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Chapter 1

Introduction.

1-1 Lagrangian Dynamics.

Let M be a boundaryless n-dimensional complete riemannian manifold.
An (autonomous) Lagrangian on M is a smooth function L : TM =+ R
satisfying the following conditions:

2

3’01'81)3'
ordinates on the fiber 7;M, is uniformly positive definite for all
(z,v) € TM, i.e. thereis A > 0 such that

(a) Convezity: The Hessian (z,v), calculated in linear co-

w - Lyy(2,v)-w > A |w|> forall (z,v) € TM and w € TuM.

(b) Superlinearity:

lim = 400, uniformly on z € M,
ol-+oo  [v]

equivalently, for all A € R there is B € R such that

L(z,v) > Alv]— B forall (z,v) e TM.
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(c) Boundedness: For all r > 0,

£r)= sup L{z,v) < +oo. (1.1}
T

g(r)= sup w-Ly(z,v) w < 4oo. (1.2)
Jwi=1
(@) <r

The Fuler-Lagrange equation associated to a lagrangian L is (in
local coordinates)

L oL
%‘;—U(m,m = 50, %). (E-L)
The condition (c) implies that the Euler-Lagrange equation (E-L) defines
a complete flow @; on T'M (proposition 1-3.2), called the Euler-Lagrange
flow, by setting ¢4z, v0) = (2,(t), 2,(t)}, where z, : R = M is the
solution of (E-L) with z,(0) = zo and £,(0) = ve.

We shall be interested on coverings p: N —+ M of a compact man-
ifold M and the lifted Lagrangian I. = Lodp : TN — R of a convex
superlinear lagrangian L on M. The lagrangian L then satisfies (a)—(c)
and its flow 9, is the lift of ¢;.

Observe that when we add a closed 1-form w to the lagrangian L,
the new lagrangian L + w also satisfies the hypothesis (a)-(c) and has
the same Euler-Lagrange equation as L. This can also be seen using the
variational interpretation of the Euler-Lagrange equation.
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1-2 The Euler-Lagrange equation.

The action of a differential curve v:[0,7] = M is defined by

T
Aly) = / Lix(#), ¥()dt (1.3)

One of the main problems of Calculus of Variations is to find and to
study the curves that minimize the action.

Denote by C*(p, g, T) the set of k—differentiable curves « : [0, T] —
M such that v(0) = p and y(T') = ¢.

1-2.1. Proposition. Let (g1, ¢z, ..., ¢n) ¢ coordinate system in M, then
if @ curve z in the space C*(p, q, T) minimize the action among all the
curves in C*(p, ¢, 1), then z satisfies the equation

4 L(@(0),8(0) = La(a(0), 4(2) (14)

This equation is called the FEuler-Lagrange equation. Moreover if
(Q1,Q2, ..., Q) s another coordinate system then z satisfles the Euler-
Lagrange eguation in the coordinates g; if and only if il salisfies the
Euler-Lagrange equalion in the coordinates Q); )

Proof Let h(t) a differential curve such that k{0) = A(T) = 0, then
for every ¢, sufficiently small the curve y, = & + €k is on C*(p, ¢, T) and
contained in the coordinate system. Define

g(e) = Ar(ye) (1.5)

Then g has a minimum in zero and
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T - 7 _ -
e—=0 € e—=0 fq €
- .
_ f Fm eLyh + el h + o(e) dt
0 e—0 €
T .
_ f Lok + Lyhdt
0

7 d
_ f (Lo — ZLu)hdt + L,A[S
DT d
= fo (Ly - ELv)hdt
Hence
0= [ alol),50) - ELulo)ODE  (16)

For any function £, this implies that «(t) satisfies the Euler Lagrange
equation [1.4]

This proves shows that z(t) satisfies the Euler Lagrange equation if
and only if z(t) is a critical point of the action functional 4, defined in
the space C**(p, g, T), this doesn’t depend on the coordinates and proves
the second statement. O

The Euler Lagrange equation is a second order differential equation
on M, but our hypothesis about the Lagrangian (L, invertible ) implies

that this equation can also be seen as a first order differential equation
on TM

T = v )
O = (Lyy) "Ly — Lygv)

The associated vector field X, on TM will be called the Lagrangian
vector field and its flow 9, the Lagrangian flow.
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1

1-2.2. Remark. It is possible to do the same thing in the space
Cr(p, q), the set of absolutely continuous curves v : {0,7] — M such
that 4(0) = p and v(T') = ¢. A priori minimizers do not have to be
differentiable and there are examples where they are not, see Ball &
Mize! [2]. However when the lagrangian flow is complete (cf. proposi-
tion 1-3.2), every absolutely continuous minimizers is C? and satisfies
the Euler-Lagrange equation. See Mather [39]. '
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1-3 The Energy function.
The energy function of the lagrangian L is F : TM — R, defined by
E(m,v):g—i;(a:,v)-v—L(a:,v). (1.7)

Observe that if z(t) is a solution of the Euler-Lagrange equation (E-L),
then

L Bz, &) = (4L, - L) -4 =0.
Hence £ : TM — R is an iniegral (i.e. invariant function!) for the
lagrangian flow ¢; and its level sets, called energy levels are invariant
under ;. Moreover, the convexity implies that

d% E(z,sv)|5=1= v Ly(z,v)-v > 0.

Thus
min B(z,v) = B(z,0) = ~L(z,0).
Write
€y 1= ar:ré%}cE(a:, 0) = ~— min L(z,0) > —o0, (1.8)

by the superlinearity, then
eo=min{k€R|m: E"'{k} — M is surjective }.
By the uniform convexity, and the boundedness condition,

A= inf w- Ly {(z,v)-w>0,
(:r,u]IE’IiM
wl=

and then using (1.1) and (1.2),

[v| .
E(m,v):E(m,O)—i—/; %E(m,sﬁl) ds
> —£(0) + A Ju]. (1.9)

' The energy is invariant only for autonomous (i.e. time-independent) lagrangians.
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Similarly,

E(z,v) < e+ g(lv]) [v]. (1.10)

Hence

1-3.1. Remark. If k € Rand K C M is compact, then E~1{k}NTx M
is compact.

1-3.2. Proposition. The Euler-Lagrange flow ts complete.

Proof: Suppose that ]a, [ is the maximal interval of definition of ¢+
w(v), and —c0 < @ or § < 4oo. Let k = E{v). Since E(pi(v)) = &,
by (1.9), there is ¢ > 0 such that 0 < |¢;(v)] < a for o < ¢ < B. Since

() is of the form {v(t),¥(¢)), then (v) remains in the interior of the

compact set
Q:={(yw) e TM|d(y,z)<a[lB—al+1], W|<a+1},

where z = w(v). The Euler-Lagrange vectorfield is uniformly Lipschitz
on (). Then by the theory of ordinary differential equations, we can
extend the interval of definition ]a, 8] of t — @ (v). O
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1-4 Hamiltonian Systems.

Let T*M be the cotangent bundle of M. Define the Liouville’s I-form
© on T*M as

0, =p(drf) for £ € T,(T*M),

where 7 : T*M — M is the projection. The canonical symplectic form
on T*M is defined as w = d©.

A local chart x = (21,...,2,) of M induces a local chart (%, p) =
(Z1,. -+ 1 ZniP1y. -, Pn) Of T*M writing p € T*M as p = ; p; dz;. In
these coordinates the forms © and w are written

9:p-dx=2p;d:c,-,

w=dpAdx=> dp; ANdz;.

A haemiltonian is a smooth function H : T*M — R. The hamiltonian
vectorfield Xy associated to H is defined by

w(Xp, ) =dH.
In local charts, the hamiltonian vectorfield defines the differential equa-
tion
&= H,

5 _H" ’ (1.11)

where H,; and H, are the partial derivatives of H with respect to = and
’. .

We shall be specially interested in hamiltonians obtained by the Fren-
shel transform of a lagrangian:

H(z,p)= Jmax pv - L{z,v).

Observe that H = EoL~", where E is the energy function (1.7) and
L(z,v) = (z, L,(z,v)) is the Legendre transform of L. Moreover
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1-4.1. Proposition. The Legendre transform L -: ™ — T*M,
L(z,v) = (z, Lo(z,v)) is e conjugacy between the lagrangian flow and
the hamiltonian flow.

Proof: By corollary C.2, the convexity and superlinearity hypothesis
imply that L = L™ = H*. So if p = L,(z,v) then v = Hp(z,p). With
this notation:
H(@,p) = v-Ly(o,v) - L{z,v) = Bo L™

=p H:D(m:p) - L($1 HP("‘B!}U))'
Thus H; = —L,, and the Euler-Lagrange equation

&= v = H,,
L,=—-H,,

d
EEIE
d
5 Lo

p_

is the same as the hamiltonian equations. O
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1-5 Examples.

We give here some basic examples of lagrangians.

Riemannian Lagrangians:
Given a riemannian metric g = (.,-}; on TM, the riemannian la-
grangian on M is given by the kinetlic energy

L{z,v) = 5 |loll;. (1.12)

Its Euler-Lagrange equation (E-L) is the equation of the geodesics of g:

Li=0, (1.13)
and its Euler-Lagrange flow is the geodesic flow. Its corresponding

hamiltonian is
H(z,p)=1|lp|2.

Analogous to the riemannian lagrangian is the Finsler lagrangian,
given also by formula (1.12), but where ||-||  is a Finsler metric, i.e. Il
is a (non necessarily symmetric?) norm on Ty M which varies smoothly
on & € M. The Euler-Lagrange flow of a Finsler lagrangian is called the
geodesic flow of the Finsler metric ||-||...

Mechanic Lagrangians:

The mechanic lagrangian, also called natural lagrangian, is given
by the kinetic energy minus the potential energy U: M 3 R,

L(z,v) = ][} - U(a). (114)

Its Euler-Lagrange equation is

e || Y|, =X ||vi, only for A >0
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where VU is the gradient of U with respect to the riemannian metric g,
ie. '

d U(v) = (VU(z),v}, forall (x,v) € TM.

Its energy function and its hamiltonian are given by the kinetic energy
plus potential energy:

E(z,v) = L|v]2 + U(),
H(z,p) = L|Ipl2 + U(x).

Symmetric Lagrangians.

The symmetric lagrangians is a class of lagrangian systems which
includes the riemannian and mechanic lagrangians. These are the la-
grangians which satisfy

L(z,v) = L{z, —v) for all {z,v) € TM. (1.15)

Their Euler-Lagrange flow is reversible in the sense that ¢_;(v) =
— i (—v). '

Magnetic Lagrangians.

If one adds a closed l-form w to a lagrangian, L(z,v) = L(z,v) +
wz{v), the Euler-Lagrange flow does not change. This can be seen by

first observing that the solutions of the Euler-Lagrange equation are -

the critical points of the action functional on curves on C(z,y,T) (with
fixed time interval and fixed endpoints). Since w is closed, the action
functional of L and L on C(z,y,T) differ by a constant and hence they
have the same critical points.

But adding a non-closed 1-form to a lagrangian does change the
Euler-Lagrange flow. We call a magnetic lagrangian a lagrangian of the
form

L(z,v) = 3 ll, + ne(v) - U(z), (1.16)
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where ||-||, is a riemannian metric, # is a 1-form on M with dn # 0, and
U: M — R asmooth function. If Y : TM — TM is the bundle map
such that

dn(u, v) = (Y (u), v).
then the Euler-Lagrange equation of (1.16) is

D¢ =Y, (8) - VU(w). (1.17)

This models the motion of a particle with unit mass and unit charge
under the effect of a magnetic field with Lorentz force Y and potential
energy U(z). The energy functional is the same as that of the mechanical
lagrangian but its hamiltonian changes because of the change in the
Legendre transform:

E(z,v)=1% |lv|2 + U(=),
H(z,p) =1 |lp— A(2)|2 + U(=),

where A: M — T'M is the vectorfield given by n,(v) = {A(z), v),.

Twisted geodesic flows.

The twisted geodesic flows correspond to the motion of a particle
under the effect of a magnetic field with no potential energy. This can be
modeled as the Euler-Lagrange flow of a lagrangian of the form L(z, v) =
1)1 + 72 (v), where dn # 0. But the Euler-Lagrange equations depend
only on the riemannian metric and dn. A generalization of these flows
can be made using a non-zero 2-form 2 instead of dn and not requiring
{2 to be exact. This is better presented in the hamiltonian setting.

Fix a riemannian metric (, ) and a 2-form Qon M. Let K : TTM —
TM be the connection map K¢ = Vv, where £ = £ (z(t),v(t)). Let
# : TM — M be the canonical projection. Let wq be the symplectic
form in T'M obtained by pulling back the canonical symplectic form via
the Legendre transform associated to the riemannian metric, i.e.

wo(§,¢) = (dr &, KC) — (dn{, KE).
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The coordinates TyTM > § «— (dn§, K¢) € Thop)M & T,(0)M =
H(8)® V (f) are the standard way of writing the horizontal and vertical
components of a vector £ € TyTM for a riemannian manifold M (see
Klingenberg [25]).

Define a new symplectic form wg on TM by
wn = wp + 1.

This is called a twisted symplectic structure on TM. Let H : TM — R
be the hamiltonian
2
H(z,v) = 3l -

Consider the hamiltonian vectorfield Xz corresponding to (H,wg), i.e.
wo(Xa(d),:) =dH. (1.18)
Define Y : TM — TM as the bundle map such that
Qp(u, v} = (Y(u),v)s. (1.19)

The hamiltonian vectorfield Xq(8) € T,TM is given by Xq(d) =
(0,Y(#) € H(#) & V(6). Hence the hamiltonian equation is

B & =Y, (&),

recovering equation {1.17) with U/ = 0, but where © doesn’t need to be
exact. :

If H'(M,R) = 0, both approaches coincide, and any twisted geodesic
flow is the lagrangian flow of a magnetic lagrangian of the form L(z,v) =
i vl + ne(v), with dip = Q. For example if N is a compact manifold
2 is a 2-form in N and M is the abelian cover or the universal cover
of V; if  is not exact, then the corresponding twisted geodesic flow is
a lagrangian flow on M but not on N (where it is locally a lagrangian
flow). This lagrangian flow on M is actually the lift of the twisted
geodesic flow on N.
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Embedding flows:

There is a way to embed the flow of any bounded vectorfield on a
lagrangian system. Given a smooth bounded vectorfield F': M — TM,
let

Liz,v) =} |lv - F(2)|2. (1.20)

Since F(z} is bounded, then the lagrangian L is convex, superlinear and
satisfies the boundedness condition. The lagrangian L on a fiber T, M
is minimized at (z, F(z)), hence the integral curves of the vectorfield,
& = F(z), are solutions to the Euler-Lagrange equation.



Chapter 2

Mané’s critical value.

2-1 The action potential and the critical value.

We shall be interested on action minimizing curves with free time in-
terval. Unless otherwise stated, all the curves will be assumed to be
absolutely continuous. For z,y € M, let

Clz,y) ={7:[0,T] = M|T>0,7(0) =2, v(T) =y }.
For k € R define the action potential & : M x M — RU {~o0}, by

@p(z,y) = inf Apyr(y).
'yEC(a:,y)

Observe that if there exists a closed curve ¥ on N with negative L + &
action, then ®x(z,y) = —oc for all z,y € N, by going round y many .
times.

Define the critical level ¢ = ¢(L) as

c(L) = sup{ k € R |3 closed curve vy with Az x(v) <0}.

Observe that the function k -+ ®p(z, y) is increasing. The superlinearity
implies that L is bounded below. Hence there is & € R such that

21
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L4k > 0. Thus ¢(L) < +oo. Since k — Agyx(y) is increasing for any
¥, we have that

c(L) =inf{k € R} Arsi(v) > 0V closed curve v }.
2-1.1. Proposition.

(1) (a) For k < c(L), ®r(z,y)=—0c0 forallz,ye M.
(b) For k > ¢(L), ®r(z,y) eR  forallz,ye M.

(2) Fork > C(L)s @k(m:'z) < (I)k(-’ﬂ,y) +‘I’k(y:z): Vz,y,2€ M.

(3) . (Dk(maa:):[]: Vze M.
(4) Oz, y) + Pr(y,z) >0 Va,yc M.

Fork > c(L), ®r(z,y) +Pr(y,2) >0 ifz#y.

(5) For k > c(L) the action potential ®) is Lipschitz.
2-1.2. Remark. The action potential ®; is not symmetric in gen-
eral, but items (2),(3),(4) imply that
dk(m: y) = @k(mi y) + q)k(y: m)

is a metric for k& > ¢(L) and a pseudo-metric for k = ¢(L) [i.e. perhaps
de(z,y) = 0 for some ¢ # y and ¢ = ¢(L)].

Proof;
(2) We first prove (2} for all k € R. Since ®;(z,y) ¢ RU {—o0}, the
inequality in item (2) makes sense for all k € R. If v ¢ Clz,y),
1 € C(y, 2), then v+ n € C(z, ) and hence,

Dr(e,2) < Ap4r(y* ) < A (7) + Argr(n).

Taking the infimums on v € C(z,y) and 5 € C(y, ), we obtain (2).
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(1)

(3)

(a) If v is a closed curve with Ap4r(y) < 0 and «(0) = z, then
. N .
®r(z,2) < Nlrg}noo Apsr(y*--xy) = h]{," N Apsi(y) = —o0.
For z,y € M, item (2) implies that

Dy (z,y) < Quls, 2) + Bu(z, 2) + p(2,9) = —o0.

Since the function k = ®4(z,y) is increasing, then item (1)(a)
follows.

{b) Conversely, if ®(z,y) = —oo for some k € R and z,y € M
then

b

‘I)k(:c,a:) < (I)k(msy) + (I)k(y,:ll) = —00.

Thus there is y € C(z,z) with Aryx(y) < 0. Then &k < ¢(L}. Ob-
serve that the set { £ € R| Ap4x(7) < 0 for some closed curve v}

is open. Hence ®i(z,y) = —oo actually implies that & < ¢(L). -

This proves item (1)(b).

Let & € R by the boundedness condition there exists @ > 0 be
such that

[L{z,v)+ k| <@ for |v]| < 2. (2.1}

Now let v : [0,1] =+ M be a differentiable curve with |41 =1 and
¥(0) = z. Then

@1 (z,z) < Pulz, v(e)) + Prly(e), 2)
< Arptk (’Yl[o,g]) + Artk (’Y(t - 5)'[0,6])
<2@e.

Letting € — 0 we get that @ (z, z) < 0. But the definition of ¢(L)
and the monotonicity of k — ®;(z, z) imply that &x(z,z) > 0 for
all k > ¢(L).
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(5} Let k> c(L). Given z1,z2 € M we have that

4)

®r(zy,22) < Apgi(7) < Q dm(1,22),
where v : [0,d(z1,22)] — N is a unit speed minimizing geodesic
joining 21 to z and @ > 0is from (2.1). If y;,y; € M, then the
triangle inequality implies that
Dp(z1,11) — Brlw2, 12) < Pil®r, 2) + Prlye, 1)
S Q [dM(mll 332) + dM(yl:yZ)]
Changing the roles of (z1,3) and (2, y2) we get item (5).

The first part of item (4) follows from items (2) and (3). Now
suppose that k > ¢(L), z # y and di(z,y) = 0. Let v, : [0, ] —
M, v, € C(z,y)} be such that ®x(z, y} = lim, Ari(y,). We claim
that 7>, is bounded below.

Indeed, suppose that lim, T, = 0. Let A > 0, from the superlin-
earity there is B > 0 such that L(z,v) < A|v|- B, V (z,v) € TM.
Then

Tw
Qs(z,y) = 111131/0 L(vnydn) + £
2 lim A S+~ B)T,
= A du(z,y)

Letting A — +o00 we get that @x(z,y) = +oo which is false.

