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PREFACE

These notes correspond to the three-months graduated course
“Teoria Geométrica das Folheagdes” addressed by the first au-
thor in the Federal University of Rio de Janeiro in 2001-02. Some
{but not so much) background in Algebra, Dynamical Systems,
Riemannian Geometry and Topology is required. See the inter-
esting books of (8, 9, 23, 29, 30] for such a background. See also
the books (4, 15, 22] for references concerning foliations. I would
like to thank Prof. Bruno Scérdua for giving me the opportu-
nity to help the above-mentioned course. I would like to thank
Alexandre Teixeira Behague by his valuable help in taking the
notes of the first version of this manuscript. I would also thank
Ivan Aguilar, Serafin Bautista, Helisson Coutinho, Alexandre
Soares and Filipe Iério for their collaboration. This work was
partially suported by CNPq, FAPERJ and PRONEX/Dynaimcal
Systems.

C. A, Morales
Universidade Federal do Rio de Janeiro
Rio de Janeiro, June of 2003

The Geometric Theory of Foliations is one of the fields in
Mathematics that congregates several distinet doains: Topol-
ogy, Dynamical Systems, Differential Topology and Geometry,
among others. Its origin dates from the original works of C.
Ehresmann and G. Reeb ([12], [13]) and its great development



has allowed a better comprehension of several phenomena of
mathematical and physical nature. Theorems, nowadays consid-
ered to be classical; like the Reeb Stability Theorem, Haefliger's
Theorem, and Novikov Compact leaf Theorem, are now gearched
for holomorphic foliations. Several authors have began to inves-
tigate such phenomena (e.g. C. Camacho, A. Lins Neto, E. Ghys,
M. Brunella, R. Moussu, S. Novikov and others). The study of
such field presumes a knowledge of results and techniques from
the real cuse, and nice familiarity with the classical aspects of
Holomorphic Dynamical Systems.

These notes are merely introductory and cover only a mi-
nor part of the basic aspects of the rich theory of foliations. In
particular, rigorous proofs for some results and extensive infor-
mation may be searched in the bibliography we give at the end
of the text. Nevertheless, we have tried to shed some light on the
geometry of some classical results and to provide motivation for
further study. Our goal is to highlight this geometrical viewpoint
despite the loss of some formalism. We hope that this text may
be useful to those who appreciate Mathematics, and specially
to students that may be interested in this beautiful and fruitful
field of Mathematics.

This text may be divided in two basic parts. In the first
part, which corresponds to the first eight chapters, we have an
exposition of classical results in the Geometric Theory of (real)
foliations. Special attention is paid to the Reeb Stability Theo-
rems, Haefliger’s Theorem and Novikov Compact Leaf Theorem.
Chapter 9 is dedicated to some possible models of complex ver-
sions for such classical results. Then we arrive at the following
central problem according to this point of view:



What would be a compact leaf theorem for codimension one
complex (holomorphic) foliations?

In order to answer fo such question we try to construct a
parallelism between the real and complex worlds. Our approach
motivates therefore the search of alternative proofs of the com-
pact leaf theorems for real foliations. With this motivation we
expose in Chapter 10 D. Sullivan’s homological proof of Novikov
compact leaf theorem, which is based in a mix of topological ar-
gumentation and invariant measure theory for foliations. This
seems to be an applicable procedure for complex foliations. We
leave the suggestion...

I am very gratetful to Professor Carlos Morales for his friend-
ship and for coauthoring this work. This work was partially
supported by CNPq and Faperj. I want to thank my colleagues
from the UFRJ for their every-day cooperation. Very special
thanks to my wife Aline for her constant support.

Bruno C. Azevedo Scdrdua

Instituto de Matemdtica,

Universidade Federal do Rio de Janeiro
Rio de Janeiro, June of 2003
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Chapter 1

Preliminaries

1.1 Definition of foliation

There are essentially three ways to define foliations. Let M be
a m-dimensional mnanifold, m € N — 0. Let D* be the unit ball
of R* where k € N — 0. Let 0 < n < m be fixed.

Definition 1.1.1. A C" foliation of codimension m — n of M
will be a maximal atlas F = {(U;, X;) }ier of M satisfying the
following properties;

1. X.i(Ui) = D" x Dm.-n;

2. For all 4,5 € I the map X; o0 (X;}™' : X;(U;NU;) —
X;(U;NU;) is C” and has the form

X0 (X)) = (fis(®,9), 9,5 (1))
The number n is called the dimension of F. A plaque of F is

aset o = X '({y = C}) for some C' € R™", The plaques of F
define a relation =~ in M as follows: If 2,y € M then z = ¥ if and

11
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only if there is a finite collection of plaques vy, - - - , o such that
T €,y € o and oy Ny # B forall 1 <4 <k — 1. Clearly
~ is an equivalence and then we can consider the equivalence
class F, of ~ containing z € M. A leaf of F is precisely an
equivalence class L = F, of = (for some z € M). One can
easily prove that every leaf of F is an immersed submanifold
of M. One will see later that a leaf may self-accumulate, and
so, the leaves of F are not embedded in general. Under the
viewpoint of the equivalence = one can define F as a partition
of M by immersed submanifolds L such that for all z € M
there is a neighborhood U diffeomorphic to D™7" x D™ such
that the leaves of the partition intersect U in the trivial foliation
{D* xy:y € D™ ™} on D" x D*. This allows us to state
the following equivalent definition of foliation.

Definition 1.1.2. A CT foliation of codimension m—n of M is a
partition F of M formed by immersed C” submanifolds 7, C M
such that every z € M exhibits a neighborhood U and a C”
diffeomorphism X : U — D™ x D™ such that ¥y € pmn
3F € F satistying

X YD"xy)CF.

The elements of the partition F are called the leaves of F. The
element F, of F containing x € M is called the leaf of F con-
taining x.

Warning: Not every partition of A formed by immersed sub-
manifolds with the same dimension is a foliation as shown the
partition of R? depicted in Figure 1.1 (uote that the condition
for foliation fails at the point z).

The third definition of foliation uses the so-called distin-
guished applications. Let F = {(U;, Xi)} be a foliation of a
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> T - >
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— i . &

Figure 1.1:

manifold Maccording to Definition 1.1.1. Then ¥4, § the transi-
tion map X; o {X;)~! has the form

Xjo (X)) M2 y) = (fisl,9), 915 ().

We have that g;; is a diffeomorphism in its domnain. This
follows from the fact that the derivative D(X; 0 (X;)™Y)(z, y) has
unon-zero determinant equals to'd; f; ;(z, y) - ¢! ;(y). We define for
all ¢ the map g; = I, o X;, where II, is the projection onto the
secoud coordinate (z,y) € D*x D™ — y. One has g; = g, joy;
as (Tlo X;)o X[t = ¢i,; and then gi_‘j' og; =X; = Ilhog; 00, =
HyoX; = g; = g; = giy09; since I, is the identity in D™ ™. We
conclude that a. C* foliation F of codimension m—n of a manifold
M™ is equipped with a covering {U;} of M and C* submersions
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g; : Uy — D™ ™ such that for all 4,7 there is a diffcomorphisin
gi; : D™ — D™ satisfying the cocycle relations

G5 = Gij © i, Gig = Iid.

The ¢;'s are the distinguished applications of F.

Conversely, suppose that M™ is equipped with a covering
{U;} such that for all ¢ there are C™ submersions g; : U; — Dm—n
such that for all 4, 7 there is a diffeomorphisin g; ; satisfying the
cocycle relations above. By the Local Form of the Submersions
we can assime that for all 4 there is a C diffeomorphism X; :
U; — D™ x D™~ guch that

gi =y 0 X,
shiuce
Mo Xjo0(X:)™") = g;0(X)™ = gi 0 o (Xi)7 = gijoll,
we have that the atlas
F={(U, X3)}

defines a foliation of class C” and codimension m - n of M. The
above suggests the following equivalent definition of foliation.

Definition 1.1.3. A C” foliation of codimension m — n of M
is a covering {U; : i € I} of M such that Vi € I there is a
C" submersion g; : U; — D™ such that Vi,7 € I there is
a diffeomorphism g;; : D™ — D™ satistying the cocycle
relations

9 = 9ig © 9 9iq=1d.

The g¢;'s are the distinguished applications of F.
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The last definition leads to several interesting definitions. For
instance, a foliation F of M is said to be transversely orientable
or transversely affine depending on whether its distinguished ap-
plications g;; are orientation preserving or affine. An equivalent
definition will be given in Section 2.2. To distinguish foliations
we shall use the following definition.

Definition 1.1.4. Two foliations F, 7’ defined on M, M’ respec-
tively are equivalent if there is a homeomorphism h: M — M’
sending the leaves of F into leaves of F'. In other words,

The above relation defines an equivalence in the space of
foliations. To illustrate it we can observe that the foliations
Fi, Fy in the band I x R in Figure 1.2 are not equivalent.

¥ K,

Figure 1.2: Non equivalent foliations.
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1.2 Examples of foliations

1.2.1 Foliations derived from submersions

A submersion between two manifolds is a smooth map whose
derivative has maximal rank everywhere, Submersions can be
used to construct foliations in the following way.

Theorem 1.2.1. Let f: M™ — N™ be a C7 submersion between
the differentiable manifolds M, N. Then the level curves

Le=fYe), ceN
are the leaves of @ C” foliation of codimension n of M.

Proof. By the Local Form of the Submersions [9] there are atlas
{(U, X))}, {(V,Y)} of M, N respectively such that

1. X(U) = D" x D™,
© 9. Y(V)=Dmm,
3. Yo foX ! =1II; (see Figure 1.3).

We claim that the collection F = {(U, X)} defines a folin-
tion of M. In fact, let (U, X), (U*, X*) be two elements of the
covering. Then,

H-ZOX*OX_I=Y*OfO(X*)_10X*OX1 =
=Y'ofoX 1=Y'oY loYofoX!=Y'o¥Yloll.
Hence [Tyo (X*o X1} = (Y* oY1) oll, does not depend on = €
D™, This proves that F is a foliation of class C* and codimension
m —n of M. It is clear by definition that the plaques of F are

contained in the level sets of f. This proves that the leaves of F
are precisely the level sets of f and the result follows. O

Let us present some examples to illustrate the above result.
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-1
YofoX

m-n
— T3

Dll‘l-l‘l

DII

Figure 1.3: Foliation ated submersion.

Example 1.2.1. Let M = R? anf f(z,y) = z the projection
onto the r-axis. Clearly f is a C* submersion. Since dim(N) =
dim(AM) = 1 in this case we have that f defines a codimension
one C¥-foliation of M whose leaves are the vertical lines in R2.

Example 1.2.2. Let M = R? and f(z,y) = y — « - z, where
« € R, The level curves of f define a foliation F, in A whose
leaves are the straight-lines ¥ = -2 + ¢, ¢ €R. Observe that 7,
is invariant by the translations (z,y) — (z+k,y+1), (k1) € Z2.
Indeed, iff y =a-z+ctheny+li=a-s+ec+l=a-(z+k)+¢,
where ¢/ = ¢ — a - k proving the invariance. It follows that F,
projects into a foliation of the 2-torus T2 = R%/Z2 still denoted
by F.. See Figure 1.4. When « is irrational then all the leaves
of the induced foliation are lines, and if « is rational then all
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the leaves are circles. We shall call this example as the linear

foliation in T%,

R2

Figure 1.4: Linear foliation on T2.

Example 1.2.3. Let M = R? and f(z,y,2) = o(r?)e?, where
72 = 22+ y® and o is a C* function such that o(0) = 1,x(1) = 0
and ¢'(t) < 0 for all ¢ > 0 (see Figure 1.5).

The map f is a submersion since
Vf(z,y,z) = (2 (+?)we?, 20/ (r¥)ye®, a(r?)e®) = (0,0,0)
sz=y=0anda(r)=0=>z=y=02"+yp* =1

contradiction. Hence V f(x, ¥, z) does not vanish and so f is a
submersion. It follows from Theorem 1.2.1 that the level curves
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Figure 1.5: Graph of a.

f~!(c) form a foliation of class C* and codimension 1 of M.
The leaves of this foliation (i.e. the level curves of f) can be
described as follows.

flz,y,2) = c& alr)e* =c.

If ¢ = 0 then a(r®) = 0 = 2 + y* = 1. Hence the level curve
corresponding to ¢ = 0 is the cylinder 22,42 =1in M. If ¢ > 0
then

a(r®)e® = ¢ = ar?) > 0.

Moreover,
z=K —In(a(r?),

(K =in(c)). When ¢ =1 we have
z = —In(a(r?)).
The graph of the above curve in the plane y = 0 is given by

z = —In(a(z?)).
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We have

cx=0=x=0

20(x%))
a(z?))
as £ — = — 1% or 17. The graph of z is a parabola-like curve.

Hence z = 0 is the solely critical point of z. We have that 2 — oo
The graph of the leaves of F is depicted in Figure L.G.
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Figure 1.6:
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Example 1.2.4 (Fibrations). Let £, B, F be smooth mani-
folds. We say that E is a fiber bundle over B with fibre F if
there is a C* onto submersion 7 : E — B satisfying the follow-
ing properties:

1. #~1(b) is diffeomorphic to F, ¥b € B.

2.¥b € B 3 U C B uneighborhood of b and 3¢ : 7' —
U x F diffeomorphism such that 7! o ¢ = 7, where ! is
the projection onto the first coordinate in U/ x F'.

Clearly the family {z='(b) : b € B} is a C* codimension
dim(B) foliation of E since m is a C™ submersion. Note that
the leaves of the resulting foliation are all diffeomorphic to a
comimon matifold F.

1.2.2 Reeb foliations

There are several folintions which can be called Reeb foliations.
The first ones are the Reeb foliations in the cylinder and the
Moebious band constructed as follows. Define M = [-1,1] x R
and let F be the foliation in A defined by the submersion
g(z,y) = afz?)e? where o is decreasing. Let G; M — M be
given by G(x,y) = (z,¥ + 2). The quotient manifold M/G
is the cylinder. Analogously we can replace G by the map
F(z,y) = (—z,y + 2). In this case the quotient manifold Af/F
is the Moebious band. In each case one can see that F is in-
variant for G and F. Hence F induces a foliation F in either
M/G or M/F. These are the Reeb foliations in the cylinder and
the Moebious band respectively. These foliations are depicted in
IFigure 1.7.

Consider the foliation F constructed in the last example of
Section 1.2 restricted to the solid cylinder {(x,y,2) : 2% +4* <
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Reub foltaion in te eylinder Keeb foliation in the Moubious band

Figure 1.7: : Reeb foliation in the cylinder and Moebious band.

1}. Onc can easily check that the leaves of this foliation are
invariant by the translations (z,y, 2) — (z,y,2 + 1). Note that
the quotient manifold solid cylinder/(x,y,2) — (v,y,2 +1) is
a. solid torus D? x S'. The invariance mentioned above implies
that ' induces a foliation in D? x ST whose leaves are depicted
in Figure 1.8 This foliation is called the Reeb foliation in the
solid torus ST = D? x S'. The Reeb foliation in the solid torus
is used to construct a C* foliation in the 3-sphere S* in the
following way:

Let ST7 and ST, be two solid torus and dencte 85Ty = T
and @ST, = Ty the the corresponding boundaries. Consider a
diffeomorphisin ¢: T, — T sending the meridian curves in Th
into the parallel curves in 7). For instance we can choose ¢ by

first considering
01 x
LP(:E: y) = 10 ’ y
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Figure 1.8: Reeb foliation in the solid torus.

Because @ is lincar and det ¢ = —1 = ¢(Z*) = Z? = ¢ defines
the desired map.

In STy U ST, we consider the equivalence relation given by
y = (x). In other words we use the identification below. =~

z,y€ Int STy and z =y, or
z~y S cr€ Int ST,y € Int STy and z =y, or (1.1)
zel),...,yeTand o(y) =z

Consider the quotient manifold M = (8T, U STz)/ ~ =
ST, U, ST

Claim 1.2.2. M = S5,

To prove this claim we use the
Alexander’s trick: Let By, By two closed 3-balls, §; = 0B,
and S; = 9B, be the corresponding 2-sphere boundaries. If
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Figure 1.9;

@: S) — 8y is a diffeomorphism then B, U, By = 5°.

Now we return to the proof of the claim. Take a region, P
in between two meridians of ST7. Delete P and cap it into the
torus hole in ST2 as explained in Figure 1.9. With this proce-
dure we obtain two 3-balls whose union along the corresponding
boundaries yields S% by the Alexander trick. This proves the
claim. The-Reeb foliation in §* is precisely the one obtained by
the gluing map ¢ setting inside each solid torus the Reed folia-
tion of the solid torus {see Figure 1.10). The above construction
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leads to construct foliations with only one compact leaf in any
manifold of the form ST; U, ST;. For instance if ¢ were the iden-
tity map then the resulting manifold is §% x §'. We have thén
constructed a foliation with just one compact leaf in S2 x S'.
The resulting foliation is clearly different io the one obtained by
the trivial fibration {S% x ¢ : y € 5'} of 52 x S

Exercise 1.2.5. Show that the Reeb foliation in S° cannot be
obtained from a submersion.

Exercise 1.2.6 (Novikov). Show that a vector field transverse
to the Reeb foliation in $* has a periodic orbit. Observe that
there are non-singular C'* vector fields in S* without periodic
orbits {these vector fields are precisely the counterexamples for
the Seifert Conjecture). Use the Novikov Theorem to show that
all vector field transverse to a codimension one C? foliation in a
compact manifold with finite fundamental group has a periodic
orbit.

Definition 1.2.7. A Reeb component of a codimension one fo-
liation F in M? a solid torus ST C M? which is union of leaves
of F such that JF restricted to ST is equivalent to the Reeb
foliation in the solid torus D? x S'. A foliation is said to be
Reebless if it has no Reeb components. We shall see later that
compact 3-manifolds supporting Reebless foliations have infinite
fundamental group.

1.2.3 Lie group actions

A Lie group is a group (G, -) with a differentiable structure mak-
ing the maps

Gx4d — @G G
and
T,y v Ty T

G

N
— 3;"1
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Figure 1.10: Reeb foliation in S°.

differentiable.

Example 1.2.8. (R*,+) is a Lie group. S™\ {point} is a Lie
group via stereographic projection. If C denotes the set of com-
plex numbers (with the complex product), then C* = C — {0}
with the complex number product is a Lie group. S' C C* is a
Lie group when equipped with the product induced by C. Actu-
ally it is a Lie subgroup of C*. T" = St x - .- x S* with the prod-
n copius
uct (21, .,z )2 2l = (a1 2z 2h), zuA €5
is a compact Lie group.!  GL.(R) = {A € Mxn(R),det A #
0} with the usual matrix product is a Lie group. Note that
GLn(R) D R" and GL,(R) % det™'(0). Define O(n) ={the
set of orthonormal matrixes n x n }. Note that (vy,...,%m) €
O(n) = |ju]| = 1 and < v;,v; >= d;; is a compact Lie subgroup

Lactually the product of Lie groups is a Lie group.
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of GLa(R).

Definition 1.2.3. An action of a Lie group G in M is a map
w: G x M — M satisfying the following properties:

1. ple,z) =z for all z € M;
2. olg-h,z)=w(g,plh,z)) forallz € M, g,h € G.

The following notation will be useful: ¢(g,z) = ¢ - z. the
orbit of x € M is the set

O,={g-z:9€G}.
The isotropy group of x € M is the set GG ¢ € G fixing x, namely
G.={9eG:g z=u}
Clearly G is a subgroup of &, for all z € M.

Definition 1.2.4. An action ¢ : G x M — M is locally free if
the isotropy group G; is discrete Vo € M. This is equivalent to
say that the map

g E€EG—g-z,

is an immersion for all z € A fixed.

Note that if the action @ x M — M is locally free if and
only if the orbit O, of z is an immersed submanifold of M with
constant dimension dim(0,) = dim(G). Since G, < G is a closed
subgroup it is itself a Lie group (Cartan’s Theorem) and also the
quotient G/G, has the structure of a differentiable manifold.
Actually we have G; = Gy, Vz,y belonging to a some orbit of p
and we may introduce the isotropy subgroup of an orbit as well,

Given any £ € M we have a natural (diffeomorphisin) identi-
fication G/G, = O, what given an immersed submanifold struc-
ture Oy — M.
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Theorem 1.2.5. The orbits of a C” locally free action of Lie
group of an manifold M™ are the leaves of a C7 foliation of
codimension m — dim{G) of M.

Proof. Let ¢ : G x M™ — M™ be a locally free C” action. Fix
a point zy € M and set n = dim(G). By assumption dim(O,,) =
.

1

Figure 1.11: Locally free action.

Let 53" be a m — n dimensional submanifold transverse
to O,, at z. Let (P,U) be a local chart at the unity e € G
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- such that P(U) = D™ Let B : (D™ 0) — (E77™ %) be a
parametrization of 15", Recalling the notation ¢(g,z) = ¢- z
we define the map 4 : D® x D™ — M by

Az,y) = Pz} - B(y).
The derivative DA(z,y) is given by the expression below:
8y0(P(z), B)) - DP~ (@) + 0.0(P~(z), B(y)) - DB().
Replacing by (z,y) = (0,0) one has
DA(0,0) = Dpxy(e) - DP™H0) + duiple, 20) - B(0)
= Dy,,(e) - DP~'(0) + DB(0).

Let us write v = v, ® v, for a tangent vector v of the product
D? x D™ at, (0,0). Hence

DA(0,0) - v =Dy, (e} - DP70) - v, + DB(0)  vpyn.

Hence DA(0,0) # 0 if v # 0 for the vectors v, = Dy, (e) -
DP-1(0) and v}, _,, = DB(0} - vp_p, are linearly independent in
T.,M. We conclude that A is a local diffeomorphism. By the
Inverse Function Theorem the inverse X = A~! of A is well
defined in a neighborhood U of z. This defines an atlas

F={(X,U)}
of M. Note that for all fixed ¥y € D™ one has
A{(z,p): € D*}) = {P~Yz)- B() : = € D"}.

Hence A({(z,y0) : * € D™}) is contained in the orbit Op(y).

This proves that the plaques of F are contained in the orbits of

the action. As the orbits are pairwise disjoint we conclude that

F is a foliation of M. O
In a similar way one can prove the following.
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Theorem 1.2.6. The orbits O, of a C” action on a manifold M
are the leaves of a C* foliation if and only if the map z € M —
dim(0Q,) is constant. In this case the action is called foliated
action on M.

Example 1.2.9. If G is a Lie group and H is a Lie subgroup
of G then there is a natural action H X G — G by left multi-
plication. This action is foliated since the left translation is a
diffeomorphism and so the orbits of the action form a foliation
of (. Note that the action is locally free & H is discrete.

Example 1.2.10. A C” flow on a manifold M is an action X of
the additive Lie group R in M. Note that X is non-singular <
X is locally free. The orbits of X are either circles or lines. In
the first case the orbit is called periodic and the flow is periodic
if all its orbits are periodic. A manifold is called Seifert if it
supports periodic flows.

Theorem 1.2.11 (Hopf’s Theorem). $° is Seifert.

Indeed, note that $* = {(21,2;) C R2x R?: ||z]]* + || 22]|® =
1}. Define Q: 5' x §% — S by Q(z, (21, 2)) = (x - 21,7 - 22).
One sees that € is an action of S* in S The orbits of @ de-
fine a foliation by circles in S? proving that S% is Seifert. The
resulting flow is called Hopf Fibration of 53, Seifert manifolds
are important in 3-manifold topology since the ones with infi-
nite fundamental group can be described by their fundamental
groups. This fact was discovered by Scott. The fundamental
group classification of Seifert manifolds with finite fundamental
group is false because there are homotopy equivalent lens spaces
which are not homeomorphic.
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1.2.4 R™ actions

We shall describe the actions of the additive group R™ on a
manifold M. Let @: R"” x M - M an action and {e;,...,e,}
be a base of R®. Fix¢=1,...,n and consider a map

Rx M =5 M
(t, %) — Q(te;, x)

This map defines an action of R on M. In fact X'(¢,z) =
Qi - e;,z) is a flow in M. We still denote by X* the vector field

induced by X?, namely

Q(i . Bi,.‘L')

i i _ d % i d
X)) = 3 () and X = |
In this way we have n-vector fields X!, ...‘,X " in M such

that Xi(z) = Q(t- e;,x), VteR.
Now, let v = > #;e; € R™ and & € M be fixed. Then
i=1

Q(v, z) (Ztei, ) = Q(gti‘ehQ(tnem:m))

—“Q(Zte“ ) X, oX. o0 X (z),Vz € M.

Hence, for all action Q: R™ x M — M, there are vetor fields

X',...,X™ on M such that Q(v,z) = X}, 0+ 0 X[ \(z),
VYzxe M, VveR™
Note that X!,..., X™ pairwise commute, namely X} o X7 =

XJ o Xi In fact, we have (X] o XJ)(z) = Q(te;, Xi(z)) =
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Qte, Qsej, ) = Qlte + sejz) = Qse; +te,z) = X o

Xi(). ,
It is known that X, Y commute < [X,Y] = 0.
Conversely, if X!, ..., X™ are pairwise commuting vector fields,

then they define an action € given by

Qv,z) == Xpy(y(x) 0+ -+ 0 Xy (2)-

Definition 1.2.12. The rank of a closed manifold M is the
maximal number of pairwise commuting linearly independent
vector fields defined in M.

Clearly M has rank > 1. Equivalently, the rank of M is the
maximal n such that R™ acts freely in M.

Theorem 1.2.13 (Rank’s Theorem). Rank of $* = 1, Rank
of 8% x §8' =1, Rank of T® = 3.

We shall return to this result in Chapter 7.

1.2.5 Turbulization

Let F a codimension one foliation on a 3-manifold and « be a
closed curve such that y th F. we assume that v is orientable (i.e.
it has a solid torus tubular neighborhood). We modify F along
« as follows. Pick a neighborhood U of 7 and suppose that U is
diffeomorphic to a solid torus S* x D?. Since 7 is transverse to
F we can assume that F intersects the solid torus in the trivial
foliation by discs 8§ x D?, 6 € S™.

We consider the Reeb foliation Fj in S! x D?. We replace
(by surgery) the foliation FNU by Fp in U to obtain a foliation
F. as in Figure 1.12.

The resulting foliation F., is said to be obtained by turbu-
lization of F along v. Note that F, is C" if F is, 0 <1 £ 00,
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Initial foliation F Madified foliation E\'

Figure 1.12: Turbulization.

7 # w. The number of Reeb components of the new foliation F,
is > to the number of components of F.

Example 1.2.14. Consider the foliation by dises 6 x D? in S x
D?, and let v = 5 x {0} be the curve in the middle of ! x D2.
We have that -y th F, and so, we can modify F by turbulization
along v. The compact leaves of the new foliation are T2 and
the non-compact ones are all either planes R? (inside the Reeb
component} or punctured discs D?\{point} (outside the Reeb
component).

Example 1.2.15. Consider F as before and ~ as in Figure 1.13.

Note that -y th F and so we can modify F by turbulization
along v. In this case, F,, is a foliation of §* x D? whose leaves are
T2, R? and D?\{2 points}. Analogously, it is easy to construct a
foliation of S* x D? whose leaves are T2, R? and D? — {n points},

Exercise 1.2.16. Show that the Reeb foliation in S° satisfies: #
Reeb components of F, = # Reeb components of F, ¥+ curve,
vy F.
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Figure 1.13:

Turbulization can be used to prove the following

Theorem 1.2.17. All closed 3-manifolds support C™ codimen-
sion one foliations. On the contrary, the solely closed surfaces
supporting codimension one foliations are T 2 and K2.

1.2.6 Suspensions

A representation of a group G in a group H is a homomorphism
Q:G— H

We shall be interested in the case G = m(B) and H = Dift"(F)
- where B, I are manifolds and Diff"(F) is the group of class ¢
diffeomorphisms in F' endowed with the composition operation.
Suppose that @: m(B) - Diff"(F) is a representation of
m(B) in Diff"(F). Let B =+ B be the universal covering of B.
Recall that m(B) acts in B by deck transformations: o € m1(B),
be B, b=n(b), we have & the lift of @. Define - b = &(1) as
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the action of m) (B) in B. With this action one has B /m(B) ~
71 (B) also acts in B x F via @ in the following way: deﬁne

A:m(B)x (BxF) = BxF

by setting : }
Ale, (b,2)) = (a- b, Q) ().
BxgF=(BxF)/JA— B xg F is a manifold.

Definition 1.2.7. The orbit space of 4,
BxqF=(BxF)/A
is called the suspension of Q.

Example 1.2.18. Suppose that Q(g) = Idp (the identity in F')
for all g € m(B). Then B x g #'is precisely the cartesian product
BxF,

Example 1.2.19. Suppose B = S!. In this case B = R and
m(B)=1Z. Let Q: m(B) — Diﬂ"(F) be a representation. Then
Q)= (f1"=floflo--of with f: F = F being a
diffeomorphism of F. By deﬁm’mon A(n, (b,z)) = (b+n, f ""(3;))
Note that A identifies (0,z) with (04 1, f~'(z)) = (1, f~!(x))
by replacing = by f(z), we have that A identifies (0, f(x)) with
(1, z). '
Note that S! xg F exhibits a flow given by projecting the

constant flow i onto R x F. See Figure 1.14.

The suspension B xg F' is equipped with two foliations Fa,
f&. defined as follows: The action A leads invariant the horizon-

tal and vertical foliations in B x F given by

={Bx f:feF}, F={bxF:beB}
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Hence the action A induces a pair of foliations Fg, 7 in Bxq F
whose leaves L, L' satisfy

L = n(leaf of F), L' = n(leaf of F'),

where m: Bx F — B Xq F' is the quotient map. Note that the

foliations Fg, Fg in B x F are transverse. We shall discuss more
properties of these foliations later on.

¥
BxF U U
N ‘/ \/ \ )
A n

Figure 1.14:

Example 1.2.20. Let B be the bitorus i.e. the genus two ori-
entable closed surface. Then (B} has the following presenta-
tion:

m(B) =< a,b,c,d: aba b tedeMd =1 > .
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Fix f,g € Diff"(5') and define the presentation @: m (B} —
Diff"(S!) by setting

Qla)=f, Ql)=g, Q)=0Q(d)=1Id
and extending linearly. @ is well defined since
Qaba 0 ede™ ) = 1

Let us describe the suspension B xg S! of . On one hand
consider the subgroup G of m(B) generated by b and d, i.e.
G =< b,d >». On the other hand observe that the universal
covering of B, B , is the Poincaré disc. Let Ag : GxBxS' — Bx
S* the action A restricted to G, namely Ag(Z,8) = (9-z, Q{g)(6)
Clearly @ = Id in G and so

(B x 84 /Ag = B/G x S

Consider S? as the unit interval [0, 1] with 0 =~ 1. Figure 1.15
describes the orbit space (B x S1)/Aq of Ag.

The internal surface B/G x 0 in the figure is identified with
the external one B/G x 1. To obtain B xg §' we identify the
intermediate curves a x g(6),a™! x 0,¢ x f(0),c7! x 0 according
to Figure 1.16.

The leaves the resulting foliation F¢ spirals around the sus-
pended manifold according to the maps f, g. The another folia-
tion Fg, yields a foliation by circles of B x5 !, and so, B xg !
is Seifert. We will be back to this example later on.

1.2.7 Foliations transverse to the fibers of a
fibre bundle
In this section we discuss an important class of foliations given

by suspensions, the class of foliations transverse to the fibers of
fibre bundles. Let us first recall some basic definitions:
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B‘.le

ﬁ‘,Gxﬂ

Figure 1.15:

Example 1.2.21 (Fibre bundles). A (differentiable) fibre bun-
dle over a manifold M is given by a differentiable map 7: £ — M
from a manifold E, called total space, which is (the map) a sub-
mersion having the following local triviality property: for any
p € M there exist a neighborhood p € U C M and a diffeomor-
phism @y: 7Y (U) C E — U x F, where F is fixed manifold
called typical fiber of the bundle, such that the following diagram
cominutes
() 2 UxF
lm /' m
U

where m: U x ' — U is the first coordinate projection
m(z, f) = z. In other words wy is of the form ¢y (Z) = (=(%),...)
Such a diffeomorphism ¢y is called a local trivialization of the
bundle and U is a distinguished neighborhood of p € M. Given
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«xI{8)

ax p( Q)

Figure 1.16:

p € M the fiber over p is #7'(p} C E and by the local trivial-
ization each fiber is an embedded submanifold diffeomorphic to

F.

According to Ehresmann Theorem (Theorem 1.2.38) any C*
proper submersion defines a fibre bundle as above. Let us moti-
vate our next definition with an example.

Example 1.2.22 (Suspension of a foliation by a group of
diffeomorphisms). A well known way of constructing trans-
versely homogeneous foliations on fibred spaces, having a pre-
scribed holonomy group is the suspension of a foliation by a
group of diffeomorphisms. This construction is briefly described
below: Let G be a group of C” diffeornorphisms of a differentiable
manifold N. We can regard G as the image of a representation
h: m(M) — Diff"(N) of the fundamental group of a complex
(connected) manifold ﬂ/;f; Considering the differentiable univer-
sal covering of M, m: M — M we have a natural free action
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7y m (M) x M — M, ie, m(M) C Diﬁr(ﬂ) in a natural way.
Using this we define an action H: m (M} X MxN-—>MxN
in the natural way: H = (w1, h). The quotient manifold M xN —
M, is called the suspension manifold of the 1epresentat10n.h
The group G appears as the global holonomy of a natural fo-
liation Fy, on M, (see [4]). We shall explain this construction
in more details. Let M and N be differentiable manifolds of
class C7. Denote by Diff (V) the group of C” diffeomorphisms
of N. Given a representation of he fundamental group of M in
Diff"(N), say h: m (M) — Difi"(N}, we will construct a differ-
entiable fiber bundle M), with base M, fiber N, and projection
P: M, — M, and a CT foliation Fj, on My, such that the leaves
of F are transverse to the fibers of P and if L is a leaf of F
then P |g: L -» M is a covering map. We will use the notation
G = h(m(M)) C Aut(N).

Let m: M — M be the C” universal covering of M. A cov-
ering automorphism of Mis a diffeomorphisms f of M that
satisfies m o f = 7. If we consider the natural representation
g: m(M}— Aut(M ) (see [29]) then we know that:

(a)g is injective. In particular g(mi(M)) is isomorphic to
m (M).

(b)g is properly discontinuous (see [29]).

We can therefore define an action H: m (M) x Mx N —

M x N in a natural way:
Haoem(M),meMengeN then

H(a, 1, n) = (g(a) (), A(@)(n)).

Using (b) it is not difficult to see that H is properly discon-
tinuous. Thus, the orbits of define an equivalence relation in
M x N, whose corresponding quotient space is a differentiable
rnamfold of class CT.
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Definition 1.2.23. The manifold ﬂ%{v_ = M, is called the sus-
pension manifold of the representation h.

Notice that A}, is a C” fiber bundle with base M and fiber
N, whose projection P: M, ~+ M is defined by

P(O(m,n)) = =(m)

wlere O(, n) denoted the orbit of (7, n) by H.

Let us see how to construct the foliation 7). Con31de1 the
product foliation F of M x N whose leaves are of the form M x
{n}, n € N. It is not difficult to see that 7 is H-invariant
and therefore it induces a foliation of class C* and codimension

= di}_n(N )y Fn on M), whose leaves are of the form P(E),

where L is a leaf of F.

Definition 1.2.24. F,, is called the suspension foliation of F by
h.

The most remarkable properties of this construction are sum-
marized in the proposition below (see [15], [4]}:

Proposition 1.2.25. Let 7y, be the suspension folialion of a
representation h: m (M) — Diff " (N). Then:

(i) F is transverse to fibers of P: M, — M. Moreover, each
fiber of P cuts all the leaves of F,.

(ii) The leaves of Fy, correspond to the orbits of h in N in o 1-to-1
correspondence.

(iii) 2 If L is a leaf of Fy corresponding to the orbit of a point
p € N, then P L — M is a covering map (here L is equipped
with its natural intrinsic structure).

