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PREFACE

These notes are the result of a course taught at
IMPA in the fall of 1970. They have beenldesigned to
serve as an introdpction for advanced students to the
study of minimal submanifolds-of riemannian spéces. The
subject is -emourmous and abounds with excellent literature,
s0 there is mno attempt hére to be complete. I have tried
rather to give an ovér—view of the area, thatris, to
present thé ma jor historical developménts in a detailed
and unified way. In each subarea an indication is given
of the present state of affairs, with sufficient'feferen-
ces that the reader may pursue in depth any topic of
special interest to him.

The notes begin with a discussion of the general .
concept of minimal submanifolds (variational formulas,
étc.)Tahd the formulation'df a number of examples which
give focus and color to the subsequent study.

The remainder of this volume is concerned1with

two=dimensional minimal surfaces in euclidean space. This

branch of the subject has enjoyed a long history in mathe-
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matics. Its close relationship with complex function
theory has made 4it bPossible to prove profound results
which have a certain resistance to generalization. The
discussion here centers Principally on the classigal
Plateau problem and on the global geometry of complete
minimal surfaces, in particular, the Bernstein-Osserman
Theorem. In the last chapter we give a detailed exposi-~-
tion of Calabits theory of moduli for isometric minimal
surfaces.

The second volume will contain an exposition of
aspects of geometric measure theory with applications to
the general Plateau problem and the codimension-one
Bernstein conjecture. It will also contain a study of
the global geometry of minimal varieties in compact
manifolds, in particular, in symmetric spaces.

The background necessary for reading these notes
is not excessive. The reader is presumed to have a work-
ing-relafionship with the basic concepts of fiemannian
geometry and complex function theory. The special topics
of central importance (e.g., ¢certain aspects of K#hler
geometry) are introduced in detail in the text.

The chapters in this volume, with the exception
of the first, are mutually independent. Readers are

neither required nor particularly encouraged to take up
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the topics in the order presented.

I would like to express may thanks to both Manfre-
do do Carmo and Robert Osserman for reading the manuscript
and making a number of wvaluable comments. I also want to
thank Manfredo for arranging my extremely pleasant visit
to IMPA. T gratefully acknowledge the support of the
Organization of American Sates and the Sloan Foundation

during the preparation of this wvolume.
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CHAPTER I

A PRELIMINARY DISCUSSION

g

The purpose of this chapter is to develop some mo-
tivation for the study of minimal submanifolds and to
give the reader some insight into the geometry inveolved.

We shall begin with a proof that submanifolds whith are

stationary with. respect to volume are characterized by a
bbb

et e T T

local geometric invariant, namely, the mqﬁﬁﬂgurvature
vector. We shall then develop in detall a number of
et

jmportant examples which will 1llum1nate all of our sub-

sequent discussion.

§1. Notations and conventions

Let M be a ¢® riemannian manifold where at each
point p € M the metrig‘in the tangent space Tb(M) at
p dis denoted by the bracket {(+,*). Llet EM denote the
space of ¢® wvector fields on M. ‘Then by a connection
on M we mean a rule which assigns to each X € %M a

M M
and all £, g8 € Cw(M). we have

linear map vxé £+ %. such that for-all X, Y, Z2 € ¥y
Linear map

(1) va+ng = £ 942 + g,_ﬁvyz
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(2) v (£Y) = (X.£)Y + £ VY .
We recall that there exists on M a unique connection,

called the riemannian connection, which satisfies the.

further conditions:
(3) X«¥,2) = (Vx¥s Z) + (Y, v,2)

(&) VXY - va =0x,v] .

As a basic reference for commections defined as above we
Cite either Helgason [1] or Hicks [1)., We shall assume
without proof the elementary properties established in
these sourées and note two of them here for future refe-

rence.,

FACT 1 - Let X, Y IM and let p ¢ M., Then the value
of the field VXY at p depends only on the
vector XP e'Tb(M) and on the values of Y along any

smooth curve y such that Y(0) = p and g%(o) =X,

That is, if X € IM satisfies ip = XP, then (ViY)

= (VXY)p; and if ¥ ¢ Z, satisfies ¥|y = Y|Y, then

P

(VXY)p = (VXY)P » Hence, one may speak of VY where Y

is defined only along a submanifold and X is tangent to

that submanifold.

FACT 2 - For each X ¢ ¥y » the map © can be uniquely

X
extended to the algebra of all tensor fields on
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M as a derivation which commutes with contractions. For
example, let ® be a l-form on M, i.e., & ¢” (M) -linear

map EM + ¢ (M). Then v is the 1-form given by

(v, @) (¥) = Xew(Y) - w(7,Y)
for all Y € EM .

By a submanifold of M we shall mean simply an
immersion ! N 4+ M where N is some differentiable
manifold. It will always be assumed that N carries the
induced riemannian metric. By the implicit function
theorem we know that any point P € N has a neighborhood
u such that w]u is a topological embedding. Thus, when
we are working oﬁ local questions we will often, for
convenience, assume that our submanifold i1s embedded and

suppress all mention of the immersion V.

§2. The first variational formuzla

Let ®M be a riemannian m-manifold and MC B a
fopologically embedded submanifold of dimension m.
Denote the metric on ™ by (+:,*) and the associated
fiemannian connection by v. For any p € MC M we have

an orthogonal splitting
T (M) = T (M) & N_(M
p( ) P( ) P( )

into the tangent and normal spaces of M at p rTespect-
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ively. With respect to this splitting we decompose any

vector X ¢ Tp(ﬁ) as

(" + (OF
The (unique) riemannian connection ¥V of M can then be
given as follows. Denote by IP the set of tangent
vector fields of M = each of which is defined in some

neighborhood of p on M, Then for X, Y¢ KP,

(From Fact 1 above, the term on the right is a well
defined element of Ep.) In an analogous ﬁanner we can

define a local normal vector field at P by

s v\N
By y = (va)
Recall that the covariant derivative (5XY)p depends

only on Xp and not the choice of X € %p extending it.

However, we mote that (WXY)N =.(5YX + [X,Y])N = (VYX)N
and thus -
BX,Y = BY,X
Therefore, BX Y at p depends only on the wvectors Xp,
, :

Yp and not on the choice of local fieldé\'X'Y. This is
to say that B represents a C ~sect10n of the bundle

% (M) ® T*(M) ® N(M) called the second fundamental form

of the submanifold M., At each p01nt P, Bé *represents

a2 symmetric bilinear map of TP(M) into NP(M). " Thus,



we can define

KP = trace(Bp)

for each p. K 1is a smooth field of normal wvéctors on

M called the mean curvature vector field. Locally, if

El""’sn [ IP are pointwise orthonormal fields, then

m . N
K = & (V. ¢
P k=1 ( €1 K

in a neighborhocd of p.

NOTE - This definition can be immediately carried over to
a general submanifold @: M+ M by using the fact

that V is locally an embedding as mentioned above.

Observe that the field K 4is an invariant of the
locdl geometry of the pair (M,ﬁ)z that is, of the way
the submén;fold M is situated locally in M., It
F: M » M is an isometry such that F(M) = M, then
F,K = K. This invariant is the simplest and most impor=
tant one; and we shall now proceed to give an interpreta-
tion of it.

lRoughly speaking, the mean curvépure vector field
is "the gradient of the area function on the space of
immersions, J(M;ﬁ), of M into ﬁ." For example,
suppose M is compact. Then d&(M,M) can be naturally

given the structure of an (infinite-dimensional) C -mani-

fold where at £ ¢ $(M,M) the tangent space corresponds
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to the set of T(ﬂ)-valued vector fields along f. More

explicitly, a smooth curve f_ in J(M,M) with fo= 1T

corresponds to a smooth variation of £, and the tangent

df

vector I naturally corresponds to the variational
t=0

vector field.

The inner product in this tangent space is given by inte-
grating the pointwise inner product of the variational
vector fields in M over fO(M) (i.e., over M in the
metric induced by £, }. Now, for f ¢ &(M,M) 1let A(Ff)
= the volume of M in the metric induced by f. Then
for each f € J(M,M) the claim is tha:{ -(v4), corres-
ponds to the mean curvature vector fieid of the immersion.

This means that by deforming f along the field X we

decrease the area of M most rapidly. Moreover, if we

deform f along another field E, then the infinitesimal
rate of change of A at f is given by the inner product

of E with -K (e.g. (E-A)f = ~«(E,K), = (E,VA)f).
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The precceding discussion was intended for reasons
of motivation and will not be pursued in detail. Rather
we proceed as follows, Let M be a riemannian manifold
and let f: Mo M be an immersion where M is a compact

oriented manifold with boundary 8M (possibly = ¢).

DEFINITION -~ By a smooth variation of f we mean a c”-

mapping ¥F: IXM 5 M, where I = (-1,1),
such that:

(a) Each map f, = F(t,+): M9 8 is an immersion.

(p) fy = f.

(c) £.]3M = £|3M for all + ¢ I.

Let 2/3t denote the canonical vector field along the I

factor in IXM and set E = F*-%¥| . E is considered
t=0

as a section of T(M) ® N(M). Finally, let A{t) be the

volume of M at time %, i.e., let th be the volume

element of the metric induced by ft and set
A(t) = j’ av,
M
Then we have

THEOREM 1 (The first variational formula):

dA
&EI = - // (K,E)dvV_ .
t=0 M

Proof: We first note that




dA : d

— = dav,_ = f - dV_ .
dt t

dt y M

Q1&
ot
o

This follows iml\l}ediéfely from the definition of the
TN )
integral and staﬁaard theqrems of calculus. We shall

prove the theorem by démonstrating that

d - — —
{1.1) T 4V oo -(K,E)dv_ = d

where ( is an (m-1)-form on M such that Q|3M = O.

In fact, let W be the” l-form on M. given by
(1.2) w(Xx) = (E,X)

for tangent vector fields X on M. Then

def.
0 - = il

and since E|3M = O, Q|amM = o.
Let p € M and choose El,...,Sm [ ip such that:

(1) "€seees€, arve pointwise orthonormal in the

metric induced by fo.

(2) (v €

T
Eilo

= (v £(p) = 0 for all i,j.

£ £.)
fO*Si o, 1
(This last can be arranged by parallel translation of an
orthonormal basis of Tp(M) along the geodesic  rays

emanating from p.) Let u w_ be the local L-forms

1reety
dual to 81,...,€n. Then the metric induced by ft can

be written



2
ds” = I g. .(t) w. 8w
E i,Jj=1 LJ * J
where
gij(t) = (8T j) .
Thus,
av, = Ve(t) wy Accih v = Je(t)dv
where

g(t) = det((g;;(¥)))
and so, at the point p

Ne(t) rdvo = %-—‘g-(O)dVO .

t

d
at th =

o}

4
t=0 at t=0

We now need a lemma from linear algebra.

LEMMA 1 - Let A(%) = ((Gij(t))); t £ I be a smooth

family of mxm matrices such that a{0) =

= identity. Then

% det(A(t))i = trace (4'(0)).

Proof: Each A(t) can be considered as the matrix of a
linear transformation A(t): R™ + R with respect

= (1,0,.04,0) 5000, & =

to the canonical basis e,
= (0,...,0,1). Let W De an alternating m-form on rR™
such that W(el,...,%n) = 1. Then det(a(t}) =

= W(A(t)el,.-.,A(t)em), and
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d .
Tt det(A(t))lt=0 W(A(t)el"."A(t)ek,u.,A(t)%n),t=0

[ = ?IVME
=

=

W(el, sesg AT (0)ek, . ,em)

P

trace (A'(0)).

Il
[ =
=
%i
o
St
Il

This proves the lemma.
Thus, at p we have

4 aqv 15 o
dt t £=0 2 k=1 dt

(o)dvO

We now extend 81'“."5111 over I X (neighborhood of p)C
IXM in the usual fashion and note that [-g—t,SkJ =0 for
k=1,...,m. Let ﬁ,é’l,...,é'm denote the images of
these vector fields along the mapping F, Then gkk(t) =
= (ft*ek, ft*8k> = (ak,gk> at F(t,p), and

~e

Z(VEkE, gk>

dg
kk - ~ — i
-F(t) B(E,,E,) = z<v§£k,sk>

It

2l (BE ) - (ﬁ,vgké'k)j .

Hence, at p we have (using (2) above) that

dg m
n o1 k R
T ar (0) = -{E,K} + kEl Ek(E,S

k=1 k> ’
1t remains only to show that the sum on the right
is equal to (d*w)P(El,. e ,Em). However, by definition

w = E (E,Sk)wk, and therefore
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k-l—l A ‘,._A--
xw = kgl(-l) (B, wy Aveeh By Aveon T

Recall that for any (m-1)-form Q on M we have

m
k+1 &
2 (-1) skn(sl,...‘,ak,...,am) +

QE s By) = 20

i+ & 2 ;
+ iij(-l) J Q([Ei,ejj ,sl,...,E;i,...,aj,...,sm) . Letting
= ¥ 1 = -
0 w and using the fact that [Ei,ﬂj]p (VE.Ej)
i P
- (VE ﬁi) = 0, ome can easily complete the computation,
P

and, thus, the proof of the theorem. [

REMARK 1 - If we restrict the variation above to be nor-
mal, that is, if we require E to be every-
where normal to the immersion, then W = 0 and the

formula remains valid without the condition at the

boundary.

REMARK 2 - In the case that M is non-compact OF mnon-

6rientable one can use the above formula by
restricting attention to compactly supported variations
and local area functions.

In terms of the above description, we have now
shown that X does represent the gradient of the area
function: Thus, an immersion f: M 4 i is "eritical for
the area function" or ngtationary with respect to area
if K = 0. By Theoxrem 1.1 this condition holds if and

only if for all smooth variations ft of f, the function
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A(t) = area(ft) is constant to first order. The equatims
‘K = 0 are simply the Euler-Lagrange equations for the
variation of area (cf. Courant-Hilbert [1], Ch, Iv).

They represent an elliptic, non-linear system of partial

differential eguations. Any immersion satisfying the

condition K = 0 will be called a minimal immersion o

minimal submanifold.

As a basis for subsequent discussion we now examine
the equation for minimal submanifolds in certain impor-

tant contexts and discuss a number of examples.

§3. Minimal submanifolds in euclidean space

Let M be a connected riemannian m-manifold, By

the Laplace-Beltrami operator on M we mean a map’

b: C”(M) 4 ¢ (M) defined in any of the following equi-

valent ways. Let PEM and f ¢ Cm(M); then:

(a) If € ,...,£6 € % are pointwise orthonormal,
1reees P

m P
then
(1.3} AR = kii €8T - (vekak)f}

in a neighborhood of p.

1

(p) £ (x7,...,Xx") are local coordinates at P
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then in the coordinate neighboeorhood

1 o 3 ij arf
1.4 Af =—— L — (Wg g9 Z—
( ) V& i, j=1 axt ( axJ)

where the metric ds~ = Egijdxldxa, the matrix {({g~ 7)) =

= ((g))™F and g = det((s;;)).

{c) Af = =%gaxdf.

(We leave the equivalence of (a), (b) and (c¢) as an
exercise.) The operator & is an invariant of the rie-
mannian structure of M and generalizes the usual lapla-
cian din Quclidean space. A function f € ¢” (M) such that

Af = 0 4is called a harmonic function. It was proven by

Hopf [1] that any harmonic function £ on M satisfies
a2 strict maximum (and corresponding minimum) principle,

namely: If £ assumes a local maximum (or minimum) at a

point p € M ~ 3M, then f = constant.
Let R™ denote the space of m-tuples of real

numbers, {(X,,...,X_), with the riemannian metric as® =
1? n g

= dxi teant dXﬁ . (R™ = euclidean space with a distin-

guished coordinate system.) As in elementary calculus,
we make, for any point p € Rn, the canonical identifica-

n

tion Tp(Rn) = R by translation. Using this identifi-

cation, we have the following

PROPOSITION 1 - Let $: M + R" be an isometric immersion

and let K be the mean curvature vector
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field of §. Then

A = K

where Ay = (Awl,...,ﬂ$ ).

n
Proof: Let p € M and choose El,...,Sm € Ep as in (a).
Then for each k, 8k¢‘= €. (actually = ¢*£k)

and €k§k¢ = Vékgk where V denoctes the euclidean
connection. Hence, Af = E {€k§k¢ - (VCRFk)w} =
5 N
= v - = xz(V. € =K, O
z {vek?k ve € = 2 £ K
COROLLARY 1 - Let {: M o R" be an isometric immersion.

Then ¢ is 2 minimal immersioh if and only

if § is harmonic.

Thus, in the induced metric the minimal surface equations
are simple, linear onesjnamely Ay = O, Note, however,
that as the immersion changes, the induced metric and,

thus, the operator A change.

We can now deduce a second important corollary
from Proposition 1. For each pair of vectors VW € r™
we have defined a half-space Hv w = {v+x€Rn: {x,w) = 0}.

L
n

Recall that for any set X in R", the convex hull of X

is the set

c(x) = (]{HV’W: v,w ¢ B* and Xc H_

} .

yW

This is the smallest closed, convex set containing X.

: n , . . .
Assume now that {: M R is an isometric minimal immer-
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sion, and for each v,w ¢ Rn consider the function

fv Wt My R given by

£ (x) = (=) - v,wy

VW
By Corollary 1 this function is harmonic in M. Thus
applying the Hopf maximum principle to these functions we
have

0
COROLLARY 2 = Let Y: Mo R be a minimal immersion where

M 4is compact. Then setting MO =M~ M

we have :
v (M) c cely(aum)l

and if V(M) 1lies in no proper affine subspace,

v (M%) c ely(amM)1° .

In particular, if M is compact without boundary, nc

. . . . n .
minimal immersions of M inte R exist..

L
The second half of this corollary can also be

proven by using the following identity.
LEMMA 2 - Let £ € C (M). Then

2057 = £ar 4 |ve|?

2 m 2
where locally |vf|® = I (Skf) for orthonomal vector

k=1 i

fields 51,..,€m .

Proof: Let p € M and choose orthonormal fields 81,..”€m
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.. 1,2
so that (v. €.) =0 for all i,j. Then 3 Af (p) =
8i J'p 2
2 2
35 €6, E5(0) = B £, (£€,2£)(p) = Ll £, £(p)+(E) 1) (p)]

eae(p) + |ve|®(p). O

1

$4. Minimal submanifolds in the euclidean sphere

Let Mc R™

be an embedded submanifold, and for
any pe€ M and X ¢ Tp(Rn) let X' denote the ortho-
gonal projection of X onto Tp(ﬁ). Suppose now that

= n . . . .
j: M+ Mc R is an immersion with mean curvature wvector

fields K din M and XK* in ®'. Then
(1.6) k= (&)T = ()T .

THis follows from Proposition 1 and the fact that X =

_ = N _ * T\N _ * NyT _ T

= E(Vak?k) = Z((ngFk) ) o= (E(VSka) )5 o= (K*) where
V, v* are the connections on M and R" respectively.

Il-l-l_ I

Setting M = s = {xe R x| = 1} w%§then have

PROPOSITION 2 - Let M be a riemannian m-manifold and let

f: M= s ¢ R**! be an isometric immer-

- ; . . . ; n
sion. Then | is a minimal immersion into S if and

only if

(1.7) Ay = -my

Proof: By equation (1.6) above we see that ¢ is minimal
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if and only if for all p € M, Ay(p) is parallel to the
normal to 8% at ¢(p), i.e., if and only if A} = Ay
for some A € C (M). Howe%er, from Lemmaéfaz and the
condition that lwlzl
0=2al§l® = .00

Hence, A = -|v¢|2 =

1 we see that if AU
901 = afel® « Iwel®
2

and the proposition is proved. [

Ay , then

1!

2+ valz.

+

]
n

-1 s

Thus we see that the minimal immersions of a
differentiaﬁle manifold M dinto s™ are just those
immersions whose coordinate functions in the ambient
euclidean space are eigenfunctions of the Laplace-Beltra-
mi operator in the induced métric with eigenvalue =
-dim(M)., Moreover, we have the following useful fact.

For each r > 0, let

(1.9) s™(r) = {(xl,...,xn+l) e R E xi = r2} .

PROPOSIITION 3 - (T. Takahashi [1]). Let M be a rieman-

nian m-manifold and {: M g™l an

isometric immersion such that

Ap = Ay

for some constant A #£ 0. Then:

(a) a1 > O,

(b) V(M) c sn(r) where ro =

>‘|5
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(c) The immersion ¥: Mo s™r) is minimal,

Proof: From Proposition 2 we have that AY = Ay = K,

and therefore at any point p e M the vector
¥ (p) is normal to the immersion. Hence, for any tangent
vector field X on M we have X«(},y) = 2(Xe ) =
20X, (=2¢X,9)) = 0, and it :E‘ollowt!.s\ that ]¢]2 =

def. .2, Then, as above, we have 0 = %—A]¢]2 =

constant
2 2 : 2

= C¥L,AYY + [v¢] = =Ar” + m, and so A = m/r% > 0. The

minimality of ¥ follows immediately from equation

(1.6), O

This proposition is pParticularly useful in study-
ing isometric minimal immersions of Tiemannian symmetric
Spaces into spheres since it shows that such immersions
correspond Precisely to the isdmetric immersions inte RY
which can be achieved by eigenfunctions of the Laplace-~

Beltrami operator (with the same non-zero eigenvalue),

For example we have

COROLLARY 3 -~ Let G/H be a riemannian homogeneous space

where G is a compact Lie group and where

the isotropy representation of H (on the tangent space

at the point o+H ¢ G/H) is irreducible, Let Ei =
at the point

= {¢€CN(G/H):_AQ = -A¢} Dbe a non-trivial eigenspace of

" the Laplace-Beltrami cperator, and introduce on Ei an
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inner product invariant under the natural action

pregp =ppeg of G on E. . Choose an orthonormal

X

bhasis ¢1,...,mN for E in this inner product. Then,

A
for an appropriate real number O # 0 +the mapping

¥ = (o, een,a0y)

is an isometric minimal immersion Y: G/H 4 SN-l(r) for

some 1 > 0.

Proof: Consider the map ¢ = (cpl,...,cpN) and note that
the metric induced by & on G/H is G-invariant
as follows. For each g € G +there is an orthogonal NXN
matrix @g such that g%% = @g@. The induced metric on
G/H has the form dsz = E dg, e de, dgf'(dé,d§) where
"¢ n  denotes symmetric tensor product. Thus, for each
z € G, g*d52 = (g*d§,g*dd) = (dg*§,dg*s) = (ngQ,d@gé) =
= (d$,ds) = dsz. It then follows from the irreducibility
of the action of H that for some o € R, D’.ds2 = the
given metric on G/H Kobayashi-Nomizu [1]). (All G-inva-

riant metrics on G/H must be multiples of one another. )

Applying Proposition 1.3 now completes the proof. []

This method.produces many examples of isometric
immersions of '"mice" spaces into spheres. In particular,
it shows that by using spherical harmonics it is possible

to write down many isometric minimal immersions of eucli-
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dean spheres Sn(r) into SN(l). For example the map
of SQ(JE) = {(x,¥,2) € R x2 + y2 v 2% = 3} into S“(l)

given by
. 1, 2 2 1 2 2 2
\l'(x,}’,Z) = (XY;X'Z:YZ’ E(x -y );2—'\/—5 (x +y ~2z ))

is such an immersion., It represents an isometric minimal

embeddhg of the real Projective plane with curvature ey

3

into Sq, and is called the Veronese surface.

