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_Preface

Determinantal rings and varieties have been a central topic of commutative algebra
and algebraic geometry. Their study has attracted many promninent researchers and
has motivated the creation of theories which may now be considered part of general
commutative ring theory. A coherent treatment of determinantal rings is lacking however.

We are algebraists, and therefore the subject will be treated from an algebraic point
of view. Our main approach is via the theory of algebras with straightening law. Its
axioms constitute a convenient systematic framework, and the standard monomial theory
on which it is based yields computationally effective results. This approach suggests
(and is simplified by) the simultaneous treatment of the coordinate rings of the Schubert

“subvarieties of Grassmannians, a program carried out very strictly.

Other methods have not been neglected. Principal radical systems are discussed in
detail, and one section each is devoted to invariant and representation theory. However,
free resolutions are {almost) only covered for the “classical” case of maximal minors.

Our personal view of the subject is most visibly expressed by the inclusion of Sections
13-15 in which we discuss linear algebra over determinantal rings. In particular the
technical details of Section 15 (and perhaps only these) are somewhat demanding.

The bibliography contains several titles which have not been cited in the text. They
mainly cover topics not discussed: geometric methods and ideals generated by minors of
symmetric matrices and Pfaffians of alternating ones. :

We have tried hard to keep the text as self-contained as possible. The basics of
commutative algebra supplied by Part I of Matsumura’s book [Mt] {and some additions
given in Section 16) suffice as a foundation for Sections 3-7, 9, 10, and 12. Whenever
necessary to draw upon notions and results not covered by [Mt], for example divisor
class groups and canonical modules in Section 8, precise references have been provided.
It is no surprise that multilinear algebra play 2 role ir .. book on determinantal rings,
and in Sections 2 and 13 15 we expc ! the reader not to be hightened by exterior and
symmetric powers. Even Section 11 which connects our subject and the representation
theory of the general linear groups, does not need an extensive preparation; the linear
reductivity of these groups is the only essential fact to be imported. The rudiments on
Ext and Tor contained in every introduction to homological algebra will be used freely,
though rarely, and some familiarity with affine and projective varieties, as developped in
Chapter I of Hartshorne’s book [Ha.2], is helpful. .

We hope this text will serve as a reference. It may be useful for seminars follow ing
a course in commutative ring theory. A vast number of notions, results, and technigies
can be illustrated significantly by applying them to determinantal rings, and it may even
be possible to reverse the usual sequence of “theory” and “application”; to learn abstract
commutative algebra through the exploration of the special class which is the subject of
this book.

Each section contains a subsection “Comments and References” where we have col-
lected the information on our sources. The references given should not be considered
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assignments of priority too seriously; they rather reflect the authors’ history in learning
the subject and give credit to the colleagues in whose works we have part\xcipated. While
it is impossible to mention all of them here, it may be fair to say that we could not
have written this text without the fundamental contributions of Buchsbaum, de Concini,
Eagon, Eisenbud, Hochster, Northcott, and Procesi.

The first author gave a series of lectures on determinantal rings at the Universidade
federal de Pernambuco, Recife, Brazil, in March and April 1985. We are indebted to
Aron Simis who suggested to write an extended version for the IMPA subseries of the
Lecture Notes in Mathematics. (By now it has become a very extended version).

Finally we thank Petra Diivel, Werner Lohmann and Matthias Varelmann for their
help in the production of this book. We are grateful to the staff of the Computing
Center of our university, in particular Thomas Haarmann, for generous cooperation and
providing excellent printing facilities.

Vechta, January 1988 WINFRIED BRUNS Upo VETTER
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1. Preliminaries

This section serves two purposes. Its Subsections A and B list the ubiquitous basic
notations. In C and D we introduce the principal objects of our investigation and relate
them to their geometric counterparts.

A. Notations and Conventions

Generally we will use the terminology of [Mt] which seems to be rather standard
now. In some inessential details our notations differ from those of [Mt]; for example we
try to save parentheses whenever they seem dispensable. A main difference is the use of
the attributes “local” and “normal”: for us they always include the property of being
noctherian. In the following we explain some notations and list the few conventions the
reader is asked to keep in mind throughout.

All rings and algebras are commutative and have an element 1. Nevertheless we
will sometimes list “commutative” among the hypotheses of a proposition or theorem in
order to signalize that the ring under consideration is only supposed to be an arbitrary
commutative ring. A reduced ring has no nilpotent elements. The spectrum of a ring A,
Spec A for short, is the set of its prime ideals endowed with the Zariski topology. The
radical of an ideal 7 is denoted Rad J. The dimension of A is denoted dim A, and the
height of I is abbreviated ht J. :

All the modules M considered will be unitary, i.e. lz =z forall z € M. Ann M is
the annihilator of M, and the support of M is given by

Supp M = {P € Spec A: Mp # 0}

We use the notion of associated prime ideals only for finitely generated modules over
noetherian rings: :
Ass M = {P € Spec A: depth Mp = 0}.

The depth of a module M over a local ring is the length of a maximal M -sequence in the
maximal ideal. The projective dimension of a module is denoted pd M. We remind the
reader of the equation of Auslander and Buchsbaum for finitely generated modules over
local rings A:

pd M + depth M = depth 4 if pdM <o

(cf. [Mt], p. 114, Exercise 4). If a module can be considered a module over different rings
(in a natural way), an index will indicate the ring with respect to which an invariant
is formed: For example, Anny M is the annihilator of M as an A-module. Instead of
Matsumura’s depth, (M) we use grade(/, M) and call it, needless to say, the grade of 1
with respect to M; cf. 16.B for a discussion of grade. The rank rk F of a free module F is
the number of elements of one of its bases. We discuss a more general concept of rank in
16.A: M has rank r if M ® Q is a free ©-module of rank r, Q denoting the total ring of
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fractions of A. The rank of a linear map is the rank of its image. The length of a module
M is indicated by A(M).

The notations of homological algebra concerning Hom, ®, and their derived functors
seem to be completely standardized; for them we refer to [Rt]. Let A be a ring, M and
N A-modules, and f: M — N a homomorphism. We put

M* = Homu(M, A)

and
f* = Homy(f, A): N* — M*.

M* and f* are called the duals of M and f.
For the symmetric and exterior powers of M (cf. [Bo.1] for multilinear algebra) we
use the symbols

AM  and  8;(M)

1 T

resp. Sometimes we shall have to refer to bases of F*, AF and AF*, given a basis
€1,...,en of the free module F. The basis of F* dual to €1,...,ey is denoted by e}, ..., €,
For I = (41,...,ix) the notation ey is used as an abbreviation of e;, A -+ A e;,, whereas
e} expands into ef, A+~ Aej, . (The notation e will be naturally extended to arbitrary
families of elements of a module.)

We need some combinatorial notations. A subset I C Z also represents the sequence
of its elements in ascending order. For subsets Iy, ... S CZ we let

U(Ila e !Iﬂ)
denote the signum of the permutation I ... [, (given by iuxtaposition) of [;U. ..Ul rela-

tive to its natural order, provided the I; are pairwise disjoint; otherwise o(f1,...,In) = 0.
A useful formula:

o(I1,...,In) =a(fi,. .., L))oV Ulno1, L)
For elements #1,...,in € Z we define
(i1, . yin) =a{{ir}s- s {in})-
The cardinality of a set I is denoted }J]. For a set I we let
S(m,I) = {J: J C I,|J| =m}.

Last, not least, by

-~

1,...,%,...,40

we indicate that i is to be omitted from the sequence 1,...,7.
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B. Minors and Determinantal Ideals

Let U = (u;;) be an m x n matrix over a ring A. For indices ay,...,a:, by,..., b
such that 1 <a; <m, 1< ¥ <n,i=1,...,¢t we put

Uarby - Ugd,
{al,...,atlbl,...,bt]=det .
ua,bl vt “a,bt
We do not require that a,,.. .yt and by,...,b, are given in ascending order. The
symbol [ay,...,a,/b1,...,b,] has a twofold meaning: [a1,...,84b1,...,b] € A as just
defined, and
[a,l,. ..,a,lbl,...,bt] € Ntx N*

as an ordered pair of t-tuples of non-negative integers. Clearly [@1,. .. aelb1,. .., 8] =0

if £ > min{m, n). For systematic reasons it is convenient to let

[0]8] = 1.
oy <---<arand by <--- < b, we say that [@1,...,a¢fby,...,b] is & t-minor of U. Of
course, as an element of 4 every la1,.-.,aefb1, ..., 4] is a t-minor up to sign. We call ¢
the size of [a1,...,a:|by,..., 5]

Very often we shall have to deal with the case ¢ = min(m,n). Our standard assump-
tion will be m < n then, and we use the simplified notation

fa1,...,am] = [1,...,m|a1,...,am].

The m-minors are called the maezimal minors, those of size m — 1 the submazimal
minors. (In section 9 the notion “maximal minor” will be used in a slightly more general
sense.)

The ideal generated by the ¢-minors of U is denoted

L(U).
The reader may check that I,(I7) is invariant under invertible linear transformations:

HU)Y=L(VUW)

for invertible matrices V, W of formats m x m and n x n Tesp.
Sometimes we will need the matriz of cofactors of an m x m matrix:

Cof I = (C(_,' ),

cij = (—1)‘”[1,...,?,...,mfl,...,’i‘,...',m].
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C. Determinantal Rings and Varieties

Let B be a commutative ring, and consider an m x n matrix

X o0 X
X=1 : :
Xml Xm.n

whose entries are independent indeterminates over B. The principal objects of our study

are the residue class rings
R¢(X) = BIX]/L(X),

B[X] of course denoting the polynomial ring B[X;: i =1,.. .,m,j=1,...,n]. Theideal
L(X) is generated by the {-minors of X, cf. B. Whenever we shall discuss properties of
R.{X) which are usually defined for noetherian rings only (for example the dimension or
the Cohen-Macaulay property), it will be assumed that B is noetherian.

Over an algebraically closed field B = K of coefficients one can immediately associate
a geometric object with the ring R,{X). Having chosen bases in an m-dimensional vector
space V and an n-dimensional vector space W one identifies Hompg (V, W) with the mn-
dimensional affine space of m x n matrices, of which K[X] is the coordinate ring. Under
this identification the subvariety defined by I,(X) corresponds to

Lo_1(V,W) = { f € Homg(V,W): tkf <t—1}.

We want to associate the letter  with “rank”, and so we replace ¢ by = 4 1. Furthermore
we put L{(V, W} = Homg (V, W).

It is not surprising that the geometry of L.(V, W) reflects certain properties of the
linear maps f € L.(V,W). Let us consider the following two elementary statements
which will lead us quickly to some nontrivial information on L.(V,W}: (a) The map f
can be factored through K”. (b) Let U C V be a vector subspace of dimension » and
U a supplement of V, i.e. V = U @ U; if f|U is injective, then there exist unique linear
maps g: U — U, h: U — W such that f(v @ %) = h{u) + h(g(z)) for all v € U, Gel
(in fact, h = fiU7).

Statement (a) shows that the morphism

L{(V.K™} x L(K", W) — L. (V, W},

given by the composition of maps, is surjeclive. Being an epimorphic image of an irre-
ducible variety, L.(V, W) is irreducible itself. An application of (b): It is easy to see'that
the subset

M = {f e L (V,W): f|U injective }

is a nonempty open subvariety of L.(V,7¥): One chooses a basis of V containing a
basis of U; then M is the union of subsets of L,(V, W} each of which i. defined by the
non-vanishing of a determinantal function. By property (b) we have an isomorphism

L(T,U) x (L{U, W) \ L,_1 (I, W)) — M.
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Since the variety on the left is an open subvariety of L(U, U) x L{U, W), we conclude at
once that

dim L (V,W) = dim M = dim (L{U,U) x L(U,W)) = (m — r)r +rn

=mr+nr —r,

Furthermore M is non-singular. Varying U one observes that all the points f € L.(V, W)\
L,_1(V, W) are non-singular:

(1.1) Proposition. (a) L.(V, W) is an irreducible subvariety of L(V, W).
{b) If has dimension mr + nr — r2. '
(c} It is non-singular outside L,._,(V, W).

The only completely satisfactory information on R,4+1(X) we can draw from (1.1},
is its dimension:
dimR,;1(X) = mr + nr — o2

Part (a) only shows that the radical of L.1(X) is prime, and unfortunately there seems
to be no easy way to prove that I, ,(X) is a radical ideal jtself (over every reduced
ring B of coefficients). Once this is known-one can of course directly reverse {c): The
generators of the ideal of L.(V, W) have all their partial derivatives in I.{X), and the
Jacobi criterion (or the definition of non-singularity, depending on ones point of view)
implies in conjunction with (c) that L,_,(V, W) is the singular locus of L.(V, W).

Proposition {1.1) and its proof have been included not only in order to enrich these
introductory considerations by some substantial results. We shall encounter algebraic
versions of the ideas underlying its proof several times again,

It would be very difficult (for us, at least) to investigate the rings R,{X) without
viewing them as the most prominent members of a larger class of rings of type B[X]/I
which we call determinantal rings. Their defining ideals I can be described as follows:
Given integers

1w < - <up <, O§r1<---<r,,<m,

and
1Sy <~ <yy €y 0<sp <+ <89 <,
the ideal I is generated by the
{r; + 1)-minors of the first u; rows
and the
(sj + 1)-minors of the first v; columns,

i=1,...,p, j = 1,...,q. Later on we shall introduce a systematic notion for determi-
nantal rings whick is hard to motivale at this stage.

In order to relate the general class of determinantal rings just introduced to the ge-
ometric description of R,;1(X) given above, one chooses bases di,... 8y and €1,...,e,
of V and W resp., X being an algebraically closed field, V and W vector spaces of
dimensions m and n. Let

k &
Vi=) Kd; and Wy= > Kel
i=1 =1

{e},... e} is the basis dual to €1y-..,€n, cf. A above).
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Then the ideal I above defines the determinantal variety
{f € Homg{(V,W): 1k flVy, <1i; tk f W, S sy i= 1P j=1,...,9}

The reader may try to find and to prove the analogue of (1.1) for the variety just defined.
It will of course be included in the main results of the Sections 5 and 8.

D. Schubert Varieties and Schubert Cycles

In the sections 4-9 we shall treat a second class of rings simultaneously with the
determinantal rings: the homogeneous coordinate rings of the Schubert varieties (gemer-
alized to an arbitrary ring of coefficients) which we call Schubert cycles for short. There
are two reasons for our treatment of Schubert cycles: (i) They are important objects of
algebraic geometry. (ii) Their combinatorial structure is simpler than that of determi-
nantal rings, and most often it is easier to prove a result first for Schubert cycles and to
descend to determinantal rings afterwards. Algebraically one can consider every determi-
rantal ring as a dehomogenization of a Schubert cycle {cf. 16.D and (5.5)). In geometric
terms one passes from a (projective) Schubert variety to an (affine) determinantal variety
by removing a hyperplane “at infinity”.

The first step in the construction of the Schubert varieties is the description of the
Grassmann varieties in which they are embedded as subvarieties. While a projective
space gives a geometric structure to the set of one-dimensional subspaces of a vector
space, a Grassmann variety does this for the set of m-dimensional subspaces, m fixed.
Let K be an algebraically closed field, V' an n-dimensional vector space over K, and
€1,---¢n abasisof V. In a first attempt to assign “coordinates” to a vector subspace
W, dimW = m, one chooses a basis, wi,...,wm of W and represents wi,...,Wm 88
linear combinations of e3,...,€n:

n
wy = E Tije4, 1=1,...,m.
=1

Unfortunately the assignment W — {z;;) is not well-defined, since (zi;) depends on the
basis wy, ..., wns of W. Exactly the matrices
T-(z:5), T € GL{m, K},
represent W. However, the Plicker coordinates
p= (a1 ..,aml: 1 <1 <+ <am = n)
formed by the m-minors of (z;;) remains almost invariant if (z:;) is replaced by T (i;);

it is just replaced by a scalar multiple: The point of projective space with homogeneous
coordinates p depends only on W' Thus one has found a well-defined map

P {WCV:dmW=m)—PV(K), N= (:;) - L

1t is called the Plicker map.
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This construction can of course be given in more abstract terms. With each subspace
W, dim W = 1, one associates the embedding

iw: W — V.

Then the m-th exterior power
m m m
Niw: AW — AV

m m
maps AW onto a one-dimensional subspace of AV which in turn corresponds to a point
m
in P(AV) = PVN(K).
It is easy to see that the Pliicker map is injective. Let p = P(W) = P(W). For
reasons of symmetry we may assume that the first coordinate of P is nonzero. Then we
can find bases wy,...,wm and @1,...,Wm of W and W resp. such that

n n
w; =e¢; + E Tije;, Wi=¢;+ E 5,','6]', i=1...,m.
j=m+1 j=m+1

Looking at the m-minors [1,...,7,. .. »ym, k] of the m xn matrices of coefficients appearing
in the preceding equations one sees immediately that w; = @, for ¢ = 1,...,m, hence
w=w.

It takes considerably more effort to describe the image of P. The map P is induced
by a morphism P of affine spaces; P assigns to each m xn matrix the tuple of its m-minors.
Let X be an m x n matrix of indeterminates, and let Yo nampp 1 €010 <ty < 1,

denote the coordinate functions of A¥+t1(K). Then the homomorphism of coordinate
rings associated with P is given as

P K[Yiah-"oﬂm]: 1 S a1 << Om S n] - K[X]’

Y[ﬂt pema@m] T [a'h sy am]ﬁ
[@1,-..,am] specifying an m-minor of X now. We denote the image of ¢ by
G(X);

it is the K-subalgebra of K[X] generated by the m-minors of X. By construction it is
clear that the affine variety defined by the ideal Kerp is the Zariski closure of Im?P,
whereas the corresponding projective variety is the closure of ImP. Much more is true:

(1.2) Theorem. (a) P maps the set of m-dimensional subspaces of V bijectively
onto the projective variely with homogeneous coordinate ring G(X}.
(b) P maps the mn-dimensional effine space of m X n matrices over K surjectively onto
the affine variely with coordinate ring G({X).

Part {a) obviously follows from (b). In order to prove (b) one first has to describe
the variety belonging to G(X) as & subvariety of AN+1(X). This problem will be solved
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in (4.7). Secondly one has to show the surjectivity of P, a question which will naturally
come across us in Section 7, cf. (7.14}. _

The projective variety appearing in (1.2),(a) is usually denoted by G.(V) and called
the Grassmann variely of m-dimensional subspaces of V. (A different choice of a basis for
V only yields a different embedding into PV (K); all these embeddings are projectively
equivalent.)

The argument which showed the injectivity of P helps us to determine the dimension
of Gm{V): the open affine subvariety of Gm(V) ¢omplementary to the hyperplane given
by the vanishing of Y[1 .. mj, is isomorphic to the affine space of dimension m(dimV -m),
hence

dim G (V) = m{dimV —m).
(Note that we are using (1.2} here!) Varying the hyperplane one furthermore sees that
G (V) is non-singular. The non-singularity of G,,(V') can also be deduced from another
“basic fact. The group GL(V) of automorphisms of V' acts transitively on G,{V'}, since
two m-dimensional subspaces of V differ by an automorphism of V only. On the other
m m
hand this action is induced by the natural action of GL(V) en P(AV) (via AV); so
GL(V) operates transitively as a group of automorphisms on the Grassmann variety
Gn(V).
(1.3) Theorem. G,(V) is a non-singular variety of dimension m{dimV - m).

To define the Schubert subvarieties one considers the flag of subspaces associated
with the given basis ej,...,e, of V taken in reverse arder:

Vi= Y Ke, 0=WC..CVa=V

i=n—j+1

Let 1 < a; < ++- < a;, < n be a sequence of integers. Then the Schubert su?;variety
Qa1,---,am) of G (V) is defined by

a1, 0m) = {W € Gu(V): dimWNV,, 2 for i=1,...,m}.

The varieties thus defined of course depend on the flag of subspaces chosen. But the
automorphism group of V' acts transitively on the set of flags, and its action induced on
G (V) makes corresponding Schubert subvarieties differ by an automorphism of G, (V)
only. Hence {a,...,am) is essentially determined by (@1,.--,@m). It is indeed justified
to call Q(ay,...,am) a variety:

(1.4) Theorem. Qa1,...,am) is the closed subvariety of Gn(V) defined by the
vanishing of all the coordinate functions

Yio1 bmls b; < —@m_ijs1 +1 forsome i, 1<i<m.

PROOF: The proof is simpler if we dualize our notations first. Let ¢; = n — a4
and W; = ¥4, Kex. Then V = V,_; @ W; and there is a projection 7;: V — Wj,
Ker 7; = V,,_;. By definition

Qar, ... am) = {W € Gu(V): dimr (W) <m -4 for i=1,...,m}
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After the choice of a basis W1,..., W, the subspace W is represented by the matrix
(Tuv)s Wy = 30| Tuyey. One obviously has

dimw, (W) <m -3 = In—is1{@uw: L Sw < g5) =0,

and in case this condition holds, every m-minor which has at least m~i+1 of its columns
among the first ¢; columns of (z,.,), vanishes. Thus all the coordinate functions named in
the theorem vanish on a1, ..,am). Conversely, if Ln—it1(zuv: 1 v < ¢5) #0, then
there is an m-minor of (z,,) different from zero and having at least m — i + 1 of its
columns among the first ¢; ones of (z,,). —

For arbitrary rings B of coefficients the Sehubert cycle associated with Qay,...,am)
is the residue class ring of G(X) with respect to the ideal generated by all the minors
[b1,...,bm] such that b; < n — a1 + 1 for some .

E. Comments and References

The references given below have been included to manifest the geometric significance
of determinantal and Schubert varieties. We have restricted ourselves to books (with one
exception) since any selection of research articles would inevitably turn out superficial
and random. (After all, the AMS classification scheme contains the keys “Determinantal
varieties” and “Schubert varieties”.)

The classical source for “the geometry of determinantal loci” is Room’s book [Rm]. It
gives plenty of information on the early history of our subject. The decisive treatment of
Schubert varieties has been given by Hodge and Pedoe in their monograph {HP]. Among
the recent books on algebraic geometry those of Arabello, Cornalba, Griffiths, and Harris
[ACGH], Fulton [Fu), and Griffiths and Harris [GH] contain sections on determinantal
and/or Schubert varieties. Kleiman and Laksov’s article [KmL] may serve as a pleasant
introduction.
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Though many of the results of this section are covered by ‘the subsequent investiga-
tions, cf. Sections 4, 5, and 6, it seems worth to look for those properties of determinantal
rings which have been well known for a long time just as the methods they are proved
by. In particular one has a rather direct approach to the results concerning the residue
class ring B[X]/I where I is the ideal generated by the maximal minors of X.

The second part of the section deals with free resotutions of 1(X) in two compar-
atively simple cases. The first one will be that of maximal minors and after it we shall
treat the case in whichm =a,t=n—1, digressing slightly from the title of this section.

A. Classical Results on Height and Grade

Let A be an arbitrary commutative ring and U = (ui;) an m x n matrix, m < n,
of elements in A. As in Section 1 we denote by L(U) the ideal in A generated by the
t.minors of U. There are two observations, simple but often used: :

(i) L(U) is invariant under elementary row or column transformations.

(ii) If the element %mn is a unit in A, then L(U) = It_l(ff) where U= {#i5) is an
(m — 1) x {n — 1) matrix, % = %i; = UmjULintmn: '

Our investigations concerning properties of I;(X') begin with a héight formula. There
is an upper bound which only depends on ¢ and the size of the matrix.

(2.1) Theorem. Let A be a noetherian ring and U = (ui;) an m X n mairiz of
elements in A, IfI,(U) # A then

htI(U) < (m-z+ Nn—-t+1).

ProoF: Byinductionont. Ift =1, the inequality is Krull’s principal ideal theorem.
Let ¢ > 1 and take a minimal prime ideal P of I,{U). We must show that kP <
(m=-t+1){n—t+1). Localizing at P we may assume that A is a local ring with
maximal ideal P, I;(/) being P-primary.

If an element of U is a unit in A, the theorem follows from the inductive hypothesis.
and the observation (ii) made above. We may therefore suppose that u;; € P for all ¢, 5.

Let T be an indeterminate over A. We consider the m X n matrix

upn+T w2 o Win

U1 U22 vt UWin
U=

\  Umi Umz " Umn
Then L(U') C PA[T] and L(U') + TA[T] = L(U)A[T) + TA[T]. From the lemma below
it follows that P! = PA[T] is a minimal prime ideal of 1,(U"). Because of ht P'=ht P we
may replace P by P'. After localizing the ring A[T] at P', the element un + T becomes
a unit. As noticed above, the inequality then follows from the inductive hypothesis. —
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(2.2) Remark. Theorem (2.5) will show that the bound in (2.1) cannot be im-
proved in general. However, under special circumstances one has much better estimates:
¥ Iy (U) =0 and L{(U) # A, then

htI, {(U)<m+n-2t+1.

The condition I, ;(U) = 0 holds if U is a matrix of rank t. More generally, if I/ is a pPXq
submatrix of U/ and u > ¢, then

W I (U)/1(0) < (m—t+1)n —t+1) = (p—u +1){g—u + 1).

In a ring satisfying the saturated chain condition ([Ka], p- 99) the last inequality is
equivalent to

ht L (U) — ht I(T) < m—t+1)n—-t+1)—(p—u+1)g—u+1).

Thus all the ideals I (U } have their maximal height along with I.{U), in particular no
w-minor, u > ¢, can be zero. We refer the reader to IBr.5] for these results. —

(2.3) Lemma. Let A be a local ring with mazimal ideal P and let I be a P-primary
ideal. In the polynomial ring AT}, let I' C PA[T) be an ideal which has T as residue
modulo TA[T). Then PA[T] is e minimal prime ideal of I'.

ProorF: The hypothesis on I’ yields an isomorphism A[T)/(I' + TA[T]) = A/l
Therefore PA[T] + TA[T] is a minimal prime ideal of I' + TA[T]. Now let Q' C PA[T]
be a minimal prime ideal of I'. In the ring A[T]/Q" the ideal (@' + TA[T})/Q' is a
principal ideal with (PA[T] + TA[T)}/Q' as one of its minimal prime ideals. From
ht{PA[T]+ TA[T])/Q' <1 and the chain of prime ideals Q' € PA[T] C PA[T|+ TA[T)
we get Q' = PA[T]. —

If ' = X the inequality in (2.1) actuaily becomes an equality. This will be proved
by a localization argument frequently used in the sequel.

(2.4) Proposition. Let X = (X;;) and Y = (Y;;) be matrices of indeterminates
over the ring B of sizes m x n and (m — 1) x (n — 1), resp. Then the substitution

XU—}KJ-*-XMJX‘”XR] lsism_ly lsjsn_l'l

mn?
XmJ — Xm.]1 Xin _"'X;iﬂ
induces an isomorphism

BIX|[X5n] & BY][Xm1y -+ s Xonns Xins ooy X[ X730

which maps the extension of I,(X), t > 1, to the extension of I,_1(Y'). In particular this
isomorphism induces an isomorphism

R,(X)[I;In] & Rt—l (Y)[th ey Xmm le CCR | Xm—l,n}[xg;:;]

where T.,n, denotes the residue class of X in R (X).
ProoF: The substitution given in the proposition of course induces a homomoeor-

phism
w: BIX)X5] — BlY [ Xty Xonns X1ny -+ oy Xene1,0)[ Xk J-
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Analogously we get a homomorphism ¥: BY|[Xm1,.-., Xm-1,2][Xmn] — BIX][X70]
by substituting

mmn?

Y, — Xi; - X Xin X Xmj — Xmjy Xin — Xin

Evidently ¢ and y are inverse to each other. From the remark (i) made above, it
follows that L(X)B[X]|[X L] = L;-1({X) where X = (X;; — XmjXinXms). Clearly ¢
maps It_l()?) to the ideal generated by I,_1(Y). —

(2.5) Theorem. Let X = (Xi;} be an m x n matriz of indeterminates over the
noetherian ring B. Then

grade,(X)=(m —t+1}{n-t+1)

if 1 <t < min{m,n)+ 1.

ProoF: In view of (2.1) we must only prove that {m —t +1)(n — ¢ + 1) is a lower
bound for gradel,(X). The cases t = 1 and ¢ = min{m,n) + 1 are trivial. Let 1 <
¢ < min(m,n) and P be a prime ideal in B[X] containing I,(X). We will show that
depth B[X]p > (m —t+1)(n — ¢ +1).

Certainly depth B[X]p > mn > (m — ¢ +1)(n — ¢ + 1) if P contains all the inde-
terminates X;;. Otherwise we may assume that X,,, ¢ P. Consider the isomorphism
B[X)[X:2] = BIY)[Xom1, - - Xen—1,n}[X;ms] from (2.4). Using well-known grade formu-
las and the inductive hypothesis, we get

depth B[X]p > grade L[ X|B[X][[X 2]
= grade L[V |B{Y [ Xm1,+ -+ Xm-1,n][X 2]
> grade I,[Y]
=(m—-t+){n-t+1). —

Though the following result is not covered by the title of this subsection, it is included
here since its proof is another effective application of (2.4).

(2.8) Theorem. Let R = Ry(X), P be a prime ideal of R and Q = PN B. Then
Rp is reqular if and only if Bg is reqular and P 2 I 1(X)/L(X).

ProoF: The statement is obvious if £ = 1. Suppose that ¢ > 1.

Abbreviating I, = I;(X), we claim that Rp cannot be regular if P> /1. Oth-
erwise we may assume that P is a minimal prime of I;/I; and B = Bg. Since B is an
integral domain, fy/7; = P. Therefore Q C H/I;NB=0,and Bisa field, say K. Now
it suffices to note that (K{X]/I:}s /1, = K[X]r, /1 K[X]r, is not regular since I; C Iz

For the rest of the proof we may therefore assume that the residue class Zmn of Xmn
is not contained in P. According to {2.4) we have an isomorphism

R[w;&z] > Re-1(Y)[Xom1s - - aXm—l‘ﬂ][X;;iz]‘

Let P be the contraction to R;_3(Y) of the image of PR[z},}] under this isomorphism.

Then P contains I;—1/7; if and only if P contains I;_3(Y)/I;-1(Y). And Rp is regular
if and only if Re-1(Y)p is regular. The inductive hypothesis now immediately yields the

required result. —
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B. The Perfection of I,,(X) and Some Consequences

From now on we shall restrict our attention to the ideal L.(X) in B[X], generated
by the maximal minors of X. It will be shown that I.(X) is a perfect ideal. Because
of (2.5) this means that Pdpx)Rm(X) = n — m + 1. In Subsection C we shall prove
this equation by constructing a free resolution of Rm(X) over B[X]. On the other hand
there is a simple proof, which does not use a concrete free resolution. We formulate the
following theorem for arbitrary matrices /. Apart from giving a more general result,
this formulation is better adapted to the method of proof being used below.

(2.7) Theorem. Let A be @ noetherian ring and U an m x n matriz, m < n, with
entries in A. Suppose gradel(U)=n —m + 1. Then In(U) is a perfect ideal.

Using (2.5) and (16.19) we obtain:

(2.8} Corollary. The ideal I.(X ) is perfect. In particular R, (X) is a Cohen-
Macaulay ring if this holds for B. '

As we shall see in Section 3, it would be equally justified to call (2.7) a coroliary of
{2.8). (2.7) will follow from Proposition (2.9}). In the proof of (2.9) we will frequently
use arguments from 16.A, and we assume that the reader is familiar with the material of
that subsection.

(2.9) Proposition. Let A be a noetherian ring, F' and G free A-modules of ranks
m and n, resp. Further, let f: F — G be q homomorphism such that the ideal I (f) has

r—1
grade at least p > 1. Then f is injective, and, M denoting the cokernel of f, AMis
?
torsionfree and pd AM < p.

First we will derive (2.7) from (2.9). Let f:A™ > A" given by U, and r = n - m.
Denote by u,,. -+ %m the rows of U, and consider the map

v /r\A" —q/n\A“, V(z)-—-:c/\ul/\---/\t‘am,

Obviously Imv = 1,(U) by an identification AA™ = A, Put M = Coker f. Then
we have a presentation

r—1 r »
ame Aar—Aar — Am — o,
Ty —>f(ng\y,

so ¥ factors through AM. Since rk AM = rkImv = 1, and AM is torsionfree by (2.9),

r
we conclude pdImy = pd AM =r.
PROOF OF (2.9): By induction on m. The proposition is trivial for m =0 (I.(f) =
A in this case). Let m > 0. Since p > 1, Im f has rank m, and f is injective for trivial
reasons. Furthermore there is notking to prove if p =1, and we can proceed by induction
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-1
on p. By the inductive hypothesis with respect to p, pd A M <p—1. Since Mp is free
for all prime ideals P in A with depth Ap < p, we get

p-1
depth A\ M ® Ap > min(1,depth Ap)

-1
for all prime ideals P. Consequently jr’/\ M is torsionfree.

Write /' = F' @ A, F' free of rank m — 1, let f'+ F' — G be the restriction of f,
and put M’ = Coker f'. Since Im—1(f") D In{f), the inductive hypothesis on m can be
applied to M'. We claim that there exists an exact A-sequence

p—1 P

0—>/\M—>/\M’~—»;\M——>O.

p
This immediately yietds pd AM < p.

Let =+ M' — M be the natural projection, and y a generator of Kerw. Then we
have canonical presentations

p-1 P /"\w P
P < for 2 for —o,

p—-2 p—1 -1
/\M’—» /\M’—-» /\M-—'O,

r— T AY

The second of these presentations shows that the map & introduced in the first one
r—1 p-1 p—1 P
factors through A M. Since A M is torsionfree and rk A M = rkKer Am, we obtain

b4 p-1
Ker A @ A M, as desired. —

As a consequence of (2.8) one can answer questions about the ideals Im(X } which,
from a naive point of view, concern their prime [sic] properties.

(2.10) Theorem. If B ts an integral domain, then 1,(X) is a prime ideal.

PROOF: One may assume B to be noetherian, for the general statement is easily
reduced to this case. Then we use induction on m. If m = 1, the theorem is obvious.
We assume that m > 1. Since I,,,(X) is perfect of grade n —m +1 and grade;(X) =
mn > n—m+1, the ideal [;(X) is not contained in any associated prime ideal of In,(X ),
of. (16.17).

Denote by z;; the residue class of Xj; in R = Rp(X ). Since R[z;l] is a domain
by {2.4) and the inductive hypothesis, there is exactly one associated prime ideal P of
R such that T,, ¢ P. If P is the single associated prime ideal, then ., is not a
zero-divisor in R, and R is a domain, tos. Suppose there is a second associated prime
ideal Q # P. By what we have stated above and since z;,, € @, there is some T;; ¢ Q.
Arguing inductively again, we get z;; € P. Now PR[z;l] = 0, but the image of z:; in
PR[z;L] is different from 0, cf. (2.4). Contradiction! —
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(2.11) Theorem. If B is reduced (a normal domain), then Ro{X) is reduced (a
normel domain), too.

PROOF: Suppose that B is a domain. Then R = R.,a(X) is a domain by (2.10).
In order to show that B is reduced or normal resp. we apply criteria based on Serre’s
conditions.

The statements are obvious if m = 1. Let m > 1 and suppose that B is reduced
(a normal domain). Consider a prime ideal P in R such that depthRp = 0 (< 1).
Then grade P = 0 (< 1). Because of gradel;(X) = mn > n — m + 2 there is an
indeterminate X;; which has residue class z;; not contained in P. Clearly we may
as$ume Zi; = Zmn. Then by (2.4) and the inductive hypothesis R[z; L] is reduced (a
normal domain). Consequently Rp is reduced (a normal domain}, too. ~ '

(2.12) Remark. In Section 5 we shall prove that I,{X) is a perfect ideal for every
t, 1 £t < m. Since gradeI; (X) > gradel,(X)+1if¢ > 1, the arguments in the proofs of
(2.10) and (2.11) demonstrate that (2.10) and (2.11) hold for arbitrary ¢ (the case ¢ = 1
being trivial).

(2.13) Remark. As to converse statements of (2.8) and (2.12), applying (2.4)
one easily deduces that B is reduced {a normal domain, a Cohen-Macaulay ring) if
B[X]/1,(X) is reduced {a normal domain, a Cohen-Macaulay ring). —

So far we have used Corollary (2.8) only, and it seems adequate to discuss an appli-
cation of (2.7) which is independent of (2.8). Let y1,..., ¥ be elements of a commutative
ring A, J the ideal generated by them, and Y the m % (m + k — 1)-matrix

N Yo Y3 P ‘e Vi {) e 0
0w e . . .
Pl el et .0
0 - 0 "m;n w2 oy o Yk

For trivial reasons I,,(Y) C J™. We claim L,(Y) = J™. It is of course enough to
prove this for the case in which A = Z[y,,...,yx], the 3; being indeterminates. Arguing
inductively we conclude 1, J™! C I,(Y) and Ay + Ln(Y) = Ay, + J™. Next it follows
that Ay; N1, (Y) = 3 J™"! = Ay NJ™, and altogether this yields the desired equality.
Letting n = m + k — 1 we have

n—m+1=4k%,

and (2.7) implies that J™ is perfect {of grade k) if grade J = k:

(2.14) Proposition. Let A be a noetherian ring, and ¥1,...,Yx on A-sequence.
Then all the idecls J™, m > 1, are perfect {of grade k).

The matrix ¥ above helps us to get more information on the rings R (X). Given
an m x n matrix X of indeterminates, we put k = n — m + 1 and choose Y;,...,Y;
as indeterminates over B. Let § = B{Y},...,Y]/I»(¥). Then the substitution which
assigns each entry of X the corresponding entry of Y (formed from Yi,...,Y%), induces
surjections : : _
$:B[X]— S  and ¢:Ra(X)— S
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The kernel of ¥ is generated by the linear polynomials

X,‘j, j—’i(O or j—i)k—l,
Xij—Xi—l.j—la i=2,...,m, USj—‘igk—l,

and the ideal I,,(X) . The residue classes of the polynomials listed generate the kernel
of . Their number is exactly

nmn — (n — m + 1) = grade Kery - grade I, (X)
= grade Ker ¢

by virtue of (16.18): both Kery and I.(X) are perfect. Here we assume B to be
noetherian, of course. Since the generators of Kery are homogeneous (of degree 1), one
concludes easily that they form an R.,{X)-sequence (in any order). This fact makes it
possible to transfer information from R,.(X) to S and vice versa. After all, S can be
considered a well-understood B-algebra.

We use the connection between Rm(X) and S to compute the multiplicity of R, (X)
in case B = K is a field. The graded K-algebra R, (X} then has a well-defined multi-
plicity {given by the multiplicity of its localization with respect to the irrelevant maximal
ideal). We refer the reader to [Na] for multiplicity theory.

(2.15) Proposition. Let B = K « field, X be an m x n metriz of indeterminates
and y the R (X)-sequence generating Ker @, as specified above. Then the multiplicity of
R {X) is given by

e(Ron(X)) = ARn(X)/yRom( X)) = ( n )

m—1

PRrOOF: Since the sequence y is a “superficial sequence” (defined to be a sequence
of superficial elements in the same way as an A-sequence is a sequence of elements
not dividing zero), the multiplicities of Rm(X } and Ry {X)/yRm(X) coincide. The
multiplicity of the latter ring is just its length. — -

One could further exploit the relationship between R, (X ) and § in order to deter-
mine the Gorenstein rings among the rings Rm(X). We shall do this in (2.21}, based on
a different argument.

C. The Eagon-Northcott Complex

In the preceding subsection we have investigated the ideal I,(X) by considering X
as the matrix of a linear map f: F — G. In this subsection it is better to start from the
dual map f*: G* — F*. To avoid notational complications we replace G* and F* by G
and F and f* by amap g: G — F. Instead the map f will be treated as the dual of g,
and the ideal 1,,(f) of Subsection B is I,.(g) below. While the perfection of L,,(g) has
been proved already, cf. (2.8), we will construct a free resolution of the corresponding
residue class ring and some related modules. The approach taken in the following may
be rather abstract, but it is certainly very effective.
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Let A be an arbitrary ring, and suppose that F' and G are finitely generated free
A-modules of rank m and 7, resp. Since the natural homomorphism

G* @4 F — Homy (G, F)

is an isomorphism in this situation, one may view every A-homomorphism g: G — F an
element of G*® F. The free module F is the degree 1 homogeneous part of the symmetric
algebra S(F), so we can consider ¢ even an element of

G* @ S(F) = HomS(F)(G ® S(F),8(F)).
Viewed as an $(F)-linear form on
G=Ges(F),

g gives rise to a Koszul complex (cf. [Bo.4], §9)
" ﬂ—lA A
Ce):0—AG= NG ... 25852 5m) — o,

i+l i
the map 8: A G — AG being defined by
i+1 .
Oz1 A Azip) = E(nl)f"'lg(w,-)x] A AT; A Azig.
=1
As a complex of 4-modules C(g) splits into direct summands
i-1

Ci(g): -+ — 0 — AG®S(F) — NG®s(F) — ...

1 1]
— AG®S:_i(F) — NG ®S(F) — 0.

m
We fix orientations y on F* and 6 on G*, ie. isomorphisms 7: AF* — 4 and

4: /n\G“ — A. Let ,
P=n-m.

Then for ¢ = 0,...,7 we can splice the A-dual Cr_i(g) of C.—i(g) and Ci(g) to a sequence

r—i i

0 - -
Di(g): 0 — (AG®S,_i(F) 25 ... &, (AG@Se(F) 25 AG@So(F) -2 ...
0
2 \GeSsi(F) — o,

where v; is described as follows: First one. defines V; a5 a map
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by . : _ .
(Vf(w))(y) =8z AyA /\g‘(z))’ S /\G‘, Y€ /\G.’ 2= 7_1(1)5

and then one regards v; as a map ( /_\lG ® So(F))* — AG ® So(F) via the natural

somorphisms NG 2 (AC)* = (A G@So(F)* and (AG*)" 2 AG = AG ® So(F).
An easy calculation shows that :

viof* =0, Gor;=0.

Furthermore v, §, and, hence, ¥; are unique up to 3 unit factor. So D;{g) is a complex
whose homology depends only on g. In order fo specify, homology modules we consider

0 0
AG ® 8i(F) to be in position 0 and (AG ® S,_;(F))* in pesition 7 + 1. Then

Ho(Do(9)) = A/Im(9),
Ho(Di(g)) = 8:i(Cokerg),  i>0.
The second of these equations is quite obvious whereas one has to analyze vy to
observe that Imyg = L (g)-
Our purpose will be achieved when the following theorem has been proved:

(2.16) Theorem. Let A be a noetherian ring, g: G — F a homomorphism of
finitely generated free A-modules. Pui n = tk G, m =1k F and choose orientations v, &
of F* and G*, resp. Suppose m S 7 and gradel,(g) =n—m+ 1. Then the following
holds:

(a) The complezes Di(g), 0 <i < n—m, are aeycelic.
(b) Dolg) resolves Aflm(g), Dilg), 1 =1,..47, resolves S;{Coker g}.
(c) A/Im(g) and Si(Cokerg} , i =1,...,7, are perfect A-modules.

If we look at the next to the last homomorphism of Dolg), we see that in the situation
of (2.16) the first syzygy module of Im(g) is generated by the “expected” relations: U/
being a matrix representing g, they are obtained by Laplace column expansion of the
{m + 1)-minors of all matrices which result from U by doubling a row.

Of course (2.16) can be applied to the case in which g is given by an 7 x m matrix
X of indeterminates over a noetherian ring B, and part of it has already been proved
(cf. (2.8)). In Section 13 we shall again take up the problem concerning the perfection
of Coker g. More generally the map z: R™ — R™ will be investigated where R = R¢(X)
and z is given by the residue classes of the entries of X. Coker z will turn out to be a
perfect B{X]-module if and only if n 2 m.

Only part (a) of (2.16) needs a proof; (b) and (c) then follow easily from what
has been said above. The complexes D;(g) are complexes of free A-modules of length
r+1=n-—m+1. By virtue of the exactness criterion (16.16) it is enough to show
that their localizations Di(g)p, P 7 Lm(g), are split-exact. For these prime ideals P the
localization gp is surjective, so we have reduced (2.16) to the following proposition.

(2.17) Proposition. Let A be a noetherian ring, g: G — F a homomorphism of
finitely generated free A-modules. If g is surjective, then the complezes Di(g) are split-
exact. ' o
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ProoOF: By the definition of D;(g) one has

( Hp(C:(g) ifj=0andi>0,
HJ(CI(Q))) j=1,...,‘i"1,
Ker 8/ I v, ji=i,

H.(Di(g) = ¢
5(Pilg)) Kerv,/Imd*,  j=i+1,

H 19 (C_(9)), J=i+ 2 nm,
VHACI)  H=ralandi<r

We may assume that A has exactly one maximal ideal. Then Kerg is a free direct
summand of (. As stated above, Ker8/Imv; and Kerv;/Im&* do not depend on the
orientations v and 6. Therefore one may take a basis z;,...,2,, of F and a basis
Y1,---,¥n of G such that g{yx) = zx, k = 1,...,m, glyx) =0, k' = m+1,...,n, to define
v and & by : '

Yy A---Azyp)=1 and S(y1A---Agl)=1

(21,...,2;, being the basis dual to z1,...,2,, etc.). With these data it is very easy to
calculate that Im 8* = Ker v;, Ker @ = Im ;. The rest essentially follows from:

(2.18) Proposition. Let A be a commutative ring, g: G — F a surjective homo-
morphism of finitely generated free A-modules. If g is surjective, then

H;{C(g)})=0 for j>1kG—1kF

and
H;(Ci(g)) =0 for j#i.

Let us first finish the proof of {2.17). Proposition (2.18) shows that

i 0
0 — Hi(Ci(g)) — NG@Se(F) ... L NG@Si(F) — 0

is a split-exact sequence of A-modules. Therefore its dual is split-exact, too. Taking into
account that this holds for 7 = 0,...,7, (2.17) follows immediately. —

As just seen, the important part of (2.18) is the second equation. The first one
can be viewed a special case of the geperal theorem concerning the vanishing of Koszul
homology ([No.8], Theorem 4, p. 262): the image of the linear form g: G — S{F) is the

ideal @ S;(F). After the choice of a basis for F one can identify S{F) with a polynomial
i>1

ring over A within which Im g is just the ideal generated by the indeterminates, an ideal

of grade rank F' (with the suitable definition of grade if A is non-noetherian).

PROOF OF (2.18): As in the proof of (2.17) it is useful (and harmless) to assume
that 4 has exactly one maximal ideal.

One proceeds by induction on tk G — rk F. In case tkG = 1k F, the argument just
explained shows that H; = 0 for j > 0 (without any reference to the notion “grade”): the
Koszul complex associated with (the linear form given by) a sequence of indeterminates
is acyclic in positive degrees (cf. [Bo.4], §9, no. 6, Prop. 5). Furthermore H;(Co(g)) = 0

for 4 > 0 by definition of Colg). ..

SR R -
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Let now rk G > rk F. Then one splits G into a direct sum G = H @ Ae, H free,
thkH =1kG -1, e € Kerg. Let h = g|H. The decomposition induces split-exact

sequences

i+1 i+1 i
(1) 0— AH— AG— AH—0,
the map on the left being the natural embedding, the map on the right sending = A e,

i i1
z € AH, to = and vanishing on A H.
Passing to S{F') one obtains a diagram

0 0 0 0
4 n—‘l’,\ 1\/\ 0\;

ch)y: 0 — 0 -—— H ANH AH —— 0
n netl_ 1 0 .

Clg): 0 — AG — AG — NG NG —— 0
ﬂ—ql,\ n—;A 0",‘ i

C(h)[—l]; 0 ~—— H —— H AH y 0 — 0
H} 0 0 0

whose split-exact columns are induced by (1). It is easy to check that this diagram is
commutative, whence we have an exact sequence

- — Hi{(C(R)) — H;(C(9)) — H;—1(C(R) — ...

of homology modules. The first equation follows immediately.
For the demonstration of the second we regard the diagram above as a diagram of

0 .
graded $(F)-modules. For convenience one chooses the graduation of AG = S(F) as the
natural one, and then shifts all the other graduations such that every homomorphism is
of degree zero. The i-th homogeneous part of H;(C(g)) is then given by

Ker [AG ® Si—;(F) — J./m\l':_;@ Sivga(F)] H,(C:(g))-

H;(C(9); =

i1

Im[AG ® Si—j-1(F) — ;\G ® Si—;(F)]
Analogously
H;(C(h)), = H,{Ci{(h)),

whereas
CH(C(h)[-1]); = H;j—1(Ci-a(h)).

The decomposition of the exact homology sequence above makes the second equation
evident now., —
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(2.19) Remarks. (a) It is not difficult to identify the homology modules H:(C:(g)),
i=0,...,7, in the situation of (2.16) or (2.18). The reader may check that

Hi{C:(9)) = (AM)*, M = Cokerg".

Furthermore

H(C (9) = A M,

r—i r+1
s0 C2_;(g) resolves AM,i=0,...,r (and C;.,(g) resolves A M). The map v; can be
interpreted (or constructed) as an isomorphism

AM%(/\M)*

™
derived from the linear form vy: AM — A.

(b) The complexes discussed so far do not exhaust the class of resolutions which can
be extracted from the complexes C(g). We prove the following results only for the case
R = B{X], B noetherian, g: G — F given by the 7 x m matrix X of indeterminates
with respect to bases e;,...,e, and di,...,dm of G and F. To indicate this clearly we
use X in place of g.

(i) If n < m, then the complez C(X) 45 acyclic. It resolves S(Coker X) over S(F);
its homogeneous component C;(X) resolves Si(Coker X) for all i > 0. In particular
pd 8;(Coker X) = min(¢, ).

It is easy to see (and will e proved in (12.4)) that X(e1),..., X (en) is an S(F)-
regular sequence (S{F) is the polynomial ring R[dy,...,dn]). Therefore the Koszul
complex C{X) is acyclic.

It has been shown in [Av.2] that in general gle1),...,g(en) is an $(F)-regular se-
quence if and only if gradel, ;(g) > m —n+i+1 for i = 0,...,n —1. Thus (i) holds
under this more general condition.

(ii) If n > m, then the conclusion of (2.18) holds for C(X). In perticular Ci(X)
resolues S;(Coker X) and pd §;(Coker X) = min(i,n) for all i >n—m+1 (whereas, by
(2.16), pdS;(Coker X) =n —m +1 fori=1,....,n—m).

This is proved by the same induction as (2.18) starting with the case n = m covered
by (i}. In fact, the exactness of the sequence of complexes used in the proof of (2.18) does
not depend on the special hypotheses there nor on the choice of e such that G = H @ Ae,
H free. (The reader may investigate whether (ii) can be generalized in the same way as

(i).) —

The resolution of R,,,(X) obtained from {2.16) carries much more information about
R (X} than just its perfection. For example, one can compute its canonical module
(cf. 16.C) and decide whether it is a Gorenstein ring.
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(2.20) Theorem. Let B be a Cohen-Macaulay ring having o canonical module
wp and X an m x n matrix of indeterminates over B, m < n. Furthermore let C
denote the cokernel of the map B[X]™ — B[X]™ given by the transpose X* of X. Then
Sn—m(C) ®p wp is a canonical module of R (X).

PRrOOF: Let g denote the map given by X*,r =n —m, and R = R (X). Then

wr = Bxti (R,ws(x) = B (Homspx (Co(g), BLXD)
— H™(C(g) ®px) wB) = H™(Cg(9) ®px) (BIX]® wp))
= H+1(C(9)) ®px) (BIX] ®B ws)
=5 {C)®wp. —

(2.21) Corollary. Lei X be aenmXn matriz of indeterminates over the noetherian
ring B. Then Rm(X) is a Gorenstein ring if and only if (i) B is a Gorenstein ring end
(iiym=1orm=mn.

PROOF: The “if’-part is obvious (without (2.20)). Assume that E = R, (X) is a
Gorenstein ring. As in the case of the Cohen-Macaulay property (cf. (2.13)) we deduce
that B is a Gorenstein ring (using a suitable argument stated in [Wt]). Let P be a prime
ideal in A containing the entries of X and r,g,C as in (2.20). S,(C)p is the canonical
module of Rp. By the definition of Cy{g) the minimal number of generators of S,(C})p
is rk S, (B[X])™). It has to be 1 if Rp is a Gorenstein ring. —

Later we will determine the canonical module for each of the rings R¢(X) , cf. Sec-

tions 8 and 9. Then the canonical module will be described as an ideal of R;(X) {provided
B is Gorenstein). The reader may try to derive such a description from (2.20).

D. The Complex of Gulliksen and Negard

We shall now construct a finite free resolution of I,(X) for the case in which m = n,
t=n~1,n > 2 Let Abe an arbitrary commutative ring. By Mn{A) we denote the
ring of n x n matrices with entries in A. We also use the structure of M, (A) as a free
A-module of rank n2. Let U € M,,(4). Then the complex of A-modules

GU): 0 — G(U)s 2 G(U); 2 G(U)2 25 GUN = G(U)o — 0

is given as follows: Put G(U)o = G(U)s = 4, G(U) = G(U)s = Ma(4). To get G(U)2
we consider the zero-sequence

(2) A-5 Ma(Ad)@ Ma(4) > A

where 1(a) = (¢ E, o E), E being the unit matrix of M (A), and 7(V, W) = trace(V—-W).
Let Ejj, 1 €i,j < m, be the canonical basis of My (A). Then Kerr is generated by the
elements (Eij,O), i -',‘l—' j, (O,Euu), U # v, (E;,‘,Eu), 1< ] < n,‘a.nd (0, Euu — Eu), 2<
% £ n. Since Im ¢ is generated by S (B Bat) = 2 e (Fiis B+ 3o (0, By~ B
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G(U)2 = Kerx/Im. is a free A-module. Now let I be the matrix of cofactors of U. Then
we put

di(V) = trace(TV),  dyla) = al.

To define ds, d3 we consider the zero-sequence

(3) Ma(4) L Mo (4) ® Ma(A) -5 Mo(4)

where (V) = (UV,VU), (V,W) = VU - UW. Clearly Im: C Kery and Im9 C Kern
so that we may define d3, d3 as the maps induced by ¢ and %, resp.

A trivial calculation shows that d; o diy; = 0, i = 1,2,3, whence G(U) is in fact
a complex. Furthermore Imd; = I,_;(U). We make another trivial observation: If
h: A — A" is a homomorphism of commutative rings and if A{U) denotes the matrix
obtained from U by applying h to the entrles of U then one has a natural isomorphism
of A’-complexes

CU)@4q A" C(h(U)).'
(2.22) Propositiorll.. The complex G(U) is self-dual.

PROOF: We have to define isomorphisms v;: G(U); — [G(U)s—]*, 0 < i < 4, such
that »;_yod; =dj_; ,ov for i ='1,...,4. Let vy = v4 be the canonical isomorphism
A — A*. Next we take the canonical basis E;; of My(4), 1 <4,j < n, and its dual B}
to define : M, (A4) — M.(A)* by v(Eyj) = E};. Put vy = v3 = v. Let ¢, 7 be the maps
from the sequence (2) above and denote by x: Kerx — M,(A) & M,(A4) the canonical
injection. Then x* o (v, —v) as well as the elements of Im(x* o (v, —~))} vanish on Im¢.
Consequently x* o (v, —v) induces a homomorphism v,: G(U); — G(U)4 which is easily
seen to be bijective. The equations vi—y o d; =dj_; ; o v; may be verified directly. —-

(2.28) Proposition. If U is invertible, then G(U) is split-ezact.

ProoF: It is no problem to see by direct computation that H(G(U)) = 0 in the case
under consideration. Cn the other hand the proposition will follow from the next one
once we have shown that Hy(G(U')) = 0. For this purpose let V,W € M, (A4) and suppose

VU —UW = 0. Let I be the matrix of cofactors of U and put Z = (det U)~'UV. Then
UZ=Vand ZU = (detU)"WUVU = (det N WWUW=w. —

(2. 24) Proposition. Let N be any A- module. Then the ideal L, (U ) annihilates
H:(G(U) @4 N} fori# 2.

PROOTF: Let Ey, 1 <1,7 <n, be the canomcal basis of M = M,{A). We consider
the Koszul complex

. .
DAY N 7 g g

derived from the linear.form 6 = di: M — A, We claim that Imé, C Imd;. In
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connection with (2.22) this yields a commutative diagram

de dg ds dy
GUYy —— G(U)s — G(U)s —— G(Uh — G{U)

= _ = _ =
SN —— GU) —— G

|| | L

a; o; 2
A — M* — AM*.

Since Im @, = I,_1(U) annihilates the homology of K ®4 N as well as that of C* @ N
([Bo.4], §9, no. 1, Cor. 2, p. 148), tensoring of the diagram by N then proves the statement

of the proposition.
As to the proof of Im8d; C Imds, let 7,¢ the maps from (2) and (3) above and

I=1{1,...,n}. An easy computation shows that
8(Eiu AEi) = £ 3 0l \)Lyen sty dsee sl ey By By mlo( B, 0)
J#i
if u # v, s0 that 8;( Eiy AE;,) € Imd,. In the same way one obtains &, (EiwwAEjy) € Imds.
Finally let i # j,  # v. Then
Fa(Eiu A Ej,,) =
(S o, I\O)o (ks N[, -+ 3oy Ry vyt Lyee oy By By, m]@( B, 0)
Bi,j
+ (NG, T\NIL, oo s By ensdone ey Bl Lyenesyneey Byon oy ]0( By Bu)

+ Y o, \i)olw, I\w)[1, Lovosdyeeardreenstt|lye s @yee ey iy ey 2)(0, Euy))
W, v

=

so that Bg(E,'u A EJ',,) € Imd,. —

(2.25) Proposition. Let N be an A-module. Then the ideal (In—1(U))? annihilates
Hy(G(U)®4 N).

ProoOF: Consider A as an algebra over the ring A’ = A[X;;: 1 <4,j < n] via the
substitution X;; — ui; where U = (uy;). Let

0— K —F—N-—0
be an exact sequence of 4’-modules, F being free. Then one obtains an exact sequence

4 Hy(G(X) ®a F) — Hy{(G(U) @4 N) — Hi1(G(X) @4 K)
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where X = (X;;), as usual. Put d = det X and let L denote the cokernel of the canon-
ical embedding A’ — A'[d~7]. By (2.23) the homology of G(X) @/ A'l[d™1} vanishes.
Therefore Hy(G(X)) ~ H3(G(X) ® 4+ L). Now In—1{X) annihilates H3(G(X) ® 4 L) and
H1(G(X) ®4 K) by (2.24). Since (4) is an exact sequence Hz(G(U') ® 4 N) is annihilated
by (In—l(U))z‘ -

From (2.24), (2.25) and the acyclicity criterion (16.16) we get

(2.28) Theorem. Let A be a noetherian ring, U an n X n matriz with entries n
A. Assume that gradel, 1 (U) > 4. Then G(U) is acyclic.

In view of (2.5) we obtain, in particular, that G(X) yields a free resolution of L1 (X)
and Rn_1(X) is a perfect B[X]-module, so Rn_1(X} is a Cohen-Macaulay ring if this
holds for B. Because of (2.22) the Gorenstein property is also preserved in passing over
from B to R,,—1(X). This (and (2.21), of course) is a special case of Corollary (8.9) below
which says that R.(X) is a Gorenstein ring if and only if (i) B is a Gorenstein ring and
(ii) m=1orm=n.

E. Comments and References

The history of determinantal ideals in case ¢ > 1 seems to begin with Macaulay
[Ma]. He stated (2.1) when 4 is a polynomial ring over a field and ¢ = m ([Ma], Section
53). See also {Gb], pp. 199-204, for a simple proof). After a slight generalization of this
result, due to Northcott ([No.1], Theorem 9), the general case has been treated by Eagon
([Ea.1], Corollary 4.1). Our proof together with (2.3} is drawn form [EN.1] (Theorem 3).

The localization argument of (2.4) was used, perhaps not for the first time, by
Northcott in proving (2.10) ([No.2}, Proposition 2). Our version can be found in [Ea.2]
{Proof of Theorem 2). (2.5) goes back to Northcott in case £ = m ([No.2], Proposition 1),
to Mount ([Mo]) in case B is a field {of characteristic zero), and to Eagon in the general
case ([Ea.2}, Theorem 2).

(2.7) is exactly Corollary 5.2 in [Ea.1]; our proof (i.e. (2.9)) is taken from [Ve.2]. The
Cohen-Macaulay property of R,,(X) stated in (2.8), was already proved by Northcott
{[No.1}, Theorems 10 and 11). More precisely he showed that for a matrix I/ with entries
in a Cohen-Macaulay ring 4 the residue class ring Af1,(U) is Cohen-Macaulay, too, if
I (U) has the maximally possible grade. This assertion as well as the idea of the proof,
which goes by an inductive argument using the knowledge of the first syzygy module
of I,(U), is a generalization of corresponding considerations in [Ma)], Section 53. The
generalizations of (2.7), (2.8) and (2.10) to I,(X) for arbitrary ¢ were proved by Hochster

~and Eagon ([HE.2], Theorem 1). That of (2.10) has a precursor due to Mount {[Mo]) in
case B is a field (of characteristic zero). For ¢ = 2 the results corresponding to (2.8) and
(2.10) had already been proved by Sharp ([Sh.1], Theorem 3 and Corollary to Theorem 1,
resp.) who had also shown the Cohen-Macaulay property of A/I;(I7) in case the entries of
U belong to a Cohen-Macaulay ring 4 and I,(U) has maximal grade ([Sh.2], Theorem).
In proving these statements Sharp followed the idea of proof Macaulay and Northcott
had applied already: Hé concurrently computed the first syzygy module of I;(U). (2.11)
and (2.12) together with their proofs are drawn from [HE.2] (Corollary 3).

A rather remarkable proof of the perfection of the ideals 1=(U) has been given by
Huneke in [Hu.2]. Huneke concludes the perfection of Ln(U), m < n, from the fact that
the ideals I,(U), n = m + 1, are even “strongly Cohen-Macaulay". -

1 .
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The representation of a power of an ideal as a determinantal ideal may be an old
idea (though it appears in [BR.1], p. 215 without further reference), and in [Kal}, p. 107 it
is said that (2.14) goes back to Macaulay. The multiplicity of R (X) has been calculated
in [EN.3] as part of an investigation of the Hilbert functions of rings of type A/Im(U)
based on the Eagon-Northcott complex. _ .

The Eagon-Northcott complex has a long and extensive history. It begins with
Hilbert who computed explicitely what we call the Koszul complex derived from a finite
sequence of indeterminates {{Hi], p. 229). Gaeta then seems to be the first who indicated
4 free resolution of Ln(U) in a comparatively general case ([Ga]); be considered an m x 1t
matrix U, m < n, the entries of which are homogeneous polynomials over a field such
that gradeI(U) = n —m + 1. The first general construction was given by Eagon and
Northeott in {EN.1): The differentiation d; of their complex

0—»/\G®ST(F)L...KG-4LA-—»0

defined by means of hases of G and F in an obvious manner, depends on the special
choice of the basis for F (in case ¢ > 0) and G (i = 0), resp. Our presentation, i.e. Dy(g),
is independent of the bases choosen for F and G, up to the definition of vo. It goes back
to [BE.1].

There are numerous generalizations of the Eagon-Northcott complex in a sinilar
direction as we took in Subsection C, and we do not claim the following list to be complete.
From the complexes considered in [Bu.1}, [BR.1}, {BR.2], {G¥], [BE.4}, one gets (minimal)

r
free resolutions of Coker Ag and CokerSp(g), 1 <p < m, if gradeI{g) = n—m+1. With
the same assumption the complexes in [Le.1], [Le.2] yield (minimal) free resolutions

of RCoker g*, cf. (2.19), those in [Wm] corresponding resolutions of ;\Coker g* and
S$,(Cokerg*), 1 <p<n—-m+L The last three papers and {BE.4] make use of divided
powers which are also applied to the construction in [BV] giving {minimal) free resolutions -
of S,(Cokerg), L <p<n—mas in (2.16). It seems that the complexes Pi(g) have first
been constructed by Kirby {[Ki]) in terms of bases.

References for {2.20) and (2.21) will be given in Section 9.

[BE.4] also covers the Guiliksen-Negard complex for which we followed the original
treatment in [GN]. With [Po] containing a (minimal) free resolution of 1,.1(U) in case
U is an n x (n + 1)-matrix (and grade 1,_4(U) = 6), we finish our list of “classical”
contributions to the problem of constructing free resolutions for determinantal rings.

After some attempts which were more or less effective, Lascoux [Ls} was the first
who found a minimal free resolution of R, = BIX1/1{X), 1 £t < m, over B{X] in case
B contains the field of rational numbers. This resolution has also been constructed in
different ways by Nielsen [Ni.1] and Roberts iRb.1]. In [PW.1] Pragacz and Weyman
give “another approach to Lascoux’s resolution”. It is at present not known whether
‘2 minimal free resolution of Z[X]/I(X ) exists which remains minimal after tensoring
over Z with any ring B. Of course such a resolution exists in the maximal minor case
(see above). Akin, Buchsbaum and Weyman [ABW.1] gave a positive answer in the
submaximal minor cage by an explicit construction, following an idea first applied in
(Bu.3). For further discussion of the subject we refer the reader to [Ni.2], [Rb.2], [Rb.3].
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The determinantal ring B[X]/I,(X), where X is 2 matrix of indeterminates, may be

written as
B[X]/T.(X) = (Z[X]/1.(X)) @z B.
It arises from the corresponding object over the “generic” ring Z by extension of coef-
ficients. In this section we want to study how the arithmetic properties of Z[X]/I, I
an ideal in Z[X], carry over to (Z[X]/I) ®z B under the (inevitable) assumptlon that
Z{X]/I is Z-flat.

Another type of extension to be investigated below is the substitution of a sequence

of indeterminates X,..., X, by an A-sequence zi,...,z,, 4 a Z-algebra.

A. The Transfer of Perfection

(8.1) Proposition. Let M be a (not necessarily finitely generated) Z-module. Then
M s flat if and only if it is torsionfree.

PrOOF: A flat module is always torsionfree. For the converse one uses that a finitely
generated torsionfree Z-module is free. Thus M, being the direct limit of its finitely
generated submodules, is the direct limit of flat Z-modules and therefore flat itself. —

Throughout this section X will merely denote a finite collection X3,..., X, of in-
determinates. The most important property which descends from a Z-flat Z[X]-module
M to M ®z B, is perfection: grade M ®z B = grade M, and for a free Z[X]-resolution
F of length grade M the complex F ®z B is a free resolution over BfX]. This will be
shown in Theorem (3.3) below. (Note that every finitely generated Z[X]-module has
finite projective dimension for obvious reasons and that every projective Z[X]-module is
free, cf. [Qu].)

DEFINITION. A finitely generated Z[X]-module M is called generice!ly perfect (of
grade g} if it is perfect (of grade g) and faithfully flat as a Z-module. Ani al [ is called
generically perfect, if Z[X]/T is genencally perfect. .

Before we state the main theorem on generically perfect modules, we want to indicate
how' this definition could be modified: . - .

(3.2) Proposﬂ‘.lon A finitely genemted Z[X]-module M is generically perfect of
. grade g if and only if M is a perfect Z[X)-module of grade g, and for every prime number
p the (Z/Zp)[X]-module M Qg (Z/pZ) is perfect of grade g.

ProoF: The implication “only if” is covered by Theorem (3.3) below, whereas for
the “if”” part we only need to prove that M is torsionfree as a Z-module: M ®(Z/Zp) # 0
for all prime numbers p by hypothesis. Assume that an associated prime P C Z[X ] of
M contains a prime number p. Since a perfect module is unmixed, P is a minimal
prime of M, so grade P = g, and P/Z[X]p is a minimal prime of M ® (Z/Zp), thus
grade P/Z{X]p = g, too. This is a contradiction. —
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(8.3) Theorem. Let M be a finitely generated Z[X]-module which is faithfully flat
over Z. Then the following properties are equivelent (all tensor products taken over Z):
(a) M is {generically) perfect of grade g.

(b) For every noetherian ring B, M @ B is a perfect B[X l-module of grade g.

(¢c) For every prime number p, M ® (Z/Zp) is perfect of grade g.

If M is generically perfect of grade g, then for a Z[X)-free resolution F of M of length
g the complez ¥ ® B is a B[X]-free resolution of M @ B.

PrOOF: The implications (b) = (c) and (b) = (a) are trivial. Let us discuss the
implication (c) = (a). We have to show that Mg is perfect of gradeg over Z[X]q for
every maximal ideal @ of Z[X] for which Mg # 0. There would be no chance to utilize
(¢) if @ would not contain a prime number p. However such a prime number p € @ exists,
ef. [Bo.2], §3, no. 4, Théoréme 3, Corollaire 1 for example. To have a compact notation
let A=2[X],S=A/Ap, P =Q/Ap. Since Mq #0, (M/pM)p = (M{pM)g # 0, so

g = gradeg ,(M/pM)p = pdg,.(M/pM}p.

This implies pd 4, Mq = g, since p is not a zero-divisor of Mg (by flatness over Z!). On
the other hand one has

grade M = grade, M/pM — 1 = (gradeg M/pM +1) -1 =g,

using again that p is not a zero-divisor of M (and A) and M ® (Z/Zp} # 0.
For the proof of the implication (a) = (b) we need a lemma.

(3.4) Lemma. Let A be a noetherian ring, and M a perfect A-module of grade g.
Then the sets of zero-divisors of M and Ext% (M, A) coincide.

PROOF: Since Supp Ext? (M, A) C Supp M ‘in general, and
M = Ext% (Ext%(M, A), A)
here, M and Ext% (M, A) have the same support, and a prime ideal P is associated to

M if and only if Mp # 0 and depth Ap = g. Then it is associated to Ext% (M, A), too,
and vice versa. — :

Let M be generically perfect of grade g now, A = Z{X], § = B(X], and
F:0— Gy — Gy —»--'—'G’l-—ng
a free resolution of M. Over Z the modules G; are flat, so
H;(F ® B) = Tor(M,B) = 0

for all i > 1. Hence @ B is a free resolution of the S-module M@ B, andpd M@ B < g.
The crucial point is to show that grade M ® B =g. By * we denote the functor
Homa(...,A), by ¥ the functor Homg(...,§). F* is a free resolution of Ext% (M, A), a
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flat Z-module by (3.4). As above we conclude that
" F*®B=(F®B)Y

is a free resolution (of the S-module Ext}(M ® B, S)), and Ext5(M ® B,S) = 0 for
t=1,...,9—1. Since M®B#£0is granted, we have

grade M®B > g > pd M®B,

as desired.
The last contention of the theorem has been proved already. —

We shall apply (3.3) mainly to finitely generated graded Z[X]-modules M, in par-
ticular cyclic ones. Then M is flat over Z if and only if it is free (and therefore faithfully
flat), for M is a direct sum of finitely generated Z-modules. Our main approach to the
investigation of determinantal rings starts with the construction of an explicit Z-basis
of the determinantal rings (over Z), and therefore (3.3) is ideally suited to reduce the
problem of proving perfection for the determinantal ideals to the case where the ring B
of coefficients is a field.

Theorem (3.3) also explains why the resolutions constructed in Section 2 look the
same regardless of B: A resolution over Z[X] turns into a resolution over B{X] upon
tensoring with B.

Often one encounters determinantal ideals of matrices whose entries cannot be re-
garded as a family of algebraically independent elements generating the ambient ring
over a ring of coefficients, for example when the ambient ring is local. In general these
ideals are anything but perfect. On the other hand we have seen that an ideal of max-
imal minors is perfect as soon as its grade is sufficiently large: the generic resolution
specializes to an acyclic complex then, and gives a free resolution of the desired length.
This fact admits a far-reaching generalization:

(8.5) Theorem. Let A be a noetherian ring, and M a perfect A-module of grade g.
Let S be a noetherian A-algebra such that grade M®S > g and M@S £0. Then M® S
is perfect of grade g (and grade{Ann M)S = g). Furthermore F® S is o free resolution
of M ® S for every free resolution F of M of length g.