2Due to (iii) we call G the global holonomy of the suspension foliation

Fi.
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This implies that fized a point p € M and ifs fiber N, =
P~Y(p), we obtain by lifting of paths in m1(M, p), to the leaves of
Fi, a group G, C Diff"(N,,), which is conjugate to G.

(iv) There exists a collection {yi: Ui — N}, of submersions
defined in open subsets U; of My, such that

(ﬂ,) Mh = U Ui
iel

(b) .7-";,]0,' is given by y;: Ui — N.
(c) if U N U; # ¢ then y; = fij oy for some fi; €G.

(d) if L is the leaf of Fu through the point ¢ € N, then the
holonomy group of L is conjugate o the subgroup of germs at g
of elements of the group G = h{m(M, p)) that fiz the point q.

Conditions (i) and (ii) above motivate the following defini-
tion:

Definition 1.2.26. Let§: = (n: E £ B) be a fibre bundle. A
foliation F on E is said to be transverse to the fibrationm: E £,
B it:

(1) F is transverse to each fiber of 7

(2) dimF -+ dim F = dim F

(3) For each leaf L € F the restriction x| : L — Bisa covering
map.

In this case F is conjugate to the suspension of the global holon-
omy representation @: m(B) — Aut(F) of F. According to
Ehresmann ([4]) conditions (1) and (2) imply (3) when the fiber
F' is compact.

Using the holonomy lifting paths given by condition (3) below
we can easily prove:
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Theorem 1.2.27. Let F be a foliation of class C7 transverse
to the fibers of a fibre bundle £: = (n: FE N B). Then F
is conjugate to the suspension of a representation ¢: m(B) —
Aut(F), indeed the global holonomy of F is naturally conjugate
to the image p(m(B)). Conversely if F is the suspension of
a representation @: m,(B) — Aut(F) for some base manifold B
and some fiber manifold F then there is a fibre bundle space £: =
(w: E i B) such that F is transverse to the fibers of £ and

the global holonomy of F is conjugate to the image o{m (B)) <
Aut(F).

Recall that a discrete finitely generated group is always conju-
gate to the fundamental group of a manifold. Thus, suspensions
of proup presentations and foliations transverse to fibre bundles
are in natural bijection. As a natural complement to the above
results we have:

Theorem 1.2.28. Two representations p: m1(B) — Aut(F)
and @: m(B) — Aut(F) are conjugate if, and only if, there
is a fibered diffeomorphism ©: E — E (ie, © is the lift of a
diffeomorphism 6: B — B such that 70 © = f o7 for the pro-
jectionsm: E — B and 71 E B), with the property that © is
a conjugacy between the suspension foliations in F and F of @

and ¢ respectively.

1.2.8 Transversely homogeneous foliations

G be a Lie group and denote by G the Lie algebra of G. The
Maurer-Cartan form over G is the unique I-form w: TG — G
satisfying:

o ) w(X)=X,VX€G
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e ii}) Lg'w = w, Vg € G; where Lg: G — G is the left-
translation z € G+ g3 € G, g € G fixed.

The 1-form w satisfies the Maurer-Cartan formula dw+3[w, w] =
0. In fact, given X,Y € G we have

dw(X,Y) = Xw(Y) - Yuw(X) - w([X,Y]) = ~[X,Y].
But
[w,w}(X,Y) = [w(X),w(Y)] = [w(Y), w(X)] = 2[X, Y]

because X and Y belong to G and w(X) =X, VX €.

Thus we have dw(X,Y) + 3w, w}(X,Y) =0, VX, Y € G which
proves the Maurer-Cartan formula.

Let now {Xy,...,X.} be a basxs of G. We have [X;,X;] =
Zc" X, for some constants cf; € C, skew-symmetric in (4, 7)-

The cf;'s ave the structure constants of G in the basis {X1,..., Xa}
Let now {wy,...,wy} be the dual basm to {Xy,...,Xn}, with
w; left—invariant We have dw, = E c,uwI Awj and then it is

"IJ
easy to see that w = Y wr X} is the Maurer-Cartan form of G.

k
We recall the following theorem of Darboux and Lie:

Theorem 1.2.29 ([15] pag. 230). Let o be o differentiable 1-
form on a manifold M taking values on the Lie algebra G of G.
Suppose o satisfies the Maurer-Carten formula do + %[a, a] =0.
Then « is locally the pull-back of the Maurer-Cartan form of G
by e differentiable map. Moreover the pull-back is globally defined
if M is simply-connected; and two such local maps coincide up
to a left transiation of G.

As an immediate corollary we have:
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Corollary 1.2.30. Let ay,..., o, be linearly independent dif-
ferentiable 1-forms on a manifold M. Assume that we have
doy. = —% Zcfjai A o where the cfj s are the structure con-
if

stants of a Lie group G in the basis {X|,...,X,}. Then, lo-
cally, there exist differentioble maps m: U € M — @ such that
o = wwy, Vi where {w1,...,w,} is the dual (left-invariant)
basis of {X1,...,Xn}. Moreover if M is simply-connected then
we can teke U = M and if m: U — G, 7: U — G are two such
maps with UNU # ¢ and connected then we have T = Lgow
for some left-translation Lg of G.

This way we may construct foliated actions of Lie groups
on manifolds by defining suitable integrable systems of 1-forms
on the manifold. This gives rise to the notion of transversely
homogeneous foliations which is a very important notion in the
theory.

Definition 1.2.31 (Transversely homogeneous foliation).
A foliation F has a homogeneous transverse structure if there
are a complex Lie group G, a connected closed subgroup H < G
such that 7 admits an atlas of submersions y;: U; C M — G/H
satistying y; = gi; o y; for some locally constant map gii: Uin
U; — G for each U; NU; # 0. In other words, a suitable atlas of
submersions for F has transition maps given by left translations
on G and submersions taking values on the homogeneous space
G/H. We shall say that F is transversely homogeneous of model
G/H.

Example 1.2.32. Let F' = G/H be an homogeneous space of
a complex Lie group G (H 4G is a closed Lie subgroup). Any
homomorphism representation @: m(N) — Diff(F) gives rise
to a foliation J, on (N x ) /® = M, which is transversely
homogeneous of model G/H.
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Example 1.2.33. G = Aff(R") = GL,(R) x R" acts on R" by
(A,B),X — AX + B and the isotropy subgroup of 0 € R” is
GL,(R) x 0 = H so that G/H = R™ and then the transversely
homogeneous foliations of type Aff(R™)/ GL,(R) are the trans-
versely affine foliations.

Example 1.2.34. The real projective unimodular group G =
PSL (2, R) acts on RP(1) by

((:ﬂ u) ) Tz 4 u
22—
Y v yz -+ v
and the isotropy subgroup of 0 € R is naturally identified with
H = Aff(R), so that G/H = RP(1) and then the transversely

homogeneous foliations of type PSL(2, R}/ Aff(R) are the trans-
vergely projective foliations.

Now we introduce the concept of development of a trans-
versely homogeneous foliation which is a basic tool in the study
of these foliations:

Proposition 1.2.35. Let F be a transversely homogeneous fo-
liation of model G/H on M. Then there exist a homomorphism
h: m (M) -» G, a transitive covering space p: P — M corre-
sponding to the kernel H = Ker(h) C m (M) and o submersion
&: P — G/H satisfying:

i) @ is h-equivariant which means that ®(a o z) = h(z) o P,
Vere P, Vaem(M).

ii) The foliation p*F coincides with the foliation defined by the
submersion ©.

Such a construction is called a development of the folintion F
(see [13] pag. 209 for a detailed definition).
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We will give an idea of the proof of the above Proposition 1.2.35
according to [13]:

Let {yi: Ui — G}, be a homogeneous transverse structure for
F in M. Denote by fi; the transformation fy;: G/H — G/H
such that y; = fi;0; in Uy NU; # ¢.

We can identify f;; in a natural way as an element of G. Now let
E be the space obtained as the surn of the U; x G, ¢ € 1. Denote
by G the subgroup of G generated by the fi;’s. Consider in
E the equivalence relation identifying (z,y) € U; x G, where
z el nt, with (.’L‘,fij Og) S Uj x G.

Denote by P the quotient space £/ ~. Then P is a princi-
pal fibre bundle p: P — A having a discrete structural group
G C G, P being defined by the cocycle (U;, fi;). The transitive
covering space p: P — M has Gy as group of automorphisms so
that there is a natural homomorphism h: m (M) — G, C G.
Now in each U; x G we can construct a holomorphic submersion
Pi: Uy x G — GfH by $(z,9) = g(y:(z)). The submersion
®: P — G/H is constructed by gluing the submersions ®;. Fi-
nally we remark that if P is not connected we can replace this
space by one of its connected components. - |

Corollary 1.2.36. Let F be a non-singular transversely homo-
negeous foliation on a simply-connected manifold M. Then F is
given by a smooth submersion f: M — G/H.

Proof. This corollary is a straightforward consequence of the
Darboux-Lie Theorem above but can also be proved by the use
of Proposition 1.2.35: In fact, if M is simply connected in Propo-
sition 1.2.35 then we have H = Ker(h)<m; (M) = 0so that H =0
and then P = M. Thus Corollary 1.2.36 follows from ii) of this
same proposition. a

Remark 1.2.37. (i) a € = (M) acts over P in the following
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way: Given z € P we define o - z as the end-point of the lifting
&, of the path o, based at the point p{(z). _

(ii) Conditions (i) and (ii) in the statement of Proposition 1.2.35
(equivariance conditions) are essential in the theory of trans-
versely homogeneous foliations.

In Section 1.3 we shall return o examples of transversely
homogeneous foliations.

1.2.9 Fibrations and Ehresmann’s Theorem

The fibers of the bundle are the leaves of a foliation on £. Such
a foliation is also called a fibration. This situation is quite usual
as shows the following result:

Theorem 1.2.38 (Ehresmann). Let f: M — N be a C? sub-
mersion which is a proper map (i.e., f~YK) C M is compact
YK C N compact). Then f defines a fibre bundle over N.

Proof. The proof is based in the construction of suitable com-
pactly supported vector fields. Let ¢ € M be given and let
F = 1!(g) C E. Then F is a compact submanifold of E.
Choose local coordinates (¢;,...,) in a neighborhood U of ¢
in M, with t;(g) =0, j=1,...,m. We take U small enough so
that we have:

(i) #~Y(U) is relatively compact (recall that = is proper) in
E.

(ii) There exist smooth vector fields Xy, ..., Xm in 7=1(U)

a
such that m,(X;) = 3
3

Claim 1.2.8. We have n(¥(y,p)) =y VY{y,p) e Vy x F.
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Proof. Given y € V; and p € F' denote by v(z) the solution of
the ordinary differential equation v'(z) = Z,{(z)) with initial
condition (0) = p which is defined for all z € D(2). Then
U(y,p) = (1) by definition. We have

V(2) = Z,(v(2)) = D_t;(y) - X;(1(2)).

i=1

Therefore
m (Y (2)) = it-(y) 2 that is
j=1 ] 8tj’ H]
('n‘o'y (2)) = Zt (v) in R™.

Therefore, (mroy)(z) = (moy)(0) = z-(t1(¥),. .., tw(y)) and then

(o)1) = #(p) + (£1(y),. .., t(y)) = (since w(p) corre-
sponds to the origin and (¢;(y), ..., tm{y)) to ¥ in the local chart
(tl: e )tm))

w(v(1})) =y and therefore quad 7{¥{y,p)) = v. O

It remains to prove that ¥(V; x F) = 7~!(V}) for sufficiently
small V] 3 q. Since oW = 7, we have a(¥ (V) x #}) C V] so that
U(V; x F) C w7 1(V}). If we do not have equality for sufficiently
small V) then we obtain a sequence g, € U with ¢, — ¢ and such
that 7~ !(g,) contains some point p, which does not belong to
the image of ¥ and in fact {p,} avoids some neighborhood W of
I"in E. Therefore, since ¥ is proper, {p,} has some convergent
subsequence say, Py, P But this implies 7(py;) P m(p).

For any point ¥ € U we consider the vector fleld Z, :=
t(y). X1 + -+ + tn(y).Xm, defined in 7= }(U). In particular
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Z, = 0 and its flow is complete (defined for all real time). Since
Z, depends differentiably on y € U we have the following:

Lemma 1.2.39. There exists a neighborhood ¢ € V C U such

that:
(i) for each y € V, the flow of Z, is defined in

D(2) x (V) (where D(2) = {z € C;|z] < 2}),
giving a smooth map

@¥: D(2) x 7 H{(V) - 7 H{U)
(t.p) — ¢*(t,p)

with ¥(0,p) =p, Vper (V)

{where t is the real time)

a .
_SDJ(t:p) = Zy((p"'(to,p).
ot o)

(ii) For some neighborhood ¢ € Vi C V we have p¥(t,p) € V,
VYpeWV, Viwihl|t]<L

Now we may consider the time one flow map
T:VixF—E, Yyp:=¢(l,p)el

Then 9 is holomorphic and we have an inverse for 3, which is
given by

POV x Fy - Vix F, ¥ (p):=’(-1,p).

This inverse is well-defined because of (i) and (ii) above so that
gn; — m(p) and m(p) = ¢. Thus p € F what is not possible for
pn € E\W, Vn. This contradiction show that we must have
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¥(Vi x F) = #71(W) for every sufficiently small neighborhood
Wi of g in M. O

This is the case if M is compact for instance. One very im-
portant result concerned with this framework is due to Tischler.

Theorem 1.2.40 (Tischler). A compact (connected) manifold
M fibers over the circle S* if, and only if, M supports a closed
non-singular 1-form.

This is the case if M admits a codimension one foliation F
which is invariant by the flow of some non-singular transverse
vector fleld X on M as we will see in Chapter 8.

1.3 Holomorphic Foliations

A (real) manifold M?" is a complez manifold if it admits a dif-
ferentiable atlas {yp;: U; € M — R*};, whose corresponding
changes of coordinates are holomorphic maps @, o ;' @, (U; N
U;) CR¥™ ~ C* — p(U;NU;) D R™ ~ C" Such an atlas is
called holomorphic.

In this case all the basic concepts of differentiable manifolds
(as tangent space, tangent bundle, etc...) can be introduced in
this complex setting. This is the case of the concept of foliation:

Definition 1.8.1. A holomorphic foliation F of (complex) di-
mension &£ an a complex manifold M is given by a holomor-
phic atlas {p;: U; C M — V; C C*}je; with the compatibil-
ity property: Given any intersection U; N U; # @ the change
of coordinates ; o ;' preserves the horizontal fibration on

Qn ~ Ck X (Cn—k:.
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Examples of such foliations are, like in the “real” case, given
by non-singular holomorphic vector-fields, holomorphic submer-
sions, holomorphic fibrations and locally free holomorphic com-
plex Lie group actions on complex manifolds.

Remark 1.3.2. (i) As in the “real” case, the study of holomor-
phic foliations may be very useful in the classification Theory of
complex manifolds.

(ii) In a certain sense, the “holomorphic case” is more close
to the “algebraic case” than the case of real foliations.

1.3.1 Holomorphic foliations with singulari-
ties

One of the most common compactifications of the complex affine
space C" is the complex projective space CP(n). It is well-
known that any foliation (holomorphic) of codimension k 2 1
on CP(n) must have some singularity (in other words, CP(n),
for n > 2, exhibits no holomorphic foliation in the sense we have
considered up to now.) Thus one may consider such objects:
singular holomorphic foliations as part of the zoology. Thus
one may have consider “singular foliations” when dealing with
complex settings.

Example 1.3.3 (Polynomial vector fields on C?). Let X =
P(z,4)(8/0z) + Q(z,v)(8/8y) = (P, Q) be a polynomial vector
field on C2. We have an ordinary differential equations:
{$=Pmm
§ = Qz,y)
We have local solutions given by Picard Theorem(the existence
and uniqueness theorem of ordinary differential equations):

0(2) = (z(2),y(2))
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Y o) = X))

Gluing the images of these unique local solutions, we can intro-
duce the orbits of X on C2. The orbits are immersed Riemann
surfaces on C?, which are locally given by the solutions of X.
Now we may be interested in what occurs these orbits in “a
neighborhood of the infinity L,”. We may for instance compact-
ify C? as the projective plane CP(2) = C?U Ly, Lo, = CP(1).

e What happens to X in a neighborhood of L,,?
e [s it still possible to consider its orbits around L.,?

We may rewrite X as the coordinate system (u, v) : X(u,v) =
uimY(u, v), m € NU\O where Y is a polynomial vector field.
The exterior product of X and Y is zero in common domain
U:XAY =0. So, arbits of ¥ (or X) are orbits of X (or ¥),
respectively in U. Then the orbits of X extend to the {u, v)-plane
as the corresponding orbits of ¥ along L.,. This same way, we
may consider in the (r, s} coordinate system. These extensions
are called leaves of a foliation induced by X on CP(2). We obtain
this way: A decomposition of CP(2) into immersed complex
curves which are locaily arrayed, as the orbits (solutions) of a
complex vector field. This is a holomorphic foliation F with
singularities of dimension one on CP(2).

Definition 1.3.4. Let M be a complex manifold. A singular
holomorphic foliation of codimension one F on M is given by
an open cover M = | J;, U; and holomorphic integrable 1-forms
w; € A'(U;) such that if U; N U; # 9, then w; = gyw; in U;N
U;, for some g;; € O*(U; NU;). We put sing{F)NU; = {p €
Uj;wi{p) = 0} to obtain sing(F) C M, a well-defined analytic
subset of M, called singular set of 7. M \ sing(F) is foliated by
a holomorphic codimension one (regular) foliation 7.
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Remark 1.3.5. We may always assume that sing(F) C M has
codimension > 2. If (f; = 0) is an equation of codimension one
component of sing(F) N U;, then we get w; = fl'@; where w; is
a holomorphic 1-form and sing(@;) does not contain (f; = 0).

Using this we may also reformulate the definition above as
follows:

Definition 1.3.6. A singular holomorphic foliation F of codi-
mension one on M is given by a pair F = (F!,sing(F)) where
sing(F) C M is analytic of codimension > 2. 7 is a regular
holomorphic foliation of codimension one on M* = M \ sing(F).

Remark 1.3.7. Assume that we have a holomorphic regular
foliation F* on U - \0, 0 € C* U Nsing(F) = \0. Choose
local coordinates (z,%) centered at 0 and define a meromorphic
function f : U —\0 = C, p € U ~\0, as f(p) = inclination
of the tangent to the leaf L, of 7'. By Hartogs’ Extension
Theorem [64],[17] f extends to a meromorphic function f: U-—
C. We may write f{z,7) = 229 4 b€ O(U) and define

e
dy _ b=,y)
dCC - f(ﬂ:,y) - a(a:,y)’

£t

Therefore, F is defined by a holomorphic 1-form w = a(z,y) dy—
b(z,y) dz in U.

that is,

Example 1.3.8. Let f : M — C be a meromorphic function on
the complex manifold M. Then w = df defines a holomorphic
foliation of codimension one with singularities on M. The leaves
are the connected components of the levels {f = const.}.
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Example 1.3.9. Let G be a complex Lie group and ¢ : Gx M —
M a holomorphic action of G on M. The action is foliated if all
its orbits have a same fixed dimension. In this case there exists a
holomorphic regular foliation F on M, whose leaves are orbits of
. However, usually, actions are not foliated, though they may
define singular holomorphic foliations. For instance, an action ¢
of G=(C,+)on M, p:Cx M — M is a holomorphic flows.
We have a holomorphic complete vector field X = %‘fh:(} on M.
The singular set of X may be assumed to be of codimension > 2
and we obtain a holomorphic singular foliation of dimension one
F on M whose leaves are orbits of X, or equivalently, of ¢.

Problem 1.3.10. Study and classify actions of complez Lie
groups G on a given compact complex M.

The general problem above may be therefore regarded under the
stand-point of singular holomorphic foliations theory.

Example 1.3.11 (Darboux foliations). Let M be a complex
manifold and let f;: M — C be meromorphic functions and A; €
€* complex numbers, 7 = 1,...,7. The meromorphic integrable

IMormw =[] f; > )\ig}[ﬁ defines a Darbouz foliation F = F(w)
j=1 " i=1 i

on M. The foliation J has f = [] fJf\ I as a logarithmic first
J=1
integral.

Example 1.3.12 (Riccati foliations). A Riccati Foliation on
C x C is given in some affine chart (x,y) € C x C by a poly-
nomial 1-form w = p(z)dy — (y?c(z) — yb(z) — a(z))ds. Such a
foliation is transverse to the fibration C x C — C , (x,y) — z,
except for a finite number of invariant fibers given in the affine
part by p{z} = 0. This transversality allows to define a global

holonomy of the horizontal projective line Ay = (y = 0) which
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gives us a group of Moebius transformations G C SL(2; C) of
a non-invariant vertical fiber. If @ = 0 then Ay is an invariant
divisor and G is the usual holonomy of the leaf Ag\sing F as
defined above. In this case the elements of G are of the form
f(z) = v Thus the holonomy of the leaf Ag\sing F is solv-
able. In fact, the elements of G are affine maps after the change
of coordinates Z = % on C. Using this remark it is easy to see
that the foliation is transversely affine outside the invariant set
S given by the union of Ay and the invariant vertical fibers given
by the zeros of p(z). If a # 0 then F{w) is transversely projec-
tive outside § = |J {z} x C, which is also invariant. We may
plz}=0
induce a foliation on CP(2) with similar properties.




Chapter 2

Plane fields and foliations

2.1 Definition, examples and integra-
bility

A k-plane field on a manifold M™, 1 < k < m, is a map
x € M — P(z), such that P(z) is a k-dimensional subspace of
T.M. When k =1, P is called line field. A k-plane field P is
C" if all £ € M exhibits a neighborhood U on which there are
defined k linearly independent vector fields X*,...,X*: U <,
TU generating P in U, namely P(z) = Span(X'(z),..., X*(z)).
In this case we say that X*!,..., X* generate P in U.
Example 2.1.1. A C" foliation F of dimension £ defines the
plane field TF(z) of class "~ given by .

TF(x) =T, F..
The plane field NF given by
NF(z) = TeM/T. Fy
is called the normal plane field of F.

57
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Question 2.1.2. Is any plane field P of the form P = T'F for
some foliation F? Locally the answer is yes but in general the
answer is no. This question suggests the following definition.

Definition 2.1.1. A k-plane field P of class C7 is integrable if
P = TF for some C**! foliation F.

2.1.1 Frobenius Theorem

Let X, Y two vector fields in a manifold M and p € M be fixed.
Denote by X; the flow of X and similarly ¥;. X,Y € C7,
r > 2. We define X(Y)(p) = DX_,(Xi(p)) - Y{(Xi(p)). Note
that X7 (X)(p) = X(p), V.

Definition 2.1.3. The Lie bracket of X,Y is the vector field
[X,Y] defined by

d * T
Lx(¥)(p) = [X,Y](p) = | ((X;(V)p)) XY el rz2

In coordinates, [X, Y] has the following form: Writing

X = Zi:a"ﬁ%' Y = ;bia%
one has o 5 5
. s
[X,Y] :; (“"a_a;_ Ié-é) 5—333
When X and Y are defined in an open set of R™, the formula
above yields

[X,Y]=DY(p} X(p) — DX (p) - Y(p).

A vector field X is tangent to a plane field P (denoted by X € P)
if X(z) € P(z) for all z € M.
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Definition 2.1.4. A plane field P is involutive it X, Y € P =
(X,Y] e P.

Lemma 2.1.2. If F is a foliation, then its associated plane field
TF is involutive.

Proof. Let X, Y be two vector fields tangent to T.F. By us-
ing local coordinates defining F one can assume that X,V are
defined in an open set of R™ and if dim F = &, then

X(zy) = (f(2,9),0}, Y(z,y) = (f(z,),0)
_ a:cg 3yg f A f ayf g
=6 %) () - (8 %) @)
=(f0uf~Ff-8:1,0)
Hence [X,Y] € TF and the proof follows. O

Theorem 2.1.5 (Frobenius’ Theorem). Involutive plane fields
are integrable.

The converse holds by the previous lemma. Hence P is integrable
& P =TF < Pis involutive (i.e. X,Y € P=[X,Y] e P).

Since all line fields are involutive one has
Corollary 2.1.6. All line fields are integrable.

Example 2.1.7. Define M = R?® and let P the map given by
P(z,y,z) = Span(X,Y), where X, Y are the vector fields defined
by X(z,y,2) = (1 +y,y,2) and Y(z,9,2) = (—=y1,1 +,0). As
X and Y are orthogonals and non-zero everywhere one has that
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P is a plane field of class C*. Let us use the Frobenius Theorem
to show that P is not integrable. Easy computations yield

DY=(

-1

o o o

0 010
1 0], DX=1{|010
0 0 001
So,

Hence
[X: Y](E)y: Z) = DY(I,'y,Z) 'X(w:y:z) —DX(.’B,y, Z) 'Y(fﬁa'y, Z)

=(-1-2y,—-1,0).
So [X,Y]|€ P e [X,Y]=aX +4Y, for some o, € R. But

[X,Y]=aX +8Y & (-1 -1y,—-1,0)
= ol +y,v,2) + B(-y, 1 +v,0)
-1-2y=c(l+y)— By
&< —l=ay+p(l+y)
0=z

Replacing by (z,¥,2) = (1,0,1) one has o = 0, = —1,
0 = 1, a contradiction. We conclude that {X,Y](1,0,1) ¢
P(1,0,1) and then P is not integrable by Frobenious’s.

Theorem 2.1.8 (Thurston’s Theorem). Every (m—1)-plane
field in a m-manifold M™ 1is homotopic to an integrable plane
field TF, where F is a C™ codimension one foliation of M.
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Example 2.1.9 (integrable systems of differential forms).
Let wy, ..., w, be differential 1-forms of class C” on a manifold M
and assume that they are linearly independent at each point p €
M™. We may consider the distribution A of (n — r)-dimensional
planes defined by A(p) C T,M is

A(p) = {U € TerwJ(p) V= 01.7 = 1,...,T}.

This distribution is called integrable if it is tangent to a —r di-
mensional foliation 7 on M. According to Frobenius Integrabil-
ity Theorem (see also [4]) this occurs if and only if the system of
1-forms is integrable what means that we have dw; Aw) A...Aw, =
0 for all = 1,...,r. This occurs for instance if we have a closed
I-form w with w(p) # 0,V¥p € M. In this case we have a codi-
mension one foliation F on A which is defined by the Pffafian
equation w = 0. The leaves of F are locally given by f = cte,
where f is a local primitive for w.

2.2  Orientability

Remember that a k-form w in M is a map

w: M — AYTM)
p=w(p): oM x - xT,M - R

Remark 2.2.1 (Criterium for orientability of manifolds).
A manifold M™ is orjentable & M™ has a volume form w (i.e.
a m-form w such that w(p} # 0, Vp € M).

Definition 2.2.1. A k-plane field P in M™, 1< k< mis
orientable if there is a covering {U;} of M and k continuous
linearly independent vector fields X, ... X% U, — TU; so
that
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1) P(z) = span{X%i(z),..., X" (z)), Vzel;

Xbi(z)... Xki(x)

We say that P is transversely orientable if there is an ori-
entable plane field P’ on M such that TM = P& P'.

Proposition 2.2.2. A line field P in M is orientable < P(z) =
Span(X (x)) for some continuous everywhere non-vanishing vec-
tor field X on M.

Proof. (<) is obvious by taking the trivial covering {U;} =
{M} of M and X' = X, (=) P orientable = 3{U;}
covering of M and k vector fields X* = X Li. U, — TU; such
that ’
1) P(z) = Span{X*(z)), VzeU.
2) det (;{J%i))) > 0, Ve e U N Uj: ie. X‘({L‘) = a,-j(:c),
Xi(.'lﬁ), Yzel;n Uj, aij(w) > 0.
Define X(z) = X*(z)/||X*(2)||, Vz € U;. Then X is well
defined since
X'(z) X (z)
@l e T Cevnse
X'(=) aij(z) X7 (z) X (=)

IXi @I Nag@IIXI@I - [1X @)

as a; ;(x) > 0 for all z. Since X' generates P in U; the result
follows. O

Example 2.2.3. Choose M = R? — {0}. None of the line fields
induced by the foliations 73, 7, in M at Figure 2.1 is orientable.
One can see this by observing how the tangent vector varies along
the curve indicated at JF;.
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7"\

F
I

o

Figure 2.1:

Proposition 2.2.4. M is orientable (as a manifold) < the plane
field P(z) =T, M is orientable.

Proof. Because P is orientable there are a covering {U;} and
vector fields X% ... X™i: U, - TU; such that

T.M = Span(X'i(z),..., X™(z))Vz € U;

and det(X™* (z))1cnem k = 4,5 > 0, Vz € U;NU;. For
each U; one choose an m-form Wy, such that if Yz € U; then
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{v1,...,Um} is a base of T M with

Uy oy Um
det (Xl'i(.r), N Xm,i(m)) >0 e Wy, (z)v1,-..,vm) > 0.

Let {¢#;} be a partition of the unity subordinate to the cov-
ering {U;}. Define W = 3" ¢;, Wy, . Then w is a m-form with
w(z) £ 0, Vo Infact, forz C M, w(z)= 3> &fz)Wy(z).

{#izels}
Let ¢ be such that z € U; and {v1,...,vm} is a base T, M satis-

fying
UTlyeor 3y Um
det (Xl’i, o ,X7n'1($)) > O.

Let j be such that z € U;. Note that
Vlyeo oy Unm _
XYi(g),..., X™i(z) )

Xbi(z). .. X™(z) VL, - U
Xbi(g)... X™(z) Xbiz). .. X™(z) )"
o UTY .. Ui
Because P is orientable one has det ( xli | xmil (3:)) >0, So
Wy, (z)(v1, . .-, um) > 0. Henceforth ¢;(z) - Wy, (z)(v1; ..., om) 2
0, Vi. Then

W(C[I)(Ul, L 1'Um) = Z (b,(-'ﬂ) : WU;'(:‘E)(UI: tee :'Um) >0

{zxely}
and so there is 4 such that ¢;(x) = 1. It follows that, w(z) # 0,
Ve € M = M is orientable. O

Notation: For z € M we denote

() - G 3)
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) G )

Corollary 2.2.5. Let P and P be two plane fields in o manifold
M such that

a) TM=P®P (ie. T.M=P(z)® P(z), Ve e M);

b) P and P are orientable.
Then, M is orientable.

Proof. Exercise.

Example 2.2.6. Let F be the Reeb foliation in the Moebious
band (see Section 1.3). Then TZF is not orientable. To see this
welet M, =[-1+¢,1—¢] xR, ¢>0and M/F be the Moe-
bius band. If TF were orientable, then TF /{M,/F) would be
orientable. There is a line field P in M,./F which is orientable.
In fact: it suffices to choose P(z) as T'F; where F; is the pro-
jection of ‘the vertical foliation in M./F. P is induced by the
vertical vector field X (x,y) = (0,1). Note that X induces a
vector field in M, /F since

oran=(3 ) ()= )

hence P is orientable. But then T(M,/F) = P @® (TF/{(M./F))
would be orientable, a contradiction. The result follows.

Definition 2.2.2. A foliation F is orientable (resp. transversely
ortentable) if its associated plane field TF is.

Note that if M supports a foliation F which is both ori-
entable and transversely orientable, then M is orientable (as a
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manifold). If M is orientable, then a foliation F in M is trans-
versely orientable < F is orientable. If 7 is a codimension one
transversely orientable foliation, then there is a vector field X in
M such that X h F. Warning: The above does not implies that
the time-t map of X preserves F (i.e. X;(F) is a leaf for every
leaf 7, = € M).

2.3 Orientability of singular foliations

A C" singular foliation on a surface S is a C"-foliation F in the
complement S \ sing(F) of a finite set sing(F) in the interior. of
S which is transverse to the boundary of S. We denote by F;
the leaf of F containing x € S\ sing(F). One says that F is C7-
locally orientable if there is an open covering {U; : ¢ € I} of S and
a C* vector fields ¥; in U; such that sing(¥;) = U Nising(F) and
T.F, = Span(Y;(x)),Vz € U; \ sing(Y;), where sing(Y;) denotes
the set of zeroes of ¥;. One says that F is C” orientable if the
covering {U; : i € I} above can be chosen with a single element
U, = S. This notion of orientability differs from the correspond-
ing one for non-singular foliations due to the presence of the
singularities. One can easily construct singular foliations in D?
which are not locally orientable (it suffices to complete the ones
described in Figure 2.1 to the whole D?). Clearly a C” locally
orientable singular foliation is C” orientable. The converse is
false in general but true when S = D?, the 2-disc in R2. Indeed,
let F be a C” singular foliation in D?. For an open set U of D?
one defines X3(U) as the space of C" vector fields in U such that
sing(Y) = U Nsing(F) and T, = Span(Y(z)), Vz € \sing(Y¥).
A finite family Uy, - -+ , Uy of open sets in D? is a chain whenever
Ui N Uy # 0 is connected for all 1 <4 < &k — 1. Given a chain
Uy, Uy and Yy, Ys € AL(U)), Xp(Us) we define Oy, 1, (Y1, 72) to
be either Y (if Y}, Y; have the same orientation in Uy N Uz) or
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—Y; (otherwise). This definition makes sense because U;NU, #- )
is connected. Clearly ®y, 1,(Y1,Y2) € XE(T5) and both ¥) and
Py, v, (Y2) have the same orientation in U; N U,. For general
chaing Uy,--- Uy and ¥; € XE(U;) (¢ = 1, ,k} we define
Zy =Yy, Zin = Quu,,, (26, Vi) and Oy, o, (Y1, YV2) =
Zr. Under this definition one has :

Py, v (Y1, Vi) = Py 0 (Puy e (N1, -, Vit ), Vi)

(2.1)

Now let us assume that F is C™ locally orientable and let
{Yie XL(U;) : 4= 1,--- 7} be a fixed C” local orientation of
F. We can assume that all the U;’s are balls, and so, U; N Uj is
either empty or connected for all 4, j. Define Yl Y!and fori =
2,7 we define ¥ = @y Ui, U.L(Ym -+, Y;,), for some chain
Uiyy- -, Uiy, with 4p = 1 and ¢ = 4. The blmply connecteness of
D? imphes that the value of ¥; does not depend on the chosen
chain U;,, -+, U;,. Let us prove that if U; N U; # @, then ¥; and

Y have the same onentatlon inU;NU;. In fa.ct let Uy ,--- U,
and Uj,, -+, U;, be two chains rea,hzmg Y; and Y; respectively.
Hence U;,- -+ , U, U; is a chain, and so, the inva,riance of ¢ with

respect to the chains implies
Y5 = Qo i (Vi Y, ).
Then Eq.(2.1) and 4, = 7 implies
Y, = Cy, v, (Pus, o, (Vi Y ), Y3) = Qy (Y, Y;)

proving that ¥; and }75, have the same orientation in U;NU; as de-
sired. Next we consider a C® partition of the unity {Q,...,Q,}
of the covering Uy, .- , U, and define

r-3f

“<z
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This vector field yields a C" orientation of F.

2.4 QOrientable double covering

Let P be a k-plane field in a manifold M™. Define B,,(M) the set
of ordered basis of P(z) when z € M. Note that {v1,..., 0} #
{vg,v1,...,v} € By(M). Define the following relation in By (M):

(v1,...,0k) &g (wy, ..., wy) & det (Us > 0. Remember that

Wy
k
Y Ylyer o, Y
3 :( 1 y Vi , 'Ui:§ :aijwj-
Wy Wy, ..., W a
Note that if (v1, . .., V) & (w1, .. ., wi), then (—vi,ve,. .., vx)
(wy,. .., ws). The relation =, is an equivalence since det AB =

det A - det B. Define Oy(M) = B,(M)/ =, with projection
7zt Ba(M) — Oz (M).

Note that
Ow(M) = {Ox:O;}

has just two elements. Sometimes we use the notation -0, =
O... Finally we define

M ={(z,0,) : z € M,0; € O(M)}.

At first M depends on the plane field P. When P(z) = T, M,
Vz e M, M is called the orientable double covering of M. In
general we call it the orientable double covering of P.

