0:351, and then R0 D

ˇ



D 3:51.
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Of course, this estimate uses the SIR model, which is not accurate for Covid-
19, but has the advantage that it requires little information about the disease.

4.5 Eigenvalues of equilibria of the Covid-19 model
Theorem 4.1 tells us that the nature of the equilibria of the Covid-19 model is
determined by their eigenvalues other than the two 0 eigenvalues we found above.
Thus we should find the eigenvalues of the matrix K defined in (4.8).

When S D 0 (no one in the population is susceptible to the disease), you can
easily check that the eigenvalues of K are �
E , �
C , �
I , and �
A. Thus an
equilibrium with S D 0 has a 4-dimensional stable manifold.

As we increase S in the subspace of equilibria, the eigenvalues of K will
change. They all have negative real part until one becomes 0, or a pair become
pure imaginary. Let’s guess that all eigenvalues of K have negative real part until
one becomes 0. We will see later that this guess is correct.

The product of the eigenvalues of any matrix is the determinant of the matrix.
(We saw this for 2 � 2 matrices in Section 3.5.) Therefore an eigenvalue of K

becomes 0 if and only if the determinant of K also becomes 0.
After some algebra, one finds that the determinant of K is


E 
C 
I 
A � 
E

�

I 
A ˇC C p 
C 
A ˇI C .1 � p/ 
C 
I ˇA

�
S:

Thus detK has the form detK D a � bS where a and b are positive. Therefore
detK is positive when S < a

b
, detK D 0 when S D

a
b
, and detK is negative

when S > a
b
.

Some more algebra tells us that detK D 0 when

S D
1

ˇC


C
C

p ˇI


I
C

.1�p/ ˇA


A

: (4.9)

When S is less than this value, all four eigenvalues have negative real part. When
S is greater than this value, the determinant becomes negative. One expects that
this happens because three of the four eigenvalues are negative and one becomes
positive. This is indeed what happens.

Based on the analogy of the SIR model, one might expect that the denominator
of (4.9) is the basic reproduction number R0 for the Covid-19 model, so that the
value of S in (4.9) would be 1

R0
. If R0 < 1, then all equilibria with S 6 1 are

attracting, so an epidemic would die out. If R0 > 1, equilibria with 1
R0

< S 6 1

have a positive eigenvalue, so epidemics can initially grow.
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4.6 The next generation matrix
The next generation matrix is used to calculate the effective reproduction number
Re at disease-free equilibria for the compartmental models used in epidemiology.
It is a very general method, but for concreteness we will explain it using our Covid-
19 model.

The differential equations for the infected compartments are (4.2)–(4.5). Let
us rewrite those four differential equations as follows:0BB@

PE
PC
PI
PA

1CCA D F � V D

0BB@
ˇC SC C ˇI SI C ˇASA

0

0

0

1CCA �

0BB@

E E

�
E E C 
C C

�p
C C C 
I I

�.1 � p/
C C C 
AA

1CCA
F includes all terms that represent transfer into an infected compartment from un-
infected compartments (in our case just the susceptible compartment). V includes
all terms that represent other transfers out of infected compartments; other trans-
fers into infected compartments show up with a minus sign. Transfers from one
infected compartment to another show up twice, once with a plus sign and once
with a minus sign. Transfers from an infected compartment to an uninfected com-
partment (in our case the recovered compartment) show up only once, with a plus
sign.

To compute the next generation matrix, one first calculates the matrix K as we
did by finding the linearization matrix at an equilibrium and then extracting the
submatrix that has one row and one column for each infected compartment. In our
case we obtained K by linearizing at an equilibrium .S; 0; 0; 0; 0; R/, and K has
one row and one column for each of the infected compartments E, C , I , and A.
We then write K as

K D F � V D

0BB@
0 ˇC S ˇI S ˇAS

0 0 0 0

0 0 0 0

0 0 0 0

1CCA �

0BB@

E 0 0 0

�
E 
C 0 0

0 �p
C 
I 0

0 �.1 � p/
C 0 
A

1CCA :

Fij is just the partial derivative of Fi with respect to the j th infected state. Vij is
just the partial derivative of Vi with respect to the j th infected state. All entries
of F are necessarily nonnegative.

If we multiply F by a vector of population fractions in the infected compart-
ments, we get a linear approximation to the total rate of transfer into all infected
compartments from uninfected compartments.
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For example, look at the calculation

F

0BB@
E

C

I

A

1CCA D

0BB@
0 ˇC S ˇI S ˇAS

0 0 0 0

0 0 0 0

0 0 0 0

1CCA
0BB@

E

C

I

A

1CCA D

0BB@
ˇC SC C ˇI SI C ˇASA

0

0

0

1CCA :

This calculation finds the approximate total rate of transfer into all infected com-
partments from uninfected compartments, when the population fractions in the
infected compartments are the given vector. There is transfer only into the E

compartment. The rate depends on the S -component of the equilibrium where
we linearized, in addition to depending on the population fractions in the infected
compartments.
Remark 4.2. In general we should only get an approximation to the total rate of
transfer, since we are using a linearization make the calculation. However, in
our Covid-19 model, since all terms in the differential equations are linear in the
variables E, C , I and A for a fixed value of S , the approximation is exact. This is
also true for other calculations in this section that involve multiplying by a vector
of population fractions in the infected compartments.
Remark 4.3. A linearizationmatrix is normally multiplied by a vector representing
change in input in order to approximate change in output. Thus one would expect
F to be multiplied by a vector of the form .�E �C �I �A/>. However, the
point at which we linearized had E D C D I D A D 0 (it was a disease-free
equilibrium), so .�E �C �I �A/> D .E C I A/>. This is why we can
multiply F by the vector .E C I A/>. Because of this consideration, the next
generation matrix method can only be used at disease-free equilibria.

If we multiply V by a vector of population fractions in the infected compart-
ments, we get a linear approximation to the total rate of other transfers out of all
infected compartments (i.e. transfers given by V).

For example, look at the calculation0BB@

E 0 0 0

�
E 
C 0 0

0 �p
C 
I 0

0 �.1 � p/
C 0 
A

1CCA
0BB@

E

0

I

0

1CCA D

0BB@

E E

�
E E


I I

0

1CCA :

This calculation finds the approximate total rate of other transfers out of all in-
fected compartments, when the population fractions in the infected compartments
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are the given vector. For simplicity we used a vector with population fractions
only in compartments E and I . We obtain a transfer out of compartment E, a
corresponding transfer into compartment C , and a transfer out of compartment I

with no corresponding transfer into an uninfected compartment. (Transfer out of
compartment I is into the recovered compartment.) As in our previous calculation,
the result is exact, although we only expected an approximation.

The next generation matrix makes use of V �1, the inverse of the matrix V . If
you are not familiar with V �1, it is the matrix you multiply V by to get I . For our
Covid-19 model,

V �1
D

0BBBB@
1


E
0 0 0

1

C

1

C

0 0

p

I

p

I

1

I

0

1�p

A

1�p

A

0 1

A

1CCCCA : (4.10)

We shall show in Section 4.8 that V �1
ij always gives themean time spent in infected

compartment i if you start in infected compartment j . For example, for our Covid-
19 model, the first column of (4.10) says that if you start in compartment E, on
average you will spend time 1


E
in compartment E, 1


C
in compartment C , p


I
in

compartment I , and 1�p

A

in compartment A. If you remember Section 1.6, you
can easily see that this is correct.

The next generation matrix is defined to be the matrix product F V �1. For our
model,

F V �1
D

0BBB@
0 ˇC S ˇI S ˇAS

0 0 0 0

0 0 0 0

0 0 0 0

1CCCA
0BBBB@

1

E

0 0 0

1

C

1

C

0 0

p

I

p

I

1

I

0

1�p

A

1�p

A

0 1

A

1CCCCA

D

0BBBB@
ˇC S

C

C
pˇI S


I
C

.1�p/ˇAS

A

ˇC S

C

C
pˇI S


I
C

.1�p/ˇAS

A

ˇI S

I

ˇAS

A

0 0 0 0

0 0 0 0

0 0 0 0

1CCCCA :

(4.11)

To understand F V �1, it helps to use an intuitive meaning for the entries of
the matrix F . Roughly speaking, Fik is rate of transfer from uninfected compart-
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ments into infected compartment i that is due to infection by people in infected
compartment k. Next, think about how matrix multiplication works. V �1

kj
is mean

time spent in infected compartment k by people initially in infected compartment
j . Multiplying the rate Fik by the time V �1

kj
gives mean transfers from uninfected

compartments into infected compartment i that are due to the time spent in infected
compartment k by individuals initially in infected compartment j . Summing over
k gives the ij entry of F V �1, which therefore is total mean transfer from unin-
fected compartments to infected compartment i caused by individuals initially in
infected compartment j , over the entire time that they remain in infected compart-
ments.

Let’s look at a few entries of F V �1 in (4.11) to see how this works.
• The 21-entry of F V �1 is 0. This means that an individual initially in in-
fected compartment 1, which is E, over the entire time he remains in in-
fected compartments, causes no transfers at all from compartment S or R

into infected compartment 2, which is I . The reason is simple: individuals
in compartment S , when they become infected, transfer into compartment
E, not compartment I ; and individuals in compartment R never transfer
into infected compartments. This is the reason the last three rows of F V �1

are rows of zeros.

• The 11-entry of F V �1 is ˇC S

C

C
pˇI S


I
C

.1�p/ˇAS

A

. This means that an indi-
vidual initially in infected compartment 1, which is E, over the entire time
he remains in infected compartments, causes this many transfers from com-
partment S into compartment E. The number depends on the equilibrium
.S; 0; 0; 0; 0; R/ where we are linearizing.
For S D 1, ˇC


C
represents infections caused during the time the individual

is in compartment C ; pˇI


I
represents infections caused during the time the

individual is in compartment I , weighted by the probability that he passes
through that compartment; .1�p/ˇA


A
represents infections caused during the

time the individual is in compartment A, weighted by the probability that he
passes through that compartment.
For 0 6 S < 1, each term must be multiplied by S . For example, the rate
at which an individual in compartment C infects others becomes ˇC S , not
ˇC .

• The 13-entry of F V �1 is ˇI S

I

. This means that an individual initially in
infected compartment 3, which is I , over the entire time he remains in in-
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fected compartments, causes this many transfers from compartment S into
compartmentE. An individual initially in compartment I spendsmean time
1


I
in that compartment before recovering, which explains the entry.

The 12-entry and 14-entry of F V �1 are left to you to explain.
From the meaning of F V �1 it follows that if we multiply F V �1 by an initial

vector of infected population fractions I0, we get the vector of new infections in
the various compartments caused by I0:

Inew D F V �1I0:

The size of Inew is some multiple of the size of I0 that depends on I0. For a
nonnegative matrix, which F V �1 must be, the maximum value of this multiple is
the largest eigenvalue of F V �1.