PROOF: Note that Ann(M @ S) and (Ann M)S have the same radical (by Nakaya-
ma’s lemma). Let P be a prime ideal of S such that gradeP < g. Then Q= ANP 3
Ann M , and

: FR®Sp={(F®A0)®Sp

is split-exact. Now the claim follows from the acyclicity lemma (16.16). —

For a typical application of (3.5) we consider an S-sequence zy, ..., 2, and the powers
I* of the ideal I generated by it. Let A = Z[Xj,... 1 Xal, J =3 AX;, and M = A/J*.
Then M is generically perfect (by (16.19), say), and one concludes immediately that 7*
is a perfect ideal (of grade n): Proposition (2.14) has been proved again, and perhaps in
a simpler fashion now.

In the situations of (3.3) and (3.5) not only perfection, but also' a free resolution
is preserved under the extension considered. As a particular consequence, the cancnical
module of the extension is obtained as the extension of the canonical module: '
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(3.8) Theorem. Let I be a generically perfect ideal in Z(X] and R = Z[X]/I.
Then:
(a) The canonical module wp generically perfect, too.
{(b) For a Cohen-Macaulay ring B with canonical module wp one has

WrezB = WR 82 WB-
(c} For every Cohen-Macaulay Z[X |-algebra S such that grade IS > grade I one has
WROz xS = WR BZ[X] W3,

provided S has a canonical module ws.

Proor: Let g == gradel. Then wg = Ext%[XI(R,Z[X]), hence part (a) is a by-
product of the proof of (3.3), and parts (b) and (c} are proved essentially in the same
way as Theorem (2.20). — :

B. The Substitution of Indeterminates by a Regular Sequence

In the following we shall have to work with associated graded rings and modules.
Let A be a ring, I C A an ideal. The associated graded ring with respect to I is

GriA=@r/r,

i20
and for an A-module M the associated graded module is given by

Gr M =M/ M;

i>0

it carries the structure of 2 GryA-module in a natural way. To each element z-€ M we
associate its leading form z* € Gr, M by

z* =zmod I*'M  if zel*M\I*'M, and

2*=0 if ze€ ﬂr‘M.
i>0

For a submodule I/ C M the form module U* C Gr;M is generated by the elements
z*,z € U. Then obviously

(1) Gr,(M/U) = (Gr, M)/U*.
If M = A and J C A is an ideal, the isomorphism (1) implies that
(1) Gr;A 2 (Gr, 4)/J*

where we let A= A/J, I = +J)/J.
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Let A be a noetherian ring and z;,...,z, an A-sequence. Then the associated
graded ring Gr; A with respect to the ideal I generated by z;,...,z, isa polynomial ring
over A/I, cf. [Re], the indeterminates being represented by the residue classes z3,...,z2
modulo 2 of z4,...,z,. Suppose that M is a generically perfect module over Z[X],
X = (X1,...,X,). Then, by (3.3) the module

M=MezAlI
is a perfect (GryA)-module. We would like to conclude that
M=M ®z(x) A

is a perfect A-module, where A is made a Z[X]-algebra via the substitution X; — 25
From (3.5) it is clear that we only need to know that grade(Ann M JA > grade M. Since
grade(Ann M)(Gr;A) > grade M, this should hold if (Ann M)A and (Ann M)(GrA)
can be related in a reasonable fashion.

The following example shows that M may not be perfect if one replaces indetermi-
nates by an A-sequence without further precautions. Let 4 = Z[U, V, W]. Then z; = U,
z3 = V(1-U}), 23 = W(1~U) is an A-sequence. However {Z{X1, X3, X3]/( X2, X;3)}® A
(via the substitution X; — z;) is not a perfect A-module. Though z3, z% is a Gry4-
sequence, grade{zz,z3) = 1 only, and (2, z3) is not even unmixed. The difficulty arises
from the fact that

(Ne5R=0 in R=A/Az,
k>0
The usual way out is the assumption that I be contained in the Jacobson radical.

(8.7) Lemma. Let A be a noetherian ring, I,J ideals in A, ¢ € A.
(a) If z* is not a zero-divisor modulo J*, then (J + Az)* = J* + (Gr A)z".
(b} If furthermore I is contained in the Jacobson radical of A, then z is not a zero-divisor
modulo J.

ProOOF: The isomorphism (1') above readily reduces the problem to the case in
which J = 0. Then the first statement follows from the equation ¢*z* = (az)* which
always holds if a*2* # 0, and the second statement is trivial: a* # 0 for all ¢ € A. —

(3.8) Lemma. Let A be a noetherian ring, I,J ideals in A such that I is contained
in the Jacobson radical of A. Suppose that grade J* > g. Then J* contains a (Gr;A)-
sequence z1,...,2g, z; € J. Therefore z1,...,z4 is an A-sequence, and, in particular,
gradeJ > g.

PROOF: A homogeneous ideal which is not composed of zero-divisors must contain
a form which is not a zero-diviser. The rest is induction on g, the inductive step relying
on the preceding lemma. —

We return to the situation discussed above (f\/f =M @zx) A, M = M @z A/I). If
1 is contained in the Jacobson radical, then by {3.8)

grade{Ann JT/f) > grade(Ann H)".‘ .

In general (cf. (3.10),(c) below) grade(Anh M )* < grade(Ann M), and the argument
breaks down. However, if M is a graded Z[X]-module, then Ann M is generated by
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forms f1,...,fs € Z[X] of positive degree (otherwise M would not be Z-flat!}. The ideal
(Ann M)A is generated by the elements fi(z) € I whereas (Ann M Y(GrA) is generated
by the fi(z*). Since for a homogeneous polynomial f € A[X]

(fla)) = flz*) or f(z}=0,
we conclude that {(Ann M)A)* already contains (Ann M )(Gr 4}, So
grade M = grade(Ann M)(Gr;4) < grade({Ann M)A)*
< grade(Ann M)A < grade{Ann M),
and quoting Theorem {3.5) we complete the proof of:

(3.9) Theorem. Let M bea generically perfect graded Z[X)-module of grade g. Let
A be a noetherian ring, y,...,Z, an A-sequence such that I = Y&, Az is contained
in the Jacobson radical of A. Then, via the substitution X; — =i, the A-module M @ A
is perfect of grade g.

(3.10) Remarks. (a) The hypothesis on I can be slightly weakened. Whether
M ® A is perfect of grade g, can be decided from the localizations M ® Ag, where @ runs
through the maximal ideals containing (Ann M )A. Therefore one may localize first, and
it suffices that I C @ for these maximal ideals Q.

(b) The assumption that I be contained in the Jacobson radical can be replaced by
the hypothesis that A is graded and the ; are forms of positive degree. We leave the
necessary modifications to the reader. (Any hypothesis covering both cases has a rather
artificial flavour.)

(c)LetpeZ,p#0,x1, A= Q(U, V]I/(UV - pV), and z; the residue class of U/
in A. The module M = Z[X;]/(X, — p) is generically perfect and z is contained in the
Jacohson radical. Nevertheless M ® A is not perfect, an example demonstrating that the
assumption on M being graded is essential.

(d) Theorem (3.9) has obvious consequences for determinantal ideals. Whenever C
is a matrix whose entries form a regular sequence inside the Jacobson radical, then the
ideals 1,(C) are perfect. (It will be proved in (5.18) that the ideals I.(X) are generically
perfect.) Guided by this example we want to indicate a second approach to the proof of
(3.9). Let X be an m x n matrix of indeterminates over Z. As we shall see in {5.9) there
is & SeqUeNce ¥1,--.,,¥s s =mn—(m—1t+ 1)(n — £ +1), of elements in I; (X) such that

Rad (L(X) + > Z[X]y:) = L(X).

1=1

If C is as above and ¢: Z[X] — A the substitution X — C, then

Rad (L(C) + z Ap(y:)) = Rad L1 (C)

i=1

and it follows that
grade I,(C) > gradel3(C) —s = (m — ¢t + 1n—t+1)
since 1;(C) is contained in the Jacobson radical (cf. [Ka}, Theorem 127). —
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Besides M ®@zix) Aand M ®z (A/I) =M ®z(x] (Gr;A) there is a third module of
interest, namely Gr (M ® A4). Thisis a graded module over Gr;4 generated by its forms
of degree zero, and unless the same, possibly after a shift of the graduation, holds for M
itself, we cannot expect that Gr (M @ 4) ¥ M @ (GrA).

(3.11) Proposition. Let M be o graded Z-flat (thus Z-free) B[ X)-module generated
by its forms of lowest degree. Then, with A, T1,. .. Tn, and T as in (3.9) oné has

Gry(M ® A) = M ® (Gr;4),

the tensor products taken over Z[X].

PROOF: After a shift we may assume that M is generated by its forms of degree
zero. Consider a homogeneous representation

RP I, Logm a0

over B = Z[X] in which the elements of the canonical basis of R™ are assigned the
degree 0, and those of the canonical basis €1y...,6n Of R are assigned degrees ey,..., ¢,
such that ¢; = deg f(e;), i = 1,...,n. Let d1,...,d, the canonical basis of RP, and 6; =
degg(d;), 7 =1,...,p. We may assume that none of fer},..., flen) or g(dy),... y9{dp) is
divisible by any ¢ € Z, g # =1, since M and Im f are Z-flat. Therefore 3 = M ®z (A/)
has the homogeneous representation

(2) o LgnLgm WM —0, G=0r4,

in which none of f(e; ® 1) or g{d; ® 1) is zero, i = 1,...,n, J=1,...,p. After tensoring
the representation of M with A (over R) we obtain a zero-sequence

AL om0, W=Me4

which is exact at A™, Since f(e:®1) # 0, we have f(e;®1) € I A™, f(e;®1) ¢ I5+1 4m,
Hence (f(e; ® 1)) =flei®1),and Imf C (Im f)*, where * now denotes leading forms
in A™, of course. We have to prove that (Im f)* C Im £, too {cf. the isomorphism (1)
above). The crucial argument will be that one can “lift” any relation of the f(e; ® 1)
because of the exactness of (2). Let p ajf(e,- ®1) € I“A™. If suffices to show that there

‘are Ej'E T*=¢i"guch that

doaifle;@1) = G fle;®1).
Suppose that dega; = a; and that there is a § with a; < u-—cj. Let
w=max{u—cj=o;} :
and

{a.j if U—Ej-Q; =K,
bJ' = "
0 else.
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Then Y, b;-‘?(ej ®1) = 0 and deg(di,...,b) =uv — & Therefore there are homogeneous
elements rq,...,7p, degry =u — K — &5, or 7 = 0, such that

(83,...,b5) = D rxg(di ®1)-
Let s1,...,8p € A such that s =7, k=1,...,p, and define

(E],.-.,En) = (alg"'?an) - zskg(dk ®1)
For the j-th component dy, of g(dy) one has
de; =0 or deg dy; = bk — €;-

The image of di; under the extension Z[X] — A is the j-th component Ekj of g{dr ®1).
We claim that

(3) Z spdy, = bj = a; mod s

Since obvicusly _ B
S aifle;@1) = > G f(e; ®1),
we are done, for an iterated application of the procedure leading from a; to @; will produce
a representation Zﬁ,—f(e,— ® 1) as desired. The congruence (3) is likewise obvious, since
b; = a; by definition, and the residue class of sk&_kj modulo T~~~ is rydy, di; being
the j-th component of g(dx ® 1), as seen by arguing with degrees. —
The hypothesis that M be generated by its forms of least degree is satisfied for cyclic

graded Z[X]-modules, so in particular for our standard example, the residue class rings
modulo determinantal ideals. A typical application of (3.11) will be given in (3.13).

C. The Transfer of Integrity and Related Properties

As pointed out already, one of the consequences of Theorem (3.3) for determinantal
ideals, say, is that their perfection can be proved by considering fields only as the rings
of coefficients. A similar reduction works for the properties of being a radical ideal, a
prime ideal or even a prime ideal with a normal residue class ring.

(8.12) Proposition. Let J be an ideal of Z[X] such that Z[X]/J is feithfully flat
over Z.. Suppose that (Z[X]/J) @z K is reduced (a ( normal) integral domain) whenever
K is o field. Then (E[X]/J) ®z B is reduced (2 (normal) domain) if B is noetherian
and reduced (o (normal) domain). o :

ProOF: Let ¥ denote the total ring of fractions of B. Then the embedding B — F
extends to an embedding '

(Z{X)/))® B — (BX}/]) @ F..

£ B is reduced (a domain) then F is a direct product of finitely many fields (a field),
so {Z[X]/J) ® F is a direct product of reduced rings (a domain). It remains to consider
normality, for whick we can use the properties of flat extensions, since A = (£[X]/J)® B
is B-fat. The normality of A follows from the normality of B and the normality of the:
fbers of the extension 8 — A which are given as (Z[X]/J).® (Bg /QBg), @ tunning
through the prime ideals of B. — e :
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This proposition has a variant concerning extensions Z[X] — A as discussed in (3.9)
and (3.11).

(8.13) Proposition. Let J be o homogenceous ideal in Z[X) such that Z[X)/J is
Z-flat and (Z[X)/J) ®z K is reduced (a (normal) domain) for all fields K. Let A be a
noetherian ring with an A-sequence z1,...,z, inside its Jacobson radical such that A/,
I=3" Az;, is reduced (e (normal) domain). Then, via the substitution X; ~— z;,
(Z{X]/J) ® A is reduced (a (normal) domain).

PROOF: Let G = Gr;A. Then, by virtue of (3.11), one has (JA4)* = J@. Proposition
(3.12) implies that G/JG is reduced (a (normal) domain) and this in turn forces AfJA
to have the property claimed (cf. [Z8], p. 250). —

Again the hypotheses of (3.13) could be slightly weakened as indicated in {3.10},(a).
The following proposition will sometimes help to compute the grade or height of an
ideal.

(8.14) Proposition. Let J be an ideal in Z[X) such that R = 2[X]/J is faithfully
flat. Suppose that I is an ideal in R such that grade I{R®z K) > k for all fields K. Then
grade I{R®z B) > k for all noetherian rings B, and if grade I(R@z K) = k throughout,
then always grade I(R @ B) = k. Analogous statements hold Jor height.

PROOF: Let P be a prime ideal of 4 — R®z B, PD>IA Q= 8Bn P, and
K = Bq/QBg. Then

depth Ap = depth Bp + depth Ap ® a K

since A is a flat B-algebra. Ap ®4 K is a localization of R ®z K with respect to a prime
ideal containing /(R ®z K), hence

depth Ap > depthAp®4 K zk

as desired.

Suppose now that gradeI(R @z X ) = k for all fields K. Then v - choose P as
follows. First we pick a minimal prime Q of B. Next we take a minims prime ideal P
of (R@z K), K = Bq/QBg, such that depth(R ®z K}y = k. Then th. preimage P of
P in A satisfies PNB=¢Q,(Reg K}y = Ap®4 K, so0 depth Ap = k by the equation
above. s .

In order to get the statements for height, one replaces depth by dimension. —

We note a consequence which will be used several times below:

(8.15) Corollary. Suppose that (the image of) ¢ € R is not a zero-divisor in
R®z K forall fields K. Then z is not q zero-divisor in R ®z B for every ring-B..

In fact, if z is a zero-divisor in R ®z B for some commutative ring B, then there is
a finitely generated Z-algebra B C B such that  is a zero-divisor in R ®z B, and one
obtains a contradiction from (3.14). .
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D. The Bound for the Height of Specializations

Let M be a perfect Z[X]-module of gradey, A a noetherian Z[X]-algebra, P a
minimal prime ideal of Ann(M ® A). Then, applying (3.5) to M ® Ap, we see that

grade P < grade PAp £ 9.

This inequality can be sharpened:

(3.18) Theorem. Let M be a perfect Z[X)-module of grade g, A @ noetherian
Z[X]-algebra. Then ht P < g for every minimal prime ideal P of Ann(M ® A).

PROOF: We may obviously assume that A is local and P its maximal ideal, and, com-
pleting if necessary, that Ais a complete local ring. P is a minimal prime of (Ann M)A,
too. By the Cohen structure theorem A may be written S/I, where S is a regular local
ring. The extension Z[X] — A can be factored through S, and

ht{Ann M)S = grade(Ann M)5 < g.

On the other hand ((Ann M)S + I}/I = (Ann M}4; so (Ann M)S + I is primary with
respect to the maximal ideal of S. By Serre’s intersection theorem ([Se], Théoréme 3,
p. V-18)

ht(Ann M)S +ht I > ht((Ann MY§ + 1),

and
ht((Ann M)S +I) = dim S = ht(Ann M)A +ht I,

80
¢ > ht{Ann M)S > ht(Ann M)A—

For the determinantal ideals (3.16) has been known $o us already; it was proved in
this special case by more direct methods in (2.1). Taking M = Z[X]/(Z X;Z[X]) we see
that (3.16) is a generalization of Krull’s principal ideal theorem.

E. Comments and References

The notion “generically perfect” was introduced by Eagon and Northcott in [EN.2]
using the description in (3.2) as a definition. As their main results one may consider
(3.5) ([EN.2], Corollary 1, p. 158) and (3.16) ([EN.2], Theorem 3). The non-obvious
implication (a) = (b) of (3.3) was proved by Hochster [Ho.1]. In Hochster’s terminology
(3.3) states that every generically perfect module is strongly generically perfect. Our
proof of (3.3) is a substantial simplification for the case considered by us, namely Z as
the base ring. The theory of generic perfection can be extended in different directions:
(i) One can work relative to a base ring A and consider A-algebras throughout. (ii} The
“noetherian” hypothesis can be dropped after the introduction of an adequate definition
of grade for general commutative rings. (iii) As a minor modification, one can weaken
the hypothesis “faithfully flat” into “fat” allowing in (3.3), say, that “M ® B = 0 or
M®B is perfect ... ”. We refer to [Ba], [Ho.5], [No.3], [No.4], [No.5] and [No.6] for more
information.
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There is however one generalization the reader can perform without subsiantial
changes in the proofs: Z as the base can be replaced by any Dedekind domain or field
D, since the properties of Z are used only for the equivalence of “torsionfree” and “fiat”.
Then of course only [-algebras may be considered and (3.3),(c) has to be modified in
an obvious way.

With the same generalization, Theorem (3.9) was proved by Eagon and Hochster
in [EH], where the replacement of indeterminates by elements in a regular sequence
was investigated in a more general situation. The method of proof employed in [EH] is
indicated in (3.10),(d). Our proof of (3.9) and those of (3.11) and (3.13) are patterned
after [No.2], where Northcott considered ideals of maximal minors. Part of (3.13) can
also be found in [Ng.2]. Proposition (3.12) is taken from {Ho.3] where B is not supposed
to be noetherian, an assumption which simplifies the proof for “normal”. The example
(3.10),(c) was given in [EH].

Since (3.5) indicates how one could derive results for “non-generic” determinantal
ideals from those on the ideals I,(X), this may be an appropriate place to list some
articles in which such determinantal ideals have been investigated. Definitive results
have been obtained by Eisenbud in [Ei.2] on ideals I,{X)-where X denotes the matrix of
residue classes of the entries of X in a ring B[X]/J, J being generated by linear forms in
the indeterminates. The case ¢ = min{(m,n) had previously been treated by Giusti and
Merle {({GM]).

The ultimate generalization of (3.16) would be the “homological height conjecture”:
Let R — S be a homomorphism of noetherian rings, and M an R-module; then ht P <
pd M for every minimal prime ideal P O (Ann M)S. It is known to hold if S contains a
field, cf. [Ho.9).



4. Algebras with Straightening Law on Posets of Minors

Among the residue class rings B[X]/I the most easily accessible ones are those for
which the ideal I is generated by a set of monomials, since one can use the structure of
B[X] as a free B-module very favourably: I itself is generated as a B-module by a subset
of the monomial B-basis of B[X]. The multiplication table with respect to this basis is
very simple, a property inherited by B[X]/I.

With respect to the monomial basis of B[X], a minor of X is a very complicated
expression. Therefore it is desirable to find a new basis of B[X] which contains the
minors and as many of their products as possible. The construction of such a basis is
the main object of this section. This basis will consist of monomials whose factors are
minors of X, and whether such a monomial is an element of the basis can be decided by
a simple combinatorial criterion.

The set of maximal minors of a matrix has a combinatorially simpler structure than
the set of all minors: one needs only one set of indices to specify a maximal minor, and
all the maximal minors have the same size. Therefore it is simpler to treat the rings
G(X) first and to derive the structure sought for B[X] afterwards (from G(X) for an

extended matrix X).

A. Algebras with Straightening Law

When all the minors of X appear in a B-basis of B[X], then, apart from trivial
cases, it is impossible that a product of two elements of the basis is in the basis always;
nevertheless one has sufficient control over the multiplication table. This situation is met
often enough to justify the introduction of a special class of algebras: '

DEFINITION. Let A be a B-algebra and IT C A a finite subset with a partial order <,
called a poset for short. A is a graded elgebra with straightening law (on II, over B) if
the following conditions hold:

(Ho) A = ;54 Ai is a graded B-algebra such that Ay = B, II consists of homogeneous
elements of positive degree and generates A as a B-algebra.
(Hy) The products &1...8m, m € N, £; € II, such that §; € --- < &, are linearly inde-
pendent. They are called stendard monomials.
(Hz) (Straightening law) For all incomparable £,v € II the product £v has a representa-
tion

fv= Za,‘u, ay € B, a, ¥ 0, p standard monomial,

satisfying the following condition: every p contains a factor C eHdsuchthat { <§,{ <wv
(it is of course allowed that {v = 0, the sum ) ¢, p being empty). .

The rather long notation “algebra with straightening law” will be abbreviated by
ASL.

We shall see in Proposition (4.1) that the standard monomials form in fact a basis
of A as a B-module, the standard basis of A. The representation of an element o € A as
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a linear combination of standard monomials is called its standard representation. The
relations in (H,) will be referred to as the straightening relations.

To be formally precise one would better consider a partially ordered set IT outside
A and an injection II —» A. We have preferred to avoid this notational complication and
warn the reader that II (or a subset of it) may be treated as a subset of different rings,
in particular when A and a residue class ring of A4 occur simultaneously. Similarly we
do not distinguish between a formal monomial in II and the corresponding ring element.
Condition (H;) of course says that the family of ring elements parametrized by the
formal standard monomials is linearly independent. Whenever a function is defined on
{a subset of) the set of monomials by reference to the factors of the monornials, then
such a definition properly applies to the formal monomials.

Before we discuss an example, one simple observation: If A is a graded ASL over B
on IT and C a B-algebra, then A ® C is a graded ASL over C on I in a natural way.

The polynomial ring B[T},..., 7] is a graded ASL in a trivial fashion: one orders
Ty,..., Ty linearly. For a less trivial example we let X be a 2x 2-matrix, § its determinant.
We order the set II of minors of X according to the diagram

X2z

X12 X
An
.

The conditions (Hp) and (H;) are obviously satisfied: Only X;; and X»; are incompa-
rable, and the straightening law consists of the single relation X12X2; = Xy X2z — 6.
Replacing every occurence of the product X2.X»1 in a monomial by X11X2: — & one
obtains a representation as a linear combination of standard monomials. Furthermore
one has a bijective degree-preserving ‘correspondence between the ordinary monomials:
and the standard monomials: '

o e char b o if5>k
XthzszlXéz — ¢ 11 ,1:_ ; ?2 . ’ .,
- X11X21 stﬂXzz lf k > J-
Therefore the standard monomials must be linearly independent, and B[X] is an ASL
on II. It is much more difficult to establish the analogous result for bigger matrices.

{4.1) Proposition. Let A be a graded ASL over B on II. Then:
(a) The standard monomials generate 4 s o B-module, thus forming a B-basis of A.
(b) Furthermore every monomial =& ...€m, & € 1, has o standard representation in
which every standerd monomial contains e factor £ < fiyevnsme

PROOF: For £ € M let u(§) = {6 € IL: £ < 6} and w(£) ='3%€); for p = ¢&;...&m,
& € I, we put w(p) = Y0, w(&). (This is an example of a definition préperly applying
to the formal monomiials.) Obviously w(¢v) < w(u) for al} the monomials 4 appearing
on the right side of the standard representation {v =3 a,p.

Because of {H;) it i enough for part (a) to stiow that every monomial is a linear
combination of standard monomials. If all the factorséy,...,€m of i are comparable, u
is a standard mortomial.” Otherwise two of the factors are incomparable. Replacing their
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product by the right side of the corresponding straightening relation produces a linear
combination of monomials which, if different from 0, have a greater value than p under
the function w. On the other hand their values are bounded above since they have the
same degree as homogeneous elements of A: w(p) < d-3/"! for monomials p of degree d.
Thus we are through by descending induction. The easy proof of the second assertion, a
similar induction, is left to the reader. —

The preceding proof shows that the standard representation of an element of A
can be obtained by successive applications of the straightening relations, regardless of
the order in which the steps of “straightening” are performed. As a consequence the
straightening relations generate the defining ideal of A:

(4.2) Proposition. Let A be o graded ASL over B onIl, and Tg, { € H a family
of indeterminates over B. For each monomialp =&y ...&m, & €M, let Ty =T, .. T, -
Then the kernel of the epimorphism

w:B[Tetfem‘—’Av TE—"E:
is generated by the elements T;T, — Y_ a,T, representing the straightening relations.

PROOF: Let f € Kerg, f = ¥ 5,7}, b, € B. If all the monomials z are standard
monomials, b, = 0 for all x. Otherwise we apply the straightening procedure indicated
above: we subtract successively multiples of the elements representing the straightening
relations. Thus we create a sequence f = fi, f2,..., fa of polynomials in Ker ¢, whose
successive terms differ by a multiple of such an element and for which f£,, representing a
linear combination of standard monomials, is zero. —

B. G{X) as an ASL

Let B be a commutative ring and X an m x n-matrix of indeterminates over B,
m < n. As a B-algebra G(X) is generated by the set

of maximal minors of X, cf. 1.D. T'(X) is ordered partially in the following way:

[ils---:'im]ﬁl.jly-!-:jm} — ‘il Sjly-“’im Sjm- ’
Only in the cases n = m and n = m+1 the set I'( X} is linearly ordered. For m = 2,n=4
and m = 3,n = 5 the partial orders have the diagrams

[3 4 5]

[3 4]
2 4]
(1 4] [23 . and
[13]
¢[12]
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I'(X} can be considered as a subset of the poset N™ in a natural way, and it inherits
from N™ the structure of a distributive lattice, the lattice operations M and U given by

fig, e yim] M 1y i sim] = [min(iy, j1),. .- yMIN{% 5, )],

[’l'-i, . ..,im} [ [j-l, ca ,jm] = [max(z'l,jl), ‘s .,max(z'm,jm)];

one has §; < 62 if and only if 6; N 6, = §;.
(4.8) Theorem. G(X) is a graded ASL on IX).

Condition {Hp) is obviously satisfied. The linear independence of the standard mono-
mials will be proved in Subsection C below. In the first part of the PROOF we want to show
that condition (Hz) holds, assuming linear independence of the standard monomials. By
virtue of Proposition {4.1) this implies that the standard monomials generate G(X) as a
B-module., We shall not describe the straightening relations themselves explicitely; they
will result from the Plicker relations.

(4.4) Lemma. (Plicker relations) For every m x n-matriz, m < n, with elements
in a commulative ring and all indices 15k by by, €140y, € {1,...,n} such
thats=m—k+1-1>m,t=m—k >0 one has

E o‘(z’;,...,i,)[al,...,ak,cil,...,c.',][c,-‘ﬂ,...,c.-,,bg,...,bm] =0.
IRt < ) ’
Pegy <oy
{1, s}={i1,..,i.}

Proor: It suffices to prove this for a matrix X of indeterminates over 7. We consider
the Z[X]-module C generated by the columns of X. As a Z[X)-module it has rank m.
Let a: C* — Z{X] be given by .

a(y]v--sys) = Z 0'('"') det(Xan‘-')Xa;.:yr(l)}"'lyw(t})
x€8ym{l,...,s)

- det(y‘n‘(!+1): e yYn(s)s Xb“ e 1Xb.-,-.,)y

X;j denoting the j-th column of X, Sym(1,...,s) the group of permutations of {1,...,s}.
It is straightforward to check that o is & multilinear form on C®. When two of the vectors
¥i coincide, every term in the expansion of ¢, which does not vanish anyway, is cancelled
by a term of the opposite sign: « is alternating. Since s > 1k C, a = 0. :

We fix a subset {i1,...,%,}, 43 < -+ < 4, of {1,...,8}. Then, for all 7 such that
w({1,...,£}) = {i1,...,%,} the summand corresponding to 7 in the expansion of & equals

U(il,...,z',)det(X.,l,...,X,,,.,y,-l,...,yg‘)det(y,-m,...,y.-_,X;,,,...,X;,m),

_ %t41,..-,1, chosen as above. Therefore each of these terms occurs #! (s — ¢)! times in the
“expansion of a. In Z[X] the factor #! (s — £}! may be cancelled. —

The first Pliicker relation oceurs for a 2 x 4-matrix:

2B -2+ a2 =0
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(corresponding to k =1,a1 = 1,1 =3, (c1,c2,¢3) = (2,3,4)). It is, solved for [1 4][2 3],
the single straightening relation for this case. The Pliicker relation

[146][235}'+[124][356]-[134][256]+[12e][345]
—[136)[245]+[123][456]=0

corresponds, after reordering the columns, to k=1,a1=1,1=3,b3=5,(c1,.-. ,04) =
(4,6,2,3). It is not a straightening relation, the first product is the worst “twisted” one,
however: for it incomparability results from the second position already, whereas, for the
fourth and fifth term, the first two positions are comparable. They are straightened by
the Pliicker relations

26345 -[123)456]+[124356]-[125]346]=0,
[136]245]+[123][456]+[134][256]~[135]246]=0.

After substitution we finally obtain
[146]235 =-3123][4586 —[125]346]+[135][246].

This stepwise straightening where at each step the number of comparable positions is
shifted up by one, works in general:

(4.5) Lemma. Lei [@1y- -« s8m)s [b1s---sbm] € I(X), ai < b for i = 1,...,k,
axs1 > besr (k may be 0). We put

I=k+2 s=m+1, (cl,...,c,):(akH,...,am,bl,...,bk+1).
Then, in the Plicker relation corresponding to these data, all the terms
[d1y. - sdml(€1s- e s6m] # O and different from  [a1,...,8ml{b1s.-- 2 bm]
have the following properties (after arranging the indices in ascending order):

(1) [d],...,dm] < [(u,...,ﬂ.m] and (ii) d1 < €1y~ 8kt < €pt1

PRrOOF: Since by < -+ < bryr < @41 < °70 < Omy [d1y. .. dm] arises from
[815- - ++@m) by a replacement of some of the a; by smaller indices. This implies (i) and
d.' _<_ eq fori = 1,.. . ,k. Furthermore dk.,.] € {a1,.. ' ,ak,bl,.. . ,bk+.1}, 50 dk+1 S bk+1,
and 41 € {@r+1s - 1Qms Bkt1y o bm}, 80 Dry1 £ g1 —

After these preparations we return to the proof of Theorem (4.3). It follows im-
mediately from (4.5) by induction on k that every product ef of minors o, € T'(X)
can be expressed by a linear combination of standard monomials é¢, §,¢ € I'(X) such
that 6 < a, § € £. In order to show that this representation satisfies condition (H,), we
assume that the standard monomials are linearly independent. When a product af of
incomparable minors is given, we first straighten it in the order a3 obtaining a repre-
sentation in which & < a for all standard monomials occuring. Then we straighten it in
the order B¢ obtaining a representation in which § < 3 always. By linear independence
both representations coincide, and (Hy ) follows. AN E
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The reader may wonder whether one needs linear independence of standard monomi-
als in proving (H;). The following example indicates the main difficulty in deriving (H)
directly from Lemma (4.5): Applying (4.5} once in order to “straighten” the product
[1 5 6][2 3 4] (with (c1,...,c4) = (5,6,2,3)) one gets an intermediate result containing
the product [1 3 52 4 6], a standard monomial violating the condition in (Hy)!

When one reverses the partial order on I'(X), the set of standard monomials remainsg
unchanged. Reversing the partial order corresponds to reversing the sequence of columns
of X which may be viewed as an automorphism of B[X] and G(X). This automorphism
maps the elements of I'(X) to the minors of the new matrix (up to sign). Therefore
G(X) is an ASL with respect to the reverse order ori I'(X), too, and the straightening
relations must satisfy (H) and the dual condition simultaneously:

Qﬂ = zai'ﬁ&i’ ai € Z: a,ﬂ:-'ﬁgéi € P(X)) T < 6!', V¥ _<... anaa 6!'. 2 asﬁ'

We call an ASL on IT symmetric if it is an ASL with respect to the reverse order on 1I,
too. Thus we may state:

(4.8) Corollary. G{X) is a symmetric ASL on T(X).

G(X) was defined as a subalgebra of B[X]. As a consequence of Theorem (4.3) and
Proposition {4.2) one gets a representation:

(4.7) Corollary. Let B be a commulative ring, X an m x n-matriz of indetermi-
nates over B, m < n, and I'(X) the set of m-minors of X. Then G(X), the B-subalgebra
of B[X] generated by I'(X), is the residue class ring of B[T, : v € T(X)] modulo the
ideal generated by the elements corresponding to the Plicker relations with s = m + 1
andal <o < am;, bi <. Sbm

In fact, by (4.2}, G(X) is defined by the straightening relations, and these were
obtained by iterated applications of the Pliicker relations mentioned. It follows from
(4.7) that the Pliicker relations generate the defining ideal of the Grassmann variety
Gm{K™), K an algebraically closed field, and that G(X) is isomorphic to its homogeneous _
coordinate ring. A particular consequence of (4.7) (actually an abstract consequence of
(4.2) and (4.3)): G(X) arises from the corresponding object over Z by extension of
coefficients. This will be needed soon.

C. The Linear Independence of the Standard Monomials in G(X)

It remains to prove the linear independence of the standard monomials in G(X).
For simplicity we write

1€ [ay,...,0m) = i=a; for some j.

We say that (i,j), i < j, is a special pair for [a1,...,am] if i € [a1,...,0m], j ¢
[@1,...,am]), and that (i, j) is eztraspecial for [a1,...,am] if (3,j) is the lexicographically
smallest special pair for [a;,...,a,,]. Let a finite subset S # @ of the set of standard
monomials be given, (io, jo) being the lexicographically smallest pair which is extraspe-
cial for some factor of some y € S. We prove the linear independence of the standard
monomials by descending induction on (4, jo).
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The greatest possible extraspecial pair is (n —m +1,n+1). If (io,jo) = (n —m+1,
n + 1), then S consists only of powers of [ —m +1,... ,n] which certainly are linearly
independent. Suppose that (i, jo) is smaller than (n —m +1,n + 1). Then iy <n —m,
jo £ 7. :

For 6 € T(X), n € S let

3(8) = { § if (49, o) is not special for &,

T | 6 with ip replaced by jo {and ordered again) otherwise,
B(u) = 2(61)... 8(6u) (b =061...04, & €T(X)),
w(g) = |{k: (i, 7o) is special for &i}|.

Note: If § € I'(X) is a factor of 4 € S and (ig, o) is special for &8, then (ig,jo) is
extraspecial. The purpose of @ is to push up (4, jo): For sucha minor §, the extraspecial
pair of $(6) is greater than (ig, jo). In the following lemma the elements of 8 should be
considered formal monomials.

(4.8) Lemma. (a) Let~,6 € T(X) be factors of p € S. If v < 6, then ®(7) < ®(6).
(b) For u € S the monomial ®(u) is again stendard.
(c) Let u,v € S such that v{u) = v(v). If p# v, then ®(pn) # 2(v).

PROOF: {a) If (ig, jo) is not special for 7, then ®(y) =7 < § < ®(6). Let (ig, jo) be
special for 4. Then, by choice of (ig, jo),

7=['iﬂ’i0+11---:j0_'1:9k5-“,9m]; §k>j0,
@(T) =['iO'I'l:---,jO&gk:'--agm]'

Since § > 7, § starts with an element > io. If it starts with i, then
8 =[igy---vdo — Lids---rdm)y k2 g > Jos

and ®(8) = [ig + 1, jo,dky - - -, @m] > B(7); otherwise B(6) = & > ®(v), since § starts
with an element > o +1, its elements increase by at least one and from position k upward
nothing has changed.

(b) follows directly from (a). For (c) one may assume that g = y1... 7, ¥ = b1...6z,
< Ky b < oo € 0 I B(p) = ®(v), then, by virtue of (a), ®(y;) = ¥(4;) for
i=1,...,t

Suppose first that (4o, jo} is special for +; if and only if it is special for §;,1 =1,...,%
Then ®(y;) # ®(85;) if 1 # &, s0 $(u) # $(v). Otherwise there are r,s such that (49, jo)
is special for 7. and §,, and not special for v, and ér. One may assume 8 < 7, hence
s < 4. Then

Yr = [iﬂj""rjﬁ - Iagk:-" agm]!
65 = [iﬁz"- ,jO - lydk:-"tdm]-
H &(v,) = &(6,) then 1, = ®(y,) = 8(8,) = [fo+1,.. .+ Jor- .., contradicting v, < Yr. —

Suppose that 3 pes autt =0 We extend the ring B[X] by adjoining a new indeter-
minate W and consider an automorphism o of B[X][W]: ’

alB = id, a(W) =W, a(Xat) =X, if t#id, Q(Xuig;) = Xﬁio ‘I“WXajo-



D. B{X] as an' ASL : 45

On the matrix X this automorphism acts as an elementary transformation adding the
W-fold of column j, to column ¢5. For a minor § € I'(X) one has

& if {49, 70) is not special for §,

at6) = { P {iosdo) 35 not
6+ Wd(§) if (4, jo) is special for 8,

and for a monomial i € §

ofp) = WM @(u) + terms of lower degree in W.

Let vo = max{v(p): u € S} and So={p € S: v(i) =} Then vy > 1, Sg # 9, and

0= aua(u)=+W™ > 0u () + pup WP gy, g € G(X).
pES HESy

Therefore E#e S0 @n®(14) = 0. As observed above, the lexicographically smallest special
pair for the monomials ®(yx) is greater than (45,7p). By virtue of Lemma {4.8) the
monomials ®(x), 4 € Sy, are pairwise distinct standard monomials. The inductive
hypothesis on (ig, jo) now implies

a,=0 for peS,

and by induction on vy (or |S]) we conclude that the standard monomials i € § are
linearly independent. The proof of Theorem (4.3) is complete. —

We want to illustrate the last part of the proof by means of an example. Let m = 2
and suppose that ‘

a1(1 2][3 4] + a2[1 2)[1 4] + a3[1 3] + aa[1 3][1 4] =0.

Then (io,j0) = (1,2), v = 2, Sy = {[1 3]%, [1 3J[L 4]}, o((1 3)) = [t 3] + W[2 3],
a([l 4]) = [1 4] 4+ W[2 4]. The highest degree in Wis 2, and

a3[2 3] + asf2 3][2 4] =0,

the smallest special pair now being (2, 3).

D. B[X] as an ASL

Now the polynomial ring B{X] itself will be considered. We build the matrix X _
from X and m new columns attached to the right side of X:

Xn o Xin Xinr o0 Xingm
=] : ;o :
Xml e an an+] e an-f-m
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Then we map B[X] onto B[X] by sending every element of X to the corresponding
element of the following matrix:

X5 o+ Xim O e e 0 1
. L] * 0
0 . . :
Xpm o+ Xem 1 0 o o0 0

Let ¢ ¢ G(X) — B[X] be the induced homomorphism, § = {b1,...,bm] € (X)), I‘(J-f )

denoting the set of m-minors of X, of course. Then, for § #[n+1,...,n+m],

(%) o(6) = tlay,. .. aelbs, . - -1 b

where ¢ = max{i: b; < n} and ay, ..., have been chosen such that
{a1,..-,0,n+m+1=bm,...,n+m+1 — b1} ={1,...,m}

For combinatorial purpose we write ¢{8) = [@1,- - 1aelby,..-,b] whenever one of the
equations () is satisfied. The minor [n+1,...,n+ m] is mapped to

e = (__l)m(m—l)/Q,

‘and ¢ maps T'(X) \ {[» +1,...,n + m]} bijectively onto
A(X),

the set of all minors of X. In particular the B-algebra homomorphism ¢ is surjective,
and, as we shall see in Lemma (4.10), [n +1,...,7 + m)] — ¢ generates Ker . This fact
almost immediately implies that B[X] is an ASL on A(X), A(X) inheriting its order
from I'(X). The map y is chosen such that the inherited order is just the “natural” order
on A(X): Let

[alv'-:a'u|b15'-'1bﬂ]S[cla"'achdla---ydu]
= w2, G1SC1,...,0-1,<CU, b1__<_dl,...,bu5dv.

(4.9) Lemma. Let 7,6 € T(X)\{[»+1,...,n +m]}. Then (disregarding signs)
v < 6 if and only if p(7) < p(6).

PROOF: Let
v =[b1;- - bmls §=1[d1,....dm),
50(7) = [a'h“-:aulbl;'--abu}s ‘P(‘S) = [cl:'--,cvldh-“adu]'

Suppose first that 4 < §. Then obviously v < v and b < d1,...,by < d,. We assume
@1 € Cly.rry 0w < Cp 80d Gyyp1 > Cytp in order to derive a contradiction. Since cut1 ¢
{ai,---,a,}, there is a ¢ such that ¢y41 = (R +m + 1) — b¢. Then

‘(ﬂ—+m+1) —-d; £ (n+m+1)—bg_=cw+1 < Qwily
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even
(n+m+l) —d < Cwt1ly

equality being excluded. The indices which are smaller than (rn+m+1)— b, are
a1y, (R +m+ 1) — brmye-os(n+m 4 1) — byyy,

hence (n +m + 1) ~ by = w+m — ¢t + 1. On the other hand the following indices are
smaller than cy41 = (n+m +1) - by

ClyvsCun(Rt+m+1) —dm,...,(n +m+1) — d,.

So(n+m+1)-b > w+m~—t+2, a contradiction.

Let now p(v) < w(6). This implies v < w and b; < dj, ... by < dy. Again we want
to reach a contradiction and suppose that &, S diyeeyby £ duy byt > dysy. Then
it > dytr > duyy > 0. Consequently there exists a ¢ such that

ar=(Mm+n+1)—dys.
There are at least m — w + ¢ — 1 indices smaller than (m + n + 1) — dy1:
al,...,a¢_1,(m+n+1)—5m,...,(m+n+l)—bw+1,
in particular {m +n + 1) —dy41 > m — w+ £ On the other hand
(mAn+1)—dupi S(M+n+1) —dusr,e-, (M +0+1) — dypy.

Hencem ~w+t -1+ (w+1)— (v+1)+1<m,s0t < v Since a; LClyeenyy < Oy,
all the indices smaller than (m +n + 1) — dy41 occur among

ey C-y(Mtn+1) —dm,...,(m+n+1) —dyy,

again a contradiction, —
Lemma (4.9) shows that as a poset A(X) is isomorphic to I'(X Nr+1,...,2+m]}.
Since the top of I'(X) looks like

n+1,...,n+m]

[nsn+2)°--:n+m]s

X\ {[n+1,...,n+ m]} and A(X) are distributive lattices, too.

(4.10) Lemma. (a) G(X)([n+1,... sn+m] —¢) is a prime ideal if B is an integral
domain. -
(b) Kerp = G(R)([n.+ 1,...,n +m] - &),

PROOF: (a) Consider the commutative diagram

BTy v €X(B)] — BT, : 7€ TN\ {n+ 1.0+ )

e GR) e RGN Lo Fan]
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of epimorphisms, where Y(Tiat1,mim]) = € Since Kerx = y(Ker) it is enough to
kaow that ¢ maps homogeneous prime ideals P not containing Tin1,....n+m) ONLO prime
ideals. The map ¥ is just the “dehomogenization” with respect to T = eTini1,..,n+m)s
and therefore has the desired property; cf. (16.26).

(b) Since both G(X) and B[X ] as well as the map ¢ arise from the corresponding

objects over Z by tensoring with B, it is sufficient to prove (b} in the case B = Z. Since
dimG(X) = mn + 1 +dim B,
as will be shown in Section 5,
dim G(X)/G(X)[n +1,...,n + m] — ) = dim B{X].

By virtue of {a} both of them are integral domains, and the epimorphism induced by ¢
is an isomorphism. —

Now all the arguments for the proof of the main result have been collected:
(4.11) Theorem. B[X] is a graded ASL on A(X).

PROOF: It follows directly from (4.9) that the standard monomials in T(X)\[m+1,
...,m + n] are mapped to standard monomials in A(X) (up to sign). Property (Hz}
cannot be destroyed, since the maximal element of F(f ) 1s replaced by ¢: any monomial
appearing on the right side of a straightening relation in G()—f ) contains a factor different
from [n + 1,...,n + m]. The only critical point is whether the standard monomials in
A(X) are linearly independent. Suppose we have 2 relation _ ap(u) = 0, u representing
a standard monomial in T'(X) not containing [n+1,...,n+m]. Then, by virtue of (4.10)

Za,m,:(e—~[n+1,...,n+m])2b,,v,

v representing a standard monomial, too. 1t is obvious that such an equation can only
hold if 21l the coefficients a,, b, are zero. —

For a generalization in the next section we record:

(4.12) Proposition. B[X] is the dehomogenizetion of G(X) with respect to e[n+1,
S R OF

The geometric analogue of (4.12) has been observed above Theorem (1.3): The affine
mn-space is the open subvariety of the projective variety G (K"**™) complementary to
the hyperplane defined by {n +1,...,n +m] (or any of the coordinate hyperplanes).

E. Comments and References

The first standard monomial theory was established by Hodge [Hd] for the homo-
geneous coordinate rings of the Grassmannians and their Schubert subvarieties. Having
found an explicite basis, he could derive the “postulation formula” for the Schubert sub-
varieties (previously conjectured by him and proved by Littlewood) in an elementary
manner. {In algebraic language the “postulation formula” is an explicit formula for the

w+dimension of the i-th homogeneous component of the homogeneous coordinate ring of a
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projective variety.) A complete treatment was given by Hodge and Pedoe in their classical
monograph (HP]; the tacit assumption that the ring of coefficients contains the rational
numbers is only used there in proving that the relations in (4.4) are linear combinations
of the relations

m+1

z (—l)k[al, I ,aj_l,bk,ajﬂ, .. .,am][bl, fes ,bkfl,bk.i_], P ,bm+1]
k=1

instead of establishing them directly. (In positive characteristic the just-mentioned rela-
tions are not sufficient in general to generate the ideal of Plitcker relations, cf. {Ab.2].)

More recent accounts of this standard monomial theory were given by Laksov [La.1]
and Musili [Mu]. Musili’s article is fairly selfcontained; his proof for the linear indepen-
dence of the standard monomials will be indicated in Section 6. It is actually simpler
than the one given whose merits will however become apparent in Section 11. '

Like all the other authors we essentially follow Hodge’s “canonical” way in proving
that the standard monomials generate the B-module G(X). The proof of the linear
.independence is borrowed from DeConcini’s, Procesi’s and Eisenbud’s article [DEP.1].
The only place however, where we could find a proof for the validity of (H;), is Lemma
2.1 of Hochster’s paper [Ho.3); Hochster also observed that G(X) has the property dual
to (Hg) )

Our derivation of (4.11) from (4.3) is taken from [DEP.1] again, where priority
for Theorem (4.11) is attributed to Doubilet, Rota and Stein [DRS|. The geometric
relationship between the Grassmann variety and the affine space is classical, however;
an algebraic argument involving standard products of arbitrary minors can be found in
[Mo] already; cf. also [HE.2], p. 1045.

The notion “algebra with straightening law” is drawn from Eisenbud’s introductory
survey {Ei.1] of the more voluminous monograph [DEP.2], in which the name “Hodge
algebra” is used for the members of a more general class and ASLs figure as “ordinal
Hodge algebras”. '



5. The Structure of an ASL

In this section we want to derive the properties of determinantal rings and Schubert
cycles which follow from the general theory of ASLs and the particular nature of the
partially ordered sets I'(X) and A(X } introduced in the preceding section. Determinantal
rings and Schubert cycles inherit their structure as an ASL from B[X) and G(X), simply
because their defining ideals are generated by an ideal in A{X) and T{X} resp.

We shall sce that ASLs are reduced over reduced rings B and that ASLs on posets
of a certain class (containing the distributive lattices) are Cohen-Macaulay rings over
Cohen-Macaulay rings B. Furthermore there is a simple combinatorial formula for the
dimension of an ASL, for the proof of which one needs “natural” regular elements of an
ASL. One of the lemmas on which the formula for dimension is based, is general enough
to supply an upper bound for the number of elements needed to generate certain ideals up
to radical. This has consequences for the number of equations defining a determinantal
or Schubert variety.

A. ASL Structures on Residue Class Rings

In order to apply ASL theory to determinantal rings and Schubert cycles one first
has to show that these rings are ASLs. This will follow readily from the fact that
their defining ideals have a system of generators which is distinguished in regard of the
underlying poset.

(5.1) Proposition. Suppose A is a graded ASL on II over B.
(a) Let ¥ C I, I = A®. If I is generated as o B-module by all the standard monomials
containing ¢ factor £ € ¥, then A/I is again a graded ASL on I\ ¥ (in a natural way).
(b) In particular AJAQ is o graded ASL on II \Q if Q is an ideal in IT (i.e. § € 2 and
v < £ implies v € Q).

PROOF: Part (a) is obvious. In (b) the ideal AQ is generated by all the monomials
containing a factor £ € Q. Thus (b) follows directly from {2) and Proposition {4.1),
(b). —

If II has a single maximal element 7, then ¥ = {r} satisfies the hypothesis of {(5.1),(a)
(though it is not an ideal, provided II # ). This is a trivial but useful example.

En passant we note:

(5.2) Proposition. Let @ and ¥ be ideals in II. Then AQN AY s generated. by
the ideal QN ¥ in IL

PrROOF: Every standard monomial in the standard representation of an element of
AQ N AT has. to contain a factor w € §2 and a factor ¢ € ¥. At least one of them lies in
QN —
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Together with the trivial statement that AQ+ AW is generated by QU W, Proposition
(5.2) shows that the ideals AQ, Q an ideal in I1, form a distributive lattice with respect
to intersections and sums (which is isomorphic to the lattice of ideals © C II).

In order to have a compact description of our examples and for systematic reasons
we introduce one more piece of notation:

DEFINITION. Let ¥ C II. The ideal generated by T in II is the smallest ideal in II
containing X:
{{el:¢<cforacex}

whereas the idea! cogenerated by ¥ in IT is the greatest ideal disjoint from %:

{§ €II: £ # o for every o € T}

As usual let X be an m x n matrix of indeterminates over B, A(X) its set of minors,
partially ordered as introduced in 4.D. The ideal I,(X) is generated by the t-minors and
contains every u-minor such that u > #: it contains all the minors 7 < 6 for a {-minor 6.
One has

L(X) = B[X]z,

¥ being the ideal in A(X) generated by [m—t+1, ..., mln—t+1,...,n], equivalently: the
ideal cogenerated by [1,...,¢=1J1,...,¢~1]. The last description is the most convenient
one, and as will be seen shortly, the defining ideals of all the determinantal ideals can be
described in this way. For § € A(X) we let
KX;6) = B[X|{r € A(X): = # 6},
R(X;6) = B[X]/1(X;6), and
A(X;6) = {7 € A(X): 7 > §}.

In exploring R(X;6), 6 fixed, we shall have to consider ideals of the form I{X;£)/1(X; 6).
It is therefore convenient to write ' :

I(z;¢) = {X;e)/1(X;6)
then. (There is of course no need for the notations R(z;e) and A(z;e).) Lét § =

[@1,--.,ar|b1,...,b,]). Then I{X; ) is generated by the

s-minors of the rows 1,...,a, — 1 .
s=1,...,7, and the

s-minors of the columns 1,...,5, ~ 1

{7 + 1)-minors of X,

S0 the rings R(X;6) are determinantal rings in the sense of 1.C, and conversei: . ..
determinantal rings B{X]/I are of type R{X;6). Let

1€m < <upsm, O0<n< - <rp<m

and
15’01<"‘<qu7&, 0531<---<aq<n,
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such that 7 is generated by the
(r; + 1)-minors of the first u; rows
and the
(8; + 1)-minors of the first v; columns,

i=1,...,pj=1,...,q. In general this system of generators is far from being minimal:
I uipr < ui + rig1 — Ti, then all the {ri+1 + 1)-minors of the rows 1,...,u;41 are linear
combinations of the (r, + 1)-minors of the rows 1,...,u;. Furthermore all the {r + 1)-
rminors are in I if 7 + 1 is given as

r+1=min(r,+14+m—up,8g+1+n—vy)

In case rp, +1 > 7+ 1 we can discard the (rp + 1)-minors of the rows 1,...,up, Since
they are contained in the ideal generated by the (s, + 1}-minors of the columns 1,...,v,.
Similar observations apply to the “column-defined” generators, and therefore it is no
restriction to assume that

wip1 > U+ Tig1 — T Vi1 > 5t Si1 T 55
(¥) i=1,...,p—1 j=L...,¢-1,
rp+1<sq+1+n—vq, sq+1<1*p+1+m—up.
Now we can describe & such that T =X(X;é):

6= [(1,--.,1‘1),(11.1 + 1,...,U1I+ (1'2 _Tl))v-‘-a(up +11---:up+ (Tp+1 _Tp))l
(1,810, (w1 + 1,0 4 (52 —51))ye s (Vg + 1o + (8q+1 — 8))hs

where of course Tp11 = Sq41 =T+ 1 and the blocks of consecutive integers in the row
and column parts of § have been enclosed in parentheses.

(5.3) Theorem. {a) The determinantel rings B{X|/I are given ezactly by the rings
R{X;8), 6 € A(X). . :

(b) R(X;8) is a graded ASL on A(X;6).

(¢) A(X;8) is a distributive lattice.

The analogues of 1{X;8), R(X;é), A(X;6) with respect to G(X) are

HXiv)=G(X){eT: 6%},
G(X;7) = G(X)/IX;7),  and
I(X;7)={6€T: 627}

Analogous to the notation I(z;¢) introduced above we may write
3(e;6) = I 8)/IX37)

when a ring G{X; ) is investigated. It follows directly from (1.4} that for ¥ = [@1,- ., @m]
the ring G(X;~) is the Schubert cycle associated with

‘Q(n-am+1,n—am_14—1,-...,n—041'+1)-
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(5.4) Theorem. (a) The rings G(X;7) are ezactly the Schubert cycles.
(b) G(X;7) is a graded ASL on T(X ;7).
{¢) T(X; ) is a distributive lattice.

All this is evident now. In 4.D we have extended the matrix X in order to get the
represéntation

BIX]=G(X)/G(X)fn+1,....n+m]—¢), &=(—1)nm-D/2,
For 6 € A(X), 6 = [a1,...,ax|by,...,b;], we choose
=[b,. s bpmAm+ 1 —Gpry..,mtm+ 1 -,

{@1,...,@m-} being complementary to {a1,...,a,} in {1,...,m}. Then, by virtue of
(4.9), the epimorphism G(X) — B[X] maps a generating set of J(X;8) onto a set of
generators of I(X; ). Therefore one obtains immediately:

(5.5) Theorem. With the notations just introduced, R(X;8) is the dehomogeniza-
tion of G(X; 6} with respect to e[n +1,...,n+m).

The geometric significance of (5.5) has been indicated briefly in 1.D. We will use
(5.5) mainly to transfer information from G(X;4) to R{X;é).

B. Syzygies and the Straightening Law

As we have seen in (4.2), an ASL A is defined in terms of generators and relations
by its underlying poset II and the straightening relations. In a very similar way the
module of syzygies of an ideal A®, ¥ an ideal in II, is determined by the straightening
relations involving elements of ¥ (and the “Koszul” relations corresponding to pairs of
comparable elements of ¥).

To have a compact notation in the following proposition we denote the smallest
factor of a standard monomial ;2 by o) and the product of the remaining factors by
w{p). Note that for every standard monomial p in a straightening relation £y = 37 appt
one has a{p) € ¥ if ¥ is a poset ideal and ¢ € ¥P.

(5.6) Proposition. Let A be a graded ASL on Il over B, ¥ C II an ideal, and €y;
¥ € ¥, denote the canonical basis of the free A-module AY.
(a) Then the kernel U of the naturel epimorphism

AY — AW, ey — 9,
is generaled by the elements
ey —Yep, PWEY, p <Y,
and the elements
fey — Za#w(p)ea{m, Eell, ¥ ¥, .5 and 3 incomparable,

corresponding to the straightening relations £ = 3 a,p.



b4 . 5. The Structure of an ASL

(b) Suppose that the submodule Ucu contains elements

fey = ) Cewoler vy € Ay
p<v

for all elements £ € 11, ¢ € ¥ such that £ 2 ¢. Then U=U.
PROOF: Since, with the notations of part (a), a({u) < 1, (b) is a generalization of

(a). Let
w= Y dyey, dy€A4,
wel

be an element of U. Each dy has a standard representation

dy = Y auypt,  uy € B, auy #0.
HEMy

Suppose that ¥ < ofg) for all the standard monomials ¢ € My. Then, by the linear
independence of the standard mononuals, one has © = 0. This observation is the base
of an inductive proof: Modulo U every term Quypitey With a(,u) 2 ¥ can be replaced
by a linear combination of the elements e,, v < ¥, and after finitely many iterations
one obtains the zero element of U, as has just been seen. In other words, one creates a
sequence

U= UpyUnoTqe,Ug = 0, iy =u modl, i=0,...,n -1 —

In order to prove that a given set of relations of the elements ¥ € ¥ generates U
one will of course show that all the relations required in (b) can be obtained as linear
combinations of the given ones..

C. Nilpotents, Regular Elements and Dimension

A general and extremely important property of ASLs is that they have no nilpotent
elements, provided B has no nilpotents:

(5.7) Proposition. Let A be o graded ASL on II over B. Thcn A s reduced if
" (and only if} B is reduced. :

ProoF: The proof of the nontr1v1al statement is by mductlon on |II|..In case [II| = 1,
A is the polynomial ring in one indeterminate over B. Let {II| > 1. Let ¢ € A be nilpotent
and suppose ¢ # 0. We choose a minimal element ¢ € I By induction z € A{,soz = &y
such that y ¢ A€ and d > 1, simply from consideration of the standard representation.
If £ is the single minimal element of II, then it is not a zero-divisor obviously, and y is
nilpotent, contradicting the inductive hypothesis. Otherwise there is a second minimal
element v, and by inductive reasoning again r = £%°z, e > 1. However, {v = 0 from
(Hz). —

It follows easily from (5 7) tha.t for general B the nilradical of A is the extension of
the nilradical of B.

The arguinent that v =0 for a minimal element f € II a.nd an element v € I not
comparable to it, will be used severa.l times below.
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(5.8) Corollary. If the ring B of coefficients is reduced, then all the rings R(X; )
and G{X;v) are reduced. :

In particular, they are the coordinate rings of the varieties associated with them
(under a suitable hypothesis on B). Our next goal is the computation of their dimensions.
For this purpose we exhibit a natural candidate for a system of parameters in a certain
localization -(which under spectal circumstances can also serve as a maximal regular
sequence). For an element ¢ € II we define its rank by:

rtk§ =k = there is a chain §=§k>£k—1>--->§1, el
and no such chain of greater length exists.

For a subset Q C IT let )
rk = max{rk¢: £ € ).

{The preceding definition of rank differs from the usual one in combinatorics which gives
a result smaller by 1. In order to reconcile the two definitions the reader should imagine
an element —oo added to II, vaguely representing 0 € 4.)

(5.9) Lemma. Let Q C T be an ideal, k = tk§, and z; = Yoke=i&. Then
. : £€0 .
Rad AQ = Rad 35, Az

PROOF: Let (1,...,{x be the minimal elements of ©, and J = Rad Ef,__l Az;. Then,
since (u{y =0 foru#vand G+ - +({m€J,¢2 € J, hence {, € J,u=1,...,m. The
rest is induction. —

A particularly simple example is = I1 = A(X;[1]1]), the poset underlying Rp(X):
tk=m+n -1 and ‘

Ty = Z [HI‘U], i=L...,m+n-1;

ut+v=i+1

the x; are the sums over the diagonals of the matrix.

Especially for © = II one has Rad E:g{ Az; = Rad AIl. When B = K is a field, ATl
is the irrelevant maximal ideal, so dim A < rkII. This bound turns oitt to be precise, and
the general case regarding B can be treated via the dimension formula for flat extensions.

(5.10) Proposition. Let A be a graded ASL on T over the noetherian ring B.

Then
dimAd =dimB +rkll and ht AII = rkII.

PrOOF: Let P be a prime ideal of A, and @ = BN P. Since Ap is a localization of
A® Bg, it is a flat local extension of Bg, s0

dim Ap = dim Bg + dim 4p ® (Bo/QBg).

The ring Ap ® (BQ/QBQ) iz just (A/QA)}J/QA, hence a localization of A ® (BQ/QBQ)
which is a graded ASL over the field Bq/QBg on II. From what has been said above

dim Ap £ dim B + rkH,
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dim A < dim B +ckII.

Now it is enough to show that ht AII > rkII. Let Q be the set of minimal elements of II.
As we shall see in Lemma (5.11), the element 3 .. € is not a zero-divisor of A, thus

ht(II\Q2){A/AQ) < ht A - 1.
On the other hand, arguing by induction,

ht(II\2)(A/AQ) = rank(II\Q2) = rankIl — 1. —

(5.11) Lemma. Let @ C II consist of pairwise incomparable elements, and suppose
that every mazimal chain (linearly ordered subset) of I intersects Q. Thenz = Eeeng
is not o zero-divisor of A.

PROOF: Suppose that yz =0, y # 0. Let MinII be the set of minimal elements of
II. By induction on |II} one immediately obtains the following auxiliary claim: (*) Let
re€Minll, 7 ¢ Q;theny € Ar, y =7y, d> 1,3 ¢ Am and y'z #0.

Case 1: §? = Min II. We pick a siandard monomial g in the standard representation
y = Y aup. There is an wy € {2 such that wopo is a standard monomial, and wppq can
not appear in the standard representations of any of the products wp, w € £, w # wy
or g # po! Therefore wouo occurs in the standard representation of yz with a nonzero
coefficient: Contradiction.

Case 2: |[MinTI| = 1, MinTI = {r}. Then either Q = {n}, a case covered already, or
7 ¢ Q. In the latter case the contradiction results from (+), since 7 is not a zero-divisor.

Case 3: |(MinII)\ Q| > 2, m,m € MinI) \ Q, m # m2. Then, by (*), v €
A‘ﬂ'] n A?T2 =0 :

Case 4: |[(MinI[}\ Q| = 1. Let # € MinIL, 7 ¢ £2. Excluding case 2, we may assume
that there is a ¢ € (MinII) N Q. Write

z:=.'n'+:r:", z' = E .

£€(Min )M

We want to construct a subset ' of IT which satisfies the hypothesis of the lemma modulo
Ac. Let

o=@\ {chua", Q" = {r: 7 an upper neighbour of &
not comparabie to any w € Q, w # o }.

Then £ consists of incomparable elements. A maximal chain I in II'\ {0} which does
not intersect Q \ {o}, passes through an upper neighbour p of o, p € Min(I1 \ {¢}). If
p € ¥, TN # 0. Otherwise p is comparable to an w € Q\ {o}. Since p is minimal in
"I\ {¢}, p < w, a fortiori & < w, in contradiction to the hypothesis on (.

Let v € © and suppose 7 > 7. Then there is a maximal chain in IT\ {0} starting
from = and passing through 7. This chain has to intersect Q \ {o} which is impossible

by definition of 2. So 7 and 7 € " are incomparable. Let T == } ../ {. Then

=z —-oc+a"+ Z T
TEQH
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and
V& =yz - y'n% + ¢/ 2¢ z r=0.
rear
§¥' satisfies the hypothesis of the lemma modulo Ag. Therefore y € Ao N Ar =0, a
contradiction settling case 4. :
Since MinIT C Q implies Min1I = (Q, all the possible cases have been covered. —

" A subset © of IT which satisfies the hypothesis of (5.11) is of course maximal with
respect to having pairwise incomparable elements. This weaker property is not sufficient
for x to be not a zero-divisor. For

£ p
II= ~and pl=pr=0cr=10
T a

one has of(p+7) = 0.

After Proposition (5.10} the computation of dim A is a purely combinatorial problem.
Let again X be an m x n matrix of indeterminates over B, v = [a1,... 4] € T(X).
Any maximal chain in I'(X;4) starts at «, and one moves to an upper neighbour raising
exactly one index by 1. Therefore

rkF(X;*y}zf:(n—m+i—a;)=m(n—m)+ﬂm2—ﬂ~l—ia.‘+l.

=1 E i=1
The rank of A(X;§) can most conveniently be computed by relating it to I‘(.ff H E) as in
Theorem (5.5): For § = [ay,... »@r[b1,...,b.] one has
§=[b1,..rbpy(n+m+1) ~ 8By (Rt m+1) = 3),
{a1,...,8m—} being complementary to {a1,...,a,} in {1,...,m}. An easy computation
gives '
tk A(X;8) =tk T(X;8) — 1 = (m + n)r — D (@i +b)+r
i=1
(5.12) Corollary. Let B be a noetherian ring, X anmxn matriz of indeterminates

over B, ‘
(a) Let 6 = [@1,... 801, .., 0,] € A(X). Then

dimR(X;6) =dim B + (m +n)r — Z(q; +b;) +7,

i=1
in particular, for 6 =[1,...,¢ - 1J1,...,t - 1]:
dimR(X) = dim B + (m +n — ¢+ 1)(t - 1).
(b) Let v = [ay,...,am] € T(X). Then

. - mim+1) —
dimG({X;4) = dim B + m(n ~ m) + — - S a; +1,
. ’ i=1

in particﬁlar, fory=11,.. - ym): '
dimG(X) =dimB+m(n —m) + 1.
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D. Wonderful Posets.and the Cohen-Macaulay Property

As noticed in (5.3) and (5.4) the;posets A(X; 6) and T(X; v) are distributive lattices.
We shall see below that this implies the Cohen-Macaulay property for the corresponding
rings (provided B is Coken-Macaulay). However, a weaker condition will turn out to be
sufficient already, a condition which can be controlled rather easily in an inductive proof:

DEFINITION. A partially ordered set II is called wonderful (in systematic combi-
natorial language: locally upper semi-modular) if the following holds after a smallest
and a greatest element —co and oo resp. have been added to II: If vy and v, are upper
neighbours of £ € U {~o00,00} and v1,v2 < { € TU {—o0,00} then there is an upper
neighbour v of vy,v2 such that v < {, pictorially

the existence of v being required. _
In a lattice II there is of course only one choice for v: v =v1Hv. In general v1 Uwv,
need not to be an upper neighbour of v; and vz, as the following example indicates:

v=wn U

n
2

3

A distributive lattice is always wonderful: Suppose there is an 7 € IT, v2 <7 < v We
put w = pNvy. Then o o
t=unNusulp=w iy,

leaving the cases w = { or w = v;. In the last case vy <, sov =1 U2 <p<v,a
contradiction, whereas in the first (and critical, ¢f. the example above) case

(pNuiUv =fUv =, but also
(nl'lvl)l.iv:=(11leg)'i'l(v1Uvg)=nI'lv=n,

again a contradiction.

For a lattice II one could obviously weaken the condition for being wonderful: A
lattice is already wonderful if it is upper semi-modular, i.e. if elements v; and v; with a
common lower neighbour £ also have a common upper neighbour. For posets in general
this weaker property does not imply that an ASL is Cohen-Macaulay; a counterexample
will be discussed below. e

The next lemma collects some combinatorial properties of wonderful posets.
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(5.18) Lemma. Let II be a wonderful poset.
(8) If @ C Tis an ideal and if for all minimal elements v1,v2 of I\ Q and all { € I\ Q
such that v1,v2 < ( there is a common upper neighbour v < ¢ of v1,vs, then II \Qis
wonderful. ‘ :
(b) If I1 has a single minimal element €, then I\ {¢} is wonderful.
() Let Q be the ideal cogenerated by o subset of MinII. Then IT\ Q is wonderful.
(d)} Every mazimal chain in II has length tk Ii.
(e) Suppose that I1 has minimal elements €1,...,6&, k > 2, let Q be the ideal cogenerated
by &r, ¥ the ideal cogenerated by {£,,. .. s€x}. Then:

() H\Q, I\ ¥ and I\ (¥ U Q) are wonderful,

(ii) rk(I1\ Q) = rk(IT \ ¥) = rkII, whereas rk(II \(PUQ)) =rkIT-1.

(iii) QN ¥ = 9,

PROOF: Part (a) is rather trivial, and parts (b) and {(c) follow immediately from
(a); whereas (d) is proved by induction on [MI: Let £, < -+ < & and vy < --- < vy be
maximal chains in II. If ¢; = v, one passes to '

(1T \ {ideal cogenerated by )\ {4}

which is wonderful by virtue of (¢) and (b). Otherwise §1 and v; have a common upper
neighbour ¢; (in ITU {~00,00} they both are upper neighbours of —oc). There is a
maximal chain §; < { <.+ < (. Applying the argument of the case & = v, twice, we
see that the chains £; < .- < &, €61 < G <+ 1 <@ < <y vy <o <y
all have the same length. “

In (e) the assertions concerning II \ , II \ ¥ follow directly from {c) and (d).
Furthermore IT\ (¥ U Q) does not contain any minimal element of II; but it contains a
common upper neighbour of £1 and &z, unless it is empty; therefore k(IT\ (RU F)) =
tkIl—1. QN = § is trivial. It only remains to_prove that I \(QU ¥) is wonderful, and
here we need the full strength of the property “wonderful”! We want to apply (a) and
consider minimal elements v,, v, of M\ (QU¥). Then vy, v, > £1. The crucial point is to
show that v; and v, are both upper neighbours of £;; then (a) can be applied. Suppose
vy is not an upper neighbour of £;. Since v; > £ and v; > {iforsomei€ {2,...,k}, &
and {; have an upper neighbour ¢ < v;. This is a contradiction: ¢ € I\ (QU ¥), too. —

(5.14) Theorem. Let B be o Cohen-Macaulay ring, I1 a wonderful poset, and A q
graded ASL over B on1l. Then A is g Cohen-Macaulay ring, too.

The proof of the theorem is by induction on [T}, and Lemma (5.13) contains the
combinatorial arguments. The algebraic arguments will be the Cohen-Macaulay criterion
for flat extensions and the following lemma which is also crucial in the proof of Hochster-
Eagon for the perfection of determinantal ideals (cf. Section 12).

