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I suspect that each person can recall some moments from his childhood when he was

captived by the beauty of soap bubbles. Their form can be truly marvelous. As adults, we do

not tend to stare at soap bubble clusters in amazement, but as a professional mathematician,

it happens that once one begins their study, one can remain seduced for a lifetime.

My first contact with minimal surfaces happened some twenty years ago. I met Andre

Haefliger while walking in Paris, we continued walking together and he asked me: ”Is there

a foliation of R3 by minimal surfaces, other than a foliation by parallel planes?” This (ap-

parently easy) question made me think about the nature of a minimal surface; I have not

stopped thinking about it since then. We will see in section 7, that Haefligers’ question is

unsolved for minimal laminations of R3.

Certainly soap films and soap bubbles seem a specialized subject; yet analysis, geometry,

and topology are fundamental to their understanding.

Soap bubble clusters are modelled on surfaces of constant mean curvature H , meeting

along a curve S in a precise manner. At a smooth point of S, there are three smooth surfaces

(of the cluster) meeting at equal angles (i.e., 120o) and S has isolated singular points where

six surfaces of the cluster meet at angles approximately 109o. For example, the barycenter

of a regular tetrahedron, and the triangles meeting at the barycenter which are formed by

the edges of the tetrahedra and the barycenter.

These properties of soap bubble clusters were observed by Plateau in the years 1870 and

were established only relatively recently. Some excellent references for this subject are [28],

[29], [33], [41].

We state a mathematical interpretation of soap bubbles. Consider positive real numbers

V1, ..., Vn and surface configurations that separate space R3 into regions having volumes

V1, ..., Vn. A soap bubble is such a configuration such that the area of the surfaces in the

cluster is a (local) minimum among all such surfaces bounding the volumes V1, ..., Vn. When

1



n = 1, it has been known since antiquity that a round sphere is the solution to this problem.

For n = 2, it has only recently been established that the standard double-bubble is the

solution [11].

The theory of soap bubbles in Riemannian manifolds other than R3 is an active subject

of research today. Some references are [2] and [27].

This paper is organized as follows. In section 1 we present the equations of minimal

surfaces in both parametric and non-parametric form and the first variation formula. In

section 2 we apply the equations to obtain information about minimal submanifolds of Rn:

the coordinate functions are harmonic and the monotonocity formula. Section 3 discusses

the Plateau problem and how its solution can be used to construct properly embedded

minimal surfaces by taking limits. Stable surfaces are introduced and some applications are

mentionned.

In section 4 we state the second variation formula for hypersurfaces and give some easy

applications in terms of Ricci curvature.

We describe Schoen’s curvature estimate for stable surfaces as derived by Colding and

Minicozzi. We conclude this section with the theorem of D. F. Colbrie [12]: a stable ori-

entable minimal surface in R3 with compact boundary (and complete) has finite total cur-

vature.

Section 5 gives a proof of Pascal Collin’s theorem [8] (the Nitsche conjecture) due to

Colding and Minicozzi. The proof supposes their theorem on one sided curvature estimates.

In section 6, we discuss minimal laminations of R3. This is work done by W. Meeks and

the author.

Section 7 discusses minimal surfaces in M × R, M a Riemannian surface. Particular

attention is given to the case M is a 2-sphere of constant curvature. Many examples are

discussed. References for this section are [36], [24], [30], [10].

In section 8, we develop the theory of minimal annuli in S2 × R, and we show how the

Abresch family of constant mean curvature H = 1/2 surfaces in R
3, yields a two-parameter

family of minimal annuli in S2 × R foliated by circles as level curves.

In this section 8, we also describe minimal surfaces of higher genus in S2 × R.

In section 9, we describe some of the main theorems established by Meeks and me

concerning minimal surfaces in M × R, M a compact Riemannian surface [24].

In section 10, we discuss constant mean curvature H surfaces in M × R, H 6= 0. We

obtain height estimates and derive some applications.

Finally in section 11, we return to minimal surfaces in S2 × R of finite topology, and we

show they have linear area growth when their curvature is bounded.
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1 The classical equations of minimal surface theory.

We present the minimal surface equation in non parametric form in Rn and the parametric

form in a Riemannian manifold.

Let U ⊂ R
n be an open domain and u : U → R a C1-function. Denote by G(u) the

graph of u. The area (volume) of G(u) is

∫

U

√
1 + |∇u|2.

Let η ∈ C1
0(U) = {C1 − functions on U of compact support}. The area of

G(u + tη) =

∫

U

√
1 + |∇u + t∇η|2.

One has

d

dt

∣∣∣∣
t=0

G(u + tη) =

∫

U

〈∇u,∇η〉

W
,

where W =
√

1 + |∇u|2. Thus G(u) is a critical point for the area functional means

∫

U

〈∇u,∇η〉

W
= 0, ∀η ∈ C1

0(Ω).

Integrating by parts, this last equality is equivalent to

∫

U

ηdiv

(
∇u

W

)
= 0, ∀η ∈ C1

0(Ω).

Consequently div

(
∇u

W

)
= 0, which is the non-parametric form of the minimal surface

equation.

Now let Σ = Σk and M = Mn be Riemannian manifolds. Let F : Σ× [−ε, ε] → M be an

immersion defining a deformation of compact support of Σ(0) = F (Σ× (0)) i.e., F (x, 0) = x

(Σ = Σ(0) considered as a submanifold of M) and F (x, t) = x for all t and x outside of some

compact set. Let Y (x) = d
dt

∣∣
t=0

F (x, t) denote the variation vector field of this variation.

Then

d

dt

∣∣∣∣
t=0

V ol(Σ(t)) = −

∫

Σ

〈
Y, ~H

〉
dΣ,

where ~H is the mean curvature vector field of Σ. This is the first variation formula for

volume and the proof can be found in [17].

Consequently a submanifold Σ is a critical point for the volume functional under com-

pactly supported variations means ~H ≡ 0, and this defines a minimal submanifold.
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There is another useful form of the minimal surface equation which applies to submani-

folds Σ which may not be smooth ( ~H not defined). This equation is

∫

Σ

divΣY = 0,

for all vector fields Y along Σ with compact support. To derive this equation, let e1, ..., ek

be an orthonormal frame for TΣ and Y ⊥ denote the component of Y in the normal bundle

to TΣ in TM . Then

0 = −

∫

Σ

〈
~H, Y

〉
= −

∑

i

∫

Σ

〈
(∇ei

ei)
⊥, Y ⊥

〉

= −
∑

i

∫

Σ

〈
∇ei

ei, Y
⊥
〉

=
∑

i

∫

Σ

〈
ei,∇ei

Y ⊥
〉

=
∑

i

∫

Σ

〈ei,∇ei
Y 〉 −

〈
ei,∇ei

Y t
〉

=

∫

Σ

divΣY.

where Y t denotes the tangent part of Y . Stokes’ theorem yields
∫
Σ

divΣ(Y t) = 0, since Y

has compact support.

2 Some applications of the equations.

Here are some classical applications of the divergence characterization of minimal submani-

folds.

Let Σ ⊂ R
n be a minimal submanifold. Then the coordinate functions x1, ..., xn of R

n,

are harmonic functions on Σ. To see this let e1, ..., en be the canonical basis of Rn, and let

η ∈ C1
0(Σ). Let Y = ηei. Then

divΣ(Y ) = 〈∇Ση, ei〉 + ηdivΣ(ei) = 〈∇Ση, ei〉 ,

0 =

∫

Σ

〈∇Ση, ei〉 =

∫

Σ

〈
∇Ση, et

i

〉

=

∫

Σ

〈∇Ση,∇Σxi〉 .

Now

div(η∇Σxi) = ηdiv(∇Σxi) + 〈∇Ση,∇Σxi〉 ,

and since η has compact support:
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0 =

∫

Σ

〈∇Ση,∇Σxi〉 = −

∫

Σ

ηdiv(∇Σxi),

so 4Σxi = div(∇Σxi) = 0.

Another simple application is the monotonocity formula for the growth of area of minimal

surfaces.

Let x0 ∈ Σ ⊂ Rn be a minimal submanifold and Bs denote the Euclidean ball of Rn,

centered at x0, of radius s. Then

Vol(Σ ∩ Bs)

sk

is a monotone non decreasing function. Moreover the value of this quotient tends to the

volume of B1 (assuming Σ is embedded near x0)as s → 0.

To see this, let r2 = x2
1 + ... + x2

n, so 4(r2) = 2

n∑

i=1

xi4xi + 2

n∑

i=1

|∇xi|
2 = 2k, where the

laplacian and gradient are calculated on Σ. Integrating this last inequality yields:

2kVol(Σ ∩ Bs) =

∫

Σ∩Bs

4(r2) =

∫

∂

∂

∂ν
(r2)

= 2s

∫

∂

|∇r| ≤ 2s

∫

∂

1

|∇r|

= 2s
d

ds
(Vol(Σ ∩ Bs)).

The last equality uses the coarea formula at regular values. Finally the above inequality

may be written

d

ds

(
(Vol(Σ ∩ Bs))

sk

)
≥ 0,

which proves the monotonocity formula.

3 The Plateau problem and properly embedded sur-

faces

The classical Plateau problem for Jordan curves Γ in Rn concerns the existence of disks Σ

in Rn with boundary equal to Γ, which minimize area among all disks with boundary Γ.

Douglas and Rado proved that this problem has a solution provided Γ is rectifiable and

the solution is an immersion except at isolated branch points. R. Osserman proved that

there are no interior branch points when n = 3. We now know (using geometric measure

theory) that there is an embedded surface of least area with boundary Γ, which is not
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simply connected in general. In higher dimensions, solutions to the Plateau problem exist

for minimal submanifolds and the singularity set is of codimension seven. This theory also

works in complete Riemannian manifolds.

Solutions to a Plateau problem are useful in studying the existence and geometry of

properly embedded minimal submanifolds.

To construct examples of properly embedded surfaces one chooses larger and larger Jor-

dan curves Γ(n) and let Σ(n) be a least area surface with boundary Γ(n). Then one looks

for a subsequence of Σ(n) that converges to a complete minimal surface Σ(∞). When this

works, the limit surface Σ(∞) has the important property of minimizing area on compact

subsets K, up to second order. That is for any compact subset K of Σ(∞), and any vari-

ation of K, fixed on ∂K, the second derivative of the area of the variation (at K) is non

negative. Minimal surfaces satisfying this condition are called stable. The study of stable

minimal submanifolds is important. One can often use the knowledge of stable minimal

submanifolds to obtain information about arbitrary minimal submanifolds. For example, a

beautiful theorem of Hoffman and Meeks says that two properly immersed minimal surfaces

M1 and M2, in R3, that are disjoint, are parallel planes [15]. The proof of this goes as

follows. Solving Plateau problems and passing to a limit, one constructs a complete stable

minimal surface Σ between M1 and M2. A theorem of R. Schoen [37], and independently,

M. do Carmo and Peng [4], says that the only stable complete minimal surface in R3 is a

plane. Thus Σ is a plane and M1 and M2 are in half-spaces determined by Σ. Finally, one

proves that a properly immersed minimal surface in a half-space, is a plane.

4 The second variation formula

We state the second variation formula for codimension one minimal submanifolds Σ of a

Riemannian manifold N . Assume Σ has a trivial normal bundle in N and n is a unit normal

vector field to Σ in N .

Let Y = fn be a vector field along Σ with f ∈ C2
0(Σ). Let F : Σ × [−t, t] → N be a

deformation of Σ with compact support whose variation vector field is Y . Let A(t) be the

volume of F (Σ × (t)). Then

d2A(t)

dt2

∣∣∣∣
t=0

=

∫

Σ

|∇f |2 − Ric(n, n)f 2 − |A|2f 2

= −

∫

Σ

f
(
4f + Ric(n, n)f + |A|2f

)

= −

∫

Σ

fL(f).
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Here L = 4 + Ric + |A|2, where A is the second fundamental form of Σ in N , and 4 and

∇ are calculated on Σ.

Thus Σ stable means

∫

Σ

f(Lf) ≤ 0, for all f ∈ C2
0 (Σ).

