MONOGRAFIAS DE MATEMATICA NO 51

THE THEORY OF EXPONENTIAL
DISPERSION MODELS AND
ANALYSIS OF DEVIANCE

Bent Jgrgensen

ISBN
85-244-0067-6

Copyright (©/1992 Bent Jorgensen

' Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico

INSTITUTO DE MATEMATICA PURA E APLICADA
Estrada Dona Castorina, 110
22.460 — Rio de Janeiro-RJ



o1}
02)
03)
04)
05)
06)
07
08)
09)
10)
1)
12)
13)
1%)
15}
16)
17
18}
19}
20}
21)
22)
23)
2%)
25)
-26)
2
28)
29)
30)
31)
32)
33)
34)
35)
36)
g7
38)
39)
A0)
51)
12)
43)
A
15)
16)
k7)
k)
kg)
50)

MONOGRAFIAS DE MATEMATICA
(titules ji publicados)

Azevedo, Alberto / Piccinini, Renzo — INTRODUCAD A TEORIA DOS GRUPOS (1970) / reprodugio (198%)
Santos, Matham M. - VETORES E MATRIZES (1970) - esgotada

Carmo, Manfredo P. do - INTRODUCKO A GEOMETRIA DIFERENCIAL GLOBAL (1970) - esgotada

Palis Junior, Jacob — SEMINARIO DE SISTEMAS DINMMICOS (1971) - esgotada

Carvalho, Joao Pitombeira de - INTRODUGAG A ALGEBRA LINEAR (1971) - esgotada

Fernandez, Pedre Jesus — INTRODUGKD A TEORIA DAS PROBABILIDABES (1971) - esgotada

Robinson. R. C. - LECTURES DK HAMILTONIAN SYSTEMS (1972) - esgotada

Carmo, Manfredo P. do — NOTAS DE GEOMETRIA RIEMANNIANA (1972) - esgotada

Honig, Chaim S. - AWALISE FUNCIONAL E 0 PROBLEMA DE STURM-LIOUYILLE (1572) - esgotada
Melo, Welington de - ESTABILIDADE ESTRUTURAL EM VARYEDADES DE DIMENSAD 2 (1972) - esgotadz

Lesmes, Jaiwe — TEORIA DAS BISTRIBOICOES T EQUACDES DIFERENCIAIS (1972) - ssgotada

Yilanova, Clovis — ELEMENTOS DA TEORTA DOS GRUPOS E DA TEORIA DOS ANEYS (1972) - esgotada

Pouai, Jean Claode - CONOMOLOGIE DES GRODPES {1573) - esgotada

Lawsor Jr., H. Blaine - LECTURES ON MINIMAL SUBMARIFDLDS,Yol. I {1973) - esgotada

Lima, Elon Lages — VARIEDADES DIFERENCIAVEXS (1973) - esgotada
Mendes, Pedro ~ TEOREMAS DE S\.—-ESTABILIDADE E ESTABILIDADES ESTRUTURAL EM YARIEDADES ABERTAS {1973) - esgot.
Awann, Herbert - LECTURES ON SOME FIXED POINT THEOREMS (197%) - msgotada

— EXERCICIOS DE MATEMATICA / TMPA (1973) - esgotada

Figueiredo, Djairo Guedes de - NOMERDS IRRACIONAIS E TRANSCEDENTES (1975) ~ esgotada

Ieewan, €. E. ~ DMA INTRODUCAD INFORMAL A TOPGLOGIA DAS SUPERFICILS (1975) - esgotada

Carme, Manfredo P. do - NOTAS DE UM COESO DE GRUPOS BDE LIE (1975) - esgotada

Prestel, Alexander - LECTURES ON FORMALLY REAL FIELDS {1975) - esgotada

Simis, Aron — INTRODUCAO A ALGEBRA (1976) - esgotada

Lesmes, Jaime ~ SEMINARIO DE ANALISE FUNCIOMAL {1976) - esgotada

Brauer, Fred — SOME STABILITY AND PERTURBATION PROBLEM FOR DIFFERENTIAL AND INTEGRAL EQUATIONS (1976) - esg.
Rodriguez, Locio - GEOMETRIA DAS SDEVARIEDADES {1976) - esgotada

Miranda, Mario - FRORTIERE MINIME (1976) ;

Cardoso, Fernamde - RESOLUBILIDABE LOCAL DE EQUACUES ODIFERENCIAIS PARCIAIS (1977) - esgotada

Becker, Eberhard - HEREDITARILY-PYTHAGOREAR FIELDS AND ORDERINGS OF HIGHER LEVEL {1978}

Bass, Hyman - PROJECTIVE MODBLES AND SYMMETRIC ALGEBRAS (1978)

Aeymzn, J. - PROBABILIOADE FREQUENTISTA E ESTATISTICA FREQUENTISTA (1978)

Oumortier, Freddy - SINGMLARITIES OF YECTOR FIELDS (1978)

Yiswanathan, T. M. — INTRODUCKD X ALGEBRA E ARITMETICA (1979) - esgotada

Thayer, F. Javier - NOTES ON PARTIAL OQIFFERENTIAL EQUATIONS (1980)

Bierstone, Edward - THE STRUCTURE OF ORBIT SPACES AND THE SINGULARITIES OF EQUIVARIANT MAPPINGS (1980}
Thayer, F. Javier - THEORIE SPECTRALE (1982)

Carmo, Manfredo P. do - FORMAS DIFERENCIAIS E APLICAGOES (1983)

Prestel, Alaxander -/ Roquette, Peter — LECTURES ON FORMALLY p-ADIC FIELDS (1983)

Lequain, Vves / Garcia, Arnalde - ALGERRA: UMA INTRODOGAD (1983) - esqotada

Barbosa, J. Locas / Colares, A. Gervasic - WINIMAL SURFACES IN R* (1986)

Berard, Pierre H. - SPECTRAL GEOMETRY: DIRECT AND INVERSE PROBLEMS (1986)

Berard, Pierre L. - ANALYSIS ON RIEMANNIAN MARIFOLDS AMD GEOMETRIC APPLICATIONS: AN INTRODECTION {1987)
Torres, Folipe Cano - DESINGULARYZATION STRATEGIES FOR THREE-DIMENSIONAL VECTOR FIELDS (1988}

Endlsr, Otto — TEORIA DOS CORPOS (-19a8)

Bruns, Winfried / Vetter, Udo — DETERMINAXTAL RINGS (1938)

Befez, Abramo — INTRODUGKO A GEOMETRIA PROJETIVA (1990)

Gouvea, Fernando Quadros - FORMAS MODULARES: DMA IMTROPUCKD (1990)

Jfrgensen, Bent — EXPONENTIAL DISPERSION MODELS {1991)

Bustos, Oscar 0. [ Frery, Alejandrn €. — SIMULAGAC ESTOCASTICA: TEORIA E ALGORITMDS (Versio Completa) (1992)
Letac, Gerard - LECTURES ON NATURAL EXPONENTIAL FAMILIES AND THEIR VARIANCE FUMCTIONS (1992)



Preface . . . .. ... . i
CHAPTER 1-Introduction . . . ... .............. 1
§1.1. RegressionModels . . . ... .............. . ... . 1
§1.2. Exponential Dispersion Models . . . ... .......... . . 6
§1.3. DispersionModels . . . ... ............. ... .. . 8
§1.4. Location and Scale Models. . . . . . . . e e 11
§1.5. Analysisof Deviance . . . .. ... ........_ .. . 13
81.6. Notes . ........ ... ... ... .. .. 14
Exercises. . . .. ... . L 15

CHAPTER 2-An Outline of Exponential Dispersion Models . 17

§2.1. Natural Exponential Families . . ... ............. 17
§2.2. Exponential Dispersion Models . . .. ............. 20
§2.3. Convolution and Asymptotic Normality. . . .. ... ... .. 23
§2.4. Continuous Exponential Dispersion Models . . . ... ..... 27
§2.5. Discrete exponential Dispersion Models . . . . . ... ... .. 32
§2.6. Quadratic Variance Functions . . . .. ... .. ... ... . . 37
§2.7. Power Variance Functions . . ... ...... ... e e 42
§2.8. Exponential Variance Functions . . . .. . ... ........ 50
§2.9. Notes . . ... .. .. ... ... 54
Exercises. . . ... ... . 54
CHAPTER 3-Estimation and Analysis of Deviance . . . . . . 59
§3.1. Inference for Regression Models . . . .. . ... ... ..... 59
§3.2. TheDeviance .. ................... .. ... 61
§3.3. The Saddlepoint Approximation. . . . .. ... ... ... .. 66
§3.4. The Fisher Information Matrix . . . e e e e e e e e e 73
§3.5. Parameter Estimation . ... ... ......... ... .. . 78
§3.6. Asymptotic Theory. .. .. .............. ... .. 87
§3.7.  Analysis of Deviance for Dispersion Models . . . ... . ... 97
§3.8. Analysis of Deviance for Discrete Exponential Dispersion Models114
§3.9. Notes ... ... ... .. .. . ... 120
Exercises. . . .. .. ... 120
References . . . .. ... ... ... ... 126






PREFACE

This book is an introduction to exponential dispersion models and gener-
alized linear models. It has three important features: first, it has an extensive
introduction to the mathematical theory of exponential dispersion models, sec-
ond it has a thorough account of asymptotic theory for generalized linear mod-
els, and third it treats some generalizations of exponential dispersion models,
which help to put the theory into its proper perspective.

The book is intended for the graduate level, and requires familiarity with
basic concepts of statistical inference and linear models. Some prior exposure
to discrete data analysis would also be useful.

The book is divided into three chapters. Chapter 1 is an introduction to
some of the basic concepts used in the book. Chapter 2 treats the theory of one-
dimensional natural exponential families and exponential dispersion models,
and includes some theory for variance functions. Chapter 3 concerns analysis
of deviance for generalized linear models and other regression models related
to dispersion models.

L have tried to make the exposition self-contained, and to include, as far as
possible, a derivation of the results stated. The text as such contains rather few
references to the literature, but at the end of each chapter there is a section
with key references and notes on the origin of some of the ideas. This is
not intended as an exhaustive summary of the literature, and doubtless some
important references have been left out, as I have cited only the literature that
I found most useful as introduction to a given subject.

The book is a preliminary version of the first part of a more comprehensive
volume on exponential dispersion models, which I hope to complete in the
near future. In the second part of the volume, I intend to treat multivariate
exponential dispersion models, and their applications to analysis of correlated
data. _

I am grateful to the organizers of the 1st School on Linear Models, Uni-
versity of Sao Paulo, for inviting me to present this material at the meeting,
and for publishing this preliminary version of the text. I am grateful to Ole
E. Barndorff-Nielsen and James K. Lindsey, who have read and commented



on part of the manuscript. A special thanks goes to my students Glaura da
Conceigio Franco, Renata P.L. Jeronymo and Alejandro Frery, who were the
first to be exposed to the material, and whose favourable response encouraged
me to go on. Finally, I thank Lais Ventura Santos and Rogerio Dias Trindade
for typing the manuscript.

Rio de Janeiro, September 1988

Bent Jgrgensen

PREFACE TO THE SECOND EDITION

The second edition is identical to the first edition, except for the correction
of some typing errors.

Rio de Janeiro, April 1992

Bent Jgrgensen



Chapter 1

INTRODUCTION

S~

In this book we consider statistical regression analysis, with special em-
phasis on regression models based on distributions in the class of exponential
dispersion models. In the present chapter we introduce some of the main ideas
of the book, and consider some motivating examples.

§1.1 Regression Models

The concept of regression is very important in statistical data analysis.
We use the word regression in a rather broad sense, and by a regression model
we understand a statistical model with the following two ingredients:

(i} A random vector Y = (¥),...,¥,)T with a distribution involving a vector
of unknown parameters g = {(py,..., 2.7,
(ii) A relation between p and the parameter vector 8 = (81, ..., Bi)T of the

form p = f(B), where f is a given smooth, one-to-one function.

We refer to (i) and (ii) as respectively the random component and the sys-
tematic component of the model. When the random component is understood
from the context, we refer to (ii) as simply the model. The random vector Y
is called the response variable, and the distribution of Y or ¥; is called the
error distribution. The random component may generally reflect any kind of
stochastic variation, including measurement error. The function f is called the
regression function, and the parameters 8 ..., 8; are called regression param-
eters. In many cases, a regression model includes an additional parameter o2
expressing the dispersion of Y; in some sense, and we refer to o? as a dispersion
parameter.

An important class of regression models corresponds to the case where the
systematic component has the form

(1.1) glpi)=mi, t=1,...,r

k
(12) ?‘];szijﬁj, ’iﬂl,...,?‘.
i=1



The function g, assumed to be one-to-one and smooth, is called the link func-
tion. The x;;’s, which are known constants, are called covariates or ezplanatory
variables. The matrix X = {x;;} is called the design matriz for the model. We
call a model of the form (1.1), (1.2) a linear model. A regression model which
is not of this form is called nonlinear.

We assume that the reader is familiar with the idea of a linear normal
model, in which ¥},...,¥,, are independent and normally distributed, ¥; ~
N(pi,0?), i =1,...,n and the systematic structure is of the form (1.1), (1.2)
with 7 = n, and g is the identity function.

Regression models are tools used in the analysis of data from scientific
experiments, or more generally from any kind of investigation in which data
are gathered in a systematic may. The researcher provides the data in the form
of the observed values y1,...,y, for ¥7,...,Y,, and values of the explanatory
variables z;;.

The objective of the statistical analysis is to find a suitable statistical
model, to check the goodness of fit of the model to the data, to estimate the
unknown parameters of the model, and to test hypotheses about the parame-
ters.

The researcher could supply the systematic component of the model, which
is often a concise mathematical expression of some aspect of the scientific theory
under investigation. In more exploratory investigations it may be part of the
statistical analysis to build a suitable systematic component. The random
component of the regression model should ideally be derived from the scientific
theory under investigation, but it too is often to be built as part of the statistical
analysis of the data. In the statistical analysis, the systematic component of the
model may be investigated, and possibly modified. The results of the analysis,
in turn, may be used to confirm or possibly to modify the random component
of the model. The following example serves to illustrate the idea of a statistical
model as part of the scientific theory under investigation.

Example 1.1.1: Energy expenditure data 1. The data in Table 1:1 are from
an investigation (Garby et al., 1988), concerning the energy expenditure for
human subjects at a given physical activity and for a given time period. We
consider the largest set of data from the investigation, consisting of 104 women.
The variables measured for the ’th subject were total energy expenditure at
rest for a 24 hour period (y;), mass of fat tissue (z;1) and mass of fat-free tissue
(ziz). If we assume that each of the two types of tissue are homogeneous with
respect to energy expenditure, we have a model of the form

(1.3) i = Biai + Baia,



Table 1.1: Energy ezpendidture (y) at rest and mass of fat (z,) and fat-free

(z2) tissue for 104 female subjects

) Ty T2 Y T T2

100.08 48.83 63.42 89.97 41.09 60.11
113.22 51.83 70.12 101.09 34.82 55.38
82.22 22.54 52.36 105.13 40.58 60.37
105.81 41.02 57.56 91.32 34.04 50.86
97.38 48.65 63.20 97.38 47.80 56.35
101.43 37.54 74.86 81.88 46.39 60.26
95.70 54.49 59.51 89.30 46.25 55.85
63.69 33.03 48.72 66.05 20.74 65.31
76.16 31.83 49.57 81.55 33.18 57.22
115.24 51.51 70.84 85.96 49.42 51.43
76.49 29.34 54.96 83.57 41.91 56.69
84.24 23.82 56.38 96.71 40.45 66.85
95.36 39.44 96.76 95.03 49.58 58.92
67.39 25.08 33.02 86.26 33.561 61.69
85.93 36.54 58.96 106.82 56.20 70.10
116.59 390.51 62.59 £6.94 41.70 63.60
101.09 41.27 61.13 75.48 39.67 65.83
90.31 32.20 64.20 72.45 G.22 36.08
990.74 49.16 63.59 83.87 28.12 52.68
82.89 51.46 61.39 78.85 9.86 53.34
78.85 23.52 59.88 96.71 36.17 56.33
90.64 37.55 58.25 84.92 50.49 62.46
101.43 62.08 71.42 82.29 34.26 66.79
101.76 36.91 62.59 77.84 31.01 56.84
85.93 28.13 58.17 101.09 25.32 61.38
69.75 36.54 43.76 85.93 34.54 56.36
79.19 32.96 55.64 84.24 31.41 59.89
64.36 9.14 50.96 105.47 13.48 52.62
78.51 6.33 53.97 93.34 39.35 63.65
85.25 41.00 54.80 78.51 38.12 54.18
110.53 48.86 67.74 79.86 29.20 57.70
101.09 55.77 59.93 75.48 25.70 51.70
84.92 46.13 49.57 105.13 35.61 55.69
81.21 33.66 48.64 99.41 31.41 51.69



97.72 50.05 63.95 94.35 41.62 51.48

70.43 21.71 46.79 96.37 37.02 59.88
114.91 66.82 61.43 65.37 30.73 48.67
98.73 68.99 51.45 79.86 53.58 51.72
100.42 52.35 53.62 78.51 40.96 47.70
84.24 61.54 58.90 92.33 37.40 54.50
00.31 45.21 53.29 85.59 34.54 65.86
39.63 45.65 49.25 75.14 37.44 47.46
79.52 34.48 47.62 05.36 62.50 57.00
60.08 17.31 43.22 81.21 61.39 61.64
94.35 47.35 59.78 71.10 22.95 46.18
88.62 33.90 47.40 60.08 34.09 43.74
73.80 7.06 53.84 83.57 6.77 55.33
73.12 5.39 51.91 79.19 5.84 50.86
69.75 2.76 44.84 Ay 30.00 45.00
69.42 6.32 53.88 77.50 3.40 56.30
67.73 9.76 54.84 80.54 8.50 53.10

91.32 36.23 81.17 113.90 47.59 52.81

where u; = E(Y;), and B, and fB; are the specific energy expenditures for the
two types of tissue. The simplest random component for this model is probably
the case where Y1,...Y, are independent and ¥; ~ N{y;,0),i=1,...,n, in
other words a linear normal model. Dividing through by w; = z;; +z:2 in (1.3)
gives the linear relationship

(1.4) B, = P + (81 = Ba)Tiy,

were II; = pi/w; and Ty = wy /w;. Figure 1.1 shows a plot of ¥ = yifw;
against Z;;, confirming the linearity of the relationship.

The parameters ) and f; in (1.3} are obviously interesting physiclogical
constants, and their estimates are important in for example nutrition research,
The estimates based on the above linear normal model were ,6’1 = 0.306 and
B2 = 1.35, indicating that the energy expenditure in fat tissue (£;) is much
lower than in fat-free tissue (8;). Comparable values were obtained in similar
experiments involving male subjects. 1§

The view of statistical data analysis taken above, and illustrated by Exam-
ple 1.1.1, is obviously very simplified and idealized, but it serves as a convenient
framework for conveying some basic ideas about data analysis. In this book,
we shall pay special attention to the random component of the model, and
emphasize the importance of the proper choice of error distribution. The re-
searcher may sometimes bé more interested in the systematic component of the

4
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Figure 1.1 Plot of §; against T, for the data
in Table 1.1.

model, if it expresses his key ideas about the structure of the data, or he may
be interested in some aspect of the error distribution, such as for example the
tails of the distribution, which are important in reliability or lifetime studies.

It is our duty to provide a form of the random component of the model
such that we are allowed to investigate the systematic component as freely
and as accurately as possible. The choice of model, in particular the random
component, is often one of the most difficult tasks in data analysis, and is
probably best described as an art, that requires application of a skilful blend of
mathematical insight for the problem at hand, experience and trial and error.
In the face of such difficulty one may feel compelled to use nonparametric
or semiparametric models. Such models involve fewer assumptions about the
data, and hence may avoid to build untenable assumptions into the conslusions.
However, we adopt the piont of view that given a wide range of models to choose
from, basing the choice on a physical model for the data, and carefully checking
the fit of the model, may give a deeper insight than a nonparametric analysis.
Nonparametric models obviously have their place in the statistician’s toolbag,
but here we shall deal exclusively with parametric models.

At this point it is important to remember that there may be many models

5



that explain a given set of data equally well. By the very nature of statistical
data analysis, that is the formation of conclusions in the face of uncertainty, it
is often wise to be less than definitive in one’s statements about the data, This
suggests that one should give ample information concerning the data analysis,
by for example reporting unsuccessful models ete., allowing the reader (client,
listener etc.) to draw his own conclusions. Omne should also remember that
valid models for a given data set may differ from each other in terms of their
systematic component, their random component, or both.

. §1.2  Exponential Dispersion Models

A very convenient and flexible type of error distribution is provided by
the class of exponential dispersion models, the main theme of the book. In
dimension one, an exponential dispersion model for a random variable ¥ is
defined by the probability density function

(2.1) P(y;8,A) = a(A, y)exp[Myb - (8)}], e R,

for suitable functions ¢ and &, where A > 0, and # varies in an interval ©
on the real line. We denote (2.1) by ¥ ~ ED(g, ), where g = x'(8) is the
expectation of ¥, and o2 = 1/ is the dispersion parameter.

Example 1.2.1: The normal distribution. The normal distribution N(u,o?),
with ¢ and ¢? unknown, is an exponential dispersion model. This may be seen
from the following expression for the density function

p(yi g, 0%) = (2r0?) " exp{(y — ) /(20)) .
= (2ro?) 2 expl =y (207} expl(ym — 51707,

which is of the form (2.1) with g = 6, «(8) = 36%, A = 1/0? and a(}),y) =
(Zﬂ/A)_llzexp(—%)\yz). [

In the following chapters we study in detail regression models based on
exponential dispersion models. Particular attention is paid to the class of
generalized lincar models, which are models consisting of the following two
mgredients:

(i) Y1,...,Y, are independent and ¥; ~ ED(u;,0?), i = 1,...,n, where

ED(p,0%) is a given exponential dispersion model.

6



(ii) The systematic component of the model is given by a link function (1.1)

and a linear structure (1.2).

Note that in the terminology introduced in Section 1.1, this model is lin-
ear, while the terminology ”generalized” linear mode] refers to the fact that it
generalizes the idea of a linear normal model.

In the discrete case, the form (2.1) is not appropriate, and we define a dis-
crete ezponential dispersion model to be a discrete distribution with probability
function of the form

(2.2) (218, A) = a(A, 2)exp{z8 — \k(8)}, =z € N,

where INg = 0,1,2,.... Thereis a close relation between (2.2) and (2.1), in fact,
in terms of the average y = z/A, (2.2) is of the same form as (2.1). However,
since the support of y depends on A in the discrete case, it is necessary to use
(2.2) for discrete data, whereas (2.1) is preferable for continuous data, because
it allows a much more elegant inference. By analogy with the continuous case
we call 6% = 1/ the dispersion parameter of (2.2). The expectation of (2.2) is
m = Ak'(6).

Example 1.2.2: The binomial disiribution. The binomial distribution
Bi(n, u) has probability function of the form

plz;n,p) = (Z);r“(l ;ﬂ)f1~z
= (:) explzlog{p/(1 ~ p)} + nlog(1l — p)],

for z = 0,1,...,n. The probability function is hence of the form (2.2) with
6 = log{p/(1 — )}, A = n and &(8) = log(l + ), which shows that the
binomial distribution is a discrete exponential dispersion model. 1

Example 2.3: Beetle mortality data. Data involving proportions provide in-
structive examples of generalized linear models. Table 1.2 shows data from
an experiment (Bliss, 1935) in which insects were exposed to gaseous carbon
disulphide for a period of 5 hours. The table shows the dose (2;), the number
of insects (n;) and the number of insects killed (z;} for 8 experiments. We
consider a generalized linear model with Z,...,Z, independent and Z; bino-
mially distributed, Z; ~ Bi(n;, #(x;)), where u(z) denotes the probability that
an insect given the dose = is killed. Given a link function g, the systematic
component of the model is assumed to be of the form

(23) ,U(’Tr'z) = gul(ﬂﬂ + ﬁlmi)a i=1...,mn,

7



where g is increasing, differentiable and maps the interval (0,1) into IR.
Figure 1.2 shows the observed proportion of killed insects, z;/ni, as a
function of z; for the data in Table 1.2. A typical choice of g that makes
(2.3) fit the sigmoid shape seen in Figure 1.2 is the logit link function g(u) =
log{p/(1 — p)}, which corresponds to ¢~ '(y) = /(1 + e"). In general, ¢—*
could be any continuous distribution function, for example the standard normal
distribution function ®(»), which gives the so-called probit link function. ¥

Table 1.2: Beetle mortality data

Dose, z; Number of Number
(logyo CSamgl™!)  insects, n; killed, z;
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

§1.3 Dispersion Models

A dispersion model is defined as any class of probability density functions
of the form

(3.1) p(y; 1, A) = a(A, y)exp{ My, p4)}, y€ R,

where a and ¢ are given functions, A > 0 and y varies in an interval of the real
line. We use the notation ¥ ~ DM (u,0?) to denote (3.1), where g2 = 1/).
Exponential dispersion models are a special case of (3.1), obtained by taking
Hy, 1) = Oy — x(8), where p = x'(6).
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Figure 1.2 Plot of z; /n; against z; for the data
in Table 1.2.

By analogy with exponential dispersion models we call 02 == 1/ the dis-
persion parameter. Similarly, the parameter g may generally be interpreted as
2 kind of location parameter, but g is not necessarily the expectation of the
distribution. The analogy with exponential dispersion models extends, as.we
shall see, to the form of the statistical analysis. Hence, dispersion models help
to put exponential dispersion models into their proper perspective, and helps
to bring ont the central ideas of analysis of deviance.

