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INTRODUCTION

The aim of this short course is to show how contemporary computational
methods may effectively be used to compute many invariants associated to
singularities of curves.

The main ingredients we use are analog techniques and algorithms to
those developed in the case of ideals in polyncmial rings by Buchberger and
in the case of subalgebras of polynomial rings by Robbiano-Sweedler, both
adapted here to the context of formal power series rings. These algorithms
will determine special sets of generators of ideals, subalgebras or modules
over subalgebras of formal power series rings, which we will call indistinctly
standard bases. We don’t claim originality on the methods but, it seems that
no use of them has been yet made systematically to study singularities of
germs of curves.

By using such simple but powerful todls we will show how information
as, for example, the monoid of values, Milnor’s and Tjurina’s numbers and
the orders of the differentials, associated to a singularity of an algebraic or
an analytic irreducible curve, may be described in an unified way. Many
examples will be discussed and several known results will be recovered.

The prerequisites to read these notes are minimums: some very basic
knowledge of commutative algebra and of the local theory of curves. How-
ever, since this small book is not intended to be treatise on the subject,
sometimes we will use some deeper facts without proof, but we will always
try to explain the terms involved and will give precise references.

Below, we give a brief description of the content of the book.

In Chapter 1 we introduce the discrete structures we need to develop
the theory of standard bases in the various contexts we will place ourselves,
Namely, we introduce the monoid, monoideal and monomodule structures
and the notion of monoidal crder.

In Chapter 2 we introduce the analog of Grébner bases for ideals - for-
merly developed in polynomial rings - in the context of formal power series
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rings, which we call standard bases. This adaptation was carried out essen-
tially by Becker in [Becl] and [Bec2]. We only took the precaution to present
proofs for the theorems that could be easily adapted to the other situations
we will consider. The key instrument is the analog to Buchberger’s algo-
rithm, which in the case under consideration is not always conclusive, but
works in many situations such, for example, in the particular applications
we have in mind.

In Chapter 3, by means of the standard bases, we show how to com-
pute codimensions of ideals in formal power series rings, which give Milnor’s
and Tjurina’s numbers. We finally apply Buchberger’s algorithm to show
through some examples how to study the variation of the codimension of the
Jacobian and extended Jacobian ideals attached to a formal power series in
two variables, when the power series vary in some family. This in particular
allows to stratify families of hypersurfaces according to the value of Milnor’s
nurmber (u-constant stratification).

In Chapter 4, we adapt, to the framework of formal power series rings, the
theory of Subalgebra Analog to Grébner Bases for Ideals (SAGBI), developed
. by Robbiano-Sweedler (see [RS]) in the context of polynomial rings. Here
again the algorithms become procedures that will work in the applications
we have in mind.

Chapter 5 is dedicated to the study of the monoid of values of an irre-
ducible algebroid curve, and its calculation. We present several examples
in space and in the plane. In this later case, we compare our method with
several other known methods.

In Chapter 6 we present the theory of standard bases of modules over
subalgebras of rings of formal power series, contained in such a ring. Here
we generalize results due to Miller (see [M]).

Finally in Chapter 7 we introduce the module of Kahler differentials
over the ring of coordinates of an irreducible algebroid curve and define
an important notion of equivalence between irreducible algebroid curves.
We use the modules of differentials to determine very important numerical
invariants of curves, modulo equivalence of curves.

The people interested in learning something about the early history of
Grébner bases, are invited to read the charming Section 15.6 of [Ei]. For
recent developments of the subject, we will insert at the beginning of some
chapters short historical notes.

Parts of this book have been developed in the PhD thesis of the second
author [Hex|, at the ICMC-USP/S30 Carlos, under the supervision of the
first one.
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The references in the text to theorems, propositions, etc., will be num-
bered in such a way that the first digit on the left means the number of the
chapter, where the result is, followed by a dot and finally by the number of
the result itself. For example, Theorem 2.3 means Theorem 3 of chapter 1,
or Proposition 2 means the second proposition in the same chapter.

‘We wish to thank the organizers of the 23° Coléquio Brasileiro de Mate-
matica for the apportunity given to teach this course. During the develop-
ment of this work the first author belonged to PRONEX/ALGA and was
partially supported by CNPq, while the second auther was partially sup-
ported by PICD/CAPES. Finally, the first author wishes to thank the hos-
pitality of the ICMC/USP at Séo Carlos and FAPESP for partial support
during the preparation of this manuscript.

Niterdi, May 2001






Contents

INTRODUCTION

1 BASIC DISCRETE STRUCTURES
1.1 Monoids . . . . . . . . . e e e e e e e e

2 STANDARD BASES FOR IDEALS
2.1 Prerequisites on Formal Power Series . . . ... ... ... ..
2.2 'The Division-Algorithm . . ... ... .. ... ... .....
2.3 BStandard BasesforIdeals . ... ................
2.4 Buchberger’s Algorithm . . . .. b e e e e e e e e e e

3 CODIMENSION OF IDEALS
3.1 The Stair AssociatedtoanIdeal .. ... ... ... .....
3.2 JacobianIdeals . ... ... ... .. ... ...

4 STANDARD BASES FOR SUBALGEBRAS
4.1 Reduction Process in Algebras . . . ... ... ... ....,
4.2 Standard Bases for Subalgebras . . . ... ... ... ...,
4.3 The Analog of Buchberger’s Algorithm . . . ... .. ... ..

5 THE MONOID OF AN IRREDUCIBLE CURVE
5.1 Algebroid Curves . . . .. . . ... . . .
5.2 The Monoid of Valuesof aBranch . ... ... ... ... ..
53 PlaneBranches . . . . . . . . . . i i e e

6 STANDARD BASES FOR SUBMODULES
6.1 Standard Basesfor Modules . . . ... .. ... ........

vit

13
13
15
18
23

31
31
33

43
43
47
92

59
60
67
75

79



viii

6.2 The Analog of Buchberger’s Algorithm . . . . . .

EQUIVALENCE OF PLANE BRANCHES

7.1 Ké&hler Differentials on Branches .. ... .. ..
7.2 Standard Basesfor OdQ . . ... .. ... .. ..
7.3 Complete Intersection Curves . . .. ... .. ..
7.4 FEquivelence of Plane Branches ... ... ... .

BIBLIOGRAPHY

INDEX

CONTENTS

91

....... 92
....... 95
....... 102
....... 104

108

113



Chapter 1

BASIC DISCRETE
STRUCTURES

In this chapter we will introduce the discrete structures needed to develop
the computational methods we will use in this book. The success of these
methods relies on the fact that for the rings and modules we will consider, it
is possible to translate several algebraic questions inte numerical conditions
on subsets of Cartesian powers of the natural numbers. These sets will be
naturally endowed with simple algebraic structures as monoids, monoideals
and monomodules. The notion of order on monoids, which is also central,
will be introduced in the last section.

1.1 Monoids

Let (S, e, %), or shortly S, be a commutative monoid, that is, a set S with a
binary associative and commutative operation * and a unit element e.

A subset B of S will be called a generator set of S if any element of §
may be obtained by a finite number of operations on elements of B. In this
case we will use the notation S = (B).

If there exists a finite generator set for a monoid S, we will say that S is
a finitely generated monoid.

Given s,t € S, we say that s divides t, writing s|¢, if there exists ' € §
such that t = s * s’

The relation of divisibility is reflexive and transitive, but not always
antisymmetric.
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A monoid S will be called positive when
Vs,t €S, s¥xt=¢ == s=t=e¢.
A monoid S will be called cancelative when
Ve,l,u€eS, sxu=txu = s5=1.

In a positive cancelative monoid the divisibility relation is antisymmetric.
In fact, suppose that £|s and s|t, then there exist s',t' € S such that s = ¢%¢/
and t = s * s'. From this it follows that

skt=txt'*s%xs =sxtxs xt
From the cancelative property we have '*t’ = e, and from the positivity

of S we have that s’ =t/ = e. Therefore, s == .

ExaMPLE 1 (IN*,0,+) is a positive cancelative monoid. In this case the
divisibility relation reads:

st t—seN".

EXAMPLE 2 Let Xj,...,X, be indeterminates. A monomial in these
indeterminates is an expession of the form

X¥=XM--- X a={ay,...,a,) € IN"

Consider the set, T" of all such monomials with unit element 1 = X?... X0
and the operation of multiplication of polynomials. We have that (T, 1,.)
is a positive cancelative monoid. This monoid is isomorphic to the monoid
of Example 1, through the isomorphism

log : AL —_— N®
XPte-Xon = (ay,...,an)

Therefore, in IN® and in T" the divisibility relation is a partial order.

DEFINITION Let A be a subset of a monoid 5. A subset D of A will be
called a set of divisors of A if

Vs€ A, 3t € D such that t|s.
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A set D of divisors of A will be called a minimal set of divisors of A if
Vt,t' € DYt =t =1

Remark that if D C C C A and D is a set of divisors of A, then C is also
a set of divisors of A. So, a minimal set of divisors of A is a set of divisors
of A, minimal] with respect to inclusion,

ProprosiTiON 1 Let A be a subset of a positive and cancelative monoid S.
If there ezists a minimal set of divisors of A, then this set is unique.

PROOF Let D and D' be two minimal sets of divisors of A. Given ¢t € D,
there exists ¢’ € I)' such that ¢'|t. On the other hand, there exists s € D
such that s[t’. It then follows that s|t and consequently s = t, because D
is minimal. So ¢[t/. Since S is positive and cancelative, from the relations
t|t’ and t'[t, it follows that ¢t = ' € D'. Hence we proved that D C [’. The
other inclusion is proved in the same way.

O

TBEOREM 1 (DICKSON) Ewery non-empty subset of T™ has a finite minimal
- set of divisors.

ProoF Let @ # A C T™. Write A = {My, My, ...} and consider the chain
of ideals of B = Zi[X1,..., Xy

(M1) C (M1, M) C ---

Since R is noetherian, there exists an integer r such that, if I is the
ideal {M1,...,M,), then I = (My,..., M), for all s > r. Therefore, A C I.
We will prove that D = {M,..., M,} is a set of divisors of A. In fact, let
M € A C I, then there exist p,...,p, € B such that

M=pM + -+ p M,.

Therefore, there exist a monomial N and an index 7 such that N M; = M,
hence M;|M. It then follows that D is a finite set of divisors of A and may
be taken minimal by excluding some of its elements.



4 CHAPTER 1. BASIC DISCRETE STRUCTURES

COROLLARY  FBuery non-empty subset of IN* has a finite minimal set of
divisors.

PROOF The resnit follows immediately by using the above result and the
isomorphism log.

O

A subset S’ of 2 monoid S, containing the unit element and closed under
the operation of S, will be called a submonoid of S. Any element of S\ 5’
will be called a gap of 5.

ExXAMPLE 3 HOMOGENEOUS LINEAR DIOPHANTINE SYSTEMS
Let S the set of n~tuples of non-negative integers which are solutions of
a system of linear homogeneous diophantine equations

ai,le +---+ai,an =0, t=1,...,m, (1.1)

where the a;;’s are elements of ZZ. The set S is an additive submonoid of
IN?. If 5\ {0} # @, denote by D its minimal set of divisors, which we know
to be finite from the corollary of Theorem 1. We will show below that S is
. generated as an additive monoid by the finite set D.

Indeed, in IN" the divisibility relation s|t means t — s € IN®, and we have

Vs,t€85; s|t=1t—s€8.

The result follows now easily by induction on [(t1,...,&r)| =t1+ -+,

We will also call D the set of minimal solutions of the system (1.1). The
set D may be determined by implementing an efficient algorithm that can
be found in [CD]. In [CF] there is a Pascal implementation of an algorithm
to determine D in the case of one diophantine equation.

EXAMPLE 4 SPECIALIZATION OF LINEAR SYSTEMS

Suppose we give a system like in (1.1) and a subset {j1,...,4r} of {1,...,n}.
We specialize the system (1.1) by assigning the value zero to the indetermi-
nates X for all k not in the set {ji,...,7r}. In such a way we get a new
system

Qi gy Xq +o+a;, X =0 i=1,...,m. (1.2)

To each solution (&, . . ., @;,) of (1.2) we associate a solution (1, ..., 5n)

of (1.1), in the following way:

ﬂ,= 0) lfig{jl,,jr}
' a; if 1€ {j1,... 5}
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It is easy to see that every minimal solution of system (1.2) is a minimal
solution for the system (1.1). This simple observation will be crucial in
Sections 4.3 and 6.2.

The structure of the submonoids of IN?, for n > 2, is rather complicated.
For instance, a submonoid of IN® is not necessarily finitely generated, if
n>2.

EXAMPLE 5 5 = {(a,b) € N%b > 1} U{(0,0)} is a non-finitely generated
submonoid of IN?. Indeed, any set of generators must contain the set

{(a,1); a € IN}.

The set {(0,1)} is the minimal set of divisors of S\ {(0,0)}.

EXAMPLE 6 Every submonoid S of IN is finitely generated.
Indeed, put m; = min(S \ {0}), and take

mi=min(S\m1]N+---—|-mi_1]N); i=2,...

From the finiteness of the number of residual classes modulo m;, we have
that 5 = mIN + - - - + m;IN, for some i < mjy.

From their construction, the above integers m, ..., m; must be contained
in any other set of generators of 5, and for this reason they are called the
minimal system of generators of S. The number of elements of the minimal
system of generators of a submonoid of IN, minus 1, will be called the genus
of the submonoid.

We will say that an integer c is the conductor of the submonoid S of IN
ife—l¢gSandforalln>cwehavencS.
If a submonoid § of IN has a coductor, then S has finitely many gaps.

REMARK 1 A submonoid of IN has a conductor if and only the GCD of all
elements in S is 1.
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‘ In fact, if GCD(S) = 1, then there are elements s1,...,8n,71,...,"m € S
and positive integers A1, ..., An, f41, - - ; i Such that

A1S1 4+ Ansp = 1+ T + 1

This implies that there are two consecutive integers, a = pi1m1+ * “+tmTm
and a + 1, in S. Now, since @ and @ + 1 are coprime, the set

{U,CL-[-1,2(&-}-1),...,(&"1)(@-{-1)}

is a complete system of residues modulo @. So, any integer i > (a —1){a +1)
is such that i = j(a+ 1)+ ke with §=0,...,(e—1) and k > 0, hence i € S,
which shows that S has a conductor. The converse is obvious.

DEFINITION A submonoid S of IN with conductor ¢ will be called symmetric
if c
#IN\ ) = 7.

~ For example we have that S; = {0,3,4,6,...} is symmetric, while Sz =
{0,3,4,5,...} is non-symmetric.

EXAMPLE 7 This is just an example to show that monoids appear in other
contexts where they will play a relevant role. For the details see Section 5.1.

Let C be an algebroid irreducible curve defined over an algebraically
closed field K, with local ring O. If we denote by v the normalized valuation
of the integral closure of @ (which is isomorphic to K[[T]], the ring of power
series in one indeterminate T° with coefficients in K'), we have that § = »(©)
is a submeonoid of IN, called the monoid of values of @, or of C. From
Example 6, we know that § is finitely generated.

1.2 Monoideals and Monomodules

A non-empty subset A of a monoid S = (5, ¢, *) will be called a monoideal
of 8 if

AxS:={fxs; §€A,s€ 8} CA.

ExaMpPLE 8 Let @ and v be as in Example 7. If J is an ideal of O, then
A =v(J) is a monoideal of S = v(O).

ExaMPLE 9 Let S =T", and denote by K[[X]] the ring of formal power
series K[[X1,...,X;]] in the indeterminates X,..., X, and coefficients in
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the field K. Let J be 3 monomial ideal (i.e., an ideal generated by mono- _
mials) in K[[X]]. The set A of all monomials in J is a monoideal of S.

DEFINITION A subset B of a monoideal A in S is called a system of
generators of A if
A =(B),

where
(B) ={bxs;be B, and s € S}

A set of generators B of a monoideal A will be said minimal, if it is
minimal with respect to inclusion.

PROPOSITION 2 Ewvery monoideal A in IN" or in T™ has a finite minimal
set of generators.

ProoF This is precisely the minimal set of divisors of A\ {0}, which exists
due to Dickson’s Theorem.

O
EXAMPLE 10 If A is a monoideal of IN?, we have that (a,b) € A implies

{a,b) + IN2 € A. Therefore, there is associated to A a stair, closed or not,
in INZ.

Py

P

Py

il

Py

The set {P;, Py, Ps, Ps} is a minimal set of generators of A.

We generalize the notion of monoideal as follows:

Careful, in this context the notation {B) stands fér the monoideal generated by B and
not for the monoid generated by B.
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DEFINITION  Let (S, *,e) be a monoid. A set {2 together with an operation

o: §x — 0

(s,0) — sow

will be called an S-monomodule if for all w €  and all 51,55 € 5, we have
(i) eocw=w
(it) (sy*s2)ow=s10(s20w).

In particular, every monoideal of a monoid S is an S-monomodule.
A subset B of Q will be called a set of generators of Q if

Q=5¢KB.

If there is a finite subset B generating (2 we will say that § is finilely
generated.

ExXAaMPLE 11 Again, as in Example 7, we just want to indicate here the
future use of this discrete structure.

. Let @ be the local ring of an algebroid irreducible curve and let QdO be

the module of Kihler differentials of @. The valorization v of O extends to

OdO. If 2 =v(0Od0) and S = v(0), then {2 is an S-monomodule.

ExAMPLE 12 NON-HOMOGENEOUS LINEAR DIOPHANTINE SYSTEMS
Let S’ be the set of n-tuples of non-negative integers which are solutions
of a system of linear non-homogeneous diophantine equations,

a1 X1+ FanXn=b; i=1...,m,

where the a;;’s and the b;’s are elements of ZZ. In general, the set S is not
an additive submonoid of IN®. Anyway, if D' = {wy,...,w,} is the minimal
set of divisors of S'\ {0} and if S is the monoid of solutions of the associated
homogeneous diophantine system (1.1), with minimal set of divisors D, then
any element v’ € S’ may be written as

1}’=Zciﬁi+'tU; g €N, fieD and we D

Therefore, S’ is an S-monomodule finitely generated by D',

The sets D and D' above are contained in the set of minimal solutions
of a system of homogeneous linear diophantine equations, which can be de-
termined by the same algorithms cited in Example 3.
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PROPOSITION 3 Let S # {0} be a submonoid of IN and suppose that @ C IN
is an S-monomodule. Then Q is finitely generated.

PROOF We already know that S is finitely generatéd (Example 6). So we
have

S=(v,...,v) =vilN+--- 4 y,IN.
Let d = GCD(S) # 0. Then the monoid
u oy
d""’ d 1

has a conductor N (Remark 1). So, for every n > N, we have dn € 5.
Consider now the following sequence of integers:

eo = min 2\ {0},

er =min\ (eg + S) U {0},
ez =minQ\ (ep + S) U (e1 + 5) U {0},

' =

;ei.= m?nQ\(eo+S)U---U(ei—1 + S)yu {0},

If © were not finitely generated, there would be infinitely many elements
in the above sequence congruent to each other modulo d. So there would
exist ¢; and e;, with j > 4, such that ¢; —e; > Nd and e; = e¢; mod d. This
would imply that e; — e; € S, hence e; € e; + 5, which is a contradiction.

O

1.3 Orders

Let (S, e, *) be a monoid. A monoidal order < in S is a total order relation
having the following properties:

1) VseS, egs

2) Vs, 5,80€85, s1<s = s1%5< sp*8.

A moncid together with a monoidal order will be called an erdered
monoid.

REMARK 2 If S is an ordered monoid, then s|t = s < t.
In fact, if s|¢, then there exists s’ € S such that t = s* s'. Since e < &'
we have
s=sxe<sxs =1t
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The following are examples of monoidal orders in IN".

EXAMPLE 13 THE LEXICOGRAPHICAL ORDER IN IN"

Let @ and S be elements in IN®. We will say that a <re, Sif a =5 or
if the first non-zero coordinate of 8 — « is positive.

As a numerical example, we have

(1:234) SlLex (21 1:0)1 (1,2;4) SL&E (1:275)

and
(0!0! 1) SLem (0} ]-; 0) SLem (1:0: 0)

EXAMPLE 14 THE GRADED LEXICOGRAPHICAL ORDER IN IN%
Let a = (@1,...,a,) and 8 = (b1,...,b,) be elements in IN®. We will
say that & <gre. B if
(1) er+---+an<bi+---+by,o0r
(i) a+--+ap=b+-+byand a <pex f.
As a numerical example, we have

(2: 1!0) SGlLex (1!2=4): (1;2:5) LGLex (1:3: 4)

and
(01 0: 1) SGLe:c (0; 1, 0) SGL&.’J: (1, 01 0)

EXaMPLE 15 THE WEIGHTED ORDER IN IN"

Let v+ € IN", let < be a monoidal order in IN* and ¢, 8 € IN*. We say
that o <y 8 if
(i) v.a <~.8, or
(ii) va =7.f and a < 3,
where the dot means the usual inner product in IN®,

Remark that if we take v = (0,...,0), then <., and < coincide. On the
other hand, if we take v = (1,...,1), and < equal to <peg, then <, and
<@Lex coincide.

PROPOSITION 4 Fvery monoidel order in IN" is a well-order.

PrROOF We have to prove that a subset 4 of IN" has a least element. In
fact, let D be a finite set of divisors of A (Dickson’s Theorem). The least
element of D is the least element of A (Remark 2).

O
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A monoidal order in T™ will be called a monomial order.

