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Objectives

Time series appear naturally with data sampled in the time but many other
physical situations let also appear such evolutions indexed by integers.
We aim at providing some tools for the study of such statistical models.
The purpose of those lectures is introductory and definitely no systematic
study will be proposed here.

Those notes are divided into 3 Parts including each 4 Chapters and an

Appendix.

1. Independence and Stationarity.
Even wether this part addresses mainly items of the independent
world, the choice of subjects is biased and motivated by the fact
that they easily extend to a dependent setting.

(a)

Independence.

This is a main concept in those notes so we set some simple
comments concerning independence as a separate chapter. For
instance we mention all the elementary counter-examples in-
voking independence. Other examples relating orthogonality
with independence may be found in the Chapter 8 and in Ap-
pendix, § A.2.1.

Gaussian convergence and moments.

A special emphasis is set on Lindeberg method with easily ex-
tends to a dependent setting. Applications of the central limit
theorems are proved in the independent setting. Moment and
exponential inequalities related to Gaussian convergence are
also derived.

Estimation concepts.

Classical estimations techniques, as empirical ones, contrasts
and non-parametric techniques are introduced. Kernel density
estimates are described with some details as an application of
previous results in view of their extension to time series in a
further Chapter.

Stationarity.

The notions of stationarity are essential for spectral analysis
of time series. [Brockwell and Davis, 1991] use filtering tech-
niques in order to return to such a simple stationary case.
Indeed this assumption is not naturally observed. Weak and
strong stationarity are considered together with examples.
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Second order weak dependence or long range dependence are
defined according the convergence of the series of covariances.
Stationarity and an introduction to spectral techniques are pro-
vided after this. We precise the spectral representation for both
a covariance and for the process itself. and we rapidly scan
some applications of time series.

2. Models of time series.

(a)

Gaussian chaos.

Due to the CLT the Gaussian case plays a central role in statis-
tics. The first time series to be considered are Gaussian. We in-
troduce the Gaussian chaos and Hermite polynomials as well as
some of their properties. Gaussian processes and the methods
of the Gaussian chaos are thus investigated. Namely Hermite
representations and Mehler formula for functions of Gaussian
processes are developed precisely while the diagram formula
for higher order moments is simply considered. The fractional
Brownian motion essential hereafter for the long range depen-
dent setting is also introduced. The asymptotic theory for
Gaussian functionals is also precisely stated. We also recall
the 4th moment method based on Malliavin calculus.

Linear models.

From Lindeberg’s lemma, the linear case is the second case to
consider after the Gaussian one. Eg. ARMA shortly dependent
processes or long range dependent models such as FARIMA
models are provided. See [Brockwell and Davis, 1991] for fur-
ther information.

Nonlinear models.

This central Chapter proposes a wide botanic for models of
time series. Non linear models are naturally considered as ex-
tensions of the previous ones. After the elementary ideas of
polynomials and chaoses we come to an algebraic approach of
models explicit solutions of a recursion equation. Then more
general and non explicit contractive iterative systems are in-
troduced together with a variety of examples. Finally the ab-
stract Bernoulli shifts yield a general and simple overview of
those various examples; their correlation properties are explic-
itly provided. This class of general non linear functionals of
independent sequences yields a large amount of examples.
Association.

Associated processes are then rapidly investigated. This prop-
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erty was introduced for reliability and for statistical physics.
The association property admits a main common point with
Gaussian case: independence and orthogonality coincide in
both cases. This feature is exploited in the following chapter.

3. Dependences.

(a)

Ergodic theorem.

As an extension of the strong law of large numbers, the ergodic
theorem is the first result proposed in this chapter. In order to
get confidence bounds for asymptotic distribution of the mean
one first needs consistency of the empirical mean. Further
needed asymptotic expansions are obtained from SRD/LRD
properties.

We then make a tour of the tools for the asymptotic theory
under long range or short range dependence (resp. SRD and
LRD).

Long Range Dependence.

Under LRD the more elementary examples are are seen to get
such asymptotic explicit expansion in distribution up to non-
Gaussian limits. Gaussian and subordinated Gaussians are first
considered as well as linear LRD models, anyway a rapid de-
scription of non linear LRD models is also included.

Short Range Dependence.

In the SRD case we give a rapid idea of techniques. Namely
the standard Bernstein blocks technique is proposed as a way to
derive CLTs by using a recent dependent Lindeberg approach.

Moment methods.

A last chapter is devoted to moment and cumulant inequali-
ties developing the more standard spectral ideas of the second
chapter.

Such inequalities are needed in many occasions but first in order
to derive CLTs, another application is for subsampling. This
technique applies for the kernel density estimator.

Appendices.

(a) Probability.

A first Appendix recalls essential concepts of probability, in-
cluding repartition functions and some Hoeffding inequalties.

