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Preface

The goal of these notes is to let the Reader get familiar with a natu-
ral algebraic formalism equivalent to Schubert Calculus on Complex
Grassmannians, basing on the following

Theorem. The Chow intersection (or integral cohomology) ring of
the complex grassmannian variety G(k, n), parametrizing k-dimensio-
nal vector subspaces of C*, can be realized as a commutative ring of
endomorphisms on the k'" exterior power of a free Z-module of rank

The explanation of the above result, as well as a list of conse-
quences, which seem relevant at least from a “pedagogical” point of
view, will be postponed to the Introduction. However, it is worth
to anticipate that, from a purely algebraic point of view, Schubert
calculus for grassmannians Gk, n), for all 0 < k <n and all n > 0
at once, amounts to study the formal properties of a suitable algebra
homomorphism

Dy A M — \ M) (1)

from the exterior algebra A M of a free Z-module M, of infinite count-
able rank; to the algebra of formal power series in one indeterminate
t over it. In a sense, Schubert calculus can be proclaimed with the
slogan:

Di(aAB)=DaADB, Va5 \M,
which is the explicit way to phrase that the map (1) is an algebra
homomorphism.

These notes have been written as a ready-for-use reference for
the minicourse Schubert Calculus: an Algebraic Introduction given



i

at IMPA during the 25° Coléquio Brasieiro de Matemdtica. By no
means they can be intended as substitutes of the many good text-
books on either the geometry or the intersection theory of complex
grassmannian varieties. For these subjects there is a plenty of cano-
nical references, rich of geometrical insight, starting from the beau-
tiful [39] up to [27] and [16], or [22]. For a hot update of the state
of arts, the Reader should also consult the very recent volume edited
by P. Pragacz (including his paper [65] therein). These notes are
just a very personal (and, therefore, not necessarily the best) point
of view which the author look at those subjects with: nothing more
than a pair of coloured glasses to read the references quoted in the
bibliography, whom the Reader is really referred.

Although the intersection theory of grassmannian varieties is a
fairly delicate subject, certainly requiring some mathematical ma-
turity, this formulation shows that one can learn Schubert calculus
with minimal pre-requisites (basic linear algebra and calculus) with-
out even knowing what is it. In particular, any reader, even the less
experienced one, can read Chapter 4, the core of the notes, indepen-
dently from the rest of the exposition.

Acknowledgements.! My first debt of gratitude is with my
distinguished friend Israel Vainsencher, who last year suggested me
to submit a proposal for a minicourse on this subject, to be given
during the 25° Coléquio Brasileiro de Matemdtica, at IMPA. T could
profit of his corrections and remarks because he was the only person
I could send my very prelyminary informals drafts without feeling
(too) ashamed. The friendly support of Israel was strengthened by
the convinced one of Abramo Hefez, whom I want to adress a feeling
of gratitude, too. My original proposal to Comissdo Organizadora do
Coléquio was somewhat unbalanced and I could improve it thanks
to the friendly suggestions and remarks by Eduardo Esteves, who

I This work has been partially sponsored by INDAM-GNSAGA, by the Italian
Ministry of Education, National Project “Geometria sulle Varieta Algebriche”
(Coordinatore Prof. Sandro Verra), and by Dipartimento di Matematica del
Politecnico di Torino. The author is especially grateful to the Comissdo Organi-
zadora do 25° Coldquio Brasileiro de Matemdtica, to the Instituto de Matemdtica
Pura e Aplicada and to brasilian CNPgq for its generous financial support; he is
also indebted with Priscilla (DDIC do IMPA) for her patient assistance during
the preparation of the manuscript.
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influenced the organization of the contents, whom I am grateful too.
I am also strongly indebted with Aron Simis (who gave me valuable
hints) and Francesco Russo that, together with Israel and Eduardo,
have made possible my visit to Brazil.

The subject of these notes, based on [23], has been widely dis-
cussed with Dan Laksov whose wise advises, sharp criticism and
friendly support are priceless. Also I want to thank Gary Kennedy for
discussions on the quantum cohomology side, and Giorgio Ottavian:
for discussions on the representation theory one, as well as Piotr Pra-
gacz, who suggested me new difficult but exciting directions to push
forward my current research interests.

I got a precious help from my collaborator Taise Santiago Costa
Oliveira (obrigado!), Ph.D. student at Politecnico di Torino, and
Caterina Cumino. Not only the latter shared (as still does) an office
with me, but also many delightful mathematical conversations, in-
cluding the subject of these notes, which helped me a lot to improve
the exposition.

Last, but not the least, I warmly thank all the readers, with-
out blaming the others, who will forgive the several misprints, errors
and/or omissions, certainly left, here and there, along the text.

These notes have
two  hidden  co- authors: my wife
Sheila and my son Giuseppe. The former solved
all the practical problems I should have dealt myself
in the daily life, letting me spending, with lovely
comprehension, almost all my home time playing
with Mathematics. The latter put abundant
grains of joy with his wide smile, brighting even
during cloudy days. Without them these
notes could have not been written
and for this reason, and many
others, to them are
dedicated.
v

Sangano, 30 de Abril, 2005
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Introduction

L' has an ancient and venera-

Schubert Calculus for grassmannians
ble history. It is related with the deep investigations in enumera-
tive geometry pursued by Schubert? in his celebrated treatise [68],
which dates back to 1879. The first systematic study of what, in
modern language, would be called intersection theory on the grass-
mannian variety of lines in the 3-dimensional projective space, is due
to him. Schubert’s work was somewhat revolutionary for his time
and provided new powerful techniques to deal with many enumera-
tive questions. The most popular is perhaps how many lines do meet
4 others in general position in the projective 3-space? Schubert’s
methods, based on heuristics, although ingenious, degeneration argu-
ments, cried however for more mathematical rigour, explicitly claimed
by Hilbert, who so entitled his 15! Problem:

Rigorous Foundation of Schubert’s Enumerative Calculus.

In Hilbert’s words (borrowing the english translation from [38], p.
327), the problem consisted in establishing

“...rigorously and with an exact determination of the lim-
its of their validity those geometrical numbers which Schu-
bert ([68]) especially has determined on the basis of the
so-called principle of special position, or conservation of
number, by means of the enumerative calculus developed
by him.”

! After Hermann Giinther Grassmann (1809-1877).
2 Hermann César Hannibal Schubert (1848-1911).

vil
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Schubert’s work was continued and generalized, at the beginning
of last century, by two italian mathematicians, Pieri and Giambelli
([28], [29], [30] and [58]), whose formulas allow in principle, speak-
ing a modern language, the explicit computation of two arbitrary
generators, said to be Schubert cycles, of the intersection ring of a
grassmannian (see Section 3.4). They were far, however, from giv-
ing answers to Hilbert’s problem, which had to wait for the modern
developments of intersection theory and/or of the singular cohomol-
ogy of complex projective algebraic varieties. Readers interested to
follow this nice historical path, should not hesitate to look at the
surveys [38] and [39].

Nowadays, talking about Schubert Calculus, without any further
adjective, is too vague to indicate any specific mathematical subject.
Schubert calculus for grassmannians has been generalized to flag va-
rieties (see [18] and [8]) and, more generally, to homogeneous spaces
(quotients of an algebraic group modulo a parabolic subgroup; see [6]
or [76] for general vocabulary). There are also versions of Schubert
calculus for other types of grassmannians (orthogonal, symplectic,
see [62], [66]) of vector spaces equipped with an additional structure
(metric, symplectic, etc.), without talking about the rich flourishing
of the literature regarding combinatorial aspects of small quantum
Schubert calculus initiated with Bertram in [4] and continued in a
series of papers (e.g. [3], [B], [9], and references therein). More than
that, the structural constants of the cohomology ring of the grass-
mannians appear in the representation theory of the general linear
group Gl, (C) (see [20], [75], and the beautiful paper [77]), as well as
in the more classical and fascinating theory of the symmetric func-
tions (see [52] or the more recent [53]), where the k x k& Vandermonde
determinant plays the same role as the fundamental class of a grass-
mannian G(k, n). People interested to the marriage of grassmannians
with physics should have a look at [26] and, of course, to [81].

Regarding more specifically these notes, they aim to be a walk,
back and forth, between the land of Schubert’s algebra (governing the
intersection theory of the grassmannians) and that of Grassmann’s
algebra (the exterior algebra of a module) through the bridge of wron-
skians®. Metaphores aside, the goal is to introduce the Reader to an

8 After the polish mathematician J. M. Hoene-Wroriski (1778-1853).
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abstract algebraic model equivalent to Schubert calculus for grass-
mannian varieties, whose corner stones, Pieri’s and Giambelli’s for-
mulas, can be rephrased in terms of derivatives of wronskians deter-
minants of a system of linearly independent (C'*° or holomorphic)
functions of one (real or complex) variable. Tt is easily checked that
the i*"-derivative (i > 1) of a wronskian turns out to be an inte-
gral linear combination of certain determinantal expressions, said
to be, imitating a terminology used in [59], generalized wronskians
(Cf. Section 1.2.1). Pieri’s formula then corresponds to differentiate
wronskians, while Giambelli’s formula amounts to integrate the ge-
neralized ones,; as explained with more details in Chapter 1, aimed
to advertise the contents of Chapter 4, the core of the notes. The
algebraic formalism there developed turns out to be particularly flex-
ible, due to the natural identification between the Chow (or ho-
mology) group A.(Gr(V)) of the grassmannian of k-planes of V|
and the k'? exterior power /\k M,, of a free Z-module M,, of rank
n = dim(V). Schubert calculus is then described through a family
D = (D1, Da,...) of derivations of the Grassmann algebra A\ M,
that, when restricted to /\k M,,, generate a commutative subalgebra
A* (/\k My, D) of Endz(/\k M,,), which is isomorphic to the intersec-
tion ring A* (G (V)) of the grassmannian of k-planes of a n dimen-
sional vector space. Moreover there is the isomorphism

k k
AN\ M., Dy A A = N\ M, (2)

translating Poincaré duality for grassmannians (Cf. Section 3.4.2).
Within this framework, Pieri’s formula is nothing else than a conse-
quence of Leibniz’s rule enjoyed by the operators D;’s (which corre-
spond to the special Schubert cycles o), while Giambelli’s formula,
which formula (2) is based on, turns out to be a consequence of the
following integration by parts (Lemma 4.5.3)

Dia A = Di(a/\ej) —Di_1(e /\ej'l'l),

holding for each o € A M,.

Rather than working with the k' exterior power of a finitely gen-
erated free Z-module M,,, in Chapter 4 one works directly on the
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exterior algebra A M of a free module M of infinite countable rank.
This corresponds to deal with all the grassmannians at once, rather
than a single one, making things easier and more elegant. Every-
thing is described in terms of a particular Hasse-Schmidt Derivation
on A M (said to be Schubert for obvious reasons; see Sections 4.1
and 4.3), permitting to summarize Schubert Calculus formalism (and
hence Pieri’s and Giambelli’s formulas) via the holding-by-definition
equality:
Di(a A B) = Do ADB, Va,8€ [\ M.

One should dutifully remark that the picture of Chapter 4 has
been rephrased, and considerably refined, by Laksov and Thorup
([48]). Using suitable symmetrizing operators (analogous to taking
residues of formal Laurent series) and the notion of universal splitting
algebra, they are able to give very transparent proofs of the analogous
of Giambelli’s formula, discussed in Section 4.8, even for grassman-
nian bundles. More than that, those authors are able to show ([49])
how it is possible, using the theory of splitting algebras, to prove that
the picture exposed in Section 4 is indeed the intersection theory of

the grassmannian variety without relying on any previous knowledge
of Schubert Calculus!

These book-shaped notes are organized as follows. Chapter 1 is
aimed to convince the Reader that Schubert Calculus for grassm-
nannians can be phrased in terms of everybody’s first mathematical
experiences and that, to learn it, is not necessary to know what is it.
Most of the examples of Chapters 5 could be in fact computed by first
year’s undergraduate students. Chapter 2 should be skipped by most
readers, as 1t is a list of quickly collected basic definitions and pre-
liminary results (without proof), to be used mainly as a vocabulary.
Chapter 3 is about an introduction to the notion of the grassmannian
as a holomorphic variety. This also may be avoided byt experienced
readers. However the presentation aims to prepare the way to the,
although easy, abstract formalism developed in Chapter 4. What in
the latter is a basis element ¢t A ... A ¢* of /\k M, in Chapter 3 is a
Plucker coordinate or a section of the top exterior power of the dual of
the tautological bundle over the grassmannian. Finally, Chapter 5 is
a miscellanea of fragmented examples, intended to show that the for-
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malism offers indeed some computational advantages. Section (5.1)
fully works out the computation of the intersection theory of the
grassmannian of lines G1(P?), while Section 5.5 is devoted to alge-
braically analyze what in the literature is known as quantum Schubert
calculus of G/(k,n). It turns out that the latter can be seen as Schu-
bert calculus in a grassmannian G(k, N), with N sufficiently large.
The examples about degree of grassmannians, shown in Section 5.3,
cry for the search of a more general pattern. The degrees of Schubert
varieties in the Plicker embedding of the grassmannians are very well
known (see e.g. [36]). However, the Hasse-Schmidt presentation sug-
gests a search for degrees through recursive formulas, as illustrated
by the shown experiments. Using the algebraic yoga introduced in
this book, one may easily show that the degree of the Plicker image
(Section 3.2.5) of the grassmnannian variety G(3,n) is

3(n —3) 3(n —3) 3(n—3)

d3n = ( n_3 )dz,n—l-i- (( n_5 ) - ( "4 ))dz,n,
having denoted by di , the degree of G/(k,n). A similar, although
slightly more complicated formula expressing ds , as a suitable linear
combination of d3 ,, d3n_1, d2, and da,_1, 1s displayed in Exam-
ple 5.3.4. Computations get trickier for ds, and one wonders if it is
possible to find a unified description via some nice generating func-
tion, possibly encoding top intersection degrees of others Schubert
cycles, as being investigated in [67].

The notes end with a list of references related with Schubert calcu-
lus, certainly not complete, but probably sufficient to let the Reader
finding his own path to study this beautiful subject.






Convention

e The grassmannian of k-planes of a vector space V shall
be denoted by G (V). If V = F", F any field, one will write
Gr(F*). When F = C, the notation G/(k,n) shall be used
instead of G(C").

e Finstein’s convention summation will be used. If
(vl,...,v") are the components of an element v € M with
respect to the basis (eq,...,€,), then one will write

v =v'e; instead of v = Z v'e;.
=1
Similarly, if a € MV, one will write a = o;¢' instead of
> iy cic'. Also one will write A%e’ instead of ) 7_ ) Ale.






Chapter 1

Propaganda

The “official” mathematical language, which the author tried to write
these notes with, may cause people, who never looked at this subject
before, to think that things are more difficult than they really are.
To avoid such an undesired feeling, this section aims, thus, to draw
an informal and friendly path to show that whatever will be going
on, it will in the most natural way.

Instead of starting by explaining what a grassmannian is, which
is not strictly necessary at this stage, one chooses, for the Reader’s
convenience, to enter soon into the core of the subject, by describing
the algebraic model which i1s the main character of this play.

1.1 Revisiting (some) Calculus

1.1.1 Derivatives and Leibniz’s Rules. Believe you or not, the
basic manipulation devices proper of Schubert Calculus should al-
ready be in the toolkit of any reader who took a basic course in
calculus and principles of linear algebra. To start with, and to see
why, let C°°(IR) be the algebra of all real C'*°-differentiable functions
f IR — R of one real variable z. The derivative

%:CM(R)—)COO(R),
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is a linear map f — df/dx, which operates on the product of two
functions according to the well known Leibniz’s rule:

df

(fg) g+7f- - (1.1)

The k'h-iterated of d/dx is a linear operator, too, denoted by d* /dz*,
which satisfies a Leibniz-like rule, induced by that enjoyed by d/dz.
For instance:

(%)qu) = ()= (Loasr )=

d*f df dg | df dg d*g

S @ T dr T de d @ T
dzf df dg d2

= 2— . —= — 1.2
dz? g+ dx e (1.2)

For sake of notational brevity, let
1 d” 1
Dy:=1 and D, = = —D7.

nlden ~ nl
In particular, Dy is just the first derivative d/dx, while (1.2) can be

rewritten more compactly in the form:

Dsy(fg) = Daf g+ Dif-Dig+ f- Dag.

In general, by simple induction:

=> Dif Du_ig. (1.3)

i=0
Again, by induction on the number of factors:
Du(fi- )= > Da(f1) o Duy(fi). (1.4)
ni+...+ng=n

The Reader will have no difficulty in proving that the following New-
ton binomial formula holds:
n n o
Di(fg) =) (h) Dyf- D™ty (1.5)

h=0
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1.1.2 Example. The coefficient of D f- D7 'g in the expansion (1.5) is
the binomial coefficient (7)

Formula (1.3) shall be referred to as Leibniz’s rule for D,. If ¢ is
an indeterminate over C'*°(IR), then

Dy = 1'D; : C®(R) — C(R)[[1]]
i>0

is the Taylor formal power series. The terminology is motivated by
the fact that {(D; f)(xg), i > 0} is precisely the set of coefficients of
the Taylor series associated to the function f in a neighbourhood of
the point zy. Using the formal power series Dy, all the Leibniz’s rules
holding for D;, ¢ > 0, can be summarized by the following elegant
equality:

Dt(f . g) == Dt(f) . Dt(g)a

i.e. Dy is a R-algebra homomorphism from C*°(R) to C*(R)[[¢]]. In
general, if A 1s a commutative B-algebra, any B-algebra homomor-
phism A — A[[t]] is said to be a Hasse-Schmidt derivation (Cf. [54],
p. 208). To say it with a slogan, Hasse-Schmidt derivations realize
everybody’s student dream:

the “derivative” of the product is the product of “derwatives”.
1.1.3 Determinants in C*°(R). For 1 < ¢ < k, let
u; = (uila sy uik)a

be a k-tuple of C'™ real functions. For sake of brevity, denote by
u; A ... Aug the determinant:

Uil U2 N Uk
Ua1 U9 N Uk

(1.6)
Uk Uk e UgE

The function
wm A Ay R—R
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18 C°°, being sums of products of C'**° functions, and is skew-symmetric
with respect to the arguments, namely:

Uy AL AUy = (—1)|T|u1 ALoA g,

where 7 € Sy is a permutation on k elements and || is the number
of simple transpositions modulo 2: this follows from the known pro-
perties of determinants. Moreover, if u; = u;, for some ¢ < j, then
u; A ... Aug = 0. We assume known the following formula:

k
Dl(ul/\.../\uk):Zul/\.../\u;/\.../\uk, (1.7)
i=1

where u; A. . .AUSA. . .Auy denotes the determinant gotten from (1.6)
by differentiating the i*” row and keeping untouched all the others.
In other words:

the operator Dy satisfies Leibniz’s rule with respect to the symbol A.

The proof of (1.7) merely consists in expanding the determinant as
sum of products of the u;;’s and then exploiting the linearity of D,
together with the necessary iterations of Leibniz’s rule.

Fantasy now suggests to embed the derivative D, with respect
to A, into a full family of differential operators

D = (Dl, Dz, . .),
by imitating formula (1.4), in a perfectly formal way:

Dp(ag AL Aug) = Z u(lhl)/\.../\uéhk), (1.8)

Pit..+he=h
hi>0

()

where u;"’ means Dfu; = (DFu;y, ..., Diugyg).
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1.2 Wronskians and their Derivatives

1.2.1 Let f:=(f1,..., fx) be a k-tuple of C'* real functions on the
real line. The wronskian determinant of f 1s:

fl f2 e fk‘
f1 o f
W) =W(f,....fs)=| - : Sl (L)
fl(k.—l) fz(k.—l) . fék'—m

where f0) = Dif. As in Sect. 1.1.3, wronskians shall be shortly
denoted as
EAF AL AR

Since D; behaves obeying Leibniz’s rule with respect to A, one
has, e.g.:
Di(f A A AP = A AL AERTD A )
A generalized wronskian 1s an expression of the form:

£ A£02) A A fle-) (1.10)

The Reader may easily convince himself that iterated derivatives of
“standard” wronskians like (1.9) are integral linear combinations of
generalized wronskians.

1.2.2 Remark. What we called generalized wronskian is a particular
case of a Schmidt wronskian, used by Schmidt ([72]) to study Weierstrass
points in positive characteristic. If A is a B-algebra and D, := Zi>0 D,'ti :
A — A[[t]] is a Hasse-Schmidt derivation, he defines: -

Dijar Dijax ... Dia
Dijar Dijax ... Di,ag
Aty (@) = Agiy i (@, pan) = | i S,
Diyar Dijas ... Diax
(1.11)

for each k-tuple a = (a1,a2,...,ax), a; € A, and any 1 < 41 < 12 <
... < 1x. What we call, somewhat unproperly, a generalized wronskianis a
Schmidth wronskian, where D; = Dj.
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1.2.3 Example. Let f := (f1, f2) € C*°(R). Then

ent = | Bl=ns- n,
from which:
Dl(f/\f/) = Dl(flle—f2f1/)=
= fifs+ hfs —Hfl—ffl =
= nf -t =\l hl=tae
Similarly,
DifAt"y = Di(fifi — fofl) =
= fifs +Hh =B - R =
= fifs =B+ HE - R =
_ fll f2/ fl f2 _ ! 1" 1"t
= flll 2// + flm f2”/ =f'Af +fATLTT.

Differentiating once more, one has:
DiEAT)y = Dy (E AE +EAE")y = 2o AE7 £ AT,
and then'
DiEAT )y =2 " A" 438 AU L £ A £, (1.12)

1.2.4 Claim. Any Reader able to follow computations of Eram-
ple 1.2.3 (who did not?) is also able to perform computations in the
Chow (or cohomology) intersection ring of the grassmannians G(2,n)
(n>2) (See Sect. 1.4 below), whatever that means.

Indeed, all the coefficients of the determinants occurring in the
expansion of a derivative of a wronskian, are positive integers having
beautiful interpretations in terms of enumerative geometry of pro-
Jjective spaces. For instance, the coefficient 2 multiplying £ A £/ in
formula (1.12), has computed

't is being implicitly assumed that no generalized wronskian vanishes iden-
tically as a function: this is the case, e.g., if f1, fo form a basis of the space of
solutions of a linear differential equation like 4" — (a + b)y’ + aby = 0, with a # b.
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the number of lines of the projective 3-space intersecting 4 others

mn general position.

