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Preface

The aim of these notes is to furnish an introduction to some classical and recent
results and techniques in projective algebraic geometry. We treat the geometrical
properties of varieties embedded in projective space, their secant and tangent lines,
the behaviour of tangent linear spaces, the algebro-geometric and topological ob-
structions to their embedding into smaller projective spaces, the classification in
the extremal cases.

We discuss some geometrical interpretations of various problems in terms of
projective geometry such as the Waring problem and the canonical expression, sub-
homaloidal linear systems, the vanishing of the hessian determinant of a polynomial
and its relations with dual varieties, the rationality over arbitrary fields of some
determinantal (or cubic) hypersurfaces.

These are classical themes in algebraic geometry and the renewed interest at
the beginning of the '80 of the last century came from some conjectures posed by
Hartshorne, [E2], from an important connectedness theorem of Fulton and Hansen,
[F'H], and from its new and deep applications to the geometry of algebraic varieties,
as shown by Fulton, Hansen, Deligne, Lazarsfeld and Zak, [FH], [FL], [D2], (Z2].
We shall try to illustrate these themes and results during the course and with more
details through these notes.

There exists no introductory text on secant, tangent, dual varieties, Terracini
Lemma, ete, and moreover, quite surprisingly, these notions are not well known
today. Thus we were forced to recall their constructions at the beginning of the
text and to prove their first properties. A more advanced reference on some topics
presented here is [Z2], which influenced the presentation of many topics; these notes
could be thought also as a natural preparation to parts of the above referred book.

Finally I apologize for the absence, only in the notes, of any figure as it should
be the case in a text on geometry. It depends on my well known incompatibility
with a normal use of this modern technology. I felt enough satisfied producing a
document with an (automatic) index.

Ringraziamenti

Queste note sono basate su una versione preliminare scritta, fortunatamente a
mano, durante il periodo passato all'’ Universitd di Roma Tor Vergata nell’ ultimo
trimestre 2002, insegnando un corso sull’ argomento. Ringrazio Ciro (Ciliberto)
per avermi invitato, per la splendida ospitalitd e per le innumerevoli e piacevoli
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i partecipanti per 1’ impegno e lo stimolo fornito; 1' LN.D.A.M. per aver finanziato
il soggiorno e il viaggio.

Il CNPq e il PRONEX-Algebra Comutativa e Geometria Algebrica hanno fi-
nanziato negli ultimi cinque anni vari miei progetti di ricerca su questi argomenti,
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sia come borsista, sia con fondi diretti e esprimo qui la mia gratitudine per la fiducia
concessa, sperc almeno parzialmente ricambiata.
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Senza la loro richiesta non avrei mai intrapreso questo progetto.

Un ringraziamento incommensurabile a Cledvane per |’ amore, la pazienza ¢ r
incoraggiamento costanti e senza limiti, rafforzati ulteriormente in questo periodo
in cui, con la scusa di scrivere queste note, mi sono frequentemente sottratto ad
aiutarla nel difficile compito di convincere la nostra piccola Giulia che in certi orari
sia meglio dormire. La nascita di Giulia, fonte di immensa allegria e continua
felicitd, mi permette di scusarmi elegantemente con gli eventuali lettori per non
avere avuto il tempo necessario per sottoporre il testo a una seria revisione, o
almeno a una attenta rilettura.

Quanto scritto in queste note é frutto di quanto appreso da vari amici, colleghi e
professori e in molte occasioni dai * classici”, antichi e moderni. Innanzitutto dal mio
amico e maestro Lucian (Bédescu), che per primo mi ha sapientemente incamminato
verso questi temi sin dai tempi in cui ero studente attraverso gli illuminanti corsi
[B1] e [B2], a cui in anteprima assist{ in compagnia degli amici del Seminarul de
Geometrie del giovedi . Quanto mi ha insegnato, non solo matematicamente, & tutt’
opgi importantissimo per me e va ben oltre quanto queste parole possano esprimere.

Un ringraziamento particolare a Aron (Simis) e Fyodor (Zak). Il primo per
avermi mostrato come ' algebra possa, talvolta, aiutare a comprendere meglio la
geometria e per le innumerovoli discussioni sui piu’ svariati temi. Il secondo per il
suo grande spirito critico, per Ia sua visione dell’ universo geometrico, che, sebbene
qualche volta non condivisa, mi ha sempre influenzato; ¢ anche per avermi spiegato
e suggerito vari problemi molto interessanti.

Nepli ultimi anni gli amici Alberto (Alzati), Cire (Ciliberto) e Massimiliano
(Mella) hanno avuto un ruclo fondamentale sia per I’ amicizia sempre mostrata,
sia. per quanto mi hanno insegnato nelle nostre frequenti comunicazioni, non solo
matematiche, e nei, purtroppo, piu’ rari incontri. Queste frasi non potranno mat
esprimere guanto sento. Senza il loro aiuto non avrei compiuto nessun passo, caso
mai ne avessi fatto uno, nel tentativo di comprendere meglio una piccolissima parte
dell’ affascinante mondo proiettivo.

Recife, 30 maggio 2003 Francesco Russo
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Introduction

After the period in which new and solid foundations to the principles of alge-
braic geometry were rebuilt especially by Zariski, Grothendieck and their schools, at
the beginning of the 70 a new trend began. There was a renewed interest in solving
concrete problems and in finding applications of the new methods and ideas. One
can consult the beautiful bock of Robin Hartshorne Ample subvarieties of algebraic
varieties, [H11}, to have a picture of that situation. In [H1] many outstanding ques-
tions, such as the set-theoretic complete intersection of curves in P? (still open),
the characterization of P¥ among the smooth varieties with ample tangent bundle
{solved by Mori in [Mol} and which cleared the path to the foundation of Mori
theory, [Mo2]) were discussed and/or stated and a lot of other problems solved.
In related fields we only mention Deligne proof of the Weil conjectures or, later,
Faltings proof of the Mordell conjecture, which used the new machinery.

Let us quote a part of Zak’ s introduction to his fascinating book [Z2]: " Among
recent achievements in the field of multidimensional projective geometry we mention
results ‘of Hironaka, Matsumura, Ogus, and Hartshorne on formal neighborhoods
and local cohomology, theorems of Barth, Goresky, and MacPherson on the topol-
ogy of projective varieties, classification of Fano varieties given by Iskovskih, Mori,
and others, and varicus versions of Schubert’s enurnerative geometry. One of the
most important results of the last decade is the connectedness theorem of Fulton
and Hansen {cf. [FH], [FL])".

The interplay between topclogy and algebraic geometry returned to flourish.
Lefschetz theorem and Barth-Larsen theorem, see subsection 2.1.1, also suggested
that smooth varieties, whose codimension is small with respect to their dimen-
sion, should have very strong restrictions both topological, both geometrical. For
example a codimension 2 smooth complex subvariety of P¥, N > 5, has to be sim-
ply connected. If N > 6, there are no known examples of codimension 2 smooth
varieties with the exception of the trivial ones, the complete intersection of two
hypersurfaces, i.e. the transversal intersection of two hypersurfaces, smooth along
the subvariety. In fact, at [east for the moment, one is able to construct only these
kinds of varieties whose codimension is sufficiently small with respect to dimension,

Based on these empirical observations and, according to Fulton and Lazarsfeld,
“on the basis of few examples”, Hartshorne was led to formulate two conjectures in
1974, {H2). The first one is the following.

"Let X C PN be a smooth irreducible non-degenerate projective variety.

IfN < gdim(X), .. if codim(X) < %dim(X), then X is a complete intersection.”
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Let us quote Hartshorne: While I am not convicted of the truth of this state-
ment, I think it is useful to crystallize one’s idee, and to have a particular problem
in mind ((H2]). The conjecture is sharp as the example of G(1,4) C [P shows.

It is not here the place to remark how many important results criginated and
still today arise from this open problem in the areas of vector bundles on projective
space, of the study of defining equations of a variety and k-normality and so on.
The st of these achievements is too long that we preferred to avoid citations, being
confidént that everyone has met sometimes a problem or a result related to it. It
is quite embarrassing that the powerful methods of modern algebraic geometry did
not yet produced a solution {or a counterexample).

The second problem posed by Hartshorne, also suggested by the fact that com-
plete intersections are linearly normal and by some examples in low dimension, is
the following. We recail that a nonsingular variety X C PY is called linearly normal
if B%(X,0x(1)) = N +1, ie, there is no X’ ¢ PV', N’ > N, such that X’ is not
contained in a hyperplane and can be isomorphically projected onto X.

"Let X PN be a smooth irreducible non-degenerate projective variety.

IfN < i;—dim(X)-%-l, i.e. if codim{X) < %dim{X) + 1, then X is linearly normal.”

Let us quote once again Hartshorne point of view on this second problem: Of
course in settling this conjecture, it would be nice also to clessify ell nonlinearly
normal varieties with N = %n +1, s0 as to have o sabisfactory generalization of
Severi’s theorem. As noted above, a complete intersection is elways linearly normal,
so this conjecture would be a conseguence of our original conjecture, ezcept for the
case N = -:’:%‘- My feeling is that this conjecture should be easier fo establish then
the original one ([HI2]). Once again the bound is sharp taking into account the
example of the projected Veronese surface in P2,

The conjecture on linear normality was proved by Zak at the beginning of the
'80's and till now it is the major evidence for the possible truth of the complete
intersection conjecture. Moreover, Zak classified all the extremal cases showing
that there are only 4 varieties analogous to the Veronese surface in P4, see chapter
3. These varieties were dubbed Severi varieties in honor of Francesco Severi, who
first established the case n = 2 in [Sevl].

Many theorems in classical projective geometry deal with *general” objects, as
the Bertini theorem on hyperplane sections, see theorem 1.5.2 here. A more refined
version of this theorem says that if f : X — P is morphism, with X proper
and such that dim(f(X))} > 2, and if H = P¥~! C PV is a general hyperplane,
then f~1(H) is irreducible. The "Enriques-Zariski principle” says that "limits of
connected varieties remain connected” and it is illustrated in the previous example
because for an arbitrary H = PN~! ¢ PY, one proves that f~1(H) is connected.

This last result is particularly interesting because, as shown by Deligne and
Jouanolou, a small generalization of it proved by Grothendieck, [Gr} XIIL 2.3,
yields a simplified proof of a beautiful and interesting connectedness theorem of
Fulton and Hansen in [FH], whose applications are deep and appear in different
areas of algebraic geometry and topology as we survey in chapter 2. One of the most
important is Zak’s theorem on tangencies. In the simplest situation this theorem
is formulated as follows. Let X C PY be an irreducible n-dimensional projective
variety over an algebraically closed field K that is not contained in any hyperplane,
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and let L be an m-dimensional linear subspace of PV that is tangent to X along an
r-dimensional subvariety ¥ C X (this means that all {embedded) tangent spaces
to X at the points of Y are contained in L, so that, in particular, m > n). Then
r < -- n, see chapter 2.

In particular the classical theorem of Bertini can be improved and new state-
ments appear; for example, for a nonsingular variety of dimension n, X C PV, each
hyperplane section is reduced for N < 2n and is normal for ¥ < 2r — 1. Other ap-
plications furnished by Zak lead to the solution of many classical problems such as
the finiteness of the Gauss map for smooth varieties or the fact that the dimension
of the dual variety X* C IPY* is not less than the dimension of X C PV,

The problems and results we exposed above and which are contained in these
notes are examples of the themes treated in projective geometry. This means that
we fix a variety, its embedding and we are studying the properties of this variety or of
its projections onto smaller dimensional spaces. Thus only the different incarnations
of the same variety embedded by a fixed very ample line bundle are studied, by
considering various sublinear system of the complete one realizing it in projective
spates of different dimension. The existence of isomorphic projections onto smaller
projective spaces translates into strong properties of the linearly normal embedded
variety.

Let us quote excerpts from Hilbert presentation of projective geometry in
[HCV]:

*..... we shall learn about geometrical facts that can be formulated and proved
without any measurement or comparison of distances or of angles. It might be
imagined that no significant properties of a figure could be found if we do with-
out measurement of distances and angles and that only vague statements could
be made. And indeed research was confined to the metrical side of geometry far
a long time, and questions of the kind we shall discuss in this chapter arose only
later, when the phenomena underlying perspective painting were being studied sci-
entifically. Thus, if a plane figure is projected fromn a point onto another plane,
distances and angles are changed, and in addition, parallel lines may be changed
into lines that are not parallel; but certain essential properties must nevertheless
remain intact, since we could not otherwise recognize the projection as being a true
picture of the original figure. In this way, the process of projecting led to a new
theory, which was called projective geometry because of its origins. Since the 19th
century, projective geometry has occupied a central position in geometric research.
With the introduction of homogeneous coordinates, it became possible to reduce
the theorems of projective geometry to algebraic equations in much the same way
that Cartesian coordinates allow this to be done for the theorems of metric geome-
try. But projective analytic geometry is distinguished by the fact that it is far more
symmetrical and general than metric analytic geometry, and when one wishes, con-
versely, to interpret higher algebraic relations geometrically, one often transforms
the relations inte homogeneous form and interprets the variables as homegeneous
coordinates, because the metric interpretation in Cartesian coordinates would be
too unwieldy.”

Varieties which could be projected isomorphically to projective spaces of lower
dimension such that their codimension became small, are very special. First of all
the projected manifold is not a complete intersection, being not linearly normal,
so that the principles cited above say that near the bound there should be very
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few examples, satisfying strong restrictions and, at least experimentally, they are
very few and could be classified; for examples most of them are homogeneous. To
study projections one naturally deals with secant and tangent lines to the variety
and with the varieties described by these lines in the ambient space.

We recall that a nonsingular variety X C PN can be isomorphically projected
to PN-1 if and only if §X # PV, where SX is the secant variety of X, ie,
the closure of the union of chords joining pairs of distinct points of X. Thus, the
minimal number m such that X can be isomorphically projected to P™ is equal
to the dimension of the variety SX. The relationship between embedded tangent
spaces to X and §X is given by Terracini lemma, see chapter 1.

If z € X, z €< 3,y > , where z,y € X and < z,y > is the chord joining z
with y, then the (embedded) tangent space T;SX contains the (embedded) tangent
spaces Ty X and Ty, X. Moreover, if the ground field has characteristic zero and z
is a general point of X, then

T.SX =< T.X,T,X >.

From this it follows that if X can be isomorphically projected to P™ , then for
each pair of points 2,y € X there exists an m-dimensional linsar subspace of PN
which is tangent to X at the points = and y (if the characteristic of the ground field
is equal to zero, then the converse is also true).

Along with the secant variety $X one can consider higher secant varieties SkX,
k > 1, where S¥X ia the closure of the union of k-dimensional linear subspaces
spanned by generic collections of & 4 1 points of X. Zak established a connection
between geometric characteristics of the varieties $¥X for various k. In particular,
for an arbitrary nonsingular variety X C PV such that < X >= P he proved that

slElx =p¥,
where
8 =08(X)="2n+1—dim{(SX)
and (2] is the largest integer not exceeding %, see chapter 4. This ylelds a bound
for the maximal (for given n and r < 2n} number N for which there exist a variety
X < PV that can be isomorphically projected to P, This bound is sharp; the
varieties for which it is attained are called Scorza varieties, in honor of Gaetano
Scorza (Severi varieties are special cases of Scorza varieties for § = §). Zak obtained
a complete classification of Scorza varieties, viz., there exist three series of such
varieties and one special sixteen-dimensional variety, see chapter 4. In other words,
for a smooth variety X C PT such that codim(X) < dim(X) there exists a sharp
bound for A°({X, Ox(1))) in terms of dim(X) and r and Zak classified all varieties
for which this bound is attained.

Let us describe briefly the contents of the these notes. In the first chapter we
recall the definitions of tangent cone, tangent space, tangent star to a variety at
a fixed point, define the secant variety SX, the higher secant varieties SkX, the
tangent variety T'X and the variety of tangent stars T* X of a variety X C BY. We
consider its join, $(X,Y), with another variety Y C PV and prove Terracini lemma.
relating the dimension of SX, or more generally of $%X, respectively $(X,Y), with
the intersection of general tangent spaces to the variety. We furnish the first con-
sequence for linear tangency at k£ + 1 general points, by defining the entry loci and
by studying its first properties. We present, as a significant applications of the
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notions introduced, a short, elementary, self contained and ”"new” proof, using a
suggestion of Gaetano Scorza contained in the footnote at page 197 of [S1], of a
classical theorem of del Pezzo-Bertini-Severi characterizing the Veronese surface of
P® as the unique surface in BY, N > 5, not a cone, verifying one of the following
equivalent conditions: two general tangent spaces intersect {del Pezzo), respec-
tively, it contains a two dimensional family of smooth conics (Bertini), respectively,
dim{5X) = 4 (Severi). This is the finalization and simplification of the work be-
gan during the supervision of the master thesis [VA]. We also generalize it to a
classification theorem of Edwards-Scorza, to the effect that n-dimensional varieties
X < P*¥3 such that dim(SX) = n + 2 are either cones over a curve or cones over
the Veronese surface. We end the chapter recalling the definition of dual variety,
its first properties, the definitions of Gauss maps and the relations with reflexivity.

In the second chapter we survey, following Fulton [Fu], the connectedness prin-
ciple of Enriques-Severi and generalize it by reporting on the circle of ideas which
led to the connectedness theorem of Fulton-Hansen and on some theorems related
to it. Then we furnish a proof of Fulton-Hansen theorem according to Deligne and
we describe its consequences for the geometry of embedded varieties proved by Zak
(theorem of tangencies, finiteness of the Gauss map, dimension of the dual vari-
ety, hyperplane sections of low codimensional varieties, etc). Other applications to
algebraic geometry are contained in [FH] and in [FL], see also {B1] and [B2].

In the third chapter we enounce Hartshorne conjectures, present Zak proof of
the conjecture on linear normality, define Severi varieties and describe the 4 exam-
ples in dimension 2, 4, 8 and 16. We propose simple proofs of the classification
of Severi varieties in dimension 2, 4 (and 8) and sketch a proof of the astonishing
bound n £ 16 for the dimension of a Severi variety (and of n = 2,4, 8,16), using
results from [Ru6]. In particular, if correct, this approach reveals that the classi-
fication of Severi varieties becomes a consequence of the general theory of quadric
varieties, a suitable generalization of quadric hypersurfaces.

In the fourth chapter we relate the dimensiens of the higher secant varieties
S*X, k > 2, to the dimension of §X and prove Zak’s additivity theorem for
the higher secant defects. We define Scorza varieties as the extremal cases for
the above referred maximal embedding and describe their classification. From the
classification of Severi varieties it follows that only the cases § = 1,2,4 and 8 can
exist. We propose simple proofs of the classification for § = 1 and 2 to illustrate
the result, while for the remaining difficult cases we refer to [Z2].

In the last chapter we describe several applications and generalizations of the
results contained in the previous chapters. Firstly we treat the case in which the
varieties S*X have the expected dimension and satisfy the property that through
a general point of §%X there passes a unique P* generated by k + 1 points on X.
These varieties were named by Severi, [Sevl], varieties with one apparent k - 1-
secunt P*~1 because they acquire such a secant space by a peneral projection, see
section 5.1. Such varieties are the first interesting case of not k-defective varieties
and enjoy special properties. For example they are rational by a result of [CMR],
which proves an implication of a conjecture of Bronowski discussed in section 5.1.
Moreover, we illustrate an interesting interplay between projective geometry and
the expression of general degree d homogeneous polynomials as sums of d*®-powers
of linear formns, the Waring problem, and on the number of these expressions, canon-
ical form. Section 5.2 shows how it can be useful in many geometrical problems
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to study rational maps on projective space whose general fiber is a linear space,
i.e. given by a subhomaloidal linear system. The third section treat an interesting
algebraic problem formulated by Hesse [Hel] to the effect that the determinant of
the hessian matrix of a homogeneous polynomial vanishes identically if and only if,
modulo a linear change of coordinates, the polynomial depends on less variables.
Geometrically this means that the associated projective hypersurface is a cone and
this interpretation immediately clears the path to counterexamples to the not ab-
vious implication, the first ones being proposed by Gordan and Néether {GN]. We
analyze this problem geometrically, relate it to dual varieties and to some interest-
ing questions on the divisibility of the hessian matrix of a homogeneous polynomial
by the polynomial itself and we also look at their geometrical interpretations as
suggested by the work of Beniamino Segre [Se2]. As always it appears the problem
of describing the extremal cases and some open questions on the subject end the
section., In the final section of chapter 5 an interesting relation between varieties
with one apparent double point, or suitable generalizations, and the rationality of
some cubic {or determinantal) hypersurfaces is discussed as an intreduction to some
important and difficult rationality problers for (cubic) hypersurfaces.

The notes end with excerpts from the obituaries of Gaetano Scorza and Alessan-
dro Terracini, whose contributions in the field of algebraic geometry were deep,
hoping their work will become more familiar. It s a kind of personal admiration,
especially for the work of Gaetano Scorza, which probably has not yet been ap-
preciated in the way it deserves as one can verify by reading the summary of his
contributions given by Berzolari, or better directly through the reading of his Opere
Scelte, [S6).

Scorza and Terracini together with classical algebraic Geometers, antique and
modern, taught and teach to us alse to experiment the "live rapport” with "the
objects one studies” and showed us the *concrete intuition”, described by Hilbert
in his preface to the book "Geometry and the Imagination” [EICV]:

" In mathematics, as in any scientific research, we find two tendencies present.
On the one hand, the tendency toward abstraction seeks to crystallize the logical
relations inherent in the maze of material that is being studied, and io correlate
the material in a systematic and orderly manner. On the other hand, the tendency
toward intuitive understanding fosters o more immediate grasp of the objects one
studies, a live rapport with them, so to speak, which stresses the conerete meaning
of their relations. As to geometry, in particuler, the abstract tendency has here
led to the magnificent systematic theories of Algebraic Geometry, of Riemannian
Geometry, and of Topology; these theories make extensive use of abstract reasoning
and symbolic calculation in the sense of algebra. Notwithstanding this, it is still as
true today os it ever was that intuitive understanding plays e major role in geometry.
And such concrete intuition is of great value not only faor the research worker,
but also far anyone who wishes to study and appreciate the results of research in
geometry. In this book, it is our purpose to give o presentation of geomeiry, as it
stands today, in its visual, intuitive aspects. With the aid of visual imagination we
can illuminate the manifold facts and problems of geometry, and beyond this, it is
possible in many cases to depict the geometric outline of the methods of investigation
and proof, without necessarily entering into the details connected with the strict
definitions of concepts and with the actual calculations.
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In this manner, geometry being as many-faceted as it is end being related to the
most diverse branches of mathematics, we may even obtain a summarizing survey

of mathematics as a whole, and ¢ valid idea of the variety of its problems and the
wealth of ideas it contains.”






CHAPTER 1

Tangent cones, tangent spaces, tangent stars;
secant, tangent and tangent star variety to an
algebraic variety

1.1. Tangent cones to an algebraic variety and associated varieties

Let X be an algebraic variety, or more generally a scheme of finite type, over
a fixed algebraically closed field K. Let £ € X be a closed point. We briefly recall
the definitions of tangent cone to X at = and of tangent space to X at z. For more
details one can consult [Mu] or [Sh].

1.1.1. DEFINITION. (Tangent cone at a point). Let U C X be an open
neighbourhood of 2, let i : U — A" be a closed immersion and let U be defined
by the ideal I C K[X1,..., Xn]- There is no loss of generality in supposing i(x) =
{0,...,0) € AN, Given f € K[Xy,...,Xn] with f(0,...,0) = 0, we can define
the "leading form" of f, f*, as the lower degree homogeneous polynomial in its
expression as a sum of homogenous polynomials in the variables X,;’s. Let

I* = {the ideal generated by the "leading form” f*, for all f €.7}.

Then
€2 X = Spec{K[X,..., XnN)/T"),

is called the effine tangent cone to X at .
It could seem that it depends on the choice of U € X and on the choice of
i: U — AM. It is not the case because if (O, mz) is the local ring of regular
functions of X at z, then it is immediate to see that
- . m?l
(k[X1,. .., XN]/T') 2 gr(0g) := GB—TR"L‘H

n>0 T

This fact simply says that we can calculate C; X by choosing an arbitrary set
of generators of I and moreover that the definition is "ocal”. It should be noticed
that Cz X is a scheme, which can be neither irreducible nar reduced as the examples
of plane cubic curves with a node and with a cusp show. We now get a geometrical
interpretation of this cone and see some of its properties.

