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Like as the waves make towards the pebbled shore,

5o do our minutes hasten to their end;

Each changing place with that which goes before,

In sequent toil all forwards do contend.

Nativity, once in the main of light,

Crawls to maturity, wherewith being crown’d,

Crooked elipses ’gainst his glory fight,

And Time that gave doth now his gift confound.

Time doth transfix the flourish set on youth

And delves the parallels in beauty’s brow,

Feeds on the rarities of nature’s truth,

And nothing stands but for his scythe to mow:
And yet to times in hope my verse shall stand,
Praising thy worth, despite his cruel hand.

W. Shakespeare. Sonnet LX
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1. Introduction and Overview

This work is concerned with three apparently unrelated topics. They are:
+ Huygens’ Property.
» Rational Solutions of the Korteweg-de Vries equation.
¢ The bispectral problem of Duistermaat and Griinbaum.

Huygens' property is a particularly fascinating property of the solutions
to the wave equation in three spatial dimensions, i.e., in the four dimensional
space-time. It is in fact a property crucial to the meaningful transmission of
information such as music and light. In this text, we are going to be concerned
with the Huygens’ property in Hadamard’s sense. The physical interpretation
being that an “instantaneous” signal in three spatial dimensions remains “in-
stantaneous” for every observer at a later time. We quote from Courant and
Hilbert,

“Thus our actual physical world, in which acoustic and electromagnetic
signals are the basis of communication, seems to be singled out among
other mathematically conceivable models by intrinsic simplicity and har-
mony” (Courant and Hilbert, Methods of Mathematical Physics, Vol. 1I,
page 765)

The second topic, which is the Korteweg-de Vries (KdV) equation, belongs
to the realm of nonlinear wave propagation. The KdV equation appears as a sort
of universal model for the (unidirectional) propagation of waves in the presence
of weak nonlinearity and dispersion. See [79]. The rational solutions of KdV are
limiting cases of the now celebrated soliton solutions [3, 4, 2]. The poles (in the
space variable) of the rational solutions of KdV evolve according to very special
dynamical systems. More precisely, their evolution under KdV corresponds to
the dynamies of conserved quantities of classical completely integrable Calogero-
Moser systems.

The third topic, which we call the bispectral problem, was motivated by
questions in signal processing and computerized tomography. It turns out to be
natural also in the context of orthogonal polynomials. Let’s consider a smooth
family of eigenfunctions ¥(z, z) depending on a spectral parameter z. The bi-
spectral problem consists in characterizing the differential operators Lz, &)
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c(t+5)

Fig.1.1. Huygens' Construction.

whose eigenfunctions ¥(z, z) are also eigenfunctions of an operator in the spec-
tral variable z. The most trivial (and not so interesting) example being'

¥ (z, z) = exp(izz) ,

which is a joint eigenfunction of —32 and —92. The bispectral problem has very
interesting connections with completely integrable systems, as was shown in the
seminal paper of Duistermaat and Griinbaum [33).

1.1 Hadamard’s Approach to Huygens’ Construction

In this text, as in many PDEs texts, we are assigning a rather special meaning
to the “Huygens’ property.” The classical construction of Huygens’ [54], which
played a crucial role in the understanding of wave phenomena, consists in de-
termining the wave front at a time £ + ¢y by drawing the envelope to the circles
of radii ¢t issued from the wave front at time t,. See Figure 1.1.

The mathematical ideas behind Huygens’ construction were subject of in-
vestigation by several key fizures in the development of science. A few names
to cite are Fresnel, Kirchhoff, Poisson, Beltrami and Hadamard.

Hadamard studied the classical construction of Huygens and formulated it
in terms of the property of dependence on the initial data only on the inter-
section of the initial manifold and the light cone. It is now called Huygens’
property or more precisely strict Huygens’ property. He also stated the problem
of determining the hyperbolic operators that satisfy Huygens’ property.

LThe crucial point in this example is that one is taking functions that are products of =
and z, which makes the bispectrality trivial in this case.
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Due to its historical reasons we now describe Hadamard’s view of Huygens’
construction. It was expressed in his classical text “Lectures on the Cauchy
Problem” and consisted in dividing the construction in the form of a syllogism.
Quoting from [51]:

(A) “Major Premise”

The action of phenomena produced at the instant ¢ = 0 on
the state of matter at the later time ¢ = #; takes place by the
mediation of every intermediary instant ¢ = ', i.e., (assuming
0 <t <to)y...

(B) “Minor Premise”

If we produce a luminous disturbance localized in a neighbor-
hood of 0, its effect affer an elapsed time t5 will be localized in
a neighborhood of the sphere centered at O with radius cty.

(C) “Conclusion”

In order to calculate the effect of our initial luminous phe-
nomenon produced at 0 at £ = 0, we may replace it by a proper
system of disturbances taking place at ¢ = ¢ and distributed
over the surface of the sphere with center 0 and radius ef'.

In the above syllogism, statement (A}, as Hadamard puts it, is an empirical
fact connected to the way we view the world. In modern terms it could be
interpreted as a property of the propagator. It is certainly of interest, but it is
not the subject of this text.

On the other hand, statement (B) is a property deeply related to the solu-
tions of the wave equation in an odd number of spatial dimensions. As we shall
see in Chapter 2 the solutions of the wave equation in an even number of spatial
dimensions have the property that their domain of dependence at a point (%, z)
includes the inside region of the characteristic cone issued from (¢, z).

Another way of stating such a distinction is by considering the Cauchy
problem:

0G(,7) (0 - Y 22)6(t5) =0 (1
GOz =0 (1.2)
8,G(0,2) = 8(z) . (1.3)

For n = 3 the solution is given by
1
G(t,z) = —8(t2 — |z|) .
(t.2) = 50~ laf?)

On the other hand, for » = 2 the solution is given by
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Gt,z) = g-—p——", (1.4)

where H is Heaviside’s function defined by

gef | 1 forz >0,
Hi=) = { 0 otherwise.

From the physical point of view, Huygens' property is crucial to the trans-
mission of information such as music. In two dimensions, for example, if one
considers an observer stationed at a point z, listening to a musical note emit-
ted at 0 and that ended at a certain time, then such observer would “hear” this
note no matter how much time has elapsed from its end.

Along the lines of Hadamard’s question, another very important one is what
potentials could be added to the wave operator of equation (1.1) and still pre-
serve Huygens’ property. This problem was studied by a number of people. In
the sixties, Lagnese and Stellmacher [68, 66, 67] gave a characterization of such
potentials.

Chapter 2 of this text starts with some basic background on hyperbolic
PDEs and discusses the cracial eriterion of Hadamard to characterize Huygens
operators. It also briefly reviews the method of Riesz kernels, which plays a role
in the modern approach to Huygens property.

1.2 The Darboux Method and Rational Solutions of the
Kdv

The ingenious construction developed in the work of Lagnese and Stellmacher
was a fascinating rediscovery of a method employed by Darboux in connection
with the study of surfaces. We quote from the Darboux’s monumental treatise:

Etant donée I'équation différentielle du second ordre

&y
dt?

supposons qu’on sache l'intégrer pour toutes les valeurs de A. Soit
f(t) une solution de cetie équation, correspondante & une valeur
particuliére de h, par example k = hy. On saura aussi intégrer, pour
toutes les valeurs de h, 'équation

= [ilt) + hly,

d%y 1\”
a’"t% =f (f) +h— Ry .

(G. Darboux, “Legons sur la Théorie Générale de Surfaces et les Ap-
plications Géométriques du Calcul Infinitésimal, Deuxiéme Partie”,
page 210)
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Fig.1.2. One-soliton solution of KdV.

The above mentioned results of Lagnese turned out to be connected to other
problems. One such problem, being the rational solutions of the KdV equation

U = Buty — Uy (1.5)

The KdV equation models unidirectional nonlinear wave propagation under
certain simplifying assumptions. It exhibits the phenomenon of solitons, which
in very broad terms, are {nonlinear) traveling waves that preserve their shapes
after interaction. Much as if they were like particles. See Figure 1.2 where the
one soliton solution of KdV is displayed and the interaction of two solitons in
Figure 1.3.

It turns out that the soliton solutions have as limiting case certain classes of
rational functions that remain rational by the flow of KdV. These are the now
called rational solutions of KdV hierarchy and will play a major role in several
parts of these notes.