Using the isomorphism log, we have from Proposition 4 that all monomial
orders are well-orders. On the other hand, we may transform any monoidal
order in IN* into a monomial order in T". In particular, this can be done
for the lexicographical, the graded lexicographical and the weighted orders,
which will conserve their names. Note that in T we have

X'n. sLe:c Xn—l Liex ° LlLer Xl-

In particular, when T? = {X*Y?; o, 8 € IN}, then log(T2) = {(e, 8) €
IN?}, and therefore, ¥ <7er X and Y <GLezx X

When we deal with the weighted order on T" with respect to y € IN,
we will define the weight of & monomial X* as the integer

Wy (X%) = 7.
When v=(1,...,1), then
deg(X*) i=w(X*) =01 + -+ + an,

called the degree of X%.

Notice that in T? there is only one possible monomial order. In fact,
given any order < in T!, by definition we have 1 < X, which from the
compatibility of orders with respect to multiplication implies

1I<X<X?<-..

This proves the result.

In order to deal with infinite families of formal power series, we will be
constricted to consider a particular type of monomial orders which have an
additional property that we define below.

DEFINITION Let (S, <) be an ordered monoid. We will say that the monoidal
order < has the finiteness property if for every t € S,

#{s€S5; s<i} <o

EXAMPLE 16 Let v € IN" and take the weighted order <, in T" with
respect to -y and to <., where we have

Xn SLez Xn—l SLe:c e SLea: Xl-
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If all coordinates of -y are positive, then it is easy to verify that <, has
the finiteness property.

If one takes v == (0,...,0), then <, coincides with <., which doesn’t
have the finiteness property, if n > 2, since

{1, X2, X2,..} C{s €T 5 <pew X1}-



Chapter 2

STANDARD BASES FOR
IDEALS

In this chapter we will present the essentials of the theory of Grébner bases
for ideals in the context of formal power series rings. For more details we
recommend the papers [Becl] and [Bec2].

2.1 Prerequisites on Formal Power Series

Let K be an arbitrary field. Throughout this book we will denote by

K{{X]] the ring of formal power series K[[X1,..., X]] in the indeterminates
X1, ..., X, and coefficients in K.
For a = (o, ...,a,) € IN?, we will use the notation

X% = XM X80,
Hence, any element f € K|[X]}] may be represented under the form

F=> auX® ICN"

wel

If f # 0 is given as above, we define the set of monomials of f as
T(f) = {X% a € a,+#0}.

If B is a subset of K[[X]], we will denote by (B) the ideal generated by
the elements of B. So Mx = (Xi,..., X,) will represent the ideal generated
by the elements Xi,..., X,.

13
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In the remaining of this section we will state without proof some well
known properties of the ring K[[X]].

First of all, the invertible elements of K|[X]] are the elements of the form
u =a+g, where a € K \ {0} and g € Mx. So, v is invertible if and only if
u & Mx. This in particular shows that K[[X]] is a local ring with maximal
ideal Mx.

Let MY, with i € IN, denote the i-th power of the ideal Mx and put
M% = K[[X]]. We define the Mx-adic topology on K[[X]] by taking around
any element f € K[[X]] the sets f + Mk, i € N, as a fundamental neigh-
borhood system of f. This turns K[[X]] into a topological ring.

Since we have Nien My = {0}, the Mx-adic topology on K[[X]] is
Hausdorfl. Indeed, it is metrizable, as we show below.

If f € K[{X]], we define the multiplicity of f as
mult(f) = sup{i; f € My}

Let p be a real number greater than 1 and put p™*° = 0. For f,h €
~ K[[X]], the function
d(f, h) = p~mtE=5),

defines a complete metric on K[[X]].

A family {fy, A € A} C K[X]] will be called summable if for every
t € T™ we have
#{AeEN teT(fL)} <o

Since (K[[X]],d) is a complete metric space, it is easy to see that, for
any summable family in K'[[X]], the sum }_,c5 f» is meaningful, defining an
element in K|[[X]].

All the above properties are elementary and easy to prove (see for exam-
ple [ZS], Chapter 7). Another result we will need and that we state below
is the Welerstrass Preparation Theorem.

THEOREM 1 (WEIERSTRASS PREPARATION THEOREM) Given f € Mx C
K[[X]], with f # 0, there exist an automorphism ¢ and a unit u of K[[X]]
and elements Ay, ..., A, in the mazimal ideal of K[| X1,. .., Xn_1]] such that

u(fod) = X5+ A X 4+ A,

(For a proof see [ZS], Chapter 7, Corollary 1 of Theorem 5 and Lemma 3).

As a consequence of the above theorem one has the following:
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THEOREM 2 K([X]] is a noetherian unique factorization domain.

(For a proof see for example [ZS], Chapter 7, Theorems 4’ and 6).

Since K{[[X]| is noetherian, every ideal in K{[X]] is finitely generated.
This implies in particular that every ideal is a closed set in K[[X]] (in the
Mx-adic topology).

2.2 The Division Algorithm

In what follows we fix once for all a monomial order < in T?.

The leading power of f € K[[X]], with f + 0, is by definition
Ip(f) = min T(f),

where the minimum is taken with respect to the monomial order < we have
just fixed. This definition is meaningful because by Proposition 1.4, any
monomial order is a well-order.

If G C K[[X]], we will denote by Ip{(G) the set of leading powers of all
nonzero elements of G.

The leading termof f =3 .; 2oX® # 0 is by definition
1t(f) = agX?,

where X# = Ip(f).

Since we are going to deal with sets of generators B of ideals in K[[X]],
and all such ideals are finitely generated, we may assume without loss of
generality that B is finite. This will avoid some unnecessary technical diffi-
culties.

Let B be a finite subset of K[[X]]. Given two elements ¢g,r € K[[X]]
with g # 0, we will say that r is a reduction of g modulo B if there exist a
monomial ¢ € T", a constant a € K and an element f € B such that

r=g-—atf,

and Ip(r) > Ip(g), whenever r # 0. In this case we write
B
g——r.

Note that if g 2, r, then ¢ — r belongs to the ideal generated by B.
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Consider a chain (possibly infinite) of reductions

B B B B B
g—)?"l—>'r’2—’--.—)rm~—)---
This implies that there exist t; € T®, a; € K and f; € B, 7 > 1, such
that

m
Tm =4 —Zaitifi,
i=1
where, because of the definition of reduction,

Ip(tLf) <lp(tafo) <---. (2.1)

If the chain is infinite, we get a sequence (37i%; aitifi)m>1 in K[[X]],
which happens to be convergent in K[[X]] (with respect to the Mx-adic
topology). In fact, it is sufficient to verify that the set {t;fi, ¢ > 1} is
summable. Indeed, if for some ¢ € T",

#{i; t € T(t:fi)} = oo,

there would exist f € B and infinitely many elements ¢; € T™ such that
t € T(t; f) (recall that B is finite). Now, because of (2.1), it follows that the
t; have to be distinct. But this is a contradiction, since deg(t;) < deg(t).

We will denote the limit of the sequence (3_i%; aitifi)m>1 by 2451 aitifi.
Since all the terms of the above sequence are in {B) and any ideal is closed,
we have that 3,5, a;t; f; belongs to the ideal (B).

We will now extend the notion of reduction to include all r, = g —
Yo, aiti fi, as above, and their limits. It remains true with this extended
definition that if an element r is a reduction of g modulo B, then g—r € (B).

We will say that r is a final reduction of g modulo B if r is a reduction
of g and r has no further reduction modulo B. That is,

r=0, or Ip(f) flp(r), Vf € B;

writing in this case,
By
g—r.
If r is a final reduction of g such that » = 0 or no element in T(r) is
divisible by any Ip(f) with f € B, then r will be called a complete reduction
of ¢ modulo B.
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If B ={f1,...,fs} is a subset of K[[X]] and f € K[[X]], at least in
principle, we may get a complete reduction r of f modulo B and series
g1, - -,gs € K[[X]], such that

&
g=Y afitr

i=1

by applying the following division algorithm:

THE DIVISION ALGORITHM

INPUT: f,B = (fla""lfs);

DEFINE: ¢1 :=0;...;95:=0; r:=0;

WHILE f £ 0 DO
IF THERE EXISTS Ip(f;) | Ip(f)
THEN TAKE THE LEAST
SUCH INTEGER. ¢, AND DO

g 1= q1'+1%1%;
f =1 = i
IF NOT, DO
ri=r+1t(f);
f=F=1(f);

To obtain merely a final reduction r of f, it is sufficient to replace the
last two rows of the above algorithm by

ri=f
f=0;

Since we are dealing with power series, the above procedure may not end
after a finite number of steps and in this way we obtain sequences that are
approximations (in the Mx-adic topology of K[|X]]) of » and of the g;’s.
Below we give such an example.

EXAMPLE 1l Let f=X,fi =Y +Xand fo = Y+ X? in K[[X, Y]] and take
the graded lexicographical order in T?. Applying the division algorithm to
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f modulo f1, fo, we get

f=h+mn rp=—Y
rp=—fo4s1 s = X*
s1=Xfi+r rg=—-XY
To = ——Yf1 +ra Ta = Y2

r3 =Y fo + 52 sy = =X%Y
80 =—XYfi 414 ry = XY?
ra=Y2fL + 15 e

Ty == —Y2f2 + s3 83 = X?2Y?

8 = (___l)i—'l-lx2yi—1f1 +ro; e = (—l)iXYi .
r2i = (=1)'Y*fi +7oipa rait1 = (=1)"FyH
roi1 = (LMY fo + 51 s = (—1)°X?YE

Although the algorithm doesn’t end in this case, nevertheless it allows
to easily conclude that 0 is a final reduction of f modulo {fi, f2}.

For a given f, if the division algorithm, with respect to some finite set
B, ends after a finite number of steps, we have at hands an algorithm to
obtain a final or complete reduction of f modulo B.

Remark also that the algorithm uses an ordination for the elements of B.
So, for a given ordination of the elements of B we have that r and the g;’s
are uniquely determined. However, for a different ordination of the elements
of B, we may get different final or complete reductions of f, modulo B, as
shows the following example.

EXAMPLE 2 InQ[[X,Y]], take fi = Y4 —2X5Y2 — X% f, = X0 f, —
Y- XY — X", fa =Y - X5Y2 — X"V + X' and f = Y® — XOV4 —
X7Y3. Consider T? ordered by the graded lexicographical order. From the
above algorithm we get that r = X°Y? is a complete reduction of f modulo
(f1: f2, f3, f4), while r = 0 is a complete reduction of f module (f3, fa, 1, fa).

2.3 Standard Bases for Ideals

In this section we introduce the standard bases for ideals in the context of
formal power series rings, one of the main concepts of this course. The name
standard bases is due to H. Hironake, who introduced them in his famous
paper [Hi] to study ideals in rings of convergent power series. These objects
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have been known for a long time in polynomial rings, where they are called
Grébner bases.

DEFINITION A finite subset B of K{[X]| is a standard basis for an ideal if
for every g € (B), there exists an element f € B such that Ip(f)|lp(g). We
will say that B is a standard basis for the ideal I, if B is a standard basis
for an ideal and I = (B).

To say that B is a standard basis for an ideal, is equivalent to say that

Ip({B}) = (Ip(B)),

where (B) denotes the ideal in K[[X]] generated by B, while (Ip(B)) denotes
the monoideal generated by Ip(B).

The next theorem will establish the existence of standard bases for ideals
in K[|X]], and will provide other characterizations for them. Before we state
and prove the theorem we will need some new concepts.

DEFINITION Given a sum (possibly infinite) in K[[X]),

Zfl: erK[[X]]a

leLl

we define the height of the sum as

ht(}" fi) = min{lp(f), 1 € L}.

el

Note that this definition depends upon the representation y ;¢ 7 as a
sum and not upon the element that this sum determines. In fact, we have
that

w(>” f) <100 5,

el el

where < is the monomial order we have fixed.
We will say that f; contributes for the height of 371 fi, if

Ip(fi) = ht(3 fi)-

lel

DEFINITION  The amplitude of 3 ,c; fi is defined as the number of sum-
mands f; in >, ; f; that contribute for its height.
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DEFINITION An S-process of a pair of non-zero elements f,g € K[[X]], is
an expression of the form

S(f,9) = pf +qg,

where p, g € K[[X]}, such that

5(f,9) =0, or Ip(S(f,9)) > ht(pf + gg).

The S-processes in the polynomial context are usually called S-polyno-
mials or critical pairs, while in the power series context they are sometimes
called S-series.

THEOREM 3 {GROBNER-HIRONAKA-BUCHBERGER)
1) Every ideal I in K|([X]] has a standard basis.
2} Given a set B ={f1,..., fs}, the following assertions are equivalent:

(a) B is a standard basis for an ideal.

(b) All final reductions modulo B of any element of (B) is zero.

" (c) Buery S-process of any given pair of elements in B has a vanishing final
reduction modulo B.

(d) Bvery non-zero S-process of any given pair of elements in B has a repre-
sentation as a sum Y ;_, hifi, where h; € K[|X]] and ht(3_7_; hifi) is greater
than the height of the S-process itself.

ProOOF Proof of 1: This is a simple application of Dickson’s Theorem.
Indeed, let I be an ideal of K|[[X]]. Since lp(I} ¢ T™, then by Dickson’s
Theorein, there exists a finite set G of divisors of Ip(f). Now, choose a finite
subset B of I such that Ip(B) = G. It follows that given g € I, there exists
f € B such that 1p(f} | Ip(g), showing that B is a standard basis for the
ideal 1.1

Proof of 2: (a)== (b) Suppose that B is a standard basis for an ideal
and let g € (B). If r is a final reduction of g modulo B, then g —r € {(B)
and therefore we have that r € (B). Suppose r # 0. Since B is a standard
basis, there would exist an element f € B such that Ip(f) | 1p(r), which
contradicts the fact that r is a final reduction modulo B. Hence r = 0.
(b)=> {c) Since an S-process of elements in B is an element of (B}, the
assertion is obvious.

'Remark that the proof of 1 we gave is not constructive since it relies on Dickson’s
Theorem, which in turn relies on Hilbert’s Basis Theorem.
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(c)==(d) Let h=pfi+qf; # 0 be an S-process of a pair f;, f; of elements
of B. Recall that any reduction r of h is of the form

r=h—> axlefi,
k>1
where t, € T", ar € K and f;, € B are such that Ip(¢xf,,) is a strictly
increasing sequence in T".
Since from (c) the element / has a vanishing final reduction modulo B,

we have that
h= Z aktkf;k .
j21
Now, since the sequence Ip(t f;, ) is strictly increasing and h = pf; + ¢ fi
is an S-process, it follows that

ht(D - axtfi) = p(h) > hi(pfi + afy),
izl
concluding the proof of the assertion.
(d)== (a) Assuming (d), we must show that given a non-zero g € (B),
there exsits f € B such that Ip(f) | Ip(g). -
In the collection of all representations of g as a sum

8
g=>_afi, @, € K[X]],
i=1

we choose among those of maximum height one with the least amplitude,
which we denote by 3°5_; hfi. Notice that if the amplitude of 3°5_; ;f; is
one, there is nothing to prove because in this case Ip(g) = lp(h;)lp{f;), for
some %.

Suppose that the amplitude of 3~7_; h;f; is greater than one. Without
loosing generality we may suppose that ki f; and hefy contribute to the
height of the sum. Therefore, there exists a € K such that S = hy fi +ahofe
is an S-process of the pair fi, fo. From (d) there exist g1,...,9: € K[[X]]
such that

8
S=> gifi
i=1

with ht(35; gifi) > ht(h f1 + ahof2).
Notice that, since

hifi+hafe= (1 —a)hafe + Zgifis

i=l
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we may write

8 8
g=(1=a)hefo+> gifi + D hifi (2.2)
i=1 ie=3

Suppose that @ # 1. Then the representation of g given in (2.2) wilt
have the same height as the original one, but a smaller amplitude, which is
a contradiction.

Suppose that ¢ = 1. If the amplitude of the original representation of g
were two, then the height of the above representation (2.2) would be greater
than the height of the original representation, which is a contradiction. If
the amplitude of the original representation of g were greater than two, then
the height of the representation (2.2) would be equal to the height of the
original representation, but the amplitude would be smaller, which again is
a contradiction. '

O

REMARK 1 Standard bases solve the ideal membership problem; that is,
the problem of deciding whether f € T or f € I, where I = (f1,...,fr) is
.an ideal of K[[X]] and f € K[[X]]. To answer this question we apply the
division algorithm to f with B = (f},..., f»). If the final reduction of f
modulo B is zero, then certainly f € I. But, if the final reduction of f
modulo B is not zero, nothing can be said (cf. Example 2). However, if B
is a standard basis for the ideal I, then we have that f € I if and only if the
final reduction of f modulo B is zero.

REMARK 2 When B is a standard basis, then the Division Algorithm mod-
ulo B produces the same complete reduction of any element f € K[[X]], no
matter what ordering we take on B. In fact, let ; and r» be two complete
reductions modulo B of the same element g € K[[X]]. It follows that we have
11 —rg € (B). Since B is a standard basis, from Theorem 3(b) we have that
any final reduction of r; — ro modulo B is zero. Suppose that r; — rg # 0,
then there would exist an element f in B such that Ip(f) | Ip{r; —r2). Since
Ip(r1 — r2) € T(r1) U T(r), we get a contradiction because r; and rp are
complete reductions of g.

REMARK 3 When the condition (c) in Theorem 3 is verified, we say that
B is closed under formation of S-processes. So, Theorem 3 says that a set
B is a standard basis for an ideal if and only if it is closed under formation
of S-processes,

REMARK 4 The proof of Theorem 3 was carried out in such a way that it
will be possible to adapt it to other situations with minor changes.
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2.4 Buchbefger’s Algorithm

We saw in Theorem 3 that a necessary and sufficient condition for a finite
set B to be a standard basis for an ideal is that every S-process of any pair
of elements of B has a vanishing final reduction modulo B, However, this
condition cannot be checked in practice because every pair of elements has
infinitely many S-processes. The next proposition will show that it will be
enough to check this on finitely many special S-processes, which we define
below.

DEFINITION Let f and g be non-zero elements in K{[X]] such that lt(f) =
aX®, and lt(g) = bXP. We define the minimal S-process of f and ¢ as
follovs: LCM(X%, X#) LCM(X*=, X#)
Srmn(f'lg):b Xal' f—CL X‘G’ g-
The Lemma below will be used in the proof of Proposition 1.
LEMMA 1 Let v,6 e IN" and f,g € K([[X]|. There ezists ¢ € IN* such that

Smin(X"f, X%9) = X Suin(f, 9)-

Moreover, if
Wt (X7f + X%) < Ip(X"f + X°%),
then X7f + X2 4s a scalar multiple of the minimal S -process of the pair
X71f,X%g.

PROOF Let a,b € K be such that 1t(f) = alp(f) and lt(g) = blp(g). We
have that
Smin (X’}‘f, Xag) =
_ , LOM(X"Ip(f), X°Ip(g))
LCM( "’fz?)(?ial (9))
_ LCM(X"Ip(f), X Ip(g _
=T IOMIe (D ey mnthe)

The second part of the lemma is obvious.

LCMX"p(f), XIp(g)) o5
Xo1p(g) X' =

XVf—a

O

PROPOSITION 1 Let B = {fi1,..., fs} be e finite subset of K[{X]]. If every
minimal S-process of the pair fi, f; has a vanishing final reduction modulo
B, then every S-process of f;, f; has a representation as a sum 3. gifi,,
with gx € K([X]], fi, € B and such that the height of the sum is greater that
the height of the S-process itself.
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PrOOF Consider an arbitrary S-process S of the pair f;, f;,

S =pfi +af;

with p, ¢ € K[[X]].
We may rewrite S in the following way:

8§ =1li(p)fi +1t(a)f; + (o — 1(2)) fi + (g — 1t(2)) f;- (2.3)

Since ht(It(p)f; + 1t(g)f;) < lp(lt(p)fi + 1t{g)f;) we have from Lemma 1
that 1t(p) f: +1t(g) f; is a scalar multiple of the minimal S-process of the pair
1t(p) fi, 1t(q) f;. Again by Lemma 1, there exist d € K and ¢ € IN" such that

1t(p)fi + 6(q) f5 = dX Smin(fi, f3)- (2.4)

From the hypothesis we have that Syn(fi, f5) 2%, 0 and using the argu-
mentation we did in the proof of Theorem 3 ((c)==>(d)), it follows that

Smin(fi:fj) = Eh‘kflk'l (25)
k

where h; € K[[X]], fi, € B and ht(3,, hefi) > Bt(Smin(fi, f5))-
Now, substituting (2.5) in (2.4), and substituting the resultant expression
in (2.3), we have that

§ =dX* Y hifi, + (o~ 1)) fi + (g — (@) Sy,
k

where the above sum has height greater than ht(p/f; + ¢f;).
3

ExXAMPLE 3 Let B be any finite set of monomials in K[[X]]. It is im-
mediate to verify that if Spin(f,g) = 0 for all f,g € B, therefore, from
Proposition 1 and Theorem 3 ((d) = (a)}), B is a standard basis for an
ideal. It follows also easily from Theorem 3(b) that given f € (B), then
T(f) C {B), showing that the ideal generated by monomials is & monomial
ideal.

Although the objects we are dealing with (power series) aren’t finite we
may, at least theoretically, formulate an algorithm that allows one to find a
standard basis of an ideal I C K[[X]], starting with a finite set of generators
AofI.
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THEOREM 4 (BUCHBERGER’S ALGORITHM). Suppose that it is possible to
determine a final reduction of any given power series modulo any finite or-
dered subset of K[{X]]. Then there exists an algorithm to determine a stan-
dard basis for any ideal I in K|[[X]], starting from any finite set of generators
of 1.

PROOF Let A be a finite set of generators of I, ordered in some way. We
define the ascending sequence {B;}icm of finite ordered subsets of I in the
following way:
1. By = A.
2. Suppose that the By’s are defined for ¢ < m. If for some pair f,g € By,
the final reduction r of Sp;,(f,g) modulo B,, is not zero, define B, 1 =
B, U {r}; otherwise put Bpy1 = Bm.