An application of this formula proves there are no stable closed (i.e., compact and without

boundary) minimal hypersurfaces Σ in an N with Ric > 0; let f ≡ 1 on Σ, Y = fn, so

stability would yield the contradiction:

0 ≤ −

∫

S

(Ric(n) + |A|2) < 0.

For example, S3 with the canonical metric, has no closed stable minimal submanifolds.

Notice that this yields also that a convex surface N has no stable closed geodesics.

Remark that for orientable surface in 3-manifolds, the stability operator can be written:

L = 4 + S +
1

2
|A|2 − K.

Here S is the scalar curvature of N and K the intrinsic curvature of Σ. This formula

follows easily from the Gauss equation for Σ ⊂ N .

When the scalar curvature S of N is positive, one obtains information about the geometry

of stable Σ ⊂ N by putting interesting test functions into the stability inequality.

We prove now a very useful inequality due to Colding-Minicozzi [5].

Theorem 1. Let Σ be a riemannian surface, s > 0, and Bs(x0) the geodesic disk in Σ

centered at x0 of radius s. Assume Bs = Bs(x0) is disjoint from ∂Σ. Let L = 4+V −cK be

a differential operator on Σ where V ≥ 0, c > 1
2
. Suppose −L is nonnegative on H1

0 (Bs(x0)).

Then one has

Area(Bs(x0))

s2
+

1

(2c − 1)

∫

Bs(x0)

V
(
1 −

r

s

)2

≤
2πc

2c − 1
.

Corollary 1. If Σ is a stable oriented minimal surface in N , and N has non negative scalar

curvature, then Σ has quadratic area growth (take c = 1 and V = S + |A|2

2
).

Proof of the Theorem. Let l(r) be the length of ∂Br(x0) and K(r) =

∫

Br(x0)

K. By the first

variation formula for length and Gauss-Bonnet, we have,

l′(s) =

∫

∂B(s)

kg(s)ds ≤ 2πχ(B(s)) −

∫

B(s)

K ≤ 2π − K(s).

Remark that l(s) is not even continuous in general, however it is true that l is differen-

tiable almost everywhere and for almost all s one has [39]
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l′(s) ≤ 2πχ(B(s)) − K(s),

and for s > s0 ≥ 0,

l(s) − l(s0) ≤

∫ s

s0

l′(s)ds.

Now choose cut-off functions. Let η : [0, s] → R+ be smooth and satisfy η(0) = 1, η(s) =

0, η′ ≤ 0 and (η2)′ ≤ 0. Take f = η(r) in the inequality:

0 ≤ −

∫

Bs

fL(f) =

∫

Bs

(
|∇f |2 − f 2V + cf 2K

)
,

so ∫

Bs

f 2V ≤

∫

Bs

|∇f |2 + c

∫

Bs

f 2K

=

∫ s

t=0

[
(η′)

2

∫

∂Bt

1

]
+ c

∫ s

0

η2

∫

∂Bt

K.

Integrating by parts and using K(s) ≤ 2π − l′(s), we have

∫ s

0

η2

∫

∂Bt

Kdt =

∫ s

0

η2K ′(t) = −

∫ s

0

(η2)′K(t)

≤

∫ s

0

(η2)′(l′(t) − 2π).

Thus

∫

Bs

f 2V ≤

∫ s

0

(η′)2l(t) + c

∫ s

0

(η2)′l′(t) + 2πc.

Choose η = 1 − t/s, so (η′)2 =
1

s2
, (η2)′ = 2

(
1 −

t

s

) (
−

1

s

)
. Then

∫

Bs

f 2V ≤
a(s)

s2
− 2c

a(s)

s2
+ 2πc

where a(s) = Area(B(s)). Thus

a(s)

s2
(2c − 1) +

∫

B(s)

(
1 −

t

s

)2

V ≤ 2πc.

2

Corollary 2. Let Σ be a complete oriented stable minimal surface in N3 with zero scalar

curvature. Then Σ has quadratic area growth and

∫

Σ

|A|2 is finite. When N3 = R3, Σ is a

plane [37],[4].
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Proof. By the Colding-Minicozzi inequality, Σ has quadratic area growth and

∫

Σ

|A|2 is

finite, (use the fact that 1 − t/s ≥ 1/2 if t ≤ s/2). Now in R3, |A|2 = −2K, so Σ has finite

total curvature. Thus

l(s) ≤

∫ s

0

l′(s)ds ≤

∫ s

0

(2π − K(s)) ≤ cs.

Recall that the stability inequality says

∫

B(s)

|A|2f 2 ≤

∫

B(s)

|∇f |2, for any test function

f . Let f be the test function f = 1 for s ≤ 1, f = 1 −
ln(r)

ln(s)
, for 1 ≤ r ≤ s, and f = 0

elsewhere. Then

∫

B(s)

|∇f |2 =
1

(ln(s))2

∫ s

1

l(r)

r2
dr ≤

c ln(s)

(ln(s))2
.

The last inequality uses l(r) ≤ cr. Since
1

ln(s)
→ 0, as s → ∞, we conclude

∫

B(1)

|A|2 =

0, hence |A| = 0 in B(1) and Σ is a plane. 2

Remark 1. [12]: Let Σ be a stable orientable complete minimal surface in R3 with compact

boundary. Then Σ has finite total curvature. This is proved just as in theorem 1; there is a

fixed boundary term that arises.

Notice that the ends of Σ (assuming Σ is embedded) are asymptotic to catenoid or planar

ends, when Σ has finite total curvature.

5 The Nitsche conjecture

In [31], Nitsche conjectured that a minimal surface M in R3 that meets every plane x3=constant,

in a Jordan curve, is a catenoid. This problem was solved affirmatively by Pascal Collin [8].

Pascal’s proof of the Nitsche conjecture is a ”work of art”. It is also a great deal of work

to go through the proof. I will present a proof here, due to Colding and Minicozzi [7], which

is quite different. It uses a very deep and usefull theorem they have discovered (and proved)

called the ”one-sided curvature estimates”. Here is the statement.

Theorem 2. [6] There exists ε0 > 0 such that the following holds. Let y ∈ R3, r0 > 0 and

Σ ⊂ B2r0
(y) ∩ {x3 > x3(y)} ⊂ R

3

be a compact embedded minimal disk with ∂Σ ⊂ ∂B2r0
(y). For any connected component Σ′

of Br0
(y) ∩ Σ with Bε0r0

(y) ∩ Σ′ 6= ∅,
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sup
Σ

|AΣ′ |2 ≤ r−2
0 .

Notice that the statement of this theorem is scale invariant; it is often stated for y the

origin and r0 = 1. Also the catenoid shows that one needs the simply connected hypothesis

for the theorem to hold. The proof of Colding and Minicozzi of this theorem is difficult.

There have been several important applications of this result [23],[24].

I now show how it implies the Nitsche conjecture. More generally, they prove [7]:

Theorem 3. There exists ε > 0 such that any complete properly embedded minimal annular

end E ⊂ C(−ε) has finite total curvature (C(t) = {x3 > τ
√

x2
1 + x2

2}).

Proof. For simplicity, we will assume E ⊂ {x3 > 0}; the proof is the same, but the notation

is simpler.

First we prove that for any δ > 0, there exists yj ∈ E − C(δ) with |yj| → ∞ ([9]).

Suppose on the contrary, that for some cone C(δ), δ > 0, E ⊂ C(δ). E is properly

embedded hence E ∩ {x3 = const} is compact. By the maximun principle and elementary

topology (E is an annulus) it follows that E meets each plane sufficiently high, in one

Jordan curve. So assume this holds for x3 ≥ 1, ∂E ⊂ {x3 < 1}. Let β(t) = E ∩ {x3 = t},

and Ω(t) = C(δ) ∩ {1 ≤ x3 ≤ t}. Denote by W (t) the component of Ω(t) − E in which

β(1) is not contractible. Then for each integer n > 1, β(1) and β(n) are homologous in

W (n) and neither β(1) nor β(n) is homologous to zero in W (n). By [26], there exists a

least area connected minimal surface Σ(n) in W (n) with ∂Σ(n) = β(1)∪β(n). By standard

compactness techniques, a subsequence Σ(ni) of Σ(n) converges to a stable complete minimal

surface Σ with ∂Σ = β(1). Σ has finite total curvature so the ends of Σ are catenoid or

planar type ends. But Σ is contained in the cone C(δ) so this is impossible. Thus, for every

δ > 0, there exists yj ∈ E − C(δ) with |yj| → ∞.

Now let β be a curve in {x3 ≥ 0} joining the origin to a point of ∂E, whose interior is

disjoint from E. For ε > 0, let yj ∈ E − C(ε) with 4 < |yj| → ∞. Choose rj such that

|yj| − 2 ≤ 6rj ≤ |yj| − 1.

An application of the maximum principle shows the connected component Σj of B2rj
(ỹj)∩

E, containing yj, is topologically a disk [7]; ỹj = π(yj), π(x, y, z) = (x, y).

Choose ε so that 26ε ≤ ε0, ε0 the constant of the one-sided curvature estimates. Since

x3(yj) ≤ 12εrj it follows Σj satisfies the one-sided curvature estimates, i.e.,

sup
Σ1

j

|AΣ1
j
|2 ≤ r−2

j ,
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x3 = 1

C(δ)

Σ(n)

E
W (t)

Figure 1

where Σ1
j is the connected component of Brj

(ỹj) ∩ Σj containing yj.

This curvature estimate on Σ1
j allows one to apply the Harnack inequality, [3], to the

positive harmonic function x3, on the intrinsec disk Drj
(yj) ⊂ Σ1

j . Then

sup
D 3

4
rj

(yj)

(x3) ≤ Cyj ≤ 26Cεrj,

where C comes from the Harnack estimate. From this one obtains a gradient estimate for

x3 on a slightly smaller disk, [3];

sup
D 5

8
rj

(yj)

|∇x3| ≤ C1(26Cεrj),

where ∇ is the intrinsic gradient. Thus D 5

8
rj

(yj) is a vertical graph with small gradient. Let

y1
j be a point in

∂B|yj | ∩ {(x1 − x1(yj))
2 + (x2 − x2(yj))

2 =
r2
j

4
} ∩ D 5

8
rj

(yj)

so that if 26Cε ≤ ε0, one can apply the preceding argument with y1
j in place of yj.

Repeating this 48π + 1 times, one can go once around the surface

K = ∂B|yj | ∩ {0 ≤ x3 ≤ C̄6ε|yj|}, C̄ = Cm, m = 48π + 1.

For ε sufficiently small, the one-sided curvature estimates hold in K so one obtains a

curve γj ⊂ K ∩ E which is almost horizontal. Since γj is embedded, it is either a Jordan
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curve or a spiral. It can not be a spiral since E is properly embedded and γj lies above

x3 = 0.

Assume |yj| chosen so that E meets ∂B|yj | transversally. Notice that the connected

component Ej of E ∩ B|yj | that contains ∂E is topologically an annulus, ∂Ej = ∂E ∪ σ(j),

σ(j) a Jordan curve on ∂B|yj |. This follows since there are no compact components of E,

outside B|yj | whose boundary is on ∂B|yj |. All the other components (if they exist) of E∩B|yj |

are disks.

Observe that σ(j) ⊂ K. Otherwise σ(j) 6= γj and γj would bound a disk D ⊂ E ∩B|yj |,

D ∩ Ej = ∅. But D is in the convex hull of γj, so D separates in B|yj |, the origin from

points in B|yj | whose height is above the height of K. This implies D ∩ (Ej ∪ β) 6= ∅, a

contradiction.

Since σ(j) ⊂ K, the previous discussion shows σ(j) is a vertical graph with controlled

gradient, hence its length is at most 2π(1 + C0)|yj| for some constant C0.

R. Osserman has proved an isoperimetric inequality for annular minimal surfaces [32],

Area(Ej) ≤
C1

4π
|yj|

2,

where C1 < (2π + 2Cπ + |∂E|)2 does not depend on j. Then this quadratic area growth

yields E has finite total curvature, which finishes the proof.

2

6 Minimal lamination of R
3

In the introduction I mentionned the question André Haefliger posed to me: ”Is there a

foliation of R3 by minimal surfaces other than a foliation by parallel planes?” A leaf of a

foliation by minimal surfaces of R3 is stable hence it is a plane. So minimal foliations of R3

are linear.