It therefore makes sense to define the effective reproduction number Re at a
disease-free equilibrium to be the largest eigenvalue of the next generation matrix
F V �1 at that equilibrium. In particular, it makes sense to define the basic repro-
ducton number R0 to be the largest eigenvalue of F V �1 at the equilibrium with
S D 1.

By the way, in the models treated in the first three chapters, there was only
one infected compartment, and the product F V �1 at the equilibrium with S D 1

simplified to ˇ
�1.
For our Covid-19 model, the largest eigenvalue of F V �1 for S > 0 is

Re D
ˇC S


C
C

pˇI S


I
C

.1 � p/ˇAS


A
: (4.12)

When S D 1 we get

R0 D
ˇC


C
C

pˇI


I
C

.1 � p/ˇA


A
; (4.13)

which agrees with our earlier guess. This value forR0 is the 11-entry of F V �1 for
S D 1, which we discussed above. It makes intuitive sense. The first summand
represents infections caused before any of the infected experience symptoms. The
next two summands represent infections caused after this period, by symptomatic
and asymptomatic infected individuals. These two terms are weighted by the frac-
tion of individuals in compartment C who pass to each compartment.

Moreover, a basic theorem states that at a disease-free equilibrium of an epi-
demiological model, if Re < 1, then all eigenvalues of K have negative real part;
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and if Re > 1, then at least one eigenvalue of K has positive real part (van den
Driessche and Watmaugh 2002).

For our Covid-19 model, Re D R0S . Therefore Re is

• less then 1 if S < 1
R0

;

• equal to 1 if S D
1

R0
;

• greater than 1 if S > 1
R0

.

Thus, as we guessed earlier, if R0 < 1, an epidemic that starts will die out; if
R0 > 1, an epidemic that starts near an equilibrium with 1

R0
< S 6 1 will

initially grow.
In the next two sections we will outline a proof that the entries of V �1 have

the interpretation we gave earlier.

4.7 Differential equations background: matrix exponen-
tial

Consider a linear differential equation Px D Ax, with x inRn andA an n�nmatrix.
The solution is a certain matrix function of t times the initial condition x.0/ D x0.
That matrix function of t is called etA.

For example, consider the system of linear differential equations

Px1 D ax1;

Px2 D bx2;

with initial conditions x1.0/ D x10 and x2.0/ D x20. The solution is

x1.t/ D eatx10;

x2.t/ D ebtx20:

In matrix terms the system of linear differential equations and the initial conditions
become �

Px1

Px2

�
D

�
a 0

0 b

��
x1

x2

�
;

�
x1.0/

x2.0/

�
D

�
x10

x20

�
;
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and the solution is �
x1.t/

x2.t/

�
D

�
eat 0

0 ebt

��
x10

x20

�
:

In terms of the matrix exponential we have

A D

�
a 0

0 b

�
; etA

D

�
eat 0

0 ebt

�
:

In this example, given A, it was easy to find etA. We will not discuss general
methods for finding etA. The important fact is:

Theorem 4.4. The solution of Px D Ax, x.0/ D x0 is x.t/ D etAx0.

You may recall that when x is a real number, ex can be written as the infinite
series

ex
D 1 C x C

1

2Š
x2

C
1

3Š
x3

C : : : :

Similarly, when A is a square matrix,

etA
D I C tA C

1

2Š
t2A2

C
1

3Š
t3A3

C : : : : (4.14)

In this formula, A2 D AA, A3 D AAA, etc. (matrix multiplication). Thus it is not
surprising that ex and etA have much in common. For example, d

dt
eta D aeta

and
d

dt
etA

D AetA: (4.15)

4.8 Explanation of the entries of V �1

Let

I D

0BB@
E

C

I

A

1CCA ;
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and consider the differential equation

PI D �V I; I.0/ D I0:

The solution I.t/ gives the vector of population fractions in the infected states at
time t , assuming the initial vector of population fractions is I0, ignoring inputs
from the uninfected states. I.t/ ! 0 as t ! 1, since eventually all infected
individuals transfer to the uninfected recovered state.

On the other hand, � PI.t/ D V I.t/ is the rate of transfer out of the infected
compartments at time t . We can calculateZ 1

0

� PI.t/ dt D Œ�I.t/�tD1
tD0 D �I.1/ C I.0/ D I.0/ D I0: (4.16)

The integral gives total transfer out of all compartments, which equals the initial
concentrations, since eventually all infected individuals transfer into the recov-
ered compartment. Equation (4.16) is the analog of equation (1.17) in dimensions
greater than 1.

Let us take I0 to be 1 in one infected compartment and 0 in other infected com-
partments. Then the mean time spent in each infected compartment by individuals
who start in that particular infected compartment is

R1

0 �t PI.t/ dt . This equation
is analogous to the integral in equation (1.18).

Theorem 4.5.
Z 1

0

�t PI.t/ dt D V �1I0:

This formula is analogous to (1.18). To interpret it, note that if I0 has a 1 in
the first infected compartment and 0 in the others, then V �1I0 is the first column
of V �1; if I0 has a 1 in the second infected compartment and 0 in the others, then
V �1I0 is the second column of V �1; etc. Thus the j th column of V �1 gives the
mean time spent in each infected compartment by individuals who start in the j th
infected compartment.

Proof. We cannot evaluate the integral as we did in equation (1.18) because we
do not know an explicit antiderivative. Instead we use integration by parts (which
is how the antiderivative we used in (1.18) was found anyway):Z 1

0

�t PI.t/ dt D Œ�tI.t/�10 C

Z 1

0

I.t/ dt:
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The term �tI.t/ is clearly 0 at t D 0. Its value at 1 is actually a limit,

lim
t!1

�tI.t/:

It turns out I.t/ approaches 0 exponentially as t ! 1, so the limit is 0.
Therefore Z 1

0

�t PI.t/ dt D

Z 1

0

I.t/ dt:

Now we use the fact that PI D �V I, so I.t/ D e�tV I.0/:Z 1

0

I.t/ dt D

Z 1

0

e�tV I.0/ dt D Œ�V �1e�tV I.0/�10 D V �1I.0/:

This calculation may look a little mysterious at first glance. You can check that
�V �1e�tV I.0/ is the antiderivative by differentiating it using (4.15). Also, e0V D

I , as you can see from the infinite series (4.14). Finally, it turns out that e�tV ! 0

as t ! 1.

4.9 Disease variants

In this section we present a simple model, based on the SIR model, of how a more
infective variant of a disease can overwhelm a less infective variant.

We consider a disease with two variants. Both variants have the same 
 , but
their values of ˇ, which we denote ˇ1 and ˇ2, differ. Wewill assume that ˇ2 > ˇ1,
so that the second variant is more easily spread.

In addition to the usual S andR compartments, there are two infected compart-
ments, one for each variant, which we denote I1 and I2. The system of differential
equations is

PS D �ˇ1SI1 � ˇ2SI2; (4.17)
PI1 D ˇ1SI1 � 
I1; (4.18)
PI2 D ˇ2SI2 � 
I2; (4.19)
PR D 
I1 C 
I2: (4.20)
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The set of equilibria is f.S; I1; I2; R/ W I1 D I2 D 0g. The linearization of the
system (4.17)–(4.20) at an equilibrium .S; 0; 0; R/ has the matrix0BB@

0 �ˇ1S �ˇ2S 0

0 ˇ1S � 
 0 0

0 0 ˇ2S � 
 0

0 
 
 0

1CCA :

The eigenvalues are 0, 0, ˇ1S � 
 , and ˇ2S � 
 . In particular, if S D 1 (entire
population susceptible), the eigenvalues are 0, 0, ˇ1 � 
 , and ˇ2 � 
 . We will
assume that ˇ1 � 
 > 0, so that ˇ2 � 
 > 0 as well. In this case both variants
can spread, but since the second eigenvalue is greater, we expect that early in the
epidemic, at least, the second variant will spread faster.

The submatrix K with rows and columns for the infected states is�
ˇ1S � 
 0

0 ˇ2S � 


�
:

We rewrite it as

K D F � V D

�
ˇ1S 0

0 ˇ2S

�
�

�

 0

0 


�
;

and calculate the next generation matrix at S D 1:

F V �1
D

�
ˇ1 0

0 ˇ2

��

�1 0

0 
�1

�
D

�
ˇ1
�1 0

0 ˇ2
�1

�
:

The eigenvalues are ˇ1
�1 and ˇ2
�1. The largest is ˇ2
�1. We therefore have

R0 D ˇ2
�1:

Comparing to the usual SIR model, we see that this value of R0 is just the
basic reproduction number one would expect if the less easily spread variant of
the disease did not exist.

In fact, at the start of the epidemic, the more easily spread variant will over-
whelm the other variant. Figure 4.3 shows the solution of (4.17)–(4.20) with
ˇ1 D 0:3, ˇ2 D 0:6, 
 D 0:1, and initial condition

.S.0/; I1.0/; I2.0/; R.0// D .1 � 10�4
� 10�6; 10�4; 10�6; 0/: (4.21)
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Figure 4.3: Solution of (4.17)–(4.18) with initial condition (4.21). Only the values
of I1.t/ and I2.t/ are shown.

Thus initially the first variant is present at 100 times the level of the second. Only
the values of I1.t/ and I2.t/ are shown. Figure 4.3a shows that the second variant
passes the first after about 16 days. Figure 4.3b shows a longer time period.

The explanation for the dramatic curves in Figure 4.3 is simply the difference
in exponential growth rates at the start of an epidemic. If a more easily spread
variant is introduced later in the epidemic, the result could be less dramatic.

4.10 Discussion of the Covid-19 model
For our Covid-19 model (4.1)–(4.6), let us look more carefully at the expression
(4.13) that we found for R0:

R0 D
ˇC


C
C

pˇI


I
C

.1 � p/ˇA


A
:

Here are some plausible values for the parameters.

• Since an average of 2.5 days are spent in stateC , we use 
C D 1=2:5 D 0:4.
Since individuals are most infective at this time we take ˇC D 0:5, greater
than the value ˇ D 0:3 that we have generally used for Covid-19.

• Since asymptomatic infectives cease to be infective after about five days,
we take 
A D 1=5 D 0:2, and we take ˇA D 0:3.
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• Since symptomatic infectives cease to be infective after about ten days, we
take 
I D 1=10 D 0:1. Symptomatic infectives are more infective than
asymptomatic infectives, but on average they have fewer contacts since their
illness usually keeps them at home. We take ˇI D ˇA D 0:3.

