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Regular Trees and their Automorphisms

Said Sidki'

Notes of a Course. XIV Escola de Algebra. Rio de Janeiro, July of 1996.

Introduction

The subject matter of these notes concerns automorphisms of 1-rooted
infinite regular trees. In writing them, I have tried to explore and develop
ideas surrounding the construction of certain Burnside groups acting on trees.

Trees which are 1-rooted grow in a variety of theories such as that of
automata and of groups. They are subgraphs (half) of infinite homogeneous
trees which have been the subject of intensive study for their connection with
number theory and the theory of 3-manifolds; see [27], [28].

The necessity for studying the structure of the automorphism groups of
trees and their subgroups is clearly recognized in R. Lyndon’s survey lecture
of problems in Combinatorial Group Theory (see, [19]).

Various classes of groups have faithful representations as 1-rooted tree
automorphisms. For any prime p, groups which are finitely generated and
residually "finite p-groups” act faithfully on the p-adic 1-rooted tree. The
Burnside p-groups constructed by Golod in 1964 are of this kind. By a classi-
cal theorem of Schur {[34], page 57) a finitely generated periodic subgroup of
any finite dimensional linear group is necessarily finite. Therefore, the Golod
groups are nonlinear.

Automorphisms of 1-rooted trees have a natural interpretation as au-
tomata. The set of automorphisms of a given 1-rooted tree which are repre-
sentable as finite automata form the subgroup of finite state automorphisms.
This subgroup is of special interest to us. In 1972, Aleshin [1] constructed
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the first infinite Burnside subgroup generated by two finite state automor-
phisms of the binary tree. Since then other constructions of Burnside groups
which afford such representations were given by Suchanskii [33], Grigorchuk
[13], Gupta-Sidki [15]. Due to their multiple origins, these groups have been
named after their different authors individually or collectively.

The recursive definitions of these examples of Burnside groups were of
such simplicity that it became possible to visualize many properties of " resid-
ually finite p-groups” having infinite exponent. However, we are still very far
from clearly understanding the infinite exponent phenomenon. On the other
hand, residually finite groups with finite exponent are known nowadays to
be locally finite, thanks to Zelmanov’s celebrated solution of the Restricted
Burnside problem [36].

General techniques developed in Gupta-Sidki {16] allow the extension of
finitely generated periodic groups by adequate automorphisms of a tree, pos-
sibly of infinite valence, in such a manner that the new groups continue being
periodic and finitely generated, yet acquiring a richer subgroup structure.
This work had its continuation in Fournelle-Dixon [4].

Finite state Burnside groups were studied in more depth in {17], [26],
[30], [31). It was shown in [30] that a 3-group of Gupta-Sidki cannot be
finitely presented. The same result was also shown for Grigorchuk’s 2-group
by Lysonok [20].

These Burnside groups also served as important counter-examples to a
conjecture of J. Milnor concerning growth functions of groups. Grigorchuk
proved that they possess sub-exponential growth [14]. Furthermore he proved
these groups to be amenable. A description of this material and a com-
ment on its connections with other areas can be found in Chapter 12 of
Ol’shanskii’s [22].

In joint work with A.Brunner (2], [3], we have undertaken a study of the
group of finite state automorphisms. Considering that this group contains
non-linear Burnside groups, the degree to which it differs from linear groups
needs to be clarified. Toward this end, we have produced in the second cited
work a faithful representation of the linear group GL(n, Z ) into the group
of finite state automorphisms of a tree naturally associated with the module
Z". Since the free group F,, of rank m is a subgroup of GL(2, Z), it follows
that F,,, too has a representation as a group of finite state automorphisms. In
view of the theorem of Formanek-Processi [11] that Aut(F,,) is nonlinear for
m > 3, it would be interesting to decide for which m > 2, the group Aut(Fy,)
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has a faithful representation on some n-ary tree, and, if it does, whether it
has a faithful representation as a finite state group of automorphisms.

The Golod groups were, in reality, born out of finitely generated non-
nilpotent nil algebras which Golod had constructed as an answer to the
Kurosh problem ( see, [5], [6]). In this respect, the existence of corresponding
algebras for finite state Burnside groups of automorphisms has been raised
and remains unanswered. The answer may depend upon deeper properties of
nil algebras in finite characteristic and of their corresponding Golod groups
(see, [9]).

;From a different view point, knowing that the total group of automor-
phisms of a 1-rooted tree is an infinite iteration of group extensions, what
about the existence of algebras having similarly iterated structure? We con-
structed in [32] an invariant ideal within the group algebra of the group of
automorphisms of the tree such that the quotient of the algebra by this ideal
has infinitely iterated structure, and where the original group is isomorphi-
cally embedded. The quotient algebra allowed us to prove the existence of
a linear faithful irreducible infinite dimensional representation of one of the -
Gupta-Sidki 3-groups, in characteristic 3. This result marks a deep contrast
between finitely generated infinite p-groups which are residually finite, and
finite p-groups. In this respect, Passman and Temple studied in [24] the num-
ber of non-equivalent representations of a given degree of p-groups such as
ours, over non-denumerable algebraically closed fields having characteristic
the same prime p. They showed that if the group admits a faithful irreducible
representation then it admits an infinite number of non-equivalent faithful
irreducible representations. The new algebras with recursive structure raise
a host of interesting questions concerning their special properties.

My thanks go to the participants of the Algebra Seminar, my colleagues
Norai Rocco, Pavel Schumyatski, and students Ana Cristina Vieira, Claus
Halkjaer, Frederico Cid, for comments which contributed to an improved
exposition. I owe Ana Cristina special thanks for taking notes during my
talks.
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1. Trees and their automorphisms

1.1 Rooted trees

In order to give a formal definition of our trees, we start with a non-
empty set Y, called alphabet, and we let M = M(Y') be the set of all finite
sequences from Y . Then M is the free monoid generated by ¥ where the
operation is indicated by . , and the neutral element is the empty set ¢.
The length of an element u of M is denoted by |u|. The monoid M admits
the following ordering:

v < u if and only if u is a prefix of v.

The tree T = 7(Y) is none but the graph of {M, <), and it is a metric
space with metric induced from the length function | u | . Given two vertices
u and v with largest common prefix w, then the distance between % and v is
defined by

dlu,v) ={u|+|v]|-2]w].

The tree satisfies two important properties.

() Given u € M, the set of its descendents u.M = {u.v | v € M} form
a subtree isomorphic to the original tree 7.. The canonical isomorphism is
given by deleting the prefix u.

(ii) The tree 7 is the direct limit of the set of finite subtrees 7;(M) = {v €
M : |u| < k}, defined for & > 0.

We note that our tree is a subtree of a homogeneous tree obtained from
T(Y) by adding to the latter another copy 7(Y¥')’ and by connecting ¢ with
¢’ with an edge.

The first interesting tree occurs when Y has two elements, say 0 and 1.
Then we have the binary tree [Figure 1] which we denote by 7z . It is a
subtree of the ternery homogeneous tree [Figure 2].
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Figure 1: i-rooted binary tree
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Figure 2: Homogeneous ternary tree

1.2. The group of tree automorphisms

An automorphism of a 1-tooted regular tree is an isometry of its metric
space. In other words, it is a bijection on the vertices, which preserves the
length function. As we will sce below the description of an element o of the
group of automorphisms A = Aut(T ) of the tree is made by specifying an
infinite sequence of permutations of Y.

Given a permutation o of ¥, with action on the left , it may be extended
(rigidly) to an automorphism of the tree 7 in the following simple manner :

(yu)o = (y)ou,Yy €Y, Vu € M.

This gives us an immexsion of the group P(Y) of permutations of the set Y
into the group of automorphisms of the tree A. .

