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Chapter 1

Eigenvalue problems on
Riemannian manifolds

1.1 Introduction

Let (M, g) be an n-dimensional Reimannian manifold with boundary
(possibly empty). The most important operator on M is the Lapla-
cian A. In local coordinate system {z;}7 ;, the Laplacian is given
by

AL zn: 0 (Jaqi 2

TG = 0 Y
where (¢g%) is the inverse matrix (g;;)~!, gij = g(a—i, 8%) are the

©; Ox;
coefficients of the Riemannian metric in the local coordinates, and
G = det(gi;). In local coordinates, the Riemannian measure dv on
(M, g) is given by
dv = \/édscl...da:n.

Let ¢ € C*°(M) and set

2 2 2
]2 —/Mw +/M|¢\ |
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2 [CAP. 1: EIGENVALUE PROBLEMS ON RIEMANNIAN MANIFOLDS

Here and in the future, the integrations on M are always taken with
respect to the Riemannian measure on M. Let us denote by HZ (M)

and HZ(M) the completion of C*°(M) and C§°(M) with respect to

|| ||. The theory of Sobolev spaces tells us that HZ(M) = HZ(M)
when M is complete. Our purpose is to study some eigenvalue prob-
lems associated to the Laplacian operator on a compact manifold M.
When OM = @, we consider the closed eigenvalue problem:

Au+ du = 0. (1.1)

When OM # 0, we are interested in the following eigenvalue prob-
lems.

e The Dirichlet problem:

Au= X u in M
’ 1.2
{ u‘aM =0. ( )
e The Neumannn problem:
Au= X u in M,
(3o 0
ov oM )
where v is the unit outward normal to OM.
e The clamped plate problem:
A?u =M u in M,
{ _ ou -0 (1.4)
ulon = 6u|8M =9
e The buckling problem:
A?u=—-XAu in M,
oyt 0
ulonr = 8u|é)]\/l =9
e The eigenvalue problem of poly-harmonic operator:
(—A)u=—Au in M,
U|aM:6*u| = =0y =0,1>2. (1.6)
v loM W | gur bz
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e The buckling problem of arbitrary order:

(=A)lu = -AAu in M,
u 14 1.7
ulors = Gitlop = = Gt oy~ 122 D
e The Steklov problem of second order:
Au=0 in M,
{ % =Au on OM. (1.8)
e The Steklov problem of fourth order:
A%y =0 in M,
{ u:Au—/\%zo on OM. (1.9)

Let us denote by A; the first non-zero eigenvalue of the above prob-
lems. We can arrange the eigenvalues of these problems as follows:

O< A< A<= +o0.

For many reasons in Mathematics and Physics, it is important to
obtain nice estimates for the \'s. We will concentrate our attention
on this problem. Let us list some basic facts in this direction.

Theorem 1.1 (Weyl’s asymptotic formula, [97]). In each of the
eigenvalue problems (1.1), (1.2), (1.83), let N(X) be the number of
eigenvalues, counted with multiplicity, < X\. Then

N(A) ~ wn| MIAY2/(2)" (1.10)

as A — 0o, where wy, is the volume of the unit ball in R™ and |M| is
the volume of M. In particular,

A%~ {(21) Jwn Y/ | M| (1.11)
as A\ — +oo.

There are similar asymptotic formulas for the other eigenvalue
problems above (Cf. [1], [79], [80]).
Define a space H as follows:
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For the closed eigenvalue problem (1.1),

H:{fer(M)’/f:O}. (1.12)
M
For the Dirichlet eigenvalue problem (1.2),

H= Jr;f(M). (1.13)

For the Neumann eigenvalue problem (1.3),

H:{fer(M)’/f:O}. (1.14)
M
A fundamental fool in the theory of eigenvalues is the

Mini-Max principle. We can find a countable orthonormal ba-
sis {fi}, fi € C°°(M) for the problems (1.1), (1.2) and (1.3) such
that

Alzinf{fﬂf.'ivjff|feff}7

) 2 _ _ (1.15)
Ai :mf{fJ‘fALfJQ |feH, [, [fi=0,j=1,-- ,1—1}.
In particular, we have the
Poincaré inequality:
/ IVFI2 > /\1/ f?, VfeH. (1.16)
M M

For other eigenvalue problems above, similar mini-max principles

also hold.

Theorem 1.2 (The Co-Area formula, [17]). Let M be a compact
Riemannian manifold with boundary, f € H*(M). Then for any
non-negative function g on M,

[o=]" ( [ w) i (L17)
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1.2 Some estimates for the first eigenvalue
of the Laplacian

In this section, we will prove some estimates for the first eigenvalue
of the Laplacian.

Theorem 1.3 ([73]). Let M be an n-dimensional complete Rie-
mannian manifold with Ricci curvature Ricpy > n — 1. Then the
first non-zero eigenvalue of the closed eigenvalue problem (1.1) of M
satisfies Ay (M) > n.

The proof of Theorem 1.3 can be carried out by substituting a
first eigenfunction into the Bochner formula and integrating on M
the resulted equality (see the proof of theorem 1.6 below).

An important classical result about eigenvalue is the following

Theorem 1.4 (Cheng’s Comparison Theorem, [18]). Let M be
an n-dimensional complete Riemannian manifold with Ricci curva-
ture satisfying Ricyr > (n — 1)c and let Br(p) be an open geodesic
ball of radius R around a point p in M, where R < w/\/c, when
¢ > 0. Then the first eigenvalue of the Dirichlet problem (1.2) of

Br(p) satisfies
A (Br(p)) < Ai(Br(c)), (1.18)

with equality holding if and only if Br(p) is isometric to Br(c), where
Bgr(c) is a geodesic ball of radius R in a complete simply connected
Riemannian manifold of constant curvature ¢ and of dimension n.

An immediate application of Cheng’s eigenvalue comparison the-
orem is a rigidity theorem for compact manifolds of positive Ricci
curvature.

Theorem 1.5 (The Maximal Diameter Theorem, [18]). Let M
be an n-dimensional complete Riemannian manifold with Ricci cur-
vature Ricpyy > n — 1. If the diameter of M satisfies d(M) > w, then
M is isometric to an n-dimensional unit sphere.

Proof. Take two points p,q € M so that d(p,q) > m; then
B 2(p) N Br2(q) = 0. Let f and g be the first eigenfunctions corre-
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sponding to the first Dirichlet eigenvalues of By /3(p) and Br/2(q), re-
spectively. We extend f and g on the whole M by setting f|M\B7,/2(p) =
g|M\Bw/2(q) = 0 and take two non-zero constants a and b such that

/M(af+bg) =0

Observe that the first Dirichlet eigenvalue of an n-dimensional unit
hemisphere is n. The mini-max principle and Cheng’s comparison
theorem then imply that

_ JulVas +bg)P
= Jylaf +bg)?

a? wa/Q(p) |Vf|2 +b° fBﬂ/Q(q) \Vg|2
& Jp o P2 TV 5,00 9
a®X1(Br)2(p)) wa/z(p) 2+ 0?2 (Br2(q)) wam(q) g°
< Jp i 12TV 00 92
na? fB,r/g(p) f2+nb? fB,,/Q(q) g>

< =n
— 2 2 2 2
@ [ 2TV 5009

We conclude from the equality case of the mini-max principle and
Cheng’s comparison theorem that each of B s(p) and By s(q) is
isometric to the n-dimensional unit hemisphere and

M = BTI'/2(p) U BT{'/2(Q)
Consequently, M is isometric to a unit n-sphere.

The maximal diameter theorem can be also used to prove the
Obata theorem below.

Theorem 1.6 ([76]). Let M be an n-dimensional complete Rie-
mannian manifold with Ricci curvature Ricyy > n — 1. If the first
non-zero eigenvalue of the closed eigenvalue problem (1.1) of M isn,
then M is isometric to a unit n-sphere.
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Proof. Let f be a first eigenfunction corresponding to the first
eigenvalue n of M. From the Bochner formula, we get

AP = (V7P + (VS VAR +Re(VA V) (119)

2
EIE _ofvs + (= DIVSP = nf? = 91

n

Y

Integrating on M and noticing fM(nf2 — |V£]?) = 0, we conclude
that the inequalities in 1.19 should take equality sign. Thus, we have
1 2 2 1 2, L
gA(|Vf| +f7) = §A|Vf| + §Af
= nf? —|VfP+fAf+|VIP=0

and so |V f|? + f2 is a constant. Without lose of generality, we can
assume that |V f|2 + f2 =1 and so

Vi,
Vi P

Let p and ¢ be points of M such that f(p) = —f(¢) = —1 and take a
unit speed minimizing geodesic 7 : [0,1] — M from p to ¢. Integrating
the above equation along 7, we obtain

v/ / dt
l:/ds= ———ds > =7
v v V1= f2 1 VI=¢?

It then follows from the maximal diameter theorem that M is iso-
metric to an unit n-sphere.

Remark 1.1. Let M™ be a compact Riemannian manifold with
Ricci curvature Ricy; > n — 1 and nonempty boundary. If the mean
curvature of OM is nonnegative, then the first Dirichlet eigenvalue
of M satisfies \; > n with equality holding if and only if M™ is
isometric to an n-dimensional unit hemisphere [82]. Similarly, if the
boundary of M is convex, then the first non-zero Neumann eigenvalue
of M must satisfy Ay > n with equality holding if and only if M™ is
isometric to an n-dimensional unit hemisphere [34, 100].
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We now prove another rigidity theorem using the techniques of
eigenvalues.

Theorem 1.7 ([101]). Let M be an n-dimensional complete Rie-
mannian manifold with Ricci curvature Ricyr > n—1 and let N be a
closed minimal hypersurface which divides M into two disjoint open
domains Qq and Qo. If there exists a point p € M such that d(p, N),
the distance from p to N, is no less than w/2, then the pair (M, N) is
isometric to the pair (S™(1),S"~1(1), being S™(1) the unit n-sphere.

Proof. Assume without lose of generality that p € Q;. We know
from d(p, N) > 7/2 that By/2(p) C €. It then follows from the do-
main monotonicity [17] that the first Dirichlet eigenvalues of By /2(p)
and Q; satisfy

M (Brja(0)) = Ai(Q0). (1.20)

On the other hand, Cheng’s comparison theorem tells us that

At (Bry2(p)) <n (1.21)

and Reilly’s estimate implies that A1 (1) > n. Thus, the inequalities
in (1.20) and (1.21) should be equalities. Consequently, B 2(p) =
is isometric to an n-dimensional unit hemisphere and so N = 90Q; =
S"~1(1) is totally geodesic. It then follows from a result of [39] that
), is also isometric to an n-dimensional unit hemisphere. ([

Let A be the least nontrivial eigenvalue of an n-dimensional com-
pact manifold M and let ¢ be the corresponding eigenfunction. By
multiplying with a constant it is possible to assume that

—1=inf¢; l1=s
a inf ¢; a+ %mb

where 0 < a(¢) < 1 is the median of ¢.

Suppose that M"™ is a compact manifold without boundary of
nonnegative Ricci curvature and of diameter d. Li-Yau [72] showed
that the first nontrivial eigenvalue satisfies

7T2

N>
'S (1 +a)d
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and conjectured that

(1.22)

Li-Yau’s conjecture was proved by Zhong and Yang in [103]. Let us
provide a proof of (1.22) given by Li in [71].

Lemma 1.1. The function
2
z(u) == (arcsin(u) +uy1— u2) —u
7r

defined on [-1, 1] satisfies

uz' + 2"(1 —u?) 4+ u = 0; (1.23)
2222 42 >0 (1.24)
2z —uz' +1>0; (1.25)
and
1 —u? > 2z (1.26)

Proof. Differentiating yields

4 — —4u
2/27 1—u2—17 lezi.
@ 1 —u?

Thus (1.23) is satisfied.
To see (1.24), we note that

4 4
2'2—222"—1—2’—{( 1—u2+uarcsinu>— 1+ u? }
vl —uZ |7 ( )

Since the right hand side is an even function, it suffices to check that

4
7( 1—u2+uarcsinu) —(1+u2) >0
s
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on [0, 1]. It is easy to see that

d (4 4
{( 1—u2+uarcsinu)—(1+u2)}:arcsinu—Qu
du |7 7r

which is nonpositive on [0, 1]. Hence

4
7( 1—u? +uarcsinu) — (1 44%)
7r

Y

4
[ ( 1—u? +uarcsinu> -1 +u2)]
7r

= 0.

u=1

Inequality (1.25) follows easily because
/ 4 .
2z —uz' +1=—arcsinu+1—u>0.
T
To see (1.26), let us consider the cases —1 < u < 0and 0 <u <1

separately. It is clearly that the inequality is valid at -1, 0 and 1.
Setting

4
f(u) =1—y2-= (arcsinu + uﬂ) + 2u;
T

then
4
fl==2u——02v1—-u2)+2,
T
8u
"_ _94 S
/ V1 —u?
and

8
m(1 —u?)3/2’

When —1 < u <0, f” <0. Hence f(u) > min{f(-1), f(0)} = 0. For
the case 0 < u < 1, f”” > 0. Thus

f/// —

£ < max{f(0), f/(1)} = max {2 _ io} o,
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Therefore f(u) > f(1) which proves (1.26).

Lemma 1.2. Suppose M is a compact manifold without boundary
of nonnegative Ricci curvature. Assume that a nontrivial eigenfunc-
tion ¢ corresponding to the eigenvalue X\ is normalized so that for
0<a<l,a+1l=supy ¢ anda—1=infpr¢. If u= ¢ — a, then

IVI2 < A1 — u?) + 2aXz(u) (1.27)
where
2
z(u) = — (arcsinu +uyv1-— u2> —u. (1.28)
T

Proof. We need only to prove an estimate similar to (1.27) for
u = €(¢p —a) where 0 < € < 1. The lemma will follow by letting
€ — 0. By the definition of u; we have

Au=—X\(u+ ea)
with —e < u < e. We may assume a > 0. Consider the function
Q = |Vul? — c(1 — u?) — 2a)z(u),

We can choose c large enough so that sup,,; @ = 0. The lemma
follows if ¢ < X ; for a sequence of € — 1, hence we may assume that
c> A

Let the maximizing point of @ be z5. We claim that |Vu(zg)| > 0
since otherwise Vu(zp) = 0 and

0=Q(z0) = —c(1 —u?)(x0) — 2a)z(z0) < —(c — aX)(1 — €?)

by (1.26), which is a contradiction.
Differentiating in the e; direction gives

1
§Qi = wjuj; + cun; — arZ'u;. (1.29)
We can assume at x that uwo) = |Vu(zo)| and using Q; = 0, we

have

ujing; > uiy = (cu —adz’)? (1.30)
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Differentiating again, using the commutation formula, Q(z¢) = 0,
(1.26), (1.29), and (1.30), we get

o
Y

%AQ(%‘O) (1.31)
wjiugi + ui(Au); + Ric(Vu, Vu) + (¢ — arz") + (cu — aX2')Au
(cu —aX2')? + (¢ — X — ar2")(c(1 — u?) + 2a)z)

—Xeu — aX2')(u + €a)

—acA((1 —u?)2" +uz' + eu) + a?\3(—2z22" + 2% + €2')

+aX(c — N)(—uz' +2z+ 1)+ (c— \)(c — a)).

