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Preface

In this book we present the elements of a general theory for flows on
three-dimensional compact boundaryless manifolds, encompassing flows
with equilibria accumulated by regular orbits.

The main motivation for the development of this theory was the Lorenz
equations whose numerical solution suggested the existence of a robust
chaotic attractor with a singularity coexisting with regular orbits accumu-
lating on it.

More than three decades passed before the existence of the Lorenz at-
tractor was rigorously established by Warwick Tucker in theyear 2000.

The difficulty in treating this kind of systems is both conceptual and
numerical. On the one hand, the presence of the singularity accumulated
by regular orbits prevents this invariant set to be uniformly hyperbolic. On
the other hand, solutions slow down as they pass near the saddle equilibria
and so numerical integration errors accumulate without bound.

Trying to address this problem, a successful approach was developed
by Afraimovich-Bykov-Shil’nikov and Guckenheimer-Williams indepen-
dently, leading to the construction of a geometrical model displaying the
main features of the behavior of the solutions of the Lorenz system of equa-
tions.

In the 1990’s a breakthrough was obtained by Carlos Morales,Enrique
Pujals and Maria José Pacifico following very original ideas developed
by Ricardo Mãné during the proof of theC1-stability conjecture, provid-
ing a characterization of robustly transitive attractors for three-dimensional
flows, of which the Lorenz attractor is an example.

This characterization placed this class of attractors within the realm of
a weak form of hyperbolicity: they are partially hyperbolicinvariant sets
with volume expanding central direction. Moreover robustly transitive at-
tractors without singularities were proved to be uniformlyhyperbolic. Thus
these results extend the classical uniformly hyperbolic theory for flows with
isolated singularities.

Once this was established it is natural to try and understandthe dynam-
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ical consequences of partial hyperbolicity with central volume expansion.
It is well known that uniform hyperbolicity has very preciseimplications
on the dynamics, geometry and statistics of the invariant set. It is impor-
tant to ascertain which properties are implied by this new weak form of
hyperbolicity, known today assingular-hyperbolicity.

Significant advances at the topological and ergodic level where recently
obtained through the work of many authors which deserve a systematic
presentation.

This is the main motivation for writing these notes. We hope to pro-
vide a global perspective of this theory and make it easier for the reader to
approach the growing literature on this subject.

Acknowledgments:we thank our co-authors Carlos Morales and En-
rique Pujals who made definitive contributions and helped build the theory
of singular-hyperbolicity. We also thank Ivan Aguilar for providing the fig-
ures of his MSc. thesis at UFRJ, and Serafin Bautista and Alfonso Artigue
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text.
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Systems (Brazil) and CMUP-FCT, POCI/MAT/61237/2004 (Portugal). Fi-
nally we thank the scientific committee of the XXVI BrazilianMathemati-
cal Colloquium for selecting our proposal for this text.
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Chapter 1

Introduction

We start with an overview of the main results of uniformly hyperbolic dy-
namical systems to be used throughout the rest of the text, both from the ge-
ometrical viewpoint and the measure-theoretical or ergodic point-of-view.
We also mention some by-now standard generic properties of flows in the
C1 topology, as the Kupka-Smale vector fields (which are in factCr generic
for everyr ≥1), Pugh’s Closing Lemma and Hayashi’s Connecting Lemma.
We restrict ourselves to the results which will be actually used in the course
of the proofs of the main results of the text.

Then in Chapter 2 we describe the construction of the most simple
non-trivial examples of singular-hyperbolic sets: the singular-horseshoe
of Labarca-Pacifico, and the geometric Lorenz attractor of Afraimovich-
Bykov-Shil’nikov and Guckenheimer-Williams.

Next in Chapter 3 we characterize robustly transitive sets with singu-
larities as partially hyperbolic attractors with volume expanding central di-
rection, either for the original flow, or for the time reversed flow. This
naturally leads to the notion ofsingular-hyperbolic set: a compact partially
hyperbolic invariant subset with volume expanding centraldirection.

We construct in Chapter 4 a physical measure for singular-hyperbolic
attractors, i.e. for transitive attracting singular-hyperbolic sets.

We finish in Chapter 5 with a description of the Omega-limit set for
C1-generic flows: either the limit set contains an infinite collection of sinks
or sources; or is a finite union of basic pieces, either uniformly hyperbolic
transitive isolated sets, or singular-hyperbolic attractors or repellers.

1
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2 CHAPTER 1. INTRODUCTION

In an attempt to provide a broader view of the dynamics of flowson
three-dimensional manifolds, we close the text briefly mentioning in Chap-
ter 6 many other related results: thecontracting Lorenz-attractorintro-
duced by Rovella, singular cycles exhibiting singular-hyperbolic and/or
contracting Lorenz attractors in its unfolding, other attractor resembling the
Lorenz attractor, decay of correlations for flows and globalgeneric results
for conservative flows on three-dimensional manifolds.

1.1 Notation, motivation and preliminary defi-
nitions

In this book we will consider a compact finite dimensional boundaryless
manifold M of dimensions 1 to 3 and study the dynamics of the flow as-
sociated to a given smooth vector fieldX on M from the topological and
measure-theoretic or ergodic point-of-view.

We fix onM some Riemannian metric which induces a distance dist on
M and naturally defines an associated Riemannian volume form Leb which
we call Lebesgue measureor simply volume, and always take Leb to be
normalized: Leb(M) = 1.

We always assume that aCr vector fieldX on M is given,r ≥ 1, and
consider the associated globalflow(Xt)t∈R ( sinceX is defined on the whole
of M, which is compact,X is bounded andXt is defined for everyt ∈ R.)
Recall that the flow(Xt)t∈R is a family ofCr diffeomorphisms satisfying
the following properties:

1. X0 = Id : M → M is the identity map ofM;

2. Xt+s = Xt ◦Xs for all t,s∈ R,

and it isgenerated by the vector field Xif

(3) d
dt X

t(q)
∣∣
t=t0

= X
(
Xt0(q)

)
for all q∈ M andt0 ∈ R.

Note that reciprocally a given flow(Xt)t∈R determines a unique vector
field X whose associated flow is precisely(Xt)t∈R.

In what follows we denote byXr(M) the vector space of allCr vector
fields onM endowed with theCr topology and byF r(M) the space of
all flows onM also with theCr topology. Many times we usually denote
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1.1. NOTATION AND MOTIVATION 3

the flow(Xt)t∈R by simplyX. For details on these topologies the reader is
advised to consult standard references on Differential Equations [77] and/or
Dynamical Systems [143].

Given X ∈ Xr(M) andq ∈ M, an orbit segment{Xt(q);a ≤ t ≤ b} is
denoted byX[a,b](q). We denote byDXt the derivative of Xt with respect
to the ambient variable q and when convenient we set DqXt = DXt(q).
Analogously,DX is the derivative of the vector field Xwith respect to the
ambient variableq, and when convenient we writeDqX for the derivative
DX atq, DY(q).

An equilibriumor singularityfor X is a pointσ∈M such thatXt(σ) = σ
for all t ∈ R, i.e. a fixed point of all the flow maps, which corresponds to
a zero of the associated vector fieldX: X(σ) = 0. We denote byS(X) the
set of singularities (zeroes) of the vector fieldX. Every pointp∈ M \S(X),
that isp satisfiesX(p) 6= 0, is aregular point forX.

An orbit of X is a setO (q) = OX(q) = {Xt(q) : t ∈ R} for someq∈ M.
Henceσ ∈ M is a singularity ofX if, and only if,OX(σ) = {σ}. A periodic
orbit of X is an orbitO = OX(p) such thatXT(p) = p for some minimal
T > 0 (equivalentlyOX(p) is compact andOX(p) 6= {p}). We denote by
Per(X) the set of all periodic orbits ofX.

A critical elementof a given vector fieldX is either a singularity or a
periodic orbit. The setC(X) = S(X)∪Per(X) is the set ofcritical elements
of X.

We say thatp∈ M is non-wanderingfor X if for everyT > 0 and every
neighborhoodU of p there ist > T such thatXt(U)∩U 6= /0. The set of
non-wandering points ofX is denoted byΩ(X). If q∈ M, we defineωX(q)
as the set of accumulation points of the positive orbit{Xt(q) : t ≥ 0} of q.
We also defineαX(q) = ω−X, where−X is the time reversed vector field
X, corresponding to the set of accumulation points of the negative orbit of
q. It is immediate thatωX(q)∪αX(q) ⊂ Ω(X) for everyq∈ M.

A subsetΛ of M is invariant for X (or X-invariant) ifXt(Λ) = Λ, ∀t ∈R.
We note thatωX(q), αX(q) andΩ(X) areX-invariant. For every compact
invariant setΛ of X we define thestable setof Λ

Ws
X(Λ) = {q∈ M : ωX(q) ⊂ Λ},

and also itsunstable set

Wu
X(Λ) = {q∈ M : αX(q) ⊂ Λ}.
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4 CHAPTER 1. INTRODUCTION

A compact invariant setΛ is transitive if Λ = ωX(q) for someq ∈ Λ,
andattracting if Λ = ∩t≥0Xt(U) for some neighborhoodU of Λ satisfying
Xt(U) ⊂ U , ∀t > 0. An attractor of X is a transitive attracting set ofX
and arepeller is an attractor for−X. We say thatΛ is aproperattractor or
repeller if /0 6= Λ 6= M.

Thelimit set L(X) is the closure of∪x∈MαX(x)∪ωX(x). ClearlyL(X)⊂
Ω(X). Using these notions we have the following simple and basic

Lemma 1.1. For any flow X the limit set L(X) can neither be a proper
attractor nor a proper repeller.

Proof. SupposeL(X) is a proper attractor with isolating open neighbor-
hoodU (andU 6= M). Letz∈U . Thenα(z)∈ L(X)⊂U and soX−tn(z)∈U
for a sequencetn →+∞, that isz∈Xtn(U) for all n. But sinceXtn−t(U)⊂U
for 0 < t < tn by definition ofU , we have thatz∈ Xtn(U) ⊂ Xt(U) (recall
that eachXt is an invertible map) for all 0< t < tn, and soz∈ Xt(U) for all
t > 0. We conclude thatz∈ L(X). ThusL(X) ⊃U andL(X) is simultane-
ously open and closed, hence it cannot be a proper subset of the connected
manifoldM. The proper repeller case is similar.

A sink of X is a singularity ofX which is also an attractor ofX, it
is a trivial attractor ofX. A sourceof X is a trivial repeller ofX, i.e. a
singularity which is a attractor for−X.

A singularityσ is hyperbolicif the eigenvalues ofDX(σ), the derivative
of the vector field atσ, have a real part different from zero. In particular
sinks and sources are hyperbolic singularities, where all the eigenvalues of
the former have negative real part and those of the latter have positive real
part.

A periodic orbitOX(p) of X is hyperbolicif the eigenvalues ofDXT(p) :
TpM → TpM, the derivative of the diffeomorphismXT , whereT > 0 is the
period of p, are all different from 1. In Section 1.2 we will define hyper-
bolicity in a geometric way.

When a critical element is hyperbolic, then its stable and unstable sets
have the structure of an embedded manifold (a consequence ofthe Stable
Manifold Theorem, see Section 1.2), and are calledstableand unstable
manifolds.

Given two vector fieldsX,Y ∈ Xr(M), r ≥ 1 we say thatX andY are
topologically equivalentif there exists a homeomorphismh : M →M taking
orbits to orbits and preserving the time orientation, that is
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• h
(
OX(p)

)
= OY

(
h(p)

)
for all p∈ M, and

• for all p∈ M andε > 0 there existsδ > 0 such that fort ∈ (0,δ) there
is s∈ (0,ε) satisfyingh

(
Xt(p)

)
= Ys

(
h(p)

)
.

The maph is then said atopological equivalencebetweenX andY. This is
an equivalence relation inXr(M).

We say thatX,Y ∈ Xr(M) areconjugateif there exists a topological
equivalenceh betweenX andY which preserves the time, i.e.Xt

(
h(p)

)
=

h
(
Yt(p)

)
for all p∈ M andt ∈ R. This is also an equivalence relation on

Xr(M).
The qualitative behavior of two topologically equivalent vector fields

are the same, as the following result shows.

Proposition 1.2. Let h be a topological equivalence between X,Y∈Xr(M).
Then

1. p∈ S(X) if, and only if, h(p) ∈ S(Y);

2. OX(p) is closed if, and only if,OY
(
h(p)

)
is closed;

3. h
(
ωX(p)

)
= ωY

(
h(p)

)
and h

(
αX(p)

)
= αY

(
h(p)

)
.

We say that a vector fieldX ∈ Xr(M), r ≥ 1 is Cs-structurally stable,
s≤ r, if there exists a neighborhoodV of X in Xs(M) such that every
Y ∈ V is topologically equivalent toX.

Roughly speaking, a vector field is structurally stable if its qualitative
features are robust under small perturbations.

1.1.1 One-dimensional flows

The only connected one-dimensional compact boundaryless manifoldM is
the circleS

1, which we represent byR/Z or by the unit intervalI = [0,1]
with its endpoints identified 0∼ 1.

Let X0 be one of the two unit vector fields onS1, i.e. eitherX0 ≡ 1
or X0 ≡ −1. Then everyX ∈ Xr(S1) can be written in a unique way as
X(p) = f (p) ·X0(p) for p∈ S1, where f : S

1 → R is aCr -function.
It is well known (see for example [99, 136]) that given any compact set

K ⊂ S
1 andr ≥ 1 there existsf : S

1 → R of classCr with f−1({0}) = K.
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6 CHAPTER 1. INTRODUCTION

ThusK is the set of singularities ofX = f ·X0. Since topological equiv-
alence preserves singularities, we see that there exist as many topologi-
cal equivalence classes of vector fields inS

1 as there are homeomorphism
classes of compact subsets ofS

1. Hencethe problem of classifying smooth
vector fields onS1 up to topological equivalence is hopeless, and we need
to restrict our attention to a subset ofXr(M) which is open and dense, or
residual or, at least, dense.

Here by aresidualsubset of the spaceXr(M) we mean a setR which
contains a countable intersection of open and dense subsetsof Xr(M): R ⊃
∩n≥1R n where eachR n is an open and dense subset ofXr(M).

We say thata generic vector field inXr(M) satisfies a property (P)if
there is a residual subsetR of Xr(M) such that (P) holds for everyX ∈ R .

A singularityσ ∈ S(X) is non-degenerateif DX(σ) 6= 0 or D f (σ) 6= 0
whereX = f ·X0. It can be a sink (D f (σ) < 0) or a source (D f (σ) > 0)
and in either case a non-degenerate singularity isisolated: there exists a
neighborhoodU of σ in M such thatσ is the only zero off |U .

Let G ⊂ Xr(S1) be the subset consisting of vector fields whose sin-
gularities are all non-degenerate. Since these are isolated there are only
finitely many of them. It is not difficult to show thatG is open and dense,
that the number of singularities in even and thatX,Y ∈ G are topologically
conjugate if, and only if, the number of singularities is thesame (see e.g.
[143, 194]). Moreover the elements ofG are precisely the structurally sta-
ble vector fields ofS1, that isgenerically a smooth vector field on the circle
is structurally stable.

1.1.2 Two-dimensional flows

Surfaces have a simple enough topology (albeit much more complex that
the topology of the circle) to enable one to characterize thenon-wandering
set of the flow of a vector field. The most representative result in this re-
spect is the Poincaré-Bendixson’s Theorem on planar flows or flows on the
two-dimensional sphere (essentially the result depends onthe Jordan Curve
Theorem: any closed simple curve splits the manifold in two connected
components, see e.g. [136, 118, 66]).

Theorem 1.3(Poincaŕe-Bendixson). Let X ∈ Xr(S2), r ≥ 1 be a smooth
vector field with a finite number of singularities. Let p∈ S

2 be given. Then
the omega-limit setωX(p) satisfies one of the following:
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1.1. NOTATION AND MOTIVATION 7

1. ωX(p) is a singularity;

2. ωX(p) is a periodic orbit;

3. ωX(p) consists of singularitiesσ1, . . . ,σn and regular orbitsγ∈ωX(p)
such thatαX(γ) = σi andωX(γ) = σ j for some i, j = 1, . . . ,n.

The proof of this basic result may be found e.g. in [77, 143]. This
answers essentially all the questions concerning the asymptotic dynamics
of the solutions of autonomous ordinary differential equations on the plane
or on the sphere.

Observe that now hyperbolic singularitiesσ can be of three types: sink
(DX(σ) with two eigenvalues with negative real part), source (DX(σ) whose
eigenvalues have positive real part, see Figure 1.1) or a saddle (DX(σ)
with eigenvalues having negative and positive real parts, see Figure 1.3 on
page 13).

σσ

Figure 1.1: A sink and a source.

Historically the characterization of structurally stablevector fields on
compact surfaces by Maurı́cio Peixoto, based on previous work of Poincaré
[155, 156, 157] and Andronov and Pontryagin [7], was the origin of the no-
tion of structural stability for Dynamical Systems. In thissetting structural
stability is still synonym of a finite and hyperbolic non-wandering set. We
now writeS for any compact connected two-manifold without boundary.

Theorem 1.4(Peixoto). A Cr vector field on a compact surface S is struc-
turally stable if, and only if:

1. the number of critical elements is finite and each is hyperbolic;

2. there are no orbits connecting saddle points;

3. the non-wandering set consists of critical elements alone.

Moreover if S is orientable, then the set of structurally stable vector fields
is open and dense inXr(S).



“LivroCBM-ultimo”
2007/8/20
page 8

i

i

i

i

i

i

i

i

8 CHAPTER 1. INTRODUCTION

The proof of this celebrated result can be found in [147, 148]and for an
more detailed exposition of this results and sketch of the proof see [64]. The
last part of the statement uses a version of Pugh’sC1-Closing Lemma [163,
164], which is a fundamental tool to be used repeatedly in many proofs in
this book, see Section 1.3.7 for the statement of this result.

The extension of Peixoto’s characterization of structuralstability forCr

flows, r ≥ 1, on non-orientable surfaces is known asPeixoto’s Conjecture,
and up until now it has been proved for the projective planeP

2 [143], the
Klein bottleK

2 [113] andL
2, the torus with one cross-cap [67].

In an attempt to extend this result to higher dimensions, Steve Smale
considered in [190] the following type of vector field which preserves the
main features of the structurally stable vector fields on surfaces.

We say that a vector fieldX ∈Xr(M), r ≥ 1 isMorse-Smale(where now
M is a compact manifold of any dimension) if

1. the number of critical elements ofX is finite and each one of them is
hyperbolic;

2. every stable and unstable manifold of each critical element intersects
transversely the unstable or stable manifold of any other critical ele-
ment;

3. the non-wandering set consists only of the critical elements of X:
Ω(X) = C(X).

Hencestructurally stable vector fields in two-dimensions are Morse-Smale
and they are open and dense on the set of all smooth vector fields of an
orientable surface.

There exists a similar notion of Morse-Smale diffeomorphisms on any
compact manifold.Smale’s Horseshoe, presented in [190], showed that
Morse-Smale diffeomorphisms are neither dense on the spaceof all diffeo-
morphisms, nor the only structurally stable type of diffeomorphisms.

Moreover the singular horseshoe, which we present in Section 2.1, is
a compact invariant set for a flow similar to a Smale Horseshoewhich is
structurally stable but non-hyperbolic, defined on manifolds with boundary.

It is well known that Morse-Smale vector fields are structurally stable
in any dimension, see e.g. [144, 143]. However early hopes that they might
form an open and dense subset of the space of all smooth vectorfields or
that they are the representatives of structurally stable vectors fields where
shattered in higher dimensions, as the following section explains.
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1.1.3 Three dimensional chaotic attractors

In 1963 the meteorologist Edward Lorenz published in the Journal of At-
mospheric Sciences [102] an example of a parametrized polynomial system
of differential equations

ẋ = a(y−x) a = 10

ẏ = rx−y−xz r= 28 (1.1)

ż= xy−bz b= 8/3

as a very simplified model for thermal fluid convection, motivated by an at-
tempt to understand the foundations of weather forecast. Later Lorenz [103]
together with other experimental researches showed that the equations of
motions of a certain laboratory water wheel are given by (1.1). Hence
equations (1.1) can be deduced directly in order to model a physical phe-
nomenon instead of as an approximation to a partial differential equation.

Numerical simulations for an open neighborhood of the chosen param-
eters suggested that almost all points in phase space tend toa stranger at-
tractor, called theLorenz attractor. However Lorenz’s equations proved to
be very resistant to rigorous mathematical analysis, and also presented very
serious difficulties to rigorous numerical study.

A very successful approach was taken by Afraimovich, Bykov and
Shil’nikov [1], and Guckenheimer, Williams [65], independently: they con-
structed the so-calledgeometric Lorenz models(see Section 2.3) for the
behavior observed by Lorenz. These models are flows in 3-dimensions
for which one can rigorously prove the existence of an attractor that con-
tains an equilibrium point of the flow, together with regularsolutions. The
accumulation of regular orbits near a singularity preventssuch sets to be
hyperbolic (see Section 1.2). Moreover, for almost every pair of nearby
initial conditions, the corresponding solutions move awayfrom each other
exponentially fast as they converge to the attractor, that is, the attractor
is sensitive to initial conditions: this unpredictability is a characteristic of
chaos. Most remarkably, this attractor is robust: it can not be destroyed by
any small perturbation of the original flow.

Another approach was through rigorous numerical analysis.In this
way, it could be proved, by [71, 72, 119, 120], that the equations (1.1)
exhibit a suspended Smale Horseshoe. In particular, they have infinitely
many closed solutions, that is, the attractor contains infinitely many pe-
riodic orbits. However, proving the existence of a strange attractor as in



“LivroCBM-ultimo”
2007/8/20
page 10

i

i

i

i

i

i

i

i

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Lorenz strange attractor

the geometric models is an even harder task, because one cannot avoid the
main numerical difficulty posed by Lorenz’s equations, which arises from
the very presence of an equilibrium point: solutions slow down as they pass
near the origin, which means unbounded return times and, thus, unbounded
integration errors.

As a matter-of-fact, proving that equations (1.1) support astrange at-
tractor was listed by Steve Smale in [191] as one of the several challenging
problems for the twenty-first century. In the year 2000 this was finally set-
tled by Warwick Tucker who gave a mathematical proof of the existence of
the Lorenz attractor, see [196, 197, 198].

The algorithm developed by Tucker incorporates two kinds ofingre-
dients: a numerical integrator, used to compute good approximations of
trajectories of the flow far from the equilibrium point sitting at the origin,
together with quantitative results from normal form theory, that make it
possible to handle trajectories close to the origin.

The consequences of the sensitiveness to initial conditions on a (albeit
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simplified) model of the atmosphere were far-reaching: assuming that the
weather behaves according to this model, then long-range weather forecast-
ing is impossible. Indeed the unavoidable errors in determining the present
state of the weather system are magnified as time goes by casting off any
reliability of the values obtained by numerical integration within a small
time period.

This observation was certainly not new. Since the development of the
kinetic theory of gases and thermodynamics in the end of the nineteenth
century it was known that gas environments, specifically theEarth atmo-
sphere, are very complex systems whose dynamics involves the interaction
of a huge number of particles, so it is not surprising that theevolution of
such systems be hard to predict. What bewildered mathematicians was the
simplicity of the Lorenz system, the fact that it arises naturally as a model of
a physical phenomenon (convection) and, notwithstanding,its solutions ex-
hibit sensitiveness with respect to the initial conditions. This suggests that
sensitiveness is the rule rather than the exception in the natural sciences.

For an historical account of the impact of the Lorenz paper [102] on
Dynamical Systems and an overview of the proof by Tucker see [202].

The robustness of this example provides an open set of flows which are
not Morse-Smale, nor hyperbolic, and also non-structurally stable, as we
will see in Section 2.3.

1.2 Hyperbolic flows

In an attempt to identify what properties were common among stable sys-
tems, Stephen Smale introduced in [190] the notion ofHyperbolic Dynami-
cal System. Remarkably it turned out that stable systems are essentially the
hyperbolic ones, plus certain transversality conditions.In the decades of
1960 and 1970 an elegant and rather complete mathematical theory of hy-
perbolic systems was developed, culminating with the proofof the Stability
Conjecture, by Mãné in the 1990’s in the setting ofC1 diffeomorphisms,
followed by Hayashi forC1 flows.

In what follows we present some results of this theory which will be
used throughout the text.

Let X ∈Xr(M) be a flow on a compact manifoldM. Denote bym(T) =
inf‖v‖=1‖T(v)‖ the minimum normof a linear operatorT. A compact in-
variant setΛ ⊂ M of X is hyperbolicif
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1. admits a continuousDX-invariant tangent bundle decompositionTΛM =
Es

Λ ⊕EX
Λ ⊕Eu

Λ, that is we can write the tangent spaceTxM as a direct
sumEs

x ⊕EX
x ⊕Eu

x , whereEX
x is the subspace inTxM generated by

X(x), satisfying

• DXt(x) ·Ei
x = Ei

Xt (x) for all t ∈ R, x∈ Λ andi = s,X,u;

2. there are constantsλ,K > 0 such that

• Es
Λ is (K,λ)-contracting, i.e. for allx∈ Λ and everyt ≥ 0

‖DXt(x) | Es
x‖ ≤ K−1e−λt ,

• Eu
Λ is (K,λ)-expanding, i.e. for allx∈ Λ and everyt ≥ 0

m(DXt | Eu) ≥ Keλt ,

By the Invariant Manifold Theory [76] it follows that for every p ∈ Λ
the sets

Wss
X (p) = {q∈ M : dist(Xt(q),Xt(p)) −−→

t→∞
0}

and
Wuu

X (p) = {q∈ M : dist(Xt(q),Xt(p)) −−−→
t→−∞

0}

are invariantCr -manifolds tangent toEs
p andEu

p respectively atp. Here dist
is thedistance on M induced by some Riemannian norm.

If O = OX(p) ⊂ Λ is an orbit ofX one has that

Ws
X(O ) = ∪t∈RWss

X (Xt(p)) and Wu
X(O ) = ∪t∈RWuu

X (Xt(p))

are invariantCr -manifolds tangent toEs
p ⊕EX

p andEX
p ⊕Eu

p at p, respec-
tively. We shall denoteWs

X(p) = Ws
X(OX(p)) andWu

X(p) = Wu
X(OX(p)) for

the sake of simplicity.
A singularity(respectivelyperiodic orbit) of X is hyperbolicif its orbit

is a hyperbolic set ofX. Note thatWss
X (σ) = Ws

X(σ) andWuu
X (σ) = Wu

X(σ)
for every hyperbolic singularityσ of X. A sink and a source are both hy-
perbolic singularities. Ahyperbolicsingularity which isneithera sinknor
a source is called asaddle.

A hyperbolic setΛ of X is calledbasic if it is transitive andisolated,
that is Λ = ∩t∈RXt(U) for some neighborhoodU of H. It follows from
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.Wu(σ)

Eu(σ)

Es(σ)

σ

Ws(σ)

Figure 1.3: A saddle singularityσ for bi-dimensional flow.

p
.

X(p)

Wu(p)

Es(p)

Eu(p)

Ws(p)

Figure 1.4: The flow near a hyperbolic saddle periodic orbit throughp.

the Shadowing Lemma [137] that every hyperbolic basic set ofX either
reduces to a singularity or else has no singularities and it is the closure of
its periodic orbits.

We say thatX is Axiom Aif the non-wandering setΩ(X) is both hyper-
bolic and the closure of its periodic orbits and singularities. TheSpectral
Decomposition Theoremasserts that ifX is Axiom A, then there is a dis-
joint decompositionΩ(X) = Λ1∪ ·· · ∪Λk, where eachΛi is a hyperbolic
basic set ofX, i = 1, · · · ,k.

A cycleof a Axiom A vector fieldX is a sub-collection{Λi0, · · · ,Λik} of
{Λ1, · · · ,Λn} such thati0 = ik andWu

X(Λi j )∩Ws
X(Λi j+1) 6= /0, ∀0≤ j ≤ k−1.
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Hyperbolic sets and singularities

The continuity of theDX-invariant splitting on the tangent space of a uni-
formly hyperbolic setΛ is a consequence of the uniform expansion and
contraction estimates (see e.g. [143]). This means that ifxn ∈ Λ is a se-
quence of points converging tox ∈ Λ, and we consider orthonormal basis
{en

i }i=1,...,dimEs(xn) of Es(xn), { f n
i }i=1,...,dimEu(xn) of Eu(xn) and X(xn) of

EX(xn), then these vectors converge to a basis ofEs(x),Eu(x) andEX(x)
respectively. In particular the dimension of the subspacesin the hyperbolic
splitting is constant ifΛ is transitive.

This shows that a uniformly hyperbolic basic setΛ cannot contain sin-
gularities, except ifΛ is itself a singularity. Indeed, ifσ ∈ Λ is a singularity
then it is hyperbolic but the dimension of the central sub-bundle is zero
since the flow is zero atσ. Therefore the dimensions of either the stable or
the unstable direction atσ and those of a transitive regular orbit inΛ do not
match.

In other wordsan invariant subsetΛ containing a singularity accumu-
lated by regular orbits cannot be uniformly hyperbolic.

1.2.1 Examples of hyperbolic sets and Axiom A flows

Any hyperbolic singularity or hyperbolic periodic orbit isa hyperbolic in-
variant set. Also any finite collection of hyperbolic critical elements is a
hyperbolic set. We refer to these sets astrivial hyperbolic sets.

The first examples of a non-trivial (different from a singularity or a pe-
riodic orbit) hyperbolic basic set (on the whole manifold) was thegeodesic
flow on any Riemannian manifold with negative curvature, studied by Dmitri
Victorovich Anosov [8], whose name is attached to this type of systems
today, and theSmale Horseshoe, presented in [190] in the setting of diffeo-
morphisms.

We use a global construction of a (linear) Anosov diffeomorphism (hy-
perbolic with dense orbit) on the 2-torus and then consider its suspension
on the solid (3-)torus to obtain an example of a transitive Axiom A flow.
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A linear Anosov diffeomorphism on the2-torus

Consider the linear transformationA : R
2 → R

2 with the following matrix
in the canonical base

(
1 1
2 1

)
.

Consider the 2-torusT2 as the quotientR2/Z
2 = [0,1]2/ ∼, where(x,0) ∼

(x,1) and(y,0) ∼ (y,1) for all x,y∈ [0,1], that is the square[0,1]2 whose
parallel sides are identified. We denote byπ : R

2 → T
2 the quotient map

or projection fromR
2 to T

2. SinceA preservesZ2, i.e. A(Z2) ⊂ Z
2, then

there exists a well defined quotient mapFA : T
2 → T

2. This is a linear
automorphism ofT2, see e.g. [204, 107].

The matrixA is hyperbolic: its eigenvalues areλ1,λ2 = (3±
√

5)/2 and
the corresponding eigenvectorsv1,v2 = (1,(−1∓

√
5)/2), with irrational

slope. Given any pointp∈ T
2, if we take the projectionWi(p) of the line

Li throughp parallel tovi , Wi(p) = π(Li), then distances alongWi(p) are
multiplied by λi under the action ofFA, for i = 1,2. These are the stable
and unstable manifolds ofp. Due to the irrationality of the slope every such
“line” is dense in the torus. Moreover there is a transitive orbit and a dense
set of periodic orbits for the mapFA (see e.g. [52]). The entire torus is then
a uniformly hyperbolic set.

General definition of suspension flow over a roof function

Let (X,d) be a metric space with distanced and r : X → R be a strictly
positive function. Thephase space Xr of the suspension flow is defined as

Xr = {(x,y) ∈ X× [0,+∞) : 0≤ y < r(x)}.

Let f : X → X be a map onX. Thesuspension semi-flow over f with roof r
is the following family of mapsXt

f : Xr →Xr for t ≥ 0: X0 is the identity and
for eachx = x0 ∈ X denote byxn thenth iterate f n(x0) for n≥ 0. Denote
alsoSnr(x0) = ∑n−1

j=0 r(x j) for n ≥ 1. Then for each pair(x0,y0) ∈ Xr and
t > 0 there exists a uniquen≥ 1 such thatSnr(x0)≤ y0+ t < Sn+1r(x0) and
we define (see Figure 1.5 on the next page).

Xt
f (x0,y0) =

(
xn,y0 + t −Snr(x0)

)
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This construction is the basis of many examples and also of many tech-
niques to pass from a flow with a transverse section to a suspension flow
and viceversa, enabling us to transfer results which are easy to prove for
suspension flows, due to their “almost product structure”, to more general
flows. In this text we will see several examples of this.

y=r  (x)2

x1

y0

x2

x0
x0 y0(    ,    )

y0

X r

y0 t+

y=r(x)

y=r  (x)3

+t+t

X

0 ∞

Xt
r (x0,y0)

Xt
r (x0,y0)

Xt
r (x0,y0)

−r(x1)
−r(x2)

Figure 1.5: The equivalence relation defining the suspension flow of f over
the roof functionr.

An Anosov flow onT
3 though the suspension of an Anosov diffeomor-

phism

Consider the suspended flowXr overFA : T
2 → T

2 defined in Section 1.2.1
with a constant roof functionr ≡ 1. ThenXr is the 3-cube[0,1]3 with
parallel sides identified, that is, we obtain a flow on the 3-torus such that
thefirst return map Rz from any sectionT2×{z} to itself can be naturally
identified withFA, see Figure 1.6 on the facing page.

This flowXt
FA

is uniformly hyperbolic since the hyperbolic structure ex-
hibited by the mapFA is naturally carried by the flow toT3, e.g. it has a
dense orbits and a dense set of periodic orbits, each of whichare the sus-
pension of the corresponding dense orbit and periodic orbits for FA. The
invariant manifolds of a point(x,y,s) are simply the translate of the corre-
sponding invariant manifolds of(x,y) for FA: Wk

Xr
(x,y,z) = Wk(x,y)×{z}

for k = uu,ssand anyz∈ [0,1].
We will see in Section 6.4 that this Anosov flowis not topologically

mixing.
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T
2

T
1 = S

1

T
2×{z}(x,y,z)

Rs(x,y,z) =
(
FA(x,y),z

)

Figure 1.6: Suspension flow over Anosov diffeomorphism withconstant
roof

The solenoid attractor

Consider now the solid 2-torusS1×D whereD = {z∈ C : |z| < 1} is the
unit disk inC, together with the mapf : S

1×D → S
1×D given by

(θ,z) 7→ (2θ,αz+βeiθ/2),

θ ∈ R/Z andα,β ∈ R with α + β < 1. This transformation mapsS1×D

strictly inside itself, that isf (S1×D)⊂ S
1×D. The maximal positively in-

variant setΛ = ∩n≥0 f n(S1×D) is a uniformly hyperbolic basic set: theS1

direction is uniformly expanding and theD direction is uniformly contract-
ing, see Figure 1.7. This set is transitive and has a dense subset of periodic
orbits [52, 177].

S
1×D α

β

f (S1×D)

{θ0}×D

θ0

f (S1×D)∩{θ0}×D

Figure 1.7: The solenoid attractor
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Uniformly hyperbolic basic set for a flow

Consider the suspension of the solenoid mapf of the previous subsection
over the constant roof functionr ≡ 1 to get a flow with an attractorΛ f =
∩t≥0Xt

f

(
(S1×D)r

)
which is a uniformly hyperbolic basic set for the flow

Xf .
This is an example of an Axiom A attractor for a flow. As beforeXt

f on
Λ is not topologically mixing.

1.2.2 Expansiveness and sensitive dependence on initial
conditions

The development of the theory of dynamical systems has shownthat mod-
els involving expressions as simple as quadratic polynomials (as thelogis-
tic family or Hénon attractor), or autonomous ordinary differential equa-
tions with a hyperbolic singularity of saddle-type accumulated by regular
orbits, as theLorenz flow, exhibit sensitive dependence on initial condi-
tions, a common feature ofchaotic dynamics: small initial differences are
rapidly augmented as time passes, causing two trajectoriesoriginally com-
ing from practically indistinguishable points to behave ina completely dif-
ferent manner after a short while. Long term predictions based on such
models are unfeasible since it is not possible to both specify initial condi-
tions with arbitrary accuracy and numerically calculate with arbitrary pre-
cision.

Formally the definition of sensitivity is as follows for a flowXt : a Xt-
invariant subsetΛ is sensitive to initial conditionsor hassensitive depen-
dence on initial conditionsif, for every small enoughr > 0 andx ∈ Λ,
and for any neighborhoodU of x, there existsy ∈ U and t 6= 0 such that
Xt(y) andXt(x) arer-apart from each other: dist

(
Xt(y),Xt(x)

)
≥ r. See

Figure 1.8.

Xt(x)

Xt(y)

x
y

Figure 1.8: Sensitive dependence on initial conditions.
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A related concept is that of expansiveness, which roughly means that
points whose orbits are always close for all time must coincide. The con-
cept of expansiveness for homeomorphisms plays an important role in the
study of transformations. Bowen and Walters [40] gave a definition of ex-
pansiveness for flows which is now calledC-expansiveness[87]. The basic
idea of their definition is that two points which are not closein the orbit
topology induced byR can be separated at the same time even if one al-
lows a continuous time lag — see below for the technical definitions. The
equilibria of C-expansive flows must be isolated [40, Proposition 1] which
implies that the Lorenz attractors and geometric Lorenz models are not C-
expansive.

Keynes and Sears introduced [87] the idea of restriction of the time lag
and gave several definitions of expansiveness weaker than C-expansiveness.
The notion ofK-expansivenessis defined allowing only the time lag given
by an increasing surjective homeomorphism ofR. Komuro [90] showed
that the Lorenz attractor (presented in Section 1.1.3) and the geometric
Lorenz models (to be presented in Section 2.3) are not K-expansive. The
reason for this is not that the restriction of the time lag is insufficient but
that the topology induced byR is unsuited to measure the closeness of two
points in the same orbit.

Taking this fact into consideration, Komuro [90] gave a definition of ex-
pansivenesssuitable for flows presenting equilibria accumulated by regular
orbits. This concept is enough to show that two points which do not lie on
a same orbit can be separated.

Let C
(
R,R

)
be the set of all continuous functionsh : R → R and set

C0
(
(R,0),(R,0)

)
for the subset of allh∈C

(
R,R

)
such thath(0) = 0. De-

fine

K 0 = {h∈C
(
R,0),(R,0)

)
: h(R) = R, h(s) > h(t) ,∀s> t},

and

K = {h∈C
(
R,R

)
: h(R) = R, h(s) > h(t) ,∀s> t},

A flow X is C-expansive(K-expansiverespectively) on an invariant sub-
setΛ ⊂ M if for every ε > 0 there existsδ > 0 such that ifx,y∈ Λ and for
someh∈ K 0 (respectivelyh∈ K ) we have

dist
(
Xt(x),Xh(t)(y)

)
≤ δ for all t ∈ R, (1.2)
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theny∈ X[ε,ε](x) = {Xt(x) : −ε ≤ t ≤ ε}.
We say that the flowX is expansiveon Λ if for every ε > 0 there is

δ > 0 such that forx,y ∈ Λ andh ∈ K (note that now we do not demand
that 0 be fixed byh) satisfying (1.2), then we can findt0 ∈ R such that
Xh(t0)(y) ∈ X[t0−ε,t0+ε](x).

Observe that expansiveness onM implies sensitive dependence on ini-
tial conditions for any flow on a manifold with dimension at least 2. Indeed
if ε,δ satisfy the expansiveness condition above withh equal to the identity
and we are given a pointx ∈ M and a neighborhoodU of x, then taking
y∈U \X[−ε,ε](x) (which always exists since we assume thatM is not one-
dimensional) there existst ∈ R such that dist

(
Xt(y),Xt(x)

)
≥ δ. The same

argument applies whenever we have expansiveness on anX-invariant subset
Λ of M containing a dense regular orbit of the flow.

Clearly C-expansive=⇒ K-expansive=⇒ expansive by definition.
When a flow has no fixed point then C-expansiveness is equivalent to K-
expansiveness [138, Theorem A]. In [40] it is shown that on a connected
manifold a C-expansive flow has no fixed points. The followingwas kindly
communicated to us by Alfonso Artigue from IMERL.

Proposition 1.5. A flow is C-expansive on a manifold M if, and only if, it
is K-expansive.

Proof. From the results of Bowen [40], a C-expansive flow admits only
finitely many isolated fixed points onM. We assume now thatXt has non-
isolated fixed points inM, that is, there exists at least a singularityσ which
is accumulated by other points ofM (this always holds on a connected
manifold). ThenX is not C-expansive. We now show that it is not K-
expansive either, proving the proposition.

Using the continuity ofXt we have that for allR> 0 andT > 0 there
existsx∈ M \{σ} such that dist

(
Xt(x),σ

)
≤ Rwhenever|t| < T.

Let ε,δ > 0 be given and let us setT = 3ε andR = δ/2. Definey =
Xε(x) and

h(t) =





t + ε if t /∈ (−2ε,ε)
2t if 0 ≤ t < ε
t/2 if t ∈ (−2ε,0)

,

which is a monotonously increasing homeomorphism ofR with h(0) = 0.
Next we verify that dist(Xt(y),Xh(t)(x)) ≤ δ/2 for all t ∈ R.
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• if t /∈ (−2ε,ε) thenXh(t)(x) = Xt+ε(x) = Xt(y) and so we are done,

• if t ∈ (0,ε) thenh(t) = 2t < T and so dist(Xh(t)(x),σ) ≤ δ/2 which
implies dist(Xt(y),Xh(t)(x)) ≤ dist(Xt(y),σ) + dist(Xh(t)(x),σ). As
Xt(y) = Xt+ε(x) and for t < ε we havet + ε < 3ε = T we obtain
dist(Xt(y),σ) < δ/2. Hence dist(Xt(y),Xh(t)(x)) < δ.

• if t ∈ (−2ε,0) then |h(t)| = |t/2| < 3ε and so dist(Xh(t)(x),σ) ≤
δ/2. Now, dist(Xt(y),Xh(t)(x))≤ dist(Xt(y),σ)+dist(Xh(t)(x),σ)≤
dist(Xt(y),σ)+δ/2. Butt ∈ (−2ε,0), t +ε ∈ (−ε,ε) and so|t +ε|<
ε implying that dist(Xt+ε(x),σ) < δ/2 and hence, asXε(x) = y, we
get dist(Xt(y),σ) < δ/2 and replacing this in the inequality above we
obtain dist(Xt(y),Xh(t)(x)) < δ.

All together we have proved dist(Xt(y),Xh(t)(x)) ≤ δ/2 for all t ∈ R.
Now there are two possibilities.

1. eitherXt(x) 6= y for all |t| < ε, and we are done, or

2. or there existss∈ R such thatXs(x) = y, and in this casex is a peri-
odic orbit with periodτ ≤ s− ε < 2ε. Thus dist(Xt(x),Xh(t)(σ) < δ.

Either way we found a pair of points (x andy in case (1),x andσ in case
(2)) which remainδ-close even when time is reparametrized throughh in
one of the orbits, and both points are not connected through any X-orbit in a
time less thanε. Since we may takeδ > 0 arbitrarily close to zero for a fixed
ε > 0 in this construction, we have shown thatX is notK-expansive.

We will prove in Section 4.1 that singular-hyperbolic attractors are ex-
pansive so, in particular, the Lorenz attractor and the geometric Lorenz
examples are all expansive and sensitive to initial conditions. Since these
families of flows exhibit equilibria accumulated by regularorbits, we see
that expansiveness is compatible with the existence of fixedpoints by the
flow.

1.3 Basic tools

Here we state two basic classical results which enable us to understand in
many cases the local dynamics near many flow orbits. Then we state the
powerful closingandconnecting lemmaswhich will be used in a funda-
mental way in several key points in the following chapters.
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1.3.1 The tubular flow theorem

The following result shows that the local behavior of orbitsnear a regular
point of any flow is very simple.

Theorem 1.6(Tubular Flow). Let X∈ Xr(M) and let p∈ Mn be a regular
point of X where n≥ 1 is the dimension of M. Let V= {(x1, . . . ,xn) ∈
R

n : ‖xi‖ < 1} and Y be the vector field on V given by Y= (1,0, . . . ,0).
Then there is a Cr diffeomorphism h: U →V for some neighborhood U of
p in M, which takes trajectories of X to trajectories of Y , that is X | U is
topologically equivalent to Y|V.

This shows that near a regular pointpevery smooth flow can be smoothly
linearised: under a change of coordinates orbits nearp look like the orbits
of a constant flow, see Figure 1.9.

0p

U V

X Y

h

Figure 1.9: Linearization of orbits near a regular point of aflow.

1.3.2 Transverse sections and the Poincaré return map

Now we describe a standard and extremely useful consequenceof the tubu-
lar flow theorem, which provides a converse to the construction of suspen-
sions semiflows (presented in Section 1.2.1).

Let X ∈ X1(M3) be a flow on a three-dimensional manifold and letS
be an embedded surface inM which is transverse to the vector fieldX at
all points, i.e. for everyx ∈ S we haveTxS+ EX

x = TxM or equivalently
X(x) 6∈ TxS. We say in what follows that suchS is a cross-sectionto the
flow Xt or to the vector fieldX.

Let S0 andS1 be a pair of cross-sections toX andx0 ∈ S0 be a regular
point of X and suppose that there existsT > 0 such thatx1 = XT(x0) ∈ S1.
Applying the Tubular Flow Theorem 1.6 to a finite open covering of the
compact arcγ = X[0,T](x0) we obtain a tubular flow in a neighborhood ofγ.
This shows that there exists a smooth mapR from a neighborhoodV0 of x0



“LivroCBM-ultimo”
2007/8/20
page 23

i

i

i

i

i

i

i

i

1.3. BASIC TOOLS 23

in S0 to a neighborhoodV1 of x1 in S1, with the same degree of smoothness
of the flow, such thatR(x) = XT(x)(x) for all x ∈ V0 with R(x0) = x1 and
T : V0 →R also smooth withT(x0) = T. MoreoverR is a bijection and thus
a diffeomorphism.

We can reapply the Tubular Flow Theorem and extend the domainof
definition ofR to its maximal domain relative toS0 andS1 and to the con-
nection timeT. Notice thatx1 need not be the first entry toS1, that isT
might be bigger than inf{t > 0 : Xt(x0) ∈ S1}.

Note that ifx0 is a periodic orbit ofX then takingS1 = S0 we see that
x0 is a fixed point ofR and the local behavior of the flow nearx0 can be
studied through the mapR acting on a space with less dimension thanM.
This is an important example where we can reduce the study of aflow to
a lower dimensional transformation. The power and applicability of this
method should be clear after Chapters 2 and 4.

1.3.3 The Linear Poincaŕe Flow

If x is a regular point ofX (i.e. X(x) 6= 0), denote by

Nx = {v∈ TxM : v·X(x) = 0}

the orthogonal complement ofX(x) in TxM. Denote byOx : TxM → Nx the
orthogonal projection ofTxM ontoNx. For everyt ∈ R define

Pt
x : Nx → NXt (x) by Pt

x = OXt (x) ◦DXt(x).

It is easy to see thatP= {Pt
x : t ∈ R,X(x) 6= 0} satisfies the cocycle relation

Ps+t
x = Ps

Xt (x) ◦Ps
x for every t,s∈ R.

The familyP is called theLinear Poincaŕe Flowof X.

Hyperbolic splitting for the Linear Poicar é Flow

Let a compact subsetΛ invariant under the flow ofX ∈ X1 be given. As-
sume thatΛ is (uniformly) hyperbolic, as defined in Section 1.2. Then the
normal spaceNx is defined for allx ∈ Λ, sinceΛ does not contain singu-
larities. Hence Linear Poincaré Flow is defined everywhere on the family
of normal spacesNΛ = {Nx}x∈Λ. Compactness and absence of singularities
enables us to obtain the following characterization of (uniformly) hyper-
bolic subsets for flows.
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Theorem 1.7. Let Λ be a compact invariant subset for X∈ X1(M). Then
Λ is (uniformly) hyperbolic if, and only if, the Linear Poincaré Flow is
everywhere defined overΛ and PΛ admits a (uniformly) hyperbolic splitting
of NΛ.

The relation between the hyperbolic splittingEs⊕EX ⊕Eu overTΛM
and the splittingNs⊕Nu over NΛ is the obvious one:Ns

x = Ox(Es
x) and

Nu
x = Ox(Eu

x ) for all x∈ Λ.

Dominated splitting for the Linear Poicaré Flow

Assume that aC1 flow X admits a proper attractor with an isolating neigh-
borhoodU , that isΛ = ΛX(U) = ∩t∈RXt(U). Hence there exists aC1-
neighborhoodU of X such that ifY ∈ U , x ∈ Per(Y) andOY(x)∩U 6= /0,
then

OY(x) ⊂ ΛY(U). (1.3)

GivenY ∈ U defineΛ∗
Y(U) = ΛY(U) \S(Y). In what follows,EX stands

for the bundle spanned by the flow direction, andPt stands for the linear
Poincaŕe flow ofX overΛ∗

X(U).
Using (1.3) and the same arguments as in [53, Theorem 3.2] (see also

[205, Theorem 3.8]) we obtain

Theorem 1.8(Dominated splitting for the Linear Poincarı̈¿1
2 Flow). As-

sume that there exists a C1 open set inX1(M) such that for all X∈ U there
are no sinks nor sources in U and every critical element of X inΛX(U)
is hyperbolic. Then there exists an invariant, continuous and dominated
splitting NΛ∗

X(U) = Ns,X ⊕Nu,X for the Linear Poincaŕe Flow Pt . Moreover

1. for all hyperbolic setsΓ ⊂ Λ∗
X(U) with splitting Es,X ⊕EX ⊕Eu,X

and for every x∈ Γ

Es,X
x ⊂ Ns,X

x ⊕EX
x and Eu,X

x ⊂ Nu,X
x ⊕EX

x .

2. If Yn → X in X1(M) and xn → x in M, with xn ∈ Λ∗
Yn

(U),x∈ Λ∗
X(U),

then Ns,Yn
xn −−−→

n→∞
Ns,X

x and Nu,Yn
xn −−−→

n→∞
Nu,X

x .

3. If σ ∈ S(X)∩ΛX(U) is Lorenz-like and x∈ Ws(σ) \ {σ}, then on
Nx the invariant splitting for the Linear Poincaré Flow is given by
Ns

x = Nx∩TqWs(x) and Nu
x = Nx∩TqWu(x).
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1.3.4 The Hartman-Grobman Theorem on local lineariza-
tion

The following result due to Hartman and Grobman [63, 70] shows that a
flow of a vector fieldX is locally equivalent to its linear part at a hyperbolic
singularity. Since linear hyperbolic flows can be completely classified by
topological equivalence, this result enables us to classify the local behavior
of the flow of any smooth vector field near a hyperbolic singularity. See
[145] for generalizations and more references on this subject.

Theorem 1.9(Hartman-Grobman). Let X∈ Xr(M) and let p∈ M be a hy-
perbolic singularity of X. Let Y= DX0 : TpM → TpM be the linear vector
field on TpM given by the linear transformation DX0. Then there exists a
neighborhood U of p in M, a neighborhood V of0 in TpM and a homeo-
morphism h: U →V which takes trajectories of X to trajectories of Y , that
is X |U is topologically equivalent to Y|V.

1.3.5 The (strong) Inclination Lemma (orλ-Lemma)

This are basic results of dynamics near a hyperbolic singularity which are
extremely useful to obtain intersections between stable and unstable mani-
fold through simple geometric arguments.

The Inclination Lemma

Let σ∈M be a hyperbolic singularity ofX ∈Xr(M) for somer ≥ 1, with its
local stable and unstable manifoldsWs

loc(σ),Wu
loc(σ). Fix an embedded disk

B in Wu
loc(σ) which is a neighborhood ofσ in Wu

loc(σ), and a neighborhood
V of this disk inM. Then letD be a transverse disk toWs

loc(σ) at z with
the same dimension asB, and writeDt for the connected component of
Xt(D)∩V which containsXt(z), for t ≥ 0, see Figure 1.10.

Lemma 1.10 (Inclination Lemma [142, 143]). Given ε > 0 there exists
T > 0 such that for all t> T the disk Dt is ε-close to B in the Cr -topology.

This means that the embeddings whose images are the disksB andDt

are close in theCr topology.
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σ
Ws(σ)

Wu(σ)

D

Xt(z)

z

V
Dt

Figure 1.10: The inclination lemma

The strong Inclination Lemma

In the same setting as above but imposing that the eigenvalues of DX(σ)
closest to the imaginary axis be real and simple it is possible to improve the
convergence estimates. This condition onDX(σ) is satisfied in particular by
all hyperbolic singularities with distinct real eigenvalues, and so also by the
so-called Lorenz-like singularities, see Definition 2.1. These are the only
kind of singularities allowed on singular-hyperbolic sets, see Chapter 3.

Lemma 1.11(Strong Inclination Lemma [51]). There are c,λ,T > 0 such
that for all t > T the Cr distance between the embeddings of B and of Dt is
bounded by c·e−λt .

Homoclinic classes, transitiveness and denseness of periodic orbits

Given a hyperbolic period orbitp of saddle-type for a flowX ∈ X1 we can
define its associatedhomoclinic class HX(p) by theclosure of the set of
transverse intersections between the stable and unstable manifolds of p

HX(p) = Wu
X(p) ⋔ Ws

X(p).

Note that there are cases whereWu
X(p) coincides withWs

X(p), a saddle-
connection, and thenHX(p) = /0. Observe that a nonempty homoclinic
class is always an invariant subset of the flow.

Otherwise we have the following important classical resultfrom the
early works of Poincarı̈¿1

2[154] (who showed that transverse homoclinic
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orbits are accumulation points of other homoclinic orbits)and developed
by Birkhoff [27] (transverse homoclinic orbits are accumulation points of
periodic orbits) and by Smale [189].

Theorem 1.12(Birkhoff-Smale). Any non-empty homoclinic class has a
dense orbit and contains a dense set of periodic orbits.

See [146] for a general modern presentation of this result including
motivation, proofs and other non-trivial dynamical consequences.

The transitiveness part of this theorem is a consequence of the Inclina-
tion Lemma and we present a short proof here.

Lemma 1.13. Every homoclinic class H of a flow X is topologically tran-
sitive.

Proof. Let q, r ∈ H = closure[Ws
X(p) ⋔ Wu

X(p)] be distinct points andU,V
two disjoint neighborhoods ofq, r in H, respectively. Letq1, r1 be points
of intersection between the stable and unstable manifolds of p in U andV,
respectively. Then for some future timet > 0 very large and somes> 0
close to the period ofp we have thatXt+s(q1) is onWs(p) very close top
andX−t(r1) is onWu(p) very close top also.

The invariance of the stable and unstable manifolds and the Inclina-
tion Lemma imply that there exists a pointw in the intersection between
Wuu

(
Xt1(q1)

)
andWss

(
X−t2(r1)

)
for somet1, t2 > t. HenceX−t1(w) is in-

sideU nearq1 andXt2(w) is insideV nearr1. ThenXt1+t2(U)∩V 6= /0.

1.3.6 Generic vector fields and Lyapunov stability

Recall that a compact setL ⊂ M is calledLyapunov stablefor X ∈ X1(M)
if for every neighborhoodU of L there is a neighborhoodV ⊂U of L such
thatXt(V) ⊂U , ∀t ≥ 0. Every attractor is a transitive Lyapunov stable set
but not conversely.

The following lemmas summarize some classical properties of Lya-
punov stable sets, see Chapter V in [25] for proofs.

Lemma 1.14. Let Λ be a Lyapunov stable set of X. Then,

1. If xn ∈ M and tn ≥ 0 satisfy xn → x∈ Λ and Xtn(xn) → y, then y∈ Λ;

2. Wu
X(Λ) ⊂ Λ;
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3. if Γ is a transitive set of X andΓ∩Λ 6= /0, thenΓ ⊂ Λ.

The following provides a necessary and sufficient conditions for a Lya-
punov stable set to be an attractor.

Lemma 1.15. A Lyapunov stable setΛ of a vector field X is an attractor
of X if and only if there is a neighborhood U ofΛ such thatωX(x) ⊂ Λ, for
all x ∈U.

Let us collect some properties for generic vector fieldsX ∈ X1(M) for
future reference.

L1. X is Kupka-Smale, i.e. every periodic orbit and singularity ofX is
hyperbolic and the corresponding invariant manifolds intersect trans-
versely, see [143]. In particular,S(X) is a finite set.

L2. Ω(X) = Per(X)∪S(X), see [163].

L3. Wu
X(σ) is Lyapunov stable forX for eachσ ∈ S(X).

L4. Ws
X(σ) is Lyapunov stable for−X, for everyσ ∈ S(X).

L5. If σ ∈ S(X) and dim(Wu
X(σ)) = 1 thenωX(q) is Lyapunov stable for

X, for everyq∈Wu
X(σ)\{σ}.

L6. If σ ∈ S(X) and dim(Ws
X(σ)) = 1 thenαX(q) is Lyapunov stable for

−X, for all q∈Ws
X(σ)\{σ}.

The proofs of items L3 to L6 can be found in [41].

1.3.7 The Closing Lemma

This celebrated result, proved by Charles Pugh [163, 164, 165], says that
every regular orbit which accumulates on itself can be closed by an arbi-
trarily smallC1 perturbation of the vector field. The question whether a
vector field with a recurrent trajectory through a pointp can be perturbed
so that the solution throughp for the new vector field is closed, albeit triv-
ial in classC0, is a deep problem in classCr for r ≥ 1, as first remarked by
Peixoto [148].

In [163, 164] Pugh proved theC1 Closing Lemma for compact mani-
folds of dimensions two and three and generalized the resultfor arbitrary
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dimensions and to the case of closing a non-wandering trajectory, rather
than a recurrent one. In [161] he proved that for a weaker typeof recurrent
point, for whichαX(p)∩ωX(p) 6= /0, theC2 double-closing is not always
possible on the 2-torusT2. Later Pugh and Robinson [165] established the
Closing Lemma whenM is non-compact, provided the pointq to be closed
satisfiesαX(q)∩ωX(q) 6= /0.

We remark that theCr Closing Lemma, forr ≥ 1, in the case ofM being
the 2-torus and the vector field has no singularities, was proved earlier by
Peixoto [148] and later by Gutierrez [68] for the “constant type” vector
fields on the 2-torus with finitely many singularities. In [69] Gutierrez gave
a counter-example to theC2 Closing Lemma for the punctured torus. There
exists also the “ergodic closing lemma” from Ricardo Mañé, see below.

Theorem 1.16(C1-Closing Lemma). Let X ∈ X1(M) be a C1-flow on a
compact boundaryless finite dimensional manifold M and p∈ M be a non-
wandering point of X. Given a C1-neighborhoodU of X and a neighbor-
hood V of p, then there exists Y∈ U and q∈ V such that q belongs to a
periodic orbit of Y .

q

X
Y

p
p

Figure 1.11: Closing a recurrent orbit

Observe that in the Closing Lemma above the point whose orbitis
closed is not necessarily the initial non-wandering point,but only a point
arbitrarily close to it. The same situation appears in the “Ergodic Closing
Lemma” of Mãné, see Section 1.4. Later this was improved in the Connect-
ing Lemma by Hayashi, see the next subsection.

1.3.8 The Connecting Lemma

The connecting lemma is motivated by the following situation often faced
when studying dynamical systems. Suppose the unstable manifold of a
hyperbolic periodic orbit accumulates on the stable manifold of another
hyperbolic periodic orbit. We would like to find a vector fieldclose to
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the given one such that the continuation of the invariant manifolds of the
periodic orbits above really intersect.

Observe that although very similar to the closing lemma, nowwe are
demanding that the orbits whose manifolds intersect are continuations of
the original ones, so by a change of coordinates we can assumethey are
the same! The closing lemma only provides a point arbitrarily close to the
initially given recurrent point.

The result below is the flow version of [206, Theorem E, p. 5214] first
proved by Hayashi [74, 75] (see also [12]). This shows that iftwo distinct
points p,q have orbits which visit a given neighborhood a pointx and the
points p,q are far way from a piece of the negative orbit ofx, then we
can find aC1-close vector field such thatp,q are in the same orbit, see
Figure 1.12.

Theorem 1.17(Connecting Lemma (Hayashi)). Let X∈ X1(M) and x /∈
S(X). For any C1 neighborhoodU of X there areρ > 1, L > 0 andε0 > 0
such that for every0 < ε ≤ ε0 and any two points p,q∈ M satisfying

1. p,q /∈ Bε(X[−L,0](x));

2. O +
X (p)∩Bε/ρ(x) 6= /0;

3. O −X (q)∩Bε/ρ(x) 6= /0,

there is Y∈ U such that Y= X outside of Bε(X[−L,0](x)) and such that
q∈ O +

Y (p).

p

q

x

X−L(x)

Bε
(
X[−L,0](x)

)

Bε/ρ(x)

X-orbit
Y-orbit

Figure 1.12: The Connecting Lemma forC1 flows

There is an extension of this result [33] showing that it is possible to
connect pseudo-orbits in theC1 setting.
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Theorem 1.17 above gives a solution to the problem of connecting sta-
ble and unstable manifolds of periodic orbits. In fact this result can be
stated in a slightly different way, more adapted to our needsin Chapter 3.

Theorem 1.18. Let X∈ X1(M) andσ ∈ S(X) be hyperbolic. Suppose that
there are p∈Wu

X(σ)\{σ} and q∈ M \C(X) such that:

(H1) For all neighborhoods U, V of p, q (respectively) there is x∈U such
that Xt(x) ∈V for some t≥ 0.

Then there are Y arbitrarily C1 close to X and T> 0such that p∈Wu
Y (σ(Y))

and YT(p) = q. If in addition q∈Ws
X(x)\OX(x) for some x∈C(X) hyper-

bolic, then Y can be chosen so that q∈Ws
Y(x(Y))\OY(x(Y)).

Moreover we can use it to connect orbits of two distinct points which
accumulate a third point, but with one of the points in the unstable manifold
of a hyperbolic singularity. This singularity persists under perturbation and
the connecting orbits will still be in its unstable manifold.

Theorem 1.19. Let X∈ X1(M) andσ ∈ S(X) be hyperbolic. Suppose that
there are p∈Wu

X(σ)\{σ} and q,x∈ M \C(X) such that:

(H2) For all neighborhoods U, V , W of p, q, x (respectively) there are
xp ∈U and xq ∈V such that Xtp(xp) ∈W and Xtq(xq) ∈W for some
tp > 0, tq < 0.

Then there are Y arbitrarily C1 close to X and T> 0such that p∈Wu
Y (σ(Y))

and YT(p) = q.

1.3.9 A perturbation lemma for 3-flows

A very useful result of Franks [60, Lemma 1.1] shows that it ispossible to
modify a diffeomorphism to achieve a desired derivative at afinite number
of points, as long as the modification is made in theC1 topology. Here we
state a version for vector fields of this result: under some mild conditions,
anyC2 perturbation of the derivative of the vector field along a compact or-
bit segment is realized by the derivative of aC1 nearby vector field. Hence
this result allows one to locally change the derivative of the flow along a
compact trajectory, while the original result of Franks allows only pertur-
bations on a finite number of points of the orbit of a diffeomorphism.
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The version we present here is very useful and it was already used in
several published works [53], [124], and [125] but a proof was never pro-
vided.

To simplify notations we shall state it for flows defined on compact sets
of R

n. Using local charts it is straightforward to obtain the result for flows
on compact boundarylessn-manifolds. LetM be an open subset ofR

n.

Theorem 1.20. Let us fix Y∈ X2(M), p∈ M and ε > 0. Given an orbit
segment Y[a,b](p), a neighborhood U of Y[a,b](p), and a C2 parametrized
family of invertible linear maps At : R

n −→ R
n, t ∈ [a,b] (i.e. the coeffi-

cients of the matrices At with respect to a fixed basis are C2 functions of t),
such that for all s, t with t+s≤ b we have

1. A0 = Id : R
n → R

n and At
(
Y(Ys(q))

)
= Y(Yt+s(q)),

2. ‖∂sAt+sA
−1
t |s=0−DYt (p)Y‖ < ε,

then there is Z∈ X1(M) such that‖Y−Z‖1 ≤ ε and Z coincides with Y in
M \U. Moreover Zs(p) = Ys(p) for every a≤ s≤ b and DZt(p) = At for
every t∈ [a,b].

A proof of this result is presented in Appendix A.
Assume that there is suchZ as in Theorem 1.20. On one handAt must

preserve the direction of the vector field along the orbit segmentY[a,b](p)
for all t ∈ [a,b] by item 1 above. On the other hand since

∂sAt+sA
−1
t |s=0 =

∂
∂s

DpZt+s(DpZt)−1∣∣
s=0 =

∂
∂s

DpZt+sDZt (p)Z
−t
∣∣
s=0

=
∂
∂s

DZ
(
Zt+s(p)

)
|s=0 =

∂
∂s

DZt (p)Z
s
∣∣
s=0 = DZ(Zt(p))

we see that item 2 above ensures thatZ isC1 nearY along the orbit segment
Y[a,b](p).

We observe that although we start with aC2 vector field we obtain at
the end aC1 vector field nearby the original one. If we increase the class
of differentiability of the initial vector fieldY and ofAt with respect to the
parametert, then we obtainZ of higher order of differentiability. But even
in this setting we can only control the distance betweenY and the final
vector field in theC1 topology, by results of Pujals and Sambarino in [166]
which we now explain.
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There is an example of a homoclinic classH (recall Section 1.3.5 for
the definition of homoclinic class) of aC2 diffeomorphismf on a compact
surface with a unique fixed point which is a saddle-node, i.e.one of its
eigenvalues if equal to one, corresponding to an indifferent direction, and
the other is smaller than one in modulus, corresponding to a contracting
direction. Hence there are periodic orbitsxn with arbitrarily large periodpn

whose a normalized Lyapunov exponentλ1/pn
n tends to 1 whenn → +∞,

whereλn is an eigenvalue ofD f pn(xn).
Therefore if it were possible to have aC2 perturbation lemma analogous

to Theorem 1.20, then we would obtain aC2 diffeomorphisms arbitrarily
close tof in theC2 topology exhibiting a non-hyperbolic periodic orbit.

However in [166] the authors show that for homoclinic classesH of C2

diffeomorphisms, ifk is the maximum period of non-hyperbolic periodic
orbits inH, then every periodic point with period 2k must be hyperbolic for
everyC2 close diffeomorphisms (a kind ofC2 rigidity result). This shows
that a straightforward extension of Theorem 1.20 forC2 diffeomorphisms
is impossible.

1.4 Ergodic Theory

The ergodic theory of uniformly hyperbolic systems was initiated by Sinai’s
Theory of Gibbs States for Anosov flows [9, 188] and was extended to
Axiom A flows and diffeomorphisms by Bowen and Ruelle [37, 39]. The
special measures studied by these authors are commonly referred to by their
combined nameSinai-Ruelle-Bowenor justSRBin the literature since.

Recall that aninvariant probability measure µfor a flow X ∈ Xr(M) is
a probability measure such thatµ

(
(Xt)−1A

)
= µ(A) for all measurable sub-

setsA and anyt > 0 or, equivalently,
R

ϕ◦Xtdµ=
R

ϕdµ for all continuous
functionsϕ : M → R and anyt > 0.

Recall also that an invariant measureµ is ergodicif the onlyX-invariant
subsets have either measure 0 or 1 with respect toµ. Equivalently, anyX-
invariant functionϕ ∈ L1(µ), i.e. ϕ◦Xt = ϕ µ− almost everywhere for all
t > 0 is constantµ-almost everywhere. The cornerstone of Ergodic Theory
is the following celebrated result of George David Birkhoff(see [26] or for
a recent presentation [204]).

Theorem 1.21(Ergodic Theorem). Let f : M → M be a measurable trans-
formation, µ a f -invariant probability measure andϕ : M → R a bounded
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measurable function. Then the time averageϕ̃(x) = lim 1
n ∑n−1

j=0 ϕ
(

f n(x)
)

exists for µ-almost every point x∈ M. Moreover ϕ̃ is f -invariant and
R

ϕ̃dµ=
R

ϕdµ. In addition, if µ is ergodic, theñϕ =
R

ϕdµ almost ev-
erywhere with respect to µ.

For a flowXt just replace in the statement of Theorem 1.21 on the pre-
vious page above the discrete time average with limT→+∞

1
T

R T
0 ϕ
(
Xt(z)

)
dt

and f -invariance byX-invariance. For invertible transformations or flows
forward and backward (i.e. withT →−∞) time averages are equalµ-almost
everywhere.

Every invariant probability measureµ is a generalized convex linear
combination of ergodic measures in the following sense: forµ-a.e.x there
exists an ergodic measureµx satisfying for every continuous functionϕ

Z

ϕdµx = lim
T→±∞

1
T

Z T

0
ϕ
(
Xt(z)

)
dt

and for every bounded measurable functionψ we have

Z

ψdµ=
Z

(
Z

ψdµx

)
dµ(x).

1.4.1 Physical or SRB measures

The chaotic nature of hyperbolic phenomena prevents accurate long term
predictions for many models of physical, biological or economic origin.
Inspired by an analogous situation of unpredictability faced in the field of
Statistical Mechanics/Thermodynamics — although due to the large num-
ber of particles involved, whereas dynamical systems exhibit unpredictabil-
ity even for models expressed with few variables and simple mathematical
formulas, e.g. the Lorenz flow in Section 1.1.3 — researchersfocused on
the statistics of the data provided by the time averages of some observable
(a continuous function on the manifold) of the system. Time averages are
guaranteed to exist for a positive volume subset of initial states (also called
anobservable subset) on the mathematical model if the transformation, or
the flow associated to the ordinary differential equation, admits a smooth
invariant measure (a density) or aphysicalmeasure.

Indeed, if µ0 is an ergodic invariant measure for the transformation
T0, then the Ergodic Theorem ensures that for everyµ-integrable function
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ϕ : M → R and forµ-almost every pointx in the manifoldM the time aver-
ageϕ̃(x) = limn→+∞ n−1 ∑n−1

j=0 ϕ(T j
0 (x)) exists and equals the space average

R

ϕdµ0. A physical measure µis an invariant probability measure for which
it is required that time averages of every continuous functionϕ exist for a
positive Lebesgue measure (volume) subset of the space and be equal to the
space average µ(ϕ).