The rational solutions of KdV were characterized by Adler & Moser [3] in
terms of a sequence of polynomials cbtained precisely by iterations of the Dar-
boux method. It turns out that the Adler-Moser polynomials were also present
in the ealier work of Buchnall and Chaundy [23]. The resulting potentials thus
coincide with the Huygens potentials of Lagnese.

Chapter 3 deals with completely integrable systems, the KdV hierarchy, and
the Darboux method. It concludes with some remarks one the Painlevé analysis
of PDEs, which we believe will play an important role in the understanding of
many of the connections between all the subjects mentioned here.
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Fig. 1.3. The nonlinear interaction of two solitons.

1.3 Bispectrality

But the miracles do not stop with the relation between Darboux transforma-
tions, Huygens potentials and rational solutions of KdV. The rational solutions
of KdV are also bispectral potentials! In other words, taking u{z) one of the po-
tentials that remain rational by the KdV flow one obtains a bispectral operator
L of the form

L=-8+uz).

In the last few years, many more connections between the three topics mern-
tioned above have been found. It turned out that both the bispectral problem
and Huygens' property for a certain class of wave operators are connected very
directly with the algebra of Virasoro. This interesting infinite dimensional Lie
algebra has been playing an increasingly fundamental role in modern physics
(particularly conformal field theory). It can be characterized very simply by
means of central extensions of the algebra of vector fields of the circle. The con-
nection between the Virasoro algebra and integrable systems has been known
for a while [83]. As for the connection between bispectrality the Virasoro al-
gebra, this was noticed in [110]. Finally, the connection between the Huygens’
property and Virasoro algebra appeared in the work of Berest [15]

Chapter 4 starts with a little bit of motivation for the bispectral problem,
then focus on the results of [33] for Schrédinger operators, and finally discusses
more recent results which connect bispectrality with Virasoro algebras.

We conclude the text in Chapter 5 where we try to link the different topics.
We pay special attention to the recent results of Berest, and discuss the topic
of iso-Huygens deformations. In order to provide some of the basic tools for
the analysis of such deformations we provide a very short appendix on Lie’s
approach to symmetries of differential equations.



2. Hyperbolic PDEs and Huygens’ Principle

2.1 Introduction

In this section we describe Huygens’ property from Hadamard’s point of view.
We shall do it first for the wave operator with constant coefficients for simplicity
of exposition.

First a little bit of notation. Throughout this text, when dealing with wave
operators, we shall use the convention that we are working in (n+1) dimensions,
where n indicates the number of space dimensions and 1 indicates the time
dimension. A point of the space-time will be of the form (zo,21,...,2,;) €
R"*! where zp = ¢ is the time variable. Further, the wave operator in (n + 1)-
dimensional Lorentz space-time will be written as '

Oy & (37 - A,

where N
Ap =Ry
i=1
The Cauchy problem for the wave equation is
Op =0 (2.1)
Wl =f (2.2)
=0
t=0

Let’s focus first on our familiar case of n = 3. One straightforward way
of obtaining the solution to the wave equation in this case is by the classical
method of spherical means [62, 27, 28]. More precisely, define the average (see
Figure 2.1)

M, 1] & 21}172 f|x-m-|=r (') dS(@) (2.4)

where dS is the surface measure on the sphere of radius r in R".

Exercise 2.1 Check that the solution to the Cauchy problem is given by
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d
’tf) = E(tMct [f]) + tMr_'t [g] .

As a consequence of the above formula, the solution to the Cauchy problem
at the point (f, %) € R? depends only on the initial data at the points on the
sphere in IR3 of radius cf centered at Z, as shown in Figure 2.2. In particular,
this means that data with support in a ball of radius ¢ of the origin will be “felt”
only on a neighborhood of radius € of the light cone with vertex at the origin,
i.e, %% = z? - 22 + =3. This property is instrumental for the transmission of
information in three spatial dimensions. The same property does not hold in
two dimensions. More precisely, if one looks at a disturbance caused by a source
supported at neighborhood of zero, the effect of such a disturbance, in principle,
could be felt at the point (¢, 2, 22) for all time greater than (e + /2% + 23)/c.
Indeed, to see this experimentally, all one needs to do is to throw pebbles on a
lake. The proof of this claim is obtained by means of the so called Hadamard’s
Method of Descent. See Figure 2.2

The Method of Descent consists in using the solution of the given equation
in a higher dimensional space to produce the solution in a lower dimensional
space by introducing extra “dummy variables” in the equation as well as in the
data. In the case at hand, to solve the wave equation in two dimensions by means
of the solution of equation {2.1) for n = 3, all one has to do is the following:
Take the data in IR? and extend it to IR® assuming that it is independent of
3. Due to the invariance of the wave operator by translations in any of the
variables, the solution with data independent of 2; will also be independent of
3. Hence, one obtains a solution of the wave equation in IR”.

The Method of Descent is a very elementary application of the use of sym-
metry principles that are extremely important in the study of partial differential
equations.

We recall that the light cone passing through a point £ = (£,z) is defined
by the equation

Ce = {(#,2)Xt — 1) = (&' — )%} (2.5)

By the interior part of the light cone we mean the set

Fig.2.1. Average of a function over the sphere.
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D= {(t', )|t -6 > (7 — a:)2} .

The general situation for the Cauchy problem (2.1), (2.2),(2.3) for the wave
equation in n spatial dimensions is following:

Theorem 2.2 For n odd and greater than I the solution of the wave equation
depends on the initial data on the intersection of the light cone with the initial
date manifold t = 0.

For v even the solution depends on the values of the data on the closure
intersection of the inferior part of the light cone and the initial data manifold
t=0.

One proof of the above result could be readily obtained by using the method
of spherical means indicated above for n odd, and descending to even n. We
leave the details for the enthusiastic reader [62].

2.2 Second Order Hyperbolic Equations

In what follows we shall be concerned with the second order hyperbolic opera-
tors. By that we mean operators of the form

Lo LS G + 3 b, +up (2.6)

where the matrix g% defines a quadratic form of signature (1,n), depending
smoothly on the point x € £2 C R™. ! From the geometric point of view one
can think of £ as a type of Laplace-Beltrami operator on a pseudo-Riemannian
manifold.

The operator £ reduces to the standard wave operator, with ¢ = 1, when
we take g = diag[l,—1,-1,-1] and b=n =0.

!The notion of hyperbolic operators is more general, We shall not delve into it in the present
monograph, and refer the interested reader to the comprehensive treatise of Hérmander’s [53).

(" x') (' 59

R2 R

Fig.2.2. Comparison of the domain of dependence of the solutions of the wave
equation in two (left) and three (right) spatial dimensions.
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S
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Fig. 2.3. Pictorial description of a space-like submanifold on a pseudo-Riemannian
manifold

The principal symbol of the operator £ comes from a pseudo-Riemannian
metric g;;, where as usual we use the notation 3 g“ggj = 5;-.
Take X, Y € IR™!. As usual, let’s denote by

(X, V), 5 g XiY7
if
The metric {, ), induces a geodesic fow on the set {2. Under suitable hypothesis
on a neighborhood of every point £ one has the notion of a geodesic distance.
(although in this case strictly speaking we don’t have a distance in the sense
of metric space) The square of geodesic distance between two sufficiently close
points z and £ in {2 is given by T'(x, £), where T satisfies the partial differential
equation

S ¢, =47 (2.7)
i
with the further conditions
T(g'n 6) =0 1 aziT(§) {) =0 H a:r;az‘JT(E?f) = 2gl] (6) (2'8)

For fixed y the set defined by
T(z,y) =0 (29

defines the characteristic conoid €, emanating from . Obviously C, is a smooth
hyper-surface with the exception of the point y We recall that a manifold S C {2
of dimension n is called space-like if all its tangent vectors are space-like, i.e., the
pseudo-metric {, ), is actually a metric on the tangent space to S. See figure 2.3

As an example, for the wave operator, the associated metric corresponds
to the Lorentz metric and the characteristic conoid is the the light cone ¢ of
equation (2.5).
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The Cauchy problem for £ is posed by specifying data on a space-like hy-
persurface S

LY =0
Yls = f (2.10)
O|s =g

where v denotes the unit normal to the hypersurface S.