Since CpX is "locally” defined by homogeneous forms, it can be naturally pro-
jectivized and thought as a subscheme of PN~ = P(AN). If we consider the
blow-up of z € U C AN, 7 : Bl,U — U, then Bl;U is naturally a subscheme of
U xPN-1 c AN xPN-1 and the exceptional divisor E = 7~1(z) is naturally a sub-
scheme of £ xPN=1, With these identifications one shows that 7 o= P(Cr.X Y C py-i
as schemes, see [Mu], pg. 225. In particular, if X is equidimensional at 5, then
(. X is an equidimensional scheme of dimension dim{X). Moreover, we deduce the

1
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following geometrical definition:

cx=J lim < y,3>.
yey
The cone C; X can also be described geometrically in this way, see [Sh]. Let nota-
tions be as in the affine setting above and set

m = min{mult;( N V(f)), { line through z , f € I}.

Then G, X is swept out locally by the lines { through z such that mult,(INV(f)) >
m.

If X c PV is quasi-projective, we define the projective tengent cone to X at z,
indicated by C,X, as the closure of Cz X C AY in PN, wherea € U = AN N X
is a suitable chosen affine neighbourhood. The same geometrical definition holds,
remembering of the scheme structure,

CeX = U lim < y,z > C PV,
Y=z
yely

We now recall the definition of tangent space to X at x € X.

1.1.2. DEFINITION. (Tangent space at a point; Tangent variety to a
variety). Let notations be as in the previous definition. Given f € K[X1,...,Xn|
with f(0,...,0) = 0, we can define the "lincar term” of f, f%", as the degree one
homogeneous pelynomial in its expression as a sum of homogenous polynomials in
the variables Xy’s. In other words, f» = Y0 ‘%&(O)Xi. Let

%" = {the ideal generated by the ”linear terms” f*, for all f € I}.

Then
T, X := Spec(K[Xy,..., Xn)/I"™),

is called the affine tangent space to X at .

Geometrically it is the locus of tangent lines o X af x, where a line through
z is tangent to X at x if it is tangent to the hypersurfaces V(f) =0, f € I, ie.
if the multiplicity of intersection of the line with V(f) at (0,...,0) is greater than
one. In particular this locus is a linear subspace of AV,

Since J*® C I*, we deduce the inclusion as schemes

C:X CT.X;
and that 7, X is the smallest linear subschems of AY containing C. X as a subscheme
{and not only as a set!). In particular for every z € X it holds dim(7,X) > dim(X).
We recall that a point =z € X is non-singular if and only C. X = T.X. Since
T:X is reduced and irreducible and since C;X is of dimension dim(X), we have
that z € X is non-singular if and only if dim(7;X) = dim(X).
Once again there is an intrinsic definition of T, X

(K[X1,.. ., Xn)/T%) > §(my /m2),

where S(mg/m2) is the symmetric algebra of the K-vector space my/m2.

If X ¢ P¥ is a quasi-projective variety, we define the projective tangent space
to X at 7, indicated by T X, as the closure of T.X C AY in PV, wherez € I/ =
AN N X is a suitable chosen affine neighbourhood. Then T X is a linear projective
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space naturally attached to X and clearly C, X C T.X as schemes. We also set,
for a (quasi)-projective variety X ¢ PV,

TX = | TuX,
z€X

the variety of tangents, or the tangent variety of X.

At a non-singular point z € X ¢ PV, the equality C, X = T, X says that every
tangent line to X at x is "limit” of a secant line < z,y > with ¥ € X approaching
2. For singular points this is not the case as one sees in the simplest examples of
singular points of an hypersurface.

An interesting question is to investigate what are the limits of secant lines
< Y142 >, 4 € X, 11 7 y2, when y;, { = 1,2, approaches a fixed z € X. As we will
immediately see for a non-singular point & € X, every tangent line to X at 2 arises
in this ways but for singular points this is not the case. These limits generate a
cone, the tangent star cone to X at x, which contains but does not usually coincide
with C:X (or C;X). From now on we restrict ourselves to the projective setting
since we will not treat local questions related to tangent star cones but the situation
can be;localized”. Firstly we introduce the notion of secant variety to a variety
X c P,

1.1.3. DEFINITION. (Secant varieties to a variety). For simplicity let us
suppose that X € PV is a closed irreducible subvariety.
Let

8% = {{(z1,22),2) : z €<z, 22 >} C (X x X\Ax) x BN,

The set is locally closed so that taken with the reduced scheme structure it is a
quasi-prejective irreducible variety of dimension dim{8%) = 2dim(X) 4 1. Recall
that, by definition, it is a P!-bundle over X x X\Ay, which is irreducible. Let
Sx be its closure in X x X x P, Then Sx is an irreducible projective variety of
dimension 2 dim(X) + 1, called the abstract secent variety to X. Let us consider
the projections of Sx onto the factors X x X and PV,

PN
XxX PV,

The secant variety to X, SX, is the scheme-theoretic image of Sx in PV, ie.

SX =pa(Sx)= |J <aznzm>cPY,
T1#Ty , T, EX

which is an irreducible algebraic variety of dimension s{(X) < 2dim(X) + 1, the
variety swept out by the secant lines to X. If equality (does not).holds, then X is
said to be (defective) non-defective.

Let now k£ > 1 be a fixed integer. We can generalize the construction to the
case of (k+1)-secant P¥, i.e. to thé variety swept out by the linear spaces generated
by k + 1 independent points on X.
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Define
(S5 c X x...x X xPN
—\f-_-_,

k+1
ag the locally closed irreducible set

(8530 == {{(z0,...,Zk), 2) : dim{< @p,..., 2 >) =k, z €< my,..., 21 >}
Let 8%, the abstract k-secant variety of X, be
(8% c X x...x X xPV,
k+1

The closed set 5% is irreducible and of dimension (& + 1) dim(X) + k. Consider the
projections of 5% onto the factors X x ... x X and PV,
e —

k+1

%

Xx...xX BN

The k-secant variety to X, §%X, is the scheme-theoretic image of % in PV, i.e,
SEX =po(8%) = L) < Ty oy > C PV,

2 €X ,dim(<zg,.., 2k > )=k

It is an irreducible algebraic variety of dimension sx(X) < (k+ 1) dim(X) + k. 1f
equality (does not) holds, then X is said to be (k-defective)not k-defective.

We are now in position to define the last cone attached to a point z € X. This
notion was introduced by Johnson in [Jo] and further studied extensively by Zak.
Algebraic properties of tangent star cones and of the algebras related to them are
investigated in [SUV].

1.1.4. DEFINITION. {Tangent star at a point; Variety of tangent stars,
[Jo]). Let X ¢ PV be an irreducible projective variety.
The abstract variety of tangent stars to X, Ty, is defined by the following
cartesian diagram
TeC— Sx

AxC—s X x X
The tangent star to X at z, Tp X, is defined by
12X = pa(p™ ((z,2))) S PV

It is a scheme which can be described geometrically as follows:

X = LJ lim < zp,z2 > C PV,
T{—T
(w1,22)EX X X\Ax
The variety of tangent stars to X is by definition

T*X = po(Ti) G PV,
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so that by construction
T™X CSX;

moreover letting only one point varying we deduce
C.XCT X,

It is also clear that the limit of a secant line is a tangent line, i.e. that
X cT. X

By what we have defined and studied we deduce that for a point z € X ¢ PV,
there is the following relation between the cones we attached at X:

C.X CTIX CTX.

Moreover a point z € X is non-singular if and only if Co X = T3 X = T,X. We
immediately show in the following class of examples that at singular points strict
inequalities can hold, i.e. at singular points there could exist tangent lines which
are not limit of secant lines.

1.1.5. ExaMmPLE. (Singular peints for which C,X ¢ T3 X C T X). Let
Y c PV ¢ P¥+! be an irreducible, non-degenerate variety in PY. Consider a point
p € PV PN and let X := S(p,Y) be the cone over Y of vertez p, ie.

S(pv}’_')= U <py>.

yeY

‘Phen X is an irreducible, non-degenerate variety in PN+!. In fact, modulo a
projective transformation, the variety X is defined by the same equations of Y,
now thought as homogeneous polynomials with one variable more; in particular
dim(X) = dim(¥) + 1.

The line < p,y > is contained in X for every y € ¥, s0 that X € Tz X and
therefore PY =< Y > T,X. Since p € T, X, we get

(1.1.1) T,X =PN*L.
1t follows from the definition of tangent cone to a variety that

CpS(pY) = S(p,Y).

We also have that
(1.1.2) S8(p,SY)=5X.
Indeed, by projecting from p onto PV, it is clear that a general secant line to X
projects onto a secant line to Y, proving SX C S(p, SY). On the contrary if we
get a general point ¢ € S(p,SY), by definition it projects onto a general point
¢ € §Y, which belongs to a secant line < p},p5 >, p; € Y. The plane <p, L0 >
contains the point g, while the lines < p,p{ >, i = 1,2, are contained in X by
definition of cone; hence through g there pass infinitely many secant lines to X,
yielding 8(p, 5Y) C 5X. The claim is proved.

The above argument proves the following general fact:

T;8(p,Y) = 8(p, 8Y).
Indeed by definition T; X C 5X = S{p,8Y) as schemes. On the other hand,

by fixing two general points p1,p2 € X, ;1 # p2, pi 7 p, the plane < p,p1,p2 > is
contained in T3 X as it is easily seen by varying the velocity of approaching p of
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two points ¢; €< p,p; >. By the generality of the points p; we get the inclusion
S§X C Ty X as schemes and the proof of the claim.

As an immediate application one constructs example of irreducible singular
varieties X with a point p € Sing(X) for which

CoX CT X QT X.
One can take as ¥ € P? € P5 an irreducible, smooth, non-degenerate curve in
P* and consider the cone X over Y of vertex p € P5\P*, Then Cp X = S(p,Y} = X,
T, X = S{p,8Y) = 5X is an hypersurface in IP5, because SY is an hypersurface
in P! (see 1.2.2 if you do not agree), while T,X = P°. Every variety ¥ such that
SY C PV (see the following exercise or take N > 2dim(Y) 4+ 1) will produce
analogous examples.

1.1.6. EXERCISE. Let K be afn algebraically closed) field. Recall that the linear
combination of two (symmetric) matrixes of rank 1 has rank at most 2 and that
every (symmetric) matrix of rank 2 can be written as the linear combination of two
(symmetric) matrixes of rank 1.

Deduce the following geometrical consequences for the secant varieties of the
varieties described below.

(1) Let X = vp(P*) ¢ P® be the 2-Veronese surface in P®. Identify P° with
P({A € M(3K) : A= A}),

and show that X = {[4] : rk(4) = 1}. Prove that X = TX =
V(det{A)) < P® is the cubic hypersurface given by the cubic polynomial
det{A). Show that if 1,52 € X, then T, X 0 T5, X # @ ((if you have a
lot of energy and not enough patience to wait for the next section, prove
that if the points are general, then the intersection consists of a point).
Prove that Sing(5X) = X.

{2) Let X =12 x P? C IP® be the Segre embedding of P? x P2 in P2, Identify
P? with

P({A € M(3;K)}),
and show that X = {[4] : rk{d4) = 1}. Prove that §X = TX =
V(det(A)) C IP® is the cubic hypersurface given by the cubic polynomial
det(A). Show that if z1,%, € X, then T;, X and T, X intersect at least
along a line (prove that if the points are general, then the intersection
consists of a line). Take H be a general hyperplane in P? and let ¥ :=
X N H. Then Y is a smooth, irreducible, non-degenerate 3-fold Y C P7
such that SY C §X N H so that dim(SY) < 6 (in fact one can prove that
8Y = 5X N H and hence that dim(SY) = 6). Prove that given y1,1p € Y,
then T, Y N7, Y # B (consists of a point if the points are general). Prove
that Sing(SX) = X.
Let p € PI\P®, let Z = S(p,X) ¢ P? and let X’ = X nW, with

W C ¥ a general hypersurface, not an hyperplane, not passing through
p. Then X' is a smooth, irreducible, non-degenerate 4-fold such that
SX' = SZ = 8(p,8X). Conclude that dim{SX") = 8 and use the fact
that Z is a cone over X to deduce that two general tangent spaces to X'
intersect. -
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(3) Generalize the previous exercise and find the relation between 5X ¢ PV
and SX' C P¥H! for X' ¢ PN*! a general intersection of Z = §(p,X) C
PN+! with s general hypersurface W < PM+1, not passing through p €
PNHI\PN .

1.2. Join of varieties

We generalize to arbitrary irreducible varieties X, Y C P¥ the notion of "cone”
or of "join” of linear spaces.
Let us remember that if L; ~ PY C P, i = 1,2, is a linear subspace, then

< Ly, Ly »>= U < B, Ty >,
TEL; , mpfTy

is a linear space called the join of Ly and Lo. It is the smallest linear subspace of
PV containing Iy and L. By Grassmann formula we have

(121) dim(< Ly, La >) = dlm(Ll) - dlm(Lg) - dim(L1 n Lg),

where as always dim(#) == —1. This shows that the dimension of the join depends
on the intersection of the two linear spaces.

On the other hand, if X ¢ PY < PN+ is an irreducible subvariety and if
p e PYFI\RY {5 an arbitrary point, if we define as before

s, X)= | <pz>,
reX
the cone of verter p over X, then for every z €< p,x >, 2 # =, 2 # p, we have by
construction

(1.2.2) T.8{p, X) =< p, T X >=< Tpp, T2 X >,

ie. the well known fact that the tangent space is constant along the ruling of a
cone.

As we shall see in the next section, once we have defined the join of two varieties
as the union of lines ”joining” points of them, then we can ”linearize” the problem
locking at the tangent spaces and calculate the dimension of the " join” by looking at
the affine cones over the varieties, exactly as in the proof of the formula 1.2.1. The
dimension of the join of two varieties will depend on the intersection of a general
tangent space of the first one with a general tangent space of the other one, a result
known as Terracini Lemina, [T1]. Moreover a kind of property similar to the second
tautological inequality in 1.2.2 will hold generically, at least in characteristic zero,
see theorem 1.3.1.

1.2.1. DEFINITION. (Join of varieties; relative secant, tangent star and
tangent varieties). Let X,¥Y C PV be closed irreducible subvarieties.
Let

Sy ={{(mp2),v#y: z2€<z,52 >} CX xY X PV,
The set is locally closed so that taken with the reduced scheme structure it is a
quasi-projective irreducible variety of dimension dim(S)D('Y) = dim{X)+dim(Y}+1.
Let Sx,y be its closure in X x ¥ % PN, Then Sx,v is an irreducible projective
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variety of dimension dim(X) + dim(Y") + 1, called the absirect join of X and Y.
Let us consider the projections of Sx y onto the factors X x ¥ and P,

(1.2.3) Sx,y

XxY PV,
The join of X and Y, $(X,Y), is the scheme-theoretic image of Sx,v in PV, je.

S(X,Y)=m(Sxy)= | <=zy><PY
zy, s€X, yEY

it is an irreducible algebraic variety of dimension s(X, ¥} £ dim{X) 4+ dim(Y) - 1,
swept out by lines joining points of X with points of Y.

With these notations 5(X, X) = SX and §(X,§5~1X) = §*X = S(8'X, $*X),
ifh>0,0>0, h+1=Fk—1. Moreover, for arbitrary irreducible varieties X, ¥
and Z, we have S(X, 8(Y, Z)) = §(5(X,Y), 2).

When ¥ € X C PV is an irreducible closed subvariety, the variety S(¥, X) is
usually the relative secant variety of X with respect to Y. Analogously, T(Y, X) =
UyEY T,X. In this case by taking Ay C ¥ x X and by looking at 1.2.3, we can
define Ty - = pl_l(Ay) C Sy x to be the abstract relative tangent star variety and
finally

(1.2.4) T*(Y, X) == p2(T3,.x) € S(X,Y)
to be the relative tangent star variety. If
TV X) =m0 wx= U Jim <wp,21 > cPY,

{31, 71)EY x X \Ay “17°Y

then T*(Y, X) = U,ey T3 (¥, X). With this terminology, Ty X) = CyX and
I3(X,X) =Ty X for every y € X. In particular Cy X = Ty X) CTy(X,X) =
TrX.

¥

* We furnish some immediate applications of the definition of join to properties
of 8% X and to characterizations of linear spaces.

1.2.2. PROPOSITION. ([P2]) Let X,Y C P¥ be closed irreducible subvarieties.
The following holds:

(1) for everyz € X,
Y C 8(2,Y) C 8(z, < ¥ >) € TuS(X, Y);

(2) if S¥X = S*¥1X for some k > 0, then §%X = Bs(X) C PN;

(3} if dim(S**1X) = dim(S*X) + 1 for some &k > 0, then S¥H1X = Portrc0
so that S*X is an hypersurface in Pos+(X);

(4) if SFH1X | k>0, is not ¢ linear space, then §¥X C Sing(S%+1X).

PROOF. By definition of join we get the inclusion S(z, Y} C S(X,Y) and hence
T.S(z,Y) € T,8(X,Y). Moreover for every y € ¥, y # m, the line < z,y > is
contained in S(z,Y) and passes through « so that it is contained in T,5(z,Y) and
part 1) easily follows.
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Let z € S*X be a smooth point of $¥X. From part 1) with ¥ = S%X we
get S*X C T.8(X,5%X) = T.8F1X = 7,85 X = P*+(¥), which implies $¥X =
P*) since both are irreducible varieties of dimension s;(X).

To prove part 3), take z € 55+ X\ 55X be a general point and remark that by
part 2) 88X Is not linear so that dim{< S¥X >) > 5;(X) + 1. Then Ps+(¥)+1 =
T,8F1Y D< 2,< S X >>D< S X > PsuiX)Hl o poeti(X) = polXItl -
T,S¥X =< §¥X >) for z € 811X general. Then < S¥X >= Pow1(X) D
5%+1X and hence equality holds.

Recall that in any case §¥"1X C< X >. Take z € 95X and observe that by
. part 1) T,S*H X D< X >2 §5t1X so that dim{T,5%t1X) > dim(55+1X) and z
is a singular point. O

To & non-degenerate irreducible closed subvariety X C PV we can associate an
ascending filtration of irreducible projective varieties, whose inclusion are strict by
1.2.2, and an integer kg = ko(X) > 1:

(1.2.5) X=8°XCSXC8Xg..c8vx=p"
where kg is the least integer such that $¥X = BN,

The above immediate consequences of the definitions give also the following
result, which was classically very well known, see for example [P1] footnote pg. 635,
but considered as an open problem by Atiyah, [At] pg. 424. From the following
corollary, an argument of Atiyah yields a proof of C. Segre and Nagata theorem
about the minimal section of a geometrically ruled surface, see [Ln].

1.2.3. CoROLLARY. ([P1]} Let C C P¥ be an irreducible non-degenerate pro-
jective curve. Then si(C) = min{2k + 1, N}.

ProoF. For k = 0 it is true and we argue by induction. Suppose SkC C PN,
By proposition 1.2.2 s£(C) > sg_1(C)+2.and the description S*(C) = $(C, $*71C)
yields 5£(C) < 5;-1(C)+2 so that 5x(C) = 2(k—-1)+1+2 =2k +1 asclaimed. D

We define and study linear projections with the terminclogy just introduced
and generalize in a suitable way the dimension formula 1.2.1, in characteristic zero,
i.e. to the case of arbitrary cones over the variety X. In the next section we deal
with the general case.

1.2.4. DEFINITION. (Linear projections and ”linear” cones) Let L = Pl C
PN be » fixed linear space, [ > 0, and let M = P¥=i~1 be a linear space skew to
Liie LNM=0and < L,M >= P¥, Let X C PV be a closed irreducible variety
not contained in L and let

7L X -3 PN-i-1 = Af,
be the rational map defined on X \ (L N X} by
7L(z) =< L,z > NM.

The map is well defined by Grassmann formula, 1.2.1. Let X' = m5,(X) C pN-i-1
be the closure of the image of X by m.. The whole process can be deseribed with
the terminology of joins. Indeed we have

X'=S8(L,X)n M,
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i.e. X' is the intersection of M with the cone over X of verter I and moreover
S(L,X) = §S(L,X"). The projective differential of xz, is the projection of the
tangent spaces from L, i.e. if 2 € X\ (LN X), then dy, (15X) =< LT, X >NM C
Trp(z)X' as it is easily seen eventually passing to {local) coordinates.

Suppose LN X = @B, then we claim that 7y, : X — X’ is a finite morphism,
which implies dim{X} = dim{X"). Being a morphism between projective varieties,
it is sufficient to show that it has finite fibers. By definition for &' € X',

aps) =< L,x’ >nX c< Lz’ >= Pl
IF there exists an irreducible curve € €< Lz’ > NX €< L,z >, then @ # LNC C
LN X, contrary to our assumption.

In particular for an arbitrary L, the dimension of X’ does not depend on the
choice of the position of M, except for the requirement LN M = §.

The relation S(L,X) = §(L,X’) allows us to calculate the dimension of the
irreducible variety S(L, X) for an arbitrary L. Exactly as in 1.2.2 for z € S(L, X}\
L1

ze< Lyg >=< Lymp(z) >=< L,z' >,
with £ € X and 7(2) = 7.(X) =2’ € X'. Since S(L,X") is, modulo a projective
transformation, the variety defined by the same homogeneous polynomials of X'
now though as pelynomial in N + 1 variables, we have

(1.2.6) T,,S(L,X) =< L,T,”‘(Z)X’ >O2< LT, X >.
Taking z € §(L, X) general and recalling that LN M =  we deduce:
(1.2.7) dim(S(L, X)) = dim(< L, Ty (X' >) = dim(X') + 1+ 1.

Suppose till the end of the subsection char(K) == 0. By generic smoothness,
the differential map is surjective so that Tp, () X' = mp(TpX } for x € X general.
In this case 77, (x) =z’ € X’ will be general on X' and finally

dim(X") = dim(Tpr X") = dim(rp (T X)) = dim{X) — dim{L N T X) — 1,
which combined with 1.2.7 gives the following generalization of 1.2.1:
{1.2.8) dim(8(L, X)} = dim(L) + dim(X) — dim(L N T X),
z € X general point.
Moreover, we get the following refinement of 1.2.6

(1.2.9) T,.8(L, X)=< L, T, X >,
re X, z €< L,z > pgeneral points.

We have generalized the notion of cone over a variety lying in a skew space with
respect to the vertex by taking S(L, X) and shown that by projecting the variety
X from the vertex L, we can find the description of it as an "usual” cone, S(L, X’).

Now we investigate under which condition a variety is a "cone”, i.e. there exists
a "vertex” L ~ P* C X such that X = §(L, X) = §(L, X’), If X’ is the section with
a general P¥N—-1 skew with the "vertex” L. Clearly the "vertex” is not uniquely
determined if we not require some maximality condition. Let us begin with the
definitions. ‘
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1.2.5. DEFINITION. (Cone; vertex of a variety) Let X ¢ PV be a closed
(irreducible) subvariety. The variety is a_cone if there exists x € X such that
S(z, X) = X. Geometrically this means that given y € X, y # =, the line < z,y >
is contained in X. In particular = € [},cx Ty X.

This motivates the definition of vertex of a variety. Given X < PN an irre-
ducible closed subvariety, the vertex of X, Vert(X), is the set

Vert(X)={zeX : S(zX)=X}.

In particular a variety X is a cone if and only if Vert(X) # ®; by definition
S(X,Y)= X if and only if ¥ € Vert(X).

We list some obvious consequences and leave to the interested reader the plea-
sure of showing that the hypothesis on the characteristic of the base field are nec-
essary.

1.2.6. PROPOSITION. Let X C PV be a closed trreducible variety of dimension
dim{X) = n. The following holds:

(1)
Vert(X) =P ¢ [ T.X,
xEX
1> -1;
(2) #f codim(Vert(X),X) < 1, then Vert(X) = X = P* C P¥;
(3) if dim{S(X,Y)) = dim(X) -+ 1, then Y C Vert(S(X,Y));
(4) if char(K) =0,

Vert(X) = [ TeX =P C X,
TEXN
> -1;
(5) suppose char(K) = 0 and B # Vert(X) € X, then X = S(Vert(X), X'
is o cone, where X' is the projection of X from Vert(X) onto a PNV=*1
skew to Vert(X) (dim(X') =n—1-1).

PROOF. To prove 1) it is sufficient to show that, given two points x1,22 €
Vert(X), the line < 31,32 > is contained in Vert(X}, forcing Vert(X) irreducible
and linear by proposition 1.2.2 part 2). Taken y €< ®1,%2 > \{z1,72} and z €
X \ Vert(X), it is sufficient to prove that < y,z >C X. By definition the lines
< x;, % > are contained in X and by varying the point q €< 22,2 >C X and by
joining it with %1 we see that the line < 51,9 > s contained in X for every such
q, i.e. the plane II; =< 71,72,z > is contained in X. Since y and z belong to Il.,
the claim follows.