Example 1.3.1: Dispersion models with o location parameter. Let t be a given
function on IR such that

o) = [ e}y < oo
for A > A, where 0 < Mg < 0o. Then for every A > Ag and p € IR the function

(3.2) p(y; 4, A) = a(A) exp{Mt(y — u}}

is a probability density function on IR, and is a special case of (3.1). In this
case u is a location parameter and ¢? = 1/) has a clear interpretation as a
dispersion parameter, particularly if the function ¢ is unimodal.
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Some interesting special cases of (3.2) correspond to the form £(y) = — Jy|°
for suitable values of §. For example § = 2 gives the normal distribution,
and § = 1 gives the Laplace distribution. Another interesting case of (3.2) is
obtained for #(y) = —log(1 ++ y?), corresponding to

Py 1 A) = a(M)(1 + (y — )"y,

which is essentially Student’s ¢-distribution with 2} — 1 degrees of freedom. 1

Example 1.3.2: The von Mises-Fisher distribution. Taking #(y) = cosy in
(3.2) does not yield a distribution, but if we restrict the range of y to the
interval [0, 27), we obtain the distribution

(3.3) p(y; 1, A) = (A} exp{Acos(y — u)},

where y and p belong to [0,2r). This distribution is known as the von Mises-
Fisher distribution, and it is denoted by the symbol ¥ ~ vM{p,0?), where
o = 1/\. The observation y for (3.3) may be interpreted as an angle, and
hence (3.3) may be useful for observations that lie on a circle, or more generally
for directions. For A > 0, the mode of (3.3) is x. 1

Table 1.3: Wind directions in degrees at Gorleston on Sundays in 1968 ac-
cording to the four seasons

Season Wind directions in degrees

Winter 50 120 190 210 220 250 260 290 290 320

320 340
Spring 10 20 40 60 160 170 200 220 270 290
340 350

Summer 10 10 20 20 30 30 40 150 150 150
170 190 200

Autumn 30 70 110 170 180 190 240 250 260 260
200 350

Example 1.3.3: Wind directions 1. Table 1.3 shows wind directions in
degrees at Gorleston, England, at 11hr-12hr on Sundays in 1968 (Mardia,
1972). We let y;; denote the j'th observation (in radians) for the i’th season,
i=1,2,3,4. We assume that the corresponding random variables Y;; follow the
distribution (3.3) with parameters y; and o2 = 1 /A where p1; denotes the modal
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wind direction for the 7’th season, and ¢? measures the expected amount of
deviation from g;, assumed to be the same for all seasons. A statistical analysis
of this data would probably include estimation of the parameters, assessment
of the goodness of fit of the model, and a test of equality of the four p;’s. B

If we make the transformation to z = exp(y) in (3.2), we obtain a disper-
sion model of the form

(3.4) p(zip, M) = 27 ta(N) exp{Mlog[z/p])}, z> 0.

This type of model is suitable for positive data, and in particular the
parameter p = exp{x) is a scale parameter. The parameter ¢ = 1/ continues
to play the role of dispersion parameter for the model.

§1.4 Location and Scale Models

Let Y1,...,Y; be independent, and let Y¥; have density function

(4.1) P(y; i 0%) = f((y = pi)/ o)/ o,
where f is a given density function on JR. Together with a systematic compo-
nent for the location parameters p,..., i, the resulting regression model is

called a location and scale model. Here we consider the special case where the
systematic component is given by the linear specification

k
(4.2) #£=ﬁu+2$ijﬁj, i=1,...,n

i=1

The scale parameter o (or the parameter ¢2) is an example of a dispersion
parameter, ¢2 being proportional to the variance of ¥;, if the variance is finite.
If f is the standard normal density function, (4.1) and (4.2) reduce to a linear
normal model.

As suggested by our notation, there are certain analogies between location
and scale models, dispersion models, and exponential dispersion models. This
1s particularly so for the interpretation of the parameters, and this analogy
extends to the form of the statistical analysis too.

The prototype application for a location and scale model is in measure-
ments of physical distances. If we express the measurements in a new unit
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and add a constant, obtaining ¥ = sY; + k, say, then the new variables fol-
low the same model with & replaced by os, 8y replaced by sf; + & and §;
replaced by sf;. The model is thus able to absorb changes in location and
scale of the measurements. This kind of adaptiveness of a statistical model
is important because it ensures that the results of the statistical analysis, in
particular parameter estimates, have a natural physical interpretation. We are
going to show that exponential dispersion models have a different, but equally
important type of physical interpretation.

An area where location and scale models have been used extensively is
in survival analysis, where the observations are lifetimes of individuals or of
components in a machine ete. If Zy,..., Z, are the lifetimes of n subjects, the
model is defined by assuming that ¥; = log Z;, 1 = 1,...,r, follow the location
and scale model (4.1), (4.2). Hence, Z; has a density function of the form

(43) Pz, 61,0%) = F({log(zi/8)} /) (z:0).

In this model §; = exp(y;) is a scale parameter, and ¢? may be interpreted
as a dispersion parameter.

Table 1.4: Length of remission (weeks) in acuie leukemia. A + denotes a
censored observation

Placebo 11223445588881111121215172223

6-MP 6666+ 794 10 10+ 11+ 13 16 17+ 19+ 20+ 22 23
25+ 32+ 324 344 35+

Example 1.4.1: 6-MP date. The data in Table 1.4 shows the cutcome of a
clinical trial in which 6-mercaptopurine (6-MP) was compared with.a placebo
in the maintenance of remissions in acute leukemia (Gehan, 1965). Some ob-
servations were censored, meaning that only min{Z;, t;} is observed, where the
t;’s are known censoring times. Ignoring for the moment the question of cen-
soring, we assume that the lifetimes Z; follow a Weibull distribution, which is
equivalent to assuming that ¥; = log Z; follows a location and scale model (4.1)
corresponding to the extreme-value density

(4.4) f(y) = exp{y —exp(y)}, y€ R

We let 11; be the location parameter for the ¢’th treatment, where ¢ = 1 denotes
placebo and ¢ = 2 denotes 6-MP. Important questions for the analysis of this
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kind of data are to obtain a reliable estimate for the difference py — pg, say,
between the two treatments, and to test the hypothesis 3 = po. 1

§1.5 Amnalysis of Deviance

Analysis of deviance is a technique for making inferences in regression
models, analogous to the technique of analysis of variance for linear normal
models. Analysis of deviance produces asymptotic versions of the familiar -
F. and x2-tests, with the deviance playing the role of the residual sum of
squares.

Consider independent observations Y7,...,Y,, with ¥; ~ DM(u;,o?),
where DM/(p,0?) denotes the dispersion model (3.1). The deviance for the
parameter g = (g1, ..., 14n)7 is defined by

(5.1) D(y,p) =2 Z{f(yi,ﬁi) — t(yi, i)},

where fi; is the value of y; that maximizes ¢(y;, p;) for the given observation y;.
If Dy and D5 are the minimized deviances for two nested hypotheses H; C Ho,
respectively, the statistic

(Dy — Dv)/(20%)

is the log likelihood ratio test for Hy under H, when ¢ is known.
For ¢? unknown, we are going to show that the statistic

_ (D2 =Dy)/(fr - f1)
(5:2) F= Di/fr

is approximately F( fo— f1, fi )-distributed under H; for ¢® small. This statistic,
or modified versions of it, may hence be used for a test of H, under H;, when
o? is unknown.

Example 1.5.1: Wind directions 2. For the von Mises-Fisher distribution we
have #(y, ) = cos(y ~ u), which has maximum for g = y. Hence, the deviance
is in this case

D(y, i) =2{n— Y cos(yi — ps)}-

=1
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For the data in Table 1.3, we let Ha be the hypothesis that uy = py = 3 = Ha,
and let Hy be the hypothesis of arbitrary values for uy, gz, us and py. The
corresponding deviances are Dy = §9.4510 and D, = 86.2458. Let us collect
the results in an analysis of deviance table (Table 1.5). An estimate for o2
under Hy is Dy /45 = 1.5434, which indicates that ¢? may not be small enough
for the F-approximation to (5.2) to apply. Keeping this in mind, we find that
the value F' = 3.64 in Table 1.5 corresponds to a p-value of about 0.025 in
the F'(8,45)-distribution, which suggests a difference in wind directions for the
four seasons. ||

Table 1.5: Analysis of deviance for wind directions.

Source d.f. Deviance &2 F
Between samples 3 Dy — Dy =16.7958  5.5986 =364
Within samples 45 Dy =09.4510 1.5434

Total 48 Dy = 86.2458

The parallel between analysis of deviance and the analysis of variance for
normal data, which we have illustrated here for a dispersion model, also holds
in the class of exponential dispersion models, this class being a special case
of the class of dispersion models. A fact that helps to explain this parallel is
that the models are parametrized such that the information matrix is block
dioagonal, in particular making o2 and 8 orthogonal. One may generalize
analysis of deviance to discrete exponential dispersion models and to location
and scale models, and the successful generalization of analysis of deviance to
these cases depends on obtaining a parametrization of the models' similar to
the parametrization mentioned above. However, for the present we shall con-
centrate on dispersion models and exponential dispersion models.

§1.6 Notes

The development of the theory outlined in this chapter began with the paper
by Nelder and Wedderburn (1972), introducing generalized linear models. The
development was very much stimulated by the release of the computer program
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GLIM (Baker and Nelder, 1978) for handling generalized linear models. The
topic gradually became an active area of research, and around 1980, important
papers began to appear, such as Whitehead {1980}, Aitkin and Clayton {1980),
Pregibon (1980, 1981), Momis (1982), McCullagh (1983) and West (1985).
Good summaries of the development until 1983 may be found in the books by
McCullagh and Nelder (1983), Dobson (1983) and Cordeiro (1986), the last
book being in Portuguese.

Analysis of deviance was part of the theory of generalized linear models
from the beginning (Nelder and Wedderburn, 1972), and has undergone various
generalizations and perfections. Dispersion models and the analysis of deviance
for these models were introduced by Sweeting (1981) and Jgrgensen (1983), the
former author working within a Bayesian framework.

Location and scale models have a long history, which we shall not try to
trace here, but we mention the book by Kalbfleisch and Prentice (1981), which
considers the use of location and scale models in the analysis of survival data.
Analysis of deviance for location and scale models was proposed by Sweeting
(1984).

Some general aspects of statistical modelling and data analysis, relevant
for the discussion of regression models of the present chapter, and the book as
a whole, are discussed by Cox and Snell (1981).

Exercises

Exercise 1.1: Give some examples of regression models that you have met
before. If possible, include examples with continuous and discrete data, depen-
dent and independent data, and linear and nonlinear models.

Exercise 1.2: Make a list of the types of statistical tests that you know.
Divide the tests according to distribution (normal, y2- F- etc.).

Exercise 1.3: Using the methods you already know, analyse the data in Table
1.1. Give estimates of the parameters f;, S;and ¢?, including standard errors.
Examine the goodness of fit of the model. Test the hypothesis §; = 0.

Exercise 1.4: Show that the gamma distribution with density

ply; b, A) = Ty exp(—dpy), ¥ >0,

is an exponential dispersion model, and write down the functions a and «.

Hint: Let ¢ = —A8.

Exercise 1.5: Show that the Poisson distribution is a discrete exponential
dispersion model.
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Exercise 1.6: Plot ¢(z;/p;) as a function of z; for the data in Table 1.2, using
either the logit or the probit link for g. Estimate the parameters f; and 5
from the plots, using for example linear regression.

Exercise 1.7: For t(y) = — [y|°, derive the form of the function a(A) in (3.2).
Solution: a{A) = 61114 /(2T(1/6)).
Exercise 1.8: For #(y) = — |y|, plot the probability density function (3.4) as

a function of y for some values of A and p. Use the expression for a()) found
in Exercise 1.7. :

Exercise 1.9: For each season, make a histogram for the data in Table 1.3. If
possible, take the circular nature of the observations into account {a ”compass
rose” type histogram).

Exercise 1.10: Choose a suitable function f, and plot (4.3) as a function of
y for some values of §; and o.

Exercise 1.11: Make a plot of the data in Table 1.4, showing the difference
between placebo and 6-MP, taking into account the censored observations in
an appropriate way.

Exercise 1.12: Plot the extreme-value density function (4.4) as a function of
-

Exercise 1.13: Show that the deviance for the normal distribution is
D(y, 1) = 2o(ui — pa)*.
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Chapter 2

AN OUTLINE OF EXPONENTIAL DISPERSION MODELS

Expenential dispersion models are important statistical models, because
they have a number of important mathematical properties, which are relevant
in practice, and because they include a number of important distributions as
special cases, giving a convenient general framework which includes a wide
range of common statistical techniques. The present chapter outlines the basic
properties of one-dimensional exponential dispersion models, suitable for the
treatment of generalized linear models.

§2.1 Natural Exponential Families

Consider a family P of distributions defined by a density function of the
form

(1.1) : 9(z;8) = a(z)exp{fz — (8)}, ze R

for suitable functions ¢ and x. We consider the discrete case and the continuous
case in parallel, so (1.1) is assumed to be a probability density function on IR
in the continuous case, and a probability function in the discrete case. Since
the total probability mass is 1 we have

(1.2) fa(z)e“dz = exp{«(8)},

where the integral is the Lebesgue integral in the continuous case, and the

sum Y a(z)e’” in the discrete case (this convention applies throughout the

following). If a(z) is the probability (density) function of a distribution P and

# is defined by (1.2), we say that (1.1) is generafed by P. It is casy to see

(Exercise 2.3) that the support of (1.1) does not depend on the value of 6.
The largest possible domain for the parameter @ is the interval

0={fc R fa(z)eezdz < o0},

17



which is called the canonicel paremeter domain for P. The parameter 6 is
called the canonical parameter for (1.1). The family P with § varying in © is
called a natural exponential family if the following two conditions are satisfied:
(i) The distribution (1.1) is not degenerate.
(ii) int ©, the interior of ©, is non-empty.
Using (1.2) we find that the moment generating function for (1.1) is

M(s; 8)= /e‘”‘p(z;ﬂ)dz
(1.3) =exp{r(f+3) —x(8)}, scO-0.
Condition (ii) implies that (1.1) is characterized by its moment generating

function (1.3).
The cumulant generating function corresponding to (1.3) is

K(s;8) =log M(s;8)
=k(0+s)—x(f), scO-0.
Hence, the ith cumulant x;(8) of (1.1) is
(1.4) ki(8) = K(0,8) = (),

where f() denotes the i-th derivative of the function f- We call & the cumulant
generator for (1.1).
The expectation g of (1.1) is

p=r'(8), 6cint®.

The function () = «'(#), which gives the relation between the canonical pa-
rameter # and the expectation parameter p is denoted the mean value mapping,
and the image @ = 7(int ©) of int © by 7 is called the mean domain.

The variance for (1.1) is Var(Y) = s"(§). By condition (i) we have
Var(Y) > 0, and hence £"(#) > 0 for 6 € int ©. Consequently, T is a strictly in-
creasing function, which has an inverse 7=1. We may thus express the variance
of (1.1} in the form

Var(¥) = &"(r~(u))
=V(n), pef

The function V with domain Q is called the variance function for P. Note that
V' does not depend on the particular parametrization used in (1.1), V simply
expresses how the variance behaves as a function of the mean p.

The variance function plays an important role in the theory of exponential
families and exponential dispersion models. A fundamental property of the
variance function is that it characterizes the natural exponential family from
which it comes, as shown by the following theorem.
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Theorem 2.1.1. The variance function V with domain § characterizes P
within the class of all natural exponential families.

Proof: Let P; and P, be two natural exponential families with the same vari-
ance function V' with domain Q. Let 7y, ©;, x4, 1 = 1,2, denote the mean value

mapping, canonical parameter domain and cumulant generator, respectively,
for P;, i = 1,2, etc. Then

ar! 1

1
Ou (i) Ve

Hence, there exists a constant #y € IR such that

JIXR

() =1 (u)+ 6, peQ
or, equivalently
T1(9)=T2(9—90), feOB;.

It follows that ©; = ©y — 6. Since &; satisfies the equation
ki) = (8), d€0y

we find that
K1(6)=k+ﬁ:2(6'—90), 96@1,

for some constant ¥ € IR. Hence, the cumulant generating function for a
member of P; 1s

K1(s;0) = k1(8 + s) — x1(6)
= fﬁg(g bt 90 + 3) — 52(9 — 90)
=I{2(3;9'~90), s€®2~(9—90).

Hence, the members of P, have the same moment generating functions as the
members of P;. By condition (ii), the moment generating functions I(;(s; )
and K3 (s;6 — ;) characterize their respective distributions. This implies P; =

P2 1
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§2.2 Exponential Dispersion Models

2.2.1 The Discrete Case.

Let us recall the definition of an exponential dispersion model from Sec-
tion 1.2. A discrete exponential dispersion model P is defined as a class of
probability functions of the form

(2.1) p*(z;8,A) = a*(A, 2)exp{fz — A&(8)}, =z e IN,.

This distribution is denoted ED*(f,)). We observe that (2.1) has the form
(1.1) for any given value of \. We assume in the following that (2.1) is a
natural exponential family for any given value of ), that is, satisfies condition
(i) and (ii) in section 2.1. Each of these natural exponential families have the
same canonical parameter domain, denoted @, because the canonical parameter
domain for (2.1) is the domain for the function Ax(:- ), which is independent
of the value of A. Hence, the domain of variation for the parameter (6,A) in
(2.1) is © x A, where A, called the indes set, is the domain for X.

One may show that either A > 0 for all members of P or ) < 0 for
all members of P. Hence we adopt the convention that A C JR,, where in
particular the value A = 0 has been excluded from A. We shall also adopt the
convention that 1 € A. Apart from the exclusion of 0, these conventions imply
no loss of generality, because they may be achieved by a change of sign of )\,
followed by a scale transformation of ).

All of the exponential dispersion models considered in the following have
either A = Ry or A = IN. We have already secen an example of the latter
case, namely the binomial distribution. In the case A = Ry, the distribution
is called infinitely divisible. We shall see in Section 2.5.2 that the negative
binomial distribution is an example of an infinitely divisible discrete exponential
dispersion model.

The moment generating function of (2.1) is

(2.2) M*(s;6,X) = exp{A{x(0 +35) — x(6)}], s€©®—86.

Note that the limiting form of (2.2) for A — 0 is M = 1, which is the moment
generating function of the degenerated distribution at 0. By (2.2), the ith
cumulant for (2.1) is

xi(8,2) = Ax()(8), 6 €intO.
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Extending the terminology for natural exponential families, we call & the cu-
mulant generator for (2.1), and similarly, we use the notation

b= T(g) = """(6),
V(p) = £"(v7" (1)),
Q = r(int ©).

In this notation, the expectation for (2.1) is
m=Au=Ar(d), @€int®,

and the domain for m is AQ2. In most cases we have Q@ = IR, in the discrete
case, which implies A = IR.. for any X in A, in which case the domain for m
does not depend on the value for A

The variance function for (2.1), as a natural exponential family with X
known, is m —— AV {(m/}), defined on AQ2. Hence, given the function V', we
may derive the variance functions AV(m/}), and hence by Theorem 2.1.1. we
may reconstruct the natural exponential family (2.1) for any given value of
A. In this sense, the function V characterizes (2.1) and we shall call ¥ the
variance function of (2.1). Note, however, that V is determined from P only
up to a scale transformation of A, so a more precise statement would be that the
family of functions AV(m/X) characterizes (2.1) among all discrete exponential
dispersion models.

2.2.2 The Continuous Case.

In Section 1.2 we defined a continuous exponential dispersion model to be
a family of distributions with probability density functions of the form

(2.3) P(y;8,2) = a(\, y) exp[MOy — x(6)}], v € .

Like in the discrete case, (2.3) is of the form (1.1} for A known, and we assume
that (2.3) satisfies condition (i) and (ii) in Section 2.1, so that (2.3) is a natural
exponential family for any given known value of A. Note that the canonical
parameter for (2.3), viewed as a natural exponential family with A known,
is § = ), whereas (2.1) has exponential family canonical parameter 8. By
arguments similar to the discrete case, we find that the parameter (#, ) varies
in a set of the form © x A, where, without loss of generality, we may assume
A C Ry and 1 € A. Analogously to the discrete case, we call A the indez sef
for (2.3), and we say that (2.3) is infinitely divisible if A = IR,..
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If we transform from y to z = Ay in (2.3), we get a probability density
function of the form

(2.4) p*(2;8,)) = a*(A, z)exp{0z — As(8)}, ze R,

where a*(A,z) = A7'a(X,2/)). The density function (2.4) is essentially of
the same form as the discrete exponential dispersion model (2.1), and for this
reason, results for the discrete case may often be translated to the continuous
case and vice versa. To stress this analogy, we use the notation FED*(#,)) to
denote either the discrete exponential dispersion model (2.1) or the continuous
model (2.4). We shall use the common name convolution family about either
(2.1) or (2.4). The reason for this terminology will become clear in Section 2.3.

Let us pause for a moment to consider the question why it is necessary
to have different definitions of an exponential dispersion model in the discrete
and the continuous case. The simplest answer is that in the discrete case,
distributions like the binomial and the negative binomial are of the form (2.1),
whereas in the continuous case, the normal distribution is of the form (2.3), and
hence this distinction between the continuous and the discrete case is a useful
one if we want a theory that encompasses the most useful standard discrete and
continuous distributions. The second aspect of the question is that the form
(2.3) leads to a much more elegant form of inference than does (2.1}, so from
this point of view (2.3) is to be preferred. However, there exist no nontrivial
discrete models of the form (2.3), and hence one is forced to work with (2.1) in
the discrete case. A simple argument for this statement is that if Z is a discrete
variable with probability function of the form (2.1), then, although ¥ = Z/)
has probability function essentially of the form (2.3), it is not a practically
relevant model, because it has support {0,1/A,2/],...} which depends on the
value for A.

The main parallel between the discrete case and the continuous case is
that the moment generating function of (2.4) has the form (2.2). By the trans-
formation y = z/), we find that the moment generating function of (2.3) is

M(s;8, %) = exp[M&(8 + s/2) — £(8)}], s€XO-6).
Hence the ith cumulant for (2.3) is
k:(8,0) = cD(OAF, 0 eintO.

Defining 7(8) = £'(8), V(p} = £"(r~*(p)) and @ = 7(int ©) by analogy with
the discrete case, we may write the expectation for (2.3) as

pu=1(0)eQ, Hcint®
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and the variance as

a*V(n), peqQ,

where V' is called the variance function for (2.3) and 02 = 1/) is the dispersion
parameter. Like in the discrete case, we find that V characterizes (2.3) among
all continuous exponential dispersion models.

We shall denote the continuous exponential dispersion model (2.3} by the
symbol ED(y,0%), where p = 7(8) and 2 = 1/X are the parameters defined
above. Note here that the expectation p for {2.3) does not necessarily exist
when @ is on the boundary of ®. For most practical purposes this is not
important, but formally speaking, the parameter & is not defined for # on the
boundary of ©. The relation between the notation ED*(8, A} for (2.4) and
ED(u,0%) for (2.3) is that Z ~ ED*(8,}) if and only if Z[X ~ ED(p,0?)
where p = 7(f) and % = 1/A.

§2.3 Convolution and Asymptotic Normality

Exponential dispersion models enjoy a remarkable convolution property,
which generalizes the convolution property of the normal distribution. Con-
sider a given convolution family ED*(6, A) and assume that Zy,...,Z, are
independent and

Zi~ED*(0,)), i=1,...,n,

for (§,\i) € @ x A, {=1,...,n By (2.2), the moment generating function
of Z.=2,+---+ 2, is

Mz (s;0,A1,...,0,) = exp[z A{w(f+s)—w(B)}], se0-—9.

i=1
Hence, we find
(3.1) Z.~ED*(0,M +--- + Ap).

Example 2.3.1: The binomial distribution. If Z,,. .. , Zy are independent and
Zi ~ Bi(Aq, 1), i =1,...,n, then by (3.1)

Byt By~ Bi(Ag 4 4 A, p),

23



because p = 7(), and hence the 6s are identical for Zy,..., Z,, as required for
(3.1). This is the standard convolution formula for the binomial distribution.

As the example illustrates, formula (3.1) applies in particular to discrete
exponential dispersion models. In the continuous case, let us assume that
Y;,...,Y, are independent and

Y; ~ ED(p,0% fw;), i=1,...n,
for given numbers wy, ..., w,, such that w;/o? € A.Then
Zi =0 %w;Y; ~ ED*(8,0 %w,),
where § = 7 (u). By (3.1) we get
2. =Zv+ -+ Zn ~ ED*6,02w.),

where w. = w; + -+ + w,. Hence we have the convolution formula

(3.2) zn:w,-Y,-/w. ~ ED(p, 0% [w.),

=1

because Z.0?/w. ~ ED(y1,0?/w.). As a special case of (3.2) we see that for
11,...,Y; independent and identically distributed ED(y, o?), we have

=¥~ BD(s,0%/n).

=1

Hence a continuous exponential dispersion model is closed with respect to aver-
aging identically distributed random variables, and more generally, as in (3.2),
with respect to weighted averaging, where the weights are the reciprocals of
the dispersion parameters.

Example 2.3.2: The normal distribution. If Y3,...,Y,, are independent and
Y; ~ N{u, 0% /w;), then by (3.2)

Zwi}’;/w. ~ Ny, 0% w.),

=1

where w. = wy + -+ + w,. This result is a special case of the more general
convolution result for the normal distribution, which may be written as follows.
IfYy,...,Y, are independent and ¥; ~ N(g;,02/w;), i =1,...,n, then

(3.3) > wilijw. ~ N wipsfw., 0 w.). 8

=1 i=]
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The result (3.3) raises the question whether aresult parallel to (3.3) holds
for the weighted average of variables with distribution ED(g;, 02/w;). How-
ever, the result (3.3) relies on the fact that g; is a location parameter for the
norma)l distribution. Thus, if we write

Yi=w;+E;, i=1,...,n,

where E; ~ N(0,0%/w;), we find that (3.3) may be obtained by applying (3.2)
to Ey,..., E,, and using the linearity of the averaging operation. The normal
distribution is not the only exponential dispersion model! which is closed under
translation, as we shall see in Section 2.8, but it is probably the only case in
which a result like (3.3) holds.

The convolution results (3.1) and (3.2) have a number of important prac-
tical and theoretical consequences. For example, (3.1) implies that the index
set A is closed with respect to addition. Since 1 € A we conclude in particular
that IV C A, in other words A contains all positive integers.

A second conclusion from (3.1} is that by the central limit theorem, an

exponential dispersion model is approximately normal for A large. Thus, for
Z ~ ED*(8,)) we have, for any fixed value of 6,

(3.4) (Z —m)/ A2 4 N{0,V(y)) for A — oo,

where m = Ay and 4 denotes convergence in distribution. This result applies
in particular for a discrete exponential dispersion model. For the binomial
distribution, (3.4) gives de Moivre-Laplace’s Theorem. In the continuous case,
we may write (3.4) in the form

(3.5) (Y — /o 5 N(@O, V() for o —0,

for Y ~ ED(u,0?). For the normal distribution, this result is trivial.

The convolution results (3.1) and (3.2) allow an interpretation of an ex-
ponential dispersion model in terms of an underlying stochastic process. We
illustrate this by two examples.

