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UMA EXPLICAGAO ,.,.

A Comissgao Organizadora do Sexto. Coldquioc Brasileiro
de Matematica teve & amabilidade de propor que eu desse um
dos cursos desta reunifo. Sendo um dos quatro membros da Co-
misséo, juiguei que talvés nao ficassé bem aceitar ésse gen-
til convite, do qual a quarta parte poderia parecer que par-
tira de mim mesmo... Por outro lado, ofereci-me na ocasido a,
efetivamente, ministrar um curso no Coldguio, na hipbtese de
haver real necessidade de Wltima hora, por motivo de caréncia
de um professor. Foi o que ocorreu em princ{pio de Jjunho, um
més antes da data marcads para o inicio do Coléquio,rquando a-
final aceitei o delicado convite que me fdra formulado pelos
colegas da Comissdo. Propuz-me dar um curso sdbre a topologia
dos espagos de aplicagﬁes helomorfag, por contar na ocasiao
com um texto sObre o0 assunto jé inteirémente pronto. A redagao
havia sido feita em inglés, para publicacao nos EUA, Dada a e-
xiguidade do tempo disponivel para a impressdo, o0s colegas da

. ~ . o, . .
Comissao tiveram o espirito compreensivo de me dispensar da
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traducdo do manuserito para o portugués. Lgvéram em conta, tam-
bém, que a 1lingua inglésa ndo constituiria dificuldade para os
| participantes do Coldquio que se interessaséém por éste cUrso.
£ esta a explicagéo do texto estar redigidb'em ihglés, sendo
apresentado scb o disfarce de uma capsa ihteiramente egerita em

portuguds, inclusive quanto ao titulo da monografia...

IEQPOLDO NACHBIN

Junho de 1967
Rio de Janeiro
Guanabars
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$§1 - INTRODUCTION

The purpose of this monograph is to describe a natural
method of endowing certain vector spaces of holomorphic mappings
-with locally convex topologies, and to derive a few results for
the sake of illustration of the simple ideas involved in such
a method. |

The need of the féllowing considerations [13] - was
. brompted by the remark that the largest natural locally convex
topology to be used on H(U;F) (see &2 for notation and
terminolbgy) is not the one induced on it by the compact-open
topology on the vector space @(U;F) of all continuous F-valued
functions on U (unlike what happens when E is finite
dimensional and thus locally compact). A seminorm 7p .on H(U3F)
is said to be ported by a compact subset K of U if, given
any open subset V of U containing K, we can find a real
number ¢(V) > 0 for whiech

p(f) < (V) « sup [£(x)]
: xeV
holds for every f € ¥(U;F)., It is to be noted that f is not
necesgarily bouﬁded on V; however, once -f e #{(U;F) and the
compact subset X of U are given, there is cleariy an open
subset V of U containing X on which f 1is bounded.

In other words, the above estimate imposes a restriection on P
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for every £, althoughfiﬁéiriéthhéhd gide may ocecasionally be
infinite. The natural topology 3 ‘on H(U3;F) is defined by the
seminorms on H(U3F) that are ported by compact subsets of U.

It is much larger'than,ipeiﬁopglqu on H(U3F) induced by the
compact-open topology pﬂfﬁﬁfﬁ?ﬁi’ whenever dim E = » and F # 03
otherwise the two topologies'bn ¥(U;F) coincide. The same :
natural method used here, namely that of estimating functions on
arbitrarily small nelghborﬁoods of fixed compact subsets (as
expressed by the above estlmate), can be of course applied to

¢ (U;F) itself; but then it gives back the compact-open topology

on ©(U;F), and not a larlir one. It is only in the case of

certain vector sUbspaces}ﬁ (U F) which are not too large, or
too small, that such a methad leads to a topology actually bhigger
than the one_lnduceg‘b ¥ ';compact ~open topology on C(U;F).
| On the.othermhéﬁ E dertaln questlons about convolution
and partial differential operators, Fourier and Borel transforms,
distributions, etc. in 1nf1n1te dimensions (see [6] and [15] for
instance) lead to 1mportaﬁt types of holomorphy, and of differ-
entiability or real—qnalyt;&1ty‘as well, and so to corresponding
spaces of mappings aﬁd‘théii'natufal topologies., Important
examples of such types are found 1n the nuclear, the integral,

the Hilbert- Sehmldt cases, ete., all stemming from the corres-

pondlng kinds of contlnuou‘ mehomogeneous polynomials (or

equlvalently, except perhaps for the norms, of continuous
n-linear mappings; see [5] for 1nstance)
§9 1ntroduees the cencept of holomorphy type @ from

E to F; and §ll deals w1th the natural topology I, e on
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the vector sﬁbspace ﬁ@(U;F) of #(U;F), Simplifications arising.
in the case #(U;F) are described in $14. The rest of the
_monograph is devoted to sampling a few results., We refrain here
from being as complete in the case dim E = = as one would hope
for in view of the existing knowledge in the case dim E < o

(see [11] for instance, and the literafure quoted there as-ﬁell).
Thus we do not deal at all with the standard properties of
locally convex spaces to be investigafed in this connertion,

with spaces of functions holomorphic ahout a fixed set not
necegsarily open or compact, with spaces of reaieanalytic or
differentiable funétions, or with the dislinearization of the
theory through the use of Banachizable.manifolds; ete,

A thoroudhexposition of such aspects deserves a lengthier

monograph to itself.



$2 ~ NOTATION AND TERMINOLOGY
- In this section, we shall summarize the mdin notation and
terminology used in this monograph. Explicit reference 1is made to
the pertinent section in which they are introduced.

N,R, and C will denote the systems of all natural
integers, of all real numbers and of all complex numbers,
respectively. |

E and T will represent two complex Banach spaces.

U will denote a non-void open subset of E} We say that
U 1is %—equiiibrated, with respect to bne of its points € , in
case (1-A) § + Ax € U fbr every x € U and A e , JAl = 1.
At any rate, the set Ug of a1l x € U such that
(i-A) 2 + Ax € U for every A e € , {A] = 1 is the largest
open 5-equilibrated subset of U.

The open and closed balls w1th center at E and radius

p in a normed space will be denoted by Bp(g) and B (5).

respectively, Correspondingly, we set

Bo(¥) = U B(x)
Bp‘(X) = xLEJX p(x) y

for a subset X of a normed space.

For each .m € N, we shall represent by s(mE;F)' the
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Banach space of all continuous m-linear mappings from
E" =B x,..x E (m times) to F; by ‘.cs_(mE';F') the closed vechor.
subspace of-all continuous symmetric m-linear mappings from .Em
to F; and by P(mE;Fj..the Banach space of all continuous
m-homogene ous polygomigls.from- E‘,to F. If" A € £(mE}F), we
have the corresponding'elements AS e'ss(mE;F} and A € ¢ PR Y.
See §3. |
©(U3F) and H(U;F). will represent the vector spaces of

all continuous and of all holomorphic mappings from U +t¢6 7T,
reSpectivelxghlf‘ £ e #(U;R), we'denoté:by

a"e(x) € ¢ ("E;F) ,

d%(x) € P(ZE;F) ,
its differential at xe€U, looked at as a continuous symmetric
'mrlinear mapping and as a continuous m~homogeneous polynomial,
respectively. We have corféspondingly the maﬁpings

A"t € w(U; £ ("E5E))

i e w(U; e(TE;R)) ,
and the differentiation operators

a%:y(UsF) — w(U; £S(mE§F)) ’
APy (U3F) — w(U; P(2E;F)) ,

of order m = 0,1,,,, . The Taylor series of f at £ € U is
$x) =)k aPe(3)(x-8)"

a%e(e)(x-8) ,

'
[~
B 8
i
(o]
B



whereas the Taylor polynomial Tt of order m of f at
_ ' sl :
§ 1ig given by

m

O I TR QLN
m

= ZL :, ab#(e)(x-e) ,

=0 : .

where x € E, See §5.

| @ will always dencte a hqlomdrphy type from E “to F.

See §9. o |
The concepts of seminorm,‘t0pology-defiﬁea by a set of

seminorms, and bounded subset are meant in the sense of the'

the ory of topological vector spaces.



