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Preface

This monography introduces the theory and methads of symmetry studies, including
the notjons of structured data and data reduction by symmetrically equivalent compo-
nents. The broad objeetive is to apply these notions to explore more fully the interplay
between research questions and scientific explanation. The motivation for this comes from
a variety of disciplines, including physics, physiology, chemistry and melecular biclogy,
where notions of symmetry continue to play a significant role in exploring natural phe-
nomena, and from the goal of applying these principles to the analysis of experimental
data. With the language and methods of symmetry studies, newer questions and potential
answers may be identified,

This introductory text is intended for students and collaborating scientists in areas
where mathematical, statistical and probability applications and arguments are routinely
required. The prerequisites are at the level of upper undergraduate training. For exam-
ple, the algebraic aspects of the method should be accessible to students who have had
an introductory-level course in algebra, whereas the statistical and probabilistic aspects
require the basic notions of probability models and distributions of quadratic forms, e.g.,
Fisher-Cochran Theorem.

The two introductory chapters of this text are where the basic language of structured
data and symmetries studies is introduced and illustrated with a number of examples.
Chapter 3 introduces the foundations of the algebratc component of these studies, while
the remaining three chapters are dedicated to specific symmetry studies, Selected chapters
inctude a briefly annotated list of suggested readings. Large matrices, tables and graphics
were occasionally moved to the end of the corresponding chapter, to eliminate unnecessary
page-breaks. An italicized word in the text indicates a technical term that is introduced
at that time to prompt the reader to review its definition. A short table of symbols is
included in the Appendix.

These notes reflect, with my gratitude, the dedicated comments, conversations, sug-
gestions and enthusiasm of many colleagues including, among others, 8. Andersson, A. de
Bucchianico, 8. IEvans, I. Helland, K. Mallesh, P. McCullagh, I. Olkin, M. Perlman, D.
Richards, S. Smith and A. Takemura.

I greatly appreciate the opportunity of teaching the material covered in the present
text during the 24th Brazilian Mathematics Colloguium in my hometown, Rio de Janeiro.
To all my colleagues at IMPA, I express my appreciation for their assistance and support.

Marlos A. G. Viana
The University of Illinois

Chicago, April 23, 2003.
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CHAPTER 1

Introduction

This chapter is an overview of symmetry studies for structured data, including
an introduction to the main concepts and tools developed in the sequence. Struc-
tured data (and probability models for these data) arise from the simple observation
that in many experimental conditions there is an outstanding structural connection
between the measured object and the corresponding measurements, which then sug-
gests natural ways of summarizing and analyzing these data. Equally tmportant, for
prospective investigations, is the fact that these structural relationships provide a
richer domain within which newer research questions might be properly formulated,
Consequently, a higher level of scientific explanation might be obtained.

Data analysts tend to represent a potential set of observations as x3,Xs, ..., X,.
In the analysis of structured data, we would write, instead, x(1),x(2),...,x(n},
bringing forth the important fact that the set
v={12,...,n},

which provides the labels for the possible data units, is only one among the many
other sets of labels, and that, consequently, different choices of V may correspond
to different functional relationships among observable measurements and the struc-
ture of the space indexing these potential measurements. The labels are no longer
static but have the capability of interacting with (the interpretation of) the events.
The consequence is a broader framework within which data can be queried and
interpreted.

In the next sections we will introduce an example of structured data, followed by
the basic algebraic, probabilistic and observational aspects of potential symmetry
studies suggested by the structure of interest.

ExampLE 1.1 (A simple structure from molecular biclogy). A biological se-
quence is a finite string of symbols from a finite alphabet {A) of residues, such as
the linear string

ctecttgggatattgatgatetgtagbgetacagaaaaatigtggrtcacagtctattat,

in which the symnbols are letters in the alphabet A = {A, G, T, C}. Here the symbols
represent adenine (A), guanine (G}, thymine (T) and cytosine {C) molecules in DNA
(deoxyribonucleic acid) sequences. The adjacency of two symbols in the linear string
means that the two molecules are chemically binded to each other, There are many
more common alphabets, representing
e the nucleotides adenine (A}, guanine (G), cytosine (C), uracil (U) in RNA
(ribonucleic acid) sequences: A4 = {A, G, T,U};
e the classs u = {A, G} of purine and y = {C, T} of pyrimidine residues:
A= {uy},
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or the larger class of amino acids: Alanine (A), Arginine (R}, Asparagine (N},
Aspartic (D}, Cysteine (C), Glutamic (E), Glutamine (Q), Glycine (G), Histidine
(H), Isoleucine (I), Leucine (L), Lysine (K}, Methionine (M), Phenylalanine (F),
Proline (P), Serine (8), Threonine {T), Tryptophan (W), Tyrosine (Y), Valine (V),
in protein sequences, in which case

A={AR,ND,CEQGHLLKM,FPSTWY,V}

The length of globel or complete sequences, in base pairs, ranges from 10® (single-
stranded virus) to 10° (mammals). Well-defined codes, such as the standard code,

amino acids = FFLLSSSSYY++CC#WLLLLFPPPHAQQRRARIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG

Basel = TITTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAARAAAAAAAAAAAGGGGOGGGGGGEGEGE

Base2? = TITTCCCCAAAAGGGGTTTTCCCCAAMAGCGGTTTTCCCCAAMAGGGGTTTTCCCCAAAAGGGE

Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
then translate DNA triplets into specific amino acids. The set, V, of DNA triplets
constitutes an example of a simple structure in which the points in the structure are
analytically and experimentally important. In many ways, common to molecular
biologists, these triplets may be seen as labels or indices for experimental and
analytical studies. We may say that the structure

V = {ttt, ttc, tta, .. ., gga, geg}

defined by these 64 simple sequences (s) in length of three written with a four-letter
alphabet A = {A, G, C, T}, is a structure indexing potential melecular constructs
or measurements, x(s), such as the triplet’s molecular weight. In that sense, then,

x(btt), x(ttc), x(tta), ..., x{gga), x(geE),

are data indexed by the structure V, or, shortly, a structured date. The struc-
ture may be amalgamated, for example, by rewriting each word with the shorter
alphabet A = {u,y} of purine-pyrimidine residues. The new structure

V = {yyy,yyy,yyu,...,unu}
of triplets of purine-pyrimidines has 2! = 16 points or labels, and

x(yyy), x(yyy), ®x(yyu), . - -, x(uuu},

are the corresponding structured data. Here is another simple structured data: the
structure is the set
V=1{A,G,CT}x{A,G,CT}

of ordered DNA nucleotides. It has 4 x 4 = 16 points in it. Given two DNA local
sequences

I = titicoetatggaacctgggatctttagtttgaantgeeagageccaticegectggananaatiagataaggtang,
J = tttcegteatggaacctggaatagttgetcaaangtpggagcaaccgettaggtttganaaaattagataagegceg,

we measure, in each point (i,) of V, the frequency x(i,]) with which i in I aligns
with j in J along the two sequences. Here are the resulting structured data;

N|lACaG T
Af17 2 4 0
C|35 1 3
G| 31 151
T| 14 2 15
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This simple structured entails a core concept in molecular biology, that of biclogical
hemology. It refers to shared characteristics among species that have been inherited
(the earlier Darwin’s view), or derived (post Darwinian or phylogenetic!} from
a common ancestor. More recently evolved species are expected to liave more,
and more similar, homologies (e.g., the form and function of DNA and protein
sequences). It implies the notion of constructs which are similar but not identical.

O

1.1. Algebraic aspects.

First we observe that any biological sequence £ base pairs long is representable

by a function or mapping
s:L— A4,

where L = {1,2,...,#} is the set for the ardered positions in which the residues
in the alphabet A are located. Typical alphabets, as illustrated above, are 4 =
{A,G,T,C} in DNA sequences, A = {A, G, T, U} in RNA sequences, or simply a
two-letter alphabet A4 = {u,y} of purine (u=A or u=G) and pyrimidine (y=C or
y=T) residues. The set V, of all mappings s: {1,2,3} — {A, G, T, C}, defined by
the entries of the matrix

aaa  ggg cecc Ut aag asc act gge
goc  ggt cca ccyp  cct te  tlg  tHe
aga aca ala gag gcg glg cac  cge
ctc  fat i tcl gaa caa  lao  agg
(1) cgg tgg acc gee  tee  alf git clt
egc  gac cge  acg gea cag  aghb alg
iga gal gia tag act alc ica cot

cia tac gel gic tcg cgl clg  lge

is an example of a structure. Indicating by |.A| the number of elements in the set A,
we note that there are |A[® sequences in V and that each element in V is referred
to as a |Al|-sequence in length of £, For example, every two-sequence in length of
four, with A = {u, ¥}, is a mapping

s:{1,2,3,4} - {u,¥}.

The 16 points in the space V of all two-sequences in length of four may be repre-
sented by

-2 s ! 1 16 156 14 12 8 13 11 7 10 6 4 9 5 3 2
sy uw ¥y v uw wy y y u uuyyyu
V=}fs@]y v u» y u u y u uy yuyyuy
s(3} i ¥y U uU u ¥y u u ¥y U ¥y uyyuyy

s(4) ! Yy U u u u y u u'y uyyuyyy

1Phylum refers to a tribe or race of organisms, related by descent from a common
ancestral form; a series of animals or plants genetically related. See also Homology: 4
Concept in Crisis by J. W. and P. Nelson, in Critical Perspective QOrigins and Design 18:2:
http://www.arn.org/docs/odesign/od182/hobil82.htm
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The numbers in the first row are labels for each mapping.

Permutation symmetries. A permutation 7 over a finite set L is an injective
(one-to-one) mapping 7 : L — L. We indicate the set of all permutations on & finite
set L with £ elements by Se.

ExXAMPLE 1.2. The set Sz of all permutations of 3 symbols includes the identity
(1) transformation

11— 1
l=12—- 2],
3J— 3
three transpositions,
1— 2 1— 3 1—- 1
(iy=}|2— 1|, (18)=]2-— 2|, 23)=]2—- 3|,
3— 3 3— 1 3
and two cyclic perinutations,
1~ 2 1— 3
(23)=4{2— 3|, (132)=|2—> 1
3— 1 3— 2

In summary,
83 = {1) (12)! (13)1 (23)1 (123)1 (132)}
O

We say that a permutation 7 fizes the element j € L if 7(j} = j. The identity
transformation, indicated by 1, fixes all elements in L. Given two permutations
7 and o, the composite function 7o takes the element j € L to the element
7(e(j)) in L, and is also a permutation, For every permutation 7 in L, the equation
() = j has a unique solution j’ for each j € L. The resulting function j + §’
is also a permutation, called the inverse permutation, and is indicated by =1
It holds that #7=! = 7=!7 = 1. Adding the fact that composition of functions
is an associative operation, that is (ro)n = 7(o7), we observe that the set S,
together with the operation of function composition, defines a permutation group
of order £. We refer to permutations, permutation symmetries and symmetries
without distinction. This equivalence will become clear in the sequence. The subset
C; of all eyclic permutaiions of 3 symbols is indicated by C; = {1, (123), {132)}.
Permutations and permutation groups are considered later on in Chapter 3.

Composing sequences and symmetries. Given a sequence s in length of £
and a symmetry 7 in S; then the composite st~ is also a sequence in length of £ in
V (using the inverse permutation will be justified later). Say that A = {A,C,G, T},
so that £ = 4,

1— 2 1—- A 1- C

25 3 2— A 2—- A
T= and g = Then, sr!=

3= 4 —+ G 3 A

4— 1 4= C 41— QG
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Civen a mapping s : L +» C, where the set L has ¢ elements and the set C has ¢
glements, and permuations 7 € Sy and ¢ € S, the composition st~! is called a com-
position on the left, whereas o5 is a composition on the right.. These compositions
are studied in detail later on in Chapter 3. From the fact that the composition
st~! of a mapping s € V and a permutation 7 € S, Ieads to another mapping
in V suggests the notion of permutation orbits of the mapping s generated by the
symmetries of interest. This is the set of all mappings sharing the symmetries of
interest. Equivalently, two mappings are in the same orbit when one is obtained
from the other by composing it with a permutation from the symmetries of interest.
For notation, we write

O ={sr7l7 €54}

to indicate the permutation orbit of & mapping s resulting from composing it with
S¢ on the left, Similarly, © = {os;e € $;} is a permutation orbit. When the
symmetries of interest are the cyclic permutations, we obtain the corresponding
cyclic orbits. For example, starting with the sequence CGG in length of three and
composing on the left with all three cyclic permutations in Cy we obtain the orbit

Ocec = {CGG, GCG, GG}

Similarly, starting with the sequence uuyuuy in length of six and composing on the
left with all six cyclic permutations in Cg we obtain the orbit

Ouuyuuy = {uuyuuy, yruyuu, uyuuyu}.

ExAMPLE 1.3 (Permutation orbits for two-sequences in length of four). The
mapping space V of all two-sequences in length of four {|L| = 4, |4| = 2) has has
24 = 16 points, each representing one sequence, as shown in Matrix (1.2). Consider
the left composition (s7~1) of sequences in V with the symmetries in 34. The group
§4 is detailed later on in Chapter 3. It has 6 transpositions, 3 cycles or order 2,
8 cycles of order 3 and 6 cycles of order 4. These permutations are indicated in
the first column of Matrix (1.21), shown at the end of this chapter. The sequences
s € V are represented by their labels on the first row. These are the same labels
shown in Matrix (1.2). The resulting compositions st~! are shown in the adjacent
16 columns. For example, if

1— 2 1— u 1— u
25 3 2—- u - 2— u
7= (1234) = , ands= , thensr " = ,
3— 4 3— vy 3— u
4— 1 4— u 4— ¥

so that the composition with 7! takes the sequence uuyu (label 12) into the
sequence uuuy {label 8). In particular, these two sequences are in the same orbit.
The resulting orbits {indicating the sequences by their labels) may be expressed as

Qg = {1},

O, =1{9,5,3,2},

Oy = {13,11,7,10,6,4},
O3 = {15,14,12, 8},

04 = {16},
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so that
(1.3) V=0aUuthuO,u0; U0y

forms a disjoint partition of V. Also note that the orbit O may be characterized
by the number of purines {symbols ‘u’) in the sequences, that is,

O ={seV;ls"(u) =k}, k=0,...,4

o= )

The effect of composing V with S¢ on the left is that of removing the order
of the positions- equivalently, any two sequences are then equivalent, similar or
indistinguishable, when they differ only by reordering the location of the letters or
residues. As a result, we obtain another space, called the gquotient space, in which
the elements are the resulting 5 permutation orbits O, Oy, . .. O4. These orbits are
characterized by the number of, say, purines. That is, orbit O; is composed of those
sequences with exactly i purines in it.

Note that

0

1.2. Probabilistic aspects

In this section we will introduce some prebabilistic aspects of the analysis of
structured data. In particular, we will discuss the interplay among symmetry rela-
tions, the structure and probability models. Initially, we consider the case in which
the uncertainty that is described by the model is derived from the points in the
structure V.

Let P indicate a probability model in the space V of two-sequences in length
of £. We say that P has the symmetry of the group G if P is constant over each
one of the orbits of V. For example, if

(1.4) P(s) = P{st™)

for all sequences s in V and permutations v in G. Because s is now a random
variable, the purine-pyrimidine levels

(number of purines, number of pyrimidines) = {i, £ — 1)
are also random variables, and consequently, the probability laws
i £-1
P
associated with the orbits described in (1.3) are also random. Here are the possible
probability laws for purine-pyrimidine levels from two-sequences in length of four:

13 2 2 31

Z’Z)' Ly = (Z’ Z)' Ly = (Z' Z)’ £4={1,0)

The likelihood of each law is therefore determined by the probability of seeing a
sequence which is associated with the law- because all sequences in the orbit O;

lead to the law £; and conversely, we see that £; occurs with probability P{(s);
shortly,

(1.5) Li=( ), i=0,1,...,8

Lo=(0,1), £y =

Probability of law £; = P(®4).
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Clearly, if the law P is such that all sequences are equally likely (P is said to be
uniform), then condition (1.4) is satisfied and

(1.8) Probability of law £; = P(();) = El = (—izl.
Vi v

We have, for two-sequences in length of four,
1 4 6 4 1
P = — = = — ] = — = —
(©o) = 751 P(Oh) 16 FO2) = 7z, P(Os) 5 FOd =15
so that the most likely distribution of purine-pyrimidine tevels, under uniformly
distributed sequences, is

22
£2 = (Z,Z)

ExAMPLE 1.4 (Four-sequences in length of three). Let A = {A,C, G,T}. The
space V of all four-sequences in length of three has {V| = 4% = 64 sequences. The
random variables generated by similarity of the positions are the frequencies of

(adenines, cytosines, guanines, thymines) = (far o) By 1),
with f, + fe + f; +f. = 3. Consequently, the corresponding probability laws
S PR PR I
A= Er El Es 3 )
are also random. The index A in £, indicates the corresponding orbit, in analogy

with expression (1.5). We obtain these indices as the possible integer partitions of
3 in length of 4, so that there are three types of orbits, and corresponding laws:

A = 3000 — Lagon = (1,0,0,0),
21
A =2100 = Loygg = (5, 5.0,0),

111
Similarly to expression (1.6) we now obtain
- (3 030 o) 3l 1 1
(L.7) Probability of law Lagon = P(Qag00) = v 3000184 = 81"
(2,1?0,0) 3 1 3

(1.8) Probability of law L3190 = P{(O2100) = T = WEZ = 51’
(1.1:,’1,0) __ 3 1 _ 6

V| 1mtesd 64’
so that, under the assumption that all 4-sequences in length of 3 are equally likely
{uniform probability), the most probable distribution by levels of nucleotides comes
from the class of distribution given by £;1;0, each of which has the highest prob-
ability, 6/64. Simple combinatorics (discussed later on in Chapter 3) show that
there are

(1.9} Probability of law L1119 = P(©O1110)} =

41

(1.16) T =4

such most probable probability laws describing the nucleotide levels, namely,
111 11 1 1 11 111
o Rl Ry als a i Ty g h 0)_1_1_‘

(1.11) (3,3,3,0), (3.3,0,3), (3,03 3) ( 73 3)
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O

EXAMPLE 1.5 (Maxwell-Boltzmann Equilibrium Distribution). The following
is a quote from von Mises (1957, p.200) which describes the context of Boltzmann's
arguments. Only the notation was partially adapted to conform with the present
one. The velocity space is as usually described in the physics literature, e.g., Ruhla
{1989, p.79).

The assumption of the classical theory is that equal probabilities
are assigned to equal volumes in this velocity space. We will call
each element of the volume in the velocity space a possible ‘po-
sition’ or ‘place’ of the molecule. If we now consider a collective
whole elements are distributions of certain number £ of molecules
over ¢ positions in the velocity space, it follows that all possible
¢t distributions have the same probability. For example, imag-
ine two molecules 4 and B, and three different positions e,b,c.
The number of different distributions is 9, since each of the three
positions of A, namely Aa,Ab,Ac can be combined with each of
B. According to the classical theory, all these distributions have
the same probability, 1/9. A new theory, first suggested by the
Indian physicist Bose?, and developed by Einstein, chooses an-
other assumption regarding the equal probabilities. Instead of
considering single molecules and assuming that each molecule
can occupy all positions in the velocity space with equal prob-
ability, the new theory starts with the concept of ‘repartition’.
This is given by the number of molecules at each place of the
velocity space, without paying attention to the individual mole-
cules. From this point of view, only six ‘partitions’ are possible
for two molecules on three places, namely, both molecules may
be together at a, at b, or at ¢, or they may be separated, one at
e and one at b, one at ¢ and one at ¢, or one at b and one at
¢. According to the Bose-Einstein theory, each of these six cases
has the same probability, 1/6. In the classical theory, each of
these three possibilities would have the probability of 1/9, each
of the other three, however, 2/9, because, in assuming individual
molecules, each of the last three possibilities can be realized in
two different ways: A can be in ¢, and B in b, or vice versa, B
can be in a, and A in b.

The Ttalian physicist Fermi® advanced still another hypothe-
sis. He postulated that only such distributions are possible- and
possess equal probabilities- in which all molecules occupy differ-
ent places. In our example of two molecules and three positions,
there would only be three possibilities, each having the proba-
bility 1/3; i.e., one molecule in a and one in b one in a and one
in ¢; one in b and one in e

2Satyam‘lramﬂ;h Bose, Born: 1 Jan 1894 in Calcutta, India Died: 4 Feb 1974 in Calcutta,
India

3Enrico Fermi was born in Rome on 20th September, 1901. The Nobel Prize for Physics was
awarded to Fermi for his work on the artificial radicactivity produced by neutrons, and for nuclear
reactions brought about by slow neutrons. He died in Chicago on 29th November, 1954,
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In testing these and other hypotheses it is assumed, accord-
ing to Boltzmann’s entropy theorem, that the probability of the
state of a gas is a measure of its entropy, and the object of the
investigation is to find which theory best approximates the actu-
ally observed dependence of entropy on temperature and mass.
The arguments in von Mises’ narrative can be summarized, using the orbit method,
as follows: Let L = {A,B}, C = {a,b,¢} and V the set of all mappingss:L — C,
that is,
s |1 234567809
V=|sA)]a b cabachbec
sB)la b c b acachb
Under the Maxwell-Boltzmann {MB) model, it is assumed that all points or con-
figurations in the space V are equally likely, or uniformly distributed, that is:
1 1
P(s) = Vi~ o
Under the Fermi-Dirac (FD)} model, it is assumed that all points in the quotient space
V/8z of V by the action st~! of shuffling the molecules’ labels (in L = {A,B}) are
uniformly distributed. Thus, in the FD model the uniform probability is defined
on the orbits of V under the label symmetry. The following matrix summarizes the
action s7~1 on V:

forallse V.

a\s|l 2 3 4 5 6
1 |1 23456
(12)|1 2 3 54 7 6
so that the six orbits in the quotient space V/S; are ‘
On = {1}, O1p=1{2}, Ora={3}, On ={4,5}, Oz ={6,7}, = {89},
each one of these having probability of 1/6. A probability law in V such as
P(s) = {1/6 when s € {Oy1, Oha, 13},
1/12 when s € {Qay, Ogg, O3},

would be consistent with the assumptions of the FD model.
The Bose-Einstein (BE) model assumes that only the injective mappings

s |4 567 8 9
Vi=|s{A})|a b a ¢ b c|CV
sB)|b a ¢ a ¢ b

are admissible representations of the physical system, and that a uniform probabil-
ity law is assigned to the resulting orbits in the quotient space of Vi by the action
st~ ! of shuffling the molecules’ labels. Therefore, starting with

o\sf4 56 7 89
1 |4567389],
(I12)|5 4 7 6 9 8

7 8 9
T 8 91,
9 8

we obtain the three orbits
01 = {4,5}, O, ={6,7}, O3={8,9}
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in the quotient space Vi/Sa. To each of these, a probability of 1/3 is assigned. In
the present example, a probability law in V given by

P(s) = 1/6 wheIT s € {01, 02,03},
0 otherwise,

would be consistent with the assumptions of the FD model. Thus, in summary:

Model Domain of the Uniform Law
Maxwell-Boltzmann v
Fermi-Dirac V/G
Bose-Einstein Vi/G

Here is an analogy within the molecular biology context we started with. This
is similar to Example 1.4. Consider the space of four-sequences in length of six,
In the present context, we have six numbered molecules indexed by the set L =
{1,2,3,4,5,6} and four energy levels, indicated by the set £ = {&,, £, £5,&4}. The
energy configurations are mappings

s:L— &,

so that there is a total of |£|/™ = 45 = 4006 accessible microstates. We pass from
microstates to measurable macrostates by dividing the space by similarities that
result among the molecules when their numbers are erased. This is in analogy
to erasing the position of the nucleotides in a biological sequence. Algebraically,
this is obtained by letting the {group S¢ of) permutations act on (by shuffling) the
molecule labels in the set .. The composition rule is st~!. The resulting classes
(), of orbits are then the energy macrostates realized by the system. Here are the
resulting classes, their volume |@,], usually indicated by §2 in the thermodynamics
context, and their number Qy of quantal states:

T A Qa 2, xQx
6000 1 4 4
5100 6 12 72
4200 15 12 180
4110 30 12 360
3300 20 6 120
3210 60 24 1440
3111 120 4 480
2220 90 4 360
2211 180 G 1080

| total 522 84 4096

Similar calculations are outlined in Example 3.16 of Chapter 3. There are 3 = 6
quantal states associated with the most probable (€ = 180) orbit type, Sag:11.
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In Boltzmann model all particles are considered to be distinguishable, so that
a uniform probability can be assigned to each one of them. However, the passage
from the accessible microstates to macrostates is equivalent to obtaining a partition
of the ensemble V of accessible microstates into orbits of symmetry realized by the
symmetric group acting on V according to the composition rule st=!. It is an
impertant observation that the mean energy level

= 1
{1.12) £= Ezgif“
i

where f; = [s7'(&)| indicates the number of molecules at the energy level &, of any
configuration in V, is an invariant under the composition rule st~} and, therefore,
depends only on the orbit (macrostate) realized by the configuration. Boltzmann
reasoned that the molecule-energy configurations in V evolved from least probable
configurations to most probable configurations, so that the quest for describing the
equiiibrium energy distribution in the ensemble requires the determination of the
most likely configurations in V. This, in turn, requires the determination of the
macrostate (orbit) with the largest volume 2, conditioned on the fact that mean
energy of the isolated ensemble must remain constant. Given a configuration s with
f; particles at the energy level £, fo particles at the level £, f3 particles at the
level £3, ete, its orbit O, has volume
f

We have then a well-defined mathematical problem: find the macrostate identified
by fi,fz,... which maximizes (1.13) for a given mean energy level £. The solution
is the Maxwell-Boltzmann canonical distribution,

e—BE
e

The canonical distribution (its classical derivation is outlined in the appendix to
this chapter) is the most likely energy distribution of the ensemble. Similar calcu-
lations can be obtained for the models of Fermi-Dirac and Bose-Einstein.

(1.13) |O4]

(1.14) P(&) =

We conclude this example noting that the constrained minimization of 3 f; In§

is equivalent to the constrained maximization of

i,k

H=- Z '-é' IH(E)

which is the entrepy of the probability law associated with the orbit of f;, £, f3,.. ..
The entropy, usually indicated by S in thermodynamics, is a physical characteristic
(e.g., temperature, mass) of the gas and at the same time, a measure of uniformity
in its thermodynamical probability law. The canonical distribution corresponds to
an ensemble configured to its maximum entropy. Boltzmann’s statistical expression

S=kInf}

for the equilibrium entropy relates the equilibrium or limit number of accessible
microstates, {}, and k, the (known now as) Boltzmann constant 1.3807 x 1023 K
J/molecule. A volume of gas, left to itsell, will almost always be found in the state
of the most probable distribution. ]
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ExAMPLE 1.6 (Maxwell-Boltzmann Law for Velocities in a Perfect Gas). In
this example we outline the classical derivation of Maxwell-Boltzmann Law. In the
context of the orbit method, Maxwell’s assumptions e.g., Ruhla (1989, Ch.4) led
to the searching of a probability law, indicated here by F, for the random velocity
vector {v) satisfying the following conditions: First, the component-velocities are
statistically independent and identically distributed, so that the law F should have
the form

F(v) = f{v ) f{vy (v},

where f indicated the common probability law for the component-velocities. The
isotropic condition states that F should be invariant under all central rotations,
indicated here by U, in the three-dimensional Euclidian space R3, Denoting by
5(3,R) the collection of all such rotations, we write the isotropic condition as,

{1.15) F(Uv) = F(v), for all U € 53, R).

Note the analogy between the isotropic condition and the invariance condition de-
scribed by Expression (1.4). These two conditions lead to the probability law which
has the form

(1.16) F(v) = AberilvIF,

where v = |jv|| = /v + vZ + v is the speed in the velocity vector v. The con-

stants are determined from additional physical considerations. The orbits O, in
the guotient space are determined by the velacity vectors v in R* with common
speed v. O

The following table summarizes the symmetry relations introduced in Examples
1.3, 1.4, 1.5 and 1.6. In each case, a uniform probability law is assigned to the points
within the corresponding orbits in the quotient space.

Model Symmetries Orbits

DNA sequences all cyclic permutations, C; V/Ce
Maxwell-Boltzmann 1 (the identity) v

Fermi-Dirac all permutations, Se V/Se

Bose-Einstein all permutations, S, Vi/Se

Velocity in a perfect gas all rotations, O(3,R) R3/0(3,R) -

1.3. Observational aspects

We observe, measure or annotate something, indicated in the sequence by x(s},
in each point s on the structure V. These measurements are mappings x : V —
V C R, or points in the (real or complex) vector space (indicated in the sequence
by F) of functions with domain V and image V. Ttypically, V is a linear subspace
of R,
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EXAMPLE 1.7, In each four-sequence in length of three, s, measure the number
x(s) = [s~!(a)| of adenine residues in the sequence s. That is,

[ zas sec aag aat caa cac cag cat | " 3 222 2111
aca acc acg act ces  cce cog  ecl 21111000
aga agc agg aglt cga cge cgg  egl 21111000
ate  atc alg att cla ctc ctg cit | L, {2 1 1 1 1 0 0 O
gaas gac gog gat tea tac tag lat - 21112111
gee  gec geg got  fca  dce  teg  tot 1 ¢ ¢ 01000
gge ggc ggg ggt iga tge tgg iyt 1 0 00109000

| gta  glc gtg git tte itc g it J (1 00010 0 0]

O

EXAMPLE 1.8. If ma, mg, me, m, indicate the molecular weight of the corre-
sponding residue in the alphabet A = {A, G, C, T}, then
x(s} = ma[s™ (a}| + melsTH(c)] + mgls™ (g)] + myls (1))

is the molecular weight of a four-sequence in lenth of four with |s—1(a)| adenines,
fs{c)| cytosines, [s~!(g)| guanines and [s~!(t}| thymines. Consequently, relative
to the probability law

e L £ £
L=G333
the mean molecular weight
iy = a2 4 m 2 4 m 8 4, 2
A= a3 c3 g3 t3

of s may be obtained. The molecular weighis? are:

® i, = 135.128 g/mol for adenine (amino-6-purine CsHsNs);

* mg = 150.12 g/mol for guanine (amino-2-hydroxy-6-purine CsH4N50);

s mc = 111.1 g/mol for cytosine (2-hydroxy, 4 Amino-pyrimidine C4HsN;30);

» m. = 126.1 g/mol for thymine (2,4-dihydroxy-5-methyl-pyrimidine CsHsN203),

g0 that
m = 132.116g/mol, m = 137.116g/mol, m = 127.109g/mol, m = 129.106g/mol,

corresponding to the laws in (1.11). Intuitively, the molecular weight should not
depend on the ordering of the sequence. In fact, x(st~!) = x(s) for all 5 € V,
T E Ss. 0O

ExaMPLE 1.9, Consider again the structure V of four-sequences in length of
three, in which 4 = {A, G, C, T}. Given a reference nucleotide sequence

getetetetggtiagaccagatttgagectgggagetetetggetaac
tagggaacccactgettaageecaataaagettgecttgagtgeticaagta

(in length of 108) from the same alphabet, measure the frequency

88
x{s) = ) L{f*),

k=1

4Refer to http://hamers.chem.wisc.edu /chapman/QOther/chem . html] for an on-line molecular
weight calculator.
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with which each sequence s € V occurs in the reference sequence. Here,
1 ifs=fk
L(f*) =
() {0 if s £

is the indicator function for & match between the sequence s and the sequence
in length of three fk starting at position k in the reference string. The following
matrices summarize the structure and the resulting structured data:

" gae aac aeg aal cee cac ceg cob ] i 2 3 1 2110
aca acc acg act cca cee ceg ook 0 2 02 3 20 2
age agc agy oagt cge cgc o9y cgl 2 412 0000
agta atc alg ait cla clc clg cit x 1 0 01 2 4 4 4
gae goc gag gat tge tac tag ol - 113130 2 ¢
gea gee  gep  get  tea  lec  teg  tet 0 305 10065
gge gge 999 g9t tge  igc  tgg igt 21 2 2 23 30

| gta  gic glg gt e Uc ttg  H ] 111112 13 1]

1.4, Connecting structures and data

We now have introduced an example of a structure V {e.g., all two-sequences
in length of four), an example of 2 measurement x : V — R, such as the molecular
weight, and shown how symmetries and rules for symmetry compositions (e.g.,
s7~1) in V lead to a disjoint partition

V=0UO UG U03U 0

of the initial structure into orbits of symmetrically similar objects. It is then of
natural interest representing this same factorization into the vector space RY, where
the observations, annotations or data vector (x{s))sgv reside, and study the data
accordingly. This is the role of the basic methods for linear representation of finite
groups, to be discussed later on in Chapter 3. The following example will illustrate
one of the consequences of linearly representing similarity relations into the data
space.

ExaMpPLE 1.10 (Averaging). The averaging of v real numbers is an implicit
statement that, under certain conditions, the labels indexing these numbers have
become irrelevant and, therefore, are all similar (~) to each other. A self-similarity
relationship, on the other hand, dictates that each label is similar only to itself.
These simplest forms of label relationship determine the important connection be-
tween the set of labels, V, and the space, V, where the data {x(s);s € V} are
represented. In the present case, the label similarities generate two matrices (say
v=3 and V = R3, the usual Euclidean real vector space)

111 100
I=|1 11|, I=|010],
111 001

in correspondence to the similarity definitions indicated above, namely

Jii~vj &= dy=1, Liivj <= =1
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Writing P, = -é-.] and Po=1- %J, we note that
(1.17) =P+ P,

with P = Py, P§ = P2 and PyP, = 0. If we denote & = (1,1,1) and let %
indicate the average of the components of x, then a consequence of these properties
is that any vector x € ¥ can be expressed as the sum m + r of a vector m in the
one-dimensional space V; generated by Pix = e, and a vector r in the (v — 1)-
dimensional orthogonal complement V; of V; in V. The decomposition

{1.18) V=Via,,

or I =Py +P;, in turn, leads to the decomposition of the corresponding square
distances

(1.19) x'x = x"Prx 4 x"Pox,
or
ZX(S)2 = vx? 4 Z(x(s) - %)2,
s€V BEV
which is characteristic of the Fisher-Cochran argument determining the probability
distribution of quadratic forms and resulting statistical inference. O

1.5. Bummary

In this chapter we introduced an example of a structure V on which the points
s € V have the interpretation of indices or labels for measurements x(s). Some
measurements or assessments are naturally subject to statistical variability, like
the alignment frequencies described in Example 1.1. In fact, if the reference string
is a siring sampled from a global, larger, sequence then the resulting frequency
x(s) is also random. Other measurements are intrinsically constant, such as the
molecular weight, e.g., x(tta) = 387.328 g/mol. of the triplet tta. However, should
one consider these triplets as random points s in the structure V, then x(s) becomes
a random variable due to the randomness in the label space V.

The structure is then subject to a decompaosition or factorization, the result of
classifying as equivalent those points in the structure that are related according to a
given definition of symmetry. These classes of equivalent points are the orbits of V
and may lead to the determination of the invariants of the natural phenomena. The
speed of the perfect gas and the number of purines in the biological sequences are
examples of invariants determined from studying the structural orbits. Probability
models that respect the factorization are said to be invariant under the factorization.
These models assign a common probability to symmetrically equivalent points. In
the next chapter we give continuation to the examples introduced above, providing
additional detail to the connections among structure, data, symmetries and the
factorization of the structured data.

1.6. Appendix

1.6.1. The canonical distribution. Using Stirling’s approximation Int! =
tlnt — &, we have,

|0 =mél =3 Infi=Lme—£-> (Glnfi~£) = £lne— > &Inf.
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Equivalently, then, we seek to minimize 3 fiInf; subject to (1.12). These two
conditions lead to
e+ Inf)dh =0, Y &dfi=0.
i i

A sufficient condition for the existence of a solution (using Lagrange multipliers
argument} is that there are constants o and 3 satisfying } (&1 + o+ fn §)df =0,
in which case the solutions take the form f = ae~ P8, The condition 3=t
implies @ = ¢/ 3_; e7P4, so that

e—h&

The value of 3 follows from the condition %Zi £,£, = £. That is, 3 is a solution of
Tie?g
z} e"“ﬁgj

From {1.20) we then obtain Maxwell-Boltzmann canonical distribution shown in
equation (1.14).

=E.
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1.6.2. Position-symmetry orbits in the structure V of two-sequences in
letigth of four.

(1.21)

16 12 14 8 15 10 4 11 6 13
16 8 15 12 14 7 4 6 11 13 10
16 8 14 15 12 6 7 4 13 10 11

(142)
(143)

Sa%s 1 16 15 14 12 8 13 11 7 10 4
1 |1 16 15 14 12 8 13 11 7 10 4
(34) f1 16 15 14 8 12 13 7 11 6 10 4
(23) L 16 15 12 14 8 11 13 T 10 6
(24) J1 16 15 8 12 14 7 11 13 4 6 10
(12) J1 16 14 15 12 8 13 10 6 11 7 4
(13) |1 16 12 14 15 8 10 11 4 13 6 7
(14) |1 16 8 14 12 15 6 4 7 10 13 11
(284} |1 16 15 12 & 14 11 7 13 4 10 6
(243) |1 16 15 8 14 12 7 13 11 6 4 10
(128) |1 16 14 12 15 8 10 13 6 11 4 7
(124) |1 16 14 8 12 15 6 10 13 4 7 11
(132) |1 16 12 15 14 8 11 10 4 13

1

i

1

|
|
(134) |
|
|

(12)(34) |1 16 14 15 8 12 13 6 10 7 1l 4
(134 |1 16 12 8 15 14 4 11 10 7 6 13
(14)(23) |1 16 8 12 14 15 4 6 7 10 11 13

(1234) |1 16 14 12 8 156 10 6 13 4 11 7
(1243) |1 16 14 8 15 12 6 13 10 7 4 11
(1324) |1 16 12 8 14 15 4 10 11 6 7 13
(1342) |1 16 12 15 8 14 11 4 10 7 13 6
(1432) |1 16 8 15 14 12 7 6 4 13 11 10
(1423) |1 16 8 12 15 M4 4 7 & 11 10 13

L2 U7 W N W W oGO W N WO BT W oW PO o |
B 2 W W N W N Y W k) L Wt dD T W > o jon
G W W WO L R S R (L B GO B MWD M D Ot & L D 4 S L e
WL W oo o W ot W @ ottt Lt K RO Ot W bk B B b b
L

Further reading

(1) The structure of short nucleotide sequences introduced this chapter ap-

pears, implicitly, in the work of Doi (1991) on evolutionary molecular
biology. Related examples will be discussed in later chapters, with refer-
ences to the works of Evans and Speed (1993) on phylogenetic trees and
Dudoit and Speed (1999) on linkage analysis, among others;

(2} The argument of decomposing the data space according to similarity re-

lations implied by the space of labels has a long history, It appears in the
early work of James (1957) and Hannan (1965) under the name of rela-
tionship algebra, where the analyses of variance for classical experimental
designs are obtained in anglogy to the simple example described above.
An early application of group theory is found in James (1954). The mono-
graphs of Diaconis (1988) and Eaton (1988} are now classic references in
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the feld of group representations and group invariance applications in
probability and statistics;

(3) The notions of symmetry and symmetry in science are discussed in detail
in the works of Joe Rosen (1975, 1995), including an accessible introduc-
tion to the mathematics of symmetry and the formulation of the Symme-
try Principle. The classical introductory work of Hermann Weyl (1952)
includes the notions of bilateral, translatory, rotational, ornamental and
crystal symmetry;

{(4) The interplay between the many aspects of knowledge and explanation
in science is discussed by many contemporary authors, including Wilson
(1998), also Howson and Urbach (1989), Gower (1997).

Exercises

1.1. Moments of the canonical distribution. Show that the mean (£) and vari-
ance (var (£)) of the canonical distribution can be expressed in terms of the pertition
Junction Z =Y ;677 as

8lnZ _ Pz
= =257

1.2. The diagram of a basic Wheatstone bridge® circuit, shown in Figure 1.1,
contains four resistances {r1, ro,rs, r4}, a constant voltage input Vi,, and a voltage

FIGURE 1.1. Wheatstone bridge circuit

D
|
Vin

Vg, related by
riT3 — I'sT4
Ve=—— Vi

B (rr)(rzbrg)

Given a fixed set of resistors for which Vg # 0, consider the set
K = {1,(12)(34), (13)(24), (14)(23)}

of permutations of the index set {1,2,3,4} and define, for € K, the function

) = Ir1¥r3 — [72074

(1'1-1 + I‘,-z)(l‘-,-a + 1'1-4) ’

Assume that Vin = 1 so that x(r} is then the voltage measurement Vg when the
resistors in the bridge are permuted according to 7 € K.

