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Preface

These are notes for a course at the 24th meeting of the Brazilian Mathe-
matical Society (242 Coléquio Brasileiro de Matemdética) on July 27-August
1/2003 at IMPA/CNPq, Rio de Janeiro.

They were prepared in April-June/2003, and are based on a number of
papers involving the author. There is a didactic intention, on one side, as
well as a desire to lead interested readers to the sources, on another side.
This ambiguity may have led to some notation inconsistencies throughout
the text, in which case there will at least be consistency with the originals,

The co-authors of the above mentioned papers, M. Isopi, C. M. Newman,
K. Ravishankar, R. H. Schonmann, V. Sidoravicius, and D. L. Stein are
thankfully acknowledged, and exempted from any responsibility for the style
of presentation.
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Chapter 1

Introduction

Spin dynamics at low temperature exhibit interesting physical features as-
sociated to initial disordered state and/or disordered environment, such as
aging (ever longer metastable slowing down of the dynamics) and chaotic
time dependence (long term oscilations of correlations as functions of the dis-
order). The former one takes place, for example, in the case where, after an
observation of the state of the system is made at a given age of the system
{time from the beginning of the experiment), the time till we get a second
observation which is minimally decorrelated from that first observation scales
with the age of the system at the first observation. The second feature man-
ifests itself in the non weak convergence of the dynamics, as time increases,
combined with the predictability at large times of the state of the system as
a function of the disorder.

It is natural to begin the mathematical analysis of models for those dy-
namics, with the aim of verifying those features rigorously, and the mecha-
nigm for their occurrence, at the extreme case of zero temperature. In the
second and third parts of these notes, we will consider one dimensional dy-
namics where one or more of those features can be established rigorously. In
the case of aging, we will show that it follows from suitable scaling limits of
the dynamics.

We will also treat, in the first part, the issue of fization (strong conver-
gence of the dynamics to a fixed configuration), which is a phenomenon purely
of zero temperature, and in principle unrelated to disordered parameters, for
dynamics in arbitrary dimension.
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1.1 Models and questions

The point of departure is Glauber dynamics for the Ising model. We have
spins £1 in Z¢ Given a initial configuration oo € X = {—1,—}—1}Zd, we
evolve it according to a Markov process given by a generator of the form

(Lf)o) =Y Ma)elz,0)(f(0®) - £(0)), (1.1)

z€kd

ﬁcting on local functions f, where the rate function (-, ) is reversible with
respect to (finite volume) Gibbs measures associated to the (formal) Hamil-
tonian

He)=—5 Y. ol@lo(y) (1.2

Ty
flz—pll=1

and inverse temperature 3. See {31] for Ising models and Gibbs measures
(in equilibrium). We will have a change of time scale function A, which is
positive, and will be taken either identically 1, as usual, or random. A(z) can
be interpreted as the rate of spin flip attempts at site z. It will be denoted
sometimes below as Az, See next section for a construction/more explicit
description of the above dynamics. There are several possible choices for
¢{-,-), and we focus on one of them, and sometimes consider another one.
The former possibility, one that leads to the so called heai-bath dynamics, is

o(z,0) = (1+exp{-BlH(c*) - H(@)]})™ (1.3)
and the latter possibility, leading to the Metropolis dynamics, is
¢(w,0) = exp{—BlH (") — H(o)]"}, (1.4)
where
oy ) oY), ify#az,
7= {—G(y), ify =z, (15

is the spin flip of site z operator, and a* = max(a,0) for all « € R. Notice
that, even though (1.2) does not make sense as an infinite sum, the difference

He*)~H(@)= Y olz)o(y) (1.6)
plle-yil=t

does make sense and is a local function of o.
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These are well known and much studied dynamics. See e.g. [40} (in this
reference the models go under the name of stochastic Ising models).

In these notes, we will consider the zero temperature limit of these dy-
namics. These will be dynamics on X with the following rates.

1, ifA(x,0)>d
e{z,0) =<1, ifN(z,0)=d (1.7)
0, if M(z,0)<d,
for heat-bath, and
)1, it N(z,0) > d; |
o(z,9) = {O, if M{z,0) < d, (L8)

for Metropolis, where N (z, o) is the number of nearest neighbors of £ whose
spin is opposite to the one in z, i.e,,

N(z,0)=#{y: [z -yl =1 and o(y) # (=)} (1.9)

The dynamics given by (1.8) is the threshold voter model (see [40, 41]) with
threshold d. The one in (1.7) coincides in d = 1 with the simple symmetric
linear voter model.

We will study some aspects of the asymptotic in time behavior of the
above dynamics. Let o; be the configuration at time ¢ of the process started
from oy chosen from a product Bernoulli measure with parameter p.

In Part I, Chapter 2, we will address the issue of fization, that is, whether
or not the dynamics fizates, by which we mean whether or not o; converges
as t — 0o, for almost every realization of the initial condition and dynamical
random variables, to a (possibly random) limiting spin configuration. Here
X = 1. We will refer to results about nonfixation (that occurs when the
spin at some site flips infinitely often with positive probability) and, in The-
orem 2.1, establish a fixation result in d > 2 and for p close enough to either
lorQ.

In Parts II and III, we will analyse the one dimensional voter model (1.7)
only. In Part IT, Chapter 3, we will address the issue of chaotic time depen-
dence (CTD), which is the non weak convergence of o; as ¢ — co. Here we
take A(z),z € Z, i.i.d., and prove in Theorem 3.4 that when A(0)~! is in the
basin of attraction of a stable law with index o < 1, then the dynamics ex-
hibits CTD. More precisely, we show, under this condition, that, for almost
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every realization of op and A, E{¢(0)|oo, A) does not converge as £ — oo.
This nonconvergence means that the dynamical correlations of the system
are nontrivial functions of ¢, and X which oscilate indefinitely as t — co. We
also refer to results on conditions for the absence of CTD. The occurrence
of CTD in the voter model is related to the behavior of the distribution of
its dual random walk, in this case, with random rates, namely CTD in the
voter model for a given realization of A (and a typical realization of o) is
equivalent to localization of the distribution of the random walk, i.e., to the
non convergence to 0 as ¢ — oo of the maximum in x of P(X; = z|A), where
X,,t > 0, is a simple symmetric random walk with rates A. We will then
get a CTD result for the voter model with random rates from a localization
result for the random walk with random rates.

In Part III, we study the aging phenomenon. First, in Chapter 4, for the
random walk with random rates (RWRR) of Chapter 3. Then, in Chapter 5,
for the ordinary uniform rate voter model. Aging is characteristic of low
temperature dynamics of systems starting from a high temperature config-
uration, and is signaled by certain scaling relations obeyed by correlations,
or more generally response functions, of the system at two large, widely
separated times (see (3.1) below). The usual approach in the literature to
obtaining aging results for given systems is to analyse individual correlations,
and prove scaling relations for those. Our approach is to establish scaling
limits for the dynamics, and thence, aging results as corollaries.

In Chapter 4, Theorem 4.13, we establish the scaling limit of the RWRR,
which turns out to be a singular diffusion, whose singularity explains both
the aging and the localization phenomenons.

In Chapter 5, we consider the ordinary voter model, which can be de-
scribed via coalescing random walks starting from every space-time point
(more on this in the next section), and discuss briefly coalescing Brownian
motions as scaling limits for that system, both in a restricted sense, where
the usual invariance principle can be invoked, and in a broader sense, and
compute limiting aging functions from that (see (5.23) and (5.30)).

Finally, in Chapter 6, we discuss in detail the continuum model for coa-
lescing random walks starting from every space-time point, which we call the
Broumian web. Tt consists roughly of coalescing Brownian motions starting
from every space-time point. We characterize (Theorem 6.1) and construct
the Brownian web in a suitable space, where weak convergence can be anal-
ysed, and then establish criteria for weak convergence to the Brownian web
{Theorem 6.6}, which are verified in the case of coalescing random walks
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{(Theorém 6.8).

The Brownian web has an interest of its own and as a basic object under-
lying the scaling limits of voter models, coalescing random walks, their vari-
ants, and other models (like stochastic flows). We close Chapter 6 with two
sections. In Section 6.2, we discuss duality in the Brownian web, introduce
the dual Brownian web, and classify points of R? according to multiplicity,
i.e., the number paths of the web starting out from a point, an issue which is
related to duality. In the final Section 6.3, we consider a modification of the
voter model, which is also a Glauber dynamics, now at positive temperature,
and describe its scaling limit (where the temperature is also scaled) in terms
of the joint Brownian web together with the dual Brownian web, plus Poisson
marks, that account for the extra noise from the temperature. This allows for
the explicit computation of limiting aging functions (Iike (6.34)}, and also for
the definition of a continuum spin dynamics (at the final Subsection 6.3.2),
of which the continuum Ising model is an invariant measure in a particular
case.

1.2 Glauber dynamics and the voter model

Consider the following stochastic process oy, £ > 0, in the state space Z=
{=1,+1}*" of spin configurations in Z%. At every site of Z9, there is a clock
whose alarm sets off at intervals which form an 1ndependent and identically
distributed family of exponential random variables. The families of expo-
nential random variables of the different sites are all independent of each
other. Every time the alarm sets off at an arbitrary site z € Z9, the spin of
z, o(x), will flip with probability c(z,s), where o is the spin configuration
immediately before the alarm and ¢(z, ) is given in (1.7).

This spin dynamics can be regarded as the zero temperature limit of
the well known (heat-bath) Glauber dynamics (as discussed in the previous
section). '

Let Az be the rate of the exponential waiting time at site z. We will
assume throughout (except at Chapter 4) that

0< A <1 forall z ez, (1.10)

so that the process is well defined for all ¢ > 0 (see e.g. [40], Section 1.3) and
obeys (1.1).
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Voter model and coalescing random walks

Consider now the following alternative spin flip rule {within the same frame-
work of alarm clocks). Each time the alarm sets off at site z, o(z) adopts
the spin of a nearest neighboring site chosen uniformly at random, with all
the choices for all the sites, and at all times, independent of each other. This
is the d-dimensional (linear) voter model [40].

It is easy to convince oneself that in d = 1, the voter model and the
zero temperature Glauber dynamics are equivalent, and so we can regard the
voter model itself as a zero temperature dynamics (in all €, but in these notes
we will only treat explicitly the 1-dimensional case).

The voter model has an important and very useful duality property with
respect to coalescing random walks, which we describe next.

First of all, coalescing random walks are particles performing simple sym-
metric {continuous time) random walks in 78, such that when two particles
meet in the same site, they coalesce into a single particle, which keeps on
performing a simple symmetric random walk from then on. Let X¢(z) denote
the position at time ¢ > 0 of a particle that was initially at site z (we assume
that the exponential waiting times at site = have rate )., as before). Then,
for every t > 0,

{os(z), x € Z9 = {o0(Xs(2)), = € Z°} (1.11)

in distribution, where ¢.(') is the voter model.

For a justification of (1.11), consider the following graphical representa-
tion of the voter model (see also {40, 18]).

In Figure 1.1, the portion up to time ¢ between sites —2 and 3 of the
1D voter model is represented. Time goes up. In the time line of each site,
outgoing arrows of length 1 are located at the i.i.d. exponential distances.
Once one such location, say in the time line of site z, is chosen (according
{0 an exponential random variable of rate A, for the distance to the previous
such point in the time line), then, whether it is an arrow to the right or to
the left, is equally likely.

The voter model can be constructed using this graph, which is known
as a Harris diagram, in the following way. Given a initial assignment of
spins +1 or —1 to the sites of Z at time 0, the spin updates at each site are
done successively going upward its time line until an outgoing arrow is met,
and, from that point till the next one in the time line, assigning to x the
spin of the neighboring site where the first arrow ends, at that time. This
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Figure 1.1: Harris diagram for the 1D voter model

procedure almost surely uniquely defines the evolution for all times, under
assumption (1.10).

Now, the dunality with coalescing random walks. In order to find out what
is the spin of a given site = at a given time ¢ in the voier model, using the
Harris diagram, follow the time line backwards from that site at that time
and follow the outgoing arrows to neighboring sites from each site of the
way, down to time 0. The spin of site x at time £ is the spin at time 0 of
the site arrived at in this way. For example, in Figure 1.1, the spin of the
origin at time ¢ is the one of site —1 at time 0; the one of site 1 at time ¢
is the one of site 1 at time 0. Notice that the path followed from (z,t) to
time 0 is a random walk path. Furthermore, two paths, one from (z,t) and
another from (y,¢), are independent until they meet, when they coalesce. In
Figure 1.1, the backward paths starting in —2, —1 and 0 af time ¢ are all
coalesced together by time 0; so are the ones starting in 1, 2 and 3 at time
t, by time 0. We conclude that, for every fixed ¢t > 0, the backward paths
starting at {(z,t), € Z} are coalescing random walk paths, as described a
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few paragraphs above, and the duality relation (1.11) follows.

Remark 1.2.1 If we want to study different time joint distribuiions or cor-
relations of oy, then the duality relation is as follows (as is clear from the
above discussion). Suppose B C 72 and T ¢ RY are finite sets. Then

{0y(), z € B,t € T} = {op(X(z)), z € B,t € T} (1.12)

in distribution, where {X,S“')(a:), z € B,0 £ r < t,t € T} are backward in
time coalescing random walks, with X,gt) (2),0 < r < t, o backward in time
random walk starting at time t on site T.

Say we want to look at the two-time two-point correlation funciion

Clz,y; s, t) == E{o, (z)os(y))- (1.13)
Then, by (1.12},

Clz,y;5,t) = P(A(z,y;8,t) + pP(A%(z,1;8,1))
= p+ (1 -p)P(A(z,y;5,1)), (1.14)

where A(z,y;s,t) is the event that the backward walks X.(_’) (z) and X9 (y)
coalesce before time 0. We will come back to C in Chapter III.

We finish this section with an application of (1.11) to the the asymptotic
distribution of the voter model when started with a translation invariant
product Bernoulli measure. Let op have such distribution, that is, for every
finite A C 24,

P(oo(z) = 1 for all z € A) = pl4, (1.15)

where p € [0,1] is a parameter.
Using (1.11), we get, for every A C Z9,

Ploy(z) = 1 for all 7 € A) = P(op(Xs(x)) = 1for all z € A). (1.16)

Now, let N4(t) denote the number of particles into which the particles ini-
tially at A have coalesced by time £. It is clear that the latter probability
equals

4]

> PFP(NA() = k) = E(p™4®). (117)
k=1
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Since N4(t) is nonincreasing in £, we have that the latter expectation con-
verges as t — 00, and we conclude that the distribution of ¢; converges as
t — oo (when integrated with respect to the initial condition!). Furthermore,
ind=1and 2, Ng(tf) = 1 as £ = oo almost surely. This follows from the
recurrence of the random walk in those dimensions. We conclude that, in
d=1and 2

gy = p5+1 + (1 - P)fs_]_ (118)

as t — oo, where = denotes weak convergence, ¢..; is the point mass at +1,
the (invariant) configuration where all spins are +1, and §_; is the point
mass at —1, the (invariant) configuration where all spins are —1.

The transience of the random walk in d > 3 implies that the limiting
measure of gy in those dimensions is more complicated than a mixture of &3
and §_y.

Remark 1.2.2 In d > 2, Glauber dynamics and voter model behave in o
substantially different way. For example, (1.18) does not hold for the former
dynamics in d > 2, if p is close enough to 0 or 1 (see [30]; we will argue in
detail the d = 2 case in Chapter 2).

In Chapter 3 we will see a situation where, not integrated with respect to the initial
configuration, for almost every such configuration, ¢¢ does not converge weakly as t — oo.







Part 1

Fixation

-1







Chapter 2

Fixation in 2 and higher
dimensions

We begin the discussion of our models and guestions with the issue of fixa-
tion/nonfixation for the Glauber dynamics at zero temperature in Z9, started
from a Bernoulli product measure with P,(oo(z) = +1) = p for each z € Z°,
introduced in Section 1.2. In this chapter, we take A, = 1, and we will make
the p dependence on the overall probability measure PP = P, explicit.

For each value of p, we will say that the system fixates if for each z € Z¢
the spin at z flips only finitely many times (locally the system becomes
trapped).

As discussed in Section 1.2, in d = 1 our system is the (linear) voter
model, which is known to almost surely not fixate for any p € (0,1) (and any
d).

As also pointed in that section, in d > 2, our model is not any longer
the linear voter model (it is rather closely related to a threshold voter model,
which is a subject of considerable interest; see {41] and references therein),
and the long time behavior is more challenging. In d = 2, it is proved in [45]
that if p = 1/2, the system does not fixate:

Py ja(04(0) flips i.0.) = 1. (2.1)

Recently, stronger results were obtained in this case in [14]. It is not known
if (2.1) is true in higher dimensions (see [46] and references therein). See
also [15] for an analysis of the model in the hexagonal lattice, where fixation
oceurs at p=1/2.

Tn contrast to (2.1), we will argue below (for d = 2) the following.

13
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Theorem 2.1 (Fixation) For d > 2 there exists py = pold) < 1, such that
foranyp>po ande >0

By(0:(0) = —1) < By(0,(0) = =1 for some s > ¢) < ™7, (22)
for t large enough. In particular, for any p > po
Py(0:(0) = +1 eventually) = 1. (2.3)

Remark 2.2 Theorem 2.1 shows that, for large p, fization occurs as fast
as a stretched ezponential. In [30], it is shown that in d = 2 it occurs no
faster than that, and the correct “stretch” of the exponential as a power 1/2
is tdentified, i.e., we have that

. log(~ log(By((0) = ~1))) _ 1

t—o0 log(t) 2

See [30] for a discussion of this issue and the related iiterature.

Comparing (2.1) with Theorem 2.1 raises the question of the values of p
for which there is fixation in the state with all spins +1. We believe that this
happens for every p > 1/2. Similarly, it seems reasonable to conjecture that
at low positive temperatures the Glauber dynamics (heat-bath, Metropolis,
or other kinds) started from homogeneous product measure with P, (o0(0) =
+1) = p > 1/2, converges weakly to the (+)-phase (see Open Problem
7, p-225, of [40]). The results of [30] also suggest the conjecture that in
d = 2 this convergence occurs as fast as, but not faster than, a stretched
exponential.

The proof of Theorem 2.1 will be based on a multiscale analysis.

From this point on, we restrict attention to d = 2, which already contains
the main arguments for the general case [30].

A basic ingredient in the proof of the above theorem is an estimate on
the time needed for the dynamics to “eliminate droplets”, by which we mean
the following. Suppose that the process is started from the configuration
in which the cube R = {1,2,...,L}? is occupied by spins —1 and all other
spins are +1. It is clear that the spins outside R will never flip and that
eventually the configuration with al} spins +1 will be reached, with the sys-
tem becoming trapped there. Let 7' be the random time when the system
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reaches this trapping configuration. We need to estimate how T° grows with
L. Heuristically, one expects the droplet to shrink with its boundary being
well approximated, when L is large, by a surface moving by mean-curvature
(see, e.g., [39], [32], [53], [17] and references therein). This leads to T being
of the order of L. The following result contains a rigorous upper bound
consistent with this picture.