§3 - CONTINUOUS POLYNOMIALS

DEFINITION 1 - Letting m = 1,2;..,, we shall denote by £(mE;F)
the Banach space of all continuous m-~linear
mappings from E® = E x,..x E (m +times) to P, with respeet to

the pointwise vector operations and the norm defined by

1ACxy 0o yx
lxlﬂaf-HXmH ?

l4] = sup
XI#O,.,.,xm£O

where A € £(mE;F) and Xl,o}.,xm € E. Notice that

”A(leaq-e,xm)i s "A“o HXlI] 58 s "Xm” .

We shall denote by SS(mE;F) the closed vector subspace of
£("E;F) of all such 4 +that are symmetric. For A e £(TE;P),

.we define its symmetrization Ag € SS(mE;E) by

AS(Xlgaoc,Xm) = 5; ZA(le,...,ij) [l

where summation is over the m! permutations (jl,...,jm) of
(1,...,m). For m = 0, we shall let &(CE;F) = SS(OE;F) =F as
a Banach space, and A=A for Ace ;(OE;E). Notice that
HASHSHAH, and that A=A is a continuous projection of

S(ME;F) ombo ss(mE;F), for m=0,1,... .
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DEFINITION 2 - If A € £(™E;F) and x € E, we shall write Ax"
to denote A(X,....X), where X 1is repeated m
times, in case m = 1,2,..., ; and we shall define® AXO = A, in

case m = 0. A continuous m-homogeneous polynomial P from E

to F dis a mapping P:E—~F <for which there is some
A e £(UE;F) such that

P(x) = Ax™
for every x € E. In order to denote that P corresponds to A
in this way, we shall write P = A. We shall denote by #("E;F)
the Banach space of all continuous m-homogeneous polynomials from

E +to P, with respect to the pointwise vector operations and

the norm defined by

Il = sup “—P(-?g—l
x£20 x|

where P € P(PE;F) and x € E, Notice that
[2(x)| = I2) . Ix]"

and that, for m = O, F(OE;F) is the vector space of all

o~ et
constant mappings from ‘E to F, We have A = AS.

PROPOSITION 1 - The mapping

Aes ("EsP)—1 e P("E;F)

is a vector space isomorphism and a homeomorphism of the firgt

onto the second Banach space, Moreover

mm

LAl < Jal = 140 .

1
-]
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Proof: The proposition is trivial for m = 0O and m = 1. Let

then m = 2. The mapping A=A is linear on £(PE;F)
onfo P(™E;F), Since i ='K; , we see that this mapping is linear
on £S(mE;F) onto P(™E;F). We may verify the so-called

“polarization formula”

1

€ vesE. AE-X +eoat E.%)
mzzm €1=il 1 “m 171 wm

A(xl,...,xm) =

LA I ]

' € =¥l
expressing A € £S(mE;F) back from ﬁ, where Xq,...,%, € E,
This formula proves that the mapping A=A is one-to-one on
Ss(mE;F) and actually gives us an explicit expression for the
inverse maPPiné Rr=A, It is clear that Hﬁﬂ < [A] for’ Aeg(™E;F),
If we assume A.€ ss(mE;Fl‘ and [x;] = ... = Hgmﬂ =.1 in the

polarization formula and use

"ﬁ(alxl Faoot Smxmﬂ| < {2} . o™,
we get
m ~
FA(xysoew,x)l = o 14T,
hence |

m N
- m}

Q.E.D,

- REMARK 1 - There are simple examples showing that
af!

m!

ig the best universal constant ocurring in Proposition 1. For

instance, take E = C™ and P = C, where E is normed by
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1l

Izl

lxll ¥ aoo + Ixm[

Cif x = (xl,.n.,xm) € B, Define P:E—~F by
P(x) = Ry oo Ep
if x = (xl,,aa,xm) € E; and
- 1
A(Xlgsou’xm) - m; ijlgl ¢ da ij’m
;f x5 = (Xj’l,oaa’xj,m) e E (j = 1,,a°,m) , where the

sumation is over all permutations (jl,oao¢jm) of (l,...,m)
(compare with the concept of symmetrization in Definition 1).

It is easily seen that

I

BEPJ BiH

ae g ("E5F) , |

P = A e P(UE;F),|P]

so that, actually,
| n

4] = Z- 4] .

The above example could have been arranged with a single E of

infinite dimension valid for every m, namely E = 47 (see
|

Remark 1, §4). If E is finite dimensional, of dimension n < m,

the universal constant

m
m_

m
in Proposition 1 can be replaced by a better one depending on m

and n. We refrain from going into the details.

DEFINITION 3 - A continuous polynomial P from E to F is a

mapping P:E—P for which there are m = 0,1,...,

P, € P(kE;F) (k = Oyaos,m) such that

k
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PZP°+-¢- +Pmo.

We shall denote by P(E;F) +the vector space of all continuous

polynomials from E +o F with respect'tb pointwise vector

operations.

PROPOSITION 2 - If P e P(E;F), P #£ 0, there is ong and only

one way of writing

P=P0+¢oo +Pm,

with m = 0,1,..., P, € P("B3F) (k = 0,...,m) and P_# O.

Proof: It suffices to prove that

i
o

Po + esa + Pm

imply

In faet, if we write -

; m
Zk:o PK(X) = 0

for every =x € E, replace x by Ax, A € (, divide out by A%
if AZ0 and let A—o , we get P, = Ou:We then get

inductlvely Pm—l : O,-aa,Po = Oo Q.oEa:D-
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$4 - CONVERGENT POWER SERIES

DEFINITION 1 - A power series from E to F about 5 € E is a

serieg in % € E of the form

Z Am(X"g)m ?
m=0 _

where A € £s(mE;F) (m = 0,1,...)3 or again, of the form

Ei::o Pm(x—g) ’

where P = ﬁm e P(PEsFY (m = 0,1,000)0 Both the A and the

Pm are called the coefficienmts of the power series.

DEFINITION 2 - The radius of convergence of a power series about

£ is the largest r, 0= r < e, such that the
power series is uniformly convergent on every ﬁp(g) f or

0% p < r, The power series is said to be convergent in case its

radius of convergence is strietly positive; that is, if there is
gome p > O such that the power series converges uniformly on
B .

5(8)

PROPOSITION 1 (Cauchy-Hadamard) - The radius of convergence of

the power series is given by

1 ; y
i
HPmH m

r o=
lim. sup.

i) =

Proof: Let us assume that the power series is uniformly

convergent on a closed ball ﬁp(i)g Call £(x) its sum
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m

for x ﬁp(§)a There is some integer M =2 O guch that

' m
[2x) - ) Ryx-0)f =1
i=0
for m =M and x € Ep(g)u Hence
P (z=8)] = 2
for m>M and x € ﬁp(g), If +t e E, |t] = 1, we shall have
I2 (ot = o™ llB()] = 2
for m > M., Hence
m '
¢ Ryl = 2
for m > M. We then get p < 1/A , where
A= 1im , SupclP "l/m .
M= o m
It follows that r < 1/A, Let us now prove the opposite
~inequality r = 1/Aa This is clear if A =® , Agsume A < o ,
‘Take p such that O =< p < 1/A , Fix o so that p < o < 1/A,
Hence o > 0, Since A < 1/0 , there is some G 2= O such that

HPmH < ¢/d™ for m=0,1,..,. . Hence

m
e (== = 12 0 . |x=E[™ < ¢ ()

for x € ﬁp(i)' and m :'0,1,,,: . This proves that the power
series is uniformly convergent on Ep(g). Therefore p < r.
Letting p—1/A ’ Wé get 1/A < r. This proves the Cauchy-
Hadamard formula r = 1/4A, Q.E.D.

COROLLARY 1 ~ The power series is convergent if and only if the

sequence
H:Pm" 1/m (m =j 1,2,000)
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ig bounded; or, equivalently, if and only if the sequehce

o 1™ (m=1,2,0.0)

is bounded.

