MONOGRAFIAS DE MATEMATICA N© 48

EXPONENTIAL DISPERSIONi_
~ MODELS

| Bent J grgensen

I SBN
85-244-0052-8

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E TECNOLOGICO
INSTITUTO DE MATEMATICA PURA E APLICADA

Estrada Dona Castorina, 110
22,460 — Rio de Janeiro — RJ



23)
24)
25)

26)
27)
28)

29)

30)
31)
32}
33)
34)
35)

36}
a7
38)
39)
40)
41)
42)

43)

44)
45)
46)
47)
48}

e
TSR T

MONOGRAFIAS DE MATEMATICA

A A s L e

Alberto Azevedo, Renzo Piccinini - INTRODUGAC A TEORIA DOS GRUPOS {reprod)
Nathan M. Santos - VETORES E MATRIZES {esgotada)
Manfredo P. do Carme - INTRODUGRO A GEOMETRIA DIFERENCIAL GLOBAL (esgot.}
Jacob Palis Jr. - SISTEMAS DINAMICOS {esgotada)
Jod3o Pitombeira de Carvalho - INTRODUGAO A ALGEBRA LINEAR (esgotada)
Pedro J. Fernandez - INTRODUCAO A TEORIA DAS PROBABILIDADES (esgotada)
R. C. Robinson - LECTURES ON HAMILTONIAN SYSTEMS (esgotada)
Manfrede P. do Carmo - NCTAS DE GEOMETRIA RIEMANNIANA (esgotada}
Chaim S. HOnig - ANALISE FUNCIONAL E O PROBLEMA DE STURM-LIOUVILLE (esgot)
Welington de Melo - ESTABILIDADE ESTRUTURAL EM VARIEDADES DE DIMENSAOQ 2 ""
Jaime Lesmes - TEORIA DAS DISTRIBUICOES E EQUACOES DIFERENCIAIS {esgotada)
C1dvis Vilanova — ELEMENTOS DA TEORIA DOS GRUEOS E DA TECRIA DOS ANEIS "
Jean Claude Douai - COHOMOLOGIE DES GROUPES (esgotada)
H. Blaine Lawson Jr. - LECTURES ON MINIMAL SUBMANIFOLDS, Vol. I (esgotada)
Eloa L. Lima - VARIEDADES DIFERENCIAVEIS (esgotada)
Pedro Mendes - TEOREMAS DE {1-ESTABILIDADE E ESTABILIDADE ESTRUTURAL

EM VARIEDADES ABERTAZ (esgotada)
Herbert Bmann - LECTURES ON SOME FIXED POINT THEOREMS (esgotada)
—  EXercfCIOS DE MATEMATICA / IMPA {esgotada)
Djairo G. de Figueiredo - NUMEROS IRRACIONAIS E TRANSCENDENTES {esgotada)
e  B. Zeeman - UMA INTRODUGCEO INFORMAL A TOPOLOGIA DAS SUPERFICIES (esgot)
Manfredo P. do Carmo - NOTAS DE UM CURSO DE GRUPOS DE LIE (esgotada)
Aléxéhdéi,PtésféI:EQLECTURESVQN5FORMALLY¢REAL FIELDS (esgotada)
Aton ‘Simig - INTRODUCEO X ALGEBRA - (esgotada) -
JaiMe,}eEmes%—tSEMINARIO DE ANALISE FUNCIONAL (esgotada)

Frad Byader - SOME STABILITY AND PERTURBATION PROBLEM FOR DIFFERENTIAL
AND INTEGRAL EQUATIONS {esgotada)

Lécio Rodriguez - GEOMETRIA DAS SUBVARIEDADES (esgotada}
Mirio Miranda - TFRONTIERE MINIME
Fernando Cardoso — RESOLUBILTDADE LOCAL DE EQUAGOES DIFERENCIALS PARCIAIS

. . {esgotada)
Eberhierd Becksr - HEREDITARILY-PYTHAGOREAN FIELDS AND ORDERINGS OF
o HIGHER LEVEL
Hyman Bass -~ PROJECTIVE MODULES AND SYMMETRIC ALGEBRAS
J. Weyman - PROBABILIDADE FREQUENTISTA E ESTATISTICA FREQUENTISTA
Freddy Dumortier - SINGULARITIES OF VECTOR FIELDS (esgotada)
T. M. Viswanathan - INTRODUGEC A ALGEBRA E ARITMETTICA (esgotada}

F. Javier Thaysr - NOTES ON PARTIAL DIFFERENTIAL EQUATIONS

Edward Bierstons - THE STRUCTURE OF ORBIT SPACES AND THE SINGULARITIES
OF EQUIVARIANT MAPPINGS

F. Javier Thayer - THEQORIE SPECTRALE

Manfredo P. do Carmo - FORMAS DIFERENCIAIS E APLICACOES i

Alexander Prestel, Peter Roquette - LECTURES CN FORMALLY p-ADIC FIELLCS

Yves Lsquain, Arnaldo Garcia - ALGEBRA: UMA INTRODUCRO {esgotada)

JF. Lucas Barbosa, A. Gervasio Colares - MINIMAL SURFACES IN R?

Pierre H. Barard - SPECTRAL GEOMETRY: DIRECT AND INVERSE PROBLEMS

Pierra H. Bérard - ANALYSIS ON RIEMANNIAN MANIFOLDS AND GEOMETRIC

APPLICATIONS: AN INTRODUCTION
Felipe Cano Torres - DESINGULARIZATION STRATEGIES .FOR, THREE-DIMENSIONAL
VECTOR FIELDS e '

otto Endler - TEORIA DOS CORFOS

Winfried Bruns, Udo Vetter - DETERMINANTAL RINGS

Abramo Hefez - INTRODUGAC A GEOMETRIA PROJETIVA

Fernaando Quadros Gouvéa - FORMAS MODULARES: UMA INTRODUGEO

Bent Jérgensen - EXPONENTIAL DISPERSION MODELS



Contents

Page
) Introduction . . . .o vttt e e 1
2) Moment generating functions . . . . . ... ... L. 3
3) Natural exponential families. . . . . . ... ... ... ... ..., .. ..... 20
4) Exponential dispersionmodels . . . . ... ... L L 34

References



Copyright 1991 Bent Jgrgensen
g

Todos os direiteos reservados



1. INTRODUCTION

' Exponential families, togethér with several other fundamental concepts: in -statistics
date back to the paper'by Fisher (1934). Other early contributions to the study of exponen-
tial families were Darmois'(1935), Koopman (1936) and Pitman (1936). The exponential

family continues to play an important role in statistical theory and practice, and many

papers devoted to the theory of exponential families are published every year. -

* A'fandamental account of exponential families may be found in the book by Lehman
(:1959)',: which influetices the subject ‘even today. - Almost twenty years later, the book by
Bariidorff-Nielsen (1878) was published, providinig a'definitive account of the- theory of
exponential farilies, and exploring conditionial inference for full exponential fariilies, and
iizsin'g convexity in the" estimation 'tﬂéc‘)‘i‘}n" ‘Johansen (1979) éivés a- brief actount of the
theory of regular exponential families, and complements Barndorff-Nielsen'’s book in areas
such as test theory and asymptotic theory. A more recent account is that of Brown (1986),

developing decision theory aspects of exponential families.

Recent developments have provided generalizations of exponential family models, such
as reproductive exponential families (Barndorff-Nielsen and Blaesild, 1983, 1988), and ex-
ponential dispersion models (Jgrgensen, 1986, 1987a). The class of dispersion models
introduced by Jdrgensen (1983, 1987b) generalizes exponential dispersion rﬁodels, and in-
cludes the class of proper c‘iisi)ersion models, studied by Barndorff-Nielsen and Jérgensen
{1989) which is in a sense a dua,l to the class of exponential dispersion models. While
most of the ideas mentioned above are fairly recént, the exponential dispersion model form
dates back to Tweedie (1947). However, Tweedie’s ideas seemed to be ahead of his own
time, and did not have any immediate impacf. About twenty-five years later, Nelder and
Wédderbtim (1972) proposed the same form of distribution, independently of Tweedie, as
the error distribution for their class of generalized linear models. The ideas of Nelder and

Wedderburn (1972) has had a considerable impact on current statistical methodology, as



‘indicated by the number of papers published on generalized linear models, and a number
of books, such as McCullagh and Nelder (1989) and Aitkin, Anderson, Francis and Hinde
(1989).