The sequence {B;}ic1v is stationary. In fact, if it wasn’t we would have
a sequence (7;);emN, such that for all i € IN, r; € Biy1 \ B; and Ip(h) doesn’t
divide Ip(r;) for all & € B;. This contradicts Dickson’s Theorem, since the
set Ujenv{lp{ri)} € T™ wouldn’t admit a finite subset of divisors.

Let B = By, where By, = By for all m > N. Since B is closed under
formation of minimal S-processes, it follows from Theorem 3 and Proposition
1 that B is a standard basis for I.

O
We present below the algorithm contained in the proof of Theorem 4.
BUCHBERGER’S ALGORITHM

INPUT: 4;

DEFINE: B_; :=0, By := A and 7 := {;

WHILE B; # B;_; DO
IF THERE EXISTS f,g € B; SUCH THAT
A FINAL REDUCTION R MODULO B;
OF Smin(f,g) IS NONZERO

THEN
Biy1 = B; U{R};
ELSE
Biy1 = By;
i:=1%+1;

OUTPUT:B,.
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During the application of Buchberger’s algorithm we have at each stage
to decide whether some elements of an ideal I of K[[X]] (the minimal $-
processes) have or not a zero final reduction modulo a finite set. A systematic
way to do that is to make use of the division algorithm, which in most cases
doesn’t end after a finite number of steps. Nevertheless, in several situations,
after a finite number of steps in the division algorithm, it is possible to decide
whether a final reduction of a given element modulo some finite set is zero
or not, turning Buchberger’s Algorithm effective.

Buchberger’s Algorithm may produce several different standard bases for
an ideal I of K[[X]]. This diversity of standard bases depends essentially on
the reduction process. However, there is a way to eliminate redundancies,
getting a unique reduced basis.

PROPOSITION 2 Let B = {f1,...,fs} be a standard basis for an ideal. If
there exist i and j with j # 1, such that 1p(f;) | Ip(fi), then B' = B\ {f;} is
a standard basis for an ideal and {(B') = (B).

PROOF It is clear that (B') C (B) and that (Ip(B")) = (Ip(B)) = Ip({B))
" (the last equality holding because B is a standard basis).
Therefore it follows that

(Ip(B) c1p((B)) CIp((B)) = (Ip(B)),

hence Ip{{B')) = {lp(B")}; that is, B’ is a standard basis.

Now, let f € {B) and let be r the final reduction of f modulo B'. If
T # 0, then r € (B} \ (B’), but in this way Ip(r) € {Ip(B)) = (Ip(B")),
a contradiction. Hence r = 0 and therefore f € (B’). This shows that
(B) = (B).

|

DEFINITION Let B be & standard basis for an ideal. If there are no elements
in B whose leading powers divide each other, then we say that B is a minimal
standard basis.

Remark that Proposition 2 provides a method to determine a minimal
standard basis, starting with any standard basis B.

EXAMPLE 4 Let I be an ideal of K[[X]]. The set lp(I) is a monoideal
in T™. Let A be the minimal set of divisors of the monoideal Ip(7) and let
B C I be such that Ip(B) = A, then B is a standard basis for the ideal I. If
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A is the minimal set of generators of the monoideal Ip(I), and if #4 = #B,
then B is a minimal standard basis for the ideal I.

DEFINITION A minimal standard basis B for an ideal will be called reduced
if all elements of B are monic ? and given f € B, we have

Vg€ B,Yp € T(f)\{lp(N)}; 1p(g) doesn’t divide p.
We have the following result.

ProposITION 3 If I C K[{X]] is an ideal, then I has a unique reduced
standard basis.

Proor Existence: Given a standard basis for an ideal, it is always pos-
sible to obtain a minimal standard basis, using the method described in
Proposition 2. On the other hand, if B is a minimal standard basis of I, we
may assurne, without loss of generality, that all elements of B are monic.

For all f € B, let r¢ the complete reduction of f —1t(f) modulo B. Then
By = {It{f) + ry, f € B} is a reduced standard basis of I.

Unicity: Let B and B’ be two reduced standard bases of 1.

For each f € B’ there exist g, h € B such that Ip(g) | Ip(f) and Ip(f) |
Ip(h). Since Ip(g) [} 1p(h) if g # h, it follows that g = h and Ip(f) = Ip(g).
This establish a bijection between B and B’. In particular, all minimal
standard bases of I have the same number of elements.

Take f € B/ and g € B in such a way that Ip(f) = Ip(g). If f # g,
then f—g € I'\ {0}, hence we have p = Ip(f — g) > Ip(f) = Ip(g), where
p € T(f)UT(g). Since f —g € I'\ {0} and B and B’ are standard bases
for I, from definition of standard bases, there exist an element in B and
an element in B’ with same leading power which divide p, but this is not
possible since B and B’ are reduced standard bases. Therefore B = B'.

O

The above proposition shows that the reduced standard basis depends
only upon the fixed monomial order and the ideal I, but not upon the
particular set of generators we started with.

During the proof of the unicity of a reduced standard basis in Propo-
sition 3, we showed that if B and B’ are two minimal standard bases (not
necessarily reduced) for an ideal J, then we have that

Ip(B) =1p(B').
2An element f € K[[X]] is monic if 1t(f) = Ip(f).
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We also have that although possibly B # B’, they have the same number
of elements.

EXAMPLE 5 Let f = Z2 —4X% — X8 € Q[[X,Y, Z]], and let J(f) =
(f, fx, fv, fz}. Consider the graded lexicographical order in T, Since fx =
—36X%Y — 13X12 fy = —4X® and fz = 2Z, the minimal S-processes of

B= {f:fX:fY1fZ} are:

Smin(fy fx) = 18X1222 4- 144X17Y? 4 36 XY
Smin(f, fr) = 16X18Y - 4X22

Smin(f, fz) = —8X%Y —2x13

Smin(fx, fr) = 52X18

Smin(fx, fz) = —26X"*Z

Smin(fy, fz) = 0.

Applying the division algorithm modulo B, we see that all minimal S-
processes have final reduction zero. So, B is a standard basis for J(f), and
B' = {X8Y, X®, Z} is the reduced standard basis, and J(f) = {X®Y, X°, Z).

EXAMPLE 6 Here is an example which shows that minimal standard bases
are not unique. Let

B= {f17f2:f3: f4}?

where fi = Y4~ 2X%Y — X® fo =X f3 =Y - X%Y — X" and fu =
Y4 — X2 -~ XY 4+ X19,

Since there exists f € Q{[X,Y]] with two different complete reductions
modulo B (see Example 2}, it follows from Remark 2 that B is not a standard
basis of ideals.

We now apply Buchberger’s algorithm to obtain a standard basis for the
ideal {B).

Fix in T the graded lexicographical order. To obtain the final reduction
of an element in Q[[X, Y]], we will use the division algorithm, fixing the
following ordering (fi, f2, fa, fa) for the elements of B.

Step 1: Computing the minimal S-processes and their final reductions, we
find:
- 2_
Smin(f1, fo) = —2X0y2 — x10 HTZX0E
Samin(fa, f3) = X3y 4 x17 KON
Swmin(fa, f1) = X°Y2 - XY + X° = f;.
Sm.in(fh f4) = _X5Y2 + XTY - Xg — XlU = fs.
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Sminlfo, fa) = X15Y2 4 X7y — x20 (XEVEHXTY X1 f2
Sain(fa, f1) ==X =5 o,

In the next step we may continue in two different ways; namely, with
Bl = {fl:f2=f3|f4:f5} or with B2 = {fl:f2)f3?f41 fG}

If we choose By = {f1, f2, f3, f4, f5}, we have:

Step 2: ‘The minimal S—processes Smin(fl: f2): Smin(an f3)$ Srm'n(f3? fl):
Smin(f1; f4)y Smin{f2, f4), Smin{fs, f1) have clearly final reduction zero mod-
ulo B;. The other minimal S-processes, with their final reductions are:

Sminlf1, f5) = XTY? — x9y2 _oxW0y2 _ x1a X -X'fs
(-2Y?-XY+X2Y +X%) fo
X koo
Semin(fo, f5) = X12Y — x4 XY-Xf2
Smin(f& f5) = X7y?2_ x9% — yW0y _ x12 JEZ__J;S (_y_ﬁ)xz)fz 0.
Smin(fa, f5) = XTY3 — X972 — xW0y2 _ x12y o x15 XSy —X'fs
(‘Yz,—XY+X3+X4+X5)f2
- 0.
Hence, since By = {f1, f2, f3, f4, f5} is closed under formation of minimal

S-processes, it follows from Theorem 3 and Proposition 1 that it is a standard
basis for the ideal {B}.

If instead, we choose Ba, step 2 will become:
Step 2':
7 4
Sm.in(fl:fG) — X7y3 _ng2 _3)(10}/2 _X14 M X_ffi
(-3Y2-XY4+ XY+ X34 XN fo
_ 2Y—'X—4—X5)f
Sumin(f2, fo) = X12Y — x1 = x5 FYXX0h
_v2 _ _v_ k]
Swmin(f3, fo) = XTY2 = X0y —2X0y — xio ~Xfe WXL
T 4
Smin(f4:f6) — X7y3 _ ng2 _2)(101/2 __X12Y + X15 )u? }Lff
(—2Y2-XY+X342X44-X5) fp
— 0.
Again, in this case, we get that Bs = {f1, fa, f3, f4, f6} is a standard
basis for (B).
By Proposition 2, we have that B’ = {fs, f3,fs} C B; and B" =
{f2, fa, fé} C B2 are minimal standard bases for (B).

It is easy to see that B’ is a reduced standard basis, which by Proposition
3 is the unique such basis.






Chapter 3

CODIMENSION OF
IDEALS

In this chapter we will show how we may use a standard basis of an ideal
to compute its codimension. This is a relevant information about the ideal.
We will also, in some examples, analyze the variation of the codimension of
certain ideals associated to families of formal power series in several indeter-
minates, which play an important role in the theory of singularities.

3.1 The Stair Associated to an Ideal

Let K[[X]] = K[[X1,...,X]], and let T C K[[X]] be an ideal. The codi-
menston of the ideal I is the dimension of the K-vector space

K{[X]]
@=—7

If B is a standard basis for I, then the elements of ¢ may be represented
uniquely under the form r+ I, where 7 coincides with its complete reduction
modulo B. Therefore, the elements of the form p - I, where p is a monomial
in T \ Ip(I), is a basis of @ as a K-vector space. It then follows that

dimg @ = #(T" \ 1p(1)).

We are going now to give an interpretation of the above equation in terms
of Newton diagrams in the case n = 2,

31
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Let I C K[[X,Y]] be an ideal and B = {f5,..., fs} be a minimal stan-
dard basis for I. From Example 2.4 we have that Ip(B) is the minimal set
of generators of the monocideal 1p(I). Let Ip(f;) = X%Y%, i = 0,...,s
Since for 7 # 7, Ip(f;) f1p(f;), we may assumne, after possibly reordering the
elements of B, that we have

O0fagp<a <~ <ag and by > by >+ >b; > 0.

The stair associated to the monomial ideal (Ip(B)) is the set

By = log((p(B)) = | [(@0 ) + 2] < 12,
i=0

which is independent from the minimal standard basis B, since Ip({B)) =

Ip(1).
Now, letting
A=IN? \ Ejp,

we have from the above discussion that

dimg Q = #A.

bo

bl ..
bol ..
bsl ..

a1 g a3 a4

From the above discussion we get immediately the following result:

LeEMMA 1 Let I C K[[X,Y]] be an ideal and Er = | J_q {(ai, b} + IN?} ils
stair. The codimension of I is finite if and only if ag = b, = 0. In this case,
K [[X Y|

dimpg Zaz(bz 1—5)—26—1(‘%“02 1)
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EXAMPLE 1 In Example 2.6 we saw that {X10, Y% — X5y — X7 Xx5y2 —
X7Y + X9 is the reduced standard basis for the ideal generated by B =
{y4-2x5y — X% x10 y3 —-X5Y - X7, v4 - X5y? —X"Y + X'°}. Hence,
the stair of (B) is

0 5 10
Consequently, from Lemima 1, the codimention of {B) is 25.

3.2 Jacobian Ideals

In this section we will use the algorithms so far developed to make ex-
plicit computations on Jacobian and extended Jacobian ideals associated to
a power series.

Let K be an algebraically closed field of arbitrary characteristic. Let
f € K[X]] not a unit. We will assume that f has no multiple factors. We
denote by fx, the partial derivative of f with respect to X;.

DEFINITION The Jacobian ideal associated to f is the ideal

J(f) = (fX]s--- :an) C I{“X]]:

and its codimension is called Milnor’s number of f, denoted by u(f).
The extended Jacobian ideal associated to f is the ideal

j(f) = (f:an---stn) - I{[[X]]a

and its codimension is called Tjurina’s number of f, denoted by 7(f).

These numbers are not necessarily finite, as one can see in Example 2.5.
However, it is well known that Milnor’s and Tjurina’s numbers of f are finite
if and only if 0 is an isolated singularity of f; that is, v/ J(f) is the maximal
ideal of K[[X]].
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When the chafacteristic of the ground fleld K is zero, and when f €
K[[X, Y]] has no multiple factors, then these numbers are known to be always
finite (see for example [Ri]). These are important invariants in the theory
of singularities of algebroid plane curves, as we will see in the subsequent
chapters.

To end this chapter, we will discuss some examples, where we describe
the variation of 7(f) and pu{f) for f varying in some families of power series
m@X,Y]].

EXAMPLE 2 We will study the family
Fo=Y"+X"+ Y a;X'V9,
int-jm>nm
where a = (ay;) with a;; € € and GCD(n,m) = 1. This family of formal
power series may be thought as a deformation of the polynomial Fy = Y™ +
xXm,
Let us compute
Cl[X, Y]]
((Fo)x, (Fa)y)’

using a standard basis for the ideal ((Fu)x, (Fa)y), relative to the weighted
monomial order in T? given by the vector y = (n,m) and the lexicographical
order.

Since

(Fo)x =mX™ 1 4 > fag XYY,
(i—-1)m+im>n(m-1)
and o
(Fa)y =n¥Y™1 4 > Fa XY
in+{(j—1)m>(n—1)ym
the unique minimal S-process, modulo multiplicative constants, to be con-
sidered is
Smin((Fa)x, (Fa)y) = myn_l(Fa)X - ”Xm_l(Fa)Y:

whose leading power has weight greater than v = 2nm — n — m.
Note that any monomial whose weight is greater than v has a reduction
modulo {{F5)x, (Fy)y }. Indeed, suppose that

wo(X°YP) > v, (3.1)
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Two cases may occur:
a) & > m — 1. In this case the monomial has a reduction modulo (Fa)x-
b) & <m — 1. In this case we may write @ = (m — 1 —1) with ¢ > 0. Hence
condition 3.1 implies that

B>(n—1)+ie>n—1,
m

and therefore the monomial has a reduction modulo (Fy)y.
This implies that the S-process has a zero reduction modulo the set

{(Fa)Xa (Fa)Y}'

From Theorem 2.3 and Proposition 2.1, the set B = {(Fo)x, (Fu)y)} is
a standard basis for J(F,), and consequently from Lemma 1 it follows that
w(Fa) = (= 1)(m 1),

This in particular shows that u(F,) is independent from a. Such a family
will be called a p-constant family.

EXAMPLE 3 We will now analyze all possible values of

o — U Y]]
(Fm (FG-)X: (Fﬂ)Y),

7(F,) = dim

where
Fo=Y*4+ X4 a1 XY + ao X5Y2 £ 03 X°Y2 4 0y XTY2.

Note that this is a particular family of the type we considered in Exarmple
2 (with n =4 and m = 9).
We have that

(Fa)x = 9X% + 7a1 X®Y 4 5ao.X*Y? + 602 X5Y2 4 70, XY,
and
(Foly = 4Y3 4 0; X7 4+ 20, XY + 203 X%V + 20, X7Y.
Applying Buchberger’s algorithm, Theorem 2.4, to the extended Jaco-
bian ideal (¥, (Fy)x, (Fu)y), we have:

Step 1: The minimal S-processes of By = {Fy, (Fo)x, (Fa)y}, as well as
their final reductions modulo By are:

S(F,, (Fu)x) FelFo)x(Falv} (this is so because the S-process has
weight greater than v = 59, hence, as we have seen in Example 2 its reducion
modulo {(Fy)x,(F.)y} is zero).
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S((Fo)x, (Fo)y) {FalFa)x(Falv} (this follows from Example 2 where

we showed that the final reduction of the S-process of the pair (Fg)x, (Fa)y
is zero modulo the pair itself).

S(Fy, (Fo)y) = 4F, =Y (Fo)y = 4X°+301 XY + 205 X°Y 2 + 203 XY 2 +
EX(F,
20, X7Y? P IIX B 10, XTY — 20, X5Y2 — 80 XOY? — L0, X7V,

Now to continue, we have several possibilities to consider.

1. f a3 = a3 = a3 = ag = 0, then F, = 0 and By is a standard basis for
(Fa, (Fo)x, (Fo)y) and in this case, 7(F,} = u(F,).

01 2 3 4 5 6 7 8

2. If a3 = as = azg = 0 and a4 # 0, then in the following step we have to
consider the set

Bl = {Fa:(Fa)Xa(Fa)Y,Fti}’

where in this situation F, = —22a,X"Y?, and the minimal S-processes of
By are S(F!, F,),S(F., (Fu)x) and S(F., (F,)y), which have weights greater
than 50.

But, every monomial X*Y# with 4a + 98 > 50 has a reduction mod-
ule By. Indeed, if @ > 7, then the monomial has a reduction modulo
{(Fo)x,Fl}. Ha <7 ie.,a=T7—1iwith i > 0, we have 98 > 22 + 47 > 26,
then 8 > 3, and therefore the monomial has a reduction modulo (F,)y.

In this case, the algorithm produces the standard basis B, and we have
T(Fa) = p(Fa) - 1.
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3. a1 = ag =0 and a3 # 0, then we have F! = —%agXﬁYz - 1?@00141(7}"2.

Since in the next step the minimal S-processes of B; are
S(Fa’Fé)iS((Fa)XaFé) and S((Fa)YsFé)’

which have weight greater than 50, and since every monomial with weight

greater than 50 has a reduction modulo {F}, (F,) x, (Fy )y}, it follows that B,

is & standard basis for the ideal under consideration and 7(Fy) = u(F,) — 2.

| L i ! 1 I |

O 1 2 3 4 5 6 7 8
4. If ay = 0 and a9 # 0, then F! = —%ang’Yz - %a3X6Y2 - 1?pa‘;)ﬂ}’?.
Since the smallest weight of a minimal S-process involving F! is greater
than 47 and every monomial whose weight is greater than 47 has a reduction
modulo B; (This is a computation similar to that we did above), we have
that B, is a standard basis for (Fg, (Fy)x, (Fo)y) and 7(F,) = u{F,) — 3.

| 1 | 1 | ! |

07T 2 3 4 5 6 7 8§
5. It remains to analyze the case a1 # 0, that is, when F! = —%alX"'Y -
§a2X5Y2 — %-CL3X6Y2 - l_c’,—oa‘;X?Yz.

The minimal S-processes S(F,, Fy;) and S((F,)y, F.) of B) have weights
greater than » = 56, so they have zero final reductions modulo {{F;)x, (¥,)v }-
Hence, it is sufficient to analyze the following S-process of B;:

S((Fo)x, Fl) = a1Y (Fy)x — 81X F! = (Ta} —18a2) XOY 2 + Bajag X4Y 3 —
5403 X7Y? + 6a1a3 X°Y® — 9064 X8Y? + Ta1a, XOY3 =: F7,

We have now the following possibilities:

2
51 Ifay= %’-, then the weight of this S-process is > 43. But again, we
can show in the same way as above that every monomial of weight greater
or equal to 43 has a zero final reduction modulo {(¥,)x, (F.)y, F!}. So, B,
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is a standard basis for the ideal under consideration and we have m{F,) =
p(Fe) — 2.

0"y 2 3 4 5 6 7 8

52 Ifag A2, then FY — (7a?—18)X®Y24-.. - has to be considered in the
next step of the algorithm to produce a standard basis for {¥Fg, (Fo)x, (Fa)y)-

Since every S-process involving F)¥ has weight greater than 46, it is easy
to verify that it has a zero reduction modulo

By = {Fa; (FE)X: (Fa)Y’Fé!F:L

showing that B: is a standard basis for the above ideal and in this case we
- have T(Fy) = u{F,) — 3.

1 ! ] 11 1 1 1

01 2 3 4 5 6 7 8
In the above example we had a family of power series in two indetermi-
nates whose Milnor’s number 1 was constant along the whele family, and
for this family we studied the variation of Tjurina’s number 7. In the next
example we will have a family with several Milnor’s numbers for which we
will study the variation of Tjurina’s number in each p-constant stratum.

EXAMPLE 4 Consider the farnily
Fo=(?-X%%+ 3 aX' eC[X,Y]].
i>10

We will compute all possible Milnor’s and Tjurina’s numbers for ¥, in
terms of a, by using standard bases for the Jacobian and for the extended
Jacobian ideals of Fj.
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Fix in T? the weighted order given by the vector v = (6,9), together
with the lexicographical order. In this way we have:

Fp=Y® —3X°Y* 4 3X5Y2 ~ X9 4 ¥ 1 ai X,
(Fa)x = —0X?Y* +18X5Y2 — 0X® 1 3,0 g, X1,
(Fu)y = 8Y® —12X3%Y3 1+ 6X5Y,

To compute a standard basis for the ideal {(F,)x,(F,)y) using Theo-
rem 2.4, we will need to compute final reductions modulo some subsets of
C{[X, Y]], wich we will do by means of the division algorithm.