Proof: Necessity and sufficiency of boundedness of the first
sequen¢é~follows from Proposition 1. Now, boundedness of

the first sequence is equivalent to boundedness. of the second

sequence in view of Proposition 1, §3 and the classical remark

that the sequence

(Ul = 1,2,!10_5)

2

ig bounded; as a matier of fact this sequence tends to the number

e as a consequence of Stirling's formula

lim —D = 1, Q.E.D.
m—= o m e \/2nm , :

REMARK 1 - In the above Corollary 1, it makes no difference

~

whether we use HPmﬂ or HAmﬂ , where P_ = Ay . It
can be shown that this is also true of Proposition 1 itself, in
cage E is finite dimensional (see the comment at the end of
Bemark 1, $3). This is no longer the éa.se if E 1is infinite
dimensional. The following is a simple example (compare with
Remark 1, 83). et E be the Banach space ‘%l of all

sequences X = (XjgeesyX,gese) O0Ff complex numbers such that

Izl = Llx| <=
" normed accordingly. Take F = O, Lev P :E-=F be defined by

_.m
| Pm(x) =m o (X eoo xm)
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If x = (Xyye0e9X 5use) € E and m = 1,2,..., and P, = 1. Then
Pm e P(MEsF) and it is easily seen that ﬂPm" =1 for m= 0,1,

cia o Accordingly,‘the radius of convergence of the power series

7

is equal to 1, by the Cauchy-Hadamard formula., However, if

A € sS(EaF) corresponds to P, it is easily seen that

m
m
- H_
for m = 0,1,.., . Hence

lim |2 V2@ -1,
m
= o
: 1
lim A | /mo_ ,

TM—= o

by the Stirling formula.,

PROPOSITION 2 ~ If there is some p > O such that the power

geries
P _(x-g)
Lo Tm

converges and has sum equal to zero, for every x € ﬁp(g) , then

Pm=o fOI‘ mzogl,oao 07

The proof will use the following lemma.

IEMMA 1 - If w € P (m=0,1,...), & > O and the series

Lo =

converges and has sum equal to O for every A € €, [A] = &,

then U, = O for m=0,1,00s &

Proof: Letting A = 0, we get u, = 0, Assume that we have proved

that u. = ,,. = u = 0 for some h = 1. Let us prove

o] h=-1
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inductively that Uy = 0, Since Z.um 5% converges, we have

Wy % =0 gs m—w; hence

C=gup Jul) .8 <o
' m>0 “m

Now

lw, I = Zm—-:h-s-l lagl . (A2
C A
s s=iN

provided A # 0, |A| < &, Letting 'A—=0, we get wu, = 0. Q.E.D.

Proof of Proposition 2 - Let t € E, A el , x =8 + At. We have

then .
m
Z Pa(t) A7 =0
m=0

provided [z-&| = |Al. [t s ¢ . By Lemma 1, we get P (t) =

|
o

for all 1t € E, hen‘c_e Pm = 0 (m = 0,1,_0-;). Q-E-Do
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$5 — HOLOMORPHIC MAPPINGS

DEFINITION ) - A mapping fe¢U—=F dis said to be holomorphic on

U if, corresponding to every & € U, there are a

) B
m=0

from E to P about £ and some p > O such that Bp(g) cU

power series

and

f(x) = Z: Pm(x—g)
m=0

uniformly for =x € Bp(g)o The senuence P (m = 0,1,.,..) is

m

then unique at every point &, by Proposition 2, $4. This

convergent power series is called the Taylor series of f at &

and then we write

el

£{ = E: P (x-
x) e 2(x=8)

t0 denote this relationship between £ and the power series.
We shall denote by H(U3;F) +the vector space of all holomorphic
mappings from U +to T, with respect to pointwisé vector

operations,

DEFINITION 2 - Iet T & ¥(U3F) and

[»+]

Px) =) By(xeg)
—m=0

be its Taylor series at § & U, Let P € P(mE;F) correspond o
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Il

hen we deduce that P = A is holomorphic on E and that
ctually

(B) a g™k

H

£, 4 B(8)
‘or k = 0,,.,,m, and
a® P(g) =0

‘or k > m. Q.E.D.

'EMARK 3 - From the above proof, we see, in particular, that
a*p e o("FE; £ ("EiP)Y ,
ikp ¢ P(Tkg; p(¥E;m)),

‘or P e P(ME;F) and k = 0,,..,m.
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§6 - THE CAUCHY INTEGRAL

PROPOSITION 1 (Cauchy integral) - Let f € ¥(U3;F), € € U, x € U

and p > 1 be such that (1-A)E + Ax € U for

every A€ C, |Al = p . Then
1 j/ £ [(1-A)E + Ax]

Proof: Pirst of all, let V< { be open, g:V——F bte holomorphic

and T € ﬁa(g) c V for some & > O. Then

_ A) -
g(r) = 5 -K:£]=6 _ST) ar .

This is proved for general F exactly as in the elassical case

T = C. Let us apply such a fact to the proof of the proposition.

g(A) = £[(1-M)E + Ax] ,

where g 1s defined and easily seen to be holomorphic in the open
subset V of € of all A e C such that (1-A)8 + Ax € U, By
the assumption, the closed disc in. € of center at O and radius

p 1is contained in V and contains 1. Hence
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PROPOSITION 2 (Cauchy integral) - Let f € ¥(U3F), § € U, x € E

and © > 0 - be such that § + Ax € U for every
Ael , IAl < p. Then

A E + A g
a3 (E)(x) = =i I{;zp £( A;+1X) dA

fOI‘ m = O’l,oaa *

Proof: First of all, let V< € be open, g:V—F Dbe holomorphie,
0O<rs<R, £ eC and the closed corona in € of center

at € and radii r and R be contalined in V.

Then ' ' .
'jr' g(A)ar = /’ g(A)dxr .

IA-E| =R |A-E] =r

This is proved for general F exactly as in the classical case
F =L . Let us use this fact in proving the proposition.

Set

"g( )\) = f(imIlAX) ’

where g 1is defined and easily seen to0 be holomorphic in the
open subset V of { of ali1 A el such that & + Ax € U and
A # 0. By the éssuﬁgéion, the closed disc in - of center at O
and radius p is contained in V, except for its center O.
Hence, letting O < € = p,

[ /;'g'(xk)d?\,

[Al =p . |Al=e

that is,



[' ’f(imi Ax) g = j[ f(im:lAX)_dk
IAl=p IA] =€

Consider'the Taylor series

=]

f(t) = El P t =8
(+) L R )

of £ at & , and assume € small enough SO that this power

uniformly for t 1in the closed

series will converge ©oO (%)
g.lxl] . We then get

and radius

N

j’ | .f(imilkx)'dﬂ =
|Al =p '

pall in E of center atlig

aA .
= P (x) _ar - opi P (%)
§;L=0 L ‘Ay=€ . Km+l L m,

QOEI:D.

from which we gét the proposition.
PROPOSITION ' (Cauchy inequalities) - Tet £ € #W(UF), ¢ > 0
and ﬁp(g) c U, Theﬁ - '

| 3, 0] = %‘-’ﬁ xogl =0 2l

for m = 0,1,-0- 5.

Proof: Apply Proposition 2 by assuming (x| = 1. Q.E.D.
REMARK 1 - let & € E, P> 0, and a 2_0 be given so that
“%5' amf(g)“ < C, sup | “f(x)“
) : I x-El =p

holds fa every f € #(E3;F). Take P e P(mE;F),' £f(x) = P(x-E)
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for x € E, Then

2, d%(x) - P

for every x ¢ E, and we get
[P] < c o™ |p|

that is ¢ 2 1/p% 1y taking P £ 0, This shows that /6% is
the best universal coefflclent for Propos1t10n 3. On the other
hand, Prop031t10n 3 would also hold in the form

m

[3: a®cs)] = ‘;L—nﬁ %T".i‘_‘é’”:p I£(x)]

by Proposition 3 itself ang Proposition 1, §3, Moreover, the
above reasoning would show that ' a
i o
pm m}

18 then the best universsl coefficient, by Remark 1, §3.

PROPOSITION 4 - H(U3FR) '1s contained and closed in G (U;F), the

latter space being endowed with the compact-open

topology.

The proof will be based on the follow1ng 1emma.

LEMMA 1 - Let f e H(U3F), € ¢ U, x e U am the real number

© > 1 be such that (1-M)E + xx e U for every A e C,
Al < p. Then '

L sup | £.[(1-A)E + Ax] |

I#6x) - 2,001 = P™(p=1) [A]'=p

for m=0,l,aqa .
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Proof: By Propqsitiﬁns}l and 2 and the identity

1 _ Zm 1,1

for A£0 and A#£l, we get

H

1 (1-A)e + ax
) - Tm’f’g(#) - om Ii{;p figil(;fl; L

from which the lemma follows. Q,.E.D.