• Since about 2/3 of exposed individuals move into the symptomatic infective
compartment I , we take p D 2=3.

Using these parameter values and our expression for R0, we obtain

R0 D .0:5/.2:5/ C .2=3/.0:3/.10/ C .1=3/.0:3/.5/ D 1:25 C 2 C 0:5 D 3:75:

One can use this expression to estimate the impact of various control measures
for Covid-19. For example, temperature checks are intended to prevent individuals
in compartment I from contacting others. Employers can also urge any employee
who feels sick (those in compartment I ) to stay home. Suppose these measures
succeed in reducing ˇI from 0.3 to 0.1. We would then have

R0 D .0:5/.2:5/ C .2=3/.0:1/.10/ C .1=3/.0:3/.5/ D 1:25 C 0:67 C 0:5 D 2:42:

These measures would not stop the spread of the disease.
The problem is that individuals in compartments C and A probably do not

suspect they have the disease. Mask-wearing by a large part of the population
could perhaps reduce each ˇ by about a third. This would reduce R0 by a third, to
1.61.

Other possible control measures are contact tracing and lockdowns. Contact
tracing might identify some people in compartment A who do not know they have
the disease and encourage them to stay home. It is unlikely to identifymany people
while they are still in compartment E. A lockdown, like mask wearing, would
reduce each ˇ.

4.11 Problems

Problem 4.1 Why so different?

According to the data on Covid-19 the United Kingdom presented in Stevens et al.
(2020), after 30 days, 12,647 individuals had contracted Covid-19. This is 0.02%
of the UK population of 66,650,000. On the other hand, in Figure 4.2a, after 30
days, about 3% of the population is infected. Why the difference?
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Problem 4.2 Could you do better?
In Section 4.4 we estimatedR0 for Covid-19 in the United Kingdom, at the start of
the pandemic, to be 3.51. What are some sources of error in this estimate? Could
you have improved it at the time?

Problem 4.3 SEIR with births and natural deaths

We will consider the SEIR model mentioned at the start of this chapter, with births
and natural deaths included as we did for the SIR model in Problem 3.2. The
system of differential equations for the population fractions is

PS D � � ˇSI � �S; (4.22)
PE D ˇSI � 
E E � �E; (4.23)
PI D 
E E � 
I I � �I; (4.24)
PR D 
I I � �R: (4.25)

We could drop the last equation, but we will not. The state space is the four-
dimensional region

S D f.S; E; I; R/ W S > 0; E > 0; I > 0; R > 0; S C E C I C R 6 1g:

(4.26)

The constants ˇ, 
E , 
I , and � are all positive.

1. Explain each term in the system of equations.

2. For fixed S , show that if

.
E C �/.
I C �/ � ˇ
E S ¤ 0; (4.27)

then any equilibrium of (4.22)–(4.25) with that value of S must have E D

I D R D 0. Suggestion: Set the last three equations equal to 0. For fixed
S , you have a system of three linear equations in three unknowns. In matrix
form your system of equations is0@�.
E C �/ ˇS 0


E �.
I C �/ 0

0 
I ��

1A0@E

I

R

1A D

0@0

0

0

1A :

Show that (4.27) implies that the determinant of the 3 � 3 matrix is not zero.
Then the only solution is E D I D R D 0.



76 4. A Covid-19 model and the next generation matrix

3. The previous problem implies that if

ˇ
E

.
E C �/.
I C �/
< 1; (4.28)

then the only equilibrium of (4.22)–(4.25) in S is .1; 0; 0; 0/. Do you see
why?

4. Of course .1; 0; 0; 0/ is an equilibrium of (4.22)–(4.25) whether or not (4.28)
holds; however it turns out that when

ˇ
E

.
E C �/.
I C �/
> 1;

there is a second equilibrium in S . Instead of pursuing the second equilib-
rium, we will linearize the system (4.22)–(4.25) at the disease-free equilib-
rium .1; 0; 0; 0/. Check that the linearization of (4.22)–(4.25) at .1; 0; 0; 0/

has the matrix 0BB@
�� 0 �ˇ 0

0 �.
E C �/ ˇ 0

0 
E �.
I C �/ 0

0 0 
I ��

1CCA : (4.29)

5. The submatrix K with rows and columns for infected states only is

K D

�
�.
E C �/ ˇ


E �.
I C �/

�
:

Show that the eigenvalues of (4.29) are �� with multiplicity two and the
eigenvalues of K.

6. Show that if ˇ
E

.
EC�/.
I C�/
< 1, then K has two eigenvalues with negative

real part; and if ˇ
E

.
EC�/.
I C�/
> 1, then K has one negative eigenvalue

and one positive eigenvalues. Suggestion: see Section 3.5. We conclude
that epidemics cannot start near .1; 0; 0; 0/ when ˇ
E

.
EC�/.
I C�/
< 1, but

they can when ˇ
E

.
EC�/.
I C�/
> 1.

7. As we did in this chapter, write K in the form K D F � V where F only
contains terms that represent transfers into an infected compartment from a
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uninfected compartment. Then calculate the next generation matrix F V �1

and find its largest eigenvalue. (The inverse of a 2 � 2 matrix is an easy
formula; if you do not know it, google it.) Answer: the largest eigenvalue,
which is R0, is

ˇ
E

.
E C �/.
I C �/
:

How does this relate to the results of part 6?

Problem 4.4 SIR-type model with population subgroups
Aswementioned in Chapter 1, people in a populationmay preferentially encounter
certain subgroups of the population, and this fact can be modeled by introducing
more compartments into differential equation models. Let us consider an SIR-type
model in which, for simplicity, we divide the population into just two subgroups,
subgroup 1 and subgroup 2. The two subgroups might represent young and old, or
poor and rich, or liberal and conservative. The contact rates within the two sub-
groups might differ, and the contact rates between subgroups are expected to be
lower than the contact rates within subgroups. In addition, if the two subgroups
have different levels of health or different susceptibility to the disease, the proba-
bility that a contact results in disease transmission could depend on the subgroup
of the susceptible person who is contacted. Thus, if we consider contacts between
infectives in subgroup i and susceptibles in subgroup j , the resulting adequate con-
tact rate ˇij can depend on both i and j . We shall also allow the two subgroups
to have different mean illness times, so that 
1 and 
2 may differ.

We consider a compartmental model in which there are two susceptible com-
partments S1 and S2 for individuals in subgroups 1 and 2 respectively, and two
infective compartments I1 and I2 for individuals in subgroups 1 and 2. We shall
only use one removed compartment, which includes individuals from both sub-
groups. See Figure 4.4.

The resulting system of differential equations is

PS1 D �ˇ11S1I1 � ˇ21S1I2; (4.30)
PS2 D �ˇ12S2I1 � ˇ22S2I2; (4.31)
PI1 D ˇ11S1I1 C ˇ21S1I2 � 
1I1; (4.32)
PI2 D ˇ12S2I1 C ˇ22S2I2 � 
2I2; (4.33)
PR D 
1I1 C 
2I2: (4.34)
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S1 I1 S2I2

R

Figure 4.4: SIR-type model with two population subgroups.

The phase space is

f.S1; S2; I1; I2; R/ W S1 > 0; S2 > 0; I1 > 0; I2 > 0; R > 0;

S1 C S2 C I1CI2 C R D 1g:

Thecalculation ofR0 in this problem presents a subtlety. R0 is calculated at the
equilibrium at which the entire population is susceptible. In this problem, however,
all equilibria of the form .S1; S2; 0; 0; 0/ have the entire population susceptible.
(We of course have S1 > 0, S2 > 0, and S1 CS2 D 1.) The solution is to calculate
R0 at the equilibrium in which S1 and S2 represent the population fractions of the
two subgroups that are actually present at the start of the epidemic.

1. Find the equilibria and find the matrices F and V .

2. Find the next generation matrix.

3. Using the next generation matrix that you found in part 2, calculate R0 at
the equilibrium with S1 D 1 and S2 D 0. Does the result make sense to
you? Why?

4. Assume all ˇij are the same number ˇ, and both 
i are the same number 
 .
Using the next generation matrix that you found in part 2, calculate R0 at an
arbitrary equilibrium .S1; S2; 0; 0; 0/withS1 > 0, S2 > 0, andS1CS2 D 1.
Does the result make sense to you? Why?

5. Assume ˇ11 D 2
1, ˇ21 D 3
2, ˇ12 D 3
1, ˇ22 D 10
2, and that we start
with S1 D S2 D

1
2
. Using the next generation matrix that you found in

part 2, find R0 and the corresponding eigenvectors and interpret the result.



5
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models

In the models we have considered so far, human behavior is not affected by the
course of the epidemic. For example, in all our models the constant ˇ, which
represents the rate of adequate contacts per infective individual, does not change as
the epidemic proceeds. You know from experience that this is false. As the number
of infectives in the population rises, many susceptibles will react by changing their
behavior. They stay home, practice improved hygiene and social distancing, and
wear masks. The result is a decrease in ˇ. Later, if the number of infectives in the
population falls, susceptibles may relax these practices.

Changes in human behavior can be affected by government orders that close
businesses or require people to stay home and to wear masks if they do not. How-
ever, behavioral change will occur whether or not there are government orders, and
compliance with orders is greater if they correspond to what people are inclined
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to do anyway.
Similarly, in our brief discussion of vaccines in Section 2.7, we just described

what would happen if a sufficient population fraction was vaccinated. We did not
discuss how people might react to the vaccination program itself. The reaction
may have much in common with behavioral change. If the number of infectives
in the population is high, people may suppress any concerns about vaccine safety
in order to protect themselves or their children from the disease. If the number
of infectives in the population is low, perhaps because of the vaccination program
itself, concerns about vaccine safety may lead people to refuse vaccination for
themselves or their children.

In this chapter we will look at how an idea from evolutionary game theory, im-
itation dynamics, can be used to model human behavior in these situations. Game
theory is about situations in which your payoff from an action depends not only on
your own choices but on the choices of others. Evolutionary game theory is the
side of game theory that uses differential equations to model how choices change
in response to the changing choices of others.

Payoffs in game theory are not necessary monetary; they include whatever
individuals regard as the positive and negative consequences of choices, and may
be subjective.

We will discuss human behavior in an epidemic. In the problems we will look
at human response to vaccination programs.

Imitation dynamics was introduced into mathematical epidemiology by Bauch
and Bhattacharyya (2012) in the context of a model for childhood vaccination.
Poletti (2010) introduced the idea of using imitation dynamics to model human
response to an epidemic. The analysis of Poletti’s model in this chapter comes
from Schecter (2021).