Y

However by (1.23), (1.24), and (1.25), we conclude that

0 > ach(1—eu—a* ?(1—€)2 + (c—A)(c—al) (1.32)
> —ach(l —¢) —a’X\¥(1—¢) (i — 1> +(c=N(c—aX)

> —(c+ M)A\l =€)+ (c— N2

This implies that

c<

24+(1—¢€)+
2

(1—e><9—e>}_

Taking € — 0 one gets the desired estimate.

Theorem 1.8. ([103]) Suppose M is a compact manifold without
boundary whose Ricci curvature is nonnegative. Let a u > 0 be the
median of a normalized first eigenfunction with a + 1 = sup,; ¢ and
a — 1 =infy; ¢; and let d be the diameter. Then the first non-zero
eigenvalue of M satisfies

6 4
x 2+ - (5 -1) a2 731+ 0020%). (1.33)
o

Proof. Let uw = ¢ — a and let v be the shortest geodesic from the
minimizing point of u to the maximizing point with length at most
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d. Integrating the gradient estimate (1.27) along this segment with
respect to arc-length and using oddness, we have

d\'/? > /ds
Y

|Vul|ds
Z -
v V1—u?+2az
1
1 1
> + du
/0{\/1—u2+2a2 \/1—u2—2az}
1 2.2
1 3a°z
> 2 d
- /0 \/l—uz{ +1—u2} Y
1 > 2
e ([ )
o V1—u?
_ +%(I_1)4
= 1+ (3 .

Remark 1.2. It has been shown by Hang-Wang [40] that if the
equality holds in (1.33) then M is isometric to a circle.

Remark 1.3. Let M™ be a compact manifold with smooth
boundary and nonnegative Ricci curvature. Suppose that the sec-
ond fundamental form of M is nonnegative. Then the first nontrivial
eigenvalue of the Laplacian with Neumann boundary conditions also
satisfies the inequality (1.27). The proof runs the same as Lemma
1.1 except that the possibility of the maximum of the test function
Q at the boundary must be handled. In fact, the boundary convex-
ity assumption implies that the maximum of ) cannot occur on the
boundary.



Chapter 2

Isoperimetric
inequalities for
eigenvalues

2.1 Introduction

In this chapter, we will prove some isoperimetric inequalities for eigen-
values on manifolds which have always been important problems in
geometric analysis. Owing to the limitation on the materials, we only
select some of the results in the area. For more interesting results,
we refer to [3] , [8], [17] and the references therein. The isoperimetric
inequalities to be proved are : the Faber-Krahn inequality for the first
eigenvalue of the Dirichlet eigenvalue; the Szeg-Weinberger inequal-
ity for the first nontrivial Neumann eigenvalue; the Hersch theorem
for the first closed eigenvalue on a compact Riemannian surface of
genus zero; the Ashbaugh-Benguria theorem; etc. For the conve-
nience of later use, we recall now the notion of spherically symmetric
rearrangement. Suppose that f is a bounded measurable function
on the bounded measurable set 2 C R™. Consider the distribution
function p5(t) defined by

pp(t) = {z € Qf ()] > t}] (2.1)

14
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where | - | denotes Lebesgue measure. The distribution function can
be viewed as a function from [0,00) to [0, |2|] and is nonincreasing.
The decreasing rearrangement f* of f, is the inverse of uy and is
defined by

f(s) =inf{t > 0|us(t) < s}. (2.2)

It is a nonincreasing function on [0, |©2|]. For a bounded measurable
set Q C R", its spherical rearrangement 2* is defined as the ball
centered at the origin having the same measure as ). The spherically
(symmetric) decreasing rearrangement f* : Q* — R is defined by

F5(z) = F(Cnlz|™) for = € Q* (2.3)

where C,, = 7"/2/T" (% + 1) is the volume of the unt ball in R". An
important fact we will use is that

[r= [T weras= [ o (24)

It is known that for any function f in the Sobolev space Hg (),
f* e H(Q*) and

|owres v (2.5)

For two nonnegative measurable functions f and g on 2 we have

[ra<| 1o (26)

Let us recall the notion of spherically (symmetric) increasing rear-
rangement, which we denote by a lower x. The definition is almost
identical to that of spherically decreasing rearrangement, except that
gx should be radially increasing (in the weak sense) on Q*. In this
case, we have

/fgz [ g (2.7)
Q Q*
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2.2 The Faber-Krahn Inequality

In this section, we will prove the Faber-Krahn inequality which is one
of the oldest isoperimetric inequalities for an eigenvalue.

Theorem 2.1 (Faber-Krahn [36],[61]). For a bounded domain
Q C R™, the first Dirichlet eigenvalue satisfies

Q) = A (@) (2.8)
with equality if and only if Q0 = Q*.

Proof. Let uy be a first Dirichlet eigenfunction for 2. We have
from (2.4), (2.5) and the mini-max principle that

Jo [Vug ?
fQ ug
Jo [Vug ?
Jo- (ui)?
> fQ* |Vul|2
T o (u))?

A1 (QF).

A1) = (2.9)

v

For the characterization of the case of equality, we refer to [56]. O

The Faber-Krahn inequality is valid for more general manifolds.
Let M be an n-dimensional complete Riemannian manifold and for a
fixed k € R, let M, be the complete simply connected n-dimensional
space form of constant sectional curvature x. To each bounded do-
main € in M, associate the geodesic ball D in M, satisfying

12| = |D|. (2.10)
If k > 0 then only consider those €2 for which || < |M,].

Theorem 2.2. If, for all such Q in M, equality (2.10) implies
the isoperimetric inequality

09| > D], (2.11)
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with equality in (2.11) if and only if Q is isometric to D, then we also
have, for every bounded domain § in M, that equality (2.10) implies
the inequality for the first Dirichlet eigenvalue

A (Q) > M (D), (2.12)

with equality holding if and only if Q is isometric to D.

For a proof of Theorem 2.2, we refer to [17].

2.3 The Szego-Weinberger Inequality

In this section, we prove the Szegé-Weinberger inequality which is a
counterpart to the first non-zero Neumann eigenvalue of the Faber-
Krahn inequality.

Theorem 2.3 ([96]). Let  be a bounded domain in R™. Then
the first non-zero Neumann eigenvalue of £ satisfies

A1(02) <A () (2.13)
with equality holding if and only if Q = Q*.
Proof. Let R be the radius of Q* and let g be the solution of the

equation

1y n=1_/__ n—1 *\ g —
{g + 2R =25 g 4+ M(Q)g =0 (2.14)

g(0) =0,g'(R) =0

By a topological argument, we can take as trial functions P;, such
that [, P, =0 fori=1,---,n, with

T
PZ(x) = h(T)J,
r
where the z/s are Cartesian coordinates, = (x1,--- ,2,) € R",r =

||, and

(r)for0<r<R
h(r>:{ i(R) ?or r > R.
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Observe that by an appropriate choice of sign, g(r) is increasing on
[0,R] and hence that h is everywhere nondecreasing for r > 0. By
substituting our trial functions P; into the mini-max inequality for

A1, we find
Al(ﬂ)/ F? s/ VP2,
Q Q

Summing this in ¢ for 1 < i < n, we arrive at

fQ Z?:l ‘Vpi|2
Jo 2 PP
Jo (1) + 250 )
Jo h(r)?
Jo Alr)
fQ h(r)?

A1(92) (2.15)

where

n—1

A(r) = 1'(r)* + ——h(r)>. (2.16)

r

A(r) is easily seen to be decreasing for 0 < r < R by differentiating
and using the differential equation (2.14). One finds

A'(r) = =2\ (Q)AR + (n — 1)(rh —h)?/r3) <0, 0 < r < R(2.17)

Also, A(r) = (n — 1)g(R)?/r? for r > R shows that A is decreasing
for r > R. Since A is continuous for all » > 0, it is also decreasing
there. Observe that

/ A < | A(r) (2.18)
Q Q*

since the volumes integrated over are the same in both cases, while in
passing from the left to right hand sides we are exchanging integrating
over Q\ Q* for integrating over Q*\  which are sets of equal volume.
Since A is (strictly) decreasing this clearly increases the value of the
integral unless 2 = Q*, when equality obtains. Similarly we find that

/Qh(r)2 > / h(r)? (2.19)
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since h is nondecreasing. Thus we arrive at

A(Q) fQ* = A\ (), (2.20)

G

since each P; is precisely a Neumann eigenfunction of A with eigen-
value A;(Bpg) for the domain B = Q*. This completes the proof
of the Szego-Weinberger inequality, including the characterization of
the case of equality.

2.4 The Ashbaugh-Benguria Theorem

In this section we consider the sharp upper bound for A\y/A; for the
Dirichlet eigenvalue problem proved by Ashbaugh-Benguria. In 1955
and 1956, Payne, Pdlya and Weinberger [77], [78], proved that

A2 <3 for QCR?
A1
and conjectured that
o _N| it

< =
A1 Atlgisk  Jon

with equality if and only if Q is a disk and where j, ; denotes the
k" positive zero of the Bessel function J,(t). For general dimension
n > 2, the analogous statements are

4
&<1+— for Q CR",
A1

and the PPW conjecture

-2
& < )\2 _ -]n/2,1 (221)

f— N -2 9
)\1 )\1 n—ball jn/2—1,1

with equality if and only if Q is an n-ball. This important conjecture
was proved by Ashbaugh-Benguria (see [5], [6], [7])-
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We proceed now with the proof of (2.21). Let us start from the
variational principle for Ao

\V4 2
A2(Q) = fﬂ‘i(’z" (2.22)
$eHY(Q) 046l [o
which, by integration by parts, leads to

Aa(Q) = A (9) (2.23)
Jo IVPPui 1 2

< =-——= Pu; € H;(Q), | Puj=0,P#0.

= [ Pl U1 0() /Q uy 7

To get the isoperimetric result out of (2.23), one must make very
special choices of the function P, in particular, choices for which
(2.23) is an equality if € is a ball. Thus we shall use n trial functions
P = P;, such that [, Puf =0 for i =1,--- ,n where

T

P = g(r)7 (2.24)

and

o(r) = { f(r) = “right” radial function on Bg for 0 <r < R,

f(R) forr>R. (2.25)

The right R in this case turns out to be the unique R such that
A1 (Bgr) = A1(€). Substituting P; into (2.23) and summing on ¢, we
find

A2(Q) = A (Q) < Jo B 2 (2.26)
fQ )?uf
where
B(r) = f(r) + Lot i) (2:27)

Now the equation (2.26) does not depend on the P/s and so we are
in a position to define the function f. The idea is to take f as a
properly quotient of Bessel functions so that the equality occur if Q
is a ball in R™. This motivates the choice of :

f(r) = w(yr), (2.28)
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where

Jnyj2—1(az)’

Jns2(Bz) . <
(@) = { Tujpilon) ifo<z <1, (2.29)
w(l) = limg_; w(zx), if > 1,

with & = jn/2-11, 8= jnj2,1 and v = VA1 /a.

Lemma 2.1. The equality occurs in (2.26) when Q is a ball with
A1 as the first Dirichlet eigenvalue and f is given by (2.28).

Proof. If S7 is a closed ball of R™ of appropriate radius centered

in the origin in which the problem

{ Az = —)Xz in Sy, (2.30)

Z‘le =0.

has A1 as the first eigenvalue, then
S1={z eR"[z| < a/VA1 =1/7}

The second eigenvalue of the problem (2.30) is Ao = 2—2)\1. The first
eigenfunction of 57 is

2(x) = el "2, 01 (VA 2]),

and the eigenfunctions corresponding to Xy are:

—n/2 . I\ T .
fl(l'):C|£C|1 /2.771,/2( )\2|£L’|)7, Z:]-v"' y 1,

||

where c is a non-zero constant.
Let

(V)
Qlr) = m’lf0§r<1/%
jn/z(\/gr)

hmr—>1/’y jn/271(m7.) ’

(2.31)
if r>1/7,

Observe that Q(r) = w(yr) = g(r) and let

Z; xX;
=)

]

Qi(x) = Q(|z)

)

e
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then
Qiz*>=0,i=1,---,n

and Q;z are eigenfunctions of Ao Thus, we have

o _ Js IV@)P
T [ (@i

Summing over 4 and simplifying, we get

fsl ((f/(r))z +(n—-1) fj(;’)) 52

1’:1,...7”

o — )\ — 2.32
>\2 A1 fsl fQ(T)ZQ ( 3 )
This completes the proof of Lemma 3.1.
Substituting (2.28) into (2.26), we get
A B 2
do— Ay < 2fa Bl (2.33)
Jow?(yr)us
where
2 w?(x)
B(x) = (w'(x))* + (n — 1) —; (2.34)

X

From the definition of w and the properties of Bessel functions one can
prove that w(t) is nondecreasing and B(t) is non-increasing. There-
fore, we have

/ B(yrjui < | B(yr)*(ui)* < [ B(yr)(uy)? (2.35)
Q Qx Q*

and
[wtmd = [ win.@ip < [ w20

In order to continue the proof, we need a result of Chiti: If ¢ is chosen

so that
/ﬁ:/ ufz/ 22, (2.37)
Q * S1
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then
fr) W)= [ f(r)2?, (2.38)
Q* Sy

if f is increasing, and the reverse inequality if f is decreasing. It
follows from (2.38) and the monotonicity properties of B and w that

| Bomeie< [ ez (239)
and
| w2 = | ) (2.40)

Combining (2.33), (2.35), (2.36), (2.39), (2.40), and using the defini-
tion of z, we finally get

A fsl B(yr)z? Y

Ao — < —= "~ = =
2= Jg, w2(yr)z?  a?

(5% — a?). (2.41)

From here the inequality

D)
A2 < Jnj21

AT j2/2—1,1

(2.42)

follows immediately. Also, it is clear from the proof that the equality
holding in (2.42) if and only if Q is a ball.