Now let 7, : [0,5,] = M, 5, € C(y,) with lim, Apyr(m) =
Dr(y,2). Choose 0 < T < liminf, T, and 0 < § < liminf, S,,.
Then for ¢ = ¢(L) < k,

Pc(e,2) <Hm Apte(vn * 70)
SEm Apgi(va) + (e~ £YT + Apyi(mn) + (c— k)
< lim $i(e,y) + Ba(y,2) + (e = K)(T +5)
S{e-k)(T+5) <0,
which contradicts item (3), 0
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2-2 Continuity of the critical value.

2-2.1. Lemma. The function C*°(M,R) 3 ¥ — ¢(L+1) is continuous
in the topology induced by the supremum norm.

Proof: Suppose that ¢, — v and let ¢, := ¢(L+1,) and ¢ := c(L+1).
We will prove that ¢, — ¢.

Fix € > 0. Since ¢ — ¢ < ¢, by the definition of critical value there
exists a closed curve vy : [0,7] — M such that Apiyy.—(y) < 0, hence
for all n sufficiently large

ALtdnte—e(7) < 0.

Therefore for n sufficiently large ¢ — e < ¢,, and thus c—¢& < liminf, ¢,.
Since € was arbitrary we have that ¢ < liminf, ¢,.

We show now that limsup, ¢, < ¢. Suppose that ¢ < limsup,, ¢,.
Take £ such that

¢ < ¢+ e < limsup, ¢,. (2.2}
Since 9, — 1, there exists ng such that for all n > no,
—& < 1h— P, <e. ’ (2.3)
By (2.2), there exists m > ng such that
c<cte <oy,

By the definition of critical value there exists a closed curve +:{0,T]—
M such that )

AL+¢m+c+e (7) < 0,

and hence using {2.3) we have

Aptpte(Y) S ALtyptetre(¥) <0,

which yields a contradiction to the definition of the critical value c.
O

This proof also shows that L — ¢(L) is continuous if we endow the
set of lagrangians L with the topology induced by the supremum norm.
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2-3 Holonomic measures.

Let CJ be the set of continuous functions f : TM — R having linear
growth, i.e.

wp @)

< 400
@wyerm 1+ ||l

Let M, be the set of Borel probabilities 2 on TM such that

[ ol dyz < +oo,
TAM _

endowed with the topology such that lim, pn, = p if and only if
limffdynszdp
for all f € C}.

Let (C7)’ the dual of C§. Then M, is naturally embedded in (C9)’
and its topology coincides with that induced by the weak* topology on
(cgy.

We shall see that this topology is metrizable. Let {f,} be a sequence
of functions with compact support on CJ which is dense on CP in the
topology of uniform convergence on compact sets of T M. Define a metric

d(-,-} on Mg by

) = | [ 101 s = [ o]

11
+227‘c:’ffn dp _/fn dpiz
(2.4)
where ¢, =sup(g ) fn (2, v).

2-3.1. Proposition.
The metric d(-,-) induces the weak* topology on M, C C3.
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Proof: We prove that d(-, -) generates the weak* topology on M. Sup-
pose that

/fd,un—}/fd,u, Vi e Co.

Given £ > 0, choose M > 0 such that ¥ <, 5= 2 < €, and choose
N > 0 such that

ffmdun—ffmdp‘<s, for0<m< M, n>N;
I/lvld,un—/|v| d,u‘ < g, forn > N.
Since%:l, then for n > N we have that

M
dptn, ) <€+ X e+ X 2%-2-13&"—”:35.

Thus d{pn, p) — 0.

Now suppose that d{g,, ) — 0. Let K, be compact sets such that
Ky C K1 and that TM = UK,,,. Then

f fd#n—>f fdu, VFECY, Vm;
K

J1etdin — [1e1

This implies that

lim f |v| dem =/ |v| dus, ¥m. (2.5)
0 ST K TM—Km

Given € > 0, choose m(e) > 0 such that

£
[ (ol da < 5,
TM—K ()
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and /¥ such that
/ (14 o) dun < =,  V¥a> N.
TM Km() 2
Fix f e C?. Choose N > 0 such that

f £ dpn — f £ dy
Km(c) I‘fm(z}

< g, ¥Yu>N.

Then

Lo sl [ s <l e .
TM—Km[z) M- Km()

Using a similar estimate for 1 we obtain that

[ [l <erusie 545,

O

Ify : [0, 7] — M is a closed absolutely continuous curve, let p, € M,

be defined by
ffdl"v—_/‘ t):'}’t)

for all f € CP. Observe that C (M) C M, because if v is absolutely
continuous then [ |4(t)] d¢ < +o0. Let C(M) be the set of such s and
let C(M) be its closure in M,. Observe that the set C(M) is convex.
We call C(M} the set of holonomic measures on M.
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2-3.2. Theorem ( Mané [27], prop. 1.1, 1.3, 1.2).

1. M(L) CC(M) € M,.

2. If p € C(M) satisfies

Ap(p) =min{ AL(v) |v € C(M) },

then p € M(L).

8. If M is compact and a € R, then the set {pn € C(M) | AL(ir) <a}
is compuct.

The inclusion M(L) C C(M) follows from Birkhoff’s ergodic theorem
and the fact that C(M) is convex.

Proof of item 213.2.3:

Since C(M) is closed, it is enough to prove that the set

Afa) :=={p e Me|AL(p) < a}

is compact in My. First we prove that A(a) is closed. Let £ > 0 and
define Lj := min{L, k}. Let

By, :={[.LEMg|kadp§a}.

Since Lj € CJ, then By is closed in M,. Since A(a) = Np»oBs, then
A(a) is closed.

In order to prove the compactness, consider a sequence {y,} C A{a).
Applying the Riesz’ theorem, taking a subsequence we can assume that
there exists a probability p on the Borel o-algebra of TM such that

[t — [ 1ap, (2.6)

for every f; in the sequence used for the definition of d(-,-).
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Approximating Lx by functions f; we have that

ka dp =1lim Ly, dp,, < liminf L dy, < a.

Letting k& { 4+oc0, we get that
Ar(w) < o (2.7)
Let B > 0 be such that |v} < L{z,v)+ B for all (z,v) € TM. Then

/M du < Ar(u)+ B < a+ B < +oo. (2.8)

‘ So that g € M,.

We now prove that lim, [ |v] dun — f|v] du. Let £ > 0. By

| adding a constant we may assume that L > 0. Choose r > 0 such that
L(z,v) > ae™! |v| for all |v| > r. Then

| [ st Lapn s Z [ Ldum <e
|v|>r & Jiy|>r a

Similarly, by (2.7),
f |v| dp < €.
o[>

From (2.6) we obtain that there is N > 0 such that

] v du — f o] dyan
jv|>r bu|>r

Adding these inequalities we get that

‘ '/Ivldﬁn—/lvl d#‘ < 3e.

The prove item 2-3.2.2 requires some preliminary results which we
present now. Item 2-3.2.2 is proved at the end of the section.

<g, forn>N.

Ot
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2-3.3. Proposition.
Given pp € C(M), there are p,, € C(M) such that p,, — pu and

1'1m/‘LdI,u,,,n :/Ld,u.

2-3.4. Remark. The statement of proposition 2-3.3 is not trivial. It

is easy to see that the function Ap : C(M) — R is always lower semi-

continuous (see the last argument of the proof of 2-3.3), but in general

it is not continuous. It is possible to give a sequence ., € C{M) such

that ., — pin C(M) but liminf, Ar(u.,) > Ap(p) for a quadratic
lagrangian L.

This can be made by calibrating the high speeds in 7, so that
f[le>R] |v{ dity, — 0 but @ := liminf, f[lva]Ldu% > 0. Then the
limit measure g will have support on [|v| < R] and “will not see” the
remnant ¢ of the action.

Proof: Let A > 1 and let «v : [0,T] — M be a closed absolutely con-

tinnous curve. We reparametrize v to a curve 9 : [0, 5] = M such that .

7 =% when |4 < A and 7 = ﬁ? A when |¥] > A. So that |9 < A. Write
7(s(t)) = 7(t), w(s) = |i(s)| and v(t) = |¥(t)|. We want

—/:(t) w(s) ds = /Ut v(t) dt,

so that

A
T w(st) | U2 when u(t) > A.

gy = 0 _{1 whenv(t)f
A 2
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Then

S(T) :/ dt—l—/ O
[o(2)< 4] w24 A

ST _ o Il
=l b |

S(T) ' f f v}
— 1 < g+ = dp
l T lol>a]  Joizar A
< 2] fo| dpey. (2.9)
lfv]>A]

Suppose that f : TM — R is p,-integrable. Since ‘j—: = % when
v(t) > A then

Y(t(s — 40 4y 170
Lsf(a(smmf (1(s), Pt A) ds = f[ Fr(®) g )~ -

1%(t)>A]

Heys

Then

[ £ dmn = 55 [ 10,09 as

oL . . 0 )
-5 /[MsA] T, 7o) dt+fnﬁ(s(s))[>A{(n( o) ¢ ]
= v NG

S(T) -/[IvISA] fv) duy(v) + (o[> f(|u|A) A d#’f]

For A > 1 big enough,
Define

_ Jf() if o] < A4,
Jalo) = {f(]%[A) B i o) > A
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Then

ffd#n = 57y /fA dpy. (2.11)

Observe that from (2.9) and (2.10), we have that

‘%—1\ <Ae. (2.12)

Then
ffd#n—]fﬁ.d#q

If || fllo £ 1, then

denn-ffdm

< ‘S(lTT_l‘fUAl d;”’qu‘IE'/'fA' dpty.
(2.13)

= S(T)/fA Ay — /fd#v

51y ~ /|fA[d#~y+f|f fal duy

< sty -1+ [ dpy + f LIy
s) >4l Jiesal A

<|zfF— 1| +2 f |v] dp
ST (ol>a]

<4de+2e< 6e.

f['vld#n fl v| dpy

Hence

<

—

Also

= ——l!]lvld#v‘(&:’/]vld‘uﬂf

deqaay(ins ) < 6¢ [ (lol+1) di. (2.14)




34

2. MANE’S CRITICAL VALUE.

Now let y € C(M). Let
K::f(|v|+1) dp+ 1.

For R > 0, define

[ if |v] < R.
La(v) = {L( v m) Bl if o] > R

J

Given N > 0, choose R = R{N) > 0 such that

L(v) > 0if |v| > R and f [v] dis < A
|v|>R

Choose p.y, € C(M) such that

dC(M)(Ju""l'N: .u’) < #:

fLR(N) Dphyy < /LR(N) dp+ 5,
and

ldi 2 [ folda-
AvISR(N)} ™= Jiwlsrovy) N

Then

f(lvl + 1} dpyyy <K from (2.15) and (2.17),

|v] dptyy < = from (2.16), (2.17) and (2.18).
jGM>RUVH < (2.16), (2.17) and (2.18)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Construet ny as above for yy and A = R(N). Then from (2.14), (2.19)

and (2.20), de(ary(piny s foy) < 5 K. From (2.17),

deqany(pny 1) < % K+ %
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Thus g, Xy pin C(M). Moreover, from (2.11), (2.12) and (2.10),
_/L ditny = 50y /LR(N) dityy < 55 [fLR(N) dp+ ﬁ]

<(1+ %) [de,qu;}v].
Hence
limsuprdu,,N Sde,u.
N

On the other hand, for any fixed R > 0 such that L > 0 on |v| > R,

limhénffL Aty Zlij{rnfLR ditpy :_/LR dp.

Letting R 1 400, we get that

limNinfdep,,N E[Ld,u,.

Given z, y € M, define

S(z,y;T):= inf Ap(v).

"I'ECT(mfy)
Observe that S(z,%;7) > —oco because L is bounded below. If v ¢ '
C*¢([0,T], M), define

S*(y) = AL(v) = S(v(0),v(T); T).

The absolutely continuous curves v with S*(v) = 0 are called Tonells
minimizers. Observe that a Tonelli minimizer is a solution of (E-L).
Given 7y, y2 € C*([0,T], M), the absolutely continuous distance
d1(71,72) is defined by

T
di(11, 72) ::tgeér;r ] d(m(8), v2(t))+ /0 dra([71(t), 18], [r2(2), 2 (8)]) dt.
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2-3.5. Proposition. Given a compact subsel K C M and given C, € >
0 there exist & > 0 such that if v : [0,T] = M is absolutely continuous
and satisfies

it. AL('T) < C.
. St(y) <4

Then either ([0, T])N K = & or there exists a Tonelli minimizer v,
[0, T] = M such that dy(yo,7) < €.

Proof: If such § does not exists then there is a sequence 7y, €
cee([0, T, M) such that 1,([0, Ta)) N K # &, 1 < T < C, S*(7a) = 0,
AL{va) £ C and di(¥n, 1) > € for any Tonelli minimizer 7.

Adding a constant we can assume that L > 0. Let B > 0 be such
that L(z,v) > |v] — B for all (z,v) € TM. Choose sp € [0,7,] such that
Yrn(50) € K. Then

AU, a(8)) < d(vn(50), 7(0)) < [ ol

sﬂlt’]

5/{ [Em 3 +B] <C+ BC.
850,

Let Q :={y € M|d(y, K) < C+BC }. Then we have that +, ([0, T,,]) C
Q.

We can assume that T, = T, ,(0) =+ 2 € Q and v,(T},}) = y € Q.
Moreover, we can assume that T, = T, 7,(0) = z and +,(T) = y. By
theorem 3-1.2, the set A[b] = {y € Cr(z,y) | Az(y) < b} is compact
in the dj-topology. Then we can assume that there is g € Cr{z,y)
such that 4, — o in the d-topology. Let @ := S(z,y;T). Then 7y €
NpAla 4+ St(vn)] = Ala), because St(y,) = 0. Thus 7o is a Tonelli
minimizer.

O
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Let
H:={h:TM = R| flle <1, [Flzer < 1, b with compact support },

where

|h(z,v) — h(y, w)|
[Alzip = sup
! (z0)#(yw) drm ((:1:, U)? (y: w))

is the smallest Lipschitz constant for h.

2-3.6. Corollary.
Given h € H and C > 0 there exist § = §(C,h) > 0 such that if
v:[0,T) = M satisfies conditions 2-8.5.1, 2-8.5.i1, 2-3.5.iii then '

jgh—jtghocpl
¥ ¥

Proof: Let K = n(supp(h) U ¢_1(supp(h))). Given C > 0 and ¢ > 0
let § = §(C,e) > 0 and A > 0 be given by proposition 2-3.5 then if
v : [0,T] = M satisfies conditions 2-3.5.1, 2-3.5.ii, 2-3.5.iii we have -
that either v{[0,T]) " K = &, or we can take vy minimizing such that
di(v0,7) < &. _

Observe that if y([0, T])NK = &, then h(y,%) = 0 and hop;(v,%) =
0. This implies (2.21). Suppose then that di(y0,7) <e.

We have that

fr-,

where [h]ri, is the smallest Lipschitz constant of h. Let Q(h) =
w_1(supp(h}), then

fho@l—f ooy
Y Yo

< 5. (2.21)

S [h’]Lip dl(T!TO) S I-1 T &,

< [Pleip [erlomlei di(y,v0) <1+ [algu)liip - &-
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Since g is a solution of (E-L), we have that

% h—% hoy
Yo o

/DTh(’}’o(t),’?o(t)) — h(yo(t+ 1), %(t + 1)) dt

1 T+1
< f (0, 7o) dt + fT Iyo, 40} dt < 2.
1]

Hence

j(h__fhogm' < e(1+ [erlomyLin) + 2.
-y ¥

Proof of item 2-3.2.2:

Observe that to prove that u is invariant it is enough to prove that

/h du = /h d(v] 1) for all h € #. (2.22)

By proposition 2-3.3, there exists a sequence p., € C(M) such that
-u"]"n - © and

lim Ap(p,) = Ap(p) = min { AL (v) [v € C(M) } =: k. (2.23)

Let T, be a period of the curve v, : R — M. Take an integer N > 0.
By joining a constant curve if necessary, we can assume that every T,
1s a multiple of N and that lim,, e, T = +oo. Given C' > 0 let

Bu(C)i={jeN|1<i <D, Ap(vny) 2 C),
where

Vrg = Yaliv,(4+1)N]-

By the superlinearity L is bounded below, adding a constant we can
assume that L > 0. Then we can assume that

1 [
Avln) = 7 [ Ll de <2k v
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Hence

kT > Y Ap(wmg) > C#B.(C).

JEBR(C)
Thus
#B.(C) _ 2
T < Yok (2.24)
Given & > 0, let
Bo(8):={jeN[1<i<Tr -1, SFT(y;) >}
Then
(Tn/N)-1
S* () 2 D St(myg) 2 S #BL(6).
=1

Moreover,

1 1

£ < 7 S(0), 7T Ta) = Ap(y,) — = S¥ (7).

T T

Hence
S () < Ta(Ar(py.) — k).
Therefore
B.(8) 1 _ |
#Tn—() < = (As(py,) = K). ‘ (2.25)

Now fix h € H. Then

Uh dity, — fh A1 toys) j{
Tn

Denote B} := B,(C) U B, (8). Since sup |k| < 1, then

. 1
Uhdﬂ%—/hd(%u%) <7 S |ph-fhon
Y Yrn,j

k(3 JeB;{ .5

(Ta/N}-1
<

h—f hO(Pl
Y

™)

1
Tn j:O J

1
+ 7 AN B,
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Now choose C > N? and § = §(C,h) > 0 from corollary 2-3.6. Using
equations (2.24), (2.25) and corollary 2-3.6 we obtain that

‘[h Ay, — /h d((lDT#'Yn)

5 (Ta  er), L ,

5 2k 1
SN + 2N (E-l- E(AL(#%) - k)) ‘
Now let » — oco. Using equation (2.23) and that C > N?%, ., — u and

h, h o € C} (because they have compact support), we obtain that

5 4k
- ) < =+ =—.
Uhd# fhd(¢1#)’_N+N

Since N is arbitrary, this difference is zero and we get (2.22). d
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2-4 Ergodic characterization of the critical
value.

Given a Borel probability measure y in TM define its action by

o) = /TML dp.

Since by the superlinearity the lagrangian L is bounded below, this
action is well defined.

Let M(L) be the set of ¢;-invariant probabilities on TM.

2-4.1. Theorem (Maiié {28]). If M is compact, then
(L) = — min{ AL(s) | p € M(L) }.

We will obtain theorem 2-4.1 from theorem 2-4.2 below, which also
@pplies to the non-compact case.

Recall that if v : [0, 7] = M is a closed absolutely continuous curve,
the measure p., € M, is defined by

ffd#w——f (v, %)

for all f € C7, and that C(M) is the closure of the set of such p,’s in
M.

2-4.2, Theorem.

¢(L) = ~inf{ Ap(p) | p € C(M)}

= —inf{ AL(u) | 4 € C(M) ). (226)
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2-4.3. Remarks.

1. The equality between the two infimums is non-trivial and follows
from proposition 2-3.3.

2. theorems 2-4.2 and 2-3.2 imply theorem 2-4.1.

3. lf p: N - M is a covering, M is compact and L = L o dp is the
lifted lagrangian, then theorems 2-4.2 and 2-3.2 imply that

o(L) = —min{ AL () [p € ML) N LN}, (2.27)

by noticing that Ar(dp. v) = Ap(v) for v € C(N). Here dp,C(N)is
the set of probabilities py on TM where v is a curve on M whose
lifts to NV are closed. The compactness property on theorem 2-
3.2(3) allows to obtain a minimum on (2.27) instead of the infimum
on (2.26) which may not be attained in the non-compact case.