(b) Distributions.

Useful examples of probability distributions are introduced in
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relation with the dependence conditions. Standard Gaussians,
Gaussian vectors and y—type distributions are considered.
(c¢) Limit theory in probability.

Basic concepts of convergence in probability theory are recalled

in this Appendix.
Applications of those techniques to spectral estimations are developed in an
elegant way in monographs [Rosenblatt, 1985, Rosenblatt, 1991]. Relations
with the asymptotic theory for kernel density estimation are also given.
[Azencott and Dacunha-Castelle, 1987] and [Rosenblatt, 1985] also lead to
a large amount of additional developments. Functional estimation frames
are synthetically described in [Rosenblatt, 1991].
[Doukhan et al., 2002b] provides a wide amount of directions for the study
of LRD.
[Doukhan and Louhichi, 1999], [Dedecker and Doukhan, 2003] as well as
[Dedecker et al., 2007] also consider the weakly dependent setting.

Paris, May 20, 2015

Paul Doukhan
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Part 1

Independence and
stationarity






Chapter 1

Independence

Definition 1.1.1. Events A, B € A are called independent in case
P(AN B) =P(A)P(B).

Definition 1.1.2. The random variables X1, ..., X, (with values for
instance in the same space topological E) are said to be independent
in case, for any gi,...,gn : E — R continuous and bounded:

E(g1(X1) x - X ga(Xn)) = (Bga(X1)) x -+ x (Ega(Xa):

Definition 1.1.3. Events Aq,...A, are called independent if the
random variables X1 = 1, ..., X, = I, are independent.
In other words for each E C {1,...,n}

IP( N Ai) = [[ p4s).
icE i€eFE

Definition 1.1.4. The random variables X1, ..., X, are called pair-
wise independent if each couple X;, X; is independent for i # j.

In case the characteristic function is analytic around 0, and £ = R
previous remarks imply that the previous identity is enough to prove
the the independence of X7,..., X, if

PxXy 4t X, = Pxy X X Px,,

11
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Assume now that X; admits a density f; with respect to some mea-
sure v; on F; then the random vector (X1i,...,Xq) € E1 X --- x Eqg
admits the density

f(xl,...,xd) = fl(l'l)"'fd(xd)a (xl,...,l'd) S El X o+ X Ed

on the product space Fy X --- X E4 with respect to vy X --- X vg.

If Ay,...,Aq € A are events then simple random variables write
Xk =14, €{0,1} and the independence of couples (X;, X;) is easily
proved to coincide with the independence of couples of events A;, A;.
Anyway the independence of the family of events A;,..., Ay writes
a bit differently, as:

P (ﬂ Ai> =[P, vIc{1,....d}.

iel i€l

Example 1.1.1. As a probability space consider a model (2, A,P)
for two (fair) independent dices

Q=1{1,2,3,4,5,6}*, A=7P(),

and P is the uniform probability on this finite set with 36 elements.
Let A, B be the events that the dices show an even number, then

and those events are independent.

Now let C' be the event that the sum of the results in both dices is
also even then AN B C C and on the event ANC' the second dice is
necessarily even too, so that ANC C B.

Analogously BNC C A so that it is easy to check that A,C and B,C
are independent pairs of events,

P(ANB) = P(A) P(B), P(ANC) = P(A) P(C), P(BNC) = P(B) P(C)

(those values all equal + = % - 1).

From the other hand AN BN B =ANB thus
1
4

P(ANBNC) =~ # P(A)P(B)P(C) = =
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and the triplet of events (A, B,C) is not independent.
Then the events A, B, C are pairwise independent but not independent
on this probability set with 36 elements equipped with the uniform low.

Remark 1.1.1.

o As sketched in the previous Exercise, this is possible to find 3
pairwise independent random variables which are not indepen-
dent (X = Iy, Y = g and Z = ). Pairwise independence
should thus be carefully distinguished from independence.
Precisely for each p there exist a vector X = (X1,...,Xp) € RP
which components are not independent but such that any vec-
tor with dimension strictly less than p and components among
X1,..., X, isindependent, [Derriennic and Klopotowski, 2000]
and [Bradley and Pruss, 2009] for additionally a counter-example
to the CLT.

e Now quote that the Example A.1.83 provides us with a whole
sequence of independent random variables with a given distri-
bution on R.

o Let Xy,...,X, be independent b(p)—distributed random vari-
ables, then the calculation of generating functions implies that
X1+ -+ X, ~ B(n,p) admits a Binomial distribution.

The following essential but very simple result is also stated as an
Exercise:

Exercise 1. Let XY € R be real valued random wvariables with
EX?2+EY? < co. If (X,Y) are independent then Cov(X,Y) = 0.

Solution to FExercise 1. In case those variables are bounded, then
independence allows indeed to assert that EXY = EXEY.