In the present notes, we develop the mathematical theory of exponential dispersion
models, including relevant aspects of characteristic function theory. In Chapter 2 we give
a brief, but self-contained introduction to the theory of moment generating functions and
t:liara.ctefistié functions. Although this material is standard, there is no easily accessible
single source that suits our needs. Lukacs (1970) treats characteristic functions, and Ka-

wata (1972) treat Fourier transforms, both in-the univariate case.

. .In Chapter 3 and 4 we introduce exponential families and exponential dispersion
miodels via equivalence relations on the space of (probability) measures on R*. This leads
to a simple ma.th_ema.t.ical treatment of basic properties of the mpdgl_s. Thelinspira.tior_x
for this-approach came from the paper Letac and Morja (1990) and other papers by these

authors, whose treatment of natural exponential families is closely related to our approach.



2. MOMENT GENERATING FUNCTIONS

The moment generating function is an 'iﬁdisl—)eh-sé.ble tool for handling exponential
'families and exponential .dispersion. models, - The present chapter summarizes the requi-
site: theory for moment generating furictions, characteristic functions and Fourier-Laplace

transforms for multivariate distributions.

2.1 Definition and propertles of moment generatmg functlons

Let M, denote the set of all propa.blhty dlstnbutmns on Rk For P € Mk, we define

»

the moment generating function of P by -

s e, semh
and we define the cumulant generating func;tion of J‘D‘b'y
Kp(s) = logMp(s), ~sER:: -
The effective domain of Mp, respectivg}y Kp, 'iS'def‘inled' by
Op = {s G R*: Mp(s) < oo}

If X is a random vector with dlstnbutmn P we wr:te M x instead of M Py a.nd sxmlla,rly
IC x and 0. X mstead of IC P a,nd ©p, respectlvely When no confusmn anses we sometlmes

.omit the subscript P, respectwely X, ete.
Theorem 2.1.1. Assume that X~ ) P wbere P E ‘M, Then' l
(i) 0 < Mp(s) < oo. for séR". :
(i) Mp(0) =1 and !cp(o)
(iii) f Bisan £ x k- matrix and c-an E‘x 1 vect;)r then "
Opxic={s€ R%: BTse G)X} ‘
Mpxie(s) = Mx(BTs)e" €, 8€ R‘

3



Kpxse(s) =Kx(BTs)+s-¢, seR.L

(iv) Let X =(XT,XT)T; where X is d-dimensional and X, is (k — d)-dimensional, and .

Iet s = (3T, sT)T" be a similar pertition of s. If X; and X, are independent, then
1192

MX(S) = MXx(s.l)MX:(.sz)'l 8 e Rk ’

K:X(S) = le(sl) + KX:(‘gZ)? S € R*
Proof: See Exercise 2.1.

Example 2.1.2: Let us derive the moment generating function of the multivariate normal

distribution. Consider first the case where X ~ N(0, I). Then for s € RF,
Mx(s) = (2n)~*/? /exp(wé:r ‘z+g-w)dr
= (2r)~k/? exp(—;-s - 8) fexp{—%(:c ‘z—2s z+s-9)}dx
1 —k/2 1 i ;
= exp(is -8} f (o) exp{—-.;z-(:r — sy {z —s)}dz
= exp(ls -3}

If B is an € x k matrix an 4 an n ¢ x 1 vector then BX +p~ Ne(g, Z), where Z B‘BT
By Theorem 2.1.1 (iif) we  have

1o
Maxus) = exp {5.(3'*“3) Bletsouf
1 : ]
=exp{—2—sTEs+s-,u}, s € RS,
which is hence the moment generating function of the f-variate normal dis’cribut_ion
Ne(p, T°). Since the matrix B was arbitrary, the result holds even if 3 is singular. I

The next theorem concerns conve)uty propertles of Mp and Kp. But first we introduce

Holder’s inequality.



Proposition 2.1.3. Let P € M. Then for any s1,32 € R* and 0 < o < 1 we have
/exp{asl 24 (1—a)sy :c}P(dz) |

s { [ 'emp(dz)}a{_f = ‘P(dm)}l a

F0<a<l and 51 # 89 the mequalzty is strict 1fa.nd only if P js not concentrated on an
aﬁ':ine subspace of R¥,

()

Proof: The ioga.r.ithm is a concave function, and hence for any g > 0,a; >0 and
0 < @ < 1-we have '
alog a; + (1 ~ a)log ay Slog(aa; + (1 — a)ag). . {1.2)
Let = fe* "”P(d:z:), i =1,2. If either ¢ = 00 or ¢3 = oo the inequ'znlity'(l..l) is trivial,
If both ¢; and ¢3 are ﬁmte let :
a; = e [¢y, =12 '_ S 7 (1.3)
Insertmg this in (1 2) a,nd takmg the exponential functlon on both Sldﬂﬁ we get :

exp{a31 z+ (1 —alsy- :):}/(c1 c,'“’)
(1.4)
< ae® ey + (l —a)e* ey,

By integrating both sides of (1. 4) thh respect to z we obtain (1.1).
Since log is a strictly concave functlon we ha.ve strict inequality in (1.2) if 0 < o < 1
" and af ;é ay. Hence, f 0 < o < 1 and s; # sz, then equality in (1.1) is obtained if and
only if in (1.3) a; = a; with probability 1 with respect to P, which is equivalent to -
. (sl— s)-T= 'lo_g(cl_/czr)l : B - . {1.5)
with probability 1 with respect to P. Since 51 — 53 # 0, the set of s that satisfy (1.5) is
an affine subspace of R¥, and hence the condxtmn for strict mequa,hty in (1.1) follows n

Usmg the result of Propomtxon 2 1 3, we may now obtain the convexity propertles of
Mp and Kp.



Theorem 2.1.4. Let P € M;. Then

(i) The set Op is convex.
(i) Mp is a convex functmn on Op. .
(iil) Kp is a convex functmn on Op, a,ud stnctly convex if and only if P is not concentrated

on an affine subspace of Rk: | I
Proof: Assume that s;,52 € ©@p and 0 < & € 1. Then by Hoélder’s irequality, -
“ Mp(as; + (1 a)sy) = ] explas - 5+ (1 — a)sz - z}P(dz)

e
< MP(S1)GMP(SZ)1 o

By the deﬁmt.mn of Op we have Mp(s,) < o for 7= 1 2, and hence by (1.6) Mp(as; +
(1 - a)sg) < oo, This 1mp]1es that as; + (1 —a)sz € Op, and hence @p is convex.”

The convexity of Kp follows from (1.1) by taking logs on both stdes The cond1t1on
for strict convexity follows from the condition for strict inequality in Holder’s inequa-
lity. Finally, the oonve:uty o{ Mp follows because Mp is the composition of exp a.ud Kp,

where exp is convex and i mcreasmg and K p is convex, see Exercise 2.11. 1

“Example 2.1.5: Consider a multmon:ual random vector X = (Xy,...,Xx)T with proba-

e ML

. where p; > 0;2; 20, i=1,.. ,k,p1+ +pk—land$1+ +mk=n Themoment

bility function

generating function of X is, for s = (s1,...,sx)7 € R,

Mx(s) D (a’:l n zk)pf"' <o s PErexp(syzy + - o+ sk)

z1+--rp=n
zi20

- E - . ‘ xrl- T
: LA . pjet R :
> I1 pit
14 tEe=n (:1:1 T $k_) i=1 (21—1 p,e"") y (Z . ) . B

)



Since X1 +-- + X E=n the dlstnbutlon is ooncentrated on an affine subspace of R¥, and
it is not dlfﬁcult to verrfy directly (Exerclse 2, 2) that the cumulant generatmg function of
X is not strictly convex, in agreement with Theorem 2.1.4 (111) o

Let us consider the linear transformation ¥, = BX'= (X1,..,,X¢-1)", where

0o - 0
q1 - BRI

By Theorem 2.1.1 (iii) the moment géﬁgéi:é]:ing function of ¥ is, for s = (31, L skl)E

k—1
My(s) = (Epie" +Pk) A

Pl

R

2.2 The characteristic function and the Fourier-Laplace transform

A very important property of the moment generating function is that it is analytic,
making the powerful tools of complex function theory available to us.
For this purpose we need to extend the definition of the moment generating function

to complex &gumnts. For P € M, we define the Fourier-Laplace transform of P by
Mp(z) = f ¢*P(ds), z€C* Ry

Maze explicitly, let z = (21,...,2;)T and write z; = s; +it; where ¢ is the imaginary unit.
Then o l

U M(sa+ ithge. 0 sk F ity) = _/ e** cos(t - z) P(dw)
o f e"* sin{t < c)P(dc),

where s = (s1,+..,5¢)7 and £ = (t1,...,8)7.