(5.15) Lemma. Let K be a field, A = Di>o Ai a graded K-algebra with Ay = K.
(a) Let 2°€ A be homogeneous of positive degree such that z is not o zero-divisor. Then
A is Cohen-Macaulay if and only if A/Az is Cohen-Macaulay. R
(b) Let I,J be homageneous ideals such that o

dimA/I = dimA/J = dim 4, dimA/(J+J)=dimA~1, and InJ=o,

.Suppase that A/ and A/J are Coﬁen-Macaulay. Then A is Cohen-Macoulay if and only
if A/(I + J) is Cohen-Macaulay.
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PROOF: By virtue of (16.20) we may first localize with respect to the irrelevant
maximal ideal. The local analogues of (a) and (b) are easy to prove. For (a) one observes
dim A/Az = dim A — 1 and depth AfAz = depth A — 1, whereas for (b) it is crucial that
in the exact sequence '

0 — A/(INJ) — AJT® AlJ — A[(T+J) —0
A/(I'n J) can be repiaced by A: '
0= A — A/T® AT — AHI+J)— 0

is exact. The middle term has depth equal to dimA. If depthA = dim A, then
depth A/(I +J) > dimA -1 = dim A/(I + J). Conversely, if A/{I + J) is Cohen-
Macaulay, then depth A/(I + J) =dim4 -1, and depth A > dimA. —

Let us prove (5.14) now. For a prime ideal P of A the localization Ap is Cohen-
Macaulay if and only if for @ = P (0 B the rings Bg and (Bg/QBgq) ® Ap are Cohen-
Macaulay. The last ring is a localization of (Bg/ QBg) ® A, a graded ASL over a field.
Hence we may assume that B = K is a field. Now one applies induction on [II|. If
A has a single minimal element ¢, it follows from (5.13),(b) and (5.15);(a) that A is
Cohen-Macaulay. Otherwise there are minimal elements £1,...,&k, k > 2. Let € and
¥ be chosen as in (5.13),(¢) and I = AQ, J = A¥. Then, by virtue of (5.13),(e) and
induction, the hypothesis of (5.15),(b) is satisfied and A/{I +J ) is Cohen-Macaulay. We
conclude that 4 is Cohen-Macaulay itself. — ' '

In the same manner as Theorem {5.14) one proves the folloiving generalization:

© (5.16) Proposition. Let B be a noetherian ring, and A e graded ASL on a won-
derful poset over B - Then A satisfies Serre’s condition (Sn) if (and only if) B satisfies
(8n) - ) ; ‘
The following example for II may show that the condition “wonderful” cannot be
weakened in an obvious way: '

% G | ¢
v >/‘ ” Q= {62,1)3}
! Q ’ ¥ = {&,n}

& €2

Though every pair of elements of the same rank has a common upper neighbour, an ASL
over II cannot be Cohen-Macaulay. Since II\ £ and IT\ ¥ are wonderful, AfAQ and
AJAW are Cohen-Macaulay. Moreover A/ (AQ+ A¥) has dimension one less than A and
is not Cohen-Macaulay, hence A cannot be Cohen-Macaulay by virtue of (5.15),(b).

It remains to specialize (5.14) for determinantal rings and Schubert cycles. Their
underlying posets ave distributive lattices, hence wonderful, as remarked above.

(5.17) Corollary. Let B be a Cohen-Macaulay ring. Then all the rings R(X;5)
and G(X;~) are Cohen-Macaulay rings, too.

Using the theory of generic perfection one can strengthen and generalize (5.17):
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(5.18) Corollary. Let X be an m x n matriz of indeterminates. o
(a) For B = Z the ideal I{X;8) is generically perfect. Hence I{X; &) is perfect over an
arbitrary noetherian ring, end, with § = [as,...,e.|by,... s bely

gradeI(X;8) =mn—(m+n+1)r + Z(ag +b;).

i=1

(b) Let 3(X ;7) denote the kernel of the epimorphism B‘[Yp p € I(X)] — G(X;9)
induced by the substitution Y, — p. For B = Z the ideal J(X i) is generically perfect.
Hence J (X;7) is perfect over an arb:trary noetherian ring, and, with v = [a,,...,am],

Sy < (™ _mimtl) N
gradeJ(X,7)_(m)—m(n—m) 2 +‘Z=;al 1.

PrOOF: By virtue of {3.3) it is enough to prove the corollary as far as it applies
to fields B, for which perfection follows from (5.17) via (16.20). The formulas for grade
result 1mmedlately from those for dimension in (5.12) when B is a field. —

As we observed in Section 2, the Cohen-Macaulay property of the rings R,(X) implies
that they are (normal) domains whenever the ring B of coefficients is a (normal) domain.
We shall see in the following section that in this case all the rings R(X;6) and G(X ;)
are (normal) domains. For later application we note a generalization of (5.17) and (5.18):

(5.19) Proposition. Let Q be an ideal in A(X) or T'(X) such that the minimal
elements of its complement have a common lower neighbour if there are at least twe
minimal elements. Then (5.17) and (5.18) hold mutatis mutandis for the ideal generaied
by Q in B[X] or T(X) resp. and the residue class ring defined by it.

Proor: It follows readily from (5.13),(a) that the complement of  is a wonderful
poset. —

Needless to say, the theory of generic perfection applies to all the ideals in (5 19),
in particular to the ideals I(X;6) and J(X;v); the specific consequences are left to the
reader.

E. The Arithmetical Rank of Certain Ideals

One of the main problems of algebraic geometry is the determination of the minimal
number of equations defining a given variety. As a by-product of the theory of ASLs
we can obtain an upper bound for this number in the case of the determinantal rings.
The corresponding algebraic problem is to find the minimal number of elements which
generate a given ideal up to radical. For an ideal I in a commutative noetherian ring 5
let therefore the arithmetical rank of I be given by '

oot k
r. ara] = min { k: there exist z1,...,z € I such that Ra.dI=Ra.dZSz.- }-
L . =1

The following proposition is a direct consequence of Lemma (5.9).
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(5.20) Proposxtlon Let A be o graded ASL over B on I, and Q C II an zdeal
_ Then
ara AQ? < rk 2.

Of course Lemma (5.9) does not only supply this bound; it also shows how to find
a sequence ri,...,Tk, k = rk, such that rad AQ = rad}° Az;. The case in which
A = B[X], X an m x n matrix, I = I{X) is particularly simple, since the corresponding
ideal has a single maximal element, namely [m — ¢+ 1,...,mln —t+1,...,n}.

(5.21) Corollary. Let X be an m x n matriz. Then

aral(X) <mn—t? +1.

A generalization to arbitrary ideals I{(X;6), J(X;7) is left to the reader.

Unfortunately we do not know how to derive a lower bound from ASL theory in
general. The problem one is faced can already be illustrated by means-of the example
A= B[X], X a 2 x 2 matrix, with the poset

é

and Q = {6,X11,X12}: 1k even exceeds the minimal number of generators of AQ.
However, one can reverse {5.20) if A is a symmetric ASL. As stated in (4.6), G(X) is
a symmetric ASL, and therefore all the G(X; ) are symmetric, too. Another class of
symmetric ASLs is given by the discrete ASLs, in which every straightening relation has
the form £v = 0. (In the general theory of ASLs the discrete ones play a central role,
cf. [DEP.2].) Discrete ASLs are graded in a natural way: assign the degree 1 to every
‘element of II.

(5.22) Proposition. Let A be a symmetric graded ASL onIL. Then for every ideal
2 C I one has
ara AQ = k.

ProoF: The complement of Q is an ideal in II equipped with the reverse order.
Since A is symmetric, § = A/(II\2)A is again an ASL, the underlying poset being £
with its order reversed. Now obviously ara AQ) > ara 5, and by Kruli’s Pnncxpal Ic!eal
'Theorem ara SQ > ht SQ = 1k Q2 (cf. (5.10) for the last equation). — :

In particular the Schubert variety with homogeneous coordinate ring G(X ,7) can
be defined as a subvariety of the ambient Grassmann variety by rk(I'(X) \ T'(X;7))
equations, but not by a smaller number of equations.

In general the arithmetical rank may go down when one passes from G(X) to B[X],
as the example above shows. Without further or completely different arguments one
can therefore not conclude that the bound in (5.21) is sharp. Hochster has given an
invariant-theoretic argument for the case of maximal minors, B containing & field of
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characteristic 0. We shall discuss Hochster’s argument in Section 7. Newstead uses topo-
logical arguments in order to show that the bound in (5.21) is an equality for ¢ = 2,
B again containing a field of characteristic zero, cf. [Ne], p. 180, Example (i), {a). As
Cowsik told us, Newstead’s argument goes through for every { and can be transferred to
characteristic p > 0 via the use of étale cohomology. (There is of course no restriction in
assuming that B is a field; otherwise one factors by a maximal ideal of B first.)

F. Comments and References

Our representation of ASL theory follows Eisenbud [Ei.1]. However we avoid the
passage to the discrete ASL in proving (5.7), (5.9) and (5.10), and in the proof of (5.14)
we have replaced an argument of Musili ([Mu], Proposition 1.3) by the closely related
(6.15), drawn from [HE.2], section 4. (5.20), (5.21), (5.22) seem to be new, at least in
regard to the method of proof.

Since all our examples are graded, we have made “graded” a standard assumption.
This allows us to weaken the ASL axioms slightly (relative to {Ei.1]) as indicated in
[DEP.2], Proposition 1.1. Proposition (4.2) is the only result for which the assumption
“graded” seems to be unavoidable after one has made the conclusion of (4.1) an ax-
iom. The reader may. check that the assumption “graded” is not essential for {5.7) and
{5.10)(cf. also [DEP.2], Prop 6.1). Without the assumption “graded” Theorem (5.14) is
to be replaced by the statement that the sequence z1,..., 2%, k = rk I, constructed for
(5.9) is an A-regular sequence, cf. [Ei.1].

The Cohen-Macaulay property of the determinantal rings was first proved by Hoch-
ster and Eagon in [HE.2] without a standard monomial theory, cf. Section 12. Shortly
later Laksov and Hochster proved that the homogeneous coordinate rings of the Schubert
subvarieties of the Grassmannians are Cohen-Macaulay, cf. {La.1] and [Ho.3). Their
rather similar proofs were then followed by a proof of Musili [Mu], which differs in
the technicalities of the induction step only, and the proof of Theorem (5.14) may be
considered an abstract version of it. The proof of Hochster and Laksov has also been
reproduced in [ACGH].

The theory of ASLs is a connection between combinatorics and commutative algebra.
For a development of ASL theory from a more combinatorial view-point we refer the
reader to [Be].
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As we have noticed in (2.12) already, it follows from a localization argument and
the Cohen-Macaulay property that the rings Ry(X) are (normal) domains whenever the
ring B of coefficients is a {(normal) domain. In this section we want to extend this result
to all the Schubert cycles and determinantal rings. Furthermore their singular locus will
be computed.

A. Integrity and Normality

As a normality criterion we shall use Lemma (16.24): Let S be ¢ noetherian ring,
and © € S such that = is not a zero-divisor, S{Sz is reduced, and S[z~*] is normal.
Then § is normal.

In a graded ASL A, whose underlying poset has a single minimal element, this
element is a natural candidate for z: A/Az is a graded ASL again and therefore reduced
if B is reduced (ef. {5.1), (5.7)). Then it has “only” to be checked, whether Alz7 is
normal. In the cases of interest to us the ring Afz~!] has a particularly simple structure:

(6.1) Lemma. Let X be an m x n mairiz of indeterminates over B, m < =,
'r=[al:"'sa’m]€r(x) and '

@ = {[d1,...,dm] € D(X;7): a; ¢ [d1,:..,dm] for at most one indez i }.

Then
G(X; My~ ').= BlEliv )

the eztensions beingj formed within the total ring of quotients of G(X;7), and notadly,
the set ¥ is algebraically independent over B. Therefore G(X;7) [y~?] is isomorphic to
B[Ty,...,T4[T7 Y], d = dim G(X; v)-— dim B, T1, ..., Ty indeterminates.

PrOOF: ‘The inclusion “ D ” is clear. ‘We show that [by,...,bm] € B[¥][y~] for
all [by,...,bm] € T{X;9) by induction on the number k of indices 7 such that b ¢
[e1,..,am). Fork =0and k=1, [b1,...,bm] € ¥ by definition. Let k& > 1 and choose
an index j such that b; € [a1,...,em]. We use the Pliicker relation {4.4), the data “... »
of (4.4) corresponding to the present ones in the foﬂowing manner:

) “E" =0, “{b2,. .. :bm)” = (b1, .- :bj-‘lxbj+ly- cvybm)s
“qn =2, “(cls---;cs)” = (aln---:amvbj),
- “3” =m + 1-. o

In this relation all the terms different from

,[a], fea ,am][li_,-,bl,. o-':bj-hbj+11 . ".bm] = (—l}j—llﬂ],,. .. ,Gmel,. . ,bm]
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and # 0 in G(X;<) have the form 8¢ such that § € ¥ and ¢ has only £ — 1 in-
dices not occuring in . Solving for [a1,...,am][b1,...,bx] and dividing by v, one gets
[bla e :bm] € B[lI!]['Y_]}

In proving the algebraic independence of ¥ we first consider a field B of coefficients.
If  is not a zero-divisor in a finitely generated algebra A over a field, one has dim A =
dim A[z~']. An easy count yields |[¥| = rk'(X;7): there are n — a; — {m — 1) elements
in ¥ which do not contain ;. {The rank of ['(X;~) has been computed above (5.12)).
So

|¥] =tk I'(X;7) = dim G(X; 7)
= dim G(X;7)[y™"] = dim B[¥][y"'] = dim B[¥],

and ¥ is algebraically independent.

Let now B = Z. Since ¥ is algebraically independent over Q, it is algebraically
independent over Z. In order to derive the general case one needs that G(X;v)/ Z[¥]is
Z-flat. This is equivalent to

Tor(G(X;7)/2(¥], Z/pZ) =0

for all prime numbers p, and this again follows from the case of a field of coeflicients
considered already. —

The following lemma will be needed in Section 7, in particular for the proof of
Theorem (1.2) given there:

(6.2) Lemma. Let S be a B-algebra, and suppose that e, %: G(X;v) — S are B-
algebra homomorphisms. If w(7) is not a zero-divisor and () = () for all 6 € ¥, ¥
as in (6.1), then ¢ = 9.

ProoF: Consider the commutative diagram in which the vertical arrows are injec-
tions: )
r ¥ 1]) )
G(X;7) —mm—— s

l |

-1 -1
GGk M gy
By virtue of (6.1) and hypothesis: ¢[y~}] = ¢[y~!]. —

If B is an integral domain, G(X;v), a subring of the domain B[¥][y~!], is a do-
main, too, and for normal B the ring B{®][y~!] is even normal, so normality of G(X;7)
then follows from the criterion cited above. The ring R{X;6) arises from G(X;§) by
dehomogenization with respect to £[n+1,...,n+ m] as stated in (5.5). So R(X;6) is a
(normal) domain, too, by virtue of (16.23).

(6.8) Theorem: Let B be a (normal) domain, X an m x n matriz, m < n, of
indeterminates, and v € T'(X), § € A(X). Then G(X;v) and R(X;6) are {normal)
domains.

Though a determinantal analogue of (6.1) has not been needed for the proof of (6.3),
it will be useful later.
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(6.4) Lemma. Let 6 = [a1,.- -1 @pfb1y- .., br] € A(X), and
¥ = {[ai|b;]: i,J = 1,...,4 U {EE A(X;é):'g differs from & in eractly one indez }.

Then R(X;6)[671) = B[¥][6~!], and ¥ is algebraically independent over B. Thus
R{X;6)[671] is isomorphic to

BT,,..., Tak™Y, ¢€BT,...,Td, d=dimR(X;6)-dimB,

T1,..., Ty indeterminates. If B is an integral domain, { is a prime element.

Proo¥F: For R(X;6) C B[¥][6~"] it is enough that [uv] € B[®]{6~1] for all [u|v] €
A{X;6). Suppose first, that « = a;. Then (in B[X] already)

[ty @1y s@n[vyb1y.e,br] = 0.

Expansion of this minor along row u shows that [u}v] can be expressed (over Z) by the
[ailb;] € ¥, [a.1,...,a..|v,b1,...,b;,...,b,] € ¥ and §-!. Let u be arbitrary now. In
R(X;6) one has

[u7a'1:--~:arlﬂ,bl,...,br] =0,

and now one expands along column v, expressing [ufv] by the [a:jv] € B{®][67%] (“€”
has been shown already), [w,@1,...,8:,..;@x[b1,...,b¢] € ¥ and §-%, In proving the
algebraic independence of ¥ one proceeds as in the proof of (6.1). At this point one can
derive the contention of (6.3) with respect to R(X;8) or use (8.3) directly in order to
conclude that ¢, being the determinant of a matrix of indeterminates, is a prime element
" over a domain B. — ‘

The representation of R{X; §) as a dehomogenization of G(X;8) renders R{X;6)[67Y]
a residue class ring of B[t-fl][;ﬁ"'l}, ¥ constructed for & according to (6.1). The reader may
find the resulting representation of R{X;8)[67].

Theorem (6.3) has consequences for a more general class of rings.

(8.5) Corollary. Let B be an integral domain, Q C I'(X) an ideal. Then the
minimal prime ideals of QG(X) are the ideals J(X; ~), ¥ a minimal element of T(X)\Q,
and QG(X) is their intersection. The analogous statement holds for ideals Q@ C A(X).

In fact, the ideals J(X;7) are prime, and QG(X) = J(X;7) follows from Q=
N(T(X)\T(X;7)) by virtue of (5.2). We leave it to the reader to find the most general
version (in regard to B) of {6.5) and to prove the following corollary (as an application
“of {3.15), say): ‘

(6.68) Corollary. Let B be an arbitrary ring, ! C T(X) an ideal. An element
v € T{X)\ Q2 is not a zero-divisor modulo QG(X) if and only if it 18 comparable to every
minimal element of T(X)\ Q. The analogous statement holds for ideals Q0 C A(X).
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B. The Singuilar Locus

. Let B be a field momentarily. Then every localization of G(X;4) with respect
to a prime ideal not containing v is a localization of a polynomial ring over B, and
therefore regular. The element 7 is distinguished only in the combinatorial structure of
I'(X;+). For the purpose of (8.1) every element of G(X;+) which can be mapped to
by an automorphism of G(X;7), is as good as v itself. In the extreme case in which
v =[L,...,m], G(X;9) = G(X), every element of I'(X) can be mapped (up to sign) to vy
by a suitable permutation of the columns of X which of course induces an automorphism
of G(X). In general we can only use the permutations which leave J (X;~) invariant.
Every permutation 7 of {1,...,n} induces a permutation of T'(X} (which up to sign has
the same effect as the corresponding automorphism). Let v = [a1,...,a.). If

m({as,...,n}) = {ai,...,n} for i=1,...,m
then certainly 7(8) € J(X; ) for all § € T'(X ;7). this being equivalent to the invariance
of J(X;v) under {the automorphism induced by) m. The example ¥ = [1,...,m] however

shows that the condition above is too coarse: an appropriate condition must take care
of how [as,...,a,,] breaks into blocks of consecutive integers

}60 = (al!-"aakl): ﬁl =.(a'k|+13"'sakz)7"’i ﬁl = (ak.+lv-'-aam)'

For systematic reasons we let kg = 0, k,y; = m, @m+1 = 7+ 1. Similarly we decompose
the complement of y with respect to the interval {a1,...,n} to obtain the gaps of 4:

Xo=(0k, + 1,000,800 401 = 1),y X = (G + L...,m)
Here x, is empty if ¢, = n. If a permutation = satisfies the condition
1) "(BUX) = BU, =0,y
then 7 certainly leaves I'(X; ) invariant as a set, thus maps I'(X} \ I'(X;7) onto its;aif,

and induces an automorphism of G(X;+). An element 6§ = (1., 0m] € T(X;v) can be
mapped to v by such a permutation if and only if

(2) bkieﬁi—IUXi-—l: i=1,...,8+1.
Let {X; ) be the set of elements § € (X ;,r') which satisfy (2). It is an ideal in the
partially ordered set T'(X;~)! ‘

To give an example: Let m =4, n=17, vy = {1 3 4 6]. Then the blocks and gaps of
¥ are

Bo=(1), L=(34), B=(6) and x9e=(2), x1= (5)y x2 = (7).

E(X;9) consists of all § = [by,... 1b4] € T(X;7) such that & < 2, b; < 5.
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(6.7) Theorem. Let B be o noetherian ring, X anmxn matriz of indeterminates,
v € T(X), P a prime ideal of G(X;7), and @ = BN P. Suppose that T(X;7) is not @
chain. Then G(X;7)p is regular, if and only if Bg is regular and P does not contain
the ideal S{X;7)G(X;7).

The case in which D{X;7) is a chain, is trivial: G(X; ) is a polynomial ring over B
then. It is easy to check that I{X;v)isa chain if and only if ¥ = [21,n—m+2,..., n) or
y=r-m,... 05,8 +2,... ,n]. Before we prove (6.7) we supplement it by a description
of the minimal elements in the complement of T(X;7v) and a slight strengthening.

(6.8) Supplement to (6.7). One has B(X;7) = T(X; ) if and ondy if (i) s =0
or (ii) s = 1 and am = n (the latter implying x1 = 8). If (iii) s > 1 and x1 # @, then the
minimal elements in the complement of B(X; ~) with respect to T'(X; v} are

oy = [(ﬂ,l,. . aak1*-1)a(ak|.+la--- y Qg y Cky + 1)’192’--' ;ﬁa]’

s = [Boy ooy Btz (Gke_rbine v s Ok —1)s (Bht 150 Bhiiys B + 1), Be41ls

wheret =8 if xos # 0, andt=s~11ifxa = @ (in the first of these cases we let Ber1 = 8).
In case (i) the localizations of G(X; ) with respect to a prime ideal PO B(X;7)G(X57)
are not even factorial domains.

In our example f = 2, oy =[3456], 02=[1386 7.

If the singular locus of Spec B is closed, then the singular locus of G(X;7) is
closed, too, and in case (iii) of (6.8) its minimal elements are the prime ideals (@ +
J(X;0:))G{X;7), where Q runs through the minimal singular prime ideals of B and
i=1,...,t (Similar statements hold in the remaining cases.)

PRrOOF OF {6.7) AND (6.8): The “if”” part of (6.7) has been indicated already: Let
S§ =G(X;7). Thering Spisa localization of (S ® Bg)[6*} for some § € 3= B{X;7).
Since 6§ can be mapped to v by an automorphism of $ ® Bg, Sp is regular by: (6.1).

For the converse we first note that regularity of Sp implies regularity of Bg through
flatness, and factoriality implies that Bg is a domain (at least). Next we may assume
that P is a minimal prime ideal of S, in order to derive a contradiction. Then, after
having replaced B by Bg, we conclude Q@ = 0 from (6.6), and B = K is a field.

In case (i) of {6.8) condition (2) holds for every 5>y, s0L=T(X;7)and P =5%is
the irrelevant maximal ideal of a graded K-algebra generated by its 1-forms. If T(X;7)
is not a chain, the dimension of the K-vector space of 1-forms differs from the Krull
dimension of §: Sp is not regular. In case (ii) one has a; =7 — {(m — §). and therefore,
letting 6 = [B1y...2bm)y bj =N — (m —j) for j > k1 + 1. This implies by, < @k, +1, and
we are through by the same argument.

In case (iii) one certainly has T # I'{X;~), since g1,...,0t ¢ ¥ and i > 1. It is easy
to see that oq,...,0, are the minimal elements of the complement of £ C [(X;7). By
our assumption on P being minimal over 5%, P =l(z;05)(= IX;07)/IX;7), ok 5.A)
for an index j (cf. (6.5)). Since §/SX is reduced, ¥, generates PSp, in patticular contains
a minimal system of generators of PSp; its elements are irreducible. The permutations
7 which satisfy (1), have the property corresponding to (1) for o, too: The sets B e
for 4 coincide with the corresponding sets for ¢;! Therefore these permutations leave
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I'(X;0;) and T(X;v) \ I(X;0;) invariant: they induce automorphisms of Sp.- Since ¥
can be moved to every element of T by such a permutation, 7 is an irreducible element
of Sp. On the other hand it cannot be prime: Let

= LBD,' ' wﬁj—-?:(ak,--r%]?“ '1a'kj—1):ak,' + 1,ﬂj)'- -aﬁs]

and
T2 = [ﬁﬂ:--‘:ﬁj—ls(akj—i-])'--aa'k5+1~1)3a'k,-+1 + 1,.3;'+1,---,ﬁs]-

Then 7,7, are upper neighbours of v, and 71,12 < 05, s0 P = J(z;0;) contains J{z;7,)
and J{z; ), two different minimal primes of Sv, excluding that + is prime in Sp. —

(6.9) Remarks. (a) As stated already, G(X;7) is a polynomial ring over B if
T'(X;9) is a chain. (6.7) shows that the converse is likewise true: Suppose that G(X;v)
is a polynomial ring over B. Then G(X;v) ® (B/Q) is a polynomial ring over the field
B/@, @ a maximal ideal of B. So all the localizations of G(X;v) @ (B/Q) are regular,
and I'(X; ¥) must be a chain by (6.7).

(b) Since the cue “factorial” has been given already, we should point out that in
the exceptional cases (i) and (ii) of (6.8) the ring G(X;<) is indeed factorial, provided
B is factorial: v has only a single upper neighbour then, so is prime by (6.5), and the
factoriality of G{X;v)}{y~?] implies the factoriality of G{X;7) itself; cf. Section 8 for a
detailed discussion.

(¢) We have started the proof of (6.8) by trying to find as many elements of I'(X; v)
which are conjugate to v under an automorphism of G(X;~), and have found the set
(X;7) of such elements. After (6.8) it is clear that elements o outside T(X;~) are not
conjugate to v under a B-automorphism: the B-algebra.s G(X;7)[v"!] and G(X;7)[o™"]
are not isomorphic. The structure of G(X;v)[o;!] will be revealed in (8.11).

(d) Without restriction one can exclude the case a,, = n first, and thus reduce the
number of cases to be considered in (6.8). In fact, if ¥ = [a1,...,ap,n—(m—p)+1,...,7],
then

G(X;7) 2 G(X';9)

where X' is a p x (n — (1 — p}) matrix of indeterminates and ' = [a1,...,a,]. We leave
it to the reader to check that the map which sends [bs,...,bp,n —(m —p)+1,...,n] €
T(X;v) to [by,...,b] € T(X'; %), is well-defined and an isomorphism. —

The most convenient way to find the singular locus of R(X;§) is again the method
of dehomogenization. Though very suggestive, the automorphism argument (now in -
conjunction with (6.4)) does not produce the correct result in all cases, as will be demon-
strated below. o

We write R(X;§) as the dehomogenization of G{X;é) again. It is immediate from
(16.26) that the ideal [ of R(X 6) generated by an ideal Q C A(X;§) is the dehomog—
enization of the ideal J of G(X 6) generated by the corresponding ideal Q in I‘(X 6)
J is homogeneous, £[n + 1,...,n + m] is.not a zero- divisor modulo J (since it is the
maximal element of the poset underlying the ASL G(X;8)/J), and the generating set
is mapped (up to sign) onto 2. Let Z(X;6) be the subset of A(X;8) corresponding to
(X 6) C I'(X;6). Then, by virtue of (16.28) and {6.7), a localization R(X;§)p is regu-
lar if and only if Bpnp is regular and P 2 Z(X;§). It only remains to give a description
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of E(X;6) in terms of §. We state the result, leaving the translation back and forth to
the reader.
Let § == [a,-..,ar|b1,.. ., bs). We decompose the row part [e1,. .-, a,{] into its blocks:

[ali s sar] = [60: .. '“iﬁu], ﬁi = (a'k.'-l'l’ see :ak.-+|)-
Then we let

Ei = [60! e :ﬁi—‘ls (ak.'_.l-i-l} e :a'k.--l): (ak.'-i-ls e 1ak.'+1 7aki+|+1):
Bitty 3 Bulbryererbrl;

i=1,...,u—1l,andi=uife, <mandu 2> L Analogously one constructs elements v;,
j=1,...,w—l,and j=wifb. <n and w > 1, for the column part. In the exceptional
case a, = m the element &, is given by ) ‘

'fu = [/60" .. :Bu—?-r (aku_1+ls .. ';ak.,—l); (ak,_.-(-]) e !ar)lbls L) 7br—1])

a.nd-if b, = n the element v, is choosen analogously. Finally,
C = [a;,... ,G,._1|b1,...,b,._1].

(6.10) Theorem. Let B be a noctherian ring, X anmxn malriz of indeterminates,
and 6 = [a1,.:.,arlb1y...,bs] € A(X). Assume that & # m—-7r+1,...,m,...,
by+r—1) and 6§ # [a1,...,a1 +7—1ljn—r+1,...,n]. Let P be a prime ideal of R(X;6)
and Q = BN P. Then the localization Rp is regular if and only if Bg is regular end
P 7 B(X;6), where E(X;6) is given as follows:

(i) If r = 1, then E(X;8) = A(X;6). '
(i) Ifr > 1, a, < m and b, <n, E(X;6) is the ideal in A(X;8) cogenerated by

ST S DU e

(iii) If r > 1, a, = m or b, =m, B(X;6) is the ideal in A(X;6) cogenerated by.
‘f]" "1£Il$vly- oy Ve

The singular locus of Ry41(X) = R(X;[L,...,7[L,...,7]) has been computed in
{2.6) already. This case is recovered in (ii): v = w = 0 then, and the singular locus
is determined by ¢ = [1,...,r = 1]1,...,7 — 1]. Again one of the exceptional cases § =
[m=r+1,...,mlb,...., 50 +7— 1] and 6 = [a1,..., a1 +7 — lln —r+1,...,7n] occurs
if and only if R(X;#8) is a polynomial ring over B. (The “if” part is obvious, and for the
“only if’ part one argues as in (6.9),(a).)

The reader may check that only in the cases (i) and (ii) £(X; §) is the set of elements
of A(X;6) which are conjugates of § {up to sign) under row and column permutations of
X. That the set of conjugates fails to give the singular locus in general can also be seen
from the following example : B = K a field, m = 2,n = 3,6 = [1 2|1 8]. The prime ideal
P =1I(z;[1[1]) has height 1, since [1[1] is an upper neighbour of 6. By (6.3) the local ring
R(X;6)p is regular, though P contains all the conjugates of 6, The exceptional nature
of case (iii) is easily explained: Let 5 = {@1y...18m]. Then a, < m and b, < n if and
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only if 4,41 =n+1>b.+1 =48, + 1. Therefore in cases (i) and (ii) every permutation
= satisfying condition (1) above induces an automorphism of R(X; 6).

We can combine the different cases of (6.10) to a single statement if we choose to
describe determinantal ideals by their generators. It has been noted in 5.A already that
the ideal I = I(X;6) has a system of generators consisting of the

(i + 1)-minors of the rows 1,...,u;, i = 1,...,p,

and the
(8; + 1)-minors of the columns 1,... U f=1,...,q,

where the r;,u;, 5;,¢; are suitably chosen integers satisfying the conditions

0<rm < <rp <, 0<s8 < - <8 <m,
ui+i>ui+(ri+l_ri)? Uj+1>vj',i'(sj+l—3j)a i=1)"')p_1:j:15"'!Q“1: -

and
Tp+1 <3 +1+n -1 gt l<rp+1+m=—~u,

(6.11) Theorem. Let B be a noetherian ring, X anmXxn matriz of indeterminates.
Suppose that the ideal I is generated as just specified. Then for @ prime ideal P of
R = B[X]/I the localization Rp is regular if and only if Bg is regular for Q = BN P
and P does not contain the ideal

PN NPNGiN---NQ,,

where Py is generated by the ri-minors of rows 1,...,u;, and the Q; are defined analo-
gously for the columns.

The derivation of (6.11) from (6.10) can be left to the reader.

After one has explicitely described the singular locus of the rings G(X;v) and
R{X; 6} one can compute its codimension. The best possible general estimate is given in
the following proposition:

(6.12) Proposition. Let B be a noetherian ring which satisfies Serre’s condition
(Rz2). Then all the rings G{X;~) and R(X;6) satisfy {Ra), too.

PROOF: Because of (16.28) it is enough to consider the rings R = G{X;+). Let Pbe
a singular prime ideal of Rand Q = BNP. If Bg is singular, then dim Rp > dim Bg > 3.
Thus we may assume that B = By is a regular local ring and P is minitmal among the
singular prime ideals of R. In the cases (i) and (i) of (6.10) one has P = I'(X; )R,
hence ht P = rkI’(X;7) > 3 (if tkT'(X;9) € 2, R is a polynomial ring over B). In case
(iii) of (6.10) P = J(X;0;)/3(X ;) for a suitable 4, and there are at least two elements
m < p of (X ; 7) strictly between 4 and o;, and therefote ht P > 3 because of (6.3). —

It is easy to seé that (R,) is the best we can expect in general; take v =[1 3 5] for
example or = [a1,...,8,]b1,...,b,) such that ¢, =m — 1, b, =n — 1.
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.C. Comments and References

The key lemma (6.1) is essentially Lemma 3.11 from Hochster’s article (Ho.3],
whereas a variant of {6.4) seems to appear first in (Br.3] (for Rpy1(X)). “Classical-
ly" the integrity of the Schubert cycles G(X; ) is proved by the construction of generic
points, cf. Section 7. Hochster shows the “if* part of (6.7) using the automorphism argu-
ment and concludes the normality of G(X;~y} from the Cohen-Macaulay property and the
Serre condition (R,); as we have seen, even (Rz) follows from (6.7). The singular locus
of G(X;~) is given (in the language of Schubert varieties) by Svanes in [8v.1], p. 451,
(5.5.2).

References for the integrity of the rings Rr41(X ) were given in Section 2. Their
normality was first proved by Hochster and Eagon [HE.2] as a consequence of the Cohen-
Macaulay property and (Rj), the latter resulting from a demonstration of the “if* part
of (6.11) (as far as the rings R(X;6) are treated in [HE.2]). (6.10) and (6.11) may be
considered a natural generalization of their results.
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The main objective of this section is to describe the rings R,..1(X) and G(X), more
generally R(X;6) and G(X;9), as the rings of invariants of actions of linear groups on
polynomial rings, thereby solving classical problems of invariant theory. This requires
the construction of suitable embeddings into polynomial rings, and the embeddings con-
structed below are generic points. Furthermore we illustrate the connection between
invariant theory and the ideal theory of R,y 1({X).

A. A Generic Point for R, ,(X)

DEFINITION. Let B be a commutative ring, A a B-algebra. A homomorphism ¢
from A into a polynomial ring B[W] is called a generic point if every homomorphism
from A to a field L factors through ¢: :

A 5 B[W)
NS
L

Let us consider 4 = R, (X ) as a simple example. The image U of the matrix X
with respect to a homomorphism from A into a field L satisfies the condition rk U/ <.
The homomorphism L™ — [» given by U can therefore he factored through L7, and the
matrix U/ may be written

U=nV,
where V) is an m x r matrix, V2 an 7 x n matrix. So we take an m X r matrix ¥ and an
T X n matrix Z of (independent) indeterminates over B and factor the homomorphism
A — L through
¢: A-— B[Y, Z], X —Yz,

by substituting V, for Y, V, for Z. Thus @ is a generic point. The existence of a
generic point has consequences which are known to us for the rings under considera-
tion. When we shall discuss a different approach to the theory of determinantal rings in
Section 12 starting from scratch, part (c) of the following proposition will be extremely
useful though. The reader should note that the construction of generic points for the
rings R(X;§) below only relies on elementary matrix algebra!

(7.1) Proposition. Lef p: 4 — B[W] be a generic point for the B-glgebra A.
(a) The kernel of ¢ is contained in the nilradical of A.
(b} If B is reduced, then Ker is the nilradicel of A.
(c) If B is an integral domain, then the nilradical of A is prime.
(d) If B is a domain and A is reduced, then ¢ is injective and A o domain ttself.

All this is evident. If B is a domain, then it follows from (d) and (5.7) that the
generic point constructed for R,+1(X) is an embedding. But, all we need to prove this
in general, is the fact that [1,... »7]1,...,7) is not a zero-divisor in R, 1(X):
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(7.2) Theorem. For every ring B the homomorphism ¢: Rey1(X) — BlY, Z),
X — Y Z, is a generic point and an embedding.

ProOF: Over an arbitrary commutative ring S a matrix U/ which has I,..1(U) =0
and an r-minor which is a unit in S, can be factored U = ViV, as above. So we only
need an embedding Ry43(X) — § such that this condition is true for the image U of
X; then the embedding factors through ¢. A suitable S is supplied by Rr1(X )61,
§=[1,...,7|L...,7} — '

The argument just given is typical for many proofs below: After the inversion of a
suitable minor the matrix under consideration can be manipulated like a matrix over &
field.

The ring G(X) is defined as a subring of B[X). Let : G(X} — Lbea homomor-
phism into a field. Then the wyector” (9(7): ¥ € I'(X)) satisfies the Pliicker relations,
and one can factor ¥ through B[X] if and only if it is possible to construct a matrix U
over L such that its set of Pliicker coordinates is (¥(y): v € T(X}). This is guaranteed
by Theorem (1.2) which, however, still waits for the completion of its proof. We shall
complete its proof within the proof of (7.14) below where it will also be stated that the
embedding G{X) — B[X] is a generic point.

B. Invariants and Absolute Invariants

In the situation of (7.2) let T' be an element of GL{r, B), i.e. an invertible » X 7
matrix over B. Then
YZ=YT 'TZ,

so the entries of Y Z are invariant under the substitutionY = YT}, Z -T2 considered
as an automorphism of B[Y,Z]. As T runs through G = GL(r, B), this defines an
action of G on B[Y, Z] as a group of B-automorphisms. For T € G and a polynomial
F{Y,Z) € BlY, Z] one puts

T(f) = f(YT™',T2).

The hope that B[Y Z] & Ry (X) is (always) the ring B[Y, Z)% of invariants under the
action of & is immediately disappointed: Consider B = Z, m = n = r = 1. This failure
is however caused by a notion of invariant too naive o work for commutative rings in
general; a ring like Z or a finite field simply has not enough units.

DEFINITION. An element f € B[Y, Z] is called an absolute GL-invariant if for every
ring homomorphism ¢: B — S the element f is mapped to an invariant of GL(r, 5)
under the natural extension B[Y, Z] — S[Y, Z].

We shall also consider the action of the special linear groups
SLr,B) = {T € GL(r, B): detT = 1}
on B[Y, Z} as a subgroup of GL(r, B), and absolute SL-invariants are defined analogously.

The absolute invariants are just the invariants of the “general element” of GL(r, B) and
SL(r, B) resp.:
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(7.3) Proposition. Let U be an r x r matriz of indeterminates over B, A its
determinant, S| = BU][A™1], S, = B{U]/B{UNA ~1), and denote the matriz of residue
clesses in S1 by U again. Then f € BlY, Z] is an absolute GL-invariant if and only if it
is (as an element of $1[Y, Z]) invariant under the action of U on 81[Y, Z}. The analogous -
statement holds with GL replaced by SL and S, by S,.

PROO¥: Let S be a B-algebra, u € GL(r,S). Then one has a commutative diagram
B — 5
NS
S

such that ¢ sends U to u. The action of » on S[Y, Z] restricts to an action on P(S1)[Y, 2],
on which it is induced by the action of U/ on S, [Y,Z]). Therefore invariants of U are
mapped to invariants of 4. The same argument works for SL. —

If the ring B has enough elements (units) then every invariant is already absclutely
invariant. :

(7.4) Proposition. If B is a domain with infinitely many elements (units), then
every invarient of SL(r, B) (GL(r, B)} in B[Y, Z) is absolutely invariant

Proor: We take S, as in the preceding proposition. Let I be its field of fractions.
(The verification that S, is a domain is left to the reader.) For the contention regarding
SL, it suffices now to show that every invariant in BlY, Z] is invariant under the action of
SL{(r, L) on L[Y, Z]. The group SL(r, L} is generated by the elementary transformations
E;(t), t € L, i # j, where Ey;(t) is the identity matrix except that its entry at position
(,7) is . For ¢ € B we have E:;(t) € SL(r,B) (C SL(r,L) in a natural way). It is
more than required if we show that every element of L[Y, Z] which is invariant under the
actions of the E;;(t), ¢ € B, is an invariant of SL(r, L).

Let g € L[Y, Z], g = 3 aup, u running through the monomials in the indeterminates
of Y and Z, a, € L. Then '

E;(8)(9) = ) pijus(tin
with polynomials Dijug in one variable over L, as is easily checked. The invariance of
9= 2" b,p under E;;(t), t € B, is expressed by the equations
Pijug(t) = b, :

for all t € B, all i, 4, ;u. Since the polynomial p;;,, takes the value b, infinitely often, it
has to be constant on L, so g is invariant under E;(t), te L. .

In order to prove the statement about GL, we consider the field of fractions I of
51, 51 as in (7.3). The group GL(r, L} is generated by SL(r, L) and the matrices By (8),
t € L\ {0}, where E{(¢) is the identity matrix except having ¢ in its position (1,1). As
above every polynomial ¢ defines functions g, (t), sending ¢ to the coefficient of E;(¢){g)
with respect to the monomial #. These functions are now rational functions defined on
L \ {0}, each of them taking a constant value at the points ¢ which are units in B,if g
i$ an invariant of GL(r, B). Therefore Qug(t) is constant then. (Expressed very briefly,
we have used that SL(r, L) and GL(r, L) are ‘generated by one-dimensional subgroups in
which the additive group and multiplicative group resp. of B are Zariski dense.) -—

For the computation of the absolute SL-invariants of BlY, Z] we need to know how
they behave under the action-of GL(r, B), - :
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(7.5) Proposition. With the notations introduced, let f € B[Y,Z] be an absolute
SL-invariont which is bikomogeneous with respect to the indeterminates in Y and Z of
partial degrees dy and dy resp. Then dy — dy is a multiple of 7 (inZ), dy — d1 = tr, and

T(f) = (detT)'f

for every B-algebra S and every T X T matriz T over S.

In invariant theory this is briefly expressed as: f is an absolute semi-invariant of
weight t (or det').

PROOF: We consider the extension B — §; as in (7.3). It is enough to prove the
contention for T = U. We further extend §; to

§ = S$iW]/Si WA - W),
W a new indeterminate. Over § the matrix U factors as
U = ww™ '),
w denoting the residue class of 1. Note that det w'lU = 1. Therefore

U(f) = (ww O = wlf) = f(Yo~ ,wd) = vt " f.

S is a free Sy-module with the basis 1,...,w™~!. Since U(f) € § =8-1C 8, we
conclude dy —d; =0 (7). —

C. The Main Theorem of Invariant Theory for GL and SL

Now we are well-prepared to state and to prove the theorem which describes the
rings of the absolute GL- and SL-invariants of BlY, Z].

(7.8) Theorem. Let B be a commutative ring, Y anm xr matriz and Z an 1 Xn
matriz of indeterminates, r,m,n > 1.
{a) The ring of absolute GL-invariants of BIY,Z] is B{Y Z] = R,.1(X)}, X being an
m x n matriz of indeterminates over B.
(b) The B-subalgebra A of absolute SL-invariants of BlY, Z] is generated by the entries
of Y Z, the r-minors of Y, and the r-minors of Z.

Conditions under which the attribute “absolute” can be omitted, are given in (7.4).
For the determinantal rings mainly the case r < min(m,n} is of interest. Under invariant-
theoretic aspects this restriction should be avoided, and so we allow arbitrary values of
m,n,r in (7.6). The B-algebra A in part (b) will be analyzed to some extent in (9.21).
As an immediate corollary we obtain G(X) as a ring of invariants:

(7.7) Corollary. Let B be a commutative ring, and X an m Xn matriz of indeter-
minates over B. Then G(X) is the ring of absolute invariants under the action X - TX
of SL{m, B) on B[X].

In fact, it is easy to see that A N B[Z] = G(Z), and so (7.7) follows from (7.6),(b).
Nevertheless we want to give a separate proof which, relative to our preparations, is very
short. Its basic idea will be applied again in the proof of (7.6),(a).
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PROOF OF (7.7): Certainly the elements of G{X) are absolutely invariant. One
first observes that it is harmless to enlarge the matrix X by adding colurnns: If X is
the “bigger” matrix, then the action of SL on' B[X] is induced by that on B[X], and
obviously G(X) = B[X] N G(X). The action of SL leaves the homogeneous components
of B[X] invariant. Therefore we may first assume n > m and secondly that a given
invariant element f is homogeneous of degree d, say.

Let X consist of the first m columns of X , and put U = Cof X. Then by virtue of
(7.5) (withdy =0) d=1tm, t >0, and

U(f) = (detU)' f.

On the other hand the entries of /X are elements of G(X)! Furthermore det/ =
{(det X)™ 1 ={1,...,m]™ L. Thus

[L..,m] f = U(f) = FUX) € G(X).

The rest is very easy for us (though it is certainly the difficult part of the proof from a
neutral point of view):
B X|=G(X)aC

where C is the B-submodule generated by all standard monomials containing a factor
outside T'(X). Since [1,...,m] is the minimal element of A(X), multiplication by it maps
C injectively into itself, whence f € G(X). —

In the PROOF OF (7.6),(a) we use similar arguments. Enlarging m and n if necessary,
we may assume that m > r, n > 7. In order to prove the nontrivial inclusion, it is enough
to consider invariants f which are homogeneous with respect to the variables in Y, of
degree d, say. Let Y denote the submatrix of Y consisting of the first.r rows, Z the
submatrix of Z formed from the first r columns. Over B[Y, Z|[(detY Z )] the absolute
invariance of f implies

f=iYyVLY2),

s0 by elementary matrix algebra
f=fYZ(YZ)"",Y2)

= f(YZ(detYZ)™' Cof(Y Z),Y Z)

= (detYZ) " 4f(YZ Cof(Y Z), ¥ 2).
The entries of Y Z, Cof(YZ),Y Z all are in B[Y Z]. Thus one has

(det Y Z)%f € B[Y Z],

and it suffices to prove
(1) (det ¥ Z)B[Y 7] = (det Y Z)B[Y, Z) n B[Y Z).
This is equivalent to the injectivity of the homomorphism

¢: R/R6 — B[Y, Z)/ det(Y Z)BJY, 2],
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R=R,1(X),6=[1,...,7|1,...,7}, ¢ induced by the embedding R — B[Y, Z] as above.
By virtue of (6.6) the element §' = [1,...,7 — 1L, +1|1,...,r = 1,7 + 1] is not a zero-
divisor modulo §, since it is greater than t.he upper nelghbours [1 —1,7+1]1,...,7]
and [1,...,7|1,...,7 — 1,7 + 1} of 6 Therefore the natural map R/R6 — (R/R&) [6’ Nis
an mJectmu It can be factored through ¢ since the image of the matrix X in (R/R6)[6"""]
can be factored into a product of an m x 7 matrix and an 7 x n matrix. This finishes the
proof of (7.8),(a).

Before embarking on the proof of (7.6),(b), we want to point out that (7.8),(b) is
. equivalent to ideal-theoretic properties of Ry4(X). This is already true for (7.6),(a): we
have used such a property in order to prove (7.6),(a); cf. also the remark following the
proof of (7.8). Some notations have to be introduced. Let

= (det V)B[Y,Z] and Q= (detZ)B[Y,Z],

P be the ideal generated by the r-minors of the first 7 rows of Y Z, @ the corresponding
ideal for the first v columns.

(7.8) Lemma. Let m > r and n > r. Then the following are equivalent:
(a) (7.6, (b) )
(b) P7 = pin B[YZ] and @ = QN B[YZ] forallj > 1.
(¢) P/ and Q7 are prtmavy with radicals P and Q resp. for all j > 1, provided B is an
mtegml domain.
d) [1,...,7—1 r+1|1,,...,r} is not a zero-divisor modulo PV, [1,...,r,|L,...,7~1,7+1]
: z's not a zero-divisor modulo Q7 forallj > 1.

PROOF OF (7.8): (a) = (b): All the B-submodules appearing in (b) are bihomo-
geneous in the bigraded B-module B[Y, Z], the first graduation taken with respect to ¥,
and the second one with respect to Z. Let z € Pin B[YZ] be homogeneous (thus biho-
mogeneous of partial degrees d; = d3), = = p’y, p = det Y, y € B[Y, Z] bihomogeneous.
Then y is an absolute SL-invariant, and

T(y) = (detT)y

for all matrices T'. Since the product of an 7-minor of Y and an r-minor of Z is in B{Y Z],
(7.6),(b) implies that y can be written as a linear combination of (standard) monomials
of length j in the r-minors of Z with coefficients in B{Y Z]. Multiplied by 7, such a
monomial is sent into P?. The statement on the powers of Q is proved similarly.

(b} = {c): Obvious, since the powers of principal primes are primary.

(¢) = (d): (c) implies that Z[Y Z)/ P’ and Z[Y Z]/Q* are Z-flat, and (3.15) reduces
{d) to the case of a field B = K, in which (d) is a trivial consequence of (c).

(d) = (b): This is proved in a similar fashion as equation (1) above.

{(b) = (a): Without restriction one may assume that a given absolute SL-invariant f
is bihomogeneous of partial degrees d; and d; resp. We discuss the case dg > dy, the case
d1 > ds being analogous. By virtue of (7.5): do —d1 =tr,t €Z, ¢ > 0. Let p= det ¥

as above. Obviously p'f is an absolute GL-invariant, so p'f € Ptn B[Y Z] = P*. Write

p'f as a linear combination of (standard) monomials of length ¢ in the r-minors of the
ﬁrst 7 rows of Y Z with coefficients in B{Y Z], and note that such an r-minor divided by
p gives an r-minor of Z. — .
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It is not difficult to see that (7.6),(a) is equivalent to (b), (¢}, (d) of(T 8) with 7 = 1,
and via (6.6) we have derived (7.6),{a} from the fact that P and Q are prime ideals over
a domain.

We shall prove independently in Section 9 that P and Q have primary powers over a
domain, and a reference to {9.18) would be the shortest proof of (7. 6),(b). A more direct
argument is in order, however.

(7.9) Lemma. (a) Let f € B[Y Z] be homogeneous of degree 1 with respect to the
indeterminates in the j-th row of Y. Then the row j appears exacily once in every
standard monomial in the standard representation f = Y aup of f as an element of
Rr+1 (X)

{b) Lett € Z, t > 1, and suppose m > tr. Let f € B[Y Z] satzsfy the hypothesis of (a) for
eachj, 1 <j<itr, and assume that f vanishes after the substitution of linearly dependent
vectors (over a B-algebra) for the rows (k—1)r+1,...,kr, 1 <k < ¢ arbitrary. Then in
the standard representation of f the first r factors of each standard monomial have row
parts

Bearhr+1,00,20), L [(E=Dr + 1,... , t7]
end none of the remaining factors contains a row j, 1 < j < tr.

Proor OF (7.9): Part (a) is almost trivial: multiply the j-th row of ¥ by a new
indeterminate W, and use the linear independence of the standard monomials over B[W].
Under the hypothesis of (b) f vanishes modulo P (as in (7. (7.8)), which is generated by a
poset ideal of the poset underlying R,;1(X). Therefore every standard monomial in the
standard representation of f has a minor [1,...,7|...] as its first factor. Splitting it off,
one can argue inductively because of {a]. —

PROOF OF (7.6),(b): Without restriction let m > 7, n > r, and f € B[Y, Z] be
a bihomogeneous absolute SL-invariant of partial degrees d; and d; resp. Suppose that
d2 > d, and let ¢ be given by (7.5).

3o far we have only repeated the first lines of the proof of {7.8},(b) = (a). The
essential trick now is the introduction of a new ¢r x r matrix of indeterminates which we
pile on top of ¥ such that the resulting matrix ¥ has Y in its rows tr + 1,...,tr + m.
Let yx be the determinant of the matrix consisting of the rows (k- L)r +1,... kr of ¥.
The element :

g=fn... o
is an absolute GL-invariant because of (7.5), and we can apply (7.9),(b) to it: Since

[(k - 1 k?"lbl, . b ]/yk
is the »-minor of the columns b,.. b of Z, the result follows after division of g by
Yoo Y —
In the proof of (7.8) the hypothesis “m > r and n > 7" is only needed for (d) and
the implications (¢) = (d) and (d) = (b). Therefore (7.6),(b} also implies the first part
of the following corollary whose second part follows directly from (7.8):

(7.10) Corollary. Let B be an iniegral domain, X an m x n metric of indetermi-
nates, m < n.
{a) The prime ideal 1,,{X) has primary powers.
(b) Let 7 < min{m,n). Then the prime ideals P and Q genemted by the r-miriors of any
r rows and any r columns resp. of the matriz of residue classes in R,_H(X ) have przmary
powers. o
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D. Remarks on Invariant Theory

-

In “classical” invariant theory one considers a group G of linear transformations on
the vector space K?, K a field, preferably K = C, and wants to compute explicitely the
polynomial functions f in p variables which satisfy the equation

f(z) = flg(z)) forall ge€@, zeKP?,

and are therefore called invarianis. The first main problem is to determine a finite
set fi,...,fq of “basic” invariants, i.e. invariants fi,..., f, such that every invariant is
a polynomial in fi,...,f;. (A paradigm for the solution of the first main problem is
Newton’s theorem on symmetric functions.) The second mein problem is solved if one
has found all the relations of fi,..., f;, a relation being a polynomial A in ¢ variables
such that A(f;,..., fe) =0.

In modern language G is a linear algebraic group over a (algebraically closed) field
X, and G operates on a finite dimensiona! K-vector space V via a morphism or an anti-
morphism G — GL(V) of linear algebraic groups (cf. [Hm], [Fo], {Kr], [MF]; the survey
[Ho.8] suffices for our purpose). Such a morphism is called a rational representation of G.
It makes V a G-module; more generally an arbitrary vector space W is a G-module if it is
the union of an ascending chain of finite dimensional G-modules. The ring of polynomial
functions on V is the symmetric algebra S{V*). & acts on V* via the composition of
the representation G — GL{V) and the natural anti-isomorphism GL(V} — GL(V*),
sending each automorphism of ¥ to its dual. Then S(V*) becomes a G-module after
the natural extension of the action on V* to an action of §(V'*): every automorphism of
V* induces an algebra automorphism of S(V*). In (7.6} and (7.7) we have let SL(r, B)
and GL(r, B) operate directly on the space of 1-forms of a symmetric algebra of a free
module over B. These theorems comprise the solutions of the first main problem for the
actions under consideration. In the situation of {7.8),(a) and (7.7) the solution of the
second main problem is also well-known to us. '

From & geometric view-point V is the affine n-space over K, 4 = S(V*) is its
coordinate ring, G acts on the affine variety V. The ring AC of invariants is the subalgebra
of functions constant on the orbits of the action of . The first main problem has a
solution if and only if AS can be considered the coordinate ring of an affine variety V.
Then the surjection ¥V — V has a universal property: every morphism defined on V
which is constant on the orbits, factors through V. Thus V comes as close as possible to
being the quotient of V modulo G. It is therefore called the algebraic quotient of V with
respect to (¢, whereas the geometric quotient may not exist: there may be nonclosed
orbits.

Al this explains the significance of (7.6) and (7.7) for invariant theory. Conversely
we can use the results of {algebraic and geometric) invariant theory to gain further
knowledge about our objects. This is mainly possible in characteristic zero because
the groups GL(n, K) and SL(n, K) (and direct products of them) are linearly reductive
then, and very strong theorems hold for invariants of linearly reductive groups. Linear
reductivity can be characterized by each of the following properties:

(i) Every (finite dimensional) G-module is completely reducible, i.e. the direct sum of
simple G-modules (motivating the name “reductive”).
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(i) In every (finite dimensional) G-module V the G-submodule VC = {z e V: g(@) ==
for all g € G} of invariants has a (for VO necessarily unique) G-complement. (The
G-homomorphism p: V — VG, plVE =id, is called the Reynolds operator. } .
(iii) For every surjective G-homomorphism V — W the induced map V6 — WG is
surjective, too. A

We now assume that A is a finitely generated K-algebra and a G-module such that
the elements of G act as K-algebra automorphisms. Then (a) is quite evident:

(a) Let A be @ domain. Then AC is the intersection of its own field of fractions with A.
In particular A® is normal if A is normal (and AC noetherian). -
Suppose furthermore that G is linearly reductive. Then the first main problem always
has a solution: .
(b) If A is noetherian, then AC is noetherian; if A is a finitely generated K -algebra, then
AC is finitely generated.

We should point out that (b) already holds under the weaker assumption that G is
reductive; cf. [Ho.8] for this notion. In characteristic 0 reductivity and linear reductivity
are equivalent, whereas in positive characteristic the groups GL(r, K) and SL(r, X} are
not linearly reductive if r > 2. Property (ii) of linearly reductive groups implies:

(c) As an AC-module A splits as A = AC @ C, C being the G-complement of AC; the
Reynolds operator is an A®-homomorphism. (Cf. [Fo), p. 156, Lemama 5.4 or (7.22)
below).

The deep properties (d) and (e) of linearly reductive groups are given by the theorem
of Hochster-Roberts [HR], [Ke.5] and the even stronger and more general theorem of
Boutot [Bt] resp.:

(d) If A is reqular, then AS is Cohen-Macaulay.

(e) If char K = 0 and A has rational singularities, then A® has rational singularities.
We cannot discuss the notion of rational singularity here and refer the reader to [KKMS]
and [BS]. I A has rational singularities, then it is Cohen-Macaulay. We shall see below
that G(X;v) and R(X;6) are invariants of groups acting on polynomial rings, the groups
being reductive in characteristic zero. Thus we conclude: :

(7.11) Theorem. Lei B = K be an algebraically closed field of characteristic zero.
Then the affine and projective varieties corresponding to G(X;v) and R(X;6) have ra-
tional singularities for all v € T(X), 6 € A(X).

Even (a) above contains some new information about G(X), say. An application of
{c) is discussed in the following remark:

(7.12) Remark. In (5.21) we have given an upper bound for the arithmetical rank
of the ideals I,(X): ara I,(X) < mn — t? + 1. Here we want to demonstrate that this
bound is sharp in case t = m < n if B admits a homomorphism B — K to a field
of characteristic zero. Evidently we may then assume that B = K. A lower bound of
ara L, (X) is supplied by the cohomological dimension

mjn{i: H}(K[XD # 0}) I= m(X)’

cf. [Ha.1], p. 414, Example 2. Here Hi(...} is the cohomology with support in 7. Let
J =ING(X). Then, for the G(X)-algebra K[X]

Hy(K[X]) = Hy(K[X]) = H{(G(X)) ® B, (C),
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. € being the SL{m, K)-complement of G(X) in K[X] (observe that J = JK[X]). For
i=mn—m?+1we have HY{G(X)) # 0, since i = dim G(X) (cf.’[HK], p. 37-39).
Warning: Apait from trivial cases, C is.not the K-vector space complément C appearing
in the proof of (7.7). It seems hopeless to compute C explicitely. o

The preceding argument can neither be generalized to the case ¢ < min(m,n)
(cf. (10.16)}, nor be applied in characteristic p > 0 if t = m < n: By virtue of [PS], Propo-
sition (4.1), p. 110 one has Hy(K[X]) =0 foralli > ht I, in particular for i = mn—m?+1,
and the argurnent based on cohomological dimension breaks down. Another consequence:
A Reynolds operator does not exist! — ' '

~ {7.13) Remark. Let K be an algebraically closed field and consider the action of
SL(m, K) on the mn-dimensional affine space V of matrices as in (7.7). It foliows directly
from Theorem (1.2) that the points # 0 in the affine variety G with coordinate ring
G(X) (embedded into AN, N = (7)) correspond bijectively to the orbits of SL(m, K)
containing a matrix of rank m. This fact indicates that G comies close to being the
algebraic quotient of V' with respect to the action of SL{m, K), and one is justified
to ask whether Theorem (1.2) does already prove (7.7). It does so, provided one has
shown' the normality of G(X), because of the following criterion (cf. [Kr], 3.4, p. 105
for the statement in characteristic 0): Let V be an irreducible effine algebraic variety,
G a reductive group acting on V, and m: V. — W a surjective morphism from V fo a
normal affine variety W, which is constant on the orbits. Suppose that W contains a
dense subset U such that #~1(v) contains ezactly one closed orbit for everyv € U. Then
W is the algebraic quotient of V with respect to G. (The reductivity of G guarantees
the a priori existence of a quotient, and the normality of W then allows one to conclude
that it is isomorphic to.W.) It is not difficult to prove (7.6) by means of this criterion
(cf. [Kt), 4.1 for GL(r, K}); the normality of the algebra A in (7.6),(b) will be proved in
{9.21) independently. — o

We now proceed to give invariant-theoretic descriptions of the rings G(X;+) and
R(X;6) in general. The arguments needed consist of iterative applications of the ideas
underlying the proofs of (7.6) and (7.7). We start by giving the “classical” generic point
for G(X;7)- .

E. The Classical Generic Point for G(X;7) -

 Let ¢: B[X] — § be a B-algebra homomorphism, U/ the image of the matrix X in
$. Then the induced homomorphism G{X) — S factors through G(X; 7} if and only if
@(6) =0 for all § # v = [a1,...,am]. So we can hope to find a generic point for G{X; 7}
if we choose for U a “generic” matrix for which the minors § Z 7 vanish. This is certainly
true, if Ip(first ax — 1 columns of U} =0for k=1,...,m. Thus let U, be the following
matrix whose entries U;; are indeterminates over B:

0 -~ 0 Ugy = Uigger Uray -+ Utager -+ Uta, =+ Umn
’ 0 e 0 U2¢2i "'_ U2a3-1

0 - 0

0 o+ 0 0 ;e 0ry 00 e 0 e Umgn U
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(7.14) Theorem. (a) The B-algebra homomorphism B[X] — B'[U;,], X — U,,
induces an embedding p: G(X; ¥) = B[U,), thus an isomorphism G(X;y) G(U,).
(b) The embedding G(X) — B([X] is a generic point, as is  for every v € I'(X).

"'We give two PROOFS OF PART (a), the second one being contained in Remark (7.16).
The first proof is more “advanced”: we use that 7 is not a zero-divisor of G(X; 1) It
runs like that of (7.2): we only need to factor the embedding G(X;7) — G(X; )}y
through . In order to find such a factorization we have to construct a matrix V over
G(X;9)[v"!] which has the same shape as U, and whose m-minors are the elements
6 € I'(X;7). Such a problem we have faced already: the construction of a subspace, {or
matrix) with given Pliicker coordinates is the last stép in the proof of Theorem (r.2)r

(7.15) Lemma. Let S be o B-algebre, andy: G(X;9) — S a B-algebra homomor-
phism. Suppose that Y(v) is a unit in S. Then there is a matriz V of the same shape as
Us such that ¥(6) is the minor of V with the same columns as 6 foralib € I(X; 7). ‘

"'PROOF: The key role plays the set ¥ aeﬁned in (6.1):
¥ = {6 = [dy,...,dm] € T(X;7): a; ¢ (d1,...,dn] for at most one z}

First we let all those entries of V be zero which correspond to zero entries of U,. The
remaining entries at positions (k,[) are defined as follows: Remove g from {aq, ... +Gm}
and replace it by I. If I = a; for some j # k, the entry is zero. Otherwise

{G,],...,ak_],l,a.k.;.l,...,am}

defines, after arrangement in ascending order, an element 6 of ¥. Then we take

o o2, am)$(6) o k=1,
,0’(0,],...,ak__],.l,&k.i_,],,...,am)‘(f)(é‘)'{b(’}’)?] - lf k'-)é 1»

as the entry of V. One checks that the minor with the same columns as § equals 1(6)
for all § & @, ’ ‘

We now have two homomorphisins G{X iv) — 8: first ¢, and secondly the com-
position of p: G(X;v) — B[U,] with the homomorphism B[U,] — § arising from the
substitution U, — V. Since they coincide on ¥, they are equal, cf. (6.2), and the second
homomorphism sends § € I'(X; 4) to the minor of V with the same columns as 6. —

For the PROOF OF (7.14),(b) we first show that G(X) — B[X] is a generic point.
Let 42 G(X) — L be a homomorphism to a field L, If y(6) =0 for all § ¢ T'(X), then
¢ factors through B{X] for trivial reasons. Otherwise we may assume on the grounds of
symmetry that %([1,:..,m]) # 0, and then (7.15) settles the problem.

Let now 4 € (X)) be arbitrary, and ¢: G{X;v) ~— L again a homomorphism to
a field. By what has just been shown, -there is a matrix V' such that the minor of V.
with the same columns as § is ¥(6) for all § > ~, and zero otherwise. Over a field such
a matrix can be transformed into one of shape U, by an application of ¢lementary row
cperations. —

Yo .
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(7.16) Remark. The second proof of (7.14),(a) is given mainly because it provides
a new {and perhaps simpler) demonstration of the linear independence of the standard
monomials in G(X). We choose new notations: Let G(X) be the residue class ring of the
polynomial ring B[Ty: v € I'{X)] modulo the ideal generated by the Pliicker relations,

and E}(X;'y) the residue class ring of G(X ) with respect to the ideal generated by the

residue classes of the Ts, § # v. Then we have a homomorphism G(X;v) — G(U,)
since the maximal minors of U, satisfy the defining relations of é(X ;). Furthermore it
follows as in the proof of (4:1) that G(X;) is generated as a B-module by the standard
r_x}onomials in the residue classes of T5, § > 7. In order to show that the homomorphism
G(X;v) — G(U,) is an isomorphism it is enough to prove that the standard monomi-
als in the maximal minors § of U,, § > 7, are linearly independent! This is done by
descending induction in the partially ordered set I'(X). Suppose 0 = 3 b,u where 4
runs through these standard monomials, b, € B, b, =0 for all but a finite number of
standard monomials. Let § > 7. The matrix Us has nonzero entries only where U,
has indeterminate entries. So we have a well defined substitution Uy — Us inducing a
commutative diagram :

G(X;7) G(X;9)

! |

| G(U,) — G(Us).

By induction hypothesis we éon_clude b, = 0 for all x not containing v as a factor. But
v € T'(Uy) is a product of indeterminates, so certainly not a zero-divisor, and this implies
at once that b, = 0 for all u after a second application of the inductive hypothesis:
(7.14),(a) is proved again. —

F. G(X;7v) and R(X;6) as Rings of Invariants

Multiplication of U, by an element of the special linear group does not define an
automorphism of B[U,] in general. In order to represent G(X; ) as a ring of invariants
we must “symmetrize” the matrix U, first. Let ag =1, amp=n+1, and

Zld]. "t Zlﬂh.‘.‘—l
Zy = ‘ Co E

Zka;. Z'ka;, 1—-1
+

k = 0,...,m, matrices of indeterminates {as they appear as submatrices of U,). " For
k =0,...,m—1 we choose (k + 1) x k-matrices Z; of indeterminates such that the
entries of all the matrices Z, Z; are algebraically independent over B. Then we let

Z‘)‘ = (Em—l “ea ZUZDIZm—l e 2121‘ . Iém_1ZmF1 |Zm)

by iuxtaposing the products Znet s 72 as indicated to form the m x n matrix Z..
It is clear that

A{*) It (first a) — 1. columns of Z,) =0
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for :k =1,...,m There{ore the substitution X — Z, induces a homomorphism
x: G(X;7) — G(Z,) € BIZ,),
21 denoting the collection of all the entries of the Z;, E - It also induces a homomc;rphism
w: R(X;[L,...,mla1,...,em])) — B[Z,] C B[Z,).
(7.17) Proposition. The homomorphisms
x: G{(X;v) — B[Z,]-. and  w: R{X; [1,...,m|a1,...,a,,;]) — B[Z,]

are embeddings and generic points.

PROOF: Substituting the corresponding submatrix of U, for Zy and the (k +1)xk
matrix

1 0 - 0
0 - .
e, o
0 -~ 0 1
0 -« +-- 0

for Z, one factors the embedding G(X;vy) — B[U,] through x to get the claim for
x:. As soon as 7 is invertible, or over a field, a matrix to which X (considered over
R(X;~)) specializes, can be “decomposed” in the same way as Z,. (It is of course only
a problem of elementary linear algebra to find such a decomposition; for special reasons
we shall however have to outline the construction of a decomposition in Section 12, proof
of (12.3).) —

We introduce group actions on B[Z,]. Let.

m—-1
# = [] GL(k, B).
k=0 ‘

The group GL(k, B) acts on B[f.,] by the substitution
Zy = Ty,
Ek s ng_l,
Zr1 — TZr (k> 0),

T € GL{k, B). These actions for various k£ commute with each other; so they define an
action of H on B[Z,]. Finally we let the group SL(m, B) act by

ém—l — TZm—l,
Fm — TZm,

giving an action of H = SL(m, B) x H on B[Z.).
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(7.18) Theorem. (a) B(Z,] R(X:[1,... ,m]al',..;,am]) is the ring of absolute
H-invariants of B[Z.,,] .
(b) G(Z,) = G(X;~) is the ring of absolute H- mvanants of B[Z.,}

" For this thecrem one of course extends the definition of absolute invariants given
above. It.is obvious that-the Propositions (7.3), (7.4), and (7.5) hold again after the
necessary modifications. For a quick proof of (7.18) in characteristic 0 see (7.21) below.

PROOF: Part (a) is proved by induction. It is evident for m = 1. Let m > 1. The
indeterminates in Z,, are not affected by the action of H. Therefore it is enough to show
that the entries of '

(2 ZOZO lzm—lzm 1) Em—lz;r’)

where v'. = [a1,. .., 8m-1]s generate the ring of absolute invariants after restricting the
action of H to the polynomial ring in the entries of Z k) Ziy B = 0,...,m — 1. Let
H = m—z GL(k B). By induction the ring of absolute invariants of H' is B[Z.] and
the a.ctlon of H can be restricted to B[Z m=1» Zy]. 'I‘herefore it is now sufficient to show
that the ring of absolute invariants of B{Zm 12y ] under the action of GL(m 1,B)is
B[Zm IZ ] .

The rest of the proof is mamly a repetmon of the arguments given for (7.6),(a).
First ' we may enlarge Z,,.1 by adding a further column of indeterminates at the right to
reach a situation in which the number of columns of Z,+ exceeds a,,—1. One now inverts
the minor 6" = [1,...,m — llal, vy @m—1] of Zon 1% and applies the substﬂ;utlon trick
thh Yz replaced by the product of the submatnx consisting of the first m = I rows of
Z,n 1-with the submatrix consisting of columns a1,...,8m-1 of Zy. Then one is left to
prove that - ~ o - - |

6’B[Zm.,.12-rr] = 6’B[Zm_1, Z'T'] n B[Zm;izy!}, .

" and this can also be done in analogy with (7.6), this time [1,...,m—1[a; +1,...,8m_1+1]
being inverted instead of [1,...,r — 1,7+ 1|1,...,7 — 1,7+ 1}. The details can be left to
the reader.

For part (b) we write B[Z.,] in the form B[Z m=1 Zm)s B= Bfremaining varlables]
Every absolute SL-invariant of B[ m— 1, m] has absolutely mvanant homogeneous com-
ponents f which satisfy the equation

- T(f ) (det T)? f

for every T € GL(m, S), S a B-algebra, j = V(deg f)/m. This implies that an invariant
f € B[Z,] is in G(Z,)[y~!] (v taken as a minor of Z,), and the equation

. 3G(B) = +BIZ,)NG(Z,),

which finishes the proof, is demonstrated as in the p'roof of (7.7): B[Z,] has a standard
basis inherited from R{X;[1,...,mla1,...,am]).

It remains to consider lshe general case of R(X; 8}, 6 = [br,...,beler,. .. 0], Let
= [b1,..., )y Y2 = [e1,...,¢.], and construct matrices Z.,,,Z,, 45 above, Y, as the

3

ﬂﬁm - B R W R S U L
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transpose of Z,,. The collectmn of indeterminates needed for Y,, is denoted by ¥, , that
for Z,, by Z.,, Let H = H s GL{k, B) Then H x H acts on B[Y,,,Zy,] extendmg

the action of the first component on B[Yﬂ] and the action of the second one on B{Z,,].
Furthermore we let GL(r, B) operate by the substitution

Y., —¥,,77, v, -y,
Zoy —TZ,4, Z, — TZ,.

This action commutes with that of H x H, resulting in an action of G = H x GL(r,B)x H.
(7.19) Theorem. The subst;tutwn X — Y, Z,, induces an embeddmg

R(X; 6) — B[}.n, B

which is a generic point. The zmage B{Y.,,1 Z,,] is the ring of absolute G-invariants of
B[Y‘Tl ’ Z‘rz} '

The proof may-be left ‘to-the reader. Again one should note that the-attr.ibute
“absolute” is superfluous if B is a domain containing infinitely many units.