We note that ifµ is a density, that is, is absolutely continuous with
respect to the volume measure, then the Ergodic Theorem ensures thatµ is
physical. However not every physical measure is absolutelycontinuous. To
see why in a simple example we just have to consider a singularity p of a
vector field which is an attracting fixed point (a sink), then the Dirac mass
δp concentrated onp is a physical probability measure, since every orbit
in the basin of attraction ofp will have asymptotic time averages for any
continuous observableϕ given byϕ(p) = δp(ϕ) =

R

ϕdδp.

Physical measures need not be unique or even exist in general, but when
they do exist it is desirable thatthe set of points whose asymptotic time
averages are described by physical measures(such set is called thebasinof
the physical measures)be of full Lebesgue measure— only an exceptional
set of points with zero volume would not have a well defined asymptotic
behavior. This is yet far from being proved for most dynamical systems, in
spite of much recent progress in this direction.

There are robust examples of systems admitting several physical mea-
sures whose basins together are of full Lebesgue measure, where robust
means that there are whole open sets of maps of a manifold in the C2

topology exhibiting these features. For typical parametrized families of
one-dimensional unimodal maps (maps of the circle or of the interval with
a unique critical point) it is known that the above scenario holds true for
Lebesgue almost every parameter [106]. It is known that there are systems
admitting no physical measure [85], but the only known casesare not ro-
bust, i.e. there are systems arbitrarily close which admit physical measures.

Physical probability measures for a flow

Given an invariant probability measureµ for a flow Xt , let B(µ) be the the
(ergodic) basinof µ, i.e., the set of pointsz∈M satisfying for all continuous
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functionsϕ : M → R

lim
T→+∞

1
T

Z T

0
ϕ
(
Xt(z)

)
dt =

Z

ϕdµ.

We say thatµ is a physical(or SRB) measure forX if B(µ) has positive
Lebesgue measure: Leb

(
B(µ)

)
> 0.

The notion ofSRBmeasure captures the intuitive idea that the natu-
ral measure for a dynamical system should be one which gives probabilis-
tic information on the asymptotic behavior of trajectoriesstarting from a
“big” set of initial states. Here the notion of “big” can arguably be taken
to mean “positive volume”. In this sense anSRBmeasure provides infor-
mation on the behavior of trajectories starting from a set ofinitial states
which is in principle “physically observable” in practice,say when model-
ing some physical experiment. That is why the namephysical measureis
also attached to them

This kind of measures was first constructed forC2 Anosov flows by
Anosov and Sinai [9] and later for every Axiom A attractor forC2 flows
and forC2 diffeomorphisms by Bowen and Ruelle [37, 39]. Moreover if
the attractor is transitive (i.e. a basic piece in the spectral decomposition
of an Axiom A flow), then there is a unique such measure supported in
the attractor whose basin covers a full neighborhood of the attractor except
for a volume zero subset. In addition, in the setting of diffeomorphisms
these measures are ergodic and mixing (see Section 6.4 for the definition of
mixing for an ergodic probability measure).

The existence of physical measures shows that uniformly hyperbolic
attractors have well defined asymptotic behavior in a probabilistic sense for
Lebesgue almost all points in a neighborhood.

1.4.2 Gibbs measures versus SRB measures

The concept of SRB measure is closely related to the concept of Gibbs
measure introduced in the setting of uniformly hyperbolic flows and trans-
formation by Sinai [9, 188] and by Bowen and Ruelle [37, 39].

Recall that for a given flowX theLyapunov exponent of x in the direc-
tion of v∈ TxM \{0} is the number

L(x,v) = liminf
t→+∞

1
t

log
∥∥DXt(x)v

∥∥. (1.4)
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Given an invariant ergodic probability measureµ for the flowX the Multi-
plicative Ergodic Theorem of Oseledets [139, 204] ensures that for Lebesgue
almost everyx there exists aDXt -invariant splitting (for allt > 0) TxM =
E1⊕ ·· ·⊕Ek and numbersλ1 < · · · < λk such that for alli = 1, . . . ,k and
vi ∈ Ei \{0}

λi = lim
t→+∞

1
t

log
∥∥DXt(x)vi

∥∥. (1.5)

Observe that sinceM is compact andX is smooth, then we have that the
invariant direction given byEX

z cannot have positive Lyapunov exponent,
since for allt > 0 andz∈ M

1
t

log
∥∥DXt(z) ·X(z)

∥∥=
1
t

log
∥∥∥X
(
Xt(z)

)∥∥∥≤ 1
t

log‖X‖0, (1.6)

where‖X‖0 = sup{‖X(z)‖ : z∈ M} is a constant. Analogously this di-
rection cannot have positive exponent for negative values of time, thus the
Lyapunov exponent along the flow direction must be zero.

Consequentlythe flow direction is never tangent to a direction along
which all Lyapunov exponents are non-zero. In particularEX is never tan-
gent either to a strong-stable or strong-unstable direction.

Absolutely continuous disintegration

In the uniformly hyperbolic setting it is well known that physical measures
for uniformly hyperbolic attractors admit a disintegration into conditional
measures along the unstable manifolds of almost every pointwhich are
absolutely continuous with respect to the induced Lebesguemeasure on
these sub-manifolds, see [37, 39, 151, 201]. We explain the meaning of
this technical notion in what follows.

Assume that an ergodic invariant probability measureµ for the flow
X has a positive Lyapunov exponent. In this setting the existence of un-
stable manifolds throughµ-almost every pointx and tangent atx to Fx =
L

λi>0Ei(x) is guaranteed by the non-uniform hyperbolic theory of Pesin
[152]: the strong-unstable manifoldsWuu(x) are the “integral manifolds”
in the direction of the (measurable) sub-bundleF , tangent toFx at almost
everyx. The setsWuu(x) are embedded sub-manifolds in a neighborhood
of x which, in general, depend only measurably (including its size) on the
base pointx. Let Wu(x) be the unstable manifold throughx whenever the



“LivroCBM-ultimo”
2007/8/20
page 38

i

i

i

i

i

i

i

i

38 CHAPTER 1. INTRODUCTION

strong-unstable manifoldWuu(x) is defined (see Section 1.2). These mani-
folds are tangent atx to the center-unstable directionEX

x ⊕Fx. Assume that
n = dim(M) andl = dim(F).

Givenx∈ M let Sbe a co-dimension one submanifold ofM everywhere
transverse to the vector fieldX andx∈ S, which we call across-section of
the flow at x. Let ξ0 be the connected component ofWu(x)∩Scontaining
x. Thenξ0 is a smooth submanifold ofS and we take a parametrization
ψ : [−ε,ε]l × [−ε,ε]n−l−1 → Sof a compact neighborhoodS0 of x in S, for
someε > 0, such that

• ψ(0,0) = x andψ
(
(−ε,ε)l ×{0n−l−1}

)
⊂ ξ0;

• ξ1 = ψ
(
{0l}× (−ε,ε)n−l−1

)
is transverse toξ0 atx: ξ0 ⋔ ξ1 = {x}.

Consider the familyΠ(S0) of connected componentsζ of Wu(z)∩S0 which
cross S0. We say that asubmanifoldζ crosses S0 if it can be written as the
graph of a mapξ0 → ξ1.

x

S

ξ0

ξ1 = transverse toξ0

Πδ(x)
Xt(x)

Π(x)

Figure 1.13: Disintegration.

Givenδ > 0 we letΠδ(x) = {X(δ,δ)(ζ) : ζ ∈ Π(S0)} be a family of co-
dimension one submanifolds inside unstable leaves in a neighborhood of
x crossingS0, see Figure 1.13. The volume form Leb induces a volume
form Lebγ on eachγ ∈ Πδ(x) naturally. Moreover, sinceγ ∈ Πδ(x) is a
measurable family of submanifolds (S0 is compact and each curve is tangent
to a measurable sub-bundleEcu), it forms a measurable partition ofΠ̂δ(x) =
∪{γ : γ ∈ Πδ(x)}. We say thatΠδ(x) is aδ-adapted foliated neighborhood
of x.

Hence (see [178])µ | Π̂δ(x) can be disintegrated along the partition
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Πδ(x) into a family ofconditional measures{µγ}γ∈Πδ(x) such that

µ | Π̂δ(x) =
Z

µγ dµ̂(γ),

whereµ̂ is a measure onΠδ(x) defined by

µ̂(A) = µ
(
∪γ∈Aγ

)
for all Borel setsA⊂ Πδ(x).

In this setting we say thatµ has an absolutely continuous disintegration
along the center-unstable directionor a Gibbs stateif for µ-almost every
x ∈ M, eachδ-adapted foliated neighborhoodΠδ(x) of x induces a disin-
tegration{µγ}γ∈Πδ(x) of µ | Π̂δ(x), for all small enoughδ > 0, such that
µγ ≪ Lebγ for µ̂-almost allγ ∈ Πδ(x). In this setting we also say thatµ is a
Gibbs measurefor the flowX.

Note that completely dual properties and definitions can be stated for
the strong-stableWss(x) and stable leavesWs(x) of µ-almost every point
x for a system with an invariant probability measureµ having a negative
Lyapunov exponent.

Absolute continuity of foliations

In the same setting above, assume thatx has a unstable leafWu(x) and let
D1,D2 be embedded disk inM transverse toWu(x) atx1,x2, that isTxi Di ⊕
TxiW

u(x) = Txi M, i = 1,2. Then the strong-unstable leaves through the
points ofD1 which crossD2 define a maph between a subset ofD1 to D2:
h(y1) = y2 =Wuu(y1)∩D2, called theholonomymap of the strong-unstable
foliation between the transverse disksD1,D2. The holonomy is injective if
D1,D2 are close enough due to uniqueness of the strong-unstable leaves
throughµ-a.e. point.

We say thath is absolutely continuousif there is a measurable map
Jh : D1 → [0,+∞], called theJacobian of h, such that

Leb2
(
h(A)

)
=

Z

A
JhdLeb1 for all Borel setsA⊂ D1,

andJh is integrable with respect to Leb1 on D1, where Lebi denotes the
Lebesgue measure induced onDi by the Riemannian metric,i = 1,2.

The foliation{Wuu(x)} is absolutely continuous(Hölder continuous) if
every holonomy map is absolutely continuous (orJh is Hölder continuous,
respectively).
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Since the pioneering work of Anosov and Sinai [8, 9] it becameclear
that forC2 transformations or flows (in fact it is enough to have transforma-
tions or flows which areC1 with α-Hölder derivative for some 0< α < 1)
the strong-unstable foliation is absolutely continuous and Hölder continu-
ous. See also [107].When the leaves are of co-dimension one, then the
Jacobian Jh of the holonomy map h coincides with the derivative h′ since h
is a map between curves in M.In this case the holonomy map can be seen
as aC1+α transformation between subsets of the real line.

Going back to the case of the unstable foliation for a flow, seeFig-
ure 1.14, we have that for any pair of disksγ1,γ2 insideS0 transverse to
Wu(x)∩S0 at distinct pointsy1,y2, the holonomyH betweenγ1 and γ2

along the leavesWu(z)∩S0 crossingS0 is also Ḧolder continuousif the
flow is C2.

x

Xt(x)
γ1

γ2

ξ0

S

D1

D0

Wu leaves

Figure 1.14: The holonomy maps.

Indeed note that this holonomy mapH can be obtained as a composition
of the holonomy maph between two disksD1,D2 transverse to the strong-
unstable leaves which crossS0, and the “projection along the flow” sending
w ∈ X(−δ,δ)(S0) to a pointXt(w) ∈ S0 uniquely defined, witht ∈ (−δ,δ).
The disks are defined simply asDi = X(−ε,ε)(γi) for 0 < ε < δ and satisfy
Di ∩S0 = γ1, i = 1,2. Since the the holonomyh is Hölder continuous and
the projection along the flow has the same differentiabilityclass of the flow
(due to the Tubular Flow Theorem 1.6), we see that the holonomy H is also
Hölder continuous.

A very important consequence of absolute continuity is the following.
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Lemma 1.22. Assume that for some given submanifold W of M one knows
that throughLebW-almost every point x∈W (LebW is the induced volume
form on W by the volume formLebof M) there passes a strong-stable man-
ifold Wss(x) transverse to W. Then the union of the points of all these
strong-stable manifolds has positive volume in M.

Proof. In a neighborhood of one of its pointsW can be written asRk ×
{0n−k} and by the transversely assumption onWss(x) these submanifolds
can be written as graphsRn−k → R

k on a neighborhood of 0n−k which
depends measurably onx∈ R

k. This change of coordinates through some
local chart ofM affects the derivatives of maps and holonomies at most by
multiplication by bounded smooth functions.

The measurability ensures that givenε > 0 we can findδ,α > 0 small
enough such that there existsΛ ⊂ R

k satisfying:

1. Wss(x) is the graph of a mapγx : Bδ(0
n−k) → R

k defined on aδ-ball
around the origin;

2. the slope of the tangent space toWss(x) at every point is smaller than
α (meaning that‖Dγx(w)‖ ≤ α for all w);

3. LebW(Λ) > 1− ε.

Then the submanifoldWt = R
k ×{t} for t ∈ R

n−k near 0n−k is transverse
to Wss(x) for all x ∈ Λ. Thus the holonomy mapht from a subset ofWt

to W = W0 containsΛ in its image, which has positive volume inW0. By
absolute continuity ofht , the intersectionWt ∩∪xWs(x) has positive volume
in Wt . Hence Leb(∪xWs(x)) =

R

LebWt

(
Wt ∩∪xWs(x)

)
dLebn−k(t) > 0,

and this concludes the proof.

Hyperbolic measures, Gibbs property and construction of physical mea-
sures

These technical notions have crucial applications in the construction of
physical measures for a dynamical system. Indeed, if the measureµ is
ergodic andhyperbolic, meaning that all Lyapunov exponents are non-zero
except the one corresponding to the flow direction, and also aGibbs mea-
sure, then transverse to a center-unstable manifoldWu(z) there exist strong-
stable manifolds throughµγ-almost every point and also through Lebγ-
almost all pointsw ∈ Wu(z). Along strong-stable manifolds forward time
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averages of continuous functions are constant and along center-unstable
manifolds backward time averages of continuous functions are constant.
Moreover forward and backward time averages are equalµ-almost every-
where and through disintegration and ergodic decomposition, we deduce
that µ-almost everyz has a strong-unstable manifoldWuu(z) where Leb-
a.e. point has the same forward and backward time averages.

We are in the setting of Lemma 1.22 thus the absolute continuity of
the strong-stable foliation implies that the family of all the strong-stable
manifolds throughWu(z) covers a positive Lebesgue measure subset ofM
if the flow is of class C2. By the previous observations this set is inside
the (ergodic) basin ofµ. Hencea hyperbolic ergodic invariant probability
measure for a C2 flow which is a Gibbs measure is also a physical measure.

1.4.3 The Ergodic Closing Lemma

In several proofs in this text we shall use the Ergodic Closing Lemma for
flows which shows that any given invariant measure can be approximated
by an invariant measure supported on critical elements. TheErgodic Clos-
ing Lemma was first proved by Mañé [110] for diffeomorphisms and for
flows by Wen [205].

We need the following definition. A pointx ∈ M \S(X) is δ-strongly
closed if for any C1 neighborhoodU ⊂ X1(M) of X, there areZ ∈ U ,
z∈ M and T > 0 such thatZT(z) = z, X = Z on M \Bδ(X

[0,T](x)) and
dist(Zt(z),Xt(x)) < δ, for all 0≤ t ≤ T.

Denote byΣ(X) the set of points ofM which areδ-strongly closed for
anyδ sufficiently small.

Theorem 1.23(Ergodic Closing Lemma, flow version). Let µ be any X-
invariant Borel probability measure. Then µ

(
S(X)∪Σ(X)

)
= 1.

1.5 Stability conjectures

The search for a characterization of stable systems, from Smale’s seminal
work in the sixties [190], led to several conjectures some ofwhich are still
open.

The famous stability conjecture, by Palis and Smale [144], states that
a vector fieldX is structurally stable if, and only if, the non-wandering
set is hyperbolic, coincides with the closure of the set of critical elements,
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there are no cycles between the stable and unstable manifolds of the critical
elements and the intersection between the stable and unstable manifolds of
points at the non-wandering set is transverse. In short terms, this conjecture
states thata system is structurally stable if, and only if, its non-wandering
set is uniformly hyperbolic, the periodic orbits are dense and it satisfies the
strong transversality condition.

This conjecture was proved in the setting ofC1 diffeomorphisms by
the combined work of several people along the years. First Robbin [170]
showed that if a diffeomorphismsf is C2, Ω( f ) is Axiom A and satisfies
the strong transversality condition, thenf is C1-structurally stable. Then
Wellington de Melo [50] obtained the same result forC1 diffeomorphisms
on surfaces and finally Robinson [173] showed that forC1 diffeomorphisms
on any compact manifold the strong transversality condition plus Axiom A
is sufficient forC1 structural stability. The proof of this conjecture, in theC1

topology, was completed by Mañé [109, 110, 108] (see also Liao [97] for a
proof for surface diffeomorphisms) who showed thatC1-structural stability
implies that the non-wandering set is uniformly hyperbolicand satisfies the
strong transversality condition.

For flows the proof that uniform hyperbolicity together withstrong
transversality is sufficient forC1 structural stability was given by Robin-
son [171, 172]. Finally, that these conditions are also necessary for struc-
tural stability was proved much later by Hayashi [74] using the Connecting
Lemma.

Developments in the last decades led Palis to conjecture [141] that the
set of dynamical systems exhibiting finitely many attractors is dense in the
set of all dynamical systems (in a suitable topology) and, moreover, each
attractor supports a physical/SRB measure and the union of the (ergodic)
basin of all physical measures covers Lebesgue almost everypoint of the
ambient manifold. This conjecture admits a version for parametrized fami-
lies where denseness is to be taken in the set of parameters corresponding to
finitely many attractors whose basins cover the ambient manifold Lebesgue
almost everywhere.

In the context of three-dimensional flows, one has to consider another
homoclinic phenomenon involving singularities of the vector field: the sit-
uation in which the stable and unstable manifolds of a singularity have in-
tersections other than the singularity itself. In this case, it is said that the
vector field has a singular cycle.

In the setting ofC1 surface diffeomorphisms this conjecture was proved
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true by E. Pujals and M. Sambarino [167]. In the setting of real analytic
families of unimodal maps of the interval or the circle, thiswas obtained by
M. Lyubich [106]. In higher dimensions this conjecture is still wide open
in spite of much recent progress, see e.g [34] and referencestherein.
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Chapter 2

Singular cycles and robust
singular attractors

A cycleΓ for a flowXt is a finite sequence{σi ,0≤ i ≤ n}⊂C(X) of hyper-
bolic critical elements ofXt , with σ0 = σn, such thatWu(σ j)∩Ws(σ j+1) 6=
/0 for 0≤ j ≤ n, that is the unstable manifold of one element intersects the
stable manifold of the next element. A cycle issingular if at least one of its
critical elements is a fixed point ofXt .

Cycles play an important role in the bifurcating theory of Dynamical
Systems. A singular cycle is one of the mechanisms to go from aMorse-
Smale flow (whose non-wandering set is a finite collection of hyperbolic
critical elements) to a hyperbolic flow (whose non-wandering set is a finite
collection of basic sets) through a one parameter family of flows.

In this chapter we shall describe three types of singular cycles, that will
be used in the sequel. Nowadays the first one, presented in Section 2.1, is
denominatedsingular-horseshoe. It was introduced by Labarca and Paci-
fico in [92] as a model for stable non hyperbolic flows in the context of
boundary manifolds. We show that this set satisfies some properties which,
in Chapter 3, will be defined as singular-hyperbolicity. This generaliza-
tion of (uniform) hyperbolicity will characterize a much broader class of
invariant sets for flows.

The second cycle is a homoclinic connection associated to a hyperbolic
singularity of saddle-type. There are several possibilities for these cycles

45
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which are used in the proofs presented in the following chapters. We pro-
vide a brief description the dynamics of perturbations of these cycles here.
One of them is a inclination flip cycle. This was studied by many authors,
see e.g. [80, 44] among others. The study of this type of cycleis crucial
for the proof, in Chapter 3, that a robust transitive set withsingularities
for a 3-flow is either an attractor or a repeller, together with the Shil’nikov
bifurcation, first considered in [185]. These are presentedin Section 2.2.

Finally the third one is the Lorenz geometrical model, introduced by
Guckenheimer and Williams [65] and presented in Section 2.3. This is a
model for a robust attractor with singularities for a 3-flow,as we will see in
Chapter 3.

2.1 Singular horseshoe

We start in Section 2.1.1 with the description of a map definedon a rect-
angle into itself which resembles the Smale horseshoe map [190]. For this
reason this type of map is nowadays denominated singular horseshoe.

Afterward, in Section 2.1.2, we exhibit a singular cycle presenting a
singular horseshoe map as a first return map. Then, in Section2.1.3, we
show in several stages that the singular horseshoe is a transitive partially
hyperbolic set with volume expanding central direction.

2.1.1 A singular horseshoe map

Givenδ > 0 small enough,λ < 1/2 andµ > 1, let Q = [−1,0]× [0,1+ δ]
and define

Rδ = Q\
(
(µ−1(1+δ),1/2−δ)× (1/2,1)

)
.

Let F : Rδ → Q, (x,y) 7→ (g(x,y), f (y)) be a smooth map satisfying:

(a) |∂xg(x,y)| < 1/2 for all (x,y) ∈ Rδ and

g(x,y) = λ ·x for 0≤ y≤ µ−1(1+2δ) .

(b) f : I \ (J∪K) → I whereI = [0,1], J = (µ−1(1+ 2δ),1/2− δ) and
K = (1/2,1) satisfying

(i) f (y) = µ·y for 0≤ y≤ µ−1(1+2δ),
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2.1. SINGULAR HORSESHOE 47

(ii) f ′(y) >> µ for y∈ [1/2−δ,1/2]∪ [1,1+δ].

(c) F(x,1) = F(x,1/2) = (α,0) for −1≤ x≤ 0 with a fixed−1< α < λ.

(d) the following sets

γ−1 = F({−1}× (1,1+δ]), γ0 = F({0}× (1,1+δ]),

β0 = F({0}× [1/2−δ,1/2)), β−1 = F({−1}× [1/2−δ,1/2))

are disjointC1 curves, except for the point(α,0) where all are tan-
gent. These curves are contained in(−1,−λ)× [0,1+ δ] and are
transverse to the horizontal lines. Moreover, ifd(A,B) denotes the
distance between the setsA andB, andL = {−1}× [0,1+δ] then

d(γ−1,L) < d(γ0,L) < d(β0,L) < d(β−1,L).

Figure 2.1 displays the main features of the mapF .
Observe that, by construction, the horizontal lines{x}× [0,1+ δ] , for

x ∈ [−1,0], are invariants byF . They are also uniformly contracted by a
factor 0< c0 < 1/2. This guaranties thatQ has a uniformly contracted
(strong-)stable foliation invariant byF that we denote byF ss(Q).

A0

A1

A2

γ−1 γ0 β−0 β−1
1+δ
1

1/2
1/2−δ

µ−1(1+2δ)

−1
α −λ 0

Figure 2.1: A singular-horseshoe map

Define the following rectangles

A0 = [−1,0]× [1,1+δ], A1 = [−1,0]× [1/2−δ,1/2],

A2 = [−1,0]× [0,µ−1(1+2δ)].
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Note that

Rδ =
i=1
[

i=0

Ai and define ΩF =
\

n∈Z

Fn(Rδ) .

It is clear thatF−1(ΩF) = ΩF .

Singular symbolic dynamics

We now associate a symbolic dynamics to the restrictionF | ΩF . For this,
consider a map̃F : Rδ → Q such thatF̃ has the same properties described
for F , except that̃F([−1,1]×{1}) andF̃([−1,1]×{1/2}) are disjoint in-
tervalsI andJ contained in the interior of[−1,λ]×{0} as in Figure 2.2.
DefineΩ = ∩n∈ZF̃n(Rδ).

A0

A1

A2

−1 I J −λF 0

γ−1 γ0 β0 β−1

Figure 2.2: A Smale horseshoe map

Clearly F̃ is a Smale horseshoe map. Roughly speaking,F is obtained
from F̃ pinching the intervalsI andJ into a unique point in such a way that
the resulting boundary lines̃γ−1, γ̃0, β̃0, andβ̃−1 are tangent at this point.

Let Σ3 be the set of doubly infinite sequences of symbols in{0,1,2}
endowed with the topology given by the distance

d(x,y) = ∑
i∈Z

|xi −yi |
3|i|

andσ : Σ3 → Σ3 be the left shift mapσ(x)i = xi+1.
It is well known (see e.g. [190] but also the textbooks of e.g.De-

vaney [52] or Robinson [177]) that there exists a homeomorphism H̃ : Ω →
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Σ3 which conjugates̃F andσ, i.e. H̃ ◦ F̃ = σ◦ H̃. The imageH̃(x) of x∈ Ω
is the sequence(H̃(x)i) ∈ Σ3 defined by

H̃(x)i = j ∈ {0,1,2} ⇐⇒ F̃ i(x) ∈ A j , i ∈ Z. (2.1)

Recall that the set of periodic orbits forσ is dense inΣ3 and that there exists
a dense orbit.

We now describe the sequences associated, in a similar way, to points
ΩF .

Observe that the tangency point(α,0) is the unique point ofΩF outside
of [−λ,0]× [0,1+ δ] which remains forever in the bottom boundary ofQ.
This line corresponds to the local stable manifold of the fixed point (0,0)
of F .

• Since[−1,0]×{0} = ∩n≤0F̃n(A2) we havez∈ [−1,0]×{0}∩Ω if,
and only if,θi(z) = 2 for all i ≥ 0, i.e. H̃(z) = (. . . ,x−1,2,2,2, . . .).

The points belonging to this line which are outside of[−λ,0]× [0,1+ δ]
are the points of the local stable manifold of(0,0) which are different from
(0,0), i.e. their corresponding codes differ from the constant sequencexi ≡
2 at some coordinate with negative index. DefiningΣ3

∗ the subset ofΣ3 of
those sequences(xi)i∈Z with x0 ∈ {0,1} andxi = 2 for all i ≥ 1, then

Ws
F̃

(
H̃(0,0)

)
\ H̃
(
[−λ,0]× [0,1+δ]

)
=

[

k≥1

σkΣ3
∗ = Σ̃3

∗

Note thatσ−1Σ̃3
∗ ⊆ Σ̃3

∗. Defining an equivalence relation onΣ3 by θ ∼ θ̃ if
and only ifθ, θ̃ ∈ Σ̃3

∗, then this relation is preserved by the shift.
Let Σ̃3 be the corresponding quotient space andσ̃ the associated quo-

tient shift map. This map can be seen as the original full shift map on
three symbols after identifying the sequences onΣ̃3

∗, which correspond to
the points which are taken to(α,0) by F .

By the above considerations and the dynamics ofF we get

Lemma 2.1. There exists a homeomorphism HF : ΩF → Σ̃3 which conju-
gates F| ΩF and HF , that is HF ◦ (F | ΩF) = σ̃◦HF .

The homeomorphismHF is defined just as in (2.1) replacing̃F by F .
Observe that the set of periodic orbits forσ̃ is the same set of periodic

orbits for σ. Note also that the dense orbit forσ is not contained iñΣ3
∗.
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Therefore the set of periodic orbits for̃σ is dense iñΣ3 and this space
contains a dense orbit. The existence of the conjugation above ensures that
ΩF has a dense subset of periodic orbits and a dense orbit for thedynamics
of F .

2.1.2 A singular cycle with a singular horseshoe first re-
turn map

We start by giving a definition of a special type of singularity of a vector
field X in a 3-manifold.

Definition 2.1. We say that a singularityσ of a 3-flowXt is Lorenz-like if
the eigenvaluesλi , 1≤ i ≤ 3 are real and satisfy

λ2 < λ3 < 0 < −λ3 < λ1. (2.2)

Next we shall exhibit a singular cycleC having a Lorenz-like singu-
larity p and a hyperbolic saddle-type closed orbitσ, connected through a
branch of the unstable manifold associated top: this branch is contained
in the stable manifold associated toσ. Moreover there are two orbits of
transverse intersection betweenWs(p) andWu(σ). The cycle will be con-
structed in such away that it is contained in the maximal invariant setΛ(X)
of a vector fieldX in a neighborhoodU of C , and the first return map asso-
ciated toC is a singular horseshoe map, see Figure 2.3.

   

p

Ws(p) Wu(σ)

σ

Figure 2.3: A singular cycle

We start with a vector fieldX0 ∈ Xr(D3) on the 3-diskD3 in R
3. This

vector field has one repeller singularityr1 at the north pole. Outside a
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neighborhood ofr1, X0 has four singularities which we denote byp, p1, p2, r2,
plus a hyperbolic closed orbitσ. These satisfy the following:

1. p is a Lorenz-like singularity.

2. (p,σ) is a saddle connection with a branchγu(p) of Wu(p) \ {p}
whoseω-limit set isσ. By the Hartman-Grobman Theorem there ex-
ists a neighborhoodp∈N ⊂R such that the restriction ofX0 toN is
equivalent to the linear vector fieldL(x1,x2,x3) = (λ2x1,λ1x2,λ3x3).

3. p1 is an attractor and is also theω-limit set of the other branch of
Wu(p)\{p}.

4. p2 is an attractor and is theω-limit of Wu(σ)\{σ}.

5. r2 is a repeller contained in the interior of the 2-diskD
2 bounded by

σ in S
2.

6. We assume that

(a) p1, p,γu(p),σ andD
2 are contained in the boundary∂(D3) = S

2

of the 3-disk;

(b) the eigenvalues ofDX0(r2) corresponding to eigenvectors in
TS

2 are complex conjugates. Therefore the part ofWu(r2) \
{r2} in S

2 is a spiral whoseω-limit set isσ.

(c) the strong unstable manifoldWuu(r2)\{r2} is contained in the
interior ofD3 and itsω-limit set is the attractorp2.

7. Theα-limit set ofWs(p)\{p} is the repellerr1 andWs(p) separates
the two attractors.

Figure 2.4 shows the essential features of the vector fieldX0 outside a
neighborhood ofr1. Observe thatX0 constructed in this way is a Morse-
Smale vector field.

Now we can modify the vector fieldX0 away from its critical elements,
in particular away from the neighborhoodN of p, in order to produce a
unique tangency betweenWs(p) andWu(σ), see Figure 2.5.

By another slight perturbation of the above vector field we get a vector
field X such thatWu(σ) is transverse toWs(p) at two orbits, see Figure 2.6.
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p2

σ
r2

γu(p)
pp1

Figure 2.4: The vector fieldX0.

p2

p2

σ
γu(p)

p

Figure 2.5: Producing a unique tangency.

The first return map associated toC is a singular horseshoe map

Now we study the first return map associated toC and show that it is a
singular horseshoe map.

Let Sbe a cross section toX atq∈ σ. ReparametrizingX, if necessary,
we can assume that the period ofσ is equal to one and thatS is invariant by
X1: there exists a small neighborhoodU ⊂ Sof q such thatX1(S∩U) ⊂ S.

Since there are two orbits of transverse intersection ofWu(σ) with
Ws(p) and the branchγu(p) hasσ as ω-limit set, there exists a first re-
turn mapF defined on subsets ofS, taking points ofSback toSunder the
action of the flow. The goal now is to describeF .

From now we assume mild non-resonant conditions on the eigenval-
ues ofp to ensure that there areC1 linearizing coordinates(x1,x2,x3) in a
neighborhoodU0 containingp.

Let Ds(p)⊂U0 andDu(p)⊂U0 be fundamental domains for the action
of the flow insideWs(p) andWu(p) respectively. That isDs(p) is a circle
in Ws(p) \ {p} containingp in its interior and transverse toX, andDu(p)
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p1

σγu(p)

p

p2

Figure 2.6: One point of tangency

p2

γu(p)

pp1

Figure 2.7: The final vector field.

is a pair of points, one in each branch ofWu(p)\{p}.
Let Cs(p) ⊂ U0 be a cross section toX, as in Figure 2.8, with several

components:Cs =Cs(p) =C+(p)∪Ds(p)∪C−(p). We assume thatC−(p)
is contained in the stable manifold of the attractorp1. We also assume that
the plane{x1 = 0} is a center-unstable manifold forp and we denote it by
Wcu(p). Let Cu(p) be a cross section toX formed by a 2-disk through the
point of γ(p)∩Du(p).

Observe that ifγ is aC1 curve transverse toDs(p) andγ∩Wss(p) = /0,
then

Cu(p)∩
(

[

t≥0

Xt(γ)
)

is aC1 curve tangent toWcu(p)∩Cu(p) atDu(p)∩ γu(p).
Let Ds(p2)⊂D

3 be a fundamental domain for the dynamics onWs(p2),
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p

x3

x2

x1
C−(p) Ds(p) C+(p)

Cu(p)

γ

p1

Figure 2.8: The cross sectionCs at p.

i.e. the boundary of a 3-ball containingp2. Let V ⊂ S be a small neigh-
borhood ofq ∈ σ, where we haveC1 linearizing coordinates(x,y) for the
Poincaŕe first return mapF associated toσ. The eigenvalues ofDF(q) are
λ,µ both bigger than 1.

Let Q = [−1,1]× [0,1] be a rectangle contained in the interior ofV.
Assume that

[−1,1]×{1
2
,1} ⊂Ws(p) and [−1,1]×{0} ⊂ S

2.

There are only two orbits of transverse intersection between Wu(σ) and
Ws(p), and the points in{1}× (1/2,1) will fall in the stable set ofp1, by
construction of the vector fieldX. SinceWs(p1) is open we can assume
that[−1,1]× (1/2,1) ⊂Ws(p1) (takingV small enough) and also

X1([−1,1]× (1/2,1)) ⊂C−(p)

through a reparametrization of time if necessary. Assume further that there
existsδ > 0 such that(1+2δ)µ−1 < 1/2−δ and

(a) forA0 = [−1,1]× (1,1+δ] we haveX1(A0) ⊂C+(p);

(b) for A1 = [−1,1]× [1/2−δ,1] we haveX1(A1) ⊂C+(p);

(c) X2
(
[−1,1]× [1+δ,1+2δ]

)
⊂ Ds(p2);

(d) X2
(
[−1,1]× [1/2−2δ,1/2−δ]

)
⊂ Ds(p2);



“LivroCBM-ultimo”
2007/8/20
page 55

i

i

i

i

i

i

i

i

2.1. SINGULAR HORSESHOE 55

(e) forA2 = [−1,1]× [0,(1+2δ)µ−1] we have

X1(A2) = [−λ,0]× [0,1+2δ] ⊂ Q.

Now define

H1(X) =
[

t≥0

Xt(X1(A0))∩Cu(p), H2(X) =
[

t≥0

Xt(X1(A1))∩Cu(p) .

Clearly Hi(X) are cones tangent toWcu(p)∩Cu(p) at Du(p) for i = 1,2,
see Figures 2.9 and 2.10.

X1(A0)
X2(A1)

p

Ws(p)

F(A0)

F(A1)

A0

A1

A2 σ

F(A2)

Ws(σ)

Figure 2.9: The first return map toQ.

Let α be the first intersection point betweenWu(p) and Q. We can
assume thatτi(X) = X1(Hi(X)) is contained inQ and that these sets are
cones tangent toWcu(p)∩Q at α, for i = 1,2.

Clearly we can also assume that

X3([−1,1]×{1+δ}
)
⊂ τ1(X) and X3([−1,1]×{1

2
−δ}

)
⊂ τ2(X).

If necessary, we modify the vector fieldX in order to have (see Figure 2.11):

(a) horizontal lines{y = constant} going to horizontal lines inτi(X);
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(b) writing πy for the projection on they-axis inV

πy

(
X3([−1,1]×{1+δ}

))
= {1+2δ} and

πy

(
X3([−1,1]×{1

2
−δ}

))
= {1+2δ};

(c) for Ds
σ = [−1,λ]× [0,1+δ] we haveτi(X) ⊂ intDs

σ for i = 1,2.

Wcu(p)∩Cu(p)

H1(X) H2(X)

Du(p)

Cu(p)

Figure 2.10: The first return map atDu(p)

Now we describe the first return mapF .

• If we take a point(x,y) with 1+ δ < y ≤ 1+ 2δ, then(x,y) is con-
tained in the stable manifold of the attractorp2 andF is not defined
at these points.

• For either a point(x,1) ∈ Q or (x,1/2) ∈ Q we defineF(x,1) = α =
F(x,1/2).

• For points(x,y) ∈ Q with 0≤ y≤ µ−1(1+ 2δ) we defineF(x,y) =
(λx,µy).

• For points(x,y) such that either 1< y≤ 1+δ or 1/2−δ ≤ y < 1/2,
we defineF(x,y) as the first intersection of the positive orbit through
(x,y) with the rectangleQδ = [−1,1]× [0,1+2δ].

• For points(x,y) with 1/2 < y < 1 the first returnF is not defined,
since these points are in the stable manifold of the attractor p1.

• F is also not defined for points(x,y) with µ−1(1+2δ) < y< 1/2−δ.
Indeed, these points are such that the projection on they-axis of their
first return toS is larger than 1+2δ. So these points return once toS
and then they are taken to the attractorp2.
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A0

A1

Wu(p)∩Q

α 1+2δ

1+2δ
1+δ
1

1/2

1/2−δ

0
A2

(1/2+δ)µ−1

Figure 2.11: The singular horseshoe return map.

Then the first return mapF has the expression:

F(x,y) =





(λx,µy) if 0 ≤ y≤ µ−1(1+2δ)
(g1(x,y), f1(y)) if 1 ≤ y≤ 1+δ
(g2(x,y), f2(y)) if 1/2−δ ≤ y≤ 1/2

with

• gi(x,y) is some smooth function with
∣∣∂xgi

∣∣< c < 1
2, and

• fi is a smooth function satisfyingf ′i (y) > µ and 0≤ fi(y) ≤ 1+ 2δ,
for i = 1,2.

We assume that the imageF({0}× [0,1+δ]) is transverse to the horizontal
lines inQδ .

The non-trivial dynamics ofF is concentrated in the squareQδ.
Let ΩF = ∩n≥0Fn(Qδ). Observe that the non-wandering setΩ(X) is

the disjoint union of the critical elements{r1, r2, p1, p2} andΛ, whereΛ is
the closure of the saturation by the flowXt of the non-wandering set of the
first return mapF described above, i.e.Λ = ∪t≥0Xt(ΩF).

The setΛ is the maximal invariant set containing the singular cycleC
in the neighborhoodU chosen at the beginning of the construction. This
invariant set is the so calledsingular horseshoe.

Remark2.2. On the boundary of the manifoldD3, which is preserved by the
flow, we have a Morse-Smale system. Hence any vector fieldY close toX
preserving the boundary will have the same features asX on the boundary.
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Moreover the features ofX depend on the transverse intersection of
certain invariant manifolds of the hyperbolic critical elements, all of which
lie on the boundary of the ambient manifold. Hence every vector field close
to X preserving the boundary will exhibit the same critical elements and
the same transversality relations between them, sothe singular-horseshoe
is robust among the vector fields which preserve the boundaryof D

3.

2.1.3 The singular horseshoe is a partially hyperbolic set
with volume expanding central direction

We start by constructing local stable and unstable manifolds through points
of ΩF with respect toF . The stable and unstable foliation of the singular
horseshoeΛ is the obtained as the saturation by the flow of these manifolds.
Then we explain how to obtain the strong-stable foliation. Having these
foliations we can define a splitting of the tangent space atΛ which will
behave much like a hyperbolic splitting.

Stable manifold for points in ΩF

Let F : Qδ → Q be the singular horseshoe map defined in the previous sub-
section.

It is easy to see that any horizontal line crossingQ is uniformly con-
tracted by a factor ofc∈ (0,1/2) by the definition ofF . Then, given any
pair of pointsx,y of ΩF in the same horizontal line one has

dist
(
Fk(x),Fk(y)

)
≤ ck −−−−→

k→+∞
0.

Hence these curves are the local stable manifolds through points ofΩF with
respect toF . Saturating these curves by the flow we obtain the foliation of
stable manifoldsF s through the points of the singular horseshoe.

For the particular case of the saddle singularityp and the periodic orbits
σ the stable leaves are given by the stable manifolds of these hyperbolic
critical points.

Unstable manifolds for points ofΩF

DefineR0 = Q∩F(A0), R1 = Q∩F(A1) andR2 = Q∩F(A2). ThenR0 and
R1 are, except for their vertexes, disjoint cones.R2 is a rectangle, crossing
Q from bottom to top.
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For eachi, j ∈ {0,1,2}, let Ri j = Ri ∩F(Rj). ThenF(Rj) = ∪2
i=0Ri j .

SinceF(x,y) = (g(x,y), f (y)) with |gx(x,y)| < c < 1/2, we have that the
horizontal lines are contracted by a factor ofc when iterated byF . Thus,
except forR22 (which is a rectangle strictly contained inR2), Ri j is a cone
strictly contained inRi .

Inductively, given any sequence ofn-symbolsx1,x2 · · · ,xn with xi ∈
{0,1,2} andn≥ 2 defineRix1x2···xn = Ri ∩F(Rx1···xn) for i = 0,1,2. Then

F(Rx1···xn) =
2

[

i=0

Rix1···xn .

Note that

• If all the xi are equal to 2, then

R2, R2∩F(R2), · · · , R2∩F(R2)∩·· ·∩Fn(R2)

is a strictly decreasing sequence of rectangles converging, in theC1

topology, to the vertical line{0}× [0,1+δ].

• If there is anyxi0 ∈ {0,1}, then the sequence

Rx0, Rx0 ∩F(Rx1), · · · , Rx0 ∩F(Rx1)∩F2(Rx2)∩·· ·∩Fn(Rxn)

is a strictly decreasing sequence ofC1-cones. Hence this sequence
converges to aC1 curve, denoted byγ(x0,x1, · · ·), which crossesQ
from top to bottom, that is,γ intersects each horizontal line ofQ in a
unique point, see Figure 2.12.

Note that every pointx∈ ΩF \{(α,0)} has a corresponding codeHF(x)
in Σ̃3 whose coordinates with positive index define a unique regular curve
γ = γ(x1,x2, . . .) as above. This curveγ is the same for everyy∈ ΩF hav-
ing a codeHF(y) with the same coordinates asHF(x) at positive indexes.
Such pointsy form the unstable manifold ofx with respect toF , since
d
(
σ−kHF(x),σ−kHF(y)

)
−−−−→
k→+∞

0.

Indeed, from the description of the mapF , it is clear thatγ is expanded
by all iterates ofF whenever its image is defined. Or, reversing time, by the
construction ofγ, the pre-image of any pair of pointsy,z∈ γ by Fk is well
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A0

A1

A2

1+2δα

(1+2δ)/µ

1/2−δ
1/2

1

1+δ
F(A0) F(A1)

Figure 2.12: The unstable curves ofΩF tangent at(α,0).

defined for allk≥ 1 and, moreover, for any pairy−k,z−k of such pre-images
under the same sequence of inverse branches ofF satisfies

dist
(
y−k,z−k

)
≤ ck −−−−→

k→+∞
0.

Saturating these curves by the flow we obtain the central-unstable foliation
F u through the points ofΛ.

The point(α,0) has already a well defined unstable manifold: the ver-
tical line crossingQ through(α,0), corresponding to the intersection of the
unstable manifold of the orbit ofWu(p) connecting the saddle singularity
p to the periodic orbitσ, see Figure 2.9.

In addition, the saddle singularityp and the periodic orbitσ also have a
well defined unstable foliation compatible with the leaves defined above.

Strong-stable foliation for the singular-horseshoe

The previous observations show thatevery periodic orbit of F onΩF is
hyperbolic of saddle-type. SinceF is the Poincaŕe first return map toQ of
the flowX, we deduce thatevery periodic orbit of X inΛ is hyperbolic of
saddle-type. Moreover the density of periodic orbits forF | ΩF implies that
the family of periodic orbits of X inΛ is dense inΛ.

In addition the stable foliation of the periodic orbits coincides with the
stable foliation defined above for all points, including thesingularityp and
the periodic orbitσ. Hence the strong-stable leavesF̃ ss defined on the
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periodic orbits extend (by continuity and coherence) to a strong-stable foli-
ationF ss defined throughoutΛ. Notice that at the singularityp the strong-
stable foliation coincides with its strong-stable manifold corresponding to
the weakest contracting eigenvalue.

Partial hyperbolicity

The flow invariance of the stableF s, strong-stableF ss and unstableF u

foliations through points ofΛ and the smoothness of their leaves enables us
to define the followingDX invariant sub-bundles: for every pointz∈ Λ

Ez = TzF
ss(z) and Fz = TzF

u(z)

satisfyDXt ·Ez = EXt (z) andDXt ·Fz = FXt (z), for all t ∈ R.
Now we show that the flowX contractsE uniformly, and contracts

strongly than any contraction alongF . Then we conclude by showing that
X expands volume alongF .

LetV be a neighborhood ofp where linearizing coordinated are defined.
Assume without loss of generality thatX1(Q) ⊂ V. In V the solutions of
the linear flow can be given explicitly as in (2.3).

Write Jc
t (z) for the absolute value of the determinant of the linear map

DXt | Fz : Fz → FXt (z) wherez is any point ofΛ andt ∈ R.
For pointsz in X1(Q) and fors > 0 such thatXt(z) remains inV for

0≤ t ≤ swe have

•
∥∥DXt | Ez

∥∥= eλ2t ;

•
∥∥DXt | Ez

∥∥= e(λ2−λ3)t ·m(DXt | Fz);

• |detDXt | Fz| = e(λ1+λ3)t ,

wherem(·) denotes the minimum norm of the linear map. Note that be-
causeλ1 + λ3 > 0 the flow inV expands volume along theF direction.
Moreover sinceλ2 < λ3 the flow contracts along theE direction strongly
than it expands along theF direction, by the second item above. We say
that F dominates E, see Chapter 3 for more on dominated splitting. Ob-
serve that the above properties are also valid for the singularity p and the
periodic orbitσ.

In what follows we extend these properties for the action ofX on points
of Λ for all times.
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Notice that the flow takes a finite amount of time, bounded fromabove
and from below, to take points inQ to X1(Q), and fromDu(p) to Q (these
times are constant and equal to 1 in our construction).

Hence if we are given a pointz∈ Λ \ {p,σ}, then its negative orbit
X−t(z) for t > 0 will have consecutive and alternate hits onDu(p) andQ, at
timest1 < s1 < t2 < s2 < · · · < tn < sn < .. . respectively, witht0 = s0 = 0
andrn = |tn+1−sn| bounded from below byT0 independently ofn≥ 1.

Let B> 0 be a upper bound on‖DX−t(z)‖ from 0 toT1 and for allz∈Λ.
Then from the volume expansion onV we have fortn < t ≤ sn

|detDX−t | Fz| ≤ exp
(

B·n− (λ1 +λ3) ·
(
t −

n−1

∑
i=1

r i
))

= exp
(

t · (λ1 +λ3) ·
( Bn
t(λ1 +λ3)

−1+
∑n−1

i=1 r i

t

))
.

Since t > T0n and ∑n−1
i=1 r i < t we see that there existsK > 0 such that

|detDX−t | Fz| ≤ K−1 ·e(λ1+λ3)t , which is equivalent to volume expansion.
The uniform contraction alongE and the domination ofF over E are

obtained by similar arguments, see also Section 2.3.3.

2.2 Bifurcations of saddle-connections

An homoclinic orbit associated to a singularityσ of X ∈X1(M) is a regular
orbit O (q) satisfying limt→+∞ Xt(q) = σ and limt→−∞ Xt(q) = σ. Here we
focus on the dynamics close toO (q) for small perturbations of the flow.

2.2.1 Saddle-connection with real eigenvalues

Consider the following one-parameter system of ordinary differential equa-
tions inR

3





ẋ = λ1x+ f1(x,y,z;µ)
ẏ = λ2y+ f2(x,y,z;µ)
ż = λ3z+ f3(x,y,z;µ)

(x,y,z,µ) ∈ R
4

where fi areC2 functions which vanish together withD fi at the origin of
R

4. So σ = (0,0,0) is a singularity. We assume that the eigenvaluesλi ,
i = 1,2,3 of σ are real andλ2 ≤ λ3 < 0 < λ1.
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Note that any other case of a hyperbolic saddle singularitywith only
real eigenvaluesfor a three-dimensional flow can be reduced to the present
case by considering the time reversed flow.

The hyperbolicity ofσ ensures the existence ofC1 stableWs(σ) and
unstable manifoldsWu(σ). The manifoldWs(σ) is tangent atσ to the
eigenspace{0}×R

2 associated to the eigenvaluesλ2,λ3, andWu(σ) is
tangent atσ to the eigenspace{(0,0)}×R associated toλ1.

In this setting an homoclinic orbit associated toσ is any orbitΓ = OX(q)
of a point q ∈ Ws(σ)∩Wu(σ) \ {σ}. We assume that there exists such
an homoclinic orbit. Moreover we make the supposition that the saddle-
connection brakes as in Figure 2.13.

x

y
z µ= 0

µ< 0

µ> 0

Γ

Figure 2.13: Breaking the saddle-connection.

Using linearizing coordinates and an analysis of the returnmaps to con-
venient cross-sections nearσ one can prove the following.

Theorem 2.3. For µ 6= 0 small enough a periodic orbit bifurcates fromΓ.
This periodic orbit is

1. a sink forλ1 < −λ3 ≤−λ2;

2. a saddle forλ1 < −(λ2 +λ3), −λ2 < λ1 and/or−λ3 < λ1;

3. a source for−(λ2 +λ3) < λ1.
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A proof of this result can be found in [207, pp. 207-219].
Observe that ifσ is Lorenz-like (recall Definition 2.1), then only item 2

above is possible. That is,a Lorenz-like saddle singularity is the only one
which persists in the unfolding of a saddle-connection withreal eigenval-
ues. It is natural that these are the only allowed singularitiesfor robustly
transitive attractors, see Section 3.

2.2.2 Inclination flip and orbit flip

Here we consider degenerated homoclinic orbits. We assume thatσ satisfies
some generic conditions: the eigenvaluesλi , i = 1,2,3 of σ are real and
distinct and satisfyλ2 < λ3 < 0 < −λ3 < λ1, that is,σ is a Lorenz-like
singularity, as in Definition 2.1.

The conditionλ2 < λ3 < 0 ensures that there is an invariantC1 mani-
fold Wss(σ), thestrong-stable manifold, tangent atσ to the eigendirection
of the eigenvalueλ2. There are also invariant manifoldsWcu(σ) containing
σ, calledcenter-unstablemanifolds, tangent atσ to the eigendirection gen-
erated by the eigenvectors associated toλ3,λ1. There are several of these
center-unstable manifolds but all of them are tangent alongWu(σ) atσ (the
reader should consult Hirsch, Pugh and Shub [76] for a proof of these facts).

Let Γ be a homoclinic orbit associated toσ. The following conditions
are generic, that is, both are true for a residual subset of flows in X1(M)
exhibiting a homoclinic orbit associated to a Lorenz-like singularity:

(G1) Wcu(σ) intersectsWs(σ) transversely alongΓ, i.e.

Γ = Wcu(σ) ⋔ Ws(σ); and

(G2) Γ∩Wss(σ) = /0.

We are going to study what happens when such generic conditions fail.

Definition 2.2. Let X ∈ Xr(M), r ≥ 1, be a smooth vector field andΓ be a
homoclinic orbit associated to a Lorenz-like singularityσ ∈ S(X). We say
that Γ is of inclination-flip type if (G1) fails and oforbit-flip type if (G2)
fails.

Generically inclination-flip homoclinic orbits are not orbit-flip and con-
versely.
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σ

W
s

X
(σ

σ

)

Γ

W (X σ) W
s
X

(σ)

Γ

W

ss

ss
X (σ)

(b)

(a)

WX(σ)
cu

Figure 2.14: (a) Inclination-flip; (b) orbit-flip.

Every Cr vector fields (r ≥ 1) exhibiting orbit-flip homoclinic orbits
can beCr approximated by smooth vector field exhibiting inclination-flip
homoclinic orbits, as stated in the following

Theorem 2.4. Let X be a C1 vector field in M exhibiting an orbit-flip ho-
moclinic orbit associated to a singularityσ of X. Suppose thatσ has real
eigenvaluesλ2 < λ3 < 0 < λ1 satisfying−λ3 < λ1. Then X can be C1

approximated by C1 vector fields exhibiting an inclination-flip homoclinic
orbit.

The proof of this theorem can be found in [129] and follows from
standard perturbation techniques (see e.g. [143]). Observe that a vec-
tor field exhibiting a inclination-flip type homoclinic orbit cannot have a
dominated splitting for the linear Poincaré flow. Indeed, the definition
of inclination-flip implies the existence of a tangency between the strong-
stable and center-unstable manifolds along a regular orbitof the flow.

As a consequence, by Theorem 2.4, for vector fields having every crit-
ical element hyperbolic and no sinks nor sources inside an isolating neigh-
borhoodU in a robust way, there cannot be either orbit-flip or inclination-
flip type homoclinic orbits because of Theorem 1.8, since this would con-
tradict the existence of a dominated splitting for the linear Poincaŕe flow.
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2.2.3 Saddle-focus connection and Shil’nikov bifurcations

Consider the following one-parameter system of ordinary differential equa-
tions inR

3





ẋ = −ρx+ωy+ f1(x,y,z;µ)
ẏ = ωx−ρy+ f2(x,y,z;µ)
ż = λz+ f3(x,y,z;µ)

(x,y,z,µ) ∈ R
4

whereλ,ω,ρ > 0 and fi areC2 functions which vanish together withD fi
at the origin ofR4. Thenσ = (0,0,0) is a saddle-focus with eigenvaluesλ
and−ρ±ωi.

These families exhibit very interesting dynamics when there exists a
homoclinic orbitΓ associated toσ, see Figure 2.15.

Wu(σ) = Γ

Ws(σ)

Figure 2.15: Saddle-focus connection

Again by the use of linearizing coordinates and an analysis of the return
maps to convenient cross-sections nearσ one can prove the following.

Theorem 2.5. For µ 6= 0 small enough we can find nearΓ:

1. either an attracting periodic orbit (a sink), forρ > λ;

2. or infinitely many generic unfoldings of homoclinic tangencies when
µ → 0, inducing in particular the appearance of attracting or re-
pelling periodic orbits nearΓ, for ρ < λ.

The setting of the second item above is known asShil’nikov bifurcation.
The proof of these results can be found in Shil’nikov’s work [185] and also
in [195, 13, 207, 168].

2.3 Lorenz attractor and geometric models

Here we present a study of the Lorenz system of equations (1.1) and then
explain the construction of the geometric Lorenz models, which initially
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where intended to mimic the behavior of the solutions of the system (1.1),
but actually give an accurate description of this flow. Recall the relation be-
tween the Lorenz flow, and the associated geometrical model,with sensitive
dependence on initial conditions and its historical impact, briefly touched
upon in Section 1.1.3.

2.3.1 Properties of the Lorenz system of equations

Here we list analytical properties directly obtained from the Lorenz equa-
tions, which can be found with much more details in the books of Spar-
row [62] and Guckenheimer-Holmes [64].

Let X : R
3 → R

3 be the flow defined by the equations (1.1).

1. Singularities of X.The originσ0 = (0,0,0) is a singularity of the
field X which does not depend on the parameters ofX. The others
are

σ1 = (−
√

b(r −1),−
√

b(r −1), r −1) and

σ2 = (
√

b(r −1),
√

b(r −1), r −1).

2. Symmetry of X.The map(x,y,z) 7→ (−x,−y,z) preserves the Lorenz
system of equations, that is if

(
x(t),y(t),z(t)

)
is a solution of the

system of equations, then
(
−x(t),−y(t),z(t)

)
will also be a solution.

3. Divergence of X.We have

DX(x,y,z) =




∂x(ẋ) ∂y(ẋ) ∂z(ẋ)
∂x(ẏ) ∂y(ẏ) ∂z(ẏ)
∂x(ż) ∂y(ż) ∂z(ż)


=




−a a 0
r −z −1 −x

y x −b




hence

divX(x,y,z) = ∇ ·X = trace
(
DX(x,y,z)

)
= −(a+1+b) < 0.

This shows the strongly dissipative character of this flow and implies
that the flow contracts volume: ifV0 is the initial volume of a subset
B of R

3 we have by Liouville’s Formula that the volumeV(t) of the
imageXt(B) is V(t) = V0e−(σ+b+1)t . For the parameters in (1.1) we

haveV(t) = V0e−
41
3 t .

In particular any maximally positively invariant subset underXt has
zero volume: Leb

(
∩t>0 Xt(U)

)
= 0 for any open subsetU of R

3.
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4. Eigenvalues of the singularities.For the parameters in (1.1) the sin-
gularities are, besidesσ0

σ1 = (−6
√

2,−6
√

2,27) and σ2 = (6
√

2,6
√

2,27).

For DX(σ0) we have the eigenvalues

λ1 = −11/2+
√

1201/2≈ 11.83;

λ2 = −11/2−
√

1201/2≈−22.83;

λ3 = −8/3≈−2.67.

Note that−λ2 > λ1 > −λ3 > 0 which corresponds to aLorenz-like
singularity (Definition (2.2)).
For σ1 the characteristic polynomial ofDX(σ1) is of odd degree
p(x) = x3 + 41

3 x2 + 304
3 x+1440and its derivativep′(x) = 3x2 + 41

4 x+
304
3 is strictly positive for allx ∈ R, hence there exists a single real

rootλ of p. Sincep(0) > 0> p(−15) the root is negative and simple
numerical calculations show thatλ ≈ −13.85457791. Factoringp
we get

p(x) =
(
x−λ

)(
x2−0.187911244x+103.9367643

)

=
(
x−λ

)(
x−z

)(
x−z

)

and thusz≈ 0.093955622+10.19450522i.
For σ2 the eigenvalues are the same by the symmetry ofX.

Using this we obtain the following Figure 2.16 of the local invariant
manifolds and thus the local dynamics near the singularities

(5) The trapping ellipsoid.There exists an ellipsoidE where eventually
every positive orbit of the flow enters. MoreoverE is transverse to
the flowX. Therefore the open regionV bounded byE is a trapping
regionfor X, that isXt(U) ⊂U for all t > 0.
This is obtained by finding an appropriate Lyapunov function. We
follow Sparrow [192, Appendix C] (see also the original workof
Lorenz [102]). Consider

L(x,y,z) = rx2 +ay2 +a(z−2r)2.
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σ 1

σ 1

σ2

σ2

σ

σ

σσ

σ

0

0
0

1 2

W s( )

( )
u

W u( )

W

W u( )

W s( )W s( )

E

Figure 2.16: Local stable and unstable manifolds nearσ0,σ1 andσ2, and
the ellipsoidE.

Then along solutions of the system (1.1) we have

dL
dt

= −2a
(
rx2 +y2 +bz2−2brz

)
.

Let D be domain wheredL/dt ≥ 0 and letM be the maximum ofL
in D. Now defineE to be the set of points such thatL ≤ M + ε for
someε > 0 small. SinceD ⊂ E for x outsideE we havedL/dt =
∇L ·X <−δ < 0 whereδ = δ(ε) > 0 andX is the vector field defined
by the equations (1.1). Then after a finite time the solution of the
Lorenz system throughx will enter the setE. Moreover for the values
(a, r,b) = (10,28,8/3) it is routine to check that∇L points to the
exterior ofV over ∂V = E and so all trajectories throughE move
towards the interior ofV. Once inV any trajectory will remain there
forever in the future.

SinceV is compact the maximal positively invariant setA=∩t>0Xt(V)
is an attracting set where trajectories of the flow accumulate whent grows
without limit.

In fact numerical simulations show that there exists a subset B home-
omorphic to a bi-torus such that every positive trajectory crossesB trans-
versely and never leaves it. Hence the open setU bounded byB (see Fig-
ure 2.17) is a better candidate for the trapping region of theset with in-
teresting limit dynamics forX, sinceσ1 andσ2 are isolated points in the
ω-limit set of X. HenceΛ = ∩t>0Xt(U) is also an attracting set and the
origin is the only singularity contained inU .
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σ0

σσ1 2

σ σ

σ0

1 2.
W

u

U
W W

ss

Figure 2.17: The trapping bi-torus.

The evolution of a regular orbit inside the attracting basin

Lorenz observed numerically what today is known assensitive dependence
on initial conditions, see Section 1.2.2. Due to this the actual path of any
given orbit is impossible to calculate for all large values of integration time.

The “butterfly” which appear on the computer screens can be explained
heuristically through the analytical properties already determined and by
some numerical results. In fact the set of points whose orbits will draw the
butterfly is the complementR3 \N of the unionN = Ws(σ0)∪Ws(σ1)∪
Ws(σ2) of the stable manifolds of the three singularities. Note that N is a
bi-dimensional immersed surface inR

2 and so has zero volume.

q r rq

.
E

p

.
E

p

Figure 2.18: The evolution of a generic orbit insideU .

Figure 2.18 provides a very general view of how the orbit of a generic
point in the trapping regionU evolves in time. The trajectory starts spiraling
around one of the singularities,σ2 say, and suddenly “jumps” to the other
singularity and then starts spiraling aroundσ2. This process repeats end-
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lessly. The number of turns around each singularity is essentially random.
Theω-limit of a generic orbit is the following “butterfly” in Figure 2.19.

Figure 2.19: Another view of the Lorenz attractor.

2.3.2 The geometric model

The work of Lorenz on the famous flow was published in 1963 [102] but
more than 10 years passed before new works on the subject appeared.
Williams [208] wrote (in 1977):

. . . Several years ago Jim Yorke figured out some things about
the Lorenz equation and got other mathematicians interested.
He gave some talks on the subject, including one here at Berke-
ley. Ruelle, Lanford and Guckenheimer became interested and
did some work on these equations. Unfortunately, except for
the preprint of Ruelle, Guckhenheimer’s paper, is the only thing
these four people ever wrote on the subject as far as I know.

Lorenz had already conjectured the existence of a strange attractor accord-
ing to the available numerical simulations. The rigorous proof of this fact
took many years due to the presence of a singularity accumulated by regular
orbits of the flow, which prevents this set from being uniformly hyperbolic
— see e.g. Section 1.2.
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An important breakthrough in the understanding of the dynamics of
the solutions of the Lorenz system of equations was achievedthrough the
introduction of geometric models independently by Afraimovich, Bykov,
Shil’nikov [1] in 1977 and by Guckenheimer, Williams [65] in1979. These
models were based on the properties suggested by the numerical simula-
tions. In fact they were able to show the existence of a strange attractor for
the geometric model.

This model inspired many others. Today there are different extensions
and there are singular attractors which are not of the “Lorenz type”: neither
conjugated nor equivalent to the Lorenz geometrical model,see e.g. [125].

As explained in Section 1.1.3 on page 9, in 1998 a positive answer to the
existence of a strange attractor in the original Lorenz system of equations
was given by Tucker [196] in his PhD thesis, through the theory of normal
forms together with rigorous numerical algorithms.

Construction of the geometric model

To present the detailed construction of the geometric Lorenz model we first
analyze the dynamics in a neighborhood of the singularity atthe origin, and
then we imitate the effect of the pair of saddle singularities in the original
Lorenz flow, as in Figure 2.16.

Near the singularity

By the Hartman-Grobman Theorem or by the results of Sternberg [193],
in a neighborhood of the origin the Lorenz equations are equivalent to the
linear system(ẋ, ẏ, ż) = (λ1x,λ2y,λ3z) through conjugation, thus

Xt(x0,y0,z0) = (x0eλ1t ,y0eλ2t ,z0eλ3t), (2.3)

whereλ1 ≈ 11.83 , λ2 ≈ −22.83, λ3 = −8/3 and(x0,y0,z0) ∈ R
3 is an

arbitrary initial point near(0,0,0).
ConsiderS=

{
(x,y,1) : |x| ≤ 1/2, |y| ≤ 1/2

}
and

S− =
{
(x,y,1) ∈ S: x < 0

}
, S+ =

{
(x,y,1) ∈ S: x > 0

}
and

S∗ = S−∪S+ = S\Γ ,where Γ =
{
(x,y,1) ∈ S: x = 0

}
.

Assume thatSa transverse section to the flow so that every trajectory even-
tually crossesS in the direction of the negativez axis as in Figure 2.20.
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S

.
.

Γ

Figure 2.20:S is a cross-section of the flow.

Consider alsoΣ = {(x,y,z) : |x| = 1} = Σ−∪Σ+ with Σ± = {(x,y,z) : x =
±1}. For each(x0,y0,1) ∈ S∗ the timeτ such thatXτ(x0,y0,1) ∈ Σ is given
by τ(x0) = − 1

λ1
log|x0|, which depends onx0 ∈ S∗ only and is such that

τ(x0) → +∞ whenx0 → 0. This is one of the reasons many standard nu-
merical algorithms were unsuited to tackle the Lorenz system of equations.
Hence we get (where sgn(x) = x/|x| for x 6= 0 as usual)

Xτ(x0,y0,1) =
(

sgn(x0),y0eλ2τ,eλ3τ)=
(

sgn(x0),y0|x0|
− λ2

λ1 , |x0|
− λ3

λ1
)
.

Since 0< −λ3 < λ1 < −λ2, we have 0< α = −λ3
λ1

< 1 < β = −λ2
λ1

. Let L :

S∗ → Σ be such thatL(x,y) =
(
y|x|β, |x|α

)
with the convention thatL(x,y)∈

Σ+ if x > 0 andL(x,y) ∈ Σ− if x < 0. It is easy to see thatL(S±) has the

x=x=

λ

λ

λ

1

2 3

.

.
p.

+
-

- +11

ΣΣ

S S- +

Γ

L

Figure 2.21: Behavior near the origin.

shape of a triangle without the vertex(±1,0,0). In fact these are cusp
points of the boundary of each of these sets.
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From now on we denote byΣ± the closure ofL(S±). Clearly each line
segmentS∗ ∩ {x = x0} is taken to another line segmentΣ ∩ {z = z0} as
sketched in Figure 2.21.

3

2
1

+

_ Γ

R

R

Σ

Σ

S

λ

λ

λ

Figure 2.22:R takesΣ± to S.

The effect of the saddles

The setsΣ± should return to the cross sectionS through a rotation around
Ws(σ1) andWs(σ2). We assume that this rotation takes line segmentsΣ∩
{z= z0} into line segmentsS∩{x = x1} as sketched in Figure 2.22.

We are assuming that the “triangles”Σ± are compressed in they-direction
and stretched on the other transverse direction. This is related to the eigen-
values ofσ1,σ2 of the original Lorenz flow as explained below.

The rotationR mentioned above is assume to be such that for each
(y,z) ∈ Σ±

DR(y,z) =

(
0 ±M
σ 0

)
for some 0< σ < 1 and M > 1,

and we define the Poincaré first return mapP : S∗ → SasP = R◦L.
The combined effects ofRandL on lines implies that the foliation ofS

given by the linesS∩{x = x0} is invariant under the return map, meaning
that for any given leafγ of this foliation, its imageP(γ) is contained in a leaf
of the same foliation. HenceP must have the formP(x,y) =

(
f (x),g(x,y)

)
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for some functionsf : I \ {0} → I and g : (I \ {0})× I → I , whereI =
[−1/2,1/2].

A consequence of all this is that everyx∈ Shas a positive orbit disjoint
from Wss(σ). Since every pointx ∈ Λ \ {σ} has a positive orbit that will
eventually crossSby construction, we see that

Wss(σ)∩Λ = {σ}. (2.4)

S

S

( )

(

P

P

+

S+

-S

- )

Γ

Figure 2.23:P(S∗).

f(x) x
..

Γ

S

Figure 2.24: Projection onI .

Properties of the one-dimensional mapf

Now we specify the properties which we impose onf :

(f1) the symmetry of the Lorenz equations impliesf (−x) = − f (x).

(f2) f is discontinuous atx= 0 with lateral limitsf (0−)=+1
2 and f (0+)=

−1
2, sinceP is not defined atΓ becauseΓ ⊂Ws(0,0,0).

(f3) f is differentiable onI \ {0} and f ′(x) >
√

2, since the real part of
the (complex) eigenvalues of the saddlesσ1,σ2 is positive (see the
previous Section 2.3.1).

(f4) the lateral limits off ′ atx = 0 are f ′(0−) = +∞ and f ′(0+) = −∞.

On the other handg : S∗ → I is defined in such a way that it contracts
the second coordinate: we assumeg′y(w) ≤ µ < 1 for all w ∈ S∗. This is
suggested by the eigenvaluesλ2 ≈−22.83 of σ0 andλ ≈−13.8545 of the
saddlesσ1,σ2 (see Section 2.3.1). Moreover the rate of contraction ofg on
the second coordinate should be much higher than the expansion rate off .
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Figure 2.23 sketchesP(S∗). In addition the expansion rate is big enough
to obtain a strong mixing property forf (it is locally eventually onto, see
Section 2.3.5).

The foliation is contracting in the following sense: for a given leafγ of
the foliation and forx,y∈ γ then dist

(
Pn(x),Pn(y)

)
→ 0 whenn→ ∞.

Thus the study of the 3-flow can be reduced to the study of a bi-dimensional
map and, moreover, the dynamics of this map can be further reduced to a
one-dimensional map, since the invariant contracting foliation enables us to
identify two points on the same leaf, since their orbits remains forever on
the same leaf and the distance of their images tends to zero under iteration,
see Figure 2.24 for a sketch of this identification.

The quotient map obtained through this identification will be calledthe
Lorenz map. Figure 2.25 shows the graph of this one-dimensional transfor-
mation.

+1/20-1/2

Figure 2.25: The Lorenz mapf .

2.3.3 The geometric Lorenz attractor is a partially hyper-
bolic set with volume expanding central direction

Observe that the timet(w) it takes a pointw∈Σ to go toS, that isXt(w)(w)∈
SandXt(w) ∈ R

3 \ (S∪Σ) for 0 < t < t(w), is bounded by some constant
independently of the point:t(w) ≤ t0. This ensures that the behavior of
the flow on the maximal positively invariant subset of the trapping region
is prescribed by the behavior from the cross-sectionS to the cross-sections
Σ+,Σ−, as we now explain.