4. The statement for coverings in equation (2. 27) allows to obtain
minimizing measures which don’t appear in the Mather’s theory.
For example if ¢, is the critical value of the universal al cover M of
M and cp is the critical value of the abelian cover M of M; the
minimizing measures on a fixed homology class (corresponding to
Mather’s theory) all have action A() > —eq, (see equation (2 30)
and proposition 2-6.3), while the minimizing measures for M have
action ¢, < ep.

The measures for M correspond to “minimizing in the zero homo-
topy class” while the measures for M are minimizing in the zero
homology class.

The drawback of this approach is that we obtain honest minimizing
invariant measures on TM which may not lift to finite measures
on the covering TN.
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Proof of theorem 2-4.2:
If p1y € C(M), then Apy,r)(pty) > 0. Hence Apgery(p) 2 0. Thus

—c(L) <inf{Ap(p}{pe (M)} =inf{ Ap(p) | p e C(M) },
where the last equality follows from proposition 2-3.3.

If & < c(L) then there is a closed absolutely continuous curve v on
M such that Apix(y) < 0. Thus py € C(M) and

~k > Ap () > inf{ Ay (u) | u € COD)}.

Now let & 1 ¢(L). | O
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2-5 The Aubry-Mather Theory.

Through this section we shall assume that M is compact.

2-5.a Homology of measures.

A holonomic probability u € C(M) satisfies ., |v| du < +c0 and
/ df dp =0 for all f € C°(M,R).
™

Then we can define its homology class as p(p) € Hy(M,R)~ H (M, R)"
by

CORZIEY NPT (2.28)

for any closed 1-form w on M, where [w] € H'(M,R) is the coho-
mology class of w. Here we have used the identification’ I, (M,R) ~
H'(M,R)* and equation (2.28) shows how the homology class p(j) acts
on H'(M,R). Since p is holonomic, the integral in (2.28) depends only
on the cohomology class of w. The class p(u) is called the homology of
p or the rotation of p by analogy to the twist map theory.

Using a finite basis {{w],...,[wi]} for H'(M,R) and the topology
of C(M), we have that

2-5.1. Lemma. The map p:C(M) — H'(M,R) is continuous.

2-5.b The asymptotic cycle.

Given a differentiable flow ¢; on a compact manifold N and a ¢
invariant probability u, the Schwartzman’s [56] asymptotic cycle of an

"o fact, H'(M,R) = hom (H1(M,]R),R) = H;(M,R)* by the universal coefficient
theorem. Since M is compact, then Hi(M,R)is a finite dimensional vector space and
hence it is naturally isomorphic to its double dual HY(M,R)".
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invariant probability p is defined to be the homology class A(u) €
Hy(N,R)~ H!(N,R)* such that

(A1) = [ w(X) dn,

for any closed 1-form w, where [w] € H(N,R) is the cohomology class
of w and X is the vectorfield of ¢;. This integral depends only on
the cohomology class of w because the integral of a coboundary by an
invariant measure is zero: in fact, if df is an exact 1-form, then define

T
Ply) = Tl—i)I-Il-loo%/(; if(X(py)) dt = lim 7 [f(e:y) - fw)] =

by Birkhoft’s theorem,

/Ndf(X)dpszdezo.

If 42 is ergodic and z € N is a generic point 2 for p, then

(AW, 1) = _lim —] X (1)) d

To+co T
Applying this to a basis {wy, ... ,wi} for HI(N, R), we get that

Alp) = lim T [v7*67] € Hi(N,R),
where y7(t) = @:(z), t € [0,T)], the curve &7 is a unit speed geodesic
from @7 (x) to =, and the limit is on the finite dimensional vector space
H,(N,R).
In the case of a lagrangian flow, the phase space N = T'M is not com-
pact, but it has the same homotopy type as the configuration space M
because M is a deformation retract of TM (contracting TM along the

e TI".I{} F fo {pea)dt = f fdyforall feC?'N,R).
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fibers to the zero section M x 0). Moreover, the ergodic components
of an invariant measure of a lagrangian flow are contained in a unique
energy level, which is a compact submanifold of TM by remark 1-3.1.

We see that the homology of an invariant probability and its asymp-
totic cycle coincide under the identification H;(TM, R) H(M,R).

2-5.2. Proposition.

T (A(w) = p(u)  for all p € M(L),

where m, : Hy (TM,R) — Hy(M,R) is the map induced by the projection
™ 5 M.

Proof: If wis a closed 1-form on M, then
(m*w)(X (2, v)) = wldr (X (z,v)})] = ws(v),

because the lagrangian vectorfield X has the form X (z,v) = (v, *). Then
(el 1) = (A, 1) = [ (57 )(X) d
= [ wdu=(o(w, 1),
™™

2-5.3. Lemma. The map p: M(L) - H)(M,R) is surjective.

Proof: Let h € H;(M,Z) be an integer homology class. Let 5 : [0,1] —
M be a closed curve with homology class k. Let vy be a minimizer of the
action of L among the set of absolutely continuous curves [0,1] — M
with the same homotopy class as . Then by remark 1-2.2, v is a periodic
orbit for the lagrangian flow with period 1. The invariant measure p.
satisfies p(u,) = h.

The map p is affine and M(L) is convex; hence p(M(L)} is con-
vex and, in particular, it contains the convex hull of H,(M,Z). Thus,
Hl(M,R)Qp(M(L)). O
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2-5.¢ The alpha and beta functions.

The action functional Ar : M(L) — R is lower semicontinuous® and the
sets

M(R) == {p e M(L)|p(p)=h}

are closed. Hence we can define the Mather’s beta function 3 :
Hi{(M,R) = R, as

B(h) = ) g}ggh) Ap(p).

We shall prove below that the g-function is convex. The Mather’s
alpha function o = §* : H'(M,R) — R is the convex dual of the
B-function:

af[w]) = hefgn?}\)/cf R){ ([w], b)Y — B(R) } by 2-5.3,

— min {Ap(x) ) = {[wl, p(1)) }

»eEM(L)

Il

= — Ao
uEIR}{?L} L- (H)

=¢(L—w), by 2-4.1.  (2.29)

Observe that since L — w is also a convex superlinear lagrangian, then
a(fw]) is finite.

2-5.4. Theorem. The o and § functions are convez and superlinear.

Proof: We first prove that 8 is convex. Let hy, hy € H,y (M,R) and

0 <A< Let py, pp € M(L) be such that p(u;) = h; and Ap(is) =

B(hi) for i = 1,2. The probability » = A py + (1 ~ A) py satisfies p(r) =
A hl + (l - A) hg. Hence

BN A1+(1 = X) o) < Ap(Apat (1= ) ) = AB(ha) + (1 = A) B(ha).

3 At is lower semicontinuous iff im inf, Ar(vn) > Ar(p) when v, o p.
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By proposition 2-5.3, p is surjective, and hence S is finite. By propo-
sition C.1, a is superlinear. By C.1, & and 8 are convex. Formula (2.29),
implies that « is finite and then by C.1 8 is superlinear. O

For h € H{(M,R) and w € H!(M,R), write

Mu(L) i={pe M(L) | p(p) =h, Ap(u) =8(h)},
MU(L):={peM(L)| Ap—u(p) = —c¢(L —w) }.

Since the f-function has a supporting hyperplane at each homology
class h, if w € 98(h), then My(L) C M%(L). Conversely, since by
corollary C.2 o* = 8, then M“(L) C M (L) if h € Ba(w). Thus

U ML) = U M¥Y(L).
heH, (M E) wEH(M,R)

We call these measures Mather minimizing measures and the set

M= | U swrw= U J supp(p)

wEH (M R) pEMv (L) REH; (M,R) ue Mp(L)

the Mather set.
Define the strict critical value as
co(l):= i L—-w)= i
o(L) e é?E“M,R}C( w) e éqigﬂ’m)a(w) 230
= ~B(0).
By corollary 3-6.3 the strict critical value is the lowest energy level which

supports Mather minimizing measures and since ¢p(L) = —B(0}, these
minimal energy Mather minimizing measures have trivial homology.
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2-6 Coverings.

We shall deal mainly with compact manifolds M, but there are some
important non-compact cases, for exa,mple the coverings of M. Partic-
ularly interesting are the abelian cover M the universal cover M and
the finite coverings.

The abelian cover M of M is the covering whose fundamental group
is the kernel of the Hurewicz homomorphism = (M) — Hy{(M, Z). Its
deck transformation n group is (M, Z) and Hl(M Z) = {0}. When
m1{M) is abelian, M= M. A closed curve in M projects to a closed
curve in M with trivial homology.

M -5 Misa covering, denote by L) := Lodp : TM; = R the
lifted lagrangian to T'M;.

2-6.1. Lemma. If M; 25 M is a covering, then c(Lq) < ¢(L).

Proof: The lemma follows form the fact that closed curves on N project
to closed curves on M. ]

2-6.2. Proposition. If M; is a ﬁmte covering of My then c(l;) =
e(La).

Proof: We know that ¢(L1) < ¢(L3). Suppose that the strict inequality
holds and let k& be such that ¢(Ly) < k < ¢(L;). Hence there exists
a closed curve v in M; with negative (Ly + k)-action. Since M; is a
finite covering of M, some iterate of -y lifts to a closed curve in M; with
negative (L; + k)-action which contradicts ¢(L,) < k. Wi

2-6.3. Proposition. [52]
co(L) = ca(L) = critical value of the abelian cover.

Then we have

cu(L) S ca(L) =eo(L) < elL-w)  Vw] € H'(M,R),
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where ¢, is the critical value of the lift of the lagrangian to the universal
cover. When ¢, (L) < ¢o(L)}, the method in equation (2.27) gives some
minimizing measures which are not Mather minimizing. For symmetric
lagrangians c¢(L} = eg = ¢g(L) = ¢, (L). Maifié [32] gives an example in
which eg < (L) = co(L) < ¢(L). G. Paternain and M. Paternain [52]
give an example in which ¢, (L) < ¢, (L).

Proof: Let w be a closed form in M. Since H;(M,R) = {0}, the lift &
of w to M is exact, then

ca(L) = o(L) = (L ~ B) < ¢(L - w).

Hence
c(L) £ min ol —w) = co(L).

Moreover,

—ca(L) =inf { Ag(u)| 1 € C(RM) }

=inf{Ar(p) | € C(M), p(p) =0},

because if u € C(M), by proposition 2-3.3 there are p.,, € C(M) with
Az (fyn) = Az (). Since 7, is closed, its projection po-, has homology
[pova] = 0. Then p™(iy,) = tipoy, — "y AL(P*py,) = AL(ps) =
Az (1) and by proposition 2-5.1 p(p*p) = lim, p(p*p,) = 0.

Since M(L) C M, we get that

~ea(L) < min{ AL () | 1 € M(L), plu) = 0)
= —B(0) = co(L).
ad

The real abelian cover is the covering M of M with & : m(M) —
{.I} (M, R) is the Hurewicz homomorphism. It is an intermediate covering
M — M — M and the deck transformations of M — M are given by
the torsion? of H,(M,Z). Hence M — M is a finite cover so that they
have the same critical value ¢, (L) = ¢p(L).

*i.e. the elements of finite order Zny @ P En, C H\(M,Z).



Chapter 3

Globally minimizing orbits.

3-1 Tonelli’s theorem.
Given z, y e M and T > 0, let

Crle,u) = {7 € C*([0,7], M) | 7(0) = =, 1(T) =y }.
We say that y € Cp(z,y) is a Tonelli minimizer if

A e 1 ]
() e Ar(m)

In this section we shall prove

3-1.1. Tonelli’s Theorem.
Forallz, y € M andT > 0 there exists a Tonelli minimizer on Cr(z,y).

The only difference in the proof of this theorem when M is noncom-
pact is corollary 3-1.7. An independent proof of this corollary is given
in remark 3-1.8,

The idea of Tonelli’s theorem is to prove that the sets
Ale) ={v€Cr(e,y) | AL(y) < c) (3.1)

al
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are compact in the C°-topology. Then a Tonelli minimizer will be a
curve in

(1 Ale) # 2,

cro
where a = inf,ccp(z,y) AL(m) > inf L > —co.
An addendum to Tonelli’s theorem due to Mather [39] states that

these sets are compact in the topology of absclutely continuous curves.
Given vy, 2 € C*([0, T}, M) define their absolutely continuous distance

by

T
d1(71,72) = sup du (1 (t), 72(8)) + / drm ([v1(), 11 (@], [ra(t), 42(2)]) dit.
te[0,T) o

3-1.2. Theorem (Mather [39]). For enyz,y € M, T > 0, b € R,
the set
A(b) := {7 € Cr(z,y) | AL(y) < b}

is compact in the di-topology.

This theorem follows from the fact that A(b) is compact in the C°
topology, which is proved in 3-1.11 and the following proposition (ad-
dendum on page 175 of Mather [39]).

3-1.3. Proposition. (Mather [39])

If N C M is a compact subset and vy, v2, ... is a Sequence in
C*([a, b], N) which converges C° to v and Ar(yi) converges to Ar(y),
then v1, 72, ... converges in the dy-topology to .

We shall split the proof of Tonelli’s theorem in several parts:

3-1.4. Definition.

A family F C C%la,b], M) is absolutely equicontinuous if ¥V £ > 0
34 > 0 such that

1=

N N
_El|t,'—si[ <d = S d(z,,zy) <56,
= 1

whenever |s1,t1[,...,}sn, tn{ are disjoint intervals in [a, b].
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3-1.5. Remark.
(i) An absolutely equicontinuous family is equicontinuous.

(ii) A uniform limit limit of absolutely equicontinuous functions is ab-
solutely continuous.

3-1.6. Lemma. Forallce R and T > 0, the family
Flc) := {7 € C*([0,T], M) | Ap(v) < c}

is absolutely equicontinuous.

Proof: Since by the superlinearity, the lagrangian L is bounded below;
by adding a constant we may assume that L > 0. Fora>0let

K (a) = inf { # [ (z,v) € TM, |v| > a.}. (3.2)

The superlinearity implies that lim,_, ., K{a) = +oo. Given ¢ > 0 let

e > 0 be such that .

K(a)<§'
Let 0 <&y <ty < <5y <ty < T, J := UY [s;,t;] and E :=

J N [l&] > a], then L(z,,&,) > K(a) |&| for s € E. We have that

m

K@) Y d(as, 1) < K(a) [E 1| + K () [, Ll

i=1
< f L(z,8) +a- K(a) m(J)
< cf— a- K{a) m(J), (because L > 0),
where m is the Lebesgue measure on [0, T
d(zs,2:) < [, 18] <€ K@ T em{J) < §+am(J). (3.3)

This implies the equicontinuity of F(e).
O
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In order to apply the Arzela-Ascoli theorem we need a compact
range, for this we have:

3-1.7. Corollary. For all c € R and T > 0 there is R > 0 such that
foralz, ye M,
A(e) C €*([0,T1, B(z, R)),

where B{z,R) :=={z€ M | du(z,2) < R}.

Proof: Inequality (3.3) for N = 1 and J = [s,t]is d(z, ;) < §+a|t—s|.
It is enough to take R = S+eal. O

3-1.8. Remark.
corollary 3-1.7 is the only difference for the proof of Tonelli’s theorem when
M is non-compact. Another proof for corollary 3-1.7 is the following:

Adding a constant we may assume that L > 0. There is B > 0 such that
L{z,v) > |v| — B for all (z,v) € TM. Then for 0 < s <t < T, we have that

t i
d(z,,:ct)g[ !:E:lgBT+[ L(z,4) < BT +c.
L . 3

Recall that

F(e) == {yec®(0,T), M) | Ap(y) < ¢}

3-1.9. Theorem. (Cle)
If v € F(c) and v, = v in the uniform topology, then v € Fc).

We shall need the following lemma. We may assume that M = R™,

3-1.10. Lemma. Given K compact, a > 0 and £ > 0, there ezists
1> 0 such that ff c € K, ||z ~ yll <¢, [v] < a and w € R, then

L{y,w) > L{z,v) + Ly(z,v) (w — v) —¢. (3.4)
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Proof of Cle’s theorem:

It is immediate from the definition 3-1.4 that a uniform limit of abso-
lutely equicontinuous curves is absolutely continuous. We may assume
that v,([0,T]) is contained in a compact neighbourhood K of v([0, 7).
By the superlinearity we may assume that L > 0. Let £ > 0 and
E = [|¥] < a], then by lemma 3-1.10, for n large,

[ [L(")’) + L, (V) (5 = ¥n) — E] < [ Lv) <e (since L > 0).
[0,T\E Eec

' (3.5)
Claim: 4, — 4 in L.

Using the claim, since L,(z,v) is bounded for z € K and |v| < @,
then

| n) G- 2o,
Letting n — +o0 on (3.5), we have that

ch('}f)—-sTgc.

Since E°€ 1 [0,T] when a — +o00, then

fOTL(q}): lim /ECL(y)Sc+€T.

a—+oo

Now let £ = 0.

We now prove the claim. By inequality (3.3), fore > 0 thereis ¢ > 0
such that

m(D) <5 —s fD [l < . (3.6)

where m is the Lebesgue measure. If A = [s,£], then

n—¥co n—roc

lim /A(‘rn — ¥} = lim (v, — 7)]2 = 0. (3.7 |
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Equations (3.6) and (3.7) imply that (3.7) holds for any Borel set A,
approximating A by finite unions of intervals. Then

lim (7?1_7) P =0,
" JoT]

for any 1 € £%°. This implies that 4, — ¥ in L. O

3-1.11. Proof of Tonelli’s theorem:

By lemma 3-1.6, the family A(c) in (3.1) is equicontinuous, and by
corollary 3-1.7, the curves in A(¢) have a uniform compact range. By
Arzeld-Ascoli’s theroem and Cle’s theorem, A(c} is compact. Then

vye [} Al

czinfc,r(:,‘y) Ay
is a Tonelli’s minimizer on Cr(z,y). O

Proof of lemmma 3-1.10:
Let

Cr:=sup{ L,(z,v) |z € K, |v|< a}
Cy :=sup{ L(¢,v) — Ly(z,v)-v |z € K, |[v| < a}.

Let b > 0 be such that
K@) -0>Co+Cyr for all r > b,
where K (d) is from (3.2). Then if y € M and |w| > b,

Ly, w) > K(d) {w]
2 G2+ Cy |wl
> Co+ Ly(z,v)-w _
> L(z,v)+ Ly(z,v) - (w — v) for |w| > d.
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Since L is convex,
L{z,w) > L{z,v) + Ly(z,v) - {(w—v) VYweR™

Then there is § > 0 such that for |z —y| < &, |v|] < @ and |w| < b
inequality (3.4) holds.

O
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3-2 A priori compactness.

The following lemma, due to Mather [39] for Tonelli minimizers in the
non-autonomous case, will be very useful. In the autonomous case its
proof is very simple.

3-2.1. Lemma.

For C > 0 there exists A = A(C) > 0 such that ifz, y € M and y €
Cr(z,y) is a solution of the Euler-Lagrange equation with Ap(y) < CT,
then |¥(t)| < A for all t € [0,T).

Proof: By the superlinearity there is D > 0 such that L(z,v) > |v|- D
for all (z,v) € TM. Since Ar(y) < C'T, the mean value theorem implies
that there is {5 €]0, T such that

|¥(to)| < D+ C.

The conservation of the energy and the uniform bounds (1.10) and (1.9)
imply that there is A = A(C) > 0 such that |¥| < A.