An automorphism o € A induces a permutation os(c) on the set Y,
which we identify with its extension as explained above. Therefore the auto-
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morphism « factors as a@ = o¢'os() where ¢ fixes Y pointwise. Furthermore,
¢ itself induces for each y in Y an automorphism o/(y) of the subtree whose
vertices form the set y.M. On using the canonical isomorphism between this
subtree and the tree 7 , we may consider ¢ as function from ¥ into A ; in
notational form, o' € F(Y,.A). Thus, the group A factors as a semi-direct

product
A=F(Y,A) >aP(Y).

It is convenient to denote a by a{¢) and &'(y) by a(y). In order to
describe a(y), we follow the same procedure used in the case of a. On
repeating successively this procedure, we obtain the set >(a) = {o,(a) |
u € M} of permutations of ¥ which describes faithfully the automorphism
a. We also obtain the set of automorphisms of the tree Q(a) = {a, [ u € M}
which we call the set of states of a.

It follows that for each o we have a corresponding function

[@: M = P)
u = oyla)

and { ] is a bijection between A and the set of functions (M, P(Y')). It then
follows that | A |= | P(Y) M1,

The above representation of a tree automorphism « is in the form of
an infinite product of automorphisms. In general, given a sequence of au-
tomorphisms {a; : ¢ > 0}, their products § = ..a;..c00, ¥ = 1 0n..0y.. are
well-defined automorphisms, provided for any level k,there exists a natural
number m; such that only finitely many of the factors a; have nontrivial
action for ¢ < my ,. If u € M is of length k, then (u)f = (u)ou,,..0004, and
(u)y = (u)a1@a..04n,. Thus we may define the following closure operation:
given H a subset of A , let H* be the set of definable infinite products of
elements from H. It follows from the observation about the infinite products
B3, and -y that if H is a subgroup then H* is also a subgroup.

We recall (see, [21] page 74) that a subgroup H of a group G is said to
be verbal provided it satisfies a set of group equations

{012102%2.-05Tsas41 = €, biyibaye. bsuebiy = €, ..}



with variables
Z1,T2; -3 T Y1 Y25 oy Yty .-

and constants (i.e, elements of G)
Ay, 02y .oy Bgy1, bl, bg, . bt+1:
Proposition 1 If H is a verbal subgroup of A, then H* is also verbal .

Proof. To show that Sy, Bs,..0 satisfies one of the group equations ,
Say W1=Q1T102%2..0sTs0s41 = €, it suffices to prove this fact modulo Ay,
the group stabilizer of the k-th level of the tree, for all kK > 1. This is so
because modulo A, the §;’s are congruent to elements from H , and so
1510282050051 € Ay, for all k, and therefore it is the identity element.

Let ¥ be a finite set, and a an automorphism of the tree 7 (). Suppose «
induces permutations of order ny on the k-th level vertices of the tree. Define
oy = &™. Then infinite products of powers of these ay’s are well-defined.

Let m be the exponent of the group P(Y). Then o™ fixes pointwise the
set Y , and clearly, o™ fixes all u € M of length k. We conclude that if &
has finite order n, then n is a divisor of mF* for some k > 0.

Suppose ¥ = {0,1}. Then torsion automorphisms have orders which are
powers of 2. Now, for any antomorphism o« , the set {a, o, .., azk, ..} allows
infinite products. Indeed, for £ = 2 ix.2F, (jx = 0,1), any element of the
ring of dyadic integers Z, , we may define of = ..ot.oh? o, Thus, the
closure of c is

: <a>'={ct: £ € Zs}.

The following exponentiation rules hold:
of.of = o6 (of )" = ¥ Va € A, Y€, 1 € Zy;

in other words, A is a Z-group.
Also, we note that (a)* is isomorphic to (e) if o has finite order, and to
Z, if it has infinite order.

1.3. Automata

A Mealy automaton is a Turing machine defined by a sextuple (@, L, T, f,,40),
where Q is the set of states, L is the input alphabet, T is the output alphabet,
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f:@Q x L — @ is the state transition function, ! : @ x L — T is the output
function, and ¢y is the initial state; see [10].

An automorphism « of the tree 7 can be interpreted in a simple manner
as a Mealy automaton. Its input and output alphabet are the same set Y,
its set of states is («), the transition function is described by

¥ a(u) = a(u.z)
and the output function by
au) 1y — 2,

where z is the image of y under the permutation o, («).

If the alphabet Y is finite and the automorphism « is such that its set of
states Q(a) is also finite, then we say a is a finite state antomorphism. We
denote the set of finite state automorphisms by F(Y).

We will see below some examples of automorphisms of 7; and their inter-
pretation as automata. The symbol ¢ will be reserved for the transposition
(0,1) extended to an automorphism of the tree in the manner already in-
dicated. Each automorphism « is represented as o = (ao,al),a" for some
i=0,1; clearly, o4(a) = ¢.

Example 1. Let o = (o, o). Then, the square of @ is a® = (a?,¢). As this

automorphism fixes all the vertices of the tree, it is the identity. Easily, the
set of states of a is Q(a) = {a,0}.

0/ 01,110

Figure 3: Automaton 1

Example 2. Let T = (e,7)o. Then, o4(7) = o, oo(7) = e, o1(7) = 7. We
note that 72 = (7,7) and therefore

T2n — (,rn,,.',.n)’ ,1..2n+1 — ('Tn+1,’f'"')0'

g



Then 7 has infinite order and the set of states of 7 is Q(7) = {r,e}.

011 010,11

Figure 4: Automaton 2

Example 3. Let o = (@, %)o. Then, o = (e, ) , and

a,?n —_ (aﬂ, 0.'"), f_,)!2n+1 — (o:"+1,a"+2)o'

Therefore « has infinite order and the set of its states @(&) = {a" | n > 1}
is also infinite.

Figure 5: Automaton 3

Example 4. Let o = (a7}, 0%)o. Then, o™ = (02, a)o, o = (o, @)
and a2 = (a~1, @'}, Therefore,

Q521'1 —_ (an, an)’ a2n+1 _ (an—l, aﬂ+2)o.
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and « has infinite order. The states of ais Q{a) = {a" | n = —1,-2,1,2}.

10 151 00,141

Figure 6: Automaton 4

1.4. The group of finite state automorphisms

For any automorphisms &, 3, it is easily verified that their states satisfy

Qle™) = Q(x)™, Q(eB) € Q()Q(B)-

Therefore,
Lemma 2 The set of finite state automorphisms F(Y') is a subgroup of A .

‘We will make quick remarks on the enumeration of finite state automor-
phisms of the binary tree.
If | Q(a) |=1, then there are only two possibilities for o :

=eoua=(a,a)o0.

Let | @(a) |= 2. As every state is reached from the initial state ¢, the graph
of the automaton is connected. On calculating the number of possibilities
for the directed edges and for their labelings, we find that there are 27 such
automorphisms.

In general, by a result of Harrison [8], the number of automata with n
states is asymptotic to (2n)?"/(2n!).

Another type of consideration concerns the relationship between the group
operation and the number of states. For an automorphism « € Awith
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a finite number of states n,we know that o lalso has mstates. However,
as far as oZis concerned, we know that it has at most n’states. But this
number may be much smaller. Consider for example 7 = (e, 7)o Then,
Q(r) = {r,e}, Q") = {r,7% ¢} Q%) = {r% 7% 7,e},and in general,
| Q(r™) <K m+1, forallm 2 1.

We formulate below a typical problem about the growth of states.

Problem 1. Let H be a subgroup of A generated by o, ..., G- Then an
clement w € H is expressible as a word w = ofi'af;*...,* of length | w |=
my + ma + ... + mg; let this be a word of minimum length. Suppose that
the growth of states of w is linear in terms of the length of w;that is, there
exists a constant ¢ such that | Q(w) |€ ¢. |w |, Yw € H. What is the group
theoretic impact of this condition on H ?