2.5 The Hersch Theorem

In 1974, Hersch proved an isoperimetric inequality for the first non-
trivial eigenvalue on the 2-dimensional sphere S2.

Theorem 2.5 ([48]). For any metric on S?, the first non-trivial
eigenvalue satisfies

8w

< .
A s A(S?)

(2.43)
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Proof. For any metric d32 on S?, we can construct a conformal map
¢ : (S%,d3?) — (S%,ds3), here ds3 denotes the standard metric on S2.
From the mini-max principle, we have

. fSQ |V f|?dv
A= f o o= 2.44
! Je lfr}w:o Joz f2dD (2:44)

where d¥ is the area element with respect to d3?. Take the coordi-
nate functions z'(i = 1,2, 3) on (S?,ds3); then z° 0 ¢,i = 1,2, 3, are
functions on (S?,d3?).

Observe that ¢ is a conformal map and that in the case of surfaces,
the Dirichlet integral of a function is a conformal invariant. Thus we
have

/ |V(xio¢)|2d6:/ |V$i|2dv:—/ z' Az’ —2/( )2:81.
S2 s2 s2 2 3

Since

Area(S?) = dv = Z/ zto¢)?

there exists at least one 4 such that

i 5 . _ Area(S?)
/SQ(SC o) dUZf-

Also, we can choose ¢ satisfying [, 2" o ¢dv = 0 [85]. Thus

Jo2 V(a0 @)D _ 8m
M e rds S A

(2.45)

For the discussion of equality case, we refer to [48]. O

Remark 2.1. S? is a Riemann surface of genus g = 0. For
Riemannian surface >, of genus g > 0, Yang-Yau obtained a similar
result.

Theorem 2.6 ([99]). For any metric on ¥4, the first eigenvalue
satisfies

A < 8m(1+g)

< (2.46)
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Remark 2.2. Hersch’s theorem can’t be generalized directly to
the case of higher dimensions [86]. That is, one can’t expect that

M Vol(M)?/™ < ¢,

with a constant depending only on n. It must depend also on other
geometric invariants of M.

Here is an interesting application of Hersch’s theorem.

Theorem 2.7 ([19]). Suppose that M is homeomorphic to S* and
@1, P2, @3 are three first eigenfunctions such that their square sum is
a constant. Then M is actually isometric to a sphere with constant

sectional curvature.

Proof. The assumption of Theorem 2.7 says that

Ap;i + M (M)p; =0, i=1,2,3,
Zle ? = c, ¢ is a constant.

Thus,

3 3 3
0 = A (Z(bf) = QZW@'F +QZ¢iA¢i
i—1 i=1

=1 =

3 3
QZ [Vil* — 2A1 (M) Z%Q
i=1

=1

which gives

3
>_IVeif? = ex(M). (2.47)

Taking the Laplacian of both sides of (2.47) and using the Bochner
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formula, we get
13
— 12
0 = 3 E_l AV ;| (2.48)

3 3 3
= Y V26> +> Vi V(Adi) + > Ric(Véi, Véy)
=1 i=1

=1

3 3 3
= D IVl = MM g+ K> Vel
=1 =1 =1

=Y % — e\ (M)? + Kely (M)
1=1
= —M(M)?/2+ Ke (M),

where K is the sectional curvature of M. Thus we have
M(M) > 2K. (2.49)
Integrating (2.49) and using the Gauss-Bonnet formula, we have
A (M) x area(M) > 8. (2.50)

Combining (2.50) and Hersch’s theorem we know that M is a 2-
sphere. (Il

We have an isoperimetric upper bound for the first eigenvalue of
the Laplacian of a closed (compact without boundary) hypersurface
embedded in R".

Theorem 2.8 ([92]). Let M be a connected closed hypersurface
embedded in R™(n > 3). Let Q be the region bounded by M. Denote
by V and A the volume of Q and the area of M, respectively. Then
the first non-zero eigenvalue A1 of the Laplacian acting on functions
on M satisfies

(n—1)A (wn)l/n.
|4

A < 2.51
R et (251)

with equality holding if and only if M is an (n — 1)-sphere.
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Proof. Let us denote by x1,- - ,x,, the coordinate functions on
R"™. By choosing the coordinates origin properly, we can assume that

/ 2i=0, i=1,,n.
M

Since M cannot be contained in any hyperplane, each z; is not a con-
stant function, i = 1,--- ,n. It follows from the Poincaré inequality
that for each fixed i € {1,--- ,n}

)\1/ I?S/ ‘vxi|2,
M M

with equality holding if and only if Az; = —\1z;.
Summing over i from 1 to n, we get

M /Mix?§/szl|in2:/M(n—l):(n—l)A, (2.52)

with equality if and only if
Az; = -z, Vie{l,--- ,n}. (2.53)

Take a ball B in R™ of radius R centered at the origin so that vol(B) =

V; then
174 1/n
R- () |
Wn

By using the weighted isoperimetric inequality proved in [14], we have

. / 22 (2.54)
= area(0B)- R?
1/n
nV (V) .
W,

Substituting (2.54) into (2.52), one gets (2.51). If the equality holds in
(2.51), then the inequalities (2.52) and (2.54) must take equality sign.

v
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It follows that the position vector x = (x1,--- ,x,) when restricted
on M satisfies

Az =: (Axy, - ,Axy) = = A (21, -, Tn).
Also, it is well known that
-
Az =(n—-1)H,

-
where H is the mean curvature vector of _Z\)l . Consider now the func-
tion g = |22 : M — R. Observing that H is normal to M, we infer
that

2n—1), =

wf =2(w,x) = — )\1 (w,H) =0, Yw e x(M).

Thus f is a constant function and so M is a hypersphere. (Il



Chapter 3

Universal Inequalities
for Eigenvalues

3.1 Introduction

Payne, Pélya and Weinberger proved that the Dirichlet eigenvalues
of the Laplacian for  C R? satisfy the bound [77], [77].

k
2
AW—Akg%;Ai, k=12, (3.1)

This result easily extends to 2 C R™ as
PR
Akg1 — A < — Ai, k=1,2,--- 2
2D (32)

Many interesting generalizations of (1.3) have been done during the
past years, e. g., in [3], [4], [9], [20], [21], [22], [23], [25], [26], [27], [29],
[30], [33], [41], [42], [43], [44], [45], [46], [47], [50], [52], [68], [69], [90],
[98]. In 1991, Yang [98] proved the following much stronger result:

29
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Theorem 3.1. The Dirichlet eigenvalues of the Laplacian of
Q C R™ satisfy the inequality

k
4
Z()\kJrl — )\1) ()\kJrl - (1 + n) >\z> < 0, for k = 1,2, et (33)

i=1

The inequality (3.3), as observed by Yang himself, and as later
proved, e. g., in [3], [4], [9], is the strongest of the classical inequal-
ities that are derived following the scheme devised by Payne-Pdlya-
Weinberger. Yang’s inequality provided a marked improvement for
eigenvalues of large index. Recently, some Yang type inequalities on
eigenvalues of the clamped plate problem, the buckling problem, the
polyharmonic operator and some other type eigenvalue problems have
been proved. This chapter is devoted to prove some of the univer-
sal inequalities in this subarea. Since the method in proving Yang’s
inequality has been widely generalized in obtaining various universal
inequalities for eigenvalues, we end this section by proving Yang’s
inequality.

Proof of Theorem 3.1. Let uy be the orthonormal eigenfunction
corresponding to the k' eigenvalue My, i.e. uy satisfies

Auk = —)\kuk, in

uglog = 0, (3.4)
fQ UUy = (5”
Let x1,--- ,x, be the standard coordinate functions in R™. For any

fixedp=1,---,n, put g = =, and define ¢; by

k
qﬁi = gu; — Zaijuj, aij = / guiuj = aji. (35)
Q

j=1

It is easy to see that

/d)iuj:(), for 4,5 =1,--- k. (3.6)
Q

Letting

bij:/uijVui,
Q
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from Green’s formula, we derive

/\jaij = / g(—AUj)Ui = —Qbij + )\iaij
Q

and so
2bi; = (A — Aj)agj. (3.7)
Since
k
Agi = —Xigui +2Vg - Vu; + Y Njagjuy,
j=1

we have

/ IVoil> = Ai/ # — 2/ 6V - V. (3.8)

Q Q Q

On the other hand, from the definition of ¢;, (3.5) and (3.6), we
derive

—2/¢ng~Vui (39)
= /ng quuH—QZaU/uijVui
Q = Q
k
= Z Ai — )

From the mini-max prlnc1ple we obtain

(Akg1 — /¢ <1+Z (3.10)

Multiplying (3.9) by (Ar+1 — A;)? and taking sum on 4 from 1 to k,
we obtain

k k
Z()\]H_l — )\L)2 + Z (>\z - /\j)(/\k+1 — )\,’)2&?]- (311)
i=1 ij=1

k
=2 (Aps1 — Ai)Q/ Vg - Vu,.
i=1 2
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By Qj5 = Qg bij = 7bj1', we have

-2 (Apg1 —)\Z-)Q/ Vg - Vu; (3.12)

I
M= 1=

(Abt1 — —4 Z Akt1 —

s
Il
_

Multiplying (3.10) by (Ax+1 — A;)? and taking sum on i from 1 to k,

we infer
)\k+1 / o
=1
k
Z )\k-‘rl - 42 >\k+1 =w.
From [,u;¢; = 0 for all 4,5 = 1,--- ,k, we have, for arbitrary con-
stants d;;,
w?
k 2
= (—2Z(Ak+1 —)\i)Q/ qﬁng-Vui)
i=1 a
k
< 42/(/\k+1 -
=174
2
X Z/ (Akt1 — N)Y2Vg -V, — Zd”uj
7j=1
2
k
< 4wZ/ Akt — A)|Vg - Vu|* + Zdijuj
j=1

—2 Z dij ()\k+1 — )\i)l/QUng . V’Uq
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Then we have
b ou; \ 2
< -\ d
i o (2)
=1

k k
[ =237 i = 220+ Y d

i,j=1 i,5=1

Putting dij = (/\k-‘rl — )\i)l/zbij, we obtain

w < 4zk:(>\k+1 - /\i)/ (aui>2 —4 Zk: (Ak1 = A)bF;  (3.13)

i=1 o \0zp ij=1
and so we infer
k k u \ 2
Mot1 — A)2<4Y Niw1 — M £ 14
D U A ¢ IECID

Summing over p, we obtain

k

Z(/\k-i-l —\)?

i=1

IN

4 k
fZ(AkH—/\i)/ Vw2 (3.15)
ni4 Q

k
4
= Z;()\kﬂ = XA
O

Yang’s inequality has been generalized to bounded domains in
complete submanifolds in Euclidean space. That is, we have

Theorem 3.2 ([20], [41]). Let Q be a bounded domain in an
n-dimensional complete Riemannian manifold M™ isometrically im-
mersed in RN . Then the Dirichlet eigenvalues of the Laplacian of
satisfy the inequality

k k n?
S Oker = M) < -3 Owen — M)+ T IEIR), (316)

i=1 i=1

3|

where H is the mean curvature vector field of M™ and ||H|]* =
supg |H .
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3.2 Eigenvalues of the Clamped Plate
Problem

Let us generalize Yang’s method to prove universal inequalities for
eigenvalues of the clamped plate problem on Riemannian manifolds.

Theorem 3.2 ([94]).  Let M be an n-dimensional complete
Riemannian manifold and let Q0 be a bounded domain with smooth
boundary in M. Denote by v the outward unit normal of 02 and let
i the i-th eigenvalue of the problem.:

A%y =) u in Q,
(3.17)

8
ulpg = a%|am =0.

i) If M is isometrically immersed in R™ with mean curvature
vector H, then

k

> k1 = X)? (3.18)

=1

L 1/2
{ (M1 — A)? (”2H02 + (2n+ 4)/\;/2) }
=1

(2

<.

<

S|

A 1/2
x {Z()\kJrl - \) (n2H§ + 4A§/2) } ,

i=1
where Hy = supg, |H|.

i1) If there exists a function ¢ : Q@ — R and a constant Ay such
that

V| =1, |A¢| < 4, on (3.19)
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then

Z(Am — ) (3.20)
& 1/2
{Z Mert = M) (43 + 4400 + 62)%) }
=1
& ) 1/2
x {Z(Akﬂ = xi) (247" + ) } .

=1

i1i) If there exists a function v : Q@ — R and a constant By such
that

VY| =1, Ay = By, on Q, (3.21)
then
k k 1/2
D s = A {Z M1 — Ai)2(6A]% — Bg)} (3.22)
- 7:1k 1/2
x {Z()‘kJrl — i) (4)\;/2 - BS)} :
i=1

w) If Q admits an eigenmap f = (f1, fa, s fmy1) : & — S™(1)
corresponding to an eigenvalue i, that is,

m—+1

Afazfﬂfaaa:]-a"'7m+]—v Zfo%:l,

k k 1/2
> ks —X)? < {Z N1 — (6/\1/2 + u)} (3.23)

1/2
x {Z Aes1 — (4/\1/2 + u)} :

i=1
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where S™(1) is the unit m-sphere.
Theorem 3.2 can be deduced from a general result.

Lemma 3.1 ([89]). Let \;,i =1,---, be the i-th eigenvelue of the
problem (3.17) and u; the orthonormal eigenfunction corresponding
to \;, that is,

AQUZ' = /\iui in Q,

8 .
uilog = G

) (3.24)

fMuiujzéij, V i, ]:1,2, .