Proposition 2.3 (Single-droplet erosion time estimate) There exist
C,v € (0,00) such that for all large L

PT > CL*) < L

Remark 2.4 In [30], Theorem 1.3, we derive upper and lower bounds forT
in general d > 2. In d = 2, our lower bound matches the upper bound in the
above proposition, but for a logarithmic denominator.

'This chapter is organized as follows. In the following section, we intro-
duce some terminology, notation and basic tools, including the bootstrap
percolation process. In Section 2.2, we argue Proposition 2.3. In Section 2.3,
we prove Theorem 2.1, after explaining the heuristics behind the proof.

2.1 Definitions and tools

We begin with several standard definitions. As already mentioned we shall
consider models on the lattice Z?. The cardinality of a set A C Z2 will be
denoted by [A]. The distance between vertices of Z? will be measured by the
L' norm || -], and denoted dist(z,y) = ||z — y||. A (selfavoiding) path is a
sequence of distinct vertices 3,2, ..., %n, such that ||z; — zi4|| = 1, and
the vertices z; and z, are called the start- and end-points of the path.

Graphical construction. It is convenient to make the following graphical
construction of the process, which is a little more complicated than the one
in Section 1.2. It provides a version of the process either on the infinite
lattice Z* or on any of its finite subsets with arbitrary boundary conditions
and starting from any initial configuration, which are all naturally coupled
(that is, all live on the same probability space), so as to have good ordering
properties, which will be useful in what follows.

To each vertex z € Z* we associate two independent Poisson Processes,
each one of rate 1. We will denote the successive arrival times (after time
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0) of these Poisson processes by {7, }n=12.. and {77, }n=1,2.., assuming that
the Poisson processes associated to different vertices are also mutually inde-
pendent. We say that at each space-time point of the form (z,7.f,) there is
an upward mark and at each point of the form (z,7;,) there is a ‘downward
mark. We associate to each arrival time 7, (where  stands for + or —) a
random variable U;,, with uniform dlstnbutmn between 0 and 1. All these
random variables are supposed independent among themselves and indepen-
dent from the previously introduced Poisson processes. This finishes the
construction of the probability space. The process then is defined as follows:
we update the state of the process at each space-time location where there is
a mark according to the following rules. If the mark that we are considering
is at the point (z,7;,), and the configuration immediately before time 7,
restricted to = and its neighboring sites was identical to a conﬁguratlon 0"
then

i) if o(z) = =1 (resp. o(z) = +1), then the spin at z can flip only if the
mark is an upward (resp. downward) one;

ii) if the mark is upward and o(z) = —1, or if the mark is downward and
o(x) = +1, then the spin at z flips if and only if U3, < c'(z, o), where

2.4
0, otherwise. @4

"z, ) = {1, if at least 2 neighbors of x have its opposite spin;
Remark 2.5 With this ¢/(-,-), our process is not ezactly the zero temperature
heat-bath Glauber dynamics for the Ising model described in Section 1.2 and
assumed in the previous section; it corresponds instead o the zero temperature
Metropolis dynamics for the Ising model (see paragraph of (1.7,1.8)). This
difference' is nevertheless immaterial as regards Theorem 2.1 and its proof.
See [80]. The choice of this dynamics is for convenience of ezposition only.

Remark 2.6 The use of upward and downward marks, combined with the
attractiveness of the flip probabilities® guarantees that if we compare the evo-
lution started from two configurations which are comparable in the sense that
wherever the former has a spin +1, so does the latter, then this property is

1Notice that it ammounts to a difference in the flip probability in x only when there is
a tie in o of the numbers of spins '+’ and ’—’ at the neighbors of z; in the latter case, it
is 1; in the former, 1/2.

2The probability of a flip —1 —+ +1 in a spin configuration ¢ is less or equal to the one
in a spin configuration ¢', if o(2) < o'(z) for all z € Z*.
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preserved by the evolution. We will make extensive use of such comparisons.
For more on this fundamental technique and the reloted notion of stochastic
order, we refer the reader to Sections II.2 and IIL2 of {40].

‘We will refer to the Poisson marks and the associated uniformly distributed
random variables, as the “graphical marks”.

IP, is then the probability measure over the initial Bernoulli distribution
with density p of spins +1 and over the graphical marks.

Bootstrap percolation. In the definition below we consider configurations in
{u, s}%’, where u (for “unstable”) and s (for “stable”) are arbitrary symbols.

Definition 2.7 The 2-dimensional (v — 3) bootstrap percolation process
with threshold 2, defined in a finite or infinite volume A C 72, starting from
the initial configuration 1o € {u,s}* is o cellular automaton which evolves
in discrete time t = 0, 1, 2,..., and such that at each time unit t > 1 the
current configuration is updated according to the following rules. For each
T EA,

1. If qe_1(z) = 3, then ne(z) = 5.

2. If pua(z) = u, and at time t — 1 the vertex x has at least 2 nearest
neighbors in A in state s, then my(z) = s; otherwise the spin at verter
remains unchanged, i.e., n(z) = u.

If |A| < oo, it is immediate from the Definition 2.7, that the procedure
described above converges in a finite time to a fixed configuration. In this
context, we say that we bootstrap the initial configuration 7, the result of
which is the final configuration of the bootstrap percolation dynamics.

Remark 2.8 There is a close relation of this process with the spin flip system
that we are considering. One can see the latter dynamics as follows. When
the Poisson clock rings at site z, if o(x) = +1, then the (14+ — —1) bootsirap
percolation rule is applied; if o(z) = ~1, then the (—1 — +1) bootsirap
percolation tule is applied instead. The spin system can thus be seen as o
competition of a (14+ — —1) bootstrap percolation process with a (—1 -3
+1) one (ignoring that one is in continuous time, and the other in discrete
time). We will come back to this in the heuristics background fo the proof of
Theorem 2.1 (see the beginning of Section 2.8). It goes however beyond the
heuristics, being also of technical importance in the proof of Theorem 2.1.




18 CHAPTER 2. FIXATION IN 2 AND HIGHER DIMENSIONS

When A is a rectangle, the bootstrapped configuration can be described
as follows (see [20], [3]). Say that a family of disjoint subsets of 22 is well
separated if there is no vertex in 72 at distance less than or equal to 1 from two
sets in the family. For any initial 79, the bootstrapped configuration takes the
value s on the smallest collection of well separated rectangles contained in A
which contains all the sites ¢ at which m(z) = s. We say that the rectangle
R C A is internally spanned by the configuration 5 € {u, s}, if bootstrap
percolation restricted to the volume R, started from np = nI » ends up with
all sites in R in state 5.

The following lemma provides us with a crucial estimate.

Lemma 2.9 (Aizenman-Lebowitz, [3]) Suppose thatn € {1,2,...} is fiz-
ed, that A is a finite rectangle and n € {u,s}* is o configuration with the
property that when we perform (v — s) bootstrap percolation with threshold 2
in A started from 1, we obtain a final configuration which includes a rectangle
with one of its sides larger than n fully occupied by s. Then there must
exist some rectangle R C A with larger side in {|n/2| — 1,...,n} which is
internally spanned by 7. .

This lemma may be seen as providing the existence of a “bottleneck event”:
if a large rectangle full of s occurs in the bootstrapped configuration, then,
for arbitrary n between 1 and the size of the larger side of this rectangle, a
rectangle of “size of order n” has o be internally spanned. One can then
optimize on the choice of n o obtain an upper bound on the probability of
large rectangles occurring in the bootstrapped configuration. (The “bottle-
neck event” is the occurrence of an internally spanned rectangle of “size of
the order of the optimal n”, i.e., the n which minimizes the probability of
this event.) And the point of looking at internally spanned rectangles is that
one needs to consider the dynamics inside those rectangles only.

2.2 Proof of Proposition 2.3

We want to analyze the evolution of the process started from the configu-
ration in which the cube R = {1,2, ..., L}* is occupied by spins —1 and all
other spins are +1. We will compare this evolution with the one in which the
initial configuration has spins —1 in the quadrant {1,2,..}?, and spins +1
at the other sites. We will refer to this comparison system as the quadrant
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evoluticn. Note that in the quadrant evolution, when the site (z,y), z,¥ > 1
has a spin +1, the sites {2/, ') with 2’ < z and ¢/ < y also have spins +1. Let
7" be the first time that in the quadrant evolution the site (L, L) has a spin
+1, and note that in this evolution at time 7" the square R is fully occupied
by spins +1. Therefore, by attractiveness, 7" is stochastically larger than T
(see Remark 2.8), i.e., for any ¢ > 0,

P(T>t) < BT >1t).

In order to estimate T, we use a well-known relation between the quad-
rant evolution and the exclusion process, In the relevant version of the ex-
clusion process, particles are initially located at each negative site in Z, with
the positive sites and the origin being empty. Particles try to jump indepen-
dently of everything else one step to the right at raie 1/2 and one step to the
left at rate 1/2. The only interaction among the particles being that a jump
is suppressed if a particle is attempting to jump to an occupied site. After
accelerating the quadrant evolution by a factor of 1/2, it can be mapped
into the evolution of this exclusion process in the following way, as explained
in [40], pp. 411, 412. Let X;(t) be the position at time ¢ of the exclusion
process particle initially at the site —¢, ¢ = 1, 2, .... In the quadrant evolution,
the site {z,¥), =,y > 1 is occupied by a spin +1 at time ¢ if and only if, in
the exclusion process at time ¢ the displacement X, (¢} + y of the particle
initially at —y is at least z. In particular,

P(T' > CL?) < P(X.(2CL*) <0) = P (Z 1{X;(2CL*) > 0} < L) ,

il

where 1A is the indicator of the event A.

If it were not for the exclusion constraint, the quantities X;(-) in the
sum above would be independent simple symmetric random walks, and in
that case the result would follow by standard arguments about sums of in-
dependent random variables and the single simple symmetric random walk
distribution (which we leave for the reader to check). However, under the
exclusion constraint, the estimate obtained for independent particles is an
upper bound for the latter probability above. This is due to a negative asso-
ciation property of exclusion particles; see Proposition VIIL1.7 in [40]. So,
we get the result. O
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2.3 Proof of Theorem 2.1

The proof of this theorem will be rather complicated. To make it more
readable, we first explain some ideas behind it.

At first sight, one could think that if p is close to 1, so that the spins
—1 form initially only finite clusters dispersed in a sea of spins +1, the
spins +1 would easily take over and eliminate the spins —1. The actual
subtlety in the behavior of the system, even in this case, may be seen as
resulting from the subtlety of the behavior of bootstrap percolation. As
pointed out in Remark 2.8, one can roughly see the system as a competition
between a (—1 — +1) threshold 2 bootstrap percolation process and a (+1 —
—1) threshold 2 bootstrap percolation process. (We say “roughly” because
both bootstrap percolation processes are running in continuous time.) In
particular, if the spins —1 did not flip at all, and the spins +1 flipped with
the rules of our dynamics, then the set of sites which would eventually be in
state —1 would be precisely the set resulting from the (+1 — —1) threshold
2 bootstrap percolation dynamics applied to the initial configuration. And it
is known (see [20}®) that, contrary to what one might first guess, even when
p < 1is very close to 1, this dynamics leads to each site being eventually
in state —1. This means that to show that our dynamics in reality leads to
each site being eventually in state +1, one must show that the significantly
larger initial density of spins +1 allows them, as they expand via their own
bootstrap percolation mechanism, to prevent the —1 spins from expanding.

Motivated by the picture discussed above, it is natural to try to use results
and techniques which allow one to control from above the speed with which
—1 spins can expand via their bootstrap percolation mechanism. Results of
this kind are available from [3], specifically, in the form of Lemma 2.9 (here)
and its uses. Once control is gained on how fast —1 spins can expand, one
can hope to use the estimate in Proposition 2.3 to show that before the —1’s
can expand, the sping 4+1 will typically eliminate them.

The need to consider a hierarchy of space and time scales in the analysis
(multiscale analysis) arises then as follows. The approach mentioned in the
previous paragraph can be used to show that there are space and time scales,
[ and #;, so that for regions of size !,, the spins +1 will typically eradicate
the spins —1 in a time f,. But on the infinite lattice Z?2, there will exist
rare regions of size I; which at time ¢, still contain spins —1. Our approach

3and [52), for extensions
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relies then on considering a coarser (rescaled) lattice, with rescaled sites
corresponding to original blocks of size [;. One starts then at time ¢, with a
very low density of rescaled sites containing spins —1. The arguments from
the previous paragraph can be applied at this rescaled level, and produce
space and time scales, I and ¢5, so that for regions of size I in the rescaled
lattice, typically only rescaled sites with no spins —1 are left in a time 5. The
procedure can be iterated, producing rapidly growing sequences of space and
time scales. To control the eradication of spins —1 in the k-th scale, one uses
induction in k, taking as input the results of the analysis of the (k¥ — 1)-th
scale.

One further idea is needed in the implementation of the scheme sketched
above. In order to analyze the behavior of the system at each scale, one
needs to know not only that the starting configuration in this step has a
low density of rescaled sites which contain spins —1, but one needs also to
know that the joint distribution of these rare “bad” rescaled sites is well
behaved. To recursively obtain this sort of control, we will be considering a
modified dynamics in which spin interaction is allowed (since it is naturally
introduced by the dynamics in the original model) but is restricted in range.
The comparison between the original dynamics and this modified one will
be obtained from attractiveness and from estimates on the speed with which
effects can propagate.

We turn now to the specification of the space and time scales that will
be used in the analysis, and various related objects.

We will use the notation ¢ = 1 — p. For ¢ > 0, and small positive s > 0,
to be chosen later, we set

o=, eﬂzlz t0:0:

and inductively define

1 24-2¢ 1 24¢
— og—*/T-1 4 = _.) J, t, = (—»—-) . 2.5
=, =] (L o= (- 25)

Remark 2.10 Note that, setting Qy = 1/qx for allk > 0, and A = ¢* > 1,
we have Qi = A% for all k > 1, and thus

Al /e

Al .
Qe = )«_'\" ’ ek _ |-/\(2+2e)x' J’ by = /\(2+e)A‘ ' (2.6)
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Set also
Lk=£0'£1'---'£k: T =tg+ti+... + 1 (27)

Now we define the hypercubes of scale k, k=10, 1,... as
= {0, vy Ly — 1}2 + Lpi, ©€ /3

Note that the hypercubes of scale 0 are of size 1, that for each k, { B}, i € Z%}
is a partition of Z?, and that for & > 1, each hypercube of scale k is the
disjoint union of (uh,)2 hypercubes of sca,le k—1.

For k > 1, with each Bi, i € Z? we also associate a larger hypercube,
denoted by Bk, which roughly speaking is concentric with Bi and has side-
length (1+ 2)L; (see Fig. 2.1). We will need B! to be a union of hypercubes
of scale k — 1 and with this in mind we define

. . s 1 1, [?
B;c = (UjEEkBi—l) + L4i, with By = {— [glkJ RO P \.glkJ} . (28)

For simplicity we abbreviate By = Bj and B, = E,‘c’.

Figure 2.1: Solid lines separate blocks By, i € Z%; dashed lines indicate the
block By, associated with the block By, which is shaded. The outer corridors
between the boundaries of By and By are of width Ly/3.

Theorem 2.1 will be obtained through a comparison of the original sys-
tem with a modified dynamics, further referred to as block-dynamics, coupled
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to the original dynamics in that it will be constructed on the same probability
space, using the same graphical marks, and defined by Rules 1-3 below. The
block-dynamics will be so constructed as to have the following properties.

(A) The block-dynamics favors —1 spins, in the sense that at any site and
time where the original dynamics has a —1 spin, also the block-dynamics has
a —1 spin.

{B) In the block-dynamics at the time T}, all hypercubes of the & scale will
be ‘monochromatic’, i.e., they will be entirely filled in either by +1 or —1
spins. In the former case we will say that the block is in state 41, and in the
latter case that it is in state —1.

(C) For each & > 1, the random field 7, that associates to each i € Z2 a
random variable 7;(Z) which takes the value +1 (resp. —1) if at time T} the
block B} is in state +1 (resp —1) is a 1-dependent random field. This means
that for each n, if 41, ..., %, € Z* are such that dist(z;,z;) > 1 for i # j, then
the random variables 73 (3;), ..., % (4.) are independent.

To assure that (C) above is satisfied, in the block-dynamics, the evolution
of the spins in each box B}, ¢ € Z?, during the interval of time {T}_,, Ti],
will depend only on the configuration at time T}..; and the graphical marks
inside the corresponding box Bj.

To define the block-dynamics so that {(A) above is also satisfied, we
first introduce a notion of influence time, associated with the box B,, Let
(ai?"c :)asz_1 be the evolution in the box Bk, with boundary condition ¢
outside this box, started at time Ty_; from the configuration £ inside the box
and obtained using the graphical marks. Set, now,

Th = inf{s >Ty1:0 ‘fT" 1(:r:) # a‘ka_‘(w) for some z € B},

and some ¢ € {-1,+1}%4}. (2.9)

In words, consider two spin configurations which at time T;_; are the same
inside B} (the enlarged hypercube Bi), but outside Bi one is all 4, and the
other all —. Then 7§ is the first time after T,_, when, evolving under the
same graphical marks, these two configurations become different inside BE.
Note that by attractiveness, evolutions with other boundary conditions will
be bounded from above and below by the two evolutions which appear in the
definition of 7§. Therefore we can think of 7} as the first (random) time after
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T,—1, when spins in Bi can suffer any influence from the spins outside of E,:
at time Tk—l-

In order to define the evolution in the block-dynamics of the spins inside
each box B, i € Z?, from Tj_ to Tj, we use now the following rules.

Rule 1. During the interval of time [T}..1, Tx) we observe the evolution inside
the box Bi with 41 boundary conditions. We assign to the spins in the box
Bi up to time min{7§, T;} the values that we see in that evolution.

Rule 2. Ifit is the case that 7§ < Tg, then at the time 7} all spins in B} will
be declared to be —1, and persist at this state without change up to time 7.

Rule 3. If, following the two rules above, there is any spin in state —1 in Bi
at times which are arbitrarily close to T}, then at time T} all the spins in B
are declared to be in state —1. Otherwise, at time T} all the spins in Bf are
declared to be in state +1.

It is immediate from Rules 1-8 that the block-dynamics satisfies properties
(A), (B) and (C) above. (Note that for this we need the initial distribution
to be 1-dependent, which is the case, since it is a product measure. The
properties can then be verified by induction in &.)