The general case is derived from a truncation by setting X, = X V
(—=M) A M and the use of Lebesgue dominated convergence theorem
with M 1 co. |

Exercise 2. Let X, R € R be independent random variables with X
symmetric (i.e. —X admits the same distribution as X ), EX? < oo
and P(R=+1) =1 set Y = RX.

27
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o Cov(X,Y)=0,

e moreover if | X| is not a.s. constant then X,Y are not indepen-
dent.

An important use of this Exercise in provided in Exercise 23.

Solution to Ezercise 2. The first equality follows as well from in-
dependence in the case of bounded X and dominated convergence
yields the general case as in Exercise 1.

The second result also follows since because | X| is not a.s. constant
there is an even function g such that Var g(X) # 0, now we have:

Cov (9(X),9(Y)) # 0. |

Exercise 3. If random variables X,Y € {0,1} satisfy Cov(X,Y) =
0, prove that X,Y are independent.

Solution of FExercise 3. To prove the independence of those random
variables one needs to prove the independence of events (A,, Bp) for
all a,b € {0,1}, with A, = (X =a) and B, = (Y = ).

e Relation Cov(X,Y) = 0 writes as the independence of the
events Ay, By,

e Relation Cov(X,1 —Y) = 0 writes as the independence of
events Ay, By,

e Relation Cov (1 — X,Y) = 0 is independence of Ay, By,

e Relation Cov (1 — X,1—Y) =0 is independence of Ay, By. N

Quote that either Gaussian or associated vectors fit the same property
see in Appendix A.2.1, and Chapter 8 respectively.
This Exercise 3 admits tight assumptions as suggests the following:

Exercise 4. Exhibit random variables X € {0,£1},Y € {0,1} not
independent, but orthogonal anyway, i.e. Cov(X,Y) =0.
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Solution for Ezercise 4. Consider the uniform random variable X
on the set {—1,0,1} and Y = T x_g}, then EX = 0, Cov(X,Y) =
EXY = 0 because XY = 0 (a.s.) while those random variables are
not independent.

Indeed with f(x) = l,—oy and g(z) = = we derive

Ef(X)g(Y) = P(X = 1) £ Ef(X)Eg(Y) = P(X = 1). N






Chapter 2

Gaussian convergence
and inequalities

The Chapter aims at processing the Gaussian limit theory, namely we
precise some Central Limit Theorems together with applications and
moment /exponential inequalities for partial sums behaving asymp-
totically as Gaussian random variables.

2.1 Gaussian Convergence

This is a well-know feature that accumulation of infinitesimal inde-
pendent random effect are accurately approximated by the Gaussian
distribution. The best illustration of this fact is explained by Linde-
berg method.

Lemma 2.1.1 (Lindeberg). Assume that Uy, ..., Uy are centered real
valued random variables.

Let Vi,..., Vi be independent random variables, independent of the
random variables Ui, ..., Uy and such that U; ~ N(O,EUJZ) and g €
3.

SetU=U;+---+U, and V =V, +--- + V), then we obtain the two

17
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bounds:
k
E(g(U) —g(V)I < 3> E(UI* (19"l A (lg" o] U:]))) -
i=1
k
< 3g"I5c g IS D BIU, [P

i=1

Proof of Lemma 2.1.1. Set Z; =Ur +---+Uj_1 + Vi + -+ Vi
for 1 < j <k then

k

E(g(U) = g(V)) =Y _E(9(Z; +Uj) = 9(Z; + V) ZM
j=1
Set now § = g(z + u) — ug'(z) — %uzg”( ) then Taylor formula at
order 2 entails 8| < $u?|g”(z) — ¢”(t)| for some t €]z, z + ul.

This implies from either the mean value theorem or from a simple
bound that

1
B < g o) A (g )
1 g/// oo
w?llg" ) (1 A <Iu |'| ,,'|
19"\
2l e ( ol

*<llg” 15 “llg™ 15

IN

= 2%
Apply the above inequality with z = Z; and uw = U; or V;. To
conclude we also quote that E|V;|? = E|U;|? and thus E|V;|? =
E|Z]3 (]EUJ-Q)B/2 for a standard normal random variable Z ~ N(0, 1).
Holder inequality thus yields (]EUJ»Q)B/2 < E|U;J3.
An integration by parts implies E|Z|? = \/% < 2. Hence from Jensen

inequality (Proposition A.1.1) we derive E|V|?T¢ < 2E|V |>*¢.
Now
E|9;] 279" lloa g™ NS (1U5 12 + [V327°)

3llg” o g IS EIU; *F

IN A
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This yields the desired result. ]

As a simple consequence of this result we derive:

Theorem 2.1.1 (Lindeberg). Let ((nx)kez be independent identi-
cally distributed sequences of centered random variable (for each n).
Suppose