Proof of Proposition 4 -— Let & € U be given. Choose p > O 80

that By(£) © U and, letting fey(U;F), we have

£(x) =) B(x-e)
m=0

uniformly for =x € Bp(g), where the series in question is the

Taylor series of f at E. By Corollary 1, $4, the sequence
. _
”Pm" /m (m = 1,2,44. )

is bounded by some ¢ = O, Hence

2 - 2 =) 1y

m=1

¢ llx-El
1-c |=x-8|

provided [x-El < p if we further assume pc < 1, It follows
that f is continuous at §. Hence
H(U;F) ¢ G(U3F) .

"Let us now prove that #(U;F) is closed in G(U;F)
with regpect to the compact-open topoiogy. Let £ ©belong to
the closure H(U;F) of M(U3F) in G(U;F)., Fix & € U,
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Given any x € E, choose p > 0 so that the closed ball in E of
center at & and radius p .|x| be contained in U, Define

i (g):E—F by

1 am ol }[ £(& + Ax) |
=, 4a e(E)(x = 3nT ST ar .

|Al =p

Notice that the right-hand side of this equality does not depend
on the choice of such 03 this is indeed the case if £ € H(U;F)
(see the proof of Proposition 2),‘hence if £ € #(U;P), We have

obviously | ' |

Me(e)(px) = p® a%e(g)(x)

for pe C, x e E, Use the polarization.formula (see the proof

of Proposition 1, §3) to define aPf(g)sEM—F by

dmf(g)(xlsﬂaﬂgxm) =

il
o _ Eqeootpy d f(g)(f_llxl + oeo F Smxm)
mi2 £1= 1 .

—+
m—_l

for XygeeesXy € E. Then dmf(g) is m=linear and symmetrics.

this is indeed the case if F € ¥(U;F), hence if £ € H(U;F).
It is eclear that

i (e)(x) = aBe(g)x®

for x € E, so that amf(g) is the m~homogeneous polynomial
associated to a"f(&). We claim that d%(g) 4is continuous. -
In fact, if |x| =1 and p is such that §p(§) c U and f

is bounded on ﬁp(g), we get
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m Sup. "f(t)" < >,

P =gl =0 |
S - AMaroy s . | .
It follows that d f(£) is continuous, hence daof(g) is

continuous too. We thus have

a"e(8) e £ ("B3F) ,
d"e(g) e e(TE3F) .

Define‘ Tm,f,g for £, exactly gs in’Définitiqn 2,_§5. ﬁhe
estimate in Lemma 1 holds for f € H(U;F}, since Proposition 1
holds for f € i(ﬁ?fj, Choose r > 0 anﬁ g > 1 \_such that .
Bpr(g) €U and f is bounded in Bpr(g); We fhén conclude that
£ dis the limit of Tﬁ,frg as’ m— e uniformly on _Br(g).

Hence f(-:' }i(U;F), Q.E,D,
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Proof: Let r, be the radius of boundedness of f at & . By

| . Propositions 1 and 2, the Taylor series of .f at §
converges to £(x) uniformly for x € Ep(g), for any O =< p < ry.
By the Cauchy ineqﬁalities, the prospective Taylor series of. |
it at & converges‘fo d®f(x) uniformly for x € Eptg) too, -
gince we can increase P Vin-thelprevious érguménto We next
notice that

(B3 ("E;F))

o _;  )
d Pk+m € P

to conclude the prodfwﬁf the assertions concerning d°f . The

corresponding asserticns for a™f ‘then follows from there., Q.E.D.
COROLIARY 1 - If £ € W(U;F) and § € U, then, for k,m = 0,1,...,

L. sk 1L am _
i d (F a1 ()=

g~

s [(Eiajz'ak+m fpg)]"

Proof: In the notation of the prbposition, we have
a s (g) ,

Ak S
, asd™e)(g) ,

from which the Corollary follows. Q.E.D.

COROLLARY 2 - If f € #(U;F) and § € U, then, for k,m =
) : O"l’-ll‘d’

r me g = AT o e)
k’dmfgg k'i‘mgf,g ¢

Proof: Apply the Proposition or Corollary 1. Q.E;D.
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§8 - TOPOLOGY ON THE SPACE
OF ALL HOLOMORPHIC MAPPINGS

In the present.section, we shall summarize the definition
and main properties of the topology 3, on H(U3F). No proofs -
will be given here. Proofs of the major'facts will be presented

in the mare general case of the topology J on Hg(U;F),

w,0
starting from §9 on. We shall indicate in §i4 how the general
.considerations developed in the bulk of this monograph, $9 to
§13, simplify in the case of ﬁtU;F)f .
A seminorm p on ¥(U;F) is said to be ported by a
compact subset K of U if to every open subset V of U

containing K theré corresponds a real number e(V) > O gueh

that

p(£) < o(V) . sup |£(x)]
. _ xeV

for every f € n(U;Fja The topology 3, on H{U3;F) 1is defined
by all such seminorms ported by compact subsets of U. Each of
the following conditions is necessary and sufficient for P
to be ported by K:

(i) Corresponding to everv real numbe&' ¢ > 0 there is a

real number c¢(€) > O such that, for eve¥y f € HUF),

p(f) = elg) }: | gl sup WI%,_amf(X)“ .
m=0 x€X *
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(2) Corresponding to every real number € > O and open
subset V of U containing X, there is a real number
e(e,V) > O such that, for every £ € H(U;F),

»(£) = ele, V) E:KFO g™ o | 3, e -

If U is §—equilibraﬁed, the Taylor series at g of aﬁy,

£ e'n(U;F) converges to f .in the sense of &,. If U is
E=equilibrated, the following condition is necessary and
sufficient for p  to be ported by K: corresponding to every
open subset V 'of U containing K, there is a real number

e(V) > 0 such that, for every f € H(U3F),

=]

p(f) < (V) . E: : sup I %
m=0

d(g).(x-8)]
xev

Qs

The compact-open topology on the vector space G (U;F)
of all continuoug F=valued functions on U induces a topology
5 on HU3F) . We‘hé%e 39 C By 3 36 = 3, if and only if
dim E < = , or F = 0. Each d™ is continuous for the
corresponding topologies I, ; continuity of d® for some
m =1 and the corresponding topologies 30 requires
dim E < = , or F = 0. However a subset X of ¥(U;F) 1is
bounded for 3, if and only if it is bounded for 3, . Each

of the following conditions is necessary and gufficient for

X to be bounded fér_ Iy 3

(1) Corresponding to every compact subset K of U, there

is & real number C = O such that |f(x)| = C for every f €1
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and x € K,
(2) Corresponding to every compact suset K of U, fhere
are a real number C = O and an open subset V of U

containing K such that [£f(z)|< C for every f €Y and x ¢ V.

(1') Corresponding to every £ € U, there are real numbers
C=20 and ¢ =2 0 such that, for every m = 0,1,...  and
1

fex, |z, &%) =c. ",
(2') Corresponding to every compact subset K of U, there
are real numbers C = O and ¢ =2 0 such that, for every
1 m

m=0,1,...,f €% and x ek [z, x| sc.c",

(3') Corresponding to every compact subset K of U, there
are real numbers C =2 O and ¢ = 0, and an open subset V of

‘U containing . ¥, such that, for every m = 0,1,00., £ €1 and

X €V, II%-L5 amf(x)“ < C, ™,

et X< U .beAfixéd,‘and suppose X meets every con-
nected component of_ Us Then Y 1is bounded for I, if and
only if X is equicontinuous on U and sup {Ef(x)ﬂ[f e1} < =
for every x € Xa Denote by 3;,X the topology on H(ﬁ;F)
defined by the family of seminorms f— [d"f(x)l for m = 0,1,...
emd x € X, If I is 3w~boﬁnded, Ty and 3o, x induce the same .
topology on I3 also the uniform structures aséociated with Ty
and 3@,X induce the same uniform structure on Y. If
£, £, € ¥(UsF) for 4 = 0,1,..., then f,~f in the sense of
Jy as 4=« if and only if {fL} is J,-bounded and

amf&(x)—é d%f(x) in P(TE;F) as 4o “for every m = 0,1,...
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and x € X. Also Y 1is 9d -relatively compact if and only if
X is Jy -bounded and {amf(x)l felX } is relatively compact in

P(?E;F) for every m = 0,1,... and x € X,
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$9 - HOLOMORPHY TYPES

DEFINITION 1 ~ A holomorphy type @ from E to F ié a Sequence

of Banaeh spaces P®(mE F), for m € N » the norm

on each of them being denoted by P-a-HPﬂg, such that the fol-
lowing conditions hold true: S i

(1) Each P®(mE;F) is a‘Vectbr Sﬁhspéqéﬂpf P("E;F).