..7



A spec1a.l case of the Founer—Lapla.ce tra.nsform is the characten.st:c funchon, deﬁned

by tp_p(t) = Mp(it) for t € RE. Hence .
tpp(t): = fc“'zP('d:c) = /‘;:os(t'-‘m)é(dm)' |
+ ’f sin(t-2)P(dz), . tERE.

“We uge the same conveutioﬁs reg‘ai'ding random variables as in the case of moment gene-
rating fl.l.nct‘.m)ns.=L and write M X mstead of M P if X ~P ete.

The next theorem summarizes the elementa.ry propert1es of Mp a.nd pp.

Theorem 2.2.1. Let P & M. T.he.u
(i) The integral (2.1) is absolutely convergent i and only ifz€0p, wbere

Op =0p +iR* = {s +it: s€ Op, t € R*}.
(i) Mp(s) = Mp(s) for seOp: -
(i) Fp(i) = pp(t) for tERE.
(i) Hp(0) = pp(0) = 1.

| (v) IMp(z) < Mp(’Re z) for z€ Op, Where ’Re z= (Re 21,. ’Re zi)T.

(vi) |¢p(t)| <1 for te€ RE.
(vii) Let B be an £ x k matrix and ¢ an £ x 1 vector, and let X have distribution P. Then
MBX+c(z) MX(BTz)ez ¢ BTZ ¢ Op

PBx+o(f) = fpx(BTt)e“""',: teRY

8
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viti) Let X = (X X T)T bé'a partition of X with components of dimension d aad & — d,
respectwely, and let z = (2], 23)" and t = (], ¢])7 be similar pa.rtxtmns ofz € C"
andt € R*. F X, a.nd X, are mdependenf. then

Mx(z) = Mxx(‘él)-MXz(z)a . z e éP.

and

px(t) = px,(t)ex,(t2), teRE g
Proof: For z = s+ it € C* we have
zzi_!sx uz[_e : . ‘ (22)

Hence, by niajorizat_ion we have that the .integra.l (2.1) is convergent if and only if
s = Re z € Op, which-shows (i). By (2:2)

[eto] s 112000 =t

which shows (v} and, for s = 0, (¥1). The remaining parts of the theorem are trivial,,a;nd

the proofs are left for the reader. I’

2.3 Analytic probe,rties of univar_is_fte moment generating functions

To facilitate the discussion of the a;ﬁalytic properties we begin. with the univa.ria;;e
case, whmh a.llowa us to rely on the fa.mlha.r theory for a.nalyinc functlons in one variable.
The results in the -multivaciste case, trea.ted in Section 2. 5, may often be denved from the
correspondmg umvana.te reault - . oo .

Let Pe M 1 a.nd let M P be the Founer-La.place tra.nsform of P and M P the moment

igeneratlng function of P. The eﬁ'ectwe domam for M p is then an interval on the real hne,
and Op is the correspond.mg vertlca.l strxp in, the complex plane. The following theorem’

shows that Mp isan analytic functlon



Theorem 2. 3 1. Let P € M1 and assume that 0 E mt 6 p. Then the Founer—LapIa.ce
tra.nsform M P xs a.na.lyt:c on Jnt @ p- The ’Ihylor expa.nszon of M P a,round 0 1s

it

Mp(z)gz‘ﬂigp)zi, e T gy
=

where

u,(P) f a:-'P(dx)

_is the jth moment for P, which exists for any j = 0,1,2,.... The cumulant generating

function Kp is analytic with Taylor expansion g T ies e
P .
o) = Y. SAEL . (52

=0

around 0, where KC;(P) is the jth cumulant of P, which exists. for any j =0,1,2,.... In.
particular, P has mean and variance (writing X ~ P)

E(X) = Kp(0)  Var(X) = K5(0),
respectively. I P is not degénerate, then Var(X) > 0. §

Proof: Let zp = sg +itp € int ©p and write Mp as follows for z-~ Z:(] ‘<e

Mp(z) fexp{ z— zo):c + zu:r:}P(dx)

Cranoa . (3.3)
J"O L Ta -
where € > 0 is such that |z — zol < e 1mp11es z e mt Gp For a,ny n > 0 we have
Z (z - 20) l I < Z Iz - ZD] 11:] I zu::l
=0 MR = ‘ o .
S o , S g (3-4)

'-exp(lz—zol le +Sow)
) :< (ezz_l_g—ez) su:c

10



-We have 39 :l: € E G p, 80 the mtegral of (3 4) thh respect to P is ﬁmte By Lebesgue s
dommated convergence theorem we may hence mtercha.nge mtegra.tlon a,nd summatlon in
(3.3). Thus, for |z — 2| < ¢ B o

Mp(z) = E(Z Zo) /ﬂe""”P(dm),

3=0

Janertealtor

[y

which shows that Mp is analytxc on mt G) P For 2 = 0 we obta.m (3 1) a.nd tha.t ,u_,(P)
-exlstsforany1>0 - T
Let Log denote the prmclpal branch of the complex loga.nthm Since M p(s) > 0 for
" s '€ Op, Log Mp(z) exists in the domain

R= {z € int Op:Mp(z) ¢ (00,0} -~ " (3.5)

a,nd is a.nalytlc in R Hence KZ p( ) log M p(s) is a.na.lytlc w1t}1 Taylor series (3 2) Fmally,
' .lf P is not degenera.te, then K (0) Va.r (X ) > 0 cf. Exerc1se 2. 20 I | .

Example 2.3.2: Let us find the eharacter_istic function of the normal Histributioﬁ. From
Example 2.1.2 we know that the moment generating function of the univariate nerma.i dis-
- tribution N(0,1) is exp (; 7). By a.na.lytlc contmua.tlon, the eorrespondmg chasacteristic
function is exp { 1(it)?} = exp (—-tz) By Theorem 2.2.1 (vm) the characteristic function
of Nk(() Ig) is hence - : ‘ ‘

’ . - i 1‘2 L _1_; _J’ . 1 . .

) o C exp(_ztl)' ""'exp(—ztk) _exp( 2t t)! o

where.t = (tl, vy ti)s Finelly, by Theorem 2.2.1 (vii) we conclide that the characteristic
function of the normal distribution Nz(p, L) is

exp('-%tTEt +ith),
where we have used the transformation X — BX +u, I =BBT, a8 in Example 2.1.9. |
By Theorem 2:3.“.[, Mp(s) is continuous and differentiable on int ©p, and id the next
theorem we show that Mp is confinucus at the bbﬁﬁda.i-y of ©p in the one-dimensional
case. This is not the case in general in the multivariate case, cf. Barndorff-Nielsen (1978,
p. 105). C

11



Theorem 2'.3.3._‘ Let P € M,, and assume that Op has a finite endpomt Bo. Let limgp,
denote either limgg, or limgre,, depending on whether B is the upper o:_]ower endpoint '
of ©,. Then the following two statments are equivalent
@) 6eOp |
(1'1') timg.q, Mp(8) exists and is finite.
If (i) or (ii) holds, then Mp(8y) = lims_.g, Mp(8). B
Proof: We assumne that 6y is the lower endpoint of ©p, the prodf in the opposite case
~ being similar. If §; € ©p, then Mp(fy) < co. For 8 <8 <+ e, we- have

’ ’ éaz S eﬂu:c + e‘(90+¢):l:- ‘ ’ ) . -. . 7 (3.6)
For 6y + ¢ € ©p we have Mp(§y + &) < oo, which together with (3.6) and Lebesgue’s
Dominated Conve‘rgence‘Theorem implies that limg s, Mp(#) exists and is equal to Mp(8;)..
This shows the implication (3) = (3). No‘wrass.ume that (ii) holds. By Fatou’s Lemma,
applied to the sequence of positve functions e?* fora séquehcé of #s, we find that M, P(6) £

limg g, Mp(6). Hence 8, € Op, concluding the proof.

2.4 The ﬁniqueness theorem for characteristic functions

We now show that a distribution is characterized by its _ché.:"acteristiq function. The 7
Fourier-Laplace transform provides a link between the moment generating function Mp
and the characteristic function !p é. This allows us to use the fact that wr characterizes P

to show that Mp also characterizes P.