DEC, —nse 00 >0,
k
ZECTQL,’C I¢, v|>e5 —n—oo 0, for each e > 0.
k

Then: .
Z Cn,k_>n~>oo N(Oa 02)'
k

Proof. In the first inequality from Lemma 2.1.1, set Uy = (pn k0gi¢, 1 <e}
for a convenient € > 0 then the first assumption implies that

su E¢C2, =C < o,
npz Cn,k: S
k
and thus setting ¢, = Yy Gk, we derive
n
S EUP<C e

k=1

Now from independence,

E (o —U)? <D B Mie, 5e) = an(e)-
k

Thus the triangular inequality implies 02 = EU? —,,_,o 02.
Those bounds together imply for Z ~ N(0, 1) a normal random vari-
able:

Eg(¢n) — 9(0Z)| < [Eg(Cn) — 9(U)]
+[Eg(U) — g(0n2)|
+ [Eg(onZ) — g(0Z)|.
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To prove the result use |Eg(0,2) — g(cZ)| < ||¢'||oE|Z||on — o] and
select € = €, conveniently such that lim, (a,(e,) + €,) = 0.
Then the result follows. [ |

In order to prove the power of this result the forthcoming subsections
aim at deriving some other consequences of Lindeberg lemma, see the
beautiful book [van der Vaart, 1998] for much more.

Namely the classical central limit Theorem 2.1.2 is a first consequence
of this result.

Then the asymptotic behavior of empirical medians will derived in
the Proposition 2.1.1 following the proof in [van der Vaart, 1998].
Finally the validity of the Gaussian approximation of binomial dis-
tributions is essential for example in order to assert the validity of
x2—goodness-of-fit tests.

To conclude this section quote that we will present a simple dependent
version of the Lindeberg lemma [Bardet et al., 2006] in Lemma 11.5.1
below.

2.1.1 Central Limit Theorem

Theorem 2.1.2. The central limit theorem ensures the convergence
1

vn

for independent identically distributed sequences with finite variance.

Proof. This follows from Theorem 2.1.1. Set {, x = Xj/+/n the only
point to check is now lim,,_, o, EX? Ly, >eym =0, which follows from
EX? < oo (). ]

(X1 4+ X,) =5 N(0,EX?),

1An alternative proof may be given by using Lemma 2.1.1 with & = n and
Uj = X;/vn.
To prove it simply note that such a random variable X satisfies the tightness
condition
| Xol?
vn
Indeed we let it as an exercise that if IEX§ < oo then there exists a function
H : Rt — RT such that limgy 00 H(z)/2° = 0o, EH(|X0|) < oo (symmetric

E|Xo|? A ( ) —n—soo 0.
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2.1.2 Empirical median

Suppose that the number of observations n = 2N +1 is even; we con-
sider here an independent identically distributed n—sample Y7,...,Y,
with median M

—_

B(Y) < M) < 5 <P(Y; > M).

To simplify notations assume this law is continuous.

The empirical median of the sample is the value M, of the order
statistic with rank N + 1.

Proposition 2.1.1. Assume that (Xj) is an atomless identically
distributed and independent sequence. If the cumulative repartition
function F of Y1 admits a derivative v at point M then

r 1
Vn(M, — M) S, oo N (0, 4’}/2) .

Proof. Notice that P(y/n(M, — M) < z) = P(M,, < M + x/+/n) is
the probability that N + 1 observations Y; (among the n = 2N + 1
considered) satisfy Y; < M + x/y/n:

P(v/i(My — M) < 2) = P( 3 Wy cariayym = N +1).
i=1
Setting p, = P(Y7 < M + z/4/n) and

_ Lyicmya/ymy = Pr
npn(l - pn)

Xin

)

yields

N +1—np,
V npn(l - pn)

and non decreasing on R1). For each k > 0 there exists My > 0 that we may
choose non decreasing and such that ]E|X0|]I{|X0‘>Mk}<%. Set H(x) = kx? for
==k

Mk S |Z| < Mk+1.

P(v/a(M, — M) < z) = ]P’(sn < an) 8y =
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The continuity of Y; distribution at point M implies p, — % and its
derivability yields s,, — —2x.

Lindeberg theorem thus yields >-" ; X; , — N(0,1), which allows to
conclude. |

Remark 2.1.1. If instead of the continuity of Xo’s cdf (the atom-
less assumption) we deal with more general properties then only the
reqularity around the median is really required.

2.1.3 Gaussian approximation for binomials

Theorem 2.1.3. Let S,, ~ B(n,p) and fix some € € (0,1], then

sup  sup A, (u) = O((np(l - p))_é)a

np(l—p)e>1 u€R

with
Sn — np

np(1 — p)

A p(u) = ‘Pp( < u) - (D(u)‘.