Example 2.3.3: Energy ezpenditure dote 2. In Example 1.1.1 we consid-
ered the energy expenditure for human subjects. Suppose we divide the
tissues of subject ¢ mto k compartments, homogeneous with respect to en-
ergy expenditure. Let w;,...,w;; denote the masses of the k& compart-
ments, and let Yi1,. .., Y be the corresponding energy expenditures, such that
wi = wi +- - - +w;p is the total body mass of the subject and ¥; = ¥+ -+ Yir
is the total energy expenditure of the subject. Inspired by (3.2), we assume that
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the average energy expenditure per unit of body mass follows an exponential
dispersion model

(3.6) Yi; =Y /wij ~ ED(G;, o [wiz),

where 7z; is the theoretical energy expenditure per unit of body mass for the
subject. If ¥i1,...,¥j are independent, then by (3.2)

k
(37) ?,‘ = Y,-/w.- = Ewij?,-j/w,— ~ ED(IE'—,O’Z/‘U};).
Jj=1

The argument leading to (3.7) shows that, according to the model, the same
form of statistical model may be assumed for an average energy expenditure,
no matter whether the average is based on an entire individual, on parts of
the tissues of an individual (if such a measurement were feasible) or on an
aggregation of several individuals with the same body composition. This kind
of adaptiveness of an exponential dispersion model ensures that the parameters
have a physical interpretation, in particular for the interpretation of Z; as the
average energy expenditure per unit of body mass.

The probabilistic interpretation of (3.6) and (3.7) is that we may view
- energy consumption as generated by a stochastic process, with the mass w
playing the role of ”time” for the stochastic process. Since weight is, in prin-
ciple, a continuous variable, this requires the exponential dispersion model to
have A = IRy, in other words be infinitely divisible. N

Table 2.1: Number of accidents on straight highways in Denmark 196§

Season 1 2 3 4

two-lane 35 56 53 50
four-lane 199 184 9227 270

Example 2.3.4: Table 2.1 shows the number of accidents on straight two-lane
and four-lane highways in Denmark in 1963. The data are classified according
to road type and season. Let Z;; denote the number of accidents for road
type ¢ and season j, where ¢ = 1 denotes two-lane and ¢ = 2 denotes four-lane
highway, and assume that the Zi;s are independent. A possible model for this
kind of data is a discrete exponential dispersion model of the form

(3.8) Z;; ~ ED*(8;;, At;),
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where £; is the length of the jth season of the year (hence the ¢;s are nearly
equal). The expectation of Z;; is ¢;m;, where mij = A7(;;) is the expected
number of accidents per time unit for road type ¢ and season j. The systematic
component of the model could for example be the generalized linear model
given by

(3.9) logmij = p+ s + B + &ij.

A test of §;; = 0 in (3.9) could be of interest, in order to be able to separate
the effects of road type and season. For the present data, however, such a test
would require A to be known, because A can not be estimated from (3.9), there
being only one observation for each combination of ¢ and j.

The convolution result (3.1) again allows an interpretation of the model
(3.8) in terms of an underlying stochastic process. Specifically, consider a
subdivision of the jth season into intervals of length ¢, say for the kth interval,
and let Z;;; denote the number of accidents for the kth interval of the jth season
for road type ¢. Assume that the Z;;xs are independent and

Z,‘jk ~ ED*(Q,'J', /\tijk);

such that in particular the expected number of accidents per time unit, m;;,
is constant within each season for each road type. Then formula (3.1) implies
that Z;; = >~ Zi;x has distribution (3.8), so that the model has the same kind
of adaptiveness as we saw in the continuous case. Note that the model must
again be infinitely divisible, because time is a continuous variable. I

§2.4 Continuous Exponential Dispersion Models

2.4.1 The Normal Distribution.

In this and the following two sections we summarize the basic properties
of the three most important continuous exponential dispersion models, the
normal, the gamma, and the inverse Gaussian distributions.

In Section 1.2 we saw that the probability density function of the normal
distribution N(g,0?) may be written in the form

Py 1, 0%) = (o) 2 exp{—y/(20%) + o2 (yp — 112 /2)},

27



which shows that we have an expomential dispersion model with parameter
(6,2} = (#,07*) and cumulant generator x(f) = #2/2, § € R. As we saw
earlier, the convolution formula (3.2) takes the form

Zw,Y,/w ~ N{g,0? fw.),

where 11,...,Y, are independent, Y; ~ N(g,0%/w;} and w. = wy + -+ + wy,.
Since £'(#) = § and &"(8) = 1, the variance function is

V(g)=1, p€ R,
which gives the well-known result Var(Y) = 0% for ¥ ~ N(g,o?).

2.4.2 The Gamma Distribution.

The probability density function of the gamma distribution may be written
in the form

(4.1) p*(z;9, A) = D) 122 exp(—hz + Alog®), 2z >0,

where A, > 0. It follows that the gamma. distribution is a convolution family
of the form (2.4) with canonical parameter § = —t) < 0 and cumulant generator
() = —log(—8). We denote (4.1) by the symbol Ga*(8, A).

Applying the convolution formula for convolution families, (3.1}, to (4.1)
we obtain the formula

(4.2) Ga* (8, x1) * -+ * Ga™ (6, M) = Ga*(8, M1 + -+« + \p),

where * denotes convolution. This is the standard convolution formula for
the gamma distribution. In particular we have the relation

X*(f) = Ga*(-1/2,1/2)

with the x?-distribution, so that (4.2) gives the standard convolution formula
for the y2-distribution.
An alternative way to write (4.1) is to take —1 = A, which gives

A
y* " exp[AM{By + log(—0)}], ¥ > 0,

(4.3) p(y;0,0) = f)(lﬁuf

where # < 0. Hence, we may also view the gamma distribution as a continuous
exponential dispersion model, again with cumulant generator x(8) = — log(—4).
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We have x'(f) = —1/8 and «"(8) = 1/6*. We denote (4.3) by the symbol
Ga(p, o), where u = —1/8 is the expectation and o2 = 1/ is the dispersion
parameter. The variance function for (4.3) is

(4.4) V(p)=p* p>0,

which gives the variance o2y? for (4.3). In particular, o is the coefficient of
variation for (4.3). By (3.5) we have, letting ¥ ~ Ga(g, o*),

(Y — p)/c 4 N(0,pu%) for o? 0.

The gamma distribution may, as we have seen, be viewed as either a con-
volution family or an exponential dispersion model. This happens because
the distribution is closed with respect to scale transformations. Thus, for
Y ~ Ga(y,o?) and ¢ > 0 we have

(4.5) Y ~ Ga(ep, o).

In particular AY ~ Ga(Ay, o), which shows that the convolution family (2.4)
corresponding to the exponential dispersion model (4.3) is again the family of

gamma distributions, The connection between the two notations Ga*(#, A) and
Ga(p,0?) is

(4.6) Ga*(8,)) = Ga(—)/6,1/)),

which may be obtained by comparing (4.1) and (4.3) Let us finally show how
the convolution formula {3.2) looks for the gamma distribution. If ¥3,...,Y,
are independent and ¥; ~ Ga(p, o2 fw;), (3.2) gives

(4.7) Zw,-Y,-/w. ~ Ga(p, a® [w.),

i=1

where w. = w + -+ + wy. Obviously, (4.7) is equivalent to {4.2), which also
follows directly from (4.5) and (4.6), because

w; Y fw. ~ Ga.(w,-;z/w.,az/w,-) = Ga*(—w./(o%u), w;/o?).

2.4.3 The Inverse Gaussian Distribution.

The probability density function of the inverse Gaussian distribution has
the form
A

(4.8) p(y; 0,)) = (27ry3

M2 explze + MBy + (26} Y, >0,
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where A > 0 and # < 0. The fact that (4.8) is a probahility density function
is shown in Exercise 2.21. The form of (4.8) shows that we have a continuous
exponential dispersion model with cumulant generator x(6) = —(—26)'/2 and
expectation = £'(8) = (~26)~1/2. We denote (4.8) by the symbol IG(z, o?),
where ¢® = 1/ is the dispersion parameter.

Since &"(8) = (—26)3/2, the variance function of (4.8) is

Vig)=4*, p>0,

and the variance of (4.8) is 0?1¢®. By (3.2) we have, for ¥1,...,Y, independent
and Y; ~ IG(u, 02 fw;),

(4.9) > wiVifw. ~ IG(p, 0% [w.),

i=1
where w. = wy + -+ 4+ w,. The distribution is asymptotically normal for o2
small,
(Y —p)/e LA N(0,p®) for o250,
where Y ~ IG(p, 0?).

Like the gamma, the inverse Gaussian distribution is closed with respect
to scale transformations. Thus, if ¥ ~ IG{(y,0?), then

Y ~ IG(cp,a?/c).

In particular, the inverse Gaussian distribution is also a convolution family. To
explore this fact, let us take 1 = A in (4.8), which gives

P29, X)
(4.10)
A

= (27r23

)1/2 exp{—% + oz + )\1/2(——24:)1/2}, y > 0.

Hence we have a convolution family of the form (2.4) with index parameter
A2 We denote (4.10) by the symbol IG*(3,A!/?). By (3.1) we obtain the

alternative version of the convolution formula

(411) TG, AP 2k IG* (3, AY2) = TG (36, A2 oo 3 2L/,
For ) = 0 in (4.10) we get the probability density function

A

2nz3

(4.12) p*(z;0,A) = ( )2 exp{—A/(22)}, z > 0.
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This distribution is known as the positive stable distribution with stability

index 1. In fact, taking p =0and Ay =--- =\, = A in (4.11), we obtain the
formula
(4.13) IG*(0,MY?) 4 -+ £ IG*(0, A11?) = IG*(0, nA1/?),

where the distribution IG*(0,nA'/2) is n? times the distribution IG*(0, A1/ ),
by the scale transformation property of the inverse Gaussian distribution.
Hence, (4.13) is essentially the defining property of a stable distribution. Sece
Exercise 2.25 for the definition af a stable distribution.

Table 2.2 summarizes the three continuous exponential dispersion models
considered above and two models to be considered in Sections 2.6 and 2.8. The
table assumes an exponential dispersion model of the form

p(y;8,2) = a(A, y) exp[M{8y ~ x(B)}], y € R,

Table 2.2: Some Continuous Ezponential Dispersion Models

ED(s,®)  a(hy) (6) 0 Ve e o
N{p,o?) ()M 2212 1g? ] 1 n I
Galw,o?) X —log(—6) 1 p? n_ R
IG(p,0%) (57:‘;5)1/212“’\/(2”) —(—29)1/? (—26)71/2 3 (—oo,0] I
4A=-12 A idgy? "
GHS{(pu,0?) A'—I:(%FT(&%?I—)—'— —logcosf tan{6) 1442 (-5,%) R

Stable, a =1 - flogd — 1 log6 e [0, 00) R
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§2.5 Discrete Exponential Dispersion Models

2.5.1 The Binomial Distribution.

As we saw in Section 1.2, the binomial distribution is a discrete exponential
dispersion model with probability function

(5.1) p*(z;0,)) = (2) exp{fz — Mog(1+¢%)}, 2=0,1,..., ),

where § € IR and A € IN. The cumulant generator is x(f) = log(1 + ), which
gives p == £'(8) = e?/(1 + &%) and x"(0) = e?/(1 -+ e?)*>. We use the notation
Bi(A, p) for the binomial distribution (5.1), where, in the usual interpretation
of the binomial distribution, A is the number of trials, (5.1) gives the probability
of exactly z successful trials, and g is the probability of success for each trial.
For Z ~ Bi(A, ) we have
E(ZY=m=MAp
and, since the variance function is V{(p) = p(1 — p),
Var(Z) = AV(p) = Ap(l — p).
By (3.4) we have
(Z —m)/ A2 4 N(O,p(1 —p)) for A — oo,

which, as mentioned earlier, is de Moivre-Laplace’s theorem. Finally, as noted
above, the convolution formula (3.1) takes the form

Bi(Ar,p) %+ % Bi(n, 1) = Bil\ + -+ + An, 2)

for the binomial distribution.
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2.5.2 The Negative Binomial Distribution.

Consider the negative binomial distribution, whose probability function is

Adz-1
z

Pz 6,A) = ( )sﬁ’(l - ¢

(5.2) = (A +: - 1) exp{fz + Aog(1l — €%}}, z € Ivg,

where 6 = log$ < 0. Hence we have a discrete exponential dispersion model
with cumulant generator (f) = —log(1l — e?), y = &' (6) = €/(1 — ¢) and
#"(8) = e?/(1 — ¢®)?. We denote the negative binomial distribution (5.2) by
Nb(A, p). For Z ~ Nb(), 1) we have

m=FE(Z) =\
and, since V{u) = pu(1 + p),
Var(Z) = AV{p) = Ap(1 + p).
The convolution formula (3.1) takes the form
Nb(Ay,p) % -+ Nb(Ap, pt) = No(Ay 4 - 4 A, p2),

which is the standard convolution formula for the negative binomial distribu-
tion. Finally, for Z ~ Nb(), u) we have convergence to normality,

(Z —m)/IN? L N, u(1 + ) for A — oo

2.5.3 The Poisson Distribution.

The Poisson distribution is a very special example of a discrete exponential
dispersion model. First it has a dual interpretation as a natural exponential
family and as an exponential dispersion model. Second, as we show in the next
section, it appears as the limiting distribution in a general limit theorem for
discrete exponential dispersion models.

The Poisson distribution Po{m) with mean m has probability function

m* _
plzym) = e

(5.3) = ~em(gz—e?), ze N,
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where ¢ = logm € IR. Hence the Poisson distribution is a natural exponential
family of the form (1.1) with cumulant generator x(¢) = e?. We have m =
x'($) = e and £"(¢) = e?, and hence the variance function is V(m) = m, m >

It is useful to consider the Poisson distribution from an alternative point
of view, namely as a discrete exponential dispersion model, which will allow us
to draw on the general theory for exponential dispersion models. Thus, letting
m = Ae? in (5.3), we obtain

z

(5.4) p*(z;0,A) = i—' exp{fz — Xe’}, =z e IV,

which is a discrete exponential dispersion model with cumulant generator
#(f) = €. Thus we have y = &'(f) = ¢ and «"(6) = €?, which gives, for
Z ~ Po(m),
E(Z) =m = A,
and since V(1) = p
Var(Z) = AV(p) = Ap.
The convolution formula (3.1) takes the form
Po(Are?) x -+ % Po(A,e®) = Po((Ay + -+ - + An)e?),

which is nothing more than the standard convolution formula Po(my) * -+ *
Po(my) = Po(my +--- -+ m,). The convergence formula (3.4) takes the form

(Z—m)/A2 4 N, ) for A — oo,

for Z ~ Po(m), m = Ae®, which is the well - known convergence of the Poisson
to normality for large values of the expectation.

Even though the Poisson distribution is formally a discrete exponential
dispersion model, as in (5.4), we note that the parameter (8, ) is not identi-
fiable; only the expectation Ae? is identifiable. The next theorem shows that
this property essentially characterizes the Poisson distribution.

Theorem 2.5.1. Consider a discrete exponential dispersion model
(5.5) P (z10,)) = a*(A\ 2)exp{fz — Ax(8)}, =z € IN,.

Assume that p*(1;8, ) > 0 for some (8,)) € O x A; and assume that the index
set 1s A = IRy. If (5.5) yields the same natural exponential family for every
A € A, then (5.5) is the Poisson distribution.

Proof: For A known, (5.5) is a natural exponential family with variance func-
- tion

(5.6) m— AV(m/}X), me Q.
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If all the natural exponential families in (5.5} are identical, they have the same
variance function, and in particular the domains of the variance function are
the same. If the domain AQ does not depend on A, @ must be either R_,R,
or IR, but only © = IR, is possible, because € is a subset of the convex support
for (5.5), which is a subset of IRy. Equating the values of (5.6) for A =1 and
A general we get

V{m)=AV(m/)), meQ,

which for m =1 and p = 1/ gives

V(i) = uV(1), 1> 0,

where we have used the assumption A = JR,.. This is the variance function
for the natural exponential family defined by V(1)Y, where ¥ ~ Po(y) (see
Exercise 2.27). By Theorem 2.1.1, one of these scaled Poisson distributions
must be equal to (5.5). However, since we have assumed that p*(1;6,1) > 0
for some value of (8, 1), the only possibility is V(1) = 1, so that (5.5) is the
Poisson distribution. B

Table 2.3: Some Discrete Exponential Dispersion Models

ED*(8,}) a*(X,z)  k(8) 7(6) V(u) e Q
Bi(\, 1) ) log(1+e®) e?/(14+e?) wl-p) R (0,1)
Ny, p) () —log(l-ef) ef/(1-€®) p(1+p) R- Ry
Po(Au) DAFF1 e? e? 7 R Ry

To illustrate the practical aspects of the interpretation of the Poisson dis-
tribution as a discrete exponential dispersion model, consider the data in Ex-
ample 2.3.4, where we assumed a discrete exponential dispersion model of the
form

Z.’j ~ ED*(B;j,/\tj).
In the special case of the Poisson distribution we get
Z,'_,' ~ PO()\tjee"") = Po(tjm,-j),

where m;; is the expected number of accident per time unit for the ith road
type and the jth season. Hence, we have obtained the standard Poisson model,
which corresponds to an underlying Poisson process with rate ™Mij.
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Table 2.3 summarizes the three discrete exponential dispersion models
considered here. The table assumes a probability function of the form

P*(z;8,A) = exp{fz — As(8)}, =z€ INy.

2.5.4 Convergence of Discrete Exponential Dispersion Models to The
Poisson Distribution.

A basic result in probability theory states that the Poisson distribution is
a limiting case of the binomial distribution. Thus, if Z ~ Bi(), 1) we have

(5.7) zZ4 Po(m) for A-— o0

for any fixed value of m = Ap. For the negative binomial distribution, Z ~
Nb(A, ), (5.7) also holds for any fixed value of m = Au. Both of these results
are special cases of the following result.

Theorem 2.5.2. Consider a discrete exponential dispersion model
(5.8) P*(2;0,X) = a*(A, z) exp{6z — Ax(8)}, z € INy,

and assume that p*(z;6y, Ao) > 0 for z = 0,1, for some (§y, M) EO x A. If 2
has distribution (5.8), then (5.7) holds for any fixed value of m = Ay, where
p=£'(9).

Proof: We pretend to show that the moment generating function of (5.8)
converges to the moment generating function of the Poisson distribution, which

implies convergence in distribution. After a reparametrization, we may take
th =0 and Ay =1. We have

(5.9) k() = log{z a, exp(6z)},

where a, = a(1,2),z € INy. Since 8y = 0 and Ay = 1 we have, by assumption,
ap > 0 and a; > 0. Since the support of (5.8) is bounded to the left, we have
inf @ = —co. Now

7(8) = £'(8) = e~ i za, exp(8z),

z=0
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and since e(? — gy £ 0 for § — —00, we obtain 7(8) — 0 for § - —oco.
Hence, since 7 is an increasing function, we conclude that inf = 0.

Let a = b denote lim(a — b} = 0. From (5.9) we have, using a Taylor
approximation for log,

x(8) =2 log(ag + a &%)

(5.10) ~logag +aya;'e®  for 6 — —co.
Hence |
(5.11) 7(6) = ara;'e®  for § — —c0.

For m = Ar(#) fixed we have
(5.12) f=71""(m/A) > —00 for A — co.

Hence, the moment generating function for Z is, for m = A7(8) fixed and A
large, -

M (538, 3) = expMx(0 + 5) — n()}]
~ exp{Aa;ay’el(e* — 1)}
~ exp{m(e® — 1)},

where we have used (5.12), (5.10) and (5.11). Hence M(s; 6, A) converges to the
moment generating function of the Poisson distribution, which implies (5.7. 1

§2.6 Quadratic Variance Functions

2.6.1 Linear Transformations and Variance Functions.

The variance function is an important tool for handling exponential dis-
persion models, as we saw for example in the proof of Theorem 2.5.1, due to
the fact that an exponential dispersion model is characterized by its variance
function.

The variance function furthermore seems to have a mathematically
tractable form in most cases of interest, as illustrated by the examples in Sec-
tions 2.4 and 2.5. Encouraged by these facts, we proceed to study three classes
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of potential variance functions, namely quadratic variance functions and, in
Section 2.7 and 2.8, power variance functions and exponential variance func-
tions.

In order to study variance functions, we need to study linear transforma-
tions of exponential dispersion models. Consider the linear transformation

(6.1) fy)=a+ 0y,

where B # 0. It is easy to see that if ¥V follows a contintous exponential
dispersion model, then so does U = f(Y'), see Exercise 2.17. If ¥ has variance
function V with domain 2, then the variance of U is

(6.2) Bo* V(g —a)/B), neEa+p,

where . = E(U). Hence, the variance function of U is A2V{(g — «)/B). In
particular, the linear transformation (6.1) changes the domain of the variance
function from @ to & + Q. Furthermore, a reparametrization from o? to o2e,
say, where ¢ > 0, changes the variance function V to ¢™!V. By combining a
linear transformation and a reparametrization, we can hence translate, reflect
and re-scale the variance function arbitrarily.

In the discrete case, we shall explore the relation between the convolution
family (2.4) and the continuous exponential dispersion model (2.3). Let

(6.3) p*(2;6,A) = a*(\, z) exp{8z — As(8)}, z€ IN

be a discrete exponential dispersion model. By transforming to y = 2/, we
obtain

64)  p"Ow8,0) =a" (A yX) exp[Mby — s()}], y € AT IN.

Note that the domain for y is A~1IVy, which depends on A. By the analogy
between (6.4) and the continuous exponential dispersion model (2.3), we find
that the form of (6.4) is preserved under linear transformations, except that
the domain for y becomes a linear transforma.tion of A™1 IVy. In particular, the
variance function of (6.4) is o2V (p), for o = 1/A ﬁxed which is transformed
into (6.2) by the transformation (6.1).

The transformed value of z = Ay by the transformation (6.1} is /\(a + By),
and transforming back from (6.4) to (6.3) by the transformation y — z = Ay,
we obtain the transformation

(6.5) z+— Ma+ 82z/)) = a) + B=.
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Hence, the transformation (6.5) is the parallel for the discrete case (6.3) to the
transformation (6.1) for the continous case.

The reader should not become confused because of the fact that the trans-
formation (6.5) depends on the parameter A, because the results are to be used
with Theorem 2.1.1. This theorem concerns natural exponential families, and
in the present connection, an exponential dispersion model is simply a way to
handle certain classes of natural exponential families indexed by A.

The advantage of the transformation (6.5) is that the variance function V
is transformed in the same way as in the continuous case. Thus, if (6.3) has
variance function AV(m/}), as a natural exponential family for A known, then
the transformation (6.5) produces the new variance function

m s AV (/A — a)/B).

In other words, V(u) has been replaced by 82V ({1 — a)/8), exactly as in the
continuous case,

These results allow us to make statements like: ”up to a linear transforma-
tion, the only exponential dispersion model with a specified variance function
is ...”. In the discrete case it is understood here that any model obtained
by applying the transformation (6.5) to (6.3) is called a discrete exponential

dispersion model.

2.6.2 Classification of Quadratic Variance Functions.
By a quadratic variance furiction we mean a variance function
(6.6) Vip)=ap®* +bp+e, pe 2,

which is a polynomial of degree at most two. For simplicity, we let V{u)
be defined by (6.6) for any ¢ € IR. We saw in Sections 2.4 and 2.5 that
the normal, Poisson, binomial, negative binomial and gamma, distributions all
have quadratic variance functions, cf. Tables 2.2 and 2.3. A sixth exponential
dispersion model with quadratic variance function is the generalized hyperbolic
secant distribution, which we describe in Section 2.6.3. We now show that
up to a linear transformation, these six distributions are the only exponential
dispersion models with quadratic variance functions.

In the following, ¢, and ¢, denote the two real roots of (6.6), if they exist,
d = —b/(2a) denotes the stationary point of (6.6), for a # 0, and V{d) denotes
the value of V' at the stationary point.
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(i) The normal distribution (a =b=0,c > 0)
For V(1) = ¢ > 0 constant, the corresponding exponential dispersion
model is the normal distribution, which, up to a reparametrization, has variance
function V{p) =1, p € R.

(ii) The Poisson distribution (a = 0,b # 0)

The Poisson distribution has a linear variance function V() = u, x € R,.
By a linear transformation and a reparametrization, any variance function of
the form by -+ ¢ with b % 0 may be obtained. Hence, up to a linear transfor-
mation, the only exponential dispersion model with a linear variance function
is the Poisson distribution.

(iii) The binomial distribution (a < 0)

For a < 0 we must have V(d) > 0 in order to obtain V(u) > 0 on =
(€1,¢2). By a linear transformation we may obtain ¢; = 0 and ¢; = 1, which
gives V(¢) = —ap(l — p). For —a € IV this is the variance function of the
binomial distribution. One may show that —a ¢ IV is not possible.

(iv) The negative binomial distribution (a > 0,V(d) < 0)

In the case a > 0 there are three possibilities, ¥(d) > 0, V(d) = 0 and
V(d) < 0. For V(d) < 0, V has two real roots ¢; < c. By a reflection we may
obtain Q = (c;,00), and by a linear transformation we may obtain ¢; = —1
and ¢; = 0, which gives @ = (0, 00). Hence we have V(u) = ap(l 4+ p), and by
a reparametrization, we obtain the variance function of the negative binomial
distribution, V{(y) = p(1 + p).

(v) The gamma distribution (a > 0,V (d) = 0)

For a > 0 and V(d) = 0, we have ¢; = ¢; = d. By a reflection we may
obtain { = (d,00), and by a linear transformation we may obtain Vi) =
#%, > 0, which is the variance function of the gamma distribution.

(vi) The generalized hyperbolic secant distribution (a > 0, V({d)>0

For a > 0 and V(d) > 0 we have = R. By a translation we may obtain
d = 0, and by a combination of a scale transformation and a reparametrization,
we may obtain '

(6.7) V) =1+4", peR
This is the variance function of the generalized hyperbolic secant distribution,
which we study in the next section. With this distribution we have exhausted

all possible exponential dispersion models with quadratic variance functions.
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2.6.3 The Generalized Hyperbolic Secant Distribution.

To find the exponential dispersion model corresponding to (6.7), we follow
the steps of the proof of Theorem 2.1.1. Thus, for V' given by (6.7) we obtain
the equation

ar—1 1
o~ irma MER

which has solution
T(0) = tan(6), 19| < /2,

where we have ignored the arbitrary conéta.nt, which, according to the proof of
Theorem 2.1.1, does not affect the result. Next, we solve

#(6) = tan(8), 18] < /2,
which, ignoring again the arbitrary constant, gives
#(0) = —log{cos(6)}, 9] < =/2.

The corresponding exponential dispersion model is continuous, has support
IR, and on its convolution family form has probability density function

(6.8) p*(2;8,2) = a"(A, z) exp[fz + Alog{cos(8)}], =€ R,
where

22~2 |I0(A/2 +iz/2)

a*(Az) =

TAT(A/2)?
2)—2 oc z 2 -1

The distribution is infinitely divisible, with index set A = R,.
In the special case A = 1, (6.8) is related to the beta distribution. In fact,
“from Abramowitz and Stegun (1965, p. 256)

IT(1/2 4 42/2)|® = 7/ cosh(rz/2),

and hence
a*(1,z) = 1/{2cosh(nz/2)},

which implies
(6.9) p*(2;8,1) = ¢%% cos(#)/ {2 cosh(rz/2)}, z€ R.
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By the transformation z = log{u/(1 — u)}/=, (6.9) turns into
(6.10) F(u;8) = 771 cos(B)u1/2HO/IT(1 ) T12-0T g <y < 1.

