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Preface

In this book we present the elements of a general theory farsflon
three-dimensional compact boundaryless manifolds, epasging flows
with equilibria accumulated by regular orbits.

The main motivation for the development of this theory wasltbrenz
equations whose numerical solution suggested the existeha robust
chaotic attractor with a singularity coexisting with regubrbits accumu-
lating on it.

More than three decades passed before the existence of thez at-
tractor was rigorously established by Warwick Tucker inykar 2000.

The difficulty in treating this kind of systems is both conttep) and
numerical. On the one hand, the presence of the singulardyraulated
by regular orbits prevents this invariant set to be unifgriniperbolic. On
the other hand, solutions slow down as they pass near théeszaigilibria
and so numerical integration errors accumulate withouhdou

Trying to address this problem, a successful approach waslaped
by Afraimovich-Bykov-Shil'nikov and Guckenheimer-Walins indepen-
dently, leading to the construction of a geometrical modgpldying the
main features of the behavior of the solutions of the Loreszesn of equa-
tions.

In the 1990’s a breakthrough was obtained by Carlos Mor&esque
Pujals and Maria J@sPacifico following very original ideas developed
by Ricardo Mdié during the proof of th€-stability conjecture, provid-
ing a characterization of robustly transitive attractansthree-dimensional
flows, of which the Lorenz attractor is an example.

This characterization placed this class of attractorsiwittie realm of
a weak form of hyperbolicity: they are partially hyperbadiwariant sets
with volume expanding central direction. Moreover robusthnsitive at-
tractors without singularities were proved to be uniforimpyperbolic. Thus
these results extend the classical uniformly hyperbogoti for flows with
isolated singularities.

Once this was established it is natural to try and undergtamdynam-



ical consequences of partial hyperbolicity with centrdlwoe expansion.
It is well known that uniform hyperbolicity has very precigeplications
on the dynamics, geometry and statistics of the invariantIsés impor-
tant to ascertain which properties are implied by this nevakvierm of
hyperbolicity, known today asingular-hyperbolicity

Significant advances at the topological and ergodic levelreshecently
obtained through the work of many authors which deserve teyic
presentation.

This is the main motivation for writing these notes. We hop@to-
vide a global perspective of this theory and make it easiethi® reader to
approach the growing literature on this subject.
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text.
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Systems (Brazil) and CMUP-FCT, POCI/MAT/61237/2004 (Bgdt). Fi-
nally we thank the scientific committee of the XXVI BrazilidMathemati-
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Chapter 1

Introduction

We start with an overview of the main results of uniformly kyipolic dy-
namical systems to be used throughout the rest of the tetkt fitwon the ge-
ometrical viewpoint and the measure-theoretical or elgpdint-of-view.
We also mention some by-now standard generic propertiesws fin the
C! topology, as the Kupka-Smale vector fields (which are in@®aeneric

for everyr > 1), Pugh'’s Closing Lemma and Hayashi's Connecting Lemma.

We restrict ourselves to the results which will be actuafigdiin the course
of the proofs of the main results of the text.

Then in Chapter 2 we describe the construction of the mospleim
non-trivial examples of singular-hyperbolic sets: thegsiar-horseshoe
of Labarca-Pacifico, and the geometric Lorenz attractor fo&ifovich-
Bykov-Shil'nikov and Guckenheimer-Williams.

Next in Chapter 3 we characterize robustly transitive sets singu-
larities as partially hyperbolic attractors with volumeparding central di-
rection, either for the original flow, or for the time revedsow. This
naturally leads to the notion sfngular-hyperbolic seta compact partially
hyperbolic invariant subset with volume expanding cerdiadction.

We construct in Chapter 4 a physical measure for singulpetiolic
attractors, i.e. for transitive attracting singular-hgimic sets.

We finish in Chapter 5 with a description of the Omega-limit fee
Cl-generic flows: either the limit set contains an infinite eotlon of sinks
or sources; or is a finite union of basic pieces, either umfghyperbolic
transitive isolated sets, or singular-hyperbolic atwexbr repellers.

1



2 CHAPTER 1. INTRODUCTION

In an attempt to provide a broader view of the dynamics of flows
three-dimensional manifolds, we close the text briefly nogring in Chap-
ter 6 many other related results: thentracting Lorenz-attractointro-
duced by Rovella, singular cycles exhibiting singularéngolic and/or
contracting Lorenz attractors in its unfolding, otherattor resembling the
Lorenz attractor, decay of correlations for flows and glajgieric results
for conservative flows on three-dimensional manifolds.

1.1 Notation, motivation and preliminary defi-
nitions

In this book we will consider a compact finite dimensional thdaryless
manifold M of dimensions 1 to 3 and study the dynamics of the flow as-
sociated to a given smooth vector fietdon M from the topological and
measure-theoretic or ergodic point-of-view.

We fix onM some Riemannian metric which induces a distance dist on
M and naturally defines an associated Riemannian volume fefswhich
we call Lebesgue measu@ simply volume and always take Leb to be
normalized: LefM) = 1.

We always assume thatGl vector fieldX on M is given,r > 1, and
consider the associated gloffiaw (X');cr ('sinceX is defined on the whole
of M, which is compactX is bounded an' is defined for every € R.)
Recall that the flowX!)cg is a family of C" diffeomorphisms satisfying
the following properties:

1. X% =1d : M — M is the identity map oM;
2. XS =XtoXSforallt,se R,
and it isgenerated by the vector fieldiK
(3) %Xt(q)h:to =X (X, (0)) for all g € M andto € R.

Note that reciprocally a given flo@X!);cr determines a unique vector
field X whose associated flow is precisé® )icg.

In what follows we denote bg' (M) the vector space of all" vector
fields onM endowed with theC" topology and by "(M) the space of
all flows onM also with theC" topology. Many times we usually denote
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the flow (X')icr by simplyX. For details on these topologies the reader is
advised to consult standard references on DifferentiabEons [77] and/or
Dynamical Systems [143].

Given X € X"(M) andq € M, an orbit segmen{X'(q);a<t < b} is
denoted byX[2P/(q). We denote byDX! the derivative of Xwith respect
to the ambient variable g and when convenient we spX'B= DX'(q).
Analogously,DX is the derivative of the vector field With respect to the
ambient variabley, and when convenient we writ@,X for the derivative
DX atq, DY(qQ).

An equilibriumor singularityfor X is a pointo € M such thaX!(o) = o
forallt € R, i.e. a fixed point of all the flow maps, which corresponds to
a zero of the associated vector fidd X(g) = 0. We denote by5(X) the
set of singularities (zeroes) of the vector fi&ldEvery pointp € M\ §(X),
that isp satisfiesX(p) # 0, is aregular point for X.

An orbit of X is a seto (q) = 0x(q) = {X!(q) : t € R} for someq € M.
Henceo € M is a singularity ofX if, and only if, 0x (o) = {c}. A periodic
orbit of X is an orbito = 0x(p) such thatXT (p) = p for some minimal
T > 0 (equivalentlyox (p) is compact andx(p) # {p}). We denote by
Per(X) the set of all periodic orbits oX.

A critical elementof a given vector fieldX is either a singularity or a
periodic orbit. The se€(X) = S(X) UPe(X) is the set otritical elements
of X.

We say thap € M is non-wanderindor X if for every T > 0 and every
neighborhoodJ of p there ist > T such thatX!(U)NU # 0. The set of
non-wandering points of is denoted by2(X). If g € M, we definewx (q)
as the set of accumulation points of the positive ofdit(q) : t > 0} of q.
We also defineix (q) = w_x, where—X is the time reversed vector field
X, corresponding to the set of accumulation points of the tinagarbit of
g. It is immediate thatox () Uax (g) C Q(X) for everyg € M.

A subset\ of M isinvariantfor X (or X-invariant) if X'(A) = A, vt € R.
We note thatox (), ox(q) andQ(X) areX-invariant. For every compact
invariant set\ of X we define thestable sebf A

WR(A) = {ge M :wx(q) C A},
and also itsinstable set

WY(A) = {gqe M:ax(q) C A}
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A compact invariant seA is transitiveif A = wx(q) for someq € A,
andattractingif A = Ni>oX!(U) for some neighborhood of A satisfying
X'(U) Cc U, vt > 0. An attractor of X is a transitive attracting set of
and arepelleris an attractor fo—X. We say that\ is aproper attractor or
repeller ifd £ N\ # M.

Thelimit set L(X) is the closure ofixemax (X) Uwx (X). ClearlyL(X) C
Q(X). Using these notions we have the following simple and basic

Lemma 1.1. For any flow X the limit set (X) can neither be a proper
attractor nor a proper repeller.

Proof. SupposeL(X) is a proper attractor with isolating open neighbor-
hoodU (andU # M). Letze U. Thena(z) € L(X) cU and soX'(z) eU

for a sequenck — +oo, thatisze X' (U) for all n. But sinceX"~t(U) cU

for 0 <t < t, by definition ofU, we have thaz € X(U) c X'(U) (recall
that eachX! is an invertible map) for all & t < t,, and sa < X' (U) for all

t > 0. We conclude that € L(X). ThusL(X) DU andL(X) is simultane-
ously open and closed, hence it cannot be a proper subset obtimected
manifoldM. The proper repeller case is similar. O

A sink of X is a singularity ofX which is also an attractor oX, it
is a trivial attractor ofX. A sourceof X is a trivial repeller ofX, i.e. a
singularity which is a attractor for X.

A singularityo is hyperbolidf the eigenvalues dDX(a), the derivative
of the vector field at, have a real part different from zero. In particular
sinks and sources are hyperbolic singularities, wherdaleigenvalues of
the former have negative real part and those of the lattex pasitive real
part.

A periodic orbitox (p) of X is hyperbolidf the eigenvalues dXT (p) :
TpM — TpM, the derivative of the diffeomorphisix’, whereT > 0 is the
period of p, are all different from 1. In Section 1.2 we will define hyper-
bolicity in a geometric way.

When a critical element is hyperbolic, then its stable andalnte sets
have the structure of an embedded manifold (a consequeribe &table
Manifold Theorem, see Section 1.2), and are cafitable and unstable
manifolds

Given two vector fieldX,Y € X"(M),r > 1 we say thaX andY are
topologically equivalenif there exists a homeomorphidmM — M taking
orbits to orbits and preserving the time orientation, that i
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e h(ox(p)) = oy(h(p)) forall pe M, and

o forall pe M ande > 0 there exist® > 0 such that fot € (0,d) there
iss € (0,¢) satisfyingh(X'(p)) = YS(h(p)).

The maph is then said dopological equivalencbetweerX andY. This is
an equivalence relation &' (M).

We say thatX,Y € X"(M) are conjugateif there exists a topological
equivalencéh betweenX andY which preserves the time, i.X"'(h(p)) =
h(Y'(p)) for all pe M andt € R. This is also an equivalence relation on
X"(M).

The qualitative behavior of two topologically equivalergctor fields
are the same, as the following result shows.

Proposition 1.2. Let h be a topological equivalence betweelYX X" (M).
Then

1. pe SX) if, and only if, {p) € SY);

2. ox(p) is closed if, and only ifpy (h(p)) is closed;

3. h(wx(p)) = wr (h(p)) and Wax(p)) = ay (h(p)).

We say that a vector field € X"(M),r > 1 is CS-structurally stable
s <r, if there exists a neighborhoot of X in X5(M) such that every
Y € ¥ is topologically equivalent tX.

Roughly speaking, a vector field is structurally stablesfqualitative
features are robust under small perturbations.

1.1.1 One-dimensional flows

The only connected one-dimensional compact boundarylesifold M is
the circleS?, which we represent bR /Z or by the unit interval = [0,1]
with its endpoints identified & 1.

Let Xo be one of the two unit vector fields @&, i.e. eitherXy =1
or Xo = —1. Then everyX € X'(S!) can be written in a unique way as
X(p) = f(p)-Xo(p) for p € S, wheref : St — R is aC'-function.

It is well known (see for example [99, 136]) that given any @art set
K c S andr > 1 there exists : St — R of classC" with f~1({0}) = K.
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ThusK is the set of singularities ok = f - Xy. Since topological equiv-
alence preserves singularities, we see that there existaay topologi-
cal equivalence classes of vector fieldsSinas there are homeomorphism
classes of compact subsetsSéf Hencethe problem of classifying smooth
vector fields or§! up to topological equivalence is hopeleasd we need
to restrict our attention to a subset3f(M) which is open and dense, or
residual or, at least, dense.

Here by aresidualsubset of the spac®’ (M) we mean a set which
contains a countable intersection of open and dense suifseteM): z O
Nn>1% n Where eact_ , is an open and dense subsefb{M).

We say that generic vector field irX" (M) satisfies a property (Pif
there is a residual subsgt of X' (M) such that (P) holds for evedy € % .

A singularityc € S(X) is non-degeneraté DX(o) £ 0 orDf(o) #0
whereX = f - Xg. It can be a sinkDf (o) < 0) or a source@f(o) > 0)
and in either case a non-degenerate singularitgdkted there exists a
neighborhood) of o in M such thao is the only zero off | U.

Let ¢ C X'(S') be the subset consisting of vector fields whose sin-
gularities are all non-degenerate. Since these are isothtre are only
finitely many of them. It is not difficult to show that is open and dense,
that the number of singularities in even and tkaY € g are topologically
conjugate if, and only if, the number of singularities is #zme (see e.qg.
[143, 194]). Moreover the elements gfare precisely the structurally sta-
ble vector fields of?, that isgenerically a smooth vector field on the circle
is structurally stable.

1.1.2 Two-dimensional flows

Surfaces have a simple enough topology (albeit much moregleonthat
the topology of the circle) to enable one to characterizentirewandering
set of the flow of a vector field. The most representative tastthis re-
spect is the PoincarBendixson’s Theorem on planar flows or flows on the
two-dimensional sphere (essentially the result dependseodordan Curve
Theorem: any closed simple curve splits the manifold in twaonected
components, see e.g. [136, 118, 66]).

Theorem 1.3(Poincaé-Bendixson) Let X € X"(S?), r > 1 be a smooth
vector field with a finite number of singularities. Le€f$? be given. Then
the omega-limit seby (p) satisfies one of the following:
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1. wx(p) is a singularity;
2. wyx(p) is a periodic orbit;

3. wx(p) consists of singularitiesy, .. .,0n and regular orbitsy € wx (p)
such thaty (y) = g; andwx (y) = oj forsome jj=1,...,n.

The proof of this basic result may be found e.g. in [77, 143hisT
answers essentially all the questions concerning the asyimpynamics
of the solutions of autonomous ordinary differential etprag on the plane
or on the sphere.

Observe that now hyperbolic singularitiesan be of three types: sink
(DX (o) with two eigenvalues with negative real part), souf2¥ (o) whose
eigenvalues have positive real part, see Figure 1.1) or diesd0X(0)
with eigenvalues having negative and positive real paeis,FSgure 1.3 on

page 13).
@ 7

Figure 1.1: A sink and a source.

Historically the characterization of structurally stabkector fields on
compact surfaces by Mdgio Peixoto, based on previous work of Poir&car
[155, 156, 157] and Andronov and Pontryagin [7], was theinrig the no-
tion of structural stability for Dynamical Systems. In thistting structural
stability is still synonym of a finite and hyperbolic non-vamming set. We
now write Sfor any compact connected two-manifold without boundary.

Theorem 1.4(Peixoto) A C' vector field on a compact surface S is struc-
turally stable if, and only if:

1. the number of critical elements is finite and each is hyplézh
2. there are no orbits connecting saddle points;
3. the non-wandering set consists of critical elementsalon

Moreover if S is orientable, then the set of structurallyostavector fields
is open and dense &' (S).
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The proof of this celebrated result can be found in [147, B4&] for an
more detailed exposition of this results and sketch of tbefsee [64]. The
last part of the statement uses a version of Pugh:€losing Lemma [163,
164], which is a fundamental tool to be used repeatedly inynpaoofs in
this book, see Section 1.3.7 for the statement of this result

The extension of Peixoto’s characterization of structstability for C"
flows, r > 1, on non-orientable surfaces is knownRegxoto’s Conjecture
and up until now it has been proved for the projective pl&A¢143], the
Klein bottle K2 [113] andLL?, the torus with one cross-cap [67].

In an attempt to extend this result to higher dimensionsyeS&male
considered in [190] the following type of vector field whicteperves the
main features of the structurally stable vector fields ofesas.

We say that a vector field € X" (M),r > 1 isMorse-Smaléwhere now
M is a compact manifold of any dimension) if

1. the number of critical elements Xfis finite and each one of them is
hyperbolic;

2. every stable and unstable manifold of each critical efeénmtersects
transversely the unstable or stable manifold of any othécakele-
ment;

3. the non-wandering set consists only of the critical elam®f X:
Q(X) =C(X).

Hencestructurally stable vector fields in two-dimensions are BsSmale
and they are open and dense on the set of all smooth vectos fiéldn
orientable surface.

There exists a similar notion of Morse-Smale diffeomorptsson any
compact manifold. Smale’s Horseshoegresented in [190], showed that
Morse-Smale diffeomorphisms are neither dense on the sjadiediffeo-
morphisms, nor the only structurally stable type of diffemphisms.

Moreover the singular horseshoe, which we present in Seétib, is
a compact invariant set for a flow similar to a Smale Horsestioieh is
structurally stable but non-hyperbolic, defined on madgakith boundary.

It is well known that Morse-Smale vector fields are strudturstable
in any dimension, see e.g. [144, 143]. However early hopsshiey might
form an open and dense subset of the space of all smooth \esttts or
that they are the representatives of structurally stabitove fields where
shattered in higher dimensions, as the following sectigtaggs.
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1.1.3 Three dimensional chaotic attractors

In 1963 the meteorologist Edward Lorenz published in therdalwof At-
mospheric Sciences [102] an example of a parametrized polial system
of differential equations

x=a(y—x) a=10
Yy=rX—y—Xxz r=28 (1.1)
z=xy—bz b=8/3

as a very simplified model for thermal fluid convection, mated by an at-
tempt to understand the foundations of weather forecastr Larenz [103]
together with other experimental researches showed tbatdhations of
motions of a certain laboratory water wheel are given by)(1Hence
equations (1.1) can be deduced directly in order to modelysipal phe-
nomenon instead of as an approximation to a partial difteakequation.

Numerical simulations for an open neighborhood of the chqegam-
eters suggested that almost all points in phase space tendttanger at-
tractor, called thé.orenz attractor However Lorenz’s equations proved to
be very resistant to rigorous mathematical analysis, ssw@ksented very
serious difficulties to rigorous numerical study.

A very successful approach was taken by Afraimovich, Bykod a
Shil'nikov [1], and Guckenheimer, Williams [65], indepeamttly: they con-
structed the so-callegeometric Lorenz modelsee Section 2.3) for the
behavior observed by Lorenz. These models are flows in 3rdiioas
for which one can rigorously prove the existence of an attratat con-
tains an equilibrium point of the flow, together with regusatutions. The
accumulation of regular orbits near a singularity prevesush sets to be
hyperbolic (see Section 1.2). Moreover, for almost every panearby
initial conditions, the corresponding solutions move adfrayn each other
exponentially fast as they converge to the attractor, thathe attractor
is sensitive to initial conditionsthis unpredictability is a characteristic of
chaos Most remarkably, this attractor is robust: it can not betrdged by
any small perturbation of the original flow.

Another approach was through rigorous numerical analysisthis
way, it could be proved, by [71, 72, 119, 120], that the eaunsti(1.1)
exhibit a suspended Smale Horseshoe. In particular, they imdinitely
many closed solutions, that is, the attractor containsitefinmany pe-
riodic orbits. However, proving the existence of a strantjeetor as in
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Figure 1.2: Lorenz strange attractor

the geometric models is an even harder task, because onet @void the

main numerical difficulty posed by Lorenz’s equations, ihizises from

the very presence of an equilibrium point: solutions slowdas they pass
near the origin, which means unbounded return times and, tmbounded
integration errors.

As a matter-of-fact, proving that equations (1.1) suppastrange at-
tractor was listed by Steve Smale in [191] as one of the skgbadlenging
problems for the twenty-first century. In the year 2000 théswinally set-
tled by Warwick Tucker who gave a mathematical proof of thistexice of
the Lorenz attractor, see [196, 197, 198].

The algorithm developed by Tucker incorporates two kindingfe-
dients: a numerical integrator, used to compute good appadions of
trajectories of the flow far from the equilibrium point gitj at the origin,
together with quantitative results from normal form thedhat make it
possible to handle trajectories close to the origin.

The consequences of the sensitiveness to initial conditiona (albeit
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simplified) model of the atmosphere were far-reaching: masy that the
weather behaves according to this model, then long-rangéheeforecast-
ing is impossible. Indeed the unavoidable errors in detgingithe present
state of the weather system are magnified as time goes bygadtiany

reliability of the values obtained by numerical integratiwithin a small

time period.

This observation was certainly not new. Since the developrokthe
kinetic theory of gases and thermodynamics in the end of theteenth
century it was known that gas environments, specificallygBagh atmo-
sphere, are very complex systems whose dynamics involedstéraction
of a huge number of particles, so it is not surprising thate¥aution of
such systems be hard to predict. What bewildered matheasievas the
simplicity of the Lorenz system, the fact that it arises nalty as a model of
a physical phenomenon (convection) and, notwithstandimgplutions ex-
hibit sensitiveness with respect to the initial conditiofibis suggests that
sensitiveness is the rule rather than the exception in thealaciences.

For an historical account of the impact of the Lorenz papég]lon
Dynamical Systems and an overview of the proof by Tucker 2362][

The robustness of this example provides an open set of flovichvaine
not Morse-Smale, nor hyperbolic, and also non-structyistthble, as we
will see in Section 2.3.

1.2 Hyperbolic flows

In an attempt to identify what properties were common amdable sys-
tems, Stephen Smale introduced in [190] the notioHyferbolic Dynami-
cal SystemRemarkably it turned out that stable systems are esdgritial
hyperbolic ones, plus certain transversality conditiommsthe decades of
1960 and 1970 an elegant and rather complete mathematizalthf hy-
perbolic systems was developed, culminating with the pobttie Stability
Conjecture, by M&gé in the 1990’s in the setting @' diffeomorphisms,
followed by Hayashi fo! flows.

In what follows we present some results of this theory which be
used throughout the text.

LetX € X"(M) be a flow on a compact manifod. Denote bym(T) =
infyy=1 | T (V)| the minimum normof a linear operator. A compact in-
variant set\ C M of X is hyperbolicif
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1. admits a continuoudX-invariant tangent bundle decompositipiM =
ER S EX @ E}, that is we can write the tangent spaceM as a direct
sumES§ @ EX @ EY, whereE} is the subspace iiyM generated by
X(x), satisfying

e DX!(x)-El = ;(t(x) forallt € R,xc A andi = s X, u;
2. there are constankssK > 0 such that

e E3 is (K,\)-contracting i.e. for allx € A and everyt > 0
IDX'(x) | ERJl < K~'e™,
e Ej is (K,A)-expandingi.e. for allx e A and everyt >0
m(DX' | EY) > KeM,

By the Invariant Manifold Theory [76] it follows that for emep € A
the sets

WeS(p) = {a € M : dist(X(q), %(p)) — O}

t—oo

and
W(p) = {a e M : dist(X(q), % (p)) —— O}

{t——o0

are invarianC'-manifolds tangent tE; andEp respectively ap. Here dist
is thedistance on M induced by some Riemannian norm
If 0 = 0x(p) C Ais an orbit ofX one has that

WE(0) = UrerWRAX'(p)) and W(0) = UrerWi(X'(p))

are invarianiC'-manifolds tangent t&3 & E andE) & Ep at p, respec-
tively. We shall denot®\&(p) =W (0x (p)) andWy'(p) = W'(ox(p)) for
the sake of simplicity.

A singularity (respectivelyperiodic orbif) of X is hyperbolicif its orbit
is a hyperbolic set oK. Note that\g%(0) = Wg (o) andWg'(a) = W¢(0)
for every hyperbolic singularitg of X. A sink and a source are both hy-
perbolic singularities. Ayperbolicsingularity which isneithera sinknor
a source is called saddle

A hyperbolic setA\ of X is calledbasicif it is transitive andisolated
that isA = NierXt(U) for some neighborhood of H. It follows from
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/ ES(0)

o

EY(0)

W (o)

W(o)

Figure 1.3: A saddle singularity for bi-dimensional flow.

Figure 1.4: The flow near a hyperbolic saddle periodic otisivighp.

the Shadowing Lemma [137] that every hyperbolic basic seX @fther

reduces to a singularity or else has no singularities argithié closure of
its periodic orbits.

We say thak is Axiom Aif the non-wandering se®(X) is both hyper-
bolic and the closure of its periodic orbits and singulasti TheSpectral
Decomposition Theoremsserts that iX is Axiom A, then there is a dis-
joint decompositio(X) = A1 U --- Uk, where each\; is a hyperbolic
basicsetoi,i=1,--- k.

A cycleof a Axiom A vector fieldX is a sub-collectiod Ay, - - - , A, } of
{A1,---,An} such thatg =iy andV\/>‘<‘(/\ij ) mVVQ(/\iHl) #0,v0< j<k-1.
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Hyperbolic sets and singularities

The continuity of theDX-invariant splitting on the tangent space of a uni-
formly hyperbolic setA is a consequence of the uniform expansion and
contraction estimates (see e.g. [143]). This means thgtdf A is a se-
guence of points converging toe A, and we consider orthonormal basis
{qn}l ..... ,dimES(xn) of E® ( {f }I -, dimEY(xn) of Eu(xn) andX(xn) of
EX(x,), then these vectors converge to a basiE%J{fo EY(x) andEX(x)
respectively. In particular the dimension of the subspatése hyperbolic
splitting is constant if\ is transitive.

This shows that a uniformly hyperbolic basic getannot contain sin-
gularities, except if\ is itself a singularity. Indeed, i € A is a singularity
then it is hyperbolic but the dimension of the central subebe is zero
since the flow is zero at. Therefore the dimensions of either the stable or
the unstable direction atand those of a transitive regular orbitAdo not
match.

In other wordsan invariant subsef\ containing a singularity accumu-
lated by regular orbits cannot be uniformly hyperbolic

1.2.1 Examples of hyperbolic sets and Axiom A flows

Any hyperbolic singularity or hyperbolic periodic orbitashyperbolic in-
variant set. Also any finite collection of hyperbolic crileelements is a
hyperbolic set. We refer to these setdragal hyperbolic sets

The first examples of a non-trivial (different from a singithaor a pe-
riodic orbit) hyperbolic basic set (on the whole manifolddsithegeodesic
flow on any Riemannian manifold with negative curvatatadied by Dmitri
Victorovich Anosov [8], whose name is attached to this typeystems
today, and th&male Horsesho@resented in [190] in the setting of diffeo-
morphisms.

We use a global construction of a (linear) Anosov diffeonmigsm (hy-
perbolic with dense orbit) on the 2-torus and then considesuspension
on the solid (3-)torus to obtain an example of a transitivéoAxA flow.
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A linear Anosov diffeomorphism on the 2-torus

Consider the linear transformatiagn: R? — R? with the following matrix
in the canonical base

11

2 1)

Consider the 2-toru%? as the quotieriR?/Z? = [0,1]2/ ~, where(x,0) ~
(x,1) and(y,0) ~ (y,1) for all x,y € [0,1], that is the squarf®, 1]*> whose
parallel sides are identified. We denoteoyR? — T? the quotient map
or projection fromR? to T?. SinceA preserveZ?, i.e. A(Z?) C 72, then
there exists a well defined quotient mBg : T?> — T2. This is a linear
automorphism of?, see e.g. [204, 107].

The matrixA is hyperbolic: its eigenvalues akg,\» = (3++/5)/2 and
the corresponding eigenvectarg v» = (1, (—17F v/5)/2), with irrational
slope. Given any poinp € T?, if we take the projectiohVi(p) of the line
L; throughp parallel tov;, W(p) = 1i(L;), then distances along(p) are
multiplied by A; under the action oFa, for i = 1,2. These are the stable
and unstable manifolds @f Due to the irrationality of the slope every such
“line” is dense in the torus. Moreover there is a transitivigittand a dense
set of periodic orbits for the mdg, (see e.g. [52]). The entire torus is then
a uniformly hyperbolic set.

General definition of suspension flow over a roof function

Let (X,d) be a metric space with distandeandr : X — R be a strictly
positive function. Thehase space>of the suspension flow is defined as

Xr={(xy) € Xx[0,40):0<y<r(x)}.

Let f : X — X be a map oX. Thesuspension semi-flow over f with roof r
is the following family of maps<} : X, — X, fort > 0: X0 is the identity and
for eachx = xp € X denote byx, thenth iteratef"(xg) for n > 0. Denote
alsoSr(xo) = y1=5r(x;) for n > 1. Then for each paifxo,Yo) € X and

t > 0 there exists a unigue> 1 such thaBr(Xp) < yo+t < Sy+1r(%o) and
we define (see Figure 1.5 on the next page).

X (X0,Y¥0) = (Xn, Yo+t — Sr (Xo))
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This construction is the basis of many examples and also ofyrtech-

nigues to pass from a flow with a transverse section to a sagpefiow

and viceversa, enabling us to transfer results which arng teagrove for

suspension flows, due to their “almost product structu@mobre general
flows. In this text we will see several examples of this.

0 ~ Ayo“'t*r(XZ) PR ©
ort—r(X1) i ey Yorth
: (xo Yo ’), g . ":’: Xrt (X07 yO)I
X (¥o,Yo) T 5
X XZ"%T?‘ P /5/ I'
Xl"'/:/ _______________ \_‘_\_~_ {/_3?.‘ ‘\ Iy='3 9
X, y=r(X X’f (XO,yO) L y=P (x) N

Figure 1.5: The equivalence relation defining the susperfki of f over
the roof functiorr.

An Anosov flow onT® though the suspension of an Anosov diffeomor-
phism

Consider the suspended flog overFa : T2 — T? defined in Section 1.2.1
with a constant roof functiom = 1. ThenX; is the 3-cubg0,1]® with
parallel sides identified, that is, we obtain a flow on the r8idcsuch that
thefirst return map Rfrom any sectioriT? x {z} to itself can be naturally
identified withFa, see Figure 1.6 on the facing page.

This ﬂowxéA is uniformly hyperbolic since the hyperbolic structure ex-

hibited by the magFa is naturally carried by the flow t@®, e.g. it has a
dense orbits and a dense set of periodic orbits, each of vanelthe sus-
pension of the corresponding dense orbit and periodic ofbitFa. The
invariant manifolds of a poinfx,y, s) are simply the translate of the corre-
sponding invariant manifolds @k y) for Fa: W (x,y,2) = WK(x,y) x {z}
for k =uu,ssand anyz € [0,1].

We will see in Section 6.4 that this Anosov flde not topologically
mixing
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(X7 Y, Z) . TZ X {Z}

T2 | TR Y. 2) = (Falxy).2)
st

Figure 1.6: Suspension flow over Anosov diffeomorphism wveitimstant
roof

The solenoid attractor

Consider now the solid 2-tor @& x D whereD = {z€ C : |7| < 1} is the
unit disk inC, together with the mag : S x D — S x D given by

(8,2) — (26,az+ Be¥/?),

8 € R/Z anda, € R with a + < 1. This transformation mag&! x D
strictly inside itself, that i (S x D) C S* x D. The maximal positively in-
variant set\ = Np>o f"(S* x D) is a uniformly hyperbolic basic set: ti$¢
direction is uniformly expanding and tfizdirection is uniformly contract-
ing, see Figure 1.7. This set is transitive and has a densetsabperiodic
orbits [52, 177].

f(StxD

{(S1 D) {80} x D

Figure 1.7: The solenoid attractor
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Uniformly hyperbolic basic set for a flow

Consider the suspension of the solenoid niiagf the previous subsection
over the constant roof function= 1 to get a flow with an attractok; =
Ne=oX} ((S* x D)) which is a uniformly hyperbolic basic set for the flow
Xs.

This is an example of an Axiom A attractor for a flow. As befiieon
A\ is nottopologically mixing.

1.2.2 Expansiveness and sensitive dependence on initial
conditions

The development of the theory of dynamical systems has sitioatrmod-
els involving expressions as simple as quadratic polynisni@s thdogis-
tic family or Heénon attractof, or autonomous ordinary differential equa-
tions with a hyperbolic singularity of saddle-type accuatetl by regular
orbits, as theLorenz flow exhibit sensitive dependence on initial condi-
tions, a common feature afhaotic dynamicssmall initial differences are
rapidly augmented as time passes, causing two trajecumigiaally com-
ing from practically indistinguishable points to behaveioompletely dif-
ferent manner after a short while. Long term predictionsedasn such
models are unfeasible since it is not possible to both spégtial condi-
tions with arbitrary accuracy and numerically calculatéhveérbitrary pre-
cision.

Formally the definition of sensitivity is as follows for a flol: a X!-
invariant subsen is sensitive to initial conditionsr hassensitive depen-
dence on initial conditionsf, for every small enoughr > 0 andx € A,
and for any neighborhood of x, there existyy € U andt # 0 such that
X'(y) andX'(x) arer-apart from each other: difK'(y),X"(x)) >r. See
Figure 1.8.

Figure 1.8: Sensitive dependence on initial conditions.
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A related concept is that of expansiveness, which roughlsimaehat
points whose orbits are always close for all time must cdieciThe con-
cept of expansiveness for homeomorphisms plays an imgadbmnin the
study of transformations. Bowen and Walters [40] gave a digfinof ex-
pansiveness for flows which is now call€dexpansiveneg87]. The basic
idea of their definition is that two points which are not clasehe orbit
topology induced byR can be separated at the same time even if one al-
lows a continuous time lag — see below for the technical déjfimé. The
equilibria of C-expansive flows must be isolated [40, Prajpws 1] which
implies that the Lorenz attractors and geometric Lorenzetsodre not C-
expansive.

Keynes and Sears introduced [87] the idea of restrictioh®time lag
and gave several definitions of expansiveness weaker tlexp@nsiveness.
The notion ofK-expansivenesds defined allowing only the time lag given
by an increasing surjective homeomorphismiof Komuro [90] showed
that the Lorenz attractor (presented in Section 1.1.3) ardgeometric
Lorenz models (to be presented in Section 2.3) are not Krestpa The
reason for this is not that the restriction of the time lagnsuifficient but
that the topology induced b is unsuited to measure the closeness of two
points in the same orbit.

Taking this fact into consideration, Komuro [90] gave a dé&fin of ex-
pansivenessuitable for flows presenting equilibria accumulated bytag
orbits. This concept is enough to show that two points whicmat lie on
a same orbit can be separated.

Let C(R,R) be the set of all continuous functiohs R — R and set
Co((R,0),(R,0)) for the subset of ath € C(R,R) such thah(0) = 0. De-
fine

%o = {h € C(R,0), (R,0)) : h(R) =R, h(s) > h(t),¥s>t},
and
X ={heC(R,R) : h(R) =R, h(s) > h(t),Vs>t},

A flow X is C-expansivéK-expansiveespectively) on an invariant sub-
set/\ C M if for every € > 0 there exist® > 0 such that ifx,y € A and for
someh € %K (respectivelyh € ) we have

dist(X'(x),X"(y)) <& forall teR, (1.2)
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theny € X[&8(x) = {X!(x): —e <t <¢€}.

We say that the flowX is expansiveon A if for every € > 0 there is
0 > 0 such that fox,y € A andh € £ (note that now we do not demand
that O be fixed byh) satisfying (1.2), then we can fingd € R such that
xhito) (Y) e X[to—s,to+s] (X)

Observe that expansivenessMrimplies sensitive dependence on ini-
tial conditions for any flow on a manifold with dimension aa$ 2. Indeed
if €, satisfy the expansiveness condition above Wwidgual to the identity
and we are given a pointe M and a neighborhood of x, then taking
y € U\ X[=&&l(x) (which always exists since we assume thiais not one-
dimensional) there exists= R such that dis¢X'(y), X'(x)) > 8. The same
argument applies whenever we have expansivenessXfiramriant subset
A of M containing a dense regular orbit of the flow.

Clearly C-expansive—=> K-expansive—- expansive by definition.
When a flow has no fixed point then C-expansiveness is equivaldf-
expansiveness [138, Theorem A]. In [40] it is shown that om@nected
manifold a C-expansive flow has no fixed points. The followivags kindly
communicated to us by Alfonso Artigue from IMERL.

Proposition 1.5. A flow is C-expansive on a manifold M if, and only if, it
is K-expansive.

Proof. From the results of Bowen [40], a C-expansive flow admits only
finitely many isolated fixed points oM. We assume now thatt has non-
isolated fixed points iM, that is, there exists at least a singuladtyhich
is accumulated by other points & (this always holds on a connected
manifold). ThenX is not C-expansive. We now show that it is not K-
expansive either, proving the proposition.

Using the continuity of' we have that for alR > 0 andT > 0 there
existsx € M\ {0} such that dis{X'(x),0) < Rwhenevert| <T.

Let €,8 > 0 be given and let us s& = 3¢ andR = 6/2. Definey =
X&(x) and

t+e ifte (—2¢¢)
hit)=< 2t fo<t<e ,
t/2  ifte(—2¢0)

which is a monotonously increasing homeomorphisriR efith h(0) = 0.
Next we verify that digtX! (y), X" (x)) < /2 for allt € R.
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o if t ¢ (—2¢,€) thenX"®)(x) = X'*%(x) = X!(y) and so we are done,

e if t € (0,€) thenh(t) = 2t < T and so digtX"V(x),0) < 5/2 which
implies distX(y), X"V (x)) < dist(X!(y),0) + dist X"V (x),0). As
X'(y) = X*¢(x) and fort < € we havet + & < 3¢ = T we obtain
dist(X!(y),0) < &/2. Hence digiX!(y), X"V (x)) < 8.

e if t € (—2¢,0) then|h(t)| = |t/2] < 3¢ and so distX"V(x),0) <
/2. Now, distX!(y), X" (x)) < dist(X!(y),0) + dist( X"V (x), o) <
dist(X'(y),0) +8/2. Butt € (—2¢,0),t +€ € (—¢,€) and sot + €| <
& implying that distX'™¢(x),0) < 8/2 and hence, ax®(x) =y, we
getdistX'(y),o) < 8/2 and replacing this in the inequality above we
obtain distX!(y), X"V (x)) < &.

All together we have proved digt!(y),X"V(x)) < 5/2 for allt € R.
Now there are two possibilities.

1. eitherX!(x) # y for all |t| < €, and we are done, or

2. or there exists € R such thafXs(x) =y, and in this cas& is a peri-
odic orbit with periodt < s—¢& < 2¢. Thus distX!(x), X"V (o) < 3.

Either way we found a pair of pointg &ndy in case (1)x ando in case
(2)) which remaind-close even when time is reparametrized throbgh
one of the orbits, and both points are not connected throngXaorbit in a
time less thaig. Since we may tak& > 0 arbitrarily close to zero for a fixed
€ > 0 in this construction, we have shown thats notK-expansive. O

We will prove in Section 4.1 that singular-hyperbolic attas are ex-
pansive so, in particular, the Lorenz attractor and the gdoenlLorenz
examples are all expansive and sensitive to initial cooiiiti Since these
families of flows exhibit equilibria accumulated by regutabits, we see
that expansiveness is compatible with the existence of facdts by the
flow.

1.3 Basictools

Here we state two basic classical results which enable usderatand in
many cases the local dynamics near many flow orbits. Then ate #ie
powerful closing and connecting lemmawhich will be used in a funda-
mental way in several key points in the following chapters.
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1.3.1 The tubular flow theorem

The following result shows that the local behavior of orligsar a regular
point of any flow is very simple.

Theorem 1.6(Tubular Flow) Let X € X"(M) and let pc M" be a regular
point of X where n> 1 is the dimension of M. Let V= {(x1,...,%) €
R": ||x|| < 1} and Y be the vector field on V given by=Y(1,0,...,0).
Then there is a Cdiffeomorphism hU — V for some neighborhood U of
p in M, which takes trajectories of X to trajectories of Y ,tthaX | U is
topologically equivalent to YV.

This shows that near a regular popgvery smooth flow can be smoothly
linearised: under a change of coordinates orbits pdaok like the orbits
of a constant flow, see Figure 1.9.

\Y

Figure 1.9: Linearization of orbits near a regular point dibav.

1.3.2 Transverse sections and the Poincareturn map

Now we describe a standard and extremely useful conseqoétitetubu-
lar flow theorem, which provides a converse to the constaaii suspen-
sions semiflows (presented in Section 1.2.1).

Let X € X1(M?®) be a flow on a three-dimensional manifold andSet
be an embedded surface M which is transverse to the vector fieldat
all points, i.e. for every ¢ Swe haveT,S+EX = TyM or equivalently
X(x) ¢ TxS. We say in what follows that sucBis across-sectiorto the
flow X! or to the vector fiel.

Let § andS; be a pair of cross-sections ¥oandxy € & be a regular
point of X and suppose that there exi3ts> 0 such thak; = X' (xo) € S.
Applying the Tubular Flow Theorem 1.6 to a finite open cowgrai the
compact arg= X!0, T](xo) we obtain a tubular flow in a neighborhoodyof
This shows that there exists a smooth Rdipom a neighborhoodfy of xg
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in & to a neighborhooW; of x; in S, with the same degree of smoothness
of the flow, such thaR(x) = XT (x)(x) for all x € Vp with R(xo) = x; and

T : Vo — R also smooth witfT (o) = T. MoreoverRis a bijection and thus

a diffeomorphism.

We can reapply the Tubular Flow Theorem and extend the doofain
definition of R to its maximal domain relative t§ andS; and to the con-
nection timeT. Notice thatx; need not be the first entry 19, that isT
might be bigger than it > 0: X' (xo) € §}.

Note that ifxg is a periodic orbit ofX then takingS; = § we see that
Xo is a fixed point ofR and the local behavior of the flow nesy can be
studied through the maR acting on a space with less dimension tihan
This is an important example where we can reduce the studyflofveto
a lower dimensional transformation. The power and appilitatof this
method should be clear after Chapters 2 and 4.

1.3.3 The Linear Poincagé Flow
If xis a regular point oX (i.e. X(x) # 0), denote by
Nx = {ve TxM :v-X(x) = 0}

the orthogonal complement &f(x) in TyM. Denote byOy : kM — Ny the
orthogonal projection ofxM ontoNy. For everyt € R define

PeiNe— Nxix) by  Pg=Oxt(x o DX'(X).
Itis easy to see th@® = {P.:t € R, X(x) # 0} satisfies the cocycle relation
pStt = P)S(t(x) oP? forevery t,seR.

The family P is called theLinear Poincagé Flowof X.

Hyperbolic splitting for the Linear Poicar & Flow

Let a compact subset invariant under the flow oK € ¥! be given. As-
sume that\ is (uniformly) hyperboli¢cas defined in Section 1.2. Then the
normal space\y is defined for allx € A, since/A does not contain singu-
larities. Hence Linear PoincarFlow is defined everywhere on the family
of normal spacebly = {Nx}xen. Compactness and absence of singularities
enables us to obtain the following characterization of family) hyper-
bolic subsets for flows.
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Theorem 1.7. Let A be a compact invariant subset forXx*(M). Then
A is (uniformly) hyperbolic if, and only if, the Linear Poin&Flow is
everywhere defined ovArand R, admits a (uniformly) hyperbolic splitting
of Nj.

The relation between the hyperbolic splittig§® EX @ EY over TA\M
and the splitting\N® @ N" over N, is the obvious oneNg = O(E7) and
Ny = O(EyY) for all x € A.

Dominated splitting for the Linear Poicaré Flow

Assume that & flow X admits a proper attractor with an isolating neigh-
borhoodU, that isA = Ax(U) = NierX!(U). Hence there exists @'-
neighborhoodu of X such that ifY € u, x € Pe(Y) andoy(x) NU # 0,
then
Oy (X) C Ay(U ) (1.3)

GivenY € w defineAy(U) = Ay(U)\ ). In what follows,EX stands
for the bundle spanned by the flow direction, @ldstands for the linear
Poincagé flow of X overAg (U).

Using (1.3) and the same arguments as in [53, Theorem 3.&2Ja(se
[205, Theorem 3.8]) we obtain

Theorem 1.8 (Dominated splitting for the Linear Poindg% Flow). As-
sume that there exists &©pen set ik (M) such that for all Xe « there
are no sinks nor sources in U and every critical element of X\ji{U)

is hyperbolic. Then there exists an invariant, continuond dominated
splitting Nag ) = NSX @ NUX for the Linear Poincagé Flow P. Moreover

1. for all hyperbolic set§ C A% (U) with splitting B* @ EX @ E4X
and for everyxc I’

ESX cNSX@ES and B c NYX@E}.

2. If Yo — X in X1(M) and % — x in M, with x, € A}, (U),x € A (U),
then N;Y° — Ng* and N&Y — X

3. If 0 € SX)NAx(U) is Lorenz-like and x W=(o) \ {0}, then on
Ny the invariant splitting for the Linear PoincérFlow is given by
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1.3.4 The Hartman-Grobman Theorem on local lineariza-
tion

The following result due to Hartman and Grobman [63, 70] shtwat a
flow of a vector fieldX is locally equivalent to its linear part at a hyperbolic
singularity. Since linear hyperbolic flows can be completdassified by
topological equivalence, this result enables us to chadisé local behavior
of the flow of any smooth vector field near a hyperbolic singtya See
[145] for generalizations and more references on this sitibje

Theorem 1.9(Hartman-Grobman)Let X € X" (M) and let pc M be a hy-
perbolic singularity of X. Let ¥= DX?: ToM — TpM be the linear vector
field on TM given by the linear transformation DX Then there exists a
neighborhood U of p in M, a neighborhood V @fn T,M and a homeo-
morphism h U — V which takes trajectories of X to trajectories of Y, that
is X | U is topologically equivalent to YV .

1.3.5 The (strong) Inclination Lemma (orA-Lemma)

This are basic results of dynamics near a hyperbolic simigylahich are
extremely useful to obtain intersections between staldeumistable mani-
fold through simple geometric arguments.

The Inclination Lemma

Leto € M be a hyperbolic singularity of € X" (M) for somer > 1, with its
local stable and unstable manifoMi§ (o), Wg.(0). Fix an embedded disk
B in W, (o) which is a neighborhood af in W (o), and a neighborhood
V of this disk inM. Then letD be a transverse disk 3 (o) atz with
the same dimension & and writeD' for the connected component of

X! (D) NV which containsX!(z), fort > 0, see Figure 1.10.

Lemma 1.10 (Inclination Lemma [142, 143])Givene > O there exists
T > Osuch that for all t> T the disk Dis e-close to B in the Gtopology.

This means that the embeddings whose images are theBliskd D!
are close in th€' topology.
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Wt(o)
-

We(0) ( 5

Figure 1.10: The inclination lemma

The strong Inclination Lemma

In the same setting as above but imposing that the eigersalueX (o)
closest to the imaginary axis be real and simple it is posstimprove the
convergence estimates. This conditiorX(0) is satisfied in particular by
all hyperbolic singularities with distinct real eigenvej and so also by the
so-called Lorenz-like singularities, see Definition 2.Jhe$e are the only
kind of singularities allowed on singular-hyperbolic setse Chapter 3.

Lemma 1.11(Strong Inclination Lemma [51])There are ¢cA, T > 0 such
that for all t > T the C distance between the embeddings of B and'a§D

bounded by ee .

Homoclinic classes, transitiveness and denseness of pélimorbits

Given a hyperbolic period orbjt of saddle-type for a floix € ¥! we can
define its associateldomoclinic class R(p) by theclosure of the set of
transverse intersections between the stable and unstadodéfoids of p

Hx (p) = W¢(p) M WR(p).

Note that there are cases wh&W(p) coincides withWg(p), a saddle-
connection, and thehlx(p) = 0. Observe that a nonempty homoclinic
class is always an invariant subset of the flow.

Otherwise we have the following important classical resudin the
early works of Poincéig%[154] (who showed that transverse homoclinic
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orbits are accumulation points of other homoclinic orbésyl developed
by Birkhoff [27] (transverse homoclinic orbits are accuatidn points of
periodic orbits) and by Smale [189].

Theorem 1.12(Birkhoff-Smale) Any non-empty homoclinic class has a
dense orbit and contains a dense set of periodic orbits.

See [146] for a general modern presentation of this resualtidiing
motivation, proofs and other non-trivial dynamical consesgces.

The transitiveness part of this theorem is a consequendedhtlina-
tion Lemma and we present a short proof here.

Lemma 1.13. Every homoclinic class H of a flow X is topologically tran-
sitive.

Proof. Letq,r € H = closurdWg(p) h Wy (p)] be distinct points and,V
two disjoint neighborhoods df,r in H, respectively. Lefj;,r; be points
of intersection between the stable and unstable manifdigsroU andV,
respectively. Then for some future timhe> O very large and somg> 0
close to the period gp we have thak'*S(q;) is onWS(p) very close top
andX~!(ry) is onWY(p) very close top also.

The invariance of the stable and unstable manifolds andrtbkéna-
tion Lemma imply that there exists a powtin the intersection between
WU (X' (01 )) andWSS(X~*2(ry)) for somety, tp > t. HenceX ' (w) is in-
sideU nearqg; andX'2(w) is insideV nearr;. ThenXt™2(U)NV £0. O

1.3.6 Generic vector fields and Lyapunov stability

Recall that a compact setC M is calledLyapunov stabléor X € X1(M)
if for every neighborhootl of L there is a neighborhodd C U of L such
thatX'(V) Cc U, vt > 0. Every attractor is a transitive Lyapunov stable set
but not conversely.

The following lemmas summarize some classical propertfelsya-
punov stable sets, see Chapter V in [25] for proofs.

Lemma 1.14. LetA be a Lyapunov stable set of X. Then,

1. If X, € M and t, > O satisfy x — x € A and Xn(x,) — vy, then yc A;
2. W(N) CA;
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3. if[is a transitive set of X anBNA #£ 0, thenl” C A.

The following provides a necessary and sufficient conditifmm a Lya-
punov stable set to be an attractor.

Lemma 1.15. A Lyapunov stable set of a vector field X is an attractor
of X if and only if there is a neighborhood U Afsuch thatwx (X) C A, for
allxeu.

Let us collect some properties for generic vector fields X%(M) for
future reference.

L1. X is Kupka-Smalgi.e. every periodic orbit and singularity of is
hyperbolic and the corresponding invariant manifoldsrseet trans-
versely, see [143]. In particula®(X) is a finite set.

L2. Q(X) =Per(X)US(X), see [163].
L3. WY (o) is Lyapunov stable foK for eacho € S(X).
L4. Wg(o) is Lyapunov stable for-X, for everyo € (X).

L5. If 0 € §(X) and dimWy(0)) = 1 thenwx(q) is Lyapunov stable for
X, for everyg e W¢' (o) \ {o}.

L6. If o € S(X) and dimWg (o)) = 1 thenax(q) is Lyapunov stable for
=X, forallqge Wg(0) \ {o}.

The proofs of items L3 to L6 can be found in [41].

1.3.7 The Closing Lemma

This celebrated result, proved by Charles Pugh [163, 168], Bays that
every regular orbit which accumulates on itself can be cldsean arbi-
trarily smallC! perturbation of the vector field. The question whether a
vector field with a recurrent trajectory through a pointan be perturbed
so that the solution throughfor the new vector field is closed, albeit triv-
ial in classC?, is a deep problem in clag¥ for r > 1, as first remarked by
Peixoto [148].

In [163, 164] Pugh proved th@&! Closing Lemma for compact mani-
folds of dimensions two and three and generalized the résud#rbitrary
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dimensions and to the case of closing a non-wandering taajeaather
than a recurrent one. In [161] he proved that for a weaker ¢ypecurrent
point, for whichayx (p) Nwx(p) # 0, theC? double-closing is not always
possible on the 2-toruB2. Later Pugh and Robinson [165] established the
Closing Lemma wheiM is non-compact, provided the poigto be closed
satisfiesux () Nwx (q) # 0.

We remark that th€" Closing Lemma, for > 1, in the case d# being
the 2-torus and the vector field has no singularities, waggut@arlier by
Peixoto [148] and later by Gutierrez [68] for the “constayyd” vector
fields on the 2-torus with finitely many singularities. In [&Rutierrez gave
a counter-example to tf@? Closing Lemma for the punctured torus. There
exists also the “ergodic closing lemma” from Ricardofasee below.

Theorem 1.16(C*-Closing Lemma) Let X € X1(M) be a C-flow on a
compact boundaryless finite dimensional manifold M areINd be a non-
wandering point of X. Given a*neighborhoodu of X and a neighbor-
hood V of p, then there exists&y« and gqe V such that g belongs to a
periodic orbit of Y.

Figure 1.11: Closing a recurrent orbit

Observe that in the Closing Lemma above the point whose @hit
closed is not necessarily the initial non-wandering pdiuot, only a point
arbitrarily close to it. The same situation appears in theytidic Closing
Lemma” of Mdig, see Section 1.4. Later this was improved in the Connect-
ing Lemma by Hayashi, see the next subsection.

1.3.8 The Connecting Lemma

The connecting lemma is motivated by the following situatidten faced
when studying dynamical systems. Suppose the unstablefatthof a
hyperbolic periodic orbit accumulates on the stable maghitd another
hyperbolic periodic orbit. We would like to find a vector fiettbse to



30 CHAPTER 1. INTRODUCTION

the given one such that the continuation of the invariantifols of the
periodic orbits above really intersect.

Observe that although very similar to the closing lemma, m@vare
demanding that the orbits whose manifolds intersect aréraations of
the original ones, so by a change of coordinates we can asthayeare
the same! The closing lemma only provides a point arbiyratibse to the
initially given recurrent point.

The result below is the flow version of [206, Theorem E, p. §2it4t
proved by Hayashi [74, 75] (see also [12]). This shows thatdf distinct
points p, g have orbits which visit a given neighborhood a poirgnd the
points p,q are far way from a piece of the negative orbit)gfthen we
can find aC'-close vector field such thai,q are in the same orbit, see
Figure 1.12.

Theorem 1.17(Connecting Lemma (Hayashi)Let X € X¥%(M) and x¢
S(X). For any C neighborhoodu of X there argp > 1, L > 0 andgg > 0
such that for everg < € < gg and any two points jg € M satisfying

L pa¢ Be(X"-0(x));
2. ox (PN Be/p(X) # 0;
3. 0x(9)NBg/p(x) # 0,

there is Ye @ such that Y= X outside of B(X!"-%(x)) and such that
g€ oy (p)

e Y-orbit
(X) —— X-orbit

Figure 1.12: The Connecting Lemma fot flows

There is an extension of this result [33] showing that it isgible to
connect pseudo-orbits in ti@¥ setting.
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Theorem 1.17 above gives a solution to the problem of comesta-
ble and unstable manifolds of periodic orbits. In fact thésuit can be
stated in a slightly different way, more adapted to our née@hapter 3.

Theorem 1.18.Let X € X¥1(M) ando € S(X) be hyperbolic. Suppose that
there are pc W (o) \ {o} and ge M\ C(X) such that:

(H1) For all neighborhoods U, V of p, q (respectively) thesexie U such
that X'(x) € V for some t> 0.

Thenthere are Y arbitrarily Eclose to X and T 0such that pe WY (a(Y))
and YT (p) = g. If in addition ge Wg(x) \ ox (x) for some xc C(X) hyper-
bolic, then'Y can be chosen so that Y7 (x(Y)) \ oy (x(Y)).

Moreover we can use it to connect orbits of two distinct poinhich
accumulate a third point, but with one of the points in thetalle manifold
of a hyperbolic singularity. This singularity persists engerturbation and
the connecting orbits will still be in its unstable manifold

Theorem 1.19. Let X € X1(M) ando € S(X) be hyperbolic. Suppose that
there are pc W (o) \ {0} and gx € M\ C(X) such that:

(H2) For all neighborhoods U, V, W of p, q, x (respectivelygrthare
Xp € U and % € V such that % (x,) € W and Xa(xq) € W for some
tp>0,t5<0.

Thenthere are Y arbitrarily Eclose to X and T 0 such that pe WY (a(Y))
and Y (p)=q.

1.3.9 A perturbation lemma for 3-flows

A very useful result of Franks [60, Lemma 1.1] shows that figssible to
modify a diffeomorphism to achieve a desired derivative fige number
of points, as long as the modification is made in@ieopology. Here we
state a version for vector fields of this result: under sonld ounditions,
anyC? perturbation of the derivative of the vector field along a pact or-
bit segment is realized by the derivative aEanearby vector field. Hence
this result allows one to locally change the derivative & tlow along a
compact trajectory, while the original result of Frankat only pertur-
bations on a finite number of points of the orbit of a diffeoptasm.
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The version we present here is very useful and it was alreadg in
several published works [53], [124], and [125] but a prooswaver pro-
vided.

To simplify notations we shall state it for flows defined on gatt sets
of R". Using local charts it is straightforward to obtain the tefor flows
on compact boundarylessmanifolds. LetM be an open subset &".

Theorem 1.20. Let us fix Ye X2(M), p€ M ande > 0. Given an orbit
segment ¥ (p), a neighborhood U of ¥#?/(p), and a @ parametrized
family of invertible linear maps A R" — R", t € [a,b] (i.e. the coeffi-
cients of the matricesiAvith respect to a fixed basis aré@nctions of t),
such that for all st with t+s< b we have

1. A=I1d:R"—=R"and A(Y(Y5(q))) = Y(Y'*(q)),
2. [|0sAsA =0 —Dyi(p Y| <&,

then there is Z X1(M) such that|]Y — Z||; < € and Z coincides with Y in
M\ U. Moreover 2(p) = YS(p) for every a< s< b and DZ(p) = A for
every te [a,b].

A proof of this result is presented in Appendix A.

Assume that there is su@has in Theorem 1.20. On one haAdmust
preserve the direction of the vector field along the orbinsegtY @0l (p)
for allt € [a,b] by item 1 above. On the other hand since

_ 0 1 0 _

0sA A Hs—0 = as ‘s:O = a*SDPZHSDZ‘(p)Z t’
0 0

= 3sPZ(Z75(p)) Is=0 = 5Dz 2]

DpthLS(DpZt)i

s=0

«0=DZ(Z'(p))
we see that item 2 above ensures #haC! nearY along the orbit segment
Y28 (p).

We observe that although we start wittCa vector field we obtain at
the end &C! vector field nearby the original one. If we increase the class
of differentiability of the initial vector field¥ and of A; with respect to the
parametet, then we obtairZ of higher order of differentiability. But even
in this setting we can only control the distance betw&eand the final
vector field in theC! topology, by results of Pujals and Sambarino in [166]
which we now explain.
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There is an example of a homoclinic cladg(recall Section 1.3.5 for
the definition of homoclinic class) of@ diffeomorphismf on a compact
surface with a unique fixed point which is a saddle-node, aee of its
eigenvalues if equal to one, corresponding to an indiffedinection, and
the other is smaller than one in modulus, corresponding tordracting
direction. Hence there are periodic orbitswith arbitrarily large periogn,
whose a normalized Lyapunov exponé\lﬁfp“ tends to 1 whem — oo,
wherel, is an eigenvalue dD fPr(x,).

Therefore if it were possible to haved perturbation lemma analogous
to Theorem 1.20, then we would obtairCa diffeomorphisms arbitrarily
close tof in theC? topology exhibiting a non-hyperbolic periodic orbit.

However in [166] the authors show that for homoclinic claddef C?
diffeomorphisms, ifk is the maximum period of non-hyperbolic periodic
orbits inH, then every periodic point with perio&k2nust be hyperbolic for
everyC? close diffeomorphisms (a kind &@? rigidity result). This shows
that a straightforward extension of Theorem 1.20@3rdiffeomorphisms
is impossible.