5e.g., wttp:/ fwww.efunda.com/ designstandards/sensors/methods/.
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(1) Show that K, together with the operation of composition of functions, is
a group, and conclude that x is an example of a scalar function defined
on & group;

{2) Show that x can be written as x{r) = x{(r)x(1), where x(7) € {1,~1} and
satisfies

x(ro) = x(7)x(o)
for all 7,¢ in K;

(3) Indicate by V the set of all Wheatstone bridge circuits b, generated when
the resistors are shuffled according to the permutations 7 € K and define
two circuits by and b, in V as equivalent when x{7) = x(¢). Calculate
the set V/K of orbits in V and then, conclude that the electric current
direction through the measuring instrument is an invariant of the circuit;

(4) Open the wire between the node B and the instrument, and use the voltage
potential Vg at that point to feed a second bridge inserted therein, that
is V;; is Vi, for the new bridge. Formulate the algebraic representation of
the new combined, or cascaded, circuit and determine its invariants.






CHAPTER 2

Examples of structured data

2.1, Introduction

In the previous chapter we have introduced the following basic components of
a symmetry study:

(1) a structure, or set of labels, V, such as the set CL of all mappings
s:L={1,...8 - C={1,...,c}

(2) a notion of symmetry, generally a group G of permutations acting on or
composing with the elements of V;

{(3) a similarity rule for pairs of points s,f in V, such as the letter-symmetry
(f = os) or the position-symmetry (f = st~1) compositions;

{4) the resulting orbits Gy, Oa, ... of similar points in V;

(5) a scalar-valued mensurement x defined in each point 5 € V;

(6) probability laws for
(a) labels s € V;

{b) data x(s) on a given label s;

(c) data x;

(d) symmetries o,7,...,
necessary to describe the uncertainty in compositions such as x(st™1) or
x{as);

(7) a v-dimensional linear representation of the similarity relations and re-
sulting orbits of the label space V into a data space such as RY ;

(8) a set of projections Py, Pa,... decomposing a linear subspace ¥V of RY
where the data vector x = (x{s))sev obtains, and subsequent analyses
and interpretation of these structured data.

In the following sections we will further detail these concepts with additional ex-
amples and comments.

2.2. Similarities and their linear representations

In Mendelian genetics, a character or trait that is produced by two alleles {A, a}
may be represented by the simple structure of all mappings s : {1,2} — {A,a}. The
fact that, genetically, the relative position of the alleles is irrelevant, says that this
space is subject to location-symmetry (Sz acting on the left), with resulting orbits

Og = {aa}, Ol = {Aa, aA} 02 = {AA}

In terms of their phenotype, if Oy is the recessive trait, then ) and Oy are the
dominant traits. Genotypically, (7, is the heterozygous pair, whereas the other
two orbits contain the homozygous pairs. These traits, in turn, produce, as the
result of the cell meiosis process, a new space of allele combinations consisting of

21
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all mappings s : {1,2,3,4} — {A,a} with exactly two alleles of each type. This
space is a substructure of the space V of two-sequences in length of four, under the
position-symmetries of S4, introduced earlier on in Chapter 1, Example 1.3, More
specifically, V decomposes as

V=VitVz UVa,

with Vo = OgU Oy, V31 = 01U 05 and Vaz = Oa. The substructure of interest is
exactly Vag. It corresponds to all mappings s with |57 (a)| = |s~'(A)| = 2, namely,

Va2 = {AAaa, AaAa, Aaad,aAAa, aAah, anAA}

indicated, respectively, by the labels {13,11,7,10,6,4} in Matrices (1.2) and (1.21)
of Chapter 1. Fisher (1947) uses an argument of similarity relations to discover the
number, k, of classes of equivalent alleles, when two alleles are considered similar

if, after a crossover,
s|f
Ve

the two alleles f and g differ only by a location-symmetry, that is, f = gr™! for
some T € 54, e.g., Hannan (1965). In what follows, we will outline the solution to
Pisher's problem. Take for example the permutation T = (34}, which permutes the
pasition of the third and forth alleles with each other. The resulting similarities
are then

AAaa ~ AAaa, aAAa~ aAaA, AaaA ~ AalAa, aaAA ~aalA.

As a consequence, now we can associate to T a permutation matrix p(7) that oper-
ates in the associated space ¥ = RS, defined by the similarity relation between any
two labels 1, in V, namely,

pi=1 & i~j,
and otherwise gy = 0. In the present case, with 7 = (34), the resulting similar
pairs of labels are {13,13), (10,6), {7,11) and (4, 4), so that we obtain the matrix
representation

1000007
001000
010000

=16 0001 0l
000100

(000001

relative to the ordered set of labels {13,11,7,10,6,4}. The matrix p is such that
each row and column has exactly one entry equal to 1 and all other entries equal
to 0, and is, therefore, a permutation metriz. We note that alleles 13 (AAaa)
and 4 (aaAA) are self-similar. The collection of these permutation matrices, when
7 varies over all 4! permutations in S4, constitutes a linear representation of Sy
and establishes the connection between the set of labels, Vg2, and the space of
potential observations, V, through the position-symmetries defined on Vag. Linear
representations are studied later on in Chapter 3.

Fisher explored the fact that the trace y(p) of each permutation matrix p
describes exactly the number of pairs of alleles that are self-similar under the given
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permutation {or the number of points fixed by the permutation), and verified that
the number k of classes (or orbits) of equivalent quads is then given by the average
number

e D)

of fixed points x(p(7)}). A systematic reading of Matrix (1.21) shows that the
identity permutation fixes all 6 points in Va2, each one of the 6 transposition and
each one of the 3 permutations conjugate to (12}(23) fix 2 points, whereas all the
remaining have no fixed points. The total number of fixed points is then 6 + 9 x 2
and hence, the number of orbits is

%(6+9x2)=1,

thus saying that all quads are equivalent. This is a direct and typical application
of Burnside Lemma, which is introduced later on in Chapter 3 (see also Exercise
3.12). Clearly, this simply says that for any two given alleles, there is one symmetry
in 54 which makes them similar. The answer is certainly more interesting when
m loci are simultaneously considered, with 6™ labels in the new (product) set
Vo % Vag X ... Vg of m copies of the original space Vyy. The labels are all the
{ordered) sets of four chromosomes cbtained from two chromosomes allowing for
meiosis for all forms of crossing over (keeping the loci in the same order shown
the chromosome). The action, or composition rule, i in this product space is now
defined as

(sr“l,gr_l,...,h'r'l), TESY, S8 ..., € Vog,

This action on the product of the mapping spaces leads to a tensor representation of
84 in R®™ in which the trace ealculations are simply the product of the component
traces. Thus, there are exactly

1
k= [6™ +9.2]

orbits or classes of inequivalent types.

2.3. Data partitioning and amalgamation
The structured defined by the product set
V = {low, high} x {slow, fast}

is characteristic of a two-factor factorial experiment of, say, a chemical compound
tested under these conditions of temperature and reaction time. Similarity relations
among the labels in V are discussed in detail later on in Chapter 5. These relations
and their linear representations in the data space ¥ = R, lead to four natural
projections in this space, namely, P; = %ee", where ¢’ = (1,1,1,1),
1 -1 1 -1 11 -1 -1
1/ -1 1 -1 1 1 1 -1 -1
4 1 -1 1 -1 -1 -1 1 1
-1 1 -1 1 -1 -1 1 1

H
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and

1 -1 -1 1
Note, characteristically, that
I= Pl +P2+P3+P4: ’P.'Pl = Osi#.]: P12 = TPi: P: = Pi! laj = 1:2:3:4'

In the (balanced) case in which the same number of measurements is obtained in
each point of the structure, the usual main effects and first-order interactions for
temperature and reaction time ate then determined by calculating the correspond-
ing values of Px, where x € ¥ is the chemical compound measurements observed in
the V space. Similarly to the decomposition shown in (1.19), the resulting analy-
sis of variance associated with the partition ¥y U... U V; of the (vector) space of
observables, V, is
x'x = XP1x + %' Pox + X' Pax + X' Pux.

In classical Mendelian genetics breeding experiments, the same structure and
similarity argument leads to the usual partitioning of dewiations concept, as known
to geneticists. For example, the set of labels

V = {pale, not pale} x {ruby, not ruby}

may refer to ear and eye trait characteristics of four kinds of mice. The data in the
V space may be the observed frequencies of breeding types when a given number of
mice are studied, e.g., Green (1981, p.36). Here, if we denote by x' = (136,3, 4, 133)

ears eyes frequency
not pale not ruby 136

pale not ruby 3

not pale ruby 4

pale ruby 133

the vector of cbserved frequencies, the interpretation that is given to each of the
projections P;x depends on whether or not there is a well-defined notion of addition
among the components of x; that is, whether or not the space V carries with it a
definition of vector space consistent with the interpretation of the data at hand.
As discussed later, special considerations will be required when the data reside on
a lower-dimension subspace of the space V. This is the case when there are natural
restrictions, such as
n=x(1)+... +x(v},

among the components of the data indexed by the structure V. The broad interpre-
tation of each projection matrix is that of informing which components of the data
vector should be compared or amalgamated. This is an important concept, which
ties the notions of structured data and their symmetry relations with the basic op-
eration of amalgamation of data defined at lower-dimension subspaces. Statistical
inferences under such restrictions is termed simplicial or compositional inference,
and have a long tradition in fields such as chemistry and geology, e.g., Aitchison
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(2001) and comments in Chapter 4. For example, the interpretation given to the
one-dimensional projection

1 -1 1 —177 136 3

1l-1 1 -1 1|3 -3
Pr=gl v 21 o1 ille [T s
-1 1 -1 1]/ 13 -3

is that of comparing the joint frequency (140 = 136 + 4} of mice without pale ears
with the frequency (136 = 3 + 133) of mice with pale ears. Similarly, Pax leads to
comparing the joint frequency {139) of mice without ruby eyes with the frequency
(137) of mice with ruby eyes, whereas P;x leads to comparing the joint frequency
(269) of mice in which the ear-eye traits are positively associated with the frequency
(7) of mice in which the traits are negatively associated. The geneticist, based on
the usual x? analysis, interprets these data as indicating that the ear types and the
eye types apparently did not combine at random.

2.4. Bilateral symmetries

Symmetry-asymmetry questions are very frequently encountered in biomed-
ical areas, and most commonly when bilateral biological systems are investigated.
Examples include symmetry perception in normal vision, visual signaling by asym-
metry, modeling of auditory spatial receptive fields, molecular basis of left-right
asymmetry, patterns of plenum temporale symmetry/asymmetry and many more.
Normal vision requires that objects remain identifiable when rotated, scaled or
translated in a space-time domain. Symmetry also plays a (visible!} role in beauty
and evolution, as recently argued by Enquist and Arak (1994). The following exam-
ples will illustrate how these questions translate into similarity relations adequate
to suggest the factorization of the data structures associated to them.

ExaMPLE 2.1 {Lateral and contralateral comparisons). Consider an experiment
in which two measurements, such as the visual acuity, indicated here by the symbols
(av) and the intra ocular pressure, denoted by (< >}, can be observed in the left
{4, <} eye and in right {r, >} eye. Indicate by A the set {acuity, pressure} of
these ocular assessments, and by B the set {left eye, right eye} indicating the eye
in which the assessments in A are obtained. Relative comparisons between two
localized assessments can be represented by the structure

s 1 2 3 4 85 6 T 8 9 10 1 12 13 4 15 16
V=CL=[5(1 <1I><><lddbl>l><<<>>>:,

9> < >p < > 49 < > 9 b > 4 b <
of all mappings s : L — C, where L = {1,2} and C = A x E. The structure V has
v = ¢! = 16 mappings, labeled 1,...,16. A commonly used relative comparison
x(s) of interest is the covariance, or any other measure of association, between
the (random) measurements represented by s(1) and s{2). For example, if s is the
mapping number 9 in the table above, then x(s) stands for the covariance between
the acuity in the right eye and the pressure in the left eye. Equivalently, in this
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case, we may write the structure V in the form of the 4 x 4 matrix
a4 > <

AV a v

and interpret the entries as the labels in A x E. The symmetries of interest are
those permuting the location of the assessment or those permuting the type of
assessment. Therefore, these symmetries consist of a simple transposition (o) and
the identity transformation (1). Suppose first that these symmetries act in each
of the two sets with the result that when transposition of eye location is to be
followed with a transposition in the type of visual assessment. The corresponding
composition rule, or action, ¢y of 8 = {1, (12)} on V may be represented as

w1(0,8) = (08,,08,), o €853,

where (84, 5.) are the components of the mapping s. In turn, the action y; classifies
the points in V by similarity or equivalence: iwo points s and f in V are equivalent
when related by
f = ¢1(o,3),

for some ¢ in Sz. The resulting classes of equivalence, as will be shown in Chapter
3, can be linearly represented by assigning to each o € 83 a linear transformation
p(o), and forming certain averages of these representations. The result is a family of
projection matrices, P1,..., P, which will leave invariant exactly those subspaces
of V = RY associated with the equivalence classes in V. For example, the trivial
projection

Fi 1 7
1 1
1 1
1 1
1 0 01 0 0
0 1 0 0 0 1
0O 01 0 1 0
Py = 2161 + ole)] = 3 DR
01 o 0 0 1
1 0 0 0 1 0O
o1 01 ¢ o
0o 01 0 0 1
0 1 0 1 0 o
1 0 0 0 1 0
0 01 0 0 1

is, in the present case, a direct sum of four component prejections. There are 8
resulting classes of equivalence, or orbits

O = {1,2}, Oy = {314}:
On = {58}, O =1{610}, O ={7,9},
On = {11,15), Oy = (12,14}, O = {13,16},
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in V, indicated by the mappings’ labels. These orbits may be summarized in the
matrix below, in which repeated letters indicate equivalent points (sharing the same
orbit):

oA > <

P a u X =

(2.1) S2—=] < u a z x
>y w b v

< w ¥y v b

Additional symmetry may be considered by allowing separate transformations act-
ing on each of the component sets A and BE. In this case, it is possible to fix one
component and apply a transposition on the other component. The resulting set
of transformations is the product group

82 x 8 = {(11 1)» (11 t’)w (t: 1): (t'v t')}l
with componentwise multiplication. The resulting action, a2, on V is now given
by
w2((7,7),8) = (0sa,75e), (0,7) €82 x 83
Similarly, two points s and f in V are equivalent when they are related by f =
w2((e, 7),8), for some (o, 7} in Sz % Sz. The trivial projection is now

1111
111 1
1111
111 1

10010060100 1

01 6001100010

0010610010710 0

1 10010000T1GO0T01

Pr=7 00 101001010 o@0]|’

01 0001100010

¢ 10001 1000T1 0

0010100107100

1060100001001

0010100107100

01 000711000710

i 10010000100 1|

which defines the equivalence relations among the data points in V indexed by V.
There are 4 resulting orbits,

O ={1,2,3,4}, ©;={538,13,16}, O;={6,10,11,15}, O; = {7.9.12.14},

illustrated in the diagram that follows;

(2.2} S2 xSz —

AV avw

B M= p 7
L ST~ N
0N oMY
e 8 M N A
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We conclude this example by pointing that the reductions or factorizations indicated
in Matrices (2.1) and (2.2) are the only ones that result from symmetry actions on
the components of Ax E. In particular, we learn that neither one of these reductions
lead to comparisons of data points indexed by the x and z components shown in
Matrices (2.1} and (2.2). That is, data indexed by (>, >) and (b, <) are not related
by similarity relations. The same is true for {4,<} and (¢,>). In the case, as
illustrated in the present example, that x(s) defines the covariance between s(1)
and s(2), the interpretation is that the acuity-pressure covariance block cannot be
reduced beyond the form

X 2
[ 4 % ] , X#E
Consequently, we also learn that a parametric hypothesis such as x = z does not
follow from component-symmetry considerations alone. a

EXAMPLE 2.2 (Symmetry and homogeneity). Now think of the components of
A x E in Example 2.1 as labels for a common bilateral observation (e.g., a measure
of localized retinal thickness) taken at two different points in time. Denote the
bilateral measurements taken before treatment by («,0) and the post treatment
measurements by (<,>). A larger set of symmetries may then be considered,
relative to the rules ¢, and gy discussed above. In the extreme case, we may now
apply the full set of permutations on the 4 components of C = {q,1», <, >}, with
the rule

walg,8) =08, 0 €8y, s€V.
The space V has v = 2% labels and the resulting 2 orbits or classes of equivalent

mappings are indicated in Matrix (2.3). All variances or closed loops are pooled
into one orbit and all covariences or apen loops are combined into the other orbit:

a4 > <

P a u u u

(2.3) Si—| <9 ua uu
> u u a u

< u u u a

This is a nearly homogeneous (single orbit) decomposition of the initial structure
V. Here are other symmetries of interest, resulting from simple transpositions and
the identity transformation. They decompose the space V into 8 orbits indicated
in the corresponding matrices by the entries with common letters:

[ b oa > <"
b a u X =
@4 LOE) » | < w2 2 x|,
> ¥y w b v
| < wy v b
[ B a4 > <
b a v w Yy
{2.5) Ly} —» | « u b z x |,
> w Yy a v
| < z x b |
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(2.6) {1, (14}(23)} —

ANV a VT
o E v
N o< A
=l B
2 X% A

w Yy v a
Each set of symmetries leads to potentially distinct interpretations of the underlying
structured data. a
2.5. Cyclic symmetries
Consider the set of permutations
Ca = {1, (1234), (13)(24), (1432)}

acting on the mapping space V of Example 2.1 by cyclically permuting the entries
in the set C according to the rule ¢(s,s) = gs. The resulting action leads to 4
orbits, indicated by Matrix (2.7),

(2.7) Cy —

ANV a v
-
E P <A

2P o2 Ny
< W A

v X

©

The interpretation of these orbits are suggested by applications in which the points
of C are thought of labels for sensors located w/4 radians apart along a circle. In
this case, the space V are labels for paired comparisons between points s(1) and
5(2) located in two concentric rings, with, say, s(1) in the outer ring and s(2) in
the inner ring. These comparisons arise, for example, in the analysis of data from
human corneal curvature, and are discussed later on in Chapter 6. Figure 2.1
illustrates a sample of corneal curvatures (in units proportional to the curvature in
mm.) obtained at points w/20 radians apart along a imaginary ring centered at the
cornea’s apex. The structure in the present example represents two of these rings,

Figure 2.1. Cornesl curvature data with 3-degree meridian separation.

NYIQH3N

270
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each one with £ = 4 points. The resulting orbits or classes of equivalence,

A E AR - A

1) = < > s(l}= < < >
O2_’[:EZ)= 2 ; < b]'oa_’[s@):b > 4]’
describe potential comparisons
x(s) = (x(s(1)),x(s(2)})

when the two rings are off-phase by mi/4 radians,1=0,1,2,3. A data summary of
interest is the within-orbit sums

v v

hw

4

3 x(s(1)x(s(2) = 3 xi)xGi - i),

sECy =1

i:=0,1,2,3. This is an example of a function defined on the group Z3 of integers
with addition modulo 3. Its Fourier transform at the principal frequency is simply

(28) 2= 30 3 M) = 3 (xx)6) = 482

i =€y J

where x # x indicates the two-fold convolution (in Z with addition modulo 3} of x.

EXAMPLE 2.3 (Cyclic symmetries). The mapping structure from the previous
example is helpful for describing the following data, discussed by Wit and MeCul-
lagh {2001}. The mapping structure V = CL is defined with

TABLE 2.1. Frequency of mining disasters between 1851-1962.

Mon Tue Wed Thu FIri Sat Sun

Autumn 7 10 5 5 6 7 1]41

Winter 5 9 10 10 11 7 0|52

Spring 3 7 10 12 13 9 2| 56

Summer 4 8 8 9 5 6 2|42
12 34 33 36 35 29 5

L={1,2}, C= {seasons of the year } x {days of the week},

so that there are v = ¢/ = 784 labels or indices for potential paired annctations.
The symmetries are now naturally imposed by sets of cyclic transformations applied
to seasons of the year and to days of the week, indicated, respectively, by C4 and
Cz. The (product) action of these symmetries is given by

@(0,8) = {o181,0282), o= (01,02} € Cy x Cq,

where (g1,82) are the (season, day)-components of a mapping s € V. A possible
annotation of interest is x(s) = |x(s(1)) — x(s(2))|, where x(s(i)} is the frequency at
entry {s;(j),s2(j)) given by Table 2.1.In contrast, the same data may be decamposed
by considering the similarities defined in the product structure

V = {seasons of the year } x {days of the week},

with 28 labels for potential comparisons. a
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These examples illustrate the extent with which simple label structures such as
the mapping space CU or the product space Cx L can be modified to accommodate
different conditions and interpretations of similarities, including the set of symme-
tries (G), the rule () with which these symmetries are applied to the structure
V, and the annotations x(s) € V of interest. In the following examples, we briefly
describe other interpretations for these structures, related to the techniques to be
developed in the sequence.

2.6. Linkage analysis

The segregation products or inheritance vectors for a sibship of size 2 can be
represented by the set V of all mappings

8:C={1,2} - Ly x L, = {1,2} x {3,4},

where each mapping represents a possible configuration of chromosome pairs for
the two sibships. The paternal chromosomes are labeled by L, = {I,2} and the
maternal chromosomes by Ly, = {3, 4}. Indicate the components of each mapping
s by
s() = (p(]),m(_])) €Ly XLy, j=1,2
The identity by descent (IBD} of the inheritance vector s is given by
x(s) = dp(1)(p(2)} + ding) (m(2)),
where d5(-) denotes the indicator function for the symbol 8. Table 2.2 shows a

number of inheritance vectors and tieir corresponding IBD values evaluated as
x(s). With the additional notation introduced in Table 2.2 we write the space

TABLE 2.2

(1) s(2) s x(s)
a=(1,3} a=(1,3) 1313-aa 2
c=(2,3) a=(1,3) 2313-ca 1
c=(2,3) b=(1,4) 2314-cb 0
c=(2,3) d=(24) 2324-cd 1

of inheritance vectors as the space of all mappings s : {1,2} — {a,b,c,d}. The
space V has 16 labels or indices for possible IBD evaluations. Next, we consider
the symmetries of interest. These are defined by the permutations

o1 = {ac)(bd), paternal chromosome symmetry,
oy = (ab)(cd), maternal chromosome symmetry,
o3 = (bc), parental origin symmetry,

which together generate the dihedral group Dy, e.g., Example 3.14, Chapter 3.
These symmetries are realized as a three-dimensional rigid motion of the regular
rectangle with vertices the chromosome pairs in the set {a, b, ¢,d}. The motions are
defined as rotations of the rectangle through 90 deg angles about a perpendicular
axis through its center, and as 180 deg rotations about an axis of symmetry on its
plane. There are 8 elements in this group. These symmetries act on the structure
V according to the rule (o,s) ~+ os. The resulting orbits are shown in Matrix
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(2.10). In addition, the sibship symmetry is generated by the single transposition
7 = (12}, It generates the symmetric group S; which then acts on the left by
(r,s) — s7~1. Altogether, the symmetries acting on the label space define a group
action ar composition rule ¢ : {S2,D4) x V¥ — V given by

(2.9) i ((r,0),8) — o571,

Tt then follows, as shown in Dudoit and Speed (1999), that the resulting classes of
gimilar IBD-valued inheritance vectors will coincide with the crbits obtained from
studying the group action given by Expression (2.9).

(2.10)

Da\s |aa bb cc dd |ac ca ab ba od dc bd db |ed da bc cb ]
1 |1 2 3 4|5 6 7 8 9 10 11 12[13 14 15 16
fabdc) | 2 4 1 3|38 112 5 0 9|15 16 14 13
{ad)(bc) 4 3 2 1 ]|12 11 1o 8 6§ 5|14 13 16 15
(ccdt) | 3 1 4 2|9 10 6 5 12 11 7 8|16 15 13 14
fac)pd)| 3 4 1 2|6 5 8 10 7 8 12 1 l18 15 14 13
{ab)(ed) | 2 1 4 3|11 12 8 7 1 ¢ 5 6 j15 16 13 14|’
(ady |4 3 2 1]10 9 12 11 6 8 7|14 13 15 16
fed) |1 3 2 4|7 8 5 6 11 12 9 10|13 14 16 15
mp |2 2 2 2|1 1 1 1 1 1 1 1]0 0 ©
ol |4 4 4 4|8 8 8 8 8 & 8|8 8 8
| o |1 1 1 1|2 2 2 2 2 2 2 2|3 3 3 |

The trivial projection, corresponding to these orbits, is given by
2 2 2 2

2 2 2 2
2 2 2 2
2 2 2 32

PL=—

—
N = = )
e =
[ = S
ek e bt b e e b b
T e e
o e e e e e e
N = T I
P = T

[T I - R )
[N U - -
LET I I ]
[ S-S S R )

2.7. Binary mappings

Consider the space V of all Boolean mappings s : Iy x Lz — {0,1} together
with a topography data, or gray scale,

b:Ly x Lo — {0,1,...,256},
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defined in the chart L = L x Lz. A binary mapping is simply a subset s of Ly x Lo.
Each binary mapping s € V selects or marks {with a 1, say,) a subset of locations
in the chart L where a survey (or average gray level)

x(s) = 3 s(i)h(i)
jeL
of heights h(3) is obtained. Surveys can be defined over the contours
Fo={jeL:s(j)=0}, I'i={jeL:s{) =1}
The case
L= {jg :1=0,1,2,3) x {1,2,3},

for example, represents a 12-point discrete chart based on 3 concentric rings and
4 semimeridians (90-degree separation). The space V of binary mappings has 2!2
distinct labels for potential surveys x(s) € V. Natural reductions of the data space
V follow from considerations of semimeridian-symmetry in the V space, in which
two mappings s and { are considered equivalent if

i1, J2) = (G, 7(2)), 7€ Ss,
or from ring-symmetry, in which the equivalence is given by

f(jl,jz) = S(a(jl),jz), a e Cy.
Also note all data indexed by a matrix structure can be framed within the present
construction. In fact, any ¢ X ¢ matrix A with entries a; can be interpreted as a

realization of a scalar function x defined on the structure V = Lx C, with L = {1, 2}
and C = {1,2,...,c}, in which x(s) = a5(1),¢(z i3 defined.

2.8. Exchangeability

Here is a well-known setting: Consider an urn with 5 distinct marbles numbered
1,2, 3,4, 5, each one of color, say, yellow (y) or green (g}. The possible urn structures
may be considered as non-observable events whereas the color or the number of
a marble drawn from the urn are cbservable events. The urn compositions are
represented by all mappings (s) in V = C¥, with L = {1,2,3,4,5} and C = {y,g}.
Here it is natural to classify the possible structures by the number of, say, yellow
marbles. That is, making the marbles distinguishable by color only. To accomplish
this, we let the permutations in S5 act on the label space V according to the rule

w(r,s) =sr!

and count two configurations s and f as equivalent when there is a permutation 7
connecting (via f = s7~!) the two mappings. The resulting classes of equivalent
mappings are exactly the sets of urn compositions with 0,1,...,5 yellow marbles,
and the exchangeable probability laws in V are convex combinations of those laws
assigning equal or uniform probability to equivalent members. All binary sequences
are representable in this space, and finite forms of exchangeability can be defined,
with the resulting finite-type De Finetti theorems.

EXAMPLE 2.4 (Partial exchangeability). Consider again the urn with 5 distinct
marbles with the added information that marbles 1, 2 and 3 are larger in volume
than marbles 4 and 5. The size-related or partial exchangeability erases the number-
labels within each one of the two groups separately. The equivalent mappings
representative of partially exchangeable sequences arise from the product of the
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space V1 = L{ and Va = L, where Ly = {1,2,3} and Ly = {4,5}. Two mappings
(s, ) and (u,v) in Vy x V3 are equivalent when there are permutations 7 in 53 and
o in 8z such that
{s,f) = (ur~t,va1).
The resulting classes of similar mappings are exactly the sets of configurations with
k; yellow smaller marbles and k; yellow larger marbles, k; =0, 1,2, 3, ko =0,1,2. If
we indicate by || the size of the equivalence class (under the corresponding partial
symmetry) for marbles of the same size, then the partially exchangeable probability
laws are convex combinations of laws assigning equal or uniform probability
1
|O1]|Oa

to equivalent members. - m}

ExaMPLE 2.5 (Bilateral exchangeability). Indicate the left eye by OS and the
right eye by OD, and let L = {O8,0D}. Also, let C = {1,0}, where 1 stands
for the condition the eye is evamined with lense refraction, and 0 stands for the
condition the eye is evamined without lense refraction. At each point s in the
mapping space V = C we annotate a numerical expression of the resulting visual
acuity x(s) € V, or some frequency data related to the acuity response from a
group of subjects. The hypothesis that the visual acuity response of the visual
system due to lense refracting is indifferent to left-right indexing is described by
making the permutations in Sz act on V by (7, 5) ~— sr~1. Similarly to the previous
examples, this action simplifies or factors the original space V (with 4 labels) into
3 equivalency classes, or orbits Oy, Oq, O3, namely:

- (1) Oy bilateral refraction, with 1 label,
(2) Oz monocular refraction, with 2 labels,
{3} O3 withaut refraction, with 1 label.
These orbits in the V space, in turn, will define the corresponding summaries and
analysis in the data space V. This example is applicable to any bilateral biological
system as well. O

2.9. Homogeneous spaces

An important subset of the mapping space V == C is the class S¢ of permuta-
tion mappings (bijective mappings, |C| = |L|). As indicated earlier, the mappings
in S¢, together with the operation of function composition, form a finite group. An
example of a scalar function defined in, or indexed by, 8¢ is voting preferences data
where £ candidates are (completely) ranked according to the voters’ preferences.
The frequencies, x(s), of each possible ranking s € S; among the voters are the
available data, as illustrated in Table 2.3, from Diaconis (1989). In this case, we
will find that the symmetries imposed by S¢ on itsell result in a single-orbit {ho-
mogeneous or transitive) space. The theory needed to decompose these elementary
(regular) actions is the basis for all other cases illustrated in the previous examples.
The basic results are detailed in Chapter 3.

EXAMPLE 2.6 (Frequency analysis). This illustration is a discrete version of
the light polarization experiment,

0 0 . 2
light particle — polarizer sheet 2, analyzer sheet o5 9, detector,
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TABLE 2.3. 'Three-candidate {228 voters) partial election data by
rankings, corresponding permutations, s, and observed frequencies,

x(s).

Ranking s x(s)
321 (13) 29
312 (132) 67
231 (123) 37
213 (12) 24
132 (23) 43
123 1 28

or Malus’ law, e.g.,, Ruhla (1989, Section 7.3), in which a single photon leaves

from the polarizer sheet and emerges from the analyzer sheet with a transmission
probability cos? ¢, and fails to emerge with probability sin? ¢, where ¢ is the angle
between the two sheets. Let L = {1,2} and C = {i¥ : i=0,1,2,3}. The
elements (s) in the structure V describe (a finite number of} the relative angles,
¢ = s{1) — s(2), between the polarizer and the analyzer, whereas the annctation

x(s} = cos®[s(1)} — s(2)] € V

describes the {transmission) probability with which the particle reaches the detec-
tor. Of interest here is the relation between probability laws in V and probability
laws in the space V of plausible states (described by corresponding probabilities).
There are several tools to work with. Because the space C, together with the op-
eration (equivalent to that) of adding integers modulo 3, is now a finite group, the
structure V becomes endowed with a corresponding operation

(s+0)(G) =s() +1£(4), sfeV,

of sum of functions, and is also a finite group. Therefore, as suggested by equation
(2.8), convolutions, deconvolutions and frequency analysis can be defined for the
interpretation of data in the V space indexed by the mapping structure V. O

2.10. Trees

The diagram below illustrates a realization of a binary free in which the nodes

are indexed by the symbols in the alphabet (of nucleotide residues) A = {A, G, C, T}.

g<@
t<8
g<g
c<§'

a<

g <
a<C
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The number of generations shown in the diagram in 3. The set T of all m-generation
binary trees can be obtained by defining L = {1,..., 2}, Vy = Al and

T=VegxVix...,xVp.

Any point s = (s0,81,..., sm) € T is a realization of a m-generation binary tree. Int
the tree illustrated in the above diagram, we have

s50=G€EVy, m1= AAcV), 5 =CGTGCEVy, s3= ACGACGAT € V3.
Any branch in this tree has the form
Su(l) — Sl(il) — Sg(ig) — Sg(i;;), ij € Lj.

A base ¢ > 2 tree is defined similarly, starting with L = {1,...,d}. The structure
T has

1T = 46 =D/E=1)

points and may be factored or simplified, for example, by composing & permutation
o € 84 with each tree s € T according to the rule

w(o,s) = (050, 081,...,08m) €T.

ExaMPLE 2.7 (Phylogenetic trees). The problem of determining phylogenetic
relations among certain species using nucleotide sequence data is central to studies
in molecular evolution. In the work of Evans and Speed (1993), each tree is a
candidate for the true phylogenetic tree describing the m-generation evolution of the
observed present-day species corresponding to nucleotide sequence sy,. Transition
probabilities along any branch can be obtained from the addition table

+|AGCT

AlA G CT
(2.11) G|G A T C|,

C|c T A G

T | T C G A

defining a commutative group (called the Klein four-group) in the alphabet or base
et A = {A,G,C,T}. In fact, let x indicate a probability law in A and define,

Pi(u) =x(u—t), tueA
Then

ZPt(u)= Zx(t—-u): Zx(t+u)= Zx(u):l,

ucAd uc.A ueA ueAd

the next to last equality being justified by observing that the orbit Oy = {t+u;u €
A} of t coincides with A for all t € A. Consequently, P; is a transition probability
for each t € A, and the matrix X with entries X, = x(t—u) determines a transition
probability matrix for each fixed probability law x in A, This leads to certain classes
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of transition matrices, such as the Kimura three-parameter model

| A G c T
All- 2oueax(u) x(G) x{C) x(T)
X=| G| x(A) 1= eqx(u) x{T) x(C)
C| x(C) x(T) 1-3 cax(u) x(G)
T | x(T) x(C) x(G) -3 cax(u)

The factorization of branching probabilities can be obtained from the action of the
Klein group on 7. For example, the branch GATA from the tree illustrated in the
above diagram has probability

P(GATAx) = x(A — G)x(T — A)x(A — T) = x(A + G)x(T + A)x(A + T)
= x(G)x(T)x(T) = x(G}x*(T),

and is mapped into the branch (GG){GA)(GT){(GA) = AGCG under the composi-
tion with ¢ = G. In turn,

P(AGCGx) = x(G — A)x(C - G)x(G — C) = x(G + A)x(C + G)x(G + C)
= x(G)x(T)x(T) = x(G)x*(T),
50 that these two branches are similar and the probability law P preserves the

invariance. The study of these and other invariants is present in the work of Evans
and Speed (1993). O

EXAMPLE 2.8 (Numerical trees). The Euclidean Algorithm for determining the
greatest common divisor of two integers y;,yz is based on repeated iterations of
F(y1,y2) = (min {y1,y2}, max {y1,y2} — min {y1,y2}).
Starting at y' = (y1, ¥2), after £ steps the calculation is at the point
F(y) = Ms(£) ... Ms(2)Ms(1)y,

for some mapping or branch s: {1,2,...,£} — {t, 1}, where

01 10
t= , and M= .
10 -1 1

At each step, s{j) permutes components of y into increasing order and M subtracts
the first (smallest) component from the second (largest) component. The calcula-
tion stops when the algorithm reaches (d, 0), in which case d is the GCD of y;,y2.
Selecting y according to a probability law turns the number £ of steps necessary to
reaching the GCD is a random variable and s(j) into a random permutation matrix,
1=1,..., ¢ For example, if y* = (24,67), then, after £ = 11 steps determined by
the mapping or branch

s=(s(1),...,s(11)) = (1,1,¢,¢,1,1,¢,%,1,1,1),
we obtain

1
Fli(y) = [ . } = MigM!gM3eM gM2y,
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o that 1 is the GCD of (24,64). The exponents [2,1,3,1,4] in M generate the
simple continued fraction expansion
67 1
5 =213 L4=2+ -
1+ 1
3+ -7
1+ 1

of y1/y2 and can be obtained by the lengths of rises (runs of 1's) and falls (runs
of t's) in s. Conversely, after £ steps starting at a given point {d,0), there are 2¢
branches

BB | Bt*®), B=M"!,

connecting yo = (d,0) to 2¢ points y(s), and such that the GCD of y(s} is d. One
event of interest is, for example, the random distance x(s) = ||y(s) — yo||, where
vo is selected according to a probability law. Then, the set of 2¢ branches can be
factored by equivalence relations

Bgs(l)Bgs(2) . Bgs(é) ~ Bgsa(l)Bgsa(2) . Bgsa(é)’ o € 8¢

imposed by symmetry transformations ¢ € 3¢, as outlined in the previous examples.
O

2.11, Ordered structures

Let C be a completely ordered set with ¢ objects, {t,u,v,...}. The set V of
all mappings from L (with £ labels) describes all the possible patterns of ordered
observations for finite sets such as . More specifically, observed s € V, there is
one permutation T € 8¢ ordering the components of s, that is,

sT(l) < s7(2), < ... < s7(€).

These are called ranking permutations and arise in the linear representation of order
statistics and induced order statistics. In particular, the space of all mappings from
L to L describes all possible patterns of repeated entries on any vector with £ objects.
Also of interest here is the study of the relation between the probability law for s
in V and the resulting probability law for the ordering permutations 7 in 8,.

2.12. Superimposed processes

Let j € {1,2,...,£} be the label for £ distinct cell types and i € {0,1;. ..,c}
indicate the frequency with which these cell types are present in a cell configuration
sin V. For example, in any cell configuration s € V:

(1) s(j) is the number of j-type cells in s;

(2) ¥;s(3) is the total number of cells in s;

{3) |s~1(i}| is the number of distinct cell labels present exactly i times.
The only available data, x = x(g), are the cell variety x; = |s~1(i)}, i=
1,...,c. The objective is making inferences about the superimposed random process

Ef=1 s(j), which describes the total number of cells, given the data x; and a prob-
ability model in V,
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2.13. Summary

We have introduced the basic components for the analysis of data indexed by
a discrete structure. In the examples above, we considered structures such as the
mapping space V = Cl, which includes the three basic operations in data reduction,
namely,

{1) Selection, when ¢ < ¢ and V is restricted to injective mappings;

{2) Amalgamation, when £ > ¢ and V is restricted to surjective mappings;

(3) Relabeling, when £ = ¢ and C" is restricted to permutation mappings.
This includes all problems of data indexed by (the permutation) groups.

Other discrete structures of interest are V=L x C, and V = L U C, for example,
where L and C are finite sets. The points s € V are labels making possible the
identification of potential events, where some annotation or realization

x:5€Vox(s)eV

is obtained. Typically, V is an affine subspace of & real or complex vector space.
Experimental questions dictate the symmetries of interest- typically those defined
by a finite group {G) of transformations. These sytnmetries when applied to the
labels in V, according to a definition rule ¢, simplify or factor these labels into
disjoint similarity classes

V=0,U...U0,

which, in turn, can be represented as linear transformations in the data vector
space V. These linear transformations are permutation matrices, p(g), defined by
the similarity relations, or, equivalently, defined by the changing of the canonical
basis {ez;5 € V} of V = RY into the basis {e ¢, q):8 € V], for each ¢ € G. The
resulting factorization

V=V1®...0W

in the data vector space is the consequence of defining a set of orthogonal projections
(P}, which are linear combinations of these permutation matrices p(o)}, for o € G,
and real or complex scalar coefficients. In particular, if there are h of these linear
combinations (projections), then

I=P1+Ps+...+Pn,
so that the classic analysis of variance,
= xX"Pix+ ¥ Pax + ... +x'Phx,

obtains.