Sample size 10, p=0.3 Sample size 100, p=0.3

1 AN

20
]

Density
1
Density
1.0

02 03 04 05 06
1
15
1
1

00 0.1

0.0

T T T T T T T 1 T T T T T T T 1
45 50 55 6.0 65 7.0 75 80 54 56 58 6.0 62 64 6.6 68

X1 Y1

Figure 2.1: Accuracy of Gaussian approximation from binomials.
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Remark 2.1.2. This result is not optimal and exponent % may be
replaced by %, see [Petrov, 1975].

Anyway it allows to validate the Gaussian approximation if the prod-
uct np(1 — p) is large as a classical heuristics tells us: in statistics
np > 5 is the condition used to use a Gaussian approzimation of
binomials. Figure 2.1 demonstrates the evolution of this Gaussian
approximation.

Proof. Use Lemma 2.1.1. Rewrite S,, = by + --- + b, with iid
bl, bQ, NN A b(p) Set

b; — .
X»:i}9 1< <n.

(=)

Then Xi,...,X, are centered independent identically distributed
and

Eyb} = E,(bi — p)*> = p(1 - p).
Let 0 < p < 1— ¢ then for f € C3 we get from the Lemma 2.1.1, with
some Z ~ N(0,1):
Sy —np

T _p)) - 1(2)|

Aa(f) = [Ens(
1 5
5 ;EPQ\?’

4" | oo 1
€ np(1 —p)

In order to conclude one needs to prove Ezxercise 5 below.
Using P(Z € [u,u + 7)) < n/v/27 we then derive

An(fu—ym)+P(Z € [u,u—n]) < Anp(u) < Ap(fun)+P(Z € [u, u+tn])
Thus

1
Appu) <C| —F———+n],
: <n3\/np(1 —p)
for some constant non depending on n, 7, € and p.
The choice = (np(1 — p))~/® allows to conclude. [ |
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Exercise 5. For each > 0, u € R there exists function f,, € Cg’
with

ﬂ[u-l—n,oo[ S ﬂ[u,oo[ S fuJ] and Hf?lL/,/n”OO = O (7773) .
1. Set first u=0,n=1. Then we set g(x) =0 if x ¢]0,1[ and:

(a)
g(x) =2*(1 —2)%, x €]0,1].
Then g € C3.
(b) )
g(x) = exp <_93(1$)> , x €]0,1[.
Then g € Cy°.

Indeed each of g’s derivative writes as g*) (z) = F(x)g(x)
for some rational function F with no pole excepted for 0, 1.
In this case the function is Cg°.

A convenient function is defined as f(x) = G(x)/G(0) where

we set L
G(z) = / g(s)ds, for0<uz<1,
and f(x) =0 for x > 1 with g as above.
2. General case. With f as before set fyn(x) = f(u+z/n):
1 2y _ 1P
F®) (z) = —(u—k—) < W Wee  for k=0,1,2 or 3.
) = o (e ) < M
For the second function k may be chosen arbitrarily large.
This allows to conclude. [ |

2.2 Quantitative results

2.2.1 Moment inequalities

We now derive two important moment inequalities respectively called
Marcinkiewicz-Zygmund and Rosenthal moment inequalities.
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Later in those notes alternative proofs of those results will be ob-
tained.

Lemma 2.2.1. Let X,, be a sequence of independent centered random
variables with finite moment of order 2p for some p € N*, then there
exists a constant C > 0 which only depends on p such that

o Marcinkiewicz-Zygmund inequality holds:

E(X; +---+ X,)?? < CnPEX?.

e Rosenthal inequality for p = 2:

E(X) + -+ X)) < C(nEX?)? + nEX?).

Remark 2.2.1. The second inequality also extends to all p > 2.
There exists a constant C only depending on p such that

E[X1+ -+ X,|P < C(REX?)% + nE|X|P).
Proof. Simple combinatoric arguments yield:

zn: EX;, - X,

i1,-,02p=1

= > T(ir,... i)

7;1a<-7i2p:1

E(Xi+-+ Xn)Qp

n

S TG, izp)]

i1,-,02p=1

< (2p)! > T (i1, ... izp)l-

1< < <igp<n

IN

Now from centering conditions we see that terms 7' vanish except for

cases when i1 = ia,...,42p—1 = 1gp, since else an index ¢ would be
isolated and the corresponding term vanishes by using independence.
Among A = {ia, 44, ...,42,} which take precisely n? values one needs

to make summations according to Card(A).
If all those indices are equal T = ]EXgp and there are n such terms,
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and if they are all different, it is (EX2)P.
For p = 2 we thus get the second point in this Lemma.
For any p > 1, just use Holder inequality to derive the first result. i

Exercise 6 (Weierstrass theorem). Weierstraff theorem states that
a continuous function over the interval is the uniform limit of some
sequence of polynomials.