This is the probability density function of the beta distribution with parameters
1/2 - 8r and 1/2 — f/7. In fact, by the reflection formula (Abramowitz and
Stegun, 1965, p.256).

I'(1) L
I'(1/2 - 8/x)T(1/2 + 6x) 7 1sin{n(1/2 + 8/7)}
(6.11) — 71 cos(8),

which gives the relation between the cosine function and the beta function.
The probability density function (6.8) is symmetric and bell-shaped for
6 = 0 and skewed for 8 # 0. The tails of (6.9) decrease exponentially,

(6.12) p*(2;0,1) ~ cexp{(§ F 7/2)z} for z — Fo0.

Since © = (—n/2,7/2) is the domain of § for any A > 0, the tail behaviour of
(6.8) for general A is similar to (6.12). See Exercise 2.35 for an examination of
the coeflicients of skewness and kurtosis for (6.8).

For practical purposes, we shall often work with the exponential dispersion
model corresponding to (6.8), obtained by the transformation y = z{A. This
distribution is denoted GHS(p,¢?), with ¢ and o? denoting respectively the
expectation and the dispersion parameter.

§2.7 Power Variance Functions

2.7.1 The Moment Generating Function.

A class of variance functions of considerable importance are the power
variance functions, defined by '

(71) V(#) = P, K e,

where {2 = IR for p = 0 and 2 = IR,;. otherwise. We have already seen a number
of examples of exponential dispersion models with power variance functions,
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namely the normal (p = 0), Poisson (p = 1), gamma {p = 2) and inverse
Gaussian distributions (p = 3), of which the first three variance function are
also quadratic.

It is convenient to introduce the notation

(7.2) a=(p=-2)/(p-1),

and in the following we denote quantities related to V in (7.1} by ka4, Ta, Oq
etc., where @ and p are related by (7.2), so that p = (& — 2)/(e — 1). In
particular we let @ = —oco denote the case p = 1. In this way (7.2) defines a
one-to-one relation between p € IR and « € (1, 00} U [—00,1).

To find the exponential dispersion model corresponding to (7.1), if it exists,
we again follow the steps of the proof of Theorem 2.1.1. Thus, for the variance
function (7.1) we find

art

Yo _ v
(7.3) gy —Hh €y
and
(7.4) 55(0) = Ta(8), 6 € Q4.

From (7.3) we find, for § € O,

¢

r(8) = { (ﬁ)a_l for a #: 1, —c0o

e for @« = —o0.

IFrom 7, we find &, by solving (7.4), which gives, for § € O,,,

GT_I(G%-] o for @ #£0,1,—00
(7.5) ke(8) =< —log(—8) fora=0
e® for & = —o0,

where, in solving (7.3) and (7.4), we have ignored the arbitrary constants in
the solutions.

The canonical parameter domain O, is the largest interval for which k4 is
finite, whence

¥/ {4 foro=20ra=—-o0
[0,00) forl<ao<2ora>2
7.6 Oq =
(1.6) “ (—00,0) for —co<a<0
(—00,0] for0<e<l.
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If an exponential dispersion model corresponding to (7.5) exists, the moment
generating function of the corresponding convolution family is, for s € ©4 — 8,

exp[2_p afl Y*{(1+s/6)* -1} fora#0,1,—c0
(7.7) My(5:8, )= (1+s/8)"> fora=0
exp{Aef(e’ — 1)} for @ = —o0,

where § # 0. Among the potential cumulant generators (7.5), we recognize for
p =10, 1, 2 and 3 the cumulant generators corresponding to respectively the
normal (o = 2), Poisson (@ = —o0), gamma (a = 0) and inverse Gaussian
(e = 1/2) distributions, and the corresponding moment generating functions
are given by (7.7). In the next two sections we show that for « < 0 (1 < p < 2),
(7.7) is the moment generating function of a compound Poisson distribution,
which is continuous with support IR.., except for an atom at zero. For 0 <
a<1l(2<p<oo)andl<a<2(p<0), weshow that (7.7) is generated
by an extreme stable distribution, which is continuous and has support Ry,
(0<a<l)or R, (1< ac<2). In Section 2.7.2 we show that the remaining
cases, a > 2, corresponding to 0 < p < 1, do not correspond to exponential
dispersion models. Table 2.4 summarizes all exponential dispersion models
with power variance functions.

Before we proceed to the special cases, we derive convolution and
scale transformation properties using the moment generating function. Let
EDZ(8,)) denote the distribution with moment generating function (7.7), if it
exists. Then for Z ~ ED%(8,)) and ¢ > 0 we have

(7.8) eZ ~ ED,(8/c, c%), a# —co,l.

As we saw for the gamma and inverse Gaussian distributions, a result like (7. 8)
implies that the model may be viewed as both a convolutmn family and as an
exponential dispersion model. The exponential dispersion model given by the
moment generating function

Mo(s;8,X) = M2(s/X;6,))

will be denoted EDq(y,0?), where, as usual, g = 'ro,(ﬂ) and o? = 1/)\ For
Y ~ ED.(p,0?), the equivalent of (7.8) is

(7.9) Y ~ EDy(cp,0”c*P), a#1,

where ¢ > 0. The results (7.8) and (7.9) easily follow from the form of
My(s; 6, M) and M,(s; 8, X), respectively. Since (7.9) holds for any ¢ > 0, any
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positive value for the dispersion parameter o?c2~? is possible in (7.9) if p # 2.
Hence, the domain of variation for A = 1/0? is A = R, and the distributions
are infinitely divisible. For p = 2, the gamma. distribution, this argument is not
valid, but we already know that the gamma distribution is infinitely divisible.

Table 2.4: Ezponential dispersion models with power variance functions

Distribution p oY Support &

Generated by extreme

stable distributions p<0 l<a<?2 R R, [0, 00)
Normal distribution p=0 =2 R n R

Not exponential

dispersion models O0<p<l a>2 - Ry [0, 00)
Poisson distribution p=1 o =—00 Ny Ry R
Compound Poisson

distributions l<p<2 a<l IR_: ) Ry R_
Gamma distribution p=2 a=10 Ry Ry R_
Generated by positive.

stable distributions 2<p<3 O<a<i R, Ry (—00,0]
Inverse Gaussian

distribution p=3 a=1 R, ny (—00,0]
Generated by positive

stable distributions p>3 % <a<l Ry Ry (—00,0]

1) Continuous for y > 0, with an atom at y = 0.

The distributions ED?(8,)) and ED,(u, %) obviously satisfy the convo-
lution formulas (3.1) and (3.2}, respectively. Let us recapitulate (3.1), which
we need in the following, writing it in the form

(7.10) ED(8, M) %+ % ED5(6,A) = EDL(0, A1 + -+ + ).

2.7.2 Exponential Dispersion Models Generated by Extreme Stable
Distributions.

We shall now investigate the case @ > 0, @ # 1, and show that for 0 <
a <land1l < a < 2, (7.7) is generated by extreme stable distributions,
and that for a > 2, (7.7) is not 2 moment generating function. The reader
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may wonder at this point whether there exists an exponential dispersion model
for @« = 1, in some sense. Actually there exist extreme stable distributions
with stability index @ = 1, and in Section 2.8 we consider this case and show
that it corresponds to exponential dispersion models with exponential variance
functions.

Note first that by (7.6) we have 0 € O, for & > 0,a # 1. Hence, if (7.7)
is a moment generating function, then iu particular the distribution satisfies

(7.10) with# =0. For § =0 and A} =--- = A, = A in (7.10) we obtain
ED(0,)) -+ ED%(0,)) = ED}(0,n}),

and by (7.8) the distribution ED%(0, n)) is the same as n'/* ED%(0, A). Hence,
ED((0, 1) is a stable distribution with stability index o. However, from the
theory of stable distributions it is known that e must belong to the interval
0 < a £ 2. Hence, for @ > 2 (0 < p < 1) there exist no exponential dispersion
models with variance function p?. We state the result in the form of a theorem,
indicating a proof that is relevant in our context.

Theorem 2.7.1. There exist no exponential dispersmn models with variance
function V(u) = p? for 0 < p < 1.

Proof (sketch): Let a > 2 be given, and assume that M?(s;0,)) is the
moment generating function of a distribution, which we denote EDZ%(8,A).
The variance of this distribution is

AR(0) = M6/ (a — 1)}

which is zero for #§ = 0, where 0 € ©,, as we saw in Section 2.7.1. Hence
ED3(0,) is a degenerate distribution with moment generating function e*°
for some ¢ € IR. However, (7.7) is not the moment generating function of
a. degenerate distribution. Hence we have reached a contradiction, and we
conclude that M7(s; 6, A) is not a moment generating function for o > 2. I

Turning now to the remaining cases 0 < @ < 1 and 1 < a £ 2, it may
be shown that M}(s;0,A) is the moment generating function of the extreme
stable distribution with stability index «, as predicted by our previous analysis.
This implies that M}(s; 6, A) is a moment generating function for any 6 € O,
and hence we have justified the existence of exponential dispersion models with
variance function V{u) =p? for p>2(0<a<1)and p<0 (1l <a < 2).

There is apparently no closed-form expression for the probability density
functions of the stable distributions, but series expansions of the densities exist.
We distinguish between the cases 0 < @ < 1and 1 < @ < 2 {& = 2 is the normal
distribution, which we have already considered).
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0<axl

In this case the stable distributions are positive, and we shall refer to the
distributions as positive stable, rather than extreme stable distributions. The
continuous exponential dispersion model ED,(u, ¢?) has probability density
function

(7.11) Py 6, ) = a4 (), Jy)A exp[M8y — xal6)}]
for y > 0, where
% _ 1 °°I‘(1+ak) Lk —1 s
(7.12) an(Ay) = o ’; o Ak (—y ™ )sin(~kra), y >0,
is the probability density function of the positive stable distribution with mo-

ment generating function M}(s;0, A).

l<a<?
In this case the distributions have support IR. The exponential dispersion
model ED,(y,0?) has probability density function (7.11) with

, _ 1 AT+ k/a),  —y S
(118) O = 250 = ey} (), ve R

being the probability density function of the extreme stable distribution with
moment generating function Mj(s; 0, A). The results (7.12) and (7.13)} may be
proved by Fourier inversion, cf Feller (1971, p. 581).

2.7.3 Compound Poisson Distributions.

We shall now investigate the case @ < 0, corresponding to 1 < p < 2, and
show that it corresponds to a class of compound Poisson distributions.

Let N,X;,Xs,... be a sequence of independent random variables, such
that NV is Poisson distributed Po{m) and the X;s are identically distributed.
Define

(7.14) Z=3% X;

where Z is defined as 0 for N = 0. The distribution (7.14) is called a compound
Poisson distribution. Now assume that

X;~ ED*(8,)), i=12,...,
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for a given convolution family ED*(4, A). The moment generating function of
Z is

E(e*?) = E{E(e*?|N)}
= E{M*(s;8, )V}
(7.15) = exp[m{M*(s;0,)) — 1}],

where M*(s; 60, A) is the moment generating function of ED*(#, ). Note that,
by (3.1), we have

(7.16) Z|N = n ~ ED*(8,n}),

forn > 1.
By (7.7), the moment generating function MX(s; 8, A) is, for & < 0,

(7.17) M(s36,) = explm{(1 + 5/6)° — 1]],
where
© A g .,
m=s G
Taking

M*(s;8,)) = (1+s/8), s< 8,

which by (7.7) is the moment generating function of the gamma distribu-
tion Ga*(f, ~ca), in the notation of section 2.4.2, we find that (7.17) has the
compound Poisson form (7.15). Hence we have shown that for o < 0, the
distribution ED}(8,A) is a compound Poisson distribution (7.14), given by
Xi ~ Ga*(6,) with A = —a.

By (7.16) we have, for n > 1

(7.18) Z | N =n~ Ga*(8,—-na),
and
(7.19) P(Z=0)= exp{—éi—p(ﬁ)a}.

Hence, the distribution ED},(8,}) has a positive probability, given by (7.19),
for the outcome Z = 0, whereas (7.18) shows that conditionally on the event

48



{Z > 0} the distribution is continuous. The continuous part of the probability
density function is, using (7.18)

ph(z;0,)) = Zp 28, —ka) = e
k=1

6
Z = 1"( ka)k' exp{ﬂz —m}

k k -1
(7.20) = Z /\1_‘( — )k') exp{fz — Ake(8)},

where p*(2;6, A) denotes the probability density function of the gamma, distri-
bution Ga*(8, X), and &, is defined in (7.5). Defining

(1.21) Pe(0;0,) = exp{-Ara()},

the probability (7.19), we thus have a probability (density) function of the
required form (2.4) for a convolution family, and it follows that the distribution
ED (6, A) satisfies all the requirements for a convolution family, and the general
theory applies also in this case.

The convolution family (7.20), (7.21) may be transformed to an exponen-
tial dispersion model EDy(u, o), defined as the distribution of ¥ = Z/) where
Z ~ ED%(8,}). The corresponding probability density function is given by

(7.22) Pa(; 8, A) = aa(A, y) exp[MOy — ka(B)}], y >0,
where
,\k'ck —(X -1
i P p((_;fa)yﬂ! L for y>0

aa(/\a y) =
1 for y = 0.

The reader will have noticed a certain similarity between the compound
Poisson density function (7.20) and the probability density function (7.11),
(7.12) for the exponential dispersion model generated by positive stable distri-
butions. In fact, by the reflection formula I'(¢)T'(1 — u) = 7/ sin(7u), we find
that (7.12) may be written in the form

‘() )\k A 1

which is analogous to (7.20) with ¢ = 0.
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The compound Poisson model (7.22) is a useful statistical model, because
there are many practical examples of the kind of data it requires: positive
and continuous, but with positive probability of a zero outcome. Theoretically,
the distribution arises for data generated by an underlying compound Poisson
process, corresponding to (7.14). Two examples will suffice to illustrate the
idea. In insurance, we may think of Z, the yearly claim for an individual
insurance holder, as given by (7.14), where N is the number of claims for
the year and the X;s are the individual claims. In meteorology, the daily
rainfall at a given site takes the form (7.14), where N is the number of rainfall
periods during the day, and X; is the amount of rainfall for the 7th period. In
cases like these, the form of (7.14) suggests that a compound Poisson model
may provide an adequate model for the variable Z. If Z itself is observed,
the convolution family form of the model (7.20) is appropriate, whereas if the
average amount per unit of time is observed, the exponential dispersion model
(7.22) is appropriate.

§2.8 Exponential Variance Functions

2.8.1 The Extreme Stable Distribution With Index 1.

In Section 2.7.2 we showed that extreme stable distributions with stability
index 0 < @ < 1orl < a < 2 generate exponential dispersion models with
power variance functions. We now examine the case @ = 1 and show that the
corresponding extreme stable distribution generates an exponential dispersion
model with variance function

(8.1) Vp)=e"*, pelR

In Section 2.8.2 we characterize this class of exponential dispersion medels via
its translation properties.
Let us consider the most general exponential variance function,

(8.2) V(p) =exp(a+bu), p€R.

Introducing the dispersion parameter 0% we obtain o2V (y) = (o%e®)e’”, and
hence we may take a = 0 without loss of generality. From (8.2) we find that
—log(a?)/b is a location parameter for b # 0, in the sense that the exponential
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dispersion model corresponding to (8.2), if it exists, is closed with respect
to translations, and the translation y — y + ¢ changes ¢* into ¢?e~%. In
particular, up to a scale transformation, (8.1) is the only exponential variance
function. The reason for the negative sign in (8.1) is to simplify some formulas
in the following.

Following the steps of the proof of Theorem 2.1.1, we find that if an ex-
ponential dispersion model corresponding to (8.1) exists, it has mean value
mapping

7(8) = log(6), 6€©

and cumulant generator
(8.3) x(8) = 0{log(d) — 1}, d€ 0O,
where © = [0, 00). Note that « is defined for & = 0 by continuity. If (8.3) cor-

responds to a convolution family ED*(8, \), the corresponding moment gener-
ating function is

(8:4) M*(s;8,)) = exp[A{(6+5){log(+5)—1} —6{log(8)—1}}], s€ O©—8.
As for power variance functions, the connection with stable distribution

is established via the scale transformation property of the moment generating
function. For Z ~ ED*(6, }), we find from (8.4) for ¢ > 0

(8.5) cZ ~ED*(8/c,c)) + Xelog c.
Applying (3.1) to ED*(8, ), taking # = 0 and A; = --- = \,, we find from
(8.5)

(8.6) ED*(0,A)*---x ED*(0,A) = ED*(0,n)) = nED*(0,)) — Anlogn.

Since the right-hand side of (8.6) is a linear transformation of ED*(0), A), we find
that this distribution, if it exists, is stable, with moment generating function

M*(s;0,)) = exp[A{s{log(s) —1}}], s€®O.

One may show that this stable distribution exists, is continuous, and has sup-
port JR. More precisely, it is known as the extreme stable distribution with
stability index @ = 1. By an argument similar to the argument used for the
pover variance function models in Section 2.7.1, we find that (8.5) implies that
the distribution is infinitely divisible.
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Hence, we have shown that the variance function (8.1) corresponds to a
continuous exponential dispersion model ED(u,0?) with support JR. The cor-
responding moment generating function is M(s; 8, A} = M*(s/X; 8, A), where
M*(s;8, ) is defined by (8.4). We claimed above that this exponential disper-
sion model is closed with respect to translation. In fact, if ¥ ~ ED{u,0?) and
¢ € IR, then

(8.7) c+Y ~ ED(c+ p,0%").

This result may be obtained directly from the moment generating function,
and as we saw above, the form of the result (8.7) follows directly from the form
of the variance function. To be specific, with ¢ and ¥ as above, we have

Var(Y) = a%e™*,
and if we assume ¢+ Y ~ ED(c+ y1,5), then

Var(Y)=Var(c+ Y) =7%e e "

2 [

Comparing the two expressions for Var(Y) we obtain 2 = ¢2e°, which con-

firms (8.7).
Taking ¢ = —p in (8.7) gives

(8.8) Y = u+ ED(0,0%e™#),

which displays the distribution ED(y,0?) in its location parameter form. As
we saw for the normal distribution, when p is a location parameter, we may
obtain a more general convolution result than the standard convolution result
(3.2) for exponential dispersion models. Thus, if ¥7,...,Y, are independent
and

1/;' ~ .ED(,U., az/wi)‘)
then by (3.2) and (8.8) we have

TS 7
(8.9) M ~ ED(ﬁ,aze—
w. w.
where
7= Y wiet py
w.
and

w. = E w;et
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and where all summations are from i = 1 to n.

As predicted, we have hence obtained a more general convolution formula
in this special case than the usual convolution formula (3.2). However, formula
(8.9) uses the weights w;e™*, giving a complicated, although curious, formula.
In any case, formula (8.9) confirms the uniqueness of the result (3.3) for the
normal distribution.

2.8.2 Exponential Dispersion Models Closed Under Translation.

We have now seen that the exponential dispersion model corresponding
to the variance function (8.1) is closed under translation, a property shared
by the normal distribution. The following argument shows that, under cer-
tain conditions, these are the only exponential dispersion models closed under
translation.

Assume that we have a continuous exponential dispersion model, denoted
ED(p,0?), with support IR = €, closed under translation. If ¥ ~ ED(y, o?)
and ¢ € IR we assume that there exists a function f(e,0?) such that

(8.10) Y +ec~ ED(p+c, fe,0?)).
Note that the expectation parameter of (8.10) must be p+c = E(Y -+ ¢). Since
Y ~ ED(p,0?) we have
Var(Y) = a®V(u),
where V{y) is the variance function of ED(, 02}, and by (8.10) we have
Var(Y) = f(c,0®)V{(u +¢).

Taking ¢ = 1, and writing g(c) = f(c, 1), the two expressions for the variance
of Y gives

(8.11) V() = o(e)V (p -+ ).

Since V is differentiable and positive, g is also differentiable, and ¢(0) = 1.
Differentiating (8.11) with respect to ¢ we hence find

(8.12) V(i) = —g'(0)V(w).
The solution to (8.12) is

V(p) = kexp{-¢'(0)n}, neR,

53



where % is a constant. This gives us the exponential variance function, which
we investigated in Section 2.8.1. In particular, ¢'(0) = 0 gives the normal
distribution.

We have hence found all exponential dispersion models that satisfy the
translation formula (8.10) that is, models which are closed with respect to
translation. We have not, however solved the more general problem where f is
allowed to depend also on u.

§2.9 Notes

The idea of an exponential dispersion model goes back to Tweedie (1947),
who noticed many of the important properties and special cases of exponential
dispersion models. However, Tweedie’s paper remained virtually unnoticed for
a long time, and in particular, Nelder and Wedderburn (1972) seem to have
been unaware of Tweedie’s paper. A third independent line of development
of exponential dispersion models has taken place in the form of the study of
certain exponential families of stochastic processes, see for example Kiichler
(1982) and references therein. A systematic study of the statistical proper-
ties of exponential dispersion models was initiated by Jorgensen (1986, 1987a),
who introduced the term exponential dispersion model. The classification of
quadratic variance functions is due to Morris (1982). Power variance functions
were first studied systematically in the context of exponential dispersion mod-
els by Tweedie (1984). However, a number of authors have studied this idea
independently of Tweedie, see for example Morris (1981), Hougaard (1986)
and Bar-Lev and Enis (1986). Exponential variance functions were mentioned
by McCullagh (1983), and the connection with extreme stable distributions
mentioned in the discussion of Jgrgensen (1987a).

Exercises

Exercise 2.1: Find the natural exponential family generated by the uniform
distribution on (0,1).

Exercise 2.2: Show that the Poisson distribution is a natural exponential
family, find the cumulants of the distribution, and find the variance function.

Exercise 2.3: Show that the support of a natural exponential family is inde-
pendent of the canonical parameter 6.
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Exercise 2.4: Show that the logarithmic distribution, given by

p*(zip) = p*[{—2log(1 - p)}, z=1,2,...,

is a natural exponential family, and find its mean and variance. Answer: let
bp) = —log(1— p). Then B(z) = p/{b(p)(1 — p)} and Var(z) = p{l —
p/b(p)}/ {b(p)(1 ~ p}*}.

Exercise 2.5: Make a plot of the variance function for the logarithmic distri-
bution in Exercise 2.4. Hint: Plot the points («'(8), s"(8)) for a suitable set of
f-values. ‘

Exercise 2.6: Let Z be a discrete random variable, and define the probability
generating function of Z by

q(v) = E(u?).

Find the relation between the probability generating function and the morment
generating function of Z. Find the probability generating function for a discrete
exponential dispersion model.

Exercise 2.7: Show that the exponential distribution is a natural exponential
family, find the cumulants of the distribution and find the variance function.
Exercise 2.8: Let the probability density function a be defined by a(z) =
exp{—|z|}/2. Find the natural exponential family generated by a. Find the
curnulants of this family, and its variance function.

Exercise 2.9: Show that the ith cumulant ; of a natural exponential family
satisfies the relation

Ori .
Kit1 = V() a‘:’a t=1,2,...,

where ¢ denotes the mean value parameter.

Exercise 2.10: Assume that X follows a natural exponential family. Show
that the distribution of ¥ = « 4 8X,8 # 0, follows a natural exponential
family, and find the cumulant generator and the variance function.

Exercise 2,11: Let 77 < 22 < -+ < x4 be given numbers in IR, and define
the discrete uniform distribution on {2y,...,zx} by a(z;) =1/k, i=1,...,k.
Find the natural exponential family generated by a(z)}, in particular the cumu-
lant generator. Show that the canonical parameter domain is © = IR and that
the mean domain is @ = (23, T).

Exercise 2.12: Let the probability function a(z) be defined by

o) = {

for z=4£1

for 2=0.

[T

55



Find the natural exponential family generated by a{z), and show that its vari-
ance function is v(p) = (1 - p2)/2, |p| < 1.

Exercise 2.13: Let X follow a beta distribution with parameters §; and 6,.
Show that for 63 known, ¥ = log X follows a natural exponential family.

Exercise 2.14: The Hermite distribution is a discrete distribution defined by
the probability generating function

¢(u) = exp{ar(u — 1) + a2 (u® — 1)},

where a;,az > 0. Show that this distribution is a discrete exponential disper-
sion model, find its variance function, and show that it is infinitely divisible.
Hint: Find the discrete exponential dispersion model generated by the distri-
bution given by a; = a, = 1.

Exercise 2.15: Assume that Z = 2 + .- + Z,,, where Z1,..., Z, are inde-
pendent and identically distributed. Prove that if P(|Z| < ¢) = 1 for some
constant ¢, then Var(Z) < ¢*/n. Use this result to show that a convolution
family with bounded support can not be infinitely divisible.

Exercise 2.16: Find the skewness and kurtosis of respectively a discrete ex-
ponential dispersion model and a continuous exponential dispersion model.

Exercise 2.17: Let ¥ follow a continuous exponential dispersion model. Show
that U = a -+ BY, 8 # 0, follows a continuous exponential dispersion model,
and find the cumulant generator of this model.

Exercise 2.18: Let Z follow a convolution family ED*(#, A). Show that V =
aA+ fZ follows a convolution family, and find the cumulant generator of this
model.

Exercise 2.19: Make a statistical analysis of the energy expenditure data,
using the model ¥; ~ N(&;, 02 /wy), B; = f1Ti + PaFin.

Exercise 2.20: Show that the normal distribution is a convolution family, and
relate the convolution formula (3.1) for this case to the standard convolution
result for the normal distribution.

Exercise 2.21: Define, for z > 0,

F(z) = ®{(A/2)'*(z(-2¢)'/* - 1)}
+ exp{2M(= 201} 8 {~(/2)'* (a(~2)"/* + 1)},
where @ is the standard normal distribution function. Show that F' is a dis-
tribution function for every (,}) in (~o0,0] x (0,c), and show that the

corresponding distribution is T G*(#, A). Hint: Show that F'(z) corresponds to
the inverse Gaussian density function.
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Exercise 2.22: Show that if Z ~ IG*(0, \), then A/Z ~ x2(1).

Exercise 2.23: Let Y ~ Ga(p,0?). Show, by direct calculation, that the
density function of the variable W = (¥ — u)/o converges to the normal density
N{(0, ) for 0% — 0. Hint: Use Stirling’s formula T(A) = (2m)1/2AA1/20—2

Exercise 2.24: Let Y ~ IG(y,0%). Show, by direct calculation, that the

density function of the variable W = (¥ — i1)/o converges to the density of the
normal distribution N(0, 3} for o2 — 0.