5.1 A model for human behavior in an epidemic

We will consider an SIR model in which susceptibles can choose between normal
behavior and careful behavior. The resulting values of ˇ are ˇn for normal behav-
ior and ˇc for careful behavior. Careful behavior results in fewer contacts with
infectives, so ˇc < ˇn.

Each behavior yields an expected payoff to a susceptible who adopts it. For
simplicity the baseline payoff of normal behavior in the absence of infectives is
taken to be 0. If infectives are present in the population, normal behavior has
an additional negative payoff due to the possibility of contracting the disease. In
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the SIR model, for each individual susceptible, the probability of contracting the
disease is proportional to the population fraction of infectives I . We therefore take
the payoff pn of normal behavior to be

pn D �mnI

where mn is a positive constant.
Individuals adopting careful behavior still might get the disease, so they have

a payoff of �mcI where mc is a positive constant but mc < mn. They also suffer
an average negative payoff �k, where k is a positive constant, from adopting care-
ful behavior, due to some combination of loss of income, refraining from desired
activities, loss of valued social interactions, etc. Thus the payoff pc of careful
behavior is

pc D �k � mcI:

The difference between the two payoffs is

pn � pc D k � .mn � mc/I D k � mI;

where m, like k is a positive constant. We see that normal behavior has a higher
payoff when I < k

m
and a lower payoff when I > k

m
.

Let x denote the fraction of susceptibles who use normal behavior, 0 6 x 6 1,
so 1 � x is fraction of susceptibles who use careful behavior. The idea of imitation
dynamics is that susceptibles using normal and careful behavior encounter each
other at a rate proportional to the product x.1 � x/; this is the law of mass action
again. The encounters could be in person or by email, text, or social media. If an
individual finds that the individual she encounters is using a behavior that gives
a better payoff than her own, it is possible that she will change to the opposite
behavior. The rate of change is assumed to be proportional to the difference in
payoffs of the two behaviors. Thus

Px D �x.1 � x/.pn � pc/ D �x.1 � x/.k � mI/: (5.1)

Notice that when normal behavior gives a higher payoff, x increases; when normal
behavior gives a lower payoff, x decreases.

Imitation dynamics is analogous to transmission of a disease from an infective
to a susceptible. If, for example, normal behavior has a higher payoff, we can think
of people practicing normal behavior as infectives, and people practicing careful
behavior as susceptibles. When people from the two groups meet, those practicing
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normal behavior may “infect” those practicing careful behavior and cause them to
change their behavior.

(Actually, Equation (5.1) is not quite right. If the size of the susceptible group
decreases, for example, then encounters between different types of susceptibles
should become less frequent. This fact is not taken into account in Equation (5.1).
Youmay recall that whenwe looked at the SIRmodel for a sometimes fatal disease,
in Section 2.6.1, we did correctly account for the change in rate of encounters
caused by a decrease in a group size. Nevertheless we shall leave Equation (5.1)
as it is, since it is simple and commonly used, and changing it does not usually
make much difference in the solutions.)

The full SIR model with imitation dynamics, ignoring the equation for the
recovered compartment, is

PS D �
�
ˇnx C ˇc.1 � x/

�
SI; (5.2)

PI D
�
ˇnx C ˇc.1 � x/

�
SI � 
I; (5.3)

Px D x.1 � x/.ˇc � ˇn/I C �x.1 � x/.k � mI/: (5.4)

Let us unpack this system of equations. The average value of ˇ in the popu-
lation, given x, is ˇnx C ˇc.1 � x/. That explains the first two equations. The
only mystery is the first summand in the Px equation. Since ˇc < ˇn, this term
is always negative. It just reflects the fact that on its own, x tends to decrease,
because susceptibles with normal behavior contract the disease more frequently
than susceptibles with careful behavior and transfer to compartment I . The form
of this term will be derived in the problems.

The state space is the prism

P D f.S; I; x/ W S > 0; I > 0; S C I 6 1; 0 6 x 6 1g:

We shall make two assumptions:

1. ˇc



< 1 < ˇn



.

2. k
m

< 1.

The first assumption says that with normal behavior, R0 > 1, so the epidemic can
spread; but with careful behavior, R0 < 1, so the epidemic should die out. The
second assumption says that neither behavior is guaranteed to always give a higher
payoff. While normal behavior always gives a higher payoff for sufficiently low
I , the second assumption guarantees that for sufficiently large I in the interval
0 6 I 6 1, careful behavior gives a higher payoff.
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It also seems reasonable to assume that � is much greater than ˇn, ˇc and 
 ,
since behavior is capable of changing much faster than most diseases can spread.
Figure 5.1, taken from Schecter (2021), shows a typical simulation of the system
(5.2)–(5.4). In this simulation the parameter values are

ˇn D 1=2; ˇc D 1=10; 
 D 1=6; k D 3=10; mn D 5; mc D 2; � D 200:

From the values of ˇn, ˇc , and 
 , we see that R0 D 3 for normal behavior and
R0 D 0:6 for careful behavior. We have I=.mn�mc/ D 1=10, so normal behavior
has a higher payoff for I < 1=10, and careful behavior has a higher payoff for
I > 1=10.
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Figure 5.1: A simulation of the system (5.2)–(5.4). If t represents time in days,
the time scale of this simulation is 1=200 of a day. The simulation shows 20,000
time units, or 100 days.

At the start of the simulation, .S; I; x/ D .0:96; 0:04; 0:98/. In particular,
I < 1=10. Almost all the population quickly adopts normal behavior. After I

rises to about 0:18, the population quickly switches to careful behavior. Because
of the careful behavior, I falls to about 0:05. The population then quickly returns
to normal behavior, and I rises to about 0:13 (the second wave of the epidemic).
After two more fast behavioral switches, the epidemic dies out.
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An important characteristic of the model we are studying in this chapter, which
we see in the simulation, is that unlike our previous models, it can produce epi-
demics with several waves.

Another important characteristic of the model is that behavior is “sticky.” By
this we mean that behavior does not immediately switch from normal to careful,
or vice-versa, when I passes 1/10. It takes a while for behavior to change. This
is because behavioral change is caused by interaction with other people using a
different behavior, which takes time.

In the remainder of this chapter we will try to gain mathematical insight into
these aspects of the model using the theory of slow-fast systems (Kuehn 2015).

5.2 Slow time and fast time

Since we assume that � is large, we write � D
1
�
with � > 0 small. We then

multiply (5.4) by � to remove fractions:

PS D �
�
ˇnx C ˇc.1 � x/

�
SI; (5.5)

PI D
�
ˇnx C ˇc.1 � x/

�
SI � 
I; (5.6)

� Px D �x.1 � x/.ˇc � ˇn/I C x.1 � x/.k � mI/; (5.7)

Remember that the dot in (5.5)–(5.7) represents derivative with respect to t ,
which normally represents time in days. The variable t is called slow time. Behav-
ior can change on a faster time scale. To capture this fact, we define a fast time
� D

t
�
. For example, if t is time in days and � D

1
24
, then � is time in hours.

By the chain rule,

d

dt
D

d

d�

d�

dt
D

1

�

d

d�

We make this substitution in all three equations of (5.5)–(5.7) and then multiply
the first two equations by � to remove fractions. If we use 0 to mean derivative
with respect to � , we end up with the system

S 0
D ��

�
ˇnx C ˇc.1 � x/

�
SI; (5.8)

I 0
D �

�
ˇnx C ˇc.1 � x/

�
SI � �
I; (5.9)

x0
D �x.1 � x/.ˇc � ˇn/I C x.1 � x/.k � mI/: (5.10)
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For � > 0, the systems (5.5)–(5.7) and (5.8)–(5.10) have exactly the same
orbits. The only difference is the speed of movement along orbits. However, the
limits at � D 0 are entirely different.

The slow limit system, given by setting � D 0 in (5.5)–(5.7), is

PS D �
�
ˇnx C ˇc.1 � x/

�
SI; (5.11)

PI D
�
ˇnx C ˇc.1 � x/

�
SI � 
I; (5.12)

0 D x.1 � x/.k � mI/: (5.13)

The fast limit system, given by setting � D 0 in (5.8)–(5.10), is

S 0
D 0; (5.14)

I 0
D 0; (5.15)

x0
D x.1 � x/.k � mI/: (5.16)

Solutions like that shown in the simulation can be approximated by combining
solutions of the fast limit system (5.14)–(5.16) and the slow limit system (5.11)–
(5.13). We will therefore look at the two systems separately, and then look at how
to combine their solutions.

5.3 The fast limit system
The fast limit system (5.14)–(5.16) has three planes of equilibria: x D 0, x D 1,
and I D

k
m
. You can check that the linearization matrix at a point on x D 0 or

x D 1 has the eigenvalues 0, 0, and @x0

@x
D .1�2x/.k �mI/. Therefore, equilibria

on these two planes are normally hyperbolic provided I ¤
k
m
. You can check that

• On the plane x D 0, equilibria are normally repelling (positive eigenvalue)
for I < k

m
and normally attracting (negative eigenvalue) for I > k

m
.

• On the plane x D 1, the situation is the reverse: equilibria are normally
attracting (negative eigenvalue) for I < k

m
and normally repelling (positive

eigenvalue) for I > k
m
.

The plane of equilibria I D
k
m

has no normally hyperbolic equilibria and is of
little importance. We will ignore it.

Solutions of the fast limit system with 0 < x < 1 are easy to understand; see
Figure 5.2a:
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• S and I do not change along solutions.

• If I < k
m
, then Px > 0, and in fact

lim
t!�1

x.t/ D 0; lim
t!1

x.t/ D 1:

• If I > k
m
, then Px < 0, and in fact

lim
t!�1

x.t/ D 1; lim
t!1

x.t/ D 0:

The last two statements mean that if I is small, behavior quickly evolves toward
everyone behaving normally; if I is large, behavior quickly evolves toward every-
one behaving carefully.

S

I

x

k/m

(a) For the fast limit system, orbits in 0 <
x < 1 are vertical, and the triangles at
x D 0 and x D 1 consist of equilibria

S

I

x

k/m

(b) The slow limit system is only defined
on the triangles at x D 0 and x D 1. On
x D 0 it is an SIR system with R0 < 1;
on x D 1 it is an SIR system with R0 >
1.

Figure 5.2: Fast and slow limit systems in the prism P .
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5.4 The slow limit system
The slow limit system (5.11)–(5.13) only makes sense where the last equation is
satisfied, i.e., on the planes x D 0 and x D 1 (the top and bottom of the prism),
and on the plane I D

k
m
. The last set is of no importance and we will ignore it.

The planes x D 0 and x D 1 are actually invariant for the slow system (5.5)–
(5.7) for every � > 0. Equivalently, they are invariant for the original system
(5.2)–(5.4) for every � > 0.