Let G, & > 0, denote the probability that at the time T} the block By
is in the state —1. Note that § = go. The following is our main technical
estimate in order to prove Theorem 2.1.

Lemma 2.11 If q is small enough, then §m < gm for allm > 0.

The following estimates will be needed in the proof of Lemma 2.11 and -
Theorem 2.1, Let

g =sup{z>0:ifge (0,2), theng < g, k=0,1,..}.

Note that if ¢ > 0 is small enough, then ¢; < gp = g and then, by induction,
qx is decreasing in k. Therefore § > 0. Several times we will need to take
g € (0,4), to assure that certain inequalities hold regardless of the value of
k. In other words, we will need this assumption in order to assure uniformity
over scales in the choice of constants in the multiscale scheme. So every time
below when we mention that g is small enough, we in parficular mean that
g € (0,4).
One can show [30] that for arbitrary ¢ > 0, if ¢ is small enough, then

Geafh-2- @0 > (@), fork>1, (2.10)
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From the definitions of Ly and I, it is clear that for small g,

1 1 242¢
Ly > I > §(m) , (2.11)

for k > 1. For a bound in the opposite direction, we use {2.10) to obtain the
following. For arbitrary § > 0, if q is small enough, then for k > 1

242¢ Je 2+42¢ [
Iy < (;) < (i) i = (—l-a) . (212)
Ok-19k-2" " Q190 k ax

2.3.1 Proof of Lemma 2.11

We use induction on m. The statement is obviously true for m = 0. Assume
now that it is true for m = &, and we will show that G < Tre1-

Following Rule 1, we observe the evolution inside the box By,; with 41
boundary conditions, during the interval of time [T}, Tk41). Let Fy.,q be the
event that in this evolution —1 spins are present in the box Bjyi at times
which are arbitrarily close to T;.,;. We will show that

Pp(Fei1) < gi_;::-}_ (2.13)
We will also show that
Pp(i41 < Thyr) < g’g—l, (2.14)

where 741 = 7¢,,. Combining (2.13) and (2.14) yields the desired inequality
Totr < Qrp1, Since Grpy S Pp(Frya) + Po(7isr < D).

The proof of (2.13) will be divided into two steps. In the first step, we
will analyze the random configuration inside By, at the time T}, and use
methods from the study of bootstrap percolation to show that all the —1
spins in this configuration are likely to be contained in a collection of well
separated rectangles which are not too large. In the second step, we will
analyze the evolution inside the box Bg,; with -1 boundary conditions,
during the interval of time [T}, Ty41), conditioned on the configuration at
time Ty having that property. In this step, we make use of Proposition 2.3.

The third step in the proof of Lemma 2.11 will be the proof of (2.14).
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Step 1._ Control of bootstrapping at time T,. We will cover all the
sites in By,; which have a spin —1 at time T}, with a collection Ry, Ry,...,Ry
of well separated rectangles. (Recall that a family of disjoint subsets of Z*
is well separated if there is no vertex in Z® at distance less than or equal
to 1 from two sets in the family.) At time T} all blocks Bﬁ of scale k are
monochromatic, i.e., entirely occupied by spins —1 or +1, and now they will
play the role of “renormalized sites” of Byy:. For the sake of notation, we
identify these “renormalized sites” with elements of By, (see (2.8)). For
i € By, let mi(6) be +1 (resp. —1) if the block B} is in state +1 (resp.
—1) at time Ty. We obtain first the collection of rectangles Ry,Rs,....Ry,
by applying the (+1 — —1) threshold 2 bootstrap percolation rule to the
random field 7 in Bys1. Recall that this means that Ri, Ra,...,Rx is the
smallest collection of well separated rectangles in By, which contain all the
renormalized sites i € By, which have 7;(i) = —1. Let now R, = Uy 7. B,
n=1,..., N, and note that Ry, Ry, ..., Ry have the desired properties.
By translation invariance and from the induction hypothesis, for each i

Po(me(t) =—1) = G < gr. (2.15)

For b > 0 to be chosen later (small enough), we define the following event.
Er = {Rl, R,, ..., Ry have sides of length at most L?J } . (2.16)
&

Our goal in this step is to show that if b and s are chosen properly (inde-
pendently of k) and ¢ is small enough, then (2.15) implies

e“"/%
Po((Bunn)?) < T = B2 (217)
In order to show (2.17), we will use Lemma, 2.9, with the choice
b
= j—|. 2.18
»= [a] 029

We have
4 of rectangles inside By, with the length 5 2 b 1\?
k41
of the larger side being in+{ [n/2] —1,...,n} < (gek“’f’l) ( [a‘l ) ) (219)

where the first term on the right hand side of (2.19) is an upper bound on
the number of choices of positions for the corner of the rectangle with all
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maximal coordinates, and the second term is an upper bound on the number
of choices of sidelengths of the rectangle.

We claim that if R C By is a rectangle of size n; X n, with 5, < n,, then
for the bootstrap percolation process that we are considering,

P,(R is internally spanned) < (2niq)l*2/%, (2.20)

To see this, let R, RS, ..., R, be the segments of size n; which partition
R according to the value of the 2-nd coordinate, and ordered according to
/increasing values of this coordinate. If R is internally spanned, then for each

1<j<na—1, R;U R, must contain some vertex i at which (i) = —1
{otherwise each of these vertices will have at most 1 neighboring vertex i’ € R
with 7(#') = —1 and therefore will remain in state -1 in the bootstrap

percolation process in R that we are considering). We can now use the
fact that the random field (m(%))icz> is 1-dependent, to conclude that for
7=1,4,7,10,..,3(|n2/3] —1)+1, the corresponding events are independent.
In combmatlon w1th (2.15), this leads to (2.20), since for each j, |RIUR;, | =
27?.1.

Maximizing the right hand side of (2.20) over choices of ny < nj, with
ng € {|n/2] - 1,...,n} and n given by (2.18)}, we obtain

PP,(R is internally spanned)

< (2(n2)qk)[nz/3j < (26)6/(7%)_ {H(;Lq@}’ (2.21)

provided 2b < 1 and ¢ is small enough. Using Lemma 2.9 with the choice
made above of n, (2.19) and (2.21), we have

Pp((Br41)?) < (%ﬁﬂ) ’ exp {@E@Q}

a5

(ﬁ)z exp {“—‘;i?ﬂ} (2.22)

For small b > 0, blog(2b) is negative. So, choosing b > 0 which maximizes
—blog(2b) and » = —}blog(2b) > 0, yields (2.17).

Step 2. Erosion of (—1)-rectangles. We will show in this step that, for

g small enough,
Pp(Fis1|Brs1) < %ﬂ (2.23)
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In combination with (2.17), this implies (2.13),
Pp(Fis1) < Bp(Frya|Brsa) + Bp((Er41)%)-

By the Markov property, we need to estimate the probability that starting
at time T}, from a configuration in By compatible with the event Ey, and
letting the system evolve with +1 boundary conditions, some spin —1 will
be present at time T;1. By attractiveness, an upper bound can be obtained
on this probability by starting the evolution inside By, at time T; with —1
spins at all sites of the rectangles R, ..., Ry described in Step 1. Clearly,
no spin —1 can appear in this evolution outside of the rectangles Ry, ..., RN,
Also, once a rectangle is “destroyed”, meaning that it contains no —1 spins,
no —1 spins will ever be created inside of it again, in the evolution that we
are considering here. .

If By, occurs, then each rectangle R,, n = 1,..., N, is contained in a
cube of sidelength bounded above by

1+e/4
s ()
13 ak

for small g, where we used (2.12). By attractiveness, the time needed to erode
R, is therefore stochastically bounded above by the time needed fo erode a
cube with sidelength equal to this upper bound. From Proposition 2.3 we
conclude then that, for small g, for each n = 1,..., N, the probability that at
time Tyqr = Tx + tor = T + {1/ qr)?+) there is any spin —1 inside R, is

bounded above by
. ( 1 )1+€/4
28 - — )
pl—7 %

where vy is a positive constant. But, clearly, for small g,

- 5 2 1
N < ~Bk+1| < \{zhen) £ —
3 Te+1
by (2.12). From the bounds in the last two displays, we obtain

]. 1 1+e/4 qk 1
Pp(Fk+1|Ek+1) < —exp|—7 ("") < =t )
Qr+1 ax 4

for small g. This completes the proof of (2.23), and hence of (2.13).
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Step 3. Control of the outer influence. In this step we will prove (2.14).
We begin with the notion of a discrepancy process. Consider two evo-

lutions o& and ¢&T* t > T, starting at time T}, from the same

Bpyu,t Byj1,—3t’
configuration £ in Bk+1, with (+) and (—) boundary condition outside By,
respectively, and using the same graphical marks We say that af timet > T}
there is a discrepancy at a vertex & € By, if a - t( z) # G‘E T _.t( z), for
some §. Otherwise, the vertex z is called an agreement vertex v

According to this terminology and our choice of the conditions for the
dynamics at Ty, all vertices in By, at time T}, are agreement vertices and all
vertices outside By, have discrepancies. Moreover, the influence time 7341
is the time of occurrence of the first discrepancy in By,.

We observe that the occurrence of a discrepancy at time s at vertex
z € By implies, that at time s— there must be at least one neighboring
vertex of 2 occupied by a discrepancy. This follows readily from the fact that
the two evolutions that we are considering use the same graphical marks.
For 2 € By, we define

T(z) = inf {s >Ty: o (2)#£ 08 () for some £ } .

By +it Biy1,—it

We recall that a (self-avoiding) path 7 on Z? is a sequence of distinct vertices
7 = {Z1, Tz, ..., Tn}, Such that ||z; — zi11|| =1, 1 < ¢ < n. A chronological
path in the epoch (T, Tk+1) is a path 7 = {1, @2, ..., Tn} such that

T < T(£B1) < T(ﬂ?g) <L e T(Sﬂn) < Thtt.

In this case we say that the chronological path starts at zy and ends at z,,.
Let us introduce some notation. For any A C Z2, let

DA = {z € A: there is a nearest neighbor of x not in A}; (2.24)
OA = {x ¢ A: there is a nearest neighbor of z in A} (2.25)

Now we claim that if some vertex z € 8B, at time ¢t > T} is occupied
by a discrepancy, then there exists a chronological path in the epoch (T}, t)
which starts at some vertex of 83}, and ends at = € 8B},,. Once this
is realized, the proof of (2.14) is completed by estimating the probability of
such an event.

To prove the above claim we will construct a chronological path ending
at z € ABL,, by moving backwards in time. Assume that z = & € 8B},




30 CHAPTER 2. FIXATION IN 2 AND HIGHER DIMENSIONS

and T(#) < t. So at time T'(Z1) there must exist at least one neighboring
vertex &, € Bj,c +1 of 1 occupied by a discrepancy with T'(%;) < T(ml) At
time T'(&,) there must exist at least one neighboring vertex 3 € B,= 41 Of &2,
occupied by a discrepancy with T(&;) < T(Z2). Note that &3 # £;. It also
follows that T(%3) < T(&2). Now we iterate the procedure, thus producing
a self-avoiding path moving backwards in time, such that #; # Z; for j # ¢
and T(3;) < T(&j-1) < --» < T(&) <T(&) <.

This time-reversed path can be made to end in a site z, in 5} +1 after
finitely many steps. For the finiteness of the number of steps, notice that
during the epoch (T%,t), with ¢ < Tj41, only finitely many Poisson marks
occur in the interior of E}; 41 P-as. Due to the coupling we are using, a
discrepancy at some vertex cannot be created without the presence of at
least one other discrepancy at some neighboring vertex and at time T}, the
discrepancies are located only outside Bj +1- So our path must be traced back
to some z, € 8BL,;.

To get a forwards in time path, we invert the order and set z; = %415,
1 < j < r, and obtain a chronological path starting at z, € dBi + and
ending at z, € 8B} ,,.

From the claim it follows that, if 7441 < Ty+1, then there exists a chrono-
logical path connecting 8By to 8By, thus covering a distance which, for

small g, is at least
1 1 1 2+2¢
= L > -] —
e {4 k+1_| = 9(%) ’

where in the last inequality we used (2.11).
The number of possible starting points for this chronological path equals

|5§k+1| < CLgp < i,
r+1

for small ¢, where C is a constant, and we used (2.12) in the last inequality.

On the other hand, the probability that any given path of length r is
a chronological path during the epoch (T%,Tk41) i8 clearly bounded above
by P(Z > r — 1), where Z is a Poisson random variable with mean Ty —
Ty = tep1 = (gx)~@*9). Using the standard large deviation estimate for
Poisson random variables (see, e.g., (A.2) in [34], p467) P{Z > r -1} <
e~Uog(r/ter1)=1r  together with the upper bound 47 on the number of self-
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avoiding paths of length r starting from a given vertex, we obtain the follow-
ing estimate. If g is chosen small enough, then for appropriate constants C'
and C", for any k > 1, Py (741 < Tis1) is bounded above by

2+4-2¢
Z C Ar g~ 2rlogd < ¢’ exp " (_1_) < Qk+1’
a 2

by Q1 Ge41

where we used the fact that r/tg,1 can be made arbitrarily large, uniformly
in k and 7 > 7, by taking g small enough.
This proves (2.14), and completes the proof of Lemma, 2.11. O

2.3.2 Conclusion of proof of Theorem 2.1

Set & = 1/(2 + ¢) and note for later use that for any e > 0

a> % -« (2.26)

We will first prove that if g is small enough, then there are C, C; € (0, 00)
such that

Pp(0y(0) = —1) < Ce™¥, (2.27)

fort > 0.

We consider first times of the form ¢ = Ty for some & > 1. From (2.5) it
follows that g, = e~*%)°, Comparing the original dynamics with the block-
dynamics at time Ty (rvecall Property (A) of the block dynamics, and note
that the origin is in the block By) and using Lemma 2.11, we get

Pp(0:(0) = =1) = Bylog(0)==-1) < & < g = e, (2.28)

In order to replace ¢; with T} in the exponent, we observe that T} = #;, and
there exists 0 < ¢ < 1, such that, for small ¢, for all k > 2,

ta1 _ (qk_l)ﬂe _ (e—”/(Qk—z))2+E
b Ok—2 Qr-2

T = i+ < G(l+c+f+...) = (1-c) . (2.30)

c, (2.29)

IA

and thus
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So, for ¢ = Ty, from (2.28) and (2.29) we get

P,(0,(0) = —1) < et < g7 (=aTk)® = G = =€ (2.31)

where we take C' = x(l —c)%.

In order to extend the result to all positive times ¢ > 0 we will be com-
paring evolutions started from product measures with different values of g.
For this purpose, we write gx(q), tx{g) and Ti(g) for the corresponding values
of g, £, and T} defined by (2.5) and (2.7) with g = ¢. Summarizing the
conclusion in (2.31), we know that there exists § € (0,4) and C' > 0, such
that for all g € (0,9), if for some k > 1, t = Ti(g), then

B,(0:(0) = —1) < e, (2.32)

We will write g, = gx(§), & = (@) and T, = Ty(g). Since § € (0,4), Gk
decreases with k, and therefore . increases with k.

Note that, for each fixed k > 1, if we imagine the parameter ¢ decreasing
continuously from § to g, we will have the corresponding T (g) increasing
continuously from 7%(g) = Tk to Tk(ql) =t () + ... + (@) = t2A@) + ... +
ti41(@) = Ty (@) — (9) = Tis1—t1. Thus, by continuity, any ¢ > 0 which is
not in Ugs1 [T — 1, Ti), can be written as t = Tk (g(t)), for some k(£) > 1
and some g = g(t) € (§1,q)- Set p(t) = 1~ g(t). Then for any ¢ € (0,1)
wehave p=1—¢q>1—¢ > 1 - q(t) = p(¢t). Therefore, by attractiveness
and (2.32), we have

Bo(o4(0) = =1) < Pypy(03(0) = ~1) < e . (2.33)

This establishes the validity of (2.27) for ¢ < ¢ and ¢ > 0 which is not in
Uk>1[T;, -1, Tk) To extend the result to £ in this excluded set, observe that
for each k and ¢ € [Ty — %, Ty), if f 6(0) = —1 and the spin at the origin
does not flip between times ¢ and Tk, then o7, (0) = —1. Using the Markov
property, we obtain then

Byoi(0) = 1) § —Bylop,(0) = 1) < O < g,

3 (2.34)
where the term e~ is a lower bound on the probability of the event that no
flips occur at the origin from ¢ to Ty. This completes the proof of (2.27).
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To derive (2.2) from (2.27), we first note that an argument similar to the
one used to derive the first inequality in (2.34) (but now using the strong
Markov property) gives, for ¢t > 1,

Py(0,(0) = —1forsomes € [t—1,¢) < ePy(c,(0) = —1) < eCre ¥,
Consequently
Py(o,(0) = —1 for some 5 > t)
o0

< Z]P’p(as(o) = —1 for some s € [t + n,t +n + 1))

n=>0

[e1s] oD
< Eecle'cz(‘+“+l)° < ey f e~ 2" gs. (2.35)
i

n=0

Observe now that for arbitrary § > 0,

X
_ _ —F
f e ds < g7 OB
t

for large ¢. To see this, note that e=C2*" < Cy(a — 8)s°~9-1e=C2#* " for large
s, and integrate both sides from ¢ to oo,
From the last two displays, we obtain

Pp(0,(0) = —1 for some s > t) < ey g=C2t"° < e“"m_”,

for large t.
This completes the proof of (2.2), since from (2.26) we have ¢ — 2§ >
(1/2) — ¢, for small § > 0. O
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Chaotic time dependence
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Chapter 3

Voter model with random rates

In this chapter we come back to the voter model introduced in Section 1.2, We
will be interested now in the absence of weak convergence as time diverges
of the dynamics with fixed initial configuration chosen from a translation
invariant product symmetric Bernoulli measure!

To observe such a phenomenon, which we call chaotic time dependence
(for reasons that will become clear), we introduce random rates, as follows.
‘We will have the rates {X;, i € Z%} be a family of independent and identically
distributed random variables. We then have what we call the voter model
with random rates (VMRR). For convenience, we will focus rather on the
inverses of the rates 7 := {m;, i € Z9}, where 7, = A;’. T is then a family of
independent and identically distributed random variables with the property
that

Pnp21)=1 (3.1)
{coming from (1.10); in fact, we have that, for every realization of 7, ; > 1
for every 1).

The initial configuration, which is a product of symmetric Bernoullis, will
be denoted £.

Definition 3.1 For given realizations of the initial configuration of spins £
and configuration of rates T, we say that oy exhibits chactic time dependence
(CTD) if it does not converge weakly as t — oo (i.e., if some finite dimen-
sional distribution — or correlation function — of oy does not converge to a
single limit as t — oco).