The very interesting question of whether the

. n N . . .
embeddings of 8 (r) 4 S (1) given in this manner are
the only isometric minimal immersions has been studied

in detail by M. do Carmo and N. Wallach [1].

§5. Totally geodesic submanifolds

By a totally geodesic (t.g.) submanifold of a

riemannian manifold we mean a submanifold whose second
fundamental form is everywhere zero., Clearly, any such
submanifold is minimal. However, the converse 'is true
only in dimension one. (One;dimensional minimal sub-
manifolds are geodesics.) The totally geodesic sub-
manifolds are characterized as follows, Let M be a

submanifold of the riemannian manifold M, Then M is
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totally geodesic if and only if every geodesic in the
(induced) riemannian structure of M is also a geodesic
"in M. This follows immediately from the fact that for

any tangent vector fields X and Y on M,

]
@

{1.8) BX,Y =T Y - 9,Y

This equation also shows that if M is totally geodesic,
then the riemannian curvature. tensocr of M agrees every-
where with the one induced from M.

The totally geodesic submanifolds'afe clearly the
most natural ones with respect to the riemannian structure.
Unfortunately, in the general situation such submanifolds
do not exist except 'in dimension 1. However, in the
nicest spaces, symmetric spaces, there do exist many such
submanifolds of higher dimension, and here they play a

central role in the study of the minimal submanifolds of

these spaces. In RF, the t.g. submanifolds are the

affine subspaces, {x + ¢: x € Rk}, where R> is a linear

subspace of R™ and ¢ € R™. 1In Sn, the t.g. submani-
folds are the "great spheres" s¥ = & al rRE*L < g1
where Rk+l is a linear subspace. In complex projective

n-space CPn with the Fubini - Study metric the t.g. sub-

manifolds are the "linear subspaces' CPk; K = Lysaae,yn,

and real projective spaces RPk; k=1,+...,n. For a

description of these see the following section.
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It should be pointed out here that, in general,
each component of the fixed-point set of an isometry of a
riemannian manifold is a totaliy geodesic submanifold

Kobayashi [1].

§6. Kdhlerian geometry and Wirtinger's Inequality

A second imporfant class of minimal submanifolds
is the class of complex submanifolds of K#hlerian spaces.
Since a number of examples, important for our subseguent
discussion, can be constructed from this category, we
shall treat certain aspects of Kdhler geometry here in
detail.

For completeness we shall begin with the notion of
a compléx manifold. Let €™ denote the complex vector

space of m-tuples of complex numbers. OFf course, ¢ = -

= R2m in a natural way. Thus, we define a complex m-mar.-

ifold to be a real 2m-dimensional differentiable manifold
M  together with an atlas of local charts {¢a}ae » where
Voi U, = (an open set in M) 4 €™ , such that the coordi-
nate changes ¢§l° by wa(Ud n UB) - ¢B(Uﬁ n UB) are all
biholomorphisms. Note that at each point Z ¢ c" we
have a natural map of TZ(Cm) into itself given by mul-
tiplication by i(=4/-1). By definition, a map &: ¢ o™

is holomorphic if and only if at every point dfe i = j.dd
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(i.e., if the differential is everywhere complex linear).
Hence, on a complex manifeld M the coordinate changes
preserve this notion of multiplication by i, and thus,
we have defined at each point p &€ M a linear map

It Tp(M) -+ Tb(M) such that

(1.10) JT =-1

In local coordinates (zl,...,zm) = (xl+iyl,...,xm+iym),
J is given by J{(3/0x%) = a/3y* ana J(3/ayt) = -3 /axt,
J is a globally defined, ¢”~tensor field of type (l,l)

called the almost cbmplex structure of M. One can easily

verify in local coordinates that for any tangent wvector
)
fields X and Y on M, we have

(1.11) T =" [Jx,0v) - Jlax,v] - Jlx,Jv] - {x,¥]=0

NOTE. A deep theorem of Newlander and Niremberg [1] (See
also Hérmander [1] } states that any C”-manifold
which admits a tensor field J of type (1,1) satisfying
(1.10) and (1.11) has an atlas of charts making it a
complex manifold with J idts associated almost complex

structure.

NOTE. Suppose V 1is a real vector space with an endo-
merphism J where J2 =~1., Then V admits a ba-

sis of the type {el,Jel,...,em,Jem}, and any two such
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bases differ by a tfansformation of positive determinant.
Thus, J determines an orientation of V., We see,
therefore, that an complex manifold is not only orienta-

ble, but comes equipped with a canonical orientation.

EXAMPLES: (a) ™ itself.

(b) - m-dimensional complex projective space, cp'.
As a topoiogical space ep” is the quotient space
(Cm+l ~ {0})/= where = is the following equivalence
relation: For Z,Z' ¢ ¢t [0} we say Z = Zt if and
‘only if there exists O € ¢ such that Z = a%'. Thus,

cP"  is the space of all "complex lires", i.e., all one-

dimensional complex linear subspaces, of €m+l. We give

a set of local complex coordinates for ep™  as follows.

m+1

Let m: (€ ~ {0}) » ¢P" be the natural projection,

and define for each @ = 0,,.,,m a map ma: " -+ Cm+l ~

{o} by

0 a=-1 _o+1 m
wa(zu,...,z yZ ,...,za) =

0 -1 o+l m
= (Za,...,Z ,l,Z ’.ll,za) .

Then oma is a homeomorphism of ¢™ with Ua =

= 1o wa(cm), and we define the coordinate chart

b5 Uy ¢™ vy (moe ma)'l. It is easy to see that the
1

coordinate changes are biholomorphic. In fact ¢B° w;

is Jjust given by:



~ Zk
k o .
Z. = H if k #£ &
g =8¢ # 0.8
a
< _
o 1
A
B B
4y,

in the set where Zg £ 0.

NOTE. The coordinates (ZO,...,Zm) of €™ are called

homogeneous coordinates for the projective space

cp”, Every non-singular complex linear transformation of

the homogeneous coordinates gives rise to a diffeomor-

phism of ¢p” which is also called a linear transforma-

tion.. Every (k+l)-dimensional subspace V of cm+L

projects to a submanifeld cp® = 7(v~ {0}) called a

k-dimensional linear submanifold of GPm + Let RHH':L c

< Cm+l be the real subspace fixed under complex conju-

gation of homogeneous coordinates. If VcC Rm+l is a

real (k+l)~dimensional subspace, then w{(V~ {0}) is a
submanifold (diffeomorphic to real projective k~space)

called a real linear submanifold.

We now want to consider riemannian metrics on a
complex manifold M. Of course we want the riemannian
structure to be "compatible" with the given complex
structure, and so we shall require our riemannian metric

g to satisfy the following two conditions.
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(H) For all p¢ M and all X,Ye TP(M)

g(JX,JY) = g(X,¥).

In this case g 4is called a hermitian metric.

(K} For all tangent vector fields X and Y on M,
(V3T (¥) = ¥4 (37) - 3(v,¥) = o

L4
where V is the riemannian connection,

The first condition says that, at every point, J
should be an isometry of the tangent space. (Natural
enough!) The second conditioh states that the field I
should be globally parallel in the riemannian connection.
This condition, while also quite natural, is strong and,
as we shall see, in the compact case it imposes severe
resctrictions on the topology of the manifold, IFf a
metric € on a complex manifold M satisfies conditions
(1) ana (x), it is called K#hlerian, and the riemannian

manifold (M,g) is called a K#hler manifold.

Suppose now that M 1is a complex manifold with a
hermitian metric &+ Then in the usual way we can expand
the metric g at each point p to a complex-valued,

"sesquilinear" form h by setting

h(X,Y} = g(X,Y) + iw(X,Y)

where
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w(x,¥) = &(x,3Y)

for all X,Y ¢ TP(M). Observe that since g dis hermi-
tian, ®(X,Y) = g(X,JY) = g(JY,X) = g(J2Y,JX) = -w(Y,X),
and thus W is a globally defined exterior 2-form on M.
As we shall see shortly, w is of central importance in
the study of K#dhler manifolds and, as a consequence, is

called the fundamental 2-form or K#hler form of M. Our

first observation is the following.

LEMMA 4 - TLet M be a complex manifold with a hermitian

metric g. Then g is Kdhlerian if and only

if dw = O.

Proof: Consider a peint p € M. Choose any vectors
Xy 9%y, Xg

1:X5:Xg such that (viixi)p =0 for 1i,j = 1,2,3.

~Then [ii’ij] = 0 also for i,j = 1,2,3, and we have
P

¢ Tp(M) and extend them to local fields

that dwp(Xl,Xg,XB) = X0 (X,.X,) - xzw(il,EB) + x3w(il,i2)
Using the’ fact that w(X,Y) = g(X,JY) we then obtain the
following tensor equation.
dw(xl,xzsxj) = g(xz’(vx1J)(X3))
-g(xl,(vsz)(XB)) + g(xl,(VXBJ)(Xz))-

From this it is clear that if g dis Kdhlerian then dw =

= 0.
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For the converse we Proceed as follows. We note
first that since J° = -1, (V47 = ~3(v,J) for any
tangent vector X. Using this fact and the equation

above, a straightforward computation shows that

e(Xy, (7 9)(x,)) =

dw(xl,xz,xj) - dw(xl,sz,JXB) - g(Xl,Jsz’XB)

where the integrability tensor TX y =
Tk
(1.11).) The converse statement follows immediately. [

0. (See equation

The first conseguence of Lemma 1.3 is a topologi-

cal one

COROLLARY 4 - Let M be a compact, K#hler manifold of

complex dimension m. Then

sz(M;R) £ 0O

for k=0,..,,n.

Proofr Let w tbe the fundamental 2-form of M. Then
for each k = o0, dwk = kdw A w Ad. A w = 0,- and
thus, wk represents a real cohomology class [wa of

dimension 2k in the sense of deRham, Moreover, it

follows from deRham's theorem that

(1.12) [0*] = [w] U...U (] (k - times)
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where "|J" represents the cup-product in H*(M;R).

Observe now that since M is a complex maﬁifold,

it has a canonical orientation. In fact, an easy

computation shows that %hwm = the wvolume form of M.
Hence, letting [M] ¢ Hzm(M;R) denote the fundamental

cycle, we have

lw™ (IM3) = ‘(wm'= m!+Volume(M) £ 0 .
M
Thus, w™ # G, and therefore from the ring isomorphism

(1.22), w¥ £ 0 for kx=1,...,m. O

We shall now inspect two important K#hler mani-

folds,.

EXAMPLE 1.1 is €™ = {(z1,...,2"): 2¥ ¢ ¢} with the
2 2 2
metric |dz|? =z |az¥|“ = 1E[(cu{k) #(ax) "

where Zk = Xk + iYk. The K#hler form is then
w=-32;l§3;dzkl\ d2k=£dxkA ar®

EXAMPLE 1.2 is €P™ with the following metric. Let

(Zo,..u,Zm) be fixed homogeneous coordinates

for €P" and let m: (Cm+l

projection. In ¢t . {0} we then define an "almost

metric" by

- 2
(1.13) ds? =h,|ZA d_zl
M 1 R

~ {0}) 4+ ¢P™ be the canonical
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where |Z A dz{® = I [Zide—Zdeilz = lz|2|dz|2 -
2
- I(Z,dZ)]z, (z,w)l=J§ z#ﬁk and Jz|2 = (z,2)., 1In
other words dsg = X gideidij where
i,J
4(s 12|* - 7°29)
(1.1%) 854 = IZla
= 4 azi d;j log(lzlg)

2
From expression (1.13) it is clear that ds, ds dinva-
riant under multiplication by nen-zero complex scalars.
Furthermore, from the same expression one sees that at a

point Z € Gm+l ~ [0} +the restriction of dsg to the
1
i

space normal to the complex Lline &Z = {eZ: a ¢ € is

positive definite. In particular, if O £ W ¢ Tz(cm+l)

0 and

is normal to &Z’ then (z,dz(wW)) = (z,w)
2
dso(W,W) = (4/|Z|2)|dZ]2(W,W) > 0. Hence, the form dsg
bProjects to a Hermitian metric ds2, called the Fubini-
. m 2 2 R

Study metric, on CP (dso = n*ds”). To represent this
metric in the coordinates (Zg) given above, we simply
pull dsg back by the map P, -

In the same manner we can express the K#thler form

of the metric ds>~ as ®_ = m*y din ©™1 . {0} by the

@)

formula

_i -
UJO =3 .Z ) g‘j-jdz A dZ
L:d
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This equation can be derived by using the equation
uJO(X,Y) = ds(z)(X,iY).. We now consider the operators

m
L az¥ A 3k(.)
k=0 A7

3 ()

(1.15)

_ . m _ 3
3 (- £ az® A—2_(.
(+) I azk( )

macting on complex valued, exterior differential forms in
€™, 1t is straight-forward to verify that 3__2 =3% = o,
d=3 +8 and thus 38 = -83. In terms of these

operators we can write
(1.16) w, = 4 32 log|z|? .

It now follows immediately that dwo = 0 and, since
denm* = T*¥e d, that thereforé d = 0. Thus the metric

as® on ©P® is K#hlerian.

NOTE. It also follows frem (1.13) that any unitary trans-
formation of the homogeneous coordinates (ZO,.",Zm)
projects to an isometry of cp™. Moreover, so does the

transformation (ZO,...,Zm) > (20,...,Zm).

NOTE. The real and complex linear subspaces of ep™ are
totally geodesic in this metric. This follows easily

from the fact that they are fixed point sets of isometries

NOTE, With respect to Corollary 4 it is interesting to
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note that HX(¢P™;R) = R for k = O,...,m and all
other groups are zero. In fact H*(¢Pm;R) is precisely
the algebra over R generated by the element [w].

Our purpose here is to study submanifolds, and sco

we need one more (natural) definition. Let M be a

complex manifold. Then by a complex submanifocld of M

we mean an immersion §: M a4 M of a complex manifold M

satisfying either of the following equivalent conditions.

(a) The representations of ¥ in local complex

coordinates are holomorphic.

(b) For all pée M

Locally, an embedded submanifold Mc M has the struc-

ture of a complex submanifold if and only if for each

P € M, the tangent space TP(M) c Tﬁ(ﬁ) is J~invariant.
From the above examples and the following lemma

we will be able to immediately write down a great number

of Kdhler manifolds.

LEMMA 5 - Every complex submanifold of a K#hler manifold

is Kdhlerian in the induced metric.

Proof: Since we may work locally, we can consider for

convenience a small, embedded complex submanifold
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M c M. Note that the complex structure of M is the

one inherited from M, say J. Then, if X and ¥ are

)T =

tangent vector fields on M, we have VX(JY) = (v, JY

X
T s T . .
)¢ o= J(VXY) = JY.Y. Thus, M is K#hlerian. U

= (JV
(97 ¥ X

Our first reason for considering K#hler manifolds

is the following.

LEMMA 6 - BEvery complex submanifold of a K&hler manifold

is minimal.

Proof: Consider M C M as in Lemma 5. Then for tangent
vector fields X and Y on M we have (VXJY)N=

N

= (JV,Y)" = J(VXY)N since the normal spaces are J-inva-

riant. Hence,

By,sv = 9Bx,y = Box, v

that is, B 1is complex-linear. Recall thaf for any X
we have (X,X} = {(JX,JX). Furthermore, for any X, JX
is perpendicular to X since (X,JX) = w(X,X) = 0. Thus,
at any p € M it is possible to choose inductively a set
of local, pointwise orthonormal vector fields of the form

€15 JEl,Sg,Jsz,...,Em,JSm, where m = dimG(M). Thus, at.

) 2
p we have K = E(Bsk,sk + BJsk’JEk) = E(Bﬁk,8k+J Bsk’sk)
= 0, 0O )

Note that the minimality here is wvery strong in
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the sense that for any normal vector V , the eigenvalues

of the symmetric bilinear form (BX Y,\J)p appear in pairs:
]

Al’ -ll, 12, -Az,.-q,Km, -km. This is equivalent to the

fact that all the odd symmetric functions of the eigen-

values, not just the trace function, wvanish,

Our second reason for studying Kdhler manifolds

follows from this elementary, but quite remarkable fact.

PROPOSITION 4 - (Wirtinger's Inequality). Let M be a

K#hler manifold and M c any 2m-dimen-

sional, oriented, real submanifold. At any point p e M

let dVP denote the volume form of the induced metric on

M. Then the restriction of the mth power w™ = W A.,Aw

of the Kdhler form of # to TP(M) satisfies

m

(1.17) ‘;’1_!_5 av_

and equality holds if and only if Tp(M) is a complex

subspace of TP(M), with the canonical orientation.

Proof: We first observe that for any two unit vectors

X, Y € T-p(ﬁ)
@0 (%6,0)% = (X902 5 [x|?|5v]2 = |x3|¥|? = 1,

and equality holds if an only if X = % Jy, i.e,, if and
only if X and Y span a one-dimensional complex sub-

space of Té(ﬁ). We now consider the form restricted
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to TP(M). By elementary linear algebra there exists an
oriented, orthonormal bhasis 61""’€2m of TP(M) in

which ® is represented by a matrix of the form:

0 ;”l
_Alo
=1 O .
|
-12 o] -
O o
-)\m Q

where Ak=w(52k_l,€2k) for k= 1,...,m. Thus,

letting ®,,...,w, be the l-forms dual to [

l""’€2m’

we have
m
w o= T A Wapn AN Way o
and so,
m
w = (ml)ll...lmwll\...f\ W, |

H

(midh -0k avg .
Hence lmm| = (m!)dVO, and equality holds ¢ Ill"'lml =
=1« )2=1 for k= l,.s.,m & £

2x-1'% 2K 2k-1 = £,y

for k= 1l,.s..,m & TP(M) is J-invariant. Equality holds
without the absolute value sign exactly when the orienta-

tion agrees with the one induced by J. O
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COROLLARY 5 - Let M be any K#hler manifold and let

¥: M M be a complex submanifold where M

is compact with boundary (possibly empty) and where

dimRM = 2m. Then the volume of M in the induced metric

is less_ than or equal to the volume of any other 2m-dimen-

sional submanifold which is homologous to M in M.

Proof: Let U ': M' 4 M be any 2m-dimensional submanifold
homologous to §: M + M. Then since du™ = O,
/‘¢*w ]’w'*w Hence, by Proposition 1.4 we have

Volume (M) = Jf dv = %ﬁ w*wnl= %h.[’ w‘*wm
M M M

11

[dV‘ = Volume(Mt)., 0O

M?T

Note that the submanifold M?! will have area

equal to M if and only if {': M' 4 M is also a complex

submanifold.

Thus we see that every compact, cbmplex submani -
fold of a K#hler manifold is automatically the solution
to a Plateau problem. Namely, suéh a submanifold
f: My M has least area émong all manifolds lying in
the same homology class of Hzm(ﬁ,¢(3M);Z). If, for

2n), this means that ¢ minimizes

_—

example, M = ¢" (=R

area among all submanifolds in ¢© having the same

boundarx. .
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Incidentally, we note that if 3dM = 0, then the
submanifold § represents a non-trivial homology class
of M. This fact is sufficiently interesting that we

shall write it down as a corollary.

COROLLARY 6 - Let M be any K#hler manifold and suppose

p: Mo M 4is a compact complex submanifold

of M with 2M =g¢ and dimR(M) = 2m. Then if [M]

represents the fundamental cycle of M and ¢, idis the

natural map on homology, we have that 1§, [M] # 0 in

HZm(ﬂ;Z). Furthermore, sz(ﬁ;R) £0 for k = 0,...,m

Proof: Let ®w be the Kihler form of M. Then
[w™ (b ,IM3) = f §*0™ = {(m!)Volume(M) # O. Thus,
» .

v ((M]) # 0, and (0™ = [w] U...U [w] # 0. O ;

Before proceeding to examples it should be pointed
out that Poth Corollaries 5 and 6 can be considerably
strengthened. It is, first of all, possible to replace
"compact, complex submanifold" with the notion of
"complex analytic subvaihiety," i.e., a compact subset of
M which is described in local complex coordinates as the
zerces of holomorphic functions. Such a variety is a
submanifold with singularities of codimension 2. {The
singularities do not contribute to the homological boun-

dary nor do they enter in the computation of the volume.)
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Secondly, it is possible %o show that complex subvarieties
minimize in a class of objects mugh more general than
regular submanifolds, namely the class of integral
currents, (See Chapter 3). This theorem is due to Herbert
Federer [1] who is also responsible for the particular

broof given here of Wirtinger's inequality.
C e

§7. Some important examples

As a result of our remarks on Kihler manifolds we

can now give a number of examples of minimal submanifolds.

CASE 1. Consider the K#hler manifold €% = R®® with the

euclidean metric. By the above, any cbmplex sub=-
manifold of 7 is minimal in the underlying euclidean '
space, and furthermore, if the complex submanifold is
coempact with boundary, it represents an absolute minimum
in area. A great number of such manifolds can be des-

cribed by choosing complex polynomials Pl(zl""’zn)’

""Pn-m(zi""’zn) and setting
(1.18) V' = fz ¢ ¢ pl(Z) = ... =p _(2) =0},

By the Complex Analytic Implicit Function Theorem (cf.

Gunning Rossi, [1]), this complex subvariety V will
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be a complex submanifold if for all Z & V
api
ranke(fggg(z))) = n-m .

Of course one can also give submanifolds directly by
choosing polynomials pl(Zl,...,Zm),...,pn(Zl,...,Zm)
where m < n and defining ¢: ¢ -+ ¢* by v(z) =

= (pl(Z),...,pn(Z)). Then ¥ is an immersion if for all
Z e Gm, rankc(fggig) = M.

As a special case, let R be a Riemann surface
and suppose ml""’mn are holomorphic functions on 8
such that kgllmi(z)l # O for all =z € R. Then the map
P = (ml,...,wn): R+ ¢ is a minimal immersion into R-™.
Moreover, as we shall see below, for every (two-dimensio-

_ . n . , .
nal) minimal surface in R, there is a unique, associated

holomorphic surface in €% with the same metric.

Consider now the map V{: € 4 Gz given by
2
(1.19) ¥(z) = (27,2°) .