(7.20) Remark. The groups in (7.6) and (7.19) for § = |1 yeeos?|L,. .., 7] are dif-
ferent, as are those appearing in (7.7) and (7.18) for v ={1,...,m]. In fact one can
“minimize” the construction for v by first applying (6.9),{d) and decomposing « into its
blocks as in subsection 6.B:

= [Bose-nBels - Bi=(Grerrs - GRyy )

Again we simultaneously consider the gaps
Xo=(@r + Loeeeyanns = 1)yer o xs = (am + 1,...,n).

Then one chooses matrices Z;,i=1,...,8+ 1, and Z,-, i=1,...,83, of sizes

ki x (|8i_1]+ |xi-1]) and  kiyg x ki resp.,
and obtains an analogue of (7.17) for the substitution

x— (o0 |Z....§12,['...|Z.z,|z,+.1) :

an analogue of (7.18),(a} for the operation of H' =[]}, GL (k;, B), and an analogue of

(7.18),(b) for the operation of SL(m, B) x H'. Similarly one can “minimize” (7.19). —

(7.21) Remark. The proofs of (7.18) and (7.19) can be simplified if B = K is
a field of characteristic zero: In the inductive step of the proof of (7.18),(a) and the
proof of (b) one can directly appeal to Theorem (7.6},(a) and Corollary (7.7) resp.: Take
matrices W and Y with indeterminate entries and of the formats Z,,_; and Zy resp.
Then the action of GL{m 1,B) on B[Em 1, Zp) is induced by that on B[W,Y] via the
substitution W — Z,,_;, ¥ — — Z.+, and the claim follows immediately from (7.6),(a) by
the reductivity of GL{m=1, B), cf. property (ul) of lmea.r]y reducmve groups Sumlarly
one concludes (7.18},(b) dlrectly from (7.7): —+ ¢
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G. The Depth of Modules of Invariants

Certain modules over rings of invariants arise as modules of invariants, and this fact
can be used to study some of their properties. For simplicity we assume in this subsection
(except for (7.25)) that B = K is a field.

Let G be a linear algebraic group over K which acts on a K-algebra S such that S
is a (G-module. Furthermore we consider an $-G-module M, i.e. an S-module M which
is simultaneously a G-module such that

glaz) = gla)g(z) forall g€G,a€ S, 2z M.
In particular S itself is an $-G-module. Obviously the module
MC={zeM: g(z) ==z forall g€ G}

of invariants is an S€-module. If G is linearly reductive (cf. D), then there is hope that
MSE may be a accessible for a more detailed analysis:

(7.22) Proposition. With the notations introduced so far, suppose that S is noe-
therian, M is finitely generated, and G is linearly reductive. Let ps and py denote the
Reynolds operators of S and M.

(a) Ker par is an SC-module, so M = MC @ Ker pys is a decomposition of 5¢-modules,
and ppr: M — M is an SC-homomorphism:

par(bz) = bpar(z) forall be SC, ze M.

Furthermore
pulay) = psla)y  forall a€ S, ye MC.

{b) M€ is a finitely generated module over the noetherian ring S6.

ProoF: M splits as a G-module: M = MG @ C, C = Kerpy. For the first
statement in (a) one has to prove that C is an $®-module. G being linearly reductive,
C is the sum of its irreducible G-submodules N. It is enough to show that b¥N C C
for all b € SC. Since b € §¢, the map N — bNV is a G-homomorphism, hence 0 or an
isomorphism. In the first case certainly bN C C, in the second dN is an irreducible
(-submodule of M on which G cannot operate trivially, for otherwise it would operate
trivially on N itself, and N C M G, By construction, C is the sum of all irreducible
G-modules of M with nontrivial G-action, so bN C C.

Letnowa € S,y € MY, Write a = b+¢, b= pg(a). Then

pralay) = par((b + )y) = by + pmley) = ps(a)y + pm(cy)-
So we have to verify that py(cy) =0 for c € Kerps, y € M G. The argument is similar
to the one above: one takes an irreducible G-submodule T' C Ker pg, and studies the
G-homomorphism T — Ty. .

For (b) it is enough to show that M€ is a noetherian S¢-module. Let L C M G be
an §C-submodule. Then SL = L @ (Ker pg)L, (Ker ps)L C Ker ppr by virtue of (a), and
every strictly ascending chain of S€-submodules of M€ gives rise to a strictly ascending
chain of S-submodules of M. — .

We are interested in the grades of ideals I C S¢ with respect to M. In the most
important case for us, in which the-objects under consideration are graded and I is the
irrelevant maximal ideal of SC, this grade coincides with the depth of (M%), whence
the title of this subsection. ' -
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(7.23) Proposition. Under the hypotheses of the preceding proposition let I € §6
be an ideal. Then :

grade(I, M €) > grade(SI, M).

PROOF: MY is a direct summand of M, thus grade(I, M%) > grade(J, M). The
proof of the equation grade([, M) = grade(S7, M) is left to reader. —

In general the estimate in (7.23) is not optimal as is demonstrated drastically by
the §-G-module § itself: then S€ is a Cohen-Macaulay ring by the theorem of Hochster-
Roberts ([HR]) if § is Cohen-Macaulay, but grade ST < grade ] in general. On the other
hand it is sharp sometimes, cf. the subsequent discussion of the example § = B[Y, Z],
S = BIY Z] = R,.1(X).

Examples of S-G-modules can be constructed as follows: One chooses a finite-
dimensional G-module V; then the S-module M = V ®j S becomes an S-G-module
under the G-action

9(v®a) = g(v) ® gla) forall eV, acg S.
Since M is free as an S-module, the inequality in (7.23) reduces to
grade(I, M%) > grade S1I.

K itself becomes a G-module via the characters x: G — GL(1, K), and one can study
the G-action

gx(a) = x(g)gla) forall g€@G, ee S

of ¢ on S. The invariants under this action are precisely the semi-invariants of weight
xh
gx(a)=a = gle} = x"(a)a.

In the case of interest to us, namely § = B[Y, Z], G = GL(r, K), all the characters are
given by the powers of det, and furthermore we have already computed the module D;

of semi-invariants of weight det’:

D; = B[YZ]{(S] 15_, 1 6; € P(Z)} if §7>0,
Di=BYZ|{nm...v: neT¥)} i j<0,

as follows immediately from (7.6),(b). Let 4 € I'(Y), the rows of v being ay,...,a,.
Then for all § > 0

vYD;=P!, so D;xpi

P being the ideal generated by the r-minors of the rows ai,...,a, of YZ in B[YZ]

Ryt+1(X). Similarly one has D_; 2 Q7, Q being the ideal generated by the »-minors of

any r columns. We formulate the final result in terms of Ro41(X). .
i DA . K. 3 . - . . . .

k
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* (7-24) Proposition, Let B=K bea field of characteristic 0, X anmXn matriz of
indeterminates over K, m < n. Let J and r be given as follows: (i) r=m, J = L.(X),
or (ii) r < m, J the ideal generated by the r-minors of any v rows or any 7 columns resp.
of the mairiz x of residue classes in R = Rer1{X). Let furthermore I = Li(X)R. Then

grade(, R/J'} > mr — 1 if n>m+r,
(n—m-r)?

1 -1 else.

grade(I, R/J7) > mr —

This‘result will be improved in 9.D, cf. the examples {9.27): B may be an arbitrary
noetherian ring, the first inequality is correct regardless of n > m 4, and if J is the
“column ideal”, then grade(l, R/J?) > nr — 1. These estimates, on the other hand, are
optimal: one has equality for j large. :
It remains to compute gradel, (Y Z)BI[Y,Z]. We restrict ourselves to the case of

interest to us.

(7.25) Proposition. Let B be a noetherian ring, Y and Z matrices of indetermi-
nates of sizes m X 1 and T X 1 T€SP., T <m <n. Then

grade 1, (Y Z)B[Y, Z] = mr if n2m+n,

_ _ 2
grade L, (Y Z)BIY, Z] = mr — [(n_mT_"L] else.

[-..] denoting the integral part. The same equations hold for “height”.

We sketch two PROCFS. The first one uses the theory of varieties of complexes
({DS]). Let I = L;(Y Z). Then R = B[Y, Z)/I is a Hodge algebra in the sense of [DEP.2},
in particular it is a free B-module. It is enough to consider fields B {cf. {3.14)). R is
reduced now {actually, over any reduced B), and the minimal prime ideals of I in B[Y, Z]
are given by

Pi:I+Ir—i+1(Y)+Ii+1(Z)! 1=0,...,7
In fact, let P be any minimal prime ideal of R. The residue classes of the matrices ¥’
and Z over R/P define a complex

(R/PY™ L (R/PY" 2+ (R/P)™.

Since rk f + tkg < 7, the preimage of P in B[Y, Z] has to contain one of the ideals P;,
namely Pe g- On the other hand the P; are prime ideals {[DS], Theorem 2.11) and

grade P; = At —(n—m+r)

by virtue of [DS}, Lemma 2.3. Now one takes the minimum of these grades.

The second proof is elementary. It goes by induction on 7. If r = 1, then I =
1,{Y)1,(Z}, and the formula for grade I is obviously correct. We invert Y, and perform
clementary row transformations on Y to obtain

?11 ce ?lr—l 0
" B N ?;ﬁ—i,l PR ?m.—l,rfl‘ ‘ 0 . . ‘
o 'Y,-,ﬂ e, Yr.ri.:r'l--l o Yo /0 o



H. Comments and References 91

Let R = BlY, Z][Y,:1), Y the (m ~ 1) x (# — 1) matrix in the left upper corner of the
matrix above, and Z the {r -~ 1) x n matrix of the first * — 1 rows of Z. The entries of
Y and Z are algebraically independent over

E = B[Yﬂila ey Ymr‘; Yllr’ ey Ym—l,r][Y,;,_ﬁ,}]s

as are the elements of the product ¥,.Z of the last row Ym of ¥ and Z over E[f’f]
Furthermore

R = (B[Y Z))[YmZ]  and IR=1,(YZ)R +1,(YnZ)R,

hence - .
grade IR = grade L, (Y Z) + n.

Letting R= BlY, Z]|Z}], one concludes similarly that N . é
gradefﬁ = gradé L(YZ) +m,
}7, Z being \con-structed analogously. Since obviously
grade I = mih(grade IR, grade I R),

the claim follows by the inductive hypothesis. In order to obtain the equations for height,
one replaces “grade” by “height” throughout. —

H._ Comments and References

Theorem (7.6) and Corollary (7.7) are classical for fields B = K of characteristic
zero, cf. [We]. The characteristic free version of (7.7} is essentially due to Igusa [Ig], and
in their final form presented here, (7.6) and (7.7} were given by de Concini and Procesi
[DP]; cf. [BB] and [Ri] for possibly simpler or more elementary proofs. The proofs of (7.7)
and (7.6),(a) result from an attempt to understand Igusa’s arguments. Qur treatment is
certainly close to [DP], from which we copied the proofs of (7.7),(b) and (7.5). At least
for (7.6),(a), however, the standard monomial theory is not essential; it can be derived
from the result of Hochster and Eagon ([HE.2]) already, cf. Section 12. In order to avoid
the intricacies of the notion of algebraic group over general commutative rings we have
restricted the definition of “absolute invariant” to concrete situations.

Our notion of “generic point” is inspired by Hochster and Eagon’s article [HE.2]
in which the construction of generic points plays a central role, cf. Section 12. The
generic points for G(X;v) in (7.14) were given by Hodge [Hd], and the proof of the
linear independence of the standard monomials in (7.16) is taken from Musili [Mu]. The
construction of the generic points in (7.17) and the invariant theoretic description (7.18)
are borrowed from [HE.2], Sections 7 and 8, and [Ho.3], Section 5. Hochster proves (7.18)
in characteristic zero by the reductivity argument indicated in Remark (7.21). We have
freed his constructions from the assumption of characteristic zero and generalized to all
the rings R(X; §). The determination of the semi-invariants of the group H in (7.19) and
a generalization of (7.10) are left to the reader. The ideal-theoretic consequences to be
expected will be proved in Section 9 by methods perhaps more convenient.

-4
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The first (unpublished) proof of Hochster and Eagon for the perfection of determi-
nantal ideals was based on invariant theory, in particular the existence of a Reynolds
operator K[Y,Z] — K{YZ] when K is a field of characteristic zero, cf. [HE.2], Intro-
duction. On the other hand we quote from [HR], p. 118: “.. determinantal loci have

. ultimately motivated the conjecture of ... the Main Theorem” of [HR} mentioned
above. Further examples for which the theorem of Hochster-Roberts implies the Cohen-
Macaulay property are listed in [HR]. Cf. [Ke.5] for a generalization of the theorem of
Hochster-Roberts and a simplification of its proof.

The rationality of the singularities of the Schubert varieties was first proved by
Kempf [Ke.4]. Their homogeneous coordinate rings are the G(X;v), and the varieties
corresponding to R(X;§) are open subvarieties of the Schubert varieties, so they have
rational singularities, too.

Remark (7.12) was communicated to us by M. Hochster, and Subsection G owes its
existence to discussions with J. Herzog.

References for (7.10) and (7.24) will be given in Section 9 where results of the same
kind will be derived in a more general context. We do not know of an invariant-theoretic
approach in the literature, however.



8. The Divisor Class Group and the Canonical Class

This section is devoted to the study of the divisor class groups of the Schubert cycles
G(X;7) and the determinantal rings R(X; ) (over a normal ring B of coefficients). Their
computation has been prepared in Section 6, and will turn out rather easy. If B is a
Cohen-Macaulay ring with a canonical module wg, G(X;v) and R(X;6) have canonical
modules, too, which, under the assumption of normality, are completely determined by
their divisor class, called the canonical class. The crucial case in the computation of the
canonical class is Ry(X), to which the general case can be reduced by surprisingly simple
localization arguments. As an application we determine the Gorenstein rings among
the rings under consideration. In Section 9 we shall give a complete descriptlon of the
canonical module in terms of the standard monomial basis.

A. The Divisor Class Group

For the theory of divisorial ideals and the (divisor) class group CI(S) of a normal
domain § we refer the reader to [Fs] (or [Bo.3]). The main tool for the computation
of the class groups of the rings G(X;~v) and R(X;§) is Nagata’s theorem which relates
CI(S) and the class groups of its rings of quotients, cf. [Fs], § 7 (or [Be.3], § 1, no. 10,
Prop. 17).

It has been proved in (6.3) that G(X;+) and R{X; 6) are normal domains when the
ring B of coefficients is a normal domain. Therefore G(X;v) and R(X;6) have well-
defined class groups then. The normality of G{X;v) and R{X; §) has been demonstrated
by showing that the rings G(X;v)[v~'} and R(X;6)[67!] arise from a polynomial ring
over B after the inversion of a prime element, rendering their class groups naturally
isomorphic with Cl{(B), cf. (6 1) and (8.4). Let us write R for G(X;7) and R(X;6) and
e for v and & resp. Since R is a flat extension of B, the embedding B — R induces a
homomeorphism Cl{B} — CI{R), and the composition

Cl(B) — CI(R) — Cl(R[e"'}) = CI(B)

is just the natural isomorphism from CI(B) to CI{R[¢~]).
Naturality here means: These maps are induced by homomorphisms of the groups
of divisors which send a divisorial ideal to its extension. It follows at once that

Ci(R) = CU(B)a U,

the subgroup U being generated by the classes of the minimal prime ideals of ¢ by virtue
of Nagata’s theorem. Corollary (6.5) names these. prime ideals, and we will specify them
below. Let they be denoted by Fy,..., P, here. Since R/Re is reduced, we have
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and thus the relation 31 cl{P;) = 0. We claim: This is the only relation between the
classes cl(P;), and every subset of u of them is linearly independent. Suppose that

zu': t; CI(P.') =1{.
=0

Then 35, ¢ div(P:) is a principal divisor div{Rf), f in the field of fractions of R. The
divisor div(P;) is contained in the kernel of the homemorphism Div(R) — Div(R[e™"])
of groups of divisors, whence the element f is a unit in R[e~*]. Since R[e™!] arises from
a polynomial ring over B by inversion of a prime element, namely ¢, we have

f=ge™,
g 2 unit in- B, m € Z. So
Y tdiv(P:) = div(Rf) = mdiv(Re) = Y mdiv(P,).
=0 =0
Since the divisors div(#), i =0,... ,u,' are linearly indépendent, we conclude that £; =m
for i = 0,...,u as desired. ‘Therefore - : , .

Cl{R) = CI(B) ® Z*,

and every set of u of the classes of Po,..., Pu generates the direct summand Z*.

Let IT = I'(X) or Il = A(X) resp. Then the ideal defining R as a residue class ring
of G(X) or B[X] is generated by an ideal 2 of II, 2 itself being cogenerated by . The
ideal defining R/Re is generated by QU {¢}, and its minimal prime ideals are generated
by the ideals of I which are cogenerated by the upper neighbours of & in II. Within R
this means that the minimal prime ideals of Re have the form ' h

o j(ir;_C) ?'JA(X;O/J(X;'Y) or Iz;() = I(XiC)/_I(X;5);
¢ running through the upper neighbours of 7 or 8. : o R
We deal with G(X;7) first. In Section 6 we have broken 7y = [a1,. .- am] into its
blocks Bq,...,0H8s of consecutive integers: ' ’
¥ =l[ﬁL0:"'.'.’_|6.!]1 ‘.Bi .= (ak.'-i.—.lv'-.:ak.'.;.l)'
Each 8; is followed by the gap
Xi = (a'k.'.‘:l + ]-r .. ;a'k;'+;+l - 1):

the sequence of integers properly between the last element of B; and the first element of
Biy1, the last gap x, being possibly empty. Obviously ¥ has as many upper neighbours

as their are nonempty gaps X, and the upper neighbours are . .. -~ . ..

Ci = [.801 v sﬂi—l) (a'k.-+l )+ ',; sa'kg.H_ = 1)1 Ck; + 1’ Iﬂi+11 LR aﬂs]»

i=0,...,8ifam<ni=0,...,8 - 1ifan=n.
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(8.1) Theorem. Let B be a noetherian normal domain, X an m x n matriz of
indeterminates, v an element of the poset T'{X ) of its m-minors, v = [a,, .. vs@m). Then
the class group of G(X; ) is given by i

Ci{B)e Z° Yam <nors=0,

CUG(X;7) = { Ci{B)® Z* ' otherwise.

The summand Cl(B) arises naturally from the embedding B — G(X;7), and the sum-
mand Z° or Z*~ is generated by the closses of any set of s or 8 — 1 resp. of the prime
ideals J(z; (;).

Note that one can simplify the formulation of (8.1) if one first applies the reduction
to the case am < n as indicated in (6.9),(d).

(8.2) Corollary. G(X;v) is factorial if and only if B is fectorial and there is at
most one nonempty gap in 7.

In particular G(X) itself is factorial. The condition for + in (8.2) is satisfied exactly
in the cases in which X(X;v) =T'(X;v), cf. (6.8). ,

- In order to determine the upper neighbours of § = [ag,-. S aplbry i, b € A(X) we
have to decompose the row patt [ay,...,a,] and the column part (b1,...,b,] similarly,
obtaining u + 1 blocks for {a;,...,a,] and v + 1 blocks for [61,...,8,]. There arise
upper neighbours ¢; from raising a row index, ¢ = 0,...,%, unless a, = m, in which
case ¢ = 0,...,u — 1. Similary one obtains the upper neighbours #; determined by
the column part. In case ¢, = m and b, = n there is the further upper heighbour
¥ =[a1,...,8r-1]b1,...,b,_1], apart from the (trivial) case » = 1.

(8.3) Theorem. Let B be a noetherian normal domain, X an m X n matriz of
indeterminates, § = [a1,...,a.[b1,...,b,] an element of the poset of its minors. Then
the class group of R(X;8) is given by '

Ci{B)g Z*t"  ifar=morb,=n,

| CIR{X;8)) = { CI{B) @ Z****Y  otherwise.

The summand Cl{B) arises naturally from the embedding B — R(X;§), and the direct
summand Z%*Y or Z**v*+1 i3 generated by the classes of any w4+ v or u + v + 1 resp.
prime ideals corresponding to the upper neighbours of 8.

Evidently R(X; §) is factorial if and only if B is factorial and
5= [m—r+1,...,_m|b1,...,b1 +r—1 or é=[a,..., a1 +7—1n—7+1,...,n],

equivalently, if it is a polynomial ring over B (cf. the discussion below (6.10)). R(X;§)
can be viewed as arising from a suitable ring G(X;8) by dehomogenization with respect
to #[n +1,...,n 4 m]. Asin Subsection 16.D one has a natural commutative diagram

R — §= A[T,T_l]
r\ 7
A

R = G(X;8),A=R(X ;6),=Tna.n indgterfninaté*, S = R[[n-l—l,, ,n, +m]‘1] E‘T‘Ifhgr_e

T A vt BV it

e e f N e e e,
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is always a natural epimorphism CHR) — CI(S), and a natural isomorphism Cl{4) —
CI{S5). Here the resulting epimorphism CI{R) - Cl(4) is an isomorphism. This follows
from (8.1) and (8.3) since the upper neighbours of § and 6 are in one-one correspondence,
and the ideals in A and R resp. “cogenerated” by them correspond to each other under
7 as in (16.26).

A by-product: The maximal element p of T(X; ) is always a prime element (over
an integral domain B). It is enough to show this for a field B since G(X;7)/pG{X;7)
is a graded ASL (cf. (3.12}). Then we write G(X;~) as G(X;8). Since C1(R} — ClI(S)
is an isomorphism, the minimal prime ideal of £ must be principal. Being irreducible, p
is prime itself.

We single out the most important case of (8.3):

(8.4) Corollary. The class group of Rrs1(X), 0 < 7 < min(m,n), 15
CI(R,11 (X)) = CI(B) ® Z,

the summand Z generated by the class of the prime. ideal P generated by the r-minors of
r arbitrary rows or ifs negative, the class of the prime ideal Q) generated by the r-minors
of r arbitrary columns.

In fact, the generators specified in (8.3) correspond to the first » rows or first 7
colummns. Since an automorphism exchanging the rows leaves each of the prime ideals
Q in (8.4) invariant, the induced automorphism of CI{R,;1(X)) is the identity, and the
same holds for a permutation of the columns. (The reader may describe the isomorphisms
between the prime ideals P or Q resp. directly; cf. also the discussion above (7.24).)

(8.5) Remarks. (a) Let B = K be a field. The completion R of R = G(X;v) or
R = R(X;§) with respect to its irrelevant maximal ideal is again normal (since the asso-
ciated graded ring of R with respect to its maximal ideal, namely R, is normal; cf. also
(3.13)). In general one has only an injection CY{R) — Cl(ﬁ). The ring under consid-
eration satisfies the Serre condition (R,) (cf. (6.12)) and is Cohen-Macaulay; therefore
CI(R) — CI(R) is even an isomorphism here ([F1], (1.5)).

(b) In the preceding section we have described the rings G(X; 7) and R(X; §) as rings
of {absolute) invariants of linear algebraic groups acting on polynomial rings A over B.
Assume that B = K is an algebraically closed field. Then it is well-known that (under
hypotheses satisfied for our objects}) R = AG is a factorial domain if G is connected
and has a trivial character group G* {cf. {Kr], p. 100, Satz 2 and p. 101, Bemerkungen).
It follows that G{X)} and the K-algebra of SL(r, K)-invariants of K[Y,Z] are factorial
domains (cf. (7.6) and (7.7)).

The main result of [Mg] connects G* and Cl(A®) under much more general circum- -
stances: G is supposed to be a connected algebraic group acting rationally on a normal
affine K-algebra A. Suppose for simplicity that A is factorial. Then, by [Mg], Theorem 6,
CI(A®) is a homomorphic image of G*. The reader may investigate G(X;~) and R(X; )
from this point of view. It is clear that one can only expect an isomorphism CI(A%) = G*
if G is taken as “small” as possible; in this regard (7.20) may be useful. —

L With_ the hypotheses and notations of the preceding corollary, the ideal generated
" by an r-mmor {of the matrix ef residue clagses) is thg?_intés_sgctipn of the prime ideals”
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P and @ generated by the »-minors of its rows and columns resp. On the contrary the
lower order minors are prime elements. '

(8.6) Proposition. Let B be an (arbitrary) integral domain. Then for s <r an
s-minor of the matriz of residue classes is a prime element of Ry+1(X).

We outline the PROOF, leaving the details to the reader's scrutiny. It is enough
to consider the cases in which B = Z or B is a field: The case B = Z provides the
flatness argument needed for (3.12). For an inductive reasoning let s = 1 first, R =
R;:1(X). Because of (2.4) and (8.4) the natural epimorphism CI{R} — CHR[z ;1)) is
an isomorphism, whence zm,,, being irreducible, is prime. Let 3 > 1 now. Since z,,, is
a prime element and R is a domain,

b=[m-s+1,...,mn—s+1,...,0], Tmn

is an R-sequence. In order to prove that R = R/6R is a domain, it is now enough to
show that R[(Z,.,)"!] is a domain, and this follows from (2.4) in conjunction with the
inductive hypothesis.

B. The Canonical Class of R,.,;(X)

A canonical module (cf. 16.C) of a normal Cohen-Macaulay domain § is a reflexive S-
module of rank 1, therefore (isomorphic to) a divisorial ideal and completely determined
by its class which is called a canonical elass (cf. [Fs], § 12 or [HK], 7. Vortrag). We want
to compute the canonical classes of G(X;+) and R{X;6), and to decide which of these
rings are Gorenstein rings: S is Gorenstein if and only if § is a canonical module of itself.

Let B be a Cohen-Macaulay ring possessing a canonical module wg, R a generically
perfect residue class ring of a polynomial ring Z[X], and S = R ®z B. From (3.8) we
know that

wWs = wr @z wpg
is a canonical module of S. For the rings under consideration this formula can be refined.

(8.7) Proposition. Let B be one of the rings G(X;7) or R(X;8) defined over
Z. Let B be a normal Cohen-Macaulay domain having a canonical module wg, and
S=R®z B.
(a) The modules wp®S and wr® S are divisorial ideals. The class of wr®S is in the free
direct summand F of CI{(S) appearing in (8.1) and (8.3) resp. Under the isomorphism
F — CAS® L), L the field of fractions of B, it is mapped to cl{wp ® L).
(b) An element of CI(S) represents a canonical module of S if and only if it has the form
llwp ® S) + cl{wr @ S) for o canonical module wg of B, so is unique up to the choice
Of wg.

PROOF: {a) wp ® S is a divisorial ideal, since the extension B — § is flat. Let
A be a polynomial ring over Z of which R is a residue class ring. By virtue of (3.6)
wg is generically perfect of the same grade as R. Sowg ®r S —=wp®z Bisa perfect
A ®z B-module, and one has depthwg ® Sp = depth Sp for every prime ideal P of 5. It
has rank 1, as can be seen by passing from R to Sfe~1] through R{e~'], where ¢ is the
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minimal element of the poset defining R:

R 3
| |
R[] S[e=1.

Being locally a maximal Cohen-Macaulay module, it is torsionfree, so isomorphic with
an ideal I of S, and S/I,if # 0,152 Cohen-Macaulay ring of dimension dim 5 — 1. Being
equal to S or unmixed of height 1, I is divisorial. Since wr ® S{e 7] is free of rank 1, the
class of wg ® S is in the kernel of CI(5) — CU(S[e™"]), thus in F. The last statement is
obvious.

(b} We have learnt that wp ®z wp = (wrp® S)®s{wp®S)isa canonical module of
S, and the class of the tensor product is the sum of the classes. Thus a class cl(wp ®8)+
cl{wp ® S) represents a canonical module of 5. Conversely let aclassc=¢1 + ¢, 61 €
CI{B), &; in the free direct summand, represent a canonical module. The class ¢; contains
the extension of a divisorial ideal I of B, whose extension to S[e~!] becomes a canonical
module of S[¢~!). Using the characterization in [HK], Satz 6.1,d} (for example) and the
properties of the extension B — S[e™1], it is easy to show that I must be a canonical
module of B. In order to isolate c2, wé consider the extension § —» S®p L = R®z L.
An extension of a divisorial ideal in the class ¢; then is a canonical module of R ®z L,
and so is wg @z L. The passage from R ®z L to its localization with respect to the
irrelevant maximal ideal induces an isomorphism of class groups {[Fs], Corollary 10.3).
Since the canonical module of a local ring is uniquely determined, we finally conclude
¢z =cllwp®S). —

As we shall see, the general case R = G(X;7) or R = R{X;6) can be reduced in a
strikingly simple manner to the case R = R,(X). We start by noting the result for the
case R = Rpp1 (X}

(8.8) Theorem. Let B be a normal Cohen-Macaulay domain with a canonical mod-

ule wg, X an m X n matriz of indeterminates, 0 <1 < min{m,n), B = Rej1{X). Then
a divisorial ideal w with class

cl(w) = l{wpR) + mel(P) +ncl(Q)

is a canonical module of R. (As in (8.4), P is the prime ideal generated by the r-mainors
of any 7 rows, Q the prime ideal generated by the r-minors of any r columns.) Every
canonical module of R has this representation, and up to the choice of wp il is unique.

Since cl(P) = — ¢l(Q), the difference of m and n determines the class of w already.

(8.9) Corollary. Lei B be an (arbitrary) noetherian ring. Then Ryia (X),0<r<
min(m,n), is Gorenstein if and only if B is a Gorenstein ring and m = n.

ProOF: Along flat local extensions the Gorenstein property behaves like the Cohen-
Macaulay property: For a prime ideal J of R = R,;+1{X) and J = BN the localization
R; is Gorenstein if and only if both B and (B; /JB;)® Ry have this property (cf. [Wt]).
As usual, this argument reduces the general case to the one in which B is a field, and for
which the corollary is a direct consequence of the theorem. —

- L e . [
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The PROOF OF (8.8) in the crucial case r = 1 is an induction on m + n. Because
of (8.7) it is enough to treat the case in which B = K is a field. For the minimal choice
m =n = 2of m and n, (8.8) is true: R is the residue class ring of K[X] modulo a
principal ideal, so Gorenstein. In the inductive step we want to descend from R to the
residue class ring modulo the elements in the last row or column of the matrix, thereby
passing to a “smaller” ring.

(8.10) Lemma. Let 4 be a normal Cohen-Macaulay domain, and I' a prime ideal of
height 1 in A such that A/T is again a normal Cohen-Macaulay domain. Let Py,...,P,
be prime ideals of height 1 in A and suppose that the class of I and the class of a canonical
module w of A have representations

()= "sicl(P)  and cl(w) = "ricl(P;).
i=1

=1

Assume further that:

(l) Ty — 8 2 0f01’"i= 1,...,u.

(ii) Ann(Pi(r"ﬁ"']/Pi""_"")_gZ PitI fori=1,...,u.

(iii) The ideals (F; + I}/I are distinct prime ideals of height 1 in A/I. Then A/I has a
canonical module wa;; with : .

u

wayr) = Z(r.‘ — si)cl((P; + I)/T).

=1

We first finish the proof of (8.8). Without restriction we may assume that m > n,
so m 2> 3. Let P be the prime ideal generated by the elements in the first row, Q the
prime ideal corresponding to the first columm, and 7 being generated by the elements
of the last row. Whatever w is, its class can be written cl(w) = pcl(P) + ¢ cl(Q) with
P»q > U, since cl(P) and cI(Q) generate CI{R) and cl(P) +cl{@) = 0. Now cl(I) = cl(P).
The lemma gives

Mwasr) = (p = 1) (P + 1)/I) + g el((Q + 1N /1)
=(m—1((P+1)/I)+nd((Q+I)/T)

by induction, and p ~ ¢ = m — n as desired. The hypotheses of the lemma are indeed
satisfied: Except for (i), everything is trivial (for (iii) note that m > 3). Condition (i)
holds, since P and Q become principal when a matrix element not occuring in P, Q, or
I'is inverted (one may take [2|n]).

Let now r > 1. The reader may argue inductively, using the isomorphism in (2.4)
which allows one to pass from the data (m,n,7) to the data (m — 1,n — 1,7 — 1) after
the inversion of [m[n). (8.8) is again covered by (8.14). — '

PROOF OF (8.10): A canonical module wa, 1 is given by Ext)y(A/I,w). So we have
an exact sequence : :

. .0 — Homu(4,w) — Homa(J,w) — wasr -0

e . E a e . PRy .. . .
* Ty . ¥ > A o ~ 3
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Hom(Z,w) is the quotient w : I within the field of fractions of A, and
lw: I) = cl{w) = cl{T) = D _(ri = s:) cl(Ps).
i=1

Let t; == r; — 8;. Then Hom({I,w) is isomorphic to J = Pl(“) Nn---N P,Et“). Since all the
exponents are non-negative, J C A, and we have an exact sequence

0—J—J—way —0

The ideal J is isomorphic to w and contains IJ. Since I is a prime ideal different from
Pi,..., Py, the smallest divisorial ideal containing {J is INJ C J. On the other hand
no proper quotient of J/IN.J can be (isomorphic to) a nonzero ideal in A/I. We have
J = InJ, and must prove that the equality in

(tu)
u

Jann =@ +n/1=p"n..nP
holds, where P; = (P; + I)/1. Hypothesis (i) implies that
(P + /1 < P,
Therefore one has a chain of inclusions

"(tl) Stu)
u

PP c(4+D/ICcP NnNP

b

the last ideal being the smallest divisorial ideal containing P ... P, and the desired
equality holds since (J + 1)/ 2 way1 is likewise divisorial. —
C. The General Case

Next we treat the case R = G(X;9) for which we may again assume that B is a
field (cf. (8.7)). The class of the canonical module has a representation

cl{w) = z i cl(J(z; G:))
=0

where t =sifa, <n,t=8~1if aym =n, v having s +1 blocks, the ¢; being the upper
neighbours of v. Since 3 cl(I(z;¢;)} = 0, the differences

Ki-1 — i, i=1,...,t,

determine cl(w) uniguely. In (6.8) we introduced the elements

gy = [ﬁ{h . ~1ﬁi—23 (C."ka'—i‘l't! v 1ak.'—1)a (a'k,-+h . ‘Iak‘:+;1a’ki+1 + 1):6i+1a vee 168]
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and we noted that the localizations of R with respect to the prime ideals J (z; o) are not
factorial. All the more, R[o;!] is not factorial, and from the minimal primes of +y only

Hz;Gin)  and  I(z;4)

survive in R[o;'), since o; is contained in all the other ones (o; ¥ ¢ for j # i—1,i).
Let S = R[s;?]. Then

lws) = ki-1 l(I(2; 1)) + wa (T (w; G:)).
At this point we have to determine the structure of S. Analogously with (6.1) we let
¥ ={§e'(X;y): §differs from o; in at most one index }
and subdivide ¥ in
Uy ={6e¥:6>0:} and Uy ={6€¥:6%0c;)

Evidently, ¥, contains those § € ¥ which arise from o; by replacement of an element of
the block _
ﬁi' = (a'k,'-l-l yase :a'k.'+1 + 1)

by an element of the gap
Xi-1={ak-1+1,... 0841 = 1).

Let Bi-1 = (ak, ., 51,-++»8ki-1), P = |Kiz1], ¢ = |Bil. We choose a p x ¢ matrix T and
an independent family {7,: ¥ € ¥;} of indeterminates over B.

(8.11) Lemma. The substitution Ty ~— ¢, ¥ € ¥1, and

Tit — [Bos- - -+ Biv2:Bic1, 0k -1 + Jy E:’\{ak‘-ﬂ +2 -k} Bir1y---, 8]
induces an isomorphism
(B[T)/1(T)HTy: ¢ € W1)[T,'] — Rl

Furthermore the prime ideal P generated in B[T]/12(T) by the elements of the first row
of T extends to J(z; ;1) R0, the prime ideal Q generated by the elements of the first
column eztends to J{(x; ;)R 1).

This lemma finishes the computation of cl{w). It follows immediately from (8.8)
that '
Kict = ki = |Fima] — 1G4
= (Ixi-1] +1) = (|8 + 1)
= |Xiw1] = [Bil-

Before we state the main result, (8.11) shoulﬁ be lp'rc'wed.
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PROOF OF 8.11: The substitution induces a surjective map
B[T|[Ty: ¥ € 01){T5'] — Rloi '}

This is proved as in (6.1). To see that I(T) is sent to zero, we look at the Pliicker
relation, for which, with the notations of {4.4),

“[0,1, e Lak]” = [BOi e aﬁiu‘h:‘@-i—l: Ei\{aki+1 +2- k}&ﬁi+h e :ﬁs]a
“g¥ = m o+ 1,

“le1y-- -y Cal” = lar,—1+7, Bos - -+ Bica, Bic1, 0k 142, Bi\{@key +2-}, Bit1, -+ > Bal-

At most three indices in “[c1,...,¢,]" do not occur in “fay,...,ax]”, s0 at most three
products can appear in this.relation, one of which drops out in G{X;7): the “second”
factor which contains both ax,_; + j and ax,—1 + w is # . This leaves the desired
relation. In order to show injectivity it is enough to prove that the ring on the left
side has the same dimension as R[o7]. This is easily checked if one remembers that
|| = dim G(X; 0;) — dim B (cf. (6.1}).

It is obvious that the extension of P is contained in J(z;{;—1)Rle;']; since the latter
is divisorial, inclusion implies equality. For @ one argues similarly. (It is of course also
possible to prove equality directly.}) —

(8.12) Theorem. Let B be a normal C'.ghen—Macaulay domain having e cononical
module wg, X an m x n matriz of indeterminates, and v € G(X). Then a canonical
module of R = G(X;7) is given by a divisorial ideal with class

t
lwsR) + Y ki cl(3(z;6:))
i=0
such that :
i1 — ki =[xt = 18, E=1..08
where t = 8 if Gm < N, t = 8 — 1 if & = 0, Po,...,Bs are the blocks of v, and xi—1 is
the gop between Bi-q1 and B;. Every canonical module of R has this represeniation, and
up fo the choice of wp it is unique.
(8.13) Corollary. Let B be an (arbitrary) noetherian ring. Then G(X;7v) is a
Gorenstein ring if and only if B is Gorenstein and |xi—1| = [Bi| fori=1,...,¢

(8.12) has been completely proved already, and (8.13) follows from it as (8.9) followed
from (8.8). In particular we have |x;—1| = |Bi| for i = 1,...,tif £ =0, in which case
G(X; ) is factorial (over a factorial B). '

" The easiest way to deal with R = R(X;§) is to relate it to R = G(X; %) as usual
{cf. (5.5)):
R = R/Ry, y=[Rn+1,...,n+mjxl

Assuming that B is a field one writes the canonical module wg, of Ras() ﬁS"‘), P; running

through the prime ideals corresponding to the upper neighbours of 3, and k; > 0. Then

(%) . lwr) = Y Kicl(P)

T E
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where the sum is now extended over the prime ideals corresponding to the upper neigh-
bours of §, and P; is the image of P; in R. The equation (*) can be derived from (8.10),
but it is easier to use the properties of dehomogenization. Since ¥ is not a zero-divisor,

Wi = wh/yw i)
and since y is not a zero-divisor modulo & {as an ideal) one has ywy = wg N Ry, hence

Wwp = (wk + Rg)/Rg

Now (*) follows from (16.27): dehomogenization preserves primary decomposition. We
remind the reader that the upper neighbours of § = [e1,....ax]b1,...,b,] have been
named above (8.3): ¢; and 7; arising from raising a row and a column index resp., and,
incasea,=m, b, =n,9 = [@1,...,ar-1]b1,...,b._1]. The blocks of [@1,...,a,.] are

Boseoy B with gaps  Xo,..., Xu»

those of [by,...,b,] are denoted

Be,---. 00 with gaps X01--es Xoe

F‘urthermoreletw:uifa,<m,w=u—1ifar=m,z:vifbr<n,z=v—lif
b, = n.

Relating the blocks and gaps of [a1,...,a,] and [by,... b1 to those of 8, the reader
will easily derive the following theorem:

(8.14) Theorem. Let B be a normal Cohen- Macaulay domuain having a canonical
module wp, X an m x n matriz of indeterminates, and § € A(X). Then a cenenical
module of R = R(X;6) is given by a divisorial ideal with class

f? K; cl(I{z; ¢;)) + i A cl{l(z;n:)) far <m orb, <n,
clwpR)+ 4 2° -
‘_g ki cl(I(2; (i) + '% Avelil{z;m:)) + pel({2;9)) ifar =m and b, = n,
where
Ki- —fﬁi=|X:'—1|—|ﬁi|, t=1,...,w,
Aimt = X ={xi | - B, i=1,...,2,
Ixzl = Ixwl(=n - b, - (m - a,)) if ap < m,b, <n,
Az = kw =< (G [Bwra )} = [xwl if ar = m, b, < n,
Xl = UBZ el + Ixwl) if ar < M, by = n,
F"""wzlﬁw-s-ll_’xutl ifar = m, b, =n,
#— A =100 = Ix:] if ap = m, b, = n.

Every canonicel module of R has this representation, and up to the choice of wp i is
unigue.
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Again, R is Gorenstein if and only if B is Gorenstein, and all the differences listed
above vanish (as far as they apply to a specific R). :

Within divisor theory the preceding theorems are completely satisfactory. Neverthe-
less they suffer from an ideal-theoretic deficiency: We don’t have a concrete deseription
of the symbolic powers of the prime ideals generating the class group. As we shall see
in the next section, they coincide with the ordinary powers. Only for Ryy1(X) this has
been proved already, cf. (7.10).

D. Comments and References

For the simplest case Rz(X), X a 2 x 2 matrix, the class group is computed in
Fossum’s book ([Fs], § 14), and Theorems (8.1) and (8.3) may be viewed as natural
generalizations, the intermediate case Rr41(X) being covered by [Br.3). The factoriality
of G(X) was proved by Samuel ([Sa], p. 38), cf. also [Ho.3], Corollary 3.15.

The computation of the canonical class was initiated in [Br.6} for R 1(X). Accord-
ing to [Hu.1], p. 500 this case was also solved by Hochster. Yoshino [Yo.1] computed the
canonical module of R, (X) directly from the Eagon-Northcott resolution (cf. Section 2).
Svanes determined the Gorenstein rings among the homogeneous coordinate rings of the
Schubert varieties and derived (8.9), cf. [Sv.1], pp. 451,452, The first attempt towards
(8.9) was made by Eagon [Ea.2] who obtained the result for ideals of maximal minors.
Goto [Go.1] proved the necessity of m = n in (8.9) in general and the sufficiency for the
case r = 1.

Stanley showed that the Gorenstein property is reflected in the Hilbert function of a
graded Cohen-Macaulay domain. This fact can also be used to determine the Gorenstein
rings among the rings R{X;§) and G(X;7), cf. [St].



9. Powers of Ideals of Maximal Minors

In Section 7 we have derived results on the powers of certain ideals in the rings
R;1+1(X) by invariant-theoretic methods (cf. {7.10) and (7.24)). The ideals considered
there are I,,(X), the ideal generated by the m-minors of an m x n matrix of indeter-
minates, and the ideals P and @ appearing in the description of the class group and
the canonical class of R,11(X) in Section 8. In this section we want to investigate more
generally the powers of ideals in G(X;7v) and R{X;6) which can justifiably be called
ideals of marimal minors. They share a remarkable property: their generators in the
- poset underlying R(X;8) or G(X;~v) generate a sub-ASL in a natural way. The graded
algebras related to the powers of such ideals, the ordinary and extended Rees algebra,
and the associated graded ring, are again ASLs over wonderful posets and (rormal) do-
mains if the ring B of coefficients is a (normal) domain. In particular, the ideals have
primary powers (over an integral B), and one obtains a lower bound of their depths (in
suitable localizations).

A. Ideals and Subalgebras of Maximal Minors

Let U be a matrix over a commutative ring. I{ I (U) =0 and L.(U) # 0, then an
r-minor # 0 is called a mazimal minor of U. In R(X;6) {considered over an arbitrary
commutative ring B) an ideal 7 is said to be an idea! of mazimal minors if it is generated
by the maximal minors of a submatrix U of the matrix of residue classes of X which
consists of the first u rows or first ¢ columns, 1 €u < m, 1 € v < n. More formally, the
ideals of maximal minors are the ideals

HX;e)/1{X;6),

§ = [a;,. ..,G.,-Ib1,...,b,-], £ = [al,... ,akkl,ﬁk,a'kﬂ,. ..,E,‘.‘.Ib],...,b;], where Ek is a
given integer such that
ar < ag < gy

and ¢ is the smallest element in A(X;6) whose row part starts as ai,...,04_y, 3z, OF
€ = [al,...,a;]bl,...,b;_l,gg',...,g,—.] with a similar condition. We allow the extreme
cases k =rand &r = m+1,s0 ¢ = [ai,...,Aarqlbl,...,b,‘wl} and I being generated
by all the 7-minors then. The ideal indicated is generated by the k-minors of the rows
1,...,@ — 1, and the condition 3, < @k41 guarantees that the (k 4+ 1)-minors of these
rows are zero. For simplicity we call the corresponding ideals

HX;€)/I(X;),

Y ={e1,....am), e = '[al,...,ak_l,ak,...,Em}, @k < aryr, and € as small as possible,
ideals of maximal minors, too, and say that ¢ defines an ideal of mazimal minors. Note
that all the elements in A(X;4) or I'(X;+) which have been important for the structure
of R(X;6) or G(X;v), define ideals of maximal minors: the upper neighbours of v or §
as well as the elements describing the.singular locus.

The crucial property of ideals of maximal minors is given by the following lemma;
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(9.1) Lemma. Let ¢ define an ideal of mazimal minors in G(X i) or R(X;6) end
Q = [(X;7) \T(X;€) or Q@ = A(X;8)\ A(X;e). Let &,v € Q be incomparable. Then
every standard monomial appearing in the stendard representation

{v= Zaw“'a a, #0,

is the product of two factors in L.

ProoF: Consider the case G(X;7) first, ¥ = [a1,---,am} Then every standard
monomial appearing on the right side of the straightening relation has exactly two factors,
and the union of their indices coincides with the union- of the incides of §,v. Now
¢ € I(X;v) is in © if and only if it has k indices < ai. On the other hand ( cannot
have k + 1 indices < ag, for { # - then. Since { and v together contain 2k indices < ak
(counted with multiplicities), and both factors of z can have at most k such indices, both
of them have exactly & of them, and so are in (2. _

Again it is useful to consider R(X;é) arising from G(X;$6) in the usual way. For

every element { € A(X;8) let { denote the corresponding element in I‘()Z' ;5}. Then
§=1(X;5) \T(X:8) ={{:¢eqly

and one checks immediately that £ defines an ideal of maximal minors in G(X; 5). Let
£5 = Y agfi be the standard representation of £. From the first part of the proof we

know that each of the z has both its factors in &, so does not contain [n+1,...;7 +m).
In passing from G{X;§) to R(X; &) one only replaces [n+1,...,n+m] by (—1)mm-11/2,
{It is of course as easy to argue directly for R{X;6).} —

(9.2) Corollary. Let S be the B-submodule generated by the standard monomials
which have all their factors in 2. Then S s @ subalgebra of G(X;v) or R{(X;6) resp.,
and therefore automaticelly a graded ASL on Q.

In fact, the argument that proved (4.1), shows that S is a subalgebra, and the rest
is obvious. The properties of S will be noted below: they are as good as one could
reasonably hope for.

(9.8) Corollary. Let I be the ideal of mazimal minors generated by the ideal  in
T(X;7) or A(X;6). Then I is the submodule of G(X;7) or R{X;6) resp. generated by
the standard monomials containing af least j factors in Q, so as an ideal it is generated
by the standard monomials of length j in Q.

PRrOOF: I’ obviously contains the B-submodule and the ideal mentioned, and the
first statement implies the second one. Furthermore I is generated as a B-module by all
the monomials containing at least j factors from £2. So it is sufficient that every standard
monomial appearing in the standard representation of such a monomial contains at least
j factors from €, too. This standard representation is produced by repeated straightening
of pairs of incomparable elements. However, in a straightening relation {v = 3 a,p with
one factor in Q every p has to contain such a factor, too, since €2 is an ideal in the poset
underlying G(X;7) or R{X;6), and if both £ € Q and v € Q, then p contains (exactly)
two factors from Q by virtue of {9.1). — :
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%,

(9.4) Proposition. Let €,, and S be as above. Then:
(a) $2 is a sublatiice of T(X;7) or A(X;6) resp.
(b) S is a Cohen-Macaulay ring if (and only if) B is Cohen-Macaulay.
(c} Let B be noetherian. ,
(i) If R = G(X;7), then dimR —dimS =k(n—m + & —ar+1).
(ii) f R=R(X;6) and e = fai,...,86_1,8k,...,85|b1,...,bz], then

dmR — dim S = k(m + k - @ +1) — 1.

An enalogous formula holds for € = [a,...,az|by, ..., bi_1, by, ... ,3;]. .
(d) S is a (normalj integral domain, if (and only if) B is a (normal) integral domain.

We outline the PROOF; the reader may supply the details (should there be any).
Part {a) is quite evident, and (b) follows from (5.14). For (c) one counts the number of
steps one needs to climb from the (single) maximal element of  to that of T(X;v) or
A(X;8), (All the maximal chains in a distributive lattice have the same length.} For (d)
one proceeds as in Section 6. Let first R = G(X;v), and ¥ as in (6.1). Then ¥ has
dim S elements, and one checks that

Sly™ = BTy: ¢ € ¥n Q)T

For R = R(X;6) one constructs R = G(X ;E), £, 0, § and observes that § is mapped
isomorphically onto 5 here; cf. the last part of the proof of (9.1). —

The reader may try to find the class group of $ and the canonical class.
(9-5) Remark. The Segre product

o —
@Ak ® 4

=0

of graded ASLs A= Ay onIl and A= @Aronlisa graded ASL on the poset

Uleoe: ceuna, Eefiniy)
k=0

ordered by the decree
E®E<vO®T = £<v, E<H

The straightforward verification of this fact can be left to the reader, and we mention
it only because some of the ASLs S considered in (9.4) can be viewed as such Segre
products. Let X be an m x n matrix of indeterminates, § = [,...,71,...,7], and
- €=[l,...,r~1r,...,7—1]. Then § is the Segre product of G(Y) and G(Z) where Y is
an r x m matrix and Z is an 7 x n matrix. Note that this includes the case § = Ry(X)
in which § is the Segre product of two polynomial rings in m and # variables resp, —

}
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B. ASL Structures on Graded Algebras Derived from an Ideal

The algebras derived from an ideal / in a ring A we want to consider, are

the (ordinary) Rees algebra R (A) = @I iTi C A[T], T an indeterminate,
=0

the eztended Rees algebra R {(A) =R (A)® @AT“" C A[T,T7'], and

i=1
the associated graded ring  GryA = @ It
=0
One has the representations
GryA = R {(A)/ IR (A),
Gr A = R (A)/T R (A).

We suppose that [}72y I/ = 0. Then every element z € A has a well-defined degree with
respect to the filtration of A by the powers of I:

gradz =j if zelP\[PH.

The element 27%*4% in R;{4) C R;(A) and its residue class in Gr;A will both be
denoted by z* and called the leading form of z with respect to I. .

Let there be given a graded ASL A on IT over a ring B of coefficients,  an ideal in
the poset II, and T = AQ. We say that I (or Q) is straightening-closed if every standard
monomial g appearing in the standard representation {v = 3 auu of incomparable
elements £, v € § contains at least two factors in Q. Note that antomatically ﬂ;”zo =0

(9.8) Proposition. Let A be a graded ASL on I over B, and Q C H an ideal such
that I = AQ is straightening-closed. Then I7 is the B-submodule of A generated by all
standard monomials with ai least j factors in (1.

This proposition is proved as Corollary (9.3)-

(9.7) Theorem. Let A be a graded ASL on I1 over B, and Q C 1I an ideal such

that I = AQ is straightening-closed. Then the extended Rees algebra ﬁI(A) is a graded
ASL over B[T Y] on the poset

I* = {£: £}
ordered by: £* < v* &= {<v.

PROOF: One has ‘ﬁI(A) = @?’;_m R;T?. Each R; is a graded B-module since [ is

a homogeneous ideal: B; = @ie, Rk, and R ;{A) then is a graded B[T~']-algebra with
homogeneous components

Ry = é RuTY.

J=—oc0
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Evidently II* generates R, (A4) as a B[T'}-algebra. e o
The ring A[T, T~} = A® B[T,T~"] is obviously a graded ASL on II over B[T,T"!).
Since II* arises from II over B[T,T~!] by multiplication of its elements with units of
B[T, T, A[T,T7'] is also an ASL on II*, implying the linear independence of the
standard monomials in II* over the smaller ring B[T*].
It follows from the preceding proposition that

£=¢ for£€eI\Q  and £ =¢€T foréeQ.

Let §,v € II be incomparable with standard representation v = dlauu. Ifp =
Tiy..y Tk, 5 € IT, then p* =a],..., u}, and ‘

'yt = Za#Tj”y‘
is the standard representation of £*v* over B[T,T~']. By the hypotheses on 7, Jp =

grad v — grad g < 0 for all g, and we have a standard representation over BIT-1). —

(9.8) Corollary. The associated graded ring Gr;A is a graded ASL on (the image
of ) II* over B: .

Proor: In passing from ﬁI(A) to
GryA =R (A) ®pr-1) (BIT™Y)/T 1 B[TY]) = R, (A) ®p(r-1) B

we have only “extended” the ring of coefficients. —

(9.8) Corollary. If moreover I is wonderful and B is a Cohen- Macaulay ring,
then R (A) and GryA are Cohen-Macaulay rings, too.

Let £v =3 a,u be a straightening relation in A. Then
vt = Z ayTiep®, Ju = grad év — grad u,

is the corresponding straightening relation in R 7(A4), and in Gr A it transforms into

ftvt = Z G.F,U-‘,

Ju=0

so one obtains this relation from } | a,p by dropping all the terms on the right side which
have higher degree with respect to I than fv.

We want to make the ordinary Rees algebra R;(4) an ASL over B. Obviously IT*
does not generate R (A) as a B-algebra: the elements £ € 2 C A C R,;(4) are not
representable by polynomials in II* with coeficients in B, and we have to “double” §:
Let.

Hu: =HUR* CR(A4)

where the subsets I and 2* are ordered naturally and every other relation is given by

< for £€Q, vell suchthat £<wv. -
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1w is evidently a partially ordered subset of R;(A). For example, if II is given by

X
X
U
1
and Q={¢v,(}, then IWQ is v ¢.
v v‘ (.
£
E.

(9.10) Theorem. Let A be a graded ASL on II over B, Q C II an ideal such that
I = AQ is straightening-closed. Then R (A) is a graded ASL on II9 Q over B.

PROOF: R,(A) is obviously a graded B-algebra and generated by Il Q. The full
polynomial ring A[T] is a graded ASL on I U {T} if we declare T to be the maximal (or
minimal) element of IIU {T}. Since for a standard monomial y = 7y ... 7k, 7; € MwQ,
the factors from Q* have to proceed the factors from II, the standard monomials in 162
correspond bijectively to those standard monomials in ITU {7} whose degree ‘with respect
0 T does not exceed the number of factors from Q. Therefore the standard monomials
in 1w § are linearly independent. In order to write down the straightening relations
we represent every standard monomial g as g = auBuwy, Ap being the smallest factor,
B, the second (if present), and w, the “tai]”. There are three types of straightening
relations, always derived from the straightening relation {v = 3 aup in A (and, in case
£,v €8, £ > v, from the relation {v = vE):

(i) ¢&,v € I fv= aup,
@yéeQuell: v=>3 eelbuwy
(iii) &,v € Q: £'v' =Y au0pBw —

For the extended Rees algebra and the associated graded algebra the poset H has
only been replaced by an isomorphic copy. As the example above shows, I1 W Q need
not be wonderful without further hypothesis: v* and {* are upper neighbours of £*,
but don’t have a common upper neighbour. Such an obstruction does not occur, if {2 is
self-covering: every upper neighbour of elements v,{ € © which have a common lower
neighbour £ € QU{—oo}, is in 0. For the examples of interest to us, {2, being a sublattice
of a lattice II then, is always self-covering. As the following example shows, even this is
not completely sufficient:

= M , Q={¢}, Hwa=
¢ o

o &
(9.11) Lemma. Suppose that II is wonderful and @ a self-covering ideal in I con-
taining all the minimal elements of II. Then I ¥ Q is wonderful.
PRrOOF: The definitinn of the partial order on II5{ implies: (a) £ € 2* has a single
upper neighhour 5 € I, and { =7*. (b) Ifv € Il and { > v then { € IL.

bl
A
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Let I = (W)U {00, — oo}, and suppose that v,z ENNWQ, ny -,é v, have a

common lower neighbour ¢ € II and vy,v; < ¢ € 1. Because of {a) and (b) we have to
consider the cases:

{i) wvi,v €1, ¢ ¢ 0% () vell, weq g
(i) vi,v2 €9, (€ QY {iv) vn,u2€Q", (¢Q°.

Case (i) is trivial, and in case (iii) one only needs that §) is an ideal in the wonderful
poset IL In case (iv) we write v; = w}. Since £ € Q* U{—00}, w; and ws have a common
lower neighbour in I or are mzmma.l elements of II. Furthermore wy,w; < ¢, so they
have a common upper neighbour < ¢, and necessarily r € Q. Consequently 7* < (,
and 7" is an upper neighbour of v and v;. In case (ii) it is impossible. that £ = —00
since vy is not minimal in T Q: If v; ¢ Q, then v is not even minimal in II, and
otherwise v < v;. The case { = —oo being excluded, necessarily £ € Q*, and it follows
immediately that £ = vf. Now vy = v* for a v € Q, and v is a suitable common upper
neighbour of v; and vy. —

(9.12) Corollary. Let A be a graded ASL on II over B. Suppose that B is
Cohen-Macaulay ring, and 11 @ wonderful poset. Let Q be an ideal in II such that Q is
self-covering, contains all the minimal elements of I1, and I = AS) is straightening-closed.
Then R;(A) is a Cohen-Macaulay ring, too.

(9.13) Remark. Besides the Rees algebra(s) and the associated graded ring there
is another commutative algebra defined by “powers” of I: the symmetric algebra

n=Ps;w).
=0

The natural epimorphisms $;(I) — I’, sending a product of j elements of I in §; (I ) to
their product in 77, defines a natural epimorphism

S(I) — R, (4).

It would be unreasonable to expect that this epimorphism is an isomorphism for our
rings and ideals, except under very rare circumstances. One has a commutative diagram

AT,:wef] £ s
N\ <
RI(A):

the indeterminate T, being sent to w € 5;(I) and w* resp. Being a graded ASL, R {4)
is represented over B by its generators I1 ¥ Q2 and the straightening relations. Therefore
the kernel of 1 is generated by the elements representing the straightening relations of
types (ii) and (iii) in the proof of (9.10). The elements of type (ii) are in the kernel of o,
too. So S(J) and R;(A) are isomorphic if Q is hnea.rly ordered and no relatlons of type
(iif) are present. —
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 C. Graded Algebras with Respect to Ideals of Maximal Minors

Without further ado we draw the consequences of the results in Subsections A and B:
(9.14) Theorem. Let R = G(X;7) or R = R(X; 8) over a ring B of coefficients,
I an ideal of mazimal minors in R, M =T(X;v) or L = A(X;8) resp., and € the ideal

in Il generating 1.

(a) Then GryR and R (R) are graded ASLs over B on II' C Gr;R and ILW 2 resp.

(b) If B is a Cohen-Macaulay ring, then Gr;R, R (R), and R;(R) are Cohen-Macaulay
rings, too. :

Next we want to prove that Gr R, ﬁI(R), and R;{R) are {normal) domains over
a {normal) domain B. First we observe that the sub-ASL generated by Q is present in
Gr;R (and R;(R)), too:

(9.15) Lemma. Under the hypothesis of the preceding theorem Q* generates o sub-
ASL of GryR. It is isomorphic to the sub-ASL generated by Q in R.

This is obvious: the straightening relation for incomparable £* and v* in Q" is
produced from that for £ and v in Q by “starring” all the factors ¢ € II occuring.
{(Remember that a graded ASL is completely determined by its straightening relations!)

Different from our usual procedure we start with the case R = R{X;6) for the
investigation of integrity and normality, mainly because we regard expansions of deter-
minants more “visible” then Pliicker relations. Let A = Gr;R, and assume that B is
normal. The element 6* is minimal in the poset underlying A, and one would like to
show that A[(6*)~?] is normal in order to apply (16.24) then. Let

6= [al,...,a,.]bl,...,b,.],
and the element ¢ defining I be given by
£ = [a;,;..,ak_l,&k,...,Ei;|b1,...,b;.}.

In R we expand the minor § along its first k rows:
(1) 6 = Z :i:[ﬂ.l, R ,ak|C][ak+h R ,a’fl{bll LERE} b‘l"}\c]!
c

C running through the subsets of cardinality & of {b1,...,b.}. Every term in this equation
has exactly one factor in £2: & on the left and [a1,...,ax{C] on the right side. Because
of (9.3) none of these factors is in 7%, and [@x+1,--.,2-|{b3,.--, - }\C] ¢ I. Therefore

(2) 5 =" %far,...,aelC) [ars1, -1 8Lt -, BINC)

in A =Gr/R. Let A = A[(6*)~1]. It suffices to show that Ap is normal for the prime
ideals P~of A. Since 6* is a unit in’ A, one of the elements [a;,...,ax]|C]* has to be a
unit in Ap, too. Eventually it is enough to prove normality for the extensions

Al(las,- .-, axlC]") 1.
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(9.16) Lemma. With the hypotheses of (9.14) and the notations Just introduced, let
= la1,....,at|C)*, C = levs .. cr). Purthermore Let § be the sub-ASL of A generated
by Q*, U denote a k x k matriz, and V an (m — @ + 1} X k matriz of indeterminates
over B. Then the homomorphism

SCLUVIU)Y  a(¢™]

which is the identity on S C A, sends Usj to the residue class of lailc;] in R/I and Vy,
to the residue class of [ax — 1+ ulc,), s an isomorphism.

PROOF: Let [ulv]” be the residue class of fufv] in R/I. Since [a4,..., aklbr, ..., 0] €
I, the determinant of the matrix formed by the elements {adc,-}’“ (which is different from
[ay,.. -y @klcr, ..., cx]*!) is zero, and the homomorphism is well-defined.” T

The rings and the horaomorphism ¢ under consideration are cons’truc"t"éﬂ.from the
corresponding objects over Z by tensoring with B, since both rings are, roughly spoken,
defined by their straightening relations. So we may assume that B is a noetherian integral
domain. A glance at (9.4),(c) shows that the dimensions are equal (note that dim A4 —
dim R), and it is enough that the homomorphism ¢ is surjective. As an S-algebra, A
is generated by the elements [i|5]~. Let first i < grand j =¢, Ifie {e1,...,ax},
[lj]™ € Im p by definition. Otherwise we look at the equation h

[ilellas, . ...ax|C = 3 auleu]{ass - - -, ax, i\ {au }IC]

in R which simply results from the Laplace expansion of a minor with two equal columns.
If =1, then {{,c,]~ =0, and [i,cu]™ € Imyp trivially. If & > 1, the k-minors # 0 in this
equation ali lie in 7\ 2, and the 1-minors are in B \ I. Therefore in A one has

[aule.]” = [auley)”,

[ilea]™ = [alea]” = ¢ 3~ aules]'[{ar, .-, ax, i\ {a }CT',

and [i|c,]” € Im¢. Combined with the definition of ¥, we conclude [i|c,]” € Im o for all
i=1,...,m and all v=1,...,k

In order to “cover” {i|j]™ with ¢ €{as,...,ax}, j ¢ {c1, .., Cr} one works with the
relation

{a‘ulj][a'h . ~aakIC] = Z i‘[ﬂ-uICUHG,],. .- aakl{cla te :Ck’j}\{cv}]r

and finally for [i]j]™ with { ¢ {a1,...,ar}, j ¢ {e1,..., ¢4} the equation

(Eli]l@1,- .., aelC] = [al,...,ak,i]cl,...,ck,j]

+ Z £(iley][er,. .., axl{e1y ..., ex, J N\ {ev}]

implies a suitable equation in A: the k-minors and the (¥ +1)-minor appearing all are in
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I\ I?, unless they are zeroor k = 1,1 < @k, in which case [i,7]” = 0 € Imy anyway. —

(9.17) Theorem. Let R = G(X;v) or R = R(X;6) over a ring B of cocfficients,
and I be an ideal of maxrimal minors in R. If B is o (normal) domain, then GrR,
R ;(R), and R;{R) are (normal) domains, t00.

PrROOF: Let R = R(X;8), A = Gr;R. Since §* is not a zero-divisor of A, A is
a subring of A{(§*)'}. Every localization of A[(6*)7] is a localization of one of the
rings A[¢ '] as in the preceding lemma. A[¢™] is a (normal) domain by virtue of the
lemma, (9.4), and (6.3). A little exercise shows that A[(6)~!] cannot contain a nontrivial
idempotent (if B has none), and therefore A[(6*)7Y] is a (normal) domain together with
all its localizations. So A itself is a domain, and normal, when A[(6*)71] is normal,
of. {16.24).

In case R = G(X;7), A = GrjR, we view R as the homogenization of R = R(X;6),
RE=R/Ryx1),y=[n-m+1,... ,n]. Let I be the dehomogenization of I. Since y*
is the maximal element in the poset underlying the ASL A y*+1=(yx1) isnot a
zero-divisor, consequently

Grfﬁ = AJA(y" £1)

{cf. (3.7)). Obviously A4 can be viewed as a graded B-algebra in which y* is an element
of degree 1. Since A/Ay* is an ASL and therefore reduced, we can apply (16.24) and
conclude integrity and normality of A from the corresponding properties of Grfﬁ.

For the Rees algebras integrity is not an issue. Since

R (R)(n") Y] = Ry(R)n ™),

n =6 or p = 7 resp., it is enough to prove normality for ﬁ;(R), one more application of
(16.24). Now

RBT )] = RIT,T7]

is normal and
R, (R)/T 'R (R) = GrR

is certainly reduced. (So the normality of R ;(R) and R ;(R) results from (9.8) already.) —

Generalizing (7.10} we obtain:

(9.18) Corollary. If B is an infegral domain, then an ideal I of mazimal minors
in R (is prime and) has primary powers: I’ =1 U} for all § 2 0.

PROOF: Suppose that the contention is false, and let k£ be the smallest exponent
for which I* # I, For ¢ € I¥}\ I* there exists an y € R\ I such that yz € I*.
By assumption on k, x € 1 k-1 and y*z* = 0 in Gr/R, contradicting the integrity of
Gr R. — ‘ :

This corollary allows us to complete the description of the canonical module whose
class was computed in the preceding section:
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(8.19) Corollary. Let B be an Cohen-Macaulay ring having a canonical module
wp. If the integers k; > O satisfy the condition in (8.12) or the analogous condition in

(8.14) resp., then a canonical module of R is given (as o B-module) by the direct sum

Wp = @ Wi,

1 Tanging over the standard monomials which have af leqst ki factors in T(X; y)\T(X; ()
or A{X;8)\ A(X;¢;) resp., the elements Ci being the upper neighbours of v or 6 resp.
(The assumption k; > 0 can always be satisfied.

PROOF: Let Rg be the ring G(X; 4} or R(X; ) over the integers Z. Then
' Wp=wp Qg wR, ’

reducing everything to Ry. We have wry, = (1P now, P; = J(z;(;) or P; = I(x: ¢,
and P has a basis consisting of standard monomials as given by (9.6). —

(9.20) Remark. In principle (9.19) allows the computation of the Cohen-Macaulay
type of G(X;v) and R(X;§) over a fleld, say. (The Cohen-Macaulay type is the minimal
number of generators of the canonical module.) A relatively simple case is R = R,..1(X).
Assume that m < n, k = n — m. Then wr 2 Q% © generated by the r-minors of the
first 7 columnns of the matrix of residue classes, and a minimal system of generators of Q*
(in R as well as in the localization with respect to the irrelevant maximal ideal) is given
by the standard monomials of length k in the r-minors of the first r columns. Therefore
it coincides with the minimal number of generators of the k-th power of the irrelevant
maximal ideal of G(Y), ¥ an r x m matrix, and the type of R,1;(X) can be read off
from the Hilbert series of G(Y). The latter has been computed explicitely in [HP), p.
387, Theorem III. J. Brennan communicated the following expression for the type of

Rr+1(X): .
S KRN

Gy (770
In the cases in which the generators of Q are linearly ordered (ie. r+1=morr = 1)
this simplifies to {1 ), a result which also follows directly from (9.19). —

n—m,

(9.21) Remark. Asin 7.C let R = Rey1(X) = B[YZ], Y be an m x r matrix
and Z anr r x n matrix of indeterminates over B. In the following we want to analyze
the algebra 4 generated by the entries of the product matrix Y Z, the »-minors of ¥
and the r-minors of Z. It has been demonstrated {cf. (7.8),(b)) that A is the ring of
absolute SL(r, B)-invariants of BlY, Z]. In view of Remark (7.13) it is desirable to prove
the normality of A independently from invariant theory. For the rest of this remark we
assume that B is a normal domain. We sketch the arguments, leaving some details to
the reader. As usual, let P (Q) be the ideal in B B[Y Z] generated by the »-minors
of the first r rows (columns), and T an independent indeterminate over R. Furtherrore

{@1,...,a,]y is the r-minor of the rows a1,-..,8, of ¥, whereas [b;,...,b,]z denotes the
r-minor of the columns b,...,6, of Z. Finally, 6 = [1,...,7/1,...,7] (as a minor of
X =YZin R). |

(a) The assignment

[ar,...,a.]y — (@3- 50.1,... P61,
[bh---sbr]Z - {L“nrlbh--':br]T,
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induces an isomorphism of R-algebras
oo oo oo
APt erRe PP = p pirv.
j=1 71 jm—o
For the object on the right side, the powers P7, j < 0, are of course to be considered
fractionary ideals of the domain R. The equality in the preceding formula is easily
checked if one applies the valuations associated with the divisorial prime ideals of K:

vp(d) =vo(d) =1, vr(§) =0 for I#PQ.

Furthermore one needs of course that the powers of P and @ are divisorial ideals {by
virtue of 9.18). In order to prove the isomorphism on the left, one first observes that
A is a graded subalgebra @32 A; of BY, Z] where A; contains the bihomogeneous
elements of partial degrees d, with respect to ¥ and d; with respect to Z such that
dy — d; = jr. The equations

[al,...,ar]y[bl,...,b,.]z = [al,...,aribl,...,br]

then suffice to show that the assignment given induces B-isomorphisms

A"‘{Pi for 720,
Tl for §<0,
whose direct sum is an R-algebra isomorphism. In the following we identify A and its

isomorphic copy.
(b) Let § = Rp(R) C A. Then

ac () Srcsien™
1#(PT)5S

the intersection being eztended over the divisorial prime ideals I # (PT)S of S.
In fact, S[(6T) 1] is the intersection of all the localizations Sy, ! a divisorial prime,
§T ¢ I. This explains the inclusion on the right side; for the nne on the left we note that

o0
Ac s (rPTISY = () Sn
=0 I#(PT)S
the operation : being performed in the field of fractions of S. However, (b) is only a
preparation for (c):
{c} One has

A= [ si= @ PIT.
IA(PT)S j=—o
A is a normal domain. If B is factorial then A is factorial, too.