O

For k > ¢(L) and z, y € M, define

Qr(z, 3Ty = inf  Api(y).
’YEcT("-’:t)

3-2.2. Corollary. Givene > 0, there are constants A(e), B(e), C(e) >
0 such that if T > ¢ and k > ¢(L), then

(i) ®u(z,4;,T) < Cle) T.

(i) If v € Cr(z,y) is a solution of the Euler-Lagrange equation such
that ALk (7) < C(&) T+ L, then 3] < A(e) and E(y,) < Be).
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Proof: Comparing with the action of a geodesic on Cr(z,y), we get (i)
with
Cle) = sup{ L(v) | |v] < 452 }.

Using (i} and lemma 3-2.1,we obtain A(g). Using A(e) and inequal-
ity (1.10) we obtain B(e). 0

3-2.3. Lemma.
There exists A > 0 such that if 2,y € M and v € Cr(z,y) is a
solution of the Euler-Lagrange equation with

AL-I—C(T) < q)c(a:ly) + dM(:EJy))
then () T > % du (2, y).

(6) |5(t)| < A for all t € [0, T).

Proof: Let 5 : [0,d(z,y)] & M be a minimal geodesic with || = 1.
Let £(r) be from (1.1} and D = £(1) + ¢ + 2. From the superlinearity
condition there is B > () such that

L{z,v)+¢> Dlv] - B, V(z,v) € TM.

Then
[€(1) + ] d(@, y) > Ap+e(n) > ez, y) (3.8)
> Apye(v) — d(=,t) (3.9)
T
2 [ (D 11-B)dt-de,y)
> Dd(z,y) - BT —d(z,y).
Hence

T > A=t=e=l d(z,y) > § d{z,y).
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From (3.8) and (3.9), we get that

AL(v) < [0 +c+1] d(z,y) =T,
<{Bl&()+ec+1]—c}T.

Then lemma 3-2.1 completes the proof. O



3-3. ENERGY OF TIME-FREE MINIMIZERS. 61

3-3 Energy of time-free minimizers.

A curve v € C(z,y) is a global minimizer or time free minimizer for
L4kilk>c(L) and Apye() = (=, y).

3-3.1. Proposition.- A time-free minimizer for L+k has energy F = k.
We need the following

3-3.2. Lemma. Let:z:[0,T] = M be an absolutely continuous curve
and k ¢ R. For A > 0, let z,(t) := «(At) and A(X) := Apyr(z2). Then

T
A1) = fo [E(z,4) - k] dt.

Proof: Since &) (t) = A £(At), then
T

AN = /07 [L{z(A8), A& (\e)) + k] dt.
Differentiating A(A) and evaluating at A = 1, we have that
A'(1) = =T [L{z(T), £(T)) + k| —|—/0T[tha': + L, (& +tE)] dt.
Integrating by parts the term (L, % + L,Z)t = (%L) t, we have that
A1) = -T [L(=(T),s(T)) + k] +Lt|] +f0T(L1,'d: ~ L) dt

= —Tk+-/UTE($,:53) dt:/OT[E’(ac,i)—k] dt.

Proof of proposition 3-3.1.

Since v is a solution of the Euler-Lagrange equation its energy
E(v,%) is constant. Since it minimizes with free time, the derivative |
in lemma 3-3.2 must be zero. So that E{(y,¥) = 0. O




62

3. GLOBALLY MINIMIZING ORBITS.

3-3.3. Corollary.

Let z € C°°([0,1], M) and k > 0. For T > 0, write yr(t) = z(#) :

[U, T] — M and B(T) = ALtk (yT) Then

1 T

B’(T):—T A [E(yT,y'T)-k] dt.

Proof: Using A = % on lemma 3-3.2, we have that f—s

1y

= _T &
= TS dx

d 17T ,
EIS:TB = -T z:‘:l,\:]A = _T/(; [E(yT’yT) - k] dt

Thus
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3-4 The finite-time potential.

Recall that if &k > ¢(L), z, y e M and T > 0,

Dz, y; T) = . clﬂfa, ) Ap+i(7).

Here we shall prove

3-4.1. Proposition.
For k > c¢(L) and =, y € M, the function t » ®r(z,y;t) is Lipschitz
on [g,400[ for any € > 0. Moreover,

lim ®(z,y;e) = +oo, for k>e¢(L), z#y.

e—+0+

TE}Tw@k(w,T;T)=+OO, - Jor k>c(L), z#y.

Proof of proposition 3-4.1
We first compute the limits. Observe that if & > ¢(L),

Pim 2o,y T) > THTW[@c(w,y) + (k=) T] = 4o0.

Given A > 0, let B > 0 be such that L(z,v} > A|v| -~ B. Then

Bp(z,:¢)= inf A >inf | A% -—B+k
k(z,y;€) e L+k(7)_12f0 47 +

> Ad{z,y)+ (k- B)e.

Thus, liminf, o+ ®r(z,y56) > Ad{2,y). Now let A = 4o00.

Fixe > 0. If T > ¢ and v € Cp(z,y) is a Tonelli minimizer, from
corollary 3-2.2 there exists C = C(g) > 0 such that E(y,9) — k <
C(e) — k. Denote h{s) := ®(z,y;s). If v:(t) = v(§t), then h(s) <

63
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Apyk(7s) =: B(s). Using corollary 3-3.3 we have that
(T + 8) = h(T)

f(T) : =limsup

§-30 )
T
<B@) =75 [ (B k] e
< [C(e) - H.

If S, T > & we have that

Dr(z,y;8) < Prlz,y; T ]f ) di
S(I)k( :y:T)+ ) k’ |T Sl

Since we can reverse the roles of S and T, this implies the Lipschitz
condition for T — @ (z,y; T).
O



3-5. GLOBAL MINIMIZERS.

65

3-5 Global Minimizers.

Here we construct curves that realize the action potential.
For k < ¢(L), &3 = —o0, so there are no minimizers.

3-5.1. Proposition.
Ifk>c(L) andz, y € M, © # y, then there isy € C(z,y) such that
Aptk(7) = Ck(z, ).
Moreover, the energy of v is E(vy,%) = k.
Proof: Let f(t) := ®x(z,y;T). By proposition 3-4.1, f() is continuous
and f(t) - +oo when ¢ — 0% ort — +oo. Hence it attains its minimum
at some T > 0. Moreover, ®r(z,y) = infis0 Pr(z, y;t) = Pz, y; T).

Now take a Tonelli minimizer v on Cr(z,y). From lemma 3-3.2, the
energy of v is k. O

We now study minimizers at & = ¢(L). Observe that for ¢ = ¢(L)
and any absolutely continuous curve v € C(z,y), we have that

AL+C(7) 2 (I)c(m:y) 2 _@C(yﬁm)' (3'10)
3-5.2. Definition. Set ¢ = ¢(L).

An absolutely continuous curve v € C(z, y) is said semistatic if
Apte(7) = e[, ).
An absolutely continuous curve ¥ € C(z, y} is said static if

Apte(v) = =Py, 7).

By the triangle inequality for @, the definition of semistatic curve
z :[a,b] = M is equivalent to

Arptc(zlisg) = @c(z(s), (1)), Ya<s<t<b. (3.11)

Inequality (3.10) implies that static curves are semistatic.
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Moreover, a curve v € C(z,y) is static if
(a) v is semistatic, and
(b)  de(z,y) = Bc(z,y) + Pe(y, z) = 0.
3-5.3. Corollary. Semistatic curves have energy E = ¢(L).

3-5.4. Definition.

N = (L) ={we TM|mw :R — M is semistatic }
A:i‘(L) ={weTM|z,:R— M is static }
S7(L) = {w € TM|zy ] — 00,0} & M is semistatic }
ST(L) :={weTM|z,:[0,4+00[— M is semistatic }

We shall call N the MaAé set, P = n(S(L)) the Peierls set' and
A= 5(L) the Aubry set.

Using the characterization of minimizing measures 3-6.1 and corol-
lary 3-5.3 we have that?

MCACNCE,

where M is the Mather set, .4 is the Aubry set, N is the Mafié set and
£ is the energy level £ = [E = c(L)]). All these inclusions can be made
proper constructing examples of embedded flows as in equation (1.20)
and adding a properly chosen potential ¢(z).

Denote by a(v) and w(v) the @ and w-limits of v under the Euler-
Lagrange flow.

3-5.5. Proposition.

A local static is a global static, i.e. if mvl[a b] is static then v ¢ E(L)
(i.e. the whole orbit is static).

'The name is justified by proposition 3-7.1.5.
>The typographical relationship was observed by Albert Fathi.
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Proof: Let n(t) = myi(v) and let v, € Cr,(7n(b),n(a)) be solutions
of (E-L) with

AL+.: ('Yn) < @c(n(b)i "'7(0’)) + %
By the apriori bounds 3-2.3 ¥,| < A. We can assume that 9,(0) — w. -
Let £(s} = mos(w). If w # A(b} then the curve Np—e.b] * Elfo,e] 18 not C,
and hence by remark 1-2.2, can not be a Tonelli minimizer. Thus

D.(n(b— E)ag(g)) < AL+C(7?|[6—-e,b]) + AL+C(§|[0,5])-

®c(n(a), n(a)) < @:(n(a), n(b- €)) + @.(n(b - £),€(e)) + ©.(é(e), n(a))

< AptelMap-e) + Abte(lp—cp) + ALsclElip) + liminf Azye(ynlie,ra)

< Apg. ("]l[u,b]) + lig'l(')/nho,e] * 'Ynl[s,Tn])'
< =@.(7(8), v(a)) + c(y(a), 7(B)) = O,

which contradicts proposition 2-1.1(3). Thus w = #(b) and similarly
limy, ¥, (Tn) = 9{a).

If limsup 7, < 400, we can assume that 7 = lim, T, > 0 exists. In
this case 7 is a (semistatic} periodic orbit of period 7 + b — @ and then .
it is static,

Now suppose that lim,, 7, = +oo. If s > 0, we have that

ALte(Ma—sprs) + B(n(b+ 5),n(a —5)) <
<lim { Az yo(Yal(T—s,1) + ALse(n) + Arye(Yalpo,) }
+ @e(n(b+5), (e - 5))
< @e(n(a), n(b))
+ lign { Ante(¥rlo,s) + Arte(Yalis, =) + Arte(WlTu—s1.) }
< @eln(a), n(b)) + Bc(n(b), 7(a)) = 0.

Thus 7y,_, 444 1s static. O
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3-6 Characterization of minimizing measures.

3-6.1. Theorem (Mainié [32]). R
€ M(L) is a minimizing measure if and only if supp(p) C (L)

Proof: Since & is closed, it is enough to prove the theorem for ergodic
measures. Suppose that g € M(L) is ergodic and supp(p) C T(L).
Since g is finite, by Birkhoff’s theorem there is a set of total u-measure
A such that if # € A then liminfro 4o drar(0, r8) = 0 and

/L+cd,u- lim ——/ L{pi6) +cdt
M

T+ T
<liminf 7®,(n(p76),7(6)) = 0.

Tr400

Now suppose that 4 € M (L) is minimizing. By corollary 3-6.5, there is
a set A of total p-measure such that if § € A then there is a sequence
T, — 400 such that d(8, ¢r, #}) — 0 and

Th
limf L{p:8) +cdt = 0.
noJo
Then

0<d(mf, mp1 8) = lip[@c(ﬂ 0,m 1 0) 4+ @.(m 1 0,7, 0) ]
Tn
Slim/ L) +cdt =0
n n .

This implies that 6 is static. Since E(L) is closed and A is dense in
supp(u) then supp(u) C E(L). O

It follows from theorem 2-4.1 that

3-6.2. Corollary.
If M is compact then L(L) # .

Combining theorem 3-6.1 with corollary 3-5.3, we get
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3-6.3. Corollary. If u is a minimizing measure then il is supported in
the energy level F(supp(y)) = ¢(L}.

3-6.4. Lemma. Let (X,B,v) be a probability space, f an ergodic mea-
sure preserving map and F : X — R an integrabdle function. Given

A € B with v(A) > 0 denote by A the sel of point p € A such that for

all € > O there exists an integer N > 0 such that fN(p) € A and

f:g P(fi(z)) - N /qul <e.

~

Then v(A} = v(A).

Proof: Without loss of generality we can assume that [ F dv = 0. For
p € X denote

Swip) = 5 F(7()).

n=0

Let
A(g) == {p e A|IN > 0 such that f¥(p) € A and |SNF(p)| <&} .

It is enough to prove that v(A(g)) = v(a), because 4 = A(L). Let
X be the set of points for which the Birkhoff’s theorem holds for F and
the characteristic functions of A and of A(g). Take z € AN X and let
Ni < N, < --- be the integers for which f¥(z) € A. Define (k) by

Ny (k) = |Sn, F(z)| .
Since ¢ € X we have that imp_, ;o0 6(k) = 0. Set

cp = SN, F(z),
Sh):={1<j<k—-1|¥>jleg—c;|>¢}.

Then
g #5(k) < 6(k) Ny.
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Moreover if 7 ¢ S(k), then there is an £ > 7 such that |¢; — ¢;] < ¢, s0
that

|Sve-n; F (S (@) = lee — sl < e
Hence
igSk)= fNi(z) € Afe).
This implies that
. 1 &k
Fr HOSi <Nl fie) e - @)} < o #sh) < 2.

Since §(k) — 0 when k — 400 and & € X, , we obtain

v(A— Ae)) = lim ——#{0<J<Nk|f’($)€A Ale)} =

ka+toc N,
concluding the proof of the lemma. O

3-6.5. Corollary. If besides the hypothesis of lemma 3-6.4, the space
X s compact and metric, and B is the Borel o-algebra, then for a.e.
z € X the following property holds: for all ¢ > 0 there exists N > 0
such that d(fN(z),z) < € and

EFfJ:r:) N/de

Proof: Given e > 0let {V, (£)} be a countable basis of neighbourhoods

with diameter < £ and let Vn be associated to Vn as in lemma 3-6.4.

Then the full measure subset NU Vn(m) satisfies the required property.
m 7

: a
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3-7 The Peierls barrier.

For T > 0 and z, 4y € M define

hr(z,y) = @(z;y;T) :=  inf  Arpgc(y).
vECT(2/¥)

So that the curves which realize hr(z,y) are the Tonelli minimizers on
Cr(z,y). Define the Peierls barrier as

iz, y) = lim inf hr (2, ).

The difference between the action potential and the Peierls barrier is
that in the Peierls barrier the curves must be defined on large time
intervals. Clearly

h(z,y) > ®c(x,y).

3-7.1. Proposition.
Ifh:Mx M — R is finite, then

1. h is Lipschitz.

Vz,y€ M, h(z,xz} > ®(z,y), in particular h(z,z) > 0,V z € M.
hiz,z) < hiz,y)+ h(y, 2), Va,y,z € M.

h(z,y) < To(z,p) + h(p,9) + @e(0sy),  Vo,4,p, g€ M.

hiz,z) =0z en(X)="7P.

IS4, hiz,y) < infpeﬂ(g) @ (z,p) + D:(p,y)-

S ;B e o

Proof: Item 2is trivial. Observe that forall $, 7T > 0 and y € M,
hrys(z,z) < hr(z,y) + hs(y, 2).
Taking lim infp_, 4o we get that

h(z, z) < h(z,y) + hs(y, 2), for all S > 0.
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Taking lim inf s-34.00, We obtain item 3.
1. Taking the infimum on S > 0, we get that

h(z,2) < bz, y) + @e(y,2)  Va,y, 26 M.

< hix
S h’(m:y) + A dM(IJ: Z),

where A is a Lipschitz constant for ®.. Changing the roles of z, y, 2,
we obtain that h is Lipschite.
4. Observe that

§‘;§ hs(z,y) < .z, p) + hr(p, ¢) + Bo(g, z).

Taking lim infr_ 40, We get item 4.
5. We first prove that if p € P = Tr(f?), then h(p,p) = 0. Take
v € % such that n(v) = p and y € w(w-limit(v)). Let v(¢) = wpi(v)
and choose t,, T 400 such that y(¢,) — y. Then
0 < A{p,p) < h(p,y) + ey, p)
<Him Apie(¥ljo,e) + @e(y, p)

< lim —®.(y(tn), p) + L.(y,p} = 0.
Conversely, if h{z,z) = 0, then there exists a Tonelli minimizer 7, €

C(z,2;Ty) with T, — 400 and Apic(7.) = 0. By lemma 3-2.3, |4
is uniformly bounded. Let v be an accumulation point of 4,(0) and

7(t) := 7@y (v). Then if 4, (0) LA v, for any 5 > 0 we have that
0 < @z, mps v) + P75 v, T)
< Apse(nlo,) + Bo(m s v, 2)
< lim Apte(Ynilo,s)) + ALte(Yrilis7a)
= 0.

Thus v € 3.
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6. Using items 4 and 5, we get that

h(z,y) < inf_[®c(z,p)+ 0+ Bo(p,y)]-
peET(L)

3-7.2. Proposition. If M is compact, then
h’(x: y) = inf,\ [‘I’c(w,p) + (pc(p) y)]

pEn(Z)

Proof:
From proposition 3-7.1.6 we have that

h(z,y) < inf_[®.(z,p)+ Bu(p, ) ].
pE(E)

In particular A(z,y} < +oo for all ¢, ¥y € M. Now let v, € Cr,(z,y)
with Ty, = +00 and Apto(vn) — h(2,y) < +00. Then 2ALic(7a) = 0.
Let i be a weak limit of a subsequence of the measures p.,,,. Then

is minimizing. Let ¢ € #(supp(u)) and ¢, € ¥,([0,Ty]) be such that
lim, ¢, = ¢q. Then,

P (=, Q) + @.(q, y) < @ (z, gn) + (I)C(Q’m y) + 24 d(¢r, q)
< Apte(vn) + 24 d{gn, ).

Letting » — oo, we get that

P.(z, q) + @c(g,y) < h(z,y).
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3-8 Graph Properties.

In this section we shall see that the projection 7 : S Mis injective.
We shall call P := x(X) the Peierls set. 3 Thus the projection 7|s gives
an identification P ~ .

For v € TM, write z,(t) = mps(v). Given € > 0, let
Y i={weTM|z,:[0,e) = M or z,,: (—&,0] = M is semistatic }.

3-8.1. Theorem. (Maifié) [32]
For all p € w(X) there exists a unique £(p) € T,M such that

(p,€(p)) € =¢, in particular (p,{(p)) € $ and & = graph(£).
Moreover, the map £ : m(X) — X is Lipschitz.

The proofs of the injectivity of 7 in this book only need that the
solutions of the Euler-Lagrange equation are differentiable?. The reader
may provide those proofs as excercises. The proof of the Lipschitz con-
dition need the following lemma, due to Mather. For the proof see [39]
or Maiié [29].

3-8.2. Mather’s Crossing lemma. [89]

Given A > 0 there exisis K > 0 g1 > 0 and § > 0 with the following
property: if |v;| < A, (p;,vi) € TM, i = 1,2 satisfy d(p,,p2) < § and
d((p1, m), (p2, v2)) > K‘ld(pl,pz) then, ifa € Rand z; : R —» M,
¢ = 1,2, are the solutions of L with z;{a) = p;, ¢:(p;) = v;, there exist
solutions v; : [a —e,a+ €] = M of L with 0 < £ < &1, salisfying

nle—¢)=zi(e—¢) , mle+e)=zz(ate),
72(0'_5) ::EZ(a’_E) ’ 72(a+5):$1(a’+5):
SL(mll[a—e,a,-}-e]) + SL(m2|[a—e,a+s]) > SL(‘TI) + SL(T2)

*This name is justified by proposition 3-7.1(5).
*and hence a non-differentiable curve can not be a Tonelli minimizer.
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Proof of theorem 3-8.1:
We prove that if (p,v) € s, (g, w) € X¢, and d(p, q) < §, then

dTM((Pu U)) (qa w)) <K dM(p: q) .