What are the minimal laminations of R3 is a mystery at the present time. I know of

two types of examples: a lamination with exactly one leaf - a properly embedded minimal

surfaces, and a lamination consisting of a closed set of parallel planes. Are there others?

In this chapter I will describe what Bill Meeks and I know about minimal laminations

of R3 [23]. First, a definition is in order.

Definition 1. A closed set L in R3 is called a minimal lamination if L is the union of pair-

wise disjoint connected complete injectively immersed minimal surfaces. Locally we require

that there are C1,α coordinate charts f : D× (0, 1) → R3, 0 < α < 1, with L in f(D× (0, 1))

the image of the D × {t}, t varying over a closed subset of (0, 1). The minimal surfaces in

L are called the leaves of L.
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The leaves L of a minimal lamitation L are smooth (even analytic), and if K is a compact

set of L which is a limit leaf of L, then the leaves of L converge smoothly to L over K; the

convergence is uniform in the Ck-topology for any k.

A consequence of the one-side curvature estimates of Colding and Minicozzi is the fol-

lowing. Let Σ be any compact smooth surface passing through the origin with boundary

contained in the boundary of the ball B(1) of radius one centered at the origin. There is

an ε and a constant c such that if D is an embedded minimal disk in B(1), disjoint from

Σ, and with boundary contained in the boundary of B(1), then in B(ε), the curvature of

D is bounded by c. This can be seen by homothectically expanding Σ; the ε depends on

the norm of the second fundamental form of Σ in the ball B(1/2). In our applications Σ

will be a stable minimal disk for which one always has a bound on the norm of the second

fundamental form in B(1/2) by curvature estimates for stable surfaces.

The only known examples of minimal laminations of R3 with more than one leaf are

closed sets of parallel planes in R
3 and we conjecture that these are the only ones. In fact,

we will prove that in the case L has more than one leaf, then every leaf of L with finite

topology is a plane.

Every leaf L of a minimal lamination L of R3 has locally bounded Gaussian curvature in

the sense that the intersection of L with any ball has Gaussian curvature bounded from below

by a constant that only depends on the ball. The reason that the curvature is locally bounded

is that the intersection of L with a closed ball is compact and the Gaussian curvature function

is continuous.

We now state the main theorem concerning minimal laminations of R3.

Theorem 4. Suppose L is a minimal lamination in R
3. If L has one leaf, then this leaf

is a properly embedded surface in R3. If L has more than one leaf, then L consists of the

disjoint union of a nonempty closed set of parallel planes P ⊂ L together with a collection of

complete minimal surfaces of unbounded Gaussian curvature that are properly embedded in

the open slabs and halfspaces of R3−P and each of these open slabs and half-spaces contains

at most one leaf of L. In this case every plane, parallel to but different from the planes in

P, intersects at most one of the leaves of L and separates such a leaf into two components.

Furthermore, in the case L contains more than one leaf, the leaves of L of finite topology

are planes.

The proof of this theorem will follow from the following lemmas.

Lemma 1. Suppose M is a complete connected embedded minimal surface in R3 with locally

bounded Gaussian curvature. Then one of the following holds:

1. M is properly embedded in R3;
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2. M is properly embedded in an open half-space of R
3 with limit set the boundary plane

of this half-space;

3. M is properly embedded in an open slab of R
3 with limit set consisting of the boundary

planes.

Proof. Let xn be any sequence of points in M , converging to some x in R3. Since M has

locally bounded curvature, there is a δ = δ(x) such that for n sufficiently large, M is a graph

Fn over the disk Dδ(xn) in the tangent plane to M at xn, of radius δ and centered at xn.

Moreover each such local graph Fn has bounded geometry.

Choose a subsequence of the xn so that the tangent planes to M at the subsequence

converge to some plane P at x. Then the Fn of this subsequence will be graphs (for n large)

over the disk D of radius δ/2 in P centered at x. By compactness of minimal graphs, a

subsequence of the Fn will converge to a minimal graph F∞ over D, x ∈ F∞.

Notice that F∞ at x does not depend on the subsequence of the xn. If yn ∈ M is a

sequence converging to x with the tangent planes of M at yn converging to a plane Q at x.

Then P = Q and the local graphs Gn of M at yn converge to F∞ as well. If this were not the

case then F∞ and G∞ would cross each other near x (i.e, x ∈ F∞ ∩ G∞ and the maximum

principle implies there are points of F∞∩G∞ near x where they meet transversely). Now F∞

is the uniform limit of the graphs Fn and G∞ is the uniform limit of the graphs Gn so near a

point of transverse intersection of F∞ and G∞ we would have Fi intersecting Gj transversely

for i, j large. This contradicts M embedded. Notice also that each Fn is disjoint from F∞;

this follows by the same reasoning as above. Thus we have a local lamination of M̄ near x.

Each point y ∈ ∂F∞ is also an accumulation point of M so there is a limit graph F∞(y)

over a disk of radius δ(y) centered at y. By uniqueness of limits, F∞(y) = F∞ where they

intersect. Thus F∞ may be continued analytically to obtain a complete minimal surface in

M̄ . The lamination L is obtained by taking the closure of all the limit surfaces so obtained.

Next we will prove that any limit leaf of L is a plane.

Let L be a limit leaf and L̂ the universal covering space of L. The exponential map of

L is a local diffeormorphism and there is a normal bundle ν over L̂, of varying radius, that

submerses in R3. Give ν the flat metric induced by the submersion; L̂ is the zero section of

ν.

Let D̂ be a compact simply connected domain of L̂, D its projection into L. Each point

of D has a neighborhood that is a uniform limit of (pairwise disjoint) local graphs of M .

The usual holomony construction allows one to lift these local graphs along the lifting of
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paths in D to obtain D̂ as a uniform limit of pairwise-disjoint embedded minimal surfaces

En in ν.

It is known that any compact domain F (here F = D̂) that is a limit of disjoint minimal

domains En is stable. Here is a proof. If F were unstable, the first eigenvalue λ1 of the

stability operator L of the minimal surface F (here L = ∆ − 2K) is negative. Let ~n denote

the unit vector field along F in ν and f the eigenfunction of λ1, L(f) + λ1f = 0, f > 0 in F

and f = 0 on ∂F.

Consider the variation of F : F (t) = {x + tf(x)~n(x) | x ∈ F}. The first variation Ḣ(0)

of the mean curvature of F (t) at t = 0 is given by L(f). Since λ1 < 0, and f(x) > 0 for

x ∈ Int(F ), it follows that the mean curvature vector of F (t), for t small, points away from

F , i.e, < ~Ht(x), ~n(x) > > 0.

Now for t0 small, choose n large so that E(n) is close enough to F so there is a a non

empty intersection of F (t0) and E(n). As t decreases from t0 to 0, the F (t) go from F (t0)

to F . So there will be a smallest positive t so that D(t) has a non-empty intersection with

E(n). Let y ∈ F (t)∩E(n). Near y, E(n) is on the mean convex side of F (t). Since E(n) is

a minimal surface, this is impossible.

Then by Fischer-Colbrie and Schoen’s theorem [13], L̂ is a plane, hence L as well, and

each limit leaf of L is a plane. 2

Remark 2. F. Xavier [42] proved that a complete nonflat immersed minimal surface of

bounded curvature in R3 is not contained in a halfspace.

Lemma 2. Suppose M is a complete connected embedded minimal surface in R3 with locally

bounded curvature. If M is not proper and P is a limit plane of M , then, for any ε > 0, the

closed ε-neighborhood of P intersects M in a connected set.

Proof. Suppose P is a limit plane of M and, to be concrete, suppose P is the x1x2-plane

and that M lies above P . Let P (ε) be the plane at height ε and suppose that M intersects

the closed slab S between P and P (ε) in at least two components M(1), M(2). By Sard’s

Theorem, we may assume that P (ε) intersects M transversely. We know that M is proper

in the open slab between P and P (ε) since through any accumulation point of M in the

open slab there would pass a limit plane of M .

Let R be region of S bounded by M(1)∪M(2). Consider a smooth compact exhaustion

Σ(1), Σ(2), . . . , Σ(n), . . . of M(1). Let Σ̃(i) ⊂ R with ∂Σ̃(i) = ∂Σ(i) be least-area surfaces

Z2-homologous to Σ(i) in R. Standard curvature estimates and local area bounds imply

that a subsequence of the Σ̃(i) converges to a properly embedded stable minimal surface Σ

in R with boundary ∂M(1). Since S is simply-connected, Σ separates S. Therefore, Σ is
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orientable and the curvature estimates of Schoen [37] then imply curvature estimates at any

uniform distance from P (ε).

By the Halfspace Theorem in [15], or rather its proof, Σ can not be proper in S. As in the

previous lemma, the limit set of Σ is a plane P
′

⊂ S. Since Σ has curvature estimates near P
′

,

there exists a δ, 0 < δ < ε/2, such that the normal line to Σ(δ) = Σ∩{(x1, x2, x3) | 0 < x3 <

δ} is close to a vertical line. Hence, the orthogonal projection π : Σ(δ) → P
′

is a submersion

onto its image. Furthermore, given any compact disk D ⊂ P
′

, every component of π−1(D)

is compact. Using this compactness property, and a slight variation of the following lemma,

it follows that π is injective. Therefore, Σ is proper in S, which we observed before can not

occur. This contradiction proves the lemma.

2

Lemma 3. Suppose M and N are smooth connected manifolds of the same dimension such

that N is simply-connected and M may have boundary. If π : M → N is a proper submersion

onto its image and π|∂M is injective on each boundary component of M , then π is injec-

tive. In particular, if M is a smooth immersed surface with boundary in R3, the projection

π : M → R2 to the x1x2-plane is a proper submersion onto its image and π|∂M is injective,

then M is a graph over π(M) ⊂ R2 × {0}.

Proof. If M has no boundary, then π : M → N is a connected covering space and the lemma

follows since N is simply-connected.

If ∂ is a boundary component of M , then π(∂) is a properly embedded codimension-one

submanifold of N . Since N is simply-connected, π(∂) separates N into two open components.

We label these components of N − π(∂) by C(M) and C(∂), where C(M) is the component

such that the closure of π−1(C(M)) contains ∂ as boundary component. Now consider the

quotient space M̂ obtained from the disjoint union of M with all the closures of C(∂α), ∂α a

boundary component of M , with identification map π, π : ∂M → ∪C(∂α). Let π̂ : M̂ → N

be the natural projection that extends π on M ⊂ M̂ . It is straighforward to check that π̂ is

a connected covering space of N . Since N is simply-connected, π̂ is injective which proves

the lemma.

2

Lemma 4. If M is a complete embedded minimal surface in R3 with finite topology and

locally bounded curvature, then M is properly embedded in R3.

Proof. Suppose now that M has finite topology and lies in the upper half-space of R3 with

limit set the x1x2-plane P . If M has bounded curvature in some ε-neighborhood of P , then

it was proved above that M is proper in this neighborhood and has a plane in its closure.
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This is impossible by the half-space theorem. It remains to prove that M has bounded

curvature in an ε-neighborhood of P .

Arguing by contradiction, assume that M does not have bounded curvature. In this

case, there is an annular end E ⊂ M whose Gaussian curvature is not bounded in the slab

S = {(x1, x2, x3) | 0 ≤ x3 ≤ 1}. After a homothety of M , we may assume that ∂E is

contained in the ball B0 of radius one centered at the origin. Since M has locally bounded

curvature, the part of E inside B(0) has bounded curvature.