In order to prove the equality claimed, one uses the second inclusion in (h), and shows
that every element s of S{(6T)~"] such that s((PT)S)? C § for some j, is an element of A.
Being an intersection of discrete valuation rings {and noetherian) A must be normal. For
a auick proof of the last statement one applies [HV], Theorem,(a), p. 183: The extension
R — § induces an isomorphism of divisor class groups. Therefore the class of PS
generates CI(S). Now PS and (PT)S are isomorphic ideals of §, 50 cl(PS) = l({PT)S),
and cl({PT)S) is in the kernel of the natural epimorphism CI(§) — CHA), cf. {Fs}, §7.
(The last statement in (c) can be generalized: Cl{A4) = CYB).) —
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D. The Depth of Powers of Ideals of Maximal Minors

For a local ring R with maximal ideal P and an ideal I C R the analytic spread I{I)
is defined by
i{I) =dim Gr;R/PGr;R,
cf. (NR], [Bh.2], and [Bd]. For a graded ASL A on II over a noetherian ring B, and an
ideal 7 C AIl the corresponding quantity is

dim GrA/TIGr A.
If Bis a field, then dim Gr; A/NIGr; A = I{I.n), since (Gr;A)® Ayp = Gr;,, Aan and
(Gr;A/IIGr; A) ® Aan = Gr;A/TIGr; A. Tt is easy to determine Gr;A/NIGr; A and its
dimension for our objects.

(8.22) Proposition. Let B be a noetherian ring, and R = G(X;7) or R = R(X;$),
I an ideal of mazimal minors, Q the ideal in TI =I(X;7) or N = A(X;6) generating T
and S the sub-ASL generated by (.
(a) Then GryR/TGr R is a homomorphic image of S and

dimGrIR/HGrIR S dlmB + er-
{b) If R = G(X;9) or R=R{X;8), 6 =[a1,...,a.{b1,... ybe] and ) consists of r-minors
only, then Gr;R/TIGr;R & S and

dim Gr,R/TIGI, R = dim B + rk §2.

PROOF: (a) It has been noticed in {9.15) that S can be regarded the sub-ASL of
GrrR generated by Q*. Since the generators of the B-algebra Gr;R outside £2* are killed
in passing to Gr;R/IIGr R, the latter ring is 2 homomorphic image of S which by {5.10)
has dimension dim B + rk Q.

{b} We have to show that (IIGr,R) NS = 0. For this it is sufficient that every
standard monomial in the standard representation of an element in IIGr; R contains
a factor from IT* \ Q*. In view of the straightening procedure outlined in (4.1) this
is equivalent to the appearance of at least one factor from II* \ * in every standard
monomial on the right hand side of a straightening relation

£ = a.,u  (in Gr,R!Y)
with £* € II* \ @*. Since this equation is homogeneous in the graded ring GrR, a
standard monomial z can have at most one factor in 2*. In case R = G(X i7Y) every
such x has automatically two factors. In the other case of (b) one argues as follows: If
v* € II* \ ©* too, then every u entirely consists of factors from II* \Q*, and if v € Q*,
then every u must have two factors for reasons of degree in R. —

The inequality in (a} can indeed be strict, as is demonstrated by the example R =
B{X], X an m x . matrix with m > 2, I the ideal generated by the elements in the first
row.

As an A-module the associated graded ring represents the properties common to
all of the quotients I’ /F#*1. A quantity which can be rather comfortably compuied by
means of the associated graded ring, is the minimum of their depths if 4 is local. The
global analogue for our objects is grade( AT, I7 /77*1}, the iength of a maximal ([7/[7*+1).
sequence in AIL. In view of a later application the following proposition is kept more
general than needed presently.
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(9.28) Proposition. Let A be a noetherian ring and let F = (I;)j>0, Io = 4, be
o multiplicative filtration of A by ideals such that the associated graded ring GreA is
noetherian. Consider GryA as an A-algebra via the natural epimorphism A — Afl,
and let J C A be an ideal. Then

min grade(J, A/1;) = min grade(J, I;/I;11) = grade JGr A.

PRrOOF: ‘The left equation follows from the behaviour of grade along the exact se-

quences . ’
0-— IJ'/I:H_} — A/Ij+1 —— A/IJ — 0.

If JGrz A contains an element which is not a zero-divisor of Gr z A, then J is not contained
in the preimage of any of the (finitely many) associated prime ideals of Grz A, so contains
an element which is not a zero-divisor on any of I;/I;1. Conversely, if grade JGrz4 = 0,
then J must annihilate a homogeneous element # 0 in GrrA of degree d, say, and so
grade(J, I4/T4+1) = 0. The rest is induction based on the equation (Az)* = (GrgA)z®
for an element z € A which is not a zero-divisor of GryA, * again denoting “leading
form". —

(9.24) Corollary. Let A be a local ring, P its masimal ideal, and I C A an ideal.
Then ‘
min depth A/’ < ht PGr;A < dim GrzA — I(I).
If Gr; A is @ Cohen-Macauloy ring, one has equality throughout.
(9.25) Corollary. Let R = G{X;%) or R = R{X;6) over a noetherian ring B of
coefficients, I an ideal of mazimal minors in R, and Q the ideal in Il = G{X;v) or
Il = R(X;6) resp. generating I. Then

min grade(RII, R/I’) = min grade{RIL, I/ /I7+1) > rk I — 1k Q,
and if the hypothesis of part (b) of (9.22) is fulfilled, one has equality.

PROOF: Let B = Z first. Then the defining ideal of Gr;R as a residue class ring
of the polynomial ring Z[Ty: 7 € II*] is generically perfect as a consequence of (9.14).
Because of (9.23) and (3.14) it is enough that ht IIGr; R > rkII — rkQ (with equality
under the hypothesis of part (b) of (9.22)) whenever B is a field, and this is guaranteed
by (9.22). — .

The best information we can give on the behaviour of grade(J, R/J7) as a function
of j, is the following proposition.

(9.26) Proposition. Let A be o noetherian ring, I, J ideals of A such thatht7 > 1
and Gr;A is a Cohen-Macaulay ring. If grade(J, A/I¥) = mingrade(J, A/I’), then
grade(J, A/I*) = grade(J, A/I**1). '

PrROOF: Suppose that mingrade(J, 4/I7) > 1. Then there exists an ¢ € J such
that z* is not a zero-divisor of Gry4. This fact triggers a proof by induction (observe
that ht(J + Az)/Az > 1), and one need only deal with the case grade(J, A/I¥) = 0.
Since ht I > 1, dimGr;A/I*Gr;A = dim A/J < dim A = dimGr;A. So I \ I? contains
an element y for which y* is not a zero-divisor of Gry 4. Multiplication by y then induces
an embedding

‘ A/IF — A[T¥,
. whence grade(J, 4/I**1) =0, too. —
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(8.27) Examples. In the following we assume that B = K is a field. Because
of (3.14) the grade formulas generalize to arbitrary noetherian rings. They improve
Proposition (7.24).

(a) R =B[X], X an m X n matrix, m <n, [ = Ix(X}. Then

min grade(I; (X ), B/I') = m? ~ 1.

It will be shown later (cf. (14.12)) that grade(I,(X), R/I?) = 3 if m = 2, and the preced-
ing proposition then implies grade(I,(X), R/I’) = 3 for all j > 2. Another completely
known case is n = m + 1. Since / = Coker X (the linear map X: R™ — R™*! given by
the matrix X, cf. (16.36) for the isomorphism) and 7 2¢ S;(I) by (9.13), we conclude
from (2.19),(b)(i) that pd R/I = min(j,m) + 1, hence

grade(Il(X),R/Ij)=m(m+1)—j—1 - for j=1,...,m,
grade(I;(X), R/I’) =m® ~ 1 for j>m,
because of the equation of Auslander-Buchsbaum and the equality grade(I;(X), M) =

depth M1, (x) for graded K[X]|-modules M. (We believe that grade(l;(X), R/I7) always
behaves in a regular manner; cf. the discussion below (10.8).)

(b} More generally let R = Ry+3(X), X asin (a), I = I.{X)/L,41(X). Then
min grade(I, (X), R/I7) = r? - 1.

{e) If R is as in (b) and Q the ideal generated by the 7-minors of any r columns,
then
min grade(I; (X), R/@Q") = nr — 1.

For the ideal P generated by the r-minors of any » rows one has
min grade(; (X), R/P?) = mr — 1.
Since "™ is a canonical module and therefore a maximal Cohen-Ma.cau]a.y module,
grade(I; (X)), R/Q" ™) =dimR-1=(m+n—7)r -1,

and the minimum can only be attained for exponents > n - m.

(d} The analysis of the example (c) can certainly be carried further. We content
curselves with the case in whichr + 1 =m < n:

grade(; (X),R/Q') =nm - (n—m+1)-1 for j=1,...,n-m+1,
grade(I{(X), R/Q*) =nm —j - 1 for j=n-m+1,...,n,
grade(I; {(X),R/@') =nm —n — 1 for j>n.

and R,@,...,Q ™!, P are the only Cohen-Macaulay modules of rank 1 (up to iso-

morphism). Note that the canonical module Q=™ is not the last one in the sequence of
powers of @ to be a Cohen-Macaulay module.
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Every Cohen-Macaulay module of rank 1 is a divisorial ideal and therefore isomorphic
to a power of @, cf. (8.4). In order to compute the multiplicity of R we have considered
the R-sequence '

y={Gljl:j~i<0orj—i>n-m}u{filj]-[i-1j-1): 0<j-i<n-m}

It generates an I; (X)R-primary ideal, and one has

em) =xr/rp) = ("),

cf. {2.15). Let M be a Cohen-Macaulay module of rank 1. Then dim M = dim R, and
M is a maximal Cohen-Macaulay module. Since this property localizes,

(* | sy = (")

by virtue of [He.2], Proposition 1.1. (For a graded R-module the property of being a
maximal Cohen-Macaulay module also globalizes, cf. (16.20): it is equivalent to being
perfect over K [X) of grade equal to grade[,,(X)). Therefore the validity of (») is sufficient
for the modules under consideration to be Cohen-Macaulay.)

The minimal number of generators of all divisorial ideals, but the listed ones, al-
ready exceeds (m'il), excluding them from being Cohen-Macaulay modules. The ideal
P certainly is a Cohen-Macaulay module. For the powers of @ we use the free resolution
over K[X] constructed in (2.16) and (2.19),(b)(ii). Let f: K[X]™ — K[X]™ be given
by the matrix X*, and f = f ® R. Coker f is annihilated by L.(X) (cf. (16.2}}, so
Coker f = Coker f. Since rk f = m —1, Coker f has rank | as an R-module. Being a per-
fect K[X]-module, it is (isomorphic to) a (divisorial) ideal. Sending its i-th “canonical”
generator to (—1)*!{1,..%,...,m|l,...,m — 1], one maps it onto Q, so Q = Coker f.
For the formation of the’symmetric powers §;{Q), j > 1, it makes no difference whether
we consider Q as an R-module or a K[X]-module. In conjunction with (9.13), (2.16) and
(2.19),(b)(ii) therefore provide the projective dimension of all the powers Q7. The three
equations above now follow as those in {a).

For the general case in regard to m,n,r the preceding discussion at least implies
that the number of (isomorphism classes of) Cohen-Macaulay modules of rank 1 over
Rr+1{X) is always finite. —

E. Comments and References

The investigation of powers of determinantal ideals was initiated by Hochster ({Ho.6])
who showed that I,{X} has primary powers if X is an m x {(m + 1} matrix, ¢f. alse
[ASV], p. 67, Beispiel 6.2. His result was generalized by Ngo ([Ng.1]) to m x n matrices;
Ngo investigated the associated graded ring by the method of principal radical systems
([HE.2]). Huneke showed in [Hu.l] that straightening-closed ideals are generated by
“weak d-sequences” ([Hu.l], Proposition 1.3). This allowed him to prove the equality
of ordinary and symbolic powers for the ideals I discussed in (9.27) and to compute

min grade(l; (X ), 7). Example (9.27),{c) was treated in [Br.6] by an ad hoc method. A



E. Comments and References 121

special case of (9.27),(a) appeared in [Ro]; the special result for n = m + 1 is taken from
[AH]. The divisor class groups of the Rees algebras with respect to ideals of maximal
minors can be computed by the results of [HV].

In (9.5) it has been pointed out that certain rings appearing in (9.4) can be viewed
as Segre products. Conditions under which Segre products of Cohen-Macaulay rings are
Cohen-Macaulay again are investigated by Chow ([Ch]). Chow's results in particular
imply that R,(X) is a Cohen-Macaulay ring.

The material of Subsection B is taken from (Ei.1], [DEP.2], Section 2, and [EiH].
The extended Rees algebra and the associated graded ring can be treated in greater
generality; one only needs that the filtrations on which they are based satisfy a certain
condition, cf. [DEP.2).

There are more ideals satisfying the hypotheses of (9.12), say, than just the ideals of
maximal minors considered above. It is quite obvious that some of their subideals share
their characteristic properties; cf. [AS.1], [AS.2], [BrS], [BNS] for a detailed analysis of
certain ideals of this type.

In [Hu.3] Huncke has determined all the values of ™, n, ¢ such that Ry, (B[X])
S5(I:(X)), X ab m x n matrix of indeterminates.

Proposition (9.23) aud its corollary generalize Burch’s inequality ([Bh.2]), cf. also
(Bd].
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Let X be an m x n matrix of indeterminates over a domain B, m < n. Contrary
to the ideal I,(X) (and 1;(X), of course) the ideals 1,(X), 2 £t £ m — 1, have non-
primary powers. In this section we shall determine the symbolic powers of the L{X),
discuss the “symbolic graded ring” as the proper analogue for I,(X) of the ordinary asso-
ciated graded ring for L,(X), and finally compute a primary decomposition for products
I, (X)...I,(X), essentially under the condition that B contains a field of characteristic
zero. It is a remarkable fact that the primary decomposition depends on characteristic.

A. Symbolic Powers of Determinantal Ideals

In (2.4) we have established an isomorphism which will prove very useful here: Let
Y be an (m — 1) x (n — 1) matrix of indeterminates; then the substitution

Xij — Yij+ XmjXin Xy 15i<m—1, 1<jsn-1,

X"‘f —_'XWIJ" Xip — Xin
induces an isomorphism

01 BIX][XZL) — BIY)[Xmis - s Xmns Xiny o+ 2 Xmo1,][ X ]
whose inverse is given by ¥j; — X;; — Xmj XinX s Xmj == Xmjs Xin — X;n. For
simplicity we identify the two rings by putting

Yy = Xi; — Xmi XinXmns

remembering of course that the Y;; are algebraically independent over B. In order to
distinguish minors of X and ¥ we write [..]-.lxand [..]... ]y

{10.1) Lemma. (a) For ell minors [21,...,8s]01,. ., bs]y one has
[a'ls- "1a'!|bls- . '}bs]Y = X;nlr;[als- . -1ahmlbl)' . !bsan]x-

(b) Let B be an integral domain, R = B|X], § = B[X|[ X} Then

LX)® = (L(X)PS)NnR,
L(X)®S = (L1 (YY)
forailt, 2 <1< m, and all k € N.

The equation in (a) is proved using the invariance of determinants under elementary
transformations. The first equation in (b) follows from R C § C Rr,x), and for the
second it is important that the extensions R — § and B[Y] — $§ commute with the
formation of symbolic powers.

The symbolic powers of 1;(X) coincide with the ordinary powers for trivial reasons;

one has I{X) C 1;(X)*® for all k and § ¢ LX) for a k-minor §, k > 1. Starting
with ¢ = 1 and applying (10.1) inductively one gets:



A. Symbolic Powers of Determinantal Ideals 123

(10.2) Proposition. Let B be an integral domain. Then
Lik-1(X) C T (X)™®

for all k, and § ¢ I,(X)*+V) fora(t+k—1)-minor§if1<k<m—t+1.
The symbolic powers of a prime ideal P form a multiplicative filtration,
pB P ¢ ple+d)

and this fact together with (10.2) determines the symbolic powers I,(X)(* completely
as will be seen below. Because of {10.2) the degree of a (t + k — 1}-minor with respect to
this filtration is k. Therefore we define the function ~, (for arbitrary ¢) by

§) =
%) {s—t-i—l if 6 is an s-minor, § > ¢,
and extend this definition to the set of all (formal) monomials of minors by

P
’)’1(61 - 6p) =Eﬁn(5‘)
i=1

~Let J(¢, k) be the ideal generated by all the monomials 7 such that 7(7) 2 k. Then
J(t, k) € I(X)™ and since we have obviously equality for ¢ = 1, we could prove equality
for all # by induction via (10.1) if we knew that J (¢, £)S N R = J(t,k), equivalently, that
Xnn 15 not a zero-divisor modulo J(t, k).

0 : if 6 is an s-minor, s < ¢,

(10.3) Lemma. J(t, k) is generated as a B-module by the standard monomials p
such that v (1) > k. In particular, X .m s not a zero-divisor modulo J(t k) ift > 2.

PRrOOF: The proof of Proposition (4.1) details the “straightening procedure” by
which repeated applications of the straightening relations transform an arbitrary mono-
mial into its standard representation. It therefore suffices that in a straightening relation
§v =3 a.p one has ye() > 7.(€) + 1 (v) for all x. This is easily seen to be true if one
takes into account that x4 and £v have the same degree as polynomials in the entries of
X and that y has at most two factors. .

"The second statement is obvious now: For every standard monomial  the product
#£Xmyn is a standard monomial again, and Ye(pXmn) = 7 (p) for ¢t > 2. —

(10.4) Theorem. Let B be an z'ntegraf domain. Then for all ¢, 1 <t < m, end all
k the k-th symbolic power of 1,(X) is generated by the (standard) monomials u such that
Y () > k. Equivalently,

L(x)® = ZIH.,HH](X)...IH.,;,.I(X),
the sum being extended over all k,,...,5, > 1, 8 < k, such that k1 +--- 4 &, > k.
Furthermore p € It(X)(k) if and only if v.(p) > k. ) s,

PROOF: Only the last statement for non-standard monomials still needs a proof,
In the next subsection we will introduce the associated graded ring with respect to the
filtration given by the symbolic powers of I,(X). This ring is a domain, ¢f. {10.7). So the
leading forms of the minors of X are not zero-divisors, and for p=2061...6;, 6 € A(X),
one therefore hasg

pt=61...67,

* denoting leading form. Thus the degree of 1* is the sum of the degrees of its factors
47, whence it coincides with v, (u). —
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(10.5) Remark. Without essential changes the ideals I;(X)/I.(X) C Ry(X), 1 £
t < u can be considered. (10.4) remains true modulo I, (X}, in other words:

(LGOS = O™ +L(X))/L(X).

The generalization to R(X;§) is not immediate, because the induction argument breaks
down. Nevertheless we expect that (I(X)R(X;6))® = L(X Y#IR(X;6) throughout. —

B. The Symbolic Graded Ring

For a prime ideal P in a ring A the ring

GI'E;A — @ p(i)/p(i—i—l)

iz0

should properly be called the graded ring associated with the filkration by symbolic
powers. In general, one cannot say much about it; it may even be non-noetherian though
A is noetherian (cf. [Rb.4]). As in the case of ordinary powers we denote the leading

form of z € A by z*, in GIQA as well as in the “extended symbolic Rees ring”

o0 o0
RY(4) = P PIT @ P AT C A[T,T 7).
j=0 j=1

In order to make Gr(F),A and 'ﬁ.?(A) well-defined objects over every ring B, we consider
L{X)® to be given by the description in (10.4) if B is not a domain.

(10.8) Theorem. Let B be a commutative ring, X an m X7 matriz of indeter-
minates, m < n, and A its poset of minors. Let1 <t < m and P = I.{X). Then
RO(BIX]) is o graded ASL on A" over B[T~Y], and Gr}B(X] is a graded ASL on A*
over B, A* inheriting its partial order from A as in (9.7).

PROOF: This theorem is proved in the same fashion as (9.7} and (9.8). One needs
of course that A* generates the extended symbolic Rees ring as follows from (10.4), and
that in a straightening relation fv = ¥ a,p the inequality ¥¢(§v) < 7:(p) holds for all
e —

(10.7) Corollary. (a} If B is a Cohen-Macaulay ring, then the rings considered in
(10.6) are Cohen-Macaulay rings, too.
(b) If B is reduced (o (normal) domain), then the rings considered in (10.6) are reduced
{(normal) domains).

Part (a) and the assertion on being reduced are immediate. For (b) one applies
(16.24) after the inversion of the maximal element X, of A* {modulo which the rings
under consideration are again ASLs) together with induction on t.

In the following nroposition we consider GrgB[X ] a B{X]-algebra via the natural
epimorphism B[X] — B[X]/P ¢ G B[X].
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(10.8) Proposition. Let B be a noetherian domain. Then with the notations of
(10.6), one has : o

min grade(T, (X}, PO/ pU+1)y) = gradeIl(X)ijgB[X] =t ~1.

PROOF: The first equality follows from (9.23). Let now R = B{Xx], s = GrgR, and
J =1L{X)S. The ideal J is generated by the subset -
A= {6*: 6 an s-minor, 1 <5<t}

of A*. We want to show that S/J is a graded ASL on Q = A* \A. By Proposition (5.1),(a)
it is enough to show that as a B-module J is generated by the standard monomials

containing a factor from ZS, and, by reference to the'straightening procedure, one only
has to show that in a straightening relation

v =) aup  (inS!)

every standard monomial i contains a factor from A if £ eA I additionally v* € A,
then this is the straightening relation in R/P, and every p consists entirely of factors
from A. Let v* ¢ A. Fp=(7",(,n€A,{<n theny* > £* and 5* € A. {Remember
that, after all, the straightening relations are inherited from I'{X ) fu=vtveA,
then, as polynomials in B[X],
degv = degé + degv > degv
and
7(Ev) = nelv) < 7e(v).

This is impossible, since the straightening relations are homogeneous equations in the
graded ring 5.

S0 5/J is a graded ASL over the wonderful poset 2. As in (9.25) one first reduces
to the case in which B is a field (via (3.14)). Since S is Cohen-Macaulay then, one has

grade;{X)S =tk A — k2
=mn—~{mn—-¢+1)=¢*-1. —
It will be shown in (14.12) that for all ¢ > 2 one has
grade(I1(X),1{X) /I (X)) = grade(I,(X), Re—1(X)) + 3
=(m4+n—t4+2)(t—2)+3.
Therefore
d = grade(l; (X), Re(X)) — grade(I; (X), L(X)/T(X)}))
=m4n -2t
divides
grade(: (X), R¢(X)) — min grade(1; (X), L(X)? /1,(X)U*D)
=(m+n-28){t-1).

We believe that grade(l; (X),L(X)Y)/1,(X)7*") goes down by 4 if j is increased by 1
until it reaches its minimal value (and stays constani then). Admittedly there is not
mach support for this claim, cf. (9.27),(a).



126 : 10. Primary Decomposition

C. Primary Decomposition of Products of Determinantal Ideals

None of the results proved so far depends on the characteristic of the ring B of
coefficients. Quite surprisingly, the primary decomposition of products I, (X)...I, {X),
in particuilar of powers I;(X }¥, cannot be given without reference to the characteristic of
B, and we shall succeed in complete generality only for the rings containing the rational
numbers. . .

Let B be an integral domain, X an m x matrix of indeterminates. The smallest

symbolic power of 1;(X) containing I,(X) is IJ-(.X)(°U'”), where

t—j+1 . if 1<j<t,

.t ='
etht) {0 i t<

t arbitrary. This implies immediately the iriclusion “C” in:

(10.9) Theorem. Let B be an integral domain, X an m xn mairic of indetermi-
nates, and ty,...,t, integers, 1 < t; < min{m,n). Let w = maxti;, end suppose that
(min(t;,m — ti,n — t;))! is inveriible in B fori=1,...,s. Then

5

L (X).. 0, (X) = (LX), e =Y el ti),
i=1

i=1

is a (possibly redundant) primary decomposition..

It will be indicated in {10.12) how to refine this decomposition to an irredundant
one. :

As a specific example we take n > m > 3, s = 2, {; = t = 2. Then (10.9) in
conjunction with (10.4) says

L(X)? = L(X)* 0 (13(X) + L(X)?).

In particular the product of a 1-minor and a 3-minor must be in Ip(X)?, the first nontrivial
case of the following lemma which is the crucial argument in the proof of (10.9).

{10.10) Lemma. Let B = Z, and F(i,§) be the Z-submodule of Z[X] generated
by the products 8162 of the i-minors ; and the j-minors 62. Then for * = [a1s.. .50yl
bryee oy bul, p=[e1,- - yeuldy, . du), u < v =2, and

17,;max(|{a1,...,au}ﬂ{cl,...,cv}L ]{b;,...,bu}ﬂ{dl,...,du}”

one has :
(v+1—a)!xp € Flutl,v-1).
(We include the case w= 0 in which 7 =1.)

Proor OF {10.9): The inclusion “C" has been noticed already. The converse is
_proved by induction on s, the case s = 1 being trivial. Consider a (standard) monomial
= 61...6, of minors §; such that v;(u) > e; for j = 1,...,w. If one of the minors §;
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has size w, one is through by induction. Otherwise we arrange the factors b1y...,6p In-
ascendmg order relative to their sizes, and split  into the product

H —61...6q

of minors of size < w, and

2 =8gt1 ... 0p
of minors of size > w. Let » and v be the sizes of bq ~and 6q+1 Tesp. Applying (10 10} to
8404+1 we get a representation

b= EGM‘, @ € B, vi=61...6,_1(ibgsa ... 6,

in which ¢; has size u + 1 and #; has size v — 1. Evidently

'Yj(Vi):’Yj(u), j=1:~'-:u+1’
’yj(vi)zfyj(p,)—l f=u+2,...,w
By induction on v — u or by reference to the case in which a w-minor is present, we are

through if v;{u} > e; for j =w +2,...,w. It remains the case in which ¥(p) = e, for
some 7, u+2<r<w. ‘ .

One may assume that {1,...,6s <r ~1and i y,...,t, > 7 — 1. Let
k s
=[xy, &= ]] L),
i=1 i=k+1
k 8
=2 elht), ef= 3 eljt).
i=1 imk+]

Then v; (1) = v;{#2) for j 2 r— 1. Furthermore ¥._1(s) — 1n(s) =p—q and e,_y —e, =
8~ k. Since v,_1(4) > e,y it follows that P—¢q 25—k, whence y, € J; for trivial
reasons. We claim: ~;(y;) > e1 for j < 7 — 2 and finish the proof by induction on s.
Relating ¥,.1 and +,, ev+1 and e,. one gets

Yol = Yor1 () = p— g,
e —éry1 < 85— K.

Therefore p — g < 5 — k, too, and p — ¢ = ¢ — k. Since

Vil = el +(p-glr —j) =er + (s —k)(r-3)

_ 2
_gj

for all j. <7, 7;(u1) > e} for all j < 7 ~ 2 as claimed. —

PROOF OF (10.10): In case » = 0 the contention is a trivial consequence of Laplace
expansion. Let u > 0 and suppose that

= [{a1,...,ax} N{er,. .., cu},

tra.nsposmg if necessary. We use descending induction on 7%, starting with the maximal -
value % = u. The fundamental relation which is crucial for this case as well as for the
inductive step, is supplied by the following lemma. Its very easy proof is left to the
reader: .
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(10.11) Lemma. One has

u+1 i
Z(_l)i—l[al, @it Guga by Bullag e, JCuldyy...,dy] € Flutl,v-1).

=1

In proving (10.10) for & = u we may assume that c; ¢ {al,...,a,;}. Then, with
@us1 = €1, all the terms of the sum in (10.11) except
(—-1)"[a1,...,aulbl,...,bu][cl,...,cv|d1,...,d,',,]

are zero, and 7p € F{u+1,v—1) as desired.
Let & < u now and again ¢ ¢ {ai,...,a,}. Weput 8= (b1,...,bu), 6 = {di,...,dv},

Gusi = €1. The terms [@1,...,@i,. .., Gur1|Bll@i, €2, -, cu|6] With a; € {c2,...,cv} drop
out, and
(1) Yo D e 8- GurtlBllan e, s e0ld] € Flutlv-1).

a.—ﬁ{c:,...,c,,}
We claim: If a; ¢ {c2,...,¢u}, then
(2) (u—D(=1) a1, 8y ur1lBllais c2,- -, Col6)]
= (u - W' {—-1)%a1,...,a.|8)c1,.- ., €0]6] mod F(u+1,v-1).
Multiplying the sum in (1) by (u — #)! and applying the preceding congruence we get
(u+1 -8 a1,..-,au0]cr,---rcu|6] € Flutl,v-1)

. as desired.

' In order to prove (2) one replaces the rows a; and ¢; of X both by the sum of these
‘ToWS, creating a matrix X. Let 7 and p be the minors of X arising from 7 and p under the
substitution X — X. The minors 7 and 5 both can be interpreted as minors of a matrix
with m — 1 rows, and then have % + 1 rows in common. The Z-module Flu+l,v-1)
relative to the new matrix is contained in F{u+1,v—1) relative to X, and by induction,

(w+1-(@+1))7p € Flutl,v-1).
On the other hand

1'}'5: [al!--- safi:--wauiﬁ](ai,ch"' 7cv|6] + [al,...,cl,...,aulﬁ][ai,c?,...,c,,.|6]
F[B1y- ey @iyerraulBller, €250 €al6] +Haa, v s01s - aulBller, o2, 0y 00]0)
The inductive hypothesis applies to the first and the fourth term on the right side of this
equation, whence

(u —a)! (7rp+ [@1y---sC15--esaulBllais ey ulb]) € Flutl,v—1). —

The intersection in (10.9) is obviously redundant if 8 = 1, 4 > lorfy = --- =
t, = min(m,n) > 1. In the latter case I;,{X)... I, (X) is primary itself, cf. (9.18). The
following proposition shows how to single out the essential primary ideals.
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(10.12) Proposition. Let B be an integral domain, X an m xn matriz of indeter-
minates such that m < n (for notational simplicily). Purthermore let eq,... e, be given
as in (10.9). Then

(X)) 3 NLX) = ert1 < (m—k)(ge — 1),
j=1
F#k

gk denoting the number of indices t, 1 <i< s, such thet t; > k.

PROOF: Passing to a ring of quotients does not affect the question whether a primary
ideal @ is irredundant in a given decomposition, provided Q stays a proper ideal under
extension. Therefore we may invert a l-minor if & > 1, and eventually reduce the
proposition to the case in which & = 1. So one has to show:

LX) 2 LX) = e <(m- 1)(s - 1),
j=2
s as in (10.9) denoting the number of factors of the product to be decomposed. Observe
that e; = e; + 3, 50
(3) e2<(m—1){s-1) = . e—1<m(s—1).
We write e; ~1=gm+r, q,7 € Z,0 £ r < m and choose an m-minor 6 and an r-minor
€ (e =1if r = 0), Then it is easy to see that
7:'([")57:'(595)3 J=L...,m
for all (standard} monomials y such that T (e} < e1. Therefore

{4) LX) 3 () 1;(x)6) = 9(6%)>e; forj=2,... w.
=2

We now show that the right sides of (3) and (4) are equivalent. Suppose first that
e1 —1 > m(s — 1). Since, on the other hand, e; < ms, one has ¢ = g—1landr >0, so
%¢ has exactly s factors (# 1), and

12(0%) =€1 ~1-5<e; —5=e,.
Suppose now that e; — 1 < m(s — 1). Then
Y2(6%) > 1 — 1= (5 — 1) = e,. ,

Observe in the following that the differences e; — ¢;4, form a non-increasing sequence
(ie. ep2~eir1 < eip1 —e; for all i) and that v;(6%) —~7;+1(6%) can only take the values
g and ¢+ 1. In order to obtain a contradiction we assume that there exists a v such that
(69} > ey, but 7y41(6%) < ey41. Then for all J 2 v one has

75(8%€) ~ 741 (8%) > 1, (8%} — vy 41 (6%) - 1
2 €y — Cyt1
> € —€j4q.
Summing up these differences for J=v+1toj= m+1 one obtains the desired
contradiction since vu,41(6%) = e,,,14 = 0. —

An immediate consequence of iO.__9) and (10.12) is the following irredundant primary
decomposition of the powers of the ideals L(X):
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(10.13) Corollary. Let B be an integral domain, X en m X n matrir, m < n.
Suppose that (min(f,m — £))! is invertible in B. Then

t
LX) =) LX)+ r = max(1,m — s(m — ),

j=r
is an irredundant primary decomposition.

(10.14) Remarks. (a) If one defines L{X)™® by means of the description given in
(10.4), ie. L(X )*} is the B-submodule generated by the standard monomials p such
that y.(g) > k, then the intersection formulas of (10.9) and (10.13) hold for every ring
in which the elements (min(¢;,m — t;,n — &)}, i =1,...,8, are units.

(b) The proof of (10.9) shows that for B = Z the ideal M= LK y(¢5) i5 the Z-torsion
of Z[X] modulo I, (X} ..., (X). :

(¢) If in addition to the hypotheses of (10.13) B is noetherian, then the associated
prime ideals of I,(X)* are precisely the ideals I;(X), j=7,...,t. fmis large compared
to ¢, then I;(X) is associated with It(X)'c forall k> 2, and if £ <m — 1, then Ij (X)is
associated with L(X)* for k > £, as is easily seen. We will show below that the latter
fact holds over every noetherian domain.

(d) The example given below shows that it is not possible to remove the assumption
on the characteristic of B in (10.9) or (10.13). It should be noted however that in (10.13)
it becomes void not only in the casesf =lort =m, but also when £ = m — 1, the case of
submaximal minors. On the other hand these are the only exceptional cases for (10.13),
cf. the end of {g) below.

(e) Without any change in their statements or proofs, the results (10.9) — (10.13)

carry over from the polynomial ring B[X] to the residue class ring R4+ 1(X), provided of
course that one considers products and powers of the ideals I,{X), t < r, only. Cf. (10.5)
for the corresponding remark in regard to the symbolic powers.

(f) With the notations of (10.10) the order of 7p modulo F(u+1,v~-1) may be smaller
than (©+ 1 — %)!. For example let u =1 and v > 2 be an even number. Then #p €
F(2,v—1). The general case follows from the case 7 = i, p=[2..,v+12...,0+1]
by specialization. One has

v+1
(5) Z(—n"-l[iu]u,..._,?,...,v+1qz,...,u+1]=[1,...,v+1|1,...,1,=+1} € F(2,v-1)
i=1

by Laplace expansion, and

(=) L, ey e v + 125 v ]
+ (—71)1'-‘[_1'[1][1,...,'},...,v +112,...,0+ 1] € F(2,v-1)

by viriue of {10.11), and the sum in (5) has an odd number of terms. .

(g) On the other hand the order of mp modulo F{u—1,v+1) is greater than 1 in
general. We claim: [1{1][2 3 4j2 3 4] ¢ ¥(2,2) and (F(1,3) + F(2,2))/F(2,2) = Z/2Z if
m=n=4. . o . .
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A simple observation helps to reduce the amount of computation needed to prove
this. Let p = 6,...8;, 6, € A(X). Then the support of y is the smallest submatrix of
X from which ali the minors §; can be taken. It is fairly obvious that B[X] and all the
modules F(u,v) (and F(uy,...,u,) as a self-suggesting generalization) decompose into
the direct sum of their submodules generated by monomials with a fixed support. In
order to show [1]1][2 3 4]2 3 4] ¢ F(2,2) it is therefore enough to consider the submodule
N of F(2,2) which is generated by the products 6,6,, é; a 2-minor, whose support is the
entire 4 x 4 matrix X. '

In order to write 2[1j1][2 3 4|2 3 4] as an element of F(2,2) we follow the proof of
(10.10). The reader who has proved { 10.11) knows that

(L2112 2 32 3 4] = —{1 2|1 211 313 4] + 1 2|1 3][1 3|2 4] - [1 202 4][1 3}2 3]
and .

(6) [21][2 3 4[2 3 4] — [2)1][1 3 4]2 3 4]
= (1211 2][3 43 4] — [1 2{1 3][3 4|2 4] + [1 2]1 4)[3 4]2 3].

Disregarding all terms of support smaller than X » one gets from the first of these equa-
tions: '

[111)(2 3 412 3 4+{201][1 3 42 3 4]
(7) == [13{1 2][2 43 4] + 1 3|1 32 412 4] ~ (1 3]1 4][2 4]2 3]
—[2 31 2[1 43 4]+ [2 3]1 3){1 4]2 4] - [2 3]1 4][1 42 3].

Addition of (6) and (7) yields the desired representation of 2[11][2 3 4)2 3 4], and it is
enough to prove that the nine products appearing in it are part of a Z-basis of N. N has
the same rank as the submodule generated by the standard monomials with support X
in F(0,4), F(1,3), and F(2,2). An easy count yields rk N = 14 whereas 18 products 6169
of 2-minors §; have support X. Relations of these products are produced by equating two
expansions of [1 2 3 4|1 2 3 4] along two rows or two columns. Let R;; be the expansion
along rows i, j and C;; the expansion along columns {,j. It is not difficult to see that
the relations .

Ci2—Cria =0, Ci3—Cy=0, Cia— Ry =0, Cia—Ry3=0

can be solved for four products none of which appears in the representation of 2(1[1][2 8 4|
2 3 4] derived above.

The second claim follows very easily now: The generators of F(1,3) with support
smaller than X are in F(2,2), and those with support X all have order 2 modulo F(2, 2).
In conjunction with (10.11) this shows that they are congruent to each other modulo
F(2,2).

The usual inductive technique (cf. (10.1)) allows one to conclude that

{L“ﬂt-HL””t—HHPUJ~2JJ+Lt+ﬂLHWt—th+Lt+ﬂ ¢ F(t,1)

ift > 2, and X is at least a (¢+2) x (t+2) matrix. Therefore the list of exceptional cases
in which (10.13) holds without an assumption on the characteristic of B, is complete as
given in (d) above. '

In (10.17) we shall se¢ that the precedinz computations shed some light on the
structure of the subalgebra of Z[X] generated by the f-minors of X, —
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(h) Under the hypotheses of (10.13) the ideal I,(X )* is generated as a B-module
by standard monomials. As the preceding example shows, this is not true in general
over Z, and not even over a field: [L 2 3[1 2 3]{4]4] appears with coefficient 1 in the
standard representation of [2 3|1 2][1 4|3 4], but [1 2 3j1 2 3][4}4] ¢ L(X)? if B is a field
of characteristic 2 and X (at least) a 4 x 4 matrix. —

Some of the consequences of (10.13) hold without an assumption on the characteristic
-of B,

- (10.15) Proposition. Let B be a noetherian domain, X an m X n matriz of
indeterminates.
{a) Let t < min(m,n). Then the ideals I;(X), 1 < j £¢, are associated prime ideals of
L(X)" fors > t.
(b) If B contains a field, then the associated prime ideals of I, (X) ...1, (X) are among
the ideals 1;(X), j = 1,...,maxt;. .

ProorF: B contains a field K, B[X]/I¢ (X)...I;(X) is 2 flat B-algebra, since
BIX)/Ty,(X).. L, (X) = (K[X/1,(X) .. Je,(X))®x B. The usual technique (involving
the fibers of B — B[X]/1, (X)...1, (X)) reduces part (b) to the case in which B is a field
itself. One now observes that 11 (X) is a maximal ideal and applies the usual inductive
trick of inverting an element of X.

Part (a) is a statement about the localizations of B[X] with respect to the prime
ideals 1;(X). Inverting B\ {0} first we may assume that B is a field again and use part
(b). Since an element of X is not contained in any of the ideals I;(X), 2 £ j £ ¢, it is
now enough to show that X1, say, is a zero-divisor modulo I, (X)* for s > ¢. Let X be
the (¢ + 1) x (¢ + 1) submatrix corresponding to the first ¢ + 1 rows and columns. One
has a natural inclusion B[X] — B[X] and a natural epimorphism B[X] — B[X] whose
composition is the identity on B[)‘f ]. As remarked above, the conclusion of (10.9) holds
for B[X] without an assumption on the characteristic of B. So Xy, is a zero-divisor mod
It(}? }* whence it is a zero-divisor modulo I(X)". —

As a consequence of (10.15) one has grade(L; (X), B[X]/L(X)*} = 0for 1 < ¢ <
min(m,n) and s > t. By virtue of (9.23) this implies

grade II(X)GI‘I‘(X)B[.X] =0.

One can say more:

(10.16) Proposition. Let B be a noetherian domain, X an m x n matriz of inde-
terminates, ¢ an integer, 1 < t < min{m,n}, I = I;(X), and A = B[X].

(a) Gr;A/1,(X)Gr A is isomorphic to the B-subalgebra S generated by the t-minors of
X.

(b) If t < min(m,n), the field of fractions of B[X) is algebraic over the field of fractions
of . Minors of size > t are even integral over S. '

(¢) If t < min{m,n), T}(X)Gr;A is a minimal prime ideal.

PrOOF: Part (a) holds more generally for ideals J of B[X ] which are generated by
‘homogeneous polynomials of constant degree. Then J¥/L(X)J* is isomorphic to the
B-submedule of B[X] generated by the products of length k in the generators of J, and
these isomorphisms are compatible with the multiplications J I (X)JEx IR {X)JIP —
TR LK)RHR, ot e
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It is enough to show (b) for (¢ + 1) x (¢ + 1) matrices X. The matrix Cof X of its
cofactors has entries in S and

(det X)* = det(Cof X} € &,

proving the second statement and implying that the entries of X ! = (det X)~!(Cof X)
are algebraic over the field of fractions of S. The extension field generated by them
contains the entries of X = (X 1)1, too, as one sees by taking cofactors again.

Part {c} concerns the localization of Gr;A4 with respect to I;(X)Gr;A. Since fur-
thermore the inversion of B\ {0} commutes with the formation of the associated graded
ring, there is no harm in assuming that B is a field. Dimension can now be measured by
transcendence degree. Hence

dim Gr; A = mn = dim Gr; A4/ (X)Gr;A. —

For 2 < ¢ < min{m,n) the ring Gry,(x,B[X] does not seem to have an attractive

structure. It is not even reduced: § € T,(X)\I.(X)?* for a (¢4+1)-minor 6, but &' € L,(X)"*?
(in arbitrary characteristic!), so (§*)t = 0.

(10.17) Remark. We know the structure of S very precisely in the trivial case
t =1, § = B[X], and the case ¢ = min(m,n), § = G{X). Another case is completely
explained by (10.16),(b): m = n =t + 1. In this case the t-minors of X are algebraically
independent. As in the proof of (6.1) it is enough to consider a field of coefficients, for
which the algebraic independence follows from (10.16),(b). By representation-theoretic
methods we shall show in 11.E that S is a normal Cohen-Macaulay ring over a field of
characteristic zero. In fact, there seems to be no characteristic-free access to the rings 5,
except in the special cases in which the primary decomposition of I,(X)*® is independent
of characteristic. Let Sp be the Z-algebra of Z[X] generated by the ¢-minors of X.
The example in (10.14),(g) demonstrates that Z[X]/Sy is not Z-flat in general. For
B =17/2Z, X at least a 4 x 4 matrix, and { = 2 the natural epimorphism S3/25; -~ § is
not injective, for its kernel contains the residue class of 2[1]1][2 3 4|2 3 4]. This element
is even nilpotent in So/25p!- Since

e=[111]{23 4|2 3 4] — [2]1][1 3 4|2 3 4] € F(2,2),
one has

2011?23 423 4]'*i = 2(f1]1][1 3 4|2 3 4])([2[1][2 3 4|2 3 4]}
' +2[1j1][23 4234]¢ € S,

by (10.11), and therefore 4[1]1]*[2 3 4{2 3 4]* € 25,.

D. Comments and References

The symbolic powers of the ideals I;,{X) have first been compited by de Concini,
Eisenbud, and Procesi {[DEP.1], Section 7). We have reproduced their proof in Subsec-
tion A. In [DEP.2], Section 10 it has been indicated how to consider the symbolic graded
* ring and the symbolic extended Rees algebra as an ASL. _
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The article [DEP.1] is the source for the primary decomposition of products of de-
terminantal ideals, too. Our proof of (10.9) seems to be new, however. Since it does
not depend on representation theory {different from the one in [DEP.1]), it allows us to
refine the hypotheses on the characteristic of the ring of coefficients. We have followed
[DEP.1] essentially in the determination of the irredundant primary components.

Proposition (10.16) has been observed in [CN].
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Though some of the results of this section hold over quite general rings B of coef-
ficients, we will assume throughout that B = K is a field which, in this introduction,
has characteristic 0. Let X be an m X n matrix of indeterminates, Ty € GL(m, K),
T: € GL{n, K'}). Then the substitution

X — T, XTy?

induces a K-algebra automorphism of K[X], and K[X] becomes a G-module, G =
GL(m, K} x GL{n, K). The group G is linearly reductive, and K[X] has a decomposition
into irreducible G-submodules. This decomposition is our main objective. Furthermore
the G-stable ideals of K[X] will be determined in conjunction with the characterization
of the prime and primary ones among them. In the last subsection we will indicate that -
important properties of the rings R,.1(X) and their subalgebras generated by minors of
a fixed size can be derived by the method of U-invariants, I/ being the unipotent radical
of the maximal torus'in a Borel subgroup of G.

A. The Filtration of K[X] by the Intersections of Symbolic Powers

The determinantal ideals I,{X), their products, and their symbolic powers are ob-
viously G-stable ideals. In this subsection we study a filtration of K[X] by certain
intersections of the symbolic powers. This filtration is an important tool in the investi-
gation of the G-structure of K[X]. In characteristic zero it coincides with the filtration
by the products of the ideals I,{X), cf. {11.2).

Whether a monomial p = §;...8,, 6; € A(X), belongs to the symbolic power

It(X)“‘) only depends on the size of its factors &;: By virtue of (16.4)
?
pELX)® = )= )2k
i=1

where
0 if &; is an s-minor, § < ¢,

;) =

(&) {s—t+l if 8; is an s-minor, 8 > ¢

It will be very convenient to extend the notion of size from minors’ to:monomials, for

which it is called shape. We arrange the factors §; such that their sizes form a non-

increasing sequence: §; is an g;-minor and s; > 8; if i < J. The shape of y is the

sequence ' ' o e
1”" = (31!"',31:)-
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More pictorially, the shape of a monomial can be described by a Young) diagram: The
" diagram corresponding to a non-increasing (!) sequence o = (51,..., 8p), simply denoted
by (s1,--.,8p), is the subset

{(G,7) €Ny x Nyt <3}

of N, x N,. One can depict such a diagram as a sequence of rows of boxes. For example
(6,4,4,1) is represented by:

' i

|

Ifo = (s1,--.,8p) With s, # 0 we call ¢; the number of the columns and p the number of
the rows of &. It is tacitly understood that the diagrams considered in connection with
K[X] have at most min{m,n) columns. :

Let ¢ = (s1,...,8p) and & a monomial of shape ¢. Without ambiguity we then
define 7:(c) by

Ye(e) = 1e(p)-

Obviously 7,{c) is the number of “boxes” of ¢ in its t-th column or further right.

The filtration we want to study is formed by the ideals

I(o’) - n It (X)(7=(°’)) ,
i

o Tunning through the diagrams with at most min(m,n) columns. As noted above, for
a monomial i one has

u € It9) == o) < 1(n) forallt.
This motivates the introduction of a partial order on diagrams:
o1 <o L= Telor) € 1foz) for all £.

As subsets of N, x N, the diagrams are also partially ordered by the inclusion C.
It is clear that < refines C.
Using the new notations, we recapitulate the main properties of 1t}

(11.1) Proposition. (a} I?) is the K -subspace of K|X] generated by the monomi-
als u of shape > o. ‘
(b} 1) has a basis given by the standard monomials of shape > o.
(c) 1) is @ G-submodule of K[X].
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For fields of characteristic 0 the ideal I!®) can also be described as a product of
determinantal ideals. Let I” be the ideal generated by all monomials of shape ¢ =

(31, - ,8p):

° = ﬁl,i(X).

(11.2) Proposition. Let o be ¢ dingram.
(a) I” is the K -subspace generated by all monomials 1 such that | D e. Itisa G-
submodule of K[X).
(b) If char K = 0, then I° = I(9),

PROOF: (a) is trivial and (b) follows at once from (10.9). —

B. Bitableaux and the Straightening Law Revisited

Let v be a monomial of shape o. Since I) has a basis of standard monomials, the
standard monomials p appearing in the standard representation

uzz.zmu., a, € K, a, #0,

all have shape > . This representation can be spiit into two parts:

= Z aujt+ Z Tyl

lul=a lpl<e

In order to analyze the G-structure of K [X], we need some information about the first
of these summands. In some sense it can be computed by a seperate consideration of the
“row part” and the “column part” of v (cf. (11.4),(c)). For this purpose we need a more
flexible notation.

Let & be a diagram. A fableau T of shape o on {1,...,m} is a map

Lio—{1,...,m}.

Pictorially, ¥ “writes” a number between 1 and m into each of the “boxes” of . An
example:
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is a tableau of shape (5,4,2,1) on {1,...,7}. A bitableau (Z|T) of shape o is a pair of
tableaux £, T of shape o. In the following it is always understood that T is a tableau
on {1,...,m}, while T has values in {1,...,n}. It is clear what is meant by a row of a
tableau.

The content c¢(E) of a tableau £ is the function that counts the number of occurences
of a number in a tableau:

e(B)(w) = 1{(i,5): (i) = u}-

The content c(%]T) of a bitableau is the pair (c{Z)|c(T)).
To each bitableau we associate an element of K[X] in the following manner:

(Z|T)=61...6
where p is the number of rows of & (or T) and §; the determinant of the matrix

(26 IWTEE)]: § =1, 8p k= L.0es8p)

Up to sign, (£|T) (as an element of K[X1) is a monomial which has the same shape as
(Z|T).

A tableau is called stendard if its rows are increasing (i.e. (i, 4) < {4, k), T(G, i<
T(4,k) for j < k) and its columns are non-decreasing. A standard bitablean is a pair of
standard tableaux. Obviously the standard bitableaux are in bijective correspondence
with the standard monomials. Therefore we can reformulate part of the ASL axioms for
K[X] in the language of tableaux. On this occasion we note an additional property of
the standard representation:

(11.83) Theorem. Each bitableau (T|T) (satisfying the restrictions due to the size
of X ) has a representation '

(BIT) = Y eBTi), @i €K, a #0, (ZdT;) standard.

Furthermore ¢(B|T) = c(Z;|T;) for all i.

The last statement can be derived from the straightening procedure: an application
of a Pliicker relation only renders an exchange of indices, none gets lost and none is
created (neither in G(X) nor in K[X]). A direct proof: In order to test the equality
(c(EN(u) = (¢(Ti})(u) one multiplies the row © of X by a new indeterminate W and
exploits the linear independence of the standard bitableaux (monomials) over K [W] (One
can further refine (11.3) by extending the partial order < from diagrams to tableaux,
ef. [DEP.1}.)

The tableaux ¥ of shape ¢ on {1,...,m} are partially ordered in a natural way by
component-wise comparison. The smallest tableau K, with respect to this partial order
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is called the fnitial tableau of shape ¢, while the maximal one K, is called final:

1 213 4 5 |- m—4|\m-3im-2Im-1| m

1 2 3 |- m—3|m-2im~-1{ m
Ke={ 1| 2] Ko=| -+  m-3m=2/m—1| m

1 m-1l m

A bitableau is leff (right) initial if it is of the form (Ko|T) ((£|K4)). The left and right
final bitableaux are defined correspondingly. We put .

Ay, = (KulKa) and Ka = (Kalﬁc)

where K, is of course a final tableau on {1,...,n} if it appears on the right side of a
bitableau. A last piece of notation:

1
is the K-subspace generated by all (standard) monomials of shape > ¢ (and thus an
ideal).

(11.4) Lemma. {a) 4 left initial bitableau (K, |T) has a standard representation
(KoIT) = Y ai(K,IT:).

Analogous statements hold for “right” in place of “left” and final bitableauz.
(b) With the notations of (a) one has for every tableay T of shape o:

(ST) =3 0i(2IT;) mod I
i
(¢} If furthermore (Z|K,) = 2,‘ b;(Z;{K;) is the standard representation of (E]K,), then

(Z|T) = Za;b,-(E,-]T,-) mod I(;).
ivj

PrOOF: (a) K, is the only standard tableau which has content ¢(K,). So part (a}
is a trivial consequence of (11.3). ‘

{b) holds trivially if T is a standard tableau. If not, we may certainly assume that
the rows of T and T are increasing, and we can switch to the language of monomials.
Let ‘ :

(KeIT) = 81...6,, 5 € A(X), 16 2 |6:isal.
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In the proof of {4.1) every monomial has been assigned a “weight”. This is increased by an
application of the straightening law: if one replaces a product &;4; of incomparable minors
by its standard representation and expands the resulting expression, the monomials on
the right hand side have a higher weight. This leads to a proof by induction as we shall
see below.

First we deal with the crucial case p = 2. Let

=668 = [al,...,aulbl,...,bu][cl,...,c,,|d1,...,d,,], u > v.
The corresponding left initial monomial is
€162 =[1,...,uibl,...,bu][l,...,'u|d],...,d,,].
As in Section 4 we relate K [X] to G(X). Then
£182 = [b1y. .-y bu,nt 1,...,n+m—ulld,...,dp,n + 1,...,n+m—2u]

Assume that b; < d; for i = 1,...,k, but bey1 > disar- In order to straighten the
product £€; one applies a Pliicker relation from (4.4) as in (4.5). The “same™ Pliicker
relation is applied to 6132, and the crucial point is to show that any formal term on
the right hand side o~f the relation for £18, which drops out for this choice of minors,
also drops out for 3162 or gives a term of shape > |6162] back in K[X ]. Observe in the
following that the indicesn+1,...,n+tm—7 of the second factor are not involved in the
exchange of indices within the Pliicker relation. If a formal term vanishes for £;€2 because
of a coincidence among the indices by, ..., by, d1,--- ,dy, it also vanishes for §162. it is
zero because of a coincidence among the indices n+1,...,n+m —u, n+1,...,n4+m—v
then one of the indices n + 1,...,n +m — u must have tra.vgll‘gd from the “left” factor to
the “right” factor. Of course this term may drop out for 6182, too; if not, it forces the
“right” factor to be a minor of smaller size in K[X], as desired.

The preceding arguments have proved the following assertion: Theré are elements
fi € K such that

£1€2 = Z fiirizs

hb2 = Zfivuviz mod 19616’”,
i

£i; has the same row part as €, V;; has the same row part as §;, and the column parts of
¢;; and v;; coincide, j = 1,2; furthermore the column parts of £;; and ;2 are comparable
in the first k + 1 positions. Therefore induction on k finishes the case p = 2.

Now we deal with the general case for p. Suppose that the column patrts of é; and
6x41 are incomparable. Let (Ko|T) = £1...&p. Then the {column parts of) ez and &xa
are incomparable, too, and we substitute the standard representation of ex&x41 into the
product €1 ...6p:

€1...Ep= Z fier .- er_1£n1&2Ektz .- Epe

3
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From the case p = 2:

61 e (SP = Zfi‘sl v 6k—1vilvi26k+2 .. 6p mod 61 . 6k_16k+2 I 6p Igﬁkslﬂ'l h

where the row and the column parts of Eky €411 0k Ok 11,55, 045 are related as above.
Since : : ‘
: S T Optz .- 6p Igéhﬁﬂ'l Y - I(;),

the result follows by induction on the “weight” as indicated already.
Part (c) results immediately from (b) and its “right” analogue. —

C. The Decomposition of K[X] into Irreducible G-Submodules

Let now L, be the K-subspace of K[X] generated by all the right injtial bitableaux
of shape o, and ,L the corresponding object for “left”. L, is certainly a GL(m, K)-
submodule of K{X], and ,L is a GL(n, K )-submodule. Letting G act by

(g)h)(zl @ z2) = g(z1) ® h(“’z)a z1 €Ly, 23 €4L, g€ GL(maK): he GL(?’L,K),

one makes L, ® ,L. a G-module.

(11.5) Theorem. (a) ,L has a busis given by the standard bitableauz (Ks|T). A
corresponding statement holds for L.
(b) There is a G-isomorphism ¢: L, ® ,L — I(")/Igf) such that

P((Z|K,) ® (K,|T)) = (Z/T) + I

Jor all taﬁleau:z: 2, T of shape o.

PROOF: Part (a) is proved by part (a) of Lemma (11.4). Restricting the formula in
(b) to the standard tzbleaux one therefore defines an isomorphism of K-vector spaces,
whereupon the formula is valid for all tableaux because of part {¢) of (11.4). Evidently
v is compatible with the actions of G on L, ® ,L and I¢) /1 resp. —

Next we analyze the structure of ;L and L,. On the grounds of symmetry it is
enough to consider ,L. For reasons which will become apparent in Subsection E below,
it is useful to investigate the action of the subgroup U~ (n, K) which consists of the lower
triangular matrices with the entry 1 on all diagonal positions. The subgroup U*(n, K)
is defined analogousty. ‘

Again the crucial argument is given as a lemma.

(11.8) Lemma. Let K be an infinite field. Then every nontrivial U (n, K)-sub-
module of K|X] contains a nonzero element of the K -subspace generated by all {standard)
right final bitableaus. C

Proor: For the prdof of the linear independence of the standard monomials in
G(X) we have studied the effect of the elementary transformation g,

Xoo = Ko fortdio, Xeo 2 Xogt WXijoy Wao W,

on & linear combination 37 g a,u of standard monomials, cf. 4.C; W is a new indeter-
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minate, and (%g, jo) is the lexicographically smallest special pair occuring in the factors
of the monomials g € S. Let now & = [ay,...,a¢lbr, ..., 0] € A(X). Then we say (in
this proof) that (i,5), i < j, is column-spectal for §ifi € {bry..-sbe}y § & {brs.-. be}
Consider an element 3, gaup of K [X] given in its standard representation. If j > n
for every column-special pair appearing in the factors of the monomials 4 € S, then
each u € S corresponds to a right final bitableau. Otherwise we take (ig, jo) to be the
texicographically smallest of all the column-special pairs (1,4) with j < n (as far as they
occur *in ™). As-in Section 4 we define

(5) = { § if kiu, jo} is not column-special for 4,
T 1 § with iy replaced by jg in the column part (and ordered again) otherwise,
$(p) = B(61) ... B{6u) (1 =261...64, 6 € A(X)),

w(pe) = |{k: (40, o) is column-special for &x}|.

We leave it to the reader to check that the analogue of Lemma (4.8) holds:

() Let 7,6 € A(X) be factors of € §. If v < 6, then ®{y) £ &{8).

(5) For u € S the monomial ®(x) is again standard. '

(%) Let g, v € S such that v(p) = v(v). If p # v, then ®(p) # B(v).

Put vy = max{v(g): z € S }. Then for the elementary transformation o above one has
as in Section 4 ' :

vg—1
oY aupn) = W™ 3 abw)+ D Wiy, i€ K[X],
peSs . BESy 1=0

where So = {4 € § : v(s) = vp } is nonempty and the standard monotmials ${u), 1 € Sy,
are pairwise distinct. Furthermore the lexicographically smallest among all the column-
special pairs (¢,7), j < n, occuring “in S, is greater than {40, jo), provided there is left
such & pair. .

Now we replace the indeterminate W by an element w € K, obtaining an element
0w € U™ (n, K), and '

' Ug—l
am(z aup) = Fw™ Z au®{u) + Z w'y , w € K[X]
Hes #E So i=0

Let V be the U™ (n, K)-submodule generated by 3 a,p. It is enough to show that
Yo pes, anPlp) €V, and now the hypothesis that K is infinite plays an essential role: If

Soie wiz; = 0 for vectors zg,...,2, in a K-vector space and all w € K, thenzp = -+ =
z, = 0. Apply this to K[X)/V. —

(11.7) Proposition. Let K be an infinite field.
(a) Then every nontrivial U~ (n, K)-submodule of <L contains (K, |K,).
(b) oL is U™{ri, K)-indecomposable: it does not contain e nontrivial direct U (n,K)-
summand. All the more, it is GL(n, K)-indecomposable.
(¢) If char K = 0, then ,L is GL{n, K')-irreducible: it-does not contain a nontriviul proper
GL{n, K')-submodule.
Analogous statements hold for U*(n, K), U™ (m, K), end U*{m, K).



C. The Decomposition of K[X] into Irreducible G-Submadules . 143

PROOF: Part (a) follows directly from (11.4),(a} and thé' preceding lemma, (b) is
an immediate consequence of (a), and (c) results from (b) since GL(n, K) is linearly
reductive if char X = 0. —

It is easy to see that (11.7),(c) is wrong in positive characteristic p. The case m = 2,
n = 1 provides a “universal” counterexample: Consider the subspace generated by the
p-th powers of the indeterminates; it is a GL(2, K )-subspace of Ly, ¢ = (1,...,1), because
of the mathematics-made-easy binomial formula for p-th powers in characteristic p.

(11.8) Corollary. Let K be an infinite field, and o, diegrams. Then L and L
are isomorphic as GL(n, K)-modules if and only ifoc = 1. An analogous statement holds
for Lg, L., end GL(m, K).

PROOF: One has to show that ¢ can be reconstructed from the GL(n, K)-action
on oL. The K-module of U~ (n, K)-invariants of ,L is one-dimensional, generated by
(K+{Ke) because of (11.7),(a) and the definition of ;L. Consider the subgroup D(n, K)
of diagonal matrices in GL(n, K}, and let d;,...,d, be the elements in the diagonal of
d € D{n, K}. Then

13

() d(Kq|K,) = (] d7*)(K,K,)

i=1

where e; is the multiplicity with which the column index i appears in K,. Conversely,
the exponents ¢; are uniquely determined by the equation (*) if 4 runs through D(n, K).
They in turn characterize ¢. —

(11.8) Remark. It is a fundamental theorem of representation theory that the
representations GL{m, K') — GL(L,), ¢ running through the diagrams with at most
columns, are the only irreducible polynomial representations of GL{m, K) over a field of
characteristic zero. (A representation GL(m, K) ~— GL(V) is polynomial if it is given
by a polynomial map in the entries of the matrices in GL(m, K).) For the representation
theory of GL(m, K) the reader may consult |Gn]. —

As a preliminary stage to the G-decomposition of K[X] we shall study its decom-
position over GL(m, K') and GL(n, K}. Let H be a linearly reductive group and V an
H-module. Then V decomposes into the direct sum @ V,,, where V,, is the submodule
formed by the sum of all irreducible H-submodules of V' which have a given isomorphism
type w. V, is called the isotypic component of type w. (Of course V,, = 0 if none such
submodule occurs in V.) As a consequence every H-submodule I/ C V decomposes into
the direct sum P U, U, =UNV,,.

(11.10) Proposition. Let K be a field of characteristic 0, and M, denote a G-
complement of I in I#),
(a) Then K[X] = @M., the sum being extended over the diagrams o with at maost
min{m,n) columns.
(b) M, is the isotypic GL(n, K)-component of K[X] of type L, as well as the isotypic
GL{n, K)-component of K[|X] of type ;L.

(c) Therefore M, is the unique G-complement of 1" in 1=,
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PROOF: By (11.5) the GL({m, K)-module M, is a direct sum of GL(m, K)-modules
of type Lo, and L, is irreducible, cf. (11.7),(c). Since L, and L, are non-isomorphic
according to (11.8), one has '

M, N EM,. =0,
T'T"p'

as discussed above. The rest of (a) is a dimension argument: Let d be the degree of a
monomial of shape o; since L, C M,, the elements of M, have degree d, and M, has the
same dimension as the K-subspace V, generated by the standard monomials of shape o,
{cf. (11.5) again). Furthermore the d-th homogeneous component of K[X] is the direct
sum of the subspaces V,, the sum being extended over all the diagrams o with exactly d
boxes {and at most min{m,n) columns).

Parts (a) and (b) have been proved now, and the uniqueness of M, follows directly
from (b). —

The main objective of this section is of course the following theorem which reveals
the G-structiire of K[X] in characteristic 0.

(11.11) Theorem. Let K be a field of characteristic 0.
{a) Bvery nontrivial G-submodule V' of M, contains Ay = (K, |Ks) (and A, = (K, |Kq))-
Therefore M, is irreducible as a G-module. _
(b) The direct sum K[X] = @M, is a decomposition into pairwise non-isomorphic
irreducible G-modules.

PROOF: Only (a) needs a proof, since (b) follows directly from (a) and the preceding
proposition. Let U = @L,. By virtue of the U*(n, K)-variant of (11.8) we have V N
@ L, # 0. The only isotypic component L, of U which can intersect M, nontrivially,
is L,. Thus L, C V, and, a fortiori, A, € V. (Here we use of course (11.7},(c} and
(11.8).) —

(11.12) Remark. Let K be a field of characteristic 0. One should note that M,
is generated as a G-module by any left (or right) initial (or final) bitablean (Z|T) of
shape o since, as above, L, and ,L and their “final” analogues are contained in M. On
the other hand the G-module generated by an arbitrary bitableau of shape o, even a
standard one, always contains M,, but may be bigger. It contains M, since it is part of
I*) an@ not contained in I, As an example, consider m = 2, n = 2, and let V be the
subspace of homogeneous polynomials of degree 2 in K[X]. Then

V =M@z ®Mu,1,

M(z) has the basis [1 2|1 2], and M ;) has the basis
GG, [lElsle),  4bikmyst € {1,2}),
[1{1]2(2] + [2[1](1[2].

As a G-module V is generated by [1]1]{2]2], for example. —

In an application below it will be useful to have at least an upper approximation to
the G-module generated by a bitabieau.
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(11.13) Proposition. Let (XT) be a bitableau of shape o, and § be the set of
diagrams 7 (with at most min(m,n) columns) such that (i) 7 > o, and (ii) there is
standard bitableau (X'|1') of shape T with the same content as (B|T). Then (the G-
submodule generated by) {Z|T) is contained in P M,.

rcs

PROOF: Let S’ be the set of all diagrams 7 such that 7 2 o and there 15 a standard

bitableau (Z'[T) of shape 7 with ¢(Z') = ¢(%). By symmetry it is enough to show that

(ZIT) € DM,
eS8’

Descending inductively with respect to <, we may further suppose that all the bitableaux
(Z'|T") of shape > & and with ¢(Z') = ¢(X} are contained in

N,= P M.

TES >0

Let now V be the K-subspace generated by all bitableaux (ZIT"), T' a standard
tableau of shape ¢. V is a GL(n, K)-submodule, as well as V + N. Arguing inductively
via (11.4),(b) and (11.3) one has (Z[T) € V + N;. Because of (11.4),(b) again, the
assignment :

(Ko |2) — (Z|E), Z astandard tableau of shape o,

defines an isomorphism ,L — (V + N.)/N’ . Therefore
V+N,~ LeN,

as GL(n, K')-modules. Every GL(n, K)-submodule of K [XT] of type ,L is contained in
M,, so (£|T) € M, & N/, as claimed. — ,

At this point the reader should note that the attributes “initial” or “final” could |
always have been replaced by “nested”: A tableau ¥ of shape o = {s1,...,3,} is nested
if

{2G,7): 1</ <8} D {Zhi):1<j <o}
forall 4,k =1,...,p,i < k.

D. G-Invariant Ideals

In this section X has characteristic 0 throughout. In the decomposition K[X] =
€ M, the irreducible G’-submodulgs are pairwise non-isomorphic. - Therefore every G-
submodule of K[X] has the form
P

cES

for some subset § of the set of diagrams (with at most min(m,n) columns). As a
remarkable fact, the ideals among the G-submodules correspond to the ideals in the set

1
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of diagrams partially ordered by D: § is called a D-ideal if it satisfies the following
condition:
g€S, rD0 = TES.
(11.14) Theorem. Let K be a field of characteristic 0. Then a G-submodule

@ M, is an ideal if and only if S is @ D-ideal.
ceS

The theorem will follow at once from the description of the G-submodules I, corre-
sponding to the “principal” D-ideals given in {11.15): For a diagram o we put

Obviously
I € I) = EPM..

T2

The determinantal ideals I.(X') are given as
L{X) =1Ly

whiere (£} is the diagram with a single row of { boxes. (One applies (11.14} or observes
that 7 D (¢) if and only if 7 > (¢).)

(11.15) Proposition. I, is the ideal generated by M. It is the smallest G-stable
ideal containing As.

PROOF: Since A, generates the G-module My, it is enough to prove the first state-
ment. Let J = M, K]X]. Then J is a G-stable ideal. If we can show that A, € J for the
upper neighbours T of ¢ with respect to C, then I, C J follows by induction. An upper
neighbour of 7 differs from & in exactly one row in which it has one more box (including
the case in which o has no box in the pertaining row). Let ¢ = (815+++48p), allowing
s, = 0. Then 7 = (f1,... yip) with & = ap +1 for exactly one k, and {, = s; otherwise.
We switch to monomials:

Ao-=61...63,, 61':[1,..-,31']1,...,8,'_].

Then

Ar = ([] 6900 rse + 1L,y 56+ 1]

ik
a1 .
=([]6) 3 #0ilse + 1ML, 5 vase + 1Ly ]
£k j=1
sn+1 .
=Y +ilse + Y] 60007 cr s+ 1L i)

j=1 izk

The bitableau corresponding to ({T]; . 6:)[L,- - s+, 8]) isin LS CM,.
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The converse inclusion J C 1, is proved once we can show that
(1) [ili]As € L,

for all entries [Z|7] of the matrix X, since first every element of M, is a K-linear combi-
nation of G-conjugates of A,, and secondly I, C L, for 7 O ¢. Write [l71As = (Z|T) as
a standard bitableau, and let & be its shape. It is an easy exercise to show that + O ¢
for every diagram 7 such that (i) 7 > & and (ii) there is a standard bitableau (Z'|T} of
shape 7 such that ¢('|T") = ¢(E|T). Now the desired inclusion results from (11.13). —

The preceding theorem sets up a bijective correspondence

S «— I(S)= PM,
. a8
between D-ideals S and the G-stable ideals of X [X]. This correspondence preserves
set-theoretic inclusions, and makes the set of (-stable ideals a distributive lattice, trans-
ferring N and U into the intersection and ‘sum resp. of ideals. In order to carry the
correspondence even further we define a multiplication of diagrams: For o = (s,,...,5,)
and 7 = (t1,...,1,)

aT
is the diagram with row lenghts 815445 8p, 01, .., g arranged in non-increasing order.
Obviously one has
(*) AeAr = A,

and this equation makes it plausible that there is a correspondence between the multi-
plicative properties of D-ideals and their counterparts in K[X].
A D-ideal S is called

radical if (¢c* €85 = o€ 5),

prime if (67T€8 = oc€Sorrey),

primary if (67€S5, 0¢85 = %€ § for some k).
Furthermore one puts Rad S = {o: ot € §}. Obviously Rad S is a D-ideal.

(11.18) Theorem. Let K be a field of characteristic 0. A D-ideal S is radi-
cal, prime or primary if and only if I(S) has the corresponding property. Furthermore
I{Rad S) = RadI{S), and the only G-stable radical idecls are the prime ideals L(X).

PrOOF: The equation (+) above immediately guarantees the implication “<=" in
the first statement, as well as the inclusion I{Rad S) C RadI{9).

