
 

 
 
 
 
 
 
 

Topics in Inverse Problems 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 



 

 
Publicações Matemáticas 

 
 
 
 
 

Topics in Inverse Problems 
 

Johann Baumeister 
Universität Frankfurt 

 

Antonio Leitão 
UFSC 

 
 
 
 

 

impa 25o Colóquio Brasileiro de Matemática 



 

Copyright  2005 by Johann Baumeister e Antonio Leitão 
Direitos reservados, 2005 pela Associação Instituto 
Nacional de Matemática Pura e Aplicada - IMPA 
Estrada Dona Castorina, 110 
22460-320 Rio de Janeiro, RJ 
 

Impresso no Brasil / Printed in Brazil 
 

Capa: Noni Geiger / Sérgio R. Vaz 
 

25o Colóquio Brasileiro de Matemática 
 

• A Short Introduction to Numerical Analysis of Stochastic Differential Equations - 
Luis José Roman 

• An Introduction to Gauge Theory and its Applications - Marcos Jardim 
• Aplicações da Análise Combinatória à Mecânica Estatística - Domingos H. U. 

Marchetti 
• Dynamics of Infinite-dimensional Groups and Ramsey-type Phenomena - Vladimir 

Pestov 
• Elementos de Estatística Computacional usando Plataformas de Software 

Livre/Gratuito - Alejandro C. Frery e Francisco Cribari-Neto 
• Espaços de Hardy no Disco Unitário - Gustavo Hoepfner e Jorge Hounie 
• Fotografia 3D - Paulo Cezar Carvalho, Luiz Velho, Anselmo Antunes Montenegro, 

Adelailson Peixoto, Asla Sá e Esdras Soares 
• Introdução à Teoria da Escolha - Luciano I. de Castro e José Heleno Faro 
• Introdução à Dinâmica de Aplicações do Tipo Twist - Clodoaldo G. Ragazzo, Mário 

J. Dias Carneiro e Salvador Addas-Zanata 
• Schubert Calculus: an Algebraic Introduction - Letterio Gatto 
• Surface Subgroups and Subgroup Separability in 3-manifold Topology - Darren 

Long and Alan W. Reid 
• Tópicos em Processos Estocásticos: Eventos Raros, Tempos Exponenciais e 

Metaestabilidade - Adilson Simonis e Cláudia Peixoto 
• Topics in Inverse Problems - Johann Baumeister and Antonio Leitão 
• Um Primeiro Curso sobre Teoria Ergódica com Aplicações - Krerley Oliveira 
• Uma Introdução à Simetrização em Análise e Geometria - Renato H. L. Pedrosa 
 
Distribuição: 
       IMPA 
       Estrada Dona Castorina, 110 
       22460-320 Rio de Janeiro, RJ 
       E-mail: ddic@impa.br  -  http://www.impa.br 
       ISBN: 85-244-0224-5 
 



“ln-shell”
2005/5/5
page ii

i
i
i

i
i

i
i

Preface

The demands of natural science and technology have brought to
the fore many problems that are inverse to the classical direct prob-
lems, that is, problems which may be interpreted as finding the cause
of a given effect. Inverse problems are characterized by the fact that
they are usually much harder to solve than their direct counterparts
since they are usually associated to ill-posed problems. As a result a
very exiting and important area of research has been developed in the
last decades. The combination of classical analysis, linear algebra,
applied functional and numerical analysis is one of the fascinating
features of this relatively new research area.

This monograph will not give an extensive survey of papers on
inverse problems. The goal of the notes is to present the main ideas
in treating inverse problems and to make clear the progress of the
theory of ill-posed problems. The monograph arose from a booklet
[5], courses and lectures given by the authors.
The presentation is intended to be accessible to students whose math-
ematical background include basic courses in advanced calculus, lin-
ear algebra and functional analysis. The monograph can be used as
the backbone for a lecture on inverse and ill-posed problems.

We would like to thank the SBM to make possible these notes.
Moreover, both authors are grateful to the CAPES, CNPq and DAAD
for the support during the preparation of the manuscript.

April 2005 Johann Baumeister Antonio Leitão
Frankfurt/Main Florianópolis
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Chapter 1

Introduction

In this introduction we illustrate the wide range of inverse prob-
lems and give a first insight into the problems of solving inverse prob-
lems.

1.1 Inverse Problems

The problem which may be considered as one of the oldest inverse
problem is the computation of the diameter of the earth by Eratos-
thenes in 200 b. Chr.. For many centuries people are searching for
hiding places by tapping walls and analyzing echo; this is a partic-
ular case of an inverse problem. It was Heisenberg who conjectured
that quantum interaction was totally characterized by its scattering
matrix which collects information of the interaction at infinity. The
discovery of neutrinos by measuring consequences of its existence is
in the spirit of inverse problems too.

Over the past 30 years, the number of publications on inverse
problems has grown rapidly. The following list of inverse problems
gives a good impression of the wide variety of applications:

• the inverse problem of geomagnetic induction;

• X-ray tomography, ultrasound tomography, laser tomography;

• acoustic scattering, scattering in quantum mechanics;

1
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2 [CAP. 1: INTRODUCTION

• radio-astronomical imaging, image analysis;

• locating cracks or mines by electrical prospecting;

• seismic exploration, seismic tomography;

• the use of electrocardiography and magneto-cardiography;

• evolution backwards in time, inverse heat conduction;

• the inverse problem of potential theory;

• “can you hear the shape of a drum/manifold?”

• deconvolution, reconstruction of truncated signals;

• compartmental analysis, parameter identification;

• data assimilation;

• determing the volatility in models for financial markets;

• Discrete tomography, shape from probing.

input output
(parameters)

process

system

Figure 1.1: A process

Suppose that we have a math-
ematical model of a physical
process. We assume that this
model gives a description of
the system behind the pro-
cess and its operating condi-
tions and explains the princi-
pal quantities of the model:

input, system parameters, output

In most cases the description of the system is given in terms of a set
of equations (ordinary and/or partial differential equations, integral
equations, . . . ), containing certain parameters. The analysis of the
given physical process via the mathematical model may be separated
into three distinct types of problems; see Figure 1.1.

(A) The direct problem. Given the input and the system param-
eter, find out the output of the model.



“ln-shell”
2005/5/5
page 3i

i
i
i

i
i

i
i

[SEC. 1.1: INVERSE PROBLEMS 3

(B) The reconstruction problem. Given the system parameters
and the output, find out which input has led to this output.

(C) The identification problem. Given the input and the out-
put, determine the system parameters which are in agreement
with the relation between input and output.

We call a problem of type (A) a direct (or forward) problem since it
is oriented towards a cause-effect sequence. In this sense problems
of type (B) and (C) are called inverse problems because they are
problems of finding out unknown causes of known consequences. It
is immediately clear that the solution of one of the problems above
involves a treatment of the other problems as well. A complete dis-
cussion of the model by solving the inverse problems is the main
objective of inverse modelling.

Let us give a mathematical description of the input, the output
and the systems in functional analytic terms.

X : space of input quantities;
Y : space of output quantities;
P : space of system parameters;
A(p) : system operator from X into Y associated to p ∈ P.

In these terms we may formulate the problems above in the fol-
lowing way:

(A) Given x ∈ X and p ∈ P, find y := A(p)x .

(B) Given y ∈ Y and p ∈ P, find x ∈ X such that
A(p)x = y .

(C) Given y ∈ Y and x ∈ X, find p ∈ P such that
A(p)x = y .

At first glance, the direct problem (A) seems to be solved much
easier than the inverse problems (B), (C). However, for the compu-
tation of y := A(p)x it may be necessary to solve a differential or
integral equation, a task which may be of the same complexity as the
solution of the equations in the inverse problems.

Example 1.1.1 (Differentiation of data). We consider the prob-
lem of finding the integral of a given function. This is done analyt-
ically and numerically in a very stable way. When this problem is
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4 [CAP. 1: INTRODUCTION

considered as a direct (forward) problem then to differentiate a given
function is the related inverse problem. A mathematical description
is given as follows:

Direct Problem: With a continuous function x : [0, 1]
−→ R compute

y(t) :=

∫ t

0

x(s)ds , t ∈ [0, 1] .

Inverse Problem: Given a differentiable function y :
[0, 1] −→ R determine x := y′.

We are interested in the inverse problem. Since y should be consid-
ered as the result of measurements then the data y are noisy and we
may not expect that the noisy data ỹ are continuously differentiable.
Therefore, the inverse problem has no obvious solution. Moreover,
the problem should not be formulated in the space of continuous func-
tions since perturbations due to noise lead to functions which are not
continuous.

The differentiation of (measured) data is involved in many inverse
problems. In a mechanical system one may ask for hidden forces.
Since Newton’s law relates forces to velocities and accelerations one
has to differentiate observed data. We will see that in the problem of
X-ray tomography differentiation is implicitly present too. �

In certain simple examples inverse problems can be converted for-
mally into a direct problem. For example, if A has a known inverse
then the reconstruction problem is solved by x := A−1y. However,
the explicit determination of the inverse does not help if the output y
is not in the domain of definition of A−1. This situation is typical in
applications due to the fact that the output may only be imprecisely
known and/or distorted by noise.

In the linear case, that is if A(p) is a linear map for every p ∈ P,
problem (B) has been studied extensively and its theory is well-
developed. The situation in the nonlinear case is somewhat less satis-
factory. Linearization is very successful to find an acceptable solution
to a nonlinear problem but in general, this principle provides only a
partial answer.
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The identification problem (C) in a general setting is rather diffi-
cult since it is in almost all cases a (highly) nonlinear problem with
many local solutions. Moreover, the input signal may only be avail-
able imcompletely only.

1.2 Ill-posedness

Inverse modelling involves the estimation of the solution of an equa-
tion from a set of observed data. The theory falls into two distinct
parts. One deals with the ideal case in which the data are supposed
to be known exactly and completly (perfect data). The other treats
the practical problems that are created by incomplete and imprecise
data (imperfect data). It might be thought that an exact solution to
an inverse problem with perfect data would prove also useful for the
practical case. But it turns out in inverse problems that the solution
obtained by the analytic formula is very sensitive to the way in which
the data set is completed and to errors in it.

h E

ε
h

h

error bound

Figure 1.2: Error balance

In a complete solution of in-
verse problems the questions of
existence, uniqueness, sta-
bility and construction are to
be considered. The question of
existence and uniqueness is of
great importance in testing the
assumption behind any mathe-
matical model. If the answer
in the uniqueness question is no,
then we know that even perfect
data do not contain enough in-
formation to recover the physical quantity to be estimated. In the
question of stability we have to decide wether the solution depends
continuously on the data. Stability is necessary if we want to be
sure that a variation of the given data in a sufficiently small range
leads to an arbitrarily small change in the solution. This concept
was introduced by Hadamard in 1902 in connection with the study
of boundary value problems for partial differential equations and he
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designated unstable problems ill-posed1. The nature of inverse prob-
lems (irreversibility, causality, unmodelled structures, . . . ) leads to
ill-posedness as a characteristic property of these problems.

When solving ill-posed problems numerically, we must certainly
expect some difficulties, since any errors act as a perturbation on
the original equation and so may cause arbitrarily large variations
in the solution. Observational errors have the same effect. Since
errors cannot be completely avoided, there may be a range of plau-
sible solutions and we have to find out a reasonable solution. These
ambiguities in the solution of inverse problems which are unstable
can be reduced by incorporating some sort of a-priori information
that limits the class of allowable solutions. By a-priori information
we mean an information which has been obtained independently of
the observed values of the data. This a-priori information may be
given as a deterministic or a statistical information. We shall restrict
ourselves to deterministic considerations.

Let us present a first example of an ill-posed problem. This ex-
ample will be considered again and again in this monograph.

Example 1.2.1 (Differentiation of data). Suppose that we have
for the continuous function y : [0, 1] −→ R a measured function
yε : [0, 1] −→ R which is contaminated by noise in the following
sense:

|yε(t)− y(t)| ≤ ε for all t ∈ [0, 1] .

It is reasonable to try to reconstruct the derivative x := y′ of y at
τ ∈ (0, 1) by

xε,h(τ) :=
yε(τ + h)− yε(τ − h)

2h
.

We obtain

|xε,h(τ)− x(τ)| ≤ |y(τ + h)− y(τ − h)

2h
− x(τ)|

+| (y
ε − y)(τ + h)− (yε − y)(τ − h)

2h
|

1Hadamard believed – many mathematicians still do – that ill-posed problems
are actually incorrectely posed and artificial in that they would not describe
physical systems. He was wrong!
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If we know a bound

|x′(t)| ≤ E for all t ∈ [0, 1] ,

then we get, roughly estimating,

|xε,h(τ) − x(τ)| ≤ hE +
ε

h
. (1.1)

Now it is clear that the best what we can do is to balance the terms
on the right hand side of the bound:

h(ε) := E
1
2 ε

1
2 .

(It is assumed that τ ± h) ∈ [0, 1].) This gives

|xε,h(ε)(τ)− x(τ)| ≤ 2E
1
2 ε

1
2 . (1.2)

The diagram 1.2 which is a graphical presentation of the bound (1.1)
is typical for approximations in ill-posed problems. There are two
terms in the error estimates: a term due to approximation of the in-
verse mapping and a term due to measurement error. The balance
of these two terms gives an “optimal” reconstruction result. Thus,
in contrast to well-posed problems, it is not the best to discretize
finer and finer. One may consider ill-posed problems under the motto
“When the imprecise is preciser”.2 �

1.3 Contents

The lecture notes is organized as follows: In Chapter 1 we begin
with a study of the basic concepts for stability and regularization.
Here the Tikhonov regularization is a central theme. Chapter 2 is
devoted to the (iterative) Landweber method and its applications.
Chapter 3 deals with inverse problems of convolution type. Here we
are confronted for the first time with nonlinear problems. In Chapter
4 we study some inverse problems in tomography. The subject of
Chapter 5 are level set methods which have become important in
solving problems where the boundary of sets has be reconstructed.

2This is the title of [52].
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1.4 Bibliographical comments

In the 1970’s, the monograph of Tikhonov, Arsenin [91] is in some
sense the starting point of a systematic study of inverse problems.
Nowadays, there exists a tremendous amount of literature on several
aspects of inverse problems and ill-posedness. Instead of giving a
complete list of relevant contributions we mention only some mono-
graphs [5, 23, 31, 53, 74] and survey articles [37, 95].

1.5 Exercises

1.1. Find a polynomial p with coefficients in C with given zeros
ξ1, . . . , ξn . When this problem is considered as an inverse problem,
what is the formulation of the direct problem?

1.2. The problem of computing the eigenvalues of given matrix is
well known. If this problem is considered as a direct problem what
can be the formulation of the inverse problem?

1.3. Show that under the assumption
“|x′′(t)| ≤ E for all t ∈ [0, 1]”

the inequality (1.1) can be improved and an estimate

|xε,h(ε)(τ) − x(τ)| ≤ cE1/3ε2/3

is possible (c is a constant independent of ε, E).

1.4. A model for the growth of a population is the law

u′ = qu

where u represents the size of the population and q is a growth
coefficient. Find a method to reconstruct q from the observation
u : [0, 1] −→ R when q is a time dependent function from [0, 1] into
R.

1.5. Can you hear the length of string?
Consider the boundary value problem

u′′ = f , u(0) = u(l) = 0

where f : R −→ R is a given continuous function. Suppose that the
solution u and f are known. Find the length l of the interval.



“ln-shell”
2005/5/5
page 9i

i
i
i

i
i

i
i

[SEC. 1.5: EXERCISES 9

1.6. Consider the boundary value problem

u′′ + qu = f , u(0) = u(l) = 0

where f : R −→ R is a given continuous function. Find sufficient
conditions on f such that q can be computed from an observation
u(τ) for some point τ ∈ (0, l).
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Chapter 2

Basic concepts

This chapter is intended to describe the basic concepts of solving
inverse problems in a stable way. The method of Tikhonov is one of
the central themes, compact operators are discussed since they are
involved in the main applications.

2.1 Ill-posedness in linear problems

2.1.1 Statement of the problem

Let X,Y be Hilbert spaces1 endowed with inner products 〈·, ·〉X and
〈·, ·〉Y respectively; the resulting norms in X and Y are denoted by
‖ · ‖X and ‖ · ‖Y . Let A : X −→ Y be a linear mapping with adjoint
mapping A∗ . We consider the linear equation

Ax = y (2.1)

as a model equation for a linear inverse problem. As it is well known,
A has a bounded inverse when A is bijective. Therefore we should
not assume that A is bijective when we want to study the problems
related to ill-posedness inherent in inverse problems. The assumption

1Some steps of our considerations could be done also in the context of Banach
spaces which are no Hilbert spaces. But the Hilbert space setting is necessary
when we use differentiability of the norm, orthogonality, projections,. . .

10
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[SEC. 2.1: ILL-POSEDNESS IN LINEAR PROBLEMS 11

that A is injective is not a serious restriction since we can always
factor out in X the null space of A. As a consequence we should give
up the condition that A is surjective. Therefore we should operate
under the following assumption:

Assumption A0

A : X −→ Y , A∗ : Y −→ X linear, injective,
bounded;
range(A) dense in Y , range(A) 6= Y ;
range(A∗) dense in X , range(A∗) 6= X .

Indeed, under the assumption A0 the inverse A−1 : range(A) −→ X
cannot be continuous since the following situation can be realized:

For every y ∈ Y \range(A) there exists a sequence (xn)n∈N
in X with limnAxn = y and (xn)n∈N is divergent.

Clearly, assumption A0 makes sense for the case dim range(A) =
∞ only; the remaining case will be considered in Section 2.4. Notice
that the list of assumptions in A0 contain redundant informations.
For example injectivity of A∗ follows when range(A) is dense in Y.
Especially, when A is a compact operator (see below) then the con-
dition “A : X −→ Y linear, injective, bounded, range(A) dense in
Y ” implies the other conditions.

Example 2.1.1 (Differentiation of data). We set:

X,Y := L2[0, 1] endowed with the usual inner product;

(Ax)(t) :=

∫ t

0

x(s)ds , t ∈ [0, 1] , x ∈ L2[0, 1] .

We want to solve the equation

∫ t

0

x(s)ds = y(t) , t ∈ [0, 1] . (2.2)

Clearly, every function in the range of A is continuous. Therefore
range(A) * Y . Since every continuously differentiable function y is in
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the range of A, we obtain that range(A) is dense in L2[0, 1] . The dif-
ficulty to solve the equation in a stable way becomes clear if one con-
siders yε defined by yε(t) := ε sin(tε−2) . Then xε(t) := ε−1 cos(tε−2)
solves the equation and when ε is small then yε is small in norm and
xε is large in norm.

The equation (2.2) is an example of an integral equation of the
first kind, equations which are – considered on the interval [0, 1] – of
the following form:

∫ 1

0

κ(t, s)x(s)ds = y(t) , t ∈ [0, 1] ; (2.3)

κ is called a kernel function. For (2.2) the kernel κ is given by

κ(t, s) :=

{
1 , if s ≤ t
0 , if s > t

.

We see that the operator A is smoothing: each L2–function becomes
continuous (actually differentiable in a weak sense). This fact indi-
cates the difficulties to solve integral equations of the first kind when
the kernel is sufficiently smooth: the range of the integral operator is
a “small” subset in the image space. Integral equations of the second
kind like

x(t) +

∫ 1

0

κ(t, s)x(s)ds = y(t) , t ∈ [0, 1] ,

don’t have this smoothing property when κ is not degenerate. �

2.1.2 Restoration of continuity

Suppose that A0 holds. Let x0 be the (unique) solution of (2.1) with
right hand side y0 :

Ax0 = y0 . (2.4)

In practice, y0 is never known exactly but only up to an error. In
a simple additive model for the perturbation of the data we may
assume that for y0 a distorted data yε ∈ Y is available , satisfying

yε = y0 + wε, wε ∈ Y, ‖wε‖Y ≤ ε (2.5)
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where ε ≥ 0 is the so-called noise level. The problem consists in find-
ing a reasonable approximation xε for x0 using the data yε. Since
we may not assume yε ∈ range(A) we cannot define xε as the so-
lution of (2.1) for y := yε. But it is reasonable to reformulate the
reconstruction problem in the following way:

Find xε ∈ X which satisfies ‖Axε − yε‖Y ≤ ε (2.6)

If xε ∈ X satisfies (2.6) we see that the defect Axε− yε has the same
order as the error yε−y0 but the goal is to find a good approximation
of x0 . However, since A−1 is unbounded, the set

M(ε) := {x ∈ X | ‖Ax− yε‖Y ≤ ε}
is not necessarily bounded and we may expect that an element xε

which satisfies (2.6) may be no good approximation for x0. In order
to shrink the “solution set” M(ε) we introduce the restriction that
a solution should belong to a given subset K of X and K represents
some a-priori information. Such a set is called a source set and “x ∈
K” is called a source condition. Obviously, such a restriction set
K should have the property that the mapping A−1 : A(K) −→
X is continuous and that x0 ∈ K. If such a set K is chosen then we
may reformulate the problem (2.6) in the following way:

Find xε ∈MK(ε) := {x ∈ X |x ∈ K, ‖Ax− yε‖Y ≤ ε} . (2.7)

We are interested in an estimation of ‖xε−x0‖X , where xε ∈MK(ε)
is arbitrary. The worst case is described by

‖xε − x0‖X ≤ σK(ε) := sup{‖x1 − x2‖X | x1, x2 ∈MK(ε)}
where σK(ε) is the diameter of MK(ε).

A rather general choice for K is given in the following way:2

Choose a linear closed operator B : DB −→ Z where DB is a
dense subset of X and Z is a Hilbert space. Define

K := KE := {v ∈ DB | ‖Bv‖Z ≤ E} (E ≥ 0) ,

M(ε, E) := {x ∈ DB | ‖Ax− yε‖Y ≤ ε, ‖Bx‖Z ≤ E} .

2A linear mapping B : DB −→ Z,DB ⊂ X, is closed when its graph is closed
in X × Z.
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Many different choices are possible for B, according to the prior
knowledge. The simplest one is B = IX := identity on X . An-
other usual choice is to take B as a differential operator and then the
bound ‖Bx‖Z ≤ E is a smoothness requirement on the solution; see
example 2.1.2 below.

The following quantities are of interest when we want to estimate
the error xε for a particular choice xε ∈M(ε, E) . We define

σ(ε, E) := σKE (ε) ,

ω(ε, E) := sup{‖x‖X | z ∈ DB , ‖Ax‖Y ≤ ε, ‖Bz‖Z ≤ E} ,
ν(τ, B) := sup{‖x‖X | z ∈ DB , ‖Ax‖Y ≤ τ, ‖Bz‖Z ≤ 1} .

By simple arguments we obtain

σ(ε, E) ≤ 2ω(ε, E) = 2Eν(
ε

E
,B) . (2.8)

The quantity

SNR :=
E

ε

which shows up in (2.8) is called the signal to noise–ratio.

Example 2.1.2 (Differentiation of data). We want to solve the
equation

(Ax)(t) :=

∫ t

0

x(s)ds = y(t) , t ∈ [0, 1] , (2.9)

for x, y ∈ X := Y := L2[0, 1] . Our choice of the a-priori information
is a bound on the norm of the first derivative of the function to be
found: ∫ 1

0

|x′(s)|2ds ≤ E2 .

Therefore we set3

DB := H1
0 [0, 1] := {v ∈ AC[0, 1]|v(1) = 0, v′ ∈ L2[0, 1]} ,

Z := X,

(Bx)(t) := x′(t) , t ∈ [0, 1] , x ∈ DB .
3AC[0, 1] denotes the space of absolutely continuous functions on [0, 1] .
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Clearly, the adjoint mapping is given by

A∗ : L2[0, 1] 3 y 7−→ (A∗y)(·) := −
∫ 1

·
y(s)ds ∈ L2[0, 1] .

It is easy to give an realistic estimate for the key quantity ν(·, B) .
Let x ∈ DB with ‖Ax‖Y ≤ τ, ‖Bx‖Z ≤ 1 , τ ≥ 0 . Then

‖x‖2X =

∫ 1

0

x(t)x(t)dt = −
∫ 1

0

x′(t)
∫ t

0

x(s)ds dt

= −
∫ 1

0

x′(t)Ax(t)dt ≤ ‖Bx‖X‖Ax‖Y ≤ τ .

This shows ν(τ, B) = τ
1
2 for all τ ≥ 0 .

Notice that the source condition “v ∈ DB , ‖Bx‖X ≤ 1” can be sum-
marized by the property

v ∈ DB , there exists y ∈ Y with x = A∗y, ‖y‖Y ≤ 1 .

The following lemma shows that such a formulation of a source con-
dition is helpful in our general context. �

Theorem 2.1.3. Let A : X −→ Y be a linear bounded operator.

(a) If x = A∗y with ‖y‖Y ≤ E and ‖Ax‖ ≤ τ then

‖x‖ ≤ E 1
2 τ

1
2 . (2.10)

(b) If x = A∗Az with ‖z‖X ≤ E and ‖Ax‖ ≤ τ then

‖x‖ ≤ E1/3τ2/3 . (2.11)

Proof:
Ad (a). Follows from

‖x‖2X = 〈x,A∗y〉 = 〈Ax, y〉 ≤ ‖Ax‖X‖y‖Y ≤ τE .

Ad (b). We have

‖x‖2X = 〈x,A∗Az〉 = 〈Ax,Az〉
≤ τ‖Az‖ = τ〈Az,Az〉 1

2 ≤ τ〈z, x〉 1
2 ≤ τE 1

2 ‖x‖
1
2

X .
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This proves (b). �
The interpretation of (a) in Theorem 2.1.3 is that the inverse of

A |ME : ME −→ A(ME)

is continuous in y = θ where ME := {x ∈ X | x = A∗z, ‖z‖ ≤
E} . Notice that the bound in (b) is better due to a more stringent
assumption on x .

Remark 2.1.4. The restriction set K = KE is for a reasonable
chosen B a bounded set in X . In some cases it is reasonable to choose
K as a cone which describes restrictions like f ≥ 0, f ′ ≥ 0, . . . . Such
restrictions are called descriptive constraints. They are not so easy
to handle since a cone is far from being a bounded set. �

2.1.3 Compact operators

There is class of problems which can be considered as the generic
case of an ill-posed problem, namely the solution of linear equations
which are governed by compact operators. Since equations governed
by compact operators are very important in applications we introduce
some facts concerning these operators.

Definition 2.1.5. Let A : X −→ Y be a linear operator between
infinite dimensional Hilbert spaces X,Y . Then A is called a compact
operator if A maps the unit ball BX1 in X into the subset A(BX1 ) of
Y whose closure is compact. �

As a rule, integral operators with a smooth kernel function and
defined on functions of finite support are compact operators. For a
compact operator one has a very powerful “normal form”, as we will
show next; for the proof of this normal form we refer to the literature.

Theorem 2.1.6 (Singular value decomposition). Let A : X →
Y be an injective compact operator and assume that X is infinite
dimensional. Then there exist sequences (ej)j∈N, (f j)j∈N, (σj)j∈N,
called a singular system, such that the following assertions hold:

(a) ej ∈ X, f j ∈ Y for all j ∈ N ;
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(b) σj ∈ R, 0 < σj+1 < σj for all j ∈ N , limj σj = 0 ;

(c) 〈ej , ek〉 = 0, 〈f j , fk〉 = 0 for all j, k ∈ N, j 6= k ;

(d) Aej = σjf
j , A∗f j = σje

j for all j ∈ N ;

(e) Ax =
∑∞

j=1 σj〈x, ej〉f j for all x ∈ X,

A∗y =
∑∞

j=1 σj〈y, f j〉ej for all y ∈ Y .

The singular value decomposition reflects the ill-posedness when
solving Ax = y with a compact operator A :

lim
j
‖σ−

1
2

j ej‖X =∞ , lim
j
‖A(σ

− 1
2

j ej)‖Y = 0 .

The decay of the singular values σj is some measure of the degree of
ill-posedness; we come back to this question.

Remark 2.1.7. Notice that a bounded linear operator is compact
when a system (ej , f j , σj)j∈N exists such that the assertions (a) . . . (e)
in Theorem 2.1.6 hold true. �

Using the singular value decomposition one obtains a very useful
characterization of the range of a compact operator.

Lemma 2.1.8 (Picard’s criterion). Let A : X −→ Y be an in-
jective compact operator with a singular system (ej , f j , σj)j∈N . Then
the equation Ax = y is solvable if and only if

∞∑

j=1

σ−2
j |〈y, f j〉|2 <∞ , (2.12)

in which case the solution is given by

x = A−1y =

∞∑

j=1

σ−1
j 〈y, f j〉ej . (2.13)

Proof:
This follows immediately from Theorem 2.1.6. �
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Example 2.1.9 (Differentiation of data). We consider the map-
ping

A : L2[0, 1] 3 x 7−→ (Ax)(·) :=

∫ ·

0

x(s)ds ∈ L2[0, 1] . (2.14)

This is a compact operator by the theorem of Arzela-Ascoli.
The equation A∗Ae = σe is equivalent with the boundary value prob-
lem

σe′′ + e = 0 , e(1) = 0, e′(0) = 0 ,

and we obtain for A the singular system (ej , f j , σj)j∈N where

σj :=
2

(2j − 1)π
, ej(s) :=

√
2 cos(σ−1

j s) , f j(s) :=
√

2 sin(σ−1
j s) ,

with s ∈ [0, 1] . �
Remark 2.1.10. Let A : X −→ Y be an injective compact operator
with a singular system (ej , f j , σj)j∈N . When y = u+ v ∈ range(A) +
range(A)⊥ then

∞∑

j=1

σ−1
j 〈y, f j〉ej =

∞∑

j=1

σ−1
j 〈u, f j〉ej

is well defined. Therefore we may consider the mapping

A− : range(A) + range(A)⊥ 3 u+ v 7−→
∞∑

j=1

σ−1
j 〈u, f j〉ej .

This mapping is called the pseudoinverse of A and we set A† := A− .
One may generalize the definition of the pseudoinverse to the case
of an arbitrary linear bounded operator A : X −→ Y . The first
observation is that the equation

A∗Ax = A∗y

has a uniquely defined solution x† ∈ range(A∗) for each y ∈ range(A)
+range(A)⊥ which is called the minimal norm solution of Ax = y .
This defines the pseudoinverse A† as the mapping

A† : range(A) + range(A)⊥ 3 y 7−→ x† ∈ X ;

see also Subsection 2.4.2 �
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2.1.4 A first analysis of the method of Tikhonov

To solve the problem (2.7) we have to specify a method which chooses
an element xε ∈ X satisfying xε ∈ K, ‖Axε−yε‖Y ≤ ε. Two methods
come into mind immediately:

The method of residuals:

Minimize ‖Bx‖Z subject to x ∈ DB , ‖Ax−yε‖Y ≤ ε.

The method of quasisolutions:

Minimize ‖Ax− yε‖Y subject to x ∈ DB and
‖Bx‖Z ≤ E .

Due to the fact that x0 ∈M(ε, E) we have for a solution xE,rs of
the method of residuals

‖BxE,rs‖Z ≤ ‖Bx0‖Z ≤ E, ‖AxE,rs − yε‖Y ≤ ε, xE,rs ∈M(ε, E) .
(2.15)

Analogous we have for a solution xε,qs of the method of quasisolutions

‖Bxε,qs‖Z ≤ E, ‖Axε,qs − yε‖Y ≤ ‖Ax0 − yε‖Y ≤ ε, xε,qs ∈M(ε, E) .
(2.16)

If we consider the methods above as optimization problems the
theory of Langrangian multipliers leads us to the following compro-
mise between these methods:

The method of Tikhonov:

Minimize F (x) := ‖Ax − yε‖2Y + ε2

E2 ‖Bx‖2Z subject

to x ∈ DB .

The case “DB = X,B = IX := identity on X” is called the classical
method of Tikhonov.

If xε is a solution of the method of Tikhonov then due to x0 ∈
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M(ε, E) we obtain by evaluating F in x0

ε2

E2 ‖Bxε‖2Z ≤ F (xε) ≤ F (x0) ≤ 2ε2,

‖Axε − yε‖2Y ≤ F (xε) ≤ F (x0) ≤ 2ε2 ,

and we see

‖Bxε‖Z ≤
√

2E, ‖Axε − yε‖Y ≤
√

2ε, xε ∈M(
√

2ε,
√

2E) . (2.17)

The consequence is that we are sure that we lose at most a factor of√
2 if we replace the method of residuals or the method of quasisolu-

tions by Tikhonov’s method.

If we don’t know the number λ := ε/E as it is typically the case
in practice we may modify the method of Tikhonov in the following
way:

The generalized method of Tikhonov:

Minimize Ft(x) := ‖Ax− yε‖2Y + t‖Bx‖2Z subject to
x ∈ DB .

Here t is a given positive number.

Let A∗ : Y −→ X and B∗ : Z −→ X be the adjoint operators of
A and B respectively. The mapping Ft : DB −→ R is differentiable
in each x ∈ V and

F ′t (x)(h) = 2〈Ax,Ah〉Y + 2t〈Bx,Bh〉Z , h ∈ DB . (2.18)

Lemma 2.1.11. Let xε,t ∈ DB . Then following conditions are equiv-
alent:

(a) Ft(x
ε,t) := infx∈DB Ft(x) .

(b) xε,t solves

(A∗A+ tB∗B)xε,t = A∗yε . (2.19)
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Proof:
(a) =⇒ (b). Equation (2.19) is a consequence of F ′t (x)(h) = 0 for all
h ∈ DB ; see (2.18).
(b) =⇒ (a). Follows from the identity

Ft(x) − Ft(xε,t) = 2‖Ax−Axε,t‖2Y + 2t‖Bx−Bxε,t‖2Z , x ∈ DB ,
(2.20)

which we conclude from (2.19). �

Next, we have to ask the question whether a solution xε,t exists.
The following assumption which is motivated by (2.20) is helpful for
a positive answer.

Assumption A1

There exists c > 0 such that

c‖x‖2X ≤ ‖Ax‖2Y + ‖Bx‖2Z , x ∈ DB .

Notice that in the case of the classical method of Tikhonov this as-
sumption is satisfied. The proof of the following lemma is left to the
reader.

Lemma 2.1.12. Under the assumption A1 there exists for each t >
0 a uniquely determined solution xε,t of the generalized method of
Tikhonov.

Theorem 2.1.13. Suppose that assumption A1 is satisfied and let
xε,t be the solution of the generalized method of Tikhonov. Then we
have for each t > 0:

‖xε,t − x0‖ ≤
(
ε√
t

+ ‖Bx0‖
)
ν(
√
t, B) . (2.21)

Proof:
It is easy to verify that xε,t − x0 = u− tv with

u := (A∗A+ tB∗B)−1A∗(yε − y0) , v := (A∗A+ tB∗B)−1B∗Bx0 .
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We obtain

〈yε − y0, Au〉 = 〈A∗(yε − y0), u〉
= 〈(A∗A+ tB∗B)u, u〉 = ‖Au‖2Y + t‖Bu‖2Z

and therefore4

‖Au‖2Y + t‖Bu‖2X ≤ ε‖Au‖Y ≤
ε2

2
+

1

2
‖Au‖2X

which implies

‖Au‖Y ≤ ε , ‖Bu‖Z ≤
ε√
t
, ‖u‖X ≤

ε√
t
ν(
√
t, B) .

We have

〈Bx0, Bv〉 = 〈B∗Bx0, v〉 = 〈(A∗A+ tB∗B)v, v〉 = ‖Av‖2Y + t‖Bv‖2Z
and therefore

‖Av‖2Y + t‖Bv‖2Z ≤ ‖Bx0‖Z‖Bv‖X ≤
1

2t
‖Bx0‖2Z +

t

2
‖Bv‖2Z

which shows

‖Av‖Y ≤
1

t
‖Bx0‖Z , ‖Bv‖Z ≤

1

t
‖Bx0‖Z , ‖v‖X ≤

ν

t
(
√
t, B)‖Bx0‖Z .

Now the inequality (2.21) is proved. �

Corollary 2.1.14. Suppose that assumption A1 is satisfied and let
‖Bx0‖Z ≤ E . Then we obtain with the (a-priori) parameter strategy

t(ε) = ε2

E2

‖xε,t(ε) − x0‖ ≤ 2E ν
( ε
E
,B
)
. (2.22)

Proof:
This follows immediately from (2.21).

To make the estimate in Theorem 2.1.13 and Corollary 2.1.14
more applicable we need to obtain an estimate of ν(·, B). This is
done in a specified situation in section 2.3.1.

4We use frequently the inequality ab ≤ (1/2µ)a2 + (µ/2)b2 which holds for
a, b ≥ 0, µ > 0 .
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2.2 Regularization of ill-posed problems

Here we discuss the methods which are used to solve an ill-posed
problem in a stable way. we do this again using assumption A0.