1As argued at the end of Section 1.2, when integrated with respect to such measure,
the voter model does converge weakly as time diverges.

37
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Remark 3.2 CTD may be seen as the nonequilibrium counterpart of the
equilibrium phenomenon of chaotic size dependence, whick is the non conver-
gence of finite volume Gibbs measures as volume goes to infinity for disordered
parameter/boundary conditions spin systems (like spin glasses, but also fer-
romagnetic systems with random boundary conditions). See [42, 43, 44, 21 1.

Remark 3.3 The results below raise the issue of whether CTD occurs in
other more physical spin systems in d > 2 such as the Edwards-Anderson
spin glass [19] and the homogeneous Ising ferromagnet with random initial
conditions, under appropriate dynamics.

We now state our result on the occurrence of CTD.

Theorem 3.4 In d = 1, if the distribution of 1o is such that there exist
constants 0 < ¢, ¢ < co and 0 < a < 1 for which

ct™® < Plry > 1) < t7 (3.2)

for all large t, then the VMRR ezhibits chaotic time dependence for almost
every & and 7.

Remark 3.5 In [2{], further results, all establishing weak convergence in
various degrees of strength, are derived. It is shown, for ezample, that if 1
is g little more than integrable, then the VMRR converges weakly for almost
every T and & in every dimension. The same holds in d > 3, if a positive real
moment of 7y exists. Ind = 2, the situation is more delicate; under the same
condition on T as in Theorem 3.4, with o > 0, weak convergence is proved,
but not for almost every T and £, rather in probability with respect to these
families of random variables (see [24] for more details).

The argument for Theorem 3.4 is based on the dual representation of the
voter model in terms of coalescing random walks (1.11) seen in Section 1.2.
In this context, we will call {X,(z), t > 0, i € Z%} coalescing random walks
with random rates (CRWRR).

Remark 3.6 We note, for use in the proofs below, that for each i fized,
X(3), t > 0, is an ordinary simple symmetric random walk in Z¢ (with inho-
mogeneous rates), which we call in this context a random walk with random
rates (RWRR). We will mostly denote X:(0) more compactly by X,. We will
also consider the discrete-time random walk embedded in X,, denoted by X,.
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In the proof of Theorem 3.4 in the next section, we use the representa-
tion (1.11) to show that the expected value of the spin at the origin at time
t, given 7 and oy, does not converge as t — co. As noted in Remark 3.6, the
object that comes into play is the random walk X;. The quantity we will
study, already using the representation (1.11), is thus

Elo:(0)|r, 00 = £] = Eléx, I, €] = Y &P(X, = i), (3.3)
icid
where 7 refers to the rate configuration and £ is the initial spin configuration
of the VMRR.

Remark 3.7 The almost sure CTD of Theorem 3.4 follows from the follow-
ing properties of the RWRR, to be arqued below. For almost every T, for oll
1 fized

lim P(X; =i|7) =0, but limsup supP(X; =i|7) > 0. (3.4)
i—roo t—oo i

The mechanism behind these facts, as we will show below, is the localization
or concentration at large times of P(X; = -|7) in sites where T is large. The
confinement of Z makes it predictable (with probability bounded away from
0) which large T sites X, is located in.

Remark 3.8 As we will see in nest chapter, this localization phenomenon
is related to an aging phenomenon echibited by the RWRR.

3.1 Proof of Theorem 3.4

In what follows we will express the time spent by X, at a given site { between
jumps by 7;T, where T is an exponential random variable with mean one. In
this way, we have three independent families of random variables involved in
X;. The embedded walk X, 7 and a sequence of ii.d. exponentials of mean
oune, 71,73,...

We next state a result about the scaling of the time spent by X, in the
first n jumps, denoted 5,,. We can write

S’] = ZTX—:‘T‘!' (3'5)
i=1 )
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Lemma 3.9 Ford =1 and a < 1, suppose that the distribution of o satisfies
the right hand side inequality of (3.2) for some finite constant ¢ and all large
enough t. Then S,/n" is tight; i.c.,

lim P (S, > Bn") =0 uniformiy in n. . (3.6)
B-yoo
The proof of Lemma 3.9 is given later in this section. We next state

another lemma that will be used together with Lemma 3.9 to prove Theo-
rem 3.4; its proof is given at the end of the section. '

Lemma 3.10 To prove Theorem 3.4, it is sufficient to show that

P (lim supsup P(X; = i|r) > O) =1. (3.7)

t—oo i

Proof of Theorem 3.4.
Let I = I(n,T) be the leftmost integer i in [—+/7, /n] where 7; achieves
its maximum. That is,

I =min{i: - <i< and 7; = ax it 3.8
min{i : —v/n <i<Vn T _‘/I%jsﬁ"':} (3.8)

Let B and ¢ be positive numbers. We will first show that

NP S
lim lim infliminfP (—%‘/; X, =1I}ds> e) =1, (3.9)

B €0 —ro0

and from this conclude that (3.7) holds.
The above probability is bounded from below by

P (% /D " X, =T ds > Be) (S, > B.n"’). (3.10)

By Lemma 3.9, the last probability in {3.10) can be made arbitrarily small
uniformly in n by choosing B large. Thus

lim sup lim sup lim sup P (S,, > Bn") = 0. (3.11)

B—oo e—+0 n—oq

The left hand side of the expression inside the first probability in (3.10)
(which we will later denote by U) equals

1
E;TIG(Ln,I) (3.12)
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in distribution, where L, ; denotes the local time of X up to time n at site
k, that is

n

Ln,k = E 1{}“{: = k}, (313)

i=0

and, given L, = m, G(m) is a gamma random variable with mean and
variance m, which is independent of 7 and of L, ;. Now (3.12) is the product

of QL
T - an d ( n,J ),
(Vn)a v
which are asymptotically strictly positive in probability (this is easy to check
for the former random variable from the left hand side inequality of (3.2);

for the latter, it follows from Theorems 9.13 and 10.1 in [49] and from the
right hand side inequality of (3.2)). Thus

(3.14)

Sn
lim inf lim inf P (nl‘ff X, =1}ds> Be) =1 . (3.15)
0

e—0 n-300

for all B, and (3.9) follows from (3.15) and (3.11), via (3.10).
Next it follows from (3.9) by fairly standard arguments that

B-yoo €10 n—oo Bnv

i BnY
lim lim inflim infIP (——f P(X, = I|r)ds > e) =1 (3.16)
0
To see this, replace the ¢ in (3.9) by ¢/(1 — +/§) for some small § and use the

fact that

€

1—-4/8

The estimate (3.16) now implies that

P (U > ) >1—4 implies P(E[U|r]>¢) > V3.

n
lim lim inf P (%f sup P(X, = i[r) ds > e) =1 (3.17)
1

e—+0 n-yo0 0

and thus that

lim lim P (sup sup P(X, = i|r) > e) =1, (3.18)

€—+0 t—ro0 s>t i
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which implies the condition (3.7) of Lemma 3.10. [J
It remains to prove Lemmas 3.9 and 3.10.

Proof of Lemma 3.9.
We will argue that

lim liminf E (exp {—n—): Sn}) =1 - (3.19)

A=0t n—oo

This immediately implies the desired result.
We rewrite the expectation in (3.19) as

E [E (exp{—/\Sn/n"}]T, 5{)] . (3.20)

From (3.5) and Jensen’s inequality, the expectation inside the brackets
can be bounded below by

A T
The expectation of (3.21) can be expressed as

I [IE (exp {-?%ZT,,L,,,,:} X)] (3.22)

and the expectation inside brackets in (3.22) equals

I {1 _E (1 _ exp{—ef.,}p"() } , (3.23)

where £ = £(n, k) = ALy /7.

It follows from the right hand side inequality of (3.2) that there exists a
finite constant ¢ such that the last expectation can be bounded above by
¢’€*. Using the facts that given &' > 0, 1 — 2 > exp{—(1 + 8")xy} for small
enough nonnegative z; and that

Sl;p Lpx/n? < zk:Ln,k/n"’ =n'"" 50 {3.24)
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as n — oo (since -y > 1), we conclude that (3.22) is bounded below by

Cm')‘cx a
E|expq——o > oLEt], (3.25)
k

where ¢" is a finite constant.

By the Law of the Iterated Logarithm for X and the fact that Ly can
be approximated by the Brownian local time, denoted £, 4, within a margin
of error of n/* ([49], Theorem 10.1), (3.25) becomes

E lexp {—c’:’/; Z(En,k/\/ﬁ)a}] =E [EXP {_L\/Jg Z E?,k/\/r“?}]
P k

(3.26)
plus an o(1) error term. (The identity in (3.26) follows by a simple change
of variables.) Now

1
k

almost surely as n — oo, since £, ; is continuous and with bounded support
almost surely. (3.19) follows by dominated convergence. [

Remark 3.11 Arguments like those in the proof of Lemma 5.9 show thet
under the assumption of the left hand side inegquality of (5.2), we have

lim limsup E(exp{—AS,/n"}) = 0. (3.28)
A0 poeo

This and (8.19) together imply that if both sides of (3.2) are valid, then
{8n/n, n > 1} is a tight sequence and every weak limit is supported on
(0,00). We further note that if c and ¢’ can be taken arbitrarily close in (3.2)
(that is, if t“P(1y > t) has a positive finite limit as ¢ — oo}, then S,/n?
converges weekly as n — oo.

Proof of Lemma 3.10.

We will argue that (3.7) implies that for almost every 7 and £, E[o; (0)!7, £]
does not converge as ¢t — co. We begin by showing, through a renewal theory
argument, that (3.4) holds. It is sufficient to show that for all i and T
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Indeed, denoting the first hitting time of 4 (starting from 0) by #;, we have
1
(X, = ilr) = f P(X, , = i[Xo= i, B(H; € ds)  (3.30)
0

and (3.4) follows from (3.29) through (3.30).
Now the probability in (3.29), which we now denote by H(t), satisfies the
following renewal equation:

HE) =P(RT > tfr) + ft H(t - s)dF(s), (3.31)

where T' is an exponential random variable with mean one and F is the
distribution function of the sum of the independent random variables ;T
and ! (conditional on T), the latter being the return time to ¢ of X; (after
leaving ).

We claim that E(?|r) = oo for all 7. This can be argued by coupling
(in the natural way) #} = H}(r) and H}(7), with ¥ = 1, so that Hi(r) >
H(¥). But H, is the return time in the homogeneous continuous time simple
symmetric random walk on Z which is well known to have infinite mean.
Going back to (3.31), since P(nT > t|7) is (directly) Riemann integrable,
the Renewal Theorem ([22], Chapter XI) applies and (3.29) follows.

Returning now to E[o;(0)|r, £] and using the representation (1.11), we -
have (as previously noted in (3.3)) that

Elo(O)\r, €] = 3 &P(X = ilr)- (3.32)

(3.4) now implies that, for every 7, the convergence of Elo,(0)|7, ] is in the
tail sigma-field of the variables in £ and thus, by the Kolmogorov 0-1 Law,
is a trivial event. In other words, if

Ay = {E[o:(0)]r, €] converges}, (3.33)

then P(A;|7) = 0 or 1 for every 7.
Now let
Ay = {P(4|7) =1} (3.34)

Naotice that As involves T only. Our aim is to prove that, as a consequence
of (3.7), P(A;) = 0. On Ay, E[o;(0)|r,£] converges to a constant for almost
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every £, again by triviality. The constant has to be 0, since E[gy(0)|r, €] is
uniformly bounded (between —1 and 1) and E{oy(0)14,|7] = 14,E[e:(0)|7] =
0 for every 7.

The uniform boundedness now implies that on A,,

E{ B (o, (0)|7,€]| 7} — O (3.35)

as t — oco. But the left hand side of (3.35) equals

Z P X; = il7), (3.36)

which is greater than or equal to sup;IP*(X, = i|r). Thus (3.35) implies
that on Aj, sup; P(X, = i|r) — 0 as ¢ = oo and hence (3.7) implies that
P{Ap) = 0, as desired. [
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Scaling limits and aging in 1
dimension
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Introduction

Aging of dynamical systems is a memory effect observed (in laboratory)
in disordered (inhomogeneous) physical systems {12]. The system is initiated
at high temperature, and suddenly cooled down. It then evolves at low
temperature from the frozen in (quenched) disordered initial condition. The
system then ages for a time ¢, > 0, and is later observed at time ¢,,+%, £ > 0,
when a quantity R(t,,t, +t) is measured. R(t,,t, +t) could be a response
function at ¢, -+t to a change of parameters (like the temperature or magnetic
field) at £y, or a two-time correlation function, or a persistence function, etc.
It will sometimes below be called an aging function. The signature of aging
is the following scaling behavior of R.

lim Rty by + 1) = R(9), (3.1)

ta t =+ 00
1/ tey—+l

where n > 0 is a scale parameter, #§ > 0 and R is a nontrivial function.
When 5 = 1, we have normal aging; if 7 < 1, then we have sub-aging; and
super-aging, if n > 1. For example, normal aging associated to a two-time
correlation function of a =1 ferromagnetic spin system (with limg_,o R(8) =
1) corresponds roughly speaking to the condition that, to obtain a second
observation minimally uncorrelated to a first observation made when the
system has an old age ¢, it is necessary to wait a time proportional toty,. In
this context (and in general), aging refers to the ever longer delay to observe
changes in the system.

Aging is a phenomenon which can only occur out of equilibrium, since
in equilibrium R(%y,tw + t) would be independent of £, and thus the limit
in (3.1) would not depend on #. It was first noticed and studied in intrinsi-
cally disordered systems, like spin glasses, but it also occurs in homogeneous
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systems, like the ferromagnetic Ising model (in this case, the disorder is
present only at the initial condition).

The phenomenology in the case of spin glasses is the following. In the
energy landscape where the dynamics takes place, there are wells of varying
depths. At low temperature, the landscape is very rough, and the process
spends most of the time in deep wells. At time £, the process is at a well
of depth D(t,,). From then on, a minimally uncorrelated observation will be
possible only when the process leaves that well, which takes time proportional
to ty.

In the case of the ferromagnetic Ising model at low temperature with a
disordered initial condition (product of Bernoullis(1/2), say), the situation
ig similar, and can also be viewed as follows. The initial clusters of +-1's
and —1’s evolve, some getting larger, some shrinking and disappearing. At
time t,, the region around the origin is in a cluster of size V(t,,). From then
on, & minimally uncorrelated observation will be possible only when another
cluster surrounds the origin, which takes time proportional to #..

Many studies and results on aging in the theoretical physics and math-
ematics literature are based in the models we consider in these notes, and
concentrate in establishing the phenomenon for some functions of interest,
like correlation or persistence (which is the probability of no spin flip in
[tw: tw + t]). Our approach aims at identifying aging as a feature of a scaling
relation of the dynamics (and not only of a specific function). We try to
establish scaling limits for the whole dynamics.

The study of more realistic models like the Edwards-Anderson spin glass
in dimension at least 3 or the Ising model in dimension at least 2 meets
with substantial technical difficulty. For this reason, simplified models are
considered in the mathematics literature, and also in the theoretical physics
one.

The models we study in this chapter are all one dimensional and are re-
lated to the voter model, also in one dimension (which is equivalent to the
heat bath Glauber dynamics at zero temperature, as seen in Chapter 1). The
first one is the random walk with random rates (RWRR), in next chapter.
In the case of heavy tailed inverse rates, this model behaves like in the phe-
nomenological description of aging for spin glasses (as just discussed) — in
fact, RWRR’s on various graphs have been proposed as approximate models
for the dynamics of mean field spin glasses (see discussion and references

.in next section). Sites with large inverse rates (on which the process takes
longer to jump from) concentrate the distribution of the random walk, and
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this is at the root of aging.

The RWRR was introduced in the previous chapter and the different (but
related) dynamical issue of chaotic time dependence (CTD) was studied. In
next chapter, we obtain and characterize the scaling limit of the RWRR as
a diffusion in a random environment, which is itself the scaling limit of the
(inverse) rates, given by the Lévy process associated to that scaling limit.
The increments of the Lévy process, as is well known, can be described by
means of a (Poisson) point process in R x R* or, alternatively, as a random
measure which is almost surely locally finite and purely atomic (with dense
support) in R, The last feature is behind the aging results that follow (and
also of the CTD exhibited by the model).

The ordinary Ising model {ferromagnetic, homogeneous) under the voter
model dynamics can be described by coalescing random walks starting at
arbitrary/all space-time locations {in Z xR), as seen in Chapter 1, Section 1.2.
The scaling limit of that dynamics is a continuum model, which can be
described as coalescing Brownian motions starting from arbitrary/all space-
time locations (in R x R). In Chapter 5, we use this scaling limit (in limited
forms) to obtain aging results for the original dynamics. Finally, in Chapter 6
we discuss the full continuum model, the Brownian web, the underlying space
where it is realized, and weak convergence issues in that context, from which
aging as well as other limits can be derived. We also explore features of the
Brownian web on its own. Finally, we introduce a spin dynamics at very low
temperature, and discuss its scaling limit, in connection with a variant of the
Brownian web.







Chapter 4

Random walk with random
rates

In this chapter, we treat the random walk with random rates of the previous
chapter. From a scaling limit result we derive for it, we get aging results as
well as a form of the localization result behind the chaotic time dependence
(CTD) of the voter model with random rates of Chapter 3 (see Lemma 3.10).

4.1 Introduction

We come back to the random walk with random rates (RWRR) in one di-
mension with heavy tailed inverse rates. See Remark 3.6. We will sometimes
below make the rates explicit and denote it by (X, 7). Besides the relation-
ship with Glauber dynamics at zero temperature, via the equivalent voter
model with random rates (VMRR) — see Subsection 1.2 — the RWRR is
more loosely related also to spin-glass dynamies at low temperature. In an ef-
fort to understand the latter dynamics, in particular the aging phenomenon,
trap models [13] have been proposed as approximate modeis for the dynam-
ics of some mean field spin glasses, like the random energy model. Trap
models are random walks with random rates whose distribution has heavy
tails (at low temperature for the corresponding spin glass) in various graphs,
depending e.g. on the dynamics. The RWRR we are considering here is a
particular case, then, with the graph Z (with nearest neighbor bonds). See
also {8, 9, 10, 11, 16].

The localization result of last chapter (Lemma 3.10) as well as aging
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results (some of which will be derived below) can be related-to an appropriate
scaling limit of (X, 7). When 7, has a finite mean, it can be shown (e.g., by
the convergence Tesults of [54], as discussed below) that (for a.e. 7) thereis a
central limit theorem for X, and more generally an invariance principle, i.e.,
that €Xy» converges to a Brownian motion as € — 0. In the case of heavy -
tail for 7g, in a sense to be precised, it turns out that the Brownian motion
is replaced by a singular diffusion Z (in a random environment) — singular
here meaning that the single time distributions of Z are discrete.