Observe that this implies the theorem. For simplicity, we only prove

the case in which %'{—s,o] is semistatic. Suppose it is false. Then by
lemma 3-8.2 there exist «, §: [—¢,€] = M such that

a(—€) = (-~} =1 q_, , a(0) =p,
ﬁ(—&') = w‘u(_‘g) =P, ﬁ(O) =q,
and
Sp(@) + 5(8) < Sp(#wli-cq) + SL(@o|[—c,0))-
So
Do(g-c; ) + Pe(p—e, 7) < Pc(g-c, 9) + Pelp—e, )
= (I)C(Q—s: Q) - (I)c(p:p-—c)
Thus

FIG. l: GRAPH PROPERTY.

@C(Q-—ﬂ Q) < (pc(q—t?:p) + (I)c(p, p—s) + (I)c(p—g; (I) < (DC(Q'—E, q’)

which 1s a contradiction. O
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Using the graph property 3-8.1 we can define an equivalence relation on
2 by

WLUED, uw=v = de(m(u), n(v)) = 0.

The equivalence classes are called static classes. The continuity of the
pseudometric d; implies that a static class is closed, and it is invariant
by proposition 3-5.5.

For v € TM denote by w(v) its w-limit. Let I' be a static class, the

‘set

IMt={veZ*()|w)CI}
is called the (forward) basin of I'. Clearly I'" is forward invariant. Let
Pg— = Ut>0 ‘P:(F)
={Ueso {vE€TM | Ty |]—e, o[ 1S Semistatic }.
The set #(TT \T7) is called the cut locus of T't.

3-8.3. Theorem. (Maiié)[32]
For every static class T, the projection m : T — M is injective with
Lipschitz inverse,

The projection # : 't — M may not be surjective. But when M is
compact for generic lagrangians #(I't) = #(I'") = M because there is
only one static class (cf. theorem 5-0.1.(B)).

Proof: We prove that for K as in lemma 3-8.2, if v, w € I‘E',' then
dras (v, w) < K dpr(m(v), m(w)). (3.12)

Suppose it is false. Then there are v, w € I'§ such that inequality (3.12)
does not hold. Let £ > 0 be such that To|[=e, 400 2N Tan|[—e,4o0[ 2TE
semistatic. By lemma 3-8.2, there exist a € Coc(z,(—€), 2w (€)) and

- B € Cae(z(—2), z,(€)) such that

Apye(a}+ App (B)+ 6 < ArLsc(Tuli—ze)) + Arte(Tuwl[—cq),
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for some é > 0. Let p, ¢ € n(T) and s, t, — +oo be such that z,(s,) —
+00 and z,{sn) = P, Tu(tn) = ¢. Then
Doy (=€), Tu(tn)) + Po(@uw(—€), Tu{sn)) + 6
S Appe(@ * Tyle]) + ALte(B * Tolfe,5)) + 6
< Apte(@uli—e,5n]) + ALtc(Towl[-e,ta])
= Bc(zu(—€), Zu(5n)) + Pe(zw(—€), Tu(tn))-

Letting n — oo and adding d.(p, ¢) = 0, we have that
QC(m‘U(_E):p) + (I)c(ww(“'a): Q)

< @o(z0(—€), 9) + Pe(zw(—¢),p) + (g, ) + Cc(p, 9)
< @c(2u(—2),p) + Bcl2w(-£), 9)-
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3-9 Coboundary Property.

The coboundary property was first presented by R. Mafié in [31] and
further developed in [32] and by A. Fathi.

3-9.1. Theorem. (Maiié) [32]
If e = e(L), then (L+¢) |§ 18 a Lipschitz coboundary. More precisely,

taking any p € M and defining (& : SR by

G(w) = 0c(p, m(w)),

then

(L+C)|§=§,
where
) = fim £ [Glentw) - Glw)].

Proof: Let w € & and define Fy(v) == O (m(w), 7(v)). We have that

h—=0 ‘E 0
= L(w) + c.

We claim that for any p € M and any w € &, h € R,

G((Ph w) = (I)C(p) W(th)) = (ﬁc(p'l W(w)) + (I)C(W(w),ﬂ'(()ohw))
Glpnw) = @o(p, 7(w)) + Fulpn(w)). (3.13)
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This is enough to prove the theorem because then

dG d

E ) = %Fh(%w)

£y

= —| = L(w) +e¢,
h=0 dtp

w

and G is Lipschitz by proposition 2-1.1.

We now prove (3.13). Let q := w{w), = := n(prw). We have to
prove that

Oe(p, ) = Pc(p, q) + (g, 2). (3.14)
Since the points ¢ and z can be joined by the static curve -’~‘¢w|[o,h], then
®o(z,9) = —Pc(q, 7).
Using twice the triangle inequality for ®. we get that

®.(p,q) < Pc(p, v} + Po(,9) = Be(p, 2) — (g, ) < De(p, @).

This implies (3.14)}. O
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3-10 Covering Properties.

3-10.1. Theorem. #x(EZ1t(L})= M.

Proof: First suppose that fI(L) # o. Take p € w(ﬁ) Given z €
M\ 7(X), take a Tonelli minimizer v, € Ct,(z,p) such that

ALte(mn) < (I)c(a:,p) + %

By the apriori bounds 3-2.3, |¥.| < @ and T}, > %d(m,p). Let v =
limg 95, (0) be an accumulation point of {(¥,(0}). Let n(¢) := 7 (v).
Then, if 0 < s <liminfy Ty, , we have that

AL+<: (nl[ﬂ,s]) = ]l‘{:n AL+C (771'[0:3])
< H’l‘;n [ ‘I’c('Ynk(OL Trx (s)+ t]
= ®.(n(0),n(s))-

Then 7 is semistatic on [0, 5], where S = liminfy T,,. If § < 400 then
n(S) = limy v, (T} = p. Since z ¢ 7(X), this contradicts the graph
property 3-8.1; hence § = 4o00. Thus 70,400 is semistatic and v € T+,

s = #, then by corollary 3-6.2,M is non-compact. Let z € M and

(Yn) € M such that das(z, y,) = +oo. Let v, € Cr, (2, ¥,) be a Tonelki
minimizer such that

AL+C(’Yﬂ) < ‘I)C(wl yn) + ,,1_1

Then by lemma 3-2.3, |4,| < A, and hence T, — +o00. The rest of the
proof is similar to the case above. |
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3-11 Recurrence Properties.

Let A be the set of static classes. Define a reflexive partial order < in
A by

(2) « is reflexive.
(b) < is transitive.

(c) If there is » € X with the a-limit set a(v) C A;
and w-limit set w(v) C Aj, then A; 5 A;.

3-11.1. Theorem.

Suppose that M is compact and the number of static classes is finite.

Then given A; and AJ? in A, we have that A; % A;.

FIG. 2: CONNECTING ORBITS BETWEEN STATIC CLASSES.

The three closed curves represent the static classes and the
other curves represent semistatic orbits connecting them.

theorem 3-11.1 could be restated by saying that if the cardinality of
A is finite, then given two static classes A; and A; there exist classes
A; = Ay, ..., A, = A; and semistatic vectors vy,...,v,_; € X such that

for all 1 < &£ < n — 1 we have that a(v;) C Ax and w(vy) C Agyq.

In other words, between two static classes there exists a chain of static
classes connected by heteroclinic semistatic orbits (cf. figure 2).
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A proof of the following theorem can be found in [6]
3-11.2. Theorem. If M is compact, then
1. (L) is chain transitive.

2. fJ(L) is chain recurrent.

Now we proceed to prove theorem 3-11.1. Assume for the rest of this
section that M is compact.

3-11.3. Proposition.
If v € ¥ is semistatic, then a(v) C (L) andw(v) C X(L). Moreover
a(v) and w(v) are each contained in a static class.

Proof: We prove only that w(v) C £. Let v(t) = 7 @¢(v). Suppose that

t, — 400 and ¥{t,) = w € TM. Let 5(t) = w ¢, (w). Since v and 75

are solutions the Euler-Lagrange equation, then 7|[tn,st +s = N[=s,s]-
T o ¥

Then
Apte(Alj=s,5) + Pc(n(s),n(—5)) =
= li,ﬂn{ Apte(Vlitn-s,tnts]) + UM ALso (Yt s tin—s]) i
= lim lim Apye(7](stm—s)
= lim lim Be(y(tn — 9), Y{tm — )
= ®c(n(—s),n(—5)) = 0.

Thus w € f](L) Let # € w(v). We may assume that y(s,) — w with
tn < Sn < tﬂ"]'l' ']:hen

de{mw, mu) = O (rw, mu) + B, (mu, mw)
= ]i};n AL-{—c('Yl[tn,sn] + AL+?(7|{Smtn+1])
= I]TI;I] AL+C(’Yﬂ|[tn,tn+;]) = (I>c(1rw,1r'w) = 0.

Thus w and u are in the same static class. |
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3-11.4. Proposition. Every static class is connected.

Proof: Let A be a static class and suppose that it is not connected. Let
Uy, Uz be disjoint open sets such that A C Uy UU; and ANU; # &,
i=1,2. Let p; € w(U;N A}, ¢ = 1,2. Since U; and U; are disjoint sets
we can take a solution x,, : [an,bn] =& M, a, < 0 < b, of (E-L) such
that z, (0) & w(U1 U Us), 24, (an) = P1, %o, (bn) = p2 and '

Apsc(zv,) € Belp1,p2) + % (3.15)

Let  be a limit point of v,, then z, : R — M is semistatic (see the '

proof of claim 2 item (a)). Then, for a, < s <t < by,

dc(pls pZ) S Qc(pl-n Ty, (S))’*'@c(mvn(s); mvn(t))"'q)c(mvn (t) ¥ P2)+(I’c (p2: pl): |

therefore

de(p1,p2) < Qelp2 p1)
+ limninf [‘I'c_(pl, Ly, (S)) - ‘I)c(:L‘vn (3), Zup (t)) + “I)c(mvn (t)l P2)]

< @c(p2, p1) + liminf Ap e (2y,)
< do(p1,p2) =0,
where in the last inequality we used (3.15). Hence
B.(p1, vu(5)) + Pe(zu(s), 2u(t)) + Pe(w(t), p2) + Belpa2, p1) = 0.
Combining the last equation with the triangle inequality. we obtain
do(aa(s), 2(8) <
< Be(zu(s), 2u(t)) + [2e(zult), p2) + Pe(pz, P1) + Pelp1, 2u(s))] = 0.
So that u € . Moreover, for s = 0,¢ = 1:

dc(xﬂ(o):pl) S
< @c(p1, 2(0)) + [Re(2(0), 2u(1)) + Pe(@u(1), P2) + Pclp2, p1)] = 0.

Hence z,(0) € m(A). On the other hand z,(0) ¢ x(U; U Uy). This
contradicts the fact that A C &)y U U |
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Proof of theorem 3-11.1.

Given v € TM denote by a(v) and w(v) its @ and w-limits respec-
tively. By proposition 3-11.4 the static classes are connected. Hence
if we assume that there are only finitely many of them, the connected
components of 5. are finite and must coincide with the static classes. For
e >0, let f)(a) be the e-neighborhood of f), i.e.

S(e):i={ve TM | dras(v,8) < e}

Fix € > 0 small enough such that the connected components of 5(g) are
the e-neighborhoods of the static classes. So that for 0 < § < g, £(8) =

ZiN=(f) A;(d), where A;(6) are disjoint open sets containing exactly one
static class and the number of components N(c) is fixed forall 0 < § < €.

Now suppose that the theorem is false. Let A;, Az € A be such that
A; 7{ Ag. Let

A= U A; , B:i= U A;.

{AjeA|AigA; )} {AjEA|Ai#A; )
Given v € ¥ with a(v) C A and 0 < § < ¢, define inductively

s1(v) :=inf{s € R| f;(v) ¢ A(e) },
tx(v) :=sup{t < s (v) | filv) € A(4) },
Ti(v) :=inf{t > sp(v) | fi(v) € A(S) },
se1(v) = inf{s > Ti(v) | fi(v) ¢ Ale) };
A= Ak(6) 1= sup{ | Tu(v) = t4(v) [v € %, alv) C A).
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We split the rest of the proof of theorem 3-11.1 into the following |

claims: _
Claim 1. Ap(8) < +oo forallk=1,2,... and all 0 < § < €.
Define
M:={v|vek alv) CA}.

Claim 2.
(a) MNB # .
(b) limg sup Ax(8) = sup Ax(8) = +oo.

Claim 3. There erist sequences v, € &, 0 < s, < t,, such that v, —
U € A, for(vn) = uz & Ale), fin(va) = us € A and de(muy, muz) = 0.

We now use claim 3 to complete the proof of theorem 3-11.1. If u; €
A; C A, weshall prove that us € A;\A(g), obtaining a contradiction and
thus proving theorem 3-11.1. It is enough to show that d.(mwuy, muz) = 0.
Indeed

de(muy, mug) = ®o(muy, Tus) + Bo(mwug, muy)
< ®o(muy, muy) + Po(mug, muz) + B (ruz, 7uy)
< Ii1r1n [®.(7vn, wfsnl(vn)) + (7 for, (Vn), T fr (00))]
+ & (mus, Tuq)

= lim ®,(wv,, 7 £, (V) + Bo(Tus, muy)

= de(muy, mus) = 0,

where the fourth equation holds because v, is a semistatic vector.
=
Proof of claim 1:
Suppose that A4; < +o0 for ¢ = 1,...,k— 1 and Ay = 4+o0o0. The

case k = 1 is similar. Then there exists v, € &, with a(v,) C A and
Ti(vn) = ti(v,) = +o0. We can assume that tx(v,) = 0 and that v,




3. GLOBALLY MINIMIZING ORBITS.

converges (X is compact}. Let 4 = lim, v, € dA{€). Then

m{t < 0| fulvs) ¢ A) ) s'fg:Ai,

where m is the Lebesgue measure on R. This implies that
k-1
m{t < 0| fi(u) ¢ Ale) } < X0 A
=1

and hence a(u) C A. Since fi{v,) ¢ A(g) for 0 < t < Tk(v,) and-
Ty (vn) = 400, then fi(u) ¢ Ale) for all £ > 0 and hence w(u) C B. But
then the orbit of u contradicts the definition of B.
W
Proof of claim 2:
(a) Let p € A, ¢ € #B. For n > 0, let x,, : [an,by] = M be a
solution of (E-L) such that 2, {a,) = p, 24, (b,.) = ¢ and

AL-I-C(Q;'U“) < q’c(}’), Q') + %

This implies that

Arte (Zunlis) < ®cl®o, (5), 70, (t)) + 1 (3.16)

for all @, < s <t < b,. We can assume that
inf{s > an|zy,(s) € B(§) } =0,

and that the sequence v, converges (cf. lemma 3-2.3). Let u = lim, v, €
OB(6). Taking limits in (3.16) we obtain that z,,  is semistatic for all
liminf, a, < s <t < limsup, b,.

Any limit point w of 2,,(a,) = f,,(v.) satisfies 7{w) = p € 7A,
and by the graph property (theorem 3-8.1), w € A. Similarly, any limit
point of f, (v,) is in B. Since A UDB is invariant and 4 ¢ A UB, then
lim, an = —o0, lim, b, = ++oo. Hence u € X. Since f,(v,) ¢ B(S) for
all @, <t < 0and a, - —oo, then f;(u) ¢ B(§) for all ¢ < 0. Hence
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a(u) C A and v € B(§). Thus v € MNB(J) # &. Letting § — 0, we
obtain that MNB # 2.

(b) By claim 1 it is enough to show that sup, Ax(8) = +oo. If
supy, Ax(6) < T, then M C M($,T), where

M(6,T) = {v € Z| fi_r)(v) N A(8) # 2 }.

Then MNB C M(6, T)NB = &, because B is invariant and BNA(S) = @.
This contradicts item (a).

O
Proof of claim 3:

Given 0 < § < g, by claim 2(b) there exists kK > N(e) such that
Ar(4) > 0. Hence thereis v = v5 € X with a(v) C A, such that the orbit
of v leaves A(e) and returns to A(6) at least k times. Since & > N(g)
there is one component A;(8) C A(d) with two of these returns, i.e. there
exist 71(6) < 5(6) < 72(6) With £y, (v) € A,(6), £,(v) ¢ A(e) and f,(v) €
A;(8). Now, there exists a sequence such that the repeated component
A; C A;(8,) is always the same. Let s, := $(8,), ¢ := 72(J,) and choose
a subsequence such that frl(an)(vn), fon{va) and fi (vn) converge. Let
up = limp fr(5,) () € NuA;(8) = Aj, ug = lim, fi,(va) € A; and
ug = lim, f5, (vn) € Al€). Since uy,uz € Aj, then d.(muy, muz) = 0.

(|







Chapter 4

Dynamics on prescribed
energy levels.

4-1 The Hamilton-Jacobi equation.

Let w be the canonical symplectic form on 7*M. A subspace A of
T,T*M is called isotropic if w(X,Y)=0for all X,Y on A. Since w is
nondegenerate, the isotropic subspaces have dimension < n, half of the
dimension of 7*M. Isotropic spaces of dimension # are called lagrangian
subspaces We say that a submanifold W ¢ T*M is lagrangian if at
each point § € W, its tangent space TgW is a lagrangian subspace of
TT*M. In particular, dim W =dim M = n.

4-1.1. Theorem (Hamilton-Jacobi).
If the hamiltonian H is constant on a lagrangian submanifold N,
then N is invariant under the hamilionian flow. '

Proof: We only have to show that the hamiltonian vectorfield X is
tangent to N. Since H is constant on N, then dH|ry = 0. Since
w(X, ) = dH, then w(X,£) = 0for all { € TN. Since the tangent spaces
to N are lagrangian, they are maximal isotropic subspaces, therefore
X eTN. 0

8%
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Some distinguished n-dimensional manifolds on T*M are the graph
submanifolds, which are of the form

Gh={(e,m)|ce M} CT"M, (4.1)

where 7, is a 1-form on M. A lagrangian graph is a lagranglan graph
submanifold. In fact,

4-1.2. Lemma. G, is a lagrangian graph if and only if the form 7 is
closed:
G, is lagrangian <= dn=10

Proof: Choose local coordinates qi,...,¢n of M. Then 75(q) =
> x Pe(g) dgr. A basis of the tangent space to the graph G, is given

by E; = (%, 2ok %{?‘ a%) Applying w = dp A dg,

Since ,
Opi ] ) .
dn:Z(ﬁ%"}%) dQJAsz:
i<
then wjrg, =0 <= dp=0.
O

Thus, we can associate a cohomology class [] € H!(M,R) to each
lagrangian graph G,,. Lagrangian graphs with zero cohomology class are
the graphs of the exact 1-forms: Gy, with § = df and f:M—<Ra
smooth function. These are called ezact lagrangian graphs.

The Hamilton-Jacobi equation for autonomous hamiltonians is
H(z,du) =k, w:M R, (H-J)

Thus a smooth solution of the Hamilton-Jacobi equation corresponds to
an exact invariant lagrangian graph.
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4-2 Subsolutions of the Hamilton-Jacobi equa-
tion.