2.2.1 The idea of regularization

Definition 2.2.1. Any family (Rt)t>0 of mappings from X into Y is
called a recovery family. A family (Rt)t>0 of linear bounded operators
from Y into X is called a regularizing family for A if

lim
t↓0

RtAx = x for all x ∈ X . (2.23)

�

Obviously, a regularizing family (Rt)t>0 is a family which should
approximate A−1 . Since A−1 is an unbounded operator RtA does
not converge to the identity in the operator norm by the theorem of
Banach–Steinhaus if t goes to zero. Moreover, the family (‖Rt‖)t>0

cannot be bounded.5

Suppose that x0, y0, yε are given as in (2.93), (2.5). With a regu-
larizing family (Rt)t>0 for A we define

xε,t := Rty
ε , xε,0 := Rty

0 , t > 0 . (2.24)

We want to find the parameter t such that Rty
ε deals with the noise

ε in an optimal fashion. Since the reconstruction xε,t − x0 error can
be decomposed as

‖xε,t − x0‖X ≤ ‖Rtyε −Rty0‖X + ‖RtAx0 − x0‖X
≤ ε‖Rt‖+ ‖RtAx0 − x0‖X (2.25)

we observe that two competing effects enter (2.25). The first one is
the ill-posedness effect: as t goes to 0 the norm ‖Rt‖ tends to ∞ ; so
t should not be chosen too small. The second one is the regularizing
effect: as t increases, RtA becomes a less accurate approximation of
the identity; so t should not be chosen too large. Only properly chosen

5Any operator norm is denoted by ‖ · ‖ .
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values of t will provide an optimal reconstruction. We discuss this
problem in the next subsection. A convenient method to construct

a regularizing family is given by filtering when we have a singular
system (ej , f j , σj)j∈N of a compact operator A . By Picard’s lemma
2.1.8, for every y ∈ range(A) x := A−1y can be written as

x =

∞∑

j=1

σ−1
j 〈y, f j〉ej . (2.26)

Since for y /∈ range(A) the series above does not converge due to
Picard’s lemma or the fact that limj σj = 0 we have to introduce a
filter for the small singular values. This can be done by a mapping
q : (0,∞)× (0, σ1] −→ R which damps out the contribution of small
singular values in the series (2.26). With such a filter q we define a
potential candidate for a regularizing family in the following way:

Rty :=

∞∑

j=1

q(t, σ)σ−1
j 〈y, f j〉ej , y ∈ Y . (2.27)

The assumptions which the filter q should satisfy can be read off from
the following estimates:

‖Rty‖2X =
∞∑

j=1

|q(t, σj)|2σ−2
j |〈y, f j〉|2

≤ sup
σ∈(0,σ1]

|q(t, σ)σ−1|2
∞∑

j=1

|〈y, f j〉|2

= sup
σ∈(0,σ1]

|q(t, σ)σ−1|2‖y‖2Y (2.28)

‖RtAx− x‖2X =
∞∑

j=1

|q(t, σj)− 1|2|〈x, ej〉|2 . (2.29)

Theorem 2.2.2. Let A : X −→ Y be an injective compact operator
with singular system (ej , f j , σj)j∈N and let q : (0,∞)× (0, σ1] −→ R
be a filter function which satisfies the following conditions:

F1) |q(t, σ)| ≤ 1 for all t > 0, σ ∈ (0, σ1] .
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F2) For all t > 0 there exists a constant c(t) such that for all σ ∈
(0, σ1] |q(t, σ)| ≤ c(t)σ .

F3) limt→0 q(t, σ) = 1 for every σ ∈ (0, σ1] .

Then the family (Rt)t>0, defined in (2.27), is a regularizing family.
Additionally, we have with xε,t :=

∑∞
j=1 q(t, σ)σ−1

j 〈yε, f j〉ej :

‖xε,t − x0‖2 ≤ ‖x0‖2X sup
σ∈(0,σ1]

|q(t, σ)− 1|2 + ε2c(t)2 . (2.30)

Proof:
With the condition F2) we conclude from (2.28) ‖Rt‖ ≤ c(t), t > 0 .
Let x ∈ X and let ε > 0 . Then there exists a N ∈ N with

∞∑

j=N+1

|〈x, ej〉|2 < ε2 .

According to the condition F3) we can choose a constant t0 > 0 such
that

|q(t, σj)− 1|2 < ε2 for all j = 1, . . . , N and 0 < t ≤ t0 .

With the condition F1) we obtain for t ∈ (0, t0]

‖RtAx− x‖2X =

N∑

j=1

|q(t, σj)− 1|2|〈x, ej〉|2

+

∞∑

j=N+1

|q(t, σj)− 1|2|〈x, ej〉|2

≤ ε2
N∑

j=1

|〈x, ej〉|2 + 4ε2 ≤ ε2‖x‖2X + 4ε2 .

This shows limt→0RtAx = x . The estimate (2.30) follows immedi-
ately from (2.25), (2.28), (2.29). �

In the most interesting cases the quantity supσ∈(0,σ1] |q(t, σ) −
1| can be expressed in a more compact form, independent of the
(unknown) number σ1 .
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Example 2.2.3.
Truncation:

q(t, σ) :=

{
1 , σ2 ≥ t
0 , σ2 ≤ t .

This is a filter which truncates the contribution of singular values
larger than the threshold parameter

√
t . Here we can verify c(t) =

1/
√
t . Moreover, the condition F3) holds in a stronger form:

F3′) |q(t, σ)− 1| ≤
√
t
σ or |q(t, σ)− 1| ≤ t

σ2 for all t > 0, σ > 0 .

Tikhonov:

q(t, σ) :=
σ2

σ2 + t
.

This is the filter which models the classical method of Tikhonov. Here
we have c(t) = 1/(2

√
t) and the condition F3′) holds again in the

stronger form F3′) .6

�
Under the assumption A1 the mapping

Rt : Y 3 y 7−→ (A∗A+ tB∗B)−1A∗yε ∈ X
is well defined. In the special case

A compact, DB := X,B := identity

the method of Tikhonov is a regularizing family. This follows with Ex-
ample 2.2.3 from the fact that with a singular system (ej , f j , σj)j∈N
the operator Rt is defined by

Rty :=

∞∑

j=1

σ2
j

σ2
j + t

σ−1
j 〈y, f j〉ej , y ∈ Y .

2.2.2 A-priori regularizing strategies

Suppose we have a regularizing family (Rt)t>0 for A . Then the can-
didates for a solution of Ax = yε are defined by

xε,t := Rty
ε , t > 0 . (2.31)

6To simplify some expressions we do not always use the best possible constants.
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The main problem is now to choose a parameter t = t(ε) in such a way
that under appropriate conditions xε,t is the “best” approximation
of x0 . We may distinguish two main different strategies:

a-priori-strategy — a-posteriori-strategy

A-posteriori strategies try to find the “best” regularization parameter
from the results xε,t by using the given data yε (and the noise level
ε). Methods will be discussed in Subsection 2.2.3 and 2.3.6.
An a-priori parameter choice strategy tries to determine the regu-
larization parameter before doing numerical computation. Such an
a-priori strategy usually starts from the estimate (2.25) for the error
‖xε,t − x0‖X :

‖xε,t − x0‖X ≤ ε‖Rt‖+ ‖RtAx0 − x0‖X . (2.32)

The best we could do is to minimize the right hand side in (2.32)
with respect to t . In general, it is enough to balance the competing
terms in (2.32): we choose t(ε) such that

‖Rt(ε)Ax0 − x0‖X = ε‖Rt(ε)‖ (2.33)

We have already used this idea when we derived the error estimate
in Example 2.1.1.

Example 2.2.4.
In the case that A is a compact operator we obtained in Theorem
2.2.2 the following estimate

‖xε,t − x0‖2 ≤ ‖x0‖2X sup
σ∈(0,σ1]

|q(t, σ)− 1|2 + ε2c(t)2 (2.34)

with a filter function q . In Example 2.2.3 we could specify this esti-
mate for the regularizing family related to the idea of truncation in
the following form:

‖xε,t − x0‖2 ≤ ‖x0‖2X

(
sup

σ∈(0,σ1]

t

σ2

)
+
ε2

t
, t > 0 .

Since supσ∈(0,σ1]
t
σ2 = ∞ for all t > 0 it is not possible to balance

the terms. We see in Theorem 2.2.6 below what kind of a-priori
information helps to avoid this situation. �
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Definition 2.2.5. Let (Rt)t>0 be a regularizing family for A . We
say that a choice t = t(ε) leads to a regularizing scheme for x0 if we
can prove:

lim
ε→0

Rt(ε)w
ε = x0 for every wε ∈ Y with ‖wε −Ax0‖Y ≤ ε . (2.35)

As a rule, in order to prove that a particular regularizing family is
a regularizing scheme for x0 one has to introduce a source condition
on x0 .

Theorem 2.2.6. Let A be an injective compact operator with singu-
lar system (ej , f j , σj)j∈N and let q : (0,∞)× (0, σ1] −→ R be a filter
function. Consider the regularizing family (Rt)t>0 defined in (2.27).

(a) Under the assumptions

|q(t, σ)| ≤ σ√
t
, |q(t, σ)− 1| ≤

√
t

σ
, t > 0, σ > 0,

x0 = A∗z with z ∈ Y,

we choose (without loss of generality z 6= θ)

t(ε) := ε ‖z‖−1
Y (2.36)

and have
‖Rt(ε)yε − x0‖X ≤

√
2‖z‖

1
2

Y ε
1
2 . (2.37)

(b) Under the assumption

|q(t, σ)| ≤ σ√
t
, |q(t, σ)− 1| ≤ t

σ2 , t > 0, σ > 0,

x0 = A∗Az with z ∈ X,

we choose (without loss of generality z 6= θ)

t(ε) := ε
2
3 ‖z‖−

2
3

X (2.38)

and have
‖Rt(ε)yε − x0‖X ≤ c‖z‖

1
3

X ε
2
3 . (2.39)
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Additionally, in each case the given parameter choice strategy leads
to a regularization scheme for x0 .

Proof:
Ad (a). We have

‖Rtyε − x0‖2X ≤
∞∑

j=0

|q(t, σj)− 1|2|〈x0, ej〉|2 + ‖Rt‖2ε2

≤
∞∑

j=0

|q(t, σj)− 1|2σ2
j |〈z, f j〉|2 + t−1ε2

≤
(

sup
σ>0
|q(t, σ)− 1|2|σ|2

)
‖z‖2X + t−1ε2

≤ t‖z‖2X + t−1ε2 .

With the choice (2.36) we obtain (2.37).
Ad (b). Follows by a similar argumentation.
By the estimates (2.37), (2.39) we see that each parameter choice
strategy leads to regularization scheme for x0 . �

In Theorem 2.2.6 we have focus on the filter functions q of Exam-
ple 2.2.3. One might expect that by improving the source condition
better estimates are possible. Let us demonstrate that this is not the
case with the filter function modelling the method of Tikhonov. We
have here for k ∈ N and for t > 0 :

sup
σ>0
|q(t, σ)− 1||σk| = sup

σ>0

tσk

σ2 + t
=∞ if k > 2 .

Therefore a source condition

x0 = (A∗A)kz0, k > 1,

leads to the same error estimate as in b) of Theorem 2.2.6. This fact
is called order–nonoptimality of this method.
On the other hand, for the filter function q which models the trun-
cation method a source condition

x0 = (A∗A)kz0, k > 1,
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leads with the parameter choice

t(ε) :=
ε2/(k+1)

‖z0‖2/(k+1)
X

to an estimate

‖Rt(ε) − x0‖X ≤ cε1/(k+1)‖z0‖1−1/(k+1)
X .

For k → ∞ one obtains asymptotically the order of a well-posed
problem.

Remark 2.2.7. The quality of a regularization family has to be com-
pared with the quantity

Ω(ε, E) := inf
R:Y→X

sup{‖x−Ry‖X | x ∈ DB ,

‖Bx‖Z ≤ E, ‖Ax− y‖Y ≤ ε} .
Since one can prove

ω(ε, E) ≤ Ω(ε, E) ≤ 2ω(ε, E) ,

a reconstruction map R : Y −→ X is called order–optimal with
respect to B if one has

‖Ry − x0‖X = O(ω(ε, E))

for all x0, y with x0 ∈ DB , ‖Bx0‖Z ≤ E, ‖Ax0 − y‖Y ≤ ε. �

2.2.3 L–curve for Tikhonov’s method

Here we sketch a first idea of an a-posteriori parameter choice strat-
egy. Let (xε,t)t>0 be the family of solutions of the generalized method
of Tikhonov and set

u(t) := ‖Axε,t − yε‖2Y , v(t) := ‖Bxε,t‖2Z .
Then it is easy to verify that xε,t is a solution of the method of
residuals with ε = u(t)

1
2 and xε,t solves the method of quasisolutions

with E = v(t)
1
2 . Define

C := {(a, b) ∈ R2|∃x ∈ DB with ‖Ax− yε‖Y ≤ a, ‖Bx‖Z ≤ b} .
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C

(εα ,Εα)

yε

decreasing α
E

ε

Figure 2.1: L–curve

Then it can be shown that
t 7−→ εt is increasing,
t 7−→ Et is decreasing, C
is a convex set and the curve
t 7−→ (εt, Et) is the bound-
ary of C ; see Figure 2.1.

If we do not know the
number εE−1 we have to
specify a method which de-
termines t in an optimal way
using the numbers u(t), v(t).
The L–curve selection crite-
rion consists in locating the
t–value which maximizes the curvature in the typical L-shaped plot
of the curve

Λ : (0,∞) 3 t 7−→ (ln(u(t)), ln(v(t)) ∈ R .
The motivation for doing so lies in the observation that the steep, al-
most vertical portion of the plot for very small values of t corresponds
to rapidly varying, under-regularized solutions with very little change
in u(t), while the horizontal portion of larger values of t corresponds
to over-regularized solutions where the plot is flat or slowly decreas-
ing. The L-curve corner marks a natural transition point linking
these two regions; we come back to this fact for the finite dimen-
sional case from the computational point of view. Here we collect
some results concerning the curve

L : (0,∞) 3 t 7−→ (u(t), v(t)) = (‖Axε,t − yε‖2Y , ‖Bxε,t‖2Z) ∈ R2 .

To compute the derivative of the mappings u, v we start from

(A∗A+ tB∗B)xε,t = A∗yε, t > 0 . (2.40)

We set

zε,t :=
d

dt
xε,t , wε,t :=

d

dt
zε,t ,

and obtain in an obvious way:

(A∗A+ tB∗B)zε,t +B∗Bxε,t = θ, t > 0 , (2.41)

(A∗A+ tB∗B)wε,t + 2B∗Bzε,t = θ, t > 0 . (2.42)
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Notice that (2.40), (2.41), (2.42) may be combined in a system for
xε,t, zε,t, wε,t .

From these identities for xε,t, zε,t, wε,t we conclude by using (2.40),
(2.41), (2.42)

u(t) = ‖Axε,t − yε‖2Y , t > 0 , (2.43)

u′(t) = −2t〈B∗Bxε,t, zε,t〉 (2.44)

= 2t‖(A∗A+ tB∗B)
1
2 zε,t‖2X , t > 0 ,

u′′(t) = −2〈B∗Bxε,t, zε,t〉 − 2t〈B∗Bzε,t, zε,t〉 (2.45)

−2t〈B∗Bxε,t, wε,t〉
= 2‖(A∗A+ tB∗B)

1
2 zε,t‖2X − 6t‖Bzε,t‖2Z , t > 0,(2.46)

and

v(t) = ‖Bxε,t‖2Z , t > 0 , (2.47)

v′(t) = 2〈B∗Bxε,t, zε,t〉 = −1

t
u′(t) , t > 0 , (2.48)

v′′(t) =
1

t2
u′(t)− 1

t
u′′(t) , t > 0 . (2.49)

Due to (2.44) and (2.48) u′(t) is nonnegative and v′(t) is nonpositive
for all t > 0 . Therefore u is monotone nondecreasing, v is monotone
nonincreasing. t > 0 . Therefore it makes no sense to optimize u or v
without restriction in order to find a “best” parameter. Let us define

w(s) := u(
1

s
) , s > 0 .

Then it is easy to verify that

w′′(s) =
6

s4 ‖Azε,1/s‖2Y , s > 0 . (2.50)

This shows that w is strictly convex when zε,1/s 6= 0, a property
which u does not have.

Now we want to compute the curvature κ of the curve L. We have

κ(t) =
u′(t)v′′(t)− u′′(t)v′(t)

(u′(t)2 + v′(t)2)
3
2

=
u′(t)2

t2(u′(t)2 + v′(t)2)
3
2
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and, therefore,

κ(t) = − 1

v′(t)(t2 + 1)
3
2

, t > 0 (2.51)

κ′(t) = − v′′(t)

v′2(t)(t2 + 1)
3
2

+
3t

v′(t)(t2 + 1)
, t > 0 , (2.52)

Due to the nonpositivity of v′(t) we obtain that the curvature is
positive. From (2.52) we conclude that κ′(t) is nonnegative for small
values of t. Since v′(t) is nonpositive for all t > 0 we read off that
κ′(t) becomes negative for large values of t. Thus, there should be a
point tL where κ(t) has its maximal value; (u(tL), v(tL)) is called the
“corner” of the curve L. The denotation L comes from the fact that
the curve L is L–shaped with the corner in (u(tL), v(tL)).

A potential candidate for such a corner point can be computed
by setting κ′(t) = 0 which leads to the equation

ln

(
v′′(t)

v′(t)

)
=

∫ t

0

3s(s2 + 1)
1
2 ds = (t2 + 1)

3
2 − 1

and we obtain for the candidate tL the condition

v′′(tL) = v′(tL)e(t2L+1)
3
2−1 . (2.53)

This observation suggests to find the parameter tL as a solution of
(2.53).

2.3 Regularization in Hilbert scales

In this section we exploit functional analytic tools to design regular-
ization methods which can be used for a wide spectrum of problems.

2.3.1 The method of Tikhonov in Hilbert scales

As a consequence of the assumption A0 an estimate

a‖Ax‖Y ≥ ‖x‖X , x ∈ X (2.54)
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with a > 0 cannot hold.7 We may see this as a consequence of
the fact that the norm ‖ · ‖X in X is too strong in order to allow
a continuous inverse A−1 . Therefore we are searching for a weaker
norm – actually for a larger space endowed with a weaker norm –
such that an inequality of the kind (2.54) holds.

Let V be a Hilbert space which is densely embedded in X . As
it is well known, X may be considered as a dense subspace of the
dual space V ∗ of V when we identify X with its dual space X∗ . This
leads to a Hilbert space triple V ⊂ X ⊂ V ∗ ; such a triple is called
a Gelfand triple. In general, in such a Gelfand triple the following
interpolation inequality holds:

‖x‖X ≤ ‖x‖
1
2

V ‖x‖
1
2

V ∗ (2.55)

Assumption A2’

Let V ⊂ X ⊂ V ∗ be a Gelfand triple with

(a) x0 ∈ V ,

(b) there exists a > 0 with a‖Ax‖Y ≥ ‖x‖V ∗ , x ∈ V ∗ .

The assumption A2’ contains two basic ingredients: (a) is a source
condition and describes the “smoothness” of x0 ; (b) says that the
continuity of inverse A−1 is continuous as a mapping from the range
of A into V ∗ .

Under the assumption A2’ the method of Tikhonov should be
changed into

The method of Tikhonov revisited:

Minimize Gt(x) := ‖Ax − yε‖2Y + t‖x‖2V subject to
x ∈ V .

Here t is a given positive number. Along the arguments in the proof
of Lemma 2.1.12 we obtain existence and uniqueness of a minimizer
xε,t ∈ V of Gt for each t > 0 (set DB := V, Z := V,Bv := v, v ∈ V ).

7If A is a compact operator the assertion is a generic one.
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This method is applicable if we can find a Hilbert space V satis-
fying assumption A2’.

Here is the good news: there exists in all cases (under the as-
sumption A0) such a space. It is constructed along the following
steps:

• X 3 x 7−→ ‖Ax‖Y ∈ R defines a norm ‖ · ‖∼ in X ;

• define W as the completion of X in the norm ‖ · ‖∼ ;

• W is a Hilbert space with a scalar product 〈·, ·〉W ;

• we have 〈x, x′〉W = 〈Ax,Ax′〉Y for all x, x′ ∈ X ;

• we set V := W ∗ where W ∗ is the dual space of W ;

• ‖Ax‖Y = ‖x‖V ∗ , x ∈ X ;

• one has V ⊂ X ⊂ V ∗ = W , ‖x‖X ≤ ‖x‖
1
2

V ‖x‖
1
2

V ∗ for all x ∈ V .

We sketch the proof of the interpolation inequality in the last step.
Let x ∈ X and suppose for the moment x = A∗z . Then

‖x‖2X = 〈A∗z, A∗z〉 ≤ ‖AA∗z‖Y ‖z‖Y
= ‖A∗z‖W‖z‖Y = ‖x‖W ‖z‖Y ,

‖z‖Y = sup{〈u, z〉 | u ∈ Y, ‖u‖Y ≤ 1}
= sup{〈Av, z〉 | v ∈ X, ‖Av‖Y ≤ 1}
= sup{〈v,A∗z〉 | v ∈ X, ‖v‖W ≤ 1} = ‖A∗z‖V = ‖x‖V .

Since range(A∗) is dense in X, the interpolation inequality holds for
all x ∈ X .

Notation: We denote the space V by HX(A) and V ∗ by HX(A)∗ .

Example 2.3.1. Let A : X −→ Y be an injective compact operator
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with singular system (ej , f j , σj)j∈N . Then we have8

HX(A) = {z |
∞∑

j=0

σ−2
j |〈z, ej〉|2 <∞} ,

HX(A)∗ = {z |
∞∑

j=0

σ2
j |〈z, ej〉|2 <∞}

‖Ax‖2Y =

∞∑

j=0

σ2
j |〈z, ej〉|2 = ‖x‖2HX(A)∗ , x ∈ X .

�
Remark 2.3.2. By completing the space Y in the norm

‖ · ‖∼ : Y 3 y 7−→ ‖A∗y‖X ∈ R
one obtains a space W which is actually a Hilbert space. Then by

HY (A) := W ∗ =: U ⊂ Y ⊂ U∗ = W =: HY (A)∗

a Gelfand triple is defined. U is now the space in which the equation
Ax = y can be solved. This principle was introduced by Lions as the
so called HUM-method; see [63]. �

Here is the bad news: the Gelfand triple H(A) ⊂ X ⊂ H(A)∗,
introduced above, is given in a way, that is not very constructive.
Moreover, well known spaces like Sobolev spaces are defined very
differently and the question arises: can well known Hilbert spaces
be related to this triple? We consider the case of a Hilbert scale
(Hs)s∈R ; see appendix.

Assumption A2:

Let (Hs)s∈R be a Hilbert scale with X = H0 and
(a) there exists q > 0 such that DB ⊂ Hq and x0 ∈ DB ;
(b) there exists b > 0 such that b‖Bx‖Z ≥ ‖x‖q, x ∈ DB ;
(c) there exists a > 0 such that a‖Ax‖Y ≥ ‖x‖−p, x ∈ X .

8The definition of HX(A)∗ is a little bit sloppy. Actually, HX(A)∗ is the

completion of X in the norm z 7−→ (
P∞
j=0 σ

2
j |〈z, ej〉|2)

1
2 .
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We say that A is related to the scale (Hs)s∈R if the condition (c) of
assumption A2 holds for no p′ < p . If this is the case we say that
the degree of ill-posedness in solving Ax = y is p with respect to the
scale (Hs)s∈R . If it is not possible to find such a parameter p then
one says that the problem to solve Ax = y is severely ill-posed with
respect to the scale (Hs)s∈R . In Subsection 2.3.4 we will discuss such
problems.

Under the assumption A2 the generalized method of Tikhonov
can be used; see Subsection 2.1.4. Due to the inequality

‖x‖X ≤ ‖x‖
q
p+q

−p ‖x‖
p
p+q
q , x ∈ DB , (2.56)

the assumption A1 can be replaced by

‖x‖X ≤ (a‖Ax‖Y )
q
p+q (b‖Bx‖Z)

p
p+q , x ∈ DB , (2.57)

Therefore for each t > 0 a solution xε,t ∈ DB exists with

xε,t = (A∗A+ tB∗B)−1A∗yε, t > 0 . (2.58)

Theorem 2.3.3. Let the assumption A2 be true and let us consider
xε,t := (A∗A+B∗B)−1A∗yε, t > 0. Then we have with ‖Bx‖Z ≤ E:

‖xε,t(ε) − x0‖ ≤ 2 a
q
p+q b

p
p+qE

p
p+q ε

q
p+q for t(ε) :=

ε2

E2 . (2.59)

Proof:
Due to Theorem 2.1.13 it is enough to estimate

ν(τ, B) := sup{‖x‖X | x ∈ DB , ‖Ax‖Y ≤ τ, ‖Bx‖Z ≤ 1} .

Let x ∈ DB with ‖Ax‖Y ≤ τ, ‖Bx‖Z ≤ 1. Then

‖u‖X ≤ ‖u‖
p
p+q
q ‖u‖

q
p+q

−p ≤ (b‖Bu‖Z)
p
p+q (a‖Au‖Y )

q
p+q

≤ a q
p+q b

p
p+q τ

q
p+q .

�
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2.3.2 Regularization by smoothing in the solution
space

Now we want to look on the method of Tikhonov from a different
point of view. We do this in the framework of Hilbert scales. Suppose
that assumption A2 holds. Then we can continue the inverse A−1

from the range(A) to Y by the following definition

A− : Y −→ H−p, A
−y := lim

n
A−1yn if y = lim

n
yn, yn ∈ range(A).

Hence, we may define x̃ := A−yε and consider x̃ as an approximation
for x0 . But x̃ may be contained in H−p\X. We can repair this defect
by introducing a linear bounded “smoothing” map Qt : H−p −→ X.
Then with

xε,t := QtA
−yε , x0,t := QtA

−y0

we obtain in the usual way an error estimate

‖xε,t − x0‖X ≤ ‖QXt A−‖ε+ ‖(QXt − I)x0‖X
The composition QtA

− may be considered as an approximate inverse.
Since the family (QXt )t>0 is considered as a family of smoothing
operators we should require that limt→0 a(x0; t) = 0 where a(x0; t)
:= ‖(QXt − I)x0‖X . Then, since A−1 : range(A) −→ X is un-
bounded, we conclude limt→0 c(t) =∞ where c(t) := ‖QXt A−‖ .

How to find such a smoothing operator? When we use the Hilbert
scale (Hs)s∈R with the generator (A∗A)−1(see appendix) then we may
use:

p =
1

2
, A− = (A∗A)−1A∗, Qt := (t(A∗A)−1 + I)−1 ;

(Qt)t>0 is the family of resolvents of the unbounded operator (A∗A)−1

and A− is a left-inverse of A. In this context, the smoothing method
is just the classical method of Tikhonov as we conclude from

(A∗A)−1(t(A∗A)−1 + I)−1A∗y = (tI +A∗A)−1A∗y , y ∈ Y . (2.60)

2.3.3 Regularization by smoothing in the data space

Consider the solution of equation Ax = y and look at this equation
in the following form:

AA∗z = y , x := A∗z .
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This leads to the regularizing family (Rt)t>0 where Rt is defined as
follows:

Rty := A∗(tI +AA∗)−1y = A∗(AA∗)−1(t(AA∗)−1 + I)−1y , y ∈ Y .
(2.61)

Rt is a composition of the smoothing operator (t(AA∗)−1 + I)−1 and
the right-inverse A∗(AA∗)−1 .

Again this method is not related to a Hilbert scale which may
be appropriate for applications. Therefore one should generalize the
idea of smoothing the data as follows:

Smoothing in the data space

Take a family of mappings Qt : Y −→ range(A), t > 0,
and consider the family

Rt : Y 3 y 7−→ xε,t := A−1Qty
ε ∈ X, t > 0 .

In this setting this method is called usually a mollification method.
Data smoothing is an important tool in the context of partial dif-
ferential equations. Here locally integrable functions are mollified to
C∞–functions independent of the domain. In general, mollification
operators are of convolution type; see Chapter 4. Again, the compo-
sition A−1Qt may be considered as an approximate inverse.

In order to implement such a method a very detailed study of the
analytical properties of the operator A is necessary since we have to
know the characteristic properties of the range of A ; Lemma 2.1.8
(Picard’s lemma) may be helpful. With

xε,t := A−1Qty
ε , xε,0 := A−1Qty

0

we obtain an error estimate with two competing terms:

‖xε,t − x0‖X ≤ ‖A−1Qt‖ε+ ‖A−1(Qt − I)Ax0‖X .
Example 2.3.4 (Differentiation of data). Once again we consi-
der the problem of differentiation of data. For convenience we do this
in the interval [−π, π]. Set X := Y := L2[−π, π] and consider

A : X −→ Y , Ax(t) :=

∫ t

−π
x(s)ds, t ∈ [−π, π] . (2.62)



“ln-shell”
2005/5/5
page 40i

i
i
i

i
i

i
i

40 [CAP. 2: BASIC CONCEPTS

We mollify the data yε by the Vallée Poussin kernel:

yε,n(t) := 1
2πn

∫ π

−π

cos((n+ 1)(t− s))− cos((2n+ 1)(t− s))
sin2((t− s)/2)

yε(s)ds .

(2.63)
The function yε,n is a trigonometric polynomial of order 2n and there-
fore the calculation of its derivative is very simple and can be done
in a stable way; especially yε,n(·) is in the domain of A−1.
Here the mollification parameter is discrete. But this is no serious
drawback as we see in the following estimation of the error. We set

xε,n := A−1yε,n = yε,n ′ , x0,n := A−1y0,n = y0,n ′

and have

‖xε,n − x0‖X ≤ ‖yε,n ′ − y0,n ′‖X + ‖y0,n ′ − y0‖X .

From deep results concerning the approximation properties of the
Vallée Poussin kernel one obtains the estimate

‖xε,n − x0‖X ≤ c1nε+ c2En
−1 (2.64)

where c1, c2 are constants independent of n, x0, ε, E and E comes from
the a-priori information

x0 ∈ AC[−π, π], x0 ′ ∈ X, ‖x0 ′‖X ≤ E .

The choice n(ε) := bε− 1
2 c yields the result

‖xε,n − x0‖X ≤ (c1E + c2)
√
ε .

(When E is known the parameter n should be chosen such that the
competing terms in the estimate (2.64) are in balance.) �

Remark 2.3.5. It is important to realize that a numerical realiza-

tion Q̃tyε of Qty
ε has to take into account, that we have to stay in

range(A). �
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2.3.4 Severely ill-posed problems

What can we do when an estimate

a‖Ax‖ ≥ ‖x‖−p, x ∈ H−p

is not possible for any p > 0 ? For example, consider the integral
equation

(Ax)(t) :=

∫ 1

0

e−stx(s)ds = y(t), t ∈ [0, 1] ,

for X := Y := L2[0, 1] . To solve this integral equation of the first
kind is severely ill-posed with respect to the usual scale of Sobolev
spaces. This is indicated by the fact that the operator A is smoothing
of infinite type: Ax is infinitely differentiable for each x ∈ L2[0, 1] .

Example 2.3.6. Consider with functions ϕ, ψ

∂u

∂t
=

∂2u

∂x2 , t ∈ R, x ∈ (0, 1),

u(0, t) = ϕ(t),
∂u

∂x
(0, t) = 0, u(1, t) = ψ(t) , t ∈ R .

To solve the forward problem we want to compute ϕ from the data ψ :
ϕ := Aψ . The inverse problem which is called the non-characteristic
Cauchy problem for the heat equation consists in finding ψ from the
data ϕ : ψ := A−1ϕ . The solution of the noncharacteristic Cauchy
problem can be written formally as

u(x, t) = [cosh(x

√
∂

∂t
)ϕ](t) =

∞∑

k=0

x2n

(2n!)

dnϕ

dtn
(t) , x ∈ (0, 1), t > 0 .

To compute ψ we have to use all derivatives of ϕ :

A−1ϕ =

∞∑

k=0

1

(2n!)

dnϕ

dtn
.

�
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Consider A where A−1 has a presentation by a formal power series

A−1 =

∞∑

k=0

αkT
k , (2.65)

and T is the generator of the scale (Hs)s∈R ; see Example 2.3.6. In
this case the domain of definition of A−1 should be contained in
H∞ := ∩s>0Hs and we should try to find a subspace of V of H∞
such that a‖Ax‖ ≥ ‖x‖V ∗ , x ∈ V ∗, holds. To find such a subspace
we choose a sequence α := (αk)k∈N0 with

αk ≥ 0, k ∈ N0 ,

∞∑

k=0

αk ≤ 1 , lim sup
k

α
1/k
k = 0 . (2.66)

We identify with such a sequence α the power series

∞∑

k=0

αkr
k (2.67)

which converges for all r ∈ R due to assumption (2.66). Consider

Z(α) := {x ∈ H∞ |
∞∑

k=0

αk‖x‖2k <∞} . (2.68)

‖x‖2α :=

∞∑

k=0

αk‖x‖2k <∞ . (2.69)

〈x, x〉α =

∞∑

k=0

αk〈x, x′〉k . (2.70)

〈·, ·〉α is an inner product in Z(α) where 〈·, ·〉k is the inner product
in Hk . Since Tej = λje

j , j = 1, . . . , we obtain

∞∑

k=0

αk‖ej‖2k =

∞∑

k=0

αk‖T kej‖20 =

∞∑

k=0

αkλ
2k
j <∞ .

Therefore λj ∈ Z(α) for all j ∈ N0 and Z(α) is not empty; actually
Z(α) is dense in X = H0 . We identify H0 with its dual space H∗0 and
obtain a Gelfand triple

V = Z(α) ⊂ H0 = X ⊂ Z(α)∗ =: V ∗ .
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Now A−1 is well defined on Z(α) and

‖Ax‖ ≥ ‖x‖V ∗ , x ∈ V ∗, (2.71)

‖x‖0 ≤ ‖x‖
1
2

Z(α)‖x‖
1
2

Z(α)∗ , x ∈ Z(α) , (2.72)

can be verified. The last assertion follows from

‖x‖20 = 〈Ax,A−1x〉 =

∞∑

k=0

αk〈Ax, T kx〉

≤ ‖Ax‖Y (

∞∑

k=0

α
1
2

k α
1
2

k ‖T kx‖0)

≤ ‖Ax‖Y (

∞∑

k=0

αk)
1
2 ‖x‖Z(α) .

The appropriate source condition is

x ∈ Z(α), ‖z‖Z(α) ≤ E

and we have with B : Z(α) 3 x 7−→ x ∈ Z(α)

ν(τ, B) := {x ∈ X | x ∈ Z(α), ‖z‖Z(α) ≤ E, ‖Ax‖Y ≤ τ} ≤ τ
1
2 .

Example 2.3.7. The sequence

α with αk :=
1

(2k)!
, k ∈ N0

satisfies the assumptions (2.66) and the space Z(α) is appropriate for
the solution of the non-characteristic Cauchy problem; see Example
2.3.6. Unfortunately the resulting source condition is very strong.
It results from the fact that we consider classical solutions of the
initial-boundary value problem with the heat operator. For example,
a function

ϕ(t) :=

{
1 , if t ∈ [a, b]

0 , if t /∈ [a, b]

(0 < a < b) cannot be treated. �
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2.3.5 Reconstruction of a functional

In some applications one might be satisfied to know just a functional
of the solution x0 . Due to the Riesz mapping the dual space X∗ can
be identified with X .

Recovery of a functional

Given a functional µ ∈ X . Find an approximation ξε

for ξ0 := 〈µ, x0〉 using the data yε .

Suppose we know φ with

A∗φ = µ . (2.73)

Then
ξ0 = 〈µ, x0〉 = 〈A∗φ, x0〉 = 〈φ,Ax0〉 = 〈φ, y0〉

and it is reasonable to use

ξε := 〈φ, yε〉
as an approximation for ξ0 . Since the right hand side µ is independent
of the data yε the solution φ of (2.73) can be precomputed and ξε is
found by computing the scalar product 〈φ, yε〉 .

Unfortunately, the solution of the equation

A∗φ = µ

is again an ill-posed problem and all the machinery of regularization
has to be used in order to compute a stable approximation φη when
µ is given by an approximation µη only. For instance, such a case
is given when the functional µ represents the measurement of an
observed quantity of x0 at some time τ which is corrupted by noise.

In many cases one tries to evaluate the unknown solution x0 by
a functional µ which does not belong to the dual space X∗ which is
identified here with X . Dirac type functionals are of this kind and a
method which is related to these functionals is called the method of
Backus–Gilbert. Therefore there is no chance to solve the equation
(2.73). In the framework of Hilbert scales Hs)s∈R we may consider
the following problem:
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Given µ ∈ H−p, find ψ ∈ Y with
‖A∗ψ − µ‖−p = minw∈Y ‖A∗w − µ‖−p .

Then with the solution ψ we define again ξε := 〈ψ, yε〉, ξ0 := 〈ψ, y0〉
and obtain

|ξε − ξ0| ≤ |〈ψ, yε − y0〉|+ |〈A∗ψ − µ, x0〉|ψ, yε − y0〉|
≤ ‖ψ‖ε+ ‖A∗ψ − µ‖−p‖x0‖p

when we know that x0 ∈ Hp . Define

δR := sup{‖A∗ψ − µ‖−p | ‖ψ‖Y ≤ R} , R > 0 .

Then
|ξε − ξ0| ≤ Rε+ δR‖x0‖p , R > 0 .

Since range(A∗) is dense in H−p we obtain limR→∞ δR = 0 . Thus,
two competing terms are involved in the error estimate for |ξε − ξ0| .

There is an important case when the computational effort of the
reconstruction of functionals can be decreased when µ = µt is the
evaluation functional in a point t and A is an operator of convolution
type; see Chapter 4. The property which is important in this context
is that A commutes with translations.

2.3.6 A-posteriori regularizing strategy

Let (Rt)t>0 be a regularization family. An a-posteriori-strategy starts
from the requirement that the error ‖ARtyε − yε‖Y should be of
the order of the noise level ε . In a rather general consideration it is
reasonable to state the problem in the following way:

Determine t(ε) such that

‖ARt(ε)yε − yε‖Y = ρ(ε, t(ε)) . (2.74)

Such a parameter choice is called a discrepancy principle. Here we re-
strict our considerations to the regularization by Tikhonov’s method
and a special choice for ρ . Consider the set

N := {Ax | x ∈ DB , Bx = 0}
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and let P denote the orthogonal projection of Y onto the closure of
N .

Assumption A3:

Suppose that the following inequalities hold:

‖(I − P )y0‖Y > 0 , ‖(I − P )yε‖Y > ε .

When DB = X,B = identity, then we have P = Θ and ‖y0‖Y > 2ε
implies the condition in assumption A3.

In the sequel we address an a-posteriori strategy with the function
ρ(ε, t(ε)) := ε; see (2.74).