If Vert{X) = X, then X = P" by part 1). If there exists W = Pl C
Vert{X) =P C X, te. ifl > n—1, we can take z € X\W. Therefore S(z, W) =pP"
and $(W,z) C X forces X = P". '

To prove 3} take y € ¥ \ Vert(X) and observe that for dimension reasons
S(y, X) = S(¥,X) and 8(y,S(X,Y)) = S(u, S(3. X)) = 8(s, X) = (¥, X) gives
the desired conclusion.

Set L = (,ex ToX and assume char(K)=0. By 1.2.8 dim(S(Z, X)) = dim(X),
yielding X = S(L, X) and L C Vert(X), which proves part 4). Part 5) follows in 2
straightforward way. O
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" Later we will use the following result.

1.2.7. COROLLARY. Let X C PV be an irreducible non-degenerate variely of
dimension n = dim(X). Assume char(K)=0, N > n+3 end dim(5X) =n+2. If
through the general point x € X there pusses a line ly contained in X, then X is e
cone.

PROOF. Let z € X be a general point. Then z € Vert(X) and z ¢ Vert(SX)
gince X is non-degenerate, so that X G 8(lz, X) € SX. If dim(S(l;, X)) =n +2,
then S(ly, X} = SX. Since 8(i;,5X) = 8(lz,5(:, X)) = 8{iz,X) = 5X, we
would deduce z € I; C Vert{(SX). In conclusion !, is not contained in Vert(SX)
and dim({5(l;, X)) = n+1. Then the general tangent space to X, T, X, will cut Iz in
a point pyy == ;N7 X, If this point varies with y, then two general tangent spaces
Ty, X and Ty, X would contain Iy so that < Iz, < Ty, X, T, X >>=< T, X, T;, X >
would force 8(l;, 8X) = 85X, ie. I C Vert{$X). So the point remain fixed, i.e.
p € NyexTyX = Vert(X) and X Is a cone by proposition 1.2.6. O

We end this section by putting in relation the projections of a variety and the
dimension of its secant or tangent varieties.

If L = P* C PV is a linear space and if 7, : P¥ \ L — PNV~ is the projection
onto a skew complementary linear space, then wp restricts to a finite morphism
w2 X —» PVN=1 as soon as LN X = §. In the idea that studying varieties whose
codimension is small with respect to the dimension is easier (from some points of
vigw but not from others!), we can ask when this finite morphism is one-to-one, or
a closed embedding. et us examine this conditions in the following proposition.

1.2.8. PROPOSITION. Let notations as above. Then:
(1) the morphism my, : X — PN=I=1 is one-to-one if and only if LN SX =0;
(2) the morphism my, : X — PN 45 unramified if and only if LNTX = 0;
(3) the morphism 7, : X — PN—*1 is g closed embedding if and only if
LNSX=LnTX=4§.

PROOF. The morphism g, : X — X’ C PV=!~1 is one-to-one if and only there
exists no secant line to X cutting the center of projection: < L,z >=< L,y >
if and only if < z,y > NL # 0. It is ramified at a point £ € X if and only if
T:X NL =0 by looking at the projective differential of #7,. A morphism is a closed
embedding if and only if it is one-to-one and unramified. ]

‘We must state the following well known result, which only takes into account
that for smooth varieties the equality TX = T*X furnishes TX C 5X.

1.2.9. CorROLLARY. Let X C P¥ be a smooth irreducible closed subveriety. If
N > dim{SX), then X can be isomorphically projected into PN~1. In particular if
N > 2dim(X) + 1, then X can isomorphicelly projected into PN—1,

One could ask what is the meaning of LN T*X = @. This means that my,
(or d(m)) restricted to ToX is finite for every z € X. This is the notion of J-
unramified morphism, where J stands for Johnson (Jo], and it can be expressed
in terms of affine tangent stars, see [22]. We take the above condition as the
definition of J-unramified projection. In particular, if LN SX = @, then mp, is
one-to-one and J-unramified and it is said to be a J-embedding. If the projection
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7 X — X' ¢ PV'1, then Sing(nz(X)) = w1(Sing(X)) so that X’ does not
acquire singularities from the projection.

It is clearly weaker than the usual notion of embedding and it is well behaved
to study the projections of singular varieties. For example take C C P* C 5 a
smooth non-degenerate curve in P* and let p € PP\ P4, If X = S(p,C) is the cone
over C, then T,X = P®, 1.1.1, and X cannot be projected isomorphically in P4
Since X = S{p, SC), 1.1.2, is an hypersurface in P°, there exists a point g € P\ X
such that my : X — X’ is a J-embedding and X’ = §(m,(p}, C) is a cone over C of
vertex mg(p) = p'. In this example the morphism 7, is one-to-one and unramified
outside the vertex of the cones and maps the tangent star at p, T, X = 8(p, 5C},
m-to-one onto P*, where m = deg(S(p, SC)) = deg(SC} = (%3') — 9, d = deg(C),
g the genus of C.

The conditions LNS(Y, X) = @, respectively LNT* (¥, X) =0 or LNT(Y, X} =
@, with ¥ € X, mean that 7y, is one-to-one in a neighbourhood of V', respectively
is J-unramified in a neighbourhood of ¥ or unramified in a neighbourhood of ¥

1.3. Terracini Lemma and its first applications

As we have seen the definition of secant variety is the "join” of X with itself
and it is not clear how to calculate the dimension of SX, see exercise 1.1.6, or
more generally the dimension of (X, Y). In fact, the circle of ideas, which allowed
Alessandro Terracini to solve the problem of calculating the dimension of $X, or
more generatly of $%X, originated exactly from the study of examples like the ones
considered in 1.1.6 and from the pioneering work of Gaetano Scorza, [S1} and [S4].
Let Terracini explain us this process, by quoting the beginning of [T1]:

E noto, [dP], ehe la sola V2, non cono, di Sy, i cui Sz tangenti si incontrano
a due ¢ due, &, se r = 5, la superficie di VERONESE; ¢ che questa superficie,
[Sevl), é pure caratterizzate dall’ essere, in un fale ¢, lo sola, non cono, le cui
corde riempono une Vy. Recentemente lo SCORZA, [83] pg. 265, disse di aver
ragione di credere, sebbene non gli fosse venuto fatto di darne unc dimostrazione,
che le Vi di Sy, o di uno spazio pid ampio, le cui corde non riempiono una V¢
<< rientrino >> tra le Vi a spazi fangenti mutuamente secantisi. Ora si pud
dimostrare, piv’ precisamente, che gueste categoric di V3 coincidono, anzi, pin’ in
generale, che: Se una Vi di Sy (r > 2k) gode di una delle due proprietd, che le corde
riempiano una varietd di dimensione 2k—i (i > 0), 0 che due qualsiansi Sy, tangenti
si seghino in uno S;, gode pure dell’ altra. Questo teorems, @ sua volta, non € se
non un caso particolare di un teorema pitf generale che ore dimostreremo, teorema
che pone in relazione !’ eventuale abbassamento di dimensione delle varietd degli Sh
(h+1)-seganti di una Vi immersa in uno spazio di dimensioner = (h+1)k+h, coll’
esistenza di b+ 1 qualsiansi suoi Sy, tangenti in uno spazio minore defl’ ordinario.

To calculate the dimension of $(X,Y) in a simple way and to determinate the
relation between T,S(X,Y), ToX and TY, where z €< z,y >, 2 ¥ %, 2 # vy,
% # y, we recall the definition of affine cone over a projective variety X C PN,

Let 7 : A¥+1\ 0 — PV be the canonical projection. If X < PV is a closed
subvariety, we indicate by Co(X) the affine cone over X, t.e. Co(X) = n"1(X)U0
is the affine variety cut out by the homogeneous polynomials in N + 1 variables
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defining X. If x # 0 is a point such that m(x) =z € X, then
w(TCo(X)) = T X.

Moreover, if L; = w(U;), i = 1,2, U; vector subspace of AV *+1, then by definition
< L1, Ly >= w(Uy + Uy), where + : ANt x AN 4 AN+1 s the vector space
operation. Therefore, thought as a morphism of algebraic varieties, the differential
of the sum coincides with the operation, i.e.

dixy) * Ty (ANH x ANH) = TANY x AN o TeryANH!
is the sum of the corresponding vectors.

With the above notations we have
(1.3.1) Co(X) + Co(Y) = Co(S(X,Y)).

We are now in position to prove the so called Terracini Lemma. The original
proof of Terracini relies on the study of the differential of the second projection
morphism pz : Sxy — S(X,Y). Here we follow Adlandsvik, [Ad}, to avoid the
»difficulty”, if any, of writing the tangent space at a point {z,y,2) € S},Y. When
writing z €< z,y >, we always supposs = # ¥.

1.3.1. THEOREM. (Terracini Lemma) Let X,Y C PV be irreducible subvari-
eties. Then:
(1) foreveryz € X, foreveryy €Y, z # v, and for every z €< 2,y >,
< X, T,Y >CT.5(X.Y);
(2) if char(K) = 0, there exists an open subset U of S(X,Y’) such that
< T X, T,V >=T.8(X,Y)
foreveryzell,ze X,yeY, z €< &,y >. In particular
dim(S(X,Y)) = dim(X) + dim(¥} — dim(T2X N T,Y)
forz € X and y € Y general poinis.
ProOF. The first part follows from equation 1.3.1 and from the interpretation

of the differential of the affine sum. The second part from generic smoothness
applied to the affine cones over X, ¥ and S(X,Y). [;

Since we have quoted the original form given by Terracini, let us state it as an
obvious corollary.

1.3.2. CoroLLARY. ([T1]) Let X C PN be an irreducible subvariety of PV.
Then:
(1) for every zq,...,zx € X and for every z €< Ty, -- ., Tk >,

< T Xy, Te X >C T, 5%X;
(2) if char(K) = 0, there exists an open subset U of S*X such that
<Too Xy oy Tun X >= T, 55X
foreveryzeU, € X,i=0,...,k z €< xg,...,% >. In particular
dim(SX) = 2dim{X) — dim(T. X N T, X)
for z,y € X general points.
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The first application we give is the so called Trisecant Lemuma. Let us recall
that a line { C PV is said to be a frisecant line to X C PV if length({ N X) > 3.

1.3.3. ProposITION. (Trisecant Lemma) Let X C PV be a non-degenerate,
irreducible closed sulwariely. Suppose char(K)=0 and codim{X) > k. Then e
general (k + 1)-secant P*, < mp,...,z; >= L = P¥, is not (k + 2)-secant, i.e
LNX = {zp,..., 2} as schemes. In particular, if codim(X) > 1, the projection of
X from a general point on it, my 1 X -+ X' C PN71 s o birational map.

Proor. We claim that it is suflicient to prove the result for & = 1. Indeed X is
not linear so that by taking a general z € X and projecting X from this point we get
a non-degenerate, irreducible subvariety X’ = m,(X) € P¥~! with codim(X’) =
codim({X)—1 > k—1. If the general L =< xy,...,z; > as above were k - 2-secant,
by taking x = zy, the linear space < mz(zg), ..., Te(Tr_1) >= P*1 = L’ would be
a general f-secant P*~1, which results to be (k+ 1) = {(k ~ 1) + 2)-secant. So we
can assume k = 1 and we set n = dim(X).

Take © € X \ Vert{X). Then a general secant line through =, { =< z,y >, is
not tangent to X neither at = nor at y. If l is a trisecant line then necessarily it
exists u € {INX)\ {=,y}. Consider the projection of X from z. Since z € Vert(X),
if X' = n(X) € PV-1, then dim{X") = dim(X) and m,(y) = mp(u) = =’ is a
general smooth point of X/, By generic smoothness

<5, TpX >=<3,T,X >=<z,T,X >
so that 7, X and T, X are hyperplanes in < &, T X' >== P*¥1 50 that
dim(TyX N, X)=n-1
Taking z €< z,y >=< y,u > general, we have a point in the set U/ specified in
corollary 1.3.2 yielding dim{SX) = dim(T35X) = dim(< T, X, T, X >) = n+ 1L
This implies codim(X} = 1 by proposition 1.2.2 part 3). The last part follows from

the fact that a generically one-to one morphism is birational if char(#)=0, being
generically étale. O

As a second application we reinterpret Terracini Lemma as tangeney of tangent
space to higher secant varieties at a general point along the locus described on
X by the secant spaces passing through the point. To this aim we first define
tangency along a subvariety and then the entry loci described above, studying their
dimension.

1.3.4. DEFINITION. (Tangencies along a subvariety) Let Y € X be a closed
(irreducible) subvariety of X and let L = P¥ ¢ PY, [ > dim(X), be a linear
subspace. -

The linear space L is said to be tangent to X alongY ifforevery y ¢ Y

T,XCL,
i.e. if and only if T(Y, X) C L.
The linear space L is said to be J-tangent to X along YV if for every y€ Y
T, XCL,

i.e. if and only if T*(Y, X) C L.
Clearly if L is tangent to X along Y, it is also J-tangent to X along Y.
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In the case L = PY—1, the scheme-theoretic intersection LNX = D is a divisor,
i.e. a subscheme of pure dimension dim(X) — 1. By definition, for every ¥ € D, we
have T}, D = T, X N L so that, if X is a smooth variety, L = P¥-1 i tangent to X
exactly along Sing(D) = {y € D : dim(T},D) > dim(D)}.

We define the important notions of entry loci and k-secant defect and we study
their first properties.

1.3.5. DEFINITION. (Entry loci and k-secant defect ;) Let X C PV be a
closed irreducible non-degenerate subvariety. Let us recall the diagram defining the
higher secant varieties $¥X as join of X with §¥~1X:

Sk
PR
X x 81X PV,

Let us define ¢ : X x $5"1X — X to be the projection onto the first factor of this
product.

Then, for z € 8% X, the k-entry locus of X with respect to z is the scheme
theoretic image

(1.3.2) T = BHX) = ¢l (p1 1 (2)))-
Geometrically, the support of T¥ is the locus described on X by the (k + 1)-
secant B¥ of X passing through z € S*X. If 2 € S¥X is general, then through z

there passes an ordinary (k + 1)-secant P¥, L.e. given by k41 distinet points on X
and we can describe the support of X¥ in this way

(Z%)yeq = {w € X : 3zq,..., 24 distinct and z €< 2, 21,. .., Tk >}

Moreover, by the theorem of the dimension of the fibers for general z € 54X, the
support of TF is equidimensional and every irreducible component confains ordinary
P*’s since necessarily codim{X) > k, see proposition 1.3.3. If char(K)=0 and for
general z € %X the scheme p*(z) is smooth so that T is reduced.
To recover the scheme structure of Zf geometrically, one could define I, as
 the locus of {k + 1)-secant P*’s through z and define £¥ = IT, N X as schemes. For
example if through z & SX there passes a unique tangent line { to X, then in this
way we get II, = [ and &, = INX the point of tangency with the double structure.
Let us study the dimension of T¥ for z € S¥X general. Before let us remark
that if ¢z € E’; is a general point in an irreducible component, z € 5% X general,
then, as sets,

¢ z) = dim({y € $¥'X : 2z E< T,y >} =<z,x> NS IX #£0

and dim(¢~!{z)) = 0 because z € $*X \ §¥~1X by the generality of 2.
Then we define the k-secant defect of X, 1 < k < ko(X), 0x(X), as the integer

(133) 6u(X) = dim(E") = dim(pa(pr () = sp-a(X) + dim(X) +1 = sk(X),

where z € §¥X is a general point.
For k = 1, we usually put &, = B}, z € §X, and §(X) = (X} = 2dim(X) +
1 - dim(SX); for k = 0, do(X) =0,

Let us reinterpret Terracini Lermma with these new definitions.
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1.3.6. COROLLARY. (Tangency along the entry loci) Let X be an irreducible
non-degenerate closed subvariety. Letk < ko(X), i.e. S*X C PV, and let z € S*X
be o general point. Then:

(1) the linear space T.S*X is tangent to X along (%F)req \ Sing(X);

(2) d(X) < dim(X);

(3) 0k {X) = dim(X) if and only if 55,1 (X} = N — 1, 1. e. if and only if
Ske=1X is an hypersurface;

(4)

k k
se(X)=(k+1Hn4+1)-1- &(X) = > (dim(X) — 8i(X) — 1);
i=0

i=1
(5) (efr. 1.2.3) if X is a curve, sg(X) =2k+1.

Proor. Part 1) is clearly a restatement of part 1} of corollary 1.3.2 when we
take into account the geometrical properties of ¥, z € SkX general, described in
the definition of entry loci and the fact that the locus of tangency of a linear space -
is closed in X \ Sing(X), see also definition 1.5.8. Recall that if char(K)=0, the
scheme Ef is reduced.

If dim(E%) = 8;(X) = dim(X), then a general tangent space to S*X would be
tangent along X and X would be degenerated.

With regard to 3), we remark that §i,(X) = sg,—1(X) 4+ dim(X) + 1 - N so
that dim(X )} — 8 (X) = N - 1 — s,1(X).

Part 4} is an easy computation by induction, while part 5) follows from part
4) since for a curve §x(X) < dim(X) yields §,(X} = 0.

1.3.7. REMARK. The statement of part 1) cannot be improved. Take for ex-
ample a cone X C P of vertex a point p € P3 \ P* over a smooth non-degenerate
projective curve C € P4 If z € 5(p, SC) = SX is general and if z €< z,y >,
z,y € X, it is not difficult to see that T.(X) =< p,z > U < p,y >. The hyper-
plane T,5X is tangent to X at z and y by Terracini Lemma, so that it is tangent
to X along the rulings < p,z > and < p,y > minus the point p. Since T, X = IP5,
the hyperplane T, SX is not tangent to X at p (neither J-tangent to X at p).

A phenomenon studied classically firstly by Scorza, [S1], [82], [S4], and then
by Terracini, [T'2) is the case in which imposing tangency of a hyperplane at & +
1 general points, k > 0, of a variety X C PN forces tangency along a positive
dimensional variety, even if 8;(X) = 0. Indeed, Terracini Lemma says that if
8k(X) > 0, k < ko(X), than a hyperplane tangent at k41 points, becomes tangent
along the corresponding entry locus. The interesting and exceptional behaviour
occurrs for varieties with 6, (X) = 0. The first examples are the tangent developable
to a non-degenerate curve or cones of arbitrary dimension. Indeed they are 0-
defective as every variety but by imposing tangency at a general point, we get
tangency along the ruling passing through the point.

Varieties for which a hyperplane tangent at k + 1, & = 0, general points is tan-
gent along a positive dimensional subvariety are called k-weakly defective varieties,
according to Chiantini and Ciliberto, [CC]. In [CC] many interesting properties
of these varieties are investigated and a refined Terracini Lemma is proved, also
putting in modern terms the classification of k-weakly defective irreducible sur-
faces obtained classically by Scorza, {S2], and Terracini, [T2]. Let us remark that,
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as shown in [CC], there exist smocth varieties of dimension greater than one which
are k-weakly defective but not k-secant defective for every & = 1.

As another application, we study the dimension of the projection of a variety
from linear subspaces generated by general tangent spaces. Terracini Lemma says
that we are projecting from a general tangent space to the related higher secant
variety. As we have seen when the center of projection L cuts the variety it is
difficult to control the dimension of the image of X under projection because we
do not know a priori how a general tangent space intersects L. In the case of
L = T,58% !X this information is encoded in the dimension of S*X and of the
defect §x(X) as we immediately see. In chapter 5 we shall see how the degree of
the projections from T;S* X is related to the number of (k-+2)-secant P*+! passing
through a general point of $¥¥1X, a problem dubbed as Bronowski’s conjecture,
[B1], and partially solved in [CMR]. Projections from tangent spaces, or more
generally from T,S* X, were & classical tool of investigation, [Cal, [E1}, [S1], [S4],
[B1}, {B2], and were recently used to study classical and modern problems, [CC],
[CMR], [CR2].

1.3.8. PropPosITION. (Projections from tangent spaces) Let X C PV be
an irreducible, non-degenerate closed subvariety. Let n = dim(X) and suppose
char(K)=0 and N > sg, k > 1, where s, = sp{X). Set § = §(X). Let
#i,...,Ik € X be k general points and let L =< Tp,,..., Ty, > and mp = 71 ¢
X — X! ¢ PN=s1(X)-1 Then dim(L) = sp—1(X) = sx—1 and, if X} = mx(X) C
]PN-s;‘_1—1, then

(1) dun( L) = 8L —sk_1—1=nm5k;

{2) suppose N > (k+1)n+k and and sg_y = kn+-k—1, ie. if 6y = 0. Then
$x = (k4 L)n -+ k (or equivalently 8 = 0) if and only if dim(X}) = n;
if and only if 7 : X --» X}, € P¥-*%% i5 dominant. In particular if
N =(k+1)n-+k and if sx_; = kn+k — 1, then §5X = Plk+)n+k if angd
only if % : X --+ P* is dominant,

ProoP. If z €< zy,...,Tx > is & general point, then z is a general point of
551X and by Terracini lemma sg_; = dim(TpS*"1X) = dim(< Ty,,..., T, >).
By equation 1.2.7 we get dim{X}) = dim(S(7:8* 71X, X)) - sx—1—1 = Sk — k-1 —
1 = n — 8. The other claims are only reformulations of part 1). &

A complete description of S'X[ in terms of higher secant varieties of X is
possible and the dimensions 3;{ X},) are easily expressible as functions of the s, (X},
Le. 8x(X}) is controlled by 6,,(X) and viceversa. These remarks and the possibility
of constructing explicit rational maps reveals the importance of projections from
tangent spaces.

We study via Terracini Lemma the tangent space to the entry locus of 5X at
a general point of it. As a minimal generalization we can define the projections
onto the i-factor ¢; : X3 x Xy — X; and for z € S{X1,Xy), define . (X;) =
¢:(p2(p72(2))), where the morphism p;’s are the map used for the definition of the
join. We remark that dim(Z.(X;)) = dim(2;(X5)} = dim(X;) + dim(X5) + 1 ~
dim(S{Xy, X2)). With these notations we get the following result.

1.3.9. ProrosITION. Let X,Y C PV be closed irreducible subvarieties and
assume char(K}=0. Suppose S(X,Y) 2 X end S(X,Y) 2 Y to avoid triviahiies.
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If z € S(X,Y) 45 a general point, if x € £,(X) is o general point and if < 2,z >
NY =y € ,(Y), then v is a smooth point of T,(Y),
LX) =T XN <z, T,E2(Y) >=T. XN <z, T,Y >,
oY) =TYN <y LEAX) >=T, YN <y T X >
and
TXNTY =T,Z.(X)NT,5.(Y).
In particular for z € §X general point, X not linear, and for z € Z,(X)

general point, we have that, if < z,2 > NX =y € L,(X), then y is a smooth point
of (X)),

o5 (X) =T Xn <2, T,E(X) >=T XN < 2, TY >

and
T.X NT,X = T.Z.{X) NT,X(X).

ProoF. Let us remark that by assumption and by the generality of z and of
x, we can suppose that y ¢ Tp X and that x ¢ T,Y. ’

Take 5(z, E(X)) = S(z, £:(Y)). Then dim(S(z, £,(X})) = dim(Z.{X)) + L.
Ifu €< 2,z >=< 2,y > is a general point, then T;,5(z, £,(X)) =< 2, X (X) >=
pAm(S(,5: (X)) pecause z ¢ TpX. In particular u is a smooth point of S{z, £;(X)).
By Terracini Lemma, we get T, 5(2, 5:(X)) 2< 2,T,Z.(Y) >, which together with
z ¢ T,Y yields dim(T, 2. (Y)) = dim{E,(Y)) so that y € £,(Y} is a smooth point.
Moreover,

To (X)) € TuS(2, 5:(Y) =< 2, Ty, (Y) >=< 2, Ty 5, (Y) >C< 2, Y >.
Since T .(X) C T X, to conclude it is enough to observe that
dm(T, XN < 3, T,Y >) = dim(X) + dim(Y) + 1 — dim(< T, X, T, X >)
= dim(E;(X)) = dim(T,X.(X)).

The other claims follows from symmetry between x and y or are straightforward. [

1.4. Characterizations of the Veronese surface in P® according to del
Pezzo, Bertini and Severi and classification of algebraic varieties in
PV, N > dim{X) 4 3 with dim(5X) = dim(X) + 2

In this section, as a beautiful application of the definitions and tools introduced
in this chapter, we prove various characterizations of the Veronese surface in i
among irreducible non-degenerate surfaces in PN, not cones, N > 5, having special
geometrical properties. We also classify varieties in P¥, N > dim(X} + 3 with
dim(S§X) = dim{X) + 2, a result due to Edwards for dim{(X) = 3, [Ew], and
outlined and essentially solved by Scorza in [S1], as we shall see below. These
results serve also as a motivation for the further generalizations of this classical
material in the next chapters.