Then for any smooth function h: Q) — R and any § > 0, we have

k
S (st — m?/ 2|V (3.25)
, Q

i=1
k
< 63 O — /\i)Q/Q{uf(Ah)Q — 2u,|Vh[2Au,
=1

+4((Vh - Vug)? + w;AhVh - Vu;)}
k 2
(Ak—i-l — )\1) / UZAh
P h - Vg :
+ 2 5 i Vh - Vu; + =3

Proof of Lemma 8.1. For i = 1,---  k, consider the functions
¢; : 2 — R given by

k

¢i = hu; — E Tijly,

j=1

rij:/huiuj.
Q

=0 and

where

: . _ 0¢;
Since ¢ilon = F 0

/Uj¢i:0, vi7.j:17"'5‘1€7
Q
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it follows from the mini-max inequality that

A%,
Akt1 < W (3.26)
Q 7
We have
/¢ZAQ¢¢ (3.27)
Q
k
= /d% A2(huz) —ZTU)\]'U]‘
Q =
= / i A% (huy)
Q
k

= NllealP =) rijsy
j=1

—|—/ hu; (A(u; Ah) + 2A(Vh - Vu;) + 2Vh - V(Au;) + AhAu;),
Q
where [|¢4][2 = J;, ¢ and

Q

Multiplying the equation A2u; = A;u; by huj, we have

hujAzui = A\huu,. (3.28)
Changing the roles of i and j, one gets

hu; A*u; = \jhuu;. (3.29)

Subtracting (3.28) from (3.29) and integrating the resulted equation
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on €2, we get

/(huiAzuj — hUjAQUi)
Q

Q

Sijs
Observe that
/Q hu; (A(u;Ah) + 2A(Vh - V) 4+ 2Vh - V(Au;) + AhAu;)
= /Q(u?(Ah)? +4(|Vh - Vi | + u, AWV h - Vug) = 20| VA Aw;).
It follows from (3.26), (3.27) and (3.30) that

et = Aol (3.31)
< / (u2(AR)? + 4(|Vh - Vug|* + w; ARV h - Vu;) — 2u; | Vh[> Auy)
Q

k
+> (=)
j=1

Set

AR
tis :/Quj (Vh-Vui—&—uQ ); (3.32)
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then t;; +t;; = 0 and

ulh ) (3.33)

/Q(—Z)qzﬁi (Vh Vi + =5

k
/ (—2huth . Vuz - u%hAh) +2 Z ’I“ijtij
Q

Jj=1

k
_ / 2V +23 risty.
Q

j=1

Multiplying (3.33) by (Axr1 — A;)? and using the Schwarz inequality,
we get

k
(>\k+1 - )\2)2 (/Q U$|Vh|2 + 227’2-]-15”) (334)

j=1

= e =07 [ (20, (w Vst

_ a2 [~ ..UiAh>_k...
(Mex1 — M) /M( 2)@((% Vui + =3 ;t”u])

§(Neg1 — Xi)?| ol ?

IN

2
k
(M1 — Ai) u; Ah
“v‘f u VhVuZ—k 9 —;tijuj

= 0( Ak — A)P| gl

(Akt1 — Ai) w; AR\ )
S /Q Vh- Vi + =5 -

Substituting (3.31) into (3.34) and summing over ¢ from 1 to k and
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noticing r;; = rj;, t;; = —t;;, we get

k k
S st — A)? / BIVEE =23 (er = M) — Ay )ragts;
=1

i,j=1

Q
k
D (kg1 = Mi)%0 | (uF (AR +4((Vh - Vu;)® + w; ARV - V)
Q

<
=1
" et — A w AR
9w IThI2 A, Wet1 = Ai) T2 4 LR
2u;| VA Aul)—i—; 5 /Q ((Vh Vui)? + =5 )
k k
Aot1 — Ay
=3 e A8 A - Y0 R A
7,7=1 i,j=1
which implies (3.25). O

Proof of Theorem 3.2. Let {u;}$2, be the orthonormal eigenfunc-
tions corresponding to the eigenvalues {A;}52, of the problem (3.17).

i) Let x4, = 1,--- ,m, be the standard coordinate functions of
R™. Taking h = z,, in (3.25) and summing over a, we have

k

> (kg — Z/ u?|Viy|? (3.35)
=1

k+1

< 83 O —/\Z-)QZ/Q(uf(Axa)Q—&-él((an.Vui)z
=1 a=1

JruiAxana . Vulv) — 2ui|an|2Aui)

+Z Ak“ Z/ﬂ (an Vu; + ulea) ;

Since M is isometrically immersed in R™, we have

m

Z |Vas|? =
a=1
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which implies that

Z/ u2Vro|? =n (3.36)
a=1 Q
Also, we have
Az, xm) = (Azq, -+, Azy,) = nH, (3.37)
D (Vao - Vu)? =Y (Vui(a))? = |V (3.38)
a=1 a=1
and
> Az Ve - Vui =Y AzaVui(ze) =nH Vu; = 0. (3.39)
a=1 a=1

Substituting (3.36)-(3.39) into (3.35), we get

(Ner1 — A)? (3.40)

s
I
—

IN
>
'tvj?

©
I
—

(Aeg1 — A)? / (n*u?[H|? + 4|Vu;|* — 2nu;Auy)
Q

(Ak41 —)\z‘)/ <|Vu-2+ ”2“12|H|2)
Q

+
-

«
I
-

0 4

Mest — Ao)2(n2HE + (2n + H)A?)

(3

IA
(o9
WE

<

+
.tvjk l

@
Il
—

(Mes1 = Ni) (12 nPH}
; N

Here in the last inequality, we have used the fact that |H| < Hy and

/Q\Vui|2 = —/QuiAui < (/Q u?)m (/Q(AW)Q)U2 — A/2(3.41)
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Taking

1/2

)

5 S kst — i) ()\3/2 + %)
- S Or — A)2(n2HE + (2n 4+ 4)A}?)

one gets (3.18).
ii) Substituting h = ¢ into (3.25) and using (3.19) and the Schwarz
inequality, we get

k
> k1 = X)? (3.42)
=1
k
< 52(/\k+1 — )2 / {u2(Ap)* +4((Vo - Vui)? + u; ApV - V)
i=1 Q2
" (A i) wiAG\ >
AL k+1 — A i _ i
—2u;Au;} + ; 5 ’/Q (V¢ Vu; + > )
k

=
k

(A Adu
+Z k+1 / (|Vul|2+A0uz||Vuz|+ ) ) .
i=1 Q

Substituting (3.41) and

[ hulvat< ([« ) (/ |vul|2> Y

into (3.42), we get

(M1 — Ai)?

-

=1

(M1 — M)2(A2 + 4400 4+ 61172

(A1 — N) (174 @
5 AT

< 6

@
Il
-
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Taking

X 1/4 N 2 1/2
S G =2 (M +4)
SR kegr — A)2(A2 + 4400 4+ 6A)7%)

we obtain (3.20).

iii) Introducing h = 1 into (3.25) and using (3.21), we have

(Mrr1 — )2

s.
Il Mw
o

VAN
o,
'M?V

@
Il
-

Q

0\ 2,2
Qg1 = ) / (|Vui|2+Bouiv1/f'VUi+BOul)
Q

+
hE

1 ) 4

k 2
2/py1/2 2 (M1 —Ni) (172 Bg
()‘k+1 - )\i) (6)‘1 - Bo) + §_1 5 >‘i - 4 )

.
Il

VAN
o
'M?T

Il
-

3

where in the last inequality, we have used the fact that

2
/ui<vw,vui>:—1/u$A¢:—&.
Q 2 Q 2

Taking
2 1/2
Zf:l()‘kJrl - ) ()\3/2 - %)

)=
Zf:l()‘k+1 - >\i)2(6/\;/2 — B?)

we obtain (3.22).
iv) Taking the Laplacian of the equation

m—+1

Y=t
a=1
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and using the fact that

Afn:*,u,fn, 77:17 am+17

we have

m+1

Z |vfn|2 = u.
n=1

It then follows by taking h = f,, in (3.25) and summing over 1 that

(Mrr1 — )2

Fﬂ*

@
Il
-

AN
==
AMPT

m—+1
(Aky1 — )\i)Q/ <N2U? +4 Z (Vo Vu;)? — 2MUZAU¢>
Q

=1 a=1
k m+1 2,,2
(Aks1 — i) / N2, BT
+; 5 i ;(v Jor Vui)* + =

(N1 — N)2 (02 + 6/0\3/2)

(Akg1 — Ag) 12 WP
20 (il B

I
[«
™=

~

_|_

@,
Il
—

We get (3.23) by taking

1/2
S ks — A (/\3/2 + %)
S et — A)? <6>\3/2 + u)

O

Here are some examples of manifolds supporting the functions on
the whole manifolds as stated in items ii)-v) of Theorem 1.1.

Ezample 3.1. Let M be an n-dimensional Hadamard manifold
with Ricci curvature satisfying Ricps > —(n — 1)c?, ¢ > 0 and let
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v : [0,400) — M be a geodesic ray, namely a unit speed geodesic
with d(v(s),v(t)) =t — s for any ¢ > s > 0. The Busemann function
b, corresponding to 7 defined by

by(z) = lim (d(z,~(t)) — 1)

t——+oo
satisfies |Vby| = 1(Ct. [10], [49]). Also, it follows from Theorem 3.5 in

[84] that |Ab,| < (n—1)c* on M. Thus any Hadamard manifold with
Ricci curvature bounded below supports functions satisfying (3.19).

Ezample 3.2. Let (N, ds%) be a complete Riemannian manifold
and define a Riemannian metric on M =R x N by

ds%; = dt* +n*(t)ds%, (3.43)

where 7 is a positive smooth function defined on R with 7(0) = 1.
The manifold (M,ds3,) is called a warped product and denoted by
M =Rx,N. It is known that M is a complete Riemannian manifold.

Set 7 = e~t and consider the warped product M = R x.-+ N.
Define ¢ : M — R by 9 (x,t) = t. One can show that

VY| =1, AYp=1-n. (3.44)
That is, a warped product manifold M = R x .-« N admits functions
satisfying (3.21).
Let H” be the n-dimensional hyperbolic space with constant cur-
vature —1. Using the upper half-space model, H" is given by
RY = {(z1, 22, ,2p)|zn > 0} (3.45)
with metric
dat + -+ da?

ds® = 5
xn

(3.46)

One can check that the map ® : R x,—: R"~! given by
o(t,2) = (x,€)
is an isometry. Therefore, H" admits a warped product model, H” =

R x -« R* L.

Ezxample 2.3. Any compact homogeneous Riemannian manifold
admits eigenmaps to some unit sphere for the first positive eigenvalue
of the Laplacian [70].
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3.3 Eigenvalues of the Polyharmonic
Operator

The method of proving universal bounds for eigenvalues of the clamped
plate problem can be generalized to the eigenvalue problem of poly-
harmonic operators.

Theorem 3.3 ([55]). Let M be an n-dimensional compact Rie-
mannian manifold with boundary OM (possibly empty) Let | be a
positive integer and let N\;, © = 1,---, be the i-th eigenvalue of the
problem (1.7) and u; be the orthonormal eigenfunction corresponding
to \;, that is,

(—A)lui = )\iui in M,
_ _ 0y _
on == G| = 0, (3.47)
Sy wiuj =85, forany i, j=1,2,---.

Then for any function h € C'*2(M) N CHY(OM) and any positive
integer k, we have

uilon = 44

k

(vt = A /M 2| VA[? (3.48)
l_k
< 5Z(Ak+1 —\i)? /M hu; ((=A)! (hug) — Aihuy))

2

)

k

Mkt = i uiAh
+Z(k+%)H(Vh,Vui>+ 5
i=1

K2

where § is any positive constant.

Proof. For i =1,---  k, consider the functions ¢; : M — R given
by
k
(]52' = huz — Zrijuj, (349)
j=1
where

Tij = / huzu] (350)
M



[SEC. 3.3: EIGENVALUES OF THE POLYHARMONIC OPERATOR

47

(3.51)

(3.52)

[ =2m

Since 5 5i-1
Pi 9
i = — = e = — = 0
Pilons o om 22 PV
and
/Uj(,bi:(), Vi,jil,"',k,
M
it follows from the mini-max inequality that
Nt / ¥
< [ at-ars
= Al + /qﬁz = k)
= NP+ [ (=) () = Ae)
= \ ||¢,||2 / huZ hul -\ huZ Zrus”,
where
_ 1
Sij = / ((—A) (huz) — )\Zhuz) Uj
M
Notice that if u € C'*2(M) N C!*L(OM) satisfies
u| B @ B B 3l71u 0
M= oy one o, T
then
ulonr = Vulgy = Aulgy = V(Au)[gy =+
= AmflubM = V(Amflu)bM =0, when
and
ulorr = Vulgy = Aulyy = V(AU gy == A™ !

u’(’)M

= V(Amflu)bM:AmubM:O, when | =2m+ 1.
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We can then use integration by parts to conclude that

/ uj(=A)! (hu;) = / hui(=A)' (ug) = Ajrij,

M M
which gives
si; = (Aj — X)rij. (3.53)
Set
pi(h) = (—=A)! (hu;) — Nihug;

then we have from (3.51) and (3.53) that

(=Ml < [ o (3.54)
M
k
Set
tij = / Uj <Vh . Vuz + uZAh) 5 (355)
M 2

then tij + tji =0 and

A Z’“
M j=1

where

w; :/ (—hui Ah — 2hu;Vh - V). (3.57)
M
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Multiplying (3.56) by (Ax+1 — A;)? and using the Schwarz inequality
and (3.54), we get

e = X0)? | ws "'22% ij

()\k+1—)\i)2/M(—2)¢i (Vh-VUi uzAh) thuj

< 01 — )l
2
k
(Aks1 — i) u; Ah
+f o Vh - Vul + 9 - ;tijuj'
= 61 — X)*[[eil?
(Aks1 — i) uzAh
= | |[Vh Ve + Zt
k
< (A1 — A)? / huipi(h) + Y (N = A,
M =
(etr = M) S
k41— Ai 2
R Hw.wi =S -
j=1
Summing over ¢ and noticing rij =1, tij = —t;;, we infer
k
Z(AkJrl i 2 Z )\k:+1 —Aj )let”
=1 i,7=1
k
< 52 Aol — huipi(h)
P M
k 2
(A Al
+Z '““ ‘<Vh,Vui> + 2
=1

b (A
ZAM Z R
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Using (3.48), we can obtain universal inequalities for eigenvalues
of the problem (1.7) when M is a bounded domain in R™ or S™(1).

Theorem 3.4 ([55]). Let Q be a bounded domain in R™ and
Denote by \; the i-th eigenvelue of the eigenvalue problem:

(=AY =X u in Q,
u —ly 358

Then we have

.
> e = A (3.59)

1/2
Aln+ 21 —2)\ 2 (&
< ( (n+2 )> (Z Mot — )\(l /1
n
=1

k 1/2
x (Z (Ak41 = Ai) A%”)

i=1

Proof. Let 1,22, ,x, be the standard Euclidean coordinate
functions of R™. Let u; be the i-th orthonormal eigenfunction cor-
responding to the eigenvalue A; of the problem (3.58), i = 1,---;
then

(A (@aui) = Nizau; + 20(=1)' Vg - V(A uy) (3.60)

Taking h = z,, in (3.48), we infer for any § > 0 that

(Mrr1 — )2

)
i
I

IA
>

-
Il
-

(MNes1 — / 21(—1)lmauian . V(Alilui)
Q

AkH )| Vze - Vg 2.

oﬂH
H'Mw
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Summing over «, we have
k
Z(AM —\)? (3.61)
k
Z (Akg1 — Z/ V' au; Va, - V(A )
1 71@
+5 Z (Aks1 — / Vs .