In Section 2.3 we are going to construct fundamental solutions to the wave
operator following Hadamard’s classical construction.

We are now ready to state for curved space-times the notion of and operator
to satisfy Huygens’ property.

Definition 2.3 A Ayperbolic operator L as above, is said to satisfy Huygens’
principle (in the sense of Hadamard’s minor premise, or in the strict sense) if
the solution to every (well posed) Cauchy problem (2.10) depends on the initial

data f, g only in the intersection of the characteristic conoid and the space-like
manifold S.

We notice a few trivial symmetries for the strict Huygens property.
1. Nonsingular coordinate transformations of the independent variables:

= F =I(x)
det(DZ} #£ 0

2. Gauge transformations:
b P =2y
L= L=X1LA,
where A = A{z) # 0.
3. Multiplication by a scalar function:
L L= pl,
where = p(z) # 0.

Definition 2.4 The above trensformations 1, 2, and 8, are called trivial symme-
tries for Huygens’ principle. Operators that can be obtained from wave operators
in R™? by means of triviel transformations are called trivial Huygens operators.

We are going to assume henceforth that the operator £ as well as the data
are analytic functions of the real variable z. By restricting our focus to suffi-
ciently small domains {2 throughout this book we shall only be concerned with
the local aspects of (strict) Huygens’ property. Notwithstanding, it must be em-
phasized that global aspects of Huygens’ ought to have interesting connections
with topological aspects of pseudo-Riemannian metrics in space-time.



12 2. Hyperbolic PDEs and Huygens’ Principle

As we mentioned in Theorem 2.2 Hadamard proved that the strict Huygens’
property holds for the wave operator in n space dimensions if, and only if, » is
odd and greater than 1. This prompts the following question:

Problem 2.5 Determine all hyperbolic operators that satisfy e strict Huygens’
principle.

The lack of examples of strict Huygens’ operators in 3 4+ 1 dimensions that
are not trivially equivalent to the wave operator, led to the so called “Hadamard
conjecture.” It became immortalized in Courant and Hilbert’s [27]. It surmises
that all Huygens® operators are equivalent modulo trivial symmetries to the
wave operator O in Minkowsky space-time of even dimension > 4. It turned out
to be false. The counter-example of Stellmacher mentioned below proved that
it could not be the case.

The tale of Hadamard’s problem is fascinating. Instead of cluttering the
exposition with historical details we refer the reader to the comprehensive book
of Giinther [49] and references therein. Also, the expository article [50] is an
interesting source of information as well as Ibragimov’s monograph [57].

E. Hélder in 1938 [52] considered operators of the form

Lop=divgrad =y %Bri(\/f_ygijazj«,b) .

where v = 1/| det(y)|, for a 4 dimensional space. He proved that in this case
the scalar curvature R of the metric vanishes.

In 1939 M. Mathisson [77] considered operators in 3 spatial dimensions of
the form R

Lh =0+ Y 6, +u(z)p
i=0
Mathisson himself, and independently Asgeirsson [9], showed that any Huygens
operators of the above form is trivial.

In 1952 P. Giinther expanded the results of Asgeirsson and Mathisson
for curved metrics in space-time [50]. Later on, using methods of transforma-
tion groups Ibragimov [56, 55| characterized the 3 + 1 dimensional pseudo-
Riemannian spaces that admit Huygens’ operators.

In 1955 K. Stelimacher [96] found the following counter-example to Hadamard’s
conjecture:

£=a§u+§—2(a§i+§ , (2.11)

0 i=§ i

where p1; = —v;(v; + 1) with 1 € Z3o and

n ——
St (2.12)
i=0 2

As a particular example one has the wave operator in 5 space dimensions
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2
L=(8 — E) - As. (2.13)

Notice that in this case the coefficient u of the general expression (2.6) function
is dependent on the time variable zq.

The example in equation (2.13).is just the tip of an iceberg. In 1967 Lagnese
and Stellmacher [68] generalized this by constructing families of Huygens oper-
ators that are not equivalent to wave operators. Their process of constructing
such operators was by means of the factorization technique which the soliton lit-
erature calls “Darboux Transformations”, although it must be pointed that their
work preceded its use in soliton theory. The method of Stelmacher and Lagnese,
which will be reviewed in our Section 3. On the other hand, Darboux transfor-
mations, allowed Adler and Moser to generate the rational potentials (decaying
at infinity) that remain rational by the KdV flows [3]. The latter are usually
referred as rational KdV potentials or rational solutions of KdV. Curiously, the
important remark that the fields © = u({) obtained by the Lagnese-Stelmacher
transformation coincides with the rational solutions of the KdV took quite a
while. (See for example R. Schimming [88, 89, 90].) They will be the subject of
Section 3 and will display a beautiful, albeit unexplored, connection between
Integrable Systems and Huygens' principle.

The subject of Integrable Systems is also developed in the Lecture Notes [25]
of the course by Magri and Pedroni in the 21st Brazilian Mathematical Collo-
quiurm.

2.3 Construction of Fundamental Solutions

In order to discuss Hadamard’s conjecture several approaches have been tried
out [50, 48]. The approach we shall use here follows closely the one developed in
the survey of Berest and Veselov {16]. We start by studying the so called elemen-
tary solutions for hyperbolic operators which were instrumental in Hadamard’s
analysis [51]. His elementary solutions correspond, in a rough sense, to what
now we call fundamental solutions, i.e., the solution of the problem LF = 6.
One basic distinction being that the modern theory is concerned with G coef-
ficients whereas Iadamard’s approach was devoted to treating the real analytic
case. A very good description and comparison between the methods could be
found in Babich’s article [12].
Let’s consider the following problem for the wave operator 2

E|l =0,

t<tp

(2.14)

where £ = (to,&1,...,&.) is an arbitrary point, and & means the shifted &
function. We remark that the wave operator O admits the following solutions

2Henceforth, we set ¢ = 1. Such a change is immaterial since one can always recover the
more general case by changing the time scale.
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depending on the value of n.

en0™I2(T)  noodd

E(z,£) = { Cn,r:(n—njz (2.15)

7 even,

where T denotes the square of the Minkowski distance, i.e.,
7
T=0—t) = (zi— &)?,
i=1

and 8 denotes the k-th derivative of Dirac’s delta function. In formula (2.15)
derivative is to be interpreted in the sense of distributions and Y means the
Heaviside function multiplied by 7*. The nonvanishing numerical constant ¢,

is given by )

= 2702 ((n — 3)/2)

where the function I'() is the celebrated Euler’s gamma. function, defined by

Cn cven n,

roy e fo TPz, R0,

Exercise 2.6 Show that the above defined Euler’s gamma function extends as
a meromorphic function on the comples plane with simple poles at the values of
A € Zy. Purthermore,

F(n+1)=ﬂ|, ﬂez?_g.

The distribution that appears for n even in equation (2.15)
T;(““L)ﬂ
I'((n—38)/2)

plays an important role in what follows. It should be interpreted by evaluating
at © =7 the function

Su(T) =

¥ def T___z” x>0
Sv Rt S (+1) 2.1
(=) v +1) { 0 z < (2.16)

This function in turn has the special property of being homogeneous of degree
v.

We remark that in the case of n = 2 equation (2.15) gives back the solution
of the wave equation given by formula (1.4).

The formnla for the wave equation suggests that in the case of a general
second order linear hyperbolic operator £, one should search for solutions in
the form

i UV ("L-: 6) Su—p (T) 3 (217)

w=(



2.3 Construction of Fundamental Solutions 15

where now T is the square of the geodesic in the metric defined by the gij and

~1
pll — . (2.18)

It turns out that for even values of the number of spatial dimensions n one must
search for solutions E(z, ) of the form

E(z,8) = Wi(x, )P {2.19)
where .
Wiz, &) = ;}Uj(fﬂ:f)rj .
The case of an odd number n of spat.ijal dimensions takes the form
E(2, &) =V{z, Y™ + Wy(z,8) logT+ R, (2.20)
where

WD(““":E) = itj:i(maf)Tj_p 1

i=p
p-1 ]
Vi(z, &) =3 Uz, )17,
i=e
and R is a smooth function.