Let now S be an arbitrary D-ideal # @, and choose ¢ € § such that o has its first
row as short as possible, ¢ = (¢,...) say. Then (t}* € S for k large, and obviously
Rad§ = {7: 7 > (t}}. Thus every radical D-ideal is prime and of the form {r:7D(t)}
for some ¢. Furthermore, since I,(X) is a prime ideal,

I(X).= I(Rad $) C Rad1(S) C RadI{Rad §) = I,(X),

proving I{Rad §) = RadI{S) and the third claim. L

It only remains to show the implication “ =" in the first statement for the prop-
erty “primary”. We shall however prove this implication completely without using that
the ideals I,(X) are prime ideals, obtaining a new proof of the latter fact for fields of
characteristic 0. '
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(11.17) Lemma. The associated prime ideals of a G-stable ideal are themselves
G-stable. ‘

Before proving {11.17) we conclude the proof of (11.16). Suppose that S is primary.
Tt follows from the lemma and the arguments above that the associated prime ideals
of I{S) are among the ideals 1,{X} (regardless whether these ideals are known to be
prime). In order to obtain a contradiction we assume that I(S) is not primary. Then
Rad(I{S)) = L(X), say, and 1(§} has another associated prime ideal I,(X). The latter
annihilates the ideal J = I{S) : I,(X) modulo I{S), J C I,{X) and J containing 1(5)
strictly. Since I,(X) and I{S) are G-stable, J is (G-stable, too, and thus contains an
irreducible G-submodule M,, 7 ¢ S. So AwyA, € LI(8), (u)T € 5, (u) ¢ Rad S, 7 ¢ 5,
contradicting the hypothesis that § be primary. Let now S be even prime. Then I(5) =
I,{X) for some ¢, and I[;(X) is at least primary by what has just been shown. If it is not
prime, then RadL,{X) = L,(X} for some u <{, implying (u)* € S for some k; however
(u) ¢ 5. —

PROOF OF (11.17): Let Pi,..., P be the associated prime ideals. The action of
an element g permutes the set {Py,..., P,}. Let

Aiz{gEG:g(Pl)zPi}-

Then A; N A; = for i # j, and 4, U--- U Ay =G As an affine algebraic set G is
connected, and the A; are Zariski-closed subsets of G. Now A; # 9, and s0 g(P1) = P
for all g € G. (Cf. [HR], Lemma 10.3 for an explicit statement of the arguments just
used.}) —

Let I = @ M, be a G-stable ideal. Let T be the set of minimal elements of S with
L4
respect to C. Then by (11.14) one has

I=>__:I,,,

ceT

and this description is obviously irredundant. Furthermore T must be finite. The {radical
and, therefore,) prime ideals among the G-stable ideals have been determined already,
and it remains to characterize the primary ones.

(11.18) Proposition. Let K be a field of characteristic 0, and I C K[X] a G-
stable ideal written irredundantly as I = 3, o7 Lo as above. Let t be the shortest length
of a row of any of the diagrams ¢ € T. '

(a) Then I is primary if and only if some o € T is rectangular of width ¢, ie. 0 =
(t,...,t). In this case Rad I = L(X).
(b) 1, is primary if and only if o is rectangular.

PROOF: In view of (11.16) one has to show that the given condition is equivalent
to S = {o: A, € I} being a primary D-ideal. Suppose first that S is primary, and let
g €T, o= (s1,-..,8p), $p = £. Then (51,...,8p-1) € S, but (815...,8p1){t) € 8,
and so (t)* € § for some k. Now thereisa7 €T such that (£)* D 7, and 7 must be
rectangular of width ¢t. Conversely assume that there is a o € T, o rectangular of width
t. Then Rad$ = {7: 7 D (t)}. If 172 € S, then at least one of them has a row of length
> t, and so is in Rad S. (b) is a special case of {a). —
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An immediate consequence:

(11.19) Corollary. Let ¢ be a dicgram and ty,... b5, t; > -+ > tk, the numbers
which occur as row lengths of o. Let o; be the largest rectangular diegram of width ¢;
contained in ¢. Then 1, = L, N---N1,, i an irredundant primary decomposition, and
L, (X),.- ., 1, (X) are the associated prime ideols of 1.

The preceding discussion may suggest that the G-invariant ideals are very manage-
able objects. To some extent, however, this impression is deceptive: we do not have a
description in terms of generators, say. Vice versa, it can be quite difficult to describe the
D-ideal corresponding to a very “concrete” ideal, for example a power of L:(X), without
having a primary decomposition. In principle this can be done by purely representation-
theoretic methods, cf. the following remarks.

(11.20) Remarks. (a) The first problem remaining open in the consideration above
is how to determine the D-ideal § such that I,I, = @ M,. It has been solved in [Wh],
peES :
at the expense of more representation theory.
(b) Another problem is the primary decomposition of an arbitrary G-invariant ideal.
There is at least an algorithm by which it can be computed, cf. [DEP.1], p. 153.

(c) The combination of the methods mentioned in (a) and (b) should lead to a
primary decomposition of the powers of the ideals L,(X), including the determination of
the symbolic powers (in characteristic 0). In [DEP.1] one finds a “mixed” approach: the
symbolic powers are determined as in Section 10, whereas the proof of {11.2) is based
on representation theory. The reader consulting [DEP.1] should note that Lemma 6.2 of
[DEP.1] is covered by the case ¥ = u of (10.10).

(d} A remarkable fact: 1) is the integral closure of I, cf. [DEP.1], Section 8. This
is the key to the computation of the integral closure of an arbitrary G-stable ideal also
given in [DEP.1]. —

E. U-Invariants and Algebras Generated by Minors

In Subsection 7.D we have outlined that certain properties of a K-algebra R are
inherited by the ring RS of invariants, the linear algebraic group G acting rationally on
R as a group of K-algebra automorphisms. Here we want to study a situation in which
the direction of inheritance can be reversed. Let B C G a Borel subgroup and I/ the
radical of the maximal torus in B (cf. [Hm] and [Kr] for the notions of the theory of
algebraic groups). Then R shares important properties with the ring RY of U-invariants:

(11.21) Theorem. Let K be an algebraically closed field of characteristic 0,Ga
(linearly) reductive linear algebraic group acting rationally on a finitely generated K-
algebra R as a group of K-algebra automorphisms, and U as above.

(a) Then RY is a finitely generaled K -ulgebra.
(b) B is normal if and only if RV is normal. ‘
(¢) R has rational singularities if and only if RV has rational singularities.

Cf. [Hd] and [Gh] for (a}, [LV] for (b}, and [Bn] for (c); (a) and (b) are also proved
in [Kr]. P

In our case (¢ = GL{m, K) x GL(n, K) acts on K[X], and a suitable subgroup U is
given by U™ (m, K} x U*(n, K), the Borel subgroup being the direct product of the lower
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triangular matrices in GL(m, K) and the upper triangular matrices in GL(n, K}, and the
maximal torus being formed by the direct product of the subgroup of diagonal matrices.
The results of Subsection C below make the computation of K[X]V a very easy problem.
There is of course nothing to learn about K[X] from (11.21), but we can simultaneously
study the induced action of G on R,.+1(X), and even further that on the subalgebras of
R,.1(X) generated by the minors of fixed size ¢ (of the matrix of residue classes).

(11.22) Proposition. Let K be a field of characteristic 0. Then the ring of U-
invarionts of Rep1(X), 0 € 7 € min(m,n), is generated by the “initial” minors b =
(1,...,k{1,...,k], 1 € k < r, and therefore a polynomiel ring in r indeterminates.

ProoF: Let D, denote the set of diagrams with at most r columns. Since, as a
G-module, :

Rr41(X) & (D M.,
veD,

the first statement is equivalent to: The subspace V of U-invariant elements in M, is
one-dimensional and generated by A, = (Ko|K,). The U*(n, K)-variant of (11.7) implies
that V C L, and its U~ (m; K)-variant forces V C L, hence V C Ly 0 oL = KA,. On
the other hand A, is a U-invariant. The second statement is obvious: Every monomial
in the “initial” minors is standard. —

In conjunction with (11.21) the preceding proposition yields a representation-theo-
retic proof of the normality of the rings R...1(X), and a new proof for the rationality of
their singularities (cf. also (7.11)) including the Cohen-Macaulay property. (Normality
and the Cohen-Macaulay property descend if one restricts the field of coefficients.)

Let § C R,41(X) be the K-subalgebra generated by the t-minors, ¢ fixed, 1 < ¢ <.
If t =1, then § = R,41(X), and if ¢ = r, then § is a subalgebra of maximal minors,
cf. Subsection 9.A. These rings can be considered well-understood over every ring of
coefficients, as well as the case m = u = r, { = m — 1. Under the latter hypothesis §
is a polynomial ring over K, cf. (10.17), where it has also been pointed out that there
seems to be no characteristic-free approach to the rings .S in general. Using the theory of
U-variants we can prove that all these rings S behave well in characteristic 0. However,
we have to draw heavily upon the theory of rings generated by monomials, as developped
in [Ho.2], and the results of [Ke.5] and [Bt}.

Let ¥7,...,Y, generate the free commutative semigroup Ninu variables, the com-
position written multiplicatively. We consider the elements of N as monomials in the
variables ¥1,...,Yy. Let M be a subsemigroup.

(2) M is called normal ([Ho.2]) if it is finitely generated and if the equation mv* = p* for
elements 7, v, & € M implies that 7 = p* for some p € M. It is called a full subsemigroup
([Ho.2]), if wv = p for v, € M, 7 € N implies that # € M. If M is a finitely generated
radical subsemigroup (7* € M = 7w € M) then M is certainly normal.

(b) A normal subsemigroup M of monomials can be embedded into a (possibly different)
free commutative semigroup N’ generated by variables Zy,...,Z, such that it is a full
subsemigroup of N'. Cf. [Ho.2], Proposition 1.

(c) Let B be an arbitrary commutative ring, and M a full semigroup of N. Then the
B-submodule generated by all the monomials » € N \ M is obviously a B[M]-submodule
- of B[Y,...,Y,], and on¢ has a Reynolds operator B[Y,...,Yy] — B[M].
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(d) Let K be a field, and M a normal semigroup of monomials. Then K[M] is normal
([Ho.2], Propesition 1) and a Cohen-Macaulay ring. This is the main result of [Ho.2],
but follows (now) directly from (b), (c), and [Ke.5], Theorem 0.2: Because of (b) and {c)
K[M] is a finitely generated pure subalgebra of K[7,,...,2,).

{e) If K is a field of characteristic 0, then the last-mentioned fact implies that K[M] has
rational singularities by the main result of {Bt].

(11.28) Theorem. Let K be a field of characteristic 0, X an m X n matriz of
indeterminates over K, R = Ry (X),0<r< min(m,n), and t an integer, 1 < ¢ <r.
Furthermore let S be the subalgebra of R generated by the t-minors of the matriz of residue
classes. Then 8 is a normal Cohen-Macaulay domain. It has rational singularities if K
is algebraically closed. o

PROOF: In view of the preceding discussion it is enough to show that the ring of
U-invariants of § is of the form K[M] for a normal semigroup M of monomials. Let A be
the ring of U-invariants of R. It is a polynomial ring in the “initial” minors ;,...,6, € R
of X by (11.22).

Let J = I,(X)/1,+1(X). Then, with R; denoting the j-th homogeneous component
of R, one has

§= @(RJ‘: nJ7)
b

Since Rj; and J7 have a basis consisting of the standard rnonomials they contain,
the same is true for 5, and consequently for AN S, the ring of U-invariants of §. So ANS
is of the form K[M], M being a subsemigroup of monomials in 61,...,6.. (11.21),(a)
implies that M is finitely generated. {This can also be proved directly.) Now

61,8k e s

if and only if

™

(1) > iki=0 mod¢

iz}

and, with the notations introduced below ( 10.2) and above (10.9),

(2) ;k{'ﬁ(&i) > %(Eiki)e(j,t), i=1,...,7

i=1

because of (10.4) and (10.13). The monomials satisfying (1) certainly form a full subsemi-
group, and those satisfying (2) a radical subsemigroup. Being finitely generated and the
intersection of a full subsemigroup and a radical subsemigroup, M is clearly normal. —

We don’t see how to avoid the detour via the U-invariants in the proof of (11.23).
None of the extensions § — R.;1(X), SN A4 — A has a Reynolds operator in general;
they are not even pure extensions: there are ideals 7 in S such that J R (XN 8§ #
1. As an example take m,n > 3, ¢t = 2. Then [1[1]> ¢ S, [1 2 3]1 232 € § and
[11]2[1 2 3]1 2 3]* € S. In particular the application of Hochster’s.results on normal
semigroups seems to be essential,
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F. Comments and References

We cannot comment adequately on the representation-theoretic context of Theorem
(11.11) here, instead we refer the reader to [ABW.2] (where the decomposition of K[X]
is derived in a different way), the introduction of [DEP.1], and [Gn]. Apart from some
details of the proofs, our treatment follows [DEP.1] closely. We have added {11.13) which
is only implicit in {[DEP.1]. One of the main applications of (11.11) in [DEP.1] is the pri-
mary decomposition of products of determinantal ideals for which representation theory
is dispensable however, as seen in Section 10. We have already pointed to Whitehead’s
solution {[Wh]) of a problem left open in [DEP.1}, cf. (11.20),{a).

References to the literature on U-invariants have been given in Subsection E. The
inclusion of the method of U-invariants has been suggested by Kraft’s book ([Kr]). The-
orem (11.23) seems to be new.



12. Principal Radical Systems

All the results in the Sections 4 - 11 depend on standard monomial theory, and
therefore have a combinatorial flavour. The first (published) proof of the perfection of
determinantal ideals, given by Hochster and Eagon in [HE.2], aveids the use of standard
monomials. It is “pure” commutative algebra, and may to some extent be rated simpler
than the ASL approach. Tt has been employed in the investigation of other classes of
ideals, too, and is of principal importance. Therefore we develop it in detail, although
we cannot derive essential new results about determinantal ideals.

The proof of perfection uses the same inductive reasoning as the proof in Section 5. It
is based on two auxiliary arguments: (i) A certain element z is not a zero-divisor modulo
an ideal I; (ii) an ideal I is represented as I = I, N I, (with additional information on
I +I). Whereas the validity of these auxiliary arguments is quite obvious in the ASL
approach (the hard part being the verification of the ASL axioms), their demonstration
is the central problem now. It is only natural to consider (i) and (ii) as problems on
{primary or) prime decomposition. As pointed out in Section 7, generic points are readily
constructed. So the crucial problem is to show that the ideals under consideration are
radiqal ideals, and this is done by means of an inductive scheme called a principal radical
system.

A. A Propedeutic Example. Principal Radical Systems

In order to seperate the pattern of the proof from its combinatorial details we discuss
an example first, the ideal I,(X), X an m x n matrix of indeterminates. The main goal
is to prove its perfection (from which further properties can be derived by localization
arguments, cf. (2.10) - (2.12)):

(1) The ideal J; = I(X) is perfect of grade {m — 1}{n ~ 1}.
It follows from (3.2) and (3.3) that it is enough to consider noetherian domains B
as rings of coefficients. Let A = B[X]. Auxiliary ideals are )

Jg = IQ(X) +AX115

J3 =DL(X) + ) AXq,

i=1

J4 = Iz(X) + ZAX]_,‘.
i=1
We now make the crucial assumption:

(2} The ideals Jl,...;J.; are radical ideals.

“



154 12. Principal Radical Systems

As pointed out in 7.A, elementary linear algebra provides us with a generic point for
A/Jy (and analogously for AfJ; and A/J4). Furthermore J3J1 C Ja, and one concludes
immediately:

(3) Jh, J3, Js are prime ideals. In addition (a) X11 is not a zero-divisor mod Jy, and
(b) J2 = J3 N Jy.

At this point it is clear that Z{X]/J; is Z-free. In proving perfection one can
therefore restrict the ring of coefficients to be a field.

The grade of J, has been computed in (2.5). Writing J3 = L(X)+ ", AXa, X
consisting of the last n — 1 columns of X, and representing J¢ and J3 + J4 in a similar
way, one has: |

(4) grade J; = grade J; = grade Jq = grade J; +1, and grade(J; +J4) = grade Jy +2.

The auxiliary arguments are complete now. Inductively one may suppose that J3,
Ju, and J; + Jy are perfect ideals. Then it follows from (3),(b) and (4) that J is perfect
by virtue of Lemma (5.15),(b), and part (a) of this lemma, in conjunction with (3),(a),
implies the desired perfection of Ji.

Statement {2) above which has only been an assumption so far, is proved by induc-
tion, too. At least we know from the existence of generic points:

(5) Rad J; is prime. In particular Xy is not a zero-divisor modulo Rad J;.
Assume for the first part of the inductive proof of (2) that J, = J; + AXn1is a
radical ideal. Let y € A be nilpotent modulo J;. Then
v =11 +zXn, 1 €, z € A
Since X1; is not a zero-divisor modulo Rad Ji, one has iteratively

¥ = ¥u + 2u X1 Yu € J1, 2 €A

for all w > 1. Arguing in the graded ring A/, we immediately conclude that y € Ji, as
desired.

Unfortunately there seems to be no way to derive the radical property of Jo from
that of Ja, J4, and J3 + Jy which we could safely assume to be radical. We are forced to
enlarge the class of ideals:

Gy =Jd + Y AXyj,

j=1
H.,=J1+11(X,-,-:1§i§m, ISJS?})

Observe that G| = Ja, Ga = J4, H1 = J3. By descending induction on v one now sees
that all the ideals G, are radical. G and Hi,...,H, may be assumed to be prime. Let
1< v £n. Then:

(6) X1oHy—1 C Gy—1 C Hy and Xy, is not a zero-divisor mod Rad H, 1.
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Let y € A be nilpotent modulo G,_,. Then y € G, (by induction 1),
y=m+aXn, €G-, €A

Next 21X, € Rad Hy.1,50 z; € Rad Hy_; = H, j,and y € Gy,
This scheme of reasoning can be cast in abstract form:

(12.1) Theorem. Let A be a noetherian ring, and F a family of ideals in A,
partiolly ordered by inclusion. Suppose that for every member I € F one of the following
assumptions is fulfilled: :

(a) I is o radical ideal.
(b) There exists an element © € A such that I + Az € F and

(i)  is not a zero-divisor modulo Rad I and N24(1 + Az®)/I =0, or

(ii) there ezists an ideal J € F, J D I, J # I, such that 2J C I and z is not a

zero-divisor module Rad J. :
Then all the ideals I € F are radical ideals.

A family of ideals satisfying the hypothesis of (12.1) is called a principal radical
system. The attribute “principal” refers to the fact that one ascends in the system by
adding a principal ideal to a given ideal.

In our example above the family F consists of the ideals J1 = L(X), Gy,...,G,,
Hy,...,H,. For Hy,...,H, and G, the assumption (a) is fulfilled by induction on the
size of the matrix, (b),(i) holds for Jy, and (b),(ii) is valid for Gy, ... ,Gn1.

The theorem is proved by noetherian induction with the same arguments as in the
example above. .

(12.2) Remarks. (a) We may replace the hypothesis that 4 be noetherian by
the weaker assumption that every subfamily of F has a maximal element. In most
applications 7 will even be finite of course.

{(b) The family of ideals can be replaced by a family of submodules of a (finitely
generated) A-module, the role of the radical then played by a certain “envelope™ E(...)
such that M C E(M), and M C N implies E(M) C E(N). The conclusion is that
M=E(M)foral M € F. — '

B. A Principal Radical System for the Determinantal Ideals

In the following it will be inconvenient to stick too much to the notations used for
the exploration of determinantal rings from the ASL point of view. We introduce a new
description. Let X be an m % n matrix of indeterminates, and sy, ..., s, integers such
that 0 < 8y < --- < 8, = n. Then

1(501 s ’sr)

denotes the ideal generated by the eollection of {-minors, 1 <t < 7 +1, of thé submatrix
formed by the columns 1,...,s,_; of X. Obviously

so,. . y8:) =IX;[L,...,7[s0 + 1,..., 801 + 1])

and
L(X)=Ko,...,t - 2,n),
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The ideals corresponding to Gi,...,Gn in the example above are given by

1(50,.. .,S-,-;’U) = I(So,.. .,Sr) + ZX],B[X],

i=1

B as usual denoting the ring of coefficients.

(12.3) Lemma. Let B be an integrol domain and v = 8y for some w, 0 <w < 7.
Then the radical of 1(8,-..,8,;v) is a prime ideal. :

PROOF: Let first w = 0, that is I(sq,...,8%) = (80, -, s;). Denote this ideal by
I. Based on completely elementary linear algebra we have already constructed a generic
point for R = B[X]/I in (7.19), and thus proved the lemma for these ideals, cf. (7.1).
Since we have to refer to the details of this construction in order to obtain the claim for
w > 0, we repeat it here. Let 5.1 =0 and choose a matrix

Zla;._1,+1 e Zla;.
Zp = . .

Z.l-.a;._1+l U Zku;.
of indeterminates, k = 0,...,r. Then one puts

Z = (Zr—l"'gﬁzﬂl"'tgr—lz »—1|Zr)

where Z; is a (j + 1) x j matrix of (new) indeterminates. In the (relative to (7.19))
special case considered here, one simply takes an m x r matrix Y’ of indeterminates, and
then the substitution

X—-Y2Z

induces the generic point R — B[?, 2]: If L is a field and R — L a B-homomorphism,
then the matrix to which the matrix X (modulo I) specializes can be decomposed in the
same way as Y Z; this gives rise to a commutative diagram

R — B[Y,Z)
NS
L

as desired. There are of course various ways to construct such a decomposition, and
below we shall outline a specific one in order to guarantee an extra condition.

If w = r, then I(sg,...,8r;v) is of the form I(30,-..,5)B[X] + ng——l Xy;B[X),
I(3y, . . ., 57) taken with respect to the rows 2,...,m of X. So one may assume 0 <w <7r.
We write

I(s0,...,8m0) =1+ J,

T=1(80,--.,8:)s J = Ljq X1;B[X]. Let R = BIX]/I be as above, and J = JR. Then
for every B-homomorphism R/J — L, L a field, the composition £ — RJ/J — L can be
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factored through B[Y,Z]. It is enough that at least one such a factorization gives rise
t¢ a commutative disgram

R/T — B[V, Z)/P,
N
L

P a fixed prime ideal in B[i}, 2] Here is the only point in this section where we have to
work a little. We choose P as the ideal generated by the coefficients in the first row of

YZiy o Zo

Let  be the image of the matrix X under B{X] — R — L. In order to reach the desired
factorization R/J — B[V, Z Z)/P — L we now specify how to decompose 2. The matrices
appearing in the decomposmon of z are denoted by small letters. For systematic reasons
it is convenient to write Z, = Y.
First we represent = as
z = {xo|...|z,)

where the separators | are pIaced after the columns gg,...,8,_1 as in Z above. Since
rkz < r there is an m x r matrix Z, such that its column space equals the column space
of ¢ = (zo|...|&,}. Next we find an r x (r ~ 1) matrix Z,_; for which the column space
of z,Z,-1 coincides with the column space of (zp]...|2,._1 ). Continuing this procedure
we have eventually chosen matrices %,,...,Z; of formats m x 7, r x (r—1),...,1 x 0 such
that Z....Z; has the same column space as (:L'gl cas |z,—). The choice of z,...,z2, is the
last step (and no problem, of course). The matrix (z¢...[z.) has only zeros in its first
row, and since its column space equals that of Z, ... Z,, the latter matrix has zeros in its
first row, too. This is exactly the condition to be satisfied in order to factor R/J — L
through B[Y, Z]/ P.

It remains to show that P is a prime ideal. The generators of P are the entries of
the 1 x g, matrix _

}f] Zr—l e Zwv

Y; denoting the first row of ¥'. The number of columns of ¥;, zZ P13 . Z w is decreasing
from left to right, and the claim therefore follows inductively from the lemma below:

(12.4) Lemma. Let A be o noetherian ring, and fi,. .., f, elements of A generating
an ideal I of grade g. Let U be an u x v matriz of indeterminates X;; over A.
(a) If v < g, then the elements 3,[_, fiXij, j =1,...,v, form an A[U)-sequence.
(b) If A is a domain and v < g, then the ideal J generated by them is a prime ideal.

PROOF: Inductive reasoning reduces both (a) and (b) immediately to the case v = 1.

Since every zero-divisor in A[U] is annihilated by an element of 4, }°7., fiXa cannot
- be a zero-divisor. This proves (a) already.

For (b) we have g > 2, and grade TAJU)/J > 1 because of {2). There is no harm in
assuming that fi,..., fu # 0. We first show that A[U]/J is reduced. To be reduced is a
local property, and it certainly suffices that the rings (A[U)/J)[f!] are domains. This
is easy to see:

(AU)/D)F7) 2 (AL DIU])/ (extension of J),
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and over A[f;1] the generator of J becomes an indeterminate.

Since (A[U]/J)[f7!] is a domain, f; must be tontained in all the minimal primes of
J but one. Since f;f; ¢ J for all , 7, the “excluded” minimal prime must be the same
for all 5. Since, on the other hand, grade TA[U]/J > 1, there cannot be a second minimal
prime: it would contain f1,..., fu. —

Now it is easy to show:

(12.5) Proposition. Lel B be a noetherian domain, X an m x n matriz of inde-
terminates over B. Then the ideals I(sg,...,5-7), 0 <7 < min(m, ), 0 < v < n, form
a principal radical system. Hence all these ideals are radical.

PROOF: First we invoke induction on the size of the matrix to conclude that all the
ideals I(sg,...,3,;n) are radical ideals. For the other ideals I = I{sq,...,3-;v) one may
suppose that v > go. In order to show that assumption (b) of (12.1) is fulfilled for all of
them we take 2 = X1,51- Then I + zB[X] = I{s0,.-.,8rjv + 1). Case (i): v = 8y for
some w. Then  is not a zero-divisor mod Rad I. Otherwise it would be nilpotent modulo
I by (12.3); this is impossible because the B-homomorphism B{X]| — B, Xjv41 — 1,
Xi; — 0 for all other indeterminates, factors through B[X]/I. Since B[X]/I is graded
and the residue class of z has positive degree, (ioo{/ + #*BIX))/I = 0. Case (ii):
8y < ¥ < 8y for some w. Let

J =180, s5w-11V Swrls-- .53 0)

and y = [@1,-- > Cuw1/b15--- ,bws1] be a generator of J not already in I. Then Laplace
expansion of [1,a1,...,@wi1lb1y-- s bwr1, v + 1] € I along its first row shows zy € 1. It
is seen as in case (i) that z is not a zero-divisor modulo RadJ. —

_ (12.8) Corollary. Let B be a noetherian domain, X anm xn matriz of indeter-
-minates over B.
(a) If v = 8., then I(sq,...,3x;v) 15 a prime ideal, and Xyy41 is not a zero-divisor mod-
ulo I(sg,..., 8,0}
(b) Let $1 < v < Swy1- Then

(50, .-, 8r;0) = I(S0,- > 8r; Sw1) N I{Sgy.erySw—11Vswilses-s5ri0)

is the prime decomposition of X{(s0,- .., 8 v)-

(12.7) Remark. As a consequence of (12.6) the Z-algebras Z[X)/Xsg,-. ., 8r30)
are Z-free. Therefore one may use (3.12) in order to relax the hypotheses of {12.5) and
(12.6). As far as the propecty “radical” is concerned, it is enough to assume that B is
reduced; for “prime” one only needs that B is an integral domain.

C. The Perfection of Determinantal Ideals

. Looking back to the example in Subsection A one notes that the only missing step
in the proof of perfectien is an analogue of (4), a formula for the grade of the ideals
FYE TR g L P

L
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(12.8) Proposition. Lef B be a noetherian ring, X an m X n matriz of indeter-
minates. Then

gradeI(so,...,s.) =mn — (m+n)r + rr+1) + Zs;,
2 i=0

and if 83 <V < 8y, 1< W<y,

gradel(so, ..., s,;v) = gradeI{sp,...,s,) + w.

PROOF: By virtue of (12.7) and (3.14) we may assume that B = K is a field. The
chain
sg,. ., 8r;8w_1) g I{80s-..,8r;v) C 1(sg,y- .., 50} 8w)

of inclusions reduces the second equation to the special case in which v = s,. Since
I(8g,..., 8¢ 8) is & minimal prime ideal of

1(305---s3r;3w—-1) +XI.1.,,41+]K[X]»

the second equation can be derived inductively from the first one.
If sy > 0, one can write

m . 3y
1(30,...,3,.) =I(0,31 — 80ye-ay8p —80}+ZEX,'J'K[X],

i=1 j=1

the ideal 1(...) being taken from a smaller matrix of indeterminates in an obvious way.
Thus we are left with the case sy = 0, for which we remind the reader of the inductive
argument (2.4). Here it is of course convenient to invert X7; and to perform elementary
transformations with respect to the first row and column. A glance at the generating set
of I(s0,...,5r) shows that the extension of I(s,...,s,) in K[X] [X7i'] can be identified
with the extension of an ideal

Itp, ..oy be-1)s £ = 841 — 1,
taken from an (m — 1) x {n — 1) matrix of indeterminates. —

(12.9) Theorem. Let B be a noetherian ring, X anmxn matriz of indeterminates.
Then the ideals 1(sg,...,50;5w), 0 < w < 7, and I(sg,...,8r;8w + 1), 0 € w <, are
perfect. In particulur the ideals 1,{X) are perfect.

PROOF: Again it is harmless to work with a field B, cf. (3.3), thus rendering Lemma
(5.15) applicable. By part {a) of (5.15) (and (16.20)) the perfection of ¥(sq,..., %5 su)
follows from that of I{sg,...,8.; s, + 1), a larger ideal, unless s,, = n, for which case we
invoke induction on m. If s, + 1 < 5,41, One writes

I(80,. vy 8ri8uw + 1) =1(80,. 0.3 801,50 + 1, 8041y, 87} S + 1) NI(sg,..., 80 Swi1).

Since the sum cf the ideals on the right hand side is
I(S0seneySu0m1s8w + 1, Supttse - -5 875 Suwi1 ),

and all ideals involved have the “correct” grade according to (12 8), a reference to
{5.15), (b) finishes the proof. — :
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(12.10) Remarks. (a) It seems worthwhile to look back to the sections 5 - 11
and to check which of the results in these sections, as far as they apply to the ideals
I(s0,...,58s), can be derived from (12.5) - (12.9). The properties of being a radical or a
prime ideal and the grade formula are covered explicitely, as well as perfection, of course.

Section 8: Lemma {6.4) only builds on the dimension {or grade} formula, and one
concludes normality of the residue class ring. The computation of the singular locus is
as easy as in (2.6) if one uses the inductive device sketched in the proof of (12.8).

Section 7: The construction of generic points (at least over domains B) is a main
argument in that section. The proof of (7.6),(a), relies on the fact that the minor
L.,y =1L, 7+ 11,7 = Lr -+ 1] is not a zero-divisor modulo [1,...,7]1,...,r] in
R,;1(X)}. This can be derived from (12.9) and (12.7), since the minimal prime ideals
of Iyr{X) +11,...,7]1,...,7]B[X] {over a domain) belong to the class of ideals consid-
ered. This is no longer true for I{(sg,...,s:) + [L,-.s7|so + 1,0 801 + 1]B[X], and
it is doubtful whether one can derive the result of (7.19) for I(sq,...,s.). At least in
characteristic zero there is a loop-hole, however, cf. (7.21).

Section 8: For the reason just mentioned the computation of the divisor class group
of BIX]/I(sq,...,8) is certainly not immediate in the general case, though it is in the
case Ry41(X), for which one can then compute the canonical class.

Section O — 11: Here the full strength of the ASL structure on B[X] is used, and
there seems to be no chance to obtain the main results without considerable effort. This
does not exclude the possibility of constructing principal radical systems containing the
ideals of interest, and at least in one case this has been successful, cf. [Ng.1].

(b) The choice of a principal radical system embracing the ideals I,(X) is by no
means unique ! In fact, the ideals J(X ;) C G(X) have been investigated in [Ho.3} by a
blend of methods based on a principal radical system and standard monomial theory. It
doesn’t seem a very bold speculation to believe that a principal radical system containing
the ideals I(X;6) can be constructed even without standard monomial theory (though
one will certainly need the partial order on A(X) as a systemizing tool).

(c) 1t should be possible to explore the rings B[X]/I(s0.- .., 5s; §,,) in regard to their
divisor class group, canonical class etc. At least they are normal over a normat domain
B, cf. [HE.2], p. 1024, Corollary 3.

(d) A modification of the scheme of proof developped in this section has been sug-
gested in [KIL.1]. It avoids generic points and exploits dimension-theoretic arguments in
order to prove that “z is not a zero-divisor modulo Rad I” or “... Rad J” resp. In fact,
if all the minimal prime ideals P of I have height < k, but ht I + Az > h+1, then z is
not a zero-divisor modulo Rad f. —

D. Comments and References

The main source for this section is Hochster and Eagon’s fundamental article [HE.2]
whose line of reasoning is followed very closely. The construction of a generic point for
I(sq,.-., 8.} is their Proposition 25, (12.3) corresponds to Proposition 29, part 1}, (12.4)
combines the Propositions 21 and 22. (12.8) reproduces Proposition 32 of [HE.2], with a
different proof however, and the derivation of (12.9) is exactly as given in [HE.2], section
11. : -
The notion of principal radical system as defined in {12.1) has been suggested by Ngo,
cf. [Ng.2), Proposition 3. It certainly simplifies the definition of [HE.2]. Ngo discusses a
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generalization called a principal system of ideals. A module-theoretic version as indicated
in (12.2),(b) has been used in [Br.7).

In {KIL.1] Kleppe and Laksov give a detailed account of their modification to the
proof of Hochster and Eagon, as pointed out in {12.10),(d). Originally they had dével-
opped it for their investigation of ideals generated by pfaffians ({KIL.2]), which have been
treated by Marinov ([Mr.1],[Mr.2],[Mr.3]} in complete analogy to [HE.2]. Other applica-
tions of the method of principal radical systems are to be found in (Ho.3] (cf. (12.10),(b)),
Kutz’s work [Ku] on ideals generated by minors of symmetric matrices, and [Ng.2]
{cf. 9.E). It is interesting to note that the classes of ideals studied in the papers mentioned
have later been explored by standard monomial methods, too, cf. [DEP.2] for a survey.
Nonetheless there seem to be situations in which the method of principal radical systems
solves a problem which cannot be tackled by standard monomial methods, cf. [HL].
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Once more let X = (Xi;) be an m xn matrix of indeterminates over a noetherian ring
B and r a nonnegative integer. Put R = Rr41(X). In this section we shall investigate the
image and the cokernel of the map z: R™ — R™ given by the matrix of the residue classes
of the indeterminates X;;. The map z and its cokernel C have the following universal
properties: Let S be a (noetherian) B-algebra. If f: 5™ — S"isa homomorphism of
rank r represented by a matrix {uij), then f =2¢® S, § made an R-algebra via the
substitution X;; — uij. If M is an $-module given by n generators and m relations and
ofrank >n—7,then M =C @S {since M is represented by a map ™ — 5™ of rank
< r). The universal properties of z and C justify the notions generic map and generic
module.

The main results of the section will be that Imz is a perfect B[X]-module (with
one trivial exception) and that Coker is perfect (provided r > 1) if and only if m > n.
Some special cases have been treated already: For 7 > min(m,n) we refer to {2.16). This
result also implies that Coker z is perfect in case r+1=n < m since I.41{X) annihilates
Coker X, then.

A. The Perfection of the Image of a Generic Map
We start with a simple lemma which will be used several times. Its proof consists
in a repeated application of (16.14),(b).

(13.1) Lemma. Let S be @ noetherian ring, I an ideal in 5, and M a finitely
generated S-module, M=M,>...0 M,=0 a filiration of M. Then

grade(I, M) > min{ grade(l, Mi/Mis1): 0 < i < s—1}.

The crucial step in proving the perfection of Imz is contained in:

(18.2) Proposition. Letr < min{m,n), C = Cokerz.
(a) C is o reflexive R-module.
(b) There exists o free submodule F of C such that C[F 1is annihilated by I{X;6), 6 =
1,...,7[L.csr =L+ 1), and as an R(X;6)-module is isomorphic with the ideal in
R(X;6) generated by the residue classes of the r-minors [1,... ) P ,I'E,. LT+l 1<
k<r.

PROOF: Let 21,-..,2s denote the canonical basis of R*. We put

n
F = Z Rz; mod Imuz, D<ignr
j=i+1

Fra =0, and
5.'=[1,.-.,1‘[1,...,?:,...,7‘-}-1], 1<ig<r+1
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I(X;6;) is the ideal generated by the (r + 1)-minors of X and the i-minors of its first ¢
columns. Then fori=1,...,r +1:

(i) C/F; is annihilated by I(X;4;).

(ii) Fi_1/F; is an R(X;6;)-free submodule of C/F,.

(iii) The map z induces an exact sequence

(i1} .
R(X;8:)™ " R(X;6,)7 — C/F,_y — 0,

the m x j matrix #/) consisting of {the residues of) the first j columns of z.

We shall finish the proof of (13.2) first before demonstrating the assertions (i)—(iii).
Obviously Cp is Rp-free for all prime ideals P C R which do not contain I.(z). From
(ii), (5.18), and (16.18) we obtain

grade(I.(z), Fi_1/F,) = grade(I.(z), R(X;6:))
= gradeI{X;[1,...,r— 1!1,...,?,...,'r])/I(X;d,-)
= gradeI(X;[1,...,r — 1|1,...,?,...,1‘]) — grade I(X; ;)
=m+n-—2r
for i = 1,...,r, and grade(l,(z),F,) = m+n — 2r + 1. Now (a) is an immediate

consequence of (13.1) (cf. (16.33)). As to (b) we put F' = F, and let J be the ideal in
R(X;6) generated by the r-minors 0k, 1 < k < r. From (iii} one gets a presentation

R(X;8)™ 20 R(X;8)" — C/F — 0

by tensoring with R(X;6). On the other hand there is a Zero-sequence

") .
(1) R(X;6)™ 20 R(X;6)" 2 J — 0
where the surjective map A is defined by
h(ze) = ()16, 1<k<T,

Z1y...,Z, being the canonical basis of R(X;6)". So we obtain a surjection C/F — 7.
Furthermore C/F has rank 1 and is torsionfree (as'an R(X;é8)-module): It is free of
rank 1 at all prime ideals P C R(X;8) which do not contain the ideal J. Using (13.1)
and (ii) once more, we get

grade(J,C/F) > min{ grade(J, F.-/FH;): 0<i<r-1}>1.

Consequently C/F 2 J (and (1) is exact). ~ N

(i)-(iii) will be proved by descending induction on 4. Since the first » columns of
are linearly independent over R, F. is a free' submodule of C. Obviously z induces an
exact sequence B

R X R — CJF, — .
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So the assertions hold fori =r+1. Let 1 <¢ <. By the inductive hypothesis we have
an exact sequence

R(X:6:01)™ 2 R(X;601)' — CJF; — 0,

so C/F, is annihilated by I(X :8;) (cf. (16.2)). Tensoring with R{X;#§;) yields an exact
sequence

R(X;6:)™ 2o R(X;8:)F — C/Fi — 0.

Since the first i — 1 columns of z(*) are linearly independent over R(X;6;), Fi_1/F; is an
R(X; 8;)-free submodule of C/F; of rank 1, and (iil) is an immediate consequence. —

(13.3) Remark. By the way, the proof of (13.2) shows that the first syzygy module
of the ideal in (13.2),(b) is as one expects at first sight: cf. the exact sequence {1). The
exactness of (1) can also be derived from (5.6) or even checked directly. —

Taking into account the special structure of the ideal described in (13.2),(b) we are
now able to prove the main result of this subsection.

(13.4) Theorem. Choose notations as al the beginning of the section. Then Imz
is a perfect B{X]|-module except for the case in which r 27 and m > n, and Cokerz 45
an almost perfect B[X]-module, i.e.

grade Cokerz > pd Cokerz — 1.

PrOOF: Assume first that r > min{m,n), the case in which I,41(X) =0. fm <n,
then Imz is free and pd Cokerz = 1. In case m > n we obtain the {almost) perfection
of Coker z from (2.16). .

Suppose now that r < min(m, n). By Proposition (13.2) Cokerz is a torsioniree R-
module, so grade Coker z = grade R {over B{X]). Therefore the second assertion follows
from the first one via the exact sequence 0 — Imz — R — Cokerz — 0.

Because of (3.3) we only have to prove that Imz is generically perfect and that
Coker z is Z-flat in case B = Z. Since Imz is a graded torsionfree R-module, it is a free
7_module. The same is crue for Coker z because of (13.2). It remains to show that Imz
is perfect if B = Z.- This is equivalent with the fact that (Imz)p is a Cohen-Macaulay
module over Rp for alt prime ideals P C R (cf. 16.19), or that

depth Cp > dim Rp — 1,
' = Coker r. In view of (13.2),(b) it will be enough that
depth(R(X;6)/J)p > dimRp ~ 2

for all prime ideals P C R, P € Supp(R{X;8)/J}, where J is the ideal in R(X;6)

generated by the residue classes of the elements [1,...,7[L,.... k..., 7 + 1], 1<k
It is easy to check that R(X,6)/J = B[X 1/QB[X), § being the ideal in A{X) cogenerated
by the elements ‘

S =01,...,7=Lr+ 1L ..,r— L7 11, &= [1,;..,1-11,...,1'—-1,r+2].

By (5.19) R{X;8)/Jisa Cohen-Macaulay ring, and obviously dimR(X;8)/J = dim K—2.
The proof of {13.4) is complete now. — =~ ' f
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(18.5) Remarks. (a) It is a simple but noteworthy fact that under the assumptions
of (13.4) all R-syzygies of Cokerz are perfect B[X]-modules along with Imz.

{b) In {Br.7] the following generalized version of Theorem (13.4) has been stated: Let
A be a noetherian ring and u = (u;;) be an m X n malriz of elements in A. Suppose that
0 <r < min{m,n~1) and that L..1{u) has (the mazimally possible) grade (m —r}{n—r).
Denote by R the residue class ring A/T.41(u). Let @: R™ — R™ be the map given by
the matriz of the residue classes of the elements u;;. Assume further that 1.(u) contains
“an element which is not ¢ zero-divisor of R. Then Imu and hence all higher syzygies of
Coker @ are perfect A-modules.

To prove this, one has only to change the arguments which reduce the general case
to the generic one: Let X = (X;;) be an m x n matrix of indeterminates over Z. Then
A is a Z[X]-algebra via the substitution X;; — ui;. Put S = Z[{X]/1,,,(X) and denote
by #: §™ — 5™ the map given by the matrix of the residue classes of the elements X;;.
Consider the natural surjection h: Imr ® R — Im{z® R). By the assumption on I.(%)
one obtains that A ® Rp is an isomorphism of free R p-modules of positive rank whenever
P is an associated prime ideal of R. By {3.5) we can derive that Inz @ R = Imz ® A
is a perfect A-module. But then Imz ® R is necessarily a torsxonfree R-module and
consequently A is an isomorphism. —

B. The Perfection of a Generic Module

To get further information on the generic module, we consider the following (more
or less well known) homomorphism which will also play an essential role in the next two
sections.

Let F, G be modules over an arbitrary ring A, f: F — & an A-homomorphism and
7, 5,1 integers such that 0 < » < min(s,£). Then

L] i a—r t-r
ot AFO NG — AFe AG*

is defined by

orer®z) = 3. oU,\D)a(V,I\V) 2 (ASf o)y yno ® 25y,

Ues(r)
Ves(r,J)

Y=Y A At v, € Foand 25 = 2] Av--Azl, 2] € G*. Clearly pyq is the identity
map.

Here we are interested in the case in which s = r+ 1, ¢ = ». Then obviously
fopss= 0 if rk f < r. If moreover Im f is a free direct summand of Gandrk f = r,

then
r+1 r

AFepG &sr LG

is split-exact. Adopting the notations of the introduction, we can show:
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(18.6) Proposition. Suppose r < min(m,n). Then the sequence

r+1 r
(2) AR e A(RY) #3 R™ = R*

and its dual are exact.

PRrOOF: For r = 0 there is nothing to prove. Let 7 > 1 and ¢ = .. It is clear
that (2) is split exact if localized at a prime ideal of R which does not contain the
ideal I{(z). In particular (2} is exact in depth 0. So it suffices to show that Coker ¢
is a torsionfree R-module. By what we have just mentioned this will follow from the

inequality grade(I.(z),Coker ) > 1.
We argue as in the proof of (13.2): Let yy,...,¥m be the canonical basis of R™,

m—i
F,-=ZRyj mod Imy, oLi<m—r,

j=1
Fri—vr1 =0, and
v ={1,...,r—1,m —i1,...,7], 0<i<m—r.

Then fori=1,...,m—r+1:

(i) (Coker ¢}/ F; is annihilated by I{X;¥:).
(ii) Fy_1/F; is an R{X;y;)-free submodule of (Coker @)/ F;.

From these assertions and (13.1) we obtain

grade(I.(z), Coker ¢) > grade(L.(z), R(X; %))
= gradeI.(z) — grade1(X;[1,...,7 — 1,m|1,...,7])
=1.

To prove (1) we observe that Im is generated by the elements
> o, \)N\ilJly:, 1 €S(r+1,m), J € S(r,n).
iel

As to (ii) we assume that there is an equation

m--t

CYm—i+1 = E a;¥; + ¥
=1
a,a; € R,y € Imyp. Then
m—t
OTm—it1 = Y 452
i=1

where  denotes the k-th row of z. Elementary determinantal caleulation yields

V
\ . -

a%i-y € I(X; %0 T-pa(X)
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and consequently @ € I{X;v;..1}/Ir51(X) since 4;_; is not a zero-divisor mod I{X;vi_1)
{cf. (56.11)). This proves (ii).

To demonstrate the exactness of the dual to (2) we replace 2 by =*. Then the dual
to (2) becomes the sequence

r+1 r
(3) R™ = R* % AR"® \(R™)

(up to canonical isomorphisms) where ¢ = {@<-)*. Since (3) is exact in depth 0 and
Coker z is torsionfree {cf. (13.2),(a)}, the exactness of (3) follows immediately. —

(13.7) Remark. A routine argument shows that the cokernel of the map ¥ in the
sequence (3) is torsionfree: Coker 9 is free in depth less than m+n —2r+1 and Coker z is
reflexive (cf. (13.2),(a)). This fact will be used in the proof of the following theorem. —

Of course it cannot be expected that Coker & is a perfect B{X]-module in general: If
r > m and m < n then R = B[X] and Coker z fails to be perfect since it has projective
dimension 1 and rank > 1. On the other side (2.16) says that Cokerz is perfect in
case v > n and m > n as we have indicated already in the introduction. The following
theorem describes compietely how the perfection of Coker ¢ depends on the size of X.

(13.8) Theorem. With the notations of the introdur on Cokerz is a perfect B[X ]-
module if and only f (i) r =0 or (ii) r > 1 ond m > n.

PrOQF: Obvicusly Coker z is perfect if r = 0. Taking into account what has just
been said we may further assume that 1 < r < min{m,n).

We first consider the case in which B = Z. Since C = Cokerz is almost perfect,
we have depth Cp > dim Rp ~ 1 for all P € Spec R. Perfection of ' means depthCp =
dim Rp for all P € Spec R and hence is equivalent to Ext}q(C, wgr) = 0 by the local duality
théorem, wg being a canonical module of R {cf. [HK], 4.10 and 5.2). One has C* = Kerz*,
50 this module is a third (actually a fourth) syzygy by (13.2),(2). Furthermore Cp and C}
are free Rp-modules for all P € Spec R such that P 2 I.(z). Since gradeI,{z) = m+n—
2r +1 > 3, C* is 3-torsionless (cf. (16:33)) and hence ExtR(C**, R) = Ext(C,R) = 0.
In case m = n this already shows that C is perfect, R being a Gorenstein ring then
{cf. {8.9)). .

In Section 9 we gave a representation of wg as an ideal of R. From the exact sequence
0 - wg — R — R/wy — 0 one derives an exact sequence

0 — Hompg{C,wg) — C* N Homg(C, R/wg) — Ext}t(C,wR) — 0.

Thus the perfection of C is equivalent with the fact that h is surjective. Denote by
z!,...,2" the columns of z. Then C* can be identified with the submodule of all
{a1,...,a,) € {R™)* such that a;z*+- - -+anz" = 0, and a homomorphism 8: C — R/wgr
can be lifted to an element (b;,...,b,) € (R™)* with the property bzt 4+ -+ by €
w R(Rm)'. ‘

In case m > n the canonical module wg is given by P™™™ where P is the ideal in
R generated by the r-minors of the first » rows of z (cf (9.20)). Lemma (13.9) below
says that there is an element o € C* which is congruent to {br,- . .,bn) modulo wr(R™)*.-
This means h(a) = 8. Consequently & is surjective and C is perfect in this case.
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Let m < n and denote by M the prime ideal I.{(z). Clearly C is not perfect if
depth Cpr < depth Rar. According to (2.4} we have an isomorphism

{4) ' | Rlz:1] 2 Ro(Y ) Xom1s - - -0 Xen—1,0) [Kmn]-

Put R = R.(Y), M =1,_,(Y) and let C be the corresponding generic module, Denote
by y the matrix of residue classes modulo I.(Y') of the indeterminates Yi;. Then the map
z ® Rzl ] is represented by the matrix '

0
(5) - y ol
0 -+ 01

so C® Rlz,;}] = C ® R[zzL). Since R i — R is alocal and flat extension, the depth

inequality above is equivalent to depthCy < depth R i~ We may therefore assume
that » = 1. Furthermore we can replace the base ring Z by the field Q of rational
numbers because M NZ = {0}. But then it suffices to show that C is not a perfect
Q[X)-module {cf. (16.20)). In the case under consideration the canonical module wr of
R is given by Q*, s = n — m, where Q is the ideal in R generated by the entries of the
first column of x. Take b, = zi7!,by = --- = b, = 0. Then (by,...,b,) induces an
element of Hompg(C, R/Q?). If there were a;,...,a, € R such that ajz' +---+a,2" =
and b; — a; € Q°, one in particular would get zi7! € Q* + J, J being the ideal in R
generated by the components of z2,...,z™. This is obviously impossible. Therefore the
homomorphism h above is not surjective.

Now we treat the general case for B. Let m > n. Since the cokernel of the map
(¢z-»)* in (13.8) is Z-flat (cf. (13.7)), the perfection of Coker x follows from the fact that
it 15 B-free and perfect in case B == Z (cf. (3.3)). It remains to prove that Cp = (' ®z B
is not perfect if 1 < 7 < m < n. From (13.4) and the considerations above we obtain
that pdg x| C = gradelr1(X) + 1. Let

FiQomr Fp—reoo— Fy

be a Z[X]-free resolution of C of minimal length. Since C' and the modules F; are Z-flat,
F®z B is a B[X]-free resolution of Cg. Let J be a prime ideal in B[X] containing I (X),
and J the preimage of J in Z[X]. Then (¥ ®z B)®p(x} B{X] is 2 B[X];-free resolution
of (Cg)s. To see that it has minimal length, we consider the canonical isomorphism

(F ®z B) ®p[x] BlX]s & (F ®z(x) Z[X]1) ®zx], BIX]s.

F ®z;x) Z[X]; has minimal length in view of the inequality depth Cu < depth Ry
above. Furthermore the extension Z{X]; — B[X]; is local. Consequently pd(Cg)s =
t = grade(Cg); +1. ~—
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(13.9) Lemma. Denote by P the ideal in R generated by the r-minors of the first
T rows of . Let further s be a positive integer and by,...,bx € R such that bzl 4.+
bpz* € P*R™, gi being the j-th column of . Then there are elements a3,...,a5 € R
such that a1z’ + -+ arz®* =0 and b; —a; € P* for j=1,... k.

PROOF: Of course we may assume that » > 1. Let @ be the ideal in R generated

by the r-minors of the first & — 1 columns of z. Taking linear combinations of b, z;; +
++ bezik, 1 < % < m, with suitable minors of z as coefficients we get

bhdeP+0Q
where
6={[1,...,k~1,r+1|1,...,k] if k<,
(L,.r = 1,E[1,...,r —1,k] if k>r

In case B is a field, § is not a zero-divisor modulo P*+ @ since P* +@Q is (P+Q)-primary

and 6 ¢ P+ Q (cf. (9.18)). Furthermore R/(P? + Q) is Z-free in case B = Z. From

(3.14) we then obtain that & is not a zero-divisor modulo P* + Q for arbitrary B.
Consequently b, € P? + Q. Obviously this implies the assertion in case & < r.

Assume that & > ». Let J € S(r,k~1) and put J= JU {k}. Then

> o ADUIA]a? =0 forall e S(r,m).

jel
A suitable linear combination of these determinantal relations of z',...,z* yields a re-
lation (a1,...,a.) such that by ~ ax € P*. Induction on k now completes the proof of
(13.9). —

Since Coker z fails to be perfect in case 1 < r < m < 7 the cokernel of the map

¥ = (pz-,r)* certainly cannot be perfect in this case. It requires a little more effort to
see that Coker is not perfect except for m = n.

(13.10) Proposition. The cokernel of the map ¥ = (p.-+)* is perfect if and only
if m =n.

PROOF: There is to prove something only in case m = n. Assume first that B =
Z. I m = n then D = Cokery is almost perfect, so perfection of D is equivalent to
Ext}(D, R) = 0 since R is a Gorenstein ring in that case. The vanishing of ExtL(D, R)

in any case follows from (13.6).

Suppose now that m > n. Imitating part of the proof of (13.8) we write M =
I.(z) and prove that depth Dy < depth Rys. Again we use the isomorphism (4), put
R=R.(Y), M= I._1(Y) and D the cokernel of the map (¢z+,r-1)", y denoting the
matrix of residue classes modulo I.(Y) of the indeterminates Yij. Since z ® Rz, }]
can be represented by the matrix (5), we obtain that D@ R[z;l] > D@ Rz lloF,
F being a free R[z,,,}-module. Consequently depth Dps < depth Ry is equivalent to

depth D ir < depth Ry, so we may assume that » = 1. As in the proof of (13.8) we can

replace the base ring Z by Q and have only to show that D is not a perfect Q[X]-module.
Since Ext}(D, R) = 0 this is equivalent to the fact that the natural homomorphism

Hompg(D, R) -2 Hompg(D, R/P™ ™)

-
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is not surjective, P denoting the ideal in R generated by the elements of the first row of
z. {Remember that P™" is a canonical module of R in the case under consideration.)
Put 8 = m—n and denote by ¥1,...,Ym and 21,...,%a the canonical bases of R™ and R"
resp. Looking at the sequence (3) in (13.6) we see that an element of Hompg(D, R/P*)
comes from an element

Y. bigzy®ui,  bis€R,
i=1 Je5(2,n)

suchthatfor 1 < j<n

m
Y Y ol Dbl € P
i=1 Je5(2,n)

JEJ

and every such element induces an element of Hompg(D, R/P’). Now we put

bi; =

{ x;l‘l if i=1, J=1{1,2},
0 otherwise.

Then ):.', s bigzy ® y; obviously induces an element 8 of Homg(D, R/P®). 3 lies in the

image of A if and only if there is an element 3, ;i,727 ® ¥is GiJ € R, such that for
1<j<n .

(6) Y X ol Adauslil\l =9,
i=1 J€5(2,n)
jEeJ

and by —~aig € P, 1 i< m, J € §(2,n). But there is no such element: (6) in
particular implies that a1,{1,2} is contained in the ideal I of R generated by the elements
of the last m — 1 rows of = and Z13, ..., &1n. Obviously 7' ¢ PP+

Since C is perfect if m > n, D must be a second syzygy in this case. Now the rest
is mutatis mutandis a copy of the last part of the proof given for (13.8). —

(13.11) Remarks. (a) Actually we proved in {13.8) and {13.10) resp. that for any
prime ideal P of R which contains I.(z) (i) in case m < n the module (Coker z)p and (ii)
in case m > 7 the module (Coker ) p is not perfect over the corresponding localization
of B[X].

(b) Theorem (13.8) allows a generalization analogous with that of (13.4) (cf. [Br.7}):
Let A;u,m R, % be as in (13.5),(b) and assume that gradel;1(u) = (m—r){n—r1). If
m > n then Coker@ and hence all syzygies of Cokeru in an R-free resolution of Cokerz
are perfect A-modules. If m < n, 1,() # R and 1.(%) contains an element which s not
a zero-divisor of R, then Coker@ is not o perfect A-module.

Let z be as in the proof of (13.5),(b). Since Cokerz = Coker{z ® A} = Cokerz @ A,
the first assertion follows immediately from (13.8). To prove the second, one shows
that for any P € SpecR, P D I.(%), Cokerz @ Rp is not a perfect module over the
corresponding localization of A. In doing so one may directly assume that R and A are
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local, P being the maximal ideal of B. The preimage @ of P in Z[X] contains I,(X).
Put C = Coker z. From (13.4) we obtain pd Cg = grade Cq + 1 over Z[X lg- Let

Fio—FRLF, —.. R

be a minimal Z[X]o-free resolution of Cg. Since Coker@ = C'® A has positive rank over
R, we have grade Coker% = gradel, (@) = £ — 1. So it suffices to show that F ® A
is a minimal A-free resolution of C ® A. For every prime ideal I of Z[X] such that
I 3 I,41(X) the complex F ® Z[X]; is split-acyclic. Hence F ® A is split-acyclic at all
prime ideals having grade smaller than ¢ — 1. The map f, finally splits at all primes
I 3 L(X) since Cf is free and thus a perfect module over Z[X];. Consequently f, ® A
splits at all prime ideals of A whose grade is smaller than ¢. From (16.16) it follows that
F @ A is acyclic. The extension Z[X]o — A being local, F ® 4 is a minimal A-free
resolution of C' @ A, —

C. Homological Properties of Generic Modules

In this section we investigate some homological properties of Coker z where z is as
in the introduction. We start with a simple observation concerning projective dimension.

(18.12) Proposition. Cokerz has finite projective dimension as an R-module if
and only if r = 0 or v > min(m,n). In case r > min(m,n) one has pdy Cokerz = 1 if
m < n and pdp Cokerz = grade,(X) = m —n+1 otherwise. If 1 < r < min(m, n) and
P is a prime ideal in R then the following properties are equivalent:

(i) pdg, (Cokerz)p < co.
(ii) (Cokerz)p is a free Rp-module.
(iii) P 2 L.(x).

PROOF: The essential part of the second statement has been proved in Section 2.
Thus the “if”-part of the first one is clear. The “only if’-part is an immediate conse-
quence of the third assertion. In case 1 < r < min(m,n), P 2 I.(z) if and only if
(Imz)p is a free direct summand of R% (cf. (16.3)), so (ii) is equivalent to (iii). Fur-
thermore pdp, (Cokerz)p < oo implies pdy,(Cokerz)p < 1 because of (13.4). Thus
(Kerz)p = (Cokerz*)} is free. The same is true for (Cokers*)p since Cokerz® is
reflexive. Consequently z} splits as well as zp, and (Coker z)p is free. —

There is a sharp trichotomy concerning the homological properties of Cokerz be-
tween the cases m = n, m < n and m > n which is not immediately apparent from the
former considerations. There is nothing to say in case r = 0. If r > m and m < n then
Coker z is an (7 —m)-th syzygy but not an (n~m+1)-th one, and Ext,(Cokerz, R) # 0.
Incaser > n and m > n, Coker z is an R-torsion module which is perfect as an R-module
and therefore Ext(Cokerz, R) = 0 fori = 1,...,m—n, Extf~"*!(Cokerz,R) # 0. The
remaining cases are more interesting. We start with m = n:

(13.13) Theorem. Suppose that 1 < 7 < m = n. Then Ext}C(Coker z,R) =
Ext,((Cokerz)*, R) = 0 for all i > 1. In particular Coker z is an infinite syzygy module,
t.e. there is an infinite exact sequence

0— Cokerz — Fy — .- — F, ~s Fyyq — ...

with free R-modules F;.
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PROOF: In case B = Z the ring R is Gorenstein. Since C = Coker z is a maximal
Cohen-Macaulay module, Exty(C, R) = Extp(C*,R) =0 for all i > 1. Let

.7:: _,Ft_f'_)----—)Fl-i)Fo

be an R-free resolution of C*. Then F* is acyclic. By the usual argumentation based
on Z-flatness we obtain that F ®z B is an R ®z B-free resolution of C* ®z B and that
F* @y B is exact for every (noetherian) ring B. This implies ExtR(C*,R) = 0 for all
i > 1 in the general case. One equally gets ExtL(C,R)=0foralli> 1. —

In case m # n the homological invariants of Cokerz turn out to be grade-sensitive
with respect to the ideal I.(z).

(18.14) Theorem. Suppose that1 <1 < min(m,n) and put s = gradel.(z). Then
in case
(a) m > n:

(i) Coker z is an s-th syzygy but not an (s + 1)-th syzygy.

(ii) Ext%,(Cokerz, R) =0 fori=1,...,8— 1, Extp(Cokerz, R} # 0.
(b) m < n:

(i) Coker = is an (8 — 1)-th syzygy but not an s-th syzygy.

(ii) Ext(Cokerz, R) = 0 for i =1,...,s, Extz (Cokerz, R) # 0.

PROOF: First we use (16.32) to get that {a),(i) is equivalent to (b},(ii) and (b}, (1)
equivalent to (a),(ii): This holds since D(Coker z) = Cokerz*.

Part (i) of (b) is an easy consequence of (13.4) and (13.11),(a): Since Cokerz is
almost perfect, depth{Cokerz)p > s—1for all P € SpecR, P D I.(z), and if depth Rp =
s for such a prime ideal then depth(Cokerz)p = s — 1 because (Coker ) p is not perfect.
Finally we repeat that in any case (Coker z)p is free whenever P € SpecR, P 2 1,.(z).

Similarly part (i) of (a) follows from (13.8) and (13.11),(a): Cokerz is perfect, so

depth{Coker z}p > min(s,depth Rp)

and consequently Cokerz is an s-th syzygy. If it would be an (s + 1)-th one, then
Exth(D(Cokerz),R) = 0 fori = 1,...,5 + 1 (cf. (16.34)). But D{Cokerz) = Coker z*
has a free resolution

r+1 r .
e — /\(R")‘@/\Rmi.—-r"(Rn)'-m—?(Rm)*

by (13.6), so (Cokerz*)* = Kerz would be an (s + 3)-th and Coker) (cf. (3)) an s-th
syzygy. This is impossible since depth(Coker $¥)p = s — 1 for all P € Spec R such that
P > 1.(x) and depthRp = 5. —

(18.15) Remark. (13.12), (13.13) and (13.14) have obvious generalizations to the
case considered in (13.5),(b) and (13.11),(b}. Details may be found in [Br.7] or left to
the reader. —

(18.16) Remark. We conclude the section with a few observations concerning
B[X|-free resolutions of Ime and Cokerz. The complexity to construct such a resolu-
tion {which should be minimal), is certainly comparable to the complexity of the cor-
responding problem for determinantal ideals. Besides the case in which » > min(m,n)
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the maximal minor case seems to be the only one for which results are avallable Let
r + 1 = min(m,n) in the following.

(i) If m > n then a minimal B[X]-free resolution of Coker z is given by the complex
D1(z) constructed in Section 2 (cf. (2.16)), since Coker 2 = Coker X in this case. To get
such a resolution for Imz, we use the following observation: Let A be a commutative

ring, f: F — G a homomorphism of free A-modules, r a non-negative integer, and
r+1
efr: NF® /\G* —» F the homomorphism defined in Subsection B. Then I, (f)F C

Imyy,.. (The easy proof is left to the reader). Applied to the special situation just
considered it yields an isomorphism

Cokerpx , 2 Imz.

A candidate for a minimal B{X]-free resolution of Cokerpx , can be found in [BE.4],
p- 27G: It is not hard to check that the complex Li”'“X defined there is acyclic and its
map d; is nothing but @ x .

(ii) In case m < n we observe that the kernel of the map g: B[X]™ — R™ induced
by X is generated by the elements

Z(—l)*’“[f\z’lﬂyi, I={1,...,m}, J€S(r,n),

i==1
Y1;---,¥m being the canonical basis of B[X]™ (cf. the observation made in (i).) Next
we consider the isomorphism

/\ (B[X]™)* - BIX]™,

where h(y )(z ) is the coeflicient of y* Az* with respect to yll\ Aym,y € /\ (B[X ™),
2 € (B[X] . One readily checks that Kerg = A(Im /\ X ); 50 Im g is isomorphic

with Coker /\ X*. Corollary 3.2 in [BE.4] provides a minimal B[X]-free resolution of
-1
Coker /'\ X*. One may use the resolution of Im 2 just mentioned and the resolution of R

given in Section 2 (cf (2.16}) to get a resolution of Coker z by constructing the mapping
cylinder of a chain map induced by X. The resolution of Coker # thus obtained is not
minimal, not even if m < n, the case in which it has minimal length; in fact, already
the system of generators of the first syzygy module turns out to be non-minimal, The
resolution of Cokerz constructed in [Av.2], Proposition 7, is for the same reason not
minimal. —

D. Comments and References

References-to the results of this section in case r > min(m,n) have been given in
Section 2. The main content is taken from {Br.7]. For the perfection of the generic
module (cf. (13.8)) and its homological properties {cf. Subsection C) this applies also
to the method of proof. There is a difference in demonstrating Theorem (13.4): While
we use a simple filtration argument (cf. (13.2)} and the results of Section 5 concerning
wonderful posets, in [Br.7] the inductive methods of Hochster and Eagon (cf. [HE.2] and
Section 12) have been exploited to obtain the perfection of Imz. Additional literature
to the subject treated in (13.18) may be found in 2.E.
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Throughout this section X = (X;;) is an m xn matrix of indeterminates over a
noetherian ring B, = an integer such that 1 < r < min(m,n) and R = R,41(X) =
B[X}/T,41(X). We shall investigate the module QL /8 of (Kzhler) differentials of R/B.
(The reader who wants detailed information about this concept and its importance in

local algebra is referred to the books of Kunz [Kn] or Scheja [Sch).}) We are mainly
interested in computing grade(I;{X), % /8). For this purpose the special structure of
the poset A(X) together with the general results on ASLs of Section 5 will be found very
useful, once more.

The module % /g 15 closely related to Irs1(X)/Lrp1(X )? via the exact sequence

L1 (X)/ T2 (X)? — Qbpxyya/Les1(X)0bix)/ 8 — Qrsp — 0
which can be improved to
0 — L1 (X) /L2 X)® — Qb x5/l 1 (X)Qppxy 8 — Q)5 — 0

if B is a domain, so computing grade(I;(X), % /p) means to compute the grade of I (X)

with respect t0 Ly {X)/Trpa (X ¥? in this case. Thus our investigations are connected
with Proposition {10.8) which gives a lower beund for grade(I (X), Ly 1 (X) /L5 (X y®).
We shall see that this bound is not sharp except for the extreme cases inwhichm=n=
r+lorr=1.

Of course the computation of grade(T; (X ), QL / p) i8 equivalent to the computation
of grade{I;(X), M), in general, M denoting the kernel of the projection

Qpx)/p/rr1(X Weixy 8 — Qk/a-

For technical reasons we shall primarily deal with M.

“To get a lower bound for grade(I;(X), M) we shall construct a (finite) filtration of
M, the quotients of which are isomorphic to direct sums of certain good-natured ideals
in the.rings R(X;8), 6 =[1,...,7 —1,s]L,...,7 = 1,t]. These ideals are investigated in
the first subsection. The second deals with the filtration. It is not hard to see that the
lower bound obtained for grade(I; (X), Q% /p) is an upper bound, too. Finally we shall
discuss the syzygetic behaviour of Qk/5-
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A. Perfection and Syzygies of Some Determinantal Ideals

Let s,¢ denote integers such that r < s <m, 7 < £ < n. We put
8o ={1,...,7 = L,s{1,...,7 — 1,8.

The ideal in R(X;6,:), we are interested in, is generated by the residue ciasses of all
P-MINOrs [ay,...,a,{by,...,b,] of X such that a, = s, b. = ¢. More formally one can give
the following description: Consider the ideal

{a €EA(X): a ¥ b1 8nd @ ¥ 64049 }

in A{X) cogenerated by 841,05 05,011 (cf. Section 5; of course we allow the extreme cases
bma1t = bgnp1 =[1,..., 7 —11,...,7 — 1].) This generates an ideal I{X; Ba+1,6505,041)
in B[X]. The quotient

I(@; 8041, 85,001) = WX 641,85 60,041 )/1( X5 60¢)

is the ideal in R(X;4,;) we have in mind. The special case in which s =r, ¢ = r + 1 has
already been treated in Section 13. In accordance with the notation just introduced we
put
A(X38011,,00,041) = {7 € A(X): ¥ 2 b4t OF ¥ > 64011 3
(14.1) Proposition. Choose notations as above. Then I(X;8551,0: 6s,041) %8 @ per- ~
fect ideal of B[X). Furthermore

l'kA(X; 63+1,t)65,t+1) =rk A(X; 6”) - 1.

"PROOF: The minimal elements in A(X 16a11,0,05¢41) are exactly

Oai1,ty 05,041 if s<m,t<n,
Gss1,t if s<m, i=n,
5,041 if s=m, t<n.

In any case these elements are upper neighbours of 8,;, which is the only minimal element
of A(X;4,,). Hence I{X; ba+1,ts8a041) is perfect in view of (5.19), and the rank formula
is obvious. — :

For an application in the next subsection we need a description of the first syzygy of
I(2;6441,¢505,¢41) as an R(X;6,,)-module. The following proposition generalizes (13.3);

(14.2) Proposition. Let s,t be integers such that r Ls<mr<t<n We
put bpe = [1,...,7 — L,51,...,7 — 1,£] as above and R = R(X;8,:). Letyy,...,y, and
215-.-,2 be the canonicol bases of R®, Rt, and consider R*~1, (R*1)* as submodules
of R*, (R*)* generated by yi,. .. »Ys—1 and 2{,...,2; | resp. Denote by T: R* — R the
map given by the s x t matriz which arises from X by cancelling the last m — s rows and
the last n — & columns. Let

r—1 r—1

6-: /\'R‘s—l ® /\(Ri—])o —'>R,

TSI e ettt
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be the composition of the map

r—1

r—1 ’ r r
AR o AR — AE @ A®Y.  vr®zr — yruge} ® 2iugy
and gz . Then the kernel of P is generated by the elements

S ol \ililyns ® 25, T €8(rs-1), j€S(Lin), J€ §(r—1,¢-1),
i€l

and

EJ(J,J\J)[ZIJ] br ®z}\ja J € 8(r,t~1), i € 8(L,m), I € S(r—1,s—1).
jeJ

PROOF: Let N be the submodule generated by these elements. Obviously
Plyr ® z3) = 1, 87,4,

I € S{r-1,s-1), J € S(r—1,t-1}, so N C Kerg. Proposition (5.6),(b) provides the
proof of the opposite inclusion: Put

W = {[1,s)J,8]: T € S(r—1,5-1), J € S(r—1,¢-1) 1}

T is an ideal in A(X;6,:). Let [I,s8)J,t] € ¥, [K|L] € A(X;8,) such that [K|L] #
{I,s}J,t]. We claim that

K|Llyr®@25 € N+ >, Ry
wivi<[z|J]

To show this we write [KIL] = [kh ‘e )kuuls weay lu], [IlJ] = [‘i], ves ,'i,-..]!jl, fen !jf‘-*l]‘
By assumption there is a p < 7 — 1 such that £, < i, or I, < j,. Suppose that k, <1,
for some p. Denote by o the smallest such index. \

If o = u, then we put K = {i1,...,5u-1}, T = {k1,- ., Kusius -+ +sr—1}. From the

Jemma below (with F = R*~1, G = B*~1, f the matrix T decreased by its last row and
its last column, » = r — 1) we obtain that

ez @y @) @25 = Y. oU, NIy Ay ®25 € N.
UeS(u,D)

Since [k, \U|J] < [I|J] for all U € S{u,T) such that U # K and [K,1\UWJ] # 0, the
claim follows at once.
If ¢ < u, then the inductive hypothesis on u yields

[K\kJIN @2y € N+ Y. Rywezy
Wivi<(J)
for p = 1,-..,u. But [K|L]yr @ 2} is a linear combination of the elements on the left
hand side, so we are done in this case, too. '
Clearly the proof runs analogously if I, < j, for some p. —
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(14.3) Lemma. Let 4 be an arbitrary ring, f: F —Ga homomorphism of A-
modules, and u,v integers such that 1 Su < v+1. Consider the map

w—1 v+l u i 7] )
o NP AFoAG — Ar
given by
Pulwr ®yr ®21) = wi A gsa(yr ® 21),
Wrg =we, Ao Awg,_,, yr SHic A AYi, 2= z,‘l /\.../\Zi‘“, wkp,y,-; EF, z,‘T €G*.
Then Imyp, C Imy,.