The probabilistic setting includes a probability law, P, for the observable ran-
dom component x{s) € V, which is then indexed by s, ¢ and G. The labels s € V
may also be random, and a probability law, w, in V describes the uncertainty in s.
Thus, the probability model for cbservables x taking values in V is

P={P(|s):s€V,p,G}.

Within the Bayesian framework, observables, x, and non-observables indices {or
parameters), s, are treated with equal relevance. The goal is deriving inferences for
x and s, given observed data and a factorization of ¥ determined by the symmetries
in G and the composition rule (.
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Further reading

(1) The reader my consult Snedecor and Cochran (1989) for the basic notions
of classical statistical inference, including the analysis of variance;

(2} The statistical aspects of quadratic forms (needed for the second-order
analysis associated with the canonical projections) are developed, for ex-
ample, in Rao (1973);

(3) The notion of points as labels identifying potential events appears in
modern-day physics, in contrast to Newton’s views in which points are
essentially indistinguishable. A comment in that direction is found in
Cartier (2001);

(4) The classic work of Fisher (1947) on the theory of linkage in polysomic
inheritance;

(5) The characterization of cyclic symmetries in the study of purine and
pyrimidine contents of local nucleotide sequences for evolution of human
immunodeficiency virus type 1 is present in the work of Doi (1991);

(6) The works of Dudoit and Speed (1999) on linkage analysis and of Evans
and Speed (1993), Billera, Holmes and Vogtmann (2001) on phylogenetic
trees;

(7) The literature on the many aspects of symmetry in science and methodol-
ogy is overly extensive. It ranges from studies considering the role of sym-
metry in beauty and evolution, e.g., Enquist and Arak (1994), anatomic
symmetry between fellow eyes, e.g., Pauleikhoff, Wormald, Wright, Wess-
ing and Bird (1992), parallel visual processes in symmetry perception
in normal vision, e.g., Wagemans {1999), symmetry discrimination, e.g.,
Szlyk, Seiple and Xie (1995), Szlyk, Rock and Fisher (1995), visual sig-
nalling by asymmetry, e.g., Swaddle (1999), Tyler (1996}, to the works
of Graf and Schachman {1996) on random circular permutations of genes
and polypeptide chains and of Hellige (1993) on hemispherical asymmetry.
See also
hppp:/ /mathforum.org/geometry/rugs/resources/biblio/ss. himl
for a bibliography on symmetry and pattern;

{8) Symmetry and the covariance structure of symmetrically dependent ob-
servations, e.g., Lee and Viana (1999), Viana and Olkin (1998), Viana and
Olkin (2000), Lee (15998);

(9) Invariant measures in groups and their uses in statistics e.g., Wijsman
(1990);

{10) Invariance in factorial models, McCullagh (2000}, quotient spaces and
statistical models, McCullagh (1999);
(11) Algebraic statistics, e.g., Pistone, Riccomagno and Wyinn (2000},

Exercises

2.1. Following the notion from Section 2.10, consider the space T of two-

generation binary trees with nodes indexed by the alphabet {u,v}. Here is one
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element s € T;

u <y .
(1) Determine the number |7T| of elements in T
(2} Determine the orbits of 7" under the composition rules
(8) ¢1: (so,81} — (osp,081), & € 85a;
(b) w2: (s0.51) — (os0,m51), 0,7 € Sy;
{c) w3: (s0,81) — (s0,8177 1), 7 €8s






CHAPTER 3

Algebraic aspects

3.1. Introduction

In this chapter we will review those concepts of linear representations of finite
groups which are of interest to the analysis of structured data. In earlier chapters we
have discussed a number of examples introducing a structure V, e.g., the mapping
space, a group G of symmetries, and a rule ¢ for composing the symmetries (7)
with the elements (s) in V, such as position symmetries s7—1. In addition, at each
point 5 of V we measure something, obtaining the data {x{s);s € V}. For example,
Matrix 3.1 shows a frequency data x(s) observed at each one of the 16 two-sequences
in length of four.

s(1) |y]| u]

Yy u u y ¥y ¥y uwu u|ly y y u

s(2) |y| ul| n u ufly u u y y uly y uy

(3.1) @ |y| ufw y uluwy w oy w yly uwyy
s(d) |y]wfu u uw y|luu y wuy ylu ¥y y

x(s)— | 552 18 12 15 17|16 6 10 11 9 12|5 1 4 5

Fix any s € V, say s = yyuu, and consider the sequences obtained by composing
yyuu with each permutation {r) in 84 according to the rule s7—! (pesition symme-
try). The resulting sequences are shown in the column corresponding to s = yyun
in Matrix (3.43) in Section 3.15, Tables and Graphic Displays, at the end of this
chapter. The following matrices show the resulting frequency data x(s7~!), as a
function of the permutations 7 € S4:

ror x| 7 (st | 7T xfsT1) 1
1 16 | (243) 10 | (13)(24) 12
(34) 16 | (123) 11 | (14)(32) 12
(23) 6 | (129) 9 | (1239) 11
(24) 10 | (132) 6 | (1243) 9
(12} 16 | (139) 11 | (1324) 12
(13} 1| (142) 10 | (13)(42) 16
(14} 5 | (143) g | (14)(a2) 10

L (234) 6 | (12)(34) 16 | (1423) 12 |

Consequently, we may associate to each s € G a scalar-valued function 7 — x(s7~!)
defined in the group G. The study of the vector space G of scalar (vector, matrix
or operator)-valued functions defined on a group G is, therefore, of natural interest
to the analysis of structured data and their symmetries. In the following sections
we will study a number of these functions, leading to the theorem describing the
projections in the vector space of the measurements x(s) obtained at the structure

43
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of interest, V. In the sequence, unless indicated otherwise, all groups are finite. We
write |G| ot g to indicate the number of elements in the group G.

3.2. Groups and homomorphisms

Civen two finite sets C and L, we indicate by CY the set of all mappings s
defined on L with values in C. We indicate by Sy, the set of all bijective mappings
defined on the set L. These mappings are the permutations of L. In particular,
when L = {1,2,..., £}, we write S to indicate these permutations.

DEFINITION 3.1. A group is a nonempty set G equipped with an associative
operation, * : G x G — G, and an element | € G, satisfying:

(1) Lxr=7x1, forall T € G;
(2) for every T € G, there is an element L e Gsuch that 747! =77 tar =
1.

A commutotive group is one in which the operation is commutative (the term
abelian is also common in the literature}, A subset of G which is a group under *
is called a subgroup of G,

ExAMPLE 3.1. The set Sg, together with the operation of mapping composition,
defines the group of permutations on the integers {1,...,£}. Similarly, S, together
with the operation of composition of functions is a finite group. a

EXAMPLE 3.2. The group of permutations Sz is a group of order 3! = 6 (the
number of elements in the group). We write (12) to indicate the permutation
1 - 2
2 — 1}, and similarly

3 =+ 3
[1 — 3] 1 = 1
3)=2 - 3|, @H=]2 — 3|,
13 — 1] 3 = 2
1 — 2] 1 = 3
(23)=[2 — 3|, y=l2 - 1
3 — 1] 3 — 2

Usually, 1 denotes the identity permutation. The permutation = * o is obtained by
first applying 7 followed by o, e.g., (13) » (23) = (123),

1 - 3 1 - 1
(123)= |2 — 2| followedby |2 — 3
3 -1 3 - 2
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The multiplication table for Sy is shown in Matrlx (3.2), where the permutations
12

are indicated by 1 =a, (12) = b, (13) = ¢, (23) = d, (123) =, (132) = {.
[+|a b d e []
ala b c d e f
blb a e [ ¢ d
(3.2) c|c f a e d b
d|d e f a b ¢
ele d bc [ a
[ f|f ¢ d b a e]

The cyclic group G is characterized by the fact that all its elements have the form
ck, for some element ¢ € G. Clearly, then, clyclic groups are commutative. The
cyclic group C3 = {1, (123), (132)} is a commutative subgroup of S3, of order 3. O

ExaMpPLE 3.3 (Matrix groups). The set GL(R"} of n x n nonsingular (i.e.,
nonzero determinant) matrices with real entries is a group under the operation of
matrix multiplication. The order of this group is not finite. The set M,, of n x n
permutation matrices® is a finite subgroup of GL,(R), of order nl. 0

EXAMPLE 3.4 (Groups given by a presentation). The following groups are de-
fined by their presentation relations (see Exercise 3.2):

{1} The dihedral groups, Dap =< a,b: a® = 1,b% = 1, (ab)? = 1 > of order
2m;

(2) The quaternion group Qs =< a,b;ja* = 1,b% = a% bab™! = a7! > of
order 8;

(3} The quaternion groups Qgm =< &,b;a?™ = 1,b% = a™,bab~! = 27! > of
order 4m, often called generalized quaternions.

O
EXAMPLE 3.5 (Direct product of groups). Given two groups (G,-) and (H,+),
the set product G x H = {(r,0); 7 € G,o € H} together with the operation
(r,e) x (n,m}=(r-m,0% 1),
is a group, calied the product group of (G, ) and (H, *). 0

DEFINITION 3.2. Given two groups G, H, a homoemorphism from G to His a

function p : G — H preserving the group structure, that is,
plr-ay=p(r)xplo), forallr,e €@,

An isomorphism is an invertible homomorphism. When G = H, the isomorphism
p is called an automorphism in H. The kernel of a homomorphism p is the set of
those elements in G mapped into the identity element of H, that is, ker p = {7 €
G;p(r) = 1.

Note that when ker p = {1} then the homomorphism g is an isomorphism onto
its image in H. In fact, p(7) = p(r) implies

plro=1) = p(r)p(o™") = ple)ple™) = p(1) = 1,

1A permutation matrix has exactly one entry equal to one in each row and column, and all
other entries equal to zero
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so that e~ € {1}, or, 0 =T.

EXAMPLE 3.6. The permutation group S is isomorphic to the matrix group
Mg to each permutation 7 in Sg we associate the permutation matrix r in M,
defined by the changing of basis

{e1,ez,...,8¢} — {er1,er2,. . . 8re}

in B¢, We then have r,, = I;lo, for all 7,0 € Se. In S, for instance, (123) =
(13) * (23} and )

010 1 ¢ 0] [0 01
F123) = 00 1j=|0 ¢ 1 0 10 = T(23)I(13)-
1 00 010 (1 00
O

EXAMPLE 3.7. Let V indicate & vector space over the field € of the complex
numbers, and GL(V) the group of automorphisms of V. The elements of GL(V)
are the linear mappings, o, with inverse denoted by a~!. When V has a finite
basis {e1,€a,...,8v}, each linear mapping « is represented by a matrix A, with
cosfficients a;; defined by

afe) = Zaijei.
1

O

EXAMPLE 3.8. Recall that a scalar product on a vector space V over the com-
plex field C is a function { , ) : ¥ x V — C such that, for all x,y,z € V and
AeC,

(1) (x +Y:z) = (X,Z) + (ysz')a

(2) (Ax,y) =Ax¥),

(3) (x: Y) = (er)v

{4) (x,x)>0ifx#0.
For each y € V, define y* : ¥V — V by y*(x) = (x,y). Then clearly y* is a
homomorphism of V and the mapping y — y* is an isomorphism from V into
GL(V). In fact,

(X+Y)‘(z) = (zvx+y) = (x +y,z) = (X, z) + (Y:Z) = (Z,X) + (ZlY) = xk(z) 'll'y*(z),
and because [y*(y) = (y,y) > 0 if y # 0] implies that [ker (y — y*) = {0}], the
isomorphism obtains. |

EXAMPLE 3.9, Fix any member 7 of a group G and define the mapping 7* :
G — G by 7*(¢) = 7o~ . Then, for every T € G, the mapping 7* is a Isomorphism
in G, and the mapping v — 7* is 2 homomorphism of G, taking values in the set
Aut (G) of automorphisms in G. The mapping 7* is usually called the conjugation
by . O

DerNiTioN 3.3 (Semidirect product of groups). Given two groups G and 1,
let * Indicate an isomorphism of G indexed by an element 5 € H. For {r,0} and
{r1,01) in G x H, define the operation

(T,O') Xy (1-1101) = (TW*(Tl)io-al)'

Then, G x H, together with X, is a group, called the semidirect product of G and
H under 5.
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3.3. Group actions
DEeFINITION 34. Given a set V and a group G, a group action is a function
p: G x V-V satislying
(1) w(1,s) =s, forall sin V,
(2) (o, ¢(r,s)) = plo7,s), foralls €V, 7,0 in G.

The orbit O of an element s € V generated by G under the action g is the set

(3.3) 0, = {p(r,s)i7 € G}.

We also define the set

(3.4) fix (7} = {s € V;(r,8) = s}

of elements in V that remain fixed by 7 under the action ¢, and the set
(3.5) G = {r € Gjp(r,s) =5},

of elements 7 € G fixing the point 5 € V. This éet is the stabilizer of s by G under
. It is then easy to check that
(3'6)‘ |Gl = |OE”GS|'
Moreover, note that G, is a subgroup of G:

(1) 1€ Gy

(2) 7,0 € G, implies p(ro,s) = p(r, plo,s)) = ¢(r,8) = 5;

(3) 7 € G, implies 5 = (l,5) = p(r71,8) = !, p(r,8) = p(r~1,s),

that is, 7= € G,.
(i, is also called the isotropy group of s in G under .
When the orbit O, of an element s € V generated by G under the action ¢

coincides with V we say that the action ¢ is transitive, or that G acts transitively
on V.

ExAMPLE 3.10. Let V indicate the set V = {uu,yy,uy,yu} of two-sequences
in length of two, equivalently, the set of all mappings s from {1,2} into {1,2,}.
Let the group G be 8z = {1,(12)}. Tle reader may verify that (7,s) = sr?
and q(c,s) = os are actions of Sp on V. Action ¢, classifies the sequences by
symmetries in the position of the residues, whereas p, classifies the sequences hy
symmetries in the labels or names of the residues. The evaluations of these actions
are summarized in the following matrices:

7\s Juu yy uy yu \s fuu yy uy yu
PL: 1 |uu yy uy yu |, ¢z 1 |uu yy uwy yu
{(12) |uu yy yu uy (12) |yy wo yu wy

The action on the left, s7—!, generates 3 orbits {uu}, {yy} and {uy,yu}, whereas
the action on the right, os, generates 2 orbits, {uu,yy} and {uy,yu}. Now let
G = 83 % Sg, the product group, and w3({t, 7),s) = osr—!. We obtain,

{r,o\s Juu yy uy yu
(1,1} |uu ¥y uy yu

pa: | (L(12) |uw yy yu wy |,
((12),1) |yy uwa yu uy
((12),(12)} | yy wu uy yu
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with two resulting orbits {uu, yy} and {uy,yu} (see Exercise 3.10). O

ExAMPLE 3.11. Let F(V) indicate the vector space of scalar-valued functions,
x, defined in the structure V. Defining @ : G x F(V) — F(V) by (o, x)(3) = x(os),
we obtain an action of G on F(V). To see this, ¢(1,x) = x and

wlo, o(r, x))(s) = p(r,x}os) = x(7(09)) = x((r0)s) = ¢(ra,x)(s),

for all s € V. Similarly, ¥ : G x F(V) — F{V) given by v{r, x){s) = x(st~}), is a
(contravariant) action of G on F(V). In fact, ¥(1,x) = x and

1o, 7(r, x))(8) = 1(r, x)(s6™") = x(so™1771) = x(s(ra) ) = y{ra, 8)(x),
for alls € V. a

3.4. Counting orbits

The lollowing classical result says that the number of orbils in V generated by
the action @ of G equals the average number of fixed poinis of .

LiMMA 3.1 {Burnside?). If o finite group G acts on V according to p, then

Numnber of orbits in V = — Z Jfix (7))
lGI 7€G

Proor. Let A = {(r,58) € G x V;p{r,s) = s}. First calculate the number |A|
of clements in A as

(3.7) |A] =3 |Bx (7)].
TG
Sccondly, writing # == number of orbits in V, evaluate this same number as

(38 1Al = ZIC‘IﬁZIO!IGI Zlml'g‘l—uxim.

sV .
From equulities 3.7 und 3.8 the result then :foilows. O
Matrix (3.43) in Section 3.15 shows thé left action of S4 on the space V of all
two-sequences in length of four. Also shown are. the volumes of fix(s) and of G..
EXAMPLE 3.12. From Matrix (3.43), with G = 84, it follows that
; 1 120
Number of orbits of V = Ta ; | ix(e) |= o= 5,

namely (indicaling the mappings by their labels},
O = {1},
C)1 = {9151 3:2}r
@, = {13,11,7,10,6,4},
T O3 = {15,14,12,8},
O, = {16}
2William Burnside, Born: 2 Juily 1852 in London, England. Died: 21 Aug 1927 in West

Wickham, London, England. Among his applied mathematics teachers at Cambridge were Stokes,
Adams and Maxwell. The Lemma was actually proved by Frobenius in 1887
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In addition, because [O;] = [G|/]|Gs,|, we have

0ol = 24/24 = 1,
O] = 24/6 = 4,
|02 = 24/4 =6,
|Oa] = 24/6 =4,
03] = 24/24 = 1.

a

EXAMPLE 3.13 (Order-four orbits of eyclic subgroups for two-sequences in

length of four). These orbits are also called cyclic orbits. Following Example 3.12,

consider the left action of C4 = {1, (1234), (13)(24), (1432)} on the mapping space
V. The resulting action, shown in Matrix (3.9),

Cs\s Il 16 15 14 12 & 13 1 7T 10 6 4 9 5 3 2
1 |1 16 15 14 12 8 13 11 7 10 6 4 9 5 3 2
(39) ] (@)24) |1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 5
(1234) ]1 16 14 12 8 15 10 6 13 4 1t v 2 9 5 3
(1432) |1 6 8 15 14 12 7 6 4 13 11 10 5 3 2 9
lead to the orbits (indicating the mappings by their labels)
@0={1}|
0, ={9,5,3,2},
Oy = {13,7,10,4}, Oa = {11,6},
03 = {15,14,12,8}, ,
04 = {16}

We note that C, splits the original orbit @z under S into two new orbits, (9g; and
Og2, s0 that Og; U Oz == 5. There are many more cyclic symmetries and orbit
configurations. O

EXAMPLE 3.14. Diliedral orbits for two-sequences in length of four. Following
Example 3.12, consider the left action of the group Dy on the mapping space V.
Recall that Dy may also be realized as the group of rotational and axial symmetrjes
of the regular rectangie. The resulting actions are shown in Matrix (3.10):

(3.10)

Di\s | 1 16 15 14 12 8 13 11 7 10 6 4 8§ 5 3 27
1 |1 %6 015 14 12 8 13 11 7 10 6 9 5 3 2
(40 |1 16 15 8 12 4 ¥ 1 138 4 6 10 3 5 9 2
(13) {1 16 12 14 15 8 10 11 4 13 6 7 9 2 3 5

az@E) |l 16 14 15 8 12 13 6 10 7 11 5 9 2 3|,

(uayza) f1 16 12 8 15 14 4 11 10 7 6 13 3 2 9 8
(14)(23) [1 16 8 12 14 15 4 6 7 10 Il 13 2 3 5 9
{12a4) |1 16 14 12 8 16 10 6 13 4 11 7 2 6 5 3

| (1432) |1 16 8 15 14 12 7 6 4 13 11 10 5 3 2 9 ]

which shows that Dy and C4 generate the same set of orbits. |

ExXAMPLE 3.15. Orbits generated by cyclic permutations of order 2, for two-
sequences in length of four. Following Example 3.12, consider the left action of
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G = {1,(13)(24)} on the mapping space V. The resulting action, shown in Matrix

G\ulllﬁ 15 14 12 8 13 11 7T 0 6 4 9

5 3 2
(3.11}) 1 |l 6 15 14 12 8 13 1 7 10 6 4 9 5 3 21,
ayeay |51 16 12 8 15 14 4 11 10 7 6 13 3 2 8 5
- aned correspomding orbits,
0y = {1}, ’
Oy = {0,3}, Oy ={5,2},
Oy = {13,4}, Ouz={7,10}, Ou = {11}, Oy = {6},
Oy = {14,8), Oz = {15,12},
04 = {16},
show that G lurther splits the original order-4 cyclic orbits into additional, smaller
orbits. 0

ExAMPLE 3.16 (Maxwell-Boltzmann and Bose-Einstein counts). Following 15x-
ample 1.5 of Chapter 1, define two mappings s and f in the mapping space V = C
us equivalent whenever st~} = [ for some permutation + € 8. That is, s and [
differ only by » permutation of the pesition of the (c = [C|) symbols in C. The
arbits Ofs) = {sr~};7 € 8;} decampose the space V into the sum

(3.12) V=0,U...u0,,

where each of Lhese cotnponents is soine €(s), m is the number of elementary frames
A = (ny,..., 1) or non-negative integer solutions ny,...,n; of £ = ny + ... + ng
subject to € 2 1y 2 ... 2 nc = 0, and Oy,..., O, are disjoint unions of orbits
whose members share a particular frame. The orbits in the quotient space

V/8:={01,...,04}

defined by (3.12) are left periutation orbits. Permutation orbits obtained from the
action os, o € S, are defined similarly. To illusirate further the orbit decomposi-
tion, congider the case in which the mapping space V = Gl represents the possible
compositions of an urn with four inarbles with labels in the set L = {1,2,3,4} and
colored with colors in the set C'= {red (o), blue (»),green (¢)}. Two urn composi-
tions are defined as equivalent when they differ only by relabeling of the marbles.
That is, Sq acts on Lhe left of V according to st~!. Start with the elementary
frames: There are m = 4 of those (see Exercise 3.20), namely,

AJ‘ = (41010)! A'Z = (31110)3 Ali = (2:2:0)1 ’\4 = (2: I, 1)
Define the components of frame A = (ny,ng,...,n.) to be the distinct inlegers a;

in the frame A, and k = k(A) to be the number of such components. Indicate by

{m1,...,m) the multiplicities with which the k distinct components of each frame
occur. With that notation in mind, each frame can be written as

! A= (™)L e,

We then write A; = 402, Xy = 810, A3 = 220, A4 = 212 In correspondence

with (3.12), we obtain the decomposition ‘

m |

! : | cl
Vi=cf= =

'g = ;'Od ZA:(all)“‘l(azl)“‘z...(a.kl)"‘k S~
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of the Maxwell-Boltzmann count ¢f into the volumes of the orbits in V /8¢ and their
multiplicities. In the above decomposition, A varies over the m different frames,
that is, ma; +... + mgay = fand my +... + m = ¢. Moreover,

Z c! — (c+l—1)
3 milms!... my! ¢

decomposes’the Bose-Einstein count {g"'“l) into the sum of the number
c!

Q= mllmg! cer IHk!
of quantal states associated to frame X. Writing
2!
farlym(mpl)mz (o))’
and v(A) = 2,Qx we have ¢ = 37, v(A). Direct computation leads to
O] =3, [P =24, |03 =18, |O4] = 36.

The reader may verify the following correspondence among frames,, orbits and urn
compositions:

{(3.13) Q=

A=40%,  O, {o o o o}
A=310, O3, {o o o}
A=2%, Oy, {o o e}
A=212 O, {o o e o)

Moreover, the volume of the orbit associated with frame A = (ng,...,n.) further
decomposes in terms of its subframes of size ¢ — 1. In the present example,

|01] = v{4,0,0) = (1)v(0,0) + (5)v(4,0) = 1 +2,

|02 = v(3,1,0) = )v(L,0) + (})v(3,0) + ()v(3,1}) = 8+ 8 +8,
03] = v{(2,2,0) = (3)v(2,00 + $)v(2,2) = 12 +6,

104] = v(2,1,1) = (3)v(1, 1) + ())v(2, 1) = 12 + 24.

The resulting partition of V according to ecolor-only attribute is defined by the
number |Ajj| of conligurations in which all j marbles have color i. In the present
example, j=0,1,2,3,4, i € {red, blue, green}, and

|Aig] = (@)[v(4,0) +v(3,1) + v(2,2)] = 16,
[Ai] = (Dv(3,0) + v(2,1)] = 32,

lAi2] = ($)[v(2,0) +v(1,1)] = 24,

Al = ($)v(1,0) =8,

|Aia] = ($)v(0,0) = 1.

If the urn compositions are equally likely, or, equivalently, if the points in V are
uniformly distributed, the resulting probabilities

wi(j} = P[all j marbles have the same color i]
in V /84 are

wi(0), wi{L), wi(2), wi(3), wi(4)) = gll—(lﬁ,sz, 24,8, 1).
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3.5. Linear representations

Given v € G and an action ¢ : G x V = V, note that the evaluations 7*(s) =
(T, 3), 8 € V, define a permutation in V. In fact, p(r,s) = p(r, 1) implies

8= V’(Tulvﬁa(’r: s)) = ‘P(lei (P(Ts f)) =
Moreover,
ot (s) = (1, plo,8)) = p(ra,s) = (ra)"(s),
g0 that the mapping 7 € G =+ 7° € Sy is a group homomorphism. We thus have
ProrosiTion 3.1, If G acts on V according to i, then the evaluations 7°(s) =
w(r,8), 8 € V, are permutations in V, for all = € G. Couversely, given a homomor-
phism T — 7*, the mapping 7* (s} = (7, ) defines a group action on V.
The argument justilying Proposition 3.1, when applied with V = G leads to
Cayley's Theorem:

THEOREM 3.1 (Cayley, 1878). Ivery group G is isommorphic to a subgroup of
Se. If G is finite with € elements, then G is isomorphic to a subgroup of S,.

Proposition 3.1 shows that the mapping v — 7° defined in G with values in
Sy is & homomorphism from G into Sy. Correspondingly, let {e,;s € V} indicale
& basis for the vector space RY, indexed by the elements of V, {er.(y);s € V} Lhe
new basis determined by +*, and

p(r): {eus € V) = {ergis €V},

the nonsingular matrix representing the changing of basis. Then, p is a group
homomorphism from G into GL(RY).

DEFINITION 3.5. A linear representation of a group G in a vector space Vis a
group liomomorphism from G into GL{V).

Note that every linear representation maps the identity of G into the id(,ntity
matrix (or operator) of GL{V), that is, p(1) = I. Also, it maps the inverse 77! of 7
into the inverse p(7)~! of the linear operator p{7), tlmt is p(t™1) = p(7)~. Usually,
the dimension of p indicates the dimension of the corresponding vector space. Also
" note that if p is o representation of G, then B, defined by A(r) = B~ !p(+)B is
also a representation of G, for every non-singular matrix B of dimension equal to
the dimension of p. Any two such representations, oblained one from another by
u changing of Lasis, are called equivalent or isomorphic representations. We write
¢~ B to indicate that p and @ are equivalent®,

ExaMPLE 3.17 {One-dimensional representations). The principal or trivial rep-
resentation: p(r) = 1, for all 7 € G. The antisymmetric or signature representation
of 8g:

1 il the permutation 7 is even;
plr) = {

if the permutation 7 is odd.
]
|
IMost of the theory bf linear representation of finite groups have the equivalent result formu-
luted for infinite groups, in which we would look at p us linear operators. In the present discussion,
we often write or think of p as the notation indicating the representation in its matrix form. At

times, however, the broader interpretation of p as a linear operator also applies. We may write py

. or p(7} without distinction. For example, p(7)12 indicates the entry (1,2) of the representation p
evaluated ot T,



3.5. LINEAR REPRESENTATIONS 53

EXAMPLE 3.18 (The regular and the permutation representations), The regular
representation is defined by the action ¢(r,¢) = 70 of G on itself. The matrix
representation is that changing the basis {e;;o € G} into {erp;0 € G}. The
dimension of the representation is [G|. More generally, if G acts of a set V with
v elements, the representation defined by G acting on the basis {ey;s € V} of RY
according to (7, 65} = eyrq) is referred to as the permautation representation of G
acting on V. The dimension of the representation is v. When G = S, acts on V =
{1,2,..., 8} according to p(r,i) = 7i, the matrix representation is that changing the
basis {e;;i=1,2,...,¢€} into {en;i=1,2,...,¢}. Its dimension is £, To illustrate,
consider 83 and the element 7 = (132). From the multiplication matrix of S3 shown
in Matrix (3.2), the basis indexed by {1, (12), (13), (23), (123), (132)} is changed,
under the regular action, to the basis indexed by {(132),(13), (23), (12), 1, (123)}.
The regular representation then maps (132) to the matrix

[0 0 0 0 0 17
1 0

0 0

Plzzy = 0 0

0 0

=R =N
oo o o

0
0
0
1
¢

o o = o o

6010

Similarly, the basis indexed by {1, 2,3} is changed, under the permutation action,
to Lhe basis indexed by {1, 3,2}, so that the permutation representation maps (132}
to the matrix

0 01
a2y = 1 0 0
010

The permutation representation of Sy acting on the space of two-sequences in length
of two according to

T\s [ wu yy uy yu
@1 1 |un yy uy yu
t = (12) | o yy yu uy

as discussed in Example 3.10, is given by

1 0 0 0 1 0 0 0
0100 01 00
p(l}) = 001 0l pt) = 00 0 1
0 0 0 1t 0010

The representation has dimension 4. Similarly, the permutation representation of
S, acting according to

7\s |uu yy uwy yu
P I fuu yy wy yu |,

(12) |yy wu yu wy
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leads to the representation

1000 0100
0100 1000
=10 g ol Y50 0 0
000 1 0010
Its dimension is also 4. O

EXAMPLE 3.10. The reader may verily that

ﬂl=[(', ﬁ’] pa=] o+ Bu=[7 “1'];

ﬁz:? = [mll _01]. Pz = [_01 _11], Bz = [_11 _01]

is a two-dimensional representalion of Sj.
ExXAMPLE 3.20 (The tensor representation}. Let p indicate the regular rep-

resentation of G = S, Write S2 = {1,1 = (12)}, so that p(1) = [{1] (1)] and

plt) = [(1) [1]] ‘The permutation representation of G acting on G x G according to

wlr,(e1,04)) = (Toy, Toy) is given by

L= lo=p(l)®p(1), teo [pol’) p(t)] = oty @ (L),

where @ indicates the Kronecker product of two matrices. Equivalently, for each
1 € 8g, these matrices represent the changing from a basis indexed by G % G to the
basis indexed by {(7e),702); (¢1,02) € G x G}. This new representation is called
the tenser representation of p with itself, and is indicated by p ® p. Its dimension
s {dim p)? = 4. Similarly, (7, (@1,02)) = (p1(7, 1), @2(T, 22)) defines the tensor
" representalion of lwo representations py and py of G, given, respectively, by actions
o) and s {lhe same construction applies to the tensor representation of ihiree or
more representations). . O

EXAMPLE 4.21 (The action of G on cosets of a subgroup H). Given a subgroup
If of G, consider the set G/H = {oH;o € G} of (left} cosets of H in G. Then, it is
easy to verify that ¢ : G x G/ — G/H defined by
(7o) = a(r~1H) = e~ 'H
is an action of G on G/H. O

Consequently, from Proposition 3.1, we obtain a representation p of G into
GL(R"), where n = [G : H] is the number of (left) cosets of H in G. In particular,
note that p{t) = I for ail € H, so that the restriction of p to H is the trivial
representation of S,,. ' Mareover, if T € ker p, we must have

alH=067"'H, i=1,...,n

or H = v~ 1H, which implies § = 7—'« for some 7,y € H. Consequently 7 = 5y~
H. This proves
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THEOREM 3.2. If H C G and [G : H] = n, then there is a representation p of G
into GL{R"}, with ker p C H.

EXAMPLE 3.22. Using the notation of the multiplication table (3.2) for S,
write 1 = a, (12) = b, (13} = ¢,(23) = d, (123) = ¢, (132) = {. In Theorem 3.2, let
H = {a,b} and G = 83, so that the cosets of H in G are aH = {a, b}, ¢H = {c, f}
and dH = {d,e}. The index [G : H] is 3. The action (v,sH} = o7~'H of 83 on
S4/S82, summarized in the following matrix,

" Sa|eH cH dH ]
a |aH cH dH
b |aH cH dH
€ ! dH eH cH |,
d|cH dH aH
e |dH af cH

[|cH dH oH

leads to the respresentation g of 83 into GL(R?) determined by

00 1 01 0]
m=p2=I pa=ma=|1 0 0], pa=pa2=(0 0 1},
. 010 1 0 0
in which ker p = H C H. The representation p is equivalent to the permutation
representation of Cy. a

ExAMPLE 3.23 (Action by conjugation). Indicate by G the set of all complex-
valued functions defined on a given group G. It follows that G is a vector space
over the same field, C. Define, for (a,x) € G x G,

ployx) =o* (x) €4,
wliere the mapping o*(x) takes 7 € G into x(oro~!) € C. That is, o*(x)(7) =
x(ora~!). The reader may verify that

(1) y is a group action;

(2) ¢* : G — G is a linear mapping in G, with inverse o1 g, foralle € Q.
That is, &* is an element of the group GL{G) of invertible linear mappings;

{(3) ¢:0 € G— o* € GL(G) is a group homomorphism.

The result is a representation ¢ of G in GL(G). D

EXAMPLE 3.24 (Category representations®). Consider the vector space £(V)
of formal linear combinations Y .y x(s)s of points in a finite set V, with, say,
real-valued coefficients x(s). If Sy acts on V according to ¢, then

P(r, Yo x(6)9) = Y x(s)e(r,s)

is an action of Sy on £(V). Note that all actions ¢’ have the same dimension,
namely, [V| = v. This is due to the fact that the permutations in Sy cannot
almagamate the (vectors indexed by) points in V. An example of amalgamation

4p. McCullagh, personal commaunication.
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was described earlier on in Chapter §, in which the initial alphabet of residues
{A,G,C, T} is amalgamated into A = {u,y} by the surjective mapping
f: A—-u, Gou, C+=y, Ty

Similarly, Sy cannot select and relabel a proper subset of V. A natural extension
Lo sets of permutations which includes all amalgamations is the category S of all
finite sets and all surjections between those sets. Similarly, the category T of all all
finite sets and all injective mappings between these sets includes all operstions of
selection or sampling. For instance, the mapping ¢ : {1,2} — {a,b, ¢} defined by
(1) = ¢, #{2) = b selects the proper subset {c, b} and relabels it as {1, 2}. In what
follows, we will outline the construction of a category representation of S,

A category representation of S is a special functor I [rom & into the category
K of linear transformations on vector spaces. Recall that the objects of § are finite

i
sets (V,V/, V¥ ), the morphisms are the surjective mappings V 2oy L, oy
and the composition is mapping composition. The objects of K are vector spaces,
the morphising are linear mappings, and the composition is mapping composition.
We now describe the object component Iy and the arrow component Fy of the
functor I™:

(1) I, aps objects V € S into the set £(V) of all formal lincar combinations
Yowev x(8)s of elemens s € V with coeflicients scalar fuctions x defined on
V. Becnuse £(V) is a vector space, we have F,(V) € K;

(2) Fy maps the morphism [V 2, V] € 8§ into
(3.14) [RY £=0) pv) e
where, by definition, ¢*(I) = [ o ¢ is the pullback mapping. To verify
(3.14), lirst note that RY' and RY are vector spaces. Moreover, @* is
linear. To sce this, for all [,z € RY', s € V, and sealars A,
¢ (1)) = T+ e)((s)) = [(d(s)) + gl(s)) = °(Ds) + &7 (8)(5)
= (4 (1) + " (@)(s),
that is ¢*([+g) = ¢*([) + 4" (g), aod
¢* (AN} (s) = (ADls) = AM((s)) = Ad™(£)(s),
that is ¢*(Af) = Ad* (). Therefore, (3.14) obtains;
(3) [V LAV V"] € & then
RV ¢ RV ¢ RV
(god)od  god g
satisfies Fa(d' o ¢} = Fu(@)Fa(d"). To sce this,
R o #)(e) = g0 (8 08) = (50 #) 0 4 = #"(go #) |
= Fa($){g o ¢') = Ful)}d" (g) = Fu()Fal#)(g),
so that Fy(g’ o @) = Fo(a)Fa (8.

Conditions (1)-(3), in addition to the fact that F(ly} = 1pgyy, show that I is a
contravariant functor from & into XC. It is a category representation. O
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3.6. Unitarily equivalent representations

In this section we review the notion of unitary representations and outline the
argument showing that every representation of a finite group is equivalent to an
unitary representation. Consequently, one may assume that a representation is
unitary.

Let g be a representation of G (with |G| elements) on a finite dimensional
vector space V over the complex field, in which a scalar product (| ) is defined e.g.,
Example 3.8. It is a simple verification that

IGI Z prx|p-y)

TEG

(3.15) (x,9)

is then an invarient scalar product in V. That is, (, ) is a scalar product and
(prx,pry) = (x,¥) for all 7 € G and all x,y € V. Consequently, (prx,y} =
(x,pr-1y), for all 7 € G and all x,y € V. Since the adjoint representation, f
of p is the (unique} representation defined by the equation

(3.16) {prx,y) = (x,p}y), forallT €@, forall x,y eV,
we conclude that

(3.17) Ph = pemi,

that is, the representation p is unitary. Moreover,

PrOPOSITION 3.2. The matrix form [p.] of p, is unitary with respect to the
scalar product (x,y) just defined, for all 7 € G.

PROOF. Let B = {y;,...,y¢} be an orthonormal basis for V, relative to the
invariant scalar product. Recall that the coordinate column vector [y} of y is given

by
(3.18) ] = (31, 3 y2)se o (v, ¥2)-

First we show that if [p;]z = R, then {p}];3 = R}, where RY indicates the conjuage-
transpose, or Hermitian transpose of matrix R. In fact, if

¢
pryi= Y diyi,

then, from equations (3.16) and (3.18), we have

4

dji = (pryi 33} = Op 2233) = oy i) = O ok (Phyieye) = By, forall x,y € V),
k=1

that is, [p}]s = ﬁ:. = RZ. As a consequence, from (3.17)

= [p)s = o7z = lorlz' =R,
that is, RrR, =1, for all € G, concluding the proof. ]
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ExAMPLE 3.25. We will construct the representation unitarily equivalent to
the two-dimensional representation of S3,

= [é ?]. B2 = [? é], Pz = [_01 -_11],
Bz = [_11 _01] , i = {_01 jl] » O = [_11 :)1]

illustrated eatlier on in Example 3.19. The invariant scalar product derived from
the Fuclidean scalar product ( | } in R? is

8 4]
(09) = X 6loes) = sy = [§ 5|y =wry

T

Next, starting with the canonical basis vy = (1,0}, va = (0,1) for R2, use Gram-
Schmidt to construct a basis {wy,wz} that is orthonormal relative to the invariant
scalar product:

(1) {lvil[? = v{Fvi = 8. Let w1 = vi/|ivai| = (v2/4,0);
-1/2 .
(2) wa is the normalized version of vz — wiFwy = Nt which has norm
V6. That is wy = (—v/6/12, 6/6).
The resulting new (unitarily equivalent) representation is then , = H-14,H, where
1/4v2 -1/12+6
H= .
0 1/6+/6

We obtain vy = I,

T2 =

1/2 1/4+/2v6 -1 0
[1/4\/§J€ -1/2 ] m=[ 0 1]’

1/2 —1/4+2v8 -1/2 1/4v/2v6
qmz[ml/fi«/i\/f's ~1/2 '”“2”[—1/4\5\/6 _1/2 ]

[ -1/2 —1/4\/5\/6}
Taz = .

and

1/4v2v8  -1/2
In each case we have y,v. = Iy, O
3.7. Stable subspaces

DEFINITION 3.6. Let p be a representation of G on GL{V) and W be a linear
subspace of V with the property that if x € W then p(r)x e Wlorall T G. In
this case, W is called a stable subspace of V.

Note that {0} and V are stable subspaces of V.

EXAMPLE 3.26. Let G = S3 = {1, (12) = t} and p its regular representation.
Starting with the basis {e1,1,e1,t,¢,1,€t,} for the tensor representation p® p, form
the new basis with components

vi=2e1,1, v2=2eps, Va=erp+esl, Va=€1s— el
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The regular representation, 2, of Sp acting on this new basis is given by

s 0 B 0
ﬁ(l)—' [I%' ’ ﬁ(t‘)"‘ [’ ;
0

1

0 0|. We observe that the representation 8 decomposes as the
0 01

sum of two components 8 and 8, given by

Al =15, Aut) =F, fel) =1, fot) = -1.