In the set €~ {0}, | 4is an immersion and represents

an embedded minimal surface in Rh. At Z = 0, the map
has a singularity (which is geometric and not the reéult
of a bad parameterization). However, by using the
Wirtinger Inequality and proceeding as above one can

immediately verify that the "surface" §|A:A + R*
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(& = {z: |Z| = 1} ) represents the surface of least area
among all surfaces in R4 having T = {[3A] as boundary.
Thus, we see that there is no hope for having regular so-
lutions to Plateau's problem at least for codimension
greater than 1. (This represents, of course, a special.
but easily verified case of Federerts result mentioned

above.)

CASE 2. Consider Cn+l as a set of homogeneous coordi-

nates for CP" as above. Let Vk+l [ Gn+l be

given as in Equation (1.18) where each of the polynomials

Pj is homogeneous (i.e., for each J there is an inte-
ger m_. & 0 such that for all a ¢ € and all Z ¢ @n+l,

m +1 .
pj(aZ) = o J pj(Z)). Note that by the homogeneity, if
2¢ V, then 0Z ¢ V for all g € €. It follows that if
Ve~ {0] is a regular submanifold of ®n+l’ then V - {0}
projects to a (compact) complex submanifold Vk of CP™.
By the above, the homology class of V in GPn is non-
trivial and V representes a manifold of least area among
all manifolds (in fact among all rectifiable cycles) in

that homology class.

The homology of eP™ s

Z if .i = 0,2,4,...,2n
H, (¢p%;2) =
0 otherwise
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where Hgk(mPn;Z) is generated by the linear subspace
[ep®]. The homology class of V idis thus a[ ¢p®] where
d dis the algebraic degree of V. Thus, the regular

manifolds Vk represented by the equations

d

d d

ZO +oe et Zk = 0
(1.20) Zeo1 = O

7z ‘=0

Il

show that every homology class in cP”  is represented by
an embedded submanifold of least volume. Unfortunately,
this beautiful situation does not hold in general (Thom,
[l]). To get a correct theorem we muast replace the
notion of manifold by the more general concept of an in-

tegral current. {See Federer [2].)

CASE 3. Let Vk+1 C Cn+l be a homogeneous algebraic

variety as in Case 2 and assume that v~ fo}
2n+1

is a regular submanifold. Let 8 ={Z € cn=[z|2 =1}.
2n+l I R

Then MV = V(O S is a compact, minimal submanifold

of 82n+l.

This fact is a consequence of the following more
general one. By a regular cone in Rn we mean a set

¢ c R® such that: €~ [0} is a manifold, and for every
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X € €C and every g € R+, we have @Q+x € C. Note that

. n . =1 \

if Cc R is a regular cone, then MC = S nc is a
submanifold. Furthermere, if M c Sn—l is a submanifold,
then the set Cc(M) = {x ¢ R™: x € M and a € R+] is a

regular cone. Clearly, C(MC) = ¢ and M M. The

c{M)

fact of interest here is the following.

LEMMA 7 - Mc 8™ ' is a minimal submanifold of g™-1

if and only if C(M) ~ {0} 4is a minimal sub-

manifold of Rn.

The proof is straightforward and left as an exercise for

the reader.

We now see that it is possible to construct a great
many compact, minimal submanifolds of codimension-2 in

spheres (by using, say, Equations (1.20)). In particular
85

we can construct minimal 3-manifolds in as follows.

Let Va [on 03 be the variety given by the equation

d - _d d
ZO+_Zl+ZZ=0.

The image of Vd”‘in CP2 is a compact, orientable sur-

face of genus g = = (d-1)(a-2). (See, for example,

Milnor [2, pg 85].) The restricted projection map

s 4 ¢P? is a fibre bundle with fibre sT. Thus, the
5 RS

Tmse

manifold My = $° N Vy is & minimal 3-manifold which is



—4 3

topologically a circle bundle over a surface of genus
3 (a-1)(a-z).

Thus we see that it is possible to achieve minimal
embeddings of quite complicated 3-manifolds into SS,
and, by using the tbtally geodesic inclusion 85 c Sn,
inte higher dimensional spheres. Note, however, that
this method gives us no examples of minimal surfaces in
83 or RB, nor does it give examples of any minimal sub-
manifolds of codimension one. Examples of this type, and

theeorems concerning them will be discussed in Chapter JIT

(See also Lawson [3].)

§8. The second variational formula

In §1 we discussed the fact that a minimal im-
mersion f3: Mg M represents a critical point for the
area function on the space of all immersions of M into
M. At such points it is natural to ask whether f
actually represents a local minimum for the area function.
That is, is it true that for every smooth variation
f i Mo M, we have Area(f) = Area(ft) for all lt in
some neighborhood of 0?7 To answer this question it is
usually sufficient to consider only the second derivatives

of the area function. The purpose of this section is to
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derive a formula which relates these second derivatives
to fundamental geometric invariants of the immersion.

The first of these invariants is the so-called
Laplace operator in the normal bundle, defined as follows.
Let f: M3 M be a minimal immersion where M is a

compact manifold with (possibly empty) boundary aM, and

let us set notation as in §1. Observe that for any
X € EM and any normal vector field y we can define a
new normal vector field vX by the formula
: - N
{1.20) vy = (vX ).

It is straigtforward to verify that the resulting map
Yyt r(N(M)) » T(N(M)), where T(N(M)) denotes the space
of all ¢~ normal vector fields, satisfies the following

relations:

(1) Vexsgy Y = L Tx Vi g8 9,V
(2) Vel(fv) = (Xf)v + 1 7V
(3)' _X(\*‘,u) = <VXV’L1> + (v !VXU>

for all f,g € ¢ (M), X,Y ¢ £y and v,u € T(N(M)). The
operator ¥ is called a connection in the normal bundle
of M, and using this connection we define the Laplacian

A: T(N(M)) » T(N(M)) by setting, at each p ¢ M,
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(1.21) Av(p) = g

where El,...,Em ¢ Ep are local, pointwise orthonormal
tangent vector fields. It is easy to see that the
definition is independent of the choice of fields Ej’
and so AV dis again a smooth normal vector field.

We now consider A on the space of normal vector
fields which correspond to compactly supported variations.
Let I‘O(N(M)) denote the subspace of all v e I'(N(M))’

which wvanish on 8M and have compact support in M, and

introduce on TO(N(M)) the inner product

{(v,u) = f vo,uydv o
M

LEMMA 8 - The lLaplacian, restricted to I‘O(N(M)), is a

symmetric, negative semi-definite operator.

If 3M # ¢, it is in fact negative definite.

Proof: Let V,u € TO(N(M)), and for p € M, choose point-

wise orthonormal fields El,...,Cm € EP such that

(VSAEJ)P =0 for all i,j. Then, at p we have
i

m m

T €.(v. voud = I ({v. 7. w,u) + (V. v,9. M)
j=1 4 e j=1 €38y €5 7€

(Bvyu) + (W Fu).

Tf we now define on M a l-form © by setting ©(X) =




LG

= (vxv,u>, the above equation tells us that

d(%0) = ((av,u) + (vv,vy))av .

Integrating and using the fact that *8|3M = 0, we have

(bv,u) = =(vy,vy) 9ET- -[(W,Vu)dv .
M

The result follows immediately., [

The second geometric invariant we shall consider
involves curvature. Recall that for vectors X,Y € Tp(ﬁ)

we define a curvature transformation ﬁX Y:Tp(ﬁ) -+ Tp(ﬁ)
H

by

P

where ﬁ, ?, Z c X are any local fields extending
A similar transformation

X, Y, and Z.

Ry ¢ T (M) + T (M) is, of course, defined for the sub-
XY p P

manifold M, and the two are related by the following

generalized Gauss curvature formula.

(1.22) z, W) Z, W)

(Ry v - (By vy

= (Bx,z'By,w - (By By 2

for all X, Y, Z, W¢&¢ TP(M), where B 4is the second
fundamental form of M in M. To establish this formula

we note that since 9,Y = (VXY)T, we have



47

(R WS Z,W) =

X, % (Ry v
= (T4 (Fy2) W - (T T2, W
= @)V T+ (T2)N T )

=By 2:Bx v * (By 5By -

At each point p € M we now construct a linear

transformation §: NP(M) -+ Np(M) by setting

where SRR form an orthonormal basis of TP(M).
Note that from the basic symmetries of the Riemann

curvature tensor {(cf. Milnor [1, page 53]), we have
(ﬁ(\) ):Ll> = (V:ﬁ(u))’ ’

Thus R represents a smooth section of the bundle
SN({M} c Hom{N(M),N(M)) whose fiber at p . is the space
of symmetric endomerphisms of NP(M).

. The final geometric invariant we wish to consider
involves the second fundamental form B, Recall that at
péE M, B is a.symmetrid bilinear form on TP(M) with
values in .NP(M), ive., Bp £ Hom(ST?(M),Np(M)) where
STp(M) is the set of symmetric endomorphisms of TP(M).
Since STP(M) inheirits a natural inner'product,_wg”can
sPegk of the transposed mapping _th E‘Hom(Np(Mj;STP(M))’

“defi "t N_(M) 4 N by
and de_;né .ﬁp NP(_) ?: pﬂM) by




Note that for u,v ¢ NP(M), @{v),uy) = {(Bo tB(v),u) =

= ("BO),"B)) = Z("B(v),e;8e Y(e .00, B(u)) =

i'®;

T

= E<v’Be;,ej><u’Be o Y where {el,...,em} is any

orthonormal basis of TP(M). In particular,

B,y = (v,B{(u)Y -

We are now in a position to state the main result
of this section. Let F: IXM 3+ M be a smooth variation
of the minimal immersion f: M - M, and suppose that the

variation vector field E = F is a normal vector

a3
field with compact support. (E € FO(N(M)).) Ifr A(t) is

the area function, defined as in §1, then we have.

THEOREM 1' (The second variational formula).
= Jf'<-AE + R(E) - 8(E),B)dV.
" .

d2A

dt2}t=o

Proof: From Theorem 1 and the fact that the mean curvature

K is identically zero for +t = 0, we have that
2
d
% = - ( ac (K,E) dav.
at JM t=0
t=0

We now fix a point p € M, choose vector fields
Sl""’am € Ip as in the proof of Theorem 1, and set

gij(t) = (£ 85, ft*Ej). To simplify notation we shall
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denote ff* Sj simply by Ej whenever the meaning is
clear. A straightforward calculation shows that at any

time t
m ij N
K: E g‘ tVEZ.
i,j=1 ( }( €i J)

where g J(t) denotes the inverse matrix to gij(t)'
It follows that (K,E) = T glJ(t)(ﬁs EJ,E>, and, since
| : i

K= 0 and g, (O) 1j’ we have
a m
1.2 —{(K,E} = E oy V E.
o
+ T (V. F® _Si,E).

i=1 E 8_1

‘Differentiating the identity I glJ(t)gjk(t)
: T

= bi shows
that (dgij/dt)(o) = -(dgij/dt)(o) = -E(Ei,8j> =

I

2{3B ,EY where we have used the fact that
€4i.8 3"

(1.24) TE.-V. E=[E,E.] = 0.

Tt follows immediately that the first sum in (1.23) is

equal to

(1.25) - 2 i?j:l <B€i,€j,E)2 = 2(8(E),E).

We now observe that
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(v % js LEY = (RE,SJ.SJ"E) + <V€J- VEEJ.,E) =

= (R p B v E (T BB - T E)°.

J J

(Note the extensive use of (1.24)). However,

oo 2 - Ny R = T2
Z v, E|" =z |[(m. EY'” + £ ||[(F. E)
E % B® <2 = |7, 2
2 = 2 2
= E E,£.Y = ||vE E),E).
5 llvg BI% + 2 (Vg Boyd™ = [IVE[" + (8 (8),E)

Finally, if we define the one-form ®w on M by the

equation w(X) = (EXE,E), then at p,

6‘UJ= E(V

1 J EJ

11}
J=

It follows that the second sum in (1.23) is

~ leBl® - (R(E),E) - (B(E),E) + bu.

Combining this with (1.25), integrating over M and using

the fact that (AE,E) = - f ||er”2 gives the result. O
M

Theorem 1' has several immediate consegquences.

Let us consider the symmetric differential operator

defined in TO(N(M)). If M is compact (with boundary),
the operator & is strongly elliptic. The general theory

of such operators shows that § can be diagonalized on
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TO(N(M)) with eigenvalues

Kl < 12 < 13 s # ®

where each elgenspace Vl is finite dimensional.
J
If one considers a minimal immersion as a critical

point of the area function on the space of immersions

M+ M fixing the boundary, then the quadratic form

1(s) - [ (£(0) .8y = (£(8),E)
M

is the Hessian form of second derivatives of the area
function at this point. In analogy with standard critical

point theory we define: -

index(M) = dim( @ Vx)
A<O

nullity(M) = dim (V).

Note that if M represents a manifold of least
area with respect to its boundary, then index(M) = O.

By definition a normal field E € FO(N(M)) lies
in V_ if and only if &(E) = 0. Any such field is

called a Jacobi field.

One of the fundamental theorems concerning Jacobi
fields is the following. Let f: M s M be a compact
minimal submanifold with boundary, and let Cy be a

contraction of M dinto itself, Imn particular, assume

oy t = 0 is a smooth family of diffeomorphisms of M
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intoe M such that:

(1) c, = identity

(id) Ct(M) c CS(M) for +t > s *

(iid) tim Vol(ct(M)) = 0.

Write M, = ct(M) and consider the minim&l immersion

t
f}Mt. The main result is the following (cf. Simons [1]).

THEOREM - (Morse, Simons, Smale)
index(M) = I nullity(Mt)-
>0

Note that one result of this is that nullity(Mt)
= 0 except for a finite number of tts,

The importance of this result is.that it allows
the index of M alsc to be computed in terms of solutions
to the equation £(E) = 0. For a discussion of some of

the applications of this to¢ the case of geodesics, see

Milnor [1].
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CHAPTER IX

THE CLASSICAL PLATZAU PROBLEM

The study of minimal surfaces has a long and rich
history dating from the experiments of the Belgian
physicist J. Plateau in 1847 [1]1. He showed that by the
laws of surface tension the soap film formed by dipping
a wire form in a soap solution represented a surface
which was stable with respect to area. That is, under
slight deformations the soap-film always became larger.
Mathematicians were soon able to give a local description
of such surfaces as we have done above. However, a ma-
thematical proof that for every "wire" there exists a
"spoap film"“'proved to be a far more difficult task. As
we shall see, simply to find a viable mathematical for-
muiation of the problem was a non-trivial undertaking.
The first real sclution Ep the problem was finally given
in 1930 by Jessie Douglas [1] and T. Rado [1]. Douglas
work was important both for the result and for the method
of prbof. For that reason we shall present his solution
here in detail. The basic reference for this work is the

excellent book of Courant [2]. -Any reader looking for
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more elaboration than is found here should begin with
this book.

While much was proved in the 1930's about the
existence of solutions to Plateau’s probhlem, it was not
until the 1960's that the guestions of interior and
boundary regularity of the solutions were settiled. We
shall present here a survey of "these results and refer

the reader to the journals for details.

§1. The solution of Douglas=-Rado

The first difficulty in trying to attack the
Plateau problem is to find a workable fermulation of the
question., Roughly speaking, of course, it is: "Given a
Jordan curve [ in Rn, find a surface in R of least
area having ' as boundary." However, a little thought
on this problem (and perhaps some experimentation with
soap films) guickly shows that the topological type of T
may be quite complicated. Mogeover, minimal surfaces of
various topological types with T as boundary may exist
(while onlf one may represent an absolﬁte minimam in
area.) A good example of this,due to W. Fleming [1],is

illustrated in Figure 1. Intuition as well as approxi-

mating soap film experiments indicate that there is a mi-



55~

e » . ate,

Figure 1

nimal surface (a) of the type of the disk, having T’ as
boundary. Moreover, there is a minimal surface {p), ho-
meomorphic to the disk with one handle attached, which
has smaller area. The surface (c), a disk with two hand-
les, has even smaller area, etc. The surface of absolu-
tely least area is infinitely connected. In view of this
we shall restrict our attention to iryving tq find a sur-

face L of least area and of prescribed topological type,




56—

the simplest being that of the disk.

We want to cconsider our "surfaces" here to be
mappings of two-manifolds into Rn.. However, there is
no reason why these mappings should be immersions. In
fact, from the example given by Equation (1.19) we see
that in general even cur solution surfaces will have
points of irregularity. However, to preserve the notion
of area among all the competing surfaces in our problem

we shall require that the maps be piecewise continuously

differentiable.

Our problem can now be formulated as follows. Let

T c rY (nz 2) be a Jordan curve, i.e., a subset homeo=-
o : 2 2 2

morphic to the circle, and set A = {(x,y)éR": x"+y~ = 1}.

A mapping {3 A =+ R™ is called piecewise Cl if it is
continnous and if, except along 8A and along a finite
number of regular Cl-arce and points in AO, ¥y dis of
class Cl. A continuous map b: 8A + ' dis called montone
*(

if for each p € " the set b p) is connected. We

now define the class of competing surfaces

(2.1) X, = {¢2 & + R': § is piecewise ¢t and

¥ |34 is a monotone parameterization of I'}.

We then define the area function A: X2 R" U {=} by

the following (generally improper) integral.
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(2.2) A(V) = fflq;x A ¢Y|dxdy
A

2 2 2 2 .
yl = wal '|¢y| (¢x,¢y) . The precise

statement of our problem is now to find a ¥ € X such

where [y A ¥

that A(y) = Gp vhere

(2.3) Gp = inf A())
LA

‘Note that we have one minor complication. For
ﬁhis problem to be interesting we should know that
GT <« w, If T 4is rectifiable this is true, but in ge-
neral it will have to be assumed. An example of a curve
' with GT = » ean be constructed in the following
manner. Let TO c R} vea plane circle and string onto
PO a number of "beads", i.e., solid tori equally spaced
along FO as shown. Construct a new curve Pl from PO
by wrapping around each torus in succession like a coil,
as in Figure 2. String a mew succesion of (smaller)
beads on Tl and repeat the process to obtain Tz. Let
' = lim Tn . For an appropriate choice of parameters
(size of beads, number of beads, etc.) we will have
er = o, To see this, estimate the area of the surface

required to span each helical coil.

The question now is how to solve the problem we
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have posed. Geometric intuition would suggest‘that we
@

take a sequence of surfaces {y } such that Ay ) -
n=1l

GT s and try to show that some subsequence must converge

e J

éTc.

Figure 2
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to a solution. However, we must deal in this case not
only with the geometric images of the surfaces but with
the way they are parameterized. The area integral (2.2)
is clearly invariant under even piecewise Cl—reparameter-
izations. Thus, suppose that {¢n} were a sequence of
¢l_functions in X, such that -+ ¢ € %F and 9§ _ -
vy wuniformly on compact subsets of AO, and such tﬁat
A(¢n) - GT . For each n let dn: A+4A bea piecewise
ie)

smooth homeomorphism with the property that dn(re

ing

= re for O = 6 = %‘(Zﬁ-i). Then the sequence V'

n =
= }_ v d  would again be minimizing, i.e., A(\er'l) +Gp -
However, no subsequence could converge even to a conti-
nuous function, because the dn's converge pointwisze to
a discontinuous map.

The lesson here is that we must somehow control
the parameterizations of our minimizing sequences of sur-
faces. In the one-~dimensional case, i.e., curves in a

riemannian manifold, this is done by minimizing the

energy integral {(cf. Milnor, [1].) Here minimizing

sequences of curves tend to geodesics which not ohly
minimize the length integral but which are forced to be
parameterized by a multiple of arc-length. Physically,
one could think of a rubber band lying on a surface with
its end-points fixed. This band not only minimizes its

length but alsc minimizes its potential energy by stretch-
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ing itself uniformly along the surface. The analogous
situation holds for surfaces. The corresponding energy

integral in the so-called BDirichlet integral

(2.5) o) = [ [Qu1% ¢ 1y, 1P axay .
A

As we shall now see, the fuhctions in xF which minimige
the Dirichlet integral not only minimize area but must
have natural parameterizations, namely, conformal ones,
whic£ correspond to a tight, or least energy, spreading
of the surface over the geometric configuration of leéast
area.

To begin we note that for any two vectors VW ERn

‘we have |v A w]2 = fVIZIWIz - (V,W>2 = Ivlzlwlz

2
= %([v|2 + |w|2) where equality holds if and only if

|v] = |w| and (v,w) = 0. It follows immediately that

for any § € X. ,

(2.5) A(y) = 3 D(¥)

where equality holds if and only if

(2.6) eyl = logl ana Gy 4y =0

almost everywhere in "A. Any mapping satisfying (2.6) is

called almost conformal. Wherever |¢x] > 0, such a map

is conformal, or angle-preserving, and induces a metric on
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A  of the form
(2.?) ds® = F(dx2 T dyg)

. Under condition {(2.7) the para-

where F = iwxi = |wy

meters (x,y) are called isothermal coordinates for the

surface. A theorem of fundamental importance for us is

the following.

THEOREM IC - (The existence of isothermal coordinates.)

Let {: A = Rn be a continuous map such

that ¢|AO is an immersion of class c¥ » 1

1A

k &=

{or real analytic). Then there exists 2 homeomorphism

d: A + A where diAO is of class Ck (Br real analytic)

such that the reparameterized mapping ' = ed is con-

formal.

For a proof of this we refer the reader to Morrey [1l, pg.
366] or to Chern [1].

. n .
We now consider a Jordan curve I[' € R and define

(2.8) dr.= inf D{¥) .
YEXL

Then from Thecrem IC we have the following

LEMMA 1 - GP = E—dr .

ESTES

Proof: From Equation (2.5) we clearly have that GT = %ﬂ
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¥t remains only tc prove the reverse inequality. To do
oo
this, let {y_} be a sequence from X. such that
n npn=1
A(¢n) - GT « By making apprépriate approximations we may
assume each wn is class Cl in AO. We shall now
reparameterize each wn so that the new map ﬁn satis-

2a(% ) + % . This will provg the lemma. Ve

A

fies D(wn)
begin by considering for each r = 0 the extended map

¢n . A - Rnfz given by
7

llln,r(x,Y) = (an(XJY)’rx’rY) -

(Fpr i # o, wn,r o4 XP » however, it is an immersion. )
It is clear that A(wn r) depends continuously on r .
b

Thus, there exists some £ > 0 such that

]A(wn,e) - A(¢n)l <-% » However, by Thecrem IC we may

so that the new map § is con-

reparameterize
n,&

n,t

formal. This map can be expressed as

En,& (XPY) = (WH(X;Y) ,Su(x,y) !EV(X:Y))

where ¥ € X. . In fact, ¥ _(x,v) = ¢_(u(x,y),v(x,y))

is just a reparameterization of ¢n, and so A(Wn) =

= A(Fn). Using now the fact that an € is conformal we
¥
have that D(upn) = D(ﬂ!n’g) = 2A(¢n’8) = 2A(‘Jln,€) E 2A(1I1n)+
2 - 2
+o=2a0 ) + = . O

We now have immediately the following
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COROLLARY 1 -~ Let I C Rn be a Jordan curve with GF < ™,

Then for any ¢ € Xf

D(y) = dT e AlY) = GT and | is almost conformal.