A convenient quantity, with which to express the relation between Jocal-
ization and the scaling limit, is the “amount of localization” at time t, as
measured by

@ =E) [P(X; =i|r)f, (4.1)
i€z
where the expectation is with respect to 7. Theorem 4.2 below says that
as t — 00, g converges to g € (0,1) (depending on a € (0,1)), which can
itself be expressed by a formula (see (4.5) and (4.7) below) analogous to (4.1)
with the singular diffusion Z replacing the random walk X. In terms of the
VMRR, we can express

@ = E{E*[a4(0)}¢, 7]}- (4.2)

In view of the close relationship of 37, ,IP(X, = i|7)]* and sup, P(X; = i[7),
we can interpret g as an amount of chaotic time dependence/predictability
of the VMRR. See Remark 3.7. It is thus a natural dynamical order param-
eter for CTD in that spin dynamics.

Qur analysis of the scaling limit of (X, 7) will also yield results about aging
of the RWRR. One interesting example of a response function of the RWRR
for which the limit (3.1) follows from our results is R(t, +1,t) = g:(tw), where

(te) = B [P(Xpyse = il7, Xe, )" (4.3)

i€z

Of course, ¢(0) = g¢, corresponding to the amount of localization after time
t, starting from a fresh (£,, = 0) system with X, = 0 that has not been aged.
As with gy, the limit function R(#) will be given by a formula (see (4.8))
like (4.3), but with X replaced by the diffusion Z. It follows from (4.8) that
R(f) tends to 1 as # — 0 and t0 go as & = co. Other examples of RWRR
quantities that exhibit normal aging are the (unconditional) probabilities
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P(X;,+t = Xt ), which we discuss below, and

IP( TX:')’ (4.4)

max Ty, > max
tpSHStutt T 0SSty
which measures the prospects for “novelty” in this aging system.

The scaling limit of (X, ) will be given by a (singular) one-dimensional
diffusion Z in a random environment p, denoted (Z, p). As a corollary, we
get for example that

@~ EY [B(Z, = 2|p)]* > 0. " (49)

zER

(Other examples, related to aging, will be discussed below.) Here s > 0 is
arbitrary, and by the singularity of Z, we mean that (conditional on p) the
distribution of Z, is discrete, even though Z is a bona-fide diffusion with
continuous sample paths. We shall see why the above expression for ge,
which describes the amount of localization of (Z, p) at time s does not in
fact depend on s (as long as 8 # 0), a fact that may at first seem surprising
(since Z, — 0 as s — 0, almost surely). Indeed this lack of dependence
follows from the scaling/self-similarity properties of (Z, g) which imply that
(conditioned on p) the distribution of s*/(**1Z, is a random measure on
R whose distribution (arising from its dependence on p) does not depend
on s > 0. We now give a precise definition of this diffusion in a random
environment, (Z, p).

Definition 4.1 (Diffusion with random speed measure, (Z, p)) The random
environment p, the spatial scaling limit of the original environment 7 of rates
on Z, is a random discrete measure, 3, Widy,, where the countable collection
of (Y;, W) ’s yields an inhomogeneous Poisson point process on Rx(0; co) with
density measure dy aw™*"*dw. Conditional on p, Z, is a diffusion process
(with Zy = 0) that can be expressed as a time change of a standard one-
dimensional Brownian motion B(t) with speed measure p, as follows [38].
Letting £(t, x) denote the local time at = of B(t), define

¢t = f £t y) do(y) (4.6)

and the stopping time ¥° as the first time t when ¢f = s (so that * is the
inverse function of ¢*); then Z, = B{¢?).
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Note that although p is discrete, the set of ¥i’s is a.s. dense in R because
the density measure is non-integrable at w = 0. For {a deterministic) s > 0,
the distribution of Z, is a discrete measure whose atoms are precisely those
of p; this is essentially because the set of times when Z is anywhere else than
these atoms has zero Lebesgue measure.

The next theorem gives the limit (4.5) as part of the convergence of the
rescaled random walk (X, 7} to the diffusion (Z, p). A more complete result
explaining the nature of this convergence is provided later in Theorem 4.13.

Theorem 4.2 Assume that Pty > 0) = 1 and P(rp > ) = L(t)/t*, where
L is a nonvanishing slowly varying function af infinity and o < 1. Then
for € > 0, there exists cc > 0 with cc — 0 as € — 0, so that for any fized
s > 0, the distribution of Z,° () — eX, s/(cce), Conditioned on T and thus regarded
as a random probability measure on R, converges to the distribution of Z,,
conditioned on p, in such a way that

Gofece) = B Y _[P(ZY) = eil7)]* = E [P(Z, = z|o)]*. (4.7)

icZ z€R

Remark 4.3 Notice that the first assumption on the distribution of 7y is
more relazed than the one made in Chapter 8 in (8.1). It is not difficult to
see that the RWRR as well as the VMRR is almost surely well defined under
the weaker assumption. The only thing that could go wrong would be if there
would be explosions (that is, an infinite number of jumps in finite time of
the/some random walk). But thet would mean that the sum in (3.5) would
converge as n — 00, and this almost surely does not happen. Theoremn 3.4 of
course holds under the weaker assumption.

The second assumption on the distribution of 7g is also different from the
one in Chapter § on Theorem 8.4. This time, however, the assumptions are
not comparable.

We now return to a discussion of aging in the RWRR Analogously to
(4.5), we have R(#) of (4.3) given by

Jim e (¢) = E%[P(zﬁa, = zlo, Z)P. (4.8)

The validity of this limit {as well as of the analogous one for, (4.4) and others)
also follows from the results and techniques below — see Remark 4.10. Here,
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the self-similarity properties of (Z, p) imply that the RHS of (4.8) depends
only on # and not on s (for 0 < s < o), explaining the basic signature of
normal aging — that the asymptotics of g,(t,,) depend only on the asymptotic
ratio of ¢/¢,,.

Another example of an RWRR localization quantity with normal aging
behavior is

0t(tw) = P(Xsp 4o = X)) = BP(Xy, 44 = X |7, Xo ). (4.9)

In this case, the asymptotic aging function, R'(#), would have limits 1 and
0, respectively, as # — 0 and oo.

To see the lack of dependence of the RHS’s of (4.5) and (4.8) on s, we
may proceed as follows. For A > 0, consider the rescaled Brownian motion
and environment,

BMt) =AT2B(M); o = (A TVAMeWi6, iy, (4.10)
H

Since B> and p* are equidistributed with B and p, it follows that if we define
a diffusion Z* as the time-changed B* using speed measure p*, then (Z*, p*)
is equidistributed with the original diffusion in a random environment (Z, p).
On the other hand, on the original probability space on which B and p are
defined, one has Z}' = A™/2Z,a+1)/a),, S0 that the RHS’s of (4.5) and (4.8)
remain the same when s is replaced by A(*+1/(22) s and thus cannot depend
on s.

To best understand how (Z, p) arises as the scaling limit of (X, 7), one
should take into account the fact that not only diffusions, but also random
walks (or more accurately, birth-death processes) can be expressed as time-
changed Brownian motions [54, 33]. In particular, if for any ¢ > 0; we take

as speed measure

p("') = Zce‘ri&,-, (4.11)

icZ

where the parameter ¢, > 0 is yet to be determined, and then do the time-
change on the rescaled Brownian motion 31/‘2, the resulting process is a
rescaling of the original random walk X, namely Z{ = €Xsj(cec)- When
the distribution F' of the 7;'s has a finite mean, then by the Law of Large
Numbers, taking c. = ¢, p® converges to (the mean of F times) Lebesgue
measure and Z() converges to a Brownian motion as ¢ — 0 [54, 35]. On the
other hand, if 1 — F(u) = L(u)/u™ with @ < 1 and L{u) is slowly varying
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at infinity [22], then by choosing c. appropriately one has (from the classical
theories of domains of attraction and extreme value statistics) convergence
(in various senses, to be discussed) of p to the random measure p.

The idea that also (2, ) should converge to (Z,p) in some sense
should by now be quite clear. And indeed the basic convergence results
of [54] are enough to imply, for example, that a functional like

E{[P(a < 2 < 8| 9P} (4.12)

(for deterministic a,b) converges to the corresponding quantity for (2, p).
But they are not sufficient to get the convergence of localization quantities

like
Gaf(cce) — EZ[P(Z.EG) =z I p(e))]z'
zER

The problem in our case is not primarily with the randomness of p® (i.e.,
of 7) and p, but occurs already when considering the nature of convergence of
a process Y(©)(t) that is a Brownian motion time-changed with a deterministic
speed measure ;). The convergence results of [54] imply that if u© — u
vaguely, then (for example) one has weak convergence of the distribution j(®
of Y(t;) to the corresponding fi. But we need stronger convergence.

This stronger convergence is the subject of next section, which contains
the main technical result of the chapter, Theorem 4.9, in which weak con-
vergence is combined with point process convergence. By point process con-
vergence for (say) a discrete measure } w,ge)dy@ to 3, w;d,, (where we have

expressed each sum so that the atoms are not repeated), we mean that the
subset of R x (0, 00) consisting of all the (), wfe’)’s converges to the set of
all (y;, w;)’s — in the sense that every open disk (whose closure is a compact
subset of R x (0, 00)) containing exactly m of the (y;,w;)’s (m = 0,1,...)
with none on its boundary, contains also exactly m of the (1, w(®)’s for all
small e. Our technical result is that vague plus point process convergence for
the speed measures p{® — y implies the same for the distributions at a fixed
time to; i.e., g% — .

Going from this result for a sequence of deterministic speed measures
to our context of random speed measures requires a bit more work, which
is presented in Sections 4.3 and 4.4 below. The way we handle that is to
replace the random measures p{9) which only converge (in our two senses) in

distribution, by a different (but also natural) coupling for the various €'s than
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that provided by the space of the original 7;'s, so that convergence becomes
almost sure. This coupling is presented in Section 4.3.

In the next sections, we describe our results in more detail. Due to their
technical character, we either omit or do a simpler case of some of the proofs,
and refer to [25] for the complete arguments. See that reference also for a
broader discussion on the issues of this section.

4.2 The continuity theorem

Let p, 49, >0, be non-identically-zero, locally finite measures on R. Let
Y;, Y;E), t>0, Y(,(6 = Yy = z, be the Markov processes in one dimension
obtained by time changing a standard Brownian motion through w1 e,
let B = B(s), s 2 0, be a standard Brownian motion (with B(0) = 0) and
let

#0) = [ toy-2) ) (413)
where £ is the Brownian local time of B [54, 33] and u(®) = 4; let also
P (z) = 9 (e) := inf{s > 0: ¢ (z) =1}, (4.14)
and make
¥ = Bp(z) + 2. (4.15)

Let () = $(-) and Y. = ¥.). Notice that, since (s, y) is nondecreasing
in s for all y, ¢ (x) is nondecreasing in s, and so its (right-continuous)
inverse P{7(z) is well-defined. Processes described in this way are known in
the literature as quasidiffusions, gap diffusions or generalized diffusions (|36,
37, 38] and references therein). They generalize the usual diffusions in that
the speed measures p can be zero in intervals, thus including birth and death
and other processes.

We discuss now the types of convergence we will need for our results.
Let M be the space of locally finite measures on R and P its subspace of
probability measures.

Definition 4.4 (Vague convergence} Given a family v, 19, ¢ > 0, in M,
we say that v() converges vaguely to v, and write ¥ % v, as € — 0, if for
all continuous real-valued functions f on R with bounded support

[ Fy) dv¥(y) — / fly)dv(y) as e — 0.
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Definition 4.5 (Point process convergence) For the same family, we say
that € converges in the point process sense to v, and write X9 B v, as
€ — 0, provided the following is valid: if the atoms of v, 9 are, respectively,
at the distinct locations v, y,-(f ) with weights w;, wgf), then the subsets V() =
U,-a{(y‘.(f),w,(f))} of R x (0,00) converge to V = U{{y;, wi)} as € = 0 in the
sense that for any open U whose closure U is a compact subset of R x (0, 00)
such that sts boundary contains no points of V, the number of points |V NU|
in VN (necessarily finite since U is bounded and at a finite distance from
R x {0})} eguals |V NU| for all ¢ small enough.

These notions can be related to the following condition, where for v € P
we order the (y;,w;)’s (the locations and weights of the atoms of ) so that
wi, 2 Wi, = ..., where w;, is the largest weight, w;, is the second largest,
and so forth. For a measure not in P, we use an arbitrary ordering of the
atoms.

Condition 4.6 For each I > 1, there ezists ji(e) such that.

(yjl(E): wj[(f)) — (yinwi;) as e — 0. (416)
We now state a useful relationship among the above notions.

Proposition 4.7 For any family v, v, ¢ > 0, in M, the following two
assertions hold. If v'© B v as € — 0, then Condition 1 holds. If Condition
1 holds and 9 S v ase — 0, then 9 B v ase = 0.

We leave it to the reader to find an example where Condition 1 holds but
point process convergence does not. The following is a useful corollary of
Proposition 4.7.

Proposition 4.8 Let v, v, ¢ > 0, be any family in P. If as ¢ = 0 both
By and 9 5 v then as e — 0

>l - Z[wilz- (4.17)

Proof.

By the first assertion of Proposition 4.7, Condition 4.6 holds. This in
turn implies that

k
limjnf > ful? ZSgPIZ;[wz'.]z =l (4.18)
7 = 13
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This together with the distinctness of the (3, w;)’s also implies that for any
k the indices ji(€), ..., jk(€) are distinct for small enough €. Furthermore, it
implies that if k and 4 are such that w;, > 6 > w;, _,, then for e small enough

sup{w§e) 17 ¢ {ae),. .., 7k(e)}} < 6. (4.19)
To see this, note that otherwise along some subsequence e = ¢ —3 0 there
would be an index 7*(¢) ¢ {7.(¢),.. ., x(€)} with lim inf 3 iae) = 0 and either
(i) yf)(e) — y € (—o0,+00) or else (ii) |yJ (e)[ — o0. Case (i) would con-

tradict 149 B v, while case (i) would imply that the family {9} is not
tight, which would contradict /9 5 v since (¥ and v are all probability
measures. Using the above choice of k and 4, we thus have

11m supz:[w(f)]2 < E[w, ]2+ lim supz 5w(5) = Z[w,—,]2 +4.  (4.20)

I=1 i=1
Letting k — co and § — 0 completes the proof. O

We are ready to state the main result of this section.

Theorem 4.9 Let p{9, 4, YO, Y be as above and ﬁ:l: any deterministicty > 0
and z € R. Let 59 denote the distribution of Y (with Y( ) = z) and define
B similarly for Yy,. Note that il = Dy ,(ul9) and = Dto +(14), where Dy, ;
is some deterministic function from the non-identically-zero measures in M
to P. Suppose

95 aend P9 By ase— 0. (4.21)
Then, as ¢ = 0,
955 and 59 B o (4.22)

Remark 4.10 To study limits involving two (or more) times (see, e.g.,
(4.3), (4.8), (4.9)), some straightforward extensions of Theorem 4.9 are use-
ful. One of these is that (4.22) remains valid if Y7 = 29 with z© — g
Another is that the single-time distribution il9 of Y,,ff) can be replaced by the
multi-time distribution of (Y;Ee), Y;E:)) , with point process convergence for
measures on R™ defined in the ob’uzous WaY.

The following is an immediate consequence of Theorem 4.9 and Proposi-
tion 4.8.




62 CHAPTER 4. RANDOM WALK WITH RANDOM RATES

Corollary 4.11 Under the same hypotheses, the weights of the atoms of te
and i satisfy

Z[’E{st)]2 — Z[wi]z as € = 0. (4.23)
7 i
Remark 4.12 More explicitly, ({.23) takes the form
SREE =yl = Y B =y)f ese—0, (4.24)
yeR yek

or, equivalently, if Yt(‘E)' (resp. Y{) is an independent copy of Y;(E) (resp. Y3 ),
then
P =Y 5 B(Y, =Y;) ase—0. (4.25)

4.3 A coupling for the scaled random rates

As discussed briefly at the end of Section 4.1, the rescaled random walk
with random rates, 79 =X J(cee) 18 @ quasidiffusion whose (random) speed
measure p©), given by (4.11), only converges in distribution to the (random)
speed measure p of the scaling limit diffusion Z. To take advantage of the
results of Section 4.2, it is convenient to find random measures € equidis-
tributed (for each ¢€) with p{© and such that 5 converges almost surely as
¢ — 0 to p, in both the vague and point process senses of Section 4.2. In this
section we will construct such 7@, equidistributed with 7 for each ¢ > 0, on
the natural probability space where p is defined, in a very special case of the .
distribution of 7, namely when it is itself a positive stable distribution of
index «, where the desired properties follow easily. For the general case, we
refer to [25).

Consider the Lévy process (see, e.g., [48, 50, 51)) V,, z € R, ¥, = 0, with
stationary and independent increments given by

E [eif(Vx+xo"V=a)] = exp {am/ (eirw -1) wle dw} (4.26)
0 .
for any r,z0 € R and z > 0. It satisfies

lim y°P(Vy > y) =1 (4.27)
Yoo
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([22], Theorem XVIL5.3). Let p be the {random) Lebesgue-Stieltjes measure
cn the Borel sets of R associated to V, i.e.,

o((a,0) =V, —V,, 0, bER, a < b, {4.28)

where we have chosen the process V' to have sample paths that are right-
continuous (with left-limits). Then

dp dV
d—m—=%=zj:wj5(m——mj), (429)

where the (countable) sum is over the indices of an inhomogeneous Poisson
point process {(z;, w;)} on R x (0, 0o) with density dz aw 12 duw.

For each € > 0, we want to define, in the fixed probability space on which
V and p are defined, a sequence 'r,-(‘), i € Z, of independent random variables
such that

9 ~m foreveryicZ (4.30)

(where ~ denotes equidistribution) and with the following property: for a
given family of constants ¢, € > 0, let

co
.5(6) = Z ceTi(E)Jei; (4'31)
i=—o00
we demand that constants ¢, be chosen so that

79 % p and 59 p ase— 0, almost surely. (4.32)

If 7y is equidistributed with the positive a-stable random variable Vi,
then, according to (4.27), P(rp, > t) = L{#)/t* with L(t) — 1 as t = oo.
Now, we may simply choose ¢, = €/* and take 79 to be the sequence of
scaled increments of the Lévy process V:

) .
T-(e) = c—- (V;(,-_H) — Ve,) . (4.33)

T
€

The validity of (4.30) and (4.32) are then elementary exercises.
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4.4 Scaling limit for the RWRR

Let X;, t > 0, Xy = 0, be a continuous time random walk on Z with rates
given by A; = 1%, i € Z, where 7, i € Z, are ii.d. random variables such
that P(mp > 0) = 1 and P(ro > t) = L(t)/t*, where L is a nonvanishing
slowly varying function at infinity and @ < 1.