Proposition 2.4.1. M is a m-dimensional manifold.
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Proof. Fix (zy,0,,) € M. By the definition of plane field
P, there is a neighborhood U of 75 and & smooth vector fields

XI,...,Xk:UﬂTUsuchthat
P(z) = Span(X'(z),..., X*(z)), Vz € U.

Define U as:

U= {(z,m(X (z),...,X"x));z € U},
if e (X (), - -+, X¥(o)) = Oy, and
U= {(z,ma(~X"(2),..., X*());z € U},
if oo (XY (o), -+, X¥(20)) = O,
We consider the projection
T M — M, m(z,0.) = z.

We can assume that U is the domain of a local chart (U, Q)
around zo. Define the chart (5’ é) by é Qo

The family {(U Q)} is an atlas of M. In fact, let (U, Q)
(V. #) be two such charts with U NV # §. Then o) Q(Uﬂ
V)—rz,bUﬂV) satisfies % o O~ Yy) = v o Q7Y y). Hence M

is a manifold of class C™ and dimension m. Moreover, 7: M —
M is differentiable and even a local diffeomorphism. Note that
T, ox)M T.M. Define also a k-plane field PinM given by

P(z,02) = a(r/U) ™ (z) (P(3)).
M= (ﬁd’u ,, ﬁ) is the orientable double covering of P. O

Theorem 2.4.1. Let M be a manifold and P o plane field in M
with orientable double covering (M,P). Then, M is connected
& P is not orientable.



70 CHAPTER 2. PLANE FIELDS AND FOLIATIONS

Proof. Proof of (=) We fix (20, Ox,) € M. Because M is con-
nected we can fix a curve € C M joining (zo, Oy,) with (g, Of )
The curve ¢ = w o ¢ in M is closed and contains xoy. Suppose by
contradiction that P is orientable. Let {U;} the covering of M
and {X1%, ..., X*} be the vector fields in U; generating P such
that

X#i(x)
det (Xs’j(m)) > 0. (2.2)
Because ¢ is compact we can suppose that Uy,--- U, is a

covering of ¢. We can further suppose that zp € U ‘_eind Oy, =
oo (X (20), - -+, X P (zo)). Define a new curve é C W given by

&(t) = (e(t), me (XM(c(t)), -+, XBHe(®)), if e(t) € Uy

andt=1,--- k.

Note that & is well defined by Eq.(2.2). In addition, € is con-
tinuous because both ¢(t) and t — 7 (X (c(t)), -+ , X (z0))
are. Define

B ={te[0,1]: &t) = <l(t)}.

We have that B # @ because z, € B. Moreover, B is closed
because & and ¢ are continuous. Let us prove that B is open. In
fact, if £, € B then c(ty) € Uy, for some 7. If ¢y ¢ Int(3) then
there is a sequence t, — to in [0, 1] such that é(t,) # €(t,) for
all n. Because c is continuous and ¢{¢ — 0) € U;, we can suppose
that c(t,) € U;, for all n yielding

&(ta) = (C(tn)i '”—ﬁ(tn)((Xl'iD (C(tn))u T 1Xk’i° (c(tn)))-

Write &(t) = (c(t),~(t)), where (t) € a{c(t}) is continuous. Be-
cause é(t,) = ¢(t.) one has

e (X0 (c(tn), -+, X0 (etn))) = —7(En)-
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By taking limits the last expression yields

Teqto)(X 0 (cto)), -+, X5®(e(t0))) = —(ta)
contradicting é(tg) = €(to). This contradiction shows that é(t) =
¢(t) for all ¢ and then &(1) = &(1). This would imply O, = —O,,
which is absurd. This proves (=).

Proof of («). Indeed we shall prove that M not connected = '
P not orientable. Remember the projection m : M — M given by
m(x,0;) = z. Let M M’ be a connected component of M. Observe
that ‘iT(M ) = M. In fact, since 7 is a local diffeomorphism we
have that 7(M) is open in M. Let us prove that 7(M) is closed
in M. Choose z, € w(ﬁ/f Y — z € M. By definition there is a
neighborhood U of z and & vector fields X*, L., X* generating
P inU. Obv10usly there is 7, € M’ such that Ty,) = .
Note that ¥}, = (%n, Oz, ) for some O,, € a(z,). Without loss of
generality we can assume that O,, =, (X (zn), -, X", (2,))
for all n. Passmg to the limit the last expression ylelds O —
7 (XY (z), -, X*,(z)) = O;. Hence ¥, — (z,0,). Since M’ is
closed in M we conclude that (z,0,) € M". So, z = =(z, 0.)€
'.rr(ﬁFd? "} proving that ’:‘T(ﬁ ") is closed. Because M is connected we
conclude that W(]Tf' } = M as desired.
On the other hand, since 7~ '(z) has two elements for all
x € M we conclude that M has two connected components which
we denote by M, Ma. This implies that Yz &€ M and VO, € O(x)
if (z,0,) € M, & (z, ~0,) € My). It follows that /M) is one-
to-one. Hence 7 : ﬂ?l — M is a diffeomorphism. Since Pis
orientable, and P = #~!(F’) we would have that P is orientable,
a contradiction. This proves the theorem. [}

Corollary 2.4.2. Every plane field on o simply connected man-
ifold is orientable and transversely orientable. In particular, all
simply connected manifolds are orientable.
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Proof. Let P be a plane field on a simply connected manifold
M. If P were not orientable then its double covering 7 : M — M
is connected. Being M simply connected we would have M = M,
where M — M is the universal covering of M. This would im-
ply that M — M is non-trivial covering, a contradiction. This
contradiction proves that P is orientable. That P is transversely
orientable follows applying the previous result to a complemen-
tary plane field of 2. The result follows. g

Example 2.4.2. The Reeb foliation in $° is orientable and
transversely orientable (because m;(S°) = 1).

Exercise 2.4.3. Show that all foliation in the solid torus D?x 5!
tangent to the boundary is orientable.

2.5 Foliations and differentiable forms

Remember that a differential k-form w of M is a multilinear
map associating to each point p € M a linear k-form in T, M,
that is is, w(p) € A¥(T,M), where A¥(E) denotes the space of
k-forms in a vector space E. The space of all k-forms in M is
denoted by AF(M). If w € A*(M) and n € AY(M), then the
alternating product w An € A*¢(M). If w is a k-form, then
there is a derivative dw of w, d = dy: A¥(M) — AM(M).
w is said to be closed if dw = 0, and w is exact if w = dn.
Poincaré’s lemma: d(dw) = d*(w) = 0, Vw € AFM).
Denote by Z%(2) = Ker(dy) is the set of closed k-forms and by
BY(M) = dy—1 (A¥"1(M)) is the set of exact k-forms. Poincaré’s
lemma implies that exact forms are closed, namely B*{M )
1¥(M). The quotient space H*(M) = Z"(M)/B’" M) is called
the (de Rham) cohomology k-group of M.

Let w € A'(M™) be a non-singular 1-form namely, w(p) # 0,
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Vp € M. The map p +— Ker(w(p)) defines a (n — 1)-plane field
in M.

Proposition 2.5.1. w € A'(M) is integrable < dw A w =
0 < dw =w A7 for some n C A'(M).

Example 2.5.2. If w is closed, then w is integrable and so w
defines a foliation Fy,. This remark apply to the following. De-
fine M = R?, w = adz + bdy, a,b € R. Then w is closed = w
induces a foliation F,,. The leaves of this foliation are given by
the solution of the differential equation

adz +bdy =0 =1y = —b/a.

The general solution of this equation is the straight-line family
y = (=b/a)-z+ K, K € R. This gives a foliation of R? by these
straight-lines.

Example 2.5.3 (Thurston). Let L be a closed manifold with
H'(L) # 0. Let o be a closed non-exact 1-form of L and f :
S' — R be a differentiable map. Denote by df the standard 1-
form of S'. We define the 1-form w in the product M = I, x §*
given by

w=df + f(0)c.

Note that
dw = d(df + f(0)e) = d(f()a) = f'(8) - df Ao + f(8) - dar
and do = 0. It follows that
dw Aw = (f'(8) - d6 A o) A (df+ F(8)a)

=f0)-dinandd+ f (@) -dInan fB) o=D0.
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It follows that w is integrable, i.e. Ker(w) is tangent to a C!
codimension one foliation F,, in M. Note that the sets Lg, =
{(z,0) € M : 0 =8}, where fy € f~'(0) are compact leaves of
Fr In fact, fix by € f_l(O) and (ﬂ’,‘, 9) € Lg,. If Y(z0) € T’(m’g)LQD
= U0 = (Uz,0) and 6 = . Hence

w(v(g,e) = w(vs, 0) = d6(0) + fl60)a(v) =040 afv,) =0

proving that Ly, is a leaf of A,. Clearly Lg, is diffeomorphic to
L and so Ly, is a compact leaf of Fy, (recall that L is closed).



Chapter 3

Topology of the leaves

3.1 Space of leaves

Let F be a foliation of a manifold M. The relation x,y € M,

T~y &z €F, ey e F;isan equivalence. The quotient
space O = M/N is called the space of leaves of F. Denote
by m: M — Oz the projection. We set in Of the topology
making 7 continuous, namely V C O is open < = (V) C M
is. If A C M we define F(A) = Sat(4) = U F, and call it

the saturated of A. This set is formed by those x such that F,
meets A.

Example 3.1.1. The leaf space of the foliation [+ in Figure 1.2
is not Hausdorff. In fact the vertical boundaries of I x R corre-
spond to elements in the leaf space which cannot be separated
by open sets.

Proposition 3.1.2. If A C M is open, then F(A) also is.

Proof. Choose z € F(A). By definition, F2NA # #, hence there
is y € F, N A. There there exists a finite collection of plaques

75
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oy, Q, ..., of F in F, such that o; Ny # 0, 7 € o
y € oy. Let U; be the domain of the chart of F defining «; .
Because y € A, A is open, we can suppose U; C A. Projects
U; into an open set of F{A) containing z as follows: Consider
Ul Ny Whlch is non-empty since @ # @ Ny C U NU;. Let
= Uy, = U{e; & be a plaque of Up with o N U +# ¢}
Note that o C [72 We have U, is open and U, C F(A4) (since, a
plaque, anly # 8 = aNU; # 0 = oNF(A) # 0 = a C F(a)).
Also, @z N # . Define Uy = U{o,ais a plaque of Us with
aﬂU2 # 0} As opNas # 0 and o2 C Us, we have that
ap C U3 Hence U3 is open and U3 C F (A) Inductlvely we
have [7',-, Vi=1,...,k such that a; C U“ U, is open and
U, c F(A). Hence z € a), C U, and F(A) is open. O

Corollary 3.1.3. The projection m: M — O is open (i.e. it
sends open sets into open sets)

Proof. Let A C M be open.
reFA)e FNA#0edye FNAe Fo=Fy
and
y € A& m(z) =7(y) € m(A) & n(z) € 7(A) &z € 7 (x(A4))

L F(A) = 7Y w(A)).

Because F(A) is open we have that w(A) is open with respect
to the quotient topology. O

Warning: Not every projection is open. For instance, consider
the projection of a parabola in R? into the z-axis.

Definition 3.1.4. We say that A C M is invariant for F (or
F-invariant) if A= F(A) = Sat(A).
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Lemma 3.1.5. If A is F-invariant, then A, Int(A) and A are
invariant.

Proof: We have Int(A) is open = F(Int(A)) is open = Int(4) C
F(Int(A)) C F(A) = A and Int(A) is the biggest open set con-
tained in A = F(Int(4)) = Int(A). A is F-invariant = M\A
also is = Int(M\A) also is and Int(M\A) = M\A = M\A is
F-invariant = A is F-invariant. To finish, 4 = A\ Int(A4) with
A and Int(A) F-invariant = 94 also is. m|

Theorem 3.1.1. Let F' a leaf of a foliation F and T be a trans-
verse of F intersecting F'. Then, one of the following alternatives
hold:

1. FNX is discrete.
2. FN X has non-empty interior in .

3. F'NX is a perfect set (i.e. without isolated points) with
empty interior.

Proof. It suffices to prove FFNE not discrete = F N X is perfect.
Suppose by contradiction that F NY is not perfect, i.e. FNY
has an isolated point x,. Because z, is isolated in ' N T we have
zg € F. Because FNZ is not discrete, there is z* € FNE which
is an accumulation point of {z,} C FNX, =z, # z*. Because
Tn € I' we have that F' passes arbitrarily close to z*. Using a
suitable plaque sequence we can see that F' passes close to ¢ (see
Figure 3.1). This is a contradiction and the proof follows.

3.2 Minimal sets

Let F be a foliation in M. A subset g € M is called minimal
for F if
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E

Figure 3.1:

1) p is closed and F-invariant.
2) if @ # p' C p satisfies (1), then g’ = p.

Remark 3.2.1. Zom's lemma applied to the set of closed in-
variant subsets of M (ordered by inclusion) implies that there
is at least one minimal subset. Every closed leave is a minimal
set. If p is minimal and F' is a leaf of F in p, then F=ypu If
4 is minimal and meets a closed leaf F', then u = F'. In general
the set of minimal sets is pairwise disjoint. The Reeb foliation
in $® has a unique minimal set which is its compact toral leaf.
The irrational foliation in T2 has 72 as its unique minimal set.
As we shall see later on there is no minimal foliation (i.e. the
whole manifold is minimal) in S* of codimension 1 (by Novikov
Compact Leaf Theorem). Analogously there are no minimal foli-
ations on compact manifolds with finite fundamental group. All
foliation in the Klein bottle has a compact leave. Hence there is



3.2, MINIMAL SETS 79

no minimal foliation in the Klein bottle. A foliation is transitive
if it has a dense leaf. Minimal foliations are transitive but not
conversely. There is no transitive codimension one foliations on
compact 3-manifolds with finite fundamental group. In partic-
ular S® does not support transitive codimension one foliations.
Minimal foliations have no compact leaves. As we shall see later
transitive codimension one foliation on a compact 3-manifold
have no compact leaves as well.

Exercise 3.2.2. Find nen-minimal transitive codimension one
foliation on M? compact.

Lemma 3.2.3. Suppose that F is a foliation in M and p is
minimal. Then, Int(u) # 0 < p = M.

Proof. Clearly i = M = Int(u) # @.

Conversely, let 42 be minimal with Int{z) # @. On one hand
 is closed by definition. On the other hand, p is open since
p=Int(p)asz € p= Fp=p=F,Nint(x) #0 = z ¢
F(Int(p)) = Int(p)). Since M is connected we conclude that
= M and the proof follows. ]

Proposition 3.2.4. Suppose that  is a p-disc (p =cod F), u is
a minimal subset of F with uNE £ 0 and pNOL = Q. Then, u
is not a closed leaf = p NI is perfect.

Proof. Assume that p is not a closed leaf and prove that pN%
is a. perfect set. For this we proceed as follows. Observe that ¥ is
compact since it is a p-disc. Let ' C u be a leaf of F. Tt suffices
to prove that F'N X is perfect. By contradiction suppose that it
is not so. Then either F'N X is discrete or F' MY has non-empty
interior by Theorem 3.1.1. In the later case pN¥ has non-empty
interior (in X) since F is dense and 3 is compact. This would
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imply that g has non-empty interior and then p = M by the
previous lemma. This is a contradiction because p N oz = 0.
We conclude that F NE is discrete, and so, £ N is finite. If
were not closed then we could find z € F \ F. Because F' G p
and z € F we have x € p. Because p is minimal the leaf Fi; of F
containing z is dense in . In particular F; NInt(X) # @ (recall
pNOT = @). By applying the argument described in Figure
3.1 we would have that F' intersects ¥ infinitely many times, a
contradiction. This contradiction proves that F is a closed leaf.
Since F' is dense in g we would have that p = F' is a closed leaf
which is impossible. This contradiction proves the result. |

Definition 3.2.1. A minimal set of a foliation on a manifold M
is ezceptional if it is neither a closed leaf nor M.

Problem 3.2.5. Find necessary and sufficient conditions for the
existence of exceptional minimal sets.

Example 3.2.6. The irrational foliation in 72 is minimal, and
so, it has no exceptional minimal sets. In fact a foliation arising
from a C? vector field on a closed surface has no exceptional
minimal sets. This is false for C! vector fields by the Denjoy’s
counterexample. The Reeb foliation in S% has no exceptional
minimal sets.

Example 3.2.7. Let B be the bitorus and consider the represen-
tation @ : m(B) — Diff(S') as described in Section 1.4. Recall
that the behavior of the suspended foliation F¢ depends on the
maps f,g € Diff(S?) used in the construction of Q. By suitable
choice of f, g we have that Fg is a C* foliation in some closed
Seifert 3-manifold exhibiting an exceptional minimal set. This
example (due to Saksteder) gives a counterexample for a possible
version of the Denjoy’s Theorem
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Exercise 3.2.8. Are there transitive codimension one foliations
with exceptional minimal sets?






Chapter 4

Holonomy and stability

4.1 Definition and examples

An important tool for the study of foliations is the so-called
holonomy group defined as follows. Let F be a foliation on a
manifold M. Let U;, U; be two charts of . Denote by m; : U; —
%; and ;1 U; — %; the projection along the plaques. Suppose
that every plaque (of F) in U; intersects at most one plaque in
U;. Then we can define

fi,j(m) = Ty ((.\f;,;),

where z € Z; and a,, is the unique plaque of U; containing = € U;.
The resulting map

fi,j : Dom(fi,j) C 2y — Ej

is called the holonomy map induced by the two foliated charts
(Us, X3), (U, X;). Let Uy, .-+, U, be a finite family of foliated
charts such that every plaque of U; intersects at most one plaque
of U; (for all 4,j). We can define the so-called holonomy map

83
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f]”...,,a : Dom(fl,... ,1-) C ¥ — %, by

fier = fro1p © frogpe10-000 fr2.

Now, let L be a leaf of F and z,y € L. Clearly L is connected
(by definition) and so there is a curve ¢ : [0,1] — L joining
z and y. This curve can covered by a finite family of foliated
charts Uy, -+, U, such that z € Uy, y € U, and every plaque of
U; intersects at most one plaque of U; (for all 7, §). Without loss
of generality we can assume that z € £,y € X,. The map

fc = .fl,--- K

is the holonomy induced by the curve c¢. Note that f{z) = y
by definition. One can easily prove that f. does not depend on
the foliated covering Ui, - -, U,. Moreover, f. does not depend
on the homotopy type of ¢ namely if ¢,¢’ C L are homotopic in
L (with fixed end points) then f, = fo in an open subset of ¥4
containing . When z = y we obtain a representation

® :m (L) — Germ(X)

given by
®(v) = fd,
where ¢ is a representant of v € m1(L), X is a transverse of F
containing z € L (£ = L;) and
Germ(Z) = {f : Dom(f) C X = Z: f(z) =2}/ =

is the germ of C” maps f induced by the equivalence relation
f = g iff f and g coincides in a neighborhood of z.

Definition 4.1.1. The image Hol{ L, ) = ®(m (L)) of ® is called
the holonomy group of L.
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The group Hol(L, z) does not depend on x € L. This allows
us to define Hol(L) = Hol(L, z) for some z. The leaf L has or
has no holonomy depending on whether Hol(L) # 0 or = 0. A
foliation without holonomy is a foliation whose leaves, have no
holonomy.

Example 4.1.1. A simply connected leaf has trivial holonomy.
In particular a foliation by planes R? is without holonomy.

|

Figure 4.1:

Example 4.1.2. There are non-simply connected leaves with-
out holonomy. Indeed, define My = I x T? where I is a compact
interval. Then My has a boundary formed by two torus T} (ex-
ternal one) and T (internal one}, see Figure 4.1. Gluing 77 with
T, with a diffeomorphism ¢ : T} — T, we obtain a manifold M.
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The trivial foliation of My formed by concentric torus * x T2,
+ € I defines a foliation F of M. Any leaf of F is a torus. All
torus bundles over St can be obtained in this way. We observe
that F is a foliation without holonomy. This can be seen as
follows. Let F be a leaf of F. Then m(F) = Z* is the free
abelian group with two generators [¢], [co], where ¢1, ¢ are the
meridian curve and the parallel curve in T respectively. The
generator ¢; is depicted at Figure 4.1. Consider the transverse
surface § = I X ¢; in Figure 4.1. Note that F intersect S in a
circle foliation. The holonomy induced by ¢; in S is precisely
the first return induced by this circle foliation. Since this return
map is the identity one has ®([¢;]) = Id. A similar argument
shows that ®([cy]) = Id. Since [c1],[ce] are the generators of
m(F) we conclude that Hol(F} = ®(m(F)) = 0. This proves
that F has no holonomy as desired. With similar arguments we
can prove that all foliation arising from a surface bundle over St
are without holonomy.

Example 4.1.3 (Holonomy of the Reeb foliation). Let F
be the Reeb foliation in 52 described in Chapter 1. Then F has
a torus leaf T' and all remaining leaves are planes (and so they
have in the holonomy). To calculate Hol(T") we proceed as in
the previous example. Indeed, as before 71(T") is generated by
the meridian curve and the parallel curve ¢y, ¢o.

If S is a transverse annulus as in Figure 4.3, T is a transverse
interval in S centered at zp € ¥ NT then the foliation induces a
flow on it whose return map f is as in the right-hand side figure
at Figure 4.3.

This map is precisely the holonomy of co. Analogously ¢
produces a holonomy having the graph depicted in the left-hand
side figure at Figure 4.3. Now Hol(T') is generated by the classes
of there two maps. Note that Hol(T") is abelian since it is the
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Figure 4.2:

homomorphic image of Z* (which is abelian). Because Hol(T') is
torsion free we conclude that Hol(T) = Z2.

Example 4.1.4. A foliation F tangent to a closed non-singular
C'* 1-form w in a manifold M has trivial holonomy. Indeed, let
X be the gradient of w defined by

wp(vp) = (X (p}, Up),

for all p € M and v, € T,M. Clearly X is non-singular since w
is. In addition F is transverse to 7. Let F be a leaf of F and
¢ a closed curve in F. We can assume that ¢ : §!' — F is an
immersion. Set J = [~1,1] and define the map ¢ : $'xJ — § =
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Figure 4.3: Holonomy of the Reeb foliation

Im(¢) by
¢(8,t) = X5(c(9)).

It is clear that ¢ is an immersion of class C? at least. Then
w* = ¢*(w) is a well defined 1-form in S* x I. Because dw” =
dep(w*) = ¢*(dw) = ¢*(0) = 0 we have that w" is closed. Hence
w* defines a foliation F* in S x I. Note that F* is conjugated
to FNS. It follows that the curves ¢* = S' x 0 and ¢ have
the same holonomy. Let us calculate the holonomy of ¢*. Fix
6*,0) € ¢* and &* = §*x. Clearly " is a transverse of F*. Let
£* : Dom(f*) C £* — * be the holonomy of ¢*, p € Dom(f*)
and ¢ = f*(p). Let & be the arc in £* joining p and q.

Let { be the arc in F* joining p, g. Let R be the closed region
bounded by the curves ¢*, [ and o*. Because

0z/dm*=f w*=/w*+fw*:0+0+/w*
R OR [} « Joa

one has
f'w* =0,
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Figure 4.4:

This equality implies that o is trivial and so p = ¢ = fa).
We conclude that ¢* has trivial holonomy. Hence ¢ has trivial
holonomy and the proof follows.

Example 4.1.5 (Holonomy of suspended foliations). We
have the following result.

Theorem 4.1.2. Let B xq F be the suspension of a representa-
tion

Q : m(B) — Diff"(£)

and Fg, Fy the corresponding foliations. Then,
1. F4 is a foliation without holonomy.
2. Hol(L) = Q(m\(B)), ¥V leaf L of Fo.

Proof. Let B, F smooth manifolds and M = B xg F be the
suspension of a representation @ : m(B) — Diff(F). Recall
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that M is equipped with two foliations Fp and Fg which are
the projection over B xg F of the trivial foliations (B x %}
and {* x F} on B % F respectively. Because the foliation Fa
is induced by a fibration (with fibre F'} we can see that Fj
has no holonomy. So, we restrict ourself to the study of the
holonomy of Fg. For this we fix a leaf L of Fq and choose
1o € L. Fix (b, fo) € 7 (o), where 7 : BxF— B Xg Fis
the natural projection. It follows from the definition of Fg that
L= ’H'(E x fo). Let ¢p be a closed curve containing 5. We want
to calculate the holonomy hg : Dom(hg) € Zg — X of ¢p in L,
where % is a suitable transverse containing xp. For this purpose
we choose 5 = 7(by X F).

Remark 4.1.6. 7r|(§xfﬂ) L B x fo — L is a covering map.
In fact observe that

w(b, fo) = n(d, fo) = {(gb, Q) fo) : g € m(B)} =

= {(9d,Q(9)fo) : g € m(B)}
= {gb: g em(B)} = {gd: g e m(B)}.
Hence if P : B — B is the universal covering of B then P(b) =

P(d) proving the result.

_ By the previous remark we can consider the lifi €y of ¢ in
B x fo with (0} = (bo, fo). We can write G(t) = (F(1), fo)-
Define (b1, fo} = eo(1). Fix z € Xy and

(bo, f) € 7 (z).

The curve

e(t) = (7(t), f)
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is the lift of ¢y to the leaf F, of F containing z. Hence

ho(z) = w(by, f).

On the other hand, observe that B = F(1) and ¥ lies in B. It
follows that b, = goby for some gy € m(B). Hence

ho(z) = m(by, £) = 7(gobo, ) = (b, Qg5 ) f)-

Since z = m(by, f) one has
hoo(moi)=(roi)oQg"),
where 7: FF — 30 x F'is the natural inclusion. Then,

ho = ©(Q(g)),
where g = g5 ' and ® : Hol(L) — Q(m,(B) is the map defined by

2(Q(g)) = (roi)oQgg") o (mod)™".

One can prove without difficulty that ¢ is an isomorphism. This
proves the result. 0

4.2 Stability

In this section we denote by F a foliation of class C'! of a manifold
M.

Definition 4.2.1. A subset B C M is stable (for F) if ¥ neigh-
borhood W of B in M 3 a neighborhood W’ C W of B in M
such that every leaf of F intersecting W' is contained in W,

Problem 4.2.1. Find necessary and sufficient conditions for
B C M to be stable.
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Exercise 4.2.2. Prove that if M is compact then all stable sets
of F are F-invariant.

Exercise 4.2.3. Prove that W' in the definition of stable set
can be taken invariant.

Example 4.2.4. Let w be the l1-form in M = R*\ {(0,0)}
defined by w = zdx +ydy. Clearly w = df where f(z,¥y) = ﬂ—;fﬁ
and so w is exact. Hence w is tangent to a foliation F whose
leaves are concentric circles around (0,0}. Clearly every leaf of
F is stable, has infinite fundamental group and finite holonomy

group.

Example 4.2.5. The compact leaf of the Reeb foliation in 53
is not stable and has infinite holonomy group.

The above example shows the relation between stability and
the finiteness of the holonomy group. This relation is the content
of the following result.

Theorem 4.2.2. A compact leaf with finite holonomy group is
stable.

Proof. Let F be a compact leaf of a C? foliation F with finite
holonomy group Hol(F). We fix zo € F a base point and a
transverse Lo of F with Xy N F = {xp}. By assumption there
are closed curves 31, -, B; containing zy such that

HOI(F) = {[fﬂl]: T [fﬁk]}:

where fg, : Dom(fg,) C Lo — Zg is the holonomy of 8; and []
denotes the class in the space of germs of ¥ at z,.

Fix a finite covering & = {Ui,--- ,U,} of M by charts of F
such that
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1. U;N F is a plaque oy, Vi;
2. UNU; £ 0 o5 Ney # 0, Vi, 55
3. each plaque of U; intersects at most one plague of Uy, ¥4, 7.

The following notation will be useful:

e 3, =space of plaques of U;.

e 7; : U; — %, the plaque projection.

e z; = m;(0;). We can suppose that z; is a point of o.

In the case UyNU; # 0 (S s Nay #B) welet T C oy Uy
be a curve joining z; and z;. Also in this case we let v ; :
Dom(vy;;} € £; — Z; be the holonomy along the plaques. For
alli=2,--- ,r we let ¢; C F be a curve joining z; with z;. The
curve ¢; induces a holonomy h; : Dom(h;) C &y — X;.

To prove the stability of the leaf I’ we f{ix a neighborhood
W of F. Without loss of generality we can assume: UJU; C W,
% C Ty, 1 = 7o and D := N¥Dom(fs,) to be a neighborhood
of x5 in X;. The closed curves of the form

cip=cUe;Uc.
induce a holenomy map
h,j,g : Dom(hj,t) C X — .

Since Hol(F) is the union of [fg]’s we have that i ; = fg, ina
neighborhood D;; C & of z;(= zo the base point). Define

D* = ﬂJ,ID "l.
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Then D* is an open neighborhood of z in ¥,. Of course D*cD
and hj; = fg, in D*. Let D' C D* be a neighborhood of z; such
that v’ € D' = fg,(y) € D, Vi.

For every y € D' we define

C; =i (hy(fay))) s 1<i<k 1< j <k
where h; =Identity by definition.

Claim 4.2.3. If P is a plaque of U (for somel=1,---,7) and
PNL#Q for some L €C}, then P € C}.

y?

Proof of Claim 4.2.3: By hypothesis thereis L = m;* (h;(f5,(¥)))
such that PN L # §. Because L C U; (as it is a plaque of Uj)
and P C U; we have that U; N U, # 0. This implies that ¢;;
is well defined. (recall that this is a curve joining z; with z; in
&; N ;). By the definition of the holonomy -;; we have

Yia(hi(f5.(¥))) = m(P).

Hence
it oy 0 hi(fa(y) = B (m(P))-

But iy ' o, o by is precisely the holonomy A, of the curve ¢y
by definition. Hence

hia(fa.()) = by (m(P)).

Because h;; = fp, one has

far © fo.(y) = hr* (m(P)).
As Hol(F) is a group one has fg, o fz, = fg, for some i'. Hence

fou ) = B(m(P)) = 7 () = P,
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proving P € €} as desired. This proves Claim 4.2.3. g
Now, we let .
Ly=U{L:Le Cy}-

‘We have the following properties: L C Fy(=the leaf of F con-
taining y}; L7 is open in F (since it is union of plaques of F,);
L} is close in M (this is Claim 4.2.3); L} = F, (because 7, is
connected); Ly C W (because the plaques forming C; are con-
tained in UTU; € W). The last two properties above imply that
Fy, C W, Yy € D', Defining W' as the set of leaves intersecting
D’ we have that W' ¢ W is a neighborhood of F' such that every
leaf of F intersecting W' is contained in W. Since W is arbitrary
the result follows. |

Exercise 4.2.6. (Prove or disprove) A compact invariant sets
whose leaves have finite holonomy group is stable.

4.3 Reeb Stability Theorems

Theorem 4.3.1 (Reeb Local Stability Theorem). Let F' be
a compact leaf with finite holonomy group of a C" foliation F
in a manifold M. Then ¥V neighborhood W of F' there is o CT
F-invariant tubular neighborhood w : W/ C W — F of F with
the following properties:

1. Every leaf F' C W' is compact with finite holonomy group.

2. If F" ¢ W' is a leaf then the restriction n/F' : F' — F s
a finite covering map.

3. Ifx € F then n7'(z) is a transverse of F.
k4

Proof. Let W be a fixed neighborhood of F. We can assume
that W is the domain of a C" tubular neighborhood 7y : W —
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F. Because F' is compact we can further assume that the fibre
774 (z) is transverse to F, Vz € F. Let W' C W be given
by Theorem 4.2.2. It follows from the proof of Theorem 4.2.2
that all leaves F' in W' are compact (all of them have the form
F' =L} forsome y € D’ and Ly is compact}). Define 7 = o JW

Then 1r W' — F is a tubular nelghbcnhood which is invariant
and satisfies (3). By shrinking W' if necessary we can assume
that F” is transverse to the fibre 7=*(z), Vz € F. Since all leaf
F' C W' is compact we have that F' intersect each fibre finitely
many times. The same argument shows that every leaf F* C W’
has finite holonomy group. This proves (1) and (2). The theorem
is proved. |

Next we state two useful lemmas.

Lemma 4.3.2. Let Hom(R,0) be the germ of homeomorphisms
in R firing 0. If G is a finite subgroup of Hom(R, 0} then G has
at most two elements. If all the elements of G are represented
by orientation-preserving maps, then G = {[{d]}.

Proof. Suppose that there is [f] € G — {[Id]} represented by a
local orientation-preserving homeomorphims f fixing 0. On one
hand, there are ny € N and a neighborhood U’ C R of 0 such that
f™(z) = z for all z € U because [f] has finite order in G (as &
is finite). On the other hand, there is =g € U such that f(zq) #
1o because (f] # [[d]. We can suppose that 0 < zo and that
[0, z9] C U without loss of generality. Because f is orientation-
preserving one has 0 < f*(z0) < f* Y (mo) < -+ < flag) < o
for all n € N Clearly f™(zo} € [0,z0) for all n as [0,z0] C U.
The last applied to n = ng yields f™(z4) = zo and so zg < To,
a contradiction. This contradiction shows that [f] = [[d} for
all element [f] € G represented by a local orientation-preserving
homeomorphism f fixing 0. Let [g],[¢'] € G be represented by
orientation-reversing local homeomorphisms fixing 0. Hence [g] -
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(97" is represented by go(g)~! which is orientation-preserving.
It follows that [g] = |¢] and so there is only one element of G
represented by an orientation-reversing map. This proves that
G has at most two elements and the proof follows. O

Lemma 4.3.3. Let F' be a compact leaf of a codimension one
foliation F defined on a manifold M. Let F, be a scquence of
compact leaf of F accumulating to a point in F'. Then V neigh-
borhood W C M one has F,, C W for all n large.

Proof. Let Uy,--- Uy C W be covering of F with charts of F
such that U; N F is a single plaque o; of U;, Vi. For each i we
denote by X;, the space of plaques of Uy, and by m; : U; — ¥, the
projection along the plaques. Because F,, accumulates a point
of " we can assume that F,, N U; contains a plaque arbitrarily
close to o). From this we can assume that F, N U; # § for all
n,4. Clearly F,, NU; contains a finite number of plaques as F, is
compact. Let P™ and p™* be the maximum and the minimum of
such plaques with respect to the natural order of Z; (=interval).
Define R, = UL, (P* Up™%). Clearly R, C F, is open in F, (as
it is union of plaques). Let us prove that R, is closed in F,. In
fact, fix n and choose a sequence z; € R, converging to z € F.
We can assume that all the z;’s are in a single plaque P™ of
R,. Clearly x € U, for some 1 < r < k by the definition of
R,. Hence the plaque «,(z) C U, containing z is well defined.
Clearly P N U, # # and so P"® Na,(z) # . Thus o, (z) is
a plaque of F, NU,. Since P™® is the maximum of the plaques
of F, N U;, one has that a,(z) is the maximum of the plaques
of F,, NU,. In other words a,(z) = P™" proving z € R,,. We
conclude that R, is closed in F,. Since F,, is connected we
conclude that R, = F,,. Since R, C U;U; € W we conclude that
F,, € W. The lemma is proved. O

Remark 4.3.1. The conclusion of the lemma above is false for
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foliations with codimension > 1.

Theorem 4.3.4 (Reeb Global Stability Theorem). Let F
be a G codimension one foliation of a closed manifold M. If F
contains a compact leaf F' with finite fundamental group then all
the leaves of F are compact with finite fundamental group. If F
is transversely orientable then every leaf of F is diffeomorphic
to F; M is the total space of a fibration f : M — S* over St
with fibre F'; and F is the fibre foliation {f~'(8) : 0 € § 1.

Proof. Denote by F; the leaf of F containing z € M and define
M = {z € M : F, is compact with m finite}.