Definition 2.7 4 solution E(z,£) of the problem LE = 0 for T(z,£) # 0 of the
form given in equation (2.19) for n odd (resp. in equation (2.20), for n even)
is called an elementary solution.

Hadamard has shown the following:

Theorem 2.8 {(Hadamard) If L is 4 second order hyperbolic operator with
analytic cocfficients, then it admits an elementary solulion.

A classical version of the proof can be found in [51]. (See also [27, 28].) In
Section 2.5 we present a more modern approach and indicate the main point in
the argument of the proof.

For the time being, we remark that the coefficients of the formal expan-
sion (2.17) can be found by substituting this ansatz into the equation

LE=Y g"E;s + 5 VE, +uE=0
and matching the behavior of the powers of 1", This yields for r = 0,1,...
2% 97,05, Un + 4((r — 1) = p)U, + U (LY —uX) = LU,y ,  (2.21)

def
where we set U_; £ 0.
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Exercise 2.9 Show that the first summaiion term in the ezpression {2.21) can

be interpreted as

> 99,8, U, = QS%Ur ,

where s = /T is the geodesic distance in the hyperbokic metric gi;.

Hence, one can interpret the set of equations (2.21) as recursive system of
“transport equations.” For example, the leading equation (r = 0) hecomes

d
4SEU0 + (—2’!!. -2+ LY — ’[LT)UU =0.
Exercise 2.10 Show that for the perturbed wave operator £ = B+ u the recur-
sion becornes

n

1
Z(.’L‘i - §,-)8xi U,— + TUr = zl-a(p)f,Ur_l ; (222)

i=0
uhere o(p) = 1 and a{r) = ~(r =) 7 #p.

2.4 Hadamard’s Criterion

The question of determining which hyperbolic operators satisfy a strict Huygens’
principle received an indirect characterization in the work of Hadamard. This
indirect characterization was obtained in terms of the elementary solutions of
the formal adjoint £! to the operator £. The operator £7 is defined as

L 58,8, (699) — 3. 8 (B) +utp

The fact that £! is involved is not surprising since the actual solutions to the
Cauchy problem posed for the operator £ would be obtained in terms of averages
{or “convolutions”) with the elementary solutions of £1.

The eriterion found by Hadamard is

Theorem 2.11 (Hadamard’s Criterion) The operator £ satisfies a strict
Huygens’ principle iff the number of spatial dimensions n is odd, greater than 1,
and the elementary solution of the adjoint operator L1 contains no logarithmic
term, i.e., Wy(x,&) = 0 for all € and oll z in the internal part of the character-
istic conoid.

Hadamard’s criterion, although highly nontrivial is not extremely helpful in
deciding whether a given operator is strictly Huygens or not, unless one has a
wiy of producing the term W,

In Section 3.5 we give an explanation of the connection between Hadamard’s
criterion and what became known in the literature as Painlevé’s property for
partial differential operators [100].
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co)

C(y)

Fig. 2.4. The forward and backward half-conoids issued from a point y

2.5 Riesz Kernels

Marcel Riesz in his fundamental work [87] gave an elegant unified treatment
of the expression for the solution to the wave equation for different values of
dimension 7. His idea is based on extending for A in the complex plane the
expression
2(z,t,) d;f{ (7§ — TPl (Traf)? <t
T 0 elsewhere,

This last expression is defined for ®[A] > 0 and the meromorphic extension
takes values in an appropriate space of distributions.

It turns out that by normalizing = by a suitable meromorphic function (of
A) one gets for non-positive integers derivatives of the § function, which in turn
play a fundamental role in the construction of solutions to wave operators.

This section is devoted to a quick summary of the properties of Riesz kernels.
We start with a few technical considerations about causal domains for a general
hyperbolic metric, although the thrust of our exposition concerns the wave
operator. We then define rigorously the notion of a Riesz kernel and use it to
construct he Hadamard series for the elementary solution. The main goal is to
give the general idea of the proof of Hadamard’s criterion (See Theorem 2.17
below).

Let g be a Lorentzian metric of signature 4+, —, —, ..., —. In Section 2.2 we
considered the square of the geodesic distance ¥(z,£), which is the solution
of equation 2.7. The function I defines the characteristic conoid C(€), by the
equation T'(z,£) = 0. If we exclude the point & from C(£), then we obtain
two connected components C(€) and C_(€), which are naturally associated
with the forward and backward time. (The decomposition of C(£) into two
connected components is possible by restricting 2 if necessary.) We define, the
corresponding open subsets of £2 as D, (¢) and D_(£). See Figure 2.4.

From now on we work with an operator of the form

L=div grad+{a, V) +u,

with all coefficients (real) analytic and defined in a causal domain 2. By a
causal domnain we mean that the following two properties hold
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1. Any two points z and £ are joined by a unique geodesic.
2. The set D, (z) () D_(£) is either empty or compact in £2.

The reader may in this case, base the intuition on the familiar case of the usual
Minkowsky metric diag(1, —1,...,-1).

A modern approach to the construction of fundamental solutions making
use of theory of distributions could be developed by the formalism of Riesz
kernels.

As usual D'(£2) denotes the space of distributions defined on f2, i.e., the
topological dual of the locally convex space of compact-supported C* functions
in £2 with the semi-norms defined by the (*-norm over compact subsets of £2.

Definition 2.12 Let £ be a second order hyperbolic operator, as above, defined
on a causal domain 2. A forward Riesz kernel of the operator L is a holomorphic
mapping

€52 (,8) € D),

salisfying the following conditions

supp[®5 (-, €)] € Di(6) (2.23)
L@, 6] = #Li(H8) (2.24)
F(,E) = & . (2.25)

We now discuss briefly the intuvitive idea behind this definition. Remark
that for A = 1 the Riesz kernel gives a distribution EL(-, ) = ®7(-,€) such that

LEL(6) = &

and also

supp[£4 (-, §)] € D4 (€} -
Thus, providing us with a fundamental solution to our operator. Notice that
the first condition {2.23) concerns the causality of the solution.

Meodern treatment of the asymptotic behavior of solutions to hyperbolic
problems studies the so called “asymptotics in smoothness®[12] It turns out,
however that if the operator £ is analytic, this asymptotic behavior can be
replaced by a convergent series. This type of argument has been used extensively
in the recent work of Berest [20].

The construction of Riesz kernels is based on the following analytic contin-
uation technique:

Let g € D(12) be a test function, and start by defining®

a-zpt
m@ o= [ IO g,

pile)  Han(A)

3Haere, {|} denotes the duality pairing between D' and D.
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for R[A] > 221 and

Hon (V) @ 2n 2 Py rgn - 22 1

).

Then, extend for alt A € C the above definition by analytic continuation, using
iterates of the (classical) formula

DRA = R,\_l f (226)

which is valid for R[] > (n + 3)/2.
It is clear that the distribution R (%, £) satisfies

Supp[R,\(ﬁ, E)] c D+(‘S) )

Exercise 2.13 Show that the convolution of any two elements By and R, is
well defined and one has for all X and b in ©

Ry %R, = Ry . (2.27)

Check also that
(z — |G )Ry = (2A —n+1)R,, (2.28)

where (|) denotes the product in the Riemannian metric, and that for v € Zsg

JTA+F)A+ v~ (n—1)/2)

TRy =4 I = (n—1)/2)

Rasw - (2.29)

Recalling that
Ry(2,§) = &e(z) , (2.30)

a simple application of the above results gives that

Proposition 2.14 For an odd number n of spatial dimensions and A €
{1,2,...,(n—1)/2} we have

¢y

e
RA ($1 6) - ﬁn,A

where 6..(T) stands for the the Dirac’s delte measure concentrated on Cy(£) N
{¥ =0}, and the numerical constant

) (2.31)

Bap = 25" 1A 1)1

~Needless to say that once a Riesz kernel for a hyperbolic operator £ is con-
structed, one has immediately a lot of information on the fundamental solution
of £, in particular as far as Huygens’ principle is concerned.
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For a general operator with C* coefficients in a Lorentzian manifold, one
looks for an expansion of the fundamental solution of the form

]

E(E, 6) ~ Z Uv(mw g)RﬁHu(m:f) . (232)

v=0

As in the case of the Hadamard expansion, if we formally substitute ex-
pression (2.32) into the wave equation £LE = § one obtains a set of recursive
transport relations of the form