Step 1: The only minimal S-process of elements in By = {(F,)x, (Fo)y} to
be considered is

S((Fa)x, (Fa)y) = 2Y (Fo)x +3X*(Fo)y =2 Y i; XY = F.,
i>10

which coincides with its final reduction modulo By.

Note that if a; =0, for all ¢ > 10, then ¥, has a multiple factor and
p#{F) = 0.

Let 7, with j > 10, be the smallest index for which a; # 0. In this way,
in the next step of the algorithm we have By = {(F,)x, (Fa)y, F'}.

Step 2: It is sufficient to consider the minimal S-processes S((F,)x, F")
and S((Fo)y, F).

S((Fa)x, Fy) = 2ja; X9 3(Fy)x + 9Y3F!
—18ja; X775+ | terms of weight > 67 + 30 | =: F¥

~-18x3v F!
—_—

Note that a monomial X*Y# with weight greater or equal than 65 + 30,
will have a reduction modulo B;. In fact, supose that wy(X“Y?) = 6a +
98 > 64 + 30, and consider the following cases:

If 5 > 5, then the monomial has a reduction modulo {(F,}y}.

If @ =0, then @ > j + 5 and we use {F!'} to obtain a reduction.

o< g <h, thenazj—i—ﬁ—%ﬁ}_j—l and X%Y? has a reduction
modulo {F}.

Since S((Fu)y, F) and every S-process involving F have weight greater
or equal than 6j + 30, the set B; is a (minimal) standard basis for the
Jacobian ideal J(F,).

The stair associated do J(Fy) is
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Ll S=R - ) |
LI ||J'
8o P L

]

i—1 j+5

By Lemma 1, Milnor’s number of F, is u(F,) = 4(5 + 1).
Now, we will compute a standard basis for the extended Jacobian ideal
T (Fe) = (Fa, (Fo) x, (Fo)v)-
By the analog of Buchberger’s Algorithm (Theorem 2.4), we may start
with
B U {Fa} = {Fas (Fa)Xy (Fa)Y:F:;}

and do the following procedure:
It is sufficient to analyze the minimal S-processes involving F,. Indeed,
S(F, FY') and S(F,, F)}) have weight greater than 67+ 30, and we know that
such S-processes have zero final reductions modulo Bj.
) The other minimal S-processes that we have to consider are S(Fy, (F,)x)
and S(Fg, (Fu)y).
We have

_%X(FG)X
—

S(Fa, (Fa)y) = 6F, — Y(Fa)y 2SO daxt =t FY.

i23

Note that given a monomial X*Y#?, such that wy(X2Y?) = 6+ 98 >
67 + 18, it has a reduction modulo By = By U {F,, F"'}. Indeed, this will
follow after we analyze the four possibilities below.
1) If # =0, then the monomial has a reduction modulo F".
2) f0 < @ < 4, then @ > 7 — 1 and the monomial has a reduction modulo
3) f 3=4, then @ > j—3 > 7 and the monomial has a reduction modulo
(F a).\' .
4) If 8 > 5, then the monomial has a reduction modulo (Fg)y.

Now, since

_v3
S(Fai(Fﬂ)X)=9X2Fa+Y2(Fa)X R —-— =— 0,
and

S(Fe, F) =3YF' - (9-)XF,
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with w,(h) > 65 + 18 and the other S-processes involving Fy" have weight
greater than 65 + 18, we have that B; is a standard basis for 7 (Fy).
In this case, the stair associated to the ideal 7 (Fg) is

Lol ST I N 4
T

2 j-1
and by Lemma 1, we have 7(F,) = 45 — 1.







Chapter 4

STANDARD BASES FOR
SUBALGEBRAS

The theory of standard bases and Buchberger’s algorithm to determine dis-
tinguished sets of generators for ideals in polynomial or formal power series
Tings may be extended successfully to other algebraic systems. These exten-
sions make this theory widely applicable in several branches of mathematics.

In [RS], Robbiano and Sweedler, introduce the Subalgebra Analog to
Grébner Bases for Ideals (SAGBI), as an extension of the previous concept
of standard basis to subalgebras of polynomial rings over a field. They also
present algorithms to obtain a SAGBI for any finitely generated subalgebra
of a polynomial ring over a field.

The main goal of this chapter is to extend the results of [RS] to formal
power series rings over a field and to obtain algorithms to compute distin-
guished bases for complete subalgebras of these rings. Such distinguished
bases will be simply called stendard bases.

4.1 Reduction Process in Algebras

Recall that K is an arbitrary field and that K[[X]] = K[[X4,..., X,]], with
maximal ideal denoted by Mx. Recall also that we have fixed once for all a
monomial order < in T™.
Let F' = {f1,...,fm} C Mx \ {0} and consider the substitution homo-
morphism
Strintmy . KM, Y]l — K[X])
g = g(f1y e Fm)

43
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We define the K-subalgebra K[[F]] of K[[X]] as

An F-product is an element of the form
m
FQ = H ff',
=1

where a = (ai,...,0m) € IN™.

Note that if o € K, thena = aF® = a[[; f°, showing that any constant
is a scalar multiple of an F-product.

Let G be any nonempty subset of Mx \ {0} {even infinite}. A G-product
is an F-product for some finite subset F' of G.

We define the K-algebra

Klcht= U XIF).

FCG
F finite

. From now on, we will only call X-subalgebras of X][X]] the closed sub-
algebras of the form K[[G]], for some subset G of Mx \ {0}. When G is
finite, K[[G]] is certainly such a subalgebra.l.
Given two elements g, r € K[[X]], we will say that g reduces to r, or that
r is a reduction of g modulo G, if there exist a G-product F® and ¢ € K
such that
r=g—aF% with r=00r lp{g) <lp(r).

In this case we will write
g2
and we have that g — r € K[|G]).
Consider a chain (possibly infinite) of reductions

fe. fe. G G G
g—T] —Tg —3 s — Ty —> -
This implies that there exist G—products Ff‘m and a, ) € K\ {0}, such
that

T
@
Tm=g— Y a0,

i=1

!Note that we only consider complete subalgebras as subalgebras of K[[X]]. Hence,
in our setting, the polynomial ring K[X], for example, is not to be considered as a K-
subalgebra of K[[X]].
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where, because of the definition of a reduction,
(1) 3 '
Ip(age FP) < Ip(agem Fe™) < - (4.1)

If the chain is infinite, we get the following sequence in K[[X]]:

m Il
S = Zaa(i)}f}"‘('), m> 1. (4.2)

i=1

When the set G is finite, the sequence (4.2) happens to be convergent
in K[[X]], with respect to the Mx-adic topology. In fact, in this case, the
condition (4.1) implies easily that the set {aa(s)ﬂ“{i), i > 1} is summable,
and the sum of its elements is the limit of the sequence.

When G is infinite, this may be not true anymore as we see in the fol-
lowing example.

ExAMPLE 1 Fix the lexicographical order in T?. Consider the set
G={X+Y},ix1}.
Taking g =35, Y¢, we have that

QLZY%-X&ZY*’—M&..._%Zyi-(m—l)xﬁ.,...

i>2 i>3 i>m

is an infinite chain of reductions of g, modulo G.
In this case the family {X + ¥*, ¢ > 1} is not summable, since X is
present in all sets T(X + Y?).

The above example shows that some care has to be taken when the set
G is infinite. This difficulty is avoided by fixing an order in T" having the
finiteness property, as we see in the following result.

LEMMA 1 If the fized order in T™ has the finiteness property, then any fam-
ily {a,m FY R 1}, satisfying (4.1) is summable.

ProoF Let t € T". Since lp(ﬂ“w) is a strictly monotone sequence in T",
and the order has the finiteness property, there exist finitely many terms of it

which are less than ¢. This implies clearly that #{i, t € T(aa(s)ﬂ“(i))} < 0.

O
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So, from now on we will assume that the fixed order in T" has the
finiteness property, whenever we have to reduce modulo infinite sets.

We will denote the limit in K[[X]] of the sequence (sm)m>1 in (4.2) by
s. Since all the terms of the above sequence are in the complete subalgebra
K[|G]], we have that s € K[[G]].

Now, as in the ideal case, we will extend the notion of reduction to include
all 7, = g — sm as above and their limits. It is also true that whenever an
element r is a redution of ¢ modulo G, then g — r € K{[C]].

We will say that r is a final reduction of g, modulo G, if r is a reduction
of g and r has no further reduction modulo G; that is, Ip(F*) # Ip(r) for all
G-product F'*.

. . . G
In this case we will write g —> r.

If a reduction r of g is zero or Ip(F*) ¢ T(r) for all G-product F*, then
r will be called a complele reduction of g modulo G.

The reduction process corresponds in some way to a division process by
the elements of G.

- REMARK 1 Notice that we may reduce an element of K[[X]] in several dis-
tinet ways. For instance, let G = {fi =Y*, fo = Y3+ 32, X'} C K[[X,Y]]
and let the fixed monomial order in T2 be the graded lexicographical order.
We may get two distinct reductions of f = Y12 modulo G, as follows:

rn=f—fi=0 and rp=f—f5

For this reason, we will need sometimes to indicate by which G-product
we have reduced an element. We will then use a notation like
3 4
fiwrl and f-f-?—»rg,
according to our example.

When the set G is finite, we may give a sort of division algorithm which
will systematize the reduction process. In fact, given an element f € K[[X]],
the G-products that may reduce f modulo G are solutions of the equation
Ip(f) = 1p(G™). Since the later equation is equivalent to a system of . linear
Diophantine equations with non negative coefficients in the #G variables
corresponding to the entries of @, and we are interested in 'non-nega.tive
solutions, these will be in finite number. We may then choose, for example,
the reduction of f by GP, with 8 = min{a; Ip(G%) = Ip(f)}, where the
minimum is taken with respect to 2 fixed monoidal order in IN¥#€.
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REMARK 2 Note that a necessary and sufficient condition for an element
f € K[[X]] to have a reduction, modulo F = {f1y s fm} © Mx \ {0},
is that X* = Ip(f) belongs to the multiplicative monoid (X, .., Xom),
where X% = Ip(f;), for all . This, in turn, is equivalent to say that o
belongs to the additive monoid T = {ay, ... s @m). In particular, if IN®\ T'
is finite, then it is possible to decide after a finite number of steps if a final
reduction of f modulo F is zero or not.

4.2 Standard Bases for Subalgebras

We will continue to denote the submonoid generated by a set B by {B).
Note that given a subset G of the maximal ideal Mx of K [[X]], not
containing 0, we always have that Ip(K[[G]]) is a submonoid of T™ and that

{Ip(G)) C Ip(K([G]).

However, the reverse inclusion is not always true, motivating thus the
follownig definition.

DEFINITION  We say that a set G C Mx \ {0} is a standard basis of algebras
if
{Ip(@)) =Ip(K[IG1D).
We may rephrase the above definition as follows:
G is standard basis for algebras if for all f € K[[G]] \ {0},

Ip(f) = Ip(F),

for some G-product F¢,
A standard basis for o subalgebra A C K[[X]] is a standard basis G of
algebras, such that A = K[[G]].

In this chapter, standard basis will always mean standard basis of alge-
bras.

EXAMPLE 2 The set G = {Xa,...,X,} is a standard basis for the algebra
K[[Xi,...,Xy]] for any monomial order. This is so, since obviously the
leading power of any element in K[[X1,...,X,]]\ {0} is a G-product.

EXAMPLE 3 The set G = {X2,52. X} ¢ K[|X]] is a standard basis for

algebras. Indeed, if f € K[[G]]\ {0}, then 1p(f) = 1 or Ip(f) = X<, for some
a > 2. Hence Ip(f) € (X2, X3) = (Ip(G)).
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EXAMPLE 4 The set G = {X*, X¢+ X"} € K[[X]] is not a standard basis
for algebras. In fact, 2X% 4+ X1 = (X® + X7)2 — (X*)® € K{[G]], but
X13 ¢ (X4, X5) = (p(G).

With the definition that we gave for standard basis, there will trivially
exist a standard basis for every (complete) subalgebra A of K([X]]. For
example, the whole subalgebra is a standard basis for itself. A more inter-
esting question is how to guarantee the existence of finite standard bases? Tt
is obvious that if the subalgebra A is not finitely generated, then there will
be no finite standard basis for it. Now, what can be said if the subalgebra
is finitely generated? The following example will show that finite standard
bases do not always exist, even in this case.

ExaMPLE 5 ([RS]) Let K be any field and consider in T2 the graded
lexicographical order. Let B = {Y + X, XY,X?Y} C K[[X,Y]] and A =
K[[B]l.
Initially notice that X*Y € A for all k > 1. Indeed, for k=1 and k =2
this is obvious. Now, if the assertion is true for all ¢ < k with k > 2, then
we have
' XFY = (Y + X) XY — (XY)X*IY € 4,

proving the assertion for all k > 1.

On the other hand, it is easy to verify that if Ip(f) = X for some i > 0,
then f & A.

If A had a finite standard basis F, then we could choose a sufficiently
large integer 7 such that X7Y is not the leading power of any element of F.
Since XY € A and F is a standard basis for A there would exist elements
in F such that their leading powers are X7-1Y and X* for some ¢ > 0. But,
as we observed above, no element of A has leading power of the form Xt for
i > 0. So such a finite standard basis doesn’t exist.

An obvious criterion (in general not decidable) for the existence of a finite
standard basis for a subalgebra A is the following: the subalgebra A has a
finite standard basis as a subalgebra of K[|X]] if and only if the submonoid
Ip(A) of T™ is a finitely generated.

In particular, since every submonoid of T is finitely generated (Example
1.6), it follows that every subalgebra of K[[X]} has a finite standard basis.

As in the ideal case, we will have the concepts of minimal and reduced
standard bases of algebras.

DEFINITION A standard basis of algebras G C Mx \ {0} will be called
minimal if for all g € G, we have Ip(g) € {Ip(G \ {g}))- '
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DEFINITION A minimal standard basis G will be called reduced if all g € G
are monic (i.e., 1t(g) = Ip(g)) and no element in T(g)\ {ip(g)} is the leading
power of a G-product.

For instance, the set & in Example 2 and Example 3, above, are minimal
standard bases, while only in Example 2 it is reduced.

The following two results are totally analogous to Propositions 2.2 and
2.3, s0 we will omit their proofs.

PROPOSITION 1 Let G C Mx \ {0} be o standard basis. If g € G is such
that Ip(g) € {Ip(G")), where G' = G\ {g}, then G’ is a standard basis and
K[| = K[GI).

PROPOSITION 2 Fuvery subalgebra of K([[X]] has a unique reduced standard
basis.

Observe that, as in the proof of Proposition 2.3, we have that all minimal
standard bases of a subalgebra of A[[X]] have the same number of elements
and the set of values of the elements of any two minimal bases are the same.

In order to give characterizations for standard bases of algebras similar to
those of ideals, we need to define the S-processes in the context of algebras.

DEFINITION  Let G be any subset of K[[X]]. An S-process of G is an
element of the form
aF% 4+ bFP,

where a,b € K \ {0} and F® and F? are G-products, such that
Ip(aF® + bF?) > ht(aF™ + bFF),

whenever a F® 4+ bF? £ 0.

EXaAMPLE 6 Let G={f=X,g=XY3h=Y*+Y3k=Y0+Y"} C
K[[X,Y]]. Consider the graded lexicographical order in T2. The expressions,
fg—gf, B®f* — g* and k®f% — g%, are examples of S-processes of G.

The following theorem is the analog for algebras of Theorem 2.3 (Gro-
bner-Hironaka-Buchberger) and is an adaptation to power series rings of the
results of [RS], proved there in the context of polynomial rings.
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THEOREM 1 (STANDARD BASES FOR SUBALGEBRAS OF K[[X]])

B 1) Every complete subalgebra of K[[X]] has e standard basis.

2) Given G C Mx \ {0}, the following assertions are equivalent:

(a) G is a standard basis of subalgebras.

(b) All final reduction modulo G of any element of K[|G]] is zero.

(¢) G is closed under S-processes; that is, every S-process of G has a van-
ishing final reduction modulo G.

(d) Bvery non-zero S-process of G has a representation as a sum of scalar
multiples of G-products with height greater than the height of the S-process
ttself,

ProoF Proof of 1: This is obvious because, as we observed above, any
subalgebra of K[[X]] is a standard basis for itself.

Proof of 2:

(a)== (b) Suppose that & is a standard basis of algebras and let f €
K|[G]]. If r is a final reduction of f modulo G, then from the definition
of reduction it follows that » € K[[G]]. Suppose r # 0. Since G is a
standard basis, there exists a G-product F'® such that 1p(r) = Ip(#F%), which
contradicts the fact that r is a final reduction modulo . Hence 7 = 0.
(b)== (c) Let h be an S-process of G. Since h € K[[G]], we have that h
has a vanishing final reduction modulo G.

(¢)= (d) Let h = aF™+bF? # 0 be an S-process of G with a vanishing
final reduction modulo G. Recall that any reduction of an element f consists
of subtracting from f a sum of scalar multiples of G-products, getting an
element which is either zero or has leading power greater than the leading
power of f. Therefore, since h has a zero final reduction, we may write

h=2 ],
it

where HY are G-products, ¢y € K \ {0} and the above representation is of
amplitude one.

It then follows that ht(3", ey HY) = Ip(h} > ht(aF'* -+ bF %), proving the
assertion.
(d)= (a) It will be sufficient to prove that every element f € K[[G]] \
{0} has a representation as a sum of scalar multiples of G-products with
amplitude one. This is equivalent to say that for every element f € K[[G]]\
{0} there exits a G-product F® such that Ip(f) = Ip(F'*), which means that
G is standard basis.



4.2. STANDARD BASES FOR SUBALGEBRAS 51

Let f € K[[G]] \ {0} and take a representation
f=>"asF}, (4.3)
5

where a5 € K \ {0} and F} are G-products, of least amplitude among
those representations with maximum height.

Suppose by absurd that A > 2. We may assume that Ip{eF%) and
lp(aﬁJF:é3 ) are equal to the height of the sum in (4.3).
Therefore, there exists b € K such that

hi=0aFg + bugF5 (4.4)

is an S-process of G.
Since from hypothesis, there exist ¢y € K\ {0} and G-products HY such

that
h=>c,H, (4.5)
¢

with
(3" ey HY) = Ip(h) > ht(aaFS + bagFy).
ti

Now, from (4.4) and (4.5), we have

aaFE +apFy = (1 —b)agFf + > e, HY.
it

So we can write

f=Q1-bagF§+> cyHI+ Y asFf. (4.6)
it §#e, B

Suppose that b # 1. Then the representation of f given in (4.6) will
have the same height as the one in (4.3), but a smaller amplitude, which is
a contradiction.

Suppose that b = 1. If the amplitude of the representation of f in (4.3)
were two, then the height of the representation (4.6) would be greater than
the height of (4.3), which is a contradiction. If the amplitude of the represen-
tation (4.3) of f were greater than two, then the height of the representation
(4.6) would be equal to the height of (4.3), but the amplitude would be
smaller, which again is a contradiction.
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4.3 The Analog of Bﬁchberger’s Algorithm

The characterizations for standard bases given in Theorem 1, although im-
portant, they do not suggest any practical algorithm to compute them. We
are going now to present a criterion which will lead to an algorithm to de-
termine in finitely many steps a finite standard basis for a subalgebra A,
admitting that there exists at least one such basis for A.

To do so we will look more closely to the S-processes of a set G C K[[X]].

Define

ordx, (X3 - Xpn) = aj.

Since an S-process of G is of the form § = aF® + bF?, where a,b €
K and F = {f1,..., fm} 15 a finite subset of G, it is determined modulo
constants by the vectors «, § € IN™, solutions of the following linear system
‘of homogeneous diophantine equations:

Yimiagordx, (Ip(fy)) = 27 Byordx, (Ip(f5))
: : (4.7)

ST ajordx, () = ST fordx, (Ip(F).

The set of all solutions of (4.7) is an additive submonoid of IN*™, gen-
erated by its finite set D of divisors (cf. Example 1.3), called the minimal
solutions of the system.

In the case of n = 1, that is, in the case of power series in one indetermi-
nate, the system (4.7) reduces to only one linear homogeneous Diophantine
equation, and in this case, the algorithm in [CF] is efficient to obtain the set
D. Below we present an example of this situation.

EXAMPLE 7 Let F = {X* X%+ X7, 2X'® + X141} C€[[X]], the correspond-
ing system (4.7) reduces to the equation

4oy -+ 6ap + 13cc3 — 48, — 682 — 1385 = 0.

Using the routine of [CF] we find:

D={(1,0,0,1,0,0),(3,0,0,0,2,0),(13,0,0,0,0,4),(0,2,0,3,0,0),
(0,1,0,0,1,0),(0,13,0,0,0,6),(0,0,4,13,0,0),(0,0,6,0,13, 0),
(0,0,1,0,0,1),(2,3,0,0,0,2),(8,0,0,0,1,2),(1,0,2,0,5,0),
(0,0,2,2,3,0),(0,1,2,8,0,0),(0,5,0,1,0,2), (5, 1,0,0,0, 2),
(1,8,0,0,0,4),(0,0,2,5,1,0),(0,0,4,1,8,0)}.
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More generally, when n is arbitrary, the determination of the set D of
minimal solutions of (4.7) may be carried out using the algorithm in [CD].

Given a finite subset ' = {f1,..., fm} of K [[X]], the S-processes cor-
responding to the minimal solutions of (4.7), that is, to the set D, will be
called minimal S-processes of F.

If & is an arbitrary subset of K[[X]], then we define a minimal S-processes
of G as being a minimal S-process of some finite subset F' of G.

REMARK 3 Let H C F be finite subsets of G. Every minimal S-process
of H is also a minimal S-process of F. This follows from the definition
of minimal S-process and from Example 1.4. This shows that the above
definition is consistent when G is finite. '

The corollary of the next result will show that when standard bases are
characterized through properties of S-processes, we only have to consider
the minimal S-processes, which are finitely many when we deal with fnite
sets.