By induction, we infer
/ui(—A) u < AN k=1, L (3.62)
Q

Since
A (zqu;) = 2(l —1)Vx, - V(Al_zui) + 2o ATy,

we have
/xauian-V(Al_lui) (3.63)
Q
= /xauiAl_1an~Vui
Q

= /Al_l(xaui)an-Vui
Q

/ (2([ — 1)V, - V(A 20) + a:aAlflui) Vo - Vu;.
Q
On the other hand,

/ Lot Ve - V(AT u,) (3.64)
Q

—/ A7y div(zau; Vig)
Q

—/ A7V (|Vag Pu; + 24 Ve, - V).
Q
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Combining (3.63) and (3.64), we obtain
/Q Tou; Ve - V(AT ;) (3.65)
= /M {(l — 1)V, - V(A"24;)Va, - Vi, — ;Al_lul-anFui}
Observe that
zn: /Q(—l)lxauian V(A ) (3.66)
a=1

= /Q(—l)l {(l — V(A" 2u;) - Vu; — guiAl_lui}

_ (Z—l—&—g)/ﬂui(—A)l_lui

(1=1+3) A0

Substituting (3.62) and (3.66) into (3.61), one gets

IN

k
n Y (kg1 — Ai)? (3.67)
=1
k 1 k
< Un+20-2)8Y g — M)A gz Aep1 — M) AL
1=1 =1
Taking

1/2

S O = M)A /

0= = 2\ (—1)/1 )
n+20—2) X, (Vers — A)2 X

we get (3.59). O

Let [ be a positive integer and for p = 0,1, 2, ..., define the poly-
nomials F,(¢) inductively by

{Fo(t) 1, F1(t) t—mn,
Fy(t) = (2~ 2)Fy 1(6) ~ (2 426 — nln — 2)Fy 2(8),p =2,
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(3.68)
Set
Fit)=t' —a 1t -+ (=D agt + (—n)l. (3.69)

Theorem 3.4 ([55]). Let A\; be the i-th eigenvalue of the eigen-
value problem:

(=AY u=Xu in Q,
_ O _ _ oY _
ulpg = a%’ag == gt s 0,

where Q is a compact domain in S™(1). Then we have

N1 — i) (3.70)

M=

1

& 1/2
{Z Mot — (altle% +~--+a1+Aﬁ+ao+)}

1=

. 1/2
1/2
{z_; Aot — (n +4)] )} ,

.
I

S|

X

+ _
where aj = max{0, a;}.
Proof. As before, let x1,x2,- - ,Zp41 be the standard coordinate

functions of R**1; then

n+1
Sn(l) - {(xlv s axn—i-l) S RnJrl; Zl’i =

It is well known that

Azxy = —nxy, a=1,--- n+1. (3.71)
Taking the Laplacian of the equation Ea 172 =1 and using (3.71),
we get

n+1

> IVzol* =n. (3.72)
a=1
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Let u; be the i-th orthonormal eigenfunction corresponding to the
eigenvalue \;, ¢ = 1,2,---. For any § > 0, by taking h = z, in
(3.48), we have

k

> Or =02 [ (T
i=1 Q
k+1

< 93Ok =)’ /Q ratil(~A) (as)  Astar)

Lk
SZ A+l —

Taking sum on « from 1 to n + 1 and using (3.72), we get

2
w; Ax g,

k
n> (kg1 — X)) (3.73)
i=1

k+1 n+1
< 5Z(Ak+1 —\)? Z/ Tty (—A) (zats) — Niaus)
; a=1 (9]
k n+1
1 w; AX g,
5 Z (Aky1 — Z V2o - Vu; +
i=1 a=1
It is easy to see that
n+1
zA e}
> ||Vaa - Vui + =5 (3.74)
a=1

n+1
— /Z ( Vg - Vul) —nVz, - Vuluxa—i—nuzl' >

= I+/\Vuz|2
2
n 1/1

A
T +

For any smooth functions f,g on €, we have from the Bochner for-
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mula that
A(Vf-Vg) (3.75)
= 2V2f.V?g+Vf-V(Ag)+Vg-V(AS)
+2(n—1)Vf - Vg,
where

V2f . VZg = Z v2f(637 et)Vzg(eS, et)?

s, t=1
being ey, - - - , e, orthonormal vector fields locally defined on 2. Since
V3¢, = —xol,

we infer from (3.75) by taking f = x, that

A(Vzq - Vg) (3.76)
= —22,Ag+ Vz,-V(Ag)+ (n —2)Vz, - Vg
—22,Ag 4+ Vo - V(A + (n —2))g).

For each ¢ = 0,1,---, thanks to (3.71) and (3.76), there are polyno-
mials B, and C; of degrees less than or equal to ¢ such that

ANzag) = xaBg(A)g + 2V, - V(Cq(A)g). (3.77)
It is obvious that
Bo=1, Bi=t—n, Cy=0, C;=L. (3.78)
It follows from (3.71), (3.76) and (3.77) that

Alzag) = AATH(za9)) (3.79)
= A(@aBg-1(A)g + 2V, - V(Cy-1(A)g))
Ta((A =n)By_1(A) —4AC-1(A))g
+2Vio - V((Bg-1(A) + (A + (n — 2))Cq-1(A))g).

Thus, for any ¢ = 2,---, we have

By(A) = (A — n)By_1(A) — 4AC,_1 (D), (3.80)
Cy(A) = Byr (D) + (A + (n—2)Cpa(A). (381
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Consequently,

By(A) (3.82)
= (2A-2)Bi1(A) = (A+n—2)B;_1(A) —4AC1(A)
= (2A —2)B,_1(A) — (A* +2A —n(n —2))B,—2(A)
+4A[Bq—2(A) +(A+n-— Q)Oq—Q(A) - Cq—l(A)]
= (2A —2)B, 1(A) — (A% +2A —n(n —2))B,2(A), ¢=2,---

Since (3.78) and (3.82) hold, we know that B, = F,, Yg=0,1,---.
It follows from (3.77) and the divergence theorem that

/Qxaui((—A)l(xaui) — NiZal;) (3.83)
= /Qxaui ((—1)l (xaBi(A)u; +2Vzs - V(Ci(A)u;)) — )\imaui)

- /Qﬂcauz‘ ((_1)l (l’a(Al —a AT (—”)l)ui
+2Vz, - V(O (A)uy)) — Mizauy)
/Q(—l)lscaui (:ca(—alflAl_l 4+ 4+ (_n)l)ui + 2Vz, - V(Cl(A)ui))

Summing on «, one has

/Q Tt (=AY (zaus) — Nizots) (3.84)
/ ui(—1) (a1 A - (—n)ag)ug
Q

al—1/Ui(—A)l_lui+"'+a1/Ui(—A)Ui+nl/U?
Q Q

Q

IA

af ATVt el
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Substituting (3.74) and (3.84) into (3.73), we infer

k

ny (kg1 —Ai)?

=1
k
< 52()\k+1 - )\)Q(G?_ 1)\071)/[ 4+ a'll‘)\ll/l + nl)

=1

1 b /1 n?
AL
gz_: Akt1 — ( i +4>-

Taking
k 1, n2 1/2
5= D i (Akr1 — ) ()\-/ + T)
]'C: Akt1 — Ag 2 at )\(-lil)/l 4+ aJr/\l/l + nt ’
=1 1—17% 1
we get (3.70). -

3.4 Eigenvalues of the Buckling Problem

Let Q C R™ and consider the problem

A?u = —\Au,
{ _ou _¢ (3.85)
ulao = 3, |8Q

which is used to describe the critical buckling load of a clamped plate
subjected to a uniform compressive force around its boundary.
Payne, Pélya and Weinberger [77] proved

)\2//\1<3 fOTQCR2.
For Q C R™ this reads
)\2/)\1 < 1+4/TL

Subsequently Hile and Yeh [51] reconsidered this problem obtaining
the improved bound

A < n? 4+ 8n+ 20

NS o rOck
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Ashbaugh [3] proved :

zn: )\i+1 < (’I’L + 4))\1 (386)

i=1

This inequality has been improved to the following form [54]:

- A
Z)\hq + 1 1) < (n+4)A.

Cheng and Yang introduced a new method to construct trial functions
for the problem (3.85) and obtained the following universal inequality
[28]:

k
2
S (e — A2 < A E2)

i=1 7

It has been proved in [88] that for the problem (1.5) if M is a bounded
connected domain in an n-dimensional unit sphere, then the following
inequality holds

Neg1 — (3.87)

k
=1

A1 = Ao)? (3.88)

1

(Mkt1 — )2 (5/\1' +

S s 3 (s 052,

i=1

.
Il

-

Il
-

02 (Ni — (n2)))

K2

| =

_|_

where § is any positive constant.
The inequality (3.87) has been generalized to eigenvalues of buck-
ling problem of arbitrary orders. That is, we have

Theorem 3.5 ([54]). Let | > 2 and let \; be the i-th eigenvalue
of the following eigenvalue problem:

{ (—A)u=—-AAu in Q, (3.80)
ou 8t— 1y 3.89
e T e e e T 7_1 = 0.
U‘{)Q ov |BQ vl 20
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where Q is a bounded domain with smooth boundary in R™. Then for
k=1,---, we have

k
D> kg = Ai)? (3.90)
=1

1/2
20202 + (n— )l +2-n)"? [ & L) /11

& 1/2
x {Z(Ak+1 - /\i)A}/(ll)} .

i=1

Before proving theorem 3.5, let us recall a method of constructing
trial functions developed by Cheng-Yang (Cf. [28], [54]). Let M be an
n-dimensional complete submanifold in an m-dimensional Euclidean
space R". Denote by - the canonical metric on R™ as well as that
induced on M. Let A and V be the Laplacian and the gradient
operator of M, respectively. Let 2 be a bounded connected domain
of M with smooth boundary 02 and let v be the outward unit normal
vector field of 02. For functions f and g on 2, the Dirichlet inner
product (f,g)p of f and g is given by

(f,g)Dz/QVf-Vg-

The Dirichlet norm of a function f is defined by

1610 = (000172 = ( [ |Vf|2)1/2.

Consider the eigenvalue problem

{ (—A)Yu = -NAu in Q, (3.91)
du o= 1y 3.91
= == = ... = — = O
uloo 81/‘6(2 T |,

Let

O< A <A< A3 <ee )
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denote the successive eigenvalues, where each eigenvalue is repeated
according to its multiplicity.
Let u; be the i-th orthonormal eigenfunction of the problem (3.91)

corresponding to the eigenvalue A\;, i = 1,2,--- | that is, u; satisfies
(—A)lui = —)\iAui in Q,
o i _ 6l_1 _
Ui|QQ:Tzag—"'anf Q—O, (392)

(Ui,Uj)D = fQ<Vuz,Vu]> = 6ij7 V Z,j

For k=1,---,1, let V* denote the k-th covariant derivative operator
on M, defined in the usual weak sense via an integration by parts
formula. For a function f on Q, the squared norm of V¥ f is defined
as

n

2 2
VR = ) (Ve en)) s (3.93)
i1, =1
where e, -+ , e, are orthonormal vector fields locally defined on €.
Define the Sobolev space H?(Q2) by
Then H7?(R) is a Hilbert space with respect to the norm || - | 2:

. 1/2
1£lliz = ( /Q (Z ka|2>> . (3.94)
k=0
o0 N O} .

The operator (—A)! defines a self-adjoint operator acting on Hip(Q)
with discrete eigenvalues 0 < Ay < --- < A\ < --- for the buckling
problem (3.91) and the eigenfunctions {u;}$2, defined in (3.92) form
a complete orthonormal basis for the Hilbert space Hf (). If ¢ €
HﬁD(Q) satisfies (¢, u;)p =0, Vj = 1,2,--- , k, then the Rayleigh-
Ritz inequality tells us that

e[ 112 < / o(—A)1o. (3.95)
Q

Consider the subspace Hf,D(Q) of H?(S2) defined by

o) = {1 € B flon = 5

o'ty

=
90 ov
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For vector-valued functions F' = (f1, fo, -, fm), G = (91,92, " s gm) :
Q — R™, we define an inner product (F,G) b

= /ﬂi faZa-

The norm of F' is given by

Il = (F, F)'/” = {/ZF} "

Let H?(Q) be the Hilbert space of vector-valued functions given by

Hi(Q)
{F=(f, " fm): Q=R fo,|Vfa| € L*(Q),a=1,--- ,m}

m 1/2
||| = <||F||2+/92|wa|z> :
a=1

Observe that a vector field on € can be regarded as a vector-valued
function from Q to R™. Let Hi () C H}(Q) be a subspace of
H? () spanned by the vector-valued functions {Vu;}5°;, which form
a complete orthonormal basis of H3 ,(2). For any f € H? (), we
have Vf € H} () and for any X € H ;,(Q2), there exists a function
fe HﬁD(Q) such that X =V f.

with norm

Proof of Theorem 3.5. With notations as above, we consider now
the special case that 2 is a bounded domain in R™. Let us decompose
the vector-valued functions x,Vu; as

where hy; € HQD(Q), Vhai is the projection of z,Vu,; in HE ()
and Wy, L H? (Q). Thus we have

Wailog =0, / Wai-Vu=0, Vue Hp() (3.97)
Q
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and from the discussions in [28] and [88] we know that

div Wy; = 0. (3.98)
For each o = 1,---,n, 7 =1,--- , k, consider the functions ¢q; :
Q — R, given by
k
bai = hai — Z QaijUy, (3.99)
j=1
where
Aaij = / oV - VU = Gagi- (3.100)
Q
We have
p | a¢ai al*1¢ai 0 (3 101)
ailoQ = = = =0, )
w loq OVt aq

(gbm,uj)D = / quﬁw . V’(Lj = O7 VJ = 1, e ,k. (3102)
Q

It follows from the Rayleigh-Ritz inequality that

Net1 / |V i | (3.103)
Q
< /¢ai(_A)l¢aiaa:]-v"';nvi:]-v"'ak'
D

It is easy to see that

k
(—=A) pai = (1! A (.0 + Ta i) + D aaijAjAu;

j=1
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and so

¢m‘(—A)l¢w‘ (3.104)