Exercise 2.25: Let X;,X,... be a sequence of independent and identically
distributed random variables. If there exists constants ay, and b,, such that for
every n > ( the two variables

X1+ Xy and g, X7 + by b

have identical distributions, then the distribution of X, is called stable. Show
that the normal distribution is stable. Show that the distribution IG*(0, A) is
stable. One may show that a, = n!/* for some a € (0, 2]. The value of « is
called the (stability) index of the stable distribution. Show that the stability
index of the distribution IG*(0, A) is 3.

Exercise 2.26: Give an interpretation of the convolution formula (3.1) for the
binomial and the negative binomial (with A an integer) distributions in terms
of a sequence of Bernoulli experiments.

Exercise 2.27: Assume that Y ~ Po(u), and let Z = ¢¥. Show that Z
follows a natural exponential family, and show that the variance function of 2
isV(g)=cu, p>0.

Exercise 2.28: Consider the Hermite distribution in Exercise 2.14. Show that
this distribution converges to the Poisson distribution for a; — 0.

Exercise 2.29: Consider the random variable S, defined by
Sn=X14 -+ Xn—n,

where Xy, X,,... are independernt and identically distributed according to the
logarithmic distribution in Exercise 2.4. Give conditions under which S, con-
verges to the Poisson distribution for n — co. Hint: Show that S, follows a
discrete exponential dispersion mode! with dispersion parameter n.

Exercise 2.30: Let V be the variance function of a discrete exponential dis-
persion model. Show that AV (m/A) — m for A — oco. Hint: use the proof of
Theorem 2.5.2.

Exercise 2.31: Find the exponential dispersion model corresponding to the
variance function V{(u) = %, p<0.
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Exercise 2.32: Find the exponential dispersion model corresponding to the
variance function V{p) = X + fp.

Exercise 2.33: Carry out in detail the transformation z = log{u/(1 —u)}/x
leading from (6.9) to (6.10).

Exercise 2.34: Consider the distribution in Exercise 2.12 with variance func-
tion V(m) = (1 —m?)/2. Determine to which category (i) to (vi) for quadratic
variance functions this function belongs, and explain the relation with the cor-
responding standard distribution.

Exercise 2.35: Find the skewness and kurtosis for the generalized hyperbolic
secant distribution.

Exercise 2.36: Find the exponential dispersion model corresponding to the
variance function V(u) = (4 — a)®, > @, where @ € R is a given constant.
Exercise 2.37: Let ¥ ~ ED(y, o?), for a given exponential dispersion model,
and assume that £ = IRy. Show that if there exists a function f such that for
any ¢ > 0,

¢t ~ ED(et, f(c,07),

then the model has a power variance function.

Exercise 2.38: Explain the meaning of the scale transformation property (7.9)
in the case of the Poisson distribution.

Exercise 2.39: Let x(8) = dlog 8, 6 > 0. Find the corresponding variance
function, and find the corresponding exponential dispersion model.

Exercise 2.40: Let X be a random variable with moment generating function
M(s). Show that M(s) > 1+ sE(X) for s € R.
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Chapter 3

ESTIMATION AND ANALYSIS OF DEVIANCE

Analysis of deviance is a method for making inferences in generalized linear
models and other regression models, analogous to analysis of variance for linear
normal models. The main body of the theory concerns dispersion models and
continuous exponential dispersion models (Section 3.1-3.7). In Section 3.8 we
consider inference for discrete exponential dispersion models.

§3.1 Inference For Regression Models

Consider a regression model with random component defined by

(i) Y1,...,Y, are independent random variables.

(i) Y; ~ DM (y; 02 /w;), i=1,...,n, where w,,.. ., Wy, are known weights
and DM(u,0?) is a given dispersion model, defined by

(1.1) Py p,0%) = a(o7% y)exp{o2t(y, u)}, y € R

In particular, for a continuous exponential dispersion model ¥; ~ ED(u;,
0% [w;), we have '
ty, 1) =y (1) — £(r ™ ().
The domain of variation for the parameters of (1.1) is given by (¢, 072) € QxA,
where {1 is an interval. Unless otherwise stated, we assume A = R;.
We are mainly interested in hypotheses concerning g, whereas o? is ei-
ther known, or is unknown and 'varies freely in A~!. Consider three nested

hypotheses, with parameters g = (B1y.- o, 12)T, B, and 7, respectively, defined
by

Hy:ped® (the saturated hypothesis)
Hyip=p(B), dim() =k
Hy:pp = p(B) and B = B(y), dim(y) = ks,

where ky < k1 < n,
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Example 3.1.1: Energy expenditure data §. In Section 2.3 we proposed the
following model for the energy expenditure data

Yi~ ED(g;,0%fw;) i=1,...,n -
where the ¥;s are independent. Define H; by
Hi: iy = PiZa + fTin, i=1,...,n

which is the main hypothesis for these data. A sub-hypothesis of H; of consid-
erable interest is

Hy:ppy = 0,

which states that the energy expenditure in fat tissue is zero. In the analysis
of these data, we are interested in testing the goodness of fit of H; and a test
for Hy under H;. |}

In the above example there were just two hypotheses of real interest. In
general one may be interested in a sequence of nested hypotheses Q* = Hy D
Hy; 2 Hy D ..., the H;s being subsets of 2", each hypothesis representing a
further restriction on the parameters of the model. In this case we proceed
iteratively in the inference process. First, we check the goodness of fit of Hy,
which is often done by an analysis of residuals. Then we test Hy under Hj.
I H; is accepted we test H; under H, and so on. When a significant result
is obtained we either keep the last accepted model as the simplest model that
explains the data, or we try an alternative sequence of models, possibly leading
to a different final model. At this stage it may often be wise to take a look at
the fit of the final model to see if some important aspect of the goodness of fit
was overlooked in the first check.

In the following we consider the two hypotheses H, and H,, as defined
above, parametrized by respectively # and v, this case being sufficiently general
to explain the theory. The saturated hypothesis Hy, which has the same number
of parameters as the number of observations, serves as a convenient reference,
being the largest possible hypothesis for the given data.
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§3.2 The Deviance

3.2.1 Definition of the Deviance.

To test hypotheses concerning g, we shall mainly rely on the likelihood
ratio test and various modifications of it. The models considered here allow the
likelihood ratio test to be specified very conveniently via the deviance, which
generalizes the sum of squares of residuals from normal theory.

Consider the regression model defined in Section 3.1, and let y =
(¥1,--.,yn)? represent the vector of observations. The log hkehhood function
for the parameters p and o? is

(2.1) L{,0%) = Zlog alo 2w, ;) + a2 Zt(y,—, 1 )w;
i=1

i=1

‘The deviance for the parameter i given the data vector y is defined by
n

(2:2) D(y,p) =2 Z{sgg 8y, 1) — £y, 1) s
i=1 F

Consider estimation under the hypothesis Hy. By (2.1) the maximum likelihood
estimate for 8, for o known, may be obtained by maximizing oty pai(B)yw;
with respect to 3, and does not depend on the value of o2. In particular,
the estimate of # remains the same even if o2 is unknown, and we denote the
estimate by 4. From (2.2) we see that § may be obtained by minimizing the
deviance D(y, u(8)) with respect to 8.

The minirnum value of the deviance under H; is

Dy = D(y, u(8)),

and similarly

Dy = D(y; 1(B(%)))

is the minimum value of the deviance under H,, where % is the maximum
likelihood estimate of -y under Hy. We call Dy and D; the deviances of the
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hypotheses Hqi and H,, respectively. Note that the deviance is always non-
negative, and Dy and Dy satisfy
0 <Dy €Dy,

due to the nesting Hy O Hy 2 H,. In particular, the deviance of Hy is zero.

The deviance is closely related to the various log-likelihood ratio test statis-
tics related to the hypotheses Hy, H; and Hy. In fact D,/(2¢?) is the log-
likelihood ratio statistic for Hy under Hy, and similarly D, /(20?) for Hy under
Hy. The statistic (Dy — Dy)/(20%) is the log-likelihood ratio statistic for H,
under Hj, assuming in all three cases that ¢ is known.

Example 3.2.1: Most of the dispersion models considered in Section 1.3 has
t(y, ) of the form #(y — ), as in Example 1.3.1. If furthermore #(y) has maxi-
mumm for y = 0, we obtain

sup t(y — p) = H{y — y) = #(0),
HEN

which gives the deviance

Dy, p) = 2{w (0) — Zt(yi — jti)wil,

i=1
where w, = ) w;. The von Mises-Fisher distribution has #(y, p) = cos(y — p)
of this form, which gives the deviance

n
D(y,p) = 2{w. — > _w; cos(y: — i)},
=1
generalizing Example 1.5.1. I
Example 3.2.2: For the gamma distribution Ga{y, 0?) we have

(2.3) By — £(8) = Oy + log(—8),
and hence a
-é-é{Gy —&(8)} =y + 1/4.
If follows that the supremum of (2.3) is obtained for § = —1/y, and is
sup{8y — #(8)} = ~1 + log(1/y).
8<0
Hence, the deviance is

D(y,p) =2 Z w; =1+ log(1/y:) — {—yi/ i + log(1/u)}}

=1

=2 wil-yi/pi +log(us/v)}.
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3.2.2 Steepness.

For the general discussion of the deviance we need the concept of steepness,
defined as follows.

Definition 3.2.3: The exponential dispersion model ¥ ~ ED( #,0%) is called
steep if the interior of the convex support of ¥ is equal to the mean domain ©
for all values of A. For a discrete exponential dispersion model 7 ~ ED* (8,7),
the model is called steep if the interior of the convex support of Z /A is equal to
Q for all parameter values. I

Example 3.2.4: The gamma distribution Ga(g, 0?) has support R, which is
a convex set. Hence the interior of the convex support is R, which is equal to
the mean domain {2, and hence the gamma model is steep. 1§

It is equally simple to see that the normal and inverse Gaussian distribu-
tions are steep, see Exercise 3.7.

Steepness plays a role in the determination of the supremum entering in
the deviance. Let us analyze the function

£(8) = By — x(6)
for a given exponential dispersion model with cumulant generator £. We have

€@ =y—r(0), €(0)=-V(p).

Hence £ is strictly concave, because £"(6) < 0, and has a unique maximum. If °
the point ¢ where the maximum is obtained belongs to int ©, then § satisfies
the equation

(24) ¥y= T(é):

and 4 is unique. The solution to (2.4) exists if and only if y € @ = 7( int ©).

For a continuous steep model the boundary of the support has probability
zero, and hence the solution to (2.4) exists with probability one in this case.
In the discrete case, the boundary has positive probability, so in this case (2.4)
may not have a solution in int © even if the model is steep. The discrete case
will be discussed in Section 3.8. oL '

In the continuous steep case, the solution to (2.4) is § = 7—'(y), and hence
the deviance is

Diy,p)=2 Z wilyii — £(6:) — {w:i6; ~ £ (6:)}],
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where §; = 1 (y:) and 8; = 77(y;). As we have mentioned already, the three
most important continuous exponential dispersion models are steep. Later we
shall see that in the discrete case the binomial, negative binomial and Poisson
distributions are also steep. However, it is not difficult to find examples of
non-steep models, as the following example shows.

Example 3.2.5: Consider the exponential dispersion model with variance
function V{u) = p? for p < 0 (Section 2.7.2). From Table 2.4 we have that

the support is IR, whereas § = IR, and hence this model is not steep. Since
k() = ((a — 1)/a)}(8/(a — 1)) we obtain

(2.5) %{ﬂy — f;a(ﬂ)} =y (9/(0[ _ 1))&—1

and the equation y = (6/(e—1))*~! has a solution only if y > 0. If y < 0, (2.5)
is negative for all # > 0, and hence the supremum of 8y — k(8) is obtalned for

the value
i 0 for y<0
(e =1yt fory s 0.

In this case, the deviance hence takes the form

D(y,p) = 22“’: [y,ﬂ - '_""_{9 /(e = 1)}0

a— a—1 gpa-
{y,(a—l)pll( n_a=l o 1)}]_

[0

It follows that the high-order derivatives with respect to y of the deviance
has a discontinuity at y = 0 (the boundary of ), a general feature for non-steep
families. Maximum likelihood estimates also show non-standard behaviour in
this case. Thus, if 41,...,y, are independent and identically distributed ob-
servations from the distribution considered here, then the maximum likelihood

estimate for y is
1 n
ax { 0, - Z y;} .

If pis near 0, the distribution of 2 may be for from normal, dependlng on the
value of o, because of the discontinuity of the distribution of ftat it =0. From
a 11umer1ca1 point of view, the fact that the maximum likelihood estimate may
fall on the boundary of the parameter space may cause problems for iterative
maximum likelihood procedures. I
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Figure 3.1 Plots of the deviance for the nor-
mal distribution

Table 3.1: The deviance for some continuous exponential dispersion models
(n=1endw=1)

Model Deviance

N(p,o?) (y — p)?

Ga(y,0?) 2{y/1 — 1 + log(u/y)}

IG(p,0?) (v — 1) /(12y)

GHS(1,07) 2 [y{tan™!(y) ~ tan~! ()} + log fim(u} |
Stable , & =1 2{ef(p —1—y) + ¥}

Vip) = 2a — Iy V(e — 1)/a + u T (u/a — )}
(1<p,p#2)
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Figure 3.2 Plots of the deviance for the
gamma distribution

"To understand the role of the deviance as a measure of fit, it may be useful
to plot the deviance of a single observation as a function y for a given value
of p. For the normal distribution, these plots are parabolas, whereas for other
distributions the plots may be far from parabolic. Figure 3.1 and 3.2 shows
such plots for the normal and the gamma distribution, respectively. Table 3.1
gives the form of the deviance for a number of continuous models.

§3.3 The Saddlepoint Approximation

3.3.1 The Saddlepoint Approximation for Exponential Dispersion
Models.

The saddlepoint approximation is a numerical approxiﬁation to the prob-
ability density function of an exponential dispersion model. It is quite accurate

66



in many cases, and has a simple statistical interpretation, because its main in-
gredients are the deviance and the variance function. We shall use it repeatedly
in the following.

In the present section we consider a single observation y from the model
ED(p,0?), with deviance

Dy, ) = 2[yf — w(B) — {yr () — w(r ()],

where 6 is the value of § that maximizes y8 — x(6). We assume that ED(u, 0%)
is continuous, with probability density function

p(y; 6,7) = a(A, y)exp[My — (8)}], ye R,
where i = 7(6) and ¢* = 1/ ).

Theorem 3.3.1. For ¢? tending to zero we have

(31)  p(y:8,0) = {2re® V()}V exp{—D(y, 1)/ (26%)}, yeQ

which is called the saddlepoint approzimation. The approximation is defined as

zero outside (1. The convergence in (3.1) is uniform in y on any compact subset
of 2.

A detailed proof of the theorem is outside the scope of the present. text. For
completeness, the main arguments of the proof are sketched in Section 3.3.3.

Example 3.3.2: For the gamma distribution, Ga{y, ¢?) the probahility density
function is

(3.2) p(y;8,)) = 1“()\) v ! exp[M8y +log(—0)}], y > 0.

Using Example 3.2.2 we find the saddlepoint approximation

p(y; 6, %) > (27a”y?)" /2 exp{—D(y, )/ (20%)}
= A2y 2y exp[ M1 + Tog(1/4))
+ AMyd+ log(—-ﬂ)}]
(3.3) = AM2M2m) 71221 exp[A{By + log(—6)}].

Comparing with (3.2) we find that the saddlepoint approximation amounts to
Stirling’s approximation

(3.4) T(X) o (2m)1 /2221122
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applied to the gamma function in (3.2). This approximation is quite accurate,
even for moderately small values of A. For example, the relative error of (3.4)is
about 1% for A = 8. In the present example the relative error of the saddlepoint
approximation is independent of y, and depends on A and g trough A only. I

As shown in Exercise 3.9 and 3.10, the saddlepoint approximation is exact
(ie. is equal to the probability density function) for the normal and the in-
verse Gaussian distributions. In particular, we may write the inverse Gaussian
distribution in the form

p(y;6,X) = (2n0”y® )2 exp{—(y — u)?/(20%0%y)}, y >0,

where (y — p)?/(yp?) is the deviance of the distribution. The saddlepoint ap-
proximation is exact after renormalization for the gamma distribution, in the
sense that if we divide (3.3) by its integral with respect to y, we obtain the ex-
act density (3.2). It may be shown (Daniels, 1980) that the normal, the inverse
Gaussian and the gamma distributions are the only cases where the renormal-
ized saddlepoint approximation is exact. Renormalization generally improves
the accuracy of the saddlepoint approximation.

The saddlepoint approximation may be viewed as a refinement of the nor-
mal approximation given in Section 2.3. In particular, the deviance is approx-
imately a quadratic form in y for o2 small. Thus, a quadratic expansion of
D(y, 1) as a function of y around g vields, for y € Q,

(3.5) D(y,p) ~(y — p)?/V(y) for o*— 0.
This follows, because for y € Q we have § = r=1(y), and hence
8D

oy = 2T W /Y - y/V ) - (W)
=2{r"(y) — 17 ()}

and
2

o“D
i 2/V(y).

Since y converges to p in probability as ¢? tends to zero, we replace V(y) by
V{(p) in (3.1), and using (3.5), we obtain

P(y; 0,7) = (2xa®V (1))~ exp[~(y — 1)? /{202 V (1)},

which is the probability density function of the normal distribution N (i, o?
V().
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Note that for a steep model, the domain of y is £, and that in this case,
the saddlepoint approximation (3.1) is defined throughout the domain of y. In
the non-steep case, however, the situation is somewhat less satisfactory, because
the saddlepoint approximation (3.1) is not defined on the set R — Q, which has
positive probability in this case. However, for 0% small, the distribution of y
becomes concentrated near y, and hence the probability that y ¢ Q becomes
negligible for ¢? small,

3.3.2 The Saddlepoint Approximation for Dispersion Models.

The saddlepoint approximation may be generalized to arbitrary dispersion
models under certain conditions. The next theorem presents the simplest and
most useful case for which the saddlepoint approximation my be derived.

Theorem 3.3.3. Consider a dispersion model for the random variable Y, of
the form

(3.6) ply;p,0) = (o™ ) exp{tly — pr)/0®}, a<y<b,
where t satisfies the conditions

(i) t(y) has global maximum at y = 0, and there exists a bounded neighbour-
hood w of 0 such that t has no other stationary points in w, and

supt(y) < #(0).
véw

(ii) t(y) is twice differentiable at y = 0.

Let V = —¢t"(0)~1. Then
(3.7) Y —wje S N(0,V) for o®-0
and, for o> w0 anda <y < b,

(3.8) oly; s 0.2) ~ (Z'J'chrz‘/')“I/2 exp{—D(y, ,u)/(Zaz)‘},

where D(y, u) = 2{t(0) —t(y — )} is the deviance. We call (3.8) the saddlepoint
approzimation to (3.6).

We sketch the proof of this theorem in Section 3.3.3.
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Example 3.3.4: Consider the von Mises-Fisher distribution with proba.blhty
density function

p(y;p,0%) = a(07?%) exp{eos(y — p)/o*}, 0<y<2m.

The condition of Theorem 3.3.3 are clearly satisfied in this case, and hence we
have the saddlepoint approximation

(3.9) p(y; 1, 0%) = (2m )™ expl{cos(y — ) — 1}/o?).

Hence, this amounts to the approximation
(3.10) a(o™?) ~ (2x0?) "2 exp(—1/0?).

Let us write

a(X) = {2rL(\)} ',
where Ij is the modified Bessel function of the first kind and order 0. In terms
of Iy, the approximation (3.9) amounts to the result

Lo(A) = (2m2)71/26A

which is known from the theory of Bessel functions, see e.g.. Abramowitz and
Stegun (1972, p. 377). 1

As for exponential dispersion models, the saddlepoint approximation may
be viewed as a refinement of the normal approximation (3.7). Thus, expanding
#(-) around 0 we obtain

(3.11) D(y,p) = (y — u)*/V.
Inserting this in (3.8) we obtain the normal approximation (3.7). Note here
that V' plays the role of the variance function in the corresponding formula

(3.5) for exponential dispersion models. We shall explore this analogy further
in the following,.

3.3.3 Derivation of The Saddlepoint Approximation.

We shall now sketch a proof of the saddlepoint approximation under various
conditions. We begin with Theorem 3.3.1.
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Proof of Theorem 3.3.1 (sketch)
(i) The continuous case

Assume that ¢(#) is the characteristic function of a random variable Y.
If ¢(t) is absolutely integrable then, by the Fourier inversion Theorem, the
probability density function of ¥ is

p(y) = (2n)! /_00 H(t)e ¥ e,

where ¢ is the complex imaginary unit. For Y ~ ED(g, o?), the characteristic
function is

M(it; 0, X) = exp[A{«(8 + it/X) — ()],
and hence the probability density function of ¥ is, for # € int ©,

p538,0) = @0 [ explA(s(0-+ it/3) — n(0))  ity)a

(3.12) = % /;oo exp[A{x(8 + is) — x(6) — isy}]ds,

where we have made the substitution s = #/A. Since the integrand is analytic,
we may move the path of integration from (—oo0,00) to i(§ — §) + (—o0,00),
provided § € int ©. This gives

p(y;0,A) = él\; /: exp[M (8 +is) — x(8) — (8 is)y + Oy})ds
(3.13) = 2—1:1_- exp[A{fy — =(8)}] /_w exp[AMk(f +is) — (é-l— is)y}|ds.

We now choose y € Q andlet § = 7 ~1(y) € int®. By a Taylor expansion around
f of the exponent in the integrand of (3.13), we obtain

k(8 +is) — (B4 is)y ~ n(B) — By + %(is)%"(é‘)
= x(8) — Gy — lSQV(y).

Introducmg this approximation in (3. 13), and using the deﬁn1t1on of the de-
viance, we obtain

P(y;0,A) ~ %exp{—w(y,u)ﬂ} ]_OO exp{—AV(y)s®/2}ds

= [\ {20V (y)})'/* exp{-AD(y, #)/2}
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for y € Q, which is the saddlepoint approximation (3.1).

(ii) The discrete case.
In the discrete case the inversion formula takes the form

1" it
—_ H Zdt
P =5 [ s,

-—T

where p(z) is the probability function of the distribution with characteristic
function ¢(¢). For a discrete exponential dispersion model we hence have

L1

p(z;8,2) = %/ exp[A{ k(8 + it) — x(6)} — itz]dt.
By the analyticity and periodicity of the integrand, proceeding by analogy with
the continuous case, we may change the path of integration to (—m, 7)+i(8—8).
Hence, for z/A = 7(f) € 2, we obtain

1
p(z;G,)\)=g/

-

™

exp[AK(6 + it) — £(8)) — (8 + it)z + 02]dt

T

~ % exp{-AD(z/A\ w)/2} | exp{-AV(s/\)/2)

~ o exp{~AD(z/ A k)/2] /_ " exp{oAV(z/ )i /2} dt
(3.14) = {272V (2/2)} 2 exp{—AD(z /A, 1)/ 2}

for ¢? tending to zero. This is the saddlepoint approximation in the discrete
case. The approximation is uniform in ¥ = 2/ on any compact subset of .

Proof of Theorem 3.3.3 (sketch)
Introducing the deviance in the density (3.6), and using (3.11), we obtain

P(y; 16%) = a(o™?) exp{t(0)/o® — D(y, 1)/ (20%)}
(3.15) ~ a(0 %) exp{H(0)o” — (y — p)?/(2Vo?)}.

Integrating with respect to y, we obtain
|3
™) exp{t(@)/o*}] ™ ¢ [ expl—(y — wP/2Vo )y
= [ em{~(v - w?/(2Vo)dy

—00

= (21:‘02V)1/2.
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Inserting this in (3.15) gives the saddlepoint approximation (3.8). As we have
already shown, (3.8) implies (3.7). This concludes the proof. &

Note that in the proof of Theorem 3.3.1, the terminology ”saddlepoint
approximation” comes from the fact that the exponent of the integrand of (3.12)
has a saddlepoint at §, whereas the technique used in the proof of (3.8) is called
Laplace’s method, see Bleistein and Handelsman (1975). However, to simplify
the terminology, we use the term "saddlepoint approximation” for either of the
results (3.1), (3.8) or (3.14).

§3.4 'The Fisher Information Matrix

3.4.1 The Information Matrix for Dispersion Models.

As indicated earlier, the deviance plays a key role in the inference for
dispersion models, and in the previous sections we have worked out the basic
properties of the deviance. A second key ingredient in the inference is the Fisher
information matrix, whose structure reflects the structures of the inference pro-
cess, in particular the fact that the parameters u and o? are orthogonal.

Let us return to the model defined in Section 3.1, with log-likelihood

L(p“! 2)_Zloga(w!/0 !yl)+a Zzwt yuﬂi

i=1

In the following we assume that the model is regular, that is, satisfies the usual
regularity conditions of large-sample theory. In particular, the log likelihood
is assumed to be differentiable, and the operations of differentiation and inte-
gration, for derivatives of the log:likelihood, may be interchanged, see Exercise
3.23 and 3.24.

By the definition of the deviance, the log likelihood may be written on the
form

L(,u, 02) = C(Y7az) - D(y,p)/(Zo‘z),

where
n

o(y,0?) =Y {loga(wi/o?,y;) + sup t(y:, wwi /o).
i=1 ¢
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Hence, the components of the score vector for the parameter (y, o2} are

O D) e Ve for
(41) 8,u'; u(y,,p,)w,/a )

where u(y;, pt;) = t'(y;, p1:), and

%)‘ = uny1(y, #,5°)
(4.2) = (y,0%) + D(y, 1)/ (2¢*),

where primes denote derivatives of ¢ and ¢ with respect to y; and o2, respec-
tively.

Since the model is assumed to be regular, the expectations of (4.1) and
(4.2) are zero, and hence

(4.3) By o {t'(Yi, i)} =0
and
(4.4) B0t {c(Y,00)} = —E, .2 {D(Y, 1)}/ (20%).

To find the Fisher (expected) information matrix, we calculate the expectation
of minus the second derivative of the log likelihood.
Now,foranyi=1,...,n

Ly, o?
(4.5) 3—0(;:9:_:') = —t'(yi, pi)wif o,

From (4.3) it follows that (4.5) has zero expectation, a property expressed

by saying that y; and o? are orthogonal parameters. Hence, the Fisher infor-
mation matrix for (g, o?) is given by

{i(,u | 62 )W /o? 0

0 i(a? | p)

(4.6)
where i(z: | %) and W are diagonal matrices with ith diagonal elements defined
by

(4'7) iz‘i(ll- | 02) = —Liy g2 {t”(Y;': ,u,')},
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and W ; = w;, respectively, and where

(48) (0% | 1) = Buor {~¢"(Y,0%) + D(Y, )/ o"}.

Hence, the information matrix (4.6) is diagonal, the off-diagonal zeroes occur-
ring either because of the independence of the observations, or because of the
orthogonality of the parameters y; and ¢? fori =1,...,n.