We say that a function » : M — R is a subsolution of the Hamilton- |

Jacobi equation if
Hz,dyu) <k,

i.e if dyu is an exact lagrangian graph. We shall prove that for k£ > (L)} -

there is always a C'™ subsolution of the Hamilton-Jacobi equation and
for k < ¢(L) there are no differentiable subsolutions. Hence

4-2.1. Theorem. If M is any covering of the closed manifold N, then

L)= f H(z,ds
c(L) L | (z, dzf)

= inf{k € R: there exists f € C°°(M,R) such that H(df) < k},
where H s the hamiltonian associated with L.

theorem 4-2.1 could be restated by saying that ¢(L) is the infimum of
the values of k € R for which H~!{(—c0, k) contains an exact lagrangian
graph. This is a very geometric way of describing the critical value.

theorem 4-2.1 will be an immediate consequence of lemma 4-2.2 and
proposition 4-2.4 below.

4-2.2, Lemma.

If there ezists a C' function f : M — R such that H(df) < k, then

k> e(L).
Proof: Recall that

H(m,p) = vrenTi)]E/I{p(v) - L(ﬂ:: U)}
Since H(df} < k it follows that for all (z,v) € TM,

dy f(v) — Lz, v) < k.
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Therefore, if v : [0,T] - M is any absolutely continuous closed curve
with T > 0, we have

T T
fo L)+ B de= [ (L3 + k- (@) de >0,

and thus k > ¢(L). O

4-2.3. Lemma.
Let k> e(L). If f: M — R is differentiable at x € M and satisfies

fly) — fle) < Pul(z,y)
for all y in a neighbourhood of x, then H{z, dof) <k

Proof: Let v(t) be a differentiable curve on M with (v(0),4(0)) =
(z,v). Then

. t)) —
hi?ip M < htr_géI;f [ [L(v,%) + k] ds.

Hence d,f(v) < L(z,v)+ k for all v € T, M and thus
H(z,dof) = max {dsf(v) - L(z,v)} < k.

4-2.4. Proposition.
For any k > c(L) there exists f € C™(M,R) such that H(df) < k.

Proof: We shall explain first how to prove the proposition in the case
of M = N and then we will lift the construction to an arbitrary covering
M.

Set ¢ = ¢(L). Fix ¢ € M and let u(z) := ®,(g,z}. By the triangle
inequality, we have that

u(y) — u(z) < B(z,y) for all z,y € M.
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By the previous lemma, H(d,u} < c at any point z € M where u(z) is - -

differentiable.

We proceed to regularize u. We can assume that M C RY. Let U be
a tubular neighbourhood of M in R¥, and p: U — M a C* projection
along the normal bundle. Extend u(z) to U by %(z) = u(p(z)). Then
%(z) is also Lipschitz.

Extend the lagrangian to U by
L(z,v) = L(p(2), d:p(v)) + § |v — dap(u)[*.

Then the corresponding hamiltonian satisfies H (2, pod.p) = H{p(z),p)
for p € T;(Z)M. At any point of differentiability of %, we have that

4. U = dyyuod,p, and H{d,u) = H(d,;u) < c.
Let ¢ > 0 be such that

(a) The 3e-neighbourhood of M in R¥ is contained in U.

(b) If z € M, (y,p) € T*RY = R™, H(y,p) < c and dgn{z,y) < ¢
then H(z,p) < k. :

Let ¥ : R — R be a C* function such that (z) > 0, support(y) C

(—&,€) and Gy ¥(lz|)dz = 1. Let K : RY x RN — R be K(z,y) = ‘

(|2 — y|). Let N, be the e-neighbourhood of M in RY. Define f :
N, =+ R by

f@) = [ a) K(a9) dy.

Then fis C* on N..
Observe that 8, K (z,y) = —9,K (z,y). Since %(y) is Lipschitz, it

is differentiable at Lebesgue almost every point of U (Rademacher’s .

theorem, cf. [14]). Moreover it is weakly differentiable (cf. [14, Section
4.2.3]), that is, for any C* function ¢ : U — R with compact support

/RN(cpdE—l—Edcp) dz =20,
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Hence
- [ WAk @ dy= [ K@) dud
RN RN
Now, since
dpf = / (y) 0K (2, y) dy,
RN
we obtain

dwf:/ K(z,y) d,u dy.
RN

From the choice of & > 0 we have that H{z,d,%) < k for almost
every y € suppK(z,-) and z € M. Since K(z,y)dy is a probability
measure, by Jensen’s inequality

H(dyf) < F(dof) < /RNF(m,dya) K(z,y) dy < k.

forall z € M.

Now, suppose that M is a covering of a compact manifold N with
covering projection p. Assume that N C RY, Fix ¢ € M and set
u(z) = P@yz)(g,z). We can regularize our function u similarly as we
shall now explain. For € M let z be the projection of % to N and let
Ha be the Borel probability measure on N defined by

f Pz = f (pop)(y) K(z,y) dy,
N RN
for any continuous function ¢ : N — R. Then the support of y, satisfies

supp(pz) C {y € N : dy(z,y) < €).

Let [iz be the Borel probability measure on M uniquely defined by the
conditions: supp(fiz) C {§ € M : du(%,5) < €} and p,fiz = pto. Then
we have

d " o
= / @ dfiz = / dge djiz(7),
M M
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for any weakly differentiable function ¢ : M — R. The same arguments
as above show that

1@ = [ (@ =),
M
satisfies H (dz f) < k. O
4-2.5. Corollary.

a(g) = inf sup H(z,w(z)).
wl=¢ zeN

Proof: Let us fix a closed one form wy such that [wg] = ¢g. By equality '

(2.29) we have that a(g) = c(A - wg). Hence, it suffices to show that

e(A—wp) = [l?iq sgg H(z,w(z)). (4.2)

It is straightforward to check that the hamiltonian associated with A—wyq

is H(z, p+wo(z)). Since all the closed one forms in the class ¢ are given .

by wg + df where f ranges among all smooth functions, equality (4.2) is
now an immediate consequence of theorem 4-2.1.

0

4-2.6. Corollary. If k > ¢(L), then it is possible to see the dynamics
of $ilg-1(x) as the reparametrization of the geodesic flow on the unit
tangent bundle of an appropriately chosen Finsler metric on M.

Proof: If & > ¢(L), then H™'(—o00,k) contains an exact lagrangian
graph. This means that there exists a smooth function f : M — R
such that H{z,d.f) < k for all # € M. Therefore the new hamiltonian
Hy(z, p) def H(z,p+ d,f) is such that HEE.I(—oo,k) contains the zero
section of T"M. Let ¢ : T"M — T™M be the map ¢(z, p) = (z, p+d. f).
Observe that the hamiltonian flow ¢f of H and the hamiltonian flow 1,
of Hyr are related by v, o @ = ¢ 0 ¢;. Define now a new hamiltonian

(G on T*M minus the zero section such that G takes the value one on .
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HCE.I (k) and such that G(z, Ap) = A*G(z, p) for all positive A. Since G is

positively homogeneous of degree two and convex in p, it follows that the

Legendre transform L associated to G is a diffeomorphism from TM
minus the zero section to T7*M minus the zero section. Therefore the
hamiltonian G induces a Finsler metric on M simply by taking G o Lg.

Since by definition G~ (1) = H&l(k) it follows that the hamiltonian
flows of G and H &1 (k) coincide up to reparametrization on the energy

level G71(1) = H&l (k) and therefore the Euler-Lagrange solutions of
L with energy k& are reparametrizations of unit speed geodesics of G o
Lg. O

Given a Finsler metric v F and an absolutely continuous curve v we
can define its Finsler length as

lr(y) = f NG

Observe that since the Finsler metric is homogeneous of degree one, the
definition does not depend on the parametrization of the curve. Finally
we define the Finsler distance as

Dp(z,y) = inf{lr(y)}

where the infimum is taken over all absolutely continuous curves joining
z and y.

4-2.7. Corollary. [24] If k > ¢(L), then there ezists a Finsler met-
ric VI' and a C* real valued function f on M. such that Op(z,y) =
Drp(z,y) + f(y) — f(z). Moreover if k > —inf L, then we can choose
f=0.

Proof: We begin with the last statement. Note that L + & > 0 if and
only if H{z,0) < k. Indeed

Hz,p) = vrngzz)ﬁJ(pv ~ L(z,v))
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then
= - = —min(L .
H(z,0) Urenﬁ}ﬁ{( L{z,v)) min(L(z,v)
Soif k > —inf L then H~'(—o00, k) contains the zero section of T*M.
Define as before a Hamiltonian G on T*M minus the zero section
such that G takes the value x on H™1'(k) and such that G(z, Ap) =
A2G/(z, p) for all positive A\. Let F' be the associated Finsler metric on
M by the Legendre transformation.

We claim that for an appropriate choice of g and if E(z,v) = k then
VF(z,2v)=L+k

From proposition 3-5.1, for & > ¢(L) and for any z,y € M there
exists -y such that Apr(y) = Pr(z,y). Moreover v is a solution of the
Euler-Lagrange equation and has energy k. Also, if & > ¢(L), every
curve can be reparametrized to have energy & and the Finsler length
does not depend on the reparametrization. So in the definitions of Dp
and ®; we may restrict ourselves to curves with energy k and theorem
4-2.7 follows in this case.

Proof of the claim: Since G is homogeneous of degree 2 it follows
from Euler’s formula that F and G take the same value at Legendre
related points.

Define A(z,p).such that H(z, %) =k, then G{z,p) = pA*(z,p).

We have that

B, )2 -, 0)-p2? 52 =0 (4.3)°
and oG o
— =2 A =,
op 2 op

Then using (4.3) multiplied by A* we get

%(z, 3] -p%%":QG(:E,p) Qﬁ(m,‘}). (4.4)
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Suppose now that F(z,v) = k and define P(z,v) = % then by
definition we have

Ao, Pla,0) = 1, (4.5)
G(z, P(z,v)) = g, (4.6)
and so
Gz, P(z,v)) - P(z,v) v3E (4.8)
L+k (4.9
> 0 (4.10)
Hence from (4.4) we have
oG 2v
3p & Pla,v)) = v Pla)

Then since %% is homogeneous of degree one and from (4.8) v - P(z,v)

is positive we obtain
%—g(a:, [%U ’ P(m:'u)] P(E,’U)) =

So v is related to Jv- P(z,v) P(z, v) with respect to the Legendre trans-
form of F. Hence

F(z,v) = G(z,iv- P(z,v)}P(z,v))

v - Pz, v))?
= (P%G(a:,P(w,v))
_ (1,7-1351:.*:,1)))2 .
So if = 4

V@) =v- &

v
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Let now k > e(L), then by proposition 4-2.4 there exists a C real

valued function on M f, such that H(z,df.) < k. Define as before
Hy(z,p) = H(z,p+ dfz). The Legendre transformation Ly of Hys is

Ly(@,v) = max (pv— Hy(e,p)
- pgj'r%‘)fw(pv_ Ha,p+dfz))
= B G- H)

It turns out that

E(Ly) = E(L),
c(Ly) = (L),
Op(Las)(z,y) = Ox(L)(z,y) — fly) + flo).

So as the zero section is contained in HCE.](—oo,k:), Ly + k is positive
and there is a Finsler metric such that

So

(I)k(Ldf)(ms y) = DF(Q:: y)

@ (L){(z,y) = Dr(z,y) + fly) - f(=z).
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4-3 Anosov energy levels.

An Anosov energy level is a regular energy level on which the flow ¢, is
an Anosov flow.

4-3.1. Theorem. If the energy level E7! (k) is Anosov, then

k> cu(A).

Proof: Suppose that the energy level & is Anosov and set el -1 (k).
Let w : T*N — N denote the canonical projection. G.P. Paternain and
M. Paternain proved in [49] that ¥ must project onto the whole manifold
N and that the weak stable foliation W* of ¢} is transverse to the fibers
of the fibration by (n — 1)-spheres given by

wlg: X —= N.

Let N be the universal covering of V. Let % denote the energy level k
of the lifted hamiltonian H. We also have a fibration by (n — 1)-spheres

Flg: = N

Let W* be the lifted foliation which is in turn a weak stable foliation
for the hamiltonian flow of H restricted to . The foliation W* is also
transverse to the fibration 7| : £ — N. Since the fibers are compact a

result of Ehresman (cf. [3]) implies that for every (z,p) € & the map
’ﬁ|ws($?p) : Wz, p) = N,

is a covering map. Since N is simply connected, ?f[ws ) is in fact a dif-

feomorphism and Ws(a: p) is simply connected. Consequently, Ws( , P}
intersects each fiber of the fibration 7|y : % — N at just one point.

In other words, each leaf Ws(w,p) is the graph of a one form. On the
other hand it is well known that the weak stable leaves of an Anosov
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energy level are lagrangian submanifolds. Since any closed one form in
the universal covering must be exact, it follows that each leaf W*(z, p) is
an exact lagrangian graph. The theorem now follows from lemma 4-2.2
and the fact that by structural stability there exists € > 0 such that for
all &' € (k— ¢,k +¢) the energy level £’ is Anosov. 0

For e € R, let A, be the set of ¢ € C°(M) such that the flow of
H + ¢ is Anosov in (H + d))_l(e) and let B, be the set of ¢ € C°(M)
such that (H + ¢)~1(e) contains no conjugate points. As is well known
A. is open in C* topology and B, is closed. On the other hand G. and
M. Paternain [47] have shown that A, is contained in B,. It is proved
in [9] the following

4-3.2. Theorem. The interior of B, in the C? topology is A..

This theorem is an extension to the Hamiltonian setting of a result
of R. O. Ruggiero for the geodesic flow [55]. Theorems 4-3.2 and 4-3.1
have as corollary:

4-3.3. Corollary. Given a convex superlinear lagrangian L, k < ¢, (L)
and € > 0 there exists a smooth function ¥ : N — R with |¢|g2 < £ and
such that the energy level k of L + 1) possesses conjugate points.

Proof: Suppose now that there exists € > 0 such that for every 4 with
[1|c2 < ¢, the energy level k of A4+ has no conjugate points. The main
result in [9] says that in this case the energy level k of A must be Anosov
thus contradicting theorem 4-3.1. g

4-3.4. Proposition. If k is a regular velue of the energy such that
k < e, then the energy level k has conjugate points.

Proof: If an orbit does not have conjugate points then there exist along
it two subbundles called the Green subbundles. They have the following
properties: they are invariant, lagrangian and they have dimension n =
dim N. Moreover, they are contained in the same energy level as the
orbit and they do not intersect the vertical subbundle (cf. [7]). If & is
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a regular value of the energy with k& < e, then #(E~1(k)) is a manifold
with boundary and at the boundary the vertical subspace is completely
contained in the energy level. Therefore the orbits that begin at the
boundary must have conjugate points, because at the boundary two n-
dimensional subspaces contained in the energy level (which is (2n — 1)-
dimensional) must intersect. O

4-4 Weak KAM Solutions.

Given a continuous function © : M — R, we shall write u < L 4+ ¢
whenever u(z) — u(y) < Py, «) for all z, y € M. Let us define the sets

g (w) = {v € ZF{ulzy(t)) — u(z,(0)) = ®.(w4(0), 2, (¢)) V¢ > 0},
I't(u) 1= tyoqbt (T (w)),

where ¢; is the Euler-Lagrange flow on TM.

We shall say, following Fathi, that a continuous function v : M = R
is a weak KAM solution if u satisfies the following three conditions:

1. u is Lipschitz;
2 u<L+e
8. w(TF(u)) =M.

It is important to point out that using the action potentials it is quite
simple to show the existence of a function u that satisfies only proper-
ties 1 and 2 above. Take any point » € M and set u(z) = ®.(p,x).
Elementary properties of the action potential (cf. chapter 3) show that
% satisfies 1 and 2. This is used in the proof of theorem 4-2.1 which is
based on a convolution argument that smoothes out a function % that
satisfies 1 and 2.

Fathi shows in [16] that weak KAM solutions exist assuming that
M is compact. His proof is based on applying the Banach fixed point
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theorem to a certain semigroup of operators defined on the space of
continuous functions on M divided by the constant functions and, as
presented, it cannot be applied when M is not compact. In our next
theorem we show the existence of weak KAM solutions for M an arbi-
trary covering of a compact manifold. We hope that this will clarify the
relationship between Fathi’s approach and Mahné’s.

Given a semistatic vector w € ¥, let y(f) = z,(t) and define u :
M — R by

u(z) = sup [2c(v(0), 7(t)) = @clz, ¥(2))]. (4.11)

The function u thus defined clearly resembles the Busemann func-
tions from Riemannian geometry. In fact, the supremum in (4.11) is
a limit as we shall see in Section 5, thus if w-limit w(w) # @, then
u(z) = u{p) — @.(z,p) for all £ € M and any p in 7(w(w)).

4-4.1. Theorem. The function u(z) in (4.11) is @ weak KAM solution. -

Hence when M is compact, since w(w) # & for any semistatic vector
w, the function u(z) = —®.(z, p), where p is any point in the static class
of m(w(w)), is a weak KAM solution.

Recall the set
>ti={veTM|z,:[0,400) = M is semistatic }
Far the proof of theorem 4-4.1 we need the following

4-4.2, Lemma. 1 #£ g.

Proof: If M is compact then there exists a minimizing measure p then
it follows by corollary 3-6.2
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Assume that M is not compact. Then there is a sequence {g,} C
M such that dps(qo, gn) — +oo. Let z, : [0,T;] -+ M be a Tonelli
minimizer such that z,(0) = go, 2,.(Tw) = ¢n and

AL+c($n) < ‘I'c(Q'O: Q'n) + % ' (4'12)

Since for any z : R — M, the function §(t) = Apic(zlpy) -
®.(x(0), z(t)) is non-decreasing, inequality (4.12) implies that

Apte (mﬂl[s,t]) < @c(@n(s), znlt)) + % : (4.13)

forall 0 < s <t <T,.
By lemma 3-2.1, |2, (¢)] < A for all n large enough, 0 < ¢t < T,. Let
Un = &5,(0) and v an density point of {v,}. We can assume that v, — v.

Since ds(go, gn) — +00, then T, = +o0. Since @n|[p i1> 4|0,y for all
t > 0, from (4.13) we obtain that z, : [0, 400} = M is semistatic. = O

Proof of theorem 4-4.1

Our candidate for a weak KAM solution is defined as follows. Given
a semistatic vector w € X, let y(¢) = z,,(t) and define  : M — R by

u(z) = sup [2c(7(0), 7(2)) ~ @ele, ()]
By the triangle inequality, for € M and ¢ > 0,

P (v(0),7(2)) - Bo(z, v(t)) < P:(7(0), 2) + Pclz, v(t)) — Pc(z,7(t)
= 9.(7(0), z).

Hence u(z} < ®.(y(0),z) < +oo. Moreover, the function &(t) :=
D.(7(0),v(t)) — Pez, ¥(t)) is increasing in ¢ because if 0 < s < ¢, then

3(t) = 8(s) = @c(7(0), 7(1)) ~ ez, (1)) — @c(7(0), ¥(s)) + Be (2, 7(s))
= Dc(7(0),7(8)) + @c{v(s)7()) — ®olz, ¥(2))
- ‘I)c('?'(o): 7(3)) + (I)C(m1 7(3))
> 0.
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In the last inequality we used the triangle inequality for the triangle

(z,7(s},¥(t)). Hence the supremum in the definition of  is a limit. For -

z,y € M, we have that

u(z) —u(y) = lim [®(7(0),7(t)) - el2,7(t)} — Do(7(0),7(¥))
+8e(y,v(t) ]

= lim_[8.(3,7()) - Du(o, 7(2)] (4.14)
< dim [2e(y, 2) + Belz, 7(0) = Bole, ¥(2))]
< (I)c(y: 3:)

Hence v < L + ¢. This property implies that

[u(z) — u(y)| < max{|®c(z,y)| , [Pc(y, 2)| },

and hence u(z) is Lipschitz, with the same Lipschitz constant as ®,.
We show now that M \ (%) C 7(Tg (v)), where I'{ (u) was defined

in the introduction . Let z € M\fr(f]) and let z,, : [0,7,] =+ M be a
Tonelli minimizer such that 2, (0) = z, 2., (T,) = v(n) and

Doz, 7(n) < Arte (Tunliozn)) < Polz,v(n)) + L.