Since E ∩ S does not have bounded curvature, there exists a sequence p(1), . . . , p(i), . . .

in E ∩ S with ‖p(i)‖ ≥ i and |K(p(i))| ≥ i. After possibly rotating M around the x3-axis

and choosing a subsequence, we may assume that the sequence (5/‖p(i)‖) · p(i) converges

to the point (5, 0) in the x1x2-plane. Let B be the ball of radius one in the x1x2-plane

and centered at (5, 0). Notice that there is no compact connected minimal surface with one

boundary curve in B0 and the other boundary curve in B (pass a catenoid between B0 and

B). Using the convex hull property of a compact minimal surface, it is easy to check that

[(5/‖p(i)‖)E]∩B consists only of simply-connected components which are disjoint from the

boundary of (5/‖p(i)‖)E. The curvature estimates C imply that, as i → ∞, the curvature

of (5/‖p(i)‖)E at (5/‖p(i)‖) ·p(i) converges to 0. But the Gaussian curvature at such points

approaches −∞ as i → ∞. This contradiction proves the lemma. 2

7 Examples of minimal surfaces in M × R

We will now discuss properly embedded minimal surfaces Σ in M×R where M is a complete

Riemannian surface. When M is the flat R2, this is the classical theory of minimal surfaces

in R
3. We will see that there are many interesting examples and theorems, in particular

when M is a space-form (constant curvature). The references for this section are [36], [30],

[10], [21], [22], [24], [25].

When M is a flat 2-torus (quotient of R2 by two independant translations), one obtains

doubly-periodic minimal surfaces. The connected non-flat minimal surfaces in M × R are

precisely the quotient of connected minimal surfaces in R3 by the translation group [21].

For example, Scherk’s doubly periodic minimal surface is a four punctured sphere in the

quotient. One way of constructing these periodic minimal surfaces is by choosing a suitable

polygon Γ in R3, and let Σ(Γ) be a least area disk with boundary Γ obtained as a solution

to the Plateau problem. Then extend Σ(Γ) to a complete surface by rotating about all the

line segment in Γ and continue the rotations about all the new segments that appear.

If Γ is well chosen this will produce a properly embedded minimal surface with symmetries

coming from Γ. Here is an example. Consider the polygon Γ(n) of figure 2.
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The vertical sides go from x3 = −n to x3 = +n, and assume the vertical projection of

Γ(n) is a rhombus. Let Σ(n) be a least area disk with boundary Γ(n). The interior of Σ(n) is

a vertical graph over the interior of the rhombus. Also, the symmetries of the rhombus imply

there is exactly one point of Σ(n) with a horizontal tangent plane (at height 0) and this

point does not depend on n. As n → ∞, a subsequence of the Σ(n) converge to a minimal

surface Σ(∞) and ∂Σ(∞) equals the four vertical lines over the vertices of the rhombus.

Rotating by π about the line boundaries of Σ(∞) (and continuing these rotations about all

the line boundaries arising) extends Σ(∞) to a complete embedded minimal surface Σ in

R3. Σ is invariant by the group Γ generated by the translations 2v1,2v2, v1, v2 the (vector)

sides of the rhombus. Then Σ/Γ is a doubly-periodic minimal surface in T2 × R, modelled

on the 4-punctured sphere.

We will see this technique works in many manifolds.

In this paper, we often solve Plateau problems, finding least area surfaces with fixed

boundary in a given isotopy class. Some references for doing this in 3-manifolds are [14] and

[26]. A reference for finding minimax surfaces of controlled topology is [35].

7.1 Surfaces in S
2 × R; unduloids

Let S
2 denote the 2-sphere of curvature one, and S(t) = S

2 × (t). We refer to S(t) as the

horizontal sphere at height t, and we denote by h the height function on S2×R, which is the

R-coordinate of a point. In a very interesting paper concerning isoperimetric-hypersurfaces

in Q×R, Q an n-dimensional simply connected space-form, Pedrosa and Ritore found and

studied the minimal hypersurfaces of Sn × R invariant under the group of rotations of the

first factor [34]. When n = 2, they call these surfaces unduloids (embedded) and nodoids,

in analogy with the Delaunay surfaces. They are foliated by circles C(t) in the sphere S(t),

of radius r(t); the radius function determines the surface.

Before writing the equations of these surfaces found by Pedrosa and Ritore, We describe

their existence by Plateau techniques.

Let p denote a fixed point of S2 (e.g., the north pole) and let r denote distance to p on

S
2. Denote by C(0) the geodesic r = π/2 of S

2. Then Σ = C(0) × R is a totally geodesic

minimal annulus in N = S2 × R; we will refer to this as a vertical flat annulus. Let D1 ,

D2 be the two disks of S(0) bounded by C(0). For T > 0, T small, Σ(T ) (the part of Σ

between heights 0 and T ) is a stable minimal surface with boundary C(0) ∪ C(T ). Also,

C(0)∪C(T ) bounds another stable surface in D1 ×R, the union of the two horizontal disks.

So there is an unstable surface in D1 × R with boundary C(0) ∪ C(T ). It is a connected

annulus since the only compact minimal surface bounded by a C(h) is a horizontal disk.

This annulus can then be extended to an embedded complete minimal annulus by rotation
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by π about the geodesic boundaries. This rotation about C(0) is the composition of the

isometries (x, t) 7→ (x,−t), and the isometry which is reflection of each S(t) by the geodesic

C(t).

Calculations of M. Ritore show that as T tends to 0, these unstable annuli converge to

a double cover of the horizontal disk, with a singularity at the center of the disk, just as a

catenoid converges to a doubly-covered plane by contraction.

Pedrosa and Ritore call these surfaces unduloids. They deform the flat vertical annulus Σ

in the same manner as the Delaunay mean curvature one surfaces in R3 deform the cylinder

of mean curvature one.

They derive the equations for rotationally invariant constant mean curvature H hyper-

surfaces in R×S2; more generally, in R× (a space form) (this is the only place in this paper

we change the order of the factors in S
2 × R. We do this until the end of this section to

respect the order chosen by Pedrosa and Ritore). Here is their solution.

Identify the orbit space with [0, π] × R. An invariant hypersurface is determined by its

generating curve γ in the quotient space. Parametrize γ by arc length s and write

(x′(s), y′(s)) = (cosσ(s), sin σ(s)).

Then Σ has mean curvature H in Sn × R is equivalent to γ satisfying the system:

x′ = cos σ

y′ = sin σ

σ′ = H + (n − 1)cot(y) cos(σ).

In addition to the embedded unduloid solutions, they show there are immersed solutions

as well; they call them nodoids.

The unduloids are invariant under vertical translation by 2πT , hence yield embedded

minimal tori in S1(r) × S2.

7.2 Helicoids in S2 × R

We obtain a helicoid by rotating the geodesic C(0) at a constant speed as one rises on the

vertical axis at a constant speed. This yields a complete minimal annulus Σ in S2 × R and

by passing to the quotient by a suitable vertical translation, an embedded minimal torus in

S2 × S1.

A conformal parametrization of a helicoid can be obtained as follows. Let

X(u, v) = (cos f(u) cos v, cos f(u) sin v, sin f(u), v).
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Then X is conformal in terms of z = u + iv, if f satisfies the equation (an elliptic function)

f ′(u)2 = 1 + cos2 f(u).

The mean curvature vector of Σ in R4 (S2 × R ⊂ R3 × R = R4) is easily calculated in

terms of
∂2X

∂u2
+

∂2X

∂v2
·

A simple calculation then shows the projection of this mean curvature vector onto the

unit normal of Σ in S2 × R, is zero. Hence Σ is minimal in S2 × R.

7.3 Riemann type minimal surfaces in S
2 × R

Just as we obtained unduloids in S2 × R by a minimax technique applied to a small stable

compact vertical minimal annulus, we can obtain surfaces starting with stable pieces of a

helicoid. The surfaces obtained are the analogue of Riemann’s minimal surface in R3 [20].

Let C(0) ⊂ S(0) and C(t) ⊂ S(t) be two geodesic circles on a helicoid in S2 × R and

suppose t sufficiently small so that the part Σ(t) of the helicoid bounded by C(0)∪C(t) = Γ

is stable. Then Γ is the boundary of another stable minimal surface, the union of two

horizontal disks bounded by Γ. Thus there is an index one minimal annulus A(t) with

boundary Γ obtained by the minimax technique [35]. A(t) meets each horizontal sphere

S(τ), 0 ≤ τ ≤ t, in a circle by [10]. One extends A(t) to a properly embedded minimal

annulus A in S2 × R by the natural symmetries in the boundary geodesics. This is what

we call a Riemann-type minimal surface. Notice that A(t) inherits the symmetries of Γ in

S2 ×R, so A is invariant by screw-motion isometry of S2 ×R and yields an embedded torus

in the quotient. We will see another way to obtain these surfaces in a later section.

8 Properties of minimal annuli in S
2 × R

Let A be a properly immersed minimal annulus in S2 × R; A is topologically D∗ =

{z ∈ C | 0 < |z| ≤ 1}, with ∂A corresponding to {|z| = 1}. We will see that A behaves in

the same way as when the ambient space is T × R, T a flat 2-torus [21]; i.e., we will see

that A is conformally D∗ and a subend of A meets each horizontal sphere transversaly and

in at most one Jordan curve. First we assure the height function is harmonic on A.

Lemma 5. Let Σ be a minimal hypersurface of a Riemannian manifold N . Let X be a

Killing vector field on N . If X = ∇f , is the gradient of some function f on N , then f is

harmonic on Σ.
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Proof. Let e1 , e2 ..., ek , n be an orthonormal frame in a neighborhood of a point of Σ, where

n is normal to Σ. Since X is a Killing vector field on N , we have:

div(X) = 0 = 〈∇nX, n〉.

Thus

0 =

k∑

i=1

〈∇ei
X, ei〉 + 〈∇n X, n〉 =

k∑

i=1

〈∇ei
X, ei〉.

Write X = X⊥ + ∇Σ f , X⊥ the normal component of X. Then

0 =
∑k

i=1 〈∇ei
∇Σ f, ei〉 +

∑k

i=1

〈
∇ei

X⊥, ei

〉

= ∆Σf −
∑k

i=1

〈
X⊥,∇ei

ei

〉

= ∆Σf −
〈
X⊥, H

〉
= ∆Σf.

2

Corollary 3. The only compact minimal surfaces (with no boundary) in S2×R are the S(t).

Proposition 1. . Let A be a properly immersed minimal annulus in M ×R, M a compact

surface. Then A is conformally the punctured disk D∗, and a subend of A can be confor-

mally parametrized by D∗ so that h = c`n|z|. In particular, this subend meets each M(t)

transversally in at most one Jordan curve.

Proof. We proceed as in [21]. Since A is proper, A must go up or go down, but not both. So

we can suppose A goes up, zero is a regular value of h, and h/∂A < 0. Then ∆ = h−1(−∞, 0]

is a smooth compact surface; one component of the boundary of ∆ is below zero (namely

∂A), and the others are smooth Jordan curves in M(0). There is no compact minimal

surface with boundary in M(0) (other than a part of M(0)) since the harmonic function h

would have an interior extremum on such a surface. A is an annulus, so it follows there is

exactly one component of the boundary of ∆ in M(0). By the same reasoning, A meets

each M(t), t > 0, transversally and in one Jordan curve. Now it is easy to parametrize the

subend h−1[0,∞) so that h = `n|z|. Use the facts that any compact annulus is conformally

S
1 × [1, R], and a harmonic function on this annulus, constant on each boundary circle, is

of the form a log |z| + b, for some contants a, and b. 2

8.1 Abresch surfaces in R3 yield minimal annuli foliated by circles

in S
2 × R.

Given a torus M of constant mean curvature in R
3, its Gauss map f to the unit sphere S

2

is a harmonic map. Its holomorhic Hopf quadratic differential is:
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2 × {y0}

Unduloid

Figure 3:Unduloid

Q(f) =

[∣∣∣∣
∂f

∂x

∣∣∣∣
2

−

∣∣∣∣
∂f

∂y

∣∣∣∣
2

− 2i

〈
∂f

∂x
,
∂f

∂y

〉]
dz2.

Since M is a torus, this is constant:

Q(f) = cdz2.

After a linear change of coordinates we can assume the constant c is one. Then the map:

F : S
1 × R −→ S

2 × R, F (x, y) = (f(x, y), y)

is a conformal harmonic map, i.e., a minimal surface. The Delaunay surfaces yield the

unduloids and the nodoids yield the helicoids in S2 × R (see figure 3 and 4).

Abresch studied the family of Wente tori (constant mean curvature 1
2

in R3) whose

principle curvature lines are planar [1]. More generally, he studied constant mean curvature

surfaces parametrized by R2, with the coordinate axes x and y yielding the (smaller and

larger) principle lines of curvature.