(¢~ 000 (@) +1U(2,8) = ~3LWUon(@ 8] . (2:39)

The coefficients [/, are not necessarily the same ones as in the Hadamard
expansion. It can be shown [20, 12] that the above recursive system has a unique
solution provided one normalizes

UU(E! {) =1 ] (234)
and requires for r > 1
U,(,8) = O(1) ,& = € . (2.35)

It is well known ([20, 12, 51]) that if the operator £ has analytic coeficients,
then the series 2.33 is uniformly convergent in a sufficiently small neighborhood
of T = 0. In this case, the Riesz kernel for the operator £ can be expanded as

)\+V

'y

At this point we can even give the main argument for the proof of
Hadamard’s result 2.11. Indeed, if the number of spatial dimensions is even
then for v =0,1,2,... we have

@fl $ E) Z P (.’L’, 6)‘R)\+V($1 5) :

supp[Ry+1(z, )] = D+(€) »

and so Huygens principle dees not hold, However, if the number of spatial
dimensions n is odd then for ¥ =0,1,2,..., (n — 3)/2 we have

supp[ R4 (z, §)l = C4(£) -

Hence, using equation (2.33), and setting as usual p = (n — 1)/2 one gets
Hadamard’s classical formula for the fundamental solution for = odd

Bi(5,8) = 55V (5,000 0 + W O D)),

where H. (7y) is the the Heaviside step distribution on the forward region D.(£)-

(Help) = [ ole)dz.
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Furthermore, the functions V'(z,£) and Wz, £) are analytic in a neighborhood
of z = ¢ with expansions

Vi(z,8) = pz:oquv(maf)TV )
where s, = [(1~p)...(v —p)}~! and ¢
o0 1 p
W(SL‘, &) - 2 ZVTP)“!*UD(mi €)T .

In conclusion, the necessary and sufficient condition for a strict Huygens’ prin-
ciple to hold is the vanishing of the term W.
In fact, following Berest, this condition of the vanishing can be weakened.

Lemma 2.15 The term Wz, £} vanishes iff Up(z,8) = 0 for = on the surface
of the forward light cone C ().

The assertion of the lemma follows from the fact that Wz, £) is a solution
of the characteristic Goursat problem

LW(z,8]=0,

with a boundary value given on the cone surface C,.(€). This problem has a
unique solution [51]. Hence, W(z,£) = 0 iff W (z,£) = 0 for = € C,(£).
This makes it natural to introduce the following definition:

Definition 2.16 The Hademard series is said to be truncated (or terminated)
at level vy if the sequence defined by the recursions (2.33), (2.84), and (2.35) is
zero for v > .

As a corollary of Lemmna 2.15 we get the following result
Theorem 2.17 Let £ be a real-analytic formally self-adjoint hyperbolic on a

causal domnain 2 C R*! with n > 1. Then, £ is strictly Huygens iff n is odd
and the Hadamard series for £ is truncated af level p = (n —1)/2.

*The W term is usually referred in the literature as the logarithmic term






3. Completely Integrable Systems

3.1 Review of Hamiltonian Mechanics and Poisson
Manifolds

This section is concerned with reviewing some of the basic concepts from Clas-
sical Mechanics with special emphasis on completely integrable systems. It is
not intended to be comprehensive, one can find most of the classical material in
excellent books such as [8, 76]. As for the more recent material on soliton equa-
tions and bihamiltonian formalism, the reader is referred to the text of Magri
and Pedroni’s course at the present 21st Brazilian Mathematical Colloquium
[25].

We start with the familiar situation of Newtonian mechanics by considering
the movement of a particle in IRY under the action of a conservative field. We
denote the potential of the field by U/ (x), and for simplicity we take the mass
equal to 1. In this case, Newton’s law gives us

_

X = g, ‘I:=].,...,N. (31)

The familiar change of variables p = & and ¢ = z transforms the second order
system (3.1} into a first order one in the variables (p, g). From long ago we know
that the energy

i
H=-pt4U
a7 *
is conserved by the flow. Newton’s equation becomes
. H :
m = ~de ? ‘1=1,...,N
. i . 3.2
{q,— = %’f, 1=1,...,.N. 3.2)

Introducing the phase space variable z = (p,q) the system takes the concise
form
z=JVH, (3.3)

where J is the skew-symmetric matrix

df | 0 =1
J_[I 0].
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A careful analysis of the above construction aiming at a coordinate free
description of the physical laws leads naturally to the need of considering the
right hand side of equation (3.3) as vector field of the form

Xy % gdH .

Here, J is a skew-symmetric mapping sending 1-forms in vector fields (8] It
also leads naturally to the concept of a symplectic manifold.

Definition 3.1 A symplectic manifold is a (Banach) manifold M endowed with
a nondegenerate closed 2-form w.

We recall that a 2-form w is called nondegenerate iff !
wX,Y)=0,¥WYeT,M = X=0.
Example 3.2 Take CV = R*" with the coordinates
z=pj+igg ,j=1,...N

and 1
w= o (da Adoy + .+ day AdEn) (3.4)

Note that the case N = 1 gives the usnal area element of the complex plane.

The elegant concept of a symplectic form turns out to be extremely helpful
in the understanding of classical mechanics. The point being that it can be used
to construct vector fields through the following process:

Since w is nondegenerate it establishes an isomorphism between the tangent
and the cotangent spaces at a given point. The isomorphism is given by

M3 X — w(X,) e (T,M) . (3.5)

Let’s call J the inverse of this map. To produce a vector field out of a given
function H we consider

He (M) — dH vL Xy & JdH (3.6)
Example 3.3 In the case of R?Y with the canonical symplectic structure
w=dpAdg® S dp; Adgi

the above construction gives the following association

I'We note that if the manifold is infinite dimensional the above definition is of a weakly
symplectic manifold. In the infinite dimensional context we shall assume even further that w
is strongly nondegenerate, i.e., the mapping in equation (3.5) defines an isomorphism of T;,4/
onto TpoM*.
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oH oH dH 8 G8H 9

Exercise 3.4 Show that H 15 a conserved quantity of the Hamiltonian flow
generated by vector field Xg.

Closely related to the above construction and to the notion of symplectic
manifolds is the concept of a Poisson bracket. It could have been taken as our
starting point.

Definition 3.5 A Poisson bracket on a manifold M is o bilinear and skew-
symmetric mapping {, } from C®(M) x C=(M) — C>(M) satisfying the fol-
lowing properties

1. I acts as a derivation, i.e.,
{FG,H}:F{G,H}+{F,H}G (3.8)
2. It satisfies the Jacobi identity

{F7{G:H}}+{G: {H,F}}"I'{H! {F,G}} =0 (3'9)

Example 3.6 The harmonic oscillator (or linearized pendulum): In IR? with
the canonical form, let’s consider the Hamiltonian

1
Hip,q) = 5(132 + 5% .

The Hamiltonian vector field Xy is given by

7] o}
—_2—_.. e
XH— fﬂqap-l-paq

Each orbit, distinct from the equilibrium configuration (0, 0}, is an ellipsis. See A
Figure 3.1.

Given a symplectic structure, one can always construct a Poisson manifold
by means of

{F,G} = J(dF)G = dG(J(dF)) .

For example, in the case of IR*™ with the canonical symplectic structure we have

oF G OFaaG
{FG} =3 (a—p,-a—q,. - a—q,,a;;) '

i

Definition 3.7 A Poisson bracket is called degenerated if there exists o non-
constant function F € C®(M) such that for every G € C*=(M)
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Fig. 3.1. Orbits of the harmonic oscillator of Example 3.6in phase space.
[F,G)=0.

The reader unfamiliar with symplectic structures may well think locally as
the familiar case of the canonical symplectic form of IR2Y. Indeed, due to the
following classical result of Darboux

Theorem 3.8 (Darboux} Lecally, a 2N-dimensional symplectic manifold is
diffeomorphic to R?Y endowed with the canonical symplectic form dp A dyg.

For a proof the reader is referred to [8).
Exercise 3.9 Show thet the mapping
J:dHl—)XHdéfjdH

is a Lie algebre homomorphism between the Lie algebra (C*(M), {,}) and the
Lie algebra of smooth vector fields (Vec(M), —[,]) where [,] denotes the standard
vector field commutator.