1.4 Ergodic Theory

The ergodic theory of uniformly hyperbolic systems wadatéd by Sinai’s
Theory of Gibbs States for Anosov flows [9, 188] and was exaenib
Axiom A flows and diffeomorphisms by Bowen and Ruelle [37,.3Bhe
special measures studied by these authors are commonisegtte by their
combined nam&inai-Ruelle-Bowenr just SRBIn the literature since.

Recall that annvariant probability measure for a flow X € X"(M) is
a probability measure such that(X') ~1A) = u(A) for all measurable sub-
setsA and anyt > 0 or, equivalently,/ ¢ o X'du= [ ¢ dufor all continuous
functions$ : M — R and anyt > 0.

Recall also that an invariant measwris ergodicif the only X-invariant
subsets have either measure 0 or 1 with respegt tequivalently, anyX-
invariant functionp € L1(p), i.e. ¢ o X' = ¢ u— almost everywhere for all
t > 0 is constanfi-almost everywhere. The cornerstone of Ergodic Theory
is the following celebrated result of George David Birkh@e [26] or for
a recent presentation [204]).

Theorem 1.21(Ergodic Theorem)Let f: M — M be a measurable trans-
formation, p a f-invariant probability measure agd M — R a bounded
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measurable function. Then the time averdge) = lim 2 5™ 5o (f"(x))
exists for p-almost every pointexM. Moreover is f-invariant and
J®dp= [du. In addition, if p is ergodic, thefh = [ ¢ du almost ev-
erywhere with respect to L.

For a flowX! just replace in the statement of Theorem 1.21 on the pre-
vious page above the discrete time average with lim., £ [ ¢ (X!(2)) dt
and f-invariance byX-invariance. For invertible transformations or flows
forward and backward (i.e. wiffi — —o) time averages are eqyahlmost
everywhere.

Every invariant probability measuneis a generalized convex linear
combination of ergodic measures in the following sensepfare.x there
exists an ergodic measung satisfying for every continuous functian

)
/q)dux:me%/o o(X'(2)) dt

and for every bounded measurable functiowe have

/lleu:/(/lleux) du(x).

1.4.1 Physical or SRB measures

The chaotic nature of hyperbolic phenomena prevents atecloag term
predictions for many models of physical, biological or emaic origin.
Inspired by an analogous situation of unpredictabilityefhin the field of
Statistical Mechanics/Thermodynamics — although due ¢ddlhge num-
ber of particles involved, whereas dynamical systems éxinitpredictabil-
ity even for models expressed with few variables and simgthematical
formulas, e.g. the Lorenz flow in Section 1.1.3 — researcforgsed on
the statistics of the data provided by the time averagesragésabservable
(a continuous function on the manifold) of the system. Timerages are
guaranteed to exist for a positive volume subset of initiaes (also called
anobservable subspbn the mathematical model if the transformation, or
the flow associated to the ordinary differential equatiaimits a smooth
invariant measure (a density) ophysicalmeasure.

Indeed, ifyp is an ergodic invariant measure for the transformation
To, then the Ergodic Theorem ensures that for eyeiytegrable function
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¢ : M — R and forp-almost every poink in the manifoldM the time aver-
aged(x) = limp_,on?t Z'j‘;(l)q)(TO‘ (x)) exists and equals the space average
J o dpo. A physical measure i an invariant probability measure for which
it is requiredthattime averages of every continuous functgoexist for a
positive Lebesgue measure (volume) subset of the spaceaugibl to the
space average(p).

We note that ifu is a density, that is, is absolutely continuous with
respect to the volume measure, then the Ergodic Theoremesnidatu is
physical. However not every physical measure is absolatayinuous. To
see why in a simple example we just have to consider a sirigulaof a
vector field which is an attracting fixed point (a sink), thba Dirac mass
dp concentrated o is a physical probability measure, since every orbit
in the basin of attraction of will have asymptotic time averages for any
continuous observabl given by¢(p) = dp(¢) = [ $ ddyp.

Physical measures need not be unique or even exist in gebetrathen
they do exist it is desirable thalhe set of points whose asymptotic time
averages are described by physical meas(seash set is called theasinof
the physical measurebg of full Lebesgue measure only an exceptional
set of points with zero volume would not have a well definechgstptic
behavior. This is yet far from being proved for most dynarmsgatems, in
spite of much recent progress in this direction.

There are robust examples of systems admitting severalqathysea-
sures whose basins together are of full Lebesgue measueze vatust
means that there are whole open sets of maps of a manifoldei€%h
topology exhibiting these features. For typical pararaettifamilies of
one-dimensional unimodal maps (maps of the circle or oftkerval with
a unique critical point) it is known that the above scenantdh true for
Lebesgue almost every parameter [106]. It is known thatthes systems
admitting no physical measure [85], but the only known casesnot ro-
bust, i.e. there are systems arbitrarily close which adhysjzal measures.

Physical probability measures for a flow

Given an invariant probability measupefor a flow X!, let B(p) be the the
(ergodic) basirof , i.e., the set of pointse M satisfying for all continuous
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functions : M — R

1T
dim = [ o(x(@)dt= [ pan
We say thatu is a physical(or SRB measure foiX if B(4) has positive
Lebesgue measure: LéB(1)) > 0.

The notion of SRBmeasure captures the intuitive idea that the natu-
ral measure for a dynamical system should be one which grasapilis-
tic information on the asymptotic behavior of trajectorgarting from a
“big” set of initial states. Here the notion of “big” can amhly be taken
to mean “positive volume”. In this sense &RkBmeasure provides infor-
mation on the behavior of trajectories starting from a senifal states
which is in principle “physically observable” in practicegy when model-
ing some physical experiment. That is why the ngshgsical measurés
also attached to them

This kind of measures was first constructed @r Anosov flows by
Anosov and Sinai [9] and later for every Axiom A attractor ©f flows
and forC? diffeomorphisms by Bowen and Ruelle [37, 39]. Moreover if
the attractor is transitive (i.e. a basic piece in the spédiecomposition
of an Axiom A flow), then there is a unique such measure supgdrt
the attractor whose basin covers a full neighborhood of tinactor except
for a volume zero subset. In addition, in the setting of diff@rphisms
these measures are ergodic and mixing (see Section 6.4fdefimition of
mixing for an ergodic probability measure).

The existence of physical measures shows that uniformlyetingdic
attractors have well defined asymptotic behavior in a pritiséib sense for
Lebesgue almost all points in a neighborhood.

1.4.2 Gibbs measures versus SRB measures

The concept of SRB measure is closely related to the conde@ibds
measure introduced in the setting of uniformly hyperbobevB and trans-
formation by Sinai [9, 188] and by Bowen and Ruelle [37, 39].

Recall that for a given flowX the Lyapunov exponent of x in the direc-
tion of ve TyM \ {0} is the number

o1
L(x,v) = liminf T log ||DX' (x)v]- (1.4)
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Given an invariant ergodic probability measyréor the flow X the Multi-
plicative Ergodic Theorem of Oseledets [139, 204] ensuvaisor Lebesgue
almost every there exists DX!-invariant splitting (for allt > 0) TyM =
E14--- @ E¢x and numberdy < --- < A¢ such that for ali = 1,...,k and
vi € Ei\ {0}

1
A= tllrpw? log|| DX (x)vi |- (1.5)

Observe that sinch is compact an is smooth, then we have that the
invariant direction given b¥EX cannot have positive Lyapunov exponent,
since for allt > 0 andze M

%IogHDXt(z) X(@)| = %IogHX(X‘(z))H < %Iog||X||o, (1.6)

where || X|jo = sup{||X(2)|| : z€ M} is a constant. Analogously this di-
rection cannot have positive exponent for negative valti¢isne, thus the
Lyapunov exponent along the flow direction must be zero.

Consequentlthe flow direction is never tangent to a direction along
which all Lyapunov exponents are non-zeho particularEX is never tan-
gent either to a strong-stable or strong-unstable directio

Absolutely continuous disintegration

In the uniformly hyperbolic setting it is well known that pdigal measures
for uniformly hyperbolic attractors admit a disintegratimto conditional
measures along the unstable manifolds of almost every pdiith are
absolutely continuous with respect to the induced Lebesgeasure on
these sub-manifolds, see [37, 39, 151, 201]. We explain tbaning of
this technical notion in what follows.

Assume that an ergodic invariant probability measurer the flow
X has a positive Lyapunov exponent. In this setting the exégeof un-
stable manifolds througp-almost every poink and tangent ak to F =
@), ~0Ei(x) is guaranteed by the non-uniform hyperbolic theory of Pesin
[152]: the strong-unstable manifolfg"!(x) are the “integral manifolds”
in the direction of the (measurable) sub-bunBletangent ta~ at almost
everyx. The setdV'(x) are embedded sub-manifolds in a neighborhood
of x which, in general, depend only measurably (including itgsbn the
base poink. LetWY(x) be the unstable manifold throughwhenever the
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strong-unstable manifo/Y(x) is defined (see Section 1.2). These mani-
folds are tangent atto the center-unstable directi@j & Fy. Assume that
n=dim(M) andl = dim(F).

Givenx € M let Sbe a co-dimension one submanifold\feverywhere
transverse to the vector fieklandx € S, which we call across-section of
the flow at x Let &g be the connected componentWf (x) NS containing
X. Theng&g is a smooth submanifold & and we take a parametrization
W [—&€ x [—¢,€"'"1 — Sof a compact neighborhod® of x in S, for
somee > 0, such that

e Y(0,0) = xandy((—¢,)' x {0"'"1}) C &;
o & =Y({0'} x (—&,&)"'1) is transverse t§o atx: & M &1 = {x}.

Consider the family1(S) of connected componenff W!(z) NS which
cross §. We say that aubmanifold crosses &if it can be written as the
graph of a mago — &1.

Figure 1.13: Disintegration.

Givend > 0 we letMs(X) = {X55)(C) : ¢ € N(S)} be a family of co-
dimension one submanifolds inside unstable leaves in enheipood of
X CrossingSy, see Figure 1.13. The volume form Leb induces a volume
form Leh, on eachy € M3(x) naturally. Moreover, sincg € M;(x) is a
measurable family of submanifoldSyis compact and each curve is tangent
to a measurable sub-bundi€"), it forms a measurable partition bifs(x) =
U{y:ye Ns(x)}. We say thafls(x) is ad-adapted foliated neighborhood
of x

Hence (see [178]u | ﬁé(x) can be disintegrated along the partition
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M5(x) into a family ofconditional measureuy }yen;(x) such that

1l 500 = [ wydiy)
wherelis a measure ofls(x) defined by
fI(A) = p(Uyeny) for all Borel setsA C My(x).

In this setting we say that has an absolutely continuous disintegration
along the center-unstable directiaw a Gibbs statef for p-almost every
x € M, eachd-adapted foliated neighborhoddg(x) of x induces a disin-
tegration {py }yer;(x) Of M| M5(x), for all small enoughd > 0, such that
My < Leb for fi-almost ally € M5(x). In this setting we also say thatis a
Gibbs measuréor the flowX.

Note that completely dual properties and definitions cantated for
the strong-stabl&VsS(x) and stable leaved/S(x) of p-almost every point
x for a system with an invariant probability measyréaving a negative
Lyapunov exponent.

Absolute continuity of foliations

In the same setting above, assume thiahs a unstable le&¥"(x) and let
D1,D, be embedded disk i transverse toVY(x) atxy, X2, that isTy D; &
TxWY(X) = TxM, i = 1,2. Then the strong-unstable leaves through the
points ofD; which cros-, define a magh between a subset @f; to D2:
h(y1) = y2 =W"(y;) N D2, called theholonomymap of the strong-unstable
foliation between the transverse didBg, D». The holonomy is injective if
D1,D, are close enough due to uniqueness of the strong-unstaesle
throughp-a.e. point.

We say thath is absolutely continuou# there is a measurable map
Jn : D1 — [0, +0], called theJacobian of hsuch that

Leb (h(A)) = /AJhdLeb1 for all Borel setsA C Dy,

and Jy is integrable with respect to Lelon D1, where Leb denotes the
Lebesgue measure induced@nby the Riemannian metric= 1, 2.

The foliation{W"(x)} is absolutely continuou@older continuous) if
every holonomy map is absolutely continuous Jgis Holder continuous,
respectively).
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Since the pioneering work of Anosov and Sinai [8, 9] it becaitear
that forC? transformations or flows (in fact it is enough to have transia-
tions or flows which ar€! with a-Holder derivative for some @ a < 1)
the strong-unstable foliation is absolutely continuoud Eiblder continu-
ous. See also [107]When the leaves are of co-dimension one, then the
Jacobian § of the holonomy map h coincides with the derivativsihce h
is a map between curves in Nh this case the holonomy map can be seen
as aC*® transformation between subsets of the real line.

Going back to the case of the unstable foliation for a flow, Bige
ure 1.14, we have that for any pair of disksy. inside & transverse to
WHY(x) NS at distinct pointsys, Yy, the holonomyH betweeny; andy;
along the leave®V!Y(z2) NS crossingS is also Hilder continuousf the
flow is C.

Figure 1.14: The holonomy maps.

Indeed note that this holonomy mBjpcan be obtained as a composition
of the holonomy ma between two disk®;, D, transverse to the strong-
unstable leaves which croSg, and the “projection along the flow” sending
w e X(-39) () to a pointX'(w) € S uniquely defined, with € (—5,3).
The disks are defined simply & = X(~#8)(y;) for 0 < € < & and satisfy
DiNS =vy1, i =1,2. Since the the holonontyis Holder continuous and
the projection along the flow has the same differentiabdiss of the flow
(due to the Tubular Flow Theorem 1.6), we see that the holgridnis also
Holder continuous.

A very important consequence of absolute continuity is tiewing.
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Lemma 1.22. Assume that for some given submanifold W of M one knows
that throughLeby-almost every point ¥ W (Leby is the induced volume
form on W by the volume fortreb of M) there passes a strong-stable man-
ifold WSS(x) transverse to W. Then the union of the points of all these
strong-stable manifolds has positive volume in M.

Proof. In a neighborhood of one of its poin can be written a®k x
{0k} and by the transversely assumptionWwf(x) these submanifolds
can be written as grapH&"* — RK on a neighborhood of 0k which
depends measurably ore R¥. This change of coordinates through some
local chart ofM affects the derivatives of maps and holonomies at most by
multiplication by bounded smooth functions.

The measurability ensures that given- 0 we can findd, a > 0 small
enough such that there exigtsc R* satisfying:

1. WSS(x) is the graph of a map : B5(0" ) — R* defined on &-ball
around the origin;

2. the slope of the tangent spac&¥&(x) at every point is smaller than
a (meaning thaf|Dyx(w)|| < o for all w);

3. Lelw(A) >1—¢.

Then the submanifoltM = RK x {t} for t € R™ K near @K is transverse
to W35(x) for all x € A. Thus the holonomy maf from a subset of\
to W =W containsA in its image, which has positive volume . By
absolute continuity o, the intersectioif NU,W3(x) has positive volume
in W. Hence LelUWS(x)) = [ Leby (W NUWS(x)) dLeb™¥(t) > 0,
and this concludes the proof. O

Hyperbolic measures, Gibbs property and construction of plgsical mea-
sures

These technical notions have crucial applications in thestraction of
physical measures for a dynamical system. Indeed, if thesunea is
ergodic anchyperbolic meaning that all Lyapunov exponents are non-zero
except the one corresponding to the flow direction, and alSidhs mea-
sure, then transverse to a center-unstable maniidig) there exist strong-
stable manifolds througlw-almost every point and also through Leb
almost all pointsv € WY(z). Along strong-stable manifolds forward time
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averages of continuous functions are constant and alonigreenstable
manifolds backward time averages of continuous functigescanstant.
Moreover forward and backward time averages are egiadost every-
where and through disintegration and ergodic decompositie deduce
that p-almost everyz has a strong-unstable manifold"“(z) where Leb-
a.e. point has the same forward and backward time averages.

We are in the setting of Lemma 1.22 thus the absolute cotyiruii
the strong-stable foliation implies that the family of diketstrong-stable
manifolds througtW"(z) covers a positive Lebesgue measure subsbt of
if the flow is of class & By the previous observations this set is inside
the (ergodic) basin gfi. Hencea hyperbolic ergodic invariant probability
measure for a Eflow which is a Gibbs measure is also a physical measure

1.4.3 The Ergodic Closing Lemma

In several proofs in this text we shall use the Ergodic Clpsiemma for
flows which shows that any given invariant measure can beoappated
by an invariant measure supported on critical elements.EFgedic Clos-
ing Lemma was first proved by Mi& [110] for diffeomorphisms and for
flows by Wen [205].

We need the following definition. A poink e M\ S(X) is &-strongly
closedif for any C! neighborhoodu c X*(M) of X, there areZ ¢ u,
ze M andT > 0 such thatZT(2) = z X = Z on M\ B5(X[%T/(x)) and
dist(Z'(2),X'(x)) < 8, forall 0<t < T.

Denote byX(X) the set of points oM which ared-strongly closed for
any o sufficiently small.

Theorem 1.23(Ergodic Closing Lemma, flow version)et pu be any X-
invariant Borel probability measure. Thef{§(X) UZ(X)) = 1.

1.5 Stability conjectures

The search for a characterization of stable systems, fromlesrseminal
work in the sixties [190], led to several conjectures sometath are still
open.

The famous stability conjecture, by Palis and Smale [144}es that
a vector fieldX is structurally stable if, and only if, the non-wandering
set is hyperbolic, coincides with the closure of the set tfoal elements,
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there are no cycles between the stable and unstable mandbile critical
elements and the intersection between the stable and imstabifolds of
points at the non-wandering set is transverse. In shoristdtnis conjecture
states tha& system is structurally stable if, and only if, its non-waridg
set is uniformly hyperbolic, the periodic orbits are dengd & satisfies the
strong transversality condition.

This conjecture was proved in the setting@¥ diffeomorphisms by
the combined work of several people along the years. FirsbRq170]
showed that if a diffeomorphismisis C2, Q(f) is Axiom A and satisfies
the strong transversality condition, théris Cl-structurally stable. Then
Wellington de Melo [50] obtained the same result @rdiffeomorphisms
on surfaces and finally Robinson [173] showed thaCfbdiffeomorphisms
on any compact manifold the strong transversality conlitilus Axiom A
is sufficient forC* structural stability. The proof of this conjecture, in e
topology, was completed by Ma [109, 110, 108] (see also Liao [97] for a
proof for surface diffeomorphisms) who showed tB4tstructural stability
implies that the non-wandering set is uniformly hyperbaliti satisfies the
strong transversality condition.

For flows the proof that uniform hyperbolicity together wikrong
transversality is sufficient fo€? structural stability was given by Robin-
son [171, 172]. Finally, that these conditions are also swagy for struc-
tural stability was proved much later by Hayashi [74] usimg €Connecting
Lemma.

Developments in the last decades led Palis to conjecturq fhdt the
set of dynamical systems exhibiting finitely many attragtisrdense in the
set of all dynamical systems (in a suitable topology) andiemeer, each
attractor supports a physical/SRB measure and the uniomeofergodic)
basin of all physical measures covers Lebesgue almost @agny of the
ambient manifold. This conjecture admits a version for peataized fami-
lies where denseness is to be taken in the set of parametegsponding to
finitely many attractors whose basins cover the ambientfolariebesgue
almost everywhere.

In the context of three-dimensional flows, one has to considether
homoclinic phenomenon involving singularities of the wedteld: the sit-
uation in which the stable and unstable manifolds of a sexiyl have in-
tersections other than the singularity itself. In this ¢alsis said that the
vector field has a singular cycle.

In the setting of! surface diffeomorphisms this conjecture was proved
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true by E. Pujals and M. Sambarino [167]. In the setting of eelytic
families of unimodal maps of the interval or the circle, thigs obtained by
M. Lyubich [106]. In higher dimensions this conjecture idl stide open
in spite of much recent progress, see e.g [34] and refer¢hepssin.



Chapter 2

Singular cycles and robust
singular attractors

A cycleT for a flowX! is a finite sequencfo;,0 <i < n} ¢ C(X) of hyper-
bolic critical elements oK', with op = o, such thaW"(oj) "\W3(0j1) #

0 for 0 < j < n, that is the unstable manifold of one element intersects the
stable manifold of the next element. A cyclesiagularif at least one of its
critical elements is a fixed point of.

Cycles play an important role in the bifurcating theory ofrayical
Systems. A singular cycle is one of the mechanisms to go froose-
Smale flow (whose non-wandering set is a finite collectionygfenbolic
critical elements) to a hyperbolic flow (whose non-wandgsat is a finite
collection of basic sets) through a one parameter familyosisl

In this chapter we shall describe three types of singuladiesythat will
be used in the sequel. Nowadays the first one, presented fioiBcl, is
denominatedingular-horseshaelt was introduced by Labarca and Paci-
fico in [92] as a model for stable non hyperbolic flows in the teah of
boundary manifolds. We show that this set satisfies someeptiep which,
in Chapter 3, will be defined as singular-hyperbolicity. Sigeneraliza-
tion of (uniform) hyperbolicity will characterize a muchdader class of
invariant sets for flows.

The second cycle is a homoclinic connection associated yparholic
singularity of saddle-type. There are several possibdifor these cycles

45
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which are used in the proofs presented in the following avaptWe pro-
vide a brief description the dynamics of perturbations ektcycles here.
One of them is a inclination flip cycle. This was studied by gnanthors,
see e.g. [80, 44] among others. The study of this type of dgoteucial
for the proof, in Chapter 3, that a robust transitive set \gitigularities
for a 3-flow is either an attractor or a repeller, togethehwlite Shil’nikov
bifurcation, first considered in [185]. These are presemekction 2.2.

Finally the third one is the Lorenz geometrical model, idtroed by
Guckenheimer and Williams [65] and presented in Section ZI8s is a
model for a robust attractor with singularities for a 3-flas,we will see in
Chapter 3.

2.1 Singular horseshoe

We start in Section 2.1.1 with the description of a map defioed rect-
angle into itself which resembles the Smale horseshoe n&d}j.[For this
reason this type of map is nowadays denominated singulaekboe.

Afterward, in Section 2.1.2, we exhibit a singular cyclegaeting a
singular horseshoe map as a first return map. Then, in SeZtio®, we
show in several stages that the singular horseshoe is atitrangartially
hyperbolic set with volume expanding central direction.

2.1.1 A singular horseshoe map

Givend > 0 small enough) < 1/2 andp> 1, letQ = [-1,0] x [0,1+ 9]
and define

Rs=Q\ (W *(1+3),1/2-8) x (1/2,1)).
LetF :Rs — Q, (X,¥) — (9(x,y), f(y)) be a smooth map satisfying:
(@) 10x9(x,y)| < 1/2 for all (x,y) € Rs and
gxy)=A-x for 0<y<u1(1+29).

(b) f:1\(JUK)— I wherel =[0,1], J = (u*(1+25),1/2— &) and
K =(1/2,1) satisfying

(i) f(y)=pyforo<y<u(1+29),
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(i) f'(y)>>puforye[1/2-9,1/2]U[1,1+ ).
() F(x,1)=F(x,1/2) = (a,0) for —1 <x < O with afixed—1 < a <A.
(d) the following sets

y,]_:F({—l}X(l,l-ﬁ-é]), yOZF({O}X(111+6])7
Bo=F({0} x [1/2-5,1/2)), B-1=F({-1}x[1/2-5,1/2))

are disjointC! curves, except for the poirftr,0) where all are tan-
gent. These curves are contained(inl, —A) x [0,1+ 8] and are
transverse to the horizontal lines. Moreoverd{fA, B) denotes the
distance between the s&@ndB, andL = {—1} x [0,1+ 9] then

d(y-1,L) < d(yo,L) <d(Po,L) < d(B-1,L).

Figure 2.1 displays the main features of the rirap

Observe that, by construction, the horizontal lige$ x [0,1+ ] , for
X € [-1,0], are invariants byr. They are also uniformly contracted by a
factor 0< ¢p < 1/2. This guaranties thaD has a uniformly contracted
(strong-)stable foliation invariant by that we denote by 35Q).

145 Y-1Yo B-oB-1
1 | Ao
T
12-5, i [ A
ui(1+25) ‘%F/
) | #
a -2 0

Figure 2.1: A singular-horseshoe map

Define the following rectangles

Ao=[~1,0x [1,1+3], Ay =[-1,0x [1/2—5,1/2],
Ao =[-1,0] x [0,u (14 29)].
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Note that '
i=1

Rs=|JA anddefine Qf = [F"(Rs).

i=0 nez
Itis clear thatF ~%(Qr) = QF.

Singular symbolic dynamics

We now associate a symbolic dynamics to the restrididi2r. For this,
consider a maf : Rs — Q such thaf has the same properties described
for F, except thaF ([—1,1] x {1}) andF ([—1,1] x {1/2}) are disjoint in-
tervalsl andJ contained in the interior of—1,A] x {0} as in Figure 2.2.
DefineQ = NnezF"(Ry).

v-1 Yo Bo B-1

\ Ao

M

A

-1 | J —AE 0
Figure 2.2: A Smale horseshoe map

ClearlyF is a Smale horseshoe map. Roughly speakiig, obtained
from F pinching the interval$ andJ into a unique point in such a way that
the resulting boundary lings 1, Yo, Bo, andB_; are tangent at this point.

Let 23 be the set of doubly infinite sequences of symbol$0ri, 2}
endowed with the topology given by the distance

X — Vil
d(X,y) = ie% 3l

ando : 2% — 33 be the left shift mam(x); = X, 1.
It is well known (see e.g. [190] but also the textbooks of elde-
vaney [52] or Robinson [177]) that there exists a homeomismh : Q —
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>3 which conjugate§ ando, i.e. HoF = goH. The imageH (x) of x€ Q
is the sequenceH (x);) € =2 defined by

H(x)i=je€{0,12} < F'(x)cAj, icZ (2.1)

Recall that the set of periodic orbits foiis dense irE3 and that there exists
a dense orbit.

We now describe the sequences associated, in a similar avagirts
Qf.

Observe that the tangency poiot, 0) is the unique point of2¢ outside
of [-A,0] x [0,1+ 9] which remains forever in the bottom boundaryQ@f
This line corresponds to the local stable manifold of thedigeint (0,0)
of F.

o Since[—1,0] x {0} = Nn<oF "(A2) we havez e [-1,0] x {0} NQ if,
and only if,6;(z) =2 foralli > 0,i.e.H(z) = (...,x-1,2,2,2,...).

The points belonging to this line which are outside[-eh,0] x [0,1+ 9]
are the points of the local stable manifold(6f0) which are different from
(0,0), i.e. their corresponding codes differ from the constaqtuisece =
2 at some coordinate with negative index. Definkfgthe subset oE3 of
those sequences; )icz with xp € {0,1} andx; = 2 for alli > 1, then

WE(H(0,0)) \H([-A,0] x [0,1+8]) = | Jo*s3 =53
k>1

Note thato 13 C 53. Defining an equivalence relation &3 by 8 ~ 8 if
and only ifG,@ € ff, then this relation is preserved by the shift.

Let 23 be the corresponding quotient space anithe associated quo-
tient shift map. This map can be seen as the original fulltshdp on
three symbols after identifying the sequences®nwhich correspond to
the points which are taken o, 0) by F.

By the above considerations and the dynamics ofe get

Lemma 2.1. There exists a homeomorphism HQF — 53 which conju-
gates F| Qr and H:, thatis H- o (F | Q) = 0o HE.

The homeomorphistig is defined just as in (2.1) replacitkgby F.
Observe that the set of periodic orbits fois the same set of periodic
orbits foro. Note also that the dense orbit foris not contained irE3.
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Therefore the set of periodic orbits faris dense inz3 and this space
contains a dense orbit. The existence of the conjugationeadasures that
Qr has a dense subset of periodic orbits and a dense orbit fdiytramics
of F.

2.1.2 A singular cycle with a singular horseshoe first re-
turn map

We start by giving a definition of a special type of singuladf a vector
field X in a 3-manifold.

Definition 2.1. We say that a singularity of a 3-flow X! is Lorenz-like if
the eigenvaluea;, 1 <i < 3 are real and satisfy

A <Az <0< —A3z3 <A1 (2.2)

Next we shall exhibit a singular cycle having a Lorenz-like singu-
larity p and a hyperbolic saddle-type closed ombjtconnected through a
branch of the unstable manifold associategtahis branch is contained
in the stable manifold associateddo Moreover there are two orbits of
transverse intersection betweéafi(p) andwW"(c). The cycle will be con-
structed in such away that it is contained in the maximalriave set/A(X)
of a vector fieldX in a neighborhoot) of ¢, and the first return map asso-
ciated toc is a singular horseshoe map, see Figure 2.3.

Figure 2.3: A singular cycle

We start with a vector fieltko € X"(D%) on the 3-diskD? in R3. This
vector field has one repeller singularity at the north pole. Outside a



2.1. SINGULAR HORSESHOE 51

neighborhood of1, Xy has four singularities which we denote pyp1, p2,r2,
plus a hyperbolic closed orhit. These satisfy the following:

1.

2.

7.

pis a Lorenz-like singularity.

(p,0) is a saddle connection with a brangt(p) of WY(p) \ {p}
whosew-limit set isa. By the Hartman-Grobman Theorem there ex-
ists a neighborhoog € A{ C R such that the restriction of to A is
equivalent to the linear vector field Xy, X2, X3) = (A2X1,A1X2, A3X3).

. p1 is an attractor and is also thelimit set of the other branch of

WY(p) \ {p}.

. P2 is an attractor and is the-limit of WY(o) \ {a}.

. I2is a repeller contained in the interior of the 2-didk bounded by

ginS2.

. We assume that

(@) p1, p,y(p), 0 andD? are contained in the boundad{D?®) = S?
of the 3-disk;

(b) the eigenvalues obXp(r2) corresponding to eigenvectors in
TS? are complex conjugates. Therefore the parAsf(r,) \
{r2} in S?is a spiral whosev-limit set isa.

(c) the strong unstable manifoll““(r2) \ {r2} is contained in the
interior of D3 and itscw-limit set is the attractopy.

Thea-limit set of W3(p) \ { p} is the repeller; andWs(p) separates
the two attractors.

Figure 2.4 shows the essential features of the vector Xgloutside a
neighborhood of;. Observe thaXy constructed in this way is a Morse-
Smale vector field.

Now we can modify the vector fieldy away from its critical elements,
in particular away from the neighborhoad of p, in order to produce a
unique tangency betwe&#*(p) andW!(o), see Figure 2.5.

By another slight perturbation of the above vector field wieageector
field X such thaw"(ag) is transverse t@/3(p) at two orbits, see Figure 2.6.
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P2
z
/s
VAT S

Figure 2.4: The vector fieldo.

Figure 2.5: Producing a unique tangency.

The first return map associated toc is a singular horseshoe map

Now we study the first return map associatedct@nd show that it is a
singular horseshoe map.

Let Sbe a cross section ¥ atq € 0. Reparametrizing, if necessary,
we can assume that the periodmis equal to one and th&is invariant by
X1: there exists a small neighborhoddc Sof g such thaX(SNU) c S

Since there are two orbits of transverse intersectioM8fa) with
W3(p) and the brancl’(p) haso as w-limit set, there exists a first re-
turn mapF defined on subsets & taking points ofSback toSunder the
action of the flow. The goal now is to describe

From now we assume mild non-resonant conditions on the eden
ues ofp to ensure that there a@* linearizing coordinate$xs, X2, X3) in a
neighborhoodJy containingp.

Let DS(p) C Up andD"(p) C Ug be fundamental domains for the action
of the flow insidéWs(p) andWY(p) respectively. That i®5(p) is a circle
in W3(p) \ {p} containingp in its interior and transverse %, andD"(p)
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Figure 2.7: The final vector field.

is a pair of points, one in each branchv@f(p) \ {p}.

Let C5(p) C Up be a cross section 1§, as in Figure 2.8, with several
componentsC®=CS(p) =C*(p) UDS(p)UC~ (p). We assume th& (p)
is contained in the stable manifold of the attragbgr We also assume that
the plane{x; = 0} is a center-unstable manifold fprand we denote it by
We(p). LetC!(p) be a cross section % formed by a 2-disk through the
point of yp) NDY(p).

Observe that if is aC* curve transverse tBS(p) andynWsS(p) = 0,
then

cmn(UXm)
t>0

is aC! curve tangent tdv!(p) NCY(p) atDY(p) Ny (p).

LetDS(pz) C D® be a fundamental domain for the dynamics/é¥( p,),
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Figure 2.8: The cross secti@t at p.

i.e. the boundary of a 3-ball containimg. LetV C Sbe a small neigh-
borhood ofg € o, where we hav€! linearizing coordinatesx, y) for the
Poincaé first return mag- associated to. The eigenvalues dDF(q) are
A, U both bigger than 1.

Let Q = [-1,1] x [0,1] be a rectangle contained in the interior\of
Assume that

£1,1] x {%,1} cWS(p) and [~1,1] x {0} C §2

There are only two orbits of transverse intersection beti®&(c) and
W5(p), and the points i{1} x (1/2,1) will fall in the stable set ofp;, by
construction of the vector field. SinceWs(p;) is open we can assume
that[—1,1] x (1/2,1) C W3(p1) (takingV small enough) and also

XY([~1,1] % (1/2,1)) cC™(p)

through a reparametrization of time if necessary. Assumtaduthat there
existsd > 0 such tha{1+28)u 1 < 1/2— 3 and

(a) forAg =[-1,1] x (1,1+8] we havex*(Ag) C C*(p);
(b) for Ay = [~1,1] x [1/2— ,1] we haveX*(Aq) C C*(p);
(©) X2([-1,1] x [1+ 8,1+ 25]) C D¥(py);

(d) X?([-1,1] x [1/2—25,1/2—3]) C D¥(py);
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(e) forAx =[-1,1] x [0, (1+ 28)u~1] we have

XY(A2) = [-A,0] x [0,1+ 28] C Q.

Now define
Hi(X) = [J X' (X (A0)) NCY(p), Ha(X) = [JX' (X (A1) NC ().
t>0 t>0

Clearly H;(X) are cones tangent &!(p) nC"(p) at DY(p) for i = 1,2,
see Figures 2.9 and 2.10.

F
e 235 Q‘”Fw
|

We(a)
Figure 2.9: The first return map @.

Let a be the first intersection point betwe®'(p) andQ. We can
assume that;(X) = X}(H;(X)) is contained inQ and that these sets are
cones tangent t¢/°“(p)NQ ata, fori =1,2.

Clearly we can also assume that

X3([~1,1] x {1+8}) cta(X) and X3([-1,1] x {% —8}) C 12(X).

If necessary, we modify the vector fieXdin order to have (see Figure 2.11):

(a) horizontal linegy = constant going to horizontal lines im; (X);
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(b) writing T8, for the projection on thg-axis inV
ny(x3([_1, 1) {1+5})) ={1+25} and
(X311 x {5 ~8))) = {1+ 28);
(c) forDE = [~1,A] x [0,1+ 3] we haver;(X) C intD$ fori = 1,2.
We(p) NC(p)
C'(p)
Ha( Ha(X)

DY(p)

Figure 2.10: The first return map Bt'(p)

Now we describe the first return mép

o If we take a point(x,y) with 1+ 0 <y < 1+ 29, then(x,y) is con-
tained in the stable manifold of the attracfwrandF is not defined
at these points.

e For either a poinfx,1) € Qor (x,1/2) € Q we defineF(x,1) = a =
F(x,1/2).

e For points(x,y) € Q with 0 <y < p1(1+ 25) we defineF (x,y) =
(A%, 1y).

e For points(x,y) such that either k y<1+do0r1/2-30<y<1/2,
we defineF (x,y) as the first intersection of the positive orbit through
(x,y) with the rectangl€®s = [—1,1] x [0,1+ 29].

e For points(x,y) with 1/2 <y < 1 the first returrF is not defined,
since these points are in the stable manifold of the attrgmgto

e F is also not defined for points,y) with p=1(1428) <y < 1/2 8.
Indeed, these points are such that the projection og-theés of their
first return toSis larger than X 26. So these points return onceSo
and then they are taken to the attraqter
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WY(p)NQ
T 115
M A
1/2
1/2-35
A (1/2+3)pt
a 1+25 O

Figure 2.11: The singular horseshoe return map.

Then the first return map has the expression:

(AX, 1) if 0<y<ui(1+25)
Fxy) = { (91(xy), fa(y)) if 1<y<1+3d
(2(xy), f2y)) if 1/2-8<y<1/2

with
e gi(x,y) is some smooth function witfd,gi| < ¢ < 3, and

e fj is a smooth function satisfyin§f (y) > pand 0< fi(y) < 1+ 29,
fori=1,2.

We assume that the ima§€¢{0} x [0,1+9]) is transverse to the horizontal
linesinQj.

The non-trivial dynamics df is concentrated in the squagg.

Let Qr = Nn>0F"(Qs). Observe that the non-wandering §¥tX) is
the disjoint union of the critical elemen{s;,r, p1, p2} andA, whereA is
the closure of the saturation by the flo of the non-wandering set of the
first return mag- described above, i.\ = Ui>oX!H(QF).

The setA is the maximal invariant set containing the singular cycle
in the neighborhood) chosen at the beginning of the construction. This
invariant set is the so callesingular horseshae

Remark2.2 On the boundary of the manifolif®, which is preserved by the
flow, we have a Morse-Smale system. Hence any vector Yiabse toX
preserving the boundary will have the same features as the boundary.
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Moreover the features oX depend on the transverse intersection of
certain invariant manifolds of the hyperbolic critical elents, all of which
lie on the boundary of the ambient manifold. Hence everyordild close
to X preserving the boundary will exhibit the same critical ebeits and
the same transversality relations between thenthesingular-horseshoe
is robust among the vector fields which preserve the bounofdby.

2.1.3 The singular horseshoe is a partially hyperbolic set
with volume expanding central direction

We start by constructing local stable and unstable marsfiicbugh points
of Q with respect td=. The stable and unstable foliation of the singular
horseshod\ is the obtained as the saturation by the flow of these masifold
Then we explain how to obtain the strong-stable foliatioravidg these
foliations we can define a splitting of the tangent spaca athich will
behave much like a hyperbolic splitting.

Stable manifold for points in Qf

LetF : Qs — Q be the singular horseshoe map defined in the previous sub-
section.

It is easy to see that any horizontal line crosstpgs uniformly con-
tracted by a factor of € (0,1/2) by the definition of. Then, given any
pair of pointsx,y of Qf in the same horizontal line one has

dist(FX(x),F¥(y)) < ¢ =0
Hence these curves are the local stable manifolds througkspd Qr with
respect td-. Saturating these curves by the flow we obtain the foliation o
stable manifoldsr S through the points of the singular horseshoe.

For the particular case of the saddle singulapignd the periodic orbits
o the stable leaves are given by the stable manifolds of thgserbolic
critical points.

Unstable manifolds for points of Q¢

DefineRy = QNF(Ag), Rt = QNF (A1) andR, = QNF (A2). ThenRy and
R; are, except for their vertexes, disjoint conBs.is a rectangle, crossing
Q from bottom to top.
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For eachi, j € {0,1,2}, letRj = R NF(R)). ThenF(R}) = U2 R;j.
SinceF(x,y) = (9(x,y), f(y)) with |gx(X,y)| < ¢ < 1/2, we have that the
horizontal lines are contracted by a factorcoivhen iterated by. Thus,
except forRy, (which is a rectangle strictly containedR3), Rjj is a cone
strictly contained irR;.

Inductively, given any sequence ofsymbolsxi,xp---, Xy With X €
{0,1,2} andn > 2 defineRiy,x,..x, = R NF(Ry..x,) fori =0,1,2. Then

2
F(Rq-x,) = U Rixy -xq -
i=0

Note that
o If all the x; are equal to 2, then
Ry, RzﬁF(Rz)7 SR RzﬂF(Rz)ﬁ---ﬂFn(Rz)

is a strictly decreasing sequence of rectangles convergirthe Ct
topology, to the vertical ling0} x [0,1+ 9.

o Ifthere is anyx;, € {0,1}, then the sequence
Ro: RoNF(Rq), -+, RgNF(Rq)NF?(Ry)N---NF"(Ry,)

is a strictly decreasing sequence@fcones. Hence this sequence
converges to & curve, denoted by(xo, X1, -+ ), which crosse€)
from top to bottom, that isy intersects each horizontal line @fin a
unigue point, see Figure 2.12.

Note that every point € Qe \ {(a,0)} has a corresponding codig (x)
in £3 whose coordinates with positive index define a unique reguleve
Y =V¥(X1,X2,...) as above. This curveis the same for every € Qr hav-
ing a codeHg (y) with the same coordinates & (x) at positive indexes.
Such pointsy form the unstable manifold af with respect toF, since
d(0 ¥He (x),07KHE (y)) O

Indeed, from the description of the mapit is clear thaty is expanded
by all iterates of whenever its image is defined. Or, reversing time, by the
construction ofy, the pre-image of any pair of poinysz € y by FX is well



60 CHAPTER 2. ROBUST SINGULAR ATTRACTORS

1+0

ANW/-ZAEEN

\I// A

A

(1425)/u

Ao
a 1+20

Figure 2.12: The unstable curves®@§ tangent ata,0).

defined for alk > 1 and, moreover, for any pajr k, z_ of such pre-images
under the same sequence of inverse branchEssatisfies

diSt(y,k,Lk) < <——o0

k~>+oo

Saturating these curves by the flow we obtain the centrahbtesfoliation
# Y through the points of\.

The point(a,0) has already a well defined unstable manifold: the ver-
tical line crossindQ through(a, 0), corresponding to the intersection of the
unstable manifold of the orbit &i/Y(p) connecting the saddle singularity
p to the periodic orbit, see Figure 2.9.

In addition, the saddle singularityand the periodic orbitr also have a
well defined unstable foliation compatible with the leavefirted above.

Strong-stable foliation for the singular-horseshoe

The previous observations show tleatery periodic orbit of F orQg is
hyperbolic of saddle-typeSinceF is the Poinca first return map t@ of
the flow X, we deduce thagvery periodic orbit of X im\ is hyperbolic of
saddle-typeMoreover the density of periodic orbits fBr| Qg implies that
the family of periodic orbits of X i is dense im\.

In addition the stable foliation of the periodic orbits ctinles with the
stable foliation defined above for all points, including fegularity p and
the periodic orbito. Hence the strong-stable leavgs® defined on the
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periodic orbits extend (by continuity and coherence) tadangt-stable foli-

ation 7 SSdefined throughouA. Notice that at the singularity the strong-

stable foliation coincides with its strong-stable mardfebrresponding to
the weakest contracting eigenvalue.

Partial hyperbolicity

The flow invariance of the stablg S, strong-stabler 55 and unstabler "
foliations through points of\ and the smoothness of their leaves enables us
to define the followind>X invariant sub-bundles: for every point A

EZ - Tzf SS(Z) and FZ - Tz,q‘— u(Z)

satisfyDX' - E; = Ext(» andDX" - F, = Fyt(y), for allt € R.

Now we show that the flowK contractsE uniformly, and contracts
strongly than any contraction alofg Then we conclude by showing that
X expands volume alonfg.

LetV be a neighborhood gfwhere linearizing coordinated are defined.
Assume without loss of generality th¥f(Q) c V. InV the solutions of
the linear flow can be given explicitly as in (2.3).

Write JE(2) for the absolute value of the determinant of the linear map
DX!'|F: F,— Fxt(z wherezis any point ofA andt € R.

For pointsz in X*(Q) and fors > 0 such thatX!(z) remains inV for
0 <t <swe have

o [IDX"Ef|| = &2
. HDXt | EZH = g2~ A3t m(DX! | Fy);
o |detDX! | F,| = eMrtAa)t)

wherem(-) denotes the minimum norm of the linear map. Note that be-
causeAl; + Az > 0 the flow inV expands volume along thHe direction.
Moreover since\, < A3 the flow contracts along the direction strongly
than it expands along the direction, by the second item above. We say
thatF dominates E see Chapter 3 for more on dominated splitting. Ob-
serve that the above properties are also valid for the samigylp and the
periodic orbito.

In what follows we extend these properties for the actioK oh points
of A for all times.
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Notice that the flow takes a finite amount of time, bounded fetrove
and from below, to take points iQ to X1(Q), and fromDY(p) to Q (these
times are constant and equal to 1 in our construction).

Hence if we are given a poirte A\ {p,c}, then its negative orbit
X~(z) fort > 0 will have consecutive and alternate hits@f(p) andQ, at
timest; <1 <thy < < - <th <& < ... respectively, withtp =55 =0
andry, = |th+1 — Sa| bounded from below by independently of > 1.

LetB > 0 be a upper bound giDXt(z)|| from 0 toT; and for allz€ A.
Then from the volume expansion dhwe have fott, <t < s,

n—1
—t )
|detDX ! | Fy| < exp(B~nf (A1+A3)- (t— i=§ r.))

Bn st
= ex (t-)\+)\ : —14 &=l )
PR +ho) () =
Sincet > Tgn and zi”;llri < t we see that there exist§ > 0 such that
|detDX ! | Fy| < K~1.e1HAs)t which is equivalent to volume expansion.
The uniform contraction alonfg and the domination of overE are
obtained by similar arguments, see also Section 2.3.3.

2.2 Bifurcations of saddle-connections

An homoclinic orbit associated to a singularityf X € X1(M) is a regular
orbit 0(q) satisfying lim_. .« X'(q) = o and lim_._, X'(q) = 0. Here we
focus on the dynamics close tdq) for small perturbations of the flow.

2.2.1 Saddle-connection with real eigenvalues

Consider the following one-parameter system of ordinaffeintial equa-
tions inR3

y = }\2y+ fZ(X7 Y, Z; lJ') (X7 V. Z, “‘) € R4

X =Mx+ f1(X,y,z W)
z =Mhsz+ f3(xy.Zz1)

where f; areC? functions which vanish together withf; at the origin of
R*. Soo = (0,0,0) is a singularity. We assume that the eigenvaldigs
i=1,230fcarereal and,; <Az <0< A1.



2.2. BIFURCATIONS OF SADDLE-CONNECTIONS 63

Note that any other case of a hyperbolic saddle singulavityi only
real eigenvalue$or a three-dimensional flow can be reduced to the present
case by considering the time reversed flow.

The hyperbolicity ofo ensures the existence 6f stableWws(o) and
unstable manifold&V"(c). The manifoldWs(o) is tangent aio to the
eigenspacg 0} x R? associated to the eigenvaluks A3, andWY(o) is
tangent ab to the eigenspacf(0,0)} x R associated t.

In this setting an homoclinic orbit associatedtis any orbitr = 0x(q)
of a pointg € W3(o) NW"(0) \ {o}. We assume that there exists such
an homoclinic orbit. Moreover we make the supposition that saddle-
connection brakes as in Figure 2.13.

pu>0
e
N I
H=0
p<O

Figure 2.13: Breaking the saddle-connection.

Using linearizing coordinates and an analysis of the ratuaps to con-
venient cross-sections neaone can prove the following.

Theorem 2.3. For p # 0 small enough a periodic orbit bifurcates from
This periodic orbit is

1. asink forA\; < —A3 < —Ag;
2. asaddle foA; < —(A2+A3), —A2 <A1 and/or—Az < Aq;

3. asource for-(A2+A3) < A1.
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A proof of this result can be found in [207, pp. 207-219].

Observe that ity is Lorenz-like (recall Definition 2.1), then only item 2
above is possible. That ig, Lorenz-like saddle singularity is the only one
which persists in the unfolding of a saddle-connection watd eigenval-
ues It is natural that these are the only allowed singularif@srobustly
transitive attractors, see Section 3.

2.2.2 Inclination flip and orbit flip

Here we consider degenerated homoclinic orbits. We asshabe satisfies
some generic conditions: the eigenvaldgd = 1,2,3 of o are real and
distinct and satisfy\r < A3 < 0 < —A3 < Aq, that is,o is a Lorenz-like
singularity, as in Definition 2.1.

The conditiom\» < A3 < 0 ensures that there is an invari@it mani-
fold W3%(0), the strong-stable manifoldangent ab to the eigendirection
of the eigenvalu@,. There are also invariant manifold¢“"(o) containing
o, calledcenter-unstablenanifolds, tangent at to the eigendirection gen-
erated by the eigenvectors associated40\;. There are several of these
center-unstable manifolds but all of them are tangent &fgh@) ato (the
reader should consult Hirsch, Pugh and Shub [76] for a pritbiese facts).

Let I be a homoclinic orbit associated @o The following conditions
are generic, that is, both are true for a residual subset wiflo X1(M)
exhibiting a homoclinic orbit associated to a Lorenz-likegsilarity:

(G1) We(0) intersectdVs(o) transversely along, i.e.

r =wW¢%(o) hW3(o); and

(G2) TNW=¥g) = 0.
We are going to study what happens when such generic comslitdl.

Definition 2.2. Let X € X¥"(M), r > 1, be a smooth vector field arfidbe a
homoclinic orbit associated to a Lorenz-like singulagtg S(X). We say
thatT is of inclination-flip type if (G1) fails and oforbit-flip type if (G2)
fails.

Generically inclination-flip homoclinic orbits are not d@rflip and con-
versely.
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®

Figure 2.14: (a) Inclination-flip; (b) orbit-flip.

Every C" vector fields ( > 1) exhibiting orbit-flip homoclinic orbits
can beC" approximated by smooth vector field exhibiting inclinatiip
homoclinic orbits, as stated in the following

Theorem 2.4. Let X be a € vector field in M exhibiting an orbit-flip ho-
moclinic orbit associated to a singularity of X. Suppose that has real
eigenvalues\, < A3 < 0 < A; satisfying—Az < A1. Then X can be €
approximated by Evector fields exhibiting an inclination-flip homoclinic
orbit.

The proof of this theorem can be found in [129] and followsniro
standard perturbation techniques (see e.g. [143]). Obstiat a vec-
tor field exhibiting a inclination-flip type homoclinic otbtannot have a
dominated splitting for the linear Poinéaflow. Indeed, the definition
of inclination-flip implies the existence of a tangency begw the strong-
stable and center-unstable manifolds along a regular ofkite flow.

As a consequence, by Theorem 2.4, for vector fields havingy evi-
ical element hyperbolic and no sinks nor sources insideaatiag neigh-
borhoodU in a robust way, there cannot be either orbit-flip or inclioat
flip type homoclinic orbits because of Theorem 1.8, since wWould con-
tradict the existence of a dominated splitting for the lineaincae flow.
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2.2.3 Saddle-focus connection and Shil'nikov bifurcatios

Consider the following one-parameter system of ordinaffedintial equa-
tions inR3

y =wx—py+faxyzW  (xy.zp R

X =—px+wy+ fi(X,y,z W)
z =Mz+ f3(x,y,Z W)

whereA, w, p > 0 and f; areC? functions which vanish together with f;
at the origin ofR*. Theno = (0,0,0) is a saddle-focus with eigenvaluks
and—p =+ wi.

These families exhibit very interesting dynamics when ehexists a
homoclinic orbitl” associated to, see Figure 2.15.

WY(o) =T
W(0)
Figure 2.15: Saddle-focus connection

Again by the use of linearizing coordinates and an analyfdtsaoreturn
maps to convenient cross-sections neane can prove the following.

Theorem 2.5. For p# 0 small enough we can find nefr
1. either an attracting periodic orbit (a sink), fa@r> A;

2. orinfinitely many generic unfoldings of homoclinic tangies when
M — 0, inducing in particular the appearance of attracting or re-
pelling periodic orbits neaf , for p < A.

The setting of the second item above is knowSsh#'nikov bifurcation
The proof of these results can be found in Shil'nikov’s watB%] and also
in [195, 13, 207, 168].

2.3 Lorenz attractor and geometric models

Here we present a study of the Lorenz system of equation¥ dhd then
explain the construction of the geometric Lorenz modelsicivinitially
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where intended to mimic the behavior of the solutions of tystean (1.1),
but actually give an accurate description of this flow. Rigbal relation be-
tween the Lorenz flow, and the associated geometrical maithlsensitive
dependence on initial conditions and its historical imphadefly touched
upon in Section 1.1.3.

2.3.1 Properties of the Lorenz system of equations

Here we list analytical properties directly obtained frdme t.orenz equa-
tions, which can be found with much more details in the bodkSar-
row [62] and Guckenheimer-Holmes [64].

Let X : R — RR3 be the flow defined by the equations (1.1).

1. Singularities of X.The originop = (0,0,0) is a singularity of the
field X which does not depend on the parameterX ofThe others
are

o1=(—vb(r-1) \/b ),r—1) and
o2=(y/b(r—1 7\/b r

2. Symmetry of XThe map(x,y,z) — (—
system of equations, that is ( (t),y t),
system of equations, thén-x(t), —y(t), z(t

X, —Y,Z) preserves the Lorenz
(t)) is a solution of the
)) will also be a solution.

3. Divergence of XWe have
Ox(X)  Oy(X) 0z(X) —a a o0
DX(x,y,2) = | 0x(¥) 0Oy(y) 0y) |=| r—-z -1 -—X
0x(2) 0y(2) 0:(2) y X —b
hence
divX(x,y,z) = O-X = trace(DX(x,y,2)) = —(a+1+b) < 0.

This shows the strongly dissipative character of this flod iamplies

that the flow contracts volume: ¥ is the initial volume of a subset

B of R3 we have by Liouville’s Formula that the volunvt) of the

imageX!(B) is V(t) = Voe~(9++1t For the parameters in (1.1) we
_ 41

haveV (t) =Voe™ 3.

In particular any maximally positively invariant subsedenX' has

zero volume: Lelf N~ X' (U)) = 0 for any open subsét of R3.
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4. Eigenvalues of the singularitiegor the parameters in (1.1) the sin-

gularities are, besidex
01=(—6v2,—-6v2,27) and 0= (6v2,6V2,27).
For DX (0p) we have the eigenvalues

Ap = —11/2+V/1201/2 ~ 11.83;
Ay = —11/2—/1201/2 ~ —22.83;
A3=—8/3~ —2.67.

Note that—A, > A1 > —A3 > 0 which corresponds to laorenz-like
singularity (Definition (2.2)).

For g, the characteristic polynomial ddX(g;) is of odd degree
p(x) = x5 + 4x2 + 3% +1440and its derivativey (x) = 3x2 + 4x +
%‘ is strictly positive for allx € R, hence there exists a single real
rootA of p. Sincep(0) > 0> p(—15) the root is negative and simple
numerical calculations show that~ —13.85457791. Factoring

we get
p(x) = (x—A) (x* — 0.187911244 + 1039367643
= (x=A)(x=2)(x—2)

and thusz ~ 0.093955622+ 10.19450522
For o, the eigenvalues are the same by the symmetiy. of

Using this we obtain the following Figure 2.16 of the localaniant

manifolds and thus the local dynamics near the singularitie

(5) The trapping ellipsoidThere exists an ellipsoil where eventually

every positive orbit of the flow enters. Moreou€ris transverse to
the flowX. Therefore the open regidhbounded byE is atrapping

regionfor X, thatisXt(U) c U forallt > 0.

This is obtained by finding an appropriate Lyapunov functioie

follow Sparrow [192, Appendix C] (see also the original wark
Lorenz [102]). Consider

L(x,Y,2) = rx? +-ay* +a(z—2r)2.
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Figure 2.16: Local stable and unstable manifolds mao; anda,, and
the ellipsoidE.

Then along solutions of the system (1.1) we have

% = —2a(rx* +y*+bZ - 2brz).

Let D be domain wherelL/dt > 0 and letM be the maximum oLt
in D. Now defineE to be the set of points such thiat< M + € for
somee > 0 small. SinceD C E for x outsideE we havedL/dt =
OL-X < =& < 0whered = 9(¢) > 0 andX is the vector field defined
by the equations (1.1). Then after a finite time the solutibthe
Lorenz system througkwill enter the seE. Moreover for the values
(a,r,b) = (10,28,8/3) it is routine to check thaflL points to the
exterior ofV overodV = E and so all trajectories through move
towards the interior 0¥. Once inV any trajectory will remain there
forever in the future.

SinceV is compact the maximal positively invariant get N¢~.oX! (V)
is an attracting set where trajectories of the flow accureuMtent grows
without limit.

In fact numerical simulations show that there exists a suBseome-
omorphic to a bi-torus such that every positive trajectanyssesB trans-
versely and never leaves it. Hence the operusbbunded byB (see Fig-
ure 2.17) is a better candidate for the trapping region ofsetewith in-
teresting limit dynamics foK, sinceag; ando, are isolated points in the
w-limit set of X. HenceA = ni~oX'(U) is also an attracting set and the
origin is the only singularity contained lo.
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Figure 2.17: The trapping bi-torus.

The evolution of a regular orbit inside the attracting basin

Lorenz observed numerically what today is knowrsassitive dependence
on initial conditions see Section 1.2.2. Due to this the actual path of any
given orbit is impossible to calculate for all large valuéstegration time.
The “butterfly” which appear on the computer screens can plaed
heuristically through the analytical properties alreagyedmined and by
some numerical results. In fact the set of points whose okt draw the
butterfly is the complemeriz3\ N of the unionN = W3(ap) UWS(a1) U
W5(0g3) of the stable manifolds of the three singularities. Note fhés a
bi-dimensional immersed surfacelkf and so has zero volume.

Figure 2.18: The evolution of a generic orbit inslde

Figure 2.18 provides a very general view of how the orbit okaagic
pointin the trapping regiod evolves in time. The trajectory starts spiraling
around one of the singularitiesp say, and suddenly “jumps” to the other
singularity and then starts spiraling arounigl This process repeats end-
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lessly. The number of turns around each singularity is esdlrrandom.
Thew-limit of a generic orbit is the following “butterfly” in Figte 2.19.

Figure 2.19: Another view of the Lorenz attractor.

2.3.2 The geometric model

The work of Lorenz on the famous flow was published in 1963 J12
more than 10 years passed before new works on the subjecaragpe
Williams [208] wrote (in 1977):

... Several years ago Jim Yorke figured out some things about
the Lorenz equation and got other mathematicians intedeste
He gave some talks on the subject, including one here at Berke
ley. Ruelle, Lanford and Guckenheimer became interested an
did some work on these equations. Unfortunately, except for
the preprint of Ruelle, Guckhenheimer’s paper, is the drilyg
these four people ever wrote on the subject as far as | know.

Lorenz had already conjectured the existence of a stratget@r accord-
ing to the available numerical simulations. The rigorousoprof this fact
took many years due to the presence of a singularity accteclitsy regular
orbits of the flow, which prevents this set from being uniftrimyperbolic
— see e.g. Section 1.2.
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An important breakthrough in the understanding of the dyinarof
the solutions of the Lorenz system of equations was achigvedgh the
introduction of geometric models independently by Afrauich, Bykov,
Shil’nikov [1] in 1977 and by Guckenheimer, Williams [65]1979. These
models were based on the properties suggested by the naim@rula-
tions. In fact they were able to show the existence of a s&atigactor for
the geometric model.

This model inspired many others. Today there are differgtgresions
and there are singular attractors which are not of the “Lotgpe”: neither
conjugated nor equivalent to the Lorenz geometrical maael,e.g. [125].

As explained in Section 1.1.3 on page 9, in 1998 a positivevanto the
existence of a strange attractor in the original Lorenzesysdf equations
was given by Tucker [196] in his PhD thesis, through the th@dmnormal
forms together with rigorous numerical algorithms.

Construction of the geometric model

To present the detailed construction of the geometric Lomeadel we first
analyze the dynamics in a neighborhood of the singularitigebrigin, and
then we imitate the effect of the pair of saddle singulasitiethe original
Lorenz flow, as in Figure 2.16.