Note that W is not @ by hypothesis. The Local Stability The-
orem implies that M is open. We can assume that M is con-

nected (otherwise we replace it by a connected component). Let
us prove that M is closed. For this it suffices to prove that
8M = . Suppose by contradiction that Jzy € OM. Let U be
a chart of F containing zo, ¥ the space of plaques of U and
7 : U — ¥ be the projection along the plaques. Note that X
is an interval (as F has codimension one) and M NU is union
of plaques of F. It follows that m(MNV) C T is a countable
family of open intervals. Let J one of these intervals and F(J)
be the union of the leaves of F intersecting J. Because J is
open and contained in M we have that 7(J) is open in M. We
claim that F(J) is closed in M. Indeed, consider a sequence
Zn — F(J) — z € M. Assume by contradiction that = ¢ F(J).
Since z € M the Local Stability Theorem implies that there is
a neighborhood R of F, such that every leaf intersecting I is
compact with 7, finite and contained in R. On one hand we can
choose R such that RN J = . On the other hand we observe
that F,, N R # 0 for large n because £, — z. Hence 75, C R
and also F, N.J # @ by the definition of F(J). Hence RNJ # 0
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a contradiction. This contradiction shows that x € F(J), i.e.

F(J) is closed. The claim follows. By connecteness we conclude
that F(J) = M. It follows that every leaf of F in M intersect .J.
Since every leaf of F in M is compact we conclude that (M nu)
is a finite union of open intervals in &, We conclude that z is a
boundary point of one of these intervals. Now we claim that the
leaf F; is closed. Otherwise the above argument would imply -
that there exist a foliated chart U such that M N U contains in-
finitely many connected components, a contradiction. Because
M is compact by assumption we conclude that F, is compact.
Hence there is a tubular neighborhood P : W — F of F' whose
fibers P~1(y), v € F' are transverse to F. Because z € M there
is a sequence of compact leaves F,, with finite 7, accumulating
on z. By Lemma 4.3.3 we can assume that F,, € W. The re-
striction P/F, : F,, — F is a finite covering of F. Because F,,
has finite fundamental group and P/F,, : F, — F'is a finite cov-
ering we conclude that F has finite ;. We conclude that z € M
contradicting z € M. This contradiction proves that oM = {
proving that M is closed. By connectness reasons we conclude
that M = M. Hence all leaves of F are compact with finite ;.

Now suppose that F is transversely orientable. We already
know that each leaf L of F is compact with finite m;. Being F
transversely orientable we have that the holonomy group of L
is represented by an orientation-preserving homomorphism. In
other words the subgroup G = Hol(L) of Hom(R,0) is formed
by orientation-preserving maps. Then Lemma 4.3.2 implies that
F is a foliation without holonomy. It follows from the proof of
the Local Stability Theorem that F is locally a product folia-
tion, i.e. each leaf L of F is equipped with an invariant product
neighborhood L x I such that the leaves of F in this neighbor-
hood have the form L x %, + € I, with L x 0 corresponding
to L. On the other hand, M is compact by hypothesis. Hence



100 CHAPTER 4. HOLONOMY AND STABILITY

there is a closed curve ¢ transverse to F (to find ¢ we simply use
the non-wandering set of the transverse vector field associated to
F). Moreover ¢ can be chosen to intersect some leaf Ly of F in
a single point. Observe that ¢ intersect all leaves of 7 in a. single
point. In fact, consider the set ¢’ = {z € ¢: Fu Ne = {z}}.
is not empty by the existence of Ly. The fact that F is a locally
product foliation implies that ! is open and closed in ¢ .". cd=c
and so c intersect each leaf of F in one point at most. Now let
F(c) be the set x € M such that F Nc # @. It is clear that
F(c) is open. Omne can prove that F (¢) is closed by using the
Local Stability Theorem as before. Hence F(c) = M proving
that all leaves of F intersect ¢. To define the desired fibration
f: M — S! we simply define f(z) to be the intersection point
of F, with ¢. The theorem is proved. A

Exercise 4.3.2. Prove that there is no codimension one foliation
in the 3-ball B having 8B as a leaf.

Exercise 4.3.3. (Prove or disprove) Codimension one transitive
foliations have no compact leaves.

Execrcise 4.3.4. Let F be a transversely orientable codimension
one foliation on a closed orientable 3-manifold M. If there is a
leaf F of F whose universal cover is not the real plane R? then
M = 8% x S5 and F is the product foliation S x *. What about
the case M not orientable?
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e

Figure 4.5:






Chapter 5

Haefliger’s Theorem

5.1 Statement

Definition 5.1.1. Let F be a codimension one foliation on a
manifold M. A leaf F' of F has one-side holonomy if there are
a closed curve ¢ C F and zp € ¢ whose holonomy map f :
Dom(f) C ¥ — X on a transverse segment T intersecting ¢
satisfies the following properties:

1. f is not the identity Id in any neighborhood of z¢ in 2.

2. f = Id in one of the two connected components of £\ {zg}.

The graph of f above may be as in Figure 4.3.

Example 5.1.1. A leaf with one-side holonomy cannot be sim-
ply connected. The torus fiber of a torus bundle over S! is a
non-simply connected leaf without one-side holonomy.

Example 5.1.2. The Reeb foliation in 52 is an example of a
codimension one C* foliation on a manifold with finite funda-
mental group with a one-side holonomy leaf.

103
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Example 5.1.3. Real analytic codimension one foliations can-
not have one-side holonomy leaves. )

The main result of this section gives a sufficient condition for
the existence of one-side holonomy leaves.

Theorem 5.1.2 (Haefliger’s Theorem). Codimension one c?
foliations with null-homotopic closed transversals have one-side
holonomy leaves.

Corollary 5.1.3. Codimension one C? foliations on compact
manifolds with finite fundamental group have one-side holonomy
leaves. In particular, there are no real analytic codimension one
foliations on manifolds with finite fundamental group.

In fact, all codimension one foliation on a compact mani-
fold have a closed transverse. If the fundamental group of the
manifold is finite then a suitable power of this curve (as element
of the fundamental group) yields a null-homotopic closed trans-
verse. Then Haefliger’s Theorem applies. The last conclusion of
the above corollary applies to the following case:

Corollary 5.1.4. There is no real analytic codimension one fo-
liations on S3.

The proof of Haefliger’s Theorem is divided in three parts
according to the forthcoming sections.

5.2 Morse theory and foliations
First we explain some classical Morse Theory. Let W be a com-

pact 2-manifold with boundary 8W (possibly #). Let f : W — R
a C" map r > 2. A point p € W is a critical point of f if
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f'(p) == 0. We say that p is non-degenerated its second deriva-
tive f"(p) is a non-degenerated quadratic form, where

wioy — (O 037)(0)
f(p) = (W)lsmsz

for some coordinate system (z1, z2) around p = (0,0). We shall -
use the following lemma due to Morse.

Lemma 5.2.1 (Morse Lemma). Let p be a non-degenerated
critical point of ¢ C" map f: W -+ R, r > 2. Then there is a
coordinate system (x,y) around p = (0,0) such that one of the
Jollowing alternatives hold:

1. f(z,y) = f(0,0) +2* + ¢*.
2. flz,y) = £(0,0) —z® — %
8. flz,y) = f(0,0) + 2z — .

The level curves of the three alternatives above are depicted
in Figure 5.1.

A Morse functionis a C? map f : W — R all of whose critical
points are non-degenerated. We denote by C™(W,R) the set of
all C” functions defined on W endowed with the C7 topology
and by M"(W,R) C C"(W, R) the set of Morse functions.

Remark 5.2.1. f Morse on W compact = f has finitely many
critical points.

The following is a classical result in Morse Theory.

Theorem 5.2.2 (Morse Theorem). M"(W,R) is open and
dense in C"(W,R).



106 CHAPTER 5. HAEFLIGER’'S THEOREM

@ J
N

Ray)=r O+ x2-y2

£(x,y)=1(0.0)+ x2+ yz

1(xy)=H0.0x 2y 2

Figure 5.1:

Now we describe the foliated Morse Theory. We let M be a
manifold and F a codimension one foliation of class 0% in M.

Definition 5.2.3. A C" map f: W — M is Morse with respect
to F,r > 2, if for all p € M there is a foliated chart U of F
containing p such that if 7 : U — R is the projection along the
plaques then 7 o f € M"(W,R). Morse maps with respect to
F are often said to be in general position with respect to F. A
critical point of f with respect to F is a critical point of wo f for
some foliated chart U.

Theorem 5.2.4. Let F be a codimension one foliation of class
C? on a manifold M. Let W a compact 2-menifold and A : W —
M be a C™ map. Then there is a C™ map f: W — M arbitrarily
C7 close to A such that

1. f is Morse with respect to F.
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2. If p,p’ are different critical points of f with respect to F
then f(p) and f(p') are in different leaves of F.

Proof. Fix an open covering @1, -+ ,Q of A(W) by foliated
charts of 7. We can assume without loos of generality that the
chart ¢' : Q; — D™ ! x D! has the form

¢i = ( t1: )(ot'::i,—l’ﬂi):

where the last coordinate 7; : @@; — R denotes the projection
along the plaques.

Define W; = A~1(U;) for all 4. Hence Wy, --- , Wy is an open
covering of W. Fix U; € U; € V; € V; C W; such that Uy, - - - U,
is an open covering of W. For each i we fix a C* function
Ait W — R satisfying: A; € [0,1], s =1inU; and A; =0 in
W\ V. See Figure 5.2

Figure 5.2:

Fix ¢ > 0 and denote by d. the C” topology in C"(W, M).
We define inductively a sequence go, 91,90, -+ , 91 : W — M as
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follows. First we define go = A. For a suitable Morse function
f1 € C7(U1,R) we define g1(z) as follows:

au(@) = (61@), -, Bhoa (), M@) Fi (@) -+ (L + M(2))(m © go)(2))
if x € W, and
91(z) = go(z)
ifreW \ Wi.
It follows that
(g1, 90) < do(g1/ W, 9o/ W1)(Bjo1 Kds(Aa, 1d/Wh))-de(f1,71090),

where the constants K; does not depend on d.(f1,m000). As A\
is fixed we have that d, (A1, Id/W}) does not depend on d.(f1, m0
o). Hence by Morse Theorem we can choose fi so that

dr(g1,90) < /.
Summarizing g; satisfies the following properties:
b dr(glugﬂ) < E/k:
o g1/U,; is Morse (because g1 /Uy = fi).

Replacing go by g in the above construction we can find g2
such that

o d(g2,q1) < ¢/k;
o g2/(U1 U U,) is Morse.

Repeating the argument we can find the sequence go, g1, -+ , gk-
An element g; of this satisfies:

hd d’r(g‘i:g'i—l) < G/k;
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e g/(U1U-- Ul;) is Morse.

The last map gy, of the sequence is Morse (because Uy, - - - , U,
is a covering of W). Moreover,

dor (gr, A) < Bioder (90 gin) < (e/k) k=e.

Hence the last map g, : W — M is Morse respect to F and -
e-close to A in the C7 topology. It remains to choose f close to
gx satisfying the property (2) of the theorem. To modify g to
obtain f satisfying (1) and (2).

perturb here

graph Ofgk graph of f

Figure 5.3:

Because the set of Morse function is open we we only have
to approximate g by a map satisfying the property (2). The
last can be attained as in the trivial case described in Figure
5.3 where M is the product foliation W x I and F is the trivial
foliation * X I. Indeed we only have to perturb around a critical
value as indicated in the figure. The theorem is proved. (]
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5.3 Vector fields on the two-disc

We denote by D? the 2-dimensional disc in R? and by X'(D?)
the set of C! vector fields in D? transverse to the boundary 8D?
of D?. The closure of B C D? is denoted by B. The orbit of
z € D? is denoted by O(z). Consider p € D, Y € X'(D?) and
denote by w(p) the w-limit set of p. Note that if & is an interval
transverse to Y and p € D? is regular, then w(p) intersects &
at most once. In particular, a periodic orbit of ¥ intersects &
once. These facts follow from the trivial topology of the disc
D2, A singularity of Y is called saddle or centre according to
the two portrait face corresponding to Figure 5.1 (left-hand one
for centre and right-hand one for saddle). A saddle singularity
exhibits two stable separatrixes and two unstable separatrixes.
A graph of Y is a connected set I formed by saddles and saddle’s
separatrixes in a way that if s € I is a saddle then I' contains at
least one stable separatrix and one unstable separatrix of s.

Theorem 5.3.1. Let Y € X'(D?) be such that Y is transverse
to OD? and sing(Y) 4s a finite set formed by centers and saddles.
Suppose that Y has no saddle-connections. Then, thereisz € D?
such that:

1) O(z) is a closed curve.

2) There is an interval § transverse to Y with the following
properties:

2.1) §NOfz) = 5N O(z) = {z}.

2.2) The first return map f Dom(f) C 6 — § induced by
Y in & satisfies that: f = Id in a connected component of
6\ {z} and f # Id in any neighborhood of x in ¢.
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Proof. Because Y has no saddle-connection the graphs of Y are
as in Figure 5.4. Clearly the complement D?\ T of a compact
invariant set I' equals to either a periodic orbit or a graph con-
tains at least one connected components disjoint from 8D2. The
union of such connected components will be denoted by R(I). .
We define an order < on the set formed by periodic orbits and
graphs of ¥ by setting:

N« s R(Fl) C R(Fz)

A limit cycle of Y will a compact invariant set L with regular
orbits of ¥ equals to w(p) for some p ¢ L. It is easy to prove
that a limit cycle L is either a periodic orbit or a graph. Hence
the order < is well defined on the set of limit cycles of Y.

Lemma 5.3.1. If Ty > Ty > ... is o decreasing sequence of

limit cycles of Y, then Ty = & ( N R(I‘n)) is either a periodic
n=1

orbit or a graph of Y.

Proof. Because Y is transverse to D% we can assume that Y
points inward to D? in 8D?. Clearly Y has finitely many graphs
as it has finitely many singularities. Hence we can assume that
I’ is a periodic orbit, ¥n. So, R(I',) is a disc and dR(T,,) = T'p,
¥ n. There is at least one regular point in 'y, because if s € Ty, N
sing(Y’), then s must be saddle and so at least one of the sepa-
ratrixes of s is accumulated by T,.

First we observe that I'y, cannot contain periodic orbits uh-
legs it is a periodic orbit. Indeed this follows from Lemma 4.3.3
but we give a direct proof here. Suppose that I, contains a
periodic orbit . Pick z € o and let I, be a transverse of ¥
containing z. Clearly for all n € N large the set T',, "X, consists
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periodic orbit typel

type 111

type 11

Figure 5.4

of a single point x, such that z, — z as n — 0. Let A, be
the annulus in D? formed by I';, and «. Since z,, — = the Tubu-
lar Flow-Box Theorem implies that T, — « in the Hausdorff
topology proving 'y, = o as desired.

Second we observe that s, cannot contain a graph unless it
is a graph. The proof of this is similar to the previous proof.
Indeed, let T € Ty, be a graph. Hence I' is one of the three
types of graphs in Figure 5.4. If I is type II or III then previous
argument shows that I', = I’ and we are done. Otherwise I is
type I. In this case I’ does not contain an unstable separatrix a
(say). By the Poincaré Bendixson Theorem we have that w(a)
is either a singularity or a graph or a periodic orbit. In the later
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case we have that Iy is a periodic orbit, a contradiction because
it contains the graph I'. In the former case we have that I is one
of the graphs in the bottom figures (Y has no saddle connections)
again a contradiction. Hence w(p’) must be a graph which we
still denoted by I'. T' cannot be of type I for, otherwise, the limit
cycle sequence I';, must be contained in R(I') a contradiction
since I', is decreasing. This proves that T' is type II or III and
we are done.

Now, fix p € ' regular. Clearly T'y is invariant and so
w(p) C I'. Poincaré-Bendixson implies that w(p) is either a
singularity or a periodic orbit or a graph. In the last two cases
we have that I'y, contains either a periodic orbit or a graph.
Hence I, is either a periodic orbit or a graph and we are done.
We conclude that w(p) is a singularity. Analogously a(p) can
be assumed to be a singularity Y because points inward to D?
in D% Because Y has no saddle connections we have that the
closure O(p) of the orbit O(P) is a graph of Y. This graph
is evidently contained in I's. We conclude that Ty, contains a
graph and we are done. This proves the lemma. O

Let us finish with the proof of Theorem 5.3.1. Consider the
set R of all compact invariant sets I'y, of ¥ of the form

Fw=5 (ﬁ R(rn)) ,

n=0

for some decreasing sequence of limit cyclesI';, of Y. Lemma 5.3.1
implies that the order < is defined in K. Lemma 5.3.1 also im-
plies that any decreasing sequence I'}, > T2 > --- in R has an
infimum in R. The Zorn Lemma implies that there is a minimal
element I = I'}, in R. By Lemma 5.3.1 we have that I'"* is
either a periodic orbit or a graph. In any case we choose z* € T'™

as indicated in Figure 5.4. Observe that the closure O(z*) of the
orbit O(z*) is a closed curve. Choose a transverse ¢ containing
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r* as indicated in the figure. Let f : Dom(f) C 0 — ¢ be the
return map induced by ¥ in §. Because I™* is accumulated by
limit cycles of Y one has that f # Id in any neighborhood of *
in & (for such limit cycles must intersect §). On the other hand,
consider the connected component ¢ of § — {z*} contained in I™".
Because the number of graphs of Y is finite, we can assume by
shrinking & if necessary that 6 does not intersect any graph of
Y. In particular ¢ does not intersect any graph of Y. Because
¢ < R(I'*) we conclude that the orbit of any point in ¢ is peri-
odic. Hence f = Id in c¢. This proves that x = z* satisfies the
properties {1),(2) of the theorem. O

5.4 Proof of Haefliger’s Theorem

Let F be a codimension one C? foliation with a null-homotopic
closed transverse . Because «y is null-homotopic one has that
there is a C® map A : D? — M such that A(8(D?) = v. By
Theorem 5.2.4 we can assume that A = f is in general posi-
tion with respect to F. Let F* = f*(F) be the foliation in D?
induced by f. By definition a leaf L of F* is Y connected
component of ' N f(D?)) for some leaf F of F. Note that F*
is a singular foliation of class C? in D? and a singularity of F*
is either a center or a saddle. Clearly F* is C? orientable close
to the singularities. Far from the singularities we have that 7~
is C? locally orientable by the Tubular Flow-Box Theorem. We
conclude that F* is C? locally orientable. By the results in Sec-
tion 2.3 we have that F* is C? orientable, i.e. there is a C?
vector field Y in D? tangent to F*. Note that Y is transverse
to &D? and contains a finite number of singularities all of them
being centers or saddles, Moreover, Y has no saddle connections
by Theorem 5.2.4-(2). It follows from Theorem 5.3.1 that there
is x € D? and a transverse & satisfying the conclusions (1)-(2) in
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that theorem. In particular, if zo = f(z) then ¢ = f(O(z)) is a
closed curve contained in the leaf F = F,  of 7 and & = f(6)
is a transverse segment of F intersecting ¢. The holonomy of ¢
is conjugated to the return map f : Dom(f) ¢ § — § induced
by Y in 4. One can see that ¢ and F satisfy the properties (1)-
(2) of Definition 5.1.1 by using the property (2.2) in Theorem
5.3.1. We conclude that F is a leaf with one-side holonomy of F
proving the theorem. O






Chapter 6

Novikov Compact Leaf
Theorem

6.1 Statement

In this chapter we shall prove the celebrated Novikov Compact
Leaf Theorem.

Theorem 6.1.1 (Novikov Compact Leaf Theorem). Codi-
mension one C* foliations on compact 3-manifolds with finite
Sfundamental group have compact leaves.

The proof of this theorem given here is the one in ¥ Séminaire
Bourbaki 20e année, 1967-68, Num. 339, p. 433-444”. That
proof is based on the following defmition.

Definition 6.1.2. Let F be a C! codimension one foliation in a
manifold M. A vanishing cycle of 7 isa C* map f: §'x{0,¢] —
M (for some ¢ > 0) such that if we denote fi(z) = f%(t) =
f(z,t), ¥(z,t) € S* x [0, €], then the following properties hold:

1. fi(S) is a closed curve contained in a leaf A(t) of F, Vt; .

117
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2. f(8") is null homotopic in A(t) if and only if £ > 0;
3. f5([0,€]) is transverse to F, Vz.

Example 6.1.1. Let F be the Reeb foliation in 5% and let T' be
the compact leaf of F. Any generator of 7(T) is represented by
a curve contained in (the image of) a vanishing cycle of F.

Example 6.1.2. A torus fibration over S gives an example of
a foliation with compact leaves having no vanishing cycles.

The proof of Novikov Theorem is a direct consequence of the
following two preliminary results.

Theorem 6.1.3 (Auxiliary Theorem I). Codimension one
C? foliations on compact 3-manifolds with finite fundumental
group have vanishing cycles.

Theorem 6.1.4 (Auxiliary Theorem II). Codimension one
C! tronsversely orientable foliations with vanishing cycles on
compact 3-manifolds have compact leaves.

Proof of Novikov Compact Leaf Theorem using the aux-
iliary theorems I, II: Let 7 be a codimension one C? foliation
on a compact 3-manifold M. Let P : M — M be afinite covering
of M such that the lift # of F is transversely orientable. 7 (M)
is finite since 7y (M) < m (M) and 7 (M) is finite. By Auxiliary
Theorem I we have that F has a vanishing cycle. Hence F has
a compact leaf F' by Auxiliary Theorem II. Then F = P(F) is a
compact leaf of F proving the result. o

6.2 Proof of Auxiliary Theorem I

Let F be a codimension one C? foliation on a compact 3-manifold
M. It is easy to prove that F has a closed transverse . In
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fact, by passing to a finite covering we can assume that F is
transversely orientable, and so, it has a transverse vector field
X. Because M is compact we have that X has a non-wandering
point z. Hence there is a piece of orbit of X which starts and
finishes close to z. By modifying a bit such a piece of orbit
nearby = we can construct a closed transverse of F containing
z. This proves the result.

Next we assume that (M) is finite and let v be a closed
transverse of 7. Because 7 (M) is finite we have that there is
n € N such that the curve 4" represent a closed null homotopic
transverse of F. Without loss of generality we can assume that
n = 1. Now we proceed as in the proof of Haefliger’s Theorem:
Because v is null-homotopic-one has that there is a C° map
A : D?* — M such that A(8(D?*)) = +. By Theorem 5.2.4 we can
assume that A = f is in general position with respect to F. Let
F* = f*(F) be the foliation in D? induced by f. Note that F*
is a singular foliation of class C? in D? and a singularity of F* is
either a centre or a saddle. Clearly F* is C* orientable close to
the singularities. Far from the singularities we have that 7> is
C? locally orientable by the Tubular Flow-Box Theorem. Hence
F* is C? locally orientable. By the last example of Section 2.2
we have that F* is C? orientable, i.e. there is a C? vector field
Y in D? tangent to F*. Note that Y is transverse to dD? and
contains a finite number of singularities all of them being centers
or saddles. Moreover, ¥ has no saddle connections by Theorem
5.2.4-(2). It follows from Theorem 5.3.1 that there is z € D? and
a transverse & satisfying the conclusions (1)-(2) in that theorem.
Let cp be the closed curve ¢y = f(O(x)). Then ¢y C F,, where
zo = f(x). Note that ¢p is not null-homotopic in F,, because
its holonomy map is not the identity in any neighborhood of z,.
Moreover, the closed curve 8 = O(z) is either a periodic orbit or
the closure of a homoclinic loop of Y. These properties motivate
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us to define cycle as a closed curve § in D? which is either a
periodic orbit or the closure of a homoclinic loop of ¥ such that
f(B) is not null homotopic in the leaf of F containing it. As
before every cycle 3 of ¥ bounds a region R(f) which does not
intersect D% We define the order < in the set of cycles of ¥’
by setting 8; < B if and only if R(B;) C R(f3,).

Lemma 6.2.1. Let 8, > B2 > +-- be a decreasing sequence of
eycles of Y. Then there is a cycle B of Y such that Brn > Boo
for alln € N.

Proof. Because the number of homoclinic loops of ¥ is finite we
can assume that 3, is a periodic orbit and that R(B,) is a disc
with boundary 8, for all n. The sequence R(8,) is a decreasing
sequence of compact sets in D?. Hence

() R(Bn)

is a non-empty compact set whose boundary will be denote by
B. Tt is clear that 3 # @. Moreover, there is p € 0 regular be-
cause the singularities of ¥ are centers or saddles (no periodic
orbit close to a center of ¥ can be a cycle of V). By Poincaré-
Bendixson we have that w(p) is either a singularity or a periodic
orbit or a graph. In the later two cases we have that § con-
tains either a periodic orbit or a graph. Hence, as in the proof
of Lemma 5.3.1 in Section 5.3, we have that § itself is either a
periodic orbit or a graph of type Il or III (see Figure 5.4). If §
were a periodic orbit with f(3) null homotopic in its leaf then
f(,) would be null homotopic in its leaf for all n large, a con-
tradiction. Hence if 8 is periodic then B. = # is the desired
cycle. Now suppose that 3 is a graph of type Il or III. The fact
that (3 is surrounded by cycles of ¥ implies that f(8) is not null
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homotopic in its leaf. Hence one of the two homoclinic loops
forming 8 (say ') satisfies that f(3') is not null homotopic in
its leaf. Then, . = (' is the desired cycle. To finish we as-
sume that w(p) is a singularity. In a similar way we can assume
that a(p) is a singularity. Hence O(p) is a graph contained in 8.
As previously remarked this implies the existence of the desired

cycle B and the proof follows. O

Let us finish with the proof of Auxiliary Theorem I. By the
previous lemma and the Zorn lemma we have that there is a cycle
Boo of Y which is minimal for the order <. By the definition of
cycle we have that f{8) is not null homotopic in its leaf. Choose
a regular point z € (B, and let § be a transverse of F* inside
R(f) containing z in its boundary. To simplify the notation we
shall assume that § = [0, 1] with z =~ 0. By Poincaré-Bendixson,
because the number of graphs of Y is finite, we have that all
orbit of Y starting at y € § \ {z} is periodic with period ¢,.
Hence the set

A=0(x)U{Yjpy,): v €0\ {z}}

is diffeomorphic to the annulus S x [0, 1}. Put a parametrization
P : 81 x [0,1] — A such that: Fy(8') = O{z); P,(S') = Yoy,
for all y € 6 \ {z}; and P?([0,1]) is transverse to F* for all
6 € S'. Consider the map g = fo P. Hence g: S' x [0,1] — M
is a limit cycle of 7. In fact, g is C" since both P and f are.
In addition, go(S") = f(O(z)}) C Fjy) is not null homotopic in
A(0) = Fj(z) because B is a cycle of Y. Also for y # 0 we
have that g,(5') = f(a(y)) is null homotopic in its leaf since
Boo is minimal with respect to the order <. Because P?([0, 1]) is
transverse to F* for all ¢ € 5% one has that g/(S*) = f(P?([0,1]))
is transverse to F for all # € §'. This proves the theorem. [
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6.3 Proof of Auxiliary Theorem II

The proof uses the following holonomy lemma. To state it we
use some short definitions, Given a codimension one foliation F
we say that a vector field X is normal for F if the trajectories
of X are everywhere transverse to 7. Clearly a codimension
one foliation has a normal vector field if and only if it is trans-
versely orientable. If F is a transversely orientable foliation in
a manifold M we say that a curve ¢ C M is normal to F if ¢ is
transverse to F and contained in a solution curve of the normal
vector field associated to F. Given a leaf A of F, a compact
set K and a C' map g : K — A we say that g has a normal
extension if there are € > 0 and a G map G : K x [0,¢]) » M
such that:

1. Go/K =g,
2. G4(K) C A(t) for some leaf A(t) of F with A(0) = A;
3. Vz € K the curve G*({0, ¢]) is normal to F.

Lemma 6.3.1 (Holonomy Lemma). Let F a codimension
one transversely orientable foliation, A be o leaf of F and K be
compact set. If g: K — A is a C* map homotopic to constant
in A, then g has o normal extension.

Proof. let g : K — A of as in the statement and denote by X
the normal vector field of . For all x € K define the normal
curve

Ty = {X(g(z)) : s € [0, 1]},
where as usual X, denotes the flow of X and Xg(A) = {X,(2) :
(s,z) € Bx A}. By hypothesis g(K) is a compact null homotopic
subset of A, and so, it is contained is disc D C A. Fix zp € K

and define
G(z,t) = f(Xe(9(z)),
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where f = f;: Dom(f) C £,, — X, is the holonomy inducéd
by a curve <y, C D joining g(zy) to g{x). Since D is contractible
we have G(z,t) does not depend on the chosen curve v,. More-
over, since g(K) is compact, we can assume that there is € > 0
such that G{z,t) is defined for every (z,¢) € K x [0,¢]. Let us
prove that the map G : K X [0,¢] — M so obtained is a normal
extension of g. It is clear that G is C?! since g is. First we prove -
that Go/K = g. In fact, if z € K then Go(z) = G(z,0) =
Ff(Xo(g(x))) = flg(z)) = g(z) by the definition of holonomy
and Xo = Id. Second we prove that G,(K) C A(t) for some leaf
A(t) of F with A(0) = A. In fact, it is clear that A(0) = A.
Next we observe that Gy(z) = G(x,t) = f(X:(g(z))) € Fx, (o)
Since Fx,(g(z)) = Fxule(zo)) by definition of holonomy we have
that A(t} := Fx,(g(xs) wWorks. Third we prove that G*([0,¢]) is
normal to F. In fact, G*(t) = G(z,t) = f(Xi(g(z))) € . which
is a solution curve of X. The lemma follows. (]

Hereafter we let F be a codimension one C! transversely
orientable foliation with a vanishing cycle f : S x [0,¢] — M on
a compact 3-manifold M. We denote by X the vector field in M
transverse to F and by X; the flow generated by X. This vector
field exists because F is transversely orientable. For simplicity
we shall assume that e = 1. A C! curve a in a leaf of F is in
general position whenever #a~'(p) < 2 for all p € M and if
z,y € Dom(e} are different points with a(z) = a(y), then a'(x)
and o/(y) are not parallel (see Figure 6.1).

Lemma 6.3.2. We can suppose that the vanishing cycle f: ' x
[0,1] = M of F satisfies the following additional properties:

4. fo(SY) is in general position in A(0).
5. ([0, 1}) is normal to F.
6. Ifz,y € S* and f*(0) # f¥(0), then f*([0, 1])Nf([0,1]) = @
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Figure 6.1: General position curve for F

Proof. Clearly (5) implies (6) by ODE reasons. By moving a bit
f+(SY) we can assume (4). To assume (5} it suffices to project
£%([0,1]) to the solution curve of X passing through f*(0} via
holonomy. This is done as follows (see Figure 6.2): For z € S' we
define & = {X,(f(0)); s € [0, 1]} which is the solution curve of
X passing through f(0). We define ' = f=([0, 1}}. By the def-
inition of vanishing cycle the curve one has &' th F. As X th F,
we have © th F. Note that z € ¥ N Y. Hence there is a holon-
omy map g : Dom(g) C &' — Z. Define f*(z,t) = g(f*(¢)). By
compactness we can assume that f*(z,t) is defined in S x [0, ]
for some € > 0. We shall assume that ¢ = 1 for simplicity.
Let us prove that f* is a vanishing cycle of F. First note that
(f*elz) = g(F2(0)) = g(z) = = (by the definition of g) and
so (9)o(8Y) = fo(S81). The last implies that fo(S) C A(0) is
not null-homotopic in A(0). Moreover, (f*)(z) = f*(z,t) =
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g(f*(t)) € Fyeyy = A(t) by the definition of holonomy. Hence
fr(8") € A(t), Vi. Now we prove that F(S') is null ho-
motopic in A(f) for all ¢ > 0 small. In fact note that ff{x) =
g(f* ®) 5 9(f7(0) = folz) and fi(z) —= fo(z). Hence

t—-0t
d(f; (), fle) < df (@), fo(@) + d(fola), fz)) — 0. Thus,
St (8%) is C%close to fo(S') in A(t). Then, f(S*) =~ 0 em A(t)
as desired. The proof follows. O

Figure 6.2:

Lemma 6.3.3. We can assume that the vanishing cycle f : S' x
[0,1] = M of F satisfies the following additional property:
7. The lift f : St — A(t) of f, : S* — A(t) to the universal
cover m(t) : A(t) — A(t) of A(t) is a simple closed curve,
Vi > 0.
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Proof. Define R = { couples (z,y) of different points of 5 such
that fi(z) = fi(y) for some ¢t > 0}, and r, = #R. We have
that r < co. In fact, for all t we define B, = {p € fi(S!) :

“Yp) = 2}, by = #B;. by < co because fo is in general
position. Note that f; — fo in the C* topology as t — 0% and,
because f; is in general position we have b, = by for all ¢ a2 0.
Hence the map t — b; is the constant map ¢ — by. Asr < by the
result follows. On the other hand, R # § for otherwise we are
done. Pick (z,y) € R and define U = {t > 0: filz) = fiy)},
K ={t <0: fi{z) = f:(y)}. The following properties hold:

e K is compact (because f* and f¥ are continuous}.
e U # 0 (because (z,y) € R).
* U CK (because fi(z) = fuly) = f(t(z) = f(v)-

e U is open: Fix ¢ such that fi(z) = fi(y). Then the curve
(m(t)o £)/lz,y] is closed, where [z, y] is a suitable arc in S*
joining z,y. This curve is null homotopic in A(t) because
its lift f/[z,9] in A(t) is a closed curve. By the Holonomy
Lemma we conclude that (w(s)o f,)/[#, ] is null homotopic
in A(s) for s = ¢ proving the result.

Because U # () is open we can fix an interval (',t”] in U
with t” ¢ U and t” being arbitrarily close to 0. ¢’ € K because
K is closed and U C K. Hence fy(z) = fv(y). We claim that
one of the two arcs {z,y) joining z to y in S* satisfies that the
closed curve fyu([z,y]) is not null homotopic in A(Z'). Indeed we
have two cases, namely either > O or £ = 0. If ¢/ > 0 as
t' ¢ U we have that fu([z,y]) is not a closed curve for each arc
[z,y]. Because the closed curve fy([z,y]) lifts to the non-closed
curve fu([z,4]) in A(t") we conclude that fo([z,y]) is not null
homotopic in A(t) for all [z,y] (recall that A(t) is the universal
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cover of A(t)). If ¢ = 0 then we let [z,y], [z,y]' be the two
possible arcs in S? joining z to y. If both fo([z,4]), fo([z, v]")
were null homotopic in A(0) then f5(S') would be null homotopic
in A(0) as it is the product of fy([z,¥]), fo([z,y]"). The last
contradicts the definition of vanishing cycle. This proves the
claim. Hence we can assume that f,([x,y]} is not null-homotopic
in A(t'). We not that the closed curve fy([z,y]) has less than
r multiple points. Moreover the restriction f/(S' x [¢/,#']) :
St x [¢,#"] — M is a vanishing cycle of F with A(t') close to
A(0). Replacing f by f/(S! x[t',1"]) we have less than r multiple
points for the new vanishing cycle. Repeating the process we
obtain the result. |

Lemma 6.3.4. Let f : S x {0,1] — M be a vanishing cycle
of F satisfying the properties (4)-(6) of Lemma 6.3.2 and (7) of
Lemma 6.3.3. Then, there is an immersion F : D?x (0,1] — M
satisfying the following properties:

1. F,JOD? = f,, Vt.
P(D?% x t) C A1), Vt.
F=((0,1)) is normal to F, Vz.

B Lo Mo

IfU={z¢€ D2 : limy_g+ F®(t) exists}, then oD Cc U, U
is open; and D\ U # 0.

Proof. Let n(t) : A(t) — A(t) be the universal cover of A(t). We
have that A(t) = R? or §2. The last cannot happen for otherwise
the Reeb Global Stability Theorem would imply M = $2 x §1
and F is the trivial foliation 52 x *, a contradiction since fo{S*)
is not null homotopic in A(0) (see the last exercise in Section
4.3). On the other hand, (7) of Lemma 6.3.3 says that f,(S") is
a simple closed curve in A(1). By the classical Jordan Theorem
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we have that there is an embedding F : D? x 1 — A(1) with
£1/8D* = f,. We define F : D? x 1 — A(1) by F = n(1) o F.
Clearly F' is an immersion as w(1} is a covering and Fis an
embedding. Applying the Holonomy Lemma to F' we can extend
F to D? x (tp, 1] for some t5 > 0 satisfying (1)-(3).