Morozov’s a-posteriori strategy:

Let xε,t := (A∗A+tB∗B)−1A∗yε, t > 0. Find t = t(ε) >
0 with

‖Axε,t − yε‖ = ε . (2.75)

In Section 2.2.3 we obtained that the function

(0,∞) 3 s 7−→ ‖Axε,1/s − yε‖2Y ∈ R

is a convex function. Therefore the equation (2.75) is uniquely solv-
able and the solution can be found by Newton’s method.

Theorem 2.3.8. Suppose that the assumptions A0, A1, A3 hold,
let ‖Bx0‖ ≤ E, and let t = t(ε) be chosen according to the strategy
(2.75). Then

‖xε,t(ε) − x0‖ ≤ 2Eν(
ε

E
) . (2.76)

Proof:
Let t := t(ε) be chosen according to (2.75). Then

ε2 + t‖Bxε,t‖2Z = ‖Axε,t − yε‖Y + t‖Bxε,t‖2Z
≤ ‖Ax0 − yε‖Y + t‖Bx0‖2Z ≤ ε2 + tE2 .



“ln-shell”
2005/5/5
page 47i

i
i
i

i
i

i
i

[SEC. 2.3: REGULARIZATION IN HILBERT SCALES 47

This shows

‖Bxε,t‖Z ≤ E .
Using the parallelogram identity we obtain

‖B(xε,t − x0)‖2Z = 2‖Bxε,t‖2Z + 2‖Bx0‖2Z − ‖B(xε,t + x0)‖2Z ≤ 4E2 ,

i. e.

‖B(xε,t − x0)‖Z ≤ 2E . (2.77)

From

Ax0 = y0, ‖y0 − yε‖Y ≤ ε, ‖Axε,t − yε‖Y = ε ,

we obtain

‖xε,t − x0‖X ≤ sup{‖u‖X | u ∈ DB , ‖Au‖Y ≤ 2ε, ‖Bu‖Y ≤ 2E}
= 2Eν(

ε

E
) .

�

The result of Theorem 2.3.8 is that the a-posteriori strategy (2.75)
leads to the same error estimate as the a-priori strategy t(ε) :=
ε2E−2 ; see Corollary 2.1.14.

2.3.7 Regularization by discretization

A projection method for the solution of an equation

Ax = y (2.78)

is defined as follows:

Projection method

Given families (Xh)h>0 and (Y ∗h )h>0 of subspaces of X
and Y respectively.
Find xh ∈ Xh such that

〈Axh − y, w〉 = 0 for all w ∈ Y ∗h . (2.79)
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We assume
dimXh = dimY ∗h = nh ∈ N, h > 0 .

Then by choosing bases of Xh and Y ∗h respectively, the solution (2.78)
can be found by solving a linear system of equations. We introduce
linear operators

Ph : X −→ Xh , Rh : y −→ Xh

by the definition

〈APhu−Au,w〉 = 0 , 〈ARhz − z, w〉 = 0 for all w ∈ Y ∗h .

Since
Ph = RhA , PhPh = Ph

the term “projection method” becomes clear. Let

d(z,Xh) := inf{‖z − u‖X | u ∈ Xh} , z ∈ X .

d is a measure how well elements in X can be approximated by ele-
ments in Xh .

Coming back to our general setting, we can use a projection
method to find an approximation of x0 using the data yε in the fol-
lowing way:

xε,h := Rhy
ε , h > 0 . (2.80)

Theorem 2.3.9. We have

‖xε,h − x0‖X ≤ ‖Rh‖ε+ (1 + ‖Ph‖)d(x0, Xh) , h > 0 . (2.81)

Proof:
Since dimXh <∞, there exists z ∈ Xh with ‖z− x0‖X = d(x0, Xh).
We have

‖xε,h − x0‖X ≤ ‖Phx0 − z‖X + ‖z − x0‖X + ‖Phx0 − xε,h‖X
≤ ‖Ph(x0 − z)‖X + ‖z − x0‖X + ‖RhAx0 −Rhyε‖X
≤ ‖Ph‖‖x0 − z‖X + ‖z − x0‖X + ‖Rh‖‖Ay0 − yε‖X
≤ ‖Rh‖ε+ (1 + ‖Ph‖)d(x0, Xh) .

�
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The error estimate in (2.81) indicates which quantities have to be
discussed for a further analysis of a projection method.

The projection method is called quasi-optimal when the family
(Ph)h>0 is uniformly bounded and limh→0 d(x,Xh) = 0 for all x ∈ X .
The projection method is called robust when the family (ρ−1

h Ph)h>0

is uniformly bounded where

ρh := sup{‖u‖X‖Au‖−1
Y | u 6= θ, u ∈ Xh} , h > 0

is the modulus of continuity of A | −1
Xh

. It is easy to prove that
‖Rh‖ ≥ ρh . Therefore robustness means that the family ‖Ph‖)h>0

has the same asymptotic as (ρh)h>0 . Notice that limh→0 ρh = ∞ if
limh→0 d(x,Xh) = 0 for all x ∈ X since A−1 is unbounded.

Corollary 2.3.10. Suppose that the projection method is quasi-opti-
mal and robust. Then there exists a constant c ≥ 0 such that

‖xε,h − x0‖X ≤ c(ρhε+ d(x0, Xh)) , h > 0 . (2.82)

Corollary 2.3.10 follows from Theorem 2.3.9. From the error es-
timate (2.82) one reads off the necessity to implement regularizing
strategies in order to balance the competing terms. Again, the dis-
cussion of a-priori and a-posteriori strategies can be analyzed in the
framework of Hilbert scales. Specific methods are:

• Least squares method: Choose Xh in X and set Y ∗h := AXh .

• Ritz method: Choose Xh in X and set Y ∗h := Xh. Here it is
assumed X = Y,A = A∗ .

• Generalized least squares method: Choose Xh in X and
set Y ∗h := B∗BAXh. Here B is a linear mapping from DB −→
Z; see above.

We don’t go into the analysis of these methods. In each case one can
give conditions which imply quasi-optimality and robustness.

2.4 Finite dimensional problems

Here we take a short look at the problems which result when ill-posed
problems are “projected” down to a finite dimensional situation.
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2.4.1 Ill-conditioned problems

The discretization of linear ill-posed problems gives rise to linear
systems of equations

Ax = y (A ∈ Rm,n, x ∈ Rn, y ∈ Rm) . (2.83)

We discuss this system under the assumption n ≤ m which means
that the system is overdetermined. Again, the singular value decom-
position is the main tool to understand the problems in solving the
equations in a stable way.

Let At denote the transposed matrix of A . The euclidian norm in
Rn is denoted by ‖ · ‖2 .

Theorem 2.4.1 (Singular value decomposition). Let A ∈ Rm,n
with ≤ m. Then there exist U ∈ Rm,m, V ∈ Rn,n and a diagonal
matrix Σ with entries σ1, . . . , σn ≥ 0 in the diagonal such that

A = UΣV t , U tU = UU t = E, V tV = V V t = E

holds. σ1, . . . , σn are called the singular values of A .

The decomposition above is analogous to the case in the infi-
nite dimensional situation. When A = UΣV t is a singular value
decomposition with singular values σ1, . . . , σn, and matrices U =
(u1| . . . |um), V = (v1| . . . |vn) then

Avi = σiu
i , Atui = σiv

i , i = 1, . . . , n . (2.84)

The system (u1, . . . , um, v1, . . . , vn, σ1, . . . , σn) is called a singular
system. Notice that the squares of singular values are the eigen-
values of the matrix AtA . Notice too that the singular values of the
matrix A are uniquely determined but not the matrices U, V due to
the fact that in general a basis is not uniquely determined. Without
loss of generality we may assume

σ1 ≥ . . . ≥ σr > 0 , σr+1 = · · · = σn = 0 and Σ = diag(σ1, . . . , σn) .
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Now we have

rank(A) = r; (2.85)

null(A) = span(vr+1, . . . , vn); (2.86)

range(A) = span(u1, . . . , ur); (2.87)

‖A‖2 = σ1; (2.88)

A =

r∑

i=1

σiu
i(vi)t . (2.89)

The identity in (2.89) shows that A may be decomposed into a sum
of r matrices with rank equal to 1.

When the system (2.83) comes from an infinite dimensional ill-
posed problem we may expect that the matrix A has many “tiny”
singular values, some of which may be vanishing. Following [37],
we refer to such linear systems as discrete ill-posed problems. It is
clear that the separation between ill-conditioned and well-conditioned
problems is more vague than the concept of well-posed problems.

Consider the conditions

AXA = A , XAX = A . (2.90)

(AX)t = AX , (XA)t = XA . (2.91)

It is easy to verify that a matrix X which satisfies the conditions
(2.90), (2.91) is uniquely defined.

Definition 2.4.2. Let A ∈ Rm,n . A matrix X ∈ Rn,m is called a
(Moore–Penrose) pseudoinverse of A, if X is a solution of the equa-
tions (2.90),(2.91). We denote the (Moore–Penrose) pseudoinverse
of A by A† := X . �

Notation: Let σ ∈ R. Define σ− := σ−1 if σ 6= 0 and σ− := 0 if
σ = 0 .

Let A = UΣV t be a singular value decomposition, let r be the
rank of A . If

Σ =

(
Σr Θ
Θ Θ

)
with Σr = diag(σ1, . . . , σr) ∈ Σr ∈ Rr,r
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then we set

Σ† :=

(
Σ−r Θ
Θ Θ

)
with Σ−r := diag(σ−1 , . . . , σ

−
k ) .

Corollary 2.4.3. Let A ∈ Rm,n and let A = UΣV t be a singular
value decomposition of A . Then X := V Σ†U t is the pseudo inverse
of A.

Proof:
It is easy to verify that X := V Σ†U t solves equations (2.90),(2.91).

�

Example 2.4.4. Let

A :=




1 0
0 0
0 0


 , ∆(ε) :=




0 0
0 ε
0 0


 .

Then

A† =

(
1 0 0
0 0 0

)
, (A+ ∆(ε))† =

(
1 0 0
1 1/ε 0

)
.

Therefore limε→0(A + ∆(ε)) = Θ, but limε→0(A + ∆(ε))† does not
exist. This shows that the mapping A 7−→ A† is not a continuous
one. �

Remark 2.4.5. The definition of the pseudoinverse of a matrix A
is compatible with the definition of the pseudoinverse of a compact
injective operator in Remark 2.1.10.

Remark 2.4.6. Suppose that we have a matrix B ∈ Rn,l . Then the
method of Tikhonov in the finite dimensional context is to determine
the solution xε,t of the associated normal equations:

(AtA+ tBtB)xε,t = yε,t . (2.92)

Again t is a regularization parameter which has to be determined in
a proper way. We set

u(t) := ‖Axε,t − yε,t‖22 , v(t) := ‖Bxε,t‖22 , t > 0 .
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This curve displays the trade-off between minimizing the residuals
‖Ax − yε‖2 and ‖Bx‖2 . The L–curve selection criterion consists in
locating the t–value which maximizes the curvature in the typical L-
shaped plot of the curve

Λ : (0,∞) 3 t 7−→ (ln(u(t)), ln(v(t)) ∈ R .

This “L-curve corner” marks a natural transition point linking these
two regions. The location of the parameter tL, corresponding to this
corner point, may be derived by using the singular value decomposi-
tion. But for large scale problems where the cost of the singular value
decomposition of A is very costly, the curvature κ should be expressed
directly by A . �

2.4.2 Least squares

Let x0 be the (unique) solution of (2.83) with right hand side y0 :

Ax0 = y0 . (2.93)

Again, we assume that the right hand side y0 is contaminated by
noise:

yε = y0 + wε, wε ∈ Y, ‖wε‖ ≤ ε (2.94)

where ε ≥ 0 is the so-called noise level. We want to solve the equation

Ax = y (2.95)

for yε . Since this systems is overdetermined there is no chance to
solve this system. Therefore we search for a solution of the linear
least squares problem

Minimize ‖Ax− yε‖22 . (2.96)

The existence of a solution of (2.96) is easy to prove. Let r :=
rank(A) ≤ n ≤ m. Then a solution of (2.96) is uniquely determined
if and only if r = n . If r < n, then there exists in Rn a (n − r)–
dimensional subspace of solutions. In particular, let x∗ denote the
shortest solution (with respect to the euclidian norm) then the general
solution can be written as

x = x∗ + z
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with an arbitrary z ∈ null(A) . Now we can verify that this solution
x∗ can be represented by the (Moore-Penrose)–pseudoinverse, namely
x∗ = A†y . For the right hand side y := yε we set

xε := A†yε .

When A = UΣV t is a singular value decomposition of A with rang(A)
= r, U = (u1| . . . |um) then we obtain

‖AA†xε − yε‖2 =

m∑

i=r+1

〈ui, yε〉2 .

In order to find xε = A†yε the singular value decomposition is not
the method of choice. Essentially, there are four basic approaches to
compute the solution xε :

• Normal equations solution

• QR-decomposition

• Augmented system solution

• Krylow subspace methods

The first approach is the one originally derived by C. F. Gauss.
It consists in solving the normal equations

AtAx = Atyε

by a decomposition method like the Cholesky method.

The QR–decomposition method uses the fact that the euclidian
norm is invariant under an orthogonal transformation Q . There are
several methods to find an orthogonal matrix Q with

QA =

(
R
Θ

)
, Qyε =

(
u
v

)

where R is an upper tridiagonal matrix. Once Q,R are found one
has to solve the equation Rx = u.
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In the third approach one introduces as an additional unknown
d := yε − Ax and solves the normal equations in the following aug-
mented form: (

I A
At Θ

)(
d
x

)
=

(
yε

θ

)
.

Krylow subspace methods are iterative methods for solving (large)
systems of linear equations. The conjugate gradient method is for
symmetric problems and GMRES is a well known Krylov method for
the nonsymmetric case. The Krylow subspaces with respect to A and
yε are defined by

Kj(A, yε) := span({yε, Ayε, . . . , Aj−1yε} , j = 1, 2, . . . . (2.97)

The GMRES method determines iterates xε,j ∈ Kj(A, yε), j ∈ N,
that satisfy

‖Axε,j − yε‖ = min
x∈Kj(A,yε)

‖Ax− yε‖ . (2.98)

Input Matrix A ∈ Rn,n, righthand side y,

initial guess v0 .

Initialization: r0 := Av0 − b, β := ‖r0‖, v1 := β−1v0,

V1 := (v1) .

For i = 1, . . . , imax do:

Normalization: vi+1 := v̂i+1‖v̂i+1‖−1 .

Update: Vi+1 := (Vi|vi+1), Hi :=

(
Hi−1 hi

0 ‖v̂i+1‖

)
.

Least squares: ‖βe1 −Hiz
i‖ = minz ‖βe1 −Hiz‖ .

end do

Output vi = Viz
i + v0 , i = 0, . . . , imax.
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It follows from (2.98) and the relation Kj−1(A, yε) ⊂ Kj(A, yε) that
the inequalities

‖rε0‖ ≥ ‖rε1‖ ≥ ‖rε2‖ ≥ . . . (2.99)

hold for the residual vectors

rεj := Axεj − yε, j = 1, 2, . . . .

However the GMRES iterates are not guaranteed to satisfy the in-
equalities

‖xε0‖ ≤ ‖xε1‖ ≤ ‖xε2‖ ≤ . . . , (2.100)

as it is the case when we apply the cg-method to solve the problem.
This fact can be used to develop a criterion for an early termination
of the iteration of the GMRES method. This termination criterion is
based on the condition number of the matrices Ai := Vi+1HiV

t
i ; see

[15].

2.5 Bibliographical comments

The results in Sections 2.1, 2.2, 2.3 can be found in nearly all mono-
graphs on ill-posed problems; see [5, 23, 53]. In Subsection 2.3.4 we
are inspired by [68]. More on a-posteriori parameter choice principles
can be found in [73]. The reconstruction of functionals is treated a
little bit different from the literature; see [66]. The problems of nu-
merical algebra in solving ill-conditioned problems are discussed very
detailed in [37] under the aspect of using matlab.

2.6 Exercises

2.1. Prove the inequality (2.8).

2.2. Let V be Hilbert space which is densely imbedded in X and
suppose that the linear bounded operator B : V −→ X has a
bounded inverse B−1 : X −→ V . Show that there exists a constant
c > 0 such that

c−1‖v‖V ≤ ‖Bv‖X ≤ c‖v‖V for all v ∈ V .
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2.3. Let U, V,W be Hilbert spaces and let Q : U −→ W,R :
V −→ W be linear bounded operators. Prove the equivalence of
the following conditions:

(a) There exists a linear bounded operator S : V −→ U with
QS = R .

(b) range(R) ⊂ range(Q) .

(c) There exists λ > 0 such that RR∗ ≤ λQQ∗ .

2.4. Consider the filter q : (0,∞)×(0,∞) 3 (t, σ) 7−→ 1−(1−aσ2)
1
t

where a is a positive number. Prove:

|q(t, σ)| ≤
√
a

t
, |q(t, σ)− 1| ≤ t

aσ2 , (t, σ) ∈ (0,∞)× (0,∞) .

2.5. Consider the operator A : L2(0, 1) −→ L2(0, 1), defined by

Ax(t) :=

∫ t

0

x(s)ds , t ∈ [0, 1] .

Prove that A is a compact operator with norm 1.
Hint: Use the theorem of Arzela-Ascoli.

2.6. Give an estimate for

sup{‖x‖ | ‖Ax‖ ≤ τ, ‖Bx‖ ≤ 1, x ∈ H2
0 [0, 1]}

where A is the integral operator in the problem 2.14, H2
0 [0, 1] is the

space

{x ∈ L2[0, 2]‖x, x′ ∈ AC[0, 1], x′′ ∈ L2[0, 1], x(1) = 0, x′(0) = 0}

and Bx is defined as x′′ .

2.7. Compute the adjoint operator A∗ of the operator A in the ex-
ercise above.

2.8. Let x ∈ L2(−π, π) be given and consider x as a function on
the circle with radius r = 1 . According to Poisson’s formula, if a
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harmonic function equals x on the unit circle, then in the unit disk
it is given by

u(r, φ) :=
1

2π

∫ π

−π

1− r2

1 + r2 − 2r cos(φ− α)
x(α)dα ,

for r ∈ (0, 1), φ ∈ (−π, π). The problem of harmonic continuation
consists in finding x from the restriction y := u(r, ·) where r ∈ (0, 1)
is given. Show that A, defined by

Ax(φ) :=
1

2π

∫ π

−π

1− r2

1 + r2 − 2r cos(φ − α)
x(α)dα , −π < φ ≤ π ,

is a linear bounded operator from L2(−π, π) into L2(−π, π) .

Hint: 1− r2

1 + r2 − 2r cos(φ− α)
≤ 1 + r

1− r .

2.9. Consider the operator A in the exercise above and let xn :=
cos(n·), n ∈ N . Compute ‖xn‖L2(−π,π), ‖Axn‖L2(−π,π)n ∈ N, and
limnAxn.

2.10. Consider the integral equation

∫ ∞

−∞

1

1 + (t− s)2x(s)ds = y(t) , t ∈ R .

Set y(t) := τ sin(nt), x(s) := τen sin(ns), t, s ∈ R. Show that x is a
solution.

2.11. Consider with X := Y := L2[0, 1] the operator

J : X −→ X , J(x)(t) :=

∫ t

0

x(s)ds, t ∈ [0, 1],

and the multiplication operator

M : X 3 x 7−→ mx ∈ Y

where m is a measurable function with 0 < |m(t)| ≤ µ, t ∈ [0, 1].
Show that M ◦ J : X −→ Y is compact and that the asymptotic of
the singular values of M ◦ J is O(n−1).
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Chapter 3

Iterative methods

This chapter is devoted to the analysis of iterative regularization
methods. In particular we shall focus our attention on the Landweber
type methods. What concerns linear equations, iterative methods for
approximating the generalized inverse (i.e. the least square solution
of minimum norm) are based on algorithms for solving fixed point
equations related to the normal equation (see [23, 31, 32] for corre-
sponding definitions). The regularization character of these methods
(in the case of noisy data) is related to an early termination of the
iteration, and a corresponding stopping rule is determined by an a
posteriori evaluation of the iteration residual.

We address the Landweber iteration for both linear and nonlinear
equations. Further, we investigate a modified Landweber iteration
and also a continuous version of the Landweber iteration (the so
called asymptotical regularization). For all these methods we prove
convergence results for exact as well as for noisy data. Moreover,
under additional regularity assumptions on the solution of the inverse
problem, it is possible to obtain convergence rates, i.e. estimates to
the number of iterative steps required in order to reach the stopping
criterion as well as estimates to the iteration error.

It is worth noticing that all these iterative methods are adjoint
type methods, i.e. the iteration is governed by an operator which is
adjoint to the operator which models the inverse problem.

59
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3.1 Introduction

We are concerned with operator equations of the type

F (x) = y , (3.1)

where F : D(F ) ⊂ X → Y and X , Y are Hilbert spaces. If F is
linear and bounded, we denote by x† the (generalized) solution of
(3.1), i.e. x† = F †y is the least square solution of (3.1) which has
minimum norm; see Remark 2.1.10. In practical applications the
available data is infected by measurement errors (not to mention the
modeling errors). Therefore, only approximate data yε with ‖y −
yε‖ ≤ ε is available. We shall refer to ε > 0 as noise level.

It is a well known fact that x† is a solution of the normal equation

F ∗Fx = F ∗y , (3.2)

where F ∗ is the Hilbert adjoint of F (actually the unique solution of
(3.2) lying in null(F )⊥; see [31] for details).

In the linear case, the iterative regularization methods for approx-
imating x† = F †y are based on fixed point equations related to (3.2),
like

x = x− F ∗(Fx− y) = (I − F ∗F )x+ F ∗y .

Notice that if F is continuous, then F ∗F is a bounded self-adjoint
nonnegative operator. Further, if ‖F‖2 < 2, then the fixed point op-
erator (I−F ∗F ) is nonexpansive (i.e., ‖I−F ∗F‖ ≤ 1). Although this
operator is not necessarily a contraction, convergence results of the
fixed point iteration can be obtained (cf. [8]). If problem (3.1) is ill-
posed (e.g., when F is compact), then (I−F ∗F ) is not a contraction,
since zero belongs to the continuous spectrum of F .

The fixed point iteration above suggests the explicit iteration:

xk+1 = xk − F ∗(Fxk − y) , k ≥ 0 (3.3)

(x0 ∈ D(F )), which corresponds to the Landweber iteration.The
strong convergence of (3.3) in the case of F compact and y ∈ D(F †)
was proved by Landweber in [57]. Independently, Fridman ana-
lyzed in [25] the same iteration for F compact self-adjoint and posi-
tive.1There are other names associated with the analysis of equivalent

1Iteration (3.3) is also called Landweber-Fridman iteration.
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iterations (specially in the engineering literature). The reader is re-
ferred to [23] for further historical references.

If the operator F in (3.1) is nonlinear, there are several ways to
generalize the Landweber iteration (3.3). If the Fréchet derivative
F ′(·) of F is locally uniformly bounded, a possible alternative is to
consider the iteration:

xk+1 = xk − F ′(xk)∗(F (xk)− y) , k ≥ 0 , (3.4)

where x0 ∈ D(F ) is some initial guess. Convergence rates results for
iteration (3.4) are proven under the sourcewise representation

x∗ − x0 = (F ′(x∗)
∗F ′(x∗))

νw , ν > 0 , w ∈ X , (3.5)

where x∗ ∈ D(F ) is a solution of (3.1). Further, one needs (locally)
a representation condition on F ′:

F ′(x) = RxF
′(x∗) , x ∈ Bρ(x0) , (3.6)

where {Rx}x∈Bρ(x0) is a family of bounded linear operators Rx : Y →
Y with

‖Rx − I‖ ≤ C‖x− x∗‖ , x ∈ Bρ(x0) . (3.7)

See Section 3.3 for a detailed exposition.
An alternative method for solving (3.1) in the nonlinear case is

the modified Landweber iteration

xk+1 = xk − F ′(xk)∗(F (xk)− y)− αk(xk − ζ) , (3.8)

where 0 ≤ αk ≤ 1 and ζ ∈ D(F ). The advantage of the modified
Landweber iteration resides in the fact that one can prove a con-
vergence rates result under the usual source condition (3.5), without
requiring any additional representation condition on F ′ (as the one
in (3.6)). From the point of convergence analysis, this method is
optimal, since convergence, stability and convergence rates can be
guaranteed under minimal assumptions. This iterative method is
considered in Section 3.4.

In Section 3.5 we consider a continuous version of the Landweber
iteration. It corresponds to the so called asymptotic regularization.



“ln-shell”
2005/5/5
page 62i

i
i
i

i
i

i
i

62 [CAP. 3: ITERATIVE METHODS

In this method a regularized approximation x(T ) of a solution x∗ of
(3.1) is obtained by solving the initial value problem:

x′(t) = F ′(x(t))∗(y − F (x(t))) , t ∈ (0, T ] x(0) = x0 . (3.9)

Convergence for this method can be proved and, assuming a source
condition of type (3.5), it is also possible to obtain stability estimates.

3.2 Landweber iteration for linear equa-

tions

We consider in this section operator equations of the type (3.1) for
linear compact operators F . What concerns the Landweber iteration
(3.3) we shall adopt the notation

xk+1 = xk − F ∗(Fxk − y) (3.10)

xεk+1 = xεk − F ∗(Fxεk − yε) , (3.11)

where yε and ε have the same meaning as in Section 3.1. Notice that
x0 = xε0 ∈ X . For simplicity of the presentation we assume ‖F‖ ≤ 1.
If this were not the case, we could always introduce a relaxation
parameter λ ∈ (0, ‖F‖−2] in the normal equation (3.2) and rewrite
the iteration as xk+1 = xk − λF ∗(Fxk − y). In order to simplify the
notation we use as initial guess x0 = 0. The results presented in this
section are in no way affected by this particular choice.

Our first result concerns convergence for exact data.

Lemma 3.2.1. Let y ∈ D(F †) = range(F ) + null(F ∗) and {xk} be
the sequence defined in (3.10). Then xk → F †y as k →∞.

Proof:
Since y ∈ D(F †), we have F ∗y = F ∗FF †y. Thus, from the definition
of xk follows F †y − xk = (I − F ∗F )kF †y. Since ‖F‖ ≤ 1, it follows
from the spectral theory for linear bounded self-adjoint operators
(cf., e.g., [56]) that (I − F ∗F )kF †y → P (F †y), k → ∞, where P is
the orthogonal projector onto null(F ). Now, from F †y ∈ null(F )⊥

follows xk → F †y. �
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The assumption y ∈ D(F †) is not only sufficient but also nec-
essary for the convergence of the sequence xk (even in weak sense).
Actually, one can prove that if y 6∈ D(F †), then ‖xk‖ is unbounded
(see Exercise 3.1). This is a classical result in the regularization the-
ory and we refer the reader to [23, Theorem 4.1] or [31, 32].

The next result gives an estimate for the error propagation in the
Landweber iteration.

Lemma 3.2.2. Let y ∈ D(F †) and yε ∈ Y be such that ‖y−yε‖ ≤ ε.
Further, let {xk}, {xεk} be the sequences defined in (3.10), (3.11).
Then we have the estimate

‖xk − xεk‖ ≤
√
kε .

Proof:
A simple algebraic calculation shows that xk−xεk = Rk(y−yε), where

Rk :=
k−1∑

j=0

(I − F ∗F )jF ∗ .

Now, the lemma follows from ‖I − F ∗F‖ ≤ 1 together with the esti-

mate ‖Rk‖2 = ‖RkR∗k‖ ≤ ‖
∑k−1
j=0 (I − F ∗F )j‖. �

From the above lemmas we conclude that, in the case of noisy
data yε 6∈ D(F †) with ‖y − yε‖ ≤ ε, we have

‖F †y − xεk‖ ≤ ‖F †y − xk‖+ ‖xk − xεk‖.
Notice that the total error can be divided in two components: the
first one is the approximation error and converges to zero as k →∞.
The second one is the propagated data error and has the order of√
kε, which becomes unbounded as k → ∞. As one iterates, the

propagated data error increases and, when
√
kε becomes larger than

the approximation error, the approximations xεk become worst (i.e.
‖F †y − xεk‖ starts increasing). Notice that, since F † is unbounded,
the pre-image of the ball Bε(y

ε) ⊂ Y with respect to F is unbounded
in null(F )⊥ ⊂ X .

Another important property of the Landweber iteration concerns
the evolution of the residual yε − Fxεk. Since

yε − Fxεk+1 = (I − FF ∗)(yε − Fxεk)
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and ‖I−F ∗F‖ ≤ 1, it follows that the norm of the residual decreases
monotonically during the iteration.

The necessity of a stopping criterion for the Landweber iteration
in case of noisy data is now clear. A common parameter choice rule
is the one described by the discrepancy principle, according to which
the iteration should be terminated at the step k = k(ε, yε) when

‖yε − Fxεk(ε,yε)‖ ≤ τε , (3.12)

for the first time (here τ > 1 is fixed). The next result guarantees a
monotony property of the monotony of the iteration error as long as
the discrepancy principle is not reached.

Lemma 3.2.3. Let y = Fx∗ ∈ range(F ), and yε ∈ Y be such that
‖y − yε‖ ≤ ε. Further, let {xεk} be the sequence defined in (3.11). If
‖yε − Fxεk‖ > 2ε then

‖x∗ − xεk+1‖ ≤ ‖x∗ − xεk‖ .

Proof:
Notice that

‖x∗ − xεk+1‖2 = ‖x∗ − xεk‖2 − 2〈y − yε, yε − Fxεk〉 − ‖yε − Fxεk‖2
+ 〈yε − Fxεk, (FF ∗ − I)(yε − Fxεk)〉

(see Exercise 3.2). Since FF ∗ − I is nonpositive, it follows

‖x∗ − xεk‖2 − ‖x∗ − xεk+1‖2 ≥ ‖yε − Fxεk‖(‖yε − Fxεk‖ − 2ε)

completing the proof. �

The last lemma tell us that the Landweber iteration (3.11) should
not be stopped before the discrepancy principle (3.12) with τ = 2.
It is worth noticing that no τ ≥ 1 should be employed in (3.12),
otherwise the residual may never reach the tolerance given by the
discrepancy principle.

The next lemma gives us an estimate for the stopping index
k(ε, yε) in (3.12).
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Lemma 3.2.4. If we choose τ > 1 in (3.12) then the stopping index
given by the discrepancy principle can be estimated by

k(ε, yε) = O(1/ε2) .

Proof:
Let y = Fx∗ and {xk}, {xεk} be the sequences defined in (3.10),
(3.11). Arguing as in the previous lemma we obtain

‖x∗ − xk‖2 − ‖x∗ − xk+1‖2 ≥ ‖y − Fxk‖2 .

Therefore

‖x∗ − x1‖2 − ‖x∗ − xk+1‖2 ≥ k‖y − Fxk‖2 .

Now, from y − Fxk = (I − FF ∗)k(y − Fx0) follows

‖(I − FF ∗)k(y − Fx0)‖ ≤ k−1/2‖x∗ − x1‖

Finnaly we obtain the estimate

‖yε − Fxεk‖ = ‖(I − FF ∗)k(yε − Fx0)‖ ≤ ε+ k−1/2‖x∗ − x1‖

and conclude that the right hand side is smaller than τε when k
becomes larger than (τ − 1)−2‖x∗ − x1‖2ε−2. Hence, k(ε, yε) = cε−2

and the lemma is proved. �

The next result gives an estimate for k(ε, yε) and ‖F †y−xεk(ε,yε)‖,
when we consider the Landweber iteration with the discrepancy prin-
ciple (3.12).

Lemma 3.2.5. If y ∈ range(F ) and F †y = (F ∗F )νw, holds for some
w ∈ X and ν > 0, then the stopping rule defined by (3.12) with τ > 1
satisfies

k(ε, yε) = O
(
ε−2/(2ν+1)

)
. (3.13)

Moreover,

‖F †y − xεk(ε,yε)‖ = O
(
ε2ν/(2ν+1)

)
. (3.14)
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Sketch of the proof:
For a complete proof we refer the reader to [23, Theorem 6.5] or [65].
A proof for the special case ν = 1 can be found in [32, 53].

The natural way of proving this result is to consider the Landwe-
ber iteration within the framework of general regularization theory
(see, e.g., [23, 32, 53, 65]). Then the estimates (3.13), (3.14) follow
from a main result of this theory in a straightforward way. In the
sequel we briefly introduce some relevant concepts of general regular-
ization theory and describe the steps of the proof of Lemma 3.2.5.

It is a well known fact (see Section 2.2 and, e.g., [53, Theorem 2.6])
that the filter functions q(α, µ) := 1− (1− µ2)1/α define a family of
linear operators Rα : Y → X , α > 0,

Rα : y 7−→
∞∑

k=1

q(α, ν)

ν
〈y, yk〉xk , y ∈ Y , (3.15)

(here (µk;xk , yk) denotes the singular system for F ), such that {Rα}
is a regularization strategy, i.e. RαFx → x, as α → 0, for all x ∈
X . Note that each xk defined in (3.10) satisfies xk = Rαy, with
α = 1/k. Therefore, the Landweber iteration can be interpreted as a
regularization strategy {Rk} with discrete regularization parameter
(cf., e.g., [53, Theorem 2.15]).2

The notion of regularization strategy is based on exact data, i.e.
we apply the operators Rα to y ∈ D(F †) and obtain Rαy → F †y as
α → 0. In the presence of noise, i.e. when only a garbled version yε

of the data y is available, one has also to define a parameter choice
rule α = α(ε, yε) such that

lim sup
ε→0

{‖Rα(ε,yε)y
ε − F †y‖ ; yε ∈ Y, ‖y − yε‖ ≤ ε} = 0 ,

and

lim sup
ε→0

{α(ε, yε); | yε ∈ Y, ‖y − yε‖ ≤ ε} = 0 for all y ∈ D(F †).

If the above conditions are fulfilled, the pair (Rα, α) is called a (con-
vergent) regularization method for solving Fx = y. The regulariza-
tion strategy {Rk} defined by the Landweber iteration together with

2The operators Rk were already defined in the proof of Lemma 3.2.2.
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the parameter choice rule k(ε, yε) given by the discrepancy principle
(3.12) generate a regularization method (Rk, k(ε, yε)) (see, e.g., [53,
Theorem 2.19]).

Convergence rates can only be given on subsets of D(F †) (or,
equivalently, on subsets of X), e.g., Xν := R((F∗F)ν) ⊂ X , for
ν > 0. For a general regularization method (Rα, α), where α is
defined via the discrepancy principle, one can prove that, under the
assumption F †y ∈ Xν , for some ν ∈ (0, ν0/2], the rate of convergence
‖F †y − Rεk(ε,yε)y

ε‖ = O(ε2ν/(2ν+1)) hold (cf. [23, Theorem 4.17]).

The constant ν0 is called qualification of the regularization {Rα} (cf.
[23, Chapter 4]). Thus, in order to prove Lemma 3.2.5, it is enough to
verify that the regularization method (Rk, k(ε, yε)) has qualification
µ0 =∞. This is actually the main task in [23, Theorem 6.5]. �

The numerical cost of implementing the Landweber iteration is
very high, since it usually requires a very large number of iterative
steps until the stopping criterion (3.12) is achieved. When combined
with accelerating semiiterative methods, the so called accelerated
Landweber methods become an attractive alternative to Tikhonov reg-
ularization. We refer the reader to [35, 23] for details.

Using similar arguments as in the proof of the lemma above, it
can be shown that the exponent in the estimate (3.13) cannot be
improved in general. For details we refer to [23, Theorem 6.9].

3.3 The nonlinear Landweber iteration

In this section we consider the nonlinear Landweber method in (3.4).
As in (3.10), (3.11) we shall denote by {xk}, {xεk} be the sequences
defined by (3.4) when we use the exact and perturbed data y, yε

respectively.
Notice that this method can be considered as a fixed point it-

eration xk+1 = ψ(xk) with the fixed point operator ψ(x) := x −
F ′(x)∗(F (x) − y). Note that φ need not to be contractive (e.g., if
F is compact and twice continuous Fréchet differentiable, and X is
infinite dimensional, then 1 belongs to the spectrum of φ′(x∗)).

Iterative methods for solving fixed point equations for nonexpan-
sive operators (i.e. ‖φ(x) − φ(x̃)‖ ≤ ‖x − x̃‖, for all x, x̃ ∈ X) have
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been considered in the literature (see [8] for a survey). However, in
many practical applications it is virtually impossible to determine
whether the operator φ is nonexpansive or not.

In [36] the nonexpansivity condition on φ is replaced by the fol-
lowing tangential cone condition (see also [84])

‖F (x)− F (x̃)− F ′(x)(x − x̃)‖ ≤ η‖F (x)− F (x̃)‖ , η < 1
2 , (3.16)

for all x, x̃ in Bρ(x0) ⊂ D(F ). This strong condition on the non-
linearity of F guarantees local convergence of the iteration xk to a
solution x∗ ∈ Bρ/2(x0) of (3.1). Further, it also guarantees that all
iterates xεk remain in D(F ) as long as k < k(ε, yε), the index defined
by the discrepancy principle

‖yε − F (xεk(ε,yε))‖ ≤ τε < ‖yε − F (xεk))‖ , (3.17)

for 0 ≤ k ≤ k(ε, yε), where τ satisfies

τ > 2(1 + η)(1− 2η)−1 . (3.18)

Note that the right hand side of (3.18) is strictly greater than 2.
We present a first result concerning the characterization of the

solutions of equation (3.1).

Lemma 3.3.1. Let the tangential cone condition (3.16) be fulfilled
and x∗ ∈ Bρ(x0) be a solution of (3.1). Then, x̃∗ ∈ Bρ(x0) is another
solution iff x∗ − x̃∗ ∈ null(F ′(x∗)).