Hence, to solve the Plateau problem it is suffi-
cient to find a function' ¥ € XT which minimizes the
Dirichlet integral. However, to do this we can use har-

monic function theory and, in particular:

DIRICHLET'S PRINCIPLE - Let b: 3aA - R™ be a continuous

map and define

]

X, = g2 rR™: { dis piecewise Cl and | |3A b} .

Assume that the number

d_ = inf D(§)
b ;&b(w)

is finite. Then there exists a unigque function wb € Xb

such that D(wb) = db. The function mb is harmonic in

AO and represents the solution to the boundary wvalue

problem: v2¢ =0, §[|3r =b, .

Proof: Recall that if a function u: A = Rn is harmoniq

in. AO, then for every r, 0 < r < 1, we have

21 2
» o
(2.9) u(z) = % | r= ?I u(re®®)ae
. Ir'e - ) )
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for all =z with |z| < r. It follows easily that if

o
{un} is a seguence of harmonic functions in A which

n=1

donverge to a harmonic function u uniformly on compact
subsets of AO, then Vun -+ Yu uaniformly on compact
subsets of Ao. This fact, referred to here as Harnack's

Principle, gives us the following

&

LEMMA 2 - Let {un] be a sequence of harmonic functims
n=1

in A converging to a harmonic function u

uniformly on compact subsets of 60.. Then

D(u) £ lim inf D(un) .
n

To see this let K be a compact subset of ﬂo and denote

by D the Dirichlet integral over K. Then by Harnack's

K
Principle, DK(u) = 1im DK(un) £ lim inf D(un). The lemma

follows by letting K approach A,

We now let. the vectors b k = 0,1,2,...

By Py

denote the Fourier coefficients of b and define for

each n 2 0 +the harmonic function

( ) ( ie aO n k
2,10 ¥ (re”") =-5~+ I 1 (a,cos k& + b
n 2 k=1 k

KSin ko) ,

These partial sums converge uniformly to a harmonic
function {§ on compact subsets of AO. Furthermore, ¢
extends to a continuous function om 4 such that { |34 =

= b, (This is the "Abel convergence" of the Fourier
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series.) We claim that D(y) = db. To see this choose

any & € X with D(#) € », and for each n set g =

=% -¢_. Then for each n, we have that
p(s) = D(3,) + D(y,) + 2D{F.¥ )
where

| ro3%_ 3y 38
D(s_4,) =fj(< n,
A

_ ]
3x axn> * <ayn’ayn))dXdy '

However, by Green's identity, which holds even though

$ is only piecewise Cl, we have

‘ 2
de - ‘{-f<§n,v ¢n}dxdy .
Clr=l A

Oof course, ngn - 0. Moreover, the first term on the

2m a¢n
D(%_,V,) ='{ (%, 37 )
O

right can be expressed, by using (2.10), as a combination
of the first 2n Fourier coefficients of the function

b - wnlaA , each of which is zero. Thus, D(@n,wn) = 0.
It then follows that D(¢n) = D(8) - D(@n)‘é D(%), and

so, by Lemma 2
D(y) = lim inf D(¢n) s p(3) .

We have now proved that the function e X, is harmonic
in A% and D() = d,. It remains to prove that | is
unique. To see this let ! be any function in Xb with

D(y1) = d, and set u = §-§ 1. Note that for all real
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numbers £ we have
D(¥) = D(y+Eu) = D(¥) + 2£D(¥,u) + €3D(u) .

It follows that D(¥,u) = 0. and therefore
D(¥') = D(b+u) = D(¥) + D(u) .

Hence, D(u) = 0 and so Vu = 0. Since ujdd = 0 we

have u = =t = 0, and the uniqueness in proved. O

For further details concerning Dirichlett!s Princi-
ple we refer the reader to Courant [2] or Morrey [1].

Our reguirements for solving the Plateau Problem
are now vastly simplified. We want to minimize the in-
tegral D(§) over the class XF' However, for each

fixed parameterizatior. b: 3A + I' we know that there

exists a unique function wb £ Xb C XF such that

D(¢b) = db' However, for different Parameterizations b

of T' we will, in general have different values of dy -

Hence it remains only for us to find a pParameterization

b T = .
of such that db dT
To find such a minimal Parameterization we shall
o0
choose a sequence {b_} such that 1lim d = dn  and
n n=]1 In
show that there exists a uniformly convergent subsequence.
To do this we will need %o normalize the mappings bn.

This notmalization will correspond to normalizing the

maps wbn. For this we first note the following.
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LEMMA 3 - The Dirichlet integral D(y) is invariant

under conformal transformations of the disk.

The proof of this is straightforward and is left
to the reader.

Recall that by a conformal transformation of A
it is possible to map any given three points of 3A o
any other three, distinct points of 3A. Moreover,
having prescribed the images of three such poeoints the
conformal éransformation is uniquely determined (cf.

Ahlifors, [l]). We now normalize our surfaces as follows.

We choose three distinet points pl,pz,p3 € " and three

distinct points € 94, and we define

Zl’z2’23
Xt = {y e X.: ¢(z,) = p, for x=1,2,3}.
- V ]
By Lemma 3 we have that inf{D(y): ¥ € XT} = d. , and
thus we may solve the Plateau problem by minimizing in

this somewhat smaller class. However, for this class we

have the following important fact.

PROPOSITION 1 -~ Let M be a constant > dT . Then the

family of functions

1A

F = {ylea: y ¢ Xﬁ and D(y) = M}

is equicontinuous on 8A. Thus, by Arzeld's theorem &

is compact in the topology of uniform convergence.
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Proof: Let { € XF such that D(}) = M. For each zeﬁg

and each r > 0 we define Cr to be the inter-
section of A with the circle of radius 1 about the
point =z, and we denote by s +the arc length parameter
on Cr' We then claim that for each positive number
§ < 1 there exists a number p (depending on ¢) with

6 = p = JE such that

(z.11) fﬂ |y |2 ds = ()
C .

where

= 1og(1/E)

To see this we consider the integral

Ve
I dif'[ f ly |?dsar = D(¥) = M ,
TN

and express I as
o
T = f p(r);dr
6

where
2
p(r) = r ‘f ¥ 17 as
Cr
We assume for the moment that { has continuous first
derivatives in A®. Then by the Mean Value Theorem (for

the measure d(log r)) we have that there exists a num-
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ber p, with & = p = 48, such that

J5
I = p(p) fé d(1og ) = plo) 3 Log(z)

A

Thus, p(p) 2M/1og{1/8) as claimed.

If is only piecewise smooth we proceed as
follows. Let & c A ©be the set where | is of class
ct (6 = A ~ a finite number of smooth arcs and points),
and let {Kn]z=l be a monotone increasing sequence of
closed, polyhedral domains converging to 6. Then for
each n, there exists a number pn such that Equation
(2.11) holds. Here, C_ dis defined as K 0 [ the circle
of radius r about =z }. By passing to a subsequencé we
may assume that the numbers pn converge to some number
p. By passing to the limiting case we then establish
Equation (2.11) in general.

It now follows from (2.11) and the Schwarz Ine-

quality that for each positive number 0§ <. 1, there

exists a number p with & =p = /& such that
{(2.12) L(cr)2 = 2n€ (8)

where L(Cr) = f ]Wslds = the length of the curve ¢|Cr.
Cr
We shall use this last ineguality together with

the geometry of T to establish the equicontinuity of .

Suppose we are given a number e > 0. Then by a straight-
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forward topological argument we see that there exists a
number d > 0 such that for all p,p' € T with

0 < |p-p'| < d, one of the two components of T ~ [p,pt}
will have diameter <e. (Recall that for a set X < R,
diameter (X) = {suplq—q'] t q,q9' € X}.) We now choose a
6 < 1 such that JEEETET < d, and such that for any

z € 3A we have |zk-z| > /8 for at least two of the

points =z We assume without loss that the number

10239%5e
e is less than min {Ipi—pjl}. Then for any =z € 3A,

1#]
there exists by (2.12) a number p with 6 = p = /6 such

that %(Cp) < d. The boundary of the disk dA is now

divided by Cp into two arcs: a “small" arc A' contain-

ing =z and its compliment A" containing two of the
21,22,23. The corresponding arcs on [ are A!
\

and A", one of which has diameter <e because 1(c)

points

1A
&

However, since A" contains at least two of the points
Py1PysP3s its diameter is >e. Hence, diameter (&'} <e.
This immediately implies that for |z'-z| < 6 in B3aA,
we have

¥ (z) - ¥ (z1)] < e
where 0§ was chosen independently of =z,z' and V. This

establishes the equicontinuity of the family of functims.[d
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Zq, JA

Figure 3
We can now complete the solution to the Plateau

==}

problem. Let {b ] be a sequence froin Fsuch that

" n=1
l%m dy, = dT' By Proposition 1 there exists a subseguence
n

(=<3
{bnj} which converges uniformly to some b € F. By
i=1

l.emma 2 we have

Consequently, D(¢b) = dT and we have proven the follow-

ing theorem proved for n=3 alse by T. Rado.

THEOREM 1 - (J. Douglas). Let [ be a Jordan curve in

R" such that GF < o, Then there exists a

continuous map (: A = R™ such that

1) V|37 maps 3A monotonically onto T,

2) ¢|AO is harmonic and almost conformal,
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3) D(¥) = dn and A(¥) =0

The function ¢ of Theorem 1 will be called a

solution to the Plateau problem for I'. The existence

of such solutions in the generality above is quite
remarkable if ome comnsiders that, for example, in R3 T
can be knotted and non-tame.

We suggest as a good exercise the proof that in
the case n = 2, Theorem 1 is the Riemann Mapping Theorem

for domains bounded by Jordan curves.

- T

§2, Generalizations

An immediate question which comes to mind is: can
the methods of §1 be applied to obtain solutions to a
more general Plateau problem? There are two specific
directions in which this is true.

¢.B. Morrey [1, pg. 389] proved that Theorem 1
remains true if we replace euclidean space rR™ by any
complete riemannian manifold which is metrically well
behaved at infinity. For example, it holds in any compact,
or any homogeneous Riemannian manifold.

Douglas, Courant-and others did much work in
establishing the existence of solutions to the Plateau

problem in RY with higher topeological type. Note that
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Theorem 1 establishes the existence of a surface of least

area among all surfaces homeomorphic to a disk. As point-

ed out before, however, this may not represent a surface
of least area among surfaces of all topologicalwtypes.
An easy exémple is found by considering a curve r
constructed as follows, Begin with a double covering of
a plane cirele of radius 71T, and pull the two branches
apart slightly, to obtain a Jordan curve. The solution
for I given by Theorem 1 will have area = 2 X farea of
the original disk bounded by the circle}l = 2Wr2.— (To see
this, project the solution back into the plane.) _However,
there clearly exists a surface of the type of}a Mbbius

.

band, having area == 27 where the branches are sepa-

rated by a distance £ > 0. Intuitively, one feels there

£

Doualas Selution. Mo bius band.
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should be a miﬁimal surface of the type of the Mbbius

band. '
Naively, one may formulate the following general

problem, Given a system I' of kX Jordan curves Ylp."Yn

. n .
in R, find a surface of least area among all surfaces

in_ R"  of prescribed Fuler characteristit and prescribed

character of orientability, having [ as boundary.

It is immediately apparent that the question is,
in general, ill posed. Consider, for example, a plane
circle T in R® c R™. By Corollary I.2 the only mini-
mal surface in R" with this boundary is the disk
A = C(Fl c r®. If we tried to solve the problem for a
disk with a handle attached, we would find that any
minimizing sequence would, in the 1imit? pinch the .handle

off. Another example can be found by considering two

Figure &

parallel, plane circles of radius 1, with the same center

3

line in R”., If they are sufficiently close, there is a

minimizing surface, homeomorphic to an anulus, with this
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boundary, namely part of the well known catenoid. (See
Chapter III.) When the circles become a certain distance
apart, the catenoid is a local, but not global minimum.
At great distances apart (past the "conjugate" distance)
the catenoid is not even stable. The surface of least
area in the last two cases is simply the disjoint union
of two plane disks. A minimizing sequence of maps of

the annulus would degenerate as shown in the figure.

= — =0 — 66
+ Figure 5

A more realistic formulation of the problem
considered above would be the following. Let £ and T
be compact {not necessarily connected) surfaces whose
boundaries each have k-components. Then & is said to

have higher topological type than Zt' 4if the Euler

characteristic X(Z) < x(2'). For each such surface by

and each I' as above, we define X, 5 = [t:Z o R™: ¥ is
b .

continuous, §|int(Z) is piecewise ¢l anda V|3a is a

monotone parameterization of '}, and we set

G- = inf A(}) .
T,z wEXP,E




~76-

PROBLEM - Let T =y, U...U Y, © R" be a system of X
Jordan curves and let I be a compact 2-mani-
fold whose boundary has k-components. Assume that

< = and (G for all ZI!' of lower

<
Ur,s v,z = 9r,o
topological type. Does there exist a map ¥ € Xf 5 such
y

that:

1.)  a(y) = Gr,z ,
2.)  V¥|int(£) 4is real analytic,

3.) ¥ is almost conformal and harmonic with

respect to some conformal structure on I 7

This problem has been sol?ed, and we refer the
interested reader to Courant [2] for the details.,

Note that the hypothesis of this problem are at
times easy to verify as in the first example above and

in the following. Let ¥ be two linked, plane

17 Y2
circles. The solution with Euler characteristic 2 is two
plane dlSkS 1ntersect1ng along an arc . By cutting and
pastlng along O we can get a surface of Euler ¢ﬁap-_
abteristiq 0 '(an annuius),‘which has”smaller area.
Theorem 1 -and its- generallzatlons represent, in
many Qays; a very satlsfactory solutlon to the problem

we orlglnally posed.‘ Nonetheless, there still. remaln

- some ba51c questlons about the geometrlc behavlor of "the
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minimizing surfaces. We shall take these guestions up

in the following sections. i

§3. The interior regularity of the solution

The first,question_we consider is whether the
mapping ¢ given by Theorem 1 is, in fact, an immersion

in AO. We begin by noting that since ¢ is harmonic,

i
[}

d
a =0
d=z v

where d/dz = %(B/ax - i d3/3y). Hence, the €"-valued

function
' def. dy
(2.13) P = qz - (wl,---,¢n)

is holomorphic in AO. Furthermore, we see easily that
2 2 2 2

L"CP‘ =4 cpk = Iq"x] I
. 2 2

=4 Zle |7 = [y, 17+ e

mal, we then have

- le - 2i<¢x,¢y), and 4|m|2 =

ylz. Since ¢ 4is almost confor-

(2-14) . P = 0
(2.15) e
where the metric induced by ¢ . is of the form

(2.16) as® = 2F[dz|2 .
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The mapping ¢ will be regular at precisely those points
where F #£ 0. Equation (2.15) and the fact that @ is

holomorphic therefore show us the following.

LEMMA 4 - The solution surface § given in Theorem 1 is

an immersion everywhere in AO except possibly

at isolated points.

These points of irregularity will be called branch points

of the minimal surface.

From example (1.19) we see that branch points do exist on

solutions te the Plateau problem in Rn, at least for
nz 4, Moreover, if we consider mappings ¥ ¢ XP which
have only properties a) and b) of Theorem 1l, then branch
points can appear on these even in RB. An example of

such a surface is given by the mapping

(2.17) ¥(z) = (Refz®-32", m{22-12%, Im{%zB}).

In a neighborhood of {(0), this can be visualized
geometrically as follows. Let &l,Lz be two s{raight
line segments of lengths 1 and 1+4£ respectively, which
meet at an angle 21n/3 in RB. Join the free ends by a
curve, which does not lie in the (&l,&z)bplane, to form a
closed Jordan curve I'. Span ' by a minimal surface

£, We then reflect L about the arc &2, reflect again
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about the image of &1, again about the image of Lz

(= %1), etc. After five reflections the surface "closes™
and produces a minimal surface with one branch point, at
the Ll,Lz-Vertex. (See Figure 6.) The surface inter-
sects itself along three straight lines meeting in this

vertex.

¥

A

Figure 6

At first sight the surface VY appears to be mini-
mizing in a neighborhood of zero, thus giving solutions
to the Plateau problem in R3 with branch points. How-
ever, Robert Osserman has shown that, in fact, this is not

true, To see why, we first observe that
N
(2'18) ¥(x,0) = ¥ (-x,0)

for all x. This means we can make a reparameterization
of the disk A as follows, For some £ » 0, we make a
cut in the disk A along the interval {(x,0):€ < x < ¢}

and add along this cut both an "upper" and a "lower"

e —— .
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boundary. By means of a piecewise smooth mapping I we
then "reseal" the disk such that points (x,0), {-x,0)
of the upper boundary are identified, the points (x,O),
(-x,O) of the lower boundary are.identified, and the
points (£,0), (€,0) are identified. (See Figure 7.)

Because of (2.18), the

Figure 7

mapping Y e fdl is a well defined reparameterization of
the surface and is still piecewise-smooth. Along the
curve of self-intersection Y(x,0); -£€ s x = ¢ (or

¥ oo f—l(O,y); -£ £y SE) the new pafameterization behaves
differently. The o0ld parameterization Y mapped a
regular surface (near (x,0)) transversely through a
regular surface {near (-x,0)). The new one, Yo f_l, maps
two creased surfaces (near (0,y) and near (0,-y)) which
intersect along the crease. By deforming one of the
creases of Yo f-l we can now easily reduce the area of
the surface while maintaining the boundary and staying

in the class of piecewise-smooth maps.
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Figure 8

Carefully studying the general behavior of branch
points on minimal surfaces in R3 and applying the above
construction, Osserman went on to prove the following

remarkable fact.

THEOREM 2 (Osserman [7]). Every solution to_the Plateau
3

problem in R is free of branch points, i.e.,

is a regularly immersed surface.

The result is local in nature and therefore holds

both for the solutions of Theorem 1 and its generalizations.

REMARK - Osserman's original proof actually applied only
to geometric or "honest" branch points. It

failed to handle the case of "false" branch points, that

is, points where the surface‘image is regular but the

parameterization has a singularity. Such a singularity

could be introduced, for example, by starting with a
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regular surface {: A =+ R™ and defining @(z) = w(zk)
for some k > 1. The first complete argument for the
non-existence of false points was given by Gulliver [1].
The problem is surprizingly difficult. In fact, consi-
deration of exactly what must be involved in the solution
has lead to the development of a deep and quite delicate
theory of branched immersions (cf. Gulliver, Osserman and
Royden [1]).

It has also been shown by Gulliver [1] +that the
solution to a large class of variational problems (in-
cluding the Plateau problem) in general riemannian

3=-manifolds are free of branch points.

§4. The regularity of the solution at the boundary

Our next question is roughly this. When the Jor-
dan curve I € R" is well behaved, is each solution to
the Plateau problem for T correspondingly well behaved
at the boundary?

To begin we note that for each solution fr A Rn,
the map ¢ |37 is a homeomorphism of 3A with I and
not just a monotone map. The preoof of this can be found

in Courant [1, pp. 63-64].
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Suppose now that I' is a regular curve of class

Cc for 1 =k=wo or k=, This means that for each
p € T there exists a neighborhood U of p in R" and
a diffeomorphism ©: U = p" = {x € Rn:-|xi < 1} of class
¢¥  such that ¢(T N U) = the straight line
{(xl,O,...,O): -1 < x; < 1}, The natural guestion is
whether, under this assumption, each solution to the
Plateau problem for I' dis of class Ck on the closed
disk. -

\ If, for example, I' contains a subarc ¥ which is

itself a straight line, then we can apply the classical

reflection principle:

_r'l,
PROPOSITION 2 - Each solution to the Plateau problem for

I' can be analytically continued as a

minimal surface (with branch points) by reflection across

Y.

Proof: Let Y: A = BR" be a solution for T and set a8t

= {z € A: Im(z) 8 0}. By a conformal transforma-

+ n
+ R such

tion we may change { to a mapping §: &
that ¢EA+ N (x-axis)] = Y. By a change of coordinates
in Rn, we may assume that ¥ dis a part of the line:

x X, = ese = X_ = 0. Hence, we have ¢2(x,0) = ... =

2 % %3 n
= $n(x,0) =0 for -1 x= 1, and by the reflection

principle for harmonic function (cf. Anlfors, [1]), we
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may continue wz,...,¢n as harmonic functions into the

whole disk by setting

Vi (xy) = =¥ (x,-y)
for each k. Therefore, each of the functions mk =
= a¢k/az 3 2= k=n extends to a holomorphic function
in A which is purely imaginary on the x-axis. It then

follows from equation (2.14) that

2 2 2
¢y = -(¢2 toeat 0],

weod

where the right hand side of this expression is V20 on
the x-axis, The limiting values of the function ¢l
along the x-axis are, therefore, real; and by the reflect-
ion principle for holomorphic functions, we can extend

?, analytically to the whole disk by setting © ( ) =

= @l( z). Integrating (¥ ( ) = Re[[ wl( z)dz} ), we see

that ¢l has been extended to the disk by the relation
¢l(x,Y) = ¢l(xs_Y) .

The extended map §: A 4 RT is clearly still a minimal

surface. O

NOTE. Proposition 2 does not use the absolute minimality
of ¥ and actually holds for any minimal surface

whose boundary contains the straight Tine Y.
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In view of Proposition 2 it was natural to first
consider the case where [' is a real analytic arc. This
broblem was mentioned, for example, by Courant [2]1. 1t
was not, however, until 1959 that the following theorem

was proved. A

THEOREM 3 - (H. Lewy [1]). Let I ¢ R" be a real analytic

arc and suppose that §: A - R® is a

solution to the Plateau problem for I'. Then | can be

extended analytically, as a minimal surface, across the

boundary.

Then in 1968 the following was proven.

THEOREM 4 - (S. Hildebrandt [1]). Let I © R" be a

k,q

Jourdan curve of class C for 4 2k s =,

1A

w and O @ € 1.% Then each solution of the Platean

problem {: A = R" for T is of class Ck’a at the

boundary.

Hildebrandt's proof uses the theory of elliptic
partial differential equation and therefore generalizes
to a number of other situations {solutions to the

equati um for constant mean curvature in RB, minimal

* ' Co :
c¢™?% means class ¢™ with the nth derivatives being

tt-Holder continuous.
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surfaces in riemannian manifolds (See Heinz and Hilde-
brandt [1].), etc.).