We consider now the scaling limit of the random walk X;. Let

79 = eXypeg, t20. (4.34)

To study the limit of Z(, in the presence of the random rates, which them-
selves converge vaguely and in the point process sense, but only in distri-
bution, we will need a weak notion of vague and point process convergence,
as follows. Let Cp be the class of bounded real functions f on the space P
of probability measures on R that are weakly continuous in the sense that
Fun) = f(g) as n — oo for all g, fin, 7 > 1, in P such that both u, = g
and pn 5B pasn — oo

Let Z, be the (random) quasidiffusion Y; as in (4.13)-(4.14) above, but
with speed measure p taken to be the (random) discrete measure p of (4.28)-
(4.29) associated with the Lévy process V. For t; > 0 fixed, let 7 and 7
be the (random) probability distributions of Z;, and Zg), respectively; i.e.,
j is the conditional distribution of Z,, given p while p®) is the conditional
distribution of Z,,(;) given 7. We can now state the following theorem, which
is a consequence of (4.30), (4.32) and Theorem 4.9.

Theorem 4.13 Ase— 0,
E(f(719)) = E(f(p)) (4.35)

forall f € Gy in particular,

EY" [9{z)]” = EY B2 =a|n)]* -

zeR TER
- By [p{eP =E) _[F(Z; = alp)]*. (436)

Proof of Theorem 4.13
Z© is distributed as a standard Brownian motion time changed through
the speed measure p{@ (see (4.11) and the beginning of Section 4.2). Let
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p and 5 be as in (4.28) and (4.31) and let Z© be a standard Brownian
motion time changed through 5. By (4.30),

(29, ) ~ (219, 5, (4.37)

To obtain (4.35), it is thus enough, by (4.37) and dominated convergence,
to show that 5), the probability distribution of Z"t(:) (which is D, o(5®) in
the notation of Theorem 4.9 and is random because of its dependence on 3¢
and hence on the Lévy process V), satisfies: 50 3 5 and 59 2 5 almost
surely. But that follows from (4.30), (4.32) and Theorem 4.9.

Then (4.36) follows from (4.35) with the function f on P defined by
F(1) =3, er ({z}))?, which belongs to G, by Proposition 4.8. []







Chapter 5

Ordinary voter model

We now discuss the ordinary one dimensional voter model with homogeneous
rates. In Section 1.2, where the {general) model was introduced, we saw that
it is equivalent to the zero temperature heat-bath Glauber dynamics, and
can be represented in terms of backwards in time coalescing random walks,
with homogeneous rates in the present case. Some of the material here was
taken from [28] and (29], to which we also refer for some literature about it,
and more discussion.

We discuss now the forwards dynamics. As pointed out at the intro-
duction of this part, the initial clusters of spins (+1's and —1's) evolve by
growing, and shrinking and disappearing. Their boundaries perform annihi-
lating random walks, i.e., they evolve as independent random walks up until
two of them meet, and then both disappear.

We can, and will, consider the model with more than two kinds of spins
(or colors). The (voter model) dynamics is defined in the same way: when
the alarm goes off at site z, the color there is changed to the one of a nearest
neighbor chosen uniformly at random. In particular, the dual representations
in terms of coalescing random walks (1.11) and the more general (1.12) are
valid. It will be convenient to look at the case where initially there is a
different color at each site. In this case, the boundaries between same color
clusters perform coalescing random walks, rather than annikilating ones. If
we have initially more than 2 but, say, finitely many colors only, then the
boundaries will perform coalescing or annihilating random walks, depending
on wheter the colors of the clusters which are adjacent to the disappearing
one are different or not, respectively. See Figure 5.1.

In any case, the dynamics starting with any initial configuration, with any

67
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Figure 5.1: A representation of the dynamics, both forwards (solid lines) and
backwards (dashed lines), in a lattice with eight sites, with one different color in
each site initially.

number of colors, can be readily obtained from dynamics starting with the
“one different color per site” configuration, by properly identifying the colors
in the latter initial configuration. For example, in the diagram of Figure 5.1,
if we want to run the dynamics with two colors, the initial color identification
might be “abdgh with +1” and “cef with —1"; by replacing these values for
all times one obtaing the corresponding diagram for the two-color dynamics.
Below, we will consider only product initial configurations with g colors,
that is,
]P(O'(Zl) = jl: LR )a(in) - Ju) = q_“ (51)
"forall n = 1,2,...,; f1,...,9s in {1,...,¢}; and distinct é1,...,4, in Z,
where ¢ > 2 is an integral parameter. The “one different color per site”
configuration will be considered the g = co case.
One also refers to the voter model with g colors ag the Potts model with
g states (under zero temperature/voter model dynamics) [28].
As aging functions, we will initially consider the following quantities

' Gq(wﬁy; S,t) = ]P(O's(.’ﬂ) = cn(y)), (52)
the probability that the spins at (z, 8) and (v, t) are the same. This is related
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(for dinite g) to the two-site two-time correlation function, introduced in
Section 1.2 (but here denoted)

Co(®, 93 5,1) i= B(5y(w) - Ge(y)), - (53)

where () denotes the tetrahedral representation of g-state Potts spins, as
unit vectors in RY pointing only to the vertices of a (g — 1)-dimensional
tetrahedron. The dot product between to such vectors satisfies

3(3") ) E(y) = (‘I‘sa(z),a(y) - 1)/(q - 1)} (54)
where ¢ is the Kronecker delta. (C of Section 1.2 is denoted Cs here.) In
particular, we have, from (5.2), (5.3) and (5.4),

Colz,y38,t) = (qGy(z, y;8,8) — 1)/ (g — 1). (5.5)

As pointed out above, we can relate quantities like G, for all finite ¢ to
the g = co case. For Gy, we get a particularly simple relationship. Indeed,
by (1.12) and (5.2), for finite ¢

Go(m,u35,t) = Ploo(XP(2)) = oo(X (1))

P(X{)(z) = X (y))

+ Ploo(XP () = 00 (X (%)), X () # X (w))
]P(Am,y;s,t) + ;P(A;,y;a,t) (56)

|

(2= D B(Aayins) + 1 (5.7)

where Agy..¢ 1= {X(z) = X(y)} is the event that the two backward

random walks X/?(z) and X {) have coalesced by time 0. Notice that (5.6)
is valid when g = co, by making 1/¢ = 0. We then have that

Goo(m: N t) = P(A:n,y;s,t) = Cw(ml s, t)? (58)
and from (5.5) and (5.6),
Colz, 93 5,8) = Coo(z, 35 5, 1) (5.9)

for all ¢ > 2. Notice that the right hand side of (5.9) is independent of g.
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We also get from (5.7-5.9)

Gy(z,y;8,%) [(q — 1) Cyl@, y; 5,t) + 1]. (5.10)

The proper space-time scaling for this model, in particular in order to
derive aging results is the usual diffusive one

s=tu t=1+0ty; z=|vviu]i yv=|2Vtu], (5.11)

where 8 > 0, v, z are real numbers. By the space translation invariance of
the model, it is sufficient to take v = 0.

Now, in order to obtain the asymptotics of Coo(0, |24/%0]; tw, (L + 8)tw)
as t, — 00, it is enough, by (5.8), to understand the scaling limit of

(x(0), XS (| 238 ] ogrctuozr<1401e (512)
as t,, — co. By Donsker’s invariance principle
£51/2 (X8 (0), XEH (125 1)) = (B, BY) (5.13)

as ty, — oo, where (B, B') are backwards in time coalescing Brownian mo-
tions! starting at space-time points (0,1) and (2,1 + ), respectively. Thus

Coo{0, [2/F s tus (1 + 0)tw) = P(Ag, otz )itw (148)t0) — P(A.5) (5.14)

as t,, — 00, where ﬁz,g is the event that the two backward Brownian motions
B and B’ coalesce by time 0. See Figure 5.2.

5.1 An expression for P(4,)

From the above, we can obtain an expression for g(z,6) := ]P(A}}g), and we
do that now.

We will first condition on Bj, which has probability density function
F(z) = (1/+/2x0) exp|~(z — z)?/26]. Given B} = =z, the probability of A,
is the probability that two independent backward Browma.n motions, one

!1.e., Brownian motions which are independent up until they meat, when they coalesce,
and continue from then on as a single Brownian motion.
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1+6

0

Figure 5.2: A realization of B and B where 4, 4 occurs.

starting at (0,1) and the other at (z, 1), meet before time 0. Let us denote
by By and B, these Brownian motions. Then, if 4; is the event that B, and
B, meet at some s € [0, 1], we have

1 oo —(z—z)?
g(z,0) = m[ dw e @ Bg(gy (5.15)

where g(z) ]P(}L)

Now, the event A, in (5.15) can be seen as that in which By(s)— 3 2(8) =0
for some s € [0, 1]. Since the difference of two independent Brownian motions
with diffusion coeﬂicient 1 starting at x and y, respectively, is a Brownian
motion with diffusion coefficient 2 starting at = — y, we can rewrite the
probability g(z) in (5.15) as

g(z) = P(B.(s) =0 for some s € [0,1])
= 1—IP(B, does not touch 0 during [0, 1}), {5.16)

where B:(s) is a Brownian motion with diffusion coefficient 2 starting at
z. By the symmetry in «, and then the Reflection Principle [18], the latter
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probability can be expressed as
P(Bj (1) > 0) — P(B_z(1) > 0).
Using translation invariance, this expression equals
P(Bo(1) > —lzl) — P(Bo(1) > [al) = 2P(0 < B'(1) < |oI/v2) = ¢(|=|/V2),

where B'(-) is a Brownian motion with diffusion coefficient 1 starting at the

origin and
= \/§ f e 24t (5.17)
™ Jy

0(es0) = s [ o [1 = (a1 2))

et [ (e ) g a7y5) 519

This can be further simplified as follows. Let

So,

W)= [ dee 4 ((@+2)/VE).

—Z

Then,
V2r8 (1— g(2,6)) = h(z) + h(-2). (5.19)
Now,
W)= [ " doe g (wt 2)/VE ) = f PRS-y
(5.20)

Combining {5.19) and (5.20}, we obtain after some rearrangement

1 2 2
0 = — dt e CaL
g(z ) Ty 29 l:/];| .[ ve ¢

——f—lz dt f d e~ (@ 1)*/26 2" ]
1

= dt et /20_[ dx e—%,—(zw) 28 _ g==t/8) (5 91
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After some further algebra, we find
(,0) = ¥ (|/(VEFD), V2TB) 62
where 9(a,b) = \/_ [ dte~#2(bt), a,b > 0. Because
] —(12p%)a
551,0(:1, b) = 2¢~ (9082 (1 4 7)),

we finally have

9 2/8  o—2(1+£7)/(2(2+9))
,0) = — dt . :
90)=2 — (5.29

(5.22-5.23) reduce to more explicit formulas in particular cases:

g(0,8) = Zarctg,/2/9, (5.24)
g(2,0) =1~ ¢(|2/v2), 9(2,2) = 1 - ¢*(]2|/2). (5.25)

5.2 A scaling limit for the full dynamics

We saw above how to obtain (quite explicit) aging results for a two-point two-
time correlation function, namely C, and the variant G, from the scaling
limit of two coalescing random walks, in terms of two coalescing Brownian
motions. It is straightforward to extend this analysis and results to n-point
n-time correlation functions, which can, via {1.12), be related to n coalescing
random walks, and the aging limits will be given in terms of the associated
quantities for n coalescing Brownian motions. This will follow from the
weak convergence of the properly rescaled random walks to the corresponding
Brownian motions, which in turn can be seen as an application of Donsker’s
invariance principle for a single random walk.

If on the other hand we are interested in aging functions which depend
on spins of a set of space-time locations which is not fixed or bounded in
number a5 t,,t — co (we will see an example right away), then we will not
in general be able to get the aging result from Donsker’s invariance principle
alone. We will need something else.

For example, the persistence function Fy(tw,tw+1), 0 < tu, t, is defined as
the probability that there is no spin flip at the origin during the time interval




74 CHAPTER 5. ORDINARY VOTER MODEL

(tw, tw+t). Let N = N{tw, t,,+t) be the number of distinct backward random
walks remaining at time zero from all those starting at (0, s), s € (fw,tw +1).
When N = k and g < 00, the probability of no flips at 0 in this time interval
is (1/g)*~* and so the persistence probability Fy(t., to+t)is E[(1/g)Y 1], and
Foo = P(N =1). Now, N involves random walks starting from unboundedly
many space-time points as ty,t — 00.

In cases like these, the usual invariance principle for single or boundedly
many random walks will not suffice. One thing we will have to consider is
what kind of object could be the limit of unboundedly many random walks
starting from a set of space time points which scales like £, as £, = 00 (like
the {0} X (tu, ty + 1), with £ = O(ty), of the persistence function example).
1t is natural thus to aim for coalescing Brownian motions starting from all
space time points in R?. This object in fact exists, can be constructed, and
we will do that in the next chapter. In that context, we will call it the
Brownian web. It consists of a network of Brownian paths starting from all
space time points in R* which are independent till they meet, and then they
coalesce and continue as single Brownian paths until they meet again with
another path, and coalesce again, and so on.

In the remainder of this section we will presume the existence of the
Brownian web, assume that the proper scaling limit of the coalescing random
walks starting from ail space-time points of Z x R to the Brownian web holds
(this will be discussed in the next chapter as well), and discuss some of the
properties of the Brownian web, which will lead to an explicit computation
of the persistence function in the case when ¢ = co. In fact we will need
to consider an extended continuum object, consisting of the Brownian web
together with a dual object, which is itself a Brownian web, but a forward
one (i.e., it is a network of coalescing Brownian paths running forwards in
time; the Brownian web we referred to before arises from backward in time
random walks, so it consists of backward in time Brownian paths).

As discussed in the beginning of the chapter, in the case of the voter
dynamics with ¢ = oo, besides the backward coalescing random walks estab-
lishing color history/ancestry, we have forward coalescing random walks of
the boundaries, which take place on the dual latiice Z* := Z + 1/2. Notice
that forward and backward random walk paths interact by reflection. That
is, given a backward path, this path acts as a reflecting barrier for a forward
path, which evolves as an independent random walk when it is at distance
greater than 1/2 away from that path. The continuum limit will be two
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versions of the Brownian web, one backwards, one forwards, which interact
by reflection. We will refer to this duality of the two Brownian webs, and
call the joint object the double Brownian web.

Returning now to the persistence function, the continuum version of N
is N = N(#), the number of distinct points at R x {0} which are crossed by
backward paths of the (backward) Brownian web starting at {0} x (1,1+46).

In the scaling limit as t,,t — oo with ¢/t, — 6, N should converge to
N (more about this point in the next chapter). Thus Fy(ty, tw +t) should

converge to
_ JE(1/g)¥],  ifg<oo,
F1(8) = {P(N 21, ifg= oo (5.26)

We can obtain an explicit expression for P(N = 1), playing with the
properties of the Brownian web and its dual, and we do that next, closing this
chapter, and postponing a more careful discussion on the nature of Brownian
web and the scaling limit of the coalescing random walks to the next one.

Let (—X,Y) denote the (random) spatial interval with the same (g = co}
spin value at time 1 as the origin. The event Ay, that X >z and ¥ > y
occurs if and only if the backward Brownian paths starting at (—:c 1) and
(y, 1) coalesce before time 0. See Figure 5.3.

Proceeding as in our analysis of (5.15), we see that

P(4e,) =1-¢ (s +9)/v2). (5.27)
The probability density of (X,Y) is then

wa,y) =3 \/—(w +y)emEH/ (5.28)

for z,y > 0. Now, given (X,Y) = (z,y), foo(#) is the probability that the
forward Brownian paths starting at (—=, 1) and (y, 1) do not touch the origin
during (1,1+ ), and thus

B(N = 1) ffda:dy,u(a:,y) (\/5) qﬁ(\%) (5.20)

After further analysis of the same kind used to derive (5.22)}-(5.23), one finds

Jool8) = a.rcsm (5.30)

1
1+8
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time 1+8

time 1

0 Y 7 time O
Figure 5.3: A (forward) path configuration where A5y occurs. The paths repre-
gented before time 1 determine the color cluster of the origin, which has the color
of v at time 0, and the ones adjacent to it. The paths starting between u and v
at time 0 all coalesce before time 1, and so do all those starting between v and z.
The backward paths starting on (-x,y) at time 1 all coalesce together by time 1.

The backward paths starting on {0} x (1,1 + @) have to touch (-x,y) because they
cannot cross the forward paths starting at -x and y.

Note that {N = 1} as an event of the single backward Brownian web
depends on infinitely many paths (all those starting at {0} x (1,1+8)), but
in the above calculation, using the dual web, we needed to consider only four
Brownian paths. By a similar argument, using the same duality which exists
for the backward and forward families of coalescing random walks before the
limit, we can show, using Donsker’s invariance principle for single random
walks only, that

Fog(tus t +1) = P(V =1) o PN = 1) = fo(6) (5.31)

as #y,t — oo with t/t, = 8.
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Remark 5.1 A similar approach to compute P(N = k), k > 1, would re-
quire the distribution of boundaries at time 1 (after all the coalescing from
the continuum infinity of colors at time 0). This is actually a simple point
process [4], and it is known that the random walk version converges weakly
to the Brownian one [{]. See also [5, 6]. So one can actually, based on the
results in [{], get the convergence of P(N = k) to P(N = k) for k > 1,
and thence of Fy(tu,tw +1t) to f,(6) for finite q, by using additionally only
Donsker’s invariance principle for single random walks.

Remark 5.2 From the discussion in the previous remark, we conclude that
a recourse to the full Brownian web, and weuk convergence thereto, can be
avoided, but one will need then to consider a family of coalescing Brownian
paths starting from all points of R x {0} and weak convergence to one of
us functions, namely, the boundaries at time 1. Actually, the continuum
process for the original dynamics, the voter model with ¢ = co, which can be
represented fully by the boundary dynamics consisting of coalescing random
walks starting from every point in Z* x {0}, is exactly the restricted web of
coalescing Brownian paths starting from ell points of R x {0} (rather than
the full one starting from all points of R?), so all we need to consider is
that object and weak convergence thereto. At the end of the nezt chapter we
will introduce a variant of the voter model dynamics, corresponding to a spin
dynamics at very low temperature, for which the continuum Hmit involves
necessarily the full double Brownian web.