On the set x D 0 (all behavior is careful) the slow limit system reduces to

PS D �ˇcSI; (5.17)
PI D ˇcSI � 
I: (5.18)

On the set x D 1 (all behavior is normal) the slow limit system reduces to

PS D �ˇnSI; (5.19)
PI D ˇnSI � 
I: (5.20)

Both systems are ordinary SIR systems. See Figure 5.2b.

5.5 Combining solutions of the fast and slow limit systems
The idea is that for a small � > 0, a solution of the fast system, or equivalently of
the slow system, that starts in 0 < x < 1 will be near a solution of the fast limit
system until x is near 0 or 1. Then the vectors in the fast limit system become
small and the slow limit system takes over.

Thus a solution for small � > 0 of the fast or slow system will immediately
approach x D 1 (everyone behaves normally) if I < k

m
, or x D 0 (everyone

behaves carefully) if I > k
m
. Having arrived near the plane x D 1 or x D 0 at the

attracting part of the plane, the solution will follow a solution of the corresponding
SIR system. If that solution eventually moves into the repelling part of the plane
x D 1 or x D 0, the solution may leave and follow a solution of the fast limit
system to the other side of the prism. The process then repeats.

This process can produce repeated waves of an epidemic. Awave occurs when-
ever the slow portion of the solution in the plane x D 1 has I.t/ increasing. The
standard SIR system cannot produce repeated waves.

It turns out that a solution that is tracking a solution on x D 0 or x D 1 does
not immediately leave when the tracked solution enters the repelling part of the
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plane. Instead it leaves approximately at the point determined by the entry-exit
integral. This phenomenon can occur when the slow limit system has a subspace
of equilibria that remains invariant for � > 0, like x D 0 and x D 1 in our
system. The entry-exit integral gives themathematical explanation for the behavior
stickiness we observed in the simulation.

5.6 Entry-exit integral

For the fast limit system (5.14)–(5.16), attraction or repulsion toward x D 0 at a
point .S; I; 0/ is governed by the number

@x0

@x
.S; I; 0/ D k � mI: (5.21)

Let .S0; I0; 0/ be a point of x D 0 where (5.21) is negative. Let .S.t/; I.t// be
the solution of (5.17)–(5.18) with .S.0/; I.0// D .S0; I0/. Let t1 > 0 be the time
such that Z t1

0

@x0

@x
.S.t/; I.t/; 0/ dt D 0: (5.22)

Let .S1; I1/ D .S.t1/; I.t1//. Because the solution .S.t/; I.t// approaches an
equilibrium in the repelling part of x D 0 (see the phase portrait), such a time
t1 always exists. The reason is that the solution takes infinite time to reach the
equilibrium, so the integral in (5.22) increases without bound as t1 ! 1.

Theorem 5.1. For small � > 0, suppose a solution of (5.8)–(5.10) (or (5.5)–
(5.7)) arrives in a small neighborhood of x D 0 near the point .S0; I0; 0/. Then
the solution will leave that neighborhood near the point .S1; I1; 0/.

Notice that the integral (5.22) is surely negative (representing attraction toward
x D 0) for small t1 > 0, but the curve .S.t/; I.t/; 0/ will eventually enter the
repelling part of x D 0, at which point a positive contribution to the integral
(representing repulsion from x D 0) starts building up. At t1, repulsion balances
attraction, and the solution leaves.

Similarly, for the fast limit system (5.14)–(5.16), attraction or repulsion toward
x D 1 at a point .S; I; 1/ is governed by the number

@x0

@x
.S; I; 1/ D �.k � mI/: (5.23)
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Let .S0; I0; 1/ be a point of x D 1 where (5.23) is negative. Let .S.t/; I.t// be
the solution of (5.19)–(5.20) with .S.0/; I.0// D .S0; I0/. Let t1 be the smallest
positive number, if there is one, such thatZ t1

0

@x0

@x
.S.t/; I.t/; 1/ dt D 0: (5.24)

Let .S1; I1/ D .S.t1/; I.t1//. Unlike in the plane x D 0, in the plane x D 1 such
a time t1 does not necessarily exist. If you look at the phase portrait, you will see
that the solution in x D 1 may never enter the repelling part of the plane, or it may
stay in the repelling part of the plane for only a brief time before reentering the
attracting part of the plane.

Theorem 5.2. For small � > 0, suppose a solution of (5.8)–(5.10) (or (5.5)–(5.7))
arrives in a small neighborhood of x D 1 near the point .S0; I0; 1/.

• If there is a time t1 as defined above, then the solution will leave that neigh-
borhood near the point .S1; I1; 1/.

• If there is no such t1, then the solution will never leave the neighborhood
and will continue to follow .S.t/; I.t/; 1/.

Let us consider how to calculate the integral in (5.22) or (5.24) for a fixed value
of t1. The integral in (5.22) for example isZ t1

0

@x0

@x
.S.t/; I.t/; 0/ dt D

Z t1

0

�
k � mI.t/

�
dt: (5.25)

The differential equation in the plane x D 0 is given by (5.17)–(5.18). Accord-
ing to (2.10), the curve .S.t/; I.t// from .S0; I0/ D .S.0/; I.0// to .S1; I1/ D

.S.t1/; I.t1//, as a curve in the SI -plane, has the equation

I D �S C



ˇc
lnS C C:

We can determine C from the fact that the curve passes through .S0; I0/:

C D I0 C S0 �



ˇc
lnS0: (5.26)

Then, using (5.17), we can convert (5.25) into an integral with the variable S by
making the substitution S D S.t/, dS D PS dt , so that

dt D
1

PS
dS D �

1

ˇcSI
dS:
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We obtainZ t1

0

�
k � mI.t/

�
dt D

Z S1

S0

�
k � mI

ˇcSI
dS

D

Z S1

S0

�
k � m.�S C



ˇc

lnS C C /

ˇcS.�S C


ˇc

lnS C C /
dS (5.27)

where C is given by (5.26).
The integral (5.27) looks like the sort of integral one studies in calculus. Un-

fortunately there is no formula for an antiderivative, so it must be evaluated nu-
merically.

Once one has the integral as a numerically computed function of t1, if it switches
from negative to positive as t1 increases, one can use a numerical method such as
bisection to find the value of t1 where the integral is 0.

5.7 Singular solutions

A sequence of solutions of the fast and slow limit systems that a true solution, for
small � > 0, is expected to follow is called a singular solution.

S

I

x

Figure 5.3: A singular solution.
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Figure 5.3 shows the beginning of a singular solution.

1. The first fast solution starts at point where S is large, I is small, and most
people are using normal behavior. It leads to a point in x D 1, i.e., everyone
uses normal behavior.

2. The first slow solution is in x D 1, i.e., it is a solution of an SIR system
with R0 > 1. The number of infectives increases until a point where the
entry-exit integral (5.24) is zero.

3. The second fast solution leads to a point in x D 0, i.e., everyone uses careful
behavior.

4. The second slow solution is in x D 0, i.e., it is a solution of an SIR system
with R0 < 1. The number of infectives declines until a point where the
entry-exit integral (5.22) is zero.

5. The third fast solution then leads to a point in x D 1.

6. The third slow solution (not shown) is in x D 1. It could represent a second
wave of the epidemic (i.e., it could begin with I.t/ increasing). In this case
there could be a fourth fast solution, or the epidemic could pass a peak and
then die out. Alternatively, the third slow solution could have I.t/ decreas-
ing from the start, representing the end of the epidemic.

Let us give a numerical example. We use the parameter values

ˇn D 1=2; ˇc D 1=10; 
 D 1=6; k D 3=10; mn D 5; mc D 2:

The same parameter values were used in the simulation in Section 5.1. As in the
simulation we shall use the starting point .S; I; x/ D .0:96; 0:04; 0:98/. The com-
putations of entry-exit integrals needed to produce the singular solution were done
in Schecter (2021). The resulting singular solution is the following. You should
compare the singular solution to the simulation, which is actually a simulation of
(5.8)–(5.10) with � D 1=200.

1. The first fast solution goes from (0.96, 0.04, 0.98) to (0.96, 0.04, 1).

2. The first slow solution goes from (0.96, 0.04, 1) to (0.720, 0.184, 1), where
the entry-exit integral is 0.

3. The second fast solution goes from (0.720, 0.184, 1) to (0.720, 0.184, 0).
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4. The second slow solution goes from (0.720, 0.184, 0) to (0.626, 0.045, 0),
where the entry-exit integral is 0.

5. The third fast solution goes from (0.626, 0.045, 0) to (0.626, 0.045, 1).

6. The third slow solution goes from (0.626, 0.045, 1) to (0.276, 0.122, 1),
where the entry-exit integral is 0.

7. The fourth fast solution goes from (0.276, 0.122, 1) to (0.276, 0.122, 0).

8. The fourth slow solution goes from (0.276, 0.122, 0) to (0.268, 0.081, 0),
where the entry-exit integral is 0.

9. The fifth fast solution goes from (0.268, 0.081, 0) to (0.268, 0.081, 1).

10. The fifth slow solution goes from (0.268, 0.081, 1) to (0.146, 0, 1), where
the epidemic ends. There is no point where the entry-exit integral is 0.

5.8 Discussion of human behavioral change

The model presented in this chapter is part of the growing discipline of behavioral
epidemiology. A good introduction is Bauch, d’Onofrio, and Manfredi (2013).

The model could be changed in various ways. Here are a few.

1. In the model, everyone experiences the same fixed cost�k of careful behav-
ior. This is of course not correct. The costs of staying home to a professional
who can work from home and to a casual laborer who must find work ev-
ery day are completely different. Perhaps the model should have different
compartments for different social groups.

2. The fixed cost �k of careful behavior may not actually be fixed. Over time
people may simply tire of wearing a mask and staying home, or they may
exhaust their savings and need to find work. In these cases the perceived
cost of staying home increases.

3. The model assumes that people react to the present state of the epidemic,
i.e., to I.t/. Another possibility is that people react to the memory of the
epidemic, i.e., to I.s/ for s 6 t . This might be one reason why, when I.t/

declines, many people still stay home. See Poletti, Ajelli, andMerler (2012)
for this approach.
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4. In the model people only react to the state of the epidemic and their interac-
tions with other people. In fact people also react to government orders and
to information presented in the media. Since different media can present
very different information, perhaps the model should have different com-
partments for different styles of media consumption.

Human behavior is complicated. Different aspects of human behavior might
be salient in different situations. Thus simplified models that only capture one or
a few aspects of human behavior might correctly account for behavior in some
situations but not others.