Proof:
Notice that (3.16) implies the inequalities

1
1+η‖F ′(x)(x − x̃)‖ ≤ ‖F (x)− F (x̃)‖ ≤ 1

1−η‖F ′(x)(x − x̃)‖ ,

for x, x̃ ∈ Bρ(x0). The assertion follows now from (3.3). �

As in the linear case, we make an scaling assumption. In the
sequel we shall assume

‖F ′(x)‖ ≤ 1 , x ∈ Bρ(x0) . (3.19)

The next result is the nonlinear analogon of Lemma 3.2.3.
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Lemma 3.3.2. Let y = Fx∗ for some x∗ ∈ B ρ
2
(x0), yε ∈ Y be

such that ‖y− yε‖ ≤ ε, and k(ε, yε) the stopping index defined by the
discrepancy principle (3.17), (3.18). If (3.16) and (3.19) hold, then
we have

‖x∗ − xεk+1‖ ≤ ‖x∗ − xεk‖ , 0 ≤ k ≤ k(ε, yε).

Moreover, if the data is exact (i.e. ε = 0) then
∞∑
j=0

‖y−F (xk)‖2 <∞.

Proof:
Notice that, from (3.16) and (3.19) follows that xεk ∈ B ρ

2
(x0) for

0 ≤ k < k(ε, yε). Moreover,

‖x∗ − xεk+1‖2 − ‖x∗ − xεk‖2 ≤
‖yε − Fxεk‖

{
(2η − 1)‖yε − Fxεk‖+ 2(1 + η)ε

}
(3.20)

(see Exercise 3.5). Note that the right hand side of (3.20) is nonnega-
tive for k < k(ε, yε) due to (3.17), proving the first assertion. Notice
that, if ε = 0, we obtain instead of (3.20) the sharper estimate

‖x∗ − xk+1‖2 + (1− 2η)‖y − F (xk)‖2 ≤ ‖x∗ − xk‖2 ,

for all k ≥ 0. The second assertion follows now from the inequality∑∞
j=0 ‖y − F (xk)‖2 < 1

1−2η ‖x∗ − x0‖2. �

If ε > 0, one can argue as in Lemma 3.3.2 and prove that

k(ε,yε)−1∑

j=0

‖y − F (xεk)‖2 ≤ τ

(1− 2η)τ − 2(1 + η)
‖x∗ − x0‖2 . (3.21)

The next result guarantees convergence for exact data and is the
nonlinear analogon of Lemma 3.2.1.

Lemma 3.3.3. Let (3.1) be solvable in B ρ
2
(x0). If (3.16) and (3.19)

hold, then xk converges to a solution x∗ ∈ B ρ
2
(x0).

Proof:
Let x̃∗ ∈ B ρ

2
(x0) be any solution of (3.1). Arguing with (3.3) one
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can prove that xk− x̃∗ is a Cauchy sequence in X . Thus, xk is also a
Cauchy sequence and we denote it’s limit by x∗. Since y−F (xk)→ 0
as k → ∞ (cf. second assertion of Lemma 3.3.2) we conclude that
F (x∗) = y. �

If, additionally to the assumptions of Lemma 3.3.3, the condition
null(F ′(x†)) ⊂ null(F ′(x)), for all x ∈ Bρ(x0) is fulfilled (here x† is
the (unique) solution of (3.1) of minimal distance to x0), then xk
converges to x† as k →∞.

The next result guarantees convergence for noisy data and charac-
terizes the Landweber iteration as a regularization method for (3.1).

Lemma 3.3.4. Let yε ∈ Y be such that ‖y− yε‖ ≤ ε and let k(ε, yε)
be chosen according to (3.17), (3.18). Under the same assumptions
of Lemma 3.3.3 we have xεk(ε,yε) → x∗ as ε→ 0.

Proof:
Let εn be a sequence converging to zero as n→∞, and let yεn be a
corresponding sequence of perturbed data. Now take kn := k(εn, y

εn)
the index defined by the discrepancy principle. In the sequel we
consider two cases:
1) If kn has a finite accumulation point k̄, we can assume kn = k̄,
n ∈ N). Therefore, since k̄ is fixed, xεn

k̄
converges to xk̄ (the iterate

with exact data; see Exercise 3.6) and F (xεn
k̄

) → F (xk̄) as n → ∞.
Now, taking the limit n→∞ in ‖yεn − F (xεn

k̄
)‖ ≤ τεn, we conclude

that F (xk̄) = y. Thus, xk̄ = x∗ and xεnkn → x∗ as n→∞.
2) If kn → ∞ as n → ∞, we can assume kn is monotonically in-
creasing. From the first part of Lemma 3.3.2 follows ‖xεnkn − x∗‖ ≤
‖xεnkm − xkm‖ + ‖xkm − x∗‖ for n > m. The last term on the right
hand side of this estimate can be made small by choosing m large.
Now, with km fixed, we can make the first term small by choosing n
appropriately. Thus, ‖xεnkn − x∗‖ → 0 as n→∞. �

In general, the convergence of xεk(ε,yε) → x∗ as ε → 0 can be

arbitrarily slow. Examples in the linear case can be found in [23, 31],
where yε is chosen according to the singular system for the compact
operator F . In the sequel we shall use the source condition (3.5)
and the representation condition (3.6) in order to prove convergence
rates.
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Lemma 3.3.5. Assume problem (3.1) is solvable in B ρ
2
(x0) and let

yε ∈ Y be such that ‖y−yε‖ ≤ ε. Moreover, assume that the operator
F fulfills (3.16), (3.19) and the representation condition (3.6), (3.7).
If x† − x0 satisfies the source condition (3.5) with ν ≤ 1/2 and ‖w‖
sufficiently small, then there exists a constant c = c(ν) such that

‖x† − xεk‖ ≤ c(ν)‖w‖(k + 1)−ν

‖yε − F (xεk)‖ ≤ 4c(ν)‖w‖(k + 1)−ν−1/2

for 0 ≤ k < k(ε, yε), where k(ε, yε) is the index defined by the discrep-
ancy principle (3.17), (3.18). Here x† denotes the (unique) solution
of (3.1) of minimal norm.

Sketch of the proof:
From Lemma 3.3.2 we conclude that the iteration xεk is well defined in
B ρ

2
(x0) ⊂ D(F ) for 0 ≤ k ≤ k(ε, yε). Moreover, from (3.21) follows

k(ε, yε) <∞ for ε > 0. Next one defines the error ek := x† − xεk and
uses (3.16), (3.7) to obtain the expression

ek = (I −K∗K)ke0

+

k−1∑

j=0

(I −K∗K)jK∗zk−j−1 +



k−1∑

j=0

(I −K∗K)j


 (y − yε) ,

where K := F ′(x†) and the norm of the zk can be estimated (up
to a constant) by ‖ek‖‖Kek‖, for 0 ≤ k ≤ k(ε, yε). To prove the
Lemma, it is enough to obtain as adequate estimate for ‖ek‖ and
‖Kek‖. From the above representation of ek with (3.16), (3.17) and
(3.18) one obtains

‖ek‖ ≤ c1(η)c2(ν)‖w‖(k + 1)−ν ,

which proves the first part of the lemma, since c2(ν) can be made
smaller than 2 if ‖w‖ is sufficiently small. The second part of the
lemma follows from the estimate

‖Kek‖ ≤ c1(η)c2(ν)‖w‖(k + 1)−ν−1/2

and an analog argumentation. �
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In the sequel we prove the main result of this section, obtaining
estimates for k(ε, yε) as well as for ‖x† − xεk(ε,yε)‖ in terms of ε and

ν (compare with Lemma 3.2.5).

Lemma 3.3.6. Under the assumptions of Lemma 3.3.5, we have

k(ε, yε) ≤ c1(‖w‖/ε)2/(2ν+1)

‖x† − xεk(ε,yε)‖ ≤ c2‖w‖1/(2ν+1)ε2ν/(2ν+1)

with cj = cj(ν), j = 1, 2.

Sketch of the proof:
We use the same notation as in Lemma 3.3.5. To simplify the notation
we write kε = k(ε, yε). As in the proof of Lemma 3.3.5 we obtain

ekε = (I −K∗K)νwkε +

kε−1∑

j=0

(I −K∗K)jK∗ (y − yε) (3.22)

where

wkε = (I −K∗K)kεw +

kε−1∑

j=0

(I −K∗K)j(K∗K)1/2−ν z̃kε−j−1 ,

and ‖z̃j‖ = ‖zj‖. Therefore, we can estimate ‖wkε‖ ≤ (1 + c(ν))‖w‖
and, consequently, ‖K(K∗K)νwkε‖ ≤ c‖w‖1/(2ν+1)ε2ν/(2ν+1). Using
these estimates and (3.22) we obtain

‖ekε‖ ≤ ‖(K∗K)νwkε‖+
√
kεε (3.23)

proving the lemma for kε = 0. Otherwise, an estimate analog to the
one used in the proof of Lemma 3.3.5 gives

kν+1/2
ε ≤ c(ν)‖w‖/ε

(here c(ν) is the same constant as in Lemma 3.3.5). The second
assertion of the lemma follows now from this inequality. Further,
the first assertion (error estimate) follows if we substitute the last
inequality in (3.23). �

Notice that (3.6) implies null(F ′(x∗)) ⊂ null(F (x)) for all x ∈
Bρ(x0). Further, one can prove that the tangential cone condition
(3.16) with x̃ = x∗ follows from (3.6) and (3.7) (cf. Exercise 3.7).
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3.4 A modified Landweber iteration

In the sequel we shall consider the same nonlinear problem as in
Section 3.3. An alternative to the iteration defined in (3.4) is inves-
tigated, namely

xk+1 = xk − F ′(xk)∗(F (xk)− y)− αk(xk − ξ) , (3.24)

where 0 ≤ αk ≤ 1 and ξ ∈ Bρ(x0) ⊂ D(F ). A remarkable advan-
tage of this iteration is the fact that one can prove convergence rates
results (under the usual source condition (3.5)) without requiring a
representation condition on F ′ (as in (3.6)).

If the iteration (3.24) is applied to noisy data, we write xεk instead
of xk. As in the previous sections, we assume xε0 = x0. Further, it is
assumed that

‖F ′(x)‖ ≤ L , x ∈ Bρ(x0) (3.25)

(compare with (3.19) in Section 3.3).

The first result concerns a monotonicity property of the modified
Landweber iteration.

Lemma 3.4.1. Let F satisfy (3.16), (3.25) and the sequence {αk} be
chosen as above. Further, let x∗ be a solution of (3.1) in Bρ/8(x0) ∩
Bρ/8(ξ). The we have:

a) Denote by kε the stopping index defined by the discrepancy prin-
ciple (3.17) with τ satisfying

(1− αk)
(
1− η − 1 + η

τ

)
− L2 ≥ D > 0 , 0 ≤ k < kε .

Then, for 0 ≤ k < kε, we have xεk+1 ∈ Bρ(x0) and

‖x∗ − xεk+1‖ ≤ ‖x∗ − xεk‖(1− αk) + ρ
2αk ≤

ρ
2 .

b) If ε/αk ≤ C for 0 ≤ k ≤ N0, with C ≤ ρ/6, and if (1 − αk)(1 −
η) − L2 ≥ E > 0 for 0 ≤ k ≤ N0, then, for 0 ≤ k ≤ N0, we have
xεk+1 ∈ Bρ(x0) and

‖x∗ − xεk+1‖ ≤ ‖x∗ − xεk‖(1− αk) + ρ
2αk ≤

ρ
2 .
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In Lemma 3.4.1, D and E are fixed positive constants. Notice that
item a) furnishes an a posteriori stopping rule, while item b) corre-
sponds to an a priori stopping rule.
Sketch of the proof:
To prove a) the first step is to derive from (3.24) the inequality

‖x∗ − xεk+1‖2 ≤ (1− αk)2‖x∗ − xεk‖2 + 2α2
k‖x∗ − ξ‖2

+ 2‖F (xεk)− yε‖2(L2 − (1− αk)(1− η))

+ 2αk(1− αk)‖x∗ − xεk‖‖x∗ − ξ‖
+ 2ε‖F (xεk)− yε‖(1− αk)(1 + η) . (3.26)

From (3.17) and the choice of τ in a) follows

‖x∗ − xεk+1‖ ≤ ‖x∗ − xεk‖(1− αk) + ρ
4αk .

Using this last inequality inductively for 0 ≤ k < kε together with
Exercise 3.8, we obtain ‖x∗−xεk+1‖ ≤ ρ/2. From this and the triangle
inequality follows ‖xεk+1 − x0‖ ≤ ρ, proving assertion a). The proof
of assertion b) follows from an analog argumentation. It is worth
noticing that the estimate

‖x∗ − xεk+1‖2 ≤ (1− αk)2‖x∗ − xεk‖2

+ 2‖F (xεk)− yε‖2(L2 − (1− αk)(1− η))

+ 2αk(1− αk)‖x∗ − xεk‖
(
‖x∗ − ξ‖+ CL(1 + η)

)

+ 2α2
k

[
(1− αk)(1 + η) + ‖x∗ − ξ‖

]
(3.27)

replaces (3.26), used in the proof of the first assertion. �

Notice that the a posteriori stopping rule defined in item a) of
Lemma 3.4.1 can be applied to the Landweber iteration. However,
the a priori stopping rule in item b) cannot (since αk = 0 for the
Landweber iteration).

The next result generalizes the second assertion of Lemma 3.3.2
as well as (3.21) for the modified Landweber iteration.

Lemma 3.4.2. Under the assumptions of Lemma 3.4.1, if
∑∞
k=0 αk

<∞ then
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a) If (3.24) is stopped according to (3.17), with constants τ , D as in
assertion a) of Lemma 3.4.1, then

kε−1∑
k=0

‖F (xεk)− yε‖ ≤ ρ2

Dτε

(
1
64 +

kε−1∑
k=0

αk

)
.

b) If (3.24) is stopped according to assertion b) in Lemma 3.4.1, then

N0∑
k=0

‖F (xεk)− yε‖2 ≤ ρ2

E

(
1
64 +

N0∑
k=0

αk

)
.

c) If (1− αk)(1− η)− L2 ≥ E > 0 for k ≥ 0, and ε = 0, then

∞∑
k=0

‖F (xk)− y‖2 < ∞ .

Sketch of the proof:
First we prove a). From Lemma 3.4.1 follows ‖x∗ − xεk‖ ≤ ρ/2,
0 ≤ k < kε, and we can estimate

‖x∗ − xεk+1‖2 ≤ ‖x∗ − xεk‖2 + ρ2αk .

Assertion a) follows now arguing with Lemma 3.4.1 and (3.17). To
prove b) one proceeds as in the proof of Lemma 3.4.1 b) and obtains
from (3.27) the estimate

‖x∗ − xεk+1‖2 +E‖F (xεk)− yε‖2 ≤ ‖x∗ − xεk‖2(1− αk)2 + ρ2αk .

Assertion b) follows now from this last inequality. In order to prove
c) one should notice that, in the noise free case (ε = 0), the estimate
(3.26) implies

‖x∗ − xk+1‖2 +E‖F (xk)− y‖2

≤ (1−αk)2‖x∗−xk‖2+2α2
k‖x∗−ξ‖2+2αk(1−αk)‖x∗−xk‖‖x∗−ξ‖ .

Therefore, xk ∈ Bρ(x0), k ≥ 0, and consequently

∞∑
k=0

‖F (xk)− y‖2 ≤ ρ2

E

(
1
64 +

∞∑
k=0

αk

)
,

completing the proof. �

Convergence of the modified Landweber iteration for exact data
can be proved under additional assumptions on {αk}.
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Lemma 3.4.3. Assume the data is exact, i.e. ε = 0, and αk satisfy
0 ≤ αk ≤ 1,

∑∞
k=0 αk < ∞. Let the operator F satisfies (3.16) and

(3.25) with L satisfying (1 − αk)(1 − η) − L2 ≥ E > 0 for k ≥ 0.
Moreover, assume (3.1) is solvable in Bρ/8(x0) ∩ Bρ/8(ξ). Then xk
defined by (3.24) converges to a solution x∗ ∈ Bρ(x0). Further, if
one choose ξ = x0 in (3.25) and null(F ′(x†)) ⊂ null(F ′(x)) for all
x ∈ Bρ(x0), then xk → x† as k →∞.3

Sketch of the proof:
Let x̃∗ ∈ Bρ/8(x0) ∩ Bρ/8(ξ) be any solution of (3.1) and define
ek := xk − x̃∗. First one proves that {‖ek‖} is a convergence se-
quence. This is an advanced analysis exercise, that can be solved
using the assertions in Exercise 3.8. To prove of the first assertion,
it is enough to prove that {ek} is a Cauchy sequence. This follows
from the convergence of {‖ek‖} together with Lemma 3.4.1 a) and
Exercise 3.8.
To prove the second assertion, notice that x† − x0 ∈ null(F ′(x†))⊥.
Since null(F ′(x†)) ⊂ null(F ′(xk)), for all k, then xk−x0 ∈ N(F ′(x†))⊥.
Therefore, x†−x∗ ∈ N(F ′(x†))⊥. If x† 6= x∗, then follows from (3.16)

‖F ′(x†)(x∗ − x†)‖ ≤ (1 + η)‖F (x†)− F (x∗)‖ ≤ 0 .

Thus, x† − x∗ also belongs to N(F ′(x†)) and x† = x∗ follows. �

From Lemma 3.4.2 follows that, in the case of noisy data (ε > 0),
the discrepancy principle (3.17) with τ as in Lemma 3.4.1 a) deter-
mines a well-defined and finite stopping index kε. The next result
characterizes the modified Landweber iteration with this stopping
criterion as a regularization method.

Lemma 3.4.4. Let αk satisfy 0 ≤ αk ≤ 1,
∑∞

k=0 αk < ∞. Further,
let F satisfy (3.16), (3.25) with L satisfying (1−αk)(1−η)−L2 ≥ E >
0 for k ≥ 0. Moreover, assume (3.1) is solvable in Bρ/8(x0)∩Bρ/8(ξ).
Then we have
a) If the iteration (3.24) is stopped at the index kε defined by (3.17)
with τ , D as in assertion a) of Lemma 3.4.1, then xεkε → x∗ as ε→ 0.

3Here x† denotes the (unique) solution of (3.1) of minimal distance to x0.
Compare with Lemma 3.3.5.
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b) If the iteration (3.24) is stopped at the index N ε
0 defined by as-

sertion b) of Lemma 3.4.1, and {αk} is a strictly monotonically de-
creasing sequence with αk > 0, then xεNε0 → x∗ as ε→ 0.

Sketch of the proof:
We consider assertion a) first. Let εn ≥ 0, n ∈ N, be a sequence
converging to zero and yn := yεn be a corresponding sequence of
perturbed data. We denote by kn the index defined by assertion a)
of Lemma 3.4.1 for each pair (εn, yn). We consider two cases:
Case I: the sequence {kn} has a finite accumulation point; we can
assume, without loss of generality, that kn = k constant for all n ∈ N.
Thus, ‖yn − F (xεnk )‖ ≤ τεn, and from the continuous dependence of
xεk on yε (k is now fixed) follows xεnk → xk and F (xεnk ) → F (xk) as
n→∞. Since τεn → 0 as n→∞, it follows from the above estimate
that F (xk) = y. Therefore, xk = x∗ and the assertion follows.
Case II: the sequence {kn} has no finite accumulation point, i.e. kn →
∞, as n→∞. We can assume, without loss of generality, that kn is
monotone. Then, for n > m it follows from Lemma 3.4.1 that

‖xεnkn − x∗‖ ≤ ‖x
εn
km
− xkm‖+ ‖xkm − x∗‖+ ρ

2

∞∑
j=km

αj .

First we fix m such that the last two terms on the right hand side
become small. Since, with m fixed, we have xεnkm → xkm as εn → 0,
then the right hand side must go to zero as n → ∞ an the proof of
assertion a) is complete.

Now we prove assertion b). Let εn ≥ 0, n ∈ N, be a (strictly
monotone) sequence converging to zero and yn := yεn be a corre-
sponding sequence of perturbed data. We denote by N εn

0 the index
defined by assertion b) of Lemma 3.4.1 for each pair (εn, yn). There-
fore, εn < Cαk , for 0 ≤ k ≤ N εn

0 , and εn ≥ CαNεn0 +1. Since both αk
and εn are strictly monotone sequences, N0(εn) is strictly monotone
in n and Nεn

0 → infty as n→∞. Thus, for n > m we have

‖xεn
Nεn0
− x∗‖ ≤ ‖xεnNεm0

− xNεm0
‖+ ‖xNεm0

− x∗‖+ ρ
2

∞∑
j=Nεm0

αj .

The rest of the proof is analogous to the proof of assertion a). �

Notice that Lemma 3.4.4 is the analogon of Lemma 3.3.4 for the
modified Landweber iteration (3.24).
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The next result gives convergence rates for the modified Landwe-
ber iteration. As in the previous sections, such rates are obtained as-
suming a sourcewise representation of the exact solution of (3.1). The
reader should compare with the results in Lemmas 3.2.5 and 3.3.6.

Lemma 3.4.5. Let x∗ be a solution of (3.1) in Bρ/2(x0) and assume
that the Fréchet derivative of the operator F satisfy

‖F ′(x)‖ ≤ L , ‖F ′(x) − F ′(x̃)‖ ≤ L̂‖x− x̃‖ , x, x̃ ∈ Bρ(x0) ,

where max{L, L̂} ≤ 1/4. Further, assume that the source condition
x∗−ξ = F ′(x∗)∗w is fulfilled. Moreover, assume that αk = (k+l0)−ψ

for k ≥ 0, where 0 < ψ < 1 is fixed and l0 ∈ N is sufficiently large (it

is enough to take l−ψ0 ≤ 1/8). Further we require

Φ(k) :=
1

(1 + 1/k)ψ
1− (1 + 1/k)ψ

1/k

1

k1−ψ + 1 ≥ L̂2 ,

and
α−1

0 ‖x0 − x∗‖2 ≤ Ĉ < min
{

1, ρ2/(4α0)
}
.

a) If the iteration (3.24) is stopped at the index N ε
0 defined by a priori

stopping rule

ε

αk
≤ C , 0 ≤ k ≤ N ε

0 ,
ε

αNε0 +1
> C ,

and 2‖x∗ − ξ‖2 + 17C2 + 2‖w‖2 ≤ L̂2Ĉ/2, then

‖xεNε0 +1 − x∗‖ = O(
√
ε).

b) If the iteration (3.24) is stopped at the index kε defined by (3.17)
with τ satisfying 1 + 2L2 − 7/8(3/2 − τ/2) + 1/τ 2 ≤ E < 0 and
2‖x∗ − ξ‖2 + 2‖w‖2 ≤ L̂2Ĉ/2, then

‖xεkε − x∗‖ = O(
√
ε).

c) In the case ε = 0, if 2‖x∗ − ξ‖2 + ‖w‖2 ≤ L̂2Ĉ/2, then

‖xk − x∗‖ = O(k−ψ/2).
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Sketch of the proof:
The proof is long and requires the derivation of several inequalities
(the main ones are presented in this text). The convergence rates
results follow than from an inductive argument. The first step of the
proof is the derivation of the estimate

‖x∗ − xεk+1‖2 ≤ (1− αk)2‖x∗ − xεk‖2 + 2α2
k‖x∗ − ξ‖2

+ 2‖F ′(xεk)∗(F (xεk)− yε)‖2
− 2αk(1− αk)〈F ′(x∗)(xεk − x∗), w〉

− 2(1− αk)〈F (xεk)− yε, F ′(xεk)(xεk − x∗)〉 .

Using the assumptions this estimate can be improved, and we obtain

‖x∗−xεk+1‖2 ≤ ‖x∗−xεk‖2(1−αk)(1−αk(1−L̂‖w‖))+ L̂2

2 ‖x∗−xεk‖4

+ 2αk[αk‖x∗ − ξ‖2 + (1− αk)‖F (xεk)− yε‖‖w‖]
+ ‖F (xεk)− yε‖2(2L2 − 3

2 (1− αk))

+ 2(1− αk)ε(‖F (xεk)− yε‖+ αk‖w‖) .

In order to prove assertion a) one uses the above estimate together
with the assumptions in a) and an inductive argument. The proof of
assertion b) is analogous. It follows basically from the above estimate,
the assumptions in b) and (again) an inductive argument. Assertion
c) follows from the above estimate and 1 + 2L2 − 3(1 − αk)/2 < 0.
Indeed, combining these two inequalities we obtain

‖x∗ − xk+1‖2 ≤ ‖x∗ − xk‖2(1− αk) + L̂2

2 ‖x∗ − xk‖4

+ α2
k[2‖x∗ − ξ‖2 + (1− αk)2‖w‖2]

+ ‖F (xk)− y0‖2(1 + 2L2 − 3
2 (1− αk)) ,

and the proof follows analogous to the proof of the previous asser-
tions. �

3.5 Asymptotical regularization

In this section we consider the method of asymptotical regularization
for solving the inverse problem (3.1). This method is the continuous
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analogon of method (3.4). In this method an approximation x(T ) of
a solution x∗ of (3.1) is obtained by solving the initial value problem
(3.9). The final time plays the rule of the regularization parameter.
From the theory of ordinary differential equations (see, e.g., [46])
one knows that, for finite T < ∞, problem (3.9) admits a unique
solution in C(0, T ;X) if the operator G(x) = F ′(x)∗(y − F (x)) is
locally Lipschitz continuous in X .

We shall discuss some well known properties of the asymptotical
regularization for both linear and nonlinear problems. The results
related to the linear theory can be found in [92] and also in the more
modern textbook [23]. Results related to the nonlinear theory can be
found in [89, 90].

We start with the linear inverse problems, i.e. we assume that the
operator F in (3.1) is a linear bounded operator between the infinite
dimensional Hilbert spaces X and Y with non closed range. If the
evolution (3.9) is applied with noisy data yε ∈ Y (with ‖y− yε‖ ≤ ε)
instead of y, then we write xε(t) instead of x(t). Moreover, we assume
that problem (3.1) has a solution x∗, which need not to be unique
(see Section 3.1).

The next two lemmas summarize some relevant properties selected
from [92, 23] of the asymptotical regularization for linear equations.

Lemma 3.5.1. Let F be a linear bounded operator with non closed
range range(F ) ⊂ Y and F †y be the unique solution of (3.1) with
minimal distance to x0 ∈ X. Then,
a) x(T )→ F †y as T →∞ (convergence for exact data);

b) xε(T )→ F †y for T →∞ such that ε2T → 0 (convergence);

c) Let x∗−x0 = (F ∗F )νw for some w ∈ X and ν > 0. If T is chosen
according to the a priori parameter choice T = C(ε/‖w‖)−2/(2ν+1)

with C > 0, then we have the error estimate

‖xε(T )− F †y‖ ≤ c‖w‖1/(2ν+1)ε2ν/(2ν+1),

where the constant c > 0 depends only on C and ν (convergence rates
under source conditions).

The next result concerns the asymptotical regularization with
the stopping rule given by the discrepancy principle. According
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to this principle, the evolution should be terminated at the time
Tε = T (ε, yε) such that

‖Fxε(t)− yε‖ > τε , t ∈ [0, Tε) ‖Fxε(Tε)− yε‖ = τε (3.28)

holds with a constant τ ≥ 1. The assumption ‖Fx0 − yε‖ > τε
guarantees that the time stopping time Tε in (3.28) is well defined.

Lemma 3.5.2. Let Tε be given by the discrepancy principle (3.28)
with τ ≥ 1 and F †y be the unique solution of (3.1) with minimal
distance to x0 ∈ X. Then we have

a) xε(Tε)→ F †y as ε→ 0;

b) If x∗ − x0 = (F ∗F )νw for some w ∈ X and ν > 0, then we have
the error estimate ‖xε(Tε)−F †y‖ ≤ c‖w‖1/(2ν+1)((τ + 1)ε)2ν/(2ν+1),
where the constant c > 0 is independent of ‖w‖ and ε.

In the sequel we devote our attention to convergence properties of
the asymptotical regularization method for nonlinear ill-posed prob-
lems (3.1). The basic tools needed for the proof of the convergence
results have been developed in [36] and are discussed in Section 3.3.

The first result concerns a monotony property related to the so-
lution of (3.9).

Lemma 3.5.3. Let xε(t) be the solution of (3.9) with y = yε. Then,
for t > 0 we have

d

dt
‖F (xε(t)) − yε‖2 = −2‖F ′(xε(t))∗(F (xε(t)) − yε)‖2 .

Moreover, if x∗ ∈ Bρ(x0) ⊂ D(F ) is a solution of (3.1) and F satis-
fies (3.16) with η < 1, then we have the estimate

d

dt
‖xε(t)−x∗‖2≤−2‖F (xε(t))−yε‖

{
(1−η)‖F (xε(t))−yε‖−(1+η)ε

}
,

and, if the data is exact (i.e. ε = 0) then

∫ ∞

0

‖F (x(t)) − y‖2 dt ≤ 1
2(1−η)‖x∗ − x0‖2 .
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Sketch of the proof:
The proof is completely analogous to the proof of Lemma 3.3.2. The
first assertion follows from the estimate

d

dt
‖F (xε(t)) − yε‖2 =

− 2〈F ′(xε(t))F ′(xε(t))∗[F (xε(t))− yε], F (xε(t)) − yε〉 .

The second assertion follows basically from the estimate

d

dt
‖xε(t)− x∗‖2 ≤

2‖F (xε(t))− yε‖
{
η(‖F (xε(t))− yε‖+ ε)− ‖F (xε(t)) − yε‖+ ε

}
.

The last assertion (ε = 0) follows when we integrate both sides of the
second assertion at [0,∞). �

The next result gives sufficient conditions to guarantee that the
equation defining the discrepancy principle (i.e. ‖F (xε(t))−yε‖ = τε)
has a unique solution t = Tε in (0,∞).

Lemma 3.5.4. Let xε(t) be the solution of (3.9) with y = yε and
let x∗ ∈ Bρ(x0) ⊂ D(F ) be a solution of (3.1). Furthermore, let the
tangential cone condition (3.16) be fulfilled with η < 1. If ‖F (x0) −
yε‖ > τε > 0, and τ > (1 + η)/(1 − η) hold, then there is a unique
Tε ∈ (0,∞) satisfying ‖F (xε(Tε))− yε‖ = τε.

The main argument in the proof of Lemma 3.5.4 is the monoto-
nicity of the application t 7→ ‖F (xε(t))−yε‖−τε, which follows from
Lemma 3.5.3. An important sub-product of the proof of Lemma 3.5.4
is the inequality ‖xε(t) − x∗‖ ≤ ‖x∗ − x0‖, t ≤ Tε. This inequality
together with the triangle inequality ‖xε(t) − x0‖ ≤ ‖xε(t) − x∗‖ +
‖x∗ − x0‖ results in xε(t) ∈ Bρ(x0) for t ≤ Tε and ρ = 2‖x∗ − x0‖.

The next lemma proves convergence of the asymptotical regular-
ization method for exact data (i.e. ε = 0).

Lemma 3.5.5. Let problem (3.1) be solvable in Bρ(x0) ⊂ D(F )
and assume that F satisfies the tangential cone condition (3.16) with
η < 1. Then we have x(t) → x∗ as t → ∞, where x∗ ∈ Bρ(x0) is a
solution of (3.1).
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Sketch of the proof:
The proof uses the same ideas as the proof of Lemma 3.3.3. Let
x̃∗ ∈ Bρ(x0) be any solution of (3.1). Define e(t) := x̃∗ − x(t), for
t ≥ 0 and obtain

‖e(t)− e(s)‖2 = 2〈e(s)− e(t), e(s)〉+ ‖e(t)‖2 − ‖e(s)‖2 .

From Lemma 3.5.3 follows the existence of the limit limt→∞ ‖e(t)‖.
Therefore, the sum of the last two terms in (3.5) becomes arbitrarily
small if s and t are large. Moreover, since

|〈e(s)− e(t), e(s)〉| ≤ 3(1 + η)

∫ t

s

‖F (x(r)) − y‖2dr ,

it follows from Lemma 3.5.3 that 〈e(s)−e(t), e(s)〉 becomes arbitrarily
small if s and t are large. Consequently, limt→∞ e(t) exists and,
therefore, limt→∞ x(t) also exists. Denoting this limit by x∗, we
conclude (since limt→∞ ‖F (x(t)) − y‖ = 0 from Lemma 3.5.3) that
F (x∗) = y, i.e. x∗ is a solution of (3.1). �

If, additionally to the assumptions of Lemma 3.5.5, the condition
null(F ′(x†)) ⊂ null(F ′(x)) for all x ∈ Bρ(X0), is fulfilled (here x† is
the (unique) solution of (3.1) of minimal distance to x0), then x(t)
converges to x† as k →∞ (compare with Section 3.3).

The next result guarantees the convergence of the asymptotical
regularization method for noisy data, if the discrepancy principle is
used as stopping rule.

Lemma 3.5.6. Let xε(t) be the solution of (3.9) with y = yε and
let problem (3.1) be solvable in Bρ(x0) ⊂ D(F ). Furthermore, let the
tangential cone condition (3.16) be fulfilled with η < 1, and assume
that ‖F (x0)−yε‖ > τε > 0, and τ > (1+η)/(1−η) hold. Moreover, let
Tε ∈ (0,∞) be defined by the discrepancy principle as in Lemma 3.5.4.
Then, xε(Tε)→ x∗ as ε→ 0.

Sketch of the proof:
The proof can be carried out using the same method of proof of
Lemma 3.3.4, where a corresponding result for the nonlinear Landwe-
ber iteration is proved. �
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The next results give rates of convergence for the asymptotical
regularization method. For this purpose we need some extra as-
sumptions. We assume that, instead of the sourcewise representation
(eq:src-cond) we have

x† − x0 = (F ′(x†)∗F ′(x†))νw , 0 < ν ≤ 1
2 , w ∈ X , (3.29)

where x† ∈ D(F ) denotes the solution of (3.1) with minimal distance
to x0. Further, we assume (locally) a representation condition on F ′:

F ′(x) = RxF
′(x†) , x ∈ Bρ(x0) , (3.30)

where {Rx}x∈Bρ(x0) is a family of bounded linear operators Rx : Y →
Y with

‖Rx − I‖ ≤ C‖x− x†‖ , x ∈ Bρ(x0) . (3.31)

Before stating the convergence rates results, we present a useful
lemma, which gives a representation for the error xε(t) − x†. This
result certainly looks familiar to those who are acquainted with rep-
resentation theory for the solutions of ordinary differential equations
(cf., e.g., [46]).

Lemma 3.5.7. Let xε(t) be the solution of (3.9) with y = yε and let
x† ∈ D(F ) be the (unique) solution of (3.1) with minimal distance to
x0. Then we have

xε(t)− x† = e−F
′∗F ′T (x0 − x†)

+

∫ t

0

e−F
′∗F ′(t−s)F ′

∗
(yε − y) ds+

∫ t

0

e−F
′∗F ′(t−s)w(s) ds ,

where F ′ := F ′(x†), e−F
′∗F ′T = I +

∞∑
k=1

(−1)kT k(F ′∗F ′)k/k! and

w(s) := F ′
∗
F ′(xε(s)−x†)−F ′(xε(s))∗

(
F (xε(s))− yε

)
+F ′

∗
(y− yε).

Now we are ready to present the main result of this section. For
simplicity of the presentation we assume (without loss of generality)
that ‖F ′(x†)‖ ≤ 1.
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Lemma 3.5.8. Let (3.16) be fulfilled with η < 1, and assume that
(3.29), (3.30) and (3.31) hold true. Further, assume that ‖F (x0) −
yε‖ > τε > 0, with τ > (1 + η)/(1 − η), and Bρ(x0) ∈ int(D(F )).
Moreover, let x† be the (unique) solution of (3.1) with minimal dis-
tance to x0 and let xε(t), 0 ≤ t ≤ Tε, be the solution of (3.9)
with y = yε, where Tε is defined by the discrepancy principle as in
Lemma 3.5.4. If τ > (2 − η)/(1 − η) and ‖w‖ is sufficiently small,
then

‖xε(Tε)− x†‖ ≤ c‖w‖1/(2ν+1)ε2ν/(2ν+1) ,

where the constant c > 0 is independent of ‖w‖ and ε.

The proof of Lemma 3.5.8 is rather long and technical. Several
auxiliary estimates are required as preparation for the main proof.
Although this lemma is the analogon of Lemma 3.3.6 for the non-
linear Landweber iteration, there are substantial differences in the
technicalities of both proofs. We refer the reader to [90] for a de-
tailed proof of Lemma 3.5.8.

3.6 Bibliographical comments

Most of the classical results discussed in Section 3.2 can be found
in [23, 31]. For details on the Landweber iteration for linear equa-
tions the reader can also consult [32, 34, 44, 53, 57, 65, 71, 72]. The
Landweber iteration for nonlinear operators is considered in [23, 36].
The results reported in Section 3.4 can be found in [85]. Related
results can also be found in [3, 4]. What concerns the asymptot-
ical regularization method, results related to the linear theory can
be found in [92, 23]. Results related to the nonlinear theory can be
found in [89, 90].

3.7 Exercises

3.1. Let F : X → Y be a linear compact operator. Given y 6∈
D(F †), let {xk} be the sequence defined in (3.10). Prove that every
subsequence {xkj} has no weak convergent subsequence.

3.2. Complete the details of the proof of Lemma 3.2.3.
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3.3. Obtain an analytical expression for the positive constant c in
the proof of Lemma 3.2.4. Conclude that c does not depend on ε.

3.4. Prove that 1 belongs to the spectrum of the operator ψ(x) =
x − F ′(x)∗(F (x) − y) if F is compact and twice continuous Fréchet
differentiable, and X is infinite dimensional. A fixed point of φ is any
x∗ ∈ X with F (x∗) = y.

3.5. Prove the inequality (3.20).

3.6. Prove that, for k̄ ∈ N fixed, then xε
k̄

depends continuously on
yε. Here {xεk} is the sequence obtained by the nonlinear Landweber
iteration.