Chapter 6

The Brownian web

In this chapter we construct a network of coalescing one dimensional Brown-
ian paths starting from every space-time point in R?. We call it the Brownian
web. This object arises as (a candidate for) the scaling limit of coalescing
one dimensional random walks starting from every space-time point in Z x IR,
which appear in the dual/backward representation of the voter model. It is
then related to aging issues for that dynamics. The limiting aging functions
are potentially expected values of variables of the Brownian web.

A system of coalescing one dimensional Brownian paths starting from
every space-time point in R? has been introduced and studied in [6] in con-
nection also with coalescing random walks. A variant of it, with reflection
and absorption boundary conditions, was constructed and analysed in [55],
where it was used as an auxiliary process, in another context. Neither of
these works considered issues of characterization of or weak convergence (of
rescaled coalescing random walks, for example) to the constructed system.
Our construction can be seen as yet another variant of those constructions,
this time with characterization and weak convergence results in mind. In
particular, it sets the stage for the derivation of weak convergence criteria,
which are applicable o coalescing random walks and other coalescing systems
(more on this later).

Even though the final object of our construction is different in important
ways from the previous constructions, all of them start out in the same way,
by defining first a network of Brownian paths starting from a dense countable
subset D of R2. From then on, each construction takes a different way to
obtain paths starting out from K2 \ D. In [6, 55, different, but similar in
spirit, kinds of semicontinuity conditions are imposed, and those lead to the

79
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final object. In particular, each point of R? has exactly one path starting out
from it in those constructions. In our construction, we regard the preliminary
set of paths starting from D as a subset of a suitable metric space of paths
(I1, d), with good topological properties. Qur final object will be the closure
of the preliminary set in (II,d). As it turns out, the object thus obtained,
the Brownian web, is almost surely a compact set of (II,d). We can regard
the Brownian web then as a random variable living in the space of compact
subsets of (IT,d). This is the Hausdorff metric space (¥, dy) associated to
(IE, d), from which it inherits good topological properties, and thus we have
a set up for characterizing and deriving weak convergence to the Brownian
web, which we proceed to do. We can then apply those convergence criteria
to coalescing random walks and other processes. This approach is inspired in
that of [1] to study scaling limits of two dimensional critical statistical physics
systems in equilibrium. See also [2]. One other feature of our construction
of the Brownian web, which distinguishes it from the previous ones, is that
there will be multiple (starting) points, i.e., points where more than one path
from the Brownian web start out from.

In the next section, we give more details of the construction, characteriza-
tion of and weak convergence to the Brownian web. We discuss then briefly
the application of those criteria to coalescing random walks. In the section
following the next one, we discuss duality, introduce the double Brownian
web (already discussed in the previous seciton), and give some results about
types of multiple points (according to multiplicity). In the final section we
discuss a spin dynamics which could be described as a2 dynamics at very low
temperature, for which the proper scaling limit will involve a Brownian web
with marks.

6.1 Characterization and convergence

We start with some topological background, specifying the probability space
where we make the construction. Since we want to define a family of random
paths starting from all points of the plane, we find convenient to take a
compactified space. Let (R?, p) be the completion (or compactification) of
R? under the metric p given by

tanh(z;) tanh(z:)

p((z1, 1), (22, 2)) = 1+ [t4] T

A% Itanh(tl) — tanh(t2)|. (61)
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R? may be thought of as the image of [—00, 00] X [—00, 0] under the mapping

tanh(z)
1+ ¢

(z,t) ~ (B(z,1), ¥(t)) = ( ,ta.nh(t)) . (6.2)
For ty € [—00,00], let C[to] denote the set of functions f from [tg, oo} to
[—o0, oo} such that ®(f(¢),t) is continuous. Then define

n= J Clulx{nh (69

to E{—c0,00)

where (f,to) € II represents a path in R? starting at (f(2),%0). For(f,¢y) in
IT, we denote by f the function that extends f to all [—o0, 0] by setting it
equal to f(fo) for t < to. Then we take

d((f, t1), (fzgtz))—(supl‘i’(ﬁ(t )it) = @(H(), 1)) V [¥(tr) - L(ta)]. (6:4)

(I1,d) is a complete separable metric space.
Let now # denote the set of compact subsets of (II,d), with dy the
induced Hausdorff metric, ie,,

dy (K, K2) = sup inf d(g1,g2) V sup 1nf (g1, g2). (6.5)
g1k 92€K3 gzE iy NIEKL

(#,dy) is also a complete separable metric space.

The probability space where the Brownian web will live is (%, 73,), where
F3 the Borel o-field associated to (#,dy). We can now give an existence
and characterization result for the Brownian web.

Theorem 6.1 There is an (H, Fy)-velued random variable W whose distri-
bution 1s uniquely determined by the following three properties.

(o) From any deterministic point (z,t) in R, there is almost surely a
unique path Wy starting from (z,1).

(i) For any deterministic n, (x1,t1),...,(Tn,ts), the joint distribution of
Waytss- - Wanga i that of coalescing Brownian motions (with unit
diffusion constant).

(i1} For any deterministic, dense countable subset D of R?, almost surely,
W is the closure in (H,dy) of {Wey : (2,t) € D}
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Remark 6.2 There are natural (H, Fx)-valued random variables satisfying
(0) and (i) but not (if). An instance of such a random variable can be shown
to arise as the scaling limit of some stochastic flows, extending work of Piter-

barg [47].

An explicit construction of the Brownian web follows. Let (Q,F,P)bea
probability space where an i.i.d. family of standard Brownian motions (B;);>1
is defined. Let D = {(z;,%;), 7 = 1} be a countable dense set in R?. Let

W;j(t) = z;+ Bi{t —t;), t > 5 (6.6)

be a Brownian path starting at position z; at time £;.

We now construct coalescing Brownian paths out of the family of paths
(W;)j>1 by specifying coalescing rules. When two paths meet for the first
time, they coalesce into a single path, which is that of the Brownian motion
with the lower label. We denote the coalescing Brownian paths by I;Vj, iz L

We now give a more careful inductive definition of the coalescing paths.
First we set

W]_ = W]_. (67)

For 7 > 2, let Wj be the mapping from [¢;, 00) to R defined as follows. Let
;= inf{t > t;: W;{t) = Wi(t) for some 1 < i < j}, (6.8)
L = min{l <i<j: Wj(r)=Win)} (6.9)

be the first time when W; meets any of the paths W; with i < j, and the
smallest label among such paths, respectively. Set
Wi(t) = Wy(t), ift; <t <7
= Wy(t), ift > 7. (6.10)

We then define the Brownian web skeleton W(D) with starting set D as

Wi = WD) ={W;: 1<) <k} (6.11)

W = WD) =W (6.12)
k

Definition 6.3 Let W(D) be the closure in (II,d) of W(D). W(D) is the
object we will call the Brownian web. ’
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Proposition 6.4 W(D) has the following properties.
a. It is almost surely a compact subset of (I, d).
b. Almost surely, W(D) = limy_,o0 Wk(D), where the limit is taken in H.
c. The distribution of W(D) does not depend on D (nor on its ordering).

d. W(D) satisfies properties (0) and (i) of Theorem 6.1; i.e., its finite
dimensional distributions (whether from poinis in D or not) are those
of coalescing Brownian motions. Furthermore, it also satisfies property
(i) of that theorem.

e. Almost surely, for every € > 0 and every 6 = (f(s),ty) in W(D), there
exists a peth 6, = (g(s), ), in the skeleton W(D) such that g(s) = f(s)
foralls >t +e

The latter property says that even though there are many more paths in
W(D) than in W(D) (a continuum infinity in the former vis-a-vis a countable
infinity in the latter), almost surely every path in W(P) coincides with paths
in W(D) after every time strictly above its starting time.

We next state a convergence theorem. It is restricted to random variables
with noncrossing paths (that is, random variables living in the subset of
(H, Fa) consisting of compact sets of paths where no two paths cross each
other). More general results, as well as proofs, are given in Sections 6 and 7
of [27]). Our convergence criteria involve a counting random variable, which
we define next.

Definition 6.5 Fort > 0, to,a,b € R, a < b, let n(to,;a,b) be the number
of distinct points in R x {ty +t} that are touched by paths in W which also
touch some point in [a,b] x {t}. Let also fi(to, ¢ a,b) = n(to, ¢ a,b) — 1.

We note that by duality arguments (see Section 6.2), it can be shown that
for deterministic to,t, a,d, 7 is equidistributed with the number of distinct
points in [a,b] X {to + ¢} that are touched by paths in W which also touch
R x {to}

Theorem 6.6 Suppose Ay, As, ... are (M, Fy)-valued random variahles with
noncrossing paths. If, in addition, the following three conditions are valid,
then the distribution u, of X, converges to the distribution py of the standard
Brownian web.
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(I,) For any deterministic y1,....,Ym € D, where D is an arbitrary deter-
ministic countable dense subset of R2, there exzist 0%',...,0" € A,
such that 6%, .. .,0% converge in distribution as n — 00 to coalescing
Brownian motions (with unit diffusion constant) starting at 41,...,Ym-

(By) V¢> 0, limsup sup (it t 0,0 +€) 2 1) = 0 as e = 0+;
n—+00 (a,to)e]kﬂ

(Bg) V¢t >0, ¢ 'limsup sup pn(fi(to, t;0,a +€) > 2) = 0 as € = 0+,

n—co  (a,tp)ER?

Remark 6.7 Condition I and the noncrossing property imply tightness of
Xy, A, ... By I, any subsequence limit contains a version of the Brownian
web. Conditions B, and By insure that it coniains nothing else. See [27].

We next apply Theorem 6.6 to coalescing random walks.

Convergence of coalescing random walks

We will consider both continuous and discrete time families of coalescing sim-
ple symmetric random walks in dimension 1, denoted X and X, respectively,
and their diffusive rescalings X® and X9, resp., where § is an arbitrary
positive real number. X as well as a backward version of it was defined in
Chapter 1 and then used at other chapters, including this one. Let us re-
call/remake the definition of X, and then define X. Let us consider a full
space Harris diagram in Z x R, such that for each z € Z, we have a doubly
infinite time line, and in that a Poisson point process with rate 1. The Pois-
son point processes of different sites are independent. At each Poisson mark,
we flip a fair coin to decide whether to put a leftward or rightward outgoing
arrow of unit length. For (z,t) € Z x R, let X} ,(s), s > ¢, be the continuous
time random walk starting at {(z,t) and following the arrows upwards. In
order to have continuous trajectories, we make the jump from the Poisson
mark at a site, say (y, ), not horizontally to, say, {(y+1,r) (in which case, we
would have a discontimuity of the path at that point), but rather to (y+1,7'),
where 7 is the instant of the next Poisson mark of the Poisson process at
y + 1’s time line after 7. We then have random walks X, ; defined for the
Poisson mark times, and we define it at the other times, either by linear in-
terpolation, in the case of times after the first Poisson mark time at the time
line of z after t, or as X, (s) otherwise. {Xze(s),s >1: (z,t) € Zx R} is
then a family of continuous time, continuous path coalescing random walks.
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Adding to these some boundary paths in order to have a compact subset of
(I1,d), we get X. See Figure 6.1 below.

i
Foreeeene iR W
e lime u

e e ime £
x+2

Figure 6.1: Coalescing random walks in continuous time. The horizontal coordi-
nate is space and the vertical one is time. Time lines are dashed. We portray in
full lines the paths starting at (x-2,t) and (x,t) (till time v), and at (x+1,t) (till
time u).

Now for the discrete time family. Consider the lattice Z2 consisting of the
sites (4, j) € Z? such that {+j is even. For each site of Z2 flip an independent
fair coin to decide wheteher to put a northeast or a northwest arrow of length
V2. For (z,t) € Z2, et X, 4(s),s =t,t +1,... be the random walk starting
at {z,t) and fo]lowmg the arrows upwards, a.nd define X ,(s) for noninteger
times by linear interpolation. {X,.:(s),s > ¢ : {z,t) € Z x R} is then a
family of continuous time continuous path coalescing random walks. Adding
to these some boundary paths in order to have a compact subset of (I, d),
we get X. Figure 6.2 below represents & portion of X.

Let us now rescale X and X. We make the usual diffusive rescaling of
time with & > 0 and space with v/8, and let § — 0.

For (z,t) € VO Z x R, let

X8 (s) = Vo X512, 5-14(57%5), (6.13)
s>t and X9 = {X®)(s),5 > t: (z,£) € /5Z x R} plus boundary paths.
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Figure 6.2: Coalescing random walks in discrete time; the horizontal coordinate
is space and the vertical one ig time.

And for (z,t) € Z3; = {(W/8z',8) : (o', ¢) € Z2}, let
th? (s)= \/g)?a-l:”m,d-lt(‘s_ls): (6.14)

s>t and X = { ~§,‘f2(s), s>t (x,t) € Z2,} plus boundary paths.
We now state our convergence theorem for the rescaled coalescing random
walks X@ and X©).

Theorem 6.8 Fach of the collections of rescaled coalescing random walk
paths, X® (in continuous time) and X© (in discrete time) converges in
distribution to the standard Brownian web as § — 0.

Sketch of proof of Theorem 6.8 We discuss the continuous time case
only. The discrete time one is similar. Let us fix a sequence § = 4, of
positive numbers going to zero as n — co. We want to verify conditions I,
By and B, of Theorem 6.6. I, follows from Donsker’s invariance principle
for single paths and the fact that the coalescence operation on independent
paths . .

(W:r1,h: e yW:n,,,tn) — (W:r1,t“ cee ,Wmn,tn) (615)
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(see (6.10)} is almost surely continuous.
B, follows from the equivalence #{ty,%;a,a +¢) > 1 if and only if X ()

a,to

and X,E‘_?EMO do not coalesce before iy + ¢, where ¢ = V/§ [6‘%ej. This is
if and only if ¥ := X8, — X%} does not hit 0 before to + . But ¥

is a random walk itself (with rate 2 Poisson clocks), whose distribution is
independent of a,t;. By the invariance principle for Y;(J), and since €5 —+ € as
d — 0, we have that the limsup in B, equals the probability that a standard
Brownian motion multiplied by v/2 does not hit € by time ¢. This is well
known to be O(¢), and B is established.

For B, we use B, and an inequality to the effect that

pa(Ato, 50,0+ €) = 2) < [un(H(to, t; 0,0+ €) = 1)) (6.16)

for every n,a,¢,tp,t. This holds for the distribution g, of the coalescing
random walks (rescaled by 4,) and follows from the FKG inequality. An
argument for that can be found in the proof of Proposition 4.1 of [27]. We
conclude from (6.16) and B, that the limsup in B; is O(€?), and the result
follows.

Remark 6.9 In the above example, the simplicity of the random walks, with
jumps of length 1 only, is crucial for the property of noncrossing of the paths,
so Theoremn 6.6 can be applied. For the case, e.g., of coalescing random walks
with jumps of length 1 and 2, that property no longer holds, and Theorem 6.6
cannot be applied. This case should be treated with a more general result,
namely Theorem 6.3 of [27].

Remark 6.10 In (23], another systemn of one dimensional coalescing/non-
crossing paths, the Poisson tree is enalysed and proved to converge to the
Brownian web in the diffusive scaling limit. That system can be seen as
coalescing random walks in continuum space with short range dependence.

6.2 Dual and double Brownian webs

We already introduced the Dual Brownian web and the Double Brownian
web informally in Section 5.2. As pointed in that section, it arises as the
continuum counterpart of the duality in the voter model of the backward co-
alescing random walks providing color ancestry, on one side, and the forward
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coalescing random walks of boundaries, one at each site of Z* initially, on the
other side. We say that these two families of coalescing random walks are
dual to/of one another. The interaction between a path in the former family
and a path in the latter one is by reflection (whereas inside the families,
the interaction is by coalescence). Incidentally, a duality of backward and
forward families of coalescing random walks exists also in discrete time. See
Figure 6.3.

Figure 6.3: Forward coalescing random walks (full lines) in discrete time and their
dual backward walks (dashed lines).

In the continuum, we have a family of forward coalescing Brownian paths
W and a dual family of backward coalescing Brownian paths W?. Paths of
different families interact by reflection. This duality'can be very useful to
understand what is going on within any single family, as we saw in Section 5.2
in the calculation of the scaling limit of the persistence function. Taking
together the Brownian web and its dual Brownian web, we have the Double
Brownian web, denoted W2 = (W, W?).

As we mentioned before, in each single Brownian web we have multiple
points, which are starting points of more than one path. Based on this, we
introduce next point types, depending on how many paths start or go through
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a given point. An analysis of the Double Brownian web allows for a complete
classification of possible point types (almost surely) and even an evaluation
of the Hausdorff dimension of each type. We discuss all that briefly and
informally, and refer to Section 5 of [27] for more details. Part of the results
described below were first derived in [55] (for a variant of the Brownian web).

For a point (zo,%0) of K%, let my,(zg,tp) be the number of paths in the
forwards web W that go through (o, %) (they must start before £, and be
disjoint at all times before #y), and let mew (o, %0) be the number of paths in
W that start at (o, ). We define m¥, (2o, o) and mb, (o, to) similarly for
the backwards web WP

Definition 6.11 The type of (zo, %) is the pair (Min, Mou) —see Figure 6.4.
We denote by S;; the set of points of R® that are of type (i,7), and by S;;
the set of points of R? that are of type (k1) with k > i, 1> j.

Remark 6.12 Using the translation and scale invariance properties of the
Brownian web distribution, it can be shown that for any i, j, whenever S;; is
nonempty (with positive probability), it must be dense in R* (almost surely).
The same can be said of S;; NR x {t} for deterministic t.

Proposition 6.13 For almost every realization of the double Brownian web,
for every (zo,t0) € R%, ml (o, t0) = mow(Zo,fo) — 1 and m, (zo, ty) =
min(za, te) + 1. See Figure 6.4.

Theorem 6.14 For the (double) Brownian web, almost surely, every (z,¥)
has one of the following types, all of which occur: (0,1), (0,2), (0,3), (1,1),
(1,2), (2,1).

Remark 6.15 Points of type (1,2) are particularly interesting in that the
single incident path continues along ezactly one of the two outward paths
— with the choice determined intrinsically rather than by some convention.
See Figure 6.4 for a schematic diagram of a “left-handed” continuation. An
(zo,to) 4s of type (1,2) precisely if both a forward and a backward path pass
through (zg,t). It is either lefi-handed or right-handed according to whether
the forward path is to the left or the right of the backward path near (zo,tp).
Both varieties occur and the Hausdorff dimension of 1 applies separately to
each of the two varieties (see Theorem 6.16 below).
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Figure 6.4: A schematic diagram of a point (2g,%p) of type (M, Moye) = (1,2),
with necessarily also (mf,,m3,,) = (1,2). In this example the incoming forward
path connects to the leftmost outgoing path (with a corresponding dual connec-
tivity for the backward paths); at some of the other points of type (1,2) it will
connect to the rightmost path.