Figure 2.21 makes it clear that the linear flow (2.3) preserves lines in the
direction of they-axis when taking points fromS to Σ. Moreover it is not
difficult to check thatits derivative DXt also preserves planes orthogonal
to they-axis.
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In addition, by the choice of the flow fromΣ to S and as Figure 2.22
suggests, horizontal lines atΣ, i.e. parallel to they-axis, are taken to lines
parallel to same axis inS, that isthe flow preserves lines parallel to the y-
axis fromΣ to S. Since the flow fromΣ to S is essentially a rotation, we can
assume that its derivative also preserves planes orthogonal to the y-axis.

¿From this we deduce that the following splitting ofR
3: E = R ×

{(0,0} andF = {0}×R
2, is preserved by the flows, that isDXt

w ·E = E
andDXt

w ·F = F for all t and every pointw in an orbit inside the trapping
ellipsoid.

Moreover we can check that forw on the linearised part of the flow,
from Sto Σ, we have fort > 0 such thatX[0,t](w) is contained in the domain
of the linearised coordinates:

• ‖DXt
w | E‖ = eλ2t ;

• ‖DXt
w | E‖ = e(λ2−λ3)t ·m

(
DXt | F),

wherem
(
DXt | F) is the minimum norm of the linear map. Sinceλ2 < 0

we see thatE is uniformly contracting, this a stable direction. Butλ2 −
λ3 < 0 and so the contraction along the direction ofF is weaker than the
contraction alongE. This kind of splittingE⊕F of R

3 is called apartially
hyperbolic splitting.

Observe also that sinceλ1+λ3 > 0 we have that|detDXt |F |= e(λ1+λ3)t

and so the flowexpands volumealong theF direction.
We will see in Chapter 3 that these properties characterize compact in-

variant sets which are robustly transitive.
However we have only checked these properties in the linearised region.

But if the orbit of a pointw passes outside the linear regionk times fromΣ
to S lastings1 + · · ·+sk from time 0 to timet, thent > s1 + · · ·+sk and for
some constantb > 0 bounding the derivatives ofDXt from 0 tot0 we have

‖DXt
w | E‖ ≤ ebk+λ2(t−s1−···−sk) = exp

{
λ2t
(
1− bk

λ2t
− s1 + · · ·+sk

t

)}
,

so the last expression in brackets is bounded. We see thatE is (K,λ2)-
contracting for someK > 0.

An entirely analogous reasoning shows that the directionE dominates
F uniformly for all t and thatDXt expands volume alongF also uniformly.

Thus the maximal positively invariant set in the trapping ellipsoid is
partially hyperbolic and the flow expands volume along a bi-dimensional
invariant direction.
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2.3.4 Existence and robustness of invariant stable folia-
tion

Now we prove, partially following the work of [65], that the geometric
Lorenz attractor constructed in the previous subsection isrobust, that is, it
persists for all nearby vector fields.

More precisely: there exists a neighborhoodU in R
3 containing the

attracting setΛ such that for all vector fieldsY which areC1-close toX the
maximal invariant subset inU , that isΛY = ∩t≥0Yt(U), is still a transitive
Y-invariant set.

This is a striking property of these flows since the Lorenz flowexhibits
sensitive dependence on initial conditions. The robustness will be a conse-
quence of the persistence of the invariant contracting foliation on the cross-
sectionS to the flow.

Numerically this is expected since in spite of the huge integration errors
involved and the various integration algorithms used the solutions obtained
always have a shape similar to the one in Figure 2.19, independently of the
initial point chosen to start the integration.

We start by obtaining the persistence of the stable foliation for points
in the attractor, then explain why these attractors, although robust, arenot
structurally stable, in Section 2.3.5.

We note thatC1-robustly transitive attractors in 3-manifolds were com-
pletely described from the geometrical point-of-view in [133] and the proof
of this result is presented in Chapter 3.

Geometric idea of the proof

Theorem 2.6 (Persistence of contracting foliation). Let X be the vector
field obtained in the construction of the geometric Lorenz model andFX

the invariant contracting foliation of the cross-section S. Then any vector
field Y which is sufficiently C1-close to X admits an invariant contracting
foliation FY on the cross-section S.

We first present a geometric idea of the proof and then proceedto the
details in the following Section 2.3.4.

Observe first that the cross-sectionS remains transverse to any flow
C1-close toX and that the singularitiesσ0,σ1,σ2 persist with eigenvalues
satisfying the same relations as before since they are hyperbolic. In addi-
tion, sinceWu

X(σ0) intersectsS transversely, then just by theC1 continuous
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variation of compact parts of the unstable manifolds of a hyperbolic singu-
larity we have thatWu

Y (σ0(Y)) still intersectsS transversely for allY close
to X in theC1 norm.

Without loss we can assume, after aC1 change of coordinates, that the
Lorenz-like singularityσ0(Y) remains at the origin and that the eigenvec-
tors ofDY(σ0(Y)) have the directions of the coordinate axis as before, with
the planex = 0 containing the stable manifold ofσ0(Y).

Thus for a neighborhoodU of X in theC1 topology and for eachY ∈U
we can define the Poincaré first return mapPY : S∗ → S asPY = RY ◦ LY

whereLY : S∗ → Σ is such thatLY(x,y) = (y|x|β, |x|α) with α = −λ3(Y)
λ1(Y) and

β = −λ2(Y)
λ1(Y) (note thatβ−α > 1).

On the other handRY : Σ → S is a C1-diffeomorphism which can be
expressed by the compositionRY = JY ◦R0, whereJY is aC1-perturbation
of the identity andR0 is the diffeomorphism associated toX0.

Now letA be the space of continuous mapsφ : U ×S→ [−1,+1]. For
eachY ∈ U andφ ∈ A we defineφY : S→ [−1,1] by φY(q) = φ(Y,q) for
all q ∈ S. We associate toφY a vector fieldηφ

Y : S→ [−1,1]×{1} given

by ηφ
Y(q) =

(
φY(q),1

)
which we view as a vector onTqS= R

2. Integrating

q

ηφ
(q)

S

1

φ
Y
(

.

..
q)

θ

π/4

Y

Figure 2.26: The fieldηφ
Y.

the fieldηφ
Y we get a family of curves which induces a foliation onS. We

must show that there existsφ∈ A such thatηφ
Y induces an invariant foliation

underPY. Before explaining the proof of this fact we state a necessary and
sufficient condition for the invariance of this foliation.

Let F be a continuous vector field defined onSandP the map defined
above. IntegratingF we get a foliation ofS. Letq∈S∗ have imageP(q) and
consider the vectorsF(q) andF

(
P(q)

)
. Observe that the foliation induced
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by F is invariant underP if

DP(q)
(
F(q)

)
and F

(
P(q)

)
are parallel, or

F(q) and [DP(q)]−1F
(
P(q)

)
are parallel.

. .
q

S

F

(q

q( )F

P

q(P(
PF

−1[ ])(q (q

)

)

)

))(PD

Figure 2.27: The fieldF and the parallel condition.

On the other hand if we consider the slope of vectors with respect to the
vertical direction(0,1), two vectors are parallel if, and only if, their slope
is the same. For(a,b) ∈ R

2 we set slope(a,b) = a/b and hence to check
that the foliation defined byF is invariant underP amounts to obtain

slope
(
F(q)

)
= slope

(
[DP(q)]−1F

(
P(q)

))
.

Translating this forηφ
Y we obtain the condition

φY(q) = slope
(

ηφ
Y(q)

)
= slope

([
DPY(q)

]−1ηφ
Y

(
PY(q)

))
.

The last term above depends onφ,X andq and if we defineT : A → A as

T
(
φY
)
(q) = slope

([
DPY(q)

]−1ηφ
Y

(
PY(q)

))
,

then the condition of invariance becomesT
(
φY
)
(q) = φY(q), that isT(φ) =

φ. Hence the elementφ ∈ A for which ηφ
X induces and invariant foliation

on S is a fixed point ofT. Thus we are left to prove that the operatorT has
a fixed point.

For this, we first show thatT is well defined and then thatT is a con-
traction in an appropriate space, which concludes the proofof Theorem 2.6.
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Proof of existence of invariant stable foliation

The Poincaŕe mapPY associated toY ∈ U can be written

PY(q) =
(

fY(q),gY(q)
)

for q∈ S∗. We rewriteT as a function off andg. First we calculate

(
DPY(q)

)−1
=

1
∆




∂ygY(q) −∂y fY(q)

−∂xgY(q) ∂x fY(q)


 with ∆ = detDPY(q).

Then it is not difficult to see that the slope of

(
DPY(q)

)−1ηφ
Y

(
PY(q)

)
=

1
∆




∂ygY(q) −∂y fY(q)

−∂xgY(q) ∂x fY(q)






φY
(
PY(q)

)

1




is

slope
((

DPY(q)
)−1ηφ

Y

(
PY(q)

))
=

[φY
(
PY(q)

)
]∂ygY(q)−∂y fY(q)

−[φY
(
PY(q)

)
]∂xgY(q)+∂x fY(q)

Writing P̂(Y,q) =
(
Y,PY(q)

)
we get

T(φY)(q) =
(φ◦ P̂)∂yg−∂y f

∂x f − (φ◦ P̂)∂xg
(Y,q)

Lemma 2.7. Let a0 ∈ (0,1/5) and Y a vector field C1-close to X. If PY(q) =
P(Y,q) =

(
f (Y,q),g(Y,q)

)
, then there are positive constants ki , i = 1,2,3

such that for all q∈ S∗

1.
∣∣∣ ∂xg(Y,q)

∂x f (Y,q)

∣∣∣≤a0; |∂yg(Y,q)|
|∂x f (Y,q)| ≤ k1|x|(β−α+1);and|∂y f (Y,q)|

|∂x f (Y,q)| ≤ k2|x|(β−α+1);

2. ‖DqP(Y,q)‖ ≤ k3|x|(α−1)and |detDqP(Y,q)| ≤ a0|x|(β+α−1);

3. supS∗

{
|∂yg|
|∂x f | ,

|∂y f |
|∂x f | ,

|∂xg|
|∂x f | , |detDP|

}
< a0.
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Proof. We provide the calculations forx > 0, the other case being analo-
gous. SincePY = RY ◦LY we haveDPY(q) = DRY

(
LY(q)

)
DLY(q) and

DLY(x,y) =

(
βyxβ−1 xβ

αxα−1 0

)
.

Recall thatRY = JY ◦R0 and so we have thatDRY
(
LY(x,y)

)
can be written

asDJY
(
R0(LY(x,y))

)
·DR0

(
LY(x,y)

)
. SinceJY is close to the identity we

may writeJY(x,y) = (x+ ε1,y+ ε2) with (ε1,ε2) = ε(X,y,z) small in the
C1-norm. Thus we have

DJY =

(
1+∂xε1 ∂yε1

∂xε1 1+∂yε2

)
and DR0 =

(
0 M
σ 0

)

and so

DRY =

(
σ ·∂yε1 M +M ·∂xε1

σ+σ ·∂yε2 M ·∂xε1

)
=

(
ε1 M + ε2

σ+ ε3 ε4

)
.

Finally we multiply the last pair of matrices to get

DPY(x,y) =

(
ε1βyxβ−1 +Mαxα−1 + ε2αxα−1 ε1xβ

σβyxβ−1 + ε3βyxβ−1 + ε4αxα−1 σxβ + ε3xβ

)

=

(
∂x f ∂y f
∂xg ∂yg

)
.

We may now assume without loss in what follows thatε = εi sinceεi → 0
whenY → X. Hence
(

∂x f ∂y f
∂xg ∂yg

)
=

( [
εβyx(β−α) +(M + ε)α

]
x(α−1) εxβ

[
(σ+ ε)βyx(β−α) + εα

]
x(α−1) (σ+ ε)xβ

)
.

Now we may find the stated bounds as follows.

1. Whenε → 0 we have both

σ+ ε
εβyx(β−α) +(M + ε)α

→ σ
Mα

and
ε

εβyx(β−α) +(M + ε)α
→ 0,

hence these quotients are bounded: there arek1 andk2 so that|∂yg|
|∂x f | ≤

k1|x|(β−α+1) and |∂y f |
|∂x f | ≤ k2|x|(β−α+1).
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On the other hand, again whenε → 0 we get

|∂xg|
|∂x f | =

(σ+ ε)βyxβ−α + εα
εβyxβ−α +(M + ε)α

→ σβyxβ−α

Mα
≤ σβ

2·2β−αMα

where the bound above follows becauseβ−α > 0. Since 0< σ <
1 andM > 1 where chosen arbitrarily in the construction, we may
assume thatσ is very small andM big enough so that|∂xg|

|∂x f | ≤ a0.

2. It is clear that since 0< α < 1 < β and

(
∂x f ∂y f
∂xg ∂yg

)
−−→
ε→0

(
Mαx(α−1) 0
σβyx(α−1) σxβ

)
,

the norm of the matrix is dominated by the value of|x|α−1 for x≈ 0,
thus there existsk3 such that‖DqP(Y,q)‖ ≤ k3|x|α−1. On the other
hand

|detDqP(Y,q)| = |∂x f ∂yg−∂y f ∂xg| ≤ |∂x f ||∂yg|+ |∂y f ||∂xg|
≤ r1|x|β+α−1 + r2|x|β+α−1 ≤ K|x|β+α−1

where the existence ofr1, r2 > 0 as above is a consequence of both
|∂x f | · |∂yg| −−→

ε→0
Mασx(β+α−1) and |∂y f | · |∂xg| −−→

ε→0
0 and also of

β + α > 1. Note that we may assumeK ≤ a0 by settingMσ small
(that is, we assume that the volume is contracted).

3. Finally for the quotients of the entries ofDPY note that we can again
use the bounds already obtained and get then smaller thana0 by let-
ting σ close to 0 andM big enough.

Proposition 2.8. Let T be defined as before depending on f and g. Then

1. T(A ) ⊂ A , that is, T: A → A is well defined;

2. T : A → A is a contraction.
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Proof. First we show that forφ ∈ A thenT(φ) is continuous and|T(φ)| ≤
1, which would prove the first item of the statement. According to the
definition ofT we have

|T(φ)(Y,q)| = |(φ◦ P̂)∂yg−∂y f |
|∂x f − (φ◦ P̂)∂xg|

(Y,q) =
|(φ◦ P̂)

∂yg
∂x f −

∂y f
∂x f |

|1− (φ◦ P̂) ∂xg
∂x f |

(Y,q)

≤
| ∂yg

∂x f |+ | ∂y f
∂x f |

1−| ∂xg
∂x f |

(Y,q) ≤ k2|x|β−α+1 +k3|x|β−α+1

1−k1
≤ K|x|β−α+1.

Thus|T(φ)(Y,q)| → 0 if |x| → 0, which shows thatT(φ) is continuous at 0.
Thenφ is continuous since the expression is continuous away fromx = 0.
Moreover

|T(φ)(Y,q)| ≤
| ∂yg

∂x f |+ | ∂y f
∂x f |

1−| ∂xg
∂x f |

(Y,q) ≤ 2a0

1−a0
< 1,

by Lemma 2.7(3) and becausea0 ∈ (0,1/5) implies 2a0
1−a0

< 1/2.
Now the contraction is easy, since forφ1,φ2 ∈ A and for fixed(Y,q) ∈

U ×S

|T(φ1)−T(φ2)| =
|detDP(q)| · |φ1◦ P̂−φ2◦ P̂|∣∣∂x f − (φ1◦ P̂)∂xg

∣∣ ·
∣∣∂x f − (φ2◦ P̂)∂xg

∣∣

≤ a0

(1−a0)2 |φ1−φ2|

and again a0
(1−a0)2 < 1/2, as long asU is taken small enough aroundX so

that Lemma 2.7 remains valid.

We have shown that there exists a unique fixed point forT onA as we
wanted and so we have an invariant foliation onS.

Differentiability of the foliation

Now we prove that the fixed pointφ(Y,q) depends onY,q continuously on
theC1 topology. We do this by showing thatDφY depends continuously on
(Y,q) and that the operatorT is also a contraction on theC1 norm.
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Again using the definition ofT at a point(Y,q) we obtain the following
expression

DT(φ) =
D
[
(φ◦ P̂)∂yg−∂y f

]

∂x f − (φ◦ P̂)∂xg
− (φ◦ P̂)∂yg−∂y f
(
∂x f − (φ◦ P̂)∂xg

)2 ·D
[
∂x f − (φ◦ P̂)∂xg

]

= V1(φ)+T(φ)V2(φ)+N(φ)Dφ
(
P̂(X,q)

)
,

where we have used

V1(φ) =
φ◦ P̂

∂x f − (φ◦ P̂)∂xg
·D∂yg−

1

∂x f − (φ◦ P̂)∂xg
D∂y f ;

V2(φ) =
φ◦ P̂

∂x f − (φ◦ P̂)∂xg
·D∂x f − 1

∂x f − (φ◦ P̂)∂xg
D∂xg;

N(φ) =
detDP(X,q)

(
∂x f − (φ◦ P̂)∂xg

)2 .

Now define the spaceA1 of continuous mapsA : U ×S→ L (X ×R
2,R)

such that

sup
(X,q)

|A(X,q)| < 1 and A
(
X,(0,y)

)
= 0 for all y∈

[
−1

2
,
1
2

]

and consider the operator̃T : A ×A1 → A ×A1 such that forφ ∈ C1 we
haveT̃(φ,Dφ) =

(
T(φ),DT(φ)

)
, defined as̃T

(
φ,A) =

(
Tφ,S(φ,A)

)
where

S(φ,A) is given by

S(φ,A)(Y,q) =
[
V1(φ)−T(φ)V2(φ)+N(φ)(A◦ P̂) ·DP̂

]
(Y,q),

whereV1(φ),V2(φ) andN(φ) were defined previously during the calculation
of DT(φ).

Again we need to show that̃T is well defined and a contraction.

Lemma 2.9. Take Y C1-close to X such that the estimates of Lemma 2.7
are valid. If PY(q) = P(Y,q) =

(
f (Y,q),g(Y,q)

)
then there are positive

constants ki = 4, . . . ,8 such that for all q∈ S∗

1. |D∂yg|
|∂x f | ≤ k4|x|β−α, |D∂xg|

|∂x f | ≤ k5|x|−1;
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2. |D∂y f |
|∂x f | ≤ k6|x|β−α, |D∂x f |

|∂x f | ≤ k7|x|−1;

3. |detDqP|
|∂x f |2 |DP̂| ≤ k8|x|β, |N(φ)| · |DP̂| < 1/2;

4. supS∗

{
|D∂yg|
|∂x f | ,

|D∂y f |
|∂x f |

}
< a0.

Proof. Using Lemma 2.7, since∂x f −−→
ε→0

Mαxα−1 we see there areK1,K2

satisfying

K1|x|α−1 ≤ |∂x f | ≤ K2|x|α−1. (2.5)

On the other hand, taking derivatives we see that

∂X(∂yg) = xβ∂Xε+(σ+ ε)xβ log(β)∂Xβ)

∂x(∂yg) = ∂xεxβ +(σ+ ε)βxβ−1

∂y(∂yg) = ∂εxβ.

Then|D∂yg| ≤K3|x|β−1 and by (2.5) we see there existsk4 such that|D∂yg|
|∂x f | ≤

k4|x|β−α. Analogously we may estimate the derivatives∂X(∂xg),∂2
x,∂y(∂xg)

obtaining

|∂X(∂xg)| ≤ K|x|α−1, |∂2
xg| ≤ K|x|α−2, |∂y(∂xg)| ≤ K|x|β−1

and thus|D∂xg| ≤ K|x|α−2 and by (2.5) we getk5 so that |D∂xg|
|∂x f | ≤ k5|x|−1.

This proves the first item of the statement.

Again analogously we obtain|D∂y f | ≤K|x|β−1 and by (2.5) also|D∂y f |
|∂x f | ≤

k6|x|β−α for a constantk6.
¿From the explicit expression of∂x f we get|∂X(∂x f )| ≤ K|x|α−1 and

also

∂x(∂x f ) = βyxβ−1∂xε+ εβ(β−1)yxβ−2 +αxα−1∂xε+α(M + ε)(α−1)xα−2

implying that|∂x(∂x f )| ≤ K|x|α−2. We also have

∂y(∂x f ) = βyxβ−1∂yε+ εβxβ−1 +αxα−1∂yε
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which implies∂y(∂x f ) ≤ K|x|β−1, and so|D∂x f | ≤ K|x|α−2 showing the

existence ofk7 such that|D∂x f |
∂x f ≤ k7|x|−1, and proving the second item of

the statement.
Now recall the definition ofN(φ) and use Lemma 2.7 to deduce

|N(φ)||DP̂| = |detDqP|
(∂x f − (φ◦ P̂)∂xg)2

|DP̂|

≤ a0|x|β+α−1

|∂x f |2(1− ∂xg
∂x f )

2
|DP̂| ≤ a0

(1−a0)2 |x|
β ≤ a0

2β(1−a0)2

which concludes the proof of the third item sinceβ > 1.

Now using the estimates of Lemmas 2.7 and 2.9 we are to prove the
following.

Proposition 2.10.The map S:A ×A1→A1 is well defined, continuous and
S(φ, ·) : A1 → A1 is a contraction whose contraction rate is independent of
φ.

Note that this shows that for everyφ ∈ A which is derivable there exits
A∈ A1 such thatS(φ,A) = A.

Proof. We can estimate

|V1(φ)| ≤ |φ◦ P̂|
|∂x f − (φ◦ P̂)∂xg|

· |D∂yg|+
1

|∂x f − (φ◦ P̂)∂xg|
|D∂y f |

≤


 |∂x f |−1

1−| ∂xg
∂x f |


 · |D∂yg|+


 |∂x f |−1

1−| ∂xg
∂x f |


 · |D∂y f |

≤ 1
|1−a0|

·
(
|∂x f |−1|D∂yg|+ |∂x f |−1|D∂y f |

)
≤ K|x|β−α

and

|T(φ)V2(φ)| ≤ K|x|β−α+1 1
1−a0

{ |D∂xg|
|∂x f | +

|D∂x f |
|∂x f |

}

≤ K|x|β−α+1|x|−1 ≤ K|x|β−α
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and also

|N(φ)| · |(A◦ P̂) ·DP̂| ≤ 1
(1−a0)2 |detDqP| · |A| · |DP̂| · |∂x f |−2 ≤ K|x|β.

Therefore we arrive at

|S(φ,A)| ≤ |V1(φ)|+ |T(φ)| · |V2(φ)|+ |N(φ)| · |(A◦ P̂)DP̂| ≤ K|x|β−α.

Sinceβ−α > 0 we see thatS is continuous atx = 0. Moreover

|V1(φ)| < a0

1−a0
and |T(φ)V2(φ)| < a2

0

(1−a0)2

and fora0 ∈ (0,1/5) we get
a2

0
(1−a0)2 < 1/2 so |S(φ,A)| ≤ 1 and thusS is

well defined.
Finally takingA1,A2 ∈ A1 and fixingφ ∈ A we get

S(φ,A1)−S(φ,A2) = N(φ) ·
[
A1◦ P̂−A2◦ P̂

]
·DP̂

hence

|S(φ,A1)−S(φ,A2)| ≤ |N(φ)| · |A1−A2| · |DP̂| < 1
2
|A1−A2|

and we conclude thatS(φ, ·) is a contraction as stated.

This shows that̂T has a fixed point(φ0,A0) whereφ0 is a fixed point of
T. Clearly(φ0,A0) is a global attractor insideA ×A1. In particular taking
φ of classC1 we obtain

T̂n(φ,Dφ) =
(
Tn(φ),D(Tn(φ))

)
−−−−→
n→+∞

(φ0,Dφ0)

thenA0 = Dφ0 and henceφ0 is continuously differentiable.

2.3.5 Robustness of the geometric Lorenz attractors

Here we conclude the proof that the geometric Lorenz attractor is a robustly
transitive attractor and show that it is not structurally stable. Here we drop
condition (f1) on the symmetry of the one-dimensional mapf .
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Robust properties of the one-dimensional mapf

We start by showing that the properties of the one-dimensional map f are
robust for smallC1 perturbations ofX.

Indeed, note that since the stable foliation is robust, we can define the
one-dimensional mapfY as the quotient map of the corresponding Poincaré
mapPY over the leaves of the foliationFY, for all flowsY close toX in the
C1 topology.

Moreover since the leaves ofFY areC1 close to those ofF , hencefY
is C1 close tof and thus there existsc∈ [−1/2,1/2] which play for fY the
same role of 0 so that properties (f2)-(f4) from Section 2.3.2 are still valid
for fY on a subinterval[−b,b] for some 0< b < 1/2 close to 1/2.

This implies that everyfY is locally eventually ontofor all Y close to
X, that is for any intervalJ ⊂ (−b,b) there exists an iteraten≥ 1 such that
f n
Y(J) = (−b,b).

Lemma 2.11. Let f : [−1/2,1/2]\{0} → [−1/2,1/2] be given satisfying
the properties (f1)-(f4) on Section 2.3.2 on page 75. Then f is locally even-
tually onto: for any open interval J not containing0 there exists n such that
f n | J is a diffeomorphism between J and( f (−1/2), f (1/2)).

This implies in particular the mapsfY are (robustly) transitive and pe-
riodic points are dense. Moreover this also implies that thepre-orbit set
∪n≥0 f−n{x} is dense for everyx 6= 0.

Proof. Let J0 ⊂ (−1/2,1/2) be an open interval with 06∈ J0 and letη =
inf | f ′| >

√
2.

Since 06∈ J0 then f (J0) is such thatℓ
(

f (J0)
)
≥ ηℓ(J0), whereℓ(·) de-

notes length, andf (J0) is connected.

1. If 0 6∈ f (J0), setJ1 = f 2(J0) and thenℓ(J1) ≥ η2ℓ(J0).

2. If 0∈ f (J0), then f 2(J0) = I−∪ I+, whereI+ is the biggest connected
component. Thus

ℓ(I+) ≥ ℓ
(

f 2(J0))

2
≥ η2

2
ℓ(J0).

Now replaceJ0 by I+ in case (2) or byJ1 in case (1). Since min{η,η2/2}>
1 we obtain after finitely many steps one of the intervals(−1/2,0) or
(0,1/2). One more interate then covers the interval( f (−1/2), f (1/2)).
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Transitivity and denseness of periodic orbits

We deduce these features from a stronger property: we show that the geo-
metric Lorenz attractor is a homoclinic class (see Section 1.3.5).

Proposition 2.12. There exists a periodic orbitOX(p) in the geometric
Lorenz attractorΛ such thatΛ = HX(p) = Ws

X(p) ⋔ Wu
X(p).

We prove this in Section 2.3.6. Observe thatevery periodic orbitO (p)
in Λ must be hyperbolicsince

• the uniformly contracting foliation obtained in Section 2.3.4 provides
a uniformly contracting direction and a stable manifold forO (p): if
F (p) is the leaf ofF throughp = O (p)∩S, then

Ws(O (p)
)

=
[

t≥0

X−t(F (p)
)
;

• the expansion of the one-dimensional projection mapf (property (f3)
from Section 2.3.2 on page 75) ensures that there exists a forward
DP-invariant expanding cone field around the horizontal direction,
which in turn ensures the existence of aDP-invariant expanding di-
rection atp.

Proposition 2.12 implies after the Birkhoff-Smale Theorem1.12 that
the geometric Lorenz attractorΛ has a dense orbit and a dense subset of
periodic orbits.

Since the arguments we use to prove Proposition 2.12 depend only on
the properties off and these properties are robust, we conclude that the
geometric Lorenz attractors are robustly transitive.

The geometric Lorenz models are not structurally stable

The dynamics of two nearby geometric Lorenz models are in general not
topologically equivalent. In fact Guckenheimer and Williams [65, 209]
show that the conjugacy classes are completely described bytwo parame-
ters: thekneading sequencesof the two singular values

f (0+) = lim
x→0+

f (x) and f (0−) = lim
x→0−

f (x)
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with respect to the singular point 0 —a pair of one-dimensional Lorenz-
like maps are conjugate if, and only if, they have the same pair of kneading
sequencesand, moreover, the corresponding flows are topologically equiv-
alent if, and only if, the one-dimensional maps are conjugated (recall that
we have dropped condition (f1)).

The kneading sequence ofx+ = f (0+) with respect to 0 is a sequence
defined by

an =

{
0 if f n(x+) < 0
1 otherwise

; for n≥ 0,

and analogously we define the kneading sequence(bn)n≥0 for x−.
It is easy to see thatif two nearby geometric Lorenz flows are topo-

logically conjugated(see Section 1.1 for definitions and basic properties)
then the kneading sequences must be equal, since the equivalence relation
preserves the orbit structure and in particular preserves also the first return
iterates to the cross-sectionS.

Now given a geometric Lorenz flowX with corresponding kneading
sequences(an)n≥0 and(bn)n≥0, we can through a small perturbation find
a C1 close vector fieldY whose corresponding one-dimensional map has
kneading sequences(a′n)n≥0 and(b′n)n≥0 distinct from the pair(an)n≥0 and
(bn)n≥0.

Indeed, if one of the orbits ofx± is dense in(−1,1), then one of its
iterate is arbitrarily close to 0. Thus a small perturbationof the map will
flip one of the elements of the kneading sequence from 0 to 1 or viceversa.
Otherwise there existsε > 0 such that the orbits ofx± do not enter(−ε,ε).
As we have already proved, the one-dimensional mapf is locally eventually
onto and in particular topologically transitive. Hence there exists a point
0 < y < δ ≪ ε with 0 < f (y)−x+ < δ whose orbit is dense. Letn > 0 be
the smallest integer such that| f n(y)| < δ. Considerf̃ a small perturbation
of f such that

• f̃ satisfies all the properties (f1) through (f4);

• f̃ | [−1,1]\ (0,δ) ≡ f ;

• f̃ (0+) = y.

Then f̃ k
(

f̃ (0+)
)

= f k(y) for k = 0, . . . ,n and sof̃ n(y) ∈ (−δ,δ). Now we
can perturbf̃ so that f̃ n(y) changes sign and this would change one of
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the kneading sequences off̃ . Sinceδ can be taken arbitrarily small, then
we obtain a very small perturbation off whose kneading sequences are
distinct. Since we can build a geometric Lorenz flow fromf̃ and from any
of its small perturbations, we have shown that we can always find a nearby
geometric Lorenz flowY not topologically conjugated to the givenX.

2.3.6 The geometric Lorenz attractor is a homoclinic class

Here we prove Proposition 2.12 following Bautista [21].
Observe first that thegeometric Lorenz attractorΛ must contain a hy-

perbolic periodic orbit. Indeed since the associated Lorenz transformation
f is locally eventually onto, the periodic orbits off are dense. Letx0, . . . ,xk

be a periodic orbit off . Then the leavesℓ0, . . . , ℓk of F in Swhich project
on these points form a invariant set under the mapP. SinceP preserves the
leaves of the foliationF and is a contraction alongF , thenPk must send
eachℓi into itself with a uniform contraction rate. Hence there exists a point
pi which is fixed byPk on each leafℓi , i.e. p0, . . . , pk is a periodic orbit of
P.

The definition ofP shows that the orbit ofp0 by the flowX is periodic
andOX(p0)∩S= {p0, . . . , pk}.

As already observed every periodic orbit inΛ must be hyperbolic of
saddle-type: the expanding and contracting directions canbe easily read
from the discussion in Section 2.3.3. Hence the unstable manifold of p is a
disk transverse toSwhich intersectsS in a one-dimensional manifold. The
connected component ofWu(p)∩S which containsp is then a small line
transverse to the foliationF .

Now observe that sinceΛ is an attracting set, that isΛ = ∩t>0Xt(U),
whereU is the trapping ellipsoid, then the unstable manifoldWu(p) of
the orbit of p = p0 must be contained inΛ. Indeed ifz∈ Wuu(p) then
dist(X−t(z),X−t(p)) −−−→

t→+∞
0 and henceX−t(z) ∈ U for big t > 0, thus

z∈ Xt(U). This shows thatWuu(p) ⊂ Λ and sinceΛ is X-invariant we also
getWu(p) ⊂ Λ.

The definition of homoclinic class and the fact thatΛ is closed imply
thatHX(p) ⊂ Λ. For the converse we need a stronger fact.

Lemma 2.13. If Λ is the geometric Lorenz attractor and p∈ Λ is the point
of some periodic orbit, thenΛ = Wu(p).
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Proof. Let w ∈ Λ \ {σ} be given. Then there existst ≥ 0 such thaty =
Xt(w) ∈ S. Let ℓ = F (y) be the corresponding leaf ofF throughy. Then
ℓ is not the leafS\S∗. Therefore it projects to a pointx ∈ (−1/2,0)∪
(0,1/2). Since the pre-orbit set of every point is dense (becausef is locally
eventually onto), by definition off this implies thatΛ∩S= Λ∩∪n≥0P−nℓ.

Hence we have thatP−nℓ∩Wu(p) 6= /0 for somen≥ 0. But this means
thatWs(y)∩Wu(p) 6= /0 and sow,y∈Wu(p). ThusΛ\{σ} ⊂Wu(p).

Finally to prove thatΛ ⊂ HX(p) it is enough to show thatWu(p) ⊂
HX(p). Every pointw∈Wu(p) admitst < 0 such thatq = Xt(w) ∈ S. Take
a small neighborhoodJ of q in Wu(p)∩S, which is a small line transverse
to F .

Let l be the leaf ofF containing p and let I be the interval inside
(−1/2,1/2) corresponding toJ by the projectionS→S/F = (−1/2,1/2).
Recall thatl ⊂ Ws(p)∩S. Write x for the point corresponding top under
this projection.

Again by Lemma 2.11 there existsn≥ 0 such thatf−n{x}∩ I 6= /0. This
means thatJ ⋔ P−n(l) 6= /0, hence inJ there exists a point of the homoclinic
class ofp. SinceJ can be taken arbitrarily small nearq, we conclude that
q∈ HX(p). This concludes the proof thatΛ = HX(p).
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Chapter 3

Robust transitivity and
singular-hyperbolicity

In the theory of differentiable dynamics for flows, i.e., in the study of the
asymptotic behavior of orbits{Xt(x)}t∈R for X ∈ Xr(M), r ≥ 1 a funda-
mental problem is to understand how the behavior of the tangent mapDX
controls or determines the dynamics of the flowXt . Since the 1970’s there
is a complete description of the dynamics of a system under the assumption
that the tangent map has a hyperbolic structure.

The spectral decomposition theorem, presented in Section 1.2 and first
proved in [190], provides a description of the non-wandering set of a struc-
tural stable system as a finite number of disjointcompact maximal invari-
ant and transitive sets, each of these pieces being well understood, both
from the deterministic and from statistical viewpoints. Moreover such a
decomposition persists under smallC1 perturbations. This naturally leads
to the study of isolated transitive sets that remain transitive for all nearby
systems (robustness).

The Lorenz equations (1.1) provide an example of a robust attractor
containing an equilibrium point at the origin and periodic points accumu-
lating on it. This is a non-uniformly hyperbolic attractor which cannot be
destroyed by any small perturbation of the parameters. See Section 1.1.3
for more on this.

The existence of robust non-hyperbolic attractors for flowswas first

94
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proved rigorously through the study ofgeometric models for Lorenz at-
tractors, see Section 2.3. In particular, they exhibit in a robust wayan
attracting transitive set with an equilibrium (singularity) whose eigenvalues
λi ,1≤ i ≤ 3 are real and satisfyλ2 < λ3 < 0 < −λ3 < λ1. In the definition
of geometrical models, another key requirement was the existence of an
invariant foliation whose leaves are forward contracted bythe flow. These
features enable us to extract very complete topological, dynamical and er-
godic information about these geometrical Lorenz models, as explained in
Section 2.3. We prove now that these features are present forany robustly
transitive set.

Hence the main properties of the Lorenz attractor and geometric Lorenz
models are consequences of their robust transitivity. Building on this char-
acterization, in Chapter 4 we elaborate on the ergodic properties of singular-
hyperbolic attractors.

Definition 3.1. An isolated setΛ of aC1 vector fieldX is robustly transitive
if it has an open neighborhoodU such that

ΛY(U) =
\

t∈R

Yt(U)

is both transitive and non-trivial (i.e. it is neither a singularity nor a periodic
orbit) for any vector fieldY C1-close toX.

First we state the following simpler result for global transitive flows on
3-manifolds which was first proved by Doering in [53].

Theorem 3.1. AssumeΛ = M is a robustly transitive set (on a three di-
mensional manifold). Then the flow is Anosov. In particular the flow has
no singularities.

In the general case, whenΛ is a proper subset ofM and contains singu-
larities, we have the following characterization.

Theorem 3.2. A robustly transitive set containing singularities of a flow
on a closed3-manifold is either a proper attractor or a proper repeller.

Note that Theorem 3.2 is false for dimensions bigger than three. Indeed
consider vector fieldY : (z,w) ∈ S

3×S
1 7→

(
X(z),N(w)

)
in S

3×S
1, where
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• X is the vector field given by the Lorenz equations (1.1) or the vector
field obtained after the construction of any geometric Lorenz attrac-
tor (see Section 2.3.2) suitably embedded inS

3, for example with a
hyperbolic unstable equilibria at infinity;

• N is the “North-South” vector field on the circleS1 = {(x,y) : x2 +
y2 = 1} given by−k · ∇(π | S

1) whereπ is the projection on the
second coordinate andk > 0 is big enough so that the expansion rate
ek at the “North” (0,1) and the contraction ratee−k at the “South”
(0,−1) dominate every eventual expansion or contraction along the
directions ofTS

3×{0}.

Then ΛY = ∩t>0Yt
(
U ×V

)
, which is the maximal invariant subset ofU

with respect toY, equalsΛX ×{(0,1)} and is transitive, where

• U is an isolating neighborhood of the (geometric) Lorenz attractor
for theX-flow;

• V is a small neighborhood of(0,1) in S
1; and

• ΛX is the (geometric) Lorenz attractor.

Notice thatS3×{(0,1)} is an invariant and normally hyperbolic compact
submanifold ofS3×S

1, see [76]. It follows that for all vector fieldsZ C1-
close toY, there exists an “analytic continuation”̃M of the submanifold
S

3×{(0,1)} such that

• M̃ is Zt -invariant, compact and normally hyperbolic submanifold of
S

3×S
1, in particular any smooth curve transverse toM̃ insideU ×V

is expanded byZt , t > 0.

• M̃ is C1-close toS
3×{(0,1)} as embeddings inS3×S

1.

Hence there exists a diffeomorphismφ : M̃ → S
3, close to the identity, and

the restriction of the vector fieldZ to M̃ can be seen as a vector fieldC1-
close toX under a global change of coordinates extendingφ. Therefore
the maximal invariant subset ofU ×V for Z is ∩t>0Zt

(
φ−1U

)
⊂ M̃, which

is transitive by the robustness of the (geometric) Lorenz attractor. In this
way we get a robustly transitive setΛY which is neither an attractor nor a
repeller.

In the setting of boundary-preserving vector fields, on 3-manifolds with
boundary, the singular-horseshoe provides another counter-example (see
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Remark 2.2) since it is robustly transitive in the space of vector fields pre-
serving the boundary, but it is not an attractor nor a repeller.

The converse to Theorem 3.2 is also not true: proper attractors (or re-
pellers) with singularities are not necessarily robustly transitive, even if
their periodic points and singularities are hyperbolic in arobust way. For
examples see e.g. Morales and Pujals [126].

Theorem 3.2 follows from a general result onn-manifolds,n≥ 3, which
shows that the next conditions are sufficient for an isolatedset to be an
attracting set:

1. all its periodic points and singularities are hyperbolic, and

2. it robustly contains the unstable manifold of either a periodic point
or a singularity.

Before the proofs let us describe a global consequence of Theorem 3.2
which improves Theorem 3.1.

Theorem 3.3.A C1 vector field on a3-manifold having a robustly transitive
non-wandering set is Anosov.

Proof. Let X be aC1 vector field satisfying the conditions of the statement
above, that is:Ω(X) is (an isolated set and) robustly transitive.

If Ω(X) has singularities, thenΩ(X) is either a proper attractor or a
proper repeller ofX by Theorem 3.2, which is impossible by Lemma 1.1
from Section 1.1. ThenΩ(X) is a robustly transitive set without singulari-
ties. By [53, 205] we conclude thatΩ(X) is hyperbolic and soX is Axiom
A with a unique basic set in its spectral decomposition. Since Axiom A
vector fields always exhibit at least one attractor andΩ(X) is the unique
basic set ofX, it follows thatΩ(X) is an attractor. By Lemma 1.1 again this
implies thatΩ(X) is the whole manifold.

Hence we are in the setting of Theorem 3.1 and we conclude thatX is
Anosov as desired.

Remark3.4. As observed after the proof of Lemma 1.1 in Section 1.1 the
same argument shows that Theorem 3.3 remains true if one exchanges non-
wandering set by limit set in its statement.
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The singularities of robust attractors are Lorenz-like

We say that an isolated setΛ ⊂ M is robustly singularfor X ∈ X1(M) if
there is a neighborhoodU of Λ in M and aC1-neighborhoodU of X in
X1(M) such thatΛY(U) contains a singularity for allY ∈ U .

Theorem 3.5. Let Λ be a robustly singular transitive set of X∈ X1(M).
Then, either for Y= X or Y = −X, everyσ ∈ S(Y)∩Λ is Lorenz-like and
satisfies Wss

Y (σ)∩Λ = {σ}.

As a consequence, consideringrobust attractors, that is attractors which
persist for allC1-nearby vector fields and remain transitive, we get

Theorem 3.6.Every singularity of a robust attractor on a closed3-manifold
is Lorenz-like.

Robust attractors are singular-hyperbolic

A compact invariant setΛ of X is partial hyperbolicif there are a continu-
ous invariant tangent bundle decompositionTΛM = Es

Λ ⊕Ec
Λ and constants

λ,K > 0 such that

• Es
Λ (K,λ)-dominates EcΛ, i.e. for allx∈ Λ and for allt ≥ 0

‖DXt(x) | Es
x‖ ≤

e−λt

K
·m(DXt(x) | Ec

x);

• Es
Λ is (K,λ)-contracting (see Section 1.2).

We shall say thatTΛM = Es
Λ ⊕Ec

Λ is a(K,λ)-splitting for short. Forx∈ Λ
andt ∈ R we letJc

t (x) be the absolute value of the determinant of the linear
mapDXt(x) |Ec

x : Ec
x →Ec

Xt (x). We say that the sub-bundleEc
Λ of the partial

hyperbolic setΛ is volume expandingif

Jc
t (x) =

∣∣det(DXt | Ec
x)
∣∣≥ Keλt ,

for every x ∈ Λ and t ≥ 0 (in this case we say thatEc
Λ is (K,λ)-volume

expandingto indicate the dependence on(K,λ).
It is known (see e.g. [132]) that a non-singular partially hyperbolic set

for a three-dimensional flow, with volume expanding centraldirection, is
uniformly hyperbolic.
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Definition 3.2. A partial hyperbolic set issingular-hyperbolicif its singu-
larities are hyperbolic and it has volume expanding centraldirection.

A singular-hyperbolic attractoris a singular-hyperbolic set which is an
attractor as well: an example is the (geometric) Lorenz attractor presented
in Section 2.3. Asingular-hyperbolic repellerof X is a singular-hyperbolic
attractor of−X. An example of a singular-hyperbolic set which is neither
an attractor or a repeller is the singular horseshoe presented in Section 2.1.

The following result characterizes robust attractors for three-dimensional
flows.

Theorem 3.7. Robust attractors of X∈ X1(M3) containing singularities
are singular-hyperbolic sets for X.

Note that robust attractors cannot beC1 approximated by vector fields
presenting either attracting or repelling periodic points. This implies that,
on 3-manifolds, any periodic point lying in a robust attractor is hyperbolic
of saddle-type. Thus, as in Liao [98, Theorem A], we concludethat ro-
bust attractorswithout singularitieson closed 3-manifolds are hyperbolic.
Therefore we obtain a dichotomy as follows.

Theorem 3.8. Let Λ be a robust attractor of X∈ X1(M). ThenΛ is either
hyperbolic or singular-hyperbolic.

Brief sketch of the proofs

To prove Theorem 3.2 we first obtain a sufficient condition fora transitive
isolated set with hyperbolic critical elements of aC1 vector field on an-
manifold,n ≥ 3, to be an attractor (Theorem 3.15). We use this to prove
that a robustly transitive set whose critical elements are hyperbolic is an
attractor if it contains a singularity whose unstable manifold has dimension
one (Theorem 3.16). This implies thatC1 robustly transitive sets with
singularities on closed 3-manifolds are either proper attractors or proper
repellers (Theorem 3.2).

The characterization of singularities in a robust transitive set (Theo-
rem 3.5) is obtained by contradiction. Using the ConnectingLemma (see
Section 1.3.8), we can produce special types of cycles (inclination-flip or
Shil’nikov, see Chapter 2) associated to a singularity leading to nearby vec-
tor fields which exhibit attracting or repelling periodic points. This contra-
dicts the robustness of the transitivity condition.
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Theorem 3.7 is proved in Section 3.3. We start by proposing anin-
variant splitting over the periodic points lying inΛ and prove uniform es-
timates on angles between stable, unstable, and central unstable bundles
for periodic points. Roughly speaking, if such angles are not uniformly
bounded away from zero, we construct a new vector field near the original
one exhibiting either a sink or a repeller, yielding a contradiction. Such
a perturbation is obtained using the extension for flows of a perturbation
Lemma of Franks, given by Theorem 1.20. This allows us to prove that
the splitting proposed for the periodic points is partiallyhyperbolic with
volume expanding central direction. We then extend this splitting to the
closure of the periodic points. We show that the splitting proposed for the
periodic points is compatible with the local partial hyperbolic splitting at
the singularities (Proposition 3.37) using that the linearPoincaŕe flow has
a dominated splitting outside the singularities ([205, Theorem 3.8] stated
as Theorem 1.8 in Section 1.3.3); and that the non-wanderingset outside
a neighborhood of the singularities is hyperbolic (Lemma 3.39). We next
extend this splitting to all ofΛ, obtaining Theorem 3.7.

3.1 Consequences of singular-hyperbolicity

Under the sole assumption of singular-hyperbolicity one can show that at
each point there exists a strong stable manifold; more precisely, the attractor
is a subset of a lamination by strong stable manifolds. It is also possible to
show the existence of local central manifolds tangent to thecentral unstable
direction, see [76] and Section 3.4.1. Although these central manifolds
do not behave as unstable manifolds, in the sense that their points are not
necessarily asymptotic in the past, the fact that the flow expands volume
along the central unstable direction implies rather strongproperties.

We list some of these properties that give us a nice description of the
dynamics of robustly transitive sets with singularities and, in particular,
for robust attractors, or of singular-hyperbolic attracting sets with a dense
subset of periodic orbits.

The first two properties do not depend either on the fact that the set is
robust transitive or an attractor, but only on the fact that the set has a dom-
inated splitting and that the flow expands volume in the central-unstable
direction.
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Proposition 3.9. LetΛ be a singular-hyperbolic compact set of X∈X1(M).
Then any invariant compact setΓ ⊂ Λ without singularities is a uniformly
hyperbolic set.

For singular hyperbolic attracting sets having only one singularity we
can obtain a partial converse to the results in the previous section. As com-
mented below, Arroyo and Pujals have recently obtained in [15] a condition
on a singular-hyperbolic attractor implying robust transitivity.

We start by stating a corollary of the arguments used to proveTheo-
rems 3.5 and 3.6 (see Remarks 3.23 and 3.29 in the following sections).
Observe that we assume partial hyperbolicity with volume expanding cen-
tral direction but do not assume transitivity.

Theorem 3.10. Let Λ be a nonempty compact invariant isolated set for a
three-dimensional flow X∈ X1. Assume thatΛ is partially hyperbolic with
volume expanding central direction. Ifσ is a singularity accumulated by
regular orbits inΛ, then

• eitherσ is Lorenz-like for X and Wss
X (σ)∩Λ = {σ};

• or σ is Lorenz-like for−X and Wuu
X (σ)∩Λ = {σ}.

This shows that partial hyperbolicity and volume expansionon an iso-
lated set alone imply that the possible singularities are Lorenz-like, either
for the positive or for the negative time flow.

Definition 3.3. Let Λ be an isolated set ofX ∈ Xr(M). We say thatΛ isCr

robustly periodicif there are an isolating blockU of Λ and a neighborhood
U of X in Xr(M) such thatΛY(U) = Per(Y)∩ΛY(U) for all Y ∈ U .

Examples ofC1 robustly periodic sets are the hyperbolic attractors and
the geometric Lorenz attractor (see Sections 1.2 and 2.3). These examples
are alsoC1 robustly transitive. On the other hand, the singular horseshoe
(from Section 2.1) and the example by Morales and Pujals in [126] are nei-
therC1 robust transitive norC1 robustly periodic. These examples motivate
the question whetherall C1 robust transitive sets for vector fields areC1 ro-
bustly periodic. Arroyo and Pujals have recently obtained apositive answer
to this question in [15], see below.

Nevertheless, on compact 3-manifolds,Cr robustly periodic sets areCr

robustamong singular-hyperbolic attractors with only one singularity.
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Theorem 3.11. A Cr robustly periodic singular-hyperbolic attractor, with
only one singularity, on a compact3-manifold is Cr robust.

This result, first proved in [131], gives explicit sufficientconditions
for robustness of attractorsdepending on the perturbed flow. One should
aim to obtain sufficient conditionsdepending only on the unperturbed flow.
This was recently achieved by Arroyo and Pujals in [15], where they obtain
a criteria for a singular-hyperbolic attractor to beC1 robustly transitive,
depending only on the attractor and with no restriction on the number of
singularities. As a consequence in this setting the attractor is automatically
robustly periodic.

Theorem 3.12. Let Λ = ΛX(U) be a singular-hyperbolic attractor of X∈
X1(X) with isolating neighborhood U. Then the set of periodic orbits is
dense inΛ andΛ is the homoclinic class of at least one of those orbits.

Moreover, assume there existsδ0 > 0 such that for every0< δ < δ0 the
positive maximal invariant subset of U\Bδ

(
S(X)

)
is transitive. ThenΛ is

C1 robustly transitive.

We present a proof of Theorem 3.11 following [131] in Section3.4.
The next two results show that important features of hyperbolic attrac-

tors and of the geometric Lorenz attractor are present for singular-hyperbolic
attractors, and so, for robust attractors with singularities.

Proposition 3.13. A singular-hyperbolic attractorΛ of X ∈ X1(M) has
positive Lyapunov exponent uniformly bounded away from zero at every
orbit.

The following generic property in the spaceX1(M) can also be deduced
from Theorems 3.2 and 3.5.

Proposition 3.14. For X in a residual subset (a set containing an intersec-
tion of a enumerable family of open dense subsets) ofX1(M), each robust
transitive set with singularities is the closure of the stable or unstable man-
ifold of one of its hyperbolic periodic points.

Now we present the proofs of these propositions assuming theresults
stated in the previous section.

Proof of Proposition 3.9:The argument relies on the fact that the intersec-
tion of the dominated splittingEs⊕Ecu with the normal bundleNΓ overΓ
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induces a hyperbolic splitting for the linear Poincaré flow defined overΓ
(recall the definition of the Linear Poincaré Flow in Section 1.3.3). Thus
by Theorem 1.7 we conclude thatΓ is uniformly hyperbolic, finishing the
proof.

From the fact thatΓ does not contain singularities, there existsK >
0 such that 1/K < ‖X(x)‖ < K for everyx ∈ Γ. Consider the following
splitting on the normal bundleNΓ: defineNu

x = Ecu
x ∩Nx andEcs

x ∩Nx for
x∈ Γ, whereEcs

x = EX
x ⊕Es

x.

Now we show that this splitting is hyperbolic for the linear Poincaŕe
flow Pt over Γ. Note that for anyt ∈ R the Jacobian ofDXt along the
sub-bundleEcu

x ) can be given by

sin∠
(
DXt(x) ·nu

x,X(Xt(x))
)
· ‖DXt(x) ·nu

x‖ ·
‖X(Xt(x))‖
‖X(x)‖ ,

wherenu
x ∈ Nu

x is any choice of a unit vector. The last expression is the
same as

∥∥OXt (x)
(
DXt(x) ·nu

x

)
‖ · ‖X(Xt(x))‖

‖X(x)‖ ,

whereOXt (x) denotes the orthogonal projection fromTXt (x)M onto NXt (x),
recall Section 1.3.3. Thus

∣∣det(DXt | Ecu
x )
∣∣= ‖OXt (x)(DXt(x) ·nu

x)‖ ·
‖X(Xt(x))‖
‖X(x)‖ . (3.1)

Since the central direction is(c,λ)-volume expanding, we know that the
value of the expression in (3.1) is bigger thanc·eλt . Hence we get

∥∥OXt (x)(DXt(x) ·nu
x)
∥∥>

c
K
·eλt for all t ≥ 0.

This proves thatNu is uniformly expanded byPt .

To see thatNs is uniformly contracted by the linear Poincaré flow, first
note that the splittingEs⊕Ecu is partially hyperbolic alongΓ. Thus there
existsA > 0 such that∠(Es

x,X(x)) ≥ A for everyx∈ Γ. Hence we can find
a0 such that for allx ∈ Γ andv ∈ Ns

x with ‖v‖ = 1, there isw ∈ Es
x with
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‖w‖ = 1 such thatv = aw+b· X(x)
‖X(x)‖ with |a| < a0. Therefore we have

∥∥OXt (x)(DXt(x) ·v)
∥∥=

∥∥∥OXt (x)

(
DXt(x) ·

(
aw+b· X(x)

‖X(x)‖
))∥∥∥

=
∥∥OXt (x)(DXt(x) · (aw))

∥∥

≤
∥∥DXt(x) · (aw)

∥∥≤ a0 ·K ·e−λt

for someK,λ > 00 (recall thatEs is (K,λ) contracting). ThusNs is uni-
formly contracted byPt . Proposition 3.9 is proved.

Proof of Proposition 3.13:Let Λ be as in the statement of Proposition 3.13.
Givenx∈ Λ, if x is a singularity then the result follows from the fact thatx
is Lorenz-like forX. Now assumeX(x) 6= 0 and takev∈ Ecu

x with ‖v‖ = 1
and orthogonal toX(x). We have for somec,λ > 0

c·eλt ≤ |det(DXt | Ecu
x )| ≤

∥∥DXt(x) ·v
∥∥ · ‖DXt(x) ·X(x)‖

‖X(x)‖

=
∥∥DXt(x) ·v

∥∥ · ‖X(Xt(x))‖
‖X(x)‖

and then fort > 0 we get

1
t

log
∥∥DXt(x) ·v

∥∥≥ λ+
1
t

logc− 1
t

log
‖X(Xt(x))‖
‖X(x)‖ .

Since‖X(Xt(x))‖ is uniformly bounded for allt > 0 by compactness ofΛ,
we see that limsupt→+∞ t−1 log

∥∥DXt(x) ·v
∥∥> 0.

Proof of Proposition 3.14:Let Λ = ΛX(U) be a robustly transitive set with
singularities forX ∈ X1(M) with isolating neighborhoodU . By Theorems
3.2 and 3.7 we can assume thatΛ is a partially hyperbolic attractor forX.
By the genericity properties from Section 1.3.6 (the Kupka-Smale property,
item 1) for a generic subsetG in aC1 neighborhoodV of X we have that
Λ = ΛY(U) has a hyperbolic period orbitp, for all Y ∈ G .

As Λ is an attractor, the unstable manifoldWu(p) of any periodic point
p of Λ is contained inΛ. In particular its the closureWu(p) is contained in
Λ. We show thatΛ is contained inWu(p).

Let q∈ Λ be such thatΛ = ωY(q) (recall that an attractor is transitive
by definition). LetV be a small neighborhood ofp. On the one hand, by
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transitivity, we can assume without loss of generality thatq ∈ V. On the
other hand, sinceΛ is partially hyperbolic, projectingq intoWu(p) through
the stable manifold ofq, we can assume thatq is actually contained in
Wu(p). Indeed, being in the same stable manifold,q and its projection
have the sameω-limit sets.

Finally observe thatωY(q) ⊂Wu(p) becauseWu(p) is invariant by the
flow. ThusΛ = ωY(q) ⊂Wu(p) finishing the proof.

3.2 Attractors and isolated sets forC1 flows

Here prove Theorems 3.2 and 3.5. We start by focusing on isolated sets,
obtaining the following sufficient conditions for an isolated set of aC1 flow
on ann-manifold,n≥ 3, to be an attractor:

• all its periodic points and singularities are hyperbolic, and

• it contains, in a robust way, the unstable manifold of some critical
element.

Using this we prove that isolated setsΛ satisfying the following conditions
are attractors:

• the critical elementsC(X)∩Λ are hyperbolic;

• Λ contains a singularity with one-dimensional unstable manifold, and

• Λ is

– either robustly non-trivial and transitive (robustly transitive),

– or Λ = C(X)∩Λ is robustly the closure of its periodic points
(C1 robustly periodic).

In particular robustly transitive sets with singularitieson closed 3-manifolds
are either proper attractors or proper repellers, proving Theorem 3.2. Then
we characterize the singularities on robustly transitive sets on 3-manifolds,
obtaining Theorem 3.5.

Elementary topological dynamics ensures that an attractorcontaining a
hyperbolic critical element contains the unstable manifold of this critical el-
ement. The converse, although false in general, is true for aresidual subset
of C1 vector fields, as shown in [42]. We derive a sufficient condition for
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the converse to hold inspired by the following property of uniformly hyper-
bolic attractors (see e.g. [146]): ifΛ is a uniformly hyperbolic attractor of
a vector fieldX, then there is an isolating blockU of Λ andx0 ∈C(X)∩Λ
such thatWu

Y

(
x0(Y)

)
⊂ U for everyY close toX, wherex0(Y) is the hy-

perbolic continuation ofx0 for Y. This property motivates the following
definition.

Definition 3.4. Let Λ be an isolated set ofX ∈ Xr(M), r ≥ 1. We say that
Λ robustly contains the unstable manifold of a critical element if there are
x0 ∈C(X)∩Λ hyperbolic, an isolating blockU of Λ and a neighborhoodU
of X in Xr(M) such thatWu

Y (x0(Y)) ⊂U , for all Y ∈ U .

With this definition in mind we are able to prove

Theorem 3.15. Let Λ be a transitive isolated set of X∈ X1(M) where
M is a compact n-manifold, n≥ 3, and suppose that every x∈ C(X)∩Λ
is hyperbolic. IfΛ robustly contains the unstable manifold of a critical
element, thenΛ is an attractor.

Now we derive an application of Theorem 3.15. Recall Definition 3.3
of Cr robustly periodic set.

The geometric Lorenz attractor is a robustly transitive (periodic) set,
and it is an attractor satisfying (see Section 2.3)

• all its periodic points are hyperbolic, and

• it contains a singularity whose unstable manifold has dimension one.

The result below shows that such conditions are enough for a robustly tran-
sitive (periodic) set to be an attractor.

Theorem 3.16. Let Λ be either a robustly transitive or a transitive C1 ro-
bustly periodic set of X∈ X1(M), where M is a n-dimensional compact
manifold, n≥ 3. If

1. every x∈C(X)∩Λ is hyperbolic and

2. Λ has a singularity whose unstable manifold is one-dimensional,

thenΛ is an attractor of X.
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Theorem 3.16 follows from Theorem 3.15 showing thatΛ robustly
contains the unstable manifold of the singularity providedby condition 2
above.

The following lemma is well known, see for instance [48, p.3].

Lemma 3.17. Let Λ be an isolated set of X∈ Xr(M), r ≥ 0. Then for
every isolating block U ofΛ and every open set V containingΛ, there is a
neighborhoodU of X inXr(M) such thatΛY(U) ⊂V for all Y ∈ U .

Proof. We have by assumptionΛ = ΛX(U) = ∩t∈RXt(U) = ∩t∈RXt(U).
For any neighborhoodV of Λ there is a big enoughL > 0 such that

\

−L≤t≤L

Xt(U) ⊂V.

Then using the continuous dependence of the flow with the vector field and
the compactness ofU , there exists a neighborhoodU of X in Xr(M) such
that

\

−L≤t≤L

Yt(U) ⊂V for all Y ∈ U .

ThusΛY(U) ⊂V for all Y ∈ U .

Lemma 3.18. If Λ is an attracting set and a repelling set of X∈ X1(M),
thenΛ = M.

Proof. Suppose thatΛ is an attracting set and a repelling set ofX. Then
there are neighborhoodsV1 andV2 of Λ satisfyingXt(V1) ⊂V1, X−t(V2) ⊂
V2 for everyt ≥ 0,

Λ =
\

t≥0

Xt(V1) and Λ =
\

t≥0

X−t(V2).

DefineU1 = int(V1) andU2 = int(V2). ClearlyXt(U1)⊂U1 andX−t(U2)⊂
U2 for all t ≥ 0, sinceXt is a diffeomorphism. AsU2 is open and contains
Λ, the first equality implies that there ist2 > 0 such thatXt2(V1) ⊂U2 (see
for instance [83, Lemma 1.6]). AsXt2(U1) ⊂ Xt2(V1) it follows thatU1 ⊂
X−t2(U2) ⊂U2 proving

U1 ⊂U2.
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Similarly, asU2 is open and containsΛ, the second equality implies that
there ist1 > 0 such thatX−t1(V2) ⊂U1. As X−t1(U2) ⊂ X−t1(V2) it follows
thatU2 ⊂ Xt1(U1) ⊂U1 proving

U2 ⊂U1.

Thus,U1 = U2. From this we obtainXt(U1) = U1 for all t ≥ 0 proving
Λ = U1. As Λ is compact by assumption we conclude thatΛ is open and
closed. AsM is connected andΛ is not empty we obtain thatΛ = M as
desired.

The lemma below gives a sufficient condition for an isolated set to be
attracting.

Lemma 3.19. Let Λ be an isolated set of X∈ X1(M). If there are an
isolating block U ofΛ and an open set W containingΛ such that Xt(W) ⊂
U for every t≥ 0, thenΛ is an attracting set of X.

Proof. Let Λ andX be as in the statement. To prove thatΛ is attracting we
have to find a neighborhoodV of Λ such thatXt(V) ⊂V for all t > 0 and

Λ = ∩t≥0Xt(V). (3.2)

To constructV we let W be the open set in the statement of the lemma
and defineV = ∪t>0Xt(W). ClearlyV is a neighborhood ofΛ satisfying
Xt(V) ⊂V for eacht > 0.

We claim thatV satisfies (3.2). Indeed, asXt(W) ⊂ U for everyt > 0
we have thatV ⊂U and so∩t∈IRXt(V)⊂ Λ becauseU is an isolating block
of Λ. But V ⊂ X−t(V) for every t ≥ 0 sinceV is forward invariant. So
V ⊂ ∩t≤0Xt(V) and from this we have

\

t≥0

Xt(V) ⊂V ∩
\

t>0

Xt(V)

⊂
\

t≤0

Xt(V)∩
\

t>0

Xt(V) =
\

t∈R

Xt(V).

Thus,∩t≥0Xt(V) ⊂ Λ. Now, asΛ ⊂ V and Λ is invariant, we haveΛ ⊂
Xt(V) for everyt ≥ 0. ThenΛ ⊂ ∩t≥0Xt(V), proving (3.2).
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3.2.1 Proof of sufficient conditions to obtain attractors

The proof of Theorem 3.15 is based on the following lemma.

Lemma 3.20. Let Λ be a transitive isolated set of X∈ X1(M) such that
every x∈ C(X)∩Λ is hyperbolic. Suppose that the following condition
holds:

(H3) There are x0 ∈C(X)∩Λ, an isolating block U ofΛ and a neighbor-
hoodU of X inX1(M) such that

Wu
Y (x0(Y)) ⊂U, ∀ Y ∈ U .

Then Wu
X(x) ⊂ Λ for every x∈C(X)∩Λ.

Proof. Let x0, U andU as in (H3). By assumptionOX(x0) is hyperbolic. If
OX(x0) is attracting thenΛ = OX(x0) sinceΛ is transitive and we are done.
We can then assume thatOX(x0) is not attracting. Thus,Wu

X(x0)\OX(x0) 6=
/0.

By contradiction, suppose that there isx ∈ C(X)∩Λ such thatWu
X(x)

is not contained inΛ. ThenWu
X(x) is not contained inU . As M \U is

open there is a cross-sectionΣ ⊂ M \U of X such thatWu
X(x)∩Σ 6= /0 is

transverse. ShrinkingU if necessary we can assume thatWu
Z (x(Z))∩Σ 6= /0

is transverse for everyZ ∈ U .
Now Wu

X(x0) ⊂ Λ by (H3) applied toY = X. Choosep ∈ Wu
X(x0) \

OX(x0). As Λ is transitive andp,x ∈ Λ, there isq ∈ Ws
X(x) \ OX(x) such

that p,q satisfy (H1) in Theorem 1.18 on page 31. Indeed, the dense orbit
of Λ accumulates bothp andx. Then, by Theorem 1.18, there areZ ∈ U
andT > 0 such thatp∈Wu

Z (x(Z)), q∈Ws
Z(x(Z)) andZT(p) = q. In other

words,OZ(q) is a saddle connection betweenx0(Z) andx(Z). On the other
hand, asZ ∈ U , we have thatWu

Z (x(Z))∩Σ 6= /0 is transverse. It follows
from theλ-Lemma (see Section 1.3.5 of Chapter 1) thatZt(Σ) accumulates
on q ast → ∞. This allows us to break the saddle-connectionOZ(q) in the
standard way in order to findZ′ ∈ U such thatWu

Z′(x0(Z′))∩Σ 6= /0 (see
e.g. [143] or the proof of Theorem 2.4 in [129]). In particular, Wu

Z′(x0(Z′))
is not contained inU . This contradicts (H3) and the lemma follows.

Proof of Theorem 3.15.Let Λ andX be as in the statement of Theorem 3.15.
It follows that there arex0 ∈C(X)∩Λ, U andU such that (H3) holds.
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Next we prove thatΛ satisfies the hypothesis of Lemma 3.19, that is,
there is an open setW containingΛ such thatXt(W) ⊂U for everyt ≥ 0.

Indeed, suppose that such aW does not exist. Then, there are sequences
xn → x∈ Λ andtn > 0 such thatXtn(xn) ∈ M \U . By compactness we can
assume thatXtn(xn) → q for someq∈ M \U .

Fix an open setV ⊂V ⊂U containingΛ. As q∈ M \U ,

M \U ⊂ M \ int(U), and M \ int(U) ⊂ M \V

we have thatq /∈V. By Lemma 3.17 there is a neighborhoodU 0 ⊂ U of X
such that

ΛY(U) ⊂V, for all Y ∈ U 0. (3.3)

Then condition (H3), the invariance ofWu
Y (x0(Y)) and the relation (3.3)

imply
Wu

Y (x0(Y)) ⊂V ⊂V, for every Y ∈ U 0. (3.4)

Now we have two cases:

1. eitherx /∈C(X);

2. orx∈C(X).

In Case 1 we obtain a contradiction as follows. LetOX(z) be the dense
orbit of Λ, i.e. Λ = ωX(z). Fix p∈Wu

X(x0)\OX(x0). Thenp∈ Λ by (H3)
applied toY = X. As x∈ Λ we can choose sequenceszn ∈ OX(z) andt ′n > 0
such that

zn → p and Xt ′n(zn) → x.

It follows that p,q,x satisfy (H2) of Theorem 1.19 forY = X. Then from
Theorem 1.19 there isZ ∈ U 0 such thatq∈Wu

Z (x0(Z)). As q /∈V we have
thatWu

Z (x0(Z)) is not contained inU . And this is a contradiction by (3.4)
sinceZ ∈ U 0.

In Case 2 we use (H3) to obtain a contradiction as follows. By assump-
tion OX(x) is a hyperbolic closed orbit. ClearlyOX(x) is neither attract-
ing nor repelling. In particularWu

X(x) \OX(x) 6= /0. But xn /∈ Ws
X(x) since

xn → x andXtn(xn) /∈U . Then, using linearizing coordinates given by the
Grobman-Hartman Theorem aroundOX(x) (see Section 1.3.4), we can find
x′n in the positive orbit ofxn such thatx′n → r ∈ Wu

X(x) \OX(x). Note that
r /∈C(X) and that there aret ′n > 0 such thatXt ′n(x′n) → q.
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Since (H3) holds, by Lemma 3.20 we haveWu
X(x) ⊂ Λ. This implies

thatr ∈ Λ. Then we have Case 1 replacingx by r, tn by t ′n andxn by x′n. As
Case 1 results in a contradiction, we conclude that Case 2 also results in a
contradiction.

HenceΛ satisfies the hypothesis of Lemma 3.19, and Theorem 3.15
follows.

Proof of Theorem 3.16.Let Λ be either a robust transitive set or a transitive
C1 robust periodic set ofX ∈ X1(M) satisfying the following conditions:

1. Every critical element ofX in Λ is hyperbolic.

2. Λ contains a singularityσ with dim(Wu
X(σ)) = 1.

On the one hand, ifΛ is robustly transitive, we can fix by Definition 3.1
a neighborhoodU of X and an isolating blockU of Λ such thatΛY(U) is a
non-trivial transitive set ofY, for everyY ∈ U . Clearly we can assume that
the continuationσ(Y) is well defined for allY ∈ U . Since transitive sets
are connected sets, we have:

(C) ΛY(U) is connected for eachY ∈ U .

On the other hand, ifΛ is C1 robustly periodic, we can fix by Defini-
tion 3.3 a neighborhoodU of X and an isolating blockU of Λ such that
for eachY ∈ U we haveΛY(U) = Per(Y)∩ΛY(U). Assuming thatσ(Y) is
well defined forY ∈ U we have

(C’) σ(Y) ∈ Per(Y)∩ΛY(U), for everyY ∈ U .

Claim 3.1. Λ robustly contains the unstable manifold of a critical element.