In general, the coefficient of 2% Af?»=5+L A Af(?=1) occurring in
the expansion of le(n_k)(f A AEE=T) s

the degree of the Pliucker tmage of the complex grassmannian

Gk, n) in pr)-1,

Explaining why the emphasized sentence holds true?, is among the
purposes of these notes. It basically amounts to prove Theorem 4.4.1
which implies that differentiating a wronskian is the same as applying
a Pieri-like formula in the intersection ring of the grassmannian.

1.2.5 The operators Dy, defined by formula (1.8) deserve a few more
words. Indeed one has:

D (ul™) Auli2) A Aulio)y =

= Y ulH) gl A At

Pit..+he=h
hi>0

So, for example,

Dh(u/\u//\.../\u(k_l)) —uAu A.. AuF2D At

?The explanation given in [48] is that the k' exterior power of the polynomial
ring in one indeterminate is a free module of rank 1 over the ring of symmetric
functions on k-variables, which is in turn isomorphic to the intersection ring of
the grassmannian of k-planes.
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1.2.6 The other formal tool, that the Reader should be aware of,
1s integration by parts to find primitives of functions. For instance,
wanting to look for a function f € C*°(R) such that Dy f = zcosu,
one argues as follows:

zcosx = Dy(xsinz)—sinz =
Dy (xsin z) — Dy(—cos z) =

= Di(xsin z +cos z+c¢),
having applied the formula

J-Dig=Di(fg)—Dif -y,

often written in the calculus textbooks as:

[ria=1s- [dr-a

One wishes to practise a similar integration by parts on generalized
wronskians, with the purpose to climb up to reach the wronskian
itself.

A =Di(f Aty —f AT =
= DIEAF)—Dy(fAF) = (DI — Do) (fAT).  (1.13)

Equation (1.13) can also be written in the form:

fAf.

! //_Dl D2
fAf_‘ Dy

1

Some healthy experimental mathematics, based on explicitly working
out examples, may easily convince the Reader that suitable integra-
tions by parts yield, in general:

ul Au D AL AT = det(Dy,—jp) uad/ A AuTY (114)

where, by convention, Dy = 1 and D = 0if h < 0. Relation (1.14) is
Giambelli’s formula for wronskians or, possibly in spite of the most
skeptical Reader, Giambelli’s formula of Schubert calculus!
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1.3 Algebraic Schubert Calculus

Now that the Reader believes to possess the main tools for playing
with Schubert calculus, here 1s an attempt to define it in a purely
abstract algebraic setting, with no reference at all to the cohomology
of grassmannians. It is just an abstract formalization of the yoga of
differentiating wronskians.

1.3.1 Let M, be a free Z-module of rank n spanned by (¢!, ... )3
and, for each k£ > 2, let /\k M, be the k'* exterior power of M,
(see Section 2.2). The latter is a Z-module spanned by the symbols
1AL AER with 1< t; <n, 1 <j <k modulo the relations:

Erm AL NETH) = (—l)lTleil AL A€

where 7 € Sj; is any permutation on k-elements and |7| is the number
of its transpositions modulo 2. In particular ¢!t A. . .Ac’* = 0 whenever
€' = ¢ for some j < [. It follows that /\k M, is freely generated by
€1 AL AER with 1 < ép < ... < ip < n. One sets, by convention,
A’ M, =Z and \' M,, = M,,.

1.3.2 Let Dy : M,, — M, be, now, the endomorphism sending
Dié onto ¢t if 1 <i < n—1, and to 0 otherwise. Denote by D;
the 7 iteration D! of Dy, and set DY = idyy, . Clearly D;(¢/) = 0, if
t+j<nand D; =0,if j > n. The goal is now to extend the family
of endomorphisms

D :={D;: My, — M,}i>0

to endomorphisms of /\k M, for all 2 < k < n. Abusing notation,
they will be still indicated by D;. The extension will be achieved
by imposing Leibniz’s rule with respect to A. Suppose that D; has
been extended to /\k_1 M,. Since any n € /\k M, can be written

as a finite sum of elements of the form € A a;, o; € /\k_1 My, it

3 The reason why one puts the upper indices is twofold: on one side because
it reminds us the “primes” used to denote derivatives, and on the other hand
because it will be interpreted, later on, as a basis of a dual vector space, and in
these notes we use the Einstein notation, to put lower indices to the element of a
basis and the upper indices to the elements of its dual basis.
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1s sufficient to define the extension on elements of this form via the

equality:
h

Dh(Ei A Ozi) = ZDjEi A Dh_jozi.
7=0

Indeed, this makes Dj (h > 0) into an endomorphism of the exterior

algebra of M, :
k
A = DA,

E>0

where, by definition, /\0 M, = Z and /\1 M, = M, . The sequence
D = {D;}i>0, as well as the formal power series D; = ZDODiti
associated to it, will be named Schubert derivation (S-derivation)

(Cf. Sect. 4.3).
1.3.3 Example. Compute:
Da(e* Ae* Ae)
One has:
D2(€2 At A 66) = Dz(ez) At At +
—|—D1(€2) A D1(€4 A 66) + 2 A D2(€4 A 66) =
The first summand vanishes, since Da(¢?) = €* and ¢* Ae* = 0, hence
D2(€2 At A 66) =N (D1€4 A+t A D1€6) + A D2(€4 A 66) =
ENCANSHENANTHEANCANET +ENELNE,
1.3.4 All the matter consists, then, in differentiating and cancelling
terms with opposit sign. However, the practice of many examples
suggests how to predict the terms surviving after vanishing and can-

celations. This is the content of Pieri’s formula for S-derivations
(Theorem 4.4.1):

Dy(et AL A€ = ZG“'H“ AL ARt
(i)
the sum over all (hy,..., hy) such that >~ h; = h and

< +h <ta <. . <idp_1+hp_ 1 <ig.



1.3. ALGEBRAIC SCHUBERT CALCULUS 13

To each strictly increasing sequence I := (i1,...,4;) of k positive
integers, said to be a k-schindex in Section 2.1.5 , one may associate
a partition I(A) = (rg,...,r1), where r; =1; — j. The weight of A is
|A| = > 7. If one writes ¢ instead of €!T7+ A .. A €**7* then Pieri’s
formula translates into:

Dpéd = Z el

=3
where the sum is over all partitions g = (s, > ... > sy > 0) such
that > s; = > r; + h and:
0<r <s1<ry<s3< ... < sp1 <7p < 8, (1.15)

coinciding with the combinatorial Pieri’s formula: indeed, the Young
diagram (Sect. 3.4) Y (u) of p satisfying (1.15) is gotten by adding i
boxes to Y (A) in all possible ways, not two on the same column.

Furthermore, everybody’s basic calculus experience (Cf. Sect. 1.2.6)
proves that, for any €1 A. . .Acix € /\k M, there exists a Z-polynomial
expression G, ;, (D) in the D;’s such that

VA LA ER =Gy, 4 (D) P AN ER

The above fact shall be formally proven in Section 4.5, Theorem 4.5.9.
Useless to say, the proof consists in using integration by parts and it
is nothing more than a mere generalization and formalization of the
following example:

IAS = Dl(el/\ES)—elADleS:
= Dl(el/\ES)—el/\e4:
= D¥Ie'AE) = Dy(t Ae?) =
2
1

= (Dj- Dz)(e1 A 62)
already encountered in “wronskian shape”.

1.3.5 Exercise. Let 2 A’ Ae® € /\3 My, n > 6. Find a polynomial
expression Gass(D) in Dy, Dy, D3 such that

NSNS = Gase(D) - P AN,

(Hint: T would start so: NP N = Dl(el/\65/\66)—62/\D1(65/\66) =...)
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The general philosophy is that one does not need to know the explicit
form of Gy, i, : everybody just computes its own expression*. The
practise of many computations then develops the feeling for what
should be the most rapid way to get the answer. It is however natural
to apply the same “integration” procedure to figure out a canonical
shape for the polynomial G, ;,. This will be done in Sect. 4.8,
where Giambelli’s formula will be proven as a corollary of a more
general expression holding in the exterior algebra of the module M

(Theorem (4.8.1)).
1.3.6 To believe in the existence of Gy, ;, (D) such that

Gilmik(D)el A ANE =LA N
means to believe that the map
P(D)— P(D)' A ... AR
1s surjective. This allows to define a product structure on /\k M-:
(e“ A.. ./\eik) . (ejl AL ./\ij) = (Gy, 4. (D) ~Gj1mjk(D))€1 A AER
which 1s indeed isomorphic to the intersection product in the Chow

group of the grassmannian G(k,n).

1.3.7 Toend this section it seems worth to remark that formula (1.5)
holds verbatim up to replacing - with A:

D (aApB) = Z (7;) ta ADPTIB.
=0

The easy (and probably not necessary) proof is given in Sect. 5.3.1.
Observe now that

D{L(el/\ez) = Z o e A€,
0<i<j
i+j=h+3

with a;; € 7Z to be determined. This is obvious by the definition
of Di. It follows that ¢*~! A € can only occur in the expression of
Df(n_z)(e1 A €?).

4There are more than one and all equivalent modulo the ideal of relations of
the cohomology ring of the grassmannian (See Sect. 4.5)
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1.3.8 Example (Analogous to 1.1.2). One aims to compute the co-

efficient of €' A €™ in the expansion of Df(n_2)el A €. Notice that such
a coefficient gets the contribution of that multiplying €™~ A ¢ as well as
that multiplying €™ A ¢!, As a matter of fact one has:

Df("_2) (e1 A 62)) = (2(n N 2)> T AET + (2(n B 2)> A" ot

n—2 n—1

where o.t. means all the remaining summands. Therefore, the sought for
coefficient is:

b~ (2(n— 2)) ~ (2(n —2)> _ (-2
" n—2 n—1 (n—2)!(n—1)1"

See example 5.3.3.

Later on, it will be shown that this example is just computing
the degree of the Plicker image of the grassmannian G(2,n)
Or, alternatively,

the number of lines of P~ meeting 2(n — 2) linear subspaces of
dimension n — 3 in general position.

1.4 Grassmannians

1.4.1 To deal with enumerative problems such as that of Exam-
ple 1.3.8, one needs to introduce grassmannians. A grassmannian is
primarily a linear algebraic object: if V' is a vector space over any field
IF, denote by G (V) the set of all vector subspaces of V' of dimension
k. What can be said about Gy (V)7 If k = 0, then Go(V) = {0y}
and if dimp V' = n, then G,(V) = V. Since any inclusion Wy C W»
of vector spaces implies the inequality dim(W;) < dim(WW2), one sees
that G (V) = @ whenever k is bigger than the dimension of V', when
finite. If dim(V) = n < 1, there is not much to say: Go(V) and
G1(V) consist of at most 1 element. One may think, at first, that
even for higher dimensional vector spaces, the situation is not that in-
teresting. Indeed, all the k-dimensional subspaces of V' look the same
in at least two different senses. The former is that any two vector
spaces over the same field and of the same dimension are abstractly
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isomorphic. The second is that, given any two k-planes of V', there
always exists an element of the general linear group GI(V) sending
one into the other, as it will be proved in Proposition (3.2.1).

1.4.2 Another way to look at grassmannians is to think of them
as the set of all k-dimensional linear subspaces of a projective space
P™. A linear subspace of a projective space P(V) is the projective
space associated to a vector subspace W C V. So, for instance, the
grassmannian G5(IR*) of 2-planes of R* can be regarded as the grass-
mannian of projective lines of P3(R). There is an obvious bijection
of sets:

G (V) = Gk, P(V)).

In particular, P(V) = G1(V) = G(0,P(V)), i.e. the set of lines of V
is the same as the set of points of P(V).

1.4.3 Example. The set Gl(R2) can be thought of as the set of all the
lines passing through the origin of the standard (z, y)-plane of high school
analytic geometry.

<

A pencil of lines is a model for the projective line P!

Any such line can be written in the form az + by = 0, where (a,b) is a
non-zero pair of R?, uniquely determined up to a non-zero multiple. The set
Gl(R2) is called the projective R-line. It turns out that Pl(R) = Gl(R2) is
a compact connected differentiable manifold of dimension 1, diffeomorphic
to the circle

Sti={(z,y) eR? | 2” +y° =1},

with the differentiable structure induced by the stereographic projections.
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Stereographic projections: from the “north” and “south” poles

Similarly, if F = C, then PY(C) := G1(C?) is a compact connected

Riemann Surface bi-holomorphically equivalent to the Riemann Sphere 52
(see e.g. [10]).
1.4.4 For the limited purposes of these notes, even the field R is not
enough to keep the exposition as simple as possible, without loosing
elegance. Readers are invited to feel the reason through the following
example, whose main character is the quadric hyperfurface

Toky — X1La + Xokz = 0

of PP(IR), the real 5-dimensional projective space with its homoge-
neous coordinates [2g, 21, ...,25]. Consider the line

[v,0,u, u,au+ bv,v],

where [u,v] € P! and (0,0) # (a,b) € R2. Where do they intersect?
Trying to solve the system one finds:

u? 4+ 02 =0
which has no solution over the reals, while the line
[v,0,u, —u,au+ bv, v]

intersects the given quadric at two points. To avoid such a dichotomy,
one wishes that any general line intersects a quadric surface at two
distinct points. Allowing the coefficients to run over an algebraically
closed field, and ours will be C, one is led to work with complex
grassmannians, parametrizing k-dimensional subspaces of a complex
vector space V. The reason is that the intersection of a line in P°
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with a quadric hypersurface, counts indeed the number of lines in P3
intersecting four others in general position. For this reason, in the
rest of such introduction, all the vector spaces will be thought over
the complex field.

1.4.5 The fact that any two k-planes are indistinguishable in the
sense of Proposition 3.2.1 cries for the introduction of some kind of
“landmark”. For instance, picking an h-plane Il of V| a general k-
plane will intersect it in a subspace of dimension n — h — k: general
means, here, out of the space of solutions of some linear system of
equations. However, they may be k-planes in special position in-
tersecting Il in a subspace of dimension bigger than expected : if
h < k, this is the case, for instance, of any k-plane containing IT! In
this sense II discriminates planes having an expected behaviour from
those that are in special position. One may refine the landamrk : for
instance one can pick two vector subspaces W7 and Ws, of dimension
hy and hy respectively, and then distinguish the k-planes into:

i) those which are in general position with respect to Wy and Wa,

ii) those which are in general position with respect to one but not
with respect to the other;

iii) and those which are in special position with respect to both.

One soon realizes that the finest description is achieved by refining
such kinds of “reference systems” as much as possible. This naturally
leads to the important notion of a flag of subspaces of V| introduced
in Section 3.3

1.4.6 Tt turns out that the complex grassmannian G (V) (or her
projective sister G_1(P(V)), is a complete smooth connected alge-
braic variety. As a geometrical object it is interesting in its own,
either from the point of view of differential geometry (see e.g. [41],
[11]) or from the point of view of algebraic geometry.

For the purposes of this introductory chapter it is enough for us to
recall that very natural bundles (i.e. algebraic varieties which locally
look like the product of a variety and a vector space) live on Gy (V).
Indeed, there is a tautological exact sequence:

0— T — G(V)xV —Q, —0

where

Te ={([Al,v) e Gx(V) x V | v € [A]}
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i1s sald to be the tautological bundle: the fiber of the projection
7 T — Gr(V) over [A] € G(V) is the k-plane [A] itself5. As
for the wuniversal quotient bundle Qy, its fiber over [A] is the quo-
tient vector space V/[A]. A linear form ¢ on V induces a bundle
homomorphism:

¢ T — Gp(V) x C,
defined by ¢([A],v) = ([A], ¢(v)), which will be very important for

us. In fact the operators D; quickly introduced in Section 1.3.2 can
be identified with the Chern classes of the universal quotient bundle:
they are the so calles special Schubert cycles on G (V).

5The reason for brackets around A will be clear in Chapter 3.



Chapter 2

Preliminaries

The purpose of this section is to render the notes as self contained
as possible. Most of the readers can skip this part or use i1t as a list
of terms he may get better acquainted with in many good available
references.

2.1 Combinatorics

2.1.1 Partitions. A partition is a non-increasing sequence
A= (A1 A,0)

of non-negative integers such that all but finitely many terms are 0.
Partitions will be denoted with underlined greek letters (e.g. A, p1, v).

Let P be the set of all partitions. The length of A € P is the
number of its parts:

() =i > 1] A £ 0},

1Al = Z/\i~

i>1

while its wetght 18

One denotes by P, the set of all partitions of the integer n, 1.e.:
Pn:={A€P | |Al =n}.

20
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If A € Py, then 1 < £(A) < n. The partition of minimum length

is (n) while that of maximum length is (1,1,...,1). A partition
N——_— ——
n times
of length k will be usually identified with the finite non-increasing
sequence of its non-zero terms (Ag, ..., Ag). Let:

{(k) := {A € NF | X is a partition of length < k}.
Then A € £(k) is a k-tuple of non increasing integers (some of them
may be zero).

2.1.2 Example. The elements of the set Ps of the partitions of the
integer 5 are:

(5), (41), (32), (311), (221), (2111), (11111),

where it has been omitted the infinite sequence of final zeroes.

2.1.3 Historical Remark. Let p(n) be the cardinality of the set
P, of the partitions of the integer n. By convention p(0) = 1. Below
is a table of the values of p(n) for n < 10.

n |01 (2|3 4|56 | 7|89 ]|10
pm) [ 11235 |7 |11 |15 22|30 42

A nice formula by Hardy and Ramanujan, see [55], shows that the
function p(n) is asymptotic to

exp(m\/2n/3)
An/3
as n — 0o. So, for instance, p(100) ~ 1.9 - 108.

2.1.4 There are several way to represent a partition.

a) Reverse Order. For each 1 < i < k define:
ri s l(k) — NN,

by 7;(A) = Agg1-i. The k-tuple "A = (r1(A),...,75(A)) is A in the
reverse order. Most of the times, A will be skipped from the notation
and one will shortly write r; instead of r;(A). The partition A will be
simply written as (rg,...,71).
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b) Young Diagrams. To each partition A € P, one may associate
its Young diagram Y (A). The diagram Y (1) is an array with k-rows,
the rows are left-aligned boxes such that the i-th rows has A; boxes.
The Young diagram of the partition (53111) is depicted below.

More formally:
Y(A):={(i,§) €Z* |1 <j < N}

The length of a partition is the number of rows of its Young diagram
while its weight is the number of boxes.

¢) Multiplicities. Define
mi(A) =#H{A; | Aj =1}

The integer m;(A) is the multiplicity which the integer ¢ occurs with
in the partition A. Then a partition can be also written as

A= (172m2 LR,
In this case one has:
LA)=my+ ...+ my and Al = my 4+ 2ms + ...+ hmy,.
The conjugated of a partition ) is the partition )" whose Young

diagram Y (') is the transpose of Y (}). For example, if A = (53111),
then A = (52211) with Young diagram depicted below
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2.1.5 Schindices. Let

IF = {(i1,.. ., i) ENFI1 <y <y <...<ig}

and
IF={I €Tk |ix <n}.

In other words, Z% is the set of all increasing ordered k-tuples of
positive integers. Any such k-tuple will be called, for comodity, a k-
schindez, as a contraction of Schubert and index. The reason for this
name is that for each k-schindex I there is a grassmannian Gy(V)
with a Schubert variety having precisely that Schubert indez. Let
T = Ug>0Z". The set T is said to be the set of schindices. Any I € T
is a k-schindex for some k. Schindices will be denoted by capital
roman letters I, J, K, .. ..

2.1.6 Schindices and Partitions are strictly related. To each
I € T%, one may associate the partition A(I) defined by:

A = (s —k, ... i —1).
Conversely, if A = (rg,...,r1) € £(k), one sets:
IA) =0 +r,... k+r).

Clearly A : ZF — P and I : P — I* are bijections inverse one of
each other. The notation for such bijections is clearly abused. The
length of a k-schindex is k, while its weight is, by definition,

Mw

wt (1) ri = (i = 1)+ + (ix — k).

i=1

On the set ZF we shall put two different orders:
a) The Bruhat-Chevalley order:

(ila"'aik)j(jla'“ajk)<:>ip§jpa Vlgpgka

writing (é1,...,4) < (G1,...,0%) if (d1,...,8) < (J1,...,J8) and

(F1, k) # (G- )
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b) The lexicographic order:
(i1, .y ti) = 1y -y di)
if and only if either ¢, = j, for all 1 < p <k or if
g:=min{p | ip # jp} = iy < Jg.

2.1.7 Example. The set Z7 = {(i1,42) € Z?|is < 4} can be or-
dered be ordered, according to the Bruhat order, as follows:

1,2)

(1 3)
s e
@,4)

3.4

while in the lexicographic order:
(1,2) < (1,3) < (1,4) < (2,3) < (2,4) < (3,4).

2.1.8 The ring Z[T]. Let T = (71,75, ...) be an infinite sequence
of indeterminates over Z and denote by Z[T] the ring Z[T}, Ts, .. ]
of polynomials in the indeterminates T with Z-coefficients. For each
partition
A= (17 R,
define the monomial T2 by:
T2 =T . T

Then Z[T] admits a direct sum decomposition of submodules:

Z11) = @ Z[T)s,

h>0
where Z[T], = @D y=n Z- T2. For example:

ZTe=7; Z[Th =7 Ty, Z[Ty=2Z-T2®7-Ts.
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One defines the degree of a monomial T2 as the weight of the partition
A. Then deg(T;) = ¢, for all ¢ > 0 (where by convention 7y = 1). The
ring Z[T1, ..., T,] of polynomials in n-indeterminates is a quotient of

Z[T).