Near the singularity

By the Hartman-Grobman Theorem or by the results of Steghf#43],
in a neighborhood of the origin the Lorenz equations arevedgmt to the
linear systen{x,y,z) = (A1x,A2Y,A32) through conjugation, thus

X' (X0, Y0, 20) = (o€, yoe?, o), (2.3)

whereA; ~ 11.83 , A\ ~ —22.83, A3 = —8/3 and(Xo,Yo,2) € R3 is an
arbitrary initial point near0,0,0).
ConsiderS= {(x,y,1) : [X| < 1/2, |y| <1/2} and
S ={(xy,1) € S:x<0}, St ={(xy,1) €S:x>0} and
S=S uUsSt=S\T ,where T ={(x,y,1) € S:x=0}.

Assume thaBa transverse section to the flow so that every trajectory-even
tually crossesS in the direction of the negative axis as in Figure 2.20.
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o

/A%

Figure 2.20:Sis a cross-section of the flow.

Consider als@ = {(x,y,2) : [X| = 1} = £~ UZ" with Z* = {(x,y,2) : x=
+1}. For eachxo,Yo,1) € S* the timet such thaX™(Xo, Yo, 1) € Z is given

by t(x0) = —)\—11 log|xo|, which depends omp € S* only and is such that
1(Xp) — +o whenxg — 0. This is one of the reasons many standard nu-
merical algorithms were unsuited to tackle the Lorenz sysi€equations.
Hence we get (where s@ = x/|x| for x # 0 as usual)

R
X (X0, Y0, 1) = (SGN(X0), Yo€"2", &%) = (sgn(x0),Yo[¥o| ™1, [¥o| ™).

Since 0< —A3 <A1 < —Ao, We have0<a:—§—i<1<[3:—§—i. LetL:

S — 2 be such thakt (x,y) = (yx?,|X|%) with the convention that(x,y) €
st if x> 0andL(x,y) € £~ if x< 0. Itis easy to see thatS*) has the

Figure 2.21: Behavior near the origin.

shape of a triangle without the vert¢»x1,0,0). In fact these are cusp
points of the boundary of each of these sets.
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From now on we denote by* the closure of (S*). Clearly each line
segmentS* N {x = xg} is taken to another line segmebi {z =z} as
sketched in Figure 2.21.

Figure 2.22:Rtakesz* to S.

The effect of the saddles

The setss* should return to the cross sectiihrough a rotation around
W5(o01) andW3(o2). We assume that this rotation takes line segmgents
{z= 12y} into line segmentS$N {x = x; } as sketched in Figure 2.22.

We are assuming that the “triangles* are compressed in thyedirection
and stretched on the other transverse direction. Thisaseeto the eigen-
values ofoy, 0, of the original Lorenz flow as explained below.

The rotationR mentioned above is assume to be such that for each
(v,2) €2+

DR(y,z) = 0 +M forsome O<o<1l and M>1,
g O

and we define the Poindafirst return maf® : S* — SasP = RoL.

The combined effects d® andL on lines implies that the foliation &
given by the linesSN {x = xp} is invariant under the return map, meaning
that for any given leaf of this foliation, its imagé®(y) is contained in a leaf
of the same foliation. Hende must have the forr®(x,y) = (f(x),g(x,y))
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for some functionsf : 1\ {0} — I andg: (1\ {0}) x| — I, wherel =
[—1/2,1/2].

A consequence of all this is that everg Shas a positive orbit disjoint
from W5%(g). Since every poink € A\ {0} has a positive orbit that will
eventually cros$ by construction, we see that

W(o)NA = {o}. (2.4)

s

l@>_ \:::‘Z::::::::a-f
— )| il

S

w

i
T

r f(x) X

Figure 2.23P(S"). Figure 2.24: Projection oh

Properties of the one-dimensional mapf
Now we specify the properties which we imposefon
(f1) the symmetry of the Lorenz equations impligs-x) = — f (x).

(f2) fisdiscontinuous at= 0 with lateral limitsf (0~) = +3 andf(0") =
—%, sinceP is not defined ak becausé ¢ W%(0,0,0).

(f3) f is differentiable orl \ {0} and f'(x) > v/2, since the real part of
the (complex) eigenvalues of the saddtRsos is positive (see the
previous Section 2.3.1).

(f4) the lateral limits off’ atx =0 aref’(0~) =+ and f'(0") = —co.

On the other handj: S* — | is defined in such a way that it contracts
the second coordinate: we assugjéw) < p< 1 for allw e S". This is
suggested by the eigenvalues~ —22.83 of ap andA ~ —13.8545 of the
saddless;, 07 (see Section 2.3.1). Moreover the rate of contractiog arf
the second coordinate should be much higher than the exparae off.
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Figure 2.23 sketcheB(S"). In addition the expansion rate is big enough
to obtain a strong mixing property fdr (it is locally eventually onto, see
Section 2.3.5).

The foliation is contracting in the following sense: for agji leafy of
the foliation and foix,y € y then dis{P"(x),P"(y)) — 0 whenn — oo

Thus the study of the 3-flow can be reduced to the study of &béasional
map and, moreover, the dynamics of this map can be furtheicestito a
one-dimensional map, since the invariant contractingfimih enables us to
identify two points on the same leaf, since their orbits remmdorever on
the same leaf and the distance of their images tends to zeey itaration,
see Figure 2.24 for a sketch of this identification.

The quotient map obtained through this identification wéldalledthe
Lorenz mapFigure 2.25 shows the graph of this one-dimensional tcansf
mation.

-1/2 0 +1/2

Figure 2.25: The Lorenz maf

2.3.3 The geometric Lorenz attractor is a partially hyper-
bolic set with volume expanding central direction

Observe that the timigw) it takes a pointv € 2 to go toS, that isX'™) (w) e
SandX!(w) € R®\ (SUZ) for 0 <t < t(w), is bounded by some constant
independently of the pointt(w) <to. This ensures that the behavior of
the flow on the maximal positively invariant subset of thepiag region
is prescribed by the behavior from the cross-sec8tmthe cross-sections
>+, 327, as we now explain.

Figure 2.21 makes it clear that the linear flow (2.3) presglines in the
direction of they-axis when taking points frorSto ~. Moreover it is not
difficult to check thaits derivative DX also preserves planes orthogonal
to they-axis.
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In addition, by the choice of the flow frors to Sand as Figure 2.22
suggests, horizontal lines &f i.e. parallel to the-axis, are taken to lines
parallel to same axis i, that isthe flow preserves lines parallel to the y-
axis fromZ to S Since the flow froma to S is essentially a rotation, we can
assume that its derivative also preserves planes orthdgoribe y-axis.

¢From this we deduce that the following splitting &f: E = R x
{(0,0} andF = {0} x R?, is preserved by the flows, thatBX},-E = E
andDX!,-F = F for all t and every pointvin an orbit inside the trapping
ellipsoid.

Moreover we can check that fav on the linearised part of the flow,
from Sto 3, we have fot > 0 such thaX®!(w) is contained in the domain
of the linearised coordinates:

o [IDX} | E|| =&
o |DX}, | E[ = P2t m(DX! | F),

wherem(DX! | F) is the minimum norm of the linear map. Sinkg < 0
we see thakE is uniformly contracting, this a stable direction. But—
A3 < 0 and so the contraction along the directionFofs weaker than the
contraction alonde. This kind of splittingE & F of R? is called apartially
hyperbolic splitting

Observe also that sindg + A3 > 0 we have thajtdetDX! | F | = e12s)t
and so the flovexpands volumalong theF direction.

We will see in Chapter 3 that these properties charactedmgact in-
variant sets which are robustly transitive.

However we have only checked these properties in the lisearegion.
But if the orbit of a pointw passes outside the linear regiotimes from
to Slastings; + - - - + s« from time 0O to timet, thent > s, + - - - + §¢ and for
some constartt > 0 bounding the derivatives @X! from 0 toty we have

DX, B < @hhat-a s — el (1 K LS
2
so the last expression in brackets is bounded. We seeEtima(K,A2)-
contracting for som& > 0.

An entirely analogous reasoning shows that the diredi@lominates
F uniformly for allt and thaDX! expands volume along also uniformly.

Thus the maximal positively invariant set in the trappinljpsbid is
partially hyperbolic and the flow expands volume along aibiahsional
invariant direction.
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2.3.4 Existence and robustness of invariant stable folia-
tion

Now we prove, partially following the work of [65], that theegmetric
Lorenz attractor constructed in the previous subsectioobisst that is, it
persists for all nearby vector fields.

More precisely: there exists a neighborhdddn R3 containing the
attracting sef\ such that for all vector field¥ which areC!-close toX the
maximal invariant subset id, that is/A\y = Ni>oY'(U), is still a transitive
Y-invariant set.

This is a striking property of these flows since the Lorenz fiothibits
sensitive dependence on initial conditions. The robustngiébe a conse-
quence of the persistence of the invariant contractingtfioln on the cross-
sectionSto the flow.

Numerically this is expected since in spite of the huge irgggn errors
involved and the various integration algorithms used thetms obtained
always have a shape similar to the one in Figure 2.19, indigrgly of the
initial point chosen to start the integration.

We start by obtaining the persistence of the stable foliattr points
in the attractor, then explain why these attractors, afjhawbust, areot
structurally stablein Section 2.3.5.

We note thaC-robustly transitive attractors in 3-manifolds were com-
pletely described from the geometrical point-of-view i88] and the proof
of this result is presented in Chapter 3.

Geometric idea of the proof

Theorem 2.6 (Persistence of contracting foliation).et X be the vector
field obtained in the construction of the geometric Lorendeh@nd 7x
the invariant contracting foliation of the cross-section Bien any vector
field Y which is sufficiently Eclose to X admits an invariant contracting
foliation #v on the cross-section S.

We first present a geometric idea of the proof and then protedte
details in the following Section 2.3.4.

Observe first that the cross-secti8remains transverse to any flow
Cl-close toX and that the singularitiesy, 01,07 persist with eigenvalues
satisfying the same relations as before since they are bgjer In addi-
tion, sinceWy (ap) intersectsStransversely, then just by ti@ continuous
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variation of compact parts of the unstable manifolds of aghnlgplic singu-
larity we have tha¥W'(oo(Y)) still intersectsStransversely for al¥ close
to X in theC! norm.

Without loss we can assume, afte€achange of coordinates, that the
Lorenz-like singularityop(Y) remains at the origin and that the eigenvec-
tors of DY (gp(Y)) have the directions of the coordinate axis as before, with
the planex = 0 containing the stable manifold of(Y).

Thus for a neighborhood of X in theC* topology and for eaclf € «
we can define the Poind@first return mafR, : S* — SasRy = Ryoly
wherely : S* — X is such that.y (x,y) = (y|x[?, [x|%) with a = —22) and

A(Y)
B= —iigg (note thaf3 — a > 1).

On the other han®y : = — Sis aC!-diffeomorphism which can be
expressed by the compositi®y = Jy o Ry, wherely is aCl-perturbation
of the identity andRy is the diffeomorphism associatedXg.

Now let 2 be the space of continuous mapsu x S— [—1,+1]. For
eachY € u and@ € 2 we definegy : S— [—1,1] by ¢y (q) = ¢(Y,q) for
all g€ S We associate tgy a vector fieldny : S— [~1,1] x {1} given
by n¥(a) = (¢v(g),1) which we view as a vector 6f;S= R2. Integrating

@,
n¥a

AR

s )

Figure 2.26: The field.

the field r]$ we get a family of curves which induces a foliation 8nWe

must show that there exisps= 42 such that]$ induces an invariant foliation
underR,. Before explaining the proof of this fact we state a necgsaad
sufficient condition for the invariance of this foliation.

Let F be a continuous vector field defined 8mndP the map defined

above. Integrating we get a foliation o6 Letq e S* have imagé(q) and
consider the vector5(q) andF (P(q)). Observe that the foliation induced
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by F is invariant under if

DP(q)(F(a)) and F(P(q)) are parallel or
F(g) and [DP(q)] ‘F(P(q)) are parallel

[DP@] F(P(a)
T /F(P(q))
F(a)
P(a)
q
ﬁ s

Figure 2.27: The fieldr and the parallel condition.

On the other hand if we consider the slope of vectors witheetsip the
vertical direction(0, 1), two vectors are parallel if, and only if, their slope
is the same. Fofa,b) € R? we set slopéa,b) = a/b and hence to check
that the foliation defined bf is invariant undeP amounts to obtain

slope(F (a)) = slope([DP(q)] *F (P(a)) ).
Translating this fon$ we obtain the condition

9v(a) = slope(n(a) ) = slope( [DRy ()] "n{(Rv(a)) ).

The last term above depends @X andg and if we definel : 2 — 4 as
T (9v) (o) = slope( [DRy(a)] 'n¢ (Rr(@) ),

then the condition of invariance beconegpy ) (q) = @y (q), thatisT (¢) =

@ Hence the elemeng ¢ 4 for which n, induces and invariant foliation
on Sis a fixed point ofT. Thus we are left to prove that the operatohas
a fixed point.

For this, we first show that is well defined and then thdt is a con-
traction in an appropriate space, which concludes the miobfieorem 2.6.
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Proof of existence of invariant stable foliation
The Poincak mapR, associated t&¥ € ¢ can be written
Ry () = (fv(a),0v (@)
for g € S'. We rewriteT as a function off andg. First we calculate
( dyav(a)  —dyfv(a)

—ang (Q) a>< fY(Q)

-1

(DR (a)) :% ) with A = detDRy(q).

Then it is not difficult to see that the slope of
dygv(a) —dyfy(a) o (P (a))
—0xgv(a)  Oxfy(a) 1

[ov (Ry (a))]0ygy (a) — dy fy (q)
— (v (Pv(a))]0xav (q) + 0x fy ()

>l-

(DR (q)) ¥ (Rv(q)) =

slope( (DRy(a) "n$ (R(q)) ) =

Writing P(Y,q) = (Y, Ry (q))we get

_ (9oP)d,g—oyf
T(ev)(a) = 2l (go ﬁ)axg(Y’ )

Lemma2.7.Leta € (0,1/5) and Y avector field Eclose to X. If R(q) =
P(Y,q) = (f(Y,q),9(Y,q)), then there are positive constants k= 1,2,3
such that for all gg S*

1.

dyg 0\
Y| <oy B < ko r D and2ACAL < ol -0+,

2. |IDgP(Y, )| < kslx|*~Yand  |detDgP(Y,q)| < aolx|P+~);

3. supg{a—g‘

‘ 29 |detDP\} <ag.
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Proof. We provide the calculations for> 0, the other case being analo-
gous. Sincd = Ry oLy we haveDPy(q) = DRy (Ly(q))DLy(q) and

1 B
DLy(x,y) = ( g{:{(}ﬁ—l ):) )

Recall thatRy = Jy o Ry and so we have th@Ry (Ly(x,y)) can be written
asDJy (Ro(Ly(x,y))) - DRo(Ly(x,y)). Sincely is close to the identity we
may write Jy (X,y) = (X+ €1,y + €2) with (g1,€2) = €(X,y,2) small in the

Cl-norm. Thus we have

_ [ 1+0x&1  0yea (0 M
DJY( Ox€1 1+6y82> and DRO(G 0)

and so

DRy( 0-0y€1 M+M-6xsl>< €1 M+82>'

0+0-0yE M- Oxe1 0+€&3 €4
Finally we multiply the last pair of matrices to get

[ eyt Moxd 1 4 gpax0 L exP
DR/ (xy) = ( OBy 1+ egBy® T4 g40x T oxP 4 e3xP

[ Oxf 0yf
0xg ayg .
We may now assume without loss in what follows that €; sinceg; — 0
whenY — X. Hence

oxf oyf \ [ [eByxP~% + (M +e)a]x@Y exP
oxg 0yg )\ [(o+e)pyxP ¥ tea]x@V  (ot+exf )
Now we may find the stated bounds as follows.

1. Whene — 0 we have both

o+e -9 and & — 0,
efyxP-0) + (M+e)a  Ma eByxP-%) + (M +¢)a

hence these quotients are bounded: ther&aaadk, so that2d <

8t =
ke x|(B-9+0) and 2 < kolx| (B,
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On the other hand, again when- 0 we get

0x0]  (0+€)By¥ % +ea B opyxé-¢ - op
|0xf|  eByx—%+ (M +¢)a Ma ~ 2-28-Maq

where the bound above follows becase a > 0. Since 0< 0 <
1 andM > 1 where chosen arbitrarily in the construction, we may

assume that is very small andV big enough so th :Qf"‘ < ag.

2. ltis clear that since@ a <1< pand
of oyf \ [ Max®V 0
0xg 0yg ) e-0 \ ofyx® Y oxf )’
the norm of the matrix is dominated by the valugxjf —* for x ~ 0,

thus there exist&s such that|DqP(Y,q)|| < ks|x|/*~1. On the other
hand

| detDgP(Y,q)| = [0xfdyg —dy foxg| < [0xf||0yg| + [0y [|0xg

< rg|X[PFOL g x| Pro-T < K|xPra-t

where the existence of,r, > 0 as above is a consequence of both
0xF| - [oygl — MaoxB+a=1 and |ay f| - |axg| — 0.and also of
£E— E—

B+a > 1. Note that we may assunke < ap by settingMo small
(that is, we assume that the volume is contracted).

3. Finally for the quotients of the entries DR, note that we can again
use the bounds already obtained and get then smalleathiay let-
ting o close to 0 andW big enough.

O

Proposition 2.8. Let T be defined as before depending on f and g. Then
1. T(a) C a,thatis, T: 2 — a is well defined;

2. T: 4 — 4 is a contraction.
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Proof. First we show that fop € 2 thenT (@) is continuous andiT (¢)| <
1, which would prove the first item of the statement. Accogdin the
definition of T we have

. ag  oyf
oP)dyg— 0y f [(poP) 33 — 3¢
T(@Y,q)| = POy o e
|0xf — (o P)oxg| 11— (9o P) 3%
%9 B—a+1 B—a+1
< Iaxf ‘ |(Y,q) < ka|X| +ka|X| < KxfPatl,

| axg | 1 —_ kl
Thus|T(@)(Y,q)| — 0if |x] — 0, which shows thaT (¢) is continuous at 0.
Thengis continuous since the expression is continuous away ke#n0.
Moreover

0
|35+ 1351

ox f
T(Q)(Y, gxiY, <
T Al et S

by Lemma 2.7(3) and becauage (0,1/5) implies 1222 T <1/2.
Now the contraction is easy, since for, @ € 4 and for fixed(Y,q) €
uUxS

|detDP(q)| - [proP — @0 P

T() —T(@)| = 3 =
|axf —(1oP) axg‘ : ‘axf — (2o P)axg|
ap
<
A—a0? |1 — @2
and agalrw < 1/2, as long aw is taken small enough aroundso
that Lemma 2.7 remains valid. O

We have shown that there exists a unique fixed poinTfon 2 as we
wanted and so we have an invariant foliation®n

Differentiability of the foliation

Now we prove that the fixed pointY, q) depends olY, g continuously on
theC! topology. We do this by showing thBip, depends continuously on
(Y,q) and that the operatdt is also a contraction on th@" norm.
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Again using the definition of at a point(Y,q) we obtain the following
expression

D[(9oP)ayg—0dyf]  (poP)dyg—dyf
oxf— (9oP)0g  (0uF — (9o P)dyg)?
=V1() + T(9)Va(®) + N(®)De(P(X,q)),

where we have used

DT(g) = D [axf —(@o Is)axg]

o ﬁ 1
Of —(9oP)dg = Oxf—(goP)oxg
Oxf — (poP)oxg Oxf — (@oP)oxg
detDP(X,
N(o) = X9

(0xf — (9o P)axg)*

Now define the space; of continuous map# : « x S— £(x x R%R)
such that

sup|A(X,g)| <1 and A(X,(0,y)) =0 forall ye {—1,1]
(X.q) 22

and consider the operatifr: A4 x 41 — A4 x 43 such that forp € Ccl we
haveT (¢,Dg) = (T(¢),DT(@)), defined ad (,A) = (T, S(@,A)) where
S(@, A) is given by

S(@.A)(Y,q) = [Vi(¢) — T(@)Va(9) +N(¢) (Ao P) - DP] (Y, ),

whereVi (@), V2 () andN(@) were defined previously during the calculation
of DT (). N
Again we need to show thatis well defined and a contraction.

Lemma 2.9. Take Y CG-close to X such that the estimates of Lemma 2.7
are valid. If R(q) = P(Y,q) = (f(Y,q),9(Y,q)) then there are positive
constants k=4,...,8 such that for all g¢ S*

1. \Daygl <k4\X|B a |D0
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o [Doyf] < k6|X|[3—cx [Dox f] <ke|X "L

[Ox f] > [0xf]
detDgP I~ -~
3. 504 IDP| < kelxP, IN(@)| - |DP] < 1/2;

IDdyg| Doy f]|
4. supg{ Bt [acf [ < @o-

Proof. Using Lemma 2.7, sincé f — Max®~1 we see there ané;, K;
£E—
satisfying

KaX| < [0y f| < Kalx/* 2. (2.5)
On the other hand, taking derivatives we see that
0x (0y9) = xPdxe+ (0 +€)x"log(B)oxP)

0x(0,9) = 0xexP + (o +g)pxPt
dy(dyg) = 0exP.

Then|Ddyg| < Kg,\x\B*l and by (2.5) we see there exi&issuch tha E?iyf?‘ <

ka|x|P~9. Analogously we may estimate the derivatidggdxg), 02, dy(9x9)
obtaining

10x (0x@)| < KIx|%, |00l < KIX|"2,  [9y(0xg)| < K|xP~*

and thusDayg| < K|x|%~2 and by (2.5) we geks S0 that“%‘zxf?‘ < ks|x 2.
This proves the first item of the statement.
Again analogously we obtaijbd, f| < K|x|P~* and by (2.5) als

Doy f|
o] =
ke|X|P~2 for a constank.

¢From the explicit expression 8§f we get|dx (dxf)| < K|x|*~1 and
also

0x(0x ) = By 2o+ eB(B— 1)y 24+ ax¥ Loye + a(M + ) (o — 1)x92
implying that|dx(dx f)| < K|x|%~2. We also have

ay(0xf) = By taye +epxP~1 4 ax?loye



2.3. LORENZ ATTRACTOR AND GEOMETRIC MODELS 87

which impliesdy(dxf) < K|x|P~2, and so|Daxf| < K|x|%~2 showing the
existence ok; such that‘DaX” < kz|x|~ 1, and proving the second item of
the statement.

Now recall the definition oN(¢) and use Lemma 2.7 to deduce

~ detDq4P| ~
N@)DP| = — 9Pl pp)
(0xf — (9o P)ox9)
aO|X|B+u71 ‘ ‘< aO |X|B aO
TlafRa-392 T (1-a0)? T 2P(1-ag)?
which concludes the proof of the third item sirfge- 1. O

Now using the estimates of Lemmas 2.7 and 2.9 we are to prave th
following.

Proposition 2.10. The map S4 x 41 — 41 is well defined, continuous and
S(@,-) : 41 — 41 is a contraction whose contraction rate is independent of

Note that this shows that for evege 2 which is derivable there exits
A€ 21 such thaS(@,A) = A

Proof. We can estimate

o P| 1
Vi(¢)] € —— " .|Ddyg| + ———————|Ddy f|
0xf — (@oP)aygl - |oxf — (9oP)aygl

Oy f|t oxf|™
<(|X|Lxg|>'|D6yg|+<|x|| |) Doy f]

1
<o (7D f4Day f|) < KjxfP¢
— ‘1_a0| (|ax ‘ ‘ ayg|+|ax | ‘ ay |) S |X|

and

IT(@V2(@)] < K|xPo+t

1 {|Daxg|+|Daxf|}
1-ag | [oxf| ~ [0xf]

<K[XPaH Tt < KxPe
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and also

IN(¢)| - |(AoP) - DP| < 5|detDgP| - |A| - [DP] - |dx | 2 < K| ®.

1
(1-2ao)
Therefore we arrive at

IS(@A) < V(@) +[T(@)] - [V2(9)| + IN(9)| - | (Ao P)DP| < K|xP~<.
Sincef3 — a > 0 we see thabis continuous ax = 0. Moreover

%

ao
Vi(@)| < Toa and |T(@)Va(9)| < A—ag?

1

2
and forag € (0,1/5) we getﬁ < 1/2 so|S(@,A)| <1 and thusSis
well defined.
Finally takingAq, A € 41 and fixingg € 2 we get

S((paAl) —S(CP,AZ) = N((p) [Aj_ols\—Azoﬂ DIS

hence
~ 1
1S(@,A1) — S(@,A2)| < [N(@)| - |A1 — Ag| - [DP| < §|A1*A2|

and we conclude th&(¢, -) is a contraction as stated. O

This shows thaT has a fixed poinf@y, Ag) whereqy is a fixed point of
T. Clearly(go,Ao) is a global attractor insideg x 4;. In particular taking
@ of classC! we obtain

T"(,D@) = (T"(9),D(T"(9))) —— (%0, Do)

n—-+o

thenAg = Dy and hencey is continuously differentiable.

2.3.5 Robustness of the geometric Lorenz attractors

Here we conclude the proof that the geometric Lorenz atirasa robustly
transitive attractor and show that it is not structuralbd¢. Here we drop
condition (f1) on the symmetry of the one-dimensional nfiap



2.3. LORENZ ATTRACTOR AND GEOMETRIC MODELS 89

Robust properties of the one-dimensional magf

We start by showing that the properties of the one-dimemasiorap f are
robust for smalC?! perturbations oK.

Indeed, note that since the stable foliation is robust, wedsdine the
one-dimensional mafy as the quotient map of the corresponding Poiacar
mapPR, over the leaves of the foliatiogsy, for all flowsY close toX in the
C! topology.

Moreover since the leaves gf, areC?! close to those off , hencefy
is C! close tof and thus there existse [—1/2,1/2] which play for fy the
same role of 0 so that properties (f2)-(f4) from Section2ae still valid
for fy on a subinterval—b, b] for some O< b < 1/2 close to ¥2.

This implies that evenyfy is locally eventually ontdor all Y close to
X, that is for any interval C (—b,b) there exists an iterate> 1 such that
(J) = (~b.b).

Lemma 2.11. Let f:[-1/2,1/2]\ {0} — [-1/2,1/2] be given satisfying
the properties (f1)-(f4) on Section 2.3.2 on page 75. Thenlddally even-

tually onto: for any open interval J not containifighere exists n such that
f"] J is a diffeomorphism between J afi—1/2), f(1/2)).

This implies in particular the mapfy are (robustly) transitive and pe-
riodic points are dense. Moreover this also implies thatpteeorbit set
Un>of ~"{x} is dense for every # 0.

Proof. Let Jp C (—1/2,1/2) be an open interval with @ Jo and letn =
inf| /| > /2.

Since 0¢ Jo then f(Jp) is such tha?(f(J)) > n¢(J), where((-) de-
notes length, and(Jp) is connected.

1. If0¢ f(Jo), setdy = £2(Jp) and ther/(Jy) > n2¢(Jo).

2. If0€ f(Jp), thenf?(Jp) =1~ UI*, wherel * is the biggest connected
component. Thus

Now replacely by I in case (2) or by, in case (1). Since mim,n?/2} >
1 we obtain after finitely many steps one of the intervialsl/2,0) or
(0,1/2). One more interate then covers the interfigl-1/2), f(1/2)).

O
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Transitivity and denseness of periodic orbits

We deduce these features from a stronger property: we staivthid geo-
metric Lorenz attractor is a homoclinic class (see Secti8rb)L

Proposition 2.12. There exists a periodic orbibx (p) in the geometric
Lorenz attractor such that\ = Hx (p) = Wg(p) MWK (p).

We prove this in Section 2.3.6. Observe thaery periodic orbito (p)
in A must be hyperbolisince

¢ the uniformly contracting foliation obtained in SectioB 2. provides
a uniformly contracting direction and a stable manifold &dip): if
¥ (p) is the leaf off throughp= 0(p) NS, then

we(o(p) = UX (7 (m);

t>0

e the expansion of the one-dimensional projection rhigproperty (f3)
from Section 2.3.2 on page 75) ensures that there existsnaifdr
DP-invariant expanding cone field around the horizontal diosg
which in turn ensures the existence dDRB-invariant expanding di-
rection atp.

Proposition 2.12 implies after the Birkhoff-Smale Theorérh2 that
the geometric Lorenz attractdr has a dense orbit and a dense subset of
periodic orbits.

Since the arguments we use to prove Proposition 2.12 depénco
the properties off and these properties are robust, we conclude that the
geometric Lorenz attractors are robustly transitive.

The geometric Lorenz models are not structurally stable

The dynamics of two nearby geometric Lorenz models are irigemot
topologically equivalent. In fact Guckenheimer and Wittig [65, 209]
show that the conjugacy classes are completely describégdparame-
ters: thekneading sequenced the two singular values

f(0") = lim f(x) and f(07)= lim f(x)

X—0 x—0
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with respect to the singular point 0 -a-pair of one-dimensional Lorenz-
like maps are conjugate if, and only if, they have the samegi&neading
sequenceand, moreover, the corresponding flows are topologicaliynveq
alent if, and only if, the one-dimensional maps are conggdtecall that
we have dropped condition (f1)).

The kneading sequence »f = f(0™) with respect to 0 is a sequence
defined by

for n>0,

0 if f"x7)<0 |
1 otherwise !

and analogously we define the kneading sequénga=o for x—.

It is easy to see thaf two nearby geometric Lorenz flows are topo-
logically conjugatedsee Section 1.1 for definitions and basic properties)
then the kneading sequences must be eairate the equivalence relation
preserves the orbit structure and in particular presensgesthe first return
iterates to the cross-sectiéh

Now given a geometric Lorenz flov{ with corresponding kneading
sequences$an)n>0 and (bn)n>0, we can through a small perturbation find
aC! close vector fieldY whose corresponding one-dimensional map has
kneading sequencéa;,)n>0 and(b},)n>o distinct from the paifan)n>0 and
(bn)n>0-

Indeed, if one of the orbits of* is dense in(—1,1), then one of its
iterate is arbitrarily close to 0. Thus a small perturbatidrthe map will
flip one of the elements of the kneading sequence from 0 to Iceversa.
Otherwise there exists> 0 such that the orbits of* do not entef—¢, ).

As we have already proved, the one-dimensional iiggocally eventually
onto and in particular topologically transitive. Hencerthexists a point
0<y<d<ewith 0< f(y)—x" < dwhose orbit is dense. Let> 0 be

the smallest integer such thdt'(y)| < 8. Considerf a small perturbation
of f such that

o f satisfies all the properties (f1) through (f4);
o fI[-L1\(0,5)=;
o f(OT)=y.

Then f*(f(0*)) = fX(y) for k=0,...,n and sof"(y) € (—3,3). Now we
can perturbf so thatf"(y) changes sign and this would change one of
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the kneading sequences bf Sinced can be taken arbitrarily small, then
we obtain a very small perturbation éfwhose kneading sequences are
distinct. Since we can build a geometric Lorenz flow frérand from any

of its small perturbations, we have shown that we can alwagkdinearby
geometric Lorenz flow not topologically conjugated to the giveh

2.3.6 The geometric Lorenz attractor is a homoclinic class

Here we prove Proposition 2.12 following Bautista [21].

Observe first that thgeometric Lorenz attractof must contain a hy-
perbolic periodic orbit Indeed since the associated Lorenz transformation
f is locally eventually onto, the periodic orbits bfare dense. Let, ..., X
be a periodic orbit off. Then the leavef, ...,/ of # in Swhich project
on these points form a invariant set under the maginceP preserves the
leaves of the foliationr and is a contraction along , thenPX must send
eachy; into itself with a uniform contraction rate. Hence theres¢éxia point
pi which is fixed byP on each leaf;, i.e. po, ..., px is a periodic orbit of
P.

The definition ofP shows that the orbit ofp by the flowX is periodic
andox (po) NS={po,-- -, P}

As already observed every periodic orbitAmust be hyperbolic of
saddle-type: the expanding and contracting directionsbeanasily read
from the discussion in Section 2.3.3. Hence the unstablefaldof pis a
disk transverse t& which intersectSin a one-dimensional manifold. The
connected component 8(p) N Swhich containsp is then a small line
transverse to the foliatiop .

Now observe that sincA is an attracting set, that I8 = Ni~oX'(U),
whereU is the trapping ellipsoid, then the unstable manifédd(p) of
the orbit of p = pg must be contained ir\. Indeed ifz € W"(p) then
dist(X'(2),Xt(p)) =0 and hence&X~(z) € U for big t > 0, thus
ze XY(U). This shows thatV"!(p) C A and since\ is X-invariant we also
getW'(p) C A.

The definition of homoclinic class and the fact tifats closed imply
thatHx (p) C A. For the converse we need a stronger fact.

Lemma 2.13. If A is the geometric Lorenz attractor andgo\ is the point
of some periodic orbit, theA = WY(p).
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Proof. Let w € A\ {0} be given. Then there exists> 0 such thaty =
X'(w) € S Let/ = 7 (y) be the corresponding leaf gf throughy. Then
¢ is not the leafS\ S*. Therefore it projects to a pointe (—1/2,0) U
(0,1/2). Since the pre-orbit set of every point is dense (becduséocally
eventually onto), by definition of this implies that\NS= ANUp=oP~"/.
Hence we have th&® "¢ NW!(p) # 0 for somen > 0. But this means
thatWs(y) "\WY(p) # 0 and sow,y € WY(p). ThusA\ {o} CW'(p). O

Finally to prove that\ C Hx(p) it is enough to show that“(p) C
Hx (p). Every pointw € WY(p) admitst < 0 such thatj = X'(w) € S. Take
a small neighborhood of g in WY(p) NS, which is a small line transverse
tor.

Let | be the leaf off containingp and letl be the interval inside
(—=1/2,1/2) corresponding td by the projectiors— S/ ¥ = (—1/2,1/2).
Recall that c WS(p) NS Write x for the point corresponding tp under
this projection.

Again by Lemma 2.11 there exigts> 0 such thatf ~"{x} NI # 0. This
means thal M P~"(I) # 0, hence inJ there exists a point of the homoclinic
class ofp. SinceJ can be taken arbitrarily small negrwe conclude that
g € Hx(p). This concludes the proof thAt= Hx(p).



Chapter 3

Robust transitivity and
singular-hyperbolicity

In the theory of differentiable dynamics for flows, i.e., retstudy of the
asymptotic behavior of orbit§X!(x)}icg for X € X" (M), r > 1 a funda-
mental problem is to understand how the behavior of the @ngapDX
controls or determines the dynamics of the fléiv Since the 1970’s there
is a complete description of the dynamics of a system un@esitbumption
that the tangent map has a hyperbolic structure.

The spectral decomposition theorem, presented in Sectibart first
proved in [190], provides a description of the non-wandgsat of a struc-
tural stable system as a finite number of disjot@mpact maximal invari-
ant and transitive setseach of these pieces being well understood, both
from the deterministic and from statistical viewpoints. fdover such a
decomposition persists under sm@H perturbations. This naturally leads
to the study of isolated transitive sets that remain trawesfor all nearby
systems (robustness).

The Lorenz equations (1.1) provide an example of a robustcatr
containing an equilibrium point at the origin and periodairgs accumu-
lating on it. This is a non-uniformly hyperbolic attractohieh cannot be
destroyed by any small perturbation of the parameters. $etiof 1.1.3
for more on this.

The existence of robust non-hyperbolic attractors for floves first

94
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proved rigorously through the study geometric models for Lorenz at-
tractors, see Section 2.3. In particular, they exhibit in a robust way
attracting transitive set with an equilibrium (singulgyitvhose eigenvalues
Ai,1<i< 3arereal and satisfy, < A3 <0< —A3 < Az. In the definition
of geometrical models, another key requirement was thaesmds of an
invariant foliation whose leaves are forward contractedhsyflow. These
features enable us to extract very complete topologicadadycal and er-
godic information about these geometrical Lorenz moda®xglained in
Section 2.3. We prove now that these features are preseanjorobustly
transitive set.

Hence the main properties of the Lorenz attractor and getetrenz
models are consequences of their robust transitivity.d&ugl on this char-
acterization, in Chapter 4 we elaborate on the ergodic ptiegef singular-
hyperbolic attractors.

Definition 3.1. An isolated sef\ of aC* vector fieldX is robustly transitive
if it has an open neighborhoadl such that

Av(U) = (YY)

teR

is both transitive and non-trivial (i.e. it is neither a sifayity nor a periodic
orbit) for any vector fieldY C!-close toX.

First we state the following simpler result for global tréive flows on
3-manifolds which was first proved by Doering in [53].

Theorem 3.1. Assume\ = M is a robustly transitive set (on a three di-
mensional manifold). Then the flow is Anosov. In particuber low has
no singularities.

In the general case, whénis a proper subset &fl and contains singu-
larities, we have the following characterization.

Theorem 3.2. A robustly transitive set containing singularities of a flow
on a closed-manifold is either a proper attractor or a proper repeller.

Note that Theorem 3.2 is false for dimensions bigger thagethindeed
consider vector field : (z,w) € S® x St — (X(2),N(w)) in S* x S, where
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e X s the vector field given by the Lorenz equations (1.1) or thetar
field obtained after the construction of any geometric Larattrac-
tor (see Section 2.3.2) suitably embedde&infor example with a
hyperbolic unstable equilibria at infinity;

e N is the “North-South” vector field on the circB' = {(x,y) : x> +
y? = 1} given by —k- O(1t| S') whereTtis the projection on the
second coordinate arkd> 0 is big enough so that the expansion rate
€« at the “North” (0,1) and the contraction rate ™ at the “South”
(0,—1) dominate every eventual expansion or contraction along the
directions ofTS3 x {0}.

ThenAy = Ni=oY' (U x V), which is the maximal invariant subset of
with respect tdr, equals\x x {(0,1)} and is transitive, where

e U is an isolating neighborhood of the (geometric) Lorenzaattsr
for the X-flow;

e V is a small neighborhood @b, 1) in S*; and
e Ay is the (geometric) Lorenz attractor.

Notice thatS® x {(0,1)} is an invariant and normally hyperbolic compact
submanifold ofS® x S, see [76]. It follows that for all vector fieldd C-
close toY, there exists an “analytic continuatioM of the submanifold
S® x {(0,1)} such that

e M is Zt-invariant, compact and normally hyperbolic submanifoid o
S® x S, in particular any smooth curve transversétdansideU x V
is expanded byt,t > 0.

e MisC!-close toS® x {(0,1)} as embeddings ifi® x S™.

Hence there exists a diffeomorphigm M — S3, close to the identity, and
the restriction of the vector field to M can be seen as a vector figd-
close toX under a global change of coordinates extendpigrherefore
the maximal invariant subset bf x V for Z is Ni-oZ' (¢~ 2U) C M, which
is transitive by the robustness of the (geometric) Loretractor. In this
way we get a robustly transitive st which is neither an attractor nor a
repeller.

In the setting of boundary-preserving vector fields, on Jtifioéds with
boundary, the singular-horseshoe provides another coaréenple (see
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Remark 2.2) since it is robustly transitive in the space ctoefields pre-
serving the boundary, but it is not an attractor nor a repelle

The converse to Theorem 3.2 is also not true: proper attafbo re-
pellers) with singularities are not necessarily robustinsitive, even if
their periodic points and singularities are hyperbolic irobust way. For
examples see e.g. Morales and Pujals [126].

Theorem 3.2 follows from a general resultmmanifolds,n > 3, which
shows that the next conditions are sufficient for an isolatetdto be an
attracting set:

1. all its periodic points and singularities are hyperbdicd

2. it robustly contains the unstable manifold of either aqaiic point
or a singularity.

Before the proofs let us describe a global consequence afréhre3.2
which improves Theorem 3.1.

Theorem 3.3. AC! vector field on 8-manifold having a robustly transitive
non-wandering set is Anosov.

Proof. Let X be aC! vector field satisfying the conditions of the statement
above, that isQ(X) is (an isolated set and) robustly transitive.

If Q(X) has singularities, the®(X) is either a proper attractor or a
proper repeller oX by Theorem 3.2, which is impossible by Lemma 1.1
from Section 1.1. The@(X) is a robustly transitive set without singulari-
ties. By [53, 205] we conclude th&(X) is hyperbolic and s& is Axiom
A with a unique basic set in its spectral decomposition. &iAgiom A
vector fields always exhibit at least one attractor &(X) is the unique
basic set oK, it follows thatQ(X) is an attractor. By Lemma 1.1 again this
implies thatQ(X) is the whole manifold.

Hence we are in the setting of Theorem 3.1 and we concludeXtieat
Anosov as desired. O

Remark3.4. As observed after the proof of Lemma 1.1 in Section 1.1 the
same argument shows that Theorem 3.3 remains true if onaegel non-
wandering set by limit set in its statement.
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The singularities of robust attractors are Lorenz-like

We say that an isolated sAtC M is robustly singularfor X € X(M) if
there is a neighborhoad of A in M and aC'-neighborhoodu of X in
X(M) such that\y (U) contains a singularity for a¥ € .

Theorem 3.5. Let A be a robustly singular transitive set of X X(M).
Then, either for Y=X orY = —X, everyo € S(Y) N A is Lorenz-like and
satisfies W5(o) "A = {o}.

As a consequence, consideriafpust attractorsthat is attractors which
persist for allC!-nearby vector fields and remain transitive, we get

Theorem 3.6. Every singularity of a robust attractor on a clos@ananifold
is Lorenz-like.

Robust attractors are singular-hyperbolic

A compact invariant seh of X is partial hyperbolicif there are a continu-
ous invariant tangent bundle decompositigM = ER @ E{ and constants
A, K > 0 such that

e E3 (K,A)-dominates E, i.e. for allx € A and for allt > 0

—At

(S}
DX ()| 5 < %~ m(DX!(x) | ES):

e E3 is (K,\)-contracting (see Section 1.2).

We shall say thaTla\M = ER ® Ef is a (K, A)-splitting for short. Forx € A
andt € R we letJf(x) be the absolute value of the determinant of the linear
mapDX'(x) | ES: ES — E)C(t(x). We say that the sub-bundi of the partial
hyperbolic sef\ is volume expandingd

3(x) = | de(DX | E)| > KeM,

for everyx € A andt > 0 (in this case we say th&g is (K,A)-volume
expandingo indicate the dependence @R, ).

It is known (see e.g. [132]) that a non-singular partiallpésbolic set
for a three-dimensional flow, with volume expanding centlis¢ction, is
uniformly hyperbolic.
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Definition 3.2. A partial hyperbolic set isingular-hyperbolidf its singu-
larities are hyperbolic and it has volume expanding cewdiraction.

A singular-hyperbolic attractors a singular-hyperbolic set which is an
attractor as well: an example is the (geometric) Lorenaetitr presented
in Section 2.3. Asingular-hyperbolic repelleof X is a singular-hyperbolic
attractor of—X. An example of a singular-hyperbolic set which is neither
an attractor or a repeller is the singular horseshoe predémiSection 2.1.

The following result characterizes robust attractorshioe¢-dimensional
flows.

Theorem 3.7. Robust attractors of X X*(M?3) containing singularities
are singular-hyperbolic sets for X.

Note that robust attractors cannot®eapproximated by vector fields
presenting either attracting or repelling periodic painthis implies that,
on 3-manifolds, any periodic point lying in a robust attoads hyperbolic
of saddle-type. Thus, as in Liao [98, Theorem A], we concltius ro-
bust attractorsvithout singularitieson closed 3-manifolds are hyperbolic.
Therefore we obtain a dichotomy as follows.

Theorem 3.8. LetA be a robust attractor of X X1(M). ThenA is either
hyperbolic or singular-hyperbolic.

Brief sketch of the proofs

To prove Theorem 3.2 we first obtain a sufficient conditiongdransitive
isolated set with hyperbolic critical elements o€4 vector field on an-
manifold,n > 3, to be an attractor (Theorem 3.15). We use this to prove
that a robustly transitive set whose critical elements gygetbolic is an
attractor if it contains a singularity whose unstable madihas dimension
one (Theorem 3.16). This implies th@t robustly transitive sets with
singularities on closed 3-manifolds are either properaettirs or proper
repellers (Theorem 3.2).

The characterization of singularities in a robust tramsitet (Theo-
rem 3.5) is obtained by contradiction. Using the Connectiagpnma (see
Section 1.3.8), we can produce special types of cyclesiftbn-flip or
Shil'nikov, see Chapter 2) associated to a singularityitegatb nearby vec-
tor fields which exhibit attracting or repelling periodicipts. This contra-
dicts the robustness of the transitivity condition.
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Theorem 3.7 is proved in Section 3.3. We start by proposingnan
variant splitting over the periodic points lying ik and prove uniform es-
timates on angles between stable, unstable, and centrablmbundles
for periodic points. Roughly speaking, if such angles areumformly
bounded away from zero, we construct a new vector field nesotiginal
one exhibiting either a sink or a repeller, yielding a codicton. Such
a perturbation is obtained using the extension for flows o&upbation
Lemma of Franks, given by Theorem 1.20. This allows us to @it
the splitting proposed for the periodic points is partidilyperbolic with
volume expanding central direction. We then extend thigts to the
closure of the periodic points. We show that the splittinggmsed for the
periodic points is compatible with the local partial hypaib splitting at
the singularities (Proposition 3.37) using that the lineaimcaé flow has
a dominated splitting outside the singularities ([205, dileen 3.8] stated
as Theorem 1.8 in Section 1.3.3); and that the non-wandsghgutside
a neighborhood of the singularities is hyperbolic (Lemm20R. We next
extend this splitting to all of\, obtaining Theorem 3.7.

3.1 Consequences of singular-hyperbolicity

Under the sole assumption of singular-hyperbolicity one slaow that at
each point there exists a strong stable manifold; more gebgcithe attractor
is a subset of a lamination by strong stable manifolds. Itse possible to
show the existence of local central manifolds tangent teémral unstable
direction, see [76] and Section 3.4.1. Although these eémanifolds
do not behave as unstable manifolds, in the sense that thieits@re not
necessarily asymptotic in the past, the fact that the flovaesp volume
along the central unstable direction implies rather stiomgperties.

We list some of these properties that give us a nice desmnipti the
dynamics of robustly transitive sets with singularitieglam particular,
for robust attractors, or of singular-hyperbolic attragtsets with a dense
subset of periodic orbits.

The first two properties do not depend either on the fact tiaset is
robust transitive or an attractor, but only on the fact thatet has a dom-
inated splitting and that the flow expands volume in the entnstable
direction.
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Proposition 3.9. LetA be a singular-hyperbolic compact set o1 (M).
Then any invariant compact sEtC A without singularities is a uniformly
hyperbolic set.

For singular hyperbolic attracting sets having only ongsiarity we
can obtain a partial converse to the results in the previecsm. As com-
mented below, Arroyo and Pujals have recently obtainedshdlondition
on a singular-hyperbolic attractor implying robust traingiy.

We start by stating a corollary of the arguments used to piidwen-
rems 3.5 and 3.6 (see Remarks 3.23 and 3.29 in the followictipss).
Observe that we assume partial hyperbolicity with volumgaexding cen-
tral direction but do not assume transitivity.

Theorem 3.10. Let A be a nonempty compact invariant isolated set for a
three-dimensional flow X X. Assume thad is partially hyperbolic with
volume expanding central direction. dfis a singularity accumulated by
regular orbits inA, then

o eithero is Lorenz-like for X and \§((o) NA = {o};
e or o is Lorenz-like for—X and W(o) NA = {c}.

This shows that partial hyperbolicity and volume expangioran iso-
lated set alone imply that the possible singularities anehn-like, either
for the positive or for the negative time flow.

Definition 3.3. Let A be an isolated set of € X"(M). We say that\ isC'
robustly periodidf there are an isolating blodd of A and a neighborhood
«u of X in X" (M) such that\y (U) = PerY)NAy(U) forallY € u.

Examples ofC! robustly periodic sets are the hyperbolic attractors and
the geometric Lorenz attractor (see Sections 1.2 and 2I8s& examples
are alsaC! robustly transitive. On the other hand, the singular hdrses
(from Section 2.1) and the example by Morales and Pujalsa6][4re nei-
therC? robust transitive no€? robustly periodic. These examples motivate
the question whethell C* robust transitive sets for vector fields &ro-
bustly periodic. Arroyo and Pujals have recently obtainpdsitive answer
to this question in [15], see below.

Nevertheless, on compact 3-manifol@5,robustly periodic sets a@
robustamong singular-hyperbolic attractors with only one sirayitly.
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Theorem 3.11. A C' robustly periodic singular-hyperbolic attractor, with
only one singularity, on a compa8tmanifold is C robust.

This result, first proved in [131], gives explicit sufficieabnditions
for robustness of attractordepending on the perturbed flo@ne should
aim to obtain sufficient conditiordepending only on the unperturbed flow
This was recently achieved by Arroyo and Pujals in [15], vettley obtain
a criteria for a singular-hyperbolic attractor to 6& robustly transitive,
depending only on the attractor and with no restriction annbbmber of
singularities. As a consequence in this setting the atiréastautomatically
robustly periodic.

Theorem 3.12. Let A = Ax(U) be a singular-hyperbolic attractor of %
x1(X) with isolating neighborhood U. Then the set of periodic tslis
dense in\ andA is the homoclinic class of at least one of those orbits.

Moreover, assume there exigis> 0 such that for everp < & < &y the
positive maximal invariant subset of \Bs(S(X)) is transitive. Then\ is
C! robustly transitive.

We present a proof of Theorem 3.11 following [131] in Sectioh.

The next two results show that important features of hydarlatdtrac-
tors and of the geometric Lorenz attractor are presentiigusar-hyperbolic
attractors, and so, for robust attractors with singukssiti

Proposition 3.13. A singular-hyperbolic attracto\ of X € X*(M) has
positive Lyapunov exponent uniformly bounded away frora aeevery
orbit.

The following generic property in the spa&é(M) can also be deduced
from Theorems 3.2 and 3.5.

Proposition 3.14. For X in a residual subset (a set containing an intersec-
tion of a enumerable family of open dense subset&)*@¥1), each robust
transitive set with singularities is the closure of the $adr unstable man-
ifold of one of its hyperbolic periodic points.

Now we present the proofs of these propositions assumingethéts
stated in the previous section.

Proof of Proposition 3.9:The argument relies on the fact that the intersec-
tion of the dominated splitting® @ E°" with the normal bundié- overl
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induces a hyperbolic splitting for the linear Poinedlow defined ovef
(recall the definition of the Linear Poin@Flow in Section 1.3.3). Thus
by Theorem 1.7 we conclude thiatis uniformly hyperbolic, finishing the
proof.

From the fact thal” does not contain singularities, there exikts>
0 such that 1K < ||X(x)|| < K for everyx € I'. Consider the following
splitting on the normal bundIbir: defineNy = ESYN Ny and ESSN Ny for
x e T, whereESS = EX & ES.

Now we show that this splitting is hyperbolic for the lineaviftae
flow P; over . Note that for anyt € R the Jacobian oDX! along the
sub-bundleESY) can be given by

XX (X))
S IXeI

whereny € N{ is any choice of a unit vector. The last expression is the
same as

sinZ(DX'(x) - ny, X(X'(x))) - [DX"(x) - n{]| -

XX
Xl

whereOx:(x denotes the orthogonal projection frof )M onto Nyt y),
recall Section 1.3.3. Thus

[|Oxt (g (DX () - 1) | -

t
|de(DX! | 2| = [0 (OX' (9 -l L )

Since the central direction i&,A)-volume expanding, we know that the
value of the expression in (3.1) is bigger tram. Hence we get

|| Ot () (DX (X ||>f ' forallt > 0.

This proves thaNY is uniformly expanded bf'.

To see thalN® is uniformly contracted by the linear Poinédiow, first
note that the splittind=s & EY is partially hyperbolic alond’. Thus there
existsA > 0 such that/(E3, X(x)) > Afor everyx € I'. Hence we can find
ap such that for alk € ' andv € N with ||v|| = 1, there isw € E§ with
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|lw|| = 1 such thav = aw+b- 7 with |a] < ag. Therefore we have

HX
X
O (OX (9 )| =[O (X - (b 3 )|
= [|Ox( (DX'(x) - (aw))
< [|DX'(x)- (aw)|| <20 -K-e ™

for someK, A > 00 (recall thates is (K,A) contracting). Thus\s is uni-
formly contracted by?. Proposition 3.9 is proved. O

Proof of Proposition 3.13:Let A be as in the statement of Proposition 3.13.
Givenx € A, if xis a singularity then the result follows from the fact tlat
is Lorenz-like forX. Now assumé(x) # 0 and takes € ES with ||v|| = 1
and orthogonal tX(x). We have for some,A >0

N IDX'(x) - X(X)

c-eM < |detDX! | EMY)| < ||[DXH(x) - ]| - X
v o X))
=[1PX60 vl o

and then fot > 0 we get

XX (x))]]
IXCl

Since||X(X!(x))|| is uniformly bounded for all > 0 by compactness df,
we see that limsyp, , ,,t *log||DX"(x) -v|| > 0. O

Iog||DXt ) V| >N+ Iogc— —Iog

Proof of Proposition 3.14:.Let A = Ax(U) be a robustly transitive set with
singularities forX € X1(M) with isolating neighborhoot. By Theorems
3.2 and 3.7 we can assume thats a partially hyperbolic attractor foX.
By the genericity properties from Section 1.3.6 (the Kui@male property,
item 1) for a generic subset in aC* neighborhoody’ of X we have that
N = Ay (U) has a hyperbolic period orbft, for allY € G.

As A is an attractor, the unstable maniféM'(p) of any periodic point
p of A is contained im\. In particular its the closuré/V(p) is contained in
A. We show thaf\ is contained inW!(p).

Let g € A be such that\ = wy(q) (recall that an attractor is transitive
by definition). LetV be a small neighborhood @. On the one hand, by
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transitivity, we can assume without loss of generality thatV. On the
other hand, sincA is partially hyperbolic, projecting into W"(p) through
the stable manifold of}, we can assume thatis actually contained in
W!(p). Indeed, being in the same stable manifajdand its projection
have the samey-limit sets.

Finally observe thatoy (q) C WY(p) becaus&V!(p) is invariant by the
flow. ThusA = wvy(q) € WY(p) finishing the proof. O

3.2 Attractors and isolated sets forC! flows

Here prove Theorems 3.2 and 3.5. We start by focusing ontéblsets,
obtaining the following sufficient conditions for an isadtset of & flow
on ann-manifold,n > 3, to be an attractor:

o allits periodic points and singularities are hyperboliuga

e it contains, in a robust way, the unstable manifold of sonikcat
element.

Using this we prove that isolated sétsatisfying the following conditions
are attractors:

¢ the critical element€(X) NA are hyperbolic;
e A\ contains a singularity with one-dimensional unstable rficdahj and
o Ais

— either robustly non-trivial and transitive (robustly tsdive),

— or A =C(X)NA is robustly the closure of its periodic points
(C* robustly periodic).

In particular robustly transitive sets with singularit@sclosed 3-manifolds
are either proper attractors or proper repellers, provingofem 3.2. Then
we characterize the singularities on robustly transitets sn 3-manifolds,
obtaining Theorem 3.5.

Elementary topological dynamics ensures that an attractataining a
hyperbolic critical element contains the unstable madifdlthis critical el-
ement. The converse, although false in general, is true fiesidual subset
of C! vector fields, as shown in [42]. We derive a sufficient conditior
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the converse to hold inspired by the following property afamly hyper-
bolic attractors (see e.g. [146]): A is a uniformly hyperbolic attractor of
a vector fieldX, then there is an isolating blotk of A andxg € C(X)NA
such thaty'(xo(Y)) C U for everyY close toX, wherexo(Y) is the hy-
perbolic continuation oy for Y. This property motivates the following
definition.

Definition 3.4. Let A be an isolated set of € X"(M), r > 1. We say that
N\ robustly contains the unstable manifold of a critical elemiéthere are
X0 € C(X)NA hyperbolic, an isolating blodd of A and a neighborhood
of X in X" (M) such that\{!(xo(Y)) C U, forallY € u.

With this definition in mind we are able to prove

Theorem 3.15. Let A be a transitive isolated set of ¥ X*(M) where
M is a compact n-manifold, & 3, and suppose that everyexC(X) N A

is hyperbolic. IfA robustly contains the unstable manifold of a critical
element, then\ is an attractor.

Now we derive an application of Theorem 3.15. Recall Definit8.3
of C' robustly periodic set

The geometric Lorenz attractor is a robustly transitiveriguic) set,
and it is an attractor satisfying (see Section 2.3)

o all its periodic points are hyperbolic, and
e it contains a singularity whose unstable manifold has dsienone.

The result below shows that such conditions are enough fainastly tran-
sitive (periodic) set to be an attractor.

Theorem 3.16. Let A be either a robustly transitive or a transitive' @o-
bustly periodic set of X ¥1(M), where M is a n-dimensional compact
manifold, n> 3. If

1. every xe C(X)NAis hyperbolic and
2. A has a singularity whose unstable manifold is one-dimeradjon

thenA is an attractor of X.
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Theorem 3.16 follows from Theorem 3.15 showing thatobustly
contains the unstable manifold of the singularity providgdcondition 2
above.

The following lemma is well known, see for instance [48, p.3]

Lemma 3.17. Let A be an isolated set of X X'(M), r > 0. Then for
every isolating block U of\ and every open setV containifg there is a
neighborhoodu of X inX"(M) such thatAy(U) cV forallY € u.

Proof. We have by assumptioh = Ax(U) = NierXt(U) = NierXH(U).
For any neighborhood of A there is a big enough > 0 such that

N X'@©)cw
—L<t<L

Then using the continuous dependence of the flow with theovéetd and
the compactness &f, there exists a neighborhoad of X in X"(M) such
that

(| Y(@U)cv foral Yeu.
—L<t<L

ThusAy(U) CV forallY € «. O

Lemma 3.18. If A is an attracting set and a repelling set of Xx1(M),
thenA =M.

Proof. Suppose thaf\ is an attracting set and a repelling setxaf Then
there are neighborhoods andV;, of A satisfyingX!(Vy) c Vi, X 1(\z) C
V, for everyt > 0,

A=X(V1) and A=[]X"(Va).
t>0 t>0

DefineU; = int(Vy) andU, = int(V5). ClearlyX!(U;) c Uy andX~t(U,) C
U, for all t > 0, sinceX! is a diffeomorphism. A&J, is open and contains
A, the first equality implies that theretis> 0 such thaiX2(V;) C U, (see
for instance [83, Lemma 1.6]). A%2(U;) C X%2(Vy) it follows thatU; C
X~2(Uy) c U, proving

U; Cc Uo.
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Similarly, asU, is open and containg, the second equality implies that
there ist; > 0 such thalX ' (V2) C Uy As X% (Up) € X' (Vy) it follows
thatU, c X' (U;) C Uy proving

Uo C Us.

Thus,U; = U,. From this we obtairX!(U;) = U; for all t > 0 proving
A =U;. As A is compact by assumption we conclude thas open and
closed. AsM is connected and\ is not empty we obtain thak = M as
desired. O

The lemma below gives a sufficient condition for an isolatetts be
attracting.

Lemma 3.19. Let A be an isolated set of X X*(M). If there are an
isolating block U ofA and an open set W containidgsuch that X(W) c
U for every t> 0, thenA is an attracting set of X.

Proof. Let A andX be as in the statement. To prove thais attracting we
have to find a neighborhoad of A such thatX'(V) c V for allt > 0 and

A =Ne=oX(V). (3.2)

To constructy we letW be the open set in the statement of the lemma
and define/ = Ui-oX'(W). ClearlyV is a neighborhood oA satisfying
XY(V) c V for eacht > 0.