Those tori whose small curvature lines, λ1, are planar were found among the solutions

of the system:

∆ω + sinh (ω) · cosh (ω) = 0
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Figure 4: Helicoid

sinh (ω)·
·
ω
′
− cosh (ω)·

·
ω ω′ = 0.

Here ′ and · denote the derivatives with respect to x and y, respectively. We remark that

Q(f) = dz2 for these surfaces.

Abresch classified all real-analytic solutions ω : R
2 → R of the above system in terms

of elliptic functions. He then went on to study the system which corresponds to the larger

curvature lines λ2 being planar curves. It follows that the Gaussian image of each such λ2

line is contained in a circle of S2. These examples are solutions of the following system I:

(I) ∆ω + sinh (ω) · cosh (ω) = 0

cosh (ω)·
·
ω
′
− sinh(ω)·

·
ω ω′ = 0.

We remark that Q(f) = −dz2 when f is the Gauss map of this Abresch family. Abresch

classifies all solutions of this system as well (it is analogous to the first solution space), and
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shows that the associated constant mean curvature surfaces do not close up in R
3 and so

do not yield Wente tori. However, the solutions of system (I) do yield minimal immersions

F : S
1 ×R 7−→ S

2 ×R. Laurent Hauswirth [10] observed that the second equation of system

(I) is precisely the condition that the level curves of F be circles. We define A to be the

family of these minimal surfaces, induced by solutions of (I) or which are helicoids in S2×R.

If f denotes the Gauss map of a constant mean curvature surface solution of (I), then the

minimal surface (x, y) 7−→ (f(y, x), y) in S2 × R is foliated by circles in level set spheres.

Hauswirth [10] also observed that the classical Shiffman Jacobi function for minimal

surfaces in R3 (transverse to the planes R2 × {t}) generalizes to M̃ × R where M̃ is a

simply-connected space form. This yields another way to generate Riemann-type examples

of minimal surfaces in M̃ × R.

Let A be a compact minimal annulus in M̃ × R with boundary curves in M̃ × {t1} and

M̃ × {t2} with t1 < t2. Let S(r) denote the circle of circumference r. Assume S(r)× [t1, t2]

is a conformal parametrization of A with h(x, t) = t and where r is the flux of h. Let κ(θ, t)

be the corresponding geodesic curvature function of the level set curve at height t. Then

the Shiffman function is:

S = λ
∂κ

∂θ
.

This is a Jacobi function on A where λ(θ, t) is the conformal factor or speed of the level set

curve at the parameter values (θ, t). If the boundary curves of A are chosen to be circles

and A is strictly stable, then the Shiffmann function has zero boundary values on A and so

vanishes on A. This means that A is foliated by circles. In the case M̃ is S2, then by analytic

continuation, we obtain a periodic minimal surface. In fact we obtain all the examples in

A in this way. In the case M̃ = R
2 we obtain Ã which is a catenoid or one of the Riemann

examples.

Now suppose one considers a small stable part of a catenoid in H
2 × R bounded by a

circle in H2 ×{0} and a circle in H2 ×{t}. Translate sideways slightly the circle in H2 ×{t}.

Then there is a new annulus A(t, s) bounded by the two new circles and, using the Shiffman

function, we see that it is foliated by circles. Notice that A(t, s) has a vertical plane of

symmetry coming from the symmetry of its boundary circles. Now A(t, s) can be extended

to a minimal surface B(t, s) in some open neighborhood of A(t, s) since ∂A(t, s) is analytic.

Clearly B(t, s) is also foliated by circles. Thus, there is a maximal open minimal annulus

Ã(s) foliated by circles, and containing A(t, s). A simple maximum principle argument

shows the asymptotic boundary of Ã(s) consists of two horocycles C1 and C2. Assuming C2

higher than C1, Ã(s) extends above C2 by level curves of constant curvature less than one;

i.e., equidistant curves. These curves eventually become a geodesic γ2. Similarly extending

Ã(s) below C1, by equidistant curves, we arrive at a geodesic γ1. Now rotate about γ1, and
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Figure 5: Two examples of Riemann’s type in H2 × R

γ2 and continue to obtain a complete embedded “Riemann-type” minimal surface in H2 ×R

(see figure 5).

In a very interesting paper, L. Hauswirth has described all the minimal surfaces in

H2 ×R and S2 ×R whose level curves have constant curvature [10]. This yields many more

beautiful examples in H2 × R. He parametrizes these surfaces by a 2-parameter family of

elliptic functions which generalizes to the space form, what Abresch did in R
2 × R. He

generalizes the Shiffman function to minimal annuli in H2 × R (or S2 × R). He then proves

that a minimal annulus A bounded by circles or geodesics in M×{t1} and M×{t2} (M = S2

or H2), and A of index one, is foliated by circles and geodesics at each level.

8.2 Some surfaces of higher genus

We will now construct properly embedded minimal surfaces of finite topology in S2 × R.

They will be conformally equivalent to a compact Riemann surface of genus g with two

punctures. They have one top end, one bottom end and each is asymptotic to a flat vertical

annulus. We will then prove that any properly embedded minimal surface, has exactly one
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top end and one bottom end (or is some S(t)).

Recall that C(0) is a fixed geodesic of S(0). Let D1 , D2 be the two disks of S(0) bounded

by C(0). Consider S2 × R as the union of the two vertical solid cylinders

(D1 × R) ∪ (D2 × R), identified along their common boundary; the flat vertical annulus

C(0) × R.

Consider geodesic coordinates (r, θ) in D1, where the center of D1 is r = 0, and C(0)

is r = π/2. The rays r(θ) = {θ = constant, 0 ≤ r ≤ π/2} are geodesics, and the circular

arcs of C(0) between two θ values, θ1 and θ2 , we denote by C(θ1, θ2). When |θ1 − θ2| < π,

C(θ1, θ2) denotes the arc of C(0) of length less than π. In these coordinates, the end points

of C(θ1, θ2) are (r = π/2, θ1) and (r = π/2, θ2). Let T be a fixed number, and denote by

Γ(T, θ1, θ2) the geodesic polygon in S × R, with the five sides, r(θ1), r(θ2), the two vertical

geodesic segments {(π/2, θ1, t) | 0 ≤ t ≤ T}, {(π/2, θ2, t) | 0 ≤ t ≤ T} and the arc

(C(θ1, θ2), T ) of C(T ); cf. figure 6

Let Σ be a least area compact minimal surface with boundary Γ = Γ(T, θ1, θ2). We claim

Σ is an embedded disk and int(Σ) is a vertical graph over the domain in D1 bounded by

r(θ1) ∪ r(θ2) ∪ C(θ1, θ2).

To see this notice that Rado’s theorem is true for minimal surfaces in D1 × R : if Γ ⊂

D1 × R is a Jordan curve which has a convex projection to D1 then any compact minimal

surface in D1 × R bounded by Γ is an embedded disk and its interior is a vertical graph

over the domain in D1 bounded by the projection of Γ. Vertical translation in D1 ×R is an

isometry, and the height function is harmonic on a minimal surface, so the usual proof of

Rado’s theorem goes through.

In our case, ∂D1 × R is a good barrier for solving the Plateau problem in D1 × R so
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Σ ⊂ D1 × R and Rado’s theorem applies.

Next observe that Σ can be continued by rotation by π about each edge in its boundary.

Given a geodesic C in some S(t), rotation by π about C is the ambient isometry which

is the composition of symmetry of S(t) by C, and symmetry of S2 × R by S(t). Given a

vertical geodesic B of S2 × R, rotation by π about B is the symmetry of each S(t) through

the point S(t) ∩ B. Notice that when B ⊂ ∂D1 × R, the rotation by π about B permutes

D1 × R and D2 × R. On the other hand, rotation about an r(θ) in D1 × R sends Σ into

D1 × R. Consider the rotation of Σ about r(θ1). The polygon Γ has image a polygon Γ(1)

as depicted in figure 7, and the image of Σ is easy to understand.

Continuing to reflect across the rays, the resulting surface will close-up after 2k successive

reflections when θ2 − θ1 = π/k (for some integer k = 1, 2, . . . ). Then the (2k) images of Σ

yield an embedded minimal disk Σ(k) whose interior is a smooth vertical graph over D1 ,

and whose boundary is a geodesic polygon on ∂D1 ×R, composed of vertical and horizontal

geodesics. The vertical geodesics go from height −T to height T . Below is the case k = 2;

figure 8.

Notice that the height function on Σ(k) has a critical point at the center of D1 , which

is on Σ(k), of index 1 − k, and no critical points elsewhere on Σ(k).

There are two natural ways to proceed now to obtain properly embedded minimal surfaces

from Σ(k). We can let T → ∞, or we can do all symmetries of Σ(k) across the geodesic

boundaries.

First consider the surface obtained by fixing T and doing all the symmetries in the sides

of Σ = Σ(k, T ). This yields a properly embedded minimal surface in S2×R which is invariant

by vertical translation by 2T . In the quotient S2 × R
/
2T = S2 × S1, one obtains a compact
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Figure 8

surface of genus k (just count the indices of the critical points of h). Notice that the surface

k = 1 is an embedded minimal annulus in S2 × R; in fact, it is the helicoid we introduced

previously.

Next consider letting T → ∞. Recall that the Plateau solution Σ(T ) with boundary

Γ(T, θ1, θ2) is a vertical graph over the geodesic triangle ∆ = r(θ1) ∪ r(θ2) ∪ C(θ1, θ2), of

the function u(T ) with boundary values zero on the sides r(θ1) ∪ r(θ2) and the value T

on C(θ1, θ2). The function u(T ) is continuous at all points of ∆ except the two endpoints

of C = C(θ1, θ2). We will prove shortly that the functions u(T ) converge uniformly (on

compact subsets of ∆ − C), to a function u(∞), defined on ∆ − C, provided θ1 − θ2 is

strictly less then π. The graph of u(∞) is a minimal surface with boundary Γ(∞, θ1, θ2),

and its gradient approaches infinity as one approaches C from the interior of ∆ (cf. theorem

5).

Thus, when θ2 − θ1 = π/k (for some integer k = 2, 3, . . . ), The surfaces Σ(k) converge to

a minimal surface Σ(∞) bounded by the complete vertical geodesics B(i π/k), i = 1, . . . , 2k;

the vertical lines over the points on ∂D1 , given by (r = π/2, θi = iπ/k). Clearly Σ(∞) =

Σ(k,∞) is a graph over D1 (i.e. its interior).

Now do rotation by π about the vertical geodesic B(π/k). This induces a diffeomorphism

from ∂Σ(k,∞) to itself and extends Σ(k,∞) to a complete properly embedded surface M

with no boundary. The reader can verify that there is one top end, one bottom end, and

each of these ends is asymptotic to a flat vertical annulus. The height function has exactly

two critical points, each of index 1 − k. They are the centers of D1 and D2 . Since the top

and bottom ends each give rise to a critical point of index one at the punctures, it follows

that M is conformally diffeomorphic to a closed Riemann surface of genus k − 1 punctured
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in two points.

The Gauss-Bonnet theorem yields the total curvature of Σ(k, T ) to be 2π(1 − k). Since

this does not depend on T , the total curvature of Σ(k,∞) is also 2π(1− k). Hence the total

curvature of M is 4π(1 − k), which is 2πχ(M).

Now we will prove the existence of the Scherk-type surface we discussed.

Assume 0 < θ1 < θ2 < π, and Σ(T ) is the least area Plateau solution with boundary

Γ(T, θ1, θ2). We know that Σ(T ) is the minimal graph of a function u(T ) with boundary

values equal to zero on the two sides of the triangle {θ = θ1, 0 ≤ r < 1}, {θ = θ2, 0 ≤ r < 1}

and equal to T on the third side of the triangle C = C(θ1, θ2) = {r = 1, θ1 ≤ θ ≤ θ2}.

Theorem 5. As T → ∞, u(T ) converges to the function u(∞) defined on the triangle with

boundary values zero on the sides of the triangle r(θ1) and r(θ2) and the value infinity on

the third side C = C(θ1, θ2). Moreover the gradient of u(∞) diverges as one approaches the

third side from the interior of the triangle.