PROPOSITION 3 Let G be a subset of Mx \ {0). If every minimal S-process
of G has a vanishing final reduction, then every S-process of G has a repre-
sentation as a sum of scalar multiples of G-products with height greater than
the heighl of the S-process itself.

PROOF  Fix an S-process of G. Without loosing generality, we may assurmme
that modulo a constant factor, this S-process of G is of the form F& 4 ¢ F# \

for some finite subset F of G and where ¢ € K is uniquely determined by
F, o and .
Let S50 = iy aa,aFg represent the minimal S-processes of F. Since we

assumed that Ssg RNy for some reduction process, we have from what we
showed in the proof (¢)==-(d), in Theorem 1, that we may write

35,5 = Zb’YF:yYJ
¥

with amplitude one, where F} are G-products and b, € K.
So
= —ag,gFe -+ Zb"/F’?!
¥

with ht(3>, 5, F7) > ht(Fé + azp F7).
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Since the solution (e, 8) of the system (4.7) may be written in the form

(@,8) = T nss(6,6),
5.8

where (6,6) are the minimal solutions of the system and nsg € IN, we may
write

Fo =[] (F)mee, and FP =[] (F%)"ae.
50 5.0

Therefore,

Fo =[5 (FO)ra¢ = [5g (—056F° + 3, by )00 =
= [Lsp (—ase FPY o8 + 3, duF =
= ([ (—ase)™s0)FP + T, du FY,

where ht(3, duF¥) > ht(F® + aFP). Since the constant o is uniquely
determined, we have that —[[;,(—as¢)"%* = a, which implies that the S-
. process, we started with, has a representation as a sum of scalar multiples of
G-products whose height is greater than the height of the S-process itself.

O

From Proposition 3 and from Theorem 1 we get immediatly the following
result:

COROLLARY Let G be any subset of Mx \{0}. Then G is a standard basis
for K[|G]] if and ondy if every minimal S-process of G has somne vanishing
reduction modulo G.

EXAMPLE 8 Let G = {X*%, X8+ X7, 2X1% + X4} as in Example 7, where
we computed the vectors that determine the minimal S-processes of G. We
will refer to the list contained in Example 7.

Notice that the 1st, 5th and the 9¢h elements of that list give us trivial
S-processes, hence they may be neglected.

Consider the following pairs in the list: the 2nd and the 4th, the 3rd
and the 7th, the 6th and the 8th, the 10tk and the 13tA, the 11¢h and the
14th, the 12th and the 15th, the 16th and the 18th, the 17ih and the 19¢h.
The given elements in each pair determine, modulo constants, the same S-
processes. Hence we have only to consider the following minimal S-processes:

(X4)% — (X0 + X7)2 = —(2X13 4 X14) g
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16(X )% — (2X18 + X')4 = 30 X% — 2454 _gx55 _ x56

64(X® + X7)18 — (2X18 + XM = 640X - ...

4(X4)2(X6 + X7)3 _ (2X13 + X14)2 — 8X27 + 11X28 +4X29

4(X4)8 _ (XG + X7)(2X13 + X14)2 — —8X33 — 5X34 _ 4x35

(X)X X112 —4(X®4 X7)8 = —16X531_39X32_ 40X 38 _20x34_4 X3

4(X4)5(X6 + X?) _ (2X13 + X14)2 — _X28

16(X)X5 + X7)8 — (2X13 + X144 = 96X ...,

corresponding to the vectors: (3,0,0,0,2,0),(13,0,0,0,0,4), (0, 13,0,0, 0, 6),

(2) 37 Oi 0? 01 2)3 (8! 0! 0! 0? 1! 2)1 (17 03 2} O! 5! 0)! (51 1! 03 0? 01 2)5 (1! 8? 0? 01 0! 4)‘
Since any power of X above 15 may be obtained by means of G-products,

we have that every minimal S-process has a vanishing final reduction modulo

G. In this way we conclude that @ is a standard basis of €([G]], furthermore,

it is a minimal standard basis.

The following is the analog of Buchberger’s Algorithm for algebras.
"THEOREM 2 (ANALOG OF BUGHBERGER’S ALGORITHM) Let B be a subset

of Mx \ {0}. Then we always obtain (theoretically) a standard basis for
K|[|B]] in the following way:

INPUT: B;
DEFINE: Fo .= B and i :=(;
Do
S :={s; s is a minimal S-process of F}}; |
R:={r; sﬁir, s€8 and r # 0}
Fiy1:=FUR;
ti=14+1;
OUTPUT: G i=izo Fi-

Moreover, if K[[B]] admils o finite standard basis, then the above proce-
dure will produce one, after finitely many steps.

PROOF Theoutput set G = ;5 F; is a standard basis for K[[B]]. In fact,
from the corollary above, it will be sufficient to verify that every minimal S-
process of G has a zero final reduction modulo G. Let s be a given minimal
S-process of G. Then s is a minimal S-process of some finite subset F of G.
Since F' is finite we have that F' C F} for some i. Now, because of Remark 3
we have that s is a minimal S-process of F;. If s reduces to zero modulo Fj,
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we have nothing to prove. If s doesn’t reduce to zero, then by construction
of the Fjy1, its final reduction is an element of Fiyy, so it reduces to zero
modulo Fj;q, then a fortiori it reduces to zero modulo G. This proves that
G is a standard basis for K|[[B]|.

Suppose now that K[[B]] has a finite standard basis F. We want to
show that for some 7, the finite set F} is a standard basis for K[[B]] and this
ammounts to show that we have F;; = F}, for some j. Let

hcRc---CEFCc---CG.

While F;\ F;_1 # 0, take r; € F;\ F;—; which is the final reduction modulo
F,_{ of a minimal S-process of F;_1 of least order . From the construction
of the sets Fj, we must have Ip(r;) < Ip(rit1).

Let m = max{lp{(f); f € F}. So there exists an index j such that the
leading power of any element of F := G \ F; is greater than m.

It follows that

(Ip(F)} = (Ip(G)) = (Ip(Fy) V1p(E)).

If f € F, then from the above equalities we have that Ip(f} = Ip(F{ H),
where Ff is an Fj-product and H? is an E-product. But Ip(H?) > m,
unless P is a constant. The condition Ip(H?) > m cannot hold because
Ip(f) < m. Hence H* is a constant, implying that Ip(f) is an Fj-product.
We have so far shown that Ip(F') C {Ip(F})).

Since F is a standard basis of K[|B]}, we have

Ip(K{[Bl)) = {lp(F)) < (Ip(F3)) C Ip(K[[B}),
and this shows that Fj is a standard basis for K[{B]].

O

Example @ Let A C K[[X,Y]], the subalgebra generated by B = {f1 =
X2 fo =R, Xfs = X fa = Y% fs = Y* + X%} and consider the
graded lexicographical order on T=.

Let us apply the algorithm contained in the above theorem to B.

Initially note that every monomial of the form X®Y* with a € (2,7) and
B € {2,3) belongs to A. In this way, all the minimal S-processes of Fyp = B
have a zero final reduction, except fz — f2 = 3252, X*, which coincides with
its final reduction, modulo Fy.
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In the next step of the algorithm we have

oo [+ a]
F={i=Xf=3 X fs=Xfu=Y4 s =Y+ X% fs =3 X'},
i=4 i=5

A simple verification shows that every minimal S-process of Fy reduces
to zero modulo Fj. Therefore F is a standard basis for A.

According to Proposition 1, we have that ¢ = {f1, fa, f5, fo} is a minimal
standard basis for A. Since X° = f5 — ff — f1fs and V3 = fs — ft, we have
from Proposition 2 that H = {X2, X% V2, Y3} is the reduced standard basis
for A.






Chapter 5

THE MONOID OF AN
IRREDUCIBLE CURVE

In this chapter we will use the theory of standard bases for algebras to study
the monoid associated to an irreducible algebroid curve. This is an important
invariant for the curve, also called the monoid of values of the curve. We
will focus our attention here on the effective determination of such monoids.

The monoid of values of a curve seems to have been first investigated, in
the context of irreducible algebroid plane curves, by Apéry, in his 1946 paper
[Ap], who discovered some of its important properties, such that the exis-
tence of a conductor and its symmetry. Apéry also determined a ”standard
basis”! for the local ring of the curve, seen as a subalgebra of the ring of
power series in one variable. Few years later, in his 1952 paper [G], Goren-
stein, independently, made the arithmetic of such monoid an important tool
for his investigation on the singularities of curves, rediscovering the sym-
metry, in the plane curve case. It was recognized later that the curves in
higher space with symmetric monoids of values had important properties,
characterizing the class of the so called Gorenstein curves (see [K]).

In the 60’s, Zariski, in a famous series of papers [Z2] and [Z3], investigated
the singularities of curves, in a purely algebraic context. He recognized
that in the case of analytic complex plane curves, the monoid of values is
a complete discrete invariant for the topological classification of the curves.
This turned the topological equivalence into a purely algebraic concept which
could be defined in the algebroid context over any ground field.

In [Az], Azevedo discovered that the monoid of values of an irreducible

!The basis consisted of functions whose values are the Apéry sequence of the monoid.

59
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~algebroid plane curve is strongly increasing, a condition which is also a suf-
ficient for a monoid to be associated to an irreducible algebroid plane curve.
Zariski, Azevedo and Abhyankar-Moh (respectively in [Z4], [Az] and
[AM]), determined, as we will see in Section 2, a minimal standard basis
for the local ring of an irreducible algebroid plane curve.
In this chapter we will assume that K is an algebrama.lly closed field of
arbitrary characteristic.

5.1 Algebroid Curves

In this chapter K[[X]] will represent the ring K[[X;1,..., Xl

DEFINITION An irreducible algebroid curve, or a branch, in K[[X]], is a
(proper) prime ideal C of K[[X]] such that the Jocal complete domain

_ K[[X]]
0==%~ (5.1)

has Krull dimension one.

The ring O will be called the ring of coordinaies or the ring of functions
of the curve €, whose maximal ideal will be denoted by M.

A set of generators fi,..., fr of the ideal C will be called a Cartesian
representation of C.

For dimension reasons, any Cartesian representation of a branch C in
K][X]] has at least n — 1 elements. However, there exist branches in X[[X]]
with no Cartesian representation with n — 1 elements. Branches in K[[X]]
that have at least one Cartesian representation with exactly n — 1 elements
are called complete intersections.

ExamMPLE 1 PLANE BRANCHES

A plane branch C is a branch in K[[X, Y]]. In this case, it is known that
C may be generated by an irreducible power series f; that is, it is a complete
intersection. Two generators f and g of C are always associated. This means
that there exists a unit v € K[{X,Y]| such that g = u.f. So, a plane branch
is simply an equivalence class, modulo associates, of an irreducible power
series in K[[X, ¥]].

Given a branch C in K[[X]], it may happen that we can find a homo-
geneous linear form 37, ¢;X; contained in the ideal defining the branch?.

*This condition is the algebraic counterpart of the geometric condition, in the complex
analytic context, for the existence of a hyperplane that contains the branch.
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In this case we will say that C is degenerate. Tt is easy to verify, using
Nakayama’s Lemma, that C is non-degenerate if and only if

g M
lme =n.

(7)

is called the Zariski tangent space of C. Its dimension, called the embedding
dimension of C, is the least dimension of a ring K[[X]], in which the branch
may be realized.

The dual space

From now on we will assume that all branches are non degenerate; that is,
the branches will be defined in K[[Xj,..., X,]] with embedding dimension
n.

From general theory it is known that, the integral closure & of the domain
O = K{[21,...,2,]], where z; represents the residual class of X; modulo C,
is isomorphic to the ring K{[T7]].

From the inclusion of O in O(~ K{[T]]), we have a monomorphism of
K-algebras

w: O — K|[T].

5.2
5 oo () 632
The representation

1 = pi(T)

Zn = pa(T)

will be called a parametrization of C, where we identified z; with its image

w(z:) = pi(T).
We clearly have

1) O 2 9(0) = K[[p:(T), ..., pa(T)]]  K[[T]].

2) The field of fractions of K{[p1(T},...,pn(T)]] is equal to K((T)) (feld of
fractions of K[[T1]).
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ExaMPLE 2 MoNOMIAL CURVES- |
A monomial curve in K[[X]] = K[[X3,...,X,]] is a curve which admits
a parametrization of the form

Ty = TSt

Ep = T30,

‘We will denote by v the normalized valuation of K|{[T]], which is obviously
the unique monomial order in K[[T7]]. For p(T') € K[[T]}\ {0}, write p(T") =
T™u(T), where u(0) # 0, we have v(p(T)) = m, which is called the value of
p(T).

To any subring B of K[[T}] we may associate the monoid v(B\{0}) C IN,
called the monoid of values of B. Since any submonoid of IN has a (unique)
minimal system of generators (Example 1.6), the number of these generators
is determined uniquely by the submonoid. This number minus 1 will be
called the genus of the submonoid.

Let C be a curve with ring of coordinates . Given any element g in
- O\ {0}, where g € K[[X]] \ C, it is possible to assign a value v(g) to this
element, in the following way:

v(g) = v(e(g)).

The value v(g) as defined above needs a parametrization of C. However,
it may be defined using only the Cartesian representation fy,..., fr of the
branch. By using some linear algebra, it is possible to show that v(p(7)) is
the codimension in K[{X]] of the ideal (g, f1,..., fr). With this formulation,
v{g) may be computed using standard bases of ideals (see Lemma 3.1).

‘We now define the monoid of values of the branch C' as

v(O\{0}) == v(p(O) \ {0}),

where O is the ring of coordinates of €. The genus of this monoid will be
called the genus of C.

Note that from what we said immediately before the above definition,
we have that the monoid of values doesn’t depend upon any representation
of the curve C, but it is intrinsically associated to it.

There are several classes of curves which are defined according to some
property of their monoids of values and conversely, several classes of sub-
monoids of IN are defined by the property of being possibly associated to
some particular classes of curves.
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DEFINITION We say that a branch is Gorenstein if its monoid of values is
symmetric (see the definition of a symmetric submonoid of IN in Chapter 1).

Gorenstein curves play an important role in algebraic geometry and are
ubiquitous. For example, every complete intersection branch is Gorenstein
(see [Ei], Corollary 21.19).

DEFINITION A submonoid (s, ...,s.) of N will be called a monoid of a
complete interseciion if the associated monomial curve

r = T
T, = Tor
is a complete intersection in K|[X7,...,X,].

It is known that if the monoid of values of a curve is a monoid of a
complete intersection, then the curve itself is a complete intersection (see for
example [D1]). The converse of this statement is not true, since there are
complete intersection curves whose monoids of values are not monoids of a
complete intersection. Such an example is due to Herzog and Kunz [HK],
and will be discussed in Chapter 7. There also exists an algorithm due to
Delorme (see {D1]) that allows to decide whether or not a submonoid of IN
is a monoid of a complete intersection.

DEFINITION Let I' = {vp, ..., 9) be a submonoid of IN, where wy, ..., v, is
its minimal system of generators. Let ng = 1, and

_ GOD(uw, .., v-1)

i=1,...,4.
GCD(w,...,v) ' PESed

We say that [" is strongly increasing, if
niv; € (Yo,...,vi—1) and Mm% <, 1=1,...,4

Azevedo in [Az] was the first to observe that the monoid of values of
a plane branch is strongly increasing. Conversely, it is known that if a
submonoid I' of IN is strongly increasing, then there exists a plane branch
whose monoid of values is I" (see [Bre|, [T] or [An]). It is also possible to
show, using Delorme’s algorithm, quoted above, that any strongly increasing
submonoid of IN is the monoid of a complete intersection. It follows that
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a curve whose monoid of values is strongly increasing, then the curve is a
complete intersection.

ExaMPLE 3 Consider the following submonoids of IN:
Iy =(8,4,5), T'e=(6,8,10,17,19), I's = (4,6,7), 'y = (6,9,19).

The monoid I'; is not symmetrie, hence any branch whose monoid of
values is I') is not Gorenstein. The monoid I'; is symmetric but it is not a
monoid of a complete intersection. The monoid I's is a monoid of a com-
plete intersection, but it is not strongly increasing. Finally, I'4 is a strongly
increasing monoid.

Given a submonoid S of IN, the integer mult(S) := min S \ {0} will be
called the multiplicity of 5. The multiplicity of the branch C is defined as
the multiplicity of its monoid of values, and will be denoted by mult(C).

Observe that it is not a trivial matter to determine the monoid I' =
v(O \ {0}), since one in principle should compute v(g) for all § € O\ {0}.
However, since I is finitely generated (see Example 1.6), we have that O,
more precisely, ¢(O), admits a finite standard basis as a subalgebra of K|[[T]].
- Now, the values of the elements of a mimimal standard basis of ¢ form the
minimal system of generators of I". Theorem 4.2 contains a general algorithm
that allows to determine I' and we will see in the next section how we can
improve it in the particular case of branches.

Recall from Section 1.1 that an integer ¢ is the conductor of a submonoid
I’ of IN, if ¢ is the least element (if it exists) of I', such that every integer
above it belongs to T

An important example of a monoid with conductor is given by a monoid
5 of values of a branch C. In fact, since the field of fractions of & is equal
to the field of fractions of K[[T]], there are elements f and g in O, such that
f/g =7T. Hence v(g) and v(g) + 1 = v(f) are in S, and we conclude, as in
Remark 1.1, that S has a conductor.

Not every set of power series p1(1"),...,pn(T") has the above property
(2), which says that the field of fractions of K([p1(T),...,2a(T)]} is K((T)).
The set T2, T* is such an example because K[[T2, T4 C K|[T?]] c K(T*?)).

A set of power series having the above property (2) will be called a
primitive sel.

Conversely, given a primitive set pi(T),...,pn(T) of power series, we
may associate to it the branch ker(®), where

¢: K[Xy,...,X)] — KI[[T].
X; ~  pi(T)
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Notice that in the above situation we have that ¢(0) is equal to the ring
K([ps(T),...,pa(T)]], whose field of fractions is K{(T").

In general, it may be difficult to verify that a given set of power series is
primitive. But if we work with a restricted type of sets, it is possible to get
a criterion for deciding primitivity or not, as we will see below.

The K-isomorphisms of K[[T]] onto K[[T’]] are of the form

T: K[T]] — K[[T],
p(T) = g(T) =p(r(T))

where 7(T) = aT" +--- € K[[T"]] and @ # 0. Therefore, from our algebraic
point of wiew, we will allow to reparametrize power series by means of auto-
morphisms 7. So, given a primitive set p1(T"),...,p.(T), and T as above, we
have that the set ¢1(T") = p1(7(T)), ..., gn(T") = pp{7(T)) s also primitive.
It is immediate to verify that the pair of ideals determined in K[[X]] by this
pair of primitive sets are equal, hence they define the same branch,

Let p1(T),...,pa(T) € K be a given primitive set of power series. With-
out loss of generality, we may suppose that the value m of p1(T) is minimum
among the values of the p;(T)’s. We may write p;(T) = T™u where u
is a unit in K[[T]]. If char(K) doesn’t divide m (this is always the case
when char(K) = 0), then it is easy to show that there exists a unit w in
K{[T]] such that u = w™. So we may write p;(T) = 7(T)™ = T'™, where
T' = 7(T) = T.w with 7 an isomorphism from K[[T]] onto K[{T"]].

Now we may transform our original primitive set into the primitive
set q(T') = pi(r™HT)) = T, @(T) = pa(r7H(T)), ..y (1) =
Pa(r=1(T7).

Hence, if char(K) = 0, any primitive set may be reparametrized obtain-
ing a primitive set of the form ¢ (T") = T™, q(T"),...,q.(T"), called a
Puiseuz set.

A subring of K[[T]] generated by a Puiseux set is called a Puiseur ring.

REMARK 1 TFrom what we said above, in characteristic zero the local ring
of a branch may be always realized as a Puiseux ring.

The following is a known criterion to decide whether a Puiseux set is
primitive or not (see for example [Cam], Propesition 2.1.13). However, our
proof is based on a constructive algorithm (Lemma 1, below) which deter-
mines two elements in the Puiseux ring generated by the given Puiseux set
whose values are consecutive integers. This in particular, gives an upper
bound for the conductor of the monoid of values of the Puiseux ring.
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. PROPOSITION 1 A set of power series py(T) = T™, p2(T), o, pa(T) is a
‘Puiseuz set if and only if the GCD of the values of all terms of the power
series in the set is one.

Proor If the GCD of the values of all terms of the series in the given set
is not one, then clearly the set is not primitive.

Suppose now that the GCD is one. If we show that there are two ele-
ments in A = K[[p;(T),...,pa(T)]] with consecutive values, the proof will
be finished since this implies that T belongs to the field of fractions of A.

A consequence of the next Lemma will show that these two elements
exist, concluding hereby the proof of the proposition.

0
LeMMA 1 Given a Puiseuz ring A = K[[T™,02(T),...,pa(T)]], the follow-

ing algorithm determines, affer o finite number of steps, elements in A such
that the GCD of their values is one.

INPUT: Tm:p2(T)a s ?pn(T);
DEFINE: {my,...,m} = set of prime divisors
of m and hg :=T1™;
FOR § FROM1 TOr DO
Choose py(T) with 2 <i<n
such that ©; doesn’l divide the
value of some term of p;(T);
So:=p(T) and k :=0;
WHILE 7; | v(Sk) DO
Sk+1 = Sg - aTﬁm;
where o, B € IN and a € K* are
uniquely determined, in such
a wey that o ts minimum
and v(Siiy) > v(SE) = fm;
kE=k4+1;
hj = Sg;
OUTPUT: {h;;5=0,...,1} with
GCD('U(hO):'U(hl): T ‘U(h.,-)) =1
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PROOF The existence of p;(t), such that m; is coprime with the value of
some term of p;(t), as well the existence of & < oo such that m; fv(Sk), are
guaranteed by the primitivity of the given set of power series.