2. Cosets
2.1. The coset tree
Given a group Hand a chain of its subgroups:
H=Hy>H >..>H;>Hy>..

such that N H; = {1}, we consider the partition of each of the subgroups in
this chain as cosets of the subsequent subgroup

H= UHI-Tj,I;Hl = UH2mj,2

and fori > 1,
H; = | JHin1%j41-

Thus we produce the cosets
Hyzj, 5%j(,_1y8-1..Ti1.,1

which will be the vertices of a tree 7 where the incidence relation is defined by
set theoretic inclusion . The group H acts on this tree simply by translation

12



h: Hw l—) H,"lﬂh

and this action is faithful.

The set of vertices fixed by kA € H is a subtree of 7 which can be irregular.
In case H; is a normal subgroup of H and A fixes some coset H;w then A
fixes all the cosets of H; in H, and thus fixes all the vertices of the tree down
to and including the i-th level .

We note that the coset tree obtained from the chain of subgroups is regular
provided {H; : H;4,] is constant. If the set of consecutive indices is bounded
by some number m, then we can embed the coset tree in an m-ary tree, and
extend the action of H to the possibly larger tree by having it fix pointwise
the extra subtrees that it may have.

oo Ay, By

\
\ ~y \
\ - )
‘\ A \\
\ TS \

HZ H!xu HZ‘IH HZI 2)I A

Figure 7: The coset tree

Example 5. The group G = {C, | p :prime number }does not have a
chain of subgroups {H;} satisfying both conditions N H; = {e},3c such that
VZ',[.HI' : Hi+1]< C.

13



2.2. Residually finite groups

A group His said to be residually finite ( see [21}, page 116) provided for
each nontrivial element h € H, there exists a normal subgroup Ny < H such
that h ¢ N, and [H : Ny} < co. This implies the existence in H of a chain of
normal subgroups {H;}, such that [H : H] < coand N H; = {1}. If the group
H is generated by an enumerable set then there exists a enumerable chain
{H;} with the required properties. However, as we have already commented,
the existence of a chain where the subsequent indices are constant, or even
bounded, cannot be guaranteed.

On the other hand, given a prime number p and an enumerable group
Hwhich is also residually a finite p-group, in the sense that H/N; is a finite
p-group, then it has an enumerable chain of normal subgroups {H;} whose
successive quotients H;/H;,; are finite p-groups. We may refine this chain
to a chain {K;} of subnormal subgroups of H, which starts with H = K,
such that [K; : K;u1] = p, and whose intersection is the identity. The coset
tree corresponding to this chain is isomorphic to the p-adic tree 7(Y) for
Y ={0,1,...,p} which we denote by T

It is a well-know that a free group of finite rank is residually a finite
p—group, for any prime number p. We conclude easily from this

Theorem 3 Euvery free group of finite rank is isomorphic to a subgroup of
Aut(T,), for any prime number p.

The linear group I' = GL(n, Z) is residually finite. The usual argument
proceeds as follows. The the ring epimorphism 9y, : Z — Z/ p*Z, for k > 1
induces a group epimorphism ¢, : GL{n, Z )= GL(n,Z/ p*Z) whose kernel
is the congruence subgroup Nj formed by linear transformations of the from
I+ p*L where L isany nxn integral linear transformation. Therefore we
have :

(i) /N, =~ GL(n, Z [pZ) is a finite group,

(ii) for i > 1, N;/Ni4y is an elementary abelian p-group of rank n?,

14



Actually, the chain of congruence subgroups satisfy the stronger condi-
tion:

(i)’ for 1 <14 < j, N;/Nj is a p-group genérated by n? elements.

If we replace in the above Z by any residually finite ring R ( for example,
any finitely generated subring of @' ) then GL(n, R) is a residually finite
group.

Going back to GL(n, Z), since NV; is a finitely generated and residually a
finite p-group, it has a faithful representation on the p-adic tree 7. In order
to represent I" itself on a l-rooted regular tree, we consider the problem of
the extension of a tree automorphism group by a finite group. To this effect
we recall the result of Kaloujnine-Krasner [23].

Theorem 4 Let G be a group having e normal subgroup N with guotient
group H = G/N. Then G is feithfully embedded in the wreath product of N
by H, W = F(H,N).H, in such manner that N is mapped into F(H, N),
and some set of coset representatives of N in G cover H.

The proof of the theorem amounts simply to codifying a factor set of N
in G as a 'vector’ in F(H, N).

Corollary 5 Let G be a group having ¢ normal subgroup N such that H =
G/N is finite of order m. Suppose N is faithfully represented as a group of
automorphisms of an n-ary l-rooted tree T,. Then this representation can be
extended to a faithful representation of G on a q-tree where ¢ = maz{m,n}.

Proof. Extend the tree by taking m copies of the tree 7, and attach
them to a root vertex. Have N act on the first copy as before and have it
fix point-wise the other copies. Also let H permute the n copies of 7, by the
regular representation. Then the group generated by these representations
of N and H is isomorphic to W, the wreath product of N by H. Now easily,
the tree can be embedded in a g-tree, where ¢ = maxz(m,n) and the action
of W can be extended to the this ¢-tree. Therefore by the previous theorem,
G is faithfully represented on the g-tree.

Corollary 6 The linear group GL(n, Z) is faithfully representable on a q-
tree for some naturel number g.

15



Of course, the above representation is no way explicit. However, we have
given an explicit representation in {3].

A theorem of Lubotsky is quite relevant to the question concerning which
subgroups of the group of tree automorphisms are linear. His result is mod-
eled on the chain of congruence subgroups in the linear group. A group G
is said to satisfy the p-congruence condition with bound ¢ € NV provided it
has a descending series of normal subgroups {/N;} such that: G /N is a finite
group, Ni/Niyy is a finite p-group, NN; = {e}, and for 1 < i < j, N;/N; is
generated by ¢ elements.

Theorem 7 [18] Let G be a finitely generated group. Then G 1is isomorphic
to o subgroup of GL(n, @) iff G satisfies the p-congruence condition for some
bound c.

It is time we look at a concrete coset tree and a calculation of one of its
antomorphisms.

Example 6. The (+1) function

Let H = Z be the additive group of the integers, and define for every
non-negative integer k, the subgroup Hy = 9% %Z. Then we have a chain of
subgroups of H and the coset tree is the binary tree with set of vertices
{2*Z +i10<i<2F-1,0<k}

The (+1) function on the integers, 7 : 7 = 1+1, induces an automorphism
of the binary tree

with the following action

%®Z +i+1, sei<2F—1
T4+
*Z sei=2F-1

As 7 interchanges the two vertices of the first level in the tree, it has the
representation 7 = (79, 71)c . Also, since W + 2%« 2¥Z + 21+ 1, then

o X+ 9% s Z 42 +1 -2 Z + 2.

Therefore 7o acts as the identity on the subtree headed by 2Z ; in other
words, o = e and 70 = (e,71). Now we look at the action of 7o on the

16



subtree headed by 222 + 1 :
{ HZ+2~-1-Z+2% 27 +2i+1
TO : '

T 42k 1597 Ty 9k 41

In order to determine 71, we use the isomorphism between the subtree headed

by 2Z + land Z
0 2%Z +2+1— 25 Z 44

Therefore

H1Z 251 1 — 217
and this is precisely the definition of 7. Therefore we have reached the recur-
sive definition 7 = (e, 7)o.

{ k-l 4 i—1— 217 4+
(|

Z

A A

47 4Z+2 47+1 4743

AT

87 87Z+4

Figure 8: The binary coset tree of Z
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3. Some subgroups of automorphisms

One of the consequences of the iterative structure of the group of au-
tomorphisms A is the abundance of subgroups which are direct products.
Indeed, A contains the direct product of enumerably many copies of itself as
a subgroup. This is easily illustrated on the binary tree: we create isomor-
phie copies of A on the subtrees headed by the labels uv = 00..01. As these
copies commute , and as only finitely many of them have nontrivial actions
on any given level, their direct product is well-defined.