We claim thatv satisfies (3.2). Indeed, &€ (W) C U for everyt > 0
we have thaV c U and soncrX'(V) C A becaus# is an isolating block
of A. ButV c X7Y(V) for everyt > 0 sinceV is forward invariant. So
V C Ni<oX'(V) and from this we have

X'(V)cvnX'(V)
t>0 t>0
c OXHV)NXHV) = [ XHV).
t<0 t>0 teR

Thus, Ni=0X' (V) € A. Now, asA C V andA is invariant, we have\ C
XY(V) for everyt > 0. ThenA C Ni=oX'(V), proving (3.2). O
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3.2.1 Proof of sufficient conditions to obtain attractors

The proof of Theorem 3.15 is based on the following lemma.

Lemma 3.20. Let A be a transitive isolated set of X X*(M) such that
every xe C(X)NA is hyperbolic. Suppose that the following condition
holds:

(H3) There are gy € C(X)NA, an isolating block U o\ and a neighbor-
hood« of X in X1(M) such that

W (xo(Y))cU, V Yeu.

Then W (x) C A for every xe C(X) NA.

Proof. Letxp, U andu as in (H3). By assumptionx (xo) is hyperbolic. If
0x (Xo) is attracting them\ = 0x (xo) sinceA is transitive and we are done.
We can then assume tha (xo) is not attracting. Thudig'(xo) \ 0x (Xo) #
0.

By contradiction, suppose that therexis C(X) NA such that\§/(x)
is not contained iM\. ThenW{(x) is not contained itJ. As M\ U is
open there is a cross-secti@nC M\ U of X such thatW(x) NZ # 0 is
transverse. Shrinking if necessary we can assume thgt(x(Z)) NZ # 0
is transverse for everg € u.

Now W¢'(xp) C A by (H3) applied toY = X. Choosep € W¢(xo) \
Ox(Xo0). As A is transitive andp,x € A, there isq € W(X) \ ox(x) such
that p, q satisfy (H1) in Theorem 1.18 on page 31. Indeed, the densk orb
of A accumulates botlp andx. Then, by Theorem 1.18, there atec u
andT > 0 such thap € W}'(x(Z)), g € W3(x(Z)) andZ7 (p) = q. In other
words,0z(q) is a saddle connection betwerj{Z) andx(Z). On the other
hand, asZ € u, we have thatWW}'(x(Z)) N # 0 is transverse. It follows
from theA-Lemma (see Section 1.3.5 of Chapter 1) t4F) accumulates
onqast — c. This allows us to break the saddle-connectitiq) in the
standard way in order to find’ € u such that\y;(x(Z')) N Z # 0 (see
e.g. [143] or the proof of Theorem 2.4 in [129]). In partiauldl; (Xo(Z'))
is not contained itJ. This contradicts (H3) and the lemma follows. O

Proof of Theorem 3.15Let A andX be as in the statement of Theorem 3.15.
It follows that there argp € C(X) N A, U andu such that (H3) holds.
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Next we prove thai\ satisfies the hypothesis of Lemma 3.19, that is,
there is an open s®¥ containing/A such thaX!(wW) c U for everyt > 0.

Indeed, suppose that suckdoes not exist. Then, there are sequences
Xn — X € A andt, > 0 such thaiX™"(x,) € M\ U. By compactness we can

assume thax'(x,) — q for somegq e M\ U.
Fix an open se¥ C V C U containing\. Asqe M\ U,

M\U c M\int(U), and M\intU) c M\V

we have thatj ¢ V. By Lemma 3.17 there is a neighborhoad C @ of X
such that

AyU)cCV, forall Y e . (3.3)

Then condition (H3), the invariance ¥¥'(xo(Y)) and the relation (3.3)
imply
W' (xo(Y)) cV CcV, forevery Y € uo. (3.4)

Now we have two cases:
1. eitherx ¢ C(X);
2. orxe C(X).

In Case 1 we obtain a contradiction as follows. bgt(z) be the dense
orbit of A, i.e. A = wx(2). Fix p e W¢(Xo) \ 0x(X0). Thenp € A by (H3)
applied toY = X. Asx € A we can choose sequen@s: Ox(z) andt/, >0
such that

zZn—p and X0(z) —x

It follows that p, g, x satisfy (H2) of Theorem 1.19 fof = X. Then from
Theorem 1.19 there B € 1 such thag € WS'(Xo(Z)). Asq ¢ V we have
thatWy'(xo(Z)) is not contained ifJ. And this is a contradiction by (3.4)
sinceZ € uo.

In Case 2 we use (H3) to obtain a contradiction as follows. &uep-
tion ox(x) is a hyperbolic closed orbit. Clearlyx(x) is neither attract-
ing nor repelling. In particulaW'(x) \ ox(X) # 0. Butx, ¢ Wg(x) since
Xn — X and X' (x,) ¢ U. Then, using linearizing coordinates given by the
Grobman-Hartman Theorem aroung(x) (see Section 1.3.4), we can find
X, in the positive orbit ofk, such thatx, — r € W¢(x) \ 0x(x). Note that
r ¢ C(X) and that there arg > 0 such thak'(x},) — q.
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Since (H3) holds, by Lemma 3.20 we ha'(x) C A. This implies
thatr € A. Then we have Case 1 replacirgy r, t, by t, andx, by x/,. As
Case 1 results in a contradiction, we conclude that CasenZedsilts in a
contradiction.

HenceA\ satisfies the hypothesis of Lemma 3.19, and Theorem 3.15
follows. O

Proof of Theorem 3.16Let A be either a robust transitive set or a transitive
C! robust periodic set ok € X¥*(M) satisfying the following conditions:

1. Every critical element oX in A is hyperbolic.
2. A contains a singularitg with dim(W{(o)) = 1.

On the one hand, i\ is robustly transitive, we can fix by Definition 3.1
a neighborhood: of X and an isolating blockl of A such that\y(U) is a
non-trivial transitive set oY, for everyY € «. Clearly we can assume that
the continuatioro(Y) is well defined for allY € w. Since transitive sets
are connected sets, we have:

(C) Ay(U) is connected for each € u.

On the other hand, iA is C! robustly periodic, we can fix by Defini-
tion 3.3 a neighborhood: of X and an isolating block) of A such that
for eachY € u we haveAy(U) = Per(Y) NAy(U). Assuming that(Y) is
well defined forY € u we have

(C) a(Y) e PeY)NAy(U), for everyY € u.
Claim 3.1. A robustly contains the unstable manifold of a critical eletne

By Definition 3.4, if u is the neighborhood oX described in either
Property (C) or (C’), then it suffices to prové/(c(Y)) c U forall Y € «.

Arguing by contradiction, suppose that there ex¥te @ such that
W' (a(Y)) is not contained in U

¢ From Condition 2 above it follows the/(o) \ {0} has two branches
which we denote byv™ andw™ respectively. Fixgt € w™ andq™ e w.
Denote byg®(Y) the continuation ofj* for Y close toX. We can assume
that theg®(Y) are well defined for al¥ € .

As g (Y) e W(a(Y)), the negative orbit of*(Y) converges ta(Y) €
int(U) c U. If the positive orbit ofg*(Y) is in U, thenW(a(Y)) C U,
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which is a contradiction. Consequently the positive orlbieither g (Y)

orqg (Y) leavesU. It follows that there i¢ > O such that eitheY! (g™ (Y))
orY'(g=(Y)) ¢ U. Assume the first case. The other case is analogous. As
M\U is open, the continuous dependence of the unstable masifofgies

that there is a neighborhoad’ C u of Y such that

Z'(q*(2)) ¢ U, forevery Zcu' (3.5)
Now we split the proof into two cases.

Case I: A is robustly transitive.

In this case\y(U) is a non-trivial transitive set of. Fixze Ay(U)
such thatwy (z) = Ay(U). Asa(Y) € Ay(U) it follows that either
g (Y) or g (Y) € wy(z). AsY € «’, the relation (3.5) implies
g (Y) € wy(2). Thus, there is a sequengg € oy(z) converging
to g (Y). Similarly there is a sequente> 0 such that'™(z,) — q
for someq e WG(o(Y) \ {o(Y)}. Definep=q~(Y).

It follows that p, g, Y satisfy (H1) in Theorem 1.18, and so, there
is Z € 4’ such thatq(Z) € W5(o(Z)). This gives a homoclinic
connection associated ®(Z). Breaking this connection as in the
proof of Lemma 3.20, we can findl € 7’ close toZ andt’ > 0 such
that

Zy(q (Z)) ¢ V. (3.6)

Now, (3.5), (3.6) together with the Grobman-Harman Theole®
imply that the se{a(Z')} is isolated inA\z(U). ButAz(U) is con-
nected by Property (C) siné € u’ C u. ThenAz(U) = {o(Z')},
a contradiction sincéz (U) is non-trivial. This proves Claim 3.1 in
this case.

Case II: AisC! robustly periodic.

The proof is similar to the previous one. In this casgU) is the
closure of its periodic orbits and difvW'(o(Y)) = 1. As the peri-
odic points ofAy (U) do accumulate either™ (Y) or g (Y), relation
(3.5) implies that there is a sequernges PerY) N /Ay (U) such that
pn — q (Y). Clearly there is another sequengge oy(pn) now
converging to somg € W@(a(Y) \ {o(Y)}. Setp=q(Y).



3.2. ATTRACTORS AND ISOLATED SETS FOR! FLOWS 113

Again p,q,Y satisfy (H1) in Theorem 1.18, and so, ther&Zis u’
such thaig~(Z) € W5(o(Z)). As before we have a homoclinic con-
nection associated to(Z). Breaking this connection we can find
Z' € 4’ close toZ andt’ > 0 such that

Zi(q(Z)) ¢ V.

Again this relation together with the Grobman-Harman Theof..9
and the relation (3.5) would imply that every periodic poirfitz’
passing close ta(Z') is not contained i\ (U). But this contradicts
Property (C’) sinc&’ € u’ C u. This completes the proof of Claim
3.1in this case.

It follows thatA is an attractor by condition (1) above, Theorem 3.15
and Claim 3.1. This completes the proof of Theorem 3.16. O

3.2.2 Robust singular transitivity implies attractors or re-
pellers

In this sectiorM is a closed 3-manifold anfl is a robustly transitive set of
X € XY(m).

According to Definition 3.1 we can fix an isolating blockof A and
a neighborhooduy of X such that\y(U) = MierY'(U) is a non-trivial
transitive set off, for everyY € «y. Robustness of transitivity implies that
X € uy cannot beCt-approximated by vector fields exhibiting either sinks
or sources itJ. And since diniM) = 3 this easily implies the following.

Lemma 3.21. Let X € uy. Then X has neither sinks nor sources inU, and
any pe Per(X) NAx(U) is hyperbolic.

The following result shows that singularities in this segtare Lorenz-
like, either for the given flowX or for the reversed flowX.

Lemma 3.22. LetY € 1y ando € S(Y)NAy(U) be such that
(i) every C-nearby flow admits neither sinks nor sources in U;
(ii) every critical element in U is hyperbolic, and

(iif) o is accumulated by regular orbits if\.
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Then
1. the eigenvalues af are real.
2. if A < A3 < A are the eigenvalues af, theni, < 0 < A;.
3. forA; as above we have

(@) A3(0) < 0= —A3(0) < A1(0);
(b) Az(0) > 0= —A3(0) > A2(0).

Remark3.23 Assume that we are given a nonempty compact invariant
isolated sef\ = Ax(U) under a flow on a 3-manifold, which is also par-
tially hyperbolic with volume expanding central directioisince partial
hyperbolicity is a robust property, then for every close fiowe have that

Ny (U) is also partially hyperbolic. This implies that there aresoarces in

Ay (U). The uniform volume expansion along the central directibfiM

for X implies that there are no sinks A (U), for otherwise we would get
volume contraction along the central direction for pointd 8ows arbitrary
close toA andX. This is a contradiction since dominated splittings depend
continuously on the base point and on the dynamics, thusddknits we
obtain a point inA\ with central direction whose volume is contracted by
the X flow.

Hence the conclusion of Lemma 3.21 is also valid in thisisgiind we
conclude thaevery singularity accumulated by regular orbits of a siragul
hyperbolic isolated set of a flow X is either Lorenz-like foloKLorenz-like
for —X.

Remark3.24 For an example of a singular-hyperbolic isolated set of a
flow X with non-Lorenz-like singularities, consider the maxirmalariant
set inside the ellipsoi& of the flow described in Figure 2.16.

Proof. Let us prove the first item by contradiction. Suppose thatetlie
Y € uy ando € S(Y) N Ay(U) with a complex eigenvalue». We can
assume that is hyperbolic by Lemma 3.21. As difll) = 3 the remaining
eigenvalue\ of o is real. We have eithdRgw) < 0 <A orA < 0 < Rew).
Reversing the flow direction if necessary we can assume thaare in
the first case. We can further assume, by a small perturblktieping the
vector field insideuy, thatY isC* and

A # —Re(w). (3.7)
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According to a form of the Connecting Lemma stated in Theofeh3
on page 31, we can assume that there is a homoclinic Toap/y (U)
associated t@. Thenl is a Shil'nikov bifurcation see Section 2.2, and
thus there is a vector field arbitrarily C! close toY exhibiting a sink or a
source in\z(U). This contradicts Lemma 3.21 and concludes the proof of
the first item.

Thus we can arrange the eigenvaldesA,, A3 of o in such a way that
A2 <Az <A1. By Lemma 3.21 we have thap < 0 andA; > 0. This proves
the second item in the statement.

To prove the third item we can apply Theorem 2.3 from Sectiéh 2
This shows that there & arbitrarily C* close toY exhibiting either a sink
in Az(U) (if item (a) fails) or a source iz (U) (if item (b) fails). This is
a contradiction as before, concluding the proof of the lemma O

Lemma 3.25. There is no Ye ¢y exhibiting two hyperbolic singularities
in Ay (U) with different unstable manifold dimensions.

Proof. Suppose by contradiction that ther&’is «u exhibiting two hyper-
bolic singularities with different unstable manifold dingons inAy (U).
Note that\’ = Ay(U) is a robust transitive set &f and —Y respectively.
Since Kupka-Smale vector fields are generic (by the resugction 1.3.6)
we can assume that all the critical element¥ @fi A’ are hyperbolic.

As dim(M) = 3 andY has two hyperbolic singularities with different
unstable manifold dimensions, it follows that bottand—Y have a singu-
larity in A whose unstable manifold has dimension one. Then, by Theo-
rem 3.16 applied t&Y and —Y respectively/\’ is a proper attractor and a
proper repeller of. In particular,\’ is an attracting set and a repelling
set ofY. It would follow from Lemma 3.18 that\' = M. But this is a
contradiction sincé\’ is proper. O

Corollary 3.26. If Y € uy, then every critical element of Y i (U) is
hyperbolic.

Proof. By Lemma 3.21 every periodic point 8fin Ay (U) is hyperbolic,
for all Y € «w. It remains to prove that every € S(Y) N Ay (U) is hyper-
bolic, for allY € uy. By Lemma 3.22 the eigenvaluas, A, A3 of o are
real and satisfj\, < 0 < A1. Then, to prove that is hyperbolic, we only
have to prove thats # 0. If A3 =0, theno is a generic saddle-node singu-
larity (after a small perturbation if necessary). Unfolglthis saddle-node
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we obtainY’ € uy close toY having two hyperbolic singularities with dif-
ferent unstable manifold dimensionsAg:(U). This contradicts Lemma
3.25 and the proof follows. O

Proof of Theorem 3.2Let A be a robustly transitive set with singularities
of X € x1(M) with dim(M) = 3. By Corollary 3.26 applied t& = X
we have that every critical element ¥fin A is hyperbolic. So\ satisfies
condition (1) of Theorem 3.16. As difi) = 3 andA is non-trivial, if A has

a singularity, then this singularity has unstable manitbfdension equal to
one, either foiX or —X. SoA also satisfies condition (2) of Theorem 3.16,
either forX or —X. Applying Theorem 3.16 we have thétis an attractor
(in the first case) or a repeller (in the second case).

We shall prove thad\ is proper in the first case. The proof is similar in
the second case. /f = M then we would have) = M. From this it would
follow that Q(X) = M and, moreover, thaX cannot beC! approximated
by vector fields exhibiting attracting or repelling critiegdements. It would
follow from the the work of Doering [53, p. 60] that is Anosov. But this
is a contradiction sincé (and soX) has a singularity and Anosov vector
fields do not. This finishes the proof of Theorem 3.2. O

Now we prove Theorem 3.5. We start with the following comlla

Corollary 3.27. If Y € uy then, either for Z=Y or Z= -Y, every singu-
larity of Z in Az(U) is Lorenz-like.

Proof. Apply Lemmas 3.22, 3.25 and Corollary 3.26. O

Now we use the existence of dominated splitting for the lir@incaé
flow with respect toX € uy, see Section 1.3.3 for the relevant results and
definitions.

Given X € uy defineAy(U) = Ax(U) \ S(X). According to The-
orem 3.2 we can assume thag(U) is a proper and isolated attractor
of X. Using Lemma 3.21 and the fact thag (U) C Q(X), we see that
we are in the setting of Theorem 1.8. Then we conclude thatihe
ear Poinca# Flow P! on A% (U) admits a partially hyperbolic splitting:
N/\;‘((U) _ NS’X @ NU’X.

The following consequence of this is used in a crucial waytierproof
of expansiveness in Chapter 4.
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Lemma 3.28. Let A be a compact isolated invariant set for X, with isolat-
ing neighborhood U such that every-€lose vector field admits a domi-
nated splitting for the corresponding Linear Poinédflow on U away from
singularities. Fixo € S(X) NA and writeA, < Az < A1 for its eigenvalues.

1. If A2 < A3 <0, theno is Lorenz-like for X and \§f(c) "A = {o}.
2. If 0 < Az < Aq, theno is Lorenz-like for—X and W(o) NA = {o}.

Remark3.29 If we are given a singular-hyperbolic isolated Adbr a flow

X with isolating neighborhood then, by Remark 3.23, the singularities of
A, which are accumulated by regular orbitshinare Lorenz-like either for
X or —X. Moreover the Linear PoincarFlow onA* = A\ S(X) admits a
partially hyperbolic splitting naturally. Indeed the LarePoincagé Flow is
dominated by Theorem 1.8 (since singular-hyperbolicigvpnts sinks and
sources for nearby flows di and guarantees hyperbolicity of all critical
elements irJ) and its central-stable bundle is uniformly contractedhmsy t
same argument in the proof of Proposition 3.9.

In addition, for all close enough vector fieldfsthe corresponding lo-
cally maximal invariant subséty (U) is also partially hyperbolic with vol-
ume expanding central direction, and so the domination gutgpof the
splitting for the Linear Poinc&rFlow of X on A is robust.

Hence we have the same properties used in the proof of Leni28a 3.
We conclude thaevery singularity accumulated by regular orbits in a
singular-hyperbolic isolated set satisfies either item ftem 2 of Lemma 3.28
above.

Proof. To prove the first item we assume thgt < A3 < 0. Theno is
Lorenz-like forX by Corollary 3.27. Assume by contradiction the¢3(o) N
N # {o}.

SinceA is transitive, by Theorem 1.18 theredss 1y exhibiting a ho-
moclinic connection” € WJ'(o(Z)) "W5(a(Z)). This connection is called
orbit-flip, see Section 2.2.2. By using Theorem 2.4 we can approximate
byY € «y wit ha homoclinic connection

M C W/ (a(Y)) N (We(a(Y)) \Wg(a(Y))).

Hence there exists a center-unstable manidft(o(Y)) containingr” and
tangent toAg(a(Y)) alongl™’. This connection is callethclination-flip.
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The existence of inclination-flip connections contraditts existence
of the dominated splitting for the Linear Poinédflow from Theorem 1.8,
as a direct consequence of Theorem 2.4 in Section 2.2.2 c@htsadiction
proves the first item.

The proof of the second item follows from the above argumpptied
to —X. O

Proof of Theorem 3.5Let A be a robust transitive set &f € X1(M) with
dim(M) = 3. By Corollary 3.27, ifo € ox(A), thena is Lorenz-like either
for X or —X. If o is Lorenz-like forX we have that\¢5(o) NA = {o}
by Lemma 3.28-(1) applied t6 = X. If o is Lorenz-like for—X we have
thatWg¥(o) N A = {o} by Lemma 3.28-(2) again applied 1= X. As
W55 (0) =Wy'(0) the proof is complete. O

3.3 Attractors and singular-hyperbolicity

The main goal here is the proof of Theorem 3.7.

Let A be a robust attractor of € X*(M) with dim(M) = 3, U an iso-
lating block of A, anduy a neighborhood oK such that for ally € uy,
Ay (U) = NierY' (V) is transitive. By definitiom\ = Ax (U).

As we already proved (in Lemma 3.21 and Corollary 3.26), for a
Y € wy all the singularities of\y(U) are Lorenz-like and all the critical
elements imy (U) are hyperbolic of saddle type.

For future reference we state precisely the technical ¢i@mmdi for the
arguments that follow.

Theorem 3.30. Let A be a compact transitive Lyapunov stable invariant
subset of Xc X1(M) such that for every vector field close to X all criti-
cal elements nearb# are hyperbolic, and there are no sinks nor sources.
Suppose further that for all close vector fields every siagiyl nearby/A

is Lorenz-like. Ther\ is singular-hyperbolic.

The strategy to prove Theorem 3.7 is the following: givea uy we
show that there exists a neighborhoBdf X, c > 0,0< A <1 andTy >0
such that for aliy € v, the set

Per?(Ay(U)) = {y € Pex (Ay(U)) : (minimal period ofy)> To}
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has a continuous invariaft, A)-dominated splittind=® & E®Y, with the di-
mension ofES equal to 1.

Using the Closing Lemma of Pugh (Theorem 1.16) and the rdbarst
sitivity, we induce a dominated splitting ovAk (U). The natural difficulty
is to obtain the splitting around the singularities. By Tien 3.6 the sin-
gularities are Lorenz-like and, consequently, they cdrejocal hyperbolic
bundleESSassociated to the strongest contracting eigenvaled@b), and
the central bundI&®" associated to the remaining eigenvalue®f(c).
These bundles induce a local partial hyperbolic split&$§® E° around
the singularities.

The main step now is to prove that the splitting proposedHergeri-
odic points is compatible with the local partial hyperbdiditting at the
singularities. Proposition 3.37 expresses this fact. IFivee prove that
ES is contracting and that the central directiBf” is volume expanding,
concluding the proof of Theorem 3.7.

We point out that the splitting for the Linear Poinedflow obtained
in Theorem 1.8 is not invariant BPX'. WhenA}(U) = Ax(U)\ S(X) is
closed, this splitting induces a hyperbolic one Xarsee [53, Proposition
1.1] and [98, Theorem A]. However the arguments used thereotdapply
here, sincé\} (U) is not closed. We also note that a hyperbolic splitting for
X over A (U) cannot be automatically extended to a hyperbolic one over
(A (U)): the presence of a singularity is a natural obstruction ttoOin
the other hand, Theorem 3.7 shows that this can be circueddatget a
partially hyperbolic structure foX over (A (U)).

Let us establishing some notations, definitions and praknyi results.

Uniformly dominated splitting over Peﬁo(/\y(u )

Let Ay (U) be a robust attractor &f € uy, whereU anduy are as in the
previous section.

Since evenp € Per (Ay(U)) is hyperbolic of saddle type, we have that
the tangent bundle dfl over p can be written as

S Y u
ToM=E @ E, B Ep,
where E,S) is the eigenspace associated to the contracting eigenadlue

DY (p), Eg is the eigenspace associated to the expanding eigenvalue of
DY'(p), and we writet,, for the (minimal) period of.
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Note thatE3 c N3 Ey andEp ¢ Ny & Eyf, whereN®@ N is the split-
ting for the linear Poincé&rflow over regular orbits.

Observe that, if we consider the previous splitting ovePel (Ay (U)),
the presence of a singularity ek (Ay(U)) is an obstruction for the exten-
sion of the stable and unstable bundEsandE" to Pex (Ay(U)). Indeed,
near a singularity, the angle between eitB8randEX, or ES andEX, goes
to zero. To bypass this difficulty, we introduce the follogin

Definition 3.5. GivenY € uy define for anyp € Pek (Ay (U)) the splitting
TM=EyY @E;", where Ej*' =E) @Ep.
In addition we define a splitting over Rény (U)) by

TeervyM= U (E5¥@E").
pePex (Av(U))

When no confusion arises we drop tiiedependence on the notation
just defined. To simplify notation we denote the restrictodrDY!(p) to
E5Y (respectivelyEs"Y) simply by DY! | E5 (respectivelyDY! | E5Y) for
te Randpe Per(Ay(U)).

We now prove that the splitting over R¢Ay(U)) given by Defini-
tion 3.5 is aDY'-invariant and uniformly dominated splitting along peiiod
points with large period.

Theorem 3.31. Given X¢& wuy there are a neighborhood’ C uy and
constantsO < A < 1, ¢ > 0, and T > O such that, for every ¥ 7/, if
pe Pet{o(/\y(u)) and T> 0, then

IDYT | E5)-[DY T [EH ) <cAT.

Theorem 3.31 will be proved in Section 3.3.2, with the helproé-
orems 3.32 and 3.33 below. The proofs of these theorems @edtion
3.3.2.

Theorem 3.32 establishes, first, that the periodic poirgsuaiformly
hyperbolic, i.e., the periodic points are of saddle-typd #re Lyapunov
exponents are uniformly bounded away from zero. Secondhatigle be-
tween the stable and the unstable eigenspaces at periadis poe uni-
formly bounded away from zero.

Before the statement we need the following definition: gitwea sub-
spaced\ C TxM andB C TxM the angleZ(A, B) betweerA andB is defined
asZ(A,B) =inf{Z(v,w):ve A we B}.
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Theorem 3.32. Given Xe 4y, there are a neighborhood C wy of X
and constant® < A < 1 and ¢> 0, such that for every ¥ v, if p €
Per (Ay(U)) and t, is the period of p then

a) (al) |[DY' | Ej|| < A' (uniform contraction on the period)
(a2) [[DY~* | Ep|| <A™ (uniform expansion on the period).

b) Z(Ep,Ep) > ¢ (angle uniformly bounded away from zero).

Theorem 3.33 is a strong version Theorem 3.32-b). It estaddi that,
at periodic points, the angle between the stable and theatamtstable
bundles is uniformly bounded away from zero.

Theorem 3.33. Given Xe «y there are a neighborhood’ C 4y of X
and a positive constant C such that for everg ¥ and pe Pek (Ay(U))

we have angles uniformly bounded away from zef¢Eg, Eg¥) > C.

We shall prove that, if Theorem 3.31 fails, then we can cragteriodic
point for a nearby flow with the angle between the stable aadd&mtral un-
stable bundles arbitrarily small. This yields a contradiciwith Theorem
3.33. In proving the existence of such a periodic point foearby flow we
use Theorem 3.32.

Assuming Theorem 3.31, we establish in the following sectie ex-
tension of the splitting given in Definition 3.5 to all 8 (U). Afterward,
with the help of Theorem 3.32, we show tHat is uniformly contracting
and thate® is volume expanding.

In the proof tha€s is uniformly contracted (respectiveBF! is volume
expanding) we show that the opposite assumption leads tordation of
periodic points for flows nearby the original one with contian (respec-
tively expansion) along the stable (respectively unsiailedle arbitrarily
small, contradicting the first part of Theorem 3.32.

All of these facts together imply Theorem 3.7.

3.3.1 Dominated splitting over a robust attractor

Here we induce a dominated splitting ow&x (U) using the dominated
splitting over Pe$°(/\Y(U)) for flows nearX, given by Definition 3.5.

On the one hand, sina®, (U) is a proper attractor for evely close to
X in X1, we can assume without loss of generality that foivadt /, and
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x € Per(Y) with oy (x) NU # 0, we have
Oy (X) C Ay(U ) (3.8)

On the other hand, sinokx(U) is a non-trivial transitive set, we get that
Ax(U)\ {p € Pex(Ax(U)) : ty < To} is dense iM\x(U). So, to induce
an invariant splitting ovefx (U) it is enough to do so ovekx (U)\ {p €
Pex(Ax(U)) 1 tp < To} (see [109] and references therein). For this we
proceed as follows.

GivenX € uy, letK(X) C Ax(U)\ {p € Pex(Ax(U)) : tp < To} be
such thatX!(x) ¢ K(X) for all x € K(X) if t # 0. In other wordsK (X) is
a set of representatives of the quotiét(U) \ {p € Pex(Ax(U)) : tp <
To}/ ~, where~ is the equivalence relation given By y <= x € ox(y).
SinceAx (U) = w(z) for somez € M, we have that for any € K(X) there
existst, > 0 such thaX™(z) — x. Then by the Closing Lemma (Theorem
1.16) there exisY,, — X in X! andy, — x such thaty, € PerY,). We can
assume thaY, € uy for all n. In particular, inclusion (3.8) holds for all
Y =Yy, that isoy, (Yn) C Ny, (V).

Moreover, since the period of the periodic pointKifX) are larger than
To, we can also assume that the periodgpérety, > To for all n. Thus
the (c,A)-dominated splitting=S" @ E4Yn over Peﬁ(/\yn(u)), provided
by Theorem 3.31, is well defined.

cu,Y"k

Take a converging subsequerﬁ;}t “@ Evne and set

ESX = lim ES"Y X ESUX — lim E§“Y k

SinceES™ @ EC" s a(c,A)-dominated splitting for alh, then this prop-
erty is also true for the limiEg™ @ Ex**. Moreover di{Ex”™) = 1 and
dim(Eg*”) = 2 for all x € K(X).

Define the following eigenspaces aloXfx) fort € R

=DX'(ESX) and ES"% = DX'(EXX).

S,X
E Xt (x)

XH(x)

Since for everyn the splitting over Pég(/\yn(u)) is (c,A\)-dominated, it
follows that the splitting defined above aloXgorbits of points inK(X)
is also(c,A)-dominated. Moreover we also have tI‘E;jl>< is unidimen-
sional andEcux is bi-dimensional, for alt € R. This prowdes the desired
extension of a domlnated splitting foc (V).
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We denote byES @ E the splitting overAx (U) obtained in this way.
Since this splitting is uniformly dominated we deduce tBatp EY de-
pends continuously on the points &% (U) and also on the vector field,
see [76] or [34].

When necessary we denote By @ EC*Y the above splitting folY
nearX.

Remark3.34 If o € S(X)NAx(U) thenE;g is the eigenspacE;® associ-
ated to the strongest contracting eigenvalu®if(o), andES is the bi-
dimensional eigenspace associated to the remaining eilyes/ofDX (o).

This follows from the uniqueness of dominated splitting&,[108] or [34].

3.3.2 Robust attractors are singular-hyperbolic

Next we prove that the splitting*® EY over/Ax (U) is partially hyperbolic
with volume expanding central-unstable direction.

ES is uniformly contracting

We start by proving the following elementary lemmas.

Lemma 3.35. If liminf;_. |[DX" | ES|| = O for all x € Ax(U), then there is
To > O such that| DX, | ES|| < 3 for every xe Ax(U).

Proof. For eachx € Ax(U) there isty such thaf|DX* | ES|| < 1/3. Hence
for eachx there is a neighborhodB(x) such that for ally € B(x) we have
IDX™ | EJ|| < 1/2. SinceAx(U) is compact, there ai(x;), i =1,...,n,
such that\x (U) C B(x1) U---UB(Xy).

Let Ko = sup{||[DX' | Ejll,y € B(x),0 <t <ty,i =1,...,n}, let jo be
such that 210Ky < 1/2 and fixTo > jo- sup{ty,i = 1,...,n}. We claim
thatTp satisfies the statement of the lemma.

Indeed, givery € Ax(U) we havey € B(x;, ) for some 1<ii <n. Let
tiy, ..., by, i, Satisfy

o Xtil+'--+tij (y) c B(X| ), 1§ J < k1 and

j+1

° til+--'+tikSTOSti1+"'+tik+l'
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Observe thak > jo. Then forlj =t +---+t;, j=1,...,k+1, we have

Ko 1
0<*.

|DXT0|Ey||<||DxTo /k‘E )

g
0l |'|||D><J|ES <

Xk(y fi-1(y)

The proof is complete. O

Lemma 3.36. If there exists § > 0 such that||DXy, | Eg|| < 1/2 for all
x € Ax(U), then there are c- 0and0 < A < 1 such that| DXt /Eg|| < cAT
forallx € Ax(U) and T> 0.

Proof. Let K; = sup{||[DX!|,0 <t < Tp}. Choose O< A < 1 such that
1/2 < ATo andc > 0 such thaKy < ¢- A" for all 0 <r < To. Then for any
x€ Ax(U) and allT > 0 we havel =nTo+r with n= [T /To] = max{k €
Z:k<T/Tp}and 0<r =T —nTp < Tp. Consequently

IDXT | Egl| = [IDX" | Egaro I ]_LIIDXT°| xiTo(x |

<= <cAN-(AP)"<c.AT,

concluding the proof. O

By Lemmas 3.35 and 3.36, in order to prove that the budles uni-
formly contracting, it is enough to prove that liming, || DX! | ES|| = O for
everyx € Ax(U).

Arguing by contradiction, assume that there exxstsA\x (U) satisfying
liminfi_. [[DX' | ES|| > 0. Then there exists, —® such that

1
H Sn S >
lim — log||DX | ES]| > 0. (3.9)

Let CO(Ax(U)) be the set of real continuous functions defined\atU)
with theC® topology, and define the sequence of continuous operators

W COAx(U)) =R, ¢ €COoAx(U Hf/q;xs

Since in theC® norm this sequence is boundé&y|| < 1, and the unit ball
of the dualC®(Ax(U))* is weaK-compact (see any standard reference on
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Functional Analysis e.g. [181]), there exists a subsequefit’,, which

we still denote by, converging to a continuous mépec CO(Ax(U))* in

the weak topology. Letas (Ax(U)) be the space of measures with support
onAx(U). By the Riez's Representation Theorem (see e.g. [180]ether
exists a probability measugec a (Ax(U)) such that

Nn— o0 S,]

/ odu= lim 7/ O(X3(x)) ds= W(0), (3.10)
Ax (V)

for every continuous functiof : Ax (U) — R. Note that suclpis invariant
by the flow since for alt € R

n— o0

— im S / Bx%00) s [$(x%(9) s) = (o).

Definedyx : CO(Ax(U)) — R by

W(poXt) = lim 7/ (X (x

1
dx(p) = 0n(log|IDX" | E3])n-o = lim +log|[DX" | EJ,
which is continuous and so satisfies (3.10). Observe that foiR,
T T h
| x O ds= [ a(log|DX" | Es [)n-ods
=log|DX" | E|. (3.11)
Combining (3.9), (3.10) and (3.11) we get

/ dxdp> 0. (3.12)
Ax (V)

By The Ergodic Theorem 1.21 we deduce

1T .
/Ax(u)(bxd“: //\X<u>dmy)T"ﬂL?/o dsx (X5(y))- (3.13)

Let 2(X) be the set of strongly closed points, see Section 1.4.3.e$inc
is X-invariant and supf) C Ax(U), the Ergodic Closing Lemma (Theo-
rem 1.23) ensures tha{/Ax (U) N (S(X) UZ(X))) = 1.
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We claim thai(Ax (U) NZ(X)) > 0. For otherwisgi(Ax (U)NS(X)) =
1 and sinceS(X) is X-invariant and discrete, we would get theis a finite
convex linear combination of point massesSiX): L= 3 5egx) &ids. But
ES coincides with the strong-stable eigenspBg&at everyo € S(X) (recall
Remark 3.34) and the corresponding eigenvahggare negative, thus

| oxdu= [ gxdu= 5 adx(0)<0
Nx(U) S(X) 0E€SX)
contradicting (3.12). This contradiction proves the claim

The Ergodic Decomposition Theorem (see Section 1.4) esald€o
assume without loss of generality thatis ergodic. Henceu(Ax(U) N
%(X)) = 1. Therefore by (3.12) and (3.13) there exigts Ax (U) N Z(X)
such that

)
im 2 [ exxey)ds= o (3.14)

Becausg € Z(X), there aréd, P 0,Yn € Uy, pn € Pex, (Ay, (U)) with
periodt, such that
IYa—X|| <3 and supdist(Y3(pn),X3(y)) < dn.

0<s<tp

Observe that we must hanerH—w> o, For otherwisey would be periodic
for X and, ifty is its period, then (3.11) with (3.14) imply thexx" | E§' is
not a contraction. Combining this with Theorem 3.32-a2) bechma 3.21
we see thay can belong neither to a hyperbolic periodic orbit of saddle
type nor to a repelling periodic orbit, a contradiction.

Lety < 0 be arbitrarily small. By (3.14) again, thereTigsuch that for
t > T, we have

t
+ [ oxocods=y. (3.15)

Sincet, — we can assume thaf > T, for everyn. The continuity

of the spllttmg ES @ E® over Ta, (uyM with the flow together with (3.15)
implies that fom big enough

flogHDYt”/EsYnn >y or [IDYy/ERN > et

Taking n sufficiently large andy < 0 sufficiently small, this last inequality
contradicts item (al) in Theorem 3.32.
This completes the proof th&® is a uniformly contracting bundle.
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E® is uniformly volume expanding

Using results analogous to Lemmas 3.35 and 3.36, one cahagde prove
thatE® is uniformly volume expanding it is enough to prove

liminf |detDX ' |ESY)| =0 forevery xe Ax(U).

Arguing again by contradiction, assume that there exigts\x (U) such
that liminf_.. |det DX~ | EY)| > 0. Then there is, — @ such that

.1
r!ml’; log|det DX | E;¥)| > 0. (3.16)
Again define the sequence of continuous operators
0 1/ s
W, : CO(Ax(U)) — R, ¢H;/ (X ~5(x))ds
0
Analogously to the previous arguments 6%, there exists a convergent

subsequenc®’, — W € C%(Ax(U))* and there exists a probability measure
pe a (Ax(U)) such that

R -
/AX(U)d’d“:n'ﬁ'l,;/o O(X3(x))ds=W(¢),

for every continuous functio : Ax (U) — R. As before sucluis invariant
by the flow. Likewise definéy : C°(Ax(U)) — R by

_ .1 _
¢x(p) = 0n(log|deDX~" | E3Y)),_o = lim - log|de(DX~"(p) | E5").
Hence we obtain
1
du= lim —log|detDX = | E 3.17
[t Eolserox 51 o
and using (3.16) we get
/ dxdpu=> 0. (3.18)
Ax(U)

By The Ergodic Theorem

1T B
//\X(U)¢Xdu://\x(u)de)T|@m?/o dsdx (X>(x)).- (3.19)
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Arguing as in the previous section, we hay@é\x(U) N Z(X)) = 1. From
(3.18) and (3.19) there exisf= Ax (U)NZ(X) such that

lim ?/ Ox (X~5(y))ds> 0. (3.20)

T—o0

Hence there aré, — 0, Yn € Uy, pn € Pex,(Ay,(U)) with periodty,
such that

IYa—X|| <3 and supdist(Y, (pn), X 3(y)) < dn.

0<s<tp

Again we must havé, — Fix y < 0 be arbitrarily small. By (3.20)
we can findTy > 0 such that fot > Ty

L[ ax0xw)aszy 3.21)

and we can assume that> T, for everyn. The continuity of the splitting
ES @ E®Y with the flow together with (3.17) and (3.21) imply that fobig
enough we have

—Iog|det(DY‘t“ |ESW%)[ >y or |detDY," | ESY)| > efn.
This implies

| det(DYy" | Egi™)| < e Vo = (e7V)h. (3.22)

We can make " arbitrarily close to one and takimgsufficiently big, from
(3.22) we obtain a contradiction with item (a2) in Theore®23since for
periodic orbits we have

| det DYy | ES)| = | det( DYy | EpY7).

This completes the proof th&™ is volume expanding.

Uniform dominated splitting on periodic orbits

Let us assume Theorems 3.32 and 3.33 on page 121 and show how we
obtain Theorem 3.31. The central idea of the proof is to sHat if the
Theorem 3.31 fails then we can obtain a flow n&aexhibiting a periodic
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point with angle between the stable and the central bundbésagily small,
leading to a contradiction with Theorem 3.33.

As in the proof of Lemma 3.36, to obtain Theorem 3.31 it is eytoto
show that there exist a neighborhoodcC wy of X andTy > 0, such that
for every vector fieldr € v, if pe PeﬂO(/\Y(U)) then

_ 1
IDY | E5II- IDY ™ | BZ%, )| < 5 (323)

We prove (3.23) arguing by contradiction. If (3.23) failethgivenX € uy
andTp > 0, we can findY € uy arbitrarily close toX andy € Peg0 (Av(U))
satisfying

1
wl> 2

Claim 3.2. For any positive numbergJ'there are Y arbitrarily close to X,
T > To and ye Per (Ay(U)), with period { larger than T, admitting a

direction ve ESY (y) not collinear to Y(YT (y)) such that

|DY™ | E|- DY | ESY, (3.24)

IBYT [ESN- IDY (YT (y)(v)l| = 1.

Proof. First we show that there exist arbitrarily close toX, T > Tp and
ye Pen{o(/\y(u)) with periodty larger thanT admittingv € °¥(y) such
that

IDYT | ES|- DY T (YT () (W)l = 5. (3.25)

TakeY close toX, Tp > 0 large enough anyg € Peﬁo(/\y(u)) satisfying
(3.24). If there exist3 € (To,ty) such that|DYT | ES||- DY | ol <

1/2, then by continuity of the norms and the flow we can find sorherdt
in the same interval satisfyingDY™ | EJ|| - [DY T | o yll = 1/2. Since
the unit ball in any tangent space is compact, there exist&SY ) satis-
fying (3.25). Otherwise we have

_ 1
IDYT | ES||- DY | il > 5 forallTo<T <ty (3.26)
In this case we observe that Theorem 3.32 implies

1
t s —t u 2t
IDYS ES]- DY Y | By ) | <A < 5.
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Hence the inequality above is still true for soffile< ty and close enough
to ty. SinceEWy) C CP(y) for all t € R, we deduce from (3.26) that there

existT € (T',ty) andv € C¥(y) satisfying (3.25).
Define now the following one-parameter family of linear magsch
deformDY!

AJES=2VT.DY'|ES and A|ES'=DY'|E for 0<t<T.
By a straightforward computation we obtain

as(At+s’At_l) |3:o | E\S(t(y) = aS(ZS/T -DYHS(y)- DY | E\?t(y)) |S=0

log(2
=DY [EJy) + gr( ),
which implies thaf|ds(Acrs- AT ) |g_q | ESiyy) — DY | Egi || = log(2)/T

or, sinceA | EfY = DY! | Ey" by definition

Iog( )

105(Acss- A )= DY =

Note that this can be made arbitrarily small by takihdpig enough and,
since the flow direction is contained E, the family A; preserves the
flow direction. ThusA; satisfies the conditions of the extension to the flow
setting of Frank’s Perturbation Lemma 1.20 (see Sectio® b8 page 31).

Hence on the one hand, by at most a sn@lperturbation, we can
assume thabY'(y) = A for 0 <t < T. On the other hand, by (3.25) and
by definition of A we get||Ar | EJ| - |AF1(v)| = 1 which ensures that

IDYT IEJ[|- [IoY T (YT )| = 1

If vis not collinear tor (YT (y)), then we are done. Otherwise \ebe near
vinsideESY v not collinear toy (YT (y)), so that
br = [[DY™ | E5ll- [DY T (YT (y) (W) = L.

Now perturb the vector field as before, keeping the flow dioactdefine
the one-parameter family of linear masby

B | E5 = by

UT.DY'|E} and B|E®=DY'|EX for 0<t<T.
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Again this family is in the setting of Frank’s Lemma 1.20 arnydthe same
arguments we can assume that, by at most a €hglerturbation, we get
nearX andw € ESY (y) ot collinear toY (YT (y)) with To < T < t, arbitrarily
large, such tha DYT | EJ|| - [|[DY~T(YT(y))(w)|| = 1. This completes the
proof of Claim 3.2. O

Claim 3.3. There are a vector field Z WhICh islQiear Y and a periodic
point ye Pek (Az(U)) such thatZ(ES*, Eg*#) is arbitrarily small.

This contradicts Theorem 3.33 and hence this proves Thedrétmas-
suming Theorems 3.32 and 3.33

Proof of Claim 3.3.Fix T > 0 large and lety € uy be C! close toX.

Takey € Pex (Ay(U)) with periodty > T andv e °¥(y) not collinear to

Y(YT(y)) given by Claim 3.2. Letv be the unit vector

DY T (YT (y))/IIDY T (YT (1)) (W),

which belongs tcEyCu and is not collinear t' (y). Letety be the unit vector
in the direction oY (Y!(y)) and for each < [0, T] define a basis Ofyr( )
by 8, = {fy,wr,e3 } wherew; = DY"(y)(w)/||IDY" (y)(w)|| ande§
a unit vector |rEY

By Theorem 3.33 there exis®> 0 such that/(Ej, ) E%‘(y)) > C for
ally € Per (Ay(U)) and everyr € [0,T]. Then we can fink = K(C) >0
and a neighborhoodt of X such that for aly € 4 and ally € PefAvy(U)),
there is a inner produet -, >yr () inducing a nornj| - HE‘Yr(y)) such that

forallr € [0,T]
Evr(y) andEy,, are orthogonal, an%H A< Wy < KO-

The matrix ofDY" (y) with respect to the basis; in the new metric is

o . o Y = VOO gy
DYf(y)[ 0 ar o ] where ¢ a(r) = [[IDY' ()(W)lf5r(y,
0 0 b b(r) = [IDY (Y)(&)[¥r y)

Note that in this basi¥ (Y"(y)) = (1,0,0) anda(T) = b(T) - ||v||§T(y) by
the choices o andw.
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Let Asy be the restriction oDY®(y) to the subspacgw, €] spanned by

the vectorsw andef,. Observe that any perturbation 8g, does not affect
the direction ofY.

For eachd > 0 define

_ | a9 sa(s) f$2Mdr _ a(s) 0
M0 by ]a”d’*sﬁy—[ab@)fsa:idr b(s)]'

Note that forh > 0 we have

0 b(sh)

A§+hy(A§y)71= { a(s,h) c(s,s+h) ] 7
wherea(s, h) = a(s+h)/a(s), b(s,h) = b(s+h)/b(s) and

—dr
(r)
An analogous formula holds fok;h(Ag)—l. We claim that

< a(s+h) rsthib(r)
c(s,s+h)=20- b9 /S

190AL 1y (ALy) o — DY (YS(Y)) sy < .

(3.27)
Indeed since

0o Y&

_ Onc(s, s+ h)ln=0

and

DY(YS(y»:[ as O ]

all we need to show igdnc(s, s+h)|n=ol|(v,) < 8. Butfor some € [s,s+h]
we have

_ s a(sth) sthb(r) .~ a(s+h) b(n)
ctss ) =8 =0 [ = A"
and from this we deduce

. c(s,s+h
ahC(S,S+ h)|h:0 — HLT]OQ

ho ~ 9O



3.3. ATTRACTORS AND SINGULAR-HYPERBOLICITY 133

which implies (3.27). A similar result holds f@r;h(Ag)*l.

Observe that
0] _|damfg Mdr | , [1]_ ()
Aﬂ{l}[ " A 0] = | oy 7 20

We shall prove next that shrinkirljwe obtain either

b(T)

ST (T B gr vanishes or (3.28)
( ) f al r)
T
ZER A zg:; dr is arbitrarily large. (3.29)

This implies

eitherA{y[ 0 é ] is nearly vertical.

1 ] is nearly horizontal, OAr, [

If (3.28) holds we consider the family

Y(s) = 0
By=| 0 al das)fsayd
0 o bi(s)

and if (3.29) holds we take

*
o

Yés) s °
Bg = a(s
Y 3(s) f5 &dr b

Suppose (3.28) is true. Observe that (3.27) impliesBEiQSatisfies Frank's
Lemma 1.20. So there & € uy C! nearY (andC! nearX) such that
y is a periodic point ofZ with period T, Z!(y) = Y!(y) for everyt, and
DZ5(y) = B,. In particular, the restriction dDZ5(y) to [w, €] equalsAJ,
for all s. Hence we havECuz E?S‘Y for all s.

Moreover, Theorem 3 33 comblned with the fact tlhalt;‘(s(y) is equiv-

alent to]| - ||, ensures thaK(E§”’Z,E§’Z) > C’ for some positive constant
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C' = C/(C) in the adapted metric. Thus, in the bagigy, fixed above,

we obtainE)?’Z = (g,d,1) with |g| and|d| bounded above by a constant
depending only o&. Hence

Thb
By’ =DZz(y | d | = | da(T)+3a(T)fg Adr
1 b(T)

As a(T) =b(T)- HVH;‘(T(y), we obtain that the ratio between the third
and the second coordinateE);TZ(y) is equal to

<d+6/OTZE:;dr)l

and (3.28) |mpl|e$3f a dr > K1, with Ky arbitrarily large. Therefore

-1
1
d+6/ dr>K1+d and so <d+6/ ) <K+d'
1
Since(Ky + d)‘1 is arbitrarily small, we see that(EZ’T(y), E;u(zy)) vanishes

in the metric| - [|f, ), and soL(ES’Z< Y Ecu’(z)) is also arbitrarily small in

the original metnc contradlctlng Theorem 3.33.

We also obtain that(EC”(z) ESZ( ;) is arbitrarily small in the original
metric, if we assume (3.29) and use similar arguments.

Finally to prove Claim 3.3 we need to show that either (3.28B3d29)
are true. For this, séi=T~/2, so thatd T 0. Sincea(s),b(s) > 0

forall s€ [0, T], we can write

T fave a0 20w [ [T [ v

and so T agy) b(Y)
al
T2< [ 24y, / 20 gy,
~Jo b(Y) o afy)
implying that
2 2 T
T T<o aly) dY

6fadY 8Jg apdy ~ Jo b(Y)
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Thus if (8 fg gfdY) ™t > T-Y2, thenT (3f7 XAdY) 1 > T T2 =
VT, which implies
Ta(y)
5/0 L VT

SinceT can be taken arbitrarily large, we see that either (3.28B3@®9)
are true. The proof of Theorem 3.31 is complete, and we cdedioat the
splitting ES @ E® over Pe}f’(/\y(u)) given by Definition 3.5 is invariant
and uniformly dominated. O

Uniformly bounded angles between stable and unstable dir¢ions at
periodic orbits

Here we prove Theorem 3.32 and 3.33, used in the proofs ofthéts in
the previous section.

Proof of Theorem 3.32Let us start with item (a). Suppose, by contradic-

tion, that givend > 0 small, there i& € X*(M) arbitrarily C* close toX,

and a periodic orbiy of Y with periodty, such thaf| DYV | EJ|| > (1—3)V.
Let A; be the following one-parameter family of linear maps

A =(1-28)"'-DY'Y(y), 0<t<t,.

By construction?; preserves the direction of the flow and the eigenspaces
of DYY. Moreover

1A A o — DY (Y'(y))|| < —log(1 ).

Since we can taks as close to 0 as needed, the inequality above together
with Y € C* imply thatA; satisfies Frank’s Lemma 1.20. Hence there exists
Z € C! C! nearY such thaty is a periodic point oZ with periodty, and
DZ'(Z!(y)) = A for 0 <t <ty. By definition of A: we get||DZ | Ej|| > 1,
implying thaty is a source foiZ, which contradicts Lemma 3.21. This
proves subitem (al).

By the same argument we prove subitem (a2). This finishesrthef p
of the first item.

Now let us prove item (b). By contradiction, assume that feere
y > 0 there existy € X® C! close toX and p € Pex (Ay(U)) such that
Z(Eg,Ep) <.
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Lett, be the period op andAs, A, be the stable and unstable eigenval-
ues ofDY'?(p). ThenAs < At* andA, > A, where) is given by item (a)
already proved. Observe that therggisuch that, > to and thus|1— %ﬂ
is uniformly bounded away from 0. In addition,Af- Ay > O, then there is
D1 > 0 such that

T D1, (3.30)

)\u*)\s

or else, ifAgs- Ay < 0 then there i®, > 0 such that

< Dy. (3.31)

Lety be the slope betwees; andEy. Observe thay is small if the angle
Z(E§,Ep) is small. In the cas@s- Ay > 0, we setd = [2Aguds-huig

Otherwise seb = ‘M {. By hypothesis§ can be taken arbitrarily

small. Thus (3.30) and (3.31) imply thatalso can be taken arbitrarily
small.

Now, let i<, be a continuous family of positively oriented basis in
Tyt(pM, defined by

_ [ Y(p
n(p) = { e a0}

with va(t) € ( p Orthonormal toY (Y!(p)), andvs(t) is orthonormal to
E{;?(p). In this basis we have

1 = *
DY (p) = [ 0 A Mughs } :
00 A

For eachd as above, let
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and consideB(8) = A(3) - DY'?(p). Sinced is arbitrarily small B(3) is ar-
bitrarily nearDY' (p). Moreover a straightforward calculation shows that
B(d) has one eigenvalue equal to 1, and the product of the othegityen-
values have modulus equal t@|As-Ay| (8 was chosen so that the other
eigenvalues besides 1 are equal), which is either biggarltwa smaller or
equal to 1.

Taking & small enough, there is a non-negat{é real functiond(t)
such thaB(0) = 0, d(tp) =5, |/ (t)| < 20 and|d(t)| < 26. Define the one-
parameter family of linear maps whose matrix in the basis

1 0 0
A=|0 1 0], o0<t<t,.
0 &t 1

Let G = A -DY!(p) for0<t < tp. By construction the transformation
C: preserves the flow direction along tkeorbit of p. The choice oB(t)
implies thatA; is a small perturbation of the identity map: Tyt(p,M —
Tyt(pM for 0 <t <tp and soG is in the setting of Frank's Lemma 1.20
again.

Hence we can find a vector fieElwhich isC! nearY, and a periodic
point p € Per (Az(U)) such thaDZ'(p) = G = A - DY!(p), for 0<t <t,,.
MoreoverDZ' = A, - DY'(p) = B(3) (recall B(3) was defined above).
Thus, takingd small enough, we get@?! vector fieldZ nearbyY exhibit-
ing a periodic pointp which is either a sink or a source. This contradicts
Lemma 3.21. This completes the proof of Theorem 3.32. O

Proof of Theorem 3.33Arguing by contradiction, we show that if Theo-
rem 3.33 fails, then we can create periodic points with abgl@een the
stable and unstable direction arbitrarily small, leadiogatcontradiction
with the second part of Theorem 3.32, already proved.

Theorem 3.33 is a consequence of Propositions 3.37 and 8l8&.b
The first one establishes that for periodic points close timguarity, the
stable direction remains close to the strong stable doeaif the singu-
larity, and the central unstable direction is close to tharat unstable di-
rection of the singularity. This result gives the compéitipibetween the
splitting proposed for the periodic points in Definition &abd the local
partially hyperbolic splitting at the singularities.



138 CHAPTER 3. ROBUST TRANSITIVITY

Proposition 3.37. Given Xe Uy, € > 0ando € §(X) NAx(U) there exist
a neighborhoodv C wy of X andd > 0 such that for all Ye ¥ and
p € Pek (Ay(U)) satisfyingdist(p,oy) < &we have

(@ Z(EY,Ex") <& and
(b) Z(ER™Y,ESY) <.

The second one says thédr from singularities the angle between the
stable direction and the central unstable direction of arjyoplic point in-
side the maximal invariant set is uniformly bounded awaynfero.

Proposition 3.38. Given X< uy and & > 0, there are a neighborhood
v C u of X and a positive constant € C(d) such that if Ye 9 and
p € Per (Ay(U)) satisfiegdist(p, S(Y) NAy(U)) > dthen

Y LY
Z(Eg¥,Eg*) >C.
Theorem 3.33 follows from these propositions since

o far away from singularities the uniform domination betwéea sta-
ble and center-unstable directions at periodic orbits sresequence
of the uniform growth rates provided by Theorem 3.32 toget¥ith
the angle estimate of Proposition 3.38;

o for orbits passing close to the singularities, Proposi8@V ensures
that the stable and center-unstable directions are eabgiitie same
as the strong-stable and center-unstable direction atirigelarity.
The angle between these is bounded away from zero since sivery
gularity is Lorenz-like, by Theorem 3.5, and the SEX) NAy(U) is
finite because each singularity is hyperbolic. This togettith the
uniform growth rates provided by Theorem 3.32 ensure thformi
domination between the stable and center-unstable directi

The proof of Theorem 3.33 is complete depending only on Fsitipas 3.37
and 3.38. 0

3.3.3 Flow boxes near singularities

Since the singularities in our setting are all Lorenz-like, the unstable
manifoldW"(g) is one-dimensional, and there is a one-dimensional strong-
stable manifoldVs5(o) contained in the two-dimensional stable manifold
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W5(0). Using the linearization given by the Hartman-Grobman Taeol.9
or, in the absence of resonances, the smooth linearizaguits provided
by Sternberg [193], orbits of the flow in a small neighborhafdof the
singularity are solutions of the linear system (2.3), modalcontinuous
change of coordinates.

Then for some > 0 we may choose cross-sections containddgin

e %% at pointsy* in different components il (o) \ {0}

o I'* at pointsx* in different components oiS (o) \ WSS (0)

and Poinca first hitting time mapR* : 7+ \ /+ — 3%~ U3+, where

¢+ =3E WS (o), satisfying (see Figure 3.1)

1. every orbit in the attractor passing through a small raeghood of
the singularityo intersects some of the incoming cross-sectdns,

2. R* maps each connected componengbf \ /* diffeomorphically
inside a different outgoing cross-secti@if*, preserving the corre-
sponding stable foliations.

€+
s+
T,
R(2) B R(z
o

)
50,~ u o+ "

>

X2
-
-

Figure 3.1: Cross-sections near a Lorenz-like singularity

These cross-sections may be chosen to be planar relativere kn-
earizing system of coordinates nese.g. for a smald > 0

S = {(xa, %2, 1) : xa| < 8,[x| <&} and
TO% = {(£1,%2,X3) : [X2| <, [xa| < B},



140 CHAPTER 3. ROBUST TRANSITIVITY

where thex;-axis corresponds to the unstable manifold reeahe x,-axis
to the strong-stable manifold and thg-axis to the weak-stable manifold
of the singularity which, in turn, is at the origin, see Fig®:1.

The singularity is hyperbolic for the vector fiel. Hence for every
C! nearby vector field there exists a unique Lorenz-like singulariy
in Up. Moreover the submanifolds-* and =%+ remain transverse to.
So all local properties of these cross-sections are robuerusmallCt
perturbations of the flow.

3.3.4 Uniformly bounded angle between stable and center-
unstable directions on periodic orbits

Let us recall some facts and notation before starting thefgybProposi-
tions 3.37 and 3.38.

Given a singularity of X € w1y, we know that is hyperbolic. So foY
close toX there exists a unique continuationafwhich we writegy. Since
every singularity ofX is hyperbolic, we conclude that the singularities of
Y nearbyX are the continuations of the singularitiesXf Hence we can
assume that, for any close toX, the singularities o¥ in Ay(U) coincide
with the ones oKX in Ax(U).

According to Theorem 3.5, for a¥l € «y the eigenvaluea; = A;(Y),
i=1,2,3 of DY (oy) are real and satisfy, < A3 <0< —Az <A1. We write

égﬁY for the eigenspace associated to the strongest contraitiegvalue

A2 andé§$'Y for the bidimensional eigenspace associated\toA; }. With-
out loss of generality we can assume thatYaose toX, the eigenvalues
of of DY (oy) are the same as the ones off (o).