3.7. Prove that (3.16) with x̃ = x∗ can be obtained from (3.6) and
(3.7). Hint: First prove that

‖F (x)− F (x̃)− F ′(x)(x − x̃)‖ ≤ C‖x− x̃‖‖F (x)− F (x̃)‖ .

Then use the identity:

‖F (x)−F (x∗)−F ′(x)(x−x∗)‖ =
∥∥∥
∫ 1

0

(F ′(zt)−F ′(x))(x−x∗) dt
∥∥∥ ,

where zt = tx+ (1− t)x∗, t ∈ [0, 1].

3.8. Let l, k ∈ N0 with l < k and {αk} be chosen as in Section 3.4.
Prove that

1−
k∏

s=l

(1− αs) =

k∏

j=l

αj

k∏

s=j+1

(1− αs) ≤ 1 .

Moreover, if
∑∞
k=0 αk < ∞, then

∏∞
k=0(1 − αk) is convergent and

thus lim
l→∞

∏∞
k=l(1− αk) = 1.
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Chapter 4

Some inverse problems
of convolution type

Convolution is both a mathematical concept and an important tool
in data processing, in particular in digital signal and image process-
ing. Correlation is a technique that is very similar in mechanism to
convolution. Deconvolution is the inverse problem to convolution. In
this chapter we discuss several variants of deconvolution.

4.1 Deconvolution

4.1.1 Introduction

Given a blurred photograph, or the result of passing a signal through
a medium which acts as a filter, how can we reconstruct an unblurred
version of the photograph, or the original signal before the filtering
occurred?

Consider a plane image characterized by its intensity distribution
I , corresponding to the observation of a “real image ” O through an
optical system. If the imaging system is linear and shift-invariant,

87
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the relation between the data and the image is a convolution

I(u, v) =

∫ ∞

−∞

∫ ∞

−∞
P (u− u′, v − v′)O(u, v)dudv =: (P ∗O)(u, v)

(4.1)
where P is the point spread function/psf of the imaging system and
the operation ∗ is called the convolution-operator. The point spread
function is also called a kernel function or an impulse response since,
in a very informal consideration, the output signal I is P if the input
signal O is a Dirac distribution. Usually, a psf is nonnegative and its
integral equals 1; this refers to conservation of energy in the imaging
process. In a discrete consideration an image I is given by its pixel
function. Convolution is a process in which each pixel is averaged
with its neighbors using the kernel P as a multiplier to determine
each of the neighbors contribution or weight.

Convolution and related operations are found in many applica-
tions: in statistics (moving average, correlation), in optics (blurring,
atmospheric degradation), in acoustics (echo), in engineering (input–
output mapping), in physics (superposition principle).

Consider the equation (4.1). The forward problem in the “state
space” is:

Given O and P, find I .

Our interest is in the inverse problem:

Given I and P, find O .

Unfortunately, in practice I is perturbated by noise. Then the math-
ematical formulation of (4.1) is

I(u, v) =

∫ ∞

−∞

∫ ∞

−∞
P (u− u′, v − v′)O(u, v)dudv +N(u, v)

= (P ∗O)(u, v) +N(u, v)

where N is an additive noise.

This is the formulation of the problems in the state space. A
very efficient tool in analyzing convolution problems is the Fourier
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transform; see Subsection 4.2.1. Due to the convolution theorem we
obtain in the “Fourier space/frequency space” from (4.1)

F(I) =
√

2πF(P )F(O)

where F is the Fourier transform. In order to find I, i. e. to solve the
forward problem, we have just to multiply the Fourier transform of P
and O and to apply the inverse transform F−1 . The solution of the
inverse problem (with noise) in the Fourier space can be obtained by
computing the Fourier transform of the deconvolved object O by a
simple division between the image F(I) and the point spread function
F(P ):

F(Õ) =
√

2π
F(I)

F(P )
=
√

2πF(O) +
√

2π
F(N)

F(P )
.

As we will see in Subsection 4.2.1 |F(P )| has small values and the
error F(N) is amplified.

The solution of the inverse problem in the state space or in the
frequency space is called deconvolution. Deconvolution is an ill-posed
problem due to the fact that the error in the frequency space is am-
plified. As a consequence deconvolution becomes a difficult problem
especially when noise is present.

Convolution in the context of image processing is two-dimensional.
To simplify our considerations we describe in the following mostly the
one-dimensional situation. Consider the equation

g ∗ x = y (4.2)

where

(g ∗ x)(t) :=

∫ ∞

−∞
g(t− s)x(s)ds, t ∈ R ,

is the convolution integral with kernel g . A problem in a finite inter-
val [0, T ] results when we consider a signal x which vanishes outside
[0, T ] . Another special case (Volterra-type convolution) is obtained
when the kernel g satisfies g(r) = 0 if r < 0. The problem of differen-
tiation of data considered from various aspects of view in Chapter 2
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may formally be considered as a deconvolution problem. The kernel
is given as follows:

g(r) :=

{
1 , if t ≥ s
0 , if t < s

.

Example 4.1.1. Let us present a very famous integral equation of
convolution type, namely Abel’s (singular) integral equation. This is
one of the first integral equations ever treated.

In the vertical x-y–plane find a curve C that is the graph of an
increasing function [0, H ] 3 x 7−→ ψ(x) ∈ [0,∞) such that the
falling time of a particle under the gravity force along this curve is
equal to the value a given function τ in every moment. In absence of
friction the problem is that of solving the equation

∫ y

0

(y − z)−
1
2u(z)dz =

√
2g τ(y) , y ∈ [0, H ] , (4.3)

where u(z) =
√

1 + ψ′(z)2. With the operator J of integration, given
by

Jg(x) :=

∫ x

0

g(t)dt , x > 0 ,

we may consider the equation (4.3) as a special case of the following
family of equations:

(Jαu)(x) :=
1

Γ(α)

∫ x

0

(x− t)α−1u(t)dt = f(x) , x > 0 . (4.4)

Here Γ(α) is the gamma function. When α is a positive integer, Jα

is nothing but the α–fold integral of u . These and other properties
justify the term fractional integral operator for Jα if α ∈ (0, 1

2 ), and
fractional derivative operator for the inverse of Jα:

Dαu(x) :=
d

dx
J1−αu(x) .

�

When the kernel function in equation (4.1) or (4.2) is not known,
then “parallel” to the reconstruction of the input signals O and x
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respectively one has to find out the kernel function. This problem is
called blind deconvolution.

Correlation is the close mathematical cousin of convolution. The
correlation integral

c(t) :=

∫ ∞

−∞
u(t+ s)v(s)ds, t ∈ R

is used to measure the similarity between two signals u, v: a large
value |c(t)| represents a strong similarity between the two signals.
The correlation with itself is called the autocorrelation. Related to
the problem of autocorrelation is the problem of autoconvolution
where the autoconvolution integral is given as

a(t) :=

∫ ∞

−∞
u(t− s)u(s)ds, t ∈ R

for a given function u : R −→ R. Autocorrelation and blind decon-
volution will be considered in sections below.

4.1.2 Stability and Regularization in the state space

Here we consider the convolution equation

∫ T

0

g(t− s)x(s)ds = y(t) , t ∈ [0, T ] . (4.5)

in the state space, i. e. in the space of functions x : [0, T ] −→ R.
The assumption that the finite interval [0, T ] is the same with respect
to t and s is no a serious assumption, it can be achieved in other cases
by a simple affine transform.

Related to the equation (4.5) there is an operator equation of the
type which is extensively studied in Chapter 2:

Ax = y where A(x) :=

∫ T

0

g(· − s)x(s)ds . (4.6)

We conclude from the convolution theorem (see subsection 4.2.1) that
A can be considered as continuous mapping from X := L2[0, T ] into
L2[0, T ] when the kernel g belongs to L1[0, T ] . If the kernel g is not
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degenerate, then the range of A is not closed and to solve the equation
(4.5) is an ill-posed problem.

For sufficiently smooth g and y, we may differentiate equation
(4.5) with respect to t to obtain

g(t)x(t) +

∫ T

0

g′(t− s)x(s)ds = y′(t) , t ∈ [0, T ] . (4.7)

If g(t) 6= 0, for t ∈ [0, T ], division of equation (4.20) by g(t) yields a
standard Volterra equation of the second kind which can be solved
in a stable way (well-posedness of Volterra equation of the second
kind). In particular the solution depends continuously on the right
hand side y′. If g(t) = 0, t ∈ [0, T ], we may repeat the process by
differentiating the equation once again.

We will say that the equation (4.5) is a l-smoothing problem if the
kernel g is l-times continuously differentiable and

g(k)(t) = 0, t ∈ [0, T ], k = 0, . . . , l − 1 , g(l)(t) 6= 0, t ∈ [0, T ] .

The problem of differentiation of data is a 1-smoothing problem. As
a rule, the asymptotic of the singular values of l–smoothing problems
increases with increasing l.

We will say that the equation (4.5) is an infinitely–smoothing prob-
lem if the g is l-times continuously differentiable and

g(l)(t) = 0, t ∈ [0, T ], l ∈ N0 .

Of course, not all equations of the form (4.20) fall into precisely one
of the above classes of problems. A classic example of an infinitely
smoothing problem is the sideways heat equation; here the kernel g
is given by

g(r) =
1

2
√
πr

3
2

e
− 1

4r , r ∈ R .

The importance of the behavior of the kernel g near t = 0 shows
up also in the following Theorem which is proved in [82].

Theorem 4.1.2 (Reverse convolution inequality).
Let δ > 0, 0 ≤ τ < T, and let f, g ∈ L∞(0, T ) satisfy

0 ≤ f(t), g(t) ≤M, t ∈ [0, T ] . (4.8)
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Then

a) ‖f‖L2[τ,T ] ‖g‖L2[0,δ] ≤M
(∫ T+δ

τ

(∫ t
τ
g(t− s)f(s)ds

)
dt
) 1

2

.

b) ‖f‖L2[0,T ] ‖g‖L2[0,δ] ≤M‖g ∗ f‖
1
2

L1[0,T+δ].

Corollary 4.1.3. Let δ ∈ (0, T ) and suppose g : [0, T ] −→ R with

g ≥ 0, g ∈ H1[0, T ], ‖g‖L2[0,T ] ≥ γ(δ) > 0 (4.9)

Suppose that x ∈ H2[0, T ] is a solution of equation (4.5) and sup-
pose that x has at most finitely many zeros in [0, T − δ]. Then
y ∈ H2,0[0, T ] and there exists c(δ) > 0 with

‖x‖L2[0,T−δ] ≤ 2δc(δ)‖y′′‖
1
4

L2[0,T ]‖y‖
1
4

L2[0,T ] . (4.10)

Proof:
There exists M ≥ 0 such that 0 ≤ |g(x)| ≤ M,x ∈ [0, T ]. Let
0 ≤ t1 < · · · < tn ≤ T − δ be the zeros of x. Assume 0 ≤ x(s) ≤
M, s ∈ [0, t1] . Then we have with Theorem 4.1.2

‖x‖L2[0,t1] ≤ c(δ)−1M‖y‖
1
2

L2[0,t1+δ] ≤ c(δ)−1Mδ
2
3 ‖y′‖

1
2

L2[0,t1+δ] .

Since

y(t) =

∫ t

0

g(t− s)x(s)ds

=

∫ t1

0

g(t− s)x(s)ds +

∫ t

t1

g(t− s)x(s)ds

= y(t1)−
∫ t

t1

g(t− s)(−x(s))ds

we obtain with Theorem 4.1.2

‖x‖L2[t1,t2] ≤ c(δ)−1M(

∫ t2+δ

t1

∫ t

t1

g(t− s)(−x(s))ds)dt
1
2

= c(δ)−1M(

∫ t2+δ

t1

(−y(t) + y(t1))dt)
1
2
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and therefore

‖x‖L2[t1,t2] ≤ c(δ)−1Mδ
2
3 ‖y′‖L2[t1,t2+δ] .

Proceeding in the same way in each interval [ti−1, ti] and summing
up we obtain the bound when we apply in addition the interpolation

inequality ‖y′‖L2[0,T ] ≤ ‖y′′‖
1
2

L2[0,T ]‖y‖
1
2

L2[0,T ]. �

The result in Corollary 4.1.3 leads to a stability estimate

‖x‖L2[0,T−δ] ≤ c‖Ax‖
1
4

L2[0,T ]E
1
4 (4.11)

when we have an a-priori bound E for ‖y′′‖L2[0,T ] which can be de-
rived from a bound for ‖x′‖L2[0,T ].

Suppose there are given real valued functions

x0, y0, yε ∈ L2(R) with g ∗ x0 = y0, ‖y0 − yε‖ ≤ ε . (4.12)

We want to find an approximation xε of x0 using the data yε.
For the regularization of the equation we can apply all the methods
studied in Chapter 2. The application of the method of Tikhonov
is straight forward. But this method is not appropriate when the
equation (4.5) is of Volterra type since then the operator A∗A comes
in and this operator is not of Volterra type.

When the equation (4.5) is l–smoothing we may differentiate the
equation l–times to obtain

g(l)(t)x(t) +

∫ T

0

g(l−1)(t− s)x(s) = y(l)(t) , t ∈ [0, T ] .

Since the righthand side yε may not be differentiable we have to apply
the methods which are considered in Chapter 2. A related method is
Lavrentiev’s method of singular perturbation. Consider the equation

αx(t) +

∫ T

0

g(t− s)x(s)ds = y(t) , t ∈ [0, T ] . (4.13)

where α is a small “regularization parameter”. Equation (4.13) looks
like an integral equation of the second kind. Indeed, when the kernel g
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is of Volterra type, then the operator αI+A is invertible under certain
circumstances and one may prove results similar to the situation αI+
A∗A. In the general case, A may destroy the invertibility of αI +
A since, in contrast to A∗A, A may not be a “positive” operator.
“Positivity” of A may be formulated as

〈Au, u〉 ≥ 0, x ∈ X .

Such operators are called accretive. Accretive operators include those
with kernels g that are positive, decreasing and convex. Even the
generalized Abel integral operator can be considered as an accretive
operator.

4.1.3 Iterative deconvolution

Consider again equation (4.2)

g ∗ x = y (4.14)

We restrict ourselves to the one-dimensional case, extensions to the
two-dimensional case are immediate.

Assumption A5:

g ≥ 0, g ∈ L1(R), ‖g‖L1(R) = 1 .

Under this assumption we obtain for a pair (x, y) which solves (4.14)
∫ ∞

−∞
y(t)dt =

∫ ∞

−∞

∫ ∞

−∞
g(t− s)x(s)dsdt =

∫ ∞

−∞
x(t)dt

(when g and x, y are appropriate “regular”).

Let A : L2(R) 3 x 7−→ g ∗ x ∈ L2(R) and let A∗ be the adjoint
operator. Let y be a positive function. The following steps to derive
iterative methods for the solution of (4.14) can be made rigorous.

Van Cittert method
This method starts from the identity

x = x+ λA∗(y −Ax)
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and transforms this into the iteration

un+1 = un + λA∗(y −Aun) , u0 given (u0 ≈ yε) . (4.15)

Here λ > 0 is a constant that controls convergence. The iteration
above may be considered as a method of steepest descent applied
to the minimization of ‖Ax − y‖2L2(R2) . In the context of operator
equations this method is also called the Landweber method; see
Chapter 3.

Lucy–Richardson method
This method starts from the identities

1 =
y

Ax
, 1 = A∗(

y

Ax
) , x = xA∗(

y

Ax
)

and transforms these into the iteration

un+1 = unA∗(
y

Aun
) , u0 given (u0 ≈ yε) . (4.16)

This method is widely used in astronomical imaging.

Poisson MAP method
This method starts from the identities

x = x exp(A∗(
y

Ax
− 1))

and transforms these into the iteration

un+1 = un exp(A∗(
y

Aun
− 1)) , u0 given (u0 ≈ yε) . (4.17)

As we see, positivity is preserved during the iteration.

Remark 4.1.4. The basis of the iteration-method above are “fixed
point” identities for x with data g and y; no further assumptions are
necessary.
But when x, g, y are viewed as probability densities, not necessarily
normalized, then the a-priori probability p(x|y) and the a-posteriori
probability p(y|x) are defined and the fixed point identities may also
be based on statistical considerations concerning p(x|y) and p(x|y)
respectively. When one assumes that the image y is corrupted by
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Poisson noise Bayes’s theorem leads to the identity x = xA∗( y
Ax )

and then the iteration method (4.16) is called the E-M method. It is
widely used in medical imaging.
The identity x = x exp(A∗( y

Ax − 1)) may be based on statistical ar-

guments concerning the probability p(x|y). �

4.1.4 On discretization in the state space

For the regularization of the equation (4.5) by discretization there is
a variety of schemes available. Here we restrict ourselves to quadra-
ture methods based on well-known quadrature rules. Recall that a
quadrature rule for computing an approximation to an integral on
the interval [0, T ] takes the following form:

∫ T

0

φ(t)dt =

n∑

j=1

wjφ(sj)

where s1, . . . , sn are the abscissas for the particular quadrature rule,
and w1, . . . , wn are the corresponding weights. Examples are the
midpoint rule and the Simpson rule. Using a quadrature rule, we can
approximate the integral in our equation (4.5) as follows:

n∑

j=1

wjg(t, sj)x(sj) ≈
∫ T

0

g(t− s)x(s)ds = y(t) , t ∈ [0, T ] . (4.18)

In order to obtain a system of linear equations, we can use collocation
at given points t1, . . . , tn:

n∑

j=1

wjg(ti, sj)x(sj) = y(ti) , i = 1, . . . , n . (4.19)

This system of equations (4.19) is in matrix notation a quadratic
system Au = b where

A = (aij), aij := wjg(ti − sj), bi = y(ti), uj = x(sj) , i, j = 1, . . . , n .

As already mentioned in Chapter 2, we cannot expect that the solu-
tion of the system (4.19) without regularization leads to a meaningful
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approximation x(t1), . . . , x(tn), especially when the system size n is
chosen too large.

The key observation here is that for convolution problems the
corresponding matrix A with entries aij = wjg(ti−sj) can be written
in the form

A = GW , (4.20)

where W = diag(w1, . . . , wn) is a diagonal matrix consisting of the
quadrature weights and the entries of the matrix G are “samples” of
g, i. e.

gij = g(ti − sj) , i, j = 1, . . . , n .

We simplify our consideration by choosing the discretization points
sj identically to the collocation points ti and identically spaced:

sj = tj = hj , j = 0, . . . , n,

where h := T/n . Then the entries of the matrix G satisfy

gij = g((i− j)h) , i, j = 1, . . . , n .

This special structure of the coefficient matrix A can be used to derive
very efficient algorithms to solve the related system of equations. A
Toeplitz matrix M ∈ Rn,n is a matrix whose elements depend only
on the difference i− j between the indices, i. e. M can be written as

M =




m0 m−1 m−2 . . . m1−n
m1 m0 m−1 . . . m2−n
m2 m1 m0 . . . m3−n
...

...
... . . .

...
mn−1 mn−2 mn−3 . . . m0



.

Obviously, the matrix A in (4.20) is a Toeplitz matrix. Toeplitz
matrices are symmetric across the antidiagonal. Let J denote the
matrix

J =




1
···

1


 .
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Then for each Toeplitz matrix M one has the identities

M = JM tJ , (MJ)t = MJ and M−1 = J(M−1)tJ,

when M is invertible. These identities can be used to derive proper-
ties of the singular value decomposition of a Toeplitz matrix: the left
and right singular vectors are related by the fact that the entries are
identical except perhaps for a sign change.

A system Ax = b with a Toeplitz matrix A can be solved itera-
tively in a very efficient way since a matrix-vector multiplication can
be performed in O(n log2 n) flops. The key idea is to embed the n×n
Toeplitz matrix M in a larger p×p circulant matrix C and to use the
fast Fourier transform to perform the matrix-vector multiplication
with C .

4.2 Convolution in Fourier space

4.2.1 Some results for the Fourier transform

In this section we mention the necessary information from the theory
of Fourier transforms; see [17].

Let f : Rn −→ C be a function in L1(Rn), the space of Lebesgue–
integrable functions. We define f∧ as follows:

f∧(w) := (2π)−
n
2

∫

Rn
f(t) exp(〈−iw, x〉dx , w ∈ Rn ; (4.21)

here 〈·, ·〉 denotes the euclidian inner product in Rn. Notice that the
integral exists if f ∈ L1(Rn). In the same way we define f∨ as follows:

f∨(x) := (2π)−
n
2

∫

Rn
f(t) exp(〈+iw, x〉dw , x ∈ Rn . (4.22)

A key result in understanding the ill-posedness of deconvolution
in Fourier space is the Lemma of Riemann-Lebesgue:

If f ∈ L1(Rn) then f∧ ∈ C0(Rn) .
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Here C0(Rn) is the space of uniformly continuous mappings h :
Rn −→ C with lim|t|→∞ h(t) = 0 . We conclude from this Lemma
that “each” signal in the Fourier domain has small values. Therefore
it is dangerous to divide with a signal in the Fourier domain.

We want to consider the transformations ∧, ∨ also on the space
L2(Rn) (with inner product 〈·, ·〉 and norm ‖ ·‖). How this is possible
becomes clear from Plancherel’s theorem:

There exist uniquely determined bounded linear operators
F ,F−1 : L2(Rn) −→ L2(Rn) such that the following
assertions hold:

(1) F(f) = f∧,F−1(f) = f∨ for all f ∈ L2(Rn)∩L1(Rn).

(2) range(F) = range(F−1) = L2(Rn).

(3) FF−1 = F−1F = I

(4) 〈F(f),F(g)〉 = 〈f, g〉 for all f, g ∈ L2(Rn).

(5) ‖F(f)‖ = ‖f‖, ‖F−1(f)‖ = ‖f‖ for all f, g ∈ L2(Rn).

In the following F is called the Fourier transform and F−1 the in-
verse Fourier transform. It is useful to consider the transforma-
tion F as a transformation of the “state space with time t” into the
“frequency space of spectral values ω”.

The convolution g∗f of functions g, f on Rn is defined in a formal
way by

(g ∗ f)(t) :=

∫

Rn
g(t− s)f(s)ds , t ∈ Rn.

A key result is the convolution theorem:

Let g ∈ L1(Rn) and f ∈ L2(Rn). Then
g ∗ f ∈ L2(Rn), ‖g ∗ f‖2 ≤ ‖g‖1‖f‖2 and F(g ∗ f) =
(2π)

n
2 F(g)F(f) .

Convolution operation has the same effect as a frequency filter, in
that it enhances some frequencies in an image and suppresses others.
Notice that the operator A : L2(Rn) −→ L2(Rn), x 7−→ g ∗ x,
associated with the kernel g ∈ L1(Rn) is not compact in general.
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But the Fourier transform plays a similar role as the singular value
decomposition for compact operators.

Let us consider the Fourier transform of special functions which
are of some interest in the following.

Example 4.2.1.

1) The perfect lowpass filter. We have the pair

g1(t) :=
Ω√
2π

sin( 1
2Ωt)

1
2Ωt

, t ∈ R ,

h1(ω) := F(g1)(ω) =

{
1 , |ω| ≤ Ω
0 , |ω| > Ω

2) The triangle window. We have the pair

g2(t) :=
1√
2π

{
sin( 1

2Ωt)
1
2Ωt

}2

, t ∈ R ,

h2(ω) := F(h2)(ω) =

{
1

Ω(1− |ω|Ω ), |ω| ≤ Ω

0 |ω| > Ω

which becomes clear by the convolution theorem using the fact

g2 =
√

2π
1

Ω2
g2

1 .

3) The Gaussian filter. We have the pair

g(t) :=
1

σ
√

2π
e
− t2

4σ2
, t ∈ R , h(ω) :=

1

σ
√

2π
e
− ω

2

4σ2
, ω ∈ R.

4) The Lorentzian filter. We have the pair

gL(t) :=
a

t2 + a2
, t ∈ R , hL(ω) := F(h)(ω) =

√
π

2
e−aω, ω ∈ R.
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4.2.2 Stability and regularization in the Fourier
space

Consider a one-dimensional convolution equation:

g ∗ x = y (4.23)

where the kernel g is a given real valued function in L1(R). As we
know from the convolution theorem, the convolution equation (4.23)
is equivalent to the “algebraic” equation

√
2πF(g)F(x) = F(y).

If a solution x of (4.23) exists then x = 1√
2π
F−1(f) where f =

F(y)F(g)−1 . Since lim|ω|→∞ |F(g)(ω)| = 0 due to the lemma of
Riemann-Lebesgue the equation (4.23) is ill-posed (lack of stability):

A small perturbation η in y whose transform F(η) does
not decay faster than F(g) as |ω| → ∞ will result in
a perturbation in F(y)F(g)−1 which will grow without
bound.

Therefore it is not reasonable to define the reconstruction xε of x0 as

xε :=
1√
2π
F−1(f) where f = F(yε)F(g)−1.

We have to regularize the equation in order to solve it in a stable
way. We do this by using a filter function (window function) h in the
following way:

xh =
1√
2π
F−1(fh) where fh = hF(y)F(g)−1.

The choice of the filter function h has to ensure that fh = hF(y)F(g)−1

doesn’t blow up for |ω| → ∞. In general, the filter function depends
on a parameter which has to be chosen properly. If we consider the
filter function h = h1 (see example 4.2.1) F(xh) has the truncated
frequency spectrum

F(xh)(ω) =

{
F(x)(ω) , |ω| ≤ Ω
0 , |ω| > Ω
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Here we consider the following family (xε,α)α>0 of regularized
solutions of the reconstruction problem:

xε,α :=
1√
2π
F−1(fε,α)

where

fε,α(ω) :=
|F(g)(ω)|2

|F(g)(ω)|2 + α(1 + ω2)
· F(yε)(ω)

F(g)(ω)
, ω ∈ R.

This regularized solution xε,α may be defined equivalently as the
minimizer of the Tikhonov-functional

x 7−→ ‖g ∗ x− yε‖2 + α‖x‖21
where ‖ ‖1 is the norm in the Sobolev space

H1(R) := {x ∈ L2(R)|x is absolutely continuous, x′ ∈ L2(R)} .

In the following we shall give a bound for the reconstruction error
xε,α−x0. By Plancherel’s theorem it is sufficient to estimate f ε,α−f0

where f0 = F(x0). Let

z(ω, α) :=
|F(g)(ω)|2

|F(g)(ω)|2 + α(1 + ω2)
, v(ω;α) :=

1 + ω2

|F(g)(ω)|2 + α(1 + ω2)
,

and

f0,α(ω) := z(ω, α)
F(y0)(ω)

F(g)(ω)
= z(ω;α)F(x0)(ω), ω ∈ R.

We estimate f ε,α−f0 by giving bounds for each term on the righthand
side of

‖fε,α − f0‖ ≤ ‖f ε,α − f0,α‖+ ‖f0,α − f0‖.
Notice that the functions ω 7−→ |F(x0)(ω)| , ω 7−→ |F(h)(ω)| are
even functions since x0 and h are real valued.

Lemma 4.2.2. We have

‖fε,α − f0,α‖ ≤ ε√
α
.
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Proof:

‖fε,α − f0,α‖2 =

∞∫

−∞

z(ω;α)2 1

|F(h)(ω)|2 |F(yε)(ω)−F(y0)(ω)|2dω

≤ 1

α

∞∫

−∞

|F(yε)(ω)−F(y0)(ω)|2ds

=
1

α

∞∫

−∞

|yε(t)− y0(t)|2dt ≤ ε2

α
.

�
As we already know, for a parameter choice strategy one needs

two ingredients:

• an a-priori information concerning the “smoothness” of x0;

• an information concerning the degree of ill-posedness of the
equation (4.23).

Here we present just one possible combination of these ingredients.

Assumption A6:

∃ q > 1

2
∃ d > 0 (|F(x0)(ω)| ≤ d(1 + ω2)−

q
2 ), ω ∈ R. (4.24)

∃ a > 0 ∃ c > 0 (|F(g)(ω)| ≥ c0 exp(−a|ω|)), ω ∈ R.(4.25)

A kernel which satisfies the assumption (4.25) in A5 is given by the
Lorentzian filter (see Example 4.2.1).

Theorem 4.2.3. Let the assumption A6 hold. Then

‖xε,α(ε) − x0‖ ≤ c(ln 1

ε
)−q+

1
2

where α(ε) = ε2 ln( 1
ε2 )−q+

1
2 and c is a constant independent of q and

ε.
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Proof:
Let M > 0 . We have

1

2
‖f0,α − f0‖2 = α2

M∫

0

v(ω;α)2|F(x0)(ω)|2dω

+α2

∞∫

M

v(ω, α)2|F(x0)(ω)|2dω

=: J1(M) + J2(M).

From assumption A6 we obtain immediately

J2(M) ≤ cα2ε3aM

for some constant c independent of α,M .

J2(M) ≤ α2

∞∫

M

(1 + ω2)2

α2(1 + ω2)2
|F(x0)(ω)|2dω

≤
∞∫

M

d2(1 + ω2)−qdω ≤ d2

∞∫

M

ω−2qdω .

This implies
J2(M) ≤ c2M−2q+1

and we have

‖f0,α − f0‖2 ≤ c(M−2q+1 + α2e3aM ) (4.26)

where c is a constant independent of q and α. With the choice

M =
2

3a
ln(

1

α
)− 2q − 1

3a
ln(

2

3a
ln(

1

α
))

(as an approximation for the minimizer of the right-hand side in
(4.26) with respect to M) we obtain

‖f0,α − f0‖ ≤ c(ln(
1

α
))−q+

1
2 and ‖xε,α − x0‖ ≤ c( ε√

α
+ ln(

1

ε
)−q+

1
2 )
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and the choice

α(ε) := ε2(ln(
1

ε
))2q−1

leads to

‖xε,α − x0‖ ≤ c(ln(
1

ε
))−q+

1
2

where c is a constant independent of q and ε. �
After discretization of a convolution equation

g ∗ x = y . (4.27)

within the space of trigonometric polynomials – with or without reg-
ularization – one is lead to the following problem:

Given ω(N) := exp(−i 2π
N ) and z0, . . . , zN−1.

Compute Zk :=
N−1∑
n=0

znω(N)kn, 0 ≤ k ≤ N − 1 .

The transformation (z0, . . . , zN−1) 7−→ (Z0, . . . , ZN−1) is called the
discrete Fourier transform/DFT . As it is easily seen, the compu-
tation of Z0, . . . , ZN−1 requires a number of arithmetic operations
which is proportional to N2. The fast Fourier transform (FFT) is
a method which reduces the number of arithmetic operations to
N log2 N by using the following observation: A DFT of order N
can be evaluated from two DFT of order N/2.
Let us give a short sketch of this method. Let N = 2τ , τ ≥ 2. We
have with N1 := N/2

Zk =

N−1∑

n=0

znω(N)kn

=

N−1∑

r=0

z2r(N)2rk +

N−1∑

r=0

z2r+1ω(N)(2r+1)k

=
N−1∑

r=0

z2rω(N1)rk + ω(N)k
N−1∑

r=0

z2r+1ω(N1)rk ,

and therefore

Zk = Uk + ω(N)kVk , Zk+N−1 = Uk − ω(N)k, 0 ≤ k ≤ N1 − 1 (4.28)
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where

Uk =

N−1∑

r=0

z2rω(N1)rk, Vk =

N−1∑

r=0

z2r+1ω(N1)rk, 0 ≤ k ≤ N1 − 1 .

(4.29)
Obviously, U0, . . . , UN1−1 and V0, . . . , VN1−1 are discrete Fourier trans-
forms of z0, z2, . . . , z2(N1−1) and z1, . . . , zN−1 respectively. If we apply
the same procedure to these two DFT of order N1 = N/2 we have
to compute four DFT of order N2 := N/4. This decomposition pro-
cess has τ = log2N stages. Since each stage requires 1

2N complex
multiplications and N complex additions the number of arithmetic
operations needed to compute the DFT of the data z0, . . . , zN−1 is
proportional to N log2N.

4.3 Autoconvolution and autocorrelation

Consider the equation
∫ ∞

−∞
p(t+ s)p(s)ds = a(t) , −∞ < t <∞ . (4.30)

This equation appears for example in probability theory in the fol-
lowing way. Let Z1, Z2 be two identically independent continuous
random variables with density function p. Then the right-hand side
describes the density function of the random variable Z1 − Z2 . This
is the forward problem connected with (4.30). The inverse problem
is to find from the autocorrelation function a the density function
p. As a necessary condition for the existence of a solution we have
a(t) = a(−t), for all t ∈ R. Then, using the convolution theorem, we
obtain

F(a)(ω) =
√

2πF(p)(−ω)F(p)(ω)

=
√

2π F(p)(ω)F(p)(ω)

=
√

2π|F(p)(ω)|2 , −∞ < ω <∞ .

This shows

|F(p)(ω)|2 = f(ω) where f(ω) = 2

∫ ∞

0

a(t) cos(ωt)dt , ω ∈ R .
(4.31)
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Now, we conclude that every function F with

F(ω) :=
√
f(ω)eiφ(ω) where |F(p)(ω)|2 = f(ω) , ω ∈ R ,

leads to a solution of equation (4.30). Hence the autocorrelation
equation has infinitely many solutions.

An important problem in spectroscopy (measurement of laser
pulses) consists in the solution of the equation

∫ ∞

−∞
p(s)p(s+ t)p(s+ τ)ds = h(t, τ) , −∞ < t, τ <∞ , (4.32)

under the assumption p ∈ L1(R) . This equation is called the triple
correlation equation. It can be studied again by using the Fourier
transform. Let P be the Fourier transform of p and let

P (ω) = |P (ω)|eiφ(ω) , −∞ < ω <∞ ,

with the phase φ. Along the considerations above we obtain

|P (ω)||P (ζ)||P (ω + ζ)| = |f(ω, ζ)| , ω, ζ ∈ R, (4.33)

φ(ω + ζ) = φ(ω) + φ(ζ) − γ(ω, ζ) , ω, ζ ∈ R, (4.34)

where f is the two-dimensional Fourier transform of h and γ is the
phase of f : f(ω, ζ) = |f(ω, ζ)|eiγ(ω,ζ), ω, ζ ∈ R. We assume f(0, 0) >
0. Then a necessary condition for solvability of (4.32) is given by

P (0)3 = f(0, 0) , |P (ω)| =
√
f(ω, 0)

f(0, 0)
1
6

, ω ∈ R .

Consider equation (4.35) for ζ := ω

φ(2ω) = 2φ(ω)− γ(ω, ω) , ω ≥ 0 ,

when f(0, 0) 6= 0, which is the generic case. The homogeneous part
of this equation is solved by the family ω 7−→ αω, α ∈ R, a special
solution of the inhomogeneous equation is given by

φ̂(ω) =

∞∑

n=0

1

2n+1 γ(2nω, 2nω) , ω ∈ R .
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Thus, we obtain as a general solution of (4.32) in the frequency space

P (ω) = eiαω
√
f(ω, 0)

f(0, 0)
1
6

eiφ̂(ω) , ω ∈ R ; α ∈ R . (4.35)

Next, we consider autoconvolution in a finite interval.

∫ t

0

x(t− s)x(s)ds = y(t) , t ∈ [0, T ] . (4.36)

Let Fx := x ∗ x where (x ∗ x)(t) :=
∫ t

0 x(t− s)x(s)ds , t ∈ [0, T ] . The
mapping F is well-defined in L2[0, 1] and we have

‖Fx‖L2[0,T ] ≤ ‖x‖2L2[0,T ] , x ∈ L2[0, T ] . (4.37)

Moreover, since Fx is continuous, we have Fx(0) = 0 . Therefore we
should consider the equation in the scale of Hilbert spaces

Xs := Hs[0, T ] , Ys := Hs,0[0, T ] , s ≥ 0 . (4.38)

It is easy to verify

Theorem 4.3.1. Let n ≥ 1 . Suppose that the right-hand side y in
(4.36) satisfies

y ∈ H2n[0, T ] , y(0) = y′(0) = · · · = y(2n−2)(0) = 0 . (4.39)

Then we have for a solution x of (4.36) x ∈ Hn[0, T ] and

x(0) = · · · = x(n−2)(0) = 0 (if n ≥ 2) , (4.40)

x(n−1)(0)2 = y(2n−1)(0) , (4.41)

2x(n−1)(0)x(n) + x(n) ∗ x(n) = y(2n) . (4.42)

Consider the equation (4.36) under the assumption of Lemma
4.3.1. When y(2n−1)(0) < 0 then equation (4.36) has no (real-valued)
solution, since (4.42) can have no solution. When y(2n−1)(0) > 0
then equation (4.36) two solutions in Hn[0, T ] . They are related to
the cases

x(n−1)(0) = +
√
y(2n−1)(0) , x(n−1)(0) = −

√
y(2n−1)(0) .
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Suppose y(2n−1)(0) > 0. The equation (4.42) is a well-posed Volterra
equation of the second kind. Therefore, under the assumption of
Lemma 4.3.1, the solution of equation (4.36) is reduced to the prob-
lem to differentiate the right-hand side y n-times when y(2n−1)(0) >
0. Here we can use known methods; see Chapter 2.

4.4 Blind deconvolution

Blind deconvolution is the identification of a point spread function
and an input signal from observation of their convolution. The stable
solution of this problem is of interest in many practical areas in signal
and image processing.

Consider again the equation (4.23)

g ∗ x = y (4.43)

where the kernel is assumed to be in L1(R) . Since we know y only
we cannot identify g and x when g can be decomposed as g = g1 ∗g2 .
Thus, we see that nonuniqueness is compound with discontinuous de-
pendence on data due to ill-posedness in the deconvolution problem.

When g = x− where x−(t) = x(−t), t ∈ R, then blind deconvolu-
tion in equation (4.43) is equivalent to the problem of recovering the
image x from the modulus of its Fourier transform.