Show that twe Hamillonien vector fields Xy and Xp commute iff {H, F} is
locally constant.

Note that the geometric interpretation of the Poisson bracket {H, F} is
the directional derivative along the vector field Xg. In other words the rate of
change of F along the flow line of the Hamiltonian vector field X.

As a consequence of the above remarks, it follows that if {H, F} =0, then
F'is a conserved quantity of the Hamiltonian vector field Xg. In particular, if
¢ is a regular value of F', this means that the flow of Xy restricts itself to the
hypersurfaces defined by F~(c).

Example 3.10 In the harmonic oscillator of example 3.6, note that the change

of variables e L2 %)
o = -|- K
{ 4o ggfﬁl(ﬁ) g (3.10)
p
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transforms the system into

{ ;:?c (3.11)

Exercise 3.11 Show that the transformation given in equation (3.10) is cenon-
ical in the sense that it maps the form dp A dg into dI A d¢.

Definition 3.12 Two functions I end H in C®(M) ere said to be in involution
w.r.t. to the Poisson bracket {,} if

{F,H}=0. (3.12)

Now, if {F, H} = 0, then Xp is the infinitesimal generator of a group of
symmetries of Xp. Hence, it is natural to expect that if a Hamiltonian is in
involution w.r.t. many independent quantities then the associated Hamiltonian
vector field possesses many symmetries.” These symmetries in turn should en-
able one to construct coordinates where the given Hamiltonian vector field has
a simple form. This is indeed the content of the classical result of Liouville.

Theorem 3.13 (Liouville [71], Arnold [8]) Let (M,w) be o 2N-dimensional
symplectic manifold, with N independent quantities Fy,...,Fy in involution.
Suppose that each of the Hamiltonian vector fields X F; s complete at the level
set

Vo ¥ {m e M|(Fi(m),..., Fy(m)) = a} ,

which is assumed nonempty. Then,

1. V, is an invariant submanifold of M w.r.t. any of the Hamiltonian vector
fields X, and diffeomorphic to the union of cylinders of the form IR x
T *,

2. It is possible to find, at least locally, a system of coordinates

(Ilﬁ"‘rfN;¢1:""¢N)

where the symplectic form w is given by

W= Z dl; A de; .
and furthermore, in these coordinates the flow of the vector field X F, takes
the form )
I=0
g 3.13
{ ¢ = fi(I) . (3.13)
*We recall that functions Fy, ..., F}, are said to be independent on a manifold if their

derivatives dF},...,dF} are linearly independent on all points of the manifold.



28 3. Completely Integrable Systems

For a proof of this result we refer the reader again to [8, 86]. We limit
ourselves to a few remarks:

1. The hypothesis of having complete vector fields can be dropped if one
knows a priori that the manifolds V. are compact and connected.

2. The variables (I, $) given in the above result are called action-angle vari-
ables. This is due to the fact that in the compact case, the variables
¢1,..., ¢ denote a point in the torus T¥, and in the classical construc-
tion, the variables Iy, ..., Iy are constructed with the same dimensions of
the action [ Ldf, where £ is the Lagrangian.

3. The classical proof of Liouville’s theorem leads to a theoretical construc-
tion of the action-angle variables using only algebraic operations, inte-
grations, composition and inversion of functions. For this reason, systems
falling under the umbrella of the above theorem were called integrable by
quadratures. Unfortunately, the number of cases where such a program
could be implemented in practice is extremely small. No wonder that un-
til the early 70’s very few examples of (explicitly) integrable systems were
known. Nowadays, to perform the process of finding the action-angle vari-
ables one counts with effective techniques such as Lax pairs, zero curvature
equations, and Lie-Algebraic techniques. For a comprehensive discussion
of these techniques see [86].

3.2 KdV, KP, and Friends

In this section we survey some aspects of the theory of the Korteweg-de Vries
equation

1,!')15 + C’l/}:r: + a"fpz:m + ﬁ'fpdfﬂ; =0. (314)

Here, ¢, e, 3 are constants, which can be scaled out at our will.
The KdV equation, together with its two dimensional generalization, the
Kadmontsev-Petviashvilli equation

;_:c (up — Butty — Upgs) = Kity, (3.15)
are archetypical examples of infinite dimensional completely integrable systems.
They exhibit a tremendous amount of structure in terms of conservation laws
and symmetries.

The importance of the KdV rests not only on its simplicity and beautiful
mathematical structure. It is also due to the fact that it models a number of
situations of (unidirectional) wave propagation under a weak nonlinearity and
small dispersion. For an argument in favor of this the reader is referred to the
introduction of [79]. '

Notice that a change of dependent and independent variables, which is left
as an exercise to the reader, transforms equation (3.14) into the equation
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Fig. 3.3. Diagram of the interaction of two solitons.

Up = —Ugyy + Buity | (3.16)

One of the first remarkable features of (3.16) is the presence of solitary wave
solutions, i.e., solutions of the form

u(z,t) = flx —ct) . (3.17)

Exercise 3.14 Let u be a solution of the form (8.17) to the KdV equation
(8.16). Assuming that f is sufficiently smooth, and decays at oo together with
its derivatives, show that it can be written as

flz)y= —%c sech? (%\/E(z - mu)) {3.18)

The solitary wave solution above is called a soliton. We shall explain this
term shortly. First we remark that the KdV admits nonlinear superposition of
¥ such solitons, which are called N-soliton solutions of KdV. Their asymptotic
behavior along certain directions on the (z,t)-plane takes the form of equa-
tion (3.18) with appropriate constants. See Figure 3.3.

It can be shown, using the inverse scattering method [37, 79] or the Darboux
method described below, that the KAV admits solutions of the form
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u(z,t) = —28% log det[A(=,1)] ,
where A is the N x N matrix whose entries are

B; 3
Aij = Jij + Py +1ij exp(—(n,— + Ej)SC + S}i}it) .

The asymptotic behavior along lines of slope 4x2 on the (¢, z)-plane displays
interesting particle like interactions, between the different solitons. We refer the
reader to [79] for more details

The term soliton was coined by M. Kruskal to denote the aspect of a solitary
wave and a particle, whence the greek suffix “ton”.

The persistence of the solitonic form in the solutions of the KdV equation
was first remarked numerically in a series of classical experiments by Kruskal
and Zabusky [103]. Such behavior makes it plausible that the KdV would possess
many conservation laws. A few of them are quite evident on physical grounds,
they are

H., = fu dz (3.19)
Hy = f %uz dx (3.20)
H = [(%u§+u3) dz (3.21)

The strange Iabeling of the conservation laws will become clear soon.

For a short while, it was an open problem whether the KdV had infinitely
many independent conserved quantities. See Chapter 1 of [78] for an illustrative
historical survey.

The problem of obtaining infinitely many conserved quantities was settled
by the inverse scattering method [37]. The construction initially looked like an
obscure trick. It involved introducing the Schrédinger operator

L=-0+u, (3.22)

and looking into its spectral theory. In particular, looking at the time evolution
of the eigenvalues and the scattering parameters as the potential evolved ac-
cording to the KdV equation. All became more apparent with the development
of the Lax pair formalism [69], and later with the ZS-AKNS method {1, 104].
Unfortunately, will not have time to touch this subject here. The interested
reader could consult [79] and references therein.

It is now known that the KdV is a completely integrable system in the
following sense:

There exists an infinite sequence of conservation laws in involution with
respect to a certain Poisson bracket. Associated to these conserved quantities,
the first of which were given above, there exists a sequence of angle variables.
Furthermore, the system becomes linearized in these infinite set of angle vari-
ables.
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One choice of Poisson bracket w.r.t. which the conserved quantities of the
KdV are in involution is given by

{H:F} o J_Hamﬁ dz ,
du " by
where the §H /du denotes the variational derivative of the quantity Hlu]. 7
We recall the for a functional H : S(R) — € the variational derivative
0H/du is defined as the element in §'(R) that realizes

(3.23)

dH[u](du):f% Su  dx
where dH{u] is the lincarization of H at u given by
Hlu + du] = Hu] + dH[u](6u) + O((5u)?) .
Exercise 3.15 Suppose that the functional H [u] is given by
Hiu} =jh(u,u(1},...,u(k)) dz .
Show that,
dH _O0h d Bk d> 8h x d* Oh

Su ou dwoul T gen@ vt e

In the Hamiltonian context we mentioned before, the KdV takes the form
6H,
Ju

whereas the vector field generated by Hj is nothing more than

Ut':am

.XHD{U] = Uz .