2.1.9 Let A be a commutative ring with unit and let ¢ : N — A4
be a sequence. Set ¢; = ¢(i). To any partition A = (rg, 7k—1,...,71)

of length %, let Ay(c) € A be defined as:

Cry Crot+1 cee Crpdk—1
Cri—1 Cry cee Crp4k—2
AA(C) = . . . . = det(er_H'_i). (2.1)
Cri—k Cro—k+1 .- Cry

setting ¢; = 0if ¢ < 0. Let I(A) = I = (d1,...,4k) be the k-schindex
associated to the partition A. Then (2.1) can be equivalently written
as:

Cip—1 Ciz—1 .- Cip—1
Ciy—2 Ci,—2 ... Ci—2

Ar(e) == A, ap)(c) = : : . E (2.2)
Civ—k  Ciz—k - Cip—k

Both equations (2.1) and (2.2) are said to be Giambelli’s determinant
of ¢ associated to the partition A or to the k-schindex I. If A := Z[T]
as above, one writes Ay (T) € Z[T] (or A;(T)) for the corresponding
Giambelli’s determinants associated to the sequence T = (71,73, .. .),

1.e. AA(T) = det(Trj+j—i)~

2.2 Exterior Algebra of a Free Module

2.2.1 To any module M over a commutative ring A, one may asso-
ciate an algebra (T(M),®), said to be tensor algebra (see e.g. [2]).
The exterior (or Grassmann) algebra A M of M is a suitable quotient
of T(M). For the limited purposes of this exposition, it is sufficient
to look at free modules over an integral domain A of characteristic 0!

1Vector spaces, among them.
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and, in this case, we shall give a practical ad hoc definition of exterior
algebra, ready for use.
Let M be a free A-module of infinite countable rank, generated

by & = (e, €,.. ).

2.2.2 Definition. Define /\0 M = A, /\1 M = M and, for all
k> 2, let /\k M be the A-module generated by all the expressions of
the form ¢t A ... A€ modulo the relations:

T AL AETR = (—1)|T| CETA LN EFR, (2.3)

forall T € Si. For allk > 0, the A-module /\k M s said to be the
k" exterior power of M.

Since the characteristic of the ring is 0 (hence # 2), relation (2.3)
implies that ¢* A...A€’* = 0 whenever ¢;, = 1;, for some j; < ja. It
follows that a basis of /\k M is given by

k
/\SI{Eil/\.../\Gik11§i1<...<ik},

the elements being ordered lexicographically. One has clearly a map
h k h+k
AMx ANM— A\ M
which is the unique A-bilinear extension of that sending
(PN AER ELA LN ER) s EE AL AE AET A LA ER (2.4)

2.2.3 Definition. The exterior algebra of M is the pair (\ M, A),

where R ,
ANM=PA\M=AeMe \Ma...

E>0
and the product A is defined according to formula (2.4).

Any /\k M will be thought of as an A-submodule of AM. If o €
/\k M C AM, then « is said to be homogeneous of degree k. Any
a € /\k M is a finite A-linear combination of elements of /\k E. Any
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B € AM is a finite sum of homogeneous elements. There is an
obvious map M x ... x M — /\k M defined by
——_— —

k times
(my,...,mg) = my AL Amg.

Such a map is neither injective (any m € M* with at least two equal
components is mapped to 0) nor surjective, as it can be shown on the
basis of easy examples: the image is said to be the set of decomposable
elements.

2.2.4 Exterior Algebras of Finite Modules. The same con-
struction holds verbatim for the free submodule M, of M spanned

by &, = (el,...,€"). A basis for /\k M, is then

k k
Nén={" A név e NE i <n}.

Clearly one has /\k M, = 0if k > n, because in this case any €'t A
... N\ € must have two equal indices. One has:

kst = ezt = ()

Therefore

k 2 n
AM, =P A\My =AMy NMy & ... \ M,

is itself a free module of finite rank equal to
k n n
S (A ) =3 (1) -
E>0 k=0

2.2.5 Example. Let M, = Tt @7’ @ 7 B Ze'. Then a basis of /\2 M,

with lexicographic ordering, is:
(el A et n et At NS, Enet A 64).
Then rkz(M) = 6. Similarly, a basis of /\3 My is
(el ANEANE EAENE AN, ENE /\64).

Then the rank of /\3 My is 4.
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2.2.6 Example. lLet ¢ : V — W be a homomorphism of F-vector
spaces. The map ¢ induces a map /\k ¢: /\k V — /\k W defined as

(NS Vi A AVE) = (Vi) AL Ad(vi).

One checks that rk(¢) = kif A" ¢ # 0 and A*' ¢ = 0. If ¢ € Ends(V)
and dim(V) = n, then A"¢(e1 A ... Aen) = a-e1 A... A en, where
E, = (e1,...,€n) is a basis of V. The scalar a € F is said to be the
determinant of the map ¢.

2.3 Review of Intersection Theory

Schubert calculus for grassmannians is a formalism enabling to per-
form explicit computations in the Chow intersection ring (or integral
Cohomology Ring) of a complex grassmannian variety — a smooth al-
gebraic projective variety. The aim of this section is then to quickly
collect a few notions intended to describe the idea of Chow ring of a
smooth complex projective variety. Universal references for the sec-
tion below are [16] and [17]. The brazilian reader should also look
at [78].

2.3.1 Order Along a Subvariety. Let X be a smooth complex
projective variety of dimension n and let Ox be its structure sheaf.
The function field k(X) of X is the quotient field of the integral
domain Ox (U), for some affine open subset U of X. The definition
makes sense because if V' is another affine open set of X, then the
quotients fields of Ox (U) and Ox (V) are isomorphic. If » € k(X), it
can be written as a/b, with a € Ox (U) and b € Ox (U)* := Ox(U) \
{0}, for some affine open set U. If a € Ox(U) and YV is a (n — 1)-
dimensional subvariety of X such that Y N U # §, write:

Ay (U) )
pAy (U) )’

where Ay (U) denotes the localization of Ox (U) at the prime p defin-
ing Y NU in U and {4 (M) denotes the lenght of an A-module M (Cf.
[16], p. 8 and p. 407). If r € k(X)*, one sets:

ordy (a) = lay ) (

ordy (r) = ordy (a) — ordy (b).
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2.3.2 Cyecles. The group Z;(X) of k-cycles of the variety X is the
free Z-module generated by all the irreducible subvarieties of X of
dimension k. The group of cycles of X is

Zu(X) = Zo(X) @ Z1(X) & ... & Zn(X).

If V is a subvariety of X of dimension k one shall denote by [V] the
corresponding k-cycle. To each r € k(X)* one may associate the
cycle
div(r) = Z ordy (r)[Y].
Y]€Zn_1(X)
One can prove that the above sum is finite (Cf. [16], p. 432).

2.3.3 Rational Equivalence. One says that V € Z;(X) is ratio-
nally equivalent to 0 (V ~ 0) if there are (k 4+ 1)-dimensional subva-
rieties W1, ..., W; and r; € k(W;)* such that

[V]= Z div(r;).

The k-cycles rationally equivalent to zero form a Z-submodule Raty (X)
of Z;(X). The quotient:

_ Zx(X)
AX) = g

is said to be the Chow group of k-dimensional cycles modulo rational
equivalence. The Chow group (of cycles modulo rational equivalence)

of X is:
Au(X) = P Ai(X).
i>0
In particular, the group A, (X) is a free Z-module of rank 1 generated
by [X] € Z,(X) = A, (X), said to be the fundamental class of X.
Each proper morphism f : X — Y of C-schemes induces a Z-
module homomorphism:

f* : Zk(X) — Zk(Y),
defined as follows. If [V] is a generator of Z;(X), then:

deg(fi.) - [F (V)] if dim(V) = dim(f(V)
Je [V] = )
0 if dim(f(V)) < dim(V)
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where by deg(f), ) we mean the degree of the algebraic field extension
[K(V) : K(f(V))]. Moreover, if f: X — Y is a flat morphism of
relative dimension m, one may define a pull-back map f* at the level
of the cycles. It is defined as:

f* . Zk(Y) — Zk-|—m(X)
[VI= (VD) = [~ V)).

Now, let f : X — Y be a proper morphism. If a € Raty(X),
then f.(a) € Raty(Y), while if f is flat of relative dimension m and
« € Raty(V), then f*a € Raty4m(X). This implies that f. and f*
define two homomorphisms of graded Z-modules:

fo o+ AdX) — A(Y) and (2.5)
o AdY) — Ad(X).

Such a fact is proven in [16], Ch. 1. The homomorphisms (2.5)
and (2.6) shall be called respectively the proper push-forward (un-
der the assumption that f is proper) and the flat pull-back (under
the assumption that f is flat). From now on, if V is a k-dimensional
subvariety, the symbol [V] will denote its Chow class, i.e. the k-cycle
determined by it, modulo rational equivalence.

Let now W be a k-dimensional scheme. Let W; be its irreducible
components. Then the local rings Ow w, are artinian local rings ([2]).
Define the multiplicity as the Ow w,-lenght of the module Ow w,
itself. Set:

mi = Loy, w, (Oww,).

2.3.4 Definition. The fundamental class of a k-dimensional sub-
scheme 1s defined to be the Chow class:

ZmZ ] € Ap(X).

Notice that if X is irreducible and reduced then the fundamental
class of W is simply the rational equivalence class of the cycle [W¥].

Another very important definition, which we already used more
than once, without setting it, is that of the degree of a cycle.
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2.3.5 Definition. Let X be a proper scheme of finite type over
Spec(IF), T being any algebraically closed field. The degree homo-
morphism:

/X:A*(X)—>Z,
is defined as:
Spnplk(P):F] if a=np[P]€ Ao(X)
/Xa: 0 if a€Af(X), i>0.

In the above formula [k(P) : F] denotes the algebraic degree extension
of F by the field of the point P, k(P) = Op/mp, mp being the
mazximal ideal of the local ring Op.

Clearly [k(P) : F] = 1 when T (as in our case) is algebraically closed.
If f: X — Y is a morphism of schemes proper over Spec(lF), then:

/on:/yf*(oz).

2.3.6 Example. Let A" be the affine n-space. Then A"(A™) = Z[A"].
We claim that Ag(A") = 0: in fact any point in the support of a 0-
cycle ¢ = Y o npP belongs to a line, and on a line any O-cycle is the
set of poles and zeros of a rational function. Therefore Y n,P = div(rp)
where rp is some rational function on some line passing through P, and
then equivalent to 0. From the fact that the obvious projection maps
p: A" — A"F forgetting the first k coordinates induces a surjective map
p* A (AMTF) — Ak (A7) (CF.[16], p. 22), it follows that:

Ai(A™) = p*(Ao(A"T)) = 0.
2.3.7 The Chow Ring. One defines:
AR(X) i= An_g(X),

the Chow group of cycles of X of codimension k. There is an obvious
Z-module isomorphism between A*(X) := @Ai(X) and A.(X). If X

is smooth (as in our hypothesis), one can put on A*(X) = A.(X) an
intersection product

{~ DOANX) x A(X) — ATH(X)
(a, B) — a-g 7
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making it into a ring. Such a product has a geometrical interepreta-
tion. Recall that two subvarieties V; and V5 of X intersect properly
if and only if

codim(Vy N'Va) = codim (V) + codim(Va).

Moreover they intersect transversally along W, if dw € W such that
TuVi 4+ TyVe = Ty X: the point w i1s then non singular for W and
one has T, W =T, V1 N T, Va. If Vi and V5 intersect properly,

(V] Vel = VAN V] = > myw [W] (2.7)
w

where the sum 1s over all the irreducible subvarieties W of the scheme
theoretical intersection VNV, and myy is the intersection multiplicity
of V1 and V» along W. The intersection multiplicity is defined in such
a way that if 1, and V5 intersect transversally along W, then myp = 1.
This is the reason why the product above is also called intersection
product.

2.3.8 Example. If Aq(X) = Z, generated by the class [pt] of a point
(like, e.g., in the case of grassmannians) codim(V1)+codim(Vz) = dim(X),
and Vi and V3 intersect transversally, then

ViJu Vo] = §(Vi N V2)[pt].

However, the number on the right hand side does not depend on V; and
V> but only on their classes modulo rational equivalence.

2.3.9 Intersection product on homogeneous varieties. If X
is transitively acted (say) on the left by a connected algebraic group
G (i.e. X is a G-homogeneous variety), an important theorem of
Kleiman ([37]) ensures that if [Y1] and [Y3] are any two cycles, then
there exists a Zariski dense open set U C G such that for each g € U,
Y1 and Ly(Y2) meet properly, where L, : X — X denotes the left
translation. In this case, according to (2.7),

[Y1] - [gY2] = [Y1 0 Ly(Ya)].

Moreover, if the group is rational, e.g. G = G{,,(C) as in the case of
grassmannians, then the map (L,) is proper and

(Lg)s : Ax(X) — AL(X)
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is the identity (Cf. [16], p. 207). Then, in particular, the self inter-
section [Y]? is represented by the intersection of Y with a general
translate of it. The conditions above are met for grassmannians va-
rieties (See Proposition 3.2.1).

2.3.10 The Chow group as a module over the Chow ring.
The Chow group A.(X) inherits a structure of module over A*(X)
with respect to the cap product:

{m OATX) x Ad(X) — ALX)
(a, [V]) — an[V].

Poincaré duality says that the map
a— an[X]

induces an isomorphism between A(X) @z Q and A,_;(X) @z Q.
The variety X being smooth, the above isomorphism holds indeed
over the integers. It is not easy, in general, to compute the Chow
ring even of a nice smooth complex variety.

2.3.11 Suppose that U C X is a Zariski open set and let Y := X\U
be its (closed) complement in X. Let i : U — X and j : YV — X
be the inclusions. Then the following exact sequence holds

The proof consists first in showing that the exact sequence holds at
the cycle level:

and then that the above maps pass to rational equivalence. See [16].

2.3.12 Example. One has that A,(P") = Z[P"] and A*(P") = 0 for
i>n. If0<r<n, A-(P") is generated by the class of a linear subspace
HU) = P7 of dimension r. In fact exact sequence (2.8) gives:

Apci(HY) — Api (P™) — Api (PP HY) — 0

and this proves that A, _;(P") is generated by H®, Similarly one sees that
Apn_i(P™) is generated by A,_,;(P™™!) which, by induction, is generated by

a linear space of dimension n — 1.
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2.3.13 Vector Bundles. A holomorphic vector bundle of rank r
over X 1s a complex algebraic variety V' together with a surjective
morphism 7 : V. — X, such that the map 7 is locally trivial (in
the holomorphic or algebraic category). The latter means that there
is a family (U, ¢r), where {U} is an open covering of X, and such
that the map ¢y : #71(U) — U x C" is a biholomorphic bijection
such that prs o ¥y = =w. It follows that the transition functions
guv = Yy oyt 1 v (VN U) — &y(V N U) are biholomorphic.
A meromorphic, (resp. holomorphic) section of a vector bundle is
a meromorphic (resp. holomorphic) map s : X — V such that
moo = idx and such that sy : U — " defined as ¢y o 5|, is
a meromorphic (resp. holomorphic). Then, locally, a holomorphic
section s is represented by r holomorphic functions on U:

su=(S1,...,8).

If U is an affine open set of X, the section is said to be regular if
(s1,...,87) is a regular sequence in the ring Ox (U). Denote by Og?"
the trivial vector bundle pry : X x " — X of rank r, pry being the
projection onto the 1°¢ factor. Its sections can be seen as functions
from X —s C". The structural sheaf Ox can be seen as the trivial
vector bundle of rank 1 over X. If V; and V5 are two vector bundles
of rank r1 and rs, respectively, a bundle morphism is a morphism
¢ : Vi — Vy such that my0 ¢ = 7 and ¢, : (Vi)e — (Va)g) is a
vector space homomorphism.

2.3.14 Chern Classes. Any vector bundle over X of rank 1 will
be said to be a line bundle. If s i1s a regular non-zero holomorphic
section of a line bundle L, the zero scheme Z(s) C X is a codimension
1 subvariety said to be a Cartier divisor. By definition ¢ (L) is the
class in A1(X) of Z(s). The set of all Cartier divisors is a group
called Pic(X): analytically is the group H'(X,0%) parametrizing
isomorphism classes of line bundles over X. On a smooth variety, the
natural map Pic(X) — A(X) is a group isomorphism (this is not
true in general if X is not smooth).

To each holomorphic vector bundle V' — X of rank r, one can
attach some distinguished classes:

aa(V),...,er (V) € A*(X),
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said to be the Chern classes of V. The r** Chern class has the
following interpretation: if s : Ox — V is a regular holomorphic
section of V', then the cycle class associated to the zero scheme 7 (s)
of s is precisely ¢, (V) N [X]. The Chern polynomial is

(V)= eVt

i>0

where ¢g(V) = 1. The Chern polynomial is certainly a finite sum.
In fact ¢, (V) = 0 if k is bigger of the dimension of X, because
A*(X) = 0 whenever k > n. Moreover one can prove (see [16], p. 50)
that ¢, (V) = 0 if k exceeds the rank of the bundle. All the Chern
classes ¢; of the trivial bundle prqy : X x C" — X are zero for ¢ > 0.
If

0—V —V—=>V"—0

is an exact sequence of vector bundles, one has ¢; (V') -¢; (V") = ¢, (V),
the equality holding in the polynomial ring A*(X)[t].

2.3.15 Example. Let V be a vector space of dimension n and let V¥ be
its dual. The tautological (or universal) exact sequence of vector bundles
on P(V) is:

0—7T —=0p)y®V —Q—0,

where Opyy @ V' is the trivial vector bundle P(V) x V, T is the bundle
T ={([u],v) eP(V)x V | v € [ul},

whose fiber over [u] € P(V) is [u] := C - u itself, thought of as a 1-
dimensional subspace of V', and Q is the universal quotient bundle, whose
fiber over [u] € P(V) is the quotient V/[u]. Let E14n := (€o,€1,...,€n)
be a basis of V, and let 14, := (%, €!,...,€") be the basis of V¥, dual of
Eiyn. Any a € V'V induces a bundle map

{oz : T — P(V)xC
(vlju) +— ([v],a(u))

so that V' can be seen as a global holomorphic section of the dual bundle
TV, usually denoted by Op(v)(1), and said to be the hyperplane bundle or
also the twisting sheaf of Serre (Cf. [34], p. 117). Conversely, any bundle
map

o' T —P(V)x C
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induces a homomorphism o : V — C. In fact if 0 #£ 8 € VY, the set
Us ={v € V|B(v) # 0} is an open set of V. Let Uj be the image of Up
via the map w — ﬁ Then oV is represented by a family of holomorphic
functions ag : Uy — C such that

60‘/3|Uér1UiY = 70W|U;30U,7
(one used the hypothesis that a" is a bundle morphism). In particular a s
admits a Taylor series expansion around any point of U é converging at ag
at each point of U/g (which will turn out to be, see below, a polynomial
function of degree 1). Let w € V be arbitrarily chosen and let [v] be any
subspace containing it (if w = 0 any [v] does the job). If v € Ug, then
w =t~ for some ¢t € C (possibly 0). Define

B(v)
a(w) = s (13205 ) = divias () e

Then « is a well defined holomorphic map V — C (i.e., if w € Ug N U,
the result does not depend on the representation of ). Moreover, since by
construction a(Aw) = Aa(w), Euler’s theorem on homogeneous functions
says that « is linear.

We have hence proven that H O(O]:[D(V) (1)), the space of the global holo-
morphic sections of Op(yy(1) is isomorphic to V7.

Ifo#£ace HO(ODD(V)(I))7 then
Z(a) = Hy = P(ker(a)),

is a projective hyperplane. Since for any «,3 € HO(ODD(V)(I)) the ratio
a /B defines a rational function on P(V), any two hyperplanes H, and Hg
determine the same class in A"_l(X) modulo rational equivalence. The

1%* Chern class c1(Opy(1)) =h € AY(X) is defined as:

hO[P(V)] = [H] € At (P(V)),

st

where [H] is the hyperplane class. Hence capping with the 1°" Chern class

corresponds to cutting with a hyperplane (modulo rational equivalence).

2.3.16 Example. Example 2.3.15 above can be generalized. On the
grassmannian variety G (1), parametrizing k dimensional vector subspaces
of an n-dimensional vector space V', the tautological exact sequence is:

0— T — Og,(v) @V — Q. — 0. (2.9)
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where the tautological bundle Ty is:
T = {([Alv) € Gu(V) x V | v € [A]}.

Any element of V" can be seen as an element of 7, := Hom(Tx, Og,(v)),
by defining:

a([Al,v) = ([A],a(v)).
The quotient Qj is a bundle of rank n — k whose fiber over [A] € G (V) is
V/[A]
2.3.17 Example. The intersection ring of the complex projective space
P™ is:

wpny . _Zh]
AP 1= b
where h[P(V)] is the class [H] € An—1(X) of any hyperplane. One already
knows (Cf. Example 2.3.12) that A'(X) is generated by h'. Moreover
h' -k’ = k17 because one may find a (n — 1)-dimensional plane H® and
(n — j)-dimensional plane H ) intersecting tranversally, and hence along
an — (i + j)-dimensional linear variety, representing the class hi*7. Since
Ao(P™) is cyclic, it has no torsion (because any rational function on a
curve has as many zeros as poles) and therefore Ai(]P)") is not torsion as
well, and hence isomorphic to Z - h'. In fact, were ah® € Ai(]P)") such that
ah' N[P"] =0 in An_i(P"), then ah'h"~ N [P"] = ah™ N[P"],i.e. a = 0. If

Y C P"is any projective subvariety of dimension ¢, its degree is defined as
deg(Y)[pt] = h' N[Y],

where [pt] := h™ N [X] is the class of the point. This corresponds with the
intuitive geometric idea that the degree of Y can be gotten by intersecting
it with sufficiently many hyperplanes in sufficiently general position. The
relation A'tT™ = 0 says that (14 n) hyperplanes in general position do not
intersect at all. Therefore, by the discussion above, the Chow ring of P(V)
is generated by the first Chern class of the hyperplane bundle Opy(1).



Chapter 3

Frames and
Grassmannians

The purpose of this chapter is to provide a smooth introduction to
grassmannians for beginners. Many important topics have been omit-
ted (one for all, the discussion of the tangent space to a grassmannian
at a k-plane, see e.g. [32] or also [1]), but what is in here is more
than needed to follow the rest of the exposition. At the beginning we
work over an arbitrary field IF, to stress that most of the features of a
grassmannian are of linear algebraic nature. We shall finally switch
to the complex field when geometry will ask for it.