In practice, all blind deconvolution algorithms require some par-
tial information to be known and some conditions to be satisfied.
We require that the true image x and the point spread function g
to be nonnegative. These and possible other a-priori conditions are
incorporated in descriptive sets K,X . Then an iterative blind decon-
volution method consists of the following steps:
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Input Start with an initial estimate u0 ∈ X.
Set k := 0.

New kernel: Form a new estimate Gk from F(uk), F(y).

Compute g̃k := F−1(Gk).

Realize an approximation gk ∈ K for g̃k.

New image: Form a new estimate U k from F(gk),F(y).

Compute ũk+1 := F−1(Uk).

Realize an approximationuk+1 ∈ X for ũk+1.

Update: Set k := k + 1 and go to ‘‘New kernel’’.

Output Sequences (uk)k∈N, (gk)k∈N.

Clearly, there are serious problems to handle since Gk and Uk are
to be found by division of F(y) by F(uk) and F(gk) respectively.
Moreover, the realization of the approximations depends heavily on
properties of the sets K,X .

A Lévy-distribution lα,β is a function on R2 which has a Fourier
transform depending on the parameter α, β as follows:

F(lα,β)(ω, ζ) = exp(−α(ω2 + ζ2)β), ω, ζ ∈ R .

Set

K = {P : R2 −→ R | F(P ) =

k∑

i=1

F(lαi,βi), αi ≥ 0, 0 < βi ≤ 1, l ∈ N} .

The Gaussian case (k = 1, β = 1) and the Lorentzian case (k = 1, β =
1
2 ) are included.

Consider the Gaussian case. The blurred image y may be viewed
as the solution of the heat equation with an appropriate constant
diffusion coefficient λ > 0 at time t = 1 . The desired blurred image
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x is the initial data in this heat flow problem:

ut = λ∆u, 0 < t ≤ 1, u(1) = y .

For pdf’s in K the heat equation becomes an evolution equation with
a pseudo–differential operator given by fractional powers of the Lapla-
cian:

ut = −
k∑

i=1

λi(−∆)βiu, 0 < t ≤ 1, u(1) = y ,

with λi = αi(4π
2)−βi . If we would know the parameter αi, βi, k,

then we could apply methods which are designed to solve evolution
equations backward in time. Here is an idea to find the parameter
α, β in the pure Lévy-case. We have

F(g)(ω, ζ)F(x)(ω, ζ) =
√

2πF(y)(ω, ζ), ω, ζ ∈ R,

and therefore

exp(−α(ω2 + ζ2)β)|F(x)(ω, ζ)| =
√

2π|F(y)(ω, ζ)|, ω, ζ ∈ R
−α|ω|2β + ln(|F(x)(ω, 0)|) = ln(

√
2π|F(y)(ω, 0)|), ω ∈ R.

We make the ansatz

ln(|F(x)(ω, 0)|) = −a|ω|b

and find a, b such that ω 7−→ −α|ω|2β − a|ω|b fits the function
ω 7−→ ln(

√
2π|F(y)(ω, 0)|). With these parameters α, β we solve

the associated evolution equation backwards in time.

4.5 Bibliographical comments

The process of (numerical) differentiation is considered in almost all
monographs on ill-posed problems. The generalization of the methods
proposed in the context of fractional differentiation is discussed for
instance in [40]. In Section 4.3 we follow mainly the results developed
by Baumeister, Gorenflo, Hofmann, Janno and Wolfersdorf; see [6,
29, 94]. The reverse convolution inequality can be found in [82]. For
blind deconvolution consult [12, 16].
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4.6 Exercises

4.1. Show that an integral equation

∫ b′

a′
κ(
x

x′
)g(x′)dx′ = r(x) , x ∈ [c′, d′],

with a kernel κ of the division type can be transformed to an integral
equation of convolution type:

∫ b

a

h(t− s)g̃(s)ds = r̃(t) , t ∈ [c, d] .

4.2. Consider for α, β > 0, the convolution of the following two sig-
nals:

x(t) :=

{
e−αt , if t > 0

0 , if t ≤ 0
, x(t) :=

{
e−βt , if t > 0

0 , if t ≤ 0
.

Compute the convolution h ∗ x .

4.3. Consider the sideways heat equation in the quarter plane:





uxx = ut , x ≥ 0, t ≥ 0

u(x, 0) = 0 , x ≥ 0

u(1, t) = g(t) , t ≥ 0

‖u(x, ·)‖L2(0,∞) is bounded as x→∞

. (4.44)

Physically, the problem corresponds to a situation in which the end-
point x = 0 is inaccessible, but for which one can make measurements
at x = 1 . Find an indication that this problem is ill-posed.

4.4. Consider again the sideways heat equation (4.44). Show that a
solution is given by

û(x, ξ) := e(1−x)
√
iξ ĝ(ξ) where û(x, ξ) =

1

2π

∫ ∞

−∞
u(x, ξ)e−iξtdt , ξ ∈ R .

(4.45)
Here

√
iξ = (1 + sign(ξ)i)

√
|ξ|/2 .
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4.5. Consider the problem of calculating the fractional derivative of
a function f given in L2(R) :

Dαf(x) :=
1

Γ(n+ 1− α)

dn+1

dxn+1

∫ x

−∞

f(t)

(x− t)α−n dt

for n ∈ N, n < α < n+ 1. Such problems are frequently encountered
in many practical contexts. It is well known that if 0 < α ≤ 1, then
Dαf(x) is a formal solution of the Abel integral equation

Iαu)(x) =
1

Γ(α)

∫ x

−∞

u(t)

(x− t)1−α dt = f(x),−∞ < x∞ .

Compute Dαf for

f(x) := e−x
2

, f(x) :=





0 , x ≤ −1

1 + x ,−1 < x ≤ 0

1− x , 0 < x ≤ 1

0 1 < x

,

f(x) :=





0 , x ≤ −1

1 ,−1 < x ≤ 1

0 1 < x

, f(x) := 0 .
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Chapter 5

Tomography Problems

Tomography concerns recovering images from a number of projec-
tions: how can an image of an object be constructed, of which only
the density distribution in a number of directions is known. The
main application is the problem of locating tumors, various other
applications of the Radon transform (partial differential equations,
seismics,. . . ) can be found in the literature.

The exposition is divided into three parts: tomography via the
Radon transform, detecting of features in images, Discrete Tomogra-
phy.

5.1 Computerized Tomography

5.1.1 Problem formulation

Let f describe the density of a medium in a region Ω ⊂ R2. The
combined effects of scattering and absorption result in a exponential
attenuation of a beam of X-ray photons as it passes through the
medium. If I0 is the input intensity of the beam of X-ray photons
the output intensity of the beam is given due to basic modelling by

I0 exp(−
∫

L

f(z)dz)

115
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where L is the beam path; see Figure 5.1. The line integral

∫

L

f(z)dz

is called a projection. By moving the source of the beam and the
detector around the medium it is possible to obtain a set of projec-
tions. Then an appropriate inversion algorithm is applied to recover
an approximation to the density distribution f . By stacking several
transverse sections of a body, the two-dimensional information may
be converted to a three-dimensional information.

ϕ

t

x

y
f

ϕ f (t)p

Ω /

Figure 5.1: The beam geometry

This method has been
applied in various fields
of applications: X-ray
tomography in medicine
(determination of tu-
mors), geophysical to-
mography (determina-
tion of subsurface struc-
ture), optical tomogra-
phy (flow field diagnos-
tics).

Let us give a more
mathematical formula-
tion of the problem. A
beam path L may be
parameterized by an an-
gle and a distance in the following way:

L = Lt,ϕ = {z ∈ R2|z = tu(ϕ) + su⊥(ϕ), s ∈ R}

where t ∈ (−∞,∞), u(ϕ) = (cosϕ, sinϕ), u⊥(ϕ) = (− sinϕ, cosϕ),
ϕ ∈ [0, π). Then the line integral corresponding to Lt,ϕ may be
written as follows:

(pϕf)(t) :=

∞∫

−∞

f(tu(ϕ) + su⊥(ϕ))ds. (5.1)
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We refer to pϕf as the radiograph or projection of f in the direction
perpendicular to u(ϕ). The function Rf , defined by

Rf(t, ϕ) := (pϕf)(t) , t ∈ R, ϕ ∈ [0, π) (5.2)

is called the (two-dimensional) Radon transform of f ; a density in the
(x, y)-space is transformed into the “Radon space” (t, ϕ). Thus, the
solution of the reconstruction problem by projections consists in an
inversion of the operator R, defined on a suitable space of functions.

An interesting special case consists of a radially symmetric density
f and Ω being a circle. In this case is suffices to use a single direction
u(ϕ), e.g. ϕ = π/2, and moreover f(tu(ϕ) + su(ϕ)⊥) =: f̂(r) can be
written as a function of the radius r =

√
t2 + s2 . Using a transfor-

mation to polar coordinates, the Radon transform can be rewritten
as

Rf(t, π/2) = 2

∫ ρ

t

rf̂(r)√
r2 − t2

dr

with ρ sufficiently large such that f̂(r) = 0 for r > ρ. With the
notation g(t) := 1

2Rf(t, π/2), the Radon inversion in this special
case can be written as the Abel integral equation

g(t) =

∫ ρ

t

rf̂(r)√
r2 − t2

dr , 0 < t ≤ ρ .

It is possible to find an explicit inversion formula for the Abel integral
equation, which yields

f̂(r) = − 2

π

∫ ρ

t

g′(t)√
t2 − r2

dt .

Note that in the inversion formula, the derivative g′ appears and we
have seen in Section 2 that differentiation of data is ill-posed. The
differentiation is compensated partly by the additional integration,
but one can show that the inversion of the Abel integral equation is
still ill-posed; see Example 4.1.1.

For the general situation, an explicit (but more complicated) in-
version formula exists, which involves differentiation of data too:

f(z) =
1

2π2

∫ π

0

∫ ∞

−∞

∂tpϕ(t, ϕ)

〈z, u(ϕ)〉 − t dt dϕ , z ∈ R
2 . (5.3)
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But it is not clear a-priori which properties of the density f are needed
in order to make the formula applicable.

The space of functions in which the Radon transform is accessible
by simple arguments is the Schwartz space S(R2) ; see the Appendix
A.1. Roughly speaking, the main properties of a function in S(R2)
are that it is smooth and that it goes to zero as |z| → ∞ faster than
any negative power of |z| . In the Schwartz space we can give a second
equivalent definition of the Radon transform which is under certain
circumstances – at a first look – a little bit easier to handle. We put
with h > 0

δh(t) :=
1

2π

∫ h

−h
ei(t−s)ds , t ∈ R .

Then one can show that limh→∞ δh −→ δ in the dual space S(R2)∗

of S(R2). Here δ is the one-dimensional Dirac distribution which op-
erates as a linear functional on smooth functions as follows:

〈δ, g〉 = g(0) .

Hence, for f ∈ S(R2),

lim
h→∞

∫

R2

f(z)δh(t− 〈z, u(ϕ)〉)dz =

∫

R2

f(z)δ(t− 〈z, u(ϕ)〉)dz

for all t ∈ R, ϕ ∈ [0, π) . In this sense we write

Rf(t, ϕ) =

∫

R2

f(z)δ(t− 〈z, u(ϕ)〉)dz , t ∈ R, ϕ ∈ [0, π) . (5.4)

In the Schwartz space the properties of the mapping R (injectivity,
continuity, range,. . . ) can be discussed clearly and completley. The
following projection theorem, also called the central slice theorem,
prepares an answer to the uniqueness question. The proof of this
theorem can be found in all textbooks on computer tomography. Here
we give a sketch of the proof based on the definition (5.4).

Theorem 5.1.1 (Central slice theorem/Projection theorem).
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Let f ∈ S(R2) and let Pϕf be the one-dimensional Fourier trans-
form of the projection pϕf for each ϕ ∈ [0, π). Then we have

Pϕf(ω) =
√

2πF(f)(ωu(ϕ)) , ω ∈ R, ϕ ∈ [0, π) . (5.5)

Sketch of a Proof:
Let ω ∈ R, ϕ ∈ [0, π). Using the definition (5.4) we can conclude

Pϕf(ω) = F(pϕf(·))(ω)

=
1√
2π

∫ ∞

−∞
Rf(t, ϕ)e−iωtdt

=
1√
2π

∫

R2

f(z)

∫ ∞

−∞
δ(t− 〈z, u(ϕ)〉)e−iωtdtdz

=
1√
2π

∫

R2

f(z)e−iω〈z,u(ϕ)〉dz

=
√

2πF(f)(ωu(ϕ))) .

�

Thus, the Fourier transform of a radiograph is proportional to the
spectrum of the original object on a beam normal to the direction
of the projection beam. Since Rf yields the Fourier transform of f
which uniquely determines f the uniqueness question is answered by
the central slice theorem: f ∈ S(R2) is uniquely determined by Rf .

Remark 5.1.2. The Radon transform described above generalizes in
many directions.

• First, it generalizes by considering integrals over d–planes in
Rn for n > 2.

• An alternative to the parallel mode of data collection is when
data are collected for rays diverging from a single point: fan
beam scanning.

• Another problem is to recover a function in the exterior of some
ball from projections outside the ball. This problem is uniquely
solvable, providing the function is decaying fast enough at in-
finity. The situation is much more difficult when the angles
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are restricted to lie in a strict subset of [0, π) (limited angle
tomography) as it is the case when a piece of metal blocks the
radiation.

�

So far, we have been working with R defined in the Schwartz space
which is not sufficient for applications. It turns out that R extends
in a natural way to other interesting spaces. Since we may prove an
estimate

‖Rf‖L1(R×[0,π)) ≤ c‖f‖L1(R2) , f ∈ S(R2),

with a constant c we conclude that R can be extended by continuity
to L1(R2) . The extension to L2(R2) is done in a similar way when
we consider densities of compact support. As we know from the
general basics for ill-posed problems it is helpful to consider R in an
appropriate scale of Hilbert spaces in order to obtain good results for
regularization. In the domain of densities f with compact support it
is natural to choose the usual scale Hs,0(Ω)s∈R of Sobolev spaces. In
the data space the appropriate scale of Hilbert spaces is the family of
Sobolev spaces on the “cylinder” Z := R× [0, π). When these spaces
are denoted by Hs(Z)s∈R, then one can conclude that the inversion
of the Radon transform has degree of ill-posedness 1

2 .

In the following subsections we consider computational schemes
for inverting the Radon transform. Of course, Tikhonov’s method
would be the first choice for such a computation method. But we
omit this method since the regularization depends heavily on the
choice of an operator B which may be a little bit artificial for the
Radon transform; see Chapter 2.

5.1.2 Computational aspects: the Fourier tech-
nique

We assume that the image function f is compactly supported in the
square [0, N ] × [0, N ] and consequently, pϕ(·) has compact support
in [0, N ] where d ≥ N

√
2. When working with digital images, a

discretized form of the Radon transform is required. A digital image
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f is – without loss of generality – a N × N array of pixels z =
(x, y) ∈ Z2, 0 ≤ x, y ≤ N − 1, each representing the average gray
level of a unit square in the image. The gray levels can be taken to be
nonnegative real numbers. A line integral along Lt,ϕ is approximated
by a summation of the pixels lying in the one-pixel-wide strip t− 1

2 ≤
〈z, u(ϕ)〉 < t + 1

2 . Since strips have unit width, t can be restricted

to integer values, and for a given ϕ at most
√

2N strips are needed.
The number of angles is defined to be uniformly distributed between
0 and π.

In this discrete context the line integrals are computed as follows.
For any given angle ϕ, each of the pixels lies in exactly one strip.
Therefore, for each pixel we simply determine the strip to which it
belongs (t relative to ϕ) and add the pixel’s value to the current total
for strip (t, ϕ). This procedure is repeated for each value of ϕ.

Input Density f, mesh-parameter M,N.

Initialization: Rf(t, ϕ) := 0 for all (t, ϕ).

For ϕ = 0 to
(M − 1)π

M step π
M do:

For x = 0 to N − 1, for y = 0 to N − 1 do:

Summation: t := b〈(x, y), u(ϕ)〉 + 1
2c,

R(t, ϕ) := R(t, ϕ) + f(x, y).

Output M radiographs.

The complexity of this method is O(N 2M). Much research has been
devoted to speed up the computation of the discrete Radon trans-
form (parallel processing, computation via the central slice theorem,
computation of segments which share different strips,. . . ).

For the (approximate) inversion of the Radon transform we may
use the central slice theorem.
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Input Given a density f with radiographs

p1f := pϕ1f, . . . , pmf := pϕm
on a grid ω1, . . . , ωn

Fourier Transform: Compute the discrete Fourier transform

Pi,j := DF(pi)(ωj), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Interpolation: Place Pij on a cartesian grid with

(x, y) ∈ Z2, 0 ≤ x ≤ N − 1, 0 ≤ y ≤M − 1.

Fourier Transform: Use the inverse discrete Fourier

transform to obtain f̂ from the data Pij.

Output Approximation f̂ for the density f.

The approximate computation of f from Rf in this way is called
a Fourier technique. The computational problem is that a two-
dimensional inverse transform is required. In addition, various coordi-
nate system shifts and interpolations that complicate the calculations
further are needed. In practice, resampling from polar to rectangu-
lar coordinates involves considerable interpolation, which makes the
resultant reconstruction of f noisy; see remark below. A way around
this problem is to use the filtered backprojection method; see Section
5.1.3.

Remark 5.1.3. When one computes a radiograph via the central slice
theorem one has to interpolate the density f from a cartesian grid in
the frequency space into a polar grid. Let f be a density whose support
in the Fourier domain is contained in the square [−Q,Q]× [−Q,Q].
Suppose that we have an equidistant cartesian grid µi = νi = i∆, i =
−I . . . , I, where I∆ := F . Consider grid points ϕj with ϕj = j∆ϕ,
j = 0, . . . , J − 1, ωl = l∆ω, l = −L, . . . , L, where J∆ϕ = π, L∆ω :=
Q. Then the maximal distance of two points in the polar grid is
given by d :=

√
2∆ϕQ. d should not be bigger than ∆. This leads

to the bound ∆ϕ ≤ ∆√
2Q

. When the given density is sampled on an

equidistant grid which fulfills the requirement of the Nyquist-sampling
theorem then we obtain the sampling requirement for the Radon trans-
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form:

∆ϕ ≤
1√
2I

F

Q
with

F

Q
≥ 1 . (5.6)

�

5.1.3 Computational aspects: filtered backprojec-
tion

The basis of the filtered backprojection technique is the following
result.

Theorem 5.1.4 (Inversion formula). Let f ∈ S(R2) and let Pϕf
be the one-dimensional Fourier transform of the projection pϕf for
each ϕ ∈ [0, π). Then we have

f(z) =
1

2π

∫ π

0

(κ ∗ pϕf)(〈z, u(ϕ)〉)dϕ , z ∈ R2, (5.7)

where the Fourier transform K of the convolution kernel κ is given
by K(ω) := |w|, ω ∈ R.

Sketch of a Proof:
We have

f(z) =
1

2π

∫

R2

F(µ, ν)ei(µx+νy)dµdν

=
1

2π

∫ 2π

0

∫ ∞

0

ωF(ωu(ϕ))eiω〈z,u(ϕ)〉dωdϕ

=
1

2π

∫ π

0

∫ ∞

−∞
|ω|F(ωu(ϕ))eiω〈z,u(ϕ)〉dωdϕ

= (2π)−
3
2

∫ π

0

∫ ∞

−∞
|ω|Pϕf(ω)eiω〈z,u(ϕ)〉dωdϕ

=
1

2π

∫ π

0

F−1(KPϕf)(〈z, u(ϕ)〉)dϕ

= (2π)−
3
2

∫ π

0

(F−1(K) ∗ pϕf)(〈z, u(ϕ)〉)dϕ

= (2π)−
3
2

∫ π

0

(κ ∗ pϕf)(〈z, u(ϕ)〉)dϕ .
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�
Notice that the kernel κ cannot be a L1(R)− nor a L2(R)-function
since the ramp filter K is an unbounded function. Thus, for the use
of the Fourier transform and the convolution theorem in the sketch
of the proof above one has to add some arguments.

Let f ∈ S(R2) and let Pϕf be the one-dimensional Fourier trans-
form of the projection pϕf for each ϕ ∈ [0, π) . We define

Bf (ξ, ϕ) := (2π)−
3
2

∫ ∞

−∞
|ω|Pϕf(ω)eiωξdω , ξ ∈ R, ϕ ∈ [0, π) . (5.8)

From the proof of the central slice theorem we conclude

f(z) =

∫ π

0

Bf (〈z, u(ϕ)〉)dϕ , z ∈ R2 , (5.9)

and

Bf (ξ, ϕ) = (2π)−1F−1(F(κ)F(pϕ(·))(ξ) = (2π)−1(κ ∗ pϕf(·))(ξ) .

To get f from Bf via the identity (5.9) is called backpropagation.
Therefore we have obtained that f is the backpropagation of filtered
radiographs. The realization of this fact as a computational method
is called filtered backprojection. Filtered backprojection is widely used
in medicine. Here to reduce the number of projections is desirable in
order to reduce the X-ray dose. But this is in conflict with the need
to avoid aliasing as a consequence of insufficient sampling.

5.1.4 Computational aspects: the ART-algorithm

Suppose we have a system of linear equations

Ax = y (5.10)

governed by the matrix A ∈ Rm,n with righthand side y ∈ Rm,
yt = (y1, . . . , ym) . Let (ai)t ∈ Rn, i = 1, . . . ,m, be the rows of the
matrix A . Set

J(x) :=

m∑

i=1

|(ai)tx− yi|2 , x ∈ Rn .
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We want to minimize the functional J. The method we chose is it-
erative and of adaptive type: in any step, an estimate of x at the
next iteration step is constructed from that at the preceding step
and from a “new observation” given by a pair (ai, yi); adaptation is
done by moving a certain (small) step in the direction opposite to the
current gradient of the objective function J . This procedure leads to
the following form of a recursive algorithm:

xk+1 := xk + λk(yk − (ak)txk)ak , k ∈ N . (5.11)

where x1 is an initial guess and (λk)k∈N is a sequence of relaxation
parameters. Moreover, we use the data (ai, yi) in a cyclic order:

ak = aj , yk = yj , if j = k mod m.

In the literature an algorithm of this type is called an ART-algorithm
(algebraic reconstruction technique). In our context of computerized
tomography

yi is the result of a projection,
ai describes the geometry of the beam,
x is the unknown vector of the pixel density.

Thus, the ART-algorithm may be considered as “the most direct
method” to invert the Radon transform in its discretized version.

To simplify in the sequel the computations we assume that the
vectors ai are normalized:

(ai)tai = 1 , i = 1, . . . ,m .

Moreover, we consider cyclic relaxation only, that is: λk is constant
during a cycle.

Let A† be the pseudoinverse of A, x† := A†y and set α := |A†x†−
y|2 .

Theorem 5.1.5. Let the sequence (xl)l∈N be determined by iteration
and suppose that x1 ∈ range(At). Then we have:



“ln-shell”
2005/5/5
page 126i

i
i
i

i
i

i
i

126 [CAP. 5: TOMOGRAPHY PROBLEMS

a) If the system is consistent (α = 0) and if the relaxation sequence
(λk)k∈N satisfies

0 ≤ lk ≤ 2, k ∈ N,
∞∑

k=1

λk(2− λk) =∞,

then x† = limk x
km .

b) If the system is inconsistent (α > 0) and if the relaxation se-
quence (λk) satisfies

0 ≤ lk, k ∈ N,
∞∑

k=1

λk =∞,
∞∑

k=1

λ2
k <∞,

then x† = limk x
km .

Sketch of a Proof:
The source condition x1 ∈ range(At) implies

xl ∈ null(A)⊥, vl := xl −A†y ∈ null(A)⊥, l ∈ N .

Put

bk := |xkm − x†|2, ck :=

m∑

j=1

|yj − (aj)txkm+j−1|2, k ∈ N.

Then one can verify

λk(µkck − α) ≤ bk − bk+1, k ∈ N,

where

µk :=

{
2− λk , if α = 0

1− λk , if α > 0
.

Now one has to analyze the inequality above in order to obtain
limk bk = 0 . �

The attractivity of the ART-algorithm comes from the following facts:

• the iteration step is easy to implement;
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• no extra effort is necessary to add data (ai, yi).

The shortcomings of this type of computation scheme are

• that the convergence is slow in general;

• that it is difficult to implement a stopping rule for the iteration,
especially when the data are corrupted by noise.

Remark 5.1.6. Consider the Radon transform for densities in a
Hilbert space X . Each radiograph pϕ defines a mapping from X into
a Hilbert space, say Y . The inversion problem for finite many undis-
cretized radiographs can be stated as follows:

Given gi := pif := pϕif ∈ Y, i = 1, . . . ,m .
Find an approximation of f .

Let p∗i be the adjoint mapping of pi from X → Y and consider the
iteration

f i+1 := f i + λp∗i (pip
∗
i )
−1(gi − pif i), i ∈ N,

where f1 is a given initial guess and λ ∈ (0, 2) is a relaxation param-
eter. Again, the data gi are used in a cyclic way. The limit of the
sequence (f i)i∈N which can be shown to exist under minor assump-
tions is a solution of the reconstruction problem.

This is an infinite-dimensional variant of the ART-algorithm. It
may be considered as a method of successive iteration of nonexpansive
mappings. �

5.2 Features in images

Suppose we look at a two-dimensional image. Extraction of primi-
tives “hidden” in the density, such as lines (airfield runways), wires
(detection of mines) and curves, is often a key step in an image anal-
ysis procedure. The most popular technique for curve detection is
based on the Hough transform – we don’t present it as a transform
– which is closely related to the Radon transform.
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5.2.1 The Radon transform for shape detecting

Let I be a plane image. The image intensity can be regarded as
a function f(z) of the position z ∈ R2 in the image. The Radon
transform according to definition (5.4) is given by

Rf(t, ϕ) =

∫

R2

f(z)δ(t− 〈z, u(ϕ)〉)dz , t ∈ R, ϕ ∈ [0, π) .

The projections are integrals along straight lines. Therefore the pro-
jections should enhance a detail in the image which is of the shape
of a line.

Consider a line in normal form:

Lρ,ϑ : 〈z, u(ϕ)〉 = ρ (ρ ∈ R, ϑ ∈ [0, π))

in R2 . Modelling the density f on the line Lρ,ϑ with a Dirac distri-
bution δ gives certainly Rf(t, ϕ) = 0 when ϕ = ϑ and t 6= ρ . When
ϕ 6= ϑ then we obtain

Rf(t, ϕ) =

∫

R2

δ(ρ− 〈z, u(ϑ)〉)δ(t− 〈z, u(ϕ)〉)dz = − 1

〈u(ϕ⊥), u(ϑ)〉
.

This implies in the case t = ρ and ϕ = ϑ by a limit argument that a
peak in (ρ, ϑ) results. Thus, by considering the Radon transform Rf
it should be possible to detect a detail which is of the shape of a line.

Now, it is not difficult to generalize the Radon transform to other
types of shapes. Suppose that a shape is given implicitely by an
equation

γp : Γ(z, p) = 0 ,

where p is a parameter in a subset P of a parameter space Rd . Ex-
amples are lines

t− 〈z, u(ϕ)〉 = 0 (p := (t, ϕ) ∈ P := R× [0, π)),

and circles (extract a football in an image!)

|z − z0|2 − r = 0 (p := (z0, r) ∈ P := R2 × [0,∞)) .



“ln-shell”
2005/5/5
page 129i

i
i
i

i
i

i
i

[SEC. 5.2: FEATURES IN IMAGES 129

Let γp be a family of given shapes. The generalization of the Radon
transform is given by

Rγpf(t, ϕ) =

∫

R2

f(z)δ(Γ(z, p))dx (5.12)

where again δ is the Dirac distribution. Clearly, this is just a very
informal definition but we omit the arguments to make this definition
sound.

Now imagine that there is a shape in the image with parameter
q . When q 6= p, the Radon transform will evaluate to some finite
number which is proportional to the number of intersections between
the shapes γq and γp . However, when p = q, the Radon transform
yields a large response, a peak in the parameter space. We can now
interpret the Radon transform as follows: it provides a mapping from
image space to a parameter space. The mapping created in this way
contains peaks for those p for which the corresponding shape γ(p)
is present in the image. Shape detection is reduced to the simpler
problem of peak detection.

Let us go back to a very simple feature in an image and consider
the Radon transform of a point source. Modelling the point source
in z∗ = (x∗, y∗) by a Dirac distribution

f := δ̃(· − z∗) := δ(· − x∗)δ(· − y∗),

we obtain in a formal argumentation

Rf(t, ϕ) = δ(t− 〈z∗, u(ϕ)〉 , t ∈ R, ϕ ∈ [0, π) .

For each pair (t, ϕ) with t− 〈z∗, u(ϕ)〉 we have the line

t− 〈z, u(ϕ)〉 = 0 , z ∈ R2 .

In this way every point z∗ ∈ R2 is mapped into a sinusoid σz∗ with
representation

σz∗ : [0, π) 3 ϕ 7−→ t := 〈z∗, u(ϕ)〉 ∈ R .
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This sinusoid has its maximum value in (ρ, ϑ) with

ρ := |z∗| , cos(ϑ) = x∗/ρ .

Conversely, each point of the graph of such a sinusoid represents a
point lying on a line through z∗ .

Example 5.2.1. Consider the points A(0|2), B(1|1), C(2|0) in R2 .
These points are mapped into the following sinusoids in the parameter
space:

ρ = cos(ϑ) + sin(ϑ) , ρ = 2 sin(ϑ) , ρ = 2 cos(ϑ) , ϑ ∈ [0, π) .

The intersection point (ρ = 1, ϑ = π/4) of these curves indicates that
the points are lying on the line

x+ y = 2 .

�

5.2.2 The Hough accumulator for detecting lines

If an image is very sparse, e. g., a binary image with only a few non-
zero pixels, most of the computational effort to evaluate a discrete
Radon transform is summing up zeros that do not contribute to the
value of the projection. In one of the most cited patents in the image
processing Hough proposed a way to incorporate sparsity; see [45].

The Hough transform is a standard tool in image analysis that
allows recognition of global patterns in an image space by recogni-
tion of local patterns (ideally a point) in a transformed parameter
space. It is particularly useful when the patterns one is looking for
are sparsely digitized and/or the pictures are noisy.

The basic idea of this technique is to find curves that can be
parameterized like straight lines, polynomials, circles in a suitable
parameter space (Hough space). The Hough transform is a map-
ping from the image space into the Hough space. We set up an d-
dimensional accumulator array, each dimension corresponding to one
of the parameters of the shape looked for. Each element of this array
contains the number of votes for the presence of a shape with the
parameter corresponding to that element. The votes themselves are
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obtained as follows. Consider each point (x, y) in the input image.
Now we consider which shapes this point, with grey value g(x, y),
could potentially be a member of. We increment the vote for each of
these shapes with g(x, y). Of course, if a shape with parameter p is
present in the image, all of the pixels that are part of it will vote for
it, yielding a large peak in an accumulator array.

This method was originally defined to detect straight lines in bi-
nary images. Let

xm = xmin +m∆x , m = 0, . . . ,M − 1 , (5.13)

yn = ymin + n∆y , n = 0, . . . , N − 1 , (5.14)

ρl = ρmin + l∆ρ , l = 0, . . . , L− 1 , (5.15)

ϑk = k∆ϑ , k = 0, . . . ,K − 1 (ϑK = π) , (5.16)

be a discretization of the image and parameter space (Hough space),
respectively. Let f be a given image with nonnegative “greyvalues”
and let

g(m,n) = f(xm, yn) , m = 0, . . . ,M − 1, n = 0, . . . , N − 1 ,

be the pixel image of f . Here is the computational scheme for the
Hough-accumulator.
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Input Discretization (5.13),...,(5.16);

Discretized image g(m,n) .

Initialization: h(l, k) = 0 for all k, l.

For m = 0, . . . ,M − 1, n = 0, . . . , N − 1 do:

Contribution : g := g(m,n); if g 6= 0 do

for k = 0, . . . ,K − 1 do

ρ := xm cos(ϑk) + yn sin(ϑk)

r := round(ρ− ρmin)/∆ρ

Voting if r ≥ 0 and r < L then h(r, k) := h(r, k) + g

end do.

Output Histogram h(m,n) (Hough accumulator)

Local maxima of the histogram h identify straight line segments in
the original image space. Ideally, the Hough space has to be searched
for a maximum only once. In situations where a picture contains
many patterns of different size, it may, however, be necessary to take
out first those patterns in the original image space that correspond
to clearly identifiable peaks in the Hough domain and to repeat the
process. But a key question is what happens to peaks in the param-
eter space when the image is corrupted by noise. For a binary image
the value of the accumulator h in a parameter (ρ, ϑ) is related to the
number of points lying on the line given by (ρ, ϑ) .

Particular care must be taken in choosing the angular resolution
∆ϑ and the distance resolution ∆ρ . The values should be such that
collinear points in the image space do correspond to curves intersect-
ing at the same Hough accumulator cell.

Remark 5.2.2. Within the seismics, the parameterization of a line
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by the slope m and the line offset c is used:

Rf(m, c) :=

∫ ∞

−∞
f(x,mx+ c)dx , m, c ∈ R ; (5.17)

the parameter space is R2 . The Hough-algorithm may be adapted to
this case. However, here we have a problem with using y = mx + c
to represent lines when the line is vertical. �

Let us sketch two ideas to detect circles in a given image.
Suppose we have a pixel image. Each pair of points in the image

space defines a line in the image space and a line that perpendicular
bisects this line. Since a line that perpendicular bisects a chord of a
circle contains the center of the circle we are able to find eventually
– again by voting in the parameter space – the center of a circle.
Because we are dealing with digital circles the points of their cir-
cumference are affected by digitation and, therefore, do not exactly
satisfy the standard circle equation.

When the image is binary (black/white) and when we try to find
circles of given radius r we may use the fact that the center of circles
with a intersection point x0 lie themselves on a circle of radius r
round the point x0 . Hence the computation goes as follows. For each
black pixel (xm, yn) find all pixels (xm′ , yn′) lying on the boundary
of a circle with radius r and center (xm, yn) ; increment the vote for
(xm′ , yn′) by one. Highly voted pixels provide an indication of the
existence of a circle with many black pixels on the boundary. A
parallel implementation is possible.

5.3 Discrete Tomography

Here we have a short look on the reconstruction of binary images
from the knowledge of their line sums.

5.3.1 Statement of the problem

A lattice set is a non–empty finite subset of the integer lattice Z2 .
A vector v in Z2\{θ} is called a lattice direction and a projection
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of a lattice set F in a lattice direction v is the function pvF giving
the number of points in F on each line parallel to this direction; see
Figure 5.2.

l

l

1

2

Figure 5.2: A lattice in Z2

Discrete Tomography is
concerned with the re-
construction of images
from their projections
(in a small number of
directions). The re-
construction task is an
ill-posed inverse prob-
lem touching all three
Hadamard criteria for
ill-posedness. In fact,
for general data there
need not exist a so-
lution, if the data is
consistent, the solution
need not be uniquely
determined, and even in the case of uniqueness the solution may
change dramatically with small changes of the data.

As the name suggests, Discrete Tomography has its theory based
on discrete mathematics [11,14]. In addition, it deals with many
other fields of mathematics, namely combinatorics, functional analy-
sis, geometry, coding theory and graph theory. It has been applied
to diverse areas such as medical sciences, image processing, electron
microscopy, scheduling, statistical data security, game theory and
material sciences.

Remark 5.3.1. We don’t give the most general formulation of the
problems in Discrete Tomography. Especially, we restrict ourselves
on lattices in Z2 . Moreover, the results in Subsection 5.3.2 hold in a
more general setting. �

Let us first give the basic notation and definitions. Lattice sets
and lattice direction are already introduced. Let E be the family of
lattice sets. Given a lattice direction v, let A(v) := {w + v|w ∈ Z2} .
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The projection of F ∈ E is the mapping

pvF : A(v) 3 l 7−→ #(F ∩ l) =
∑

x∈l
χF (x) ∈ N0 := N ∪ {0} ,

where χF is the characteristic function of F . Two lattice sets F and
F ′ are said to be tomographically equivalent with respect to the lattice
directions v1, . . . , vm if we have

pvkF = pvkF
′ , k = 1, . . . ,m .

Given m different lattice directions v1, . . . , vm, the basic questions
are as follows. What kind of information about a lattice set F can
be retrieved from its projections pv1 , . . . , pvm? How difficult is the
reconstruction algorithmically? How sensitive is the task to data
errors? Here the data are given in terms of functions

gk : A(vk) −→ N0 , k = 1, . . . ,m .

Let us formulate these questions more technically.

Consistency

Given data gk : A(vk) −→ N0, k = 1, . . . ,m, with finite
support.
Question: Does there exist an F ∈ E such that pvkF =
gk, k = 1, . . . ,m .

Uniqueness

Given any F ∈ E .
Question: Does there exist a subset F ′ different from F
such that F and F ′ are tomographically equivalent with
respect to the directions of v1, . . . , vm .

Reconstruction

Given data gk : A(vk) −→ N0, k = 1, . . . ,m, with finite
support.
Task: Construct a subset F ∈ E such that pvkF = gk for
all k = 1, . . . ,m .
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Example 5.3.2. Consider in Z2 the directions v1 := (1, 0) and v2 :=
(0, 1) and let {(1, 0), (2, 0), (2, 1), (1, 3)} be lattice directions. Here
q = 5 is the number of lattice lines on which there is at least one
element from the discrete set. n = 6 is the total number of points to
be reconstructed. The aim is to find a binary vector which satisfies a
matrix equation

Bx = b (5.18)

where B ∈ {0, 1}5,6, b ∈ N6
0 are given as follows:

B :=




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
1 0 0 0 1 0
0 0 0 0 0 1



, b =




1
1
1
2
2
2



.