SinceM is a Riemannian manifold, for anye M and every neighbor-
hoodU of x there exists aormal neighborhood - U of x, i.e., for any
pair of points inV there is a unique geodesic contained/irconnecting
them. Thus using parallel transport\inwe can define angles between any
pair of tangent vectors at points ¥f We will use this in what follows to
compare angles of tangent vectors at nearby points.

We reduce the proof of Propositions 3.37 and 3.38 to the \fatig
results.

The first one is the next lemma establishing that any compaatiant
setl’ C Ax(U) containing no singularitiess uniformly hyperbolic.
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Lemma 3.39. Let X € wy and " C Ax(U) be a compact invariant set
without singularities. Thef is uniformly hyperbolic.

Note that we cannot use Proposition 3.9 at this point sincstidave
not completed the proof of uniform domination for the spiigton periodic
orbits, so we cannot use that the splittiBgp EY is dominated oveA.

We will not provide the detailed proof of Lemma 3.39 heregsithe
arguments are very similar to the one proving fBais uniformly contract-
ing andE® is uniformly volume expanding ovexy (U). The main tool is
the Ergodic Closing Lemma and the main point of the arguneetat show
that, if the splitting of the Linear PoinoarFlow is not dominated or not
hyperbolic, then we can find @' close flow exhibiting either a sink or a
source, contradicting Lemma 3.21. The detailed argumeartsbe found
in [133, pages 421-424].

GivenX € uy andd > 0 we define

Cs= U Bs(o)

oeS(X)NAx (V)

the &-neighborhood around the singularitiesXfin A. Write Us = U \ Cy
for the closure of the complement©f in U and define

Qx (Us) = {x € Q(X) : ox(x) C Us}.
We use the following application of Lemma 3.39.
Corollary 3.40. For anyd > 0, Qx(Us) is hyperbolic.

Recall that given a regular poirtc M we defineN) as the orthogonal
complement oE) in M, Ay (U) = Ay(U)\ (S(X)NAy(U)) and

Y Y
Nay ) = {NRT NS 1 0

denotes the splitting for the linear Poinedtow PY of Y, see Theorem 1.8
in Section 1.3.3. Fox € A (U) we define the bundleBs®" = Ng¥ @ EY
andEg*" =N o EY.

Recall also that fo¥ nearX andp € Pek (Ay(U)) we denote b)ES’Y ®
ES"" the splitting induced by the hyperbolic splitting along theriodic
orbit as in Definition 3.5. In this case, we have tB§t" = Ny © E} and
S = ]
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Using that a uniformly hyperbolic set has a unique locallfjra con-
tinuation for flows close to the initial one, we obtain that &very point
whose orbit does not go away framfor any nearby flow, any tangent vec-
tor in E® close to the flow direction remains close to the flow direction
under the action of the flow.

Lemma 3.41. Let X € ¢y andl” be a compact invariant set without singu-
larities. Then, there are neighborhoodsof X, V ofl" andy > 0 such that
for anye > O there exists = T (&) > O satisfying: if Ye v, ye VNAy(U)
with Y3(y) € V for 0 < s< t and some & T, and also ve Ny & EJ/ with
Z(%Y(y)) <y, thenZ(DY'(y) - v,Y(Y(y))) <.

The next result provides angle estimates for orbits passeayby a
singularity. For a poiny in Ay (U) and vectors with angle bounded away
from zero with the strong-stable bundle at the singulaafigr passing near
the singularityDY!(v) lands in the direction of the central unstable bundle
atY'(y).

Givenoy € S[Y)NAy(U), Wi, (ov) (Wg.(0v) respectively) stands for
the local stpble (unstable) manifold @. We set\/\/I (oy) =WS.(oy) \
{oy}, andWi (oy) = V\/loc(Oy)\{Oy}. Sinceoy is Lorenz—llke there is
a unique bundIeESSY in TW3.(oy) which is strongly contracted by the
derivative of the flow. For eaghe WS, (ay), E;*" is the fiber ofEsY aty.

In the following we use the notation from Sectlon 3.3.3 farss-sections
near ad-neighborhood of the singularities.

Definition 3.6. If y € Bs(0v) we writey. for the point mVVlOC(oY) satisfy-
ing dist(y, W (ay)) = dist(y, y.).

Now we can state the result precisely.
Lemma 3.42. Let X € uy, 6 € SX)NAx(U) andd > 0. There exists a

neighborhood/ of X such that giveg> 0 ande > Othere isr=r(g,y) >0
such thatforYe ¢,y Bs(o)NAy(U) sat|sfy|ngj|st(y, WS (o v)) <rand

. Y Y
forve TyM with £ (v, Ej*") >y, thenZ (DY¥ (y)(v), Eys; ) ) <&, where §
is the smallest positive time such th&t(y) € 3°*.

Givend < (0,0) we define a neighborhood of the local stable manifold
of gin * by

w—{xez'i dist(x, WS, (o) NZ"*) < &'}. (3.32)



3.3. ATTRACTORS AND SINGULAR-HYPERBOLICITY 143

Finally next result gives also estimates for the angles gfssing near a
singularity: for vectory in the central direction with angle bounded away
from zero with the flow direction, then after passing neaDX'(v) be-
comes closer to the direction of the flow.

Lemma 3.43. Let X € Uy, 0 € SX)NAx(U) andd > 0. There is a neigh-
borhood¥ of X such that, givers > 0, k > 0, & > 0 and cross sections

s+, 5+ as above, there exist > 0 satisfying: for all Ye v/, pe 255

and ve Ng" @ EY, if Z(v,Y(p)) > K, thenZ(DY®(p)-v,Y(Y*(p))) <,
where § is the first positive time such thaf(p) € Z°+.

We postpone the proof of Lemmas 3.41, 3.42 and 3.43 to thefdhiso
section, and continue with the proof of Propositions 3.3¥ 288 assuming
these results.

Since we have only a finite number of singularities, we canrassthat
the estimates given by the previous lemmas are simultaheealsd for all
singularities ofY in Ay(U) and for allY € 7.

Proof of Proposition 3.37-(a)We argue by contradiction. Using that hy-
perbolic singularities depend continuously on the vectddfiwe have that
ifitem (a) of Proposition 3.37 fails then there are a singtyao of X, y> 0,
a sequence of vector fielts converging toX and a sequence of periodic
pointsp, € Pex, (Av, (U)) with p, — o such that

Z(ES B > . (3.33)
We prove using (3.33) that after a first passage through d&berhood of
a singularity, the stable direction and the flow directiondrae close. This
property persists up to the next return to that neighborhédigr a second
passage through it, we show that the stable direction antlictivedirection
are close, and that the unstable direction and the flow direetre also
close. This implies the stable and the unstable directierckrse to each
other, leading to a contradiction with Theorem 3.32(b).

Fix a neighborhoods(a) and cross sectiong®+, =+ contained in
Bs(0) as in Section 3.3.3. Singsy, — G, we have that for all sufficiently
largen there exists the smallet> 0 such thaty, = Yin(pp) € 2%+,

Note that there ig) € WY.(0) N Ax (U) such that, — g.

Claim 3.4. The bound3.33)implies that/ (E5", Ya(qn)) —0
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Proof. We prove first that, as a consequence of (3.33), the stalgletidin at
On is close to the central-unstable directiorgat Using some properties of
the splitting given by the Poincaflow, we deduce then the stable direction
atqn is necessarily close to the flow directionggt proving the claim.
By (3.33) and since, — o, by Lemma 3.42 we get

Z(ESM NG @ Egh) —0 (3.34)
Now we deduce from (3.34) th SY” is leaning in the direction of the
flow. Indeed, since, — q € /\X( ) Theorem 1.8 for the Linear Poinéar
Flow ensures/ (NG, N&™) > 2 - Z(N§™,N§™) for everyn big enough.
BecaussNé(n ) is orthogonal tdr,(qn), we deduce

NSYn@Eqn 7Nuri.YnEBEgn ) A(NSnYn,NgnYn)'
HenceA(NSYn Ea/nn, NUYn Egnn) is uniformly bounded away from zero.
Yn . Yn Yn ,Yn
SinceEy™ © N§™ @ EY" andYa(an) = (NG" @ EY) N (Ng" @ EY'), by
(3.34) we obtam
Z(E;] naYn(Qn)) 0 (3.35)

This completes the proof of Claim 3.4. O

Now we apply Lemma 3.43. For this, I8tbe as abovex = ¢ with ¢
given by Theorem 3.32(b) arek ¢/2. Letd be given by Lemma 3.43.

Fix &* < max{9,d'} and considets- = U \ Cs:. Since the singularities
of Y € ¢ are continuations of the singularities ¥f we can assume that
Uss NSY)NAy(U)=0forallY € v.

Sinceo is an accumulation point ofoy, (dn) }n>1 we have that, fon
large enough, there is a first positive tigesuch thaqn =Y;"(qn) belongs
to Cs+. We can takes, in such a way that), € Z sy (defined in (3.32)).

We assume, without loss of generality, that ev@gyi€longs to the same
cross sectiori'gfy associated to the same singularityYafand ofX. Note
that from the choice ob* we haveY3(qn) € Us forall 0 <s<s,.

Next we prove that (3.35) is also true replacopgoy Gy, that is

Z(E§" Ya(ln)) —— . (3.36)

Indeed, if there existS > 0 such that for infinitely many we haves, < S
then (3.35) immediately implies (3.36).
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Otherwise, letg be such thah(,f”/z(qn) P— g. Thenox(q) C Us

which implieswx (q) € Qx (Us:). By Corollary 3.40 we know thadx (Us: )
is uniformly hyperbolic. Let be a neighborhood dRx (Us:) given by
Lemma 3.41. Now we establish that the time spent byrtherbit segment
{Yt(gn),0 <t < s} outsideV is uniformly bounded.

Claim 3.5. There is S> 0 such that for all n there ar@ < st < & < s, with
sl < Sand §— < < S satisfying ¥(gn) €V forall st < s< &2
Proof. It is enough to prove that there exi€ssuch that givem, and 0<
S, < sh with Y,ﬁ‘(qn) ¢V, then eithes, < S, ors, — 5, < S.

If this were not the case, there would ex§ssuch thatfr%(qn) ¢V and
boths, — g, — + ands, — 4. Then we can take a sequer\(ﬁgé(qn) —
q with g ¢ V. This implies thaox () C Us:. Sowx(q) C Qx(Us:) and

hencewx (q') C V. Thus for largen we would geﬁ(ﬁ(qn) €V, contradict-
ing the assumption. This finishes the proof of Claim 3.5. O

Returning to the proof of (3.36), recall tha(E5\", Ya(qn)) is arbitrar-
ily small for nlarge enough, by relation (3.35). Now Lemma 3.41 combined
with Claim 3.5 imply (3.36), since we know that the time speyn;(qgn)
inV for se [0,sy] is arbitrarily big.

Now sinceqr € Zg,ﬂg, there is a first time,, > 0 such thatyy = Y, (Gn) €
3%* by the choice of the cross-sections near the singulariiiés prove
that alsoé(Eg;:(“,Yn(qn)) —0.

If there isS> 0 such that O< rp < Sfor infinitely manyn, then tak-
ing a subsequence we obtain the desired conclusion. Oterweking a
subsequence if necessary, we haye—="Wg_ (o) N Z'e.;_ié, and there exists

ge Wgc(o) N3O+ such thatiy — g. Observe that there &> 0 satisfying:

for anyy € W3,(0) N 255 we haveZ(X(y),ES®) > d. So providedn is
large enough we obtain

Z(Yo(6hn), ES2™) > d. (3.37)

Combining (3.36) and (3.37) we obtam(Eg'nY”,Eng”) > d for n large.

Arguing as in the proof of Claim 3.4, replacirg by ¢, for n > 0, we
obtain

lim /(E2™, Yo (Gy)) = 0. (3.38)

n—oo qn



146 CHAPTER 3. ROBUST TRANSITIVITY

Moreover from (3.36) Theorem 3.32(b) ensures that
Z(Eg™ Ya(@n)) > c for n big enough (3.39)
SinceEg™ c Ng™ @ EX" from (3.39) Lemma 3.43 implies that
2 (D3 (EE™), Ya(6n)) <€ < c/2 (3.40)

by the choice ot.
Finally (3.38) and (3.40) combined witg, " = o — an(E”Y”) give

£(Eg™ EY") < c/2 for n big enough.

This contradicts Theorem 3.32(b). This contradiction psoProposition
3.37(a). O

Proof of Proposition 3.37(b)We show that giverY nearbyX and a peri-
odic pointp of Y close tooy thenEf"" is close toESe". We split the
argument into the following claims.

Givend,d > 0 we consider the cross sectiaiist andZ5 5 asin Sec-
tion 3.3.3 and definition (3.32).

Claim 3.6. Let X € uy, 0 € SX)NAx(U) andd > 0. There are a neigh-
borhood? of X such that givery > 0 ande > O, there is r=r(g,y) > 0
such that if ye '+ and Ly ¢ TyM is a plane withZ(Ly,ES®) > v, then
Z(DY¥(y)-Ly,ES) <€, where gis such that ¥ (y) € B, (oy) and Y§(y) €
Bs(oy) forall 0 <s<s,.

The proof of this claim is analogous to the proof of Lemma 3wdizich
is presented at the end of this section.
Giveny € 33 lety. be as in Definition 3.6.

Claim 3.7. Let X € uy, 0 € SX)NAx(U) andd > 0. There are a neigh-
borhood % of X,y > 0 and & > 0 such that for all Ye ¥ and all ye
Ay (U)NZgy we ‘haves (EY ESY) > v.
Assuming the claims, let us complete the proof of the prdjmosi
Observe that fop close tooy there issp > 0 such thap™=Y_g,(p) €
Z'éié,, whered andd are as in Claim 3.7. Lep,"be as in Definition 3.6.

By Claim 3.7 we haveé(Eg”’Y,ngY) > . Hence by Claim 3.6 we get
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2 (DYY(P)(E5*Y),ESe") arbitrarily small, providedp is close enough to
Oy, concluding the proof of Proposition 3.37(b). O

Proof of Claim 3.7: First we consider pointg € Zg%, NAx(U) NWE(0).
In this case, observe that(ES**,Es%) > Z(E§*, T\WS,(0)). By

item 3 of Theorem 1.8 we hawdy™ = ToW3 (o) N Ng and sinceX(q) &

ToWE(0) we get thaflgW3.(0) = N§™ @ EZ. We conclude

Z(ESY TWRe(0)) = Z(Eg™ NG @ Ey) = Z(NgNGX). (3.4)

Sincezgﬁ, is compact and does not contain singularities by consbugti
Theorem 1.8 ensures that thereyis y(5,8) such that/ (Ng”*,N§™) >y
forall qe Z'S’)jg,. Replacing this inequality in (3.41) we conclude the proof
of the claim in this case. .

For p close enough tay, we have digtp, Z'é}i, NWS.(ay)) arbitrarily
small. Using the continuous dependence of the splitifg & NUX with
the flow together with Theorem 1.8, we get that the estimat&lj3above
still holds replacingy by p andX byY, concluding the proof of Claim 3.7.

O

Proof of Proposition 3.38:Assume, by contradiction, that there exists a
sequence of periodic poings, ¢ Cs for flowsY,, — X such that

Z(Eg EZN) —— 0. (3.42)

n—--o0

We claim thatUnoy, (pn) N S(X) NAx(U) # 0. Indeed, if this were not
the case, we would gé > 0 such thatJ,0v, (pn) C Qx(Us). By Corol-
lary 3.40 the sef)x (Us:) is hyperbolic and so there are neighborhoWds
andv of Qx (Us:) andY, respectively, and > 0 satisfying/ (Eg ¥, Ef*") >
cforall pe Pex (Ay(U)) such thaby(p) C V. SinceY, P X we have

Oy, (pn) C V for n sufficiently large. We conclude that(E3)", Ege™) > c,

leading to a contradiction. Thus0v,(pn) NS(X)NAx(U) # 0 as claimed.
Fix & > 0 and take cross sectioBis™ and=°* as in Section 3.3.3.
SinceUn0y, (pn) NS(X) NAx(U) # 0, we get for eachn a positives,

such thatpr = Y (pn) € =%,
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Now takek = ¢ with c given by Theorem 3.32(b}, < ¢/2 andd as in
Lemma 3.43. Fixd* < min{d,8'} and considets = U \ Cs:. By Corol-
lary 3.40 the subsé®yx (Us:) is hyperbolic.

From the choice 0d*, we get tha¥3(pn) € Us- for any 0< s < s,. We
assume, without loss of generality, that evpgysTin a neighborhood of the
same singularity. Reasoning as in Claim 3.4 we prove that (3.42) implies

A ~
Z(B5," Ya(Pn)) ——> O (3.43)
Once (3.43) is settled, the proof follows analogously todghe of the pre-
vious proposition. O

We finally present the proofs Lemmas 3.41, 3.42 and 3.43.

Proof of Lemma 3.41Sincerl is hyperbolic, there are@ Ar < 1andc>0
such thatlN®™ = EX* ¢ EX with ||DX! | ESX|| < ¢-At, ande 1 < |[X ||| <
c¢. Changing the metric in a neighborhoodofwe can assume without loss
of generality thaEs™ is orthogonal tEL and||X(x)|| =1 forallxeT. In
other words, in the new metrig>* coincides with the stable bundi”
of the linear Poincd flow restricted td .

Foreachke T, letny” € N§* be a unit vector and consider the orthogo-
nal basiss, = {X(x),n{*} of EX&N§. In this basis the matrix dbX"(x)
restricted toEX & Ng™ is

10
X X
where||nyy|| < c- AL

Fix to > 0 such that|n§;ié|| < 1/2forallxeT. There existg' > 0 such
that Hnijé” > ¢ for all x € [ by continuity of the flow and compactness
of I'. Taking a neighborhood of I' and a neighborhood C wy of X,
both sufficiently small, and a change of metric varying camdiusly with
the flow, we can gelfY(y)|| = 1 for allY € ¥ and ally € Ay(U). Thus
the matrix ofDY'(y) restricted tdE;{ @ Nf’Y with respect to the basisy =

{Y(y).ny"}is y
or 0= [§ 3 |
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whereé}( < 89 and dp is small forY sufficiently close toX. Moreover
NSy || < 1/2. Hence

1 Y
D¥ni, | (Ey &N;Y) = [ 0 2§ ] ,
y,n-tg
with 5}(“ < 20o. Lete > 0 andng be such that 2" < € for all n > ng. Given

ve E) oNy" we can writev = (1,) in the basisBy. Then for any positive
integermwe get

Yo Mngm _ (1/2)%™
Z(DYpom(y) -V, (1,0)) < ' < .
( nom(Y) - Vs ( )) 1_6%0.@%0.”1 1— 25

Fort > ng we writet = m- ng+swith 0 < s< ng and then
Z(DYY(y) v Y(YY(y)) <K-e
for some positive constait, proving Lemma 3.41. O

Proof of Lemma 3.42We prove the lemma introducing linearizing coor-
dinates in a normal neighborhodof o. For this we assume that there
is a neighborhoo® of o where allY near enougtX is linearisable. This
is no restriction since we can always get rid of resonanceésdsn the
eigenvalues by small™ perturbations of the flow. Fi® > 0 small so that
Bs(0) C V. Assume also thaty = g and the eigenvalues @Y (oy) are
the same as the onesBX (o). LetA; < A3 <0< —Az < A1 be the eigen-
values ofDX(a). So, in local coordinates y, z, we have thaY |V can

be written as

X=A1X
Y(XW.Z) ={ Y=y (3.44)
Z=\3Z.
Note that in this case fare W2 (o)
We(0) =V N ({0} x R?), Woe(0) =V N (R x {(0,0)},
(o) =VNn(Rx {0} xR), ES' =V ({0} xR x {0}).

Fory e W, (o) we have§§”’Y =R x {0} xRand=®*NWY.(0) = {(£1,0,0)}.
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Fory € V and forv = (v1,v2,v3), if t > 0 is such tha¥=(y) € V for all
0<s<t,then

DY'(y) -v = (eM'vy, 2vp, M), (3.45)

Given two vectorsy andw we set slopgv,w) for the slope betweemand
W.

Letr >0 andy € Bs(0) be such that digy, WS (o)) <1, v= (v1,V2,V3) €
TyM andt > 0 satisfyingYS(y) € V forall 0 < s<t. Then

|e)\2t 'V2|
\/(67\1'[ 'Vl)2+ (e7\3t 'V3)2.

slope(DY'(y) - v ES¥) =

On the other hand, assuming thatES™*,v) = /((0,1 0) V) >y we get
that there is 6< § < 1 such that 6< |v2| < §. Hencevi +v3 > 1— 2. This

implies that eithew; > /(1—¥?)/2, orvs > \/(1—¥2)/2. Thus

slope(DY!(y) - v, ES™) < ||i;i z|2|| < (1—9\72)/2) g2t (3 46)

wherei € {1,3} is chosen so that satisfiesv? > /(1—y2)/2. As both
A2 — Az andA; — Aq are strictly negative, there =T (g,y) > 0 such the
bound given by (3.46) is smaller tharior allt > T.

Now takingr sufficiently small, fory € (Bs(0) \ Ioc( )), we can en-
sure that ifY!(y) € %+, thent > T. These last two facts combined com-
plete the proof. O

Proof of Lemma 3.43For the proof of this lemma we use local linearisable
coordinates in a neighborhood @fas in the proof of Lemma 3.42.

Let & > 0 be small enough so th8(0) C V and consideg’*, 50+
as in Section 3.3.3. Tak& > 0 and consideEg}; asin (3.32). Letpe
S5y NAv(U) andv e Ng" @ EY with Z(v,Y(p)) > k > 0. Writev=a
(1,0,0) +b-(0,1,0) +c- (0,0,1) with a® + b + c? = 1.

Claim 3.8. There are R> 0 andd' such that, if p and v are as above then,
la] > R
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Proof. By the continuity of the flow direction and the normal bundbéts
ting far from singularities, it suffices to verify the clairarfp € W (o) \

{o}. In this caseES®Y = {0} x R2. Thus all we need to prove is that
Z(v,EF®) > K for somex > 0. For this, observe that since digt o) > 3,
by Theorem 1.8 there i€’ = K(3) such that/(N3",Ng") > K. Since
Z(ERYYEFSY) = Z(N§Y,NpY), we conclude that

Z(ERESSY) > K. (3.47)

On the other handy € E} &Ny = Ef*" and Z(vY(p)) = Z(WES®' N

ES*Y) > k by hypothesis. This fact combined with (3.47) give the prafof
the claim. O

Returning to the proof of Lemma 3.43, tgt> 0 be such that'r(p) €
Z5. Next we prove that fod' small we have

1. Z(Y(Y*(p)),(1,0,0)) is small, and
2. Z(DY'(p)(v),(1,0,0)) is small.

Observe that i — 0, thent, —  andY'(p) converges to a point in
W!.(0), where the flow direction i$1,0,0). Hence the continuity of the
flow direction implies the first item above.

To prove the second item, recall (3.45). Then by Claim 3.8

b- e)\z-tp e(}\z M)t ‘bl
a-ettp R’
C.e)‘3'lp

Similarly, we havel “5 7 ‘ < MMt ¢ /R. Sincet, — © asd — 0,

R > 0 and both\, — A1 andA3 — A1 are negative numbers, we deduce that
the bounds on both inequalities above tend to 0 wiier 0, concluding
the proof of Lemma 3.43. O

3.4 Sufficient conditions for robustness of singu-
lar-hyperbolic attractors

Here we present a proof of Theorem 3.11. This is based on tlosving
result whose proof we postpone to Section 3.4.2.
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Theorem 3.44. LetA be a singular-hyperbolic attracting set of XX" for
some r> 1. Suppose thaf\ is connected and contains a dense subset of
periodic orbits. Moreover assume thatcontains only one singularity and

is not transitive.

Then for every neighborhood U 6fthere exists a flow Y close to X in
the C topology such thafyy (U) ¢ Q(Y).

Let A be a singular-hyperbolic attractor ofGi flow X on a compact
3-manifold M. Assume that\ is C" robustly periodic and has a unique
singularityo.

Denote byU a neighborhood of\ such thatAy(U) N PerY) is dense
in Ay(U) for every flowY which isC" close toX. Clearly Ay(U) is a
singular-hyperbolic set of for all Y close toX.

Because\ has a unique singularity, which is Lorenz-like, th&n(U)
has a unique singularity as well. Indeed, by Remark 3.23yesiagularity
of Avy(U) must be either singular-hyperbolic fgror for —Y (we can show
that every singularity in this setting is Lorenz-like, seenhma 3.45 in the
next section). In both cases the singularities are hypierbod bifurcations
are not allowed for every close toX. Hence if Ay had more than one
singularity there would exist at least two distinct singjitiles in the original
set/\, by the property of analytic continuation of any hyperbalrdical
element.

Recalling that\ is an attractor by assumption, thus transitive in particu-
lar, we see thah is connected, and so we can assume that the neighborhood
U above is connected. Theéxy (U) is connected as well.

Summarizing:Ay (U) is a connected singular-hyperbolic attracting set
of Y containing only one singularity.

WereA notC' robust, then it would exist close toX such that\y (U)
is not transitive. In this casAy(U) would satisfy all the conditions of
Theorem 3.44. Hence there would extstlose toY satisfying/A\z(U) ¢
Q(Z). Butwe are assuming thAt(U) NC(Z) is dense im\z(U) andC(Z)
is always contained iQ(Z).

This contradiction completes the proof of Theorem 3.11yeésg The-
orem 3.44.
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3.4.1 Cross-sections and Poincarmaps

For future reference we give here a few propertie®aficae maps that

is, continuous mapR : = — ¥’ of the formR(x) = X' (x) between cross-
sectionsZ and 3’ of the flow near a singular-hyperbolic set. We always
assume that the Poinétimet(-) is large enough as explained in what
follows.

There properties will be often used in the following chaptier obtain
many dynamical and ergodic consequences of singular-hgpeity. In
particular they will be used in Section 3.4.2 to prove TheoB44.

We assume thak is a compact invariant subset for a flotve X1(M)
such that

e eitherA is a singular-hyperbolic attractor,

e or A is a singular-hyperbolic attracting set with a dense subet
periodic orbits.

In the former case it has already been proved that every Isingun A is
Lorenz-like. Next result shows that the same is true in thtedl@ase.

Lemma 3.45. Let A be a singular hyperbolic attracting set for a flow X.
Then every singularitg accumulated by regular orbits in is Lorenz-like
and WsS(o) NA = {ao}.

Proof. Let o be a singularity oiX in A. According to Theorem 3.10 we
have thato is Lorenz-like forX or for —X. Arguing by contradiction,
assume that is Lorenz-like for—X.

Again by Theorem 3.10 we haW§;5(o) "\ = {0} either forY = —X
or forY = X. Since we assume thatis Lorenz-like for—X, this means that
eitherWs(a) NA = {a} orw"(a) nA = {a} for X. SinceA is attracting,
thenW"4(a) C A and so the latter condition is impossible. We now show
that the former condition is also violated, concluding theqp.

By assumption we can find poingg in regular orbits insidé\ such that

—— 0.
Pr

Consider the linearised flow (3.44) and its solutions (2i8¢myon a
neighborhood/ of o by the Hartman-Grobman Theorem 1.9. It is easy to
see that the accumulation pf on ¢ implies that the orbit of, throughV
must also pass nearby points on the connected componentséingo of
of W5%(g) NV. SinceA is closed we obtaisS(a) NA\ {c} # 0. O
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We start by observing that cross-sections have co-dimermie foli-
ations which are dynamically defined: the leaV#¥x, %) = W3 (x) N Z
correspond to the intersections with the stable manifoldseoflow. These
leaves are uniformly contracted and, assuming the cragssesadapted

then the foliation is invariant:
RWS(x,%)) c W3(R(x),Z') forallxe ANZ.

Moreover we show thaR is uniformly expanding in the transverse direc-
tion. Then we analyze the flow close to singularities, aggimigans of
cross-sections.

Stable foliations on cross-sections

We recall classical facts about partially hyperbolic systeespecially ex-
istence of strong-stable and center-unstable foliatidine standard refer-
ence is [76].

We have thaf\ is a singular-hyperbolic isolated setXfc X(M) with
invariant splittingTAM = ES@ E®U with dimE® = 2. LetES@E be a
continuous extension of this splitting to a small neighloadiUg of A. For
convenience we takdg to be forward invariant. The&S may be cho-
sen invariant under the derivative: just consider at eadht ploe direction
formed by those vectors which are strongly contracte®}yfor positive
t. In generalE® is not invariant. However we can consider a cone field
around it orlJg

CSM(x) = {v=V4+VU:\® € ES andW € ES with ||[v¥]] < a- [|[v*Y]|}
which is forward invariant foa > O:
DX'(CSM(x)) c CSU(X'(x)) for all larget > 0. (3.48)

Moreover we may take > O arbitrarily small, reducindJg if necessary.
For notational simplicity we writdeS and EV for ES and E® in all that
follows.

The next result says that there are locally strong-stabte camter-
unstable manifolds, defined at every regular prietJy and which are em-
bedded disks tangent #°(x) andE®(x), respectively. The strong-stable
manifolds are locally invariant. Given amyc Ug define the strong-stable
manifoldWs%(x) and the stable-manifoM/3(x) as in Section 1.2.
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Givene > 0 denotd = (—¢,€) and letz1(I,M) be the set o€! em-
bedding maps : I; — M endowed with th&! topology.

Proposition 3.46(stable and center-unstable manifoldShere are contin-
uous mapsp*s: Ug — £1(11,M) and ¢ : Up — £1(I1 x I1,M) such that
given any0 < € < 1 and x& Uy, if we denote \&F(x) = ¢*3(x)(l¢) and
WEH(X) = ¢F(x) (le x Ie),

(@) TWE(X) = ES(X);
(b) TWEH(x) = E*(x);
(c) WE¥(x) is a neighborhood of x inside #(x);

(d) ify € WS(x) then there is T> 0 such that X (y) € WS(XT (x)) (local
invariance);

(e) d(Xt(x),X!(y)) <K-eM.d(x,y) forallt > 0and all yc WsS(x).

The constantk, A > 0 are taken as in the definition @, A)-splitting in
the beginning of Chapter 3, and the distad¢e y) is the intrinsic distance
between two points on the manifol%(x), given by the length of the
shortest smooth curve contained/f%(x) connectingk to y.

DenotingES® = ES @ EX, whereE} is the direction of the flow at, it
follows that

TWS(x) =E; and T,WS(x) = EZ>.

We fix € once and for all. Then we call%(x) the local strong-stable
manifoldandWg!(x) the localcenter-unstable manifoldf x.

Now letZ be across-sectioto the flow, that is, £2 embedded compact
disk transverse t&: at every poink € = we haveT,> & EX = T,M (recall
thatEy is the one-dimensional subspg@X(z) : s€ R}) . For everyx e =
we defineWs(x,Z) to be the connected componentWif(x) N Z that con-
tainsx. This defines a foliatiorry® of X into co-dimension 1 sub-manifolds
of classCt.

Remark3.47. Given any cross-sectidhand a poinkin its interior, we may
always find a smaller cross-section also with its interior and which is
the image of the squar®, 1] x [0,1] by aC? diffeomorphismh that sends
horizontal lines inside leaves ofy. In what follows we always assume
that cross-sections are of this kind, see Figure 3.2. Wetddnoin{(Z) the
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image of(0,1) x (0,1) under the above-mentioned diffeomorphism, which
we call theinterior of Z.

We also assume that each cross-seclida contained inJg, so that
everyx € X is such thato(x) C A.

Remark3.48 In general, we can not choose the cross-section such that
WS(x,3) C WS(x). The reason is that we want cross-sections t€Che
Cross-section of clagd! are enough for the proof of expansiveness in Sec-
tion 4.1.1 buiC? is needed for the construction of the physical measure in
Section 4.2.1 and for the absolute continuity results intiSeet.2.8. See
Section 1.4.2 for the technical definitions.

On the one hand — WSS(X) is usually not differentiable if we assume
thatX is only of classC?, see e.g. [146]. On the other hand, assuming that
the cross-section is small with respectt@and choosing any curwecC =
crossing transversely every leaf 8f , we may consider a Poinéamap

Re 13— () = W)

zey

with Poincagé time close to zero, see Figure 3.2. This is a homeomorphism
onto its image, close to the identity, such tRafW3(x,Z)) C WS(Rs(x)).

So, identifying the points ok with their images under this homeomor-
phism, we may pretend that inde®f(x,2) C W5(x). We shall often do
this in the sequel, to avoid cumbersome technicalities.

Hyperbolicity of Poincaré maps

Let = be a small cross-section ¥ and letR: X — X' be a Poincé& map
R(y) = X'¥)(y) to another cross-sectidti (possiblyZ = 3’). Note thatR
needs not correspond to the first time the orbitX ehcountei’.

The splittingE® & E“Y overUg induces a continuous splittirigg & Es
of the tangent bundl€X to = (and analogously fox’), defined by

E3(y) =E°NTyZ and Egf'(y) =Ej'NTy2. (3.49)
We now show that if the Poincatimet(x) is sufficiently large then (3.49)

defines a hyperbolic splitting for the transformati®on the cross-sections,
at least restricted td, in the following sense.
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L=

Figure 3.2: The sectionE, 2(y), the manifoldsW3(x), WS%(x), W5(x,Z)
and the projectiorRs, on the right. On the left, the squaj@ 1] x [0, 1]

is identified withX through the mayh, where 7> becomes the horizontal
foliation and the curvgis transverse to the horizontal direction. Solid lines
with arrows indicate the flow direction.

Proposition 3.49. Let R: = — %' be a Poincaé map as before with Poincar
time t(-). Then DR(E$(x)) = E3(R(X)) at every xc ~ and DR(Eg"(x)) =
EsY(R(x)) at every xe ANZ.

Moreover for every givel® < A < 1 there existsit=1t1(Z,Z',A) > 0
such that if {-) > t; at every point, then

IDRIES(x)|| <A and |DR|Es‘(x)|| >1/A ateveryxeX.

Remark3.50 In what follows we us& as a generic notation for large con-
stants depending only on a lower bound for the angles betieeoross-
sections and the flow direction, and on upper and lower boiandse norm
of the vector field on the cross-sections. The conditiong @m the proof
of the proposition depend only on these bounds as well. lowlbpplica-
tions, all these angles and norms will be uniformly boundedchfzero and
infinity, and so botlK andt; may be chosen uniformly.

Proof. The differential of the Poincarmap at any point € X is given by
DR(x) = Prx 0 DX'™ | T,Z,

wherePgy is the projection ontdg, 2’ along the direction oK (R(x)) .
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Note thatE3(x) is tangent t& NWS(x) D W3(x,X). Since the stable mani-
fold W5(x) is invariant, we have invariance of the stable bundle:

DR(x) (E3(x)) = ES/ (R(x)).
Moreover for allx € A we have
DX'™ (Ef(x)) C DX'™ (ERY) = EZY -

As Pr() is the projection along the vector field, it serE&‘x) to ESF(R(X)).
This proves that the center-unstable bundle is invariesitioted toA, i.e.
DR(X) (E$“(x)) = ES(R(X)).

Next we prove the expansion and contraction statements. takieby
noting that||Px || < K. Then we consider the bas{sﬂ%, e} of EgY,
wheregj is a unit vector in the direction dEs"(x). Since the flow direction
is invariant, the matrix obX! | ES! relative to this basis is upper triangular:

IX(RX)|
DX'™ | ESY = ||><(<)x>u

A

Moreover

= det(Dxt |EY) < HX|§(FE§();)|)HA§K.det(DXt(X>|E§“).

Then
IDRO) €]l = [[Prgg (DX (%) - &) | = (18- €y [| = 14
> K3 |detDX'™ | ESY)| > K3\t > K=3p 1,

Takingt; large enough we ensure that the latter expression is langer t
1/A.

To prove |IDR| E3(X)|| < A, let us consider unit vectors € E; and
& € E§(x), and write

X(x)
&= &b -

SinceZ(EZ, X(x)) > Z(E3,ESY) and the latter is uniformly bounded from
zero, we havday| > k for somek > 0 which depends only on the flow.
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Then
IDROX) €] = |Preey © (DX (x) - )|
1 § X
" [P (X7 @b eso
& o <0<

Once more it suffices to take large to ensure that the right hand side is
less than. 0

Given a cross-sectioR, a positive numbep, and a poinix € 2, we
define the unstable cone of widphat x by

Co(x) = {v=V+V": Vv e E3(x), W € E5"(x) and|[v¥| < p|v"||} (3.51)

(we omit the dependence on the cross-section in our nogtion

Let p > 0 be any small constant. In the following consequence of
Proposition 3.49 we assume the neighborhtlgdhas been chose suffi-
ciently small, depending op and on a bound on the angles between the
flow and the cross-sections.

Corollary 3.51. For any R: £ — %’ as in Proposition 3.49, with(t) >t ,
and any xc Z, we have DRX)(C5(x)) C C“/z( R(x)) and

||DRX(V)H2?53)\’1-||V|| forall veCy(x).

Proof. Proposition 3.49 immediately implies thaRy(Cy(x)) is contained
in the cone of widtlp/4 aroundDR(x) (E£¥(x)) relative to the splitting

TrZ = E3(R(x)) ® DR(x) (E$*(x)).

(We recall thatE$ is always mapped t&3,.) The same is true foEs"
andEg!, restricted toA. So the previous observation already gives the
conclusion of the first part of the corollary in the speciaeaf points in
the attractor. Moreover to prove the general case we only tashow that
DR(x) (E$¥(x)) belongs to a cone of width less thaj4 aroundegH(R(x)).
This is easily done with the aid of the flow invariant cone fig§fl in (3.48),

as follows. On the one hand,

DX (EE()) DX (E) € DXL (C5(0)) ¢ C(R(X)).
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We note thatDR(x) (E£¥(x)) = Pry o DX!™ (EZ!(x)). SincePgy maps
Eg‘gx) to Eg/(R(x)) and the norms of botRg ) and its inverse are bounded
by some constark (see Remark 3.50), we conclude tBaR(x) (ES¥(x)) is
contained in a cone of widtharoundEg}'(R(x)), whereb = b(a,K) can be
made arbitrarily small by reducireg We keeX bounded, by assuming the
angles between the cross-sections and the flow are bourmadzéro and
then, reducindJo if necessary, we can makesmall so thab < p/4. This
concludes the proof since the expansion estimate is alttioresequence of
Proposition 3.49. O

As usual acurveis the image of a compact intervia, b] by aC! map.
We use/(y) to denote its length. By au-curvein £ we mean a curve
contained in the cross-sectianand whose tangent direction is contained
in the unstable con&y C Cj(z) for all z€ y. The next lemma says thtte
length of cu-curves linking the stable leaves of nearbytgoiry must be
bounded by the distance between x and y

Lemma 3.52. Let us we assume thathas been fixed, sufficiently small.
Then there exists a constansuch that, for any pair of points € %, and
any cu-curveyjoining x to some point of Wy, ), we have/(y) <k-d(x,y).

Hered is the intrinsic distance in th@? surfaceZ, that is, the length of
the shortest smooth curve insilleeonnecting two given points iB.

Proof. We consider coordinates @ for which x corresponds to the ori-
gin, EgY(x) corresponds to the vertical axis, aBg(x) corresponds to the
horizontal axis; through these coordinates we iderfifyith a subset of
its tangent space at endowed with the Euclidean metric. In general this
identification is not an isometry, but the distortion is wnifily bounded,
which is taken care of by the constafitsto C, in what follows.

The hypothesis thatis a cu-curve implies that its velocity vecta(s)
is contained in the cone of widi; - p centered at(s) for all values of
the parametes. In the coordinates described above this means that we
may writey(s) = (&(s),s) for someC?! function€ : [0,s0] — [0, +) with
&(0)=0,&(s) > 0foralls>0and|§| <Cyp.

On the other hand, stable leaves are close to being horlzdma4 is,
fixing some stable leaf throughe X we may write it as a graptu,n(u))
for aC® functionn : (—up,Up) — R with n(0) = d > 0 and|n| < Cyp (see
Figure 3.3).
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We(y, %)

W3(x, 2)

Figure 3.3: The stable manifolds on the cross-section aaduturvey
connecting them.

Observe now thath = n o & satisfies|h’| < & = C;Cp? andh(0) = d,
thus|h(s) —d| < &-sand hencéa(s,) =0 for some O< s, < d/(1-09) <
d(1+ ). But this means that

u=(9 e
o) —nw O V9= (&9 = unw),

that is, we have an intersection betwegesind the stable leaf at a distance
from x alongy bounded byd(1+ 8)+/1+ (C1p)2 < d(1+Csp), whereCs
is a constant depending @3, C, only.

Finallyy has coordinate8)(us ), up) for somejus | < ug and sincelp < p
we get thaty(u;) > d—8u; > d —3p so in Euclidean coordinaté—y]|| >
d—dp =d(1—9dp/d) and hencel(x,y) > Csd for someC, > O depend-
ing on all the previous constants (remember that p also) including the
distortion due to the change of metric.

It follows that the length of is bounded b - d(x,y) wherek = (1+

3)\/1+ (C1p)2/Ca. O

In what follows we take; in Proposition 3.49 foh = 1/3. From Sec-
tion 4.2.1 onwards we will need to decreasence taking a biggds.

Adapted cross-sections

Now we exhibit stable manifolds for Poinétransformation® : & — %'.
The natural candidates are the intersectidff$x,Z) = WS(x) N Z we in-
troduced previously. These intersections are tangentet@ahresponding
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sub-bundlees and so, by Proposition 3.49, they are contracted by the-trans
formation. For our purposes it is also important that thelstéoliation be
invariant:

RWS(x, %)) c W3(R(x),2')  foreveryxe ANX. (3.52)

In order to have this we restrict our class of cross-sectwimsse center-
unstable boundary is disjoint fromi. Recall (Remark 3.47) that we are
considering cross-sectiorsthat are diffeomorphic to the squai@ 1] x
[0,1], with the horizontal lineg0,1] x {n} being mapped to stable sets
W5(y,Z). The stable boundarndss is the image ofl0,1] x {0,1}. The
center-unstable bounda@f'z is the image of0,1} x [0,1]. The cross-
section isd-adaptedif

d(ANZ,0%5) > 5,

whered is the intrinsic distance i, see Figure 3.4. We caltlorizontal
strip of Z the imageh([0,1] x |) for any compact subinterv&| whereh :
[0,1] x [0,1] — X is the coordinate system @has in Remark 3.47. Notice
that every horizontal strip is@&adapted cross-section.

__ N\ doesnot intersect a
-~ d-neighbhd. of the cu-boundan

i
¢
g
;

T 6 cu- boundary
,,,,,,,,,,,, -=- S — boundary

7 P
L5 - = stable leaves

Figure 3.4: An adapted cross-section far

In order to prove that adapted cross-sections do exist, we tee fol-
lowing result.

Lemma 3.53. Let A be either a transitive singular-hyperbolic Lyapunov
stable set, or a connected singular-hyperbolic attractsgy admitting a
dense subset of periodic orbits. Then every poiat/xis in the closure of
W3S(x) \ A\
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Note that a singular-hyperbolic attractor satisfies the fiosdition of
the statement of Lemma 3.53.

Proof. The proof is by contradiction. Let us suppose that thergexis A
such thai is in the interior ofWs(x) N A. Leta(x) C A be itsa-limit set.
Then

W(z) c A foreveryze a(x), (3.53)

since any compact part of the strong-stable manifold isf accumulated
by backward iterates of any small neighborhoodxafside W35(x). It
follows thata(x) does not contain any singularity: indeed, Theorem 3.5
or Lemma 3.45 proves that the strong-stable manifold of eamjularity
meetsA only at the singularity (observe that every singularity\ds accu-
mulated by regular orbits if).

Therefore by Proposition 3.9 the invariant s€k) C A is hyperbolic.
It also follows from (3.53) that the set

H=U{Ws¥y):yea(x)NA}

is contained iM\. Also by the same argument as before, this set contains
the strong-stable manifolds of all its points. Hemt&oes not contain any
singularity, that iH is uniformly hyperbolic.

We claim thatW(H), the closure of the union of the unstable manifolds
of the points oH, is an open set (it is clearly a closed set).

First we show thatW!(H) is open. Note thaH contains the whole
stable manifoldV3(z) of everyz € H: this is becausél is invariant and
contains the strong-stable manifoldofNote that the union of the strong-
unstable manifolds through the pointswif(z) contains a neighborhood of
z. This proves thatV¥(H) is a neighborhood dfl. Thus the backward orbit
of any point inW"(H) must enter the interior a/Y(H). Since the interior
is, clearly, an invariant set, this proves thiét(H) is open, as claimed.

Now observe that becaus®'(H) is open and invariant, the strong-
stable manifold of ang € WY(H) is contained inW"(H), which is con-
tained inA since we are assuming thAtis either Lyapunov stable or
attracting. Therefore taking limits we see tWsES(w) c WY(H) for all
w € WY(H). This implies thaWW{(H) does not contain singularities and is
hyperbolic. Finally the unstable manifolds of pointdif¥(H) are well de-
fined by hyperbolicity and are containedWt (H), just by taking limits of
points inWY(H). HenceW!(H) contains its stable and unstable manifolds,
S0 itis an open set insidg.
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SinceA is also a connected set (which is always the cageisf transi-
tive) we obtainA =WU(H). This means that any singularitdye A must be
in WY(H), a contradiction. The proof of the lemma is complete. O

Corollary 3.54. For any xe A there exist points X ¢ A and X ¢ A in
distinct connected components of¥¥) \ {x}.

Proof. Otherwise there would exist a whole segment of the stroalglet
manifold entirely contained i\. Considering any point in the interior of
this segment, we would get a contradiction to Lemma 3.53. O

Lemma 3.55. Let x€ A be a regular point, that is, such that(X) # 0.
Then there existd > 0 for which there exists &-adapted cross-section
at x.

Proof. Fix € > 0 as in the stable manifold theorem. Any cross-seclign
at x sufficiently small with respect te > 0 is foliated by the intersections
WS (x) N Zo. By Corollary 3.54, we may find points™ ¢ A andx™ ¢ A in
each of the connected componentd\gf(x) N Zo. SinceA is closed, there
are neighborhoodg* of x* disjoint fromA. Lety C Iy be some small
curve througlh, transverse t9V3(x) N Zo. Then we may find a continuous
family of segments insid@/$(y) N Zo, for y € y with endpoints contained in
V*. The unionZ of these segments isdaadapted cross-section, for some
4 > 0, see Figure 3.5. O

S,

WX, %)

Figure 3.5: The construction of&aadapted cross-section for a regutae
A

We are going to show that if the cross-sections are adagted, we
have the invariance property (3.52). GiVE®™' € = we setz(Y') = {x e
2 :R(x) € '} the domain of the return map fromto ¥'.
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Lemma 3.56. Givend > 0 and d-adapted cross-sectior’sand ¥, there
exists 3 = T»(Z,%’) > 0 such that if R £(Z') — ¥’ defined by Re) =
R (7 (2) is a Poincaé map with time () > T, then

1. RWS(x,%)) c W3(R(x), ') for every xc (%'), and also
2. d(R(y),R(2)) < 3d(y,2) for every y, 2= W5(x, %) and xe ().

Proof. This is a simple consequence of the relation (3.50) from tieefp
of Proposition 3.49: the tangent direction to e&l¢f(x, %) is contracted at
an exponential ratDR(x) €| < Ce M. ChoosingT, sufficiently large
we ensure that

Ce M2 sup[/(WS(x,Z)) : x e 2} < B.

In view of the definition o®-adapted cross-section this gives part (1) of the
lemma. Part (2) is entirely analogous: it suffices that™2 < 1/2. O

Remark3.57. Clearly we may choos& > T1. Remark 3.50 applies t©®
as well.

The following is a technical consequence of the uniform @miton
and the way cross-sections where chosen near real stabéslea

Lemma 3.58. Let X be ad-adapted cross-section. Then given any 0
there existp such that for all s> 0, every y, 2 W5(x,Z), and every x
ANZ we havedist(X3(y),X%(z)) <rifd(y,2) <p.

Proof. Let y andz be as in the statement. As in Remark 3.48, we may
find Z = X"(2) in the intersection of the orbit of with the strong-stable
manifold ofy satisfying

<= i
Then, given ang > 0,
dist(X3(y), X3(2)) < dist(X3(y), X3(Z)) + dist(X*(Z), X%(2))
< C-e . dist(y,Z) +dist( X5 (2), X5(2))
<KC-€®-d(y,2) +K|t| < (KC+K?)-d(y,2).

<K and |t/ <K-d(y,2).

Takingp < r/(KC+K?) we get the statement of the lemma. O
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A very useful consequence of the hyperbolicity of Poigaaaps is the
following criterion for the existence of a periodic orbit.

Lemma 3.59. Let xe A be a regular point and suppose there exists an-
other regular point 2 W35(x) N A such that xc w(z). Then x belongs to a
periodic orbit.

Proof. Take an adapted cross-sectibrthroughx. The conditions ore
imply that there exists a Poind@areturn magR defined on some substrip
2(Z) containingW = W5(x,Z), and that this linéV is forward invariant
R(W) c W. The contracting property given by Lemma 3.56 ensures there
exists a periodic poinp for R. Thereforep belongs to a periodic orbit for
the flow and to the lin&V. Hencez € W3(p) and sow(z) = o(p), thus

X = p since there can be only one intersectiofp) with X on the same
stable manifold. O

From Proposition 3.9 any compact invariant sulidebf a singular-
hyperbolic sef\ is uniformly hyperbolic, and of saddle-type. Using adapter
cross sections we can say a bit more.

Lemma 3.60. Let A be a singular-hyperbolic set. Suppose that one of the
following conditions is true:

1. Ais Lyapunov stable and transitive;
2. Ais an attractor and H is a compact proper invariant subsef\pf

3. A\ is a attracting set with a dense subset of periodic orbitsskhie
set of accumulation points of a branch of the unstable m&hidd
some singularity of A, and H does not contaia.

Then either HC S(X) or, for any adapted cross sectidthrough some
regular point of H, the intersection HZ is totally disconnected.

Note that the compact invariant sdtis covered by a finite number
of tubular flow boxes or flow boxes near singularitigs = X(~¢#) (%), for
€>0smalland =1,...,k. From Lemma 3.60 we conclude that eahnN
H has topological dimension one. Hendein each case of the statement
above is a one-dimensional set. For the definition and maipegties of
topological dimension see e.g. [82].



3.4. SUFFICIENT CONDITIONS FOR ROBUSTNESS 167

Proof. We follow the arguments in Morales [127]. K is not contained
in the set of singularities, fix a regular poit H NX. From Lemma 3.53
together with Remark 3.48 we have that the connected conmp@hef
H NX containingx cannot contain intervals insid&3(x,Z). Then either
C = {x} orC contains some pointin X\ W5(x,X). We show that the latter
cannot happen in each case according to the assumption stetieenent.

Observe first that sincE is adapted there are no pointstéii X near
the center-unstable bounda§z. Hence there must be some pdigtc H
in the interior of the substrip’ of = formed by the points aof between the
two horizontal linedVs(x,Z) andW3(y,%). For otherwisey € C would be
disconnected from.

1. If Ais transitive, then there existsc ¥’ close tohg with w(w) = A.
Arguing as above, there must exist a pofne H NWS(w,X), for
otherwisey and x would be in different connected components of
HNZ\WS(w,Z). ThenA = w(w) = w({) C H. This is not possible
becauseé is a proper subset df.

2. LetH = w(z) for someze WY(0) \ {0} and some singularity, as in
item 2 of the statement, and suppd$és not a singularity. Lek be
some cross section through some regular poiitH. Since PefX)
is dense iM\, we can find a sequeng® of points in periodic orbits
such thatp, P 0. By assumption we can find a poiwtin the

positive orbit ofzsuch thatv € Z close toh.

Observe that sinc&/"(o) is one-dimensional, we can assume with-
out loss of generality that € zg’i for some outgoing cross section
nearc. Then there are points, € 0(pn) satisfyingp;, P So

we can also find pointpn € 0(pn) such thatpy P~ W.

As before, there exists a poie H NWS(w,Z). Hence we can find a
sequencé, in the positive orbit off arbitrarily close tas. But then
o € H, which is a contradiction.

We conclude that eithéd C S(X) (andH is a singularity different frono
in the scenario of item 3), or the connected componeht 0 containing
x is formed byx itself. O
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Poincaré times near singularities

Recall that since singularities are Lorenz-like, we haw the unstable
manifoldW"(oy) is one-dimensional, and there is a one-dimensional strong-
stable manifoldW35(ok) contained in the two-dimensional stable mani-
fold W5(o). Most important for what follows, the attractor intersettte
strong-stable manifold at the singularity only, by Theor@mon page 98.

Hence for somé > 0 we may taked-adapted cross-sections contained
Yo+ andZ'* in Ug as in Section 3.3.3. Reducing the cross-sections if
necessary, i.e. taking > 0 small enough, we ensure that the Poibcar
times are larger thaifi;, so that the same conclusions as in the previous
subsections apply here. Indeed using linearizing cootéliais easy to see
that for pointsz = (x1,%p, £1) € Y+ the timet™ it takes the flow starting
atzto reach one oE%* depends om; only and is given by

Ti (Xl) _ |OgX1 .
A1

We then fix these cross-sections once and for all and defirmfalle > 0
theflow-box

Ug, = U X—et*(x)+e)(X) U (=8,0) x (=8,8) x (—1,1)

xezhE\ ¢+

which is an open neighborhood of with oy the unique zero oK | Ug,.
We note that the function™ : = — R is integrable with respect to the
Lebesgue (area) measure ofér: we say thathe exit time function in a
flow box near each singularity is Lebesgue integrable

More precisely, we can determine the expression of the Rdmaps
between ingoing and outgoing cross-sections easily thidigtarised co-
ordinates

St n{a >0 — 20 (xg,xe, 1) - (Lxe-x M x 22N (3.54)

This shows that the map obtained identifying points withdhemex, co-
ordinate, i.e. points in the same stable leaf, is simply— x'i’ where
B=—A2/A1 € (0,1). For the other possible combinations of ingoing and
outgoing cross-sections the Poinganaps have a similar expression. This
will be useful to construct physical measures for the flowg apter 4.
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3.4.2 Denseness of periodic orbits and transitivity with a
unique singularity

Here we start the proof of Theorem 3.44.

We present the proof as a sequence of several simpler reguttis will
be proved in the sequel.

Let X € X" andA be a singular-hyperbolic set &f satisfying the con-
ditions in the statement of Theorem 3.44: it contains a umgjogularityo,
it has a dense subset of periodic orbits and it is a singulpetiplicnon-
connectedattracting set. The singularity is Lorenz-like by Lemma53.4
ThenWs5(o) dividesWs(o) in two connected components, which we de-
note byWs™ andws—.

Note that/A # {o}, for otherwise we would get an attracting set con-
sisting of a singularity with an expanding eigenvalue whhmpossible.
Therefore the set of periodic orbits is non-empty.

A crucial result in this setting is th#éihe unstable manifold of every pe-
riodic orbit in A crosses the stable manifold of the singularity transversel
We present a proof in Section 3.4.3 following the argumam{4 30].

Theorem 3.61. Let A be either a singular-hyperbolic attractor, or a con-
nected singular-hyperbolic attracting set with a densesstiof periodic
orbits. Then for every g Pel(X) N A there exists a singularitg of A such
that W!(p) and WE(o) intersect transversely.

The intersections provided by this results together withthiqueness
assumption oi¥(X) enables us to relate two distinct periodic orbitg\obr
to deduce non-trivial consequenceg\ifs not transitive or a disconnected
set, using the two connected componaifs™ andws~ of WS(o).

For that we consider the following invariant subsetg\of

P* = {pe PelX) NA:W{(p) hWS=(0) #£0} and H* =P~

The rest of this section is devoted to prove the followingilesThen
we use it to prove Theorem 3.44.

Theorem 3.62.LetA be a connected singular-hyperbolic attracting set of a
flow X e X',r > 1, on a closed three-manifold M. Suppose thabntains a
dense subset of periodic orbits and a unique singularityrddeer assume
thatA is not transitive. Then H and H~ are homoclinic classes of X.
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From Theorem 3.61 and the assumption tB@€) N A is a singleton
together with denseness of periodic orbits\inwe easily deduce th&™
cover the whole attractor.

Lemma 3.63. LetA be a connected singular-hyperbolic attracting set with
dense periodic orbits and only one singularityThenA =H* UH".

In this setting we can state Theorem 3.62 in the followingulsgay:
a singular hyperbolic attracting set having dense periaatisits with only
one singularity is either transitive or the union of two hartioic classes.

Since each element € Pe(X) N A is hyperbolic of saddle-type, then
WU(0)\ {0} has two connected components. FEpe P+ one of those
components intersect¥S* (g). We write that componew"*(0).

Now we show that bothl ™ andH ™~ are transitive sets.

Lemma 3.64. Let A\ be a singular-hyperbolic attracting set with dense pe-
riodic orbits and only one singularitg. Then H™ and H™ are transitive.
Moreover H- ¢ W4+ (q) = Wu-£(q) hWs+(o) for all g € P*.

Proof. Let p,q be two points in distinct orbits insidé™* (the argument for
H~ is analogous). Then their unstable manifolds interseostrarsely the
same side of the stable manifold of the unique singularitgné¢ through
the local behavior of the flow near a singularity, flowing toincoming
cross sectiorz = 3"+ we obtain two small curvegc WY(p) N < andl C
WY(q) N Z crossing/t transversely. See Figure 3.1.

Fix neighborhood&) of p andV of g. Since periodic orbits are dense
in A andy C A (because\ is an attracting set), then we can find a periodic
orbitr so close tav such that

e W5(r, %) intersects botly and( transversely;
o the orbit ofr intersectdJ.

Hence takingz € { h WS(r, Z) € WY(q) "W5(r) we have that the positive
orbit of z visits U infinitely many times, and the negative orbit oton-
verges too(q), thus visitsV infinitely many times. This means that there
exists some > 0 such thaX' (VNA)N (UNA) # 0. SinceU andV where
arbitrarily chosen, this proves transitivity.

Recall the conventiokv"*(q) for the branch of!(q) \ o(q) which
intersectaVs* (o). The above argument also shows thatWte* (q) is ar-
bitrarily nearp, thatisP™ c W4+ (q) for everyq e P*, thusH* c Wu-+(q).
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SinceA is attracting we havev“*(q) C A. Therefore given any
WU (q) there is a sequeng® € Per(X) NA such thaip, P By The-

orem 3.61 together with the Inclination Lemma, we get Wéfco) crosses

WY (q) very neary. This shows thatvs(a) "\WU+(q) D W (q).
Analogously with— instead oft-. Note that the intersections above are

always transverse. The lemma is proved. O

From this we deduce the following condition for transitvit

Lemma 3.65. In the same setting as the previous lemma, suppose there
exists a sequencpn n>1 C P~ converging to some point in W (g) (or
similarly interchanging+ with —). ThenA is transitive.

Proof. Fix p € P™ and letp, € P~ be as in the statement. From the
construction of flow boxes near singularities in Section3\8e can fix
an adapted cross-sectidh= "+ throughWs (o) and a open ard C
ZNWY(p) intersectingV>* (o) transversely.

Again by the behavior of the flow near singularities we camassthat
pn € Z for everyn. By the choice of adapted cross-sections, we know that
the local stable manifold&/3(pn, X) of p, insideX intersect] transversely,
for every big enougim.

The Inclination Lemma 1.10 applied to the positive orbilaf W (p)
together with the assumptiop, € P~ imply that WY(p) "W>~ (o) # 0.
Hencepe P~.

This shows thaH™ c H™. ThusA = H~ by Lemma 3.63, and from
Lemma 3.64 we conclude thAtis transitive. O

Proposition 3.66. In the same setting as above, if there sW"(o) \ {0}
such thato € w(z), thenA is transitive.