3.1 Warming Up

3.1.1 The Set of k-Frames. Let V be an F-vector space. If
A = (uy,...,u;) € V¥ is any ordered k-tuple of V, one agrees to
denote by

[A] :=[uy,. .., ug]

the vector subspace Fuy + ...+ Fuy of V generated by A.
If dimp[A] = h, one briefly says that [A] is a h-plane of V. Any

38



3.1. WARMING UP 39

k-tuple A € V* can be seen as a linear map:

AP — Vv
v — A.v,

where:

A v=A- Ivlul—|—...+kak,

oF

and therefore every v € [A] is of the form A - u for some u € F*.

3.1.2 Definition. A k-tuple A := (vy,...,vx) € V¥ is said to be
a k-frame of V if [A] is a k-plane, i.e. if (vi,...,vg) are linearly
independent.

Let:
Fir(V) = {A € V¥ |dimp[A] = k},

be the set of all k-frames of V. If A € Fj(V), each u € [A] is of the

form u = A - v for a unique v € F*.

3.1.3 Example.
i) [ov]={0v};

il) a 1-frame of V' is just a non zero vector of V. Hence F1 (V) = V*, where

V' =V \{ov}

ili) the set Fy(F") may be identified with the set of all n x k matrices with
linearly independent columns, i.e. matrices of rank k;

iv) if dimV =n and A € F,(V), then [A] = [V].
3.1.4 Let VY be the dual vector space Homy(V,FF) of V, and sup-
pose that dimp(V) = n. Let us fix once and for all a basis

En = (e1,...,6n),

of V and the basis
En = (... )

of VV dual of E,, (i.e. €(ej) = 5;) Each v € V can be uniquely

written as:
v = E v'e;,
i=1
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where vi = €' (v). If A = (uy,...,ux) € V¥, one sets:
E(A) i=e(ay, .. ug) = (ul, . uk) = (), € ().
One also writes:

€ € etuy) ... et(ug)
A)y=| [ (ar,...,m) = , (3.1)

en (ay) ... €(ug)

so that the basis &, gives an identification:

61

SVE — Mk (),
67’74
where M, «x(IF) is the F-vector space of all the n x k matrices with

entries in F. Fach €t A ... A € /\k V' (Section 2.2) induces a
function: ' '
VAL AR VE ST

defined by:
€t (A)
EVALLANER(A) = AL AR (g, .. u) = det =
€+ (A)
el(uy) et (uyg) uj u;
€"(uy) € (uy) u? u}
Notice that:
oy 8
; ; I o [ s ;
TN NEF (€5, .65, ) = . = Z(—l) 5]1(1).....5]’;(k).
X Xl B
J1 Jk

In particular
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whenever the indices ¢; are pairwise distincts and
ETA L NER (e, e4,) =0, (3.3)

whenever there is at least a j, & {i1,..., i} (1 <p <k).
We have hence got a map

v — AV
(ag,...,u;) — wA...Au

Using the basis (e;, A...Ae;, ) of /\k V one has:

AFA = ug AL A = Z eil/\.../\eik(A)eil/\.../\eik. (3.4)
1<i;<n

Because of formula (2.3), the sum occurring on the r.h.s. of (3.4)
is only over k-schindices (Cf. Sect. 2.1.5) such that i, < n.

3.1.5 Proposition. A k-tuple A := (uy,...,u;) € V¥ is a k-frame
of and only if
w A Au #0 (3.5)

as a vector of N*V.
Proof. Indeed u; A ... Aug is a vector of /\k V' whose components,

with respect to the basis AFE,, of /\k V', are precisely the k£ x k& minors
of the matrix of formula (3.1). The latter has rank k if and only if
there is at least one non vanishing minor among them. One must
check, however, that condition (3.5) does not depend on the choice of
a basis of V. But were (f1,..., f,) another basis of V, then f; = e; A}
for some invertible matrix A := (A;) and € = A‘Z ¢'. Thus:

Vl/\.../\vk:eil/\.../\eik(/\)eil/\.../\eik =
AR AT AL NG (A)es, A A, =
FUA NG AR e NN Al =

SN NGTE(A) - i AN Sy

proving that vi A... A v, # 0 is an intrinsic condition independent
from the choice of a basis of V. L]
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3.1.6 Corollary. Let Ay := (uy,...,u;) and Ay := (v1,...,vg) be
two k-frames of V. They span the same k-plane of V if and only if

VIA...AVg=a-u A...Auy, (3.6)

holds for some non zero a € IF.
Proof. Suppose that [A,] = [A,]. Then A, and A, are both bases of
the same k-plane. Therefore!:

v; = A‘Zu]',
for some invertible k& x k matrix A = (A;) Then:
vi AL AVE =det(A) ug AL A g,

Conversely, suppose that (3.6) holds for some non-zero a € F. Then
we claim that [vy, ..., vy, w]is not a (k+1)-plane for each 1 < ¢ < k.
In fact

ViALAVEALG =a-up AL A Ay = 0,

because two equal indices occur on the r.h.s. [

As a consequence a k-plane is uniquely determined by the data
(e A ... A€*(A)) up to a scalar multiple.

3.1.7 Towards Grassmannians. Grassmannians are among the
first examples of parameter spaces contructed with the purpose to
solve concrete enumerative problems (see e.g. [79]). The simplest one
such is surely how many lines do pass through two distinct points in
the projective R-plane? This 1s an easy problem: everybody knows
that the answer is 1 and can be gotten by writing down the equation
of a general line and imposing the passing through two distinct points.
One so gets a linear homogeneous system of two equations in three
unknowns (the coefficients of the equation of the line) having a 1-
dimensional subspace of solutions. Since a line is determined by the
coefficients of its equation up to a non-zero scalar multiple, one sees
that there is only one such a line. However it is worth to present here
a way to solve the same problem that can be generalized to less easy
cases.

1We use Einstein’s convention on sums.
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Picking two distinct points of P? is the same as picking two distinct
I-planes [u;] and [us] in B3, which is the same as picking a 2-plane
[v,w] € G2(R3). The problem is then to find how many 2-planes
contain two distinct 1-lines. But w; € [v, w] iff [v, w,w;] # R3 i.e. if
and only if:

vAwAu, = 0
{v AwAuy, = 0°
The reader may easily check that such a system can be written in the
form:

et (ur)  €'(un)
(EAEv,w), A (v,w), et Ad(v,w)) - | (u1) Z(us) | =0
(ur)  (ay)
Since the rank of the matrix (notation as in formula (3.1))

61

e | (ug,us)

63

is 2, because u; Aus # 0, one finds a unique 1-dimensional space of
solutions, i.e. a unique 2-plane containing u; and us.

3.1.8 Another exercise. In the same vein, let us try to look for the
number of lines of the projective space P3(F), F = R or C, meeting 4
others in general position (i.e. any two of them do not lie in a same 2-
plane). This is the same as looking for the 2-planes in F* intersecting
four others in general position along a positive dimensional subspace.
Let [A;] € G2(F*) (1 < i < 4) be given. Then A € G5(IF*) intersects
A; in a positive dimensional subspace if and only if [A, A;] # F*. This
gives the following system (notation as in (3.1)):

et ne?
et né?
et net
e neé
e net
e net

0
(X34,X24,X23,X14,X13,X12)(A)' ~(A1,A2,A3,A4) = 8
0

where
(X34 X2 X x4 x13 X12)(A):
= (XPH(A), X*(A), XP2(A), XH(A), XTP(A), XT2(A))
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and
XU (A) =€ A (A).

Notice that equation (3.7) can be seen as the intersection of four
hyperplanes in P5(F), with homogeneous coordinates (X%). Since
the system has rank 4, this is precisely the equation of a line in such
a P, Last remark consists in observing that not any point of such a
P® can be seen as the set of coordinates of some 2-plane. In fact, the
check being left to the Reader’s care, any [A] € G2(IF*) satisfies the
following quadratic equation:

X12X34 _ X13X24 4 X14X23 =0. (38)

Therefore, the solution of our enumerative problem can be seen as
the number of intersection points between a line and the quadric
hypersurface (3.8) P5(TF), called the Klein’s quadric. If F = R one
may have either 0 or 2 solutions, since R is not algebraically closed.
IfIF = C, which is algebraically closed, instead, one would always find
2 solutions (according to the multiplicity). For sake of uniformity,
then, the field R will be from now on ignored and it will be assumed
that

the ground field IF is C.

The letter F, used to denote a general field, exits now from our
play.

3.2 Complex Grasmannian Varieties

The aim of this section is to imitate the construction of projective
spaces to put a structure of complex manifold on the Grassmann Set
of k-planes of a finite dimensional complex vector space. This will
give us the grassmannian variety or, briefly, the Grassmannian. First
of all, let us mention the following remarkable property.

3.2.1 Proposition. The group GI(V) acts transitively on Fi(V)
and G(V).

Proof. Consider the map:

GlUV) x F (V) — Fip(V),



3.2. COMPLEX GRASMANNIAN VARIETIES 45

defined by (A4, (uy,...,ug)) = (A -uy,..., A -ug). Tt is clearly an
action on F(V'), inducing an action on G (V) as well, by setting:

A-[A]=[A- Al

Let now Ay := (uy,...,ui) and Ay := (vy,...,vg) be any two k-
frames. Let W be a finite dimensional subspace of V' containing both
[ug,...,ug] and [vy, ..., vg]. If n = dim(W), let:

(g, ..., W, Uty ..., 0p,)  and  (Vi,.. ., Vi, VEgr, ..., Vi),

be any two bases of W gotten by completing A, and A,. Let ¢ €
GI(W) be the unique automorphism of W sending u; onto v;. If
V =W @ W', where W’ is the linear complement of V¥ in V', denote
by idw the identity of W’. Then the the automorphism

o Bidw :V —V,

maps A, onto Ay, as well as [A,] onto [A,]. This proves that GI(V)
acts transitively on Fi (V) and G5 (V). n

3.2.2 According to Proposition 3.1.5, Fj(V) is the complement in
VE of the zero locus of finitely many polynomial equations
(€ AN €ER(A) = 0, Y(iy,...,i) € IF). These are continu-
ous in both the Zariski or the usual topology. Then Fj(V) is a
(Zariski-)open set in V¥, because (vi,...,vg) is a k-frame if and
only if vi A...Avy, # 0 (i.e. at least one component of it, with re-
spect to the basis of AKV | is different from zero). However, as already
implicitly remarked, the same k-plane can be determined by several
different k-frames. The reason is that there is a natural right action
of the group Gl (C) of the k x k C-valued invertible matrices on the
set of k-frames, given by:

{Fk(V) X le(C) — Fk(V)
(A, A) — A-A

where if A = (vy,...,vg) and A= (A;) then

A-A=(viAL L v AL).
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Straightforward computations show that
EVALLAER(ALA) = VAL AER(A) - det(A).

Given that any two k-frames A, A’ defines the same k-plane if there
is A € Gl (C) such that A = A - A, it follows that Gx(V) =
Fr(V)/Gl(V). Moreover A and A’ live in the same Fj(V)-orbit
if the dim[A, A’] = k. This amounts to impose that the rank of any
matrix associated to the subspace [A, A’] is smaller or equal than k,
i.e. all its (k+ 1) x (k+ 1) minors must vanish. Therefore the graph
in F (V) x Fi(V) of the relation A ~ A’ if [A] = [A'] is (Zariski)
closed, showing that the quotient topology of G (V) is Hausdorff (or
separated in the Zariski topology).

Let

p (V) — Gy(V),

be the canonical projection and write p(A) = [A]. The fiber over
[A] € Gi(V) is the set p~1([A]) = A - Gl (C).

For each k-schindex T = (1 <y < ... < i <n), let

Ur = {[A] € Gp(V) | € A A€ (A) £ 0}
As remarked, the condition €/t A...A€'*(A) # 0 depends only on the
k-plane [A] and not on its particular representative.

3.2.3 Proposition. For each k-schindex I = (iy,...,ix), the set
Ur is open in the quotient topology of Gr(V).
Proof. Let Fj,(V); be the set of all A € F(V) such that

s 10 .0

o1 ... 0
W= = laner
< 00 ... 1

One has p(Fr(V);) = Ur. Therefore
P (Ur) = Fe(V); - Gle(V)
which is the Zarisky open set of Fj, (V') complement of
Z(ETA . NE) = {AC F (V)| €2 A AR (A) =0}, =
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It follows that the collection Ug := {U; |I € I%, i < n} forms an
affine open covering of G (V) and each Uy is isomorphic to Ckn=Fk),
Moreover, a subset U C Gp(V) is open if and only if U N Uy is
(Zarisky) open in Uy, ;,. In fact if U N Uy is (Zariski) open in Uy,
then p=1(U) N p=1(Ur) is (Zariski) open in p~1(Ur). But p=1(Uy) is
an open covering of Fj(V) and, therefore, p~1(U) is open, i.e. U is
open in Gy (V).
Let ¢y : Ur — Fix(V); be the map defined by

-1

€1 (A)
1/)[([/\]) =Ar=A-
€ (A)
Then, if [A] € U N Uy, one has:
Ay =Ar-g15,

where gry € Gl (C) is given by:
A\ AN
grJg =

dr(h))  \ex(a)

It is straightforward to check that gr; - g5k = grx. This cocycle
relation shows two things: first, that one can see the grassmann set
Gr (V) as an algebraic variety gotten by glueing (7) affine spaces (the
Ur’s) via the linear transition function(s) gry, which are polynomials
(being product of matrices in the components of the frame A with
respect to the basis E,). Secondly, the maps g7y : UrNU; — Gl (C)
are matrices whose entries are quotient of polynomials with non zero
denominator. Then such functions exhibit Fj(V) as an algebraic

principal G Ly (C)-bundle over G (V).

3.2.4 Theorem. The Grassmannian G (V) is a smooth irreducible
algebraic variety.

Proof. Since Fj, (V) is an open set of V* which is irreducible in the
Zariski topology, then it is irreducible. The irreducibility of G (V)
then follows from the the fact that G(V) is the continuous image
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of F(V) via the projection map p. It is smooth because it has
certainly smooth points, being covered by affine sets (the Us’s) which
are smooth. If 1t has a smooth points than all the points are smooth
because it is a homogeneous variety (the group GI(V') acts transitively
as an algebraic group of isomorphisms, see Proposition 3.2.1). L]

3.2.5 Let now
k
le : Fk(V) — Fl(/\ V),

be defined by (v1,...,vg) = vi A...Avy; here Fl(/\k V) stands for
/\k V' \ {0}, the set of 1-frames of /\k V. Clearly Fy(AFV) is acted
on by the multiplicative group Gy, (C) := GI{;(C) := C*. The map I¢
is equivariant, in the sense that g (A - A) = lg(A) - det(A). Hence I¢
factors through a map

Ple : G (V) — P(\V) = Gi(/\V).

said to be the Plicker map. In other words, two k-frames span the
same plane if their Plicker images are the same. Equip Gl (V') with
the quotient topology of Fi (V) /Gl (V).

3.2.6 Proposition. The Plicker map Plg is an embedding.

Proof. By Corollary 3.1.6, the Plucker map is injective. We are left
to show that it has injective tangent map. Let

Bei={zeCJlz[<e},

be a disc in the complex plane. Then, any tangent vector to [A] €
G (V) is of the form
dy
dz

’
2=0

where v : B. — G (V) such that v(0) := [A]. Therefore the tangent
of the Plucker map is:

dy 220) _ (%(gil A A EE(2))

TinPle (g

Z:O) (ily...,ik)el'ii
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It 1s then sufficient to show that

dv d
— TPl —
dz Z:0¢O<: (Al g(dz

. 7(2)) #0.

The property being local, it suffices to check it on an affine open
set of the Grassmannian of the form U containing [A] . Up to a
linear transformation permuting the elements of the basis F,, one
may assume that 7 = (12...k). Any k-plane in Uy can be represented
by a maximal rank matrix of the form:

1 0 0 0
1 0 0
0 0 1 0
0 0 0 1 ,
L1 T2 L1 k-1 L1k
21 L2 2 T2 k-1 T2k
Tn—k1l Th-k2 --- Tn_kk-1 LThn—-kk

where a tangent vector can be represented in the form (du;;/dz)|.=o.
Since for each pair (,7), such that 1 <i<kand k+1<j<n,

(A NN NENFTA) = (=) g

the tangent map can be written as

bl

-1 k—j+i—1 17 alpr St o Tk
[y ] e a ()

Z:O) (il,...,ik)EB

where B is the set of all k-schindices such that §(B N {1,2,...,k}) <
k — 2. Then the tangent map to the Plucker embedding is injective
as claimed (the null tangent vector is the unique pre-image of null
vector through the tangent map). m
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3.3 Schubert Varieties

3.3.1 A complete flag of a n-dimensional vector space 1s a filtration

E* of V:
E*: E°=VOE'DE*D...DE"=(0),

where E' is a vector subspace of V of codimension i. Suppose
that F,, := (e1,...,e,) is an adapted basis to F in the sense that
B = [ei-l-la"'aen]a 1 SZS n—1

3.3.2 Definition (Cf. Example 5.4.3). The i £-Schubert matrix
of [A] € G (V) is the i x k-matriz:

€'(A)
Seh([A]NE") = |
(M)
Let p;(E,A) := rk(Sch([A] N £%)). Then one has:
3.3.3 Proposition. The following equality holds:
dim(E' N [A]) := k — pi(E, A).

Proof. In fact, the vectors v € [A] belonging to £’ must satisfy the
linear system of equations:

ef(v)=0

d(v)=0

The dimension of the space of solutions is precisely & minus the rank
of the system, which is exactly p; (E, A). n

Because of the obvious inequalities:

(adding a row to a matrix the rank increases at most of 1), one
deduces that

dim(E'*F! N [A]) < dim(E* N [A]) < dim(EF N [A]) + 1,
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i.e., any possible dimension “jump” is not bigger than 1. The upshot
is that in the sequence:

k= dim([A] N E°) > dim([A] N BY) > ... > dim([A] N E") = 0,

there are exactly k dimension jumps.

3.3.4 Definition. An integer 1 < i < n ¢s a Schubert jump if
dim([A] N E*~1) > dim([A] N EY).

3.3.5 Definition. The Schubert index of the k-plane [A] is the
k-schindex
I[ALE )= (1 <dp < ...<ip <n)

of the Schubert jumps at [A].

To any k-plane one can obviously attach one and only one Schu-
bert index. The general k-plane has Schubert index (1,2,...,k). In
fact, a k-plane is general with respect to the flag £ if it intersects
E* (the subspace of codimension k) in the null vector, because the
general homogeneous linear system of k& equations in & unknowns has
no solution but the trivial one. As a matter of fact, the E*-general
k-plane lives in the complement of a Zariski closed set. Let us see
that. If [A] is not general, then dim([A]N E*) > 0. Hence there exists
0 # v e [A]Nn E* ie. there exists u € C* \ {0}, such that A -u
satisfies the linear system:

¢(A)-u=0, 1<i<k.

This is possible if det(¢!(A)) = 0, i.eif e? AL AF(A) = 0. If A =

(v1,...,vg), the condition can be recast as:
et(vi) ... el(vy)
elA.../\ek([A]): =0.
F(vi) o F(ve)

3.3.6 Definition. The expression ¢! A ... A €*([A]) is said to be the
E*-Schubert Wronskian at [A].

Hence the k-planes in FE°®-special position live in the zero-scheme
Z(eE A ANEF) of ¢ AL A€k Tt is worth to remark that the lat-
ter depends only on the flag E* and not on the adapted basis to
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the flag itself. For, were (¢1,...,¢") another basis such that Ei =
[¢'T1, ... ¢"], then the transformation matrix T from (/) to the (¢7)
would be triangular, so that

GPABTA AP =det(T) et AL A€
Since (el,...,€") are sections of TV (see Example 2.3.16), it follows
that ¢ A ... A" is a section of the line bundle A*7Y and thus that
the class of the E*-special k-planes in the Chow group A, (G5 (V) is
precisely:

[Z(e' A AN = et (AYTY) N [GR(V)].

One easily sees that this class does not depend on the flag chosen:
any two Schubert-wronskians are sections of the same line bundle.
Set o1 = cl(/\k 7.'). Because of the tautological exact 2.9 and the
fact that ¢ (Tx)c:(Qx) = 1, it also follows that:

g1 = 61(/\72/) = _Cl(/\/ﬁc) = _Cl(/ﬁc) = Cl(Qk)~

3.3.7 Example. Let V :=C[X]/(X") be the C-vector space of polyno-
mials of degree at most n— 1. It is a n-dimensional C-vector space spanned
by the classes of 1, X, X?,..., X" € C[X] modulo (X"). Let 2z € C and
consider the flag:

VOV(=20) DV(=22)D...0V(—nz)=0

where ‘
(X —20)" +(X7)

V(—izo) := ~n

is the vector subspace of polynomials of degree < n contained in the 7'
power of the maximal ideal (X —zg) of C[X], or, spelled in a more friendly
way, the subspace of polynomials of degree < n vanishing at z; with mul-
tiplicity at least ¢ (or divisible by (X — zo)i).

Let [A] be a subspace of dimension k of V and let (pi1(X),...,pr(X))
be a basis of it. Then [A] is special with respect to the given flag, if there
exists 0 # p(X) € [A] vanishing at zo with multiplicity at least k. Write:

p(X) :alpl(X)+a2p2(X)—|—...—l—akpk(X).
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Then p(¥ (z0) = 0 for all 1 <1 < k, where p® (X) is the #*" derivative of
the polynomial p(X). Hence [A] is special if the following determinant:

p1(zo pr(20)
p1(z0) Di(20)
Wi(pr,...,px)(20) := : : =0.
P17 (z0) PV (z0)

This 1s a true wronskian and hence motivates the terminology of Defini-
tion 3.3.6.