Let g : [0,1] = R be a continuous function we recall that

w(t) = | S_UI|)<t lg(z) — g(y)|

satisfies limy o w(t) = 0 since Heine theorem (recalled below) entails
that the function g is uniformly continuous.

Let X1 4, X2z, . .. be iid b(x)—random variables (Bernoulli distributed
with the parameter x), we denote

1
Sn,x = E(Xl,ac + -+ Xn,x)~

Set gn(x) =Eg(Sp.e):

1. Prove that g, is a polynomial with degree n with respect to the
variable p.

2. Prove the bound of Varg(Sns) =  Var Xy, < 4.

3. Apply Markov inequality to derive to prove that

lim  sup |[gn(z) — g(x)| = 0.

n—oo 0<z<1

4. If g is a Hélder function, hence if there exist constants ¢,y > 0
with |g(z) — g(y)| < clz — y|¥ for each x,y € [0,1], precise
convergence rates in the Weierstraf8 approzimation theorem.

5. Now use Lemma 2.2.1 for moment inequalities with even order
2m, then E(Sy, » — gn(2))*™ < en™™ for a constant which does
not depend on x € [0, 1].

6. Use the previous hight order moment inequality to derive alter-
native convergence rates in Weierstraf§ theorem.
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Hints.
1.

(7=
N
IS =
N~
8
B
—
—
S~—
i
B
e}
S
3|
~_

k=0

2. Prove that z(1 —z) < lif0 <z < 1.

N

3. Set t > 0 arbitrary, an A, , = (|S,,p — p| > t) then:

gn(x) - g({L‘) = (g(sn a:) (LC))
(g(Sn z) - (SC) 1A,, @
E(9(Sn.2) = g(p))1ag

From Markov inequality and the second point

1
PlA, ) < —,
( ’>_4nt2

thus a bound of the first term in the previous inequality is

191l
2nt?’

27

and from definitions the second term is bounded above by w(t).

Let n tend to infinity first to conclude.

4. Here w(t) < ct” and the previous inequality writes

9]0

lgrn — glleo < g2 + ct?.

; — lgllee
Setting ¢*+7 = 1gl=
5. From Lemma 2.2.1 E(S,, » — gn(2))*™ < EXP7 n™™

6. Now
In — Glloc > 2 2m &
set 2T = —w then a rate is n “Tmty is now provided.
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Recall that continuity at point xg € [0, 1] and uniform continuity of
g :[0,1] = R write respectively
Ve>0,3a >0, Vx €[0,1]: |z —xo| <n = |g(x)—g(xo)| <e
Ve >0,3a>0,Vz,y € [0,1]: [z —y|<n = |g(x)—g(y)| <e

In the latter case 7 does thus not depend on zg.

Exercise 7. The function x — g(x) = x?

over R.

is not uniformly continuous

Hint. Reasoning by absurd. Set x =n and y =n + i, then

g(y) —g(x) =1+ does not tend to zero as  n 1 co. B

4n?
This fundamental result (see eg. [Doukhan and Sifre, 2001]) writes:
Theorem 2.2.1 (Heine). Let g : K — R be a continuous function

defined on a compact metric space (K, d) then g is uniformly contin-
UOUS.

2.2.2 Exponential inequalities

Below we develop two exponential inequalities which yelds reason-
able bounds for the tail of partial sums of independent identically
distributed random variables. From the Central Limit Theorem we
first check the Gaussian case.

Exercise 8. Let N ~ N(0,1) be a standard normal random variable,
then use integrations by part and Markov inequality to derive:

1 1 ei%{z . 1t2
(tt3> NeT < P(t) =PN(0,1) >t) < — .
Analogously we obtain:

Lemma 2.2.2 (Hoeffding). Let Ry, ..., R, beindependent Rademacher
random variables (i.e. P(R; = +1) = 3).
For real numbers ay,...,a, set

n n
&= Z a; R;, and we assume that Z a? <ec.
i=1 i=1
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Then:

22
1. P(>x)<e 2, forallz >0,

12
2. P(|¢] > x) < 2e” 2, forallxz >0, and

2

3. Ee'e < 2.

Proof. If s € R first prove that
Eet™ < /2, (2.1)

The inequality (2.1) is rewritten

ch s = (es + efs) < es’/2,

1
2
Indeed the two previous functions may be expanded as analytic func-
tions on the real line, R, and:

0o
SQk 2k

:oo 52/2: S
ch s kzzo(%)!’ N D g

k=0

Inequality (2.1) thus follows from the relation (2k)! > 2% . k! simply
restated as

4+ (k+2)---(k+k)>(2-1)(2-1)---(2-1) =2~
Markov inequality now implies
P(¢ > z) < e Ee'®,  Vt>0,
because eqn. (2.1) entails
Eet& — HEetaiRi < et20/2'
i=1