Theorem 2.4.1. Let P, P; € M; be two distributions such that

ep(t) =eplt) = for. te R

Then By =P &

- Proof: ‘We show how a g_iisbribuﬁqn P € My may be recovered from its-chéracteristic

- function . The starting point of the proof is the fact that.
oty = faf"“—ﬂp(dz').-

12
11



By integrating both sides of this equation with respect to the-density function of the normal
dlstnbutlon Ni(0,a711}), we get

(Z)™" [etwyew-it-s = Lttt

a

. —-k/2
- ff ett-(m—a)P(dw)(zg) / 6—1/2at-tdt
21: —kf2 ffexp{ (z—s)— %at t} dtP(dx)

= /exp.{uz—la-(.s - z) - (s — )} P(dx),

where we have use the result of Example 2.3.2. Hence we have the relation

[

(Zz)‘* ] exp(—it s — éat-t)so(t)dt = / fols = 2)P(dz), (4.1)

where f, is the density function of the normal distribution N(0,e I;). The right-hand
side of equation (4.1) is the density function of the convolution of P with the normal
distribution N(0,a Ir), whereas the left-hand side depends on P only through . Since
the convolution on the right-hand side converges in distribution to P as a tends to 0, we

may hence recover P from ¢, which proves the theorem. §

Corollary 2.4.2 (Cramér-Wold). Let X have distribution P € My. Then P is uniquely
determined by the set of marginal dlstnbuhons of §- X for 8 € RF. 1

Proof: The characteristic function of - X isfors € R
wo.x(s) = /exp(z'sﬂ - 2)P(dz) = px(s8). (4.2)

If the distzibution of 8- X is known for any § € R¥, then by (4.2) the characteristic function
v x(u) is known for any u = s6 € R*. Hence, by the uniqueness theorem, the distribution
of X is known. | '

Using Theorem 2.4.1 we may nbﬁr-show_ that a univariate analytic moment generating
function characterizes its distribution. The corresponding result, for the multivariate case

is shown in the next section.

I
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Theorem 2.4.3. Let Py and Pg belong to M. If there eﬂsts an épen sét S COp Norp,
such that Co | '
Mp,(s) = Mp(s) for s€S, = (4.3)

then Pr=F;. 1
Proof: Let §y € S and define
Qi(dz) = {€%*/Mp,(60)} Pi(dz), i= 1,?. (4.4)

Then Q1 and Q. are distributions in M,, and actually (4.4) is an example of a linear
exponential family which we study in Chapter 3. The Fourier-Laplace transform of @Q; is

Mo,(2) = Mp,(# + 80)[Mp,(60), Re 2 € Op, — b,

Defining R = int &, N int ®p, — b, we have S — o G R, and by (4.3) Mo, and Mo,
are identical on S — ;. By analytic continuation, qu- and MQ: are hence identical on
R, and since R includes the imaginary axis we conclude that ¢ and @, have the same

characteristic function. Hence Q1 = Qz, and by (4.4) this implies P, = P;. 1l

2.4.5 Analytic properties éfwmultivariate moment generating functions

We now generalize the results of Section 2.3 to the multivariate case. We first show

that an analytic moment generating function characterizes its digtribution.

Theorem 2.5.1. Let P € M; and let Mp be the moment generating function of P with
effective domain Op. If int Op # 0 then Mp characterizes P. § ’

Proof: Let 8, € int @p, and define the distribution @ by
 Q(dz) = {e*[Mp(60)} P(dx). . (5.1)
with moment generating function

MQ(S) = Mp(ao + s)fMp(eoj, s€Op— 90

14



If X ~Q and 6 € R¥, then 6 - X has moment generating function
Me.x(s) = Mp(bo + 6)/Mp(6s),

and since int &p £ ¢ we have int©sx # ¢ for any # € R*. By Theorem 2.4.3 the
distribution of 6~ X may be recovered from Mq, which in turn is defined in terms of Mp.
Hence, by Corollary 2.4.2, the distribution of @ may be recovered from Mp. By (5 1) P

is umquely determmed by @, and hence the conclusion of the theorem follows. '

Corollary 2.5.2. Let P € .Mk a.nd assume that mt @p # ¢. The the functzon § —
Mp(8y + s8) is analytic for any 6, € intOp a.nd 9 e RF, In part:cular, Mp is a.nalytzc

separately in each coordinate.

Proof: Follows immediately from the proof of Theorem 2:5.1. I

As a prologue to the multivariate version of Theorem 2.3.1 we look at the Tayltla-r
expansion of the exponential function. The reason is that in the ﬁroof of Theorem 2.3.1
the Taylor expa,nsion of the Fourier-Lapace transform was obtained by integrating the
Taylor expansion of the exponential functmn term by term. In the multwanate case we
need the expansion of exp(z; ++ -+ +z; ), which may be obtained from the Ta.ylor expansmn

of exp. Thus

exp{z; + -+ z¢)

1 . t . 1 i
= - ) N P
il Z (11...zk) 1 k

=0 1 ,0enytk 20

fbrofip=i
i .2:1 at
! 1.0k

This shows that exp{z; + -+ + z;) is ahalytic‘ as a function of the compléx arguments
21y..., 2k, by displaying it as the suin of its Taylor é’ei-ies. In general, a function of several
15
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complex variables, f, is said to be analytic in a region S if for every zp € S, f is given by

its Taylor expansion around zp in some neighbourhood of zp,

. o gt +uf P (zl 201 L (Zk Zug-)i" _
f(z) Z 81 (8:) ) | . .
L= Ot Dz 3l 1l
"= _“_0 .

The multwana.te version of Theorem 23.1is

Theorem 2.5.3. Let P € My and assume that 0 € int©p. Then the Foumer—LapIace

transform N p is analytic on int G) p. The Taylor expansion of Mp is

%1!' '3k!

Mp(z)=_ 3, 'u————ﬂzl o Z (5.2)

iy == iy=0

where

iy, (P) = fmi‘ .. .mi"P(d:z:)

is the (i1,...,ix)th moment of P andz = (z,... ,zk)T,_ ¢ =(z1,...,7%)7. The cumulant

generating function K p is analytic with Taylor expansion around 0.

Ky(s)= Z -,C“I—"‘@ s s, - (5.3)

RITA

where K;, i, (P) is the (31, ...,i)th cumulant of P and 5 = (s1,... ,sjc)T. In particular,

P has moments and cumulants of arbitrary order. [ :

Proof: Let zp = 5o +ifp € int O p be given, andlet £ > Obe such that I.z - zp| < € implies
z € int@p. Here |z| denotes: the Euclidean norm on CF, obtained by identifying C*
with the Euclidean space R, Using the univariate Taylor expansion of the exponential. -

function we obtain

Mp(2) = fexp{(z — %) - & + zg - }P(dx)

i=0

-/ IR L
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The following inequality justifies the use of Lebesgue’s theorem of dominated convergence,

writing sg = (o1, - ., s0%)7 etc,

Z{(z'"ZO .’t} gtz <ZI(Z_ZU x!‘ oL

I=D i=0 '
= exp{|(z — z0) - &| + 80 - z}

(5.5)

< exp{|(z1 — zo1)| 21 + - -+ + |(zk — 2ok )zx| + 50 - 2}

&
< H{(en; + e—cx;)ea.iz;}_

i=1
We may choose € such that the rectangle with vertices so; & £ is contained in int©p.
Then the function (5.5) is integrable with respect to P, and interchanging summation and
integration in (5.4) we obtain

Mp(s) = ] {(z - ;zg ¥ e P(dn)

s—ﬂ

—Zf 2 ( ) (SR SR S 2 PO
21 e} )

=0 F1 0000k 20
g boeig=i

- Z (21 - 2:0]:)11 .. .(z'k — zok)"‘ wl-l . zi" ezr’.;%P(dx),'
TLEPREE TS 1 ¥ :
i =--=ip=0 ’

which shows that Mp is analytic in int & p. For zy = 0 we obtain (5.2). Since Mp(s) >0
for s € Op, Log Mp is defined and analytic in a region of €k Aﬁpntaining 6p, and hence
Kp =1log Mp is analytic, with Taylor expansion (53)] l

| Corollary 2.5.4. Let P € My, let X ~ P, and assume that 0 € int ©p. Then X has

mean vector p ={(f1,...,fx)7

L ,BICp(sl, ena ,3;‘) i
f-‘l - . 33,' =0

and variance matrix V = {v;j, i,j=1,...,k} with _

s = 52]Cp(31,-.. -2 8k) I ‘
H 38.'635 =

17



The variance matmx Vis pos:twe deﬁmte if and only ifPis not concentrated on an ai‘ﬁne

subspace of R*. It

Proof: The expressions for u; and v;; follow from the results of Theorem 5.3. The condi-
tion for positive-definiteness of V follows from "generé.l properties of variance matrixes, cf.