Let Wi, 4 (E*) = {[A] € G (V)|I([A], E*) = (41, ..., i8) }

3.3.8 Proposition. The set W;, ;. (E*) is an affine cell of codi-
mension (ip — 1)+ ...+ (ix — k).

Proof. If [A] € W;, ;. then, in particular, [A] € Ur (Sect. 3.2.2).
Therefore W, ;. is entirely contained in Uy, which is affine of di-
mension k(n — k). If [A] € Wi, 4., then [A] = [Af], where A; =
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(V1,...,Vg) is a k-frame whose matrix ‘(e!,... €") - Ay is given by:
el 0 0 0 0
gl 0 0 0 0
e 0 0 0
ehtl x 0 0 0
g1 x 0 0 0
€'? 1 0 0
giatl ¥ 0 ... 0
(Vi,va,...,vi)= | 1o (3.9)
gla—l x % 0 0
e's 0 0 1 0
¢latl x ok % 0
grt R
€l 0 1
et * ok *
en R *
Then W;, ;. is an irreducible affine subvariety of Uy, isomorphic

to AN where N is the numbers of stars occurring in the huge ma-
trix (3.9). The stars correspond to those components of the vectors
(v1,...,vg) not constrained by the condition Ay € Wjy. The con-
straints in the first column are: the first ¢; — 1 components are 0,
while the 7" is 1. Moreover one must put a zero in the it ... ith
because (€1, ..., €*)(A;) must be the identity matrix. Hence, in the
first column one has n — (i; — k + 1) stars. Similarly, in the j®* col-
umn one has the first ¢; — 1 components equal to 0, the i§h equal to 1

and then one still put £ — 7 — 1 zero corresponding to the iﬂ_h .. .izh

rows. It follows that in the i§h column one has n— (i; — (k— (7 — 1)))
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stars. Then one has:

n—ip—(k=—1)+n—d—(k—-2)+...+n—ir—(k—Fk) =
= kn—nk—(i1—-1)—(2—2)+...+ (i — k)=
= kin—Fk)—wt(])

where wt(I) = Z?Il(ij — j) is then precisely the codimension of Wr.

3.4 Intersection Theory on Gk(V)

This section 1s just a quick review intended to let the Reader doing
the necessaries comparisons with the material of Chapter 4. For
proofs see [16], [27], [53]. For a geometrically stimulating exposition,
see [39].

3.4.1 Definition. Let
Qr(E*) = Qi 5 (E) =W, i (E*),

the closure being taken in Gi(V). It is called the Schubert variety
associated to the flag F.

3.4.2 Suppose F'* is another flag of V. Because of the transitive ac-
tion of GI(V) on G (V'), there exists an automorphism ¢ of V sending
the flag F'* onto the flag £'* and, consequently, the Schubert variety
Q7 (F*) isomorphically onto Qr(FE*). Since GI(V) is rational (and
connected), their classes modulo rational equivalence in A, (G5 (V))
are equal (Cf. Section 2.3.9). Then one let:

Qr = [Qr(E*)] € A(G(V),

for some complete flag E* of V. The class Q € A, (G (V)) will be
said to be the Schubert cycle associated to the k-schindex 7. One
may also denote the same Schubert cycle as Q, where A = A(J)
(Cf. Sect. 2.1.6). Clearly Q12,5 = Q0...0) = [Gx(V)], the fundamen-
tal class of G (V). The class of Qr(E*) corresponds to a class in
A*(Gr(V)) classically denoted by o, related to it via the equality:

ox N [Gr(V)] = Qy,
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expressing Powncaré duality for grassmannians. The equality
oa Ny =0 N (o N[GR(V)]) = (oa - 0) N[GR(V)].

expresses instead the fact that A, (G (1)) is a module over A* (G (V)).
One also has:

3.4.3 Proposition (Chow basis theorem). The classes 2y =
oAN[Gr(V)], of Schubert varieties modulo rational equivalence, freely
generate the Chow group A.(Gr(V)).

Proof (idea of’). This is a particular case of a general result regard-
ing cellular complexes. In our specific example, one may argue as
follows. Any k-plane of V belongs to at least one open E*-Schubert
cell, namely that indexed by its Schubert cycle. Moreover, two dis-
tinct open Schubert cells are disjont, because otherwise there would
be k-planes having more than 1 Schubert index with respect to the
same flag, which is absurd. Then, using exact sequence (2.8), one sees
that the Chow group of G (V') (or its integral homology), is generated
by the classes modulo rational equivalence of the Schubert Varieties
(the closure of the open Schubert cells). To show that the classes
ox N [Gr(V)] freely generated the Chow group, one uses duality: for
each A € £(k),

Ox " OAY = O((n—k)*) = O(n—k,...n—k)

and the latter freely generates Ay (,—1)(Gr(V)). For the proof of this
fact see, e.g., [16], p. 268 or [27]. n

The following example serves as illustration of how Schubert’s
devices should work.

3.4.4 Example. In the projective space P® fix:
a) a 3-dimensional projective linear subspace H and a point P € H;

b) a set of 2-codimensional projective linear subspaces Iy, . . ., II5 in general
position. Suppose one wants to look for the class in A,(G(2,P%)) of all the
planes intersecting H along a line passing through P and incident to II;,
for 1 < <5.

Equivalently, one is asking to look for the class in A.(G(3,6)) of all the
(affine) 3-dimensional vector subspaces of C® such that

a) intersect a 4-dimensional subspace H of C® along a 2-plane containing
a given 1-plane (corresponding to the point P) and
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b) intersecting 5 subspaces of dimension 3 along a positive dimensional
subspace. The first step to solve such an exercise is to identify the involved
Schubert varieties . Let E*® be the complete flag:
C"=E>E' DE°>E>E'DE >E =(0)

If [A] € G(3,6) satisfy a), then one has that E° C [A] N E?, and that
dim([A] N E®) > 2. The general such plane is contained in the Schubert
cell Wise(E'). 1In fact if [A] verifies a) one has dim(E® N [A]) > 2 and
dim(E®° N [A]) = 1. The most general such plane is when the equality
holds, which corresponds indeed to the k-planes having 1, 3,5 as a Schubert
index. If a 3-plane [A], instead, meet E° (which has (affine) dimension
3) along a positive dimensional vector subspace, then it belongs to the
Schubert cycle €124(E*), since for the most general such 3-plane one has
dim([A]N E*) = 0. By Kleiman’s theorem (Section 2.3.9), one knows that

it is possible to choose sufficiently general flags FY ..., F¥, Fg such that
the intersection:

Y = 9124(F1.) Nn...N 9124(F5.) n 9136(F0.)

is proper, i.e. such that the codimension of the intersection scheme coin-
cides with the sum of the codimensions of those one is intersecting. The

class of Y in A.(G(3,7) is then:
[Y] = o7 - 021 N[G(3,6)]

and the problem now amounts to compute explicitly the product o7 s €
A*(G(3,6)) = A*(G(2,P®). Notice that Y has codimension 9 = dim(G(3, 6)).

To continue computations see Example 3.4.9

3.4.5 Since any Schubert variety is characterized by the Schubert
index of a general point of it, one sees, almost by definition, that

Qr(E*) is the Zariski closure Wy(E*) of the Schubert cell

R 1AL AR (A) =0, V(J1yeeeygk) <1
WI(E)={[A]eck(v)He”mwk(m))#o (-2 4)
(3.10)

In consideration of this remark, 1.e. that the Schubert varieties are
defined, even scheme theoretically, by equations (3.10), one shall also
use (see e.g. Example 5.1) the notation:

[€X AL A€, (3.11)

to denote the Schubert cycle Qi 5, € Ac(Gr(V)).
So, imitating Lascoux (see [61], p. 12) who said
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“The Schubert variety is a Schur function”,
we may say as well:

The Schubert variety is a generalized wronskian.

Indeed the two sentences are equivalent, as it is implicitly shown in
the recent work [48]. However we shall not insist on that.

3.4.6 Example. Let us fix a flag £* in C*. The homogeneous coordinate
ring of the Plicker embedding of the grassmannian is the homogeneous
polynomial ring
Cle* A €]

@
where @ = 0 is the Klein quadric relation. The ideal of the Schubert cycle
[€2 A €®] in S(G(2,4)), represented by the Schubert variety Q23(E®), is
(' Ae? el Ae® el Aet), while that of [e! A €*], represented by the Schubert
variety Q14(E®), is (€' A €%, ¢! A€®,e® A€®). The Reader should check,
for sake of exercise, that the sum of the two ideals cut out precisely the
Schubert variety [e* A €?].

S(G(2,4)) =

3.4.7 Via the Poincaré isomorphism:
A (Gr(V)) — A(Gr(V)),

sending o — oy N [Gr(V)], and by Proposition 3.4.3, it follows that
A*(GE(V)) is generated as a Z-module by the Schubert cycles 3.
It turns out that o; = ¢;(Qy) (see [16], p. 271). Doing intersection
theory on the grassmannian amounts to knowing how to multiply any
two Schubert classes 0y and o, i.e. to know oy -, in A*(Gx(V)) or,
equivalently, oANQ, € A, (G, (V)). Using the combinatorial language
of Young diagrams_(see Section 2.1 or, better, [20]), one may also say
that the Chow ring A*(Gx(V)) is freely generated, as a module over
the integers, by the Schubert (co)cycles:

{oa | Als a partition contained in a k(n — k) rectangle},

where o N [Gx(V)] is the class of a Schubert variety ,(E*) asso-
ciated to any flag E* of V. Schubert Calculus allows to write the
product o) - ¢, as an explicit linear combination of elements of the
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given basis of A*(Gx(V)). Tt consists, indeed, in an explicit algorithm
to determine the structure constants {C’;’Tu} defined by:

v
Ox Op= E C’;ual.
lzl=1Al+] £

The coefficients €%, can be determined combinatorially via the
Littlewood-Richardson rule ([52], p. 68).

The other recipe consists in determining any product via reduc-
tion to known cases. To this purpose, one first establishes a rule to
multiply any Schubert cycle with a special one. A special Schubert
cycle is a cycle indexed by a partition of length 1. Such a product is
ruled by

3.4.8 Theorem (Pieri’s Formula). The following multiplication
rule holds:

Oh-0Ox= Zaﬂ (3.12)
<3

the sum over all partitions such that || = |A| + h and
n—k>p > A 2> > g > Ag.

where n = dim(V).
Proof. (see e.g. [27], p. 203).

Pieri’s formula can be also phrased by saying that sum (3.12) is
over all the partitions g whose Young diagram Y (y) is gotten by

adding h boxes to Y(A), in all possible ways, not two on the same
column. For instance, in G(3,n), with n > 9, one has:

09 - 0331 = 0531 + 0432 + 0333.

The “graphical Pieri’s formula”, in terms of Young diagrams is de-
picted below:

*] %] #]

mnly _ . .
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3.4.9 Example (3.4.4 continued). With Pieri’s formula at our dis-
posal one may compute the intersection product o} - a1 € A*(G(3,6)).
One applies Pieri’s formula 5-times, getting:

0411(032 + 0311) = ... (four more times)... =5 gaas.

Therefore the answer to the question proposed in Example 3.4.4 is 5 (see
Example 5.2.3 for computational details in a different formalism).

It is not difficult to prove, and in fact we shall do it in Chapter 4,
that Pieri’s formula determines, indeed, the ring structure of A*(G).
In particular, one can see that A*(() is generated, as a ring, by the
first k& special Schubert cycles o1,...,0,. This is a consequence of
another explicit consequence of Pieri’s formula, i.e. the determinantal
Grambelli’s formula, expressing the Schubert cycle ¢y as a polynomial
in the special ones:

3.4.10 Proposition (Giambelli’s Formula). The Schubert cycle
associated to a partition A = (r,...,r1) is a (determinantal) poly-
nomaial expression in the special Schubert cycle o;’s:

Ory Oro41 e Orp+k—1
Ori—1 Ory e Orp+k—2
o= Aa(e)=| c T = det(on,4-0)-
Ori—k+1 Ory—k+2 oo Ory

Proof. It will be given in Section 4.8 within the formalism of §-
derivations as a consequence of a suitable “integration by parts”. m

Therefore, the computation of an arbitrary product oy - o, is re-
duced to a sequence of applications of Giambelli’s and Pieri’s formula:
one first writes o) as a polynomial in the 0;’s, and then applies Pieri’s
formula as many times as necessary and then again Giambelli’s and
so on. Computations become intricate in big grassmannians and for
lengthy partitions, but products are computable in principle.

3.4.11 Example. To compute 011 - 621 in A*(G(3,6)), one first use
Giambelli’s formula to write, e.g., 11 as a% — 02 and then expand the
product:

(0’? — (31'2)(31'217
by applying thrice Pieri’s formula. The result, whose checking is left to the
reader, is 0221 + 0311 + O32.
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3.4.12 A few comments. As already said, Giambelli’s formula is
a formal consequence of Pieri’s formula. However, the way to show
it may be rather tricky. The reader may look at the proof of [27],
p- 204-206, which, in spite of being conceptually easy, is based on a
formula whose proof consists in a case by case combinatorial analysis.
Another equivalent proof is that presented in [53], p. 13. There.
the Author proves Giambelli’s formula in the realm of symmetric
functions, where a Schur polynomial associated to a given partition
is expressed as a determinant of complete symmetric functions: that
is the so-called Jacobi-Trudy formula (see [52], pp. 23 ff. and also
[16], p. 422). The proof works by induction and the details of a
preliminary lemma (analogous to that used in [27], p. 204) are left
to the reader’s care. The proof we propose in Section 4.8, within
the formalism of S-derivations, instead, is based on the definition of
determinant of a square matrix!

The shortest elegant proof the author knows is the very general
one, by Laksov and Thorup, in a recent preprint ([48]), within the
framework of symmetric functions. The philosophy is however quite
different from that of these notes: there is there more mathematics,
more generality and hence more naturality.

3.4.13 Giambelli’s formula proves that A*(Gj(V)) is generated, as
a ring, by the special Schubert cycles only. Its presentation can be
gotten combining Giambelli’s and Pieri’s formula and is given by

Zlo1, ..., 0k]
(Zn—kt1(o), ..., Zn(0))’

where each X,,_j44(0) is an explicit weighted homogeneous polyno-
mial in o1, ..., 0% of degree n — k + ¢. Such a presentation shall be
explicitly computed in Section 4.7. Notice that since o; = ¢;(Q) (as
recalled in Section 3.4.7), the Chow ring of the Grassmannian is the
generated by the first & Chern classes of the universal quotient bundle
Q. In particular ¢p_gy1,...,0, vanish if & < n — k, by properties
of the Chern Classes.

AT(Ge(V)) =




Chapter 4

Schubert’s Algebra

This chapter i1s devoted to construct natural endomorphisms
(Dy, Do, ...) of the k' exterior power /\k My, (k > 1) of a free Z-
module M,, of rank n. The image via Dy, (h > 1) of a basis element of
/\k M, can be computed through a Pieri-like formula (Theorem 4.4.1
and Proposition 4.7.4). This will prove that /\k M, is a free module
of rank 1 over the subring of Endz(/\k M,,) generated by the Dj’s,
isomorphic to the Chow group of the grassmannian variety Gy (V)
(dim(V) = n), seen as a free module of rank 1 over the Chow ring
A*(GE(V)) (Theorem 4.7.6). Since applying Dy to a basis element
“simulates” the operation of taking the h'® derivative of a (genera-
lized) wronskian (see Chapter 1), the quoted theorem proves indeed
that such a differentiation formalism coincides with Schubert calcu-
lus. It will be then developed in a purely formal way. The proofs look
natural and particularly transparents: for instance, the relations oc-
curring in the presentation of the Chow ring of the grassmannian, are
phrased in terms of “derivatives” vanishing on /\k M, , while Giam-
belli’s determinantal formula (necessary to explicitly multiply two
arbitrary Schubert cycles in A*(G(V))) is seen as a consequence of
a more general “integration by parts” formula.

62
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4.1 Hasse-Schmidt Derivations on Exte-
rior Algebras

For the time being, let M be any A-module, ¢ an indeterminate over
A and A[[t]] the ring of formal power series in t. Let A M|[[{]] :=
AM @4 A[[t]]: an element of A M[[t]] is a formal power series with
“coefficients” in A\ M1

4.1.1 Definition. A Hasse-Schmidt derivation ©; on A M is an
A-algebra homomorphism:

D : A\ M — (/\M) o

A Hasse-Schmidt derivation on A M determines, and is deter-
mined by, its coefficients ©; : AM — A\ M, defined via the equality

@toz:ZDi(a)ti, VaE/\M.

i>0

4.1.2 Proposition. For each i > 0, ©; satisfies (the generalized)
Letbniz’s rule:

Dp(anf)= > DpahDyp, (4.1)

hit+ha=h
h1,ha>0

Proof. By explicitly writing that 0, is an A-algebra homomorphism:
@t(a/\ﬁ)zgta/\gtﬁ, VOZ,BE/\M

one sees tha D, (a A B) is the coefficient of " in the expansion of
D:(a A B), which is also the coefficient of " in the expansion of the
wedge product

(©0a+©1at+©2at2 —1—) A (@06+©1ﬁt+©26t2 —1—),

ISince the exterior algebra has been defined only for free modules, the reader
not familiar with the general definition, may assume that M is free, as will be
needed later on. However the construction below holds in general.
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i.e. exactly the right hand side of eq. (4.1). n

In particular, ®g is an algebra homomorphism:
Do(a A B) = Do(a) ADo(B),
while 1 1s a “usual” derivation:
Di(anNf) =D1aAB+aADf.
If D, = Zizo D,t!, the sequence of the “coefficients”
D= (90,91,D3,...)

of ®; will be also said a H S-derivation and the ©;’s will be also said
to be the components of ©. To denote a HS-derivation the symbols
® and D, shall be used interchangeably.

4.1.3 Proposition. If o, : M — M([[t]] is an A-module homo-
morphism there is one and only one HS-derivation ©; : ANM —
A M{[t]] such that ©y,, = 0;.

Proof. Since any p € A M is a finite sum of homogeneous elements
My + oo 4 pg,, Wwe may assume that g is homogeneous of degree k,

le. p € /\k M. Therefore p 1s a finite sum products of the form
m;, A...Am, . Then one sets:

Di(p) =De(my, Ao Amy, ) = 0e(my ) A AD(my,)

getting an extension to the exterior algebra. Suppose now that &; is
another extension such that QI”M = 0;. Then:

Ce(my, Ao Amy) = Cimy )AL AC(my, ) =
= (m ) A A0 () = De(ma, Ao AM, ),

for each £ > 0 and each m;; A ... Amy, € /\k M. The extension is
hence unique. [

4.1.4 Definition. A HS-derivation © on \ M is said to be regular
if Do € Enda(A\ M) is an A-automorphism; a regular HS-derivation
is normalized if Do = idp ar-
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The distinction between regular and normalized H S-derivation is im-
material, because to each regular H S-derivation ®; corresponds the
normalized one:

DDy = idpy + Y Do ' Dt
i>0

If ©, is a HS-derivation, denote by ®; the map

D (A M — (A M)II]

defined as:
DD ait’) = D @a Lagy = Dyfai)t’. (4.2)
>0 >0 >0

This is an A[[t]]-algebra endomorphism of A M[[¢]]. In fact:

Q_t(Zaiti/\Zﬁjtj)IQ_tZ Z Oli/\ﬁj th =

k>0 \i+j=k
S DD PEAITALED S SICTIE RS
k>0i+5=k k>0i+j=k

@72 agth) /\D_t(z B;td). (4.3)

Let HSy (A M) be the set of all regular HS- derivations on A M,
and let &, D, € HS;(A\ M). Define their product in End (A M)[[t]]

as being:
CxD =Y Y (GoDy)t (4.4)
h>0i+j=h

and notice that
¢ #Dy(a) = & 0Dy(a), Yae A\ M,

by just expanding the two sides of the above equation according

o (4.2) and (4.4)
4.1.5 Proposition. The pair (HS:(\ M), ) is a group.
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Proof. Let €&, D, € HS; (A M). Let us prove that €, x®, € HS:(M).
In fact
Q:t*gt(a/\ﬁ) = (Q:to t( /\ﬁ)):
= Q:t(
= t(
= Q:_to t
= Q:t * Qt
so that € oD, € HS;(A\ M). The composition o is obviously asso-

ciative. The identity 1 := 13y of M belongs to HS:(A\ M). Let @t_l
be the formal inverse of ©; in End(A M)[[t]], i.e.

D oDy =07 oDy = idp u,

existing by the regularity hypothesis on ©;. One has:

D7 anp) = D7 DD () ADU(DT)(B) =
= D7'@(®7a A (D)) =
= (97 0D)@aADI) = (D7 e ADI),
proving that ;' € HS,(\ M), which is obviously regular. n

4.2 Shift Endomorphisms

4.2.1 From now on M will be a Z-module freely generated by & :=

(et e, .. ):
M = @ 7€
i>0
Any m € M is a unique finite linear combination >+, mse of ele-
ments of £. Regard M as a graded Z-module: B

M= M,, (4.5)
w>0

where M, = Z - €' T If m € M;, the integer wt(m) = j — 1 is said
to be the weight of m. For instance, ¢! has weight 0, ¢ has weight 1
and so on.
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4.2.2 Remarks and Examples.

a) The module M will be interpreted, later on, as being the dual of a Z-
module N, freely generated by a basis E := (e1, e2,...). In this case & will
be taken to be the basis of NV dual of E, i.e. such that ¢'(e;) = 8. This
partly motivates the use of superscripts to index the elements of the basis

of M.

b) Let M := Z@M. It is the Z-module freely generated by £ = (%, ¢!,... ),
where €® := 1®0;s. A model for M is 7.°°, the Z-module of all the functions
P :N — Z such that {n | P(n) # 0} is a finite set. The canonical basis of
7> is {8'|i > 0}, where §° : N —» Z is defined by §'(j) = 6}. Any P € Z
can be uniquely written as P = 3., P(¢)é". All the free Z-modules of
infinite countable rank are isomorphic to Z°, via a unique isomorphism
£: 7> — M, defined by 3(5’) =¢ (i > 0). The isomorphism Z* — M
and the basis (ei)i>0 have been indicated with the same letter £, by abuse
of notation. N

c) Take M = Z[X], the Z-module of polynomials with Z-coefficients in one
indeterminate. A basis is given by the monic monomials of degree 1 > 0 :

(Xm0 := {1, X, X7, X° ...}

This is another piece of motivation for using superscripts to index the
elements of the basis £ of M. In this case the module M C M can be
interpreted as the prime ideal (X).

4.2.3 Definition. Let i > 0 be an integer. The i'" E-shift endo-
morphism D; : M — M s the unique Z-endomorphism such that
D;(e?) = €%, The shift endomorphism sequence is:

D = (Do,Dlj . )

Clearly Dy = idys and, for each ¢ > 0, D; is a monomorphism:
moreover D; = D! (agreeing that DY = Dy).