Indecomposable subgroups with iterated structure can be obtained by
using the following construction. First let us introduce some notation. Given
a set Y and a group H, define the groups

Fo(Y, H) = H,A(Y,H) = F(Y, H),
and fori > 1,
Fi(Y,H)= F(Y,Fia (Y, H)).

1t is clear that the i-th group in this definition is isomorphic to a direct
product of |Y|* copies of H.

Now suppose that H is a subgroup of P(Y). We construct from H two
subgroups of automorphisms of the tree T(Y) . The first, H # is the group
generated by F;(Y, H) for i > 0. The second, H is the closure of H # under
infinite products; its elements are represented as infinite products

o= ...fk...fg,
where f; € F;(Y, H), for ¢ > 0. Consider the direct product of groups
X(H)=.x F(Y,H) % .. % FilY,H) x Fo(Y, H),

then the map
o — (“’ (fk"'fo): v (flfO): fD)

is an embedding of H into X(H). Note that the following decompositions
hold ,
H* = F(Y,H*) ><H,H = F(Y,H)><H

3.1. The base group

18



In the above construction, if H = P(Y'), then H# is called the base group
and is denoted by G(Y'). In this case, H is the whole group of automorphisms
A.

An element o of G(Y') has finite description, in the sense that o, = e,
except for finitely many indices u. Clearly, when Y is finite, G(Y) is a
subgroup of the group of finite state automorphisms F'(Y').

The decompositions for both .4 and G(Y) can be further developed as

./4- = fk(Y, .A) ><1G0,k_1(Y)

G(Y) = j:k(}/, G(Y) >QGQ,k_1 (Y)
where by definition
Gop1(Y) =< Fra (Y, P(Y)),..., P(Y) >

This last group is isomorphic to the group of automorphisms of the subtree
formed by the vertices u with length at most & . Also, G(Y") is the union of
its subgroups Go(Y) for £ > 0.

Since F;(Y,.A) is a direct product of copies of A , on fixing yp € Y , we
may define for ¢ > 0 the following groups:

F(Y) = P(Y),

and fori > 0,

P(Y) = {feRMA | flw) € Pa(Y), flu) =e, Yy # wo).
Lemma 8 : Suppose Y is finite. Then the group G(Y') is locally finite and
is generated by P;(Y), for i > 0.

Proof. Since Y is finite, the group G (Y’) is also finite and is generated

by its subgroups P(Y), for 0 < i < k. Now the assertion follows from the
fact that G(Y') is the union of G (YY), for all £ > 0.
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The group G (Y) is of type P(Y'), in the sense that it contains subnormal
subgroups where the successive quotients are isomorphic to P(Y). Thus A
itself is residually a P(Y)-group. We also observe that is A the inverse
limit of the groups Gox(Y). This means that any automorphism ¢ is a limit
of the sequence formed by its images, Fi(Y,A) o, for k > 0. Since the
quotient group A/F;(Y, A) = Go—1(Y), the above sequence corresponds to
one formed by elements from the groups P.(Y).

Let p be a prime number, ¥ = {0,1,2,..,p — 1} and let ¢ be the permu-
tation the cycle (0,1,2,..,p — 1). If we choose the subgroup of P(Y) to be
H = (o), then H¥ is a locally finite p-group generated by elements defined
inductively by

0o = 6,01 = (€,€,..,€,00); - Tit1 = (€, €, .. €,0%); ns

and it is a (restricted) infinitely iterated wreath product (...Cp)wrCp)wrCy
of cyclic p-groups. As is well known, every finite p-group is isomorphic to
a subgroup of a wreath product of C, iterated a finite number of times,
therefore it follows that (o) contains a copy of every finite p-group.

Tn the case of the binary tree, the group P(Y') is generated by o, F,(Y)
is generated by o; and G(Y) = ()% .

3.2. Functionally recursive automorphisms

We saw that the automorphism of the binary tree a = (o, @?).c has an
infinite number of states, inspite of its simple description. In order to explain
the process by which a, is obtained from o, we need to introduce the notion
of a functionally recursive set of automorphisms. Let ¥ = {o, 3,7,...} be a
finite set of elements from .A where

a = doga), B = Bos(B),7=70s(7) -

We call {o4(c),04(B),04(7),-.-} the initial data for ¥. Now we define a set
of distinct symbols {a,b,¢, ...} corresponding to o, B, 7, .- respectively, and
use them as free generators of the free group £ . Also we let £=L*G(Y)
be the free product of £ with the base group G(Y).

The set ¥ is fuctionally recursive provided there exist words Ay, By,
Cy.n € L, Vy € Y, such that a, is obtained from A, by substituting the
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symbols a, b, ¢, ... by their values , §,7, ... In the same manner, §, is obtained
from By, etc.

Having defined a funcionally recursive set of automorphisms, an auto-
morphism « is functionally recursive provided it belongs to some set of func-
tionally recursive automorphisms ¥. Let R(Y) denote the set of functionally
recursive automorphisms.

In the case of the automorphism & = (@, a?)s, we may take ¥ to be
simply the unitary set {a}. Here the free group is generated by & and the
words are Ag = a , A; = a?.

Theorem 9 (i} The set of functionally recursive automorphisms R(Y') is a
subgroup of A.

(i) The subgroup of finite state automorphisms F(Y') is a proper subgroup
of R(Y). '

(4ii) If Y is finite then R(Y') is enumerable.

Proof. (i) (a) Easily, e € R(Y).

(b} Let a be a functionally recursive automorphism. Then o € ¥ for some
functionally recursive set. Therefore ! € ¥~! which is also functionally
recursive. This is so, since (a~'), = (a,)”' where o(2}) = ¥, and a, is
obtained by substituting elements of ¥ in the word A,. We see that a;‘ can
be similarly obtained from ¥~! using the inverse of 4,.

(c) Let ¥ and & be functionally recursive sets, and let « € ¥ e § € ®.
Then af = v is an element of ¥®. On using the product of adequate words,
it can be shown easily that ¥® is funcionaly recursive.

(i) Let @ be a finite state automorphism. Then oo € ¥ = Q(a) which
is funcionally recursive, for we may simply use the generators a, of the free
group as the words in which to substitute; naturally, we need to maintain the
identification @, = a, whenever o, = a,. The example a = (&, o*)o proves
the proper incusion of F(Y) in R(Y).

(#it) Let Y have finite cardinality n. Given a natural number &k we can
enumerate the funcionally recursive sets with k elements, by enumerating all
the (n-+1).k-tuples (Ay, By, .- t¢(a), t6(8), --) Where Ay, B,.., € £, and where
ig(a), bg(g), - € Y. Therefore, the group R(Y') is enumerable.

Problem 2. Describe group theoretic differences between F(Y") and R(Y).
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4. Conjugacy classes and Centralizers
4.1 Conjugates of automorphisms

We start with two examples of automorphisms of the binary tree, and
consider their conjugacy classes.

(i) Let @ = (ap,01).c . Then on conjugating o by 8 = (ag, e) we get
4 = af = (e,y ).o ,where m = e, Observe that 4? = (71, M) Thus , if
o(a) = 2, then 7, = e, and v = o follow.

(i) Let @ = (e, o) . Then, o(c) = 2, and & cannot be conjugated, in the
same manner as in the first example, to an element of G (Y).

Let Y be finite, and let us fix the canonical representatives of the conju-
gacy classes of P(Y'). We will describe how to produce inductively represen-
tatives of the conjugacy classes of automorphisms of the tree. The following
two basic situations will explain the procedure.