The proof we propose here is the most "elementary” we are aware of since
it not hased on any result involving dual varieties, contact loci, flatness and so
on. We essentially use the previous results and the elementary fact that for an
irreducible curve, not a line, supposing char{)=0, a general tangent line to the
curve at & point is tangent to it only at that point. This is an easy property which
is immediately reduced to the analogous statement for plane curves by a linear
projection. For plane curves it simply says that the dual curve of a plane curve has
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only a finite number of singular points. We followed a suggestion of Gaetano Scorza
in {S1], footnote at page 197: "Non mi sembra inutile for notare come partendo
da un’ osservazione analoge a quella del testo si possa arrivare allo dimosirazione
del teorema del prof. Del Pezzo [n.d.A.; e del Prof. Edwards] in modo abbastanza
rapido e semplice”. '

1.4.1. THEOREM. (Characterizations of the Veronese surface) Let X C
PN, N > 5, be a non-degenerate irreducible surface, not a cone. Then N =5 and
X is projectively equivalent to the Veronese surface in P%, 1(P?) C P®, if and only
if one of the following equivalent conditions holds:

(1) if z,y € X are general points, then T,X NT,X # @ ([dP));
(2) dim(SX) =4 ([Sevi]);
(3) X contains a two dimensional family of irreducible conics ([Be], pg. 392).

First of all, by Terracini Lemma. if 1) holds, then dim{SX) < 4 but since X
is non-degenerate part 3} of proposition 1.2.2 implies dim(5$X) = 4. By Terracini
Lemma 2) implies that T, X N T, X consists of a point. Also condition 3) implies
1) (or 2)). Indeed, there exists at least & conic Cy,, passing through the general
points £ and y so that pgy = TpCry NTyCry € TX NT,X and in fact equality
holds. So it will sufficient to show that if 7, X N T,X = pyy is a point, then X
is projectively equivalent to the Veronese surface, which is Del Pezzo's theorem,
[dP] and [Be], pg. 394. During the proof of the preliminaries lemma the appar-
ently more general fact that X contains a two dimensional linear system of Cartier
divisors of selfintersection 1, which are conics in the fixed embedding, is seen to
be a consequence of condition 1}. This is essentially also Bertini's proof that 3)
characterizes the Veronese surface, see [Be}, pg. 392. So all the equivalences and
the necessary tools will be established.

Let us recall that if X < PV is an irreducible projective non-degenerate variety
of dimension n = dim(X), then dim(SX) > n + 1 and that equality implies N =
n + 1, see proposition 1.2.2. Hence if codim(X} > 1, dim{5X) > n + 2. Suppose
dim(SX} = n+2 If N = n+2, then 5X = PN and there is no particular
restriction on X and clearly there exist infinitely many examples. If N > n 4 2
the complete classification of varieties with dim{(SX) = n 4+ 2 is contained in the
following theorem of Scorza-Edwards.

1.4.2. THEOREM. (Scorza, [S1], Edwards,[Ew]) Let X C PV be an irreducible
projective variety of dimension n = dim{X} = 3. Assume N > n 4 3 and that
dim{SX) = n+ 2. Then either X is a cone over a curve or N =n+3 and X is
a cone over the Veronese surface in P5. On the contrary such warieties enjoy those
geometrical properties.

Equivalently, X ¢ PN, N > n+3, is a cone over a curve or a cone over the
Veronese surface in P if and only if it contains an irreducible two dimensionel
family of divisors which are guadric hypersurfoces in the fized embedding. The
general member of this family is a reducible quadric if and only if X is a cone over
a curve,

Once again, it is clear that if through two general point there passes a quadric
hypersurface of dimension n — 1, then for a general point z € SX,

M +1 - dim(SX) = dim(Z,(X)) > n— 1,
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yields dim(SX) < n + 2 and hence equality by the non-degenerateness of X C PV
and by the hypothesis N > n + 3. The other implication will follow once again by
the next lemma of Scorza.

1.4.3. LEMMA. (Scorza Lemma, [S1], footnote pg. 197) Let X C BV be
an irreducible non-degeneraie projective variety of dimension n = dim{X). Suppose
N2>n+43 and dim(SX) =n+2. Then:

{1) the closure of the generul fiber of the tangential projection of X from a
general point € X onto the irreducible curve Cp C PV 1 X -
Cp © PN-n=1 45 either a P™ ! or an irreducible quadric hypersurface
of dimension n — 1. The first case occurs if and only if X is a cone
over a curve. Moreover, X contains ¢ two dimensional fomily of quadric
hypersurfaces, whose general member is the union of two P*~! if and only
if X is a cone over a curve.

(2) If X is not @ cone over e curve, then Cy is an drreducible conie, so that
N = n+3 and the general fiber of 7y : X --+ C, C P? is an irreducible
quadric hypersurface of dimension n — 1.

Proor. Let z,y € X general points. The image of the tangential projection
my t X -2 XL =0 C PN-"=1 or of my i X -2 X;, =Cy CP¥ 1 s an
irreducible non-degenerate curve by proposition 1.3.8. Morcover w; is defined at
y, respectively m, is defined at x, since being general points they do not belong to
Vert(X). Let F, denote the closure of the irreducible component of the fiber of
7z passing through y, respectively F. denote the closure of irreducible component
of the fiber of m, passing through z. By generic smoothness they are reduced
varieties of dimension n — 1 since they are generically smooth irreducible varieties
of dimension n — 1. Moreover, by definition of ., respectively my, we have Fj, C<
T, X,y > NX, respectively F; C< T, X,z > NX,

If Fy € T,X N X, then by the generality of z and ¥, F, € T,X N X so that
FUF, Clly,y i=<Tp X,y >N <L X,x >=P".

Suppose that F, is not contained in T X N X so that also F}, is not contained
in TyX NX. Let C; = (T X, Cy) be the cone over C; of vertex T.X and let
C, = 5(T,X,Cy,) be the cone over C, of vertex T, X. By the generality of =,
respectively y, the point m;(y) € C;, respectively 7 (x) € Cy, is a general point on
C;, respectively on Cj;, so that the tangent space

< T X, T i) Ce >=< T X, T X >=< T, (5)Cy, Ty X >

is tangent to Cy, respectively £y, exactly along < To X, me(y) > \ToX =<Tz X,y >
\T. X, respectively < T, X, my(z) > \,X =< T, X,z > \T,X. Recall that a
general tangent line to a curve is tangent to it only at onme point. Since X C
€z NCy, the locus Y € X of smooth points of X \ (TxX N X) U(TX N X) at
which the linear space < T.X,T,X > is tangent is contained in the linear space
Hpy =< T2 X,y >N < T X, 2 >=P" Inour hypothesis, Fy, respectively F},, has
an open dense set in common with Y, yielding that Fz U F, is contained in I, ,,.
More generally, using the same argument, we get that the closure of the fibers
75 ' (m=(y)) and of m;}(m,(z)) are both contained in II,;. In conclusion, in any

case F U Fy C my  (my(2)) Unz Hma(y)) € oy =P
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Since the secant line < z,y > is general, it is not a trisecant line. The line
< z,y > is contained in II;, so that

2 > deg(nz ' (ma(y)) Ung ' (my(2))) > deg(F: U Fy) > 2,

where the last inequality holds since it cannot clearly be Fy = Fy = Pr—1, the
line < z,y > being a proper secant line. In conclusion, either my Yay(z)) = Fu =
Fy=15 Yo (3)) is an irreducible quadric hypersurface of dimension n — 1 passing
through = and y or F, = 5 }(my(z)) and Fy = 7z ' (nz(y)) are P*~'s intersecting
in the linear space Ly, = ToX NT,X = P2, In the last case the linear space
L = L., does not vary by moving y in X because otherwise the linear spaces F,
would describe a P* contained in X. Then P*2 = L C Vert(X) =P, i <n -2,
forces Vert(X) = P2 so that X is & cone over a curve by proposition 1.2.6. On
the contrary if X is a cone over a curve, clearly the Pr—1's passing through two
general points z,y € X are contracted by my, respectively 7., so that F UF, is a
reduced quadric hypersurface.

To prove part 2) it suffices to remark that if X is not a cone over a curve,
then by the previous analysis two general points on X are connected by an ir-
reducible quadric hypersurface, which dominates Cz, so that, since X C PN is
non-degenerate, € C PV~™"! is an irreducible non-degenerate conie, yielding
N-n-1=2. O

As a corollary of Scorza Lemma we get the information about the entry locus
of a variety X ¢ P¥, N > n+3 with dim(5X} = n+2, the original key observation
of Severi for n = 2 in his proof of the characterization of the Veronese surface, see
[Sevl].

1.4.4. CoroLLARY. ([Sevl]) Let X C PV, N > n+ 3, be an irreducible non-
" degenerate projective variety of dimension n such that dim(SX) =n4+2. Let z €
8X be a general point end let nofations as in lemme 1.4.8. Then Z.(X) = F;UF,
is a quadric hypersurfece which is reducible if and only if X' is a cone over a curve.

Proo¥. Let notations as in the above lemma. Then if z €< z,y > is general,
by corollary 1.3.6 T,5X =< T X, T, X > is tangent to X along Z.(X) \ Sing(X).
By Scorza Lemma (X)) \ Sing(X) C Iy, = P* so that ¥:(X) is a hypersurface
of degree at least 2 in Iy, since 2 € X (it it were a linear space, then $X = X and
X would be linear). Then %,(X) is a quadric hypersurface by the trisecant lemma
and the conclusion follows by arguing as in the previous lemma. O

We restrict ourselves for a moment to the case of surfaces and prove that, if X is
not a cone, two general fibers of m; : X -+ C; C P? are linearly equivalent Cartier
divisors intersecting transversally at z; and more precisely that every fiber of m,
is a smooth conic so that the closure of two arbitrary fibers are linear equivalent
Cartier divisers, which are smooth conics in the fixed embedding.

1.4.5. LEMMA. (Bertini, [Be]) Let X C P® be a non-degenerate irreducible
projective surface, not a cone, such that dim(SX) = 4. Then (ToX N X)rea = =,
the closure of every fiber of 5 ¢ X -—+ Cy C P? is a smooth conic and fwo fibers of
. are linearly equivalent Cartier divisors on X intersecting transversally ot x.
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PROOF. Suppose that for a general point = € X, there exists p, € T, X N X,
py # . Fix a general = and take a general point ¥ € X. By lemma 1.4.3, if
mg : X --+ Cy is the tangential projection, then C; is a smooth conic. Take the
line < y,p, >. Thus m is defined at y, since Vert(X) = @ and since z, y are general
points. It cannot be mz(y) # m{py), because otherwise the line < y,py > would
not cut T, X so that it would project onto T_¢,yC and this line would cut C, at
least in 3 points counted with multiplicity, contrary to the fact that C; is a conic. If
7z(y) = me(py), then the line < y,p, > cuts T X necessarily at pyy = T X N T, X
and the line < y,py >=< ¥,pay >= Ty F, would cut the smooth conic Fyin at
least 3 points counted with multiplicity, which is impossible.

Therefore two fibers of 7, can intersect only at z and they are linearly equivalent
divisors by definition. The closure of each fiber is then a Cartier divisor which is a
conic on X passing necessarily through = = (T5X N X )red. Since (Tz X NX)yed = T,
there is no line through X and the closure of every fiber is a smooth conic.

If two general fibers meet along a fixed tangent direction { C T X at z, then the
tangent spaces at two general points of these fibers, let us say y € X, respectively |
z € X, will cut the fixed line in different points since X is not a cone (otherwise
Da,y = Pz, € Vert(X) and X would be a cone). Then S(I,5X } = 85X by Terracini
lemma since dim(< , < T, X, T,X >>) = dim(< T, X, T, X >) = dim(§X). This
forces = € I € Vert(SX), which by the generality of z € X, yields X C Vert{SX) =
B, § < 2 (recall that SX is not linear and has dimension 4), i.e. X = P?, O

We can easily prove theorem 1.4.1.

PROGF. (1% proof of theorem 1.4.1). By Scorza Lemma and by lemma 14.5
the fibers of the tangential projections at = and at y, 7,y € X general points, are
linearly equivalent Cartier divisors of selfintersection 1. Moreover, since there exists
a conic through  and y which is a fiber of both projections, we constructed a base
point free two dimensional linear system of Cartier divisors on X of autointerction
1. The associated morphism ¢ : X — P? is birational.

Let 4 : P2 --» X C PS be the composition of ¢~1 : P2 -+ X with the inclusion
i: X —» P5. Since lines in P2 are mapped into the two dimensional linear system of
divisors constructed before, which are conics in the fixed embedding, the map ¥ is
given by a linear system of conics of dimension 5, i.e. by the complete linear system
of conics, so that ¥ : P — X is an isomorphism and X is projectively equivalent:
to m(P?) C PO, |

ProoF. (2 proof of theorem 1.4.1). Fix a general point z € X and consider
the tangential projection 7y 1 X --» C; C P2. This rational map resolves to a
morphism 7y : Bl,X — C; =~ P! such that every fiber is isomaorphic to P, ie. it
is a Pl-bundle over P! and in particular Bl X and hence X are smooth surfaces.
Since B, X contains the (—1)-curve E as a section of 75, then Bl,X — C. is
isomorphic as a P1-bundle to 7 : F, — P'. By contracting E we get X = P2. Since
it contains conics in the fixed embedding and N = 5, it is necessarily the complete
2-Veronese embedding of P2, O

The reason for which we included the second proof, apparently more compli-
cated, is for the analogy with the argument used by Mori to prove Hartshorne'’s
conjecture that PV is the only smooth projective variety of dimension N having
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ample tangent bundle, see [Mol]. There one shows that for a general péint reX
P(T,X) ~ PV~1 and then by blowing-up =, it proves that Bl,X — P¥~lisa
PL-bundle, see loc. eit.

Now we can prove theorem 1.4.2.

ProoF. (of theorem 1.4.2) Suppose X is not a cone over a curve. By lemma
1.4.3 we get N = n+3 and that through z there passes a line, In fact T, FoNFy C X
is a quadric in T, F; = P*~! and since n — 1 > 2, through the point z there passes
at least a line Iy € Te XN F; C X. Then X is a cone by lemma 1.2.7 and since it is
not a cone over a curve, its linear section with a general P  P*+3 is an irreducible
non-degenerate surface Y € PS5, which is not a cone, and such dim(SY) < 4. By
theorem 1.1.6 ¥  IP% is a Veronese surface and the conclusion follows.

It is worth of note also the following geometrical characterization of the Veronese
surface given by Ran: it is the unique smocth surface in P® which is not contained
in an irreducible 3-fold non-singular along the surface, see [Ra).

1.5. Dual varieties and contact loci of general tangent linear spaces

Let X C P¥ be a projective, irreducible non-degenerate variety of dimension n;
let Sm(X) := X \ Sing{X) be the locus of non-singular points of X. By definition
Sm{X)={rc X : dim{T, X) =n}.

If we take an hyperplane section of X, ¥ = X N H, where H = P¥~! is an
arbitrary hyperplane, then for every y € Y we get

(1.5.1) T,Y =T, X N H.

Since Y is a pure dimensional scheme of dimension n — 1, we see that Sing(Y)\
{Sing(X)N H) = {y € Y\ Sing(X)NY : T,X € H}, which is an open subset
in the locus of points of X at which H is tangent. In particular to show that an
-hyperplane section has non-singular points, we have to exhibit an hyperplane H
which is not tangent at all the points in which it intersects X. It naturally arises the
need of patching together all the "bad” hyperplanes and eventually show that there
always exists an hyperplane section of X, non-singular at least outside Sing(X).
Since hyperplane can be naturally thought as points in the dual projective space
(P¥*, we can define a subvariety of PV* parametrizing hyperplane sections which
are singular also outside Sing{X}. This locus is the so-called dual variety.

1.5.1. DEFINITION. (Dual variety) Let X C PV be as above and let

Px = {{{z, H) : z€Sm(X), X C H} C X x PN~,
the so called conormal variety of X.
Let us consider the projections of Py onto the factors X and PV*,

Px
N
X ]PN*_

The dual variety to X, X*, is the scheme-theoretic image of Px in PN* ie. the
algebraic variety
X* = pa(Px) C PV
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The set Px is easily seen to be a closed subset. For z € Sm(X), we have
pyl(z) == (T X)* = PN—"=1 ¢ PN*, Then the set P is irreducible since p; * (Sm(X)) —
Sm{X) is a PN "~ l.bundle and clearly dim(?x) = N —1. Then dim(X*) < N -1
and the dual defect of X, def(X), is defined as

def(X) = N — 1 — dim{(X") > 0.

A variety is said to be reflexive if the natural isomorphism between PN and
PN** induces an isomorphism between X and X** = (X*}*.

Let us take H € X*. By definition
Cy = Cu(X) =p; (H) = {r € Sm(X) : To.X C H}
is exactly the closure of non-singular points of X where H is tangent to X, it is not
empty so that H N X is singular outside Sing(X). On the contrary if 7 ¢ X*, the
hyperplane section H N X can be singular only along Sing(X). This is the classical

"Bertini theorem”.
In particular we proved the following result.

1.5.2. THEOREM. Let X C PV be a projective, irreducible non-degenerate va-
riety of dimension n =. Then for every H € (PV)*\ X* the divisor HN X is
non-singular outside Sing{X).

In particular if X has at most a finite number of singular points p1,...,Pm,
then for every H ¢ X* U {m)*U...U(pm)*, the hyperplane section HNX is a
non-singuler subscheme of pure codimension 1.

Later we shall see that if n > 2, then every hyperplane section is connected,
For non-singular varieties, the hyperplane sections with hyperplanes H ¢ X, being
connected and non-singular are also irreducible so that are irreducible non-singular
algebraic varieties. )

To justify the name of conormal variety for Px and to get some practice with
the definitions, one could solve the following exercise. It is also a training for the
language of locally free sheaves and their projectivizations.

1.5.3. EXERCISE. Prove the following facts.

(1) Let X G PM ¢ PV be a degenerate variety. Prove that X* C PV* isa
cone of vertex PM* = PN-M—1  PN* gyer the dual variety of X in PM.
Suppose X = S{L,X') is a cone of vertex L = P!, 1 > 0, over a variety
X'CM=DPBN"-1 MAL=4§. Then X* C (P)*=P¥-1=1 c (PN)" is
degenerated. Is there any relation between X* and the dual of X 'in M?

Suppose X © PV is a cone. Prove that X* C PN* is degenerated.
Conclude that X C P¥ is degenerated if and only if X™* C PN* is a cone;
and, dually, that X ¢ PV is a cone if and only if X* C PV* is degenerated.

(2) Let € € PN be an irreducible non-degenerate projective curve. Then
ps 1 Po — C* C (PY)* is a finite morphism so that def(C) = 0.

(3) Let X C PN be a non-singular variety, then Px = P(N ;pn (1)) (Grothen-
dieck’s notation), where Ny (1) is the the twist of the conormal bundle
of X in PV by Qpn(1). Show that pg : Px — X~ C PN* is given by a sub-
linear system of |ON;WN @)(1)|. (Hint: restrict Euler sequence to X and

use the standard conormal sequence; interpret these sequences in terms
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of the associated projective bundles and of the incidence correspondence
defining Px).

(4) Let X C PV be a smooth complete intersection. Deduce by the previous
exercise that py : Px — X* C PV* is a finite morphism so that dim(X*) =
N —1, ie. def(X) =0 (Hint: show that A}z (1) is a sum of very ample
line bundles; deduce that ON,},;,N (13{(1) is very ample and finally that
po t Px — X* C PV* ig a finite morphismy).

(5) Suppose char(K)=0 and let C' C P? be an irreducible curve, not a line.
Show that C™* is an irreducible curve of degree at least 2. Take a tangent
line at a point = € €. Show that if T,C is tangent at another point y € C,
y # &, then the point (TLC)* € C* is a singular point of C*. Deduce that
if char(K)=0, then a general tangent line is tangent to C only at one
point. Deduce that the same is true for an irreducible curve C' C P¥,
N >3

(6) Let X = P! x P* C P?+1 5 > 1, be the Segre embedding of P! x P™.
Identify P2+ with the projectivization of the vector space of 2 x n+1
matrices and show that, due to the fact that there are only two orbits for
the action of GL(2) on PV and on (PV)*, (P! x P*)* ~ P! x P* so that
def{(P! x P*))} = n—1. Interpret this result geometrically and reverse the
construction for n = 2 to show directly that X = X*,

(7} Use the same argument as above to show that if X = va(P?) C P5, or if
X =P? x P2 C P8, then X* ~ 8X and SX* ~ X.

As we have seen the dual varieties encode informations about the tangency of
hyperplanes. Terracini Lemma says that linear spaces containing tangent spaces
to higher secant varieties are tangent along (Z¥),eq \ Sing(X), see corollary 1.3.6.
Hence if the maximal dimension of the fibers of pa : Px — X* C PV* is an upper
bound for 6;(X) as soon as §*X ¢ PV, as we shall immediately see. More refined
versions with the higher Gauss maps ,,, see below, can be formulated but in those
cases the condition expressed by the numbers £,,(X), which can be defined as
below, is harder to control.

1.5.4. THEOREM. (Dual variety and higher secant varieties) Let X C PV
be an irreducible non-degenerate projective variety. Letpy: Px — X* C PN* be as
above and let £(X) = max{dim(p; 1(H)), H € X*}. If S*X CP¥, then §;(X) <
e(X). In particular if py : Px — X* is ¢ finite morphism, then dim(S*X) =
min{(& + L)n + k, N}.

PROOF. Let z € §%X be a general point. There exists z € Z5(X)NSm(X) and
moreover T,S%X is contained in a hyperplane H. Then pi(p; ' (H)) 2 Sing(X N
H) \ (Sing(X) N H) (and more precisely Sing(X n H) \ (Sing(X) N H)) contains
the irreducible component of TX(X) \ (Sing(X) N ZX(X)) passing through z by
corollary 1.3.6. Then p;(p; 1(H)) has dimension at least 8,(X) = dim(Z¥(X)) and
the conclusion follows. O

1.5.5. COROLLARY. Let C C PV be an irreducible non-degenerate curve. Then
dim(3*C) = min{2k 4- 1, N} (cfr. corollaries 1.2.3 and 1.5.6).

Let X C P¥ be a smooth non-degenerate complete intersection. Then dim(S§5X) =
min{(k+ L)n+k,N}.
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PROOF. By exercise 1.5.3, we know that in both cases ps : Px — X* is a finite
morphism. 4

More generally one would study the locus of points at which a general hyper-
plane is tangent, the so called eontact locus. For reflexive varieties it is a linear space
of dimension def(X). This is an interpretation of the isomorphism X ~ (X*)*, One
should be careful in the interpretation of the result: it does not mean that the hy-
perplane remains tangent along the whole contact locus”, see remark 1.3.7 and
adapt it to the more general situation of a ruling of a cone. This is true only
for non-singular varieties. In particulat reflexive varieties of positive dual defect
contain positive dimensional families of linear spaces.

1.5.6. ProroSITION. Let X < PN be a reflerive varicty. Then for H €
Sm(X~),

prt(H) =Tz € Sm(X) : TuX C H} = (TpX*)* = pleftX),

The following result will not be proved here but the reader can consult [Ha),
pe. 208 for an elementary and direct proof. It is considered as a classical theorem,
know at lest to C. Segre.

1.5.7. THEOREM. (Reflexivity Theorem) Let X C PN be an irveducible va-
riety. Suppose char(K)=0. Then X is reflezive.

Another natural and similar problem is to know if a general tangent space to a
variety X is tangent at more than one point. During the discussion we will always
suppose char(K)=0 to avoid artificial problems, since the natural ones are enough
interesting.

We have seen in exercise 1.5.3 that for irreducible curves a general tangent
space is tungent only at one point. On the other hand if X is a cone over a curve,
we know that a a general tangent space is tangent exactly along the ruling passing
through the point. The unique common feature of irreducible algebraic varieties
from this point of view seems to be the linearity of the locus of points at which a
general linear space is tangent.

1.5.8. DEFINITION. (Gauss maps) Let X C PV be an irreducible projective
variety and let m > n. Let

PP = {{(=,L) : z €Sm(X), T.X CL} C X x G(m,N).
Let us consider the projections of P onto the factors X and (BPNY*,
Sx
N
X G(m, N).