This means that the corresponding subspaces

where IF =

VJ_ =< V1, Ve, V3 >y VZ =<V >

are stable subspaces of R under 8. The direct-sum decomposition R? = V, & Va
justifies the notation @ = 3, & fz. We say that J is decomposable and that 8y and
Bz are its components. In addition, because, 4 and p ® g are equivalent, we write

PRp~=fP=0 0050
The subspaces (and corresponding representations) V; and V, are called, respec-
tively, the symmetric square (Sym®) and alternating square (Alt?) subspaces or

representations®. The study of group representations is concerned with describing
all inequivalent, indecomposable representations of a group G. 0

EXAMPLE 3.27 (The Sym® and Alt? representations). Let p indicate a represen-

" tation of G acting on V (with v elements). The basis for the tensor representation

2 ® p is indexed by the entries of the matrix V x V = {(s,f);s,f € V}. Let D indi-

cate the main diagonal of V x V and U its upper triangular part. The permutation
representation of G acting on the indices of the basis

{E(s.f) + €(f 8); (S, f) eébu U}

is the Sym? (symmetric square) representation of G. Its dimension is v(v + 1)/2.
The permutation representation of G acting on the indices of the basis

{es,n) — e (s, ) € U)

is the Alt* (alternating square) representation of G. Its dimension is v(v — 1)/2.
Moreover,

p® p =~ Sym?® @ AlsZ,
Here are the derivations when p is the permutation representation of the cyclic
group Cy: We have p(1) =L,

g 1 0 0 O 0 1 0
00 1 0 00 0 1

12M)) =1 = 13)(24)) =% =
p((1234)) =r 0001,9(()()) L1090 0l
1 0 0 0 01 00

and
00 0 1
' 1 00 0
1432) = 1% =
p(1432) 0100
00 1 0

]

|
5The respresentation Alt? is also called exterior square representation,
i
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Correspondly, p @ p{l) = Lig, p@ p(1234) = r®r, p® p{(13)(24)) = P @ 1*
and p @ p(1432) = 1 @ r®. The basis for p® p may be indexed by V x V =
{(0,0),(0,1},...(3,2), (3,3}}, froin which the two bases for the Sym-square and Alt-
square representations can be obtained. The indices for these bases are, respectively,

DU U = {(0,0),(0, 1), (0,2),(0,3).{1,1), (1,2),(1,3), (2,2), (2,3), {4,3)},

U= {(0, 1), {0, 2), (0,9), (1,2), (1,3), (2. 8)}.

The matrix generating the two new basis {eg,r) + e (s, 1) € DUU} and {eq —
ey (W) € UYis

2 0 0 0 00 0 0 000 0 600 0
© 1 0 0 10 0 ©0 000 0 00O 0
@ 0 1 0 60 0 © 100 0 0000 0
O 0 0 1t 00 0 6 000 O 1 000
0o 0 0 © 02 6 0 000 O 0 00 0
0 0 0 0 00 1 0 010 0 0000
0 0 © 0,00 0 1 00COC 0O 0100
0O 0 0O 0 068 0 0 00¢ 2 0 0O0TC0 0
B=l6 o o 0o 00 0 0 000 1 001 0|
0 0 0 0 00 0 0 000 O 000 2
g -1 0 0 1 0 0 0 000 0 00 0 0
¢ 0 -1 0 00 0 0 1 060 0 000 0
¢ 0 0 -1 060 0 0 000 0O 1 OO O
¢ 0 6 0 00 -1 0 0 10 6 0O0T¢0 0
0 0 0 00 0 -100O0 0 0 1C0 0
Lo ¢ o 000 0 000G -1 00 1 0]
from which we obtain,
Al 2(7) 0
=B{p@p)(T)B™! = (p@p)(r) = =
0 Sym *(1)

or, p®p = Alt?@Sym?. Denoting r = (1234), the components of the decomposition
are given by

D 000 100O0 0 0]
00 00OCT1000O0O0
00 00O0O0OT10 00
01 0000000 O

Sy12(T)=0000000100‘
1‘ 000 000O0O0TCGT1o0O
001 00GCGO0CO0O0O0
000 0CGCOO DO Q1
0001000000

L1 0000000 0 O]
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00 0000010 0]
C 00 O0O0O0TO0TO0CT10
© 01 0 0°0 000 0
00 00 01 0 O0O0OD
Sym2(12)=0000000001:'
0 001 006G6O0O0O
000G O 00100 0
1 00000UO0OCO0O
01 00 ¢ OGO 00
Lo oo 010000 o
"0 0 0 0 0 00 0 O 1]
0O 0 0 I 0 0 0 0 00O
000000100 0
G 00 008 00 O0T1 0
Syn]z(ra)=1000000000'
01 0000O0O0ODOTUD D
0 01 00 0O0O0TO0O0
C 00010000 0
000 OO0 10000
L 00 0 0 00 0 & 0 O]
0 0 01 0 0 6 0 0 0 1
0 0 00 1 0 0 -1 o 00
YT TEE R IV R
0 0 00 01 “le o0 -1 0o oo
0 -1 0 9 0 ¢ 0 o0 0o 0 =10
o 0 -1 0 0 0 1 ¢ 0 o o0 Q0
¢ 0 -1 0 0 0
00 ¢ o0 -1 o
ARZ() = 00 00 0-1’
10 00 0 O
01 00 0 0
00 01 0 0o
Sym*(1) = I1o and Alt*(1) = . O

Note that when V = V; @ Vo and V), is & stable subspace of V, of dimension
v1, under p, it is necessary and sufficient that the pattern of p(7) takes the matrix
form Ry () 0

1LT
plr) = [M(T) Rz('r)] , ’
for matrices Ry1(7), Ra(7} and M(r) of dimensions v; x v, v x vz and v x v,
respectively. In this case, 7 v Ri(r) and 7 — Rz(7) are representations of G,
of dimensions v1 and va, respectively. In this case, we say that p is a reducible

representation, An drreducible representation, equivalently, implies that the only
proper stable linear subspace of V is the {0} subspace, that is,

p(T)ve Worall 7 € G, for some W C V = W = {0},
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ExaMpPLE 3.28. The regular representation of Sy is given by p(1) = I; and
plty = [[1} {1}], where t = (12). Now take B = [—01 }], 50 that relative to the new

busis {e, — e, ¢}, the equivalent representation g(r) = B=1p(7)B is given by

e e |
p =ptn = |l P =Bewn = = B

In this case, the representation p reduces isoinorphically to two components py and
pa2 determined by

m)=1, mt)=1 and pa(l) =1, p(l) = -1

Note that these are one-dimensional representations and hence irreducible compo-
nents. The component py is the signature representation (Sgn), often also called
sign representation, whereas p) is the principal (1) representation. In summmary,

L
(3.19) L[]

Note that , are | x | matrices of action in each of the representations 1 and
Sgu. O

Sgn

EXAMPLE 3.29. Let V = {uu,yy,uy,yu}, e.g., Example 3.10, where S; acts
according Lo a7~ 1, s € V, T € 8. Let p indicate the corresponding representation.
We observed that p is decomposable as p) @p3, where each component has dimension
2: py = Lz and py is the regular representation of Sy, which (e.g., Example 3.28)
further reduces into the (irreducible) one-dimensional components 1) and Sgn. That
is,

P = 12 &b 11@ Sgn.

Correspondingly, note that

Pr= gl o) = o 10,

and

1 0 0
vpzx“z“(f’(l)—!’(t))= 0 %[_11 —11] '

satisflying the following properties: Pi+Pe =1y, P1P2 =0, 'Pf = P and ’F’z2 = Ps.
These canonicel projections associated with the representation of S; acting on V
were obtained as linear combinations of p(1), p(t) in which the coefficients were
token from Matrix 3.19 of irreducible components of S;. These projections, as
indicated earlier in the chapter, and in the exomples of Chapters 1 and 2, are the
primary applications of the theory being reviewed in this chapter. O

EXAMPLE 3.30. (A two-dimensional irreducible representation of S3) We will
construct a two-dimensional irreducible representation of 83. Let p indicate the
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permutation representation of 83, e.g., Example 3.18. The representation has di-
mension 3 and is given by '

100 01 0 [0 0 1]
=10 101, pe=|100], pa=(0 1 0|,
00 1 00 1 .1 0 0]
1 00 0107 . [0 1
pa=10 0 1|, pgg=|0 0 1], praz| 1 0
D10 100 0 1 0]

i
Start with the subspace W, generated by the sum e = e; + ep + e3 of the vectors
in the canonical basis {e1, e, e3} of R3. That is, W, is generated by e = (1,1,1).
Clearly, W) is a stable subspace of p, that is,

pry €Wy, forally e Wy, forallrteSs.

Let Wo = {y € R%e'y = 0} be the orthogonal complement of W, in R® and

P= %ee’ the projection on Wy along Wo, that is, R* = Wy @ W, and Py =0 for

all y € Wp. Similarly, let

(3.20) Q=L-P= -1 2 -1
-1 -1 2

indicate the projection on Wy along W;. The important point in this construction
is observing that the matrix Q commutes with g, for all 7 € 8, that is,

prQp-1=Q, forall r €8,

As a consequence, if y € Wy then y € Qz for some z € R?, and p,y = Q2 =
Qprz € Wy, for all 7 € S3. That is, Wy is a stable complement of W, in RS,
with dim Wy =3 — 1 = 2. To construct a 2-dimensional representation (8) in Wy,
note, from the corresponding projection in (3.20), that a basis {v, ve} for Tm Q is
vi =2e — e —e3, Va2 = —e) + 28y — e3. The resulting representation of r = (12),
for example, is obtained from the fact that

TVL = 2er; —er2 —er3 =283 — 6] —e3 =y,

TVg = —€;1 + 2erp —er3 = —ez + 2e; —eg = vy,

that is, G = 01 . Similar calcu]atiofls noting, from 3,20, that —e; —e; +2e3 =
1 0

—v1 — vz) leads to the linear representation (shown along with their correspbnding
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traces)
1o )
ﬁl = _U I] tr ﬁl = -2,
[0 |
b= 4 trfz=0

.
fia = 0 1] tr Jry =0,

1 0]
ﬂza = -1 -1 ir ﬁ23 :":

1 1
B = | —l] tr fhog = —1,

SRt
Bisz = 1o tr fraz = -1

The two-dimensional representation @ is irreducible. In fact, if there were a proper
one-dimensional stable subspace W, with generator y; then it would verify 82y =
Ay for some gcalar A, which implies yz = Ayy, y1 = Ayz. The non-zero eigenvalue
solutions to y2 = A2y, are A = &1, that is, y = (y1,y1) or y = (y1, —y1)- Sice the
subspace W musl also be stable under gy3 then we would have

-1 <1} |n -2y,
ay = = w
Pray [0 1][31] [YI]G
=y, =0, usingy = (yr,y1)or y = {y1, -y1) = W= {0}

Because {0} is the only proper stable subspace, § is irreducible.
In analogy to Table 3.19, we may summarize these results according to the
truce (indicated by x), of the corresponding (classes of) representations as follows:

x |1 (12) (123)

. x1 1 1 1
(3.21) xs |2 0 -1
XSgn ‘ 1 -1 1

Note that we added the trace of the one-dimensional Sgn representation. Later on
we will see that this table completely describes the representations of Sy. ]

ExaMPLE 3.31. To appreciate the role of the field of scalars in Example 3.30,
restrict the search for a one-dimensional stable subspace to the cyclic subgroup C3 =
{1,(123), (132)} of S3. In this case, we have the two-dimensional representation

1o o 1 -1 -1 \
Mm=lg gl M=)y | M=y ol !

The equations v,y = Ay for 7 € Cj lead to the characteristic equations (1 — )% = 0
and A% + A +1 = 0. When the field of scalars is the complex field C we find two
one-dimensional irreducible representations, corresponding to the roots w = 3&'-1
and w?. IFf the field of scalars is the reals then « is irreducible. Here is the summary



4

3.7. STABLE SUBSPACES ) 65

for three irreducible representations of Cg,

x |1 (123) (132)

x1|1 1 1
(3.22) 8 PR
xz2 |1 w? w

i

THEOREM 3.3. Let p: G — GL(V) be a linear representation of G in ¥ and
tet Wy be a vector subspace of V stable under G. Then there is a complement Wy
of W, in V which is also stable under G.

ProoF. Let Py be a projection on W) along some vector space complement of
W, in V. Form the average

JG| Ep T)plp(q— )

T€G

of projections on W, along that vector space complement. Then, Im P ={Pizmze
V} = W,. To see his, first note that for z € ¥ we have Pyp,-12 € W1, and because
Wy is a stable subspace, p, [Py p,-12] € W, so that Pz € Wy, that is, Im P; C W,
Secondly, il z € W), which is stable, we have p,.-1z € W, for all + € (3, so that
Prpr-12 = pr-12 This implies

— 1 1
Piz= il E prPipr-1z = idl E Prpr-1% =%,
el 7€Q

that is, if z € W) then z = Pz € Im P, and hence Wi C Im P1. Therefore,
W, = Iim P;. Let then Wy == ker P} = {z € V; Pz = 0}, so that V¥ = W; & W,.
To conclude the proof, we must show that Wy is G-stable: In fact, for all T € G,

= 1
PePipp—1 = 'i"é'l' Eﬂrﬂa?lﬂa-lﬂf-l = IG| Z Pruplp(ra) -1

{=e] acG

1 —
= Ial' Epvplpa'l = Pli
gelQ

50 that y € Wy = ker P implies Py = 0 and hence P1p,y = p,P1y = 0, thus
showing that p,y € Wy, for all 7 € G. Consequently, Wy is a stable subspace of V
under G. £l

THEOREM 3.4. Every representation is a direct sum of irreducible representa-
tions.

PRrooF. Let ¥V be (the vector space associated to) a linear representation of G.
The argument is by induction on the dimension of V. Suppose dim V > 1. If V is
irreducible, the proof is complete. Otherwise, from Theorem 3.3, ¥V = V' @ V¥ with
dim V' < dim V and dim V” < dim]V. By the induction hypothesis, V' and V*
are direct sum of irrediicible répresentations, and then so is V. ]

]
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3.8. Characters
Cliven a representation p, the complex-valued function
Xp:T—1trp;

is called the character of the representation. It plays an important role in the
characterization of the representation. Since p(1) = I and € = dim p, we note that

xp{1} = dim p.
If A is an eigenvalue of p, then, relative to the invariant scalar product 3.15, we
have

_ (,3) = (pry, p7y) = (Ay, Ay) = AX(y,¥),
so that Ad = L. Let Ap, ..., A, indicate the eigenvalues of p, {over C). Then
(3.23) xp(77) = br ppr =ty ppt = Z At = zx =tr i, =%,(r).
Also nole, since trace is invarisnt under similarity, that
(3.24) xp(rar™!) = x,(0), forall 7,0 € G.

|
DEFINITION 3.7 (Class functions). A scalar-valued function i defined on G and
satislying h{tar™!) = li(a), for all 0,7 € G is called a eluss function.

Class lunctions are constant within each conjugacy class of G. We will study
these lunctions with detail in Section 3.11.

PrOrPosITION 3.3, Lel p' 1 G — GL{V;) be a lincar representation of G, with
corresponding character x;, i = L, 2. Then

Xptmm = X1+ X2, Xples = X1 X Xo.
Proor. We have
1 2 pt 0 ! 2
Xpimp = tr (0 D p7) =tr |y 2| ST = X,
whereas, noting that the diagonal of X, g2 is
(o' e ding p2, [pt|z2ding o2, ..., [p']uym ding %),
we obtain

Xpap = bt (o' ® p?) Z[ﬂl]n x Z[P Ji=trp! xtr g% =x) % x2.

a

EXAMPLE 3.32. In Example 3.27 we considered the Sym? and Alt? represen-
tations, where we showed that

pPRp Sym? @ Alt2.

Irom the decomposition for the tensor representation of C4 discussed in that ex-
ample, we obtain the following characters:

Cq X{7) XSym’(T) xan2tr)

1 4 10 6
(1234) 0 0 0
(13)(24) © 2 -2
(1432) 0 0 0
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Note that, for all 7 € Cy,
Xo(7)} = Xogp(T) = Xsymd () + xana(r),

and
xeya(r) = 0G0+ X6, xain(r) = (M) - x4(r2))

Tt can be shown that these two equalities hold in general for any linear representa-
tion p of G. (W]

3.9. Schur’s lemma and applications

LEmMMA 3.2 (Schur). Let gy : G — V; be irreducible representations of G,
i=1,2,andlet f: Vi — V; be a non-zero linear mapping satisfying f-p, () = pa(rif
for all ¥ € G, Then, . :

(1) p1 and p2 are isomorphic;
(2) ITV1 = ¥V and pr- = py then f is a scalar multiple of the identity mapping.

PROOF. Let Wy = ker [ = {x;f(x) = 0}. If x € W, then f(x) = 0 and
fp2(r)x = pi(r){{x} = 0, whicl implies p;(v)x € Wy, for all T € G. That is, W,
is a stable subspace. Since p is irreducible, we must have Wy = {0} or W; = V).
If Wy = V; then [ = 0, contrary to the hypothesis, hence Wy = {0}. Similarly,
we obtain Image f is stable and equal to Va. Hence, f is an isomorphism, and the
two representations are equivalent or isomorphic. For the second part, let A be
an ecigenvalue of f (the field is C, so there is at least one) and define f' = f — A,
understanding that A = Al If f(x) Ax then (f— A)x = 0, so that ker (f—\) £ {0},
and equivalently, f — A is not an isomorphism. Moreover,

(f — Xp(r) = [p(r) = Ap(r) = p(¥)] — p{T)A = p{7)(f — A), for all 7 € G.
From the first part of the Lemma, it follows that f — A =0, or f = AL g

In the study of the linear representations of a finite group G, it is often necessary
to consider the vector space G of all scalar functions defined on G. An important
element in G is the character x,(7} = tr p, of a representation p, introduced earlier

on-in Section 3.8. In general, note that cach entry pjj of a linear representation g
defines a scalar function 7 — py (7).

ExXAMPLE 3.33. Let G = 53. In Example 3.30 we identified an irreducible
representation, g, :
0 01 -1 -1
OB A B RO RS P |

sev=1y 5. sow= |5 L] sosm= 3,

of dimension 2, and two irreducible non-equivalent representations of dimension one:
the trivial representation, 1(r) = 1 for all 7 € G and the signature representation

Sgu(l) =1, Sgn(l12) = Sgn(13) = Sgn{23) = —1, Sgn(123) = Sgn(132) =1,

All together, these representations illustrate 24 + 1 + 1 = 26 scalar functions de-
fined on G, or 26 points in the vector space G. These functions have a number of
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charucteristic properties. For example, note that

> 1(r)hSgn(r~1) =0, for all scalar L,
T€G

Y 1Bt =0, S sgn(r)lf(r=!) =0, forall H:R* R

T€G rec
In fact, we have, '
t .
ProrosrtioN 3.4. For every non-equivalent irreducible representations py, po
and every linear mapping 1 : Vi — Vy, il holds that 3, ¢ pi(7)Hpa(r "'} = 0.
Proor. Note that Mo = ¥ cq m(m)Hp2(r~") is a linear mappiog from ¥
into V2 which intertwines with py(1) and p(r) for all T € G, that is, pi(r}Iy =

Hypz(7) for all + € G. From Schur’s Lemma (the representations are non-equivalent
irreducible) it follows that Hy = 0. O

O

Now tuke any linear mapping H = [2 3] and consider the Lwo-dimensional
irreducible representation g of 83 reviewed above. Direct evaluation shows that
1 a+d tr .
g 2 OBy = ——la = ——lp.

TESy 2

In lact, we have,

i

ProrosiTion 3.5, Let g be an irreducible representation of G into GL{V) with
dim p = n. Then, for any linear mapping H in ¥,

1 tr H
I—(TI‘,%[),—H[)T-I = T Iu.

ProoF. Schur's Lemma implies that Hg = ]é[ Yorec Prilpg-1 = AL, for some

scalar A. Tuking the trace on both sides (and using its invariance under similarity)
the result A = tr H/n obtains. 0O

EXAMPLE 3.34 (A n — 1-dimensional irreducible representation). Consider the
permutation representation, p, of 33. We khow that p =~ 1 & 8, where § is the
2-dimensional irreducible obtained in Example 3.30. That is,

@ o
pT_Q'

Then, for any liqear transformation matrix H = {h“ Hiz

. 3 -
Hag sz] in R? (in bloc1'< form

of dimensicns 1 and 2}, the reader may verify that

(b1 0

1 L )
j bl Z prHpr-1=|" 0 tr Hao
TESy 2

I
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1 1 1
Example 3.30 suggests that we consider the matrix P = | 2 -1 -1 trans-
' -1 2 -1
forming from the canonical basis of R® into the new basis B = {e1 +ex +ep, 2 —
€y — e3, —e; + 2e3 — ez}. Then, it follows that
0

' 1 _ . _
3 2 (PaPOH(Pp, P71 = o [brHz,
" TeS, g 2

The above construction applies to S, in general, thus leading to the existence of
a n — 1 irreducible representation on the subspace coniplement ta the trivial one-
dimensional representation. 0

FProrosiTioN 3.6. If p is the permutation representation of Sn, then, for every
real or complex n % n matrix H,

1
" TES,

where the coellicients ag and a; are scalars defined by the relations nf{ag4-a;) = tr H
and n{n — 1}ag = ¢'He ~ tr H, in which ¢/He is the sum of the entries in H.

ProOF. Let M = & ETES.. prlp.-1 and let J = PHP~! where Pis thenx n

n!
madkrix
1 ) 1 1
n-1 -1 .., -1 -1

-1 -1 ... n-1 -1
Consequently, applying Proposition 3.34 to the (1, n—1)- irreducible decomposition
of PpP~}, we have

1 J (] :
PMP~! = — > (P P~N)I(Pp,- Py = [(')1 t dgg | } )
" res, n—1 "n-1

from which we obtain

1 [Ju1 0
=Pp-t . P,
M [0 [1 .]22111—1]

n—1
Direct evaluation, using the definition of the matrix P, shows that M is the matrix
with entries
_ Jtr H/n ifi=j
T e He—tr H)/n—1) ifi#j
which is the proposed result. . o
Consider again the irreducible representations 1,8gn and g of 83, discussed

earlier on in Example 3.33, Let H = (h;1, hyz) be any linear mapping from R? into
R. From Schur’s Lemma we know that

> Sen (rHA(r™1) = 0.

TEG
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That is, the linear forms
Z Sen (Db fu(r ) + haafu (r7h), Z Sen ()i fra(r™1) + laBaa(r ™))
TeG TeC

inn hiyy and hyg vanish for all values of hy; and hyja. Therefore, the corresponding
cocfficients must be zero, that is,

(3.25) > Sgn (NPu(r) =0, S Sgn () (r) =10,
reG e

(3.26) SoSen (NBn(r') =0, 3 Sgn (") =0
T€G TEG

The reader may verify relations (3.25) and (3.26) from Matrix (3.27).

v |1 Sgn(r") At Ba(rY) BlG') Belr!) ]
1|1 1 1 0 0 1
(12) |1 —1 0 1 1 0
(3.27) (13) |1 -1 -1 0 -1 1
(23) |1 -1 1 -1 0 -1
{123y | 1 1 0 -1 fol -1
(132) | 1 | -1 I - -1 0

This is the argument that proves
ConoLLARY 3.1. For nny two non-equivalent irreducible representations p, 3
of G, the relation
> pi(m)Belrl) =0

T€G
lotds for all i, j, k, £ indexing the entries of these representations.

Consider again the irreducible two-dimensional representation, g, of Sy dis-
cussed in Exanple 3.33. From Proposition 3.4, we know that |

hyy hye tr H
_Eﬂr[ -1 = ——1Ia,
IGl &2 hgr  hae 2
implying that, for all scalars by, hyz, gy, hag, we must have

E Z ﬁl] h_]kﬂkl

-rEG]k 1

) = —hll + = llzz, i=1,2.

or, equivalently,

|G] Zﬁu (#)Bulr~ N + — |G| Zﬁil(f)ﬁzi(f_l)]hm"'

T€G TEG
G] [Z Bia(r)Bu(r ™ )hay + lGliZ Bz (r}Bai (77" Yhee = %hn + %h22: i=12
Te€Q TEGQ

for all scalars hiy, hyo, 1121, has. Coﬁsaquently, equating the coefficients of the linear
forms, the equality 37 . Gi(®)Bre(r~1) = % when i = £,j = k (and 0 otherwise)
must obtain. This is the argument proving the following result:
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ProprosiTION 3.7. For any n-dimensional irreducible representation, g, of G
we have

EPEJ(T)PH(T") = {% ifi= e,.j =k

rea 0 otherwise,

Matrix (3.27) provides the numerical values for applying Proposition 3.7 to the
irreducible representations of Sy,

3.10. Orthogonality relations for characters
Given the complex-valued functions f and g defined on a group G, let
(3.28) (fl8) =g Z f(r)a(r).
! | TeG

We note that (- | -) is linear in the first argument, semilinear (or conjugate linear)
in the second argument, and (I | 1} > 0if F # 0, and hence is a scalar product (e.g.,
Example 8.8) in the vector space G of complex-valued functions defined in Q. In
particular, if x, and x2 are characters of a representation of G, then X1, X2 € G
and, from Expression (3.23),

(a1 | x2) = |él§xl M(T IGIQM (Fha(r™h).

Recall from Scction 3.6, that we may assume that the representation p is unitary.
Consequently, Proposition 3.7 can be expressed as
(3. 29)

L fi= =
@ > pi(oe(r™) = |G! > pi(rYoee(r) = (i | pue) = {n ifi=¢ j=k

Juper = 0 otherwise

Similarly, Corollary 3.1 becomes
(330) (Pij [ ﬁkg) = 0, for all i,j,k, B,
where p and § are two non-equivalent irreducible representations of G.

THEOREM 3.5, (a) If x is the character of an irreducible representation then
(x [ x) =1; (b) If x, and x2 are the characters of two non-equivalent irreducible
representations of a group G, then (x; | x2) = 0.

Proor. From expression (3.28), we have

n

(XlX)=|é| Z(Z”" |Zp”(’r)—Z(Pu|Pn =ZI];—1’

TG =1 i=1 t=1

whereas, from Expression (3.30), similarly, we obtain (x1 | x2) = 0, concluding the
prool. O

We refer to the character of d-]'l‘ irreducible representatlon as an frreducible
charecter.
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ExAMPLE 3.35. The following matrix shows three irreducible characters for Sa,
corresponding to the compaonent irreducible representations 1, Sgn, and g of the

permuiation representalion p, discussed carlier on in Example 3.33:
[t xp X1 Xsgw Xp ]
]38 1 1 2
2]t 1 -1 0
{4.31) 3y |1 1 -1 0 [;
@]t 1 -1 0
(123y] 0 1 TS |
L (1320 1 1 -1
[t also shows L;lm character x, of the permutation representation p. £l

The reader may verify, from Matrix 3.31, that

{x: |7Xp) = (xg | xp) = (xsgn | xp) = 1.

In fucl, {xo | x,,) is the number of irreducible representations isomorphic to ¢ in
the decomposition of P We have, then,

PropostTION 3.8. If p is a linear representation of G with character x, and
p decomposes as o sum py + ... + g of irreducible representations with characters
X1yerorXrs bhen (| x) is the numbcr of representations in the dccomposﬂ.lon that
atre Ib()tllOI‘[)lllL to py.

EXAMPLE 3.36. Let Sz act on V = {un,yy, uy, yu} according to 57! (location
symmetry). The representation, denoling Sz = {1,t = (12}}, is

1] o 0
o [1] o

= 14: M= 0 o o 1 r
1 0

und, sccordingly, we write, p= 1@ 1 @ . Let u = vuy + vyu, v = vay — vyu. Then
lv = v, bv = —v, so that 4 = 1 & Sgn . In total, ‘

p=1dl®&1dSen .
Iiere is the character table
71X X1 Xsgn
14 1 1 ,
tl2 1 -t

from which we obtain

1 1
(1t o)= 50000 + xalthxa() = 5@+2) =3,
which is the multiplicity of the trivial representation in the decompeosition of p.
Similarly, the signature representation appears with multiplicity

(Sgn | p) = (1 x4+ (~1) x 2) = 1.

2
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Note that the multiplicity of a given irreducible component does not depend on the
underlying decomposition. Moreover, two representations with the same character
are isomorphic, because they contain each irreducible component with exactly the
same multiplicity. These arguments reflect the importance of characters in the
study of linear representations. a

We may then restrict our attention to the set X1y--., xn of distinct irreducible
characters of G, and write,

V=mW &...&m,W,
or, equivalently, p = m;p; & ... ® mypyp. In this case, we have
(3.32) Xp =1X1 4+ ... + MpXp.
The: multiplicities m; are given by the integers (x, | xi) 2 0,1 = 1,...h, In the
previous example
Xp=3x1+ XSgn:+

Consequently, the orthogonality relations among the irreducible coﬁlponents imply
that {x, | x,} = Z:‘:l mf. The following result is' a useful characterization of the
irreducible representations.

THEOREM 3.6. (x, | xe) = 1 if and only if p is irreducible.

h

Proor. We have (x, | xp) = Yo, m? == 1 if and only if exactly one of the
ny;’s is equal to 1 and all the others are equal to 0, in which case p is isomorphic to
that irreducible component. O

ExAMPLE 3.37. Consider the irreducible representations 1, 8 and Sgn of 83,
along with the tensor 8 ® 3 representation. Matrix 3.33 shows the corresponding
characters:

[ 7 | B B®B 1 Sgn
12 4 1 1
(12) | o 0 1 -1
{3.33) (13} | © 0 1 -1
23} | 0 0 1 -1
(23)|-1 1 1 1
L (@32)|-1 1 1 1 ]

The reader may verify that

(xs | xa) = (x: | x1) = (xsgn | Xsgn) = 1;
As for the tensor representation, {xaes | xgga) = 18/6 = 3, so it must be reducible.
On the other hand,
(xaep | x8) = (xses | x1) = (xpon | Xsgn) =1,

so that these representations appear in the decomposition of the tensor representa-
tion with single multiplicity. In fact, 8 ® # = 1 @ @ Sgn, with the corresponding
character decomposition. ]
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Of particular interest in the study of group representations is the reguler rep-
resentation, introduced earlier on in Example 3.18. It is defined by the action
wplr,o) = 7o in G x G, Iis dimension is |G). Since, for all o € G, p(7,0) = p(y, o)
if and only if 7 = &, and @(7,1) = 7 for all 7 € G, it follows that its character is

given by
0 ifr#1;
Xrug(‘r) = {

Gl ifr=1
Counsequently, for any irreducible representation p of G with character xp, we have
1 - .
(3.34) (Xreg: Xo} = H Z Xeeg(T)Xp(771) = x0(1) = din p,
76G

that is, every trreducible representation is contained in the reguler representalion
writh multiplicily equal to ils dimension.

ProrosirTioN 3.9. The dimensions ny,...,ny of the I distinct irreducible rep-
resentations of G, satisfy the relution

h
|G| = Zn?.
=1

Proor. From relations (3.32) and (3.34), we have xru(r) = Z:':l mxi{7), lor
all 7 € G. Taking 7 = [, the proposed equality obtains.

Note that for 7 # 1, the defining property of xre implies that
I
(3.35) > mixi(r) =0.
i=1

EXAMPLE 3.38. Let G = 83. The irreducible non-equivalent representations
1, A and Sgn are contained in the regular representation with multiplicities 1,2, 1,
respectively. Becuuse |G = 6 = 12422412, these must be all the distinct irreducible

von-equivalent represeutations of Sy. | O

3.11. Class functions
A scalar-valued function x defined on G and satistying
xfora™!) = x(r), forall 7,0 € G,

is called a class function. Indicate by C the set of class functions on G. Note that
C is o linear subspace of the vector space G of scalar-valued functions defined on
(. All characters belong to C. From Example 3.23 we observe that C is a stable

subspace of G under the representation o L ¥, that is,

xeC=¢{o)x=x, foralle €G.

Mare precisely, C is the subspace of G of functions invariant under this conjugation

action. Tor each class funcfion, x, and any representation p, define the linear
mapping

%(p) = 3 x(r)p(r).

T7€G
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Note that x{p) commutes with p(r) for all 7 € G. In fact,

peR(p)pr-1 = ps ZX(U)popfﬂ - Z O)pr Papr-1 = ZX(U)PW—I
= ZX(T‘TT Pro’r"l = Z 0‘),01- = X( )

Therefore, if p is an irreducible representation, it follows from Schur’s Lemma that
%(p} = AL To evaluate A we take the trace in each side of the above equality, ta
obtain

tr X(p) = Z x(T)tr p{r) = Z x(m)xp(7) = 3 x(rYxalr=1)
T7€G re reQ
= |G|{x, %) = tr AL, = i,

so that A = |G{(x, xz)/n. Tlis proves

Prorosimion 3.10. If g is an n-dimensional irreducible representation of G,
then

20) = Sl w1,

THEOREM 3.7. The distinct irreducible characters form an orthonormal basis
for C.

ProoF. From Theorem 3.5 we know that the set of distinet irreducible char-
acters form an orthonormal set of functions in . We need to show that this set
generates C. Suppose that x € C and that x is orthogonal to %,,...,%,. Therefore,
for any irreducible n-dimensional representation p of G, we have

2(0) = e 2,01, = 0.

Because every representation decomposes as a sutn of irreducible components, it
follows that ®(p) = 0 for every representation p. In particular, ®(preg) = 0, in which

case
0 = X(preg)e1 = Z x(T) preg (T)er = z x{T)e,,
TeG TEG
which implies x(r) = 0 for all 7 € G, That is, x = 0. W]

Note that the dimension of the subspace € of class functions is determined both
by the number of distinct irreducible representations of G and by the number of
orbits, or conjugacy classes, of G under the action oro~1, in which the class fune-
tions can be arbitrarily defined. Consequently, the number of distinct irreducible
representations coincide with the number of conjugacy classes of G.

ExaMpPLE 3.39. If G is a commutative group, then G Has |G| conjugacy classes
and hence |G| distinct irreducible representations. Moreover, because

g
IGl = Zdimzpj:
i=1

we conclude that these representations are all one-dimensional. In particular, if G
is cyclic, they are given by pj(r*) = ?miki/|GI, O
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ProrosiTioN 3.11. i x1,..., X1, are the distinct irreducible characters of group

G, then
<
- irp=;
S Tlnxi(r) = {gﬁlf P
i ! TI ¢ Tr
where ]@;| is the number of elements in the conjugacy class Or = {ore~!, o€ G}
of T € G

Proor. Deline
_ )1 ifne Oy
xeln) = {0 ifn¢ 0,

Then x, is & clugs function and, consequently, can be expressed as a linear coni-
bination 37 cixi of the distinet irreducible characters x1, ..., xu of G. The reader
iay verify that, in this case, ¢ = (%, | xi) = |0:] X;{7)/|Gl, so that

x:(n) = Z ll(al")fa(f)m(ﬂ) = {(l] 1?: Z;T

from which the result follows. ]

ExaMPLE 3.40. Matrix (3.36) shows the irreducible characters x1, Xsgn, xg of
Sy, wlong with the characters x,, Xgeg, Xroyg of the permutation, tensor 8 @ g and
regular representations, respectively.

T Ixp X1 Xsen X8 Xo®8  Xees |
3 o1 2 46
(12y|1 1 -1 o ) 1
(3.36) ]t 1 -1 -0 0 1
@)yJjr 1 -1 0 0 1
(12yj1 1 -1 0o o 1
L @320 1 1 -1 1 0 |

53 has three conjugate orbits {and hence three distinct irreducible representations),
Or={1}, Ov={(12),(13),(23)}, O, = {(123),(132)}.
We obtain
4+14+1=6=|G|/|O], ifT€O;
Yl(T)Xl(T)“‘XSgu(T)XSgn(T)+yﬁ(7)xri(7) =¢0+14+1=2=|Gl/|O), fTe€O;
14+141=3=|G|/|O]|, ifreO,
whereas
X1 (Thx1(0) + Xsgn (T)xsgn (1} + Xal{r)xs () =
2x0+1x(f1)+lxl=0, ifr=1, = (12);
2x(-1)+1x14+1x1=0, ifr=1, n=(123);
Ox(-1)+{-1)x1+1x1=0, ifr=1(12), 5= (123).
To decompose, say, the character of 8 ® 3, we write

Xg®8 = €1X1 + CsgnXsgn + CaXg,
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in which the coeflicients are determined by

e1 = (xpes | x1} =6/6 =1, csgn = (xpep | xsgn} = 6/6 =1,
and '
¢ = (xpea | xa) =6/6=1. .
In fact, xpes = x1 + Xsga + Xp- o

3.12. The canonical projections

TUEOREM 3.8 (Canonical Decomposition). Let p be a linear representation of
G into GL{V), p1,..., pn the distinct irreducible representations of G, with corre-
sponding characters x1,..., xn and dimensions ny,...,ny. Then,

13
Pi=rs ) X))
EP

is a projection of V onto a subspace ¥}, sum of m; isomorphic copies of the irreducible
subspaces associated with g, i = 1,...,h. Moreover, PP =0, fori # j, P = P
and 37, Py =1y, where v =dim V = Z:;l min;.

Proor. Write p = Z:’:l myp;, where p1,...,p, are the distinet irreducible
representations of G, Therefore, from Proposition 3.10,

P gy 2 %) [Z mig(7)] = 157 2 Z EORACRI)

TEG TEG

oy |G| oon 1G] _
= |G| Z (X1 ')I = Té"l'mi";l'i_'lv = mly,

so that P; acts as the identity operator in {each of the m; copies of) V;, and as the
null operator elsewhere. That is, P; is a projection of ¥ into V. Similar argument
shows that PP = 0 for j # i. Moreover,

h
zvv. Zl‘" > Relr) = g S mEletr)

TeG TEG i=1

From Proposition 3.11, we know that n; = x;(1), so that

Y h .
0, ifr#l,;
mx(r) = ) T{rx(l) = { Gl e
g ! ,g; ! ]6:1[ =1, ifr=1.
Consequently,
h
1
> P = el = 1,
i=1 |G[
cancluding the proof. O

ExAMPLE 3.41. Following Example 3.10, let V indicate the set V = {uu, yy, uy, yu}
of two-sequences in length of two, equivalently, the set of all mappings s from
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L={1,2}into L. Let G = Sz. Consider the action (7,s) = s7~! wlich classifies
the sequences by symmetrics in the position of the residues:
™s Juu yy uwy yu
w: 1 | uy yy uy yu
= (12) | wu yy yu uy

The regular representation of Sz defined by the left action is then
0 1
L o

pl) =1, p(1) =
The irreducible characters are the characters x; and y2 of the trivial and the
signalure representations, respectively:

T X1 X2
1 1 )3
[ A |
These representations have dimension equal to 1, so that i], = ng = 1. Also,

|G} = 2. Therefore

Py = SR (Dp(1) + R (o] = 310(1) + 5(0)] =

—
[SIE S

[&1E T

[o] ,

R

We have Iy = Py + Py, P\ P2 =0, P = Py, PZ = P;. Note that, correspondingly,
V = R* decomposes into the sum

V=V1EBV2€BV3.

of stable subspaces, of dimensions 1, 1, 2, respectively. The irreducible decomposi-
tion, as shown eatlier in Example 3.30, corresponds to the sum

P = $[%a(Do(1) + Ta0p(V)] = 31p(1) - p(1)] =

I
pot"

p= (Xp l x1)e1 + (Xp | XSgn)PSgn = 3p1 + psgn.
O

EXAMPLE 3.42 (The left action st~ of 83 on the set V of four-sequences in
length of three). There are h = 3 projections Pk in R%, each one of the form

P 0 O
Py = o . 0 , k=1,...,h
0 0 P
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In the present case, m = 3 (the number of integer partitions of ¢ in length of f),
and, up to isomorphisms,

QM o o Yoooo
Al . Az _ .
Pl=l o = o |» B=|qo . o |,
0 0 QM 6 0 QN
,and
Moo 0
A .
Pid=1 0 . o
0 0 QF
In addition, each projection:
(0 Qi’\' acts on a subspace of dimension &, = 1,i=1,...,¢; = 4;
(2) Q;\’ acts on a subspace of dimension £; =3,i=1,...,cp = 12;
(3) Q™ acts on a subspace of dimension £; = 4,i=1,...,¢5=6,

sothat dimR¥ =04 =4x1+12x3+6x4. More specifically, the frst project‘.ion
P, is determined by (indicating by J,, the n x n matrix with all entries equal to 1)

A A
N=..=Qh =1,

1

{‘==...=Qi‘g=533,
. . 1

Q?J=-'-=Q'\J=EJG;

‘The second projection Py is determined by

Mo =Qi=o,
Mo =Ql=o,
( 1 -1 -1 -1 1 17
-1 1 1 1 -1 -1
) , 1= 1 1 1 -1 -1
Qi\J="‘=QéJ=— ’
6{ -1 1 1 1 -1 -1
I -1 -1 -1 1 1
L 1 -1 -1 -1 1 1]
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and the third projection, Py, is determined by
==t =0,

[ 2 -1 -1
=...=Q=--1 2 -1,
-1 -1 2
r 2 0 0 ¢ -1 —-17

0 2 -1 -1 0
Q]\“=...=Qf}"=,l 0 -1 2 ~l 0
3 0 -1 -1 2 0
-1 0 0 0 2 -1
-1 0 0 0 -1 2

It holds that 3, Py =L PP =0, pgkand PZ =P, k=1,...,3. ]

Az
1

ExaMPLE 3.43 (The action os of S4 on the set of four-sequences in length of
three). ‘There are h = 5 projections Py in R™, corresponding to the 5 irreducible
characlers

[T il (12) (12)(34) (123) (3234) ]
x1]1 I 1 ] I
xz|3 1 -1 0o -l
xs|2 0 2 -1 0
xa|3 -l -1 0 L
| xs]1 -1 1 1 -1 |
of 84. Bach projection has the forin
P 0 0
Pe=| 0 PP 0 |, k=1,...,5
0 0 P
with
Qi 0 o Q* 0 0
b=l o . o | P'={ 0o - o [
0 0 QM D0 QF
and
Q* 0 o0
PE=1 g " ¢
0 0 Q¥

In addition:
§)) Qf" acts on a subspace of dimension £, =4,1=1,...,¢; = 1;
(2) Q;\’ acts on & subspace of dimension €3 =3,i=1,...,¢c = 12;
(3) Q;\“ acts on a subspace of dimension £3 = 24,1i=1,...,¢3 =1,
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sothat dimRY =64 =1 x4 +3x12+1 x 24. More speciﬁcallj, the projection P,

is given by

Jiz,

1
12

Az
3

Q

1
= —Jg4.
24 24

Az
1

The projection Py is determined by

.