(i) Suppose that on some tree, we have an automorphism represented by
a = (ap,t,.., 0%).0, where ¢ permutes the entries transitively. Then, we
may assume, by using conjugation from P(Y), that o corresponds to the
cycle (0,1, .., k). Then on conjugating by

8 = (o, €, (en)~ 1, (cr0z) 1 (ar..ap_1) ") we obtain, as in part (i) above,

of = ((ao)_l, e, a1, a10,.., o1..05-1).(Qp, 1 ., Ctk) 0.
(a0, €, ()77, (alaz)"l,..,(al..ak_l)‘l)
= (e, 01, @1.09,.., 01..0k-1.0%)-(€, (a) ™% (enag) (o) H)o
= (e, €., € O1..0p-10%-C0)O0.

(ii) If on some tree an automorphism has the form o = (e, €, .., €, ax)o, then
in order to effect the conjugation of oy by some f3, we simply conjugate o by
v = W = (B, B,..,8) producing the desired effect a” = (e,e,..,€ af) o.

With these observations it becomes possible to prove

Theorem 10 Let o € A , and write o = ... f..frfo with f; € F(Y, P(Y)),
for i > 0. Then the representative of the conjugacy class of & s v =
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Gx--G100, Where for all k > 0, the y-section gx..g1g0 is the representative
of the conjugacy class of the a-section fi..f1fo in Gox(Y).

In the next result, we illustrate how orbit structures of tree automor-
phisms may determine théir conjugacy classes.

Theorem 11 Let v be an eutomorphism of the binary tree.

(i) Suppose v has 287} orbits on the k-th level for-all k > 1. Then v is
conjugate to o.

(ii) Suppose that v induces e transitive permutation on the k-th level for all
k > 1. Then vy is conjugate to the ” (+1) function” 7 = (e, 7)o

Proof. (i) First we note that -y does not fix any vertex at any level k£ > 1.
For, if v fixes some vertex u, it will then fix all the vertices on the path
connecting u to the root ¢. Therefore every orbit on the k-th level has size
two for all £ > 1. Now, v = (79, 71)c and we may assume by conjugation
that vy = e. If p is some orbit of v, at the k-th level, then pU p” is an orbit
of v on that level of size 2 | p | . Therefore, | p| =1, and 1, =e.

(11) Clearly, v = (70, 'yl)a which when conjugated by § = (7, ) becomes
v =+ = (e,m1v0)o . Now v, = 7170 is again an automorphlsm that induces
a transitive permutation on every level of the tree, and so v; = (714, vy1)e
and we may conjugate 7% by § = (dy , 6) where 8 = (734, €) to obtain

= (el (ea 711710) J) g.

We produce in this manner an infinite sequence of conjugators 3,4,..,
whose product is well defined. In the end, + is conjugated to an automor-
phism « of the tree, where o, = (e, a14)0 , if the index v = ¢ or 11..1, and
o, = e for other indices. The definition of & clearly coincides with that of 7.

It is possible to write down explicitly the conjugacy classes of the base
group G(Y) when Y = {0,1}. We recall that Gpx(Y) =< o0y,...01,00 >,
where 09 = 0 and o; = {e,0;_1), for ¢ > 1, and that G(Y) = UGor(Y).

We start off with the first classes C_; = {e} and Cy = {o}. Next we
define Cy = C_1 U Cy, a set of representatives of the conjugacy classes of
Go1(Y), and order it by e < 0. Let C = {(e,0),(0,0),(e,0)o} and define
Gy = €, U O}, the set consisting of the representatives of the classes of
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Goa{Y) , and ordered it by e < o < (e,0) < (0,0) < (e,0)o. Having defined
by induction the set of representatives Cy of Gox+1(Y), we define

G = {(G0,C) | G0 € Cr L € Cry G £ Cl}lU ({e} x Ci)o

and define the set of representatives of the classes of Go42(Y) to be Crir =
CUCk+1. We extend the ordering in the obvious way. With this, the process
of enumaration of a set.of representatives of the conjugacy classes of G (¥)
is completely described.

4.9 Centralizers of automorphisms of the binary tree

A straightforward analysis shows that the centralizer of o € A = Aut(Tz),
which we denote by C(), can be described as follows.

(1) If & = (o, c1), then there are two possibilities:

(1.1) if o and ¢ are non-conjugate, then C(a) =C (ap) % Clay);

(1.2) if a; = ao’e , for some tree automorphism S, then

C(a) = [Clao) x Claf)] < (8,871 >

(2) If @ = (o, 1)o, then Cla) = {(B,%) | B € Clogan)} < a>.

Proposition 12 Let 7 be the (+1) function . Then, C(1) = (" . Further-
more, if & € A is such that C(a) = (o))" then a is conjugate to 7 . '

Proof. Recall that 7 = (e, 7)o, and that 72 = (7,7). Let 8 = (6o, B1)0* €
C(r). We multiply 8 by 7* and thus assume § = (Bo, B1)- Now, 7 =
(87,B0) € C(r) holds if and only if fo = B, Bo € C(r). On multiply-
ing (B, fo) by 7% for some j = 0,1, we assume that f; = (Boo, Bo1)- The
argument can repeated to reach 8 =7 ¢ for some £, a dyadic integer.

Suppose that & = {ag, a1)o’ is such that Ca) = {(@)" . If i = 0, then
(ag,e) € C(a), and so there exists £ € Z such that of = (of,al) = (an,€)
from which we conclude that a; has finite order; similarly, o has finite order.
Therefore o has finite order and this easily leads to a contradiction. Therefore
i = 1, and we may assume that o« = (e, c1)o. Hence, Ca) = {(8,8) | B €
C(a)}- < @ > . Now we observe from C(a) = ()", that C(ay) = {@1)" and
the argument may be repeated to reach the desired conclusion.
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4.3 The affine group of the dyadic integers

Let o be an automorphism of the binary tree, and let £ = ¥ 5;.2° be a
dyadic unit; that is jo = 1.We will show that the exponentiation o — of can
be effected by conjugation.

The automorphism « is one of two types {ap, o), (co, c1)o. Accordingly,

of = (a§,0f) or ()2, (0100) V20,

We want to find A an automorphism of the tree such that a* = of . For
both possible types of & we will choose A = (Ag ,A1), and observe that

o = (), a3), or (Aglaph, ATl e)o.

If o is of the first type, then the conditions are a3 = of , &) = of. So

the problem is repeated at the next lower level in the tree. If « is of the
second type then the conditions are

Mg o = (o) D200, AT erdo = (on0g) €D 20
These conditions are equivalent to

A = 051)\0(00&1)(5_1)/2&0

(O.‘[}O:']_)'\o = (0500.’1 )E.

Again, the second equation repeats our problem at the next lower level of
the tree, and we choose Mg = (Ago ,A01) - By an iteration of this process we
arrive at an inductive definition of the conjugator A. To illustrate, consider
the (+1) function defined by 7 = (e,7)o. Then, A = (X, Ar®~1/2) conjugates
T t0 75 .

Let us go back to the general case and indicate A by A(;£). It follows

from the above definitions that

Ma;l) = e
Mz &) Mayn) = Moz €am), V&, n € U(Zs).

Therefore, A(a; £} = A(a; n) if and only if o(cr) divides én~! — 1.
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Let Ale) = {Me; €) : € € U(Z2)}- Then,

A{e) =~ U(Z,),if a has infinite order
~ U(Z[2*Z), if o(a) = 2.

" Actuslly, when o has infinite order, then U(Zs) ~ Aut({e)*) , and when
o(a) = 2%, then U(Z/2*Z) = Aut({c}) . When o is of infinite order, the
subgroup {a)*A(a) is isomorphic to the affine group of Z,. Whatever the
order of a , we have shown

Theorem 13 Let o be an automorphism of the binary tree. Then the holo-
morph group of {a)*, is isomorphic to the subgroup of iree automorphisms

() A{).