PROOF: We use induction on u. There is nothing to prove for » = 1. Let u > 1,
WK =We Ao AWy, yr =3, /\.../\y,‘DH, zp = z,'l /\.../\ZLM, Wk, Yi, € F, Zl:_ € G*.
Then ‘

Pur1(Wr @y ® z}1)

= ¥ o(U,I\NU) 25 (A f(yo)Y wre Ayny

UesS(u+1,0)

u—1
= Y Yo\, UN) 2 (F(5:) 2, ( A fun)) we Apng
UVeS(u+1,1)icU
u—1

= > 2N O\ NG\ i, \T) 23, (F ) 2 ( A Flvone)) wi Ayn
Ues(uti,I)icl ‘ )
u--1
== 3. > dWLI\WV)oli NV 24, (£0) zis, (A £ov)) wie A gruns

VES(u.D) iel\V

VeS(u,d) ieh\wv

u—1
=% )7 o(V,\V)ziy, (A Fov))( 3 ol NV 20 () wre Avawng)

=% 3 oW V) ahy, (A Fav (3 0 K\ 23, () wiens A yny) mod Tmipy

VeES(u ) . €K L
=+ Z o (i, K\i) 2y, (f(w,)) Pulwr\i @y @ ZE,\;;) mo,d Imip, . RN
icK R .

=0 mod Img, by the ihdﬁctive hyp.othesi's. —

B. The Lower Bound for the Depth of‘ the Diﬁ'gfenﬁal quulé o

" The R-module M considéred in the introduction is generatéd by the residue classes
de modulo 1,.,(X )Qx/5 of the elements da where d is the usiiversal B-derivation of
B[X] and o runs through the (r + 1)-minors of X. To have a simpler notation we shall
write da instead of da. If we identify Qhix] 8/l 1 (X)Qpxi,5 with R™ @ (R™)* via
the map L

dX;; — % ® z5,
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Y15--+»Ym a0d 21,..., 2, being the canonical bases of R™, R™ resp., then clearly

I = 3 oli, Yo (G, NI\ 31 @ 25
icl
jEJ

= ‘Pz.r(yf ® z})

for all I € S(r+1,m), J € S(r+1,n), the map z: R™ — R™ given by the matrix X
modulo I,+1(X}.

We start with a simple observation concerning the free locus of 2. It may also be
derived from (2.6).

(14.4) Proposition. Let P be o prime ideal of R. Then Mp is a free direct sum-
mand of R @ (R%)* (of rank (m —r){n — 7)) if end only if P 3 L(X)/ L1 (X).

ProoF: The less trivial “if” part is an immediate consequence of the following
general fact: Let r be a nonnegative integer, F', G modules over an arbitrary ring A
and f: F — G an A-homomorphism such that Im f is a free direct summand of G and
tk f = ». Then the image of the map

r+1 r+1
otr: N\F® NG — FOC

is the direct summand Ker f @ Ker f* of F® G*. —
Let r < 8 <m,r <t <n,and put

M(s,) = submodule of M generated by all da,
a= [ah ooy @rpi]Brses sbr+l]: (ar, b,) % {a,t)

(%< means “lexicographically <™). Clearly {M(s,tj:r <8 <m,r St < n} gives
an increasing filtration of M if the pairs (s,t) are ordered lexicographically. Next we
consider the quotients of this filtration:

M(r,7) if s=t=r
M(s,t) = { M(s,t)/M(s,t—1} if t>r
M(s,r)/M(s—1,n-1) if s<r t=T

(14.5) Proposition. Put §,¢ = 1,...,7 = 1,8[1,...,7 — 1,t] wheneverr < 8 < m,
r £ t < n, and choose notations as above. Then
(2) Anng M (s,8) = I(X;65)/Irs1 (X).
(b) As an R(X;6,)-module M(s,t) is isomorphic to the (m — 8)(n —t)-fold direct sum
of the ideal I(2;6,41,1y Oa,e41)-

PROOF: Let (s,¢) be such that r < s < m, r £ ¢ < n. Looking at R*Y, R* Y as
submodules of R™, R™ generated by y1,...,¥s=1 and 21,...,2%-1 r€Sp., we consider the
map

B 2 *—1

F=oitd): AR @ \RT) — M(s,t)
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which is composed of the inclusion
r=1 r~-1 r+1 r+1
AR e Ar1) — AR Ay, yezp— YIu{es} ® ZJufei)s
the homomorphism ¥z,r, and the residue class map with respect to the corresponding
submodule of M. Obviously
$(yr ® 23) = residue class of d([I, 8,4 ¢, 7)),
I'eS(r-1,s-1),J¢ S(r~1,¢t-1).
By expansion one obtains

Yool NEAAN]) =o,
(1) iel _
2ol D[N A(K|])) = 0

leL

for all 1 € S(r+2,m), j € 8(1,n), J € S{r+1,n), k € 8(1,m), K € S(r+1,m), L €
S(r+2,n). We therefore get

3 oG, Nlilyni ®2) € Ker,

i€l

3 ol I\ yx ®zfy € Ker

leL :
for all I € S(r,s—1), j € S(1,n), J € 8(r—1,t~1), k € S(1,m), K € S(r—1,2-1),
L € 8(r,t—1). By elementary determinantal calculations jt follows that

[K|Llyr ® 25, [K|L]y1 ® 25 € Ker & .
forall K € S(r,s-1), L € S(r,n), Ke S(r,m), L € S(r,t—=1) and all T € S(r—}, 8—1),
J € 8(r—1,¢-1). This proves the inclusion “3” of (a). T
Put R = R(X;6,;). Then & induces an R-homomorphism

r=1 r-1

AR e AR — H(s,t)
whose kernel contains the kernel of the map 7 in (14.2). So 3372, ., e P8y, 5)
induces a surjective map

B

m n .
@ @1(-'0; buat1,6060,41) — M(s,1).
o+1 t+1
The proof of the proposition is complete once we have shown that M (s,t) contains a free
R-module of rank (m —8)(n —t). This clearly holds if the residue classes of the elements
d([L,...,r - 1,8,i]1,...,r - 1, t,j]) are linearly independent over E. Assume that

m o 0 ifs=t=r
DD aid([1,. 07— 18,81, ,r — L,4,5]) € M(s,t~1)  ift>r,
i=atl j=t+1 - M(s-1,t~1) ifs>rt=r

with elements a;; € R. The left side of this relation has +a;;6,: as its component
belonging to dX;; while the corresponding component of the right side lies in the ideal
I(X;8.¢)/1,41(X). Since 8, is not a zero-divisor of R(X;6,:) we get’

@ij € I(X;8,¢)/Irs1(X). —

e
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(14.8) Corollary. For every prime ideal P in B[X] containing I{X;6,:) one has

depthM(s t)p = depth Rp - (s - 1') (t - 1-)

PROOF: Assume first that B is a field or B = Z. From (14.1) we get
depthI(:c; 6,+1‘t,6,‘t+1)}7 = depth R(X, d,,)};, C
50 " Sy
depth M (s,t) p = depth R{X;6,¢)p
by (14.5),(b). Using the dimension formula (5.12),(a) we obtain

depth R(X; 6.)p = depth Rp ~ (s =) = (t—7).

It follows in particular that (s, ?) is a torsionfree R(X; 8,¢)-module if B = Z, so it is
B-flat in case B is an arbitrary noetherian ring, what we will assume from now on. Put
Q = P n B and consider the flat extension, Bg — Rp. Since M(s,t)p and R{X;8.2)P
are also flat over Bg, the depth formula we have used already in the previous sectlons
(ef. the proof of (3 14) for. exa.mple) ylelds - ;

depth M(s t)p = depth BQ + d6pth(M(s, t)p ® (BQ/QBQ)),
depth R(X bat) P = depth Bg + depth(R(X 6.:) P® (BQ /QBq)), .
depth Rp = depth Bg + depth(Rp @ (Bq/QBq))
The claim now follows from what we have derwed in the ﬁeld case. -

(14. 7) Propomtlon For every pmme zdeal P in B[X] contammg I,.(X)
depth(Q /B)p > depth Rp grade(I (X) R) + 2

Consequently S ) NN
grade(!, QR/B) > gra.de(I R) — grade(I(X),R)+2
Jor all zdeals Iin B[X], IO (X) L _

PROOF: Once more we consider the first syzygy M of QR/B and its Sltration

{M{s,t):r <8 <m 1 <t < 'n}. From (14.6) and the depth analogue to Lemma
(13.1) it follows that

depthMp > depthRp -{m—-1-71)—(n-1 —7)
==depthRp —(m+n—2r+1)+3
= depth Rp — grade(I.(X), R) + 3.

This proves the proposition. —



frese

C. The Syzygetic Behaviour of the Differential Module 181

(14.8) Reimarks. (a) The module of relatlons of M is generatéd by the Tinéar
relations (1) in the proof of (14. 5), in Other words: Let F.= 'R™, (@ ='R". "Then the
sequence

r+2 S B S S

(ANFec o Ao (A\FeFre \G) 2 AFo A¢* & Fecr,

where @o = @or, 01 = (021 ®1) D (1® 9z 1) (cf 13.B) is exact. To demonstrate this,
one has only to look into the proof of (14.5). Another way to obtain exactness is as
follows; The sequence is easily seen to be a complex whxch is (spht) exact in depthU
Furthermore ‘one may tréat Coker @1 in the sameé mannér as the module M (cf (14 5),
(14.6) and the proof of (14.7)), to get that

depth(Coker ) p > min(3, depth Rp)

for all prime ideals P € Spec R. So Coker . is torsionfree. and thus Im¢; = Kergg. —
(b) The module’ M. (= Iy 1(X)/I.§1(X)®) is a direct B-surnmand of the symbolic
graded ring
. Gr) 0 BIX] 2 P L (XD /1 (X) 6D

and inherits a standard basis from this ASL in a natural way (cf. (10.6) where this has
been defined for arbitrary B). The filtration considered above is compatlble with the
standard basis: each submodule M(s, t) is generated as a B-module by the elements of
the standard basis it contains.:The rank argument in the proof of (14.5) can be replaced
by a comparison of standard bases.

Of course each of the quotients 1,1 {X)® /L., (X)0+D inherits a standard ‘basis
from the symbolic graded ring, and it should be possible to construct similar filtrations for
them. These filtrations may yield lower bounds for the depth of L 1 (X)) /1,2 (X) 6D
as indicated below (10.8). —

C. The Syzygetic Behaviour of the Differential Mod_ule

The inequalities of (14 7) actually are equalities, This, of course, determines the
syzygetic behaviour of Q1 r/- On the other hand we do not use the full truth about

depth(9}/5)p, P a- prirfie ideal’in B[X ], to descrlbe the syzygetlc behaviour -of 0} /B
Besides {14.7) we ‘only neéd:

(14 9) Propos1t10n For every mzmmal pmme zdeal P of I {X)

depth(QR/B)R: 2.

. : PROOF We use mductlon on r. Leu r.=1. A 51mple locahzatlon argument shows
that we may assume P to be the only prime xdeal in B[X] containing I; (X ). From (14.7)

we get o ‘
S “depth(Q%,5)p > 2,

and by (14.4} {Q} /B)Q 18 n'ee for all prlme ideals @ in B[X] which are different from P

If depth{f2l R/B)P 23 then’ every Rp-s -sequence consmtmg of three elements would be an
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(Q‘R/ 5 )p-sequence. According to (5.11), X11, X12 + X21, Xrmp form an Rp-sequence. To
show that it is not an (2}, 3) p-sequence we put w = X 12dX11. Then

xmnw =X11(X213an - inaxm + Xm2axln)
+ (XIZ + X?l)(_xmlaxln + ana.xll)
- lea(ll mll n]),

but w ¢ X11{R™ @ (R™)*) + (X12 + Xu{(R™ @ (R™)*)}+ M. Thus depth(Q}z/B)p = 2.
Assume now that r > 1. Let Z,,, denote the residue class of Xma in R. By (2.4)
we have an isomorphism

R["';lL] = RT(Y){XmI: L sXmm le e sXm-—l.n][Xr;:n]:

Y being an (m — 1) x (n — 1) matrix of indeterminates over B, which maps the extension
of 1.(X) to the extension of L,_1(Y). Put § = R.(Y), @ = PR[z;,]N S. Since

Qb8 ®r Rlzmh] 2 Qppe-1y/8 = (Qs/8 s Rz} © F,

m

with a free R[z;}}-module F, and § — R[z;!] is a flat extension, we obtain

depth(Q),/p)p = depth(Q}, p)q + depth Rp — depth Sq.
Clearly @ is a minimal prime ideal of I,_;(Y}, so
depth Sg = gradel,_;(Y) = gradel,(X) = depth Rp.

Using the inductive hypothesis we get the required result. —
Now it is easy to prove

(14.10) Theorem. 2} /B 15 & second syzygy but not a third one.

PROOF: If P is a prime ideal in B[X], P D I.(X), then depth Rp > grade(I.(X), R),
so depth(Q}/p)p > 2 in view of (14.7). In all other cases (2}, 5)p is Rp-free. Conse-
quently Q% /5 is a second syzygy and, if it were a third one, then depth(Q}z/ g)p = 3 for
all prime ideals P D I.(X), which obviously contradicts (14.9). —

(14.11) Remark- (a) Tr prove the inequality “>” in (14.9), we only need the lower
bound for grade(I;(X),Q%,/5) coming from Pronnsiion (10.8) (cf. the introduction).
This lower hound also suffices (comhinea . ith the usual localization argument) in showing
that Q! _p ©asecond syzygy (cf. the proof of (14.10)}. — :

. t » ¢t section we shall give an explicit presentation of (% /B 3s a second
SYzygy — o

(14.9) will also be used to prove the main result of this section:
£

)
X
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(14.12) Theorem. Let P be a prime ideal in B[X] which contains I.(X). Then
depth(Q}g/B)P = depth Rp — grade(I.(X), R) + 2.
Consequently
grade([, Q};/B) = grade(/, R) — grade(I.(X),R) + 2

for all ideals I in B{X], I > 1(X).

PROOF: We only need o prove the first equality. Since Q% /5 is B-flat, the usual
techniques (used for instance in the proof of (14.7)) allow us to restrict ourselves to the
case in which B is a field. The inequality “>” has been established in (14.7). Assume
~ that
depth(Q%,5)» > depth Rp — grade(L.(X), R) + 3

and take a (grade(I.(X}, R) — 3)-th syzygy N of Q% sg- Then depth Np = depth Rp and
consequently

depth(Q,5)q > depth Rp — grade(l,.(X),R) +3 > 3

for all prime ideals @ in B{X] satisfying P O @ D L(X). This contradicts (14.9). —

D. Comments and References

Special cases of Theorems (14.10), (14.12) have already been treated in [Vel] (r =
1=m—1) and [Br.2] (» = 1). As mentioned in 9.E, Theorem (3.5} in [AH] implies the
grade formula of (14.12) for n =m + 1 and I = [;{X) {(cf. {9.27),(a)). Our presentation
of the general case follows [Ve.3} where the main results are covered by Theorem {3.4).



15. Derivations and Rigidity

With the notations of the previous section we continue the investigation of Q% /B
More precisely we shall treat the R-dual of 2} s which is just the module of B-derivations
from R to R. The main result will be that (%, p)* is an almost perfect B[X]-module
which is perfect if and only if m # n.

For obvious reasons this result makes it possible to describe the syzygetic behaviour
of (0% / 5)* as we did for the generic module in Section 13. As a consequence one obtains
some results concerning the rigidity of R as a B-algebra in case B is a (perfect) field
{cf. Subsection C).

To have a shorter not.a.tlon we put Q= QR/B For§ € A(X), 6 > [1,...,7L,...,7],
we write

I(z;8) = I(X;6) /L1 (X)),

. and correspondingly o
’ I,-(ﬂ?) = Ir(X)/Ir-I-](X)

etc. as introduced in Section §.

A. The Lower Bound for the Depth of the Module of Derivations

Let F, G be modules over an arbitrary ring 4, f: F — G an A-homomorphism and.
7 a nonnegative integer. In 13.B we have defined a homomorphism

#+1 r41
0= Pt /\F@ /\G' —s F®G*".

In case A = R, F = R™, G = R*, f = =z, the cokernel of ¢ represents the module Q.
To investigate 2* we shall define two more homomorphisms ¥, in the general situation
considered above, which are connected with ¢ in a sequence

(1) R X%RLE
where
r+1 r+1
R=AFe AG",
AR=F®G,
B =[FeF|e|[Ges,
r+1 r+1

R=A®[GeF|ao[Fa( /\F®/\G ea[(/\F@/\G‘ -Ted R
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Let

xy®2')=y® f' (') + fly) ® 2",
Yy®Y +282") = [y - 2 (2)] + [fy) @ y* - 28 f*(2°)]
+ [y ® ¢}, 3")] + [0} .(2) @ 2*],

forally € F,y* € F*, 2 € G, 2* € G*, @f,r being as in 13.B and z viewed an element
of G as well as an element of G** via the canonical map G — G**. (We adopt this
convention for analogous situations.)

(15.1) Proposition. (a) If tk f <r, then (1) is a complez.
(b) If Im f is a free direct summand of G and vk f = r, then (1) is split ezact.

r+1 r+1
PROOF: (a) Let yy € A F, z5 € A G*. Then
x© p(ys ® z3)

= D2 o@N\DeV,N\V) 25 (A fo) [inw ® £ (2ny) + Fluny) @ Zhy]
UesS(r,I)
VES("'J)

= ) cWNDuwel Y. o(ViA\V)u(AF &) £ )]

UeS(r,I} VES(r,J)

+ X oAV Y o0\ 2 (A F ) Flyne)] € 25y

VesS(r,J} Ues(I)

= Y, oU,I\D)fynu® f o ps (2} @ yu))
UES(n D)

+ Y, dMAVMfops.(ur@sy) @ zhy]
VeSs(r,J)

=0
(cf. 13.B). To prove 9o x = 0 we take y € F, 2* € G*. Then
Yox(y®@z') =9y f(z*)+ fly) ® 2*) ‘
= [£"(z"Wy) - 2 (F )] + e ) -fye (2]
+ [y ®pf, 0 (2] + [0}, 0 F(3) @ 2°)
=(.

(b) The assumption on f guarantees that G=Imf@ C, C being a submodule of G
isomorphic with Coker f, and that there are elements ,...,y, € F whose images under
J form a basis of Im f. As one easily checks, S

Kery =Xerf @ C*,

Kerg = (Ker f@Im /)@ (Im/ 8 C*) 0 3 Ay 8 3} + f(3:) ® Flz;)*),
Wi
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and the modules on the right hand side of these equations are direct summands of I}
and F; resp. Now let y € Ker f, z* € C*. Then '

P A A AY® f) A Afly) A2t ) =y @2,
so Imyp = Kerx, and

Xy ® fw:)") =y @i,
x(y:i ® 2*) = flyi) ® 27,
X ® f(y;)*) = ui ® v + fwi) ® f(ws)",

1<4,j<r,s0Imy =Kery. —

(15.2) Corollary. In case A =R, F = R™, G = R" and f = z, the sequence
(1) is ezact. Consequently it yields an ezplicit presentation of Q = Cokerp as a second
syzygy-

PrROOF: The assumption of (15.1),(b) is fulfilled if we localize at a prime ideal
P 7 I.{z). In particular (Coker p)p and {Coker x) p are Rp-free, and (1) is split-exact
in depth1. From (14.10) we know that Cokery = Q is a second syzygy, so Cokerx is’
torsionfree. But then Imp = Kery, Imy = Ker¢). —

As in the corollary let A= R, F = R™, G =R" and f = . Then Kerp* = Q*. We
will now prove that pdpx) Coker x* < grade R + 2. This will imply that * is almost
perfect. The method of proof is very similar to the one used in Section 14: We shall
consider a fltration of Coker x*, the quotients of which are direct sums of weli-known
ideals generated by poset ideals.

Let 91,.--s%m and 2z1,...,2, be the canonical bases of R™ and R*. Put N =
Coker x* and abbreviate w;; = 3 ® z; mod Im x*, i € 8(1,m), j € $(1,n). Let

Nu= Y, Rwi; ki20
>kl

Obviously Nyr C No» C Nor+ N C N. Using notations as at the beginning of 14.A we
can state the following

(15.3) Proposition. (a) Ny i3 a free submodule of N.
(b} Anng No/Npp = [z;6pp1,r). As an R(X; 6p41,)-module Noo/Npp is isomorphic to
the (n — r)-fold direct sum of {z; 8r42,rs Bra1,rt1)-
(C) AnnR(NlJr +Nr0)/N0r = I(.’L‘; 6r,r+1)- As an B-(X; 6r,r+1)‘m0d@de {-Nﬂr' + NrD)/Nﬂr is
isomorphic to the (m — r)-fold direct sum of Iz; 6ps1,r4150rre2)-
(d) Anng N/{Nor + Nro) = Iz; bri1,r41). As an R(X; 8rz1,r51)-module NJ(Nor + Noo)
is isomorphic to 1(Z;6r42,r Br,ri2)-

PROOF: (a) Assume that 3., ;5. aijwi; = 0. Then in particular

S (@ @) e ) o, rkr ® 20, ) =0 TS k<m, r<I<mn,
i»rj>r
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whence aufl,...,7]1,...,7] = 0, and consequently ey = 0.
{b) Observe that

n .
Xwiew) =) [y ®n, ikeS1,m),
v=1
) =
X'(z;®@z)=) lulilyi @z,  j,1€S(1,n).

u=]
Therefore 37, [i|j]wis € Nyp for all j € S(1,n), r <1 < n, and consequently
(1,...,7|J wy € Ny, 1<i<r<i<n, JE€S(rn)

This proves I{z; 6,11,») C Anng Ny,/N,,.. To show the rest of the assertion we proceed
like in the proof of (14.5). Let R = R(X;6+,-) and consider the homomorphisms

9t (B')* ~— Noo/New,  g;(5) =wij mod Npyy, r<j<n, 1<i<r

(#1». - -, ¥, being the canonical basis of B"), and

r—1

P! /\I_?," — R, T, ) = 1.1 JhyereaT + 11,...,7], 1<i<r,

By (14.2) Ker @ is generated by the elements 31, (~1)"+[i|k] ¥, k€ S(Ln).
Since 3-_,[i|k]5} € Kerg;, r < j < n, % induces a surjective map : '

n—r

@ I(:r; 6r+2,ra 6r+l,r+1) - NUr/Nrrs
1

which is injective, too, since for example the residue classes of Wrrtlye e y Wen Mod-
ulo N, are linearly independent over R{X ;6r41,) as is readily checked: Assume that

?:r-}-l bjwr; € Nyp, b; € R, and apply E;l=r+] bilyr ®z;}op to Yi,..r+1} ®z{.l,..4,r.k}’
r<k<n :

{c) Analogously with (b) we obtain that Anng N, /Ner = I(@;6,041) and that
Nyo/Ner is isomorphic to the (m — r)-fold direct sum of I{z; bri1,r41:6rr42) a5 an
R(X;E..,..H)-module. Since (Nor‘f'Nrg)/Ng,. = N,.o/(Nuan,-u) and N,-,. C No,.F‘IN,.o, we
get a surjection Nyg /Ny — (Noyr + Nyg)/Nor. The residue classes of Wripl,rs- ey Wenp N
(Nor+Nro)/ Ny, being linearly independent over R(X;6r,r41), this map must be injective,
too.

(d) The inclusion I'(a;;6,+1,,+1) C Anng N/(Nor+ N,g) is again an easy consequence
of (2). Next we put B = R(X;8,41,r+1) and consider the homomorphisms

g: (.R.r). @ RT— N/(N(Jr + Nr(]),
g(ﬁ,‘ @fj) = Wij mod Nn,- + Nm, i,j € S(l,‘l")
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(%, - - -, 7 being the canonical basis of R}, and

r—1 r—1
| . B AFeA\®)—F
@(?7{1,...,14\.' ® yzl,.._,r}\j) = [1: v ,?, coeaT 1|11 ‘e 33: syt 1]$ iaj € S(ls 7')-

The kernel of 7 is generated by the elements 31—, (—1)"" ' [i{k]Fq, ..r)vi ® Fla,.mput
and E;=1(_1)j+1[ulj]z_f{l.---,r}\v ® ¥l1,...o 0\ k € 8(1,n), » € S(1,m), l,v € 8(1,7)
(cf. (14.2)). Since E:;1[3|kl 7 @y, and E;:.l[u'.?] Y, ®Y; are elements of Ker g, we get
asurjection '

I(x;6r+2,r15r,r+2) — Nf(Nor + Npo).

Obviously the residue class of w,. generat;as an R-free submodule in N/{No + Nyo),
whence the map must be bijective. — .

(15.4) Proposition. Choose notations as at the beginning of the section. Then Q*
is an almost perfect B{X]-module.

ProOOF: We consider the filtration
New C Now C Ngr+ Ny CN -

preceding (15.3). Put g = grade R. Then pd N,y = ¢ since this module is R-free
and R is perfect. By (5.18) and (14.1) the rings R(X;65), B{X)/X(X;6511,8:0a,841)s
-7 < 8 <m, r <t < n,are perfect, too, of grades g+(s—7)+(t—r) and g+{s—r)+(t—r)+1
resp., S0

Pd NOr/Nrr = pd(NOr + Nrﬂ)/Nﬂr =g+ i,
pdN/(NUr +‘Nr0) =g+2

by (15.3),{(b)-(d). Consequently pd N < g + 2 and therefore
pdImy* <g+1

since Tm y* is a first R-syzygy of N. This shows that Im x* is almost perfect.

Consider the inclusion map Imy* — Kery* = Q* which is bijective if localized
at a prime ideal not containing I.(z) (cf. (15.1),(b)). Since Imx" is almost perfect, we
obtain

depth(Imx*)p > depthRp — 1

for all prime ideals P. Conseﬁuently Imy* is reflexive because (Imx*)p is free when
P % 1.(z) (cf. (16.33)). Ker ¢* being torsionfree, we thus get Imx* = Keryp*. —

(15.5) Remarks. (a) It has just been demonstrated that Imx* = Ker¢® in case
f = z. Actually in this case the dual to (1) is exact everywhere as we shall see below.

(b) The system (2) of generators of Imx* = Q* is not minimal since the element
3 L YL ®Yu — Youq 24 ® 2y lies in Ker x*. This is nothing but the fact that the Euler-
derivation 3, .[i|jly; ® z; can be written as T x (yL®yu) and as 3o, X" (2] @z0)-
On the other hand arbitrary m? + n® — 1 elements of (2) form a minimal system of
generators for (2*.— S : L
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B. The Perfection of the Module of Derivations

(15.4) leaves open when Q* is perféct. To answer this question we need the first
syzygy of Q* and some technical information about intersections of certain determinantal
ideals.

(15.6) Proposition. In case f = x, the dual to (1) is ezact.

ProoF: In view of (15.5),(a) it remains only to show that Im¢* = Kerx*. Since
the dual to (1) is a zero-sequence which is split-exact at all prime ideals not containing
I.(2), it will be enough that grade(l,(z), Cokery*) > 1. For Coker4* is torsionfree,
then, and consequently the canonical map Cokery* — Im x* is bijective.

Put C = Cokery* and let yq,...,%,, and z1,..., 2, the canonical bases of B™ and
R". We intend to apply (13.1). The filtration of C' needed for (13.1), is obtained as
follows: Let " o o '

(3,7) < (£, 1) = i<k or i=kji>l"~

and put

Cy = E Ry ®@y; + ZRz; ®zy, mod Imy*.
(4,7)=(k,1) W

Let {(k,7) € 8{1,+) x S(l;m). We claim:

(i) The module Cy1/Ck,r1 is annihilated by I(z;[1,... ,%,... L, m > >,
and is free as an R{X;[1,... ... L. rh)-module; - - :

(ii) the modules Ci,/Cri and, if k > 1, Cp 4_1/Cry1,m are annihilated by the ideal
I(z;[1,... R ,T+11,... ,'r]), and are free as R(X;[1,... B, yr+1LL L, 7))
modules; , : ;

(iii) C1x = Cam, and if k > 1, then the module Cii/Cix_; is annihilated by the
ideal I{z;[1,... E—1,... ,7+1|1,...,7]) and is a free R(X;[1,... ,k —1,... , 7+

1,...,7])-module;
(iv}) Crs1,m = (Ima)™ " P(Imz*)~.
Since [m—r+1,...,m[1,... ,7] is not a zero-divisor modulo any of the ideals occuring

in (i)-(iii}, the claim and (13.1) imply immediately that grade(l.(z), C) > 1.
To prove the annihilator assertions of (i)-(iii), we observe that Imy* contains the
following elements (cf. the definition of 1 given in Subsection A):

(3) P =) i@y — Y 2@z,
u=]1 v=1

(@) P o) = Y kv ©y - 3 iz @z,
u=1 wv=1

i€3(1,n), j€8(1,m),

(6) VW Owe) =3 olu,\u)I\ully ®y,
uecl

i € 8(1,m), I €S(r+1,m), J € S(r,n).
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A

We abbreviatre yi; =y ®y; mod Imy*. From (4) one gets
k | :

S wlilyui € Chrrms  F €S(1,m), § €5(L,n),

u=1
50

fl,... , k|V]yrt € Crs1,m; l € S(1,m), V € S(k,n),
(by elementary determinantal calculations), and from (5) we obtain
I\ J) yrt € Ch,i-1, r<leleSs{r+1,l), J € 8(r,n).

This proves the first half of (i) and (ii). Clearly (3) implies Cj; C Cam. Assume that

k > 1. From (3) and (4) it follows that

k
Zyuu € Ck—i-l,m:

u=1
k-1 .
Y lellvui-1 € Cip-rs  §€8(Ln), j€S(LE-1).
u=]

The inclusions of the last line yield
[1,- . :k - IIV]yjj € Ck,k—h .7 € S(lsk_l)’ Ve S(k—lsn):

0 [1,... ,k = 1|V]yur is an element of Cyx—1 for all V € S(k—1,n).
Now we turn to the second part of (i)—(iii). Since Imy* C Kerx", a relation
za;,-y;' Ry + waz; ® 2z, € Imy*

1.J u,v

implies
(6) Ea.‘j[jl'v] + Z buv[iju] =0, i € 8(1,m), v € §(1,n)
j=1 u=1

(cf. (2)). To prove the second assertion of (i)-(iii), resp., we therefore shall deduce that
a system of equations

S bufill =0,  1<i<k, veES(1,n),

u=1

[ . n
Zakj[j!”] + E b,\,,,[k|u] =0, v € §(1,n),
Tou=l )

i=1
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yields
(7) aw € I(z;9)
where

[1,...,?E,...,r,l[l,...,r] if I>»

v=1< 1, ,E,...,r+1|1,...,r] if 1<k or k<l<r,

[ k=L, r 411,00 ,07]  if 1<I=k
In any case, and provxded v € 5(1, n) has been fixed, mult:plymg the i-th equation of the
system by (— [1 RN TP 1) —-1],i=1,...,k, and summing up leads to

... k=1]1,..., —I]Zak,[_ﬂv] € I@i[Lyen  Kyennyr +1[1,... 7)),

whence

i
> axilil] € N[l k.. r+1[1,...,1)), v € S(L,n).

i=1
By the usual determinantal calculations we finally obtain that

baxr € I{z;7),

where
5 if >
5 Lo By d+11,.00,0] 3 k<i<n,
(L. 81,0 1] if 1<k,
2,...,k[L,... ,k—1] if 1<i=k.

This implies {7).
As to assertion (iv), we consider the surjection

[(R™"")* ® R™] & [(R")* ® R"] - Cry1,m,

which maps y, ®Y;, 2, ®2, to their images mod Im¢*, 4,5 € §(1,m), i > r, u,v € §(1,n).
So
Za".fy: ®y; + Z buvzy ® 2y € Kerm

ivJ. v
i>r

implies
D bwlil =0,  ieS(L7), veSLn),
u=1

m n
Y aililv] + 3 bufifu] =0,  r<i<m, veS(lyn)
i=1 u=]1 o
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(cf. (6)). Since the first r rows of z are linearly independent and rk x = 7, this system of
equations is equivalent to

Ebwz; ¢ Kerz*, v € 5(1,n),

u=1
m
Za,—_,-y,— € Kerz, r<i<m.
=1
Thus -
z ai;y; ®y; € Ker(1®z), Z buvzt ® 2z, € Ker(z* ®1).
L%} u, v
t>r

Conversely this implies, that

E aijy; @ ¥js waz; ®z, € Imy*

:'gjr e
since Ker{(1 ® z) = Im(1 ® ¢} C Imy*, Ker(z* ® 1) = Im(p,,®1) C Imy* (cf. (13.6)
and the definition of ¢ in Subsection A). —

(16.7) Theorem. Choose notations as at the beginning of the section. Then Q* is
o perfect B[X]-module except for m =n in which case tf is almost perfect.

PROOF: We know already that Q* is almost perfect in any case (cf. (15.4)). To
prove that it is perfect except for m = n we reduce to the case B = Z as usual: Let
Ry = Z[X]/1r41(X). {Qk,z)" is faithfully flat over Z, so 3% = (R, /) ®z B is a perfect
B[X]-module if (Q}zo/z)" is & perfect Z[X]-module. In case (Q}%/z)‘ is not perfect, we
repeat the argument used in the last paragraph of the proof of (13.8), to obtain that Q*
is not perfect, too.

Let B = Z. In case m = n, R is Gorenstein (cf. (8.9)). Put P = I.(z): Then
depth Qp = 2 (cf. (14.9)). Thus Qp is not a third syzygy. Consequently Ext}h, (Q%, Rp)
# 0. It follows that depthQ}p < depth Rp, in particular that Q* is not perfect in the
case just treated. Assume that m # n, say m <mn, and let w be the canonical module of
R. We must show that Ext}z(ﬂ“,w) = (0. Consider the exact sequence

JRRaNy Iy

where Q* 2 Imx* {cf. (15.6)). Let D = Imy*. Obviously ExthL(Q*,w) = 0 is equivalent
to the fact that the induced map

Hompg(F;,w) — Homg(D,w)

is surjective. Put s = n —m. As-we know, w can be represented by @*, Q being
the ideal in R generated by the r-minors of arbitrary r-columns of z. For technical
reasons we assume @ to be generated by the r-minors [I]2,...,7+1], I € 5(r, m). Let
h € Hompg(D, Q). We have to find a g € Homp{F;,Q") such that gD =h.

P . . S ——
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Let D' be the 9*-image of

7\1F®/\G‘ o [(/\F®7\1G ) ® G,

the last two components of Fy (cf. Subsection A, # = R™, G = R", of course).
Then F2 /D' is a direct sum of m copies of Imz and n copies of Imz* (cf. (13 6)),
50 Extp(Fy/D’,@°) = 0 by (13.4). It follows that there exists a § € Homg(F;,Q*) such
that §|D' = h|D’ Thus we may assume that h|D’ = 0.

Put hyj = hoyp*(2] @ 1), i € S(1,m), j € S(1,n) (1,...,¥m and 21,.. ..z, being
the canonical basis of R’" and R™). Since ¥*(1) generates a free direct summand of F},
it suffices to find a g € Hompg(F;}, Q*) satisfying go¢* {2} ®@yi) = hy; for all § € 5(1,m),
J €5(1,n), and g|D’ = 0. This will be done by the following assertion:
(8) Assume that {1,1) < (4,) < (m,n) (X means lexicographically less or equal). Then
there exists a ¢ € Hompg(Fy, Q°) such that

oy’ (z; ® yu) = huy, (u,9) 2 (4, 4),
gD’ =0.

To prove (8) we first observe the relations

@ > o, N\ b =0, I €S(r+1,m), J € S(r,n), ke S(1,n),
ucrl

(10) > o, J\v)I\v)hw =0, I&S(r,m), J€S(r+1,n), | € S(1,m),
veJ

which.come from A|D’ = 0 and from the obvious fact that

2o N)N\ul ] 5 @y = Y kv @y @25, 1,0k asin (7),

uef ’ =1
Yo, JW\vlz @y + > Mklyr @@z, L1 a (8),
veJ k=1

are in Kery*. We may further suppose that h,, = 0 for all (u,v) < {z j). Let i > r.
Substituting {1,...,r,1} for I, {1,...,r} for J and j for k we obtain from (9) that
[1,...,7|L,...,7]hi; =0, 50 hy; = 0. Usmg (10) we get analogously that k;; = 0 in case
j>r

One may therefore assume that 4, < ». From (9), with T = = {1,...,7+1}, J =
{1,...,7}, k = 4, it follows that

hi; € I(z;[1,... ,‘1?, P11, 7)),
and from (10), putting I = {1,...,7}, J = {1,...,r+rl},‘I = ¢, we derive

hi; € I(z,[,...,r]l ...,'r+1]
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80
hij € H&i[L,... 5.+ UL st NI [Lens 7]l e r+)NQN
By Lemma (15.9),(b) below
hs’j = Z aI[I|11'-- aj]:
Ies(sm)

where
ar= 3, arsJiH],
JeS(r,m)
{1,...4}cd

ars €Q*'and H=[2,...,r +1]. Weput

g= z bri Ve @ U5

ke deS(1,m)
b = (=) Y ok, \K)T\KIL, ... 5 - 1] 3 angll, J\ilH].
Ies(j,m) JeS(rm}
kel {1,..,d}CT
Then
m m
go ¥ (7 ®yu) = 9O _lklvl vk ® 3u) = D [klv] beu
k=} k=1
= S [klol-1 S ok, \NRINRIL, i ~ 1] 30 ans(=1)7 w J\ilH]
k=1 Ies(j,m) JeS(rymn)
kel {1,...,i}cJ
0 for u <,
T Trestm) (Trer(—1)7 "otk \E)EWRII\EIL, ... 15 = )ar for u=i

_ { 6 for (u,v) =< (4,7),
hij for (u,v) = (i, 4)-
Trivially go9* (yxk ® 25 ®2z:) =0, K € 8(r,m), L € S(r+1,n), k € S(1,n). Furthermore

goy*(yi @y ®2j)

=5 o(u, Nw)iT\ul] b

uel
=3 olu, Nu)N\ul)(~1)"+ 3 oL K\DIENIL,. .. 5-1] Y. exlu, I\ilH]

uel KeS(j,m) LeS(rm)

leK {1,..,d}CL
=+ Y oL K\DK\IL,... §-1] 3 axi (Y olu, I\0) [N\l J)[u, I\i|H])
KeS(j,m) LeS(r,m) uel
leK {1,048} CL

=0

for all ! € 8(1,m), I € S(r+1,m), J € S(r,n), since the sum in parentheses is seen to be
zero when [u, L\i|H] is expanded with respect to the first row. —
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(15.8) Remark. Let m = n. The generalization from Z to arbitrary B indicated
in the proof of (15.7) actually yields for all prime ideals P o I.(z) that

depthQp = depth Rp — 1.~

(15.9) Lemma. The ring B being arbitrary the following holds:
(a) For all I,J € 8{r,m) and K, L € S(r,n)

z;U1L,...,7)) - HIK) € Y R[UIK),
U<rI

Iill,... ,rIL) - Iz ¢ 3 RUV).
V<L

(Of course U < I and V < L mean [U|K] < [I|K] and VIv] < [JiL).)
(b) Let H = {2,....,r +1} and Q be the ideal in R generated by the r-minors [I|H], I €
S(r,m). Then for alli € S(1,7), j € S(1,7+1), and & > 1:
(b1) Q*NI(z;[1,...,5%,... ;e +1J1,...,7]) = 2res(r—im) @ 7ML, 4, 1| H]
(b2) @* N X(z;[1,...,5..., 7+ 11,...,7]) N X(=; 1,... ,r|1,.‘.;,j,... ,7+1])
= (Zrestroiom QML L JH]) U [1,. . 7L, e+ 1)),

ProoF: (a) Of course it suffices to prove the first inclusion. Moreover we may
assume that K = {1,...,r} since I(=; [I]1,... ,r]) is invariant under a permutation of the
columns of z. Let I = {a1,... ,a,}, a; < @41 fori = 1,...,7—1, and § a j-minor of the
first a; —1 rows of z. ¥ § and [I|1,... ,r] are comparable then necessarily § < [I{1,... ,7],
and 6-[I|1,...,7] € ¥;; ., R[U|1,... ,7] for trivial reasons. If they are not, we observe
that every standard monomial in the standard representation of & - [11,...,7] contains
a factor pp < 6,[I]1,... ,r). Then p = [by,... ,b,]1,... ,7lybi <aifori=1,...,r. Since
# # 6 there is an i such that b; < a;. S0 §-[I]1,...,r] € Tur RIUN,... 7).

(b) We abbreviate ¢; = {1,...,7[1,...,7,...,r + 1]. (b1), (b2) are immediate
consequences of the following assertion:

(11) Let K € 5(»,m) and ¥ be an ideal in the poset {[I|H]: I € S(r,m)}. Then

> @ el KL e R ) € Y @ I H]+ (3D @) - I(asey).

T ] . I K el

(Here I # K means [I|H) ¥ [K|H]; we adopt this convention for analogous situations.)
Substituting {1,...,7,...,r + 1]} for K, r + 1 for j and {[f|H]): I € S(r,m)}
for ¥, we obtain (b;) from (11). Similarly we get {bz): Put K = {1,...,7}, ¥ =
{l7]H]: {1,...,4} C I} and observe {b;).
To prove {11) we use induction on |¥|. Take

a=zapu € Iz [KiLyydyee 1)), e, €Q* L
prrx

If there is a maximal element r of ¥ such that 7 ¥ [K |H], then applying the inductive
hypothesis to a — a,7 yields immediately that  is in the right hand ideal of (11). So we
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may assume that 7 > [K|H] for all maximal elements 7 of ¥. Let 7 = [J|H] be such an
element. Then we get

arr € Yz [J|L,ee sdyennnr + 1]
because J > K and g ¥ [J|1,-.. Jye,r+1)forall p€ ¥\{7}. It follows that

(12) ar € Uz;[J]1,. 0 sFr--hm+1)NQ*T

<

since 7 > [J[1,... 3 JreeehT T 1]. Observing
Lz;[J]1,... ,?,...',r+ 1)) = i(m;[Jll,... 7)) + 1z 65)s
we obtain o
a,1 € I(z; [JIL, ... ,ri)T+ 7 I(z;¢;5)
c SCRUH]+ Y 1 Uz ()

I<d pev

using the first inclusion of (a}. So

o= ¥ Guutd GuERBE 3 u Xz g)-
peI{r} HeY :

Applying the inductive hypothesis we get the result for 8 = 1.
Let s > 1. From (12) and the inductive hypothesis on s we obtain

ar € 3 Q]+ QT Nz )

IzJ

{substituting J for K and {lI|H]: I € 8(r,m)} for ¥). We claim that

(13) arT € ZQH_I.[HH]+T‘Q"11(w;g).

I<J

To show this we must only look at terms of the form B[L|H]r, b€ Q*~2, in which [L{H]
and 7 = [J|H] are incomparable. According to (9.1) every standard monomial in the
standard representation of {L[1,... ,7]J}1,... ,7] is a product {U]1,...,7][ViL,... 27
U,V € S{r,m), U £ V. So [L|H]r has a standard representation whose monomials are
of the form [U|H|[V|H), U,V as above. Thus we get

bLIH]r € Y QIH]
I<J

So (13) holds. With that we obtain a representation

a= Y Gu+i G, eQ e (O s G)

HER{r) e¥

and the proof of (11} can be finished as for s = 1. —
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C. Syzygetic Behaviour and Rigidity

We now investigate some homological properties of Q* as we did for the generic
modules i~ Section 13. Abbreviating

s=gradel.{z) (=m+n-2r+1)

we state the following

(15.10) Theorem. (a) Let m = n. Then * is an (s —1)-th syzygy or, equivalently,
Exti{Q,R) =0, 1<i<s—3.
(b) Q* is an s-th syzygy in case m # n. Equivelently Extyr(Q, R) =0, 1 <i<s-2.

PrOOF: Since O = Q** (cf. (14.10)) and £} is free for all prime ideals P C R
such that depth Rp < s, the assertions given in {a) and (b) are in fact both equivalent
to depth % > min(s — 1,depth Rp) and depthQ} > min(s,depth Rp), resp., for all
P € Spec R (cf. (16.33)). From (15.7) we get depthQ}p > depth Kp — 1 in case m =n
and depth Q% = depth Rp in case m # n. This proves the theorem. —

To derive some supplementary results on the syzygetic behaviour of 2* we need the
map ¢, defined in (14.8),(a), the cokernel of which coincides with the first syzygy M of
.

(15.11) Supplement to (15.10).
(a) Let m = n. Then Q* is not an s-th syzygy and consequently Ext} (O, R) # 0.
(b) Letm < n—1. Then Q" is not an (s+1)-th syzygy and consequently Ext} '(Q,R) #0.
(¢c) Let m =n — 1. Then:
(¢1) Extp(R,R) =0, 1 <i < 3, and Ext} (Q,R) # 0 in case r +1 < m {anc
consequently ¥* is at least an (s + 2)-th syzygy).
(cz) Ext(,R) =0,1 <i<s+1=35, and Ext%(Q, R) # 0 in case r+1 = m (anc
therefore Q* is at least a seventh syzygy).

PRrOOF: (a) Because of (15.8) depthQ} = ¢ ~ 1 for all minimal priine ideals P of
I.{x), so Q* is not an s-th syzygy.
(b) H ©2* were an (s + 1)-th syzygy, then it would be (s + 1)-torsionless (cf. 16.34))
So M* were an s-th syzygy. We claim however that depth M5 = depth Rp — 1 for al
prime ideals P D I.(z). To prove this, we first reduce to the case in which B = Z. Wi
may then argue as in the last part of the proof of (13.8).
Let B = Z. Clearly depth M} > depth Rp — 1 for all prime ideals P D IL.(z) sinet
Q* is perfect. So it is enough to show that depth M (,) < depth By (z)- Localizing a:
in the proof of (14.9) we can reduce to the case in which r = 1. Furthermore we ma;
replace Z by Q since I(z) N Z = 0. Then we need only to prove that M* is not perfec
(cf. (16.20)) or equivalently that ExtR(M*, Q" ™) # 0, @ being the ideal in R generate
by the entries of the first column of z. Consider the map

h: Homp(M*, R) — Homg(M*,R/Q"™™)
induced by the residue class projection & — R/Q"™™. It is éasy to see, that

2L @ 2 - (L2 e © 2
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represents an element of Homp(M*, R/Q™™™) which is not in Imh (r1;-+-,ym and
21,-..,2n denoting the canonical bases of R™ and R", resp.). So A is not surjective
and consequently ExthL(M*,R/Q""™) # 0.
(c) In case # + 1 = m the kernel of the map ¢ (cf. Subsection A) is obviously
isomorphic with Im 2. The assertion of {cz) follows therefore from (15.10) and (13.14),(b).
As to (c1) we consider the three R-modules Kerpi(= M*), Imp] and Coker gi.
The assertion is an easy consequence of the following claim:

(14) Ker ¢} and Im ¢} are perfect B[X]-modules whereas
depth(Coker ¢])p = depth Rp ~ 1

for all prime ideals P D I.(z).

We outline the proof of (14); the computational details are very similar to those
used up to now and may be left to the reader: Since Kery] and Img] are Z-free in
case B = Z, the proof of the perfection of Ker g} can be reduced to this case (cf. (3.3)).
Then it is enough to show that Exth(M*,Q) = 0 where Q is the ideal in R generated
by the r-minors of the first » columns of z. The same way leads to the perfection
of Imp?. (Observe that depth(Coker pi)p > depth Mp — 2 for all prime ideals P in
R, so Cokery} is R-torsionfree and therefore Z-flat in case B = Z.} It follows that
depth(Coker ¢3)p > depth Bp — 1 for all prime ideals P in R. To get equality when
P > L(z), one reduces to the case in which » = 1 and B = Q as one did in the proof of
{b). An easy computation yields Exty(Coker ¢}, @) # 0. ~—

(15.12) Remark. The proof shows that the assertions of (15.11) remain true if we
localize at some prime ideal containing I.(z).—

Finally we shall derive some resuits concerning the rigidity of determinantal rings,
the base ring B presumed to be a field X from now. Some concepts and results in a more
general situation are needed.

Let S be a finitely generated K-algebra, S = K[X1,,...,,Xul/I, X1,..., Xy being
indeterminates and I an ideal in K[Xy,...,Xy]. “The” Auslander-Bridger dual of the
S-modute I/I? (cf. 16.E) will be called an Auslander-module of § and is denoted by Ds;
up to projective direct summands it does not depend on the special presentation taken
for S.

An S-algebra T will be called a complete intersection over §if T is a factor ring of a
polynomial ring S[Yz,,...,, Yy with respect to an ideal g\e‘nerated by an 5(Y3,,...,, Y3}
sequence. ' R

We will not discuss here what it means that § is rigid. The reader may find detailed
information about this concept in the literature (cf. [Ar], {J&], [KL] or [Sl] for instance).
The only fact we notice is that in case K is perfect and  is reduced, S is a rigid K-algebra
if and only if Ext3(Q} &, S) = 0.

DEFINITION. Let S be as above and % a natural number. Assume S to be rigid. S
is k-rigid if the following condition holds: If T is a complete intersection over S whose
flat dimension’ as an S-module is at most k, then Tor{(T,Dg) =0 for all £ > 0. If S is
k-rigid for all k, then § is very rigid.



C. Syzygetic Behaviour and Rigidity 199

(15.18) Proposition. Let S be as above.
(a) If § is k-rigid and a1,...,a; an S-sequence, j < k, then Tor;-g(S/(al,....,a,-)S,Ds)
=0 foralli> 0.
(b) If Ds satisfies the condition (Si) (cf. 16.E), then § is k-rigid.

_ PROOF: (a} Assume ay,...,a5, 1 € j < k, to be an S-sequence. The S-module
§ = 8/(ay,...,a;)8 is a complete intersection over S which has flat dimension at most
k, so Tors (S,Dg) = 0 for all ¢ > 0.

(b) Let T be a complete intersection over S, §= S[Yi,...,.Y,), T = §/(f1,...,f1)§,

where fi1,..., fiis an §-sequence. Assume that the flat dimension of T over § is at most
k. We claim that

(15) depth(Ds ®s §)5 > !
for all é € Spec s containing fy,..., fi. This implies

Tor{ (T, Ds) = Tor; (T,Ds ®s §) =0
foralli>0: Let ! > 1 and
f!O—*FJ—‘PL’"'ﬁﬁFl —tlﬂFu

be the Koszul-complex over~§ derived from fi,,...,,fi. F is an S-free resolution of 7.
To see that F @z (Ds ®s §) remains exact, we use Theorem (16.15), the numbers r;

and the ideals J; being defined as there. It is well known that Rad J; = Rad Y}, §7;,
¢=1,...,1. So the exactness we want to prove follows immediately from (15).

To verify (15) let Q be the image of é in T and P the preimage of é in § with
respect to the canonical maps. From the flatness of the extension Sp — § & We obtain

depth(Ds ®s §); = depth(Ds)p + depth S¢ — depth Sp.

Since depth(Ds)p > min(k,depth 5p) by assumption, we are done in case k > depth Sp.
Let ¥ < depthSp and consider elements a;,...,a; € P which form'a maximal Sp-
sequence. Denote by X = K{ai,...,a;} the Koszul-complex (over §) derived from
ai,...,a;. Since the flat dimension of T over S is at most k, we get

H,(K ®s Sp ®s, Tg) = Tor;*(Sp/(a1,...,a;)Sp, To)
= Tor? (S/{ar,...,a;)8,To) ®s Sp
= Tor{ (8/(ay,..,27)8,T) ®r To
=0

for ¢ > k. Thus the ideal (a1,...,a;)Tq has grade at least j — k (cf. Theorem (16.15) for
example). Consequently depthTg > depth Sp — k. Since depth S5 2 1+ depth To, the
proof of {15) is complete now. — : - AT
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(15.14) Corollary. Let S be Cohen-Macaulay. Then S is k-rigid if and only if Ds
satisfies the condition (Sg).

PROOF: It is easy to see that in the case we consider, a finitely generated S-module
M satisfies the condition (Sx) if and only if Torf (S/(a1,... ,a;)5, M) = 0 for every
$-sequence aj,...,a;, 1 < j <k,and alli>0.—

Now we specialize to the determinantal ring R = R,4+1(X) with base ring B = K.
As above put s = gradeI.(z). From (15.14) and the syzygetic behaviour of ¥* we derive:

(15.15) Theorem. Assume that K is a perfect field. Then R is rigid except for
the case in which v +1 = m = n. Purthermore:

(a) If r+1 < m =n then R is (s — 4)-rigid but not {s — 3)-rigid.
(b} If m <n—1 then R is (s — 3)-rigid but not (s — 2)-rigid.
(¢) Letm=n—1.

(c1) If r + 1 < m then R is (s — 1)-rigid but not g-rigid.

(c2) If r + 1 =m then R is very rigid.

ProoF: First we observe that there is a commutative diagram

r+1 r+1
A B™® A(R™) - R™ @ (R")’
N 7
Ir+1(X)/Ir+1(X)2

where ¢ = @ and
Fyr ®23) = [IJ] mod Ly1(X)?,

¥1s.+,¥m and 21,..., 2, being the canonical bases of R™ and R™ resp. {cf. Section 14). It
is a well known fact that Ly 1(X) /T4 (X )2 and Im ¢ have the same rank as R-modules.
So their R-duals coincide, and consequently £2* is a third syzygy of an Auslander-module
D of R. Clearly (Dg)p is free for all prime ideals P C R such that depth Rp < 3.

From (15.7) and (15.8) we therefore obtain that D satisfies the condition (S,—3) in
case m < n and (S,_4) in case 7 +-1 < m = n. On the other hand Dg satisfies (8;) for

t < g if and only if it is a t-th syzygy (cf. (16.33)). So {S,—2) and (8,-3) do not hold for
Dy incase m <n—1and r+ 1 < m = n resp. (cf. (15.11)). Since R is Cohen-Macaulay
in any case, (a) and (b) follow immediately from (15.14).

Let m = n — 1. Consider the map y; we have defined in (14.8),(a). If r +1 =
m, we obtain from (9.18) that Im¢p = I,.+1(X)/I,.+1(X)(2) = Imp, so Cokery] is an
Auslander-module of R. Moreover Coker? is isomorphic with Cokerz* (in the case
ullder consideration) which is a perfect module in view of (13.8). Thus Coker ¢} satisfies
(§k) for all k, and (cz) holds because of {15.14). In case 7+1 < m the module D, satisfies
(S,_1) since Q* is an (s + 2)-th sygyzy (cf. (15.11),(c;s)), so R is (s - 1)-rigid. If it were
s-rigid, D woulid be an s-th syzygy. Then Im 7, which is isomorphic with Coker ¢g*in
any case, would be an (s + 1)-th syzygy and thus even (s + 1)-torsionless (cf. (16.34)).
This implies Ext} '(Kery,R) = 0 since (Imypj)* = Kerp. But Exty !(Kerp, R) =
Ext} 1, R) # 0 (cf. (15.11),(c1)). — ‘
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D. Comments and References

The content of the first two subsections is taken from [Ve.4]. The history of the
results given in Subsection C is a little more complicated.

(15.10) is due to Svanes ([Sv.3], 6.8.1). The vanishing of Exth(f, R) and, as a
consequence, the rigidity of R in case B is a perfect field was independently shown by
Jéhner (cf. [J&], 7.6)). The methods used by Svanes are far from being elementary (and
yield a more general result than (15.10)), in contrast to Jihner’s proof which is quite
adjusted to the special (determinarital) situation and works by methods very similar to
those we developped in the first two subsections (cf. [Ja], (7.1)-(7.5)). We mention that
the rings R have been suspected to be rigid for a long time. The special case in which
r =1, m = 2 < n, has been treated already in [GK]. The statements of (15.10) are
sharpened by {15.11) which result can also be found in [Ve.4].

In [Bw], (4.5.4) and (5.1.1) Buchweitz has introduced the concepts of an Auslander-
module and k-rigidity, resp. Part of (15.13) is contained in [Bw], (5.1.3), and (15.15) is
a generalization of [Bw], (5.2.1). Theorem {15.15) is also suggested by Buchweitz who
has given a somewhat weaker version based on the Theorem of Svanes mentioned above
(cf. [Bw], {5.3)).



16. Appendix

In the appendix we discuss topics in commutative algebra for which we cannot
adequately refer to a standard text book. '

A. Determinanté. and Modules. Rank

Let A be an arbitrary commutative ring. With every homomorphism f: F—Gof
finitely generated free A-modules F and G we associate its determinantal ideals I(f) in
the following manner: With respect to bases of F and G resp., f is given by a matrix
U, and we simply put L(f) = Ii(U). This definition makes sense since 1.(U) obviously
depends on f only and not on the bases chosen. It is equally obvious that I.(f) is an
invariant of the submodule Im £ of G. It is a little more surprising that I.(f) is completely
determined by the isomorphism class of Coker f:

(18.1) Propasition. Let A be a commulative ring, M an A-module with finite free
presentations
FlegsmM—o i FLELM—0

Letn=1kG, % =tk G. Then Ly_1(f) = Li-r(f) for all k > 0.

Proor: Let e;,...,e, and &,...,&; be bases of G and G resp. Then one has
equations '

- §(&) =zaijg(ej): aij € A, i=1,...,7.
=1 ‘

Therefore M has a presentation

FoA* 2 god - M —0, §z3) =gk -5@),

for which h has the following matrix relative to a matrix U = (u:;) of f:

{ G oer eee 0\
v 5

0 0

H= 1 0 0
aj |7 L

: . . 0
\ 0 - 0 1)
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Evidently L5 _x(h) = L1 5-:(H) = Li_x(V), and, as stated above, this ideal is

determined by Ker f}" By symmetry 1,5 p(h) = I;_ k(f ) as well. —

With the notation of the preceding proposition, the ideal In-&(f) is also called the
k-th Fitting invariant of M. It is not difficult to see that the zeroth Fitting invariant
annihilates M. Let eq,...,e, be a basis of the free A-module @ as above, and let

n
W= E Uij€j, u; € 4,
i=

be a system of generators of Kerg. We take minors with respect to U = (u;;). By
Laplace expansion

n
E(-—l)*“[al,. cosliyen s @ally 5y ey = (01,00, 8001, Rl
i=1
So all the n-minors of U annihilate M. In general Ann M # 1.(f), but the radicals of
Ann M and I.(f) conincide:

{18.2) Proposition. Let A, fy M, n be as in the preceding proposition. Then
I.{f) C Ann M and . RadI.(f) = Rad Ann M.

The inclusion has been proved already. It remains to show that a prime ideal P
does not contain I,(f) if Mp = 0. This may be considered a special case of Proposition
(16.3) below.

The ideals I{f) control the minimal number of local generators of M in the same
way as they control the vector space dimension of M when A is a field. For a prime ideal
P of A we denote by u(Mp) the minimal number of generators of the Ap-module Mp;
by virtue of Nakayama’s lemma:

w(Mp) =dimg M @ K, K= Ap/PAp.

(16.3) Propesition. Let A be a commutative ring and M an A-module with finite

Sree presentation F 2, G— M — 0. Let n =1k G and P a prime ideal of A. Then
the following statements are equivalent:

(a) L(f) ¢ P,

(b) (Im f)p contains o (free) direct summand of Gp of rank > k,

(¢) p(Mp) <n—k.

. Proor: We may assume that A is local with maximal ideal P. Let  denote residue
classes mod P. The presentation of M induces a presentation

FLG ¥ —n0
Since It (f} = Ix(f) and because of Nakayama’s lemma one can replace A,P, M, f by
A, P, M, T without affecting the validity of (a), (b), or (c). Now we are dealing with
finite-dimensional vector spaces over the field A, for which the equivalence of (a), (b),
and (c) is trivial. —
For later application we note a consequence of (16.3):
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(16.4) Proposition. Let A be o commutaelive ring,
Fio—F,Ap  — - — FRIER

be a complex of finitely generated free A-modules, and T = Yoo k(—l)“‘"rk F;. Let P
be a prime ideal. Then F ® Ap is split-ezact if and only if I, (fx) ¢ P fork=1,...,n.

PROOF: We may certainly suppose that A = Ap. Let first F be split-exact. Then,
by a trivial induction, Im fr is a free direct summand of Fix_1, rkIm fp = r, whence
I, (fi) ¢ P by virtue of (16.3). For the converse one applies induction, too: One may
assume that Coker f; is free of rank < r1. On the other hand Im f; contains a free direct
summand of Fy whose rank is > 7. Therefore the natural surjektion Coker f; — Im fi
is an isomorphism, and, finally, Coker f; is free of rank 7. —

Usually the rank of a module M over an integral domain with field of fractions L is
the dimension of the L-vector space M ® L. We extend this notion to all rings without
attempting to assign a rank to every module.

DEFINITION. Let A be an arbitrary commutative ring, Q its total ring of fractions.
An A-module M has rankr, abbreviated rk M = », f M@Q isa free @-module of rank 7.

Over a noetherian ring the rank of a module can be computed in several ways:
(16.5) Proposition. Let A be a noetherian ring, and M a finitely generated A-

module with a finite free presentation F .6 — M — 0. Let n = 1k G. Then the
following are equivalent:

(a) M has rank 7.

(b) M has e free submodule N of rank v such that M/N is a torsion module.

(c) For all P € Ass A the Ap-module Mp is free of rank .

(d) La—r(f) contains an element which is not a zero-divisor of A, and Ix(f) = 0 for all
k>n-—r.

ProoF: (a) = (b): Let 21,...,%, be a basis of M ® Q. Multiplying with a suitable
element of A which is not a zero-divisor, we obtain elements y1,...,4r (which are images
of elements) in M. Now take N =) Ay:.

(b) = (c): This is as trivial as the implication (b) = (a).

(¢} = (d): Replacing A by a localization Ap, P € Ass A, it is enough to show that
Lnn(f) =Aand L(f) =0for k>n—rif M is free of rank r over the ring A. One
replaces the given presentation by 0 — M — M — 0 and applies (16.1) above.

(d) = (a) Replacing A by its total ring of fractions @, one may assume that
L,_(f) = Aand Lt(f) =0 for k >n~r Let P be a prime ideal of A. By virtue
of (16.3) (Im f}p contains a free direct summand of Gp. After a suitable choice of basis
for Gp it is evident that Mp is free of rank 7. Therefore M is a projective A-module of
constant local rank 7. The ring A under consideration has only finitely many maximal
ideals, whence M is free. (The last conclusion can be proved in the following manner:
Let Py,..., P, be the maximal ideals of A. There are elements a; € P1N-- 'n?.-n- NP,
such-that a; € P;. Now one chooses elements g;; € M,i=1,...,u, § = 1,...,7, such
that ¢i1,...,gir are mapped to a basis of M /P;M. Obviously S aigity .-+ 2, Gigir then
is a basis of M.) — . . o

The reader may find out which of the implications between (a), (b), (¢), and (d) in
(16.5) remain valid if one drops the hypothesis “noetherian.”



A. Determinants and Modules. Rank : ] 205

Over a noetherian ring a projective module has a rank if and only if the rank of its
localizations is constant. For finitely generated A-modules M, N with ranks the modules
Homa(M,N), M®N, /\" M, S;(M) have ranks, too, and these are computed as for free
modules M, N: after all, their construction commutes with localization.

Rank is an additive function along sequences which are exact in depth 0:

(16.8) Proposition. Let A be noetherian ring, M, M;, M, finitely generated A-
modules for which there is a sequence of homomorphisms

C:0— M LM — M 0

such that C ® Ap is ezact for all prime ideals P € Ass A. If two of M, Ml,Mz have a
rank, then the third one has a renk, foo, and

rk M = rk M,y + 1k M.

PROOF: One may directly assume that A is local of depth0 and C is exact. Only
the case in which M; and M are supposed to be free, is nontrivial. Then pd M; < 1 and,
since depth 4 = 0, even pd M = 0 by the Auslander-Buchsbaum formula, or one proves
this afresh: Let P be the maximal ideal. M, is a free A-module if and only if

C®A/P: 0— Mi/PM, L M/PM — My/PM, — 0

is exact. I it is not exact, there is an element z € M; \ PM; such that f(z) € PM.
Because of depth A = 0 and the injectivity of f, the element 7 is annihilated by a nonzero
element of A. On the other hand it belongs to a basis of My. Contradiction —

(16.7) Corollary. Let A be a noetherian ring, aml M an A- module wzth a finite
Jree resolution
0.—F, — - — 7 —--+Fu.

Thentk M =37 ((—1)‘tk F;.

(16.8) Corollary. Let A be a noetherian ﬁnj; and I an tdeal of A. Then I has a
rank if and only of I = 0 (and tkI = ) or I contains an element not dividing 0 (and
rkI=1).

PrOOF: Consider the exact sequence 0 — I —_ A — A/I — 0 and apply
(16.6). — : L - :

The following corollary is absolutely tnv1a.1 now. We list 1t because it contams an
argument often effective: ' S

(18.9) Corollary. Let A be a noethenan nng, f M — N a sumectwe homomor- :
phism of A-modules M, N such thaei rkM =1k N and M 33 torszonf'r‘ee Then f is an
isomorphism.

We conclude this subsection with 3 ‘cjzes‘efipﬁq{ of the free locuss of a o d'}';’_le_ with
rank. ' T T
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(16.10) Proposition. Let A be a noetherian ring, M a finitely generated A-module
of rank r. Furthermore let

rlie—-mM—o

be a finite free representation of M, and n =1k G. Then Mp is a free Ap-module for a
prime ideal P of A if and only if La_(f} € P.
PROOF: One observes that Mp is free if and only if u(Mp) < r and applies (16.3). —

Extending the presentation to a free resolution the reader may formulate the gener-
alization of (16.10) describing the prime ideals P such that pd Mp < k.

B. Grade and Acyclicity

Let A be a local ring, P its maximal ideal, and M a finitely generated A-module.
The length of a maximal M-sequence inside P is usually called depth M. In the following
definition we replace P by an arbitrary ideal in a noetherian ring.

DEFINITION. Let A be a noetherian ring, I C A an ideal, and M a finitely generated
A-module such that 7M # M. Then the grade of I with respect to M is the length of a
maximal M-sequence in I. It is denoted by grade(, M).

The reader may consult [Mt], Ch. 6 for the definition of “M-sequence.” There the
notation depth; (M) is used for grade(Z, M) (Attention: The first edition of [Mt] differs
considerably from the second one in regard to Ch. 6!} It is easy to see that the grad
just defined is always finite; in fact, it is bounded by ht [. :

Very often we shall have M = A, and therefore we introduce the abbreviation

grade I = grade(, A).

For systematic reasons it is convenient to cover the case in which IM = M, too; thus we
put grade(], M) = o if IM = M. '
It is very important that grade can be computed from homological invariants.

(16.11) Theorem. Let A be a noetherian ring, I C A an ideal, N a finitely gen-
erated A-module such that Supp N = {P € Spec A: P D I}. Then :

grade(I, M) = min{j: Extf,(N, M) #0}

for every finitely generated A-module M.

The case in which grade{I, M) < oo, thus IM # M, is an immediate consequence of
[Mt], Theorem 28 (and stated on p.102 of [Mt]). If grade(I, M) = oo, one has Mp =0
for all P € Supp N, thus Supp(Extﬂ(N,M}) = @ for all j.

The case N = A/I of (16.11) suggests that grade(I, M) is an invariant of A/I rather
than an invariant of I. It would even justify to call grade(f, M) the grade of N with
respect to M. We restrict ourselves to the case M = A.

DEFINITION. Let N be a finitely generated module over the noetherian ring A. The
grade of N is the grade of Ann N with respect to A, abbreviated grade V.

In order to avoid the ambiguity thus introduced we insist on the first meaning of
grade I whenever ] is considered an ideal. An immediate corollary of (16.11):

P
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(18.12) Corollary. grade N < pdN.

As a consequence of (16.11) one has grade(Z, M) = grade(Rad I, M). This follows
also from the following local description of grade for which we refer to [Mt], p. 105,
Proposition:

(16.18) Proposition. With the notations introduced above one has

grade(I, M) = inf { depthMp: P € SpecA, P D I}

Another fact implied by (16.11) is the behaviour of grade along exact sequences
(which can of course be derived directly from the definition of grade):

(18.14) Proposition. Let A be a noetherian ring, My, M,, and M, finitely gen- .
erated A-modules connected by an ezact sequence

0.—*M1 —lMg --*M;; — 0.
Then one has for every ideal I of A:

(a) grade(I, M3) > min(grade(I, M1 ), grade(Z, M)) — 1,

(b) grade(I, M) > min(grade([, M1 ), grade(1, M3}),
(c) grade(l, My) > min(grade(I, M), grade(I, M3) + 1).

With the notations and hypotheses as in (16.11) let
Fu --~—»F,,—’-~—rFi NS
be a free resolution of N = Coker f;. Put m = grade(f, M) and consider the truncation
| Fpi 00— F} — F — .. — F, |~ F2,

of the dual Hom(F, A). The inequality “<” in (16.11) implies that F2, ® M is acyclic.
Thig fact admits a far-reaching generalization: '

(16.15) Theorem. Let A be a noetherian ring, and

F: O—qFﬂ'ﬁiFﬂ_1—""'—'—}F1£*Fo

a complex of finitely generated free A-modules. Let ry = Y7 (—1Y~*rk F; and J; =
L. (f&). Furthermore let M be o finitely generated A-module. Then the following state-
ments are equivalent: : '

(a) F @ M is acyclic.

(b) grade(Jx, M) > k for k=1,...,n.

PrOOF: First we prove the implication (b) = (a) by induction on the length n of
F. One may suppose that 7' ® M is acyclic, F' given as the truncation

f'lzo_’Fn___’Fﬂ_l_,..._.Fz_&_.Fl- .
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of F. Tt “resolves” C® M, C being the cokernel of f. We have to show that the induced
homomorphism f,: C®M — Fy ® M is injective. By virtue of (16.4) the localizations
Fp, P € Ass M, are split-exact, and so is (F ® M)p. Hence (Ker f;}p = 0 for ail prime
ideals P € Ass M. In order to derive a contradiction let us assume that Ker"f1 # 0.
Hence there exists an element & € A, b neither a unit nor a zero-divisor of M, such that
b(Ker f,) = 0. For a prime ideal ¢ minimal in Supp(Ker f,) one then has depth Mg > 1,
but depth{Ker f,)¢ = 0.

Let m = depth Mq. Suppose first m > n. Then an iterated application of (16.14),(a)
to the “M-resolution” 7' @ M of C @ M yields depth{C® M)q > 1. Let next 0 <m <
n.. Applying (16.4) again, we see that F = (Coker fmi1)q is a free Ag-module, and
(F' ® M)g decomposes into a split-exact tail

00— (Fa®M)g — -+ — {Fn®M)g — F@ Mg —0
and a shorter Mg-resolution of (C'® M)q
0— ﬁ@MQ — (Fp1®@ Mg — --- — (F1 @ M)q.

By an iterated application of (16.14),(a) again: depth(C ® M)qg > 1. Since Ker f; C
C ® M, depth(Ker f;)g > 1 as well, the desired contradiction.