By Definition 3.4, ifU is the neighborhood ofX described in either
Property (C) or (C’), then it suffices to proveWu

Y (σ(Y)) ⊂U for all Y ∈ U .
Arguing by contradiction, suppose that there existsY ∈ U such that

Wu
Y (σ(Y)) is not contained in U.

¿From Condition 2 above it follows thatWu
X(σ)\{σ} has two branches

which we denote byw+ andw− respectively. Fixq+ ∈ w+ andq− ∈ w−.
Denote byq±(Y) the continuation ofq± for Y close toX. We can assume
that theq±(Y) are well defined for allY ∈ U .

As q±(Y)∈Wu
Y (σ(Y)), the negative orbit ofq±(Y) converges toσ(Y)∈

int(U) ⊂ U . If the positive orbit ofq±(Y) is in U , thenWu
Y (σ(Y)) ⊂ U ,
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which is a contradiction. Consequently the positive orbit of either q+(Y)
or q−(Y) leavesU . It follows that there ist > 0 such that eitherYt(q+(Y))
or Yt(q−(Y)) /∈U . Assume the first case. The other case is analogous. As
M\U is open, the continuous dependence of the unstable manifolds implies
that there is a neighborhoodU ′ ⊂ U of Y such that

Zt(q+(Z)) /∈U, for every Z ∈ U ′. (3.5)

Now we split the proof into two cases.

Case I: Λ is robustly transitive.

In this caseΛY(U) is a non-trivial transitive set ofY. Fix z∈ ΛY(U)
such thatωY(z) = ΛY(U). As σ(Y) ∈ ΛY(U) it follows that either
q+(Y) or q−(Y) ∈ ωY(z). As Y ∈ U ′, the relation (3.5) implies
q−(Y) ∈ ωY(z). Thus, there is a sequencezn ∈ OY(z) converging
to q−(Y). Similarly there is a sequencetn > 0 such thatYtn(zn) → q
for someq∈Ws

Y(σ(Y)\{σ(Y)}. Definep = q−(Y).

It follows that p, q, Y satisfy (H1) in Theorem 1.18, and so, there
is Z ∈ U ′ such thatq−(Z) ∈ Ws

Z(σ(Z)). This gives a homoclinic
connection associated toσ(Z). Breaking this connection as in the
proof of Lemma 3.20, we can findZ′ ∈ U ′ close toZ andt ′ > 0 such
that

Z′
t ′(q

−(Z′)) /∈U. (3.6)

Now, (3.5), (3.6) together with the Grobman-Harman Theorem1.9,
imply that the set{σ(Z′)} is isolated inΛZ(U). But ΛZ′(U) is con-
nected by Property (C) sinceZ′ ∈ U ′ ⊂ U . ThenΛZ′(U) = {σ(Z′)},
a contradiction sinceΛZ′(U) is non-trivial. This proves Claim 3.1 in
this case.

Case II: Λ is C1 robustly periodic.

The proof is similar to the previous one. In this caseΛY(U) is the
closure of its periodic orbits and dim(Wu

Y (σ(Y)) = 1. As the peri-
odic points ofΛY(U) do accumulate eitherq+(Y) or q−(Y), relation
(3.5) implies that there is a sequencepn ∈ Per(Y)∩ΛY(U) such that
pn → q−(Y). Clearly there is another sequencep′n ∈ OY(pn) now
converging to someq∈Ws

Y(σ(Y)\{σ(Y)}. Setp = q−(Y).
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Again p,q,Y satisfy (H1) in Theorem 1.18, and so, there isZ ∈ U ′

such thatq−(Z) ∈Ws
Z(σ(Z)). As before we have a homoclinic con-

nection associated toσ(Z). Breaking this connection we can find
Z′ ∈ U ′ close toZ andt ′ > 0 such that

Z′
t ′(q

−(Z′)) /∈U.

Again this relation together with the Grobman-Harman Theorem 1.9
and the relation (3.5) would imply that every periodic pointof Z′

passing close toσ(Z′) is not contained inΛZ′(U). But this contradicts
Property (C’) sinceZ′ ∈ U ′ ⊂ U . This completes the proof of Claim
3.1 in this case.

It follows that Λ is an attractor by condition (1) above, Theorem 3.15
and Claim 3.1. This completes the proof of Theorem 3.16.

3.2.2 Robust singular transitivity implies attractors or re-
pellers

In this sectionM is a closed 3-manifold andΛ is a robustly transitive set of
X ∈ X1(M).

According to Definition 3.1 we can fix an isolating blockU of Λ and
a neighborhoodUU of X such thatΛY(U) = ∩t∈RYt(U) is a non-trivial
transitive set ofY, for everyY ∈UU . Robustness of transitivity implies that
X ∈UU cannot beC1-approximated by vector fields exhibiting either sinks
or sources inU . And since dim(M) = 3 this easily implies the following.

Lemma 3.21. Let X∈UU . Then X has neither sinks nor sources in U, and
any p∈ Per(X)∩ΛX(U) is hyperbolic.

The following result shows that singularities in this setting are Lorenz-
like, either for the given flowX or for the reversed flow−X.

Lemma 3.22. Let Y∈ UU andσ ∈ S(Y)∩ΛY(U) be such that

(i) every C1-nearby flow admits neither sinks nor sources in U;

(ii) every critical element in U is hyperbolic, and

(iii) σ is accumulated by regular orbits inΛ.
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Then

1. the eigenvalues ofσ are real.

2. if λ2 ≤ λ3 ≤ λ1 are the eigenvalues ofσ, thenλ2 < 0 < λ1.

3. for λi as above we have

(a) λ3(σ) < 0 =⇒−λ3(σ) < λ1(σ);

(b) λ3(σ) > 0 =⇒−λ3(σ) > λ2(σ).

Remark3.23. Assume that we are given a nonempty compact invariant
isolated setΛ = ΛX(U) under a flow on a 3-manifold, which is also par-
tially hyperbolic with volume expanding central direction. Since partial
hyperbolicity is a robust property, then for every close flowY we have that
ΛY(U) is also partially hyperbolic. This implies that there are nosources in
ΛY(U). The uniform volume expansion along the central direction of TΛM
for X implies that there are no sinks inΛY(U), for otherwise we would get
volume contraction along the central direction for points and flows arbitrary
close toΛ andX. This is a contradiction since dominated splittings depend
continuously on the base point and on the dynamics, thus taking limits we
obtain a point inΛ with central direction whose volume is contracted by
theX flow.

Hence the conclusion of Lemma 3.21 is also valid in this setting and we
conclude thatevery singularity accumulated by regular orbits of a singular-
hyperbolic isolated set of a flow X is either Lorenz-like for X, or Lorenz-like
for −X.

Remark3.24. For an example of a singular-hyperbolic isolated set of a
flow X with non-Lorenz-like singularities, consider the maximalinvariant
set inside the ellipsoidE of the flow described in Figure 2.16.

Proof. Let us prove the first item by contradiction. Suppose that there is
Y ∈ UU and σ ∈ S(Y)∩ ΛY(U) with a complex eigenvalueω. We can
assume thatσ is hyperbolic by Lemma 3.21. As dim(M) = 3 the remaining
eigenvalueλ of σ is real. We have eitherRe(ω) < 0 < λ or λ < 0 < Re(ω).
Reversing the flow direction if necessary we can assume that we are in
the first case. We can further assume, by a small perturbationkeeping the
vector field insideUU , thatY is C∞ and

λ 6= −Re(ω). (3.7)
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According to a form of the Connecting Lemma stated in Theorem1.18
on page 31, we can assume that there is a homoclinic loopΓ ⊂ ΛY(U)
associated toσ. ThenΓ is a Shil’nikov bifurcation, see Section 2.2, and
thus there is a vector fieldZ arbitrarilyC1 close toY exhibiting a sink or a
source inΛZ(U). This contradicts Lemma 3.21 and concludes the proof of
the first item.

Thus we can arrange the eigenvaluesλ1, λ2, λ3 of σ in such a way that
λ2 ≤ λ3 ≤ λ1. By Lemma 3.21 we have thatλ2 < 0 andλ1 > 0. This proves
the second item in the statement.

To prove the third item we can apply Theorem 2.3 from Section 2.2.
This shows that there isZ arbitrarilyC1 close toY exhibiting either a sink
in ΛZ(U) (if item (a) fails) or a source inΛZ(U) (if item (b) fails). This is
a contradiction as before, concluding the proof of the lemma.

Lemma 3.25. There is no Y∈ UU exhibiting two hyperbolic singularities
in ΛY(U) with different unstable manifold dimensions.

Proof. Suppose by contradiction that there isY ∈UU exhibiting two hyper-
bolic singularities with different unstable manifold dimensions inΛY(U).
Note thatΛ′ = ΛY(U) is a robust transitive set ofY and−Y respectively.
Since Kupka-Smale vector fields are generic (by the results in Section 1.3.6)
we can assume that all the critical elements ofY in Λ′ are hyperbolic.

As dim(M) = 3 andY has two hyperbolic singularities with different
unstable manifold dimensions, it follows that bothY and−Y have a singu-
larity in Λ′ whose unstable manifold has dimension one. Then, by Theo-
rem 3.16 applied toY and−Y respectively,Λ′ is a proper attractor and a
proper repeller ofY. In particular,Λ′ is an attracting set and a repelling
set ofY. It would follow from Lemma 3.18 thatΛ′ = M. But this is a
contradiction sinceΛ′ is proper.

Corollary 3.26. If Y ∈ UU , then every critical element of Y inΛY(U) is
hyperbolic.

Proof. By Lemma 3.21 every periodic point ofY in ΛY(U) is hyperbolic,
for all Y ∈ U . It remains to prove that everyσ ∈ S(Y)∩ΛY(U) is hyper-
bolic, for all Y ∈ UU . By Lemma 3.22 the eigenvaluesλ1,λ2,λ3 of σ are
real and satisfyλ2 < 0 < λ1. Then, to prove thatσ is hyperbolic, we only
have to prove thatλ3 6= 0. If λ3 = 0, thenσ is a generic saddle-node singu-
larity (after a small perturbation if necessary). Unfolding this saddle-node
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we obtainY′ ∈ UU close toY having two hyperbolic singularities with dif-
ferent unstable manifold dimensions inΛY′(U). This contradicts Lemma
3.25 and the proof follows.

Proof of Theorem 3.2.Let Λ be a robustly transitive set with singularities
of X ∈ X 1(M) with dim(M) = 3. By Corollary 3.26 applied toY = X
we have that every critical element ofX in Λ is hyperbolic. SoΛ satisfies
condition (1) of Theorem 3.16. As dim(M) = 3 andΛ is non-trivial, ifΛ has
a singularity, then this singularity has unstable manifolddimension equal to
one, either forX or−X. SoΛ also satisfies condition (2) of Theorem 3.16,
either forX or −X. Applying Theorem 3.16 we have thatΛ is an attractor
(in the first case) or a repeller (in the second case).

We shall prove thatΛ is proper in the first case. The proof is similar in
the second case. IfΛ = M then we would haveU = M. From this it would
follow that Ω(X) = M and, moreover, thatX cannot beC1 approximated
by vector fields exhibiting attracting or repelling critical elements. It would
follow from the the work of Doering [53, p. 60] thatX is Anosov. But this
is a contradiction sinceΛ (and soX) has a singularity and Anosov vector
fields do not. This finishes the proof of Theorem 3.2.

Now we prove Theorem 3.5. We start with the following corollary.

Corollary 3.27. If Y ∈ UU then, either for Z= Y or Z= −Y, every singu-
larity of Z in ΛZ(U) is Lorenz-like.

Proof. Apply Lemmas 3.22, 3.25 and Corollary 3.26.

Now we use the existence of dominated splitting for the linear Poincaŕe
flow with respect toX ∈ UU , see Section 1.3.3 for the relevant results and
definitions.

Given X ∈ UU define Λ∗
X(U) = ΛX(U) \ S(X). According to The-

orem 3.2 we can assume thatΛX(U) is a proper and isolated attractor
of X. Using Lemma 3.21 and the fact thatΛ∗

X(U) ⊂ Ω(X), we see that
we are in the setting of Theorem 1.8. Then we conclude that theLin-
ear Poincaŕe Flow Pt on Λ∗

X(U) admits a partially hyperbolic splitting:
NΛ∗

X(U) = Ns,X ⊕Nu,X.
The following consequence of this is used in a crucial way forthe proof

of expansiveness in Chapter 4.
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Lemma 3.28. Let Λ be a compact isolated invariant set for X, with isolat-
ing neighborhood U such that every C1-close vector field admits a domi-
nated splitting for the corresponding Linear Poincaré Flow on U away from
singularities. Fixσ ∈ S(X)∩Λ and writeλ2 < λ3 < λ1 for its eigenvalues.

1. If λ2 < λ3 < 0, thenσ is Lorenz-like for X and Wss
X (σ)∩Λ = {σ}.

2. If 0 < λ3 < λ1, thenσ is Lorenz-like for−X and Wuu
X (σ)∩Λ = {σ}.

Remark3.29. If we are given a singular-hyperbolic isolated setΛ for a flow
X with isolating neighborhoodU then, by Remark 3.23, the singularities of
Λ, which are accumulated by regular orbits inΛ, are Lorenz-like either for
X or −X. Moreover the Linear Poincaré Flow onΛ∗ = Λ \S(X) admits a
partially hyperbolic splitting naturally. Indeed the Linear Poincaŕe Flow is
dominated by Theorem 1.8 (since singular-hyperbolicity prevents sinks and
sources for nearby flows onU and guarantees hyperbolicity of all critical
elements inU) and its central-stable bundle is uniformly contracted by the
same argument in the proof of Proposition 3.9.

In addition, for all close enough vector fieldsY the corresponding lo-
cally maximal invariant subsetΛY(U) is also partially hyperbolic with vol-
ume expanding central direction, and so the domination property of the
splitting for the Linear Poincaré Flow ofX on Λ is robust.

Hence we have the same properties used in the proof of Lemma 3.28.
We conclude thatevery singularity accumulated by regular orbits in a
singular-hyperbolic isolated set satisfies either item 1 oritem 2 of Lemma 3.28
above.

Proof. To prove the first item we assume thatλ2 < λ3 < 0. Thenσ is
Lorenz-like forX by Corollary 3.27. Assume by contradiction thatWss

X (σ)∩
Λ 6= {σ}.

SinceΛ is transitive, by Theorem 1.18 there isZ ∈ UU exhibiting a ho-
moclinic connectionΓ ⊂Wu

Z (σ(Z))∩Wss
Z (σ(Z)). This connection is called

orbit-flip, see Section 2.2.2. By using Theorem 2.4 we can approximateZ
by Y ∈ UU wit ha homoclinic connection

Γ′ ⊂Wu
Y (σ(Y))∩ (Ws

Y(σ(Y))\Wss
Y (σ(Y))).

Hence there exists a center-unstable manifoldWcu
Y (σ(Y)) containingΓ′ and

tangent toWs
Y(σ(Y)) alongΓ′. This connection is calledinclination-flip.
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The existence of inclination-flip connections contradictsthe existence
of the dominated splitting for the Linear Poincaré Flow from Theorem 1.8,
as a direct consequence of Theorem 2.4 in Section 2.2.2. Thiscontradiction
proves the first item.

The proof of the second item follows from the above argument applied
to−X.

Proof of Theorem 3.5.Let Λ be a robust transitive set ofX ∈ X1(M) with
dim(M) = 3. By Corollary 3.27, ifσ ∈ σX(Λ), thenσ is Lorenz-like either
for X or −X. If σ is Lorenz-like forX we have thatWss

X (σ)∩Λ = {σ}
by Lemma 3.28-(1) applied toY = X. If σ is Lorenz-like for−X we have
thatWuu

X (σ)∩Λ = {σ} by Lemma 3.28-(2) again applied toY = X. As
Wss

−X(σ) = Wuu
X (σ) the proof is complete.

3.3 Attractors and singular-hyperbolicity

The main goal here is the proof of Theorem 3.7.
Let Λ be a robust attractor ofX ∈ X1(M) with dim(M) = 3, U an iso-

lating block ofΛ, andUU a neighborhood ofX such that for allY ∈ UU ,
ΛY(U) = ∩t∈RYt(U) is transitive. By definitionΛ = ΛX(U).

As we already proved (in Lemma 3.21 and Corollary 3.26), for all
Y ∈ UU all the singularities ofΛY(U) are Lorenz-like and all the critical
elements inΛY(U) are hyperbolic of saddle type.

For future reference we state precisely the technical conditions for the
arguments that follow.

Theorem 3.30. Let Λ be a compact transitive Lyapunov stable invariant
subset of X∈ X1(M) such that for every vector field close to X all criti-
cal elements nearbyΛ are hyperbolic, and there are no sinks nor sources.
Suppose further that for all close vector fields every singularity nearbyΛ
is Lorenz-like. ThenΛ is singular-hyperbolic.

The strategy to prove Theorem 3.7 is the following: givenX ∈ UU we
show that there exists a neighborhoodV of X, c > 0, 0< λ < 1 andT0 > 0
such that for allY ∈ V , the set

PerT0
Y (ΛY(U)) = {y∈ PerY(ΛY(U)) : (minimal period ofy)≥ T0}
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has a continuous invariant(c,λ)-dominated splittingEs⊕Ecu, with the di-
mension ofEs equal to 1.

Using the Closing Lemma of Pugh (Theorem 1.16) and the robusttran-
sitivity, we induce a dominated splitting overΛX(U). The natural difficulty
is to obtain the splitting around the singularities. By Theorem 3.6 the sin-
gularities are Lorenz-like and, consequently, they carry the local hyperbolic
bundleÊssassociated to the strongest contracting eigenvalue ofDX(σ), and
the central bundlêEcu associated to the remaining eigenvalues ofDX(σ).
These bundles induce a local partial hyperbolic splittingÊss⊕ Êcu around
the singularities.

The main step now is to prove that the splitting proposed for the peri-
odic points is compatible with the local partial hyperbolicsplitting at the
singularities. Proposition 3.37 expresses this fact. Finally we prove that
Es is contracting and that the central directionEcu is volume expanding,
concluding the proof of Theorem 3.7.

We point out that the splitting for the Linear Poincaré Flow obtained
in Theorem 1.8 is not invariant byDXt . WhenΛ∗

X(U) = ΛX(U) \S(X) is
closed, this splitting induces a hyperbolic one forX, see [53, Proposition
1.1] and [98, Theorem A]. However the arguments used there donot apply
here, sinceΛ∗

X(U) is not closed. We also note that a hyperbolic splitting for
X over Λ∗

X(U) cannot be automatically extended to a hyperbolic one over
(Λ∗

X(U)): the presence of a singularity is a natural obstruction for it. On
the other hand, Theorem 3.7 shows that this can be circumvented to get a
partially hyperbolic structure forX over(Λ∗

X(U)).
Let us establishing some notations, definitions and preliminary results.

Uniformly dominated splitting over PerT0
Y (ΛY(U))

Let ΛY(U) be a robust attractor ofY ∈ UU , whereU andUU are as in the
previous section.

Since everyp∈PerY(ΛY(U)) is hyperbolic of saddle type, we have that
the tangent bundle ofM over p can be written as

TpM = Es
p⊕EY

p ⊕Eu
p ,

where Es
p is the eigenspace associated to the contracting eigenvalueof

DYtp(p), Eu
p is the eigenspace associated to the expanding eigenvalue of

DYtp(p), and we writetp for the (minimal) period ofp.
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Note thatEs
p ⊂ Ns

p⊕EY
p andEu

p ⊂ Nu
p⊕EY

p , whereNs⊕Nu is the split-
ting for the linear Poincaré flow over regular orbits.

Observe that, if we consider the previous splitting over allPerY(ΛY(U)),
the presence of a singularity inPerY(ΛY(U)) is an obstruction for the exten-
sion of the stable and unstable bundlesEs andEu to PerY(ΛY(U)). Indeed,
near a singularity, the angle between eitherEu andEX, or Es andEX, goes
to zero. To bypass this difficulty, we introduce the following.

Definition 3.5. GivenY ∈UU define for anyp∈PerY(ΛY(U)) the splitting

TpM = Es,Y
p ⊕Ecu,Y

p , where Ecu,Y
p = EY

p ⊕Eu
p.

In addition we define a splitting over PerY(ΛY(U)) by

TPerY(ΛY(U))M =
[

p∈PerY(ΛY(U))

(Es,Y
p ⊕Ecu,Y

p ).

When no confusion arises we drop theY-dependence on the notation
just defined. To simplify notation we denote the restrictionof DYt(p) to
Es,Y

p (respectivelyEcu,Y
p ) simply by DYt | Es

p (respectivelyDYt | Ecu
p ) for

t ∈ R andp∈ Per(ΛY(U)).
We now prove that the splitting over PerY(ΛY(U)) given by Defini-

tion 3.5 is aDYt-invariant and uniformly dominated splitting along periodic
points with large period.

Theorem 3.31. Given X∈ UU there are a neighborhoodV ⊂ UU and
constants0 < λ < 1, c > 0, and T0 > 0 such that, for every Y∈ V , if
p∈ PerT0

Y (ΛY(U)) and T> 0, then

‖DYT | Es
p‖ · ‖DY−T | Ecu

YT (p)‖ < c·λT .

Theorem 3.31 will be proved in Section 3.3.2, with the help ofThe-
orems 3.32 and 3.33 below. The proofs of these theorems are inSection
3.3.2.

Theorem 3.32 establishes, first, that the periodic points are uniformly
hyperbolic, i.e., the periodic points are of saddle-type and the Lyapunov
exponents are uniformly bounded away from zero. Secondly the angle be-
tween the stable and the unstable eigenspaces at periodic points are uni-
formly bounded away from zero.

Before the statement we need the following definition: giventwo sub-
spacesA⊂ TxM andB⊂ TxM the angle∠(A,B) betweenA andB is defined
as∠(A,B) = inf{∠(v,w) : v∈ A,w∈ B}.
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Theorem 3.32. Given X∈ UU , there are a neighborhoodV ⊂ UU of X
and constants0 < λ < 1 and c> 0, such that for every Y∈ V , if p ∈
PerY(ΛY(U)) and tp is the period of p then

a) (a1) ‖DYtp | Es
p‖ < λtp (uniform contraction on the period)

(a2) ‖DY−tp | Eu
p‖ < λtp (uniform expansion on the period) .

b) ∠(Es
p,E

u
p) > c (angle uniformly bounded away from zero).

Theorem 3.33 is a strong version Theorem 3.32-b). It establishes that,
at periodic points, the angle between the stable and the central unstable
bundles is uniformly bounded away from zero.

Theorem 3.33. Given X∈ UU there are a neighborhoodV ⊂ UU of X
and a positive constant C such that for every Y∈ V and p∈ PerY(ΛY(U))
we have angles uniformly bounded away from zero:∠(Es

p,E
cu
p ) > C.

We shall prove that, if Theorem 3.31 fails, then we can createa periodic
point for a nearby flow with the angle between the stable and the central un-
stable bundles arbitrarily small. This yields a contradiction with Theorem
3.33. In proving the existence of such a periodic point for a nearby flow we
use Theorem 3.32.

Assuming Theorem 3.31, we establish in the following section the ex-
tension of the splitting given in Definition 3.5 to all ofΛX(U). Afterward,
with the help of Theorem 3.32, we show thatEs is uniformly contracting
and thatEcu is volume expanding.

In the proof thatEs is uniformly contracted (respectivelyEcu is volume
expanding) we show that the opposite assumption leads to thecreation of
periodic points for flows nearby the original one with contraction (respec-
tively expansion) along the stable (respectively unstable) bundle arbitrarily
small, contradicting the first part of Theorem 3.32.

All of these facts together imply Theorem 3.7.

3.3.1 Dominated splitting over a robust attractor

Here we induce a dominated splitting overΛX(U) using the dominated
splitting over PerT0

Y (ΛY(U)) for flows nearX, given by Definition 3.5.
On the one hand, sinceΛY(U) is a proper attractor for everyY close to

X in X1, we can assume without loss of generality that for allY ∈ V , and
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x∈ Per(Y) with OY(x)∩U 6= /0, we have

OY(x) ⊂ ΛY(U). (3.8)

On the other hand, sinceΛX(U) is a non-trivial transitive set, we get that
ΛX(U) \ {p ∈ PerX(ΛX(U)) : tp < T0} is dense inΛX(U). So, to induce
an invariant splitting overΛX(U) it is enough to do so overΛX(U) \ {p∈
PerX(ΛX(U)) : tp < T0} (see [109] and references therein). For this we
proceed as follows.

Given X ∈ UU , let K(X) ⊂ ΛX(U) \ {p ∈ PerX(ΛX(U)) : tp < T0} be
such thatXt(x) /∈ K(X) for all x∈ K(X) if t 6= 0. In other words,K(X) is
a set of representatives of the quotientΛX(U) \ {p ∈ PerX(ΛX(U)) : tp <
T0}/∼, where∼ is the equivalence relation given byx∼ y ⇐⇒ x∈ OX(y).
SinceΛX(U) = ω(z) for somez∈ M, we have that for anyx∈ K(X) there
existstn > 0 such thatXtn(z) → x. Then by the Closing Lemma (Theorem
1.16) there existYn → X in X1 andyn → x such thatyn ∈ Per(Yn). We can
assume thatYn ∈ UU for all n. In particular, inclusion (3.8) holds for all
Y = Yn, that isOYn(yn) ⊂ ΛYn(U).

Moreover, since the period of the periodic points inK(X) are larger than
T0, we can also assume that the periods ofyn aretyn > T0 for all n. Thus
the (c,λ)-dominated splittingEs,Yn ⊕Ecu,Yn over PerT0

Yn
(ΛYn(U)), provided

by Theorem 3.31, is well defined.
Take a converging subsequenceEs,Ynk

ynk
⊕Ecu,Ynk

ynk
and set

Es,X
x = lim

k→∞
Es,Ynk

ynk
, Ecu,X

x = lim
k→∞

Ecu,Ynk
ynk

.

SinceEs,Yn ⊕Ecu,Yn is a(c,λ)-dominated splitting for alln, then this prop-
erty is also true for the limitEs,X

x ⊕Ecu,X
x . Moreover dim(Es,X

x ) = 1 and
dim(Ecu,X

x ) = 2 for all x∈ K(X).
Define the following eigenspaces alongXt(x) for t ∈ R

Es,X
Xt (x) = DXt(Es,X

x ) and Ecu,X
Xt (x) = DXt(Ecu,X

x ).

Since for everyn the splitting over PerT0
Yn

(ΛYn(U)) is (c,λ)-dominated, it
follows that the splitting defined above alongX-orbits of points inK(X)

is also(c,λ)-dominated. Moreover we also have thatEs,X
Xt (x) is unidimen-

sional andEcu,X
Xt (x) is bi-dimensional, for allt ∈ R. This provides the desired

extension of a dominated splitting toΛX(U).
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We denote byEs⊕Ecu the splitting overΛX(U) obtained in this way.
Since this splitting is uniformly dominated we deduce thatEs⊕Ecu de-
pends continuously on the points ofΛX(U) and also on the vector fieldX,
see [76] or [34].

When necessary we denote byEs,Y ⊕Ecu,Y the above splitting forY
nearX.

Remark3.34. If σ ∈ S(X)∩ΛX(U) thenEs
σ is the eigenspaceEss

σ associ-
ated to the strongest contracting eigenvalue ofDX(σ), andEcu

σ is the bi-
dimensional eigenspace associated to the remaining eigenvalues ofDX(σ).
This follows from the uniqueness of dominated splittings, [53, 108] or [34].

3.3.2 Robust attractors are singular-hyperbolic

Next we prove that the splittingEs⊕Ecu overΛX(U) is partially hyperbolic
with volume expanding central-unstable direction.

Es is uniformly contracting

We start by proving the following elementary lemmas.

Lemma 3.35. If liminf t→∞ ‖DXt | Es
x‖ = 0 for all x ∈ ΛX(U), then there is

T0 > 0 such that‖DXT0 | Es
x‖ < 1

2 for every x∈ ΛX(U).

Proof. For eachx∈ ΛX(U) there istx such that‖DXtx | Es
x‖ < 1/3. Hence

for eachx there is a neighborhoodB(x) such that for ally∈ B(x) we have
‖DXtx | Es

y‖ < 1/2. SinceΛX(U) is compact, there areB(xi), i = 1, . . . ,n,
such thatΛX(U) ⊂ B(x1)∪·· ·∪B(xn).

Let K0 = sup{‖DXt | Es
y‖,y∈ B(xi),0≤ t ≤ txi , i = 1, . . . ,n}, let j0 be

such that 2− j0 ·K0 < 1/2 and fixT0 > j0 · sup{txi , i = 1, . . . ,n}. We claim
thatT0 satisfies the statement of the lemma.

Indeed, giveny∈ ΛX(U) we havey∈ B(xi1) for some 1≤ i1 ≤ n. Let
ti1, . . . , tik, tik+1 satisfy

• Xti1+···+ti j (y) ∈ B(xi j+1), 1≤ j ≤ k, and

• ti1 + · · ·+ tik ≤ T0 ≤ ti1 + · · ·+ tik+1.
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Observe thatk≥ j0. Then forℓ j = ti1 + · · ·+ ti j , j = 1, . . . ,k+1, we have

‖DXT0 | Es
y‖ ≤ ‖DXT0−ℓk | Es

Xℓk(y)
‖ ·

k

∏
j=1

‖DXti j | Es
Xℓ j−1(y)

‖ <
K0

2k <
1
2
.

The proof is complete.

Lemma 3.36. If there exists T0 > 0 such that‖DXT0 | Es
x‖ < 1/2 for all

x∈ ΛX(U), then there are c> 0 and0< λ < 1 such that‖DXT/Es
x‖< cλT

for all x ∈ ΛX(U) and T> 0.

Proof. Let K1 = sup{‖DXt‖,0 ≤ t ≤ T0}. Choose 0< λ < 1 such that
1/2 < λT0 andc > 0 such thatK1 < c ·λr for all 0≤ r ≤ T0. Then for any
x∈ ΛX(U) and allT > 0 we haveT = nT0 + r with n = [T/T0] = max{k∈
Z : k≤ T/T0} and 0≤ r = T −nT0 < T0. Consequently

‖DXT | Es
x‖ = ‖DXr | Es

XnT0(x)
‖ ·

n−1

∏
j=0

‖DXT0 | Es
X jT0(x)

‖

<
K1

2n < c·λr · (λT0)n < c·λT ,

concluding the proof.

By Lemmas 3.35 and 3.36, in order to prove that the bundleEs is uni-
formly contracting, it is enough to prove that liminft→∞ ‖DXt | Es

x‖ = 0 for
everyx∈ ΛX(U).

Arguing by contradiction, assume that there existsx∈ΛX(U) satisfying
liminf t→∞ ‖DXt | Es

x‖ > 0. Then there existssn −−−→
n→∞

∞ such that

lim
n→∞

1
sn

log‖DXsn | Es
x‖ ≥ 0. (3.9)

Let C0(ΛX(U)) be the set of real continuous functions defined onΛX(U)
with theC0 topology, and define the sequence of continuous operators

Ψn : C0(ΛX(U)) → R, ϕ ∈C0(ΛX(U)) 7→ 1
sn

Z sn

0
ϕ(Xs(x))ds.

Since in theC0 norm this sequence is bounded,‖Ψn‖ ≤ 1, and the unit ball
of the dualC0(ΛX(U))∗ is weak∗-compact (see any standard reference on
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Functional Analysis e.g. [181]), there exists a subsequence of Ψn, which
we still denote byΨn, converging to a continuous mapΨ ∈C0(ΛX(U))∗ in
the weak∗ topology. LetM (ΛX(U)) be the space of measures with support
on ΛX(U). By the Riez’s Representation Theorem (see e.g. [180]) there
exists a probability measureµ∈M (ΛX(U)) such that

Z

ΛX(U)
ϕdµ= lim

n→+∞

1
sn

Z sn

0
ϕ(Xs(x))ds= Ψ(ϕ), (3.10)

for every continuous functionϕ : ΛX(U)→ R. Note that suchµ is invariant
by the flow since for allt ∈ R

Ψ(ϕ◦Xt) = lim
n→+∞

1
sn

Z sn

0
ϕ(Xs+t(x))ds

= lim
n→+∞

sn + t
sn

· 1
sn + t

(Z sn+t

0
ϕ(Xs(x))ds−

Z t

0
ϕ(Xs(x))ds

)
= Ψ(ϕ).

DefineϕX : C0(ΛX(U)) → R by

ϕX(p) = ∂h(log‖DXh | Es
p‖)h=0 = lim

h→0

1
h

log‖DXh | Es
p‖,

which is continuous and so satisfies (3.10). Observe that forT ∈ R,

Z T

0
ϕX(Xs(p))ds=

Z T

0
∂h(log‖DXh | Es

Xs(p)‖)h=0ds

= log‖DXT | Es
p‖. (3.11)

Combining (3.9), (3.10) and (3.11) we get
Z

ΛX(U)
ϕXdµ≥ 0. (3.12)

By The Ergodic Theorem 1.21 we deduce

Z

ΛX(U)
ϕX dµ=

Z

ΛX(U)
dµ(y) lim

T→∞

1
T

Z T

0
dsϕX(Xs(y)). (3.13)

Let Σ(X) be the set of strongly closed points, see Section 1.4.3. Since µ
is X-invariant and supp(µ) ⊂ ΛX(U), the Ergodic Closing Lemma (Theo-
rem 1.23) ensures thatµ

(
ΛX(U)∩ (S(X)∪Σ(X))

)
= 1.
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We claim thatµ
(
ΛX(U)∩Σ(X)

)
> 0. For otherwiseµ

(
ΛX(U)∩S(X)

)
=

1 and sinceS(X) is X-invariant and discrete, we would get thatµ is a finite
convex linear combination of point masses inS(X): µ = ∑σ∈S(X) aiδσ. But
Es

σ coincides with the strong-stable eigenspaceEss
σ at everyσ∈S(X) (recall

Remark 3.34) and the corresponding eigenvaluesλss are negative, thus
Z

ΛX(U)
ϕX dµ=

Z

S(X)
ϕX dµ= ∑

σ∈S(X)

aiϕX(σ) < 0

contradicting (3.12). This contradiction proves the claim.
The Ergodic Decomposition Theorem (see Section 1.4) enables us to

assume without loss of generality thatµ is ergodic. Henceµ(ΛX(U)∩
Σ(X)) = 1. Therefore by (3.12) and (3.13) there existsy∈ ΛX(U)∩Σ(X)
such that

lim
T→∞

1
T

Z T

0
ϕX(Xs(y))ds≥ 0. (3.14)

Becausey∈ Σ(X), there areδn −−−−→
n→+∞

0,Yn ∈UU , pn ∈PerYn(ΛYn(U)) with

periodtn such that

‖Yn−X‖ < δn and sup
0≤s≤tn

dist(Ys
n(pn),X

s(y)) < δn.

Observe that we must havetn −−−→
n→∞

∞. For otherwisey would be periodic

for X and, if ty is its period, then (3.11) with (3.14) imply thatDXty | Es
y is

not a contraction. Combining this with Theorem 3.32-a2) andLemma 3.21
we see thaty can belong neither to a hyperbolic periodic orbit of saddle
type nor to a repelling periodic orbit, a contradiction.

Let γ < 0 be arbitrarily small. By (3.14) again, there isTγ such that for
t ≥ Tγ we have

1
t

Z t

0
ϕX(Xs(y))ds≥ γ . (3.15)

Sincetn −−−→
n→∞

∞, we can assume thattn > Tγ for everyn. The continuity

of the splittingEs⊕Ecu over TΛX(U)M with the flow together with (3.15)
implies that forn big enough

1
tn

log‖DYtn
n /Es,Yn

pn
‖ ≥ γ or ‖DYtn

n /Es,Yn
pn

‖ ≥ eγtn.

Takingn sufficiently large andγ < 0 sufficiently small, this last inequality
contradicts item (a1) in Theorem 3.32.

This completes the proof thatEs is a uniformly contracting bundle.
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Ecu is uniformly volume expanding

Using results analogous to Lemmas 3.35 and 3.36, one can see that to prove
thatEcu is uniformly volume expanding it is enough to prove

liminf
t→∞

|det(DX−t | Ecu
x )| = 0 for every x∈ ΛX(U).

Arguing again by contradiction, assume that there existsx ∈ ΛX(U) such
that liminft→∞ |det(DX−t | Ecu

x )| > 0. Then there issn −−−→
n→∞

∞ such that

lim
n→∞

1
sn

log|det(DX−sn | Ecu
x )| ≥ 0. (3.16)

Again define the sequence of continuous operators

Ψn : C0(ΛX(U)) → R, ϕ 7→ 1
sn

Z sn

0
ϕ(X−s(x))ds.

Analogously to the previous arguments forEs, there exists a convergent
subsequenceΨn →Ψ∈C0(ΛX(U))∗ and there exists a probability measure
µ∈M (ΛX(U)) such that

Z

ΛX(U)
ϕdµ= lim

n→∞

1
sn

Z sn

0
ϕ(X−s(x))ds= Ψ(ϕ),

for every continuous functionϕ : ΛX(U)→R. As before suchµ is invariant
by the flow. Likewise defineϕX : C0(ΛX(U)) → R by

ϕX(p) = ∂h
(

log|det(DX−h | Ecu
p )|
)

h=0 = lim
h→0

1
h

log|det(DX−h(p) | Ecu
p )|.

Hence we obtain
Z

ΛX(U)
ϕXdµ= lim

n→∞

1
sn

log|det(DX−sn | Ecu
p )| (3.17)

and using (3.16) we get
Z

ΛX(U)
ϕX dµ≥ 0. (3.18)

By The Ergodic Theorem
Z

ΛX(U)
ϕX dµ=

Z

ΛX(U)
dµ(x) lim

T→∞

1
T

Z T

0
dsϕX(X−s(x)). (3.19)
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Arguing as in the previous section, we haveµ(ΛX(U)∩Σ(X)) = 1. From
(3.18) and (3.19) there existsy∈ ΛX(U)∩Σ(X) such that

lim
T→∞

1
T

Z T

0
ϕX(X−s(y))ds≥ 0. (3.20)

Hence there areδn −−−→
m→∞

0, Yn ∈ UU , pn ∈ PerYn(ΛYn(U)) with period tn
such that

‖Yn−X‖ < δn and sup
0≤s≤tn

dist(Y−s
n (pn),X

−s(y)) < δn.

Again we must havetn −−−→
n→∞

∞. Fix γ < 0 be arbitrarily small. By (3.20)

we can findTγ > 0 such that fort ≥ Tγ

1
t

Z t

0
ϕX(X−s(y))ds≥ γ (3.21)

and we can assume thattn > Tγ for everyn. The continuity of the splitting
Es⊕Ecu with the flow together with (3.17) and (3.21) imply that forn big
enough we have

1
tn

log|det(DY−tn
n | Ecu,Yn

pn
)| ≥ γ or |det(DY−tn

n | Ecu,Yn
pn

)| ≥ eγtn.

This implies
|det(DYtn

n | Ecu,Yn
pn

)| ≤ e−γtn = (e−γ)tn. (3.22)

We can makee−γ arbitrarily close to one and takingn sufficiently big, from
(3.22) we obtain a contradiction with item (a2) in Theorem 3.32, since for
periodic orbits we have

|det(DYtn
n | Ecu,Yn

pn
)| = |det(DYtn

n | Eu,Yn
pn

)|.

This completes the proof thatEcu is volume expanding.

Uniform dominated splitting on periodic orbits

Let us assume Theorems 3.32 and 3.33 on page 121 and show how we
obtain Theorem 3.31. The central idea of the proof is to show that if the
Theorem 3.31 fails then we can obtain a flow nearX exhibiting a periodic
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point with angle between the stable and the central bundles arbitrarily small,
leading to a contradiction with Theorem 3.33.

As in the proof of Lemma 3.36, to obtain Theorem 3.31 it is enough to
show that there exist a neighborhoodV ⊂ UU of X andT0 > 0, such that
for every vector fieldY ∈ V , if p∈ PerT0

Y (ΛY(U)) then

‖DYT0 | Es
p‖ · ‖DY−T0 | Ecu

YT0(p)
‖ ≤ 1

2
. (3.23)

We prove (3.23) arguing by contradiction. If (3.23) fails then givenX ∈UU

andT0 > 0, we can findY ∈UU arbitrarily close toX andy∈PerT0
Y (ΛY(U))

satisfying

‖DYT0 | Es
y‖ · ‖DY−T0 | Ecu

YT0(y)
‖ >

1
2
. (3.24)

Claim 3.2. For any positive number T0, there are Y arbitrarily close to X,
T > T0 and y∈ PerY(ΛY(U)), with period ty larger than T, admitting a
direction v∈ Ecu

YT (y)
not collinear to Y(YT(y)) such that

‖DYT | Es
y‖ · ‖DY−T(YT(y))(v)‖ = 1.

Proof. First we show that there existY arbitrarily close toX, T > T0 and
y ∈ PerT0

Y (ΛY(U)) with period ty larger thanT admittingv ∈ Ecu
YT (y)

such
that

‖DYT | Es
y‖ · ‖DY−T(YT(y))(v)‖ =

1
2
. (3.25)

TakeY close toX, T0 > 0 large enough andy ∈ PerT0
Y (ΛY(U)) satisfying

(3.24). If there existsT ∈ (T0, ty) such that‖DYT | Es
y‖ ·‖DY−T | Ecu

YT (y)
‖ <

1/2, then by continuity of the norms and the flow we can find some otherT
in the same interval satisfying‖DYT | Es

y‖ · ‖DY−T | Ecu
YT (y)

‖ = 1/2. Since
the unit ball in any tangent space is compact, there existsv∈ Ecu

YT (y)
satis-

fying (3.25). Otherwise we have

‖DYT | Es
y‖ · ‖DY−T | Ecu

YT (y)‖ ≥
1
2

for all T0 ≤ T < ty. (3.26)

In this case we observe that Theorem 3.32 implies

‖DYty | Es
y‖ · ‖DY−ty | Eu

Yty(y)‖ < λ2ty <
1
2
.
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Hence the inequality above is still true for someT ′ < ty and close enough
to ty. SinceEu

Yt (y) ⊂ Ecu
Yt (y) for all t ∈ R, we deduce from (3.26) that there

existT ∈ (T ′, ty) andv∈ Ecu
YT (y)

satisfying (3.25).
Define now the following one-parameter family of linear mapswhich

deformDYt

At | Es
y = 2t/T ·DYt | Es

y and At | Ecu
y = DYt | Ecu

y for 0≤ t ≤ T.

By a straightforward computation we obtain

∂s(At+s ·A−1
t )
∣∣
s=0 | Es

Yt (y) = ∂s
(
2s/T ·DYt+s(y) ·DY−t | Es

Yt (y)

)∣∣
s=0

= DY | Es
Yt (y) +

log(2)

T
,

which implies that
∥∥∂s(At+s ·A−1

t )
∣∣
s=0 | Es

Yt (y) −DY | Es
Yt (y)

∥∥ = log(2)/T

or, sinceAt | Ecu
y = DYt | Ecu

y by definition

∥∥∂s(At+s ·A−1
t )
∣∣
s=0−DY

∥∥=
log(2)

T
.

Note that this can be made arbitrarily small by takingT big enough and,
since the flow direction is contained inEcu, the family At preserves the
flow direction. ThusAt satisfies the conditions of the extension to the flow
setting of Frank’s Perturbation Lemma 1.20 (see Section 1.3.9 on page 31).

Hence on the one hand, by at most a smallC1 perturbation, we can
assume thatDYt(y) = At for 0≤ t ≤ T. On the other hand, by (3.25) and
by definition ofAt we get‖AT | Es

y‖ · ‖A−1
T (v)‖ = 1 which ensures that

∥∥DYT | Es
y

∥∥ ·
∥∥DY−T(YT(y))(v)

∥∥= 1.

If v is not collinear toY(YT(y)), then we are done. Otherwise letw be near
v insideEcu

YT (y)
, not collinear toY(YT(y)), so that

bT = ‖DYT | Es
y‖ · ‖DY−T(YT(y))(w)‖ ≈ 1.

Now perturb the vector field as before, keeping the flow direction: define
the one-parameter family of linear mapsBt by

Bt | Es
y = b−t/T

T ·DYt | Es
y and Bt | Ecu

y = DYt | Ecu
y for 0≤ t ≤ T.
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Again this family is in the setting of Frank’s Lemma 1.20 and by the same
arguments we can assume that, by at most a smallC1 perturbation, we getY
nearX andw∈Ecu

YT (y)
not collinear toY(YT(y)) with T0 < T < ty arbitrarily

large, such that
∥∥DYT | Es

y

∥∥ ·
∥∥DY−T(YT(y))(w)

∥∥ = 1. This completes the
proof of Claim 3.2.

Claim 3.3. There are a vector field Z which is C1 near Y and a periodic
point y∈ PerZ(ΛZ(U)) such that∠(Es,Z

y ,Ecu,Z
y ) is arbitrarily small.

This contradicts Theorem 3.33 and hence this proves Theorem3.31 as-
suming Theorems 3.32 and 3.33

Proof of Claim 3.3.Fix T > 0 large and letY ∈ UU be C1 close toX.
Takey ∈ PerY(ΛY(U)) with periodty > T andv ∈ Ecu

YT (y)
not collinear to

Y(YT(y)) given by Claim 3.2. Letw be the unit vector

DY−T(YT(y))(v)/‖DY−T(YT(y))(v)‖,

which belongs toEcu
y and is not collinear toY(y). Let et

y be the unit vector
in the direction ofY(Yt(y)) and for eachr ∈ [0,T] define a basis ofTYr (y)M
by B r = { f r

y ,wr ,es
Yr (y)}, wherewr = DYr(y)(w)/‖DYr(y)(w)‖ andes

Yr (y) is
a unit vector inEs

Yr (y).
By Theorem 3.33 there existsC > 0 such that∠(Es

Yr (y),E
cu
Yr (y)) ≥C for

all y∈ PerY(ΛY(U)) and everyr ∈ [0,T]. Then we can findK = K(C) > 0
and a neighborhoodV of X such that for allY ∈ V and ally∈Per(ΛY(U)),
there is a inner product< ·, · >(Yr (y)) inducing a norm‖ · ‖∗(Yr (y)) such that
for all r ∈ [0,T]

Es
Yr (y) andEcu

Yr (y) are orthogonal, and
1
K
‖ · ‖ ≤ ‖ · ‖∗(Yr (y)) ≤ K‖ · ‖.

The matrix ofDYr(y) with respect to the basisB r in the new metric is

DYr(y) =




Y(r) ∗ 0
0 a(r) 0
0 0 b(r)


 where





Y(r) = ‖Y(Yr(y))‖∗Yr (y)

a(r) = ‖DYr(y)(w)‖∗Yr (y)

b(r) = ‖DYr(y)(es
y)‖∗Yr (y)

.

Note that in this basisY(Yr(y)) = (1,0,0) anda(T) = b(T) · ‖v‖∗YT (y) by
the choices ofv andw.
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Let As,y be the restriction ofDYs(y) to the subspace[w,es
y] spanned by

the vectorsw andes
y. Observe that any perturbation onAs,y does not affect

the direction ofY.
For eachδ > 0 define

A+
s,y =

[
a(s) δa(s)

R s
0

b(r)
a(r)dr

0 b(s)

]
andA−

s,y =

[
a(s) 0

δb(s)
R s

0
a(r)
b(r)dr b(s)

]
.

Note that forh≥ 0 we have

A+
s+h,y(A

+
s,y)

−1 =

[
a(s,h) c(s,s+h)

0 b(s,h)

]
,

wherea(s,h) = a(s+h)/a(s), b(s,h) = b(s+h)/b(s) and

c(s,s+h) = δ · a(s+h)

b(s)

Z s+h

s

b(r)
a(r)

dr.

An analogous formula holds forA−
s+h(A

−
s )−1. We claim that

‖∂hA+
s+h,y(A

+
s,y)

−1|h=0−DY(Ys(y))‖∗Ys(y) ≤ δ. (3.27)

Indeed since

∂hA+
s+h,y(A

+
s,y)

−1|h=0 =

[
a′(s)
a(s) ∂hc(s,s+h)|h=0

0 b′(s)
b(s)

]

and

DY(Ys(y)) =

[
a′(s)
a(s) 0

0 b′(s)
b(s)

]
,

all we need to show is‖∂hc(s,s+h)|h=0‖(Y,y) ≤ δ. But for someη∈ [s,s+h]
we have

c(s,s+h) = δ · a(s+h)

b(s)

Z s+h

s

b(r)
a(r)

dr = δ · a(s+h)

b(s)
· b(η)

a(η)
h,

and from this we deduce

∂hc(s,s+h)|h=0 = lim
h→0

c(s,s+h)

h
= δ
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which implies (3.27). A similar result holds forA−
s+h(A

−
s )−1.

Observe that

A+
T,y

[
0
1

]
=

[
δa(T)

R T
0

b(r)
a(r)dr

b(T)

]
, A−

T,y

[
1
0

]
=

[
a(T)

δb(T)
R T

0
a(r)
b(r)dr

]
.

We shall prove next that shrinkingδ we obtain either

b(T)

δa(T)
R T

0
b(r)
a(r)dr

vanishes or (3.28)

δ
b(T)

a(T)

Z T

0

a(r)
b(r)

dr is arbitrarily large. (3.29)

This implies

eitherA+
T,y

[
0
1

]
is nearly horizontal, orA−

T,y

[
1
0

]
is nearly vertical.

If (3.28) holds we consider the family

B+
s,y =




Y(s) ∗ 0

0 a(s) δa(s)
R s

0
b(r)
a(r)dr

0 0 b(s)




and if (3.29) holds we take

B−
s,y =




Y(s) ∗ 0
0 a(s) 0

0 δb(s)
R s

0
a(r)
b(r)dr b(s)


 .

Suppose (3.28) is true. Observe that (3.27) implies thatB+
s,y satisfies Frank’s

Lemma 1.20. So there isZ ∈ UU C1 nearY (andC1 nearX) such that
y is a periodic point ofZ with period T, Zt(y) = Yt(y) for every t, and
DZs(y) = B+

s,y. In particular, the restriction ofDZs(y) to [w,es
y] equalsA+

s,y

for all s. Hence we haveEcu,Z
Zs(y) = Ecu,Y

Ys(y) for all s.

Moreover, Theorem 3.33 combined with the fact that‖ · ‖∗Ys(y) is equiv-

alent to‖ · ‖, ensures that∠(Ecu,Z
y ,Es,Z

y ) > C′ for some positive constant
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C′ = C′(C) in the adapted metric. Thus, in the basisBYs(y) fixed above,

we obtainEs,Z
y = (g,d,1) with |g| and |d| bounded above by a constant

depending only onC. Hence

Es,Z
ZT (y) = DZZT (y)




g
d
1


=




gY(T)+∗d

da(T)+δa(T)
R T

0
b(r)
a(r)dr

b(T)


 .

As a(T) = b(T) · ‖v‖∗YT (y), we obtain that the ratio between the third

and the second coordinate ofEs,Z
ZT (y) is equal to

(
d+δ

Z T

0

b(r)
a(r)

dr

)−1

.

and (3.28) impliesδ
R T

0
b(r)
a(r)dr > K1, with K1 arbitrarily large. Therefore

d+δ
Z T

0

b(r)
a(r)

dr > K1 +d and so

(
d+δ

Z T

0

b(r)
a(r)

dr

)−1

<
1

K1 +d
.

Since(K1+d)−1 is arbitrarily small, we see that∠(Es,Z
ZT (y),E

cu,Z
ZT (y)) vanishes

in the metric‖ · ‖∗(Y,y), and so∠(Es,Z
ZT (y),E

cu,Z
ZT (y)) is also arbitrarily small in

the original metric, contradicting Theorem 3.33.
We also obtain that∠(Ecu,Z

ZT (y),E
s,Z
ZT (y)) is arbitrarily small in the original

metric, if we assume (3.29) and use similar arguments.
Finally to prove Claim 3.3 we need to show that either (3.28) or (3.29)

are true. For this, setδ = T−1/2, so thatδ −−−−→
T→+∞

0. Sincea(s),b(s) > 0

for all s∈ [0,T], we can write

T =
Z T

0
dY =

Z T

0

√
a(Y)

b(Y)

√
b(Y)

a(Y)
dY≤

√
Z T

0

a(Y)

b(Y)
dY

√
Z T

0

b(Y)

a(Y)
dY

and so

T2 ≤
Z T

0

a(Y)

b(Y)
dY ·

Z T

0

b(Y)

a(Y)
dY,

implying that

T

δ
R T

0
b(Y)
a(Y)dY

=
T2δ2

δ
R T

0
b(Y)
a(Y)dY

≤ δ
Z T

0

a(Y)

b(Y)
dY.



“LivroCBM-ultimo”
2007/8/20
page 135

i

i

i

i

i

i

i

i

3.3. ATTRACTORS AND SINGULAR-HYPERBOLICITY 135

Thus if (δ
R T

0
b(Y)
a(Y)dY)−1 > T−1/2, then T (δ

R T
0

b(Y)
a(Y)dY)−1 > T T−1/2 =√

T, which implies

δ
Z T

0

a(Y)

b(Y)
dr ≥

√
T .

SinceT can be taken arbitrarily large, we see that either (3.28) or (3.29)
are true. The proof of Theorem 3.31 is complete, and we conclude that the
splitting Es⊕Ecu over PerT0

Y (ΛY(U)) given by Definition 3.5 is invariant
and uniformly dominated.

Uniformly bounded angles between stable and unstable directions at
periodic orbits

Here we prove Theorem 3.32 and 3.33, used in the proofs of the results in
the previous section.

Proof of Theorem 3.32:Let us start with item (a). Suppose, by contradic-
tion, that givenδ > 0 small, there isY ∈ X∞(M) arbitrarilyC1 close toX,
and a periodic orbity of Y with periodty, such that‖DYty | Es

y‖ ≥ (1−δ)ty.
Let At be the following one-parameter family of linear maps

At = (1−2δ)−t ·DYt(y), 0≤ t ≤ ty.

By constructionAt preserves the direction of the flow and the eigenspaces
of DYty. Moreover

‖∂hAt+hA−1
t |h=0−DY(Yt(y))‖ < − log(1−δ) .

Since we can takeδ as close to 0 as needed, the inequality above together
with Y ∈C∞ imply thatAt satisfies Frank’s Lemma 1.20. Hence there exists
Z ∈ C1 C1 nearY such thaty is a periodic point ofZ with periodty, and
DZt(Zt(y)) = At for 0≤ t ≤ ty. By definition ofAt we get‖DZty | Es

y‖ > 1,
implying that y is a source forZ, which contradicts Lemma 3.21. This
proves subitem (a1).

By the same argument we prove subitem (a2). This finishes the proof
of the first item.

Now let us prove item (b). By contradiction, assume that for every
γ > 0 there existY ∈ X∞ C1 close toX and p ∈ PerY(ΛY(U)) such that
∠(Es

p,E
u
p) < γ.
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Let tp be the period ofp andλs, λu be the stable and unstable eigenval-
ues ofDYtp(p). Thenλs < λtp andλu > λ−tp, whereλ is given by item (a)
already proved. Observe that there ist0 such thattp > t0 and thus,|1− λs

λu
|

is uniformly bounded away from 0. In addition, ifλs ·λu > 0, then there is
D1 > 0 such that

D−1
1 <

∣∣∣∣
2
√

λsλu−λs−λu

λu−λs

∣∣∣∣< D1, (3.30)

or else, ifλs ·λu < 0 then there isD2 > 0 such that

D−1
2 <

∣∣∣∣
−(λs+λu)

(λu−λs)

∣∣∣∣< D2. (3.31)

Let γ̂ be the slope betweenEs
p andEu

p. Observe that̂γ is small if the angle

∠(Es
p,E

u
p) is small. In the caseλs · λu > 0, we setδ =

∣∣∣2
√

λsλu−λs−λu
λu−λs

∣∣∣ γ̂.

Otherwise setδ =
∣∣∣−(λs+λu)

(λu−λs)

∣∣∣ γ̂. By hypothesis,̂γ can be taken arbitrarily

small. Thus (3.30) and (3.31) imply thatδ also can be taken arbitrarily
small.

Now, letB t0≤t≤tp be a continuous family of positively oriented basis in
TYt (p)M, defined by

B t(p) =

{
Yt(p)

‖Yt(p)‖ ,v2(t),v3(t)

}
,

with v2(t) ∈ Ecs
Yt (p) orthonormal toY(Yt(p)), andv3(t) is orthonormal to

Ecs
Yt (p). In this basis we have

DYtp(p) =




1 ∗ ∗
0 λs

λu−λs
γ̂

0 0 λu


 .

For eachδ as above, let

A(δ) =




1 0 0
0 1 0
0 δ 1


 ,
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and considerB(δ) = A(δ) ·DYtp(p). Sinceδ is arbitrarily small,B(δ) is ar-
bitrarily nearDYtp(p). Moreover a straightforward calculation shows that
B(δ) has one eigenvalue equal to 1, and the product of the other twoeigen-
values have modulus equal to

√
|λs ·λu| (δ was chosen so that the other

eigenvalues besides 1 are equal), which is either bigger than 1 or smaller or
equal to 1.

Taking δ small enough, there is a non-negativeC2 real functionδ(t)
such thatδ(0) = 0, δ(tp) = δ, |δ′(t)| < 2δ and|δ(t)| < 2δ. Define the one-
parameter family of linear maps whose matrix in the basisB t is

At =




1 0 0
0 1 0
0 δ(t) 1


 , 0≤ t ≤ tp.

Let Ct = At ·DYt(p) for 0 ≤ t ≤ tp. By construction the transformation
Ct preserves the flow direction along theY-orbit of p. The choice ofδ(t)
implies thatAt is a small perturbation of the identity mapIt : TYt (p)M →
TYt (p)M for 0 ≤ t ≤ tp and soCt is in the setting of Frank’s Lemma 1.20
again.

Hence we can find a vector fieldZ which isC1 nearY, and a periodic
point p∈ PerZ(ΛZ(U)) such thatDZt(p) =Ct = At ·DYt(p), for 0≤ t ≤ tp.
MoreoverDZtp = Atp ·DYtp(p) = B(δ) (recall B(δ) was defined above).
Thus, takingδ small enough, we get aC1 vector fieldZ nearbyY exhibit-
ing a periodic pointp which is either a sink or a source. This contradicts
Lemma 3.21. This completes the proof of Theorem 3.32.

Proof of Theorem 3.33:Arguing by contradiction, we show that if Theo-
rem 3.33 fails, then we can create periodic points with anglebetween the
stable and unstable direction arbitrarily small, leading to a contradiction
with the second part of Theorem 3.32, already proved.

Theorem 3.33 is a consequence of Propositions 3.37 and 3.38 below.
The first one establishes that for periodic points close to a singularity, the
stable direction remains close to the strong stable direction of the singu-
larity, and the central unstable direction is close to the central unstable di-
rection of the singularity. This result gives the compatibility between the
splitting proposed for the periodic points in Definition 3.5and the local
partially hyperbolic splitting at the singularities.
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Proposition 3.37. Given X∈ UU , ε > 0 andσ ∈ S(X)∩ΛX(U) there exist
a neighborhoodV ⊂ UU of X andδ > 0 such that for all Y∈ V and
p∈ PerY(ΛY(U)) satisfyingdist

(
p,σY

)
< δ we have

(a) ∠
(
Es,Y

p , Êss,Y
σY

)
< ε, and

(b) ∠
(
Ecu,Y

p , Êcu,Y
σY

)
< ε.

The second one says that,far from singularities, the angle between the
stable direction and the central unstable direction of any periodic point in-
side the maximal invariant set is uniformly bounded away from zero.

Proposition 3.38. Given X∈ UU and δ > 0, there are a neighborhood
V ⊂ U of X and a positive constant C= C(δ) such that if Y∈ V and
p∈ PerY(ΛY(U)) satisfiesdist

(
p,S(Y)∩ΛY(U)

)
> δ then

∠
(
Es,Y

p ,Ecu,Y
p

)
> C.

Theorem 3.33 follows from these propositions since

• far away from singularities the uniform domination betweenthe sta-
ble and center-unstable directions at periodic orbits is a consequence
of the uniform growth rates provided by Theorem 3.32 together with
the angle estimate of Proposition 3.38;

• for orbits passing close to the singularities, Proposition3.37 ensures
that the stable and center-unstable directions are essentially the same
as the strong-stable and center-unstable direction at the singularity.
The angle between these is bounded away from zero since everysin-
gularity is Lorenz-like, by Theorem 3.5, and the setS(X)∩ΛY(U) is
finite because each singularity is hyperbolic. This together with the
uniform growth rates provided by Theorem 3.32 ensure the uniform
domination between the stable and center-unstable directions.

The proof of Theorem 3.33 is complete depending only on Propositions 3.37
and 3.38.

3.3.3 Flow boxes near singularities

Since the singularitiesσ in our setting are all Lorenz-like, the unstable
manifoldWu(σ) is one-dimensional, and there is a one-dimensional strong-
stable manifoldWss(σ) contained in the two-dimensional stable manifold



“LivroCBM-ultimo”
2007/8/20
page 139

i

i

i

i

i

i

i

i

3.3. ATTRACTORS AND SINGULAR-HYPERBOLICITY 139

Ws(σ). Using the linearization given by the Hartman-Grobman Theorem 1.9
or, in the absence of resonances, the smooth linearization results provided
by Sternberg [193], orbits of the flow in a small neighborhoodU0 of the
singularity are solutions of the linear system (2.3), modulo a continuous
change of coordinates.

Then for someδ > 0 we may choose cross-sections contained inU0

• Σo,± at pointsy± in different components ofWu
loc(σ)\{σ}

• Σi,± at pointsx± in different components ofWs
loc(σ)\Wss

loc(σ)

and Poincaŕe first hitting time mapsR± : Σi,± \ ℓ± → Σo,− ∪Σo,+, where
ℓ± = Σi,±∩Ws

loc(σ), satisfying (see Figure 3.1)

1. every orbit in the attractor passing through a small neighborhood of
the singularityσ intersects some of the incoming cross-sectionsΣi,±;

2. R± maps each connected component ofΣi,± \ ℓ± diffeomorphically
inside a different outgoing cross-sectionΣo,±, preserving the corre-
sponding stable foliations.

Σi,+

Σi,−
Σo,+Σo,−

σ

ℓ+

ℓ−

z z

R(z) R(z)
x1

x2

x3

Figure 3.1: Cross-sections near a Lorenz-like singularity.

These cross-sections may be chosen to be planar relative to some lin-
earizing system of coordinates nearσ e.g. for a smallδ > 0

Σi,± = {(x1,x2,±1) : |x1| ≤ δ, |x2| ≤ δ} and

Σo,± = {(±1,x2,x3) : |x2| ≤ δ, |x3| ≤ δ},
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where thex1-axis corresponds to the unstable manifold nearσ, thex2-axis
to the strong-stable manifold and thex3-axis to the weak-stable manifold
of the singularity which, in turn, is at the origin, see Figure 3.1.

The singularity is hyperbolic for the vector fieldX. Hence for every
C1 nearby vector fieldY there exists a unique Lorenz-like singularityσY

in U0. Moreover the submanifoldsΣi,± andΣo,± remain transverse toY.
So all local properties of these cross-sections are robust under smallC1

perturbations of the flow.

3.3.4 Uniformly bounded angle between stable and center-
unstable directions on periodic orbits

Let us recall some facts and notation before starting the proof of Proposi-
tions 3.37 and 3.38.

Given a singularityσ of X ∈UU , we know thatσ is hyperbolic. So forY
close toX there exists a unique continuation ofσ, which we writeσY. Since
every singularity ofX is hyperbolic, we conclude that the singularities of
Y nearbyX are the continuations of the singularities ofX. Hence we can
assume that, for anyY close toX, the singularities ofY in ΛY(U) coincide
with the ones ofX in ΛX(U).

According to Theorem 3.5, for allY ∈ UU the eigenvaluesλi = λi(Y),
i = 1,2,3 of DY(σY) are real and satisfyλ2 < λ3 < 0<−λ3 < λ1. We write
Êss,Y

σY for the eigenspace associated to the strongest contractingeigenvalue
λ2 andÊcu,Y

σY for the bidimensional eigenspace associated to{λ3,λ1}. With-
out loss of generality we can assume that, forY close toX, the eigenvalues
of of DY(σY) are the same as the ones of ofDX(σ).

SinceM is a Riemannian manifold, for anyx∈ M and every neighbor-
hoodU of x there exists anormal neighborhood V⊂ U of x, i.e., for any
pair of points inV there is a unique geodesic contained inV connecting
them. Thus using parallel transport inV we can define angles between any
pair of tangent vectors at points ofV. We will use this in what follows to
compare angles of tangent vectors at nearby points.

We reduce the proof of Propositions 3.37 and 3.38 to the following
results.

The first one is the next lemma establishing that any compact invariant
setΓ ⊂ ΛX(U) containing no singularitiesis uniformly hyperbolic.
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Lemma 3.39. Let X ∈ UU and Γ ⊂ ΛX(U) be a compact invariant set
without singularities. ThenΓ is uniformly hyperbolic.

Note that we cannot use Proposition 3.9 at this point since westill have
not completed the proof of uniform domination for the splitting on periodic
orbits, so we cannot use that the splittingEs⊕Ecu is dominated overΛ.

We will not provide the detailed proof of Lemma 3.39 here, since the
arguments are very similar to the one proving thatEs is uniformly contract-
ing andEcu is uniformly volume expanding overΛX(U). The main tool is
the Ergodic Closing Lemma and the main point of the argument is to show
that, if the splitting of the Linear Poincaré Flow is not dominated or not
hyperbolic, then we can find aC1 close flow exhibiting either a sink or a
source, contradicting Lemma 3.21. The detailed arguments can be found
in [133, pages 421-424].

GivenX ∈ UU andδ > 0 we define

Cδ =
[

σ∈S(X)∩ΛX(U)

Bδ(σ)

theδ-neighborhood around the singularities ofX in Λ. Write Uδ = U \Cδ
for the closure of the complement ofCδ in U and define

ΩX(Uδ) = {x∈ Ω(X) : OX(x) ⊂Uδ}.

We use the following application of Lemma 3.39.

Corollary 3.40. For anyδ > 0, ΩX(Uδ) is hyperbolic.

Recall that given a regular pointx∈ M we defineNY
x as the orthogonal

complement ofEY
x in TxM, Λ∗

Y(U) = ΛY(U)\ (S(X)∩ΛY(U)) and

NΛ∗
Y(U) =

{
Ns,Y

x ⊕Nu,Y
x

}
x∈Λ∗

Y(U)

denotes the splitting for the linear Poincaré flow PY
t of Y, see Theorem 1.8

in Section 1.3.3. Forx ∈ Λ∗
Y(U) we define the bundlesEcs,Y

x = Ns,Y
x ⊕EY

x

andEcu,Y
x = Nu,Y

x ⊕EY
z .

Recall also that forY nearX andp∈PerY(ΛY(U)) we denote byEs,Y
p ⊕

Ecu,Y
p the splitting induced by the hyperbolic splitting along theperiodic

orbit as in Definition 3.5. In this case, we have thatEcu,Y
p = Nu,Y

p ⊕EY
p and

Es,Y
p ⊂ Ecs,Y

p = Ns,Y
p ⊕EY

p .
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Using that a uniformly hyperbolic set has a unique locally defined con-
tinuation for flows close to the initial one, we obtain that for every point
whose orbit does not go away fromΓ for any nearby flow, any tangent vec-
tor in Ecs close to the flow direction remains close to the flow direction
under the action of the flow.

Lemma 3.41. Let X∈UU andΓ be a compact invariant set without singu-
larities. Then, there are neighborhoodsV of X, V ofΓ andγ > 0 such that
for anyε > 0 there exists T= T(ε) > 0 satisfying: if Y∈ V , y∈V∩ΛY(U)

with Ys(y) ∈V for 0≤ s≤ t and some t≥ T, and also v∈ Ns,Y
y ⊕EY

y with
∠(v,Y(y)) < γ, then∠

(
DYt(y) ·v,Y(Yt(y))

)
< ε.

The next result provides angle estimates for orbits passingnearby a
singularity. For a pointy in ΛY(U) and vectorsv with angle bounded away
from zero with the strong-stable bundle at the singularity,after passing near
the singularity,DYt(v) lands in the direction of the central unstable bundle
atYt(y).

GivenσY ∈ S(Y)∩ΛY(U), Ws
loc(σY) (Wu

loc(σY) respectively) stands for
the local stable (unstable) manifold atσY. We setŴs

loc(σY) = Ws
loc(σY) \

{σY}, andŴu
loc(σY) = Wu

loc(σY) \ {σY}. SinceσY is Lorenz-like, there is
a unique bundleÊss,Y in TWs

loc(σY) which is strongly contracted by the

derivative of the flow. For eachy∈Ws
loc(σY), Êss,Y

y is the fiber ofÊss,Y aty.
In the following we use the notation from Section 3.3.3 for cross-sections

near aδ-neighborhood of the singularities.

Definition 3.6. If y∈ Bδ(σY) we writey∗ for the point inŴs
loc(σY) satisfy-

ing dist
(
y,Ŵs

loc(σY)
)

= dist(y,y∗).

Now we can state the result precisely.

Lemma 3.42. Let X∈ UU , σ ∈ S(X)∩ΛX(U) and δ > 0. There exists a
neighborhoodV of X such that givenγ > 0 andε > 0 there is r= r(ε,γ) > 0
such that for Y∈V , y∈Bδ(σ)∩ΛY(U) satisfyingdist

(
y,Ŵs

loc(σY)
)
< r and

for v∈ TyM with ∠
(
v, Êss,Y

y∗
)
> γ, then∠

(
DYsy(y)(v),Ecu,Y

Ysy(y)

)
< ε, where sy

is the smallest positive time such that Ysy(y) ∈ Σo,±.