Proof. To show that u(∞) exists we will prove that for any compact set K of the triangle mi-

nus the third side C, the functions u(T ) are all bounded above on K; the bound independent

on T. We will construct a barrier over the graph of the u(T ) on K.

Let ε and δ be small positive numbers (to be determined) and define a geodesic quadri-

lateral in D1 with sides A(δ), B(δ), C(δ), D(δ) defined as follows.

A(δ) = {(r, θ) | ε ≤ r ≤ 1, θ = θ1 − δ},

B(δ) = {(r, θ) | ε ≤ r ≤ 1, θ = θ2 + δ},

C(δ) = {(r, θ) | r = 1, θ1 − δ ≤ θ ≤ θ2 + δ},

and D(δ) is the minimizing geodesic joining (ε, θ1 − δ) to (ε, θ2 + δ), whose length we call

ε1. Let F denote the convex domain on D(1) bounded by this quadrilateral.

Let h > 0 and denote by R(1, h) and R(2, h) the Jordan curves which are the boundary

of A(δ)× [0, h] and B(δ) × [0, h] respectively. The area of each of these disks is (π/2− ε)h.

Consider the piecewise smooth annulus with boundary R(1, h) ∪ R(2, h) : F ∪ F (h) ∪ (C ×

[0, h]) ∪ (D × [0, h]) (we omitted δ in C and D). The area of this annulus is at most

π + π + l(δ)h + ε1h, where l(δ) = (θ2 + δ) − (θ1 − δ). Clearly one can choose ε small so

that for all δ sufficiently small and h sufficiently large, this annulus has less area than the

two disks R(1, h) ∪ R(2, h). By the Douglas criteria for the Plateau problem, there exists a

least area minimal annulus a(δ, h) with boundary R(1, h) ∪ R(2, h). Henceforth, we assume

h large enough so that a(δ, h) exists.

Observe that for each T > 0, the surface a(δ, h) is above the graph of u(T ), in the

following sense. Vertically translate a(δ, h) a height T (so every point of a(δ, h) is then
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above height T ). Now continuously lower the translated a(δ, h) back to height zero. By

the maximum principle there is no point of contact between the surfaces as one goes from

height T to height zero; we chose δ > 0, so the boundary of a(δ, h) never touches the graph

of u(T ). Thus a(δ) is above u(T ) in the sense that if a vertical line meets both surfaces then,

the point of u(T ) is below the points of a(δ, h). Now we can let δ tend to zero to conclude

a(h) = a(0, h) is also above the graph of u(T ), and by the boundary maximum principle, at

each interior point of the vertical lines on Γ(T, θ1, θ2), the tangent plane to a(h) is “outside”

the tangent plane to the graph of u(T ).

This barrier a(h) shows that u(T ) is uniformly bounded over some compact domain of

∆ \ C : the domain covered by a(h). The idea is now to show that these compact domains

exhaust ∆ \ C as h → ∞.

For h2 > h1, one can use a(h1) as a barrier to solve the Plateau problem to find a least

area annulus a(h2) with boundary R(1, h2)∪R(2, h2). So as one translates a(h1) vertically a

height h2−h1, there is no point where the two surfaces touch; interior or boundary. Thus as

h2 → ∞, the angle the tangent plane of a(h2) makes along the vertical boundary segments,

is controlled by that of a(h1).

For each positive integer n, let M(n) be the surface a(2n) translated down a distance n.

A subsequence of the M(n) converges to a minimal surface M(∞). Notice that a(h1) can

be translated up to +∞, and down to −∞, without ever touching M(∞). So there is some

component M of M(∞) whose boundary equals the vertical lines L1, L2 passing through the

endpoints of C; L1∪L2 = ∂(C×R). Moreover the maximum distance between M and C×R

is strictly less than π/2. To complete the proof of theorem 5, it suffices to show M = C ×R.

Recall that D1 is the hemisphere of S(0) containing the spherical triangle ∆. Choose a

point p ∈ ∂D1 \ C and let α(t) denote the family of geodesic arcs of D1 joining p to −p,

such that α(0) = α, α(1) is the geodesic arc of ∂D1 joining p to −p that contains the arc C,

and let α(t) foliate the half-disk E of D1 between α(0) and α(1), 0 ≤ t ≤ 1. Denote by F (t)

the minimal surfaces α(t)×R, 0 ≤ t ≤ 1. The F (t) foliate the region E ×R; the foliation is

singular at {p} × R and {−p} × R.

Now M ⊂ ∆ × R ⊂ E × R. As t goes from 0 to 1, the family of surfaces F (t) can not

touch M at some first t < 1, since M would then equal F (t) by the maximum principle. So

either M = C ×R or there is a smallest positive t < 1 such that M is asymptotic to F (t) at

infinity. The latter case is impossible. If not, let xn ∈ M be such that dist(xn, F (t)) tends

to zero as n → ∞. Let Σ(n) be the minimal surface M vertically translated so the height

of xn becomes zero. A subsequence of Σ(n) converges to a minimal surface Σ that touches

F (t) at some point (at height zero) so Σ = F (t).

Consider a compact domain K of F (t), K a positive distance from ∂F (t), and choose K

so that the vertical projection on D1 contains points of E \ ∆. Domains of M(n) converge
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uniformly to K as n → ∞, so there are also points of M(n) whose vertical projection is

in E \ ∆. This is impossible since M(n) and M have the same vertical projection. This

completes the proof of theorem 5. 2

Now we will see that the end structure of the surfaces we constructed is typical.

Theorem 6. Let M be a properly embedded minimal surface in S2 × R of finite topology.

Then M has exactly one top end and one bottom end, or M = S(t) for some t.

Proof. M of finite topology means M is homeomorhic to a compact surface minus a finite

number of points. A neighborhood of each such point in M can be chosen homeomorhic

to an annulus. If M is bounded above or below, then the height function would have an

extremum on M and then M equals some S(t) by the maximum principle for harmonic

functions. So we can assume M has at least one annular end going up and another annular

end going down. It suffices to prove that there can not be more than one end (going up

say). Suppose on the contrary that A1 and A2 are annular ends going up.

By Proposition 1, we can assume A1 and A2 both meet each S(t) transversally in exactly

one Jordan curve C1(t) and C2(t) respectively, for each t ≥ 0.

Denote by E(t) the annular region of S(t) bounded by C1(t) ∪ C2(t). For each integer

n, let B(n) be the union of the E(t), 0 ≤ t ≤ n. Notice that ∂B(n) is a good barrier

for solving a Plateau problem in B(n). Also, C1(0) and C1(n) are homologous in B(n) but

neither C1(0) nor C1(n) is homologous to zero in B(n). Thus there is a least area connected

annulus Σ(n) in B(n) with boundary C1(0) ∪ C1(n).

By standard curvature estimates, a subsequence of the Σ(n) converges to a complete

stable minimal annulus Σ, with ∂Σ = C1(0).

As before, we can assume Σ meets each S(t) transversally in one Jordan curve γ(t).

Now we observe that the area of Σ is infinite. Let ν be the upward pointing conormal

vector along γ(t). The height function h is harmonic on Σ hence has a constant non zero

flux across each γ(t). This flux is ∫

γ(t)

|∇h| ds,

where s is arc length along γ(t).

By the coarea formula, the area of Σ is
∫ ∞

t=0

(∫

γ(t)

ds

|∇h|

)
dt ≥

∫ ∞

t=0

(∫

γ(t)

|∇h|ds

)
dt = ∞.

However by the work of Doris-Fischer Colbrie [12] and Silveira [40], there is no stable

minimal annulus in S2 × R of infinite area. The stability operator is L = ∆−K + q, where

K is the intrinsic curvature of Σ, q = T +
|A|2

2
, T the scalar curvature of S2 ×R (which
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is one) and A the second fundamental form. Stability yields a positive function u satisfying

L(u) = 0. The metric u ds = ds̃ is then a complete metric on Σ whose curvature K̃ is non

negative and given by

K̃ =
1

u2

(
q +

|∇u|2

u2

)
.

Then ∫

Σ

qdA ≤

∫

Σ

K̃ dÃ < ∞,

so
∫
Σ

TdA < ∞, which contradicts infinite area.

2

The techniques used in Theorem 6 also give information about intersection of minimal

submanifolds.

Theorem 7. . Let Σ1 , Σ2 be properly embedded minimal submanifolds of S2 × R. Then

Σ1 ∩ Σ2 6= ∅ or Σ1 = S(t1), Σ2 = S(t2) for some t1 , t2 .

Proof. We know that a properly immersed minimal submanifold is either some S(t), or

meets each S(t) in a non empty compact set. We can assume the latter case holds for both

Σ1 and Σ2 . We will assume Σ1 ∩ Σ2 = ∅ and arrive at a contradiction.

Elementary separation properties imply Σ1 ∪ Σ2 = ∂B, B a domain of S2 × R. Then

Σ1(t) ∪ Σ2(t) = ∂B(t) for each t such that Σ1 and Σ2 meet S(t) transversally. Σ1(t) is

homologous to Σ1(0) in B ∩ [0, t] and Σ1(t) is not homologous to zero in B ∩ [0, t]. Thus

Σ1(t)∪Σ1(0) bounds a connected least area minimal surface Σ(t) in B∩[0, t]. A subsequence

of the Σ(t) as t → ∞, converges to a stable minimal surface Σ with ∂Σ = Σ1(0). As in the

proof of Theorem 6, no such stable surface exists; which proves the theorem. 2

Remark 3. Notice that the above argument shows one need not assume finite topology in

theorem 6.

We can say something for properly immersed surfaces.

Theorem 8. Let Σ be a properly immersed minimal surface in S2 ×R. Then Σ meets every

flat vertical annulus.

Proof. Let A = C(0) × R be a flat vertical annulus and assume A ∩ Σ = ∅. We can assume

(after a possible rotation of the S factor) that dist(A, Σ) = 0; so some sequence of points in

Σ is converging to A at infinity. Let F be a (small) compact piece of an unduloid, chosen

so that ∂F ⊂ A and F ∩Σ = ∅. Such an F can be found since Σ is properly immersed and

unduloids exist arbitrarily close to A.

33



Now translate F vertically. Since Σ is asymptotic to A at infinity, there will be a first

point of contact of the translated F with Σ. Then Σ equals this translated unduloid by the

maximum principle. This contradicts Σ ∩ A = ∅. 2

We finish this section with a conjecture: a properly embedded minimal annulus in S2×R

meets each S(t) in a circle. There is a 2-parameter family of such annuli, and each properly

embedded minimal annular end is asymptotic to the end of a surface in this family.

9 Theory of minimal surfaces in M × R

In section 8, we discussed minimal surfaces Σ properly embedded in S2 × R. We proved

that Σ has exactly two ends or Σ equals S
2 ×{t} for some real t. Bill Meeks and the author

discovered a very general property concerning ends [24].

Theorem 9. A properly embedded minimal surface Σ in M × R, where M is a compact

Riemannian surface, has a finite number of ends.

This is the only completely general result we know in this subject. It implies that a

compact Riemannian surface, punctured in an infinite set of points, can not be realized as

a properly embedded minimal surface in M × R. Another important property of minimal

surfaces Σ in M × R is their area growth. We proved [24]:

Theorem 10. Let Σ be a properly embedded minimal surface in M × R, M compact, and

assume Σ has bounded curvature. Then Σ has linear area growth. That is the area of

Σ∩ (M × [−t, t]) is at most ct, where the constant c depends only upon M , a lower bound of

the vertical flux of Σ, and an upper bound on the absolute value of the Gaussian curvature

of Σ.

This theorem is important since when one has uniform curvature and area bounds for a

family of properly embedded minimal surfaces then one has precompactness. More precisely,

one obtains:

Corollary 4. If Σ is a properly embedded non compact minimal surface of bounded cur-

vature in M × R, M compact, then any sequence of vertical translations of Σ contains a

convergent subsequence to another properly embedded minimal surface with the same bound

on its curvature.