In proving the implication (a) = (b) we may inductively suppose that grade(Jy, M)
> k-—1for k=1,...,n. Assume that grade{Jx, M) = k£ — 1 for some k,and let P D J;
be a prime ideal, depth Mp = k — 1. In order to derive a contradiction we replace A by
Ap, and, as above, split off the tail of 7. Then we substitute the right part of F for
F itself, and k for n, and conciude that it is enough to prove that depth M > n. This
follows from the case n = 1, which we postpone, by induction: Let 7' be as above. If
depth M > 1, there is a non-unit ¢ € A which is not a zero-divisor of M. Elementary
arguments imply the exactness of :

(F @ M) ® (A/Aa) = F @ (M/aM).

The inductive hypothesis yields depth M/aM > n — 1, whence depth M > n.

After all, we have reduced the implication (a) => (b) to the following statement: Let
A be a local ring, f: F; — Fy a homomorphism of finitely generated free A-modules,
M a finitely generated A-module for which f ® M is injective; if depth M = 0, then f
embeds F, as a free direct summand of Fj. Suppose, not. Then there is an element
e € I, which belongs to a basis of F; such that f(e) € PFy, P being the maximal ideal
of A. On the other hand there is an z € M, = # 0, such that Pz =0. Nowe®z # 0,
but fle ® z) € PF, ® ¢ = F; ® Pz =0, a final contradiction. —

In view of (16.5),(d) and (16.7), the reader may prove that L 1(fe)M = 0 for
E=1,...,nif F® M is exact. . :

Undoubtedly the most important case of the theorem is the one in which M = A;
and very often the following weaker version of (b) = (a) is all one needs: :

(16.18) Corollary. If F ® Ap is split-ezact for all prime ideals P such that
depth Ap < n, then F is ezact.
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C. Perfection and the Cohen-Macaulay Property

In (16.12) it is stated that the projective dimension of a module always bounds its
grade: grade M < pd M. The modules for which equality is attained, are of particular
importance and merit a special attribute:

DEFINITION. Let 4 be a noetherian ring. A finitely generated A-module M such
that grade M = pd M, is called perfect. By the usual abuse of language, an ideal I is
called perfect if 4/J is a perfect A-module.

Perfect modules are distinguished by having a perfect resolution: They have a pro-
Jective resolution P of finite length whose dual P* is acyclic, tao, cf. (16.11). P* resolves
Ext% (M, A), g = grade M, and Ext, (Ext (M, A), A) = M.

Perfect modules are “grade unmixed”: -

(16.17) Proposition. With the notations of the definition, a prime ideal P of
A is associated to M if and only if Mp # 0 and depth Ap = grade M. Furthermore
grade P = grade M for all P € Ass M.

PROOF: Because of Ass M C Supp M, we may suppose Mp # 0. If depth Ap =
grade M, then depth Mp = 0 since always

grade M < grade Mp < pd Mp < pd M,

and
depth Mp = depth Ap — pd Mp

by the equation of Auslander and Buchsbaum. Conversely, if depth Mp = 0, necessarily
depth Ap = grade M. It remains to prove that grade P = depth Ap. Suppose grade P <
depth Ap. Then there is a prime ideal @ O P such that grade P = grade @ = depth Ag >
pd Mg > pd Mp. Contradiction. —

The preceding proof shows that pd Mp = grade Mp = grade M for all prime ideals
P in the support of a perfect module M.

The main objects of our interest will be certain perfect ideals I in a polynomial ring
A = B[X1,...,X,]. In the investigation of A/I it is often important to know that an
ideal in A/I has grade > 1. In this connection the following propositic: will be very
useful.

(16.18) Proposition. Let A be a'noetherian ring, I a perfect ideal - A,andJ DI

another ideal. Then
grade J/I > gradeJ — grade ],

where J/I is considered an ideal of A/, of course. If J is perfect, too, one has equality.

PROOF: Let @ D J/I be a prime ideal, and P the preimage of Q in A. Then

depth(A/I)q = depth(A/I)p = depth Ap ~ pd(A/I)p > grade J — gradel,

and this is enough by (16.13). If J is perfect, too, we obtain equality by first choosing P
as an associated prime of J, and @ as its image in A/J. — :

We say that a noetherian ring A is a Cohen-Macaulay ring if each of its localizations
Ap is Cohen-Macaulay. For modules we adopt the analogous convention. The theory of

Cohen-Macaulay rings and modules is developped in [Mt], Sect. 16; cf. also [Ka], Chap. 3.
Perfection and the Cohen-Macaulay property are closely related:
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(16.19) Proposition. Let A be a Cohen-Macaulay ring, M o finitely generated
A-module.
(a) If M is perfect, M is a Cohen-Macaulay module.
(b) f Misa Cohen-Macaulay module, pd M < o0, and Supp M is connected, then M
is perfect.

ProoF: Suppose pd M < oo, P € Supp M. Then
depth Mp = depth Ap —pd Mp

and
dim Mp = dim Ap — ht Ann Mp = depth Ap — grade Ann Mp.

Therefore Mp is perfect if and only if Mp is a Cohen-Macaulay module.

It only remains to prove that M is perfect if its localizations Mp, P € Supp M, are
perfect and Supp M is connected. Evidently, the crucial point is that pd Mp is constant
on Supp M. The local perfection of M implies that

(P: pdMp =k} = {P: pd Mp >k} N{P: grade Mp < k}

for all k, 0 < k < pd M. Both sets on the right side are given as intersections of finitely
many closed sets, each of which is the locus of vanishing of a (co)homology module;
ef. (16.11) for the rightmost set. Therefore the set on the left side is closed, foo. Since
Supp M is connected, it is nonempty if and onlyif k=pdM. —

In particular, perfection and the Cohen-Macaulay property of M are equivalent if
A is a polynomial ring over a field or the integers, and M is a graded A-module. (Note
that Supp M is connected if and only if A/AnnM has no nontrivial idempotents.) For
such modules perfection can even be tested at a single localization.

(16.20) Proposition. Let A be a polynomial ring over a field, P its irrelevant
mazimal ideal, and M o graded A-module. Then the following conditions are equivalent:
(a) M is a Cohen-Macaulay module.

{(a’) M is perfect.
(b) Mp is a Cohen-Macaulay Ap-module.
(&) Mp is a perfect Ap-module.

Only the implication (b) = (a) needs a proof,'*and it follows immediately from the
fact that a minimal graded resolution of M over A becomes a minimal resolution of Mp
over Ap upon localization. :

A very important invariant of a local Cohen-Macaulay ring A is its canonical {or:
dualizing) module w4, provided such a module exists for A. We refer to [HK] and [Gr]
for its theory. The canonical module is uniquely determined {up to isomorphism). A is
a Gorenstein ring if and only if it is Cohen-Macaulay and ws = A. A regular local ring
is Gorenstein, and a Cohen-Macaulay rasidue class ring A = S/1 of a local Gorenstein
ring S has a canonical module:

w4 =Ext%(4,5), g¢=gradel.

Let now A be an arbitrary Cohen-Macaulay ring. An A-module is called a canonical
module of A if it is a canonical module locally. We denote a canonical module by wa
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though it is no longer unique in general: if M is a projective module of rank 1, w4 @ M is
a canonical module, too. The characterization of Gorenstein rings remains valid. For the
existence theorem quoted we have to require that grade Ip = grade I for all P € Supp 4
now. Since the ideals I of interest to us are perfect, this is not an essential restriction.
If § is Gorenstein, I C § a perfect ideal, and 4 = $/1 resolved by

P:0— Gy — - — Gy, G projective,

one has a very direct description of w4: it is the (4-)module resolved by P*.

D. Dehomogenization

The principal objects of our interest are two classes of rings. The rings in the first
class are graded, and every ring 4 in the second one arises from a ring R in the first
one by dehomogenization: A = R/R(z — 1} for a suitable element z € R of degree 1.
The rings A and R are much closer related than a ring and its homomorphic images in
general, and very often it will be convenient to derive the properties of A from those of
R. {Geometrically, R is the homogeneous coordinate ring of a projective variety and A
the coordinate ring of the open affine subvariety complementary to the hyperplane “at
infinity” defined by the vanishing of z.) '

Let B = @, R: be a graded ring, z € R, a non-nilpotent element. The natural
homomorphism 7: R — 4, 4 = R/R(z — 1), factors through § = R[z~!] in a canonical
way, so one has a commutative diagram

R — S
LAV E
A

S is graded again: § = @2 __ 8, S = {2f:j € Z, f € R:_;}. (Though R may
not be a subring of §, we do not distinguish notationally between elements in R and
their images under the homomorphism R — S. Furthermore we shall write I 11 & for the
preimage of an ideal 7 C § in R.) ,

The structure of the graded ring § is particularly simple. Evidently:

(16.21) Proposition. (a) For every homogeneous ideal I -C S, in particular for
I=3S8, one has

==

I= @ 2 (Ins).

= =00
(b) The natural homomorphism S,[X, X 1N—= 8, X >z isan isomorphism.
Furthermore A is not only 2 homomorphic image, but a subring of §, too:
(16.22) Proposition. The homomorphism o maps Sq isomorphically onto A.

PROOF: Obviously the restriction of ¢ to Sy is surjective. If, on the other hand,
¥(fz~*) = 0 for an element f € R;, then x(f) = 0. So f=g(z—1),g € R. Since f is
homogeneous, gz =0, f = —g, and f =0in §. — :

In the following we shall identify A with So-

$
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(16.28) Proposition. If R is reduced (a (normal) domain), then A is reduced {a
(normal) domain), too.

PROOF: S = R[z"1] inherits each of the listed properties from R, and A is a subring
of S. The only not completely obvious problem is whether normality carries over to A.
It is well known, that A is normal if and only if A[X] is normal, and the normality of
A[X] follows from the normality of § = A[X, X ] by the following lemma which will be
very useful several times:

(16.24) Lemma. Let T be a noetherian ring, and y € T such that y is not ¢
sero-divisor, T[Ty is reduced and T[y~} is normal. Then T is normal.

PROOF: We use Serre’s normality criterion: T'is normal if and only if Tp is regular
for every prime ideal P of T such that depthTp < 1. Let P be such a prime ideal. If
y ¢ P, Tp is a localization of the normal ring T[y~!], thus regular. Otherwise P is a
minimal prime of Ty, and PTp = yTp, since T /Ty is reduced. Having its maximal ideal
generated by an element which is not a zero-divisor, Tp is a regular local ring. —

Since the inversion of z may destroy pathologies of R, one cannot reverse (16.23)
in complete generality. For the rings of interest to us this is possible however, since the
additional hypotheses of the following proposition are satisfied.

(16.25) Proposition. Suppose additionally that © is not a zero-divisor. Then R
is reduced (a domain) if A is reduced (a domain). If furthermore R is noetherian and
R/Rz is reduced, then normality transfers from A to R.

This is immediate now. In the following we want to relate the ideals of R and A.

(16.28) Proposition. (a) One has w{I}) = IS N A for a homogeneous ideal I C R,
and J = w(JS N R) for every ideal J of A.
(b} By relating the ideals I and x(I) the homomorphism 7 sets up a bijective correspon-
dence between the homogeneous ideals of R, modulo which & is not a zero-divisor, and
all the ideals of A.
(c) This correspondence preserves sei-theoretic inclusions and intersections. It further-
more preserves the properties of being a prime, primary or radical ideal in both directions.

ProOF: (a) The ideal 7(I) is generated by the images of the homogeneous elements
f € I. If § has degree d, then 7(f) = fz~4 e 15N A. Conversely, let g € IS A. Then
g=a*h, k€ Z, hel, and g=1v(g) =r(z*h) =w(h) € x(I). .

The ideal J$ is homogeneous, so JS N R is homogeneous, and

AJSNR)=(JSNR)SNA=JSNA=J.

(b) A (homogeneous) ideal T of R appears as the preimage of a (homogeneous) ideal
of § (namely of its own extension) if and only if z is not a zero-divisor modulo I. This
establishes a bijective correspondence between the ideals I under consideration and the
homogeneous ideals of 5. The latter are in 1-1-correspondence with the ideals of A by
(16.21),(a); and the first equation in (a) shows that the desired correspondence is induced
by .

(c) The first statement of (c) is completely obvious. The properties of being a prime,
primary or radical ideal are preserved in going from R to its ring of quotients §, and
also under taking preimages in A C §. Conversely they cannot be destroyed by the
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extensions A — A[X] and A[X] — A[X,X 1] = S, from where we pass to R by taking
preimages. —

One usally calls n{I) the dehomogenization of I, and JS N R the homogenization of
J. As a consequence of (16.26),(c) primary decompositions are preserved:

(18.27) Proposition. Let R be noetherian, I a homogeneous ideal modulo which
¢ is not a zero-divisor, and I = Qs an irredundant decomposition into homogeneous
primary ideals. Then w(I}) = {7 (Q;) is an irredundant primary decomposition of w(I).
The analogous statement holds for the process of homogenization.

Let P be a homogeneous prime ideal of R, 2 ¢ P, and @ its dehomogenization.
Then

Rp = AlX]qax

is a localization of Ag[X], and it is clear that Rp and Ag share essentially all ring-
theoretic properties:

{16.28) Proposition. Suppose that R is noetherian. Let P be a homogeneous prime
ideal of R, » € P, and Q its dehomogenization. Then Rp and Ag coincide with respect
to the following quantities and properties: dimension, depth, being reduced, integrity,
normality, being Cohen-Macaulay , being Gorenstein, regularily.

In fact, the extension Ag — Rp is faithfully flat. Its fiber is the field (Aq/QAg)(X).
Thus (16.28) follows from the properties of flat extensions as given in [Mt], Sect. 21, and,
as far as the Gorenstein property is concerned, in [Wt]. (Of course one can give more
direct arguments in the special situation of (16.28).)

E. How to Compare “Torsionfree”

Since the notion “torsionfree” is fairly standard, we have used it without explanation:
An A-module M is torsionfree if every element of A which is not a zero-divisor of 4, is
not a zero-divisor of M. In this subsection we introduce several notions which describe
higher degrees of being torsionfree, and give conditions under which they are equivalent.

DEFINITION. Let A be a noetherian ring, M a finitely generated A-module. M is
called n-torsionfree if every A-sequence of length at most n is an M -sequence, too.

There is 2 slightly stronger condition of Serre type: _
(18.29) Proposition. Let A be a noetherian ring, M a finitely generated A-module.

Then M 1is n-torsionfree if it satisfies the condition

(Sa)+ depth Mp > min(n,depth Ap)  for all prime ideals P.

It i3 an exercise on associated prime ideals to prove that M is n-torsionfree if and
only if ' '
depth Mp > min(n, grade P) for all prime ideals P,

and this inequality is obviously weaker than 5.). is_fuljthgtlﬂgj);.e-ébvioﬁs.‘th'at both
properties of (16.29) are equivalent if the localizations Ap such that depth Ap < n are
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Cohen-Macaulay rings, since grade P = depth Ap then for all prime ideals P such that
depth Ap < n {(cf. {16.13)).

Let A be an integral domain momentarily, M a torsionfree 4-module, @ the field of
fractions of 4. The natural map h: M — M** becomes an isomorphism when tensored
with Q. Since M is torsionfree, the torsion module Ker A must be zero. An epimorphism
F — M*, F free, leads to an embedding M «— M** — F*: M is a submodule of a free
A-module, and therefore a first module of syzygies of an A-module.

DEFINITION. Let A be a noetherian ring. An A-module M is called an n-th syzygy
if there is an exact sequence
0O—M—F, — .+ — Bk
with finitely generated free A-modules F;.
From the behaviour of depth along exact sequences one concludes immediately:

(16.30) Proposition. An n-th syzygy satisfies (Sn).

An A-module M for which the natural map h: M — M** is injective, is called
torsionless. The argument above shows that a torsionless module is a first syzygy, and
conversely a first syzygy is torsionless: An embedding M — F extends to a commutative
diagram

M —— F

J
M F*,

If h is an isomorphism, M is called reflezive.

A natural idea how to make M an n-th syzygy, is to start with a free resolution of
the dual
Fp—i— F — M*—0,
to dualize and to replace the embedding M** — Fy by its composition with M — M**.
This yields a zero-sequence
0—M—F — - — F,.
DEFINITION. .M is called n-forsionless if the preceding sequence is exact.

Since it is irrelevant which resolution of M* has been chosen, this definition is
justified.

(16.81) Proposition. Let A be a noctherian ring, M a finitely generated A-module.
(a) If M is n-torsionless, then it is an n-th syzygy.
{b) M is 1-torsionless (2-torsionless) if and only if it is torsionless (reflexive).
(¢) M is k-torsionless for k > 3 if and only if it is reflezive and Ext'y(M*,A) =0 for
i=1,...,k—-2

The proposition follows readily from the definition of “n-torsionless”. A somewhat
smoother description of “n-torsionless” can be given by means of the Auslander-Bridger
dual of M: It is the cokernel of f* in a finite free presentation

FLig—M—o

Despite its non-uniqueness we denote it by D(M). One has M = D(D{AM)). (It is not
N t.’:_iﬁicult to prove that D{M) is unique up to projective direct summands.)

& .

[
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(18.82) Proposition. Let A be a noetherian ring, M a finitely generated A-module,
h: M — M** the natural mop. Then:
) Ker b = Ext), (D(M), 4),

(a
(b) Coker h = ExtZ (D(M), 4), end _
(c) M is n-torsionless if and only if Ext’(D(M),A) =0 fori=1,.

PROOF: Because of the preceding proposition and
xt!y (D(M), 4) = Ext';2(M*, A)
for ¢ > 3 it is enough to prove- (a) and (b}. We choose a finite free presentation of M*
K—H—M'—20
and splice its dual via the natural homomorphism 4 with a presentation
Fliec—um—o.

Thern D(M) = Coker f*, and one has a commutative diagram

F— G > H* K*
! [
M — M+

whose upper row has homology Ker k at G and Coker k at H*. By construction
K—H—G —F —DM)—0

is the right end of a free resolution of D{M}. —
The most elementary notion among the ones introduced is certainly the property
“n-th syzygy”. On the other hand it is the hardest to control, and the properties (S,) and

“n-torsionless” should be regarded as a lower and an upper “homological” approximation.
Under certain hypotheses on M (or A) all the properties introduced are equivalent:

(16.38) Proposition. Let A be a noetherian ring, and M a finitely generated A-
module such that pd Mp < oo for all prime ideals P of A with depth Ap < n. Then all
the properties

“n-torsionfree”, (§,,), “n-th syzygy”, end “n-torsionless”

are equivalent.

As we shall see below “n-th syzygy” and “n-torsionless” are equivalent under a
slightly weaker hypothesis on M.

PROOF: We first show that M satisfies (S,) if it is n-torsionfree. For a prime ideal
P such that grade P > n one clearly has depth Mp > n. Otherwise there is a prime ideal
@ O P such that depth Ag = grade Q = grade P < n. Then depth Mg = depth Ag, and
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My has to be a free Ag-module because of depth Ag + pd Mg = depth 4¢. Even more
Mp is a free Ap-module.

Next one proves directly that (gn) implies “n-torsionless”. From the argument just
given it follows that a free resolution

i Py B LM —0

splits when localized with respect to prime ideals P such that depth Ap < n, and fur-
thermore hp: Mp — Mp* is an isomorphism. Therefore the cokernel N of the map g
in.

(%) 0— M-LF} — .- — F,

has property (gn_l) and pd Np < oo for all prime ideals P such that depth Ap < n. M
is certainly torsionfree and (Kerg)p = Ker gp = 0 for all associated prime ideals P of A.
Since N* = Ker f, an inductive argument finishes the proof. —

As pointed out above, every first syzygy is 1-torsionless, and this fact signalizes that
“n-th syzygy” and “n-torsionless” should be equivalent under a weaker hypothesis.

(16.34) Proposition. With the remaining hypotheses of (16.33) suppose further-
more that pd Mp < oo for all prime ideals P such that depth Ap < n — 1. Then every
nu-th syzygy is n-torsionless.

PROOF: The case n = 1 being settled, we treat n = 2 as a separate case, too. There
is an exact sequence
00— M —F—N-—0

in which N is a first syzygy and F is free. Then we have a commutative diagram

0 + M r P — N — 0.

| | ls

!

M‘. F" N*O

The kernel of f is (Ext) (N, A))*, hence zero since Ext (N, A) is a torsion module: Np is
free for all P € Ass A because of pd Np < co. Since g is injective, k has to be surjective.

Let » > 2 now. We have an exact sequence 0 - M — F — N — 0 as above, in
which N is {n — 1)-torsionless, as follows by induction or from the preceding proposition.
Dualizing one obtains an exact sequence

0 — N* — F* — M* — Ext}(N,A) — 0.
We split this into two exact sequences:

0— N*— F* — K —0,
0— K — M* — Exty(N,4) — 0.
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Dualizing again one gets exact sequences

Ext{ }(N*,A) — Ext’,(K, 4) — 0 for i>1,
Exty (Extjy(N, 4), A) — Exty(M*,A) — Exty(K,4) for i>0.

Since Np is a free Ap-module for all prime ideals P such that depth Ap < n—1, one has
gradeExth (N, 4) > n -1,

and therefore Ext)(Ext}y(N, A),4) =0 foralli,0<i<n—2 (cf. (16.11})). One readily
concludes that )

Exty,(M*,A)=0 for i=2,...,n-2.
Since n > 2, N is reflexive, and therefore the linear map F** — N** is the original
epimorphism F - N, whence Ext) (K, A) = Extl (M*, 4) = 0, too. — :

(16.35) Remark. The hypothesis
pd Mp < oo for all prime ideals P with depthAp <n —1

is only needed to ensure grade Ext,{N, A) > n—1. In any case depth Np = depth Ap for
all prime ideals P with depth Ap < n—1, and arguing with an injective resolution of Ap
one also concludes grade Ext)y (N, A) > n—1 if the localizations A p withdepth Ap < n—1
are Gorenstein rings. Similarly one can replace the condition on M in (16.33) by the
hypothesis: Ap is Gorenstein for all prime ideals P such that depth Ap < n. (Observe
that Ext (N, A) = 0 for the module N constructed in the proof of (16.33).) :

F. The Theorem of Hilbert-Burch

Commutative algebra is not very rich in classification theorems. One of the few
examples identifies the ideals I in a noetherian ring for which A/I has a free resolution
of length 2:

(1) 0— A™ L, gmt1 9, 4

Let f be given by the matrix U and put §; = (~=1)*+1[1,....5,...,m + 1]. ‘hoosing the
map h: A™*! — A by sending the i-th element of a basis of 4™+ to §;, i 1,...,m+1,
one certainly obtains a coniplex

) 00— Am L, gmi1 2,y

The acyclicity criterion (16.15) applied to the exact sequence (1) yields that gradel > 1,
gradeInm(f) > 2. On the other hand, I (k) = Imk = L,,(f), so it forces the complex (2)
to be exact, too, and we have an isomorphism

I 22 Coker f 2 I.(f).

Since gradeL.(f) > 2 and, thus, Ext}(A4/L.(f), A) = 0, the natural homomorphism
A* — (In(f))* is an isomorphism, whence every map I,(f} — Ais a nltiplication
by an element g € A. So I = al,,(f); beeause of grade? > 1, a cannot divide zero:

e
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(16.86) Theorem. Let A be a noetherian ring, and I C A an ideal for which AJT
has a free resolution as (1) above. Then there exists an element o € A which is not a
zero divisor, such that I = aln(f).

This theorem is often called the Hilbert-Burch theorem since it has appeared in a
special form in [Hi], pp. 239, 240 and has been given its first modern version by Burch
[Bh.1]. One should note that its hypotheses are fulfilled if A is a regular local ring or a
polynomial ring over a field, grade I = 2, and A/I is a Cohen-Macaulay ring.

G. Comments and References

Many of the auxiliary results in this section may be classified as “folklore”, even if
some of them should have been documented in the literature.

Proposition (16.1) is a theorem of Fitting [Fi, thus the notion “Fitting invariant”.
Our definition of “rank” and its treatment are borrowed from Scheja and Storch ([SS],
section 6). It may have appeared elsewhere.

In Subsection B we have given references to Matsumura [Mt] for the basic notion
“depth” and its extension “grade”. Another good source for the theory of grade is
Kaplansky’s book [Ka), pp. 89 ~ 103. Cur notation grade(l, M) is his G(I, M); (16.14),
for example, is an exercise on p.103 of [Kaj. The grade of a module as defined below
(16.11) has been introduced in Rees’ fundamental paper [Re], the equality in (16.11)
serving as the definition. '

The utmost important acyclicity criterion (18.15) is (almost) identical with [BE.2],
Theorem. It is closely related to the lemme d’acyclicité of Peskine and Szpiro ([PS],
(1.8)). Our proof may be new (though perhaps not original).

The notion “perfect” goes back to Macaulay ([Ma], p. 87). Our definition which is
copied from Rees [Re] is an abstract and generalized version of Grobner's ([Gb], p. 197).
The description of the relationship between the properties of being perfect and being
Cohen-Macaulay as given above, is just a technical elaboration of Rees’ results {[Re], p.
41).

Our treatment of the process of dehomogenization has been inspired by unpublished
lecture notes of Storch, it is certainly the standard one nowadays. A detailed discussion
is to be found in [ZS] , Ch. VII, §§ 5, 6.

Subsection E is based on Auslander and Bridger’s monograph [ABd]. It is difficult
to sey something about the notion “n_torsionfree” and its relatives not being contained
in [ABd] already. However, the treatment in [ABd] suffers from a rather heavy technical
apparatus, and the inclusion of subsection E should be regarded as an attempt to make
the results of [ABd] directly accessible.

The version of the Hilbert-Burch theorem given above has been drawn from [BE.3],
Theorem 0. It can be greatly extended, cf. [BE.3], Theorem 3.1.



Bibliography

The references are listed in alphabetical order with respect to authors’ names. The
keys by which the references have been cited, are not in alphabetical order, but their
sequence differs only locally from the alphabetical one.

Ab.1

Ab.2

AF

Ah

ASV

Abeasis, S., Gli ideali GL{V)-invarianti in $(S?V}, Rend. Mat., VI. Ser. 18"
(1980}, 235-262. .
Abeasis, S., On the Plicker relations for the Grassmann varieties, Adv. Math.
36 (1980), 277-282.

Abeasis, S,, del Fra, A., Young diagrams and ideals of Pfaffians, Adv. Math. 85
(1980), 158-178.

Abhyankar, S., Combinatoire des tableauz de Young, variétés determinantielles
et calcul de fonctions de Hilbert, Rédigé par A. Galligo, Rend. Semin. Mat. Torino
42 (1984), 65-88. '
Achilles, R., Schenzel, P., Vogel, H., Bemerkungen iber normale Flachheit und
normale Torsionsfreiheit und Anwendungen, Period. Math. Hung. 12 (1981),
49-75,

ABW.1 Akin, K., Buchsbaum, D.A., Weyman, J., Resolutions of determinantal ideals:

the submazimal minors, Adv. Math. 39 (1981), 1-30.

ABW.2 Akin, K., Buchsbaum, D.A., Weyman, J., Schur functors and Schur complezes,

An.1"
An.2

AS1

AS.2

ACGH

Ar

ABd

Av.l
Av.2

AH

Be

Adv. Math. 44 (1982), 207-278.

Andrade, J.F., Regular sequences of minors, Commun. Algebra 8 (1981}, 765-781.
Andrade, J.F., Regular sequences of minors II, Bol. Soc. Bras. Mat. 12 (1981),
1-8,

Andrade, J.F., Simis, A., A complez that resolves the ideal of minors havingn—1
columns in common, Proc. Amer. Math. Soc 81 {1981), 217-219.

Andrade, J.F., Simis, A., On ideals of minors fizing a submatriz, J. Algebra 102
(1986), 249-259.

Arabello, E., Cornalba, M., Griffiths, P.A., Harris, J., “Geometry of algebraic
curves,” Springer, New York - Berlin - Heidelberg - Tokyo, 1985.

Artin, M., “Lectures on Deformations of Singularities,” Tata Institute of Funda-
mental Research, Bombay, 1976.

Auslander, M., Bridger, M., “Stable module theory,” Mem. Amer. Math. Soc.
84, 1969.

Avramov, L.L., 4 class of factorial domains, Serdica § (1979), 378-379.
Avramov, L.L:, Complete intersections and symmetric algebras, J. Algebra 78
(1981), 248-263.

Avramov. L.L., Herzog, J., The Koszul algebra of a codimension 2 embedding,
Math. Z. 175 (1980), 249-260. '

Baclawski, K., Rings with lezicographic straightening law, Adv. Math. 39 (1981),
185-213.



220

Ba

BB

Bs

BS

Bo.l
Bo.2

Bo.3
Bo4
Bt
Bd
Bn
Br.i
Br.2
Br.3
Br.4
Br.b
Br.6
Br.7
BNS
BrS
BV
Bu.l
Bu.2
Bu.3

BE.1

Bibliography
Barger, S.F., A theory of grade for commutative rings, Proc. Amer. Math. Soc.
86 (1972), 365-368. 4
Barnabei, M., Brini, A., An elementary proof of the first fundamental theorem
of vector invariant theory, J. Algebra 102 (1986), 556-563.
Barshay, J., Determinantal varieties, monomial semigroups, and algebras asso-
ciated with ideals, Proc. Amer. Math. Soc. 40 (1973), 16-22.
Bingener, J., Storch, U., Berechnung der Divisorenklassengruppen kompletter
lokaler Ringe, Nova Acta Leopoldina NF 52 Nr. 240 {1981}, 7-63.
Bourbaki, N., “Algebre,” Ch. 1-3, Hermann, Paris, 1970.
Bourbaki, N., “Alg¢bre commutative,” Ch. 5: Eatiers, Ch. 6: Valuations, Her-
mann, Paris, 1964.
Bourbaki, N., “Algébre commutative,” Ch. 7: Diviseurs, Hermann, Paris, 1965.
Bourbaki, N., “Algébre,” Ch. 10: Algébre homologique, Masson, Paris, 1980.
Boutot, 1.-F., Singularités rationelles et quotients par les groups reductifs, Invent.
Math. 88 (1987), 65-68.
Brodmann, M., The asymptotic nature of the analytic spread, Math. Proc. Cam-
bridge Phil. Soc. 86 (1979), 35-39. :
Brion, M., “Sur la theorie des invariants.,” Publ. Math. Univ. Pierre et Marie
Curie 45, 1981.
Bruns, W., “Beispiele reflexiver Differentialmoduln,” Dissertation, Clausthal,
1972.
Bruns, W., Zur Reflezivitat analytischer Differentialmoduln, J. Reine Angew.
Math. 277 (1975), 63-73.
Bruns, W., Die Divisorenklassengruppe der Restklassenringe von Polynomrin-
gen nach Determinanienidealen, Revue Roumaine Math. Pur. Appl. 20 (1975),
1109--1111.
Bruns, W., Divisors on varieties of complezes, Math. Ann. 264 (1983), 53-71.
Bruns, W., The Eisenbud-Evans generalized principal ideal theorem and deter-
minantal ideals, Proc. Amer. Math. Soc. 83 (1981), 19-24.
Bruns, W., The canonical module of a determinantal ring, in: Sharp, R.Y. (Ed.),
“Commutative Algebra, Durham 1981,” London Math. Soc. Lect. Note Ser. 72,
Cambridge University Press, Cambridge, 1982, pp- 109-120. .
Bruns, W., Generic maps and modules, Compos. Math. 47 (1982), 171-193.
Bruns, W., Ngo Viét Trung, Simis, A., Blow-up ideals in ordinal Hodge algebras,
(to appear).
Bruns, W., Simis, A., Symmeiric algebras of modules arising from a fized sub-
matriz of a generic matriz., J. Pure Appl. Algebra (to appear).
Bruns, W., Vetter, U., Length formulas for the local cohomology of exterior
powers, Math. Z. 191 (1986), 145-158.
Buchsbaum, D.A., A generalized Koszul comples I, Trans. Amer. Math. Scc. 111
(1964), 183-196.
Buchsbaum, D.A., Complezes associated with the minors of a mairiz, Sympos.
Math. IV (1970), 255-283. '
Buchsbaum, D.A., A new consiruction of the Eagon-Northcott complez, Adv.
Math. 84 (1979), 58-76. - :
Buchsbaum, D.A., Eisenbud, D., Remarks on ideals and resolutions, Sympos.
Math. XX (1973), 193-204.



Bibliography 221

BE.2

BE.3

BE.4

BR.1

BR.Z.

Bw

Bh.1

Bh.2

Ch

DEP.1

DEP.2

DP

DS

DRS

Ea.l

Ea.2

EH

EN.1

EN.2

EN.3

Ei.l

Ei2

Buchsbaum, D.A., Eisenbud, D., What makes a complez ezact?, J. Algebra 25
(1973), 259-268.

Buchsbaum, D.A., Eisenbud, D., Some structure theorems for finite ﬁ'ee resolu-
tions, Adv. Math. 12 (1974), 84-139.

Buchsbaum, D.A., Eisenbud, D., Generic free resolutions and a family of gener-
ically perfect ideals, Adv. Math. 18 (1975), 245-301.

Buchsbaum, D.A., Rim, D.S., A generalized Koszul complex. II. Depth and mul-

. tiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224.

Buchsbaum, D.A., Rim, D.S., A generalized Koszul complex. III. A remark on
generic acyclicity.

Buchweitz, R.O., “Déformations de diagrammes, déploiements et singularités
trés rigides, Liaisons algébriques,” Thése, Paris 1981.

Burch, L., On ideals of finite homological dimension in local rings, Proc. Camb.
Phil. Soc. 84 (1968), 941-948.

Burch, L., Codimension and analytic spread, Proc. Camb. Phil. Soc. 72 (1972),
369-373.

Chow, W.-L., On unmizedness theorem, Amer. J. Math. 86 (1964), 799-822.
Cowsik, R., Nori, M.V., On the fibers of blowing up, J. Indian Math. Soc. 40
(1976), 217-222.

De Concini, C., Eisenbud, D., Procesi, C., Young diagrams and determinantal
varieties, Invent Math. 56 (1980), 129-1865. '

De Concini, C., Eisenbud, D., Procesi, C., “Hodge algebras,”, Asténsque 91,
1982,

De Concini, C., Procesi, D., A characteristic free approach to invariant theory,
Adv. Math. 21 (1976), 330-354.

De Concini, C., Strickland, E., On the variety of complezes, Adv. Math. 41
(1981), 57-77.

Doubilet, P., Rota, G.-C., Stem, J., On the foundations of combinatorial theory:
IX, C'ambmatorzal method.s in mvarzant theory, Studies in Applied Mathematics
LIII (1974), 185-216.

Eagon, J.A., “Ideals generated by the subdeterminants of a matrix,” Thesis,
University of Chicago, 1961.

Eagon, J.A., Fzamples of Cohen-Macaulay rings which are not Gorenstein, Math.
Z. 108 (1969), 109-111.

Eagon, J.A., Hochster, M., R-sequences and indeterminates, Quart. J. Math.
Oxford (2) 25 (1974), 61-T1.

Eagon, J.A., Northcott, D.G., Ideals defined by matrices and a certain complex
associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204.
Eagon, J.A., Northcott, D.G., Generically acyclic complezes and generically per-
fect ideals, Proc. Roy. Soc. London Ser. A 299 {1967), 147-172.

Eagon, J.A., Northcott, D.G., A note on the Hilbert function of certain ideals
which are defined by matrices., Mathematika 9 (1962), 118-126.

Eisenbud, D., Introduction to algebras with straightening laws, in: McDonald,
B.R. (Ed.), “Ring theory and algebra III,” M. Dekker, New York and Basel,
1980, pp. 243-267.

Eisenbud, D., Linear sections of determinantel varieties, (t0 appear).



222
Eill
EKS
Es.l
Es.2

Es.3
Fi

Fl

Fo
I's

Ga
Gi

GM

Go.l
Go.2

Go.3

GH

Gb
Qh

.Gr

Bibliography

Eisenbud, D., Huneke, C., Cohen-Macaulay Rees algebras and their specializa-
tions, J. Algebra 81 (1983), 202-224.

Eisenbud, D., Koh, J., Stillman, M., Determinantal equations for curves of high
degree, (to appear).

Eisenreich, G., p-Vektormoduln und Determmantemdeale, Math.Nachr.50{1971),
69-77.

Eisenreich, G., Zur Perfektheit von Determinantenideelen, Beitr. Algebra Geom.
3 (1974), 49-54,

Eisenreich, G., Hyperdeterminantenideale, Math. Nachr. 87 (1975), 81-89.
Fitting, H., Die Determinantenideale eines Moduls., Jahresber. Deutsche Math.
Verein. 46 (1936), 195-228,

Flenner, H., Divisorenkiassengruppen quaszhomogener Singularitdten, J. Reine
Angew. Math 328 (1981), 128-160.

Fogarty, J., “Invariant theory,” W.A. Benjamin, New York, 1969.

Fossum, R.M., “The divisor class group of a Krull domain,” Springer, Berlin -
Heidelberg - New York, 1973.

Fulton, W., “Intersection theory,” Springer, Berlin - Heidelberg - New York -
Tokyo, 1984.

Gaeta, F., Détermination de la chaine syzygétique des idéaux matriciels parfaits
et son application ¢ la postulation de leurs variétés algébrique assocides, C.R.
Acad. Sci. Paris 234 (1952), 1833-1835.

Giusti, M., Singularités isolées et nuages de Newton, in: Arcoa, J.M. et al. (Ed.),
“Algebraic Geometry La Rabida 1981,” Lect. Notes Math. 961, Springer, Berlin
- Heidelberg - New York, 1982, pp. 89-102.

Giusti, M., Merle, M., Sections da varietés déterminantielles par les plans de
coordonées, in: Arcoa, J.M. et al. (Ed.), “Algebraic Geometry La Rabida 1981,”
Lect. Notes Math. 981, Springer, Berlin - Heidelberg - New York, 1982, pp.
103-118.

Goto, S., When do the determinantal ideals define Gorenstein rings?, Sci. Rep.
Tokyo Kyoiku Daigaku, Sec. A 12 (1974), 120-145.

Goto, S., The divisor class group of a cerfain Krull domain, J. Math. Kyoto
Univ. 7 (1977), 47-50.

Goto, S., On the Gorensteinness of determinantal loci, J. Math. Kyoto Univ. 19
(1979), 371-374.

Gover, E.H., Mulliplicative structure of generalized Koszul complezes, Trans.
Amer. Math. Soc. 185 (1973), 287-307.

Grauert, H., Kerner, H., Deformationen von Singularitéten komplezrer Rdaume,
Math. Ann. 158 {1964), 236-260.

Green, J.A., “Polynomial representations of GLp,” Lect. Notes Math. 830,
Springer, Berlin - Heidelberg - New York, 1980.

Griffiths, Ph., Harris, J., “Principles of algebraic geometry,” Wiley, New York,
1978, ‘

Grdbner, W., “Moderne algebraische Geometrie,” Springer, Wien, 1949.
Grosshans, F., Observable groups and Hilbert’s fourteenth problem, Amer. J.
Math. 95 (1973), 229-253.

Grothendieck, A., “Local cohomology,” (Notes by R. Hartshorne), Lect. Notes
Math. 41, Springer, Berlin - Heidelberg - New “York, 1967.

¥



Bibliography 223

GN

Hz

Ha.l

Ha.2

He.l

He.2

HK

HV

Hi

Ho.1

Ho.2

Ho.3

Ho.4

Ho.5

Ho.6

Ho.7

Ho.8

Ho.9

HE.1

HE.2

HR

Hd

Gulliksen, T.H., Negéird, O.G., Un compleze résolvent pour certains idéaux déter-

minantiels, C. R. Acad. Sci. Paris Sér. A 274 (1972), 16-18.

Hadziev, D., Some questions in the theory of vector invariants, Math. USSR-Sb.

1 {1967), 383-396.

Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. Math. 88

(1968), 403-450.

Hartshorne, R., “Algebraic geometry,” Springer, New York - Heidelberg - Berlin,

1977.

Herzog, J., Certain complezes associated to a sequence and a metriz, Manuscripta

Math. 12 (1974) 217-248.

Herzog, J., Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konor-

malenmodul und den Differentialmodul., Math. Z. 163 (1978), 149-162.

Herzog, J., Kunz, E., “Der kanonische Modul eines Cohen-Macaulay-Rings,”

Lect. Notes Math. 238, Springer, Berlin - Heidelberg - New York, 1971.

Herzog, J., Vasconcelos, V., On the divisor class group of Rees algebras, J. Alge-

bra 93 (1985) 182-188.

Hilbert, D., “Gesammelte Abhandiungen,” Vol. II, Reprint, Chelsea, New York,

1965,

Hochster, M., Generically perfect modules are strongly generically perfect, Proc.

London Math. Soc. (3) 28 (1971), 477-488.

Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by

monomials, and polytopes, Ann. of Math. 96 (1972), 318-337.

Hochster, M., Grassmannians and their Schubert subvarieties are arithmetically

Cohen-Macaulay, J. Algebra 25 (1973), 40-57. _

Hochster, M., Exzpended radical ideals and semiregular ideals, Pacific J. Math.
4 (1973), 553-568.

Hochster, M., Grade-sensitive modules and perfect modules, Proc. London Math. -

Soc. {(3) 29 (1974), 55-76.

Hochster, M., Criteria for equalily of ordinary end symbolic powers of primes,

Math. Z. 138 (1973), 53-65.

Hochster, M., Cohen-Macaulay rings, combinatorics and simplicial complezes,

in: B.R. McDonald, R.A. Morris {Ed.), “Ring Theory II,” M. Dekker, New York

and Basel, 1977, pp. 171-223.

Hochster, M., Invarient theory of commutative rings, in: Montgomery, S. (Ed.),

“Group actions on rings,” Contemp. Math. 43, Amer. Math. Soc., Providence,

Rh.I., 1985, pp. 161-180.

Hochster, M., “Topics in the homological theory of modules over local rings,”

Regional conference series in mathematics 24, Amer. Math. Soc., Providence,

Rh.IL, 1975,

Hochster, M., Eagon, J.A., A class of perfect determinantal ideals, Bull. Amer.

Math. Soc. 76 (1970), 1026-1029.

Hochster, M., Eagon, J.A., Cohen-Macaulay rings, invariant theory, and the

generic perfectwn of determmantal loed, Amer. J. Math. 93 (1971), 1020-1058.

Hochster, M., Roberts, J.L., Rings of invariants of reductive groups acting on

regular rings are Cahen-Macaulay, Adv. Math. 138 (1974), 115-175.

Hodge, W.V.D., Some enumerative results in the theory of forms, Proc Camb.

Phil. Soc. 39 (1943), 22-30.

4



224

HP

Hu.1
Hu.2

Hu.3
HL

Ig
Ja
Jo

JLP

JP.1
JP.2

JPW

Ke.l
Ke.2
Ke.3
Ke.d
Ke.b
KKMS

KelL

- Kml

Bibliography

Hodge, W.V.D., Pedoe, D., “Methods of algebraic geometry,” Vol. I, Cambridge
University Press, Cambridge, 1952.

Humphreys, J.E., “Linear algebraic groups,” Springer, New York - Heidelberg -
Berlin, 1975.

Huneke, C., Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981),
471-509. :

Huneke, C., Strongly Cohen-Macaulay schemes and complete intersections, Trans.
Amer. Math. Soc. 277 (1983), 739-763. '

Huneke, C., Determinantal ideals of linear type, Arch. Math. 47 (1986), 324-329.
Huneke, C., Lakskimibai, V., Arithmetic Cohen-Macaulayness and normality of
the multicones over Schubert varieties in SL(n)/B, (to appear).

Igusa, 1., On the arithmetic normality of the Grassmann variety, Proc. Nat.
Acad. Sci. U.S.A. 40 (1954), 309-313.

Jihner, U., “Beispiele starrer analytischer Algebren,” Dissertation, Clausthal
1974.

Jozefiak, T., Ideals generated by minors of a symmetric matriz, Comment. Math.
Helv. 53 (1978), 595-607.

J6zefiak, T., Lascoux, A., Pragacz, P., Classes of determinantal varieties associ-
ated with symmetric and skew-symmelric matrices, Math. USSR Izv. 18 (1982},
575-586.

Jézefiak, T., Pragacz, P., Syzygies de pfaffiens, C.R. Acad. Sci. Paris, Ser. A 287
(1978), 89-91.

lézefiak, T., Pragacz, P., Ideals generated by Pfaffians, J. Algebra 81 (1979),
189-198. . :
Jézefiak, T., Pragacz, P., Weyman, J., Resolutions of determinantal varieties and
tensor complez associated with symmetric end anlisymmetric matrices, Astéris-
que 87/88 (1981), 109-189.

Kaplansky, 1., “Commutative rings,” Revised Ed., The University of Chicago
Press, Chicago and London, 1974.

Kempf, G.R., On the geometry of a theorem of Riemann, Ann. of Math. 98
(1973), 178-185.

Kempf, G.R., Images of homogenous vector bundles and varieties of complezes,
Bull. Amer. Math. Soc. 81 (1975}, 960-901.

Kempf, G.R., On the collapsing of homogeneous bundles, Invent. Math. 37
(1976), 229-239. '

Kempf, G.R., Vanishing theorems for flag manifolds, Amer. J. Math. 98 (1976),
325-331. . .

Kempf, G.R., The Hochster-Roberts theorem on invarient theory, Michigan Math.
J. 26 (1979), 19-32.

Kempf, G.R., Knudsen, F., Mumford, D., Saint-Donat, B., “Foroidal embed-
dings 1,” Lect. Notes Math. 339, Springer, Berlin - Heidelberg - New York, 1973.
Kempf, G.R., Laksov, D., The determinantal formula of Schubert calculus, Acta
Math. 132 (1974), 153-162.

Kirby, D., A sequence of complezes associaied with a matriz, J. London Math.
Soc. (2) 7 (1973), 523-530. :

Kleiman, S., Laksov, D., Schubert calculus, Amer. Math. Monthly 79 {1972),

- 1061-1082.

&



Bibliography ' 225

KL

Kl

KIL1

KIL.2

Kr

La.l

La.2

La.3

Ls

Le.l

Le.2

Ly

Mr.2

Mr.3

Mt

Kleiman, S.L., Landolfi, J., Geometry and deformation of special Schubert vari-
eties, in: Oort, F. (Ed.), “Algebraic geometry, Oslo 1970,” Wolters - Nordhooff,
Groningen, 1972,

Kleppe, H., Deformation of schemes defined by vanishing of pfaffians, J. Algebra
53 (1978), 84-92.

Kleppe, H., Laksov, D., The generic perfectness of determinantal schemes, in:
Lonstedt, K. (Ed.), “Algebraic Geometry, Copenhagen 1978,” Lect. Notes Math.
732, Springer, Berlin - Heidelberg - New York, 1979, pp. 244-252.

Kleppe, H., Laksov, D., The algebraic structure and deformation of Pfaffian
schemes, J. Algebra 64 (1980), 167-189.

Kraft, H., “Geometrische Methoden in der Invariantentheorie,” Vieweg, Braun-
schweig, 1985, ‘

Kunz, E., “Kahler differentials,” Vieweg, Braunschweig - Wiesbaden, 1986,
Kutz, R.E., Cohen-Macaulay rings and ideal theory of invariants of algebraic
groups, Trans. Amer. Math. Soc. 194 (1974), 115-129.

Laksov, D., The arithmetic Cohen-Macaulay character of Schubert schemes, Acta
Math. 129 (1972), 1-9. '
Laksov, D., Deformation of determinantal schemes, Compositio Math. 80 (1975),
273-292.

Laksov, D., Deformation and transversality, in: Lonstedt, K. (Ed.), “Algebraic
Geometry, Copenhagen 1978,” Lect. Notes Math. 782, Springer, Berlin - Heidel-
berg - New York, 1979, pp. 300-316.

Lascoux, A., Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202-
237.

Lebelt, K., Torsion duferer Potenzen von Moduln der homologischen Dimen-
sion 1, Math. Ann. 211, 183-197. -
Lebelt, K., Freie Auflosungen Gufierer Potenzen, Manuscripta Math. 21 (1977),
341-355.

Luna, D., Vust, Th., Plongements d’espaces homogénes, Comment. Math. Helv.
58 (1983), 186-245.

Macaulay, F.S., “The algebraic theory of modular systems,” Cam}:ridge Tracts
19, 1916. :
Magid, A.R., Finite generation of class groups of rings of invarian! Proc. Amer.
Math. Soc. 60 (1976), 45-48.

Marinov, V., Perfection of ideals generated by the pfaffians o] an alternating
matriz, C. R. Acad. Bulg. Sci. 81 (1979), 561-563.

Marinov, V., Perfection.of ideals generated by the Pfaffians of an aliernating
mairiz, 1, Serdica 9 (1983); 31-42. L

Marinov, V., Perfection of ideals generated by the Pfaffians of an alternating
matriz, 2, Serdica 9 (1983), 122-131.

Matsumura, H., “Commutative alg\ebraqf’ ‘Second Ed., Benjamin/Cummings,
Reading, 1980. S

Micali, A., Sur des idéauz engendrées par des"déte\rminants, Seminaire Dubreil-
Pisot 1963/64, Exp. 18. el :

Mount, K.R., 4 remark on determinantal loci, J. London Math. Soc. 42 (1987),
595-598, ' e



229

MF

Na
Ne

Ng.1

Ng.2
Ni.l

Ni.2
No.1l

No.2
No.3
No.4

No.5
No.6

PS
Po
PW.1

PW.2

Qu

Re

Ro
Rb.1

Rb.2

Bibliography

Mumford, D., Fogarty, J., “Geometric invariant theory,” Second enlarged edi-
tion, Springer, Berlin - Heidelberg - New York, 1982.

Musili, C., Postulation formula for Schubert varieties, J. Ind. Math. Soc. 36
(1972), 143-171. .

Nagata, M., “Local rings,” Reprint, Robert E. Krieger, Huntington, N.Y., 1875.
Newstead, P.E., Some subvarieties of Grassmannians of codimension 3, Bull.
London Math. Soc. 12 (1980), 176-182.

Ngd Viét Trung, On the symbolic powers of determinantal ideals, J. Algebra 58
(1979), 361-369.

Ngb Viét Trung, Principal systems of ideals, Acta Math. Viet. 6 (1981), 57-63.
Nielsen, H.A., Tensor functors of complezes, Preprint Series 77/78, No. 15
Aarhus Universitet, Matematisk Institut.

Nielsen,H.A., Free resolutions of tensor forms, Astérisque 87/88 (1981}, 289-302.
Northcott, D.G., Semi-regular rings and semi-regular ideals, Quart. J. Math.
Oxford (2) 11 {1960), 81-104.

Northeott, D.G., Some remarks on the theory of ideals defined by matrices,
Quart. J. Math. Oxford (2) 14 (1963), 193-204.

Northcott, D.G., Additional properties of generically acyclic projective complezes,
Quart. J. Math. Oxford (2} 20 (1969}, 65-80.

Northcott, D.G., Grade sensitivity and generic perfection, Proc. London Math.
Soc. (3) 20 (1970), 597-618.

Northcott, D.G., Generic perfection, Sympos. Math. XTI (1973), 105-119.
Northcott, D.G., “Finite free resolutions,” Cambridge Tracts in Mathematics 71,
Cambridge University Press, Cambridge, 1976.

Northcott, D.G., Rees, D., Reductions of ideals in local rings. Proc. Cambridge
Phil. Soc. 50 (1954), 145-158.

Peskine, C., Szpiro, L., Dimension projective finie et cohomologie locale, Publ.
Math. LH.E.S. 42 (1973), 47-119.

Poon, K.Y., “A resolution of certain perfect ideals defined by scme matrices,”
Thesis, University of Minnesota 1973.

Pragacz, P., Weyman, J., Complezes associated with trace and evaluation. An-
other approach lo Lascouz’s resolution, Adv. in Math. 57 (1985), 163-207.
Pragacs, P., Weyman, J., On the construction of resolutions of determinental
ideals: A survey, in: “Sémin, P. Dubreil et M.-P. Malliavin 1985,” Lect. Notes
Math. 1220, Springer, Berlin - Heidelberg - New York, 1986, pp. 73-92.
Quillen, D., Projective modules over polynomial rings, Invent. Math. 36 (1976),
167-171. :

Rees, D., The grade of an ideal or module, Proc. Camb. Phil. Soc. 53 (1957),
28-42.

Richman, D.R., The fundamental theorems of vector invarianis, (to appear).
Robbiano, L., An lgebraic property of P x P¥, Comm. Algebra 7 {1979),
641-655. .

Roberts, P., A minimal free complez associated to the minors of & matriz, (to
appear).

Roberts, P., On the construction of generic resolutions of determinanial ideals,
Astérisque 87/88 (1981), 353-378.



Bibliography 227

Rb.3

Rhb.4

Rm

Rt

Sa

Sc

Sch

85

S1

Se

Sh.1

Sh.2

St
Sv.1

Sv.2

Sv.3

Ul

Va.l

Va.2

Ve.l

Ve.2

Vel

Ve.d

Roberts, P., “Homological invariants of modules over commutative rings,” Les
presses de 1'université de Montréal, Montréal, 1980.

Roberts, P., A prime ideal in a polynomial ring whose symbolic blow-up is not
noetherian, Proc. Amer. Math. Soc. 94 (1985), 589-592.

Room, T.G., “The geometry of determinantal loci,” Cambridge University Press,
Cambridge, 1938.

Rotman, J.J., “An introduction to homological algebra,” Academic Press, New
York, 1979.

Samuel, P., “Lectures on unique factorization domains.,” Notes by P. Murthy,
Tata Institute for Fundamental Research, No. 30, 1964.

Schaps, M., Deformations of Cohen-Macaulay schemes of codimension 2 and
nonsingular deformations of space curves, Amer. J. Math. 99 (1977), 669685,
Scheja, G., “Differentialmoduln lckaler analytischer Algebren,” Schriftenreihe
des Math. Instituts der University Fribourg, Heft 2, Fribourg, 1969/70.

Scheja, G., Storch, U., Differenticlle Eigenschaflen der Lokalisierungen analy-
tischer Algebren, Math. Ann. 197 (1972), 137-170.

Schlessinger, J., Rigidity of quotient singulurities, Invent. Math. 14 {1971),
17-26.

Serre, J.-P., “Algdbre locale. Multiplicités,” Lect. Notes Math. 11, Springer,
Berlin - Heidelberg - New York, 1965. ‘

Sharpe, D.W., On certain polynomial ideals defined by matrices, Quart. J. Math.
Oxford Ser. (2) 15 (1964), 155-175.

Sharpe, D.W., The syzygies and semi-reqularity of certain ideals defined by ma-
trices, Proc. London Math. Soc. (3) 15 (1965), 645-679.

Stanley, R.P., Hilbert Functions of graded algebras, Adv. Math. 28 (1978), 57-83.
Svanes, T., Coherent cohomology on Schubert subschemes of flag schemes and
applications, Adv. Math. 14 {1974), 369-453.

Svanes, T., Some criteria for vigidity of Noetherian rings, Math. Z. 144 (1975),
135-145,

Svanes, T., “Coherent cohomolegy on flag manifolds and rigidity,” Ph.D. Thesis,
MIT, Cambridge, Mass. 1972.

Ulrich, B., Rings of invariants and linkage of determinantel ideals, Math. Ann,
274 (1986), 1-17.

Vainsencher, L, Schubert calculus for complete quadrics, in: Le Barz, P., Hervier,
Y. {(Ed.), “Enumerative geometry and classical algebraic geometry,” Progr. Math.
24, Nice 1981, 1982, pp. 199-235.

Vainsencher, 1., Complete collineations end blowing up determinantal ideals,
Math. Ann. 267 (1984), 417-432.

Vetter, U,, “Auflere Potenzen von Differentialmoduln vollstindiger Durchschnit-
te,” Habilitationsschrift, Hannover 1968.

Vetter, U, /i'ﬁﬂere Potenzen von Differentialmoduln reduzierter velistindiger
Durchschnitte, Manuscripta Math. 2 (1970), 67-75.

Vetter, U., The depth of the module of differentials of a generic determinantal
singularity, Commun. Algebra 11 (1983), 1701-1724,

Vetter,U., Generische determinantielle Singularititen: Homologische Eigenschaf-
ten des Derivetionenmoduls, Manuscripta Math. 45 (1984), 161-191.



228

Yo.1

Yo.2

Bibliography

Warneke, K., “Differentialrechnung in generisch-symmetrischen determinantiel-

len Singularitdten,” Dissertation, Vechta 1985.

Watanabe, K. et al, On tensor products of Gorenstein rings, J. Math. Kyoto
Univ. 9 (1969), 413-423.

Weyl, H., “The classical groups,” Princeton Umvermty Press, Princeton N. J.,
1946.

Weyman, J., Resolutions of the exterior and symmetric powers of a module, 3

. Algebra 58 (1979), 333-341.

Whitehead, K.L., “Products of generalized determinantal ideals and decompo-
sitions under the action of general linear groups,” Ph.D. Thesis, University of
Minnesota, 1982..

Yoshino, Y., The canonical modules of graded rings defined by genemc maltrices,
Nagoya Math J. 81 (1981}, 105-112.

Yoshino, Y., Some results on the variéty of compleres, Nagoya J. Math. 98
(1984), 39-60. ‘ _
Zariski, O., Samuel, P., “*Commutative algebra,” Vol. IL. Reprint, Springer, New
York - Heidelberg - Berlin, 1975.



Index of Notations

Notations which seem to be completely standard or have been used in accordance
with [Mt], have not been listed. .

N set of non-negative integers

N, set of positive integers

Y/ ring of integers

Q field of rationa! numbers

C field of complex numbers

tk M rank of a module, 1, 204

tk f rank of (the image of) a homomorphism, 2
A(M) length of a module, 2

M dual of a module, 2

I dual of a homomorphism, 2

i\M t-th exterior power of a module, 2
S;(M) J-th symmetric power of a module, 2
er, e} 2

o(I1,. ., 1n), o(i,. .. tn) signum of a permutation, 2
Vi cardinality of a set, 2

S(m,I) 2

L...,%...,m  iis to be omitted from 1,...,n
[a1,...,8:/b1,...,b]  ¢-minor of a matrix, 3

[a1,...,am) maximal minor of a matrix, 3

L{U) ideal generated by the ¢-minors of a matrix, 3
Cof I/ matrix of cofactors of a matrix, 3

R.(X) determinantal ring, 4

L(V,W), L(V,W)  determinantal variety, 4

PN (K) projective N-space over the field K

i\f i-th exterior power of the homomorphism f
P(V) projective space of the vector space V
AN(K) affine N-space over the field K

G(X) B-subalgebra of B{X] generated by the maximal minors of X, 7
G (V) Grassmann variety, 8

GL(V) group of automorphisms of a vector space, 8

ai,...,am)  Schubert variety, 8
S(M) symmetric algebra of the module M
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set of 7 X n matrices with entries in a ring, 22
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canonical module of a Cohen-Macaulay ring, 210
associated graded ring, module, 30

leading form, 30
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set of maximal minors of a matrix, 46
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determinantal ring, 51

51

ideal defining a Schubert cycle, 52
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group of invertible r x » matrices over a ring, 74
subring of invariants, 74

group of r X r matrices with determinant 1, 74
subspace of invariants, 81

cohomology with support in an ideal, 81
module of invariants, 88
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divisor class group of a normal domain, 93
divisor class of a fractionary ideal, 94

divisor of a fractionary ideal, 94

Rees algebra, 108

extended Rees algebra, 108

108

108

109

valuation associated with a divisorial prime ideal, 116

analytic spread of an ideal in a local ring, 117
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associated graded ring with respect to a filtration, 118
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acyclicity criterion, 207, 208
algebra generated by the ¢-minors, 132,
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algebra with straightening law (ASL), 38
algebraic quotient, 80
analytic spread, 117
arithmetical rank, 61
of a determinantal ideal, 62, 81
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of an ideal generated by a poset ideal,
62
in a symmetric ASL, 62
ASL, 38
discrete, 62
symmetric, 43
ASL-property of
a determinantal ring, 52
a graded ring derived from a straight-
ening closed ideal, 108, 110
a Schubert cycle, 53
B[X] on A(X), 48
G(X) on I'(X), 41
associated graded module, 30
associated graded ring 30, 108
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derived from an ideal of maximal mi-
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derived from the ideal of {-minors, 132
associated prime ideals, 1
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of powers of a determinantal ideal, 132
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Auslander-Buchsbaum ‘equation, 1
Auslander-module, 198
and rigidity, 199, 200

bitableau, 138
left (right) final, 139
left (right) initial, 139
standard, 138

canonical {(divisor) class, 93

of a determinantal ring, 97, 98, 103

of a Schubert cyele, 97, 102
canonical module, 210

of a determinantal ring, 22, 97, 98,

103, 115

of a Schubert cycle, 97, 102, i15
class group, s. divisor class group
cofactors, matrix of, 3
Cohen-Macaulay

module, 209

ring, 209

type of a determinantal ring, 115
Cohen-Macaulay property

and perfection, 210

of a determinantal ring, 13, 25, 60

of a graded ring derived from an ideal

of maximal minors, 112

of an ASL, 59

of a Schubert cycle, 60
complete intersection, 198
content of a tableau (bitableau), 138

decomposition of K[X] into irreducible
G-modules, 143, 144
defining ideal
of an ASL, 40
of G{X), 43
dehomogenization, 211
and being reduced, 212
determinantal ring as a, 53
integrity, 212
normality, 212
of a homogeneous.ideal, 212, 213
B[X] as a, 48
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depth, s. also grade
of a module, 1, 208
derivations, module of, 184
almost perfection, 188
petfection, 192
system of generators, 188
syzygetic behaviour, 197
syzygies, 189
determinantal ideal, 5, 51, 155, 156, 175
of a homomorphism, 202
determinantal ring, 4, 5
as a ring of absolute invariants, 76, 86,
87, 160
determinantal variety, 4, 6
diagram, 136
D-ideal, 145
primary, 147
prime, 147
principal, 146
radical, 147
differentials, module of, 174
depth, 180, 181, 183
free locus, 178
grade, 180, 183
presentation as a second syzygy, 186
syzygetic behaviour, 182

syzygies, 181 \

dimension .
of a determinantal ring, 57
of an ASL, 55

of a Schubert cycle, 57
discrete ASL, 62
divisor class group
of a determinantal ring, 95, 96, 160
of a Schubert cycle, 95
dual
 basis, 2 \
of a homomorphism, 2
of a module, 2
dualizing module, 210 |

Eagon-Northcott complex, 16
extended Rees algebra, 108
derived from
an ideal of maximal minors, 112, 114
a straightening-closed ideal, 108, 109

- Fitting invariants of a module, 203
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extended symbolic Rees ring, 124
derived from a determinantal 1deal
124
extraspecial pair, 43

factoriality of a
determinantal ring, 95 o
Schubert cycle, 69, 95 |

form ideal, form module, 30
free resolution, 18, 21
of an ideal :
of maximal minors, 18

of submaximal minors in a quadra.tlc

matrix, 25
of a generic module, 172
of symmetric and exterior powers, 18,
21
of the image of a generic map, 172
full semigroup, 150

G-decomposition of K[X], 143, 144
generically perfect
ideal, 27
module, 27
generic map, 162
free resolution of the image, 172
perfection of the image, 164, 165
generic module, 162
almost perfection, 164
free resolution, 172
perfection, 18, 167, 170
projective dimension, 17:
reflexivity, 162
syzygetic behaviour, 17 172
generic perfection, 27

and substitution of indeterminates, 31,

32
of a determinantal ideal, 61
- of a Schubert cycle, 61
of the canonical module, 30

' generic point, 73

of a determinantal ring, 74, 85, 87
of a Schubert cycle, 83, 85
G-module, 80
Gorenstein property, 210
of a determinantal ring, 22 25, 98 104
of a Schubert cycle, 102
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Gorenstein ring, 210
grade, 206
of a determinantal ideal, 12, 61, 159
of a module, 206
of an ideal, 206
and projective dimension, 207
behaviour along exact sequences, 207
of an ideal defining a Schubert cycle,
61 Co
homological description, 206
local description, 207
grade estimates
for modules of invariants, 8%
for powers of ideals of maximals mi-
nors, 90, 118, 119
for symbolic powers of & determinantal
ideal, 125
Grassmann variety, 6, 8
G-stable ideals of K[X], 146
G-submodule generated by a bitableau,
145
Gulliksen-Negard complex, 22

height of
a determinantal ideal, 12, 61, 159, 175
an ideal generated by minors of a ma-
trix, 10, 11
an ideal defining a Schubert cycle, 61
a specialization of a perfect ideal, 36
Hilbert-Burch theorem, 218
homogenization of an ideal, 212, 213

ideal in a partially ordered set, 50
cogenerated by a subset, 51
generated by a subset, 31

ideals of maximal minors, 10, 105
free resolution, 18

indecomposability ob the subspace of

(right) iritial bitableaux, 142
induction argument for determinantal
rings, s. localization argument

integral closure of a G-stable ideal, 149

integrity of a
determinantal ring, 14, 65, 158
graded ring derived from an ideal of

maximal minors, 114
Schubert cycle, 65

Subject Index

invariant, 80
absolute, 74, 86
theory, main problems, 80 '
versus absolutely invariant, 75
isotopic component, 142

Kihler differentials, s. differentials
Koszul complex, 17

El

leading form, 30, 108
linear independence of standard monomi-
als in G(X), 43, 84

linearly reductive, 80, 81

localization argument for
determinantal rings, 11, 66, 122
Schubert cycles, 64

locally upper semi-modular poset, 58

maximal minors, 3, 105
ideals of, 10, 105
powers of ideals of, 106, 114
subalgebra of, 106, 107, 112
minimal primes of an ideal generated by
a poset ideal
in A(X}, 66
in T(X), 66
minor of a matrix, 3
module
torsionfree, 213
n-torsionfree, 213
n-th syzygy, 214
n-torsionless, 214
of derivations, s. derivations
of differentials, s. differentials
reflexive, 214
multiplicity of a (maximal minors) deter-
minantal ring, 16

normality criterion, 212
normality of a
determinantal ring, 15, 61, 65, 150, 160
graded ring derived from an ideal gen-
erated by maximal minors, 114
Schubert cycle, 65
normal subsemigroup, 150
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perfect
ideal, 209
module, 209
perfection, 209
and Cohen-Macaulay property, 210
of a determinantal ideal, 13, 18, 25, 61,
159, 175
of a Schubert cycle, 61
of a specialization, 28, 29
Pliicker
coordinates, 6
map, 8
relations, 41
poset, 39
powers of
an ideal generated by a regular se-
quence, 15, 29 ‘
an ideal of maximal minors, 79, 114
determinantal ideals, 79, 114, 130, 149
primary decomposition of
a G-stable ideal, 148, 149
products of determinantal ideals, 126,
130, 149
prime elements in a determinantal ring,
97
principal radical system, 155
of determinantal ideals, 158
products of determinantal ideals, 126,
137

radical
of a D-ideal, 147
subsemigroup, 150
rank of a
free module, 1
medule, 1, 204
* poset element, 55
subset of a poset, 55
rational representation, 80
rational singularity, 81, 150
reduced
ASL, 54
determinanial ring, 15, 55
ring, 1
Schubert cycle, 55
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Rees algebra, 108
derived from :
an ideal of maximal minors, 112, 114
a straightening-closed ideal, 110, 111
extended, 108
reflexive module, 214
regular elements in an ASL, 55, 56
Reynolds operator, 81, 88
rigidity, 198, 200
ring of invariants
being noetherian, 81
normality, 81, 115, 149
rational singularities, 81, 149
Cohen-Macaulay property, 81
existence of a Reynolds operator, 81
ring of U-invariants, 149
in a determinantal ring, 150

Schubert cycle, 8, 9
as a ring of absolute invariants, 76, 86
Schubert variety, 6, 8
Segre product of ASLs, 107
self-covering poset ideal, 110
Serre’s condition
(R;) for a determinantal ring, 71
(Rz) for a Schubert cycle, 71
(Sx) for an ASL, 60
Serre type criterion for torsionfree mod-
ules, 213
shape of a monomial, 135
singular locus of a
determinantal ring, 12, 70, 71, 160
Schubert cycle, 68
special pair, 43
spectrum of a ring, 1
standard
basis, 38
bitableau, 138
monomial, 38
tableau, 138 /
standard monomials as generators of an
ABL, 39
standard representation, 39
of a bitableau, 138, 139
of a monomial, 39
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straightening
law, 38
relations, 38
straightening-closed ideal, 108
powers of a, 108
extended Rees-algebra derived from a,
108
submaximal minor, 3
support of a. module, 1
support of a monomial, 131
symbolic graded ring, 124
derived from a determinantal ideal,
124
symbolic powers of determinantal ideals,
122, 123, 124, 126, 129, 130, 149
intersection of, 138, 137
symmetric algebra of a straightening-
closed ideal, 111

Subject Index

symmetric ASL, 43

syzygies of
a generic module, 166
an ideal generated by a poset ideal, 53
determinantal ideals, 164, 175

syzygy module, 214

tableau, 137

final, 139

initial, 139

nested, 145

standard, 139
torsionfree module, 213
torsionless module, 214

wonderful poset, 58

Young diagram, 136
I



Some general remarks on the publication of
monograplis and seminars g

In what follows all references to monographs, are applicable also to
multiauthorship volumes such ag seminar notes. :

§1. Lecture Notes aim to report new developments - quickly, infor-

§2.

§3.

mally, and at a high level. Monograph manuscripts should be rea-
sonably self-contained and rounded off. Thus they may, and often
will, present not only results of the author but alsc related
work by other people. Furthermore, the manuscripts should pro-—
vide sufficient motivation, examplés &and. applications. This
clearly distinguishes Lecture - Notes manugcripts from journal or-
ticles which normally are very concise. Articles intended for a
journal but too 1long to be accepted by most journals, usually do
not have this "lecture notes" character. For similar reasons it
is unusual for Ph.D. theses to be accepted for the Lecture Notes
series, N

Experience has shown that English language manuscripts achieve a
much wider distribution. .
f'.’

Manuscripts or plans for Lecture Notes volumes should Le
submitted either to one of the series editors or to Springer—
Verlag, Heidelberg. These proposals are then refereed. A final
decision concerning publication can only be made on the basis of
the complete manuscripts, but a preliminary decision can usualliy
be based on partial information: a fairly detailed outline
describing the planned contents of each chapter, and an indica-
tion of the estimated length, a bibliegraphy, and one or two
sample chapters - or a first draft of the manuscript. The edi-
tors will try to.make the preliminary decision as definite as
they can on the basis of the available information.

Lecture Noteg are printed by photo-offset from typed copy deli=-
vered in camera-ready form by the authors. Springer-Verlag pro-
vides technical instructions for the preparation of manuscripts,
and will also, on request, supply special staionery on which the
brescribed <typing area is outlined. Careful preparation of the
manuscripts will help keep production time short and ensure sa -
tisfactory appearance of the finished book. Running titles are
not  required; if however they are considered necessary, they
should be uniform in appearance. We genérally advise authors not
Lo start having their final manuscripts specially tpbyed before-
hand. For professionally typed manuscripts, prepared on the spe-
cial stationery according to our instructions, Springer-verlag
will, if necessary, contribute towards the typing costs at a
fixed rate.

The actual production of a Lecture Notes volume takes 6-8 wee! ;,
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§4.

§5.

Final manuscripts should contain at least 100 pages of mathema-

rical text and should include

—- a table of contents

- an informative introduction, perhaps with some historical re-
marks. It should be accessible to a reader not particularly
familiar with the topic treated.

- a subject index; this is almost always genuinely helpful for
the reader.

Authors receive a total of 50 free copies of their volume, but
no royalties., They are entitled to purchase further copies of
their book for their personal use at a discount of 33.3 %,
other Springer mathematics books at a discount of 20 % directly
from Springer-Verlag.

Commitment to publish is made by letter of intent rather than by
signing a formal contract. Springer-Verlag secures the copyright
for each volume. .



Impresso na Grafica do

)