Exercise 2.20.

Exercises

Exercise 2.1: Prove Theorem 2.1.1.

Exermse 2.2: Show that the cumulant genera.tmg function of the multmomxal dlstnbutmn

is not strictly convex.

Exercise 2.3: Show, without using Theorem 2.1.4, that the curiiniant generating function
of the multivariable normal distribution Nx(,Z) is strictly convex if and only if Z is

positive-definite.

Exercise 2.4: Use the convekity of the exponential function to show, without using Theo-

rem 2.1.4, that the moment generating function Mp is convex.

Exercise 2.5: Find the moment and cumulant generating functions of the following dis-
tributions: degenerate, uniform, exponential, gamma, normal, inverse Gaussian, Poisson,

binomial and negative binomial.

Exercise 2.6: Let P be the measure with probability density % e~ 1*1. Find Mp and Op

for this measure.

Exercise 2.7: Let P be the Cauchy distribution, .with;—c.. density function
J(z) = 1/{n(1 + a?)}. Show that @p = {0}. '

Exercise 2.8: Show that the moment generating function of a univariate distribution P

is strictly convex if and only if P is not concentrated in zero.

Exercise 2.9: Show that the only univariate distributions whose cumulant generating

function is not strictly convex are tﬁq_'degeqer_ai_;_q- 'distziﬁutions.
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Exercise 2.10: Let U = {a + bt tle R} with a;b € R, b#0, denote an affine subspace
of R?. Give an example of a distribution P concentrated on U, but not degenerate, and
show that K p is not strictly convex.

Exercise 2.11: Show‘that if f A= B, and ¢: B — R, where A C R* is convex and
BCR 1san interval, and f and ¢ are convex functions and ¢ increasing, then go f is
convex. Give conditions under which g o f is strictly convex. Show that exp{f(z)} is a
convex function for f convex.

Exercise 2.12: Show that if P € M} has bounded support, thenr Op = R*.

Exercise 2.13: Consider the moment generating function Mx in Example 2.1.5for k = 2.
Derive the relation between Mx and the moment generating function of the binomial
distribution. ' .

Exercise 2.14: Consider fhe moment generating funct-ion My in Example 2.1.5. Give
necessary and sufficient conditions for Ky = log My to be strictly convex.

Exercise 2.15: Make a plot of ©p for the distributions mentioned in Exercise 2.5.
E:‘cercise 2.16: Verify the details of the proof of Theorem 2.4.1 in the case k= 1.
Exercise 2.17: Show that the cumulants of the standard ﬁormal distribution N(0,1) are
Ki=0,Kz=1andK;=0forj>2 : '
Exercise 2.18: Write the Taylor expansions (3;1) and (32) for each of tHe distributions

of Exercise 2.5. In particular, find mean and variance in eachrca‘s_e.

Exercise 2,19: Let P and @ be distributions in M}, such tha.t there exists an open set
S with 0 € S C ©OpNBq. With Mp(s) = Mg(s) for s € S Show that: P =Q. Can yon
suggest any improvements to this result?

Exercise 2.20: Show that Var(X) > 0 for any randem varjeble-X, and that Var(X) > 0,
unless X is degenerate. Use th;s result to show that the vana;nce-covan_ance matrix V for
a random vector X is nonnegative definite, and that .V is positive definite, unless X is

concentrated on an affine subspace of R¥.

Exercise 2.21: Prove that X +aY 2 X for a — 0 for any two random vectors X and V.

L4
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3., NATURAL EXPONENTIAL FAMILIES

This chapter contains an account of the theory of exponenital families, providing the

relevant background for the study of exponential dispersidn models in Chapter 4.

3.1 Linear exponential families

To define a linear exponential family, we consider an equivalencé relation among mea-
sures on I_R.k. Let M, denote the set of all o-finite measures on B, the class of Borel sets
in R¥. Recall that My C M, where M; denotes the class of probability measures on By.
Define the relation «+ on My by v « ' if and only if there exists a pair (a,b) € R* xR
such that o

V(dz) = exp(a - = + b)(dx) , o

Proposition 3.1.1. The relation « is an equivalence relation in M@, and the restriction
ofi:.,-: g to My is also an equivalence relation. § 7 .

Proof: Taking v = +/ and a =0, b = 0 in (1.1) we see that the relation is reflexive.

Solving (1.1) for v(dz) we obtain
v{dz) = exp{(—a) -  — b}+/'(dz),
which shows that the relation is symmetric. Finally, if v « ' and v’ & »" and (1.1)
holds, then there exists a (¢,d) € R* x R
v"(dz) = exp(c- z + d)v'(dz)
" =exp{{ate) -z +b+dhu(de).

Hence v & v", so that the relation s transitive, and we have shown that « is an
equivalence relation. The restriction of an equivalence relation to:a subset of its domain

is, again an equivalence relation, and hence the restriction of «» to M; is an equivalence

relation.

20
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Definition 3.1.2: If P C M; is an equivalence class with respect to «+ we say that P
is a linear ezponential family. If A C M is the equivalence class in M, containing P,
then for any v € A we say that P is the linear ezponential family generated by v, which
we indicate by writing P, instead of P. The set A is called the basis of P and is denoted
B(P). B ' '

Let v be a measure in My and define
Ku(s) = log[e"'”u(d:r), s € Rk,

By analogy with the cumulant generating function of a probahility distribution we call K,

the cumulant transform of v, even when v is not a probability measure. The set
0, = {s e RF: K,(s) < o0}

is called the effective domain for K,.
We now ‘consider the representa\ztion of a linear exponential family in terms of proba-
bility density functions. Let

P{dz) = exp(a - z -+ b)v(dz),

where (a,b) € R¥ x R and v € M. If P € M; we have

] e =y (dz) = 1,

and hence b = —K,(a) and @ € 6,. Hence, the linear exponential family generated by v

is. the class of probability measures defined by
Py(dz) = explf -z — K, (0)}v(dz), 8€0O,. (1.2)

The parameter 6 is called the canonical parameter corresponding to the representation
(1.2), and @, is called the canonical parameter domain.

It may be convenient to express » in terms of some kind of standard measure, for
example Lebesgue measure or counting measure. If v(dz) = f(z)p(dz) for some measure
p € My, then -

Po(dz) = f(z)exp{f - = — K.(8)}p(dz). (1.3)
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Conversely, if @ and K are functions on R* such that f is non-negative, and p € My is
such that A
Py(dz) = F(z)eb* %O p(dz) (1.4)

is a probability measure for any 6 € ©, where © € RF, then for every § € ©

K(8) = log [ 1(a)e®= ()

is the cumulant transform of the measure v(dz) = f(z)p(dz), the family P = {Py: 6 € O}
is a subset of the linear exponential family P,, and © C ©,..

Example 3.1.3: By Example 2.1.2 the standard norma) distribution in R*, Ni(0, 1),
has moment generating function M(s) = exp(1s - s). Hence the linear exponential family

generated by Ni({0, ;) is given by
—kj2 1 1
Py(dz) = (2m) exp{—i.r x4 6-z— 59 -8}dz

= (2'.rr)""/'2 exp{—-;-(z —8) - (z — 6)}d=,

which is the class of normal distributions Ni(6, Fr) where & € o

Example 3.1.4: The Poisson distribution Po(m) has probability function

T

P(X =1)= ”;—Ie-"‘

1
= Fexp(ﬂn: —e?), zeN,,

where 8 = logm. Hence we have a linear exponential family of the form (1.3) with
flz) =1/xz!, K() = ¢? and p the counting measure on Ny. il

The next theorem shows how two representations of the form (1.3) for the same family

are related.