Q' =0,

= Q3" =0,

Az
1

and

-1 -1

-1

-1 -1

-1

-1

-1 -1

~1

-1
-1

-1
-1

1

-1 -1

-1

-1 -1

-1

-1

The projection Py is given by

0,

A
13

2 -1 -1 -1

-1

2 -1 -1

~1

-1 -1

2

2 -1 -1
~1

-1
-1

2,-1 -1 -1 -
-1 -1 -1

2

2

-1

—1
-1

-1

-1

-1
-1

-1
-1

-1

2
-1
-1

2

-1

-1

-1 -1

2
-1
-1

-1
-1

2
-1
-1

2
-1

2
-1

2]

-1

2

-1 2

-1
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82

é g] , with

-

and Qf"

o’

-1
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‘stained from

-1

-1

43
-

—2

~F -1 1 -2 -1

~2 -1 -2

-2

-2 -1

-1

-2 -1

4

-1

-2

=2

-2 -
-2

-1
-1

-1
-2

-2

-1

-2

-1

-1
-2

-1

-2

-1 -1

-1

w1

A=
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B84

D=

The final projection, Ps, is determined from

QP =0,

1 1
-1 -1

1
-1

-1 -1

-1

-1

-2

-1

~2 -1 -1

1
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] , where

and Q‘l\“

~1

~1

=1

=1

Pkl k

=1,...,h

2 _
. =

0,p#kand

L PP, =

It holds that 3-, Py
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3.13. Projections in the data space

Reeall that F is the vector space of scalar-valued functions defined in the struc-
ture of interest, V, upon which the linite group G acts according o . For each
7 € (i, define the ()p(,rat.or 7'+ F — F which takes x € F into 7*(x) : V — V given
Ly

T (x)(s) = x(e(7,5)).

‘T'he operator 7* s linear. In fact,
:

7 {x + y)(5} = (x+ ¥)(p(r,5)) = x(p(r,8)) + y(@(7,5)) = 7 (){s) + 7° (y)(s)
= (7 (x) + 7" (¥))(s),
for all 5 € V, s0 that 7*(x + y) = 7*(x) + 7*(y). Moreover, for any scalar A in the
licld of F,
77 (Ax)(8) = (Ax}p(T,8)) = A" (x)(s),
for ull s € V. That is, 7*(Ax) = Av*(x).
The mmapping 7 -+ 7° is a homomorphism jin G into Aut (F). In fact,
(r* (2)0" ()6 = x(p(r, 0l 5))) = x(iplra,)) = (r0)" (x)(5),

forall x € F, s € V, 0,7 € G, that is, 7*¢* = (ro)". In addition, 1*(x)(s) =
x(p(l,8)) = x(s), so that [*(x) = x. In particular, 7* is inverlible, with inverse
=17, that is, 7* € GL{F).
In F, define the scalar products

() = 7 2 Mplo.s)Fe@ ), e V.

€0

Then, 7% is unitary with respect to Lhese scalar products. In fact,

(0070 = g 32 7 (e, )T G )

o€G

ﬁ 3 x(o(r (0, 7T, ol )
{38
1

a1 2 xplro )y lplra, )

oeG

=G > x(wlo,s))y{e(o,5)

Applying Theorem 3.8 to the representation 7°, we have,

PropPosITION 3.12. The mapping 7 — 7* is a unitary linear representahmn of
G in GL(F), and, for each irreducible character, ¥, of G,

Jigl) E x(r)r*

TEG

. I
is & projection in F.
1
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Direct verification shows that the principal projection P;(x) evaluates at s € V
as

PO = g7 2 s = 16l 35 x0 = ey 57 ()

TEG feo,
x(f),
|01[§,: 0

the average of x in the orbit O, of 3 under action ¢. We also note that Proposition
3.12 applies to the vector space § of scalar-valued functions defined in G, with
w: G x G — G, and scalar product

(x,¥) = = 3 %0 = Gy
|GI TEG

ExXAMPLE 3.44. Consider the space V of two-sequences in length of two and
let o be the action of Sz on the left. We observe the data x(s) € {a,b,¢,d} C R,
as indicated in the matrix 3.37.

|vu | yy [ uy wu
x(8)|a|blec d
|uulyy_|uy i
(12) |uu | yy | yu wy

Write s’ to indicate st~ when 7 = (12). The two canonical projections are evalu-
ated as d

(3.37)

PG = 2{x(s) +x(6)} Pp = 2{x(5) ()},
so that ‘
PL) =8, Pi) =b, PL)w) = Puim) = S50,

Similarly
Pau) = Pa(x)(yy) =0, Pa()(uy) = S35, Palx)lyu) =

We verify that
(1) Pi(x) + Pa(x} is the identity aperator in F;

d—c¢

(2) Pz(X)PQ(X)(SS is evaluated by iterating Pz on the image data
c—d d-¢
=z b
thus obtaining P(x){uu) = P2(x)(yy) = 0,
PEx)(uy) = {c — d)/2 {d - c)/2 c ; d’
—c - d-—c
PRy = =2~ (“ P2 doe

That is, PZ(x) = 7. Similarly, ‘F’f(x) = P1(x);

(3.38) {0,0,——
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(3) Pi{x)P2(x) is evalnated by upplying Py to the image data (3.38), obtaining
PrPe(x)(uu) = Py Pu(x)(yy) = 0,

and
PrPu(x)(uy) = C- 4 :; oo = P1Pa(x)(yu)
_ {d—c)/2+{c—d)/2 =0
5 .

That is, Py Pa(x) = 0.
[

ExampLE 3.45. Consider the clection data where three candidates are (com-
pletely) ranked according to the voters’ preferences. The frequencies, x(o), of cach
possible ranking ¢ € Sz among the voters are the available data, as illustrated in
Tuble 3.1 (from Diaconis (1989)). For example, 67 respondents preferred candidate
3 ranked first, candidate 1 ranked second and candidate 2 ranked last. The action

TABLE 3.1, Three-candidate (228 voters) Partial election data by
rankings, corresponding permutation ¢ and observed frequencies,

x(o).

Ranking (1st, 2nd, 3rd) o label x(o)

32,1 (13) 3 20

3,1,2 (132) 6 67

2,31 (123) &5 37

2,13 (12) 2 24

132 (23) 4 43 !
reference choice 1,2,3 1 1 28 |

is simply ©(g,7) = o7 so that the representation in GL{F)} evaluates according to
T (x)(0) = x(o7) and the corresponding canonical projections

Py = )Tgl Z x{r)r*
TG

evoluate as

There are three canonical projections, associated with the irreducible characters

x |1 (12) (123)

lix: |1 1 1
2:x8 |2 0 ~1

3ixsgn |1 -1 1
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of 85. Matrices (3.39) show the multiplication table of 83 and the corresponding
data x(a7),

1 23 45 6 28 24 29 43 37 67

21 5 6 3 4 24 28 37 6T 29 43
(3.39) 3 6 1 5 4 2 = 29 67 28 37 43 24 '

4 § 6 1 2 3 43 37 67 28 24 29

5 4 2 3 6 1 37 43 24 29 67 28

6 3 4 2 1 5 l 67 20 43 24 28 37

from which the canonical projections

[ label o ‘x{o}| P P, Pa
1 1 28 380 —160 6.0
2 (12) 24 [380 -80 ~60
3 (13) 29 |380 -30 -60
4 (23) 43 |380 110 —60
5
6

(123) 37 |380 -70 6.0
(132} 67 [380 230 6.0 |

are obtained. The interpretation of these projections follows from the irreducible charae-
_ ters (as class functions) and their valies over the conjugacy classes of S3. Equivalently,
the réader may keep in mind the direct-sum decomposition

RE=VyplYa Wy

associated with these projections. For example, reading from the above matrix, 28 =

38 — 16 + 6 with 38 € Vi, —16 € V2,6 € V3. More generally, Matrix (3.40)
(3.40)

5Py 3P 8Py
¥ () +2{2F+%(3) +x{) + x (B} + = (B8] 2x(1) — x(5) ~ X (6) x{1) - x (2~ x(3) —x () +x(5) + x (B)
X (1) +x(2) +x(3) + x(4) + x{5) + x (B} 2x(2) - x(3) ~ x(4) x(2) ~ x{1} - x(8) —x{0) + % (3} + x {4)
X+ %(2)+x {3} +x(4) +2(8) +x(6) 2x(3) - x(4) — x(2) *#(2) = x(1) — % (5) — x (6) + x (3) + x(4)
{1} +x(2) + 2 (3) +x(4) + 2 (8) + x(6) 2x(4) - x(2) - x(3) %(2) — x (1) ~ % (5} — % (6) + x (3} + x {4)
(1) +x (2 +x(3) 4+ x () + x(5) + %x(6)  2x(5) ~ x(6) — x (1) x(1) - x(2) — x(3) = x{4) + x(5) + x (6)
(D) +x(2D+x(3) +x{4) + x(B) + x(6)  2x(G) — x (1} — x(5) *x{1) — 2 (2) — % (3) — x (4) +x(5) -+ = (8)

shows that (the subspace image of) Py, of dimension one, describes the overall mean
frequency .

L .
E[X (1) +x(2) + x(3) + x (4) +x(5) +x ()],
P2, of dimension two, describes all within-class frequency comparisons, eg.,
1 1
S12x(1) = x(8) = x(©)), 5[2x(2) - x(8) ~ x (4]

whereas Pa, of dimension one, describes the between-class frequency comparisons,
e.g.,

1

a[x(l)—-x(2)—x(3)—x(4)+x(5)+x(6)]. -

In particular, the within-class comparisons

32X -xG) - x () =23, Spx(®) -x(2)-x@) =1
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reflect assessments or decisions between preferences which change the leading can-
didate while (cyclically to the right or to the left) preserving the relative ranking
order of the three candidates, c.g., (using the ranking notation of Table 3.1),

;li[x(li, 1,2) - x(2,5% 1) +x(3,1,2) - x(1,2,3)] = 23,

or decisions between preferences which change the leading candidate while partially
preserving the relative order of the three candidates, e.g.,

%[x(l,-:i, 2) — x(2, 1,3) + %(1,3,2) — x(3,2, 1)] = 11.

whereas Lhe between-clags frequency comparisons reflect decisions belween runner-
ups, K.,

(li[x(l,ﬂ, 2) —%(1,2,3) +x(2,1,3) = x(2,3, 1)+ x(3,2,1) — x(3,1,2)] = 6.

"The munerical evaluation of $(x(3, 1,2} —x(2,3, 1) +x(3,1,2) —x(1, 2, 3)] = 23 =
24 shows Lhal voters relatively fail to prefer those rankings in which candidate
3 does not appear in the leading position. Clearly, this conclusion depends on
the reference ranking, namely (1,2,3). Ilowever, the analysis also shows that the
relatively higher preference for rankings 3,1,2 (x = 67) and 1,3,2 (x = 42) is
largely due to their component in the subspace image of Pa, thus saying that there
is o significant tendency to cyclically moving the rankings. Because these are stable
subspaces, the conclusion is independent of the reference ranking and constilutes
an invariant aspecet of the voting results. This, of course, is not evident directly
frotn & simple inspection of the original frequencies. - The reader may also note
that Lhe component in V4 is of the same magnitude for all observed frequencies,
and thercfore may serve as a background, or residnal value. These arguments are
characteristic of a first-order analysis. Additional second-order inferences for these
ditn, based on decompositions of the form x'x = ®'Ix = X"Pix + ¥ Pax + x'Pax, are
disenssed later on in Chapters 4 and 5. A computer source @MAPLE code for the
I(:utmuicul projections of the regular representation of S is available at the address

http://tigger.uic.edu/"viana/s3_regular_projections.html.
- i “ D

EXAMPLE 3.46. Consider again the APA election data described in Diaconis
(1989). Now we lock al rankings of candidates 1, 2, 3 and 4. Table 3.2 shows
the number of voles for each one of the 24 different rankings. For example, 54
valers (out of 851) ranked candidate 1 as third choice, candidate 2 as second, and
candidate 3 as first choice. Matrix (3.44), Section 3.15, shows the multiplication
table for S4. The character table of 54 is shown in Matrix (3.41). Matrix (3.42}
summarizes the resuliing canonical projections, in analogy to the analysis of the
three-candidate data. The results are also illustrated in Figure 3.1. The display
on the top shows the projection of each frequency (sequentially in the order shown
in Matrix (3.42)) 'intq the subspaces image of Py, P3, P4 and P;, indexed in the
horizontal axis by 2, 8,4, 5 respectively. The displays in the bottom aggregate these
components by subspace or projection (indicated in the vertical axis by Pg,...Py).

Here are some general comiments:

‘ (1) Note that the canonical projections provide a basis for explanation of data

that goes beyond the originally observed frequencies- e.g., the observed
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TaBLE 3.2, Four-candidate partial APA election data by rank-
ings, corresponding permutation o, conjugacy class (expressed in
partition notation) and number of voters x(g).

Ranking a class x{o) Ranking a class  x(o)
4321 (14)(23) 27 29 2431 (124) 3,1 54
4312 (1423) 4 67 24137 (1243) 4 44
4231 (14) 2,12 37 2341 (1234) 4 26
4213 (143) 31 24 2314 (123) 3,1 o4
4132 (142) 3,1 43 2143 (12)(34) 22 35 _
4123 (1432) 4 28 2134 (12) 2,12 50 1
3421 (1324) 4 57 1432 (24) 2,2 =50
iz (13)(24) 2° 49 1423 (243) 3,1 46
3241 (13) 3,1 22 1342 (234) 31 25
3214 - (13) 2,17 22 1324 (23) 2,12 19
3142 (13)(24) 2,1* 3 1243 B34y 22 1n
3124 (132) 3,1 26 1234 1 14 29

frequencies of permutations (24), (12) and (13)(24) are essentially equal

(50,50,49) and yet their components into the five subspaces are clearly

distinct. Characteristically, these differences may suggest a much broader

range of explanation;

The display on the top part of Figure 3.1 is useful for identifying re-

sponses that have similar projection patterns {and then, necessarily, sim-

ilar observed frequencies), e.g., displays number {counting sequentially
from the top) 14, 17 and 20 have similar projections and similar frequen-
cles (43, 49, 44) respectively; :

(3) The aggregate display on the bottom part of Figure 3.1 is useful for com-
paring among the subspaces (image® of the corresponding projections in-
dicated on the vertical axes), The reader may want to say that the election
is being decided in the subspace V2 image of P3! Very little contribution
comes from Vs, which, uniformly, assigns nearly vanishing components to
frequencies of permutations in the conjugacy class of (123);

(4) To understand the role of P, we have to suggest an interpretation of the
conjugacy classes in the context of ranked data. Note that each permu-
tation in the conjugacy class C(1zy of (12) represents the up-ranking of
exactly one candidate, the down-ranking of exactly one candidate, and
the keeping of exactly two rankings. In general, we have,

@

~—

C up-ranking down-tanking keeping eount))
1 0 0 4 1
(12) 1, 1 2 6
(123) 1 2 1 4

2 1 1 4 1,

(12)(34) 2 2 0 3
(1234) 3 1 g 1
1 3 0 1

] 2 2 0 s |

6That is, V = Immage P.
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showing thal, in average (m), permutations in the conjugacy classes of
{1234) and (12)(34} up-rank or down-rank m = 2 candidates, permuta-
tions in the class of (123) up rank or Dow rank m = L.5 candidates,
whereas Lhe Lransposilions up rank or Dow rank m = 1 candidate, Inspec-
tion of the character table of S; reveals that Py is about comparing single
transpositions (m = 1} with {{12){34}, (1234)} (in ='2); P; compares
(121{34) witl (123}; Py compares (1234) with {(12), (12)(34)}, whereas
Ps compares {(12), (1234)} with {{12)(34), (123)}. Conscquently, the rel-
atively larger components in Vo suggest a stronger, more radical, disliking
of the reference ranking. Iowever, and most importantly, because these
subspaces are invariant subspaces, these interpretations do not depend
on the adopted (1,2,3,4) reference ranking and constitute an invariant
analysis, Clearly, other conclusions are specific to the reference ranking,
c.g., permutation (1423) is the top choice and permutation (34) the least
preferred,

A computer source @MAPLE code for the canonical projections of the regular
representation of 8§y is available at the address

http://tigger.uic.edu/"viana/s4_regular_projections.html.

(3.41)

K |1 (12} (12)(34) (123) (1234)
1

| a1 1 1 1
x2 |3 1 -1 0 -1
xs|2 0 2 -1 0
xa|3 -1 -1 0 1

x|l -1 1 1 -1
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|' label o x{o) | Prx Pax Pax Pax Psx |
1 .1 20 [3538  -11.38 1.667 4875 1542
2 (34) 11 | 3538 -23.12 9.333 ~1212  1.542
3 (23) 19 | 3538 —1325 . —3.417 -1.250 1.542
4 (24) 50 | 3538 2025  -5017 1250 1542
5 (12) 50 | 35.38  3.875 9.333  —0.1250 1542
6 (13) 22 | 3538 —1L75 -5.017 2.750 1.542
7 (14) 37 | 3538  1.250 ~3.417 2.250 1.542
8 (234) 25 | 3538 -7.250 —1.583 0.0 ~1.542

9 (243) 46 | 3538 2500 008333 9750  ~1.542 |
10 (123) 24 | 3538 -3.250 -0.08333 ~8500 —1.542
11 (124) 54 | 3538 2150 —1.583  0.2500 —1.542
(3.42) 12 (132) 26 | 3538 —6.500 —1.583 02500 -1.542
13 {134) 22 | 3538 —1450 -0.08333 2750 —1.542
14 (142) 43 | 3538 1525 —0.08333 6.0 —1.542
15 (143) 24 [ 3538 -T.750 —1583 —0.5000 —1.542
16 (12)(34) 35 | 3538 ~7.875 1.667 7375 —1.542
17 (13)}(24) 49 |3538 19.88 1.667 —6.375 —1.542
18 (14)(23) 29 [ 3538 —0.6250  1.667 —5.875 —L1.542
19 (1234) 26 | 3538  ~GO —-5.917 1.0 1.542
2 (1243) 44 | 3538 1250 —-3.417 -2 1.542
21 {1324) 57 | 3538 11.12 9.333  —0.3750 1.542
22 (1342) 34 | 3538 —0.5000 ~3.417 1.0 1.542
23 (1432) 26 | 3538 -2.500 | 5917 -2500 1542

2¢  (1423) 67 ) 3538 8125 9.333 12.62 1542 |

A similar analysis for the frequencies of nucleotides sequences in length of four
with all bases distinct is shown in Examples 4.6 and 4.7 in Chapter 4. O

3.14. Summary

In this chapter we reviewed the introductory concepts of linear representation
of finite groups, with the objective of connecting the symmetries imposed on a
structure V, usually defined by a finite group G acting on V according to a rule
i, with the structured data {x(s);s € V}, where x is a scalar valued function
defined on V. In particular, we are also interested in the case in which V = G,
so that the data are indexed by the group G. If the group G acts on V, with v
elements, according to the rule p, we showed that the linear operator p{7) defining
the changing of basis from {es;8 € V} C RY to {ey(r,4);8 € V} is an homomorphism
from G to GL(R"), that is, p is a linear representation of G. When V = {1,...,4},
G = 5S¢ and (7, i) = 7i we obtained the permutation representation; when V = G
and {r,¢) = 7o we obtained the regular representation of G. We defined the
vector space G of scalar-valued functions defined on G and showed that the set
{X1,-.-xn} of distinct irreducible characters of G is an orthonormal basis for G .
The connection among the structure V, the symmetries in G and the data points
x in the vector space F of scalar-valued functions defined on V was then obtained



-2 ' 3. ALGEBRAIC ASPECTS

Figure 3.1. Canonical projections of each observed frequency
x(g), ¢ € 84, into the four non-trivial subspaces Vy,..., Vs (top)
and corresponding joiut spectra (bottom) .
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by showing that the operators

Py = ’%’ 3 x(oe(r)

TEG

are projections in RY. The resulting first-order analysis P, x,..., Py, x and second-
order analysis x'x = 37, x"P,x of the structured data x, as described in the following
i chapters, may then be obtained.

3.15. Tables and graphic displays

s.16.1. The left action st—! of 84 on two-sequences of length four.

(3.43}
ros) {ybuly v w wly ¥y ¥y w uwu u|ly y y u b
8{2) | yf w] uw ¥ uw uw|l ¥y w w ¥y ¥y ul|ly ¥y u y
83) |yl uw]lw w oy wluaw y w ¥y u y|y uw y y
s() | y| vl w w w yluwu uw y uw y yluy y y
Tabel —~ [ T [I6[15 14 12 8]13 11 7 10 6 4]9 6 3 2 Ihxie)]
= 1111
1 | 1]1a}1s 14 12 8|13 11 7 10 6 4]% & 3 2 16
= 2110
(34) I 11615 14 8 12183 7 11 6 10 4|6 9 3 2 B
(22) | 1j1w |15 12 M B|11 13 7 10 4 6|80 3 5 2 8
(24y | 1|15 8 12 M4} 7T 11 13 4 6 W03 5 9 2 [
(12) | t|16]14 15 12 B|13 10 6 1 7 48 E 2z 3 8
(3) | r]1e|12 14 15 &]1w 11 4 13 6 T|l9® 2 3 B 8
(4) ) r]16] 8 14 12 15| 6 4 T 10 13 1|2 & 3 9 8
po= 3100
{234) El16]315 12 8 1M4|H1 T 13 4 10 6|3 ® 65 2 4
(43) | 1]16}fj15 8 14 12| T 13 11 6 4 MW|5 3 9 2 4
(1z3) | 11614 12 15 8|10 13 6 1 4 7|9 2z 5 3 4
(124) | 116|114 8 12 15| 6 10 13 4 7 11|2 5 9 3 4
(132) | 1] |12 15 14 B|10 40 4 13 7 6|9 3 2 & 4
(13) | t w1z 14 8 15|10 4 11 6 13 7|2 @& 3 5 4
(42) | 1} | 8 15 12 M| 4 6 11 13 1wW]|3 &5 2 9 4
43) 1 1} ] 8 14 16 2] 6 7 4 13 10 11|56 2 3" 9 4
12 = 2200
(12)(34d) | 11w |4 15 & 2|13 ¢ 0 ¥ 11 4|5 p 2 3 4
(3)24) | 1)16|12 8 15 M| 4 11 10 T 6 13|3 2 D 4
Qdyzay { 1 pis| 8 12 14 15| 4 6 7 10 11 13]2 3 5 9 4
= 4000
(1234) ’ 1fe] 4 12 8 15|10 6 13 4 11 t|]2 @ 5 3 2
(1243) | 1|16 )14 8 5 12| 6 13 w0 t 4 115 2 5 3 2
(t324) | 1|16)12 B8 14 16| 4 10 11 6 7 13[2 3 9 & 2
(1342) [ 1|18 |12 15 8 1411 4 10 7 13 6|3 9 2 & 2
(1482) | 1|1s] 8 16 14 12| 7 6 4 13 11 W[5 3 2z 9 2
(1423) | 1J16] 8 12 15 14 ] 4 ¥ 6 11 10 3|3 2 5 9 2
| TG, |24 |24a] 6 6 6 6] 4 4 4 4 4 4|6 8 0 6 ]
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3.15.2. The multiplication matrix for 5,4.
the letters and the permutations is indicated by the

tiplication table.

(3.44)

r 1fa b
()| b a
(2] ¢ |
(24) | o N
{12} | ] »
(s8] r o
()] g m
(234) | b d
(245) | 1 ¢
(123) | } t
uz) | k M
(s | 1 o=
(1) | m
(4w v
(43) | o 1

Uz)sd) j p e
(la{z4) 1 g4 =
4@ | orou
(1234) | s k&
(zday | ¢ i1
{1324) | u r
(1342) | v »
(1432) | x t
(1423} | = a

(1) The presentation of the material in this chapter closely follows the program
of Serre (1977). All the basic results of functions on groups can be seen in the
classic text Naimark (1982). The basic facts about projections and vector spaces
are found in Ilalmos (1987)'s classic text. See also Rotman (1995) on general
facts about Lhe theory of groups, and Simon (1996) for a more contemporary
text on representations of finite and compact groups. The reader will enjoy
reading the historial account, by Lam (1998), of representations.of finite groups
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Further reading

in the past century;
(2) On permutation groups, Cameron (1999) or Dixon and Mortimer (1996);
(3) On combinatorics, Cameron (1994) or Stanton and White (1986);
(4) Matrix groups, e.g., Curtis (1984);
(5) Random matrices, functions, and permutations, Diaconis and Shahshahani (1986),

Tuljapurkar (1986), Kolchin (1971), Diaconis and Freedman (1999), Arratia and

ooom

<

T o X | = & *T O

Simon (1992), Lalley (1996) ;
(6) Permutation groups e.g., Dixon and Mortimer (1996);

3.1. Show that,

™(0) = ror-!

3.2, Use the presentation relations shown in Example 3.4 to construct the
i multiplication table of groups D3, Q2 and Q.

is an

or any member 7 of group G, the mapping v : G - G by
isomorphism in G, and the mapping 7 — 7* is a homomor-
phism of G, taking values in the set Aut (G} of isomorphisms in G.
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3.3. Following Definition 3.3, show that G x H, together with Xp, is a group
in which; '
{1) The identity is (1, 1x);
{2) The inverse (7,0)~" of (r,0) is given by (n~1*(+~1),0"1).

3.4. Following Exercise 3.3, show that G x {iH} is a normal subgroup of G x, H
{recall that'N is a normal subgroup of G whenever 7N = Nt for all 7 € G).

3.5. Tollowing Example 3.24, show that ¢'(7, ¥ x(s)s} = 3 x(s)kp(r,s) is an
action of G on £{V).

4.6. Indicate by G the set of all non-singular n x n real doubly-stochastic
matrices, that is,
G = {A € GL(n,R}; Ae = e,e’A = &'},
Given A € G and a real vector a = (a;,az) define the n x n matrix [a,A] =
ajee’ + azA, where e indicates the n-component vector of ones. The equality

{a, A)[b, B] = (na1by + a1 bz + azb) )ee’ + a3baAB, ;
suggests the operation # : (a,b) € R? x R? — axb = (narb; +a;bs +aghy, azbs) €
R?, so that [a, A]fb,B] = [a + b, AB]. Show that (R?, +,*) is an algebra. That is,
for all a,b, ¢ € R? and all numbers « in the scalar field (R or C) of the vector space
(R?,+), we have axb € (R%,+)},a*(b+c) =a*b+asc, (a+b)*c=axc+bx,
and y(a'*b) = a* (yb) = (ya) * b.

3.7. Show that W = {(ay,a2) € R?% a3 # 0, nay + ag # 0}, together with *
of Exercise 3.6, is a commutative group in which the unit is 1, = (0,1) € W and,
forae W,

—a) 1

ag(na; +az) ag

YeW

ayl = (

andaxal=alxa=1..

3.8. Show that WG = {[a,A};a € W, A € G} is a subgroup of GL, (k). hint:

First note that G is a subgroup of GL,(R) and define the direct product group
W x G of W and G, with the multiplication given by

(a,A),{(1,B) — ({a*b,AB).
Then show that this operation is an homomorphism between W x G and GL(n, R)

which takes (1,,1g) = ((0,1),1,) into I,. Therefore WG is an isomorphic image of
the product group and hence a subgroup of GL(n,R). ’

3.9. With the notation of Exercise 3.8, show that
(1) when G = { I}, WG is the subgroup of all equicorrelated covariance
matrices;
(2} when W = {1.} and G = S,, WG generates the subgroup 5, of n x n
permutation matrices;
(3) when W = {1,} and

n—1
G={woln + wig+wag® + ...+ wa_1g™"; D wi=1, w;€R},
i=0
where g is an element of order n in 8, WG generates the subgroup of
stochastic circulants with first row w = (wg,...,Wa-1). For example,
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take n = 4 and let F be a stochastic circulant with first row w'. Then
P = wol + wig® + wog? + wyg € G and

ap op Q2

&y fyp ¥ 2

g xj GQp @

) Gz )] o

FI’ = agl + ayg + oag® + ong® =

’

is a syminetric stochastic circulant with first row determined by o; =
' A
wE'w,

3.10. Based on Exemple 3.10 calculate [fix {7)], |Gs), and |O4] and verify t!m.t;

number of orbits in V = 1 Z |ix (7).
‘ lG' T€G

3.11. From Matrix 3.43, caleulale the isotropy group for the set of sequences
{yyuuy, yuyu}.

3.12. Refer to Example 3.10 and the Mendelian genetics example introduced
in Section 2.2 of Clapter 2. We consider the action s of 82 on the right (shuflling
the numes of the residues) and the orbit @ = {uy,yu}. Write t = (12). Show that
fix (1) = 2 and that fix (t) = 0, so that the number of orbits, given by the average
number of fixed points, is (fix (1) + fix (1)/2 = 1. Now consider the product space
O™ of ull mappings, f, from {1,...,m} into @. Bach point in O" is a string of
length m with entries from ©@. Apply the action s componentwise:

{o, (I(1),...,f(m)} — (oi(1),...,cf{m)).

Show that the number k of orbits in @™ is k = 2" - L. Consequently, the downstring
distance (m} where a crossover occured may be estimated from the number of
observed distinct genotypes (k) by i = 1 + logg k.

3.13. Let p be a representation of G (with g elements) on a finite dimensional
vector space V, in which a scalar product (| ) is defined e.g., Example 3.8. Show
that '

1
(y) == (pexlpany)
£ TEG

is a scalar product in V and that it satisfies (prx, pry) = (x,¥) for all + € G and
all x,y € V.

3.14. Apply Proposition 3.12 to evaluate the projections ‘P(x) of x under the
action of 84 (location symmetry), for each one of the five frequency data shown in
Matrix 3.45. The location number indicates the sequence location of the starting
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residue of the generating string.

(3.45)

r s | 1]1.6]15 14 12 8]13 11 7 10 6 4] 9 5 3 27
s(1) ] y|u| y u u u]y ¥ ¥y u u u|.y Yy ¥y u
s(2 | y| ufw w ou|y u u y uly y u vy
s(3) I y[ulu y ulu Yy u u ylyuy y
s4) | yloulw w w ylu u y u y yluyy ¥y
location | x(s)

200 516218 32 15 17|16 6 10 11 9 12| 5 1 4 5
1000 | 7]ao |20 20 21 20|10 6 10 & 7 8| B8 7 8 8
3000 | 1|43]|20 15 17 19|12 8 8 11 10 10| 6 5 7 6
5000 | 6|24]18 10 21 18|11 9 12 12 12 9| 6 6 % 6
| 6000 | 4]|18|14 15 14 14|11 22 12 8 19 12|11 8§ 7 11 |]
3.15. In Expression 3.20 show that Q = B(B'B)~!B’, with

1 0

B=|-1 1

0 -1

Generalize to arbitrary dimensions.

3.16. In Example 3.30, show that the matrices describing the two-dimensional
representation of Sz can be obtained as P(ﬁ) = H'p(B)H(H'H) !, where

2 -1
H=j-1 2
1 -1
$.17. For an arbritrary representation p, show that p(o) commutes with
S p(r)Mp(r 1)
TEG
for every ¢ € G matrix M of dimension equal to the dimension of p.
3.18. Show that x,(ora™!) = x,(7).

3.19. Matrix (3.46)

[\ |1 (12) (12)(34) (123) (1234) |
xi|1 1 1 1 1

x2|3 1 -1 0 -1

(3.46) xs|2 0 2 -1 0
xe|3 -1 -1 0 1

| oxs |1 -1 1 1 -1 |

is the character matrix for S4. Show that the canonical projections for the permu-
tation representation of Sq are given by:

Pz o S il el = 3

e S

e

— = = e
[
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of dimension 1, and

3 -t -1 -1
~1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3
of dimension 3, with the remaining 3 projections being equal to zero. That is, the
only non-zero projections for the permutation representation of 84 are given by
P = fTJ4 and P2 =1 - P, Is is true that the only non-zero canonical projections

for the permutation representation of S, are given by P = %.I., and Py =1-P7

3 _ 1
Py = ﬂzrzm(f Dalr) = 1

3.20. Show that m in (3.12) is determined by the number of conjugacy classes in
S, when ¢ > € For ¢ < £, n is the number of unordered decompositions of a positive
integer £ us a sum of ¢ non-negative integers, and is given by m = St p(L 1,
where, recursively, p(n, k) = E:f:l p(n = 1,t). Tables are available, e.g., Takdcs
(1984). 5
3.21, Show that the Klein group defined by Table 2.11 in Chapter 1 is isomor-
phic to the subgroup
{1, (14)(32), (12){34), (13)(24)}
of the permutation group Sq. Equivalently, identify A = (1,1),G = (1,t),C =
(t,1),T = {1, t), where Cg = {1,t}, with t = (12} and show that the Klein group
ean be realized as the product group Ca % Ca. Show that its character table is given
Ly
X | A G C T
X1 l 1 1 1 1
Xl@t I 1 "‘1 1 ’—l 3
xe1 |1 1 -1 -1
Xt@t l 1 -1 —‘1 1
where the entries are obtained as

Xs@s(T',0") = X+ (T)xal0’), 7,7,0,0" € Cy,
and 1, %, are the characters of Ca. Conclude that the canonical projections as-

sociated with the permutation representation of the Klein group is given by -the
matrices {uu, ut, tu, tt} of Example 5.6 of Chapter 5.



CHAPTER 4

Applications: short nucleotide sequences

4.1. Introduction

In this chapter we apply the mapping structure to the study of symmetries in
short nucleotide sequences. A number of descriptive summaries of these sequences
are based on measurements defined on certain permutation orbits of interest, as
illustrated in the following Examples 4.1 and 4.2.

EXAMPLE 4.1 (Frequency diversity). The work of Doi (1991) on the evolution-
ary strategy of the HIV-1 virus defines the frequency diversity in each cyclic orbit
Or = {fr~1; 7 € Cy}, as the ratio

e gt

between the largest and the smallest of the observed frequencies n(s), as s varies
within the orbit O of . IHere s and f are short DNA sequences or mappings defined
inL = {1,2,..., ¢} with values in the alphabet of residues A = {A, G, C, T}. These
sequences are, therefore, points in the structure V = A%, where the cyclic group G,
acts on the left according to (1,f) = [7! by cyclically moving the positions of the
residues on the sequence. The frequencies n{s) are calculated within a given fixed
region of interest, such as conservative or hyper variable regions, which may lead
to different interpretations of the virus’ evolutionary strategies. Figure 4.1 shows
the observed diversity for the cyclic orbits

Oncg = {neg, cga, gue}, Onac = {asc,can, aca}, Oug = {atg, gat, tga}, Ocg = {cgt, tog, gtc}
in the space V of four-sequences in length of three, along the BRU isolate K02013
described in Section 4.6. The frequencies n(s) are evaluated at each of 45 inter-
vals in length of 200 residues. For convenience of display we show the diversity
range maxg, n{s) — ming, n{s) instead. The global sequence is approximately 9000
bp-long. We remark that the sequence diversity can be extended to different sym-
metries and actions, which may then lead to different biological interpretations.
This is, in fact, the major reason for formulating a2 given problem with a new
language- the possibility of proposing new questions.

ExAMPLE 4.2 (Baseline variation). In Section 1.2 of Chapter 1 we observed
that if P is a probability law in V such that P(s) = P(s7—!) for all permutation
7 € S¢, then P is constant in each one of the orbils of V determined by S;. For
two-sequences [rom the alphabet .4 = {u,y}, these orbits are defined by collecting
together the sequences with the same number of, say, purines (u). There are, in
this case, £+ 1 orbits, as the number of purines ranges from ( to £. The uniformity
of probability within each orbit may serve as a baseline or reference variation e.g.,
Durbin, Eddy, Krogh and Mitchison (1998). Figures 4.2, 4.3, 4.5 and 4.6 illustrate
the relative frequency ratios and diversity within each one of the two cyclic orbits

single-purine: uy = {uyy, yuy,yyu}, single-pyrimidine: uz = {yuu, uyy, uuy}.

101
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The amount with which these ratios deviate from 1 and with which diversities
deviate from 0 imply the eventual inadequacy of the independent letters model
{which, in particular, satisfies the invariance condition P(s) = P{s7='). In addition,
these graphs also reveal the striking effect of the component yuy {alternating purine-
pyrimidine) relalive to the other two components yyu and uyy (non-alternating
purine-pyrimidine) components in the orbit. The similarity between figures 4.2
and 4.5 suggests that this pattern is invariant under the transposition of the two
letters (82 acting on the right). Figures 4.2 and 4.5 also suggest an association
between the two non-alternating single-letter frequencies. Figure 4.4 (top) shows
the relative frequency ratio fuuy/lyyu, the single-pyrimidine to single-purine or non-
alternating single-letter ratio, which is about 1.5 across the genome. However, the
non-alternating to alternating single-letter ratio,

fuyl.l fyuy !
shown at the bottom part of Figure 4.4, portrays a much stable distribution of
relative frequencies along the BRU isolate K02013. These results are also observed
along the isolate M26727, as Figures 4.5, 4.6 and 4.7 show.

4.2. The structure of four-sequences in length of three

Matrix 4.1 shows elements in the structure V of four-sequences in length of
three. For computational purposes it is convenient to label the mappings according
to the base-c representation

[
1) = D (s() - 1)1
j=1
For example, mapping 33 is s(1} = 1,s(2) = 2,5(3) = 1. In the present context, ¢
is the number |A| = 4 of letters in the alphabet of interest, and ¢ = 3, the length
of cach sequence. There are G4 points in the mapping space V.