4.4. The automorphism group of the base group

As we commented earlier, the base group G of the binary tree is a locally
finite 2-group generated by {o; : i = 0,1, ..}, where by definition, 0o =07,
and o; = (e, 0_1) for all ¢ > 1. The stabilizers of the k-th level vertices of
the tree Gy = GN A; are normal subgroups of G,and A JA, = G /Gy =~
Go—1. the finite 2-group generated by {o; : 0 < ¢ < k — 1}. Indeed, the
group A is a pro-2 completion of its base group G. This intimate relationship
between A and G is also revealed at the algebraic level. The material of this
section is based upon our work with A.Brunner in [2].

We will exhibit some automorphisms of G(Y) and for this purpose we
define for a given o € A, the sequence of elements

a® = a0 = (a,0),a® = (oY, a7V),i > 2.

As G(Y) is transitive on the the k-th level vertices for all k, it follows that
its centralizer in A is trivial.

Now consider the subgroup of G(Y), D =< a,0'!, wyo® > . Then Dis
an enumerable elementary abelian subgroup, and for any £ > 0 only finitely
many of the generators have non-trivial action on the k-th level of the bi-
nary tree. Therefore, the set of infinite products oWi gllihgl where
jr € {0,1}, is the closure D* which is a non-enumerable elementary abelian

26



2—group. It is easy to show that D* normalizes G(Y'), and therefore induces
a non-enumerable group of automorphisms on G(Y). Clearly, G(Y)D* < A
is a locally finite group.

As for the normalizer subgroup of G(Y) in F(Y) we can construct for any
§ € D the finite state automorphism w(8) € D*, defined by w(8) = w'l} .§ .
This set of w(d)’s form a subgroup D} of F(Y) , and the base group G(Y')
is a proper subgroup of G(Y).Dj}.

To reach a description of the automorphism group of the base group, first
we study the normal subgroup stucture of G. We show that the normal sub-
groups are controlled by the stabilizers G,=GNAy of the k-th level vertices
of the tree.

Theorem 14 Let G be the base group of the binary tree and N be a nontrivial
subgroup of G. Then, there exists k > 1 such that N contains the derived
subgroup of Gy, and thus the quotient group G/N is an abelian by finite
2-group.

With this result, and given the types of centralizers of elements of .4 seen
in Section 5.2, it becomes possible to handle the isomorphism problem for
the centralizer subgroups of the base group G and also obtain control on the
automorphisms of G.

Theorem 15 (1) Suppose s is a conjugacy class representative of an involu-
tion in the base group G such that Cg(s) ~ Cg(o;) for some i. Then, s = o;
. (2) An automorphism of G maps each o; into a conjugate o; % for some g;
€ G. (8) The group Aut(G) is isomorphic to the normalizer subgroup N4(G)
of G in A. (4) The group Aut(G) contains a copy of A.

5. Periodic subgroups of tree automorphisms

5.1. Maximal 2-subgroups of automorphisms of the
binary tree

We investigate the maximal 2-subgroups of the automorphism group A
of the binary tree. As a starting point, we show that A has at least two
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conjugacy classes of maximal 2-subgroups. Therefore classical Sylow theory
fails here, thus answering a question raised on page 10 of R. Lyndon’s [19].

Proposition 16 Let a = (a,0) € A. Then a mazimal 2-subgroup that con-
tains o is is not conjugate to any mazimal 2-subgroup that contains o.

Proof. We claim that o{e o) is infinite for any u € A . As we may
consider u modulo the centralizer of o, it can be assumed that u = (e, u1).
Thus, @ 0% = (@ 41 , 0 u7') o , and

(ac™)? = (ao”, o.u7 o)

where v = uy'. Therefore, o(a %) > 2.0{a 0”) . We note that the conju-
gator u of ¢ has changed to v inside the bracket and now the argument may
be repeated to obtain o(c ¢*) is infinite.

Let N be a 2-subgroup of A . Let K be the point-wise stabilizer of 0,1,
" within N, and let Ky, Kj, be the projections of K on the first and second
coordinates, respectively.

(i) f N = K, then N < Kox Ky, is a 2-subgroup of A. If K; is a
conjugate of Kp, then N is conjugate to a subgroup of the larger 2-group
L = (Kyx Ky).{0)-

(i) If N # K, then N contains an element a = (o, a;)o. On conjugating
N by (ag,e), we may assume ap = e. Since ¢ = (e,a1)0, it follows that
a® = (a1, ;), and @y € KoN K;. Now since a normalizes K, we have that
Ko = K. Therefore, N is embeddable in the 2-subgroup L = (Kox K, 0)-{o)-

The above analysis proves

Proposition 17 Let N be a subgroup of A. Then, N is a mazimal 2-
subgroup of A if and only if (i) N = H x K, where H and K are non-
conjugate mazimal 2-subgroups of A, or (it} N is conjugate to L= (K x
K).{o), where K is a mazimal 2-subgroup of A.

In particular, we obtain,

1

Corollary 18 4 mazimal 2-subgroup of A is infinitely generated.
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There is much that can be asked about these maximal subgoups. For
example,

Problem 3. Let N be a maximal 2-su‘bgroup of A. Can N be enumerable?
Can N be locally finite?

Let N be a maximal 2-subgroup of A and suppose ¢ ¢ N. Define the
following sequence of subgroups of A: , Ny = N, N,y = (Nii—1y X Nyi—1y) o)
for all © > 1. Then by the above result, these are maximal 2-subgroups of
A. Clearly, since N(;y contains ¢, it is not conjugate to Ny .By a direct
argument we can show that no two of the set {N(;)} are conjugate.

We can use direct products of subgroups to produce more maximal 2-
subgroups. Let {7;} be an infinite sequence of non-negative integers , define
the subgroup L(7) = ((...) X Nj;) X Nj,, and let tL(j) be the torsion subgroup
of L. Then tL(7) is a maximal 2-subgroup of .A. It can be shown that different
sequences j, k produce non-conjugate tL(j) , ¢L(k). This proves

Theorem 19 The set of conjugacy classes of mazimal 2-subgroups of A is
non-denumerable.

5.2 Burnside groups

First we sketch some simple instances of finite state Burnside groups taken
from classes constructed by different authors.

(1) Aléshin, 1972 {1] A Burnside 2-group generated by two automorphisms
of the binary tree: a = {(o,¢e), b = (¢, (e, (e,¢))), where c is defined by c =
(0, (0, (e, 2))).

(2) Grigorchuck, 1980 [13] A Burnside 2-group H generated by three
automorphisms of the binary tree , 0, u = (e,%),v = (o,w) , where w =
(o,u).We note that these automorphisms satisfy ¢® = v* = v = w? = ¢
, uv = vu = w. We also note that the states of u form the set Q(u) =
{u,e,v,0,w}.
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To prove that H is infinite, first we observe that u” = (v,€),v° = (w,0)
and the pointwise stabilizer of ¥ = {0,1} in H is H, =< u,v,u%,v7 > .
Next, we observe that the map m; : Hy — H defined as the projection on the
first coordinate is an epimorphism, and so the infiniteness of H follows very
easily.

(3) Gupta-Sidki, 1983 [15]. We consider the ternary tree with ¥ =
{0,1,2} and on it the automorphism ¢ that is the rigid extension of the
permutation (0,1,2). Define the automorphism 7y = (v,0,07"). We verify
easily that o(y) = 3,and that the states of y form the set Q) = {71.,0,071}.
The group G generated by o, v 1s a Burnside 3-group.