The corresponding system of equations (5.18) is uniquely solvable. �

5.3.2 A stability result

This subsection should give just a first impression of the goals in
Discrete Tomography. Especially, the stable reconstruction of special
sets like the convex hull of a lattice set is in the focus of the present
research in Discrete Tomography.

The distance of two functions g, h : A(v) −→ N0 will be mea-
sured in terms of the l1-norm:

‖g − h‖1 :=
∑

l∈A(v)

|#g(l)−#h(l)| .

Here is a positive result concerning uniqueness and stability.

Theorem 5.3.3 (Alpers/Gritzmann). Let v1, . . . , vm be pairwise
different lattice directions and let F1, F2 ∈ E with #F1 = #F2 . If

m∑

i=1

|pviF1 − pviF2| < 2(m− 1)

then F1 and F2 are tomographically equivalent.
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Sketch of a Proof:
The proof is a rather deep combination of combinatorical and alge-
braic arguments. �

Corollary 5.3.4. Given two sets F1, F2 ∈ E with #F1 = #F2, and
m ≥ #F1 + 1 pairwise different lattice directions v1, . . . , vm . If

m∑

i=1

|pSiF1 − pSiF2| < 2#F1,

then F1 = F2 .

Sketch of a Proof:
By Theorem 5.3.3 F1 and F2 are tomographically equivalent. Due to
Rényi’s famous theorem we have that if the cardinality #F of a finite
set is known uniqueness is guaranteed from projections taken in any
m ≥ #F + 1 directions. �

The interpretation of Corollary 5.3.4 is that error correction is
possible: a total error smaller than 2n can be compensated without
increasing the number of projections if the number n of elements in
the original set F1 is known.

5.4 Bibliographical comments

A rather complete development of the mathematics of computerized
tomography can be found in [74]; see also [95]. The ART-algorithm,
originally proposed by Kaczmarz was rediscovered several times. It
may be considered as a special case for the successive iteration of
nonexpansive mappings; see [7]. For a numerical analysis of the
Fourier technique see for instance [30]. Results concerning Tikhonov’s
method in the context of computer tomography may be found in [2].

The use of the Radon transform for shape detection dates back
to the sixties of the last century; see for instance [45] and [81]. For
a survey of the Hough transform literature up to 1988 see [47]. The
detection of circles is discussed in [48].

The name Discrete Tomography was given at 1994 by L. Shepp,
the question of uniquely determining a planar convex object was al-
ready proposed by P.C.Hammer in 1963. For further information on
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the theory, algorithms and applications of Discrete Tomography see
[1] and [42] and the references there in. The research in Discrete
Tomography is in progress and many problems are open.

5.5 Exercises

5.1. Verify for functions f, g ∈ S(R2):

Rf(t, ϕ) = Rf(−t,−ϕ)

R(f + g) = Rf +Rg

pϕ
∂

∂x
f = ϕ

∂

∂t
pϕf

pϕ(f ∗ g) = pϕf ∗ pϕg∫ π

0

∫ ∞

−∞
Rf(t, ϕ)g(t, ϕ)dtdϕ =

∫

R2

f(z)R#g(z)dz

where R#g(z) =

∫ π

0

g(〈z, u(ϕ)⊥〉)dz .

5.2. Let f : Ω −→ R be an image. Compute the result in the Radon
transform of f when the image is rotated by an angle ψ .

5.3. Compute the Radon transform of the density

f(z) :=

{
1 , if |z| < 1

0 , if |z| ≥ 1
(Shepp Logan Phantom) .

5.4. Using the basic properties above compute the Radon transform
of constant densities with support in circles and ellipses.

5.5. Compute the Radon transform of the density

f(x, y) :=

{
1 , if (x, y) ∈ [−1, 1]× [−1, 1]

0 , else
.

5.6. Compute the Radon transform of Gaussian bell

f(z) := e−|z|
2

.
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5.7. Consider a square pixel image with 4 pixels. Then we have 6
(meaningful) projections (2 horizontal, 2 vertical, 2 diagonal). Sup-
pose the values of this projections are 12,8,11,9,13,7, respectively.
Write down a system 〈ati, x〉 = yi, i = 1, . . . , 6, in order to model the
reconstruction of this pixel image and compute a solution x ∈ R6 by
the ART-algorithm.

5.8. Consider the matrix

A :=




1 3 2 −1
1 2 −1 −2
1 −1 2 3
2 1 1 1
5 5 4 1
4 −1 5 7




and let yt =
(
5 0 5 5 15 15

)
.

a) Compute rank(A) .

b) Compute the manifold of the solutions of

Ax = y . (5.19)

5.9. Consider the system (5.19).

a) Compute the first 4 iterations of the ART-algorithm with re-
laxation factor λ = 1 .

b) Compute the first 4 iterations of the ART-algorithm with re-
laxation factor λ = 0.5 .

5.10. Suppose that the support of an image is contained in I :=
[a, b]× [c, d] . Find the parameterization of a line through I from the
points where the line enters the set I and where the line exists the
set I .
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Chapter 6

Level set methods

In this chapter, a recently developed methodology for solving inverse
problems involving obstacles is investigated. This approach is based
on the so called level set methods, which has been shown to be effective
in treating problems of moving boundaries, particularly those that
involve topological changes in the geometry. These methods can be
applied to a particular class of inverse problems where the desired
unknown is a region in Rn. The region is possibly multiply connected
or consisting of several subregions. A classical example is the inverse
scattering problem for an obstacle (see, e.g., [18]).

We shall concentrate on three different level set approaches for
inverse problems. The first one was suggested by Santosa in 1996
(see [83]), who introduced level set theory into the context of inverse
problems. The second one corresponds to the results obtained by
Burger in 2001 (see [9]) and contains a first formal mathematical
analysis (focusing on regularization theory) of a level set method.
The last approach was introduced by Leitão and Scherzer in 2003
(see [59]) and makes a correspondence between level set theory and
constraint optimization.

140
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6.1 Introduction

We start this chapter by introducing the inverse problems which can
be handled by level set type methods, the so called inverse prob-
lems involving obstacles. This particular family of inverse problems
is characterized by the fact that the desired unknown is a subset
D ⊂ Rn. Alternatively, one can think on the determination of the
characteristic function of an unknown set D.

As usual in the framework of inverse problems, we assume that
only indirect data is available for the determination of the unknown
set D. Abstractly, we can formulate the problem as follows:

Let Ω ⊆ Rn be a given (fixed) set, X , Y Hilbert spaces, and
F : X → Y a Fréchet differentiable operator. Find D ⊂ int(Ω) in the
equation

F (u) = g , (6.1)

where

u =

{
uint, x ∈ D
uext, x ∈ Ω/D

.

Here uint, uext ∈ R are given constants. The function g represents
the problem data. The set D represents the (unknown) model pa-
rameters. The operator F is the parameter to output operator, i.e.
a map from the model to the data.

Some possible applications are: inverse scattering, mine detection,
inverse potential problem, deblurring. In the sequel we briefly discuss
the level set approach for each one of these problems.

Inverse scattering by an obstacle

The operator F represents the map to the far field pattern from a
scatterer D, for a given set of incident waves. For this example uext
is the sound speed of the exterior propagating medium. Instead of
defining uint, boundary conditions (sound-soft or sound-hard) on the
wave field on ∂D are prescribed (see [18]).

Mine detection

For the mine detection problem, uint is the conductivity of the mine
while uext represents the conductivity of the soil. The fixed region to
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be analyzed is denoted by Ω ⊂ R2 and the set D ⊂ int(Ω) represents
the position of the mines. In this application, the set D is obviously
disconnected. For more details we refer to [26].

Inverse potential problem

In this inverse problem Ω ⊂ R2, or R3 is known and D ⊂ int(Ω)
has to be reconstructed from (partial) knowledge of the function U ,
which solves {

∆U = χD , in Ω
U = 0 , on ∂Ω

(here χD denotes the characteristic function of the set D). The func-
tion U is the potential corresponding to the unknown source χD. Two
variants of this inverse problem can be considered. In the fist one,
the parameter to output operator is given by F1 : L2(Ω) → H1(Ω),
F1(χD) = U . In the second problem, the model operator is defined
by F2 : L2(Ω) → H−1/2(∂Ω), F2(v) = (∂U/∂ν)|∂Ω, where ν is the
outer normal vector to ∂Ω.

The first problem is simpler, since F1 is the inverse of the Laplace
operator with homogeneous boundary conditions (F1 is compact).
The analysis of the second problem is more demanding. However,
F2 has the nice property of being a linear operator, what is very
uncommon for parameter reconstruction problems (see [23]). For a
detailed analysis of the inverse problems for F1 and F2 we refer to
[23] and [43] respectively (see also Exercises 6.2 to 6.5).

Deblurring (deconvolution)

A simple deconvolution in two dimensions is modeled by the linear
operator F : L2(Ω)→ L2(Ω),

F (u)(x) =

∫

Ω

k(x− y)u(y) dy , x ∈ Ω .

We assume that the kernel k is defined by a Gaussian: k(x) :=
exp(−σ|x|2). Therefore, the operator F is compact and selfadjoint.
Implicit in this model is the assumption that u is a characteristic
function, i.e. it satisfies u = χD, for some D ⊂ int(Ω) (for this
application uint = 1, uext = 0).
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This is a classical inverse problem and is usually presented as a
tutorial problem. In particular, the ill-conditioning of the operator
F can be clearly observed in its numerical discretizations. For details
we refer to [5, 23, 53].

It is worth mentioning that, recently, level set methods have been
successfully applied for the solution of several other inverse problems
(see, e.g., [9, 20, 50, 64, 77, 78, 83]).

6.2 First level set approach for inverse
problems

Level set methods were originally developed by Osher and Sethian
[76, 88] for problems involving the motion of curves and surfaces. A
particular advantage of this approach is the ability of the method to
track the motion through topological changes. An other attribute of
the method is that it gives a natural way of describing closed curves,
specially, those that sequentially change following a certain rule.

A first attempt to introduce the level set approach to inverse
problems was presented by Santosa in [83]. In this section we shall
focus on this approach. It is important to remark that, up to now, no
rigorous analysis of the method investigated in this section has been
developed.

For simplicity, let’s consider a two dimensional problem, where
Ω ⊂ R2 is known and the set of interest is D ⊂ int(Ω).

The boundary of D is described by a function φ : Ω→ R, i.e.

∂D = {x ∈ Ω ; φ(x) = 0} .

The function φ is called level set function and the level set ap-
proach consists of generating a sequence of functions φk : Ω → R
such that Dk → D, where ∂Dk = {x ∈ Ω ; φk(x) = 0}. Notice that
k, the evolution parameter, may be considered continuous as well.

In terms of the function φ, we obtain a level set representation of
the characteristic function u, namely

u(x) =

{
uint, {x ∈ Ω ; φ(x) < 0}
uext, {x ∈ Ω ; φ(x) > 0}
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φ(x)=0

(φ+δφ)(x)=0

u(x) = uint

u(x) = uext

φ(x) < 0

φ(x) > 0
x

δx

Figure 6.1: Infinitesimal variation of the level set curve φ(x) = 0.

Immediately one observes the following characteristics of this ap-
proach:
1) The level set representation of a given D ⊂ int(Ω) is not unique.
Indeed, if a function φ gives a level set representation of D, then
ψ(x) = cφ(x) with c > 0 is also a level set function for D (actually, if
φ1 and φ2 give a level set representation of D, then any linear com-
bination aφ1 + bφ2, with a, b > 0 also does).
2) No a priori assumptions on the topology of D is required, i.e. D
could be made up of several disconnected subregions.
3) The dependence of u on φ is nonlinear, therefore the inverse prob-
lem becomes nonlinear, even if F is a linear operator.

In the sequel we derive an evolution rule for the level set function
φ. A first goal is to determine the dependence of the forward map
with respect to small changes on the obstacle boundary. Therefore,
we need to calculate the variation of u caused by a variation in φ.

Let x be a point on the surface ∂D = {x ∈ Ω ; φ(x) = 0} and
suppose that the level set function φ is perturbed by a small variation
δφ (see Figure 6.1). We denote by δx the resulting variation of the
point x and by D′ the new region originated from D after the per-
turbation. Finally, δu is the corresponding variation of the function
u (to be computed).

The formal variation of the equation φ(x) = 0 gives us

δφ + ∇φ · δx = 0. (6.2)

Notice that, in Figure 6.1, for each point between x and x+δx we have
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u = uext and (u+ δu) = uint. Therefore, for all these points we have
δu = uint−uext. From an analogous argument, one observes that for
points x at the lower part of the picture the equality δu = uext−uint
holds.

Next, we test the variation δu with an arbitrary test function
f ∈ L2, obtaining

〈δu, f〉 =

∫

Ω

δu(x)f(x) dx =

∫

D∆D′
δu(x)f(x) dx ,

where D∆D′ is the symmetric difference between the sets D and D′.
Notice that, up to a sign, δu(x) = (uext−uint), x ∈ D∆D′. Moreover,
δu(x) = 0, x ∈ Ω/D∆D′. Assuming δx to be infinitesimal, it follows

〈δu, f〉 =

∫

∂D

(uint − uext) δx · n(x) f(x)ds(x) ,

where ds(x) is the arclength and n(x) = ∇φ(x)/|∇φ(x)| is the unit
normal vector to the curve φ(x) = 0. Here we used the fact that the
inner product δx ·n(x) gives the correct sign to (uint−uext). We can
now determine u from the last expression:

δu = (uint − uext)
∇φ(x)

|∇φ(x)| · δx
∣∣∣
x∈∂D

. (6.3)

Now we are ready to derive an evolution equation for the level set
function φ(x). Let the free variable t represent (an artificial) time
variable. The level set function depends actually on both variables
t and x, i.e. φ = φ(x, t). We adopt the notation: ∂D(t) = {x ∈
Ω ; φ(x, t) = 0}.

We shall search for a least square solution of the inverse problem,
i.e. a minimizer of

J(u) := 1
2‖F (u)− g‖2.

The derivative ∂φ/∂t should be chosen such that J(u(t)) is a decreas-
ing function of t. At this point we make the assumption that each
point x ∈ ∂D(t) moves perpendicular to the surface, i.e.

δx = v(x, t)
∇φ
|∇φ| (6.4)
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(the value v(x, t) is called velocity of the surface ∂D(T ) at the point
x and time t). Substituting this expression in (6.3), it follows

δu = (uint − uext) v(x, t)
∣∣
x∈∂D(t)

. (6.5)

The next step is the computation of δJ(u; δu), the Gateaux deriva-
tive of J at direction δu. Using (6.5) we obtain

δJ(u; δu) = 〈F ′(u)∗(F (u)− g), δu〉

=

∫

∂D(t)

[F ′(u)∗(F (u)− g)] (uint − uext) v(x, t) ds(x) .(6.6)

Now, making the non restrictive assumption uint > uext, we arrive at
a natural choice of v (remember that we want δJ to become negative
or, at least, non positive)

v(x, t) = −F ′(u)∗(F (u)− g) , x ∈ ∂D(t) . (6.7)

Notice that v(x, t) remains to be defined for x ∈ Ω/∂D(t). Any
function v satisfying (6.7) will generate a δu such that the correspond-
ing δJ(u; δu) is non positive. Therefore, Santosa chose for simplicity

v(x, t) = −F ′(u)∗(F (u)− g) , x ∈ Ω . (6.8)

From (6.2), (6.4) and (6.8) we conclude that the corresponding vari-
ation of φ is given by

δφ(x, t) = −∇φ · δx

= −∇φ
(
v(x, t)

∇φ
|∇φ|

)

= −v(x, t) |∇φ|
= [F ′(u)∗(F (u)− g)]|∇φ| .

Thus, we have obtained an initial value problem for the evolution of
the level set function, namely





∂φ

∂t
= [F ′(u)∗(F (u)− g)]|∇φ| , x ∈ Ω , t ≥ 0

φ(x, 0) = φ0(x) , x ∈ Ω
(6.9)
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Remark 6.2.1. It’s worth mentioning that this problem corresponds
to the Hamilton–Jacobi equation:

∂φ

∂t
+ V |∇φ| = 0 ,

with V (x, t) given by

V = −F ′(u)∗(F (u)− g) , x ∈ Ω .

Due to the derivation of the evolution above, some properties of
Santosa’s level set method are obvious:

a) With the choice of velocity (6.8), J(u(t)) is a non increasing
function of the time variable t;

b) If ū is a solution of F (u) = g and φ(x, τ) = ū(x), x ∈ Ω, for
some τ ≥ 0, then ∂φ

∂t (x, τ) = 0. In other words, ū is a stationary
point of the dynamical system (6.9).

c) This evolution corresponds to a (continuous) steepest descent
method for the least square functional J . In inverse problems
theory this method is also known as asymptotical regularization
(see [89, 90] for details).

Least square approaches for inverse problems are very common in
the literature (see, e.g., [5, 23, 34, 44, 53]). When one tries to apply
this technique to inverse problems involving obstacles, it is immediate
to observe that the variation of the least square functional J is given
by a functional of the residual F (u)− g evaluated along the level set
curve (see (6.6) above). Thus, if ∂D(τ) = ∅ for some τ > 0, the
identity v(x, t) ≡ 0, for t ≥ τ immediately follows. A consequence of
this fact is that, for numerical implementations, it may be necessary
to scale the velocity v along the evolution, in order to avoid the
vanishing of D(t).

The particular structure of δJ(u; δu) in (6.6) allows the determi-
nation of v(x, t) only at x ∈ D(t). The velocity v, however, must
be defined at all Ω. The intuitive extension made by Santosa (see
(6.8)) actually does the job, but it does not allow a rigorous analysis
of his level set method. For instance, it is not possible to prove that
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D(t)→ D, a solution of (6.1). As a matter of fact, there is no reason-
able metric to measure the convergence of D(t) to D or, alternatively,
of u(t) to ū. At this point, a rigorous analysis of level set methods in
terms of regularization theory was needed (cf. [23]). Other authors
proposed alternative least square approaches to problem (6.1), which
allowed the first convergence results as well as the verification of reg-
ularization properties for level set methods. In the following sections
we shall focus on the approaches introduced by Burger in [9] and by
Leitão and Scherzer in [59, 27].

6.3 Level sets and asymptotic regulariza-

tion

In this section we investigate the alternative level set approach for
inverse obstacle problems proposed by Burger in [9]. The basic idea
is to develop an iterative method related to the well known asymp-
totic regularization method (see [89, 90]), which consists of solving
the differential equation

∂

∂t
u(x, t) = −F ′(u)∗(F (u)− g) , t > 0 , u(x, 0) = u0(x)

in order to approximate the solution of (6.1) – we use the same nota-
tion of Section 6.1. The guideline for the construction of this level set
method is a basic property of the asymptotic regularization, namely

∂

∂t
‖u(x, t)− ū(x)‖2 = −2‖F (u)− g‖2 , t > 0 , (6.10)

where ū is a solution of (6.1). This identity holds for the evolution of
the distance between u(t) and ū and is fundamental in the derivation
of convergence rates for the asymptotic regularization. The same
identity was used by Burger in [9] to analyze the convergence of a
level set type method.

Notice that Santosa’s level set method, discussed in Section 6.2,
uses a velocity that lead to a steepest descent flow with respect to
the residual ‖F (u) − g‖2. With his approach, Burger manages to
write down the idea of a descent flow for the level set method in a
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formal functional analytic framework. In addition, the regularizing
properties of the asymptotic regularization can be translated to the
level set method in the case of noisy data, i.e. if one only knows a
perturbation gε of the exact data g satisfying ‖g− gε‖ ≤ ε. Just like
in the asymptotic regularization, the regularization effect of this level
set method comes from an early termination of the evolution at some
stopping time T = T (ε, gε), given by the discrepancy principle, i.e.
the minimal time such that the is less than the noise level.

In the sequel we shall consider F : X = L2(Ω) → Y to be a
bounded linear operator with unbounded generalized inverse. Fur-
thermore, we assume that there exists ū = χD , for some D ⊂ int(Ω),
which solves (6.1). The distance between the evolving characteristic
function u(·, t) and ū is measured by the error functional:

E(t) = ‖u(·, t)− ū‖2L2(Ω) =

∫

D(t)∆D

1 dx = dS(D(t), D)

Here, dS(A,B) := |A−B|+ |B−A| denotes the symmetric difference,
u(·, t) = χD(t) and the sets D(t), t ≥ 0, are defined by

D(t) := {x ∈ Ω; φ(x) < 0}
where φ is a level set function solving the Hamilton-Jacobi equation

∂φ

∂t
+ V∇φ = 0 (6.11)

for a given velocity

V (x, t) := v(x, t)
∇φ
|∇φ| .

The next result allows us to compute the Fréchet derivative of the
functional E.

Lemma 6.3.1 ([9, Proposition 3.3]). Let V ∈ L∞(0, T ;L2(Rn))n

with divV ∈ L1(0, T ;L∞(Rn)) ∩ L∞(0, T ;L2(Rn)). Further, let φ be
a level set function satisfying (6.11) and u(·) and D(·) be defined as
above. Then, the derivative of the error functional E is given by

∂E

∂t
(t) =

∫

Ω

(u(x, t) − ū(x))h(x, t) dx , t > 0 ,

where h(x, t) := (−1 + 2u(x, t)) div V (x, t), for x ∈ Ω, t ≥ 0.
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From Lemma 6.3.1 it is immediate to conclude that, in order to
obtain a flow satisfying (6.10), one has to choose the velocity V such
that

div V = −F ∗(Fu− g) (−1 + 2u), x ∈ Ω .

Since one expects the corresponding setsD(t) to satisfyD(t) ⊂ int(Ω)
for t ≥ 0, it is convenient to impose the condition divV ≡ 0, x ∈
Rn/Ω. Therefore, one can write

−div V = PΩ

(
F ∗(Fu− g)

)
(−1 + 2u) , x ∈ Ω , (6.12)

where PΩ : L2(Ω)→ L2(Rn) is the extension operator defined by

(PΩ(v))(x) :=

{
v(x), x ∈ Ω

0, x ∈ Rn/Ω

It is worth noticing that a function V satisfying (6.12) always
exists. Indeed, by choosing ∇ψ − V = 0 in Rn, with the decay
condition ψ(x) → 0 as |x| → ∞, it becomes clear that ψ is the
unique solution of the Poisson equation (in Rn) with righthand side
as in (6.12) and Dirichlet boundary condition. The velocity V is the
gradient of ψ.

One should notice that the regularity assumptions of Lemma 6.3.1
can be verified if the adjoint operator F ∗ maps Y continuously to
L∞(Ω). Indeed, in this case one can define

−div Vn = hn ∗ (F ∗(Fu− g)(−1 + 2u)) ,

where ’∗’ denotes the Fourier convolution (with respect to x) and hn
is a sequence of smooth, nonnegative convolution kernels such that
hn ∗ v → v for all v ∈ L∞(Rn) ∩ L2(Rn) as n → ∞. If one chooses
Vn = ∇ψn, then ψn solves the Poisson equation with continuous
righthand side and, from classical elliptic theory, it follows that ψn ∈
C(0, T ;C2(Rn)). Consequently, Vn = ∇ψn ∈ C(0, T ;C1(Rn)) and

div Vn → div V in L∞(Rn × [0, T ]) ↪→ L1(0, T ;L∞(Rn)) .

It is immediate to observe that (6.12) yields the estimate

∂E

∂t
(t) = −‖Fu(t)− g‖2 , t > 0 ,
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which, up to a constant, corresponds to the estimate (6.10) for the
asymptotic regularization.

In the case of nonlinear operators F which are continuously Fré-
chet differentiable in L2(Ω), the extension of formula (6.12) is imme-
diate. In this case the velocity V should be chosen as the solution
of

−div V = PΩ

(
F ′(u)∗(F (u)− g)

)
(−1 + 2u) , x ∈ Ω ,

where F ′ denotes the Fréchet derivative of F . Notice that, if F
satisfies the so called tangential cone condition (see [84])

‖F (v)− F (ū)− F ′(ū)(v − ū)‖ ≤ η‖F (v)− F (ū)‖ (6.13)

with η < 1
2 for all v in a neighborhood of the solution ū, then it

follows

∂E

∂t
(t) = −〈F ′(u)(ū− u), g − F (u)〉 ≤ −(1− η) ‖F (u)− g‖2

and the method can be analyzed analogously as in the linear case
(see Exercise 6.1).

In the sequel we devote our attention to the convergence issue of
this level set method. The first result concerns the monotonicity of
both the iteration error and the residual.

Lemma 6.3.2 ([9, Propositions 4.1, 4.3]). If t > 0 is such that
‖Fu(t) − gε‖ > ε, then dEε(t)/dt < 0, i.e. the iteration error de-
creases. Furthermore, the function t 7→ ‖Fu(t)−gε‖ is monotonically
decreasing. Moreover, in the particular case ε = 0, we have

∫ ∞

0

‖Fu(t)− F ū‖2 dt < ∞ .

Using the results above, one can prove a first convergence result,
concerning the exact data case.

Lemma 6.3.3 ([9, Proposition 4.4]). Assume one has exact data,
i.e. ε = 0. Further, let the velocity V be chosen according to (6.12).
Then, ‖u(t)− ū‖ → 0 as t→∞, where ū solves (6.1).

In order to present a convergence result for noisy data, we need to
recall the generalized discrepancy principle. According to this stop-
ping rule, the iteration should be stopped at the time T = T (δ, gε)
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when ‖Fu(T )− gε‖ ≤ τε for the first time (here τ is a positive con-
stant).

Lemma 6.3.4 ([9, Propositions 4.5, 4.6]). Let ε > 0 and τ >
1. The stopping rule T (ε, gε) defined by the discrepancy principle is
finite. Moreover, ‖uε(T (ε, gε))− ū‖ → 0 as ε→ 0.

Lemma 6.3.4 means that Dε(T (ε, gε)) → D̄ in the symmetric
difference metric as ε→ 0, where D̄ is the set corresponding to ū.

Remark 6.3.5. Equation (6.12) is a Hamilton-Jacobi type equation
of the form

∂φ

∂t
+ V |∇φ| = 0 .

with V (x, t) given by

V = div−1 (F ′(u)∗(F (u)− g) (−1 + 2u))
1

|∇φ| .

Compare with Remarks 6.2.1 and 6.4.4.

6.4 Level sets and constraint optimiza-
tion

In this section the alternative level set approach for inverse obstacle
problems, proposed by Leitão and Scherzer (see [59]) is presented.
The level set methods are interpreted as constraint regularization
methods based on the coupling of Tikhonov regularization and pro-
jection strategies.

6.4.1 Introduction

The general context is to solve the constraint ill-posed operator equa-
tion:

F (u) = g , (6.14)

where u is in the admissible class

U := {u : u = P (φ) and φ ∈ D(P )} .
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The constraint equation can be formulated as an unconstrained equa-
tion

F (P (φ)) = g . (6.15)

Assuming that the operator equation is ill-posed it has to be reg-
ularized for a stable solution. Classical results on convergence and
stability of regularization (see e.g. [23, 71, 72]) such as

1. existence of a regularized solution

2. stability of the regularized approximations

3. approximation properties of the regularized solutions

are applicable if P is either bounded and linear or nonlinear, contin-
uous, and weakly closed.

In order to link constraint regularization methods and level sets,
discontinuous operators P are required, and thus the classical frame-
work of regularization theory is not applicable yet.

Tikhonov regularization for solving the unconstrained equation
(6.14) consists in approximation the solution of (6.14) by the mini-
mizer uα of the functional

‖F (u)− g‖2 + α‖u− u∗‖2 .

If F is Fréchet differentiable, then

F ′(uα)∗(F (uα)− y) + α(uα − u∗) = 0 , (6.16)

where F ′(uα)∗ denotes the adjoint of the derivative of F at uα. Notice
that (6.16) is the optimality condition for a minimizer of the Tikhonov
functional. Using the formal setting ∆t := 1/α, u(∆t) := uα, and
u(0) := u∗ one finds

F ′(u(∆t))∗(F (u(∆t)) − g) +
u(∆t)− u(0)

∆t
= 0 .

Thus uα = u(∆t) can be considered as the solution of one implicit
time step with step-length ∆t = 1

α for solving

∂u

∂t
= −F ′(u)∗(F (u)− g) (6.17)
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and one ends up with the inverse scale-space method (see, e.g., [33,
86]). Note that the inverse scale-space method corresponds to the
asymptotic regularization method as introduced by Tautenhahn [89,
90]. The terminology ”inverse scale-space” is motivated from scale-
space theory in computer vision: images contain structures at a vari-
ety of scales. Any feature can optimally be recognized at a particular
scale. If the optimal scale is not available a-priori, it is desirable
to have an image representation at multiple scales. For more back-
ground on the topic of scale-space theory we refer to [62, 75, 51].

A consequence of the approach presented in this section is that the
inverse scale-space method for the constrained inverse problem (6.15)
with appropriate P is a level set method. In this notes, however, we
will not go any further into this discussion.

6.4.2 Derivation of the Level Set Method

In the sequel we consider the constraint optimization problem of solv-
ing (6.14) on the set of piecewise constant functions which attain two
values, which we fix for the sake of simplicity of presentation to 0 and
1. Let Ω ⊆ Rn (n = 1, 2) be bounded with boundary ∂Ω Lipschitz.
Set

P := {u : u = χΩ̃ : Ω̃ ⊆ Ω} ∩ L2(Ω) ,

then the unconstrained inverse problem consists in solving (6.15) with

P : H1(Ω) → P .
φ 7→ 1

2 + 1
2 sgn(φ) =: 1

2 + 1
2

{
1 for φ ≥ 0
−1 for φ < 0

Moreover, let for the sake of simplicity of presentation,

F : L2(Ω)→ L2(Ω)

be Fréchet-differentiable. It is as well possible to consider the op-
erator F in various Hilbert space settings such as for instance F :
H1(Ω)→ L2(∂Ω). Since it does not make any methodological differ-
ences we shall concentrate on an operator on L2(Ω). Also the space
H1(Ω) is chosen more or less arbitrarily; these spaces were selected
in such a way that the typical distance functions for smooth domains
are contained in H1(Ω).
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Tikhonov regularization for this problem consists in minimizing
the functional

∫

Ω

(F (P (φ)) − g)2 + α

∫

Ω

(
(φ− φ∗)2 + |∇(φ− φ∗)|2

)
. (6.18)

Since the functional does not attain a minimum, the “minimizer” φα
is considered as

φα := lim
ε→0+

φε,α ,

where φε,α minimizes the functional

∫

Ω

(F (Pε(φ)) − g)2 + α

∫

Ω

(
(φ− φ∗)2 + |∇(φ − φ∗)|2

)
. (6.19)

The operators

Pε(t) :=





0 for t < −ε ,
1 + t

ε for t ∈ [−ε, 0] ,
1 for t > 0 ,

are used for approximating P as ε→ 0+. In this case we have

P ′(t) = lim
ε→0+

P ′ε(t) = δ(t) .

Here and in the following δ(t) denotes the one-dimensional δ-distribu-
tion. Moreover, we denote

uα := lim
ε→0+

Pε(φα,ε) .

Notice that uα = P (φα) is not required. The proposed methodology
to define generalized solutions uα = limε→0+ P (φε,α) is a standard
way in phase transitions.

In the following an optimality condition for a minimizer of (6.18)
is derived, which is considered the limit ε→ 0+ of the minimizers of
the functionals (6.19). For this purpose it is convenient to recall some
basic results from Morse theory of surfaces. The particular results
are collected from [24]. It is worth emphasizing that, here, the Morse
theory is only applied to compact, smooth subset of R2, which of
course can be considered as surfaces.
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Lemma 6.4.1 ([59, Proposition 2.1]). Let φ be a smooth func-
tion on a compact smooth surface M , and φ−1[a, b] ⊆M contain no
critical point of φ. Then,

1. the level sets φ−1(b) and φ−1(a) are diffeomorphic (in particular
they consist of the same number of smooth circles diffeomorphic
to a standard circle). In particular the Hausdorff measure of
φ−1(t), t ∈ [a, b] changes continuously.

2. Moreover, for any ρ ∈ [a, b], φ−1(ρ) is a smooth compact 1-
manifold. In particular φ−1(ρ) can be parameterized by finitely
many disjoint curves.

The following lemma is central to derive the optimality condition
for a minimizer of (6.18).

Lemma 6.4.2 ([59, Lemma 2.2]). Let φ be a smooth function,
having no critical points in a compact neighborhood M of the level
set φ−1(0). Then,

lim
ε→0+

P ′ε(φ) =
1

|∇φ|δ(φ) .

where δ(φ) is the one-dimensional δ-distribution centered at the level
line in normal direction.

From the definition of a minimizer of (6.19) it follows that for all
h ∈ H1(Ω)

∫

Ω

(F (uε,α)− g)F ′(uε,α)P ′ε(φε,α)h

+ α

∫

Ω

((φε,α − φ∗)h+∇(φε,α − φ∗)∇h) = 0 .

We denote by F ′(u)∗, P ′ε(φ)∗ the L2-adjoints of F ′(u), P ′ε(φ) respec-
tively, i.e.,

∫

Ω

w(F ′(u)v) =

∫

Ω

(F ′(u)∗w)v and

∫

Ω

w(P ′ε(φ)v) =

∫

Ω

(P ′ε(φ)∗w)v ,
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for all test functions v, w ∈ L2(Ω). Since P ′ε(φ) is self-adjoint, i.e.,
P ′ε(φ)∗ = P ′ε(φ), it follows that

P ′ε(φε,α)F ′(uε,α)∗(F (uε,α)− g) + α(I −∆)(φε,α − φ∗) = 0 on Ω ,

α
∂(φε,α − φ∗)

∂n
= 0 at ∂Ω.

Thus, uα = limε→0+ uε,α and φα = limε→0+ φε,α satisfy

δ(φα)
F ′(uα)∗(F (uα)− g)

|∇φα|
+ α(I −∆)(φα − φ∗) = 0 . (6.20)

For the sake of simplicity of presentation the operator F is assumed to
be of such quality that F ′(u)∗(F (u)−g) is continuous on Ω. Note that
in general this may not be the case since F ′(u)∗(F (u)− g) ∈ H1(Ω).
Therefore, it follows from (6.20) that

(I −∆)−1

(
δ(φα)

F ′(uα)∗(F (uα)− g)

|∇φα|

)
+ α(φα − φ∗) = 0 .

Set α := 1
∆t and set φα := φ(t), φ∗ := φ(0) and accordingly u(t) :=

P (φ(t)). Then, by taking the formal limit ∆t → 0+ the asymptotic
regularization method follows:

∂φ

∂t
= −(I −∆)−1

(
δ(φ(t))

F ′(u(t))∗(F (u(t))− g)

|∇φ(t)|

)
. (6.21)

The right hand side v of (6.21) solves the equation

(I −∆)v = −δ(φ(t))
F ′(u(t))∗(F (u(t))− g)

|∇φ(t)| on Ω

∂v

∂n
= 0 at ∂Ω .

(6.22)

Using potential theory (see, e.g., [22, 55]), a solution v1 of the problem

∆v1(t) = δ(φ(t))
F ′(u(t))∗(F (u(t))− g)

|∇φ(t)|
with homogeneous (Dirichlet) boundary conditions is given by the
single layer potential

v1(x) = −
∫

φ(t)−1(0)

F ′(u(t))∗(F (u(t))− g)(z)γ(x, z)

|∇φ(t)(z)| dz ,
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where

γ(x, y) =

{
1

2π ln
(

1
|x−y|

)
in R2 ,

1
4π

1
|x−y| in R3

(6.23)

is the single layer potential. Then, v = v1 + v2 solves (6.22), where
v2 solves

v2 −∆v2 = −v1 on Ω
∂v2

∂n
= −∂v1

∂n
at ∂Ω .

Equation (6.21) represents a level set method describing the evolution
of the level set function φ. The zero level set of φ, i.e., the set {φ = 0},
describes the boundary of the inclusions to be recovered.

Remark 6.4.3. An adequate approximation of P is central in this
considerations. The family of functions

Qε(t) :=





0 for t < −ε ,
t+ε
2ε for t ∈ [−ε, ε] ,

1 for t > ε ,

approximates the δ-distribution too. Since the point-wise limit of Qε
is

P (t) :=





0 for t < 0 ,
1
2 for t = 0 ,
1 for t > 0 ,

which is not in P if the n-dimensional Lebesgue measure of φ−1(0)
is greater than zero. This would not be appropriate for our problem
setting.

In this section we have elaborated on the interaction between con-
straint regularization methods and level set methods. We observed
that the level set method in [59] can be considered as an inverse
scale-space method, respectively asymptotic regularization method.
In contrast to standard results on asymptotic regularization methods
and inverse scale-space methods (see [89, 90, 33]), here the situation
is more involved, since the regularizer of the underlying regularization
functional (6.18) is considered as approximation of the minimizers of
the functional (6.19).
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One of the most significant advantages of level set methods is that
the topology of the zero–level set may change over time. This situa-
tion has not been covered by the present derivation of level set meth-
ods, where the authors essentially relied on Lemmas 6.4.1 and 6.4.2.
In case a topology change occurs the Morse index of the level set func-
tion φ changes and Lemma 6.4.1 (and consequently Lemma 6.4.2) are
not applicable. Moreover, in this case the single layer potential rep-
resentations (6.23) are no longer valid (cf., e.g., [18, 55]), since the
topology changes results in domain with cusps. The effect of topology
changes on the level set methods are status of ongoing research.

Remark 6.4.4. Equation (6.21) is a Hamilton-Jacobi type equation
of the form

∂φ

∂t
+ V |∇φ| = 0 .

with V (x, t) given by

V = (I −∆)−1

(
δ(φ)

F ′(u(t))∗(F (u(t))− g)

|∇φ(t)|

)
1

|∇φ| .

Compare with Remarks 6.2.1 and 6.3.5.