Mathematical epidemiologists know that spontaneous human behavioral change
is important. However, it is rarely included in models in practical use. For exam-
ple, Ferguson, Cummings, et al. (2006), in their detailed agent-based model of
influenza in the US and UK that was mentioned in the Preface, write: “We do
not assume any spontaneous change in the behaviour of uninfected individuals as
the pandemic progresses, but note that behavioural changes that increased social
distance together with some school and workplace closure occurred in past pan-
demics …and might be likely to occur in a future pandemic even if not part of
official policy. …Such spontaneous changes in population behaviour might more
easily reduce peak daily case incidence.”

There are at least three reasons that behavioral change is not taken into account
in most models.

1. As we mentioned above, human behavior is complicated, and one can imag-
ine taking into account many different aspects of human behavior.

2. There is not yet a widely accepted general approach to how to take into
account human behavior in epidemic models.

3. Gathering data relevant to human behavior is a challenging problem.

These issues present an important challenge for the future.

5.9 Problems

Problem 5.1 Completion of the derivation of the SIR model with imitation
dynamics

In this problem we explain the first summand in equation (5.4). The system (5.2)–
(5.4) is actually based on a four-compartment model. There are two susceptible
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compartments, Sn and Sc . Individuals in Sn use normal behavior with adequate
contact rate ˇn, and individuals in Sc use careful behavior with adequate contact
rate ˇc . The other compartments are infectives and recovered. Ignoring imitation
dynamics, we have the following system of differential equations for the popula-
tion fractions:

PSn D �ˇnSnI; (5.28)
PSc D �ˇcScI; (5.29)
PI D .ˇnSn C ˇcSc/I � 
I; (5.30)
PR D 
I: (5.31)

Define x D Sn=.Sn C Sc/, so 1 � x D Sc=.Sn C Sc/. Use the quotient rule to
show that

Px D x.1 � x/.ˇc � ˇn/I:

Problem 5.2 Human response to vaccination programs
Consider the SIR system with births and natural deaths that we looked at in Prob-
lem 3.2. We assume 
C�

ˇ
< 1. We saw in Problem 3.2 that with this assumption,

the disease becomes endemic, i.e., there is an interior equilibrium .S�; I�/. With
the opposite assumption 
C�

ˇ
> 1, the disease dies out. R0 for this system is ˇ


C�
.

Since the disease becomes endemic if nothing is done, it is reasonable to de-
velop a vaccination program. Suppose that a fraction x of newborns are vaccinated
against the disease, and that the vaccination is completely effective. Thus a frac-
tion x of newborns enter the recovered category, and a fraction 1 � x enter the
susceptible category. The system in Problem 3.2 becomes

PS D �.1 � x/ � ˇSI � �S; (5.32)
PI D ˇSI � 
I � �I; (5.33)
PR D 
I � �R C �x: (5.34)

Parents who choose not to vaccinate their newborn have a negative payoff
because their child might get the disease. This payoff is proportional to the number
of infectives in the population. It is therefore �mI where m is a positive constant.

On the other hand, parents who choose to vaccinate their newborn have a neg-
ative payoff due to the possibility of side effects from the vaccine. This payoff is
�k where k is a positive constant.

Therefore
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• payoff of vaccinating minus payoff of not vaccinating equals �k C mI .

For vaccines in current use, k is much smaller than m. Thus when I is not too
low (I > k

m
), vaccinating has a higher payoff, but when I is very low (I < k

m
),

as it will be if the vaccination program has been in effect for a long time, then not
vaccinating has a higher payoff.

Assuming imitation dynamics, we have

Px D �x.1 � x/.�k C mI/

with � a positive constant. When vaccinating gives a higher payoff, x increases;
when vaccinating gives a lower payoff, x decreases.

The complete system is

PS D �.1 � x/ � ˇSI � �S; (5.35)
PI D ˇSI � 
I � �I; (5.36)
PR D 
I � �R C �x; (5.37)
Px D �x.1 � x/.�k C mI/: (5.38)

1. Show that if S C I C R D 1, then PS C PI C PR D 0. Therefore we shall
ignore the PR equation and consider the reduced system

PS D �.1 � x/ � ˇSI � �S; (5.39)
PI D ˇSI � 
I � �I; (5.40)
Px D �x.1 � x/.�k C mI/: (5.41)

The state space is the prism P .

2. Find all the equilibria. Answer:

.S; I; x/ D .1; 0; 0/; .S�; I�; 0/; .0; 0; 1/; .S�;
k

m
; x�/;

with

S� D

 C �

ˇ
; I� D �

�
1


 C �
�

1

ˇ

�
; x� D 1 �

�
ˇk

�m
C 1

�
S�
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Because of the assumption that 
C�
ˇ

< 1, S� and I� are strictly between
0 and 1; .S�; I�/ is the endemic equilibrium found in Problem 3.2. We
shall also assume that x� is strictly between 0 and 1. This assumption is
reasonable since, as we mentioned, k

m
is typically very small.

3. Use the methods of this course to learn whatever additional information you
can about the dynamics of this model. The planes x D 0 and x D 1 are
invariant. Can you use linearization and planar theory to determine the flow
on these planes? Does linearization at the equilibria help you to understand
the flow in 0 < x < 1? Is it appropriate to view this system as a fast-slow
system, and does that help?
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A.1 Solution for Chapter 1
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Figure A.1: Phase portraits for Problem 1.1.
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Solution 1.1
See Figure A.1.

Solution 1.2

Ps D �
ˇ

N
si C 
i H) N PS D �

ˇ

N
.NS/.NI/ C 
.NI/ H) PS D �ˇSI C 
I:

Solution 1.3

Z 1

0


e�
t dt D lim
N !1

Z N

0


e�
t dt:Z N

0


e�
t dt D �e�
t
�N
0

D �e�
N
C 1:Z 1

0


e�
t dt D lim
N !1

�
�e�
N

C 1
�

D 1:

Solution 1.4

From an integral table or integration by parts,
R


 te�
t dt D �.
�1 C t/e�
t .
Therefore:Z 1

0


 te�
t dt D lim
N !1

Z N

0


 te�
t dt:Z N

0


 te�
t dt D �.
�1
C t/e�
t

�N
0

D �.
�1
C N /e�
N

C 
�1:Z 1

0


e�
t dt D lim
N !1

�
�.
�1

C N /e�
N
C 
�1

�
D 
�1:

Solution 1.5

Since @
@ˇ

�
1 �



ˇ

�
D




ˇ2 > 0, if we can reduce ˇ, we will reduce the endemic
equilibrium. (You can also see this just by looking at the equation for the endemic
equilibrium.) We can reduce ˇ by reducing the frequency of contacts that infec-
tives have with susceptibles, or by reducing the probability of transmission of the
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diseasewhen a contact occurs. The first can be reduced by quarrantine of infectives,
encouraging social distancing, closure of businesses, schools, etc., lockdowns of
the population, and similar measures. The second can be reduced by encouraging
mask wearing. You may have additional ideas.

Solution 1.6

1. PI D ˇSI � 
I C �S D ˇ.1 � I /I � 
I C �.1 � I / D ˇI � ˇI 2 � 
I C

� � �I D � C .ˇ � 
 � �/I � ˇI 2:

2. When I D 0, PI D �, which is positive. When I D 1, PI D � C .ˇ � 
 �

�/ � ˇ D �
 , which is negative.

3. The apex of the parabola can have I negative, I D 0, or I positive. Either
way we have essentially the same phase portrait in 0 6 I 6 1.

See Figure A.2.

Solution 1.7

1.

dI

dt
D I.1 � I /

dI

I.1 � I /
D dt Use partial fractions:

1

I
dI C

2

1 � 2I
dI D dt

Integrate. Since we assumed 0 < I < 1
2
, we don’t need absolute value

signs when we take the antiderivatives on the left.

ln I � ln.1 � 2I / D t C C

ln
1

1 � 2I
D t C C
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2. Exponentiate both sides:
1

1 � 2I
D Aet : A is positive since A D eC . Solve for I :

I D Aet
� 2AetI

.2Aet
C 1/I D Aet

I D
Aet

2Aet C 1
D

A

2A C e�t
(Multiplied top and bottom by e�t .)

3. Check that I D
A

2ACe�t is a solution of PI D I.1 � 2I / for any A:

PI D �
A

.2A C e�t /2
� �e�t

D
Ae�t

.2A C e�t /2

I.1 � I / D
A

2A C e�t

�
1 � 2

A

2A C e�t

�
D

A

2A C e�t
�

2A C e�t � 2A

2A C e�t

D
Ae�t

.2A C e�t /2

4. Suppose I.0/ D 1. Determine A:

1 D
A

2A C 1
H) 2A C 1 D A H) A D �1:

So the solution of PI D I.1 � 2I /, I.0/ D 1 is I.t/ D
�1

�2Ce�t . The
numerator is 0 when

�2 C e�t
D 0 H) e�t

D 2 H) �t D ln 2 H) t D � ln 2:

The solution is only defined on the interval � ln 2 < t < 1. As t ! 1,
I.t/ !

1
2
. As t ! � ln 2 from the right, I.t/ ! 1.

A.2 Solution for Chapter 2

Solution 2.1

1. The maximum value of I occurs where dI
dS

D 0. dI
dS

D �1 C



ˇS
D 0 H)

S D


ˇ
. (We knew this without doing the calculation.) Therefore

Imax D I

�



ˇ

�
D �

�



ˇ
� S�

�
C




ˇ

�
ln




ˇ
� lnS�

�
:
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2. (a) @Imax
@S�

D 1 �



ˇS�
. If S� > 


ˇ
then ˇS� > 
 , so 


ˇS�
< 1, so

1 �



ˇS�
> 0. Thus @Imax

@S�
> 0. It makes sense that if the susceptible

population fraction as the start of the epidemic is larger, then the max-
imum number of infected would be larger. Also, we see in Figure 2.3
of the text that if S� is larger, then the maximum value of I is larger.

(b) @Imax
@ˇ

D



ˇ2 �



ˇ2

�
ln 


ˇ
� lnS�

�
C



ˇ

�
ˇ



��



ˇ2 D �



ˇ2

�
ln 


ˇ
� lnS�

�
>

0 because S� > 

ˇ
. If ˇ increases, the disease is more easily spread. It

makes sense that this would lead to an increase in the maximum value
of I .

(c) @Imax
@


D �
1
ˇ

C
1
ˇ

�
ln 


ˇ
� lnS�

�
C



ˇ

�
ˇ



�
1
ˇ

D
1
ˇ

�
ln 


ˇ
� lnS�

�
< 0

because S� > 

ˇ
. If 
 increases, then 1



, the mean length of time that

an infective is ill and can infect others, decreases. It makes sense that
this would lead to a decrease in the maximum value of I .