The proof that G is infinite follows the same argument used in the case of
Grigorchuk’s group. We observe that y* = (671,7,0),7" = (o,07%,7),and
that the group normal closure of v is < 7y >9=< 7, 1",7"1 >=GNA; =
G,, the point-wise stabilizer of ¥ = {0, 1,2}. Clearly, the projection map
on the first coordinate m; : G; — G defines an epimorphism and so G is
infinite. To prove that every element has order a power of 3 we start with
(yo)® = (v,7,7°) and conclude that o(yo) = 32. It is worthwhile to make
the following observation: if G is seen as a group generated by v,7v°, 7“2,0,
then in the previous calculation, (yo)® = 49° "' 4" has length three, while its
three entries in (7,7,7°) have length one. It is precisely this property that
allows to us to proceed by induction on the length of the elements and prove
that our group is a 3—group, as well as showing that every proper quotient
of it is finite (that is, just infinite).

As we already commented, Golod’s p-groups have faithful representations
on a p-adic tree.

Problem 4. Decide whether the Golod groups can be realized as groups of
finite state automorphisms.

Let us go back to the 3-group G and exhibit more of its properties. An
easy calculation verifies the following important commutator relation

c=[" 1) = (e e )

Since G; projects onto G, on conjugating the above element by Gi,we are
able to produce in the first coordinate the group normal closure of [y, 07}].
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Therefore the group normal closure of cin G is N = G' x §' x §'. It is easy
to show that G/N is isomorphic to the wreath product Cst Cs.
We put together some of the properties of the group G in

Theorem 20 The group G satisfies the following properties:

(i) it is a 2-generated infinite 3-group and is residually finite ;

(i1) any proper quotient of it is finite ( that is, it is just-infinite) ;

(i11) it does not satisfy the ACC condition for subnormal subgroups ;

(iv) the only element g of G such that Cg(g) has finite indez in G
isg=e;

{v) it contains a direct sum of an infinite number of copies of its derived
subgroup G ; :

(vi) it contains a subgroup isomorphic to the restricted infinitely iterated
wreath product of cyclic groups of order 3, and in particular, it contains a

copy of every finite 3-group.

One of the many problems concerning Burnside p-subgroups of the group
of automorphisms of a p-adic tree is

Problem 5. Let H be a finitely generated infinite p-subgroup of the au-
tomorphism group of the p-adic tree. Does H contain an infinite abelian
group?

Another question is about the embedding of a Burnside p-group, such as
G , in a maximal p-subgroup of the automorphism group of the tree. Is it
possible to describe ” constructively” such an embedding ?

We will show that G and the locally finite 3-group (o)* generate a
larger 3-group. Define the sequence of subgroups of A: : Gy = G, and
Gty = F(Y,Gy){o) for i > 0. The group Gy = F(Y,G){0) is generated by
{(7,e,€),01 = (e,e,0),0},and therefore it is generated by {~, 01, 0}. Simi-
larly, G;) is generated by {v,0; ,..,01,0}. Hence, for all : > 0, G;) is a proper
subgroup of G;41). Basily, G = U G(;) is a periodic 3-group generated by vy
and {(¢)# , and the identity Go = Gool {0} holds.

The above constructions of Burnside groups have been considerably gen-
eralized in [16). Given a group H, let Y = H = {e, by, ..} and define the
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H-tree T(Y). We extend the regular representation h: h + hh to the
whole tree in the usual manner. We call a subset S of the tree vertices a
connecting set provided every vertex is comparable to an element of S. Let
Y’ =Y\{e}, and define the set of vertices

S=Y' UeY U..U(Y U....

Then this connecting set is minimal and will be our special connecting set.
Given a minimal connecting set S, a functiony: § — H is called a decorating
function of the tree. Such a function determines an automorphism of the tree
which will be denoted by the same symbol 1.

Let H be a non-trivial finitely generated periodic group and S be the
special connecting set. Then a decorating function v : § — H is called
periodicity preserving if it satisfies the following conditions:

(i) 7(y) = 7((e)'y), for all, i > 0,y € Y,

(i) H is generated by 7(Y"),

(iii} {h : y(R) # e} is finite,

(iv) {7((B)) : i # O} is a commutative set for all A #e,

(v) I{y((h)*) :i=1,..,0(h) =1} = e, forall h € H\{e}.

Tt is not difficult to see that the only finitely generated periodic groups
which do not admit a periodicity preserving function are generalized dihedral-
we mean by that, H = B (t), B abelian, §f = b~ for all b € B.

We are now ready to state the following result on periodicity.

Theorem 21 Let H be a non-trivial finitely generated periodic group and
suppose it admits a periodicity preserving function . Let £ be the subgroup
of the automorphism group of the tree generated by H and v . Then & is
periodic and its elements involve the same primes as the orders of elements
of H. Furthermore, £ contains an infinite series of subnormal subgroups
such that the successive quotients are isomorphic to H.

The methods of the above paper were employed by M.Dixon and
T.Fournelle( see, [4]) in the more general setting of wreath powers introduced
by P.Hall [7], to prove the following result.
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Theorem 22 Let n be a natural number with n > 4, and let w denote the set
of primes dividing n. Then there s a 2-generator infinite periodic 7-subgroup
E,, whose generators are elements of order n. The group E, is hypoabelian,
residually finite, has trivial center and contains an isomorphic copy of every
countable, residually finite, locdlly soluble FC-m-group. Moreover, if n divides
m then the groups E, and E,, can be constructed so that B, < E,,.

6. Presentation of tree automorphisms

The question we address here is how to describe in terms of generators
and relations the interdependence between an automorphism « , its states
Qa) = {on | v € M} and its set of permutations X(a) = {ou(a) | u € M}.
Let K be the group generated by Q(a) and C the group generated by T(a).
‘We interpret the question as being about the presentation of the group H =
(K,C). '

The following two ideas can be employed toward obtaining a presentation
for H. First, given groups U, V, and a homomorphism ¢ : U — V, then this
last can be extended naturally to a homomorphism

¢ : F(Y,U) = F(Y,V)
and then extended further to a homomorphism
@ : F(Y,U)>aP({Y) —» F(Y,V) >aP(Y)

by having it map P(Y’) identically onto itself.

Second, let U be a group and C a group of permutations of the set Y,
contained as a subgroup of U. Denote U by Uy, and define inductively, U1, =
F(Y,U;) ><P(Y), for ¢ > 0. Now suppose there exists a homomorphism
@ : Up = U, such that ¢y maps C identically into P(Y"). Then by the first
idea, p induces a homomorphism

P : U1(= .F(Y, Ug) >4P(Y)) — Uy (= .’F(Y', Ul) ><]P(Y))

and inductively produce the corresponding homomorphisms ; : U; — U4y,
i > 0. Thus, we obtain a direct mapping family {U;, ¢;}, and therefore a
direct limit group U which is determined by the map (.
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One type of group which admits homomorphisms such as ¢y is U=W=xC,
the free product of a free group W and a subgroup C of P(Y) . Clearly, any
function from’ a free generating set of W into F(Y,U) ><P(Y) can be
extended to a homomorphism, and this in turn can be extended further to
U/ by mapping C identically into P(Y).

Let us consider the example of the automorphism y = (v, 0,67} defined
on the 3-tree. Then its set of states is Q(y) = {v,0,07'} and B(y) =
{e,0,0?}. Let W be a cyclic group of order three generated by g, let C be the
cyclic group generated by 6 and U = WxC. Define ¢, as the extension of the
map g — (g,0,07*), 0 = 0. Then the image of g by ¢ is ((g,0,071),0,071).
Let R; be the kernel of ; for i > 0, and R, = UR;. Then the direct limit
group U is isomorphic to U = U/Re, and G is a homomorphic image of U .