The variety of m-dimensional tangent subspaces to X, X7, is the scheme-theoretic
image of P¥ in G{m, N}, i.e. the algebraic variety

X = m(PR) C G{m, N).



28, 1. TANGENT CONES, SECANT VARIETY AND TANGENT VARIETIES

For m = N — 1, we recover the dual variety and its definition, while for m = n,
we get the usual Gauss map Gx : X --+ G(n,N) which associates fo a point
z € Sm(X) its tangent space T,X. For such z € Sm(X) Gx(z) = m{z) = T, X.

If X ¢ PV is an hypersurface, then n = N — 1 and clearly the Gauss map
Gx : X --+ P¥* associates to a smooth point p of X its tangent hyperplane, so
that in coordinates is given by

Ox(3) = (g=0) -+ 5eto))

The following theorem is once again a consequence of reflexivity and it is a
generalization of proposition 1.5.6 and of the properties of cones. One can consult
[Z2], pg. 21, for a proof.

1.5.0. THEOREM. (Linearity of general contact loci) Let X C PV be an
irreducible projective non-degenerute variety. Assume char(K)=0. The general
fiber of the morphism 4m : PP — X5 45 a linear space of dimension dim({PP) —
dim(X},). In particular the closure of a general fiber of Gx : X --+ X3 C G(n,N)
is a linear space of dimension n—dim(Gx (X)) so that « general linear tangent space
is tangent along an open subset of a linear space of dimension n — dim(Gx (X)).

To conclude the section and the chapter, we prove via Terracini Lemma a
relation between X* and (55X)*, k < ko(X), assuming char(K)=0.

1.5.10. PROPOSITION. Let X C PN be an irreducible non-degenerate projective
variety. Assume char(K)=0 and SX ¢ PN. Then (SX)* C Sing(X*) C X*, ie. a
general bitangent hyperplane represents a singular point of X*. More generally for a
given k > 2 such that k < ko{X), we have (S*X)* C Sing({(S*~1X)*) € (§¥1X)*,
i.e. a general (k + 1)-fangent hyperplane represents a singular point of (S¥~1X)".

Proor. Teke H € (SX)* general point. Then H 2 T.5X, with z € §X
‘general point. By corollary 1.3.6, H is tangent to X along X, (X)\(Z.(X)NSing(X))
. so that H € X*. Since X is non-degenerste, then z ¢ X implies that the contact
locus of H is not linear, yielding H & Sing(X*) by proposition 1.5.6.

Take more generally H € (S*X)* general and write S*X = S(X, $*~1X).
Then H C T,S*X, with z € §¥X general point. Then there exists y € Sm(S*~1X)
with y € B5(X) and such that z €< z,y >, ¢ € X, ¢ # y. By Terracini Lemma
T.5%X 2 T,8%1X so that H € (S*"1X)*. Since z € X, = € Sing(H n §*-1X),
so that p; ' (H) € §%~1X is not linear since once again z € §¥X \ $¥71X by the
non-linearity of S%X.

Recall that to a non-degenerate irreducible closed subvariety X ¢ P¥ we asso-
ciated an ascending filtration of irreducible projective varieties, see equation 1.2.5,
X=8'XCS8SXC8X¢g..c8hx—pV

The above proposition says that at least over a filed of cheracteristic zero, there
exists also a strictly descending dual filtration:

X* 2 Sing(X*) 2 (SX)* 2 ... 2 (§%72X)* 2 Sing((S*~?X)*) 2 (S~ x)".



CHAPTER 2

Fulton-Hansen connectedness theorem and some
applications to projective geometry

2.1. Connecteduness principle of
Enriques-Zariski-Grothendieck-Fulton-Hansen and some classical
theorems in algebraic geometry

In the first chapter we introduced the main definitions of classical projective
geometry and furnished rigorous proofs of many classical results. Many thebrems in
classical projective geometry deal with *general” objects. For example the classical
Bertini theorem on hyperplane sections, see theorem 1.5.2. A more refined version
of this theorem says that if f : X — P¥ is morphism, with X proper and such that
dim(f{X)) = 2, and if H = P¥~! ¢ PV is o general hyperplane, then f~1(H) is
irreducible, see [Ju] theorem 6.10 for a modern reference. The ”Enriques-Zariski
principle” says that ”limits of connected varieties remain connected” and it is for
example illustrated in the previous example because for an arbitrary H = PN-! ¢
PN, f~1(H) is connected as we shall prove below.

This result is particularly interesting because, as shown by Deligne and Jouanolou,
a small generalization of it proved by Grothendieck, [Gr] XIII 2.3, yields a sim-
plified proof of a beautiful and interesting connectedness theorem of Fulton and
Hansen in [FH]}, whose applications are deep and appear in different areas of al-
gebraic geometry and topology. Moreover, Deligne’s proof pgeneralizes to deeper
statements involving higher homotopy groups when studying complex varieties, see
(D1], [D2], {Fu], [FL].

To illustrate this circle of ideas and the ”connectedness principle”, we describe
how the theorem of Fulton-Hansen includes some classical theorems in algebraic
geometry and generalizes them. In our treatment we strictly follow the surveys [Fu]
and [FL]. Another interesting source, where the ideas of Grothendieck behind this
theorem and their generalizations to d-connectedness and to weighted projective
spaces are explained in great detail, are the notes of a course of Badescu, [B1], and
his book [B2].

Now we recall four classical theorem with emphasis on the connectedness results
in the idea of looking for a common thread. When dealing with homotopy groups
3, we are assuming K = C and referring to the classical topology.

2.1.1, Pour classical theorems. Let us list the following more or less known
theorems.
(1) (Bézout) Let X and Y be closed subvarieties of PV, If dim{(X)+dim(Y) >
N, then X NY # @. If dim(X) + dim(¥} > N, then X NY is connected
and more precisely {dim(X) + dim(Y") — N'}-connected.

29
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(2) (Bertini) Let f : X — PV be a morphism, with X proper variety, and let
L =PV-! ¢ PV be a linear space. If I < dim(f(X)), then f~1(L) #0. Tf
I < dim(f((X)), then f~1{L) is connected.

(3) (Lefschetz) If X C PV is a closed irreducible subvariety of dimension n
and if L = P¥—* ¢ P¥ is a linear space containing Sing(X), then

m(X, XNLy=0 fori<n—1L
‘Equivalently the morphism
TI‘;‘(X n L) — ‘IT{(X)

is an isomorphisms if i < n — [ and surjective if i =n — L
(4) (Barth-Larsen) If X C PV is a closed irreducible non-singular subvariety
of dimension n, then

mPY,X)=0 fori<2n—N+1.
(Recall that m;(PV) = Z for i = 0,2 and m;(PY) = 0fori =1,3,4,...,2N).

As we said at the beginning usually the names of the classical theorem refers to
properties of general linear sections, for which a better property can be expected,
as in the case of Bertini theorem for example, or as in the case of Bézout theorem
(when the intersection is transversal one usually computes #(X NY)). In the
classical Lefschets theorem the variety was non-singular and L was general.

Let us remark that the two parts of theorem 1) can be reformulated by mean
of homotopy groups. The first part is equivalent to

(X NY) = (X x Y)

is surjective, the sécond one to the fact that the above morphism is an isomorphism.
Similarly theorem 2) can be reformulated as

mo(fH(L)) = mo(X)

is an isomorphism.

A common look at the above theorems comes from the following observation of
Hansen, [FL),[FH]. All the above theorems are statement about the not emptiness,
respectively connectedness, of the inverse image of Apv C PY x PV under a proper
morphism f : W — BN« BY such that dim(f{W)) = N, respectively dim{f(W)) >
N.

Suppose this is true and take W = X x Y for theorem 1) or W = X x L in
theorem 2) and 3) at least to deduce the connectedness parts. Theorem 4) can be
deduced by taking W = X x X, see {FL] and [Fu}.

These results can be explained from other points of view as consequences of
the ampleness of the normal bundle of & smooth subvarieties, or of complete inter-
sections in P¥. On the other hand the same positivity holds for Apw ¢ BY x PY
since NA,.N /P xpn = Tpw and the tangent bundle to P¥, Ten, is ample by Euler
sequence.

The above discussion and further generalizations by Faltings, Geldstein and
Hansen revealed a connectedness principle, which we now state and later justify
why one should expect its validity.
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2.1.2. Connectedness Principle, [Fu|, pg. 18. Let P be a smooth projective
variety.

Given a "suitable positive” embedding Y — P of codimension | and a proper
morphism f: W — P, n = dim(W),

ye—————w

| |

Ye———— P,
we should have
m(W, fHY)) S m(PY) fori<n—1— "defect”.

This defect should be measured by (a) lack of positivity of ¥ in P; (b) singularities

of W; (¢} dimensions of the fibers of f. Usually m;(P,Y) = 0 for small 4, so the

conclusion is that, as regards connectivity, f~}(¥'} must look like W. If the defect

is zero we deduce that
: YY) £ ifn>l,

FUY) is connected and 7 (f~HY)) — w1 (W) is surjective if n > |,

The most basic case is with P = P¥ and ¥ = P¥~! a linear subspace. In
this case the principle furnishes the theorems of Bertini and Lefschetz by taking
W = X. As we explained before the case which allows one to include all the
classical theorems is P = P¥ x P¥, and Y = Ap~ diagonally embedded in P,
Indeed W = X x Y gives Bézout theorem, while theorems 2) and 3) are recovered
by setting W = X x L. Theorem 4) can be obtained with W = X x X.

When PV is replaced by other homogeneous spaces, one could measure the
defect of positivity of its tangent bundle and one expects the principle to hold with
this defect, see [Fa], [Gol, [BS].

Why should one expect this connectedness principle to be valid? In some cases
one can define a Morse function which measures distance from Y. Positivity should
imply that all the Morse indices of this function are at least n—!—1 (perhaps minus
a defect). Then one constructs W from f~*(Y) by adding only cells of dimension
at least n — I — 1, which yields the required vanishing of relative homotopy groups,
see |Fu| for & proof giving theorems 3) and 4) above.

Before ending this long introduction to the connectedness theorem we recall for
completeness the following statements for later reference. They particular forms or
consequences of results of Barth and Barth and Larsen. Chronologically part 2)
has been stated before than the Barth-Larsen theorem involving higher homotopy
groups and recalled above.

2.1.3. THEOREM. Let X C PV be a smooth, irreducible projective variety and
et HH C X be a hyperplane section.
(1) Ifn > &fL then m(X) =1 (Barth-Larsen).
(2) Ifn 2 2 then the restriction map
Hi(PN Z) - HY(X,Z)

is an isomorphism (Barth).
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(3) Ifn > %’3—2-, then
Pie{X) =~ Z < H > (Barth).

- We come back to the algebraic setting and to the proof of the theorem of Fulton-
Hansen and hence of the non-emptiness and connectedness parts (i = 0) of theorems
1), 2), 3) (and 4)). The theorem appears as a consequence of the connectedness of
preimages of linear spaces undet proper morphisms, a result due to Grothendieck
and which follows from the "classical” Bertini theorem we quoted at the beginning.
‘We start with the connectedness theorem and later prove some interesting results
having their own interest and leading to its proof. In [B1}], Lucian Bidescu extends
the connectedness theorem to weighted projective spaces using the original ideas of
Grothendieck, so that many geometrical consequences of the result are valid also
for this class of homogeneous varieties.

2.1.4. THEOREM. (Fulton-Hansen Connectedness Theorem, [FH]) Let X
be an irreducible variety, proper over an elgebraically closed filed K. Let f: X —
PN x PN be o morphism and let A = Apn C PN x PN be the diagonal.

(1) Ifdim{f{X)) = N, then f~1{A) £ 0.
(2) Ifdim{f(X)) > N, then f~1(A) is connected.

We begin by recalling the following ”classical” Bertini theorem in a more general
form. For a proof we refer to [Ju|, theorem 6.10, where the hypothesis K = K is
relaxed.

2.1.5. THEOREM. (Bertini Theorem, see [Ju|) Let X be an irreducible variety
and let f: X — PN be o morphism. For a fired integer { > 1, let G(N — [, N) be
the Grassmann variety of linear subspaces of B¥ of codimension I. Then

(1) if! < dim(f(X)), then there is a non-empty open subset U C G(N -, N)
such that for every L e U,

FHD) #6;
(2) ifl < dim(F(X)), then there is e non-empty open subset U C G{(N -1, V)
such that for every L U,
fYL) s irreducible.

We now show that the Enriques-Zariski principle is valid in this setting by
proving the next result, which is the key point towards theorem 2.1.4. We pass
from general linear sections to arbitrary ones and for simplicity we suppose K = K
as always.

2.1.6. THEOREM. ([Gr], [FH], [Ju], theorem 7.1) Let X be an irreducible vari-
ety and let f : X -> PN be a morphism. Let L= PN~ C PV be an arbitrary linear
space of codimension l.

(1) Ifi £ dim{f(X)) and if X is proper over K, then
FHEY#0.
(2) Ift < dim(F(X)) and if X is proper over K, then
FYL) is connected.
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More generally for an arbitrary irreducible variety X, if f : X — PV is proper
over some open subset V C PN, and if L C V, then, when the hypothesis on the
dimensions are sutisfied, the same conclusions hold for f~(L).

PROOF. (According to [Ju]). We prove the second part of the theorem from
which the statements in 1) and 2) follow.

Let W € G(N — [, N) be the open subset consisting of linear spaces contained
in V and let

Z={{z,LYeXxW: flz}e L'} C {{z, L) e XxG(N-L,N}): flz) e L'} =1T.

The scheme Z is irreducible since it is an open subset of the Grassmann bundle
pm 2 — X. Since f is proper over V, the second projection ps : Z — W is a
proper morphism. Consider its Stein factorization;

I

W —— W;

the morphism g is proper with connected fibers and surjective, while r is finite.
By theorem 2.1.5 r is dominant and hence surjective if [ < dim(f{X )}, respectively
generically one-to-one and surjective if [ < dim{f(X)). In the first casepp : Z — W
is surjective so that f~!(L) # @ for every L € W. In the second case, since W is
smooth, it follows that r is one to one everywhere so that f~!(L) = ¢~1(r~1(L))

is connected for every L € W.

2.1.7. REMARK. The original proof of Grothendieck used an analogous local
theorem proved via local cohomology. His method has been used and extended by
Hartshorne, Ogus, Speiser and Faltings. Faltings proved with similar technigues a
connectedness theorem for other homogeneous spaces, see [Fa), at least in charac-
teristic zero. A different proof of a special case of the above theorem was also given
by Barth in 1969.

Now we are In position to prove the connectedness theorem,

Proo¥. (of theorem 2.1.4, according to Deligne, [D1]). The idea is to pass from
the diagonal embedding A C PN x PV to a linear embedding L = PV C P2N+!, a
well known classical trick.

In P2V+L separate the 2V +2 coordinates into [Xp : ... : Xy] and [Yp : ... : Y]
and think these two sets as coordinates on each factor of PV x PN, The two N
dimensional linear subspaces Hy : Xp=...=Xy=0and Hz: Yg=...=Yy =0

of P2V+1 are disjoint. If ¥ = P2+ \ (H,; U H,) since there is a unique secant line
to Hy U H, passing through each p € V, there is & morphism

¢:V — Hy x Hy=PN x PV,
which to p associates the points (pi,pz} = (< He,p > NHy, < Hi,p > NHz). In
coordinates, ¢([Xo : ... : Xy : Yo:...: ¥yl = ([Xo:...: Xn|s[Yo: ... YN])
Then ¢~ {¢(p)) =< p1,p2 > \{p1,p2} = Ak \ 0. Let L = P¥ C V be the linear
subspace of P2V+1 defined by X; = Y3, 4 =0,...,N. Then

¢|L.Lm~2-’ﬁ
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is an isomorphism. Given f: X — PV x PV we construct the following Cartesian
diagram

7

X' X

/| ¢ |+

V ———— PY x PV,

where
X' =V XpN ypN X.

Clearly ¢ induces an isomorphism between f/~1(L) and f~1(A). To prove the
theorem it is sufficient to verify the corresponding assertion for f~{L). To this
aim we apply theorem 2.1.6. Let us verify the hypothesis.

Since ¢z} =~ ¢~ '(f(x)) = Ak \ 0 for every ¢ € X, the scheme X’ is
irreducible and of dimension dim{X) + 1. The morphism f is proper, so that also
f: X' — V is proper and moreover dim(f{X’)) = dim{f{X)} + 1. If dim(f (X)) >
N, then dim(f(X")) = N + 1 = codim(L,P*N+1), If dim(f(X")) > N, then
dim{ f(X")) > N + 1 = codim(L, P2V 1), 0

2.2. Zak’s applications to Projective Geometry

In this section we come back to projective geometry and apply Fulton-Hansen
theorem to prove some interesting and non-classical results in projective geometry.
Most of the ideas and the results are due to Fyodor L. Zak, see {Z2}, [FL], [LV],
and they will be significant improvements of the classical material presented in the
first chapter. Other applications to new results in algebraic geometry can be found
in [FH], [FL], {Ful.

We begin with the following key result, which refines a resilt of Johnson, {Jo].

2.2.1. THEOREM. ([FH], [Z2]) Let ¥ C X C PN be a closed subvariety of
dimension r = dim(Y) < dim(X} = n, with X irreducible and projective. Then
either

(1) dim(T*(¥, X)) =r+n end dm(S(Y, X)) =r+n+1, or
(2) T*(Y,X) = S(Y, X).

ProoF. We can suppose Y irreducible and then apply the same argument to
each irreducible component of Y. We know that T*(Y,X) € S(Y,X) and that
dim(T*({Y, X}) < r + n by construction. Suppose that dim{T*(Y, X)) = r + n.
Since S(Y, X} is irreducible and dim{5(¥, X)) < v + n + 1, the conclusion holds.

Suppose now dim{T*(Y, X)) = ¢ < r + n. We prove that dim(5(Y, X)) <t so
that T#(¥, X) = S(¥, X) follows from the irreducibility of S(¥,X). There exists
. L =P¥-t=15uch that LNT*(¥,X) = 8. The projection wz : P¥\ L — P restricts

to a finite morphism on X and on Y, since L N X = @, see definition 1.2.4. Then
{(mg x mL){X % ¥) C B* x P* has dimension r + n > ¢ by hypothesis. By theorem
2.1.4, the closed set
A= (rg xnp) Y Ap) C ¥ x X
is connected and contains the closed set Ay C Y x X so that Ay is closed in A.
We claim that _
Ay = A,
This yields LN S(Y, X) = ¥ and hence dim{S(Y, X)) < N — 1 ~dim(L) = 1.
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Suppose A \ Ay # 0. We find 3 € Y such that ) # T (Y, X)nL CT*(Y,X)n
L contrary to the assumption. If A \ Ay # @, the connectedness of A implies the
existence of (y',3') € A\ Ay NAy. Let notations be as in definition 1.2.1. i. e.
pe(pT N, 2)) =< z,y > if z # y and (7 (. 1)) = Y,X)ifz=yeY.
Since for every (y,2) € A\ Ay we have < y,z > NL # 0 by definition of g
(mrly) = wr(x), y # =, if and only if < y,z > NL # §), the same holds for (v, y")
so that pa(py*(y,2)) N L # B forces pa(py (', #/)) N L £ 0. [}

2.2.2. COROLLARY. Let X C PV be an drreducible projective variety of dimen-
sion n. Then either
(1) dim(T*X) = 2n and dim(5X) =2n+1, or
(2) T*X = 5X.

The following theorem well illustrates the passage from general to arbitrary
linear spaces, as regards to tangency.

2.2.3. THEOREM. (Zak’s Theorem on Tangencies) Let X ¢ PV be an irre-
ducible projective non-degenerate variety of dimension n. Let L =P C PN be o
linear subspace, n < m £ N — 1, which is J-tangent along the closed set Y C X.
Then dim(Y) £ m —n.

Proor. Without loss of generality we can suppose that V is irreducible and
then apply the conclusion to each irreducible component. By hypothesis and by
definition we get T*(Y, X) € L. Since X € S(¥, X) and since X is non-degenerate,
S(Y¥, X) is not contained in L so that T*(Y, X} # 5(¥, X). By theorem 2.2.1 we
have dim(Y) + n = dim(T* (¥, X)) < dim{L) = m. (]

We now come back to the problem of tangency and to contact loci of smooth
varieties to furnish two beautiful applications of the theoremn on Tangencies. We
begin with the finiteness of the Gauss map of a smooth variety.

2.2.4. COROLLARY. {Gauss map is finite for smooth varieties, Zak) Let
X € PN be a smooth irreducible non-degenerate projective variety of dimension .
Then the Gauss map Gx : X — G(n, N) is finite. If moreover char(K)=0, the Gx
is birational onto the image, i.e. X is a normalization of Gx (X).

ProOF. As always it is sufficient to prove that Gx has finite fibers. For every
ze X, g;(l(g x (z)) is the locus of peints at which the tangent space T, X is tangent.
By theorem 2.2.3 it has dimension less or equal than dim(T.X) —n = 0.

If char(K)=0, then every fiber G3'(Gx(z)) is linear by theorem 1.5.9 and of
dimension zero by the first part, so that it reduces to a point. O

The next result reveals a special feature of non-singular varieties, since the
result is clearly false for cones, see exercise 1.5.3.

2.2.5. COROLLARY. (Zak) Let X' C BN be ¢ smooth projective non-degenerate
variety. Let X* C PN* be its ducal veriety. Then dim(X*) > dim(X). fr particular,
if also X* is smooth, then dim{X*) = dim(X).

PROOF. By the theorem of the dimension of the fiber, letting notations as in
definition 1.5.1, dim(X*) = N — 1 — dim{p;(H)), H € X* general point. By
theorem 2.2.3, dim(p; 1 (H)) € N — 1 - dim(X) and the conclusion follows. G



36 2. FULTON-HANSEN THEOREM

2.2.6. REMARK. In exercise 1.5.3, we saw that (P! x P")* ~ P! x " for every
a > 1. In [Ei], L. Ein shows that if N > 2/3dim(X), if X is smooth, if char(K)=0
and if dim(X) = dim(X*), then X C PV is cither a hypersurface, or P! x P* C
P2r+1 Segre embedded, or G(1,4) C [P Pliicker embedded, or the 10-dimensional
spinor variety 5° C P25, In the last three cases X ~ X*.

We apply the theorem on Tangencies to deduce some strong properties of the
hyperplane sections of varieties of small codimension. By the theorem of Bertini
proved in the previous section we know that arbitrary hyperplane sections of vari-
eties of dimension at least 2 are connected. When the codimension of the variety
is small with respect to the dimension, some further restrictions for the scheme
structure hold.

If X ¢ PV is a non-singular irreducible nondegenerate variety, we recall that
for every H € X*

Sing(HNX)={reX : T,X C H},
i.e. it is the locus of points at which H is tangent. By theorem 2.2.3 we get

dim(Sing{X N X) < N —1 — dim(X),

codim(Sing{X N H), X N H) > 2dim(X) — N.

Recall that H N X is a Cohen-Macaulay scheme of dimension dim(X) —1 and
that such a scheme is reduced as soon as it is generically reduced (Rp + 81 < R1).

If N < 2dim(X) — 1, then H N X is a reduced scheme being non-singular
in codimension zero and in particular generically reduced. The condition forces
dim(X) > 2, so that it is also connected by Bertini theorem.

If N < 2dim(X)—2, which forces dim(X} > 3, then HN X is also non-singular
in codimension 1, so that it is normal being Cohen-Macaulay. Since it is connected
and integral, it is also irreducible. The case of the Segre 3-fold P! x P2 C [P5 shows
that this last result cannot be improved, since an hyperplane containing a P? of the
ruling yields a reducible, reduced, hyperplane section. Clearly in the same way, if
N < 2dim(X)~ k-1, k >0, then X N H is connected, Cohen-Macaulay and non-
singular in codimension k. We summarize these result in the following corollary to
the theorem on Tangencies.

2.2.7. COROLLARY. (Zak) Let X C PN be o smooth non-degenerate projective
variety of dimension n. Then
(1) if N < 2n —1, then cvery hyperplane section is connected and reduced;
(2) if N < 2n — 2, then every hyperplane section is irreducible and normal;
(3) letk > 2. If N < 2n—k—1, then every hyperplane section is irreducible,
normal and non-singuler in codimension k.