Solution 2.2

1. Solve the system of equations �x D 0; �2y D 0. You get .x; y/ D .0; 0/.

2. dy
dx

D
2y
x

H)
1
y

dy D
2
x

dx H) lny D 2 ln x C C H) y D Ax2.

3. Use Theorem 2.1. Let V.x; y/ D x. Then rV.x; y/ D .1; 0/ ¤ .0; 0/.
Also, whenV.x; y/ D 0, we haverV.0; y/�f .0; y/ D .1; 0/�.0; �2y/ D 0.
Therefore byTheorem 2.1, the line x D 0 is invariant. (A quicker way to do
this problem, which involves doing the second check but skipping the first,
is just to note that x D 0 H) Px D 0.)

4. See Figure 3.4.

5. Three.

Solution 2.3

1. Solve the system of equations �˛x � !y D 0; !x � ˛y D 0. You get
.x; y/ D .0; 0/.
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2. Instead of using (2.6), we’ll just use the formula for PV that precedes it (the
chain rule):

PV D
@V

@x
Px C

@V

@y
Py D 2x.�˛x � !y/ C 2y.!x � ˛y/ D �2˛.x2

C y2/

D �2˛V:

3.

P� D
@�

@x
Px C

@�

@y
Py D

D
1

1 C
�y

x

�2 ��
y

x2

�
.�˛x � !y/ C

1

1 C
�y

x

�2 � 1

x

�
.!x � ˛y/ D

D �
y

x2 C y2
.�˛x � !y/ C

x

x2 C y2
.!x � ˛y/ D

D
!.x2 C y2/

x2 C y2
D !:

4. See Figure 3.5.

A.3 Solution for Chapter 3

Solution 3.1
1.  

@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

�
�ˇI �ˇS

ˇI ˇS � 


�
2. At an equilibrium .S; 0/, 

@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

�
0 �ˇS

0 ˇS � 


�
3. Eigenvalues:ˇ̌̌̌

�� �ˇS

0 ˇS � 
 � �

ˇ̌̌̌
D ��.ˇS � 
 � �/ D 0 H) � D 0; ˇS � 
:

4. No. All have at least one eigenvalue that is 0.
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Solution 3.2

1. PS C PI C PR D .� � ˇSI � �S/ C .ˇSI � 
I � �I/ C .
I � �R/ D

� � �.S C I C R/ D 0 if S C I C R D 1. Let V.S; I; R/ D S C I C R.
rV D .1 1 1/. PV D PS C PI C PR D 0 if S C I C R D 1. By Theorem 2.1
the set S C I C R D 1 is invariant.

2. To find the equilibria we must solve simultaneously two equations:

� � ˇSI � �S D 0

ˇSI � 
I � �I D 0

The second equation factors: .ˇS � 
 � �/I D 0. Therefore S D

C�

ˇ

or I D 0. In the first case, the first equation yields I D
�


C�
�

�
ˇ
. In the

second case, the first equation yields S D 1.

3. .S�; I�/ D

�

C�

ˇ
; �
�

1

C�

�
1
ˇ

��
. If 
C�

ˇ
> 1, the S� > 1, so .S�; I�/ …

T . Now suppose 
C�
ˇ

< 1. To show that .S�; I�/ 2 T , we must show that
S� > 0, I� > 0, and S� C I� 6 1. (To prove something, it often helps to
go back to the definition to see what you need to show!) S� > 0 is obvious
since 
 , � and ˇ are positive. Also,


 C �

ˇ
< 1 H) 
 C � < ˇ H)

1


 C �
>

1

ˇ
H)

1


 C �
�

1

ˇ
> 0:

Therefore I� > 0. Finally,

S� C I� D

 C �

ˇ
C

�


 C �
�

�

ˇ
D




ˇ
C

�


 C �
D

D

.
 C �/ C �ˇ

ˇ.
 C �/
<


ˇ C �ˇ

ˇ.
 C �/
D 1:

4.

 
@ PS
@S

@ PS
@I

@ PI
@S

@ PI
@I

!
D

�
�ˇI � � �ˇS

ˇI ˇS � 
 � �

�
5. At .1; 0/, the linearization matrix is�

�� �ˇ

0 ˇ � 
 � �

�
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Eigenvalues:ˇ̌̌̌
�� � � �ˇ

0 ˇ � 
 � � � �

ˇ̌̌̌
D .����/.ˇ�
����/ D 0 H) � D ��; ˇ�
��:

The eigenvalue �� is always negative. If 
C�
ˇ

< 1, then 
 C � < ˇ, so
ˇ � 
 � � D ˇ � .
 C �/ > 0. Therefore .1; 0/ is a saddle. If 
C�

ˇ
> 1,

then 
 C � > ˇ, so ˇ � 
 � � D ˇ � .
 C �/ < 0. Therefore .1; 0/ is an
attractor.

6. Consider the matrix �
�ˇI� � � �ˇS�

ˇI� ˇS� � 
 � �

�
:

Trace D �ˇI� � � C ˇS� � 
 � �

D �ˇ�

�
1


 C �
�

1

ˇ

�
� � C ˇ


 C �

ˇ
� 
 � �

D �
ˇ�


 C �
C � � � C 
 C � � 
 � �

D �
ˇ�


 C �
< 0:

Determinant D .�ˇI� � �/.ˇS� � 
 � �/ � ˇI�.�ˇS�/

D �ˇ2I�S� C ˇ
I� C ˇ�I� � ˇ�S� C 
� C �2
C ˇ2I�S�

D ˇ.
 C �/I� � ˇ�S� C 
� C �2

D ˇ.
 C �/�

�
1


 C �
�

1

ˇ

�
� ˇ�


 C �

ˇ
C 
� C �2

D ˇ� � .
 C �/� � �.
 C �/ C 
� C �2

D ˇ� � 
� � �2
� 
� � �2

C 
� C �2

D �.ˇ � 
 � �/ > 0 because ˇ > 
 C �:

7. If we multiply the system (3.26)–(3.27) by 1
I
, which is positive in I > 0,

we obtain

PS D
�

I
� ˇS � �

S

I
;

PI D ˇS � 
 � �:
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The divergence of this system is

@ PS

@S
C

@ PI

@I
D �ˇ �

�

I
;

which is negative in I > 0. By Dulac’s Criterion (Corollary 3.2) the system
(3.26)–(3.27) has no closed orbits, separatrix cycles or graphics in I > 0.
Arguing as in Section 3.7, we draw the same conclusions as in that section.

Solution 3.3

1.

f .I / D .ˇ � 
 � �/I � ˇI 2

f 0.I / D ˇ � 
 � � � 2ˇI

f 0.0/ D ˇ � 
 � �

We assumed ˇ

C�

< 1. This impliesˇ < 
C�, which impliesˇ�
�� < 0.
Therefore f 0.0/ < 0, so 0 is an attractor.

2. i.t/ D I.t/N.t/ � I.0/e.ˇ�
��/tN.0/e.���/t D I.0/N.0/e.ˇ�
��/t .
Therefore i.t/ is increasing if ˇ � 
 � � > 0, or ˇ > 
 C �. We assumed
ˇ < 
 C �. Therefore the condition we need is 
 C � < ˇ < 
 C �, or
� < ˇ � 
 < �.

A.4 Solution for Chapter 4

Solution 4.1

First, let’s make sure we’re comparing apples to apples and not apples to oranges.
In Figure 4.2a, I.30/ is the population fraction infected at t D 30. In the Stevens
chart, if we assume that people stay infected for 10 days, then the number in-
fected on day 30 would be the total number of cases as of day 30 minus the to-
tal number of cases as of day 20, or 12647 � 2244 D 10403. Thus I.30/ D

10403=66; 650; 000 D :00016, or .016%. This makes the discrepancy a little
worse:

There are many possible sources for the discrepancy, but the most important
is probably the difference in initial conditions. In the Stevens chart, t D 0 would
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be 22/02/2020. A reasonable estimate for cases to date on that day, from the data
presented, is nine. If we assume all those people were still infective on that day,
we would have I.0/ D 9=66; 650; 000 D :00000014.

In Figure 4.2a, S.0/ D :9999. I.0/ can be calculated from the equation I D

�.S � 1/ C
1
3
lnS :

I.0/ D �.:9999 � 1/ C
1

3
ln :9999 D :000067:

Thus I.0/ in Figure 4.2a is almost 500 times greater than I.0/ in the Stevens chart,
while I.30/ in Figure 4.2a is almost 200 times greater than I.30/ in the Stevens
chart.

These ratios differ by less than one order of magnitude. Thus most of the dis-
crepancy is explained by the difference in initial conditions.

Solution 4.2
Sources of error: The UK data are incomplete, since they only include hospitalized
patients who were found to have covid. We are using an SIR model and assuming
that the total number of infectives increases at the same exponential rate as the
hospitalized infectives. It is not clear that one can do better with the available
data, but you may have some ideas.

Solution 4.3
1. Omitted.

2. Expand the determinant by the last column:ˇ̌̌̌
ˇ̌�.
E C �/ ˇS 0


E �.
I C �/ 0

0 
I ��

ˇ̌̌̌
ˇ̌ D ��

�
.
E C �/.
I C �/ � 
E ˇS

�
:

Since � > 0, the determinant is nonzero if and only if .
E C �/.
I C �/ �


E ˇS ¤ 0. When the determinant is nonzero, the only solution of the linear
equation is E D I D R D 0.

3. The determinant is zero only for S D
.
EC�/.
I C�/

ˇ
E
which is greater than

1. So the determinant does not vanishes on S and the right hand sides of
(4.23)–(4.25) are 0 if and only if E D I D R D 0. Since I D 0, the right
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hand side of (4.22) is 0 if and only if S D 1. We conclude that the only
equilibrium of (4.22)–(4.25) in S is .1; 0; 0; 0/.