To illustrate the representation of elements in U, we note

Reog = Reo(9,0,07") = Ruo((g,0,07"),0,07").
It is easy to see that
Reo(90)® = Reo(9,9,8°)s Roo(90)° = Reo-
As was done in the case of our group G , here a length function can be defined
in a similar manner and it can be shown that U is a 3—group and is just
infinite. This establishes that U is isomorphic to G . Basically, this was the
procedure used to obtain a concrete presentation for G =< 7,0 > and to
show that the group is not finitely presentable (see, [30)).
We state the following

Problem 6. : Let K be a group of finite state automorphisms of a p-adic
tree. If K is a finitely presentable p-group, is K then finite?

This problem recalls the more general question:

Does there exist a finitely presented infinite periodic group? (see:[35], page
643; [19], Problem 10b.)
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7. The group algebra of the group of tree automor-
phisms

Given a group G and a field k, questions about the linear representations
of G over k are intimately rélated to the study of the group algebra k[G] and
its ideals, such as the Jacobson Radical J(k[G]) and the Augmentation Ideal
w(k[G]). It is an elementary fact that if G is a p-group and k has characteristic
p, then the only finite dimensional irreducible representation of G over k is
the trivial one. If we make the further assumption that the representation
is faithful then G is reduced to the trivial group {e}. In the case of infinite
p-groups, non-trivial irreducible representations in the same characteristic
have to be infinite dimensional, but it is not clear if they exist, and if they
do, how to obtain them. These considerations fall under the general theme
of semiprimitivity of group algebras. We recommend D.Passman’s [25] for an
extensive and up-to-date survey of this topic.

Since the automorphism group A of a 1-rooted tree 7(Y) has recursive
mutiplicative structure, the group algebra k[ A | has a quotient that is also
recursive in its additive structure. This is shown in our forthcoming [32]. We
review below the contents of this paper.

The idea of the construction is based on the following fact.

Proposition 23 Let C and D be groups. Consider their direct product group
H = C x D and the direct sum of their algebras R = k[C] @ k[D] . Then

(i) the embedding of H into R defined by ¢ : (¢,d) — ¢+ d ezrtends
naturally to a k-algebra homomorphism ¢ : k[C x D] = k[C] & k[D];

(ii) image(w) = ( w(kIC)) + k.1c ) ® (w(k[D]) + k.1p);

(1ii) ker(p) = w(k[C]).w(k[D]).

The homomorphism ¢ above which we call a summation thinning process,
is employed to obtain the intended quotient algebra of k[.A4] .
Since A = F(Y,A) > <P(Y), its group algebra is a crossed product

algebra
k[A] = k[F(Y, A)] ><P(Y).

Furthermore , since A; = F(Y,.A), we have the inclusion map:

v 1 A = F(Y, k[A])
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which extends canonically to a k—algebra homomorphism denoted by
vy : k[A] = F(Y, k[A]) ><P(Y);
this is the first step of summation thinning. We note that
ker(v,) N (A — 1) = (0).

We continue the process as follows. The homomorphism v; induces a homo-
morphism of k—algebras

ve : F(Y,E[A]) >aP(Y) = F(Y, k[Alw) > P(Y)

and call the composition T, = v1v; the second stage of the process. Proceed-
ing inductively for i > 3, the i-the stage homomorphism is ¥; = D;_1v;,where

Yt .F(Y, k[.A]ﬁl_z) ><]P(Y) — f(Y-, k[.A]‘f)’,,_l) ><]P(Y)

Let T; = ker(d;), i > 1. Then {Ti}i»1 is an ascending chain of ideals of k[.A]
such that (1 +7;)N.A= {1}, V. Denote by T the union of the ideals T; for
i > 1. Then the thinned algebra is

kA
T -
Proposition 24 (1) The quotient algebra k[A] is a subalgebra of F(Y, k[A]) >

aP(Y) , and they are equal when'Y is finite.
(2) The group A and the algebra k[P(Y)] are both embedded in k[A].

kA =

We will apply the above construction to the Burnside 3-group G = {v,0)
where v = (,0,07%).

Let k be a field of characteristic 3, and let R = k[G]. We consider the
image P of R in k[A] ; that is,

R+T . R
T ~— RNnT

We observe that P is a proper quotient of R. This follows from the fact
that G contains direct product of groups, such as G xg xg.

P =
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Two elements in the augmentation ideal w{P) play an important role in
the study of P. These are

"yb=1+'y+'y2, &b=1+a+02.

Using the fact that we can effect addition coordinate-wise in P, we obtain
that

Y =(LLD)+{r,0,07 )+ (7% 0% 07 = (1+7+7% 1+ 0+ 0%, L+ 0+0%)
and therefore we have

Lemma 25 + = (7*,0% ¢") holds in the algebra P.

The formulas below allow us to simplify calculations which involve ¢.
Lemma 26 (i) o”(ug, u1,up) = (uo, u1, ug) + (11, ug, )0 + (ug, tg, v1)0%;
(43) o°(uo, U1, u2)0” = (ug + ux + ug, o + ug + Uz, ug + Uy + ug)o’ .
With the use of these lemmas it is a direct argument to show that

Proposition 27 The element v'o® of P is transcendental over k. That is,
k[v'a’] is a polynomial algebra .

The next proposition confirms that the ring P imitates G in that is has
tree-like behavior.

Proposition 28 (i) Let T be a 2-sided ideal in P and let u = (u, w1, u2)0” €
Z . Then there for allc € G', and for i =10,1,2,

((c— Du{c—1)%,0,0) € T .

(41} Let Z be a nontrivial 2-sided ideal in P, then there existsc € §', ¢ # 1
such that T 2 N — 1, where NNV is the normal closure of < ¢ > in G.

Since G is just-infinite, it is immediate that the algebra P is also just-
infinite, in the sense that all its proper quotients are finite dimensional alge-
bras. A further consequence is
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Corollary 29 (i) P s a pm’rﬁe ring.
(i5) J(P) = (0) or J(P) = w(P).

it is well-known that elements of the Jacobson Radical J(P) are quasi-
invertible. Therefore, if we can exhibit some element of w(P) which is not
quasi-invertible then we would reach J (P) = (0).

Proposition 30 The element =1 ~o® is not invertible in P.

At the end of this sequence of steps we reach

Theorem 31 Let k be a field of characteristic 3, G be the Burnside 3-group
G and P be the image of k[G] in the thinned algebra of kiA ). Then, the
algebra P is just-infinite, contains transcendental elements, and is primitive.

An immediate consequence of this theorem is

Corollary 32 The Burnside 3-group admits an irreducible and faithful
representation over any field of k of characteristic 3.

Passman and Temple studied in [24] the function Fg(n) which counts the
number of non-equivalent irreducible representations of k[G) of degree < n,
for groups G which contain a normal subgroup H of finite index in G, such
that H ~ GxGx..xG. This is the case of the commutator subgroup G of the
Burnside 3-group G. Based on some fine estimates of this function and using
the above corollary, they proved that G admits an infinite number of non-
equivalent faithful irreducible representations over a field & of characteristic
3, which is algebraically closed and non-denumerable.

Problem 7. Decide whether k[G] itself is primitive.
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In comparison with the Golod groups, it would be very interesting to
answer the

Problem 9. Decide whether in the éase of G there exists an ideal I con-
tained in wk[G] such that wk[G]/T is nil and IN (1 - G) = (0).

Indeed, one of the outstanding conjectures in this area is:
Let G be a finitely generated p-group which is residually finite,
and let char(k) = p > 0. Then, J(k[G]) = w(k[G]) if and only if
G is finite.

For the 3-group G, on considering the thinning ideal T of A and T(G) =
T Nwk(G), we observe the following proper inclusions

J(K[G]) € T(G) C w(k[G)).

The inequality J(k[#]) # w(k[#]) was shown for the Grigorchuk 2-group ¥
(see,[12]). In the case of a Golod group @G, constructed from a nil ring R,
it was shown by Siderov [29] that B # w(k[G]) holds under some natural
conditions on the parameters which define the ring R.
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