Proof. Let z be as in the statement. By the local dynamics in flow boxes
nearc we can assume there are poig{ss =" in the positive orbit ofz
such thatz, — zp € ¢, where/ = WSt (g)NZ. (The argument for the-
case above is analogous.)

If Per(X) NP~ = 0, then we would have PE&X) N A C P™ by Theo-
rem 3.61. In this cas& would be transitive by Lemma 3.64. Hence we can
assume that there exisisE P~.

This allows us to choose a sequence of poimtsE WY(q) in the same
side wherez is, such thatv, o WE W3~ (0). SinceA is attracting, it
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contains the unstable manifolds of its points andvse A. Thus we can
find a sequencp,, € Per(X) NA tending tow, whose orbit passes very close
to z. Consequently there am, € 0 (p,) converging tazp.

We have found a sequence of periodic orbits accumulatingltme-
ouslyWs (o) andWs~ (o). Arguing by contradiction, suppose thatis
not transitive. Then Lemma 3.65 would imply thglt ¢ P™ and p}, & P~
for all n large enough. This contradicts Theorem 3.61 and concludes t
proof. O

Now we assume that is not transitive and use the previous results to
disconneci\.

Lemma 3.67. If A is not transitive, then for all ¢ P* we have H =
WUE(q) hWe=(0) = WU=(q) .

Proof. Fix g€ P* (for P~ the argument is the same). From Lemma 3.64 it
is enough to show that every poine W' (q) is an accumulation point of
elements oP™. This implies thay is accumulated by points WY*(qg) N
WS+ (g) by the Inclination Lemma and, in addition, also ensures ytat
H.

By denseness of periodic orbits there exists a sequaneePer X) NA
such thatp, P y. Thenp, € P* for all n big enough, for otherwise

we would gety € H™ and thusH™ Cc W4+(q) = o(y) C H™, sinceH ™ is
invariant. Hence\ = H™. This contradicts the assumption thats not
transitive. O

Theorem 3.68. If A is not transitive, then for all & WY(g) \ {0} there
exists a periodic orbit @ A such that ac W5(0), that isw(a) = O.

Note that by Theorem 3.61 the periodic orbits given by Theo868
are homoclinically related to.

Proof. Fix ae WY(0) \ {0} and assume that(a) is nota periodic orbit.

SinceA is not transitive and periodic orbits are dense by assumptio
we haveP* = P~ and both are non-empty. Takes P* andqe P~.

Using the flow we can assume thabelongs to some outgoing cross
section = %% of a flow box neai. Since the unstable manifolds pf
andq crossWs(a) on sides opposite ¥W%(g), both their intersections with
W5(0) contain a curve having as an accumulation point and tangent to the
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eigendirection corresponding to the weak contractingreigleie ofo, see
Figure 3.6. Using the flow box nearwe can find a curvé = |, contained

W(p) x|

W(a)

Figure 3.6: The stable manifold of the unstable manifolds ¢f, g and the
points inXo.

in X througha such thatl \ {a} is formed by two arcs* c WY(p) and
I~ CcW!(q), see Figure 3.6. Observe that the tangent spacisabntained
in E°NTZ by construction.

Proposition 3.66 ensures thatZ w(a) sinceA is not transitive. There-
fore from Proposition 3.9 we see tHdt= w(a) is a uniformly hyperbolic
saddle-type set. MoreovéerC A because\ is a closed attracting set.

Consider an adapted cross sectignthrough some point off. Then
by item 2 of Lemma 3.60 and shrinkindg if necessary, we can assume that
the stable boundargsZ, of ¥y does not touch H Moreover since, \ H
is open we can in addition assume tHg¥, N H,0%%) > & for somed > 0,
just as in the definition od-adapted cross section, but now in the center-
unstable direction.

Using a tubular flow construction we can linearén anopentube-
like setUs, = X(=%#) (int(Zo)) for a smalle > 0. We can coveH by a
finite number= = {Us,,...,Us, } of this type ofopen tubular flow boxes,
sinceH NS§(X) = 0, H is compact andH satisfies item 2 of Lemma 3.60.

Consider the PoincarmapR: Z=NH — = defined byze =NH —
X122 (z) whereT, is defined in Section 3.4.1 andz) is the first return
time of X™2(z) to =. The map is defined on entire strips By the con-
struction of adapted cross sections.

Fix now hy € H and letz, be points in the positive orbit af such that
d(z,R"(ho)) — 0. Note thath, = R"(hg) always belongs to the inte-

— 400
rior of = and the same is true af. Observe that there exists a correspond-
ing sequence of imageésof | such that, € I, C =. Sincel is transverse to
the flow direction, we have thaj belongs to the interior df,. In addition,
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the expansion oR in the central-unstable direction and the fact thais
d-away from the boundary ¢t ensures that there is an akgwith length
bounded away from zero such ttmte J, C Ij.

Let h be a limit point ofh,. Hencel, converges in th€* topology to an
interval inW"(h) (recall thath € H andH is uniformly hyperbolic). Since
= has finitely many components, we can assumettha andh all belong
to the same componek} of =.

Notice that we cannot havg € W5(h,Z) for infinitely manyn, for
otherwise by Lemma 3.59 we conclude tiheis periodic andz € W3(h),
thusH = w(z) = o(h) contradicting the assumption. Hergez W3(h, Zg)
for all big enoughm.

Therefore the intersection df, \ {z,} with W5(z,;1,=) is non-empty
for big enough. If wy belongs to this intersection, then it is either in the
image ofl* or in the image ofl ~ inside J,. We write J& for the corre-
sponding components.

Now we use that periodic orbits are dense. Assumewhat J& and
take p, € Pel(X) NZg close to a point in i, nearz,,1, see the rightmost
rectangle in Figure 3.6. Then we ensure that

WS(pn) My #0# i1 h WS(pn)
which implies
WS(pn) MWY(p) # 0 #W"(q) hW*(pn).

By the choice ofp, we have thab (p,) goes very close t&/>~ (o). We can
find a sequence of such orbits converging to a poilt/in (o). SinceA is
not transitive, by Lemma 3.65 we must have that P~. But thenp must
be inP~ by the Inclination Lemma 1.10. Singewas an arbitrary point in
P*, we conclude tha®™ c P~ and so\ = H ™ is transitive, a contradiction.
Otherwise we haver, € J; and by the same arguments we deduce that
g e PT, implying thatA = H™ is transitive as before.
Hencew(z) must be a periodic orbit, as claimed. O

The orbit o provided by Theorem 3.68 is hyperbolic of saddle-type
(because it carries a dominated splitting with volume expan central
direction). Hence there are two connected compon#Hts of the unstable
manifold of O such thatv** UW"~ =W4(O) \ O. The labelst on each
component are chosen according to whether the corresgpodmponent
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is accumulated by the unstable manifold of a periodic pwifti or P, as
in the proof of Theorem 3.68, see Figure 3.7. The above cdioredoes
not depend op € P*,q € P~ nor onl *, 1~ (this is easily proved using the
Inclination Lemma).

Figure 3.7: Definition ofV"* andwY .

Next results shows that the choice of signs for the branch®#g"¢o)
coincides with the previous convention for the unstableifolds of peri-
odic orbits inA.

Lemma 3.69. We have W NWS~(g) = 0 and W NWST (o) # 0, and
the similar facts interchanging and —. In particularo € P NP,

Proof. Arguing by contradiction, note that W“* NWS~ (o) # 0, then
because this intersection is transverse and eperyP* has an unstable
manifold accumulating oV, we deduce thap € P~, and agairP* C
P~ thusA = H™ is transitive, a contradiction. Similarly exchangisgvith
— in the above argument.

For the other part, itW*“" NWS*(g) = 0, thenW"(0) N"W5(a) = 0
sinceANW5%(g) = {o} by Theorem 3.5, contradicting Theorem 3.61]

Lemma 3.70. Assume that W p) th Wt £ 0 for some pe Per(X) NA.
ThenWs(p) "WUY+ =WU+. Similarly replacing+ by —.

Proof. Choose a neighborhoddl of x € W**. By Lemma 3.67 we have in
particulaws+ (o) NWu+ =W+, Then we can find a poigte W3 (o) N
WU+ NU. Letybe a curve throughinsideU "WY* transverse t&V>* (o).
Then the positive orbit of contains open arcs which converge in
topology to any compact neighborhoodmfnsidewW" ", by the Inclination
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Lemma. Hence the positive orbit gfintersectdVs(p) by the assumption
on p. Therefore there exists a point W5(p) in U, proving thatw"* c
WS(p) "W+, O

Now we are ready to consider homoclinic classes ingidsee Sec-
tion 1.3.5 for the definition and basic properties).

Lemma 3.71. For p € P* such that W(p) h W= # 0 we have that its
homoclinic class Hp) equalswy=+.

Observe that since periodic orbits are dense we can chpegel(X)N
A very close taV" ™ to obtain the condition op in Lemma 3.71. Then by
Lemma 3.67 we have th&t™ = WU+ = H(p) is a homoclinic class. This
completes the proof of Theorem 3.62.

Proof of Lemma 3.71Fix z€ P*,y € W“* and a neighborhodd of y. By
definition there exists an atcC WY(p) such that its forward orbit crosses
WS+ (g). Lemma 3.70 ensures that we can find a diskansverse tov"*
insideWs(p)NU.

The Inclination Lemma implies that the positive orbit of &sarcJ C |
accumulate®VU*. Then there exists> 0 such thai!(J) th D # 0. This
means thaH (p) NU # 0. SinceU was arbitrarily chosen and(p) is
closed by definition, we have thgte H(p). HenceW"* c H(p) and
WUE C H(p).

For the opposite inclusion note that by the assumptisap) h W4+ £
0 and the Inclination Lemma we have tht:+ > WY(p) D H(p). O

Proof of Theorem 3.44Note first that by Lemma 3.71 we must have= N
WS~ (g) = 0. For otherwise we can find a sequengee P converging
to a point inWs~(g). By Lemma 3.65 this implies that is transitive, a
contradiction.

Therefore there exists a neighborhdddf WU £ disjoint fromWs~(a).
LetJ = [a,b] be a fundamental neighborhoodWwfS(pg) for somepg € 0,
whereo is the periodic orbit given by Theorem 3.68. ThatJss an arc
with b = X'(a) for somet > 0 such thaiX$(a) ¢ WS(po) forall 0 < s< t.
TakeV C B a small neighborhood af such that every point of belongs
to a stable manifold of a point M NWY*. The forward orbits of points in
V never leaveB, sinceWU= is invariant.
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We are going to describe a perturbation of the fidwlose to the point
acWY(o)\ {0} (which defines the orbib = w(a)). Consider the follow-
ing cross sections of (recall the definition of flow box near a singularity
in Section 3.3.3):

e 37T containingain its interior andz’ = X1(3°%).
e X intersectingO in a single point in the center-unstable boundary.

e >~ a substrip of£"~ which is a one-sided neighborhood ©f not
touchingB on the same side @f.

e X' a substrip of£"* which is a one-sided neighborhood &f also
on the same side @f.

Rl

Figure 3.8: The unperturbed floM:

Observe that the positive orbit of any point3rf UZ~ by X will cross
3o+, DefineW = X[01(2°+), The support of the perturbation fro¥ito
Y sketched in Figures 3.8 and 3.9 is containedMin This perturbation is
standard, see e.g. [143], amounting to “paShipwards so that its image
under the flow ofY lands inXg above the stable manifold of”.

S+

/
o 2 Y Ky

Ea
) 1e ° I K!
ﬂ a< a XK ™
6 U5 V : \Q

Figure 3.9: The perturbed flow.
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Recall that\ = Ax(U) = Ni=oX'(U). SinceA is not transitive there
existsq € P~ and so there is an intervih in 2~ NW"(q) crossingZ~ as
in Figure 3.9.

Denote byq',W"(d(),0’,K{ the continuation of these objects for the
perturbed flowy. TheY-flow carriesk; to an intervaKj as in Figure 3.9.

Note thatkj C Ay(U) since/y (U ) is an attracting set/ € Ay(U) and
Ky C WHU(T).

We claim thatk ¢ Q(Y).

Arguing by contradiction, assume th&§ C Q(Y) and choose € int(Kp).

On the one hand, the flow &f carries points nearbytoV as sketched
in 3.9, close to the lin&5. By assumption orik; we have thak is non-
wandering forY. In particular there existg' € K{ close tox such thathe
positive Y -orbit of kreturns toz .

On the other hand, by construction, the positive orbit ofgym®int in
V by the flow ofX does not interse&™.

SinceY = X outsideW we conclude that the positive orbit &f by Y
intersectsS* by the definition ofW“ ™. The positive orbit of such an in-
tersection passes through the flow Mxand arrives td/ again. Then we
conclude thathe positive Y -orbit of xnever returns t& . This contradic-
tion proves thakK( ¢ Q(Y), as claimed.

This impliesAy(U) ¢ Q(X) and finishes the proof of Theorem 3.44.

O

3.4.3 Unstable manifolds of periodic orbits inside singula
hyperbolic attractors

Here we present a proof of Theorem 3.61 following the proespnted
in[122].

Let A be either a singular-hyperbolic attractor, or a connecitegldar-
hyperbolic attracting set having a dense subset of perimtbits.

We start by showing that the closure of the unstable maniébldny
periodic orbit inA must contain some singularity of the flow.

Lemma 3.72. Let A\ be a connected singular-hyperbolic attracting set con-
taining either a dense subset of periodic orbits, or a deegelar orbit. Fix

a periodic point p € Pel(X) N A (necessarily hyperbolic of saddle-type).
Let J=[a,b] be an arc on a connected component df\o) \ { po} with
a#b. Then H= U;~0X'(J) contains some singularity @.
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Proof. Observe thaH = Wj'(po) C A by construction, wher&'(po) is
the connected component W(pp) \ 0(po) containingd. In additionH
contains the unstable manifolds through any of its poirtgesevery point
in H is accumulated by forward iterates of the arc

Consider the setvsS(H) = U{W5¥(y) : y € H}. Note thatW"(y) c H
fory € H and the family{W®(2) }yewu(y) covers an open neighborhood of
y, SoWS%(H) is a neighborhood dfl in M.

Let x be a point inWs3(H). Then by forward iteration this point is sent
close toH. This shows that is in the interior ofWSS(H) and henc&Vss(H)
is open inM. ThusHS =W3S(H) N A is an open neighborhood bf in A. If
Ais transitive, we can takec H* such thato(z) = A and sincen(z) = w(X)
for somex € HS, we conclude that ¢ H and soH N §(X) # 0.

If Ais not transitive, we claim that eithet>N S(X) # 0, or the closure
of HS is an open subset @f (besides being clearly a closed set).

First note that ifo € HSN §(X), theno € W3%(y) for somey € H imply-
ing o € H. For otherwise we would ggte W5%(o) NA\ {0}, a contradic-
tion with Lemma 3.45.

Suppose that$NS(X) = 0. From Proposition 3.9 we known thiaf is
a uniformly hyperbolic compact subset®f Then everyw € HS has a well
defined strong-unstable manifold. MoreoW(w) c AN H? for some
€ > 0, becausd is attracting andH® is open. We conclude th&t® contains
the unstable manifold of all its points. Hence taking limits obtain that
the closureHs also contains every unstable manifold. Analogously we see
that HS contains the strong-stable manifdldsS(z) N A relative toA for
all ze Hs. The union of the unstable manifolds through all points ia th
strong-stable manifolds provides a neighborhooH®fn A.

SinceA is connected we obtaiHS = A. Hence there exists some sin-
gularity o of A in the closure of the stable manifoldsiéfinsideA. Let h,
be points inHS converging too. Hence the orbits ofi, contain pointsh,
very close toW"(pg) by definition of HS. Using the assumption of dense
periodic orbits, consider a periodic orlgit very close tch,. Then the orbit
of pn will be close toW'(po) and soW>(pn) th Wy'(po) # O (to see this,
consider an adapted cross sectothroughhy,, a small tubular flow box
throughZ and recall that stable manifolds crasshorizontally). The In-
clination Lemma now ensures thag'(po) = H containsp,. ThusH is
arbitrarily close tao. Therefore the closed skt contains some singularity
of S(X)NA. O
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Fix po ando € S(X) NH as in the statement of Lemma 3.72. We can
assume thal is a fundamental domain f&{(po), that isb = XT (a) with
T > 0 the first return time of the orbit @to W""(py), i.e. X'(a) ¢ W"4(pg)
forallO<t<T. .

Fix ingoing adapted cross sectiofls™ of everyo € S(X)NA and hori-
zontal substripEy™ around’z of small width so thab (pg) does not touch
S5, We assume that;™ \ =4 have nonempty interior.

Consider also a cross sectiag containingpe. We can then také =
[a,b] so close tgpg thatJ C int(Z,) andX~'(J) never intersectss™ for all
t > 0 and everyo € S(X)NA.

SinceS(X) NWUY(pp) # 0 there exists a PoincamapR from a subset

DofZ,to int(UsZg ") given by the first return time(x) of x € D. Without
loss of generality assume tHatb) € int(Z3") for some singularity fixed
from now on. We drop the from the notation of the cross sections in what
follows.

Note thatR(a) must equalR(b). Using this with some tubular flow
boxes together with the fact that+ is an adapted cross section, we show
that the image o underR must cros€"* from one stable boundary to the
other, thus intersectingf”. Since/* ==+ "W (o), this argument proves
Theorem 3.61.

Observe that because balhand R(a) = R(b) belong to the interior
of the respective cross sectionsXopthen there exists a tubular flow box,
given by Theorem 1.6, and open neighborhodds %, of b andW C Tt
of R(b), such thatv C D, thatisR|V :V — W is well defined and a
diffeomorphism. Moreover sincg is transverse to the stable foliation in
%, then the imag&(V NJ) is also transverse to the stable foliatiorsbf .

In addition, since\ is attracting, we have thdtandR(JNV) are contained
in A. Becaus&'* is adapted, the image dfis 5-away the center-unstable
boundary. Identifying the ar@, b] with some intervala, b] C R we define,
see Figure 3.10

q=sup{se [ab]:R([a,s]) Cint(Z"")}.

By the existence of the paW,W we haveq > a. Moreover givens €
(a,q) and covering the compact ar(s s andR([a, ) by a finite num-
ber of open tubular flow boxeds,... Uy we easily see thaR([a,d]) is
connected. IndeedR([a, ) is the union of a sequend¥[s,s1]) of arcs
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insideU; Nint(2'*), wherea=so < s1 < -+ < ¢ = sandR | U; Nint(Zp) :
UiNint(Zp) — Ui Nint(2") is a diffeomorphismi = 1,... k.

i+
R R
e R B
g RO Wiy
b— o(p)
0 0

Figure 3.10: The ard and cross-sectiors,, ZB*.

Note that by the choice ot strictly insideS':*, if g belongs to the
domain D of Rthen there exists a tubular flow bblg takingq to R(q), so
thatR(q) is well defined. Henc®(q) = lims -q R(s) is not on the the center-
unstable bounda@f's"* by construction. Moreover using the tubular flow
boxUp we see thaR(q) € 852*. For otherwise, in casB(q) € int(Z"*),
we would be able to extend the definitionalongJ through the flow box
Up.

Now apply the same arguments to

r =inf{se [a,b] : R([s,b]) C int(Z"")}.

We obtainR(a) = R(b) andR(q),R(r) € 8" if r belongs to the domain
of D. We obtain in this way = R([a,q] U [r,b]), a connected smooth arc
joining two points in the stable boundary.

If R(q),R(r) belong to the same stable-manifold 8", then by
smoothness and connectedness there must be a tangencemhgtesd
the stable foliation oix':*. This is a contradiction.

HenceR(q), R(r) are on different stable leaves on the boundar¥'df,
thusy crossed ™ transversely. This means that'(pg) h WS(o) # 0. The
proof of Theorem 3.61 now rests on the claim thath g and r belong to
the domain of RTo prove this claim we need the following result, whose
proof we postpone.

Lemma 3.73. Let$ be a cross section of X containing a compact cu-curve
¢, which is the image of a regular parametrization[0, 1] — ¥, and assume
that { is contained in\. LetZ be another cross section of X. Suppose that
( falls off 2, that is
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e the positive orbit of (t) visitsint(X) for all t € [0,1);
e and thew-limit of (1) is disjoint fromZ.

Then{(1) belongs either to the stable manifold of some periodic gubit
A, or to the stable manifold of some singularity.

Observe thata, q] (and[r,b]) fall off =", if g (and r) does not belong
to D. Thenw(qg) (andw(r)) is either a periodic orbit ir\, or a singularity.
In the first case the ar& > [a,q] is transverse aj to the stable manifold
of a periodic orbitp. The Inclination Lemma ensures that there exists a
fundamental domaih of W"Y(p) accumulated by iterates of the open arc
(a,q), see Figure 3.11. Hence the flow takery point of Lthrough'+.

Figure 3.11: How accumulate®(x*)

As before the image df by the corresponding first return map must be a
cu-curveC in =+, Moreover since the endpointslofire on the same orbit
of the flow,C must be alosed cucurve. This is impossible.

This contradiction shows that(andr) either does not fall oft"+, so
thatq (andr) is in the domain oR, or g is in the stable manifold of some
singularity. In the former case, we are done. In the lattsecaince the
stable manifold is transverse W"(pp) by the assumption of singular-
hyperbolicity, we obtain the statement of the theorem ag wel

Now to finish the proof of Theorem 3.61 we prove the remainamgrha.

Proof of Lemma 3.73DefineH = w({(1)) and supposél is not a singu-
larity. By an argument similar to the proof of Lemma 3.60 weeéhthatH
has totally disconnected intersection with any crossieect
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Indeed, consider an adapted cross-seciipof X throughx € H and
considelC the connected componentléfn =, containingx. As in the proof
of Lemma 3.60, we have th&nW3(x, ) = {x}.

If there existsy € C\ W5(x,Zy) consider the horizontal strif of 24
between the stable leaVd&(x, Zy) andW3(y, ). Then there exists a point
w of H Nint(S) for otherwiseWs(w, Z,) would disconnecy from x. From
this we find¢ in the positive orbit of((1) inside in{S) and close tow.
But  is acu-curve. Hence considering the tubular flow on a neighborhood
around the piece of orbit frof(1) to §, we find in the image of under the
tubular flow acu-curve’, a connected image of a neighborhood;¢f)
in ¢, with & as a boundary point. (Here we use the hyperbolicity of the
Poincaé maps between cross sections assuming that the time(frbnto
¢ is big enough.)

So we have a positive iterate of a pofts) in int(S) for somese [0,1).
Use the density of periodic orbits to find a point of a periaafisit p’ very
close to{(s) in int(S). Then the orbit of’ crosses in&) by the assumption
on the curve. Again there existh € HNWS(p/,S). This means that the
orbit of h will cross in{X). Sinceh € w({(1)), then the orbit of (1) must
cross intX) also. We have reached a contradiction.

We conclude thak, N H is totally disconnected.

Hence we can cover the détwith a finite number of flow boxes around
the singularities contained id together with finitely many tubular neigh-
borhoods through adapted cross sections, i.e. sets of timeXo &) (Z,).
Let = be the collection of adapted cross sections used in thisrceome
of them ingoing or outgoing cross sections around singigari

SinceX,NH, if non-empty, is totally disconnected, thenis contained
in the interior of these flow boxes. Th@gNH is not onlyd-away from
the center-unstable boundaryXfbut &-away from the stable boundary of
> as well, for some uniformd > 0 valid for every cross section &.

The definition ofH ensures that'(1) = X*(Z(1)) for big enougtt > 0
is contained in a small closed neighborhdddaroundH, which can be
taken disjoint from the reference sectibn

Lett, — +o be such thafy(1) = {'"(1) € int(Z) for alln > 1. Since=
is a finite collection of sections, we can assume without tdsgenerality
that{s(1) always belongs to the same sect®a =.

Observe that the positive orbit éfs), with s< 1 and close to 1, enters
W by continuity of the flow, but does not stay W, since it must cross
int(Z). Then the first return of(s) to S, which we write{n(s), is well
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defined fors< 1 and close to 1.

For infinitely many values of there exists soms, € [0,1) such that
Cn([sn, 1)) is contained iS5, the orbit segment frord(s) to n(s) is disjoint
from Z for all s, < s< 1, and{n(sn) is in the boundary o8. For otherwise
we would getly([0,1]) C int(S) C W and sa((s) would never reach.

This means that theu-curvey, = {n([Sh, 1]) has length at leastinside
Sand

¢ either the end poinf,(1) of y, has a subsequence contained in the
same stable manifold insidg which by Lemma 3.59 implies that
(n(1) is in the stable manifold of a periodic orbits, and thiiss a
periodic orbit;

e or y, has an accumulation curve insi@in the C! topology (us-
ing the Ascoli-Arzela Theorem, singg have bounded derivative by
definition of cu-curve and length bounded away from zero, &id
compact), so that we can find a pof(s) in the stable manifold of
{m(1), form,nvery big. This is impossible because the positive orbit
of {n(s) would stay forever close to the orbit &f(1), insideW, and
would never reacht.

We conclude that is a periodic orbit if it is not a singularity. The proof of
Lemma 3.73 is complete. O



Chapter 4

Singular-hyperbolicity,
sensitiveness and physical
measure

Here we obtain another consequence of singular-hypeityole singular-
hyperbolic attractor is sensitive to initial conditions

Theorem 4.1. Let A be a singular-hyperbolic attractor of X X1(M).
ThenA is expansive.

From the comments of Section 1.2.2 from Chapter 1, we havéothe
lowing.

Corollary 4.2. A singular-hyperbolic attractor of 8-flow is sensitive to
initial data.

The proof of Theorem 4.1 is the content of Section 4.1. Tharasnt
is based on analyzing Poinéareturn maps of the flow to a convenient
cross-section.

We show first that there exists a family Bbincae mapsthat is, con-
tinuous map®R: > — ' of the formR(x) = X (X) between cross-sections
¥ and¥’ to X. Assuming that the Poindatimet(-) is large and that the
attractor/\ is singular-hyperbolic, we show that cross-sections have c
dimension 1 foliations which are dynamically defined: thavks corre-
spond to the intersections of the cross-sections with thielestmanifolds

185
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of the flow. These leaves are uniformly contracted and cingcsilapted
cross-sectionghe foliation is also invariant:

RWS3(x,Z)) Cc W5(R(x),2') forallxe ANZ.

In additionRis uniformly expanding in the transverse direction. By nean
of cross-sections we can likewise analyze the flow closedsitigularities.

From here we argue by contradiction: if the flow is not expamsinA\,
then we can find a pair of orbits hitting the cross-sectioffinitely often
on pairs of points uniformly close. We derive a contradictity showing
that the uniform expansion in the transverse directionécsthble foliation
must take the pairs of points apart, unless one orbit is ostttide manifold
of the other.

Existence and uniqueness of a physical measure

It was proved by Colmenarez in [47] that/fis a singular-hyperbolic at-
tractor of aC? flow X with a dense set of periodic orbits, then the central
directionE/E\u can be continuously decomposed i3 EX along each or-

bit of A, where theE! direction is non-uniformly hyperbolic, that is, has a
positive Lyapunov exponent, amd= A\ Ugcgx)naAW"(0). In [46] again
under the assumption of a dense set of periodic orbits Camershowed
that everyC? singular-hyperbolic attractor supports a physical prakgb
measure — see Section 1.4.1 of Chapter 1 for the relevanttimim
However in another recent work, Arroyo and Pujals [15] shioat £v-
ery singular-hyperbolic attractor has a dense set of peeridbits, so the
denseness assumption is no restriction. Here we give apéndent proof
of the existence of SRB measures which does not use densdmpes#odic
orbits and that enables us to obtain the hyperbolicity ofSR8 measure.

Theorem 4.3. LetA be a singular-hyperboliattractorof a flow X& ¥2(M)

on a three-dimensional manifold. ThArsupports a unique physical prob-
ability measure p which is ergodic, hyperbolic and its eligdzhsin covers
a full Lebesgue measure subset of the topological basinticsibn, i.e.
B(1) = WS(A), Leb— mod Q Moreover the support of p is the whole at-
tractor supgp) = A\.

Here we need to assume that!)cr is a flow of classC? since for
the construction of physical measures a bounded distogioperty for
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one-dimensional maps is needed. These maps are naturédined as
quotient maps over the set of stable leaves, which fo@4*& foliation of

a finite number of cross-sections associated to the flow ifltheis C?, see
Section 1.4.2. This will be detailed in Section 4.2.

Recall from Section 1.4 of Chapter 1 that hyperbolicity heeansion-
uniform hyperbolicity the tangent bundle oveX splits into a sunT,M =
Es®EX ©F, of three one-dimensional invariant subspaces definga-éoe.
ze A\ and depending measurably on the base mhinherepis the physical
measure in the statement of Theorem 43, is the flow direction (with
zero Lyapunov exponent) arfg is the direction with positive Lyapunov
exponent.

Theorem 4.3 is another statement of sensitiveness, thés djpplying
to the whole open s&(A). Indeed, since non-zero Lyapunov exponents
express that the orbits of infinitesimally close-by poimetsd to move apart
from each other, this theorem means that most orbits in thim lod attrac-
tion separate under forward iteration. See Kifer [88], angtader [115],
and references therein, for previous results about invarieeasures and
stochastic stability of the geometric Lorenz models.

In the uniformly hyperbolic setting it is well known that phigal mea-
sures for hyperbolic attractors admit a disintegratioo canditional mea-
sures along the unstable manifolds of almost every pointkwhire abso-
lutely continuous with respect to the induced Lebesgue oreasn these
sub-manifolds, see [37, 39, 151, 201].

Here the existence of unstable manifolds is guaranteeddiyperbol-
icity of the physical measure: the strong-unstable madsfdI'"(z) are the
“integral manifolds” in the direction of the one-dimensabisub-bundld-,
tangent toF, at almost everyg € A. The tools developed to prove Theo-
rem 4.3 enable us to prove that the physical measure obttirezlhas ab-
solutely continuous disintegration along the center-ainistdirection, see
Section 1.4 of Chapter 1 for the definition of conditional sw@&s and the
notion of adapted foliated neighborhoods of a point.

Theorem 4.4. Let A be a singular-hyperbolic attractor for a €three-
dimensional flow. Then the physical measure p supportédhas a disin-
tegration into absolutely continuous conditional measufgalong center-
unstable surfacege Mg(X) such thathW\/ is uniformly bounded from above,

for all 3-adapted foliated neighborhoodits(x) and everyd > 0. Moreover
Supp(p) =A.
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Remark4.5. The proof that supfu) = A that we present depends on the
absolutely continuous disintegration property of the jtglsneasureiand
the transitivity ofX on A. However most singular-hyperbolic attractors are
topologically mixing in theC! topology [122] and the Lorenz geometric
models are always topologically mixing [105], so we shoupext a more
general argument proving sufp = A without the need to obtaifirst that
His acu-Gibbs measure dRBmeasure.

Remark4.6. It follows from the proof that the densities of the conditbn
measuresgy, are bounded from below away from zero A B, whereB is
any neighborhood of the singularitie$X | A). In particular the densities
tend to zero as we get closer to the singularitieA of

The absolute continuity property along the center-unstabb-bundle
given by Theorem 4.4 ensures that

hu(Xt) = / log| detDX* | E)|dpy

by the characterization of probability measures satigfyire Entropy For-
mula [93]. The above integral is the sum of the positive Lyapuexpo-
nents along the sub-bundi" by Oseledets Theorem [107, 204]. Since in
the directionE® there is only one positive Lyapunov exponent along the
one-dimensional directioR,, p-a.e. z, the ergodicity ofu then shows that
the following is true.

Corollary 4.7. If Ais a singular-hyperbolic attractor for a€three-dimen-
sional flow X, then the physical measure u supportedhirsatisfies the
Entropy Formula

(%) = [ log|DX" | Ry du(2).

Again by the characterization of measures satisfying theopy For-
mula we get thati has absolutely continuous disintegration along the gron
unstable directionalong which the Lyapunov exponent is positive, tius
is a u-Gibbs stat¢l51]. This also shows that is an equilibrium state for
the potential—log||DX? | F,|| with respect to the diffeomorphist. We
note that the entroplyu(xl) of X1 is the entropy of the flouX! with respect
to the measurg [204].

Hence we are able to extend most of the basic results on tloelierg
theory of hyperbolic attractors to the setting of singuigperbolic attrac-
tors.
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4.1 Expansiveness

For the proof of Theorem 4.1 we need the construction of esestions
and Poinca return maps, which is the subject of Section 3.4.1. We wse th
construction and notations defined there in what follows.

4.1.1 Proof of expansiveness

Here we prove Theorem 4.1. The proof is by contradictionusesuppose
that there exist > 0, a sequencg, — 0, a sequence of functiorng € K
(see Section 1.2.2 of Chapter 1 for the definition of expamsgs), and
sequences of pointg, yn € A such that

d (X! (%), X" (yy)) < &, forallt € R, (4.1)

but
XM (y) ¢ XE-&He (%) forallt € R. (4.2)

The main step in the proof is a reduction to a forward expam&gs
statement about Poin@amaps which we state in Theorem 4.8 below.

We are going to use the following observation: there exisisesregu-
lar (i.e. non-equilibrium) point € A which is accumulated by the sequence
of w-limit setsw(x,). To see that this is so, start by observing that accu-
mulation points do exist, sinckl is compact. Moreover, if thex-limit
sets accumulate on a singularity then they also accumutatd lzast one
of the corresponding unstable branches which, of coursesists of regu-
lar points. We fix such @ once and for all. Replacing our sequences by
subsequences, if necessary, we may suppose that for evwbeye exists
Zy € W(Xn) such thatz, — z

Let > be ad-adapted cross-section atfor some smalb. Reducingd
(but keeping the same cross-section) we may ensure thét the interior
of the subset

Ss={yez:d(y,0z) > &}.

By definition, x, returns infinitely often to the neighborhood nf which,

on its turn, is close t@. Thus dropping a finite number of terms in our

sequences if necessary, we have that the orbi, @ftersects s infinitely

many times. Let, be the time corresponding to théh intersection.
ReplacingXy, Yn, t, andhy by X = X (%), Y = Xy t) (Yn), t' =

t —ty, andh(t') = hn(t’ +tn) — hn(tn), we may suppose that" € 5,
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while preserving both relations (4.1) and (4.2). Moreovesre exists a
sequence j, j > 0 with 1,0 = 0 such that

XV(j) =X, (X") €Z5 and Tnj—Tnjo1 > max{tut}  (4.3)

for all j > 1, wheret; is given by Proposition 3.49 and is given by
Lemma 3.56.

Theorem 4.8. Givengg > 0there exist®y > 0 such that if xc 5 and ye A
satisfy

(a) there exist; such that

Xj = X'i(x) e Zs and Tj—Tj—1>max{T;, T} forall j >1,

(b) dist(X!(x), X"V (y)) < &, for allt > 0 and some fe x;
then there exists s R such that X(®)(y) € WES(X[S~€o-S+0l (x)).

We postpone the proof of Theorem 4.8 until the next sectiahea
plain first why it implies Theorem 4.1. We are going to use thl#ing
observation.

Lemma 4.9. There existp > 0 small and ¢> 0, depending only on the
flow, such that if z z,,z3 are points inA satisfying g € X!-PP(z,) and
e Wpss(zl), then

dist(z1,z3) > ¢c- max{dist(z1, ), dist(z»,3)}.

Proof. This is a direct consequence of the fact that the angle bet&&e
and the flow direction is bounded from zero which, on its téwlows from
the fact that the latter is contained in the center-unstablebundleE®Y,
Indeed consider for small enough> 0 theC? surfaceX PP/ (WsS(z1)).
The Riemannian metric here is uniformly close to the Eueidene and
we may choose coordinates 6nap,p]? putting z; at the origin, sending
W5S(z1) to the segmenft—p, p] x {0} andX[=Pl(z;) to {0} x [—p,p], see
Figure 4.1. Then the angle betweenX!~Pfl(z,) and the horizontal is
bounded from below away from zero and the existence fdllows by
standard arguments using the Euclidean metric. O
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p
/V/x[fp,p] (z1)

 |Aa Weiz)

—P p

Figure 4.1: Distances near a point in the stable-manifold.

We fix ep = € as in (4.2) and then consid& as given by Theorem 4.8.
Next, we fixn such thatd, < & andd, < cp, and apply Theorem 4.8 to
x=x(M andy = y(™ andh = h,. Hypothesis (a) in the theorem corresponds
to (4.3) and, with these choices, hypothesis (b) followstfid.1). There-
fore we obtain thai"® (y) € WSS(X[s-&5+€l(x)). In other words, there
exists|t| < € such thaiX"® (y) € WE(X+T(x)). Hypothesis (4.2) implies
thatX"(®) (y) £ XStT(x). Hence since strong-stable manifolds are expanded
under backward iteration, there exiéts- 0 maximum such that

XML y) eWSSXST () and XTI (y) € XIPRl X y))
forall 0 <t <0, see Figure 4.2. Sindgis maximum

either dis{ X" (y), X5t (x)) = p
or dist(X"SHTY (y) X" -t(y)) = pfort =6.

Using Lemma 4.9, we conclude tha(txs™t(x), X"t (y)) > ¢p > &,
which contradicts (4.1). This contradiction reduces theoprof Theo-
rem 4.1 to that of Theorem 4.8.

4.1.2 Infinitely many coupled returns
We start by outlining the proof of Theorem 4.8. There aredtsteps.

e The first one, which we carry out in the present section, ihtws
that to each returr; of the orbit ofx to X there corresponds a nearby
returny; of the orbit ofy to Z. The precise statementisin Lemma 4.10
below.
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X[=PPl (X)L (y))

WES(X)

WESEXS (X))

Figure 4.2: Relative positions of the strong-stable mad&§and orbits.

e The second, and most crucial step, is to show that thereseaist
smooth Poinca map, with large return time, defined on the whole
strip of Z in between the stable manifolds xfandy; . This is done
in Section 4.1.3.

e The last step, Section 4.1.7, is to show that these Pdnoaps are
uniformly hyperbolic, in particular, they expawod-curves uniformly
(recall the definition otu-curve in Section 3.4.1).

The theorem is then easily deduced: to prove i (y) is in the
orbit of W2(x) it suffices to show that; € W3(xj, %), by Remark 3.48. The
latter must be true, for otherwise, by hyperbolicity of tharfeaé maps,
the stable manifolds of; andy; would move apart ag — o, and this
would contradict condition (b) of Theorem 4.8. See Sectidn7for more
details.

Lemma 4.10. There exists K> 0 such that, in the setting of Theorem 4.8,
there exists a sequence;);>o such that

1. yj=XVi(y)isinZforall j > 0.
2. |uj —h(Tj)| < K-8 and dxj,y;j) < K- 8.

Proof. By assumptiord(x;, X"(ti)(y)) < K- & for all j > 0. In particular
y; = X"Ti)(y) is close toZ. Using a flow box in a neighborhood &f
we obtainX®i(y;) € Z for somegj € (—K-8p,K-8). The constank
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depends only on the vector fiekland the cross-sectidh(more precisely,
on the angle betweeh and the flow direction). Taking; = h(tj) +¢;
we get the first two claims in the lemma. The third one follonesi the
triangle inequality; it may be necessary to repl&céy a larger constant,
still depending orX andZ only. O

4.1.3 Semi-global Poinca@ map

Since we took the cross-sectiino be adapted, we may use Lemma 3.56 to
conclude that there exist PoinéanapsR; with R;(Xj) = Xj+1 andR;(yj) =
Yj+1 and sendingV2(x; , X) andWg(y; , %) inside the lineSVS(xj;1,Z) and
WS(yj+1,%), respectively. The goal of this section is to prove tRaex-
tends to a smooth Poincamap on the whole strif; of Z bounded by the
stable manifolds of xand y; .

We first outline the proof. For eachwe choose a curvg transverse
to the stable foliation of, connectingx; to y; and such thay; is disjoint
from the orbit segments; ,xj1] and[y;,yj+1]. Using Lemma 3.56 in the
same way as in the last paragraph, we see that it suffices te fatR;
extends smoothly tg; . For this purpose we consider a tube-like donmgin
consisting of local stable manifolds throughiemmersed surface;Svhose
boundary is formed by; andy;j;1 and the orbit segmentg;,x;.1] and
lvi,Yj+1], see Figure 4.3. We will prove that the orbit of any pointyjn
must leave the tube throughy 1 in finite time. We begin by showing that
the tube contains no singularities. This uses hypotheystsglether with the
local dynamics near Lorenz-like singularities. Next, gshypothesis (b)
together with a PoincérBendixson argument d§) , we conclude that the
forward orbit of any point inrj must leave the tube. Another argument, us-
ing hyperbolicity properties of the Poinémap, shows that orbits through
yj must leaver; throughyj1 . In the sequel we detail these arguments.

4.1.4 A tube-like domain without singularities

Since we tooky; andyj,; disjoint from the orbit segments; ,x;.1] and
Vi ,Yj+1], the union of these four curves is an embedded circle. Wdlreca
that the two orbit segments are close to each other, by hgpistib)

d(X'(x), X"V (y)) < & forallt e [tj,tj1].
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W(x},2) | WX, D)

Figure 4.3: A tube-like domain.

Assuming tha®dg is smaller than the radius of injectiveness of the expo-
nential map of the ambient manifold (i.e. gx@xM — M is locally invert-

ible in adp-neighborhood ok in M for anyx € M), there exists a unique
geodesic linking eaclX!(x) to X"W(y), and it varies continuously (even
smoothly) witht. Using these geodesics we easily see that the union of
lyj ,Yj+1] with y; andyj1 is homotopic to a curve inside the orbitxfwith
endpointstj andx;,.1, and so it is also homotopic to the segmpaix;1].

This means that the previously mentioned embedded cirblerimtopic to
zero. It follows that there is smooth immersion: [0, 1] x [0,1] — M such

that

e @({0} x[0,1]) =yj and@({1} x [0,1]) = yj11
* ([0, 1]} x {0}) = [y}, Yj+1] and@([0, 1]} x {1}) =[x}, Xj11].
MoreoverS; = ¢([0,1] x [0,1]) may be chosen such that, see Figure 4.4

e all the points of5; are at distance less thanfrom the orbit segment
[Xj ,Xj+1], for some uniform constar, > &y which can be taken
arbitrarily close to zero, reducinly if necessary;

e the intersection o with an incoming cross-section of any singular-
ity (Section 3.4.1) is transverse to the correspondingetaliation.
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Then we definaj to be the union of the local stable manifolds through the
points of that disk.

WY(o
it (0k)

£+

x>

,Sj Ok)  WS(ok)

\WSS(GK)

50—

Figure 4.4: Entering the flow box of a singularity.

Proposition 4.11. The domairz; contains no singularities of the flow.

Proof. By construction, every point of; is at distance< € from §; and,
consequently, at distanees + 81 from [X; ,Xj+1]. So, takinge anddg much
smaller than the sizes of the cross-sections associatdtt teirigularities
(Section 3.4.1), we immediately get the conclusion of thappsition in
the case wheix;,x;.1] is disjoint from the incoming cross-sections of all
singularities. In the general case we must analyze thesit&ons of the
tube with the flow boxes at the singularities. The key obd@mas in the
following statement whose proof we postpone.

Lemma 4.12. Supposeéx;,xj1] intersects an incoming cross-sectiaf
of some singularityy at some poink with d(%,0%) > 8. Thenly;,yj+1]
intersects] at some poing with d(X,y) < K-8 and, moreovek andy are
in the same connected componenEpf W .(0k).

Let us recall that by construction the intersectionSpfwith the in-
coming cross-sectioB}, is transverse to the corresponding stable foliation,
see Figure 4.4. By the previous lemma this intersection igsedy con-
tained in one of the connected component&iof WS ..(ok). SinceT; con-
sists of local stable manifolds through the point$Spfits intersection with
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3! is contained in the region bounded by the stable manifdli&, =} )
andWs(y, 1), and so it is entirely contained in a connected component of
2 \WS.(0k). In other words, the crossing of the tubsgthrough the flow
box is disjoint fromW3 (o), in particular, it does not contain the singu-
larity. Repeating this argument for every intersectionta tube with a
neighborhood of some singularity, we get the conclusiorhefgroposi-

tion. O

Proof of Lemma 4.12The first part is proved in exactly the same way as
Lemma 4.10. We have

R=X"0(x) and y=X%(y)

with |so— h(ro)| < K& . The proof of the second part is by contradiction
and relies, fundamentally, on the local description of theainics near the
singularity. Associated t@ &ndy we have the pointgs = X"1(x) andy'=
X®i(y), where the two orbits leave the flow box associated to theutnigy.
If xandyare in opposite sides of the local stable manifoldigfthenx’and
¥ belong to different outgoing cross-sectionsggf Our goal is to find some
t € R such that

dist(X'(x), X"V (y)) > &,
thus contradicting hypothesis (b).

We assume by contradiction thag are in different connected compo-
nents onL’i \ #*. There are two cases to consider. We suppose first that
h(r1) > s; and note thas; > s ~ h(rg), so thats; > h(rg). It follows
that there exist$ € (ro,r1) such thath(t) = s; sinceh is non-decreasing
and continuous. TheX!(x) is on one side of the flow box afy , whereas
X"®)(y) belongs to the outgoing cross-section at the other sideeofidiv
box. Thus distX!(x),X"" (y)) has the order of magnitude of the diameter
of the flow box, which we may assume to be much larger #han

Now we suppose thai > h(r1) and observe that(r1) > h(rg), sinceh
is increasing. We recall also tht(")(y) is close toy; near the incoming
cross-section, so that the whole orbit segment fJ#io) (y) to XS(y) is
contained in (a small neighborhood of) the flow box, to one %fl the
local stable manifold of; . The previous observation means that this orbit
segment containk"(") (y). Howeverx' (x) belongs to the outgoing cross-
section at the opposite side of the flow box, and so(o}(l@t(x),xh(rﬁ(y))
has the order of magnitude of the diameter of the flow box, Wwkanuch
larger thandg . O
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4.1.5 Every orbit leaves the tube

Our goal in this subsection is to show that the forward orbawery point
z € 7; leaves the tube in finite time: The proof is based on a Po#car
Bendixson argument applied to the flow induced®yon the diskS; .

We begin by defining this induced flow. For the time being, wé&kena
the following simplifying assumption:

(H) Sj = ¢([0,1] x [0,1]) is an embedded disk and the stable manifolds
WS(&) through the point§ € S; are pairwise disjoint.

This condition provides a well-defined continuous projaeti: 7; — S by
assigning to each poiatc 7; the uniqué < S; whose local stable manifold
containsz. The (not necessarily complete) flod induced byX' on S; is
given byY'(&) = r(X!(&)) for the largest interval of values offor which
this is defined. It is clear, just by continuity, that giveryaubsetE of S
at a positive distance frods; , there existg > 0 such that*(£) is defined
for all & € E andt € [0,¢]. In fact this remains true even i approaches
the curvey; (sinceZ is a cross-section fox!, the flow aty; points inward
Sj) or theX!'-orhit segment$x; , X 1] and[y;,yj+1] on the boundary oS;
(because they are al¥6-orbit segments). Thus we only have to worry with
the distance to the remaining boundary segment:

(U) given any subseE of S; at positive distance frong;.1, there exists
€ > 0 such that'*(£) is defined for al€ € E andt € [0,¢].

We observe also that for poirfslose toy;..1 the flowY! (&) must intersect
Yj+1. after which it is no longer defined.

Now we explain how to remove condition (H). In this case, tiduiced
flow is naturally defined on0,1] x [0,1] rather thanS;, as we now ex-
plain. Recall that@: [0,1] x [0,1] — M is an immersion.So given any
w € [0,1] x [0, 1] there exist neighborhoodls of w andV of @(w) such that
¢:U — V is a diffeomorphism. Moreover, just by continuity of the-sta
ble foliation, choosingy/ sufficiently small we may ensure that each stable
manifoldWS(€), & € V, intersects/ only at the poin. This means that
we have a well-defined projectiamfrom Uz W(§) to V associating to
each pointzin the domain the unique element\éfwhose stable manifold
containsz. Then we may defin&'(w) for smallt, by

YH(w) = @ H (X (@(w))).
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As before, we extend! to a maximal domain. This defines a (partial)
flow on the squar€0, 1] x [0,1], such that botH0,1] x {i}, i € {0,1} are
trajectories.

Remark4.13 A singularity Z for the flowY! corresponds to a singularity
of X in the local strong-stable manifold @fin M by the definition ofy*
through the projectiomt

Notice also that forward trajectories of points{i} x [0,1] enter the
square. Hence, the only way trajectories may exit is throfighx [0, 1].
So, we have the following reformulation of property (U):

(U) given any subseE of [0,1] x [0,1] at positive distance from1} x
[0, 1], there existg > 0 such thalr!(w) is defined for alw € E and
t €[0,¢].

Moreover for pointsw close to{1} x [0,1] the flow Y!(&) must intersect
{1} x [0, 1], after which it is no longer defined.

Proposition 4.14. Given any point z= 7; there exists t> 0 such that
X'(2) ¢ Tj .

Proof. The proof is by contradiction. First, we assume conditioh &lip-
pose there existg € 7; whose forward orbit remains in the tube for all
times. Letz, = 1(z). ThenY!(z) is defined for alt > 0, and so it makes
sense to speak of the-limit set w(z). The orbitY!(z) can not accumu-
late ony; 1 for otherwise it would leav&; . Thereforew(zg) is a compact
subset of5; at positive distance from;.1. Using property (U) we can find
a uniform constant > 0 such that!(w) is defined for every € [0,€] and
everyw € w(z). Sincew(z) is an invariant set, we can exteld to a
complete flow on it.

In particular we may fixwg € w(z), w € w(wp) and apply the argu-
ments in the proof of the PoindaBendixson Theorem. On the one hand,
if we consider a cross-sectidgto the flow atw, the forward orbits ofy
andwp must intersect it on monotone sequences; on the other heey, e
intersection of the orbit ofvy with Sis accumulated by points in the orbit
of 7p. This implies thatv is in the orbit ofwg and, in fact, that the later is
periodic.

We consider the dislo C S; bounded by the orbit ofvg. The flow
Y! is complete restricted tB and so we may apply PoinéBendixson’s
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Theorem (see [143]) once more, and conclude Yhatas some singular-
ity C insideD. This implies by Remark 4.13 thx' has a singularity in the
local stable manifold of , which contradicts Proposition 4.11. This contra-
diction completes the proof of the proposition, under agstion (H). The
general case is treated in the same way, just dealing witfidlvenduced
on|[0,1] x [0,1] instead of orf; . O

4.1.6 The Poincaé map is well-defined o

We have shown that for the induced flath on S; (or, more generally, on
[0,1] x [0,1]) every orbit must eventually crosg,1 (respectively,{1} x
[0,1]). Hence there exists a continuous Poigcarap

royp—VYirs, (&) = Yo (&)

By compactness the Poinéatime 6(-) is bounded. We are going to de-
duce that every forwar¥*-orbit eventually leaves the tukrg throughZ 1,
which proves thaR; is defined on the whole strip & between the mani-
foldsW3(x;, ;) andWs(y;, %), as claimed in Section 4.1.2.

To this end, ley be acentral-unstable curve ik connecting the stable
manifolds W(x;,Z) andW>3(y;,>). Observe thay is inside7;. For each
ze v, lett(2) be the smallest positive time for whiati? is on the boundary
of Tj.

The crucial observation is that, in view of the constructibi! , each
X!@(z) belongs to the (global) stable manifold QfX(11(2)). We observe
also that for{&} = ynW5(x;, Z) we havey'(£) = X'(§) and sct () = 6(%).

Now we takez € y close to€. Just by continuity, th&!-trajectory ofg
andzremain close, and by the forward contraction along stableifioids,
the X'-trajectory of¢ remains close to the segmeR},x;.1]. Moreover
orbit of z cannot leave the tube through the union of the local strosgjest
manifolds passing through;, xj+1], for otherwise it would contradict the
definition ofY!. Hence the trajectory afmust leave the tube through. 1.
In other wordsx!(? (z) is a point ofg , 1, close to€ = X'(®)(g).

Lety C y; be thelargest connected subsehich contains; such that
Xt (z) € 2,1 for all z€ §. We want to prove that = y since this implies
thatR; extends to the wholgand so, using Lemma 3.56, to the whalge.

The proof is by contradiction. We assufis not the wholey, and letx”
be the endpoint different fro. Then by definition offy° and ofY; (from
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Section 4.1.5x = X! () is on the center-unstable bounda@¥/z ;. of
the cross-sectiollj, 1, between the stable manifold¥S(x;,1,Zj,1) and
WS(yj11,%j+1), see Figure 4.5. By the choice pand by Corollary 3.51,
V= {Xz(2) : zey} isacucurve.

wiy,5) " LA %1 LS Wﬁiﬂ;ﬂ)
hel y \\\\‘V Wixl;"'])
Q) X ﬁ Y1
W?Xj’zj) 5 & X 0 5 z )(j+1 5 W?Xj+1%+1)

Figure 4.5: Exiting the tube &;j 1.

On the one hand, by Lemma 3.52, the distance betweandf =
%i(¢)(§) dominates the distance between their stable manifoldg @yd

() < k-d(E,%) < K-d(W(Xj11,%), WX, 5)).

We note that(y) is larger tham, sinceg is in A and the sectioixj, is
adapted. On the other hand, the distance between the twe stabifolds
is smaller than the distance between the stable manifok].af and the
stable manifold of/;;1, and this is smaller thal - &y . Sincedg is much
smaller thard, this is a contradiction. This proves the claim th4P) () € =
forallzey.

4.1.7 Expansiveness of the Poincamap

We have shown that there exists a well defined Po@ceturn magR; on
the whole strip between the stable manifoldsxpfandy; inside Z. By
Proposition 3.49 and Corollary 3.51 we know that the rRajs hyperbolic
where defined and, moreover, that the length of eaeturve is expanded
by a factor of 3 byR; (since we chos& = 1/3 in Section 3.4.1). Hence the
distance between the stable manifoRjgWS(x;,Z)) andR; (W5(y;,)) is
increased by a factor strictly larger than one, see Figudeod.the next
page. This contradicts item (2) of Lemma 4.10 since thisadist will
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eventually become larger thdh- 8. Thusy; must be in the stable mani-
fold WS(x;,%). Since the strong-stable manifold is locally flow-invatian
and X"(M)(y) is in the orbit ofy; = XVi(y), then X"Ti)(y) € WS(xj) =
Ws(X"i(x)), see Lemma 4.10 on page 192.

Yi Yi+1 T+l

Figure 4.6: Expansion within the tube.

According to Lemma 4.10 we haye; — h(tj)| < K-8y and, by Re-
mark 3.48, there exits a small > 0 such that

Re(yj) = X'(yj) € WES(xj) with  [t| <e1.

Therefore the piece of orbit, = X[Vi~K-3o—e10j+K-3o+&1l (y) must contain
XN() (y). We note that this holds for all sufficiently small valuesdef> 0
fixed from the beginning.

Now let g > 0 be given and let us consider the piece of orhjt=
X[ti—¢0Tj+%0l(x) and the piece of orbit af whose strong-stable manifolds
intersectoy, i.e.

Oxy={X3(X) : FT € [Uj —K-Bp—t,0j+K-8p+t] 5. t. X" (y) e WE(X5(x)) }.

Sincey; € W3(x;j) we conclude thabyy is a neighborhood of; = X' (x)
which can be made as small as we want taldpg@nde; small enough. In
particular this ensuresyy C 0x and soX"%)(y) € WSS(X Ti—¢oTi+ol(x)).
This finishes the proof of Theorem 4.8.

4.2 Singular-hyperbolic attractors are non-uniformly
hyperbolic

Here we start the proof of Theorem 4.3.
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The starting point

We show in Section 4.2.1 that choosinglabal Poincaé section= (with
several connected components) ¥ron A, we can reduce the transfor-
mation R to the quotient over the stable leaves. We can do this using
Lemma 3.56 with the exception of finitely many leavgscorresponding
to the points whose orbit falls into the local stable manifof some singu-
larity or are sent into the stable bound@®z of someZ € = by R, where
the return time functiom is discontinuous.

As will be explained in Section 4.2.1, the global PoiricarapR: = —
= induces in thisway amap: # \I' — # on the leaf space, diffeomorphic
to a finite union of open intervalk which is piecewise expanding and
admits finitely manys, ..., u; ergodic absolutely continuous (with respect
to Lebesgue measure o invariant probability measures (acim) whose
basins cover Lebesgue almost all point$.of

Moreover the Radon-Nikodym derivatives (densiti%'% arebounded
from aboveandthe support of eachy contains nonempty open intervade
the basinB(uk) contains nonempty open intervals Lebesgue modulo zero,
k=1,...,I.

Description of the construction

Afterward we unwind the reductions made in Section 4.2.1 alidin a
physical measure for the original flow at the end.

We divide the construction of the physical measure/Xan the follow-
ing steps.

1. The compact metric spaéeis endowed with a partitiosr and map
R:=\T — =, whererl is a finite set of elements of (see Sec-
tion 4.2.1). The mafR preserves the partitiom and contracts its
elements by Lemma 3.56. We have a finite fanuily...,u, of ab-
solutely continuous invariant probability measures fa thduced
quotient mapf : 7 \I' — 7.

We show in Section 4.2.2 that eaohdefines aR-invariant ergodic
probability measurg;. In Section 4.2.3 we show that the baBifm;)

is a union of strips ok, andn; are therefore physical measures for
R. Moreover these basins cover

M(E\(B(n)u---UB(M))) =0,
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whereA? is the area measure &

2. We then pass froR-invariant physical measures, . . ., n; to invari-
ant probability measures, ..., v, for the suspension semiflow over
R with roof functiont. In the process we keep the ergodicity (Sec-
tion 4.2.5) and the basin property (Section 4.2.5) of thesuess: the
whole spacé& x [0,+w)/ ~ where the semiflow is defined equals the
union of the ergodic basins of tlwg Lebesgue modulo zero.

3. Finally in Section 4.2.6 we convert each physical measufer the
semiflow into a physical measupefor the original flow. We use that
the semiflow is semi-conjugated ¥ on a neighborhood oh by a
local diffeomorphism. Uniqueness of the physical meaguisethen
deduced in Section 4.2.6 through the existence of a densdareg
orbit in A (recall that our definition of attractalemanddransitivity)
and by the observation that the basiua@bntains open sets Lebesgue
modulo zero. In Section 4.2.7 we show thats (non-uniformly)
hyperbolic.

The details are exposed in the following sections.

4.2.1 Global Poincaé maps& reduction to 1-dimensional
map

Here we construct a global Poinéamap for the flow near the singular-
hyperbolic attracto\. We then use the hyperbolicity properties of this
map to reduce the dynamics to a one-dimensional piecewpsmeiing map
through a quotient map over the stable leaves.

Cross-sections and invariant foliations

We observe first that by Lemma 3.55 we can takesamlapted cross-section
at each non-singular poirte A. We know also that near each singularity
ok there is a flow-boXJg, as in Section 3.4.1, see Figure 3.1

Using a tubular neighborhood construction near any givayptdl cross-
sectionZ, we linearise the flow in an open ddi = X(~¢#)(int(Z)) for a
smalle > 0, containing the interior of the cross-section. This pdegi an
open cover of the compact s&tby flow-boxes near the singularities and
tubular neighborhoods around regular points.
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We let{Us;,Ug, :i=1,...,I;k=1,...,s} be afinite cover of\, where
s> 1is the number of singularities iy, and we sef; > 0 to be an upper
bound for the time it takes any poimatc Us,; to leave this tubular neigh-
borhood under the flow, for any=1,...,I. We assume without loss that
To > Ts.