The following year, using the more elementary
technigues of complex function theofy, several people
gave independent proofs of a slightly improved version

of Theorem 4 for the case of RT,

THEOREM 4' - (Kinderlehrer[1], Lesley [1], Nitsche [3],

and Warschawski [1].) Let I'c R® be a

n,ﬂ.(f)

.Jordan curve of class C for 1 =E=ns=swo or w

and where 4(t) is a modulus of continuity for the nth

derivative. Then each solution to the Plateau problem

p: & = R™ for T is of class Cn’a(t) at the boundary.

These later proofs of the theorem are shorter,
more elementary and give better results in Rn, but they
don't have the power of generalization that Hildebrandt's

methods do.

REMARK 1 - Theorems 3, 4, and 4' are all local in nature.

That is, if T s of class ™% in a neigh-
borhood of p € T', then 1§ is of class C™% in the
corresponding neighborhood of 3A. These theorems,

furthermore, do not require that { be an absolute mini-

mum, but only that it be almost conformal and harmonic.
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Note, incidentally, that for n = 2. Theorems 4 and 4!
are simply the classical theorem of Kellogg concerning
the boundary regularity of a conformal map of A onto a

demain in € bounded by a Jordan curve.

§5. The uniqueness of the solution

Certainly one of the most natural questions to ask
is whether the solutions to the Plateau problem, given by
Theorem 1, are unique. In general they are not, as can
be seen by considering the curve I in Figure 9. This
curve has an obvious symmetry of degree 2. If the solu-

tion of Theorem 1 for I were (geometrically) unigue,

Figure 9

its image would be invariant under this symmety. Consider
the coordinate function 2z restricted to this surface.

The parallel planes 2 = constant each intersect I in
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at most four points. It therefore follows from Proposi-
tion 5 (of the next section} that each critical point of
z in the interior of the surface is non-degenerate and
of index 1. There are four critical points of =z res-
tricted to the boundary, two at the top and two at the
bottom. By Theorem 3 the surface is analytic at these
points. Moreover the surface is regular and transverse
to the planes =z = constant at these points, for if they
were not, one could use the téchniques of the proof of
Proposition 5 to.show that there would be points of the
surface both above and below these Planes, and thus out-
side the convex hull of T. The methods of Morse Theory
(cf. Milnor [1]) then show that 2z has exactly ome cri-
tical point in AO. To see this explicitly, let

by A o R3 Ybe the surface and consider the sets Ma =

= (ze $)hl((-m,a]), as a increases from -w». Just after
a passes the first critical value, we have that Ma is
diffeomorphic to two half-disks (and has the homotopy
type of two points). The manifold Mm = A is then
obtained by attaching a one handle for each critical
point in the interior of A. Tt follows bhat there can

be only one such critical point, as claimed,
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Figure 10

By the assumed unigueness of the solution, this
critical point must be located at the center of symmetry
of . It is not difficult to see that the surface is

therefore of the form shown in Figure l1la. By projecting

A - Figure 11 . fa
onto the plane parallel to the top disks and then onto

the  plane parallel to the bottom disks, one can see that
‘the area of this surface is Z U4 X (area of one disk).

However, it is easy to find surfaces of smaller area (cf”

W
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Figure llb), and so the solution to the Plateau problem
(of Theorem 1) is not geometrically unique.

Another example of a contour for which there is
non-uniqueness is sketched in Figure 12. TFor details

see Lévy [1].

] - ,

Figure 12

Note that for a given Jordan curve I' there may
also be non-minimizing minimal surfaces with I as
boundary. In fact, Morse and Tompkins [l] showed that
whenever I' 4is a boundary of non-uniqueness as above,
such surfaces must exiét. An entire (beautiful) theory
of unstable minimal surfaces was developed ﬁy M. Morse,
M. Shiffman and C. Tompkins. We refer the reader to
Courant {[2] for an introduction and bibliography.

One may wonder whether there are curves I' with
more than two solutions to the Plateau problem. If we
take an infinite sequence of surves of the type in Figure
9, where each is one half the size of its bredecessor,

and then connect them as in'Figure 1, we will obtain a
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Jordan curve which bounds a non-denumerable infinity of
minimal surfaces, {See Courant [2), Lemma 3.3.) For
each sequence of "up's" and "down's" we get a distinct
surface homeomorphic to a disk. In general, of course,
these surfaces will not be minimizing; However, Paul.

Lévy [1] showed that, in fact, there exist rectifiable

Jordan curves in R3 for which the number of geometri-

cally distinct solutioms to the Plateau problem (Qf.

Theorem 1) is also non-denumerably infinite.

The natural question now is whether boundafies of
uniqueness are in some sense generic. A partial answer
is' given in the following Propositiom, due essentially to
Frederick Almgren. Let 8 denote the set of Jordan
curves in R™. We topologize £ with a metric d as

follows. For T, I'' ¢ @, a(C,0') = inf{|ly-y'|l ]} where

[-Hm is the usual sup-norm and where ¥ and y' 7run
over all possible homeomorphisms of Sl with T° and It

respectively,

PROPOSITION 3 - The set of Jordan curves for which the

solution to the Plateau problem is unigue

is dense in @&.

Proof: The polygonal Jordan arcs are dense in i, and so
it is sufficient to show that we can approximate

any curve of this type, arbitrarily closely, with an arc
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of uniqueness. Let I', therefore, be a polygonal Jordan
curve. Let v € R" be a non-~zero vector which is not
Perpendicular to any of the sides of T y and consider
the hyperplanes H, = {x ¢ rR™: (x,v) = s} for s € R.
Let s = max{s: H.NT #g¢}. Then Hson I' consists of
a finite number of vertices of I'. Withaut loss of
generality we may assume that éhe angle of each vertex is
a rational multiple of 27, Thus, near each vertex, any
solution §: A 4+ R™ of the Plateau problem for I' can
be continued as an analytic, branched minimal surface, by
the Reflection Principle. It follows that for £ > 0O
sufficiently small, the hyperplane Hso-E will intersect
the surface § in embedded analytic curves near the
vertices Hson .

Consider now the surface wlﬁs where 4, =
={z¢€ A: {¢(2),v) = s, - €} and set Te = w(aA ). We
claim that Pé is a curve of uniqueness. Clearly ¢[A
is .a Solutlon to the Platean problem for F « Suppose
that ’@. ﬁe f Rr™ were another. By Theorem 3, ¢ is

analytic along the segments ¥(A) N H We continue

s,-€ °
the surface © +to an area minimizing surface for I' by
gluing on {|(& ~ AE) with a piecewise smooth reparame-
terization. If the tangent spaces of the two pieces

(whlch are deflned everywhere except 90351b1y at _solated

p01nts) do not agree at each point of the "seam", it is
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possible to make a deformation to a surface of smaller
area. Hence, the surface ¢(AE) is a Cl continuation
of the surface ¢(A ~ AC)' From the minimizing property
it is, in fact, an analytic continuation. Thus @ = ¥
in A. , and we have uniqueness. Clearly, as & =+ O,

£

we have that FS + T in #, and the proof is complete, O

One might now conjecture that the curves of uni-
queness form an copen set in fA. Unfortunately, they do

not, and in fact, we have the following.

PROPOSITION 4 - The set of Jordan curves for which the

solution to the Plateau problem is not

unique is dense in 8.

Proof: Let I € B be a polygonal curve and let Hs be a
‘sequence of hyperplanes chosen as above. Let PO
be the curve illustrated in Figure 9 and for £ > 0 sef
€T, = {ex : x ¢ FO}. Let p€&€ T N H,  be an extreme
vertex, Then for each € » 0 we caqotranslate the curve
EPO c R C Rn. to the half-space [xtean: {x,v) > so}
and attach it to F_ at p by a pair of straight lines
of length €. (See Figure 13.) Call the new curve Lo
By Courant [2, Lemma 3.3] there aréitwo miﬁimal surfaces

with boundary r€~’ one of which, b} the methods of Léfy-

(1], will be a minimum. Using the continuity of;hérmonic‘
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surfaces with respect to the boundary, one can easily
adjust PE so that the two solutions have the same
(minimum) area. {Change the size of one set of disks in

CPO .} Again, as £ o O, PE T in 8. O

Figure 13

It is an open question whether the curves of uni-
queness are generic, that is, whether they form a set of
second category in f#. It would als¢o be interesting to
know if, in the set Bl of regular Jordan curves of
class Cl with an appropriate "Cl-topology", the set of

-
curves of uniqueness is open and dense,

§6. Conditions for the solution to be one-to-one

The solution surfaces given in Theorem 1 will, din

general, have self-intersections, In faect, if I is,
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say, a knot in RB, every solution must have sef-inter-
sections. Nomnetheless, it is reasonable to expect that
if I’ 4is not too badly behaved, the minimizing surfaces
for T' will be embedded. Following the work of T. Rado
we shall give a set of geometric conditions on I' which
will gaurantee that the solution of Theorem 1 is not only
embedded, but free of branch points and unique.

More specifically, we shall prove the following.

THEOREM 5 - (Rado [2]). If the Jordan curve I € R has

a one-to-one, convex projection onto a plane

RZ cC Rp, then the solution to the Plateau problem for T

is unique, free of branch points, and can be expressed as

the graph of a function f: Rg -+ Rnﬁz.

Proof: Let T: R" = Rz be the (perpendicular) projection
map, and let §: & » R® be a solution to the
Plateau problem for ['. Since uW(') is convex, we
clearly have that ﬁfc(F)o] = C(HEF])O = the domain D
bounded by w[l] in R?. (C(X) = convex hull of X.)
Therefore, by Corollary 1.2 we have that Tey: AO » D

and Te § |34 is a homeomorphism of dA with 3D = n[T].

We shall prove that the differential d(me §) is non-

singular at every point of AO, and thus, we § is a

local diffeomorphism, This implies, by a monodromy

argument, that Te § is a homeomorphism of A with D
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(and a diffeomorphism in the interior). Consequently,
the map ¢ is non-singular and one-to-one. Furthermore,
the surface can be expressed as the graph of a function

£f: R> 4 R®2

, i.e., as the set {(x,y,fj(x,y),ann(x,y)):'
(x,y) € D}. Taking the BEuler-Lagrange equations of the
area integral for f, we see that f must satisfy the

equation:

XX

2
- 2{fx,fy)fxy+(l+|fx] )£ =10 .

(2.19) (1+[fy|2)f. vy

Uniqueness is then proven by applying the maximum prineci-
ple (ecf. Courant and Hilbert [1, p. 326 £f.]) to the
coordinate functions of f,

To establish the claim ﬁade aﬁove, we shall prove
a fact of independent interest. For each non-zero vector

v E Rn and each real number s, we define the hyperplane

Hv,s = {x e R™: (x,v = s} .

We then say that the hyperplane Hv s has kth—order

3

contact with the surface {: A + R at P € AO if

1) (§(p),vy = s
ot ‘

2) G—ézi—w (p),v) = 0; for 0=24i+ j=4 2%k .
dxayd

;Observé that, since | .is almost conformal, either.
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gx(p) and %%(p) are linearly independent or they both

vanish. If they vanish, then every hyperplane H

VS

which contains ¢(p)' has lSt-order contact with | at

p. Otherwise, Hv s has lSt-order contact with ¥ at
! .

p if and only if it contains the tangent plane to | at

D.
The fact we shall need to establish our claim is

the following.

PROPOSITION 5 - Let ¥: A 2 R® be a solution to the

Plateau problem for the curve I, and

suppose that the hyperpléne H% s has kth-order contact
A ]

with § at pE€ A®. Then, if H, S;JI‘, the set T NH_

B R K ]

3 =3

has at least 2k+2 components.

Proof: Consider the harmonic function f on A given by
£ =(y,v) - s, Letp=( xO'YO)‘ and set § = x-Xg
n=Y¥Y-Yg * Since f is real analytic, it can be expresgsed

in a neighborhood'of p as

) -]
f(E,mMm) = & P, ’
(g,m) En (&)

where each Pj is a homogeneous‘polynomial of degree Jj,
and where m 2 k + 1 with P # 0, From the fact that
Af = 0 it follows that AP = O. Thus, setting (' =

£ 4+ in, we have
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it

Pu(C) = aRe{c™ + bIm{c™

cRe{engfﬂ

for cﬁnstanfs a, b;‘c, 8., It follﬁws that'any suffi-
ciently small neighbothOd of P 1$ d1V1ded by the zero
set Z = {q‘é A:,f(q)-= 0],_11ke a pie, 1nto 2m regions
such that ‘in any two adJacent regions f has opp031te

signs.

Thc._ be I‘IQVI.Qf' ; o-F _ Geﬁ_e.}a! Pu‘i‘ure
near p ' 5 . ?$4fha'sc? z
‘7 Figure 14 |
We asseff'that,thé-set C .= d N-Z meets the

boundary 8A din at least 2m éompoﬁents. In partlcular:
each compbnent‘ C#l of ¢ must have the property that
aC n 34 contains an open interval - of BA. Ir thls were
not so, we ‘would have f[aC = 0, and by the max1mum
Principle for hafmonic functidns.Lf'nwould vanlsh'iden-
tiCélly on the region .C-. It follows from analyt1c1ty‘

“that f = 0, and so 'Hgf‘ oo’ P _contrary to assumptlon.
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It is now easy to see that each of the wedge-like
regions of C in a nedighborhood of p must belong to a
distinct component of C, Hence, ¢ has at least 2m
components. This implies that dC N 34 and, therefore,
alse BA ~ C =3A N Z have at least =2m components,
Since ¢|3A is monotone, the proposition follows

immediately. O

To complete the proof of the theorem we proceed as
follows. Let p & 2% ana suppose that the rank of
d(me y) at p dis =1, Then there exists a line 4 C R®
through the point me §(p) such that 4 contains the
vectors (mey) (p) = m(¥ (p)) and (me¥),(p) =
= n(wy(p)). We see, therefore, that the hyperplane
H = ﬁ-l(é) has first order contact with § at p. How-
ever, HNT = two points, since Tm(I') is convex and
m|T is one-to-one, This contradicts Proposition 1, and
we conclude that d(me{¢) has rank 2 throughout AO.

This completes the proof. 0O

There are some further consequences of Proposition

5 worth noting here.

'COROLLARY 2 - Let I be a Jordan curve in R" and

suppose that through every peint p € G(T)O

there passes a hyperplane H such that HN T has at
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most 3 components. Then every solution to the Plateau

-

problem for T (of the type of the disk) is free of

branch points.

By Theorem 2 this statement is superfluous for so-
lutions to the Plateau problem in RB. However, for

. n . s -
general minimal surfaces in R it is non-trivial.

COROLLARY -3 -~ Let [ c R™ be = Jordan curve and suppose

§: A 9 R is a solutiom to the Plateau

problem for I'. Suppose .that ' is not contained .in any

hyperplane of [RY, Then through every point ¢ (p), for

D E AO, there passes a hyperplane H such that H A T

n;lj components.

has at least 2[

Proof: Let p ¢ AO and consider the vectors

(2.20) ~§jﬁj£—-(p)' L=43i+ jsm,.

Bxi ayj '

1A
1A

Sirice V2¢ = 0, all the kty order derivative of

are identically equal to <+ akw/axk or & Bk¢/ak-lxay.
Consequently, the linear space spanned by the vectors in
(2.20) has dimension = min{2m,n} . Thus, if 2m = n-1,
there exists a hyperplane =H through ¢(P) containing
these vectors, i.e., having mth-order contact with | af

p. The result now follows from Proposition 5. O
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CHAPTER IIX
COMPLETE MINIMAL SURFACES IN R"

In the last éhapter we examined minimal surfaces
with boundary in R" and obtained what might be consi-
dered a local existence theory for minimizing surfaces.
It is natural, from a gecometric viewpoint, to pass now
to infinite minimal surfaces and try to study their
global geometric behavior (in analogy, say, with studying
the behavior of infinite geodesics)}. Or course, we already
know that no minimal surface in R" can be compact, so
we shall restrict attention to those (non-compact) mini-

mal surfaces which are complete in the induced metric. .

§1. Some examples

-

That there efisi a sufficient number of such
surfaces to make the study interesting will soon be.
evident. However, as reference points, we mention here

3

some important examples in R”.

EXAMPLE 1 - The Plane, R> C R-,
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EXAMPLE 2 - The Gatenoid. This is described by revolving

the catenary =z = cosh(x)

about the x-axis in (x,y,z)-space.

'+ 3‘ = cosh *(x)

EXAMPLE 3 - The Helicoid.:  This is generated by revolving

& line, perpendicular to the
z=axis, about the z-axis, while moving the line in the
z-~direction, both at constant speed.

2 |

I

__E_____:_
——
/

d

ytanz = x
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EXAMPLE 4 - Scherk's surface. This is a doubly periodic

surface, invariant by the
translations (x,y,z)+> (x + 27,y,2z}) and (x,y,z)+
{(x,v + 2m,z). The interior of a fundamental domain of
the surface can be expressed as the graph of the function
z = log(cos x/cos y) in the sguare: |x| < m/2 and
|x| < m/2. This function goes to « as (x,y)= (tn/2,y)
for |y| <m/2 and goes to -=» as (x,y) =+ (x, #n/2)
for [xl < /2. The resulting surface assumes the four
lines |x| = |y| = 7/2 as boundary. The surface can
now be continued indefinitely by feflection (cf. Propo-

sition IT.2).

\

A

Z
. _ COS# € = CosX

EXAMPLE 5 = Enneperts surface. This surface is given

analytically by the

equations:
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33

W=

x = Re{w - w

¥ = Re[i(w + % w3)}

z = Re{wg}

where w ranges over the complex plane €.

-

EXAMPLE 6 = Schwarz surfaces. These surfaces can be

described as follows.

3 such that

Let I' be a L4-sided polygonal curve in R
each vertex angle is of the form ﬂ/(ki+1), where
kl""’kh are positive integers. Let I = §{(A) be the
sclution to the Plateau problem for I'. By Theorem II.5
and Proposition II.2 this is a unique, embedded surface,
regular at the boundary, and can be c'ontinued indefini-

tely as a regular minimal surface by‘reflection across

the boundary edges. If k., = ... = k4 = 2 and if

N ¥4

the edges are of equal length, the resulting surface is

an embedded, triply-periodic surface. Its conjugate

t

surface (See below.) is obtained similarly from symmetric

polygon wherel k, = k3 =1, and kp = kK, = 2.
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This surface is also friply periodic and embedded.

NOTE. = A.H. Schoen has discovered. that "between® -these
;

two (i.e., as an associate surface of these two)
there lies a third embedded surface, having a 3-dimension -

ai skew lattice of symmetries and containing no straight

lines. (See the picture in Osserman [51.)

§2. Non-parametric surfaces; the Bernstein Theoresm

One of the simplest ways to express 2 surface in

Rn is in non-parametric form, that is to say, as the

graph
Qf = {(X’stB(x’Y)i'--:fx-l(st))= (X;Y) € Ul

of a function f: UC rR> 4 g%, Any regular surface

can be locally expressed in this manner, by using the
tangent planes for example. By computing the Buler-La-

-grange equations for the area integral
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se) = [ [/ B Gae 1) - (e )7 axay
u

we see that the surface Qf is minimal if and only if

(3.1) (1+]f‘yf2)fxx - 2(fx,f‘y)fxy + (1+ffx|2)fyy =0

Note that irf Qf is minimal and U is convex,
then, by Theorem II.5 and the maxinum brinciple, Qf is
the unique solution to the Plateau problem for an .

A . n .
Therefore, every regular minimal surface in R is

locally minimizing.

Equation (3.1) shows that the study of non-para-
metric minimal surfaces is, in fact, a tspic in quasi-
linear partial differential equations. A great deal of
interesying work has been done in this area (for surfaces
of dimension 2 and higher), and we refer the reader to
Osserman [5], [6] for a discussion and an extensive
bibliography.

In keeping with our global point of view, we shall
restrict our attention here to the following question:
What can bhe saia about a non-parametric surface Qf when
f is defined over the entire (x,y)-plane?

In 1915, S. Bernstein proved the following for the

case of surfaces in RB.



-107-~

THEOREM 1 - (Bernstein {[3])}. If f: R® 4 R is a function
3

whose graph Qf C R is a minimal surface,

then f dis linear.

This result is a beautiful, non-trivial example of
a global theorem in non-linear, partial differential
equations, and much work has been devoted to trying to
generalize it. Since we shall prove cne such generali-
zation later in this chapter, we ‘omit & proof here.
(For the interested reader, an elegant proof of this case
can be found in Osserman [5].)

Observe that Theorem 1, as stated, does not hold
in higher dimensions. In fact, if ©: C -+ ¢ is any

entire holomorphic function, then the graph

{(z,0(z)) € ¢%: z ¢ €)

2 b

of ® in € =R is a minimal surface, as pointed out
in Chapter I, §6. (A classification of all possibilities
for the case n = 4 can be found in Osserman [5, pp. kO~
427.) At first this may seem to say that no generali-
zation for Z-dimensional surfaces in R" exists. This
is far from true, but to find the proper statement it is
necessary to express Theorem 1 in a slightly different
way, namely: If I dis a complete minimal surface in R3
all of whose normals make an acute angle with some fixed

1
direction, then % is a plane.
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\ This last statement turns out to be a special case
of a much more spectacular; and more gepmetrie_fhebrem.
However, before discussingthat theorem we need to es-

tablish certain basic concepts.

§3. General minimal surfaces; the Gauss map

Let §: M+ R® be an immersion of a connected,
orientable 2-manifold. (For cases where M is non-orien-
table we pass to the 2-sheeted,orieﬁtable covefing- sur-
face.) By Theorem IG, Ch. II, we know that-at each
PEM tihere exist local,coorQin;tes (x,y) in which the

metric induced by ¢ has the form.

(3.2) | ds? < 2F|az|?

_where z = x + iy. Clearly the coordlnate transformatlon
between any two such coordlnate systems is either confor-
mal or anticonformal. By orientability we may chose an
atlas 6f-5uch coorﬁinateé where the transformations are,

'in-fact,‘conformal, thereby making M 4into a Riemaﬁn

surface (or complex manifold of dimension 1). In view of

this, we can {(and will) assume that M is a Riemann sup-
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face and the map w: M A RP is conformal.

Assume now that the immersion. B is minimal. Let

z be a local coordlnate on M, where the 1nduced metric

is given by (3.2). Then the Laplace-Beltrami operator is

expressed in these coordlnates_by

([

| o
91a
N .
n1n
N

(3.3 - o

1

: - d - 3
where o = 7 (33 = 1
lary I.L), we have

. . 4 d o
We now consider the local‘dnavalued-function

@,,..-,®,) defined by

(3.5)" - 7 ® =57

From Equatlon (3.4) it is clear that each mk is holo-

morphlc in | zZ. Furthermore, since |¢ | |¢Y]2 -

_‘21(¢x;¢y) and since the induCed metric is given by

2 . _ 12 _
i'ﬁxl = 2F, 'gyy = H‘.y.l -,2F, gxy = <"l‘x’¢y)
we have
) n .
(3.6) cpz = & Cplzc = 0
C . k=1
. - : . n
(3.7) Clel® = E o | = F

}. Hence, since Ay = 0 (Corol-
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Equation (3.6) is exactly the condition that T be
conformal.