CHAPTER 3
Hartshorne’s conjectures and Severi varieties

3.1. Hartshorne’s conjectures and Zak’s theorem on linear normality

After the period in which new and solid foundations to the principles of alge-
braic geometry were rebuilt especially by Zariski, Grothendieck and their schools,
at the beginning of the 70 a new trend began. There was a renewed interest in
solving concrete problems and in finding applications of the new methods and ideas.
One can consult the beautiful book of Robin Hartshorne, [H1], to have a picture of
that situation. In [H1] many outstanding questions, such as the set-thecretic com-
plete intersection of curves in P® (still open), the characterization of PV among the
smooth varieties with ample tangent bundle (solved by Mori in [Mel] and which
cleared the path to the foundation of Mori theory, [Mo2]}) were discusses, or stated
and a lot of other problems solved. In related fields we only mention Deligne proof
of the Weil conjectures or later Faltings proof of the Mordell conjecture, which used
the new machinery.

The interplay between topology and algebraic geometry returned to flourish.
Lefschetz theorem and Barth-Larsen theorem, see subsection 2.1.1 and theorem
2.1.3, also suggested that smooth varieties, whose codimension is small with respect
to their dimension, should have very strong restrictions both topological, both
geometrical. To have a feeling we remark that a codimension 2 smooth complex
subvariety of PY, N > 5, has to be simply connected for example. If N > 6, there
are no known examples of codimension 2 smooth varieties with the exception of
the trivial ones, the complete intersection of two hypersurfaces, i.e. the transversal
intersection of two hypersurfaces, smooth along the subvariety, In fact, at least for
the moment, one is able to construct only these kinds of varieties whose codimension
is sufficiently small with respect to dimension. Let us recall the following definition
and some notable properties of complete intersections analogous to varieties whose
codimension is small with respect to dimension. ’

3.1.1. DEFINITION. (Complete intersection) A variety X C PY of dimen-
sion n is a complete intersection if there exist N — n homogeneous polynomials
fi € K|Xq,...,Xn] of degree d; > 1, generating the homogeneous ideal J(X ) C
K[Xﬂl--wXN]ai‘e' I(X)=<.f11"':.fN—n>- ’

Let us recall that since fi,..., fw—n form a regular sequence in K[Xo, ... XN
the homogeneous coordinate ring S(X) = K|[Xq, ..., Xn]/I{(X) has depth n+1, ie.
X ¢ PV is an arithmetically Cohen-Macaulay variety. Thus a complete intersection
X ¢ PV is projectively normal, i.e. the restriction morphisms

H%(Opw(m)) — HYOx(m))

are surjective for every m > 0, so that X is connected, and H*(Ox(m)) = 0 for
every i such that 0 < i < n and for every m € Z. Moreover, by Grothendieck

a7
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theorem on complete intersections, Pic(X) = Z < Ox(1) >, as soon as n > 3,
see [H1]. By Lefschetz theorem complete intersections defined over K = C are
simply connected, as soon a5 n > 2 and have the same cohomology H*(X, Z) of the
projective spaces containing them for 7 < n.

Based on some empirical observations, inspired by the theorem of Barth and
Larsen and, according to Fulton and Lazarsfeld, Yon the basis of few examples”,
Hartshorne was led to formulate the following conjectures.

3.1.2. ConJECTURE. (1** Conjecture of Hartshorne, or Complete Inter-
section Conjecture, [H2]) Let X C P¥ be o smooth irreducible non-degenerate
projective variety.

1 , ,
IfN < gdim(X),i.e. if codim(X) < Edim(X), then X is o complete intersection.

Let us quote Hartshorne: While T am not convicted of the truth of this state-
ment, I think it is useful to erystallize one’s idea, end to have a particular problem
in mind (jH2J).

Hartshorne immediately remarks that the conjecture is sharp, due to the ex-
amples of the Grassmann variety of lines in P4, G(1,4) C P?, Pliicker embedded,
and of the spinorial variety of dimension 10, S1° ¢ P®; moreover, the examples
of cones over curves in P3, not complete intersection, reveals the necessity of the
non-singularity assumption. Varieties for which N = %dim(X ) and which are not
complete intersection are usually called Hartshorne varieties. No other example of
Hartshorne variety is known till today. It is not a case that these varieties are ho-
mogeneous since a technique for constructing varieties of not too high codimension
is exactly via algebraic groups, see for example [Z2}, chapter 3, or the appendix to
[LV). _
One of the main difficulties of the problem is a good translation in geometrical
terms of the algebraic condition of being a complete intersection and in general of
dealing with the equations defining a variety.

It is not here the place to remark how many important results originated and
still today arise from this open problem in the areas of vector bundles on projective
space, of the study of defining equations of a variety and %-normality and so on.
The list of these achievements is too long that we preferred to avoid citations, being
confident that everycne has met sometimes a problem or a result related to it.

Let us recall the following definition.

3.1.3. DeFNITION. (Linear normality) A non-degenerate irreducible variety
X C PV is said to be linearly normal if the linear of hyperplane sections is complete,
i.e. if the injective, due to non-degenerateness, restriction morphism

H(Opn (1)) 5 HY(Ox(1))
is surjective and hence an isomorphism.

If a variety X C PV is not linearly normal, then the complete linear sys-
tem |Ox(1)| is of dimension greater than N and embeds X as a variety X’ C
PM, M > N. Moreover, there exists a linear space I = PM~N=! guch that
LnX' = § and such that ; : X' - X C P¥ is an isomorphism. Indeed, if
V = r(HYOp~ (1)) € HY(Ox(1)) and if U ¢ HYOpn (1)) is a complementary
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subspace of V' in H°(Opx (1)), the one can take P = P(HY(Opn~ (1)), L = P{I/)
and the claim follows from the fact that 7 : X'~ X — X ¢ PY = P{(V) is given
by the very ample linear system |V|. On the contrary, if X is an isomorphic linear
projection of a variety X' C PM, M > N, then X is not linearly normal.

In the same survey paper Hartshorne posed another conjecture, based on the
fact that complete intersections are linearly normal and on some examples in low
dimension.

3.1.4. CONIECTURE. (2" Conjecture of Hartshorne, or Linear Normal-
ity Conjecture, [H2]) Let X C PN be a smooth irreducible non-degenerate pro-
jective variety.

IfN < %dim(X)+1, t.e. if codim{X) < %dim(X) +1, then X is linearly normal,

Recalling proposition 1.2.8 and the above discussion, we can equivalently reformu-
late it by means of secant varieties putting "IN = N + 1",

IIN < -g-dim(X) +2, then §X =PV,

Let us quote once again Hartshorne point of view on this second problem: Of
course in settling this conjecture, it would be nice also to classify all nonlinearly
normal varieties with N = 9.;-1- + 1, s0 as to have o satisfactory generalization of
Severi’s theorem. As noted above, a complete intersection is elways linearly normal,
s0 this conjecture would be a consequence of our original conjecture, except for the
case N = -3?“ My feeling is that this conjecture should be easier to establish than
the original one ([H2]). Once again the bound is sharp taking into account the
example of the projected Veronese surface in P1.

The conjecture on linear normality was proved by Zak at the beginning of the
*80"s and till now it is the major evidence for the possible truth of the complete
intersection conjecture. As we shall see conjecture 3.1.4 is now an immediate con-
sequence of Terracini Lemma and of theorem 2.2.1. Later we will furnish another
proof of this theorem, cfr. theorem 4.1.4.

3.1.5. THEOREM. (Zak Theorem on Linear Normality) Let X C PV be
o smooth non-degenerate projective variety of dimension n. If N < %n + 2, then
SX = P¥. Or egquivalently if 8X € PV, then dim(SX) > %n + 1 and hence
Nzén+2

PRrOOF. Suppose that §X ¢ PV, then there exists a hyperplane H con-
taining the general tangent space to SX, let us say T:SX. Then by corollary
1.3.6, the hyperplane H is tangent to X along £,(X), which by the generality
of z has pure dimension §{X) = 2n + 1 — dim(SX). Since T(Z:{X),X) C H,
the non-degenerate variety S(E.(X),X) 2 X is not contained in H, yielding
T(Z,(X), X) # S(E.(X),X). By theorem 2.2.1 we get

20 + 1 — dim(5X) +r + 1 = dim(S(Z,(X), X)) < dim(5X),
ie.
3In+2 < 2dim(SX)
implying
N —-12>dim(5§X) > -g—n-f- 1.
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3.2. Severi varieties

Theorem 3.1.5 opens the problem of investigating examples for which the result
is sharp, i.e. to try to classify smooth varieties of dimension n, X C P3712 guch that
SX CPa™*2 or equivalently smooth not linearly normal varieties of dimension n,
X c Pint1, Cleatly n is even so that the first case to be considered is n = 2 and so
one would like to classify smooth surfaces in P® such that SX ¢ P®. The answer is
thus contained in the classical and well known thecrem of Severi, [Sev1), which is
theorem 1.4.1 here, saying that X is projectively equivalent to the Veronese surface
v,(F?) C P5. This justifies the name given by Zak to such varieties.

3.2.1. DEFINITION. (Seven variety} A smooth irreducible non—degenerate va-
riety of dimension n, X C P37+2, is said to be a Severi variety if $X C Pir+?,

By theorem 3 1.5, it follows that SX C P42 is necessarily an hypersurface,
ie. dim(SX) = in +1.

In exercise 1 1.6 we showed that the Segre variety X = ]P2 x P2 c ¥ is an
- example of Severi variety of dimension 4. Indeed N =8=5%-4+2and SX isa
cubic hyersurface, see loc. cit.. By the classical work of Scorza, last page of [S1], it
turns out that P? x P? is the only Severi variety of dimension 4, We shall furnish
a short, geometrical and elementary proof of this fact below, see theorem 3.2.6.

The realization of the Grassmann variety of lines in IP5 Pliicker embedded,
X = G(1,5) C P!, as the variety given by the pfaffians of the general antisymmetric
6 % 6 matrix, yields that G(1,5) is a Severt variety of dimension 8 such that its secant
variety is a degree 3 hypersurface, see for example [Ha] pg. 112 and 145, for the
last assertion.

A less trivial examples is a variety studied by Elie Cartan and also by Room.
It is a homogeneous complex variety of dimension 16, X' C P26, associated to the
representation of Fg and for this reason called Eg-veriety, or Carlan variety by
Zak. It has been shown by Lazarsfeld and Zak that its secant variety is a degree 3
hypersurface, see for example [LV] and [Z2], chapter 3.

There is a unitary way to look at these 4 examples, by realizing them as
"Veronese surfaces over the composition algebras over K, K = K and char(X)=0,
[22] chapter 3. Let Uy = K, th = K[t]/(#* + 1), Uz = quaternion algebra over K,
i3 = Cayley algebra over K. For K = C, we get R, C, H and the octonions num-
bers 0. Let Z;, i == 0,..., 3, denote the Jordan algebra of Hermitian {3 x 3)-matrices
over U, 1=10,...,3. A matrix A € T; is called Hermitian if A= A, where the bar
denotes the involution in 24;. Let

X: = {[A] e P(T;) : 1k(4) =1} C P(T).
Then
N; = 8im(P(Z)) = 3-2¢ + 2, n; = dim(X;) = 2! = 2dimg(24),
and
S5X = {[A) e P(T;) : tk{A) < 2} = V(det(4)) C P(T;)

is a degree 3 hypersurface. By definition X; C P(Z;) is a Severi variety of dimension
2i+1 which is seen to be one of the above examples.
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A theorem of Jacobson states that over a fixed algebraically closed field K
there are only four Jordan algebras, the algebras I{;'s, and hence these are the only
examples which can be constructed in this way.

The highly non-trivial and very beautiful result, which is essentially equivalent
to Jacobson classification theorem, is the following classification theorem of Severi
varieties proved by Zak.

3.2.2, THEOREM. (Zak classification of Severi varieties, (Z1], [Z22], [LV],
[Laj, [Ru6]) Let X C P32 be ¢ Severi veriely of dimension n, defined over an
algebraically closed field K of cheracteristic 0. Then X is projectively equivalent to
one of the following:

(1) the Veronese surface v2(P?) C P5;
{2) the Segre {-fold P? x P? C IP§;

{3) the Grassmann variety G(1,5) C P14;
(4} the Es-variety X ¢ %6,

A complete proof of this theorem for n > 8 is beyond the scope of these notes
and of the lectures and it can be found in the above cited references. We prefer
to sketch the basic ideas leading to the restriction n = 2,4, 8,16 for the dimension
using some results from the theory of quadric varieties, [Ru6|, and to study the
analogies with the theorem we proved for n = 2, eclassifying Severi varieties in
dimension 2,4 (and 8) and explaining why there exists only one case more. A proof
of the classification can be found in above cited references. From now on we will
suppose char{K)=0, or equivalently K = C. -

The following result is of fundamental importance and yields many interesting
geometric restrictions for Severi varieties. For the first part of the proof we follow
[Z2), 1V, 2.1, while we provide a different way of getting the smoothness of &, (X).

3.2.3. ProrosITION. (Entry locus of a Severi variety, [Z1], [Z2]) Let
X < P¥"*2 pe g Severi variety of dimension n, defined over an algebraically
closed field K of cherecteristic 0. Let z € SX be a general point. Then 5.(X) =
(Cr,sx(SX) N X)yea = Cr,5x(X) is a smooth quadric hypersurface of dimension
$ in the contact locus of T, 8X, Cprsx(5X) = {v € Sm(5X) : TLSX =T.5X} =
Pi+l.  Moreover, a Severi variely confains e n-dimensional family of smooth
quadric hypersurfaces such that through two general points of it there passes a unique
member of the family and such that for a general point z € X two general quadric
surfaces passing through it intersect transversally at z.

Proor. Let H = T,5X = P¥+1, z ¢ §X general point. Then since char(K)=0,
we have Cy{SX) = PHEX) gee proposition 1.5.6. By definition

Cu(X)={x e X : ToX C H} = Sing(X N H).

Then Cy(X) is a closed subvariety of X and T(Cr(X), X) € H. Since X is non-
degenerate, §(Cy(X), X) is non-degenerate so that T(Cg (X)), X) # S{Cr(X), X)
yields, due to theorem 2.2.1,

dim(Cr (X)) +n + 1 = dim(S(Cr (X), X) < dim(SX) = gn +1,
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ie.
(3.2.1) dim(Cu (X)) < g

On the other hand, by corollary 1.3.6, for v € Cy(5X) general, we have
T(Z,(X), X) C H and hence

(3:2.9) Bu(X) € Cu(X)
forue Cy(5X) general. Then

3
dim(E,(X)) = dim(Zu(X)) = 2n+ 1 - dim(SX) = 2n + 1~ (5 +1) = g
so that by equation 3.2.2 £,(X) is a component of Cg(X). Therefore for general
1 @ Cy(SX) = Pdel(5X)]
Tu(X) = (X}
implies that though a general point of Cg(SX) there passes a secant line to Z,(X),
ie.

(3.2.3) S%,(X)} = Cy(SX) = PIef(sX)

and Z,(Z,(X)) = B.(X).
From these two facts we get,

dim(Cx (5X)) = dim(ST,(X)) = 2 dim(T(X)) + 1 ~ dim(Z,(Z,(X))) = g +1,

as desired. Since (X)) is an hypersurface in Cy(SX), each point of X NCx(SX)
is contained in ¥,{X), which together with 3.2.2 gives the equality of sets ¥.(X) =
{X N Cy(X))rea- From 3.2.3 we deduce deg(¥.(X)) = 2 and by the trisecant
lemma and by the generality of z, a general secant line to X passing through z
cuts X transversally only in two points and it is contained in Cy(SX), so that
deg(%.(X)} = 2 and E,(X) is a quadric surface.

Next we prove that Cy(X) = X, (X). Take a general point x € X. Let
g+ X ~-+ m(X) = ¥, € P¥*! be the projection from T;X, and note that
dim(Y;} = % by proposition 1.3.8.

By arguing as above, dim(S(2,(X),X)) = 3n 4+ 1 = dim(SX) so that by
Terracini lemma, we have Ty X NT,,Z,(X)} = @ for w € X,(X) general. This implies
Tz(Z,(X)) = Y, and also that Y; is an irreducible quadric hypersurface being a
non-degenerate projection of a variety of degree 2. This immediately furnishes
Cuy(SX)NTX =< (X)) > NTxX =0, £ € X general, and that r, restricts
to an isomorphism on E,{X), which is now evident being an irreducible quadric
hypersurface. Take y € X a general point and let m.(y} = ¢’ € Y. be a general
point. If ¥, were singular, it would be a quadric cone, so that

T, Y, = 1,(TyX) =< T X, T,X > (P#+!

would be tangent at least along a line I, passing through y'. Then the hyperplane
H =< T X, T,X >= T,8X, v € 5X general, would be tangent along = 1(l,).
Since dim(r;1{l)) = %+1 (recall that dim(X)—dim(¥;) = %), this would contra-
dict 3.2.1. So we have shown that Yz and Z.(X) are smooth quadrics. Moreover,
Cu(X}\ ToX N X has pure dimension & being equal to 771(y'). By using the
same argument as in Scorza Lemma, lemma 1.4.3, we immediately deduce that
Ca{X) CXN(< X,y >N < TyX,y >) = X NCu(SX) = T (X).
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By taking a general point p € X, a general point u €< z, p > and a general
point w €< y,p >, the previous analysis shows that £,(X) and T,,(X) intersect
transversally at p. Indeed %,,(X) is a fiber of 7, while £,,(X) is a section of m,,. 0

Thus on an arbitrary Severi variety the picture is completely analogous to
2-dimensional case: there are oo¥ smooth quadrics through a general point and
two general ones intersect transversally at that point. For n > 4 the difficulty
arises from the fact that these subvarieties are not divisors so that the geometric
information encoded cannot be translated immediately into a classification result.

We list some interesting consequences of this proposition, which begin to put
stronger and stronger restriction to Severi varieties.

3.24. COROLPARY. (Rationality and linear normality of Severi vari-
eties) Let X C P2™2 be o Severi variety of dimension n and let notations as in
proposition 3.2.3. Then X is o linearly normal rational variety, o birational explicit
isomorphism being mp X my 1 X --+ Qy % Qy. Moreover, if z € SX is o general
point, then pa : Sv,(x),x — S(EAX), X} = §X is birational.

PROOF. In the final part of the proof of proposition 3.2.3, we proved the bira-
tionality of mp x my, : X -2 Qy x @y, since we showed that a general fiber of pi,
and a general fiber of piy only intersect transversally at a point. '

Let us prove that X is linearly normal. Suppose there exists a non degen-
erate variety X’ C P%+3 which projects isomorphically onto X ¢ P% 2, Then
dim{$X') = dim(5X) = 2 + 1, so that if 7z : X’ --+ Y/, < P2%2 is the projec-
tion from the tangent space at a general point 2’ € X', by reasoning as in the proof
of proposition 3.2.3 we would deduce that Y/, is an isomorphic linear projection
of a quadric hypersurface of dimension % so that it would be degenerated. This
contradiction proves the claim.

The last fact easily follows from the equality $(Z.(X), X) = §X and the fact
that if u € SX is general, then Z,(X) NZ,(X) consists of a point. )

To put in the right perspective where the technical difficulties begin and what
is the new and difficult part in the classification of Severi varieties, we derive as a
consequence of proposition 3.2.3, a refined Scorza Lemma, a proof of the classifi-
cation of 2-dimensional, respectively 4-dimensional Severi varieties, which was first
given for irreducible surfaces in [Sevl], see theorem 1.4.1, respectively for 4-folds
in [S1]. Here 2 *simplified” proof in the 2-dimensional case is possible due to the
smoothness assumption. A non-elementary proof in the 4-dimensional case, based
on the classification of del Pezzo varieties and on rather intricate arguments, was
furnished in [FR], theorem 4, as one of the principal results of that paper. Here we
simplify, due to the non-singularity assumption, the original argument of Scorza,
who in fact classified irreducible 4-fold in P¥, N > 8, such that dim{5X) =7, see
[S1}, pe. 204.

3.2.5. THEOREM. (Severi classification of 2-dimensional Severi vari-
eties, [Sevl])Let X C P® be a Severi surface. Then X is projectively equivalent to
Vo (][ﬂ) C 5.

Proor. Let zy,y1 € X general points and let C,, ,, be the entry locus through
zy and y1. By proposition 3.2.3, Cy,,y, C X is a smooth conic. Moreover, ifya € X
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_is general, the conic Cy, 4, is linearly equivalent to C, 4, , being two general fibers

of the tangential projection, w,, : X --+ Cy, C P?, of X from T, X onto the
" smooth conic C,. If we fix 3 and let x1 vary, by projecting from T}, X, we obtain
another pencil of conics linearly equivalent to Cg, 4, , 50 that Cz, o, varies in a linear
system of dimension at least 2 and (Cr, 4, )° = 1 because two general entry loci
intersect transversally only at one point by proposition 3.2.3. This two dimensional
linear system defines a birational map

$: X -+ P,

which sends a general entry locus onto a line.
Let i : X — [P be the inclusion and define

P=icgd ™! P? -—s PS5,
The rational map 1 sends lines onto conics in X and hence onto conics of PS5,
50 that it is given by a sublinear system of |Op:(2)| of dimensicn 5, i.e. by the

complete linear system |Opz2(2)). This implies that ¢ is an isomorphism and that
X is projectively equivalent to v,(P?). 0

The analysis in the 4 dimensional case is a little more difficult because the entry
loci have codimension 2 so that they are not divisors on X.

3.2.6. THEOREM. (Scorza classification of 4-dimensional Severi vari-
eties, [S1], pg. 204) Let X C P® be o Severi variety of dimension 4. Then X is
projectively equivalent to P? x P? C P? Segre embedded.

PROOF. Let mz : X -+ Q C P? be the projection from the tangent space at
a general point € X. Let l3,{z C Q. be two general lines belonging to different
rulings of @, let D; = x2(l;) be the corresponding divisors on X, let p =l Niy
.and let y € 77 %(p) a general point. Let Qg4 be the entry locus through = and y,
ie. Qg y = B,(X) for z €< «,y > general point. Then

(3.2.4) D1N Dy =mz'(h Nla) =75 (p) = Quy-
Moreover,
{3.2.5) Dy + Do + Eg ~ w20, (1)) ~ H,

with H an hyperplane section of X and E, > 0 the eventual fixed component of the
linear system giving g, i.e. of the linear system of hyperplanes containing T, X .

As we recalled above, two general points 4,42 € X are joined by a smooth
quadric surface @y, 4,. Let I; € @y, 4, be a line. Recall that =, restricted to
Qyiu I8 an isomorphism. Let E; be as in 3.25. Then 1 = H-l =1+ E, -1
yields E; -1 = 0. This means that if E; > 0, then E, cannot vary with &z € X
general point, i.e. Ex = F ¢ T, X, © € X general and X would be a cone. This
contradiction furnishes

D+ -D2 ~H »

and also, letting H, =< ToX,l1,lo >=P7 C P3,

H,NX =D, +Ds.

We now show that D; = my(l), with my : X -+ @ C P? the projection
from T, X and {8, C Qy the lines of the two different rulings of @, passing
through m,(x} = p’ € @y. It is sufficient to prove that T, X C Hp, because then
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Ty (D1) + 7,(Da) = my(Hy) will be a reducible hyperplane section of @y. By 3.2.4
TyX =Ty(Dh + D2y = H, N T, X and the claim follows.

Therefore there is a linear system of dimension 2 of divisors linearly equivalent
to D;, i = 1,2. Each linear system defines a dominant rational map

¢ X - P2,
Indeed, by definition of 7, a general entry locus Z,(X) = @ of X is mapped
isomorphically onto @, so that Og(D;) = Ogp(1,0). and Og(Ds) = Og(0,1),
modulo a renumbering. Thus $;(Q@) = &; C P? is a line and two general points of
#:(X) are joined by a line, so that ¢;(X) = P2
"The two dominant rational maps ¢; : X ~~+ P2 yield a dominant rational map
d=ch xda: X -+ P? x P2
Let 03,2 : P? x P? < P® be Segre embedding of P2 x P? and let
Y=ogg0¢: X -+ |
From
$*{Ops(1)) = ¢* (p1(Op2(1)} @ p3(Op2 (1)) = Ox{D1) ® Ox(D2) = Ox (H),
we deduce that v is given a sublinear system of |H| of dimension 8, i.e. by the

complete linear system of hyperplane section by the linear normality of X, see
proposition 3.2.4. This is a reformulation of the desired conclusion. O

By definition the dimension n-of a Severi variety X C P *2 is an even number,
We arrived at the central point of the whole analysis, bounding the dimension of
a Severi variety. We sketch the proof contained in [Ru6), which, if correct, shows
that this basic result is a corollary of the theory of quadric varieties.

3.2.7. THEOREM. (Dimension of a Severi variety, [Z2], theorem 3.10,
8n

pg. 84), [Ru6] Let X C P#+2 pe a Severi variety. Thenn =2, 4, 8 or 16. In
particular, §(X) =1, 2, 4 or 8.