Theorem 3.1.5. Consider a linear exponentiajl family P with representation (1.3) and let

Py(dz) = g(z) exp{9 - = — Ks(%)}(dx)
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be a representation of P of the same form with §(dz) = g{z)y(dx).
Then there exist constants a € R* and b € R such that
(i) ©=0,—a
() Ks(d) =K,(b +a)+5, ¢ €O 0

Proof: Since the measures 6 and v generate the same exponential family they are equiva-
lent in the sense of Proposition 3.1.1. Hence there exist eonstants a € R* and b € R such

that 6(dz) = exp(a - z + b)r(dr), and
Py(dz) = exp{yp - = — Ks(9h) + a - z + b}u(dx).
Integrating both sides with respect to ¢ we get

K:.S(’l!)) —b= K:,,(‘t,l') + G),

which implies (i) and (ii). N
Corollary 3.1.6. Any canonical parameter domain for a linear exponential family is

convex. Il

Proof: Choose v to be a probability measure in (1.2), then by Theorem 1.1.4, @, is con-

vex. By Theorem 3.1.5 (i) this implies that any canonical parameter domain is convex.

Having examined the representation of a linear exponential family in terms of probabi-
lity density functions, we now consider the representation in terms of cumulant generating
functions. Let (1.2) represent the linear exponential family generated by v, and let Ky

denote the cumulant generating function of Pg. Then
Ko(s) =K, (s+8)—K.(68), s€6,—4. {1.5)

The next theorem shows that any class of cumulant generating functions of the form (1.5)

correspond to a linear exponential family.
Theorem 3.1.7. Let K: © — R with © C R* be a given function, and define
Ko(s) = K(0+s)—K(8), sc©-8. (1.6)



Suppose there exists a 6y in © such that on © ~ 6y K, is-identical to the cumulant
generating function of a probability distribution Py, say. Then for every 8 € ©,K¢ is
identical on © — @ to the cumulant generating function of a probability distribution in the

linear exponential family generated by Fy. K

Proof: Le P be the linear exponential family generated by Fp. By (1.5), the cumulant
generating function of an arbitrary member of P is, for Bp+8c®andse®— (6 +8),
given by

R6,(8 + 5) — Kgo(6) = K(80 + 8+ 5) — K(80) — K{8 + 8) + K (6o)

) w7
= K:90+9(‘s)1

which shows the theorem. I

In Theorem 3.1.7, if int® # @, then by Theorem 2.5.1, the cumulant generating
functions (1.6) uniquely determine a linear exponential family, wheréas if int © = § this
not the case, and there may be many linear exponential families corresponding to {1.6).
The following theorem, which is similar in contents to Theorem 3.1.7, avoids this problem

by using the Fourier-Laplace transform.

Theorem 3.1.8. Let P be a family of distributions on R¥. Then P is a linear exponential
family if and only if there exists a v € M. such that the distributions in P have Fourier-

Laplace transforms
My(2) = M(8 + 2)/M(8), 0€O,, 6+Rez€9,, (1.8)

. where M(z)= [e*"v(dz). I

Proof: If P is a linear exponential family, then (1.8) easily follows from (1.2). Con-
versely, if 8y € O, is given, the linear exponential family generated by the distribution

corresponding to Mp, is given by the class of Fourier-Laplace transforms (1.8). n



3.2 Support, convex support and affine support

In this and the next section we study the support and the canonical parameter domain
of a linear exponential family. Specifically, we consider the case where either of these two
sets is contained in an affine subspace of R*.

Let v € My be given, The support S, of v is the set of points z in RF for which any
neighbourhood of z has positive v-measure. By C, we denote the convez support of v,
which is the convex hull of S,, the smallest convex set which contains 5,. Similarly, the
affine support A, = aff S, is the smallest affine space containing S,. These three sets are
nested as follows: S, C C, C A,.

Theorem 3.2.1. If two measures v and v/ in My, are equivalent in the sense of Proposition
3.1.1, then S, = S,s, C, = C,r and A, = A,+. In particular, the probability measures of
a linear exponential family all have the same support, the same convex support and the

same affine support. I

Proof: The fact that S, = 5,., follows from equation (1.1), and since the support of a
measure v determines its convex support and affine support, the assertions of the theorem

follows. I

Theorem 3.2.1 allows us to refer to the common support of the members of a linear
exponential family P as the support of P, which we denote Sp. In a similar way we speak
of the convex suppor Cp of P and the affine support Ap of P.

Let &, denote the generate distribution with support {a} C R*. It is easy to see
(Exercise 3.2) that the linear exponential family generated by 6. consists of 6, alone,
whereas the canonical parameter space is R* for any representation of the family. Hence,
the canonical parameter does not yield a parametrization of the family. In dimension two
and higher, it is easy to construct non-trivial examples of this phenomenon. The folloﬁving

example illustrates this.

Example 3.2.2: Let X; and X, be random variables such that Xy = é, where ¢ is a
constant, and X3 ~ N(0,1). The joint distribution of X; and X, is hence concentrated
on the affine subspace {(1,22)7 € R?% z; = ¢} of R2. The linear exponential family P
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generated by this distribution is given by

Peo,an)(ds) = (25) % exp{ - (a2 — 8"} (5. % 7)(do),

]
where 1 is the Lebesgue measure on R. Since (61,6,) varies in R? and Pg, ,0,) = P(,,6,)

for any 8;,8] € R, (8,,8;) does not parametrize P. Note that by applying an affine

tra.r'xsfoi‘lxﬁa.tion, we may obtain a distribution concentrated on any given affine subspace of

R g !

b

In the next theorem we identify the cases where a canonical pa.ré.meter does not

parametrize the family.

Theorem 3.2.3. Let P be a linear exponential family and let 8 be a canonical parameter
for P with domain ©. Then the mapping # ~+ Fp is a pa.ra.metrizdtion c_)f P if and only if
Ap =R g

Proof: Consider the representation with respect to v &€ B(P)

Py(dz) = exp{8 - ¢ ~ K, (6)}v(dz)

for P, and let 81,8, € © = ©,. Then
Py, (B) = Py,(B) VBEB, (2.1)

if and only if -
exp{f; : ¢ — K,(6,)} = exp{; - 7 — K, (62)} []

which in turn is equivalent to

(02~ 61) 2 = Ku(8:) = K, (1) . (22)

i A, = R*, then (2.2) implies 6; = 6g, and hence ¢ 'l;;éj}'.i‘é,metrizes P, which shows the if?
part of the thebrem. I A, # R¥, there exists a vector 4'# 0 in R¥ such that for every
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z € Ay we have a- & = ¢, where c is a constant. Let 6, € ©, be given and let 6, = 8; + a.
Then

/ e Ey(d) = f oxp{(0s = 61) -+, -zo(de) =
_ e / e%"%y(da) < oo,

which shows that 8, € ©, and ¢ = £,.(62) — K,(6;). Hence we have found a pair 8,,0; in
©, with 8, # 8; which satisfy (2.2). This implies that  does not parametrize P. I

It Ap = R* for a linear exponential family P, we say that P has full affine support.
This means that P is represented in a space of the smallest possible dimension. We shall

elaborate on this point later (Theorem 3.4.2).

3.3 The cancnical parameter domain

In the previous section we saw that in case a linear exponential family P does not
have full affine support, the canonical parameter dpes not parametrize P. In an analogous
way, if the canonical parpmeter space is contained in an affine subspace of R¥, then the

members of P are not characterized by their cumulant generating function.

Example 3.3.1: Let X; and X, be independent random variables with Xy~ N(8,1) and
X3 having a Cauchy distribution with probability density f(z) = {(1+2%)}~2. The joint
distribution of X, and X3 is hence

Ployon(de) = (22) ™2 expl~3(ax — 6,7} f(2)e,

for (61,8:)T € R x {0}. This shows that we have 2 linear exponential family with
canonical parameter space contained in an affine subspace of R*. Correspondingly the

cumulant generating function for X,, K(s), say, exists for s = 0 only. 11

The distinctive feature of Example 3.3.1 is that the canonical parameter space is

contained in an affine subspace of R*. We say that a linear exponential family P has open

27



kernel if there exists a canonical parameter space © for P such that int © # 0. If P has
open kernel, then by Theorem 3.1.5(i) any canonical parameter space for P has int © #£ 0.

To illustrate the concept of open kernel, consider a linear exponential family P, and
let Y = X - a, where a # 0 is a vector in R*, and X ~ Py € P, where P is given by (1.2),

say. Using (1.5), we see that ¥ has cumulant generating function
Ko(sa) = K.(sa +8) = K.(8), (3.1)

as a function of s, where sa € ©, — 8. If P has open kernel, then the domain of variation
for s in (3.1) is an interval with non-expty interior, which by Theorem 2.4.3 implies that

the marginal distribution of ¥ is determined by the cumulant generating function (3.1).