Ubserve now that if we make a change of (conformal)
coordinates w = w(z) on M, the new function F(w) =

= d} /dw satisfies

(3.8) ¢(w(z)) = o(z)o {ﬂﬁ
Thus,

(3.9) a = (ag,ee,a)

where ak = mkdz, is a set of n holomorphic differ-
ential forms, globally defined on M,

In particular, it follows from (3.8) that at each
point p € M, the vector 9 gives a domplex line in Gn,
defined independently of the choice of local coordinates.
(Note that ®» £ 0 by (3.7).) From this and from

Equation (3.6) we see that we get a well defined, holo~

morphic mapping

n-1
(3.120) F: M Q,_, < CP

into complex propective space CPn-l, such that the image
lies in the algebraic subvariety Qn 2 which is given in

homogeneous coordinates by the equation
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In order to interpret this. map geometrically, we
first observe that the manifold Qn-2 is naturally
diffeomorphic to the Grassmann manifold G°(2,n) =
= s0(n)/s0(2) x SO(n) of oriented 2-planes in R>. To
see this, let R2 c R® be a 2-dimensional, linear sub-
space and choose an (oriented) basis {vl’VB} for R”
such that |Vl] = Iv2| and (vl’v2> = 0. Then the
associated complex n«vector w = v. + iwv satisfies the

1 2

equation W = 0. Furthermore, if {vi,vé} is a similar
basis with the same orientation, then its corresponding
complex vector w! = a.w for some o € €~ {0}. Hence,
to each Rz c R® we have associated a unique point in

manifold @ This correspondence is bijective and

n-2"°
easily seen to be a diffeomorphism if G°(2,n) is given
the usual differentiable structure as a homogeneous space.
Note that if §: M 4+ R™ is a surface as-above,
and if =z = x + 1y 1is a local coordinate at p € M, then

{ﬁx(P): $y(p)} form jusﬁ such a basis for w*TP(M) c r™.

Hence,
(p) = $£(p) = ¥, (p) + 1¥,(p)

is an exact expression of the above correspondence. The

resulting map

F: M o e, _,

is called the Gauss map of the surface,
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Note that an immersion §: M + R" is minimal if

and only if its Gauss map is antiholomorphic, Since holo-

morphic functions are more commonly considered:than anti-

holomorphic ones, we shail,;fof‘minimal-surfaceé, replace

8 by the conjugate map & - (of Bquation (3.10)) and from

here on refer tb-this second ﬁap as the Gauss map. “

REMARK 1 - In the case n = 3, it is more common to defi-
ne the Gauss map of a surface ¥: M = RS by

assigning to each point p € M the unit normal vector
| SN | '
x ¥ (p) € s*cr’ .

(3.11) N(p) = —
v

Y

The above map ] instead assigns to p the tangent plane

‘[‘Px(P) + iﬂly_(pjl ¢ g < op?

which is perpendicular to N(p). However, one'can easily

chéck that the map 82 - Ql which assigns to each

2 . .
63 € 5 the plane £el + 192] € Ql, such that

{el,eg,eB}_ is a positively oriented, orthonormal basis

of RB, is a conformal diffeomofphism. Thus, in R? we

also have that a surface J: M o RB is minimal if and

only if the (other) Gauss map N: M = s® is anticonformal.

Observe now that if f: Ma R" is a minimal sur-

face whose Gauss map is expressed canonically by the
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differential forms Qqy,eee 0y (cf. Equation {3.9)), then 1
the original surface can be recaptured by setting !

Z

(3.;2) ¢k(z) = 2Re{Ja a s ko= 1,000 .

in fact, from this point of view we have a method for i
generating all minimal immersions of M into Rn. Let
al,...,az be any n holomorphic differentials which

satisfy the relationss: z ai =0 ’(i.e., locally, &, =

k
2 2 .
= CPk(z)dz and I o = 0) and Elccn] > 0, {;and which ’?
have no real periocds on M:} Then the mapping
Vo= (¢l,...,¢n) whose coordinate functions are given by

(3.12) will be a minimal immersion. In this way, it is
easy to explicitly write down a great number of minimal
surfaces in rR". “

. For the case n = 3, in particular, it is possible

to give a simple description of all solutions to the

equation ai + ag + ug = 0. Assume that we do not have
the case a, = 0, and 04 = 0. (Here (M) dis a plane.

This case is easily avoided by a rotation of coordinates
in RB.) We than define a holomorphic differential W

and a meromorphic function g on M by

(3.13) a .
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Locally, if ak = $k dz, then w = fdz where f 4ig a

holomorphic function and

1]
(3.13) %,
g = T
1 - 39,
We then have that
2
a, = E-(lwg Jw
(3.14) . 0y = 3 (1+g%)w
C[.:3 = gZw

Conversely, let 8t Mo € be a meromor phic
function and let w be a holomorphic differential on M
such that whenever & has a pole of order m at a point
PE M, w has & zerv at p of order 2n.- Then, if the
ai's defined by (3.14) have no real periods, Equation
(3.12) defines a minimal immersion Y: M 4 RO,

The equations (3.14) are called the Weierstrass

representation of minimal surfaces in RB. This repre-

sentation makes it easy to write down an enormous number
of complete minimal surfaces in BB. For eiample, if we
set M =€, w=dz ang g(z) = 2, we get Enneperis
surface. If we set M = ¢ ~ {0}, w= (l/zz)dz and

g(z) = z we get the catenoid.
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It will be convenient, for later use, to make some
geometric observations about the Weierstrass representa-
tion., Choose a local ceoordinate =z on M, and write
Oy = mkdz and w = fdz as above. Then the metric on M

has the form d52

2F]dz|2 where by (3.7) and (3.14)

(3.15) F= (1 |e]®)®e]?

Obsgerve that the function g can be thought of as a con-

82. In this sense, g is

formal map g: M+ € U [«}

exactly the Gauss map of the surface in the sense of

Remark 1. In particular, let N: M - 82 o R3 be the map
defined by (3.11) and suppose TT: 82 ~ {(0,0,1)} -» Rz is

sterecographic projection into the (x,y)-plane. Then
(3.16) g =me N .

To see this, we note that 8¢/3x - id}/dy = 2(ml,m2,m3),
and therefore, '

g—‘f{ X % = 4Tm {(@253, CPBCBJ_’ CPlC_P2)} =
= (1+]8]%)|£]* (2Re(g),21m(g), |e|*-1).

Hence,

N =—L - (2Re(g), 2Im(g), lg|® - 1)
l+lg]

and

me N = (Re(g), Im(g)) .



-116-

(The fact that g 1s conformal, and not anticonformal,
is due to the fact that the projection T is here anti-
conformal, )

Equation (3.16) means that the pules of g ococur

exactly at those points p € M where N(p) = (0,0,1).

Thus, if the Gauss map N omits at least one point of
‘82 we may, by making a rotation of coordinates, assume
that g has no poles on M (and, therefore, w also
has no zeroes). X )
Let us return now to the general case of a minimal
surface §: M 4+ R® in R™., Reecall that if in a local
coordinate =z on M the metric is eXpressed as

2
d52 - 2F|dz|®, the Gauss curvature K of the surface is

given by -

a_

a log F .

|
n1n
N

(3.17) K= -

NI

We then have from (3.7) that, in terms of the

functions ©® = 3¥/3z, K can be expressed as
| | : 2
(3.18) K = -W_Afgﬂ_
|e ]

2 2 2 2 2

where [® A @' = [p]|%[o'|" - |(9,9}]|% = & ICPiCPE-CPJCPil-
i<j

We introduce on CPn-l

the Fubini-Study metric
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(c¢f. Chapter I, §5). We have renormalized the metric
here (a factor of 2 instead of 4) so that the induced

metric on the guadric Ql is of constant curvature 1.

The equiwvalence, S2 ~ Ql, of Remark 1 is now an isometry.

Each of the linear subspaces CPlC GPn_l now has curvature

2, and volume 2T.
It is easy to see that the metric d02 induced .on

M by the Gauss map $: M » O, _5C ¢P™ 1 has the form

(3.20) : ac? = 26|az|?

where

2
| G:ML—

||
Hence, as a generaliiation of the classical case in RB,
we have
d02
K= - % .
ds

Letting C(§) denote the total curvature of M and A(®)

the area induced by the Gauss map, we see that therefore
(3.21) o(¥) = - A(2) .

It follows from Equation (3.18) that K = 0 and
that either K= 0 or K = 0 at isolated points. We

observe that the case K = O is quite special.
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LEMMA 1 - Every flat minima’l surface in R" is a plane.

Proof: If K

r

0, then by (3.18), ® A @' = 0. Therefore,

©'(z) = h(z)o(z) where h is a holomorphic
z
function. It follows that 9(z) = e'[ h(Z)dZ-C = g(z).C
where C = (C,,...,C_) 4is a constant vector in ¢™. The
1 n

~

lemma now follows from Equation (3.12)., O

NOTE. Lemmé 1l can also be proved by observing that from
the Gauss curvature equation, the surface must be

totally geodesic. This second argument also shows that

every rlat k-dimensional minimal submanifocld of Rn is a

k=-plane.

$4., Conjugate minimal surfaces

Let §: Ma R be a minimal surface where M is
simply-connected. (If M is not simply~connected, we
pass to the universal covering surface of M.) By the
Koebe Uniformization Theorem (cf. Springer [1]), M is
conformally equivalent either to the complex plane € or
the unit disk 4° = {z ¢ ¢ ; |z| < 1}. Hence, M has a
global parameter =z in which the Gauss map can be

expressed by
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= (Pyreeen ) = o -
The original immersion can be written as
Z
¥ = 2Re{ f pd=z} .

For each ©, 0<£ @& <1, we define the mapping

we: M R" by
. z
(3.22) Vg = 2Re[e*®/  @az} .

Since g = dwe/dz = e1q$, we have that mg = 0 and

Ime|2 = |w[2. It follows that each of the maps ¢, is a

minimal immersioin isometric to . They are called the

associate minimal surfaces te Y. The particular immer-

sion ¢n/2 is called the conjugate minimal surface,

since its coordinate functions are the harmonic conjuga-
tes of those of V., .

While the associate surfaces are all isometric,
they are usually not congruent. The classic example of

3

two conjugate surfaces in R are the catenoid and the
helicoid. A picture of the family of associate surfaces

joining them can be found in Struik [1).
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§5. The generalized Bernstein theorem according to

Osserman

One way to phrase the classical Bernstein Theorem
given in §2 is: Any complete minimal surface in RB, all
of whose normals are contained in a fixed, open hemisphere
of 82, is a plane. It was conjectured by Nirenberg that
this statement might generalize to the following: The
normals to a complete minimal surface in RB, which is
not a plane, are dense in 82. A proof of this was glven
by R. Osserman in 1959. The theorem was then generalized

by Osserman, and also by $.S. Chern, to surfaces in

higher dimensiomal euclidean space as flollows.

THEOREM 2 - If the normals to a complete minimal surface

in R®"  omit a nejighborhood of some direction,

then the surface is a plane.

Before proceeding to a proof we shall interpret
this statement in terms of the Gauss map defined in §3..
Let §: M+ R" be a minimal surface, and let
v o= (vl,...,vn) be any non-zero vector in Rn. Then for
any p € M, v is normal to the surface at {(p) if and

only if (V,¢x(p)) = (v,¢y(p)) = 0, that is, if and only
if
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(3.23) (v,o(p)) =0

where ¢ = d3)/3z is the Gauss map. Conversely, the
normals to M omit a neighborhood of v if and only if
there exists an £ > 0 such that at every point

" 2 2
W) <v’¢x) = 82 and _ﬂIL— = 82

v 1# 14 1° lwl® 1y, ®

that is,

(3.24) —Liféﬂll;— = g2,
|v1% e
(Note that (3.23)land (3.24) are independent of the
length of v and of the local coordinates chosen on M.)
Equation (3.23) can be interpreted by saying that
the image of p wunder the Gauss map d: M Q _,C ep™1
lies in the hyperplane (1inear subspace of codimension-

one) of CPn-l, determined by the equation

vlzl + aee + vnzn = 0

in homogeneous coordinates. Similarly, Equation (3.2&)
says that the Gaussian image omits a neighborhood of this

hyperplane.

We shall therefore rephrase our theorem as folldws.

THEOREM 2' - If §: M- RY is a complete minimal surface,
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which is not a plane, then the Gauss image & (M) of M

in cp?-t ‘meets a dense set of hyperplanes.

NOTE. This is slightly stronger than the first statement.

It says that if §(M) is not a plane, then §(M)

comes arbitrarily close to any hyperplane £ Vg, = 0,
not just those where vl,...,vn are real.

Froof: Let v = (v,,...,v.) be a unit vector in ¢ ,
—_— 1 1

and assume that the Gauss map satisfies Equation
(3.24). We shall show that the Gauss map must be
constant.

We begin by lifting { +to the universal, confor-
mal covering surface ﬁ of M. By the Koebe Uniformi-
zation Theorem, M is conformally equivalent to either

the sphere 82, the open disk A° = iz € C : ,zl < 1},
or the plane €., The first case is ruled out by Corollary
I.1. (Every harmonic function on s?% ig constant.) The

second case is eliminated by the following

LEMMA 2 - (Osserman [4]). Let #: 4° 4 R® be & minimal

surface whose Gauss map @ = df/dz satisfies

(3.24) for some vector v € ¢™ ~ {0}. Then this surface

is not complete.

'

To prove the lemma we will show that the distarice

*

from O +to 34, in the metric induced by { on AO, is
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Finite.
Recall that this metric has the form d52 =

= 2lo|%[az|? wnere by (3.28), o]® = (1/6%) (v, |2,

Hence, if ¥ 1is any shooth curve in A, beginning at 0

and going to the boundary, then

(3.25) length(Y) = (ds = (

Y Jl'Y

V2lo] ozl = L [1(v,09 | |as]
Y .

We now consider the holomorphic function w(z) =
= JEZ {v,p{z)¥dz . Since {v,®) is never zero in A°
(by (3.24)), this function has an inverse =z = Fw)
defined in a disk about the point w = 0. Let R be the
radius of the iargest such disk. Clearly, R < =, since
otherwise F would be a bounded entire function and,

’
therefore, constant by Liouville's Theorem. Hence, there
exists a point W with Iwo| = R such that F cannot
be extended to a neighborhood of wo . Let
£ = {two: 0Os t <1} and set ¥ = F(4)., Then VY 4is an

analytic curve in A°® which begins at © and goes to

the boundary.
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Moreover, we have that

N

fl<v,cp>||az| - fldwl =R .

v 4
It follows from (3.25) that ¥ has finite length and,

therefore, the metric in A° is not complete.

Note that if the metric on M is COmpleté, then
so is the omne on the universal covering space M. We
-may conclide from the lemma, therefore, that M is con-
formally equivalent to C.

Consider now the holomorphic mapping
® = (P 0000 ): € € (the 1ift of ® = d/dz to B ).
For each k, the entire function mk/(v,w) satisfies the
inequality

2 .
Pxc o} ® 1

=

(vw) vy |2 €72

1A

by (3.24), and is therefore identically equal to a cons-
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tant c, . It follows ‘that ¢ = (v,tp)(cl,...,cn), and so
w A ' = 0. By (3.18)}the Gauss curvature is everywhere

zero, and thus by Lemma 1, the surface is a plane. O

Thé basic idea of the above proof is that if M
is a complete minimal surface in Rn whose normals are
bounded away from some direction, then M dis conformally
large, i.e., M= €. One can now apply the Libuville

Theorem to the Gauss map and corrclude that M ‘is flat.

A second approach to understanding this theorem
can be found in the following, more delicate result due

to Osserman L4} (and stated here without proof.)

THEOREN 3 - Let {: M - R" be any minimal surface all of

whose normals make an angle of at least

with soeme fixed directiomn. Let d be the distance from

a fixec point p & M to the boundary of M, in the in-

duced metric. Then the Gauss curvature KP at p sa-
tisfies

16(n-1)

Ik | =Ly =
P d° sin"(a)

let us restrict our attention now to minimal
surfaces in RB. Note that if $: M = R3 is minimal,
/ o
then its Gauss map %: M+ Ql = 3 is an open mapping

(since it is holomorphigé. Consequently, when the surface




~126-

is complete, the set 82 ~ @(M) is closed and nowhere
dense. One might conjecture that this set is, in fact,
finite, Whether this conjecture is true or not is still
unknown, However, as we shall now see, it is very close

to being true.

DEFINITION - A Riemann surface M is called hyperbolic
if there exists a non-constant, negative
subharmonic function on M. A closed set C c S2 is then

said to have positive logarithmic capacity if 8%~ ¢ is

hyperbolic, and =zero logarithmic capacity otherwise, Fini-

te subsets of 82 have zero logarithmic capacity, but
the converse is not true.

A full discussion of this subjeet can be found in
Ahlfors and Sario [1]l. For our burposes, however, we will

need only the following characterization.

LEMMA 3 = Let D be a domain in the complex plane

¢ = s?~ {»}. Then s®~ p has zero logarith-

mic capacity if and only if the function log(1+|z|2) has

no harmonic majorant in D.

Proof: If there exists a harnonic function h in D such
2 .
that log(l+|z|“) < h, then -n is a nesative
harmonic function om D. If h 4is constant, 1ﬁen D is

bounded and the function h = Re{z-R}, for R Eufficient-
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ly large, is neon-~constant, negative and harmonic cn D.
it follows that D is hyperbolic and SZ ~ D has po-
sitive logarithmic capacity.

Suppose, on the other hand, that D is hyperbolic.
Then there exists (see Ahlfors and Sario L1, IV 6 and
Iv 22].) for each ( € D a Green's function with a pole

at (, that is, a positive function G, (z) with

C
GC(Z) + log|z-{| = h(z)
where h is harmonic in D. Since Gﬁ is positive, we

have

log|z-(| < n(z) .

Observe also that the function log((1+|z|?)/]z~¢|?) 1is
continuous on S” ~ D and thus assumes a maximum M < =

on this set. It follows that for any =z' € 3D we have

-

E. [log(1+]|2]?) - 2n(z)]

= Iim [log(l+|z|2) - 2 log|z-C|] = M.
z+ !

Applying the maximum principle to the subharmonic function
2
log(l+|z|2) - 2h(z) then shows that log(l+|z[”) =
£ 2h(z) + M., O
We are now in a position to prove

THEOREM 4 - (Osserman [2]), A complete minimal surface in
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R3 is either a plane or its normals assume every direct-

ion in 82 with the possible exception of a set of lo-

garithmic capacity =zero.

Proof: Let U: M - R3 be a complefe minimal surface
where, by passing to the universal covering sur-

face, we assume that M is simply connected. Since M

is conformally equivalent to eithexr A° or €, we have

a global conformal parameter z. Let f(z) and g(z)

be the functions given in the Weierstrass representation

(3.13)'.

Recall that the meromorphic function g dis just
the stereographic projection of the Gauss normal map,
from the point (0,0,1), into the (x,y)-plane. (See
Equation (3.16) and the attending discussion.) Assume
that the Gauss map omits at least one point p € 82.

Then by a rotation of coordinates we may assume that

P = (0,0,l) and, therefore, that g 1is holomorphic in
M. Set D = g(M) < € and note that since the surface is
not a plane, g dis non-constant and D is open. We
want to show that D 4is not hyperbolic.

If M= ¢, then by the Picard Theorem, € ~ D
contains at most one point, and the theorem holds.

If M= A° sy we proceed as follows. Suppose D is hyper-

bolic'. Then by Lemma 3 there exists a harmonic function
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h with log(l+|z|2) < h(z) in D. Since g is holo-
morphic, he g is harmonic and equals the reai part of

a holomorphic function H in A°. The function G =

= T eH is then holomorphic and non-zero in A° ., (Recall
that f is =mero only at the poles of g.) By consider-
ing the mapping w(z) = 'sz(z)dz it now follows, exactly
as in the proof of Lemma g, that there exists smooth

curve ¥ in ﬂo, beginning at O and going to the .
boundary, such #hat 7

f la(z) ]| |dz] < = .
Y o

However, from Equation (3.15) we see that in the metric

(o)
on A

length(y) = f-JEWfI(;+|g|2)ldzI = f,J§|G(z)||dzl < o
Y Y

This contrédicts the completenss of the surface and

proves the theorem. O

It is known that for any set of k points in 82,
where 1 = k = 4, there.exists a complete minimal surface
in RB whose Gauss map omits.exactly this set of points.
(See Osserman [5, pg. 72].} As.éxampies, note that the
Gauss map of Enneper's surface omits lone point, that of
the catenoid, two points, .and that of Scherk's sﬁrface,

four points ((£1,0,0) and- (0,:1,0}). It is still un-
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known whether there exists a complete minimal surface in
R3 whose Gauss map omits a larger set.

Theorem 4 has been generalized to minimal surfaces
in R" by chern and Osserman [1]. We refer the reader

to their paper for a statement and proof,

§6. Complete minimal surfaces of finite total curvature

Since the Gauss curvature of a minimal surface
noo. - .
f: MR is always non-positive, it makes sense to

speak of its total curvature

c(¥) ; f-[KdA .
M

The complete minimal surfaces for which this number is
finite are the simplest ones geometrically, and this
section will be devoted to their study.

4s noted in §3, saying that a minimal surface has
finite total cufvature is edﬁivalent to saying that its
Gauss image has finite volume (counting multiplicities).
However, whemn the surface is complete even more can be

salid, and for this we need the fiollowing notion.

DEFINITION - Let %: M + R" be a minimal surface. Then
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the Gauss map &: M 4 Qn- is called algebraic if

2
(a) M is conformally equivalent to a compact Riemann

surface M' punctured at a finite number of
points Pysre-sP.-
(b) The map ¢ extends to a holomorphic mapping

dgri M' o Qn-2'

LEMMA 4 - Let §: M = R" be a minimal surface whose Gauss

map is algebraic. Then:

(1) c(4) = -2nN  for some integer N Z 1.

(2) The Gauss map @ intersects at most N-times

enery hyperplane of GPn_l which does not contain

it.