ProoF. In [Ru6) it is shown that a Severi variety X C P%+? is a quadric
variety of type § = 3. We can also suppose n > 6, i.e. 6 > 3.
For a smooth quadric variety of type § > 3, X C PV, one defines

ry=sup{reN:d>2r+1}.
By the main result of [Ru6], 2% divides n — ¢ = § = 4 so that 2"**1 divides

n. Hence 6 = % is even and, by definition of rx, § = 2Zrx + 2. Thus, for some
integer m > 1,
m2*H = n = 4rx +1).

Therefore either rx =1, t.e. n=8,0r ry = 3,ie. n=16. 0

The classification theorem 3.2.2 is now easy to deduce. Indeed, for n = 8 the
variety X € P is a Muksai variety, being a Fano variety of index 6 with &2(X} = 1.
Indeed, by Barth theorem 2.1.3, Pie{X) = Z < H > and X C P contains moving
lines, so that it is Fano. In [Ru8), it is shown that for a quadric variety of type
§>3andforalinelCc X, -Kx-I= %:55-, so that i{X) = 6. It is classically well
known that X = G(1,5) C P** Pliicker embedded. A uniform approach connecting
the original ideas of Zak and a careful study of lines on X in dimension 4, 8 and 16
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and leading to a quick classification of Severi varieties in dimension 4, 8 and 16 is
described in [Ru6]. This approach does not depend on any previous classification
result, with the exceptions of the rational representations on P" of the varieties
appearing, as done by Zak.

We would like to comment briefly the main differences between our approach,
if correct, to the classification of Severi varieties and the ones present in the lit-
erature. Zak’s approach, see also [LV], is based on some preliminary analysis of
the geometry of SX and of the fact that all the entry loci are smooth quadric of
dimension 2. The central point in Zal’s classification is a careful study of the

linear spaces on the quadrics of the family Q., i.e. of the entry loci of the variety
to obtain n < 16 and n = 0 {mod. 4). This is very geometric but full of details
and verifications. The first part of Zak's analysis was used by Chaput, [Ch], to
prove a priori that X is homogeneous and then one deduces the classification from
the known description of homogeneous varieties. There is a different proof of the
classification by Landsberg, [La], via local differential geometry and second funda-
mental form. Landsberg derives some restrictions on the linear system of quadrics
‘dlescribing the second fundamental form, deduces the bound of the dimension from
the classification of Clifford modules and then reconstruct the variety via moving
frames.

In [Ru6] we use the fact that Severi varieties are defined by 3n + 3 quadric
hypersurfaces, yielding a special quadro-guadric transformations, both results being
proved as preliminaries by Zak, and finally we concentrate on conics and lines
contained in a Severi variety. Thus from this point of view the classification of
Severi varieties is completely parallel to the classification of guadre-guadric special
Cremona transformations, see [ESB] and section 5.2. Let us recall that Ein and
Shepherd-Barron used Zak classification to conclude there exist only 4 quadro-
quadric special Cremona transformations associated to the Severi varities. The
classification of Severi varieties, or better of the possible dimension of such a variety,
becomes a particular case of the study of conies and lines on varieties defined by
quadratic equations, generalizing the case of the quadric hypersurface in PV, [Rué].
The reconstruction of the Severi varieties in dimension 4, 8 and 16 in [Ru6)] is
analogous to Zak’s one but follows the opposite direction, showing a priori, in the
possible dimensicns, the description of the cones T, X N X.



CHAPTER 4

Extremal varieties and Scorza varieties

4.1. Additivity of higher secant defects and maximal embeddings

In this section we study the behaviour of the higher secant defects 8, = 3e{X),
k > 1, of an irreducible smooth non-degenerate variety of dimension n, X ¢ PV,

Let us recall that, for z € $%X general point,

= dim({TF(X)) = dim($* ' X} +n+ 1 - dim(S*X) = s, 3 4+n+1— s
So higher the defect, smaller the dimension of S*X. As we shall see below, if X is
secant defective, i.e. if §3 = § > 0, then its k-secant defect has to be at least &4, so
that a secant defective variety has a minimum k-secant defect determined a priori.
Of special interest will be secant defective varieties for which each §; will attain
the minimal value k6. What is not at all clear at this point is the fact that these
varieties can be completely classified in every dimension, at least in characteristic
0, and that they are suitable generalizations of Severi varieties.

Let us start with a general property of varieties defined over a field of charac-
teristic 0, .

4.1.1. PROPOSITION. Let X C PV be a smooth irreducible non-degenerate pro-
Jective variety. Suppose char(K)=0. Letk > 1 be such that S*X CPY letz,yc X
and u € S*~1X be general points. Then

LXNT,X NT.51X = 0.

PROOF. Let z € 55X be a general point and let S*X — S(X,5%1X). Then
by corollary 1.3.6 the linear space T,5% # P¥ is tangent along (X)) so that it
contains T(Z¥(X), X). Since X is non-degenerate, S(2¥(X), X) is not contained
in 7,85 X. By theorem 2.2.1 we get dim(S(Z£(X), X) = dim(Z5(X)) + dim(X) + 1
50 that, for x,y € X general points,

(4.1.1) X NT,ZHX) =0.
By proposition 1.3.9, if u € §571X is general, then
(4.1.2) T,ENX) =T, XN <y, W% 1X > .

By combining equations 4.1.1 and 4.1.2, we finally obtain
LXNLXNTS* X CTXNT,XN <y, TuS*'X >= T,X N T,2%(X) = 0.
0

By combining Terracini Lemma with the above proposition, we immediately
obtain a proof in characteristic zero, the case we treat in the whole chapter, of
the next theorem, which is true for arbitrary fields. For a proof valid in arbitrary
characteristic one can consult [22], pe. 109.

47
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4.1.2. THEOREM. (Additivity of higher secant defects, Zak) Let X C PV
be an irreducible smooth non-degenerate projective variety. Let ke N, 1 < k < k.
Then

dp 2 01 + 6 = K6

Proor. Fix &k, 2 < k < kg, the result being trivial for £ = 1. By definition
S¥-1X ¢ PV, so that if 7,5 € X and u € $572X are general points, by proposition
4.1.1, we get T, X NT,X NT,S%2X = 0.

Let

Ly =T X NT,5%2X and Ly = T X N T, X.
By Terracini Lemma, dim{L;} = §x—; — 1 and dim(Lo) = § — 1 since ,y € X and
u € §52X are general points. Let §FX = (X, 551X and set

L=T,XN < T,X,T,82X > .
Once again by Terracini Lemma,
dim{L) = d — 1.
- Since L; € L and Ly N Ly = T, X N T, X NT, 5% 2X = §, then
O — 1 =dim(L) 2 dim({< Ly, Ly ) =81 ~14+8-1—-(-1) =81 +5 -1,
vielding the conclusions. O

We deduce some interesting corollaries of the above result. For a real number
r € R, [r] denotes the largest integer not exceeding r.

4.1.3. COROLLARY. Let X C PV be a smooth irreducible non-degenerate variety
of dimension 1. Suppose § > 0. Then kg < [3], i.e.
Sty =pN,
Proor. Recall thet 8, < n by its definition so that
n 2 qu 2 kﬂ‘sa

ie.
> ko.

o] 3

O

The second application is a different proof of Hartshorne conjecture on linear
normality, cfr. theorem 3.1.5.

4.1.4. COROLLARY. (Zak Theorem on Linear Normality) Let X C PV
be o smooth non-degenerate projective variety of dimension n. If N < %n + 2,
then SX = PN, Or equivalently if SX ¢ PV, then dim(5X) > g—n + 1 end hence
Nzén+2

ProoF. Let us prove the last part. If & > 4, then 1 = [§] > kg 2 1 yields
SX=PN Sdi< % assoon as X C P¥. This yields

N >dim(SX)-+1=2n+2-6> 3?“+2.
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We begin a systematic study of smooth secant defective varieties in character-
istic zero and try to determine the restrictions in terms of the embedding. We saw
that if § = 0 and N > 2r + 1, there always exist smooth non-degenerate varietics
X ¢ PV of dimension n and with § = 0. For example one takes as X a smooth
complete intersection of N — n general hypersurfaces. Moreover, by corollary 1.5.5,
for such varieties, if k < ko(X), then sx(X} = (k+1)n+k, §:(X) = 0 and s, = N,
so that N and %y are not determined or at least bounded by a function of n and &
and both can grow arbitrarily.

On the other hand, corollary 4.1.3 and theorem 4.1.2 say that for non-degenerate
varieties of fixed dimension n and with fixed § > 0, kp and N are bounded from
above by a function depending on n and §. Indeed, ko < [3], so that, by corollary
1.3.6 part 4 and by theorem 4.1.2,

ko ko
(413) Ne=sp=(ho+1)(n+1)~1-3 &< (bo+1)(n+1)~1-6 4,
i=1 i=1

is bounded by a function depending only on n, § and kg. .

So a secant defective smooth non-degenerate projective variety X ¢ PV of
dimension n can be isomorphically projected in PM, M < 2n, but due to the secant
deficiency it cannot be the isomorphic projection of a variety living in a projective
space of arbitrary large dimension. The result of theorem 4.1.2 and the definition
of S*X and of kg say that linearly normal secant defective varieties with higher
N +1 = rYOx(1}) are those for which dy, is the minimum possible, i.e. varicties
such that §; = k8§.

On the base of the previous discussion let us introduce some definitions and
collect the above argument in 2 more systematic statement. We can think linear
projection as a partial order in the set of the embeddings of a variety X in projective
space. Of particular interest will be maximal and minimal elements with respect
to this partial order.

4.1.5. DEFINITION. (Functions M(n,d), m(n,8) and f(n,§,&)) All varieties
X < IP¥ are supposed to be smooth, non-degenerate and projective.

Let us define, it it exists (otherwise we put it equal to oo}, for » > 1 and for
§=0,

M{n,§) :=max{N : AX c PV : dim(X) = n, §(X) = 6}.
In the same way we define

m{n,§) = min{N : 3IX C PV : dim(X) = n, §(X) = §}.
Inspired by equation 4.1.3 we define for £ > 0, for n > 1 and for d > O:
klk+1)5

1.
2

Flkm,8) = (k + 1)n+ 1) -

We saw that M(n,0) = oo. Clearly m(n,d) = 2n + 1 — 4. Indeed general
complete intersection of dimension n in P#"+1-4 are smooth non-degenerate va-
rieties with SX = P?+1~% g0 that §(X) = & and m(n,8) < 2n41-46. On
the other hand every variety X < P¥ with §(X) = § and of dimension n has
2n+1 -4 =dim(5X) £ N, yielding m(n,d) > 2n+1-4.

The equation 4.1.3 can be read as, if § > 0, then N < f(ko,n,6).
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Let us reinterpret corollary 4.1.3 in terms of these functions and study their
first properties.

4.1.6. PROPOSITION. Let the pairs (n,d) in the statement be such thai the
funetions M{n,d) and m{n,d) are defined. Then
(1) 8> %, then M(n,8) =m(n,8) =2n+1-§;
(2) M(n,6—-1) > M(n,48) +1;
(3) M(n—1,6~1)> M(n,8) — 1,

ProoF. By corollary 4.1.3, § > § gives kp = 1 and hence §X = PN so that
N =dim(8X) = 2n+ 1 — § = m(n, §) is determined by n and §, yielding part 1).

Suppose given X C P¥, dim(X) = n and §(X) = d > 1. Let p € PVHI\PV, set
Y = S(p, X) and take X' =Y N H C PN*+!, H C PM("N+1 3 general hypersurface
of degree d > 1. The variety X’ is smooth, non-degenerate, irreducible and of
dimension n with §(X’) = 6{X)—1 and $X’ = §(p, $X). Indeed, §X’ € S(p, 5X)
so that it will be sufficient to prove the first part of the claim. Let mp : X' — X
‘be the projection from p onto P¥. By Terracini lemma, if p'1,p’2 € X’ are general
points, then

§(X)+1=dim(<p, T X >N <p, T X >)

=dim(<p, Ty X >N <p, Ty X > NPY) + 1

=dim((< p, Ty, X > NPY) N (< p, T X > NPY)) + 1

= dim(T"p(pll)X nT,,P(pg)X) +1=4.

Suppose given X c PV, dim(X) =nand §(X) =8> 1. Let X' = XnNH C

H = P¥-1 be a general hyperplane section. By Terracini Lemma and by the
generality of H, if one takes py,p2 € X' = X N H general, then (X)) -1 =
dim(Tp, X' N T, X" = dim(Tp, X NTp, X N H) =4 — 2 so that §(X") =6 —1 and
dim(SX)=2(n—1)+1—-8(X') =2n — § = dim(SX) - L. Since SX' C SXNH
we also deduce X' =S5X N H. O

4.1.7. DEFINITION. {Extremal variety) A smooth irreducible non-degenerate
projective variety X C ¥ of dimension n is said to be an extremal variety if
0{X)=4§8>0and if N = M(n,8).

In other words an extremal variety is a smoocth secant defective variety, which
is a maximal element in the partial order defined by isomorphic projection.

- We are now in position to refine equation 4.1.3 in the sharpest form.

4.1.8. THEOREM. (Maximal embedding of secant defective varieties,
Zak, [Z2]} Suppose § > 0. Then

M(n,5) < (3], 6).

In particular o smooth non-degenerate irreducible projective variety X c PN with
N = f([}],n. ) is linearly normal.
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PROOF. By equation 4.1.3 we know that for a given variety X < P¥ of dimen-
sion n and with §(X) = §, we have N < f(ko,n,d). On the other hand by corollary
4.1.3 we know that ky < [}]. Fixing n and §, y = f(k,n,d) is a parabola in the
plane (k,y), whose vertex has coordinates (2"—“2@""3, 52"%8?22); in particular it is
an increasing function on the interval 0 < k < 2582 8o if kg = (2], there is
nothing to prove. If kp < [%], then

n n n—d+2
b < [=]-1K = — _—
kp < [6] 1< 3 1<« o8 y
so that n n n
N < _f(kg,n,(i) < f(E-' - 1) = f(g,n,(s) -1< f([g],n,&),
where the last inequality follows from the fact that f(m,n,d) € N for every m € N.
This finishes the proof. O

Theorem 4.1.8 says that secant defective varieties are allowed to live in a
projective space of bounded dimension, the bound being expressed by the value

F(5]n, 8).
Let us reinterpret some results in the light of the new definitions and of the
first properties of the functions M (n, §) and f(k,n, ), following Zak [Z2].

4.1.9. REMARK. (Case ¢ > 2) If § > %, then [}] =1, SX =PV s0 that
m(n,d) = M(n,8) =2n+1-§= f(I,n,4).

4.1.10. REMARK. (Case & = §) In this case » = 0 (mod. 2) and by theorem
41.8 3
Tyt + 2.

st(zwnl"i) 2

There are two possibilities: )
(1) SX =P¥, m(n,3) = L +1 = dim(5X} = N;
(2) SX CPN, N =dim(§X) +1=M(n, 3)=f(&n %) =2 +2
Varieties in case 2) are clearly Severi varieties so the remark furnishes a new
proof that Severi varieties are linearly normal, see corollary 3.2.4.

In the next remark we connect these results with the classical work of Gaetano
Scorza.

4.1.11. REMARK. Suppose
n=1(mod. 2) and SX ¢ PV,
By remark 4.1.9
— 3 3
5<n—2—1—ands=dim(SX)=2n+1—62 ”; :

We now discuss the extremal ease § = 251 in the above hypothesis.
Suppose i = 3 so that § = 1. By theorem 4.1.8 :

N<f(3,31)=9=s+2

By the main classification theorem of {S1], see also theorem 4.2.7, there is only
one such 3-fold, X = vy (P3) C P°.
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If n > 3, then
n—1 3n+7
7 )=
Therefore, for n =1 (mod. 2), § = “T‘l there are only the following cases:
(1) SX=P¥, N=s=m(n,%}) = 3—“2?1'—3;
(2) N=s+1= -i§;
(3) N=s+2=3"(= Mn,2 )1fn>3)
(4) n=3, N—s+3~M(3 1)
All these cases really occur. Examples of case 2) are hyperplane sections of the

Severi varieties. For an example as in case 3) one can take P2 x P? ¢ P! Segre
embedded, while we saw above an example as in case 4).

2n
< = 2.
N_f(n_l,n, s+

4.2, Scorza varieties

In the previous section we defined extremal varieties and discussed various
cases. In particular we saw that if 6 > 3, then §X = PY and X C PV is an extremal
variety such that M(n,§) = f({3],7.4) = f(L,n,8) =2n +1- 46 = N =m(n,d).

By definition of the function f(k,n,4) and due to theorem 4.1.8, an extremal
variety X C PM(8) § % 0, satisfies M(n,8) = f{(2],n,9) if and only if ko = [%]
and d; = kd for 0 < k£ < ky.

The case of extremal varieties with ko = 1 = [§], L.e. M(n,d) = m(n,d) does
not present particular restrictions and there are infinite examples. On the base of
the examples in dimension 3 and 4, classically studied by Scorza in [S1] and [S4],
Zak introduces the following definition.

4.2.1. DEFINITION. (Scorza variety, [Z2], pz. 121) Let X C PV be a smooth
irreducible non-degenerate projective variety of dimension n. Then X is said to be
@ Scorza variety if;

(i) N >m(n,d), where é = §(X) =2n+1 — dim(SX);
(i) N = M(n,d) < oo, ie &§>0and X is an extremal variety;
(i) M(n,8) = f{[#],n.8), where f(k,n,8) = (k+ 1)(n -+ 1) ~ 2&H5 3

~ From now on we will suppose char(K)=0. Under these hypothesis, a smoath
non-degenerate irreducible projective variety X C PV of dimension n is a Scorza
variety if and only if § < §, ko = [§] and 0 = k6 for 0 < k < [2].

As we saw in remark 4.1.10, Severi varieties are instances of Scorza varieties
with § = £. So the class of Scorza varieties includes the four Severi varieties. The
extraordinary and remarkable classification result due to Zak, which we will try
to illustrate in this section, states that there are only few other examples. These
examples form infinite series, whose first members are the three classical Severi
varieties of dimensions 2,4 and 8. The classification result is the following.

4.2.2, THEOREM. (Classification of Scorza varieties, [Z2] chapter V) Let
X c IPM be o Scorza variety of dimension n. Then X is projectively equivalent to
one of the following:
(1) va(P™) € P52 (5 =1);
(2) P2 x P> C Pabtath a+b—n, la—bl <1 (§=2);
(3) G(L, 2 +1) c P* w9 g (mod. 2) (5 = 4);
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(4) the Eg-variety X C P*® of dimension 16 (§ = 8).

There is uniform description of Scorza varieties with n = 0 (mod. §), "the
most interesting case”, according to Zak, [Z2] pg. 152. These varieties have a
"determinantal” description as locus of rank 1 matrices in the projective space of
suitable Jordan algebras of Hermitian matrices of order % + 1 over composition
algebras, generalizing the one furnished for Severi varieties, see (Z2] pg. 153 and
[Ch2}; hence they are realized as suitable quadratic Veronese embedding of *gener-
alized” projective spaces. From this point of view the classification of these Scorza
varieties is completely parallel to the classification of the above algebras obtained
algebraically by Albert, see for example [BK] or [Ja).

As in the case of Severi varieties we will furnish the ideas behind this classifi-
cation result, proving some particular cases. Once again this will exactly reveal the
points where the technical difficulties really arise.

The first important and significant result towards classification is the following.

4.2.3. THEOREM. (Entry loci of Scorza varieties, [Z2|, pg. 122) Let X C
PV be a Scorza variety of dimension n, with § = §(X) and N = f((3hn,d8). Let
z€S*X,2<k<ky—1=[}]~1. Then

THX) C Crsex (SEX) = PFKEE) — ghyk( ¥y
is a Scorza variety such that
dim(B5(X)) = k6, ko(ZHX)) =k, &(EMX) =44, 0<i<k
IF2 > ky = 2, then The(X) is a Scorza variety of dimension kod < n with

§(Sho(X)) = § and < BR(X) = SOER(X) = O, giox ($% X) = PFlaokos ),
For z € 8X general point, £,(X) C P! is o non-singular quadric hypersur-

face of dimension §.

The following corollary is a fundamental step for the classification of Scorza
varieties since it drastically reduces the cases to be considered.

4.2.4, COROLLARY. (Singular defect of Scorza varieties, [Z2], pg. 125)
Let X ¢ PFURIO) pe g Scorza variety. Then for z € §2X general point, TiX) is
a Severi variety so that =1, 2, {, or 8.

In order to classify Scorza varieties we have to consider only the 4 cases: § =1,
2, 4 or 8. We present a simplified approach to the classification of Scorza varieties
with § = 1 and § = 2, based on projection from tangent linear spaces. These are the
natural generalizations, in the smooth case, of Severi classification of 2-dimensional
Severi varieties, i.e. of the well known characterizations of the Veronese surface,
theorem 1.4.1 or theorem 3.2.5, and of Scorza classification of 4-dimensional Severi
varieties, theorem 3.2.6. See [Z2}, theorem 2.1 for different proofs which directly
or indirectly inspired ours.

We need two lemimnas, the first reveals a strong property of Scorza varieties
while the second one connects the entry loci and suitable projections from tangent
liriear spaces. A posteriori all Scorza varieties will be rational.
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4.2.5. LEMMA. (Regularity of Scorza varieties) Let X C PV be a Scorza
variety. Then h1(Ox) = h%(Q%) =0.

ProoOF. By theorem 4.2.3 two general points on X are connected by a smooth
conic, so that Scorza varieties are rationally connected. These conics varies in an
irreducible family, whose general member is a smooth conic, let us say C, and such
that fixing a general point ¢ € X, the members of the family passing through =
cover a dense subset. In particular Tx|c =~ Y i, Opi(a:), with a; > 0 for every
i=1,...,n, see for example [K1], II, 3.10. Therefore Q,lx]c is a sum of line bundles

of negative degree, yielding hn(ﬂ}{lc) = 0. The conies C covers a dense subset of X,
hence every section of 2% vanishes. Since char(K)=0, h*(Ox) =A%(Q%)=0. O

4.2.6. LEMMA. (Tangential projections of Scorza varieties) Let X ¢ PV
be.a Scorze variety of dimension n and secant defect 8. Suppose n = 0 (mod. d).
Let z € §%~2X be a general point, let 7, : X --+ m,(X) = Q. C P5+! and let
uE< z,% > be a general point of S%-1X, Then

(1) ko =n and S*~1X is an hypersurface;

(2) Q. is e smooth guadric hypersurface of dimension § and the closure of a
general fiber of w. is @ Scorze variety of dimension (kg — 1}d =n - §;

(3) every irredueible component of the contact locus Cqp, geo-1x(X) has di-
mension less than or equal to n— 8. There is only one irreducible smooth
component of dimension n— 8, the entry locus T~ X). Furthermore,
the other irreducible components of the contact locus Cp, gro—1x(X), if
any, are contained in T,8%2X N X;

Proor. By definition of Scorza variety we get kp = [%] = §. Sinee &, =
kgd = n, it follows from proposition 1.3.6 part 3) that $%~1X is a hypersurface,
i.e. 8g,—1 = N — 1, and the first part is proved.

Let z € 552X be a general point and let

T X -3 ]PN—skn—ﬂ"l — Pn—l—l—(ku—l)ﬂ — ]P5+]

be the projection from the linear space T,5%~2X, see proposition 1.3.8. By propo-
sition 1.3.8, m-(X) = @; € P51 is an irreducible non-degenerate hypersurface. By
“corollary 4.2.3 through two general points x;,z¢ € X there pass a smooth quadric
hypersurface of dimension 4§, let us say 2,,(X), which, as we shall immediately ses,
is isomorphic to @, via 7. In particular the hypersurface Q) is a smooth quadric
hypersurface.

Indeed, if T.8%—2X N Z,(X) # @, then by the generality of z1,%2 € X,
74 (Zw{X)) would be a positive dimensional linear space passing through two gen-
eral points w,(z;) € @, so that ), would be linear. For the same reason we
get T.8%2XN < T,(X) >= @, because otherwise T,S*2XN < B,(X) >= p,
p € Tu(X) by the previous analysis, and m,(Z,(X)) = mp(S,(X)) = P° € Q,,
would force once again Q. = P9, contrary to its non-degenerateness.