4. The linearization matrix is0BBBB@
@ PS
@S

@ PS
@E

@ PS
@I

@ PS
@R

@ PE
@S

@ PE
@E

@ PE
@I

@ PE
@R

@ PI
@S

@ PI
@E

@ PI
@I

@ PI
@R

@ PR
@S

@ PR
@E

@ PR
@I

@ PR
@R

1CCCCA D

0BB@
�ˇI � � 0 �ˇS 0

ˇI �
E � � ˇS 0

0 
E �
I � � 0

0 0 
I ��

1CCA :

At .S; E; I; R/ D .1; 0; 0; 0/ the linearization matrix becomes0BB@
�� 0 �ˇ 0

0 �.
E C �/ ˇ 0

0 
E �.
I C �/ 0

0 0 
I ��

1CCA :

5. To find the eigenvalues of the previous matrix we writeˇ̌̌̌
ˇ̌̌̌�� � � 0 �ˇ 0

0 �.
E C �/ � � ˇ 0

0 
E �.
I C �/ � � 0

0 0 
I �� � �

ˇ̌̌̌
ˇ̌̌̌

D .�� � �/

ˇ̌̌̌
ˇ̌�.
E C �/ � � ˇ 0


E �.
I C �/ � � 0

0 
I �� � �

ˇ̌̌̌
ˇ̌

D .�� � �/2

ˇ̌̌̌
�.
E C �/ � � ˇ


E �.
I C �/ � �

ˇ̌̌̌
D 0:

Thus the eigenvalues are ��, ��, and the eigenvalues of

K D

�
�.
E C �/ ˇ


E �.
I C �/

�
:

6. detK D .
E C �/.
I C �/ � ˇ
E .
Suppose detK < 0. Then K has one negative eigenvalue and one positive
eigenvalue. detK < 0 is equivalent to ˇ
E

.
EC�/.
I C�/
> 1.
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Suppose detK > 0 Since the trace of K is �.
E C
I C2�/, which is nega-
tive, in this case there are two eigenvalues with negative real part. detK > 0

is equivalent to ˇ
E

.
EC�/.
I C�/
< 1.

7.
K D F � V D

�
0 ˇ

0 0

�
�

�

E C � 0

�
E 
I C �

�
:

Using the formula
�

a b

c d

��1

D
1

ad � bc

�
d �b

�c a

�
, we find that

V �1
D

1

.
E C �/.
I C �/

�

I C � 0


E 
E C �

�
Then matrix multiplication yields the next generation matrix

F V �1
D

1

.
E C �/.
I C �/

�
ˇ
E ˇ.
E C �/

0 0

�
The eigenvalues are ˇ
E

.
EC�/.
I C�/
and 0. The largest is ˇ
E

.
EC�/.
I C�/
, so

that isR0. According to a theoremmentioned toward the end of Section 4.6,
when the largest eigenvalue of F V �1 is greater than 1, K has an eigenvalue
with positive real part, and when the largest eigenvalue of F V �1 is less
than 1, all eigenvalues of K have negative real part. This is consistent with
part 6.

Solution 4.4
1. Adding (4.30) and (4.32) we get 0 D �
1I1 D 0, so I1 D 0. Adding (4.31)

and (4.33) we get I2 D 0. If I1 D 0 and I2 D 0 we have an equilibrium, so
.S1; S2; 0; 0; R/ are the equilibria.

F D

�
ˇ11S1I1 C ˇ21S1I2

ˇ12S2I1 C ˇ22S2I2

�
; F D

�
ˇ11S1 ˇ21S1

ˇ12S2 ˇ22S2

�
:

V D

�

1I1


2I2

�
; V D

�

1 0

0 
2

�
; so V �1

D

 
1

1

0

0 1

2

!
:
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2. The next generation matrix is

F V �1
D

 
ˇ11S1 ˇ21S1

ˇ12S2 ˇ22S2

! 1

1

0

0 1

2

!
D

0BB@
ˇ11S1


1

ˇ21S1


2

ˇ12S2


1

ˇ22S2


2

1CCA :

3. Let’s find R0 for S1 D 1 and S2 D 0.

F V �1 D

0BB@
ˇ11S1


1

ˇ21S1


2

ˇ12S2


1

ˇ22S2


2

1CCA D

0B@ˇ11


1

ˇ21


2

0 0

1CA.
Therefore F V �1 has eigenvalues 0 andR0 D

ˇ11


1
. The value forR0 makes

sense since it is the value ofR0 for a standard SIR model in which the entire
population is of subgroup 1.

4. Let’s find R0: F V �1 D

0BB@
ˇS1




ˇS1




ˇ.1 � S1/




ˇ.1 � S1/




1CCA.
The sum of the eigenvalues is the trace,

ˇ



, and the product is the determi-

nant, zero, so the greater eigenvalue is R0 D
ˇ



. R0 does not depend on

the initial population’s composition. The value of R0 makes sense since the
entire population is of the same type.

5. F V �1 D

0BB@
ˇ11S1


1

ˇ21S1


2

ˇ12S2


1

ˇ22S2


2

1CCA D
1

2

 
2 3

3 10

!
.

The matrix

 
2 3

3 10

!
has the characteristic equation

�2
� 12� C 11 D .� � 1/.� � 11/ D 0;



110 A. Solutions to problems

so the eigenvalues are 1 and 11. The matrix F V �1 has eigenvalues 1=2 and
R0 D 11=2.
The eigenvectors corresponding to R0 are .a1; a2/ where

1

2

 
2 3

3 10

! 
a1

a2

!
D

11

2

 
a1

a2

!

,

 
2 � 11 3

3 10 � 11

! 
a1

a2

!
D

 
0

0

!
, a2 D 3a1:

At the beginning of the epidemic, the fraction of infectives I2 grows three
times as fast as the fraction of infectives I1.

A.5 Solution for Chapter 5

Solution 5.1

Px D
d

dt

�
Sn

Sn C Sc

�
D

.Sn C Sc/ PSn � Sn. PSn C PSc/

.Sn C Sc/2
D

Sc
PSn � Sn

PSc

.Sn C Sc/2

D
�ScˇnSnI C SnˇcScI

.Sn C Sc/2
D .ˇc � ˇn/

SnSc

.Sn C Sc/2
I

D .ˇc � ˇn/
Sn

Sn C Sc

Sc

Sn C Sc
I D .ˇc � ˇn/x.1 � x/I:

Solution 5.2
1.

PS C PI C PR D �.1 � x/ � ˇSI � �S C ˇSI � 
I � �I C 
I � �R C �x

D �.1�x/��S��I��RC�x D ���.SCICR/ D 0 if SCICR D 1:

2. To find the equilibria we must solve the system of equations

�.1 � x/ � ˇSI � �S D 0;

ˇSI � 
I � �I D 0;

�x.1 � x/.�k C mI/ D 0:
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The second equation factors into .ˇS �
 ��/I D 0, so S D

C�

ˇ
or I D 0.

The third equation yields x D 0 or x D 1 or I D
k
m
.

We can pair each of the two possibilities from the second equation with
each of the three possibilities from the third equation, which yields six pairs.
However, we cannot pair I D 0 with I D

k
m
, so there are just five pairs:

.S; x/ D

�

 C �

ˇ
; 0

�
; .S; x/ D

�

 C �

ˇ
; 1

�
; .S; I / D

�

 C �

ˇ
;

k

m

�
;

.I; x/ D .0; 0/; .I; x/ D .0; 1/:

Substitute each of these five pairs into the first equation and solve for the
remaining variable. It turns out that .S; x/ D

�

C�

ˇ
; 1
�
cannot be used

since it leads to a negative value for I . We obtain the four equilibria given
in the text.

3. In the invariant plane x D 0 (no vaccination) we just have the system studied
in Problem 3.2. With the assumption that 
C�

ˇ
< 1, the interior equilibrium

.S�; I�/ is an attractor; in fact, it attracts all solutions in the plane x D 0

with I > 0. There is a second equilibrium at .S; I / D .1; 0/. It is a saddle
that attracts solutions in I D 0.
In the invariant plane x D 1 (all newborns are vaccinated) the system re-
duces to

PS D �ˇSI � �S;

PI D ˇSI � 
I � �I

This system has one equilibrium, at .0; 0/. It is an attractor. You can use
Dulac’s Criterion, Corollary 3.2, (multiply by 1

I
) to show that all solutions

in the plane x D 1 are attracted to .0; 0/. In other words, the vaccination
program is completely successful: eventually there are no susceptibles and
no infectives.
Regarded as points inSIx-space, the equilibria just discussed are .S�; I�; 0/,
.1; 0; 0/ and .0; 0; 1/. If you calculate the 3 � 3 linearization matrix at these
equilibria, you will see that in addition to the eigenvalues they have as equi-
libria in the SI -plane, each has an additional eigenvalue �.1 � 2x/.�k C
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mI/. At .S�; I�; 0/ this eigenvalue is �.�k C mI�/, which is positive if k

is small. Similarly, at .0; 0; 1/ this eigenvalue is �k, which is positive.
Interpretation: at the endemic equilibrium with no one vaccinating, the vac-
cination rate will increase; at the fully vaccinated equilibrium with no sus-
ceptibles and no infectives, the vaccination rate will fall.
Fast-slow structure: It is not clear that it is correct to assume that attitudes
toward vaccination change on a faster time-scale than that of the disease.
However, we will sketch the analysis on the assumption that they do.
Write � D

1
�
with � > 0 a small number. Substitute into Equation (5.38)

and multiply that equation by � to obtain the slow system:

PS D �.1 � x/ � ˇSI � �S;

PI D ˇSI � 
I � �I;

� Px D x.1 � x/.�k C mI/:

Let � D
t
�
(fast time), use prime to denote d

d�
, and write the fast system:

S 0
D �

�
�.1 � x/ � ˇSI � �S

�
;

I 0
D �

�
ˇSI � 
I � �I

�
;

Px0
D x.1 � x/.�k C mI/:

Slow limit system:

PS D �.1 � x/ � ˇSI � �S;

PI D ˇSI � 
I � �I;

0 D x.1 � x/.�k C mI/:

Fast limit system:

S 0
D 0;

I 0
D 0;

Px0
D x.1 � x/.�k C mI/:

The slow limit system makes sense on x D 0 and x D 1 (ignore I D
k
m
).

On x D 0 we have the system studied in Problem 3.2; all solutions in I > 0
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are attracted to the endemic equilibrium .S�; I�/. We assume k
m

< I�. On
x D 1 we have the system found in part 3 of this problem; all solutions are
attracted to to the equilibrium .S; I / D .0; 0/.
Solutions of the fast limit system have S and I constant. For I < k

m
, x

decreases; for I > k
m
, x increases. In other words, when the number of

infectives is very small, the vaccination rate falls; otherwise it increases.
Singular solutions: We’ll construct a solution that starts with I > k

m
and

0 < x < 1.

(a) The first fast solution immediately goes to x D 1.
(b) The first slow solution is in x D 1 (everyone vaccinates). It heads

toward .S; I / D .0; 0/. Attraction toward x D 1 accumulates until
the solution passes I D

k
m
. Then repulsion begins to accumulate. Be-

cause the solution approaches an equilibrium in the repelling part of
the plane, there will always be a time at which the entry-exit integral
is 0.

(c) The second fast solution leads to a point in x D 0.
(d) The second slow solution is in x D 0 (no one vaccinates). It ap-

proaches the endemic equilibrium, which is in the repelling part of
the plane. Therefore there will be a time when the entry-exit integral
is 0.

(e) The third fast solution leads to a point in x D 1. The process repeats.
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