To define the PoincéarmapR, for any pointz in one of the cross-
sections in

S {5,555 =1, hk=1,....8},

we considerz= X2(z) and wait for the next timeé(z) the orbit of Z hits
again one of the cross-sections. Then we defif® = X212 (2) and say
thatt(z) = T2 +t(z) is thePoinca® timeof z. If the pointz never returns
to one of the cross-sections, then the riRaig not defined ar (e.g. at the
lines/* in the flow-boxes near a singularity). Moreover by Lemma 3i66
Ris defined forx € ~ on someX € =, thenR is defined for every point in
W3(x,Z). Hencethe domain of RX consists of strips af. The smoothness
of (t,x) — X'(x) ensures that the strips

S(5) ={xeZ:R(X) €'} (4.4)

have non-empty interior i for everyZ,¥’ € =.WhenR maps to an out-
going strip near a singularitgy, there might be a boundary of the strip
corresponding to the Iin@IE of points which fall in the stable manifold of
Ok.

Remark4.15 Consider the Poincarmap given by thdirst return map
Ro : = — = defined simply a&(z) = X" (z), where

T(2)=inf{t >0:X'(2) € =}

is the time theX-orbit of z € = takes to arrive again &. This mapRy is

not defined on those poingawvhich do not return and, moreovédy might

not satisfy the lemmas of Section 3.4.1, since we do not knbetker the
flow from zto Ry(z) has enough time to gain expansion. However the stable
manifolds are still well defined. By the definitions B and ofR we see
thatR is induced by R i.e. if R is defined for z =, then there exists an
integer r(x) such that
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We note that since the number of cross-sectiors is finite and the time
to is a constant, then the function = — N is bounded: there existg € N
such thar (x) <rg forall x € =.

Finite number of strips

We show that fixing a cross-sectiane = the family of all possible strips
as in (4.4) coverg except for finitely many stable leav#8%(x;,2),i =
1,...,m=m(Z). Moreover we also show that each strip given by (4.4) has
finitely many connected components. Thus the number ofssinigach
cross-section is finite.

We first recall that each € = is contained irJg, sox € X is such that
w(x) C A. Note thatRis locally smooth for all point € int(Z) such that
R(x) € int(Z) by the flow box theorem and the smoothness of the flow,
where int=) is the union of the interiors of each cross-sectiortofLet
05= denote the union of all the leaves forming the stable boynofaevery
cross-section ix.

Lemma 4.16. The set of discontinuities of R |\ 0°= is contained in the
set of points »x =\ 05= such that:

1. either RX) is defined and belongs &5=;

2. or there is some tim@ < t < T, such that X(x) € W.(0) for some
singularity o of A.

Moreover this set is contained in a finite number of stablevdsaof the
cross-section € =.

Proof. We divide the proof into several steps.

Step 1 Cases (1) and (2) in the statement of the lemma correspond to a
possible discontinuities d?in =\ 0°=.

Let x be a point inZ\ 0°Z for someZX € =, not satisfying any of the
conditions in items (1) and (2). TheéR(x) is defined andR(x) belongs to
the interior of some cross-secti@h By the smoothness of the flow and by
the flow box theorem we have thatis smooth in a neighborhood gfn Z.
Hence any discontinuity point f&® must be in one the situations (1) or (2).
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Step 2 Points satisfying item (2) are contained in finitely manytdeaves
ineach> € =.

Indeed if we seW = XI=T2% (UsWE (o)), where the union above is
taken over all singularities of A, thenW is a compact sub-manifold of
M with boundary, tangent to the center-stable sub-buidie EX. This
means thatV is transverse to any cross-sectioreof

Hence the intersection &% with any X € = is a one-dimensional sub-
manifold of Z. Thus the number of connected components of the inter-
section is finite in eack. This means that there are finitely many points
X1,-..,X € Z such that

WNECW3(xg,Z) U+ UW3(X, Z).

Step 3 Points satisfying item (1) are contained in a finite numbestable
leaves of eachi € =.

We argue by contradiction. Assume that the set of pdint$ = sent by
Rinto stable boundary points of some cross-sectiof &fsuch that

L={WS(x,Z):xe D}

hasinfinitely many lines Note thatD in fact equalsL by Lemma 3.56.
Then there exists an accumulation W& (xp,%). Since the number of
cross-sections i& is finite we may assume thdiS(xp, ) is accumulated
by distinct WA(x;, Z) with x € D satisfyingR(x) € WS(z,Z') c 0%’ for a
fixedX' € Z,i > 1. We may assume thattends taxg wheni — oo, thatxg
is in the interior ofWS(xp,X) and that theq are all distinct — in particular
the pointsx; do not belong to any periodic orbit of the flow since we can
choose the; anywhere in the stable séi5(x;,%).

As a preliminary result we show th&(x) = X5 (x) is such thas is
a bounded sequence in the real line. For othengise « and this means,
by definition ofR, that the orbit 0iX™(x;) is very close to the local stable
manifold of some singularitg of A and thatR(x;) belongs to the outgoing
cross-section near this singularit(x;) € zg‘i. Hence we must have that
X3 (x;) tends to the stable manifold ofwheni — o and thatR(x ) tends
to the stable boundary mf,‘i. Since no point in any cross-sectionans
sent byRinto this boundary line, we get a contradiction.
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Now the smoothness of the flow and the fact &z %') is closed
imply thatR(xg) € W3(z,Z') also since we have the following

R(Xo) = ilirr; R(x) = ilin;xs (x) =X%(x) and ilirorgs = .
MoreoverR(W3(xp, X)) C W5(z X') andR(xo) is in the interior of the image
R(WS(x0,Z)), thenR(x) € RIW3(xo, X)) for all i big enough. This means
that there exists a sequenges W3(xp, %) and a sequence of real numbers
Ti such thatX" (yi) = R(yi) = R(x) for all sufficiently big integers. By
construction we have that # y; and both belong to the same orbit. Since
X;,Yi are in the same cross-section we get that X% (y;) with |a;j| > T3
for all bigii.

However we also have that — sy becauseR(yi) = R(x) — R(xo),
Vi € W5(xg,X) andR| W5(xo, X) is smooth. Thuss —T1i| — 0. But|s —Tj| =
|oj| > T3 > 0. This is a contradiction.

This proves thab is contained in finitely many stable leaves.

Combining the three steps above we conclude the proof okthenka.

O

Let I be the finite set of stable leaves ®fprovided by Lemma 4.16
together withdS=. Then the complemer \ I' of this set is formed by
finitely many open strips whefe is smooth. Each of these strips is then a
connected component of the s&(&’) for Z,%' € =.

Integrability of the global Poincaré return time

We claim thathe Poincaé timet is integrable with respect to the Lebesgue
area measure o&. Indeed giverz € =, the pointz= X'2(2) either is inside a
flow-boxUg, of a singularityoy, or not. In the former case, the tira¢akes

to reach an outgoing cross—sectii)?nki is bounded by the exit time function
T§k of the corresponding flow-box, which is integrable, seeir@.4.1. In
the latter caseg takes a time of at most-d3 to reach another cross-section,
by definition of T3. Thus the Poinc&time on= is bounded by, +2- T3
plus a sum of finitely many integrable functions, one for effmli-box near

a singularity, by finiteness of the number of singularitefthe number of
cross-sections i and of the number of strips at each cross-section. This
proves the claim.
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Remark4.17. Givenze X € = we writet¥(z) = (R 1(2)) + - -- + 1(2) for
k> 1and sa = tt. Since

R(WS(z5)) € XU (WS(z,3)) c X¥P (),

the Iength€(Rk(WS(z, Z))) is uniformly contracted and‘(z) — + when
k — -+, we get thaR¥(WS(z, %)) C 2’ for someX’ € = and

d(Rk(WS(z, Z)),awz') > 3/2

for all big enouglk, by the definition otJ and ofd-adapted cross-section.
(The distancel(A, B) between two setd, B means infd(a,b) :ac A be
B}.) We may assume that this property holds for all stable @&z X),
all ze > and eveny € = for all k > ko, for some fixed bid € N, by the
uniform contraction property dR in the stable direction.

The Holder property of the projection

From now on we assume that the flgi!)cr is C2. Under this condition

it is well known [107, 146] that the stable |8af5(x,X) for everyxe Z € =

is aC? embedded disk and these leaves defil@ doliation 7> of each

¥ e = with a HolderC? holonomy (since the leaves are one-dimensional).

From Section 1.4.2 we know that in this setting the holonoprgjéc-
tion) along transverse curves g° areC** for some 0< a < 1 which
depends oiX only, since they can be seen as maps between subsets of the
real line.

Recall also Remark 3.48: the projections we are dealing vottsist
really on the composition of two projections. The first aldhg strong-
stable leaves and the second along the flow.t8ince the flow is assumed
to beC?, the end result is a holonomy map3rwhich is HolderC?.

Reduction to the quotient leaf space

We choose once and for al2f cu-curveys transverse tors°ineach> € =.
Then the projectiop; along leaves ofrs> ontoys is aCl*® map. We set

I= |J int(Z(Z))nys

35e=
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and observe that by the propertie2g®’) obtained earlier in the beginning
of this Section 4.2.1, the sétis diffeomorphic to a finite union of non-
degenerate open intervals. . ., I, by aC? diffeomorphism angs | pgl(l)
becomes £+ submersion. Note that sinéeis finite we can chooses
so thatps has bounded derivative: there exifts> 1 such that

Bi < |Dpz | y| < Bo for every cu-curve inside anyz €
0

In particular, denoting the Lebesgue area measure vey A% and the
Lebesgue length measure bhy A, we have( ps ). A% < A.

According to Lemma 3.56, Proposition 3.49 and Corollaryl3the
Poincaé mapR: = — = takes stable leaves of;® inside stable leaves of
the same foliation and is hyperbolic. In additioc@curvey C X is taken
by Rinto acu-curveR(y) in the image cross-section. Hence the map

f:l—1 givenby |3z py (R(WS(z, 5) mZ(z’)))
for 2,%' € = is aC*® map and for points in the interior &f i =1,...,m

}Df|:‘D(pz/oRoyz)|28—10-o. (4.5)

Thus choosing; (and consequently) big enough so that /B > 3/2> 1
in Proposition 3.49, we obtain thdtis piecewise expanding. Moreover
|17 | 1] is aa-Holder function since for ak,y € 1; we have

1 1 _|F-fy _ C
TRl PO S PPy (322

for some O< a < 1. Thusf : | — | is aC*® piecewise expanding map

: |X_y|av

Remark4.18 By Lemma 3.56 the Poincartime1 is constant on stable
leavesWs(x,X) for all x € £ € =. Thus there exists a return time function
1) on | such thatt =1, 0 p, wherep: = — y= is the joining of all ps,

T € Zandy= = {ys : Z € =}. The integrability oft with respect ta\? (see
Section 4.2.1) implies th-integrability oft; naturally since ps).A> < A
andtjop=T.
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Existence and finiteness of acim’s

It is well known [201, 210, 78] tha€® piecewise expanding magsof
the interval such that /1f’| is of bounded variation, have finitely many
absolutely continuous invariant probability measures sehbasins cover
Lebesgue almost all points bf

Using an extension of the notion of bounded variation (definelow)
it was shown in [86] that the results of existence and fingsra# absolutely
continuous ergodic invariant measures can be extendetpecewise ex-
panding mapg such thag=1/|f’| is a-Hdlder for somex € (0,1). These
functions are of universally bounded variation, i.e.

n a

sup (Z o(a) —¢(ai—1)!1/u> < oo,
a=ap<ay<--<an=b \ =1

where the supremum is taken over all finite partition of therval | =

[a,b]. Moreover from [86, Theorem 3.2] the densitig®f the absolutely

continuous invariant probability measures fosatisfy the following: there

exists constanta,C > 0 such that

/osc(q),s,x)dxgc-s“ forall O<e<A,

where 0S¢, €,X) = €SS SUP,cpxe) |6(y) — ¢(2)| and the essential supremo
is taken with respect to Lebesgue measure. From this we cdrafse-
quenceg, — 0 such that og®, ¢y, ) — 0 (with respect to Lebesgue

measure). This implies that su@p contains non-empty open intervals

Indeed, for a given smab > 0 leta > 0 be so small aneh so big
thatW = {¢ > a} andV = {osd¢,&n, ) > a/2} satisfyA(l \W) < & and
A(V) <d. ThenA\(WNI\V)>1-20>0. Letx be a Lebesgue density
point of WN1\V. Then there exists a positive Lebesgue measure subset
of B(x,&n) where¢ > a. By definition of os€d, en, X) this implies that for
Lebesgue almost eveyye B(x, €n) we havep(y) > a/2 >0, thusB(x,&n) C
SupH ).

In addition from [86, Theorem 3.3] there are finitely manyaatig abso-
lutely continuous invariant probability measunes...,u; of f and every
absolutely continuous invariant probability measurdecomposes into a
convex linear combination = z!:laui. From [86, Theorem 3.2] consid-
ering any subinterval C | and the normalized Lebesgue measuye- (A |
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J)/A(J) onJ, then every weakaccumulation point ofi—* z’;;é fl(\;) is
an absolutely continuous invariant probability measurfer f (since the
indicator function ofJ is of generalized Ao-bounded variation). Hence
the basin of theys,...,u; coverl Lebesgue modulo zerdk(l \ (B(v1) U
~-UB(uj)) =0.

Note that from [86, Lemma 1.4] we also know tithe densityp of
any absolutely continuous f-invariant probability measigrbounded from
above In what follows we show how to use these properties to buhilgsp
ical measures for the flow.

4.2.2 Suspending Invariant Measures

Here we show how to construct an invariant measure for afoemation
from an invariant measure for the quotient map obtained figrartition of
the space. We show also that if the measure is ergodic on titeeqt) then
we also obtain ergodicity on the starting space.

In Section 4.2.3 we apply these results to the global PoinozapR
of a singular-hyperbolic attractor and its corresponding-dimensional
guotient mapf.

Later we extend the transformation to a semi-flow through spen-
sion construction and show that each invariant and ergodasure for the
transformation corresponds to a unique measure for the-i@mivith the
same properties.

In Section 4.2.5 we again apply these results to the tramsftion R
to obtain physical measures for the suspension semiflowRwéth roof
functionTt.

Reduction to the quotient map

Let = be a compact metric spadeC = andF : (=\I') — = be a measur-
able map. We assume that there exists a partitioof = into measurable
subsets, havinf as an element, which is

e invariant: the image of any € # distinct fromTI is contained in
some elemen of 7 ;

e contracting: the diameter of"(§) goes to zero when — oo, uni-
formly over all theg € # for whichF"(&) is defined.
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We denotep: = — 7 the canonical projection, i.g assigns to each point
X € = the atomg € 7 that contains it. By definitionA C # is measurable

if and only if p~1(A) is a measurable subset®fand likewiseA is open if,
and only if, pgl(A) is open in=. The invariance condition means that there
is a uniquely defined map

f:(F\{lr})— % suchthat fop=poF.

Clearly, f is measurable with respect to the measurable structuretvee in
duced inF . We assume from now on that the leaves are sufficiently regula
so that=/ 7 is a metric space with the topology induced oy

Let ys be any probability measure gn invariant under the transfor-
mation f. For any bounded functiog : = — R, lety_ : # — R and
W, : 7 — R be defined by

Y€ =infe(x) and W, (E) = supp(x).

xe& Xe&

Lemma 4.19. Given any continuous functiap: = — R, both limits

IiL‘n/(quF”)_dpf and |im/(¢oF“)+duf (4.6)

exist, and they coincide.

Proof. Let be fixed as in the statement. Giver 0, letd > 0 be such that
[W(x1) —W(x2)| < € for all x3,x% with d(x1,X%2) < 8. Since the partitionF
is assumed to be contracting, there exists 0 such that diarfF"(g)) < &
for every € ¥ and anyn > ng. Letn+k > n > ng. By definition,

(WoF™X)_(8) — (WoF")_(fX(8)) = inf(W| F™X(&)) —inf(w | F"(fX(2))).

Observe thaE™* (&) c F"(fX(€)). So the difference on the right hand side
is bounded by

sup(y | F"(fX(8))) —inf (W | F"(f4(§))) <e.

Therefore

‘/(lonFrH'k)duf 7/(qu|:"), o fkdys| <e.
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Moreover, one may replace the second integraf byyo F")_ dps, because
Ks is f-invariant.

At this point we have shown thdtf(Wo F")_dpe }n>1 is a Cauchy
sequence ifR. In particular, it converges. The same argument proves that
{f(q_uo FM. due }n>1 is also convergent. Moreover, keeping the previous
notations, B

0< (WoF™M (&) — (WoF™_(&) =sup(y | F"(€)) —inf (W |F"(§)) <e

for everyn > ng. So the two sequences in (4.6) must have the same limit.
The lemma is proved. O

Corollary 4.20. There exists a unique probability measuge en = such
that

/LIJdu: :Iim/(LIJoF”),dpf :lim/(mopmdm.

for every continuous functiafp : = — R. Besides, glis invariant under F.
Moreover the correspondence g [k is injective.

Proof. Let (W) denote the value of the two limits. Using the expression
for p(W) in terms of(Wo F™)_ we immediately get that

A1+ W2) > P(Pr) + P(g2).

Analogously, the expression pfy) in terms of(Yo F") . gives the oppo-
site inequality. So, the function() is additive. Moreoven(cl) = cfi(W)
for everyc € R and every continuous functiap. Thereforep(-) is a linear
real operator in the space of continuous functignsE — R.

Clearly, (1) = 1 and the operatqu i5 non-negativep(y) > 0 if ¢ >
0. By the Riesz-Markov theorem, there exists a uniqgue meagupon =
such thatu{y) = [Wwdpe for every continuousy. To conclude thaf is
invariant undef it suffices to note that

Ao F) = lim [(oF™)_dy = i(w)

for everyy.

To prove that the map; — P is injective, we note that ifie = pi
are obtained fronps andy; respectively, then for any continuous function
¢ : F — R we have that) = ¢ o p: = — R is continuous. But

Hr (WoFM)x) =pr ((dopoF™)+) =pi (o flop)s) =us(dpo f") =pi ()
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for all n > 1 by thef-invariance ofus. Hence by definition

K (9) = M (W) = K (W) = Hi (9)
and saus = I;. This finishes the proof of the corollary. O

Remark4.21 We note that/ Wdpe = limy, [(Wo F™)xdpe for every con-
tinuousy : = — R and any choice of a sequen@po F")y: ¥ — R with

inf(W|F(€)) < (WoFM#(&) < supw|F"(€)).

Moreover we can definé ydpe for any measurabley : = — R such that
Jim (sup | F(€)) —inf(w | F(€))) =0

uniformly inn € N and in& € # . This will be useful in what follows.

Lemma 4.22. Lety : = — R be a continuous function arfde 7 be such
that

im 'S (o R (&) = [(poF¥)_d
m 2, WeF- (118) = [ woFt)- du

n-1 .
for every k> 1. ThenIiLn % zqu(FJ(x)) = /qupF for every xe &.
J=

Proof. Let us fix andg as in the statement. Then by definition(gf o
FK). and by the properties of we have

(WoFN)_(f1(8)) < (WoFY)(FI(x) < (WoF¥), (f1())

forallxe & andj,k> 1. Givene > 0, by Corollary 4.20 there exiskg € N
such that for alk > kg

HE (Y) —% < Yt ((lIJOFk)f) < Mt ((LIJOFk)+) < "J'F(LIJ)+§

and there is € N such that for alh > ng = ng(k)

n—1

L 5 (WoF)(118) ~i ((WoF") )| <

n]=
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Hence we have that for afl > ny(K)

1
n+k—1

:T n+k ZO (WoFI)(x Z)NJOFJ)(X)SUF(QJ)"‘S

Sincen can be made arbitrarily big ared> 0 can be taken as small as we
want, we have concluded the proof of the lemma. O

3\!—‘

Corollary 4.23. If p; is f-ergodic, then g is ergodic for F.

Proof. Since=/# is a metric space with the topology induced pyve
have thaC®( 7 ,R) is dense i (7 ,R) for theL-topology andp: = — 7
is continuous. Hence there exists a sulisef 7 with s (£) = 1 such that
the conclusion of Lemma 4.22 holds for a subBet p~%(z) of =. To
prove the corollary it is enough to show that(E) = 1.

Let d = Xe = Xz o p and takey,, : F — R a sequence of continuous
functions such thap, — X whenn — 4+ in theL! topology with respect
to ys. Thend, = Ypo p is a sequence of continuous functions®such
thaty, — g whenn — +o0 in theL! norm with respect tqi.

Then it is straightforward to check that

He (W) = i pie (Wn o)) = lim e (gno 1) = e (0n)

which converges tqi ()

= 1. Sincepg (YPyn) tends tops (E) whenn —
+00, we conclude thate (E) = 1,

as we wanted. O

4.2.3 Physical measure for the global Poinc& map

Let us now apply these results (wireplacingF) to the case of the global
Poincaé map for a singular-hyperbolic attractor.

From the previous results in Sections 4.2.1 and 4.2.2 thielfininany
acim’suy,...,u; for the one-dimensional quotient mdpuniquely induce
R-invariant ergodic probability measurgs,...,n; on=.

We claim that the basins of eagh, ..., n; have positive Lebesgue area
A2 on = and coverA? almost every point op~(1). Indeed the uniform
contraction of the leavess \ I' provided by Lemma 3.56, implies that the
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forward time averages of any pairy of points in§ € # \ p(I") on contin-
uous function® : = — R are equal

1n-1 ) 1n-1 )
Jim l” ];)q)(RJ (x9) -+ ,Zoq’(RJ (W)] =0.

HenceB(ni) > p~1(B(vi)),i =1,...,1. This shows thaB(n;) contains an
entire strip except for a subset ®-null measure, becaugv;) contains
some open interval modulo zero. Sincg. (A%) < A we get in particular

| |
N2(B(ni) >0 and A?(p~t(1)\(JB(M)) = p.?) (1N UB(ui)) =0,
i=1 i=1

showing thats,...,n; are physical measures whose basins cqvei(l)
Lebesgue almost everywhere. We observe (1) c = is forward in-
variant undeR, thus it containg\N =.

4.2.4 Suspension flow from the Poincd map

Let = be a measurable spadebe some measurable subsetpfandF :
(Z\T) — = be a measurable map. Let = — (0,+] be a measurable
function such that inf > 0 andt = +o onT.

Let ~ be the equivalence relation & [0, +-) generated byx, t(X)) ~
(F(x),0), that is,(x,s) ~ (X,8) if and only if there exist

(X,S) = (X0750)a (lesl)a ey (XstN) = (ivé)
in = x (0,+) such that, for every £i <N
either x;=F(x_1) and s=s_1—1(X-1);
or x—1=F(x) and s_1=s-—T1(X).

We denote by = = x [0, +)/ ~ the corresponding quotient space and by
1. = — V the canonical projection which induces ¥na topology and a
Borel c-algebra of measurable subsetd/of

Definition 4.1. The suspension of F with roof function (or return-tine)
is the semi-flow(X!);>o defined orV by

XH(T(x,8)) = T(x,S+t) for every(x,s) € = x [0, +o) andt > 0.
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It is easy to see that this is indeed well defined as in Sectidi bn
page 15. In what follows we writX! instead ofX! sincer is fixed and no
ambiguity can arise.

Remarkd.24. If F is injective then we can also define
X7(m(x,8)) = (F"(X), s+ T(F (X)) +- -+ T(F (X)) —t)

for everyx € F'(Z) and 0<t < s+ T1(F (X)) +--- + T(F~1(x)). The
expression on the right does not depend on the choise-df. In particular,
the restriction of the semi-flo@X!);>o to the maximal invariant set

A= {(x,t) xe (F"(3) andtzo}

n>0

extends, in this way, to a flo@X!)icg OnA.

Let ue be any probability measure ahthat is invariant undef. Then
the productys x dt of ye by Lebesgue measure ¢y +) is an infinite
measure, invariant under the trivial flo@e,s) — (x,s+1) in = x [0, 4-00).
In what follows we assume that the return time is integrabth respect to
Hr, i.€e.

bE (T) :/rdu: < ©0. 4.7

In particularpgs (M) = 0. Then we introduce the probability measugeon
V defined by

Jodm= 2 [ [ ocmxn)otapo0
= (X, X
T/ o "
for each bounded measuralleV — R.

We observe that the correspondepge— px defined above is injective.
Indeed for any bounded measuratple= — R, definingd on{x} x [0, T(X))
to equalpe(T) - Y(x)/T(X) gives a bounded measurable mppV — R
(since inft > 0) such thatix (¢) = pe (P). Hence ifux = P thenpe = P

Lemma 4.25. The measureylis invariant under the semi-flogX!);>o.

Proof. It is enough to show thaix ((X')~1(B)) = px(B) for every mea-
surable seB C V and any O< t < inft. Moreover, we may suppose that
B is of the formB = 1(A x J) for someA C = andJ a bounded interval in
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[0,inf(T | A)). This is because these sets form a basis foctiaégebra of
measurable subsets\éf

Let B be of this form andx,s) be any point in= with 0 < s < 1(x).
ThenX!(x,s) € Bif and only if i(x,s+t) = 1(X, §) for some(X, §) € Ax J.
In other words,(x,s) € (X')~%(B) if and only if there exists some > 0
such that

£=F"(x) and S=s+t—1(x)—---—T1(F"1(x)).
Sinces < 1(X), t < inft, ands™ 0, it is impossible to hava > 2. So,
e eitherX=xands= s+t (corresponding ta = 0),
e orX=F(x) ands= s+t —1(x) (corresponding to = 1)

The two possibilities are mutually exclusive: for the firsedx,s) must be
such thas+t < 1(x), whereas in the second caset > 1(x). This shows
that we can writgX!)~(B) as a disjoint uniorfX') = (B) = By U By, with

Bi=m{(x,s):xc Aandse (J—t)N[0,T(x)) }

B, =m{(x,5) : F(x) € Aands € (J+1(x) —t) N[0, T(X))}.
Sincet > 0 and sup < 1(x), we have(J—t)N[0,T(x)) = (J—t) N[0, 40)
for everyx € A. So, by definitionpi (B1) equals

/Af((J—t)ﬂ[O,T(x)))dw(x) =1 (A)-£(A=0N[0,+e)).
Similarly infJ > 0 andt < t(x) imply that
(J+1(X) —t) N[0, (X)) =T(X) + (I —t) N (—0,0).

Hencepx (By) is given by

o (=001 (=0.0)) e 00 = e () £ -1 (~.0)).

Sincey is invariant undeF, we may replacer (F~1(A)) by pe (A) in the
last expression. It follows that

kx ((X')74(B)) = ix(B1) + kx (B2) = b (A) - £((I —1)).

Clearly, the last term may be written gs(A) - £(J) which, by definition, is
the same agx (B). This proves thati is invariant under the semi-flow and
ends the proof. O
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Given a bounded measurable functipnV — R, let $ : = — R be
defined by

T(X)
d00= [ o)t (4.8)

Observe tha is integrable with respect g and by the definition ofix

/diduF:uF(T)~/¢dux-

Lemma 4.26.Let¢ :V — R be a bounded function, arfobe as above. We
assume that x = is such thatt(F!(x)) and §(F’(x)) are finite for every
j >0, and also

n—1

.1 ;
@ Ilnm - J;jr(FJ(x)) = /pop, and

ooant o
®) I 5 $(F100) = [ ode.

T
Then_lim %/ ¢(n(x,s+t))dt:/¢dpx for everyi(x,s) € V.
0

T—+0c0
Proof. Let x be fixed, satisfying (a) and (b). Given afy> 0 we define
n=n(T) by
T1<T<Ty, where Tj=1(X)+---T1(F/(x))for j >0

Then usingy, 1(y)) ~ (F(y),0) we get

1 /T 1 [n=1 fu(Fi) .
1 M otxsttyde=2 [ o((F (),1)
T /0 T JZ)/O (4.9

+/OT_Tn1¢(n(F”(x)7t))dt—/Oscl)(T[(x,t))dt} .

Using the definition oy, we may rewrite the first term on the right hand

side as
n n-1

T'ijZO“F"(X”' (4.10)
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Now we fixe > 0. Assumption (a) and the definition oimply that,

n-(/rdu:—s) ng_lngTng(n+1)-(/TduF+s),

for every large enough. Observe also that goes to infinity asl — +oo,
sincet(F!(x)) < o for everyj. So, for every largd,

L i111F(T)+8§L1F(T)+28-

HF(T)—sﬁﬁ n

This proves thafl /n converges tqu=(1) whenT — +o. Consequently,
assumption (b) implies that (4.10) converges to

u%m/dsaw:/wux.

Now we prove that the remaining terms in (4.9) converge to adren
T goes to infinity. Since is bounded

T—Th-1 —
LT e < TP sugel. (e

Using the definition oh once more,
T-Th1<Th—Th1 < (n+1)(/rdp;: +¢) —n(/rdu: —¢)

whenevemn is large enough. Then

T—Tn,1<frduc+(2n+1)s< de
T = n(ftde—¢) ~ [tdee—¢

for all large enough'. This proves thatT — T,_1)/T converges to zero,
and then so does (4.11). Finally, it is clear that

s
%/ d(m(x,t))dt—0 when T — +co.
0

This completes the proof of the lemma. O

Corollary 4.27. If ug is ergodic then W is ergodic.
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Proof. Let$ : V — R be any bounded measurable function, drte as in
(4.8). As already noted} is pr-integrable. It follows thafh(F!(x)) < o
for everyj > 0, atpe-almost every poink € =. Moreover, by the Ergodic
Theorem, condition (b) in Lemma 4.26 holds-almost everywhere. For
the same reasons(F(x)) is finite for all j > 0, and condition (a) in the
lemma is satisfied, fau=-almost allx € =.

This shows that Lemma 4.26 applies to every pgiint a subsefA C =
with pe (A) = 1. It follows that

lim %/{)Tq)(xt(z))dt:/q)dpx

T—+4o

for every pointz in B = 1i(A x [0,+)). Since the latter hagx (B) = 1,
we have shown that the Birkhoff averagedpfis constanfux-almost ev-
erywhere. Then the same is true for any integrable funcasnpounded
functions are dense ih'(py). Thuspy is ergodic and the corollary is
proved. O

4.2.5 Physical measures for the suspension

Using the results from Sections 4.2.3 and 4.2.4 it is sttédgivard to ob-
tain ergodic probability measures, . ..,v; invariant under the suspension
(XYt of Rwith return timet, corresponding to the-physical probability
measures1,...,N respectively.

Now we use Lemma 4.26 to show that eagls a physical measure for
(XYHis0,i=1,...,l. Letx € ZNB(v;) for a fixedZ € = andi € {1,...,I}.
According to Remark 4.18 the return timeon | is Lebesgue integrable,
thusuvi-integrable also sinc%‘;Ti is bounded. Henceis nj-integrable by the
construction of); from v; (see Section 4.2.2).

Lemma 4.26 together with the fact thatis physical forR, ensures that
B(vi) contains the positivi! orbit of almost every pointx,0),x € B(vj),
with respect to\? on B(n);). If we denote byA® = 1i.(A? x dt) a natural
volume measure oy, then we ged3(B(v;)) > 0.

This also shows that the basiBév1),...,B(v|) coverA3-almost every
point inVo = 1i(p~1(1) x [0,+)). Notice that this subset is a neighbor-
hood of the suspensian((ANZ\T) x [0,+)) of ANZ\T.
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4.2.6 Physical measure for the flow

Here we extend the previous conclusions to the original ftawmpleting
the proof of Theorem 4.3.

We relate the suspensi¢i! )i~o of Rwith return timet to (X )t>o in U
as follows. We define

®:=x[0,40) —U by (xt)— X (x)

and since®(x,1(x)) = (R(x),0) € = x {0}, this map naturally defines a
quotient map

®:V —U suchthat goX!=X'o@, forall t>0, (4.12)

through the identification- from Section 4.2.4.

Let = = {(x,t) € (E\T) x [0,4) :0<t < 1(X)}. Note that= is a
open set i/ and thatrt| =; : =; — =; is a homeomorphism (the identity).
Then the magp| =, is a local diffeomorphism int¥p = @(= x [0,+c)) CU
by the natural identification given khyand by the Tubular Flow Theorem,
since points irE; are not sent into singularities & Notice that=; is a full
LebesgueX®) measure subset ®. Thus@is a semi-conjugation modulo
zero. Note also that the number of pre-images @f globally bounded by
ro from Remark 4.15.

Therefore the measuresconstructed for the semifloX{ in the previ-
ous Section 4.2.5 define physical measyges @.(vi), i =1,...,l, whose
basins cover a full Lebesgum| measure subset b, which is a neighbor-
hood ofA. Indeed the semi-conjugacy (4.12) ensuresdfiBtv;)) C B(1;)
and sincapis a local diffeomorphisms on a full Lebesgue measure subset
then

m((p(B(vl) U---u B(w))) =0.
SinceVp C U we have

W (A) = X (Vo).
t<0

MoreoverX! is a diffeomorphism for alt € R, thus preserves subsets of
zerommeasure. HenogyoX"' (B(p1) U---UB( )) has full Lebesgue mea-
sure inW3(A). In other words, Lebesguenj almost every poink in the
basinwWs(A) of A is such thai!(x) € B(1;) for somet >0 andi =1,...,1.
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Uniqueness of the physical measure

The set\ is an attractor. According to our definition of attractorrenexists
zp € A\ such thaf{ X!(z) : t > 0} is a dense regular orbit if.

We prove uniqueness of the physical measure by contradjaasum-
ing that the numbdrof distinct physical measures is bigger than one. Then
we can take distinct physical measurgsn for R on = associated to dis-
tinct physical measuresg, pp for X | A. Then there are open séig U, C =
such that

UiNU2,=0 and A(B(ni)\Uj) =0, i=12

For a very smalf > 0 we consider the open substs= X(-49(U;),i =
1,2 of U such thaw; NV, = 0. According to the construction @f we have

The transitivity assumption ensures that there are peditivesT; < T
(exchangingv;, andV; if needed) such thaXi(z) € Vi, i = 1,2. Since
V1, Vs are open sets ang= X2~ is a diffeomorphism, there exists a
small open seéiV; C V; such thag | Wy : Wy — V5 is aC? diffeomorphism
into its image\, = g(Wy) C Va.

Now theC! smoothness af | W ensures that a full Lebesgug)(mea-
sure subset olV; is sent into a full Lebesgue measure subsé&iofBy the
definition of g and the choice o¥1,V,, there exists a point iB(py) "Wy
whose positive orbit contains a point B{p) "Ws, thuspy = pp. Hence
singular-hyperbolic attractors have a unique physicallpbility measure

v

4.2.7 Hyperbolicity of the physical measure
For the hyperbolicity of the measupene note that

e the sub-bundI&®is one-dimensional and uniformly contracting, thus
on theE3-direction the Lyapunov exponent is negative for every poin
inU;

e the sub-bundl&® is two-dimensional, dominates®, contains the
flow direction and is volume expanding, thus by Oseledetfidra
[107, 204] the sum of the Lyapunov exponents on the direation
E®is given byy;(log|detDX; | E®"|) > 0. Hence there is a positive
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Lyapunov exponent fguj-almost every point on the direction BfY,
i=1,...,1.

We already know from Section 1.4 that expanding directidBGhdoes
not coincide with the flow directioB) = {s-X(2) : s€ R}, z€ A, sinceE)
always has zero Lyapunov exponent for regular points for@ogihnflow on
a compact manifold.

This shows that gi-almost every point the Oseledets splitting of the
tangent bundle has the form

TM=ESQESDF,

whereF; is the one-dimensional measurable sub-bundle of vectdts wi
positive Lyapunov exponent. The proof of Theorem 4.3 is detep

4.2.8 Absolutely continuous disintegration of the physida
measure

Here we prove Theorem 4.4. We lgtbe a physical ergodic probability
measure for a singular-hyperbolic attractoof aC?-flow in an open subset
U c M3, obtained through the sequence of reductions of the dyrsaafic
the flowX! to the suspension floX! of the Poincag mapR and return time
functiont, with corresponding-invariant measure obtained from th&k-
invariant measurg. In additionn is obtained through the ergodic invariant
measurev of the one-dimensional map: 1 — |. This is explained in
Section 4.2.3. We know thatis hyperbolic as explained in Section 4.2.6.

Let us fix 8 > 0 small. Then by Pesin’s non-uniformly hyperbolic
theory [149, 58, 162] we know that there exists a compactetos A
such thatu(A \ K) < & and there exist®; > 0 for which everyz € K
admits a strong-unstable manif(WS’“ ) with inner radiusd;. We refer to
this kind of sets aBesin’s setsThelnner radiusof W''(2) is defined as the
length of the shortest smooth curve in this manlfofd froto its boundary.
MoreoverK > z+— Wg(2) is a continuous maf — £*(I1,M) (recall the
notations in Section 3.4.1).

The suspension floX! defined orV in Section 4.2.4 is semi-conjugated
to theX!-flow on an open subset bf through a finite-to-1 local homeomor-
phismg, defined in Section 4.2.6, which takes orbits to orbits ard@rnves
time as in (4.12). Hence there exists a correspondinif’setg (K ) satis-
fying the same properties &f with respect toX!, where the constan&, ;
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are changed by at most a constant factor dug foby the compactness of
K. In what follows we use the measure= (¢ 1), instead ofu and write
K for K’

We fix a density poinky € K of v | K. We may assume thag € X for
someX € =. Otherwise ifxp & =, sincexp = (X,t) for somex € 2, ¥ € = and
0 <t < T(x), then we uséx,0) instead ofxg in the following arguments,
but we still writexy. Clearly the length of the unstable manifold through
(x,0) is unchanged due to the form of the suspension flow, at leastrall
values ofd;. Sincev is given as a product measure on the quotient sgace
(see Section 4.2.5), we may assume without loss of genethditxg is a
density point ol onZNK.

We setW'(x,Z) to be the connected componentf(x) N Z, the un-
stable manifold ok that contains, for x e KNZ. Recall thatW'(x) C A
because\ is an attracting set. ThéW"(x,Z) has inner radius bigger than
some positive valud, > 0 for x € KN Z, which depends only o, and the
angle betweelVs(x) andT,2.

Let us define7 5(xp,d2) = {WS5(x,Z) : x € W¥(Xo,Z)} and the corre-
sponding horizontal strif°(Xo,82) = Uy rs(x,,5,)Y- P0INtsz € F3(xo, &)
can be specified using coordinatesy) € WY(xo, 2) x R, wherex is given
by WY(xo,Z) N"W5(z X) andy is the length of the shortest smooth curve
connectingk to zin WS5(z X). Let us consider

Fl(%0,02) = {WY(z2Z):ze £ and WY(zX) crosses F5(x,d;)},

where we say that a curyerosses B(xg, 8) if the trace ofy can be written
as the graph of a mafy(xo, ) — W3(Xo, Z) using the coordinates outlined
above. We stress that"(xp, ;) is not restricted to leaves through points
of K.

We may assume th&t"(xo, 82) = UF !(xo, 82) satisfies)(F!Y(xp,d2)) >
0 up to taking a smalled,; > 0, sincexg is a density point of) | KNX. Let
f| be the measure onY(xg, ;) given by

n(A)=n ( U y) for every measurable setA C  “(xo, ).
yeA

Proposition 4.28. The measurg | FY(xp, d2) admits a disintegration into
conditional measuregy alongfj-a.e. y € ¥ “(xg,d2) such thatn, < Ay,
whereAy is the measure (length) induced giby the natural Riemannian
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measure\? (area) onZ. Moreover there exists > 0 such that

1 d N
— < gl < Do, ny-almosteverywhere fay-almost every.

This is enough to conclude the proof of Theorem 4.4 since dgp#nd
8, can be taken arbitrarily close to zero, so that all unstazed V! (x, X)
through almost every point with respect fowill support a conditional
measure of.

Indeed, to obtain the disintegrationwélong the center-unstable leaves
that cross any small ball around a density poinof K, we project that
neighborhood ok, along the flow in negative time on a cross secton
Then we obtain the familyny}, the disintegration off along the unstable
leavesy € 7! on a stripF*® of 2, and consider the familyny x dt} of
measures orr U x [0,T] to obtain a disintegration of, whereT >0 is a
fixed time slightly smaller than the return time of the poiintshe stripF=,
see Figure 4.7.

Figure 4.7: Center-unstable leaves on the suspension flow.

In fact, ny x dt < Ay x dt andAy x dt is the induced (area) measure on
the center-unstable leaves by the volume meaktiren V, and it can be
given by restricting the volume forik® to the surfacey x [0, T] which we
write )\\3;, for ye #Y. Thus by Proposition 4.28 and by the definitionvof
we have
dny

Vy=nyxdt= dhy

N, ver!

and the densities of the conditional measuygs dt with respect t0\$ are
also uniformly bounded from above and from below away fromo zewe
have left out the constant factof{d(t) to simplify the notation.
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Sincep = @.v and @ is a finite-to-1 local diffeomorphism when re-
stricted to=;, thenp also has an absolutely continuous disintegration along
the center-unstable leaves. The densities on unstabledgave related by
the expression (whenm, denotes the area measure on the center-unstable
leaves induced by the volume fonm)

dny .3 1 dny\ 4
=000 =0 (5 4) = (Gapryrmmy 1) o0
forye 7Y, which implies that the densities along the center-unstidalves
are uniformly bounded from above.

Indeed observe first that the number of pre-imageswidergis uni-
formly bounded byrg from Remark 4.15, i.e. by the number of cross-
sections of= hit by the orbit ofx from time O to timet,. Moreover the
tangent bundle of x [0, T] is sent byDg into the bundIeE® by construc-
tion and recalling thap(x,t) = X'(x) then, ife; is a unit tangent vector at
X €Y, & is the unit tangent vector g(x,0) € WY(x,X) ande; is the flow
direction at(x,t) we get

Dg(x.t)(e1) = DX (X'(x)) (&) and
De(x,t)(e2) = DX'(X'(X)) (X(x,0)) = X(X'(x)).

HenceD (@] yx [0,T])(x,t) = DX" | Egixy) for (x.t) € yx[0,T] and so

| detD (@] yx [0,T]) (x,t)] = J(x).

Now the volume expanding property ¥f along the center-unstable sub-
bundle, together with the fact that the return time functiasa not bounded
from above near the singularities, show that the densitigs, @re uni-
formly bounded from above throughatitbut not from below. In fact, this
shows that these densities will tend to zero close to theutanigies ofX in
A

This finishes the proof of Theorem 4.4 except for the proofropsi-
tion 4.28 and of sup(p) = A, which we present in what follows.

4.2.9 Constructing the disintegration

Here we prove Proposition 4.28. We split the proof into saivlEsmmas
keeping the notations of the previous sections.
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LetA?, R: p~ (1) — =, 7 Y(x0,82), F!(x0, 82) andn be as before, where
X0 € KNZ is a density point ofy | K andK is a compact Pesin set. We
write {ny} and{AZ} for the disintegrations af | F(xo,32) andA? along
Y€ 7 Y(X0,82).

Lemma 4.29. Either ny < AZ for f-a.e. y € ¥ Y(xo,82), or ny L AZ for
N-a.e.y € 7Y(xp, ).

Proof. We start by assuming that the first item in the statement does n
hold and proceed to show that this implies the second itemwkie ) for
N(FY(x0,82)) 1 N | FY(xo,8) to simplify the notation in this proof.

Let us suppose that there exigts- F!(xo,82) such thatj(A) > 0 and
A$(A) =0 forfj-a.e. y € 7Y(x,8,). Let B = Ux=oRK(A). We claim that
n(B) = 1.

Indeed, we hav&y(B) C B, thenB c R"%(B) and (R*(B)),., is a
nested increasing family of sets. Singeis R-ergodic we have for any
measurable s& C =

N ,
nllrﬂmﬁgo”(cm R(B)) =n(C)-n(B). (4.13)

But n(Uk=0 R™(B)) = 1 because this union i&-invariant andn(B) =
r](R*k(B)) > 0 by assumption, for anik > 0. Because the sequence is
increasing and nested we hayéR(B)) ,~ 1. Hence from (4.13) we get
thatn(C) =n(C) -n(B) for all setsC C X. Thusn(B) =1 as claimed.
Therefore 1= n(B) = [ny(B)df(y) and sony(B) = 1 for f-a.e.y e
FY(xo,02) since every measure involved is a probability measure.
We now claim thah?(B) = 0 for ra.e.y € # U(xo, ). For if R(A) Ny #
0 for somey € 7 Y(xo,82), thenANR1(y) NFY(x0,8;) # 0 and so it is
enough to consider onlxNFY, whereF = R™1(F!(xo,82)) NF!(X0,82).
But AZ(ANFL') < NZ(A) =0 thus

0=A2(Ro(ANFY)) > AZ(Ro(A) NFY(x0,52)) = A2(Ro(A))

for A-a.e.y sinceRy is piecewise smooth, hence a regular map. Therefore
we get\7(R¢(A)) = 0 for allk > 1 implying thatA?(B) = O for fj-a.e.y.

This shows that)y is singular with respect tbf, for A-a.e.y. The proof
is finished. O
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Existence of hyperbolic times forf and consequences t&

Now we show that a positive measure subsef 8fxgp,d,) has absolutely
continuous disintegrations, which is enough to concludgtioof of Propo-
sition 4.28 by Lemma 4.29, except for the bounds on the deasit

We need the notion dfyperbolic timefor the one-dimensional map
f [5]. We know that this map is piecewisg!t® and the boundarieB
of the intervalsly, ..., I, can be taken as singular setfor f (where the
map is not defined or is not differentiable) which behaves &ilpower of
the distance td o, as follows. Denoting by the usual distance on the
intervalsl, there exisB > 0 and3 > 0 such that

o 3-d(xTo)f < || <B-d(xo)F;
o [log|f'(x)| ~log|f'(y)|| < B-d(xy) d(x.Fo) P,

for all x,y € | with d(x,y) < d(x,[g)/2. This is true off since in Sec-
tion 4.2.1 it was shown thdt | I either is bounded from above and below
away from zero, or else is of the ford with B € (0,1).

Givend > 0 we defineds(x, o) = d(x, ) if d(x,g) < dand 1 other-
wise.

Definition 4.2. Givenb,c,d > 0 we say thah > 1 is a(b, ¢, d)-hyperbolic
time forx e | if

n-1 n-1
t(t1(x)] *<e* and ds(f1(x),Fo) = e (4.14
j:|:|7k1 (Fe9)] " <e™™ an j:|:|7k 5(f(x), o) =™ (4.14)

forallk=0,....n—1.

Sincef has positive Lyapunov exponewtalmost everywhere, i.e.

1 n
nIﬁ|n+1mﬁlog|(f )'(x)| >0 foru-almostallx e,
andg—x is bounded from above (whekds the Lebesgue length measure on
1), thus|logd(x,To)| is v-integrable and for any givea> 0 we can find
0 > 0 such that fon-a.e.x € |

n-1 .
lim 1 —logds(f!(x),lo) = /flogda(x, Mo)du(x) < e.
i

n—oo N _
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This means thaf is non-uniformly expandingnd hasslow recurrence to
the singular setHence we are in the setting of the following result.

Theorem 4.30(Existence of a positive frequency of hyperbolic timelsgt

f:1 — | be aC*® map, behaving like a power of the distance to a singu-
lar setlp, non-uniformly expanding and with slow recurrence tpwith
respect to an absolutely continuous invariant probabititgasurey. Then

for b,c,6 > 0 small enough there exisés= 8(b,c,d) > 0 such that-a.e.

x € | has infinitely many(b, c,d)-hyperbolic times. Moreover if we write
0<n <ny<n<... for the hyperbolic times of x then their asymptotic
frequency satisfies

>1:ne <
fiminf k=1 Mk < N}

N—o0

>0 for v-a.e.xel.

Proof. A complete proof can be found in [5, Section 5] with weaker as-
sumptions corresponding to Theorem C in that paper.
O

From now on we fix values dh, c,d) so that the conclusions of Theo-
rem 4.30 are true.

We now outline the properties of these special times. Failéetproofs
see [5, Proposition 2.8] and [3, Proposition 2.6, Corol&s¥, Proposition
5.2].

Proposition 4.31. There are constantgs, 3> > 0 depending onb, c,d)
and f only such that, if n igb, c,d)-hyperbolic time for x I, then there
are neighborhoods Wx) C | of f"K(x), k=1,...,n, such that

1. K| Wk(x) maps W(x) diffeomorphically to the ball of radiu§;
around '(x);

2. for everyl <k <nandyze W(x)

d(1"4(y). 1"K@) < e ¥2.d(1"(y), "@);

3. fory,ze Wh(x)
(' )]
[(f")(2)]

éé < B2.
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The conjugacypo R = f o p between the actions of the Poineanap
and the one-dimensional map on the space of leaves, togettiethe
bounds on the derivative (4.5), enables us to extend thespiiep given
by Proposition 4.31 to angu-curve insideB(n), as follows.

Lety:J— = be acu-curve in=\I" such thaty(s) € B(n) for Lebesgue
almost everys € J, J a non-empty interval — such a curve exists since the
basinB(n) contains entire strips of some sectbre = except for a subset
of zero area. Note that we have the following limit in the wegdpology

Ntoo ¥

1n—1_
lim A = h A== (A
mNj=n where )= 5 R0y,

by the choice ofand by an easy application of the Dominated Convergence
Theorem.

Proposition 4.32. There are constantgg,k; > 0 depending on(b, c,d)
and Ry, Bo, B1, B2 only such that, if 2 yand n is big enough and @, c, d)-
hyperbolic time for px) € |, then there are neighborhoodg(%) of R (x)
on RK(x)(y), k=1,...,n, such that

1. R¢|Vk(x) maps ¥(x) diffeomorphically to the ball of radiusy around
R"(x) on R\(y);

2. foreveryl <k <nandyze W(x)
Aro-k(y) (R (y),R"X(2)) <Po-e /2. dry) (R'(Y),R'(2));

3. fory,ze Vnh(x)
1 _|pR

y)|

[V( .
o = PR @] =

4. the inducing time of'Ron \k(x) is constant, i.e.t¥| Vi(x) = const..

Hered, denotes the distance alopgiven by the shortest smooth curve
in yjoining two given points andly denotes the normalized Lebesgue length
measure induced onby the area form?2 on =.

Proof of Proposition 4.32Let xo = p(x) andW(xo) be given by Propo-
sition 4.31,k = 1,...n. We have thatp(y) is an interval inl and that



232 CHAPTER 4. SENSITIVENESS & PHYSICAL MEASURE

p|ly:y— p(y) is a diffeomorphism — we may takewith smaller length
if needed.

If nis big enough, thew,(Xo) C p(y). Moreover the conjugacy implies
that the following maps are all diffeomorphisms

Ve B R()
pl Ip ,

V() —  B(f¥(x0),ko)

and the diagram commutes, whergx) = (p | Rk(y))_l(wi((xo)), k=
1,...,n, see Figure 4.8. Using the bounds (4.5) to compare derastixe
getko = B1/Po andki = Bo - B2

- T — T
v | R'y) !
vy v v

X f(x) f2(x) " 1) ")

Figure 4.8: Hyperbolic times and projections.

To get item (4) we just note that by definition @b, c,)-hyperbolic
time none of the setd(Xp) may interseclo. According to the definition
of I'p, this means that orbits througtly € Vi(x) cannot cut different cross-
sections in= before the next return in timg(x), T(y) respectively. Hence
every orbit throughM(Xp) cuts the same cross-sections in its way to the
next return cross-section. In particular the number of s#gEction cuts is
the same, i.er | Vi(x) is constantk = 1,...,n. Hence by definition of¥
we obtain the statement of item (4) sifR@/%(x)) = Vk_1(x) by definition.
This completes the proof of the proposition. O

Approximating n by push forwards of Lebesgue measure at hyperbolic
times

We define fom > 1

Hn = {xe€y:nisa(b,c/2,0)-hyperbolic time forp(x)}.
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As a consequence of items (1-2) of Proposition 4.32, we Heatdt, is an
open subset of and for anyx € ynHp we can find a connected component
y" of R"(y) N B(R"(x),Ko) containingx such thaR" | Vi(X) : Va(X) — y" is

a diffeomorphism. In additiog" is acu-curve according to Corollary 3.51,
and by item (3) of Proposition 4.32 we deduce that

1 _d(R) [BR'(X),Ko))
K1 ™ d)\yn

<Ky, Ap—a.e. ony" (4.15)

whereAyn is the Lebesgue induced measureydnfor any n > 1, if we
normalize both measures so tHaR")..(Ay) | B(R"(x),Ko)) (Y") = Ayn(Y"),
i.e. their masses oyl' are the same.

Moreover the seR"(ynHp) has an at most countable number of con-
nected components which are diffeomorphic to open intervédach of
these components iscarcurve with diameter bigger thaw and hence we
can find apairwise disjoint familyy" of ko-neighborhoods around ;)
in R"(y), for some xe H,, with maximum cardinalitysuch that

Bn=UY' CR(yHn) and ((RI(Ay) | Bn)(Bn) > 2—; Ay(Hn).

(4.16)
Indeed sinceR"(yN Hy) is one-dimensionalfor each connected compo-
nent the familyA, may miss a set of points of length at most equal to the
length of oney, for otherwise we would manage to include an exiga
neighborhood in\,. Hence we have in the worst case (assuming that there
is only one sey" for each connected component)

Ay (RN H) \ Bn) < Agn (W) = Ayn(8n)

so that 1

and the constam; comes from (4.15).

For a fixed smallp > 0 we considet\,, given by the ballsy” with
the same centex,; but a reduced radius & — p. Then the same bound
in (4.16) still holds with &1 replaced by B;.

We write Dy, for the family of disks fromuU;>1A; with the same expand-
ing iterate (the disks with the same centers as the onesiggrbut with
their original size).
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We define the following sequences of measures

1n71 . o
cogzﬁ Z)R{()\y)mj_p and )\c:)\{,‘—wg, n>1
j=

Then any weaklimit point fj = Iimkoog" for some subsequencg < np <

...andn = Iika\r,1k (wheren, may be taken as a subsequencef are
R-invariant measures which satisfy=f +1.

We claim thatf # 0, thusn = ] as a consequence of the ergodicity of
n. In fact, we can bound the massa)g from below using the density of
hyperbolic times from Theorem 4.30 and the bound from (4th&ugh
the following Fubini-Toneli-type argument. Write,¢d) = #J/n for any
J c {0,...,n— 1}, the uniform discrete measure on the finsintegers.
Also setyi(x) = 1 if x € H; and zero otherwisé=0,...,n—1. Then

) s S H ) = () Ay (X) ity
GBM) > g 5 M )= g0 | | x00@N0 din(i)
_ 3%//Xi(x) At (i) Ay (x) > 6% >0,

for everyn big enough by the choice gf

Approximating unstable curves by images of curves at hyperblic times

We now observe that sinag(FY(xp,d2)) > 0 andXo is a density point of
n | FY(xo,82), thenwfj(F!(xo,02)) > ¢ for some constart > O for all big
enoughn. If we assume thab, < p, which poses no restriction, then we
see that theu-curves fromDj , intersecting="(xo, 82) will cross this hor-
izontal strip when we restore their original size. Thus ktm/ésurj‘;éDj
in the support ofof which intersecFY(xo, d,) cross this strip. Given any
sequencg™ of leaves inDy, crossingF!(Xo,82) withmy <nmp <nz <...,
then there exists @!-limit leaf y* also crossindg-Y(xo, 8;), by the Ascoli-
Arzela Theorem. We claim that this leaf coincides with thetahle man-
ifold of its points, i.e. Y =W"(x,Z) for all x € y¥*. This shows that the
accumulation curveg” are defined independently of the chosen sequence
y™ of curves inZ.

To prove the claim let us fik > 0 and take a bid so thatng > |. We
note that for any distinct,y € y* there are, yx € y™ such thai(x, yk) —
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(x,y) whenk — . Then forxg,yx there exists a neighborhodg, of a
pointy such thaly™ = R™(V,,, ).
We takej = ng —I. We can now write for somey, zc € Vi,

A0 = d(RY (Rl (wy)), RV (R 20
e|c/4 | |
> —— d(R™ (W), R™ ' (z)).
Bo
Note that each paiR™ ! (wy), R (z) belongs to a sectioBiy € = and
thatR (R%! (wy)) = x¢ andR (R%!(z)) = yk. Lettingk — o we obtain
limit points (R™" (w), R%!(z,)) — (W) in some sectioiX € = (recall
that= is a finite family of compact adapted cross-sections) sauigf

Rw)=x, R(z)=y and d(w,z)<Boe'%* d(xy).

Since this is true for anly> 0 we conclude thatis in the unstable manifold
of x with respect taR, i.e. y € W¥(x), thusy € WY(x, X) by the following
lemma. This proves the claim.

Lemma 4.33. In the same setting as above, we hay(dy C WY(x,Z).

Notice that since both seWj}(x) andW!(x,Z) are one-dimensional
manifolds embedded in a neighborhoodxdh , then they coincide in a
(perhaps smaller) neighborhoodxof

Proof. Letyp € WY(x,Z). Then there existsso thatzg = X¢(yo) € WY(x),
with |€| small by Remark 3.48 and tending to 0 when we tgke- x. Let
t; > 0 be such thax ! (x) =w € Z for | > 1. Then we have

dist(X " (z),X " (x)) — 0 (4.17)

|—oo0

and so there existg such thatX® ' (z9) = z = X887l (yo) € = with |g|
small. Notice that (4.17) ensures thgt — 0 also.

Hence there exist8 = d(g, ¢) satisfyingd — 0 when(e+¢;) — 0 and
alsod(z,w) < & for all | > 1. SinceR (z) = yo we conclude thay €
WE(x), finishing the proof. O
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Upper and lower bounds for densities through approximation

We definer ! to be the family of all leaveg® obtained a€* accumulation
points of leaves in

Fa' ={€€UGD; & crosses F3(xo,8)}.

We note thatr C #"(Xo,82). Since for alln we havewyq > wg and so
wh(UFY) > ¢, we get that) (U #Y') > c. By definition of 7' and by (4.15)
we see thatoj | Fy' disintegrates along the partition,' of Fy' = U7,! into
measuresog havmg density with respect tv uniformly bounded from
above and below, for almost evefye 7.

To take advantage of this in order to prove Proposition 4.28@nsider
a sequence of increasing partitiofigy)x>1 of Ws(xo,Z) whose diameter
tends to zero. This defines a sequengef partitions off = Ug<n<o ¥ @s
follows: we fixk > 1 and say that two elemeris #;",&' € 7j”,0 <i,j<o
are in the same atom af when both intersed/5(x,%) in the same atom
of 7k and eitheii, j > kori = j <k.

If g is the projection : 7 — W5(x0,2) given by the transverse inter-
sectiong N"W3(xo, %) for all & € 7, then# can be identified with a subset
of the real line. Thus we may assume without loss that thenuig of the
boundaries ofr satisfiesn(dx) = f{(d#x) = O for all k > 1, by suitably
choosing the sequenaé.

Upper and lower bounds for densities

GivenZ € ¥ we write p: FY(xo,3,) —  the projection along stable leaves
andw for wy. Writing 2 (Q) for the atom ofp, which containg, then since
2¢(Q) is a union of leaves, for any given Borel &t { andn> 1

W (7(Q)Np(B) = [F(2QNPUB)AFE)  (418)

through disintegration, wher&" is the measure orf induced byw".
Moreover by (4.15) and because each curve iorosse$="(xg, 0)

MBS AP iB) <@(n@npiB) @19)

K1K2
W (7(QNpi(B)) < K1-7\z(p (B)) < kiKz-A¢(B) (4.20)
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foralln,k > 1 and@™a.e.§ c 7, wherek, > 0 is a constant such that
1 ~
K—~)\Z <A <Kz-Ag foral &er,
2

which exists since the angle between the stable leaves ik ariy and any
cu-curve is bounded from below, see Figure 4.9.