O

COROLLARY 1 Given a Puiseur ring A = K[[T™,pa(T),...,pa(T)]], there
exist two elements in A with consecutive values. -
Proor Take the elements ho, b1, ... k. of A determined in Lemma 1, and
let w; = v(hy) for i = 0,...,r. Then GCD(wy,w1,...,w,) =1, and we may
find integers o; for ¢ = 0,...,r, such that 3]_; cyw; = 1.

Define P = {4; a; > 0} and N = {¢; o; < 0}. We may write

v (1’[ hf‘*’) =1+4+w (H h;“"*) ,
i€P iEN

and the result follows.
O

COROLLARY 2 The monoid of values of a Puiseux ring has conductor,
which is majorated by

(=) =) ((ae) +).

where the h;’s are as in Lemma 1.

PRrROOF This result follows from the above corollary and the argument used
in Remark 1.1.

5.2 The Monoid of Values of a Branch

Emphasizing what we said in the introduction of the chapter, the impor-
tance of the monoid of values of an irreducible plane analytic curve germ
was detected by Zariski (see (Z1]), who recognized it as a complete discrete
invariant for the topological classification of such germs. He contributed to
the proof of the following result: Two plane analytic branches are topologi-
cally equivalent if and only if their monoids of values are equal.
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In view of this result he proposed the following general definition:

DEFINITION Two branches in K[[X]] = K[[X,...,X,]] will be said equi-
singular if their monoids of values coincide. An equisingularity class is the
set of all branches in K[[X]| that are associated to a given monoid of values.

There are several classical methods to determine the monoid (of values)
of a plane branch. For example, the monoid may be determined by a minimal
resolution of the singularity of the branch. This is the only known method
that works in arbitrary characteristic and may require lengthy computa-
tions. In characteristic zero, the monoid may be determined by a Puiseux
parametrization of the branch (see {Z4]) or by several other methods (see for
example [DS] and [AM]).

What about the case of space branches? In view of the remark we made in
the previous section, the set of values of the elements of a minimal standard
basis of the ring of coordinates & of the branch, is the minimal system of
generators of its monoid of values. The algorithm in Theorem 4.2, not only
gives the monoid, but it also gives the standard basis for the ring ©, which
is very important in many applications. In the specific case of branches, the
algorithm will be shown to be effective and its efficiency will be improved
by eliminating several unnecessary verifications.

Recall that in the application of the algorithm of Theorem 4.2, the §-
processes are obtained by means of the minimal solutions of a linear homo-
geneous diophantine equation, which may be determined using, for example,
the algorithm in [CF).

All diophantine equations we will have to consider are of the following
particular form

3 &
ZaiWi = E aizi.
i=1 i=1

For all § =1,...,s, we have a minimal solution of the form
©,...,1,...,0,0,...,1,...,0),

where the only nonzero entries are in positions § and s + j. These solutions
will determine S-processes that are identically zero, hence irrelevant. On the
other hand, if (e, ) is a minimal solution, so is (3, «). But these solutions
determine, modulo a constant factor, the same S-process. So, it is sufficient
to consider only one of them. From now on, when we mention the minimal
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S-processes, we will exclude the trivial ones and the redundancies detected
above.

The algorithm starts by taking a representation of O as a subring K[| Fy]|
of K[[T]} with Fp a finite set. In the step 4, the algorithm produces a finite
set F; such that K[[Fo}] = K|[F;]]. Suppose that one can get by some mean
a majorant ¢; for the conductor ¢ of v(0). By Remark 4.2 every minimal
S-process of F; which after finitely many reductions has value greater or
equal to ¢; will be disregarded, since any final reduction of it modulo F} will
be zero. This in general reduces drastically the number of final reductions
of S-processes to be performed in order to produce the finite set Fiyq.

In this way we have the following:

ALGORITHM FOR STANDARD BASIS FOR @

INPUT: Fy;
DEFINE: F_; :={,i := 0;
WHILE F; # F;_; DO
¢; = majorant for the conductor of {v(F;));
S :={s; s is a minima} S-process of ¥}, not computed
in previous step with v(ht(s)) < ¢; — 1};

R:={r; s&ereSandr%O};
Fi1 = FUR;
1:=1-1

OUTPUT: F = F.

The majorants ¢; mentioned in the above algorithm ought to be deter-
mined, if possible, independently from the algorithm by any non specified
way (by inspection, for example). If this is not possible, just put ¢; = oco.

If O has a representation as a Puiseux ring K|[[Fp]], with Fy a Puiseux
set, the majorants ¢; may be systematically determined using Proposition 1,
Lemma 1 and Corollary 2. In many situations, as the examples will show,
the ¢; so obtained are decreasing, which makes the algorithm even more
efficient.
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ExaMPLE 4 Let C be the monomial curve

s = AE
Ty = I*n,
Since G = {z1,...,2n} is closed under formation of S-processes, it fol-

lows that G is a standard basis for O.
ExamrLE 5 Let ¢ be a branch given by the following parametrization

z="T%
y= Tlﬂ + T13.
Taking Fy = {z,y}, the only minimal S-process to be considered is
4 5
z=y*—z°.
Taking its final reduction modulo Fy we have
= 4T43 + 8T8 44740 3 752 if char(K) # 2
Z
2% 761 if char(K) = 2.

Independently from char(K), a quick analysis shows that there isn’t any
relevant minimal S-process in the next step of the algorithm. Therefore,
Fy = {z,y, 2} is a minimal standard basis for @. We give below the monoids
of values I, with their respective conductors ¢ (obtained possibly by inspec-
tion), according to the values of char(K).

T ¢
char{K) # 2 | (8,10,43) | 66
char{K) =2 | {8,10,61) | 84

ExaMPLE 6 Suppose char(K) = 0, and let the branch C given parametri-
cally by

y= 10 A TS
Taking Fy = {z,y}, the only minimal S-process to be considered in the
first step of the algorithm is z = y* — 2% The possible final reductions

modulo Fy, according to the values of the parameter a, are
= (4 — 5a)T% + (6 — 10a®)T% + (4 — 10a®)T55+ -
+(1 — 5a*)T% —aT%, ifa+# 4

2
3 22755 4 369760 4 11576765 70 . 2 75
’ﬁT 125T +3125T +277 + £ T
1fa=

{ z="T8 4T3

z

b
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In any case, there will not exist any relevant minimal S-process to be
considered in the next step. In this way, the algorithm ends giving the
minimal standard basis F1 = {z,y, 2}. We list below the possible monoids
T" and their conductors c.

T c
a# %] (8,10,45) | 68
a=%|(8,10,55) | 78

It is interesting to note that the monoid I" of the branch C depends on
the values of the coefficient a of the parametrization. This may only happen
if the parametrization is not Puiseux, since for a Puiseux parametrization,
Zariski observed that I" is independent of its coefficients (see Théoréme 3.9
of [Z4]).

EXAMPLE 7 Suppose char(K) = 0 and let C be given by the following
Puiseux parametrization

z="T%
z=T12 4 oT15

Taking Fy = {z,y,2} and using the procedure we descibed above to
determine an upper bound ¢ for the conductor ¢, we get ¢ = 58, indepen-
dently from the value of a.

The minimal S-processes and their final reductions, modulo Iy, are re-
spectively:

Yt — 25 = 4T 4 674 4 4740 4 T52,
(2-a)TR+T7%, ifa#2

¥ —zz =
72 ZY 0 jn 9
2aT% 4+ 02T, ifa #£0
22 _ g3
0, ifa=0
(24 a)T% + (14 2a)T% + aT*, ifa#-2
vz —at =

_ 3
—37% ot 2 gl gTa4 4 3T ip g g
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(8a —2)T® + (86® — )T +a®T®, fa#3

28— g% =
1md2 | 8us 350 1 5 : 2
gT +ﬁT —3'—2—7T4, 1fa=-3-

4(a — 1)T5! + 6(a® — 1)T%* + 4(a® — 1)T°7+

g = +a*=1)T®, ifas#1

0, ifa=1.

We now analyze all possibilities according to the values of a.

Ifa =0, then Fy = {78, T104713 T12 2723 4 T26} is 5 minimal standard
basis for ©. In this case, I" = (8,10, 12, 23) and ¢ = 38.

If @ = 2, then ) = {78,710 4 713,712 4 275 47?7 1 4T, TP} is a
minimal standard basis for @. In this case, I' = (8, 10,12, 27,29} and ¢ = 34.

If o #£ 0 and g # 2, then

B = {TS, T10 + T13’ T12 + aT15, (2 _ a)T23 + T26, 20 T27 + G2T3U}
is 2 minimal standard basis for K[[T8, T%0 + 728, 712 4 ¢T%]]. In this case,
I'=(8,10,12,23,27) and ¢ = 30.

This example lllustrates the known fact that the monoid of values I" of a
space branch doesn't depend exclusively from the terms of a parametrization
of the branch, but also depends on the coefficients of the parametrization,
even when the parametrization is a Puiseux set, in contrast with the plane
case as observed in Example 6.

As we saw in Theorem 4.1, standard bases for algebras solve the mem-
bership problem for subalgebras. This is illustrated below.

EXAMPLE 8 Suppose char(K) = 0 and let C be the branch of Example 5
above. In this case, F' = {z,¥, z} is a minimal standard basis for ©, where
z=T8, y=T10 4T3 and z = 4T* + 6746 .| 4749 4- T52,

We want to decide whether the series g = 474% — 14749 — 17752 — 6755
and h = 473 — 137%° — 1772 — 675 belong or not to .

To malke such a decision, it is enough to compute a final reduction of g
and h modulo the set F. Indeed, we have

g 2 —6T46 — 18749 — 18752 — 675 22

h =55 6T — 17740 — 18752 — gT55 0278 a9,

Therefore, g € O and h & O.
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The examples 4,5,6 and 7 above show how to compute I" for branches
given in parametric form. When the branch is given by a Cartesian repre-
sentation, it is also possible to make the computations as we will see below.

Let C be a branch in K[[X]] = K[[Xy,..., X,]], given by a Cartesian
representation fi,..., fr. As we commented above, the value of an element
g € O is the codimension in K[[X]] of the ideal I = {g, f1,..., fr). This may
be computed by means of a standard basis for the ideal I.

Let F = {hy,..., hs} be a subset of M\ {0}, and let H = {h,... vhs} C
K[[X]). Since we know how to compute values of elements in @, we may
determine all minimal solutions of the diophantine equation associated to the
equality v(F*) = v(¥#5), where a, 8 € IN#F, Now, to produce the minimal
S-process of F, associated to a minimal solution (¢, 8) of the diophantine
equation, we must find the unique a € K such that

v(F® — aF?) > v(F%) = o(F#).

The constant ¢ may be determined computing a standard basis for the

ideal {f1,..., fr, H* — aHP) and determiming for which value of a one has
: K[[X]] : KiX]]
dim > dimgp—F———.
“{fuyee s oy HY — aHPY - By HO)

In the same way one can perform the reduction of an element of ¢ modulo
F'. This is all we need to apply the algerithm to get a standard basis for ¢,
Notice that since we only can control values of elements, we may eventu-
ally determine a minimal standard basis for but not a reduced standard basis
for the ring of coordinates of a curve C given by a Cartesian representation.

EXAMPLE 9 Suppose that char(K) = 0 and let C be the plane branch
defined by f(X,Y) =Y® —4X3Y® — 8X5Y5 4 (6X% — 26 X7)V*¢ + (16 X8 —
24X°)Y3+(—4X°+36X10 - 20X ) Y2 +-(—8X N +16X 12 —8X¥)y 4+ X124
6X1% + 21X — X15,

If 7 € O, it is well known (see Theorem 21.19 in [Sei]) that

K{X,Y]]
(f, 9}

where Ry (f,g) is the resultant with respect to Y of f and g.
We apply the algorithm to obtain a standard basis for O, starting with
Fp = {z,y}. Since v(z) = 8 and v(y) = 12, we take ¢y = oo,

U(g) = dimK = OrdX(RY (f1 g)),
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The only nontrivial minimal S-process in this step is of the form 3 —az3.

Since
Ry(£,Y?2—aX®) =(a—1)°X% + (o — 1)*(—52a® + 82 + 12) X B+
+(—40a° 4 494a* — 1256a® + 500a° + 480a + 78) X + - -+,

the unique choice for a to get an S-process is @ = 1, and in this way v(y® —
z?) = 26.

For next step we take F| = {z,y,z = y* — 2°}. Since the monoid
(v(Fy)) = (8,12,26) C v{0) doesn’t have conductor, we take ¢; = oo, and
therefore analyze all the minimal S-processes of Fj. The resultants of each
of these S-processes and f are:

Ry (f, 2% — 01 X?Y?®) = (a1 — 4)8 X% + (180} + 632a] — 1315645 + 1724843+
+457280a% — 1078277203 — 215347243 — 1417216a; — 16384) X3 + ..

Ry (f, Z% — ag X%Y) = (az — 4)8 X2 + (6a§ — 128a] + 76925 — 233643
+11840a% — 13004843 — 384000a3 — 1122304a; — 80384) X33 - -

Ry (f, X 2% —a3¥®) = (a5 —4)8X® + (30§ + 4272a] — 4426048 — 14953605+
+2287168a4 — 345190403 — 700313643 — 1712128a3 — 16384) X% 4 ...

Ry(f, Y22 — a4 X®) = (aq — 4)8X% + (—120a] — 995648 + 4259245+
+9792a% — 590848a% + 161484843 — 2138112a4 - 376832) X5 + ...

Ry(f, 2% — a5 XY?®) = (a5 — 16)3X10¢ 1 ...
Ry(f, Z* — ag X'3) = (ag — 16)3 X104 4 ...
Ry (f, 2% — a7Y'3) = (a7 — 64)3 X156 + ...

Note that in order to the above expressions define S-processes, we have
to take @y = ag = 63 = a4 = 4, a5 = ag = 16 and gy = 64. But in this way
v(2? — 42%y) = 53, and since the conductor of the monoid (8, 12,26,53) is
84, we may disregard the last three S-processes because their values exceed
84,

A simple verification shows that in the next step there will not be any
non-trivial S-process with height less than 84.

It then follows that F% = {z,y,2z = y® — 2°,w = 22 — 42¥y, 1y = 2% —
4223 ug = 222 — 445 u3 = y2* ~ 428} is a standard basis for O.

Since v(u3) = v(w), v(uz) = v(zw) and v(us) = v(yw), we have that
{z,¥, z,w} is & minimal standard basis for ©. So the monoid of values of C
isI' = (8,12, 26, 53), and ¢ = 84.
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The above method may be used without restriction for any branch (not
necessarily plane, and in any characteristic).

"The minimal standard bases of the local ring @ of a branch C depend
upon the Cartesian representation of C' we start with, but the set of values
of the elements of a minimal standard basis for C doesn’t, as we observed
immediately after Proposition 4.2. This implies that the monoid of values of
C' depends only upon C, and not upon the Cartesian representations of C.

5.3 Plane Branches

In this section, C' will be a plane branch with local ring of coordinates & and
monoid of values T, with conductor ¢. Since a plane branch may be defined
by a single power series f € K([X,Y]), it makes sense to talk about Milnor
and Tjurina numbers associated to f (cf. Section 3.2). Are these numbers
only dependent on C, or depend on the particular Cartesian representation
J of €7 We will see below that these numbers are intrinsically associated to
C.

Let g = uf, where u is a unit in K[[X,Y]]. The ideals (fx, fy) and
{g9x,gy) may be different but nevertheless, we have by a topological result
of Milnor [Mil], later proved algebraically, in characteristic zero, by Risler
[Ri], that

KIX, Y]] _

(f X f Y)

Since I', and hence ¢, is intrinsically associated to C, then the above
equation shows that u(f) depends only upon C, and will be called the Milnor
number of C and denoted by u(C).

On the other hand, it is an easy exercise to show that

p(f) = dimg

(f’fX:fY) = (g1gX»gY)a

ang therefore,

= aimg ZLOYN o EIXYY
T(f) = dimge (fs Fxy fr) d “{9,9x.9v) (@),

allowing us to define 7(C) = 7(f), which will be called the Tjurina number
of C.

We have seen in the last section that it is possible to determine a minimal
standard basis for the ring ©. However, in the case of plane branches, and
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when char(K) = 0, Zariski and Azevedo and independently Abhyankar and

Moh, also described methods to determine minimal standard bases for O.

Such methods will be presented below and compared with our algorithm.
From Remark 1, we may look at O as a Puiseux ring

Kllz,9]] = K[[T*, 3 T € K[V,

i>vyg

where vg is the multiplicity of C.
Let us define, for j € IN, the following integers:

Bo=e =vo, mo=1,
B; =min{i; a; #0, and e;y fi},
€5 = ?CD(ejﬂly ﬁ.’l)!
_ &i-1
Ty = -%;".
From Proposition 1, it follows that there exists g > 1, such that e, = 1.
The sequence (&g, £1,. .., 08,) is called the characteristic sequence of C.

ZARISKI-AZEVEDO’S METHOD

Let w be a primitive vp-th root of 1 and let ¢, the K-automorphism of
K[[T] defined by @q(T) = w*T.

If 4 = iny, w1, We define

Zi=Y aiX%,
i< By
fork=2,...,9. Let
nomn1.Ne—1
P(Y)= JI (¥—walZs)eKIX]Y].
a=1

Zariski, in [Z4], and Azevedo, in [Az|, showed that {X,Y, P(Y); k =

2,...,g} are series whose values are the minimal system of generators of the

monoid I' = »(O\ {0}) of the branch.
ABHYANKAR-MOH’S METHOD

From the Weierstrass Preparation Theorem (see Theorem 2.1), the branch
C may be defined by an irreducible serie of the form

o
FXY)=Y"+ > A(X)y™,
i=1
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where 4;(X) € K[[X]], and A;(0) =0, fori = 1,.. ., vp.
Let d € IN be such that d | vg. We define the d-th root’s approzimation
of f as being the series

i1
b 4 4, -
Vi=y?+) axy?-,
i=1

where the C;(X) € K|[[X]] are obtained in a unique way by the relations

AX) =dC(X)+ D as,.6.,Ci(X)%. - Ciug (X)51,
iy b=

i=1,...,%, where

. _ d (521 65)!
Wt T S+ 6 ) TR (51)

Abhyankar and Moh, in [AM], proved the existence and the unicity of
the root’s approximations of f, and that the values of X and of *-yf, k=
1,...,g give the minimal system of generators of the monoid I" of the branch.

COMPARING METHODS

Although our algorithm, the result of Zariski-Azevedo and that of Abhyan-
kar-Moh give us minimal standard bases for ¢, these bases are not necessarily
the same.

Consider the following example:

Joz=18
C: y=T12+T14+T15_

A Cartesian representation of C is

F(X,Y)=Y®—4X3Y®-8XOY S+ (6X°-26X7)Y4+(16 X8 —24X°)Y 3+
(—4X? 4+ 36X10 — 20X1)V2 + (-8 XM 416X 12 — 8X 1)y 4
X12 4 6_X'13 + 21X14 _ X15-

By Example 9, our algorithm give the minimal standard basis

3

F={z,y,2 =4~ 2% w=2" -4 = (4 — 2°)? — 4a%y},
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while the method of Abhyankar-Moh gives
F={z,y,2=19" — 2% w = 2% — 42°y — 1327}
and the method of Zariski-Azevedo,
F={zyz=9"—2%wy = 2% — 455y — 2"}

REMARK 2 If one is only interested in determining the monoid of values "
of a plane branch in characteristic zero, there are other efficient ways to do
it.

If the branch is given parametrically, then Zariski in [Z4] shows that
the minimal set of generators of T" is given by vp,...,%, is terms of the
characteristic sequence fy, .. ., 5,, as follows:

vo=p vigr=mv+ B —B, i=0,...,9~1 (5.3)

If the branch C' is given by a Cartesian representation, then Dickenstein
and Sessa in [DS] show that Sy = vy = v(X), By = ( flc,”o_l)), and

ﬁj+1 = v(f}(’ej_l)) _U(f}(’ej)), .? = 1:' - g 1:

where .
F=Y" 4> A(X)Yvet

i=1

is a Weilerstrass polynomial representing C and fl(,r) is the rih partial deriva-
tive of f with respect to Y. Now, the generators of I' may be computed by
formulas (5.3).



Chapter 6

STANDARD BASES FOR
SUBMODULES

In this chapter we will present the theory of standard bases in the following
context of modules.

Let A be a complete subalgebra of K[[X]] = K [X1,..., Xs]] and let M
be a complete A-submodule of K[[X]]. What is the corresponding notion
of standard basis for M as an A-module, and how one may compute such
objects?

In the context of polynomial rings and when M is an ideal of A, Miller
in [M] introduces the concept of SG-Basis to answer such questions. Here
we generalize Miller’s result to the case of M a submodule, and extend it to
the context of formal power series rings.

From this point on, A will denote a complete subalgebra of X [[X]] with
a given standard basis G, and M a complete A-submodule of K [[X1) (for
example, a finitely generated A-submodule of K[[X])).

6.1 Standard Bases for Modules

In what follows, we will assume that the monomisal order we are working with
in T™ is the monomial order that was used to compute the standard basis
G of A. Recall that the monomial order must have the finiteness property
when we reduce modulo infinite sets.

In our setting we have that Ip(M) is an Ip(A)-monomodule.

79
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DEFINITION Suppose that the module M is generated by a set H. We say
that H is a standard basis for the A-module M, if the Ip(A)-monomodule
Ip(M) is generated by 1p(H).