Givenδ′ ∈ (0,δ) we define a neighborhood of the local stable manifold
of σ in Σi,± by

Σi,±
δ,δ′ = {x∈ Σi,± : dist(x,Ŵs

loc(σ)∩Σi,±) ≤ δ′}. (3.32)
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Finally next result gives also estimates for the angles after passing near a
singularity: for vectorsv in the central direction with angle bounded away
from zero with the flow direction, then after passing nearσ, DXt(v) be-
comes closer to the direction of the flow.

Lemma 3.43. Let X∈UU , σ ∈ S(X)∩ΛX(U) andδ > 0. There is a neigh-
borhoodV of X such that, givenε > 0, κ > 0, δ > 0 and cross sections
Σi,±, Σo,± as above, there existsδ′ > 0 satisfying: for all Y∈ V , p∈ Σi,±

δ,δ′

and v∈ Nu,Y
p ⊕EY

p , if ∠(v,Y(p)) > κ, then∠
(
DYsp(p) ·v,Y(Ysp(p))

)
< ε,

where sp is the first positive time such that Ysp(p) ∈ Σo,±.

We postpone the proof of Lemmas 3.41, 3.42 and 3.43 to the end of this
section, and continue with the proof of Propositions 3.37 and 3.38 assuming
these results.

Since we have only a finite number of singularities, we can assume that
the estimates given by the previous lemmas are simultaneously valid for all
singularities ofY in ΛY(U) and for allY ∈ V .

Proof of Proposition 3.37-(a):We argue by contradiction. Using that hy-
perbolic singularities depend continuously on the vector field, we have that
if item (a) of Proposition 3.37 fails then there are a singularity σ of X, γ > 0,
a sequence of vector fieldsYn converging toX and a sequence of periodic
pointspn ∈ PerYn(ΛYn(U)) with pn → σ such that

∠
(
Es,Yn

pn
, Êss,Yn

σYn

)
> γ. (3.33)

We prove using (3.33) that after a first passage through a neighborhood of
a singularity, the stable direction and the flow direction become close. This
property persists up to the next return to that neighborhood. After a second
passage through it, we show that the stable direction and theflow direction
are close, and that the unstable direction and the flow direction are also
close. This implies the stable and the unstable direction are close to each
other, leading to a contradiction with Theorem 3.32(b).

Fix a neighborhoodBδ(σ) and cross sectionsΣo,±,Σi,± contained in
Bδ(σ) as in Section 3.3.3. Sincepn → σ, we have that for all sufficiently
largen there exists the smallesttn > 0 such thatqn = Ytn

n (pn) ∈ Σo,±.
Note that there isq∈ Ŵu

loc(σ)∩ΛX(U) such thatqn → q.

Claim 3.4. The bound(3.33)implies that∠
(
Es,Yn

qn ,Yn(qn)
)
−−−−→
n→+∞

0.
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Proof. We prove first that, as a consequence of (3.33), the stable direction at
qn is close to the central-unstable direction atqn. Using some properties of
the splitting given by the Poincaré flow, we deduce then the stable direction
atqn is necessarily close to the flow direction atqn, proving the claim.

By (3.33) and sincepn → σ, by Lemma 3.42 we get

∠
(
Es,Yn

qn
,Nu,Yn

qn
⊕EYn

qn

)
−−−−→
n→+∞

0. (3.34)

Now we deduce from (3.34) thatEs,Yn
qn is leaning in the direction of the

flow. Indeed, sinceqn → q∈ Λ∗
X(U), Theorem 1.8 for the Linear Poincaré

Flow ensures∠
(
Ns,Yn

qn ,Nu,Yn
qn

)
> 9

10 ·∠
(
Ns,X

q ,Nu,X
q
)

for everyn big enough.

BecauseNs(u)
qn is orthogonal toYn(qn), we deduce

∠(Ns,Yn
qn

⊕EYn

qn
,Nu,Yn

qn
⊕EYn

qn

)
= ∠

(
Ns,Yn

qn
,Nu,Yn

qn

)
.

Hence∠
(
Ns,Yn

qn ⊕EYn

qn
,Nu,Yn

qn ⊕EYn

qn

)
is uniformly bounded away from zero.

SinceEs,Yn
qn ⊂ Ns,Yn

qn ⊕EYn

qn
andYn(qn) =

(
Ns,Yn

qn ⊕EYn

qn

)
∩
(
Nu,Yn

qn ⊕EYn

qn

)
, by

(3.34) we obtain
∠
(
Es,Yn

qn
,Yn(qn)

)
−−−→
n→∞

0. (3.35)

This completes the proof of Claim 3.4.

Now we apply Lemma 3.43. For this, letδ be as above,κ = c with c
given by Theorem 3.32(b) andε < c/2. Letδ′ be given by Lemma 3.43.

Fix δ∗ < max{δ,δ′} and considerUδ∗ =U \Cδ∗ . Since the singularities
of Y ∈ V are continuations of the singularities ofX, we can assume that
Uδ∗ ∩S(Y)∩ΛY(U) = /0 for all Y ∈ V .

Sinceσ is an accumulation point of{OYn(qn)}n≥1 we have that, forn
large enough, there is a first positive timesn such that ˜qn =Ysn

n (qn) belongs
to Cδ∗ . We can takesn in such a way that ˜qn ∈ Σi,±

δ,δ′ (defined in (3.32)).
We assume, without loss of generality, that every ˜qn belongs to the same

cross sectionΣi,±
δ,δ′ associated to the same singularity ofYn and ofX. Note

that from the choice ofδ∗ we haveYs
n(qn) ∈Uδ∗ for all 0≤ s≤ sn.

Next we prove that (3.35) is also true replacingqn by q̃n, that is

∠
(
Es,Yn

q̃n
,Yn(q̃n)

)
−−−−→
n→+∞

0. (3.36)

Indeed, if there existsS> 0 such that for infinitely manyn we havesn < S,
then (3.35) immediately implies (3.36).
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Otherwise, letq be such thatYsn/2
n (qn) −−−→

sn→∞
q. ThenOX(q) ⊂ Uδ∗

which impliesωX(q)⊂ΩX(Uδ∗). By Corollary 3.40 we know thatΩX(Uδ∗)
is uniformly hyperbolic. LetV be a neighborhood ofΩX(Uδ∗) given by
Lemma 3.41. Now we establish that the time spent by theYn-orbit segment
{Yt

n(qn),0≤ t ≤ sn} outsideV is uniformly bounded.

Claim 3.5. There is S> 0 such that for all n there are0≤ s1
n < s2

n ≤ sn with
s1
n < S and sn−s2

n < S satisfying Ysn(qn) ∈V for all s1
n ≤ s≤ s2

n.

Proof. It is enough to prove that there existsS′ such that givenqn and 0<

s′n < sn with Ys′n
n (qn) /∈V, then eithers′n < S′, or sn−s′n < S′.

If this were not the case, there would exists′n such thatYs′n
n (qn) /∈V and

bothsn−s′n → +∞ ands′n → +∞. Then we can take a sequenceYs′n
n (qn) →

q′ with q′ /∈V. This implies thatOX(q′) ⊂Uδ∗ . SoωX(q′) ⊂ ΩX(Uδ∗) and

henceωX(q′) ⊂V. Thus for largen we would getYs′n
n (qn) ∈V, contradict-

ing the assumption. This finishes the proof of Claim 3.5.

Returning to the proof of (3.36), recall that∠
(
Es,Yn

qn ,Yn(qn)
)

is arbitrar-
ily small forn large enough, by relation (3.35). Now Lemma 3.41 combined
with Claim 3.5 imply (3.36), since we know that the time spentby Ys

n(qn)
in V for s∈ [0,sn] is arbitrarily big.

Now since ˜qn ∈ Σi,±
δ,δ′ there is a first timern > 0 such that ˆqn =Yrn

n (q̃n)∈
Σo,±, by the choice of the cross-sections near the singularities. We prove
that also∠

(
Es,Yn

q̂n
,Yn(q̂n)

)
−−−→
n→∞

0.

If there isS> 0 such that 0< rn < S for infinitely manyn, then tak-
ing a subsequence we obtain the desired conclusion. Otherwise, taking a
subsequence if necessary, we have ˜qn → Ŵs

loc(σ)∩ Σi,±
δ,δ′ and there exists

q̂∈ Ŵu
loc(σ)∩Σo,± such that ˆqn → q. Observe that there isd > 0 satisfying:

for any y ∈ Ŵs
loc(σ)∩ Σi,±

δ,δ′ we have∠
(
X(y), Êss

y

)
> d. So providedn is

large enough we obtain

∠
(
Yn(q̃n), Ê

ss,Yn
q̃n

)
> d. (3.37)

Combining (3.36) and (3.37) we obtain∠
(
Es,Yn

q̃n
, Êss,Yn

q̃n

)
> d for n large.

Arguing as in the proof of Claim 3.4, replacingqn by q̃n for n ≥ 0, we
obtain

lim
n→∞

∠
(
Es,Yn
˜̃qn

,Yn(˜̃qn)
)

= 0. (3.38)
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Moreover from (3.36) Theorem 3.32(b) ensures that

∠
(
Eu,Yn

q̃n
,Yn(q̃n)

)
> c for n big enough. (3.39)

SinceEu,Yn
q̃n

⊂ Nu,Yn
q̃n

⊕EYn
q̃n

from (3.39) Lemma 3.43 implies that

∠
(
DYrn

n (Eu,Yn
q̃n

),Yn(q̂n)
)

< ε < c/2 (3.40)

by the choice ofε.
Finally (3.38) and (3.40) combined withEu,Yn

q̂n
= DYrn

n (Eu,Yn
q̃n

) give

∠
(
Eu,Yn

q̂n
,Es,Yn

q̂n

)
< c/2 for n big enough.

This contradicts Theorem 3.32(b). This contradiction proves Proposition
3.37(a).

Proof of Proposition 3.37(b):We show that givenY nearbyX and a peri-
odic point p of Y close toσY then Ecu,Y

p is close toÊcu,Y
σY . We split the

argument into the following claims.
Givenδ,δ′ > 0 we consider the cross sectionsΣi,± andΣi,±

δ,δ′ as in Sec-
tion 3.3.3 and definition (3.32).

Claim 3.6. Let X∈ UU , σ ∈ S(X)∩ΛX(U) andδ > 0. There are a neigh-
borhoodV of X such that givenγ > 0 and ε > 0, there is r= r(ε,γ) > 0
such that if y∈ Σi,± and Ly ⊂ TyM is a plane with∠

(
Ly, Êss

y

)
> γ, then

∠
(
DYsy(y) ·Ly, Êcu

σY

)
< ε, where sy is such that Ysy(y)∈Br(σY) and Ys(y)∈

Bδ(σY) for all 0≤ s≤ sy.

The proof of this claim is analogous to the proof of Lemma 3.42, which
is presented at the end of this section.

Giveny∈ Σi,±
δ,δ′ let y∗ be as in Definition 3.6.

Claim 3.7. Let X∈ UU , σ ∈ S(X)∩ΛX(U) andδ > 0. There are a neigh-
borhoodV of X, γ > 0 and δ′ > 0 such that for all Y∈ V and all y∈
ΛY(U)∩Σi,±

δ,δ′ we have∠
(
Ecu,Y

y , Êss,Y
y∗
)

> γ.

Assuming the claims, let us complete the proof of the proposition.
Observe that forp close toσY there issp > 0 such that ˜p = Y−sp(p) ∈

Σi,±
δ,δ′ , whereδ andδ′ are as in Claim 3.7. Let ˜p∗ be as in Definition 3.6.

By Claim 3.7 we have∠
(
Ecu,Y

p̃ , Êss,Y
p̃∗

)
> γ. Hence by Claim 3.6 we get
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∠
(
DYt(p̃)(Ecu,Y

p̃ ), Êcu,Y
σY

)
arbitrarily small, providedp is close enough to

σY, concluding the proof of Proposition 3.37(b).

Proof of Claim 3.7:First we consider pointsq∈ Σi,±
δ,δ′ ∩ΛX(U)∩Ŵs

loc(σ).

In this case, observe that∠
(
Ecu,X

q , Êss
q

)
≥ ∠

(
Ecu,X

q ,TqWs
loc(σ)

)
. By

item 3 of Theorem 1.8 we haveNs,X
q = TqWs

loc(σ)∩Nq and sinceX(q) ∈
TqWs

loc(σ) we get thatTqWs
loc(σ) = Ns,X

q ⊕EX
q . We conclude

∠
(
Ecu,X

q ,TqW
s
loc(σ)

)
= ∠

(
Ecu,X

q ,Ns,X
q ⊕EX

q

)
= ∠

(
Nu,X

q ,Ns,X
q

)
. (3.41)

SinceΣi,±
δ,δ′ is compact and does not contain singularities by construction,

Theorem 1.8 ensures that there isγ = γ(δ,δ′) such that∠
(
Nu,X

q ,Ns,X
q
)

> γ
for all q∈ Σi,±

δ,δ′ . Replacing this inequality in (3.41) we conclude the proof
of the claim in this case.

For p close enough toσY, we have dist(p̃,Σi,±
δ,δ′ ∩Ŵs

loc(σY)) arbitrarily

small. Using the continuous dependence of the splittingNs,X ⊕Nu,X with
the flow together with Theorem 1.8, we get that the estimate (3.41) above
still holds replacingq by p̃ andX by Y, concluding the proof of Claim 3.7.

Proof of Proposition 3.38:Assume, by contradiction, that there exists a
sequence of periodic pointspn /∈Cδ for flowsYn → X such that

∠
(
Ecu,Yn

pn
,Es,Yn

pn

)
−−−−→
n→+∞

0. (3.42)

We claim that∪nOYn(pn)∩S(X)∩ΛX(U) 6= /0. Indeed, if this were not
the case, we would getδ∗ > 0 such that∪nOYn(pn) ⊂ ΩX(Uδ∗). By Corol-
lary 3.40 the setΩX(Uδ∗) is hyperbolic and so there are neighborhoodsV
andV of ΩX(Uδ∗) andY, respectively, andc> 0 satisfying∠

(
Es,Y

p ,Ecu,Y
p
)
>

c for all p∈PerY(ΛY(U)) such thatOY(p)⊂V. SinceYn −−−−→
n→+∞

X we have

OYn(pn)⊂V for n sufficiently large. We conclude that∠
(
Es,Yn

pn ,Ecu,Yn
pn

)
> c,

leading to a contradiction. Thus∪nOYn(pn)∩S(X)∩ΛX(U) 6= /0 as claimed.
Fix δ > 0 and take cross sectionsΣi,± andΣo,± as in Section 3.3.3.
Since∪nOYn(pn)∩S(X)∩ΛX(U) 6= /0, we get for eachn a positivesn

such that ˜pn = Ysn
n (pn) ∈ Σi,±.
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Now takeκ = c with c given by Theorem 3.32(b),ε < c/2 andδ′ as in
Lemma 3.43. Fixδ∗ < min{δ,δ′} and considerUδ∗ = U \Cδ∗ . By Corol-
lary 3.40 the subsetΩX(Uδ∗) is hyperbolic.

From the choice ofδ∗, we get thatYs
n(pn) ∈Uδ∗ for any 0≤ s≤ sn. We

assume, without loss of generality, that every ˜pn is in a neighborhood of the
same singularityσ. Reasoning as in Claim 3.4 we prove that (3.42) implies

∠
(
Es,Yn

p̃n
,Yn(p̃n)

)
−−−−→
n→+∞

0. (3.43)

Once (3.43) is settled, the proof follows analogously to theone of the pre-
vious proposition.

We finally present the proofs Lemmas 3.41, 3.42 and 3.43.

Proof of Lemma 3.41:SinceΓ is hyperbolic, there are 0< λΓ < 1 andc> 0
such thatNs,X

Γ = Es,X
Γ ⊕EX with ‖DXt |Es,X‖< c·λt

Γ, andc−1 < ‖X | Γ‖<
c. Changing the metric in a neighborhood ofΓ, we can assume without loss
of generality thatEs,X

x is orthogonal toEX
x and‖X(x)‖ = 1 for all x∈ Γ. In

other words, in the new metricEs,X
Γ coincides with the stable bundleNs,X

Γ
of the linear Poincaré flow restricted toΓ.

For eachx∈ Γ, letns,X
x ∈Ns,X

x be a unit vector and consider the orthogo-
nal basisB x = {X(x),ns,X

x } of EX
x ⊕Ns,X

x . In this basis the matrix ofDXt(x)
restricted toEX

x ⊕Ns,X
x is

DXt |
(
EX

x ⊕Ns,X
x

)
=

[
1 0
0 ns,X

x,t

]
,

where‖ns,X
x,t ‖ < c·λt

Γ.

Fix t0 > 0 such that‖ns,X
x,t0‖< 1/2 for all x∈ Γ. There existsc′ > 0 such

that ‖ns,X
x,t0‖ > c′ for all x ∈ Γ by continuity of the flow and compactness

of Γ. Taking a neighborhoodV of Γ and a neighborhoodV ⊂ UU of X,
both sufficiently small, and a change of metric varying continuously with
the flow, we can get‖Y(y)‖ = 1 for all Y ∈ V and ally ∈ ΛY(U). Thus
the matrix ofDYt0(y) restricted toEY

y ⊕Ns,Y
y with respect to the basisB y =

{Y(y),ns,Y
y } is

DYt0 |
(
EY

y ⊕Ns,Y
y

)
=

[
1 δY

y

0 ns,Y
y,t0

]
,
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whereδY
y < δ0 and δ0 is small forY sufficiently close toX. Moreover

‖ns,Y
y,t0‖ < 1/2. Hence

DYn·t0 |
(
EY

y ⊕Ns,Y
y

)
=

[
1 δY

y,n

0 ns,Y
y,n·t0

]
,

with δY
y,n ≪ 2δ0. Let ε > 0 andn0 be such that 2−n < ε for all n≥ n0. Given

v∈EY
y ⊕Ns,Y

y we can writev= (1,γ′0) in the basisBy. Then for any positive
integerm we get

∠
(
DYn0·m(y) ·v,(1,0)

)
≤ γ′0 ·n

s,Y
y,n0·m

1−δY
y,n0

·ns,Y
y,n0·m

<
(1/2)n0·m

1−2δ0
.

For t > n0 we writet = m·n0 +swith 0≤ s≤ n0 and then

∠
(
DYt(y) ·v,Y(Yt(y)

)
< K · ε

for some positive constantK, proving Lemma 3.41.

Proof of Lemma 3.42:We prove the lemma introducing linearizing coor-
dinates in a normal neighborhoodV of σ. For this we assume that there
is a neighborhoodV of σ where allY near enoughX is linearisable. This
is no restriction since we can always get rid of resonances between the
eigenvalues by smallC∞ perturbations of the flow. Fixδ > 0 small so that
Bδ(σ) ⊂ V. Assume also thatσY = σ and the eigenvalues ofDY(σY) are
the same as the ones ofDX(σ). Let λ2 < λ3 < 0 < −λ3 < λ1 be the eigen-
values ofDX(σ). So, in local coordinates ¯x, ȳ, z̄, we have thatY |V can
be written as

Y(x̄, w̄, z̄) =





˙̄x = λ1x̄
˙̄y = λ2ȳ
˙̄z= λ3z̄.

(3.44)

Note that in this case fory∈Ws
loc(σ)

Ws
loc(σ) = V ∩

(
{0}×R

2), Wu
loc(σ) = V ∩

(
R×{(0,0)},

Wcu
loc(σ) = V ∩

(
R×{0}×R

)
, Êss,Y

y = V ∩
(
{0}×R×{0}

)
.

Fory∈Wu
loc(σ) we haveÊcu,Y

y = R×{0}×R andΣo,±∩Wu
loc(σ)= {(±1,0,0)}.
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For y∈V and forv = (v1,v2,v3), if t > 0 is such thatYs(y) ∈V for all
0≤ s≤ t, then

DYt(y) ·v = (eλ1tv1,e
λ2tv2,e

λ3v3). (3.45)

Given two vectorsv andw we set slope(v,w) for the slope betweenv and
w.

Let r > 0 andy∈Bδ(σ) be such that dist(y,Ŵs
loc(σ))< r, v=(v1,v2,v3)∈

TyM andt > 0 satisfyingYs(y) ∈V for all 0≤ s≤ t. Then

slope
(
DYt(y) ·v, Êcu,X

σ
)

=
|eλ2t ·v2|√

(eλ1t ·v1)2 +(eλ3t ·v3)2
.

On the other hand, assuming that∠
(
Êss,X

σ ,v
)

= ∠
(
(0,1,0),v

)
> γ we get

that there is 0< γ̂ < 1 such that 0≤ |v2| < γ̂. Hencev2
1 +v2

3 > 1− γ̂2. This
implies that eitherv1 >

√
(1− γ̂2)/2, orv3 >

√
(1− γ̂2)/2. Thus

slope
(
DYt(y) ·v, Êcu,X

σ
)
≤ |eλ2t ·v2|

|eλi t ·vi |
≤ γ̂√

(1− γ̂2)/2)
·e(λ2−λi)t , (3.46)

wherei ∈ {1,3} is chosen so thatvi satisfiesv2
i >

√
(1− γ2)/2. As both

λ2−λ3 andλ2−λ1 are strictly negative, there isT = T(ε,γ) > 0 such the
bound given by (3.46) is smaller thanε for all t > T.

Now takingr sufficiently small, fory∈ (Bδ(σ) \Ŵs
loc(σ)), we can en-

sure that ifYt(y) ∈ Σo,±, thent > T. These last two facts combined com-
plete the proof.

Proof of Lemma 3.43:For the proof of this lemma we use local linearisable
coordinates in a neighborhood ofσ as in the proof of Lemma 3.42.

Let δ > 0 be small enough so thatBδ(σ) ⊂ V and considerΣi,±,Σo,±

as in Section 3.3.3. Takeδ′ > 0 and considerΣi,±
δ,δ′ as in (3.32). Letp ∈

Σi,±
δ,δ′ ∩ΛY(U) andv ∈ Nu,Y

p ⊕EY
p with ∠

(
v,Y(p)

)
> κ > 0. Write v = a ·

(1,0,0)+b· (0,1,0)+c· (0,0,1) with a2 +b2 +c2 = 1.

Claim 3.8. There are R> 0 andδ′ such that, if p and v are as above then,
|a| > R.
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Proof. By the continuity of the flow direction and the normal bundle split-
ting far from singularities, it suffices to verify the claim for p∈ Ws

loc(σ) \
{σ}. In this caseEcs,Y

p = {0}×R
2. Thus all we need to prove is that

∠
(
v,Ecs,Y

p
)

> κ for someκ > 0. For this, observe that since dist
(
p,σ
)

> δ,

by Theorem 1.8 there isk′ = k′(δ) such that∠
(
Ns,Y

p ,Nu,Y
p
)

> k′. Since

∠
(
Ecu,Y

p ,Ecs,Y
p
)

= ∠
(
Ns,Y

p ,Nu,Y
p
)
, we conclude that

∠
(
Ecu,Y

p ,Ecs,Y
p

)
> k′. (3.47)

On the other hand,v ∈ EY
p ⊕Nu,Y

p = Ecu,Y
p and∠

(
v,Y(p)

)
= ∠

(
v,Ecs,Y

p ∩
Ecu,Y

p
)

> κ by hypothesis. This fact combined with (3.47) give the proofof
the claim.

Returning to the proof of Lemma 3.43, lettp > 0 be such thatYtp(p) ∈
Σu

δ. Next we prove that forδ′ small we have

1. ∠
(
Y(Ytp(p)),(1,0,0)

)
is small, and

2. ∠
(
DYtp(p)(v),(1,0,0)

)
is small.

Observe that ifδ′ → 0, thentp → ∞ andYtp(p) converges to a point in
Ŵu

loc(σ), where the flow direction is(1,0,0). Hence the continuity of the
flow direction implies the first item above.

To prove the second item, recall (3.45). Then by Claim 3.8
∣∣∣∣∣
b·eλ2·tp

a·eλ1·tp

∣∣∣∣∣< e(λ2−λ1)·tp · |b|
R

.

Similarly, we have
∣∣∣ c·eλ3·tp

a·eλ1·tp

∣∣∣ < e(λ3−λ1)·tp · |c|/R. Sincetp → ∞ asδ′ → 0,

R> 0 and bothλ2−λ1 andλ3−λ1 are negative numbers, we deduce that
the bounds on both inequalities above tend to 0 whenδ′ → 0, concluding
the proof of Lemma 3.43.

3.4 Sufficient conditions for robustness of singu-
lar-hyperbolic attractors

Here we present a proof of Theorem 3.11. This is based on the following
result whose proof we postpone to Section 3.4.2.
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Theorem 3.44.LetΛ be a singular-hyperbolic attracting set of X∈Xr for
some r≥ 1. Suppose thatΛ is connected and contains a dense subset of
periodic orbits. Moreover assume thatΛ contains only one singularity and
is not transitive.

Then for every neighborhood U ofΛ there exists a flow Y close to X in
the Cr topology such thatΛY(U) 6⊂ Ω(Y).

Let Λ be a singular-hyperbolic attractor of aCr flow X on a compact
3-manifold M. Assume thatΛ is Cr robustly periodic and has a unique
singularityσ.

Denote byU a neighborhood ofΛ such thatΛY(U)∩Per(Y) is dense
in ΛY(U) for every flowY which is Cr close toX. Clearly ΛY(U) is a
singular-hyperbolic set ofY for all Y close toX.

BecauseΛ has a unique singularity, which is Lorenz-like, thenΛY(U)
has a unique singularity as well. Indeed, by Remark 3.23, every singularity
of ΛY(U) must be either singular-hyperbolic forY or for−Y (we can show
that every singularity in this setting is Lorenz-like, see Lemma 3.45 in the
next section). In both cases the singularities are hyperbolic and bifurcations
are not allowed for everyY close toX. Hence ifΛY had more than one
singularity there would exist at least two distinct singularities in the original
setΛ, by the property of analytic continuation of any hyperboliccritical
element.

Recalling thatΛ is an attractor by assumption, thus transitive in particu-
lar, we see thatΛ is connected, and so we can assume that the neighborhood
U above is connected. ThenΛY(U) is connected as well.

Summarizing:ΛY(U) is a connected singular-hyperbolic attracting set
of Y containing only one singularity.

WereΛ notCr robust, then it would existY close toX such thatΛY(U)
is not transitive. In this caseΛY(U) would satisfy all the conditions of
Theorem 3.44. Hence there would existZ close toY satisfyingΛZ(U) 6⊂
Ω(Z). But we are assuming thatΛZ(U)∩C(Z) is dense inΛZ(U) andC(Z)
is always contained inΩ(Z).

This contradiction completes the proof of Theorem 3.11, assuming The-
orem 3.44.
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3.4.1 Cross-sections and Poincaré maps

For future reference we give here a few properties ofPoincaŕe maps, that
is, continuous mapsR : Σ → Σ′ of the formR(x) = Xt(x)(x) between cross-
sectionsΣ and Σ′ of the flow near a singular-hyperbolic set. We always
assume that the Poincaré time t(·) is large enough as explained in what
follows.

There properties will be often used in the following chapters to obtain
many dynamical and ergodic consequences of singular-hyperbolicity. In
particular they will be used in Section 3.4.2 to prove Theorem 3.44.

We assume thatΛ is a compact invariant subset for a flowX ∈ X1(M)
such that

• eitherΛ is a singular-hyperbolic attractor,

• or Λ is a singular-hyperbolic attracting set with a dense subsetof
periodic orbits.

In the former case it has already been proved that every singularity in Λ is
Lorenz-like. Next result shows that the same is true in the latter case.

Lemma 3.45. Let Λ be a singular hyperbolic attracting set for a flow X.
Then every singularityσ accumulated by regular orbits inΛ is Lorenz-like
and Wss(σ)∩Λ = {σ}.

Proof. Let σ be a singularity ofX in Λ. According to Theorem 3.10 we
have thatσ is Lorenz-like forX or for −X. Arguing by contradiction,
assume thatσ is Lorenz-like for−X.

Again by Theorem 3.10 we haveWss
Y (σ)∩Λ = {σ} either forY = −X

or forY = X. Since we assume thatσ is Lorenz-like for−X, this means that
eitherWss(σ)∩Λ = {σ} orWuu(σ)∩Λ = {σ} for X. SinceΛ is attracting,
thenWuu(σ) ⊂ Λ and so the latter condition is impossible. We now show
that the former condition is also violated, concluding the proof.

By assumption we can find pointspn in regular orbits insideΛ such that
pn −−−−→

n→+∞
σ.

Consider the linearised flow (3.44) and its solutions (2.3) given on a
neighborhoodV of σ by the Hartman-Grobman Theorem 1.9. It is easy to
see that the accumulation ofpn on σ implies that the orbit ofpn throughV
must also pass nearby points on the connected components containingσ of
of Wss(σ)∩V. SinceΛ is closed we obtainWss(σ)∩Λ\{σ} 6= /0.
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We start by observing that cross-sections have co-dimension one foli-
ations which are dynamically defined: the leavesWs(x,Σ) = Ws

loc(x)∩Σ
correspond to the intersections with the stable manifolds of the flow. These
leaves are uniformly contracted and, assuming the cross-section isadapted,
then the foliation is invariant:

R(Ws(x,Σ)) ⊂Ws(R(x),Σ′) for all x∈ Λ∩Σ.

Moreover we show thatR is uniformly expanding in the transverse direc-
tion. Then we analyze the flow close to singularities, again by means of
cross-sections.

Stable foliations on cross-sections

We recall classical facts about partially hyperbolic systems, especially ex-
istence of strong-stable and center-unstable foliations.The standard refer-
ence is [76].

We have thatΛ is a singular-hyperbolic isolated set ofX ∈ X1(M) with
invariant splittingTΛM = Es⊕Ecu with dimEcu = 2. Let Ẽs⊕ Ẽcu be a
continuous extension of this splitting to a small neighborhoodU0 of Λ. For
convenience we takeU0 to be forward invariant. TheñEs may be cho-
sen invariant under the derivative: just consider at each point the direction
formed by those vectors which are strongly contracted byDXt for positive
t. In generalẼcu is not invariant. However we can consider a cone field
around it onU0

Ccu
a (x) = {v = vs+vcu : vs ∈ Ẽs

x andvu ∈ Ẽcu
x with ‖vs‖ ≤ a· ‖vcu‖}

which is forward invariant fora > 0:

DXt(Ccu
a (x)) ⊂Ccu

a (Xt(x)) for all larget > 0. (3.48)

Moreover we may takea > 0 arbitrarily small, reducingU0 if necessary.
For notational simplicity we writeEs andEcu for Ẽs and Ẽcu in all that
follows.

The next result says that there are locally strong-stable and center-
unstable manifolds, defined at every regular pointx∈U0 and which are em-
bedded disks tangent toEs(x) andEcu(x), respectively. The strong-stable
manifolds are locally invariant. Given anyx ∈ U0 define the strong-stable
manifoldWss(x) and the stable-manifoldWs(x) as in Section 1.2.
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Givenε > 0 denoteIε = (−ε,ε) and letE 1(I1,M) be the set ofC1 em-
bedding mapsf : I1 → M endowed with theC1 topology.

Proposition 3.46(stable and center-unstable manifolds). There are contin-
uous mapsφss : U0 → E 1(I1,M) and φcu : U0 → E 1(I1× I1,M) such that
given any0 < ε < 1 and x∈ U0, if we denote Wss

ε (x) = φss(x)(Iε) and
Wcu

ε (x) = φcu(x)(Iε × Iε),

(a) TxWss
ε (x) = Es(x);

(b) TxWcu
ε (x) = Ecu(x);

(c) Wss
ε (x) is a neighborhood of x inside Wss(x);

(d) if y∈Wss(x) then there is T≥ 0 such that XT(y)∈Wss
ε (XT(x)) (local

invariance);

(e) d(Xt(x),Xt(y)) ≤ K ·e−λt ·d(x,y) for all t > 0 and all y∈Wss
ε (x).

The constantsK,λ > 0 are taken as in the definition of(K,λ)-splitting in
the beginning of Chapter 3, and the distanced(x,y) is the intrinsic distance
between two points on the manifoldWss

ε (x), given by the length of the
shortest smooth curve contained inWss

ε (x) connectingx to y.
DenotingEcs

x = Es
x ⊕EX

x , whereEX
x is the direction of the flow atx, it

follows that
TxW

ss(x) = Es
x and TxW

s(x) = Ecs
x .

We fix ε once and for all. Then we callWss
ε (x) the localstrong-stable

manifoldandWcu
ε (x) the localcenter-unstable manifoldof x.

Now letΣ be across-sectionto the flow, that is, aC2 embedded compact
disk transverse toX: at every pointz∈ Σ we haveTzΣ⊕EX

z = TzM (recall
thatEX

z is the one-dimensional subspace{s·X(z) : s∈R}) . For everyx∈ Σ
we defineWs(x,Σ) to be the connected component ofWs(x)∩Σ that con-
tainsx. This defines a foliationF s

Σ of Σ into co-dimension 1 sub-manifolds
of classC1.

Remark3.47. Given any cross-sectionΣ and a pointx in its interior, we may
always find a smaller cross-section also withx in its interior and which is
the image of the square[0,1]× [0,1] by aC2 diffeomorphismh that sends
horizontal lines inside leaves ofF s

Σ . In what follows we always assume
that cross-sections are of this kind, see Figure 3.2. We denote by int(Σ) the
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image of(0,1)× (0,1) under the above-mentioned diffeomorphism, which
we call theinterior of Σ.

We also assume that each cross-sectionΣ is contained inU0, so that
everyx∈ Σ is such thatω(x) ⊂ Λ.

Remark3.48. In general, we can not choose the cross-section such that
Ws(x,Σ) ⊂ Wss

ε (x). The reason is that we want cross-sections to beC2.
Cross-section of classC1 are enough for the proof of expansiveness in Sec-
tion 4.1.1 butC2 is needed for the construction of the physical measure in
Section 4.2.1 and for the absolute continuity results in Section 4.2.8. See
Section 1.4.2 for the technical definitions.

On the one handx 7→Wss
ε (x) is usually not differentiable if we assume

thatX is only of classC1, see e.g. [146]. On the other hand, assuming that
the cross-section is small with respect toε, and choosing any curveγ ⊂ Σ
crossing transversely every leaf ofF s

Σ , we may consider a Poincaré map

RΣ : Σ → Σ(γ) =
[

z∈γ
Wss

ε (z)

with Poincaŕe time close to zero, see Figure 3.2. This is a homeomorphism
onto its image, close to the identity, such thatRΣ(Ws(x,Σ)) ⊂Wss

ε (RΣ(x)).
So, identifying the points ofΣ with their images under this homeomor-
phism, we may pretend that indeedWs(x,Σ) ⊂ Wss

ε (x). We shall often do
this in the sequel, to avoid cumbersome technicalities.

Hyperbolicity of Poincar é maps

Let Σ be a small cross-section toX and letR : Σ → Σ′ be a Poincaŕe map
R(y) = Xt(y)(y) to another cross-sectionΣ′ (possiblyΣ = Σ′). Note thatR
needs not correspond to the first time the orbits ofΣ encounterΣ′.

The splittingEs⊕Ecu overU0 induces a continuous splittingEs
Σ ⊕Ecu

Σ
of the tangent bundleTΣ to Σ (and analogously forΣ′), defined by

Es
Σ(y) = Ecs

y ∩TyΣ and Ecu
Σ (y) = Ecu

y ∩TyΣ. (3.49)

We now show that if the Poincaré timet(x) is sufficiently large then (3.49)
defines a hyperbolic splitting for the transformationRon the cross-sections,
at least restricted toΛ, in the following sense.
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ΣR

ΣR

ΣR

ΣR

W (x,    )Σ
s

W (x)
s

0

1

1

W  (x)
ss

Σ

Σ(γ)

x

h

γ
γ

Figure 3.2: The sectionsΣ, Σ(γ), the manifoldsWs(x),Wss(x), Ws(x,Σ)
and the projectionRΣ, on the right. On the left, the square[0,1]× [0,1]
is identified withΣ through the maph, whereF s

Σ becomes the horizontal
foliation and the curveγ is transverse to the horizontal direction. Solid lines
with arrows indicate the flow direction.

Proposition 3.49.Let R: Σ→Σ′ be a Poincaŕe map as before with Poincaré
time t(·). Then DRx(Es

Σ(x)) = Es
Σ(R(x)) at every x∈ Σ and DRx(Ecu

Σ (x)) =
Ecu

Σ (R(x)) at every x∈ Λ∩Σ.
Moreover for every given0 < λ < 1 there exists t1 = t1(Σ,Σ′,λ) > 0

such that if t(·) > t1 at every point, then

‖DR | Es
Σ(x)‖ < λ and ‖DR | Ecu

Σ (x)‖ > 1/λ at every x∈ Σ.

Remark3.50. In what follows we useK as a generic notation for large con-
stants depending only on a lower bound for the angles betweenthe cross-
sections and the flow direction, and on upper and lower boundsfor the norm
of the vector field on the cross-sections. The conditions ont1 in the proof
of the proposition depend only on these bounds as well. In allour applica-
tions, all these angles and norms will be uniformly bounded from zero and
infinity, and so bothK andt1 may be chosen uniformly.

Proof. The differential of the Poincaré map at any pointx∈ Σ is given by

DR(x) = PR(x) ◦DXt(x) | TxΣ,

wherePR(x) is the projection ontoTR(x)Σ′ along the direction ofX(R(x)) .
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Note thatEs
Σ(x) is tangent toΣ∩Ws(x) ⊃Ws(x,Σ). Since the stable mani-

fold Ws(x) is invariant, we have invariance of the stable bundle:

DR(x)
(
Es

Σ(x)
)

= Es
Σ′
(
R(x)

)
.

Moreover for allx∈ Λ we have

DXt(x)(Ecu
Σ (x)

)
⊂ DXt(x)(Ecu

x

)
= Ecu

R(x) .

As PR(x) is the projection along the vector field, it sendsEcu
R(x) to Ecu

Σ′ (R(x)).
This proves that the center-unstable bundle is invariant restricted toΛ, i.e.
DR(x)

(
Ecu

Σ (x)
)

= Ecu
Σ′ (R(x)).

Next we prove the expansion and contraction statements. We start by
noting that‖PR(x)‖ ≤ K. Then we consider the basis{ X(x)

‖X(x)‖ , eu
x} of Ecu

x ,

whereeu
x is a unit vector in the direction ofEcu

Σ (x). Since the flow direction
is invariant, the matrix ofDXt | Ecu

x relative to this basis is upper triangular:

DXt(x) | Ecu
x =

[
‖X(R(x))‖
‖X(x)‖ ⋆

0 ∆

]
.

Moreover

1
K
·det

(
DXt(x) | Ecu

x

)
≤ ‖X(R(x))‖

‖X(x)‖ ∆ ≤ K ·det
(
DXt(x) | Ecu

x

)
.

Then

‖DR(x)eu
x‖ = ‖PR(x)

(
DXt(x)(x) ·eu

x

)
‖ = ‖∆ ·eu

R(x)‖ = |∆|
≥ K−3 |det(DXt(x) | Ecu

x )| ≥ K−3λ−t(x) ≥ K−3 λ−t1.

Taking t1 large enough we ensure that the latter expression is larger than
1/λ.

To prove‖DR | Es
Σ(x)‖ < λ, let us consider unit vectorses

x ∈ Es
x and

ês
x ∈ Es

Σ(x), and write

es
x = ax · ês

x +bx ·
X(x)
‖X(x)‖ .

Since∠(Es
x,X(x)) ≥ ∠(Es

x,E
cu
x ) and the latter is uniformly bounded from

zero, we have|ax| ≥ κ for someκ > 0 which depends only on the flow.
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Then

‖DR(x)es
x‖ = ‖PR(x) ◦

(
DXt(x)(x) ·es

x

)
‖

=
1
|ax|

∥∥∥∥PR(x) ◦
(

DXt(x)(x)
(
es

x−bx
X(x)
‖X(x)‖

))∥∥∥∥

=
1
|ax|

∥∥∥PR(x) ◦
(
DXt(x)(x) · ês

x

)∥∥∥≤ K
κ

λt(x) ≤ K
κ

λt1.

(3.50)

Once more it suffices to taket1 large to ensure that the right hand side is
less thanλ.

Given a cross-sectionΣ, a positive numberρ, and a pointx ∈ Σ, we
define the unstable cone of widthρ atx by

Cu
ρ(x) = {v = vs+vu : vs ∈ Es

Σ(x), vu ∈ Ecu
Σ (x) and‖vs‖ ≤ ρ‖vu‖} (3.51)

(we omit the dependence on the cross-section in our notations).
Let ρ > 0 be any small constant. In the following consequence of

Proposition 3.49 we assume the neighborhoodU0 has been chose suffi-
ciently small, depending onρ and on a bound on the angles between the
flow and the cross-sections.

Corollary 3.51. For any R: Σ → Σ′ as in Proposition 3.49, with t(·) > t1 ,
and any x∈ Σ, we have DR(x)(Cu

ρ(x)) ⊂Cu
ρ/2(R(x)) and

‖DRx(v)‖ ≥
5
6

λ−1 · ‖v‖ for all v ∈Cu
ρ(x).

Proof. Proposition 3.49 immediately implies thatDRx(Cu
ρ(x)) is contained

in the cone of widthρ/4 aroundDR(x)
(
Ecu

Σ (x)
)

relative to the splitting

TR(x)Σ′ = Es
Σ′(R(x))⊕DR(x)

(
Ecu

Σ (x)
)
.

(We recall thatEs
Σ is always mapped toEs

Σ′ .) The same is true forEcu
Σ

and Ecu
Σ′ , restricted toΛ. So the previous observation already gives the

conclusion of the first part of the corollary in the special case of points in
the attractor. Moreover to prove the general case we only have to show that
DR(x)

(
Ecu

Σ (x)
)

belongs to a cone of width less thanρ/4 aroundEcu
Σ′ (R(x)).

This is easily done with the aid of the flow invariant cone fieldCcu
a in (3.48),

as follows. On the one hand,

DXt(x)(Ecu
Σ (x)

)
⊂ DXt(x)(Ecu

x

)
⊂ DXt(x)(Ccu

a (x)
)
⊂Ccu

a (R(x)) .
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We note thatDR(x)
(
Ecu

Σ (x)
)

= PR(x) ◦DXt(x)
(
Ecu

Σ (x)
)
. SincePR(x) maps

Ecu
R(x) to Ecu

Σ′ (R(x)) and the norms of bothPR(x) and its inverse are bounded

by some constantK (see Remark 3.50), we conclude thatDR(x)
(
Ecu

Σ (x)
)

is
contained in a cone of widthb aroundEcu

Σ′ (R(x)), whereb = b(a,K) can be
made arbitrarily small by reducinga. We keepK bounded, by assuming the
angles between the cross-sections and the flow are bounded from zero and
then, reducingU0 if necessary, we can makea small so thatb < ρ/4. This
concludes the proof since the expansion estimate is a trivial consequence of
Proposition 3.49.

As usual acurveis the image of a compact interval[a,b] by aC1 map.
We useℓ(γ) to denote its length. By acu-curvein Σ we mean a curve
contained in the cross-sectionΣ and whose tangent direction is contained
in the unstable coneTzγ ⊂Cu

ρ(z) for all z∈ γ. The next lemma says thatthe
length of cu-curves linking the stable leaves of nearby points x,y must be
bounded by the distance between x and y.

Lemma 3.52. Let us we assume thatρ has been fixed, sufficiently small.
Then there exists a constantκ such that, for any pair of points x,y∈ Σ, and
any cu-curveγ joining x to some point of Ws(y,Σ), we haveℓ(γ)≤ κ ·d(x,y).

Hered is the intrinsic distance in theC2 surfaceΣ, that is, the length of
the shortest smooth curve insideΣ connecting two given points inΣ.

Proof. We consider coordinates onΣ for which x corresponds to the ori-
gin, Ecu

Σ (x) corresponds to the vertical axis, andEs
Σ(x) corresponds to the

horizontal axis; through these coordinates we identifyΣ with a subset of
its tangent space atx, endowed with the Euclidean metric. In general this
identification is not an isometry, but the distortion is uniformly bounded,
which is taken care of by the constantsC1 to C4 in what follows.

The hypothesis thatγ is a cu-curve implies that its velocity vectorγ̇(s)
is contained in the cone of widthC1 · ρ centered atγ(s) for all values of
the parameters. In the coordinates described above this means that we
may writeγ(s) = (ξ(s),s) for someC1 function ξ : [0,s0] → [0,+∞) with
ξ(0) = 0, ξ(s) > 0 for all s> 0 and|ξ̇| ≤C1ρ.

On the other hand, stable leaves are close to being horizontal, that is,
fixing some stable leaf throughy∈ Σ we may write it as a graph(u,η(u))
for aC1 functionη : (−u0,u0) → R with η(0) = d > 0 and|η̇| ≤C2ρ (see
Figure 3.3).
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Ws(y,Σ)

Ws(x,Σ)x

y
γ

Figure 3.3: The stable manifolds on the cross-section and the cu-curveγ
connecting them.

Observe now thath = η ◦ ξ satisfies|h′| ≤ δ = C1C2ρ2 andh(0) = d,
thus|h(s)−d| ≤ δ · s and henceh(s∗) = 0 for some 0< s∗ < d/(1− δ) <
d(1+δ). But this means that

{
u = ξ(s))
s= η(ξ(s)) = η(u)

or γ(s) = (ξ(s),s) = (u,η(u)),

that is, we have an intersection betweenγ and the stable leaf at a distance
from x alongγ bounded byd(1+ δ)

√
1+(C1ρ)2 < d(1+C3ρ), whereC3

is a constant depending onC1,C2 only.
Finallyyhas coordinates(η(u1),u1) for some|u1|< u0 and sinceu0 < ρ

we get thatη(u1)≥ d−δu1 > d−δρ so in Euclidean coordinates‖x−y‖>
d− δρ = d(1− δρ/d) and henced(x,y) > C4d for someC4 > 0 depend-
ing on all the previous constants (remember thatd < ρ also) including the
distortion due to the change of metric.

It follows that the length ofγ is bounded byκ ·d(x,y) whereκ = (1+
δ)
√

1+(C1ρ)2/C4.

In what follows we taket1 in Proposition 3.49 forλ = 1/3. From Sec-
tion 4.2.1 onwards we will need to decreaseλ once taking a biggert1.

Adapted cross-sections

Now we exhibit stable manifolds for Poincaré transformationsR : Σ → Σ′.
The natural candidates are the intersectionsWs(x,Σ) = Ws

ε (x)∩Σ we in-
troduced previously. These intersections are tangent to the corresponding
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sub-bundleEs
Σ and so, by Proposition 3.49, they are contracted by the trans-

formation. For our purposes it is also important that the stable foliation be
invariant:

R(Ws(x,Σ)) ⊂Ws(R(x),Σ′) for everyx∈ Λ∩Σ. (3.52)

In order to have this we restrict our class of cross-sectionswhose center-
unstable boundary is disjoint fromΛ. Recall (Remark 3.47) that we are
considering cross-sectionsΣ that are diffeomorphic to the square[0,1]×
[0,1], with the horizontal lines[0,1]× {η} being mapped to stable sets
Ws(y,Σ). The stable boundary∂sΣ is the image of[0,1]×{0,1}. The
center-unstable boundary∂cuΣ is the image of{0,1}× [0,1]. The cross-
section isδ-adaptedif

d(Λ∩Σ,∂cuΣ) > δ,

whered is the intrinsic distance inΣ, see Figure 3.4. We callhorizontal
strip of Σ the imageh([0,1]× I) for any compact subintervalI , whereh :
[0,1]× [0,1] → Σ is the coordinate system onΣ as in Remark 3.47. Notice
that every horizontal strip is aδ-adapted cross-section.

δ

stable leaves

s −  boundary

cu − boundary

Σ

δ

−neighbhd. of the cu−boundaryδ
Λ does not intersect a

Figure 3.4: An adapted cross-section forΛ.

In order to prove that adapted cross-sections do exist, we need the fol-
lowing result.

Lemma 3.53. Let Λ be either a transitive singular-hyperbolic Lyapunov
stable set, or a connected singular-hyperbolic attractingset admitting a
dense subset of periodic orbits. Then every point x∈ Λ is in the closure of
Wss(x)\Λ.
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Note that a singular-hyperbolic attractor satisfies the first condition of
the statement of Lemma 3.53.

Proof. The proof is by contradiction. Let us suppose that there existsx∈ Λ
such thatx is in the interior ofWss(x)∩Λ. Let α(x) ⊂ Λ be itsα-limit set.
Then

Wss(z) ⊂ Λ for everyz∈ α(x), (3.53)

since any compact part of the strong-stable manifold ofz is accumulated
by backward iterates of any small neighborhood ofx insideWss(x). It
follows thatα(x) does not contain any singularity: indeed, Theorem 3.5
or Lemma 3.45 proves that the strong-stable manifold of eachsingularity
meetsΛ only at the singularity (observe that every singularity ofΛ is accu-
mulated by regular orbits inΛ).

Therefore by Proposition 3.9 the invariant setα(x) ⊂ Λ is hyperbolic.
It also follows from (3.53) that the set

H = ∪{Wss(y) : y∈ α(x)∩Λ}

is contained inΛ. Also by the same argument as before, this set contains
the strong-stable manifolds of all its points. HenceH does not contain any
singularity, that isH is uniformly hyperbolic.

We claim thatWu(H), the closure of the union of the unstable manifolds
of the points ofH, is an open set (it is clearly a closed set).

First we show thatWu(H) is open. Note thatH contains the whole
stable manifoldWs(z) of everyz∈ H: this is becauseH is invariant and
contains the strong-stable manifold ofz. Note that the union of the strong-
unstable manifolds through the points ofWs(z) contains a neighborhood of
z. This proves thatWu(H) is a neighborhood ofH. Thus the backward orbit
of any point inWu(H) must enter the interior ofWu(H). Since the interior
is, clearly, an invariant set, this proves thatWu(H) is open, as claimed.

Now observe that becauseWu(H) is open and invariant, the strong-
stable manifold of anyz∈ Wu(H) is contained inWu(H), which is con-
tained in Λ since we are assuming thatΛ is either Lyapunov stable or
attracting. Therefore taking limits we see thatWss(w) ⊂ Wu(H) for all
w∈Wu(H). This implies thatWu(H) does not contain singularities and is
hyperbolic. Finally the unstable manifolds of points inWu(H) are well de-
fined by hyperbolicity and are contained inWu(H), just by taking limits of
points inWu(H). HenceWu(H) contains its stable and unstable manifolds,
so it is an open set insideΛ.
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SinceΛ is also a connected set (which is always the case ifΛ is transi-
tive) we obtainΛ = Wu(H). This means that any singularityσ ∈ Λ must be
in Wu(H), a contradiction. The proof of the lemma is complete.

Corollary 3.54. For any x∈ Λ there exist points x+ /∈ Λ and x− /∈ Λ in
distinct connected components of Wss(x)\{x}.

Proof. Otherwise there would exist a whole segment of the strong-stable
manifold entirely contained inΛ. Considering any point in the interior of
this segment, we would get a contradiction to Lemma 3.53.

Lemma 3.55. Let x∈ Λ be a regular point, that is, such that X(x) 6= 0.
Then there existsδ > 0 for which there exists aδ-adapted cross-sectionΣ
at x.

Proof. Fix ε > 0 as in the stable manifold theorem. Any cross-sectionΣ0

at x sufficiently small with respect toε > 0 is foliated by the intersections
Ws

ε (x)∩Σ0. By Corollary 3.54, we may find pointsx+ /∈ Λ andx− /∈ Λ in
each of the connected components ofWs

ε (x)∩Σ0. SinceΛ is closed, there
are neighborhoodsV± of x± disjoint from Λ. Let γ ⊂ Σ0 be some small
curve throughx, transverse toWs

ε (x)∩Σ0. Then we may find a continuous
family of segments insideWs

ε (y)∩Σ0, for y∈ γ with endpoints contained in
V±. The unionΣ of these segments is aδ-adapted cross-section, for some
δ > 0, see Figure 3.5.

−V
V+

Σ0Σ

W
s
(x, Σ )

−
+

V+V+
δ

x
x

x

Figure 3.5: The construction of aδ-adapted cross-section for a regularx∈
Λ.

We are going to show that if the cross-sections are adapted, then we
have the invariance property (3.52). GivenΣ,Σ′ ∈ Ξ we setΣ(Σ′) = {x ∈
Σ : R(x) ∈ Σ′} the domain of the return map fromΣ to Σ′.
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Lemma 3.56. Givenδ > 0 and δ-adapted cross-sectionsΣ and Σ′, there
exists T2 = T2(Σ,Σ′) > 0 such that if R: Σ(Σ′) → Σ′ defined by R(z) =
Rt(z)(z) is a Poincaŕe map with time t(·) > T2, then

1. R
(
Ws(x,Σ)

)
⊂Ws(R(x),Σ′) for every x∈ Σ(Σ′), and also

2. d(R(y),R(z)) ≤ 1
2 d(y,z) for every y, z∈Ws(x,Σ) and x∈ Σ(Σ′).

Proof. This is a simple consequence of the relation (3.50) from the proof
of Proposition 3.49: the tangent direction to eachWs(x,Σ) is contracted at
an exponential rate‖DR(x)es

x‖ ≤ Ce−λt(x). ChoosingT2 sufficiently large
we ensure that

Ce−λT2 ·sup{ℓ(Ws(x,Σ)) : x∈ Σ} < δ.

In view of the definition ofδ-adapted cross-section this gives part (1) of the
lemma. Part (2) is entirely analogous: it suffices thatCe−λT2 < 1/2.

Remark3.57. Clearly we may chooseT2 > T1. Remark 3.50 applies toT2

as well.

The following is a technical consequence of the uniform contraction
and the way cross-sections where chosen near real stable leaves.

Lemma 3.58. Let Σ be aδ-adapted cross-section. Then given any r> 0
there existsρ such that for all s> 0, every y, z∈ Ws(x,Σ), and every x∈
Λ∩Σ we havedist

(
Xs(y),Xs(z)

)
< r if d(y,z) < ρ.

Proof. Let y and z be as in the statement. As in Remark 3.48, we may
find z′ = Xτ(z) in the intersection of the orbit ofz with the strong-stable
manifold ofy satisfying

1
K

≤ dist(y,z′)
d(y,z)

≤ K and |τ| ≤ K ·d(y,z).

Then, given anys> 0,

dist(Xs(y),Xs(z)) ≤ dist(Xs(y),Xs(z′))+dist(Xs(z′),Xs(z))

≤C ·e−λs ·dist(y,z′)+dist(Xs+τ(z),Xs(z))

≤ KC ·eγs ·d(y,z)+K|τ| ≤
(
KC+K2) ·d(y,z).

Takingρ < r/(KC+K2) we get the statement of the lemma.
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A very useful consequence of the hyperbolicity of Poincaré maps is the
following criterion for the existence of a periodic orbit.

Lemma 3.59. Let x∈ Λ be a regular point and suppose there exists an-
other regular point z∈Wss(x)∩Λ such that x∈ ω(z). Then x belongs to a
periodic orbit.

Proof. Take an adapted cross-sectionΣ throughx. The conditions onz
imply that there exists a Poincaré return mapR defined on some substrip
Σ(Σ) containingW = Ws(x,Σ), and that this lineW is forward invariant
R(W) ⊂W. The contracting property given by Lemma 3.56 ensures there
exists a periodic pointp for R. Thereforep belongs to a periodic orbit for
the flow and to the lineW. Hencez∈ Ws(p) and soω(z) = O (p), thus
x = p since there can be only one intersectionO (p) with Σ on the same
stable manifold.

From Proposition 3.9 any compact invariant subsetH of a singular-
hyperbolic setΛ is uniformly hyperbolic, and of saddle-type. Using adapter
cross sections we can say a bit more.

Lemma 3.60. Let Λ be a singular-hyperbolic set. Suppose that one of the
following conditions is true:

1. Λ is Lyapunov stable and transitive;

2. Λ is an attractor and H is a compact proper invariant subset ofΛ;

3. Λ is a attracting set with a dense subset of periodic orbits, H is the
set of accumulation points of a branch of the unstable manifold of
some singularityσ of Λ, and H does not containσ.

Then either H⊂ S(X) or, for any adapted cross sectionΣ through some
regular point of H, the intersection H∩Σ is totally disconnected.

Note that the compact invariant setH is covered by a finite number
of tubular flow boxes or flow boxes near singularitiesUΣi = X(−ε,ε)(Σi), for
ε > 0 small andi = 1, . . . ,k. From Lemma 3.60 we conclude that eachUΣi ∩
H has topological dimension one. HenceH in each case of the statement
above is a one-dimensional set. For the definition and main properties of
topological dimension see e.g. [82].
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Proof. We follow the arguments in Morales [127]. IfH is not contained
in the set of singularities, fix a regular pointx∈ H ∩Σ. From Lemma 3.53
together with Remark 3.48 we have that the connected component C of
H ∩Σ containingx cannot contain intervals insideWs(x,Σ). Then either
C = {x} orC contains some pointy in Σ\Ws(x,Σ). We show that the latter
cannot happen in each case according to the assumption in thestatement.

Observe first that sinceΣ is adapted there are no points ofH ∩Σ near
the center-unstable boundary∂cuΣ. Hence there must be some pointh0 ∈ H
in the interior of the substripΣ′ of Σ formed by the points ofΣ between the
two horizontal linesWs(x,Σ) andWs(y,Σ). For otherwisey∈C would be
disconnected fromx.

1. If Λ is transitive, then there existsw∈ Σ′ close toh0 with ω(w) = Λ.
Arguing as above, there must exist a pointζ ∈ H ∩Ws(w,Σ), for
otherwisey and x would be in different connected components of
H ∩Σ\Ws(w,Σ). ThenΛ = ω(w) = ω(ζ) ⊂ H. This is not possible
becauseH is a proper subset ofΛ.

2. LetH = ω(z) for somez∈Wu(σ)\{σ} and some singularityσ, as in
item 2 of the statement, and supposeH is not a singularity. LetΣ be
some cross section through some regular pointh of H. Since Per(X)
is dense inΛ, we can find a sequencepn of points in periodic orbits
such thatpn −−−−→

n→+∞
σ. By assumption we can find a pointw in the

positive orbit ofz such thatw∈ Σ close toh.

Observe that sinceWu(σ) is one-dimensional, we can assume with-
out loss of generality thatz∈ Σo,±

σ for some outgoing cross section
nearσ. Then there are pointsp′n ∈ O (pn) satisfyingp′n −−−−→n→+∞

z. So

we can also find points ˜pn ∈ O (pn) such that ˜pn −−−−→
n→+∞

w.

As before, there exists a pointζ ∈ H∩Ws(w,Σ). Hence we can find a
sequenceζn in the positive orbit ofζ arbitrarily close toσ. But then
σ ∈ H, which is a contradiction.

We conclude that eitherH ⊂ S(X) (andH is a singularity different fromσ
in the scenario of item 3), or the connected component ofH ∩Σ containing
x is formed byx itself.
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Poincaré times near singularities

Recall that since singularities are Lorenz-like, we have that the unstable
manifoldWu(σk) is one-dimensional, and there is a one-dimensional strong-
stable manifoldWss(σk) contained in the two-dimensional stable mani-
fold Ws(σk). Most important for what follows, the attractor intersectsthe
strong-stable manifold at the singularity only, by Theorem3.5 on page 98.

Hence for someδ > 0 we may takeδ-adapted cross-sections contained
Σo,± and Σi,± in U0 as in Section 3.3.3. Reducing the cross-sections if
necessary, i.e. takingδ > 0 small enough, we ensure that the Poincaré
times are larger thanT2, so that the same conclusions as in the previous
subsections apply here. Indeed using linearizing coordinates it is easy to see
that for pointsz= (x1,x2,±1) ∈ Σi,± the timeτ± it takes the flow starting
atz to reach one ofΣo,± depends onx1 only and is given by

τ±(x1) = − logx1

λ1
.

We then fix these cross-sections once and for all and define forsmallε > 0
theflow-box

Uσk =
[

x∈Σi,±\ℓ±
X(−ε,τ±(x)+ε)(x)∪ (−δ,δ)× (−δ,δ)× (−1,1)

which is an open neighborhood ofσk with σk the unique zero ofX | Uσk.
We note that the functionτ± : Σi,± → R is integrable with respect to the
Lebesgue (area) measure overΣi,±: we say thatthe exit time function in a
flow box near each singularity is Lebesgue integrable.

More precisely, we can determine the expression of the Poincaŕe maps
between ingoing and outgoing cross-sections easily thought linearised co-
ordinates

Σi,+ ∩{x1 > 0}→ Σ0,+, (x1,x2,1) 7→
(
1,x2 ·x−λ3/λ1

1 ,x−λ2/λ1
1

)
. (3.54)

This shows that the map obtained identifying points with thesamex2 co-
ordinate, i.e. points in the same stable leaf, is simplyx1 7→ xβ

1 where
β = −λ2/λ1 ∈ (0,1). For the other possible combinations of ingoing and
outgoing cross-sections the Poincaré maps have a similar expression. This
will be useful to construct physical measures for the flow, inChapter 4.
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3.4.2 Denseness of periodic orbits and transitivity with a
unique singularity

Here we start the proof of Theorem 3.44.
We present the proof as a sequence of several simpler resultswhich will

be proved in the sequel.
Let X ∈ Xr andΛ be a singular-hyperbolic set ofX satisfying the con-

ditions in the statement of Theorem 3.44: it contains a unique singularityσ,
it has a dense subset of periodic orbits and it is a singular hyperbolicnon-
connectedattracting set. The singularity is Lorenz-like by Lemma 3.45.
ThenWss(σ) dividesWs(σ) in two connected components, which we de-
note byWs,+ andWs,−.

Note thatΛ 6= {σ}, for otherwise we would get an attracting set con-
sisting of a singularity with an expanding eigenvalue whichis impossible.
Therefore the set of periodic orbits inΛ is non-empty.

A crucial result in this setting is thatthe unstable manifold of every pe-
riodic orbit in Λ crosses the stable manifold of the singularity transversely.
We present a proof in Section 3.4.3 following the arguments in [130].

Theorem 3.61. Let Λ be either a singular-hyperbolic attractor, or a con-
nected singular-hyperbolic attracting set with a dense subset of periodic
orbits. Then for every p∈ Per(X)∩Λ there exists a singularityσ of Λ such
that Wu(p) and Ws(σ) intersect transversely.

The intersections provided by this results together with the uniqueness
assumption onS(X) enables us to relate two distinct periodic orbits ofΛ or
to deduce non-trivial consequences ifΛ is not transitive or a disconnected
set, using the two connected componentsWs,+ andWs,− of Ws(σ).

For that we consider the following invariant subsets ofΛ:

P± = {p∈ Per(X)∩Λ : Wu
X(p) ⋔ Ws,±(σ) 6= /0} and H± = P±.

The rest of this section is devoted to prove the following result. Then
we use it to prove Theorem 3.44.

Theorem 3.62.LetΛ be a connected singular-hyperbolic attracting set of a
flow X∈Xr , r ≥ 1, on a closed three-manifold M. Suppose thatΛ contains a
dense subset of periodic orbits and a unique singularity. Moreover assume
that Λ is not transitive. Then H+ and H− are homoclinic classes of X.
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From Theorem 3.61 and the assumption thatS(X)∩Λ is a singleton
together with denseness of periodic orbits inΛ, we easily deduce thatP±

cover the whole attractor.

Lemma 3.63. LetΛ be a connected singular-hyperbolic attracting set with
dense periodic orbits and only one singularityσ. ThenΛ = H+ ∪H−.

In this setting we can state Theorem 3.62 in the following useful way:
a singular hyperbolic attracting set having dense periodicorbits with only
one singularity is either transitive or the union of two homoclinic classes.

Since each elementO ∈ Per(X)∩Λ is hyperbolic of saddle-type, then
Wu(O ) \ {O } has two connected components. ForO ∈ P± one of those
components intersectsWs,±(σ). We write that componentWu,±(O ).

Now we show that bothH+ andH− are transitive sets.

Lemma 3.64. Let Λ be a singular-hyperbolic attracting set with dense pe-
riodic orbits and only one singularityσ. Then H+ and H− are transitive.
Moreover H± ⊂Wu,±(q) = Wu,±(q) ⋔ Ws,±(σ) for all q ∈ P±.

Proof. Let p,q be two points in distinct orbits insideH+ (the argument for
H− is analogous). Then their unstable manifolds intersect transversely the
same side of the stable manifold of the unique singularity. Hence through
the local behavior of the flow near a singularity, flowing to anincoming
cross sectionΣ = Σi,+ we obtain two small curvesγ ⊂Wu(p)∩Σ andζ ⊂
Wu(q)∩Σ crossingℓ+ transversely. See Figure 3.1.

Fix neighborhoodsU of p andV of q. Since periodic orbits are dense
in Λ andγ ⊂ Λ (becauseΛ is an attracting set), then we can find a periodic
orbit r so close tow such that

• Ws(r,Σ) intersects bothγ andζ transversely;

• the orbit ofr intersectsU .

Hence takingz∈ ζ ⋔ Ws(r,Σ) ⊂ Wu(q)∩Ws(r) we have that the positive
orbit of z visits U infinitely many times, and the negative orbit ofz con-
verges toO (q), thus visitsV infinitely many times. This means that there
exists somet > 0 such thatXt

(
V∩Λ)∩

(
U ∩Λ

)
6= /0. SinceU andV where

arbitrarily chosen, this proves transitivity.
Recall the conventionWu,+(q) for the branch ofWu(q) \ O (q) which

intersectsWs,+(σ). The above argument also shows that theWu,+(q) is ar-
bitrarily nearp, that isP+ ⊂Wu,+(q) for everyq∈P+, thusH+ ⊂Wu,+(q).
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SinceΛ is attracting we haveWu,+(q) ⊂ Λ. Therefore given anyy ∈
Wu,+(q) there is a sequencepn ∈Per(X)∩Λ such thatpn −−−−→

n→+∞
y. By The-

orem 3.61 together with the Inclination Lemma, we get thatWs(σ) crosses
Wu,+(q) very neary. This shows thatWs(σ)∩Wu,+(q) ⊃Wu,+(q).

Analogously with− instead of+. Note that the intersections above are
always transverse. The lemma is proved.

From this we deduce the following condition for transitivity.

Lemma 3.65. In the same setting as the previous lemma, suppose there
exists a sequence{pn}n≥1 ⊂ P− converging to some point in Ws,+(σ) (or
similarly interchanging+ with −). ThenΛ is transitive.

Proof. Fix p ∈ P+ and let pn ∈ P− be as in the statement. From the
construction of flow boxes near singularities in Section 3.3.3 we can fix
an adapted cross-sectionΣ = Σi,+ throughWs,+(σ) and a open arcJ ⊂
Σ∩Wu(p) intersectingWs,+(σ) transversely.

Again by the behavior of the flow near singularities we can assume that
pn ∈ Σ for everyn. By the choice of adapted cross-sections, we know that
the local stable manifoldsWs(pn,Σ) of pn insideΣ intersectJ transversely,
for every big enoughn.

The Inclination Lemma 1.10 applied to the positive orbit ofJ ⊂Wu
X(p)

together with the assumptionpn ∈ P− imply that Wu(p)∩Ws,−(σ) 6= /0.
Hencep∈ P−.

This shows thatH+ ⊂ H−. ThusΛ = H− by Lemma 3.63, and from
Lemma 3.64 we conclude thatΛ is transitive.

Proposition 3.66. In the same setting as above, if there is z∈Wu(σ)\{σ}
such thatσ ∈ ω(z), thenΛ is transitive.

Proof. Let z be as in the statement. By the local dynamics in flow boxes
nearσ we can assume there are pointszn ∈ Σi,+ in the positive orbit ofz
such thatzn → z0 ∈ ℓ, whereℓ = Ws,+(σ)∩Σ. (The argument for the−
case above is analogous.)

If Per(X)∩P− = /0, then we would have Per(X)∩Λ ⊂ P+ by Theo-
rem 3.61. In this caseΛ would be transitive by Lemma 3.64. Hence we can
assume that there existsq∈ P−.

This allows us to choose a sequence of pointswn ∈Wu(q) in the same
side wherez is, such thatwn −−−−→

n→+∞
w∈Ws,−(σ). SinceΛ is attracting, it
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contains the unstable manifolds of its points and sow ∈ Λ. Thus we can
find a sequencepn ∈Per(X)∩Λ tending tow, whose orbit passes very close
to z. Consequently there arep′n ∈ O (pn) converging toz0.

We have found a sequence of periodic orbits accumulating simultane-
ouslyWs,+(σ) andWs,−(σ). Arguing by contradiction, suppose thatΛ is
not transitive. Then Lemma 3.65 would imply thatp′n 6∈ P+ and p′n 6∈ P−

for all n large enough. This contradicts Theorem 3.61 and concludes the
proof.

Now we assume thatΛ is not transitive and use the previous results to
disconnectΛ.

Lemma 3.67. If Λ is not transitive, then for all q∈ P± we have H± =
Wu,±(q) ⋔ Ws,±(σ) = Wu,±(q) .

Proof. Fix q∈ P+ (for P− the argument is the same). From Lemma 3.64 it
is enough to show that every pointy∈Wu,+(q) is an accumulation point of
elements ofP+. This implies thaty is accumulated by points inWu,+(q)∩
Ws,+(σ) by the Inclination Lemma and, in addition, also ensures thaty ∈
H+.

By denseness of periodic orbits there exists a sequencepn ∈ Per(X)∩Λ
such thatpn −−−−→

n→+∞
y. Then pn ∈ P+ for all n big enough, for otherwise

we would gety∈ H− and thusH+ ⊂Wu,+(q) = O (y) ⊂ H−, sinceH− is
invariant. HenceΛ = H+. This contradicts the assumption thatΛ is not
transitive.

Theorem 3.68. If Λ is not transitive, then for all a∈ Wu(σ) \ {σ} there
exists a periodic orbit O⊂ Λ such that a∈Ws(O), that isω(a) = O.

Note that by Theorem 3.61 the periodic orbits given by Theorem 3.68
are homoclinically related toσ.