3.4 Natural exponential families and affine transformations

The discussion in the previous two sections indicate that desirable properties of a
linear exponential family are lost if either its support or its canonical parameter domain

are contained in an affine subspace of R¥. This motivates the following definition.

Definition 3.4.1: A linear exponential family with full affine support and open kernel is

called a natural exponential family. 1

Based on what has already been said, it seems reasonable to concentrate on natural
exponential families, ag we shall do in the following. There is little lost in doing so, as
the next theorem shows, because any linear exponential family may be transformed into
a natural exponential family by an affine transformation. In the following, the notation

span{B) denotes the column space of a matrix B.

Theorem 3.4.2. Let P be a linear exponential family, let the random vector X have
distribution P € P, and let

Y=BX+¢,

where B is an £ x k matrix and ¢ is an £ x 1 vector. Let § with domain © denote a

.canonital parameter for -’P, and consider the family of distributions of ¥'. Then
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(i} The family of distribution of Y for 6 varying in a set of the form
© N ( span (BT) + d)

for some d € RF, is a linear exponential family, which we denote P;.

(if) The family Py has full affine support if and only if rank (B) = £ and span (BT) C
Ap — a for somea € Ap.

(iii) The family Py has open kernel if and only if span (BT)C aff ©—8, for some by € O.

(iv) The family P, is a natural exponential family if and only if rank (B) = £ < k and
span (BT) C (Ap —a) N ( AF© — ) for some 6y € © and a € Ap. If furthermore
(Ap —a) N ( AF© — 6y) C span (BT), then the family of distributions of Y for P

varying in P is a natural exponential family.

Proof: Following Theorem 3.1.8 we use the Fourier-Laplace transform . Let
Py(dz) = exp{@ - = — K(8)}v(dz)

be the representation of P corresponding to the canonical parameter 8. The Fourier-

Laplace transform of Py is
Mo(z) = M(8 + 2)/M(8), Rez€©—0,
where M(z) = [ exp(z - z)v(dz). Hence the Fourier-Laplace transform of ¥ is
My(2) = M(8 + BT2)exp(c- 3)/M(0), Re(BTz)e 0 -8,

where z is now a complex vector in £ variables. If § € © N ( span (B7T) 4 d) we may write

8 = BT+ + d for some 4 € RY, and the Fourier-Laplace transform of ¥ becomes
My(2) =M + 2)/M(3),

where M(1p) = M(BT¢ + d) exp(c- ‘qb).. By Theorem 3.1.8 the family Py is hence a linear
exponential family. This shows (i).
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To show (ii), we consider a vector u in RE, If Py does not -have full affine support,

shere exists a u # 0 such that
u-Y =uTBX +uTc

hasa degenerate distribution. This may happen if either the rows of B are linearly depen-
dent, or since X € Ap[P], if span {BT) is not a subspace of Ap — ¢, because then u may
be chosen such that 7 BX is constant. .

To show (iii) we must look at the domain for the canonical parameter 1, given by
BTye6-d

in the case of the family Pa. Hence we must have span (BT) € Aff © — d, because
otherwise there would be a linear contramt on .
Finally, the first part of (iv) follows from (i) and (ili). If (Ap — @) n( Aﬁ' e —8)=

span (BT), then Py is the whole fa,mlly of distributions for ¥, which implies the second

part of (iv). B

, Example 3.4.3: We. illustrate the results of Theorem 3.4:2 by a simple example.

l Let X;,X; and X3 be indepemdent random variables with X normally distributed
N(ﬂl,l), 6 € R, X, Cauchy distributed as in Examp' 3.3.1 and X3 = ¢, where
c is a comstant. The fnnnly of joint distributions for (X, X3, X3), P, is clearly a linear
exponential family with support R? x {c} and canonical parameter domain R x {0} x R.
Hence P does not-havée full afine support, nor does it have open kernel. Because of the
independence, ench of the three variables follow a linear exponential family. Hence, the
condition in Theorem 3.4.2 {i) is sufficient, but not necessary for an affine transformation
to yield a linear exponential family. As an illustration of (i), note that the distribution of
X, has full affne support, but not the distribution of X5. The distribution of X; has open

. ¥ernel, but not the d‘istribuﬁm of X,. Finally, note that X; follows a natural exponential
family, and that this corresponds to the condition in (iv). The reader may write down for
himself the matrix B in edch case and check the conditions of the theorem. I

After considering affine transformations of linear exponentin} families, we now take a
brief look at the conditional distribution given an affine transformation. The next theo-
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rem treats the simplest case of a partitioned random variable. By combining this with
Theorem 4.2 it is possible to treat the general case of conditioning on an arbitrary affine

transformation.
Theorem 3.4.4. Let P be a linear exponential family, and suppose P has a representation
of the form

Py(dz) = a(y,2) exp{s - T1 + 03 - 23 — K(61, 8)}on X 22)(d), (4.1)

where z = (2T, z1)T, 8 = (8T,6])T € R% x R are partitions of x and 8, and where v;
and v, are measures on R% and R%, respectively. Then for every 6 € ©, the conditional

distribution of x; given o has probability density

a(zy, z2) exp(fs - 71)
a(z),2) exp(f) - 21)v1(dz1}

Py, (dxy | zg) = f v(de) - _ . (4.'2)

In particular this conditional distribution is a subset of a linear exponential family with

canonical parameter 8, independently of the value of 8;. 1

Proof: The marginal distribution of zz has probability density function
P2*(dsy) = expl0s - 72 — K(61,02)} f alzr, 72) éxp(8s - o) (dm wal(das)  (43)

By dividing (4.3) into (4.1) we obtain (4.2), from which the remaining conclusions easily
follow. B

Exercises

Exercise 3.1: Let P be the uniform distribution on [0,1]- Derive the linear exponential
family generated by P. T

Exercise 3.3: Find the linear exponential family generated by &,, the degenerate distri-
bution in a € R* , and show that it consists of 6, alone. Show that the canonical parameter

space of the family is RE.
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Exercise 3.3: Show that the following families of distributions are natural exponential
families: exponential, Poisson, binomial, normal N (g, 1), gamma (shape parameter know),
invess Gaussian (shape parameter known).

Exercise 3.4: Find the linear exponential family generated by the normal distribution

N(0, E) for a given positive-definite matrix I.

Exercise 3.5: Consider a family of distributions of the form
p(z;8) = f(a)e® =% p(dz),

where v(dz) = f(z)p(dz), where f(z) >0, z € R*, and 8 varies in a set ©. Show that

this is a subset of a linear exponential family.

Exercise 3.6: Let M > 0 be a function defined on a set © C R* with int © # 0, such
that for every # € ©, the function '

seEQ-—-8

coincides with a moment generating function of some distribution Ps. Show that the family

of distributions {Py: 8 € ©} is a subset of a linear exponential family.

Exercise 3.7: Let P € M, be a distribution with support §p < (0, oc), and define
ps(d) = f:r:aeth §>0.

Show that p;(f) < oo if and only if § € Op. Show that, for each § > 0, the family of
distributions
a:b'eﬂ::

.95 = T € _gp
pi(;6) 15(8)

is a linear exponetial family.



Exercise 3.8: Let X;,..., X, be ii.d random variables with distribution 2s(-; 0}, as de-
fined in Exercise 3.7. Show that the distribution of (U, V), where

)

U=y X

i=1

V= ilogx,-,

=1

is a linear exponential family on R2,



4. EXPONENTIAL DISPERSION MODELS

This chapter deals with the definition and properties of exponential dispersion models.
We introduce a new cquivalence relation, which together with the definition of a natural
-exponential family leads to the definition of what we call a convolution family, from which,
in turn, we define exponential dispersion models.

4.1 Convolution families

In Chapter 3 we defined linear exponential families via an equivalence relation in My,
the space of all o-finite measures on R¥. To define an exponential dispersion model, we
introduce a second equivalence relation and study the corresponding equivalence classes.