Of fundamental importance is deciding when a minimal surface is obliged to have bounded

curvature. Using the theory developed by Colding and Minicozzi, together with the tech-

niques developed in [23], we are able to prove:
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Theorem 11. Let Σ be a properly embedded minimal surface in M × R, M compact, and

assume the genus of Σ is finite. Then

1. Σ has bounded curvature,

2. If M has nonpositive curvature then Σ has finite index with respect to the stability

operator and the total curvature of Σ equals 2πχ(Σ);

3. If M has nonpositive curvature and M is not a torus then each end of Σ is asymptotic

to γ × R, where γ is a stable embedded geodesic of M .

We also studied the topological type of properly embedded minimal surfaces and obtained

an unknotting theorem. Recall that a handlebody is a three-manifold with boundary that

is homeomorphic to a closed regular neighborhood of a connected properly embedded one-

dimensional CW-complex in R3 and that a surface Σ in a three-manifold N3 is a Heegaard

surface if it separates N3 into closed complements which are handlebodies.

Theorem 12. (Unknotted Theorem) Suppose S2 is a two sphere endowed with a Riemannian

metric with no stable simple closed geodesics. Then:

1. If Σ is a noncompact properly embedded minimal surface in S2×R, then Σ is a Heegaard

surface for S2 × R;

2. Every Heegaard surface for S2 × R has two ends and if Σ is a connected orientable

surface with two ends, then Σ embedds in S2 × R as a Heegaard surface;

3. Heegaard surfaces of S2 × R are unknotted in the sense that if two such surfaces are

diffeomorphic, then there exists an orientation preserving diffeomorphism of S2 × R

which interchanges them.

10 Constant mean curvature surfaces in M × R

In this section we will discuss some work in progress by myself, Jorge Lira and David

Hoffman. This concerns H-surfaces in S
2 × R and H

2 × R, with H 6= 0. We do not have

many examples now. There are the rotational examples (about a vertical geodesic) discussed

by Pedrosa and Ritoré in [34]. There are H-surfaces that are compact and embedded arising

from isoperimetric problems. That is, fix a volume and minimize area among all surfaces

in M × R bounding the prescribed volume. Then an embedded solution always exists and

has constant mean curvature. However in general we know neither the solution, nor how its
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mean curvature depends on the volume. One way to construct H-surfaces of given topology

is by the glueing techniques of Mazzeo and Pacard [18], [19].

We will not discuss existence of H-surfaces here. A useful tool to study H-surfaces is

the following height estimate.

Theorem 13. Let Σ be a compact embedded H-surface in M × R, H 6= 0 and M a Rie-

mannian surface. Assume ∂Σ 6= ∅ and ∂Σ ⊂ M(0) = M × {0}. Then

1. If M has non-negative curvature, one has |h| ≤ 2/H, where h is the height function on

Σ.

2. If KM ≥ 2τ, (τ < 0) and H2 > |τ |, then |h| ≤
2H

H2 − |τ |
on Σ.

Proof. Without loss of generality, we may suppose h ≥ 0 on Σ. Let M(t) = M × {t},

and notice that vertical symmetry in M(t) is an isometry of M × R. Now consider doing

Alexandrov reflection of Σ through the M(t), coming down to Σ from above. Fot t large,

M(t) ∩ Σ = ∅ and there is a largest T such that M(T ) ∩ Σ 6= ∅. For t slightly smaller than

T , the part of Σ above, M(t) is a vertical graph over part of M(t) and its symmetry through

M(t) is above the part of Σ below M(t); meeting Σ precisely along its part in M(t). Then

as usual in the technique of Alexandrov reflection one decreases t until a first t0 where an

accident occurs. Either M(t0) is a symmetry surface of Σ or t0 ≤
a

2
where a is the maximum

height of Σ above M(0). In any case the part of Σ above height a/2 is a vertical graph.

Thus it suffices to prove the theorem when Σ is a vertical graph, and the 2 does not appear

on the right side of the height estimate.

So assuming Σ is a vertical graph with zero boundary values. Let ~n be the downward

pointing unit normal vector to Σ and define n =

〈
~n,

∂

∂t

〉
. Then n ≤ 0 on Σ. One has 2

equations:

4h = 2Hn

4n = − (|A|2 + Ric(~n))n,

where 4 is the laplacian on Σ and A is the second fundamental form of Σ.

Let c be a positive constant to be determined and define

φ = ch + n

on Σ. On ∂Σ, φ = n ≤ 0, so if 4φ ≤ 0, it follows that φ ≤ 0 on Σ, i.e., h +
n

c
≤ 0 on Σ, so

h ≤ −
n

c
≤

1

c
.

Thus we want to choose c so that 4φ ≥ 0. We calculate
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4φ =
(
2cH −

(
|A|2 + Ric(~n

))
n,

so we want

2cH ≤ |A|2 + Ric(~n) = 4H2 − 2Ke + Ric(~n)

= 2H2 + 2(H2 − Ke) + Ric(~n).

Here Ke is the extrinsic curvature of Σ, i.e;, the determinant of A. Since H2 − Ke ≥ 0,

we want to choose c so that

cH ≤ H2 +
Ric(~n)

2
.

Clearly if Ric(~n) ≥ 0 on M × R, then c = H works. Hence h ≤
1

H
as desired when

KM ≥ 0. If Ric(~n) ≥ 2τ , τ < 0, then

H2 − cH +
Ric(~n)

2
≥ H2 − cH + τ ≥ 0

when H2 − cH ≥ |τ |. Since one has equality when c =
H2 − |τ |

H
, this proves the theorem.

2

Corollary 5. Let M be a closed Riemannian surface whose curvature is bounded below by

2τ , τ a real constant. Let Σ be a properly embedded, non compact, H-surface in M × R,

H 6= 0. Assume H2 ≥ |τ | if τ < 0; Then Σ has at least two ends.

Proof. Assume the contrary, that Σ has exactly one end E. Since M is compact and Σ is

proper, E must go up or down in M × R, but not both. So assume E goes down. Then

there is a largest T such that Σ ∩ M(T ) 6= ∅ and Σ ∩ M(t) = ∅ for t > T .

Now do Alexandrov reflection of Σ with the horizontal surfaces M(s), s ≤ T . As s

decreases from T to −∞, the part of Σ above M(s) is a vertical graph with zero boundary

values (in M(s)) as long as no accident occurs in Alexandrov reflection. By our height esti-

mates an accident must occur for a certain s. But then Σ is compact which is a contradiction.

2

10.1 Flux Fromulae

An important tool for studying H-surfaces are the formulae for the flux of appropriately

chosen ambient vector fields across the surface. An important reference for this material is

[16].
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Figure 9

Let N be a Riemannian manifold and Σ an H-hypersurface of N , Σ compact and with

boundary which may be empty. Let Q be a compact orientable hypersurface of N with

∂Q = ∂Σ. Assume that Q ∪ Σ is the oriented homological boundary of a domain U of N ,

where Q∪Σ are oriented by unit vector fields ~nQ and ~nΣ, which point out of U . Denote by

ν the unit conormal to Σ along ∂Σ, pointing out of Σ along ∂Σ; (see figure 9).

Let Y be a vector field on N , DivY , and divY , denote the divergence of Y in N and

along Σ respectively.

The first variation of the volume of U by the vector field Y is given by

δY (|U |) =

∫

U

Div(Y ) =

∫

∂U

〈Y, ~n∂U〉

=

∫

Σ

〈Y, ~nΣ〉 +

∫

Q

〈Y, ~nQ〉 .

The first variation of area of Σ under Y is given by

δY (|Σ|) =

∫

Σ

div(Y ) =

∫

Σ

div(Y t) +

∫

Σ

div(Y ⊥)

=

∫

∂Σ

〈Y, ν〉 −

∫

Σ

〈
Y, ~HΣ

〉

=

∫

∂Σ

〈Y, ν〉 − H

∫

Σ

〈Y, ~nΣ〉 .
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In the last equality, notice that the sign of H is determined by ~HΣ = H~nΣ; so that H > 0

if ~HΣ points out of U .

This yields

δY (|Σ|+H |U |) =

∫
∂Σ

〈Y, ν〉 +H

∫
Q

〈Y, ~nQ〉.

In the geometric situation we will encounter, it will often be the case that ~HΣ points into

U so that H < 0 in the above formula. For convenience we will take H > 0 when ~HΣ points

into U so the above flux formula then becomes:

δY (|Σ| −H |U |) =

∫
∂Σ

〈Y, ν〉 −H
∫
Q

〈Y, ~nQ〉,

with H > 0 and ~HΣ pointing into U .

An important consequence of this is when Y is a Killing vector field of N (so that the area

and volume do not change) is:

0 =

∫
∂Σ

〈Y, ν〉 −H
∫
Q

〈Y, ~nQ〉.

We now apply this flux formula to properly embedded H-surface Σ in M ×R, that separate

M × R. Let U be the mean convex domain of M × R bounded by Σ. For fixed t, let U(t) =

U ∩ (M × [0, t]), Q(s) = U ∩ (M × {s}) and Q = Q(0) ∩ Q(t). Apply the flux formula to the

killing field Y = ∂
∂t

:

0 =

∫
Σ(0)∪Σ(t)

〈Y, ν〉 −H
∫
Q

〈Y, ~nQ〉

=

∫
Σ(0)∪Σ(t)

〈Y, ν〉 −H(|Q(t)| − |Q(0)|),

where Σ(s) = Σ ∩ (M × {s}). Notice that when M is compact, |Q(t)| is bounded by the area

of M , so the vertical flux-
∫

Σ(t)
〈 ∂
∂t
, ν〉 is uniformly bounded.

Theorem 14. (Linear area growth) Let Σ be a properly embedded H-surface in S2 × R or

H2 × R, contained in a cylinder C × R. Assume C is a circle of geodesic radius less than π
2

when Σ ⊂ S2 × R, and C is any geodesic circle of H2 when Σ ⊂ H2 × R. Then Σ has linear

area growth, i.e., there exists a constant c > 0 such that

|Σ ∩ (M × [0, t])| ≤ ct,

for all t ∈ R+ and M = S2 or H2.

Proof. We will give the proof for Σ ⊂ H2×R, the other case being similar. Let U be the mean

convex domain bounded by Σ, Q(t) = U ∩ (H2 × {t}), and Σ[0, t] = Σ ∩ (H2 × [0, t]). For any
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vector field X on H2 × R, the flux formula on U [0, t] = U ∩ (H2 × [0, t]) can be written∫
Σ[0,T ]

divX −H
∫
U [0,T ]

DivX =

∫
∂Σ[0,T ]

〈X, ν〉 −H
∫
Q(0)∪Q(T )

〈X,~nQ〉,

where ν is the unit conormal along ∂Σ[0, t] pointing out of Σ, and ~nQ the unit normal on

Q(0) ∪ Q(t) pointing out of U [0, t]. Note again that the minus sign in the formula appears in

order to reconcile our assumption that H is a positive number with the fact that that the mean

curvature vector ~H (which points into U) is given by ~H = H~n, where ~n is the outward -pointing

unit normal along Σ.

Choose polar coordinates (r, θ) on H2 such that 0 < r1 < r < r2 and 0 < δ ≤ θ < π on the

circle C. Define vector fields Y = t∂t and Z = tθ∂θ. If we denote nt = 〈~n, ∂t〉, nθ = 〈~n, ∂θ〉,
then straight-forward calculations yield

DivY = 1, divY = 1− n2
t ,

DivZ = t, divZ = t(1− n2
θ

sh2(r)
)− θntnθ.

Combining the first pair of equations with the flux formula applied to Y , we have∫
Σ[0,T ]

(1− n2
t ) − H |U [0, T ]| =

∫
∂Σ[0,T ]

〈t∂t, ν〉 − H

∫
Q(0)∪Q(T )

〈t∂t, ~nQ〉.

The right-hand side becomes

T
[ ∫

∂Σ(T )

〈∂t, ν〉 −H |Q(T )|
]
,

where Σ(t) = Σ ∩ (H2 × {t}). Note that since ∂t is a Killing field, then (again by the flux

formula) the term in brackets is independent of T , while |U [ 0, T ]| is bounded by |D|T , where

D is the disk bounded by the circle C. We conclude that for some constant c,∫
Σ[0,T ]

1− n2
t ≤ cT.