(2) Po(°BsP) coincides with P(EiF) = P, as a normed vestor

space; | ‘ A |

(3).There is a real number o 2 1 for whlch the follow1ng

is true. Given any 4 e N, m e N & < m ,. x € E and

P e Pe(mE;F), we have

. a&P(x) € P®(LE;F) , and

|5, @2l g s ™l . gt

PROPOSITION 1 - Bach inclusion mapping

®(mE F) c P(mE F)

ig continuous and of norm inferior to - oT , .M € N .

Proof: Set 4 = 0 in Condition (3) and use Condltlons (1) and
(2) of Definition 1 to get f,,fjl |

()] s o, ||P|I® : uxllm

that is

Iels o®lRdg . QE.D.
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DEFINITION 2 - A given f € ¥(U3F) is said to be of ©@-holomorphy

type at § ¢ U if:
(1) d%r(g) e P®(mE;F) for me N
(2) There are real numbers G20 and c¢= 0 éuch that

m

u%;g%@”%s(3ac for mebl,

Moreover, f is said to be of G<holomorphy type on U 1if f 1is

of 8-holomorphy type at every peint of U. We shall denote by
ﬁ®(U;F) the vector subspace of H(U;F) of a1l such £ of

@-holomorphy type on U,

PROPOSITION 2 -~ If £ ¢ ﬂ®(U;F), then corresponding o every

compact subset K of U there are real numbers

C=20 and c¢c = 0, and an open subset V of U containing K,
such that

g el s e o

for every x €V and me N,

The proof will be based on the followirg iemma.

LEMMA 1 - Let £ € H{Us;F) %be of O-holomorphy type at & € U,

Then there exists =& real number o > 0O sgsuch that

Bp(g) © U, and such that:

(1) a%f(x) € P®(mE;F) for every x € Bp(i) and me N,

(2) There are real numbers C 2 0 and ¢ = 0 such that

"%g amf(x)"® =0, "
for every x € By(8) and me N

(3) For every x € Bp(g) and t e N,
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)
E:mza @ Fn(x=2)

3
S
2
M
1

where

d"r(g) (me NY,

Hd
1l
Hi

convergence of the series being in the sense of P@(&E;F).

Proof: Consider the Taylor series

£(x) = E:m P (x-5)
=0

of £ at &. Then there exists some real number p > O (take
O < p < ry; see the proof of Proposition 3, §7) such that
Bp(g) < U, and such that, letting x € Bp(g) and 1 e N,

we have

=]

. . o~ _ ~4f
() P - ) drxes)

convergence of thig series being in the sense of P({E;F).
By Condition (1) of Definition 2, we have P, € P@(mE;F). Hence

4
dLPm(X -£8) e P@( E;F), by Condition (3) of Definition 1. Using

Condition (3) of Definition 1, we have

” a4 N\ m
I e R SRR AP EX

There are real numbers € 2 O and ¢ 2 0O such that

m—4~,

| x-& |

HPmH® < C ., c® for every m e N, by Condition (2) of Definition
2. If, in addition, we assume that p was chosen sufficiently

small so that o ¢ p < 1, we shall have

Zmz& |d%p (x-8)] g = —l—f—"%(g . (oc)?
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for every x € Bp(é) and 4 € N, so that the series in (¥*) will
converge in the sense of P®(&E;F), by completeness of this
normed gpace. Since that séries converges to aaf(x) in the
sense of P(LE;F), by assumption, it follows, by virtue of.
Proposition 1, that actually a&f(x) € P®(£E;F), that (*)} is true
in the sensge of P@(LE;F), and also that-

" %; aLf(X)”e < '3j:§%;£;_, (oc)*

fior every x € Bp(g) and ¢ € N . . Q.E.D.

Proof of Proposition 2 = Apply Condition (2) of Lemma 1.

Q.E,D.
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$10 -~ DIFFERENTIATION OF HOLOMORPHY TYPES

DEFINITION 1 - Once a holomorphy type © from E to P and
+ € N are given, the vector space isomorphism

P e p(**mE F)—~ = 3% € p(TE;p(*

& E;F))

(for each m € N ) induces, by Condition (3) of Definition 1,
§9, 8 vector space isomorphism of P®(L+mE;F) onto a vector
subspace of P(mE;P®(LE;F)). Such a vector subspace will be

denoted by

N
7, 4 Pe(PTIESE)

it becomesa Banach spacelwﬁen normed in an isometric way by
Al .
|z, &l = lzlg
L+m EiT),

for P € P®(

PROPOSITION 1 - For each fixed holomorphy type © from E to

P and 1 € N, the sequence of Banach spaces

., d%e(MEsp) (me N)

‘ 4
is a holomorphy type 7 from E {0 ¥g( E;F) (to be denoted

by %, aL@).

Proof: We have to verify conditions (1), (2) and (3) of °

Definition 1, §9 for the prospective holomorphy type T
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from E to P®({‘E;F)u Condition (1) is clearly satisfied.,

As to Condition (2), if

4 +0

Pep E;F) < P(YE;F)

ol
then

showing that

1 2o 4+0Q.
7, AP %;¥)

coincides with ﬁf&E;F)_ as a normed space. 7
- To verify Condition (3), let ke N, me N, k < m,
Xx €8 énd u _
P e %g 3 L+mE iF)

be given. This means that

-1 At
P = i aQ
for a unique Q e P®(L+mE;F), We then have (Corollary 1, §7)

’b+k (/z;'{'k

Q(x) € Pg E3E)

by Condition (3) of Definition 1, §9, we see that

i*p(x) e

el
N
)
@

Moreover, we eclaim that

IIE, ch)UT = (HE e, uxum-k

7

where o is assoclated with the holomorphy type @ from E %o
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F by Condition (3) of Definition 1, 9. In fact, this inequality

gmounts to

| el s (S el L 1=

This is true in case m =‘O, for then k = 0,
Qe PQ(&E;F) and

1

Z: aLQ = Q o

This is also true in case m 2= 1. In fact, using

Condition (3) of Definition 1, §9 for ©, we have

| el = ™ el g

It only remains to notice that gt < oVEHD (GL+1)m' Q.E.D.

PROPOSITION 2 -~ Let © be a holomorphy type from E to F,

ang

1

T = zz a{’@)

be the corresponding holomeorphy tyﬁe from E - to P®(&E;F),

where 4 € N (see Proposition 1). If f ¢ u@(U;F), then

itr e He(Useg(PB5P))

Proof: Letting & € U and

Pu = %; amf(g) | - (m € N ),

choose some real number p > O such that Bp(g) < U, and

such that
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0

-1 a&f(x) }:mm&

Z'w
=0

for every X € Bp(g) and 4 € N, where the series is assumed

“{;I _
d Pm(x-é) =

I
ool

|_I
S
=

Al _
d PLHII(X—JS-? .