/ ¢o¢z Al ! (uz ot xozAuz)

k
/ hoéi(—l)lA171 (Ui,a + SUaAui) - Zaaij/ ’u,j(—A)lhoﬂ‘
Q = Q

k
/Ahai(—l)lAl_Q (Ui,a+xaAui)_Zaaij/hai(_A)luj
Q = Q
— /Ahm Al 2 Ui) o + A- Q(zaAuz +Z)\ amj/hm;Auj
Jj=1

_ /(71)1(%& + 20 Au) (A1) 0 + A2 (20 Auy)
Q

—ZA aij / (Vhai, V)

- /(—1)l(um—i—ataAui)((Ql—B)(Al 20) o + T A1)

—Z)x am]/ (Vhai, Vi)
_ / (=1 (21— 3){utg.0 (A 203) o + 2o Auig (A 2u) o)
Q

k
1 2 1 2
—l—ui,axaAl w; + :UaAuiAl u;} — E Aj

Since

AN zqu) = 2(1 — 1)(A720y) o + 2o AT
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we have

/maui(Al_lui)ya = /xauiAZ_lui’a (3.105)
Q

Q
= Al_l(acaui)ui,a
Q

/ (2(l — 1)(Al_2ui)’a + maAl_lui) Ujop
Q
On the other hand, it holds

/ J;aui(Al_lui)@ = —/ Ay (u; + Talia)- (3.106)
Q Q

Combining (3.105) and (3.106), we obtain
/ Tt (A7 ) o (3.107)
Q

= / (l - 1)(Al72ui) ali o — luiAlflui
M T2

Hence

/zauiyaAlflui = — u,;(AliluiJrza(Al*lui),(,) (3.108)
Q

— 5—

{(l — (A7) qui0 + ;uiAl_lui}
1

and consequently, we have

/ xaAui(Al72u1)7a = xaAuiAFQui?a (3.109)
Q

Al72(ZL'OéAUi)ULa

Ui,a (2(1 — 2)(Al72ui)7a —+ xaAlilui)

S~ S~ S — 5 —
—_——

(l — 3)(Al_2ui),aui,a — ;uiAl_lui} .
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Also, one has

/ w2 Auy (3.110)
Q

_/ xi|Vui|2 —2/ TaUili o
Q Q
—/xZ|Vui|2+/u,2,

Q Q

/ 22 Au; A (3.111)

Q
= UiA(l'iAlilui)
Q

/ ui(2Al_1ui + xiAlui + 4xa(Al_1ui),a)
Q

/ ui(ZAl_lui + (—1)l_1>\i$iAUi + 4$Q(Al_1ui),a)~
Q
Combining (3.107), (3.110) and (3.111), we get

/x?yAuiAlflui = 4(1—1)/(Al*2ui),aui,a (3.112)
Q Q

+(—1)l_1)\i{—/xi|Vui|2+/uf}.
Q Q

Substituting (3.109), (3.111) and (3.112) into (3.104), one gets

/ Pai(—A) Gai (3.113)

_ /(_ ) {(—1+ D A Vg + (22 — 41+ 3) (A2;) gt 0}
Q

k
+X; {/ xi\VuiP - / u?} — Z)‘jaiij'
Q Q =

It is easy to see that

||za Vuil|* = [[Vhail |* + [[Wal® (3.114)
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and
k
Vhal? = [IVgaill® + 3" a2 (3.115)
j=1
Combining (3.103), (3.113), (3.114) and (3.115), we infer
(Met1 = 20| Vail 2 (3.116)

< / (—l)l {(—l + 1)uiAl_1ui + (2l2 — 4] + 3)(Al_2ui)7aui7a}
Q

k
il P = 1Waal ) + 3 (A i
j=1

Observe that V(zqu;) = w;Vre + x4 Vu,; € H%’D(Q). For Ay =
V(zau; — hai), we have
uian = Aai — Wai (3117)
and so
il = [ Vaal|[® = [[Wail * + || Aail >
Because of (Vu; o, Wai) = 0, it follows that

2||ui,a||2 = —2/ Aai . V’U,i)a
Q
\L/=1)
< NN AP + 7 [ Vuial?
)\7,
which gives
12 =3
=il Aail* < =207 ui,al 2+ X7 Vsl 2 (3.118)
Introducing (3.118) into (3.116), we get
(Meg1 = 20)|[ Vil ? (3.119)

< / (=D (=1 + D A Ty 4 (202 — 41+ 3) (A7) quia )
Q

_2)\(_172)/(1 1)

+Z ai;,

+ )\(_1*3)/(1*1) | |vuZ aH2
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Since

—2/ Ta VUi - VU, o
Q

Q Q

= 2/ u?a+2/ U A(ToUi o)
Q Q
= 2/ u?7a+2/ uixa(Aui),aJrll/ UiVt - VUi o
Q Q

227,1 — 2/ Aug(u; + 2olli o) — 4/ U odiv(u; Vay)
Q Q

I
[\

S~
I

= 2 u?a+2—2/xaui7aAui—4/u?a
Q Q Q
= —2/ ul, +2+ 2/ Vu; - V(Tali,a)
Q Q
= 2+ 2/ I'QV’U,Z' . Vul-,a,
Q
we have
—2/ o Vu; - Vo = 1. (3.120)
Q
Set
doﬂ‘j = VUL(X . Vuj;
Q

then da;; = —daj; and we get

1 = —2/xaVui~Vui’a (3.121)
Q

—2/ Vheai - Vi
Q

k
—2/ Voai- Vo — 2Zaaz’jdm‘j-
Q "
Jj=1
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Thus, we have

<

(/\k—i-l 2 142 Z am] aij (3122)

K
M1 = M) | =2V i, | Vi — Zd(m‘jvuj
=1

81 = X0)* ||Vl + (/\k+1 A) | Vi ol — Zdw ;

where 0 is any positive constant. Substituting (3.119) into (3.122),

we get

()\k:Jrl ] 2 142 Z aazg aij

< (kg1 — —l+ Du, A

+(202 — 41+3)(Al ;) o Wio}

||V’U/Z QH2+Z azg

-2

-2\ 7T

1
g()‘kJrl )‘) |V’LLZ Ot||2 Zdazj ’
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Summing on i from 1 to k, we infer

k
Z(/\kJrl -2 Z )\kJrl —Aj )aamdazj
i=1 4,j=1
k
< <Z(/\k+1 — )2 </ (—)H{(~1 + DAl Y,
i=1 Q2

—|—(2[2 41 + 3)(A Uz) ally a}

Ui o |2)
k
=) kg = M) = Aj)%aly;

7,j=1

k K
(Z Mot = M) Vial® = Y kg — )‘i)diij) ;
=1

4,5=1

which gives

(Met1 — Ai)?

-

s
Il
ol

IN

k

T w Al
DICWER ([} D! {(~+ Du
+(20% — 4l + 3) (A" %) quia

HmMP+ALWVmaW)

oA
k
Z Akt — )|V, a||2
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Taking sum for o from 1 to n, we get

IN

But

k
NZ(N@H -
i=1
k
6Z(Ak+1 — )\i)Q (/ {n —1+1 ulAl 1
i=1

+(20% — 41+ 3)V(A2w;) - V)

2

- Zl l ' Z [V, a||2>
1 k
g Z Akl — i) Z ||Vui.,a”2
i=1 a=1
k -2 -3 "
83 irr = A2 [ =207 AT Vol ?
i=1 a=l1

+(212+ (n—4)+3—n) / ui(—A)l‘lui)
Q

k n
%Z st =20 D Va2
i=1 a=1

k
_/ E ui,aAuLa
Qoz:l
k
- */ § Ui,a(Aui),a
Qa:l
k
/ E ui,aaAui
Qa:l

/ (AU,’)Q

Q

= / UiA2U,’,
Q

k
Y IVuiall?
a=1
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where u; oo = G;3-. Therefore,

(A1 —
L2 i3
)\k+1 (—2)\;1 + )\;71 / uiAQUZ‘
Q
+(27 + (n—4)l +3 —n) / ui(—A)l_lui)
Q

k
Z (M1 — /UZA Uj.
P Q

i
o

0«.\)—!

Observe that
1=2 1
/ UZ‘(—A)lilui S )\il_l, / uiAzuq; S )\il'_l .
Q Q

Thus we have

k
1 —1
+5 ;(Akﬂ M)A
Taking
Y172
(S i0un -2
) =

we get (3.90).

L2y /27
{(2[2 +(n—4)1+2—-n) Zf:1(>\k+1 — X))\ }

71
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Recently, Cheng-Yang have strengthened the inequality (3.87) to
the following form:

k 4 k
4(n+ 3
§ Aer1 — N)% < % (M1 — Ao A (3.123)
=1 i=1

The inequality (3.90) has been improved by Cheng-Qi-Wang-Xia very
recently in [24]:

M=

(Aer1 — Mi)? (3.124)

14 8 =2
éi()\kJrl — )\i)Q <2l2 + (n — ) I+ - - TL) )\1}71

1 1
g@\kﬂ M)A,

n
1

o
Il

- L0

7

+

N

@
Il
—

where {6i}f=1 is any positive non-increasing monotone sequence.

For eigenvalues of the buckling problem on spherical domains, the
inequality (3.88) has also been improved (Cf. [28])) and generalized
to buckling problem of arbitrary orders (Cf. [54], [24]).



Chapter 4

Pélya Conjecture and
Related Results

4.1 Introduction

Let 2 C R™ be a bounded open set and consider the eigenvalue
problem of the Dirichlet Laplacian on §2:

{ Au+ A u=0in Q,

4.1
ulpg = 0. (1)

In 1960, Pélya [81] showed that for any “plane covering domain” §2
in R? (those that tile R?) the Weyl asymptotic relation (1.) is in fact
a one-sided inequality (his proof also works for R™-covering domains)
and conjectured, for any bounded domain 2 C R", the inequality

2/n 2
A > C(n) <|é> Vk, with C'(n) = % (4.2)

Pélya’s conjecture has been a central problem about eigenvalues and
many important developments have been made during the past years.
In 1982, Li-Yau [72] showed the lower bound

b nkC(n) [ k 2/n
>on = () (43)

i=1

73
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which yields an individual lower bound on A in the form

A > ZCJET;) (@)M. (4.4)

Similar bounds for eigenvalues with Neumann boundary conditions
have been proved in [62], [63] and [65]. It was pointed out in [66]
that (4.3) also follows from an earlier result by Berezin [11] by the
Legendre transformation. The inequality (4.3) has been improved by
Melas:

Theorem 4.1 ([75]). For any bounded domain Q C R™ and any
k > 1, the eigenvalues of the problem (4.1) satisfy the inequality

k

nkC(n k2" Q
Az n+(2) (|Q> +d(n)kl|(9|) (4.5)

i=1

where the constant d,, depends only on the dimension and I(Q) =
minger» [, & — al?dx is the “moment of inertia” of Q.

Proof. Fix a k > 1 and let uy,--- ,ur be an orthonormal set
of eigenfunctions of (4.1) corresponding to the set of eigenvalues
A1, , Ak. We consider the Fourier transform of each eigenfunction

£5(6) = iy(€) = (2m) "2 / uy(@)eiEd. (4.6)

Q

(From Plancherel’s Theorem, we know that fi,--- , fx is an orthonor-
mal set in R™. Bessel’s inequality implies that for every £ € R™

k
. 2 )" eix~§ = ) .
315607 < 2) [ 1e=¢lde = 2m i (47)
and
&
(62 )" ixe™ S |dy = (2m) ™" . .
;ny(f)\ < (2) /Q\ |dz = (2m) " 1(€2) (4.8)

Since uj|pn = 0 it is easy to see that

/ E21£,(6)2de = / Vg2 = A (4.9)
R Q
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Setting

k

F(&) =) IO (4.10)

j=1

then 0 < F(€) < (2m)~"|],

k k
IVFE)| < 2(Zlfj(£)\2)1/2(ZIWJ(&)IQ)”2 (4.11)
< 2021)7"/|QI(Q), V¢ € R™,

/n F(¢)d¢ =k (4.12)

and
k
/ PR =3 . (4.13)
R™ =

Let F*(&) = ¢(|¢]) denote the decreasing radial rearrangement of F'.
By approximating F' we may assume that the function ¢ : [0; +o00) —
[0, (2m)~™|€Y|] is absolutely continuous. Setting p(t) = [{F* > t}| =
[{F > t}| the co-area formula (1.17) implies that

(2m) 7" Q)
u(t) = / / |VF| 'dods. (4.14)
t {F=s}

Observe that F™* is radial and so u(¢(s)) = {F* > ¢(s)}| = wns"
which gives nw,s"~! = u'(¢(s))¢'(s) a.e. It follows from (4.11),
(4.14) and the isoperimetric inequality that

/ |VF| doy (4.15)
{F=¢(s)}

P~ HE = ¢(s)}]
pfl 1

—'(6(s))

AVARNY

nwps"
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and so for almost every s
—p < ¢'(s) <0, (4.16)
where
p=2(2m) "/ 1QII(Q).

From (4.12) and (4.13), we have

b= [ reas = [ P (4.17)
= nwn/ s"Lo(s)ds
0
and
k
S = [ wirF©u (4.18)

v

YRR
= o [ s(s)ds.
nw /0 sV p(s)ds

We need an elementary lemma.

Lemma 4.1([75]) Let n > 1,p, A > 0 and ¢ : [0,+00) — [0, +00)
be decreasing (and absolutely continuous) such that

200, [l - 4 (4.19)
0
Then
> n+1 1 nt2 -2 Aw(o)z

Applying Lemma 4.1 to the function ¢ with A = (nw,) 'k, p =
2(2m)7"/|QI(Q) we get in view of (4.12) and (4.13) that

N —2 a2 2 ck¢(0)?
j=1
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where ¢ is any constant such that 0 < ¢ < %. Observe that 0 <
¢(0) < (2m)~"|Q| and that if R is such that w, R" = ||, then I(Q) >
2

n+
fB(R) |z|2dx = 7”“’;;% and so

_ n _2 n+2
> 202m) " ——=wp QT T 4.22
p 2 20m [t (1.22)

1 n+1
n

> (2m) "wn 710

_1
Let us choose ¢ independent of n satisfying ¢ < (27)%w, ™. It is easy
to see that the function

0 n 7%kn7+zt_g . ckt?
= w,n n t —_—
g n+2 (n+2)p?

is decreasing on (0, (27)~"|Q|]. We can replace ¢(0) by (27)~"|Q] in
(4.21) which gives the inequality (4.5). d

4.2 The Kroger’s Theorem

Let A\, be the k*" eigenvalue for the Neumann boundary value prob-
lem with respect to the Laplace operator on a bounded domain

with piecewise smooth boundary in R™. Pdlys conjecture states that
2

A < C, (ﬁ) ", With respect to this conjecture, Kroger proved the
following result.