Let us show that a general entry locus Z,,(X) cuts the closure of every irre-
ducible component F; of F, the closure of a general fiber of 7., only at a point,
which is necessarily outside T,5%~2X nX, by the above analysis. ‘I'his implies that
the fiber of 7, is irreducible since we know that 7, restricts to an isomorphism on
Zuw(X). If x € F; is a general point and if » €< 2,z > is a general point of S¥~1X
as above, then T, 5%~ X =< T,8%~2X, T, X > is tangent along Fj, being tangent
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at all the points of the fiber by generic smoothness. Then T{F;, X) C T,,8%—1Xx

and since X is non-degenerate we get, for every irreducible component F; of F,
S(F;, X) # T(Fj, X). Hence by theorem 2.2.1

(4.2.1) dim{S{F;, X)) =n—§+n+1=dim(§X},

so that
S(F;,X)=8X.

From 4.2.1 it follows F; N, (X) # @ for every j, i.e. £,{X) intersects all the
irreducible components of F', as claimed. Since 7, induces an isomorphic linear pro-
jection on the linear space < Ty, (X) »>= P&, Fisirreducible and (F-Z,(X)) = L.

Since (. is a smooth quadric hypersurface, a tangent hyperplane is tangent
to it only at one point, so that, with notations as above, the tangent hyperplane
T,S%~1X is tangent to X along F, which is irreducible, and eventually along a
subvariety of 7,8%~2X N X. By Terracini lemma, corollary 1.3.6, we know that
$ho—1(X) C F, being not contained in T,5%~2X N X by the generality of u. Then
Bh-1(X) = F, since both have dimension n — § = §j,..;. By theorem 4.2.3,
F = 5%-1(X) is then a Scorza variety and in particular it is smooth. Let Z; be
an irreducible component of the contact locus Cop gig—1x(X) different from F, if
any, and hence necessarily contained in T,5%~2X N X. Since

T(Z;, X) € T,8%1X,
by definition, we deduce S(Z;, X} # T{Z;, X), so that
dim(Z;) +n+ 1 =dim(9(Z;, X)) < dim(SX) =2n+1—§,
ie. dim(Z;) < n -4 If dim(Z;) = n — 4, then 5(Z;, X) = §X, which implies
B#£Z,(X)N2Z; CELX)N T,8%~2X w € §X general. We have previously

shown that £,(X) 11 T,S%~2X = @. Therefore this contradiction proves that
dim(Z;) < n — 4§ for every j. O

With the previous lemmas we are in position to classify Scorza varieties with
& = 1,2. The proofs will be completely analogous to the proofs of the classification
of 2-dimensional and 4-dimensional Severi varieties, see theorems 3.2.5 and 3.2.6.
These proofs differs from the original ones by Zak.

4.2.7. THEOREM. {Classification of Scorza varieties with 4 = 1) Let X C
PN be a smooth non-degenerate irreducible projective variety of dimension n such
that dim(SX) < 2n. Then N < B3 and equality holds if and only if X is
projectively equivalent to vo(P*) C P,

In perticular M(n,1) = ﬁ(';—"'a)- and vy (P™) C PN is the only Scorza variety of
dimension n with § = 1.

PROOF. By hypothesis 4(X) = 4§ > 1, so that n > £ > |§] = ko, and IV <
Flko,m, 8} < 1'1"2—“1 Suppose N = 1("2—”1, then § = 1, kg = n and X is a Scorza
variety. By lemma 4.2.6, §"71 X is & hypersurface.

By theorem 3.2.5 we can suppose n = 3 and argue by induction on n. Let
1 € §°71X, then EFY(X} := D is a smooth divisor on X, which is a Scorza
variety of dimension n — 1 and with § = 1 by theorem 4.2.3, so that D ~ P! by
the induction hypothesis.
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Consider the complete linear system |D|. We claim that dim|D| = m > n.
Indeed, if xo,...,ZTn~2 are general points, if z €< xg,...,Tn—2 > is general and if
u €< %,Zn—1 > is general, with z,_; general, then

D =35"YX) =73 (7 (2no1)

by lemma 4.2.6, where 7 : X --+ C; C P2 is the projection from T,5*2X. The
smooth divisor D varies in a pencil of linearly equivalent divisors parametrized by
the conic m,(X) = C,. By fixing n — 1 points between zo, ..., ZTn—1, 2nd projecting
by the corresponding tangent space to 5*~1X we construct n different pencils of
linear equivalent divisors, each one containing D, so that m > n.
Let
¢=4¢p: X -+ $(X) = X" CTP™.

We claim that m = n and that ¢ : X --s P* is dominant.

Since a conic T,(X) C X, w € §X general, is mapped by ¢ onto a line
((D-Zy(X)) = 1 by lemma 4.2.6}, two general points on X' are joined by a line so
that X’ is a linear space. Thus X' = P and ¢ is dominant. On the other hand,
m = dim(¢(X)} < n, yields together with the above analysis m = n. The exact
sequence

(¢.2.2) 0— Ox — Ox({D) — Op(D) =0,
together with D ~ P 1, i®(@Ox (D)) = n+1 and h1(Ox) = 0, recall lemma 4.2.5,

ylelds Op{D) ~ Opa-1(1), so that (D)* = 1. The usual Castelnuovo’s argument
assures that Ox (D) is generated by global sections. Thus

¢p: X —DP"
is a birational morphism mapping conics in X onto lines in P".
nin4d
Let i: X < P™F™ be the inclusion and let

$=iog t: PP s PFYL

Since lines in P™ are sent into conics in ]Pﬂﬂtﬂl, the map % is given by a sublinear
system of |Opn (2)| of dimension 1(“2—'”1, i.e. by the complete linear system |Opn (2)|.
The map % is an isomorphism, which is clearly a reformulation of the fact that X
is projectively equivalent to vo(P") C P O

We now proceed with the classification of Scorza varities with & = 2. Our proof
is different from the one proposed by Zak in [Z2], pg. 130. In particular we do not
need to appeal to Barth’s theorem as in [Z2], pg. 132, and alsc we can avoid Zak’s
geometric but rather intricate analysis of the family of lines on X. The argurment; is
exactly the same used in the classification of 4-dimensional Severi varieties, theorem
3.2.6.

4.2.8. TuEorREM. (Classification of Scorza varieties with § =2) Let X C
PN be a wariety of dimension n > 4 and such that dir(SX)} < 2n. Then
(1) ifn=2m, then N<m(m+2)=(m+1)2-1;
(2) fn=2m+1, then N < (m+ I{m-2) 1.

Moreover, the inequalities furn into equalities if and anly if X is projectively equiv-
alent to P™ x P™ C Pn2) g to P x P+l ¢ PR H3mtl Senre embedded.
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In particular, if m is as ebove, M(n,2) = w and the above ones are
the only Scorze varieties with § = 2.

PROOF. We have ¢ = 2, so that if n = 2m,
N < fim,2m,2) =m{m+2) = (m+1)2 -1,
while if n = 2m + 1, then
N<fim2m+1,2)=(m+1)(m+2)~1

and the first part follows.

Suppose equality holds in the above inequalities. Then X is a Scorza variety
of dimension n = 2m, respectively n = 2m 4 1, with § = 2.

Let us treat first the case n = 2m = §m, kg = m. By lemma 4.2.6, the image
Q. of the projection from z € 8" 2X general, m, : X --s+ Q, C P3, is a smooth
quadric surface. Let {1,/ € Q. be two general lines belonging to different rulings
of @, and let D; = w3(l;) be the corresponding divisors on X. By lemina 4.2.6,

(4.2.3) DyN Dy =7l Nig) =77 (p) = F,

p = I3 Nz general point on @,, with F a Scorza variety of dimension n — § =
2m — 2 = 2(m — 1). Moreover, we have Dy + Dy + E, ~ 73(0g, (1)} ~ H,,
with E, the fixed component, if any, of the linear system of hyperplane containing
T,5™=2X and with H, an hyperplane section of X containing T:8™2X and a
general point z € ¥ (ie. if u €< z,z,—1 > is general, then H, = 1,51 X N X).
The divisor Hy is connected since n > 1 so that if B, # ), then there exists 7 such
that E, N Dy € T,5™ 2X N X has an irreducible component of dimension n — 2,
let us say G. By definition G C Sing{H,). Since by lemma 4.2.6 F is the unique
component of dimension n —§ = n — 2 of Sing{ ..} and since F is not contained in
T,.§™~2X N X, we obtain a contradiction. Therefore

(4.2.4) Dy+ Ds ~ ‘JT:(OQk(l)) ~ H,.

The point z € §™~2X can be thought as a general point of the linear span
of m — 1 general points, Tp,...,Tm-2 and ¥ € 81X as a general point of the
linear space < Zp,...,Tm—2,Tm—1 >. We prove that each divisor Dy’s, i = 1,2,
varies in m different pencils of linearly equivalent divisors, yielding a linear system
of dimension m of divisors linearly equivalent to D;, i = 1,2. By 4.2.4, there exists
an hyperplane

Hp =< T,8™72X 1,13 >
such that
H,NX =D+ Ds.

From this and from 4.2.3, we get T, X = Ty, (Dh+ D) = T, X Hp, le. T, X C Hp
for each i =0,...,m — 1. If z; €< To,...,%j=1,Zj+1,- .. Tm—1 > is general, then
it is a general point in S™~2X. Thus @, (D1) + s, (D2) = 7, (Hp) is a reducible
hyperplane section of the quadric 7., (X) = Q,; C P* and the claim follows.

The two linear system of linearly equivalent divisors we just constructed furnish
two dominant rational maps

it X ——+ P™,
Indeed, by definition of 7., a general entry locus T (X) = @ of X is mapped
isomorphically onto @, so that Og(D1) = Og(1,0). and Og{Ds2) = Oq(0,1),
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modulo a renumbering. Thus ¢,;(@) = ; € P™ is a line and two general points of
¢;(X) are joined by a line, so that ¢;(X) = P™.

The two dominant rational maps ¢; : X --» P™ yield a dominant rational map

. d=q1 X p: X --+ P" xP™,
Let opm : P x P — P +2m he the Segre embedding of P™ x P™ and let-
P=Ommod: X -+ Pt

From
¥ (Oprzsan (D)) = 8 (3O (1)) @ 55(Opm(1))) = Ox (D1) & Ox (D2) = Ox (H),
and from the fact that /(X ) is non-degenerate, we deduce that 1 is given a sublinear
system of | H| of dimension m?+4-2r, Le. by the complete linear system of hyperplane
section, since X is linearly normal by proposition 3.2.4. This is a reformulation of
the desired conclusion for n = 2m. s

Let us treat the case n = 2m + 1. By theorem 4.2.3 for u € S™X = pm™ +3m+1
general, the entry focus D := Z™(X) is a Scorza variety of dimension 2m and with
§=2,ie D=P"xP" C<EMX)>= P’;‘n“"‘ C PV by the previous analysis. In
particular D is a smooth divisor on X. Moreover, D varies in a positive dimensional
families of divisors, whose general member is a Scorza variety of the form X7} (X),
o' € PP H3m+l general. In particular A(Op(D)) > m + 1, since through m + 1
general points of X there passes a Scorza variety of the form X} (X). From the
exact sequence ’

(4.2.5) 0— Ox = Ox(D) — Op(D) — 0,

together with A1{Ox) = 0, recall lemma 4.2.5, we deduce R®(Ox (D)) = & 2 m+2.

Take a general hyperplane H through D and let

HnX=D+D
Then D' > 0so that if £,,(X) = P1xP! is a general entry locus, then Op,pi(1,1) =
Os, ) (H), yields Og,, (x)(D) ~ Op1xp1(1,0) (or =~ Op1xp1{0,1)) , i.e. the general
entry locus is contracted by the rational map associated to |D| onto a line, The
argument we repeated many times furnishes & = m + 1 and also that the rational
map
¢ =dp|: X — P,

is dominant. Without effort one immediately proves that it is in fact a mor-
phism by the usual Castelnuovo’s argument, observing that necessarily Op(D) o
O]pmxpm (1, 0) (01‘ o~ Opm x e (0, 1)).

The linear system | H — D| has dimension dim{(< D >)*) = (m*+3m+1)—1-
m? — 2m = m by the linear normality of X. This linear system defines a rational
map

P =Yu-_p|: X -+ P7,

which is dominant since Og,, (x){(H ~ D} = Op1,p1(0,1) (or =~ Op1ypi(1,0)).

As usval let oy, pq : P X P pm+3m+1 e the Segre embedding and
let

@ = Gmmi1 © (B X §) 1 X —-a PV HIHL
Since
" (Opmarsma(1)) = Ox(H — D} ® Ox (D) = Ox (H}
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and since (X} is non-degenerate, the rational map  is given by a sublinear system
of |H| of dimension m?+3m+1, i.e. by the complete linear system [H| by the linear
normality of X. Then X is projectively equivalent to P™ x P™+! Segre embedded,
as desired. O

To conclude the classification of Scorza varieties one has to consider the cases
§ =4 and § = 8. The proof is rather intricate and we refer to the final chapter
of [Z2] for & complete treatment, hoping that our discussion served as a good
motivation. Another approach to some cases of the classification of Scorza varieties
{n = 0 (mod. §)), via the theory of homogeneous variety and Jordan algebras, is
contained in [Ch2].






CHAPTER 5
Miscellanea

5.1. Varieties with one apparent {k + 1)-secant P*-1 and Bronowski
conjecture; Waring’ s problem and the canonical expression

Let X PV be an irreducible, non-degenerate projective variety, which is not
a linear space. For fixed & > 1, there exists a natural map

dr: X X...xX - Gk, N),
k+1
defined by
dr(zo, ..., Tn)) =< Toy..., Tk > .
Let ¢r(X x...x X} = (X)& C G(k, N). Then (X);. parametrizes the (k- 1}-secant
P*’s to X ¢ P¥. We now furnish a different description of 5% X via (X ) and the
incidence correspondence on G(k, N) x PV, Let

I={(1l,2) € G(k, N} x PN : z € I} C G(k, N) x PV.
Consider the projections of I onto the factors G(k, N) and PV,

I
S
Gk, N) . PN,

Let SpX = p;'((X)x). Then Sk(X) is an irreducible variety which is a Pk
fibration over (X)s and there is a natural generically finite dominant rational map
B - 5% --» SpX of degree k!. Morcover

(S X) = §*X.

The degree of pa : 5;(X) — S*%X has the following geometrical interpretation,
when positive, it is the number of (k - 1)-secant P* passing through the general
point of S¥X.

By convention, if pz : SgX — S%X is not generically finite, we put deg(pa) = 0.
In particular deg(ps) > 0 if and only if sx(X} = (k+ 1)n + &.

Let X < IPN be as above. By projecting X ¢ PV from a general linear space
L = PN—(k+Dn—k gneo plktlntk=1 §f Xt = g (X) ¢ PEFUnHE-1 the variety
X' acquires exactly deg(pz) - deg($*X) new (k + 1)-secant P¥=1, which are the
projection of the (k + 1)-secant P* passing through the center of projection. For
k = 1, a general projection of X C P¥ in P?" acquires a finite number of double
points, which did not exist on X. This case was considered classically by Severi,
[Sev1], who dubbed the number deg(pz)-deg(SX) as the number of apparent double
potnts of X € PN, N = 2n + 1. The word apparent is clearly justified by the fact
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that, a priori, X C PV cannot have any (k 4- 1)-secant P*~? and these appear only
on the projected variety. For & = 1 we can consider for example the number of
apparent double points of a smooth variety X c PV,

We are now in position to introduce the following definition.

5.1.1. DEFINITION. (Number of apparent (k + 1)-secant P*~1’s) Let X C
PN, N > (k+1)n+k, be an irreducible, non-degenerate, projective variety. Suppose
1< k < ko(X). We define the number of apparent (k +1)-secant P*~! to X, vi(X),
as

vk(X) 1= deg(py) - deg(S* X),
where ps : SpX — 5% X is as above.

By the previous discussion it is clear that vg(X) is the number of (k4 1)-secant
P, which a general projection of X into P&:+Um+e—1 aequires. For & =1 we let
(X)) = v (X).

The thecry of varieties with ¢4 (X) = 0 coincides with the theory of k-defective
varieties. As it was shown by Severi himself in [Sev1], by Edge, [Ed)], by Bronowski,
[B1], [B2], and more recently in [Rul], [AR2], [CMR], [CR2] also the case of
varieties with v%(X) = 1 deserves special interest. These varieties share remarkable
geometrical properties, as we shall briefly see below.

Firstly let us remark that the condition 1x(X) = 1 deals with a property of
general projections, which, via Terracini lemma, can be related to projections from
tangent spaces.

Indeed let us recall that in proposition 1.3.8 we proved that for a variety X C
PN with 8.1 (X) = 0, the condition d;(X) = 0 is equivalent to the fact that the gen-
eral tangential projection my = 7 : X --» X' C PN—kntk I o Tpyoo, Toy >,
is dominant. In particular if #(X) > 0, then §(X) =0, dim(X") =n—-&(X) =n
and m = g : X ——+ X' ¢ PN—*n*¥ j5 dominant and hence generically finite.

A very interesting and somehow intricate relation between the degree of 7y, and
v;(X) was proposed by Jaroslaw Bronowski in [B1], theorem 4 at page 82, at least
for u(X) = 1.

Let us remark that v(X) = 1 implies deg(S*X) = 1, so that N = (k+1)n+k,
and also deg{p;) = 1. Therefore pp : SpX — S*X = P+Un+E i5 g birational
morphism in this case.

"5.1.2. QUESTION. (Bronowski claim, [B1]) Let X C P¢+In+k pe an jrre-
ducible, non-degenerate projective variety. Then vi(X) = 1 if and only if m :
X --2 " ig birational.

We called the above claim Bronowski cleim since the proof proposed by Bronowski
is obscure, as far as I know, to all modern algebraic geometers who read it.

From a theoretical point of view the most interesting implication seemns to be
vg(X) = 1 = deg{m) = 1, having the strong consequence that varieties with
one apparent (k + 1)-secant P! are rational. On the other hand, in order to
construct explicit examples of varieties with ¥ (X) = 1, the other implication
would be very useful since otherwise the condition v (X) = 1 {and sometimes also
5(X) = (k+ 1)n + k) is quite hard to verify, especially for k > 1.

The following result is essentially established in [CMR)] via the method of
degenerations of projections, even if there only the case k = 1 was treated. The



5.1. BRONOWSKI] CONJECTURE AND CANONICAL EXPRESSION 63

formulation for arbitrary & > 1 is stated in [CR2], although it was known to the
three authors of [CMR]. Tt is useless to remark the deep link between an extrinsic
property of X, v {X) = 1, and its rationality.

5.1.3. THEOREM. ([CMR], [CR2]) Let X < BN, N > (k+ U)n+k, be o
smooth irreducible non-degenerate projective variety. Then vp(X) > deg(ay). In
particular, if i (X) =1, then 7 : X ~-» P is o birational isomorphism so that X
#5 e rational variety.

This explains why, in principle, it could be possible, at least for small n and
small k, to classify all smooth varieties with #,{X) = 1. The first and highly non-
trivial case appears for &k = 1, ie. for varieties with one apparent double point.
For varieties with one apparent double point there some additional geometrical
properties, especially their linear normality, which help a lot. The case of 3-folds
with one apparent double point is already rather complicated, see [CMR]. The
known results are the classification of smooth surfaces with one apparent double
point (the classification of smooth curves with v = 1 being trivial for every & > 1),
seé [Sevl], [Rul] and also [CMR]. These are only raticnal normal scrolls of
degree four and the del Pezzo surface of degree §. For n = 3 there are 5 types
of 3-folds with one apparent double point: the rational normal scrolls of degree 5,
two hyperquadric fibrations which are divisors of type (0,2), respectively (1,2}, on
the Segre variety P! x P® C P’ and a scroll over a surface of degree 8. What is
really remarkable is that, due to the strong restrictions on their geometry, very few
examples of varieties with »#(X) = 1 are known, also in higher dimension. There
are three series we now construct for every n > 2, following a beautiful geometric
idea of Edgg, also rediscovered by F. L. Zak.

Qutside these series only other 6 examples of smooth varieties with one appar-
ent double point are know: one in dimension 3, referred above, one of dimension 4,
the linear section of the spincr variety $'® C P!5, and the four Lagrangion Grass-
MEnTNIans G;‘;g {2,5) over the four composition algebras K = R, C, H, 0, embedded
via their Pliicker embedding, of dimension 6, respectively 9, 15, 27.

It is an open problem if the varieties described above arc the only varieties with
one apparent double point of dimension n > 4.

We now sketch Edge's argument from [Ed] to the effect that smooth irreducible
divisors of type (0,2), (1,2) and (2,1) on the Segre varieties P! x P" ¢ P+,
n 2> 2, have one apparent double point. This generalizes the trivial fact that the
only smooth curves, not necessarily irreducible, on a smooth quadric in P? having
one apparent double point are of the above types.

5.1.4. ProrosITION. ([Ed]) Let X < P2*+1 be o smooth, irreducible projective
variety contained as a divisor of type (a,b) in P! x P* C P&+l n > 2, Then X
has one epparent double point if end only if (a,b) € {(2,1),(0,2),{1,2)}.

Proor. As we know for, p ¢ Y = P! x P", the entry locus Z,(Y) has the
form P! x P for some IP’%, C P* and spans a linear ]P’f,. So if X is a divisor of type
{(a,b) of Y, the secant lines of X passing through p are exactly the secant lines
of X NP3 passing through p. For a general p € P***1, X NP} is a reduced, not
necessa.rlly irreducible curve and it is a divisor of type {a,b) on ]1"1 X ]Pll, Hence X
has one apparent double point if and only if (a,b} € {(1,2}, (2.1}, {2,0), (0,2)}.
If {a,b) = (2,0), then X = " II P" is reducible. O
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The divisors of type (2,1) are the rational normal scrolls of minimal degree in
P2+, The divisors of type (0,2) are isomorphic to P! x @"1, where @™~ C
P" is a quadric hypersurface of maximal rank, so that they admit a structure of
twisted cubic over a split cubic Jordan algebra, see [Mk]}; divisors of type (1,2) are
hyperquadric fibrations of special kind. The above varieties are usual called Edge
varieties. Edge varieties have degree d = n + 2, respectively 2n, 2n + 1 and in
[AR2] are characterized as the only varieties with one apparent double point of
dimension n and degree d < 2n -+ 1 for every n > 2. Moreover in [AR2] it is shown
that for 2n 4 2 < d < 2n + 4 there are only 3 varieties with one apparent double
point: for n = 3 and d = 8 it is the scroll over a surface we cited above; for n = 4
and ¢ = 12 the linear section of §1° C P!% and for n = 6 and d = 16 the variety

GRY(2,5) C P13,

In [CR2], a classification of linearly normal surfaces with vx(X) = 1 is pro-
posed. Moreover, some examples and series of varieties with v (X} = I of arbitrary
dimensions are constructed. For example, it is shown that some smooth variety
of minimal degree X C P*+UnH¢ have 4, (X) = 1, see the next section. More-
over, it is also considered the case of suitable hyperquadric fibrations similar to the
other Edge varieties. An interesting case we discuss below is the surface given by
the 5*" Veronese embedding of the plane, vs{P?) C P? (and also by its tangential
projections from 1,2 or 3 points).

Instead of entering into the details of the above classifications, contained in the
quoted papers, I prefer to continue the discussion about the property v (X} =1
by relating it to another problem, known in the literature as Waring problem. This
furnishes also a geometrical interpretation of £p(X) and of v, (X) for the Veronese
embedding of B, ua(F") C P(H"(Opn(d))) = PN@, N(d) = (1) — 1.

Let us recall the following elementary fact. The variety vy(F") C P(H?{Opn(d)))
is the locus of the classes of homogeneous polynomial {f] € P(H%(Opn(d))), which
are d®-powers of linear forms in the variables zy, ..., Z,. Thus [f] € va(P™) if and
only if [f] = [19] with { € H"{Opn(1)). Let us set X = va(P™) C P(H"(Opx(d))),
d>2

The interpretation of S*X c PM) is the following: [f] € S*X if and only
if [f] = (1] + ... + [I§] with l; € H*(Opn(1)). The interpretation of ko(d,n) :=
ko(vg(IP™)) in this case is the following: ko{d, n))+1 is the minimal number of d*t-
powers of linear forms necessary to write a general [f] € H'(Op=(d)) as a linear
combinations of them.

5.1.5. PROBLEM. (Waring problem, [P3]} Compute ky(va(P™)) as e function
of d and n.

The problem was stated by Palatini in [P3], studied in [P4} and [B1] and
finally settled in [AH], see theorem 5.1.7 below.

Let us define wo(n, d) = ko(d,n) + 1. From §%E&my,(P") = PN we get

wol(n, d) (n+1)—1 = (ko(d, n)+1)n-+ko(d, n) > sk, (va(P™)) = N(d) = (n -