L (with the

Proof: Let ® be the Kihler form of €P"

metric {(3.19)). Let M!' and &' be as given in
the definition above. Then from Proposition I.4 and the
fact that dav = 0, it follows that the area A(g') of
M' in the metric induced by &' satisfies

A(é')=£‘f§'*w= {ﬁ m

P

N-area(GPl) =

= 21N

where N is the homology degree of 21: M' 4 cp™t

part (a) now follows from equation (3.21). (Clearly,

A(2) = a(g").)
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Part (b} can now be deduced using the intersection
theory of Algebraic Topology and the fact that &9(M!)
meets any hyperplane with positive intersection number
because it is complex analytic. We shaill give, hoﬁever,
a more elementary, analytic.proof;

We consider M = M? .. {pl,...,pr} and express the
Gauss map §, canonically, in terms of the differentials
Qyreeesty (ef. (3.9)). The fact that & is algebraic
means that al,...,qn extend to meromorphic Qifferentials
on. M'., If one of the differentials ak has a pole at
some point p € M', we can regularize this representation
of &' near p by dividing by the highest Qrder pole of
the ot's at p. Note that this does not affect the map
into CPn"l. Similarly, if the a's have a common‘ Zero
of some order at p, we can divide out by this zero.

Thus, the extended qis glve a well defined mapping into

cp? and by the above Procedures we can always give

locally a regular . geometrlc representation of the map in
homogenecus . coordlnates.'
Let v = (vl""’vn) € ¢o ~ {0} and consider the
differential
o= vty f see vV
Note that the hyperplane : cpﬁ‘-‘?‘,‘ determ:l.ned by the

equation Z vk e = O, contains Q'(M ). if and only 1f
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a = 0, Suppose Q # 0. Then §' has an intersection
or order k with CPﬁ-z at p &€ M' if and only if the
differential @, after possibly being altered to make
the representation at p .regular geometric, has a zero
of order k at p. The sum of all intersection orders
over M? dis the totél order of intersection N(¥',v) of
1t with CPn-z .
v

Suppose that ¢ and &' are two such non-zero
differentials corresponding to v and v'. Then a/a'
is a meromorphic function on M! and thus has the same
number of zeros as poles,(cf. Springer [l]). Since we
have taken a quotient, the regularization procedures needed
to compute the intérsection'numbers cancel, and it is not
difficult to see from here that N(¥t',v) = N(@’,v;).
Consequently, for all v such that CPE-?;ﬁ gr(M'), we
have N(%',v) = constant = N.

The fact that N = N follows from the integral

geometric formula (See Santald [1].)
(3.26) a{®1) = 2r / N(E',v)dv
‘ cp?t

where dv is the volume element of the Fubini-Study

" metric normalized so that

n_l. c, . -

CcP
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We can now make an interpretation of finite total
curvature in terms of the Gauss map. This theorem (alsa

Theorem 6) was first proved by Osserman [4] in R and

extended by Chern and Osserman [1] to R".

THECOREM 5 - Let : M o R be a complete minimal surface.

-

Then the total curvature C(§) dis finite if

and only if the Gauss map is algebraic.

We shall preface the proof of Theorem 5 with a

sequence of preparatory lemmas.

LEMMA 5 -~ Let D be a domain in the complex plane d,

and let ds* = 12|dz|2 Le a complete riemann-

ian metric on D, If there exists = harmonic function h

15_ D such that

log A = h ,
then either D =C or D=¢C~ {p}] for some p € C.
. s w2 >2 2 .
Proof: Consider the metric ds™ = A [dz] in D where
by h ~d . ,

= e « Then ds is also complete since for

any path y in D,
Tlaz| = | r|az| .
¥ Y

Let D be the universal covering space of D, Then the

1lift of h to D can be written as the real part of a
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holomorphic function H, Consider the function

w(z) = J eH(g )dt_:

Z
[s]

on ﬁ. Since Idw/dzl = IeH| = eh = X, the mapping

Ll

w: D+ ¢ has an inverse defined in a maximum disk A {R)
= {w: |w| < R] about w = 0. It follows from the com-
pleteness of d3° (as in the proof of Lemma 2) that

R w. Hence, w(z) is onto and one-to-one, i.e.

=~ ¢. The lemma now follows by applying the Picard

Theorem to the (holomorphic) covering map 1T D+ DCC.O

LEMMA 6 - Let D be an annular domain 0 < r, < |z] <

<r, e, and let as® = A2|dz[2 be a metric

on D such that:

(a) log » = h for some harmonic function h on D,

(b) each path =z(t); 0£ t < 1 in D with

lim |z(t) |
ta1

T, has infinite length.

Then, T, = @,

Proof: Suppose T, < @, Then by a conformal map of type

Z 3 c«zZ, socme c¢c € R, we may assume Ty < l/r2 <

<1<r,. Set D' = {me 1/1:'2 < |z| < r2} and note that
the metric uz{dz|2, where u(z) = A(z) A(1/z), is

.complete in D!'. Furthermore, 2log u(z) = h(z) + h{(1/z).
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Hence, by Lemma 5, either D =€ or D

¢~ [0}, con-

tradicting the fact, r, < =, L}
LEMMA 7 - Let Dc € be a hyperbelic domain, and letr

d52 = Azldz]2 be a complete metric in D whose

Gauss curvature K satisfies
2259185

(a) K =

© .
j;]r]K|dA < @

Then there exists a harmonic function h on D such

that log M = h,

Proof: Observe that assumptions (a) ana (b) can bhe
rewritten as
2
(at) v 1loga 2z 0O

(b')_ ji[vz log A dxdy < o,
D

Since D -is hyperbolic, there exists for each CED a

Green's function GC > 0 dn D~ {¢} such that
GC(Z) + log [z-C| = Ht(z)

wheré H is harmonic throughout D. (See Ahifors and

c
Sario [1, IV 6 and IV 22].) Set

u(c) = mefe vlogk()dxdy

which exisdts and is =20 by (a') and (b'). By Poisson's
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2 2
formula we have Vv 'U = -7 log &, and therefore h = u

+ log ) is harmonic in D. Since U Z O, h 2 log 2. 0O
We now have the following

PROPOSITION 1 - Let M 'be a complete riemannian 2-mani-

fold whose Gauss curvature K satisfies

(a) K= 0
(v) _f j'[K‘dA < = .
M

Then M is conformally equivalent to a compact Riemann

surface punctured at a finite number of points.

Proof: By a theorem of Huber [1], condition (b) implies
that M 1is finitély connected. Hence there
exiéts a compact region Mo c M, bounded by a fimite
number of regular Jordan curves Yl""’vr' such that
each component Mj of M~ MO can be conformally mapped
onto the annulus Dj ={z€ C: 1< |z| < rj} where Yj
corresponds to |z| = 1. (See Ahlfors and Sario (1,
I 44 D and IT 3 B]l.) The region Dj is hyperbelic since
Ref{l - %ﬂ < 0., Furthermore, the metric on Dj induced
from Mj’ satisfiés the conditions of Lemma 7, and there-
fore also the conditions of Lemma 6. It follows that each
2

 =®w, Let D, =D, U c 8
o © 3 3 U L=l (

means of the maps Mj1§+ Dj we can conformally attach

=¢ U {«}). Then by
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the disks ﬁj to M, and thereby produce a compact
Riemann surface M! > M such that M . M' = {pl,...,pr}.
- O

Proof of Theorem 5: If the Gauss map is algebraic, then

the total curvature is finite by Lemma . On the
other hand, if the total curvature is finite, then by
Proposition 1 the Riemann surface M = M' ~ [pl,...,pr]
where M' is a compact Riemann surface. Let Aj =
= {z ¢ @: |z|'< 1} '5e‘a local coordinate system for M!
with O corresponding to pj, and express the Gauss map
in A.J. ~ {0} by the functions ¢ = df/dz = (col,...,—cpn).
It remains to show that the functions ml,...,mn have at
most a pole at O, The differentials @ = @ dz  will
then extend to meromorphic differéntials on M?, and the
map €@ will extend to a holomorphic map of Mt (via
the “"regularization" procedure discussed in the proof of
Lemma 4),

Suppose that one of the functions mk had an

0. Then for almost all

il

eésential singularity at =

v € Gn, the function (v,p) z V1P would have an
','l

essential ‘singularity at = 0, Hence, for almost all
v, the function (v,p) would assume the value O in-
finitely often in every neighborhood of ©O. Since the

®'s are holomorphic in Aj ~ {0} ana E[mklz = F > 0,



e T g T o I

_139_

this means the intersection number N(%,v) = = for
almest all +v. Applying formula (3.26), we would then

get that A(3') = -C{}) = -», contrary to our assumption.
|

From Theorem % and Lemma 4 we now have

COROLLARY 1 - Let U: M o R® be a complete minimal

surface., Then the tofal curvature

c(y) = -2¥

for some integer N, 0= N £ e,

NOTE. If n = 3. Then c(y) = -bwN, 0 < N £ =, because
when C(y) is finite, the extended Gauss map
g1 M' o Ql is a finite branched covering. Hence,

A(3') = N area(q,) = LnN.

While Theorem 5 is interesting in its own right,
it also allows us to make some deep statements about
surfaces of finite total curvature.

Before proceeding to these theorems we need to
establish an important technical lemma. Let ¢: M - R#
be a complete minimal surface with algebraic Gauss map.
Let M = M' ~ {pl,...,pr} as above, and for each |,
let Aj = {z € €: |z] < 1} ©be a coordinate system for
M! with 0 corresponding to p;. Let © = (wl,...,$n) =

= df/dz be the canonical expression of the Gauss map in



Aj ~ {0} . Sinceé the ¢, 's are meromorphic at 0, we

have

n

2 2 c

(3.27) o] = Z o, |7~ ———

=1 | z]
near zero, where ¢ > 0 and m is an integer. Since
the metric ds2 = EIwJEIdzlz is complete on &j ~ {0},
we must have m = 1.
LEMMA 8 - mz 2,
Proof: Suppose m = L. Then for suitable constants

Clreeesc € C (not all =zero) we have that £, =

= ¢k - ck/z is heolomorphic at =zero. Consequently, the

function
z
Re{ck log =z} = Re{f (mk-fk)dz} =
z
= ¢k(z) - Re{f fkdz}
is a well defined, harmonic function at =z = 0., It
follows that each Sl is real. However, by Equation
{(3.6) .we must have I ci = 0, and therefore ¢, = ... =

=¢, =90, Thus, m.Z= 0, contrary to assumption. [

It is a well known theorem of Cohn-Vossen that if
M is a complete, riemannian.2-manifold of finite total

curvature and finite PBuler characteristic ¥ , then
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f:[KdA £ 2MX. For minimal surfaces a stronger statement
M
can be made. This was proved in Osserman (4] for n=3 and

in Chern-Osserman [1] for general n.

THEOREM 6 - Let §y: M o R™ be a complete minimal surface

with BEuler characteristic ¥ and with r

ends (i.e. boundary components). Then

c(v) = 27 (X-r) .

Proof: If C(¢) = -», there is nothing to prove. If C(ﬁ)
is finite, then by Theorem 1 we m;y consider

M = Mt~ fpl,...,pr} as above, where M' 1is a compact

surface of genus Y. It is straightforward to see tﬁat

X = 2-2Y=-r.

Consider the meromorphic differentials ak = wkdz

(d¢k/dz)dz on M', and for each j 1let m, denote

Il

the maximum order of the poles of o o at pj .

IEEEERL .
One can see easily that for a suitable choice of constants

CpseensCy € €, the differential

o = ClOLl + e + CnG.n

will have a pole of order exactly mj at each point Pj‘
Riemann's relation-(cf. Springer [l]) now.says that if o
is a meromorphic .differential on M! with N =zeroeées and

P poles, then N=P = 2Y - 2. It follows that

' r
N = Zm.+2Y—2§2r+2Y—2=I'-X
j=1 -

P e e
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since, by Lemma 8, each mj Z 2. However, since N =

= N(87,c) where ¢ = (cl,...,c ), we have C(¥) = -27N,

r

and the theorem follows. I

Note that for minimal surfaces the inequality of
Cohn-~Vossen can never be an equality, since r = 1.
Focusing our attention again in RB, we can now

prove a deep result related to the discussion in §5.

THEQOREM 7 - (Osserman [5])- Let {¢: M+ RB be a complete

minimal surface of finite total curvature.

Then if the Gauss map omits more than 3 points of Sz,

$ (M) is a plane.

Proéf: Since the total curvature is finite we may assume
M = M! ~ {pl,...,pr} where M' idis a compact

Riemann surface of genus ¥. Let g and f dz be the
meromorphic functioq and the holomorphic differential
appearing in the Weierstrass representation of the sur-
face. The function g represents the Gauss map and
therefore extends to a meromorphic function on MY, i.e.
to a holomdfphic map

g M! 4 Sz =CU {=o} .
It follows from (3.16) that by making a rotation of coor-
3

‘dinates in R~”, we may assume that
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(a) g has simple poles on M?

(b) g assumes finite values at PpseessPps

The map g: MV 4 52 is an N-sheeted, branched
covering of 82. In terms of local coordinates, g(z)
is a local homeomorphism near =z = 0 if %%(O) £ 0O,
Otherwise: g behaves locally like the mapping 2z = zl+k,
where k is the order of the =mero of dg/dz at 0.
(Note that since the poles of g are simple, g is
regular at these points.} One sees from this that,
counting multiplicity, g assumes every value exactly
N-times.

Let ‘n be the total order of Eranching of g.
Then n 1is the number of zeros of the mercmorphic differ-
ential W = (dg/dz)dz on M*, Since g has N simple
poles, W has N double pocles. Thus, by Riemann's

relation, we have mn - 2N = 2Y - 2, or
(3.28) n=2(N+y «1).

The differential fdz has double zeros exactly
at the poles of g. Furthermore, if =z is a local
coordinate at pj on M', where pj corresponds to

z = 0, then by Lemma 8

2 2,2
= |£]°(1+]g]") ~ ——Egaf
2

e
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where 2 = mj < ®, Thus, . fdz extends to a meromorphic
differential on M! having a pole at pj of order
m‘j B2 for j=1,...,vr (and no others}. From Riemann's

relation we have

I
2N-Z‘m.=2Y-—-2,
J=

and therefore,

(3.29) T+ Y ~152N.

Suppose now that gIM omits k ©points Qireens

2

-1
9, € 8. Then g ({ql,...,qk}) c {pl,...,pr}, and each

qi has;counting multiplicities, exactly N preimages.

At p., g assumes its value to some multiplicity l+0j.

J

Hence,

kN = . .

1 4

xr
J=

1+40.) =
{1+ 3) T o+

nriR

J
However, ZOj = the order of branching at {pl,...,pr}

& n, and therefore,
(3.30) kKeN ZEr +n
Combining (3.28) and (3.30) shows that
keN = r = 2(N +v - 1) .

Adding (3.29) gives
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(3.31) 1-v 8 (3-k)N ,

and rewriting (3.29)as r - N= 1 - ¥, we have

(3.32) - r & (4-k).-N .

Singe M is not compact, T Z 1, and we must have k<4.0

COROLLARY 2 - Let {: M =~ R3 be a complete minimal

surface of finite total curvature. Then

if the normals to M omit three directions, the genus of

M' is Z] and .

]fdeA|§12rr.
M

Proof: Using the above notation, we have r z2 kX = 3. 1t
follows from (3.31) that ¥ £ 1, and from (3.32)

that N = 3. To complete the proof we recall that

{dedA = -bN. O

We now consider the case where the total curvature

is a minimum.

GCOROLLARY 3 - A complete minimal surface in RB whose

total curvature is =7  dis either Enneper's

surface or the Catenocid. (Hence, these surfaces are com-

pletely characterized by their total curvature and their

fundamental group.)




-146-

Proof: Let {: M o R3 be the surface and adopt the no-

tation above. Since N = 1, g: M! 4 S° is a
conformal homeomorphism, and M is conformally equivalent
to 8% ~ {pl,T..,pr}. However, by (3.29), 1 =Nz r +
*+Y-1=ra~-1. Thus, r =1 or 2.

If v =1, then M= €. Tn fact, we may identify
M with g(M) < s® anda assume S ~ g(M) = {=}. Then
g(z) = z, and it follows. that the holomorphic differential
f(z)dz has no zeroes in €. Since fdz extends to a
meromorphic differential on 82, f dis a polynomial in
Z and therefore constant. We have shown that ¢ is
Enneper's surface.

Suppose r = 2, Again we may identify M with
g(M) < s and assume S% ~ g(M) = {m,za]. Then g(z) =

= 7 ‘and the differential f(z)dz satisfies:
P .

(i) f(=z) 4is a rational function in =.
(ii}) f(z) has no zeros or poles in ¢ ~ [zo}.

(iii) £(z) has a pPole of order £2 at z,»

m ,
It follows that f(z) = c/(z-zo) where ¢ £ 0 and
me 2, Since M is complete we must have that for any

e
curve ¥ going to infinity,

el (1] e]?) | as] el i)z Yan] 2. .
[ ¢ [I |21 az|

z-z |

It follows that m = 2 or 3.
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We now show that m = 2 and z, = 0. Let mk =
= dw/dzk for k = 1,2,3. Then each ¢, must have a
purely imaginary periocd at Z Using Equations (3.14)

we have:

2
(‘pl(z)dz = % f (l—# dz

(z-z0)"
Iz-zo|=E Iz—zolzs
=21Ticz if m= 2
o L
- Tie if m= 3
2
9, (z)dz = %; (1+27) 4, .
(4-2,)
Iz-z |=€ lz—z |=t
;2ncz if m= 2
~TTC if m= 3
Since ¢ # 0, we conclude that m = 2 and -z = O. There-
fore, f(z) = c/z2 and the resulting surface is the

catenoid. |
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CHAPTER IV

CLASSTFICATION OF MINIMAL SURFACES

In this chapter we shall be concerned with the

following two questions:

. . A .1
(L) Given a minimal surface ¥+ M+ R, how many non-
- . n+m

congruent minimal surfaces are there in R

(any m ) which are isometric to L/

(ii) Given an analytic metric ds~ on a Riemann
2
surface M, under what conditions can ds be
realized as the metric induced by a minimal immersion

b: M a4 R

Throughout this section we shall assume that M
is simply connected, by passing, if necessary, to the
\universal covering surface of M,

Our first observation will be with regard to
question (i). Let §: M+ R" be a minimal surface, and
let &: M+ RY be the conjugate surface, that is, the
surface whose kth comﬁonent function ﬁk is-the har-

monic conjugate of wk' We now regard mn as RnxiRn

and define a new map Y: M + € by

(%.1) Y= (¢,§) .

L
JZ
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One can easily see that Y is minimal and.isometric to
¥ (cf. ITI.3). Moreover, the mapping Y is holomorphic.

Consequently, to each minimal surface §: M o R" there

is associated a holeomorphic curve Y: M 4 ¢ which is

isometric to .

The question mow is to what extent is this surface
"unique. Suppose V: M o+ R and p: M R™ are isometric
minimal surfaces. Then are the associated holomorphic
maps Y and & congruent? The answer is yes. We begin

the proof with

PROPOSITION 2 - Let @: A o ¢ and f¢: A o ¢, be

holomorphic‘mappings of the unit disk

such that
2 2
lo]= = ju|®

Cn - q:I'J.+I'l'l

and consider as the first =n coordinates.

Then there exists a unitary transformation U:Cn+m - CF+m

such that

‘l‘:UCP.

Proof: If |m]2 = 0; the theorem is trivial, so we may
assume that at some point, say z = O, |9(0)| # O.
The proof will proceed by induction on n.

Suppose fn = 1. Then we have ]m]z = |tp1|2 =
m+1 .
= I l¢k12° Dividing by |Cpl|2 in a neighborhood of

k=1

.
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zero we obtain
m+1 | 12
h.2 ‘ 1= Z v, /e .
(4.2) o1 e

Applying the operator . (d/dz)(d/dZ) to Equation (4.2)

we get

" L)1
0= I t, /(. )" .
k=1 L
It follows that in a neighborhood of zZero, ¢k/¢l =

= constant = Cy where E]ck]2 = 1. Thus, by analyticity,

wk = ¢ 9, in" A for each k., Let ((akj)) .be an

C(m+1) x (m+1) unitary matrix such that a,, = ¢, for

k=1,...,m{l. Then

wl 21,1 Tt %) met P1
. T eees 0
: 2.1 %2,m+1
0
Vel fmil,, **e mel,med
as claimed.
Suppose mnow that ¢ = (ml;...,wn,O,...,O) has n

linearly independent coordinates and that the theorem is
true for maps ¢ with fewer linearly independent coordi-
nates. We may further assume by making a unitary change

of the first n coordinates, that 9,{(0) # 0 and cpJ.(O):
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=0 for Jj> 1. We have that

n n+m
2 2
' P . = I ‘IJ .
£ ol Z ¥
Dividing by |¢1|2 as above we get
' n n+m
(4.3) 1+ e g® = r |y |?
j=2 9 k=1
where éj = mj/ml and Y, = ¢k/ml. Taking (d/dz)(d/dz)
gives
n n+m
HRNE RN R N L
j=2 = J k=1 K

Hence, by induction there exists an (n+m) X (n+m) unitary

matrix ((ij)) " such that

1 . .
. Yk = Cpy + jiz ij Qj 3 k = 1,...,0+4m

and therefore,

. n
' - —
¢k = Ckl ml + j£2 ij mj 3 k = 1,:.0,0+m

throughout A,yWhere the C;l’s are constants. However,

using (4.3) we see that

2,_ v 2 P
Elwk| 'E[ck_ll + 2 k'_zj Re{C_ Cue 5
. ’

2
=1 + Z|§JI




=152~
Since §2(0) D oeee = @n(O) = 0, we have

v 2
I jC " =1

k
L RefC'!. c .%.] =0,
X, kKl "kj 3
M i f = €!. ¢ . &, is holomorphic and
oreover, since k?j k1 Cxj ¥ ph:
Re(f) = 0, we have f = O, Therefore, from the linear

independence of @, ,...,® (and, thus, of Qz,...,@n)
we conclude that

+m _
T C'.C .=03 j=2,i0.,n .

k=1 Kl "kJ
We now let U = ((akj)) bée any {(n+m)X(n+m) uni-
— ' —
k1 = Ckl and akj = ckj for
J=2,00eynr and k = l,...,n+m. Ther ¢ = Up. [

tary matrix such that a

NOTE. The above clearly continues to hold if we replace
A by any connected Riemann surface M. Further-
more, the same proof goes through for holomorphic

functions ¢ and § of several complex variables.

COROLLARY 1 - Let : M+ €™ and ¢: M4 ¢ c ¢™™ pe

~

isometric holomorphic curves. Then there
i\\fiists a holomorphic isometry F: ¢ 7% 4, ¢?*M {(i.e., a
itary transformation plus a translation) such that

]i[:FOCp.
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Proof: By assumption, the induced metrics on M are

equal, that is,

ds® = 2]4;'[2 |dz]2 = 2|cp'!2 laz|? .
Thus |¢'|2 = ]m‘[z, and by Proposition 2 there is a
unitary transformation U of ¢™*™  such that ' = Up',

Hence, ¥ = Up + ¢ for ¢ € ¢, O

REMARK 1 - Corollary 1 is a special case of a general
theorem due to E. Calabi [1]. Calabi's theorems
also show that a statement analogous to this corollary

holds for curves in complex projective space.