The numerical solution of (6.21) is similar to the implementa-
tion of well-established level set methods, like the ones considered in
Sections 6.2 and 6.3. The differential equation

∂φ

∂t
= F ′(u(t))∗(F (u(t)) − g)|∇φ(t)|

is solved explicit in time, which results in

φ(t+ ∆t)− φ(t)

∆t
= F ′(u(t))∗(F (u(t))− g)|∇φ(t)| .

After several numerical time-steps the iterates are updated. In the
present level-set approach such an update is inherent, since in each
step the data is normalized by the operator (I −∆)−1.

6.4.3 Relation to Shape Optimization

In the sequel we show that the term

δ(φ)
F ′(u)∗(F (u)− g)

|∇φ|
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is the steepest descent direction of the functional ‖F (u) − g‖2 with
respect to the shape of the level set φ−1(0).

It is much more illustrative to show this relation exemplary. To
this end we consider the inverse potential problem of recovery of an
object D ⊆ R2 in

∆v = χ(D) in Ω with v = 0 on ∂Ω

(see Section 6.1). In this context

F : L2(Ω) → L2(Ω) .
f 7→ ∆−1f with homogeneous Dirichlet data

The numerical recovery of shape of the inclusion D from Neumann
boundary measurements was considered in [43]. For the sake of sim-
plicity of presentation, here we are interested in the shape derivative
of F , while Hettlich and Rundell considered the operator T ◦F , where
T is the Neumann trace operator. Since T is linear the shape deriva-
tive of T ◦ F is completely determined by the shape derivative of F ,
and thus we do not impose any restriction on the consideration by
considering the simpler problem.

The operator F is linear and thus the Gateaux-derivative of F at
u in direction h satisfies F ′(u)h = F (h). Thus the level set derivative
is given by

v := F ′(u)P ′(φ)h = F (P ′(φ)h) = ∆−1

(
δ(φ)

h

|∇φ|

)
. (6.24)

Let v1 be the single layer potential according to h on φ−1(0), i.e.,

v1(x) = −
∫

φ−1(0)

1

2π
ln

1

|x− y|
h

|∇φ| (y) dy .

This function satisfies

∆v1 = δ(φ)
h

|∇φ| on Ω .

Let v2 be the solution of

∆v2 = 0 on Ω and v1 = −v2 at ∂Ω .
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Then v = v1 + v2 solves

∆v = δ(φ)
h

|∇φ| on Ω and v = 0 at ∂Ω .

Moreover, the single layer potential satisfies on the zero level set
(
∂v1

∂n

)
+
−
(
∂v1

∂n

)
− = h

|∇φ| ,
(v1)+ = (v1)− .

Here (·)+, (·)− denote the limits from outside, inside of the domain
bounded by the zero level curves, respectively.

Recall that h is considered a perturbation of the level set function.
A change in the level set function implies a change in the zero level
set, which eventually turns out to be the shape derivative.

To make this concrete, let sth the parameterizations of (φ +
th)−1(0), i.e.,
(φ + th)(sth) = 0. We make a Taylor Ansatz with respect to the
parameterization

sth = s+ th̃+O(t2) , (6.25)

and a series expansion for φ and h, which gives

0 = (φ + th)(sth) = t∇φh̃+ th(s) +O(t2) .

This shows that on the zero level set we have

h

|∇φ| = − ∇φ|∇φ| · h̃ = n · h̃ .

Thus, v satisfies the differential equation
{

∆v = 0 on Ω\φ−1(0) ,
v = 0 on ∂Ω ;

(
∂v

∂n

)

+

−
(
∂v

∂n

)

−
= h̃ · n on φ−1(0) ,

(v)+ = (v)− on φ−1(0) .

This is the shape derivative F ′(D)(h̃) of F at D = {x : P (φ) > 0}
in direction h̃ as calculated by Hettlich and Rundell in [43]. The
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calculations above show the level set derivative v := F ′(u)P ′(φ)h
can be computed from the shape derivative. Now, we point out that
the converse is evenly true. This is nontrivial since the arguments
h̃ appearing in the shape derivative are multidimensional functions,
while the argument h in the level set derivative is one-dimensional.

Let h̃ be expressed in terms of the local coordinate system n and
τ , where n, τ are the normal, respectively tangential vectors on the
zero level set, i.e.,

h̃ = hn+ hττ .

The shape derivative is independent of the tangential component,
which in particular implies that the shape derivative gradient descent
deforms the shapes in normal direction to the level curve. Thus, from
(6.24) we find that

F ′(D)(h̃) = F ′(D)(hn) = F ′(Pφ)h . (6.26)

Summarizing, by (6.26) the level set derivative F ′(u)P ′(φ)h =
F (P ′(φ))h is uniquely determined from the shape derivative and vice
versa. Therefore, we see that the level set derivative moves the zero
level set in direction of the shape derivative.

6.5 Applications

In this section we consider two distinct applications of level set meth-
ods to parameter identification problems modeled by partial differen-
tial equations. The first problem is the inverse potential problem (for
the operator F2) introduced in Section 6.1. The second application
is related to the inverse doping profile problem. It is a technologi-
cal application and concerns the identification of doping profiles in
semiconductor devices (see [10, 11]).

6.5.1 The inverse potential problem

We consider the inverse potential problem of recovering the shape of
a domain D using the knowledge of its (constant) density and the
measurements of the Cauchy data of the corresponding potential on
the boundary of a fixed Lipschitz domain Ω ⊂ R2, which contains
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D. This is the same problem as considered by Hettlich and Rundell
[43] (see Section 6.1), which used iterative methods for recovering a
single star-shaped object.

To achieve an analogous problem, a certain definition of the op-
erator F is necessary:

F : L2(Ω)→ L2(∂Ω)

χD → F (χD)

This is possible, because we consider only characteristic functions
χD. The L2(Ω)-norm is then equivalent to the L1(Ω)-norm of χD.
Therefore the necessary properties are retained.

The problem introduced above can mathematically be described
as follows:

∆u = χD , in Ω ; u|∂Ω = 0 , (6.27)

where χD is the characteristic function of the domain D ⊂ Ω, which
has to be reconstructed. Since χD ∈ L2(Ω), the Dirichlet boundary
value problem in (6.27) has a unique solution, the potential u ∈
H2(Ω) ∩ H1

0 (Ω). Here H1
0 (Ω) is defined as the closure with respect

to H1(Ω) of functions in C∞(Ω) with compact support in Ω.
The inverse problem we are concerned with, consists in determin-

ing the shape of D from measurements of the Neumann trace of u at
∂Ω, i.e. from [∂u/∂ν]∂Ω, where ν represents the outer normal vector
to ∂Ω.

Notice that this problem can be considered in the framework of
an inverse problem for the Dirichlet to Neumann map. For given h ∈
L2(Ω), the Dirichlet to Neumann operator maps a Dirichlet boundary
data onto the Neumann trace of the potential, i.e., Λ : H1/2(∂Ω) →
H−1/2(∂Ω), Λ(ϕ) := [∂ũ/∂ν]∂Ω, where ũ solves

∆ũ = h , in Ω ; ũ|∂Ω = ϕ .

The inverse problem for the Λ operator consists in determining
the unknown parameter (i.e., the function h) from different pairs of
Dirichlet, Neumann boundary data. The general case with h ∈ L2(Ω)
has already been considered by many authors, among them we men-
tion [13, 80], which introduced numerical methods based on Tikhonov
regularization, and [43] with iterative regularization methods.
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1. Evaluate the residual rk := F (Pε(φk))−yδ = ∂uk
∂ν −yδ,

where uk solves

∆uk = Pε(φk) , in Ω ; uk|∂Ω = 0 .

2. Evaluate vk := F ′(Pε(φk))∗(rk) ∈ L2(Ω), solving

∆vk = 0 , in Ω ; vk|∂Ω = rk .

3. Evaluate wk ∈ H1(Ω), satisfying

(I −∆)wk = −P ′ε(φk) vk , in Ω;

∂wk
∂ν

= 0 , at ∂Ω .

4. Update the level set function φk+1 = φk + 1
α wk.

Table 6.1: Algorithm for one iterative step of the level set method (cf.
[59]) for the inverse potential problem.

Hettlich and Rundell [43] observe that, in the particular case
h = χD, one pair of measurement data of Dirichlet–Neumann data
furnishes as many information as the full Dirichlet–Neumann opera-
tor, i.e., it is sufficient to consider only one pair of Cauchy data for
the inverse problem. Therefore, no further information on D can be
gained by using various pairs of Dirichlet–Neumann data, since we
can always reduce the reconstruction problem to the homogeneous
Dirichlet case.

For the particular case h = χD, it has been observed by Hettlich
and Rundell [43] that the Cauchy data may not furnish enough in-
formation to reconstruct the boundary of D, e.g., if D is not simply
connected. On the other hand, Isakov observed in [49] that star like
domains D are uniquely determined by their potentials.

The inverse potential problem is discussed within the general
framework introduced in Section 6.4. In particular, we allow domains,
that consists of a number of connected inclusions. For this general
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Figure 6.2: The picture on the left hand side shows the coefficient to be
reconstructed. On the other picture, the initial condition for the level set
method.

class we have not unique identifiability and we restrict attention to
“minimum-norm solutions”. Recall that in this case a minimum-
norm-solution is a level set function φ, where P (φ) determines the
inclusion. A minimum norm solution satisfies that it minimizes the
functional ρ(z, φ) in the class of level set functions such that the
according Neumann boundary values ∂u

∂ν fit the data yδ.

In the following we describe the level set regularization algorithm
of [59, 27]. The complexity of the algorithm is as follows: at each iter-
ation of the level set method, three elliptic boundary value problems
are solved (two of Dirichlet type and one of Neumann type). The
iterative procedure corresponding to the evolution equation (6.21) is
outlined in Table 6.1.

The algorithm can be implemented using finite element codes (as
we did) or finite difference methods for the solution of partial differ-
ential equations.

In this experiment we consider the inverse problem of reconstruct-
ing the right hand side χD in (6.27) from the knowledge of a single
pair of boundary data (u,Λu) = (0, yδ) at ∂Ω, where Ω = (0, 1)2 ⊂
R2. χD ∈ L2(Ω) is the characteristic function as represented in Fig-
ure 6.2.

The overdetermined boundary measurement data yδ for solving
the inverse problem, is obtained by solving the elliptic boundary value
problem (of Dirichlet type) in (6.27). Notice that χD corresponds to
the characteristic function of a not-connected proper subset of Ω.
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Figure 6.3: Evolution of the level set method for the inverse poten-
tial problem. Pictures after 10, 100, 1000, 2000, 3000, 4000, 5000, 5500,
6000, 7000, 8000, 9000, 10000, 11000, 15000, 20000 iterative steps.

The initial condition for the level set function is shown in Figure 6.2.
For this experiment we used the operator Pε defined in Section 6.4

with ε = 1/8. This seams to be compatible with the size of our mesh,
since the diameter of the triangles in the uniform grid (used in the
finite element method) is approximately

√
2/32.

In Figure 6.3 we present the evolution of the level set method for
given exact data for the first 20000 iterative steps. As one can see
in this figure, the original level set splits into two connected compo-
nents after approximately 5000 steps and after 11000 steps the four
connected components of the solution can be recognized. After 15000
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Figure 6.4: Evolution of the level set function for the inverse potential
problem.

iterations the level set function still changes, but very slowly. We per-
formed similar tests for different initial conditions and observed that,
after 1000 iterations, the corresponding pictures look very much alike.
In Figure 6.4 the corresponding evolution of the level set function is
shown.

6.5.2 Identification of doping profiles

We consider the problem of identifying discontinuous doping profiles
in semiconductor devices, where the data is obtained by a voltage-
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current map. The underlying mathematical model is the unipolar
system, a system derived from the drift diffusion equations. The re-
lated inverse problem corresponds to an inverse conductivity problem
with partial data.

The drift diffusion equations are the most widely used model
to describe semiconductor devices. The basic semiconductor device
equations where first presented, in the level of completeness discussed
here, by W.R. van Roosbroeck in [93]. Since then it has been subject
of intensive mathematical and numerical investigation. Recent de-
tailed expositions of the subject of modeling, analysis and simulation
of semiconductor equations can be found, e.g., in [69, 70].

The stationary drift diffusion equations consist of the Poisson
equation (6.28a) for the electrostatic potential V and the continu-
ity equations (6.28b) and (6.28c) for the electron density n and the
hole density p respectively (notice that −∇V is the electric field,
while n and p are the concentration of free carriers of negative charge
and positive charge respectively).

div(ε∇V ) = q(n− p− C) in Ω (6.28a)

div(Dn∇n− µnn∇V ) = R in Ω (6.28b)

div(Dp∇p− µpp∇V ) = R in Ω. (6.28c)

A word on notation: The domain Ω ⊂ Rd (d = 2, 3) represents the
semiconductor device. ε, q, µn, µp, Dn, Dp are physical constants.
R = R(n, p, x) denotes the recombination-generation rate, which is
typically a function of the type: R = R(n, p, x)(np − n2

i ), where
ni denotes the intrinsic density. The function C = C(x) denotes
the doping concentration, which is produced by diffusion of different
materials into the silicon crystal and by implantation with an ion
beam.

In many technological applications, the doping profile C is the pa-
rameter which has to be identified. After the manufacturing process
of the semiconductor device, it is necessary to test whether the doping
has been correctly implanted. The inverse problem we are concerned
with is related to a non destructive identification procedure, based
on experiments modeled by the voltage to current operator.

For our numerical experiment, we consider a very simple semicon-
ductor device, namely a P-N diode (see Figure 6.5). The boundary of
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Figure 6.5: The domain Ω ⊂ R2 represents a p-n diode. The P-region
corresponds to the subregion of Ω, where the pre-concentration of negative
ions predominate (i.e., C < 0). The N-region is defined analogously. The
curve between these regions is called p-n junction.

∂ΩN ∂ΩN

∂ΩN Γ1 ⊂ ∂ΩD

∂ΩD

N-region (C > 0)

P-region (C < 0)

Ω is assumed to be divided in two nonempty parts: ∂Ω = ∂ΩN∪∂ΩD.
The semiconductor contacts correspond to ∂ΩD, the part of the
boundary where Dirichlet boundary conditions for system (6.28) are
prescribed. The Neumann part of the boundary ∂ΩN = ∂Ω − ∂ΩD
models insulating or artificial surfaces. Therefore, a zero current flow
and a zero electric field in the normal direction are prescribed, i.e.
homogeneous boundary conditions, in terms of the current densities1

Jn and Jp. Therefore, the boundary conditions for system (6.28) are

V = VD(x) := U(x) + UT ln(nD(x)/ni) on ∂ΩD (6.28d)

n = nD(x) := 1
2

(
C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD (6.28e)

p = pD(x) := 1
2

(
− C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD (6.28f)

∇V · ν = Jn · ν = Jp · ν = 0 on ∂ΩN (6.28g)

(the constant UT denotes the thermal voltage).

1The densities of the electron and hole current Jn and Jp satisfy the current
relations:

Jn = q(Dn∇n− µnn∇V ) , Jp = q(−Dp∇p− µpp∇V ) , in Ω .
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Next we define the voltage-current (V-C) map:

ΣC : H3/2(∂ΩD) → H1/2(Γ1)
U 7→ (Jn + Jp) · ν|Γ1 ,

where Γ1 ⊂ ∂ΩD corresponds to the part of the boundary (a contact)
where measurements are taken (see Figure 6.5). Notice that, due
to the nature of the physical problem related to the semiconductor
modeling, we can only consider as inputs for the DtN map functions
of the type: {U ∈ H3/2(∂ΩD); U |Γ1 = 0}. In practical applications,
the function U ∈ H3/2(∂ΩD) modeling the voltage input in (6.28) is
piecewise constant in the contacts. The map ΣC takes the applied
voltage U into the corresponding current density.

For this application, instead of using the drift diffusion equations,
we shall consider a simpler model, the so called linearized unipolar
case



λ2∆V 0 = eV
0 − C in Ω

V 0 = Vbi on ΩD
∇V 0 · ν = 0 on ΩN





div (eV
0∇u) = 0 in Ω

u = U on ΩD
Jn · ν = 0 on ΩN

(6.29)
The linearized unipolar case (close to equilibrium) corresponds

to the model obtained from the drift diffusion equations (6.28) by
linearizing the V-C map at U = 0. This simplification is motivated by
the fact that, due to hysteresis effects for large applied voltage, the V-
C map can only be defined in a neighborhood of U = 0. Furthermore,
the following assumptions are taken into account in the derivation of
(6.29):

A1) The concentration of holes satisfy p = 0;
A2) No recombination-generation rate is present, i.e. R = 0;

(for details see, e.g., [10, 11, 70]).
The inverse problem of identifying the doping profile in the lin-

earized unipolar model (6.29) corresponds to the identification of
C(x) from the map

F : H2(Ω) → L(H3/2(ΩD);H1/2(Γ1))
C 7→ ΛC

where ΛC is the map that takes U into (Jn · ν)|Γ1 , by solving the
decoupled system (6.29). Notice that ΛC derives from Σ′C(0) if we
take into account the simplifying assumptions A1) and A2).
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1. Define γ := eV
0

and identify γ from the DtN map

Λγ : U 7→ γuν |Γ1, where u solves

div(γ∇u) = 0 in Ω , u = U on ∂ΩD , uν = 0 on ∂ΩN ;

2. Obtain the doping profile from:

C(x) = γ(x)− λ2∆(ln γ(x)) .

Table 6.2: Formulation of the inverse doping profile problem in the lin-
earized unipolar case (close to equilibrium).

Since V (x) is known at ∂ΩD, the current data Jn · ν = µne
V 0

uν
at Γ1 (output) can be directly replaced by the Neumann data uν .
Therefore, the inverse problem can be splited in two distinct steps,
as shown in Table 6.2.

For our numerical implementation the level set method we con-
sider the situation where only a single measurement of the DtN map
is available, i.e. instead of knowing the operator ΛC , we know only
the pair of functions (U,ΛC(U)) ∈ H3/2(ΩD)×H1/2(Γ1). The choice
of the source function U(x) corresponds to a typical voltage input
used in practical experiments.

The setup of the problem is shown in Figure 6.6. The doping
profile to be identified is shown in picture (a) – the p-n junction is a
straight line. The solution of the direct problem for a typical source
U is shown in picture (b). In this figure, as well as in the forthcoming
ones, Γ1 corresponds to the lower edge and the contact ∂ΩD/Γ1 to
the top edge (the origin corresponds to the upper right corner).

The evolution of the level set method for the problem stated above
is shown in Figure 6.7. The picture on the top left shows the error
for the initial condition. The subsequent pictures show the iteration
error for the level set method after 3, 5, 10, 100 and 1000 steps
respectively.

One word about the quantity of information used in the iden-
tification. In [10, 60] a Landweber-Kaczmarz method was used for
solving this inverse doping profile problem. In [60] the authors im-
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(a) (b)

Figure 6.6: Picture (a) shows the doping profile to be reconstructed. On
picture (b) the problem data is shown: A typical source U(x) appears as
Dirichlet boundary condition at y = 0 (upper right edge). The correspond-
ing current is measured at the contact Γ1 (lower left edge).

plemented the Landweber-Kaczmarz method using different amount
of data, i.e. different number of (voltage, current) pairs. In one of
the experiments a single pair of data was used and, in this case, the
Landweber-Kaczmarz method reduces to the ordinary Landweber it-
eration.

In [60] the authors observed that the amount of available data
strongly influences the quality of the reconstruction. However, no
matter how many pairs of (voltage, current) data one uses in the im-
plementation of the Landweber-Kaczmarz method, it does not allow a
proper determination of the p-n junction. The observation was that,
after a certain number of data pairs, the quality of the reconstruction
does not improve any further.

A possible explanation for the poor quality of the results obtained
by the Landweber-Kaczmarz method is the fact that this method does
not incorporate the assumption that the doping profile is a piecewise
C0 function. This method tries actually to identify a real function
defined in Ω, which is a much more complicated object than the
original unknown curve (the p-n junction).

In [60] a comparison between the performances of the Landweber
method and the level set method (for the inverse doping profile prob-
lem) was investigated. Due to the nature of the level set approach, it
incorporates in a natural way the assumption that γ is piecewise C0
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Figure 6.7: Evolution of the level set method for the inverse doping profile
problem. Iteration error is shown after 0, 3, 5, 10, 100 and 1000 steps.

in Ω (actually, without this assumption the level set method could
not be applied at all). The reconstruction results are much better,
although the level set method only uses one pair of (voltage, current)
data.

6.6 Bibliographical comments

A comprehensive presentation of level set methods can be found, e.g.,
in [64, 76, 88], and applications to various inverse problems can be
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found in [9, 20, 27, 50, 64, 60, 77, 78, 83].
More details on the approach discussed in Section 6.2 are available

in [83]. For a detailed discussion of the results presented in Section 6.3
we refer the reader to [9]. The standard references for the results
presented in Section 6.4 are [59, 27].

The theoretical background for the inverse potential problem dis-
cussed in Subsection 6.5.1 can be found, e.g., in [49, 43]. A level set
approach for this inverse problem is treated in [27]. Detailed exposi-
tions of semiconductor equations, discussed in Subsection 6.5.2, can
be found in [69, 70, 87, 93]. Inverse doping problems for semiconduc-
tor equations are discussed in [10, 11]. For a level set approach of
this inverse problem we refer the reader to [60].

6.7 Exercises

6.1. Assume that F is Fréchet differentiable and satisfies the tangen-
tial cone condition (6.13) in a neighborhood of a solution ū of (6.1).
Prove the estimate

∂E

∂t
(t) ≤ −(1− η) ‖F (u)− g‖2 ,

for the derivative of the iteration error E(t) in the noise free case (i.e.
ε = 0).

6.2. Consider the inverse potential problem discussed in Subsec-
tion 6.5.1. Prove that no further on the information on the unknown
domain D can be gained by inputting different Dirichlet boundary
values in (6.27) and measuring the corresponding Neumann ones.

6.3. Consider the inverse problem in Exercise 6.2. Prove that the
integral around ∂Ω of ∂u/∂ν is equal to the area of the unknown
domain D.

6.4. Consider again the inverse problem in Exercise 6.2. Prove that
it is not possible to recover non-simply connected domains D.
(Hint: Let Ω be the unit disc in R2 and choose Ω to be the annular
region {(r, θ); 0 < R1 < r < R2 < 1, 0 ≤ θ < 2π}. Then, using
a symmetry argument, conclude that the measured Neumann data
must reduce to a constant value c ∈ R and R2

2 −R2
1 = c.)
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6.5. Consider once more the inverse problem in Exercise 6.2. Prove
that a starlike domain D with respect to the center of gravity is
uniquely determined by its potential.
(Hint: See [49] and the references therein.)

6.6. Let the velocity function V ∈ L1(0, T ;L2(Rn))n be such that
divV ∈ L1(0, T ;L∞(Rn)). Prove that the initial value problem

∂φ

∂t
+ V · ∇φ = 0 φ(0) = φ0 , (6.30)

with φ0 ∈ L2(Rn), has a weak solution φ ∈ C(0, T ;L2(Rn)) in the
finite-time interval (0, T ).
(Hint: Use the vanishing viscosity method, cf. [19].)

6.7. Additionally to the assumptions of Exercise 6.6, let the velocity
function satisfy V ∈ C(0,∞;C0,1(Rn))n, i.e. V is continuous on
Rn × (0,∞) and Lipschitz continuous with respect to x. Moreover,
let the initial condition satisfy φ0 ∈ L2(Rn) ∩ L∞(Rn).
a) Prove that the solution φ of the initial value problem (6.30) is
unique (actually φ is a L∞-function on Rn × (0, T )).
b) If in addition φ0 is Lipschitz continuous, prove that φ is also
Lipschitz continuous on Rn × (0, T ).
(Hint: Use the Picard-Lindelöf theorem, cf. [46].)

6.8. Let u(x, t), E(t) and ū(x) be defined as in Section 6.3. Prove
that, for t > 0, the condition ‖Fu(t)−gε‖ > ε implies dEε(t)/dt < 0.
Moreover, if ε = 0, prove that

∫∞
0 ‖Fu(t)− F ū‖2 dt <∞.

(Hint: Use Lemma 6.3.1.)
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Appendix:

Basic facts in functional
analysis

A.1 The Schwartz space

A tuple k = (k1, . . . , kn) ∈ Zn is called a multiindex with length l if
ki ≥ 0, 1 ≤ i ≤ n, and l = k1 + ·+kn . For a point X = (x1, . . . , xn) ∈
Rn we define with a multiindex k = (k1, . . . , kn)

xk :=
n∏

i=1

xkii .

Also, if f : Rn −→ R is a smooth function and k = (k1, . . . , kn) is a
multiindex of length l then

Dl := ∂lf :=
∂l

∂k1x1 · · ·∂knxn
.

S(Rn) is the linear space of those C∞–functions f on Rn for which

|f |k,l := supu∈Rn |ukDlf(u)|

is finite for all multiindices k, l ∈ Z2 . S(Rn) is a locally convex linear
topological space which is called the Schwartz space. The continu-
ous linear functionals on S(Rn) constitute the dual space. This dual

176
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space is denoted by S(Rn)′ (tempered distributions).
Clearly, the Fourier transform may be defined on S(Rn) since every
function in S(Rn) is a L1(Rn)-function; see Subsection 4.2.1. Now,
the Fourier transform can be extended to the space S(Rn)′ with val-
ues in S(Rn)′ by duality:

F(λ)(f) := λ(F(f)) , λ ∈ S(Rn)′, f ∈ S(Rn) .

A.2 Hilbert spaces

A pre-Hilbert space is a linear space2 H which is endowed with an
inner product 〈·, ·〉 : H × H −→ K where K is a field; for con-
venience we restrict ourselves to the real case K = R . This inner
product defines a norm in H via ‖x‖ := 〈x, x〉 1

2 . When the topo-
logical space H endowed with this norm is complete (convergence of
Cauchy sequences) then we say that H is a Hilbert space.

Given two Hilbert spaces G,H we have the family of linear con-
tinuous mappings T from H −→ G . The operator norm is given
by ‖T‖ := supx∈H〈Tx, Tx〉G where 〈·, ·〉G, 〈·, ·〉H are the inner prod-
ucts in G,H respectively. In the special case when G = R then we
set H∗ := {λ : H −→ R | λ linear, continuous} and call H∗ the
dual space. H∗ is itself a Hilbert space and we know from the Riesz
representation theorem that H∗ can be identified isometrically with
H .

Given a Hilbert spaces H and a linear closed subspace of H we
may decompose H as follows:

H = U ⊕ U⊥ where U⊥ := {v ∈ H | | 〈v, u〉 = 0 for all u ∈ U} .

This result is called the projection theorem since each x ∈ H has a
uniquely determined projection xU ∈ U with

x = xU + (x− xU ) and x− xU ∈ U⊥ .

This result makes it so easy to introduce geometric concepts in Hilbert
spaces. Especially, the pseudoinverse of a linear bounded operator
can be defined in a straightforward manner.

2The null vector in a linear space will be denoted by θ .
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When in a Hilbert space H there exists a dense and countable
subset then this Hilbert space is called a separable space. A countable
set of elements O := {xk | k ∈ N} is called an orthonormal system
when we have3

〈xk , xj〉 = δij , i, j ∈ N .
An orthonormal set is called an orthonormal basis if no orthonormal
set of H contains O as a proper subset.

A.3 Hilbert scales

Let H be a separable Hilbert space with inner product 〈·, ·〉H and
orthonormal basis (ej)j∈N and let (αj)j∈N be a sequence with

0 < αj+1 ≤ αj ≤ 1, j ∈ N, lim
j
aj = 0.

Let M be the set of elements in H representable by a finite linear
combination of the elements (ej)j∈N. Then we define on M for each
s ∈ N an inner product 〈·, ·〉s :

〈x, y〉s :=

∞∑

j=1

a−2s
j 〈x, ej〉H〈y, ej〉H .

(Notice that the series above is actally a finite sum). The completions

Hs of M in the norm ‖ · ‖s := 〈·, ·〉
1
2
s is a Hilbert space by definition

whose inner product is denoted again by 〈·, ·〉s .
Lemma A.3.1. We have

1) H0 = H, 〈·, ·〉0 = 〈·, ·〉H .
2) We have for each s ≥ 0 :

Hs = {x ∈ H0|
∞∑

j=1

α−2s
j |〈x, ej〉0|2 <∞} ;

‖x‖2s =

∞∑

j=1

α−2s
j |〈x, ej〉0|2, x ∈ Hs .

3δij is the Kronecker symbol.
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3) Hs ⊂ Ht ⊂ H0 for s ≥ t ≥ 0.

4) If s > t ≥ 0 then the embedding of Hs into Ht is dense and
compact.

5) ‖x‖r ≤ ‖x‖1−as ‖x‖at for all x ∈ Hs if s ≥ r ≥ t ≥ 0, s 6= t, and
a = (s− r)(s − t)−1.

Proof:
The assertions 1), 2) and 3) are simple consequences of the definition
of Hs and 〈·, ·〉s. Let us define TN : H0 −→ H0 by

TNx :=

N∑

j=1

〈x, ej〉0ej , x ∈ H0.

Then we have

‖TNx− x‖2t =
∞∑

j=N+1

α−2t
j |(x, ej)0‖2 ≤ sup

j≥N+1
α

2(s−t)
j ‖x‖2s

≤ α2(s−t)
N+1 ‖x‖2s, x ∈ Hs,

which shows that (TN )N∈N converges uniformly to the embedding of
Hs into Ht. This implies that this embedding is compact since each
TN is compact and a limit in the operator norm of a sequence of
compact operators is compact.
Let x ∈ Hs. Then

‖x‖2r =

∞∑

j=1

α−2r
j |〈x, ej〉0|2 =

∞∑

j=1

(α−2ta
j |〈x, ej〉0|2a)(α

−2s(1−a)
j |〈x, ej〉0|2(1−a))

and by Hölder’s inequality

‖x‖2r ≤ (

∞∑

j=1

α−2t
j |〈x, ej〉0|2)a(

∞∑

j=1

α−2s
j |〈x, ej〉0|2)(1−a)

= ‖x‖2at ‖x‖2(1−a)
s .
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This gives the result 5.
�

The spaces Hs, s > 0, contain generalized (ideal) elements. We
clarify the structure of these spaces.
Let r ∈ R . We define a map D̃r : M −→ M by

D̃rx :=

∞∑

j=1

α−rj |〈x, ej〉0ej if x =

∞∑

j=1

〈x, ej〉0ej

Notice that this definition makes sense since
∑∞
j=1〈x, ej〉0ej is a finite

sum if x ∈M. Since ‖D̃rx‖ = ‖x‖r for all x ∈M and since M is dense
in Hr the map D̃r may be extended to a map Fr : Hr −→ H0. The
following properties of Dr are simple consequences of the definition
of D̃r and the construction of Dr :

Dr(M) = M. (A.31)

‖Drx‖0 = ‖x‖r for all x ∈ Hr. (A.32)

Dr is bijective. (A.33)

D−1
r : H0 −→ Hr , D−1

r x =
∑∞

j=1
αrj 〈x, ej〉0ej ; r ≥ 0. (A.34)

〈D−1
r u, x〉0 = 〈u,D−rx〉0 for all u ∈ H, x ∈M ; r ≥ 0.(A.35)

〈D2rx, u〉0 = 〈Dr, x,Dru〉0 for all u ∈ H, x ∈M ; r ≥ 0(A.36)

Theorem A.3.2. The dual space H∗s of Hs is isometric isomorph to
H−s for all s ≥ 0.

Proof:
Let s > 0 (for s = 0 nothing has to be proved) and set t := −s. Let
φ ∈ H∗T . If x ∈M we have

‖〈φ, x〉t| ≤ ‖φ‖H∗t ‖x‖ = ‖φ‖H∗t ‖Dtx‖0,
‖〈φ,Dsx〉t| ≤ ‖φ‖H∗t ‖Dsx‖t = ‖φ‖H∗t ‖x‖0,

where < ·, · >t is the canonic bilinear form on H∗t ×Ht. This shows
that the linear functional

M 3 x 7−→ < φ,Dsx >t∈ R
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is bounded in the norm of H0 on the set Ds(M). Since Ds(M) = M
and since M is dense in H0 there exists by the Riesz representation
theorem an element u ∈ H0 with

< φ,Dsx >t= 〈u, x〉0 for all x ∈M.

This implies (see (A.35))

〈ϕ, x〉t = 〈u,Dtx〉0 = 〈D−1
s u, x〉0 = 〈z, x〉0 = 〈z, x〈0for all x ∈M

(A.37)
where z := D−1

s u ∈ Hs. On the other hand, for every z ∈ Hs the
linear form

M 3 x 7−→ 〈z, x〉0 ∈ R
defines a linear functional on M , bounded in the norm of Ht :

< z, x >= | (Dsz,Dtx)0‖ ≤ ‖Dsz‖0‖Dtx‖0 = ‖z‖s‖x‖t.
This functional can be extended by continuity to a functional ϕ in
H∗t with ‖ϕ‖H∗t ≤ ‖z‖s. We show that we have actually equality:
‖φ‖H∗t = ‖z‖s.
Since z ∈ Hs = H−t there exist a sequence (zn)n∈N of elements in M
such that lim

n
‖z − zn‖s = 0. We set un := D2szn, n ∈ N, and have

(see (A.36))

〈un, z〉0 = 〈D2szn, z〉0 = 〈Dszn, Dsz〉0
and therefore

lim
n
〈un, z〉0 = ‖Dsz‖20 = ‖z‖2s .

For any ε > 0 and sufficiently large n ∈ N we then obtain

< φ, un >t = 〈un, z〉0 ≥ (1− ε)‖z‖2s
≥ (1− 2ε)‖zn‖s‖z‖s = (1− 2ε)‖un‖t‖z‖s.

This implies the desired inequality ‖φ‖H∗t ≥ ‖z‖s.
Thus we have proved that H∗t is isometric to Hs and an isometry is
given by the map Dt ◦ J0 where J0 is the Riesz mapping from H∗t
into H0. Since Hilbert spaces are reflexive, H∗t is isometric isomorph
to H−s. �

From Lemma A.3.1 and Theorem A.3.2 we obtain by identifying
the spaces H∗s with H−s, s ≥ 0, the following result.
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Theorem A.3.3. Let r, t, s ∈ R. We have:

1) Ht ⊂ Hs if t ≥ s.

2) The imbedding of Ht into Hs is dense and compact if t > s.

3) ‖x‖r ≤ ‖x‖1−as ‖x‖at for all x ∈ Hs if s ≥ r ≥ t, s 6= t, where
a = (s− r)(s − t)−1.

4) H∗t = H−s for all s ∈ R.

5) ‖u‖s = sup{|〈u, v〉0 | v ∈ H−s, ‖v‖−s ≤ 1}, u ∈ Hs, for all
s ∈ R.

Definition A.3.4. A family (Hs)j∈R of separable Hilbert spaces, with
inner products 〈·, ·〉s), is called a Hilbert scale if and only if the fol-
lowing properties hold:

i) Hs ⊂ H0 ⊂ Ht with dense and continuous imbeddings; s ≥ 0 ≥
t.

ii) For all s ∈ R we have H∗s = H−s and

‖〈u, v〉0‖ ≤ 〈u, u〉
1
2
s 〈v, v〉

1
2
−s for all u ∈ Hs, v ∈ H−s .

iii) 〈u, u〉r ≤ 〈u, u〉2(1−a)
s 〈u, u〉2at for all u ∈ Hs; s ≥ r ≥ t, s 6=

t, a := (s− r)(s − t)−1.

�

We give an example how to construct specific scales of Hilbert
spaces.

Let T be a compact injective operator from a Hilbert space H0

into another Hilbert space. Let (ej , fj , σj)j∈N be a singular system
of T . Then with the pair ((ej)j∈N, (σj)j∈N) a scale of Hilbert spaces
can be constructed; we denote this scale by (Hs(T ))s∈R and call T
the generator of the scale. If we apply this construction to the case
considered in 2.1.9 a scale of spaces of Sobolev type results.

The following assertions hold for each pair T := K,Z := X and
T := L,Z := Y
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1. DT is a dense subspace of Z;

2. T is an unbounded, selfadjoint, positive and closed operator;

3. ‖Tz‖ ≥ ‖z‖ for all z ∈ DT , T
−1 : Z −→ DT exists and is

bounded;

4. a := supt>0 ‖(tT+I)−1‖ <∞ and b := supt>0 ‖tT (tT+I)−1‖ <
∞;

5. tT + I : DT −→ Z, t > 0, has a bounded inverse (tT + I)−1,
the resolvent;

6. the fractional powers T s : DT s −→ Z, s ≥ 0, are welldefined;

7. DT s can be endowed with the inner product

〈z, z̃〉s := 〈T sz, T sz̃〉, z, z̃ ∈ DT s , s ≥ 0 ;

8. DT s becomes with 〈·, ·〉s a Hilbert space which we denote by
Hs(T ), s ≥ 0;

9. the dual space Hs(T )∗ is denoted by H−s(T ), s ≥ 0;

10. Hr(T ) ⊂ Z = H0(T ) ⊂ Hs(T ) , r < 0 ≤ s;

11. Hs(T )s∈R is a scale of Hilbert spaces with the following inter-
polation property:

‖z‖s ≤ ‖z‖
t−s
t−r
r ‖z‖

s−r
t−r
t , z ∈ Ht(T ), r ≤ s ≤ t, r 6= t ;

12. we have T s : Hl(T ) −→ Hl−s(T ) for all l, s ∈ R.

All these results are based on the spectral decomposition of T .

A.4 Frechét derivative

Let X,Y be Hilbert spaces and let F : X −→ Y be a mapping
with domain of definition D(F ) . F is called Frechét differentiable in
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an interior point x ∈ D(F ), if there exists a linear bounded operator
A : X −→ Y such that

lim
h→θ
‖h‖−1‖F (x+ h)− F (x)−Ah‖ = 0 .

We write F ′(x) = A . Notice that F ′(x) is uniquely determined. F ′(x)
is called the Frechét derivative in x .
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