Now write Σ = Σ1 ∪ Σ2, where Σ1 = {p ∈ Σ | n2
t ≤ 1− δ}, Σ2 = {p ∈ Σ | n2

t > 1− δ}. By

the above inequality, we see that

δ |Σ1 ∩ Σ[0, T ]| ≤
∫

Σ1∩Σ[0,T ]

1− n2
t ≤ cT,

and thus we need only prove linear area growth for Σ2.

To this end, consider the surface S defined by the equation tθ = T . Since δ ≤ θ ≤ π, this

surface remains within height range T
π
≤ t ≤ T

δ
. Consider the part Σ̃ of Σ lying between Q(0)

and S. Let Q̃(T ) be the compact region in S bounded by Σ ∩ S, and Ũ the domain bounded
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by Σ̃, Q(0), and Q̃(T ); cf. figure 10.

T
π

T
δ

a = T
π

Q(0)

Q̃(L)

Σ̃+

Σ̃−Σ̃

ŨS

Figure 10

Applying the flux formula to Z = tθ∂θ in Ũ yields∫
Σ̃

divZ −H
∫
Ũ

DivZ =

∫
∂Σ̃

〈tθ∂θ, ν〉 −H
∫
Q(0)∪Q̃(T )

〈tθ∂θ, ~nQ̃〉.

By the formulas above, the left-hand side of this is∫
Σ̃

[
t(1− n2

θ

sh2(r)
)− θntnθ

]
−H

∫
Ũ

t,

while the right-hand side is

T
[ ∫

∂Σ̃

〈∂θ, ν〉 −H
∫
Q̃(T )

〈∂θ, ~nQ̃〉
]
.

Again, ∂θ is Killing, so the term in brackets is independent of T . If the area of Σ is finite, then

the theorem is evident, so we can assume the area is infinite. Since Σ is properly embedded,

the intersection Σ∩ (H2× [n, n+ 1]) is compact for all n. Thus by choosing δ sufficiently small

we can assume that the area of Σ̃− = Σ̃∩Σ[0, a] is less than the area of Σ̃+ = Σ̃∩Σ[a, L], where

a = T
π

and L = T
δ
. Note that if this holds for some T > 0 and δ > 0, it holds for all larger T .

We have ‖~n‖2 = 1 = n2
t + 〈~n, ∂r〉2 + 〈~n, ∂θ|∂θ|〉

2, and |∂θ| = sh(r). So
n2
θ

sh2(r)
< 1 and 1− n2

θ

sh2(r)
=

n2
t + 〈~n, ∂r〉2 ≥ n2

t . Thus on Σ̃2 = Σ2 ∩ Σ̃+, we have n2
t ≥ 1− δ, and 1− δ ≤ 1− n2

θ

sh2(r)
. Hence

(1− δ)T
π
≤ t(1− n2

θ

sh2(r)
) on Σ̃2, and

2ntnθ ≤ n2
t + n2

θ ≤ 1 + sh2(r) ≤ 1 + sh2(r2) on all of Σ̃.
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The former inequality implies

(1− δ)T
π
|Σ̃2| ≤

∫
Σ̃2

t(1− n2
θ

sh2(r)
) ≤

∫
Σ̃

t(1− n2
θ

sh2(r)
).

Employing the flux formula for Z, this last integral is at most

c1T +

∫
Σ̃

θntnθ + H

∫
Ũ

t ≤ c1T + c2|Σ̃|+ c3(
T

δ
)2,

where c2 = π(1+sh2(r2))
2

. We know that |Σ̃| = |Σ̃−|+ |Σ̃+| ≤ 2|Σ̃+|, and so

(1− δ)T
π
|Σ̃2| ≤ c1T + 2c2|Σ̃+|+

c3

δ2
T 2.

Write |Σ̃+| = |Σ̃1| + |Σ̃2|, where Σ̃1 = Σ̃+ ∩ Σ1, Σ̃2 = Σ̃+ ∩ Σ2. Since |Σ̃1| ≤ cT
δ

, the previous

inequality becomes

(1− δ)T
π
|Σ̃2| ≤ c1T + 2c2|Σ̃1|+ 2c2|Σ̃2|+ c3(

T

δ
)2

≤ c1T +
2c2cT

δ
+ 2c2|Σ̃2|+ c3(

T

δ
)2.

Hence

((1− δ)T
π
− 2c2)|Σ̃2| ≤ c4T + c3(

T

δ
)2,

where c4 = c1 + 2c2c
δ

. Finally, choose T0 > 0 and k > 0 so that for T ≥ T0, (1− δ)T
π
− 2c2 ≥ kT .

Then for T ≥ T0, |Σ̃2| ≤ c5T and |Σ[0, a]| ≤ c6T . This completes the proof.

Theorem 15. Let Σ be a properly embedded H-surface in D×R of finite topology. Then Σ has

bounded curvature.

Proof. The proof follows the same lines as the proof of the analogous theorem in R3 [16].

Σ has finite topology so it suffices to show each annular end of Σ has bounded curvature.

Let E be such an annular end and we may assume E goes up. First one proves
∫
E
|A|2 grows

linearly, i.e.,
∫
E

(L,L+ 1) |A|2 is bounded independently of L.

We recall that E(a, b) = E ∩ (S2 × [a, b]) and E(t) = E ∩ (S2 × {a, b}). By the Gauss

equation, we have:

|A|2 = 4H2 − 2detA

KE = KN + detA

where KN is the sectional curvature of the 2-plane tangent to E, N = S2 × R. Hence
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|A|2 = (4H2 + 2KN) − 2KE.

Since 4H2 + 2KN is bounded and E has linear area growth, it suffices to show
∫

E(L,L+1)
KE

is uniformly bounded, to reach the same conclusion for |A|2.

For convenience, we assume H = 1. Let a, b ∈ R+ with b−a > 4. Assume E is transverse

to S(a) and S(b) and ∂E ⊂ S
2(0). Each lacet in S(a) ∩ E is essential (generates π1(E)) or

non-essential. A non-essential loop C in S(a)∩E bounds a compact domain F in Σ and our

height estimates tell us F can go at most a distance 2 from S(a). Similarly for non-essential

loops in E(b).

Let φ : S1 ×R+ → E be a parametrization such that φ(S1 ×{0}) ⊂ S(0). Then φ orders

the essential loops in E(T ) for T > 0. So in E(a), there is a first essential loop α1 and a

first essential loop β in E(b). The annulus in E bounded by α1 and β may not be in S[a, b]

but it is in S[a − 2, b + 2]. Notice that after β (in S1 × R+) there can be no essential loops

going into E(a) since this would contradict the height estimates. Let β1 be the last essential

loop in E(b). Then α1 and β1 bound an annulus Ẽ(a, b) in E with

E(a, b) ⊂ Ẽ(a, b) ⊂ E(a − 2, b + 2).

Since E has linear area growth, there is a constant c such that |E(L, L + 1)| ≤ c for

all L. hence by the coarea formula, for each k, there exists ak ∈ [L + k, L + k + 1], such

that |E(ak)| ≤ c (here |E(ak)| is the length of E(ak)). For notational convenience, suppose

|E(L + k)|) ≤ c, for all k.

Choose an integer k0 > 2c−1. Consider Ẽ(L, L+k0 +4), bounded by an essential curve

α1 in E(L) and β1 in E(L + k0 + 4); each of length at most c. We know that

Ẽ(L, L + k0 + 4) ⊂ E(L − 2, L + k0 + 6).

Now choose a point x on α1 and y on β1. Let ᾱ1 be the minimizing geodesic on E

that is homotopic to α1 relative to x, and similarly define β̄1, the minimizing geodesic on E

homotopic to β1 rel y.

Then ᾱ1 and β̄1 have length at most c. Denote by Ē the annulus on E bounded by ā1

and β̄1. The exterior angle of ᾱ1 (and of β̄1) at x (and y) is at most π, so the total curvature

of Ē is at most 2π by Gauss-Bonnet. By construction

E(L + c, L + k0 + 4 − c) ⊂ Ē ⊂ E(L − 2 − c, L + k0 + 6 + c)

Both the left and right side of these inclusions have uniformly bounded area hence
∫
|A|2

is uniformly bounded on E(L + c, L + k0 + 4− c). We chose k0 > 2c− 1, so this yields that∫
E
|A|2 has linear growth.
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The rest of the proof that E has bounded curvature proceeds as in [16]. We refer the

reader to this paper for the details 2

We finish this section with some questions.

1) Assume M is a compact Riemannian surface and Σ is a properly embedded H-surface

in M × R. Does Σ have a finite number of ends? As we indicated in section 9, this is true

when H = 0.

2) Let Σ be a finite topology H-surface properly embedded in S2×R. Does Σ have linear

area growth or bounded curvature?

3) Suppose Σ is a properly embedded H-surface in S2 × R, contained in D × R, D a

hemisphere of S
2. Is Σ one of the rotational surfaces described by Pedrosa and Ritoré?

4) If Σ is a properly embedded minimal annulus in S2 × R, does Σ meet each S(t) in a

round circle? This question comes from W. Meeks and the author [24].

5) If Σ is an entire minimal graph in H2 ×R, does Σ have the conformal type of the unit

disk in C ? Were there an example whose conformal type is C, the vertical projection would

produce a harmonic surjective diffeomorphisme C → {0 ≤ |z| < 1, z ∈ C} (where the disk

has the hyperbolic metric). The existence of such a map is an open question.

11 Return to minimal surfaces in S
2 × R

We stated in theorem 10, that properly embedded minimal surfaces of bounded curvature in

M×R have linear area growth. Then theorem 11 says that one indeed has bounded curvature

when Σ has finite genus. This is quite different from H-surfaces in a hemisphere×R, H 6= 0.

There one shows first that Σ has linear area growth and using this one proves Σ has bounded

curvature if Σ has finite topology. The conclusions are the same in both cases but the worlds

are quite different.

We now prove an easy case of theorem 10; the general case is more difficult.

Theorem 16. Let Σ be a properly embedded minimal surface of bounded curvature in S2×R,

then Σ has linear area growth.

Proof. Since S2 × R has two ends, it is sufficient to assume that Σ ⊂ S2 × [0,∞) and

∂Σ ⊂ S2 × {0} = ∂(S2 × [0,∞)). For every a ∈ (0,∞], let Ta : S2 × [0,∞) → S2 × R be the

translational isometry Ta((p, t)) = (p, t − a). Suppose now that Σ fails to have linear area

growth in S2 × [0,∞). In this case there exist a sequence of bn → ∞ such that the area of

Tbn
(Σ) = Σ(n) in S

2 × [− 1
n
, 1

n
] is greater than n. Since the curvature of Σ(n) in S

2 × R is

bounded and Σ is minimal and embedded, a subsequence of the Σ(n) converges to a minimal

lamination L of S
2 × R (see for example [23]).
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We assert that L contains S2×{0} as a leaf. Suppose for the moment that there is a leaf

of L which intersects S2 × {0} and is not equal to S2 × {0}. Every such leaf of L intersects

S
2 × {0} transversely at some point by the maximum principle for minimal surfaces. Since

the area of Σ(n) ∩ S2 × [− 1
n
, 1

n
] goes to infinity, we may assume, after possibly going to a

subsequence, that there exists a leaf L of L which is either a limit leaf or has infinite area

multiplicity as a limit of the Σ(n). Furthermore, L can be chosen so that there is a point

p ∈ L ∩ (S2 × {0}) where the tangent plane to L is not horizontal. For some small geodesic

ball B in S2 ×R centered at p of radius r, the tangent planes to L∩B make a positive angle

of at least θ0 with the horizontal. The point p can also be chosen so that, after choosing

a subsequence, the area of Σ(n) in B is at least n and the tangent planes to Σ(n) in B

make an angle of at least θ0/2 with the horizontal. It follows that the fluxes of the Σ(n)

across S
2 × {0} are unbounded. But the flux of Σ(n) is equal to the flux of Σ which gives a

contradiction and thereby proves our assertion. Now a standard holonomy argument shows

that each of the leaves Σ(n) is compact for n large, a contradiction. That is S
2 × {0} is

simply connected and compact, so for n large one can lift S2×{0} into the leaves Σ(n). The

image of this lifting is open and closed in Σ(n), hence Σ(n) is a sphere; a contradiction.

2
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