We claim that F' can be extended to D? X {t, 1] still satisfying
(1)-(3). In fact, first we show that lim, .+ F(x,t) exists for all

z € D?. Because t, > 0 we have that f, : §! — A, is null
homotopic. As before there is an embedding Hy, : D? — A(to)
with H,, /@D? = f,,. Define Hy, = m(t) o Hy,. Again by the
Holonomy Lemma there are § > 0 and an immersion G: D? x
(to — 8,15 + 0) — M such that:

a) Gy(D?) C A(t);

b) G./OD? = f,;

c) G®((tg — 4,1t + 8)) is normal to F;

d) Gy, = H,.

Now we fix ¢ € (to,to — ) and consider D := F;(D?*) and
Dt = G(D?). Both D and D! are discs contained in A(t) with
6D = 3D' = f(S"). If D # D' then A(t) would be S? a
contradiction as before by Reed Stability. Hence D = D' and
so Fy(D?) = Gy(D?) for all t € (fo,t0 — 6). If z € D* and { €
(to, to — 9), then Fiy(z) € F,(D?) = G(D?) = Fy(z) = Gy(y(z, 1))
for some y(x,t) € D?. But G¥E8(te — 8,y + §) and F*((to, 1])
are both normal to . Hence y(z,t) = y(z) does not depend
on t. Thus, am?* F(z,t) = tlirg Gy(z),t) = Gy(z),t0) C Alto)

iy ]

proving that lim F (z,t) exists Vz € D% To finish with the

t—iy

claim we simply define H : D? x [ty, 1] — M by

lim F(z,t), if ¢ =0,
H(z,t)={ t4
F(Ii,t), ift 7& t().
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Thus H/D? x (ty,1] = F, H;|8D* = f,, H/(D*) C A(t), YVt and
H?([ty,1]) is normal to F. In other words H is an extension
of F to D? x [tp, 1] satisfying (1)-(3). This proves the claim.
If {3 > 0 the the Holonomy Lemma allow us to extend F' to
D? x (ty — 6,1} satisfying (1)-(3). Hence we can assume that
there is I : D? x (0,1] — M satisfying (1)-(3).

Let us prove that F' satisfies the property (4) of the lemma.
Ifxoe U= 3y = EEI(% F(zo,t). Let V be a tubular flow-box

for X around yo C solution curve of X. Note that yo € Ox (),
the orbit of 7, as X is non-singular (X M F). Hence, X, (zo) =
Yo, for some ty > 0. By the Tubular Flow-Box Theorem there
is a neighborhood B of zg, such that X, (B) C V. As F} is
continuous there is a neighborhood W of z; in D? with 2y =
Fi(z1) such that F1(W) € B. See Figure 6.3.

Let us prove that lir(gr F(z,t) exists Yo € W. In fact, Con-
t—

sider z € W and ¢’ = Fy(z). Note that the curve F7({0,1])
has finite length for, otherwise, it would exist a first exit point
z of F*({0,1]) from V. Clearly 2 = F¥(t,) for some t € [0,1].
But F*(t,) = F,,(z) € A(t.), F¥(t) = F,(z') € A(.). As
z € OV and F*(t,) ¢ OV (such a point is close to y € Int(V)) we
conclude by the Mean Value Theorem that A(¢,) and 7, have an
intersection point. This intersection point implies A(¢,) = F.
Because dimF == 2 we can assume from the beginning that
Fy # A(t.) a contradiction. Hence F¥({0,1]) has finite length
=3 tl_i'r(ﬁ F(z',t), Yo' € W. This proves that U is open.

Warning: The last argument proves that f x € U and y =
lim;...o+ F®(t), then there is a neighborhood W of z in D? such
that lim,_q+ F* (t) = ¢/ exists for all 2’ € W and F,, = Fy.

To see 8D? C U it suffices to observe that F*(t) = f*(t) for
all z € 8D? = S = limy_o+ F=(t) = limy_o+ f*(t) exists and
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Figure 6.3:

belongs to A(0) for all z € S.

Finally we prove that D*\ U # 0. If D? = U we would
have that Fy := lim,_g+ F*(¢) would exist for all z € D?. By
the Warning above we would have Fy(z) € A(0) for all z € D%
The resulting map the map Fp : D* — A(0) yields a continuous
extension of fy to D?, a contradiction since fo{S') is not rull
homotopic in A(0). This contradiction shows D? \ U # § and
the lemma follows. O

Lemma 6.3.5. Let F be the immersion in Lemma 6.53.4. Then,
Yo > 0 there are 0 < #' < t" < o and an embedding h : D* —



6.3. PROOF OF AUXILIARY THEOREM IT 131

int(D?) such that
Ft" z)=F(t,z), VYre D%

Proof. By Lemma 6.3.4 there is y, € D?\ U. Hence the limit
lim;_g+ £'% (%) does not exist. Nevertheless the compactness of
M implies that there is a sequence t,, — oo such that F¥(t,) —
z for some z € M. By using the Tubular ¥low-Box Theorem we
can assume that F'% € F, for all n. In addition we can further
assume F, # A(0) because the leaves of F are two-dimensional.
As Fw(t.) € A(t,) we have A(t,) = A(tm) for all n,m. Defining
D(t) = F,(D?) we have D(t,,) C A(t,) C F;, ie. D(t,) C F, for
all n. Note that z € A(t,) Vn large for, otherwise, it would exist
n — oo with 2z ¢ D(t,,). By hypothesis F*(t,,) = F, () €
D(ty,) converges to z. Because 8D(t) = f,(S) for all t we
- conclude that b, € fi, sequence converging to z. But the
distance dist(b,,, fo(S')) goes to 0 as ¥ — oo. As fo(S!) s
compact and b,, — z we would have z € fu(S') C A(0) yielding
F, = A(0) a contradiction. This proves z € A(t,) Vn large. Next
we claim that for all m € N one has D(t,,,) C Int{D(¢t,)) Vn large.
In fact, note that 8D(t,) = f..(S?) hence 8D(t,) — fo(S)
uniformly as n — o0. Clearly we can assume from the beginning
that A(t,) # A(0) for all n. Hence f,,(S*) N A(0) = @ for all
n. It follows that for m € N fixed one has 8D(t,) N 8D (t,,) = 0
for all n large. On the other hand, we can assume z € D(t,)
for all n. From this and @D(i,) N 8D(ty,) = O one has either
D(tm) C Int(D(t,)) or D(t,) C Int(D(¢r,)) for all n large. In the
second case we would have f3(S*) C D(t,,) by taking the limit of
the sequence 8D(t,) = f;,(S*). This would imply A(t,) = A(0)
a contradiction. This contradiction proves D(t,,) C Int(D(t,))
for all n large.

The last claim implies that for @ > 0 fixed there are 0 <
tn < tn < a such that D(t,) C D(t,). Choose t" = ¢,, and
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' = t,. Clearly A(t') = A("). To find the embedding h we
let By : D? — A(t!) and F : D* — A(t") be the lift to the
universal cover. They exist because D? is contractible. Note that

Fp(D?) C Int(Fy(D?)). Hence for a suitable base point one has
Fu(D?) C Int( £y (D?)). As both By, By are dlffeomorphlsms we

can define
h= (Fy)_l c ﬂu : .D2 - Int(DZ).

Hence h is an embedding satisfying
Fy(h(z)) = Fw(z), Yz € D%

By composition with the projection A(s) — A(s) for s = ¢/, ¢"
one has the desired property. The lemma follows. ([l

Lemma 6.3.6. Let f : S'x[0,1] — M be a vanishing cycle of F
for which there is an embedding F': D* x [0,1] — M satisfying
the conclusion of Lemma 6.3.5. Then, there is in the closed
transverse of F intersecting A(0).

Proof. Suppose that there is a closed transverse -y of F inter-
secting A(0). Modifying a bit v we can assume that there are
zp € S and o > 0 such that

f=([0,a}) C,

and

(0o ny =0, Vze 8\ {zo}.

By hypothesis there are 0 < t/ < t < o satisfying the conclu-
sion of Lemma 6.3.5. Let A : D? — Int(D?) be the corresponding
embedding. In the cylinder D? x [t/,t"] we consider the identi-
fication (x,t") = (h(z),t'). The manifold N obtained from this
identification is depicted in Figure 6.4, Note that IV is either
a solid torus or a solid Klein bottle depending on whether £
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B0

p’x [t ']

Figure 6.4:

preserves or reverses the orientation in D?. In any case we let
II: D?*x[t',#']| = N be the quotient map. Denoteby P : N — M
the map defined by

P(z) = F(z,t),

where (z,t) € II7Y(2). P is well defined. In fact, if II{x,t) =
I(y,s) then s = t",¢t = ¢ and © = h{y). Because F(y,s) =
Fy,t"y = F(h(y),t') = F(x,t') = F(z,t) we obtain the result.
In addition P is an immersion since F' also is. On the other
hand, we can assume that -y and the normal vector field X of F
points in the same direction. Now, as -y contain the normal curve
F*([0, &]) (and does not intersect any other normal segment) we
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have that - intersects P(N) as in Figure 6.4. Now it suffices
to observe that v cannot exit P(N) because it cannot intersect
P(II(S* x [¢,£"])). This proves that y cannot be a closed curve,
a contradiction. This contradiction proves the result. £

Proof of Auxiliary Theorem II: The vanishing cycle f :
S! % [0,1] — M of F can be assumed to exhibit an immersion
F' satisfying the hypothesis of Lemma 6.3.6. The conclusion
of this lemma says that the leaf A{0) cannot intersect a closed
transverse of . And this implies that A(0) is a compact leaf.
The result follows. O

6.4 Some corollaries of the Novikov
Compact Leaf Theorem

We observe that if M and F are orientable and transversely
orientable then the quotient manifold N in the proof above is a
solid torus. In such a case it can be proved without difficulty
that N is a Reeb component of F. This remark is summarized
in the following result.

Theorem 6.4.1. A codimension one transversely orientable C*
foliation on a compact orienteble 3-manifold with finite funda-
mentel group has a Reeb component.

Corollary 6.4.2. If F is a codimension one C* foliation without
compact leaves of a compact 3-manifold M, then the leaves of F
are Ty -injectively immersed in M.

Proof. Suppose by contradiction that there is a leaf F' such
that Ker(m(F) — m(M)) # 0, where m(F) — m (M} is the
homomorphism induced by the inclusion F — M. To get the
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contradiction it suffices by Auxiliary Theorem II to prove that
F has a vanishing cycle. For this we proceed as follows. As
Ker(m (F) — m{(M)) # 0 there is a curve a C F' which is null
homotopic in M but not in F. Because & is null homotopic in
M we have that there is a map f: D* — M with o = f(8D?).
We can assume that f is in general position with respect to
F. Hence the induced foliation F* in D? is a singular foliation
tangent to a vector field Y. Note that the singularities of ¥ are
either saddles or centers and there is in the saddle connection for
Y. Clearly the closed curve 8D? is a cycle of Y. Hence the set of
cycles of Y is not empty. By Lemma 6.2.1 such a set is inductive
with respect to the inclusion order. A minimal element in this
set produces a vanishing cycle for F (see the proof of Auxiliary
Theorem I in Section 6.2). This yields the desired contradiction
and the proof follows. |

Corollary 6.4.3. Let F be a codimension one C? foliation with-
out compact leaves of a compact 3-manifold M. Then the lift of
F to the universal cover of M is a foliation by planes.

Proof. Let F be the lift of F to the universal cover 7w : M —
M of M. Suppose by contradiction that there is a non-simply
connected leaf £ of F. Hence there is a closed curve & C F
which is not null homotopic in E'. Obviously é is null homotopic
in M. Hence the closed curve ¢ = 7(é) is null homotopic in M.
Because ¢ is not null homotopic in F' we have that ¢ is not null
homotopic in the leaf F' = w(F") of F. This proves that F* is not
mi-injectively immersed in M. Then F has a compact leal by
Corollary 6.4.2, a contradiction. This contradiction proves that
all the leaves F of F are simply connected. Thus F' = R? or 52.
If some F is 92 then F has a compact leaf with finite fundamental
group. By Reeb Global Stability it would follow that all the
leaves of F are compact, a contradiction. This contradiction
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proves that all the leaves of F are planes as desired. O

Remark 6.4.1. Corollary 6.4.3 shows that closed 3-manifolds
supporting codimension one C? foliations without compact leaves
are irreducible, namely every tamely embedded 2-sphere in the
manifold bounds a 3-ball. In particular such manifolds are prime,
i.e. they are not non-trivial connected sum. We observe that
compact 3-manifolds supporting Reebless foliations may be non-
irreducible as shown the trivial foliation {S? x *} of 5% x S™.
Nevertheless the 2-sphere bundles over S! are the solely closed
3-manifolds which are not irreducible and supports Reebless fo-
liations.

Remark 6.4.2. The results in this section hold true for C? fo-
liations.



Chapter 7
Rank of 3-manifolds

The notion of rank of a manifold was introduced by J. Milnor,
improving original ideas of Hopf, in the search of non-homotopic
invariants for manifolds.

Definition 7.0.3. Let M be a differentiable manifold. The
rank of M is the maximum number k& € N such that there ex-
ist continuous vector fields X, ..., X, on M with the property
that [X;, X;] = 0, V4,5 (ie., the vector fields commute) and
Xi,..., Xk being linearly independent at each point of M.

The Poincaré-Hopf-Euler Theorem states that any continu-
ous tangent vector field on 5% must have some singularity so that
rank (5?) = 0. the following remarkable result is due to E. Lima:

Theorem 7.0.4 ([31]). The rank of the S-sphere S3 is one.

Notice that, since a C! vector field on a compact manifold is
always complete we may state:

{A compact manifold M has rank > k} < {M admits a
locally free action ¢: R¥x M - M of the additive group (R¥, +)}

137
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Idea of the proof of the Lima Rank Theorem:

First we observe that rank (§%) > 1 as it is easily proved by
observing that X (1, s, 23, 24) = (—2, 21, —Z4, T3) is tangent to
52 and non-singular (outside the origin 0 ¢ S%).

Assume by contradiction that rank (S®) > 2. By the above
remark there exists a locally free action : R2 x $3 — $3 The
action generates a codimension one foliation F (assumed to be
C?) on S%. By Novikov Compact Leaf Theorem F exhibits some
Reeb-component. Thus we are finished once we prove the fol-
lowing:

Lemma 7.0.5. Given any pair of commuting continuous vector
fields X,Y in the solid torus D x S such that X and Y are
tangent to and linearly independent along S* x S = 6(52 x 51,
then there exists some point p € D? x S' whereX and Y are
linearly dependent.

Proof: The boundary torus 8(D° x S') has isotropy group of
the form r - Z -+ s - Z for some 7,8 € R? ~ C with r/s ¢ R so
that we may re-parameterize @ as w({rt;, st2), - ) (t1,2) € RZ,
in such a way that we may assume

g 5} a

+z— and Y|sixgt =—=—

X =y
|.5'1><S' yam ay az

for coordinates (z,y,z) € R? with

D" ={(z,y,2) R 2=0, z*4y?<1}

We shall therefore prove that any continuous extension 6:'1, &
of the vector fields & = —ya% + :ca%, & = % On 8! x S! to

) 1 T . = = .
D™ x S must exhibit some point where £ and & are linearly
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dependent. This is done as follows: we may assume that &) and
£y are orthonormal extensions as it is easy to see.

Such an extension may be regarded as a path homotopy
@: 8D x [0,1] — GY of the path a = &( - ,0): D" — G,
with a constant; where (73 3 is the space of orthonormal oriented
pairs of vector on R®.

By its turn G3; may be identified with the real projective
space of dimension 3, RP(3) as follows: to any element (v;,v3) €
(33 3 we associate a vector £(vy,vz) € R® as follows.

Denote by A(v, v} the matrix whose columns one vy, v, and
the vectorial product v; A vo € R3. the A(vi,v;) is orthogonal
and exhibits some eigenvector #@(vy,ve) such that £A{v,,v,) -
#(vy1,v2) = @(v1,v2). Let (v, vz} be the 2-dimensional subspaee
of R® orthogonal to @{vy,vs)

The restriction A{vy, v2)|r(m ) 15 an orthogonal linear map
of IR? so that it is a rotation of an angle say 8(vy,v2) € [0, 7).

If § = 0 we define £(vy,v2) = 0 € R? (in this case A{vy,vs) =
Id). for 8{vy,v2} € (0,7} we choose £(v1,v2} € 7w(vh,v2) with
|E(v1,v2)] = € e same direction and orientation that any v A
A(vy,v2) - v for v € w(vy, v2) — {0}.

Finally, if 8(vi,v2) = m. Then v A A(vy,v2) -v = 0, Vv €
7(v1,v2). In this case we cannot define an orientation for £(v1, va),
what corresponds to identify the vectors —v and v € (w1, v2)
having |[v| = .

Thus £ above define gives an homeomorphism &: G5, —
B¥(o,m)/ ~ of G%; on to the quotient space B¥(o;7)/ ~ of
the closed ball {(z1,%2,23) € R Zf;:l z? < 7} on R® by the
equivalence relation that identifies the points » and —v for v €
8B*oo,m).

Clearly B3(o,m)/ ~ is homeomorphic to RP(3) (recall that
RP(3) = k3 URP(2)).

The path e = a( - ,0): 80" — G35 5 is according to this iden-
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tification, a diameter of B3(0,7) parallel to the z3-axis, from
down to up (orientation). Thus this path, once projected into
RP(3), is not homotopic to a constant. This proves the Rank
Theorem. Q.E.D.

Remark 7.0.6. The original proof of Lima is from 63 and does
not make use of Novikov Compact Leaf Theorem. Actually, the
above proof shows:

Theorem 7.0.7 (E. Lima, 63). A compact simply-connected
manifold of dimension three has rank one.

Remark 7.0.8. The complete solution to the problem of de-
scribing the rank of closed 3-manifolds was given by Rosenberg-
Roussarie [49] where they prove that a rank two 3-manifold must
be a non-trivial fibre bundle over the circle with a torus fiber.

Exercise 7.0.9. Is there any locally free action of the affine
group Aff(R) on the 3-sphere?



Chapter 8

Tischler Fibration
Theorem

8.0.1 Preliminaries

Let M be a compact manifold admitting a submersion f: M <,
S'. We consider the angle-element 1-form § € H'(S!,R) and
take w = f*(0) its lift to M. We obtain then a closed 1-form,
without singularities, of class C! in M. Since w is integrable,
it defines a foliation F of codimension 1, class C! in M. Let
now p € M be any point. Since w is not singular there exist
neighborhoods p € U, C M and C* vector-fields X, in U}, such
that w- X, = 1 in U,. Using partition of the unity we obtain
finally a global vector-field X in M with the property that w -
X = 1. Since M is compact, X is complete defining therefore
aflow o: R x M — M. From w - X = 1 we conclude that the
flow is transverse to F. Since dw = 0 we have that Lx(w) =
d(w - X) +ix(dw) = 0 so that @ preserves the foliation F {each
diffeomorphism ¢;: M — M takes leaves of F onto leaves of F).
We conclude that F is “invariant by a transverse flow”. Tischler
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Fibration Theorem states the converse of this fact:

Theorem 8.0.10 (Tischler-1970, [69]). Let M be a closed
differentiable manifold. The following conditions are equivalend:

(i} M supports a foliation F, of class C! and codimension 1,
invariant by a transverse flow C.

(i) M supports a closed 1-form of class C! without singulari-
ties.

(ii) M fibers over the circle S'.

Taking into account the Theorem of Sacksteder (according to
which a foliation of class C?, codimension 1 and without holon-
omy is topologically conjugate to a foliation defined by a closed
non-singular 1-form {(cf. [56]) we obtain in class C? the following
equivalent condition:

(iv) M admits a foliation of codimension 1 without holonomy.

A demonstration of Tischler Fibration Theorem uses strongly
the fact that in a closed manifold M we can find closed differen-
tiable 1-forms wi,...,w; € H'(M,R) such that given a base

,...,7 of the free part of H,(M,Z) we have / wp = G

v
delta of Kironecker. Thus the closed 1-form closeé win M

¢

writes w = Y Ajw; + df for some function f: M ~— R, where

=1

{A1,. .., Ae} generates the group of periods Per(w) < (R, +) of

w. If w is non-singular then, since @ = R, we can obtain per-
¢

turbations o' = 3 A\jw; + df of w such that ' is non-singular

i=1
and Per(w') € @ and hence for some integral multiple k - w'
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we will Per(kw') € Z. Clearly kw' = dg for some submersion
g M-oR/Z=5" R

8.0.2 Proof of Tischler Fibration Theorem and
generalizations

In this section we state the basic results we need in order to
prove the Tischler Fibration Theorem. Throughout this section
F will denote a (non-singular) codimension one smooth foliation
on a connected manifold M of dimension n > 2.

Definition 8.0.11. Let ¢: € x M — M be a smooth flow on
M. We say that ¢ is a flow transverse to F if the vector field
dp
Z =L
at t=0
(the leaves of) F.

(where t € C is the complex time) is transverse to

We say that F is invariant under the flow ¢ if each flow map
Wy M — M takes leaves of F onto leaves of F.
We shall say that F is invariant under the transverse flow of Z
if Z is a complete vector field on M, whose corresponding flow
@ is transverse to J and F is invariant under .

Example 8.0.12. Let M be a n-torus, M = R"*/A where A C
R™ is some lattice. Let F be - the foliation on R™ by hyperplanes
parallel to a given direction Z € R™. Then F induces a foliation
F on the quotient M = R™/A which is called a linear foliation
on the Torus M. Such a foliation is invariant under a transverse
flow given by a vector field Z whose lift to R™ is Z. As it is
easily checked, F is given by a (non-singular) closed smooth 1-
form & on M, with constant coeficients. The following (classic
real) result states the existence of £ as a general fact:
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Proposition 8.0.13. Let F be invariant by a transverse smooth
flow ¢ of Z on M. Then F is given by a (non-singular) closed
smooth I-form Q0 characterized by:

/t ")) - Z(ou)) dt = 1o — 1

1

Vee M, Vi, th e R.

Proof. We follow the original construction in {42}. We construct
 locally as a “time form” for Z. Given any point p € M choose
a distinguished neighborhood £: U C M — R™ ! xR such that £
takes F|,, into the horizontal foliation on R"~! x R. We may also
assume that £(p) = 0 and (most important) £(i:(p)) € R*™ x
{t}, Vit with ¢,(p) € U (here we use the fact that ¢ is transverse
to F and leaves F invariant). Define now Qy := d(7 o £) where
m: R*! x R — R is the projection w(z,y) = y.

Given two such distinguished charts £;: U; C M — R™ ! x R
with U; connected and having connected intersection U MUy # ¢
then if we put ; := Qp, = d97 0 £;) we obtain in U; NUa:

)
Q1|U1I'1U2 = d('ﬂ' o El)lulﬁyg = d(?f °© 52) |U1ﬂU2
= Q2|U1HU3 )

Remark 8.0.14. £;(¢i(pa)) € R* x {t} = &;(i2(q)) € R* x
{t} Vg€ Ly, 0 U; where L,, = leaf of F through p;,

EJ((pt(Q)) = (aj(Q=t)7t)a Vq € LPJ' n Uj
co(mo&y)ela)) = m(a(g,t),t) =t, Vg€ Ly NU;, Vim0

and finally
(mro&)pdr))=t, Vrel;, Vim0
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This way we obtain a well-defined closed one-form Q on M which
satisfies

Qee(p) - Z(0e(p)) = d(m o E){2u(p)) - Z(ipu(p))

= 2 ((ro8)plo)) =

d
=ag(t)=1, YpeM, VteR O

Corollary 8.0.15. Let F be a codimension one (non-singular)
smooth foliation on a compact (connected) manifold M. The
Jollowing conditions are equivalent:

(i) F is dnvariant under some smooth transverse flow.

(i) F is given by a closed smooth one-form £ on M.

Proposition 8.0.16. Let 7, ¢, Z, Q be as in Proposition 8.0.13
but assume M is compact. Given any leaf Ly of F there ezist a
differentiable covering

g: Lo xR — M, o(z,t) = @(z);
and an ezact sequence of groups

0 — m(Lo x R) 25 my(M) ~— A — 0,

where A is a finitely generated free abelian group. Moreover, Ly
is compact if, and only if, A is a lattice on R.

Proof. Define

H= {[’y] e WI(M);/TQ - o}
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then H is a normal subgroup of (M) and it is free because

/ Q:n-fQ Yy em(M), VneZ.
n-y

~

Put A := m(M)/H then A is finitely generated and also A is
abelian because H D [m (M), m1 (M)} (the group of commuta-
tors) because

L*JQZLQ+[,Q=/69+[!Q=IM

V6 Y € TTI(M)

Let P: M — M be the smooth covering of M, corresponding to
H. Let also .7-" Q and @ be the lifting of F, § and ¢, to M
respectively.

Remark 8.0.17. F = P*F), = P*(Q) are usual pull-backs.
p: M xR — M is defined by

G(p) = o P(P)), VPEM, VteR,

that is, for each EM, @:(P) is the lifting by P of the curve
©i(P(p)) on M.

This lifting is well-defined because of the following:

Let v, & be simple piecewise smooth paths on R with y(0) =
= §(0) and 6(1) =t = ~(1).

Put ¢ = § 715y then c is closed. Since 2 is closed and ¢,,: R — M

is smooth we have that [ ¢}(€2) = 0. Therefore,

/ 1 =10, thatis, Q=0
Geplac wp(c)
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This says that ¢,(c) € H. But @,{c) = ¢,(8)7 # ¢,(7) so that
wp(6) and ¢p(y) are paths whose lifts by P exhibit the same
final points. Therefore we may define @: MxR — Mina
natural way. It is now easy to check ¢ is (locally) smooth in each
variable & € M and ¢ € R separately. By Hartogs’ Theorem @ is
smooth as a map M xR — M. Finally we have by construction
Po(t, &) = @(P(Z)) so that

Po(t, (s, £)) = @i(P($(s,2))) = puiles(P(E)))
= @us(P(E)) = Pop(t + 5, E).

This implies that @(t, @(s, £)) = &(t + s, £) so that @ is actually
a flow on M.

~ d
Let therefore 2 = 7e be the corresponding smooth vector

ot =0
field. Tt is then clear that P,Z = Z, that is, Z is a lift of Z.
By construction if 5 € (M) is such that [S© = 0 then 7 is
(homotopic to} the zero element so that Q = dj for some smooth
function f: M — R.

Lemma 8.0.18. We have f(3,(2)) =t+ f(Z) VtER, Vic
M.

Proof. Indeed,

4 (@@ = df(@@) - ZG(@) = 8@6) - 26@) =1
and also ~
Ne=Ff@® o

Given any leaf Ly of 7 on M let Lo CNM be a leaf of F such
that P(Ly) = Lg. Define the map g: Lo X R — M by setting

g(%,t) = ‘Et(j)
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Lemma 8.0.19. g is a smooth diffeomorphism of Lo x R onto
M.

Proof. We have

dg _ 0% Ly B g
Bt (.’L‘g,to) Bt t=tu($0) - Z({:ato(x[)))'
Also 5 55
cg o~ op
T (Fo,t0) = 5= (Soto(ﬂ?)) k- (Zo, to)-

Since the flow of Z is transverse to F it follows that the flow ¢
is transverse to F so that ¢ is a local diffeomorphism in Ly x R,
Now we notice that if g(Z1,t1) = g{(Z2, te) then &y, (Z,) = &1, (Z2)
and f(@(t1,31)) = f(§(tz £2)) so that Fy,—,(1) = T2 and t1 +
FE) = ta + F(Za).

Now, 2, and %, belong to the same leaf .15,,.D = Lg of F so
that f(Z1) = f(Z2), this implies ¢y = ¢, and therefore ; = &y.
Therefore g is also injective and it is a diffeomorphism of L[) xR
onto its image (Lo xR) C M. It remains to prove that g(lo x
R) = M.

It is enough to prove that this image of g is closed. Take any
point £; € M belonging to the closure of g(Lﬂ x R) i n M. Let
31 3 Z; be any open ball in the leaf L1 2 &;. Let U be the

“cylinder” U = |J @{B,), and take any # € Ung(Lo x R).
teR

We have T € t,"o's(Lg)Nfor some s € R and also there exists r € R
such that & € &,(B1). Thus &, € Ps—r(Lo) and hence %, €
g(Ly x R). This proves the lemma. O

Now we may prove:

Lemma 8.0.20. Plf,n: Eg C M — Ly C M is a bijection and
therefore o diffeomorphism.
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Proof. P is injective, for if £,,%; € EO are such that P(i,) =
P(Z,) then we may take a path &: [0,1] — Ly of class C! with
&(0) = 7, and &(1) = 5.
This gives a projected path ¢ = Po &: [0,1] — Ly C M which
is closed, i.e., & € my{Ly).

We have
d . - _ =~ _, '
= (F(@a(6)) = Q@) - &'(1) so that
Q&) - &(t) =0, Yie[0,1] and therefore
Qa(t)) - &'(t) =0, Vtelo1].
This gives

0= /0 " Qalt) - o (8) dt = fa Q

and therefore [a] € H € m(M). This gives &(0) = &(1) in M,
le, 571 = SEZ . O

Let now 1,1 Lo x R — L x R be given by n:(x, 8) := (z, s+1).
Let also G: Ly x R — M be defined by

G(z,s) = g((P|g,) "z, s)
e —
L3
R
E()X]Ra
Consider the following diagram

M & M S L,xR

(Ptl fﬁtl l gt

M <& M & L,xR
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The left side is commutative by construction.
Now we observe that given (z, s} € Ly X R we have

g((Plz,) " (@) s +1)
Fort((Plz,) " (2))
(

G(ne(z,s)) = Gz, s + 1)

7

5:(:((Plz,) ' (2)))
G0 G)(,5).

= G(My(z,s)) = BlG(z,5)) =

Therefore the whole diagram is commutative.

Define now
c=PoG:LyxR—- M

by requiring tht the diagram below is commutative:
M «Z— LiyxR
‘Ptl l i
M <& LyxR

In other words:

poa(z,s)=o(x,s+t).
Lemma 8.0.21. ¢: Lg x R =+ M is a covering map.

Proof. We know that P is a covering map P: ﬁ - M. It is
therefore enough to show that G: Ly x R — M is a covering
map. Actually g: Ly Xx R — M is a diffeomorphism and so is
PEU : Ly — Ly, sothat G: Ly xR — M is a diffeomorphism. O

Clearly o(z,t) = wioo(z,0) = p(z), VI €R Vz € L. There-
fore ¢ satisfies the first condition in the statement of Proposi-
tion 8.0.27.
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If for any {y] € w1 (M) we have [y] = gx([e]) in 7 (M), for some
[(l’] [ Wl(Lg X ]R) then

[r a=[ o=/ R Jwr@
= 0

for aoC LoxR
and Q=0along Ly

so that [y] € H. Conversely, if [y] € H then v = Py(%) for
some ¥ € Tl'l(ﬂ } and therefore we have ¥ = gg(@) for some
& € m(Lo x R) so that v = Py(ge(®) = v = (P o G),(e)
where a“ =" P o & € m(Ly x R) is obtained in a natural way.
Therefore we have proved the following:

Lemma 8.0.22. The sequence below is ezact

0~ m(Ly X R) 2 (M) — A — 0.

Remark 8.0.23. Another way of seeing the above equivalence is
the following: if [y} € H then v € m (M) is such that [ Q =0.
Therefore we may consider the lifting o of v by o to Ly x R
obtaining a path such that [ (¢:)*(€2) = 0 and therefore « is
closed that is, [y] = oy([e]) for [of € w1 (Lo x R).

Assume that A has rank one, A = Z. We may take a trans-
formation T': Ly x R — L x R which corresponds to a generator
of A= m(M)/H (notice that the covering ¢: Lo x R — M has
group isomorphic to m (M)/H because of the exact sequence
(0 = m{Lo X R) ~ m (M) — m(M)/H — 0).

LyxR 1 Ly xR
The diagram ¢\, /¢ commutes.
M
Let Ty := T, oy Lo % {0} = Lo X K.
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Lemma 8.0.24. 3¢, € R — {0} such that T'(Ly x {0}) = Lo
{to}-

Proof. Write T(z,t) = (a(z,t),b(z,t)} so that c o T =0 =
ooy a(, 1)) = 9u() & Pray(@(z:0)) = 0V € Lo. ()

We have a(z,0) € Ly, Vz € Ly therefore (since ¢, is transverse
to F) we must have from (*) from (b(z,0) is constant Yz € Lo
and therefore if we put to = b(x,0) then

i, (a(z,0)) =2, Vzely.

That by
T(Lg X {0}) C Lg% {to} . H

If to = 0 then b(z,0) = 0, Vz € Ly and T(z,0) = (a(z,0),0)
and also form (*) a(z,0) =2 Vz € Lg.

Thus 7'(x,0) = (z,0), Yz € Ly. This is not possible for T' is a
non trivial covering transformation. |

Define now a map f: M — R/tZ ~ S' by setting f(z) := s
(mod ty) where © € @,(Lo). Notice that given any x, € M, since
o: Ly xR — M, o(z,t) = p:(z) is a covering, it follows that
Ty € ,(Lg) for some s € R.

Now, if 51,8, € R are such that z € ;;(Lo), 7 = 1,2, then
Axy, 19 € Lo with = ,,(21), T = @,,(22) so that o(zy, 51} =
T = o(xe, 52). Since the group of covering maps of ¢ is generated
by T we must have (z3, s2) = T"(z1, s1) for some n € Z so that
83 = 8, +n - by, so that s, = s; (mod tp). Therefore f: M —
5! = R/toZ is well-defined and clearly smooth.

Since ¢, takes leaves of F onto leaves, f is constant along the
leaves of 7. Thus f is a smooth first integral for F.

Assume now that rank(A) = 0. In this case H = m (M ) and

P: M — M is the universal covering of M. Since A = {0} we
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have a diffeomorphism M ~ Ly x R what is not possible because
M is compact.

Conversely, assume now that Ly is a compact leaf of 7. Sinee
F has trivial holonomy the Stability Theorem of Reeb (see [15])
implies that all the leaves of F are compact and F is a Seifert
(smooth) fibration. Now, the group A acts on Ly x R taking
leaves of o*(F) onto leaves of ¢*(F) in a natural way as in
Lemma 8.0.22. Therefore, since F is a compact foliation, the
leaves of o*(v) are closed on Ly x R and therefore the action
of A must be discrete so that indeed, A must correspond to a
discrete subgroup of R and therefore rank(A) < 1 as it is well-
known (see Remark 8.0.25 below).

Remark 8.0.25. We remark that, according to what we have
seen, we have an homomorphism of groups

& m(M) — (R, +)

MM/Q

whose kernel is H so that there exists an injective homomorphism
& A =m(M)/H — R, so that A is naturally identified to a
certain subgroup of (R?, ).

Therefore we have proved that rank(A) = 1 < L; is compact

& all leaves of F are compact. This ends the proof of Proposi-
tion 8.0.16. |

Corollary 8.0.26. Let M be compact, F, ¢, A asin Proposi-
tion 8.0.16. Then 1 < rank(A) < rank(H(M,Z)). Moreover, if
M s an orientable compact manifold and rank(H,(M,R}) < 1
then F is a foliation by compact leaves.

Next step is the following:
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Proposition 8.0.27. Let F, ¢,, §, A and M be as in Propo-
sition 8.0.16. Let Per(Ly) := {t € Ry pi(lo) = Lo} and e Lo ¥
R — Ly x B be given by n{z,s) = (z,s + 1).

(i) If T: L x R — Ly x R is a covering transformation of the
covering

g:LoxR— M
(z,8) — ()

then T(Lo % {t}) = i, (Lo % {0}) for some to = t,(T) € R.

(ii) The correspondence T — to(T") defines an isomorphism A —
Per(Lyg).

(iii) Per(Ly) is the group of periods of (1.