With respect to the grading (4.5) of M, D; is a homogeneous
endomorphism of M of weight (=degree) i, because D; M; = M,y ;.
Let D; M denote the free submodule of M generated by

=D& = (M 2.
One has a filtration of M by means of free submodules:

DM: M=DM>DD/M>DDMD....
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Let MV := Homgz(M,Z) be the dual module of M and denote by
E := (e1,e3,...) the basis of MV dual of &, i.e. e;(e?) = &7.
4.2.4 Examples.

a) If M = Z[X], the ¢*"-shift endomorphism of Z[X] (with respect to the
basis (1, X,...}) is the multiplication by X*. In fact X*- X? = X**7. Also

in this case one has X' = X7.

b) Let Is = (—6,8) CR, with 0 < 6 <1 and f: Is — R be the function

Then f is a function of class C°° on 5. Let f(i) () be the i-th derivative

of f. Since
) ¢
(=) TSR & eR

then (f, f', f",...) are linearly independent in the R-vector space C'*(Is),
and hence also linearly independent over Z. Define M as @,,,%Z - f ),
Then, the shift operator is precisely d*/dz’ sending f(J)(x) onto 017 (x).
This kind of examples inspired the choice of the symbol D; (as for deriva-

tive) for the i*"_shift operator and again the superscripts to denote the
elements of the basis £ of M.

4.2.5 The ring A*(M, D). If A = (1™12™= ) is a partition, de-
fine:
DA =D o...0 DI € Endy(M),

where o is the composition in Endz(M) and
DI =Dio.. oDy,
~——————
7 times
is the j** iterated of D;.
Let evp : Z[T] — Endz(M) be the module homomorphism

defined by:
TA s eVD(TA) = DA

The image is the Z-submodule of Endz(M):

A" (M, D) = Z ayD* | L is a finite subset of P
AEL
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If P(T) € Z[T], we shall simply write P(D) instead of evp (P(T)).

4.2.6 Proposition. The set A*(M, D) is the minimum Z-subalgebra
of Endz(M) containing all the D;’s. Moreover it is commutative.

Proof. The fact that A*(M, D), with respect to the composition
of endomorphisms, is a Z-subalgebra of Endz(M) is obvious; it is
commutative because D;D; = D;D;, for all ¢, > 0. Suppose now
that A is any Z-subalgebra containing all the D;’s (i > 0). Then it
contains D2, too, for each A € P, and therefore any finite Z-linear
combination of them. Then A D A*(M, D). n

Because of the commutativity of A*(M, D), the natural evaluation
epimorphism:
evp : Z[T] — A™(M, D),
defined by evp(T2) = D2, extends to a ring homomorphism, again
denoted by the same symbol evp. It can be defined on the algebra
generators by evp(T;) = D;. Then A*(M, D) is itself a graded ring:

A (M, D) = P A"(M, D),
h>0
where A"(M, D) = evp(Z[T]s). Let
{evﬁl A (M, D) — M
P(D) — P(D) -t

Clearly ev.: is surjective. In fact for any m = a1t +asc®+.. 4 a,c?,
there is G, (D) € A*(M, D) such that G,,(D)el = m: it suffices to
choose

Gm(D) = alidM + Clle + ...+ an_an.

Furthermore
evp a i=eva oevp : Z[T] — M,

is an epimorphism and the equality ker(evp 1) = ker(evp) holds. In
fact ker(evp) C ker(evp 1), by the very definition of evp (1.

Conversely, if P(T) € ker(evp (1), then evp (P(T))e! = Op, lee.
for each m € M:

evp(P(T))m = evp(P(T)) - Gm(D)e1 = Gm(D)eVD(P(T))e1 =0,
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meaning that evp (P(T)) = O4+(am,p), i-e. P(T) € ker(evp). This
proves that:

4.2.7 Proposition. There are Z-module isomorphisms:

71T evp €Vl
_ZM T D) S M
ker(evp)

Next task consists in determining explicitly ker(evp), but this is
easy. Since D; = D}, the ideal (T; — T});»1 of Z[T] is contained in
the kernel, whence the surjection:

Z[T Z[T
1] 7

AR
73] (Ty — T2, T5—T3,..)) ker(evp)

1

~ M,

given by Tf_l + ¢'. This latter map is clearly injective (if evp(ag +
ayT% + ...+ a,T%") = 0, then Z?Il aijeij‘l'l =0, ie. all a;; =0)
and then ker(evp) = (T; — Tf)izo and Z[Ty]| = A*(M, D) = M.

4.2.8 A few words about the “extended” module M = Z @& M.
First of all the shift endomorphisms D; : M — M clearly extend to
shift endomorphisms D; : M — M (by abuse denoted by the same
letter), by defining D;e” = ¢’. The corresponding filtration is then:

DM: M=DyM>D/MD>DDyMD>...

extending (42_1) In particular one has Dy M = M. In this case one
has again A*(M, D) = Z[T1] and the isomorphism

A3, D) — T

is given by sending D} — €” = evp o(T7).

4.3 Schubert Derivations
4.3.1 If D :=(Dy, Dy,...) is the E-shift sequence of M, denote by:

Dy = Dit' = idy + Dit + Dot* + ... € Endg(M)[[1]],
i>0

its corresponding shift formal power-series. Let \ M be the exterior
algebra of M.
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4.3.2 Definition. The Hasse-Schmidt extension of Dy to N M is
said to be Schubert derivation (S-derivation, for short).

The S-derivation is then the unique Z-algebra homomorphism
Dy A M — A\ M[[1]],

such that D;(¢%) = >0 ¢'titi. The algebra homomorphism condi-
tion means that Dy(a A 8) = Dy A Dyj3, for each o, 8 € AM. If
a € AM and h > 0, Dy will be said to be the h'" S-derivative of
a. In particular one has that Dy is the identity and that, see 4.1.2,
Dy, € Endg(/\ M) satisfies Leibniz’s rule (4.1).

For each h > 0, Dy is a homogeneous endomorphism of A M of
degree 0 with respect to the grading

AV =@ AN,

E>0

le. Dh(/\k M) C /\k M. By abuse, the induced endomorphism

k k
Dyt ANM — A\ M
will be still denoted by D;.
4.3.3 Proposition. The endomorphisms D; : /\k M — /\k M
(i > 0), are pairwise commuting.

Proof. By induction on k. For k = 1 the claim is true by construc-
tion. Assume that the property holds for £ — 1. Since any m € /\k M
is a finite sum of k-vectors of the form a A §, with & € M and
b€ /\k_1 M, without loss of generality one may check the property
for any m of this form. Then:

D;D;(a A B) = Dy Z D;,aAD;,3) =
Jitj2=j
j1,7220
= > > DiDjanD,D;B. (4.6)
t14i2=i J1t+j2=J
11,8220 j1,7220
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By the inductive hypothesis, last member of equality (4.6) is equal
to:

E Z Dleiloz/\DjQDi2ﬁ = Dj( Z Dila/\DiQﬁ):

Jitj2=j t1t+i2=t 11+ia=1t
J1,7220 11,i220 i1,i22>0
= DjDi(Oz/\ﬁ).

]
As a consequence, the natural evaluation Z-module homomor-
phism
evp : Z[T] — Endg(\° M)

T2 +— D2

maps Z[T] onto a commutative subring .A* (/\k M, D) of Endg (/\k M).
It turns out that for & > 1, as already for k =1, /\k M 1s itself a
graded Z-module with respect to the weight grading defined below.

4.3.4 Definition. The weight of a non zero element €1 A.. . Ae'* €
/\k M 1is the weight of the k-schindex I:

. . k(k+1
wt(er AL A =i — D+ + (i — k) = + )

IIMw

If I = (1 <4 < ...< i), the weight of ¢t A ... A € coincides
with the weight of the associated partition A(J) = (ix — k&, ..., i1 —1).
Notice also that

wt(e™ AL AER) = wt(e A LA TR,

for all 7 € Sg. Let (/\k M)y be the submodule of /\k M spanned by
all €1 A ... A€ of weight w. Then, clearly:

(i) () i) - (i),

w>0

and this makes /\k M into a graded Z-module.
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4.3.5 Remark on the terminology. The terminology weight has been
suggested by the theory of Weierstrass points. In fact the Weierstrass gap
sequence of a point P of a smooth curve C'is a g-schindex 1 =n; < ... <
ng, and its weight is precisely (ny — 1) + ...+ (ng —g). In his thesis [59],
Ponza shows that if 1 < no < ... < ng is the Weierstrass gap sequence at
P, then the generalized wronskian section

wADM T Y\w AL ADM T,

does not vanishes at P.

Proposition 4.3.6 below shows that Dy : /\k M — /\k M is in-
deed a homogeneous endomorphism of degree (=weight) h of /\k M.

4.3.6 Proposition. The “generalized” Leibniz’s rule holds:
Dh(ei1 /\€i2/\.../\€i’€) = Z i pglzthe A ginthe

hit..+he=h
hi>0

for each h > 0.

Proof. By induction on k. If & = 1 the property i1s obviously true.
Assume it holds for & — 1. Then

h
Dh(ei1 AN LA eik) = Z chithi p Dh_p, (ei2 AN Eik). (4.7
h1=0
By the inductive hypothesis:
Dh_hl(eiQ/\.../\eik) = Z giztha A A elnthne

hot..Ahe=h—hy
and the r.h.s. of formula (4.7) turns into:
Dp(er A€z A NexR) =30 0 €T AT .

In particular evp(T2) := D2 is a homogeneous endomorphism of

/\k M of weight |A|, i.e.:

k k

DA\ M)w C (/\ M)waa-
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4.3.7 Example. It is of course not necessary to remember formula (4.7)

by head, since it is just the formalization of a mechanical practical rule.

For instance, let us compute Da(e® Ae® A€®) € A® M. One has:

D2(e2 NG 65) =D A A DA D1(63 A 65) RPN D2(63 A 65) =

= Al A+ /\(64/\65 4 /\66)—|—62 /\(65/\65 N A /\67) =

:64/\63/\65+63 /\64/\65 —|—63 /\63/\66 +62/\65 /\e5—|—e2/\e4 /\66—|—
+62/\63 /\e7 :e2/\e4 /\66—|—62/\63 /\677

where last equality results from the vanishing of the terms having equal

A-factors and to the cancellations due to skew-symmetry.

4.4 Pieri’s Formula for S-Derivations

Example 4.3.7 shows that computing S-derivatives of k-vectors is a
straightforward matter and that one has to care only about possible
vanishing and cancellations.

However, the practice of many examples naturally suggests the
following theorem which says that our algebraic model is isomorphic
to Schubert Calculus (Section 3.4).

4.4.1 Theorem. Let I be a k-schindex. Then Pieri’s formula for
S-derivatives holds:

D€t AL A = Z eith A A erthn (4.8)

(hi)eH(I,h)
hi4...+hr=h

where H (I, h) is the set of all k-tuples (h;) € N* such that:
1<y <ip4+h <ta<ict+hy<...<ip_1+hp_1 <1 (49)

Proof. (It is copied from [23]) By induction on the integer k. For
k = 1, formula (4.8) is trivially true. Let us prove it directly for
k = 2. For each h > 0, let us split sum (4.7) as:

Dy (e Ae'2) = Z cithi g giaths —p 4 P (4.10)

hit+ha=h
h1,ha>0
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where:
P = E 6“+h1 A €Z2+h2 and 7_) — E 6“+h1 A €Z2+h2.
i14+h1<io i1+h1>i0
hi+ha=h hi+ha=h

One contends that P vanishes. In fact, on the finite set
AZI{GEZ|i2—i1 §a§i2—i1—|—h}

define the bijection ¢(a) = iz — i1 + h — a. Then:

h h
273: Z €i1+h1 A €i2+h—h1 4 Z €i1+ﬂ(h1) A €i2+h—p(h1) —

hi=i2—11 hi=i2—11
h h
— Z €i2+h—h1 A €i1+h1 _ Z €i1+h1 A €i2+h2 — 0’
h1=i2—11 h1=i2—1i1

hence P = 0 and (4.8) holds for £ = 2. Suppose now that (4.8) holds
for all 1 < k' <k —1. Then, for each & > 0:

Dh(ei1 ALCA eik) = Z DhL(eil AN eik—l) A theik
hl+hr=h

and, by the inductive hypothesis:

D (et AL Akt Aoty A it (4.11)
(h:)

summed over all (h;) such that

1<ii+h << ... < g o+ hp_o <igp_1

But now (4.11) can be equivalently written as:

Z€i1+h1 ALA 6ik-2+hk—2 A Dh,,(gik—l A gik)’ (413)
(hi)
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where the sum is over all (hy, ..., hy_2, ") such that hy +.. .+ hi_2+
h'" = h and satisfying (4.12). Since

Dh//(Gik_l A Eik) — E Eik—1+hk—1 A Eik+hk’
Tp—1+hr—1<ix
hi_1+hi=h"

by the inductive hypothesis, substituting into (4.13), one gets exactly
sum (4.8). ]
4.4.2 Corollary.

Dyp(e AL A SHiI=1 A ST A a)=€ AN esHi=1 A Dh(€s+j A ).

for each o € A M.
Proof. Tt is a straightforward application of Pieri’s formula (4.8). m

The consequences of Theorem 4.4.1 and its relationship with Sec-
tion 1.2.4 shall be discussed in Section 4.7.

4.5 Giambelli’s Problem

As in the case for k = 1, denote by evp .14 acx the composition:

evp k EV Ipn  Aek K

ZIT|—A(AM, D) — M.

O e wonders 1f ev 1 x or, equlvalently, ev 1 &, 1s surjective.
DelA.. A€ ’ ’ elA. . Aeky
Let us fix some terminology.

4.5.1 Definition. Let m € /\k M and Gy € Z[T] be such that
Gm(D) A A =m.

Then Gy, s said to be a Giambelli’s polynomial for m.

Notice that a Giambelli’s polynomial for m is not unique. For in-
stance T12T2 —T175 and T22 —TT5 are distinct Giambelli’s polynomials
for €3 A €*.
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From now on, and for sake of brevity, the notation
Gi, i, € Z[T],

will stand for a Giambelli’s polinomial of €t A ... A ¢ix.
Proving the surjectivity of ev.in  A.x amounts to solve Giambelli’s
problem for €'t A ... A €F:

find a polynomial G;,  ;, € Z[T], such that:
VA LA ER =Gy, 4. (D) AN EE (4.14)

for each 1 <y < ... < 1.

This is in fact the case, as we shall see in a moment. However
it 1s not difficult to guess this fact. Our formalism suggests that it
can be achieved via a suitable “integration by parts”, as shown in the
following;:

4.5.2 Example. To look for a Giambelli’s polynomial for > A e* A €°,
one first perform a first integration:

ENetAS = D1(62/\63/\65)—62/\63/\66:
= (Df—D2)62/\63/\e4. (4.15)

Our problem now amounts to solve Giambelli’s problem for €2 A €® A €.
Further integrations give:

ENE N = Dl(e1 Ae /\64) s /\Dl(e3 /\64) =
= Dl(Dl(el N /\64) —taél /\65)) —d A ae =
= (D“;’ — D1D2)e1 N Dl(e1 N /\65) Tt nans =
= (D} =2D1Ds + Da)e' A A€,
Substituting into (4.15) one gets, finally:
ENE NS = (Df — DQ)(D:I) —2D1D3 + Ds) A AE.

To prove surjectivity, in general one needs a couple of lemmas.
Let us start with the most important.

4.5.3 Lemma. The following identity holds:
Dh(ej ANa) = ¢ /\Dha—i—Dh_l(ej'H Aa) (4.16)

for each h >0, j > 1 and each a« € A M.
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Proof.
h h—1
Dn(e? Na) = Zeﬂ'h_i ADiao =€ N Dpa+ Z ST A D =
i=0 i=0
h—1
e/ AN Dpa + Z Tt —1=0) Diao =€ A Dpa + Dh_l(eﬂ'l Aa). =
i=0

For any pair of positive integers ({,n), let L;,, be the set of all n-
tuples (l1,...,lp)such that 0 <; <land i +... 4+, =1 Ifn<l!
the set L; , is clearly empty.

4.5.4 Lemma. The following itdentity holds:
(Dh1 .. .th_thpOz) A ei =

(—1)l Z Dh1—l1 .. 'th—l_lp—thp_lp (a A €i+l).

P (4.17)
=0 (L)€L,

l

Proof. The proof is by induction on the integer p. For p = 1, for-
mula (4.17) is nothing else than formula (4.16). Suppose that (4.17)
holds for the integer p — 1 > 1 and any @« € A M. One may then
write

(Dhl .. .th_thpOz) Aé = (Dhl .. 'th—1 (thoz)) Aé =
p—1

=Y (=" > Duty - Duyymty (Do At (4.18)
=0 (1;)EL1,p-1

Using (4.16), last side of formula (4.18) becomes:

= Z(—l)l Z Dh1—l1"'th—1—lp—1th (a A €Z+l) +
=0 )ELrps
p—1

+ Z(—l)l+1 Z Dh1—l1~~~th_1—lp_1th—1(a A €i+l+1) =
=0 (1;)EL1,p-1

p
= Z(—l)l Z Dhl—ll~~~th_1—lp_1th—lp(a/\€i+l)~ ]

=0 (L5)ELp
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4.5.5 Corollary. For each 1 <11 < ... < i, there is a polynomial
P(T) € Z[T] such that:

EALAER = P(D) et At AL AR

Proof. By induction on the integer k. For & = 1 it is obvious. Sup-
pose now that the property holds for £ — 1. Then one may write:

EVALLAEE = QD) - (AT A L ATRTI) Al (4.19)

for some Q(T) € Z[T]. Write

QD) => aj, ;,Dj, ... Dj,

the sum over a finite subset of NP where some of the j;’s may possibly
coincide. The r.h.s. of (4.19) is then an integral linear combination
of terms like:

Dy, .. .Djp(eil AETEN A TR A el
Using formula (4.17), any such term can be written as:
Z(—l)l Z Dj1—ll ...Djp_lp(Eil/\€i1+1/\.../\€i1+k_2/\€ik+l)
=0 ()ELL k-1
which, because of Corollary (4.4.2), can be also written as:
DD DT Diety Dty Diimiy g (o AR,
(=0 ()ELL k-1

where o = ¢t At AL A €1FR=2 This proves the claim. [

4.5.6 To continue with, recall that the formal inverse of D;:
DIt =Y (-1ia,
i>0
is a HS-derivation of A M (see Proposition 4.1.5). Therefore, for
each h > 0, A, satisfies Leibniz’s rule:

Ah(eil/\.../\Gik) = Z Ahleil/\.../\Ahkeik. (4.20)
hi+...+hg
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To know how A operates on /\k M, 1t 1s sufficient to know how it
operates on M := A' M. One knows that Dy = im0 Ditt. Tt
follows that: B

Dy, =1+ Dyt

In other words, Ay : M — M is such that Ape® = §heith e,
Aoy, = idpyr, Ay, = Dy and Ay, = 0, for each A > 1. Then one
proves the following:

4.5.7 Lemma. For all k > 0 and all h > k, Apa = 0 for all
a € /\k M, while:

Ak(eil /\.../\eik) =LA AR (4.21)

Proof. If h > k, each summand of the r.h.s. of (4.20) possesses at
least an index 1 < ¢ < k, such that h; > 1. On the other hand, if
in the sum (4.20) A = k, only the term for which h; = ... = hy =1
survives, i.e. precisely the r.h.s. of (4.21) n

4.5.8 Corollary. Giambelli’s problem has a solution for
RN A€

Proof. Let A, € Z[T] be the polynomial such that evp(Ax(T)) =

Ag(D). It is sufficient to take Gp_gy1,.. n = (Ak)k(”_k). In fact:

eVD(Ak(T)k(n_k))El A ANER = eVD(Ak(T))k("_k) AN =
:Ak(D)o...oAk(D)el/\.../\ek =" TRH AL A

k(n—k) times

We can hence prove the most important result of this section:
4.5.9 Theorem. The map

k
EVD eln. Ak : Z[T] — /\M

15 surjective for all k.
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Proof. It is sufficient to prove that Giambelli’s problem has solution
for each k-schindex I = (i1,...,4;). By Corollary 4.5.5, there is a
polynomial P € Z[T] such that:

ELALAER = P(D)et AT AL AR
Then, applying 4.5.8:
FTALLANER = P(D) - Ak(D)k(il_l) VA LLUAER,
proving our claim. m
4.5.10 Corollary. The following maps are isomorphisms:

7T evp EVeln pck K
] — A (NM, D) —  A\M,

(ker(evp cin. .nck))

where by abuse of notation one denotes by evp the induced map on
the quotient.

Proof. The surjectivity of evp (15 acx and of evp implies the sur-
jectivity of ev i, acx. One must only show that

ker(evp) = ker(evp cin ek ),

and for this one argues exactly as in the proof of Proposition 4.2.6.
]

Next section shall be devoted to find an explicit presentation in terms
of generators and relations of .A*(/\k M, D).

4.6 A Presentation for A*(\" M, D)

Up to translations, most of the preliminary propositions of this Sec-
tion can be found in [52], there proven within the language of sym-
metric functions.

4.6.1 Definition. A Giambelli function
G 1" — 7Z[T)
is a function which associates to each k-schindex I = (i1,...,i) a

Giambelli polynomial for ¢ A ... A €*. Its image G will be said a
Giambelli’s set.
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4.6.2 Corollary. Any Giambelli’s set is a Z-basis for Z[T].
Proof. First of all we prove that G is a linearly independent subset of
elements of Z[T]. Let > )7 ar[Gr(T)] = 0 be any non trivial linear

dependence relation, where Z’ is a finite subset of Z. There is then
k > 1, such that Z' C I and

Z aIGI(D)e1 A ANE =0,
IeT!

which is impossible, because Gy, 4, (D)el! A... Ak =t AL A €x
are all linearly independents, being part of a basis of /\k M.