Consider now the hypothesis

le,u=,u(ﬂ), ﬂz(ﬂla'-'!ﬁh)’r!

as defined in Section 3.1. The regularity conditions for the model require the
function p( - ) to be twice differentiable. Moreover, defining

we assume that X(8) (n x k1) has full rank for every value of S.
Using (4.6), we find that (4, ¢%) has information matrix

{ i(8|o%)/o? 0 }
(4.9) ,
0 i(o? | u(8))

where
i(f | o) = X(B)Y Wi(u(B) | o*)X(B).

Hence, (4.9) shows that 8; and ¢? are orthogonal for every j = 1,...,k;. We
express this by saying that # and ¢? are orthogonal. By the orthogonality of 8
and o2, it follows that i(3 | o2) is identical to the expected information matrix
for B when o2 is known, and i(¢? | ) is the expected information matrix for
o? when u is known.

The second derivative of the log likelihood function with respect to 3 is

L
oposT

c’)L d 8u; OL
X(ﬁ)+Z aﬂa‘;m—m

= X(ﬁ)T

{ ~X(8)Ti(n)WX(8) + ; BﬁBﬂT u(yi, .Ui)wi} /o
= —i(6)/o",
say, where j(42) is the diagonal matrix with diagonal elements
Jilp) = —t"(yi, ), i=1,...,m.
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The observed information matrix for 3 is

(4.10) iB)/a*,

the second derivative of the log likelihood at the maximum 3, which is positive-
definite. Since ¥{(f | 6?) = E, ,2(i(8)), we find that

(4.11) iBYLi(B|0?) for n— co.

We shall now examine (4.9) in some special cases, in particular for expo-
nential dispersion models and the small-dispersion case.

3.4.2 The Information Matrix for Exponential Dispersion Models.
For an exponential dispersion model ¥; ~ ED(u;,0%/w;), i=1,...,n,

we have
ty, 1) = yr 7 (w) — s(r(p)), pEQ

Hence
(4.12) (1) = (y - 1)/ V(n)
and
10y, ) = L) '—V((g:; )—2 WV )
which implies
(4.13) ii(p [ 0%) = 1/V(w).

To emphasize that i(u | o2) does not depend on ¢? in this case, we shall write
(1) and i(8) instead of i(i | ¢?) and i(B | 02), respectively, whenever we are
dealing with an exponential dispersion model.

To verify that the model is regular, we must show (cf. Exercise 8.23), that

(4.14) Ep o2 {(Yi — pi)/V{(1:)} = 0,
which is (4.3), and
(4.15) Li(p)wifo? = Vary, o2 [(¥i — pi)wi/ {e*V (p)}].

However, (4.14) and (4.15) easily follow from the standard results E 02 (Yi) = pi
and Vary o2(Y;) = 02V (i) /w;.
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3.4.3 Small-Dispersion Asymptotics and the Information Matrix.

We shall now examine the information matrix in the case where the disper-
sion parameter is small. For the distribution ¥; ~ DM(y;,0? Jw;) this means
that o2 fw; is small. The most convenient assumption is to take o2 as fixed and
consider the limit

(4.16) min{wy,...,w,} — .

We use the notation "w — 0o” for (4.16), where w = (wy,...,w,)T. We refer
to (4.16} as the "small-dispersion” case, and the corresponding results are called
”small-dispersion” results. Similarly, we shall refer to the case "n — co” as the
"large-sample case” etc.

Using the saddlepoint approximation (Theorem 3.3.1 or 3.3.3) we find for
W — 0

1

(4.17) qma%::“§§:m%mwvwghm}+kga%
i=1

Here, and in the follox;ving, we let V(y:) or V(p;) denote V = —1/t"(0) in the
case of a dispersion model (Theorem 3.3.3). For w — 00, (4.2) becomes

uny1(p,0%) 2 —n/(26%) + D(y, )/ (20"),

which shows that the maximum likelihood estimate of o2 under H; is approxi-
mately

(4.18) o? ~ D(y, (B)/n for w — co.
The equation (4.4) becomes
(4.19) E, o2 {D(Y, 1)} no* for w— co.

Since Y; tends to p; in probability in the small-dispersion case, we find the
approximation, from (4.7),

(4.20) (e o) > 1/V for w— o0,

providing an analogue of (4.13) for the general case.
From (4.8), (4.17) and (4.19) we find

(4.21) i(o? | p) ~ n/(26%) for w — .
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We note that (4.21) does not depend on the model under consideration. In
particular we have i(¢? | p) = n/(20*) for the normal and inverse Gaussian
distributions, see Exercise 3.25. For a linear normal model the estimator for o2
is proportional to a x2-variate. Hence, (4.21) suggests that a y?-approximation
may be better than a normal approximation for the distribution of 2 in the
small-dispersion case. This will be confirmed later, ¢f. Section 3.6.

§3.5 DParameter Estimation

3.5.1 Maxinmm Likelihood Estimation.

In Section 3.2 we saw that the maximum likelihood estimate of # may
be found by minimizing the deviance D(y, u()) with respect to 8. Using the
results of Section 3.4, we find that the likelihood equation for 8 is

(5.1) X(8)TWu(y, u(8)) = 0,

where u;(y, ) = u(yi, ) = (i, ti). Equation (5.1) is in general nonlinear in
B, and hence it must be solved by iterative methods.

Given the estimate 3, the maximum likelihood estimate of o2 may be found
as the solution to the equation

(5.2) ¢(y,0”) + D1 /(20*) = 0,

where D; = D(y, u(f)) is the deviance for the hypothesis H; under considera-
tion. This equation is also nonlinear, and generally has to be solved by iterative
methods.

By standard asymptotic theory we know that the estimate (ﬁ ,6%)is asymp-
totically normally distributed, with variance matrix given by the inverse of the
information matrix (4.9). By the orthogonality of # and ¢?, and the consequent
block diagonal structure of (4.9), the two blocks of the matrix may be inverted
separately. In particular, § and 42 are asymptotlcally mdependent and the
asymptotic normal distributions for 3 and 6% are

(5.3) B~ N(B,0* " (8| 0%))
and
(5.4) 5% ~ N(o®,i7H(a® | u(8)))
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The main condition for these results, apart from regularity conditions,
which we have already discussed, is that the information matrix i(4 | o) tends
to infinity. This is the case, for example, if the limit

(5.5) lim 2i(8 | 0?)

exists, and is positive-definite. A more practical way of stating this condition is
to say that for each 7 = 1,..., k; many observations contribute to the estimation
of each parameter ;.

By (5.3) the asymptotic standard error of the estimate Bj is

(5.6) se(f;,0) = o {i(8 | 6*)}1/2,

where by A% we denote the jk-th element of the inverse A™! of a quadratic
matrix. If o2 is known, an estimate of the asymptotic standard error of may
be obtained by inserting 3 for 8 in (5.6). If o2 is unknown, we must also insert
an estimate for o2 in (5.6). Here we may use either the maximum likelihood
estimate 6% or any other consistent estimate. In a similar way we may estimate
the asymptotic covariance between ﬁj and B via o?i KB o?).

The asymptotic standard error for 6% may be calculated as i(o? | u(8)) /2.
However, in general, a much better approach is to approximate the distribution
of &2 by a y>-distribution, as will be discussed in Section 3.6.

3.5.2 Estimation of The Dispersion Parameter.

The maximum likelihood estimate of 62 has certain undesirable properties,
and for this reason we shall suggest some alternative estimators with better
properties. This follows a long tradition for linear normal models, for which the
unbiased estimate

(5.7) : D wilys — )’

n—k =
is always used instead of the maximum likelihood estimate

2 zn:w'(y' — )
n 1 1 1 .

=1

Let us analyze the situation in the small-dispersion case. Consider the
two hypotheses Hy and H from Section 3.1, and let Dy and Dy denote the
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corresponding deviances. Then, by (4.18), the estimates of 02 under H; and
Hj, respectively, are approximately

" 1
Hl:crfz—Dl for w— o0

n

. 1
Hz:angDg for w — oo.

Since Dy > D), due to the resting of the hypotheses, we have 63 > %, (approx-
imately). This seems an undesirable property for two estimators of the same
parameter o2, considering the case where H; and H; are both true. However,
it is easy to understand why the estimators have this property. By (4.19) we
have

B, »{D(Y,u)/n} ~06* for w— co.

Hence, if ¢ were known, the estimator D(y, ,u)/n would be perfectly adequate
(in the small-dispersion case). However, since 3 is obtained by mmmuzmg
D(y, 1(8)) with respect to 8, it is clear that we have approximately, in some
sense,

Eﬂ,o'z {D(Yr “(B))} < Eﬂ,u”{D(Y: !"')}

In fact we show in Section 3.6 that in the small-dispersion case we have
(5.8) E, 2 {D(Y, (AN} 2 (n — ky)o? for w — oo.

Hence, any reasonable estimator for o2 should probably be approximately equal
to D(y, w(B))/(n — k1) in the small-dispersion case.

A simple way to obtain an estimator with this property is to define the
estimate as the solution to the equation

By e {D(Y, ()} = D(y, u(B)).

However, this approach has two disadvantages. First, the expectation of the
deviance D(Y, u(ﬂ)) may be difficult to calculate, and it depends on the hy-
pothesis under consideration. Second, the expectation of the deviance in (5.8)
in general depends on the value of i, making it necessary to insert an estimate
for p in the expression for the expectation. For these reasons, the practical
value of the estimate based on (5.8) for general use is fairly limited.

In certain special cases of particular interest, such as certain special mod-
els in the normal and the inverse Gaussian distribution, arguments based on
sufficiency or ancillarity principles may suggest the correct way to estimate o2.
However, such arguments rarely apply within the entire class of models under
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consideration here. From a practical point of view there are basically three
estimators that we need to consider.

3.5.3 The Modified Profile Likelihood Estimate.

"The modified profile log likelihood for ¢? is defined by
(5.9) £°(s%) = 2 logo® + Lu(B), o*)

under Hy. The value of o? that maximizes (5.9), denoted 62, is called the
modified profile likelihood estimate. The reason for this name is that the term
L(u(f),0%) in (5.9) is known as the profile log likelihood for o?. Using (4.17),
we find that in the small-dispersion case

L ki—n Dy, u(B)
do2 T 92g2 204

for w — oo,

giving the approximation
(5.10) GF o~ —D(y’—'u’g’m for w — 0.
n—k

Hence, 5% has the right limiting value for w — co. Since 62 is equivalent to 2
for n large, this estimate is consistent for ¢? in the large-sample case.

3.5.4 The Deviance-Based Estimate.

A very simple estimate is obtained by using the asymptotic value (5.10),
obtaining the estimate .
52 = DO u(B)
n— k}
This estimate may be considered as the analogue of the estimate (5.7) for the
normal distribution, giving it an immediate intuitive appeal. However, we shall
see, in Example 3.5.3, that 52 is not in general a consistent estimator for o2 in
the large-sample case. For this reason, #* is not recommended for general use,
but it may be used if it is known that =2 min{wy,...,w,} is reasonably large.
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3.5.5 The Pearson Estimate.

A reasonably simple estimator with the correct asymptotic behaviour may
be obtained as the solution 72 to the equation

(511) o = XM u(B), o),

where the statistic X? is defined by

(5.12) X%p,0%) = Zt'(ye,ﬂs)zwi/iﬁ(# | &2).

i=1

The statistic (5.12) is known as the generalized Pearson statistic. The form of
(5.11) suggests a simple iterative procedure for calculating o.Using (5.11) to
update a preliminary estimate gives the sequence 6%,0%,... defined by

1 ,
Tog1 = E‘_—k—lxz(#(ﬁ), o)

Any estimator, such as 5%, may be used to initiate the iterative process.

To justify (5.11), consider first the case of an exponential dispersion model
Y; ~ BED(pi,0%/w;). By (4.12) and (4.13), (5.11) becomes

1
n—k1

D (yi — pi)wif V(i)

i=1

(5.13) 7=

where [i; = u;(ﬁ), i=1,...,n. In this case no iteration is needed, so 72 is a
convenient alternative to the modified profile likelihood estimate.

Consider now a dispersion model with t(y,u} = {(y — p). Under the
conditions of Theorem 3.3.3 we find, expanding ¢'( - — p) around g, using
vV =-1/i"(0),

'y — i) = —(yi — )/ V.

Hence by (4.20)

n

Z(y,- — i)Y w; [V for w — oo,

i=1

1

5.14 7~
(5.14) e

which is an approximate analogue of (5.13).
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Using (3.5) and (3.11), we hence find the asymptotic relation
-—0 1 o
(5.15) " ———D(y,u(f)) for w— oo,
- kl

valid under the assumptions of either Theorem 3.3.1 or 3.3.3. Hence, 72 has
the right limiting behaviour in the small-dispersion case.

Now, let us show that 52 is consistent for o2 in the large-sample case. By
the regularity of the model we have the following relation

(516) Va?“maz{t’(yi,p,')w,‘/az} = i;,'(p | Uz)wi/az.
Using (4.3), this implies

By o {t‘(Y;', 1”-:')2} =Vary ;2 {t’(Y,‘, i)}

=g | 0¥)o? fw;.
Hence, by (5.12) we find
E, 2 {X?*(yt,0%)} = no?,

which implies that 2 is consistent in the large-sample case, because a consistent
estimator, 4, was used in (5.11).

3.5.6 Comparison of The Three Estimators for The Dispersion Pa-
rameter.

- We now consider some examples, that illustrate the behaviour of the three
estimators.
Example 3.5.1: For the normal distribution, the three estimators 6%,5% and
7* are identical, and correspond to the usual estimate (5.7). This is shown in

Exercise 3.26. 1

Example 3.5.2: Consider the inverse Gaussian distribution ¥; ~ IG(u,
o? /w;). In this case the density is identical to the saddlepoint approximation,
and hence the approximation (5.10) becomes exact. Hence

(5.17) 2= 1 Z (i = fi)* s
¢ n—k - yiﬁ? ’
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so in this case the deviance-based estimate 2 is consistent in the large-sample
case. By (5.13), the Pearson estimate is '

1
n—~k1

> (yi — i) wif .

i=1

(5.18) 7 =

The slight difference between (5.17) and (5.18) is probably unimportant in prac-
tice, but due to the occurrence of y; in the denominator of (5.17), this estimate
is more sensitive to very small or very large observations. N

Example 3.5.3: In the case of the gamma distribution, ¥; ~ Ga(u;, o2 /w;),
(¥, %) does not depend on y, because

o(¥,0%) = > {Ailoghi — A; — log T(X;) — log yi},

i=1

where A; = w;/0?, i = 1,...,n. Hence, writing ¢(¢2) = ¢'(y, 02), we find that
&3 is the solution to the equation

k1/(20%) + ¢'(0%) + D1 /(20*) = 0,
where "
c(o?) = Z{i,b(w,-/cr2) — log(w; /o) }w; /ot
i=1
with ¥(A) = T'(A)/T(A) denoting the digamma function. Using (4.4) and an

asymptotic expansion for ¢ (cf. Abramowitz and Stegun, 1972, p 259), we
obtain

Epor {D(Y, 1)} =2 Z wi{log(wi/o®) — p(wifa®)}

0.6

n 4
— 2 A
= no +;{6wi 50u? +...).

Consequently, the deviance-based estimate 52 has bias approximately o* (1/w,
+-+++ 1/w,)/{6(n — ky )}, which persists for n large. We conclude that &2 is
inconsistent in the large- sample case. Hence, for the gamma distribution, one
should use either o or the Pearson estimate, which is

_2 1

TL——kl

mermWX-l
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Example 3.5.4: Using the Bessel function I, cf. Example 3.3.4, the proba-
bility density function of the von Mises-Fisher distribution may be written on
the form

1 Wi
.1 iy 02 Jw;) = ——— — — Hi),
(5 g) p(yhu' g /w ) 21‘_1-0(%) exp{g2 COS(y p’ )}

for 0 < y < 27. In this case c(y, %) does not depend on y, and may be written
as

e(0%) =Y [wifo? —log{2nIo(w;fa?)}].

=1

The modified profile likelihood estimate may hence be obtained as the solution
of the equation

k1/(20%) + ¢(0?) + Dy /(20%) =0,
where

(o) = Z{r1 (wif/o?)/ Io(wifo?) — 1}w; /ot

Here Iy is the modified Bessel function of the first kind of order 1, defined by

1 21
LN =L\ = —/ cosyexp{A cosy}dy.
2% [}
In particular, we obtain the relation

E{cos(Y; — pi}} = Ii(wifo®)/ Ip(w;/o?),

where the random variable ¥; has probability density function (5.19).
Using (4.4) we obtain

E, 2 {D(Y,u)} = —c'(c*)20*
which, like for the gamma distribution, implies that the estimator 2 is incon-
sistent in the large-sample case.

To derive the estimate &2, note that t/(y — ) = — sin(y— ) and ty—p) =
—cos(y — p). Hence

iii(“ l ‘72) = Ly g2 {t”(Y;' - .u'i)}
= L(wi/o?)/Io(wi/o?).

85



Hence 72 is the solution to the equation

1

0'2:
?’L'—'kl

Z sin*(y; — faywilo(wi/o?)/ I (wi/o?).

By (5.14) and the fact that V = 1, we obtain the approximation

1 n
‘ F2 Ao c— fi: Y2
(5.20) ot — T Z;(y' fi) wi.
However, this approximation is problematic for the von Mises-Fisher distribu-
tion, because y; is defined modulo 2m, and hence (5.20) may depend on the
choice of origin for the data. A better approximation to 72 is obtained by
inserting (4.20) in (5.12), to obtain

_ 1 -\
(5.21) 7o o — Zsmz(y,- — i )w;.

i=1

However, the estimates (5.20) and (5.21) are both inconsistent in the large-
sample case. I

The von Mises-Fisher distribution gives occasion to discuss get another
estimate of o2, This estimate is obtained by inserting the approximation

ii:'(# I 02) = _E_u,o'2 {t"(Y;'? F’z)}
= '_t"(y!'a nul')

in (5.12), which yields the estimate

7 = S i {8 ()

n—k
L

This estimate has the advantage, compared with 72, that it may be calculated
without iteration. However, 52 is not in general consistent for ¢2 in the large-
sample case, and hence it is not recommended for general use. In the case of
the von Mises-Fisher distribution, this estimate becomes '

a_ 1 g .

6= > sin®(y; — fiiywi/ cos(yi — f).

n—kl

=1
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In this and other cases where #( - ) is not concave, ~t"(yi, i) may be zero
or negative, and hence 5 may be negative, or even infinite. If a quick estimate
is needed, then clearly the deviance-based estimate &% or the approximation
(5.14) are preferable.

§3.6 Asymptotic Theory

3.6.1 The Results.

We shall now present the basic asymptotic results for the models under
consideration. The proof of the results with appropriate regularity conditions
will be outlined in Section 3.6.3.

We shall use the notation "rn — oo™ and "w — co” to indicate respectively
large-sample results and small-dispersion results, as before. We write Y, W —
oo™ if a result is valid in both limits. The notation 2} indicates that the result
is valid under the hypothesis H; etc. The hypotheses H; and H, and their
deviances D; and D; are as defined in Section 3.1 and 3.2.

The three fundamental results that form the basis of the asymptotic theory
are

(6.1} A% N(B,d*1"YB | e?)) for n,w,—
(6.2) D [o? 5 X'(n—F) for wo oo
(6.3) (Dy — Dy)Jo® % x2(ky — ky) for n,w — 0.

Furthermore, # and D; are asymptotically independent under H; for w — oo,
and Dy and Dy — D, are asymptotically independent under H, for w — oo.

Result (6.1) was justified in the large-sample case in Section 3.5.1 (Equation
(5.1)). If o? is known, the statistics in (6.2) and (6.3) are the log likelihood
ratio tests for respectively Hy under Hy and H, under H,. Hence (6.3} follows
immediately from standard large-sample theory, whereas (6.2), as indicated,
is generally not valid in the large-sample case, because the dimension of Hy
depends on n.
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The fact that (6.1), (6.2) and (6.3) are valid in the small-dispersion case is,
for exponential dispersion models, a consequence of the standard convelution
formula for exponential dispersion models (Section 2.3). The details of the
argument is given in Section 3.6.2, together with a proof of the small-dispersion
results for the dispersion model case.

From (6.1)-(6.3) follow three results which are basic for analysis of deviance,
namely

(6.4) ——M it tn—k) for n,w—o oo
OECRE
(6.5) (n —ky)62/0? e xi(n—ky) for w— oo
D; — D,

(6.6) % F{ky —koyn—Fk;) for n,w — oo.

52(ky — k2)
Here #(f1) and F(f1, f2) denote the ¢- and F-distributions with degrees of free-
dom as indicated, and 6%, 3% and &2 denote estimates under Hy. The de-
nominator oj//($)!/? in (6.4) is the estimated standard error of f; based on
the observed information (4.10). For an exponential dispersion model we may
replace j7/(3) by the corresponding quantity i/i(3) based on the expected in-
formation. This is not possible for a general dispersion model, because i(8 | 62)
then depends on o2, and if o2 is replaced by &2, the asymptotic distribution of
(6.4} for w — o0 is altered.

Whereas, by (6.1), 8 is consistent for B in the small-dispersion case, (6.5)
shows that 67 is not consistent for o2 in the small-dispersion case, because the
asymptotic variance of &7 does not tend to zero for w — oo and apparently it
is not possible to estimate o2 consistently in this limit. This is in contract to
the large-sample case, where o2, as well as 8, may be estimated consistently by
for example the maximum likelihood estimator.

To show (6.4)-(6.6), consider first the small-dispersion case, where we have

(6.7) 65 =8 =D, /(n— k).

Hence, by the asymptotic independence of & and Dy, the result (6.4) follows
from (6.1), (6.2) and the definition of the ¢-distribution, because, by (4.11) and
Slutsky’s theorem, j may be replaced by i(8 | ¢2) in the limit. Similarly, (6.5)
follows from (6.7) and (6.2), and (6.6) follows from (6.2), (6.3), (6.7) and the
asymptotic independence of Dy and Dy — Dy,
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In the large-sample case, the consistency of j, (4.11), implies that the ratio
in (6.4) converges to a standard normal distribution. However, the #(n — k1)-
distribution is approximately a standard normal distribution for n large and
ky fixed, and hence (6.4) is a valid approximation for n large. Similarly, (6.6)
follows from (6.3) and the fact that 62 is consistent, because the distribution
F(f1, f2) is approximately a x2(f1)/fi-distribution for f, large. Note that &3
and Dy —D, are asymptotically independent for n, w — oo, so that (6.6) is likely
to hold in the area where D, — D) and 62 have approximate y2-distributions.

The idea behind the results (6.4) and (6.6) is that, since they are valid
in both the small-dispersion case and the large-sample case, they are likely to
be valid in a quite wide range of cases, and may be applied without making
an explicit choice between the two asymptotic frameworks. The proof of the
results (6.1)-(6.3) shows that the error in (6.4) is proportional to ¢/{nw}'/2,
where w = min{wy,...,w,}. The actual error depends on the model under
consideration, and it is difficult to make more precise general statements about
the accuracy of the approximations.

In the case where o is known, the results {6.1)-(6.3) may be applied di-
rectly in the inference on the parameter 8. However, the discussion of this case
is more relevant in the discrete case (Section 3.8), and the conclusions from the
discrete case apply, with obvious modifications, in the continuous case.

3.6.2 The Relation Between The F-Test and The Likelihood Ratio
Test.

The F-statistic in (6.6) may be used for testing H, under Hy, and in fact
this test is the main tool of inference in the analysis of deviance. This raises the
question of whether the F-test has any optimality properties. A partial answer
to this question may be found by analyzing the relation between the F-test and
the likelihood ratio test, the latter being known as asymptotically optimal and
optimal in certain simple special cases, and as giving acceptable results in wide
generality. We have already noted that the statistic (D ~ D;)/(20?) is the
log likelihood ratio test for H, under H; when o? is known. However, when
o? is unknown, the log likelihood ratio test is a more complicated function of
the observations, and we resort to an investigation of the asymptotic relation
between the two tests.

In the small-dispersion case, the maximum likelihood estimate of o? under
H; is approximately &Jz- = Dj/n, j = 1,2. Using the saddlepoint approximation,
the maximized log likelihood under H; is approximately

L(39,82) 2 ~3 3 log 2V (y:)/ws} +log(D; /)] — 2,

i=1
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where () is the maximum likelihood estimate under H 7, 7 =1,2. Hence, the
log likelihood ratio test for Hy under H, is approximately :

LE12 = 2{L(aW,6]) — L(2®, 53)}
~ nlog(Dy/Dy)
= nlog{l -+ (.Dg - Dl)/Dl}

which is a monotone function of the ratio

(D2 = D1)/(ky — k2)
DI/(R — kl) )

Hence, by (5.10), LR; 3 is asymptotically equivalent to the F-test in (6.6).
In the large-sample case we have that 67 and 4% are asymptotic ally equiv-
alent to &3, (the estimate 62 calculated under H. 1). Hence

LBRia =2{c(y,5}) — c(y,62)} — D1 /62 + Dy /52
~ (Dy — Dy)/62,.

Hence, the likelihood ratio test is again equivalent to the F-test in (6.6).

Since the F-test is asymptotically equivalent to the likelihood ratio test in
both limits, we conclude that the F-test is approximately optimal within the
range where the F-approximation (6.6) is valid. The t-test (6.4) may be viewed
as approximately equivalent to a signed version of the F-test, and hence the
same conclusion holds for the ¢-test.

The same arguments as above show that the conclusion about asymptotic
equivalence of the F- and likelihood ratio tests holds in the small-dispersion
case if 6§ is replaced by either 5% or 2. However, since o2 and &2 are not
asymptotically equivalent to 62 for n — oo, this conclusion does not hold in the
large-sample case. '

3.6.3 Regularity Conditions and Proofs.

We shall now discuss the necessary regularity conditions needed in order
to prove the asymptotic results presented in the previous section. The proof
of the results is outlined, in the large-sample case and in the small-dispersion
case.

Regularity conditions for Theorem 3.6.1. The functions t(y,p) and
f(Ay) = loga(A,y) + M(y, 1) are three times differentiable with respect to
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the parameters, and there exist continuous and integrable functions Aj and B,
7 =1,2,3, and a neighbourhood w of the true value g, such that for every 4 in
w.

(6.8) 0| < 4i), 5=1,2.3

(6.9) [P0 < Biw), =128

The function u( - ) is three times continuously differentiable, and X{(#) has rank
k1 for every f. The matrix i(p | 02) is positive-definite for every u and o? and
i(o” | u) > 0 for every p and o2, There exists a positive-definite matrix i(8 | o2)
and a positive number (o2 | y), such that

(6.10) %i(ﬁ|a2)—}§(ﬂ|az) for n— oo

(6.11) %’i(cr2 lp) —i(o? | ) for n—oo. I

These regularity conditions were chosen in order to give simple and easily
verifiable conditions. It is possible to weaken the conditions considerably, see
for example Fahrmeir and Kaufmann (1985), who considered asymptotic theory
for generalized linear models.