(4.1}

s 1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48 7
|1 2 3 4 1 1 2 1 3 01 1 4 2 2 1
)1 2 3 4 1 2 1 1 3 1.1 4 1 2 1 2
s |1 2 4 2 1 1 3 1 4 1 1 1 2 2
s 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 2
s(y{ 2 2 2 2 4 3 3 3 2 3 3 4 4
s2)] 2 3 2 2 4 2 1 3 2 3 3 4 3 4
Ve s{3)| 3 2 4 3 3 2 3 4 3 3 1
5|23 24 41 42 44 61 62 63 37 34 7 25 10 19 53 29
s(1)| 4 1 4 a1 2 3 2 3 1
2] 1t 4 2 3 4 2 1 2 1
s(3)] 4 4 2 4 4 3 4 4 3 3 1 1 2
5| 8 50 |14 20 57 45 12 51 15 36 58 456 28 55 31 40
s(1) | 4 2 4 1 4 3 3 4 2 2 4 4
s(2)| 2 1 1 4 3 1 4 1 3 4 3 2
Ls(®] 1 4 2 4 1 3 4 |
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4.2. THE STRUCTURE OF FOUR-SEQUENCES IN LENGTH OF THREE ,

FIGURE 4.1. Diversity, expressed as the range maxo, n(s) —
ming, n(s), of selected orbits acg, Dase, Outg and O, indicated
in the vertical axis, along the BRU isolate K02013, evaluated at
each of 45 intervals in length of 200 residues, indicated in the hor-

izontal axis.
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[iGure 4.2. Relative frequency ratios fyyy/fuyy (the relatively
more slable curve) and fyyy/fyuy in the single-purine orbit u; {top)
and corresponding orbit diversity (bottom), along the BRU isolate
K02013, evaluated at each of 45 intervals in length of 200 residues.
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4.2, THE STRUCTURE OF‘ FOUR-SEQUENCES IN LENGTH OF THREE

FiGURE 4.3. Relative frequency ratios fuuy/frus (the relatively
more stable curve) and fuyy /fuyu in the single-pyrimidine orbit uy
(top) and correspanding orbit diversity (bottom), along the BRU
isolate K02013.
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FIGURE 4.4. Relative frequency ratio fuuy/fyyu (top) and relative
frequency ratio (fuuy/fuya}/ (lyyu/Tyuy}. (bottom), along the BRU
isolate K02013, evaluated at cach of 45 intervals in length of 200
residues,
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4.2. THE STRUCTURE OF FOUR-SEQUENCES IN LENGTH OF THREE

FIGURE 4.5. Relative frequency ratios fyyu/fuyy (green, steady
curve) and fypy/Fyuy (red, variable curve) in the single-purine or-
bit uy (top) and corresponding orbit diversity (bottom), along the
isolate M26727, evaluated at each of 45 intervals in length of 200
residues.
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Ficure 4.6. Relative frequency ratios fuuy/fya (green, steady
curve) and fuuy/fuyu (red, variable curve) in the single-pyrimidine
orbit uz (top} and corresponding orbit diversity (bottom), along
the isolate M2G727, evaluated at each of 45 intervals in length of
200 residues.
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FIGURE 4.7. Relative frequency ratio fuuy/fy;,u {top} and relative
frequency ratio (fuuy/fuyu)/ (fyyu/fyuy) (bottom), along the isolate
M26727, evaluated at each of 45 intervals in length of 200 residues.
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4.3. Letter-symmetry on four-sequences in length of three

Matrices (4.9),(4.10),(4.11), and (4.12) in Section 4.6 summarize the letter-
symmetry factorization of the space of four-sequences in length of three when Sy
acts on that space according to os. The tables show the resulting orbits, fixed
points and orbit stabilizers. In each matrix, : ix*(7) is the partial number of fixed
puints in that matrix. Following Example 3.43 from Chapter 3, there are r = §
projections Py in B%, each one of the form,

kA 1 . 1
1

k,Az
. k=1,....5,
X
k, Ay
1

indexed by the partitions Ay = 3000, Az = 2100 and A3 = 1110. 'The matrices
Q% and their multiplicities are defined in Example 3.43 of Chapter 3. Table 4.1
sunmarizes the dimensions of the resulling stable subspaces of V = R5.

b

Py

‘TABLE 4.1, Stable subspaces and corresponding dimensions under
the action os of §4.

Ploy ol Q) Q)| QM| iotal
P 1 T 1 1| 1 5
Pl 0] 0 0o of 1 1
P2l 0 2 2 2| 4| 10
Pyl 3 6 6 G| 9| 30
P o] 3 3 3| o 18
total |~ 4| 12 12 12| 24| 64

4.4. Position-symmetry on four-sequences in length of three

Matrices 4.16, 4.17, 4.18 and 4.19, Exell'cise 4.3, show the mapping space V and
the resuli'fing action s7~! of 83 on V. There are 3 projections Py in R%, each cne
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of the form

Q‘;,-\l

k,A
Qi

kA
Q™

kM
QlZ *

38
Q™

k.
Qg™

k =1,2,3, indexed by the partitions A; = 3000, A, = 2100 and Az = 1110, where
the matrices Q]c"" are defined in Example 3.42 of Chapter 3.

4.5. Multinomial large-sample analysis

The results about large-sample distributions that are used in this section are
described in detail, for example, in Bishap, Iienberg and Holland (1975, p.469),
Let n =}, x(s) and consider the law £(x) of x to be multinomial M(n, p), where p
indicates the vector with components the probabilities assigned to the v components
of s. Let also

(4.2) Up = %(x— np),

so that L{u,) — £(u), where the law of u is multivariate normal, (0, {2), with
covariance matrix 0 = v(D, — pp’). The notation Dy, indicates a diagonal matrix
formed with the components of p. Consequently, for any given projection 7P we have
L(upPuy) — L{u'Pu), which is the law of ¥ fiuzl,, where 22,...,22, are random
variables independent and identically distributed as Chi-square with one degree of
freedom, x3, and the coefficients f,, are the eigenvalues of P1/2QP'1/2, Because
P2 =P and P = P', we consider the eigenspace of vP(D, — pp')P. We the have

PrOPOSITION 4.1. Under the hypothesis of uniform probabilities, that is p =
e/v, we have
(1) L{uyPuy) ~ x% p, forall P L lee,
(2) u\Pu, =0 for P = lee,
(3) L{ufun) — xF_1-

PROOF. When p = e/v and P L jee/, we have vP(Dp, — pp')P = vP(1I -
Jree)P = P2 — 1Pe(Pe) = P2 = P. Moreover, because P? = P and P/ = P
the eigenvalues of P € {0,1} and hence £(3 f,22,) is the law of the sum of tr P
independent x} laws, that is, X2 »- When P = lee!, direct calculation shows that
ulPu, =0, and consequently, £{u/u,) — xv—i. O

EXaMPLE 4.3 (Position-symmetry decomposition). This is the result of the left
action s7~! of 83 on the space V of all four-sequences in length of three. Matrix
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(4.13), Section 4.6, shows the space V of four-sequences in length of three, the ob-
served frequency data x, and corresponding projections Px, in each of the partitions
A of V, based on the 2586 bp sequence described in Subsection 4.6.1 of the same
section. Consider, to illustrate, the frequency data x’ = (61, 83, 76), corresponding
to the orbit, or stable subspace W indexed by, {aag, aga,gaa} in V. The resulting
decomposition of W is obtained from

1 1
Is = Pl + P:] = 5-]3 + (I - -5.]3).

From Example 3.42 of Chapter 3 we note that there are 12 of these subspaces under
the partition A = 2100, namely I3 = Qil"\’ + Qf"", i=1,...12. From Proposition
4.1, und the fact that P = 0, the law of u'u is x2, and this is the only component
available. The decomposition is then simply

[ uvu wPiu WPy uwPu

3.4454 0.0 0.0 3.4454 |°
Matrix (4.3) suinmarizes all 12 decompositions within frame A = 2100:

[ O | wu P WP uw'Psu ]
sog | 3.4454 0.0 00 34454

moc | 82222 00 00 82222
ant | 7.9234 00 00 7.0234
geo | 4.0221 0.0 0.0 4.0221
gge | 15167 0.0 0.0 15167
got | 16074 0.0 0.0 16.074
cen | 082051 0.0 0.0 0.82051
cog | 89714 00 00 B897I4
col | 058375 0.0 0.0 059375
bta | 4.8212 00 0.0 4.8212
g | 98000 00, 00 98000

ttc | 14054 00 00 14054
| 2 0 0 7

Figure 4.8 shown the relative frequency ratios of GGT and GGC to CCT along
the along the BRU isolate K02013, evaluated at each of 45 intervals in length of
200 residues, indicated in the Liorizontal axis. These ratios were identified by the
cotresponding u'u ratios in the analysis of variance for frame A = 2100. The loca-
tion of the peaks within the genome remain invariant within the orbit of GGC or -
GGT. The reader may also refer each sum of square (u'u) in Matrix (4.3) against
the critical point x3 ¢ g5 = 5.99 of the x? distribution with two degrees of freedom?
in identifying statist'ically salient orbits.

(4.3)

Similar analysis can be derive from the partition A = 3000. Take for exallpple

the lrequency data x' = (30, 8, 20, 45, 48, 63), corresponding to the stable subspace
indexed by the points in the orbit

{guc, cga, acg, agc, gea, cag}

10Other critical points are X% 0.05 =384, X3 .05 = T-BL, x3 g 55 = 9488 and X2 0.05 = 11.07,
for example.
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FIGURE 4.8. Relative frequency ratios of GGT and GGC to CCT,
identified by the corresponding u'u ratios in the analysis of variance
for frame A = 2100.
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in V. This is a stable subspace of dimension 6, and the decomposition is

IG=’P1+‘P2+P3:-J5+— '*1 1

1 1 1 -1
6 6

] ®Js + [l ® 3(T — %Ja)].

From Example 3.42, we note that there are 4 such decompositions, namely Iy =
Qil’)'“ +Q,;2"\u +Q?"\3, i=1,...4. The resulting analyses of variance are summarized
in Matrix (4.4).

[ O uu w'Piu w'Pou u'Pau
cag | 71.353 0.0 57.176 14.176

atg [ 77944 0.0 37944 4.0
alc | 3.0318 0.0 042857 2.6032

gtc | 65.970 0.0 63.164 2.8060
| df 5 0 I 4]

(4.4)

Matrix (4.5) shows the F-ratios

F u'u/5 F u'u/5
Uy = '2 =

C T WP wPau/1
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of u'u relative to the residuals from projections Pz and Ps.

Fs T
4,028 0.249
(4.5} . ) 1.558 041l
0932 1442
18.848 01208
For refcrm;_ce, we observe that Fyg55.4 = 6.26. ' ]

EXAMPLE 4.4 (Letier-symmetry deco}npositiorl). This is the result of the action
o5 of 84 on the space V of all four-sequences in length of three. Matrices (4.14)
and (4.15) in Section 4.6 show the space V of four-sequences in length of three,
the observed frequency data x, and corresponding projections Px, in each of the A-
partitions of V. We will detail the analyses for partitions A = 2100 and Az = 3000.
Consider, Lo illustrate, the stable subspace of R® indexed by the orbit
O = {aag, sac, aal, gga, gEC, gut, cca, cog, cct, Lta, Lig, Ltc)
with motil * * + in Az. The corresponding observed frequency dala are
xX'=[6l 46 98 73 23 31 43 7 24 43 55 20].
Note that JO] = 12. The decomposition in R'?, from Example 3.43, is
Iip = Q.l')m _I__Q?»Aﬂ +Qf’.h +Q‘_1-sf\'z +Q?'A2, i=1,2,3.

[rom Proposition 4.1, the dncolnpoz,lhon of each one of the three stable subspaces
is shown in Matrix 4.6.

o wu | v'Piu WUPen w'Pau u'Pau w'Psu

x4 163.21 0.0 0.0 0.14122 127.22 35.845

(4.6) s++ 16857 00 00 15719 15194 0.90577
4+ %% 138,11 0.0 0.0 4.5954 109.21 24,208

df 11 0 0 2 1] 3

We note that all quadratic sums are very stable relative to the six-dimensional
residual sum uw'Pyu. We conclude with the analysis for the single orbit within
frame Ag = 3000 and |O| = 24. The decomposition in R*? is Iy = Q'™ 4 Q2% 4
Q%4 4 Q¥ 3 Q5 The observed frequency data

= (45, 30, 8, 10, 48, 63, 51, 53, 35, 39, 56, 53, 28, 29, 34, 36, 26, 36, 37, 13, 4, 4, 40, 36),
leads to the analysis of variance

© wulv'Piu WPou u'Pau W'Puu u'Psu
abc 187.81 0.0 0.83047 6.2703 71.528 109.18
df 23 0 1 4 9 9

0

EXAMPLE 4.5 (An independent-sample analysis). Indicate by %(s) the observed
relative frequency of sequence s in a randomly selected string of length 200 from
the BRU isolate described in Subsection 4.6.1. More precisely, we sampled from the
string shown in Subsection 4.6.1, which is 2586 bp-long, as follows: first selecting
a number between: 1 and 800, extractmg th'ne string of length 200 starting at that
number, jand determining i(s) based on this 200 bp-long string. The sampling is
repeatedi for each four-sequence in length of three, s, in V. We assume that the
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abserved frequencies are approximately independent binemial random variables,
Let x(s) = arcsin 4/%(s), so that the joint probability law of x is approximately
Ny(p, v1), where p indicates the vector with components the probabilities assigned
to the v components of s. First we describe the analysis of the position-symmetry
study. The observed data are shown in Section 4.6.5. The overall analysis of

variance,

k| x'Pux tr Py

x'Piuxfir Py

3000 | 0.94433 20 0.047216
2100 | 0.027141 4 0.00678 |,
1110 | 0.057365 40 0.00143
total | 1.02884 64
can be decomposed further, |
[ A k| ®'Pux tr Py x'Pyx/ftr Py ]
3000 1] onsre 1 0.02969
3000 2| 0.0 0.0 -
3000 3] 00 0.0 -
total | 0.11879 4 0.02969
2100 1| 0.58872 12 0.04906
2100 2| 00 0 00 |,
2100 3| 0020862 24 0.00086
total | 0.60939 36 0.01692
1110 1| 0.23680 4 0.05920
1110 2| 0.02714 4 0.00678
1110 3| 0.03670 16 0.00229
total | 030065 24 0.01252 |

according to the motives, or frames, indexed by A. The data from the letter-
symmetry study are shown in Section 4.6.6. The overall analysis of variance is

|

k| xPux tr P x'Prx/ir Py ]
1] 0.91303 5 0.18260
2 | 0.00068 1 0.00068
3{002412 10 0.00241
4 | 0.07848 30 0.00261
5 | 0.03930 18 0.00218
 total | 1.05564 64 ]
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The motif decomposition leads to

A k|  x'Pux tr Pe x'Puxfir Py i
3000 1] 011424 1 0.11424
3000 4| 000454 3 0.00151

total | 0.11879 4 0.02069"
2100 1| 051375 3 0.17125
2100 3| 001217 6 0.00202
2100 4| 005969 18 0.00331
2100 5| 0.00646 9 0.00071

total | 059208 36 0.01644
1110 1 | 0.285033 1 0.28503
1110 2|o0o00687T 1 0.00008
1110 3] 0.011953 4 0.00298
1110 4| 0.014245 9 0.00158
1110 5 | 0.032844 9 0.00364

total | 0.34476 24 0.01436 |

EXAMPLE 4.6 (Spectral analysis for the 2586 bp-long DNA sequence). Mairix
4.7 shows the spectral analysis for the 2586 bp-long DNA sequence shown in Sec-
tion 4.6. The spectral analysis is charaterized by transitive actions, or single-orbit
actions. In this example we consider the substructure Vy of all four-sequences in
length of four in which the nuclueotides are all distinct, and let Sq act according to
g5, o € 84, 5 € V1. Since V1 is a realization of Sy, this is similar to Bxample 3.46
from Chapter 3. The reference sequernce is s=agct. a

EXAMPLE 4.7 (Spectral analysis for the entire 9000 bp-long DNA sequence).
Matrix 4.8 shows the spectral analysis for the entire 8000 bp-long DNA sequence

for the immunodeficiency virus type 1, isolate BRU e.g., Section 4.6. The decom-
position is also illustrated in Figure 4.9. 0
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ad a x{os) | Pix Pax Pax Pax Pax ]
agel 1 2 [ 7458 —2.375 ~1.500 B.376 0.04167
aytr (34} & | 7.458 —0.1250 -—1.167 1126 —0.04167
acgt (23) 2 | 7ds8 1.0 2.083 —B.500  ~0.04187
utry (24} 2 | 7.458 —2.750 —-0.9167 -1.730 ; -~0.04167
st (12) 1 | 7488 03750 —1.167 —5.626  —0.04167
cqal (13} 3 | 7458 0.7500 -0.9167 —4.250 -0.04167
tygen {14) 10 | 7.458 -4.0 2.083 4.500 -0.041G67
acty (224) 8 | 7458 -1.625 3.500 -1.375 0.04187
utge (243) 12 | 7.488 2.125 -2.0 4,378 0.04157
yeal {123) 8 | 7.458 1.375 -2.0 1125 0.04167
uten {124} 0 | 7.458 —1.875 3.500 -3.128 0.04367
cayn {132) 23 | 7.458 3.125 3.500 8.875 0.04107
egin {134) 1 | 7.458 —1L.37% -2.0 —3.125 0.04167
tucy {142} 1 | 7458 ~2.125 ~2.0 -~2.375 0.04167
tyae {143) 7 | 7458  0.3750 3.500 —4.375 0.04167
gute  (12){34) T | 7458 2.625 -1.500  -1.625 0.04167
ctuy  (13){24) 4 | 7.458  0.3760 -1.500  -2.37§ 0.04167
fege (14){23) 1 | T.458 —0.6250 —1.500 —4.375 0.04167
geta (1234) 12 | 7.458 -0.7500 —0.9167  6.260 —0.04167
year:  (1243) 16 | 7.458 2,500 2.083 3.0 —0.04167
ety {1324) T | 7.458 0.8750 -1.167 ~0.1250 ~0.04187
raty  {(1342) 11 | 7.458  0.5000 2.083 1.0 —0.04167
tage (1432) 9 | 1458 2.760 —-0.9167 -0.2600 —0.04167
teny  (1423) 12 | 7468  —L128  —-1.107 6.575 —0.04167 ]
o5 a xfos) | Pix Pax Pyx Pax Prx
ayet 1 447 | 27.833 —8.0 —2.6000) 25.250 1.4167
aytr: (34) 10 | 27833 —13.625 ° 5.0833 —1.8750  ~1.4167
gl (23) 4 | 27.833 2,7500 1.3333 ~-26,500  —1.4167
ntey {24) 3 | 27833 —11.626 —0.4167 53750 —~1.4167
yuck {12) 28 | 27.833 11.375 5.0833 ~14.876  —1.4147
oot {13) 6 | 2v.833 8.3760 -6.4167 —22.375  —1.4167
tyen {14) 35 | 27.833 —13.250 1.3333 20.500 — 14167
urty {214) 30 | 27.833  -10.625 15.250 —3.8750 1.4167
atge {243} 25 | 27.833 —3.8760 —12,750 12.375 1.4187
geat (123) 36 | 27.883 12.126 -12.750  T.3760 1.4167
ntee (124) 26 | 27,833  —4.87YRD 15,250 +~11.626 1.4167
e (132) 04 | 27.833 18,376 15,250 31.125 1.41687
el (134) 1 | 27.833 —9.6250 —12.750 ~5.8750 1.4167
tney (142)’ 4 | zr.s33 13760 —12.750 —13.876  1.4107
by (143) 28 | 27.833 —0.87600  15.250 ~16.626 1.4167
anle  (12)(34) 24 | 27.833 5.7500 -2.5000 —8.5000 1.4167
ctag  (13)(24) aq | 27,833 4.7600 ~2.5000 2.5000 1.4167
legn  (14)(23) 5 [ 27.833 -2.5000 —2.5000 Lis.z50 1.4167
grtn {1234) a5 | 27.833 -5.8750  ~G.4167  20.875  —1.4167
atas {1243} 40 | 27.833 5.5000 1.3333 6.7600 —1.4167
ctyn  {1324) 27 | 27.833  0.12500 5.0832 —4.6250  ~1.4167
caty  {1342) az | 27.833 5.0 13333 -0.75000 —1.4167
tage  {1432) G | 27.833 2.1260 —-6.4167 6.8750 —-1.4167
leuy  {1423) 5% | 27.833 2.1250 5.0833 21.375 —1.4167
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FiGURE 4.9. Canonical projections of each observed DNA fre-
quency x{gs)}, @ € 84, into the four non-trivial subspaces ¥, ..., V;
(top) and corresponding joint spectra (bottom). The displays cor-
respond to the frequencies shown, in the same order, in Matrix 4.8.
The data are based on the 9000 bp-long sequence.
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4.6. Tables and graphic displays

4.6.1, The Human Immunodeficiency Virus Type I Here is a fragment
of the entire 9229 bp (base-pair) long nucleotide sequence. To locate the sequence
in the NCBI? data base, use the accession number K02013.

LOCUS HIVBRUCG 2586 bp ss-BNA linear VRL 02-AUG-1993
DEFINITION Human immunodeficiency wirus type i, isolata BRU

completa genome (LAV-1}.
ACCESSIDN  K02013 REGIDN: 5803..8388

-

atgagagtga aggagaaata tcageacttg tggagatggg ggtggaaatg gggcaccatg
61 ctccttggga tattgatgat ctgtagtget acagaaaaat tgtgggtcac agtctattat
121 ggggtacctg tgtggaagga agcaaccacc actctattit gtgoatcaga tgotaaagea
181 tatgatacag aggtacataa tgtttgggec acacatgeet gtgtacccac agaccccaac
241 ccacaagaag tagtattggt anatgtgaca gaaaatttta acatgtggaa aaatgacatg
301 gtagaacaga tgratgagga tataatcagt ttatgggatc asagcctaaa gecatgtgta
361 amattaacec tactctgtgt tagtttaaag tgcactgatt tggggaatge tactaatace
421 aatagtagta ataccaatag tagtagcggg gaaatgatga tggagaaagg agagataaaa
481 aactgectctt tcaatatcag cacaagcata agaggtasgg tgcagaaaga atatgcattt
541 tittataaac ttgatataat accaatagat aatgatacta ccagctatac gttgacaagt
601 tgtaacacct cagtcattac acaggccigt ccaaaggtat cctttgagec aaticccata
661 cattattgtg ccccggctgg tititgogatt ctaaaatgta ataataagac gttcaatgga
721 acaggaccat gtacaaatgt cagcacagta caatgtacac atggaattag gocagtagta
781 tcaactcaac tgctgttgaa tggoagtcta geagaagaag aggtagtaat tagatetgec
B41 aatttcacag acaatgctaa aaccataata grtacagctga accaatctgt agaaattaat
801 tgtacaagac ccaac t g agtatccgta tccagagggg accagggaga
961 geatttgtta caataggesa aataggaaat atgagacaag cacattgtaa cattagtaga
1021 geaaaatgga atgccacttt aaaacagata getagcoaaat taagagasca atttggaaat
108f aataaaacaa taatctttaa geaatcctca ggaggppacc cagaaattgt aacgcacagt
1141 tttaattgig gaggggaatt tttctactgt aattcaacac sactgtttaa tagtacttgg
1201 tttaatagta cttggagtac tgaagggtca aataacactg aaggaagtga cacaatcaca
1261 ctcccatgea gaataaaaca atttataaac atgtggcagg aagtaggaaa agcaatgtat
1321 geccctecca tcageggaca aattagatgt tcatcaaata ttacaggget getattaaca
1381 agagatggtg gtaataacaa caatgggtcc gapatcttca gacciggagg aggagatatg
1441 agggacaatt ggagaagtga attatataaa tataaagtag tasaaattga accattagga
1601 gtagcaccca ccaaggcaaa gagaagagtg gtycagagag aaaaaagage agtggpaata
1561 ggagcttigt tocttgggtt cttgggagea gcaggaagca ctatgggcge acggtcaaty
1621 acgctgacgg tacaggccag acaattattg tctggeatag tgcagemgea ghacaatttg
1681 ctgagggeta tigaggogea acageatctg ttgcaactca cagtctgpgg catcasgcag
1741 ctccaggeaa gaatectgge tgiggaaaga tacctaaasgg atcaacaget cotggggatt
1801 tggggttget ctggaaaact cattigeacc actgetgtge ctiggaatge tagttggagt
1861 aataaatctc tggaacagat ttggaataac atgacctgga tggagtgega cagagaaatt
1621 aacaattaca caagcttaat acattcetta attgaagaat cgeasaacca goaagaaaag
1981 aatgaacaag aattattgga attagataaa tgggeaagtt tgtggaattyg gtttaacata
2041 acaaattgge tgtggtatat aaaaatattc ataatgatag taggaggctt ggtaggttta
2101 agaatagttt ttgectgtact ttctatagtg aatagagtta ggcagggata ttcaccatta
2151 togttteaga cccacctece aaccecgagg ggacccgaca gECccgaagg aatagaagaa
2221 gaaggtggag agagagacag agacagatcc attcgattag tgaacggatc citageactt
2281 atctgggacg atctgcggag cctgtgectc tteagetace accgettgag agacttacte
2341 ttgattgtaa cgaggattgt ggaacttctg ggacgeaggg ggtgggaage cctcaaatat
2401 vggtggaatc tectacagta ttggagtcag gaactaaaga atagtgetgt tagettgete
2461 aatgecacag ccatageagt agotgagggg acagataggg ttatagaagt agtacaagga
2521 gettgtagag ctattcgeoca catacctaga agaataagac agggcettgga aaggattttg
2581 ctataa

?National Center for Biotechnology Information, http:/ /www.ncbi.nlm.nih.gov/entrez/query.fegi?db=Nucleotide
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4.6.2. Letter-symmetry and orbits for four-sequences in length of
three. Matrices (4.9), (4.10), (4.11) and (4.12) show the resulting action of 54
from the right, fixed points and orbit stabilizers. In each matrix, fix* = fix*(r)
denotes the partial number of points fixed by 7 in that matrix.

(4.9)
T s 20 43 64 17 33 49 6 38 54 11 27 59 16 82 48| fix*

1
1| 1 22 438 64 17 33 49 6 38 54 11 27 59 16 3 48| 16
(3) | 1 22 64 43 17 49 33 6 54 38 16 32 48 11 27 59|

29 f 1 43 22 64 33 17 49 11 27 59 6 38 54 16 48 32|
(24)] 1 64 43 22 49 33 17 16 48 32 11 50 27 6 51 38|
(12) |22 1 43 64 6 38 54 17 33 49 27 11 59 32 16 48]
(13) |43 22 1 64 27 11 59 38 6 54 33 17 49 48 32 16|
(14y]64 22 43 1 32 48 16 54 38 6 50 27 11 49 17 33|

(234) | 1 43 64 22 33 49 17 11 59 27 16 48 32 6 38 54 |
(249) | 1 64 22 43 49 17 33 16 32 48 6 54 38 11 59 27|
(123) |22 43 1 64 38 6 54 27 11 59 17 33 49 32 48 16 |
(124) [22 64 43 1 54 38 6 32 48 16 27 50 11 17 49 33|
(132) [48 1 22 64 11 27 59 33 17 48 38 6 54 48 16 32|
(134) |43 22 64 1 27 5 11 38 54 6 48 32 16 33 17 49|
(142) |64 1 43 22 16 48 32 49 33 17 59 11 27 B4 G 38 |
(143) {64 22 1 43 32 16 48 54 6 38 49 17 83 59 27 11|

(2)(34) 22 1 64 43 6 54 38 1T 49 33 32 16 48 27 11 59 |
(13)(24) |43 64 1 22 59 11 27 48 16 32 33 49 17 38 54 6 |
{14)(23) |64 43 22 1 48 32 16 59 27 11 54 38 648 33 17 |

(123¢) |22 43 64 1 38 54 6 27 59 11 32 48 16 17 33 49 i
(1243) |22 64 1 43 54 6 38 32 16 48 17 49 33 27 59 1l ]
(1324) | 43 64 22 1 59 27 11 48 32 16 38 54 & 33 49 17 |
(1342) |43 1 64 22 11 59 27 33 49 17 48 16 32 3/ 6 54 !
(1432) |64 1 22 43 16 32 4B 49 17 33 54 6 38 59 11 27|
{1423) |64 43 1 22 48 16 32 B9 11 27 49 33 17 54 88 6 i

OODOOOOOOHH;—IM»—AHHH«#A.&.&A:&-

_|Gs||6666222222222222]
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T\s |
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18 26 30 35 39 47 52 56 60

121

21 | fix*

o {en

1]

(34) |
{23} |
(24) | 13
(12) | 18
(13) | 39
(14) | 56
(234} | 9
{243) | 13
(123) | 26
(124) | 30
(143} | 35
{134) | a9
{142) | 52
(143) | 56
(12)(34) | 18
(13)(24) | 47
(14)(23) | 6o
(1234) | 26
(1243) | 30
(1324) | 47
(1342) | 85
(1432) | 52
(1423) | 60

e @

L=

18 26 30 35 39 47 52 56 60
18 30 26 52 5 60 35 39
47 18 26 60 56
52 60 56 36 47 39 18 30

5 9 13 39 35 47 56 52

47 39 35 13 5 9
35 47 39 B2 G0 56 18 26 30
52 86 6D 18 47 39

39 47 35 5 13 9
26 18 30 60 52
60 56 52 9 5 13
47 35 30 30 18 26
30 18 26 13 5 O 47 39 35
5 13 9 56 52 G0 39 35 47
60 52 56 9 13 5 26 30 18
35 30 28 18 13 9 5
39 47 35 56 60 52 5 9 13
13 9 39 47 35
26 30 18 9 13 &
60 52 56 26 18 30
9 30 18 26 47 35 39

(5]
=1
[
[
[=r)
[=]
5]

oS-I LR U Nt

21
42
62

23
24
41
42
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21
44
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23
24
44
41
61
63

L2 A

41
63

21
23
42
44
63
61
24
41
62
24
21
42
44
62
61

[ E

24
21
44
4]
G2
63
23
42
61
21
23
41
42
63
62

21| 18
21 |
1 |
61 |
2]
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41 |
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(4.11)

\s | 23
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24 Gl G2 63 34 7 19 53

1| 23

(a4) | 24
(23) | 42
{24) | 64
(12) | 3
(13) | 2
(14) | 23
(234) | 44
(243) | 62
(123) | 41
(124) | 63
(143} | 2
(134) | 24
(112) | 3
(143 | =
() | 4
{L8)(24) | 61
{14)(23) | 42
{1234) | 44
{1243) | 61
(1:324) | 62
(1342) | 4
(1432) | 2
(L423) | 41

24
24

42
62
23
44
41

61
41
Gl
21
G2
63

62
42
63
24
61
62

63 34 7
44 53 50 8
G2 25
23 45
63
61 7

36 15
37
10
46

51

—
]
b

42
G3
24

21
41
62

24 57
42
Gl

23
14
G3

2

0

5 57| o©

6] o

44 0

21 0
62

11

4 50|
15 |
| o

63 61 62
24
44
42
23

21
42
41
24

23
41 8
44 50 53
21

o

28 |
81

[+
—
[
(=}
c oo o Q

23
63

—
f=1
o Car

42 44 41

[
o
o

24
2 63 6l

4 2 44 41 42
42 4 3 2 24 2w 2

23 21 24 51 57

]
[= =2 ]
e

[Go] | 2

o

[~

—

e

e o e
Ll =2 - B =R S - N . |
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(4.12)
[ As| 8 5 14 20 57 45 12 51 15 36 58 46 28 55 31 40| fix* || fix ]

1] 8 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40| 16 64

(34) | 7 a4 10 19 45 57 16 36 12 51 46 58 31 40 28 55| 0]
(23)}12 51 15 36 53 29 & 50 14 20 55 31 40 58 46 28| 0]
24y} 14 20 8 50 25 37 10 19 7 31 28 40 58 3 55 46] o
(12) |20 53 20 8 58 48 28 55 31 40 57 45 12 51 15 36| of
(13) |40 58 46 28 51 15 36 57 45 12 50 14 20 53 20 8| o
(14) | 53 14 50 29 12 36 57 15 51 45 10 34 25 7 19 7 | o
(34) [10 19 7 34 29 53 14 20 B 50 Bl 55 46 28 40 56| 0|
(243) |16 36 12 51 37 25 7 34 10 19 40 2B 55 46 58 31| 0
(1323) |28 55 31 40 50 14 20 53 20 8 51 15 36 57 45 12| ¢
fizd) |20 4 20 53 10 34 25 T 19 37 12 36 57 15 51 45 | o
{(143) |36 57 45 12 55 31 40 58 46 28 53 20 8 50 14 20] o
(134) |87 10 34 25 16 51 45 12 36 57 14 50 20 8 20 S3| off
(142) | 50 20 53 i4 28 40 58 31 55 46 25 37 10 18 7 34| o0
(143) |55 46 58 31 36 12 51 45 57 15 3¢ 10 19 37 26 7| o]
(12)3) |19 37 25 7 46 58 31 40 28 55 45 5T 15 36 12 H | 0]
(13)(24) |46 28 40 58 1» 7 34 25 37 10 20 8 S0 29 53 M | of
(14)(22) |57 15 51 45 & 20 53 14 50 20 7 10 37 10 34 25 1 of
(1234) |25 7 19 37 14 50 20 8 20 53 15 51 45 12 36 57| Of
(1243) |31 40 28 55 34 10 19 37 25 7 36 12 51 46 57 15| off
(1324) {45 12 36 57 7 19 37 10 3¢ 25 8 20 53 M4 50 2| of
(1342) |34 256 37 10 31 55 46 28 40 65 20 53 14 20 8 50 | of
(1432) [ 51 45 57 15 40 28 55 46 58 31 37 25 7 34 10 1Y | of

OO0 D O S D 0 O D ke b b ke e e e = 00 0 G0 6 BB

5
(1423) |56 41 55 46 20 8 §0 29 53 14 19 T 34 95 37 1w} o
[Gol | 1 1 1 11 1 1 1]

—_
B
[=}
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4.6.3. Position-symmetry and orbits for four-sequences in length of
three. Matrix (4.13) shows the space V of four-sequences in length of three, the
observed data x, and corresponding projections Px, in each of the partitions of V.

A=2100 |
. s(t) s(2) 8(3) lubel | x Pix Pax Pyx
1 o a E 17 I 61 % 0 —’TT
a a 5|83 2 0 2
g s 2|7 #2083
a & © @46 63 0 -7
N 9|7 6 0 15
e & @ 365 63 0 2
s a 49 |98 e 0 &2
a t a 13|73 T 0 -16/3
t & u 4|64 B g 48
g g o G t T3 ldﬁ 0 %
£ o g 1855 8L 0 -16/3
a g £ 21 )6y MWL o =%
E & ¢ |2 12 0 11
£ c g 26| 6 12 0 . —B
c " £ 2| 7 12 0 -6
g & t 56|31 ¥ o -4
€ t g a0 |as ¢ 0 -2
t P « 24 | g7 13 0 @]
e e u nj4 a0 4
c a ¢ aBla 3w 0 ]
a ¢ ¢ 4135 3 o0 ~4
c ¢ 277] v & 0 -14/38
c g ¢ s ¥ 0 -11/8
g c 2|2 % o e
e ¢ t 50 |24 9 0 8/3
¢t o« 7|2t 2 0o -1/3
t ¢ ¢ i K o -3
t ot oa 1643 ¥ o -Z
t oa ot 52|45 18 0 -16/3
a ot 6163 1 ¢ o
bttt g 32|55 12 o &
t gt 56|48 2 o 14/3
gt ot 62|27 ¥ o -4
t ot e afo F o -14/3
t et 602 T o0 43
5 [ e bt 63|28 0 10/



(4.13)
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[ A = 3000

s(1)  s{2) s(3) label | x Pix Pax Pax
. a a 1183 83 0 0
£ £ E 22 |83 53 0 0
c c c 43 |22 22 0 o
t £t 64 |44 w4 0 0

A=1110

g a c 34 | 30 34 -18 14
c g & 7] 8 3 -18 -8
a o g 25|10 34 -18 -6
a g < 745 34 18 -7
E ¢ a 10|48 34 18 -4
c a g 19 | 63 34 18 11
a ot g 20 |55 2 /2 &
t g a 8las B _njp -
g a ot 50|39 B 112 -10/3
a 5 t 53|s1 B 12 —7/3
£t o« Mfse ZL /2 &3
t  a g 20|53 #1152 -1/3
a t e a5 |20 £ 3p2 ~4
t o oo 12|34 8 32 1
c " t 51 |36 82 3/2 3
a et 5728 B2 -3/ -2
¢t a 15|26 £ -a/2 -4
b a c 36|a 8 a2
P 6|3 § -3 6
t ¢ g B4 §F -F -3
c g ot s| 4§ -%F -3
g © ot s8|ar U $ -3
c ot g 31|40 & 4 7/3
t g 10 |36 L £ —5/3
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4.6.4. Letter-symmetry, orbits and multinomial data for four-sequences
in length of three. Matrices (4.14) and (4.15) show the space V of four-sequences
in length of three, the observed data x, and corresponding projections Px, in each
of the partitions of V, obtained with the action of 84 on V from the right.

[ A= 2100 1
s{1)  s(2) s(3) label | x Pix Pax  Pax Pix  Pux
a a g 176t 13 ¢ 5/6 w4
B a ¢ 43|46 11 0 1/i2 oo
a 8t da0fos 13 o -y MW I
E § & 673 8L o s L a5
g € ¢ 8|23 ¥ o -4 -3 45
g & b 5431 3 0 1120 B s
c ¢ a 1|43 13t o 112 - 48
4 c gi 1 27 1 7 % o —-:% —% —45"’-
e et 50|24 W o 56 -20 -1/2
t t o 16 |43 3L o -4 i
t ot g s2 |85 W o0 102 -4 1
t t  «© 48 [ 20 13 ¢ 56 25 1/2
a g n 5|83 130 ¢ = iz
n c W ] | 78 l% 0 % .1..:’_’2 1_8‘-!
8t w s L2 o & B
I n g 18|65 o % ko L
A S S
. ¢ s owlm oo o8 @ gl
¢ a o« 3539 ¥ o & .m0
c B < | 8 v -3 s 5y
c t o« 47 |21 A o ¥ -z g
t a t 52 |45 138 o -3 B iz
t g t 56 | 48 130 o & LE
t t 6ojes 10 o B Lm0 9
E o oo 2|76 B o 13 W a
¢ a a 3les 1L o 2 g3y 5
t a a 4|60 13 0o -¥ .4
s g g 21|53 ¥ o0 i/3 g -
¢ B B B 7 B p -3 & _4
t § K 24|67 Bl ¢ 2 3 4
a c ¢ 41 |35 3 e T e -5
g c© ¢ 42 |20 13t o -3 _Us 4
t ¢ © 44 |19 1L o o1z o4
st ot 616z ¥ o -4 & 4
8 Lt 6227 o 2 -5 -
L I. t 63 |28 13t o 13 -5 a |

T o
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A = 3000 ‘ "
5(1)  s(2) s(3) label [ x Pix  Pax Pan Fax  Pox
2 2 o= flss 2 o0 o g o
g E 4 22|53 ML 0 0 5/2 o
¢ c c 43 |22 1% 0 0 -% 0
t L t 64 |44 100 0 0 -13/2 0
A=1110
s(1)  s(2)  s(3) label | x Pix  Pox Pax Pax Pox
a g c ar {45 4T 8- a3 - m
£ a c 34 a0 13 15 s _12
¢ & a IS I T S
a c g e F OB a2 sp -5
g ¢ a |4 3¢ -1 2 -1e 1S
c a g 19|63 4% -8 a2 7
a g t 53|61 4 13 15 4 =
a t £ 20|53 4% _11 2 120 1
(4.15) t g a 8las 4@ 43 2z g5
B a t 50 30 i -1 _i3/ u _8
g L a 14|56 41 s 15 13/2
t a '3 o |58 41 u -1 1 %
2ot sl -8 § -% -us
u t ¢ 4520 42 L2 -3 -3 L
t ¢ a 12 |34 42 3 15 - 2
¢ a ot s1]3 ¥ B 12 1
e L a 15 |26 4 .12 _j3/3 -3 12
t a ¢ 36 |36 4 13 2 b _i
g ¢ t sg |37 4 B -3 M s
g v oe  as|moMopomoog o
< 8 ®| 4 F - -1 -f -
e t g 31|40 4713 5 & ke
L ¢t & c 0f3 L L -1 s |
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4.6.5. Position-symmetry analysis for the independent-sample data.