The same argument as in inequality (4.13) shows that

AL-I-c (xvnl[s,Tn]) - % < (I)c(mun (3): T(R)) < AL+C (mvnl[s,Tn}) )
for all 0 < s < T, and then

I(I’C(“;:?'(n)) = Qe(@u, (8), ¥(n)) — ALte (mvn|[0,t])| <i. (4.15)

By lemma 3-2.1, |&,, (t)| < A for all n large enough and 0 < ¢ < T,.
We prove below that 7}, — +oo, then the same arguments as in lemma 4-
4.2 show that any limit point of {v,} is in £t so we may assume that
vn, — v € L. Using the triangle inequality we get

Pz (), 7(n)) - ey (t), 20, (8)) < Pelzy, (t),v(n))
| < Q. (@y(t), v(n)) + ‘I)C(myn(t): Zy(t))
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and then
[@c(20, (8), 7(n) — Pe(20(8), Y(n))| < K dpr (70, (8), 20(2)),  (4.16)

where K is the Lipschitz constant of ®,. Combining (4.16) and (4.15)
we obtain

|@e(z, 7(n)) = @e{2o(t), Y(1)) = ALte (Tun o) | <

' (4.17)
< L4 K dp (@, (8), 2u(1))

Therefore

w(zo(t)) —u(e) = lim [Pc(z,7(n)) - Pc(2u(t), 7(n))]

— nlﬂ-n Arye ($vn|[0,i])

= Artc (a:,,|[0 t])
= &.(z,2,(t)),

because z,, [0, Ej—) &y |[o,q and z, is semistatic.

Now we prove that lim, T;, = +oc. Suppose that this is not the
case. Then there exists a subsequence that we still denote by {T,}
such that lim, T, = Ty < +oo. Hence the speed |, | is uniformly
bounded in [0, Ty] and therefore we can assume that {v,} converges to a

vector v, lim ¥(n) = (p,w1) € 5, T |[0,70] il) Zu|[o,1y) and that @[ 1)
is semistatic. Note that &,(Tp) has the form (p,w3). Since @,/ 1
is semistatic, then the graph property in theorem 3-8.1 implies that
wy = wsy . Since & is invariant, then z € W(E) This contradicts the
hypothesis ¢ € M \ W(E)

Now let (z,v) € & and t > 0. Let p = :cq,(t) and y € M. Since
d (z p) = 0, then

@.(z,y) = .z, p) + D.(p, 2) + B.(z, y)
2 @z, p) + De(p,y) > Polz,y).
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Hence ®.(z,y) = ®c(z,p) + Pc(p, y). For y = v(s) (and p = z,(t)), we
have that

u(zo(t)) - u(e) = lim [@o(z,7(s)) — Rolp, v(s))] = Dc(2, 24 (1))

= ALtc (mvl[o,t]) .






Chapter 5

Generic Lagrangians.

In [27], Maifié introduced the concept of generic property of a lagrangian
L. A property P is said to be generic for the lagrangian L if there exists
a generic set O (in the Baire sense) on the set C°° (M, R) such that if 4
is in O then L+ 1) has the property P. One of Maifié’s objectives was to
show that Mather’s theory of minimizing measures becomes much more
accurate and stronger if we restrict ourselves to generic lagrangians. The
main purpose of this chapter is to proof the following

5-0.1. Theorem. For every lagrangian L there ezists a generic set O C

C®(M,R) such that

(A) If 9 is in O then L+ has a unigue minimizing measure, {1 fmd
this measure is uniquely ergodic.

(B)Moreover supp(p) = S(L + ) = (L + ).

(C) When p is supported on a periodic orbit or a ﬁ:ce‘d point, this orbil

(point) T' is hyperbolic and its stable and unstable manifolds if intersect
they do it transversally.

On Maié [28], it is conjectured that there exists a generic set O such
that this unique minimizing measure is supported on a periodic orbit or
an equilibrium point.

109
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The first statement of this was proved by Mafié in [27]. The second
statement is proved in [11] and the third one in [7]. We will prove only
the first part and give only the ideas of the proofs of the last part.

5-1 Generic Lagrangians.

Proof of (A)
Given a potential ¥ on C*°(M, R) define

mp) = min [ L+

vel

M(3)

{Veﬁ:fL+¢du:m(¢)}

Where C is the set of holonomic measures. For € > 0 let
O = {¢: diam M(¢) < ¢}

This set is open, in fact if v, is in M (4,) then
[ 2+ e < ) + 201~ Sl (5.1)

So by theorem 2-3.2 in chapter 2 if 1, — 9 then the sequence v, is
precompact and the limit is in M (+). From this follows that O, is open.

It remains to prove that it is also dense.

| Given a compact convex set K on C and potential 9 on C*(M,R)
define

mo(P) = min/¢dv,

veKy

{v € Ky :/¢dv = mq(®¥)}

s
E
I
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5-1.1. Lemma. Let Ko as before then if p is an eztremal point of Ky,
Jor all € > Othere exists 1 on C°(M,R) such that

diam Mo(®) < ¢
d(p,Mg(i,b)) < ¢

Proof

Denote by D the diagonal of Kqx Kq for each pair (u, ») in Kqx Ko—

D take a potential ¥(,,,) such that [, du # J ¥(u,)dv, then there
is a neigbourhood U(jz, ) contained on Ky x K such that T Yy did #

S P dv’ for every (p',v') in Uy, v).
Take a covering {U(jn, ¥,)} of Ko x Ko — D and set 1, = Vi,
then if (u,v) in Ko X Ko~ D there exist n such that

Vn)

[ wndnt [ nie 52
Define T, : C — R™ as
T (i) = (/¢1d#,---,f¢ndﬂ)
Using (5.2) and the compactness of Ko x Ky it is easy to see that
given ¢ there exist § > 0 and n > 0 such that
S cR"diam S < § = diam T7'$ < ¢ (5.3)
Let B = Ty, (ko) then B is a compact convex set, let f : R* 3 R a

linear function such that its minimum restricted to B is attained in only.
one point p.

Define 9 = 3, A;9b; where f =3, A;p;, then

for =§:/\;f¢,-
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and so

Mo(¥) =T, (p)
Then by (5.3) we get

diam Mp(y¥) < ¢

The following lemma proves the density of O, and hence the first
part of (A).

5-1.2. Lemma. If 1y is on C°(M,R) and u is an eztremal point of

M (y) then for every neighbourhood U of v and every ¢ > 0 there
exists ¥y on U such that

diam M () =«

Proof

For Ko = M({1) applying the previous lemma, we can find given ¢ a
11 such that [ ¢,dv attains its minimum, say m, for all measures v on
Ko = M(%) on aset S = My(v) such that d(g, S) < e. Set

me = m{y)
folv) = /L+1,b—-modu

fl(") = _/%bl—mldf/
Then

hp)=folv)ifres (5.4)

filw) > 0if v € M(%) (5.5)
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veM®), Alr) =0=>veS (5.6)

v €T, folv) = 0= v € M(p) (5.7)

For A > 0 define ;
Hh=fo+AA S

and set
m(A) = min fi(v),

vel
M(2) {v€C: filr) = m(N))}.

We claim that

lim diam (M(A), {u}) < € (5.8)

This proves the lemma since
M(A} = M(¢+ Mpy)

Proof of the claim

Suppose otherwise that there exist A, — 0 and g, vy, on M(A,) =

M (% + Anp1} such that d(uy,, va,) > €. Then by (5.1) {uy,} and {r,}
are precompact and as in the proof of the open property we may assume

that gy, = p € M(v¥) and vy, = v € M(¢). Naturally d(u, v) > e.
Now Because of (5.4} we have that m(}) < 0

]

A%

m(An) =
= folpa,) + Afi(un,)
2 Anfi(pa,)
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So fi(pr,) < 0 and hence fi(u) < 0, since u € M(+p) by (5.5)
fi(#) = 0 and then by (5.6) u is in §. Similarly v is in 5. This is a
contradiction with the fact that the diameter of .S is less than e.

The fact that u is uniquely ergodic follows from the fact that ergodic
components of a minimizing measure are also minimizing. And the proof
of (A) is complete.

It is worth to remark that the proof presented here is a particular
case of Maifié’s original [31] more general setting:

Let E, F be real convex spaces, K contained on F a metrizable
convex subset and ¢ : F — F', L : F' 5 R linear maps satisfying

e (a) The map ExF — R defined by (w,z) = ¢{w)(z) is continuous.

¢ (b) For any = # y in K there exists w in E such that ¢(w)(z) #
$(w)(y)-

e (c) For all win E and c in R the set
{v € K : L(a) + (w)(2) < o}
is compact.

Denote by

m(w) = min L(z) + $()(z)
which exists by (c). And

M(w) = {2 € K : L(z) + ¢(w)(z) = m(w)

5-1.3. Proposition. If E is a Frechet space then there exists a residual
set O contained on E such that if w is on E then M (w) has only one
element,

The reader can verify that with the following choices, we get the
desired result.
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¢ (1) Let E be the Banach space C*(M,R)

e (2) As in section 2-3 let C{ be the set of continuous functions

f on TM such that sup %%% < oo, and C the set of holonomic
probabilities. Let i be C and F be the subspace of (C9)* spanned
by C.

e (3) Finally let L : FF — R is the linear map such that if x is in C
then L(x) = [ Ldy; and for ¢ in C®°(M,R) ¢(4) is the restriction
to F' of the linear map on (C9)* such that w < w, 9 >.

This general setting has some other applications see theorems A, C
D in [28] and also [10]

Proof of (C)

Let O be the residual given by (A). Let A be the subset of @ of
potentials 1 for which the measure on M(L + ) is supported on a
periodic orbit. Let B := O\ A and let A; be the subset of 4 on
which the minimizing periodic orbit is hyperbolic. We prove that A; is
relatively open on A. For, let % € 4, and

ML+ ) = {ua}

where g, is the invariant probability measure supported on the hyper-
bolic pertodic orbit y for the flow of L + 4. We claim that if ¢ € A,
¢k~ 1 and M(L+¢3) = {tn, }, then ng — . Indeed, since L is super-
linear, the velocities in the support of the minimizing measures py, 1= p,,
are bounded (cf. corollary 2-4 and inequality 1.9), and hence there exists
a subsequence yx — v converging weakly* to a some invariant measure

v for L 4. Then if v # p.,
lim Spg, (k) = Sp4g(v) > Sty (i) - (5.9)

Thus if d; is the analytic continuation of the hyperbolic periodic orbit
v to the flow of L + ¢ in the original energy level ¢(L + ), since
limg Sy, (5, ) = Sp4u(py), for k large we have that,

Sty (18,) < Spagy () »
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which contradicts the choice of ;. Therefore » = p.. For energy levels
h near to ¢(L + ) and potentials ¢ near to , there exist hyperbolic
periodic orbits g, which are the continuation of y. Now, on a small
neighbourhood of a hyperbolic orbit there exists a unique invariant mea-
sure supported on it, and it is in fact supported in the periodic orbit.
Thus, since n — 7, then 7 is hyperbolic. Hence ¢, € A; and A4,
contains a neighbourhood of ¢ in A.

Let Zf be an open subset of C*™(M,R) such that 4; = U N.A. We
shall prove below that A; is dense in ,A. This implies that A; UB is
generic. For, let 9 := int (C°(M,R) \ U}, then U U+ is open and
dense in C*°(M,R). Moreover, » N A = & because A C A; C If and
PNACA\U = &. Since @ = AUB is generic and

UUP)N(AUB) = UNA) U (UUH)NB)
C A UB,

then 4; UB is generic.

The perturbation to achieve hyperbolicity in a fixed point is easy. Is
very much as the mechanic case: L = § < v,v >, —U(z). The reader
can verify that if zg = max U then the Dirac measure supported on the
point {zo,0) is minimizing. And it is well known that this critical point
is hyperbolic if and only if the maximum has

non degenerate quadratic form.

In fact, from the Euler-Lagrange equation (E-L) we get that
L;(20,0) = 0. Differentiating the energy function (1.7} we see that
(z0,0) is a singularity of the energy level e(L). Moreover, the min-
imizing property of x implies that zg is a minimum of the function
T+ Lyz(2,0). In particular, L.z(zg, () is positive semidefinite in linear
coordinates in T, M. And it is hyperbolic if and only if it is positive
definite. So to achieve hyperbolicity we must just add a small quadratic
form.

The perturbation needed in the case of a periodic orbit the same
spirit; Because of the graph property the projection of the orbit I, (")
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is a simple closed curve. We add a C*°-small non negative potential 1,
which is zero if and only if z is on #(I'} that is nondegenerate in the
transversal direction. It follows that I' is also a minimizing solution of
the perturbed lagrangian L + .

To prove that it actually is hyperbolic is much more difficult. The
reason is that the linearization of the flow (the Jacobi equation) is along
the periodic orbit and hence non autonomous as in the case of a singu-
larity.

To explain the idea of the proof we need some definitions. Let H
be the associated hamiltonian by the Legendre transformation on T* M
and 7 its flow. Denote by 7 : T*M — M be the canonical projection
and define the vertical subspace on 8 € T*M by ¥(8) = ker(dr). Two
points 1, 6 € T*M are said conjugate if 63 = 1.(6,) for some 7 £ 0
and di,(9(61)) N (62) # {0}

A basic property of orbits without conjugate points is given by the
following

5-1.4. Proposition. Suppose that the orbit of § € T*M does not con-
tain conjugate points and H(8) = e is a reqular value of H. Then there
exist two @-invariant lagrangian subbundles B, F C T(T*M) along the
orbit of 8 given by

E(6) = lim dp_($(w()))
F(8) = lim dipe((p-:(8))) -

4o
Moreover, E(8)UF(0) C Tpx, E(0)N(8) = F(6)Np(6) = {0}, (X () C
E(6)"F(6) and dim E(6) = dim F(§) = dim M, where X (8) = (H,, —H,)
is the hamiltonian vectorfield and ¥ = H~{e}.

These bundles where constructed for disconjugate geodesics of rie-
mannian metrics by Green [22] and of Finsler metrics by Foulon [19]. In
the general case where constructed in [7]
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We will only sketch the proof;

Fix a riemannian metric on M and the corresponding induced metric
on T*M. Then TpT*M splits as a direct sum of two lagrangian sub-
spaces: the vertical subspace () = ker (dn(8)) and the horizontal sub-
space H () given by the kernel of the connection map. Using the isomor-
phism K : TyT*M — Tpg) M X T:(g M,&— (dr(0) €, Vg(r £)), we can
identify H(6) ~ TrgyM x {0} and 9(6) =~ {0} x T* oM = T.,T(g)M If we
choose local coordinates along ¢ +— () such that ¢ — 5 (7r 1¥(0)) are
parallel vectorfields, then this identification becomes £ & (dq({) dp(€)).
Let £ C TyT*M be an n-dimensional subspace such that Eny(#) = {0}.
Then E is a graph of some linear map S : H(#) — (d). It can be
checked that £ is lagranglan if and only if in symplectic coordinates S
is symmetric,

Take § € T"M and £ = (h,v) € TyT*M = H(8) ® $(0) = T M &
TreyM. Consider a variation

as(t) = (4:(), s (2)
such that for each s e] £,€[, a, is a solution of the hamiltonian H such
that ao(0) = 8 and £ors(0)]sm0 = &.
Writing di.(€) = (h(t),v(t)), we obtain the hamiltonian Jacobi

equations
h= Hpgh+ Hpp v,
V= —~Hgh—Hgv, (5.10)

where the covariant derivatives are evaluated along m(a,(t)), and Hy,,
Hyp, Hyp and Hy, are linear operators on TreyM, that in local co-

ordinates coincide with the matrices of partial derivatives (a‘z_gg ‘),
L )

20 2H 92H ‘s . . .
( - ,), (ap,- apj) and (W . Moreover, sinice the hamiltonian H is

dgi Op;
convex, then Hp, is positive definite.

We derive now the Ricatti equation. Let E be a lagrangian subspace
of TyT™M. Suppose that for ¢ in some interval | — &, e{ we have that
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dip(E) N (4:(8)) = {0}. Then we can write di,(F) = graph S(t),
where S(t) : H(y:8) — (¢, ) is a symmetric map. That is, if £ € E
then ‘

du(€) = (h(t), 5() h(1))
Using equation (5.10) we have that

Sh+ S(Hpgh + HyppSh) = —H, b — Hy,Sh.

Since this holds for all h € H( (14(#)} we obtain the Ricatti equation:

S+ SHppS + SHyg + HypS + Hyy = 0. (5.11)
Let K .(8) : ( ) — ¥(f) be the symmetric linear map such that
graph(K.(8)) = dv_.(¥(+:(f))). Define a partial order on the sym-

metric lsomorphlsms of TrnieyM by writing A = B if A — B is positive
definite.

The following proposition based essentially on the convexity of H
proves 5-1.4.

5-1.5. Proposition. For alle > 0,
(¢} Ifd>c¢>0then K_, = Ky > K..
(b) Ifd < ¢ < 0 then K, < K4 < K,.

(c) dlll-;l-loo K;=8, d—lirlloo K;=U.

(@) S U

(e) The graph of S is the stable green bundle E and the graph of U is
the unstable green bundle T

An example of the relationship between the transversality of the
Green subspaces and hyperbolicity appears in the following
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5-1.6. Proposition. Let T' be e periodic orbit of ; without conju-
gate points. Then T' is hyperbolic (on its energy level) if and only «f
E(@)NF(F) = (X(6)) for some 8 € I, where (X (8)) is the I-dimensional
subspace generated by the hamiltonian vectorfield X (8). In this case K
and P are its stuble and unstable subspaces.

This proposition follows ideas of Eberlein [13] and Freire, {20].

It is known that minimizing orbits do not have conjugate points. So
by proposition 5-1.4 and 5-1.6 to prove the density of hyperbolicity it is
enough to perturb to make the Green bundles transverse. This is done
using two formulas for the index. One in the lagrangian setting and
another one in the hamiltonian setting.

Let ©7 be the set of continuous piecewise C? vectorfields £ along
Yo,7]- Define the indez form on Qr by

T . -
1(5,?7):]0 (ELWv’7+ELwn+§Lmﬁ+§Lmn) dt, (5.12)

which is the second variation of the action functional for variations f(s, £)
with %5 € 2p. For general results on this form see Duistermaat [12].

From this formula it is easy to compare the index of the original and
the perturbed lagrangian along the same solution T.

Finally we use the following transformation of the index form. It is
taken from Hartman {23] and originally due to Clebsch [5] see also [7].
Let # € T*M and suppose that the orbit of 8, 1,(8), 0 <t < T does not
have conjugate points. Let F C TpT*M be a lagrangian subspace such
that di:(E) N4p(1h4(8)) = {0} forall 0 < t < T.