Theorem 3.6.1. Under the regularity conditions outlined above, results (6.1)
and (6.2) hold. If furthermore there exists a parametrization of Hy such that
H; corresponds to the condition fr,41 = -+ = i, =0, then (6.3) holds. 1

The condition (6.8} is easily seen to hold for an arbitrary exponential dis-
persion model. Thus, if ¥; ~ ED(p;,0%/w;), we have

'y 1) = (v — )/ V(-
Since V() is continuous, we have

|y — al+ Iy — 8|

'y, p)| < =
[t (y, 1) nfog s VH)

fora<pu<b

The same type of argument applies to t2) and ¢, and hence we may take w
to be an interval contained in §2.
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Condition (6.9) may be verified for exponential dispersion models using the
Fourier inversion formula for characteristic functions. Thus, in the continuous
case we obtain from (3.12)

(6.12) a(M, y) exp(Afy) = % / "~ explMK(8 + is) — is)]ds.

Based on (6.12), straightforward analytic arguments show that condition (6.9)
is satisfied. '

The conditions (6.10) and (6.10) have to be checked for each given sequence
of models under consideration. A considerable simplification is obtained in
the case of a generalized linear model, where pf - ) is differentiable if the link
function is differentiable. To illustrate the conditions (6.10) and (6.11) in this
case, we consider an example,

Example 3.6.2: Suppose Yi,...,Y, are independent and ¥; ~ Ge(B; +
Brxi,0%),i=1,2,...,n. Then V(x) = u? and

xo= (1 L)
i(8) = Zn:{ /(61 + Baxi)®  @if(Br + Pazi)? } |

z;/(B1 + Baz;)? 23 /(B + Paz;)?

If (6.10) holds with a positive definite limiting matrix, then

Hence

i=1

n

(6.13) Jirn, % ; a2 /(By + Baz:) > 0
(6.14) Jim = D1+ i) >0

2
1 n $2 1 n 1 1 n T
6.15) lim | LA Aol raa( | >®
(6.15) nvso n;ﬂl‘i‘ﬁinn;ﬁl‘f‘ﬁ?wi {n§61+ﬁzwe}}

The conditions (6.13) and (6.14) imply that z; cannot tend too quickly to
zero or too quickly to infinity. For example, (6.14) is violated by the sequence
z; = 1, and (6.13) is violated by the sequence r; = 1/i. On the other hand,
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the condition that the sequence of z;5 is bounded, together with the restriction
Br + Bazi > 0, implies (6.13) and (6.14). The condition (6.14) implies that
the ;s have a reasonable spread, asymptotically. Thus, if all z;s are equal,
except for a finite number of values, then (6.15) is violated. In summary, the
conditions (6.13), (6.14) and (6.15) are satisfied if, for example, the z;s are well
spread out in a finite interval, a sensible requirement from a practical point of
view anyway.

By Example 3.5.3 we have that the information function for &2 is of the
form

i(o? | ) = —¢"(0?)
+ E}a,az{D(Y! ”)}/06:

where each of the two terms are proportional to n. Hence i(o? | 1)/n is constant,
and (6.11) is satisfled. I

As the example illustrates, the condition (6.11) is generally very mild, due
to the fact that all of the data contribute to the estimation of the dispersion
parameter. However, if the weights are not all equal, (6.11) implies certain
conditions on the weights, which are generally met if the weights belong to a

bounded interval.

Proof of Theorem 3.6.1 (outline). We begin with the large-sample case,
outlining the standard arguments leading to (6.1) and (6.3). Let L{3) denote
the log likelihood for the parameter ¢ = (8,0?), and define

u(h)= 57 i) = Vary{u(p))

By assumption i(3) is positive-definite. The first step in the argument is to
show consistency of the maximum likelihood estimator 1,5, or more precisely to
show that with probability tending to 1 for n tending to infinity, the likelihood
equation

(6.16) () = 0

has a consistent root. The main argument for this is that, due to i(s)) being
positive-definite, L(7) will have a local maximum near the true value of ¥ for
n large.

By the independence of the observations, the score vector u() is the sum of
n terms. By condition (6.11), the variance of each component becomes negligible
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compared with the total variance for n large. Hence we may apply the Central
Limit Theorem to u(%), obtaining

(6.17) u($) ~ N{(0,i(¥))

approximately for n large. By expanding u(4) around 3 we obtain, by (6.16)
and (4.11),
.. &L N
ww) = u()+ ZZ| G- H =i - )
v=9

or, equivalently,

(6.18) ¥ — ¥ =i (H)u(p).

Hence, by (6.17) we obtain

¥ ~ N, i7" (y)),

approximately. for n large. Since i(3) is block diagonal with blocks ¥{(8 | ¢?)
and i(o? | i), we have shown (6.1) and (5.4).

To show (6.3), we continue using the above notation, except that we now
let ¢ = B3, taking 0? as known. Expanding L(3) around 9 and using (4.11) and
(6.18), we obtain

20 ~ 2} =~ gazin| (6=

~ —( — )i )& — ¢)
(6.19) ~ —u($) i (P)u(y).
We assume that H; has been parametrized such that H; is equivalent to 9,41 =

++ = thg, =0, and we let 1y denote the true value of ¥. There exists a lower
triangular matrix i'/2(19) such that

i(1h0) = 172 (40 )i /2 (3907

Now let us parametrize Hz by the parameter ¢ = i'/2(3y )¢, which has score
function '

T
§(6) = (@) = 2 (o)uh(9)
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and information matrix

2 (3 (4 (8))i7 /2 (340

In particular, the information matrix is the identity matrix for ¢ = ¢. Hence,
(6.19) takes the form, for 3 = g,

2{L($) — L(o)} = ii(¢0)T (o)
ki’
(6:20) = (o)’

Now, since i~/ 2(40)7 is upper triangular, H, is equivalent to ¢p,41 = -+ =
$x, = 0. Hence, arguments similar to the above show that, letting () denote
the estimate of 3 under H,,

ko
(6.21) o 2H{EE®) — L(o)} = Y (o)

i=1

It follows that the difference in deviance between H, and Hy, which is the
difference between (6.20) and (6.21), is

ky

(6.22) (D2 =Dy)fo? = Y (o)

j=ko+1

By (6.17), and the fact that the information matrix for ¢ is diagonal at ¢q, we
find that the terms of (6.22) are approximately independent and distributed as
x%(1) for n large. This implies (6.3), and hence we have concluded the proof in
the large-sample case.

In the small-dispersion case, consider first the case of an exponential dis-
persion model Y; ~ ED(u;,0%/w;). We show the results under the condition
w; = 1w, ¢ = 1,...,n, where W; is fixed and » is an integer which tends to in-
finity. By the standard convolution formula for exponential dispersion models,

we may write
1 r
=22 Y,
j=1

where Yi, ..., Y;r are independent, and independent for different 7, and Yi; ~
ED(p;, o /w,) The log-likelihood for p based on Y;; is, disregarding terms
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that to not depend on g, and letting 6; = 7= (y;),

L(p) =Y D (@i/o"Hyi6s — x(6:)}

i=] j=1

= Z(E,-/az){ri i — r&(6;)}
i=1

= > _(wi/7"){yib: — x(8:)}.

Hence the likelihood depends on the observations only through y; = (yi1 +-+++
Yir)/r, and depends on y; and y; in exactly the same way as for the original
observations. Consequently, maximum likelihood estimates, likelihood ratio
tests and their distributions are exactly the same as for the original observations.
Hence, we may prove the asymptotic results by applying the large-sample results
to the rn independent variables Y;;.

The information matrix for 3 is i(8)/0?, where

i(9) = rX(8)TWi()X (),

where W = diag {w@,. .., Wp}. Hence i(#)/(ro?) is constant as a function of
r, which implies condition (6.10) for rn — oo with n fixed. By the results of
the proof in the large-sample case, we conclude that (6.1) and (6.3) hold for r
tending to infinity. Since n is fixed we may now apply (6.3) to the test of H;
against Hy, and since the difference in deviance between these two hypotheses
is Dy, we have shown (6.2) in the case where r tends to infinity. One may show
that (6.1)-(6.3) hold under the weaker condition min{w,,...,w,} — o too.

Finally, we turn to the case of a dispersion model ¥; ~ DM(u;,0?) with
t(y, p) = t(y — p), the model for which we showed the saddlepoint approxima-
tion. In particular, we assume that the conditions of Theorem 3.3.3 are fulfilled.
By (3.7) we obtain

(6.23) Vi ~ N(pi, 02V/w;),

approximately for w; large, where V = ~1/t"(0). Expanding #( - ) around 0
we obtain

s — ) = #(0) + " (ONY; — i} = —(¥i — ) /V.
Hence, by (6.23) we obtain
(6.24) (wi/o® ) (Yi — i) ~ N0, 0/ (V)
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approximately, for w; large. Furthermore, by (4.20), the information matrix for
j is given by

(6.25) fi(p | 02) 2 wi/(a2V).

In terms of inference on the parameter = §, (6.24) and (6.25) imply that the
key results (6.17) and (6.18) hold approximately for w ~+ co. Contimuing the
proof as in the large-sample case, we may hence show (6.1)-(6.3). We note that
the proof requires (6.8) and (6.9) to be satisfied for continuous functions A; and
B;, whereas in the large-sample case A; and B; are required to be integrable.

In the more general case where #(y, u) is not of the form ty — p), the
proof of the asymptotic results is given, under further regularity conditions, in
Jérgensen (1987b).

§3.7 Amnalysis of Deviance for Continuous Models

3.7.1 General Points.

We shall now consider the application of the theory developed in the present
chapter to some data examples, and make some general considerations about
analysis of deviance. At this point, the reader may perhaps want to go back to
Chapter 1 and review the approach to data analysis outlined there.

A typical data analysis proceeds via the following steps:

(i) Initial choice of model and estimation of parameters.
(ii) Verification and modification of the model.
(iii) Hypothesis testing.
(iv) Conclusions. .

The choice of model often involves several cycles of model verification and
subsequent modification of the model. This part also involves analysis of resid-
uals which, in spite of its importance, has not been included in this preliminary
version of the text.

Once a well-fitting and theoretically satisfactory model has been found, one
may proceed to hypothesis testing (iii). This part may involve the assessment
of well-defined scientific hypotheses, or may involve an exploratory search for
a parsimonious model, with a descriptive purpose. In the simplest case, the
process involves successive reductions of the model, until the smallest model, in .
terms of the number of parameters, consistent with the data has been found.
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The conclusion (iv) involves the interpretation and communication of the
results of the analysis within the specific context of the data.

‘We shall often present the results of the hypothesis testing process in the
form of an analysis of deviance table. Thisis a parallel to the analysis of variance
table for linear normal models, although the analysis of deviance table is slightly
different in form, reflecting the sequential nature of the testing process. The
table has the following form

Model Deviance  d.f AD Ad.f &2 F
Hy D, fr N
H,y D, fa Dy — Dy fo—hfi 6l B
Hy - D, f3 D; - D, fa—fa &?3) F

Here Hy D H, 2 ... is a sequence of nested hypotheses (models), H; having
deviance D; and degrees of freedom f;. The table also gives the successive
differences between deviances, and between degrees of freedom. Finally it gives
estimates for o2 (based on a specific estimator) and the corresponding F-test

. (Di = Dia)/(fi = fiza)
= &)

for testing H; under H;_y. We use the symbols 2, 7 and &2 to denote re-
spectively the modified profile, Pearson and deviance-based estimate for o2,
The F-test may be used to test H; under H;_, successively, starting with
Hy under H,. If the test does not show significance, H; is accepted. The process
confinues until a significance is found, and the last model accepted becomes the
final model.
A hypothesis of the form g; = ﬂgo) for a parameter §; may be tested using

the #-test X X
t=(B; — BV /se(By),

where se(ﬁj) is the estimated standard error for ﬁj. We write Fy, F, , T etc.
to indicate the estimate of ¢? used. We shall quote the standard error of an
estimate in brackets after the estimate, for example 8; = 0.025(0.30) means

51 =0.25 and se(ﬁl) = 0.30. If an estimate for ¢? is quoted in the same table,
this estimate is also used to calculate the standard error.
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3.7.2 Energy Expenditure Data.

Consider the energy expenditure data from Section 1.1. In Section 2.3 we
argued in favour of a gamma model for these data, of the form

(7.1) Y~ Ga(f, ot fw), i=1,...,n,
Hi =ﬂ15i1+ﬁ25i23 i=l?"')n)
where Y; is the average energy expenditure per unit of body mass, w; is the

body mass and T;; and T;; are the proportions of fat and fat-free tissue for
individual ¢. The analysis of deviance table is

Model Deviance d.f 62 &2 I

,6153_{14-[325.'1 130 102 1.092 1.277 1.296
BaTia 152 103 1.244 1477  1.001 20.0

The two F-tests not quoted in table are ¥ = 17.23 and F = 16.97. Hence any
of the tree F-tests show a rather strong significance. We conclude that 8y # 0,
which means that the generation of energy in fat tissue is not zero.

For w = 50kg we have 62 /w = 0.0218 under (7.1) which indicates that
we may use small-dispersion asymptotics. Nevertheless, the three estimates
for 0% are somewhat different, the closest agreement being between &2 and
&°. According to Example 3.5.3, 5% has asymptotic bias approximately 0.0023,
calculated from &3, which is not large enough to explain the differences between
the estimates. However, according to the a?x%(f)/f distribution, the standard
deviation of the estimates are approximately 0.15, which makes the differences
between the three estimates seem more plausible.

It is also instructive to compare the three estimators for ¢? under the
hypothesis #; = 0. According to the F-test, this hypothesis is not true, and
hence we should see some inflation in the estimates compared with H;. This is
the case for 3% and 42, but not for &2, which hence lends less credibility to the
latter estimate.

The final estimates for the parameters of the model (7.1) are

- ~

A B &3

0.304(0.068) 1.359(0.047) 1.277
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Figure 3.3 The variance for ¥ as a function
of w according to the gamma model, for the
energy expenditure data

A 95% confidence interval for f; is hence [0.169,0.439]. The estimated coeffi-
cient of variation for ¥ is, for w = 50kg, &, /w!/? = 0.160.

Since the normal distribution is often used in practice in an example like
the present, it may be interesting to compare the above analysis with an analysis

based on the normal distribution. This model, as introduced in Example 1.1.1,
1s

Yi"’N(M,p2) t=1,...,n
pi = phzin + Pazin i=1,...,n,

where

(7.2) Y; =Y w;
is the total energy expenditure and

(7.3) Tyl = T wy

is the mass of fat tissue. The estimates for the parameters of this model are

I3} Ba P’

0.306(0.073) 1.35(0.050) 107.54
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The estimates for 8 and f; and their standard errors are in close agreement
with those based on the gamma model, and hence the normal model does not
lead to substantially different conclusions. The parameters p? and o2 are ot
directly comparable, due to the different variance functions, and because of the
transformation (7.2). By (7.2) we have

Var(Y;) = wiVar(¥)
and since, by the gamma model, Var(Y;) = ¢2i2/w;, we have

(7.4) Var(Y;) = o2 fuw;,
compared with Var(Y;) = p? for the normal model. However, since fi is an
increasing function of w; for the present data, the two variances are not neces-
sarily very different in practice. Figure 3.3 shows the variance (7.4) as a function
of w for the data, and although the plot shows a slight linear trend, it is not
entirely in disagreement with the hypothesis Var(Y) constant.

Whereas the present analysis does not show any preference for either of
the two models, an analysis of residuals might possibly reveal which of the two
variance functions, if any, is more appropriate.

3.7.3 Trees Data.

An interesting data set which has been analysed from several points of view
in the literature, is the “trees data” (Ryan, Joiner end Ryan, 1985), which is
shown in Table 3.2. The variables are diameter (d), height (k) and volume (v)
for black cherry trees in Allegheny National Forest, Pennsylvania,

The relation between diameter, height and volume for trees depends on the
shape of the tree, and we consider two possibilities. For a cylindrical shape we
have the relation

1

(7.5) v= dezh.

For a conic shape we have

(7.6) = Lran
: : YT

In both cases we have a linear relationship between log v, log d and log R,

(7.7) logv = By + A1 logd + B log h.
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Table 3.2: Trees data, with variables d (diameter in inches at 4.5 feet above
ground level), h (height of tree in fect) and v (volume of tree in cubic feet)

d h v

8.3 70 10.3
8.6 65 10.3
8.8 63 10.2
10.5 72 16.4
10.7 81 18.8
10.8 83 19.7
11.0 66 15.6
11.0 75 18.2
11.1 80 22.6
11.2 75 19.9
11.3 79 24.2
11.4 76 21.0
11.4 76 21.4
11.7 ‘ 69 21.3
12.0 75 19.1
12.9 74 22.2
12.9 85 33.8
13.3 86 27.4
13.7 71 25.7
13.8 64 24.9
14.0 T8 34.5
14.2 80 31.7
14.5 T4 36.3
16.0 72 38.3
16.3 7 42.6
17.3 81 55.4
17.5 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0
20.6 87 77.0
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We shall assume a gamma distribution for the distribution of volume given
diameter and height, V; ~ Ga(v;,¢?) for the ith tree, the trees being inde-
pendent. We hence have a generalized linear model with log link. A tentative
Justification for the gamma distribution is, analogously to the argument for the
Energy Data in Section 2.3, that the process of growth of a tree may be de-
scribed by a stochastic process with independent gamma increments. Although
this model may be too simple, by for example not taking into account the envi-
ronmental factors affecting the growth of the tree, the gamma distribution has
the appropriate characteristics of being positive and right-skewed.

The estimates of the parameters of (7.7) are

Bo ~1.635(0.686)

P 1.980(0.075)

B2 1.13(0.20)

&2 0.00655 (df. = 28)

Hence f, and B; are not significantly different from their hypothesized val-
ues 2 and 1, respectively. A 95% confidence interval for By is [-3.04,—0.23].
The values of fy corresponding to (7.5} and (7.6) are respectively —0.24 and
—1.34. Both values belong to the confidence interval, although —0.24 (cylindri-
cal shape) seems slightly less plausible than the other value. However, only a
set of more extensive data can decide finally between the two models.

In the conic model, the diameter d is measured at the foot of the cone,
whereas the diameter was actually measured 1.37m (4.5 feet) above ground
level. The resulting model is analyzed in Exercise 3.34.

3.7.4 Permeability of a Building Material.

Plates of building material of a given thickness were subjected to a test,
where the penetration time for water was measured. The plates were produced
on three machines on each of nine days, with three replications for each combi-
nation of day and machine. The data are shown in Table 3.3.

A simple model for permeability is the following. Divide the plate into
layers of thickness wy, ..., w,, such that w = w; +- - ----w, is the total thickness,
as indicated in Figure 3.4. We counsider a particle travelling across the plate
from left to right, and let Z; be the time spent in the ith layer, If the process is
stationary and the material homogeneous, it seems reasonable to assume that
the distribution P(w;) of Z; satisfies the relation

Z; ~ P(w,-),Zj ~ P('w_,') = Z; + Zj ~ P(w,— -+ wj), ? ?é_]

103



Table 3.3: Permeability of building material, given by time o penetration (sec-
onds) : '

Machine
1 2 3
Day 1 25.35 20.23 85.51
22.18 42.46 47.21
41.50 25,70 25.06
2 27.99 - 17.42 26.67
37.07 15.31 58.61
66.07 32.81 72.28
3 82.04 32.06 24.10
20.99 37.58 48.98
78.34 44 57 22.96
4 77.09 47.10 52.60
30.55 23.55 33.73
24.66 13.00 23.50
5 59.16 16.87 20.89
53.46 24.95 30.83
35.08 33.96 21.68
6 46.24 25.35 42.95
34.59 28.31 40.93
47.86 42.36 22.86
7 82.79 16.94 21.28
85.31 32.21 63.39
134.59 27.29 24‘.27
8 69.98 38.28 48.87
61.66 42.36 177.01
110.15 19.14 62.37
9 34.67 43.25 50.47
26.79 11.67 23.44
50.58 24.21 €9.02
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We assume that Z,,...,Z, are independent. From Section 2.3 we
know that a convolution family satisfies these requirements. Thus, if Z; ~
ED*(8,w;/p*),i=1,...,r,then Z = Z; +--- + Zy, the total time taken to
traverse the plate, has distribution ED*(#,w/ p?). If w; may be taken as arbi-
trarily small, which may be reasonable to assume if the material is completely
homogeneous, then the model is infinitely divisible.

In this model p? may be in interpreted as the unit in which the thickness
of the plate is measured, and since E(Z;} = r(8)w;/p?, p*/T(8) is the average
speed of the particle. Hence the parameters of the model have a direct physical
interpretation.

A

A2

water

Figure 3.4 Model for water particle traversing
a plate.

One further requirement is that the model should not depend on the unit
of measurement for time. Hence the family of distributions of Z; must be closed
with respect to scale transformations. By Exercise 2.37 the model Lence has
power variance function, V(u) = p?, say. Let us divide Z by w/p?, to obtain
an exponential dispersion model

p*Z{w ~ ED(z(8), p [w),
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and finally, by the scale transformation property, we obtain
Y = Zjw ~ ED(, 0* fw),

where 0% = p2(P—1) and = +(§)/p%.

We conclude that the sample average time per unit of thicknessis, according
to our model, an exponential dispersion model with expectation g, the average
time for traversing a unit, and dispersion parameter o2 /w, where 1w, which plays
the role of weight, is the thickness of the plate, and o2 is related to the unit of
measurement of the thickness. Since all the plates had the same thickness, we
take w; = 1 for all ¢, and hence the final model for the data in Table 3.3 is

Yije ~ ED(u;j,0%),

where ¢ denotes machine, j day and k repetition, and where the variance func-
tion is u”.

If the particle travels across the plate according to a Brownian motion, the
time taken for the particle to travel a given distance is known to be inverse
Gaussian distributed, corresponding to p = 3. The inverse Gaussian distribu-
tion is then called the firsi-hitting time distribution for the Brownian motion
process. Similarly, the gamma distribution (p = 2) may be interpreted as the
first-hitting time distribution for the Poisson process, provided A = 1/¢? is an
integer. In fact, for any p in the interval (1,2] the corresponding exponential
dispersion model is a first-hitting time distribution for some stochastic process.

To estimate p we consider the sample variance in group (z,7),

1 -
shi =352 (Yir =Yy,
k=1
where
- 1
Yij = 3 ZYijk-
k=1

If 6% is small, ¥ is approximately normally distributed, and hence, approxi-
mately

83 ~ az;tijQ(Z)/Z
where azu?j is the variance of Yije. If pi; were known, this model would
be a generalized linear model with log link and gamma distributed errors,

s?j ~ Ga(azy’i’j, 1}, with the dispersion parameter known and equal to 1. The
systematic part of the model is

(7.8) log E{s%;} = log o® + plog ;.
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Hence we shall estimate p by taking p;; = ?,-J-, in (7.8). The estimate of p for
the present data is p = 2.29(0.49), giving a 95% confidence interval for p of
[1.31,3.27]. Hence, both the inverse Gaussian (p = 3) and the gamma (p=2)
distributions are likely candidates for the distribution of Yk Since p is closer to
- 2, we shall analyse the data using the gamma distribution, Yiji ~ Ga(pij, 0%).

We shall analyse the data using a two-factor model with interaction and
log link,

log pij = i + B; + 6i5.

The analysis of deviance table for this model is

Model Deviance d.f &2 F d.f
o+ ,BJ' + 5,'_7' 10.570 54 0.182
o + B 15.362 70 0219 160  16/54
o 19.051 - 78 0.235 2.19 8/70
o 24.640 80 0.294 11.89 2/78

By the F-test for 6;; = 0, there is no interaction between day and machine, and
since F(8,70)g.95 = 2.07, there is weak evidence of an effect of day. Removing
the effect of day, there is a significant effect of machine (p < 0.0005).

We shall hence accept the model with only machine effect. The estimates
for this model is

Machine Coeflicient Original scale
1 4.001(0.095) 54.7(5.2)
2 3.360(0.095) 28.8(2.7)
3 3.830(0.095) 46.1(4.4)
5% =0.244 df=18

The estimates show the effect of machine on the log-scale, while the third column
of the table shows the effects on the original scale.

As mentioned earlier, the gamma distribution may be interpreted as the
first-hitting time distribution for a Poisson process, if A = 1/0? is an integer.
This case corresponds to a physical model in which the plate consists of grains
or layers of material, and where a particle travels across the plate from grain to
grain or layer to layer. The value ) = 1/6% = 4.1 indicates that, if the Poisson-
gamma model is correct, the number of particles or layers is small compared
with the thickness of the material.
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If our model for permeability is correct the negative of the parameter p
represents ”coarseness” of the material. The model thus allows us to distinguish
between the case of a Poisson process, as above, which corresponds to a gamma
distribution for the penetration time, and the case of a Brownian motion, which
corresponds to an inverse Gaussian distribution for the penetration time, the
latter corresponding to a continuous and uniform type of material. However,
a precise estimation of the parameter p requires more information, in the form
of a larger sample size, a larger spread of the p-values, or plates of varying
thickness.

3.7.5 Failures of Airconditioning Equipment in Airplanes.

In several cases we have been able to relate the convolution property of
an exponential dispersion model with a physical model for the phenomenon
under study, This was the case for the example in the previous section, and for
the examples in Section 2.3. There are many other possible applications of this
kind. For example, the model developed in the previous section for permeability
may be a reasonable model for the occurrence of faults in a machine ete. Thus,
the time it takes for a crack in a piece of material to develop into a fault may
be described by a first-hitting time distribution, provided the development of
the crack follows the corresponding stochastic process. However, the following
analysis shows that the fault-generating process might be more complicated
than this.

Table 3.4 shows the intervals between successive failures of airconditioning
equipment in 13 Boeing 720 aircraft (Prochan, 1963). Jgrgensen (1982) ana-
lyzed this data set using the generalized inverse Gaussian distribution, which is
a three-parameter distribution that includes as special cases the gamma distri-
bution, the inverse Gaussian distribution, and the reciprocals of these distribu-
tions. Jgrgensen’s analysis showed that the reciprocal of an inverse Gaussian
distribution fits these data, while significant deviations from the gamma dis-
tribution and the inverse Gaussian distribution were found. We shall hence
analyse the data using the reciprocal inverse Gaussian model.

We assume that the times between failures are 1/¥;;, where : = 1,...,12
denoctes aircraft and j = 1,...,n; denotes failures. Here we have excluded
aircraft 11, which has only two failures. We assume that the ¥;; are independent
and

Yij ~ IG(1/ i, 02).