Proof. Fix a∈Wu(σ)\{σ} and assume thatω(a) is nota periodic orbit.
SinceΛ is not transitive and periodic orbits are dense by assumption,

we haveP+ 6= P− and both are non-empty. Takep∈ P+ andq∈ P−.
Using the flow we can assume thata belongs to some outgoing cross

sectionΣ = Σo,± of a flow box nearσ. Since the unstable manifolds ofp
andq crossWs(σ) on sides opposite toWss(σ), both their intersections with
Ws(σ) contain a curve havingσ as an accumulation point and tangent to the
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eigendirection corresponding to the weak contracting eigenvalue ofσ, see
Figure 3.6. Using the flow box nearσ we can find a curveI = Ia contained

σ

Ws(σ)

Wss(σ)

Wu(p)Wu(p)

Wu(q)Wu(q)

Σ

a

Σ0h

zn

zn+1pn

wn

Figure 3.6: The stable manifold ofσ, the unstable manifolds ofp,q and the
points inΣ0.

in Σ througha such thatI \ {a} is formed by two arcsI+ ⊂ Wu(p) and
I− ⊂Wu(q), see Figure 3.6. Observe that the tangent space ofI is contained
in Ec∩TΣ by construction.

Proposition 3.66 ensures thatσ /∈ ω(a) sinceΛ is not transitive. There-
fore from Proposition 3.9 we see thatH = ω(a) is a uniformly hyperbolic
saddle-type set. MoreoverI ⊂ Λ becauseΛ is a closed attracting set.

Consider an adapted cross sectionΣ0 through some point ofH. Then
by item 2 of Lemma 3.60 and shrinkingΣ0 if necessary, we can assume that
the stable boundary∂sΣ0 of Σ0 does not touch H. Moreover sinceΣ0 \H
is open we can in addition assume thatd(Σ0∩H,∂sΣ) > δ for someδ > 0,
just as in the definition ofδ-adapted cross section, but now in the center-
unstable direction.

Using a tubular flow construction we can lineariseX in anopentube-
like setUΣ0 = X(−ε,ε)( int(Σ0)

)
for a smallε > 0. We can coverH by a

finite numberΞ = {UΣ0, . . . ,UΣl } of this type ofopen tubular flow boxes,
sinceH ∩S(X) = /0, H is compact andH satisfies item 2 of Lemma 3.60.

Consider the Poincaré mapR : Ξ ∩H → Ξ defined byz∈ Ξ ∩H 7→
XT2+t(z)(z) whereT2 is defined in Section 3.4.1 andτ(z) is the first return
time of XT2(z) to Ξ. The map is defined on entire strips ofΞ by the con-
struction of adapted cross sections.

Fix now h0 ∈ H and letzn be points in the positive orbit ofz such that
d
(
zn,Rn(h0)

)
−−−−→
n→+∞

0. Note thathn = Rn(h0) always belongs to the inte-

rior of Ξ and the same is true ofzn. Observe that there exists a correspond-
ing sequence of imagesIn of I such thatzn ∈ In ⊂ Ξ. SinceI is transverse to
the flow direction, we have thatzn belongs to the interior ofIn. In addition,
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the expansion ofR in the central-unstable direction and the fact thatzn is
δ-away from the boundary ofΞ ensures that there is an arcJn with length
bounded away from zero such thatzn ∈ Jn ⊂ In.

Let h be a limit point ofhn. HenceJn converges in theC1 topology to an
interval inWu(h) (recall thath∈ H andH is uniformly hyperbolic). Since
Ξ has finitely many components, we can assume thathn,Jn andh all belong
to the same componentΣ0 of Ξ.

Notice that we cannot havezn ∈ Ws(h,Σ0) for infinitely many n, for
otherwise by Lemma 3.59 we conclude thath is periodic andz∈ Ws(h),
thusH = ω(z) = O (h) contradicting the assumption. Hencezn /∈Ws(h,Σ0)
for all big enoughn.

Therefore the intersection ofJn \ {zn} with Ws(zn+1,Ξ) is non-empty
for big enoughn. If wn belongs to this intersection, then it is either in the
image ofI+ or in the image ofI− insideJn. We write J±n for the corre-
sponding components.

Now we use that periodic orbits are dense. Assume thatwn ∈ J+
n and

takepn ∈ Per(X)∩Σ0 close to a point in inJ−n nearzn+1, see the rightmost
rectangle in Figure 3.6. Then we ensure that

Ws(pn) ⋔ J+
n 6= /0 6= J−n+1 ⋔ Ws(pn)

which implies

Ws(pn) ⋔ Wu(p) 6= /0 6= Wu(q) ⋔ Ws(pn).

By the choice ofpn we have thatO (pn) goes very close toWs,−(σ). We can
find a sequence of such orbits converging to a point inWs,−(σ). SinceΛ is
not transitive, by Lemma 3.65 we must have thatpn ∈ P−. But thenp must
be inP− by the Inclination Lemma 1.10. Sincep was an arbitrary point in
P+, we conclude thatP+ ⊂P− and soΛ = H− is transitive, a contradiction.

Otherwise we havewn ∈ J−n and by the same arguments we deduce that
q∈ P+, implying thatΛ = H+ is transitive as before.

Henceω(z) must be a periodic orbit, as claimed.

The orbitO provided by Theorem 3.68 is hyperbolic of saddle-type
(because it carries a dominated splitting with volume expanding central
direction). Hence there are two connected componentsWu,± of the unstable
manifold ofO such thatWu,+ ∪Wu,− = Wu(O)\O. The labels± on each
component are chosen according to whether the corresponding component



“LivroCBM-ultimo”
2007/8/20
page 175

i

i

i

i

i

i

i

i

3.4. SUFFICIENT CONDITIONS FOR ROBUSTNESS 175

is accumulated by the unstable manifold of a periodic point in P+ or P−, as
in the proof of Theorem 3.68, see Figure 3.7. The above convention does
not depend onp∈ P+,q∈ P− nor onI+, I− (this is easily proved using the
Inclination Lemma).

Ws,+

p

q

σ

a

I+

I−
Ws,−

Wu,−

O
I+
0

p

Wu,+

a0

I−0

Figure 3.7: Definition ofWu,+ andWu,−.

Next results shows that the choice of signs for the branches of Wu(O )
coincides with the previous convention for the unstable manifolds of peri-
odic orbits inΛ.

Lemma 3.69. We have Wu,+∩Ws,−(σ) = /0 and Wu,+∩Ws,+(σ) 6= /0, and
the similar facts interchanging+ and−. In particularO ∈ P+ ∩P−.

Proof. Arguing by contradiction, note that ifWu,+ ∩Ws,−(σ) 6= /0, then
because this intersection is transverse and everyp ∈ P+ has an unstable
manifold accumulating onWu,+, we deduce thatp∈ P−, and againP+ ⊂
P− thusΛ = H− is transitive, a contradiction. Similarly exchanging+ with
− in the above argument.

For the other part, ifWu,+ ∩Ws,+(σ) = /0, thenWu(O )∩Ws(σ) = /0
sinceΛ∩Wss(σ) = {σ} by Theorem 3.5, contradicting Theorem 3.61.

Lemma 3.70. Assume that Ws(p) ⋔ Wu,+ 6= /0 for some p∈ Per(X)∩Λ.
ThenWs(p)∩Wu,+ = Wu,+. Similarly replacing+ by−.

Proof. Choose a neighborhoodU of x∈Wu,+. By Lemma 3.67 we have in
particularWs,+(σ)∩Wu,+ =Wu,+. Then we can find a pointy∈Ws,+(σ)∩
Wu,+∩U . Letγ be a curve throughy insideU∩Wu,+ transverse toWs,+(σ).
Then the positive orbit ofγ contains open arcs which converge in theC1

topology to any compact neighborhood ofO insideWu,+, by the Inclination
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Lemma. Hence the positive orbit ofγ intersectsWs(p) by the assumption
on p. Therefore there exists a point ofWs(p) in U , proving thatWu,+ ⊂
Ws(p)∩Wu,+.

Now we are ready to consider homoclinic classes insideΛ (see Sec-
tion 1.3.5 for the definition and basic properties).

Lemma 3.71. For p ∈ P± such that Ws(p) ⋔ Wu,± 6= /0 we have that its
homoclinic class H(p) equalsWu,±.

Observe that since periodic orbits are dense we can choosep∈Per(X)∩
Λ very close toWu,+ to obtain the condition onp in Lemma 3.71. Then by
Lemma 3.67 we have thatH+ = Wu,± = H(p) is a homoclinic class. This
completes the proof of Theorem 3.62.

Proof of Lemma 3.71:Fix z∈P+, y∈Wu,± and a neighborhoodU of y. By
definition there exists an arcI ⊂Wu(p) such that its forward orbit crosses
Ws,+(σ). Lemma 3.70 ensures that we can find a diskD transverse toWu,±

insideWs(p)∩U .
The Inclination Lemma implies that the positive orbit of a sub-arcJ⊂ I

accumulatesWu,+. Then there existst > 0 such thatXt(J) ⋔ D 6= /0. This
means thatH(p)∩U 6= /0. SinceU was arbitrarily chosen andH(p) is
closed by definition, we have thaty ∈ H(p). HenceWu,+ ⊂ H(p) and
Wu,± ⊂ H(p).

For the opposite inclusion note that by the assumptionWs(p) ⋔Wu,± 6=
/0 and the Inclination Lemma we have thatWu,± ⊃Wu(p) ⊃ H(p).

Proof of Theorem 3.44:Note first that by Lemma 3.71 we must haveWu,±∩
Ws,−(σ) = /0. For otherwise we can find a sequencepn ∈ P+ converging
to a point inWs,−(σ). By Lemma 3.65 this implies thatΛ is transitive, a
contradiction.

Therefore there exists a neighborhoodB of Wu,± disjoint fromWs,−(σ).
Let J = [a,b] be a fundamental neighborhood ofWss(p0) for somep0 ∈ O ,
whereO is the periodic orbit given by Theorem 3.68. That is,J is an arc
with b = Xt(a) for somet > 0 such thatXs(a) 6∈Wss(p0) for all 0 < s< t.
TakeV ⊂ B a small neighborhood ofJ such that every point ofV belongs
to a stable manifold of a point inV ∩Wu,±. The forward orbits of points in
V never leaveB, sinceWu,± is invariant.
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We are going to describe a perturbation of the flowX close to the point
a∈Wu(σ)\{σ} (which defines the orbitO = ω(a)). Consider the follow-
ing cross sections ofX (recall the definition of flow box near a singularity
in Section 3.3.3):

• Σo,+ containinga in its interior andΣ′ = X1(Σo,+).

• Σ0 intersectingO in a single point in the center-unstable boundary.

• Σ− a substrip ofΣi,− which is a one-sided neighborhood ofℓ− not
touchingB on the same side ofa.

• Σ+ a substrip ofΣi,+ which is a one-sided neighborhood ofℓ+ also
on the same side ofa.

X1(a)

O

Wu,+

ℓ′s

Σo,+ Σ′

ℓs

σ

Σ−

Σ+

a

Figure 3.8: The unperturbed flowX.

Observe that the positive orbit of any point inΣ+ ∪Σ− by X will cross
Σo,+. DefineW = X[0,1](Σo,+). The support of the perturbation fromX to
Y sketched in Figures 3.8 and 3.9 is contained inW. This perturbation is
standard, see e.g. [143], amounting to “pusha′ upwards so that its image
under the flow ofY lands inΣO above the stable manifold ofO ”.

l
a

O
Wu,+

ℓ′s

Σo,+ Σ′

ℓs

σ′

K′
0

Σ−

Σ+

K′
1a′

V K′
2

Figure 3.9: The perturbed flowY.
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Recall thatΛ = ΛX(U) = ∩t>0Xt(U). SinceΛ is not transitive there
existsq∈ P− and so there is an intervalK0 in Σ− ∩Wu(q) crossingΣ− as
in Figure 3.9.

Denote byq′,Wu(q′),σ′,K′
0 the continuation of these objects for the

perturbed flowY. TheY-flow carriesK′
0 to an intervalK′

1 as in Figure 3.9.
Note thatK′

0 ⊂ ΛY(U) sinceΛY(U) is an attracting set,q′ ∈ ΛY(U) and
K′

0 ⊂Wu(q′).
We claim thatK′

0 6⊂ Ω(Y).
Arguing by contradiction, assume thatK′

0⊂Ω(Y) and choosex∈ int(K′
0).

On the one hand, the flow ofY carries points nearbyx to V as sketched
in 3.9, close to the lineK′

2. By assumption onK′
0 we have thatx is non-

wandering forY. In particular there existsx′ ∈ K′
0 close tox such thatthe

positive Y-orbit of x′ returns toΣ−.
On the other hand, by construction, the positive orbit of every point in

V by the flow ofX does not intersectΣ−.
SinceY = X outsideW we conclude that the positive orbit ofx′ by Y

intersectsΣ+ by the definition ofWu,+. The positive orbit of such an in-
tersection passes through the flow boxW and arrives toV again. Then we
conclude thatthe positive Y-orbit of x′ never returns toΣ−. This contradic-
tion proves thatK′

0 6⊂ Ω(Y), as claimed.
This impliesΛY(U) 6∈ Ω(X) and finishes the proof of Theorem 3.44.

3.4.3 Unstable manifolds of periodic orbits inside singular-
hyperbolic attractors

Here we present a proof of Theorem 3.61 following the proof presented
in [122].

Let Λ be either a singular-hyperbolic attractor, or a connected singular-
hyperbolic attracting set having a dense subset of periodicorbits.

We start by showing that the closure of the unstable manifoldof any
periodic orbit inΛ must contain some singularity of the flow.

Lemma 3.72. LetΛ be a connected singular-hyperbolic attracting set con-
taining either a dense subset of periodic orbits, or a dense regular orbit. Fix
a periodic point p0 ∈ Per(X)∩Λ (necessarily hyperbolic of saddle-type).
Let J= [a,b] be an arc on a connected component of Wuu(p0)\{p0} with
a 6= b. Then H= ∪t>0Xt(J) contains some singularity ofΛ.
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Proof. Observe thatH = Wu
0 (p0) ⊂ Λ by construction, whereWu

0 (p0) is
the connected component ofWu(p0) \O (p0) containingJ. In additionH
contains the unstable manifolds through any of its points, since every point
in H is accumulated by forward iterates of the arcJ.

Consider the setWss(H) = ∪{Wss(y) : y ∈ H}. Note thatWu(y) ⊂ H
for y∈ H and the family{Wss(z)}y∈Wu(y) covers an open neighborhood of
y, soWss(H) is a neighborhood ofH in M.

Let x be a point inWss(H). Then by forward iteration this point is sent
close toH. This shows thatx is in the interior ofWss(H) and henceWss(H)
is open inM. ThusHs =Wss(H)∩Λ is an open neighborhood ofH in Λ. If
Λ is transitive, we can takez∈Hs such thatω(z) = Λ and sinceω(z) = ω(x)
for somex∈ Hs, we conclude thatΛ ⊂ H and soH ∩S(X) 6= /0.

If Λ is not transitive, we claim that eitherHs∩S(X) 6= /0, or the closure
of Hs is an open subset ofΛ (besides being clearly a closed set).

First note that ifσ ∈ Hs∩S(X), thenσ ∈Wss(y) for somey∈ H imply-
ing σ ∈ H. For otherwise we would gety∈Wss(σ)∩Λ\{σ}, a contradic-
tion with Lemma 3.45.

Suppose thatHs∩S(X) = /0. From Proposition 3.9 we known thatHs is
a uniformly hyperbolic compact subset ofΛ. Then everyw∈ Hs has a well
defined strong-unstable manifold. MoreoverWuu

ε (w) ⊂ Λ∩Hs for some
ε > 0, becauseΛ is attracting andHs is open. We conclude thatHs contains
the unstable manifold of all its points. Hence taking limitswe obtain that
the closureHs also contains every unstable manifold. Analogously we see
that Hs contains the strong-stable manifoldWss(z)∩ Λ relative toΛ for
all z∈ Hs. The union of the unstable manifolds through all points in the
strong-stable manifolds provides a neighborhood ofHs in Λ.

SinceΛ is connected we obtainHs = Λ. Hence there exists some sin-
gularity σ of Λ in the closure of the stable manifolds ofH insideΛ. Let hn

be points inHs converging toσ. Hence the orbits ofhn contain pointsh′n
very close toWu(p0) by definition ofHs. Using the assumption of dense
periodic orbits, consider a periodic orbitpn very close tohn. Then the orbit
of pn will be close toWu

0 (p0) and soWs(pn) ⋔ Wu
0 (p0) 6= /0 (to see this,

consider an adapted cross sectionΣ throughh′n, a small tubular flow box
throughΣ and recall that stable manifolds crossΣ horizontally). The In-
clination Lemma now ensures thatWu

0 (p0) = H containspn. ThusH is
arbitrarily close toσ. Therefore the closed setH contains some singularity
of S(X)∩Λ.



“LivroCBM-ultimo”
2007/8/20
page 180

i

i

i

i

i

i

i

i

180 CHAPTER 3. ROBUST TRANSITIVITY

Fix p0 andσ ∈ S(X)∩H as in the statement of Lemma 3.72. We can
assume thatJ is a fundamental domain forWu(p0), that isb = XT(a) with
T > 0 the first return time of the orbit ofa toWuu(p0), i.e. Xt(a) /∈Wuu(p0)
for all 0 < t < T.

Fix ingoing adapted cross sectionsΣ̂i,±
σ of everyσ ∈ S(X)∩Λ and hori-

zontal substripsΣi,±
σ aroundℓ±σ of small width so thatO (p0) does not touch

Σi,±
σ . We assume that̂Σi,±

σ \Σi,±
σ have nonempty interior.

Consider also a cross sectionΣp containingp0. We can then takeJ =

[a,b] so close top0 thatJ ⊂ int(Σp) andX−t(J) never intersectsΣi,±
σ for all

t > 0 and everyσ ∈ S(X)∩Λ.
SinceS(X)∩Wu(p0) 6= /0 there exists a Poincaré mapR from a subset

D of Σp to int(∪σΣi,±
σ ) given by the first return timeτ(x) of x∈ D. Without

loss of generality assume thatR(b) ∈ int(Σi,+
σ ) for some singularityσ fixed

from now on. We drop theσ from the notation of the cross sections in what
follows.

Note thatR(a) must equalR(b). Using this with some tubular flow
boxes together with the fact thatΣi,+ is an adapted cross section, we show
that the image ofJ underRmust crossΣi,+ from one stable boundary to the
other, thus intersectingℓ+. Sinceℓ+ = Σi,+∩Ws

loc(σ), this argument proves
Theorem 3.61.

Observe that because bothJ and R(a) = R(b) belong to the interior
of the respective cross sections toX, then there exists a tubular flow box,
given by Theorem 1.6, and open neighborhoodsV ⊂ Σp of b andW ⊂ Σi,+

of R(b), such thatV ⊂ D, that is R | V : V → W is well defined and a
diffeomorphism. Moreover sinceJ is transverse to the stable foliation in
Σp, then the imageR(V∩J) is also transverse to the stable foliation ofΣi,+.
In addition, sinceΛ is attracting, we have thatJ andR(J∩V) are contained
in Λ. BecauseΣi,+ is adapted, the image ofJ is δ-away the center-unstable
boundary. Identifying the arc[a,b] with some interval[a,b] ⊂ R we define,
see Figure 3.10

q = sup{s∈ [a,b] : R([a,s]) ⊂ int(Σi,+)}.

By the existence of the pairV,W we haveq > a. Moreover givens ∈
(a,q) and covering the compact arcs[a,s] and R([a,s]) by a finite num-
ber of open tubular flow boxesU1, . . . ,Uk we easily see thatR([a,s]) is
connected. Indeed,R([a,s]) is the union of a sequenceR([si ,si+1]) of arcs
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insideUi ∩ int(Σi,+), wherea = s0 < s1 < · · · < sk = sandR |Ui ∩ int(Σp) :
Ui ∩ int(Σp) →Ui ∩ int(Σi,+) is a diffeomorphism,i = 1, . . . ,k.

q

R(q)

R(r)

R(b)

a

b

W

δ δ

ℓ+

Σ̂i,+

∂sΣi,+

p0

Σp

O (p)
Wuu(p0)

U
J

Figure 3.10: The arcJ and cross-sectionsΣp,Σi,+
0 .

Note that by the choice ofΣi,+ strictly insideΣ̂i,+, if q belongs to the
domain D of R, then there exists a tubular flow boxU0 takingq to R(q), so
thatR(q) is well defined. HenceR(q) = limsրqR(s) is not on the the center-
unstable boundary∂cuΣi,+ by construction. Moreover using the tubular flow
boxU0 we see thatR(q) ∈ ∂sΣi,+. For otherwise, in caseR(q) ∈ int(Σi,+),
we would be able to extend the definition ofRalongJ through the flow box
U0.

Now apply the same arguments to

r = inf{s∈ [a,b] : R([s,b]) ⊂ int(Σi,+)}.

We obtainR(a) = R(b) andR(q),R(r) ∈ ∂sΣi,+ if r belongs to the domain
of D. We obtain in this wayγ = R([a,q]∪ [r,b]), a connected smooth arc
joining two points in the stable boundary.

If R(q),R(r) belong to the same stable-manifold on∂sΣi,+, then by
smoothness and connectedness there must be a tangency between γ and
the stable foliation onΣi,+. This is a contradiction.

HenceR(q),R(r) are on different stable leaves on the boundary ofΣi,+,
thusγ crossesℓ+ transversely. This means thatWu(p0) ⋔ Ws(σ) 6= /0. The
proof of Theorem 3.61 now rests on the claim thatboth q and r belong to
the domain of R. To prove this claim we need the following result, whose
proof we postpone.

Lemma 3.73. Let Σ̃ be a cross section of X containing a compact cu-curve
ζ, which is the image of a regular parametrizationζ : [0,1]→ Σ̃, and assume
that ζ is contained inΛ. LetΣ be another cross section of X. Suppose that
ζ falls off Σ, that is
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• the positive orbit ofζ(t) visits int(Σ) for all t ∈ [0,1);

• and theω-limit of ζ(1) is disjoint fromΣ.

Thenζ(1) belongs either to the stable manifold of some periodic orbitp in
Λ, or to the stable manifold of some singularity.

Observe that[a,q] (and[r,b]) fall off Σi,+, if q (and r) does not belong
to D. Thenω(q) (andω(r)) is either a periodic orbit inΛ, or a singularity.
In the first case the arcJ ⊃ [a,q] is transverse atq to the stable manifold
of a periodic orbitp. The Inclination Lemma ensures that there exists a
fundamental domainL of Wuu(p) accumulated by iterates of the open arc
(a,q), see Figure 3.11. Hence the flow takesevery point of LthroughΣi,+.

J

q

q L

a

b

p

Wsq

Figure 3.11: HowI accumulatesDu(x∗)

As before the image ofL by the corresponding first return map must be a
cu-curveC in Σi,+. Moreover since the endpoints ofL are on the same orbit
of the flow,C must be aclosed cu-curve. This is impossible.

This contradiction shows thatq (andr) either does not fall offΣi,+, so
thatq (andr) is in the domain ofR, or q is in the stable manifold of some
singularity. In the former case, we are done. In the latter case, since the
stable manifold is transverse toWuu(p0) by the assumption of singular-
hyperbolicity, we obtain the statement of the theorem as well.

Now to finish the proof of Theorem 3.61 we prove the remaining lemma.

Proof of Lemma 3.73:DefineH = ω(ζ(1)) and supposeH is not a singu-
larity. By an argument similar to the proof of Lemma 3.60 we have thatH
has totally disconnected intersection with any cross-section.
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Indeed, consider an adapted cross-sectionΣx of X throughx ∈ H and
considerC the connected component ofH∩Σx containingx. As in the proof
of Lemma 3.60, we have thatC∩Ws(x,Σx) = {x}.

If there existsy ∈ C\Ws(x,Σx) consider the horizontal stripS of Σx

between the stable leavesWs(x,Σx) andWs(y,Σx). Then there exists a point
w of H ∩ int(S) for otherwiseWs(w,Σx) would disconnecty from x. From
this we findξ in the positive orbit ofζ(1) inside int(S) and close tow.
But ζ is acu-curve. Hence considering the tubular flow on a neighborhood
around the piece of orbit fromζ(1) to ξ, we find in the image ofζ under the
tubular flow acu-curveζ′, a connected image of a neighborhood ofζ(1)
in ζ, with ξ as a boundary point. (Here we use the hyperbolicity of the
Poincaŕe maps between cross sections assuming that the time fromζ(1) to
ξ is big enough.)

So we have a positive iterate of a pointζ(s) in int(S) for somes∈ [0,1).
Use the density of periodic orbits to find a point of a periodicorbit p′ very
close toζ(s) in int(S). Then the orbit ofp′ crosses int(Σ) by the assumption
on the curveζ. Again there existsh∈ H ∩Ws(p′,S). This means that the
orbit of h will cross int(Σ). Sinceh∈ ω(ζ(1)), then the orbit ofζ(1) must
cross int(Σ) also. We have reached a contradiction.

We conclude thatΣx∩H is totally disconnected.
Hence we can cover the setH with a finite number of flow boxes around

the singularities contained inH together with finitely many tubular neigh-
borhoods through adapted cross sections, i.e. sets of the form X(−ε,ε)(Σx).
Let Ξ be the collection of adapted cross sections used in this cover, some
of them ingoing or outgoing cross sections around singularities.

SinceΣx∩H, if non-empty, is totally disconnected, thenH is contained
in the interior of these flow boxes. ThusΣx ∩H is not onlyδ-away from
the center-unstable boundary ofΣ, butδ-away from the stable boundary of
Σ as well, for some uniformδ > 0 valid for every cross section ofΞ.

The definition ofH ensures thatζt(1) = Xt
(
ζ(1)

)
for big enought > 0

is contained in a small closed neighborhoodW aroundH, which can be
taken disjoint from the reference sectionΣ.

Let tn →+∞ be such thatζn(1) = ζtn(1) ∈ int(Ξ) for all n≥ 1. SinceΞ
is a finite collection of sections, we can assume without lossof generality
thatζn(1) always belongs to the same sectionS∈ Ξ.

Observe that the positive orbit ofζ(s), with s< 1 and close to 1, enters
W by continuity of the flow, but does not stay inW, since it must cross
int(Σ). Then the first return ofζ(s) to S, which we writeζn(s), is well
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defined fors< 1 and close to 1.
For infinitely many values ofn there exists somesn ∈ [0,1) such that

ζn([sn,1]) is contained inS, the orbit segment fromζ(s) to ζn(s) is disjoint
from Σ for all sn ≤ s≤ 1, andζn(sn) is in the boundary ofS. For otherwise
we would getζn([0,1]) ⊂ int(S) ⊂W and soζ(s) would never reachΣ.

This means that thecu-curveγn = ζn([sn,1]) has length at leastδ inside
Sand

• either the end pointζn(1) of γn has a subsequence contained in the
same stable manifold insideS, which by Lemma 3.59 implies that
ζn(1) is in the stable manifold of a periodic orbits, and thusH is a
periodic orbit;

• or γn has an accumulation curve insideS in the C1 topology (us-
ing the Ascoli-Arzela Theorem, sinceγn have bounded derivative by
definition ofcu-curve and length bounded away from zero, andS is
compact), so that we can find a pointζn(s) in the stable manifold of
ζm(1), for m,n very big. This is impossible because the positive orbit
of ζn(s) would stay forever close to the orbit ofζm(1), insideW, and
would never reachΣ.

We conclude thatH is a periodic orbit if it is not a singularity. The proof of
Lemma 3.73 is complete.
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Chapter 4

Singular-hyperbolicity,
sensitiveness and physical
measure

Here we obtain another consequence of singular-hyperbolicity: a singular-
hyperbolic attractor is sensitive to initial conditions.

Theorem 4.1. Let Λ be a singular-hyperbolic attractor of X∈ X1(M).
ThenΛ is expansive.

From the comments of Section 1.2.2 from Chapter 1, we have thefol-
lowing.

Corollary 4.2. A singular-hyperbolic attractor of a3-flow is sensitive to
initial data.

The proof of Theorem 4.1 is the content of Section 4.1. The argument
is based on analyzing Poincaré return maps of the flow to a convenient
cross-section.

We show first that there exists a family ofPoincaŕe maps, that is, con-
tinuous mapsR : Σ → Σ′ of the formR(x) = Xt(x)(x) between cross-sections
Σ andΣ′ to X. Assuming that the Poincaré timet(·) is large and that the
attractorΛ is singular-hyperbolic, we show that cross-sections have co-
dimension 1 foliations which are dynamically defined: the leaves corre-
spond to the intersections of the cross-sections with the stable manifolds

185
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of the flow. These leaves are uniformly contracted and choosing adapted
cross-sectionsthe foliation is also invariant:

R(Ws(x,Σ)) ⊂Ws(R(x),Σ′) for all x∈ Λ∩Σ.

In additionR is uniformly expanding in the transverse direction. By means
of cross-sections we can likewise analyze the flow close to the singularities.

From here we argue by contradiction: if the flow is not expansive onΛ,
then we can find a pair of orbits hitting the cross-sections infinitely often
on pairs of points uniformly close. We derive a contradiction by showing
that the uniform expansion in the transverse direction to the stable foliation
must take the pairs of points apart, unless one orbit is on thestable manifold
of the other.

Existence and uniqueness of a physical measure

It was proved by Colmenarez in [47] that ifΛ is a singular-hyperbolic at-
tractor of aC2 flow X with a dense set of periodic orbits, then the central
directionEcu

Λ̃
can be continuously decomposed intoEu⊕EX along each or-

bit of Λ̃, where theEu direction is non-uniformly hyperbolic, that is, has a
positive Lyapunov exponent, and̃Λ = Λ \∪σ∈S(X)∩ΛWu(σ). In [46] again
under the assumption of a dense set of periodic orbits Colmenarez showed
that everyC2 singular-hyperbolic attractor supports a physical probability
measure — see Section 1.4.1 of Chapter 1 for the relevant definitions.

However in another recent work, Arroyo and Pujals [15] show that ev-
ery singular-hyperbolic attractor has a dense set of periodic orbits, so the
denseness assumption is no restriction. Here we give an independent proof
of the existence of SRB measures which does not use densenessof periodic
orbits and that enables us to obtain the hyperbolicity of theSRB measure.

Theorem 4.3.LetΛ be a singular-hyperbolicattractorof a flow X∈X2(M)
on a three-dimensional manifold. ThenΛ supports a unique physical prob-
ability measure µ which is ergodic, hyperbolic and its ergodic basin covers
a full Lebesgue measure subset of the topological basin of attraction, i.e.
B(µ) = Ws(Λ), Leb− mod 0. Moreover the support of µ is the whole at-
tractor supp(µ) = Λ.

Here we need to assume that(Xt)t∈R is a flow of classC2 since for
the construction of physical measures a bounded distortionproperty for



“LivroCBM-ultimo”
2007/8/20
page 187

i

i

i

i

i

i

i

i

187

one-dimensional maps is needed. These maps are naturally obtained as
quotient maps over the set of stable leaves, which form aC1+α foliation of
a finite number of cross-sections associated to the flow if theflow isC2, see
Section 1.4.2. This will be detailed in Section 4.2.

Recall from Section 1.4 of Chapter 1 that hyperbolicity heremeansnon-
uniform hyperbolicity: the tangent bundle overΛ splits into a sumTzM =
Es

z⊕EX
z ⊕Fz of three one-dimensional invariant subspaces defined forµ-a.e.

z∈Λ and depending measurably on the base pointz, whereµ is the physical
measure in the statement of Theorem 4.3,EX

z is the flow direction (with
zero Lyapunov exponent) andFz is the direction with positive Lyapunov
exponent.

Theorem 4.3 is another statement of sensitiveness, this time applying
to the whole open setB(Λ). Indeed, since non-zero Lyapunov exponents
express that the orbits of infinitesimally close-by points tend to move apart
from each other, this theorem means that most orbits in the basin of attrac-
tion separate under forward iteration. See Kifer [88], and Metzger [115],
and references therein, for previous results about invariant measures and
stochastic stability of the geometric Lorenz models.

In the uniformly hyperbolic setting it is well known that physical mea-
sures for hyperbolic attractors admit a disintegration into conditional mea-
sures along the unstable manifolds of almost every point which are abso-
lutely continuous with respect to the induced Lebesgue measure on these
sub-manifolds, see [37, 39, 151, 201].

Here the existence of unstable manifolds is guaranteed by the hyperbol-
icity of the physical measure: the strong-unstable manifoldsWuu(z) are the
“integral manifolds” in the direction of the one-dimensional sub-bundleF ,
tangent toFz at almost everyz∈ Λ. The tools developed to prove Theo-
rem 4.3 enable us to prove that the physical measure obtainedthere has ab-
solutely continuous disintegration along the center-unstable direction, see
Section 1.4 of Chapter 1 for the definition of conditional measures and the
notion of adapted foliated neighborhoods of a point.

Theorem 4.4. Let Λ be a singular-hyperbolic attractor for a C2 three-
dimensional flow. Then the physical measure µ supported inΛ has a disin-
tegration into absolutely continuous conditional measures µγ along center-

unstable surfacesγ∈Πδ(x) such that
dµγ
dmγ

is uniformly bounded from above,

for all δ-adapted foliated neighborhoodsΠδ(x) and everyδ > 0. Moreover
supp(µ) = Λ .
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Remark4.5. The proof that supp(µ) = Λ that we present depends on the
absolutely continuous disintegration property of the physical measureµand
the transitivity ofX on Λ. However most singular-hyperbolic attractors are
topologically mixing in theC1 topology [122] and the Lorenz geometric
models are always topologically mixing [105], so we should expect a more
general argument proving supp(µ) = Λ without the need to obtainfirst that
µ is acu-Gibbs measure orSRB-measure.

Remark4.6. It follows from the proof that the densities of the conditional
measuresµγ are bounded from below away from zero onΛ\B, whereB is
any neighborhood of the singularitiesσ(X | Λ). In particular the densities
tend to zero as we get closer to the singularities ofΛ.

The absolute continuity property along the center-unstable sub-bundle
given by Theorem 4.4 ensures that

hµ(X
1) =

Z

log
∣∣det(DX1 | Ecu)

∣∣dµ,

by the characterization of probability measures satisfying the Entropy For-
mula [93]. The above integral is the sum of the positive Lyapunov expo-
nents along the sub-bundleEcu by Oseledets Theorem [107, 204]. Since in
the directionEcu there is only one positive Lyapunov exponent along the
one-dimensional directionFz, µ-a.e. z, the ergodicity ofµ then shows that
the following is true.

Corollary 4.7. If Λ is a singular-hyperbolic attractor for a C2 three-dimen-
sional flow Xt , then the physical measure µ supported inΛ satisfies the
Entropy Formula

hµ(X
1) =

Z

log‖DX1 | Fz‖dµ(z).

Again by the characterization of measures satisfying the Entropy For-
mula we get thatµ has absolutely continuous disintegration along the strong-
unstable direction, along which the Lyapunov exponent is positive, thusµ
is a u-Gibbs state[151]. This also shows thatµ is an equilibrium state for
the potential− log‖DX1 | Fz‖ with respect to the diffeomorphismX1. We
note that the entropyhµ(X1) of X1 is the entropy of the flowXt with respect
to the measureµ [204].

Hence we are able to extend most of the basic results on the ergodic
theory of hyperbolic attractors to the setting of singular-hyperbolic attrac-
tors.
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4.1 Expansiveness

For the proof of Theorem 4.1 we need the construction of cross-sections
and Poincaŕe return maps, which is the subject of Section 3.4.1. We use the
construction and notations defined there in what follows.

4.1.1 Proof of expansiveness

Here we prove Theorem 4.1. The proof is by contradiction: letus suppose
that there existε > 0, a sequenceδn → 0, a sequence of functionshn ∈ K
(see Section 1.2.2 of Chapter 1 for the definition of expansiveness), and
sequences of pointsxn, yn ∈ Λ such that

d
(
Xt(xn),X

hn(t)(yn)
)
≤ δn for all t ∈ R, (4.1)

but
Xhn(t)(yn) /∈ X[t−ε,t+ε](xn) for all t ∈ R. (4.2)

The main step in the proof is a reduction to a forward expansiveness
statement about Poincaré maps which we state in Theorem 4.8 below.

We are going to use the following observation: there exists some regu-
lar (i.e. non-equilibrium) pointz∈Λ which is accumulated by the sequence
of ω-limit setsω(xn). To see that this is so, start by observing that accu-
mulation points do exist, sinceM is compact. Moreover, if theω-limit
sets accumulate on a singularity then they also accumulate on at least one
of the corresponding unstable branches which, of course, consists of regu-
lar points. We fix such az once and for all. Replacing our sequences by
subsequences, if necessary, we may suppose that for everyn there exists
zn ∈ ω(xn) such thatzn → z.

Let Σ be aδ-adapted cross-section atz, for some smallδ. Reducingδ
(but keeping the same cross-section) we may ensure thatz is in the interior
of the subset

Σδ = {y∈ Σ : d(y,∂Σ) > δ}.
By definition,xn returns infinitely often to the neighborhood ofzn which,
on its turn, is close toz. Thus dropping a finite number of terms in our
sequences if necessary, we have that the orbit ofxn intersectsΣδ infinitely
many times. Lettn be the time corresponding to thenth intersection.

Replacingxn, yn, t, andhn by x(n) = Xtn(xn), y(n) = Xhn(tn)(yn), t ′ =

t − tn, andh′n(t
′) = hn(t ′ + tn)− hn(tn), we may suppose thatx(n) ∈ Σδ ,
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while preserving both relations (4.1) and (4.2). Moreover there exists a
sequenceτn, j , j ≥ 0 with τn,0 = 0 such that

x(n)( j) = Xτn, j (x
(n)) ∈ Σδ and τn, j − τn, j−1 > max{t1, t2} (4.3)

for all j ≥ 1, wheret1 is given by Proposition 3.49 andt2 is given by
Lemma 3.56.

Theorem 4.8. Givenε0 > 0 there existsδ0 > 0 such that if x∈ Σδ and y∈Λ
satisfy

(a) there existτ j such that

x j = Xτ j (x) ∈ Σδ and τ j − τ j−1 > max{T1,T2} for all j ≥ 1;

(b) dist
(
Xt(x),Xh(t)(y)

)
< δ0, for all t > 0 and some h∈ K ;

then there exists s∈ R such that Xh(s)(y) ∈Wss
ε0

(X[s−ε0,s+ε0](x)).

We postpone the proof of Theorem 4.8 until the next section and ex-
plain first why it implies Theorem 4.1. We are going to use the following
observation.

Lemma 4.9. There existρ > 0 small and c> 0, depending only on the
flow, such that if z1,z2,z3 are points inΛ satisfying z3 ∈ X[−ρ,ρ](z2) and
z2 ∈Wss

ρ (z1), then

dist(z1,z3) ≥ c·max{dist(z1,z2),dist(z2,z3)}.

Proof. This is a direct consequence of the fact that the angle between Ess

and the flow direction is bounded from zero which, on its turn,follows from
the fact that the latter is contained in the center-unstablesub-bundleEcu.
Indeed consider for small enoughρ > 0 theC1 surfaceX[−ρ,ρ]

(
Wss

ρ (z1)
)
.

The Riemannian metric here is uniformly close to the Euclidean one and
we may choose coordinates on[−ρ,ρ]2 putting z1 at the origin, sending
Wss

ρ (z1) to the segment[−ρ,ρ]×{0} andX[−ρ,ρ](z1) to {0}× [−ρ,ρ], see

Figure 4.1. Then the angleα betweenX[−ρ,ρ](z2) and the horizontal is
bounded from below away from zero and the existence ofc follows by
standard arguments using the Euclidean metric.
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−ρ

ρ

ρ

z1z2

z3 X[−ρ,ρ](z1)

Wss
ρ (z1)

Figure 4.1: Distances near a point in the stable-manifold.

We fix ε0 = ε as in (4.2) and then considerδ0 as given by Theorem 4.8.
Next, we fixn such thatδn < δ0 andδn < cρ, and apply Theorem 4.8 to
x= x(n) andy= y(n) andh= hn. Hypothesis (a) in the theorem corresponds
to (4.3) and, with these choices, hypothesis (b) follows from (4.1). There-
fore we obtain thatXh(s)(y) ∈ Wss

ε (X[s−ε,s+ε](x)). In other words, there
exists|τ| ≤ ε such thatXh(s)(y) ∈Wss

ε (Xs+τ(x)). Hypothesis (4.2) implies
thatXh(s)(y) 6= Xs+τ(x). Hence since strong-stable manifolds are expanded
under backward iteration, there existsθ > 0 maximum such that

Xh(s)−t(y) ∈Wss
ρ (Xs+τ−t(x)) and Xh(s+τ−t)(y) ∈ X[−ρ,ρ](Xh(s)−t(y))

for all 0≤ t ≤ θ, see Figure 4.2. Sinceθ is maximum

either dist
(
Xh(s)−t(y),Xs+τ−t(x)

)
= ρ

or dist
(
Xh(s+τ−t)(y),Xh(s)−t(y)

)
= ρ for t = θ.

Using Lemma 4.9, we conclude thatd(Xs+τ−t(x),Xh(s+τ−t)(y)) ≥ cρ > δn

which contradicts (4.1). This contradiction reduces the proof of Theo-
rem 4.1 to that of Theorem 4.8.

4.1.2 Infinitely many coupled returns

We start by outlining the proof of Theorem 4.8. There are three steps.

• The first one, which we carry out in the present section, is to show
that to each returnx j of the orbit ofx to Σ there corresponds a nearby
returny j of the orbit ofy to Σ. The precise statement is in Lemma 4.10
below.
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X[−ρ,ρ](Xh(s)−t(y))

Xh(s+τ−t(y) Xh(s)−t(y)

Xh(s)(y)

Xs+τ(x)

Wss
ε (x)

Xs+τ−t(x)

Wss
ρ (Xs+τ−t(x))

Figure 4.2: Relative positions of the strong-stable manifolds and orbits.

• The second, and most crucial step, is to show that there exists a
smooth Poincaŕe map, with large return time, defined on the whole
strip of Σ in between the stable manifolds ofx j andy j . This is done
in Section 4.1.3.

• The last step, Section 4.1.7, is to show that these Poincaré maps are
uniformly hyperbolic, in particular, they expandcu-curves uniformly
(recall the definition ofcu-curve in Section 3.4.1).

The theorem is then easily deduced: to prove thatXh(s)(y) is in the
orbit ofWss

ε (x) it suffices to show thaty j ∈Ws(x j ,Σ), by Remark 3.48. The
latter must be true, for otherwise, by hyperbolicity of the Poincaŕe maps,
the stable manifolds ofx j and y j would move apart asj → ∞, and this
would contradict condition (b) of Theorem 4.8. See Section 4.1.7 for more
details.

Lemma 4.10. There exists K> 0 such that, in the setting of Theorem 4.8,
there exists a sequence(υ j) j≥0 such that

1. yj = Xυ j (y) is in Σ for all j ≥ 0.

2. |υ j −h(τ j)| < K ·δ0 and d(x j ,y j) < K ·δ0.

Proof. By assumptiond(x j ,Xh(τ j )(y)) < K · δ0 for all j ≥ 0. In particular
y′j = Xh(τ j )(y) is close toΣ. Using a flow box in a neighborhood ofΣ
we obtainXε j (y′j) ∈ Σ for someε j ∈ (−K · δ0,K · δ0). The constantK
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depends only on the vector fieldX and the cross-sectionΣ (more precisely,
on the angle betweenΣ and the flow direction). Takingυ j = h(τ j) + ε j

we get the first two claims in the lemma. The third one follows from the
triangle inequality; it may be necessary to replaceK by a larger constant,
still depending onX andΣ only.

4.1.3 Semi-global Poincaŕe map

Since we took the cross-sectionΣ to be adapted, we may use Lemma 3.56 to
conclude that there exist Poincaré mapsRj with Rj(x j) = x j+1 andRj(y j) =
y j+1 and sendingWs

ε (x j ,Σ) andWs
ε (y j ,Σ) inside the linesWs

ε (x j+1 ,Σ) and
Ws

ε (y j+1 ,Σ), respectively. The goal of this section is to prove thatRj ex-
tends to a smooth Poincaré map on the whole stripΣ j of Σ bounded by the
stable manifolds of xj and yj .

We first outline the proof. For eachj we choose a curveγ j transverse
to the stable foliation ofΣ, connectingx j to y j and such thatγ j is disjoint
from the orbit segments[x j ,x j+1] and[y j ,y j+1]. Using Lemma 3.56 in the
same way as in the last paragraph, we see that it suffices to prove thatRj

extends smoothly toγ j . For this purpose we consider a tube-like domainT j

consisting of local stable manifolds through animmersed surface Sj whose
boundary is formed byγ j and γ j+1 and the orbit segments[x j ,x j+1] and
[y j ,y j+1] , see Figure 4.3. We will prove that the orbit of any point inγ j

must leave the tube throughγ j+1 in finite time. We begin by showing that
the tube contains no singularities. This uses hypothesis (b) together with the
local dynamics near Lorenz-like singularities. Next, using hypothesis (b)
together with a Poincaré-Bendixson argument onSj , we conclude that the
forward orbit of any point inT j must leave the tube. Another argument, us-
ing hyperbolicity properties of the Poincaré map, shows that orbits through
γ j must leaveT j throughγ j+1 . In the sequel we detail these arguments.

4.1.4 A tube-like domain without singularities

Since we tookγ j andγ j+1 disjoint from the orbit segments[x j ,x j+1] and
[y j ,y j+1], the union of these four curves is an embedded circle. We recall
that the two orbit segments are close to each other, by hypothesis (b)

d(Xt(x),Xh(t)(y)) < δ0 for all t ∈ [t j , t j+1].
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j+1γ
jγ

T j

T j

Ws(y j ,Σ)
Ws(y j+1,Σ)

Ws(x j ,Σ) Ws(x j+1,Σ)

Sj

Sj

x j+1

x j

y j

y j+1

Σ

Figure 4.3: A tube-like domain.

Assuming thatδ0 is smaller than the radius of injectiveness of the expo-
nential map of the ambient manifold (i.e. expx : TxM → M is locally invert-
ible in a δ0-neighborhood ofx in M for any x ∈ M), there exists a unique
geodesic linking eachXt(x) to Xh(t)(y), and it varies continuously (even
smoothly) witht. Using these geodesics we easily see that the union of
[y j ,y j+1] with γ j andγ j+1 is homotopic to a curve inside the orbit ofx, with
endpointsx j andx j+1, and so it is also homotopic to the segment[x j ,x j+1].
This means that the previously mentioned embedded circle ishomotopic to
zero. It follows that there is asmooth immersionφ : [0,1]× [0,1]→ M such
that

• φ({0}× [0,1]) = γ j andφ({1}× [0,1]) = γ j+1

• φ([0,1]}×{0}) = [y j ,y j+1] andφ([0,1]}×{1}) = [x j ,x j+1].

MoreoverSj = φ([0,1]× [0,1]) may be chosen such that, see Figure 4.4

• all the points ofSj are at distance less thanδ1 from the orbit segment
[x j ,x j+1], for some uniform constantδ1 > δ0 which can be taken
arbitrarily close to zero, reducingδ0 if necessary;

• the intersection ofSj with an incoming cross-section of any singular-
ity (Section 3.4.1) is transverse to the corresponding stable foliation.
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Then we defineT j to be the union of the local stable manifolds through the
points of that disk.

T j

ℓ+

Wu(σk)

Ws(σk)

Wss(σk)

σk)

Σ0,−

Σ j,+

x̂

ŷ

S j

Figure 4.4: Entering the flow box of a singularity.

Proposition 4.11. The domainT j contains no singularities of the flow.

Proof. By construction, every point ofT j is at distance≤ ε from Sj and,
consequently, at distance≤ ε+δ1 from [x j ,x j+1]. So, takingε andδ0 much
smaller than the sizes of the cross-sections associated to the singularities
(Section 3.4.1), we immediately get the conclusion of the proposition in
the case when[x j ,x j+1] is disjoint from the incoming cross-sections of all
singularities. In the general case we must analyze the intersections of the
tube with the flow boxes at the singularities. The key observation is in the
following statement whose proof we postpone.

Lemma 4.12. Suppose[x j ,x j+1] intersects an incoming cross-sectionΣi
k

of some singularityσk at some point̂x with d(x̂,∂Σi
k) > δ. Then[y j ,y j+1]

intersectsΣi
k at some point̂y with d(x̂, ŷ) < K ·δ0 and, moreover̂x andŷ are

in the same connected component ofΣi
k \Ws

loc(σk).

Let us recall that by construction the intersection ofSj with the in-
coming cross-sectionΣi

k is transverse to the corresponding stable foliation,
see Figure 4.4. By the previous lemma this intersection is entirely con-
tained in one of the connected components ofΣi

k \Ws
loc(σk). SinceT j con-

sists of local stable manifolds through the points ofSj its intersection with
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Σi
k is contained in the region bounded by the stable manifoldsWs(x̂,Σi

k)
andWs(ŷ,Σi

k), and so it is entirely contained in a connected component of
Σi

k \Ws
loc(σk). In other words, the crossing of the tubeT j through the flow

box is disjoint fromWs
loc(σk), in particular, it does not contain the singu-

larity. Repeating this argument for every intersection of the tube with a
neighborhood of some singularity, we get the conclusion of the proposi-
tion.

Proof of Lemma 4.12.The first part is proved in exactly the same way as
Lemma 4.10. We have

x̂ = Xr0(x) and ŷ = Xs0(y)

with |s0−h(r0)| < Kδ0 . The proof of the second part is by contradiction
and relies, fundamentally, on the local description of the dynamics near the
singularity. Associated to ˆx and ŷ we have the points ˜x = Xr1(x) and ỹ =
Xs1(y), where the two orbits leave the flow box associated to the singularity.
If x̂ andŷ are in opposite sides of the local stable manifold ofσk, thenx̃ and
ỹ belong to different outgoing cross-sections ofσk . Our goal is to find some
t ∈ R such that

dist
(
Xt(x),Xh(t)(y)

)
> δ0 ,

thus contradicting hypothesis (b).
We assume by contradiction that ˆx, ŷ are in different connected compo-

nents ofΣi,±
k \ ℓ±. There are two cases to consider. We suppose first that

h(r1) > s1 and note thats1 ≫ s0 ≈ h(r0), so thats1 > h(r0). It follows
that there existst ∈ (r0, r1) such thath(t) = s1 sinceh is non-decreasing
and continuous. ThenXt(x) is on one side of the flow box ofσk , whereas
Xh(t)(y) belongs to the outgoing cross-section at the other side of the flow
box. Thus dist

(
Xt(x),Xh(t)(y)

)
has the order of magnitude of the diameter

of the flow box, which we may assume to be much larger thanδ0 .
Now we suppose thats1 ≥ h(r1) and observe thath(r1) > h(r0), sinceh

is increasing. We recall also thatXh(r0)(y) is close to ˆy, near the incoming
cross-section, so that the whole orbit segment fromXh(r0)(y) to Xs1(y) is
contained in (a small neighborhood of) the flow box, to one side of the
local stable manifold ofσ j . The previous observation means that this orbit
segment containsXh(r1)(y). HoweverXr1(x) belongs to the outgoing cross-
section at the opposite side of the flow box, and so dist

(
Xr1(x),Xh(r1)(y)

)

has the order of magnitude of the diameter of the flow box, which is much
larger thanδ0 .
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4.1.5 Every orbit leaves the tube

Our goal in this subsection is to show that the forward orbit of every point
z∈ T j leaves the tube in finite time: The proof is based on a Poincaré-
Bendixson argument applied to the flow induced byXt on the diskSj .

We begin by defining this induced flow. For the time being, we make
the following simplifying assumption:

(H) Sj = φ([0,1]× [0,1]) is an embedded disk and the stable manifolds
Ws

ε (ξ) through the pointsξ ∈ Sj are pairwise disjoint.

This condition provides a well-defined continuous projectionπ : T j →Sj by
assigning to each pointz∈ T j the uniqueξ∈Sj whose local stable manifold
containsz. The (not necessarily complete) flowYt induced byXt on Sj is
given byYt(ξ) = π(Xt(ξ)) for the largest interval of values oft for which
this is defined. It is clear, just by continuity, that given any subsetE of Sj

at a positive distance from∂Sj , there existsε > 0 such thatYt(ξ) is defined
for all ξ ∈ E andt ∈ [0,ε]. In fact this remains true even ifE approaches
the curveγ j (sinceΣ is a cross-section forXt , the flow atγ j points inward
Sj ) or theXt-orbit segments[x j ,x j+1] and[y j ,y j+1] on the boundary ofSj

(because they are alsoYt-orbit segments). Thus we only have to worry with
the distance to the remaining boundary segment:

(U) given any subsetE of Sj at positive distance fromγ j+1 , there exists
ε > 0 such thatYt(ξ) is defined for allξ ∈ E andt ∈ [0,ε].

We observe also that for pointsξ close toγ j+1 the flowYt(ξ) must intersect
γ j+1 , after which it is no longer defined.

Now we explain how to remove condition (H). In this case, the induced
flow is naturally defined on[0,1]× [0,1] rather thanSj , as we now ex-
plain. Recall thatφ : [0,1]× [0,1] → M is an immersion.So given any
w∈ [0,1]× [0,1] there exist neighborhoodsU of w andV of φ(w) such that
φ : U → V is a diffeomorphism. Moreover, just by continuity of the sta-
ble foliation, choosingV sufficiently small we may ensure that each stable
manifoldWs

ε (ξ), ξ ∈ V, intersectsV only at the pointξ. This means that
we have a well-defined projectionπ from ∪ξ∈VWs

ε (ξ) to V associating to
each pointz in the domain the unique element ofV whose stable manifold
containsz. Then we may defineYt(w) for smallt, by

Yt(w) = φ−1(π(Xt(φ(w))).
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As before, we extendYt to a maximal domain. This defines a (partial)
flow on the square[0,1]× [0,1], such that both[0,1]×{i}, i ∈ {0,1} are
trajectories.

Remark4.13. A singularity ζ for the flowYt corresponds to a singularity
of X in the local strong-stable manifold ofζ in M by the definition ofYt

through the projectionπ.

Notice also that forward trajectories of points in{0}× [0,1] enter the
square. Hence, the only way trajectories may exit is through{1}× [0,1].
So, we have the following reformulation of property (U):

(U) given any subsetE of [0,1]× [0,1] at positive distance from{1}×
[0,1], there existsε > 0 such thatYt(w) is defined for allw∈ E and
t ∈ [0,ε].

Moreover for pointsw close to{1}× [0,1] the flowYt(ξ) must intersect
{1}× [0,1], after which it is no longer defined.

Proposition 4.14. Given any point z∈ T j there exists t> 0 such that
Xt(z) /∈ T j .

Proof. The proof is by contradiction. First, we assume condition (H). Sup-
pose there existsz∈ T j whose forward orbit remains in the tube for all
times. Letz0 = π(z). ThenYt(z0) is defined for allt > 0, and so it makes
sense to speak of theω-limit set ω(z0). The orbitYt(z0) can not accumu-
late onγ j+1 for otherwise it would leaveSj . Thereforeω(z0) is a compact
subset ofSj at positive distance fromγ j+1. Using property (U) we can find
a uniform constantε > 0 such thatYt(w) is defined for everyt ∈ [0,ε] and
everyw ∈ ω(z0). Sinceω(z0) is an invariant set, we can extendYt to a
complete flow on it.

In particular we may fixw0 ∈ ω(z0), w ∈ ω(w0) and apply the argu-
ments in the proof of the Poincaré-Bendixson Theorem. On the one hand,
if we consider a cross-sectionS to the flow atw, the forward orbits ofz0

andw0 must intersect it on monotone sequences; on the other hand, every
intersection of the orbit ofw0 with S is accumulated by points in the orbit
of z0. This implies thatw is in the orbit ofw0 and, in fact, that the later is
periodic.

We consider the diskD ⊂ Sj bounded by the orbit ofw0. The flow
Yt is complete restricted toD and so we may apply Poincaré-Bendixson’s
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Theorem (see [143]) once more, and conclude thatYt has some singular-
ity ζ insideD. This implies by Remark 4.13 thatXt has a singularity in the
local stable manifold ofζ , which contradicts Proposition 4.11. This contra-
diction completes the proof of the proposition, under assumption (H). The
general case is treated in the same way, just dealing with theflow induced
on [0,1]× [0,1] instead of onSj .

4.1.6 The Poincaŕe map is well-defined onΣ j

We have shown that for the induced flowYt on Sj (or, more generally, on
[0,1]× [0,1]) every orbit must eventually crossγ j+1 (respectively,{1}×
[0,1]). Hence there exists a continuous Poincaré map

r : γ j → γ j+1, r(ξ) = Yθ(ξ)(ξ).

By compactness the Poincaré timeθ(·) is bounded. We are going to de-
duce that every forwardXt-orbit eventually leaves the tubeT j throughΣ j+1,
which proves thatRj is defined on the whole strip ofΣ j between the mani-
foldsWs(x j ,Σ j) andWs(y j ,Σ j), as claimed in Section 4.1.2.

To this end, letγ be acentral-unstable curve inΣδ connecting the stable
manifolds Ws(x j ,Σ) andWs(y j ,Σ). Observe thatγ is insideT j . For each
z∈ γ, let t(z) be the smallest positive time for whichXt(z) is on the boundary
of T j .

The crucial observation is that, in view of the constructionof Yt , each
Xt(z)(z) belongs to the (global) stable manifold of Yt(z)(π(z)). We observe
also that for{ξ}= γ∩Ws(x j ,Σ) we haveYt(ξ) = Xt(ξ) and sot(ξ) = θ(ξ).

Now we takez∈ γ close toξ. Just by continuity, theXt -trajectory ofξ
andz remain close, and by the forward contraction along stable manifolds,
the Xt -trajectory ofξ remains close to the segment[x j ,x j+1]. Moreover
orbit of z cannot leave the tube through the union of the local strong stable
manifolds passing through[x j ,x j+1], for otherwise it would contradict the
definition ofYt . Hence the trajectory ofzmust leave the tube throughΣ j+1.
In other wordsXt(z)(z) is a point ofΣ j+1, close toξ̃ = Xt(ξ)(ξ).

Let γ̂ ⊂ γ j be thelargest connected subsetwhich containsx j such that
Xt(x)(z) ∈ Σ j+1 for all z∈ γ̂. We want to prove that̂γ = γ since this implies
thatRj extends to the wholeγ and so, using Lemma 3.56, to the wholeΣ j .

The proof is by contradiction. We assumeγ̂ is not the wholeγ , and let ˆx
be the endpoint different fromξ . Then by definition ofF s

Σ and ofYt (from
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Section 4.1.5) ˜x = Xt(x̂)(x̂) is on the center-unstable boundary∂cuΣ j+1 of
the cross-sectionΣ j+1, between the stable manifoldsWs(x j+1,Σ j+1) and
Ws(y j+1,Σ j+1), see Figure 4.5. By the choice ofγ and by Corollary 3.51,
γ̃ = {Xt(z)(z) : z∈ γ̂} is acu-curve.
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Figure 4.5: Exiting the tube atΣ j+1.

On the one hand, by Lemma 3.52, the distance between ˜x and ξ̃ =
Xt(ξ)(ξ) dominates the distance between their stable manifolds andℓ(γ̃)

ℓ(γ̃) ≤ κ ·d(ξ, x̃) ≤ κ ·d
(
Ws(x j+1,Σ),Ws(x̃,Σ)

)
.

We note thatℓ(γ̃) is larger thanδ, sinceξ is in Λ and the sectionΣ j+1 is
adapted. On the other hand, the distance between the two stable manifolds
is smaller than the distance between the stable manifold ofx j+1 and the
stable manifold ofy j+1 , and this is smaller thanK · δ0 . Sinceδ0 is much
smaller thanδ, this is a contradiction. This proves the claim thatXt(z)(z)∈Σ
for all z∈ γ.

4.1.7 Expansiveness of the Poincaré map

We have shown that there exists a well defined Poincaré return mapRj on
the whole strip between the stable manifolds ofx j and y j inside Σ. By
Proposition 3.49 and Corollary 3.51 we know that the mapRj is hyperbolic
where defined and, moreover, that the length of eachcu-curve is expanded
by a factor of 3 byRj (since we choseλ = 1/3 in Section 3.4.1). Hence the
distance between the stable manifoldsRj

(
Ws(x j ,Σ)

)
andRj

(
Ws(y j ,Σ)

)
is

increased by a factor strictly larger than one, see Figure 4.6 on the next
page. This contradicts item (2) of Lemma 4.10 since this distance will
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eventually become larger thanK · δ0. Thusy j must be in the stable mani-
fold Ws(x j ,Σ). Since the strong-stable manifold is locally flow-invariant
and Xh(τ j )(y) is in the orbit ofy j = Xυ j (y), then Xh(τ j )(y) ∈ Ws(x j) =
Ws
(
Xτ j (x)

)
, see Lemma 4.10 on page 192.

y j

x j

y j+1

x j+1

γ j+1

γ j

Σ j

Σ j+1

Figure 4.6: Expansion within the tube.

According to Lemma 4.10 we have|υ j − h(τ j)| < K · δ0 and, by Re-
mark 3.48, there exits a smallε1 > 0 such that

RΣ(y j) = Xt(y j) ∈Wss
ε (x j) with | t| < ε1.

Therefore the piece of orbitO y = X[υ j−K·δ0−ε1,υ j+K·δ0+ε1](y) must contain
Xh(τ j )(y). We note that this holds for all sufficiently small values ofδ0 > 0
fixed from the beginning.

Now let ε0 > 0 be given and let us consider the piece of orbitO x =
X[τ j−ε0,τ j+ε0](x) and the piece of orbit ofx whose strong-stable manifolds
intersectO y, i.e.

O xy= {Xs(x) :∃τ∈ [υ j −K ·δ0−t,υ j +K ·δ0+t] s. t. Xτ(y)∈Wss
ε
(
Xs(x)

)
}.

Sincey j ∈ Ws(x j) we conclude thatO xy is a neighborhood ofx j = Xτ j (x)
which can be made as small as we want takingδ0 andε1 small enough. In
particular this ensuresO xy ⊂ O x and soXh(τ j )(y) ∈ Wss

ε
(
X[τ j−ε0,τ j+ε0](x)

)
.

This finishes the proof of Theorem 4.8.

4.2 Singular-hyperbolic attractors are non-uniformly
hyperbolic

Here we start the proof of Theorem 4.3.
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The starting point

We show in Section 4.2.1 that choosing aglobal Poincaŕe sectionΞ (with
several connected components) forX on Λ, we can reduce the transfor-
mation R to the quotient over the stable leaves. We can do this using
Lemma 3.56 with the exception of finitely many leavesΓ, corresponding
to the points whose orbit falls into the local stable manifold of some singu-
larity or are sent into the stable boundary∂sΣ of someΣ ∈ Ξ by R, where
the return time functionτ is discontinuous.

As will be explained in Section 4.2.1, the global Poincaré mapR : Ξ →
Ξ induces in this way a mapf : F \Γ→ F on the leaf space, diffeomorphic
to a finite union of open intervalsI . which is piecewise expanding and
admits finitely manyυ1, . . . ,υl ergodic absolutely continuous (with respect
to Lebesgue measure onI ) invariant probability measures (acim) whose
basins cover Lebesgue almost all points ofI .

Moreover the Radon-Nikodym derivatives (densities)dυk
dλ arebounded

from aboveandthe support of eachυk contains nonempty open intervals, so
the basinB(υk) contains nonempty open intervals Lebesgue modulo zero,
k = 1, . . . , l .

Description of the construction

Afterward we unwind the reductions made in Section 4.2.1 andobtain a
physical measure for the original flow at the end.

We divide the construction of the physical measure forΛ in the follow-
ing steps.

1. The compact metric spaceΞ is endowed with a partitionF and map
R : Ξ \ Γ → Ξ, whereΓ is a finite set of elements ofF (see Sec-
tion 4.2.1). The mapR preserves the partitionF and contracts its
elements by Lemma 3.56. We have a finite familyυ1, . . . ,υl of ab-
solutely continuous invariant probability measures for the induced
quotient mapf : F \Γ → F .

We show in Section 4.2.2 that eachυi defines aR-invariant ergodic
probability measureηi . In Section 4.2.3 we show that the basinB(ηi)
is a union of strips ofΞ, andηi are therefore physical measures for
R. Moreover these basins coverΞ:

λ2(Ξ\ (B(η1)∪·· ·∪B(ηl ))
)

= 0,
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whereλ2 is the area measure onΞ.

2. We then pass fromR-invariant physical measuresη1, . . . ,ηl to invari-
ant probability measuresν1, . . . ,νl for the suspension semiflow over
R with roof functionτ. In the process we keep the ergodicity (Sec-
tion 4.2.5) and the basin property (Section 4.2.5) of the measures: the
whole spaceΞ× [0,+∞)/∼ where the semiflow is defined equals the
union of the ergodic basins of theνi Lebesgue modulo zero.

3. Finally in Section 4.2.6 we convert each physical measureνi for the
semiflow into a physical measureµi for the original flow. We use that
the semiflow is semi-conjugated toXt on a neighborhood ofΛ by a
local diffeomorphism. Uniqueness of the physical measureµ is then
deduced in Section 4.2.6 through the existence of a dense regular
orbit in Λ (recall that our definition of attractordemandstransitivity)
and by the observation that the basin ofµcontains open sets Lebesgue
modulo zero. In Section 4.2.7 we show thatµ is (non-uniformly)
hyperbolic.

The details are exposed in the following sections.

4.2.1 Global Poincaŕe maps& reduction to 1-dimensional
map

Here we construct a global Poincaré map for the flow near the singular-
hyperbolic attractorΛ. We then use the hyperbolicity properties of this
map to reduce the dynamics to a one-dimensional piecewise expanding map
through a quotient map over the stable leaves.

Cross-sections and invariant foliations

We observe first that by Lemma 3.55 we can take aδ-adapted cross-section
at each non-singular pointx∈ Λ. We know also that near each singularity
σk there is a flow-boxUσk as in Section 3.4.1, see Figure 3.1

Using a tubular neighborhood construction near any given adapted cross-
sectionΣ, we linearise the flow in an open setUΣ = X(−ε,ε)(int(Σ)) for a
small ε > 0, containing the interior of the cross-section. This provides an
open cover of the compact setΛ by flow-boxes near the singularities and
tubular neighborhoods around regular points.
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We let{UΣi ,Uσk : i = 1, . . . , l ; k = 1, . . . ,s} be a finite cover ofΛ, where
s≥ 1 is the number of singularities inΛ, and we setT3 > 0 to be an upper
bound for the time it takes any pointz∈ UΣi to leave this tubular neigh-
borhood under the flow, for anyi = 1, . . . , l . We assume without loss that
T2 > T3.

To define the Poincaré mapR, for any pointz in one of the cross-
sections in

Ξ = {Σ j ,Σi,±
σk ,Σo,±

σk : j = 1, . . . , l ;k = 1, . . . ,s},

we consider ˆz = XT2(z) and wait for the next timet(z) the orbit of ẑ hits
again one of the cross-sections. Then we defineR(z) = XT2+t(z)(z) and say
that τ(z) = T2 + t(z) is thePoincaŕe timeof z. If the pointz never returns
to one of the cross-sections, then the mapR is not defined atz (e.g. at the
linesℓ± in the flow-boxes near a singularity). Moreover by Lemma 3.56, if
R is defined forx∈ Σ on someΣ ∈ Ξ, thenR is defined for every point in
Ws(x,Σ). Hencethe domain of R| Σ consists of strips ofΣ. The smoothness
of (t,x) 7→ Xt(x) ensures that the strips

Σ(Σ′) = {x∈ Σ : R(x) ∈ Σ′} (4.4)

have non-empty interior inΣ for everyΣ,Σ′ ∈ Ξ.WhenR maps to an out-
going strip near a singularityσk, there might be a boundary of the strip
corresponding to the lineℓ±k of points which fall in the stable manifold of
σk.

Remark4.15. Consider the Poincaré map given by thefirst return map
R0 : Ξ → Ξ defined simply asR0(z) = XT(z)(z), where

T(z) = inf{t > 0 : Xt(z) ∈ Ξ}

is the time theX-orbit of z∈ Ξ takes to arrive again atΞ. This mapR0 is
not defined on those pointsz which do not return and, moreover,R0 might
not satisfy the lemmas of Section 3.4.1, since we do not know whether the
flow from z to R0(z) has enough time to gain expansion. However the stable
manifolds are still well defined. By the definitions ofR0 and ofR we see
that R is induced by R0, i.e. if R is defined for z∈ Ξ, then there exists an
integer r(x) such that

R(z) = Rr(z)
0 (z).
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We note that since the number of cross-sections inΞ is finite and the time
t2 is a constant, then the functionr : Ξ → N is bounded: there existsr0 ∈ N

such thatr(x) ≤ r0 for all x∈ Ξ.

Finite number of strips

We show that fixing a cross-sectionΣ ∈ Ξ the family of all possible strips
as in (4.4) coversΣ except for finitely many stable leavesWs(xi ,Σ), i =
1, . . . ,m= m(Σ). Moreover we also show that each strip given by (4.4) has
finitely many connected components. Thus the number of strips in each
cross-section is finite.

We first recall that eachΣ ∈ Ξ is contained inU0, sox∈ Σ is such that
ω(x) ⊂ Λ. Note thatR is locally smooth for all pointsx∈ int(Σ) such that
R(x) ∈ int(Ξ) by the flow box theorem and the smoothness of the flow,
where int(Ξ) is the union of the interiors of each cross-section ofΞ. Let
∂sΞ denote the union of all the leaves forming the stable boundary of every
cross-section inΞ.

Lemma 4.16. The set of discontinuities of R inΞ\∂sΞ is contained in the
set of points x∈ Ξ\∂sΞ such that:

1. either R(x) is defined and belongs to∂sΞ;

2. or there is some time0 < t ≤ T2 such that Xt(x) ∈Ws
loc(σ) for some

singularityσ of Λ.

Moreover this set is contained in a finite number of stable leaves of the
cross-sectionsΣ ∈ Ξ.

Proof. We divide the proof into several steps.

Step 1 Cases (1) and (2) in the statement of the lemma correspond to all
possible discontinuities ofR in Ξ\∂sΞ.