It generates the translation flow, which obviously commutes with the KdV flow,
since the KdV equation does not have any z-dependent coefficient.

The existence of infinitely many conserved quantities in involution leads to
a full hierarchy of vector fields commuting with one another and with the KdV
Aow. These flows can be constructed directly with the formalism of Lax pairs.
However, we will refrain to do it like that since it is the traditional approach
and can be found in most introductory texts on solitons. We will use instead
the formalism of recursion operators, which is directly linked with the “bihamil-
tonian structure of KdV.” The key point being that the KAV hierarchy can be
written also as hamiltonian system with respect to a second Poisson structure.
This second structure being compatible with the first one in the following sense:

Any linear combination of the two Poisson structures is also a Poisson struc-
ture,
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Exercise 3.16 Let

Ko & ~0%0 + dud,p + 2up (3.24)
Show that
e f8F  O0G
F @ f Kk 2 4 3.25
{ y G}z o Ky e T ( )

defines a Poisson bracket on the space S(R) (or C=(T)). Show that one can
write the KdV equation (3.16) as

sty
du ’
where Hy was defined in Equation {3.20).

u, =K, (3.26)

The bihamiltonian structure formalism of integrable equations was studied
extensively by F. Magri and collaborators [72, 73, 63, 74, 26, 24, 75]. It is the
subject of the lecture notes [25]. For this reason we shall not extend more on
the subject referring the reader directly to the inspiring source.

3.3 Recursion Operators and Master Symmetries

This section is concerned with the construction of the KdV hierarchy from the
point of view of recursion operators. The exposition in the next two sections
follows closely our joint work with F. Magri [75, 110].

We think of the KdV equation

Up = —Ugyy + OULU &t Xi(u) . (3.27)

as a vector field on a (linear) manifold we denote by . There are several spaces
that could be used for such studies. For instance, the Schwartz space S(IR) of
rapidly decreasing smooth functions on the line, or the smooth functions on the
circle C°°(T). For our application to the rational solutions of the KdV hierarchy,
we shall make use of yet another space. We postpone this discussion to the end
of the next section. The crucial point being that the construction is algebraic
and only depends on certain algebraic relations.

The Nijenhuis Tensor

We start with two important remarks. The first one is that we can write

.Xl (u) = Nu.Xo (u),

def

where Xp(u) = u,, and N, is a linear map, depending on u € U, defined by

Ny = =829 + dutp + 2u,8;! (3.28)
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Fig.3.4. Pictorial description of a tensor of type (1,1) sending vector fields into
vector fields.

for 1 € U. Here, by 8;'4 we mean a formal antiderivative of 1.

We think of N, as a tensor field of type (1,1) on i. This means that N,
sends vector fields into vector fields. See Figure 3.4.

The next ingredient is the Nijenhuis torsion of a tensor field.
Definition 3.17 If X and Y are vector fields on a manifold and G is a tensor
Jield of type (1,1), the Nijenhuis torsion of G is a vector valued 2-form defined
by

T.(X,Y) ¥ [GX,GY] - C[X, QY] - G[GX, Y]+ GYX, Y], (3.29)

where the bracket [-,+] denotes the vector field commutator

X, Y](w) = YIX () - XY () - (3.30)

In the case of lnear manifold, we can compute the above derivative as
follows. For a constant vector field ¢ and an arbitrary vector field X (u)

d
Xip) = 2| _ X+ ep)
df =0
The derivative of a tensor field N, on the other hand can be computed as
£ d
NL((,D; l'!lb) Cl=0 El-g E=0Nu+e¢(p 3
where ¢ and ) are constant vector fields.

Exercise 3.18 For the tensor field N, defined in (3.28) we have explicitly

NG (103 ) = 4o + 2487 . (3.31)

Hence, the Nijenhuis torsion of N, is the vector valued 2-form given by
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Tu(io, 1) = N, (3h, Nug) — Ni (2, Nuth) + NN (50, 9) — NuNy (3, 90) . (3.32)

Notice that T, is skew-symmetric in (¢, ¥).
Exercise 3.19 Verify that for N, given by (3.28), the torsion

Tu(p, ) =0.

Recall that the Lie derivative of the (1,1) tensor N, along the vector field
X (u) is a tensor field of the same type defined by

Lx(Ny)o = No{(g; X} -+ N Xl — XiNuo.

The second important remark is that for N, given by (3.28) and Xo(u) = u.,
we have that
Lx,(N,) =0.

So, we can say that Xy is an infinitesimal symmetry of N,
The consequence of the two remarks above is the following result:
Proposition 3.20 The iterated vector flelds
X; N X

satisfy
[Xj, X,g] =0.

The vector fields X; generate the higher order KdV flows [82, 73, 65]
B;J.u = Xj(u)

These flows can also be obtained via the Lax pair formalism as we mentioned
before, and by fractional powers of differential operators [38, 39, 69, 91].

Master Symmetries

We are ready to construct the hierarchy of master symmetries for the KdV equa-
tion. They have the important property of producing by means of commutators
higher order vector fields of the KdV hierarchy. Thus, generating symmetries
for the KdV, since the higher order KdV flows commute with the KdV flow.

The concept of master symmetries was introduced by Fuchssteiner and was
applied to a number of important examples such as the Benjamin-Ono equation
and the K.P. hierarchy [35, 36, 80, 81].

Consider the vector field

1
To(u} = 5%Us +u.
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If we compute the Lie derivative of N,, with respect to 7, we find
LN =N, . (3.33)

Leibniz rule gives . _
Lr(ND) = N7 (3.34)

Let’s now consider the hierarchy {7;}32, obtained by defining
T = N':;Tg .

The vector fields ;, for § > 0, do not commute with one another, since 7 is not a
symmetry of N,,. However, they do verify the following remarkable commutation
relation

[m.m] = (= )T (3.35)

as will be shown bellow.

We digress a little to remark that the reader familiar with Virasoro algebras
will recognize equation (3.35) as defining a Virasoro algebra of zero central
charge. This algebra plays a central role in soliton theory [83] and conformal
field theory [13]. It was introduced by M. A. Virasoro in [97]. It can obtained by
first considering the complexification of the algebra of vector fields of the circle
and then looking into its central extensions.

Now, a (complex) vector field of ' can be thought of as

d
— k+1
A= Ek a2 (3.36)

Thus, it is natural to think of the vector fields of the circle as generated by

d fes]
{ W gD } : (3.37)

dz o

A simple computation gives
[Vk’ Vm] =(m - k)Viym .

Gelfand and Fuchs characterized the central extensions of the algebra of vector
fields of the circle. They turn out to be parametrized by a value ¢, called the
charge. For each ¢ one has a central extension of V. It is generated by the
elements V}, above and a central element 1 so that

[Vi, Vil = (m = B) Vi + T8 s(6 = ).

Back to the master symmetries of KdV, we now prove equation (3.35).
We begin by noting that the vanishing of the torsion of N, yields

’CNux(Nu) = NuEX(Nu) (338)
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and hence
Ly (M) = NELx (M) . (3.39)
Indeed, from the vanishing of the torsion and by Leibniz rule
0 = [NX,NY] — Ny[N X, ¥] — N [X, N, Y] + N2[X, Y]

= LN, x(NGY) = NuLpy o (¥) = NuLx(NoY) + NELx (V)

= (L x(Nu) = NuLy(NL))Y
Now, we compute

mml = Lg(Ny70)

= L, + NLL, (o)
= Ly (MmN aTu(g )
= Ly, (N7 = Ny Loy (N)70 ~ N Ly 70

= £Ni'ro(N:")Tﬂ - Nu‘c‘m( )
From equations (3.39) and (3.34) we get

[Tj’ﬁ] = N-:j;LTu (NL)TO - NL'CTO(N{I.)TO
= (N{INL — NLiND )7
= (E - )T_.,.H
The first two nonlinear master symmetry ficlds constructed above are given by
n(u) = —g(um — Butty) — Qg + up0; u + du?

g(uh — 10uus, — 18Uty + 24u%u,) - Stgr — 1z, 07 'u

sy — 15u2 + u(4ud] u + 28, 'y () + 160> .