Let us now prove that they are Z-generators of Z[T]. Let G* =
{Gr € G|wt(I) = h}. Tt is sufficient to show that G is in fact a Z-
basis for Z[T];. To this purpose, notice that G;(T) € G is a unique
Z-linear combination of T%’s, (A € Py):

Gi(T)= Y ay DM,
Ar€EPhH

Then, since ${G"(T)} = ${T2 : p € P"} (because of the bijec-
tion between k-schindices and partitions of length at most k, see
Sect. 2.1.6), and all the GG € G" are linearly independent, they freely
span Q[T]; = Z[T]; ®z Q. In particular, for each A € Py, T2 is a
unique Q-linear combination of G;(T) € G"(T):

T2 =" b, G, (T). (4.22)
Iy
We only need to show that the coefficients b;, € Z. But equal-
ity (4.22) implies:

evp (TA)E1 A A= Z I)IleVD(GIA(T))e1 A AER (4.23)
I\€Zn

The Lh.s. is a Z-linear combination of €'t A ... A ¢*+:

E ar, €A LA EE,

I ePn
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By unicity, the coefficients by, ’s must be the same as those occurring
in the expansion of the L.h.s. of (4.23) as linear combination of of the
€N ... N€F, le. they must be integers. [

4.6.3 Proposition. Let ¢ € Z[Th,...,Ty] C Z[T] such that
d(D1,...,Dp) N AEF =0,

then ¢ = 0.
Proof. Let ¢ € Z[Ty,...,T] of degree h. Writing ¢ as the sum
oo+ 1+ ...+ ¢p, where ¢; is homogeneous of degree i, one has

$i(D)e' Ao N e (\ M)

Therefore ¢(D)et A...Ae® = 0if and only if ¢;(D)e! A... A% =0,
for each homogeneous summand of ¢. One may then assume that
¢ € Z|T]n (i-e. it is homogeneous of weight k). Since Gj, is a Z-basis
for Z[T]s, one may write:

$(T1,...., Tk) = Y arG(T),
IeTk
Hence:

0=6(Dy,....,Dp)et A AR = Z arGr(D)el A AR,
Iel*

implying that all a; = 0, because {G(D) - e A... A }rezn are
linearly independent. [

We may now prove the following result computing explicitly the
presentation of A*(M, D).
4.6.4 Theorem. The ring A*(M,D) is the polynomial ring
Proof. By Proposition 4.6.3, Dy,..., Dy are algebraically indepen-

dents. Moreover Dy, (1 > 1) is a Z-polynomial in Dy,..., Dy. In
fact, for each j > 0, the relation (1/D;)- Dy = Dy -(1/D;) = 1 implies:

Diyi — A Dgyia + oo+ (D) A Dy + (=D)AL =0,
(4.24)
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Since A, is a polynomial expression in Dy, ..., D, only, it follows that
(for ¢ = 1) Dy41 is a polynomialin Dy, ..., Dy, because Apy1 = 0 by
Lemma 4.5.7. Suppose now that the property holds for all 1 < 5 <
i— 1. Then formula (4.24) reads as:

Diyi = =1 Dpyiq + ...+ (1)1 AL D;, (4.25)

because Apy; = 0 for all ¢ > 1; it follows that Dy, is a polynomial
in Dq,..., Dy, by induction. As a conclusion:

Z[Dy, Ds, .. ]

k
A (A M, D) = > 7Dy, ..., Dyl.
(/\ ) (Diti = Dei(D1, .o Dig))ima o .

4.7 The Finite Case

Let D, M be the submodule of M spanned by " = (entl n+2 )
and denote by M, the free submodule of M generated by &, =
(e',...,€"). Let p, be the projection map:

Pn M — M,
mo— Y0, ei(m)d

and ¢, : M, — M be the section associated to p,, defined by
tn(m) = m, for each m € M,,. One has the sequence:

0— DM —M—M, —0,

which can easily be checked to be exact.

4.7.1 Proposition. The natural epimorphism:
prnoeva : Z[TY] — M,

induces the isomorphism:

~ M, (4.26)
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Proof. From the epimorphism:
pnoevp a : Z[T] — M,

one gets
ZT]/ ker(pn oeVDyﬁl) >~ M,.

Now, p,(Diet) = 0 if and only if i > n, proving that the kernel of
Pn 0 evp o is precisely (17'). This proves the claim. ]

4.7.2 Remark. Notice that the L.h.s. of (4.26) is isomorphic to the
Chow ring of P"~1. Denote by A*(M,, D) the image of Z[T1]/(T7]")
in Endz(M,). Then A*(M,, D) is isomorphic to Z[D;] where Dy
may be identified with the class of T3 mod (77").

Let now

/\M/\DnM

be the ideal of the exterior algebra A M generated by D, M: a typical
element of it is of the form a A ¢/, with j > n, o € A M. Let

k—1 k
N MADM =\ Mo (\MAD,M).

It is the submodule of /\k M generated by all €/t A...A€'* such that
i > n. We claim that:

/k\Mn = /\kM

N M ADM

In fact, one has a surjective module homomorphism:

k k
Nopn: N M — \ M, (4.27)
defined by

N pn( E Giy i€ AL AEFR) = E Giy i€ AL AEE,
1<iy<...<iy, 1<iy <. <ip<n
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whose kernel is precisely the submodule /\k_1 M A D, M. Therefore:

DAy - NM__ AM
/\M_@/\Mn_@/\k—lM/\DnM_/\M/\DnM.

E>0 E>0

Clearly /\k M, =0 1if k > n. Consider now the map:
Apn o Do Aty [\ My — \ My[[1]]
4.7.3 Proposition/Definition. The map p, o D; o 1, is a Hasse-

Schmidt derivation on \ My, said to be the S-derivation on \ M.
Proof. It is a straightforward application of the definition:

Apn o DioAip(aNB) = Apno Di(tn(a) Awy(B) =
= Apa(De(e(a)) A De(e(8)))
= (Apn o Dioty)(a) A(Apn o Dy oin)(F).

]
It is worth to emphasize the following corollary of Theorem 4.4.1.
4.7.4 Proposition (Pieri’s formula for /\k M,).
Let I:'=(1<id3 <ip...<ip<n)and 0 < h<n. Then:
/\kpnoDho/\kLn(eil/\. . ./\eik) = Z ethin  Aerthe (4.28)
(hi)€H(I,h)

ir+hr<n

Proof. Equation (4.28) is obvious: one writes down expansion (4.8)
and then projects via p,,, cancelling all the terms such that ¢ > n. =

4.7.5 The Z-module isomorphism:

k k
OV A pek :A*(/\M,D) — /\M,

induces a Z-module epimorphism .4* (/\k M,D)— /\k M, , by com-
position with Afp,,. Let:

k

A*(\ My, D) = kerA*(A M, D) s A\, (4.29)

(APn © eV aek)
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where last isomorphism holds by construction. We have here, as will
be done from now on, abused notation deciding to write simply Dy
instead of the heavier (though more precise) App o Dy o Aty,.

Patching together formula (4.29) with Proposition 4.7.4 one has
esplicitly proven (as implicitly done by Theorem 4.4.1) that our for-
malism is indeed Schubert Calculus. More precisely:

4.7.6 Theorem. The A*(Gy(V))-module A (Gr(V)) is isomorphic
to the .A*(/\k My, D)-module /\k M, , i.e. the following diagram

d
AN M, D) x ANM,  — AN M, D)

| | |
o Q o (4.30)

! ! !

C

A (Gr(V)) x  A(GE(V) — AdGr(V))

1s commutative, where o and 0, defined by

o(D;) = oy
and
QT AL €k+”) =Q0p, ) = [l AL A R
are isomorphisms (Cf. Section 1.3.4 and formula (3.11)) ]

Of course ¢ and {2 are isomorphisms because Chow basis theorem
ensures that not only the cycles o) generate A*(Gy(V)), but they
are indeed a basis of it. The inverse isomorphism Q~! may be also
written as, according to formula (3.11):

Q7N D AL AN =

(i1,..ix)ETE

= Z ailymyik[eil /\.../\eik]. (4.31)
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As for the map c, it 1s induced by the cap product N:
c(on, Q) =0aNQy
while the map d is induced by differentiation:
A(P(D),e* A...AN€e*¥) = P(D) - €t AL A€,

We are hence in condition to explain the emphasized sentences in
Section (1.2.4), through the following

4.7.7 Example. The Schubert cycle o1 is a very ample divisor class
embedding the Grassmannian G(k,n) in P(:)=! & la Pliicker. In such
an embedding, its degree di y is the intersection of its Pliicker image with
k(n—k) general hyperplanes and the hyperplane section is cut out precisely
by the divisor o1 N [G(k, n)]. Therefore one has:
a’f(n_k) n [G(k7 n)] = dk,n ‘ a(n—k,...,n—k)7

which has also the meaning of the numbers of k—1 planes intersecting k(n—
k) linear spaces of dimension n—k—1 in P"~'. By virtue of Theorem (4.7.6),
this is the same as computing:

k
DY"TRE AL A e A\ My (4.32)

which 1s formally the same as differentiating a wronskian like in Sec-
tion (1.2.4). Since (/\k M) (n—r) is generated by TR AL A€ Le. a
multiple of the unique generator of (/\k M) (n—r), the degree of G(k,n) is
its coefficient in the expansion (4.32). The expansion of expression (4.32) as
an element of /\k M would instead be a Z-linear combination of €'t A. . . A,
with wt(eil A A eik) = k(n — k), which can be written as:

a- e R A AN+
for some a € 7Z and where 8 € /\k_1 M A DpM. Therefore (applying AFpn,
to both sides of (4.32)7 one concludes that a = dg », as claimed in the last
emphasized sentence of Section 1.2.4.

4.7.8 Example. The number of lines of P* meeting four others in gen-
eral position coincides with the degree of the grassmannian G(2,4) in the
Pliicker embedding. To compute it, one just expands

D‘f(e1 A 62),
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This is the same computation we did with the wronskian f A f’ in Exam-
ple 1.2.3. Exactly the same formal steps give

D‘f(e1 /\62) =2.& A
i.e. there are 2 lines answering our question. For two different generaliza-

tion of this problem look at example (5.2.1).

4.7.9 Next target is to find an explicit presentation of .A4* (/\k My, D)
in terms of generators and relations. To this purpose, if

Pu(D),..., P, (D)

are elements of A* (/\k M, D), denote by (Pi(D),..., P-(D)) both
the ideal of .A*(/\k M, D) generated by them and the submodule of
/\k M generated by (P (D) A...A €% ... Po(D)et A...Ac®). No-
tice that the shift operators D; are elements of .A*(/\k M, D) and
that, because of the isomorphism of the latter with the polynomial
ring Z[Dy, ..., D], any D; is an explicit polynomial expression of
D1, ..., Dg. Because of the algebraic independence of such genera-
tors, such polynomial expression is indeed unique. We first prove the
following

4.7.10 Lemma. Let o« € A M and n, k integers such that n—k > 0.
Then
AL AERADya € (Doci, ..., D) AN M C A\ M.

Proof.
Induction on the integer k. The property is true for £ = 1, by

virtue of identity (4.16). Suppose the property holds for & — 1 and
for all n > 0. Then:

EVALLAERADya =€ AL AERYA (€ A Dpa)
=N LLAERT A (D (€ A o) — Dy_i (€T A )
— AL NERTA (Dn(eik Aa)— Dn_l(ei”’l) Aa)) =
— AL AERTTA Dn(eik Aa)— EVALLAERTTA Dn_l(ei’""1 A«

~—

The former summand belongs, by induction, to (Dy,..., Dn_gy1)
while the latter belongs to (Dy—1,..., Dy_1_(x=1)). Then, the sum
belongs to (Dy, ..., Dy_k) as claimed. n
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4.7.11 Corollary. If ¢t A Aér € /\k_1 M A D, M, then
VAL ANER € (Dp—kt1y---, Dn).
Proof. Apply Lemma 4.7.10 to

EVALLANET = VAL AERTEA DT

m
We can finally prove the following
4.7.12 Theorem. There is the following isomorphism:
k k
Z[Dla .- aDk]
= A" M,, D)=\ M,. 4.33
(Dn—k+1a~~~aDn) (/\ ) /\ ( )

Proof. Last isomorphism is that of formula (4.29). We are only left
to prove the presentation of .A*(/\k My, D). First of all

(Dpn—kt1,---,Dn) € ker(/\kpn O EVein. Ack)-
In fact:

DhEil A ANER = DhGil...ik (D)El A A=
= Gil...ik (D)Dh€1 AN P Gil...ik (D)El VAN Nt A kth

and last term is zero modulo D, M precisely when &k +h > n+ 1,
i.e. precisely when h > n — k + 1. Conversely, suppose that for some
homogeneous element P(D) € A* (/\k M, D)

Pn OCVelpn  Ack (P(D)) =0.

Since ¢t A ... A €* is a basis of /\k M, then P(D)e' A... A" is a
unique linear combination of k-vectors €' A ... A €* belonging to
A*=IM A D, M. But Corollary (4.7.11) ensures that each such term

belongs to the submodule of /\k M, generated by (Dy—k41,..., Dpn),
and this concludes the proof. [
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4.8 Giambelli’s Formula

In this section we want to offer another explicit proof of the surjec-
tivity of evp a4 acx based on a determinantal formula which is na-
tural to call Giambelli’s Formula for S-derivations. By formula (2.2),
Giambelli’s determinant Ap(T) € Z[T] associated to the k-schindex
I'=(i1,... 1) 1s:

AI(T) = Z (_1)|U|Tio(1)—1 'Tio(z)—2 Tl Tio(k)—k'
o€ Sy

Let us denote by Ay (D) (resp. Ar(D)) the elements of Endz (A M)
defined by evp(Ax(T)) (resp. evp(Ar(T)). Our target is to show
that Giambelli’s determinant A;(D) is an explicit Giambelli’s poly-
nomial for €1 A ... A €', N

Let A = (rg,...,r1) and denote by AY (D) the determinant of the

matrix one gets by erasing the ¢*” row and the j'* column.
4.8.1 Theorem. Giambelli’s formula on A\ M holds:

AYF(DY(a) Akt = %(_1)%;—’7’“@)(@ A FHTetly (4 34)

N =0
Proof. Since Ag’k(D) = A(r_y..r) (D), one has:

ASF(D)(@)ne e = (_1)'°'Di0(1)_1o...oDiU(k_l)_(k_l)(a)Aek“k
ocESE_1

Now one applies formula (4.17) to the r.h.s. of the above equation,

getting:

E—1
2 l;)(_l)l > Dio(l)_l_ll"'Dio(k—l)—(k—l)—lk—1(o‘ AeFTEt =

€K1 (la) €Ly k-1
k—1
! k l

= Z (_1) Z Z(_l)lolDia(l)_l_ll"'Dio(k_l)—(k—l)—lk_l(oz AeFtret ) —

=0 (la)EL k=1 T€ESk-1

Dil—l—ll Dik—l—ll

= Di1—2—l2 cee Dik—2—12
= (—l)l Z : . : (O{/\6k+rk+l).

=0 (la) €Ly k-1 . .

ir—(k=1)=lp_1 - Dik—(k—l)—lk—1
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But
Di 1y, Di, 11,
Z Di1—2—l2 T Dik_z_lQ (a A €k+rk+l) —
(la)EL k-1 : B :
(k=D —loey - D (k=1)=lhs
E—Lk r
=AY (D)(a A Rttty
proving Giambelli’s formula (4.34) ]

4.8.2 Corollary. Giambelli’s formula on /\k M holds:
AL ASTE = Agy.r)(D) - A LAER. (4.35)

Proof. The proof is by induction on the integer k. For & = 1 one has
¢!t = D, ¢! and the property holds. Suppose it holds for k — 1.
Then one has, using induction:

€1+T1 NN Ek_l-l_rk_l A €k+7‘k =
- A(rk_l...rl)(El AN Ek_l) A €k+7‘k _

= ALF(a) At
where one set o = ¢} A... A L. Since for such an « one has
a Nt = DL L(a AR,

by applying Corollary 4.4.2, formula (4.34) can be written as:

k—1

ATE(D)(a) At =3 T (=1) Dy AT (D) (@ A ) =
=0

= A(rk...rl)(D)Gl-I—rl FANAN €k+rk,

proving the claim. m



Chapter 5

Miscellanea

This Chapter shall be mainly devoted to discussions and examples.
As usual M will be a free Z-module spanned by & = (e, €% .. ).
By M,, instead, we shall mean the submodule of M generated by
En = (ef,...,€"). We shall assume V = C" and we shall write

Gk, n) instead of G (C").

5.1 The Intersection Ring of G(2,4)

To exemplify the methods developed in Chapter 4, we study in de-
tails the case of the Grassmannian G(2,4), thought of as the variety
parametrizing either 2-planes in C* or lines in P3(C). The model for
its intersection theory is provided by the pair (/\2 My, D), where My
is a free Z-module of rank 4 spanned by, say, (¢!, e?, €3 ¢*) and D; an
S-derivation on its exterior algebra A My. The intersection ring of

((2,4) will be then isomorphic to A*(A? My, D).
5.1.1 The model. The S-derivation D; is given by
Dy = 1+ Dyt + Dst® + Dst?

93
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where D; = D) and D} = 0. Then D; : \° My — A My[[1]],
evaluated on ¢! A €2, gives:

D Di(et Nt = Dy(e! Ae?) = Dy(e!) A Dy(€?) =
i>0
= (Do + Dlt + thz + D3t3)€1 A (Do + Dlt + thz + D3t3)€2 =
= (A H+ A+l FIPY)A(E+ L4 M) =
= dAE+dAE t+d At
These computations show that D restricted to /\2 M, has only three
components, namely Dy = idpa2p7, D1 and Dy. Moreover:

Di(et A=t A and Dao(ef Ae?) = et A

Let us now check, by hand, that /\2 My is a principal Z[D] =
Z[D1, Do]-module generated by € A 2. We have:

Ine = D1(€1 A 63) —d At = Df(e1 A 62) — D2(€1 A 62) =
= (DE- Dy ), (5.1)
At = D1(€1 A 64) = D1D2(€1 A 62); (5.2)
SAaet = D1(€2 A 64) = Dsz(G1 A 62). (5.3)

Hence, by definition,

DOa Dla D2a D%—DZ, DlDZa D%Dza
are Giambelli’s polynomials (see Section 4.5) of el Ae?, el Ae?| el Net,
e2Ned, 2 Aet) €3 A e respectively.

However, it is worth of remarking that a different “integration by
parts” gives another Giambelli’s polynomial for €3 A €* :

S At = D2(€1 A 64) — Dyt ADyt — e A Dyt = Dg(e1 A 62).



5.1. THE INTERSECTION RING OF G(2,4) 95

In addition, notice that:

Dy Dy
Dy Dy

Dy Dj
Dy Dy

bl

Df—DQ:‘

; D1D2=‘

Dy, D
2 _ 2 3
) DZ—‘Dl Dz

where we used the fact that D3 = 0 on /\2 My4. We have already
found a relation in A*(A?My, D), namely the equality of the two
Giambelli’s polynomials associated to €3 Ae*, which can be expressed
as D?Dy— D2 = 0. Let us find all the relations. Clearly there cannot
be any relation in degree 2. In fact the only monomials of degree 2
are D? and Ds. But D?(e? Ae?) = 2 Ae3+el Ae and el Aet and 2 Ae3
are linearly independent. All the monomials of degree 5, D}, D3 D5
and D; D% vanish on /\2 M. This can be seen via direct computation
using Leibniz’s rule! Moreover one can conclude that there must be
exactly one relation in degree 3 and exactly one relation in degree 4.
In fact all the monomialsin Dy and D in degree 3 are D:f and DD,
while those of degree 4 are D3 and Df. But the part of degree 3 of
/\2 My is generated by €2 A ¢*, while the part of degree 4 is generated
by €3 A €* only. It is immediate to see that 2D Dy — D? = 0 and
that (already observed) 2D% — D} = 0. Hence the presentation of the
intersection ring .A*(/\2 My, D) is given by:

Z[Dy, D5
D3 —9D, Dy, DY —2D2)"

A*(/\M4,D):(

5.1.2 Interpretation. To do intersection theory on G(2,4), one
chooses a flag £* of V' and represents the Schubert cycle o, ,, in the
form [e1T71 A €2172] where (Gi)lgigzl is the basis of V'V adapted to
the polar flag £*. Then we have:

1. [e* A €?] (the fundamental class [G(2,4)]),

2. [e! A €3], the class of the 2-planes of V intersecting a given
two plane along a line, or the class of lines of P3 := P3(C)
intersecting a given line;

3. [e! A€?], the class of 2-planes of V containing a line, or of lines
of P3 passing through a point;



96 CHAPTER 5. MISCELLANEA

4. [e2 A €3], the class of 2-planes contained in a given 3-space, or
of the lines of P? contained in a plane;

5. [e2 Ae?], the class of the 2-planes intersecting two fixed 2 planes
along a line and intersecting a fixed line, or the class of the lines
meeting two lines and passing through a point;

6. [e3Ae?], the class of a point, i.e the class of all planes coinciding
with a given 2-plane, or of the lines of P3 coinciding with a given
line.

5.1.3 Example. As explained, the grassmannian G(2,4) embeds
in P® as a quadric hypersurface, the Klein quadric. Therefore, using
(the classical) notation as in Section 3.4.2, it follows that:

On092 — 01091 + 02011 = 0

i.e., the generators {og, 01,011, 02, 021, 022} of A*(G(2,4)) satisfy the
equation of the Klein quadric. This is due to the fact that o can be
identified with A, (D) and that

€1+7‘1 /\€2+7‘2 — A(rg,rl)(D)El /\62.

Since ¢! Al are Pliicker coordinates on (2, 4), they satisfy the equa-
tion of the Klein quadric: hence the same holds for the elements
A(TQJI)(D), and therefore for the corresponding o (,,,,). A similar
statement holds for all grassmannians; i.e.

The Schubert cycles o) € A*(G(V)) satisfy the equations defining
the Plicker embedding of G(k,n) in p()-1,

5.2 Playing with S-Derivations

In this section we shall offer some examples of computational appli-
cations of the formalism of Chapter 4.

5.2.1 Example. Example 4.7.8, about computing the number of lines
incident 4 others in P? can be generalized in two different ways. The
first is to look for all the lines of G(1,P"™!) intersecting 2(n — 2) linear
subspaces of codimension 2 in general position in P™~!. This amounts to
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compute the degree of the grassmannian G(2,n), shown in Example 5.3.3
below. The other is to compute the number £14,, of lines incident 4 linear
subspaces of codimension n in general position in P?"*!. If n = 1 we
already found £ = 2. This example is proposed in [27], p. 206, and
computed by direct application of Pieri’s formula. Here we use a somewhat
inductive argument. The problem lives in the grassmannian G(2,2n + 2).
Let us work on /\2 Mspn42, which is a model for its Chow group. The
solution of our problem is the coefficient multiplying €' 2™ A ¢**2™ in the
expansion of D} (e! A €%).
We shall indeed prove that

Di(e1 A 52) =TI A ST Di_l(es A 64). (5.4)
Since Di_i(¢* A e*) in A? Maio, is formally the same as computing
Di_l(el A 62) in /\2 Moy, (prove it!), it follows that
Lign =14 Ln.