Let x be a point inΣ \ ∂sΣ for someΣ ∈ Ξ, not satisfying any of the
conditions in items (1) and (2). ThenR(x) is defined andR(x) belongs to
the interior of some cross-sectionΣ′. By the smoothness of the flow and by
the flow box theorem we have thatR is smooth in a neighborhood ofx in Σ.
Hence any discontinuity point forRmust be in one the situations (1) or (2).
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Step 2 Points satisfying item (2) are contained in finitely many stable leaves
in eachΣ ∈ Ξ.

Indeed if we setW = X[−T2,0]
(
∪σ Ws

loc(σ)
)
, where the union above is

taken over all singularitiesσ of Λ, thenW is a compact sub-manifold of
M with boundary, tangent to the center-stable sub-bundleEs⊕EX. This
means thatW is transverse to any cross-section ofΞ.

Hence the intersection ofW with anyΣ ∈ Ξ is a one-dimensional sub-
manifold of Σ. Thus the number of connected components of the inter-
section is finite in eachΣ. This means that there are finitely many points
x1, . . . ,xk ∈ Σ such that

W∩Σ ⊂Ws(x1,Σ)∪·· ·∪Ws(xk,Σ).

Step 3 Points satisfying item (1) are contained in a finite number ofstable
leaves of eachΣ ∈ Ξ.

We argue by contradiction. Assume that the set of pointsD of Σ sent by
R into stable boundary points of some cross-section ofΞ is such that

L = {Ws(x,Σ) : x∈ D}

has infinitely many lines. Note thatD in fact equalsL by Lemma 3.56.
Then there exists an accumulation lineWs(x0,Σ). Since the number of
cross-sections inΞ is finite we may assume thatWs(x0,Σ) is accumulated
by distinct Ws(xi ,Σ) with xi ∈ D satisfyingR(xi) ∈ Ws(z,Σ′) ⊂ ∂sΣ′ for a
fixed Σ′ ∈ Ξ, i ≥ 1. We may assume thatxi tends tox0 wheni → ∞, thatx0

is in the interior ofWs(x0,Σ) and that thexi are all distinct — in particular
the pointsxi do not belong to any periodic orbit of the flow since we can
choose thexi anywhere in the stable setWs(xi ,Σ).

As a preliminary result we show thatR(xi) = Xsi (xi) is such thatsi is
a bounded sequence in the real line. For otherwisesi → ∞ and this means,
by definition ofR, that the orbit ofXT2(xi) is very close to the local stable
manifold of some singularityσ of Λ and thatR(xi) belongs to the outgoing
cross-section near this singularity:R(xi) ∈ Σo,±

σ . Hence we must have that
Xsi (xi) tends to the stable manifold ofσ when i → ∞ and thatR(xi) tends
to the stable boundary ofΣo,±

σ . Since no point in any cross-section inΞ is
sent byR into this boundary line, we get a contradiction.
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Now the smoothness of the flow and the fact thatWs(z,Σ′) is closed
imply thatR(x0) ∈Ws(z,Σ′) also since we have the following

R(x0) = lim
i→∞

R(xi) = lim
i→∞

Xsi (xi) = Xs0(x0) and lim
i→∞

si = s0.

MoreoverR(Ws(x0,Σ))⊂Ws(z,Σ′) andR(x0) is in the interior of the image
R(Ws(x0,Σ)), thenR(xi) ∈ R(Ws(x0,Σ)) for all i big enough. This means
that there exists a sequenceyi ∈Ws(x0,Σ) and a sequence of real numbers
τi such thatXτi (yi) = R(yi) = R(xi) for all sufficiently big integersi. By
construction we have thatxi 6= yi and both belong to the same orbit. Since
xi ,yi are in the same cross-section we get thatxi = Xαi (yi) with |αi | ≥ T3

for all big i.
However we also have thatτi → s0 becauseR(yi) = R(xi) → R(x0),

yi ∈Ws(x0,Σ) andR|Ws(x0,Σ) is smooth. Thus|si −τi |→ 0. But|si −τi |=
|αi | ≥ T3 > 0. This is a contradiction.

This proves thatD is contained in finitely many stable leaves.
Combining the three steps above we conclude the proof of the lemma.

Let Γ be the finite set of stable leaves ofΞ provided by Lemma 4.16
together with∂sΞ. Then the complementΞ \ Γ of this set is formed by
finitely many open strips whereR is smooth. Each of these strips is then a
connected component of the setsΣ(Σ′) for Σ,Σ′ ∈ Ξ.

Integrability of the global Poincaré return time

We claim thatthe Poincaŕe timeτ is integrable with respect to the Lebesgue
area measure onΞ. Indeed givenz∈Ξ, the pointẑ= Xt2(z) either is inside a
flow-boxUσk of a singularityσk, or not. In the former case, the time ˆz takes
to reach an outgoing cross-sectionΣo,±

σk is bounded by the exit time function
τ±σk

of the corresponding flow-box, which is integrable, see Section 3.4.1. In
the latter case, ˆz takes a time of at most 2·T3 to reach another cross-section,
by definition ofT3. Thus the Poincaré time onΞ is bounded byt2 + 2 ·T3

plus a sum of finitely many integrable functions, one for eachflow-box near
a singularity, by finiteness of the number of singularities,of the number of
cross-sections inΞ and of the number of strips at each cross-section. This
proves the claim.
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Remark4.17. Givenz∈ Σ ∈ Ξ we writeτk(z) = τ(Rk−1(z))+ · · ·+τ(z) for
k≥ 1 and soτ = τ1. Since

Rk(Ws(z,Σ)
)
⊂ Xτk(z)(Ws(z,Σ)

)
⊂ Xτk(z)(U),

the lengthℓ
(

Rk
(
Ws(z,Σ)

))
is uniformly contracted andτk(z)→ +∞ when

k→ +∞, we get thatRk
(
Ws(z,Σ)

)
⊂ Σ ′ for someΣ ′ ∈ Ξ and

d
(

Rk(Ws(z,Σ)
)
,∂cuΣ ′

)
> δ/2

for all big enoughk, by the definition ofU and ofδ-adapted cross-section.
(The distanced(A,B) between two setsA,B means inf{d(a,b) : a∈ A,b∈
B}.) We may assume that this property holds for all stable leavesWs(z,Σ),
all z∈ Σ and everyΣ ∈ Ξ for all k ≥ k0, for some fixed bigk0 ∈ N, by the
uniform contraction property ofR in the stable direction.

The Hölder property of the projection

From now on we assume that the flow(Xt)t∈R is C2. Under this condition
it is well known [107, 146] that the stable leafWs(x,Σ) for everyx∈ Σ ∈ Ξ
is aC2 embedded disk and these leaves define aC1 foliation F s

Σ of each
Σ ∈ Ξ with a Hölder-C1 holonomy (since the leaves are one-dimensional).

From Section 1.4.2 we know that in this setting the holonomy (projec-
tion) along transverse curves toF s

Σ areC1+α for some 0< α < 1 which
depends onX only, since they can be seen as maps between subsets of the
real line.

Recall also Remark 3.48: the projections we are dealing withconsist
really on the composition of two projections. The first alongthe strong-
stable leaves and the second along the flow toΣ. Since the flow is assumed
to beC2, the end result is a holonomy map inΣ which is Hölder-C1.

Reduction to the quotient leaf space

We choose once and for all aC2 cu-curveγΣ transverse toF s
Σ in eachΣ∈Ξ.

Then the projectionpΣ along leaves ofF s
Σ ontoγΣ is aC1+α map. We set

I =
[

Σ,Σ′∈Ξ
int
(
Σ(Σ′)

)
∩ γΣ
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and observe that by the properties ofΣ(Σ′) obtained earlier in the beginning
of this Section 4.2.1, the setI is diffeomorphic to a finite union of non-
degenerate open intervalsI1, . . . , Im by aC2 diffeomorphism andpΣ | p−1

Σ (I)
becomes aC1+α submersion. Note that sinceΞ is finite we can chooseγΣ
so thatpΣ has bounded derivative: there existsβ0 > 1 such that

1
β0

≤
∣∣DpΣ | γ

∣∣≤ β0 for every cu-curveγ inside anyΣ ∈ Ξ.

In particular, denoting the Lebesgue area measure overΞ by λ2 and the
Lebesgue length measure onI by λ, we have(pΣ)∗λ2 ≪ λ.

According to Lemma 3.56, Proposition 3.49 and Corollary 3.51 the
Poincaŕe mapR : Ξ → Ξ takes stable leaves ofF s

Σ inside stable leaves of
the same foliation and is hyperbolic. In addition acu-curveγ ⊂ Σ is taken
by R into acu-curveR(γ) in the image cross-section. Hence the map

f : I → I given by I ∋ z 7→ pΣ′
(

R
(
Ws(z,Σ)∩Σ(Σ′)

))

for Σ,Σ′ ∈ Ξ is aC1+α map and for points in the interior ofIi , i = 1, . . . ,m

∣∣D f | =
∣∣D
(
pΣ′ ◦R◦ γΣ

)∣∣≥ 1
β0

·σ. (4.5)

Thus choosingt1 (and consequentlyt2) big enough so thatσ/β0 > 3/2 > 1
in Proposition 3.49, we obtain thatf is piecewise expanding. Moreover
| f ′|−1 | I j is aα-Hölder function since for allx,y∈ I j we have

1
| f ′(x)| −

1
| f ′(y)| ≤

| f ′(x)− f ′(y)|
| f ′(x) f ′(y)| ≤ C

(3/2)2 · |x−y|α,

for some 0< α < 1. Thus f : I → I is aC1+α piecewise expanding map.

Remark4.18. By Lemma 3.56 the Poincaré time τ is constant on stable
leavesWs(x,Σ) for all x∈ Σ ∈ Ξ. Thus there exists a return time function
τI on I such thatτ = τI ◦ p, where p : Ξ → γΞ is the joining of all pΣ,
Σ ∈ Ξ andγΞ = {γΣ : Σ ∈ Ξ}. The integrability ofτ with respect toλ2 (see
Section 4.2.1) implies theλ-integrability ofτI naturally since(pΣ)∗λ2 ≪ λ
andτI ◦ p = τ.
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Existence and finiteness of acim’s

It is well known [201, 210, 78] thatC1 piecewise expanding mapsf of
the interval such that 1/| f ′| is of bounded variation, have finitely many
absolutely continuous invariant probability measures whose basins cover
Lebesgue almost all points ofI .

Using an extension of the notion of bounded variation (defined below)
it was shown in [86] that the results of existence and finiteness of absolutely
continuous ergodic invariant measures can be extended toC1 piecewise ex-
panding mapsf such thatg= 1/| f ′| is α-Hölder for someα ∈ (0,1). These
functions are of universally bounded variation, i.e.

sup
a=a0<a1<···<an=b

(
n

∑
j=1

∣∣ϕ(ai)−ϕ(ai−1)
∣∣1/α

)α

< ∞,

where the supremum is taken over all finite partition of the interval I =
[a,b]. Moreover from [86, Theorem 3.2] the densitiesϕ of the absolutely
continuous invariant probability measures forf satisfy the following: there
exists constantsA,C > 0 such that

Z

osc(ϕ,ε,x)dx≤C · εα for all 0 < ε ≤ A,

where osc(ϕ,ε,x) = esssupy,z∈B(x,ε)
∣∣ϕ(y)−ϕ(z)

∣∣ and the essential supremo
is taken with respect to Lebesgue measure. From this we can find a se-
quenceεn → 0 such that osc(ϕ,εn, ·) −−−→

n→∞
0 (with respect to Lebesgue

measure). This implies that supp(ϕ) contains non-empty open intervals.
Indeed, for a given smallδ > 0 let α > 0 be so small andn so big

thatW = {ϕ > α} andV = {osc(ϕ,εn, ·) > α/2} satisfyλ(I \W) < δ and
λ(V) < δ. Thenλ(W∩ I \V) > 1−2δ > 0. Let x be a Lebesgue density
point of W∩ I \V. Then there exists a positive Lebesgue measure subset
of B(x,εn) whereϕ > α. By definition of osc(ϕ,εn,x) this implies that for
Lebesgue almost everyy∈B(x,εn) we haveϕ(y)> α/2> 0, thusB(x,εn)⊂
supp(ϕ).

In addition from [86, Theorem 3.3] there are finitely many ergodic abso-
lutely continuous invariant probability measuresυ1, . . . ,υl of f and every
absolutely continuous invariant probability measureυ decomposes into a
convex linear combinationυ = ∑l

i=1aiυi . From [86, Theorem 3.2] consid-
ering any subintervalJ⊂ I and the normalized Lebesgue measureλJ = (λ |
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J)/λ(J) on J, then every weak∗ accumulation point ofn−1 ∑n−1
j=0 f j

∗ (λJ) is
an absolutely continuous invariant probability measureυ for f (since the
indicator function ofJ is of generalized 1/α-bounded variation). Hence
the basin of theυ1, . . . ,υl cover I Lebesgue modulo zero:λ

(
I \ (B(υ1)∪

·· ·∪B(υl )
)

= 0.
Note that from [86, Lemma 1.4] we also know thatthe densityϕ of

any absolutely continuous f -invariant probability measure is bounded from
above. In what follows we show how to use these properties to build phys-
ical measures for the flow.

4.2.2 Suspending Invariant Measures

Here we show how to construct an invariant measure for a transformation
from an invariant measure for the quotient map obtained froma partition of
the space. We show also that if the measure is ergodic on the quotient, then
we also obtain ergodicity on the starting space.

In Section 4.2.3 we apply these results to the global Poincaré mapR
of a singular-hyperbolic attractor and its corresponding one-dimensional
quotient mapf .

Later we extend the transformation to a semi-flow through a suspen-
sion construction and show that each invariant and ergodic measure for the
transformation corresponds to a unique measure for the semi-flow with the
same properties.

In Section 4.2.5 we again apply these results to the transformationR
to obtain physical measures for the suspension semiflow overR with roof
functionτ.

Reduction to the quotient map

Let Ξ be a compact metric space,Γ ⊂ Ξ andF : (Ξ\Γ) → Ξ be a measur-
able map. We assume that there exists a partitionF of Ξ into measurable
subsets, havingΓ as an element, which is

• invariant: the image of anyξ ∈ F distinct fromΓ is contained in
some elementη of F ;

• contracting: the diameter ofFn(ξ) goes to zero whenn → ∞, uni-
formly over all theξ ∈ F for whichFn(ξ) is defined.
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We denotep : Ξ → F the canonical projection, i.e.p assigns to each point
x∈ Ξ the atomξ ∈ F that contains it. By definition,A⊂ F is measurable
if and only if p−1(A) is a measurable subset ofΞ and likewiseA is open if,
and only if,p−1

Σ (A) is open inΞ. The invariance condition means that there
is a uniquely defined map

f : (F \{Γ}) → F such that f ◦ p = p◦F.

Clearly, f is measurable with respect to the measurable structure we intro-
duced inF . We assume from now on that the leaves are sufficiently regular
so thatΞ/F is a metric space with the topology induced byp.

Let µf be any probability measure onF invariant under the transfor-
mation f . For any bounded functionψ : Ξ → R, let ψ− : F → R and
ψ+ : F → R be defined by

ψ−(ξ) = inf
x∈ξ

ψ(x) and ψ+(ξ) = sup
x∈ξ

ψ(x).

Lemma 4.19. Given any continuous functionψ : Ξ → R, both limits

lim
n

Z

(ψ◦Fn)−dµf and lim
n

Z

(ψ◦Fn)+ dµf (4.6)

exist, and they coincide.

Proof. Let ψ be fixed as in the statement. Givenε > 0, letδ > 0 be such that
|ψ(x1)−ψ(x2)| ≤ ε for all x1,x2 with d(x1,x2) ≤ δ. Since the partitionF
is assumed to be contracting, there existsn0 ≥ 0 such that diam(Fn(ξ))≤ δ
for everyξ ∈ F and anyn≥ n0. Let n+k≥ n≥ n0. By definition,

(ψ◦Fn+k)−(ξ)−(ψ◦Fn)−( f k(ξ))= inf(ψ |Fn+k(ξ))− inf(ψ |Fn( f k(ξ))).

Observe thatFn+k(ξ)⊂ Fn( f k(ξ)). So the difference on the right hand side
is bounded by

sup
(
ψ | Fn( f k(ξ))

)
− inf

(
ψ | Fn( f k(ξ))

)
≤ ε.

Therefore
∣∣∣∣
Z

(ψ◦Fn+k)−dµf −
Z

(ψ◦Fn)− ◦ f k dµf

∣∣∣∣≤ ε.
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Moreover, one may replace the second integral by
R

(ψ◦Fn)−dµf , because
µf is f -invariant.

At this point we have shown that{R

(ψ ◦ Fn)−dµF}n≥1 is a Cauchy
sequence inR. In particular, it converges. The same argument proves that{

R

(ψ◦Fn)+ dµF
}

n≥1 is also convergent. Moreover, keeping the previous
notations,

0≤ (ψ◦Fn)+(ξ)− (ψ◦Fn)−(ξ) = sup
(
ψ | Fn(ξ)

)
− inf

(
ψ | Fn(ξ)

)
≤ ε

for everyn≥ n0. So the two sequences in (4.6) must have the same limit.
The lemma is proved.

Corollary 4.20. There exists a unique probability measure µF on Ξ such
that

Z

ψdµF = lim
Z

(ψ◦Fn)−dµf = lim
Z

(ψ◦Fn)+ dµf .

for every continuous functionψ : Ξ → R. Besides, µF is invariant under F.
Moreover the correspondence µf 7→ µF is injective.

Proof. Let µ̂(ψ) denote the value of the two limits. Using the expression
for µ̂(ψ) in terms of(ψ◦Fn)− we immediately get that

µ̂(ψ1 +ψ2) ≥ µ̂(ψ1)+ µ̂(ψ2).

Analogously, the expression of ˆµ(ψ) in terms of(ψ◦Fn)+ gives the oppo-
site inequality. So, the function ˆµ(·) is additive. Moreover, ˆµ(cψ) = cµ̂(ψ)
for everyc∈ R and every continuous functionψ. Therefore, ˆµ(·) is a linear
real operator in the space of continuous functionsψ : Ξ → R.

Clearly, µ̂(1) = 1 and the operator ˆµ is non-negative: ˆµ(ψ) ≥ 0 if ψ ≥
0. By the Riesz-Markov theorem, there exists a unique measure µF on Ξ
such that ˆµ(ψ) =

R

ψdµF for every continuousψ. To conclude thatµF is
invariant underF it suffices to note that

µ̂(ψ◦F) = lim
n

Z

(ψ◦Fn+1)−dµf = µ̂(ψ)

for everyψ.
To prove that the mapµf 7→ µF is injective, we note that ifµF = µ′F

are obtained fromµf andµ′f respectively, then for any continuous function
ϕ : F → R we have thatψ = ϕ◦ p : Ξ → R is continuous. But

µf
(
(ψ◦Fn)±

)
= µf

(
(ϕ◦p◦Fn)±

)
= µf

(
(ϕ◦ f n◦p)±

)
= µf (ϕ◦ f n)= µf (ϕ)
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for all n≥ 1 by the f -invariance ofµf . Hence by definition

µf (ϕ) = µF(ψ) = µ′F(ψ) = µ′f (ϕ)

and soµf = µ′f . This finishes the proof of the corollary.

Remark4.21. We note that
R

ψdµF = limn
R

(ψ ◦Fn)#dµF for every con-
tinuousψ : Ξ → R and any choice of a sequence(ψ◦Fn)# : F → R with

inf(ψ | Fn(ξ)) ≤ (ψ◦Fn)#(ξ) ≤ sup(ψ | Fn(ξ)).

Moreover we can define
R

ψdµF for any measurableψ : Ξ → R such that

lim
n→+∞

(
sup(ψ | Fn(ξ))− inf(ψ | Fn(ξ))

)
= 0

uniformly in n∈ N and inξ ∈ F . This will be useful in what follows.

Lemma 4.22. Let ψ : Ξ → R be a continuous function andξ ∈ F be such
that

lim
n

1
n

n−1

∑
j=0

(ψ◦Fk)−( f j(ξ)) =
Z

(ψ◦Fk)−dµf

for every k≥ 1. Thenlim
n

1
n

n−1

∑
j=0

ψ(F j(x)) =
Z

ψdµF for every x∈ ξ.

Proof. Let us fix ψ andξ as in the statement. Then by definition of(ψ ◦
Fk)± and by the properties ofF we have

(ψ◦Fk)−
(

f j(ξ)
)
≤ (ψ◦Fk)

(
F j(x)

)
≤ (ψ◦Fk)+

(
f j(ξ)

)

for all x∈ ξ and j,k≥ 1. Givenε > 0, by Corollary 4.20 there existsk0 ∈N

such that for allk≥ k0

µF(ψ)− ε
2
≤ µf

(
(ψ◦Fk)−

)
≤ µf

(
(ψ◦Fk)+

)
≤ µF(ψ)+

ε
2

and there isn0 ∈ N such that for alln≥ n0 = n0(k)
∣∣∣∣∣
1
n

n−1

∑
j=0

(ψ◦Fk)−
(

f j(ξ)
)
−µf

(
(ψ◦Fk)−

)
∣∣∣∣∣<

ε
2
.
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Hence we have that for alln≥ n0(k)

µF(ψ)− ε ≤ 1
n

n−1

∑
j=0

(ψ◦Fk)(F j(x))

=
n+k

n
· 1
n+k

n+k−1

∑
j=0

(ψ◦F j)(x)− 1
n

k−1

∑
i=0

(ψ◦F j)(x) ≤ µF(ψ)+ ε.

Sincen can be made arbitrarily big andε > 0 can be taken as small as we
want, we have concluded the proof of the lemma.

Corollary 4.23. If µ f is f -ergodic, then µF is ergodic for F.

Proof. SinceΞ/F is a metric space with the topology induced byp we
have thatC0(F ,R) is dense inL1(F ,R) for theL1-topology andp : Ξ → F
is continuous. Hence there exists a subsetE of F with µf (E ) = 1 such that
the conclusion of Lemma 4.22 holds for a subsetE = p−1(E ) of Ξ. To
prove the corollary it is enough to show thatµF(E) = 1.

Let ϕ = χE = χE ◦ p and takeψn : F → R a sequence of continuous
functions such thatψn → χE whenn→+∞ in theL1 topology with respect
to µf . Thenϕn = ψn ◦ p is a sequence of continuous functions onΞ such
thatψn → ψ whenn→ +∞ in theL1 norm with respect toµF .

Then it is straightforward to check that

µF(ψn) = lim
k→+∞

µf

(
(ψn◦Fk)−

)
= lim

k→+∞
µf (ϕn◦ f k) = µf (ϕn)

which converges toµf (E ) = 1. SinceµF(ψn) tends toµF(E) whenn →
+∞, we conclude thatµF(E) = 1, as we wanted.

4.2.3 Physical measure for the global Poincaré map

Let us now apply these results (withR replacingF) to the case of the global
Poincaŕe map for a singular-hyperbolic attractor.

From the previous results in Sections 4.2.1 and 4.2.2 the finitely many
acim’sυ1, . . . ,υl for the one-dimensional quotient mapf uniquely induce
R-invariant ergodic probability measuresη1, . . . ,ηl on Ξ.

We claim that the basins of eachη1, . . . ,ηl have positive Lebesgue area
λ2 on Ξ and coverλ2 almost every point ofp−1(I). Indeed the uniform
contraction of the leavesF s

Σ \Γ provided by Lemma 3.56, implies that the
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forward time averages of any pairx,y of points inξ ∈ F \ p(Γ) on contin-
uous functionsϕ : Ξ → R are equal

lim
n→+∞

[
1
n

n−1

∑
j=0

ϕ
(
Rj(x)

)
− 1

n

n−1

∑
j=0

ϕ
(
Rj(y)

)
]

= 0.

HenceB(ηi) ⊃ p−1
(
B(υi)

)
, i = 1, . . . , l . This shows thatB(ηi) contains an

entire strip except for a subset ofλ2-null measure, becauseB(υi) contains
some open intervalλ modulo zero. Sincep∗(λ2) ≪ λ we get in particular

λ2(B(ηi)
)
> 0 and λ2

(
p−1(I)\

l
[

i=1

B(ηi)
)

= p∗(λ2)
(

I \
l

[

i=1

B(υi)
)

= 0,

showing thatη1, . . . ,ηl are physical measures whose basins coverp−1(I)
Lebesgue almost everywhere. We observe thatp−1(I) ⊂ Ξ is forward in-
variant underR, thus it containsΛ∩Ξ.

4.2.4 Suspension flow from the Poincaré map

Let Ξ be a measurable space,Γ be some measurable subset ofΞ, andF :
(Ξ \Γ) → Ξ be a measurable map. Letτ : Ξ → (0,+∞] be a measurable
function such that infτ > 0 andτ ≡ +∞ on Γ.

Let∼ be the equivalence relation onΞ×[0,+∞) generated by(x,τ(x))∼
(F(x),0), that is,(x,s) ∼ (x̃, s̃) if and only if there exist

(x,s) = (x0,s0), (x1,s1), . . . , (xN,sN) = (x̃, s̃)

in Ξ× (0,+∞) such that, for every 1≤ i ≤ N

either xi = F(xi−1) and si = si−1− τ(xi−1);

or xi−1 = F(xi) and si−1 = si − τ(xi).

We denote byV = Ξ× [0,+∞)/∼ the corresponding quotient space and by
π : Ξ → V the canonical projection which induces onV a topology and a
Borel σ-algebra of measurable subsets ofV.

Definition 4.1. The suspension of F with roof function (or return-time)τ
is the semi-flow(Xt

τ)t≥0 defined onV by

Xt
τ(π(x,s)) = π(x,s+ t) for every(x,s) ∈ Ξ× [0,+∞) andt > 0.
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It is easy to see that this is indeed well defined as in Section 1.2.1 on
page 15. In what follows we writeXt instead ofXt

τ sinceτ is fixed and no
ambiguity can arise.

Remark4.24. If F is injective then we can also define

X−t(π(x,s)
)

= π
(
F−n(x),s+ τ(F−n(x))+ · · ·+ τ(F−1(x))− t

)

for every x ∈ Fn(Ξ) and 0< t ≤ s+ τ(F−n(x)) + · · ·+ τ(F−1(x)). The
expression on the right does not depend on the choice ofn≥ 1. In particular,
the restriction of the semi-flow(Xt)t≥0 to the maximal invariant set

Λ =

{
(x, t) : x∈

\

n≥0

Fn(Ξ) and t ≥ 0

}

extends, in this way, to a flow(Xt)t∈R on Λ.

Let µF be any probability measure onΞ that is invariant underF . Then
the productµF × dt of µF by Lebesgue measure on[0,+∞) is an infinite
measure, invariant under the trivial flow(x,s) 7→ (x,s+ t) in Ξ× [0,+∞).
In what follows we assume that the return time is integrable with respect to
µF , i.e.

µF(τ) =
Z

τdµF < ∞. (4.7)

In particularµF(Γ) = 0. Then we introduce the probability measureµX on
V defined by

Z

ϕdµX =
1

µF(τ)

Z Z τ(x)

0
ϕ(π(x, t))dt dµF(x)

for each bounded measurableϕ : V → R.
We observe that the correspondenceµF 7→ µX defined above is injective.

Indeed for any bounded measurableψ : Ξ→R, definingϕ on{x}× [0,τ(x))
to equalµF(τ) · ψ(x)/τ(x) gives a bounded measurable mapϕ : V → R

(since infτ > 0) such thatµX(ϕ) = µF(ψ). Hence ifµX = µ′X thenµF = µ′F .

Lemma 4.25. The measure µX is invariant under the semi-flow(Xt)t≥0.

Proof. It is enough to show thatµX
(
(Xt)−1(B)

)
= µX(B) for every mea-

surable setB ⊂ V and any 0< t < inf τ. Moreover, we may suppose that
B is of the formB = π(A×J) for someA⊂ Ξ andJ a bounded interval in
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[0, inf(τ | A)). This is because these sets form a basis for theσ-algebra of
measurable subsets ofV.

Let B be of this form and(x,s) be any point inΞ with 0 ≤ s < τ(x).
ThenXt(x,s) ∈ B if and only if π(x,s+ t) = π(x̃, s̃) for some(x̃, s̃) ∈ A×J.
In other words,(x,s) ∈ (Xt)−1(B) if and only if there exists somen ≥ 0
such that

x̃ = Fn(x) and s̃= s+ t − τ(x)−·· ·− τ(Fn−1(x)).

Sinces< τ(x), t < inf τ, ands̃≥ 0, it is impossible to haven≥ 2. So,

• eitherx̃ = x ands̃= s+ t (corresponding ton = 0),

• or x̃ = F(x) ands̃= s+ t − τ(x) (corresponding ton = 1)

The two possibilities are mutually exclusive: for the first one(x,s) must be
such thats+ t < τ(x), whereas in the second cases+ t ≥ τ(x). This shows
that we can write(Xt)−(B) as a disjoint union(Xt)−(B) = B1∪B2, with

B1 = π
{
(x,s) : x∈ A ands∈ (J− t)∩ [0,τ(x))

}

B2 = π
{
(x,s) : F(x) ∈ A ands∈ (J+ τ(x)− t)∩ [0,τ(x))

}
.

Sincet > 0 and supJ < τ(x), we have(J− t)∩ [0,τ(x)) = (J− t)∩ [0,+∞)
for everyx∈ A. So, by definition,µX(B1) equals

Z

A
ℓ
(
(J− t)∩ [0,τ(x))

)
dµF(x) = µF(A) · ℓ

(
(J− t)∩ [0,+∞)

)
.

Similarly infJ ≥ 0 andt < τ(x) imply that

(J+ τ(x)− t)∩ [0,τ(x)) = τ(x)+(J− t)∩ (−∞,0).

HenceµX(B2) is given by
Z

F−1(A)
ℓ
(
(J− t)∩ (−∞,0)

)
dµF(x) = µF(F−1(A)) · ℓ

(
(J− t)∩ (−∞,0)

)
.

SinceµF is invariant underF , we may replaceµF(F−1(A)) by µF(A) in the
last expression. It follows that

µX
(
(Xt)−1(B)

)
= µX(B1)+µX(B2) = µF(A) · ℓ

(
(J− t)

)
.

Clearly, the last term may be written asµF(A) · ℓ(J) which, by definition, is
the same asµX(B). This proves thatµX is invariant under the semi-flow and
ends the proof.
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Given a bounded measurable functionϕ : V → R, let ϕ̂ : Ξ → R be
defined by

ϕ̂(x) =
Z τ(x)

0
ϕ(π(x, t))dt . (4.8)

Observe that̂ϕ is integrable with respect toµF and by the definition ofµX

Z

ϕ̂dµF = µF(τ) ·
Z

ϕdµX.

Lemma 4.26. Letϕ : V →R be a bounded function, and̂ϕ be as above. We
assume that x∈ Ξ is such thatτ(F j(x)) and ϕ̂(F j(x)) are finite for every
j ≥ 0, and also

(a) lim
n

1
n

n−1

∑
j=0

τ(F j(x)) =
Z

τdµF , and

(b) lim
n

1
n

n−1

∑
j=0

ϕ̂(F j(x)) =
Z

ϕ̂dµF .

Then lim
T→+∞

1
T

Z T

0
ϕ(π(x,s+ t))dt =

Z

ϕdµX for everyπ(x,s) ∈V.

Proof. Let x be fixed, satisfying (a) and (b). Given anyT > 0 we define
n = n(T) by

Tn−1 ≤ T < Tn where Tj = τ(x)+ · · ·τ(F j(x)) for j ≥ 0

Then using(y,τ(y)) ∼ (F(y),0) we get

1
T

Z T

0
ϕ(π(x,s+ t))dt =

1
T

[
n−1

∑
j=0

Z τ(F j (x))

0
ϕ(π(F j(x), t))dt

+
Z T−Tn−1

0
ϕ(π(Fn(x), t))dt−

Z s

0
ϕ(π(x, t))dt

]
.

(4.9)

Using the definition of̂ϕ, we may rewrite the first term on the right hand
side as

n
T
· 1
n

n−1

∑
j=0

ϕ̂(F j(x)). (4.10)
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Now we fix ε > 0. Assumption (a) and the definition ofn imply that,

n·
(Z

τdµF − ε
)
≤ Tn−1 ≤ T ≤ Tn ≤ (n+1) ·

(Z

τdµF + ε
)
,

for every large enoughn. Observe also thatn goes to infinity asT → +∞,
sinceτ(F j(x)) < ∞ for every j. So, for every largeT,

µF(τ)− ε ≤ T
n
≤ n+1

n
µF(τ)+ ε ≤ µF(τ)+2ε.

This proves thatT/n converges toµF(τ) whenT → +∞. Consequently,
assumption (b) implies that (4.10) converges to

1
µF(τ)

Z

ϕ̂dµF =

Z

ϕdµX .

Now we prove that the remaining terms in (4.9) converge to zero when
T goes to infinity. Sinceϕ is bounded

∣∣∣∣
1
T

Z T−Tn−1

0
ϕ(π(Fn(x), t))dt

∣∣∣∣≤
T −Tn−1

T
sup|ϕ|. (4.11)

Using the definition ofn once more,

T −Tn−1 ≤ Tn−Tn−1 ≤ (n+1)
(Z

τdµF + ε
)
−n
(Z

τdµF − ε
)

whenevern is large enough. Then

T −Tn−1

T
≤

R

τdµF +(2n+1)ε
n
(

R

τdµF − ε
) ≤ 4ε

R

τdµF − ε

for all large enoughT. This proves that(T −Tn−1)/T converges to zero,
and then so does (4.11). Finally, it is clear that

1
T

Z s

0
ϕ(π(x, t))dt → 0 when T → +∞.

This completes the proof of the lemma.

Corollary 4.27. If µF is ergodic then µX is ergodic.
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Proof. Let ϕ : V → R be any bounded measurable function, andϕ̂ be as in
(4.8). As already noted,̂ϕ is µF -integrable. It follows that̂ϕ(F j(x)) < ∞
for every j ≥ 0, atµF -almost every pointx∈ Ξ. Moreover, by the Ergodic
Theorem, condition (b) in Lemma 4.26 holdsµF -almost everywhere. For
the same reasons,τ(F j(x)) is finite for all j ≥ 0, and condition (a) in the
lemma is satisfied, forµF -almost allx∈ Ξ.

This shows that Lemma 4.26 applies to every pointx in a subsetA⊂ Ξ
with µF(A) = 1. It follows that

lim
T→+∞

1
T

Z T

0
ϕ(Xt(z))dt =

Z

ϕdµX

for every pointz in B = π(A× [0,+∞)). Since the latter hasµX(B) = 1,
we have shown that the Birkhoff average ofϕ is constantµX-almost ev-
erywhere. Then the same is true for any integrable function,as bounded
functions are dense inL1(µX). Thus µX is ergodic and the corollary is
proved.

4.2.5 Physical measures for the suspension

Using the results from Sections 4.2.3 and 4.2.4 it is straightforward to ob-
tain ergodic probability measuresν1, . . . ,νl invariant under the suspension
(Xt

τ)t≥0 of Rwith return timeτ, corresponding to theR-physical probability
measuresη1, . . . ,ηl respectively.

Now we use Lemma 4.26 to show that eachνi is a physical measure for
(Xt

τ)t≥0, i = 1, . . . , l . Let x∈ Σ∩B(νi) for a fixedΣ ∈ Ξ andi ∈ {1, . . . , l}.
According to Remark 4.18 the return timeτI on I is Lebesgue integrable,
thusυi-integrable also sincedυi

dλ is bounded. Henceτ is ηi-integrable by the
construction ofηi from υi (see Section 4.2.2).

Lemma 4.26 together with the fact thatηi is physical forR, ensures that
B(νi) contains the positiveXt

τ orbit of almost every point(x,0),x∈ B(νi),
with respect toλ2 on B(ηi). If we denote byλ3 = π∗(λ2 × dt) a natural
volume measure onV, then we getλ3

(
B(νi)

)
> 0.

This also shows that the basinsB(ν1), . . . ,B(νl ) coverλ3-almost every
point in V0 = π

(
p−1(I)× [0,+∞)

)
. Notice that this subset is a neighbor-

hood of the suspensionπ
(
(Λ∩Ξ\Γ)× [0,+∞)

)
of Λ∩Ξ\Γ.
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4.2.6 Physical measure for the flow

Here we extend the previous conclusions to the original flow,completing
the proof of Theorem 4.3.

We relate the suspension(Xt
τ)t≥0 of Rwith return timeτ to (Xt)t≥0 in U

as follows. We define

Φ : Ξ× [0,+∞) →U by (x, t) 7→ Xt(x)

and sinceΦ
(
x,τ(x)

)
=
(
R(x),0

)
∈ Ξ×{0}, this map naturally defines a

quotient map

φ : V →U such that φ◦Xt
τ = Xt ◦φ, for all t ≥ 0, (4.12)

through the identification∼ from Section 4.2.4.
Let Ξτ = {(x, t) ∈ (Ξ \Γ)× [0,+∞) : 0 < t < τ(x)}. Note thatΞτ is a

open set inV and thatπ | Ξτ : Ξτ → Ξτ is a homeomorphism (the identity).
Then the mapφ |Ξτ is a local diffeomorphism intoV0 = φ

(
Ξ×[0,+∞)

)
⊂U

by the natural identification given byπ and by the Tubular Flow Theorem,
since points inΞτ are not sent into singularities ofX. Notice thatΞτ is a full
Lebesgue (λ3) measure subset ofV. Thusφ is a semi-conjugation modulo
zero. Note also that the number of pre-images ofφ is globally bounded by
r0 from Remark 4.15.

Therefore the measuresνi constructed for the semiflowXt
τ in the previ-

ous Section 4.2.5 define physical measuresµi = φ∗(νi), i = 1, . . . , l , whose
basins cover a full Lebesgue (m) measure subset ofV0, which is a neighbor-
hood ofΛ. Indeed the semi-conjugacy (4.12) ensures thatφ(B(νi))⊂ B(µi)
and sinceφ is a local diffeomorphisms on a full Lebesgue measure subset,
then

m
(

φ
(
B(ν1)∪·· ·∪B(νl )

))
= 0.

SinceV0 ⊂U we have

Ws(Λ) =
[

t<0

Xt(V0).

MoreoverXt is a diffeomorphism for allt ∈ R, thus preserves subsets of
zerommeasure. Hence∪t<0Xt

(
B(µ1)∪·· ·∪B(µl )

)
has full Lebesgue mea-

sure inWs(Λ). In other words, Lebesgue (m) almost every pointx in the
basinWs(Λ) of Λ is such thatXt(x) ∈ B(µi) for somet > 0 andi = 1, . . . , l .
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Uniqueness of the physical measure

The setΛ is an attractor. According to our definition of attractor there exists
z0 ∈ Λ such that{Xt(z0) : t > 0} is a dense regular orbit inΛ.

We prove uniqueness of the physical measure by contradiction, assum-
ing that the numberl of distinct physical measures is bigger than one. Then
we can take distinct physical measuresη1,η2 for R on Ξ associated to dis-
tinct physical measuresµ1,µ2 for X |Λ. Then there are open setsU1,U2 ⊂Ξ
such that

U1∩U2 = /0 and λ2(B(ηi)\Ui
)

= 0, i = 1,2.

For a very smallζ > 0 we consider the open subsetsVi = X(−ζ,ζ)(Ui), i =
1,2 ofU such thatV1∩V2 = /0. According to the construction ofµi we have
µi(B(µi)\Vi) = 0, i = 1,2.

The transitivity assumption ensures that there are positive timesT1 < T2

(exchangingV1 andV2 if needed) such thatXTi (z0) ∈ Vi , i = 1,2. Since
V1,V2 are open sets andg = XT2−T1 is a diffeomorphism, there exists a
small open setW1 ⊂V1 such thatg |W1 : W1 →V2 is aC1 diffeomorphism
into its imageW2 = g(W1) ⊂V2.

Now theC1 smoothness ofg |W1 ensures that a full Lebesgue (m) mea-
sure subset ofW1 is sent into a full Lebesgue measure subset ofW2. By the
definition of g and the choice ofV1,V2, there exists a point inB(µ1)∩W1

whose positive orbit contains a point inB(µ2)∩W2, thusµ1 = µ2. Hence
singular-hyperbolic attractors have a unique physical probability measure
µ.

4.2.7 Hyperbolicity of the physical measure

For the hyperbolicity of the measureµ we note that

• the sub-bundleEs is one-dimensional and uniformly contracting, thus
on theEs-direction the Lyapunov exponent is negative for every point
in U ;

• the sub-bundleEcu is two-dimensional, dominatesEs, contains the
flow direction and is volume expanding, thus by Oseledets Theorem
[107, 204] the sum of the Lyapunov exponents on the directionof
Ecu is given byµi(log|detDX1 | Ecu|) > 0. Hence there is a positive
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Lyapunov exponent forµi-almost every point on the direction ofEcu,
i = 1, . . . , l .

We already know from Section 1.4 that expanding direction inEcu does
not coincide with the flow directionEX

z = {s·X(z) : s∈R}, z∈ Λ, sinceEX
z

always has zero Lyapunov exponent for regular points for a smooth flow on
a compact manifold.

This shows that atµ-almost every pointz the Oseledets splitting of the
tangent bundle has the form

TzM = Es
z ⊕EX

z ⊕Fz,

whereFz is the one-dimensional measurable sub-bundle of vectors with
positive Lyapunov exponent. The proof of Theorem 4.3 is complete.

4.2.8 Absolutely continuous disintegration of the physical
measure

Here we prove Theorem 4.4. We letµ be a physical ergodic probability
measure for a singular-hyperbolic attractorΛ of aC2-flow in an open subset
U ⊂ M3, obtained through the sequence of reductions of the dynamics of
the flowXt to the suspension flowXt

τ of the Poincaŕe mapRand return time
functionτ, with correspondingXt

τ-invariant measureν obtained from theR-
invariant measureη. In additionη is obtained through the ergodic invariant
measureυ of the one-dimensional mapf : I → I . This is explained in
Section 4.2.3. We know thatµ is hyperbolic as explained in Section 4.2.6.

Let us fix δ0 > 0 small. Then by Pesin’s non-uniformly hyperbolic
theory [149, 58, 162] we know that there exists a compact subset K ⊂ Λ
such thatµ(Λ \K) < δ0 and there existsδ1 > 0 for which everyz∈ K
admits a strong-unstable manifoldWuu

δ1
(z) with inner radiusδ1. We refer to

this kind of sets asPesin’s sets. Theinner radiusof Wuu
δ1

(z) is defined as the
length of the shortest smooth curve in this manifold fromz to its boundary.
MoreoverK ∋ z 7→Wuu

δ1
(z) is a continuous mapK → E 1(I1,M) (recall the

notations in Section 3.4.1).
The suspension flowXt

τ defined onV in Section 4.2.4 is semi-conjugated
to theXt -flow on an open subset ofU through a finite-to-1 local homeomor-
phismφ, defined in Section 4.2.6, which takes orbits to orbits and preserves
time as in (4.12). Hence there exists a corresponding setK′ = φ−1(K) satis-
fying the same properties ofK with respect toXt

τ, where the constantsδ0,δ1
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are changed by at most a constant factor due toφ−1 by the compactness of
K. In what follows we use the measureν = (φ−1)∗µ instead ofµ and write
K for K′.

We fix a density pointx0 ∈ K of ν | K. We may assume thatx0 ∈ Σ for
someΣ∈Ξ. Otherwise ifx0 6∈Ξ, sincex0 = (x, t) for somex∈ Σ, Σ∈Ξ and
0 < t < T(x), then we use(x,0) instead ofx0 in the following arguments,
but we still writex0. Clearly the length of the unstable manifold through
(x,0) is unchanged due to the form of the suspension flow, at least for small
values ofδ1. Sinceν is given as a product measure on the quotient spaceV
(see Section 4.2.5), we may assume without loss of generality thatx0 is a
density point ofη on Σ∩K.

We setWu(x,Σ) to be the connected component ofWu(x)∩Σ, the un-
stable manifold ofx that containsx, for x∈ K ∩Σ. Recall thatWu(x) ⊂ Λ
becauseΛ is an attracting set. ThenWu(x,Σ) has inner radius bigger than
some positive valueδ2 > 0 for x∈ K∩Σ, which depends only onδ1 and the
angle betweenWuu

δ1
(x) andTxΣ.

Let us defineF s(x0,δ2) = {Ws(x,Σ) : x ∈ Wu(x0,Σ)} and the corre-
sponding horizontal stripFs(x0,δ2) = ∪γ∈F s(x0,δ2)γ. Pointsz∈ Fs(x0,δ2)
can be specified using coordinates(x,y) ∈Wu(x0,Σ)×R, wherex is given
by Wu(x0,Σ)∩Ws(z,Σ) andy is the length of the shortest smooth curve
connectingx to z in Ws(z,Σ). Let us consider

F u(x0,δ2) = {Wu(z,Σ) : z∈ Σ and Wu(z,Σ) crosses Fs(x0,δ2)},

where we say that a curveγ crosses Fs(x0,δ2) if the trace ofγ can be written
as the graph of a mapWu(x0,Σ)→Ws(x0,Σ) using the coordinates outlined
above. We stress thatF u(x0,δ2) is not restricted to leaves through points
of K.

We may assume thatFu(x0,δ2) =∪F u(x0,δ2) satisfiesη(Fu(x0,δ2)) >
0 up to taking a smallerδ2 > 0, sincex0 is a density point ofη | K ∩Σ. Let
η̂ be the measure onF u(x0,δ2) given by

η̂(A) = η
(

[

γ∈A

γ
)

for every measurable setA⊂ F u(x0,δ2).

Proposition 4.28. The measureη | Fu(x0,δ2) admits a disintegration into
conditional measuresηγ along η̂-a.e. γ ∈ F u(x0,δ2) such thatηγ ≪ λγ,
whereλγ is the measure (length) induced onγ by the natural Riemannian
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measureλ2 (area) onΣ. Moreover there exists D0 > 0 such that

1
D0

≤ dηγ

dλγ
≤ D0, ηγ-almost everywhere for̂η-almost everyγ.

This is enough to conclude the proof of Theorem 4.4 since bothδ0 and
δ2 can be taken arbitrarily close to zero, so that all unstable leavesWu(x,Σ)
through almost every point with respect toη will support a conditional
measure ofη.

Indeed, to obtain the disintegration ofν along the center-unstable leaves
that cross any small ball around a density pointx0 of K, we project that
neighborhood ofx0 along the flow in negative time on a cross sectionΣ.
Then we obtain the family{ηγ}, the disintegration ofη along the unstable
leavesγ ∈ F u on a stripFs of Σ, and consider the family{ηγ × dt} of
measures onF u× [0,T] to obtain a disintegration ofν, whereT > 0 is a
fixed time slightly smaller than the return time of the pointsin the stripFs,
see Figure 4.7.

Σ

Fs

γ× [0,T]

γ

Figure 4.7: Center-unstable leaves on the suspension flow.

In fact,ηγ ×dt ≪ λγ ×dt andλγ ×dt is the induced (area) measure on
the center-unstable leaves by the volume measureλ3 on V, and it can be
given by restricting the volume formλ3 to the surfaceγ× [0,T] which we
write λ3

γ , for γ ∈ F u. Thus by Proposition 4.28 and by the definition ofν,
we have

νγ = ηγ ×dt =
dηγ

dλγ
·λ3

γ , γ ∈ F u

and the densities of the conditional measuresηγ ×dt with respect toλ3
γ are

also uniformly bounded from above and from below away from zero – we
have left out the constant factor 1/µ(τ) to simplify the notation.
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Sinceµ = φ∗ν and φ is a finite-to-1 local diffeomorphism when re-
stricted toΞτ, thenµ also has an absolutely continuous disintegration along
the center-unstable leaves. The densities on unstable leavesγ are related by
the expression (wheremγ denotes the area measure on the center-unstable
leaves induced by the volume formm)

µγ = φ∗(νγ) = φ∗
(dηγ

λγ
·λ3

γ

)
=

(
1

detD(φ | γ× [0,T])
· dηγ

λγ

)
◦φ−1 ·mγ,

for γ∈ F u, which implies that the densities along the center-unstable leaves
are uniformly bounded from above.

Indeed observe first that the number of pre-images ofx underφ is uni-
formly bounded byr0 from Remark 4.15, i.e. by the number of cross-
sections ofΞ hit by the orbit ofx from time 0 to timet2. Moreover the
tangent bundle ofγ× [0,T] is sent byDφ into the bundleEcu by construc-
tion and recalling thatφ(x, t) = Xt(x) then, if e1 is a unit tangent vector at
x ∈ γ, ê1 is the unit tangent vector atφ(x,0) ∈ Wu(x,Σ) ande2 is the flow
direction at(x, t) we get

Dφ(x, t)(e1) = DXt
(
Xt(x)

)
(ê1) and

Dφ(x, t)(e2) = DXt(Xt(x)
)(

X(x,0)
)

= X
(
Xt(x)

)
.

HenceD
(
φ | γ× [0,T]

)
(x, t) = DXt | Ecu

φ(x,t) for (x, t) ∈ γ× [0,T] and so

|detD
(
φ | γ× [0,T]

)
(x, t)| = Jc

t (x).

Now the volume expanding property ofXt along the center-unstable sub-
bundle, together with the fact that the return time functionτ is not bounded
from above near the singularities, show that the densities of µγ are uni-
formly bounded from above throughoutΛ but not from below. In fact, this
shows that these densities will tend to zero close to the singularities ofX in
Λ.

This finishes the proof of Theorem 4.4 except for the proof of Proposi-
tion 4.28 and of supp(µ) = Λ, which we present in what follows.

4.2.9 Constructing the disintegration

Here we prove Proposition 4.28. We split the proof into several lemmas
keeping the notations of the previous sections.
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Let λ2, R: p−1(I)→Ξ, F u(x0,δ2), Fu(x0,δ2) andη be as before, where
x0 ∈ K ∩Σ is a density point ofη | K andK is a compact Pesin set. We
write {ηγ} and{λ2

γ} for the disintegrations ofη | Fu(x0,δ2) andλ2 along
γ ∈ F u(x0,δ2).

Lemma 4.29. Either ηγ ≪ λ2
γ for η̂-a.e. γ ∈ F u(x0,δ2), or ηγ ⊥ λ2

γ for
η̂-a.e.γ ∈ F u(x0,δ2).

Proof. We start by assuming that the first item in the statement does not
hold and proceed to show that this implies the second item. Wewrite η for
η(Fu(x0,δ2))

−1 ·η | Fu(x0,δ2) to simplify the notation in this proof.
Let us suppose that there existsA⊂ Fu(x0,δ2) such thatη(A) > 0 and

λ2
γ(A) = 0 for η̂-a.e. γ ∈ F u(x0,δ2). Let B = ∪k≥0Rk(A). We claim that

η(B) = 1.
Indeed, we haveR(B) ⊂ B, then B ⊂ R−1(B) and

(
R−k(B)

)
k≥0 is a

nested increasing family of sets. Sinceη is R-ergodic we have for any
measurable setC⊂ Ξ

lim
n→+∞

1
n

n−1

∑
j=0

η
(
C∩R− j(B)

)
= η(C) ·η(B). (4.13)

But η
(
∪k≥0 R−k(B)

)
= 1 because this union isR-invariant andη(B) =

η
(
R−k(B)

)
> 0 by assumption, for anyk ≥ 0. Because the sequence is

increasing and nested we haveη
(
R−k(B)

)
ր 1. Hence from (4.13) we get

thatη(C) = η(C) ·η(B) for all setsC⊂ X. Thusη(B) = 1 as claimed.
Therefore 1= η(B) =

R

ηγ(B)dη̂(γ) and soηγ(B) = 1 for η̂-a.e. γ ∈
F u(x0,δ2) since every measure involved is a probability measure.

We now claim thatλ2
γ(B) = 0 for µ̂-a.e.γ∈ F u(x0,δ2). For if R(A)∩γ 6=

/0 for someγ ∈ F u(x0,δ2), thenA∩R−1(γ)∩Fu(x0,δ2) 6= /0 and so it is
enough to consider onlyA∩Fu

1 , whereFu
1 = R−1(Fu(x0,δ2))∩Fu(x0,δ2).

But λ2
γ(A∩Fu

1 ) ≤ λ2
γ(A) = 0 thus

0 = λ2
γ
(
R0(A∩Fu

1 )
)
≥ λ2

γ
(
R0(A)∩Fu(x0,δ2)

)
= λ2

γ(R0(A))

for η̂-a.e.γ sinceR0 is piecewise smooth, hence a regular map. Therefore
we getλ2

γ(R
k(A)) = 0 for all k≥ 1 implying thatλ2

γ(B) = 0 for η̂-a.e.γ.
This shows thatηγ is singular with respect toλ2

γ for η̂-a.e.γ. The proof
is finished.
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Existence of hyperbolic times for f and consequences toR

Now we show that a positive measure subset ofF u(x0,δ2) has absolutely
continuous disintegrations, which is enough to conclude the proof of Propo-
sition 4.28 by Lemma 4.29, except for the bounds on the densities.

We need the notion ofhyperbolic timefor the one-dimensional map
f [5]. We know that this map is piecewiseC1+α and the boundariesΓ0

of the intervalsI1, . . . , In can be taken as asingular setfor f (where the
map is not defined or is not differentiable) which behaves like apower of
the distance toΓ0, as follows. Denoting byd the usual distance on the
intervalsI , there existB > 0 andβ > 0 such that

• 1
B ·d(x,Γ0)

β ≤
∣∣ f ′
∣∣≤ B·d(x,Γ0)

−β;

•
∣∣ log| f ′(x)|− log| f ′(y)|

∣∣≤ B·d(x,y) ·d(x,Γ0)
−β,

for all x,y ∈ I with d(x,y) < d(x,Γ0)/2. This is true of f since in Sec-
tion 4.2.1 it was shown thatf ′ | I j either is bounded from above and below
away from zero, or else is of the formxβ with β ∈ (0,1).

Givenδ > 0 we definedδ(x,Γ0) = d(x,Γ0) if d(x,Γ0) < δ and 1 other-
wise.

Definition 4.2. Givenb,c,δ > 0 we say thatn≥ 1 is a(b,c,δ)-hyperbolic
time forx∈ I if

n−1

∏
j=n−k

∣∣ f ′
(

f j(x)
)∣∣−1 ≤ e−ck and

n−1

∏
j=n−k

dδ
(

f j(x),Γ0
)
≥ e−bk (4.14)

for all k = 0, . . . ,n−1.

Since f has positive Lyapunov exponentυ-almost everywhere, i.e.

lim
n→+∞

1
n

log
∣∣( f n)′(x)

∣∣> 0 for υ-almost allx∈ I ,

and dυ
dλ is bounded from above (whereλ is the Lebesgue length measure on

I ), thus| logd(x,Γ0)| is υ-integrable and for any givenε > 0 we can find
δ > 0 such that forυ-a.e.x∈ I

lim
n→∞

1
n

n−1

∑
j=0

− logdδ( f j(x),Γ0) =
Z

− logdδ(x,Γ0)dυ(x) < ε.
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This means thatf is non-uniformly expandingand hasslow recurrence to
the singular set. Hence we are in the setting of the following result.

Theorem 4.30(Existence of a positive frequency of hyperbolic times). Let
f : I → I be a C1+α map, behaving like a power of the distance to a singu-
lar set Γ0, non-uniformly expanding and with slow recurrence toΓ0 with
respect to an absolutely continuous invariant probabilitymeasureυ. Then
for b,c,δ > 0 small enough there existsθ = θ(b,c,δ) > 0 such thatυ-a.e.
x ∈ I has infinitely many(b,c,δ)-hyperbolic times. Moreover if we write
0 < n1 < n2 < n2 < .. . for the hyperbolic times of x then their asymptotic
frequency satisfies

liminf
N→∞

#{k≥ 1 : nk ≤ N}
N

≥ θ for υ-a.e. x∈ I .

Proof. A complete proof can be found in [5, Section 5] with weaker as-
sumptions corresponding to Theorem C in that paper.

From now on we fix values of(b,c,δ) so that the conclusions of Theo-
rem 4.30 are true.

We now outline the properties of these special times. For detailed proofs
see [5, Proposition 2.8] and [3, Proposition 2.6, Corollary2.7, Proposition
5.2].

Proposition 4.31. There are constantsβ1,β2 > 0 depending on(b,c,δ)
and f only such that, if n is(b,c,δ)-hyperbolic time for x∈ I, then there
are neighborhoods Wk(x) ⊂ I of f n−k(x), k = 1, . . . ,n, such that

1. fk | Wk(x) maps Wk(x) diffeomorphically to the ball of radiusβ1

around fn(x);

2. for every1≤ k≤ n and y,z∈Wk(x)

d
(

f n−k(y), f n−k(z)
)
≤ e−ck/2 ·d

(
f n(y), f n(z)

)
;

3. for y,z∈Wn(x)
1
β2

≤
∣∣( f n)′(y)

∣∣
∣∣( f n)′(z)

∣∣ ≤ β2.
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The conjugacyp◦R= f ◦ p between the actions of the Poincaré map
and the one-dimensional map on the space of leaves, togetherwith the
bounds on the derivative (4.5), enables us to extend the properties given
by Proposition 4.31 to anycu-curve insideB(η), as follows.

Let γ : J → Ξ be acu-curve inΞ\Γ such thatγ(s) ∈ B(η) for Lebesgue
almost everys∈ J, J a non-empty interval — such a curve exists since the
basinB(η) contains entire strips of some sectionΣ ∈ Ξ except for a subset
of zero area. Note that we have the following limit in the weak∗ topology

lim
n→+∞

λn
γ = η where λn

γ =
1
n

n−1

∑
j=0

Rj
∗(λγ),

by the choice ofγ and by an easy application of the Dominated Convergence
Theorem.

Proposition 4.32. There are constantsκ0,κ1 > 0 depending on(b,c,δ)
and R0,β0,β1,β2 only such that, if x∈ γ and n is big enough and a(b,c,δ)-
hyperbolic time for p(x)∈ I, then there are neighborhoods Vk(x) of Rn−k(x)
on Rn−k(x)(γ), k = 1, . . . ,n, such that

1. Rk |Vk(x) maps Vk(x) diffeomorphically to the ball of radiusκ0 around
Rn(x) on Rn(γ);

2. for every1≤ k≤ n and y,z∈Vk(x)

dRn−k(γ)
(
Rn−k(y),Rn−k(z)

)
≤ β0 ·e−ck/2 ·dRn(γ)

(
Rn(y),Rn(z)

)
;

3. for y,z∈Vn(x)
1
κ1

≤
∣∣D(Rn | γ)(y)

∣∣
∣∣D(Rn | γ)(z)

∣∣ ≤ κ1;

4. the inducing time of Rk on Vk(x) is constant, i.e. rn−k |Vk(x)≡ const..

Heredγ denotes the distance alongγ given by the shortest smooth curve
in γ joining two given points andλγ denotes the normalized Lebesgue length
measure induced onγ by the area formλ2 on Ξ.

Proof of Proposition 4.32.Let x0 = p(x) andWk(x0) be given by Propo-
sition 4.31,k = 1, . . .n. We have thatp(γ) is an interval inI and that
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p | γ : γ → p(γ) is a diffeomorphism — we may takeγ with smaller length
if needed.

If n is big enough, thenWn(x0)⊂ p(γ). Moreover the conjugacy implies
that the following maps are all diffeomorphisms

Vk(x)
Rk

−→ Rk(Vk(x))
p ↓ ↓ p

Wk(x0)
f k

−→ B
(

f k(x0),κ0
)

,

and the diagram commutes, whereVk(x) =
(
p | Rk(γ)

)−1(
Wk(x0)

)
, k =

1, . . . ,n, see Figure 4.8. Using the bounds (4.5) to compare derivatives we
getκ0 = β1/β0 andκ1 = β0 ·β2.

x f(x) f    (x) f  (x)f  (x)2 n−1 n

γ R (  )
n γ

Figure 4.8: Hyperbolic times and projections.

To get item (4) we just note that by definition of(b,c,δ)-hyperbolic
time none of the setsWk(x0) may intersectΓ0. According to the definition
of Γ0, this means that orbits throughx,y∈Vk(x) cannot cut different cross-
sections inΞ before the next return in timeτ(x),τ(y) respectively. Hence
every orbit throughWk(x0) cuts the same cross-sections in its way to the
next return cross-section. In particular the number of cross-section cuts is
the same, i.e.r | Vk(x) is constant,k = 1, . . . ,n. Hence by definition ofrk

we obtain the statement of item (4) sinceR(Vk(x)) = Vk−1(x) by definition.
This completes the proof of the proposition.

Approximating η by push forwards of Lebesgue measure at hyperbolic
times

We define forn≥ 1

Hn = {x∈ γ : n is a(b,c/2,δ)-hyperbolic time forp(x)}.
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As a consequence of items (1-2) of Proposition 4.32, we have thatHn is an
open subset ofγ and for anyx∈ γ∩Hn we can find a connected component
γn of Rn(γ)∩B(Rn(x),κ0) containingx such thatRn |Vn(x) : Vn(x) → γn is
a diffeomorphism. In additionγn is acu-curve according to Corollary 3.51,
and by item (3) of Proposition 4.32 we deduce that

1
κ1

≤ d
(
Rn
∗(λγ) | B(Rn(x),κ0)

)

dλγn
≤ κ1, λγn −a.e. onγn, (4.15)

whereλγn is the Lebesgue induced measure onγn for any n ≥ 1, if we
normalize both measures so that

(
(Rn)∗(λγ) | B(Rn(x),κ0)

)
(γn) = λγn(γn),

i.e. their masses onγn are the same.
Moreover the setRn(γ∩Hn) has an at most countable number of con-

nected components which are diffeomorphic to open intervals. Each of
these components is acu-curve with diameter bigger thanκ0 and hence we
can find apairwise disjoint familyγn

i of κ0-neighborhoods around Rn(xi)
in Rn(γ), for some xi ∈ Hn, with maximum cardinality, such that

∆n =
[

i

γn
i ⊂ Rn(γ∩Hn

)
and

(
(R)n

∗(λγ) | ∆n
)
(∆n) ≥

1
2κ1

·λγ(Hn).

(4.16)
Indeed sinceRn(γ∩Hn) is one-dimensional, for each connected compo-
nent the family∆n may miss a set of points of length at most equal to the
length of oneγn

i , for otherwise we would manage to include an extraκ0-
neighborhood in∆n. Hence we have in the worst case (assuming that there
is only one setγn

i for each connected component)

λγn
(
Rn(γ∩Hn)\∆n

)
≤ λγn

([

i

γn
i

)
= λγn(∆n)

so that

λγn(∆n) ≥
1
2
·λγn

(
Rn(γ∩Hn)

)

and the constantκ1 comes from (4.15).
For a fixed smallρ > 0 we consider∆n,ρ given by the ballsγn

i with
the same centerxn,i but a reduced radius ofκ0−ρ. Then the same bound
in (4.16) still holds with 2κ1 replaced by 3κ1.

We writeDn for the family of disks from∪ j≥1∆ j with the same expand-
ing iterate (the disks with the same centers as the ones fromDn,ρ but with
their original size).
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We define the following sequences of measures

ωn
ρ =

1
n

n−1

∑
j=0

Rj
∗(λγ) | ∆ j,ρ and λ

n
γ = λn

γ −ωn
ρ, n≥ 1.

Then any weak∗ limit point η̃ = limk ωnk
ρ for some subsequencen1 < n2 <

.. . andη = limk λ
n′k
γ (wheren′k may be taken as a subsequence ofnk), are

R-invariant measures which satisfyη = η̃+η.
We claim thatη̃ 6≡ 0, thusη = η̃ as a consequence of the ergodicity of

η. In fact, we can bound the mass ofωn
ρ from below using the density of

hyperbolic times from Theorem 4.30 and the bound from (4.16)through
the following Fubini-Toneli-type argument. Write #n(J) = #J/n for any
J ⊂ {0, . . . ,n− 1}, the uniform discrete measure on the firstn integers.
Also setχi(x) = 1 if x∈ Hi and zero otherwise,i = 0, . . . ,n−1. Then

ωn
ρ(M) ≥ 1

3κ1 ·n
n−1

∑
j=0

λγ(H j) =
n

3κ1n

Z Z

χi(x)dλγ(x)d#n(i)

=
1

3κ1

Z Z

χi(x)d#n(i)dλγ(x) ≥
θ

6κ1
> 0,

for everyn big enough by the choice ofγ.

Approximating unstable curves by images of curves at hyperbolic times

We now observe that sinceη(Fu(x0,δ2)) > 0 andx0 is a density point of
η | Fu(x0,δ2), thenωn

ρ(F
u(x0,δ2)) ≥ c for some constantc > 0 for all big

enoughn. If we assume thatδ2 < ρ, which poses no restriction, then we
see that thecu-curves fromD j,ρ intersectingFu(x0,δ2) will cross this hor-
izontal strip when we restore their original size. Thus the leaves∪n−1

j=0D j

in the support ofωn
0 which intersectFu(x0,δ2) cross this strip. Given any

sequenceγnk of leaves inDnk crossingFu(x0,δ2) with n1 < n2 < n3 < .. . ,
then there exists aC1-limit leaf γ∞ also crossingFu(x0,δ2), by the Ascoli-
Arzela Theorem. We claim that this leaf coincides with the unstable man-
ifold of its points, i.e. γ∞ = Wu(x,Σ) for all x ∈ γ∞. This shows that the
accumulation curvesγ∞ are defined independently of the chosen sequence
γnk of curves inΣ.

To prove the claim let us fixl > 0 and take a bigk so thatnk ≫ l . We
note that for any distinctx,y∈ γ∞ there arexk,yk ∈ γnk such that(xk,yk) →
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(x,y) whenk → ∞. Then forxk,yk there exists a neighborhoodVnk of a
point γ such thatγnk = Rnk(Vnk).

We takej = nk− l . We can now write for somewk,zk ∈Vnk

d(xk,yk) = d
(

Rnk− j(Rj(wk)
)
,Rnk− j(Rj(zk)

)

≥ elc/4

β0
·d
(
Rnk−l (wk),R

nk−l (zk)
)
.

Note that each pairRnk−l (wk),Rnk−l (zk) belongs to a sectionΣk ∈ Ξ and
thatRl

(
Rnk−l (wk)

)
= xk andRl

(
Rnk−l (zk)

)
= yk. Lettingk→ ∞ we obtain

limit points
(
Rnk−l (wk),Rnk−l (zk)

)
→ (wl ,zl ) in some sectionΣ ∈ Ξ (recall

thatΞ is a finite family of compact adapted cross-sections) satisfying

Rl (wl ) = x, Rl (zl ) = y and d(wl ,zl ) ≤ β0e−lc/4 ·d(x,y).

Since this is true for anyl > 0 we conclude thaty is in the unstable manifold
of x with respect toR, i.e. y ∈ Wu

R(x), thusy ∈ Wu(x,Σ) by the following
lemma. This proves the claim.

Lemma 4.33. In the same setting as above, we have Wu
R(x) ⊆Wu(x,Σ).

Notice that since both setsWu
R(x) andWu(x,Σ) are one-dimensional

manifolds embedded in a neighborhood ofx in Σ, then they coincide in a
(perhaps smaller) neighborhood ofx.

Proof. Let y0 ∈Wu(x,Σ). Then there existsε so thatz0 = Xε(y0)∈Wuu(x),
with |ε| small by Remark 3.48 and tending to 0 when we takey0 → x. Let
tl > 0 be such thatX−tl (x) = wl ∈ Σ for l ≥ 1. Then we have

dist
(
X−tl (z0),X

−tl (x)
)
−−→
l→∞

0 (4.17)

and so there existsεl such thatXεl−tl (z0) = zl = Xεl +ε−tl (y0) ∈ Σ with |εl |
small. Notice that (4.17) ensures that|εl | → 0 also.

Hence there existsδ = δ(ε,εl ) satisfyingδ → 0 when(ε+ εl ) → 0 and
alsod(zl ,wl ) < δ for all l ≥ 1. SinceRl (zl ) = y0 we conclude thaty0 ∈
Wu

R(x), finishing the proof.
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Upper and lower bounds for densities through approximation

We defineF u
∞ to be the family of all leavesγ∞ obtained asC1 accumulation

points of leaves in

F u
n = {ξ ∈ ∪n−1

j=0D j : ξ crosses Fs(x0,δ2)}.

We note thatF u
∞ ⊂ F u(x0,δ2). Since for alln we haveωn

0 ≥ ωn
ρ and so

ωn
0(∪F u

n ) > c, we get thatη
(
∪F u

∞
)
≥ c. By definition ofF u

n and by (4.15)
we see thatωn

0 | Fu
n disintegrates along the partitionF u

n of Fu
n = ∪F u

n into
measuresωn

ξ having density with respect toλξ uniformly bounded from

above and below, for almost everyξ ∈ F u
n .

To take advantage of this in order to prove Proposition 4.28 we consider
a sequence of increasing partitions(V k)k≥1 of Ws(x0,Σ) whose diameter
tends to zero. This defines a sequencePk of partitions ofF̃ =∪0≤n≤∞F u

n as
follows: we fixk≥ 1 and say that two elementsξ∈ F u

i ,ξ′ ∈ F u
j ,0≤ i, j ≤∞

are in the same atom ofPk when both intersectWs(x,Σ) in the same atom
of V k and eitheri, j ≥ k or i = j < k.

If q is the projectionq : F̃ → Ws(x0,Σ) given by the transverse inter-
sectionξ∩Ws(x0,Σ) for all ξ ∈ F̃ , thenF̃ can be identified with a subset
of the real line. Thus we may assume without loss that the union ∂Pk of the
boundaries ofPk satisfiesη(∂Pk) = η̂(∂Pk) = 0 for all k ≥ 1, by suitably
choosing the sequenceV k.