Let M} denote the subset of M), consisting of measures v for.which int ©, # @ and »
has full a:fﬁﬂe support, that is A, = RF. Recall that natural exponential families consist
of measures in the intersection My N My, where M, is the class of probability measures
~ on R, i

Now, define a relation ¢in My by v o' 'if and only if there exists a real number
A # 0 and an open set & C ©, N O,+ such that

K,(8) = MC,(60), 0¢€O0. (1.1)

If (1.1) holds, we write o/ = v,
Lemma 4.1.1. Ifv' =3, then O, = 0,,, and K, (8) = AK,(§) for every # in ©,. B
Praoof: Let 8y € O, and define two probahility measyres P and P’ by

P(dz) = efo==Kulluly (dg)

P'(dz) = ePort— Kbyt dy),
The corresponding curnulant generating function is, respectively,

Kp(8) = Ku(Bo + 8) — Ky (f0)

-
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and
Kpi(8) =K, (6 + 8) — K,i(6o).
Hence, by Corollary 2.5.2, the functions
A=K, (6 +8s), s€R
Fa(8) = K(8p 4+ 8s), seR~

are analytic in a meighbourhood of zero for any given # € R¥. By (1.1) we have

fa(s) = Mals) (1.2)

for 8y + s# € O. By analytic continuation, (1.2) holds for any s in the interval defined
by 6 + s8 € int@,. Similarly, (1.2) holds for any s such that 6 + s € int©,. By
continuity, (Theorem 2.3.3), (1.2) also holds on the boundary of the interval, Since § € R*
was arbitrary, we conclude that ©, = @, and K,«(§) = AK,(8) for any § in ©,. 1

Proposition 4.1.2. The relation ¢+is an equivalence relation in Mz, and the restriction

of ¢+to My N Mj, is also an equivalence relation. 1

Proof: The symmetry and reflexiveness of the relation easily follows from (1.1). Now,

assume that » 4 vy and ¥; ¢ v3. By Lemma 4.1.1 we have
eyl = 9,,2 = @ya-

Letting v = vg’\‘) and »3 = ui(,’\’), we obtain for any § in ©,,

K:Va(.a) = AQ’CV'.’(H)
= A MKy, (6),

so that v3 = 14'\“\’), and vz s v, showing transitiveness. The relation +is hence an

equivalence relation in My, and the same is the case for the restriction of drto MpNMy, B

Let A: denote the class of natural exponential families on R*. The equivalence
relation 4> gives rise to a relation in N3, also denoted ¢, defined as follows. If P, P; € M}
we write P; Pz if and only if there exists Py € P, and P; € P, such that P, + P,
In the following B(P) denotes the basis for the linear exponential family P, as defined in
Section 3.1. '
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Lemma 4.1.3. IfP; and P, are natural exponential families such that P; €+ Py, then for
every 1 € B(Py) there exists a unique vy € B(P;) such that vy 1, and the value of A
in the relation vy = ugA) is ndependent of vy for vy € B(P1). If furthermore 14 € Py then

vg € Pa. Il

Proof: By the definition of # and Lemma 4.1.1, there exist P) € P; and P; € P;, such
that ‘
Kp,(8) = AK:Pl(G)v 6e© (1'3)

for some A # 0, where @ = @p, = Op,. For any vy € B(P,) and vo € B(P2) there exist
a;,a; € R* and b, b2 € R such that

n(dz) = e * 01 P, . (dz)

and
vy(dz) = e*** 42 P, . (dz).
Hence
Ky (@)=Kp(@+a1)+bh (0 €0 —0a) (1.4)
and
Kr(8) = Kpy(0+a2) + b (8€ O —an), (15)

Introducing (1.3) and (1.4) in (1.5) we obtain
K. (8)=Mp (8 +a2) + b

=M, (0—ar+a)— A +by (§ €0 —a2) (1.6)
Hence, for -
as = ay, by = Ay (1.7)
we find that
vg = Y, ' (1.8)

so that for v; € B(Py) given, there exists a »; € B(P;) such that v, ¢»vy. With v, given
by (1.6) .and (1.7) and furthermore v € Py, then by = —Kp,(a;), so

va(da) = e2'F AP (1) Py (o)
= eal-z—Jsz(al)Pz(dw)’
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which shows that v, € P2, ' ' - S a

We now show that for v, € B(P;) given, v, satisfying vy ¢ 14 is unique.. Assuming
Vg = u{h), we hence need to show that a; and bs satisfy (1.7). By Lemma 4.1.1, we obtain
0,, = 0,,, and since ©,, = 0 — a; and ©,, = O — a; we find a; = ;. Inserting ai = dg

and K,,(6) = ,; K, (8} in (1.6) we obtain
Ko (O)D—A) =Xy —bp. C(L9)

If A 7’: )q, " is C(‘mst.a.nt and vy hencé degeﬁerate, ﬁhich contradicts v, € Hk Hence
A=A\ and by = Aby, so we have shoWn that b, and az must sa.t1sfy (1.7). Hence vy JS
unique. ' '

In particular, for any @Q; € P; and @, € P; satisfying Ch 4 @2 we have @ = Q(‘\)
Hence, the value of A in (1.8) does not depend on the choice of P, and P,. This concludes
the proof. I ' ' :

Proposition 4.1.4. The relation «sis an equivalence relation in the class of natural ex-

ponential families. I

Proof: It is obvious that «»is reflexive and symmetric, because ¢+has these properties in
M. To show the transitiveness, assume that P; + P and 'Pz ¢ P;3. By the deﬁmtmn
of #thhere exist P; € P; and Py € P; such that Py «-[-rPg By Lermnma 4.1.2 there exists
Py € Py such that P; ¢» Ps. By the transitiveness of ¢+in M} we have Py 4{—>P3, and hence
P; ¢+P;, which shows the transitiveness of ¢+in N;. 11

Definition 4.1.5. If P is an equivalence class in Ay with respect to <» we say that Pis
a convolution family. The basis B(P) is defined as the union UB(P) for P € P. I

A convolution family 5 is, by definition, a class of natural exponential fa.rni]iés. Altex;~
natively, we may view P as the corresponding subset of My, in which case we think of P
as a statistical model, as it were. We use either point of view in the following, depending
on the circumstances. _ . & ‘ ' )

If P is 2 natural exponential family, the equivalence class to which P belongs is called
the convolution famsly generated by P. I.P is a distribution in Min Mkl, we speak of the
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convolution family that contains P as the convolution femily generated by P. Similary, if
v € B(P) for some convolution family 7, where v is a measure in My, then P is called

the convolution family generated v, and is denoted P,.

4.2 Representations of convolution families

We now turn to representatlons of a convolution fa,mﬂy in terns of proba.blhty density
functions. Let » € M, be given, and let P, be the convolutxon famlly genera.ted by ».

The natural exponentlal family generated by v is given by
Po(ds) = exp{8 -z — K, (O)}v(dz), 8€©,. = - (2.1)
Similarlir, the natural exponential fmﬁiiy ‘genl‘tara;téd by v is given by
P (dz) = exp{f -z — MK, (0)}vPN(de), 6€O,. C o (2.2)

Note that we may arrive at (2.2) by two routes. First, it is the representation of the natural
| exponential family generated by »*. Second, the cumulant - ‘nerating function of (2.2)
is A{K,(0 + s) (0)}, showmg that Py 4{->P( ), justifying the notation in (2.2)." We call
(2 2) the canonical representation of? with respect to v. By Lemina 4.1, 3, the domain of
variation for the parameter (8, A) in (1 4} is 9 X A, where A,, is the set of A # 0 such

that the measure v* exists.

Exercises

Exercise 4.1 Show that each of the following families of distributions are exponential

dispersion models: the normal, the gamma, and the inverse Gaussian distributions.

Exercise 4.2 Let v € M. Show that

Ay = A,(,\) YA€eA,.
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Exercise 4.3 Show that the set-of scale transformations of R¥, given by
T+ cx, z€R*

where ¢ > 0 is a constant, defines an equivalence relation on M. Show that the equivalence

classes for this relation on M} is the class of scale-models on R*.

Exercise 4.4 Let p € My be a given measure, .a.nd consider the family of distri.bt.ztions
Pr,o(de) = éxp{8- 2 — MC(8)}a(A, 2)p(dx),
for suitable functions K and a. Show that this is a subset o.f.‘ a cogvolution family.
Exercise 4.5 Let P be the natural eprnentia.l family generated by the measure
v(dz) = (zD)~1p(dz), z=0,1,...,

where p is the counting measure. Show that P is the family of Poisson distributions.
Show that P is the convolution family generated by v. Can this phenomenon be used to

characterise the P01sson distribution?
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