In other words, H is a standard basis for M, if for all m € M \ {0} we
have

Ip(m) = Ip(ag),

for some a € A and some g € H.

Since G is a standard basis for A, we may write any ¢ € A as ¢ =
Yoo baFE, where b, € K, Ff is a G-product and the sum has amplitude
one (this follows readily from the reduction process of the elements of A
modulo a standard basis). If FS is the G-product with minimal order in the
above sum, then lp(a) = Ip(F%). Therefore we may rephrase our definition
as follows.

A set H of generators of M over A is a standard basis for M, if for all
m € M\ {0},

Ip(m) = Ip(Fyg),

for some G-product Fg and some g € H.

In analogy with standard bases for ideals and for algebras, we will define
a final reduction of an element of K[[X]] modulo & subset H of M, possibly
infinite, which makes sense in the module context.

We say that h € K[[X]] reduces to r modulo (H,G) if there exist b € K,
a G-product F® and g € I such that

r=h —bF%g,

with Ip(r) > Ip{h}, whenever r # 0.

In this case we write

(HG)
h'—' r

and say that r is a reduction of h modulo (H,G).

When r is obtained from h through a chain (possibly infinite) of reduc-
tions, modulo (H, G), and cannot be reduced further, we say that r is a final
reduction of h modulo (H,G), and will write

h (HG) T

Note that since M is complete we have that h—r € M, for all r obtained
from k by any chain of reductions. Recall that to have a well defined final
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reduction when H is infinite we must take an order in T" which has the
finiteness property.

As in the previous contexts, a final reduction 7 will be called a complete
reduction, if for all ¢ € T(r), we cannot reduce ¢ modulo (H, G).

We will now introduce the central notion of S-process in the present
context.

DEFINITION Let A be a subalgebra of K[|X]] with a given standard basis
G. An S-process of a pair of elements g, h in K[[X]] over G is an expression
of the form

S(g,h) = aF%g + bFPh,

where a,b € K and F'*, F# are G-products, such that
Ip(S(g, 1)) > min{lp(F%g), Ip(F#h)} = h(aFg + bF%h),
whenever S(g, k) # 0.

The following theorem will guarantee the existence of standard bases for
modules and at the same time will give several characterizations for them.
The proof we will give is very similar in spirit to that of Theorems 2.3 and
4.1, but will have to be adapted due to the differences between the notions
of S-processes and reductions in each context. It will not be omitted for the
sake of completeness.

THEOREM 1 (STANDARD BASES FOR MODULES IN K([X]]) Let A be a com-
plete subalgebra of K([X]] with a standard basis G.

1) Bvery complete A-submodule M of K|[[X]] has o standard basis.

2) Given a non-empty subset H of K|[X]], such that the A-submodule M
generated by H is complete, the following assertions are equivalent:

(a) H is a standard basis for M.

(b) All final reduction, module (H,G), of any element of M is zero.

(c) H is closed under S-processes; that is, every S-process of any pair of
elements of H over G has a vanishing final reduction modulo (H, G).

(d) Every mon-zero S-process of any pair of elements of H over G has a
representation of the form 3°, baFfha, where by € K, FY is o G-product
and ho € H, with height greater than the height of the S-process itself.

PrROOF Proof of 1: This is obvious because M is a standard basis for
itself.

Proof of 2: (a)== (b) Suppose that H is a standard basis for M. Let
m € M and r a final reduction of m modulo (H, G), then from the definition
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of reduction it follows that r € M. If r # 0, since H is a standard basis,
there exist a G-product F® and h € H such that Ip(r) = Ip(F*h), which
contradicts the fact that 7 is a final reduction modulo (H,G). Hence r = 0.
(b)== (c) Let s be an S-process of a pair of elements of I over G. Since
s € M, it has a zero final reduction modulo (H,G).

(c)=(d) lets= aF®h+bFfg # 0be an S-process of the pair of elements
h, g of H over G, with some vanishing final reduction modulo (#, G). Recall
that any reduction of an element f consists of subtracting from f a scalar
multiple of a G-product times an element of H, getting an element which
is either zero or has leading power greater than the leading power of f.
Therefore, since s has a zero final reduction, we may write

5= E cyLyhy,
8

where the LY are G-products, ¢y € K and hy € H, with amplitude one.
It then follows that

nt(> " ey LYhy) = Ip(s) > ht(aF*h +bFFg),
¥

proving the assertion.
(d)==(a) It will be sufficient to prove that every element m € M\ {0} has
a representation of the form ¥, by Fohe, where b, € K, F§ is a G-product
and h, € H, with amplitude one. This is equivalent to say that for every
element m € M \ {0} there exist a G-product F** and h € H such that
Ip(m) = Ip(F*h), which means that H is standard basis for M.

Let m € M\ {0} and take a representation

m =Y asFihs, (6.1)
&

where a5 € K, the F‘s are (-products and hy € H, of least amplitude A,
among those representations with maximum height.

Suppose by absurd that A > 2. Suppose that Ip(aqFghe) and lp(aﬁF 5 he)
are equal to the height of the sum in (6.1).

Therefore, there exists b € K such that

5 1= aaFha +bagFihg (6.2)

is an S-process of the pair hq, hg in H, over G.
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Since by hypothesis, there exist ¢, € K, G-products L7} and elements g,

in H, such that
5= ey Loy, (6.3
po

with
ht(Zc:", 297) = 1p(s) > ht(aaFZho + bagFLhg).

Now, from (6.2) and (6.3), we have
aoFShe + aﬁthg =(1-— b)aﬁthg + Z cyLlgn.
v

So we can write

= (1—blagFghg -+ E eyLlgy+ Y asFihs. (6.4)
S+a,f

Suppose that b # 1. Then the representation of m given in (6.4) will
have the same height as the representation (6.1), but a smaller amplitude,
which is a contradiction.

Suppose that b = 1. If the amplitude of the representation (6.1) of m were
two, then the height of the representation (6.4) would be greater than the
height of the representation (6.1), which is a contradiction. If the amplitude
of representation (6.1) of m were greater than two, then the height of the
representation (6.4) would be equal to the height of representation (6.1), but
the amplitude would be smaller, which again is a contradiction.

O

In the same manner we did for subalgebras and ideals, we will define
below minimal and reduced standard bases for modules.

DEFINITION Let A be a subalgebra of K[[X]] with standard basis G, and
let A be a complete A-submodule of K[[X]] with standard basis H. The
Basis H will be called a minimal standard basis for M, if for all h € H we
have Ip(h) # Ip(F*g) for all g € H \ {h}, and all G-product F<.

DEFINITION A minimal standard basis H of M will be called reduced if all
element g € H are monic and for all ¢ € T(g) \ {Ip(g)}, we have ¢ 5 lp(F*h)
for all h € H and all G-product F®.

Since the following results are analogous to the corresponding results for
subalgebras, with identical proofs (Propositions 2.2 and 2.3), these will be
omitted.
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PROPOSITION 1 Let A be a subalgebra of K|[X]| with standard basis G, and
let M be a complete A-submodule of K{[X]] with standard basis H. Ifh € H
is such that Ip(h) = lp(Fg) for some g € H and some G-product F¢, then
H' = H\ {h} is also a standard basis for M.

PROPOSITION 2 Let A be a subalgebra of K[[X]] with standard basis G. Any
complete A-submodule M of K[|X]] has e unique reduced standard basis®.

6.2 The Analog of Buchberger’s Algorithm

In this section we will present the analog of Buchberger’s algorithm to de-
termine the standard bases for complete A-submodules of K[[X]], where A
is a subalgebra of K|[X]] with a given standard basis . For this purpose we
are going to describe more explicitely the S-processes of pairs of elements.

An S-process aF%g + bFPh over G of a pair of elements g, h in K[[X]],
where F' = {f1,...,fs} € G, is determined, up to a scalar multiple, by a
vector (a, B) € IN%, that is a solution of the system

Ele OtiOI‘d.Xj (lp(fl)) + Ordxj (lp(g)) = (6 5)
2= Brordx; (Ip(fi)) + ordx; (Ip(R)); 7 =1,...,7n. '

We denote by D} the minimal set of solutions of system (6.5), and by
Dp the minimal set of solutions of the associated homogeneous system (see
Example 1.12). The S-processes of the pair g, h associated to the elements
in Dy will be called the minimal S-processes of the pair g, h, relative to the
finite set F.

DEFINITION A minimal S-process of the pair g, h € K[[X]] over G is a
minimal S-process relative to some finite subset F of G.

Here again, as in the case of subalgebras, in virtue of Example 1.4, we
have that if F C E C G and F is finite, then any minimal S-process relative
to F' is also & minimal S-process relative to E.

The Proposition below will be crucial for the algorithm to compute stan-
dard bases for modules.

PROPOSITION 3 Let A be e given subalgebra of K[[X]|, with a standard basis
G. Let M be an A-submodule of K[[X]| generated by a set H. Suppose that

INote that the uniqueness depends on fixing a given monomial order in T™. If we
change order, we may find different reduced bases.
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Jor every ﬁﬁite subset F of G, and every pair of elements g,k in H, each
minimal S-process of g, h relative to F, has a zero final reduction modulo
(H,G). Then every S-process of any pair of elements of H, over G, has a
representation of the form 32, byFihy, where by € K, F is a G-product
and hy € H, with height greater than the height of the S-process itself.

PRrROOF Modulo a scalar multiple, we may assume that an S-process of
a pair g,h € H over G is given by F% + aFPh, where F* and F® are
G-products and @ € K is uniquely determined.

Let Ssp = Fog 4 a.g’gth be a minimal S-process of the pair g,h € H
relative to F. Since Sjp has a zero final reduction modulo (H,G), from the
proof of Theorem 1, (c) == (d), we may write

Ss0= > ey )by,
¥
where ¢y € K, F} is a G-product, hy € H and ht(3, ey FThy) > Ip(Fég) =
Ip(F?R) = ht(Fig + aFPh).
Let S = F®g+ aF'#h be any non-zero S-process of the pair g, b, relative

to F. Since the solution (a, ) of the system (6.5) may be written in the
form

(Cl:,ﬂ) = (6?9) +an,e(.0: E))

IX;

where (6,6) is a minimal solution of the system (6.5), (p,¢) is a minimal
solution of the associated homogeneous system and n,. is a non-negative
integer, we may write

Feg = (H(FP)“F&) Fg,

PE

FPh = (H(Ff)%-e) Fh.
BiE
Note that there exists a constant d € K, such that

H(F,a)np,e + dH(Fe)np,e
pE e

1s an S-process of G. Now, using the same argument we used in the proof
of Theorem 4.1 (c) = (d), we may write

TI(FPyree = —aJ[(Fe) e + 3 e B2,

/e Pt
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with e, € K, the FY are G-products, and ht(3>, e, F}') > Ip([1,, (F7)"o<) =

lp(Hp,e(Fe)np'e)'
Therefore,

Fag = (~d[L, (P + 5, ey ) Fg =
= (dIL (FY s + T, e FY ) (—asoFoh + Ty ey Fhy) =
= dasg (Hp,e (F E)""") FOh+ 5 baFthy =

= dasgFPh + Y\ baFdha,

where ht(3, baFhy) > Ip(F%g) = Ip(FPh).
Since the constant a is uniquely determined, it follows that ¢ = —dasg
and therefore,

S = ;b,\Fj‘h,\.
0

As a consequence of Proposition 3 and Theorem 1, and analogously to
the corollary of Proposition 4.3, we have the following result:

COROLLARY Let A be a subalgebra of K[[X]| with standard basis G and let
M be a complete A-submodule of K|[[X]] generated by a set H. Then H is a
standard basis for M if and only every minimal S-process of H over G has
a vanishing final reduction modulo (H,G).

REMARK 1 Note that if we take the pair h,h € H, a minimal S-process
of these elements over G, is not necessarily trivial, because the system (6.5)
being homogeneous may have non-trivial minimal solutions. However, a non-
trivial S-process of h, k is of the form § = aF®h + bFPh = (aF% + bFF)h,
where a,b € K and F® and F# are G-products.

Since aF® + bFP € A and G is a standard basis for 4, we have

aF® +pf S50,

In this way, if we reduce aF* +bF# by cyF7, we can reduce S by ¢, Flh.
So, § WS g,

REMARK 2 If A is a subalgebra of K[[X]] with standard basis G, then a
complete A-module M has a finite standard basis if and only if the Ip(A4)-
monomodule Ip(M) is finitely generated over lp(A); or more explicitely,
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Ip(M) is finitely generated over the monoid {Ip(G)). This means that there
exist g1,...,9» € M, such that for all m € M, we have that Ip(m} =
Ip(F**g;), for some G-product F'® and some i.

As an application of Remark 2 and from Proposition 1.3, we have that
any complete A-module M, where M C K[[X]] and A is a K-subalgebra of
K[[X]], has a finite standard basis.

In what follows we will present the analog of Buchberger’s algorithm for
modules.

THEOREM 2 (ANALOG OF BUCHBERGER'S ALGORITHM) Let A be o subal-
gebra of K[[X]] with standerd basis G. If M is a complete A-module gener-
ated by B C K[[X]|, then we ahways obtain (theoretically) a standard basis
H for M by the following algorithm.

INPUT: G, B;
DEFINE: Hy:= B and i :=10;
DO
S = {s; s is a minimal S-process of H; over G};
R:={r; s (HiG)+ randr#0, Vs € S}
Hi_*_]_ = Hi U R,
=141

OUTPUT: H = U;j>0H;.

Moreover, if M has a finite standard basts, then the above procedure will
produce one such basis, after finitely many steps.

ProoF Consider H = U;»gH;. A minimal S-process of a pair g, h € H
over (5 is, in particular, a minimal S-process of a pair of elements of H; for
some i.

By the algorithmn, this S-process has a vanshing final reduction, modulo
(Hi;l,G), and consequentely also modulo (H,G). Hence H is a standard
basis for M.

Suppose that M has a finite standard basis L. We will show that there
exists an index j such that H; is a standard basis for M.

Let

HyCH C---CH;C---CH.
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While H; \ H;.; # 0, we take r; € H; \ H;_; wich is the final reduction,
‘module (H;—y,G), of least order of a minimal S-process of a pair of elements
of H;_, over G. From the algorithm, we have that Ip(r;) < Ip(rit1).

Let ¢ = max{Ilp(h); h € L}. There exists an index j such that the
leading power of any element of P := H \ H; is greather than g.

If h € L, then Ip(h) = Ip(F*g) where F'* is a G-product and g € H.

Since Ip(h) < g, we have that g € H \ P, that is, g € H;. Hence, for all
h € L we have that Ip(h) = Ip(F&g) for some G-product F§ and g € H;.

In this way, given an element m € M, we have that Ip(m) = lp(Fg k) =
lp(Fg Fgg) = Ip(Flg), where Fg‘,Fg Iy = Fg F% are G-products, h € L
and g € Hj.

Hence Hj is a standard basis for M.

O

EXAMPLE 1 Consider the subalgebra A = K[[X*, X° + X']] C K[[X]],
whose reduced standard basis is G = {X*, X° + X5},

If a € A, then ordx(a) € (4,9). Moreover, if f € K[[X]] is such that
ordx(f) = 24, then f € A (because the conductor of (4,9) is precisely 24).

Consider the A-module M generated by B = {X3, X® — X'} (hence
complete, because B is finite). We already know that M has a finite standard
basis which we are going to determine.

Note that given f € K|[[X]]|, we have:

If ordx (f) > 27, then Ip(f) = Ip{X3)Ip(a), for some a € A.

If ordx (f) = 26, then Ip(f) = Ip{X® — X1)Ip((X°® + X%)2).

If ordx (f) € {23,24, 25}, then Ip(f) = Ip(X®)Ip(a), for some a € A.

Hence, if ordx (f) = 23, then f € M, because f can be reduced modulo
(B, G) to an element of M.

We apply the above algorithm to G = {X*, X° 4 X'%} and Hy = B =
{Xx3 X8 — x4}

Step 1:

We have that S is the union of the sets of minimal S-processes over G
of the pairs (X3, X?), (X8 — X4, X® — X1%) and (X3, X® — X14).

From Remark 1 we see that for the first two pairs, the S-processes reduce
to zero. For the third pair, module multiplicative constants, we have two
S-processes. The first is

8 = (X4)8X3 _ (Xg + X15)3(X8 _ X14),
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with ord x (51) > 35, which obviously will have a zero final reduction modulo |
(Ho, G). '
The second S-process is

Sy = (XQ + X15)X3 _ X4(X8 _ Xl4) — 2X18.

If char(K) = 2, then the algorithm stops.
If char(K) # 2, we proceed to the next step of the algorithm with Hy :=
{X‘?', X8 _ X14, 2X18}.

Step 2:

Beside the minimal S-processes computed in the previous step, which
will have zero reductions we also have the S-processes over G of the pairs
(2X78,2X18), (X3,2X®) and (X® — X' 2X!8). The first pair will give
no relevant S-processes. The second and third pairs have respectively the
following sets of minimal S-processes:

{2(X4)6X3 _ (XQ + X15)(2X18), (XQ + X15)3X3 _ (X4)3(2X18)}
and
{2(X4)7(X8 - X14) _ (XQ + X15)2(2Xm),
2(X9 + X15)2(X8 _ Xlé) _ (X4)2(2X18)}.

Since the heights of these S-processes have orders greater than 23, they
will have zero final reductions, modulo (H1, &), and consequently the algo-
rithm terminates.

Therefore the set

H:=H ={X°% X8 X1 2x8)

is a minimal standard basis of M, in any characteristic.






Chapter 7

EQUIVALENCE OF PLANE
BRANCHES

In this chapter we will apply the theory of standard bases for modules,
developed in Chapter 6, to obtain numerical invariants with respect to an
important equivalence relation among plane branches (finer than equisingu-
larity), which we will define later. In the context of analytic geometry, this
equivalence relation is the isomorphism between embedded germs of plane
irreducible curves. Our main invariant will be the set of positive integers A
corresponding to the values of elements of the module of Kahler differentials
on the curve. This invariant has been considered by several people and was
difficult to compute until the introduction of the methods from the theory of
standard bases for modules in formal power series rings that we are present-
ing here. This set A was already considered by Zariski [Z2] and by Berger
[Ber]. In 1967, Azevedo in his thesis [Az] uses the set A to study the Jaco-
bian ideal of an algebroid irreducible plane curve, stating a conjecture about
the maximum value of the Tjurina invariant in an equisingularity class. This
conjecture was shown recently by Heinrich (see [He]) to be false. In 1978,
Delorme in [D2] presented an algorithm to compute A for the generic curve
in an equisingularity class associated to a monoid of values of genus one.
More recently, Peraire, in [Pe], determined by other methods a set which,
after some interpretation (not given in her paper), furnishes the set A for
the generic curve in an arbitrary equisingularity class, extending Delorme’s
result. Our contribution in this direction is the development of an algorithm
that allows to compute A for any given algebroid irreducible curve.

91
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7.1 Kahler Differentials on Branches

Let C be an algebroid irreducible curve in K[[X]] = K[[X1,...,Xs]], where
K is an algebraically closed field of characteristic zero. So, C is a prime ideal
in K[[X]] such that the local ring O = K[[X]}/C has Krull dimension one.

DEFINITION The module of Kihler differentials over O is the @-module

O‘n
QdO =
( ?:167'.sz; fe C),
where {ej,...,e,} is the canonical basis of O™.

We will denote by dz; the image of e; in OdQ, fori =1, ..., n. Therefore,
the elements dz;, ¢ = 1,...,n, are non free generators of OdO as O-module.
Indeed, we have the following relations

> fxdz =0, VfeC.

i=1
‘We have the universal K-derivation map

d: @ — Odo.
g +— dg=3719x.dx;

REMARK 1 If C = {f1,..., fr}, then using the rule of the derivative of a
product we have '

on
(E?:l(fl)X{ei: R 12?:1(.}[‘1‘)}(56'5) ’

REMARK 2 The O-module OdO has, in general, a non trivial torsion sub-
module 7. In fact, there is a famous conjecture due to Berger [Ber| which
asserts that the local ring of an algebroid curve is regular if and only if its
module of Kahler differentials is torsion free. This conjecture is known to be
true when the curve is a complete intersection (and in several other cases),
but it remains open in general.

0dO =

We give below an example of a curve whose torsion submodule 7 is non
trivial.

ExXAMPLE 1 Consider the algebroid plane carve C defined by f(X,Y) =
Y" — X* with min{r,s} > 1 and GCD(r,s) = 1. If w = rady — sydz, we
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have that w # 0, but

Yo =rzyldy — sy de =
= rzy"ldy — sz’dz =
= z(ry" "ty — sz* ldz) =

= 2(fydy — fxdz) =0,

showing that w € 7. In fact, in this situation we have that

T= E 'y w0,
0<ids-2
0Sigr-2

Let C = {f1,..., fr) be an algebroid irreducible curve with local ring O
Recall the definition of the monomorphism ¢ from @ to K [[T]], given in (5.2),
which maps z; into p;(T) € K[[T]). Consider the ¢’-modules homomorphism

2?:1 gidz; — 30 90(93')'@5'1('&

where the structure of O-module on K[(77] is induced by the map .

(7.1)

PROPOSITION 1 Let C = {f1,..., fr) be a curve as above. The kernel of the
homomorphism 1 is the torsion submodule T of OdO.

PROOF Let w € 7. There exists an element g € O\ {0} such that gw = 0.
Therefore,

0 = ¥(gw) = p(g)P(w).