A= 2100 ]
s(1) s(2) s{d) label | x Pix Pax  Pax
a a g 17y 0 2/3
u £ a 5| e 0 -1/3
I’ a iy 2] - 0 -1/3
a n c 33 8 ] 0
e ¢ a 9 I 8 0 -2
¢ & a 3|10 8 0 2
a ot 911 8 0 -1/3
a t a 31w L 0 83
t & a 411 0 —7/3
g g B 6| 8 6 0 2
g S £ 18| 5 6 0 -1
a £ B 21| 5 S .
£ K ¢ 8| &6 7/3 0 8/3
i c I 26| 0 7/3 0 -7/3
c g £ 23| 2 7/3 0 -1/3
g g t 54 1 11/3 0 -8/3
g b g 30| 6 11/3 o0 73
3 £ £ 24| 4 11/3 o /31
¢ © a nj 2 30 -l
¢ & ¢ . 3|3 3 o0 0
a c c 41| 4 3 0 1
c ¢ g 27| 1 2/3 0 1/3
c I ¢ 39| 0 2/3 0 -2/3
I3 ¢ c 211 2/3 0 1/3
c ¢ t 50 2 10/3 0 -—4/8
et e 7] 6 10/3 0 83
t ot ¢ 4] 2 103 0 -4/3
t t a 65| 5 # 0 -5/3
bt 217 R 0 13
stk 61| 8 # 0 4/3
t t g 32| 6 4 0 2
t,E t 56| 4 4 0 0
el t ¢ 622 4 0 -2
t ot ¢ 48| 1 84 0 -53
t et 60] 4 83 0 4/3
L ¢ & 63| 3 8/3 0 1/3 |
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A = 3000
s(1) s{2) s(3) label | x Pix Pox Pax
a a a 1| 9 9 0 0
g g g 22[ 3 3 0 0
c [ c 43| 6 ] 0 0
t t 64] 3 3 0 0
A= 1110
s(1) s(2) s(3) label | x Pix  Pox Pax
« a c 3| 3 11/3 -38/3 2
c g a 7| 0 11/3 -8/3 -1
a ¢ g 25| 0 11/3 —8/3 -1
a g ¢ 7l 2 11/3  8/3 —13/3
g€ ¢ a 0] 8 11/3 83 5/3
e a g 9] 9 11/3 8/3 8/3
a t g 22(M4 2 53 o
t g a 8] 4 % 5/3 —13/3
a 50| v ¥ 53 -4/3
Lt 53| 2 & -5/3 -3
5 t  a P 6 B _543 1
t a g 20|17 2 -5 2
QL t c 45] 5 14/3 1/3 0
t ¢ a 12 7 14/3 13 2
e 4 t 511 3 14/3 113 -2
n c L 57| 6 14/3 -1/3 5/3
¢ t  a 15| 2 14/3 -1/3  -7/3
t a c 36| 5 14/3 -1/3 2/3
g t c 6{ 3 5/2 -3/2 2
t ¢ g 28| 0 5/2 —3/2 -1
c g 55| 0 5/2 -3/2 -1
g ¢ ot 58| 4 5/2 32 0
c t g 31| 4 &2 3/2 o
t g c 0] 4 52 372 0
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4.6.6. Letter-symmetry analysis for the independent-sample data.

A =2100

s{l) s(2) a(3) label | x Pix Pax  Pux Pyx  Pax
a a g 17| ¢ B 0 -4/3 7/2  3/4
s a ¢ 3ls B o0 -F% @ L
a a i Wl B 0 B 2 i
g g a 6 5 X 0 -4/3 1 —3/4
s ¢ ¢ omls B oo 7 o -p ¥
g g ¢ sa] 4 F 0 -5 /8 -1
¢ c a 1|i 7 % 0 _% _% ITH
¢ ¢ £ 27l o0 2 0 B -1 '
¢ «C t 59 3 3 0 ~4/3 -7/4 0
L t s 6| 7 0 B 58 -4
¢oL g | 2|3 B o -L .u 1
Lot 82 B 0 -4 -1/ 0
a e a 515 &% 0 & 8 58
a C a 9|9 & 0 -1/3 18 1/2
u t a 13| 4 4 0 -# N,
E & 5 sl 7 % 0o ¥ 38 -538
E ¢ g 26f1 4 0 a1 z
g t g o] 1 g 0 -1/3 -7/2 -1/4
¢ o ¢ B3 % 0 -1/3 -5/4 -—1/2
¢ g e Gl I 0o -5 -5/ -1
¢ t ¢ | 5 B 0 a5 —i n
Lot 52 4 #§ o -# a3 2
t g t 56 6 8 0 —1/3 1 1/
t ¢ t 6|5 % o ¥ - U
E a3 & 2|10 ¥ 0 -5/6 w2 12
c 0 n 3|8 B 0 23 3 —3/2
t & & 4115 2 0 1/6 8 1
N g 20] 4 £ 0 -5/6 -1/2 -1/2
c £ B 28|]1 0 16 -9/2 -1/2
t £ 24| 8 £ 0 23 12 1
a3 ¢ ¢ a7 B 0 23 -1 3/2
g c c 2| 3 = o 16 -7/2 1/2
t ¢ ¢ 413 0 -5/ 0 -2
st ot 61| 56 ¥ 0 16 0 -1
g t t 62| 3 & 0 2/8 -512 -1
| ¢ 6 t 6] 3 ¥ 0 -5/6 —4 2
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Further reading

[ A = 3000

s{1) s(2) s(3) label [ x Pix  Pax Pax  Pax  Psx
a a a 1 I 9 24—1 0 0 1—45- 0

E E £ 2] # 0 0 -9/4 0

c c c 3|6 2 0 0 3/4 0

t t t B4|3 % 0 0 -9/4 0

A= 1110

s(1) s(2) s(3) label | x Pix  Pax Pax  Psx  Psx
a g ¢ 7|4 B 38 -8 342 9n

g a ¢ dlr £ -3/8 -f 514 -1

e g a 7o B -a3m & -3/2 -5/2

a ¢ g |0 3§ -3/8 16 -5/8 -

g ¢ a 108 £ 358 -1/12 0o i

c a g 9|9 B 38 76 58 B

a g ¢ 53 | 4 -3/8 -L 12 172

a t g 2|3 £ 38 -1/12 1/2 -7/4

t g a 8|4 2 38/ 76 -1/8 -i

g a t sofr 2 3/ -3 By

g t a 4|6 £ -3/8 16 2 g

t a g |7 F -3/8 = 2 1

a ¢ ¢t 57|77 £ 38 76 58 z

a t ¢ 45 |5 88 —3/8 & —l/4 5/

t e a 12{s B -3/ -% 0 0

c a ot 516 ¥ -3/58 16 & _5/8

c t a 152 & 38 -8 14 -1

t a c 6|5 ¥ 38 -1/12  5/4 -1/2

g ¢t 584 2 -3/8 E -14 14

g t ¢ w2 ¥ 38 76 -2 B

t ¢ g 28|0 £ 3m -8 -3/2 -4

¢ g t 551 % 3/8 -1/12 -7/4 -3/2

e t g 314 $£ -3/8 -F -7/¢ 11/4

| t g ¢ 04 £ -38 16 -2 2L

(1) The book by Durbin et al. (1998) includes an introduction to bioiogic

sequences and sequencing, including many probabilistics aspects;

(2) The work of Doi (1991} on local nuclotide sequences, of Graf and Schachman
(1996) on random permutation of genes and expressed polypetide chains,
of Finkel {1992) on HIV-1 ancestry primordial expansions. The notion of
covariability in amino acld chains is developed in Bickel, Cosman, Olshen,
Spector, Rodrigo and Mullins (1996);
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" (3) The long-range correlations in DNA sequences is discussed in e.g., Voss
(1992), Peng, Buldyrev, Goldberger, Havlin, Sciotino, Simons and Stanley
(1992). See also Herzel, W.Ebeling and Schmitt {1994) and Salamon and
Konopka (1992) for the notion of entropy in biosequences.

Exercises

4.1. For the actions defined in this chapter, show that > Py =1, PP, =0,
ptkand PE=P,k=1,...,T.

4.2. For the actions defined in this chapter, show that 3, P} =1, P}P} =0,
p#kand (P))? =P}, k=1,...,r, for each partition A.

4.3. The following matrices show the action from the left on the set of all
four-sequences in length of four.

(4.16)
- a\s|1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48 7

1|1 22 43 64 17 33 49 6 38 54 11 27 59 16 32 48
(12) |1 22 43 64 17 33 49 G 38 54 11 27 59 16 32 48
(3)|1 22 43 64 2 3 4 21 23 24 41 42 44 61 62 63
(23) |1 22 43 64 5 9 13 18 26 30 35 39 47 52 56 60
(123} |1 22 43 64 2 3 4 21 23 24 41 42 44 6 62 &
L(132)|1 oy 43 64 5 9 13 18 26 30 35 39 47 52 56 60

4.17
) o\s| 5 9 13 18 26 30 35 39 47 52 56 60 2 3 4 21
1] 5 o 13 18 26 30 35 39 47 52 56 60 2 3 4 21
(12)] 2 3 4 21 23 24 41 42 44 61 62 6 5 9 13 18
(13} 5 ¢ 13 18 26 30 35 39 47 52 56 60 17 33 4@ 6

(23) |17 33 49 6 38 54 11 27 59 16 32 48 2 3 4 21
(123) |17 33 49 6 38 54 11 27 5 16 32 48 5 9 13 18
[ (132) | 2 3 4 21 238 24 41 42 44 61 62 63 17 33 49 6
(4.18) ‘
r o\s |23 24 41 42 44 61 62 63 37 34 7 325 10 19 53 29 W

123 24 41 42 44 61 62 63 37 34 7 26 10 19 53 29
(12) 26 30 35 39 47 52 56 60 84 87 10 19 7 25 50 20
(13) |28 54 11 27 59 16 32 48 7 19 37 10 25 34 B8 M
(23) |23 24 41 42 44 61 62 63 25 10 19 37 34 7 20 53
(123) |26 a0 35 39 47 52 6 60 19 7 25 34 37 10 20 50
(132) |38 54 11 27 59 16 32 48 10 26 34 7 19 37 14 8

4.19
( -) o\s| B 50 14 20 57 45 12 51 15 36 58 46 28 55 31 40 7

1] 8 50 14 20 57 45 12 51 15 36 & 46 28 § 31 40
(12)|14 53 8 29 51 36 15 57 12 45 55 40 31 58 28 48
(13) |53 20 20 50 12 15 57 36 45 51 28 31 58 40 46 55
(23)]20 14 50 & 45 57 36 15 51 12 46 58 40 31 55 28
(123) |20 8 53 14 36 51 45 12 57 15 40 55 46 28 58 3l
L (132) |50 20 20 52 15 12 51 45 36 57 31 28 55 46 40 58
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Determine the fixed points and the orbit stabilizers.

4.4. Consider the foliowing data set described in Cox and Snell (1989, p.6),
from an original study reported by Lombard and Doering (1947). In this study, the

TABLE 4.2. A 2 x 2 structure. Study of cancer knowledge.

s  No. successes No. trials s No. successes No. trials
1 84 477 d 2 12
a 75 231 ad 7 13
b 13 63 bd 4 7
ab 35 94 abhd 8 12
c 67 150 od 3 i1
ac 201 378 acd 27 45
be 16 32 bed 1 23
ahc 102 169 abed 23 31

response concerned individual’s knowledge of cancer, as measured in o test, a ‘good’
score being a succsee and o ‘bad’ score a failure. There were four factors expected Lo
account for the variation in the probability of success, the individuals being classified
into 2* cells depending on the presence of exposure to (a) newspapers; (b) radio;
(c) solid reading; (d) lectures.

(1) Identify the mapping structure in these data (recall the analysis of two-

sequences in length of four discussed earlier on in Section mmmy);
(2) Formulate the symmetries of interest;
{3} Formulate an inference basis for analysis.






CHAPTER 5

Applications: data with set product structure

5.1. Introduction

In this chapter we consider data that are undexed by a set product structure
V. The symmetries of interest are those defined by the direct product group G x H
acting on V. Typically, G and I are subgroups of permutation groups. In partic-
ular, to decompose the structured data when p& and p" are linear representations

of G and H, respectively, we will construct and apply the canonical projections
(5 1)

|G||H]me l)xn (e ® o")a,7), n=1,...,N, m=1,,.., M.

associated with the tensor representation p® @ p" of p& and p®. From Theorem 3.8,
Chapter 3, M and N indicate the number of irreducible representations of G and
H, with corresponding characters x& and xﬁ, and dimensions d,;, and d,.

5.2. Permutation symmetry studies

ExAMPLE 5.1. Consider the simple set product structure V = L; x Ly with
L; = {1,2} and Lg = {1, 2,3}, which is the index set for a 2 x 3 data table such as

Uy Uz U
y=|:r 2 E]EV.

v Y2 U

We will obtain a representation of V into a six-dimensional vector space V re-

alized by the direct product group So x 83 acting on V according to the action

(vi,aj), where (r,0) € Sz x S3 and (i,j} € V. The ohservables are written as
= (uy, ug, U3, v1, va, va) € V. Following Chapter 3, we start with the character

tables

xa\t |l ot x

X;\?‘ i : xa1 |1 1T 1
21 ,
ol i xn|2 0 -1

xss |1 -1 1

of Sz and Sz, in which 1 indicates the appropriate identity, t the corresponding
(conjugacy class of) transpositions and r the (class of) order 3 cyclic permutations.
Also, indicate by p? and p® the permutation representations of Sz and Sz, respec-
tively. It then follows from Theorem 3.8 that the canonical projections for S are
given by:

_-1- 1+ 2 _“1~ I 1
le—ZZT:Xu(T )p('r)—2[1 aE

135
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_1 iy 2y L 1 1]
Prz = 22)(12(7 () =3 11
Similarly, we obtain, for 53,
1 1 17
1 s 1
'P31=E'ZX31(T )p (‘r)=§- 1 1 1 »
T |11 1]
2 -1 -1
1 —1v .3 1
P2 = 527{31(‘? =351 -1 2 -1],
T -1 -1 2
. 0 00
- 1y 87y _ -
Py = Ex:ss('r }ei(r) = 3 000
" 000

Note that the P2 = P, PiP; = 0, for i # j, and that 3P, = I, for each one of the two
sets {Pz1, Paz} and {Pa1, Paz, P3a} of projections. To cbtain the proposed canonical
projections we form the tensor product of these marginal canonical representations,
thus obtaining four projections, namely;

I

o] =

PL=Pn®Pu

[
— e = e e e
e

[
Mo e = =

1
P =P, ®P == 1
PEACIRTEL 9 1 1 2 -1 -1

It I T
S S I R N S I
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f 2 -1 -1 -2 1 17
-1 2 -1 1 -2 1
-1 -1 2 1 1 -2
-2 1 1 2 -1 -1

1 -2 1 -1 2 -1

. 1 1 -2 -1 -1 2 J

These projections are pairwise orthogonal and verify the decomposition

(5.2) Is =P+ P2+ P+ Py

Table 5.1 shows the dimensions (d = tr P) of the corresponding subspaces and
indices for the respective bases. These indices carry the first-order interpretation
of the data summarized in the subspaces generated by these bases. We conclude

1
Pi=Pu®Pxn= g

TABLE 5.1. Canonical subspaces of p? ® p?, respective dimensions
{d = tr P) and corresponding bases.

P d basis interpretation
Pl uduztuzt+vidvatvs baseline average
P2 2 2up—uz—uz+2vy ~vy— vz, —uy +2u2 —uz — vy +2va — vz column effect
Py 1 up fuzfuz—vy—ve—vs row effect
Pe 2 2up —ug —uz —2vi4ve +vz, —up +2uz —uz vy — 2vz + va remainder ¢

this example with a selected number of decompositions realized by the set (P} of
projections described above. In each case we present a particular data along with
the corresponding decomposition of the sum of squares. The reader should find the
correspondence between these data and the resulting relative magnitude of row and
column effects. The column indicated by Q deseribes the resulting decomposition
under the equivalent set of projections associated with p° ® p? (see Exercise 5.1).

(1) -

Vo oss(P) ss(Q) ]
1 136.3 136.3

3.1 45 6.7 ¢ 1930 0.0
41 23 79

; r 00 1930 |’
¢ 862 362
| total 159.3 159.3 |

V. ss(P) ss(Q) ]
1 73.50 73.50

[1 9 3:| c 4.0 13.50

: r 13350 40 |°
e 00 00
| total 910 910 |

4 5 6
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vV  ss(P) ss(Q)
1 66.67 66.67

1 2 3 c 0333 10.67
6 5 3

: r 1067 0333 |°
¢ 6.330 6.330
total 84.0 84.0 |

(4) ) i
vV ss(P) ss(Q)
1 60.167 60.167
1 2 3 c 2,333 13.500
5 3 6|° r 13500 2333 |°
€ 3.0 3.0
| total 790 79.0
(5) ) )
vV o=s(P) ss(Q)
1 104.2 104.2
1 2 5 c 17.33 13.50
45 8|° v 1350 17.33 |°
€ 0.01 0.01
| total 1350 1350 |
(6)

vV  ss(P) ss(Q)
1 4428 44.28

1 2 5 c 17.33 0.015
[ i1 21 5.1 ] : r 0015 17.33
€ .001 0.001
| total 6163 6163 |

D

ExAMPLE 5.2. Consider the set product structure V = L; x Ly x Lz with
L, = {1,2}, Ly = {1,2,3} and Ly = {1,...,n}. This is similar to Example 5.2,
now with n observations in each one of the cells of the 2 x 3 data table. The
data space V has dimension £; x £5 x n. If we assume that all observations within
each cell of Ly x Ly are experimentally equivalent, we may decide (or propose to
test) that such equivalence relation is best represented by shuffling these within-
cell data according to the action of the symmetries in S;. The important point
is abserving that this is one of many choices here. The context may suggest that
these data are enly cyclically equivalent, in which case we would shuffle the data
using the cyclic symmetries of C,- This is characteristic of a symmetry study. We
assume, to continue, that S, is suitable and choose the canonical one-dimensional
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and n — 1-dimensional projections
1, n
A= See’ A =1-4

of S, and tensor them with the initial decomposition of L; x L3, expressed in
(5.2). The result is a representation defined on the 6n-dimensional vector space
V realized by the direct product group 5; x S3 x 8, acting on V according to
(7i,g), k), where (7,0,7) are in the direct product group and (i,j,k) in V. The
observables are written as y' = (u, Uz, U3, V1, Vg, va} € V, with the understanding
that each entry is a vector in R". The resulting canonical {pairwise orthogonal)
decomposition is

[=P1@A+.. . P@A+Pi A +... P, @ AL,
Moreover (see Exercise 5.5) the sum of squares decomposition is given by
3 ? [
Vy=z2'Piz+.. .2 P+ Z(uiAJ'u; + v At ),
i=1

where &’ = (\/u] Auy, /uhAug, /uiAug, /v Avy, v/ ¥5Ava, /v Avs). Here is one
numerical example, with the resulting decomposition followed by the standard
analysis of variance:

Y 53 dim V 7
1 380870 1
c 49.958 2
r  0.035 1
cr 15.779 2
3.1,3.5,3.2| 4.5,4,4.7]6.7,45,68 _ e, 0.086 2
y=[ 41,4,44 |23,19,15] 79,778 | e 0260 2
es  3.380 2
es  0.086 2
es  0.319 2
e 0.045 2
| total 450.840 18 |

Seurce Sum-cf-Squares df Mean-Square F-ratio
ROV 0.036 1 0.036 0.102
COL 49.963 2 24,982 71.718

ROW*COL 15.781 2 7.891 22.682

Error 4.180 12 0.348

O

ExXAMPLE 5.3 (A 2 x 2 Latin Square structure). Consider the following simple
Latin Square assignment of two treatments {a, b} to the 2 x 2 product space V,
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with a resulting data point y in the space V:

a b 10 14
V= , ¥Y= ey
b a 7 18

The observables are written as y’ = (a1, by, be,ag) € V, of dimension v = 4. The
V space is subject to row-symmetry, column-symmetry and entry-symmetry con-
ditions. First we consider with the row-column full permutation symmetry under
the action of the direct product group Sz x Sa. Following Chapter 3, we start with
the character table of Sg, given by

|1 (12)
x1|1 1
X2 | 1 -1

From the canonical projections

P1=§;xl(r-l)p('r)=%[i i] P2=%2X1(T—I)P(T)=%[_11 _ﬂ

of Sz we obtain the canonical projections

1111 I -1 1 -1
pu=pep=t| P P TN pLapep “Lotetd
11 =71 1_4 111 1 ) 12 = 1 2—4 1 —i 1 -1 )

1111 1 1 -1 1
and
1 1 -1 -1 1 -1 -1 1

il & 1 -1 -1 1l-1 1 1 4
P :p = -— — = -
n=P®P=7| | 4 , y Pe=P®P2=71 , | | 4

-1 -1 1 1 1 -1 -1 1

of 84 % 85 into V. These are one-dimensional pairwise orthogonal projections, with
respective bases indexed by

'P11|f11+b1+bz+a2
Pz | ar — by + by — a2
P | ar+br —bg—as
Pa | ag =~ by —bg + a2
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The reader may describe the interpretation of the corresponding subspaces. The

resulting decomposition of the sum of squares for y = 12 i: is
[ trait P | yPy dim=trP ]
1 Py | 600.25 1
row Pa ] 25 1
column P12 | 56.25 1
treatment + ¢ Pao ! 12.25 1
| total I | 669 4 |
Note that all resulting subspaces are one-dimensional and hence irreducible. 0

ExampLE 5.4 ( A 4 x 4 Latin Square structure). Consider the following Latin
Square assignment of four treatments {a, b, c,d} to the 4 x 4 product space V, and
a resulting data point y € V:

a b ¢ d ¢ 14 7 8
d a b ¢ 7 18 11 8
V= , Y= eV
¢c d a b 5 10 11 9
b ¢ d a 10 10 12 14
The observables are written as y' = (a1, b1, ¢1,d1,...,ba, ¢4, dg,24) € V, of dimen-

sion v = 16. The structure V is subject to row-symmetry, column-symmetry and
entry-symmetry. To derive the projections associated with the row-column sym-
metries under the action of S84 x 84 we start with the character table of S4, given
by

[ X\ |1 (12) (12)(34) (123) (1234)
x1|1 1 1 1 1
x2 |3 1 -1 0 -1
xs|2 O 2 -1 0
xa|3 -1 -1 0 1
xs |1 -1 1 1 -1

From Theorem 3.8,- the canonical projections associated with the permutation rep-
resentation, p, of 54 are given by:

Pi= o0 Yl elr) = 3

o e
Lo S
e e
ke

of dimension 1, and

Pr= o2 xalr™)elr) = 5
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fS4X

of dimension 3, with the remaining 3 projections being equal to zerol. The resulting

canonical projections determined by the corresponding tensor representation o

S4 are then

1
T'B"Jlf'n

Pu=P1@P

Pz=P19®Pz, 0r

— o o= M| e e ] e o A | o = - Pl Tl N T T T B - T ]
[ | || [ | I S | S Y I A R N N O RO B S |
8
e T - B el B B e B o B T o T - B I R T = T J e e I T I B I B I - T -~ T - B d
(I fr o Il 1 [ . l | IR T Y O TR AR N I I A B m
el
P I T T R - T R Y - I P T e T e T B T e T e T e R B T I I - T -~ T -~ T = .m
1 [ [ [ [ | T U I T Y Y I N Y O R | g
o B T S -~ T I R - T B e B T = B B o S o L T B I R e B o B B I - TR - B B .m..

[T | I | T 11 | | A K R Y Y O I R N I R A @

— — — — — ——— — — S WTETTY  — el — et — — — —— —— — — — — — — — — ] S WU — =

o+
e e B B I I R -~ S B T T - = 3 B B e B T e el B B T B N B T~ - R e B e B o o =
| S I I [N | | I | A N I S O R A [ 2 I R ¢ G

=
L B B e B B B oo B o IR e -~ S B I B e B - B o | - e o ] e = =) M M A qm
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P =P2Q@P,, or
[ -3 -2 -3]-3 1 1 1]-3 1 1 1|-3 1 1 17
-3 9 -3 3} 1 -3 1 1)1 -3 1 1| 1 -3 1 1
-3 -3 9 -3 1 1 -3 1]1 1 -3 1|1 1 -3 1
-3 -3 -3 9| 1 1 1 -3} 1 1 &t —3|] 1 1 1 -3
-3 1 b 1] 98 -3 -3 -3|-3 1 1 1]|-32 1 1 1
1 -3 1 1]-3 9 -8 -3|] 1 -3 1 1| 1 -3 1 1
1 1 -3 1]-3 -8 9 -3] 1 1 -3 1|1 1 -3 1
1 1 1 1 -3]-3 -3 -3 9| 1 1 1 -3|l 1 1 1 -3
Py =—
)] -3 1 1 1]-3 1 1 1] 9 -3 -3 -3|-3 1 1 1
1t -3 1 1|1 -3 1 1|-3 9 -3 -3| 1 -3 1 1
1 1 -3 1] 1 1 -3 i|-3 -3 9 3| 1 1 -3 1
1 1 1 -3| 1 t 1 -3]-3 -3 -3 4| 1 1 1 -3
-3 1 1 1|-3 1 1 1]-3 1 1 1] 8 -3 -3 -3
1 -3 1 1{1 -8 1 1] 1 -3 1 1}-3 9 -3 -3
11 -8 1)1 1 -3 1|1 1 -3 1|-3 -3 9 -3
[ 1 1 1 -3] 1t 1 1 -3] 1 1 1 -3|-3 -3 -3

From I = P31 + P12 + Py + Pag, we obtain the orthogonal decomposition for the
total sum of squares

trait P y'Py dim=trP ]
1 Py 1681.0 1
row Pay 1850 3
column Pz 51.50 3
treatment +e Py 83.0 9

| total I 1834 16 |

Next, we have to decompose the 9-dimensional space, image of V under Py5. This
can be obtained by letting S4 act on the four labels of each treatment and utilizing
the (n — 1)-dimensional irreducible decompeosition studied in Chapter 3, Example
3.34, and Example 5.2 in this chapter. More specifically, we define

Pua 0 0 0 Pea 0 0 0
_ 0 Pt:b 0 0 _ 0 Pe:b 0 0
P=l o 0 P 0 "% 0 0 P 0o |’
¢ 0 0 Pu 0 0 0 Py
where
6 6 6 6
1 . 1|6 66 6 1
= — - = — = ~J i=
Pui ngl(fr 2=l 6 6 6 6 | T30 =abod
6 6 6 6
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and
6 -2 -2 -2

"2 6 2 2 Ly, i—abed
= - =y, 1=23,0,C4d
2 -2 6 —2 4T ¢

-2 -2 -2 6

3 a1
Pei = '2_4'2‘,’:)(2(1- )p(’i“) = g

The resulting decomposition
Y& PoaPiPrgy +¥'8 PraPePrgy
of y"Pozy, where g is the (changing of basis) transformation defined by

a b ¢ d & a a a
d a b ¢ bbb
i H
¢ d a b C ¢ ¢ ¢
b ¢ d a d ddd
is described in the following matrix:
[ trait | y'Py dim ]|
i [1681.000 1
row | 18500 3
column | 51500 3
t:a | 36000
t:b | 2250
tic | 30250
t:d | 4000 x
e:a i 237 =*
e b | 1125 =
eic | 387 =%
e:d | 3.125 =
| total | 1834 16 |
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The standard analysis of the same data set is described in the following table.

Analysis of Variance

Source m-of-Squares df Mean-Square F-ratio
ROW 18.500 3 6.167 3.524
CoL 61.500 3 17.167 9.810
TREAT 72.500 3 24.167 13.810
Error 10.500 6 1.750

a

EXAMPLE 5.5 (A 3 x 3 Latin Structure}. This example is similar to Examples
5.4 and 5.3. We outline the results for the following label structure and a data
point y € V:

a b c] 10 14 7
V=]lc¢ a b}, y= 7 18 11 | eV
b ¢ a | 8§ 10 11

From the character table of S,
ATl (12) (123)

yi Il 1 1
X2 I 2 V] -11{’
xall -1 1
we obtain the canonical projections for the permutation representation, p, of S3 as:
1 11
1 _1 1
= D =—-]111
Pr=gY b olr) =3 ,
T 111
2 -1 -1
== -1 -1 2 -1
Py Z x2(7 " Yo7} = 3
-1 -1 2

The remaining projection is equal to zero. The resulting canonical projections for
P ® p are:
1
Pu=P1@P1= §J9.

2 -1 -1} 2 -1 -1} 2 -1 -1]
-1 2 -1[~-1 2 -1]-1 2 -1
-1 -1 2]-1 -1 2]-1 -1 2
2 -1 -1 2 -1 -1| 2 -1 -1
'Pl2='P1®Pz=% -1 2 -1]-1 2 -1|-1 2 -1/,

-1 -1 2|-1 -1 2]|-1 -1 2
2 -1 -1] 2 -1 -1} 2 -1 -1
-1 2 -1]|]-1 2 -1|-1 2 -1
-1 -1 2|-1 -1 2|-1 -1 2|
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[ 2 2 2|-1 -1 -1|-1 -1 -1

2 2 2|-1 -1 -1]|-1 -1 -1

2 2 2]-1 -1 -1]-1 -1 -1

-1 -t -1] 2 2 2|-1 -1 -1

P21=’P2®P1=% -1 -1 -t} 2 2 2|-1 -1 -1
-1 -1 ~1] 2 2 2|-1 -1 -1

-1 -1 -1|-1 -1 -1| 2 2

-1 -1 -1}~1 -1 -1} 2 2

b -1 -1 -1]-1 -1 -1} 2 2

[ 4 -2 -2]-2 1 1]-2 1 1

-2 4 -2| 1 -2 1] 1 -2 1

-2 -2 4] 1 1 -2| &t 1 -2

-2 1 1] 4 -2 -2|-2 1 1

'P22='P2®'Pz=% 1 -2 1|-2 4 -2| 1 -2 1
1 1 —2]-2 -2 4] 1 1 -2

-2 1 1i]-2 1 1| 4 -2 -2

1 -2 1| 1 -2 1|-2 4 -2

| + 1 -2 1 1 -2[-2 -2 4

The corresponding bases are shown in Table 5.2: From 1= P13 + P12 +

Pay + Pz

TABLE 5.2. Canonical bases for p ® p and respective dimensions
(d = tr P), where p is the permutation representation of S; .

basis

trait

Fu
P2

[

a1 +b1+c +cz+az+bat+bytcztas

21 — by —c1+2c2 —az2 —ba

—ay +2by —¢1 — ¢z + 2ag —~ bz —bg + 2¢3 — a3

1
+ 2b3 - c3 — aa,
c

2a) + 2by + 2¢; — ¢z — az — by ~ bz —c3 — a3,

—a; — by —c1 +2c2 +2az +2b2 —bg —c3 — a3

r

we obtain the orthogonal decomposition for the total sum of squares

Pe=

trait P yPy dim=trP ]

1 Py 961 1

row Py 16.666 2

column Piz 068.666 2

treatment +e Pon  3B.666 4

total 1 1085 9 ]

A decomposition of the 4-dimensional space, image of V under Pgz is

Pia O 0 Pewn O 0
0 Pt:b 0 s Pe = 0 Peb ¢ )
0 0 Pt:c 0 0 ,Pe:c
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where

L 9 -1 -1
1
Pui=zi1 11|, Pu=g|-1 2 -1[, i=abcd
111 -1 -1 2

The additional decomposition
V'8 Py PeParogy + ¥ e PoyPePragy

of ¥ Pagy, where g is the transformation corresponding to that defined in Example
5.4, leads to the complete decomposition,

" trait | y'Py dim
1 | 961.000 1
row | 16667 2
column | 68.667 2
t:a | 21.333 *
t:b | 0333 « |
t:e | 16.666 *
e:a | (0.222 *
erb | 0222 *
erc | 0222

| total | 1085 9 |

which corresponds to the standard analysis of variance,

Source Sum-of-Squares df Mean-Square F-ratio

row 16.667 2 8.333 25.000

column 68.667 2 34,333 103.000

treat 38.000 2 19.000 57.000

Error 0.667 2 0.333

for these data. O

EXAMPLE 5.6 (Decomposing the standard 2P factorial data). For the purpose
of this example, let G = Sy and 7 = (12). Starting with p = 1, there are two
natural projections, namely,

u=

(p(1) + p(7)) = % [ i ! ] , b= %(P(U‘P(TD =

B
"
| =
—_
- |
—
[ S|

b2 e
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The projections for the 2% factorial experiment are given by

[1 1 1 1 1 -1 1 -1
1]1 11 1| =1 1 -1 1
uu=u®u=z 111 1| ut=u®t=z 1 -1 Rk
1111 -1 1 -1 1
1 1 -1 -1 1 -1 -1 1
=t@®u=— L1 -1 - et D t -
4] -1 -1 1 1|’ 41 -1 1 1 -1
-1 -1 1 1 1 -1 -1 1

These projections act on points v = {00,10,01,11) in V, in which the low (0) and
high (1) levels of each one of the two factors are represented. The data are indexed
hy these labels. For the 23 experiment we have

v' = (000, 100,010, 110,001,101, 011, 111)

and i
11111111 l
11111111
11111111
1 11111111
ummu=u®uPu= 2 ’
8111111111
11111111
11111111
L1111 11 1 1 ]
[ 1 1 1 I -1 -1 =1 =17
1 1 1 1 -1 -1 -1 -1
1 1 1 i -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1

tuu=t®u®u=% ,

uut=u®u®t=% N
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-1 -1

1

~1
1

-1
1

-1
-1

~1
-1

-1

-1

~1

-1

tat=t@u@t

1
§

utu=u@RtQu

-1

-1

-1

-1

-1

-1

1 -1 -1

-1

Htu=t@t@u

-1 -1 -1

-1

-1 -1

1

1
-1

1
-1

-1 -1

-1

— oo

umt=u@t@t
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[ 1 -1 -1 1 -1 1 1
-1 1 1 -1 1 -1 -1
-1 1 1 -1 1 -1 -1

tit=tRt@t =

ool

We conclude this example with a numerical illustration in which two observations
are obtained at each of the 8 labels of a 2% Factorial space. We have

a b ¢ -
0 00 15
0 01 999
010 499
286
v={0,1PFx{1,2}=|0 1 1 |x{12}, andy=
438
100
101 926
110 871
(11 1] | 801

779 ]
990
212
611
239
787
303
663

eV

Because the label space V has the form {Low ,High }®x {1...n} indexing the n ob-
servations in each configuration of the factorial sub-space, we add the 1-dimensional

and the (n-1)-dimensional projections

A=lea', At =1-A4,
n

obtaining the canonical (pairwise orthogonal) decomposition of V

I=u @A 4.t @A +umm®@AY +. .t @ AL,
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1

5

1

The numerical components of the decomposition are shown in the following matrix:

[ trait P Vi{PRA)Y twP@A ]
1 uun 5651317.56 1
c. uub 488950.56 1
b utu 43785.56 1
be utt 173264.06 1
a tuu 33033.06 1
ac tut 76.56 1
ab tu 143073.06 1
abe 1413 7788.06 1
V(PoAL)y trP@AT
e uuy 7267.56 1
8 Hut 3570.05 1
e utu 86289.06 1
e utf 173264.06 1
e tuts 232083.06 1
e tut 19670.06 1
e ttu 4192.56 1
[ ie 76314.06 1
| total I 7143939.00 16 ]

All subspaces are one-dimensional so that the decomposition is irreducible and the
analysis is complete. Here is the condensed standard analysis:

Analysis of Variance

Source Sum-of-Squares df
a 33033.063 1
b 43785.563 1
c 488950.563 1
a*b 143073.062 1
a%c 76.563 1
bxc 173264.062 1
axb¥c 7788.063 1
Error 602650.500 8

Mean-Square

33033.
43785.
488950,
143073.
76.
173264.
7788.
75331,

063
563
563
062
563
062
063
313

F-ratio

0.
.581
.491
.899
.001
.300
.103

QONO P, DO

439



5. APPLICATIONS: DATA WITH SET PRODUCT STRUCTURE

152

btained as

Fractional factorial experiments). The projections defining a

EXAMPLE 5.7 (
half fraction (23~1) of the 2° experiment described in Example 5.6 are o

o 90O O o = —~ — ™=
o O O o A —= ~ ™=
o ©C 9 O - A =
O O C O ™ ™~ = —
- - - o o Q O
—_ - - 0 o o O
- - - - o O O o
- - - - 2o o
L 1

— 1=

[

=

@

=

®

—_

)

+

=]

e

Il

-

|28

0]

(u+t)uet=

Py =

-1 -1

1

0
-1

0
-1

-1 -1
o 0

1
]

1 -1 -1

0

— | <K

U+ttt =

P;=
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1 1 -1 -1 0 0 0 o0
1 1 -1 -1 0 0 0 0
-1 -1 1 1 o0 0 0 0
ij]-1 -1 ¥ 1 0 0 0 O
'P4=(ll+t)®t®u=z 6 0 o0 o0 1 i1 -1
0 ¢ 0 ¢ 1 1 -1 -1
6 o 0 0 -1 -1 1 1
L 0 0 0 0 -1 -1 1 1 i

The resulting experimental assessments, obtained by symbolically multiplying the
projection matrices by ’

v’ = (000, 100,010, 110,001, 101,011, 111)
can be indicated Ly
L; = 000+ 100 + 010 + 110,
L; =000 — 100 + 010 — 110,
L3 = 000 — 100 — 010 + 110,
Ls =000+ 100~ 010 — 110,
thus showing that only the half fraction of the original 8 labels in V are needed in

the fractional experiment. ]

EXAMPLE 5.8. In general, the fractional experiments for the 21 factorial exper-
iment are cbtained as the solutions to the equations

(5.3) P +P;=1 29 fraction,
(5.4) Pi+Py+P3+Py=1, 272 fraction,

(5.5) P +P2+P3+Py+P5+Ps+P7+Ps=1, 21 fraction,

where the unknown are pairwise disjoint projection matrices in the original 2¢-
dimensional space. Equation (5.3) has three sets of non-isomorphic solutions, each
one corresponding to a 2*~% fractional experiment, namely:

Peuu=u@u+t)@lel, Py=to(u+t)@lel,
Pran=u@u+t}@u+t)®1, Praz=t@u+t)@u+t)®l,
Paar=u@{u+i)@{u+t)@{u+t), Pam=t@u+t)®u-+t)® (u+t).
Equation (5.4} leads to two sets of non-isomorphie 29-2 fractional experiments,
given by
Ponn=u@u® u+t)®(u+t), Priz=u®@t@(u+t)® (u+t),
Prua=t@ue@utt)@u+t), Pru=t@t@u+t)®@u4+t),

Pran =u®u@ u+1)®1, Pop=u®t®@u+t)®1,
Pea3=t@u@u+t)®1, Poas=t@t@(u+t)@1.
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Equation (5.5) has one set of solutions, defining the 24-1 fractional experiment,
given by
Pi=u@u@ue(utt), Pa= t@u®@u® (u+t),
Pia=u®@u@t®@u+t), PLa=t@uadte (u-+t),
Pis=u@t@u®(utt), Pre=t@t@ud (u+t),

Prr=u®t@t®(u+t), Pra=t@t@t®(+t).

il

5.3. Cyclic symmetry studies

In this section we consider the set product space V = Cx L subject to the action
(7?) when G and H are the cyclic subgroups Ce and Cg, respectively. There are
¢f one-dimensional irreducible representations of Cc x Cg with projection matrices
given by

1 Cmis i
(5.6) Pmn=&2u2“w¢’(pc®p’e), n=1,...,6, m=1,...,
Lj

where w; = ™1 and py is the permutation representation of the generating cyclic
permutation (12..f}. As commented earlier on in Chapter 3, it is important to
distinguish the role of the field of scalars defining the vector space V, where these
projections operate on. Let us consider the case of C; first: The resulting canonical
projections are given hy

111 1 w W 1 w? w
1 1 1
Pi=3 111, Pe=3 w? 1w ,193.=3 w 1 W,
1 11 w w1 wr w1

where w = wy = ¢2™/3, In general, these matrices are in GL{C?), so that the
resulting linear operations upon the vectors in V then require that V' is regarded as
a vector space over the field € of the complex numbers. When the field of interest
is the real field (e.g., in applying Fisher-Cochran’s argument), then the irreducible
decomposition, now in GL(R3), is ] = Qg + Qo, with ©; =P; of dim= 1 and

) 2 -1 -1
922772+P3=§ -1 2 -1
-1 -1 2

of dim = 2. Note that P* = P}, so that
Y'Pay = (y'Pay) = y'Psy,
leading to the total decomposition
Yy =y Qiy +y' Qy =y Py + 2y'Pay.