For t = x/c we derive the point 1).
Point 2) come from the observation that £ is a symmetric random
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variable and thus P(|¢| > z) < 2P(§ > x).
Point 3) is derived after the forthcoming calculations:

& ¢
4CE/ exp <> dt
0 4c
ZLCIE/Oo e i dt
xn | —
| Te<ezy exp | -
o t
= 46/ E][{t§§2}€ﬁdt
0(><> ,
4c/ P(£2 > t)ededt
0

< 40/ e dedt = 1
0

2
Ee%c—l

Here Fubini-Tonnelli justifies the first inequalities while the last in-
equality is consequence of relation 2). [ |

Remark 2.2.2. Let R € [—1,1] be a centered random variable then

1 _
]Eethi(et—ke t>’

thus Hoeffding instantaneously extends to sums Yy, a;R; for R; with
values in [—1,1], centered independent random variables.

Lemma 2.2.3 (Bennett). Let Yi,...,Y, be independent centered
random variables with |Y;] < M for 1 <i <n denote

V= Zn:EYf.
=1

If¢ = Z Y; then for each x > 0 the Bennett inequality holds:
i=1

Max

P(le] > 2) < 25 B(HE) | with B(t) = t% (14 ) log(1+ 1) —1).
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Bernstein inequality also holds:

2
P(¢] = z) < 2exp <_2(V—|3—61]\/[x)> :
3

Proof. The proof is again based upon Markov inequality.
We shall make use of the independence of Y7,...,Y,,.
We first need to bound above Laplace transform of Y;:

Ee' = —EY
K
k=0

IN

e tk
2 k
1+EY? Y SEY:
k=2

= 1+ EY?g(t)v
etM 1 —tM

with g(t) = Ve

< e]EY,izg(t)

The first inequality follows from EY; = 0 and [EY}*| < M*~2EY} for
each k > 1.
Both from independence and from Markov inequality we then obtain:

]P)(é— Z x) S evg(t)—l't.

Optimize this bound with respect to V yields V¢'(¢) = x hence

1 xM

and Vg(t) — at = x/M — t(V/M + z) yields Bennett inequality.

Bernstein inequality follows from the relation

t2
(1+t)log(l+1t)—t > RETER

rewritten (1 +¢/3)B(t) > 1. To prove it quote that the function

tes f(t) =t2((1 +t/3)B(t) — 1)
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satisfies moreover
1
J/(0) =0, and f"(t) = 5((1+ 1) log(L+1) 1) 2 0,

entails f(0) =0 and f/(¢) > 0, [ |

Remark 2.2.3. Let g : Rt — R* be an a.s. derivable non-decreasing
function, then Fubini- Tonnelli entails

Eg(lg]) = / 9(2)Pj¢(d2) = / J (P(lE] > =) d=.

Set A = 3V/M then from Bernstein inequality in Lemma 2.2.3 we
get

oo

Eg(l€l) < gBV/M) +2 L g § @7

and

o)
Eg(l¢]) < g(3V/M) +8M/3 / o (1M /3)e~ da,
9V/4M?
with © = 3z/4M.
Hence if g(x) = |z|P for some p >0,

Eg([¢]) < (3V/M)P + 2p(4M/3)” /wm a"'e ™" da.

This is a more general form of the Rosenthal inequality in Lemma
2.2.1.



Chapter 3

Estimation concepts

Many statistical procedures are restatements of probabilistic inequal-
ities and results but in several occurrences such procedures need much
more as this will be initiated in this section for the independent case.
We begin the section with applications of the previous moment in-
equalities in Lemma 2.2.1 useful for empirical procedures and then
describe some empirical estimates, contrast estimates and non para-
metric estimates.

The developments are not given with mention to their specific inter-
est but rather with respect to the dependent development provided
in those notes under dependence.

3.1 Empirical estimates
The behavior of empirical means are deduced from the behavior of

partial sums, and below we shall restate such results in a statistical
setting.

Corollary 3.1.1. Let (X,)n>0 be and independent identically dis-
tributed sequence. If EX§ < oo then,

— 1
X = 7(X1 + .- +Xn) —n—o00 EXo, a.S.
n

33
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0.7
|

Y/N

400 600 800 1000

Figure 3.1: Convergence in a law of large numbers.

Remark 3.1.1. Quote the the ergodic Theorem 9.1.1 proves that the
simple assumption E|Xy| < oo ensures indeed this SLLN. We set
this result as a simple consequence of the previous Marcinkiewicz-
Zygmund inequality in Lemma 2.2.1 for clarity of the exposition.
Convergence in this LLN 1is simulated in the Figure 3.1

Proof. Let € > 0 be arbitrary then Markov inequality entails

EX{

P(X|>e)<C .
(IX]> 6 <04

Thus o
Zp(an‘ > ),

is a convergent series. Hence the a.s. convergence is a consequence
of Borel-Cantelli Lemma. |

Now in case EX(i < 00 Markov inequality yields L2 —convergence of
X; indeed Var (X) = Var(Xj)/n, thus convergence in probability
also holds.
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Empirical distribution function

1.0

0.8
|

Fn(x)
0.4

0.2
|

Figure 3.2: A cumulative distribution function.