Now, since ¢ is injective, g # 0 and K[[T]] is a domain, it follows that
P(w) = 0 and therefore w € ker(y)).
Conversely, let w = > o7=195dz; € ker(); that is,

= dpi(T)
=1
Let K be the field of fractions of . We have that the r X 7 matrix
((fi)Xj)i,j

has rank n — 1 over K (see for example [Ma], Remark on page 192, adapted
to the power series context, and recalling that char(K) = 0).
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Select 2 — 1 linearly independent rows of the above matrix, which we will
suppose to be the first n — 1 ones, and form the n x n matrix M obtained
by adjoining the following last row

(91,2 9m)-
Now, note that, for ¢ =1, ..., r, we have that
Z () g (ixydz) =w@ =0, (79)
=1

Since the system of linear equations over K((T')} given by (7.2) and (7.3)
has the non trivial solution

= 4)

and ¢ is injective, it follows that det M = 0. But as the n — 1 first rows of
M are linearly independent, we have that the last one is a linear combina-
tion, over X, of the others. This implies that there exist h € O\ {0} and
hi,...,hp—1 € O such that

n n-1 n
hY_gsdei = hiy (fi)x;de; =0,
j=1 i=1 =1

proving the result.

From the above proposition, we have that

Odo
T

Since the theory of standard bases of modules was developed for sub-
modules of K[[X]], we will make our computations relative to OdO in the
O-submodule Im(v) (via ¢) of K[[T1]].

DeFINITION If w € OdO\ T, then we define the value of w as

v(w) = v(P)) +1

where the second v above is the canonical discrete valuation of O(= K[[T]]).

= Im(4).
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Since we are working in K|[T]] we have that the subalgebra w(O) (=
O) has a finite standard basis (this follows from the definitions and from
Example 1.6). On the other hand, the @-submodule Im(7)}) of K[[T]] also has
a finite standard basis (this follows from Proposition 1.3 and the definitions)

DEFINITION We will say that a differential w € OQd® is an ezact differential,
if there exists g € O such that w = dg. If this is not the case, we say that w
is a non exact differential (NED).

The K-vector space of all exact differentials will be denoted by dO. -

REMARK 3 Let I’ be the monoid of values of the curve &' and ¢ its con-
ductor. If w € OdO is an exact differential, then v{w) € I'. Equivalently, if
v(w) €T (that is, v(w) is a gap for I'), then w is a NED.

On the other hand, if v(w) > ¢, then w is an exact differential. Indeed,
since v{w) 2 c, there exists hy € O such that v(w) = v(dhy). Hence there
exists ¢y € K such that v(w — ¢1dh;) > v(w). In the same way we get
recursively & summable family {¢;dh;; ¢ > 1} such that

w=> cdh; =d(>_ ch;) € dO.
i1 i>1

We define
A = v(0dO\ {0}) = v(Em(y) \ {0}).

Note that for all & € O we have that v(dh) = v(h). This in particular
implies that I C A.

7.2 Standard Bases for @d®

In this section we will improve the algorithm, we presented in Chapter 6
(Theorem 6.2}, to compute standard bases for the ¢-submodule Im(4p) of
K([T]). Such standard bases will be referred to as standard bases for Ode.
In order to do so, we malke some remarks.

Let B C K{[T]| and let @ be a standard basis of algebras for . Recall
from Remark 6.1 that any minimal S-process over G of a pair g,¢ 1n B has
a zero reduction modulo (B, (), and doesn’t need to be considered in the
algorithm of Theorem 6.2,

The algorithm of Theorem 6.2 starts with a generator set of the module
for which we want to compute a standard basis. In the particular case of
OdQ we take for example {dz1,...,dz,} as a set of generators.
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We may improve the algorithm starting instead with the following set of
generators: {dh; h in a minimal standard basis of @}. This will avoid some
unnecessary computations and at the same time will allow more reductions
at each step of the algorithm, eliminating eventually some steps.

Besides the above economy in the algorithm, we may use the concept of
greatest gap to eliminate some irrelevant S-processes, as we show below.

DEFINITION The greatest integer [ such that I € A is called the greatest gap
of A (note that one always has ! € I" and ! < ¢— 1, where ¢ is the conductor
of T').

Let [ be the greatest gap of A. In a given step ¢ of the algorithm of
Theorem 6.2, consider the set

A; = {v(G*w);w € H; and G® is a G-product},

and denote by l; its greatest gap, which is obviously greater or equal than
I. Since every minimal S-process over G with height greater or equal to T
has a zero final reduction modulo (H;, G), it can be neglected.

In this way, we get the following improvement of the algorithm to com-
pute standard bases for OdQ, starting with a minimal standard basis G of
O.

ALGORITHM FOR STANDARD BASIS FOR OdO

INPUT: G}
DEFINE: H_, := 0;
Hy:={dh; h € G} and i :=0;
WHILE H; # H;—; DO
A = {2(G%); w € H; and G* is a G-product};
I; .= greatest gap of Aj;
{

.8 := {s; s is a non trivial minimal S-process of H; over ¢
with v(ht{s)) < I;, not computed in the previous step };
R:={r s L vses and r # 0};
Hip:=H;UR;
=1 1;

OUTPUT: H := Hi,A = Az,l = li.
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REMARK 4 The above algorithm computes exclusively NEI). The NED
belonging to a minimal standard basis of @d® will be called minimal non-
exact differentials , or simply MNED.

REMARK 5 Berger, in [Ber], proved that the length I{T) of the torsion
submodule T of OdO, for a complete intersection curve C is given by

I(T) = c— #(A\T),

or equivalently
c
UT) = £+ #IN\ A),

where ¢ is the conductor of the monoid T of C.

So, our algorithm allows to compute I(7") for complete intersections. On
the other hand, Zariski in {Z2], Theorem 1, shows that for a plane branch
C, we have

I(T)=7(C).

REMARK 6 As in the algorithm to compute standard bases for algebras,
it will be convenient to establish a uniform way to perform reductions. For
example, if it is possible to reduce a given element using G%g or GPh, where
g:h € H, we will make the reduction using G%g when v(g) < v(h). We still
use G*g when v(g) = v(h) and G* is chosen instead of G? in the reduction
process used for the construction of the standard basis of @ (see Remark
4.1).

ExaMPLE 2 Let C be the monomial curve

zg = T#
C: :
Tn, = T,
Irom Example 5.4 we know that G = {z1,...,zn} is a standard basis

for O. Now, it follows immediately that H = {dz, ..., dz,} is a standard
basis for OdO.

EXAMPLE 3 Let
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From Example 5.7, we have that G = {z = T8,y = TV + T4,z =
T12 4 715 o = T2 4+ T o = 272 + T} is a minimal standard basis for
O and T = {8,10,12,23,27) is the monoid of values of C, whose conductor
is ¢ = 30.

Note that I" is not symmetric, so C' is not Gorenstein and therefore it is
not a complete intersection.

We now apply the algorithm to Hy = {dz, dy, dz, du,dw}. We have that
lp = c—1 =29 is the greatest gap of A¢ and the set of minimal S-processes
of Hy over G, to be considered is

S = {4zdy — bydz, dydy — Szdz, 6ydy — Szdz, 2zdz — 3zdz,

5ydz — 62dy, 2zdz — 3a2dx, 222dz — 3y?dx}.

Computing the final reductions of the above S-processes modulo (Ho, G),
we have

dzdy —bydz = w; = W(w) = 1272
Sydz — 62dy = wp = h(wg) = —3T% — 3T%,

Since v(wy) = 21, v(we) = 25 and v(zw;) = 29, the greatest gap of H is
I; = 19, which allows to neglect the other S-processes.

A simple analysis shows that there are no extra minimal S-processes
to be considered in the next step. So, the algorithm terminates giving the
following minimal standard basis

H = Hy = {dz, dy, dz, du, dw, w, wa}

for OdO.
We also get

A=A = {0,8,10,12,16,18,20,...}.

ExaMPLE 4 Consider

z =T
C:{ y=T8 4279
z=T10 471,

Applying the algorithm to compute standard bases for algebras we get
the following minimal standard basis for O:

F={z,yz,w=02—y= —3T17—4T18,u=y—z—a:3 =3T19+2T2°}.
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"The monoid of values of C is then T" = (6, 8,10,17, 19}, whose conductor
is ¢ = 22.

Applying the algorithm above, starting with Hy = {dz, dy, dz, dw, du}
whose greatest gap is iy = ¢ — 1 = 21, we have the following set of minimal
S-processes:

§ = {3zdy — dydz, Sydy — 42%dz, dzdz — Sydy, 3zdz — 52dz, 32dy — 4z?dz

dydz — Szdy, 3ydz — Sz’dz, 32dz — Saydz, dzdz — 522dy}.
Since
Szdy — dydz =w = P(w) = 6T,

we have that v(w) = 15 e v{zw) = 21. So, the greatest gap of Hj is I = 13,
showing that the other S-processes reduce to zero modulo (H1,G) and also
that there are no further S-processes to be analyzed in the following steps.
Therefore the algorithm stops giving the following minimal standard basis
for @dO:

H = Hy = {dz, dy, dz, dw, du, w}.

This example is interesting because C is a complete intersection (see
[HK]) but I is not a complete intersection monoid (see definitions in Chapter
5).

Therefore, by Remark 5 we have

(T) = c— #(A\T) = 22 — #{15, 21} = 20.

ExXAMPLE 5 Consider

' z="T%

Using the algorithm to compute standard bases for subalgebras, we get
the following minimal standard basis for ©:

G={z,y,z=9%—2° =27% + 7%},

whose associated monoid of values is I = (8,12, 25), with conductor ¢ = 80.
Applying the above algorithm starting with Hy = {dz, dy, dz}, we have
Step 1:

The greatest gap in this step is Iy = 79, and the set of minimal S-
processes to be considered is
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S = {3ydz — 2zdy, Sydy — 1222dz, 8zdz — 252dz,
12ydz — 25zdy, 2522 2dx — 8y?dz, 2byzdy — 122%dz}.
Computing the final reduction of the elements of .5 modulo (Hp, @), we

have
Syds —2zdy = wy = Plw) = —2T%,
8ydy — 122%dx =% 0,
8zdz — 2bzdr = wa = Plws) = 8T,
12ydz — 252dy = w3 = {ws) = —387°%7 — 13798,
22 d
2522 2dx — Sy*dz 22—?2 wy = Plws) = BETO0 4 52751,
~ 83,4
25yzdy — 1223dz 2 i %M; = ’ﬂb(%w«;) = %%6’.1”50 + %%Tsl.
Step 2:
Since v(zws) = 59, v(zwg) = 63, v(zzw;) = 67, v(z%w;) = 71 and
v(zz%w;) = 79, the greatest gap of

Hl = {d:l,‘, dy, dZ, W, We, W3, w4}

is l; = bb.
The minimal S-processes of Hy, over GG, which have not been analyzed
in step 1 and whose heights are less than 7%, are
2dz + 8ywy, zdz + 25ywy, zdy + 122%w, ydz + 2522w, yzde + 8z3wy,
zzdy -+ 1252wy, 22w + yws, 4zws — 382wy, 19yws; + dwws, dyws + 1922w,

Computing the final reductions modulo (Hi, G), we get

zdz + 8yw; —2» 0,

zdz + 25ywy Bun, 0,

zdy + 1222w, =2 0,

ydz + 25z%w; 2, g,

yrdz 4 823w, % wy = th(ws) = —4T*S,

-

z2dy + 1297w, Ehirg %wg, = 1,[;(%%) = —6T8,

We have that v(zw1) = 46, v(w;) = 47,v(z2w;) = 54 and v(zws) = 53.
So, the greatest gap of

Hy := {dz, dy, dz, w1, ws, w3, wa, ws}

is I3 = 43, and consequently we may neglect the other above S-processes
and may go to the next step.
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Step 3: )

Since in this step we have to compute the minimal S-processes involving
only ws and v(ws) > Iz, the algorithm stops, giving the standard basis H :=
Hy for OdO,

Since C is a complete intersection, from Remark 5 it follows that

UT)=c—#A\D) =

= 80 — #{21,29, 34, 38,42, 46, 47, 51, 54, 55, 59, 63, 67, 71, 79} =
= 80— 15 = 65.
'The above example is taken from [Az] page 79, where using rudimental

methods the NDE are computed, but the existence of a differential with
value v(wy) wasn’t detected, leaving the example incomplete.

Although I" C A, it is in general false that two curves having the same
set A, will have same monoid of values. Here is an example:

EXAMPLE 6 Let C) and Cs given by

=76 =79
Cr:¢ y=TH 4717 Cy:q y=TH 4188
z2=T% z =T,

Applying the algorithm to compute standard bases for subalgebras we
get the following monoids of values:

[(C1) = (6,14,39) and T(Cy) = (6,14,23).

The algorithm presented in this section gives the standard bases below
for the modules of Kahler differentials for the curves under consideration,
which have the following unified expression:

H= {d.’l’},dy, dzaw}:
where

14
w=zdy - —ydz =

6

3722 for Cy
19738 for (.

In this way,
A(Ch) = A(C2) = {0,6,12, 14,18, 20,23, 24, 26, 28, 29, 30, 32, 34, . . h

while I'(C1 ) # I'(Cy).
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7.3 Complete Intersection Curves

In this section we will assume that C is a complete intersection algebroid
irreducible curve in K[[X]] = K[[X3,..., Xz]]; that is, C has a Cartesian
representation fi,..., fa-1.

Suppose that v(X1) = vgp = muit(C). We have the following relations

n
(fe;)xjdﬂij =0, fort=1,...,n—1,
=1

or equivalently,

dzy (f1)x,
Ml = - E dﬁ."]_,
dzy (fr-1)x,
where
(fl)x2 (fl)x,,

M = : . :
(fn—l)xg (fn—l)Xﬂ

Carbonne, in [Car] page 376, has shown that |Mj| = det(M;) € O\ {0}
and |M;| = det(M;) € O\ {0}, where

(7.4)

(fﬂxz (fl)x.;_1 _(fl)x1 (fl)).f'.M (fl)xn
M= o : A
(.f:rz--l))(2 Tt (fn—-l)xi_l '_(fnr-l)xl (fﬂ—l)X;+1 (fn—l)x“
{7.5)
fori=2,...,n
In this way, over the field of fractions K of O, we have
| M
dz; = dzT 7.6
|M]_| 1 ( )
fori=1,...,n.

REMARK 7 Herzog and Kunz, in {HK]|, proved that if C is a complete
intersection curve, then

W(IMy) = e +v0 -1,

where ¢ is the conductor of the monoid of values of € and vy is the multi-
plicity of C.
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So, fori=1,...,n, we have

”(zvlgm[)) =e-l

In the case of plane curves, this was shown by Azevedo in [Az] Proposition
5, page 17 and by Zariski in [Z4], page 11.
Using the relation (7.6), and the fact that

(D) g EXD L K(X)
(g) d K(fl:--'afﬂ—laf) d K(fl;“‘afﬂ—l:Q)

for any hypersurfaces f,g € K[[X]], we may apply the algorithm to obtain
a standard basis for OdQ as O-module, even when the curve C' is given by
a Cartesian representation fi,..., fo—1.

EXAMPLE 7 Let C be an algebroid irreducible plane curve given by
AXY)=Y%+ X% + X"

Since dlmg%}}:u =3 and dimg K(EE,X 1)’] =7, we have that G = {X, Y}
is & minimal standard basis for O, hence I' = (3,7} is the monoid of values
associated to C', with conductor ¢ = 12.

As C is a plane curve, and therefore a complete intersection, we have

from (7.4) and (7.5) that
IMll = fy and |M2I = -

We will now apply the algorithm to compute a standard basis of 1(Od®).

Start with Hp = {dz, dy}, Ag =T', whose greatest gapislp = c—1 = 11.
The only minimal S-process to be considered is of the form § = zdy — aydz.
Using (7.6) which in this case reads dy = —iid:c we have

S = (—x% - ay) dr=(-zfx — ayfy)%.

Since v(g) = dimg KE;(;, = ordx (Ry (f,g)) for g € K[[X,Y]], we may

determine a in such a way that S is effectively an S-process; that is, v(S) >
v(zdy) = v(ydz) = 9.
As

Ry(f,—Xfx —aYfy) = (Ba— 72X + (a — 2)(2a — 5)2 X%,
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. the only possible choice for a is ¢ = %; that is, S = zdy — %ydﬂ: and hence

d
v(S) = ordx (Ry (f, —Xfx— ngy)) + v (f_x) =22-11=11.
Y
Tn this way we have w = zdy — %ydm with »(w) = 11.
Since in the next step the greatest gap is l; = 8, there are no further
S-processes to be considered. Therefore, the algorithm terminates giving
the following minimal standard basis for QdO:

H = H, = {dz, dy, w}.

Moreover, I(T) =c— #(A\I)=12-1=11

7.4 Equivalence of Plane Branches

A central question in the theory of plane branches is the classification prob-
lem modulo the equivalence relation we define below.

DEeFINITION Let C) and Cs be two plane branches, given by the Cartesian
representations f; and fs in K|[X, Y]], respectively. We will say that C; is
equivalent to Cz, writing in this case, Cy ~ Cs, if there exist a unit « and an
automorphism & of K[[X, Y]], such that

(f) = ug.

It is well known, and easy to prove, that two plane branches are equiva-
lent if and only if their rings of coordinates are isomorphic as K-algebras. In
the case of analytic plane curves, this equivalence is precisely local analytic
isomorphism as embedded germs.

Most, of the numerical characters associated to a plane branch are in-
variant with respect to the above equivalence relation. For example, it is
immediate to verify that the multiplicity, that is, the minimal non-zero ele-
ment in the monoid of values, of a plane branch is such an invariant.

More generally, the monoid I" of values of C is invariant by equivalence of
branches. Indeed, for every unit « and every automorphism & of K{[X, Y]]
we have that

K[[X, Y]] -y

Klx,Y]) = dimg = v(u~12(g)),

(f,9) (u™1®(f),u=1®(g))

v(g) = dimg
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and 4~ 1®(g) assume all values in K[[X,Y]] as ¢ varies in K[[X,Y]].

Thus, two equivalent plane branches are equisingular. This, in particular,
shows that Milnor’s number of C {equal to the conductor of I') and the genus
of the branch are invariant under equivalence of plane branches.

There are in the literature several works on the classification of plane
branches with respect to the equivalence we defined in this section. We list
below just few of them.

Ebey in [E] classified all plane branches with multiplicity less than 4 and
some equisingularity classes of multiplicity 4, Zariski in [Z4] classified some
particular equisingularity classes, Laudal-Pfister in [LaP] classify the equi-
singularity class of I' = (5,11), Luengo-Pfister in [LuP] classify a particular
family of equisingular classes of genus 2, Hernandes in [Her] classifies all
plane branches of multiplicity 4 and Bayer-Hefez in [BH] classify all plane
branches with high Tjurina number.

The set A introduced in Section 1 is not invariant by equisingularity.
Indeed, the curves

z=T% z=T"
Ol‘{y=T9+Tm 02{ y=T°+T%

are such that I'y =T's = (4,9), but Ay \T'; = {14, 23} # {19,23} = Az \ Ty,
showing that A; # As,
However, we have the following result.

PROPOSITION 2 The set A is invariant by equivalence of plane branches.

Proor Let C; and C; be plane branches with rings of coordinates ¢, and
O, respectively. Suppose that C; and Cy are equivalent plane branches.
Then O; and O, are isomorphic as K-algebras. The isomorphism between
the rings of coordinates extends to an isomorphism between their fields of
fractions which induces an isomorphism & between the integral closures @ =
K(T3]] and ©; = K{[T3]). )

Since © preserves values, we have that ®(T3) = uTi, where u is a unit of
K([T]].

Consider the homomorphisms ; and 14, 7 = 1, 2, as defined in (5.2) and
(7.1), respectively.

If we = godzg + hodys € Oad Oz, with go, hy € Uy, then

Valn) = ea(0e) ) + () 22 ¢ ey,
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Since
Ba(wn) = B(eae) D) 1 bl () DL

and
B(p2(g2)) = 1(g1) and B(pa(he)) = @1(h1),

where g1, hy € Oy, we have that

Bla(en)) = w1003 + g () B(HEL)

drs
Observe now that
d®(pa(z2)) du dw(wa)
and -
d®(pa(y2)) d(Pz(yz)
a7y =(ut dT T (=g,
That is,
5 dea(za), _ dia(r1)
®( dT: )= dny
2 1
wnd dorlan) . der(su)
ol w181
% i ) =Y an
where w is a unit in K[[T1]}, r1,s1 € Oy, with v(r;) = v{z1) and v(s1) =
v(y1)-
So,

blua(on)) = (11(o )"’1(”) (h)d“’l(sl)) — da (),

with wy € O1d0;.
Therefore we have,

v(ws) = v(tha(ws)) = v(D(the(ws))) = v(thy (wi)w) = v(thy (w1)) = vlwy);

that is, Ap C Ay,
In the same way we may show that Ay C As and therefore, A; = As.
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Zariski, in [Z2], used partially the invariance of the set A under equiva-
lence. He basicaly only used the invariants #(A \ T') and the number

A(C) = min(A\ T') — mult(C),

called Zariski’s invariant.
Since from Remark 5 we have that

7(C) =UT) = c~ #(A\D),

it follows that Tjurina’s number is an invariant with respect to equivalence
of branches, because it depends only ¢, I" and A wich are invariants.

Therefore, with the algorithms on pages 25, 69 and 96, we may com-
pute the most important invariants with respect to the equivalence of plane
brances. Below we present a summary of the results wich we need to compute
the mentioned invariants of a plane branch C.

Invariant | Result

C) Algorithm on page 69.

mult(C) | mult(C) = min(T(C) \ {0}).

#(C) #(C) is the conductor of T(C) or the
Algorithm on page 25 for the Jacobian ideal.

g(C) g(C) is the number of elements of the

minimal system of generators of T'(C).

A(C) Algorithm on page 96.

A(C) A(C) = min(A(C) \ T(C)) — mult(C).

T{C) 7(C) = W(C) = #A(C)\ I'(C)) or the Algorithm on
page 25 for the extended Jacobian ideal.

HT) {T) =7(C).
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