Proof. As we have seen in the proof of Proposition 8.0.16 above
for each covering transformation T of ¢ we must have T(Ly X
{0}) = Lo x {to(T)} for some &,(T) € R. Moreover to(T) = 0
if, and only if, T' is the identity. It is also possible to see that
ta(T") depends only on T, not on the choice of the leaf Lo C M.
Therefore we have T(L x {0}) = neoery(L % {0}) for any leaf L
of F.

The mapping £&: A — R, T — #(T) is therefore such that
£(A) C Per(Ly): given any zg € Ly we have T(Lg x {0}) =
Lo x {to(T)} = T(x0,0) € Lo x {to(T)} = if we write T'(z,t) =
(a(z,t), b(z,t)) then T(z,0) = (a{z,0},1,(T)) and therefore

Ty = @o(To) = o(20,0) = o 0 T(z0,0)
O’(a(fL'[), 0)>tU(T)) = r~o01‘.u(T)(‘]"(sr"ﬂa 0))

so that ¢,y (Lo) = Lo and then £,(T") € Per(ly). Thus we have
&: A— Per(Ly) CR.

Lemma 8.0.28. £ is an injective group homomorphism.
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Proof. Given 5,T € A be have {(S o T) = £(S o T) and by
definition

SoT(Lo x {0}) = Lo x {to(SoT)}.
But, on the other hand,
§oT(Ly x {0}) = S(T(Lo x {0})) = S(Ly x {ta(T)})

= SOT(L[} X {0}) = S(L[) X {t(}(T)})

Now, for any leaf L of F we have S(L x {0}) = L x {£x{(S)}.
Therefore

S0 T(Lo % {0}) = Lo x {£a(S) + to(T)}.

This implies that £5(S o T) = £,(5) + Lo{T"). The injectivity of £
we have already checked. ]

Finally we claim that £ is surjective. Indeed, given any ¢y €
Per{Lo) and any xq € Ly we may consider paths o := g, (o) in
M and 8 in Ly, joining Iy 3 @i,{z0) to zo because £y € Per(Ly).
The homotopy class

[¥] = [o* 8] € = (M)

is such that if 7' € A corresponds to [y] then T(Lg x {0}) =
Ly x {to(T)} where £(7) is given by

tof f fQJer fQ
= /[; (g)sto(i,o)) (QO..,:D(.'EQ)) dr =t ./DI 1-ds=ty.

Thus to{T) = ¢ and £ is surjective, This shows (i) and (ii). O
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Lemma 8.0.29. Per(Lg) is the group of periods of Q0 which is
defined by

Per(€2) := {fﬂ, [v] € wl(M)} < R.

~

Proof. Let to € Per(Lo) and [y] = [a* ] as above, then [ O =
to so that tg € Per(€2). Conversely, given any period ¢y € Per(Q)
say to = [, Q for some [y] € w1 (M) we may perform small ho-
motopies so that [y] is of the form [y] = [on * B # - - ¥ @, * G
with a; segment of orbit of ¢; and §; contained in a single leaf of
F, ¥j €{1,...,r}. Using the flow we may obtain a homotopy
between (._; * o, and some path of the form a = 3.

Using the flow: B,_; * v, is homotopic to some path of the form
a* 3.

Therefore we may assume that = 1, and v = a; ;. Therefore

ty = [rQ = ]‘;IQ = o (to) = @, (z0)

and «;(0) = zp belong ty a same leaf of F and therefore ¢y €
Per(Lg). This proves (iii) and Proposition 8.0.27. O

Corollary 8.0.30. Let F, Q, ., A, Per(Q), M compact be as
above. The leaves of F are compact if, and only if, Per(2) C R
has rank one and defines a lattice on R. In any other case the
leaves of F are not closed.

Proof. We have already proved that rank(A) > 1 and also
rank(A)} = 1 and if, and only if, F is a compact foliation. More-
over rank(A) > 2 implies Per(£2) C IR is not discrete in fact it is
dense, what implies (sce Remark 8.0.31) that A acts in the leaves
of ¢*(F) in Ly xR with non-discrete dynamics. This implies that
the leaves of F are not closed. ’ O
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Remark 8.0.31. Let M be a compact differentiable manifold
supporting a non-singular codimension one smooth foliation in-

variant by a transverse flow. Then m;(M) is not finite, indeed
rank(H; (M, Z)) > 1.

Indeed, if 71(Af) is finite then the universal covering M of M
is also compact so that the closed one-form 2 lifts into a closed
non zero smooth 1-form 0 2 on M which is_exact, Q=d f for
some smooth function f M — R. Since M is compact f must
exhibit some critical point is constant and €2 has some smgulal ity,
contradiction. [
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8.0.3 Proof of the Tischler Fibration Theo-
rem

Now we are in conditions to prove the Tischler Fibration Theo-
ren.

Proof of the Tischler Fibration Theorem: We may assume
that M is orientable and oriented. According to what we have
seen above the foliation F is given by a non-singular smooth
closed one-form € in M. We may find a basis {w; = p*(a;)} of
the group the De Rham cohomology group H 1M, 0 given.by
(classes of} closed 1-forms in M such that

for some loops 71, . . - , ¥, corresponding to a basis of the free part

of HY(M,Z) we have
fwi = 5,'3,'.
N

We may therefore write & = > Ajw; +df for some A; € R, and
j=1

some f: M — Rsmooth. Then A; = f%_ Qsothat {A\1,..., A} C
Per(2). Indeed Per((2) is generated (as a group) by the A;'s, j =
1,...,r ie, Per(Q) = ({X\y,..., 0 }). Letnow (A},..., X)) €R"
be such that ' := 37 Xj-w; is close enough to £ so that it is also
Jj=1
non singular (recall that € is non singular and M is compact)
and the subgroup ({A{,...,A;}) of R is a rank 2 discrete lattice
(it is enough to choose {M,..., AL} C Q + +/—1Q of rank 2).
Thus £ defines a fibration of M over the complex torus R/A’,
A = (., D). 0



Chapter 9

Complex versions of
classical results from the
Theory of Foliations

9.1 Introduction

The Geometric Theory of Foliations has its origins in the classi-
cal works of C. Ehresmann [12] and G. Reeb {45], [46], [47]. Its
diversity of applications and richness of techniques, congregating
several areas in Mathematics as Topology, Geometry, Analysis
and Dynamical Systems, has been fundamental in the develop-
ment of various problems in Mathematics. We mention for in-
stance the study and classification of real 3-manifolds. In this.
line we can cite some of the central results, already classic nowa-
days, of the Geometric Theory of Foliations:

1. “Stability Theorems” local and global, due to Reeb.

2. “Tischler Fibration Theorem”.

159



160 CHAPTER 9. COMPLEX VERSIONS

3. “Haefliger’s Theorem” for foliations of codimension omne.

4. “Novikov compact leaf theorem” in S3.
5. The “Rank Theorem” of E. Lima about the rank of g8,

6. Theorems about foliations with homogeneous fransverse
structure.

7. Works of J. Plante and W. Thurston on the growth of
foliations and groups and the existence of compact leaves.

We shall stop here with the alert that the above list is just
one among may possible lists, but which is in the realm of the
present text. '

The notion of complex (holomorphic foliation) foliation by its
turn is officially more recent though it is already implicit in the
original works of P. Painlevé [38]. Its great development, spe-
cially in the last two decades, is also due to the successful use of
modern techniques of Complex Geometry and Several Complex
Variables. ‘

In a certain sense a great part of the research in Complex Fo-
liations is centered at local aspects of the theory as, for example,
the study of singularities of holomorphic vector fields and forms.
Such study is already a hard enough work and has shown to be
very useful in general, nevertheless some global aspects of the
theory also deserve special attention. The aim of this chapter is
to expose what there is and motivate the reader for the study
of the global aspects of the Geometric Theory of Complex Foli-
ations, parting from the study and classical problems from the
“real case” {cf. List 1,..., 7 above). For the reader interested in
this approach we suggest the reading of [60].
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9.2 - Stability theorems

Let Ly be a leaf of a foliation F of a manifold M. How can
we relate Ly and the neighbor leaves? Obviously, we must make
some hypothesis. Let us therefore assume that Ly is compact.
From this we know that m(Ly) and, therefore, the holonomy
Hol(Ly) of Lo, are finitely generate. However, Hol(Ly) can be
wild enough in order to impend any uniformity in the distribu-
tion of the leaves of F which are close to Ly. Thus we ask the
following: :

e Hol(Ly) is finite.

We obtain with this the already seen Reeb Stability Theorem,
which is fundamental in the theory {cf. Chapter 4 Section 3):

Theorem 9.2.1 (Reeb Local Stability Theorem). Let F be
a foliation C' of codimension g of a manifold M having Lo as
a compact leaf with finite holonomy group. Then there exists a
fundamental system of saturated neighborhoods Vy, (j = 1,...,00)
of Ly with the following properties:

a.nV}——»Lg, V;+1CVJ

b. Each neighborhood V; is a union of compact leaves each
leaf having finite holonomy group.

In fact, as we have seen, we can choose a saturated neighborhood
V of Ly where we can define a retraction 7: V' — Lg such that
7~ (p) = D, is a transverse disc to F, Vp € Lo. Moreover, for
each leaf I. C V the restriction 7, : I, — Ly is a finite covering
map whose group of transformations corresponds to a subgroup
of m1{Lo) and isomorphic to a subgroup of Hol(Lq).
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L

Figure 9.1: neighborhood saturated by compact leaves

Figure 9.2: covering of Ly by neighber leaves

As an immediate consequence of this theorem we conclude that
the set of compact leaves with finite holonomy is an open sub-
set of the manifold M. Another interesting consequence is the
following

Corollary 9.2.2. Let F foliation C' of codimension q of M
having a compact leaf Ly with finite fundamental group. Then
there exists a saturated open neighborhood V' of Lo with all leaves
compact having finite fundamental group.

In codimension 1 the Stability Theorem is much more precise
as we recall below {(cf. Chapter 4 Section 3):

Theorem 9.2.3 (Global Reeb Stability Theorem). Let F
be a foliation of class C' and codimension I of a manifold M
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compact and connected. If F has a compact leaf Ly with fi-
nite fundameniel group then all leaves of F are compact with
finite fundamental group. In case F is moreover transversally
erientable then i is enough to assume that Lo is compact with
Hi(Lo;RY = 0 and, in this case, F is given by a submersion

Fom st

Complements to the statement:

1. In case F is not transversally orientable there exists a double
covering o: M — M with M compact, equipped with a foliation
F = ¢"F of class C! and codimension 1, such that F is transver-
sally orientable and has a leaf Ly C o7*(Lg) compact with finite
fundamental group.

2. According to Ehresmann fibration Theorem (Section 1.2.9)
a proper submersion of class C* f: M — N is a locally triv-
ial fibration, hence if F in the theorem is of class C? then the
submersion f: M — 5! defines F as a fibration of M over S'.

3. The result for H1{Lo, R) = 0 is due to W. Thurston (cf. [67}).
Clearly we have m;(Lg) finite = H;(Lo;R) = 0.

4. As a Corollary of the Global Stability Theorem we conclude
that if Lg is a compact leaf with m; (L) finite of the foliation F of
class C! and codimension 1 then # Hol(Lg) < 2, also Hol(L) =
{Id} in case F is transversally orientable, the same holds for any
leaf of L of F. Finally, in the transversally orientable case, we
conclude that all leaves of F are diffeomorphic. In particular we
can state:

Corollary 9.2.4. There exists no foliation F of class C' and
codimension 1 of the sphere S™, n = 3, having a leaf Ly diffeo-
morphic to S7L.
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In fact, we know that does not exist a fibration S® — S}
with fibre $7~1; what follows for the exact sequence of homotopy
of a fibration (cf. [65]).

9.2.1 From Real to Complex

Regarding the global stability of non-singular holomorphic foli-
ations we have the following result of Brunella:

Theorem 9.2.5 ([2]). Let F be a transversely holomorphic foli-
ation of complex codimension one on a compact connected man-
ifold M. Assume that there erists a compact leaf L of F with
finite holonomy. Then F is compact and stable (i.e., each leaf
of F is compact with finite holonomy).

Notice that by the Local Stability Theorem of Reeb if a compact
leaf L of F has finite holonomy then it is stable. The global sta-
bility theorem above holds for complex codimension one trans-
versely holomorphic foliations and is not true in general (in {2]
one finds a counterexample for complex codimension two trans-
versely holomorphic F on a 5-manifold M® (real)}. However if
M is compact and Kdhler we have the following result of Vitério:

Theorem 9.2.6 ({71]). Let F be a holomorphic foliation of
codimension g in a compact complexs Kahler manifold. If F has
a compact leaf with finite holonomy group then F is compact and
stable.

Problem 9.2.7. Let F be a holomorphic foliation of codimen-
sion q > 1 with a leaf compact Ly with finite fundamental group.
Give conditions for which the leaves L of F neighbors to Ly are
biholomorphically equivalent to Ly .
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9.2.2 Compact foliations and stability

Let F be a {non-singular) foliation of codimension ¢ > 1 of a
differentiable manifold M™; we say that F is compact if all its
leaves are compact. Regarding compact foliations we have the
following result due to Reeb for ¢ = 1 and to Epstein for ¢ > 2
(ct. [48], [54], [15)).

Theorem 9.2.8. Let F be a compact foliation on a connected
manifold M. The following are equivalent conditions:

(i) The holonomy group of each leaf is finite;

(ii) Each leaf admits a fundamental system of saturated neigh-
borhoods;

(iii) Given any leaf L C M of F and any open neighborhood U
of L in M there exists an open neighborhood L CV C U
of L such that V is saturated by F,

(iv) The leaf space X5 = M/F is hausdorff;

(v) For any compact (respectively closed) subset K C M the
saturation Satr(K) of K by F is compact (respectively
closed);

(vi) The projection M — X5 = M/F is a closed map;

(v) There ezists a Riemannian metric on M for which the vol-
wume of the leqves is locally bounded;

(vi) For any Riemannian metric on M the volume of the leaves
is locally bounded.

A compact foliation satisfying one of the (and therefore all
the) conditions above is a stable foliation (cf. [15]). Examples of
stable foliations are given by:
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(1.) Compact Riemannian (and in particular real codimension
one) foliations (cf. [63]).

(2.) Codimension two compact foliations on compact manifolds

(cf. [55)).

(3.) Compact dimension one foliations defined by 5 ! actions on
connected (not necessarily compact) manifolds (cf. [15]).

(4.) Minimizable compact foliations (of class C') on compact
manifolds are stable in particular holomorphic compact fo-
liations on compact Kihler manifolds are stable (cf. [55]).

In general we have the following sufficient condition due essen-
tially to Rummler-Edwards-Sullivan-Millet (cf. [52]).

(5.) If F is compact of class C1 on M compact then F is
stable provided that there exists some p-form w on M
(p = dim F) which is closed relatively to F and such that
J,w >0,V leaf L of F.

For the complex case we have the contributions of IHol-
mann, Kaup, Miller and others:

(6.) A compact holomorphic foliation of complex dimension éne
and defined by a locally free action of C on a compact
manifold M is stable (cf. [26]). If we drop the compactness
condition for M then the result is not true.

(7.) A non-singular codimension one compact holomorphic foli-
ation on a complex manifold M (compact or not) is stable

(cf. [26]).
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9.2.3 - From Real to Complex

According to the terminology introduced in [58] a leaf Ly of a
singular holomorphic foliation F on a manifold M is a compact
singular leaf if L, C L, Using(F) and (therefore by Remmert-
Stein theorem [18],[19]) L, is compact analytic. The foliation
F is a compact singular foliation if each leaf L, of F is either
compact or compact singular. We shall say that a leaf L of a
compact singular foliation is stable if it admits a fundamental
system of saturated neighborhoods in M,

Problem 9.2.9. Study the stability of complex foliations with
singularities with compact leaves with singularities.

Example 9.2.10. Choose affine coordinates (z,y) € C* ¢ CP(2)
and let Fl.. be given by nxdy + mydz =0; m,n € N— {0}.

Then F has the rational first integral R: CP(2) --+ C given by

R(z,y) = 2™y". We have the following affine expressions for F
on CP(2): £™y™ = cte, v™ = cteu™™, g™ = cte.r™™m.

Hence F is clearly a compact singular foliation, CP(2) is
Kahlerian each leaf of F has a finite virtual holonomy group
but F is not stable in the usual sense. On the other hand F is
not locally integrable because some of its singularities are dierit-
ical, admit meromorphic but no open holomorphic (local) first
integral.

Remark 9.2.11. Let C C CP(2) be an algebraic curve in-
variant by some algebraic foliation F on CP(2); by the Index
Theorem [32] F is not locally integrable at all the singularities
p € sing(F) N C: indeed, the Camacho-Sad indexes associated
to C and such a singularity are negative rational numbers while
the self-intersection ¢ - € is a positive integer number.

Example 9.2.12. On C x C we define F by Flez: a2 +y% = cte
for n,m € N — {0}. After an analysis of the singularities of F
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one sees that, as in Example 9.2.10, F is compact singular, the
ambient manifold C x € is K#hlerian, but no leaf is stable, and
F is not locally integrable.

Problem 9.2.13. Characterize the stable compact singular holo-
morphic foliations on the complex projective space CP(n).

9.3 Tischler Fibration Theorem and
fibering of complex manifolds

The well-known Tischler Fibration Theorem [69} states that a
closed real differentiable manifold M fibers overs the circle §!
iff M supports a closed non-singular differentiable one form €.
Such a one form defines a codimension one foliation F, without
holonomy, which is invariant under the transverse flow ¢, of a
vector field X defined on M and satisfying € - X = 1. Con-
versely, any foliation of codimension one invariant under some
transverse flow ¢, (of X) is given by a closed one form {2 with
Q- X =1 (see [15] pages 45-47 and [42] Proposition 2.3 pages
737-738). As a consequence, the foliation F is either a compact
foliation or has all leaves dense in M (cf. {42] Proposition 2.7
page 741). In [42] the author applies these techniques in the
study of differentiable Anosov flows. It is proved therein that
any jointly integrable Anosov flow in M admits a smooth section
and is topologically conjugate to a suspension of some Anosov
diffeomorphism, which is a total automorphism in the codimen-
sion one case (see Theorem 3.1 page 744 and Theorem 3.7 page
746). We recall that an Anosov flow ¢;: M — M with corre-
sponding splitting TM = E*® E*® ET is jointly integrable if the
bundle E*& E* is integrable, generating therefore a codimension
one foliation F which is invariant under the transverse flow ¢, ;
giving this way the link Tischler’s Theorem above.
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Finally, in [14] the author states the definition of holomor-
phic Anosov flow on a complex manifold in terms of actions of
the multiplicative group C* (cf. [14] page 58G). In this same
worlk, Anosov flows on compact complex 3-manifolds are classi-
fied in holomorphic way. This is done using strongly the fact that
the stable and unstable foliations, F7* and F*, are holomorphic
foliations with projective transverse structures. The holomorphy
of F* is a consequence of the dirnension 3 assumption.

9.3.1 From Real to Complex

9.3.2 Motivation

Let M be a complex manifold equipped with a closed homo-
morphic one-form €. Then we may write ! = « + ¢ for some
closed real analytic one-forms « and £ in M. Indeed, assume for
simplicity that A4 has dimension two and take local coordinates
(z,y) in M. We may write locally £2 = df for some holomorphic
function f(z,y). Write now f = u + 4 with u(z,y), v(z,y)
real functions and write also x = zy +ix2, ¥y = i1 + iye, where
i? = —1. Then Q = du+idv = (uy dz +u, dy) +i(vy dz + v, dy).
du du

Now ug = :‘12— (3321 —1 8—562) and dz = dx; + 1 dg so that

1(( du Ou [ Ou du
== —dry — —— _
wete= 3 (G m e gron) +i (G 20 )
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So that

1 du Su du du

9_5((8$1d$1+3_2d$2) (6 1d$2—8_35‘2d$1)]+

1 Ju du

Ll N el (Y - g

2 [(3J1 dy + dw) +%(3y1 dya B y1)] +
1 dv dv
§ [(B:L‘l dzy -|- -_— dmz) -+ 3(3—1— dro — 5—-2'd$1>] +
i
2

o o, o
(G s ) v G- )|

Thus we may take
1 du v du dv
= - _— — — |d
o 2{[(3351 +6£E2)d 1+ (82’:2 81.‘1) $2:|+

[(%+@)d +(%_ﬁ2’.)m]}
dy Oy & Oy, Oy v

1 Ou O du O
B= 5{ [(" 3_352 "ra—ml)diﬂl-i- (3_331_ Ezg)dmg]‘l'

(v g )i (- 50) ] )
3y o) T \By By )

Since f = u + iv is holomorphic, u and v are harmonic and
satisfy the Cauchy-Riemann equations. The harmonicity of u
and v implies that « and § are closed.

Using the Cauchy-Riemann equations we obtain that o =
du(zy, To, Y1, y2) and B = duv(zy, 2, 41,¥2) in real coordinates.
Now, for any other pair o, #' with @ = o + i’ we have (o —
) +i(B — B) = 0 so that @ = o' and 8 = (. Therefore o
and 3 are globally well-defined. We may write & = Re({}) and

+

and
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B8 = Im(Q) and refer to these as the real part and the imaginary
part of {1 in M. Assume now that {} is non-singular. Then a
and # are non-singular as it is easily checked from the expressions
above. Now, according to Tischler’s Theorem [15], M fibers over
the circle $* provided that M is compact.

The holomorphic foliation F given by & == 0 may be regarded
as the intersection of the two real analytic foliations Re(F): « =
0 and Im(F): # = 0, which are codimension one real foliations
defined by closed one forms.

Assume that M is compact, then we can find complete real
vector fields X and Y over M satisfying Re(2) - X = 1 and
Im(2)-Y = 1. Therefore Re(F) is invariant under the transverse
flow X; of X and Im(F) is invariant under the transverse flow
Y, of Y.

If X and Y commute then we may define an action of R? on
M by setting (s,t),z — X,oY(z) for all (s,t) e R® and z € M.
Therefore we have a differentiable action of C on M defined by
(5 +1t), z +— X, 0Y;(z) and we shall denote by Z the “complex”
vector field defined by this action. We have Z = X +1Y. Denote
by J the complex structure tensor field of M.

Lemma 9.3.1. X +iY defines a holomorphic vector field on M
if and only if [X,Y] =0, J(X)=-Y and J(Y) = X.

We may always define a meromorphic vector field Z = X +4Y
in M withQ-Z =1 (Lemma ). If Z is complete and holomor-
phic then # is invariant by the holomorphic transverse flow of
Z = X + Y. Nevertheless since X and Y are not necessarily
unique this is not the unique case. In general, however we do
not have even an R2-action, which is differentiable, transverse to
F and leaves F invariant.

Since Re(F) and Im{F) are transverse and M is compact
(the proof of) Tischler’s Theorem implies that we have two in-
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dependent fibrations m;: M — S' (j = 1,2} so that M fibers
over the Torus S* x S'. In particular we have rank H,(M,Z) >
9. If rank H,(M,Z) = 2 then if we denote by ; (j = 1,2)
the group of periods of £ = Re(2), Q2 = Im(2), we obtain
rank(A,) +rank(A;) = 2 and since A; # {0} necessarily we have
rank(A,;) = rank(4;) = 1.

Since A; is free we obtain A; ~ Z =~ A, and therefore {2;
defines already a fibration m;: M — S, 4 =1,2. In particular
F; 1§ =0 is a foliation by compact leaves and 7 = F1 N Fa is
also a compact foliation. This is the case if rank H,(M,R) = 2.
Thus we have proved:

Theorem 9.3.2. Let F be a holomorphic foliation given by o
closed (non-singular) holomorphic 1-form € on a connected man-
ifold M. Then:

(i) F is the intersection of two transverse codimension one
foliations Fy , Fa given by closed real I-forms Q;, (a on M.

(i) Assume that M is compact. The manifold M fibers over
the Torus 8* x 8* in o C>-fibration. We have rank H,(M,Z) >
2. if rank H,(M,Z) = 2 then F is a compact foliation.

Question 9.3.3. Is the fibration M — S' x S' in (ii) above,
holomorphic for some complex structure in the Torus §* x S17

Problem 9.3.4. Study the holomorphic foliations invariant by
holomorphic flow, more generally, transverse actions of Lie group
actions, in compact compler manifolds.

Preliminary results in this direction are obtained in [59] to-
gether with some applications which are given to the study of
holomorphic Anosov flows, inspired in [42]. In particular we have
the following questions:

Question 9.3.5. (i) Let M be a compact complex manifold
supporting a non-singular closed holomorphic 1-fortn {2. Under
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which conditions M fibers over a complex 1-torus? Denote by F
the codimension one foliation defined by Q. What is the struc-
ture of the leaves of 77 (ii) Consider now M a compact complex
manifold admitting a codimension one holomorphic foliation F
invariant under some holomorphic transverse flow ,. What is
the transverse dynamics of F7

9.3.3 Examples

We consider a compact complex manifold M of dimension n
and a complex Lie group & of dimension k. Assume we have a
(proper) holomorphic map 7: M — G/H from M onto an homo-
geneous space G/H where H is a closed Lie subgroup of G, thén
G/H is compact. We also assume that = is a submersion. De-
note by F the codimension k£ holomorphic foliation on M whose
leaves are the fibers of m. By the Theorem of Ehresmann (The-
orem 1.2.38) F is a C'™-locally trivial foliation, nevertheless it
may be non holomorphically locally trivial, actually the leaves
of F may be non holomorphically equivalent. If these leaves are
holomorphically equivalent then we may ask for the existence of
a holomorphic action ¢: & X M — M of G on M, such that
the orbits of ¢ are the leaves of F. This is the situation we will
mainly refer to in this section. Given a foliation F of codimen-
sion k on M and a Lie group action ¢: G x M — M on M we
shall say that F is invariant under the fransverse action ¢ if:

(i) g(F) =F, Vg M — M given by w,(p) = p(g).
(ii}) F is transverse to the orbits of ¢.

In other words each automorphism ¢, , induced by the action,
takes leaves of F onto leaves of F and moreover the Lie algebra
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of ¢ is everywhere transverse to the leaves of F. Let us sce some
examples. .

1. The first obvious example of such situation is the product
action @: GX (GxN) -» GxNofaliegroupGon M =Gx N
where N is any manifold. The foliation F on A whose leaves are
of the form {g} x N, g € G, is invariant under the transverse
action @ of G on G x N. The manifold M = G x N fibers
(holomorphically trivially) over G with fibers diffeomorphic to
N and therefore to the leaves of F.

2. A less trivial example is given by a closed (normal) sub-
group H < G of a Lie group G. Consider the natural action
@: H x G — G and the canonical fibration 7: G — G/H whose
corresponding foliation we denote by F. Clearly F is invariant
under the transverse action ¢. More precisely we consider the
following situation: G is a simply-connected Lie group, H < G
is a discrete subgroup such that G/H is compact. We consider
the natural representation v: H — Diff(G) given by left trans-
lations (k) = L;: G — G. Notice that = (G/H) ~ H and the
universal covering of G/H is given by the canonical projection
m: G — G/H. Thus we actually have a representation

©: m{(G/H) - Diff(G) and (G/H)=G.

The natural action, of m1(G/H) on e /H is therefore given by ¢
above. We may therefore proceed constructing the suspension
of ¢ as in the classical framework ({15} page 14). The foliation
F is clearly invariant by the natural. There is a natural action
of H = m(G/H) on (G/H) x G given by &: H x (G X G} —
G x G, h,(91,92) — (Lp(gn), Ln(g2))- Since H is discrete this ac-
tion is properly discontinuous and we obtain a quotient manifold
Q—;.EQ =: M with the following properties:
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(i) M admits a fibration £: M — G/H induced by the projection
7w G — G/H, with fiber G and structure group isomorphic to
the image @(H) < Diff(G).

(ii) If we consider the foliation Fy of G whose leaves are the
lateral classes of H in G (i.e., Fy is given by the projection
w: G — G/H) then Fy is invariant by the action ¢ of m (G/H)
on G and therefore the product foliation G x Fp on G x G =
(G/H) x @, is invariant by the action @ of H on G x G and
it induces a foliation F on M, called the suspension of Fy by
@: H — Diff(@), which is transverse to the fibration &: M —
G/H.

The foliation F is clearly invariant by the natural action of G on
M which is transverse to F. Finally, F is given by a fibration
n: M — G/H which is given by the second coordinate projection
me: G x G — G.

3. Finally we may construct examples with H, G like above
and with representations ¢: H -~ Diff (F') of H on the group of
diffeomorphisms of a compact complex manifold F'. This gives

fibrations M - G/H.

Problem 9.3.6. Let M be a compact complez manifold equipped
with o holomorphic foliation invarient under the transverse ac-
tion of a complez Lie group G in M. Describe the dynamics of
F. Does M fibers over some quotient G/H ¢

9.4 Transverse sections and Haefliger’s
Theorem

In 1958 A. Haefliger proved the following result (cf. Chapter 5):
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Theorem 9.4.1. Let F foliation C? of codimenstion 1 of the
manifold M admitting a closed curve v € m (M) with the follow-
ing properties:

(i) v is transverse to F.

(ii) v is homotopic to a point (free homotopy) in M.

Then there ezist a leaf Ly C M of F and o closed path o €
m(Loyw ), with base in a point po € Lo, whose corresponding el-
ement holonomy group Hol(Lg, Xp) relutive to small transverse
segment X h Ly, SoNLo 3 po is the identity in one of the com-
ponents of To— {po} and o contraction (different of the identity)
in the olher.

As an immediate consequence we obtain:

Corollary 9.4.2. Let F be an analytic foliation of codimension
1 in M. Then the leaves of F are transverse only to non-trivial
elements vy € m(M).

Figure 9.3 below gives us a pictorial description/outline of the
situation prescribed by Haefliger’s Theorem:

The very rough (but useful) idea regarding the proof of Hae-
fliger’s Theorem is the following: We can assume that the curve
4: 8Y — M is of class C? and transverse a F; where v is ho-
motopic to a peint and v is the boundary of a “deformed disc”
P C M (see Figure 9.4}).

/
We can then intersect the leaves of F with D obtaining a singular
foliation real curves in . In a more formal way, there exists
an embedding of class C* f: D — M, where D = {(z,¥) €
R%; 22+ 32 < 1} is the closed unit disc with boundary 8D = S?,
such that:
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Figure 9.3:
a. f(OD) =~
b. f*F is a foliation of dimension 1 with singularities of “Morse”

type. '

Such singularities, Ena.voidable, come from tangency points of
with f along D = D\S".

The picture above illustrates such a tangency. We obtain then
a field of vectors X of class C' in a neighborhood U of I in R?
with the following properties:

a’. X is transverse and points inwards I along S! = D.

b’. The singularities of X in D corresponds to centers (d{x* +
y?) = 0) and saddles (d(z® — y*) = 0).

Arguments from Differential Topology permit to disturb the
application f in a way that we obtain the singular points (i.e.,
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Figure 9.4:

\ 5=][(]D)

D

Figure 9.5:

the tangency points of f with F) belong to distinct leaves of. 7
and applying the Poincaré-Bendixson theorem to X | we obtain
a limit cycle I' which is a graph and which, by the absence of
saddle-connections, must correspond to one of the above illus-
trated situations.

Ordering the set of such limit cycles I' by the natural order de-
fined by the inclusion we obtain, via the Lema of Zorn, a closed
orbit o with the following properties (see Fig. 9.10):

c. « is interior limit limit cycles F,, ™\,

d. o is boundary of a region R in I» which contains some
singularity of type center py € R
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Figure 9.6:

e. By the minimality of o the orbits concentric to py extend
to o

Drawing a segment 3, transverse to « by a point ag € LgMNe
we obtain that the first return map corresponding to 7: g, ag —
Lo, 2y satisfies WIEDHR = Id and '.'T|Eﬂﬁ e 18 a contraction (Figure
9.11). W

Some consequences of Haefliger's Theorem may be listed as
follows:

1. There exists no analytic foliation of codimension one in a
compact manifold t M with finite fundamental group. In
particular, S™ does not admit a codimension one analytic
foliation for n > 2.

2. If F is an analytic foliation of codimension one of a mani-
fold M with finite fundamental group then each leaf of F is
closed in M. In particular, the space of leaves M/F = X is
a 1-manifold analytic orientable (in general non-separable)
and the canonical projection M — X is an analytic sub-

mersion.
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Figure 9.7:

Proof (essentially): 1. and 2. above follow immediately from
the following

Lemma 9.4.3. Let F be a foliation of codimension I of M. If F
has a leaf non-compact then there ezists a closed curve y: ST —
M transverse to F.

Proof of the Lemma: Let Ly be a leaf not compact of F.
Since M is compact there exists p € Lo\ Lg. We denote by L, a
leaf of F by p € M. We trivialize F in a neighborhood U of p
in M (Fig. 9.12).

Let ¥ be a section transverse to F in U with p € XN L,. Then
¥ N Ly accumulates in p along a sequence {p,}, pn — p. We
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Figure 9.9:

take two sufficiently close terms p, and p,, (Fig. 9.13).

Join now p, and p,, by a suitably chosen path a: [0,1] — Lg
obtaining, together with the arc of ¥ between p, and p,,, a
continuous curve and piecewise C* C, closed, and such that as
in the figure below (simplified).

Take now points in the local sections defined by ¥ in p, and
P and “replace” a by a path @ transverse to F along a fibration
by segments of line with base in the trace of & and which contains
(the fibration) the parts of £ by p, and p,, .

We then make smooth the final curve in order to obtain a smooth
closed transverse section closed of 7 |

Remark 9.4.4. In case F has all its leaves compact it can be
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Figure 9.11:

easily proved the existence of a closed transverse curve/section
(exercisel).

9.4.1 From Real to Complex

9.4.2 Introduction and Motivation

Haefliger’s result has been extended by Plante and Thurston as
follows:
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Figure 9.12;
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Figure 9.13:

Theorem 9.4.5 (Plante-Thurston). Let M be a real compact
manifold such that m (M) has polynomial growth. If M admits
a real regular codimension one analytic transversely oriented fo-
liation then H'(M,R) # 0.

Problem 9.4.6. Is there any kind of relation between the topol-
ogy of the ambient manifold and the obstruction to the existence
of non-singular codimension one foliations also in the complex
case though no result like Haefliger's theorém is known yet?

For instance we have the following question:
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i P
Figure 9.14:
Z ))
Figure 9.15:

Problem 9.4.7. Let M be a compact complex surface. Is there
any holomorphic regular foliation F by curves on M ?

In the course of the proof of Haefliger’s Theorem one is led
to consider real vector fields in a neighborhood of the closed disc
D2 C IR? which are transverse to the boundary 8D? ~ 5. The
use of Poincaré-Bendixson Theorem shows the existence of some
unilateral hyperbolicity, for some closed orbit v C D%, what is
not compatible with the analytic behavior. These ideas are of
capital importance in the study of the theory of codimension
one real foliations what, by its turn, is a very useful tool in the
classification theory of differentiable manifolds of dimension > 3.

Unfortunately, there is no feature like the classical Poincaré-
Bendixson Theorem in the case of holomorphic vector fields. In
particular it is not know whether a leaf of a holomorphic folia-
tion by curves on the complex projective plane CP(2), such a
foliation always comes from the extension of one induced by a
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Figure 9.16;

polynomial vector field on C2, may be ezceptional in the sense
that it accumulates no singularity of the foliation.

The facts above are the very first motivation for the first
basic question below:

Question 9.4.8. What can be said of o holomerphic vector field
Z, in a complez manifold M™, that is transverse to the boundary
8% of some simply-connecied regular domain Q CC M?