!
We have now established the following central

result.

THEOREM 1 -~ In each class of isometric non-congruent

minimal surfaces in euclidean space there

exists exactly one holomorphic curve.

With this theorem in mind, we shall fix a holo-
morphic immersion Y¥: M + ¢ and proceed to describe the
space J(Y) of all non-congruent minimal immersions
f: M R™ which are isometric to Y. To begin we
normalize our immersions by fixing a point po.e M and

assuming that Y(po) = 0, w(po) = 0. We furthermore

assume that neither of the images Y(M) or (M) is
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contained in a proper linear subspace. Notice that under
this assumption the integer m becomes an invariant of
the immersion ¥, and thus, by Theorem 8, also an inva-

riant of each isometric minimal surface V.

OBSERVATION 1 = 2m 2 n 2 m,

To see this, note that since ¥ and § are
. . 2 _ 2 . . A
isometric, 2|d¢/dz| = IY'] + Since | is minimal, the
map dj/dz: M o ¢ is holomorphic, and thus by Proposi-
tion 2, there is a unitary NXN matrix U, where

N = max{n,m}, such that

) 1 v
(k) %: v

(Here we have added zeros to one of the vectors to make
it of length N.} Since the components of Y' are
linearly independent over €, we must have n Z m,
Since ¢ = 2Re[‘f d/3z)dz}, it follows from (4.4) that

= /2 Re[UY} =~——(UY + U¥). The components of ¥ are
linearly independent owver R, and so 2m = n.

Let us denote by S the nXxm matrix comprising

the first m columns of U. From the above discussion

we immediately conclude the following

OBSERVATION 2 - { = +/2 Re{S¥} where S 4im an nxm

complex matrix such that:
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(1) 5% =1
(2) The nx2m matrix (sy3) has rank mn.

(3) ?’(z]t sPs ¥1(2) = 0, that is, the quadratic form
on €™ given by s¥s anninilates all the

' tangent vectors to Y.

Part (3) of this observation corresponds to the

fact that (aw/az)2 ¥t stsv' = o .

NOTE. In the special case " § =¥ ", i.e., when n = 2m
and { = (Re ¥, Im ¥), the matrix S, in mxm

block form, is

(Z3)

-1

1

S = —

2

OBSERVATION 3 - Two normalized immersions wl, wz are

congruent iff there is an orthogonal nXn

matrix, 0, such that ¢l = O¢2, or equivalently,

OBSERVATION 4 - For any complex nxm matrix S with
properties (1), (2) and (3) above, the
map ¥ = J§'Re{s¥} is an isometric minimal immersion of

M into Rp, which does not lie in any linear subspace.

Putting together the above remarks we obtain a

complete description of 3(¥) entirely in terms of the
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matrices 5.

We shall now examine an alternative presentation
of this space which is due to E. Calabi. Let us replace
the nXm matrix S by P = StS. Note that two mairices
Sl’ Sz, equivalent in the sense of Observation 3, give
rise to the same P. We shall translate conditions (1),
(2) and (3) above into conditions on P. To do this we

first consider the 2mXx2m , matrices:

lm 5 =3 t =
P o= = (s5,8) .(s,8)
P 1
lm '5 =<t -
P! = = (8,-8)"+(s,-8).
-P lm

Note that we have used equation (1). By condition (2) we
know that  and p? havg rank n. Observe, furthermore,
that both P and ©' are hermitian symmetric and positive

semi-definite, and that

PR = pip = _ -

Hence, 1 - PP is positive semi-definite. It is
v .

straightforward to check that V = (Vl) e ¢"eo c™
2

satisfies PV = 0 if and only if V ~PV -and

2 = 1
(1, - PP)V, = 0. Thus, dim(ker p) = dim(ker(1_ - BP)) =

= 2m-n. VWe conclude that 1 - PP has rank n-m.
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Conversely, suppose P dis an mXm complex

matrix such that P = P and such that 1_ - PPz 0 with
rank n-m, Then b& essentially reversing the above process
it is possible to find a complex nXxm matrix S5, unique
up to maltiplication on the left by an orthogonal matrix,
such that §tS = lm' rank(s,8) = n, and StS = P,

Summing up we have the following result.

THEOREM 2 - (E. Calabi [3]). The space J(Y) of non-

N . . n
congruent minimal immersioms {: M -+ R

which are isometric to a given holomorphic immersion

Y: Mo ¢t is naturally described as the set of all

complex symmetric mxm matrices P such that:

(1) », -PPZO

and

(id) (?i)t Py ! 0 (i.e., P annihilates all

tangent lines to the curve ¥.)

Furthermore, let mn be the dimension of the smallest

affine subspace containing vt (M) where ¢ is a minimal

immersion corresponding to P. Then

n - m = rank (lm - PP) .

In particular, m=< ns 2m and n = 2m iff .- PE > 0.

Theorems 1 and 2 together show that each space of

isometric minimal immersions can be naturally embedded as
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a linear variety in the closure of the Siegel domain

& = {p: P = p®

and 1 - PF » 0}. The point P = O
always lies in the vafiety'and corresponds to the unique

holomorphic immersion.

EXAMPLE 1 - Consider ¥: C -+ €° given by \H(z)t =

(2, 22/JZ, 22/3). Then (¥')°P¥v = 0 if

and only 4if

o Q 1
P=c o -1 )
1 0 0]

for some c € ©, Clearly 1 -~ PP 2z 0 if and only if
1z lciz, and so

S(¥) = A .

Note that the points ¢ € A° correspond to minimal sur-
faces which lie fully in R6, and the points ¢ € 34
3 i®

correspond to minimal surfaces in R~-. If ¢, =€

Cys
then the minimal immersions are associate {cf. §4); thus,
d3A parameterizes a single family of associate surfaces
in RB. As we shall see later this picture holds quite
generally for minimal immersions in 3-space.

A more geometric description of the space of
isometric immersions can be given by reinterpreting

Theorem 2 in terms of the Gauss map, If Y: M - ¢™ and

P: M+ R are as above, we have seen that m$ n s 2m.
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Write ¢ = (Re ¥, Im ¥): M o R*™ and consider R™ & R™

in the usual way. Then if we set o = 3)/dz and
1 . 2 2

o, = awo/az.= = (¢1,-i¥ '), we have |@|° = |mo| , and
a

there must be unitary 2m X 2m matrix U such that

P = Uwo. In particular, the correponding Gauss maps

@,@O: M QZm—2 are congruent in ®P2m-l. (See the note

following Proposition 2.) However, these maps may not be

congruent as submanifolds of QZm—‘

5 On fact, this will

be true if and only if U can be replaced by ele-o

where O is a real orthogonal matrix, Recall from §4
that two minimal immersions whose Gauss maps differ by a
constant factor eie are called associate. In light of
this we denote by 5(¢0) the space of non-congruent,
non-associate minimal immersions of M dinto euclidean
space, which are isometric to wo' Similarly, we let
J(mo) denote éhe non-congruent holomorphic immersions of

M idinto which are ijisometric to wo' Then there

Q2m-—2 '
is a natural‘one—to—one correspondence:
S(s,) = 3(@,) .

o
Observe that the set J(mo) can be interpreted as

the collection of all essentially distinct ways of moving

the curve © (M) < ¢P°™' into the submanifold @, , .

This embeds 3(m0) as a subset of the homogeneous space

U(2m)/0(2m).
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We now turn our attention to the second question
posed at the beginning of this chapter, namely: when is
a given analytic metric d52 = F|dz]2 on a Riemann sur-
face M induced by some minimal immersion {: M <+ R 7
Of course, by Theorem 6 this happens exactly when ds2
is induced by an (essentially unique) halomerphic map
Y: M Cm. Therefore, our question can be reduced

locally to asking under what conditions on F do there

exist holomorphic functions Qiaeser such that

(%.5) F =
k

[ e =

ICPk|2 *
1

To answer this latter question we shall first
derive some necessary conditions. Let @ = (¢l,...,¢m)
where mi,...,mm are linearly independent, analytic
functions on the disk Aj; and for =z,w € Cm set
(z,w) =L %, ¥+ Then, if F = {9,p), we consider, for
each integer Xk » 0, the kXk hermitian matrix

k=1

k ‘
3 - ((3plq))p,q=0 where

L LN S S CON

3 =
P4 azp azq

and observe that
k-1),2
(4.6) dget 3 = lp A o' ALLA CP( )I .

Consequently, if we define
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F, = det 3 . k= 1,2,3,.00..

then one necessary condition for F to be of the form

{p,p) is that

F B O (but not =0 } k

A
=4

(4.7)

=
il
]
P
v
B

in A,

It turns out that this condition is also sufficient,
that is, if F is a positive, real analytic functiom in
A, which satisfies the conditions (4.7) then there is a
holomorphic ¢™-valued function ¢ such that F = {p,p).
This is proven as follows. F has a convergent power

series expansion at 0 of the form

F = E A ZP Eq
P.Q
where A = (1/pla!) & _(0). If we demote by A° the
Psd Psq _
kxk hermitian matrix ({A )) , then
P»9" "p,q

det Ak = (TW- p!)-
p=0 :

Therefore, condition (4.7) tells us that the infinite
hermitian matrix A = A”  is positive semi-definite of
rank m. We claim that, as a result, there are m "infi-

nite" wvectors
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#r1
ar = r2 3 r=1,...,m
such that
=t =t
(4.8) A=ajay + ..o +aa’ .

To see this we first note that such a statement is
certainly true for each kXk hermitian matrix Ak where
k2 m. In fact, if vl,...,vk‘ are orthonormal eigen=-
vectorsof AX with eigenvalues ll Z2 ...z >0 =

K then A¥ = I li 7 GI , and we need

Il
P

= A = e

Jh.v, for i = ly4es,m. Note, however,

only set a; Vi

that the set of vectors {al,...,am} is not unique. If

b, =Z ;425 where ‘((aij)) is a unitary mXm matrix,
then AF = z biﬁz . Thus, we can normalize the ai's by

assuming that the first o, entries of the column wvector

a. vanish, where o, > g. , and that the first non-
i | i+l i’

vanishing entry a, is real and positive. It is
: i1,04+1 :

easy to see that under this normalization the %ectors,

which we denote aﬁ,...,aﬁ, are unique. It follows that

a? is obtained from a§+l by dropping the last entry,
that is, a§+l is a "continuation" of a? + Therefore,
if we define a, = 1im a® , we have A =% a.a’ las

: . i i - - ii

. k
"claimed.
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From (4.8) and the convergence of I Ap‘q 2P z4
' ]

it follows that each series

cPi(Z) = pEO a—ip zP ’
for 4 = 1l,4s.,m, 1is convergent. Thus each mz is holo~
morphic, and F = zlcp2|2 . If we set § =[g, then ¢ is
a holomorphic map into ¢"  with induced metric ds2 =
= F]dz|2.

We have now established that condition (4.7) is
sufficient to guarantee that in a neighborhood of every
point there is a holomorphic map into ¢™ which induces
the given metric. However,_by the uniqueness of Theorem
I we see that this immersion can be continued in a weil
defined way along any curve emanating from a given point,
A standard monodromy argument then gives the following

result due to E. Calabi [2].

THEOREM 3 - (Intrinsic characterization of minimal

surfaces). Let ds2 = 2F|dz|2 be a real

analytic metric on a simply-connected Riemann surface M.

2 . . foa . . . .
Then ds is induced by a minimal immersion into eucli-

dean space and, in particular by a linearly full holo-

morphic immersion ¥: M - ¢" if and only if the functions

- Kk
F = detl (@P/zP 39227 1)) . 1 satisfy:
Py

k
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!
v

k O and not =0 for k= n

F.

% 0 for k>m.

REMARK 2 - The functions Fk can actually be generated

recursively by the formula

F2
_ Tk 3 2
(4.9) Pre1 = F_ T 3z 57 o8 Ty
k-1
where F, =F and Fo = 1. This fact is straightforward

to check and makes computations simpler. The Equations
(4.9} make it clear that the conditions on the metric
d52 in Theorem 3 are independent of the local coordi=-
nate represenfation.

This last theorem has, as a special conseguence; the

following classical result.

COROLLARY 2 - (Ricci-Curbastro). Let M be a simply-

connected surface with a (class Cq)

. . . 2 .
riemannian metric ds having Gauss curvature X < 0.

Then a necessary and sufficient condition that .d52 be

induced by a minimal immersion e M=~ RB is that the

metric
as? = /oK ds>

be flat (i.e. have Gauss curvature K = 0),
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Proof: From the discussion at the beginning of this
chapter it is clear that a metric ldsz = 2F|dz|2
on M dis dinduced by a minimal immersion into R3 if and
only if there is a holomorphic mapping @: M - 63 such
that:
1) lef® = F

(i1) »° = o

(p = 39 /32, and § = ERe{Imdz} where {(: M 4+ R> is the
minimal immersion, )
Condition (ii) is eguivalent to the fact that
§ =1fetw, where Tm: ¢’ ~ {o} o GPZ, maps M onto the
2

quadric Ql =35 The Gauss map is onto the unit sphere.)

Consider.the metric

2
ac? = 2_L£J1J%Ll__|dz|2

lop |

induced by ¢ from CPz. By formula (3.17) the curva-

ture of this metric is

4 ) : 2
- o] 23 o l®horl”
K@ = - __J_ 3% z log

@ A @1]* 2% ® o
= - ——Lﬁli———-é— é—-log-lg—ﬁ—gllfﬂ + 1
lo A @1)® °% 02 I

since 3/3z 3/3z log |m|2 = lp A ¢‘|2/im|u. It follows

that
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2
(4.1."0) K§ =1 g—-'a—long—e

zZ 83z |Cp|2

2

On the other hand if ds 2|¢12|dz|2, then by

1.

“lo A ot [*/ 0] .

Consequently, d4% = J/-K ds® = (|o A m'|/|w|)|dz|2, and

(3.18) its Gauss curvature is K

S0
(h.11) Reo e 2.3 1oglenor|®_ |
' - 2e 8% ol

Putting this together, we have that if d52 comes

from a minimal immersion into RB, then the Gauss curva-

ture of the Gauss image, KQ = 1, and so X = O.

Conversely, suppose that we are given d52

]
=

.
= 2F|dz|2 with K = O. Then we set F_ =1, F,

and define F, for k > 1 by formulas (4.9). We note

k
that
F, =F 2 23_ 108 F = -xr3 > 0
2 3z BE ]
since K < O. The condition ﬁ = 0 is eqguivalent to
t
(4.,12) §—-§—jlog(—KF2) = 0 .
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Fh = 0 .

Equations (4.,12) and (3.17) also show that F is real
analytic. Therefore, b& Theorem 3 there is a holomorphic
map : M - ¢ such that ds~ = 2]m|21dz|2. From (4,10)
~and (4.11) we then conclude that the image & =megp of
p in compléx projective space has copstant curvature l.
However, the remark following Thecrem 1 implies that, up
to isometries of ®P2, $ is a mapping into Ql. That

is, after possibly, changing ¢ by a unitary transforma-

tion, we have wz = 0. This completes the proof. D,

REMARK 3 - In general the metric on a minimal surface in
R3 has K ¥ 0 except at isolated points.
However, if we weaken the condition on curvature in

Corollary 2 to allow such points, the result continues to

hold if and only if the metric is real analytic. If the

metric is analytic the above proof works. If not thexr=
are counterexamples in Lawson (3, Rmk 12.1]. A more
direct proof of this corollary can be obtained by using
the condition ﬁ = 0 to comnstruct a traceless second
fundamental form satisfying the Gauss-curvature an.?

Mainardi-Codazzi equations. (cf. Lawson [3, §121.)

A great deal of interesting work has been done on

’

minimal surfaces satisfying the condition K = 0, notably
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by M. Pinl [1]. We point out here one interesting fact

which follows from the work above.

COROLLARY 5 - (Lawson [1]). Let §: M 3 R® be a simply.

connected minimal surface whose metric

satisfies the Ricci condition ﬁ = 0 of Corcllary 2 away

from the zeros of the curvature. Then there is an

isometric minimal immersion ¢o= M 4 RB, and a number

g € [0,21]  such that

def.
lI;:lIrB : cos8 § _ @ sing ¢§=Man6cmn

where W: is the immersion conjugate to wo +« Further-

more, up to congruence, every minimal immersion which is

isometric to ¢, is associate to one of the surfaces ¢ﬁ.

In particular:

(2) If ns s, then §(M) < R,

(b) Any two isometric minimal immersion of M into

R3 are associate.

Proof: If ¢ (M) is a plane, the statement is easily
proved, so we assume it is not. Then the existence

of an isometric minimal immersion wo: M R3 can be

deduced from Corecllary 2 and the analyticity of the metric.

(See Remark 3.) Let mo = dﬁo/dz and recall that mi = 0.
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By Theorem 2 the space, J(w), of all non-congruent
minimal immersions isometric to ¢ corresponds to the
space of complex symmetric 3x3 matrices P such that
ot Po_= 0 ana 1, -PFEz 0. If P=ocly where |of =

£ 1, then P satisfies these conditions. Conversely, if

mz Pmo = 0 for some P, then P
3, %

2tz = 2°Pz = 0} = the union of a finite

cI since otherwise,
p M) c {z€C
number of complex lines passing through the origin, and

therefore, ®_ A ®!= 0, i.e., y (M) 4is a plane. Since,

1 - PPz 0O, 12 |c|2. Hence, as in Example 1

S(p) =4 .

Each circle Sl(r) = {¢: |Je| = v} © A corresponds to a
family of associate immersions. The immersions are
linearly full in some affine 6-space if and only if T <1.
The family of surfaces corresponding to Sl(l) = 9A 1lies

in 3-space. 0O

In summary we see that given an analytic metric
d52 on a Riemann surface M, it is intrinsically decid-
able whether that metric is induced by a minimal immer-
sion into euclidean space. If it is, then, in fact,
there exists a holomorphic immersion ¥: M+ ¢ which
induces this metric, and Y is unique up to isometries
of Cm. The space of all the other isometric, but non=

congruent, minimal immersions, d(¥), can be described
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as the sét of all mxm complex symmetric matrices P
such that 1 - PPz 0 and (¥+)¥ pyr = o.

We observe that in "most cases", that is, for most
holomorphic curves ¥, there are no interesting isometric
minimal surfaces. In particular, J(¥) = {0l uniess vy
satisfies a non-trivial Polynomial equa%ion of degree 2.
(More generally, dimg 9(¥) = the number of linearly in-
dependent quadratic polynomials which annihilate Y.)

In light of this fact it would be interesting to have a
characterization of those minimal surfaces f: Mo R2m

which are actually holomorphic curves in " = r*™

We begin by deriving some necessary conditions.
Suppose. ¥: Ma ¢™ s heolomorphic, and write

¥ = (Re ¥, Im¥): M4+ R™XR™ . Then,.

o =21 < (%-iv) ,
and so the Gauss map §: M 4 Qo @actually takes its
values in the linear space ch-l o sz-2 defined by the
m equations
2= 12,4
(4.13) : :
Z,= i z'é.m

in homogeneous coordinates.
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We now make an observation about the geometry of

the Grassmannian Q2m-2'

LEMMA 1 - A linear subspace of is maximal if and

®om-2

only if it has dimension m-1. Furthermore,

any two maximal linear subspaces of QZm , are congruent,

that is, they differ by an orthogonal transformation of

homogeneous coordinates.

%

Proof: Let GPL-l < Csz"l be represented in homogeneous

coordinates by an {-dimensional, complex linear

2m !

subspace V C C with basis 51"“’EL + We now observe
that GPL C Q2m-2 if and only if for all a € V ,

L .
asa = & aiaj Ei sj = 0. Thus, CP" C sz_2 if and only
if
(4.14) €4€;=0 forall i,j .

(It follows that a+b = O for all a,b € V. Such a

linear subspace of ®2m is called totally isotropic.)

Without lass of generality we may assume that
81""’€L are orthonormal in the hermitian inner product
{(a,b) = asb. If we then write Sj =e; + ifj for
ejfy € R®™, condition (4.14) becomes equivalent to the
fact that [ei,...,eb, fl""’ft} form an orthomormal

basis of V over R. It is therefore clear that V is
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a maximal totally isotropic subspace of ¢™ if and only

if 'dimmv = m.

Furthermore, suppose we had two such maximal

spaces with bases Ej = ej + ifj 3 J=1l,4..,m and

83 = e3 + if3 3 j=1l4...,m as above. The letting O
1

be the orthogomal 2mx2m matrix such that" e‘j = Oej and

fj = Ofé for all j, we have Sj = 053 , and the two .

associated projective spaces are congruent in the Grass-

mannian, as claimed. O

Recall that we are interested in when a minimal

immersion {: M < Rzm is "holomorphic". Actually, we

have to be careful in asking this quéstion because there
are a number of inequivalent ways of making R2m inteo a

complex vector space. In particular, we can define an

orthogonal complex structure on R2m to be an orthogonal

transformation J: R2m - R2m such that J2 = =1, Given

2m . R
J we can make R into an m-dimensional complex vector

space by defining scalar multiplication as the map
exkR®™ 4 8™  where (x+iy,v)} — xv + yJ(v). Conversely,
if R2m is a vector space over (¢ such that multipli-
cation by i preserves the length of vectors,; then we
can define Jv = iv., Note that there are many such

structures; in fact, the set of inequivalent ones

corre¢sponds naturally to the homogeneous space 0(2m)/U(m).
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From Lemma 9 above we can deduce the following

result.

PROPOSITION 2 - Let #: M + R-™ be a minimal immersion

with Gauss map &: M =9 Then there

Q2m--2 *

exists an orthogonal complex structure on Rgm with

respect to which § is holomorphic if and only if the-

Gaussian image 8(M) 1lies in a linear subspace of &, ..

This latter condition is equivalent to the fact

that

for all p,q Z 1.

Proof: It was observed above that if ¢ 4is holomorphic
then the condition on the Gauss map is satisfied.

If, conversely, the condition on & (M) is satisfied, we

consider a maximal linear subspace of Q2m-2 containing

§(M). By Lemma 1 there exists a orthogonal transformation

0 mapping this space onto the one given in homogeneous

coordinates by Equations (4.13). We then consider the map

2m

J0= R -+ R2m whose matrix in block form is given by

and define an orthogonal complex structure J = OtJOO .
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In homogeneous coordinates the Gauss map is represented

by ¢ = 3¢/3z. Thus, from Equations (4#.13) we have
av L oad
T3z 13z

rd
which is an exact expression of the Cauchy-Riemann

equations for Y with respect to the complex structure

J. O
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