Let E(t) := d(F) and let H(t), () be a matrix solution of the
hamiltonian Jacobi equation (5.10) such that det H (t) # 0 and E(t) =
Image (H(t),¥(t)) C Ty,(s)(T*M) is a lagrangian subspace. For ¢ =
H({ € Qr, 7= Hp € Qr, we obtain (see [7])

T
1(€,7) = [ (HC'Y (Hyp) ™' (Hp)de+ (HO'(VR)E  (5.13)
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Define N(#) := {w € TpoyM | (w, %) = [] }. Then N{(#) is the sub-
61 oo ai—n. Let v, € N(6),
|vo] = 1 and let fT( ) := Zr{t)} vo. Denote by IT and It be the index

forms on [0, 7] for Land L respectively, Using the solution (ZT, VT) on
formula (5.13), we obtain that

space of Ty M generated by the vectors

Ip(ET, €7 = —(Z7(0) vo)" (V7 (0) v5) = —v,* Kr(0) v,.  (5.14)
Moreover, in the coordinates {(z1,...,2y; aa—ml, . ,an) on T'U we have

that
~ T . — - r —~— —
Ir(”, €7) = [ (€7 Fn €T 4+ 267 B €7 4 €7 L0 €7) it
0 N
T
=/ (T Ly €7+ 26T L, T +€7L m,,gT) dt  (5.15)
0

+[ e ler .

1=2

We have that 27(0) I and for all ¢ > 0, lim;_ o ZT( ) = E(t)
with h(t) the solution of the Jacobi equation for f corresponding to the
stable Green bundle. Writing mx(§) = (£2,&3,...£,) then 'rrNh(O) 'Ug‘ = .
lvo} = 1 because vy € N(8). Hence there exists A > 0 and Tp > 0
such that leﬁT(t)l = ’WNZT(t) 'Uo, >Lforall 0 <¢t<Aand T > Tp.
Therefore

e

(", €") > In(€7, €T) + . (5.16)

Let (h(t), v(t)) = dyp; o0 (dﬂ',E(g))_l be the solution of the Jacobi
equation for H corresponding to the stable Green subspace E and let
S(1:(8)) = v(t) h(¢)~! be the corresponding solution of the Ricatti equa-
tion, with graph[S{4:(8)] = E(¢.(#)). Using formula (5.13), and writing
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€7 (t) = h(t) ¢(t), we have that

(€T, €7) = [ (h &) H;! (h ) db+0 = (h(0)C(0))" (v(0) C(0))
(€T, €7 > —u3 S (6) vo. (5.17)

From (5.14), (5.16) and (5.17), we get that

4]

v*S(8) v, > v} K1 v, + %

From proposﬂ;lon 5-1.5, we have that lim7 4 I{T(O) = S(B), where
graph(S (8)) = E(8), the stable Green bundle for H. Therefore

< A
2 S(8) v, > v} §(8) v, + 54_ . (5.18)

Similarly, for the unstable Green bundles we obtain that
VXU(B) vo+ Ay <X U@ v, for v, € N(8), o] = 1. (5.19)

for some Ay > 0 independent of v,.

From proposition 5-1.5 we have that U(8) = S(#). From (5.18) and
(5.19) we get that U|N > Uln > SN > ﬁJN Since E(#) = graph( (S(8))
and F(8) = graph(U(8)), we get that E(6) N F(#) C (X(8)). Then

proposition B shows that I' is a hyperbolic periodic orbit for L + ¢.
This proves that A, is dense in A.
Let Az be the subset of Ay of potentials 4 for which the minimizing
hyperbolic periodic orbit I' has transversal intersections. The proof that
Az is open and dense in A is similar to the previous proof, see [7].

5-2 Homoclinic Orbits.

Assume in this section that ¥ contains only one static class. By theo-
rem 5-0.1.(A), this is true for generic lagrangians. By proposition 3-11.4,
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the static classes are always connected, thus if we assume that there is
only one static class, ¥ must be connected.

Given & > 0, let U, be.the e-neighbourhood of #(£). Since 3 is
connected, the open set U, is connected for ¢ sufficiently small. Let
Hy(M,U.,R) denote the first relative singular homology group of the
pair (M, U,.) with real coefficients.

We shall say that an orbit of L is homoclinic to a closed invariant
set i C TM if its o and w-limit sets are contained in K.

Observe that to each homoclinic orbit = : R — M to the sef of static
orbits & we can associate a homology class in Hy(M,U.,R). Indeed,
since there exists to > 0 such that for all ¢ with |t] > to, z(t) € U., the
class of z|[_y, 1 defines an element in H;(M, U, R). Let us denote by
H the subset of H (M, U,,R) given by all the classes corresponding to
homoclinic orbits to 5.

5-2.1. Theorem. Suppose thai S contains only one static class. Then
for any € sufficiently small the set H generates over R the relative homol- .
ogy Hi(M,U,R). In particular, there ewist at least dim H, (M, U., R)
homoclinic orbits to the set of static orbits 5.

Let U. be an e-neighbourhood of supp(u). From theorems 5-2.1
and 5-0.1 we obtain:

5-2.2. Corollary. Given a lagrangian L there ezists a generic set
O C C*®(M,R) such that if p € O the lagrangian L + v has a unique
minimizing measure p in M®(L + ) and this measure is uniquely er-
godic. For any £ sufficiently small the set H of homoclinic orbits to
supp(y) generates over R the relative homology Hy (M, U.,R). In partic-
ular, there exist at least dim Hy (M, U,, R) homoclinic orbits to supp(u).

To prove theorem 5-2.1 we consider finite coverings My of M whose
group of deck transformations is given by the quotient of the torsion free
part of H,(M,U,,Z) by a finite index subgroup. Using that the lifted
lagrangian Ly has the same critical value as L, we conclude that the
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number of static classes of Ly must be finite. Hence we can apply theo-
rem 3-11.1 to Ly to deduce that the group generated by the homoclinic
orbits to the set of static orbits of L coincides with H;(M, U, R).

We note that the homoclinic orbits that we obtain in theorem 5-2.1
and corollary 5-2.2 have energy ¢ but they are not semistatic orbits of
L. However, they are semistatic for lifts of L to suitable finite covers,

Combining corollary 5-2.2, theorem 5-0.1 and lemma. 5-2.4, we obtain

5-2.3. Corollary. Let M be a closed manifold with first Betti number
> 2. Given a lagrangian L there exists a generic set O C C™(M,R)
such that if Y € O the lagrangian L+ has o unique minimizing measure
in M°(L+ %) and this measure is uniquely ergodic. When this measure
s supported on a periodic orbit, this orbil is hyperbolic and the stable
and unsteble manifolds have transverse homoclinic intersections.

5-2.4. Lemma. Let M be a closed manifold with first Betti number
bi(M,R) > 2. Then if AC M is a closed submanifold diffeomorphic to
St and U, denotes the € neighborhood of A, we have that H, (M, U, R)
is non zero for all € sufficiently small.

Proof: Since A is diffeomorphic to a circle, the singular homology of
the pair (M, U) coincides with the singular homology of the pair (M, A)
and therefore the vector space H;(M,U,,R) must have dimension >
bh(M,R)—1>1. d

For the proof of theorem 5-2.1 we shall need the following lemma:

5-2.5. Lemma. Let p : My — M; be a covering such that ¢(L,) =
c(Lz). Then any lift of a semistatic curve of Ly is a semistatic curve of
Ly. Also the projection of a static curve of Ly is a static curve of Lo.
If in addition, p is a finite covering, then any lift of a static curve of Lg
is a static curve of L.
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Proof: Observe first, that for any & € R we have that

B} (z,y) > i(pz, py),

for all z and y in M;. Hence if we write ¢ = ¢(L;) = ¢(L,) we have
0)(z,y) > ®2(pz, py), (5.20)

for all z and y in M.

Suppose now that z5 : R — M is a semistatic curve of L5 and let

zy : R — M,y be any lift of z; to M,. Using (5.20) and the fact that z,
is semistatic we have for s < ¢,

D:(21(), 21(t)) < ALyte(@1s) = ALyge(@2(sq)
= ®Z(2a(s), 22(t)} < By (21(s), 21(2)).

Hence z; is semistatic for L.

Suppose now that z; : R — M, is a static curve of L; and let
zy : R ~ M, be pox;. Using (5.20) and the fact that 2, is static we
have for s <,

—&,(21(2), 21(5)) = @ (z1(s), 21(8)) = ALy4e(®1l[og) = ALste(®alg)
> @7 (z2(s), 22(t)) > —DZ(22(2), 22(s)) > —BL (1 (2), s (s)).

Hence z4 is static for L,.

Suppose now that p is a finite covering and let ¢ : R — M, be a
static curve of La. Let 1 : R & M be any lift of 2 to M;. Since 23 is
static, given s <t and € > 0, there exists a curve a : [0,7] — M, with
a(0) = z,(¢), &(T) = z2(s) such that

A yo(®2lps,g) + ALy+e(a) <.

Since p is a finite covering, there exists a positive integer n, bounded
from above by the number of sheets of the covering, such that the n-th
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iterate of $2|[s,t] % o lifts to M; as a closed curve. Hence, there exists a
curve 3 joining z(t) to z1(s) such that

Apyve(@1lps,) + ALy +c(8) < ne,

and thus z; is static for Ly. O

Proof of theorem 5-2.1:

Let U % U, denote the e-neighborhood of 7(33(L)), where $(L) is
the set of static vectors of L. Since we are assuming that E(L) contains
only one static class, the set U is also connected forsmall . Let ¢: U —
M be the inclusion map. The vector space Hi(M, U, R) is isomorphic
to the quotient of H;{{M,R) by i,.(H, (U, R)).

Let H denote the torsion free part of Hy(M,Z) and let K denote
the torsion free part of 2, (H,(U,2Z)). Let us write G def HIK=7Z&
k. @ Z where k = dim H{(M,U,R). Let J be a finite index subgroup
of G. There is a surjective homomorphism j : G — G/J given by the
projection.

If we take the Hurewicz map
ﬂ-l(M) — HI(M: Z)s

and we compose it with the projections Hy(M,Z) — H, H — G and
7+ G = G/J, we obtain a surjective homomorphism

WI(M) — G/J,

whose kernel will be the fundamental group of a finite covering M,
of M with covering projection map p : My — M and group of deck
transformations given by the finite abelian group G/J.

Since J is a subgroup of G = H/K, G/J acts transitively and freely
on the set of connected components of p~1(U) which coincides with the
set of connected components of p~! (w(f)(l;))) Therefore we have

5-2.6. Lemma. There is a one to one correspondence between elements
in G/J and connected components of p~!(w(X(L))).
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FIG. 1: Creating homoclinic connections with finite coverings.

Observe that to each homoclinic orbit z : R = M to i(L) we can
associate a homology class in H/K. Indeed, since there exists to > 0
such that for all t with |¢| > o, z(f} € U, the class of z|[_,, ;,] defines an
element in H{(M,U,Z). Let us denote by #H the subset of H/K given
by all the classes corresponding to homoclinic orbits to f)(L)

5-2.7. Lemma. For any J as above, the image of (H) under j is pre-
cisely G/ J.

Proof: Let Lg denote the lift of the lagrangian L to Mﬁ. Observe first
that by proposition 2-6.2, ¢(L) = e(Lp) and therefore by lemma 5-2.5
we have

m0(E(Lo)) = p~" (r(E(L))), (5.21)

where mp : TMy — Mp is the canonical projection of the tangent bundle
TMU to Mg.
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Let us prove now that Ly satisfies the hypothesis of theorem 3-11.1,
that is, the number of static classes of Ly is finite. In fact, we shall
show that the projection to My of a static class of Lg coincides with
a connected component of p~(r(5(L))). Using (5.21) and proposition
3-11.4 we see that the projection of a static class of Ly to My must
be contained in a single connected component of p‘l(ﬂ'(f](L))). Hence,
it suffices to show that if z and y belong to a connected component
of p‘l(:fr(f](L))) then d2(z,y) = 0. Since we are assuming that (L)
contains only one static class we have that d.(pz,py) = 0. Since p :
My — M is a finite covering there are lifts z; of pz and y; of py such
that d®(z;,y;) = 0. Since static classes are connected z; and ¥; must
belong to the same connected component of p~! (w(£(L)})) and thus there
is a covering transformation taking z; into z and #; into y which implies
that d2(z,y) = 0 as desired.

Now theorem 3-11.1 and (5.21) imply that every covering transfor-
mation in G/J can be written as the composition of covering transfor-
mations that arise from elements in #, that is, j((H)) = G/J. O

We shall need the following algebraic lemma.

5-2.8. Lemma. Let G = Z @ .5. @ Z. Given a finite index subgroup
J C G let us denote by j : G — G/J the projection homomorphism.

Let A be a subgroup of G. If A has the property that for all J as
above j(A)=G/J, then A =G.

Proof: The hypothesis readily implies that
A/ANJ is isomorphic to G/J (5.22)

o If the rank of A is strictly less than the rank of G, one can easily
construct a subgroup J C G with finite index such that A C .J and
G/J # {0}. But this contradicts (5.22) because A/A N J = {0}.

e If the rank of A equals the rank of G, then A has finite index in
G and by (5.22) G/A = {0} and thus G = A.
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0

Observe now that any set #H of a free abelian group G of rank &
such that the group generated by # is G must have at least k elements.
Thereforé if we combine lemma 5-2.7 and lemma 5-2.8 with (#) = A
we deduce that the set H of classes corresponding to homoclinic orbits
generates (G and must have at least & elements thus concluding the proof
of theorem 5-2.1. O






Appendix.

A Absolutely continuous functions. |

A.l. Definition. A function f : [a,b] — R is absolutely continuous, if
Ve > 036> 0such that |

Z[t—s,|<6 — Zlf(t f(s3)| < e,

whenever ]sy,t1[,... ,]sn, tn[ are disjoint intervals in [a, b].

A.2. Proposition.
The function f :[a,b] = R is absolutely continuous if and only if

(i) The derivative f'(t) ezists for a.e. t € [a, b].
(i) 7' € £1(a, ). - |
(iii} f(t) = fa) + f! F'(s) ds

Proof: Define |
p(ls,t]) = £t} — f(s).
We claim that 4 defines a finite signed Borel measure on [a, 8]. Indeed,

let A be the algebra of finite unions of intervals. The function g can be
extended to a c-additive function on A. Moreover, if B is a Borel set

w31
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and {An}nen C A is a family with 4, | B, then p(B) = lim, u(4,)
exists because u(B, \ Bn,) — 0 when n, m — +oo.

Observe that the absolute continuity of f implies that g < m, where
m is the Lebesgue measure. Let g = j—; be the Radon-Nikodym deriva-
tive. Then g € £! and

50 - 1@ = uat) = [ 9(6) ds.

By the Lebesgue differentiation theorem

_ 1 tkh
}E}sz}zﬁ) E/ g=g(t) forae. te][a,b]
t

Con'versely, suppose that (i)-(iii} hold. Using (i), let p{4) =
J4 f' dm. Then by (i),

”([Sa t]) = f(t) - f(S) for s, te [a') b]
Then p < m implies! that f is absolutely continuous. O

The Lebesgue differentiation theorem gives the following characteri-
zation.
A.3. Corollary.

The function f :{a,b] = R is absolutely continuous if and only if
there exists g € L([a, b]) such that f(t) = f(a) + f: g'(s) ds.

UIf y1 is finite, then u < m is equivalent, using the Borel-Cantelli lemma, to

Ve>03d>0 m(A)<d= Ju/(A)<e.
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B Convex functions.

A function f :R™ — R is said convez if

FRa+ =N y) <Af@)+(1-2) f(y)

forall 0 < A < 1and z,y € R® Equivalently, if the set {(z,r) €
R*"xXR|r> f(z)} is convex.
For zg € R™ the elements of the set
df(zo) :={p € R™ | f(z) > p(z — 20} + f(za) }.

are called subderivatives of f at zg, and the planes
{(z,r) ER" X R|r=p(z —zo) -+ f(z0)} }

are called supporting hyperplanes for f at zg. The functional p € R™
is called the slope of the hyperplane.

For the proof of the following proposition see Rockafellar [54].
B.1. Proposition.

(a) 0f(z) # & for every z € Dom(f).

(b) A finite conves function is continuous and Lebesgue almost every--
where differentiable.

(c) If 0f(z) = {p} then f is differentiable at z and f'(z) = p.
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C

The Frenshel and Legendre Transforms.

Given a convex function f : R®™ — R the Frenshel Transform (or the
convez dual of f is the function f: {R™)* — R U {+o0} defined by

fi(p) = max[pz — f(z)] (C.1)

The function f admits a supporting hyperplane with slope p € R™ if
and only if f*(p) # +oo. If f is superlinear, then f* is finite on all R™.

C.1.

L
2.

Proposition.
If f is convez then f* is convez.
If f and f* are superlinear then f** = f.

[ is superlinear if and only if f* is bounded on balls, more ezplic-
itly,

f(z) > Ale| - B(4), VzeR" < f*(p) < B(lpl), YpeR™

4. If f is superlinear, the mazimum C.1 is altained at some point
z € R™
Proof:
1. Given 0 < A < 1 and py, ps € R we have that

2,

FrOpi+ (1= N pa) = max[(Aps + (1= ) p2) 2 — /()]
<A max[prz = flz)]+ (1~ A) max[pe — f()]
= A S (1) + (1 - A) £ (p2)-

From {C.1) we get that

flz) 2 pz— f*(p) for all z € R™, p € (R™)"
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Hence,

f(z) > sup [pz- f*(p)]= ().

pER™
Let p, € 0f(z) # 2. Then

fy)> fle)y +p. (y—2), VyeR™

Hence
frpe) = max [pay = f¥)] = po o ~ f(a).

And
f@)=psz— f*(ps) < max [pz— f(z)] = f*(z).

. We have that

fo(p) = max[pv— fo(v)]
< max[pv— |p[v] + B(p])
= B(|pl)-

Conversely, suppose that f3(p}) < B(|pl). Given A € Rand z € R®
there exists p, € R™ such that |p;] = 4 and p, v = |p,| |z| = A |z|.
Then
flz) = max [pz — f*(p}]
pER™
2 PV — B(lpml) = Alz| - B(A).

. By item &, f* is finite. Let p € R™. If b > 0 is such that f(z) >
(Ipl+1) || — &, then

pe~ flz) <b-|z| < f'(p) =1 for|z]>b+1- f(p).

Hence

[() [pe - f(z)],

=  max
lz|<b+1—£*(p)
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and the maximum is attained at some interior point z, in the
closed ball |z| < b+ 1~ f*(p).

0

C.2. Corollary.
If f :R™ = R is convez and superlinear then so is f* :R™ 5 R. In
this case f** = f.

Observe that in this case we have

fO=-minf(e) and  f(0)=— min_f*(p).

zcRn pER™*
If f:R*" - Ris convex and superlinear we define the Legendre
Transform £ : R™ - 28" of f, by
L{z}={peR" [pe = f(z}+ f*(p) }, (C.2)
C.3. Proposition. If f :R® 5 R is C? and there is a > 0, such that
v ["@)-y>aly® foralz, yecR™

then the Legendre transform £ : R™ — R" is a C! diffeomorphism given
by L(z) =d,f.

Proof: The function f is convex and it is superlinear because
f(o) +f f(sz) d

O)—}-f / sz f'(tsz) z dt ds

> f(0) + fala|?
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From (C.1) we get that
pz < f(z)+ f*(p) forall z € R®, p € R™. (C.3)

By proposition C.2, f* is superlinear. Then item 4 in proposition.C.2
implies that

£(z) = arg max {pz — f*(p)} # 2.
pER™

Moreover, from (C.3), if p € £(z) then z = arg max,er-{p2 — f(z) }.
Thus p = dyf = L(z). This proves that £ differentiable and singled
valued. Moreover since d,£ = f”(z) is non-singular, then £ is a local
C? diffeomorphism. '

Since
1
(y—:c).[dyf—dmf]z-/o f'(sz + (1 - s)y) ds > 0,

then 2 — dpf = L(z)} is injective. We now prove that £ is surjective.
By item 4 in proposition C.1 the maximum

fr(p) = max[pe— f(z)]

zER™

is attained at some z, € R™ Then p € L({z,). O
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