At this level of generality, this seems to be a very hard ques-
tion. Several difficulties arise. First of all the {already men-
tioned) absence of a holomorphic version of Poincaré-Bendixson
Theorem. A second difficulty is the existence of domains Q C M
as above, non-diffeomorphic (even C*) to each other and, in par-
ticular, non-diffeomorphic to the ball B4(1) C R?. Moreover,
we have, in the complex setting, natural domains to be consid-
ered which are not regular (at the boundary), as polydiscs for
instance A% C C2. Therefore, Question 9.4.8 should be some-
how extended to such domains. Finally, we should extend this
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problem to the codimension one case. We obtain therefore the
very general question below:

Question 9.4.9. Let F be a holomorphic foliation on M™ and
assume that F is transverse to some real closed submanifold
Ng C M. Then, what can be said about F and Ng ¢

Numerous examples indicate that the difficulties mentioned
above may be overcame in the case we make some further re-
gtrictions on € or Ng. For instance, in [27] it is proved that
if a holomorphic vector field Z in a neighborhood of the closed
ball B2*(R) = - {z € €% |2| £ R}, is transverse to the sphere
S-1(R) = §B™M(R) = {z € C™ |z| = R}, then such vector
field exhibits only one singularity o € B**(R), which is in the
Poincaré-domain. In the sake of generalizations of this result, we
consider in §1 the following situation: F is a codimension-one fo-
liation on a neighborhood U of the closed ball B™(1) C C*; and
we investigate the transversality of F with the sphere 5%~ 1(1)
We do not know whether we may have F th $2*7*(1) with n > 3

We consider now the following problem:

Problem 9.4.10. (i) Let F¢ be a holomorphic foliation of com-
plex codimension one in the (compact or not) compler manifold
Mg . Is it possible to have a compact complex submanifold Re of
complex dimension I R C M such that Re is transverse to F
in M? Are there restrictions in the topology of Mc ¢

(i) Let now Fc be holomorphic of codimension I in Mc and
Ng C Mg a closed real submanifold real (compact without bound-
ary). Is it possible that we have Fc th Ng 2

Example 9.4.11. Let X, be o linear complex vector field in C?

of the form X {(z,y) =z —E%+)\y 5% .. Then if A ¢ R_ it is easy
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to verify that the foliation Fy, induced by X in C* — {(0,0)} is
transverse to the spheres S%(e) = {(z,y) € C% |z|® + |y|* = €2},
e>0.

Indeed, it is possible to prove that if a holomorphic vector
field X(x,y) in a neighborhood of the origin (0,0) € C? satisfies
ooy X = X then in fact Fy th S*(e) for all & > 0 small enough.

(1% jet )

The converse of this fact is due to T. Ito and A. Douady (cf.
[27]).

Theorem 9.4.12. Let X be a holomorphic vector field in the
open set U C C", n > 2. Suppose that there exists a sphere
Séf;z)l € U such that Fx th 5" Yp; R) then:

(iy Fx h S Yp;R) VO<R <R
(it) jp X belongs to Poincaré domain

(iii) Fx| Ban(p)-(py 5 C°° equivalent to the product foliation
fx|3(2u§)1 X {0,1).
P

The original theorem is more precise, it allows to understand
the dynamics of Fx in B"(p; R). In the above case F is a
foliation of complex dimension 1; the codimension one case is
studied in (28] where several obstruction results are proved for
the existence of such transverse spheres. The results in [27] and
[28] enforce the following conjecture:

Problem 9.4.13. Let F be a holomorphic foliation of codimen-
sion in C*, n > 3. Show that F is not transverse to the sphere
S0 R).
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9.5 Growth and compact leaves

9.5.1 Novikov Compact Leaf Theorem revis-
ited

The celebrated Novikov Compact Leaf Theorem states that every

foliation of codimension 1 and class C! of a real compact 3-

manifold real admitting a vanishing cycle has a compact leaf (cf.
Chapter 6). In particular we have (see Chapter 6)

Theorem 9.5.1 (Novikov, 1964). Let F be a foliation of class
C? and codimension one of a 3-manifold compact M® with finite
fundamental group. Then F has a compact leaf.

In fact F has a “Reeb component”, as we explain in what follows:
Given the submersion f: B® <5 R na form f(z,y, 2) = £(r?)-
e* where 7> = 12 + ¢y and £: R %, R is as in the figure

&
— 1

IV
¥

Figure 9.17:

Let C = {(z,y,2) € R% z? + y* < 1} then the levels of f
interior to C are diffeomorphic to R? and the boundary dC is
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also a level of f. By their turn, the levels of f exterior to C

are cylinders. Restricting now f to the product D xR s
R we obtain then a foliation (by levels) of codimension 1 and,
if we identify trivially the boundaries superior and inferior of
D’ x [0,1], we obtain a foliation R in the solid torus D° x X!
with the following properties:

(i} the boundary 8(D° x X1 =8 x 8 is a leaf

(ii) the interior leaves (i.e., in D* x S') are diffeomorphic a R2.

Ou wliond

Figure 9.18:

Definition 9.5.2. We shall call R Reeb foliation of D’ x St

Gluing then two copies of solid tori D x S* by the boundary
5! x §' we obtain a C* foliation of codimension 1 in $% (this
answers to an ancient question of Hopf) and which has a Reeb
component. A Reeb component of a foliation F in M3 is then a
foliated portion R, of M?, homeomorphic to (I° x S, R).

Novikov Compact Leaf Theorem strongly relies in the notion
of vanishing cycle:
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5 0

Figure 9.19:

Definition 9.5.3. a loop « in a leaf Ly of a foliation F of codi-
mension 1 of M is a vanishing cyele if there exists a deformation
continuous {o} s€l0,1] of &g = ax: [0,1] — Ly such that:

(i) For each s € [0,1], @;:[0,1] — M is a loop in a leaf L
of F.

(ii) For all 0 < s < 1, «, is homotopic to zero in the leaf L; .
(ili) & = ag not is homotopic to zero in the leaf Ly .

(iv) For each t € [0,1], s+ o,(t) defines a curve transverse
to F.

Example 9.5.4. A Reeb foliation R of B x S exhibits a van-
ishing cycle .
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Figure 9.20:

The extremely ingenious proof given by Novikov involves the
following sequence of steps:

1. A foliation of codimension one and class C? in a compact
3-manifold M with finite (M) always has a vanishing cycle (at
this point we use ideas already present in the proof of Haefliger’s
Theorem).

2. Let F be a foliation of codimension one and class C! of a
compact manifold M of dimension 3. A leaf Ly containing a
vanishing cycle is necessarily compact.

Remark 9.5.5. Some conditions which imply the existence of
vanishing cycles as in 2. above are:

a. F has a closed transverse -y of finite order in m1(M).

b. M is compact (without boundary) with finite m (M). In
fact, in this case a. is verified.



192 CHAPTER 9. COMPLEX VERSIONS

c. F has a leaf Ly such that the canonical homomorphism
iy m{Lo) — m (M) is not injective.

d. If F is of class C? and mp(M) # 0 and ma(L) # 0 for each
leaf L' of F then F has a vanishing cycle.

Hence, Novikov Compact Leaf Theorem also holds for M/ 3 com-
pact with mo(M?) # 0.

9.5.2 Growth of foliations and existence of
compact leaves

In opposition to a n-dimensional version of the Theorem of Novikov
there are examples of foliations C? of codimension one of S,

n > 4 without compact leaves. In particular, the minimal set
of such a foliation is exceptional (cf. [56]). It was J. Plante, in
an outstanding work, who initiated the modern comprehension
of such facts relating the concepts of growth of leaves and exis-
tence of exceptional minimal sets (cf. [39]). Let us recall such
concepts:

Growth of Riemmanian manifolds

Let (M, g) be a connected oriented Riemannian manifold of class
CT,r > 1. Given any point z € M the growth function of M at
x is defined by v,{r) := volume of the closed metric ball Blz;r).
The growth type of 7, does not depend on the choice of z € M.
This way we may introduce of polynomial growth, ezponential
growth, ... for (M, g). If M is compact then it has polynomial
growth of degree zero. In the case 7 = oo we have the following:

Proposition 9.5.6 (Moussu, Pelletier [15]). For any r >
Oand any z € M the closed ball Blz;r| is a standard Whit-
ney domain: the boundary 8B|z; 7] conlains o compact subset K
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with zero (m — 1)-dimensional measure such that OBJz;r] — K
is o submanifold with boundery of M. Moreover, the function
¥(r) = vol(Blz;r]) is differentiable with respect to r and its
derivative at the pointr, is the volume of the (im—1)-dimensional
sphere OB[xz;7,).

[t follows from the above result that if lim inf M >0

r—toa vol(Blz)

then M has exponential growth.

Growth of leaves

The notion of growth for the leaves of a foliation on a compact
manifold may be introduced in a geometric way regarding the
growth of the volume of the balls in the leaves, and it will be
related to the growth of the orbits of the holonomy pseudogroup
of the foliation, as we will see. The main remark is the following:

Proposition 9.5.7 ([15]). Given two Riemmanian metrics in
a compact manifold M equipped with o C' regular foliation F,
the metrics induce on each leaf I of F, complete quasi-isometric
metrics. Therefore, the growth type of the leaf L does not depend
on the choice of the ambient metrie.

In the non-compact case however, we may fix the metric and
consider the growth type of the leaves with respect to this fixed
metric. Let (M, g) be a Riemannian manifold, perhaps non-
compact, and let F be a (regular) C? foliation of codimension &
on M. Assume that M is oriented and F is transversely oriented.
For each £ € M denote by L, the leaf of F through z. The metric
on M induces a metric g, along the (immersed) leaf L.

Definition 9.5.8. The growth type of the leaf L, with respect
to the metric g is the growth type of the Riemmanian manifold

(Lzs Gu)-
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Therefore, compact leaves have polynomial growth of degree
Z€ero.

Growth of orbits

Let X be a hausdorff topological space and I' a collection of
homeomorphisms g: U — V, where U, V' are open subsets of X.
Denote by Dom(g) and Range(g) the domain and the range of
g € I respectively.

Definition 9.5.9 ([42]). T is a pseudo-group of local homeo-
morphisms of X if:

(i} For any g € I' we have g~! € I and Dom(g) = Range(g™"),
and Dom({g~!) = Range(g).

(i) If g1,92 € " and g: Dom(g;) U Dom(gz) — Range(g1) U
Range(gz) is a homeomorphism such that g|DDm(gi) =q;,1 = 1,2,
then g e T".

(iii) Id: X — X belongs to I'.

(iv) If g1, g2 € T then g1ogs € T, with Dom(g;0g2) C g {R(g2))N
Dom(g).

(v) If g € T and U C Dom(g) is an open subset then g]U el.

The orbit of = in the pseudogroup I' is defined by I'(z) := {g(z) €
X,g € ',z € Dom(g)}. Assume now that I' is finitely generated
by a (symmetric) finite subset I'* C T'.

Definition 9.5.10. For z € X and n € N we define I',(z) :=
{y € X,9 = ga, © .0 g0, (2), k € 0, go; € T%7 = 1,..,k}.
The growth type of the orbit of z in T is the growth type of the
function v,(n) 1= {Tx(z) as n € N.

Combinatorial growth of leaves

Let M be a compact manifold and F a foliation of codimension
k on M. Given a finite covering U = {U,,...,U,.} of M by dis-
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tinguished neighborhoods for 7 we denote by Ty, the holonomy
pseudogroup associated to this covering. Then I'y is finitely gen-
erated. Given a point z € U and n € N the value of the growth
function vy (1) is equal to the number of plaques of Zf that can
be joined to the plaque Py, of Uj, by a chain of plaques with at
most n plagques.

Proposition 9.5.11 ([15]). Let U and V be finite coverings by
distinguished neighborhoods of the manifold M. The growth type
of the functions vy and 7y is the same. If F is of class C!
then the growth type of the functions vy is the same for all
points T is a same fived leaf of F.

We define therefore the combinatorial growth type of a leaf
L of a C! foliation F on a compact manifold M as the growth
type of the function 7,y where z € L is any point and I is any
finite covering of M by distinguished neighborhoods. According
to what we have seen, in this compact case, the growth type of
a leaf L of F is equal to the growth type of the orbit of any
point € L in the holonomy pseudogroup 'z of F. In case the
manifold is compact we also have:

Proposition 9.5.12 ([15]). Let F be a C' transversely ori-
ented foliation on a oriented compact Riemannian manifold M.
The (geometric) growth type of any leaf L of M is equal to the
combinatorial growth type of L.

Growth of groups

Let G be a finitely generated abstract group. There exists there-
fore a subset G° C G such that any element ¢ € G writes as
g = [] g5 where A is finite set, ny, € Z and g, € G Va € A.

€A
The set of generators G° is symmetric if g € G° then g7t € G°.
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We will assume that G° is symmetric. For any n € N we define
the subset G, of elements of G which can be expressed as a word
of length at most n in the generators. That is,

Gp={9€G,9= gay © 0 Gays k <7, go, € G°, Vi =1,...,k}.

The growth function of G is g(n) = §G»,n € N. This defini-
tion can be extended as follows [44]: Let d be any left-invariant
metric on G. We assume that G is discrete so that for any g € G
there exists ¢, > 0 such that the metric ball Bg(g;¢,) C G con-
tains only the element g. The growth function of the pair (G, d)
is therefore defined as: for ¢ > 0, ¥(t) = §Bg(e;t) wheree € G
is the identity. If v¥(t) < oo,¥¢ > 0 then we say that v is the
growth function of (G, d). In case G has a symmetric set of gen-
erators S we may consider any function n;: § — RT such that
n'(0,7] < oo ¥r > 0. For any g € G we define the function

n(g) := mm{z m{si), g = H s;, 8; € 5}, Clearly n(.) defines

a left-mvanant metrlc d on G by setting d(g, h) := n(g~th). If
S = G then any left invariant metric on G is obtained this way.
Let us precise our main definition:

Definition 9.5.13 ([44]). The pair (G, d) has polynomial growth
of degree k if there exists a polynomial p(z) of degree k such that
(£} < p(t),Vt > 0, where v(.) is the growth function of (G, d).
We may also consider polynomials of the form az*, A > 0, A € R.

Proposition 9.5.14 ([44]). Let S be o finite symmetric sei of
generators of G and ny: S — R, ny = 1. Denote by n(.) the
metric above corresponding to ny = 1. The growth of G is poly-
nomial with respect to some lefi-invariant metric d if and only
if, (G,n) has polynomial growth.

Example 9.5.15. ¢ A finitely generated abelian group has poly-
nomial growth,
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e A non-cyclic free group has exponential growth once we Lave
n1 2m — 1) — 1
gn}=2m ¥ (2m — 1)F = m(2m — 1) -
k=0 m—1
¢ Let M? be a closed surface orientable of genus ¢ > 2 then
m1 (M) has exponential growth.

A situation of particular interest is the case of groups of poly-
nomial growth, on which we have essential contributions of J.
Plante, J. Wolf and J. Milnor (cf. [72], [36], [41]).

We have:

1. A nilpotent group of finite type has polynomial growth.

2. A solvable group of finite type G which does not have a nilpo-
tente subgroup of finite index has exponential growth. In case
G has polynomial growth then G is polycyclic (G is polycyclic if
G =G> Gy - > Gy = {e} with G/Gy_1 cyclic).

3. J. Tits has shown ([70]) that the converse of 1. is true: a
group of finite type having polynomial growth has a nilpotente
subgroup of finite index.

Holonomy invariant measures

Let X be a hausdorff topological space and I' a pseudogroup
of local homeormorphisms of X. Denote by ¢.(X) the ring of
subsets of X generated by the compact sets. A measure g on
g.(X} is T-invariant if:

(i) u is non-negative, finitely additive, finite on compact sets.
(ii) V¢ € T' and any measurable set A C Dom(g) we have
w9(A)) = u(A).

Consider now the case M is a C°° manifold and F is a (reg-
ular) foliation of codimension ¥ > 1 on M, assumed to be trans-
versely oriented, of class C'™°. The holonomy pseudogroup defined
by F will be denoted by I'(F).
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Definition 9.5.16 (Plante, [40]). A foliation F is said to have
a measure preserving holonomy if its holonomy pseudogroup has
a non-trivial invariant measure which is finite on compact sets.
The support of an F-invariant measure g is the set of points
z € M such that: given any k-dimensional disk transverse to
F, D¥ th F, with z € Int(DF), we have p(D*) > 0. Since p is
F-invariant, supp(p) is closed and F-invariant.

Example 9.5.17. Assume F has a closed leaf L on M. Given
any transverse section & C M transverse to F we define a mea~
sure on % as follows: VA C %, p(A4) := ${A N L}. This de-
fines an holonomy invariant measure. Let now F be given by
a closed holomorphic 1-form Q on a complex manifold M. The
holonomy pseudogroup is naturally a pseudogroup of transla-
tions T'(F) C (C,+) and any leaf of F has trivial holonomy.
Any Borel measure on € which is invariant by translations is
also I'(F)-invariant. Another situation comes when F is real
given by a closed C* k-form @ on M. In this case, given any
transverse section ¥ C M, transverse to JF, the restriction Q|E is
a volume element (F is transversely oriented) which is positive
on open sets. The fact that € is closed implies that the induced
transverse measure is F-invariant. Assume now that M, F, £ are
holomorphic. Using the complex structure J: TM — TM we
may consider the real part and the imaginary part Re(£2), Im($2)
of Q. Take w = Re(f2) A Im(R?), this is a 2k-form real form,
which is closed and defines F as a real codimension 2k foliation.
Therefore the restriction “"’lnm where & = % is regarded as a
2k-dimensional real submanifold transverse to F, is positive on
open sets and defines an F-invariant transverse measure.

Example 9.5.18. It is a fairly well-known fact that a com-
pact manifold M supporting a codimension one C' Anosov flow
@;: M — M has fundamental group with exponential growth
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[68]. Such a result is not stated for codimension one holomorphic
foliations (see [14]). We shall consider an example of such a situ-
ation [61]. Let M be a compact complex manifold of dimension
n equipped with a closed holomorphic 1-form w and f: M — M
an automorphism such that f*w = Aw for some A € C\ S.
We put Q(z,t) := tw(z) on M x C* so that dQ = n A Q for
7 = . The 1-form 7 is closed and holomorphic in A x C* so
that according to [61] £2 = 0 defines a codimension one holomor-
phic foliation F on M x C* which is transversely affine. F is
non-singular provided that w is non-singular on M. The action

B2 x (M X C) > M xC*, @(n, (z,t) = (F*z), A1)

wheren € Z, (z,t) € M xC*, is alocally free action generated by
the automorphism ¢: M xC* — M xC*, o(z,t) = (f(x), A71.t).
Since p*Q(z,t) = Q(z,t) and p*n = 7 it follows that F induces
a codimension one transversely affine holomorphic foliation F
of the quotient manifold V™' = M /3 = M /Z. We apply this
construction in a concrete situation:

Take A: C? — C? as the linear automorphism given by

11
A= (1)

Then A has eigenvalues A, = 3—'2‘@ and A, = —3-%5 The
corresponding eigen-spaces are generated by v, = (2, 1~+/5) and
v, = (2,14 v/5) respectively. The stable linear foliation and the
instable linear foliation are given by the 1-forms «Jj, = ?dw +(1+
VB)dy and J, = {1+ v/5)dz —2dy respectively. Take 7, : i, = 0
on €2, We consider the action of the integer lattice Z2? on C2
obtained in the natural way and put M = C?/Z? = C*xC*. The
map A leaves Z? invariant so that it induces an automorphism
F: M — M, which is indeed given by F(z,w) = (zw, w?) for
coordinates z = e?™% w = > on C* x C*.
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Now we consider the Z-action on C* given by ¢: Z x C* —
C*,(n,t) = X\;%4. Then M = C*/Z x C*/Z = M/Z obtained
this way is a compact surface equipped with an automo1 phism
f: M — M induced by F': M — M indeed, F(3".2, A, .w) =
272 (2w, w?).

Now, the 1-form & = = ¢, satisfles A*(w) = At & and cor-
responds to a Darboux 1-form @ = (1 + V/5) & Zdw on M =
C* x C*. Therefore, we have F*& = A\ .w and ﬁnally since
W*@ = @ it follows that @ induces a closed holomorphic 1-form
w on M with the property that f*(w) = A;'.w. Thus, accord-
ing to the above construction, the manifold V? = M x C'/Z
obtained by quotieting M x C* with the action of Z given by
the action of f on M and of the homoteties £ — A;.t on C*,
is a compact complex 3-manifold equipped with a transversely
affine codimension one holomorphic foliation F coming from the
linear unstable foliation F, on C2. The foliation F exhibits ex-
ponential growth (for any metric on the compact manifold V3
because A" expands v,.C by a factor A%. On the other hand,
[61], the leaves of F on V are dense, biholomorphic to C* x C*
or to (C*/Z) x C*.

Example 9.5.19. Let G be a Lie group which has polynomial
srowth in some left invariant metric. Let ®: G x M — M
be a locally free smooth action on a manifold M. There ex-
ists a Riemannian metric on M which restricts to the ®-orbits
as the induced metric coming from G. Thus @ defines a foli-
ation F on M, whose leaves have polynomial growth for this
metric. For instance we.may take any locally free holomorphic
action ®: C* x M — M where M is a complex manifold and
the euclidian metric on C*. The foliation by ®-orbits on M has
polynomial growth for a suitable metric on M. For n = 1 we
have a holomorphic flow whose orbits have polynomial growth
for a given metric on M.
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Example 9.5.20. Here we complexify an original example in
[41]. Let G be a simply-connected complex Lie group and H < &
a closed (Lie) subgroup of (complex) codimension one. Given
any discrete subgroup I' < & the group H acts on the quotient
G/T by left translations generating a foliation F of codimension
one. The leaves of F are the orbits of the above action. Since G
is simply-connected the universal covering G — G/T" lifts F into
a foliation F on G whose leaf space is the Riemann surface H\G.
The exact homotopy sequence of the fibration G 7 H\ G shows

that (for H connected) the manifold I \ G is simply-connected
since G is simply-connected. Therefore, H \ G is either diffeo-
morphic to CP(1),C or . Therefore the action of I' on H\ G
defines a global holonomy of F as a subgroup of Diff(N) for
N e {CP(1),C,D}, so that this global holonomy group is ei-
ther a subgroup of Moebius maps, affine maps or SL(2,R). If
I' is uniform, that is, the quotient G/I' is compact, then G is
unimodular and the action of G on H \ G has an invariant mea-
sure iff H is unimodular iff there exists a I'-invariant measure.
Therefore, when G/T" is compact F admits an invariant measure
iff H is unimodular. ‘

The existence of holonomy invariant measures is a consequence
of subexponential growth for the leaves as stated below:

Theorem 9.5.21 (Plante, [40]). Let F be.a C? foliation of
codimension k > 1 on the compact manifold M. Assume that F
exhibits o leaf L having subezponential growth. Then there exists
a nontrivial holonomy invariant measure p for F which is finite
on compact sets and which has support contained in the closure
L CcMofL. :

‘It is also known that if a codimension one (real) foliation of
class C* on a compact manifold admits a non-trivial holonomy
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invariant measure then F has a leaf with polynomial growth [40].
It this also true for complex foliations?

9.5.3 The complex case

The techniques and features developed above may be useful in a
more general situation than the compact case.

Definition 9.5.22. Let F be a foliation of codimension & on a
manifold M (perhaps non-compact). A compact total transverse
section of F is a compact k-manifold ¥ C M (possibly with
boundary) such that every leaf of F intersects the interior of 2.

This condition is fulfilled for holomorphic foliations on complex
projective spaces (Exercise!). Let F be a C? foliation on a
manifold M such that F admits a compact total transverse sec-
tion. Then the holonomy pseudogroup of F is finitely generated.
Plante’s result Theorem 9.5.21 above rewrites as follows:

Theorem 9.5.23 (Plante, [40]). F be a C? foliation of codi-
mension k > 1 on the Riemannian manifold (M,g). Assume
that:
(i) F ezhibits a leaf L having subezponential growth with respect
to the induced metric.
(ii) F admiis a commpact total transverse section.

Then there exists a non-trivial holonomy invariant measure
u for F which is finite on compact sets and which has support
contained in the closure L ¢ M of L.

Using these notions we also have the following results.

Theorem 9.5.24 (Plante, [39] 1973). Let F foliation of class
C? and codimension 1 of a compact manifold M. Suppose that
the leaves of F have subezponential growth. Then F has no ez-
ceptional minimal set, indeed each leaf of an exceptional minimal
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of a foliation of codimension one in closed manifold closed has
ezponential growth.

The theorem above may be interpreted has a kind of Poincaré-
Bendixson theorem for foliations of codimension 1 and motivates
a series of questions in the complex case. J. Plante also proved
the following;:

Theorem 9.5.25 (Plante, [43] 1975). Let F foliation of class
C?* and codimension q of a compact manifold M. Suppose that
F has a leaf Ly with subexponential growth. Then F admits
an invariant transverse measure (non trivial) with support con-
tained in L. If q = 1 then the ezistence of an invariant trans-
verse measure implies that there exists a leaf with subezponential
growth and, hence, of a leaf with polynomial growth of degree
max{0, b, (M)}. In particular if dim H,(M,R) < 1 then F has
a compact leaf.

9.5.4 From Real to Complex

We shall begin this section with some examples:

Example 9.5.26. Let R: CP(2) — CP(1) be a (nonconstant)
rational function. The levels of R define a foliation F by alge-
braic curves in CP(2). Given any affine space C? C CP(2) there
exists a polynomial vector field whose orbits are punctured leaves
of F in €2. Since the closure of a leaf is an algebraic curve on
CP(2) the leaves have polynomial growth.

Example 9.5.27 (Darboux foliations). A codimension one
holomorphic foliation F on CP(n) is called a Darbous foliation
if there is a rational map m: CP(n} — CP(m) such that F =
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7*(L£) where L is the linear Darboux foliation on CP(m) given by

D= (1.1131) Zl)\j%i = 0 in some affine chart (£1,...,%m} €
i= i=

C™ — CP(m). If we consider homogeneous coordinates say

(Tgy .y Tn) € C™! then the foliation F is given by a Darbous

1-form (also called Jogarithmic 1-form) in [60] as

k+1

Q:Z/\jfl---fj---fkﬂ-ldfj: )\jEC
=1

where the f;’s are homogeneous polynomials in n 4+ 1 complex
variables. Clearly 0 admits the integrating factor 1/f where
= fi... frr1, Le, the linear 1-form %Q is closed. We have

A = {f; = 0} and the hypersurfaces { f; = 0} are the algebraic

J
leaves of F; they have linearizable holonomy and any other leaf
has trivial holonomy.

Let now us apply the ideas of Example 9.5.17. According
to what we have seen above F | CPAN Do exhibits an holonomy
invariant transverse measure induced by o = Re(f2) A Im{($2).
Notice that, locally on CP{n) \ (2)c, given any transverse disk
D~ % C CP(n)\ (e, & M F, we may choose local coor-
dinates (#1,...,%n,%) such that ¥ : {z, = ... = z,, = 0} and
Qzy, s Tny ) = dy. Thus le = dy so that if we write y = u+iv
(42 = —1), (u,v) real coordinates, then Re Q|E = du, Im(Q)), =
dv so that a‘z = du A dv. The induced measure is therefore
the Lebesgue measure in these local coordinates. Let us see
what happens around the algebraic leaves L; C w({f; = 0}) C
CP(n). Given a generic point p € L; and a transverse disk
D = & Cc CP(n), X th F,£2nl; = {p} we may choose local
holomorphic coordinates (xy, ..., Zn,y) € U around p such that
(el = L;NU = {y = 0} and Q| , = A;%. Thus, if we write
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¥y = u + v as above then we obtain alz(u,v) = %du A dv.

In other words a(y) = ll)—;'li;dV; where dV is the volume element
induced by y = (u,v) on £. For (y = 0) over the leaf L; the
measure is not defined: any disk D C ¥ containing the origin
would have an infinite area. On the other hand, if A;/); ¢ R for
¢ # j the holonomy group Hol(L;) of the leaf L; gcontains lin-

earizable attractors f;(y) = exp(27ri%).y so that any holonomy

invariant measure around L; must be supported on E, that is,
must be the Dirac measure with center at L;.

Problem 9.5.28. Let F¢ be a holomorphic foliation of complex
codimension 1 in the manifold (complez) Mg compact. Assume
that F¢ , has a leaf with subexponential growth. Does F¢ has a
compact leaf?

In the case foliations in complex projective spaces we always
have singularities, we may however ask:

Problem 9.5.29. Let F¢ be a holomorphic foliation with sin-
' gularities in CP(n) = complex projective space of dimension
n. Suppose that F¢ has leaves with subexponential growth for
the Fubini-Study metric in CP(n) (the leaves are considered in
CP(n) — Sing(F)). Does there ezists a leaf Ly of F¢ whose
closure Ly in CP(n) is algebraic of codimension one?

We recall that according to the Theorem of Chow ([18]) a leaf
Ly of F¢ closed in CP(n) — Sing(F) will be analytic in CP(n)
and therefore algebraic, provided that dim Ly — dim Sing(F) >
1. In this direction we have the following result:

Theorem 9.5.30 ([58]). Let F¢ be a holomorphic foliation with
singularities in CP(2). Suppose that the singularities of F¢ are
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all hyperbolic and that F¢ has a non-algebraic leaf with subexpo-

nential growth. Then F¢ is linear hyperbolic: there exist affine

coordinates (z,y) € C? — CP(2) such that Fc is given by the
0 e

linear vector field X(z,y) =z e + Ay 3’ A € C\R. In porti-

cular the limit set of F¢ is a union of 3 projective lines.

Line at the infinity

x .

7 Ay

Figure 9.21:

Growth of groups of complex diffeomorphisms

The growth of the leaves of a foliation is naturally related to

the growth of its holonomy group (of the leaves). Let us re-

call briefly these notions. Let G a group finitely generated say

G = {¢,-..,gm) Where we can assume that gj_1 €{g1,--19m}

Vj=1,...,m Given n € N denote by o(n) the cardinal of

the set of elements of g of the form g3 ... g;” where ji,..., 7, €
r

{1,..:,m}, ai,...,a, >0and ) a; = n. Inother words, o(n)

k=1

is the number of “words” of G that we obtain with n combina-
tions in the generators g;. The type of growth of the function
og: N — N does not depend on the choice of the generators g;
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and is called type of growth of G.

Clearly every finitely generated abelian group has polynomial
growth. According to Wolf (72} a finitely generated group has
polynomial growth provided that it has a nilpotent subgroup of
finite index. This result is an equivalence for certain classes of
groups as we will see below.

Using these results J. Plante and W. Thurston studied fo-
liations of codimension 1 with holonomy group of leaves with
polynomial growth or exponential growth (cf. [44], {40]). We are
led to the following question:

Problem 9.5.31. Let G < Bih(C?,0) be a finitely generated
subgroup, of the group Bih(C7,0) of germs of holomorphic dif-
feornorphisms fizing the origin 0 € C?, ¢ > 1. Suppose that
G has a polynomial growth or subezponential growth. Then what
can we soy about G? Is G solvable?

In this standpoint we have:

Proposition 9.5.32 ([6]). Let G < Bih({C,0) be a finitely gen-
erated subgroup with polynomial growth. Then G is solvable.

We believe that “G non-soclvable = G has exponential growth
{for G < Bih(C,0))".






Chapter 10

Currents, Distributions,
Foliation Cycles and
Transverse Measures

10.1 Introduction

This second part of the text is dedicated to some other topics
in the Global Theory of Foliations. Special attention is paid to
the consequences of the Theory of Currents on foliated mani-
folds. We will therefore exploit aspects, already mentioned in
the first part, of growth of leaves and of groups as well as the ex-
istence of invariant transverse measures or of foliation cycles for
a given foliation. Despite its certain informality our approach
and exposition aim to clear the key-points of some central re-
sults of the classical theory (e.g. the bijection between trans-
verse invariant measures and foliation cycles and homological
versions of Novikov Compact Leat Theorem) allowing this way
the link between the classical real framework and the so called

209
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“Complex World”, where the foliations are frequently singular
and therefore the ambient manifold may not be compact. Af-
ter constructing the bases of the theory of currents and foliation
cycles in the real case we address the problem of giving a non-
geometrical (?) proof of Novikov Compact Leaf Theorem. The
central idea/philosophy is that such a proof may be somehow
adapted to the complex setting. References for these two parts
should be essentially contained in the works of J. Plante, D.
Sullivan, S. Schwartzmann, D. Ruelle, A. Haefliger (for the real
classic part) and M. McQuillan, M. Brunella, L.G. Mendes [35],
for the existing complex part; and may be found in the end of
this text ([33], [34], [2], [3], [7])-

10.2 Currents

This section is inspired in the expositions of [63], [11] and [16].
The study of currents associated to foliations has proved to be
very useful in the comprehension of and topological dynamical
phenomena related to foliations (cf. [66], [62], [43], [20] et al).
In this chapter we try to illustrate some of these applications.
We shall begin with the basic definitions which are involved,
with motivations coming from particular situations already well-
known. The first step is to introduce the concept of current.
We denote by C®(R?) the vector space of the functions C'*° of
compact support f: R* —» R. Endow C(R"), as usual, with
the topology of the uniform convergence in compact sets (for f
and its derivatives of all orders). A distribution in R™ is then
a linear functional T € (C(R™))*, that is, a linear applica-
tion T: C°(R™) — R which is continuous in the C* topology
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in CF(R™). We denote now by A?(R™) the R-vector space of
differential p-forms of class C™ and compact support in R",
equipped with topology inherited from C,(R™) in the natural
way. Then AZ(R"™) is complete and we can consider its topolog-
ical dual D*?(R"). In what follows we take p + ¢ = n.

Definition 10.2.1. A current of degree q on R™ is an element
C € DYR"). Thus, a current of degree ¢ on R® is a linear
continuous form on the space of differential forms of class ¢
and degree p = n — ¢ having compact support in R™. Also we
shall say that C is a current of dimension p.

10.2.1 Examples

1. A current of degree n in R™ is simply a distribution in R™.
2. Let N” C R™ be an oriented submanifold of R®. The integra-

tion along N? defines a current C{yp) := f v, w € A(R™) of
N

dimension of dimension p.

Rn
N' r

Figure 10.1:

3. Let ¥ = ) 4;dx; (in offine coordinates (z1,...,%,) €
J
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R") be a differential g-form with locally integrable coefficients

(s € Li (R™). To ¢ we can associate a current of degree g

(and dimension p) C(p) := / wAY; Yo AR(R").
]Rn

T
4. Given a singular p-chain & = Y a; - Nj in R” we can (as
i=1
in 2. above) define an integration current by setting

Cg) = [ o Vo AR,

In {A?(R™)} we consider the exterior derivation of forms
d: AP(R™) — AZFH(R™)
@ dp
and induzimos, in natural way, operador derivation in DI(R"):

d: DI(R™) — DTTHR™)
C —dC

dC(p) == C(dp), V€ ATHR™).

In a natural way we obtain a complex of cochains {d: DP(R"} —
DPHYR™)} (naturally) associated to the complex of De Rham
with compact support of R™

{d: AZ(R™) — AZ(R™)}.

In particular, d(dC) = 0 for every current C' in R™.

We can “localize” the notions above in an obvious way: given
open subset U C R™ we introduce the spaces A2(U) and DYU) :=
(AP(U))* where the topology we consider is the natural inherited
from the topology of uniform convergence in compact parts (for
functions and its derivatives of all orders) in C°(U). Given a
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diffeomorphism C* F: U — V between open subsets of R"
we have a natural homeomorphism F*: A2(V) — AP(U) which
is also linear. Thus, we can introduce the spaces of of currents
DP(M™) in a differentiable manifold M™. Let us see proper-
ties of the corresponding complexes of currents {d: DI (M) —
DA} and of De Rham {d: AP(M) — AP*Y(M)} in M. We
recall:

A complex of cochains is a collection {dx: Ag > Apy1}yeq of
abelian groups A; and group homomorphisms dy,: A; — A with
the property that dy4; o dp = 0. In particular we can consider
the quotient groups

kL Ker(dk: Ak —3 Ak+1)
’ Im(dk_l: Ak—l — AL)

called the Cohomology groups of the complex considered. The
cohomology groups of De Rham with compact support of M (dif-
ferentiable manifold) denoted Hfpgp(M) are defined this way

(from {d: AS(M) — AFI(M)}) for k > 1 recalling that, by
definition,

H)pp(M):={f: M %R, f has compact support and df = 0}

is the number of compact connected components of M also we
have HE (M) =0, Vk>n+1(n=dimM) and we have the
following;:

H® (M R) = R if M isorientable
' 0 if M isnon-orientable.
Remark 10.2.2. We can also work with general differential

forms (not necessarily with compact support) of class C* in
M obtaining the De Rham complex of M, whose cohomology
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is denoted by H%g(M), and the maximal order cohomology is
given by:

n 0 if M is not compact ou not-orientable
pr(M) = . . .
R if M is compact and orientable.