For ¢? small, ji; is approximately the expectation of the failure time 1/Y;;.
We first test equality of ¢7,...,0%,. As estimates of o} we take 57 =
D;/(n; ~ 1), where D; is the deviance for the ith group of observations. The
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Table 3.4: Numbers of operating hours between successive failures of aircon-
ditioning equipment in 1§ aircraft.

Ajrcraft
1 2 3 4 5 6 7 8 9 10 11 12 13

194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209

41 58 60 48 56 87 11 102 12 5 100 14
29 37 186 29 104 7 4 72 270 283 7 57
33 100 61 502 220 120 141 22 603 35 98 b4
181 65 49 12 239 14 18 39 3 12 5 32
9 14 70 47 62 142 3 104 85 67
169 24 21 246 47 68 15 2 91 59
447 56 29 176 225 77 197 438 43 134
184 20 38 182 71 80 188 230 152
36 79 59 33 246 1 79 3 27
201 84 27 15 21 16 88 130 14
118 44 153 104 42 106 46 230
34 59 26 35 20 206 5 66
31 29 326 5 82 5 61
18 118 12 54 36 34
18 25 120 31 22
67 156 11 216 139
57 310 3 46 210
62 76 14 111 97
7 26 71 39 30
22 44 11 63 23
34 23 14 18 13
62 11 191 14
130 16 18
208 90 163
70 1 24
101 16
208 52
95

deviance for the inverse Gaussian distribution is known to be exactly (not just
asymptotically) x2-distributed,

2f0y. _
52 ~ 03%1—1) = Ga(o?,2/(n; — 1)).
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Hence, we use the gamma distribution, with known dispersion parameter and
weights n; — 1 for testing the hypothesis ¢? = ... = ¢2,. Under the hypothesis,
the scaled deviance (deviance divided by the value of the dispersion parameter)
for the gamma distribution is 17.0, which is not significant compared with the
x*(11)-distribution.

We proceed to test equality of uj,..., 9. The result is shown in the
following analysis of deviance table.

Model Deviance d.f 2 F df
i 13391 199 67.29
7 15028 210 7156 221 11/199
It may be shown that the F-test for the hypothesis 1y = -+ - = pq5 is exactly

F-distributed in this particular case, which is comfortable, because the large
value of &* does not allow us to rely on small-dispersion asymptotics. The F-
test shows significance at the 2.5% level, and hence we have moderately strong
evidence that the aircraft are different in terms of the time between failures of
the airconditioning equipment. The estimates of the u;s are

Aireraft Estimate .
1 36.0 (20.1)
2 30.7 (9.5)
3 42.4 (9.9)
4 40.2 (13.4)
5 61.1 (17.1)
6 11.2 (5.0)
7 14.5 (6.0)
8 18.3 (7.2)
9 8.6 (8.0)
10 17.7 (14.1)
11 14.8 (9.1)
12 42.9 (13.4)
&% = 67.29 d.f=199
It is worth noting that the estimate 1/;, being the average of Y, ..., Yin.,

has distribution IG(1/u;, a%/n;).
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It remains to interpret the reciprocal inverse Gaussian distribution for these
data. A possible interpretation comes from the fact that for 1 U ~IG(1/p, o),
U may be decomposed as

(7.8) U=U, +U,,

where U; and U, are independent, U; ~ Ga(0?,2) and U, ~ IG(p, pt/o?).
This result may be shown by using moment generating functions. By (7.8), the
expectation of U is yt+¢? which, by the value of 52, is considerably larger than
1 for the aircraft data.

We may think of U; and U, as respectively the time it takes before a new
crack in a piece of material starts to develop, and the time it takes for the
crack to develop into a failure. The latter process could be described by a
Brownian motion, leading to an inverse Gaussian first-hitting time distribution
for Up. Such a model might be realistic for complicated machinery, where
the internal forces produced during use provoke minute cracks from existing
microscopic weaknesses in the material, after which the crack develops into a
break, producing a failure.

3.7.6 Data on Wind Direction.

In Sections 1.3 and 1.5 we considered data on wind directions. The pro-
posed model was the von Mises-Fisher distribution,

KJ ~ UM(,UI'J 0-2)3

where i denotes season and j denotes measurement within season.

One possible justification for this model is as follows, Suppose that, for a
given season, there is a predominant wind direction, determined by the direction
between a low-pressure centre and a high-pressure centre. Suppose the actual
locations of the centres are independent, and follow two-dimensional normal
distributions,

Ui ~ Navi, p°I), i=1,2.

The wind direction is determined by the difference between the two centres,
U= Uz - Ul ~ Ng(vz - v1,2p21).

"The conditional distribution of the direction U/||U]| given ||U]| = u is then a
von Mises-Fisher distribution vM (g, 0?), where p1 is the angle between v; and
vy and

(7.9) 0? =2p%ru,
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where r = |jv2 — v{||, as shown in Exercise 3.34.

It might seem more natural to consider the marginal distribution of the di-
rection, instead of the conditional distribution given ||U]]. However, the disper-
sion parameter (7.9) has the right qualitative form. It decreases with increasing
distance between the actual wind centres vy and ug, and it is proportional to
the ratio between the variance parameter for U — I7; and the distance between
the theoretical wind centres.

The analysis of deviance table for comparison of the four seasons is

Model Deviance d.Jf &2 &3 F
i 69.4510 45 1.54 00
Ir 86.2458 48 1.80 00 3.63

As noted in Section 1.5, the value of 4% indicates that ¢? is not small
enough to justify the use of small-dispersion asymptotics for these data, which
is confirmed by the infinite value for 62. In fact, 02 = oo corresponds to the
uniform distribution, that is, no preferred wind direction. Hence, although
the value F' = 3.63 is significant at the 2.5% level compared with the F(3,44)
distribution, we can not definitively reject the hypothesis of 2 common wind
direction for the four seasons.

The estimates of the wind directions for the four seasons are (in degrees)

Winter 272 (24)
Spring 330 (26)
Sumrmer 57 (26)

Autumn 232 (28)
g% =1.54 d.f.=45

The estimates indicate that the wind directions could be equally spaced around
the circle, corresponding to the hypothesis

pi = (p+in/2) mod 2w, 1=1,2,3,4.

More sophisticated models for the seasonal variation of wind direction are possi-
ble, but the present data do not contain much more information in this reapect.
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3.7.7T Use of Outside Labour Power for Amazonian Peasants.

In a study of the conditions of migrants in the Amazonian area of Brazil,
Botelho (1989) followed 210 families from two settlements. One economic and
social indicator for a family is the use of outside labour power. We analyse the
variable ¥’ = Z/w,where Z is the amount (Cr$) spent by the family per year on
hiring outside labour power, and w denotes the number of working members of
the family. The reason for standardizing by w is that the economic condition
of a given family is known to be in fairly direct proportion to the number of
working members of the family.

The variable ¥’ may be zero with positive probability, because some families
do not use any outside labour power. One distribution with this characteristic
is an exponential dispersion model with power variance function, provided the
power p belongs to the interval 1 < p < 2. In the present analysis we chose
p = 1.75, although in principle, p should be estimated from the data.

It is difficult to give more detailed arguments in favour of this particular
exponential dispersion model, but by the standard convolution formula for ex-
ponential dispersion models, the model has the attractive feature that if we
wish to combine the values of ¥ for two families, this must be done by weighted
averaging using w as weight, corresponding to the sum of the values of Z.

Letting ¥; ~ ED(p;, 0% /w;) denote the distribution of ¥ for the ith family,
we shall use the log link, and assuming independence of the Y;s, we thus have
a generalized linear model. The data contained a large number of independent
variables, and we eliminated many of the variables using the ¢-test based on the

estimate 2. The parameter estimates for the final model were

Variable Coefficient se
Gross income 0.0030 0.0004
Wages received —0.022 0.004
Family labour power —0.0060 0.0007
Family size (settlement 1) 0.17 0.08
Family size (settlement 2) —0.21 0.18
No debt (settlement 1) -5.3 0.3
No debt (settlement 2) —5.7 0.3
Debt (settlement 1) —27 12
Debt (settlement 2) —6.9 0.8

& 1199 d.f. =201

52 990
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The estimates show that family labour power has a significant negative effect
on the use of outside labour power. Thus, families with many working members
tend to hire less outside labour power per working family member. Similarly,
gross income has a positive effect, and wages received has a negative effect
on the use of outside labour power. The family size (number of working and
non-working members) seems to have opposite effects in the two settlements,
although the effects are hardly significant.

For the qualitative variable debt/no debt, there seems to be a significant
difference between the two settlements, in that families in settlement 1 with
debt hardly use any outside labour power at all, compared with other families
in either settlement. For the quantitative variables, the mean of the variables
was subtracted in each group, and hence the conclusion holds for an "average”
family in the settlement. This difference between settlements indicates a more
dramatic economic differentiation (in terms of the use of outside labour power)
in settlement 1, which consists of spontaneous settlers, compared with settle-
ment 2, which was sponsored by the federal government. An overall comparison
of the two settlements based on an F-test (F' = 3.73, d.f. = 3,201, p ~ 0.01)
shows that there probably is a real difference between the settlements. For com-
parison, note that # = 4.52, which is rather different, although in the present
case F would lead to the same conclusion.

§3.8 Analysis of Deviance for Discrete Exponential Dis-
persion Models

3.8.1 General Points,

Most of what has already been said about analysis of deviance in the con-
tinuous case (Section 3.7.1), continues to apply in the discrete case. The main
difference is that in the discrete case, the dispersion parameter is nearly al-
ways known. This is the case, for example, for the binomial distribution and
for the Poisson distribution, the latter having only one parameter. In Section
2.5.3 we considered two parameters for the Poisson distribution, but since these
parameters are not identifiable, there is in practice just one parameter.

A discrete exponential dispersion model is necessarily on the convolution
family form,

p*(2;8, ) = a*(\, 2) exp{6z — As(0)}, =z € Ny.
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In this case, we define the deviance as D(z/}, p) for a vector z = (z1,...,2,)7
of independent observations.

We shall use the likelikood ratio test, or equivalently, the difference between
deviances, for testing hypotheses. In the analysis of deviance table we report
the deviance, degrees of freedom, and their first differences. For a table like

Model Deviance d.f AD; Ad.f
H; Dy fi
H, D, f2 D, -D; fa—h

H; Dy fs D; — D, fa—fa

we test H; under H;_; by the y2-test
AD;fo® = (D; — Di_y)/c?

and compare with a x*(f; — fi_1)-distribution. The quantity D;/o? is called
the scaled deviance. We normally assume that the model is parametrized such
that ¢® = 1, which makes the scaled and unscaled deviances equal. If 02 # 1
its value will be given in the table. For testing individual parameters, we use
a normal reference distribution. Thus, if ﬁj is an estimate with standard error
se(f;), the test

L Bi-8
se(ﬁj)

has an asymptotic normal N(0,1) distribution for Bi=83.

The deviance D; for a hypothesis H; is an obvious measure of fit of the hy-
pothesis, and in the small-dispersion case D; has an asymptotic x>-distribution,
allowing us to make a formal test for goodness of fit of H;. However, since the
x®-approximation does not hold in the large-sample case, one should be very
carcful with this test. Moreover, for the purpose of checking the model, a single
measure of fit is not enough. Only a thorough inspection of the fit, including
an analysis of residuals, can do this. In short, we shall emphasize the use of
differences between deviances, rather than the deviances themselves.

3.8.2 Beetle Data.

In Section 1.2, we considered data on beetle mortality as a function of the
dose x of a poison. Our model for this data is ¥1,...,Y, independent, where
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Y; is the number of dead insects out of n; in the ith experiment. If the insects
in a given experiment are independent with respect to the action of the poison,
and all have the same probability of dying, we have a binomial distribution

Y; ~ Bz(n,,,u,)
Assuming a generalized linear model with logit link we obtain the model

(8.1) | log 15—, = Bo + Buzi.

The analysis of deviance table for testing 8; =0 is

Model Deviance d.f. AD; d.f.
By + Biz; 11.23 6
o 284,20 T 273 1

Hence the x?-test for By = 0 is 273 with 1 degree of freedom, which shows
an overwhelming significance against this hypothesis. This result confirms the
toxic effect of the poison.

The parameter estimates under the model {(8.1) are

~

Bo = —60.72(5.18) B = 34.27(2.91)

This is an example where the estimated correlation between estimates is very
high, with a value of —0.9997. This is caused by the fact that the z-values are
concentrated in a narrow interval far from the origin. To correct for this fact, we
subtract the average value T from each z-value, leading to the parametrization

1 fiﬂi = a+ fi(z; - T),

log

where @ = fy -+ /1Z. The estimate for a is & = 0.74(3.57), and the estimated
correlation between & and f; is reduced to the value 0.020. The estimated
probability of dying for z = 7 is ¢%/(1 + %) = 0.6769.

To obtain reliable estimates of the probability of an insect dying for a
given dose z, particularly for high or low value of z if is important to analyse
the data using a correct link function. For this purpose it may be necessary to
try alternative link functions, or to use a parametrized family of link functions,
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the latter case meaning that we are effectively estimating the link function from
the data,

3.8.3 Paired Comparisons.

'The quality of an industrial product is difficult to measure in quantitative
terms, because it may involve many different aspects, such as taste, colour,
appearance etc. However, if presented with two items for comparison, a per-
son may express his preference for one or the other, thus producing a binary
outcome. This technique is called the method of paired comparisons.

Assume that k objects are compared in pairs, and let n;; be the number
of times 7 is compared with j. If we use different Judges for each of the n;;
comparisons, and if the judges all have the same probability i; for preferring
item 1 over item, j, we have a binomial model,

Yij o~ Bi(nl’j’f-‘t‘j)s 1€e<j <k,

where Y;; is the number of times 7 was preferred to J. We also assume that the
Y;s are independent. Table 3.5 shows a set of data on the effect of an additive,
monosodium glutamate, on the flavour of apple sauce (Sinclair, 1982).

Table 3.5: Data for effect of monosodium glutamate on apple sauce

Items No. of times No. of times
compared i preferred to j t compared to j
ij Tij nij

12 3 4

13 3 4

14 3 4

23 3 4

2 4 4 4

3 4 0 4

A simple model for the probability of a judge preferring i over 7 is
d;

5,'+5j’

Hij =
where é1,...,8; are positive parameters. On the logistic scale, the model is

Hij
log —— =4; - 8;
R %
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where f#; = logé;. The model thus ranks the observations on an interval scale
with #; — f; indicating the magnitude of the preference for : over 7 on the
logistic scale. The model is a generalized linear model with logit link. Since the
model] is over-parametrized, we take 8 = 0.

The deviance for the model, for the data in Table 3.5 is 6.937 on 3 degrees
of freedom, and the parameter estimates are

B = 1.21(0.84) B = 0.89(0.81)

~

Bz = —1.00(0.87) Bs=0(-)

The treatments corresponding to 7 = 1,2, 3 corresponded to increasing amounts
of additive, and treatment 4 is a control with no additive. The two smaller doses
of additive (i = 1,2) were thus well accepted by the judges compared with the
control, whereas the highest dose of additive (i = 3) was less well accepted.
However, the standard errors of the estimates are fairly large, and hence it is
not possible to draw any firm conclusions from the present data.

3.8.4 Highway Accidents.

In Section 2.3 we considered data Y;;, the number of road accidents on
straight highways in Denmark in 1963, where j = 1,2, 3,4 is season and ¢ = 1,2
is road type, respectively 3-lanc and 4-lane. We argued in Section 2.3 in favour
of a discrete exponential dispersion model for ¥;;, the Yi;s being independent,
and here we shall analyse the simplest case, 2 Poisson distribution, According
to the properties of the Poisson process, this model is appropriate if cars act
independently of each other, accidents in non-overlapping time intervals occur
independently of each other, and if the number of cars is large, and each car
has a small probability of being involved in an accident in a given small time
interval, this probability being the same for all cars.

If ¥;; ~ Po(p;), we assume that
(8.2) log ptij = o + B,
which means that we have a generalized linear model with log link. We take

ay = 0, such that o is the difference between the two road types. The analysis
of deviance table for this model is
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Model Deviance d.f. AD; d.f.

a; + ﬂj 7.2818 3
B; 481.55 4 474.3 1
6 17.56 3

; 24.843

The table shows the differences in deviance relative to the first model, for both
the second and the third model.

The deviance for the model (8.2), compared with x2(3)g.g5 = 7.81, sug-
gests a certain lack of fit for this model, although the x2-approximation to the
distribution of the deviance may be questioned, as mentioned in Section 3.8.1.
Figure 3.5 shows a plot of log Yi; versus j, which shows a reasonable constancy
of logY1; — log ¥3;, confirming the model. The parameter estimates are

oy = 0(-) B = 3.744(0.092)
B2 = 3.769(0.092)
Gy = 1.512(0.079) Bs = 3.924(0.088)

A1 = 4.057(0.086)

.760 log Y
520 4-lane

W WWWwaLsbhahbhbbbnO@O@mayem
A oE e a4 R s 4 e a4 a2 84t 4 owow
4]

o
o

Figure 3.5 Plots of log ¥;; versus j for the data
in Table 2.6
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The estimates for §; show that there is an increasing number of accidents
through the year for both road types. :

§3.9 Notes

One of the important achievements of Nelder and Wedderburn’s (1972) pa-
per, in which generalized linear models were introduced, was to suggest analysis
of deviance as a unified method for inference in a number of different statistical
models. Analysis of deviance thus generalizes analysis of variance for normal
models, analysis of log-linear models for contingency tables, and probit analysis
for binomial data.

The generalization of analysis of deviance to dispersion models was pro-
posed by Sweeting (1981) and Jgrgensen (1983), and Sweeting (1984) showed
that analysis of deviance may, to a certain extent, be generalized to location
and scale models,

Small-dispersion asymptotic results have been in use for long in various
areas, for example in analysis of contingency tables and binomial data. As a
general method for dispersion models and exponential dispersion models, it was
proposed by Jgrgensen (1987a,b).

The saddlepoint approximation was introduced by Daniels (1954), and has
recently enjoyed renewed interest, see e.g. Barndorff-Nielsen and Cox (1979)
and Lugannani and Rice (1980). A recent survey of this topic was given by
Daniels (1987).

Exercises

Exercise 3.1: Write and test a set of GLIM macros for fitting the exponential
dispersion model with variance function V{u) = exp(—pg). The test should
include fitting one or more models for a set of data. Use the identity link, or a
link of your own choice.

Exercise 3.2: Show that the deviance for the normal distribution has the form

n

D(y,u) = wa(yi — p)?.

=1
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Exercise 3.3: Show that the deviance for the inverse Gaussian distribution

has the form
D(ya f-") Zwl y— ‘u.z)

(]
Show that if Dy = D(y, i) is the deviance for a given hypothesis, then the
maximum likelihood estimate of ¢ is D, /n.

Exercise 3.4: Find the deviance of the t-distribution (Section 1.3), with prob-
ability density function

Py A) = a1+~ 1)), veR.

Exercise 3.5: The hyperbola distribution is defined by the probability density
function

p(yi i, A) = a(M)y exp{—(A/2)(y/p + p/y)}, y >0,

where A > 0 and g > 0 are parameters. Show that this is a dispersion model,
and find the deviance. Show that the distribution of u = logy is of the form
(3.6).

Exercise 3.6: The symmetnc hyperbolic distribution is deﬁned by the proba-
bility density function

ply; s A) = a(N) exp[-M1+ (y — )"}, ye R

Show that this is a dispersion model, and find the deviance.

Exercise 3.7: Show that the normal and inverse Gaussian distributions are
steep.

Exercise 3.8: Plot the deviance of the inverse Gaussian distribution (n = 1)
as a function of y for some values of p.

Exercise 3.9: Show that the saddlepoint approximation is exact for the normal
distribution.

Exercise 3.10: Show that the saddlepoint approximation is exact for the in-
verse Gaussian distribution.

Exercise 3.11: Calculate the deviance for the generalized hyperholic secant
distribution, verifying the result in Table 3.1. Find the saddlepoint approxima-
tion to the distribution.

Exercise 3.12: Calculate the deviance for the exponential dispersion model
with variance function V(i) = e™#, verifying the result in Table 3.1. Find the
saddlepoint approximation for this distribution.
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Exercise 3.13: Show that the exponential dispersion model with power vari-
ance function V() = pP is steep in the cases 1 < p < 2 and p > 2. Calculate
the deviance of the model in these cases, verifying the result in Table 3.1, and
find the saddlepoint approximation to the distribution.

Exercise 3.14: Find the saddlepoint approximation to the t-distribution in
Exercise 3.4.

Exercise 3.15: Find the saddlepoint approximation to the hyperbola distri-
bution in Exercise 3.5. Hint: consider the distribution of logy.

Exercise 3.16: Make a numerical or graphical evaluation of the approxima-
tion D(y, ) ~ (y — p)?/V () for the gamma distribution, and for the inverse
Gaussian distribution.

Exercise 3.17: Make a numerical or graphical evaluation of the approximation
D(y, p) ~ (y — p)*/V for the symmetric hyperbolic distribution in Exercise 3.6,
and for the von Mises-Fisher distribution.

Exercise 3.18: Let D(y, 1) denote the deviance of a single observation from
an exponential dispersion model ED(y,0?). Show that D(y, u) is convex as a
function of y for any given g, and strictly convex when the model is steep.
Exercise 3.19: Make a plot of the deviance D(y, u), for a single observation
from the exponential dispersion model with power variance function V{u) = p?
{p < 0), as a function of y. Make sure that the plots illustrates the fact that
the deviance is convex, but not strictly convex, as a function of y, due to the
fact that the model is not steep, cf. Exercise 3.18.

Exercise 3.20: Find E(logY) in the case ¥ ~ Ga(g,0?). Hint: use the
expression for the expectation of the deviance.

Exercise 3.21: Find E(1/Y) in the case ¥ ~ IG(u,0?). Hint: see Exercise
3.20.

Exercise 3.22: Consider n independent observations Y7,...,Y, with ¥; ~
IG(p;, 0% /w;), i = 1,...,n. Show that the deviance has a y2-distribution

D(Y, ”)/02 ~ Xz(n)'

Hint: Find the moment generating function of the deviance in the case n = 1.
Exercise 3.23: Consider a model with log likelihood

L(p) =) log p(ys; ),
=1

where p( - ;u) is a probahility density function and g = (yy,..., )7 is a
parameter vector. Define the score vector by u(g) = 8L/8y, and let i(y) =
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Vary(u(y)) denote the Fisher (expected) information matrix for ft. Show that -
if the operation of integration and differentiation may be interchanged, then
(i) Bu(u(pu)) =0
(i) i(n) = Bu{u(p)u()T} = —B{3%Lr}.
Hint: differentiate the relation S p(y; )dy = 1 twice with respect to .

Exercise 3.24: Using the same notation and assumptions as in Exercise 3.23,
consider the hypothesis

H: H= f(ﬂ):
where 8 = (f1,..., 8, )T. Assume that f is differentiable, and define
of
X(8) = 35T

Show that the score vector for £ is

uM(8) = X(8)Tu(£(A)).

Show that the expected information matrix for g is
{8) = X(8)Ti(£(8)X(B). 2

Show that the observed information matrix for B is _](ﬁ), where
0L S LT
- _ T _ _ 1 .

Exercise 3.25: Find i(o? | z1) for each of the three models ¥; ~ N{pi, o fw;),
Yi ~ Ga(pi, 0% fwi) and Y; ~ IG(u;, 0% /w;) where Yi,...,Y, are independent
random variables, and g = (1, ..., ua)7 is given by the model y = u(0).
Exercise 3.26: Show that 62 = 2 = 2 for the normal model.

Exercise 3.27: Consider the model

Y;'NGa(ﬂ(] +ﬂ1:r,-,0'2/w), Z=1,2,,10

where z; = ¢, 7 = 1,2,...,10. Conduct a small simulation experiments, com-
paring the estimators 2 and &2, Use for example the values By = 1, B = 2,
o’ =1and w = 1,2,5. Hint: o2 /w =1 corresponds to the exponential dis-
tribution, which is easily simulated. To obtain simulated gamma variables for .
w = 2 or 5, use the convolution formula.
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Exercise 3.28: Write a small computer program to calculate the estimator 62

- given the value of the deviance, assuming a gamma distribution, and that the

weielits w; are all equal to 1. Use the approximation
P(X) 2 log A — 1/(2)0) — 1/(122%)

for the digamma function.

Exercise 3.29: Consider the hyperbola distribution on the form

ply;n, A) = 2Ko(Ny} texp{—(M/2)(w/n +n/y)}, y>0
where

o) = (1/2) [y exp{=(/2)0 + v}y
is the modified Bessel function of the second kind and order 0. Define
) =(1/2) [ exp{-(D(w +v )},
0
which is the modified Bessel function of the second kind and order 1. Derive

the relevant formulas and equations for the estimates 62, 5% and 7* for this
distribution, expressed in terms of Ky and K;.

xercise 3.30: Consider the model ¥; ~ ED(y,0?), for Y,...,Y, indepen-
~— dent. Define the Pearson statistic by

XP =) (¥i— @) /V(@),
i=1
where # = n71(¥; +---+Y,). Show that X? is asymptotically normally dis-
tributed for n tending to infinity, and find the parameters in the asymptotic
distribution. Hint: Express X? in terms of /i and S = }_ Y}, show that (2, 5)
is asymptotically normnally distributed, and use the §-method. '

Exercise 3.31: Show that the von Mises-Fisher distribution satisfies the con-
ditirns of Theorem 3.6.1.

Exercise 3.32: Let ¥7,...,Y, be independent with distribution

Y; ~ Ga((fo + Pri)?,0%), i=1,...,n.

-~ F'xamine the condition that limn~i{8) be positive-definite for this model.

Exercise 3.33: Analyse the Energy Expenditure Data (Example 1.1.1) using
the n odel .
- Y; "‘!N(ﬁg-l-(ﬁl—ﬁg)f,‘l,az/’wi), i=1,...,n,
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in the notation of the example. Compare the analysis with the analysis.in
Section 3.7.2.

Exercise 3.34: If the diameter of a tree with conic shape is measured at dis-
tance k above ground level, show that the volume of the tree is

_ T 23 EAY:
V_lzdh/(h kY.

Analyse the data in Section 3.7.3 using this model with k = 1.37(4.5ft).

Exercise 3.34: Let ¥ follow a two-dimensional normal distribution Na(,
a?I).
a} Show that the density of ¥ may be written in the form

_ 1
fly1,y2) = (2r) Texp —5og {0+ U3+ el +ad ~ 2 v} -

b) Show that the conditional distribution of Y/R given R = r, where R? =
Y? + Y7, is a von Mises-Fisher distribution vM(6, o2 /rm), where m?
#3 + ¢ and 6 is the angle given by tan 8 = ps/ps.
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