Theorem 6.16 Almost surely, Soy has full Lebesque measure in R?, 511
and Sz have Hausdorff dimension 3/2 each, Si2 has Hausdorff dzmenszon
1, and Sy and Sog are both countable and dense in R?.

Theorem 6.17 Almost surely: for every t
a) So1 MR x {t} has full Lebesque measure in R x {t};
b) Si NRx{t} and SoaNRx {t} are both countable and dense in Rx {t};

¢) 852NRx {t}, Sen NR X {t} and Sos NR x {t} have all cardinality at
most 1.

For every deterministic t, SiaNRX {t}, S2a NRx {t} end SpzNRx {t}
are almost surely empty.

Even though Theorems 6.14, 6.16 and 6.17 are about the single Brownian
web, the arguments for the proofs are made particularly simple by the use of
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duality, through Proposition 6.13. We do not give much detail here (rather
referring to Section 5 in {27] for full arguments), but only discuss a few cases,
and informally.

For example, Property (o) of Theorem 6.1 (see Proposition 6.4 d.) implies
that Lebesgue-almost every point of R? is of type (0,1).

Points in 51, are continuation points, i.e., points in the middle of paths.
By Proposition 6.4 e., they belong to paths in the skeleton, which are count-
ably infinite, and each one has Hausdorff dimension 3/2 almost surely (since
they are Brownian paths). We also have that S;; has this same dimension
{see [27]). By duality, points of type (1,1) correspond to points of type (0,2)
of the dual web, so Sy inherit the same properties of Sy ;.

Points of type (0,3) correspond to those of type (2,1) of the dual web.
Ss1 consists of coalescence points, which are in the web skeleton, and we
have one of them for every pair of skeleton paths. Since these are countable,
we get that 5'2'1 is countable, and so must be 5.

83, are points in the skeleton where three paths coalesce. Since for any
triple of independent Brownian paths starting at distinct space time points,
the probability of meeting all at the same point and time is zero, we get that
5‘3,1 = ( almost surely.

Remark 6.18 One consequence of Proposition 6.153 we used above and which
we will use again in next section is the correspondence of points of type (0, 2),
which we call from now on double points!, on one web to those of type (1,1),
which are continuation points, on the dual web. This shows that double points
and continuation points are dual to each other. See Figure 6.5.

6.3 Spin dynamics at very low temperature

In this section, we analyse a dynamics at positive temperature, which is a
modification of the voter dynamics studied above, and corresponds as well to
the Glauber heat-bath dynamics at positive temperature. Then we will take
its scaling limit, and thence obtain an aging result for a two-point function
(see (6.34) below), as we did in Chapter 5 for the zero temperature case
(see (5.23)). In order to have have a nontrivial result, the temperature will

1We call the paths issuing out from double points double paths.
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Figure 6.5: All along the full path there starts dual dotted double paths, one path
of each pair on each side of the full path, making all the points on the full path
(but the starting one) double points of the dual web. The dotted paths reflect off
the full one and coalesce with each other.

be also rescaled, in such a way as to go to zero with the scale. In this context,
we refer to very low temperature.

We will consider below a mixture of a zero temperature dynamics, namely
the voter model we studied in previous sections and chapters, and an infinite
temperature dynamics. In the latter dynamics, the spin updates are made
with spins taken successively from an 1.i.d. sequence of random variables that
are uniformly distributed in {1,...,q}, where ¢ > 2 is a parameter of the
model, which can take the value oo (in which case, the ii.d. sequence of
random variables consists of spins that are all distinct from each other). We
describe this dynamics in detail now. We start with the same framework
of Poisson clocks of rate 1, one for each site of Z. At each site, when the
clock rings, a coin with probability p of coming up heads is tossed. The
parameter p may depend on time. If the coin comes up heads, then the
infinite temperature dynamics is performed, that is, the update is made using
a spin chosen uniformly at random among the g possibilities. If it comes up
tails, then the voter dynamics is performed.

We will call this the marked voter dynamics (MVD) with rate p and ¢
states. The marks are the Poisson times where the infinite temperature dy-
namics is performed. They form themselves Poisson point processes of rate p.
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We remark that, with the appropriate choice of p, the marked voter dynam-
ics with 2 states is equivalent to a Glauber dynamics for the Ising model,
namely the heat-bath dynamics, at inverse temperature 5. This choice is
p = 2/(1 + €®), with the proper representation of the Hamiltonian. Here,
of course, p and § are constant. By analogy, we call 8 = log 2—;2 the tem-
perature (profile) of the MVD for all p and ¢ (p not necessarily constant in
time).

The dual model for the marked voter dynamics is the marked coalescing
random walks (MCRW), which are backward (in time) coalescing random
walks starting from every space-time point in Z x R on whose paths the
marks of (i.i.d.) Poisson point processes in Z x R, denoted

E={e=(ut)i=12..}

are superimposed. £ is independent of the random walk holding times and
jumps.

Let Xg,:,(t) denote the position at time ¢ of a backward random walk
started at position zo and time ¢, > £. The spin at (z,t) € Z x R, denoted
ot(x), under the MVD starting with a product of uniformsin {1, .. ., g} initial
condition, denoted by n = {n(z), v € Z}, can be expressed in terms of the
dual model as follows. Let the backward random walks in the MCRW have
rate 1 - p and let £ have rate p. Let ( = {(;, ¢ = 1,2,...} denote another
i.i.d. family of uniforms in {1,...,q}, independent of everything else. In the
case ¢ = oo, then a different spin is assigned to each 7; and ¢; (so that n and
¢ consist of distinct spins altogether). For t € R and z € %, let

Tpe =sup{s <t: X4(s) € £} (6.17)
and
I+ =1 such that ¢ = (X;4(Tuy), Tey)- {6.18)
Then,
if T, <0,
oulz)= Clos o+ (6.19)
TXp1(0)s otherwise,

for all z € Z, t € R*. In other words, {o:(z); z € Z, t € Rt} can be realized
by running the MCRW from £ to 0 and assigning to o¢(x) the spin assigned to
either ey, or ox,,(0)(0), depending on whether Ty ¢ > 0 or not, respectively.

Now we want to rescale space-time with the aim of establishing a scaling
limit result for the MVD. For that, we will use the duality relation with the
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MCRW, and get the result for the former dynamics in terms of the scaling
limit for the latter one.

The scaling limit of the MCRW is going to be given by the marked Brow-
nian web (MBW). This object can be described as follows. Begin with in-
dependent backward (in time) Brownian paths starting from any fixed (say,
deterministic) dense countable subset D of 7% Mark each Brownian path
with marks from a Poisson point process of rate A (possibly time-dependent).
One way to do this marking is to consider the set of backward Brownian paths
W = {W,,, (z,t) € D}, where W, denotes the (backward) path starting
at (z,t), and an independent i.i.d. family N = {Ny,, (z,t) € D} of Poisson
point process in R of rate A. Now mark the path W;; = (f(s), 8)s<: at the
points {f(Si), Si)iz1, where Sy, 53,... are the succesive event times of Ny
down from #. Let us denote the marked path thus obtained Wy, and the set
of marked paths W* := {W},, (z,t) € D}. Now introduce the set of coalesc-
ing marked paths W* 1= {W},, (z,t) € D}, as in Section 6.1 (see (6.10)),
by introducing a precedence relation on the set of marked paths. The first
coalescing marked path of VIJ* ig the first marked path of W*. The n + 1-st
coalescing marked path of W* is formed first with the portion of the n + 1-
st marked path of W* down until it first hits any of the n first coalescing
marked paths of W+ from then on, it follows that marked path (the one it
hag first hit).

We will call the set of the first n coalescing marked paths obtained in this
way coalescing marked Brounian motions starting at {(m1,t1)y. .- (Tnr ta) ]
denoted

W ({(z1, 1), .. » (Tas tn))s (6.20)

where {(1,1), - -, (Zn, =)} is the initial points of the paths. The probability
distribution of (6.20) depends of course on {(z1,£1), -, (%a,ts)}, but not on
its ordering.

Turning back to the construction of the MBW, we have just constructed
W+ inductively. We will sometimes call it the MBW skeleton. We finally get
the MBW as the closure of W* in the appropriate metric space, and denote
it by W*.

One way to do that (more) explicitly is to take the (unmarked) backward
Brownian web W obtained as the closure in the appropriate metric space of
the (unmarked) backward Brownian web skeleton W and to have each path
of W marked as follows. We will use the fact that for all § > 0, each path &
of W (starting at time ¢, say) coincides with a path  in W from time t — &
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down (see Proposition 6.4 e.). Then, naturally, we mark 7 with the marks
that 7 got as an element of W*. By doing this for a sequence of §’s going to
0, we get 7 all marked, except at the initial point. This will be marked if it
coincides with any mark in W*; in this case, it takes that mark; otherwise,
it takes no mark.

The object thus described/constructed, the MBW with rate ), has the
following properties. The probability distribution of W* does not depend on
D. Also, the probability distribution of the subset of W* consisting of paths

which start at any deterministic set {(z1,%1), ..., (#x, )}, not necessarily in
D, where k£ > 1 is an integer, is the same as tha.t of W*((z1,t1),.. ., (zx, &)
obtained in a construction where (21,%1),..., (zx, &) are the ﬁrst points of

the initial dense countable subset of Z2.

6.3.1 Rescaling the MVD.

We now rescale the MVD in the usual diffusive way: given € > 0, we will
maket — et and z — ¢ 2z, We will also rescale the temperature, making
B — log(eAA1)~!, where A is a nonnegative function, the scaled temperature
profile of the model in this way, p ~ €)X as ¢ — 0 and the marks of the marked
voter dynamics (at the origin, say) converge weakly as ¢ — 0 (under the above
time rescaling) to a (possibly inhomogeneous) Poisson point process of rate
Aase— 0.

Under this rescaling, we conclude, by looking at the simultaneously resca-
led {in the same way) MCRW, that for all £ > 1 fixed, given

Ty,..., 2 €ER #,..., 4 R
a:f’, ,:1:55) €7, t(é) .,tge) c Rt

such that

(€220, = (z1,...,20), (6.21)
(..., et?) = (tr,...,t) (6.22)

as € — 0, we have that
{o,0 (s9);1<i< ¢}, (6.23)

with p = {2/[1 4+ (eA) ']} A 1, converges weakly to the following function of
W*((z1,t1), ..., (ze, te)). First, let us introduce further marks on the paths
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of W*{(z1,t1), - - -, (¢, 1)) at time 0 (one further mark on each path). Assign

to each mark (the extra ones included) a spin taken from an ii.d. family of
random variables which are uniformly distributed in {1,..., g}, one different
copy for each mark. (If ¢ = oo, each mark gets a different spin.) Let sy
denote the spin at mark (z,t), if any. Now, for 1 < i < 4, let T be the
first time (down from #;) when W;‘-,t.- hits one of its marks (the extra ones

included). Denoting V"V;,,,ti(s) =: (fi(s),s) for s £ t;, we have finally that, as
e — 0, (6.23) converges weakly to

{spmym; 1 <1< £} (6.24)
We want to find the form of the spin-spin correlation

C‘q =[g/(g— 1)](éq —1/q) (6.25)

in the above scaling limit, where G‘Q = G'q(:c, ¥; tw, tw+1) is the probability in
the MVD with g states that o, (x) = o¢,++(y). The proper scaling of z,,¢,p
a8 t, — oo is, as before,

2

t=6t,; ==[whl y=lavh] p=150

Al (6.26)

where v,z € R and § € Rt. We start with the (simpler) case of ¢ = o00.
Under the above scaling, as t,, — oo, we then get

Cool®, Y tur tw + 1) = (|2 — v];6), (6.27)

where §: RY x R* — R* is the probability under the MBW that W;’l and

W, coalesce by time 0 and do not cross any mark before coalescing.

To get an expression for g, let

T,s = sup{t <1: Wy, and Wy, 4q coincide} (6.28)
= sup{t <1: Wy and W, 149 coincide}. (6.29)

Then, clearly,
Ty o =sup{t <1: Wy, and W;140 coincide}, (6.30)

where, we recall, Wy and W,,11¢ are two independent (backward) Brownian
paths starting at {0,1) and (2,1 + ), respectively. The distribution of this
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was computed before. Actually we get an expression for Pp(1%,¢ > 0), namely
g(z,8), in Section 5 (see (5.23)). By the Brownian scaling, we have

Po(To6 > 1 —s) = g(z//5,8/s), (6.31)

for s > 0. For the case that z and 8 do not simultanecusly vanish (otherwise,
we have a trivial case), let

Fuale) = (25, 0/5) (6.32)

be the probability density function of 1 ~ 7, 4. Given 0 < s <l and T, 9 =
1— s, the probability that Wy, and W}, o do not cross any mark before T, ¢
is

e— J‘:_, )I(t) dte— Lljf A(t) dﬂ) (6.33)
by the independence of the Poisson marks in disjoint paths. Integrating
against f, g, we get

' 1
§(z, 9) _ e_f11+9 Aft) dtf e_2f11_aA(t) dtfz,g(s) ds. (6.34)
0

The case ¢ < oo can be analysed as in Chapter 5 (see (5.6)), and we
conclude that the limiting expression for C; equals §(z, ) for all g. As in the
zero temperature case, the spin-spin correlation does not depend on g in the
scaling limit.

6.3.2 The MBW as a continuum space spin dynamics

The discussion of last subsection allows for the definition of a continnum
space spin dynamics, by means of the MBW, as follows. Let

E:R—{1,...,q}

be an arbitrary initial (continuum space) spin configuration. Now, as in
the discussion in the second paragraph of Subsection 6.3.1, after introducing
further marks to the MBW, assign to each mark that is not at time 0 a
spin taken from an i.i.d. family of random variables which are uniformly
distributed in {1,...,q}. For a mark located at (x,0), assign spin £(z).
Now, let Ty, be the first time (down from ¢) when the rightmost path in
W* starting in (z,t) (typically, there will be only one, by Theorem 6.16) hits




98 CHAPTER 6. THE BROWNIAN WEB

one of its marks and let sz, be the spin assigned to that mark. The spin
dynamics (0y)¢s0 is then defined as

oo = £ (6.35)
() = sz, z€ER, > 0. (6.36)

We will call this the MBW (continuum space) spin dynamics with rate A and
g states.

We can get equilibrium measures for this dynamics from the scaling limit
of equilibrium measures for the discrete dynamics. This of course only makes
sense in general for A constant. In the case that ¢ = 2, the Gibbs measure
for the Glauber dynamics which is equivalent to the MVD is of course in-
variant for the MVD?2. This 1D Gibbs measure is a Markov chain which is
symmetric under spin flip and whose flip transition probability is ~ /p as
p — 0. Under the space-temperature rescaling we used for the MVD (with
) constant), it thus converges to a continuum space spin‘'model supported
on spin configurations which are constant by parts, in which the spin flip
points form a Poisson process of rate v/, and such that the distribution of
the spin at the origin is uniform in {1,2}. We will call this the continuum
Ising model with rate v/A. From the above, we conclude that the continuum
Ising model with rate V') is invariant for the MBW spin dynamics with rate
A and 2 states.

Direct description of the continuum dynamics

The MBW as defined above is a dual/backwards dynamics, in the sense
that it is the continium version of a dynamics, namely the MCRW, which
is dual to the MVD and runs backwards in time. In this way we get an
indirect/dual/backwards description of the continuum version of the MVD.
It is natural then to wonder whether we can get a direct/forward description
of that model, in the same way as we did for the zero temperature case, via the
restricted Brownian web of paths starting at R x {0} only (see Remark 5.2).
The answer is that we can; however, in this case we will need to take into
account not only the full forward web, but also the full dual web. The latter
web is needed in order to get the marks placed. (Notice that the marks go on
the dual paths.) Once the marks are in place, we can forget about the dual

2For ¢ > 2, the Gibbs measure (associated to the Potts model with ¢ states) is not
invariant under the MVD.
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paths, and consider the paths of the direct/primal web starting at R x {0}
and at the marks on the upper half plane. We note that, since the marks
were on paths of the dual, each one is a double point of the forward web
(see Remark 6.18), and thus originates a color cluster (of the color it was
assigned). In the same way, the double points at R x {0} originate clusters
of the color they were assigned. We note that color clusters will occtur inside
color clusters, with the color of the inside one prevailing.

Let us look at these color clusters, whether starting at a mark or at a
double point on Rx {0}, as space-time clusters, consisting of the open region
of I? enclosed by the two paths starting at that mark or double point-on
R x {0}.® In this situation, we call the mark or double point on R X {0} the
lower tip of the space-time cluster. We will call the space time point where a
space-time cluster ends, i.e., the space time point above the lower tip where
the cluster boundaries meet, the upper tip of that cluster. See Figure 6:6:

(z,u)

(x.8)

Figure 6.6: Space-time clusters with lower tips at (x,3) and (yt), and common
upper tip at (z,u).

Notice that almost surely there are countably many lower tips, since al-
most surely there are countably many marks and countably many double
points on R x {0} (see Theorem 6.17). Apart from space-time points at

51t can be argued that almost surely no mark and no point of R x {0} is a triple point
(that is, a point originating three forward paths). The latter statement is actually made
in Theorem 6.17. -
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the boundaries of the clusters, which altogether form a set of Hausdorff di-
mension 3/2 by Theorem 6.16, every other space-time point belongs to a
definite cluster, and can thus be assigned the color of that cluster. (Perhaps
the simplest way to determine this is to notice by the backward description
above that the points off cluster boundaries are of type either (0,1), (1,1) or
(2,1) on the dual web, and thus belong only to the color cluster of the first
mark on the unique dual path from that point.) The boundary points can
be assigned colors by right-continuity (to be consistent with the rightmost
path convention adopted for the dual description at the first paragraph of
this subsection; see the remark below for the existence of right color limits).
Our direct description is complete.

Remark 6.19 The above descriptions raise a natural question as to how do
the color configurations of the MBW dynamics look like at fized positive times.
By the direct description we know that we have space-time color clusters one
inside the other almost surely. It is not difficult to see that each cluster has
another cluster inside it, e.g., by concluding from the scaling of the marked
random walks that the marks of the MBW are dense in R2. This might
suggest that the latter picture occurs also for fized positive times, i.e., the
color clusters at positive times® would also be such that each one kas another
cluster inside it. But this is not the case, as one might suspect from the
observation about the invariant measure for the MBW dynamics with 2 states
(above). In fact, it can be argued that, even in the case that ¢ = oo, the
color configurations of the MBW dynamics at fized positive times have finitely
many clusters in each finite interval almost surely.

4By a color cluster at fixed time, say £, we mean any connected component of the
intersection with 8 x {t} of a space-time color cluster, say Cp, minus the intersections
with R x {£} of the closures of the space-time color clusters contained in Co.
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