Theorem 4.2 ([62]). The first k+1 Neumann eigenvalues of a a
bounded domain Q0 with piecewise smooth boundary in R™ satisfy the
inequality

n+42

T n k
A1 < inf gz (Cnm| ) = )" 25 A
e ’“>2’T(anff|m) Tan 1|9 = (2m)"k

(4.24)

where c,—1 denotes the area of the (n — 1)-unit sphere in R™.

Taking

n(k+1)>1/"
r=2r | ——% ,
<04n—1|9|



78 [CAP. 4: POLYA CONJECTURE AND RELATED RESULTS

one gets

Corollary 4.1. Under the assumptions of the Theorem the fol-
lowing inequality holds for every k:

2

n ]. n+2
Son < e (Saaalal) R (4.25)

j=1

Proof of Theorem 4.2. Let {gbj}?:l be the set of orthonormal
eigenfunctions for the eigenvalues Ay, ..., \x. Fix z € R" and consider
h. : R — C given by h.(y) = e"¥*. Letting a; = [, h. x)dx;
then the projection of h.(y) = e*Y into the bubspace of LQ(Q)
spanned by ¢1, ..., »r can be written as

Be)lopanuys, = i( [ @) w120

k
= > au)

It is clear that the function g.(y) = h.(y) — Zle a;u;(y) is orthog-

onal to uj,j =1,--- , k. Thus we have
V. (y)|*d
Mews < M_ (4.27)
Jo 92dy
Elementary computation sows that
k
[ 1Valay = 1101 = 3 1oy P, (428)
j=1

and

k
/ g2y =19 = 3 Jayl*. (4.29)
Q =
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1/n
Assuming that r > 27 (#’M) ; then

fB (Jo IVg:(y)dy) d=

A 4.30
=T (g 9:()2dy) dz (430
Since
/ ( / |ng<y>2dy) dz (431)
_ / |z|2|Q|dz—/ Z)\ la;?dz
B, B, =
" 2q, 110
= n+21| | Z)\/ |a;|?dz
and
/ ( / (gz<y>>2dy) & (432)
: k
= de—/ a:|?dz
/. w 2l
ra | k
a9 "
" Z/B la;|“dz,
J=17"r
we get

"a, 4]0
- §+21‘ l_z Aj fB |aj|2dz

1|9
: annll = g lfB |la;|?dz

Akt1 < (4.33)

Recall that the Fourier transform i; of u; is given by
i) = @n)E [ ey

and we know from the Plancherel Theorem that [p, [@;]*(z)dz =
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Jgn |uj|?(y)dy. Hence we have

/ / hau;dy
B, |J/Q

2
dz

2
dz

IN

/ / hau;dy
n|JQ

= o [ @R

= 0" [ lut)Pdy
= (2m)".

Let us prove by induction that
n+2 e Q k
R CLOUP DR

Tnann_l\m — (2m)k

Aks1 <

(4.34)

Suppose that (4.34) is true for & — 1, that is

R CL DDy
Ay < — .
ran @ (o )n(k — 1)

n

We then have that

n+42 o1l k
Emnll _omn st N A
B

A < = =
e SHLL a"n’llm — (2m)"k
where
r"2a,,_1]Q|
A= ——"="70 _ (2m)" Y
n+2 =
and
n Q
g MMona|Q (2r)"k.
n

Setting C; = (2m)™ — [ |a|*dz and observing

n _ Q
el gy s o,
n
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we get

A+YF NG
B+Y,,C
A+ A Zle Ci
B+, C
A+ % Zf:l C
B+ .G

A

5
This completes the proof of Theorem 4.2. O

IN

Ak41

IN

IN

4.3 A generalized Pdlya conjecture by
Cheng-Yang

In [31], Cheng-Yang investigated eigenvalues of the Dirichlet Lapla-
cian on a bounded domain in an n-dimensional complete Riemannian
manifold M and proposed a generalized Pélya conjecture.

Cheng-Yang’s Conjecture ([31]). Let Q2 be a bounded domain
in an n-dimensional complete Riemannian manifold M. Then, there
exists a constant ¢(M, ), which only depends on M and Q such that
eigenvalue \;’s of the eigenvalue problem

{ ﬁZQ::_OA_“ in &, (4.35)
satisfy
1< n 472 2
E;)\i—kc(M,Q)zn+2(w”m|)%kﬁ7 k=1,---,  (4.36)
)\H—c(M,Q)zik%, k=1, (4.37)
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Remark 4.1. Cheng-Yang believed that in the above conjecture,
when M is the unit sphere S™(1), ¢(M, ) = -, when M is the hyper-
bolic space H"*(—1),¢(M,Q) = ("Tl and when M is a complete
minimal submanifold in RY,¢(M,) = 0. Cheng-Yang obtained a
partial solution to the above conjecture.

Theorem 4.3 ([31]). Let Q be a bounded domain in an n-dimensional

complete Riemannian manifold M. Then, there exists a constant
H? > 0, which only depends on M and §) such that eigenvalue \.s of
the problem (4.35) satisfy

k n 472
Z 2> kw, k=1,---, (4.38)
P (n+2)(n+4) (wa|Q)»

?r\'—‘

Moreover, when M is the unit sphere S*(1), one can take HZ = n?

1
and when M is a complete minimal submanifold in RN, one can take
HZ =0.

A crucial result in the proof of Theorem 4.3 is the following

Lemma 4.2 ([25]). Let 11 < -+ < pgy1 be any non-negative real
numbers satisfying

4
> (rpr —pi)* < 5 Zm Jk1 — Ji)- (4.39)
Define
1< 1< 2
_ 1 . - 2 =(1+2)G?-T,. (4
Gy ki:ZIM“ T: kizzluz, Fy, ( + 7 Gy — T ( 40)
Then, we have

1\ *
P = C) (S5 i (4.41)
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where t is any positive real number and

1 2 4
Clt k)= 1— % <kf_1) (1+(1§)+(11): )1 )

Proof of Theorem 4.3. From Nashs theorem, we know that M can
be isometricly immersed into a Euclidean space RY, that is, there
exists an isometric immersion:

¢: M — RN, (4.43)

Thus, M can be seen as a complete submanifold isometricly immersed
into RY. We denote by |H| the mean curvature of the immersion ¢.
From (3.16), we have

k k
4 n?
Z _ .2<,§: — )\ + — H]?). (4.44
()\k+1 )\z) = ()\k-l-l )\z)(/\z+ 4 Sgp| | ) ( )

i=1 i=1

Since eigenvalues are invariants of isometries, the above inequality
holds for any isometric immersion from M into a Euclidean space.
Let us define

® = {¢; ¢ is an isometric immersion from M into a Euclidean space}.

Putting
H, = inf H|?:
o= Inf sgp\ I
then
k 4 k n2
D> (kg1 —X)? < - D> kg = A) (i + - ) (4.45)
=1 =1

Letting p; = A\; + ’Z:Hg; then

k

k
4
> (ks — i) < - > wiliksr — i) (4.46)
=1 =1
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From theorem 2.1 with ¢ = n of [25], we have

1\ " 1\ "
Fk+1 S C(n,k) (k;‘;—) Fk S (k—*—) Fk.

Therefore, we infer

Fri Ey,
4 S T4
(k+1)» — kn

For any positive integers [ and k, we have

Frq <Q
(k+Dw ~ kn

From the Weyl’s asymptotic formula (1.10)

. >\l 4’/T2
lim - = ————,
l—oo [ (Wn‘Q );
we get
L 2
.2y Lui=1 M n 4
lim 5 = B
1—00 In n+2(wn|Q|)n
and
l
. )% i1 AF n 167
lim T = T-
1 n (|
Hence
Fk+l _ 2n 1671'4

im = .
=0 (k41w (n+2)(n+4) (w,|Q)n
According to (4.46), we have, for any positive integer k,

Fy. 2n 167*
= > e 4.47
En — (n+2)(n+4) (w,|Q)~ (4.47)
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Since
2 2
Fj, = <1+> G2 -T, < =G2,
n n

we get

26L B, _tom
nkr T kv T (n+2)(n+4) (w,|Q) "

which implies (4.38).

In order to finish the proof of Theorem 4.3, we need only to ob-
serve that S™(1) can be seen as a compact hypersurface in R"*! with
mean curvature 1 and that a complete minimal submanifold in RY
has mean curvature |H| = 0. O

4.4 Another generalized Pélya conjecture

Let Q be a bounded domain in R™ and let L be the elliptic operator
of order 2t defined by

¢
Lu= Z Um—r (—A)"u, u € C™(Q)

m=r+1

where r > 0 is an integer, a,,_,’s are constants with a,,_, > 0, r+1 <
m < t, a;_, = 1, t a fixed positive integer. Consider the following
eigenvalue problem about L which is important in the study of various
branches of mathematics, such as differential equations, differential
geometry and mathematical physics:

Lu=\-A)"u, u € C*(Q),
{ (a/al/)ju‘aQ:()? j:07172a"' 7t_]-~ (448)
Let
0<Ar,r <oy <ooo < App < o0 — 00 (4.49)

be the eigenvalues of the problem (4.48). In [58], the following con-
jecture was proposed :
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Generalized Pdélya Conjecture. The eigenvalues A ,, k =
1,2,---, of the eigenvalue problem (1.7) of the operator L satisfies
the inequality

t—r 2m/n
k
) (4.50)

)\k,r > Z amC™ <
m=1 |Q|

With respect to the above generalized Pélya conjecture, Ku-Ku-
Tang showed in [58] that if r is even, then

t—r 2m/n
NGy, k
> g ml— =1,2,---. 4.51
>\k‘,7'_m:1n+2mc <|Q|> ) k )4y ( 5 )

This section provides comparison theorems between the k-th eigenval-
ues of the problem (4.1) and that of the problem (4.48) which shows
that if the Pélya conjecture (4.2) is true then so is the generalized
Pélya conjecture (4.50).

Theorem 4.3 ([93]). Let M be an n(> 2)-dimensional compact
Riemannian manifold with boundary. Denote by A the Laplacian
operator on M and let L be the elliptic operator given by

t
Lu= Y am(~A)"u, ue C®(M), (4.52)
m=r+1
where r > 0 is an integer, a;y,—,’s are constants with am,—, > 0, 7+
1<m<t, ai—r =1, t a fized positive integer. Consider the follow-
ing eigenvalue problems:

Lu = A-A)"u, u € C™®(M),
{ (a/aV)Ju|dM :Ov j:O7172a"' 7t_17 (453)
(=A) Ty = A(=A)"u,  ue C™®(M), (4.54)
(a/ﬁy)Ju|aM 207 .7 2071723"' T '

—Au A in M
’ 4.55
{ u|aM = 0. ( )
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Denote by
0<Ay SAgp <o — 00 (4.56)
0<A, <Agp<-vr— 00 (4.57)
and
0< A <A< >0 (4.58)

the successive eigenvalues for (4.53), (4.54) and (4.55), respectively.
Here each eigenvalue is repeated according to its multiplicity. Then
for any k=1,2,---, we have

)\k,r > alA;w. + a,QAin ct+ap (T+1)At (r+1) + At r (459)
and

A > Aie (4.60)

Remark 1.1. If M is a bounded domain in R™, we know from
the inequality

A = a1, + ag)\ﬁ + -+ at,(rﬂ)/\ﬁ;(rﬂ) + )\Z_" (4.61)

which is a combination of (4.59) and (4.60) that if the Pélya conjec-
ture (4.2) is true then so is the generalized Pélya conjecture (4.50).

Proof of Theorem 4.3. Let {u;}¥_, be a set of orthonormal eigen-
functions of the problem (4.53) correspondlng to {\ir 1o, that is,

Lu; = Xi (—A)"u;, in M,
t—1,
ui‘BM:"’: %Vt—’uil :0’
OM
fMUi(_A)Tuj = 5ij7 Zaj = ]-7 7k'

Similarly, let {v;}¥_; be a set of orthonormal eigenfunctions of the
problem (4.54) corresponding to {A; . }¥_,, that is,

(_A)r+1vi = Ai7T(—A)TUZ‘ il’l M,

9"v; _
Vilop = = 8;; 6M,()

fMUi(fA)rUj :6ij7 7’7] = 17 ak'
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Let w = Z?zl aju; # 0 be such that
/ w(=A)v; =0, Vj=1,-- k-1 (4.62)
M

Such an element w exists because {c;|1 < j < k} is a non-trivial
solution of a system of (k — 1)-linear equations

k
Zaj/ uj(=A)v; =0, 1<i<k-—1, (4.63)
j=1 M
in k unknowns. Notice that if u € C°° (M) satisfies
=
oM = By o ot
then
ulone = Vulgy = Aulyy = V(Au) gy = =
Ap71u|0M = V(A”flu)bM =0, when ¢t=2p
and
ulopr = Vulgy = Aulgy, = V(AU gy = = Ak_1u|aM
= V(Ap_lu)|aM: APylg,, =0, when t=2p+ 1.

Observe that fM w(—A)"w # 0. In fact, from divergence theorem,
we have

/w(—A)Tu}: fM_(lA;/Qw);, 'ifT i.S even,
M fM|V(A(T M w)’ , if 7 is odd.