Let us return to the currents in M. As we have seen in 3.
from the above examples there exists a natural inclusion of the
space of g-forms of class C* in M in the space of currents of
degree ¢ in M

b Cole)i= [ bne Vo A

P € A1(M) g-form C* in M.

Such inclusion gives indeed a homomorphism of complexes
{ip: AYM) — DU(M)} that induces by its turn a homomor-
phism in the cohomology groups

iyt Hpp(M) — HI(D"(M))

where HY(D(M)) denotes the order ¢ cohomology group of the
complex of currents D* (M) of M.

Theorem 10.2.3 (Theorem of De Rham, [10], [11]). Given
a differentiable oriented manifold M we have natural isomor-
phisms between the singular cohomology singular groups of Rham
and of currents in M:

Hi W (MR) o H}p(M) = HID*(M)).
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10.3 Invariant measures

Let F be a foliation of class C* dimension p and codimension
g of a manifold M™. There exists a covering U = {U},y of M
with the following properties:

1. I is locally finite: given a compact K C M we have
#ieN, UjnK # 0} < .

2. Uj is connected and F|, is trivial: there exists a diffeo-
morphism ;: U; — ¢;(U;) C R™ such that ¢; takes F onto the
horizontal foliation in R? x R? = R”,

3. In each U; we have an embedded disc D? =~ &; C U;
which is transverse to the plaques of F in U; and parametrizes
this space of plaques.

tg.
R,/

°@) R-R.R’
="

Figure 10.2;

We shall call &/ a regular covering of M for the foliation F.

We also assume, with no loss of generality, that ¢;(U;} = R™

and that M = ] ¢;*((—1,1)*) and we can then take ; C
jeN _
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@51 ((=1,1)") and also rename U; = ¢; 1[(~1,1)™ in a way that:
4, Each leaf of F cuts some transverse disc Tj; and if U; 0
U; # 0 then each plaque of F|;, meets at most one plaque of
F |U defining local dlffeomorphlsms C™ say gij: L; — Xj w1th
the property that in U; NU; we have y; = g5 0 3 where y; =
the projection of U; onto I; (via the chart ;).

M f
U /,_____L.-. P
Do
P
Figure 10.3:

Clearly we have the following condition of cocycle:
5 UinU; #0 = gijzgj_il and

UfﬂUjﬂUk%@ = §ij O ik = Gik

in the corresponding domains.

Definition 10.3.1. The holonomy pseudogroup of F for a reg-
ular covering U is the pseudogroup I'y of local diffeomorphisms
C® of the manifold %, disjoint sum of transverse discs X;,
generated by the local diffeomorphisms g;; .

We recall the following definition:

Definition 10.3.2. Let X be a topological space hausdorff and
I" a collection of local homeomorphisms g: U — V where U,V C
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X are open subsets of X. Let us denote by Dom(g) and Im(g)
the domain and the image of g € T" respectively. We say then
that T" is a pseudogroup of local homeomorphisms of X if:

(i) VgeTwehaveg™' € ', Dom(g) = Im(g~') and Im(g) =
Dom(g™);

(ii) If g1,92 € T'and g: Dom(g;)UDom({gs) — Im(g;)UIm{gs}
is a homeomorphism such that gl = g;, 7 =12
then g € T

(iii) Id: X - X belongs to I',

(iv} If g1, 92 € I then gjogs € I com Dom(g0g2) C g7 ' (Im(g2)})N
Dom(g, ).

(v) If g € T and U C Dom(g) is open then g|,; €T

Under these conditions we define the orbit of & point x € X
in the pseudogroup I by I'(z) := {g(z) € X,g e Tand z €
Dom(g)}.

We denote by o.(X) the ring of subsets of X generated by the
compact sets. A measure p in o,(X) is said to be I-invariant if:

(vi) p is non-negative, finitely additive, and finite in compact
sets.

(vii) Vg € T’ and any measurable subset A C Dom(g) we have
p#(g(A)) = u(A).

In the above case, of the holonomy pseudogroup of the fo-
liation F relative to the regular covering I we conclude that ,
in fact , I'yy is a pseudogroup of local diffeomorphisms C* of
Ty . In case we have another regular covering of M relative to
F,say U = {’UV'J;}J.‘EN if we suppose that U is more thin than
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U (ie., for each index j € N there exists index »(j} € N such
that U; C Uk is also which U, is uniform in Upgy (ie., each

plaque of Uyy;) meets at most one plaque of 7 ;) then we obtain
a natural identification beteween the corresponding holonomy
pseudogroups I'; — Ty . This shows the following (exercise!):

Lemma 10.3.3. All the holonomy pseudogroups I'y, , where U is
covering reqular of M for a foliation F, are naturally equivalent.

We may then introduce the {(well-defined whether M is com-
pact or not) holonomy pseudogroup of the foliation F. This way
we can formalize the following notion:

Definition 10.3.4. A foliation F of a manifold M is said to ad-
mit a holonomy invariant transverse measure (or simply nvari-
ant transverse measure) if its holonomy pseudogroup has some
invariant measure (non-trivial) which is finite in compact sets.
The support of an invariant measure g is the set of points x € M
such that: given any transverse disc to F of dimension ¢ = codi-
mension of 7, D?C M with z € Int(D7), we have u(D?) > 0.
The support of j, denoted by supp(u), is closed and (since p is
invariant) it is saturated (invariant) by F.

D‘I

Figure 10.4:




10.3. INVARIANT MEASURES 219

Let us see some examples illustrating the notions above:

10.3.1 Examples

1. Let F be a foliation of codimension 1 given by a non-singular
closed 1-form of class C*°, Q in M. Then it is to see from
the Poincaré Lemma that the holonomy pseudogroup of F is
naturally a group of translations I'» C (R, +) and any leaf of
F has trivial holonomy group (a translation with a finite fixed
point finito is the identity). Therefore, any Borel measure in
R invariant by translations is also I'y-invariant. Suppose now
that F is of codimension % and given by a closed k-form £ in
M. In this case given any transverse k-disc to F say D¥ C M,
the restriction |, is a volume form (assume also that F is
transversely oriented this way) which is positive in open sets.
The fact that I is closed implies that the transverse measure
this way induced is F-invariant.

2. Suppose that F admits a closed leaf Ly C M. Given a
transverse disc to F, say D C M we define for any A C D
a measure pu{A) ;= }{ANL}. Clearly we obtain this way an
invariant transverse measure p for JF; also we have supp(p) =
Ly.

3. Let F be a foliation defined by the fibration M — B of M over
a manifold B; then the transverse measures for F correspond to
the measures over B, which are finite on compact sets.

4. Let F be a foliation of M and f: M — M a proper appli-
cation of class €% and transverse to F. Denote by F the lift
f*F to M , if F admits an invariant transverse measure u then
F admits an invariant transverse measure i := f*(s) defined
naturally by (D) := p(D), where D = f~}(D) as in the figure
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helow.

) M D M
= A E——
—_—
3 )

Figure 10.5:

5. According to Joe Plante [43] “if F is foliation of class C?
of a compact manifold M admitting a leaf Ly with subexponen-
tial growth (geometrical, Riemannian) then F admits an invari-
ant transverse measure y, finite in compact sets, whose support
supp(p) C Lg."

6. Let us consider now more in details the case of suspensions:
Let m: E - B be a fibre bundle of class C® with typical

fiber F; base B, projection 7 and total space &. We say that a
foliation F of E is transverse to the fibres of E if:

(a) Given z € E we have which L, is transverse to the fibre
Frtmy = n~ (x(z)) and in fact dim F + dim F' = dim E.

(b) The restriction 7|, : L — B, where L is an arbitrary leaf
of F, is a covering map.

Remark 10.3.5. We observe that if the fibre F' is compact then
(b) from (a); even for B non-compact (sce [4] page 94).

Since each restriction 7|, : L — B is a covering map we can
define a representation ¢: m(B) — Dif*(F) from the funda-
mental group of the base B into the group of diffeomorphisms
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Figure 10.6:

(globais) of class C* (suppose F of class C*), of the fibre
F as follows: Fixed base points b, by € B. Given a path
@:[0,1] — B, a0) = by, afl) = b, we define, for each
y € F,, the point f,(y) € F,,, as the final point final &,(1) of
the lift &,: [0, 1] — Lq of e, by the covering map 7| L’ L, — B,
with origin at the point y = G,(0).

For by = b}, we identify Fy, = Fy =~ F and we obtain represen-
tation

@: m(B, by) — Dif*(F)
[o] = fa)-

The image of this representation is called global holonomy of F.
By means of a constructive processo one may prove the following

“I. Let F and F' be foliations transverse to the fibres of a
fibre bundle 7: F — B. Then the groups of global holonomy
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L L\L/\f;,, B

Figure 10.7:

of F and F' are conjugate (in Dif*°(F)) if and only if 7 and F’
are conjugate by a fibred diffeomorphism 9: £ — E.
II. Given a fibre bundle space 7: E - B there exists a

foliation F transverse to the fibres of the bundle if and only if
the structural group of the bundle is discrete.

I11. Given a representation o: m (B} — Dif**(F) of the fun-
damental group of a manifold B in the group of diffeomorphisms
C® of a manifold F with image G < Dif®(F'} there exist a folia-
tion F of class C%® of the manifold E, a structure of fibre bundle
space 7: B — B such that F is transverse to the fibres of the

bundle and whose global holonomy {of F) is conjugate to G. By
(I) F is unique up to natural equivalence.”

We shall call such a foliation F the suspension of the repre-
sentation : m(B) — Dif*(F).
We recall that a group G is aemenable if the space B(G) :=
{f: @ = R;||f]| is bounded}, equipped with the norm of the
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supreme, admits a positive linear functional £: B(G) — [0, +-00)
with {(1) = 1 and G-invariant (i.e., £(f o L;) = £(f), VYf e
B(G). Such a functional ¢ is called continuous invariant mean
(cf. [25]). It is proven that if G is a finitely generated group
and with subexponential growth then G is amenable (cf. [67])
and that solvable finitely generated groups (for example) are
amenable.

Let finally 7 be a foliation transverse to the fibres of a fi-
bre bundle #n: F - B and suppose that the group of global

holonomy of F is amenable then, if a fibre F' is compact, F has
invariant transverse measures.

10.4 Current associate to a transverse
measure

This section is based in the exposition from [15]. Let F be a foli-
ation of codimension g in M", class C*°, admitting an invariant
transverse measure g. Let us see how to associate to ¢ & current
Cy, in M; we begin taking regular covering U = {U;}. of M
relative to F and considering the holonomy pseudogroup I'y. As
before £y = |J £; denotes the space of plaques of F relatively
jEN

to U, we canjthen disintegrate the a measure y as follows:

e i defines a Borelian measure over Yy, invariant by I'y .

e Let > a; = 1 be a partition C* of the unity, strictly

jeN

Subordinaté to the covering I/ of M.

e Given ¢ € AP M) form C® of grau n — ¢ (n = dim M)
and compact support in M we can consider the product a;p €
A9(%;) as a continuous function on X; provided that F is ori-
ented and we consider in U; (and therefore in ¥;) the orientation
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induced by F. In fact, we can consider a function y — / ajp
Py

(R

R

) *®

Figure 10.8:

defined in terms of local coordinates (z,y) in U; that make
F |Uj{y = cte}; the plaques of F[;, are of the form £, C
E™7 x {y} and a transverse ; of the form 5; C {z = 0}.

e We integrate and sum these functions obtaining the value

E/ (f ajsoy)d#(y)-

JeN

Using the fact that u Is invariant by the local diffecmorphisms
gij: &; — L; we conclude that in fact the value of C,(p) does
not depend on the 3 a; =1 (partition of the unity) nelther on

jeN
the regular covering I/ with respect to F (there is no need to
suppose M compact).

Definition 10.4.1. ), is the current associate to the invari-
ant fransverse measure u for F.

The following result is central in the theory:
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M

—

R’ /(8/ >

|

x

Figure 10.9:

Proposition 10.4.2. C,, is a closed current.

Prova: Using the above notations we have that

Culdy) = }:, /E | ( /P (a; dw)(y)) du(y)-

JjEN

On the other side, dp = d (E a_.,vtp) =" d(a;jp) so that
b i

Culdp) =Y fz | ( fp d(a; dso)(y)) du(y)-

jeN
Assume now that ajp has compact support in P, (not compact)

so that, by the Theorem of Stokes, / d(ajp) = 0, Vyand thus

v
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C,(dyp) = 0. By definition the derivative dC,, € D(M ) is defined
by dC,(p) := Cy.(dp) where p € A(M). Therefore dC, = 0,
that is, C,, is a closed current. W

Let us see some important consequences of this result:

As we have already seen, there exists an isomorphism of (De
Rham) cohomology groups
Hq

sing

(M,R) = Hpp(M) =~ HYD(M));

therefore each closed current C' € DI(M) defines a class [C] in
the space HY.(M). By the Duality Theorem of of Poincaré,
if M is orientable, we have a natural isomorphism Hp, (M) =~
(Hg prlM ))' = topological dual space of the cohomology group
(of degree p) with compact support in M, of De Rham. Hence,
we can associate to C a class [[C]] in

(HEDR(M))’ o {I;E(M’R) i.f M i‘s coTnpact

(M,R) if M is orientable.
Thus, for M compact (respectively orientable) we have associate
an invariant transverse measure for F, the homology class (re-
spectively class of cohomology) of this measure.
Let us see some examples:

10.4.1 Examples

1. If N ¢ M™ is an oriented submanifold compact of dimension
p invariant by F then the class of the current of integration cor-
responding to N is the class [N] of homology of N in H,(M,R);
note that N is a compact leaf of F.

2. Let F be a foliation of dimension p and codimension g of M™.
Assume that F and M are oriented and that is F transversally



10.4. CURRENTS AND TRANSVERSE MEASURES 227

orientada. The differential form € of grau ¢ in M such that
for each transverse disc to F, D7 C M we have R, is the
form of volume (positive for the induced orientation in DY) is a
transverse volume form of F in M. We can choose a continuous
vector field X of p-vectors on M such that in each point x € M
we have T, F = oriented space generated by Xr(z).

M

X

Figure 10.10:

In this case we can obtain a transverse volume form positive
vr for F in M of class C® such that vz(Xz) = 1 in M. We
shall say that vr is normalized for Xz . In a general way, given
transverse volume g-form £ for F in A the associated current

to 2 is defined by C(p) = / Q A and the homology class
corresponding to C in H(M, R) is the corresponding class of £
in Hjp(M).

3. Leta= E a;Nj, a; €Z; be asingular p-chain in M™ and

j=

denote by C the current of integration definida by o in M if a is
closed (8 = 0) then C' is closed (dC = 0) as consequence of the
Theorem of Stokes. The class of C in H,(M, R} is the class of v in

this same space. In this example we are not necessarily assuming
the existence of a foliation in M which leaves « invariant.
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4. Let now F be a foliation transverse to the fibres of the bundle
w B - B in E; given an invariant transverse measure (o we

have that u corresponds (in bijective way) to a Borelian measure
po over the fibre F' which is invariant by the global holonomy
Hol(F) C Dif(F) of F, and finite in compact sets of F. Let C
be a current corresponding a y; then by construction we have

which
Cly) = fB ( /F

=y}

wdu(y)) =[Bf:p(y)dﬂu(y)

where f,: B — R is defined by the integration of ¢ along the
fibres (cf. the figure below).

Eow

\ / 1|

) )

H
\ /
T R

Figure 10.11:

Thus, in order to study the class of C in H9(M,R) we can report
to the (class of the) measure yo in H*(B,R).

Suppose now that the fibre F' is compact and let us study the
homology class of (one fibre) [Fy| in Hy(M,R). Take a tubu-
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lar neighborhood I't W — F}, of this fibre in E such that the
projection I" has as fibres (transverse discs) the leaves of F|,,, .

E
E+4W

g ™ L,
ng

\

)

\

Figure 10.12:

We can assume W C M compact and using “bump functions”
we obtain closed form ¢ € AP(M) such that supp ¢ C W and

/ 0w =1, Yz € Fy where D, = r~}(z) is a fibre of T by
Dy
T e F{].

X LR

Figure 10.13:

But then we have C(p) = po(n(W)) > 0 so that C(p) # 0.
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On the other hand, since ¢ is closed we have that its class in
H? (M, R) is dual to the class of Fo in H,(M,R) so that if
[Fy) = [0] in Hy(M,R) then {y] = [0] in H? pp(M,R) and so
C(p) = 0 giving a contradiction. This shows that “the class of
Fy is not zero in H,(M,R)” Since Fy is arbitrary we conclude
the same for any fibre of m: E — B. The same proof gives us:

6. “Let F and M be oriented and N? C M" compact sub-
manifold without boundary and transverse to F. If there exists
invariant transverse measure u for F with supp g NN # 0 then

[N} # [0] in Hg(M,R).

10.5 Cone structures in manifolds

In this section we shall follow [66]. Let E be a real locally convex
topological vector space . Given a convex cone C C [E we say that
C is a connected convex compact if there exists linear functional
w: E — R such that

1. (z)>0, VzeC\{0}.
2. (1) N C is compact; called the base of the cone.

[+] a
We denote by C the set of radii of of C; C it is direct identifi-
cation with its base.

Definition 10.5.1. A cone structure in a closed subset F' of a
manifold ¢ M is a continuous field of convex compact sets
cones, say {Cz} cp, In the vector spaces X,(z) of tangent p-
vectors in M (for z € F).

The continuity of the field {Cy}, . is defined in terms of

the movement of its bases C, for a suitable metric in the radii
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O

\\f\\ s

E

PinC

Figure 10.14:

(see [66]). Thus the p-form C* £ in M is said to be trans-
verse to the cone structure {Cy} - if Q(z)(v1,...,v) > 0,

Y(vi,...,v,) € Cy C X,(z) non-zero and Vz € F. Such trans-
verse forms can always be constructed and determine currents:
given point x € M we define the Dirac current associate to the
fixed p-vector X(p) € Xp(z) by dx.: @ + @(X}(z); by choos-
ing X(x) in the cone C; C X,(x) we obtain a collection of such
currents of Dirac which gives us a closed convex cone of cur-
rents called cone of currents of structure associate to the cone
structure {C:,,-}xe e When F’ is compact the cone of currents
of structure associate is a compact convex cone. We shall call
the structural cycles of a cone structure in a manifold the struc-
tural cmrrents which are closed (in the sense of currents). It is
proven (cf. [66] §2) that if F* C M is compact then any struc-

tural current C' writes as C' = [ f dy where p is a measure > 0

JF
in F' and f is an integrable function p-integrable taking values
in X,(M)} = {p-vectors in m} and such that f(z) € C; (cone
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structure given originally, Vo € F).



Chapter 11

Foliation cycles:
Homological proof of
Novikov Compact Leaf
Theorem

Let F be an oriented foliation of class €, dimension p and
codimension g in M oriented, Xz a continuous field of p-vectors
generating T'F and vg transverse volumme form normalized for
X7 . Clearly F defines (via X¢) a foliation current of dimension
p over M; for cach 2 € M we denote by Cr(z) the convex cone
in T M generated by the fields of p-vectors tangent to F in z
and denote by C'r the cone structure over M obtained this way;
an element of the cone of currents of structure associate to Cr is
called a foliation current of F. In other words, a foliation current
of F is an element do convex coune closed do space of currents
of dimension p over M which is generated by Dirac currents of
the form éx.: ¢ — @(X)(z) where z € M and X is a pfield

233
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tangent to F.

Definition 11.0.2. A foliation cycle of F in M is a foliation
current of F which is closed in the sense of currents, that is, a
structural cycle of Cx.

Owing to our above discussion {cf. §2.4) if pt is an invariant
transverse measure for F in M then a current associate to p is
a foliation cycle of F. The converse in the compact case was
proven by D. Sullivan (cf. [66]):

“Let F be a foliation C* of M compact and suppose F and M
oriented. Then each foliation cycle for F in M comes (via the
construction already presented) of a (unique) invariant trans-
verse measure for F.7

We define the support of a current in the obvious way and we
can then observe that if C is a foliation cycle for F, coming
from an invariant transverse measure p in M, then supp(C) =
supp(p} € M; in particular supp(C) is closed and F-invariant
in M.

?

11.0.1 Examples

1. All examples of currents (foliation) constructed from invariant
measures in §2.4 give then examples of foliation cycles.

2. If p is a measure Boreliana (positive not necessarily F-
invariant) over M a current of integration Cp,: ¢ = [ o(XF)dp

M
is a foliation current for F; by the Theorem of Sullivan above
C,, is a foliation cycle if, and only if, p is F-invariant.
3. Let F foliation transverse to the fibres of the bundle m: £ -

B with global holonomy Hol(F) C Dif(F"), then given measure
Boreliana 1y in B a current C), associate to the measure u defined
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by po em E is a foliation current (as in 2. above) which is a
foliation cycle if, and only if, gg and Hol(F )-invariant.

4. Let F foliation of codimension 1 in M; according to Hae-
fliger’s Theorem (Chapter 5) if F has a transverse closed curve
hotnotopic to zero in Af then there exists leaf Ly of F and loop
(of holonoiny) o € my(Lo) with holonomy f., € Dif((—¢,¢),0)
such that f| (—e] is the identity and f| (Ote) is increasing.

Figure 11.1:

Such a leaf L we will call in general a ressort leaf. Let us see how
the existence of of invariant measure for F restricts the existence
of ressort leaves. Indeed, given an invariant transverse measure
u for F let K = supp(y) be the support of g (not necessarily
compact). We claim:

(a) “K is contained in the union of minimal sets of F;

(b) K does not contain ressort leaf.”
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In order to see (a) it is enough to observe that K is invariant,
closed and any leaf contained in K is dense in K. Since the
measure g is finite in compact sets we conclude that K does
not contain a ressort leaf and, since 7 is of codimension 1 the
minimal sets of F are either closed leaves, or dense, or an un-
countable union of exceptional leaves (set of Cantor). This shows

b). m

11.0.2 Homological proof of Novikov Compact
Leaf Theorem

Note that above we strongly use the fact that F is of codimension
1. Suppose now that dimF = 2 and dim M = 3 so that F of
codimension 1. We will also assume M compact and that F has
a vanishing cycle, say, in the leaf Ly of 7. We will show how to
construct the foliation cycle for F; there is no loss of generality if
we assume that vanishing cycle is simple: recall that (cf. Chapter
G) a vanishing cycle of F in the leaf Ly consists of a lace {closed)
ap: [0,1] — Lg such that it extends to a continuous application
a: [0,1] x [0,1] %, M with the following properties:

(i) Given t € [0, 1] the application ¢y: [0,1] — Ly, au(s) =
aft, s) defines a loop in the leaf Ly of F,

(ii) g is the loop originally given in Ly,

(iii) vy is not homotopic to zero in Ly but o is homotopic to
zero in Ly Yt e (0,1] '

(iv) Fixed s € [0,1] the curve Cs: [0,1] = M ¢ — ay(s) is
transverse to the foliation F.

The vanishing cycle is called simple when also we have

(v) the lift of o, denoted by é&;, to the universal covering L,
of the leaf L, is, for each ¢ # 0, the closed curve (because oy ~ 0
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Figure 11.2:

in (L)) which is simple (that is, without self-intersection).

We can approximate continuous functions by functions C' so
that we can assume that oz S x [0, 1] — M is of class C*.

Note that the universal covering L, of L, is necessarily (diffeo-
morplic to) R? because otherwise F would have some leaf cov-
ered by S2, this leaf would be compact and being orientable it
would be the sphere with ¢ > 0 aisles; if g = 1 the univer-
sal covering is R? and if g > 2 then the universal covering (as
a Riemman surface) is the unit disc D C R? so we must have
¢ = 0 and the leaf would be diffeomorphic to 5%,

By the Global Stability Theorem of Reeb F would be a com-
pact fibration over the circle S* with fibres 5% and in this case it
could not have vanishing cycle (all the leaves would be simply-
connected).

Now, since each leaf L, is covered by L, ~ R? each (simple}
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Cannot occur 7

Cannot oceur
<% A

Figure 11.3:

curve ¢y in Et is boundary of a disc ﬁt - E; this allows us to ob-
tain an immersion C!, A: D?x(0,1] — M of the solid cylinder
(not compact) D% x [0, 1} in M with the following properties:

(vi) Adlgigp: =, Vt€(0,1] and the image A,(D*) C
L, Yte (0,1}

(vii) Given an oriented transverse flow X th F chosen from
the beginning from the transverse orientability of 7 in M we
have which A;: D? — L; define, for 0 < § < t < 1, lift of
Ay: D? — L; by the transverse flow X

Since ag not is homotopic to zero in Ly and since for each x € st
the curve [0,1) = M, z+— Az, t) has a limit when ¢ — 0% we
conclude that .

(viii) The set W = {z € D%t +— A(z,t) has a limit when
¢ — 0%} which is an open neighborhood of $* in D? with 8' C
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Figure 11.4:

WS D2
We denote by C, for each 0 < ¢t < 1, the foliation current of
F defined by the integral
| .
C =—— ., Where ¢ € AR(M
) = ipg [, where o € A200)
(note that still we are not using the fact that M is compact,
which will be used in what follows), and where D, = A,(D?) C L,
(note which A,: D? — D, C L, C M is imersio C'). We obtain
then, using the terminology of [66], a family of Plante of foliation
currents {C\}, €(01] defined by the properties below which can be
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easily verified:
(ix) Each C; has mass 1 so that {Ci},. ) Is a pre-compact
family of currents {(weak topology).
(x) Bach accumulation C of {Ci},c (o, Is necessmlly a folia-
tion cycle of F: in fact if ¢, ™\, 0 is aucL that C;, — C then
length(0D,, )

Area(D,)
of the derivative dC,, satisfies mass (dC;,) — 0 and therefore
mass(dC) = 0. We obtain then foliation cycles C for F in M3, if
we suppose M*? compact, from the existence of a vanishing cycle
for a leaf L2 of F, foliation of codimension 1 in M3.

fact that the quotient — 0 implies that the mass

Such facts have been generalized by D. Sullivan for higher
dimension with the notion of vanishing cycle of dimension =
dim F — 1 {cf. [66]).

We can now conclude the following:

F foliation orientable and transversally orientable C? of
codimension 1 of M® compact, F with a leaf Ly
containing a vanishing cycle

¢

[F has a foliation cycle C' whose support contains a leaf LD]

¢

F admits an invariant transverse measure yu whose support
contains Lq (in fact supp(u) = supp(C))

I

since F is of codimension 1 and M compact we have that K =
supp(x) (contains Lg) does not contain ressort leaf and is con-
tained in the union of minimal sets of 7 in M. Thus K is a
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union of compact leaves and hence Lq is a compact leaf of M
that is,
[ M has Lo as compact leaf.]

This is a homological demonstration of Novikov Compact
Leaf Theorem.






Chapter 12

Miscellaneous exercises

12.1 Exercises for the text

Exercise 12.1.1. Let F be an orientable foliation with a com-
pact leaf L € F homologous to zero. Prove that the Euler char-
acteristic of L is zero.

Exercise 12.1.2. Let F be a codiinension one foliation on $°
with a compact leaf L € F homologous to zero. Show that L is
the torus.

Exercise 12.1.3. There exist no analytic foliation of codimen-
sion one of the sphere 5% for n > 2.

Exercise 12.1.4. Let G < R? be a discrete subgroup. Show
that G is isomorphic to Z or to Z2. Conclude that the orbits of
a locally free action of the affine group AfI(R) are either planes
or eylinders,

Exercise 12.1.5 (Implicit ordinary differential equations).
An algebraic implicit ordinary differential equationinn > 2 com-
plex variables is given by expressions:

243
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(**) fj("rla '“1:L'n:373') =0

where f;(z1, ..., Tn,¥) € Cl21,..., Zn, 9| are polynomials and the
(z1, ...,y T) € C* are affine coordinates. Clearly, any polynomial
vector field X on C" defines such an equation. In general (*%)
defines a one-dimensional singular foliation in some algebraic
variety of dimension n. In order to see it we begin by defining
F(T1y eos Ty Y2y ooy Un) 1= Fi{Z1 ooy 8y U) € ClE1, ey Ty Y2y o0y Un)
polynomials in n + (n — 1) = 2n — 1 variables. Put also S; =
{(z,y) € C* x C*}; Fi{z,y) = o} =~ {(z1,...,%n,95) € C} x
(CUJ; fj(.’ﬂl,...,.'lln,yj) = 0} x C*? =: Aj x CP-?

(V2 lijseniin)

We consider the projectivizations S; C CP(2n — 1) and the
complete intersection subvariety § := S;N...NS, ¢ CP(2n—1).
Given by the differential forms w; = y;d) —dz; (= 2,...,n)
on C* x C*~!. Prove that {w; =0, j = 2,...,n} defines an inte-
grable system on S. We say that the implicit differential equation
{(*) is normal if S admits a normalization (desingularization) by
blow-ups o: § —+ S. In particular we obtain in general a singular
foliation F(*#) of dimension one on the algebraic n-dimensional
subvariety § ¢ CP(2n — 1). Denote by f;: SNC"* — C! the
projection in the first coordinate fi{zi, ..., Tn, Y2, oy ¥n) = 21,
and extend it to a holomorphic proper mapping f: § — CP(1).
Assume now that S admits a normalization o: § — S. Show
that the foliation F(#*) lifts to a foliation by curves F(#+) on
S and f; = f; o o defines a holomorphic proper mapping from

S over CP(1). Finally, using Stein Fatorization Theorem find
a splitting fi: § & B % CP(1) where a: B — CP(1) is a
finite ramified covering and f: 5 — B is an extended holomor-

phic fibration over the compact Riemann surface B such that
the following diagram therefore commutes
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523
fl h
B =, CP(1)

for amap fi: 8 — CP(1).

Exercise 12.1.6. Let F be a foliation on M of codimension
q. A differentiable map f: N — M is transverse to F if it is
transverse to each leaf I € F as an immersed submanifold in
M. Show that in this case there is a naturally defined foliation
f7{F) in N of codimension ¢ such that for each leaf L € F the
inverse image f~!(L) is a union of leaves of f*{F).

Exercise 12.1.7. Let F be a codimension one transversely ori-
entable foliation on M given by the integrable differential 1-
form w in M. Show that there is a 1-form 7 in M such that
dw = 1 A w, also show that given any leaf I, € F the restriction
7]| . 15 closed and given any closed path v € m(L,p) with base
point p € L then the linear holonomy of the loop +y is given by

Ry (0) = exp( [ 1],)-

Exercise 12.1.8. A closed subset F' C R is perfect if it has no
isolated points. Bendixson’s Theorem states that a countable
closed subset of the real line must have an isolated point. Prove
the following: every closed subset of the line is tlie reunion of a
perfect set and a countable set.

Exercise 12.1.9. Let w be a C? integrable 1-form in a neigh-
borhood of the origin 0 € R™. We assume that the origin is a
singularity of center type for w so that, up to a linear change

n
of coordinates we have w = d(3 3, %3) + (-..) where (...) means
i=1

higher order terms. A classical result due to Reeb states that for
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n > 3 there is a neighborhood of the origin where all the leaves
of 7, : w = 0 are diffeomorphic to the (n — 1)-sphere. This is
proved as follows:

(i) Consider the cylindrical blow-up of the origin given by the
map o: R x §*1 — R", o(t,z) = t.z. Show that {0} x 5*~!
is a leaf of the lifted foliation F* = o(F,) (hint: show that
the 1-form ©* = 40*(w) defined in (R — {0}) x "' extends
to R x 57! as Q* = dt for t = 0 in class C'. Also show that
{0} x 5™ ! is a leaf of o*(w) and so of Q*.

- (ii) For n > 3 use the Local Stability Theorem to conclude.

Exercise 12.1.10. Look (possibly in the literature) for a demon-
stration of the following analytic version (also due to Reeb) of
the above exercise: If w is a real analytic integrable 1-form in a
neighborhood of the origin 0 € R* and n > 3. Suppose that the
linear part of w is non-degenerate and w = df + (...} for some
quadratic analytic function f. Then there is a neighborhood of
the origin where F, : w = 0 is analytically conjugate to the
linear foliation df = 0.

Exercise 12.1.11. Give a demonstration of Darboux-Lie The-
orem (Theorem 1.2.29) according to the following suggestion:
Given 1-forms forming a basis {wy, ...,wn} of the Lie Algebra
of the Lie group G and given 1-forms {{y, ...,f,} a rank-n sys-
tem of 1-forms in a manifold M such that d; = 3 cf;0% A 8,
. 1,7
where the {cf;} are the structure constants of the Lie Alge-
bra relatively to the given basis, we can define 1-formms ©; =
£2; —wj, 7 = 1,..,n; in a natural way in the product manifold
M x G. The system {©,...,©,} is integrable and by Frobenius
Theorem defines a foliation F of the product manifold. Given a
leaf L € F we have that §); and w; coincide over L. Using then
the natural projections M xG — M and M X G — G we can ob-
tain local submersions 7: U C M — G such that 7*w; = Q;, V5.
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In order to conclude one has to prove that if a diffeomorphism £
of & preserves w; for all  then £ is a left translation in G.

Exercise 12.1.12. Show that if G is a simply-connected Lie
group and M is a compact manifold of dimension dimM =1 +
dim & then for dim G > 2 there is no locally free action of G in
M.

Exercise 12.1.13 (Double of a foliation). Let F be a smooth
foliation on M. Suppose that we have a relatively compact do-
main D C M with smooth boundary 8D transverse to F. Con-
sider the manifold with boundary My = M\ D and the restriction
Fo=F | Mo Given two copies M, and M; of My we can construct
a manifold My by gluing these copies by the common boundary
@D and equip it with a smooth foliation #; such that Fy M; is

naturally conjugate to Fy.

Exercise 12.1.14. Let X, , = /\Cbadz + ;Ly;)% a complex vector
field in a neighborhood od the origin 0 € €% Show that X , is
transverse to the 3-spheres S*(0, R) for R > 0 small enough, if
and only if, A/ € €\ R_. Let now X be a polynomial vector
field in C? and assume that the singularities of the correspond-
ing foliation F on CP(2) are of local form X, with A/p ¢ R.
Choose small balls B(p;) around the singularities p; € sing(F) in
CP(2). Show that there is a foliation Fy in a manifold M, with
the following properties: This is a ¢ regular codimension-two
real foliation F,; on a compact real 4-manifold My, which contains

L
t ies of the foliated pair (CP(2 B(p;), F 1Bty
wo copies of the foliated pair (CP( )\jLJ1 (pﬂ? ICP(2)\jl;JiB(T’j))

By Schwarz Reflection Principle the leaves of F; have also nat-
ural structures of Riemann surfaces. Any Riemannian metric ¢
in CP(2) induces a C*™ Riemannian metric gy in My, that can
be chosen to be hermitian along the leaves of F,;. Show that the
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leaves of the non-singular foliation F | CPE)\siug(F) have the same
growth type than the corresponding leaves of Fj.

12.2 Advanced e xercises

Exercise 12.2.1. Show that if F is a codimension g smooth
foliation of a manifold M and L € F is a compact leaf with
Hom(m (L), R) = 1 and H{L,R) = 0 then L has trivial holonomy
(Thurston).

Exercise 12.2.2. If F is a transversely orientable codimension
one smooth foliation on a manifold M and Linf F is a compact
leat with H!(L,R) = 0 then L has trivial holonomy.

Exercise 12.2.3. Let M = 5™ x D™ be the product manifold -
of the n-sphere and the closed m-disc. Show that for n > 2 and
m > 3 there is no foliation F on M of codimension one which is
tangent to the boundary of M.

Exercise 12.2.4. Let F be a C? codimension one transversely
oriented foliation on the closed manifold M3. Let L be a compact
leaf of genus g # 0. Show that there is a closed transversal v to
F that meets L and that the foliation F is related to a foliation
having all leaves diffeomorphic to tori.
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