This also allows to prove a first statistical fundamental result:

Theorem 3.1.1. Let (Y,,) be a real valued and independent identi-
cally distributed sequence such that Yoy admits cumulative distribution
function F(y) =P(Yy <y) on R.

Define the empirical cumulative distribution

Z JT{YJSy}'
j=1

Then EF,, = F (the estimator is said to be unbiased) and

S|

Fo(y) =

sup |Fr(y) — F(y)| 2 nooo 0, a.s.

yeER
Remark 3.1.2. This is interesting to check graphically this conver-
gence as reported by Figure 3.2.

Proof. The previous SLLN (in Corollary 3.1.1) implies the conver-
gence.
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Uniform convergence is implied by the variant of Dini theorem in
Exercise 9. [ |

Exercise 9 (variant of Dini theorem). Assume that a sequence of cdf
satisfies limy, oo Fy(z) = F(x) for each x € R. If F is a continuous
cdf then the convergence is uniform.

Proof. Let € > 0 be arbitrary from the properties of a cdf there
exists A > 0 such that if v > A then 1 — F(z) < ¢/2 and z < —A
implies F'(z) < €/3.

From Heine Theorem 2.2.1, thereexist z; = —A <z < --- <2, = A
such that if x € [z;,z;41] then F(x;41) — F(x) < ¢/3 and F(z) —
F(z;) <e€/3,iti=1,...,p—1. Set &y = —oo and z,11 = 00, thus
the oscillation of F' is less that €/3 over each interval J; = ([z, ©i+1)
for each i = 0,...,p (limits are included for each finite extremity).
From the relation lim, o Fp,(z;) = F(x;) for ¢ = 1,...,p this is
possible to exhibit N such that if n > N then |F,(z;) — F(x;)| < €/3.
Each x € R belongs to some interval J; so that in case i # 0:

[Fn ()= F ()] < [Fu(2)=Fn (@) [+ Fo(20) = F () [+ F (i) - F ()] <€

For i = 0 one should replace zp = —oo by 1 = —A in the above
inequality to conclude. |

3.2 Contrasts

Assume that an independent identically distributed sample with val-
ues in a Banach space F and admits a marginal distribution in a class
(Po)oco-

Definition 3.2.1. A function p : E x © — R is a contrast if the
expression 0 — D(6p,0) = Eg,p(X,0) is well defined and admits a
unique minimum 0.

If X ~ Py, then p(X,0) is an unbiased for the function g(6y) =
D(6o,0) (for each 6 € ©). In case we have only one realization X of
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this experiment the true parameter 6y is estimated by a minimizer
0(X) of the contrast 6 — p(X,0).

0(X) = Argming g p(X,0) (3.1)
If © C R? is open and such that the function 6 — p(X, 6) be differ-

~

entiable the estimate 6(X) of the parameter 6, satisfies

o~

Vp(X,0(X)) = 0 (3.2)

(usually this is easier to check than (3.1)).

Example 3.2.1. This situation occurs eg. if:

o Mazimum Likelihood Estimator (MLE) p(x,0) = —log fo(X)
with fg the density of Py. If X = (X1,...,X,) for an inde-
pendent tdentically distributed sample with marginal densities
po(x) then

p(x,0) = = log fo(Xy).
k=1

The contrast assumption relies on identifiability:
f91 = ng (a.s,) = 91 = 02.

e Least Squares (LSE) X = G(6) + o(6)¢ and p(x,0) = || X —
GO)||?/0%(0). If &€ = (&1, ..,&n) are independent identically
distributed random variables and G(0) = (g9(0, z1),-..,9(0,2,))
then this is a regression model with fixed design.

Remark 3.2.1 (Model selection). A huge part of nowadays statistics
extends on such contrast techniques in case the statistical model itself
s unknown but in a class of models M, precisely each of those models
M € M is indezxed by a parameter set O and one knows a contrast
(pr(X,0))gco,, (this is model selection).

However the price to pay for using the model M is a penalization
p(M) which increases with the complezity of the model, then one may
estimate the model M and the parameter 8 € Oy as:

Argmin{p(M) + inf pu(X,0), M€ ./\/l}
[ SHV
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We choose in this presentation to avoid a precise presentation of
those techniques essentially introduced by Pascal Massart, see eg. in
[Massart, 2007].

Indeed very tough concentration inequalities are needed in this fasci-
n