Similarly, with G4, we would obtain the canonical decomposition [ = @) + Q2+ Qs,
with

1111 1w 1 W 1 -1 1 -1
111 111 ile 1 & 1 1l -1 1 -1 1
Ql=— ‘Qg—— 2 2=._
411111 4] 1 w? 1 w 41 1 -1 1 -1
1111 w1 w1 -1 1 -1 1
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both with dim = 1, and

T w w® WP 1w W w

1 w1l w Wl W 1 Wl W?
Q:s='P3+'P4=Z( Wt 1w + W ow 1 P }

w o oW1 W owt w1

with dim = 2. Here {see also Exercise 5.10}, P; = P}, and the decomposition of
the sum of squares is

Yy =Y Qy +¥ Qay + ¥y Quay = ¥ Quy + y' Qoy + 2y Pay.

In the following example we consider the product action of C4 x Cy to examine a
data set subject to weekly and seasonal cycles.

ExAMPLE 5.9. The data shown in Table 5.3 are discussed in Wit and McCullagh
{2001), where the authors propose the family of models

TABLE 5.3. Frequency of mining disasters between 1851-1962.

Mon Tue Wed Thu Fri Sat Sun | fotal

Autumn 7 10 5 5 6 7 1 41
Winter 5 9 10 10 11 7 0 52
Spring 3 7 10 12 13 9 2 56
Summer 4 8 8 9 5 6 2 42
total 19 34 33 36 35 29 5 191

{5.7) mj = oifj{l + Acostcosdy),

where 8, ¢ are ordered angles on (0,27}, ¢;, 8, and A > 0 and ¥, a5 = 6 =1
to assess particular deviations from independence. The model is closed under cyclic
relabeling, and, if two neighboring levels (in a cyclic sense) are merged, say i and
i+ 1 into level ¢, then the result is of the same functional form as equation (5.7),
namely,

Tej i+ it
a; cos B + i1 cos g )

o + oy

Bilei + a1 }(1 + Acos g
By (1 + Acos ¢ cos ),

where a; = o; + oj31. The angle . is between 6; and 8, because the cosineis a
continuous Function. The mining disaster data can then be fitted to the two-way
model (5.7) by means of maximum likelihood.

To decompose these data, we apply (5.6) with £ = 4 and ¢ = 7, There are
28 one-dimensional projections defined in V regarded as a complex vectors space,
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decompasing the total sum of squares, 1607. The results are summarized in the
following matrix in which the {m,n) entry corresponds to the projection Pun-

1 2 3 4 5 6 7
1|13.378 3.325 2419 0539 2.218 16.762 11.607

[Prnn) = 2| 2784 1.1656 0.014 0.014 1165 2.784 0.321
3 | 16.762  2.218 0.539 2.419 33256 13.378 11.607
4 | 68.450 23.760 5.510 5.510 23.760 68.45¢ 1302.900

The following table shows the resulting 15 companents of the irreducible (in
R) decomposition of the original {x'x} sums of squares and the transformed (u'u)
sum of squares based on the multinomial vector u’ = /v(x — np)/+/n, as defined in
Section 4.5, expression (4.2), and Proposition 3.8.

mn w1 X (Pun+ Prr)x dim 0 (Pmg 4 Pyroclu ]

weekly-quarterly 1,1 3,6 26.756 2 3.922

1,2 3,8 6.650 2 0.975

1,3 3,4 4,838 2 0.709

1,4 3,3 1.078 2 0.157

1,5 3,2 4.436 2 0.650

1,6 3,1 33.524 2 4,914

2,1 2,6 5.568 2 0.816

2,2 2,6 2.330 2 0.241

2,3 2,4 4.838 2 (.004

weekly 4,1 4,6 136.900 2 20.064

4,2 4,5 47.520 2 6.963

4,3 4,4 11.020 2 1.612

quarterly 1,7 3,7 23.214 2 3.403

2,7 0.321 1 0.047

\- 4,7 1302.900 1 (0)
total x'x = 1607.000 28 (27) u'u = 44.584

Recall from Proposition 3.8 that the £(u'(Pin + P )u) is approximately x3
relative to the DC component, so that the decompositions identify:

(1) the DC eomponent m = 4,n = T: note that under the multinomial trans-
formation, as expected, this component is zero; =

(2) the weekly cycle n = 1, with u/{Ppupn + Pun)u = 20.064 and the weekly
cycle n = 2, with u'(Pyp + Purw/Ju = 6.963, corresponding to angular
phases @ = 2 /7 and @ = 4r/7, respectively;

(3) asuppressed, not significant, quarterly cycle m=1, with u'{Pun+Pmr )u =
3.403;

{4) a significant quarteriy-weekly cycle m = 1,n = 6 {equivalently m = 1,n =
1}, with W' (Pun + Prmr)u = 4.9146 and angular phase & = 27 /28.

O
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Exercises

5.1. Show that the set of projections Q; = Pg; @ Pay, Q2 = Py ® P2z, Qg =
P2 @ Pa1, Q4 = P32 @ Pyz is isomorphic to the set Py, Pz, P3, Py in Example 5.1,
with the effect of interchanging rows with columns.

5.2, The set of projections Py, Py, Py, Py in Example 5.1 is a basis for the center
C of the group algebra C(p? ® p). Describe the resulting 2! elements generated by
this basis.

5.3. From equation (5.1) show that Py = Py, @ Py, where P,y and P, are the
associated projections in C and L, respectively.

5.4. Given a canonical decomposition I, = P, + P, and the standard averaging
decomposition I, = A4 - AL, show that

In=P1®A+PI@A + P20 A+ P2 @ AL
is also a canonical decomposition. Give the dimensions of the component subspaces.
5.5. With the notation of Exercise 5.4, show that
(1) 3 ¥ (Pi® A)y = 3, 2'Piz, where the j — th component of zj of z is given
by /yjAyj, forj=1,...,m;
(2) iy (PieAl)y = T vidty;.

5.5. Show that the 9-dimensional projection Pag of Example 5.4 decomposes
into 9 one-dimensional (irreducible) projections, given by the pairwise tensor prad-
ucts of

2 —2 2 -2 2 2 .2
Pl 72 222 12 22 -2
TRl 2 2 2 2|t TR 2 2 9 o

-2 2 -2 2 -2 -2 2 2

and

2 -2 -2 2

5.7. Based on P, and P; of Example 5.3, define the bases §; = {e; +e2} and
B2 = {e1 + ez, —ey + €2}, where ¢} = (1,0) and e, = {0,1). Let S; act on f; and 5
regularly and construct the two one-dimensional irreducible representations of Sa.
Recover its character table,

5.8. Based on P; and P; of Example 5.5, define the bases 8, = {er + ez +eg},
f2 = {2e1 o2 —e3, —e; +2e3 —e3}. Let S5 act on & and P regularly and construct
a one-dimensional and a two-dimensional irreducible representations of S3. Recover
its character table (hint: use the orthogonality relations for characters or add the
one-dimensional sign (7) representation).

5.9. Based on Py and P, of Example 5.4, define the bases 8; = {er+esteyteq}
and f2 = {3e1 —ez~e3—ey, —e; +Jeg —e3 —ey, —e; 4 —ep —3ez~eq}. Let Sz act on
By and s regularly and construct a three-dimensional irreducible representations of
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Ss. Add the two one-dimensional irreducibles. Find a two-dimensional irreducible.
Recover its character table by adding the two one-dimensional irreducibles (the
other three-dimensional is the tensor product of the sign (1) with the first three-
dimensional irreducible.

5.10. Show that the number of distinct irreducible representations of G, into
GL.(R) is {n + 2)/2 when n is even, with two representations of dim = 1 and
(n — 2)/2 of dim = 2. When n is odd, there are (n -+ 1)/2 irreducibles, with one
representation of dim = 1 and (n— 1)/2 of dim = 2.

5.11. With the notation and definitions of Example 5.6, with p = 1, show that
I=u+t,t2=t,ul=u tu=ut=0.

5.12, Based on the results of Problem 5.11, show that
fuRu®w, tRURY, UQURL tBURL URLRY, tREQ Y, URLAL, tRt®t}

is a set of pairwise orthogonal projections (that is, for any two distinct matrices a

and b in the set, we have a® = a, b? == b,ab = ba = 0).

5.13. Based on the results of Problem 5.11, show that
{u+t)@uen, U+t)eudt, (U+t)Rt@t, (u+t)®t@u}
is a set of pairwise orthogonal projections.
5.14. For k = 4 (see Example 5.8), show that the set of solutions
Pp1.Ppzsees Ppok-n

to the (generating} equation P3 +...+Pux—» = I constitutes a system of orthogonal
projections, realized as tensors of rank 2P, p =1,2,3.

5.15. Show that the 2P factorial design is defined by the p-fold tensor product
of the permutation representation in Sa.

5.16. Consider the data, described in Cox and Snell (1989, p.87), from an
experiment comparing a standard detergent (M} and a new product (X). The three
factors are water softness, temperature and previous experience with product M.
For each of the factor combinations, a number n of subjects indicate whether X is
preferred to M. The following table shows the number x of positive responses and
the number of subjects considered in each factor combination:

TABLE 5.4, Number of preferences for brand X and number of
subjects.

Previous user of M no no yes yes
Temperature low high low high

Water softness: Hard x 68 42 37 27
Hard n 110 72 89 67

Medium x 66 33 47 23

Medium n 116 56 102 70

Soft x 63 20 57 19

Soft n 1ilG 56 106 48
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(1) Identify the set product structure underlying the data;
(2) Identify the symmetries of interest;
{3) Obtain the projections and corresponding sum of squares decompasitions.






CHAPTER &

Applications: geometric optics

6.1. Introduction

In this chapter we will discuss a symmetry study of a structure common in
ophthalmic geometric optics, and certain invariance properties of probability laws
defined on data indexed by these structures, that are consistent with the optic
properties of interest. The random measurements of interest are discrete-valued
curvature levels measured on the anterior surface of the human cornea. These
measurements, indicated in the chapter by

y=(¥(1),y(2)-..,¥(8),

take values on a totally ordered, finite set, C. The data y are structured according
to the space V = C¥ of all mappings from L = {1,...,€} to C. The symmetry
of interest are location symmetries, resulting from the action {r,y) — yr~! of 8;
on V. The case in which G = R is briefly discussed later on in the chapter. First
we define the experimental conditions within which the structure obtains, the data
associated with the structure, the symmetries of interest, and the restriction that
these symmetries impose on probability models for these data.

6.2, Keratometry

Keratometry is the measurement of corneal curvature of a small area using a
sample of four reflected points of light along an annulus 3 to 4 mm. in diameter,
centered abouf the line of sight. For normal cornea this commonly approximates
the apex of the cornea. The fundamental principle of computerized keratometry is
similar in that the relative separation of reflected points of light along concentric
rings are used to calculate the curvature of the measured surface. Using a pattern
of concentric light-reflecting rings and sampling at specific circularly equidistant
intervals, a numerical model for the curvature of the measured surface may be
obtained. Sampling takes place at equally-spaced ring-semimeridian intersections,
similar to those shown in Figure 6.1. In ophthalmic geometric optics it is of interest
the determination of the angular variation between the extreme corneal curvature
values along a given ring. The difference between the steep (maximum) and the
flat (minimum)} curvatures, as well as the angular variation between these extremes,
are related to the amount of regular astigmatism present in the optics of the eye.
The different curvatures of these various refractive surfaces diffuse light rays and
interfere with a sharp formation of the image on the retina. The chart of concentric
rings shown in Figure 6.1 represents the locations in the anterior surface of the
carnea where these random curvature measurements, indicated by y in this chapter,

161
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FIGURE 6.1. The concentric label structure V.

are obtained in a computerized corneal topography setting, e.g., Viana, Olkin and
McMahen (1993), Klyce and Wilson (1989).

6.3. Astigmatic and stigmatic probability laws

The simplest geometrical representation of the corneal curvature surface, in-
dexed by this structure, corresponds to a spherical-cylindrical surface with the
location of steep and flat curvatures oriented with a 90deg angular separation
(Euler’s theorem of classical defferential geometry). Typically, these curvatures
vary according to approximating functions with argument

(6.1) acoszz‘:fk+ﬁsin2-2%£, k=0,...,f-1,

defined along ¢ equally-spaced points on a given ring, where the coefficients are
determined by the geometry of the optical surface. This right-angle angular sepa-
ration between the extreme curvatures is a characteristic of an optically astigmatic
(o # B) surface. As a consequence, we have:

DEFINITION 6.1 (Astigmatic property). The probability law £(y) of y satisfies
the astigmatic property when the mean angular variation between two order sta-
tistics is 90 deg if and only if these are the extreme (flat and steep) order statistics.

In contrast, a spherical (o = §) surface would lead to a constant mean curvature
and, in particular, the mean angular variation between any two ordered curvatures
should be a constant. This sugpgests:

DEFINITION 6.2 (Stigmatic property). The probability law £(y) of y satisfies
the stigmatic property when the mean angular variation between any two order
statistics is functionally independent of these order statistics.

Implicit in the above definitions is the understanding that, for finitely many (£)
points along any given ring in V, the mean angular variation is only approximately
90 deg. The limii mean angular variation, as £ — co, should reach the right-angle
value. Because the components of y are in a totally ordered set, it is possible to
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order these components according to the specified total order relation (<) in C. We
indicate by ¥ the ordered version of y and write

'=7)

to indicate the set of all mappings (or vectors) y in V which are ordered by the
permutation v, that is,

yir ) <y(rl2) <. S y(re).

T={yeV,yr~

In particular, 1= {y € V;y = ¥} is the set of all ordered mappings and, clearly,
7= TIr"1, for all 7 in Se.

Because of the random nature of y, the permutations involved in the ordering
of the components of y are also random. We refer to these random permutations
as ranking permutations. Note that when C is a finite set then 7 is obviously
measurable with respect to L(y), for all 7 € 5.

DEFINITION 6.3. If for any two distinct permutations 7 and & we have P{T N
&) = 0 with respect to P = L(y), we say that

v=|J7
TES,
is a stochastically disjoint partition of V.
Clearly, if y € 7N & then both ¢ and 7 are ranking permutations for y. The
following proposition establishes a basic connection between the symmetries in the

probability law £(y) of y € V (describing the observable curvatures) and the prob-
ability law £(7)} of the ranking permutations T € Sg.

PROPOSITION 6.1. If £{y) = L{y7~ !} for all 7 € 8¢, and | J, 7 is a stochastically
disjoint partition of V, then £(7} is the uniform (Haar) probability law in 5.

PrRoOF. Under the stated assumptions, P = £{y) induces the law 7w = £{7} in
S¢ given by w(7) = P(T), so that
1= S P =Y (Ir) = £P(1),
TES, TES,
and consequently

n(r) =P = P(D) = 3

for all T € S, that is, £(7) is uniform in S,. O

ExXAMPLE 6.1. Consider the simplest case in which C = {a, b}, such as with
binary-colored topography mappings, and L = {1,2}, e.g., Section 2.7 of Chapter
2. Suppose also that a < b. The mapping space V has 4 points, namely,

V = {aa, bb, ab, ba},

and decomposes, in the natural way, accarding to the frames A = 20 and A = 11
{the two integer partitions of £ = 2), that is

V = Van & Vi,
and each of these components decomposes into isomorphic orbits,
Voo = O11 ® Oy = {an} @ {bb}, Vi3 = Oy = {ab, ba}.
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For each 7 € 52 = {1, (12)}, we apply the definition of
F={yeV; y(r—"1) <y(r'2)},
to obtain .
1= {aa, bb, ab}, (12) = {aa, bb, ba} = T(12).

Next we introduce the probability laws P = L(y)} satisfying the permutation-
symmetry L(y7=!) = L{y) for all 7 in Sg. As briefly outlined in Chapter 1, these
laws have the form of convex linear combinations

P = fiywig + figwis + fz1war,

where

clj, 1 Y€ Oi:
Wi =
o, y €0,

and 3, fi =1, 20, for i € {11,12,21}. 1t then follows that
., 1 —_
P(1) =1 +fiz + 5f21 = P((12)),
and, because f1; + fiz + f2; = 1, the condition
(i) + P((12)) =1

is equivalent to fz; = 1, or fi; = fiz = 0. In this case, P induces a well-defined
probability law 7 in Sg, given by

w(r) = P(®),

which is also invariant, and hence uniform. Here we see that when L(y) is Sz-
invariant then the law £{7) of the ranking permutations 7 in 83 is uniform if and
only if
v=TuQ2)

is a stochastic partition. O

ExAMPLE 6.2. Consider the case ¢ = £ = 3, so that C has three levels of gray,
say. For simplicity, write these levels symbolically as {1,2, 3} and suppose that the
total order of C leads to 1 £ 2 £ 3. We observe a map y = (y(1),¥(2),¥(3)). The

space V decomposes according to the frames A € {300,210,111}, the three integer
partitions of £ = 3, as

V = Vagp @ Vaio ® Va1,
whereas

V300 = O11 @ O12 @ O1,
with each orbit carrying one single mapping,

Vaio=021®...® Oz,

with three mappings in each orbit, and

Vi = Oar,
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with six mappings in the orbit. Matrix 6.2 summarizes the orbits and classes 7
generated by position- symmetrles (r,¥) = yr 1. In each column, the boxed labels
indicate the mappings composing the corresponclmg class 7.

O | s(1) s{2) =s(3) |label [ r:1 @2} (13} {23) {123}  (132) 1
T I YR CY A TS R TY R 1
sl el s MEEE G @
ul s s 3] =z
a| 1 1 2| w| [y 2 4 2 4
n|l 1oz | 4| 4 2 4 2
n| 27 1 1 2| 2 4 2 1
2| 2 2 1| s s s 3] u [B o
2] 2 1 2| ufl n i s s [1s]
2| 1+ oz 2| |[E] u s 1 5
2l 1 1 3| s 3 7 3 7
@ 1 8 af 7] 7 3 v [1w] 3
w| 3 1 1| s s 7 [19] s 7
| a3 1| e 9 8 [es] = [m] =

6.2 u| 3 1 3] n|l =a [ =« 9 s [5]
u| 1 a2 3| =f[m] = 9 21 )
| 2z 2z 3| =3 [m] 15 17T 117
%] 2 3 2] | 1w 15 v [m] [z3] 15
) a3 2z 2| w»| 15 a7 [m] 17 [ae]
w| s s 2] 1] 1 1 [m] 24
2| 3 2 3| m| 24 [2] 2 18 18 [26]
w| 2 3 3| m| 24 18 24 18
| 1 2 s| =[] = & 1o 12 8
si| v 3 2| .| 18 12 s [z] 2 8
sl 2 1 3| w| w2 [m=] 12 8 ] 16
sf 3 1 2} 1z| 12 1 m 6 s [22]
st 2 8 1| s8] 8 6 11 12

Ls1] 3 2 1| 6| & 8 [z2] 12 16 20 |

Note that within each one of the 10 orbits there is exactly one element from the
set T of ordered elements of V, a fact which characterizes 1, and 7 in general, as
cross sections in V. More precisely, a subset I' C V is a cross section if, for each
¥ € V, N O(y) consists of exactly one point (see Eaton (1989, p.58) on conditions
under which there is a stochastic representation of the form L£{y) = £{xr) for the
law of ¥, where x is a random variable defined in T and independent of 7 uniformly
distributed in S).
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The invariant laws in V are convex combinations P = }; fyw;, where

1 X
Wi = o ¥ €Oy,
0: y ¢ oil
and 3, fi =1, f; 2 0, fori=1,..., 10, More precisely,
3 6
P= E friwa + Z fa;wey + faawar,
i=1 j=1
where wy; = 1 inside each orbit in ngo and wy; = 0 elsewhere; wg; = 1 L3 inside

each orbit in qu] and zero elsewhere; wg; = 1/6 inside the single orbit in A11; and
zero elsewhere, and

3 6 :
qu +Zf2j + 3 =1
i=1 =1

As a consequence, we obtain .

3 6
— 1 1
(63) P(T) = E fi + 5 E fzj + 6f31, for all T € 83.
j=1

i=1

Similarly to the previous example, the condition 3, .5, P(¥) = 1 is obtained (and
hence the law of the ranking permutations is uniform in S3) if and only if
v=J7
TES;

is a stochastic partition. O

Expression (6.3} reflects the fact that the space V decomposes as the sum of
three orbits of size 1, corresponding to frame 3102, six orbits of size 3 corresponding
to frame 21110! and one orbit of size 6 corresponding to frame 13, so that [V| =
27 =3 % 1+6 x 3+ 1 x 6, Combinatorial results discussed earlier on in Chapter
3 show that, in general, there are ny orbits of size m) corresponding to frame A,
with |[V| = ¢ =Y, man,, where

a c!

AT )i (ag)s. (aym T plma! .. myl !

so that (6.3) extends to

m

1o
P =% — -
(7= 2 s
A j=1
where A varies over the (m) different frames A = a{*'...ay*, with mia; + ... +
myay = £ and my + ... + mg = ¢. This leads to

ProrosiTION 6.2. Let y € CP for a finite totally ordered set C and £(y) be
Se-invariant. Then the law £(r) of the ranking permutations 7 in S, is uniform if

and only if
v=1J7

€8,
is & stochastic partition.
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6.4. A constructive principle for astigmatic probability laws

Propositions 6.1 and 6.2 suggest that the assumption of permutation invariance
{as described by the symmetries of the entire group 3¢) will, in general, lead to
stigmatic laws. This was apparent earlier on when discussing expression (6.5).
In this section, we outline the construction of astigmatic laws for a Anite-valued
random varigble. The construction extends to the case ¢ = oo by defining two
points y and x in C as similar whenever they share the same frame of repeated
symbols, that is, A(y) = A(x).

We will consider & simple case in which y has £ = 8 components and C =
{a, b, c}, with the ordered relation a < b < ¢. The only assumption here is that C
is a totally ordered (finite) set. This is the case when dealing with topographic maps
colored by shades of gray, say. The case of numerically-valued data is discussed at
the end of this section. The label space V has 3% = 6561 points and, under the
full set (8g) of permutation symmetries, decomposes according to [V] = Yo many,
with the corresponding components given by Table 6.1. We want o define a smaller

TABLE 6.1. Decomposition of V = CL, with ¢ = 3and £ = 8, under
the full set of permutation symmetries (Sg). There are ny, orbits
of size mj corresponding to frame .

A my Ny MmNy
800 3 3
10 8 6 48
620 28 6 168
611 56 3 168
530 56 6 336
621 168 6 1008
440 70 3 210
431 280 6 1680
422 420 3 1260
332 560 3 1680
total 6561

subset G € Sg of permutation symmetries which is consistent with the astigmatic
property. The natural candidate, consistently with (6.1), is one which leaves invari-
ant the components of y when these components vary according to the sequence
(6.4)

y{)=a, y(2)=b, y(8)=c, y()=b, y(8)=a, y(6)=b, y(7) =c, y(8) =,

along one of the rings as illustrated in Figure 6.1, starting at one of the horizontal
semimeridians, say. In this case, the flat (a) and the steep (¢) curvatures are
displaced by right angles with the intermediate curvature value (b) assigned to
the other 4 semimeridians. The set of symmetries associated with (6.4) defines a
commutative group, indicated here by G C S5, with generators the permutations
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h = (2468), t = (15} and v = (37). The order of G is 16, with elements
G = {1,t,v,h,h% h?, tv, th, th? th®, vh, vh?, vh?, thv, th®v, th®v},

isomorphic to the product group Cy x Cp x Cy, where C,, indicates the cyclic group
of order n. Table 6.2 shows the proposed sets of generators for a selected number
of partitions. As an example of an invariant probability law for y consider the

TABLE 6.2. Symmetry generators for selected number of partitions

()

partitions |G] generators
3 2 (12}
4 4 (13).(24)
5 4 (14),(23)
6 8 (1245),(36)
T8 (16),(25),(34)
8 16  (2468),(15),(37)
9 16 (18),(27),(45),(36)

following points y € V,
yi1 = (a,b,¢,b,a,b,¢,b),
ya1 =
Yaz =
ys1 = (a,8,a,3,8,8,8,4a),

Y = (b) b) bl bl b1 bl bl b)-,

Yas = (C1 666660 C):

a’l C! c! C?a’ c, (“'? C)l

a,a,c,a,3a,8,C, a‘):

each of which is fixed by all permutations in G, so that these points define single-
element orbits in V. Next, assign G-invariant probabilities to P = £L(y) according
to convex combinations P = 25 fyw;, where

Wi = cl)| ) y €0y,
| =
01 Y ¢ Oi)
and ), f;=1,f >0, fori € {11,21,22,31,32, 33}. Note that each orbit O; consists
of exactly one element. For example, take

i, ie{u},
fi=<&, ie{21,22},
&  1€{31,32,33}.

Direct computation then shows that the mean natural angular variation between flat
and steep curvatures, under L{y), is 0.937/2, with a standard deviation of 0.178= /2.
In contrast, the mean natural angular variation between flat and “next to flat”
curvatures is 0.5375x/2, thus reflecting the approximately astigmatic property of
L({y)}. In the next section we discuss the construction of astigmatic laws for random
curvatures with values in R.
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6.5. Real-valued astigmatic laws

Let C = R, so that CV is a {real) vector space and the usual operations with
vectors are defined. In particular, the vector of means u = E(y) € V of y and the
covariance matrix ¥ of y, based on £(y) are well-defined. We retain the same set
G of symmetries defined in the previous section. Of interest now is the invariant
parametric structure to be imposed into u and B, consistent with the astigmatic
property. These symmetry conditions are obtained, in general, by linearly repre-
senting the symmetries of interest, that is, through the permutation representation

T — p{7)
of G into GL(8, R) and calculating the first canonical projection

80008000
04040404
008000380

1 04040404
Pl:ﬁ;”m:ﬁ 8 0008000]|
04040404
008000380
04040404

according to Theorem 3.8 of Chapter 3. The equation Py = p then implies that
/4 should have the form

# = (fta; Bby He, {2, fa, b; the, i)
with the additional astigmatic condition

Ha < pb < fic

imposed. Similarly, to determine the pattern of the parametric structure of the
covariance matrix X, we make use of the fact that X has the symmetry of G ¢
S¢ if and only if & commutes will all the permutation matrices representing G.
Equivalently, £ should satisfy the condition

B=3" p(r)p(r).
TeG
The solution is the class of all covariance matrices % patterned according to

ABCBDEBCB
BEFGSBIJITF G
CFHFCPFTITF
BGFEBG GTFJ
=D BCcBABGE ]|
BJFGBETFG
CFIFCPFHTF
| BGF JBGTFE,

described by at most 10 distinct covariance parameters {A, B, ...,J}.
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6.6. The uniform mean angular variation

We observe the data y = (¥(1),...,¥(£}) according to a probability law L(y)
and assume that | J,cq, T is a stochastically disjoint partition of V. Let 7 be the
ranking permutation in S¢ ordering the components of y, that is, y(r1) < y(2) <
... < y(r£), so that 71 is the location of the flat (minimum) curvature and 7€ the
location of the steep (maximum) curvature. The angular displacement between the
extreme curvatures may be defined as follows: fix a north pole m € {1,2,...,£}
and a walking direction o = (12...£) in 8 for counting the steps along V. If, in
the direction determined by o, it takes n steps to walk from the flat curvature to
the north pole and N steps to walk from the steep curvature to the north pole, we
express this by writing ¢"71 = m and Vel =m. Consequently n—N=71-7¢ in
the direction given by & and n— M = 7€~ 71, in the direction defined by -1, This
justifies the definition of the angular variation a(r) between the extreme values of
y as

2
apn(r)=|7€— 1'1|E1r.

Proposition 6.1 suggests that we consider the first moments of the angular variation
under uniformly distributed ranking permutations. More precisely:

PRroPOSITION 6.3. Under the uniform probability law for 7 € 8¢, we have

2041 e 2 2+ 1) -2 e @
E(O—’tl)=§—g—ﬁ Loeo, g‘ir, Var(au):E( gj’g )"2 &0 E"'TZ-

PrROOF. Let ¢(7) = lrf — 71], 50 that ¢~ (1) U...U¢~} (€ 1) forms a disjoint
partition of S¢ and, under the uniform law in S,

1 oknr 1
E(ea(r)) = T|¢’_1(k)12}',
k=1 )
where |¢~1(k}| is the number of permutations T € 5, such that ¢(7) = k. From the
fact that ¢~ (k)] = 2(¢ - k)[(£ — 2)!], direct computation then shows that

_2£+1 9 2841 4
E(ael (T)) - 3 ? m, E(ael(T)) - 5 ¢ T
from which the proposed results follow. O

Similarly, we define the natural angular variation between the extreme values
of y as
ag{T) = min {on(7),£ - aa ()},
so that 0 < a{r) < . Let f{r) = min {|7¢ — 71|,£ — |rf — 71|}. It then follows
that for even values of £ > 3, the number |f~1(k)| of permutations in S¢ satisfying
f{T) = k is given by

_ _J2ee-2)), k=1,..,£-1,
g l(k)'“{eue—z)!l, k ’

whereas, for odd values of £ 2> 3,
£ 001 = 26l ~ 2, k=1, —5—

With proof similar to that of Proposition 6.3, we obtain the first moments for the
natural angular variation:
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FIGURE 6.2. Signal-to-noise ratio (SNR) for the uniform natural
angular variation, as a function of the number £ of partitions.

5 14 23 32 4 50
numbet of partitions

PROPOSITION 6.4, Under the uniform probability law for 7 € S, for odd £ > 3,
we have

E(&u) = 2—£—ﬂ' ——— 21r, Va.r(au) = ﬁ-—-ﬁ-——‘ﬁ —_— Eﬁ' '
and, for even £ > 3, we have
1 ¢ tmoo 1 _ 18424828 , g 1,
E(EEI) = 5‘8_—171' e -2-11', Var(ael) = TQ-, E(f— 1)2 T N .i?iﬂ .

Figure 6.2 shows the signal-to-noise ratio (inverse of the coefficient of varia-
tion) for the uniform natural angular variation, as a function of the number ¢ of
partitions in the ring V. For a large number ¢ of partitions, the CV is of the order

of V/3/3.

The key observation to Propositions 6.3 and 6.4 is that the proofs do not depend
on which two order statistics are involved in the definition of ¢(r) or of f(r). In
fact, the same results wauld be obtained for the mean angular variation between
the smallest and next-to-smallest values of y, say. More precisely, for all ¢ € 3,
fixed,

lim (E[¢(7)] - E[¢(r0)]} = )im (B[f(r)] ~ E[f(ro)]) = 0.
£—o0 £€—o0

As a consequence, we learn that as long as the probability law L(r) for the rank-
ing permutations T in S, is uniform, the resulting probability law for the angular
variation preserves the stigmatic property of £{y). In summary,

PROPOSITION 6.5. If the probability law £{7) of T is uniform in S, then the
probability law £(y) of y satisfies the stigmatic property.

From Proposition 6.1 we then obtain

PROPOSITION 6.6. If £(y) = L(y7~1) for all 7 € S, and U, 7 is a stochastically
disjoint partition of V then £(y) satisfies the stigmatic property.
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For example, if £(y) is multivariate normal with mean () and covariance
matrix (Z) which are invariant under the symmetry of S, then the law of y is
consistent with the stigmatic property. More precisely, if

(6.5) LS = end 53 o)) = 3,

TES,: TES,

where p(7) is the linear (permutation) representation of S¢, then L(y) satisfies the
stigmatic property. As a consequence, the construction of u and I that is consistent
with the astigmatic property will depend on defining a smaller subset G C 8¢ of
symmetries. This construction was described earlier on in Section 6.4.

Further reading

(1) The basic statistical aspects of corneal curvature data are discussed in
e.g., Viana et al. (1993);

(2) The early work of Votaw (1948} and Wilks (1946) on special patterns of
symmetry on covariance structures, also Olkin and Viana (1995);

(3) Group symmetry covariance models, e.g., Perlman (1987). See also the
work of Gao and Marden (2001) where the argument of testing for certain
patterns of symmetry by averaging over a class of permutation matrices
is applied. In particular, the reader may consult Diaconis (1990) for spe-
cific aspects of group invariance applied to the characterization of certain
patterned matrices;

{4} The algebraic formulation of visual perception e.g., Hoffman (1966).

Exercises

6.1. Show that the factor 7€ — 71| present in the angular variation can be
expressed as d'p(7)r, where &' = (~1,0,...,0,1), ¢’ = (1,2,...,£) and p is the
linear {permutation) representation of Sy, and that, consequently,

[re — 712 = &' p(7) (")p(7)"d.

6.2. Following Problem 6.1, show that the derivation of the (uniform) mean
squared angular variation can be obtained from the fact, {e.g., Chapter 3 or Viana
(2001)), that

1 ee’ ee!
il 3 o) Hp(r) = vo— +vi(l— -
| % n
where B' = (1,...,1) with £ components, vo = ¢'He/n is the sum of the components
of H, and vo+(n—1)v, = tr H, for any given (real or complex) matrix H of dimension
¢ (in this case H = rr').

6.3. Average linear ranks. The derivation of the mean angular variation be-
tween flat and steep curvatures of Section 6.4 makes use of the usual averaging of
ranks. The notion of linear representation of order statistics is useful to describe
the averaging process and linearly represent the derivation of the corresponding
ranks. Here is E.PE outline: Note from Matrix 6.2 that the map y = (1, 1, 2) belongs
to both T and (12). To indicate this, let ¥ = {7}y € T}. Show that the mean linear
rank R(y} of y, under a uniform law in S, is given by R{y) = Bl'T ES,- p(7)'r, where
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= (1,2,...,£) and p is the permutation representation of Sy. For y =(1,1,2),
show that ¥ = {1,(12)} and consequently

1 1 110 1 1.5
~2-[p(1)' + p((12))] = 3|1 10 2 | =115
0 0 2 3 3
For y = (1,2,1), show that ¥ = {(23), (132)}, and
1 1l 1o 1 1.5
(@) +o(@32)] =50 0 2| |2 =] 3
110 3 1.5

6.4. Evaluate the orbits for the letter-symmetry action (o,s) — o5 of 83 on the
space V of three-sequences in length of three, described by the matrix below and
Example 6.2:

8{1) u(2) s(3) |label | o: 1 {12) (13} (23) (123} (132) 7
1 1 T | T i 4 27 T 14 27
2 2 2 | 1] u 1 14 27 27 1
3 3 3 ) 2| 2 27 1 14 1 14
1 1 2 | 1w0] 1o 5 819 23 9
1 2 1| 4 4 o2 7 17 21
2 1 1] 2| 13 26 3 15 25
2 2 1] 5 6 10 23 9 18 19
2 1 2 | nf n 4 1t o2 24 7
1 2 2 | 13| 13 2 15 25 26 3
1 1 3 | 1| 19 23 9 10 5 18
1 3 1] 7] 7 17 21 4 11 24
3 1 1| 3 3 15 25 2 12 26
3 3 1] 9] 9 18 10 5 10 23
3 1 3 u] 24 7 11 4 17
1 3 3 | 2| 2 28 i 13 2 15
2 2 3 | 23| 28 19 3 18 9 10
2 3 2 | 1w o 7T ou 24 21 4
3 2 2 | 18] 15 3 13 26 26
3 3 2 | 1] 18 5 1w 23 19 5
3 2 3 | 4] M =2 4 r7 7 1
2 3 3 | 26| 2 25 2 15 3 13
1 2 a | 22f 22 20 L} 15 8 12
1 a 2 | 16| 16 8 12 22 20 6
2 1 3] 20] 20 22 8 12 [ 16
3 1 2 | 1] 12 6 16 20 22 8
2 3 1] 8] 8 18 20 6 12 22
3 2 1] 8] G 12 22 8 16 20 |
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List of symbols

V a structured, a finite set of labels or indices

T,d,... symmetry transformations

G a group of symmetries

8¢ the group of permutations on {1,2,..., £}

Sv the group of permutations on V

C, the cyclic group of order £

M, the group of € x £ permutation matrices

1,42, ... group actions

0,0y, ... orbits

pr or p(7) the representation p evaluated at 7 € G

|G| the number of elements in G

CL the set of mappings from defined in L with values in C
F the vector space of scalar-valued functions (ineasurements) x
V a linear subspace of RV

P projections

£(V) linear mappings defined on the vector space ¥
GL(V) invertible linear mappings defined on ¥

& scalar-valued functions defined on G

C class functions

B basis for V

ee! or J the matrix with all entries equal to 1- when needed, the dimension
of the matrix is indicated, e.g., J3
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SYMMETRY STUDIES- AN INTRODUCTION
%

***%¥ CORRIGENDA ***

MARLOS VIANA

p. 1, Example 1.1: the alphabet should be {A, G, C,U};

p- 2: replace melecular constructs by molecular constructs;

p. 9: The first citation Under the Fermi-Dirac (FD) ... should read Under
the Bose-Einstein (BE) ...... Thus, in the BE model... would be consistent
with the assumptions of the BE model. The final citation The Bose-FEinstein ...
should read The Fermi-Dirac (FD);

10: Rows 2 and 3, column 1, of the summary table should be interchanged;
12: Rows 3 and 4, column 1, of the summary table should be interchanged;
12: Last line Ttypically should read Typically;

12: the notation should be SO(3) instead of O(3,R) or S(3,R);

13: Example 1.7 should read four-sequences in length of three...;

22: line 6 should read V31 = O1 U Os;

TT T TY

p.- 25, line 3: Pax =... = ;

p- 29: The interpretation of these orbits is ...

p. 32, Matrix 2.10 row (ad) should read: (ad)|4 2 3 1|... and row (cd) should
read: (cb)|1324]...;

p- 35: replace sequence by sequel;

p- 36, line 1: The number ... in the diagram is 3;

p. 37, Example 2.8: Selecting y according ... to reaching the GCD into a random
variable ...;

p. 38, line 1: so that 1 is the GCD of (24, 67);

p. 44: Bottom of page- Replace ... first applying 7 followed by o, e.g., (13)%(23) =
(123) by ... first applying o followed by 7, e.g., (23) x (13) = (123);

p. 74, Expression (3.34): replace (Xreg; Xp) by (Xree | Xp);

p. 76: replace as shown earlier in Example 3.30 by as shown earlier in Ex-
ample 3.36;

. 77: should read v =dim V = I | nj;

. 79: ..sothat dimR¥Y =64 =4x1+12x 3+ 4 X 6;

. 82, line 1: replace Q2 by Q*3;

. 86, line 4, should read: which takes x € F into 7*(x) € F given by ...;

. 98, Problem 3.12: replace (fix (1) + fix (2)/2 =1 by [fix (1) + fix (2)]/2 = 1;

. 98, Problem 3.13: replace (p-x | prauy) by (p-x | pry);

. 111, just preceeding Prop. 4.1 should read: We then have:;

. 112 following Matrix 4.3 should read: Figure 4.8 shows ... CCT along the BRU
isolate;

Tt T T T
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MARLOS VIANA

(28) p. 112, last paragraph should read: Similar analysis can be derived for the
partition A = 1110;

(29) p. 131, Further Reading (2): replace nuclotide by nucleotide;

(30) p. 132, Problem 4.3: replace in length of four by in length of three;

(31) p. 135: replace In this chapter we consider data that are undezed... by In this
chapter we consider data that are indexed...;

(32) p. 154: first line of section 5.3 should read: V = C x L subject to the action of

the product group G x H when G and H are ...;

p. 157, Problem 5.5: replace component of zj of z by component z; of z;

p. 157, Problems 5.7 and 5.9: replace regularly by naturally;

p- 157, Problem 5.9: replace representations by representation;

p. 161: replace totally ordered, finite set, C, by totally ordered, finite, set C;

p. 172, Problem 6.2: replace E' = (1,...,1) by ¢’ = (1,...,1);

p.- 175: replace V a structured by V a structure;

p. 175: replace C" the set of mappings from defined in ... by C" the set of

mappings defined in ...;