Thus, if fM w(—A)"w = 0, then A"/?w = 0 when r is even and
AC=1/2y = 0 when r is odd. It then follows from the maximum
principle for harmonic functions that A™/2~1w = 0 when 7 is even and
A=1/2=1yy — 0 when r is odd. Continuing this process, we conclude
that w = 0. This is a contradiction. Thus [,, w(—A)"w # 0. Let us
assume without loss of generality that

/ w(—A)w = 1. (4.64)
M
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Hence we infer from the Rayleigh-Ritz inequality that
A < / w(—=A)"w (4.65)
M

We claim that for any j =1,--- ;t —r,

(/M7“0(—A)T+jw>j+1 < (/Mw(_A)r-ﬁ-j-&-lw)j. (4.66)

Let us first prove that (4.66) holds when j = 1. In fact, if r = 2h is
even, then one deduces from the divergence theorem and the Holder’s
inequality that

)

/M<—A>hw<—A>h+1w)2

[ arer) ([ arop)

w(—A)" 2w,

I I
i\’/\/—\ R
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On the other hand, if r = 2h + 1 is odd, then

(fsr7)

- (/ I((—A)h“w)(—A)((—A)hw))2
2

[ v artovi-an)

[ waree) ([ vi-arop)
[ carueayte) ([ caytu-ayo)
freare) ([ wesre)

_ /M w(—A)2y,

Thus (4.66) holds when j = 1. Suppose now that (4.66) holds for
j — 1, that is

w(=A)" 1y ' < w(—A)"w H. (4.67)
M M

When r + j is even, we have

/ w(—A)"w (4.68)

/ AT+D/2=1 A (A(r+j)/2w>

M

_ /M v (A(H—j)/Q—lui) v (A(r-&-j)/?ui)

(Ll ()" ([ (')
M M

(/ w(—A)7"+j—1u;)1/2 (/ w(—A)’“+j+1w>1/2,
M M

2

IN
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On the other hand, when r + 7 is odd,
/ w(—AY+y (4.69)
M

_ / (—AY =12y A YTi+1) /2,
M

</M <(_A)(T+j_1)/2w>2)l/2 (/M ((—A)(Tﬂ‘ﬂ)/? W>2)1/2
(/Mw(_A)T+j1w)1/2 (/M w(—A)T+j+1w>l/2_

Thus we always have

/Mw(—A)”jw (4.70)

< (fearn) ([ uarsn)”

Combining (4.67) and (4.70), we know that (4.66) is true for j. Using
(4.67) repeatedly, we get

/Qw(—A)er < (/M w(—A)“rSw) 1/3, s=1,-+,t—(r+1).

which, combining with (4.65), gives

IN

Ai:,r S/ w(_A)T+S’w7 821,27... ;t_(T+1)
M

Thus we have
a1l + a2}, + -+ at—(r+1)AZr(r+1) n AZ}T

/ w(ar(=A) + ag(=A)2 4 4 (A Yw
M
k
= wlw = 77”]‘/ w; L
Jy o= 32 s
k
> iy |

i,j=1 M

IN

k
Ui)\j7r(_A)TUj = ZT]ZZ)\Z"T S Ak77n7
i=1
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where in the last equality, we have used the fact that

in? = /w(—A)’“w =1

This proves (4.59).

In order to prove (4.60), let us take a set of orthonormal eigen-
functions {z; }¥_, of the problem (4.55) corresponding to {\;}¥_,, that
is,

AZZ' = _)\izi in M,
Zi|8M = 07 (471)
fMZiZj:(Sija i,jzl,”-,k‘.

Let £ = Zle Bjv; be such that
€ =1 and /5zj=o, Vi=1,---,k—1. (4.72)
M M
It follows from the Rayleigh-Ritz inequality that
w< [ e-ag (4.73)
M
Using the same arguments as in the proof of (4.59), we have

</M§(A)j> (/ ¢(= Hl&) j=1, . (4.74)

Thus we have

Ak§< (- ) Zﬂ2 (4.75)

On the other hand, taking j = r in (4.73), we get

(Lasrd < (fasrg.  w
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which implies that

k
> 5
Jj=1

IN

e-ayie) (4.77)
/,

_ / Z BiByvi(—A) o

1,7=1

3]
it

_r_
r+1

= / Z BiBjvilkjr(=A)"v;

7,7=1

k
= | DN
j=1

_r_
r+1

IA

. k
=53 2
AT D
=1
Thus we have

k
D B < A, (4.78)
j=1

Combining (4.75) and (4.78), one gets (4.60). O



Chapter 5

The Steklov eigenvalue
problems

5.1 Introduction

Let M be an n-dimensional compact Riemannian manifold with bound-
ary. The Stekloff problem is to find a solution of the equation

Au=0in M,
{ g—;‘ = pu on M, (5-1)

where p is a real number. This problem was first introduced by
Steklov for bounded domains in the plane in [87]. His motivation
came from physics. The function u represents the steady state tem-
perature on M such that the flux on the boundary is proportional
to the temperature. Problem (5.1) is also important in conductivity
and harmonic analysis as it was initially studied by Calderén (Cf.
[15]). This connection arises because the set of eigenvalues for the
Steklov problem is the same as the set of eigenvalues of the well-
known Dirichlet-Neumann map. This map associates to each func-
tion u defined on the boundary OM, the normal derivative of the
harmonic function on M with boundary data u. The Steklov eigen-
value problem has appeared in quite a few physical fields, such as
fluid mechanics, electromagnetism, elasticity, etc., and received in-

94
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creasing attention [53], [64]. It has applications, for instance, in the
investigation of surface waves [12], the analysis of stability of me-
chanical oscillators immersed in a viscous fluid [32], and the study of
the vibration modes of a structure in contact with an incompressible
fluid [13]. Numerical methods have been developed for this prob-
lem. For instance, its optimal error estimates of linear finite element
approximations have been obtained in [2]. Interesting estimates for
eigenvalues of the Steklov problem have been obtained some of which
will be introduced in this chapter.

5.2 Estimates for the Steklov eigenvalues

In this section, we prove some estimates for the Steklov eigenvalues.
Let us recall firstly the Reilly’s formula. Let M be n-dimensional
compact manifold M with boundary OM. We denote by (,) the
Riemannian metric on M as well as that induced on M. Let V and
A be the connection and the Laplacian on M, respectively. Let v
be the unit outward normal vector of M. The shape operator of
OM is given by S(X) = Vxv and the second fundamental form of
OM 1is defined as II(X,Y) = (S(X),Y), here X, Y € TOM. The
eigenvalues of S are called the principal curvatures of 9M and the
mean curvature H of OM is given by H = ﬁtr S, here tr S denotes
the trace of S. For a smooth function f defined on an n-dimensional
compact manifold M with boundary dM, the following identity holds

ifu= %‘ N flaar and Ric denotes the Ricci tencor of M, then

(see [82], p. 46):
[ (@an? = 19247 = Rie(v5.9) (52)
= / (((n—=1)Hu+2Az)u+I11(Vz,Vz)).
oM

Here V2f is the Hessian of f; A and V represent the Laplacian
and the gradient on OM with respect to the induced metric on M,
respectively.

Theorem 5.1 ([35]). Let M be an n-dimensional compact con-
nected Riemannian manifold with non-negative Ricci curvature and
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boundary. Assume that the principal curvatures of OM are bounded
from below by a positive constant c. Then the first non-zero eigen-
value of the problem (5.1) satisfies py > 5.

Proof. Let f be the first eigenfunction of the Steklov problem
(5.1). Setting z = flonp,u = % o and using Reilly’s formula we
find after integration by parts that

O>—/ |V2f|22—2/ ?z&ﬁu—i—c/ V2|2
M oM oM

0> —2p1/ V2|2 +c/ V2|2 (5.3)
oM oM

Since z # constant, otherwise f=constant on M which is a contra-
diction, we have

/BM |Vz|? > 0. (5.4)

Thus (5.3) implies that p; > ¢/2.

In view of Theorem 5.1, Escobar conjectured that under the same
conditions as in Theorem 5.1, p; > c.

Theorem 5.2. Let the conditions be as in Theorem 5.1. Then
we have
i) The non-zero eigenvalue of the Laplacian of OM satisfies

A > (n—1)c (5.5)
with equality holding if and only if M is isometric to a ball of radius

1/c in R™([102)).
it) The non-zero eigenvalue of the Steklov problem (5.1) satisfies

p< O (Vi VR - 18 (5.6)

Moreover, the equality holds in (5.6) if and only if M is isometric to
a ball of radius 1/c in R™ ([89]).
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Proof. Let z be an eigenfunction corresponding to the first nonzero
eigenvalue Ay of the Laplacian of OM:

ZZ + )\12’ =0.
Let f in C*°(M) be the solution of the Dirichlet problem

{ Af=0in M,

flom = 2. (5.7)

It then follows from (5.2) and the nonnegativity of the Ricci curvature
of M that
0 > ~ [V~ Ric(V/, V) (5.8)

(n—1)Hh+2Az)h + 11(Vz,Vz))

I
\\

BM

—Mi2)u+ (n— Deu? 4+ c|Vz|?)

v
S—

8M

(2A12u 4 (n — 1)cu? + e 2%)

Y
S—

oM

L. {“ “be(us <nA1Z1>c)2 () }
2
Ll 625) )

Thus we have

Y%

v

C)\l —
or
A > (n—1)c?

If M is isometric to an n-dimensional Euclidean ball of radius %, it is
well known that A\; (M) = (n — 1)c?. Now we assume conversely that
A (M) = (n —1)c. In this case the inequalities in (5.8) must take
equality sign. In particular, we have

/\12

2p _ _ _ - _
Vif=0, H=c¢c, u= = 1) cz. (5.9)



98 [CAP. 5: THE STEKLOV EIGENVALUE PROBLEMS

From V2f = 0, we know that |V f|? is a constant and is not zero
since f is not a constant. Without loss of generality, we can assume
|V f|?> = 1. Thus for any point p € M, we have

L= [VF12(p) = V22 (p) + u?(p)- (5.10)

It follows from (5.10) by integration and v = —cz, that

A@OM) = /8M(|v,z\2+u2) (5.11)

oM

= /BM(nUQ).

AU =V + Af =1 (512

On the other hand, from

and the divergence theorem we have

which, combining with (5.11), gives

1 A(OM)
TR VM)

(5.13)

It then follows from a result in [83] that M is isometric to a ball in
R™. Since A\1(OM) = (n — 1)c?, the radius of M is easily seen to be
1. This proves item i) of Theorem 5.1.

Now let us prove (5.6). Let f and z be as in the proof of item i).
We have from the Rayleigh-Ritz inequality that (Cf. [59])

faM h2
p1 < W (5.14)
and
2
p1 < M (5.15)

' faMZ2 7
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which gives

Jou hz.
faM 2?

It then follows by substituting f into the Reilly’s formula that

2
p1 <

(5.16)

0 > / ((Af)? = |V2f]* = Ric(Vf, V) (5.17)
M

> (n-— 1)c/ h? — 2)\1/ hz + c/ V2|2
oM oM oM

= (n—1)c h* — 2\ hz + c)\l/ 22
oM oM oM

> (n—1)c h2 — 2\ (/ h2) (/ z2> —|—c)\1/ 22,
oM oM oM oM

Hence, we have

</8M hz)% = (nﬁ)c (\/7lJr A= (n— 1)02) (/SM zz)é.

Hence

VA
(n—1)c

p1 <

(\/EJF M= (n— 1)c2).

Assume now that

Plz(\/fi)c(\/):-l- Al—(n—l)c2).

n

Then the inequalities in (5.17) should take equality sign. We infer
therefore

V2f=0, H=c (5.18)

and

h= (n_\/%c (\/E+ M (n— 1)c2) 2. (5.19)
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Take a local orthonormal fields {e;}!"}' tangent to M. We infer
from (5.18) and (5.19) that

n—1
0 = Y Vf(ei,e;) = Az + (n— 1)Hh (5.20)
1=1

= —Mz+(n—-1ec- @ (\/E—F AL —(n— 1)82>Z
(n—1)c
which gives A\; = (n—1)c? and so M is isometric to an n-dimensional
Euclidean ball of radius % O
We consider now a fourth order Steklov eigenvalue problem on
an n-dimensional compact connected Riemannian manifold (M, (,))
given by

A*u=0 in M, (5.21)
u:Aufq@:O on OM,
ov

wher ¢ is a real number. Let g; be the first non-zero eigenvalue of the
problem (5.21). As pointed by Kuttler [63], g1 is the sharp constant
for a priori estimates for the Laplace equation

Av=0 in M, wv=g on OM, (5.22)

where g € L2(OM).

It has been proven by Payne that if Q C R? is a bounded con-
vex domain with smooth boundary then ¢;(€2) > 2py with equality
holding if and only if 2 is a disk, where pg is the minimum geodesic
curvature of 9. This Payne’s theorem has been extended to higher
dimensional Euclidean domains by Ferrero, Gazzola and Weth [38].

Theorem 5.3 ([91]). Let (M, {,)) be an n(> 2)-dimensional com-
pact connected Riemannian manifold with boundary OM and non-
negative Ricci curvature. Assume that the mean curvature of M is
bounded below by a positive constant c. Let q1 be the first eigenvalue
of the following Stekloff eigenvalue problem :

A’y =0 in M, (5.23)

uzAu—q%zO on OM.
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Then q1 > nc with equality holding if and only if M is isometric to a
ball of radius % in R™.

Proof. Let w be an eigenfunction corresponding to the first eigen-
value ¢y of the problem (5.23), that is

A?w=0 in M, (5.24)

w:Aw—qla—sz on OM.
v

Set n = g—f oy then

_ IM(A“’)Q
¢ =
faM”

Substituting w into Reilly’s formula, we have

(5.25)

/M {(Aw)? = |V2w|*} (5.26)

/ Ric(Vw, Vw) —|—/ (n —1)Hn?
M oM

> n=nef o

The Schwarz inequality implies that

1
VZ2w|? > E(Aw)z (5.27)

with equality holding if and only if V2w = Aﬂ—‘”(, ). Combining (5.25)-
(5.27), we have ¢; > nc. This completes the proof of the first part of
Theorem 1.2. Assume now that g; = nc. In this case, the inequalities
(5.26) and (5.27) must take equality sign. In particular, we have

_Aw

n

V2w (). (5.28)
Take an orthornormal frame {e1,--- ,e,_1,e,} on M such that when
restricted to OM, e, = v. From 0 = V2w(e;, e,), i = 1,--- ,n — 1,
and w|sp = 0, we conclude that 7 = p = const. and so Aw|gy =
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q1m = ncp is also a constant. Since (5.26) takes equality sign and 7
is constant, we infer that H = ¢. Also, we conclude from the fact
that Aw is a harmonic function on M and the maximum principle
that Aw is constant on M. Suppose without loss of generality that
Aw =1 and so we have

Viw = %<,>. (5.29)

It then follows by deriving (5.29) covariantly that V3w = 0 and from
the Ricci identity,

R(X,Y)Vw =0, (5.30)

for any X,Y tangent vector to M, where R is the curvature tensor
of M. From the maximum principle w attains its minimum at some
point x in the interior of M. From (5.29) it follows that

1 0
=—r— 5.31
Vw nrﬁr7 ( )
where r is the distance function to zy. Using (5.30), (5.31), Cartan’s
theorem and w|spsr = 0, we conclude that M is an Euclidean ball

whose center is g, and f is given by

1

= ~ (o — a0f* 1)

w(z)

in M, b being the radius of the ball. Since the mean curvature of M
is ¢, the radius of the ball is % O

For more recent developments about Steklov eigenvalues, we refer
to [37, 74, 95] and the references therein.
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