L 1o

i
L)

to be convergent in the sense of Pg( E;F), by (3) of Lemma 1,
§9, Since we can use Conditions (1) and (2) of Definition 2,

§9, we see that

(_X_.g)'l[(@ < GH_m‘ . |®

. ’ m
O AU P {

x5 ||I]l 1

(2) “%; aLP&+m

SC.(Gc)&a(oéjm,|

by virtue also of Condition (3) of Definition 1, §9. I+t follows

from (1) and (2) that

(3) ite e w(U; poltEi)

Moreover we see that

1 ~4, . A L+II!. .
(4 Tt P-{r-i-m € i d P@( B3F)
- and that
| | 1 ad _ - . 0
(5) “ :EL d PL-HD“T» = HP'{:+ml® < C.c¢ s O o

What remains is to notice that (3), (4) and (5) complete

the proof. Q.E.D,
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COROLIARY 1 - Let £ € ¥(U;F) and B,(8) € U. Then

e

13, a'&f(x)“@; ZM =t | 1

for every X € Bp(g) and 4 e N,

am(g)]

Proof: By Proposition 2, we have

~ A ’
3, & e wueg(trE)) |

Hence the Taylor series of this function at § , namely -

1 adL, s E 71 g |

=, d"f(x) = Z, AP _(x - £)

L3 m=z Y° m !
where

P = %g amr(e) (me N),

converges t0 the indicate@,sum, in the sense of E®(LE;F), for
every x € Bp(g), by Proposition 1, §7. By using Condition (3)
of Definition 1, §9, we get

: Y — @ :
1 2 -4,
13, it - me& Pl "

if % € By(g). Q.E,D,

COROLLARY 2 - Let F € ﬁ®(U$F) and Bp(X) < U, Then

) 1 72
El&=os o ig%p(X} ’lL ‘ f(X)"@ :

o=

i

< E: [o(e + g)]m . Sup H ; amf(x)"®

=~ M=0 xeX.

for every real number £ > O,

Proof: Apply Corollary 1. Q.E,D,
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§11 - TOPOLOGY ON SPACES OF HOLOMORPHIC MAPPINGS

IEMMA 1 - et p be a seminorm on Ho(UsF) and X be a compact

subget of U. Then the following conditions are

equivalent:

(1) Given any real number € > 0, we can find a real

number e¢(g) > 0 such that
7 m ll Pyl "
p(f) = e(€) £ . sup ‘ =, d £(x) o
. m=0 xeX ’
for every £ € Hg(U;F).

(2) Given any real number € > O and any open subset V of

U containing K, we can find a real number eo(g,V) > O such

tha t

p(f) sc&nV)Z: g™ . sup “-nagﬂxmé

for every £ e,R@(U;F).
Proof: It is clear that (1) implies (2). To prove that (2) implies
(1), we apply Corollary 2 of §10 by taking X = K and by

agsuming further that p =< €, Q.E.D.,

DEFINITION 1 - A seminorm p on Ho(Us;F) 1is said to be ported.

by a eunpact subset K of U if the equlvalent

conditions (1) and (é-ﬁbmﬁ
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Ty g oD Ho(U3F), is defined by the seminorms on Ho(UsF) that
, ‘

are ported by conpact subsets of U. It is plainly separated.
REMARK 1 - It is to'be remarked that, by Proposition 2, §9, once

f € H@(UgF) and a compact subset K of U are
given, we can fina a real number & > O and an open subset V
of U containing K éuch that

. ™ . | - .
Zm=0 e - 21% I5: dmf(x)"@ S

and, in particular,

§:m=ogm .lizg IIE; dmf(x)”® é ® ,-

-

These facts are to be compared, respectively, with conditions

(2) and (1) in Lemma 1,

PROPOSITION 1 - Let A be a set, 3 a filter on A ] (fA)AeA

a family of eiements of #g (U;F) indexed by

A and f e'H®(U;F). Assume that, cdrresponding t0 every compact

subget K of U, we can find a real number £ > O such that

. @ o 1 -m
1im 2: Em « sUp =, d (fy- f) = 0,
| A3 m=0 xeX Ilm: A ”®
Then
1im ~F. = f-
e

in the sense oflthe;tppology 3y @ oOm H®(U;F).
v . N H —

The proof is trivial.
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REMARK 2 - From Corollary 2,y §lO it-follows‘that the assumptidn
in Prop051t10n 1 is equlvalent %o requiring: that, |

correspén&ing 10 every eompact subset K of U, we can flnq a

real number ‘5->70_:and an open subset V of U quntaining K

such that

-

'iffs'Eim;d Sm“iﬂgz$ L“;‘ am(ﬁk___f)ﬂ® - 0.

'PROPOSITION 2 - Let £ € Mg(UsE), § €U and U be E-equilibrated.

Then the Tavlor series of f at & converges 1o

f in the sense of the topology Sw g on u®(U;F)o

The proof'will be hased_on the fqliowing lemma .

LEMMA 2 - Let T Eld(U F), € e U and U be §aeQuilibr3te€;“Theq,”'

glven any compact subset, K of U, there exist real

numbers y(0 < y < 1), C = 0- and ¢ > 0, and an open subset V

cof U ‘containing X, such that

sup =, d (£ -7 Wx)| = ¢ . e .

. xe€V Il@i_ LE8 "@- | Y

for every ‘2. e N, me N,

Proof: By Proposition 2, §9, choose an open subset W of U
containing the given compact subset K of U, and real

numbers C 2 O and ¢ 2_0, sﬁch that W is S~equilibrated and

13 @, < oo

for every x € W and m eﬂJ,-Next choosé a feal number 'p > 1
‘and an open subset V of W éontaining K ‘such that A e,
Al = p{;fk €V imply that (1—A)§ + Ax € W. Use
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amf € Ji(U;P@(mE;F)) 9

by Proposition 2, §10, and apply Lemma 1, §6, to 4%F +o get

- C c® . mi
sme g (x)| < : .

] aPe(x) - 7

for x eV, ¢ eN and me N. Now (Corollary 2, §7)

o V - Am
T&,dmf,g = d T£+m,f,§ !

80 that

¢, ¢t

g & - T'&fm,f,é)(x)"@ : o*(p-1)

for x eV, ¢+ eN and me N, In other notation,

-~

Bl

T

& otp - 1)

for xe¢V, L eN, meN and & 2 mQ‘However, (1) remains

true for 4 < m, In fact, then

and since Vc W, we have

“%; amf(x)“® < ¢, c"x ELEp(fci?

for x € V, because p - 1 < pm_L, Thus (1) is true for x € 7V,
4 eNand me N, Te lemms is thus proved if we replace’

5 S‘l and pec

by C and ¢ respectively, and also set. y = 1/p. Q.E.D.
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Proof of Proposition 2 =~ Apply Lemma.2., Then corresponding to

u'every compact subset K of U, we can firnd real numbers
y(0< y<1), C=20 and ¢ = O, and an open subset V of U
containing K, such that if the real number € > 0 satisfies

€c < 1, then

cyt

E:m:OSé f ig%lll%g N ~ Tt’f’g)(x)n® < _i_%7;;

for 4 € N . Then apply Proposition 1 (compare with Remark 2).

Q.E.,D,
- PROPOSITION 3 -~ Each inclusion mapping
n@(ﬂ;ﬁ):c ¥(T;F)
is continuous for the carresponAing topologies Hw,® @Q@u Ty e

Proof: Apply Proposition 1, 89, Q.E.D.

PROPOSITION 4 - Let © be 2 holomorphy type from E to F and

r= gy dte

be the corresponding holomorphy type from E to P®(LE;F),

where ﬁ@ € N (see Proposition 1, $§10), Then the linear mapping

. A L . )
f.ﬁ_ﬂ@(UiF)“*'%; d%f e B (UPo(“BsT))

(see P%oposition 2, 810) is continuous for the corresponding

g and &

w, 0 topeologies.

w,T
Proof: Let ip be a seminorm on HT(U;P®(&E;F)) ported by a
compact subset K of U. Let the real number c(€) > O

correspond to every real number S > 0 sd.that, Tor every
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£
g € ¥ (Us#o("E;F)), we have

5(8) < ofe))

_am:_

R L

If then f e Hg(UsF), we have (Corollary 1,-§7)

" ;}1; d™ ( %g a*f)(x):IL = .
Iz ey & s, -
|y e

and so

m xeK

[4t) <.cle) §:m;0 e™ .+ sup | oy (o)

S'——-C(SDZ e™ . sup ” I%.&mf(x)”' '
gt m==0 xek : g

proving the desired continuity. Q.E.D.
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§12 - BOUNDED SUBSETS

PROPOSITION 1 - Each of the following equivalent conditions is

necessary and gufficient for a subset Y of

n®(U;F) to be bounded for 3w9® H

(1) Corresponding to every & € U, there are real numbers

C=20 and ¢ 2 0 guch that
|2amee], <o . o

for every m € N and f € Is

(2) Corresponding to every compact subset K of U, there

are real numbers .C 2 0 and ¢ = 0O guch that

|£,8 f(x)u ¢ . ot
for every m € N sy T €Y and x € K,

(3) Corresponding to every compact subset K of U, there

are real numbers C 2 0 and ¢ = O, and an open subset V of

U containing K, such that

ll a f(x)“ ¢, oB

for every me N, feX and x e V.
Proof: Let I be bounded for 3J, o . We shall “then prove (2).
9