Upper and lower bounds for densities

Givenζ ∈ F̃ we write p : Fu(x0,δ2) → ζ the projection along stable leaves
andω for ω0. Writing Pk(ζ) for the atom ofPk which containsζ, then since
Pk(ζ) is a union of leaves, for any given Borel setB⊂ ζ andn≥ 1

ωn(Pk(ζ)∩ p−1(B)
)

=
Z

ωn
ξ
(
Pk(ζ)∩ p−1(B)

)
dω̂n(ξ) (4.18)

through disintegration, wherêωn is the measure oñF induced byωn.
Moreover by (4.15) and because each curve inF̃ crossesFu(x0,δ2)

1
κ1κ2

·λζ(B) ≤ 1
κ1

·λξ
(
p−1(B)

)
≤ ωn

ξ
(
Pk(ζ)∩ p−1(B)

)
(4.19)

ωn
ξ
(
Pk(ζ)∩ p−1(B)

)
≤ κ1 ·λξ

(
p−1(B)

)
≤ κ1κ2 ·λζ(B) (4.20)
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for all n,k≥ 1 andω̂n-a.e.ξ ∈ F̃ , whereκ2 > 0 is a constant such that

1
κ2

·λζ ≤ λξ ≤ κ2 ·λζ for all ξ ∈ F̃ ,

which exists since the angle between the stable leaves in anyΣ ∈ Ξ and any
cu-curve is bounded from below, see Figure 4.9.

Σ

Fs(x0,δ2)

Bζ

Pk(ζ)

p−1(B)

Figure 4.9: Leaves crossingFs(x0,δ2) and the projectionp.

Finally lettingζ∈ F u
∞ and choosingB such thatη

(
∂p−1(B)

)
= 0 (which

poses no restriction), assuming thatη
(

∂
(
Pk(ζ)∩ p−1(B)

))
= 0 we get

from (4.18), (4.19) and (4.20) for allk≥ 1

1
κ1κ2

·λζ(B) · η̂
(
Pk(ζ)

)
≤ η

(
Pk(ζ)∩ p−1(B)

)
≤ κ1κ2 ·λζ(B) · η̂

(
Pk(ζ)

)

(4.21)
by the weak∗ convergence ofωn to η. Thus to conclude the proof we are left
to check thatη

(
∂
(
Pk(ζ)∩ p−1(B)

))
= 0. For this we observe thatPk(ζ)∩

p−1(B) can be written as the productq(Pk(ζ))×B. Hence the boundary is
equal to

(
∂q(Pk(ζ))×B

)
∪
(
q(Pk(ζ))×∂B

)
⊂ q−1(∂q(Pk(ζ))

)
∪ p−1(B)

and the right hand side hasη-zero measure by construction.
This completes the proof of Proposition 4.28 since we have{ζ} =

∩k≥1Pk(ζ) for all ζ ∈ F̃ and, by the Theorem of Radon-Nikodym, the
bounds in (4.21) imply that the disintegration ofη | ∪F u

∞ along the curves
ζ ∈ F u

∞ is absolutely continuous with respect to Lebesgue measure along
these curves and with uniformly bounded densities from above and from
below.
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4.2.10 The support covers the whole attractor

Finally to conclude that supp(µ) = Λ it is enough to show that supp(µ) con-
tains somecu-curveγ : (a,b) → Σ in some subsectionΣ ∈ Ξ. Indeed, see
Figure 4.10, lettingx0 ∈ Λ∩Σ be a point of a forward dense regularX-
orbit and fixingc∈ (a,b) andε > 0 such thata < c− ε < c+ ε < b, then
for any ρ > 0 there existst > 0 satisfying dist

(
γ(c),Xt(x0)

)
< ρ. Since

Ws
(
Xt(x0),Σ

)
⋔
(
γ | (c− ε,c+ ε)

)
= {z} (becauseγ is a cu-curve in Σ

and ρ > 0 can be made arbitrarily small, where⋔ means transverse in-
tersection), then, by the construction of the adapted cross-sectionΣ (see
Section 3.4.1), this means thatz∈ Ws

(
Xt(x0)

)
. Hence theω-limit sets of

z andx0 are equal toΛ. Thus supp(µ) ⊇ Λ because supp(µ) is X-invariant
and closed, andΛ ⊇ supp(µ) becauseΛ is an attracting set.

Xt(z)

w

γ

z
piece of stable manifold

Figure 4.10: Transitiveness and support of the physical measure.

We now use (4.21) to show thatη̂-almost everyγ ∈ F̃ is contained in
supp(η), which is contained in supp(µ) by the construction ofµ from η in
Section 4.2.3. In fact,̂η-almost everyζ ∈ F̃ is a density point of̂η | F̃ and
so for any oneζ of these curves we havêη

(
Pk(ζ)

)
> 0 for all k≥ 1. Fixing

z∈ ζ and choosingε > 0 we may findk≥ 1 big enough and a small enough
open neighborhoodB of z in ζ such that

Pk(ζ)∩ p−1(B) ⊂ B(z,ε)∩Σ and η
(
Pk(ζ)∩ p−1(B)

)
> 0,

by the left hand side inequality in (4.21). Sinceε > 0 andz∈ ζ where
arbitrarily chosen, this shows thatζ ∈ supp(η) ⊂ supp(µ) and completes
the proof of Theorem 4.4.
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Chapter 5

Global dynamics of generic
3-flows

The results in Chapter 3 form the basis of a theory of flows on three-
dimensional manifolds and paved the way for a global understanding of
the dynamics ofC1-generic flows in dimension 3.

In this chapter we show that a genericC1 vector field on a closed 3-
manifold either has infinitely many sinks or sources or else is singular Ax-
iom A without cycles. These results are contained in [130].

Theorem 5.1. A generic vector field X∈ X1(M) satisfies (only) one of the
following properties:

1. X has infinitely many sinks or sources.

2. X is singular Axiom A without cycles.

Singular Axiom Ameans that the non-wandering set of the vector field
has a decomposition into finitely many compact invariant sets Ω(X) =
Ω1∪·· ·∪Ωk, each one being either a (uniformly) hyperbolic basic set (i.e.
transitive, isolated and with a dense subset of periodic orbits) or a singular-
hyperbolic attractor, or a singular-hyperbolic repeller with dense subset of
periodic orbits (these are defined in Chapter 3, note that in this decomposi-
tion the singular-hyperbolic sets are transitive by definition).

An analogous result was proved by Mañé in [110] forC1-generic dif-
feomorphisms on surfaces. Forconservativeflows on three-dimensional

239
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manifolds a related result was obtained recently by Bessa in[24], see Sec-
tion 6.5 for more details.

It is known that a genericnon-singularvector fieldX ∈ X1(M) either
has infinitely many sinks or sources, or else is Axiom A without cycles, see
Mañé [110] or Liao [97]. The robustness of the geometric Lorenz attractor
obtained in Section 2.3 shows that this is not true in generalif singularities
are allowed. Allowing singularities we can improve this as follows. Let
V1(M)⊂X1(M) be the set of vector fields thatcannot be C1 approximated
by homoclinic loops. The Connecting Lemma 1.17 implies that any singu-
larity of everyX ∈ V1(M) is separated from the non-wandering set. Using
the arguments of Wen [205] and Hayashi [74] we conclude that ageneric
vector field inV1(M) either has infinitely many sinks or sources or else it
is Axiom A without cycles.

Recently Arroyo and Hertz [16] proved that every vector fieldin V1(M)
can be either approximated by one that is Axiom A without cycles, or ex-
hibits a homoclinic tangency associated to a periodic orbit.

Let us describe some consequences Theorem 5.1. The first one is re-
lated with the abundance of three-dimensional vector fieldsexhibiting ei-
ther attractors or repellers. As noted by Mañé in [110], a genericC1 dif-
feomorphism in the 2-sphereS2 does exhibit either sinks or sources. It is
then natural to ask whether such a result is valid forC1 vector fields in the
3-sphereS3 instead ofC1 diffeomorphisms inS2. The answer is negative as
the following example shows.

Write S3 = R
3 ∪{∞} and consider inR3 an unknotted two-torusT2.

Then the closure inS3 of each connected component ofS3 \T2 is a solid
two-torus. Consider a Lorenz attractor in one of the solid two-torus and
a Lorenz repeller in the other. Since a fundamental domain for the Lorenz
attractor (respectively repeller) is an unknotted solid two-torus, we can glue
the two solid two-torus through the unknotted torus, obtaining a flow inS3

whose non-wandering set equals the disjoint union of one Lorenz attractor
and one Lorenz repeller. Such a flow is singular Axiom A, and itcan not be
approximated by vector fields with either sinks or sources. However from
Theorem 5.1 we deduce

Corollary 5.2. A generic vector field inX1(M) does exhibit either attrac-
tors or repellers.

The second one is related with a conjecture by Palis in [141],see also
Section 1.5, asserting the denseness of vector fields exhibiting a finite num-
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ber of attractors whose basin of attraction forms a full Lebesgue measure
subset. Theorem 5.1 gives an approach to this conjecture in the (open) set
N1(M) of C1 vector fields on a closed 3-manifoldM which cannot beC1

approximated by ones exhibiting infinitely many sinks or sources.

Corollary 5.3. A generic vector field inN1(M) exhibits a finite number of
attractors whose basins of attraction form an open and densesubset of M.

This corollary follows from the no-cycle condition by the classical con-
struction of filtrations adapted to the decomposition of thepositive limit set
of the flow, as the reader can easily see in [186, Chapter 2 & 3].

Using the filtration to isolate the dynamics around each basic piece of
the singular Axiom A decomposition, since the critical elements are ro-
bustly hyperbolic nearby each basic piece (recall that singular-hyperbolicity
is a robust property of the action of the flow on the tangent bundle), we ob-
tain

Corollary 5.4. A Cr singular Axiom A flow without cycles is inG r(M), the
interior of the set of Cr vector fields whose critical elements are hyperbolic,
for any r≥ 1.

We note that there exists a classification by Hayashi [73] of theC1 in-
terior of the set of diffeomorphisms whose periodic points are hyperbolic:
they are Axiom A without cycles.

The corresponding result for vector fields is false since theLorenz at-
tractor is not uniformly hyperbolic. Indeed observe that wecan easily con-
struct a singular Axiom A vector field without cycles and witha singular
basic set equivalent to the Lorenz attractor: just take the geometric Lorenz
attractor constructed in Section 2.3, and embed and extend this flow toS3

with a repelling singularity at the north pole and a sink at the south pole.

Proof of Theorem 5.1:The argument is based on the following result whose
proof we postpone to Section 5.2. Denote byHr(M) the interior of the set
of vector fieldsX ∈ Xr(M) such that every periodic orbit and singularity of
X is hyperbolic, for anyr ≥ 1.

Theorem 5.5.Generic vector fields inH1(M) are singular Axiom A without
cycles.

Following the arguments of Mañé in [110], we can obtain Theorem 5.1
from Theorem 5.5. Indeed, letS1(M) ⊂ X1(M) be the subset ofC1 vector
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fields such that every singularity ofX is hyperbolic. ThenS1(M) is open
and dense inX1(M) by the local stability of hyperbolic critical elements.
ForX ∈S1(M) defineA(X) to be the set of periodic orbits and singularities
of X that are sinks or sources.

The set valued functionX1(M) ∋ X 7→ A(X) ∈ P (M) is lower semicon-
tinuous, again by the local stability of hyperbolic critical elements, where
P (M) denotes the family of compact subsets ofM endowed with the Haus-
dorff distance. Well known topological properties imply that the continuity
pointsO of this map form a residual subset ofS1(M).

This ensures thatevery X∈O not satisfying the first item of Theorem 5.1
is in H1(M).

Indeed forX0 ∈ O with finitely many sinks and sources the setA(X0)
is a finite collection of critical elements ofX0. Assume by contradiction
that X0 6∈ H1(M). Then we can find aC1-near vector fieldY with a non-
hyperbolic critical elementξ. Henceξ is away from a neighborhood of
A(X0). HoweverO ⊂ S1(M) andS1(M) is open, thus we can takeY ∈
S1(M). This guarantees thatξ is not a singularityof Y. Then the return
map to a Poincaré section of the periodic orbitξ has two eigenvalues, one
of which has modulus 1. PerturbingY we can findZ ∈ S1(M) arbitrarily
C1-close toY (and toX0) having either an attracting or repelling periodic
orbit close toξ. This contradicts the continuity of the set mapA(X) atX0.

Now from Theorem 5.5 there exists a residual setR⊂H1(M) such that
every vector field inR is singular Axiom A without cycles. The class

Y =
(
O\H1(M)

)
∪
(
O∩R

)

is residual inX1(M) by construction (recall thatS1(M) is open and dense in
X1(M)). Note that ifX0 ∈ Y does not satisfy the first item of Theorem 5.1,
then X0 ∈ O∩R, sinceX0 cannot belong toO \H1(M) be the previous
claim. This means thatX0 satisfies the second item of the statement of
Theorem 5.1.

5.1 Spectral decomposition

TheSpectral Decomposition Theorem for hyperbolic systemsplays a cen-
tral role in dynamics. It ensures that an attracting hyperbolic set having
dense periodic orbits must be a finite disjoint union of homoclinic classes.
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Here we provide a version of this result in the setting ofsingular-hyperbolic
systems, presented in Section 3. More precisely, we prove that an attracting
singular-hyperbolic set with dense periodic orbits and aunique singularity
is a finite union of transitive sets. Moreover, either the union is disjoint or
the set contains finitely many distinct homoclinic classes.For Cr -generic
flows the union is in fact disjoint.We shall follow [123].

The straightforward extension of the result on finitedisjoint union of
homoclinic classes from uniformly hyperbolic to singular hyperbolic at-
tracting set with a dense subset of periodic orbits is false,as the next coun-
terexample shows.

Consider a modification of the construction of the geometricLorenz
attractor given in Section 2.3, obtained by adding two singularities to the
flow located atWu(σ) as indicated in Figure 5.1. This modification can
be done in such a way that the new flow restricted to the cross section S
has aC∞ invariant stable foliation and the quotient map in the leaf space
is piecewise expanding with a single discontinuityc as in the Lorenz case.
The resulting attracting set can be proved to be a homoclinicclass just as
in the geometrical Lorenz case (see Section 2.3.6. In particular, such a set
is transitive withdense periodic orbitsand is also singular-hyperbolic by
construction. Now glue two copies of this flow along the unstable manifold
of the singularityσ obtaining the flow depicted in Figure 5.2. The resulting
flow can be madeC∞ easily.

S

σ σσ 1 2

Figure 5.1: A modified geometric Lorenz attractor.

In this way we construct an attracting singular-hyperbolicset with dense
periodic orbits and three equilibria which is not thedisjointunion of homo-
clinic classes (although it is the union of two transitive sets). It is possible
to construct a similar counter-example with auniquesingularity, while this
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counterexample hasthreeequilibria. However the construction in this case
is more involved, see [20].

H

H

1

2

Figure 5.2: The counterexample.

The above counterexample shows that dealing with the spectral decom-
position for singular-hyperbolic sets it is possible to obtain afinite union of
transitive setsrather than a finite disjoint union of homoclinic classes. Next
result shows that the former situation always occurs if the attracting set has
only one singularity.

Theorem 5.6. An attracting singular-hyperbolic set with dense periodic
orbits and a unique singularity is a finite union of transitive sets.

Proof. Split Λ into finitely many connected components. On the one hand
such components are clearly attracting with dense periodicorbits and the
non-singular ones are hyperbolic, hence transitive, by theSpectral Theorem
for uniformly hyperbolic sets, see e.g. [190]. On the other hand, the singular
component satisfies the conditions of Theorem 3.62. Hence this component
is either transitive of the union of two homoclinic classes,which are transi-
tive sets. ThereforeΛ, which is the union of its connected components, is a
finite union of transitive sets.

Note that by a result of Morales [128]every transitive set of a flow
Y, close toX, contained in the isolating neighborhood U of a singular-
hyperbolic attractorΛ of X must contain a singularity.Therefore, since
compact invariant subsets inΛ not containing singularities are hyperbolic
and admit a spectral decomposition, and the number of singularities inU
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is finite, theω-limit set inU for Y has finitely many transitive pieces only,
all of which are singular.Hence near a singular-hyperbolic attractor the
number of transitive pieces is robustly finite.

It is natural to ask whether the union in Theorem 5.6 is disjoint. Re-
call that a vector field isKupka-Smaleif all its closed orbits are hyperbolic
and their associated invariant manifolds are in general position, see Sec-
tion 1.3.6.

Theorem 5.7. An attracting singular-hyperbolic set, with dense periodic
orbits and a unique singularity, of a Kupka-Smale vector field is a finite
disjointunion of transitive sets.

Proof. Let X be a Kupka-Smale vector field in a compact 3-manifold andΛ
be an attracting singular-hyperbolic set ofX with dense periodic orbits and
a unique singularityσ. It suffices to prove that the connected component of
Λ containing the singularityσ is transitive. By contradiction, suppose that
this is not so.

On the one hand, by Theorem 3.68, we obtain a regular pointa in the
unstable manifoldWu(σ) of σ such thatω(a) is a periodic orbitO (p). On
the other hand, the unstable manifoldWu(σ) is one-dimensional, so the vec-
tor field exhibits a non-transverse intersection betweenWu(σ) andWs(p),
contradicting the choice ofX in the Kupka-Smale class.

Theorem 5.7 implies that the union in Theorem 5.6 is disjointfor most
vector fields on closed 3-manifolds. Denote byRr(M) the subset of all
vector fieldsX ∈ Xr(M) for which every attracting singular-hyperbolic set
with dense periodic orbits and a unique singularity ofX is a finitedisjoint
union of transitive sets. StandardC1-generic arguments (see e.g. [34]) im-
ply thatRr(M) is residual inXr(M) whenr = 1. The following corollary
proves this assertion for allr ≥ 1. The proof combines Theorem 5.7 with
the classical Kupka-Smale Theorem (see e.g. [143]).

Corollary 5.8. The classRr(M) is residual inXr(M) for every r≥ 1.

Now consider the complement ofRr(M). For a compact invariant sub-
setΛ of a vector fieldX define the familyC (Λ) of homoclinic classes con-
tained inΛ. Note that ifΛ is hyperbolic thenC (Λ) is finite. We are able
to give sufficient conditions for finiteness ofC (Λ) whenΛ is a singular-
hyperbolic set.
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Theorem 5.9. Let Λ be an attracting singular-hyperbolic set with dense
periodic orbits and a unique singularity of X∈ Xr(M). If Λ is not a dis-
joint union of transitive sets, thenC (Λ) contains finitely many homoclinic
classes only.

Theorem 5.6 applies to the class of singular-hyperbolic vector fields
introduced by Bautista in [22]. A vector fieldX is singular-hyperbolicif
its non-wandering setΩ(X) has dense critical elements and ifA(X) denotes
the union of the attracting and repelling closed orbits, then there is adisjoint
union

Ω(X)\A(X) = Ω1(X)∪Ω2(X),

whereΩ1(X) is a singular-hyperbolic set forX andΩ2(X) is a singular-
hyperbolic set for−X.

The class of singular-hyperbolic vector fields contains theAxiom A
vector fields (uniformly hyperbolic) and the singular AxiomA example
resembling the geometric Lorenz attractor, described after Corollary 5.4.
An example of a singular-hyperbolic vector field inS3 which is not Kupka-
Smale can be derived from the example described in Figure 5.1, just weaken
the contraction any one of the pair of saddle singularities which are accu-
mulated by regular orbits only on one side. The following is adirect con-
sequence of Theorems 5.6 and 5.7.

Corollary 5.10. Let X be a singular-hyperbolic vector fieldwith a unique
singularity on a compact3-manifold. If Ω1(X) is attracting andΩ2(X)
is repelling, thenΩ(X) is a finite union of transitive sets. If X is Kupka-
Smale, then such an union is disjoint. In particular, the union is disjoint for
a residual subset of vector fields inXr(M), r ≥ 1.

An example of a singular-hyperbolic vector field inS3 satisfying the
conditions of Corollary 5.10, without sinks nor sources, was described just
before the statement of Corollary 5.2.

The extension of these results to general singular-hyperbolic attracting
sets, with several singularities, is still work in progress.

Proof of Theorem 5.9.Suppose thatΛ is not a disjoint union of transitive
sets. SplitΛ into finitely many connected components as before. It suffices
to prove that theC (Λ′) contains finitely many homoclinic classes for all
connected componentsΛ′ of Λ. On the one hand, for non-singularΛ′ we
have nothing to prove, sinceΛ′ is uniformly hyperbolic by Proposition 3.9.
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On the other hand, the singular connected componentΛ0 must contain
Wu(σ) (since it is connected), andWu(σ) has two connected components.
Choose pointsa,a′ in each one. Observe thatΛ0 must not be transitive by
the assumptions onΛ. Then by Theorem 3.68 there are periodic orbits such
that ω(a) = O (a) andω(a′) = O (a′). By contradiction assume that there
are infinitely many distinct homoclinic classes inΛ0.

Then there exists an infinite sequence of pairwise distinct periodic or-
bitsOn ⊂ Λ0 and an infinite sequencezn ∈ On, so the setA=∪nH(zn) must
containσ. For otherwiseA ⊂ Λ0 \ {σ} is uniformly hyperbolic and the
number of homoclinic classes would be finite.

Consider thenxn ∈ On such thatxn −−−−→
n→+∞

σ. Sincexn is not σ the

accumulation onσ and the flow boxes nearσ show that the orbitOn accu-
mulates also eithera or a′. Without loss of generality, assume the former
case is true.

SinceωX(a) = O (p) andOn accumulates ata, we can findz′n ∈ On

passing close toO as indicated in Figure 5.3.

Wu,+

z′n

a′0a

zn

σa′

On

O

Figure 5.3: The accumulation on one of the components ofWs(σ).

By the Inclination-Lemma we can assume thatz′n converges to a point
either in one componentWs,+ of Ws(O ) \ O , or in the other component
Ws,−. Again suppose we are in the former case. By Lemma 3.67 and the
Inclination Lemma we get thatz′n ∈Wu,+ = H+. But thenH(z′n) = H(x) =
H(zn) = H+ for infinitely manyn (since Theorem 1.12 ensures that every
homoclinic class contains a dense subset of periodic orbits, all of which
homoclinically related).

This contradicts the choice ofzn.
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5.2 A dichotomy for C1-generic3-flows

Here we present a proof of Theorem 5.5. We use the auxiliary Theo-
rems 5.11 and 5.12 below. Recall the definition and properties of Lyapunov
stable sets in Section 1.3.6.

The first theorem ensures that transitive Lyapunov stable sets containing
singularities, if not equal to a critical element, areC1-generically singular-
hyperbolic sets.

Theorem 5.11.For generic vector fields X∈X1(M), every nontrivial tran-
sitive Lyapunov stable set with singularities of X is singular-hyperbolic.

The second result provides a way to obtain a singular-hyperbolic attrac-
tor from a singularity belonging to a Lyapunov stable set of ageneric three-
dimensional vector field. Together with the previous results, it asserts that
the unstable manifold of a singularity accumulates on a singular-hyperbolic
set containing the singularity.

Theorem 5.12. Every Lyapunov stable singular-hyperbolic set with dense
singular unstable branches of X∈ X1(M) is an attractor of X.

Here we say that a singular-hyperbolic setΛ hasdense singular unsta-
ble branchesif Λ = ω(x) for all x∈Wu(σ)\{σ} and for every singularity
σ ∈ Λ.

Now we explain how Theorem 5.5 is a consequence of Theorems 5.11
and 5.12. For that we need some preliminary results. The firstone gives a
sufficient condition for a transitive Lyapunov stable set with singularities to
have singular unstable branches.

Lemma 5.13. For generic vector fields X∈ X1(M), a transitive Lyapunov
stable set with singularitiesΛ of X, such that the unstable manifold of every
singularity inΛ is one-dimensional, has dense singular unstable branches.

Proof. Generically we can assume thatX ∈ X1(M) satisfies the properties
presented in Section 1.3.6 (in particularX is Kupka-Smale). LetΛ be a
transitive Lyapunov stable set ofX, σ a singularity ofΛ andq ∈ Wu(σ) \
{σ}.

On the one hand, sinceΛ is Lyapunov stable we haveWu(σ)⊂Λ and in
particularω(q) ⊂ Λ. On the other hand, we have that dim

(
Wu(σ)

)
= 1 by

assumption. Thenω(q) is Lyapunov stable by Property L5 in Section 1.3.6.
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But Λ is transitive by construction and intersectsω(q), so by Lemma 1.14
we haveΛ ⊂ ω(q). Then ω(q) = Λ and Λ has dense singular unstable
branches as desired.

The next one shows that the closure of the unstable manifold of a singu-
larity accumulated by periodic orbits is transitive, provided that the unstable
manifold is one-dimensional and its closure is Lyapunov stable.

Lemma 5.14. Let X∈ X1(M) andσ ∈ S(X)∩Per(X) be such that Wu(σ)
is one-dimensional andω(q) is Lyapunov stable for every q in any of the
branches of Wu

X(σ)\{σ}. ThenWu(σ) is transitive.

Proof. We have thatWu
X(σ)\{σ}= O (q1)∪O (q2) for everyq1,q2 belong-

ing to different connected components ofWu(σ)\{σ}.
On the one hand, sinceσ ∈ Per(X) we can assume thatq1 ∈ Per(X)

without loss of generality. Thenω(q1) ⊂ Per(X) by invariance. On the
other hand,ω(q1) is Lyapunov stable forX by assumption. These two
properties imply thatσ ∈ ω(q1), since forpn ∈ Per(X) with pn −−−−→

n→+∞
q1

we also haveXtn(pn) → σ for some sequencetn > 0, and we can apply
Lemma 1.14.

ThereforeWu(σ) ⊂ ω(q1) by the Lyapunov stability ofω(q1) once
more. ButWu(σ) ⊃ ω(q1) by construction, so we conclude thatWu(σ) =
ω(q1). This shows thatWu(σ) is transitive.

Using this we now show that any hyperbolic singularity accumulated
by regular orbits ofX is in a singular-hyperbolic attractor or repeller of the
flow induced byX.

Theorem 5.15. For generic X∈ X1(M) everyσ ∈ S(X)∩Per(X) belongs
to a singular-hyperbolic attractor or a singular hyperbolic repeller.

Proof. Let X ∈ X1(M) andσ be as in the statement. SinceX is generic we
can assume thatσ is hyperbolic. Note thatσ must be of saddle-type, for
otherwiseσ is either a sink or a source, and in any case no periodic orbit
would approachσ. Hence eitherWu(σ0) or Ws(σ0) is one-dimensional.

Suppose the former case is true. The latter case is the same for −X.
DefineΛ =Wu(σ). Property L3 in Section 1.3.6 implies thatΛ is Lyapunov
stable forX becauseX is generic. Property L5 then guarantees we are in
the setting of Lemma 5.14 and soΛ is transitive.
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ThereforeΛ is a nontrivial transitive Lyapunov stable set ofX. As X
is generic, Theorem 5.11 ensures thatΛ is singular-hyperbolic. By The-
orem 3.5 we have that every singularity inΛ has one-dimensional unsta-
ble manifold. We conclude thatΛ has dense singular unstable branches
by Lemma 5.13, sinceX is generic. ThenΛ is an attractor by Theo-
rem 5.12.

Now we have the tools to complete the proof of Theorem 5.5 using all
the previous results which assume Theorems 5.11 and 5.12.

Proof of Theorem 5.5:For X ∈ X1(M) denote byS∗(X) = S(X)∩Per(X)
the (finite) set{σ1, . . . ,σk} of singularities accumulated by periodic orbits
of X.

Theorem 5.15 ensures that for genericX ∈ X1(M) and for everyi =
1, · · · ,k there is a compact invariant setΛi of X such thatσi ∈ Λi andΛi is
either a singular-hyperbolic attractor or a singular-hyperbolic repeller ofX.

We claim thatH∗ = Ω(X)\∪k
i=1Λi is a finite disjoint union of uniformly

hyperbolic basic sets. IndeedH∗\S(X) is closed inM, for otherwise we can
find a sequence of regular pointsxn in H∗ converging to some singularity
σ ∈ S(X)\S∗(X). But Property L2 gives thatΩ(X) = Per(X)∪S(X), soσ
is accumulated by periodic orbits becauseS(X) is finite. HenceH∗ \S(X)
is a closed invariant subset ofX without singularities. It is known, after
Wen [205], thatC1 generically such sets are uniformly hyperbolic. Prop-
erty L2 again ensures thatH∗ = Per(X)∩H∗∪S(X)\S∗(X). The Spectral
Decomposition Theorem for uniformly hyperbolic sets now guarantees that
H∗ decomposes in finitely many basic pieces, together with finitely many
singularities.

From this we have thatΩ(X) splits into a disjoint union of compact
invariant sets each one being either a hyperbolic basic set or a singular-
hyperbolic attractor, or a singular-hyperbolic repeller.HenceX is a sin-
gular Axiom A vector field. For genericX we can also assume that the
vector field is Kupka-Smale, thus there are no cycles betweenthe transitive
pieces in the above decomposition. The proof of Theorem 5.5 is complete
depending on Theorems 5.11 and 5.12.

Proof of Theorem 5.11:Recall that there exists a residual subsetO of the
family S1(M) of vector fields whose singularities are hyperbolic, such that
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the mapX ∈ S1(M) 7→ A(X) restricted toO is continuous (see the ar-
guments after the statement of Theorem 5.5 on page 241). Define R =
O∩H1(M) which is residual inH1(M).

Given X ∈ R andσ ∈ S(X)∩Λ for a non-trivial attractorΛ, observe
that every vector fieldY sufficientlyC1-close toX has no sources nor sinks
nearbyΛ, for otherwise we deduce a contradiction with the choice ofX
in the continuity setO. All the critical elements ofY are also hyperbolic.
ThenY is in the setting of Theorem 1.8, thus the Linear Poincaré Flow
over Λ \S(X) is robustly dominated. This means thatΛ is in the setting
of Lemmas 3.22 and 3.28. Thus we have thatfor X ∈ R , if σ ∈ S(X)
belongs to a non-trivial attractorΛ of X, thenσ is Lorenz-like for X and
Wss(σ)∩Λ = {σ}.

Now letX ∈ R have a non-trivial transitive Lyapunov stable setΛ con-
taining a singularity. The previous arguments ensure thatΛ is in the setting
of Theorem 3.30, henceΛ is a singular-hyperbolic attractor.

Proof of Theorem 5.12:We need the following sufficient condition for a
Lyapunov stable singular-hyperbolic set, with dense singular unstable bran-
ches, to be an attractor.

Lemma 5.16. Let Λ be a Lyapunov stable singular-hyperbolic set with
dense singular unstable branches of X∈ Xr(M), r ≥ 1. If Λ admits an
adapted cross-sectionΣ such that every point in the interior ofΣ belongs
to the stable leaf of some point ofΛ∩Σ, thenΛ is an attractor.

Proof. From Lemma 1.15 it is enough to prove that ifxn is a sequence
converging to some pointp∈ Λ, thenω(xn) is contained inΛ for every big
enoughn. Now ω(p) satisfies one of the following alternatives.

1. ω(p) contains a singularityσ of Λ.

The orbits ofxn will have σ has an accumulation point. Hence the
orbit of xn also accumulates on some regular pointq of the unstable
manifold of σ. Sinceω(q) = Λ by assumption, we have that for
every big enoughn the orbit ofxn crosses the interior ofΣ. Then by
the assumption onΣ we gety ∈ Λ such thatO (xn) ⊂ Ws(y), that is
ω(xn) ⊂ Λ for all sufficiently bign.

2. ω(p) is far from singularities.
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TakeSan adapted cross-section to a pointq of ω(p). Then for all big
enoughn the orbit ofxn crosses the interior ofSat some pointx′n very
close toq. Sinceω(p) is uniformly hyperbolic by Proposition 3.9,
the unstable manifold ofq is well defined andWu(q)∩S is a line in
S crossing all stable manifolds ofS in a neighborhood ofq. Then
x′n belongs to some of these stable lines. SinceWu(q) is insideΛ by
Lyapunov stability, we see thatxn belongs to the stable manifold of
some point ofΛ. Againω(xn) ⊂ Λ for all sufficiently bign.

Now suppose thatΛ is not an attractor. Then by Lemma 5.16 given any
regular pointx∈ Λ we can find an adapted-cross sectionΣ′ such that the in-
tersectionΛ∩Σ′ is contained in the interior ofΣ. Indeed,Σ∩Λ containsz0

such thatWs(z0,Σ) does not touchΛ, and then one of the connected compo-
nents ofΣ\Ws(z0,Σ), which is also an adapted cross-section containingx,
containsz1 such thatWs(z1,Σ)∩Λ = /0. The substripΣ′ betweenWs(z0,Σ)
andWs(z1,Σ) only intersectsΛ in its interior.

CoverΛ by finitely many flow boxes near singularities and tubular flow
boxes through adapted cross-sections, around regular pieces ofΛ, just as in
Chapter 4, but with the familyΞ of adapted-cross sections chosen so that
Λ∩Ξ ⊂ int(Ξ).

Observe that sinceΛ is Lyapunov stable, we can find a neighborhood
U of Λ such thatU ∩Ξ ⊂ int(Ξ) and then another neighborhoodV ⊂U of
Λ satisfyingXt(V) ⊂U for all t > 0. Then the Poincaré mapR defined as
in Section 3.4.1 between the sections ofΞ admits only finitely many dis-
continuity points, at the intersection ofΞ with a compact part of the stable
manifolds of the singularities ofΛ, since its image cannot touch the bound-
ary of Ξ. We can choose the “waiting timet2” of R so that the expansion
rate on center-unstable cones is at least 4.

Let Ξ∗ be the the subset of ingoing cross-sections near singularities of
Ξ. Fix a pointx0 ∈ Λ∩Ξ∗ \∪

{
Ws(σ) : σ ∈ S(X)∩Λ

}
and a connectedcu-

curveγ0 insideΞ∗ throughx0 not touching the lines of intersection ofΞ∗

with the local stable manifold of the singularities. The image curveRi(γ1),
for i > 0, is well defined until it returns toΞ∗, because the image ofR does
not fall outside of int(Ξ). Let γ2 be the next return toΞ∗. Then its length
ℓ(γ2) is at least 4· ℓ(γ1).

The image ofγ2 is well defined except perhaps atγ2∩Ws
loc(σ) for some

singularityσ of Λ. In this case we replaceγ2 by the lengthiest connected
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component ofγ2\Ws
loc(σ). Thenℓ(γ2) ≥ 2· ℓ(γ1).

Inductively we obtain a sequenceγn, n≥ 1 of larger and largercu-curves
in the interiorΞ∗, which is a finite collection of bounded cross-sections.
Since thecu-curves cannot be tangent to the stable foliation, and so cannot
curl insideΞ, this is impossible.

This contradiction shows thatΛ must be an attractor and concludes the
proof of Theorem 5.12.
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Chapter 6

Related results and recent
developments

Here we present other related results about three-dimensional flows and
some recent developments.

6.1 Lorenz-like attractors through the unfold-
ing of singular cycles

It is natural to investigate whether an attractor resembling the Lorenz at-
tractor can be obtained as a result of a bifurcation of a singular cycle of a
given vector field.

Rychlik and Robinson studied the existence of Lorenz-like attractors in
generic unfoldings of resonant double homoclinic loops, for flows in di-
mension three, in a series of works [184, 174, 175, 176]. Rychlik starts
with a vector field with a Lorenz-like singularityσ with a connection be-
tween both branches of the unstable manifold ofσ and the bidimensional
stable manifold ofσ, such that the singular cycle obtained is ofinclination-
flip type, see Section 2.2.2. Robinson considers a resonant connection, that
is, the eigenvalues atσ areλ2 < λ3 < 0 < λ1 but λ3 + λ1 = 0, that is, the
singularity neither expands nor contracts volume in the central-unstable di-
rection. In the setting of axially-symmetric vector fields,both cases are

254
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co-dimension two bifurcations.
Similarly Ushiki, Oka, Kokubu [200] and Dumortier, Kokubu,Oka [57]

show that Lorenz-like attractor occur in the unfolding of local bifurcation
of certain degenerate singularities. Analogously Bamón in [19] obtains
attractor resembling the Lorenz attractor in higher dimensions unfolding
cycles associated to degenerate singularities.

An extension of the results of Robinson, in dimension 3, was obtained
in [134].

6.2 Contracting Lorenz-like attractors

Rovella [140, 179] presented a parametrized model similar to the geometric
Lorenz model described in Section 2.3 which exhibits an attractor for a
positive Lebesgue measure subset of the parameter space. This attractor
contains a singularity with three real eigenvaluesλ2 < λ3 < 0 < λ1 but,
unlike a Lorenz-like singularity, we haveλ1 < −λ3, that is, the central-
unstable direction at the singularity isvolume contracting.

This construction is very similar to the geometric Lorenz model, amount-
ing essentially to replace the one-dimensional mapf , whose graph is pre-
sented in Figure 2.25 on page 76 and obtained through projecting along
the contracting foliation, by the mapg whose graph can be any of the ones
sketched in Figure 6.1.

Figure 6.1: The one-dimensional map for the contracting Lorenz model

The parameters of these maps describe the vertical coordinates of the
critical points of each branch of continuity of the maps in Figure 6.1.
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Metzger in [116, 115] proved the existence of a physical measure and
its stability for the contracting Lorenz model. More recently Metzger and
Morales, in [117], showed that the contracting Lorenz attractor is also a
homoclinic class.

6.2.1 Contracting Lorenz-like attractors through the un-
folding of singular cycles

Recently in [135] the authors proved that, similarly to the (expanding)
geometric Lorenz attractors, contracting Lorenz-like attractors can be ob-
tained unfolding a resonant double homoclinic connection with acontract-
ing Lorenz-like singularityσ, i.e. the eigenvalues areλ2 < λ3 < 0< λ1 with
λ3 +λ1 < 0, see Figure 6.2.

Figure 6.2: A double homoclinic connection

Note that contracting Lorenz-like attractors persist onlyin a measure
theoretical sense. In this setting the authors prove the existence of non-
degenerate two-parameter family of vector fields generically unfolding the
singular cycle described above, which admits a positive Lebesgue measure
subset of parameters such that the corresponding flow exhibits a contracting
Lorenz-like attractor.

6.3 More on singular-hyperbolicity

Vivier, in [203], extended the results of Doering [53] to higher dimensions,
showing that aC1 robustly transitive vector field on a compact boundaryless
n-manifold, withn ≥ 3, does not have any singularity. Note that Doering
was able to prove, for 3-manifolds, that such vector fields are Anosov. Sim-
ilarly Vivier showed that, forn-dimensional manifolds, robustly transitive
vector fields admit a global dominated splitting.
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6.3.1 Attractors that resemble the Lorenz attractor

In Chapter 3 we presented several results showing that everyrobust attractor
of a 3-flow containing equilibria looks like a geometric Lorenz attractor.

Shil’nikov and Turaev, in [199], present an example of a 4-dimensional
quasi-attractor and study its perturbations. The quasi-attractor is pseudo-
hyperbolic, contains a singularity with a complex eigenvalue and can not
be destroyed by small perturbations of the system.

Lorenz, in [104], reports a careful numerical study of what seems to
be a strange (chaotic) attractor in four dimensions for a system of 2-degree
polynomial equations. Rovella in [179] proves existence and persistence
of contracting Lorenz attractors, that is, with the contracting eigenvalue
condition−λ3 > λ1, see the following Section 6.2.

In [84] the authors prove that certain parametrized families of one-
dimensional maps with infinitely many critical points exhibit global chaotic
behavior in a persistent way. Later in [10] it was proved thatthese maps
have a unique physical (absolutely continuous) measure which varies con-
tinuously in the space of parameters with very nice statistical properties.
An application of the methods developed in these works yields a proof of
existence and even persistence of global spiral attractorsfor smooth flows
in three dimensions, to be given in [49].

In [150] Pesin proposed abstract models for attractors withsingularities,
called generalized hyperbolic attractors, and studied their properties.

Bonatti, Pumarĩno and Viana, in [35], construct a multidimensional
Lorenz-like attractor that isC1-robust and contains a singularity with at
least two positive eigenvalues. Their construction works in dimensions
greater or equal to 5. They also obtain a physical measure forthese at-
tractors for an open set of flows in theC∞ topology.

More recently Metzger and Morales [114] introduced the class of sec-
tionally hyperbolic vector fieldson n-manifolds containing the singular-
hyperbolic systems on 3-manifolds, the multidimensional Lorenz attractors
of [35] and theC1 robustly transitive sets in Li, Gan and Wen [96].

An attractorΛ of a vector fieldX is sectionally hyperbolic, if there
exists a splittingEs

Λ ⊕Ecu
Λ of the tangent bundle ofΛ which is partial hy-

perbolic and the central-unstable bundle is 2-sectionally volume expanding,
i.e. there areK,λ > 0 such that for everyx∈ Λ and for every bidimensional
planeL contained inEcu

x one has
∣∣det(DXt | L)

∣∣≥ Keλt for all t > 0.
Moreover in [114] the authors show that if an attractorΛ is C1 robustly
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transitive and

• strongly homogeneous, i.e. every hyperbolic periodic orbit of ev-
eryCr nearby vector field has the same index, that is, the dimension
of their stable manifold is constant on a neighborhood of thevector
field;

then all singularities ofΛ are hyperbolic andΛ is sectionally-hyperbolic.

6.3.2 Topological dynamics

Some aspects of the topological dynamics of the geometric model were
studied by Komuro in [90, 91], where it was proved that most geometrical
Lorenz attractors do not have the shadowing property, and their expansive
properties are investigated. In [89] the author finds a topological invariant
for the Lorenz attractor allowing him to exhibit an uncountable number of
non-homeomorphic Lorenz attractors in the unfolding of a certain homo-
clinic loop. In [28] the knot type of the geometric model is analyzed, and
in [61] the Lorenz attractor is used to investigate the existence of flows re-
alizing all links and knots as periodic orbits in 3-manifolds and an explicit
ordinary differential equation with such properties is exhibited. The reader
is advised to consult the survey [153].

Morales in [128] shows that a vector fieldY which is C1 close to a
given oneX in a 3-manifold exhibiting a singular-hyperbolic attractor Λ
must have at least one singularity, and the number of attractors ofY nearΛ
is bounded above by the number of singularities ofX in Λ.

Bautista showed in [21] that the geometric Lorenz model is a homo-
clinic class and, together with Morales, proved in [23] thatevery singular-
hyperbolic attractor admits a (hyperbolic) periodic orbit.

Arroyo and Hertz, in [16], have advanced a significant step towards
an affirmative answer to the Palis Conjecture, see Section 1.5. They show
that anyC1 vector field on a compact 3-manifold can be approximated by
another one showing one of the following phenomena:

• uniform hyperbolicity with the non-cycle condition,

• a homoclinic tangency, or

• a singular cycle.
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Arroyo and Pujals, in [15], show that a singular-hyperbolicattractor has
a dense set of periodic orbits and is the homoclinic class associated to one
of this orbits. These results show that singular-hyperbolic attractors do play
the same role as the basic pieces of Smale’s Spectral Decomposition. They
also provide a criterion forC1 robustness of singular-hyperbolic attractors
which depends only on the attractor.

6.3.3 Dimension theory, ergodic and statistical properties

Afraimovich and Pesin in [2] investigate the dimensional properties of “tri-
angular maps” which are a class of maps generalizing the Poicaŕe first re-
turn mapP of the geometric Lorenz model.

Concerning fractal dimensions of Lorenz attractors we mention the re-
sults of Leonov [94, 95] together with Bouichenko [32]. The first con-
tains explicit formulas for the Lyapunov dimension of the Lorenz attractor
and in the second a simple upper bound on the Hausdorff dimension of
Lorenz attractors is given in terms of the parameters of the Lorenz systems
of equations (1.1). In [127] Morales shows that every (nontrivial) compact
invariant subset of a transitive singular set containing a singularity is one-
dimensional, extending a similar result of Bowen in [36] in the setting of
uniform hyperbolic flows.

Statistical and ergodic properties of the geometrical model were inves-
tigated, among others, by the authors together with Pujals and Viana [11]
and Colmenarez [47], which are contained in Section 4.2.

In [211] Young shows that the geometrical Lorenz attractor can be ap-
proximated by horseshoes with entropy close to that of the Lorenz attractor.

The construction of the geometric Lorenz models forces the divergence
of the vector field to be strictly negative in a isolating neighborhood of
the attractor. This feature is also present in the Lorenz system of equa-
tions (1.1) for the classical parameters. It is then trivialto show that the
corresponding attractor has zero volume. Recently it was proved [4] that
singular-hyperbolic attractors always have zero volume for flows which are
Hölder-C1, although there is no volume dissipative condition on the defini-
tion of singular-hyperbolicity.
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6.4 Decay of correlations

After obtaining an interesting invariant probability measure for a dynami-
cal system the next thing to do is to study the properties of this measure.
Besides ergodicity there are various degrees of mixing (seee.g.[204, 107]).

Given a flowX and an invariant ergodic probability measureµ, we say
that the system(X,µ) is mixing if for any two measurable setsA,B

µ
(
A∩X−tB

)
−−→
t→∞

µ(A) ·µ(B) (6.1)

or equivalently
Z

ϕ ·
(
ψ◦Xt)dµ−−→

t→∞

Z

ϕdµ
Z

ψdµ

for any pairϕ,ψ : M → R of continuous functions.
Consideringϕ,ψ◦Xt : M →R as random variables over the probability

space(M,µ), this definition just says that “the random variablesϕ,ψ ◦Xt

are asymptotically independent” since the expected valueE
(
ϕ · (ψ ◦Xt)

)

tends to the productE(ϕ) ·E(ψ) whent goes to infinity. Thecorrelation
function

Ct(ϕ,ψ) =
∣∣E
(
ϕ · (ψ◦Xt)

)
−E(ϕ) ·E(ψ)

∣∣

=
∣∣∣
Z

ϕ ·
(
ψ◦Xt)dµ−

Z

ϕdµ
Z

ψdµ
∣∣∣ (6.2)

satisfies in this caseCt(ϕ,ψ) −−→
t→∞

0. Therate of approach to zero of the

correlation functionis calledthe rate of decay of correlationsfor the ob-
servablesϕ,ψ of the system(X,µ).

The study of decay of correlations for hyperbolic systems goes back
to the work of Sinai [188] and Ruelle [182]. Many results wereobtained
for transformations. For a diffeomorphismf the notion of decay of cor-
relations is the same as above exchangingXt by f n and lettingn go to
infinity. Since [37, 182] it is known that thephysical(SRB) measures for
Axiom A diffeomorphismsare mixing and haveexponential decay of cor-
relations, that is there exists a constantα ∈ (0,1) such that givenϕ,ψ there
is C = C(ϕ,ψ) > 0 such that

Cn(ϕ,ψ) ≤C ·e−αn for all n≥ 1, (6.3)
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for a suitable class of continuous functionsM → R, in this case the Ḧolder
continuous functions.

In more general cases for smooth endomorphisms (see e.g. [79, 6] and
references therein) where the inverse in (6.1) is to be takenas the inverse
image of f n, it is possible to have slower rates of decay.

In contrast to the results available in the case of discrete dynamical
systems, obtaining the rate of decay of correlations for flows seems to be
much more complex and some results have been established forAnosov
flows only recently. Ergodicity and mixing for geodesic flowson manifolds
of negative curvature are known since the early half of the XXth century
[81, 9, 187].

The proof of exponential decay of correlations for geodesicflows on
manifolds of constant negative curvature was first obtainedin two [45, 121,
169] and three dimensions [159] through group theoretical arguments.

6.4.1 Non-mixing flows and slow decay of correlations

Let f : M → M be a diffeomorphism with an invariant probability measure
µ and consider the suspension flowXf over f with constant roof function
r ≡ 1. Then the probability measureν = µ×Leb onM× [0,1) defines in a
straightforward way aXf -invariant probability measure onXr which is NOT
mixing, whateverf may be.

Indeed considerA = π
(
M × [0,1/2)

)
and B = Mr \A (recall thatπ :

M ×R → Xr is the projection defined in Section 1.2.1 on page 15). Then
the functiont 7→ ν

(
A∩X−tB

)
for t > 0 has the graph in Figure 6.3 (here

X−t is a shorthand for(Xt)−1, the inverse image of the mapXt ).

1

10 2 3 t

Figure 6.3: A correlation function for a non-mixing flow

This system is clearlynot mixing since the sawtooth pattern in Fig-
ure 6.3 goes on for all positivet. Moreover this shows in particular that
this suspension flow is not even topologically mixing (see below for the
definition).
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However if(X, f ,µ) is ergodic, thenν is Xf -ergodic also: indeed, given
A⊂ Xr such that(Xt

f )
−1(A) = A for all t > 0 (anXf -invariant set), thenA

is saturated, i.e.p∈ A if, and only if,OXf (p) ⊂ A; thus we may find̂A⊂ X

such thatA∩π(X×{0}) = π(Â) is X1
f -invariant by construction (because

r ≡ 1), Â is f -invariant andν(A) = µ(Â) ·Leb([0,1)). Henceµ(Â) ·µ(X \
Â) = 0 by the ergodicity of( f ,µ) which impliesν(A) ·ν(Xr \A) = 0.

In addition to the examples of non-mixing suspension flows, which ar-
guably can be characterized as very particular cases, not all Axiom A mix-
ing flows have exponential decay of correlations: Ruelle [183] and Pollicott
[158] exhibited suspensions with piecewise constant ceiling functions with
arbitrarily slow decay rates.

Anosov [8] showed that geodesic flows for negatively curved compact
Riemannian manifolds are mixing and obtained theAnosov alternative:
given a transitive volume preserving Anosov flow, either it is mixing (with
respect to the volume measure), or a suspension of an Anosov diffeomor-
phisms by a constant roof function. Note that Bowen [38] showed that if a
mixing Anosov flow is the suspension of an Anosov diffeomorphism then
it is stably mixing, that is, the mixing property remains true for all nearby
flows (which are Anosov also by the structural stability of Axiom A flows).

Bowen also showed [38] that the class ofCr Axiom A flows, r ≥ 1,
admits a residual subsetR such that for everyX ∈ R the spectral decom-
position ofΩ(X) is formed by pairwise disjoint piecesΩ1∪ ·· · ∪Ωk each
of which is topologically mixing. That is, given any pair of open setsU,V
in Ωi , there existsT0 = T0(U,V) > 0 such thatU ∩Xt(V) 6= /0 for all t > T0.

6.4.2 Decay of correlations for flows

Chernov [43] provided a dynamical proof showing sub-exponential decay
of correlations for geodesic flows on surfaces of variable negative curvature
through a suitable stochastic approximation of the flow (seealso [100] for
a generalization and previous results [45]).

Much more recently a breakthrough was obtained by Dolgopyat[54,
55, 56]: smooth (Cr with r ≥ 7) geodesic flows on manifolds of negative
curvature, under a non-integrability condition exhibit exponential decay of
correlations. Also Liverani [101] building on the work [54]obtained expo-
nential decay of correlations forC4 contact Anosov flows.

Using these ideas applied to the particular case of a suspension over
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uniformly expanding base dynamics, a conjecture of Ruelle was proved by
Pollicott [160]: on a mild (cohomological) condition on theceiling func-
tion, the decay of correlations for this type of suspension flows is expo-
nential for observables not supported on the base. This was extended by
Baladi-Valĺee [18] clarifying the assumptions on the base and on the ceil-
ing function which suffice to obtain exponential decay of correlations for
suspension of one-dimensional expanding maps and all theseideas were
used in a more abstract setting by Avila-Gouezel-Yoccoz [17] to obtain ex-
ponential decay of correlations for the Teichmüller flow on flat surfaces.

Recently Field-Melbourne-T̈orok obtained [59] what they callstability
of rapid mixingamong Axiom A flows, meaning that the correlation func-
tion Ct(ϕ,ψ) decays to zero faster thant−k for all k∈ N whent → ∞, for a
C2-open andCr -dense set of flows among the family ofCr Axiom A flows
with r ≥ 2.

Luzzatto, Melbourne and Paccaut [105] showed that the physical mea-
sure for the geometric Lorenz flow is mixing. The speed of mixing for the
Lorenz flow is still an open problem.

6.5 Generic conservative flows in dimension3

Conservative flows are a traditional object of study from Classical Mechan-
ics, see e.g. [14]. These flows preserve a volume form on the ambient mani-
fold and thus come equipped with a natural invariant measure. On compact
manifolds this provides an invariant probability giving positive measure
(volume) to all open subsets. Therefore for vector fields in this class we
haveΩ(X) = M by the Recurrence Theorem. In particular such flows can-
not have Lyapunov stable sets, either forX or for−X.

Let Xr
ω(M) be the space ofCr vector fields defining flows which pre-

serve the volume formω on M, for any r ≥ 1. It is natural to study these
flows under the measure theoretic point of view, besides the geometrical
one.

The device of Poincaré sections has been used extensively in the pre-
vious chapters to reduce several problems arising naturally in the setting
of flows to lower dimensional questions about the behavior ofa trans-
formation. In the opposite direction, recent breakthroughs on the under-
standing of generic volume preserving diffeomorphisms on surfaces have
non-trivial consequences for the dynamics of generic conservative flows on
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three-dimensional manifolds.
The Bochi-Mãné Theorem [29] asserts that, for aC1 residual subset of

area preserving diffeomorphisms, either we the transformation is Anosov,
or the Lyapunov exponents are zero Lebesgue almost everywhere. This
was announced by Mañé in [111] but only a sketch of a proof was avail-
able [112]. The complete proof presented by Jairo Bochi admits extensions
to higher dimensions, obtained by Bochi and Viana in [31], stating in par-
ticular that either the Lyapunov exponents of aC1 generic conservative dif-
feomorphism are zero Lebesgue almost everywhere, or the systems admits
a dominated splitting for the tangent bundle dynamics. A survey of this
theory can be found in [30].

Recently Ḿario Bessa was able to use adapt and extend the ideas of
the original proof by Bochi to the setting of generic conservative flows on
three-dimensional compact boundaryless manifolds. Againthe presence of
singularities imposes some differences between the discrete and continuous
systems. Denote byXr

ω(M)∗ the subset ofXr
ω(M) of Cr flows with zero

divergence butwithout singularities.

Theorem 6.1. There exists a residual setR ⊂ X1
ω(M)∗ such that, for X∈

R , either X is Anosov or else for Lebesgue almost every p∈ M all the
Lyapunov exponents of Xt are zero.

Developing the ideas of the proof of this result Bessa also obtains the
following statement on denseness of dominated splitting, now admitting
singularities.

Recall the definition of Linear Poincaré Flow in Section 1.3.3. Given an
invariant subsetΛ for X ∈X1(M), an invariant splittingN1⊕N2 of the nor-
mal bundleNΛ for the Linear Poincaré FlowPt is said to ben-dominated, if
there exists an integern such that forevery p∈ Λ we have the domination
relation

∥∥Pn | N1(p)
∥∥

∥∥Pn | N2(p)
∥∥ ≤ 1

2
.

Theorem 6.2. There exists a dense setD ⊂ X1
ω(M) such that for X∈ D,

there exist invariant subsets D and Z whose union has full measures, such
that

• for p∈ Z the flow has only zero Lyapunov exponents;



“LivroCBM-ultimo”
2007/8/20
page 265

i

i

i

i

i

i

i

i

6.5. GENERIC CONSERVATIVE FLOWS IN DIMENSION3 265

• D is a countable increasing unionΛn of compact invariant sets ad-
mitting a n-dominated splitting for the Linear Poincaré Flow.
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Appendix A

Perturbation lemma for
flows

Here we present a proof of Theorem 1.20 on page 32. This is an unpub-
lished joint work of M. J. Pacifico and E. R. Pujals. LetY be a vector field
in the setting of the statement of the theorem.

Given v,w ∈ R
n, v ·w stands for the inner product ofv andw. Given

v ∈ R
n we set[v]⊥ = {w ∈ R

n,w · v = 0}. Given p, let Σ ⊂ [Y(p)]⊥ be a
cross section toY at p whose size will be fixed later.

Define, forq∈ Σ, the following parametrized family of maps

Ât(q) = Yt(p)+At(q).

Observe first that̂At is C2 and if Σ is taken small enough then

T = {Ât(q) : q∈ Σ, t ∈ [a,b]}

gives a neighborhood ofY[a,b](p).

Lemma A.1. There exists r> 0such that the following is true fordiam(Σ)<
r: if Ât1(q1) = Ât2(q2) with qi ∈ Σ and ti ∈ [a,b], then t1 = t2 and q1 = q2.

Proof. AssumeÂt1(q1) = Ât2(q2) with t1 < t2 andq1 6= q2. Then

Yt1(p)−Yt2(p) = At2(q2)−At1(q1). (A.1)

266
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On one hand there ist0 ∈ (t1, t2) such that

Yt1(p)−Yt2(p) = (t1− t2)
∂
∂s

Yt0+s(p)|s=0

=
∂
∂s

Ys
∣∣
s=0(p) = (t1− t2)Y(Yt0(p)). (A.2)

On the other hand there isl ∈ (t1, t2) such that

At2(q2)−At1(q1) = (At2 −At1)(q2)+At1(q2−q1)

=
∂
∂t

At |t=l (q2)(t2− t1)+At1(q2−q1). (A.3)

Replacing (A.2) and (A.3) in (A.1) we get

Y(Yt0(p)) = − ∂
∂t

At |t=l (q2)+At1
(q2−q1)

(t1− t2)
. (A.4)

Observe thatAt0(Y(p)) = Y(Yt0(p)). Since the familyAt depends con-
tinuously ont there areh > 0 andγ > 0 such that, ifPY(p) denotes the
projection on the direction ofY(p), then

‖PY(p)(A
−1
t (Y(Yt0(p))‖ > γ (A.5)

for all t with |t − t0| < h. Define the numbers

K1 = sup{‖ ∂
∂t

At‖, t ∈ [a,b]}, K2 = sup{‖At‖, t ∈ [a,b]}

andγ0 = inf{‖Y(Yt(p))‖, t ∈ [a,b]}. Observe thatγ0 is positive sincep is a
regular point. Letr > 0 be such thatr < γ/K1, K1r +K2r/h < γ0 and take
Σ with diam(Σ) < r. We split the arguments in a pair of cases.

First case |t1−t2| ≥ h. Taking norms in (A.4) leads toγ0 < K1r +K2r/h<
γ0, which is a contradiction.

Second case|t1− t2| < h. Observe that (A.1) and (A.2) imply

(t1− t2)Y(Yt0(p)) = At2(q2)−At1(q1),
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which is the same as(t1− t2)A
−1
t1 Y(Yt0(p)) = A−1

t1 At2(q2)−q1. Thus

PY(p)[(t1− t2)A
−1
t1 Y(Yt0(p))] = PY(p)[A

−1
t1 At2(q2)−q1]

= PY(p)[A
−1
t1 At2(q2)−q2]

= PY(p)[(A
−1
t1 At2 − Id)(q2)]. (A.6)

Observe that we used aboveq2 ∈ Σ = [Y(p)]⊥.

But there isl ∈ (t1, t2) such that

(A−1
t1 At2 − Id)(q2) = (t1− t2)

∂
∂s

Al+sA
−1
l |s=0(q2).

Replacing this in (A.6) we get

PY(p)[A
−1
t1 Y(Yt0(p))] = PY(p)[

∂
∂s

Al+sA
−1
l |s=0(q2)]. (A.7)

Taking norms in (A.7) and using (A.5) we obtainγ < K1‖q2‖. Since
diam(Σ) < r and r < γ(K1)

−1, this is a contradiction. All together
this shows thatt1 = t2 and from (A.4) we see thatq1 = q2. The proof
of Lemma A.1 is complete.

Now defineÃ : T ⊂ [a,b]×Σ → T as follows. Forw∈ T there exists,
by Lemma A.1, a unique pair(qw, tw) ∈ Σ× [a,b] such thatÂtw(qw) = w.
We define

Ã(w) = Âtw+s(qw). (A.8)

In other words, we havẽAs(Ât(q)) = Yt+s(p)+At+sA
−1
t (At(q)),,for q∈ Σ

andt +s< b.

Lemma A.2. The familyÃs defines a C2 flow inT . Moreover

∂
∂s

DwÃs = Dw
∂
∂s

Ãs. (A.9)

Proof. ClearlyÃs is C2. Let us prove that̃As+t = ÃsÃt .
Let w ∈ T . ThenÂtw(qw) = w, for a unique(qw, tw) ∈ Σ× [a,b]. By

definition (A.8)

ÃsÃt(w) = Ãs(Ãt(Âtw(qw)) = Ãs(Ât+tw(qw)). (A.10)
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Define nowÂt+tw(qw) = ŵ. Note thatŵ = Âtŵ(qŵ). By the uniqueness of
tŵ andqŵ given by Lemma A.1, we gett + tw = tŵ andqw = qŵ. Thus

Ãs(Ât+tw(qw)) = Ãs(Âtŵ(qŵ)) = Âs+tŵ(qŵ)

= Âs+t+tw(qw) = Ãs+t(Atw(qw)) = Ãs+t(w). (A.11)

Combining (A.10) and (A.11) we deducẽAs+t = ÃsÃt .
Now we prove (A.9). DefinêA(t,q) = Ât(q). We have that̂A is C2 and

a) ∂
∂t Â = ∂

∂tY
t(p)+ ∂

∂t At(q) is C1,

b) DqÂ = At is C1.

Note that a) and b) imply

∂
∂t

At =
∂
∂t

DqÂt = Dq
∂
∂t

Ât =
∂
∂t

At . (A.12)

Note also that∂∂t DqÂt andDq
∂
∂t Ât areC1 maps sinceAt is a family of in-

vertible linear maps dependingC2 in the parameter .
Now Lemma A.1 gives that̂A has an inverse mapRdefined in the image

T̂ = Â(T ). MoreoverR is C1 sinceÂ is C1.
Again fors∈ [a,b] andw∈ T defineÃ(s,w) = Ãs(w).
Let π1,π2 be the projections on the first and second coordinates:

π1 : [a,b]×T → [a,b], (s,w) 7→ s π2 : [a,b]×T → T , (s,w) 7→ w.

Clearlyπi is C∞, i = 1,2. Since

Ã(s,w) = Ãs(w) = Âs+tw(qw) = Â(s+ tw,qw) = Â(s+π1◦R(w),π2◦R(w))

we get that̃A is C1, which implies that̃As induces aC1 flow in T .
Finally let us verify (A.9). For this, let̂R(s,w) = (s+ π1 ◦R(w),π2 ◦

R(w)), whereRwas defined above. ClearlỹA = Â◦ R̂. Observe that (A.12)
and the fact that̂RandÂ areC2 imply that

DwÃ = DR̂(s,w)Â·DwR̂,

∂
∂s

Ã = DR̂(s,w)Â· ∂
∂s

R̂,

∂
∂s

DwÃ =
∂
∂s

DR̂(s,w)Â·∂sR̂·DwR̂+DR̂(s,w)Â· ∂
∂s

DwR̂
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and Dw
∂
∂sÃ all exist and are continuous. Thus by Schwartz Lemma we

obtain (A.9).

Let ZA be the vector field induced bỹAs, that is,ZA(w) = ∂
∂sÃs(w)

∣∣
s=0.

Lemma A.3. The vector field ZA is C1. Moreover

DwZA =
∂
∂s

Atw+sA
−1
tw

∣∣
s=0. (A.13)

Proof. SinceÃs is aC2 flow we have thatZA is C1.
Let us calculateDwZA. We first calculateDwÃs

∣∣
s=0. For this recall

thatw = Âtw(qw) with tw ∈ [a,b] andqw ∈ Σ. To simplify notation we set
tw = t andqw = q. Then,Ãs(w) = Ãs(Ât(q)) = Ât+s(q) and soDqÂt+s =

DÂt (q)Ãs.DqÂt . This implies

DÂt (q)Ãs = DqÂt+s(DqÂt)
−1. (A.14)

On the other hand̂At+s(q) =Yt+s(p)+At+s(q) implies thatDqÂt+s = At+s.
Replacing this in (A.14) and using the fact that(DqÂt)

−1 = A−1
t we get

DÂt (q)Ãs = At+sA
−1
t .

Thus

DwZA =
∂
∂s

DwÃs
∣∣
s=0 =

∂
∂s

DÂt (q)Ã
∣∣
s=0 =

∂
∂s

At+sA
−1
t

∣∣
s=0

proving (A.13). The proof of Lemma A.3 is completed.

If U ⊂ R
n, thenUc stands for the complement ofU .

Fix ε > 0 and take 0< r < ε. For eacht ∈ [a,b] let Σr be a cross section
to Yt(p) satisfying diam(Σr) < r andΣr ⊂ [Y(Yt(p)]⊥.

Let Ω =
S

t∈[a,b] Σr . Note thatΩ is a neighborhood ofY[a,b](p). Thus

there are neighborhoodsU1 ⊂ U2 ⊂ Ω of Y[a,b](p) and aC1 function f :
T → R satisfying:

• f |U = 1, f |Uc = 0 and| f | ≤ 1; and

• givenw∈U2, let tw be such that dist(w,Y[a,b](p)) = dist(w,Ytw(p)).
We require

‖Dw f‖.‖w−Ytw(p)‖ < ε.
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Define theC1 vector field inR
n

Z(w) = f (w) ·ZA(w)+(1− f (w)) ·Y(w).

Lemma A.4. Z is C0-near Y .

Proof. Indeed,

Z(w)−Y(w) = f (w) · (ZA(w)−Y(w)). (A.15)

On the other hand, givenw, there aretw and qw such thatw = Âtw(qw).
Taking into account (A.8) and the definition ofZA we get

ZA(w) =
∂
∂s

Ãs(w)
∣∣
s=0 =

∂
∂s

(
Ys(Ytw(p)

)∣∣
s=0 +

∂
∂s

(
Atw+s

)∣∣
s=0(qw)

= Y(Ytw(p))+
∂
∂s

(Atw+s)
∣∣
s=0(qw).

Replacing this last inequality in (A.15) we obtain

ZA(w)−Y(w) = f (w) ·
(
Y(Ytw(p))−Y(w)+

∂
∂s

Atw+s
∣∣
s=0(qw)

)

and then

‖ZA(w)−Y(w)‖≤ ‖Y(Ytw(p))−Y(w)‖+‖ ∂
∂s

Atw+s
∣∣
s=0‖·‖(qw)‖. (A.16)

Now we can assume thatΣ is sufficiently small so that‖At(q)‖ ≤ ‖At‖·‖q‖
is small for allt andq. We can estimate the first term in the right hand side
of (A.16)

‖Y(Ytw(p))−Y(w)‖ ≤ ‖Y‖ · ‖Ytw(p)−w‖ = ‖Y‖ · ‖Ytw(p)− Âtw(qw)‖
= ‖Y‖ · ‖Ytw(p)−Ytw(p)+Atw(qw)‖
= ‖Y‖ · ‖Atw(qw)‖ ≤ ‖Y‖ · ‖Atw‖ · ‖qw‖ ≤ ε. (A.17)

The second term on the right hand side of (A.16) can be boundedby

‖∂sAtw+s
∣∣
s=0‖ · ‖(qw)‖ ≤ ε, (A.18)

if Σ is small. Replacing (A.17) and (A.18) in (A.16) we conclude the proof.



“LivroCBM-ultimo”
2007/8/20
page 272

i

i

i

i

i

i

i

i

272 APPENDIX A. PERTURBATION LEMMA FOR FLOWS

To finish we need one last lemma.

Lemma A.5. The vector field Z is C1-near Y .

Proof. We have

DwZ−DwY = Dw f · (ZA(w)−Y(w))+ f (w) · (DwZA−DwY)+DwY.
(A.19)

The norm of the first term above is bounded by

‖Dw f‖ · ‖ZA(w)−Y(w)‖
≤ ‖Dw f‖ · ‖ZA(w)−ZA(Ytw(p)‖+‖Y(Ytw(p))−Y(w)‖
≤ ‖Dw f‖ · ‖ZA‖ · ‖w−Ytw(p)‖+‖Y‖ · ‖w−Ytw(p)‖ · ‖Dw f‖

and the condition on the bump functionf imply that both terms in the last
expression are small isΣ is small.

To estimate the second hand term in the right hand side of (A.19) we
recall that Lemma A.3 gives

DwZA =
∂
∂s

At+sA
−1
t

∣∣
s=0.

On the one hand this is, by hypothesis, nearDYt (p)Y.
On the other hand, sincew = Ât(q) = Yt(p)+ At(q), we also get that

w is nearYt(p) and soDwY is nearDYt (p)Y. Combining these last two
observations we obtain thatDwZA is nearDwY, concluding the proof of
Lemma A.5.

The proof of Theorem 1.20 is completed.
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Poincaŕe Anal. Non Lińeaire, 20(5):805–841, 2003.
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[108] R. Mãné. A proof of theC1 stability conjecture.Publ. Math. I.H.E.S.,
66:161–210, 1988.
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[113] N. G. Markley. The Poincaré-Bendixson theorem for the Klein bot-
tle. Trans. Amer. Math. Soc., 135:159–165, 1969.

[114] R. Metzger and C. Morales. Sectionally-hyperbolic systems.
Preprint IMPA, Serie D, 9, 2005.

[115] R. J. Metzger. Sinai-Ruelle-Bowen measures for contracting Lorenz
maps and flows. Ann. Inst. H. Poincaŕe Anal. Non Lińeaire,
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Birkhäuser, 1978.

[138] M. Oka. Expansiveness of real flows.Tsukuba J. Math., 14(1):1–8,
1990.

[139] V. I. Oseledets. A multiplicative ergodic theorem: Lyapunov charac-
teristic numbers for dynamical systems.Trans. Moscow Math. Soc.,
19:197–231, 1968.
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Ann. Sci.École Norm. Sup. (4), 26(6):691–700, 1993.

[141] J. Palis. A global view of Dynamics and a conjecture on the dense-
ness of finitude of attractors.Ast́erisque, 261:335–347, 2000.

[142] J. Palis and W. de Melo.Introduç̃ao aos sistemas dinâmicos. Projeto
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Études Sci. Publ. Math., 50:73–99, 1979.

[210] S. Wong. Some metric properties of piecewise monotonic mappings
of the unit interval.Trans. Amer. Math. Soc., 246:493–500, 1978.

[211] L. S. Young. On the prevalence of horseshoes.Trans. Amer. Math.
Soc., 263(1):75–88, 1981.