2k(Q)

F5(%0,82)

Figure 4.9: Leaves crossiief(xo, 0,) and the projectiomp.

Finally lettingl € 7.\ and choosin@® such that] (ap (B)) =0 (which

poses no restriction), assuming thptd (2y( )) =0 we get
from (4.18), (4.19) and (4.20) for atl> 1

o M(B) (@) < (2@ NP HB)) < Kake Ny (B) A (D)

(4.21)
by the weak convergence ob" ton. Thus to conclude the proof we are left
to check that) (9(#(2) N p~1(B))) = 0. For this we observe tha ()N
p~1(B) can be written as the produgt?y({)) x B. Hence the boundary is
equal to

(8a(2«(2)) x B) U (a(2k(Q)) x 8B) C g *(da(2«(2))) Up *(B)

and the right hand side haszero measure by construction.

This completes the proof of Proposition 4.28 since we hife=
Ni>12k(¢) for all C 7 and, by the Theorem of Radon-Nikodym, the
bounds in (4.21) imply that the disintegrationrpf U# . along the curves
( € 7, is absolutely continuous with respect to Lebesgue meadang a
these curves and with uniformly bounded densities from akand from
below.
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4.2.10 The support covers the whole attractor

Finally to conclude that sugp) = A it is enough to show that sufyp con-
tains somecucurvey: (a,b) — X in some subsectiol € =. Indeed, see
Figure 4.10, lettingg € ANZ be a point of a forward dense regul¥r
orbit and fixingc € (a,b) ande > 0 such that < c—& < c+¢€ < b, then
for any p > 0 there exists > 0 satisfying disfy(c),X'(x0)) < p. Since
WS(X'(x0),Z) th (Y] (c—€,c+¢€)) = {z} (becausey is acucurve inX
and p > 0 can be made arbitrarily small, whetfemeans transverse in-
tersection), then, by the construction of the adapted esestonZ (see
Section 3.4.1), this means that WS(X'(x)). Hence thew-limit sets of
zandxp are equal to\. Thus suppu) 2 A because sugp) is X-invariant
and closed, and O supgl) becausé\ is an attracting set.

piece of stable manifold

——

y X'(2)

Figure 4.10: Transitiveness and support of the physicaborea

We now use (4.21) to show thgtalmost every # is contained in
supfn), which is contained in sugp) by the construction ofi fromn in
Section 4.2.3. In facfj-almost every € ¥ is a density point of} |  and
so for any on€ of these curves we havig#({)) > 0 for allk > 1. Fixing
ze C and choosing > 0 we may findk > 1 big enough and a small enough
open neighborhooB of zin { such that

2(Q)Np *(B) CB(ze)NT and n(2(Q)Np *(B)) >0,

by the left hand side inequality in (4.21). Sinee> 0 andz € { where
arbitrarily chosen, this shows théte supgn) C supgp) and completes
the proof of Theorem 4.4.



Chapter 5

Global dynamics of generic
3-flows

The results in Chapter 3 form the basis of a theory of flows aneth
dimensional manifolds and paved the way for a global undedihg of
the dynamics o€'-generic flows in dimension 3.

In this chapter we show that a gene@¢ vector field on a closed 3-
manifold either has infinitely many sinks or sources or edssingular Ax-
iom A without cycles. These results are contained in [130].

Theorem 5.1. A generic vector field X X1(M) satisfies (only) one of the
following properties:

1. X has infinitely many sinks or sources.

2. X is singular Axiom A without cycles.

Singular Axiom Ameans that the non-wandering set of the vector field
has a decomposition into finitely many compact invarians $&tX) =
Q1 U---UQx, each one being either a (uniformly) hyperbolic basic set (i
transitive, isolated and with a dense subset of periodit)rbr a singular-
hyperbolic attractor, or a singular-hyperbolic repelléttvdense subset of
periodic orbits (these are defined in Chapter 3, note thadtisnrdecomposi-
tion the singular-hyperbolic sets are transitive by datnit

An analogous result was proved by Réain [110] for Ct-generic dif-
feomorphisms on surfaces. Foonservativeflows on three-dimensional

239
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manifolds a related result was obtained recently by Besgdil see Sec-
tion 6.5 for more details.

It is known that a generinon-singularvector fieldX € X1(M) either
has infinitely many sinks or sources, or else is Axiom A withoycles, see
Mané [110] or Liao [97]. The robustness of the geometric Lorettraetor
obtained in Section 2.3 shows that this is not true in genesaigularities
are allowed. Allowing singularities we can improve this alidws. Let
01(M) c X1(M) be the set of vector fields theannot be ¢ approximated
by homoclinic loopsThe Connecting Lemma 1.17 implies that any singu-
larity of everyX € G*(M) is separated from the non-wandering set. Using
the arguments of Wen [205] and Hayashi [74] we conclude tlgareeric
vector field inG*(M) either has infinitely many sinks or sources or else it
is Axiom A without cycles.

Recently Arroyo and Hertz [16] proved that every vector figl@* (M)
can be either approximated by one that is Axiom A without egclor ex-
hibits a homoclinic tangency associated to a periodic orbit

Let us describe some consequences Theorem 5.1. The firss oae i
lated with the abundance of three-dimensional vector fieldsbiting ei-
ther attractors or repellers. As noted by Mé&an [110], a generi€? dif-
feomorphism in the 2-sphef® does exhibit either sinks or sources. It is
then natural to ask whether such a result is validdbwrector fields in the
3-spheres® instead ofc! diffeomorphisms irf%. The answer is negative as
the following example shows.

Write S* = R3U {0} and consider irR® an unknotted two-torug?.
Then the closure i$® of each connected component$f\ T2 is a solid
two-torus. Consider a Lorenz attractor in one of the solid-terus and
a Lorenz repeller in the other. Since a fundamental domaith®Lorenz
attractor (respectively repeller) is an unknotted solid-tarus, we can glue
the two solid two-torus through the unknotted torus, obtajra flow inS?
whose non-wandering set equals the disjoint union of onemoattractor
and one Lorenz repeller. Such a flow is singular Axiom A, arwait not be
approximated by vector fields with either sinks or sourcesweéber from
Theorem 5.1 we deduce

Corollary 5.2. A generic vector field i%!(M) does exhibit either attrac-
tors or repellers.

The second one is related with a conjecture by Palis in [1gE4g,also
Section 1.5, asserting the denseness of vector fields &rlgiki finite num-
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ber of attractors whose basin of attraction forms a full lsgee measure
subset. Theorem 5.1 gives an approach to this conjectuteifopen) set
MNL(M) of Ct vector fields on a closed 3-manifoM which cannot beCt
approximated by ones exhibiting infinitely many sinks orrses.

Corollary 5.3. A generic vector field ift(M) exhibits a finite number of
attractors whose basins of attraction form an open and denbset of M.

This corollary follows from the no-cycle condition by theskical con-
struction of filtrations adapted to the decomposition offihsitive limit set
of the flow, as the reader can easily see in [186, Chapter 2 & 3].

Using the filtration to isolate the dynamics around eachdaisice of
the singular Axiom A decomposition, since the critical etgnts are ro-
bustly hyperbolic nearby each basic piece (recall thatsar¢hyperbolicity
is a robust property of the action of the flow on the tangenti)nwe ob-
tain

Corollary 5.4. AC' singular Axiom A flow without cycles is if" (M), the
interior of the set of Cvector fields whose critical elements are hyperbolic,
forany r> 1.

We note that there exists a classification by Hayashi [73heft in-
terior of the set of diffeomorphisms whose periodic points layperbolic:
they are Axiom A without cycles.

The corresponding result for vector fields is false sincelitie@nz at-
tractor is not uniformly hyperbolic. Indeed observe thatoaea easily con-
struct a singular Axiom A vector field without cycles and wélsingular
basic set equivalent to the Lorenz attractor: just take #wargetric Lorenz
attractor constructed in Section 2.3, and embed and extesdaw to S°
with a repelling singularity at the north pole and a sink &t $buth pole.

Proof of Theorem 5.1The argument is based on the following result whose
proof we postpone to Section 5.2. DenotesifM) the interior of the set

of vector fieldsX € X" (M) such that every periodic orbit and singularity of
X is hyperbolic, for any > 1.

Theorem 5.5. Generic vector fields isy* (M) are singular Axiom A without
cycles.

Following the arguments of M in [110], we can obtain Theorem 5.1
from Theorem 5.5. Indeed, I&1(M) c X1(M) be the subset at* vector
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fields such that every singularity &f is hyperbolic. Ther&(M) is open
and dense i(M) by the local stability of hyperbolic critical elements.
ForX € &1(M) defineA(X) to be the set of periodic orbits and singularities
of X that are sinks or sources.

The set valued functiofi*(M) 3 X — A(X) € 2 (M) is lower semicon-
tinuous, again by the local stability of hyperbolic criliegdements, where
2 (M) denotes the family of compact subsetdvoéndowed with the Haus-
dorff distance. Well known topological properties imphattthe continuity
pointsO of this map form a residual subset®f (M).

This ensures thavery Xe O not satisfying the first item of Theorem 5.1
isin H1(M).

Indeed forXy € O with finitely many sinks and sources the 2€iXo)
is a finite collection of critical elements ofyp. Assume by contradiction
that Xo ¢ $1(M). Then we can find &€'-near vector fieldr with a non-
hyperbolic critical elemen&. Henceg is away from a neighborhood of
A(Xo). HoweverO c &1(M) and &1(M) is open, thus we can také ¢
G&1(M). This guarantees thdtis not a singularityof Y. Then the return
map to a Poinc#r section of the periodic orbi has two eigenvalues, one
of which has modulus 1. Perturbingwe can findZ € G*(M) arbitrarily
Cl-close toY (and toXg) having either an attracting or repelling periodic
orbit close to. This contradicts the continuity of the set ma@X) atXo.

Now from Theorem 5.5 there exists a residualBet (M) such that
every vector field iR is singular Axiom A without cycles. The class

Y = (0\HY(M)) U (0ONR)

is residual in¥(M) by construction (recall tha(M) is open and dense in
X1(M)). Note that ifXy € 9 does not satisfy the first item of Theorem 5.1,

then Xy € O NR, sinceXy cannot belong td) \ H1(M) be the previous
claim. This means thaXy satisfies the second item of the statement of

Theorem 5.1. O

5.1 Spectral decomposition

The Spectral Decomposition Theorem for hyperbolic systplags a cen-
tral role in dynamics. It ensures that an attracting hyplclks®t having
dense periodic orbits must be a finite disjoint union of holinacclasses.
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Here we provide a version of this result in the settingiofular-hyperbolic
systemgpresented in Section 3. More precisely, we prove that aacithg
singular-hyperbolic set with dense periodic orbits anthmue singularity
is a finite union of transitive sets. Moreover, either theouanis disjoint or
the set contains finitely many distinct homoclinic clasdesr. C'-generic
flows the union is in fact disjointVe shall follow [123].

The straightforward extension of the result on findisjoint union of
homoclinic classes from uniformly hyperbolic to singulampkrbolic at-
tracting set with a dense subset of periodic orbits is falsehe next coun-
terexample shows.

Consider a modification of the construction of the geomdtoeenz
attractor given in Section 2.3, obtained by adding two diagties to the
flow located atW!(o) as indicated in Figure 5.1. This modification can
be done in such a way that the new flow restricted to the crad®naes
has aC” invariant stable foliation and the quotient map in the lgzdce
is piecewise expanding with a single discontinuitgs in the Lorenz case.
The resulting attracting set can be proved to be a homodiais just as
in the geometrical Lorenz case (see Section 2.3.6. In pdaticsuch a set
is transitive withdense periodic orbitand is also singular-hyperbolic by
construction. Now glue two copies of this flow along the ubktananifold
of the singularityo obtaining the flow depicted in Figure 5.2. The resulting
flow can be mad€® easily.

7717

A
<7 ;ﬁ,"'ii‘ﬂyb’

Figure 5.1: A modified geometric Lorenz attractor.

In this way we construct an attracting singular-hyperbséitwith dense
periodic orbits and three equilibria which is not isjoint union of homo-
clinic classes (although it is the union of two transitivésielt is possible
to construct a similar counter-example withigiquesingularity, while this
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counterexample hakreeequilibria. However the construction in this case
is more involved, see [20].

Figure 5.2: The counterexample.

The above counterexample shows that dealing with the speletcom-
position for singular-hyperbolic sets it is possible toabtafinite union of
transitive setsather than a finite disjoint union of homoclinic classesxiNe
result shows that the former situation always occurs if ttraeting set has
only one singularity.

Theorem 5.6. An attracting singular-hyperbolic set with dense periodic
orbits and a unique singularity is a finite union of transitisets.

Proof. Split A into finitely many connected components. On the one hand
such components are clearly attracting with dense perioidiits and the
non-singular ones are hyperbolic, hence transitive, bfiectral Theorem

for uniformly hyperbolic sets, see e.g. [190]. On the otterdh the singular
component satisfies the conditions of Theorem 3.62. Hengedimponent

is either transitive of the union of two homoclinic classghkich are transi-
tive sets. Therefor@, which is the union of its connected components, is a
finite union of transitive sets. O

Note that by a result of Morales [128very transitive set of a flow
Y, close toX, contained in the isolating neighborhood U of a singular-
hyperbolic attractorA of X must contain a singularityTherefore, since
compact invariant subsets /i not containing singularities are hyperbolic
and admit a spectral decomposition, and the number of sngabk inU
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is finite, thew-limit set inU for Y has finitely many transitive pieces only,
all of which are singularHence near a singular-hyperbolic attractor the
number of transitive pieces is robustly finite.

It is natural to ask whether the union in Theorem 5.6 is digjoRe-
call that a vector field iKupka-Smaléf all its closed orbits are hyperbolic
and their associated invariant manifolds are in generatipos see Sec-
tion 1.3.6.

Theorem 5.7. An attracting singular-hyperbolic set, with dense pertodi
orbits and a unique singularity, of a Kupka-Smale vectordfisl a finite
disjointunion of transitive sets.

Proof. Let X be a Kupka-Smale vector field in a compact 3-manifold And
be an attracting singular-hyperbolic sebofvith dense periodic orbits and
a unique singularity. It suffices to prove that the connected component of
A\ containing the singularitg is transitive. By contradiction, suppose that
this is not so.

On the one hand, by Theorem 3.68, we obtain a regular pdimthe
unstable manifolV"(o) of 6 such thatw(a) is a periodic orbito (p). On
the other hand, the unstable maniféif (o) is one-dimensional, so the vec-
tor field exhibits a non-transverse intersection betwé&®o) andws(p),
contradicting the choice of in the Kupka-Smale class. O

Theorem 5.7 implies that the union in Theorem 5.6 is disjfinimost
vector fields on closed 3-manifolds. Denote $(M) the subset of all
vector fieldsX € X' (M) for which every attracting singular-hyperbolic set
with dense periodic orbits and a unique singularity<o a finitedisjoint
union of transitive sets. Standa®@d-generic arguments (see e.g. [34]) im-
ply thatR" (M) is residual inX" (M) whenr = 1. The following corollary
proves this assertion for all> 1. The proof combines Theorem 5.7 with
the classical Kupka-Smale Theorem (see e.g. [143]).

Corollary 5.8. The clasgR"(M) is residual inX" (M) for every r> 1.

Now consider the complement 8 (M). For a compact invariant sub-
setA of a vector fieldX define the familyc (A) of homoclinic classes con-
tained in/A. Note that ifA is hyperbolic therc (A) is finite. We are able
to give sufficient conditions for finiteness of(/A) whenA is a singular-
hyperbolic set.
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Theorem 5.9. Let A be an attracting singular-hyperbolic set with dense
periodic orbits and a unique singularity of ¥ X" (M). If A is nota dis-
joint union of transitive sets, then(A) contains finitely many homoclinic
classes only.

Theorem 5.6 applies to the class of singular-hyperbolidorefields
introduced by Bautista in [22]. A vector fiel is singular-hyperbolidf
its non-wandering s€2(X) has dense critical elements ané{iX) denotes
the union of the attracting and repelling closed orbitsntiere is alisjoint
union

Q(X)\ AX) = Qu(X) UQ2(X),

whereQ(X) is a singular-hyperbolic set fok and Q,(X) is a singular-
hyperbolic set for-X.

The class of singular-hyperbolic vector fields contains Axeom A
vector fields (uniformly hyperbolic) and the singular Axiofnexample
resembling the geometric Lorenz attractor, described &fteollary 5.4.
An example of a singular-hyperbolic vector field$hwhich is not Kupka-
Smale can be derived from the example described in Figurgstiveaken
the contraction any one of the pair of saddle singularitiegctvare accu-
mulated by regular orbits only on one side. The following dir@ct con-
sequence of Theorems 5.6 and 5.7.

Corollary 5.10. Let X be a singular-hyperbolic vector fieldth a unique
singularity on a compacB-manifold. If Q;(X) is attracting andQz(X)

is repelling, thenQ(X) is a finite union of transitive sets. If X is Kupka-
Smale, then such an union is disjoint. In particular, thearis disjoint for

a residual subset of vector fields¥& (M), r > 1.

An example of a singular-hyperbolic vector field 8 satisfying the
conditions of Corollary 5.10, without sinks nor sourcesswascribed just
before the statement of Corollary 5.2.

The extension of these results to general singular-hygieratiracting
sets, with several singularities, is still work in progress

Proof of Theorem 5.9Suppose thaf is not a disjoint union of transitive
sets. Split\ into finitely many connected components as before. It si#fice
to prove that thec (A\') contains finitely many homoclinic classes for all
connected components of A. On the one hand, for non-singulaf we
have nothing to prove, sing¥ is uniformly hyperbolic by Proposition 3.9.
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On the other hand, the singular connected compofgmhust contain
WH!(g) (since it is connected), aW"(o) has two connected components.
Choose pointg, & in each one. Observe thAp must not be transitive by
the assumptions oft. Then by Theorem 3.68 there are periodic orbits such
thatw(a) = o(a) andw(a’) = o(a'). By contradiction assume that there
are infinitely many distinct homoclinic classesAg.

Then there exists an infinite sequence of pairwise distiedbgic or-
bits O, C Ag and an infinite sequenag € Oy, so the sef = UyH (z,) must
containg. For otherwiseA C Ag\ {0} is uniformly hyperbolic and the
number of homoclinic classes would be finite.

Consider thernx, € o such thatx, P 0. Sincex, is noto the

accumulation orw and the flow boxes near show that the orbiv, accu-
mulates also eithem or &'. Without loss of generality, assume the former
case is true.

Sincewx(a) = o(p) and o, accumulates a#, we can findz, € o,
passing close t® as indicated in Figure 5.3.

Figure 5.3: The accumulation on one of the componen&<gt).

By the Inclination-Lemma we can assume tatonverges to a point
either in one componews>* of W5(0) \ 0, or in the other component
W=~. Again suppose we are in the former case. By Lemma 3.67 and the
Inclination Lemma we get thaf, € W4+ = H*. ButthenH(Z,) = H(x) =
H(z,) = H™ for infinitely manyn (since Theorem 1.12 ensures that every
homoclinic class contains a dense subset of periodic orblit®f which
homoclinically related).

This contradicts the choice af. O
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5.2 A dichotomy for Cl-generic 3-flows

Here we present a proof of Theorem 5.5. We use the auxiliagoTh
rems 5.11 and 5.12 below. Recall the definition and propeofieyapunov
stable sets in Section 1.3.6.

The first theorem ensures that transitive Lyapunov staléecsataining
singularities, if not equal to a critical element, & generically singular-
hyperbolic sets.

Theorem 5.11. For generic vector fields X X*(M), every nontrivial tran-
sitive Lyapunov stable set with singularities of X is siagtiyperbolic.

The second result provides a way to obtain a singular-hypierattrac-
tor from a singularity belonging to a Lyapunov stable set géaeric three-
dimensional vector field. Together with the previous restltasserts that
the unstable manifold of a singularity accumulates on adarhyperbolic
set containing the singularity.

Theorem 5.12. Every Lyapunov stable singular-hyperbolic set with dense
singular unstable branches of X ¥*(M) is an attractor of X.

Here we say that a singular-hyperbolic sehasdense singular unsta-
ble branchesf A = w(x) for all xe W¥(o) \ {o} and for every singularity
oeA.

Now we explain how Theorem 5.5 is a consequence of Theorehis 5.
and 5.12. For that we need some preliminary results. Thedfirstgives a
sufficient condition for a transitive Lyapunov stable settvgingularities to
have singular unstable branches.

Lemma 5.13. For generic vector fields X X¥1(M), a transitive Lyapunov
stable set with singularitieA of X, such that the unstable manifold of every
singularity inA is one-dimensional, has dense singular unstable branches.

Proof. Generically we can assume théaie X*(M) satisfies the properties
presented in Section 1.3.6 (in particubris Kupka-Smale). Lef\ be a
transitive Lyapunov stable set &f, ¢ a singularity ofA andq € WY(g) \
{o}.

On the one hand, sinckis Lyapunov stable we haW¥"(g) C A and in
particulare(q) C A. On the other hand, we have that diwi"(0)) = 1 by
assumption. Thew(q) is Lyapunov stable by Property L5 in Section 1.3.6.
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But A is transitive by construction and interseafs)), so by Lemma 1.14
we haveA C w(q). Thenw(q) = A and A has dense singular unstable
branches as desired. O

The next one shows that the closure of the unstable manif@adimgu-
larity accumulated by periodic orbits is transitive, pardl that the unstable
manifold is one-dimensional and its closure is Lyapunoblsta

Lemma 5.14. Let X € X}(M) and o € S(X) N PerX) be such that W(o)
is one-dimensional and(q) is Lyapunov stable for every q in any of the
branches of W(o) \ {o}. ThenW{(0o) is transitive.

Proof. We have that\/ (o) \ {0} = o(q1) U 0 () for everyq, . belong-
ing to different connected components/f(o) \ {a}.

On the one hand, sinae € Pe(X) we can assume thap € Per(X)
without loss of generality. Them(q1) C Per(X) by invariance. On the
other hand,w(qi1) is Lyapunov stable foX by assumption. These two
properties imply that € w(q1), since forp, € PerX) with py, P o

we also havex'n(p,) — o for some sequenci > 0, and we can apply
Lemma 1.14.

ThereforeW"(o) C w(au1) by the Lyapunov stability ofo(g;) once
more. ButW'(ag) D w(a1) by construction, so we conclude that'(c) =
(q1). This shows thaiv!(o) is transitive.

O

Using this we now show that any hyperbolic singularity acolated
by regular orbits oK is in a singular-hyperbolic attractor or repeller of the
flow induced byX.

Theorem 5.15. For generic Xc X¥1(M) everyo € S(X) N PerX) belongs
to a singular-hyperbolic attractor or a singular hyperboliepeller.

Proof. Let X € X(M) ando be as in the statement. Sin¥ds generic we
can assume that is hyperbolic. Note thatr must be of saddle-type, for
otherwiseo is either a sink or a source, and in any case no periodic orbit
would approacto. Hence eithew"(ap) or W3(ayp) is one-dimensional.

Suppose the former case is true. The latter case is the samexXfo
DefineA =WY(o). Property L3 in Section 1.3.6 implies th&is Lyapunov
stable forX becauseX is generic. Property L5 then guarantees we are in
the setting of Lemma 5.14 and #ais transitive.
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Therefore/ is a nontrivial transitive Lyapunov stable setXf As X
is generic, Theorem 5.11 ensures thais singular-hyperbolic. By The-
orem 3.5 we have that every singularityAhas one-dimensional unsta-
ble manifold. We conclude that has dense singular unstable branches
by Lemma 5.13, sinc&X is generic. Them\ is an attractor by Theo-
rem5.12. O

Now we have the tools to complete the proof of Theorem 5.5quglh
the previous results which assume Theorems 5.11 and 5.12.

Proof of Theorem 5.5For X € X1(M) denote byS‘(X) = S(X) N PerX)
the (finite) set{o,...,0k} of singularities accumulated by periodic orbits
of X.

Theorem 5.15 ensures that for geneficc X*(M) and for everyi =
1,--- kthere is a compact invariant s&t of X such thato; € Aj and/\; is
either a singular-hyperbolic attractor or a singular-ppéc repeller ofX.

We claim thaH* = Q(X) \ UX_, A; is a finite disjoint union of uniformly
hyperbolic basic sets. Indeett \ S(X) is closed irM, for otherwise we can
find a sequence of regular poingsin H* converging to some singularity
o € S(X)\ S*(X). But Property L2 gives thad(X) = Per(X) US(X), soo
is accumulated by periodic orbits beca®X) is finite. HenceH* \ S(X)
is a closed invariant subset &f without singularities. It is known, after
Wen [205], thatC generically such sets are uniformly hyperbolic. Prop-
erty L2 again ensures thet* = Pe(X) NnH* U S(X) \ S (X). The Spectral
Decomposition Theorem for uniformly hyperbolic sets novaiguntees that
H* decomposes in finitely many basic pieces, together withefininany
singularities.

From this we have tha®(X) splits into a disjoint union of compact
invariant sets each one being either a hyperbolic basicrsatsingular-
hyperbolic attractor, or a singular-hyperbolic repelletenceX is a sin-
gular Axiom A vector field. For generiX we can also assume that the
vector field is Kupka-Smale, thus there are no cycles betweetransitive
pieces in the above decomposition. The proof of Theoremsxcbinplete
depending on Theorems 5.11 and 5.12. O

Proof of Theorem 5.11Recall that there exists a residual sub8etf the
family (M) of vector fields whose singularities are hyperbolic, suett th
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the mapX € G1(M) — A(X) restricted toO is continuous (see the ar-
guments after the statement of Theorem 5.5 on page 241). Dgfia
0N $H(M) which is residual i (M).

Given X € & andao € S(X) NA for a non-trivial attractor\, observe
that every vector fieltY sufficientlyC!-close toX has no sources nor sinks
nearbyA\, for otherwise we deduce a contradiction with the choiceXof
in the continuity setd. All the critical elements of are also hyperbolic.
ThenY is in the setting of Theorem 1.8, thus the Linear Poiadalow
over A\ S(X) is robustly dominated. This means thiats in the setting
of Lemmas 3.22 and 3.28. Thus we have tfmtX € %, if 0 € SX)
belongs to a non-trivial attracto of X, theno is Lorenz-like for X and
WsS(g)NA = {a}.

Now letX € ® have a non-trivial transitive Lyapunov stable seton-
taining a singularity. The previous arguments ensure/thiatin the setting
of Theorem 3.30, henok is a singular-hyperbolic attractor. O

Proof of Theorem 5.12We need the following sufficient condition for a
Lyapunov stable singular-hyperbolic set, with dense danrgunstable bran-
ches, to be an attractor.

Lemma 5.16. Let A be a Lyapunov stable singular-hyperbolic set with
dense singular unstable branches ofexx" (M), r > 1. If A admits an
adapted cross-section such that every point in the interior af belongs

to the stable leaf of some pointAfn Z, thenA is an attractor.

Proof. From Lemma 1.15 it is enough to prove thatxjf is a sequence
converging to some poirg € A, thenw(x,) is contained i\ for every big
enoughn. Now w(p) satisfies one of the following alternatives.

1. w(p) contains a singularitg of A.

The orbits ofx, will have o has an accumulation point. Hence the
orbit of x, also accumulates on some regular pajrf the unstable
manifold of 6. Sincew(q) = A by assumption, we have that for
every big enougm the orbit ofx, crosses the interior &. Then by
the assumption o we gety € A such thato (x,) € W3(y), that is
w(X,) C A for all sufficiently bign.

2. w(p) is far from singularities.
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TakeSan adapted cross-section to a pa@jmf w(p). Then for all big
enoug the orbit ofx, crosses the interior Gat some poink], very
close tog. Sincew(p) is uniformly hyperbolic by Proposition 3.9,
the unstable manifold af is well defined andV!(q) N Sis a line in
S crossing all stable manifolds & in a neighborhood ofl. Then
X, belongs to some of these stable lines. SMEEQq) is insideA by
Lyapunov stability, we see that, belongs to the stable manifold of
some point ofA. Againw(x,) C A for all sufficiently bign.

O

Now suppose that is not an attractor Then by Lemma 5.16 given any
regular poinx € A we can find an adapted-cross secfidisuch that the in-
tersectio N Y’ is contained in the interior &f. Indeed > N A containsz
such thaWWs(z,%) does not touchh, and then one of the connected compo-
nents ofZ \ W5(zy, %), which is also an adapted cross-section contairjng
containsz; such thatWs(z;,2) NA = 0. The substri’ betweenVs(z, %)
andWs(z;, %) only intersects\ in its interior.

CoverA by finitely many flow boxes near singularities and tubular flow
boxes through adapted cross-sections, around regulaypiéd, just as in
Chapter 4, but with the famil§ of adapted-cross sections chosen so that
AN=Cint(=).

Observe that sincA is Lyapunov stable, we can find a neighborhood
U of A such thatt N = C int(Z) and then another neighborhoddz U of
A satisfyingX!(V) c U for all t > 0. Then the PoincérmapRr defined as
in Section 3.4.1 between the sectionsso&dmits only finitely many dis-
continuity points, at the intersection afwith a compact part of the stable
manifolds of the singularities d@f, since its image cannot touch the bound-
ary of =. We can choose the “waiting tintg” of R so that the expansion
rate on center-unstable cones is at least 4.

Let =* be the the subset of ingoing cross-sections near singakat
=. Fix a pointxo € AN=*\U{W=(0) : 0 € S(X) NA} and a connectecu-
curveyp inside =* throughxg not touching the lines of intersection af
with the local stable manifold of the singularities. The geaurveR (y;),
fori > 0, is well defined until it returns t&8*, because the image Bfdoes
not fall outside of in(=). Lety, be the next return t&*. Then its length
£(y2) is at least 4£(yy).

The image of. is well defined except perhapsyanW? (o) for some
singularityc of A. In this case we replacg by the lengthiest connected
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component o2 \Wz.(0). Thenl(y2) > 2-£(y1).

Inductively we obtain a sequengg n> 1 of larger and largesu-curves
in the interior="*, which is a finite collection of bounded cross-sections.
Since thecu-curves cannot be tangent to the stable foliation, and soatan
curl inside=, this is impossible.

This contradiction shows that must be an attractor and concludes the
proof of Theorem 5.12. O



Chapter 6

Related results and recent
developments

Here we present other related results about three-dimeaisflows and
some recent developments.

6.1 Lorenz-like attractors through the unfold-
ing of singular cycles

It is natural to investigate whether an attractor resengblire Lorenz at-
tractor can be obtained as a result of a bifurcation of a $amgrycle of a
given vector field.

Rychlik and Robinson studied the existence of Lorenz-likeetors in
generic unfoldings of resonant double homoclinic loops,flows in di-
mension three, in a series of works [184, 174, 175, 176]. Rydharts
with a vector field with a Lorenz-like singularity with a connection be-
tween both branches of the unstable manifolavafnd the bidimensional
stable manifold ob, such that the singular cycle obtained israflination-
flip type see Section 2.2.2. Robinson considers a resonant conmgtttat
is, the eigenvalues @t arehy < A3 < 0 < A1 butAz+A; =0, that is, the
singularity neither expands nor contracts volume in thereéanstable di-
rection. In the setting of axially-symmetric vector fieldmth cases are

254
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co-dimension two bifurcations.

Similarly Ushiki, Oka, Kokubu [200] and Dumortier, KokubDka [57]
show that Lorenz-like attractor occur in the unfolding ofdbbifurcation
of certain degenerate singularities. Analogously Banm [19] obtains
attractor resembling the Lorenz attractor in higher dinms unfolding
cycles associated to degenerate singularities.

An extension of the results of Robinson, in dimension 3, wasioed
in [134].

6.2 Contracting Lorenz-like attractors

Rovella [140, 179] presented a parametrized model sintltr¢ geometric
Lorenz model described in Section 2.3 which exhibits araettr for a
positive Lebesgue measure subset of the parameter space atiractor
contains a singularity with three real eigenvaldes< Az < 0 < A1 but,
unlike a Lorenz-like singularity, we have, < —As, that is, the central-
unstable direction at the singularitynslume contracting

This construction is very similar to the geometric Lorenzi®ipamount-
ing essentially to replace the one-dimensional mawhose graph is pre-
sented in Figure 2.25 on page 76 and obtained through pirajeatong
the contracting foliation, by the mapwhose graph can be any of the ones

sketched in Figure 6.1.

[ \
\ /
/ \

Figure 6.1: The one-dimensional map for the contractingechamodel

The parameters of these maps describe the vertical cotedinéthe
critical points of each branch of continuity of the maps igi¥e 6.1.
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Metzger in [116, 115] proved the existence of a physical mesaand
its stability for the contracting Lorenz model. More redgmMetzger and
Morales, in [117], showed that the contracting Lorenz attrais also a
homoclinic class.

6.2.1 Contracting Lorenz-like attractors through the un-
folding of singular cycles

Recently in [135] the authors proved that, similarly to texpanding)
geometric Lorenz attractors, contracting Lorenz-likeaatiors can be ob-
tained unfolding a resonant double homoclinic connectigh acontract-
ing Lorenz-like singularity, i.e. the eigenvalues ake < Az < 0 < A1 with
A3+ A1 <0, see Figure 6.2.

Figure 6.2: A double homoclinic connection

Note that contracting Lorenz-like attractors persist anla measure
theoretical sense. In this setting the authors prove th&temnge of non-
degenerate two-parameter family of vector fields gendyiceifolding the
singular cycle described above, which admits a positiveekghe measure
subset of parameters such that the corresponding flow éxhibbntracting
Lorenz-like attractor.

6.3 More on singular-hyperbolicity

Vivier, in [203], extended the results of Doering [53] to hég dimensions,
showing that & robustly transitive vector field on a compact boundaryless
n-manifold, withn > 3, does not have any singularity. Note that Doering
was able to prove, for 3-manifolds, that such vector fieldsfarosov. Sim-
ilarly Vivier showed that, fom-dimensional manifolds, robustly transitive
vector fields admit a global dominated splitting.
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6.3.1 Attractors that resemble the Lorenz attractor

In Chapter 3 we presented several results showing that evlengt attractor
of a 3-flow containing equilibria looks like a geometric Lozeattractor.

Shil’nikov and Turaeyv, in [199], present an example of adelisional
quasi-attractor and study its perturbations. The quasaetbr is pseudo-
hyperbolic, contains a singularity with a complex eigeneahnd can not
be destroyed by small perturbations of the system.

Lorenz, in [104], reports a careful numerical study of whegras to
be a strange (chaotic) attractor in four dimensions for tesy®f 2-degree
polynomial equations. Rovella in [179] proves existencd parsistence
of contracting Lorenz attractorsthat is, with the contracting eigenvalue
condition—A3 > A4, see the following Section 6.2.

In [84] the authors prove that certain parametrized famité one-
dimensional maps with infinitely many critical points exhifiobal chaotic
behavior in a persistent way. Later in [10] it was proved thase maps
have a unique physical (absolutely continuous) measurehatdries con-
tinuously in the space of parameters with very nice statibfproperties.
An application of the methods developed in these works gielgroof of
existence and even persistence of global spiral attratdorsmooth flows
in three dimensions, to be given in [49].

In [150] Pesin proposed abstract models for attractorssiithularities,
called generalized hyperbolic attractors, and studien gneperties.

Bonatti, Pumafio and Viana, in [35], construct a multidimensional
Lorenz-like attractor that i€'-robust and contains a singularity with at
least two positive eigenvalues. Their construction workslimensions
greater or equal to 5. They also obtain a physical measurthése at-
tractors for an open set of flows in tR& topology.

More recently Metzger and Morales [114] introduced theslafsec-
tionally hyperbolic vector field®n n-manifolds containing the singular-
hyperbolic systems on 3-manifolds, the multidimensior@inz attractors
of [35] and theC? robustly transitive sets in Li, Gan and Wen [96].

An attractor/\ of a vector fieldX is sectionally hyperbolicif there
exists a splittinge; @ EX" of the tangent bundle of which is partial hy-
perbolic and the central-unstable bundle-seztionally volume expanding
i.e. there ar&k, A > 0 such that for every € A and for every bidimensional
planeL contained irES" one hag det(DX" | L)| > KeM for all t > 0.

Moreover in [114] the authors show that if an attracias C* robustly
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transitive and

e strongly homogeneous.e. every hyperbolic periodic orbit of ev-
eryC" nearby vector field has the same index, that is, the dimension
of their stable manifold is constant on a neighborhood ofvéetor
field;

then all singularities of\ are hyperbolic and\ is sectionally-hyperbolic.

6.3.2 Topological dynamics

Some aspects of the topological dynamics of the geometridemaere
studied by Komuro in [90, 91], where it was proved that mostrgetrical
Lorenz attractors do not have the shadowing property, agid éxpansive
properties are investigated. In [89] the author finds a togichl invariant
for the Lorenz attractor allowing him to exhibit an uncouéanumber of
non-homeomorphic Lorenz attractors in the unfolding of date homo-
clinic loop. In [28] the knot type of the geometric model isarzed, and
in [61] the Lorenz attractor is used to investigate the exisé of flows re-
alizing all links and knots as periodic orbits in 3-manifeland an explicit
ordinary differential equation with such properties isieiled. The reader
is advised to consult the survey [153].

Morales in [128] shows that a vector fie¥d which is C* close to a
given oneX in a 3-manifold exhibiting a singular-hyperbolic attracie
must have at least one singularity, and the number of attraofY near/A
is bounded above by the number of singularitieXaf A.

Bautista showed in [21] that the geometric Lorenz model iDadr
clinic class and, together with Morales, proved in [23] teegry singular-
hyperbolic attractor admits a (hyperbolic) periodic orbit

Arroyo and Hertz, in [16], have advanced a significant stepatds
an affirmative answer to the Palis Conjecture, see SectnThey show
that anyC* vector field on a compact 3-manifold can be approximated by
another one showing one of the following phenomena:

e uniform hyperbolicity with the non-cycle condition,
e a homoclinic tangency, or

e asingular cycle.
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Arroyo and Pujals, in [15], show that a singular-hyperbalitactor has
a dense set of periodic orbits and is the homoclinic classcésed to one
of this orbits. These results show that singular-hypedxtiractors do play
the same role as the basic pieces of Smale’s Spectral Desitiopo They
also provide a criterion foE! robustness of singular-hyperbolic attractors
which depends only on the attractor.

6.3.3 Dimension theory, ergodic and statistical propertie

Afraimovich and Pesin in [2] investigate the dimensionalperties of “tri-
angular maps” which are a class of maps generalizing theaRoiicst re-
turn mapP of the geometric Lorenz model.

Concerning fractal dimensions of Lorenz attractors we marthe re-
sults of Leonov [94, 95] together with Bouichenko [32]. Thestficon-
tains explicit formulas for the Lyapunov dimension of ther&ioz attractor
and in the second a simple upper bound on the Hausdorff diorein$
Lorenz attractors is given in terms of the parameters of trehz systems
of equations (1.1). In [127] Morales shows that every (rigiath) compact
invariant subset of a transitive singular set containingngdarity is one-
dimensional, extending a similar result of Bowen in [36] lie tsetting of
uniform hyperbolic flows.

Statistical and ergodic properties of the geometrical rhogee inves-
tigated, among others, by the authors together with Pujads\éana [11]
and Colmenarez [47], which are contained in Section 4.2.

In [211] Young shows that the geometrical Lorenz attractor be ap-
proximated by horseshoes with entropy close to that of thhetattractor.

The construction of the geometric Lorenz models forces iergence
of the vector field to be strictly negative in a isolating ridigrhood of
the attractor. This feature is also present in the Lorentesyof equa-
tions (1.1) for the classical parameters. It is then trittabhow that the
corresponding attractor has zero volume. Recently it wasqal [4] that
singular-hyperbolic attractors always have zero volumédwvs which are
HolderC?t, although there is no volume dissipative condition on thinde
tion of singular-hyperbolicity.
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6.4 Decay of correlations

After obtaining an interesting invariant probability masesfor a dynami-
cal system the next thing to do is to study the properties isfriteasure.
Besides ergodicity there are various degrees of mixingdspf04, 107]).

Given a flowX and an invariant ergodic probability measurave say
that the systeniX, ) is mixingif for any two measurable sefs B

WANXT'B) —— W(A) - W(B) (6.1)

or equivalently

/¢-(¢°Xt)dum/¢du/wdu

for any pair¢, Y : M — R of continuous functions.

Considering, po X' : M — R as random variables over the probability
space(M, ), this definition just says that “the random variabies) o X!
are asymptotically independent” since the expected Val{ge- (y o X))
tends to the produdE(¢) - E(@) whent goes to infinity. Thecorrelation
function

C(9, W) = [E(d- (woX")) —E(d)-E(W)|
—| [0 (@oxt)au- [odn [ wau (6.2)

satisfies in this casé: (¢, ) P 0. Therate of approach to zero of the

correlation functionis calledthe rate of decay of correlatiorfer the ob-
servables, Y of the systen{X, ).

The study of decay of correlations for hyperbolic systemasgback
to the work of Sinai [188] and Ruelle [182]. Many results wet#ained
for transformations. For a diffeomorphismthe notion of decay of cor-
relations is the same as above exchangihdy f" and lettingn go to
infinity. Since [37, 182] it is known that thghysical(SRB) measures for
Axiom A diffeomorphismsare mixing and havexponential decay of cor-
relations that is there exists a constant (0, 1) such that giverp, Y there
isC =C(¢,y) > 0 such that

Ca(d,p)<C-e ™ forall n>1, (6.3)
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for a suitable class of continuous functidvis— R, in this case the Blder
continuous functions.

In more general cases for smooth endomorphisms (see e,6][@8d
references therein) where the inverse in (6.1) is to be takethe inverse
image of ", it is possible to have slower rates of decay.

In contrast to the results available in the case of discrgtehical
systems, obtaining the rate of decay of correlations forgleeems to be
much more complex and some results have been establishédhémsov
flows only recently. Ergodicity and mixing for geodesic flosrsmanifolds
of negative curvature are known since the early half of thehXeentury
[81, 9, 187].

The proof of exponential decay of correlations for geodésizs on
manifolds of constant negative curvature was first obtainédo [45, 121,
169] and three dimensions [159] through group theoreticalments.

6.4.1 Non-mixing flows and slow decay of correlations

Let f : M — M be a diffeomorphism with an invariant probability measure
K and consider the suspension flot over f with constant roof function
r = 1. Then the probability measuve= px Leb onM x [0,1) defines in a
straightforward way & -invariant probability measure 0§ which is NOT
mixing, whateverf may be.

Indeed consideA = 1i(M x [0,1/2)) andB = M; \ A (recall thatr:
M x R — X is the projection defined in Section 1.2.1 on page 15). Then
the functiont — v(ANX™B) for t > 0 has the graph in Figure 6.3 (here
X~tis a shorthand fofX!) 1, the inverse image of the mag).

1

0 1 2 3t

Figure 6.3: A correlation function for a non-mixing flow

This system is clearlyiot mixing since the sawtooth pattern in Fig-
ure 6.3 goes on for all positive Moreover this shows in particular that
this suspension flow is not even topologically mixing (sewefor the
definition).
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However if (X, f, ) is ergodic, thew is X;-ergodic also: indeed, given
A C X such that(X})~1(A) = Afor all t > 0 (anX;-invariant set), ther
is saturated, i.ep € Aif, and only if, 0x, (p) C A; thus we may find c X
such thatAn (X x {0}) = (A) is X#-invariant by construction (because
r =1), Ais f-invariant andv(A) = p(A) - Leb([0,1)). Hencep(A) - u(X \
A) = 0 by the ergodicity of f, ) which impliesv(A) - v(X; \ A) = 0.

In addition to the examples of non-mixing suspension flowsictv ar-
guably can be characterized as very particular cases, Infatiam A mix-
ing flows have exponential decay of correlations: RuellS]Hhd Pollicott
[158] exhibited suspensions with piecewise constantragfiinctions with
arbitrarily slow decay rates.

Anosov [8] showed that geodesic flows for negatively curvehpact
Riemannian manifolds are mixing and obtained feosov alternative
given a transitive volume preserving Anosov flow, eithesitrixing (with
respect to the volume measure), or a suspension of an And$evrdor-
phisms by a constant roof function. Note that Bowen [38] stnbthat if a
mixing Anosov flow is the suspension of an Anosov diffeomdasphthen
it is stably mixing that is, the mixing property remains true for all nearby
flows (which are Anosov also by the structural stability ofidm A flows).

Bowen also showed [38] that the class@f Axiom A flows, r > 1,
admits a residual subs&t such that for everX € £ the spectral decom-
position of Q(X) is formed by pairwise disjoint piece3; U--- U Qy each
of which istopologically mixing That is, given any pair of open setsV
in Qj, there existdp = To(U,V) > 0 such tha N X' (V) # 0 for all t > To.

6.4.2 Decay of correlations for flows

Chernov [43] provided a dynamical proof showing sub-exmbiaédecay
of correlations for geodesic flows on surfaces of variabtgatiee curvature
through a suitable stochastic approximation of the flow édee [100] for
a generalization and previous results [45]).

Much more recently a breakthrough was obtained by DolgofB/t
55, 56]: smooth@" with r > 7) geodesic flows on manifolds of negative
curvature, under a non-integrability condition exhibiperential decay of
correlations. Also Liverani [101] building on the work [5dbtained expo-
nential decay of correlations f@* contact Anosov flows.

Using these ideas applied to the particular case of a suspmeaser
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uniformly expanding base dynamics, a conjecture of Ruedls proved by
Pollicott [160]: on a mild (cohomological) condition on tleeiling func-
tion, the decay of correlations for this type of suspensiowdlis expo-
nential for observables not supported on the base. This wasded by
Baladi-Valkee [18] clarifying the assumptions on the base and on the ceil
ing function which suffice to obtain exponential decay ofretations for
suspension of one-dimensional expanding maps and all itleas were
used in a more abstract setting by Avila-Gouezel-Yocco? fd ébtain ex-
ponential decay of correlations for the Teidhlter flow on flat surfaces.

Recently Field-Melbourne-drok obtained [59] what they cadtability
of rapid mixingamong Axiom A flows, meaning that the correlation func-
tion G (¢, ) decays to zero faster thank for all k € N whent — oo, for a
C2-open andC'-dense set of flows among the family@f Axiom A flows
withr > 2.

Luzzatto, Melbourne and Paccaut [105] showed that the palysiea-
sure for the geometric Lorenz flow is mixing. The speed of ngxior the
Lorenz flow is still an open problem.

6.5 Generic conservative flows in dimensio

Conservative flows are a traditional object of study fromsSieal Mechan-
ics, see e.g. [14]. These flows preserve a volume form on théegtmani-
fold and thus come equipped with a natural invariant measDinecompact
manifolds this provides an invariant probability givingsgitive measure
(volume) to all open subsets. Therefore for vector fieldshia tlass we
haveQ(X) = M by the Recurrence Theorem. In particular such flows can-
not have Lyapunov stable sets, eitherXoor for —X.

Let X{,(M) be the space d&" vector fields defining flows which pre-
serve the volume formw on M, for anyr > 1. It is natural to study these
flows under the measure theoretic point of view, besides duengtrical
one.

The device of Poincérsections has been used extensively in the pre-
vious chapters to reduce several problems arising najurathe setting
of flows to lower dimensional questions about the behavior dfans-
formation. In the opposite direction, recent breakthraugh the under-
standing of generic volume preserving diffeomorphisms unfases have
non-trivial consequences for the dynamics of generic awasige flows on
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three-dimensional manifolds.

The Bochi-Mdié Theorem [29] asserts that, fo€a residual subset of
area preserving diffeomorphisms, either we the transfoamas Anosov,
or the Lyapunov exponents are zero Lebesgue almost evergwlighis
was announced by Mi& in [111] but only a sketch of a proof was avail-
able [112]. The complete proof presented by Jairo Bochi txdexitensions
to higher dimensions, obtained by Bochi and Viana in [38tisg in par-
ticular that either the Lyapunov exponents @ageneric conservative dif-
feomorphism are zero Lebesgue almost everywhere, or thensgadmits
a dominated splitting for the tangent bundle dynamics. A/eyrof this
theory can be found in [30].

Recently Mario Bessa was able to use adapt and extend the ideas of
the original proof by Bochi to the setting of generic consgie flows on
three-dimensional compact boundaryless manifolds. Atjepresence of
singularities imposes some differences between the désanel continuous
systems. Denote b¥{,(M)* the subset oft{,(M) of C" flows with zero
divergence buwithout singularities

Theorem 6.1. There exists a residual s&t ¢ XL(M)* such that, for Xe
% , either X is Anosov or else for Lebesgue almost eveeyMp all the
Lyapunov exponents of )re zero.

Developing the ideas of the proof of this result Bessa aldaind the
following statement on denseness of dominated splittirigy admitting
singularities.

Recall the definition of Linear PoindaFlow in Section 1.3.3. Given an
invariant subseA for X € X1(M), an invariant splittindN* & N2 of the nor-
mal bundleN, for the Linear Poincdr FlowP! is said to ber-dominatedlif
there exists an integersuch that forevery pe A we have the domination
relation

[IPINY (P
[P TN(p)] =

Theorem 6.2. There exists a dense sBtC X%(M) such that for Xc D,
there exist invariant subsets D and Z whose union has fullsomea, such
that

e for p € Z the flow has only zero Lyapunov exponents;
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e D is a countable increasing uniofy, of compact invariant sets ad-
mitting a n-dominated splitting for the Linear Poiné&Flow.



Appendix A

Perturbation lemma for
flows

Here we present a proof of Theorem 1.20 on page 32. This is pnbun
lished joint work of M. J. Pacifico and E. R. Pujals. Debe a vector field
in the setting of the statement of the theorem.

Givenv,w € R", v-w stands for the inner product efandw. Given
veR" we setv]t = {we R"w-v=0}. Givenp, letZ C [Y(p)]* be a
cross section t&¥ at p whose size will be fixed later.

Define, forg € Z, the following parametrized family of maps

A(d) = Y'(p) +A(g)-
Observe first thafy is C2 and if = is taken small enough then
7 ={A(Q) ;e tefabl}
gives a neighborhood &f2b/(p).

LemmaA.1. There exists r- 0 such that the following is true fatiam(Z) <
riif Ay (1) = A, () with g € Zand t € [a,b], then § =t, and ¢ = .

Proof. Assumedy, (q1) = A, (qz) with t; < t, andgy # gz. Then
Y(p) — Y2(p) = A, (d2) — Ay (o). (A1)

266
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On one hand there g € (t1,t2) such that
0
a*YtoJrS(p)Eo
Yslk0 =(ti-R)Y(Y°(p). (A2

YU ()~ Y2 (p) = (tr — t2)

On the other hand therelis (t1,t2) such that

Aeal02) — Ay (c) = (A = Ay (G) + Aoy (G2 — )
= %A\t:l (G)(t2 —t1) + Ay (G2 — Qu)- (A.3)

Replacing (A.2) and (A.3) in (A.1) we get

V(Yo(p) = - S Ao () + A, (n)

Observe thaty, (Y(p)) =Y (Y®(p)). Since the family’ depends con-

tinuously ont there areh > 0 andy > 0 such that, ifR,(, denotes the
projection on the direction of (p), then

IRy (ACHY (YO (R > v (A.5)

for all t with |t —to| < h. Define the numbers

= sup{fl 5; AtH,t € labf},  Ko=supf||Allt < [a b}

andyp = inf{||Y(Y'(p))||,t € [a,b]}. Observe thayy is positive sincep is a
regular point. Let > 0 be such that < y/Kz, Kir + Kar /h < yp and take
> with diam(XZ) < r. We split the arguments in a pair of cases.

First case |t1 —t| > h. Taking norms in (A.4) leads t@ < Kir + Kaor /h <
Yo, Which is a contradiction.

Second cas€t; —tp| < h. Observe that (A.1) and (A.2) imply

(tl - tZ)Y(YtO ( p)) = Atz (qZ) - Atl(ql)y
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which is the same a$; —t2)A; 1Y (Y©(p)) = A *A, (2) — qu. Thus

Re(p [t —t2) ALY (YO(D)] = Ry (p) /A, A, (02) — 0
= Ry(p)[A; A (02) — 2]
=Rp (A A, —1d)(@)].  (A6)
Observe that we used aboggc T = [Y(p)]*.
But there id € (t3,t2) such that

0
(A A, —1d)(02) = (1 —tz)a*SAHsAfllbo(QZ)
Replacing this in (A.6) we get

(o ALY (YO (0)] = Reo [ A oA Yso(@). (A7)

Taking norms in (A.7) and using (A.5) we obtajr< Ki||g2]|. Since
diam(Z) < r andr < y(K;)%, this is a contradiction. All together
this shows thaty = t; and from (A.4) we see thay = gp. The proof
of Lemma A.1 is complete.

O

Now defineA: 7 C [a,b] x = — 7 as follows. Fow € 7 there exists,
by Lemma A.1, a unique paiitw,tw) € Z x [a,b] such thath, (cw) = W.
We define B A
AW) = A +5(ah)- (A8)

In other words, we havBs(Ac(q)) = Y3(p) + A oA H(A()), forge
andt +s<b.

LemmaA.2. The familyﬂs defines a & flow in 7 . Moreover

0 _ ~ 0 ~
Proof. Clearly,&S is CZA. Let us prove thaﬁw = Ksﬁq.
Letwe 7. ThenA,(qw) = w, for a unique(dw,tw) € Z x [a,b]. By
definition (A.8)
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Define nowAy 1, (qw) = W. Note thatw'= A, (qs). By the uniqueness of
tw andgy given by Lemma A.1, we gétt-ty =ty andgw = gw. Thus
As(Ast, (aw)) = As(Aeg () = Asity (G)
= Acitiy () = Asit (A, (Gw) = Asie(w). (A1)

Combining (A.10) and (A.11) we dedu@@rt = AA:.
Now we prove (A.9). Defln@\(t q) = At(q) We have thaf is C2 and

a) $A=3Y'(p)+ A(q)isCt,
b) DgA= A isCL.
Note that a) and b) imply

6] 0 ~ 0~ 0
EA{ = aDq,o,,t = DQEA‘ = aAjt. (A.12)

Note also thad DgA andDg 3 A areC! maps sincé, is a family of in-
vertible linear maps dependi@f in the parameter .

Now Lemma A.1 gives thak has an inverse mapdefined in the image
T =A(T). MoreoverRis C! sinceAis Cl.

Again forse [a,b] andw € 7 defineA(s,w) = As(w).

Let Ty, T be the projections on the first and second coordinates:

m:[ablxT —[ab, (swr—s T:[abxT—7, (SwW)—w
Clearlytg isC®,i = 1,2. Since
'&(57 w) = '&s(W) = As—s—tW(QW) = A(S‘f'tm Qw) = A(S+ o R(W), TR o R(W))

we get thatA is Ct, which implies thats induces &t flow in 7.

Finally let us verify (A.9). For this, IeR(s W) = (s+ToR(W), o
R(W)), whereR was defined above. Clearfy= AoR Observe that (A.12)
and the fact thaR andA areC2 imply that

DwA = Dgg A DuR
a ~ i~ a Py
P DeswA FSR

a*SDWA - FSDﬁ(SW)A 65R~ DWR+ Dﬁ(s,W)A' afSDWR



270 APPENDIX A. PERTURBATION LEMMA FOR FLOWS

and Dwa@sﬂ all exist and are continuous. Thus by Schwartz Lemma we

obtain (A.9). O
Let Za be the vector field induced b@s, that is,Za(w) = asAS |s:0'
Lemma A.3. The vector field Zis C. Moreover
DwZa = QAWSA[;}\ o (A.13)
os s=

Proof. SinceAs is aC? flow we have thaZa isC*.
Let us calculatdD,Za. We first calculateDWAs] . For this recall

thatw = A, () with t € - [a,b] andgy € Z. To S|mpI|fy notation we set

tw =t andgw = g. Then As(w) = As(A(q)) = A s(q) and soDgA s =
DA(q)AS- DgA:. This implies

DA[(q)'E\s = Dth+s(DqA{)7l- (A-14)

On the other hand, . s(q) = Y'*5(p) + A, s(q) implies thaDgA s = Ay s.
Replacing this in (A.14) and using the fact thiBgA )~ = A7t we get

DA:(q>AS = A AT

Thus
0 . ~ 0 ~ 0 1
DwZa = &;DWA5|S=O = aisDA((q)A’s;O = aisAHSAt |s=0
proving (A.13). The proof of Lemma A.3 is completed. O

If U C R", thenU°® stands for the complement 0f.

Fix € > 0 and take G< r < €. For eacht € [a,b] let Z; be a cross section
to Y!(p) satisfying diani%,) < r andZ,  [Y(Y!(p)]*.

Let Q = Uyc(ap Zr- Note thatQ is a neighborhood of ¥/ (p). Thus

there are neighborhoodl$; c U, C Q of yla b](p) and aC! function f :
7 — R satisfying:

o flU=1,f|U°=0and|f|<1;and

e givenw € U,, letty be such that digw, Y2P/(p)) = dist(w, Y™ (p)).

We require
IDwf - lw=Y"(p)|| <e.
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Define theC? vector field inR"
Z(w) = f(w)-Za(w) + (1 f(w)) - Y(w).
LemmaA.4. ZisC-nearY.
Proof. Indeed,
Z(w) =Y (w) = f(w) - (Za(w) =Y (W)). (A.15)

On the other hand, givew, there aret, and g, such thatw = Atw(qw).
Taking into account (A.8) and the definition 8f we get

Za(w) = 3 As()]y o = = (YIO(B) |yt o (A s olch)

=Y(Y%(p)+ a% (Aty+8)|s_o(Ow)-

Replacing this last inequality in (A.15) we obtain

Za(w) =Y (W) = f(w)- (Y(Y™(p)) =Y (w) + O%Atws!?o(qw))

and then
0
1Za(w) =Y (W) || < [IY (Y (p)) =Y (W) |+ IIOfSAth!toII [l(aw) |- (A.16)

Now we can assume thatis sufficiently small so thatAq(g)|| < ||Ad| - ||all
is small for allt andg. We can estimate the first term in the right hand side
of (A.16)
IY Y™ (p)) =Y W) | < [IY[- (1Y (p) —wi = [Y[|- Y™ () — Ax, (aw) |
= (I [IY*™(p) = Y™ (p) + A, (o)
= VI 1A, () | < IV I (Al - llawll < & (A.17)

The second term on the right hand side of (A.16) can be boubged

195y 5| ol - ()| <&, (A.18)

if Zis small. Replacing (A.17) and (A.18) in (A.16) we conclue proof.
O
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To finish we need one last lemma.
Lemma A.5. The vector field Z isEnear Y .

Proof. We have

(A.19)
The norm of the first term above is bounded by

IDw |- [1Za(w) =Y (wW)||
< |IDwf - [IZa(w) = Za(Y™(p)II + [[Y (Y*(p)) = Y (w)]|
< |IDwf [ 1Zall - [Iw=Y*(p)[[ +[[Y]|- [w=Y*(p) | - [ Dwf]|

and the condition on the bump functidnmply that both terms in the last
expression are small 5is small.

To estimate the second hand term in the right hand side oBjAve
recall that Lemma A.3 gives

9, .1
DWZA:a*SAH-sAt |s=0'

On the one hand this is, by hypothesis, nBa,)Y.

On the other hand, sinag = A () = Y(p) + A(q), we also get that
w is nearY!(p) and soDyY is nearDyt(p)Y. Combining these last two
observations we obtain th&t,Za is nearD, Y, concluding the proof of
Lemma A.5. O

The proof of Theorem 1.20 is completed.
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