If K U is compact and ap 2 0 (m € N ) are real num=-
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bers such that (am)l/m-ﬁbo as m-==, we have correspondingly a
seminorm, p on Hg(U3F) defined by
_ 1l -»m
p(f) "‘EZ G o SUP )Lw,_d f(x)”
m=0 xek ° @
for £ € Hg(UsF), by Proposition 2, §9, It is immediate that D

is ported by XK, hence continuous for g

T, 0 Therefore p is

bounded on Y. Now it is classical that if Sm.a 2 O are real
R L

numbers for m e N and A e A, where A ig a set, then

Sup Z ’ a. s < @
AEA m=0 m=~m, A
holds true for every sequence (am)memi of positive real numbers

such that (am)l/m—*-o as m~= if and only if there are real

numbers C 2 0 and ¢ 2 0 guh that

for every meWN and A e g, Therefore, the fact that every
‘seminorm p of the above form is bounded on X implies (2).
Conversely, it is clear that (2) implies that X is
bounded for 3w,® .
The implications (3) = (2) = (1) are clear too.
Let us finally prove (1) = (3)}. In fact, if § € U ang
C20 and ¢ =0 correspond by (1), we may apply Corollary 1,

§10 to get
13 8], « T2 (oo

for every x € Bp(g), teN ang £e L, provided we choose

P >0 so that Bp(g) < U and ope < 1, This suffices to
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show that (3) holds. Q.E.D.

- - J;;’l"' . .

DEFINITION 1 - €orresponding to every compact gubset K of U
. _

“"and every m e N, we have the seminorm p on

Ho(UsF) defined by

p(£) = sup |d%e(x)]

xeK ®

for f € Hg(UsF), The 3, topology on H®(U;F) is defined by

all such seminorms, Clearly J < Sm g and IJg is separated.
. ’

PRGPOSITION 2 - On every Kw’®=bounded subset X of n@(U;F),

the uniform structures associated with Ew 8
9

g

Jd_, induce the same uniform structure. In particular,

3, ¢ and J_ induce on Y the same topology.
’ .

Proof: Let us assume first that O € ¥ and prove that a.swset
of Yy is a neighborhood of O in the topology on X
induced by Ew,® if and only if it is a neighborhood of 0 in
the topology on Y induced by J_ . One half of this assertion
is clear from _3m < 3w,® ; Conversely, let p be a
3w,®-continuous seminorm on ‘H®(U;F), Assume that p is ported
by a compact subset X of U, and let c(€) be as described in
(1) of Iemma 1, §11. Since X is 3w’®¥bounded, there are C
and c¢ according to Condition (2) of Proposition 1. Next choose

€ >0 sothat €e < 1 and p e N by

c c(E)}l (€e)® < 1/2
- m>H

Define the 3 _~continuous seminorm ¢ by
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T \
a(£) = c(e) Zm:o ) |2, mf(x')”@ :

It is then clear that, if fex and q(f) < 1/2V, then p(f)<l.
This proves the remaining half of the above assertion.

It we next consider any subset X bounded for 3w,® ’
the set Y - X of all differences of two elementos of X is
bounded for 3w$)ahd contains O. Since the neighborhoods of 0
in the topologies on X - I induced by 5.0 and I, are
identieal, it follows that the uniform structures on ¥ induced.
by the uniform structures associated to Jw,® are' identical too.
COROLTARY 1 - If f, € Hg(U3F) for 2 e N, and f e Hg(U;F),

then f,—f for Iy @ 288 4>e if and only if
== s .

(fL)aeN is bounded for Ew’@ and fy—=Ff for d_ as 4i—e ,

Proof: If fg~1f for I @ 88 4—o, then clearly (f%)geN
, .

is J, g-bounded and also f,—¢ for J_ as 4—w ,
w,@ - £ @

Conversel let us assume that i is & -b
v, (Tglren is w,0 ounded
and that fg=f for 3w as 4d—>=, To prove that f£—*f for
Sw @ 85 4d—e it suffices to notice that‘the subset of
Ho(UsF) formed by all fu(t eN), and by + , is Sw,@-bounded,
and then to apply Proposition 2 gQaEnDo

PROPOSITION 3 - Each subset I of Hgo(U3;F) bounded Ffor 3.9
' !

is equicontinuous at every point of U,

Proof: Let £ € T and C and ¢ correspond %o it by

Condition (1) of Proposition 1, We have
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o

&9 ==§: %; a"£(g) . (x - B)
m=0 '

for every T #FH(U;F) provided =x € Bp(g) c U, Using Propo-

sition 1, 89, we get

[+2]

|2.am)] o ogsy™

fe(x) - 2(8) =)

m=1

E=dk

< Z: AR 1 amf(g)”@ :
TP P

Coc }x-gf
1 = oclx=E]

provided x € Bp(é), gep = 1  and f e X , from whiech equicon-

tinuity follows. Q.E.D,

REMARK 1 = Propogition 3 for arbitrary © follows simply from
the particular case in which @ 1ig the current

holomorphy type (see $14), in view of Proposition 3, $1l.
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813 ~ RELATIVELY COMPACT SUBSETS

DEFINITION 1 - A suibset ¥ of Hg(UiF) is said to be relatively

compact at a point 5 € U if, for every m e N,

the set
@) e ex)
is relatively compact in Po(™E;F),

PROPOSITIQN 1~ A subset X- of Ho(UsF) is relatively compact

for 3y ¢ if and.only if X is bounded for
. ? R .

3w o 1 ggg I is relatively compact at every point of U,
1~ =

Proof: Assume that X is relatively compact for S o o
—_— . b

Then X .is bounded for 5y o ¢ Moreover the mapping
E i ' ’

f e Ho(UsF)—a"(8) e P o "E;F)

is continuous, fof every £ € U and m e N . Hence the image
of X is relatively compact in P®(mE;F) fof_every me N,
~that is, X is relatively compact at every 5 e U,

Conversely, let Us assume that X ‘is bounded for 3w’®
and that I is relativel§ compact at every point of U, By
Propositipn.z, §12,;the:elosure of. X - 1in the topology 3w;@
coincides with the elosure of X “in the topology 4, . More-

over since such a closure is Ty g-bounded, the topologies in-
H . .

‘duced on it by 3w,® and by J_ are identical, Henee, in order
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to prove-tﬁat 1 is relatively compact for Kw,@ , we shall show
that Y is relatively compact for I, . -

To this end, consider the cartesian prodﬁct

o
S = Hm":..o P®(

"E;F) = P (2]l

(vector space of all formal power series from E to F)

endowed with its cartesian produect topology. We define a natural
mapping & from ﬂ@(U;F) into the vector space ©(U;S) of all

continuous S-valued functions on U by associating with every

f GIﬂ@(U;F) the function &(f) defined at every point xeU by

e(£)(x) =

Bip

~m :
, a f(x))m€N €S .

o

It is immediate that &(f) € ©(U;s), becauee each ar  is

holomorphic, hence comtinuous, from U to ®( E ;F). The mapping
¢ ig linear and one-to-one. It is a homeomorphism if we endow
Ho(UsF) with the J_ topology and 0(U;S) with the compact-

open topologya By the assumption that X is relatively compact

at every point of ﬁ,_we see that the set
{@(f) Y| £ e}

is relatively compact in S. Therefore, in view of Ascoli's
theorem, in order to show that the image eet Q(I) is |
relatlvely compact in ©(U;S), we must show that it is
equicontinuous at every point of U. In other wordsg we must-
show;that, for every: m € N , the subset

%] ex)

. m . . . .
of %(UsPg( E;F)) 1is equicontinuous. This follows from the
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fact that X is bounded for I, o, from Proposition 4, $11 and
- N . ﬂ .

from Proposition 3, §12. Q.E.D,

PROPOSITION 2 - If U is connected, a subset X of ¥ (U;F)

is relatively compact for 9 if and only if .

w,0
X is bounded for 3, g + and X is relatively compact at =
: 9 - .

siggle point of Ua'

The-prqof'willfbe'based on the following lemma.

IEMMA 1 - Let Y be & subset 6f ¥o(UsF) such that

(1) X 1is relatively'coﬁpact'at some E € U, and

(2) There exist real numbers o > O and C = O such that

Bp(g) U @.ﬂ

H amf(gj“@ = (cg)m

for efery f ﬁ Y and me N,

Then X is relatively compact at every point of Bp(g).
Proof: For every f € Uo(USF)  set

Pop = 5,07E(E) (m e N).