Therefore L14, =n+ L1, and £1 = 1: there is only one line in P! meeting
4 points of P! One is left, then, to prove formula (5.4). One first applies
twice formula 4.16:

Di(e1 A 62) = Dn(e1 A e2+") =
AT Dn_1(62 /\62+n) _
e AETT Di_l(e2 A 63) (5.5)

where in the last equality one used Corollary 4.4.2. Hence:
Di(e1 A 52) = Di(e1 A e2+2") + Dn_lDi(e2 A e2+")

142n 5 242n
242n

The first summand is simply ¢
again formula (4.16) with a = ¢ and observing that D;e
/\2 M40y, for each ¢ > 0. On the other hand:

DiDA_ (N = Doy Di(® Ae®) = Di_ D2 A (' A€V

. One can argue, e.g., by applying

242n —0in

where A; is defined as in Lemma 4.5.7. Again:
Di_1DoAs(e' AEP) =
= Di_ A:Do(" NEW) =
= D2_,A, (el+2" AT 4 Di_l(e2 A 63)).
But A, (el+2" A e2+2") =0, so that
DiDi_1(62 A 63) = Di_1A2(62 A e2+")) = Di_l(es A 64)

Substitution in (5.5) gives exactly formula (5.4).
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5.2.2 Example/Exercise. Formula (%) at p. 205 of [27], used to prove
Giambelli’s formula at p. 206, can be re-written in the following transparent
form:

ETAL AR =Dy 1 (EAETA L AER) + Diyi (€T A AL AER) F .
e Di i (€T AET AL AEY.
The Reader is invited to prove it as an exercise.

5.2.3 Example. Here we shall end some computations of Example 3.4.9,
which were then left to the Reader. In the Grassmannian G(37 6)7 o=
and o31 N [G(3,6)] = [e' A €® A€®]. Therefore:

ai’ co31 N[Gr(V)] = Di’(e1 NG 66)

(the brackets have been omitted). One has (using the fact that D,‘(e6) =0
in Mg, for i > 0):

Di’(el N /\66) = Di’(e1 /\63) Anel = D?(e2 A’ + e /\64) Anel =
= D?(262 Aet et /\65) Aeb = D%(e3 Aet 432 /\65)/\66 =
= D1(563/\65)/\66 =5 A Aed.

Since [e* A €® A €] is the class of the point in A.(G(3,6)), the solution of
our enumerative exercise is 5 as claimed in Example 3.4.9.

5.2.4 Example. Here we concludes the computation of the product
(U% - 02) c 021
proposed in Example (3.4.11). It is the same as computing:
(Df — D2)(e1 NN 65).

We left to the Reader the task of computing directly the above expression.
Instead, we use the fact that, indeed, D} — Dy = A, (see Lemma 4.5.7),
and that Az enjoy Leibniz’s rule for second derivatives. One has:

A2(€1 NN 65) = A2(61 /\63) Ae 4+ Al(el /\63) A A =

where we used again Lemma 4.5.7 for concluding that As(e®) = 0. Thus,
continuing computations and remembering that A; = Dy:

=P A A LENEALE LAt AL = (0221 + o311 + 032) N[G(3,6)],

having used, in the last equality, the dictionary translating the expression
€'t A... A€’ into the corresponding oy (7.
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5.3 Degree of Grassmannians

5.3.1 Proposition. Newton’s binomial formula holds:

n

Diang) = (Z)D’fa/\D?‘kﬁ, (5.6)

k=0

for each a, 3 € A\ M.
Proof. For n = 1 the formula is obvious. Suppose it holds for n — 1.
Then

n—1
Di(anB)=Di(Di ™ @AB))= D1y ( ‘ 1)% ADITITEG =

k
k=0

"= 1) Dy (Dfa A Df—l—kﬁ) =

n—1
n—1 n—1— n—1 n—
. )Df"’la/\Dl RRCE ( . )DfaADl k3 =

k=0
" fn—-1 iy n—1
= Z k_1>Dfoz/\Df_kﬁ+Z( i )Dfoz/\Df_kﬁ:
k=1 k=0
= n—1 n—1
= > (k 1>+< & ))DTGAD?"“6+D?aAﬁ+aADm=
k=1
- (Z)Dfoz/\Df_kﬁ.
k=0

where in the first row we used induction in the last equality. The rest are
straightforward manipulations. ]

5.3.2 The degree of the grassmannian G(k, n) in the Plicker em-
bedding is, by definition:

dk,n = /Ulf(n_k) N [G(ka n)]a

i.e. it is the coefficient of the generator of A* M,, of maximum weight:

le(n_k)el/\.../\Gk =di VTR A LA (5.7)



100 CHAPTER 5. MISCELLANEA

The reason is that o1 N [G(k,n)] is a very ample divisor class em-

bedding the Grassmannian in P()=1 3 1a Pliicker. The degree of the
Pliicker image of G(k,n) is therefore the degree of its intersection
with as many hyperplanes as the dimension of the grassmannian.
The pullback of the hyperplane class of PI(G(k,n)) is precisely o4
and this explains formula (5.7).

5.3.3 Example (Degree of G(2,n)). To compute the degree ds
of G(2,n) is then sufficient to expand expression:

Df(n_z)(Gl A 62)

which is certainly an integral multiple of ¢?~! A €?. First we apply
the binomial formula:

Df(”zg/\g Z( )Dkl/\D( 2)-k .2

Now Df(n_l)e1 INGR= (/\k My )o(n-2). The latter is a free Z-module
spanned by ¢! A ¢” only. Therefore one knows a priori that all the
summands cancel and that only a Z-linear combination of €' A €”
and €* A €”~! will survive. More precisely one is interested in the
sum:

n—2

2(n—2 n—2)—n
( (n )) D?—1€1 A Df( 2) +1€2 —

n—1

()

Hence:
2(n —2) 2(n —2) (2n — 4)!
d2 n — - =
’ n—2 n—1 (n—1)1(n—2)"
5.3.4 Example. Working on the full exterior algebra, instead of

on a single exterior power, suggests that Schubert calculus for grass-
mannians G(k, n) must be linked recursively with Schubert calculus

Df(n 2)( ety = (2(71 — 2)) D?—2€1 /\D%(H—Z)—n-l—ZEz n
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of G(k',n') with ¥ < k and n’ < n. This is also geometrically ob-
served in [27]. Some nice exercises can be done to this purpose and,
as a matter of example, we look for a formula expressing ds , in func-
tions of degrees of G(2,n — 1) and G(2,n). As before, one aims to
determine the integer d3, defined by the equality below:

D:f(n_?’)e1 ANEEAESE = d37n€n—2 AL
To this purpose one first uses Newton bynomial formula (5.6):
3(n-3) 3( 3)
e n— n—3)—
D:f( Dl n2pned = Z ( . )D?( 3 k(el/\ez)/\D’feg’
k=0
In the above sum will only survive multiples of the three terms below:

TIANNTIAN, PTEAE AN TIAN AT

One then selects in the above sum those summands for which the
values of k are n — 3, n — 2 and n — 1. In other words:

DXV A2 AE = (3(:__33))Df("_3)(61 ANEYAS +
(3(711__43))1)%”_5(61 /\62) /\En—l +
(3(:__53))Df(n_2)(61 A 62) A2,

To end computations we only need to know the coefficients of

€*"2A e in the expansion of Df(n_S)(Gl A€?)
€ A2 in the expansion of DI (el A e?)
A" in the expansion of Df(n_z)(Gl A €?)

By the previous discussion, the first and the third coefficient are
nothing else than ds,_1 and —ds , respectively. As for the second
coefficient, remark that the coefficient of €* A ¢€”~? in the expansion
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of D" 73(eh A €?) is the same as the coefficient of €® A ¢”~! in the
expansion of D"~ *(e! A€?) and this latter is precisely the degree dan
of the Grassmannian (2, n). Therefore we have proven the following
formula:

ton= (02 Jtont (0 257) - (020)) o

In an attempt to recognize a general pattern, Taise Santiago com-
puted a similar recursive formula for dy ,:

dan = (4(:__44))d3,n—1 + [(4(:—_64)) — (4(:__74))] d3n +

4(n—4 3n—11 3n—11

) [ Rl Gy | [
3n—11 3n—11

- (n_5)d2,n—1_<n_3)dzyn_z}.

5.4 Wronskians Correspondences

+

A complete flag of V is a filtration:
E*:E°DE'DE*D...DE"=(0) (5.8)

into subspaces E* of V of codimension i (hence E° = V). Let FI(V)
be the set of all the complete flags of the complex vector space V. It
1s a honest smooth connected complex projective variety of dimension
(g), intimately related with any grassmannian Gx(V), 1 <k < n. It
is easy to guess that a k-plane [A] is in general position with respect
to a flag E* if and only if EXN[A] = (0). In fact one has the following
chain of inequalities:

k =dim(E° N[A]) > dim(E' N [A]) > ... > dim(E* N [A]) =0,

implying that dim(E*N[A]) = k—i for i < k and E*N[A] = 0 for all
i > k. That is, [A] is in general position with respect to the flag (5.8)
if 1t 1s in general position with respect to all subspaces defining it.
Such a regular behaviour gets suddenly lost for all k-planes such that:

dim([A] N E*) > 0,
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1.e. those we call E*-special k-planes — k-planes in special position
with respect to the flag F*. Similarly, pick a k-plane [A] in V. Then
the general complete flag of V'

F*:F°D>F' DF?*D>...DF" =(0)

has the property that [A] is not F*-special: it suffices to pick a gen-
eral (n — k)-plane, intersecting [A] only at the zero vector, and then
completing 1t in a flag around 1t. Hence the geometry of the flag
varieties and that of grassmannians someway interacts as suggested

by the following diagram
X GV

F1( V) GV

where
Wi = {([Al, F*) € FI(V) x Gi(V)|[A] is F* — special}.

Indeed, Schubert calculus for Grassmannian studies the cohomology
(or the intersection theory) of fibers of the map m;, while the so
called Schubert Caleulus for complete Flag Varieties (see e.g. [22],
[75]) studies the cohomology of the fibers of ms.

5.4.1 The smooth irreducible algebraic variety Wj, is what it would
be reasonable to call a Wronskian Correspondence. In fact the fiber
of Wy over E°* 1s the zero locus of a section Wg of the line bundle
/\kﬁv. Moreover this section looks like a true wronskian (as shown
in Example 3.3.7) and one has that [A] € a7 (E*) if and only if
e AL AEF(A) = 0, where (¢!, €2, ..., €") is a basis of V adapted to
the flag E*.

5.4.2 Example (Weierstrass Points on Curves). This example has

been the main inspiration of these notes. The reader not familiar with
elementary theory of algebraic curves may skip it with no essential loss
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or consult [24] for a friendly introduction. Let C' be a smooth projective
complex curve and let K be its canonical bundle. The space HO(C7 K) of
holomorphic differentials has dimension g over the complex field. Denote
by J'K the 1'* jet extension of K: it is a rank 7 4 1 bundle whose sections
behave as do i-th derivatives of local sections of K. If w € HO(K)7 then D'w
is a section of J*K which locally is the local representation of w together
with its first ¢-derivatives. A point P is said to be a Weterstrass point if
there exists a non zero w € H°(K) such that D9™'(w)(P) = 0, i.e. if there
exists a non zero holomorphic differential vanishing at P with multiplicity
at least g. Hence a Weierstrass point is in the locus where the map

D HY(K)® Oc — JIT'K

defined by D97 (P,w) = (D9 'w)(P) drops rank. This is equivalent to

look at the zero locus of the determinant map:

K g
+
AD 00— \TTK = G
said to be wronskian. If w = (w1,...,w,) is a basis of H°(K) and U is

an open set of C (in the Zariski or usual topology) trivializing K , where
wi|, = ui(2)-dz (z being a coordinate on U), then

- _ g9(g9+1)
(A*DITY), = (uAu AL AuTY) @ =
u u2 Ug
ug ub u’ (g+1)
= . . . .g dz®" o .
u(lg—l) ugg—l) ugg—l)

Abusing notation the wronskian section is also written as
wADwA...AND " w.

Let (U, z) be a trivialization around a point P. Then the points of the fiber
JpK of J'K at P are (1 + 1)—tuples of complex numbers (ug, u1, ..., u;).
Consider the map J;g_2K — Jp K defined by

(uo,ul,...,u,',u,'+1,...,qu_2) — (uo,ul,...,u,‘)

and let lCiD C J;g_2K be the kernel, which has codimension ¢ + 1. Then
one has a filtration K%:

Kb :=J PKD>KpD...0K¥ > >K¥? =(0).
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The space HO(K) can be identified with a g-dimensional subspace of J?Dg_2K
via the map:

D¥Y™? . HYK) — JY7K
w —  D*720(P).
This map is in fact injective, because (D?972w)(P) = 0 implies w = O

there is no non zero canonical divisor having degree bigger than 2g — 2.
Then, the point P is a Weierstrass point if HO(K) is in special position
with respect to the flag K%, ie. if D272 (H°(K)) N K% # 0, i.e. if there
exists 0 # w € H°(K) such that (D9 'w)(P) =0, i.e. if

vanishes at P, where w), = u(z)-dz. In the Grassmannian G¢(J3? " K)
the g-plane HO(K) belongs to one and only one Schubert cell €2, ., (K%).
The k-schindex (i1, ...,14) is precisely the Weierstrass Gap Sequence of
the point P (see [24]).

5.4.3 Example (The Brill-N&ther Matrix). (Cf. [1], p. 154). Let
C be a smooth complex projective curve of genus g, K its canonical bun-
dle and w = (w1,...,wy) a basis of the holomorphic differentials. Let
D=nP1+...+ngPx be an effective divisor of degree d = n1 + ... 4+ ns.
The Brill Nother matrix associated to I and to the basis w is by definition:

Dnl_lg(Pl)
Dn2_1£(P1)
BAN(D,w) = .

an_lg(Pk)

Its rank is defined as follows. Let (U,‘,z,') be a local holomorphic chart
around P;, such that (w;)|, = fi;(2:)dz;, for some f;; € O(U;). Then the

Brill-Nother matriz admits the following local representation with respect
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to the local parameters z = (z1,...,2x):
fr1(z1) fiz(z1) o fig(z1)
flll(zl) f1/2(21) fllg(zl)
Ee) T e 1T )
f21(22) faa(z2) o fag(22)
f21(22) f22(22) f34(22)
BN(D,7,w) = : : :

PoD = iy i) F527 (z2)
ol fels) e Bula)
Fra(zx) Jia(ze) o fég(Zk)
B ST ) e £ )

Its rank does not depend neither on z, nor on w, but only on the divisor D.

If R®(K (—D)) is the dimension of the space H°(K (—D)) of the holomor-
phic differentials vanishing at the P;’s with multiplicity at least n;, then
one has:

R°(K(=D)) = g — rk(BN(D)).
Using Riemann-Roch formula:
h?(O(D)) = h*(K(=D)) = 1 — g + deg(D)
one sees that n is a Weierstrass gap at P if and only if
rk BN ((n —1)P) < rk BN (nP).

In an unpublished part of his doctoral thesis ([59]), Ponza constructed
some generalized wronskian sections which are sections of some generalized
wronskian bundles, and show that the Weierstrass gap sequence at P is
(1,n2,...,n4) if and only if the generalized wronskian section

wAD™ WA LA Dng_lg,

does not vanish at P. Hence the Weierstrass gap sequence can be seen as
a Schubert index attached to H°(C, K) embedded in J?;,g_2K as shown in
Example 5.4.2.
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5.5 (Small) Quantum Cohomology of the
Grassmannian

This section is devoted to extract the algebraic content of the so-
called small quantum cohomology of the Grassmannian ([4]). For a
nice geometrical introduction to the ideas of quantum cohomology,
the reader (especially the brazilian one) is advised to have a look
at [42] and to the references therein. For a nice concise account on
quantum cohomology of grassmannians look at [57].

As for small quantum Schubert Calculus of the grassmannian
Gk, n), the idea is that it is the same as classical Schubert calculus in
a grassmannian G(k, N'), with N sufficiently big. To be more precise,
let ¢ be an indeterminate over Z and let M, [q] := M,, ®z Z[q] — the
free Z[q]-module spanned by &,. As a Z-module, M, [g] is an infinite
free Z-module spanned by (¢');>1, with €+ = ¢Je" (0 < r < n).
Then one writes Pieri’s and Giambelli’s formulas for such a basis
keeping into account that ¢ belongs to the ring of coefficients and
may be factorized. This is because in Chapter 4 one preferred to
work with infinite free modules rather than finite one.

5.5.1 Asa Z-module, M, [q] is isomorphic to M via the isomorphism

{Qn: 6M —  M,[q]

a-n+i — qo‘el ) (VOZZO, 1§Z§n_1)

Let /\k M, and /\k M,[q] = /\k M, ®37Z[q] be the k-th exterior power
of M, and M,[q] (the latter thought as a Z[g]-module) respectively.
Both are freely generated, over Z and Z[q] respectively, by

{(" A AER) 1<) <. <idp < ).
Let Afp, : /\k M — /\k My, be the natural projection (4.27).

Z an...uf“/\.../\e” — Z an...uf“/\.../\e”
1<iy <. <ig 1<iy <. <iz<n
and A*Q,, - /\k M — /\k My [q] the Z-module isomorphism induced
by Q,. It is easy to see that A¥p, o D}, : /\k M — /\k M, is the 0
homomorphism, for all A > n + 1. The proposition below, together
with Proposition 4.7.4, rules the case h < n.
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5.5.2 Proposition. Let [ := (1 <4 < d2 < ... < 4 < n) and
0<h<n. Then:

A9, oDh(ei1 /\.../\Eik) :anh(eil /\.../\eik) +
+H(=1)F1q- Z N N e ()

(h:)EH(I,R)
Trthr—n<iy

Proof. (As in [23]) One first uses (4.8) to expand Dp (€'t A... A€'*)
and then splits the sum as:

Dh(ei1 ALCA eik) = Z rthia A ERThe 4

(h:)EH(I,R)
ir+hr<n

+ Z ethr A A Rt

(hi)eH(I,h)
irthe>n

The first summand occurring on the r.h.s. is  precisely
pnDp (e A ... A€, Applying A*Q,, to both sides:

AFQu(Dp(€r AL AER)) = pa D€t AL AER) 4

ST @A At p gkt (5.10)
(hi)eH(I,h)

Using the Zoy-symmetry of A, last term of (5.10) can be written as
(=1)%=1¢(C + C), where:

C = Z gkthe—n o aithy z tathe A elh=1The—1
: ,
(Ri)€H(I,R)

tpth—n<iy

so that (—1)f~1¢C is exactly the second summand of the r.h.s. of
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formula (5.9). As for C:

C = Z eRThe—n \ athy n o tathe o deoatheon
(hi)E€H(I,h)
igth—n>i
h R
= Z Z crthi=n R =Ry /\Dh_h/(ei2 /\.../\eik_l).
h'=0  hp=ii+n—iy

(5.11)
For each 0 < b/ < h, let pp: be the bijection of the set
{aeN:i1+n—ip <a<h'}

onto itself, defined by pp/(a) = ¢4 + n + h' — i — a. Then expres-
sion (5.11) can also be written as:

h R’

T = Z Z creton (h)=n \ irth =i (k) /\Dh_h/(ei2 /\...Aeik_l) —

= Z Z 6i1-|'h1 Aeik-l-hk—n /\Dh_hl(6i2 /\.../\6ik_1) - _C,

where, for sake of not breaking the formula, one set py = po(0) =

i1 +n — ix. Thus C' = 0 and the proof of (5.9) is complete. ]

This proves that

5.5.3 Theorem. The small quantum intersection ring ([81],[4])
can be realized as a commutative ring of linear operators A*(M,, D, q)

of /\k M]q] via the map o; — D; and g — (—1)*"1q).

Notice that Giambelli’s formula (4.35) still holds without any ¢-
correction. In particular the natural evaluation morphismev, i, ack :
A*(My, D, q) — /\k M, [q] is onto. Furthermore:

5.5.4 Corollary. The epimorphism

k
CVElA  Ack * Z[Q][D] — /\MH[Q]
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mduces an isomorphism:

Z[g][Dy, - . -, Dy]

k
— /\ Malq]. 5.12
(Dot 1s -y D1, Dy — q) A\ Mald] (5.12)

If one replaces D; by o;, keeping into account the relations prescribed
by Theorem 4.6.4, formula (5.12) gives precisely the presentation of
the small quantum cohomology ring of the grassmannian given by

Siebert and Tian ([73]) and Witten ([81]).

Proof. Notice that if 0 # ¢(T1,...,T;) € Z[T] is homogeneous
of degree < n — k (remind that deg7; = ¢, see Sect. 2.1.8), then
Ep(W)et A néF ¢ /\k_1 MAD, M, and is hence not zero in /\k M,,.
Now,1f 1 < i<k —1, then

Do ppile Ao AF)y =t AL AFTI AT =

= AL ANFTIANGE =g(E AL AETIAE) =0,
and this shows that (Dp_g41,...,Dn—1) is in the ideal of relations.
Suppose now that 0 # ¢ € Z[q][T1, . .., Tk] is such that

k
Ep(@) ' A A =0€ A\ Malql.

Let a be ¢ thought of as polynomial in Z[Ty,..., Tk, q]. Tt follows
that Ep(¢)et A... A € /\k_1 M A D, M, otherwise

Ep(¢) €' A... A" #£0,

n /\k M,, and this would be a contradiction since

N\ M, =\ Ma[q]/ ()

It follows that 5 € (Th—k+1,---sTn-1,49), thought of as polynomial
with Z-coefficients, and one may write 5 = q¢1 + ¢}, with ¢] €
(Tn—k41,---,Tn_1). Since get A ... A" # 0, ¢1 must be a Z-polynomial
inTy, ..., Tk, q of degree deg(g) —n. If deg(¢1) < n—k, then it must
be 0, by the initial remark; if not one repeats for ¢; the same argu-

ment used for ¢, up to reach such a situation. [
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