We then have

— OO

~d, . ad
d f(X) - Zm:af, d Pmlaf(?t' - g)

for x € Bp(ﬁ) and 4 e m], canvergehce being in the sense of
P®(mE;F), by Proposition 2, §10.-Usingn(2)'ana'Condition (3) of .

Definition 1, 89, we have

ate, f(x-5)] s o Erialind
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far every feX, 2eN, meN, 4 < mn, Using this estimate
and the above series, we see that X is relatively compact at

every point x such that |x-E| < p,  Q.E.D.

Proof of Proposition 2 - Assume that Y is bounded for 3w,® .

Let X be the set of points of U where X is
relatively compact. Lemma 1 shows immediétely that X is open.
We now show that X is closed. Let 7 € U be in the closure
of X. Simee X% is I, g-bounded, there ave p > O and C = 0
such that Bp(n)'C-U and '

”%ﬁ;amf(x)”@ = (Tz)"ﬁ

for every f ey, meN and x € Bp(n), by Propesition 1,
Condition (3), 812. Let r = p/2, & € X N B.(n). Then the fact
that € e X and § € B (n), hence that

| | 280 = (ag)m ) (i)m

for every £ €X and me N , implies that X is relatively
compact at every point of BrC§), by Lemma 1, since Br(§) <
Bp(n) < U. Now n € B (§), Hence 7 € X, proving that X is
closed in U, The lemma then follows by connectedness of U,
QE.D. |

We shall not discuss further resul ts concerning relative
compactness, equiébntinuity, etc., which follows from the results
already proved and knowﬁ general principles. Let us, however,

make the following remark.
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RENMARK 1 - Proposition 2 of §12 can be improved as follows. et
X Dbe a subset of U, Denote‘by d, x Tthe topology
¥ .
on u®(U;F) defined by the family formed by each of the

following seminorms
p(f) = a0

for f € Hg(U3F), where x € X amd m e N, Then it follows
from Proposition 2 and 3 of 812, and from general principles
concerning equicontinuity, that if X is dense in U, then

T g and J_ <  induce the same topology on every 3w g~ bounded
] ) a

subset; and analogously for uniférm structures. However the
above probfs of Propositions 1 and 2 will show that the same
conclusion about the identity of 3w,®. and  Em,X on. every
Uw,Q-bounded subset, as well as of their uniform structures,
remains true if. X intersects every connected component of U,
This is turn could be used to provide short proofs of the above

Propositions l.and 2, A corresponding remrk applies to

Corollary 1, 812,
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$14 -~ THE CURRENT 'HOLOMORPHY TYPE

DEFINITION .1 ~ The current holomorphy type from E +to F is

| the holomorphy type.‘@ for which P®(mE;F) =
= P("E;F), as normed vector spaces,: for every ‘m € N ., Then
ﬁ@(U;E) = H(U3F), and 3w,@ is denoted by I,

Certain of the preceding considerations simplify for
thé current holemorphy type, as we shall ffy to explain in the
present section. It will be tacitly assumed that all con-
siderations.on HU3F) are taken with respéct.to the current

holomorphy type.

IEMNMA 1 -~ A seminorm p on #(U;FP) is ported by a compact

subset K of U if and only if, given any open

subset V of U containing XK, we can find a real number

e¢(V) > 0 such that

p(f) < (V) , sup ”f(x)”'
xeV

.for every f € ¥(U3F),

Proofs Let' P be ported by K in the sense of Definition 1
of 811, so that there exists a real number e(€) > 0

corresponding to every real number & > 0, such that

() = c<s)Zm:O e" sup | 5,8% )]
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holds for every f & H(U;F). Now, given any open subset V of U
containing K, choose a real number p > O in such a way that
any closed ball of radius ¢ whose center lies in K will be

contained in V. By Cauchy's inequality, we shall have

1

o |5 o] =

— sup (EE3] I

xX€eV
Take € = p/2 ‘and set (V) = 2¢(€) +to conclude that p is
ported by X in the sense of. the statement of Lemma.lo

The converse is obvious, by Condition (2) of Temma 1, §11. Q.E.D.

REMARK 1 - The topology 3, on H(U;F) is therefore defined by
the seminorms on it that are ported by compact sub-
sets of U in the sense of the statement of Lemma 1.
- In the case of boundedness in the sense of Jy for
subsets of MH(U3F), besides the three equivalent conditions

provided by Proposition 1, §l2, we have also the following omes.

PROPOSITION 1 - Each of the following equivalent conditions is

necessary and sufficient for a Subset p? Qi

H(U;F) to be bounded for I :

(1) ‘Corresponding to every conpact svbset X of U, there

is a reallnumber "C 2 0  guch that
.- 'ﬂf(x)u £ C
for every f € X and x € K,

(2) Corresponding to every compact subset K of U,

el y

there

are a real numper ¢ = C and_anlopen subgset V of U

containing_ K  such that
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etx)] = ¢
for every f €)X and x € V,
Proof: If (2) holds true, then X is bounded for I, , by
Remark 1. If 1 1is bounded for 3, , then (1) is true.
As a matter of fact, the seminorm p given on ¥(U;F) by

p(£)} = sup | £(x)]
xe£K

for all f e ¥(U;F) is ob%iously continuous for I, ; hence
p must be bounded on X, Finally (1) implies (2). In faect,
(1) means that % 1is bounded for the topology induced on
H(U;E) by the compact-open topology on the vector space

% (U;F) of all continuous F-valued funetions on U. Since
U is metrizable, bounded subsets of G (U;F) have the

property expressed by (2), Q.E.D.
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§15 ~ BIBLIOGRAPHICAL REFERENCES

The basic facts of the theory of holomorphic mappings
between Banach spaces, developed in §4 through 87, are to be
found in [1ﬂ and [2], for 1nstance.

We refer 1o h3] for the concept of the topology 3, on
#(U3F) and its properties treated in §8 and §14. ‘The notion of a
seminorm on H(U;F) ported by a compact subset of U exéends,
and is analogous to, the notion of a continuous linegr form
(analytic functional) on #(U;() ported by a compact subset of
U, as defined in [10] when E is finite dimensional. Under such
a restriction on E, one usually starts by introducing the
natural topology on ¥H(U; €)' as the one induced on it by the
compact-open topology on G(U; C), Next one shoﬁs that the
linear forms on H{(U; C) that are continuous are those ported
by compact subsets of Uf_Converseiy;f%£QAideé of [13] is to
start from the more generél notion of a seminorm on H(U;F)
ported by a compact subsét QEU;énd use all such seminorms to
define the natural topology 3, on H(U;F) without “restricting
E  to be finite dimensional.

| [1], [7] and [4] are the classical references on the
t0pology of spaces of holomorphic funetions; [1ﬂ ls a more
recent contribution to the subject, but still 11m1ted to the

flnlte dimensional ease. Classically, one assumes E to be
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finite dimensional and at first introduces the natural topology
on H(U; C) as the one induced on it by the compact-open topology
on ©(U; L), where U ig open in E. Next, K %being a compact
subset of E, one defines the space H(K; C) of éll germs of
holomorphic funetions on K, the natural topology on ﬁ(K;(i)
being obtained as the inductive limit of the natural topology on
#U; C), for all open subsets U of E containing the compact
subset K of E. By dropping the assumption that E is finifte
dimensional, we comment without further explanation that the
definition of I, on #(U3;F) corresponds to, conversely,
introducing at first the natural topology on H(K;F) for K a
compact subset of E, and next looking at the natural topology
on H(U3F), where U is an bpen gubset of E, as the projective
limit of the natural topology on H(K;F), for all'compact subsets
E of U,
| The concept of a holomorphy type. ® from E to P and

that of the topology Sw’@ on ﬁ@(U;F), as developed in §9
~through §13, was treated in [14] ., Its motivgtion lies in previous
work on nuclearly entire functions [6], [15];‘and in the various
known types of;ggntinudus multilinear mappings [5], as well as
their analoguesrfqr continﬁous homogeneous polynomials,

For the definition and applications of Banachizabie
manifolds, we refer the reader to [8], [16],[3] and [9].
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