7a(2e)

Exercise 3.21 (Messy!) Prove equation (3.35) for 0 < 1,7 < 2 directly.

We now describe explicitly how the master symmetry vector fields are con-
nected to the KdV fows. To do this we first compute the commutator of X
and 7, which gives

1
[X[),Tg] = —'2-X0 . (3.40)
Thus, by repeating the argument given above for [r;, ;] we find that

[Ximl = Ly (Ny7o) (3.41)

= Ly XO(N;)T[. +N! LN (70 ) (3.42)

= NI Ly (N4 )70 — NE £ INDY X — NEH L (X) (3.43)

= —NLL(ND)Xo — NYI L, (Xo) (3.44)

= NXy - N (3.45)

= (—j- %)XHJ' . (3.46)
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In going from equation (3.44) to (3.45) we used equations (3.34) and (3.40). The
conclusion from equation (3.46) is that the master symmetry fields can be used
to generate, via commutators, the fields in the KdV hierarchy. We summarize
the results thus far in the following:

Theorem 3.22 The hierarchies { X}, and {73132 satisfy

[XJ':Xk] =0,

[r5:m) = (0= N7ja s
and 1
(Xjm] = -(F + )X -

A Few Technical Remarks

We end this section with a few remarks about the linear manifold I of functions
under consideration. ‘ '

The goal of the next sections is to produce integral curves of the KdV flows
and of the master symmetry hierarchy starting from certain potentials of the
form ¢/z? and then applying the Darboux method. We will see that the method
produces a sequence of functions that are at worst rational in z'/? and logz.
We choose a branch of the logarithm with a cut coinciding with the positive real
azis. Hence, for our purposes, it will be convenient to take the manifold Z{ to
be a space of functions u(z) satisfying the following two properties:

1. The function u(z) is holomorphic in an open sector S containing an un-
bounded subinterval of the negative real axis. (The sector S depends on
the function u.)

2. The asymptotic behavior of u{z), as = — oo, is
- o2 s
u(z) =0(3) 2 €S,

In this context the symbol 8;! becomes
6;% = [ w(s)ds,
o0
where the path of integration connecting co to z lies in 5.

Exercise 3.23 Given u € U, show that u, = O(1/3*) and 87'u = O(1/x) for
T in any sub-sector whose rays are in the interior of S. See [98].

We close by remarking that the vector fields 7; are well defined in the space
U, since {l{) C U and N, () C .
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3.4 Darboux Method

In this section we review the background on classical Darboux transformations.
For second order operators, they were used by G. Darboux in connection with
problems in differential geometry [30]. For instances where the method plays a
role we refer the reader to [22, 29, 32, 33, 60, 61, 110] and references therein.
Suppose we know how to factor an operator L as the product of two oper-
ators P and @
L=PQ. (3.47)

Let’s consider now the operator

L=QP. (3.48)
Obviously, we have that () intertwines L and Lie,

IQ=QrL.

Hence, if 1 is an cigenfunction of L, not in the kernel of @, it follows that
% Q4 is also an eigenfunction of L.

Exercise 3.24 If we take L = —8% +u and impose that P and @ are first order
operators of the form P = -8, — s and Q@ = 8; — v, show that L = PQ implies
that s = v and that v satisfics the Riccati equation

v+ v =u. (3.49)

As a particular case, we consider the second order differential operator
L=-8+u,

which was the case studied by Darboux. Let’s assume we know a solution of
L¢ = 0. Then, we can factorize L as

L=(-08; —v){0; —v), (3.50)

by taking v = &; log(¢). Indeed, the necessary and sufficient condition for one
to be able to write L in the form {3.50) is that v satisfies (3.49). The solutions of
the Riccati equation (3.49) are given by v = 3, log{¢}, where ¢ is in the kernel
of L.

We remark in passing that (3.49) defines the now celebrated Miura trans-
formation, which relates the KdV equation to the modified KdV one.

The new potential is given by

T=u—2uy. (3.51)

As a consequence of the previous line of reasoning it follows that
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is a solution of

whernever 3 satisfies Lty = Ag.
At this point it is natural to ask how general are the operators obtained by
Darboux transformations. '

Proposition 3.25 Let L and L be n-th order differential operators. Then, the
most general monic first order differential operator Q@ such that

IQ=QL,

s of the form
Q=08;— (logd)s , (3.52)

where ¢ C ker(L — M) and Xy is an arbitrary consiant.

Proof: Since () is first order, we can look at its kernel as span{¢} where
¢ # 0. We can also write Q@ = 8, — (log ¢),. The fact that ker Q) is invariant by
the linear operator L implies that there exists Ag such that L¢ = Moo Q. E. D.

In the case of the Schrédinger operator, the above result implies the follow-

ing:

Corollary 3.26 Let L = —0% +u and L = -2 + @&. The most general monic
first order differential operator intertwining L and L in the sense that LQ = QL
is of the form Q@ = 8, — v, where v satisfies

vl =u+Ay, (3.53)

Jor some constant Ay, Furthermore, in this case, the potential T is given by
equation (3.51).

The two previous resulis give necessary conditions for a monic first order
operator @ to intertwine L and L. It is easy to see that if ¢ € ker(L — Apl) then
we can define § by equation (3.52) and factorize L — I as L — A = PQ.
Then, by defining L — Al = QP we get that LG = QL. As a particular case
we have:

Proposition 3.27 Suppose that v satisfies the Riccali equation (8.58). If we

define f_: = —82 + & with © as in equation (3.51), then Q = 8, — v intertwines
L and L.

Iterating Darboux Transformations

The goal now of is to describe the potentials u, obtained by n successive appli-
cations of the Darboux transformations to
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Ly = —ai + Uy, (3.54)

where vy is a given starting point. Typically we will be thinking of 1o as 0 or as
g = (1% — 1/4)/2® and I € Z3p. As we shall see, each Darboux transformation
introduces a new complex parameter in the resulting potential. By introducing
such parameters in a suitable way we shall construct an n-dimensional complex
manifold M, given by

M, d:Ef {'U-'rn('; to, )tu—l)l(tﬂs T stn—l) € @ﬂ} :

The choice of uy = 0 yickds the Adler-Moser potentials.
On the other hand, if one starts with

2-1/4

Up = 2 H

T
one obtains a sequence of rational potentials only up to a certain number of
Darboux transformations and with specific choices of the parameter. In this
case one obtains a class of rational potentials that are not rational solutions
of KdV. However, they do possess the bispectral property. These potentials
appeared for the first time in the work of Duistermaat and Griinbaum [33] in
connection with the bispectral problem.
Let A denote the first-order differential operator

A = aI -1 (3.55)
and Al its formal adjoint
A=, v (3.56)
If we take
v=x/x, (3.57)

where x is a solution of
Lx = (-0 +u)x=0,

then

L=Al4, (3.58)

We start from Iy as in equation (3.54), and xp a nonzero element in ker Lq.
This gives a factorization
Ly = A4,

with Ag, A} and v as in equations (3.55), (3.56), and (3.57). Take
L% 4,AL
A simple computation shows that Ly == —&2 + u;, with

Uy = Ug — 235 IOgXQ .
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Suppose we have found pairs (xo, Lo), -, (Xn—2. L,_5) such that

Lj=Ald; foro<j<n-—2, (3.59)

and
Li=A; 1AL for0<j<n-—-1, (3.60)

We take x,_1 € ker L,_1\{0}, set

Apr ¥ O —vpy (3.61)
vt /X (3.62)

and
L, %A, 4 . (3.63)

Notice that our choice of x,—; € kerI,_; gives L., = Al A._1. We can
illustrate this process via the following diagram:
Lo = xe = A

v

Ll—}X1—+A1

4

Ln—z = Xn—2 —% An—2

v

L1 = Xn1 = Anr
We define a sequence of operators {U/,,}22, as follows:
Up=1

and, for n > 0,
def

= Ap Uncy . (3.64)
The operator L, is related to Ly by means of U,

LoUy = UnLg . (3.65)

5o, U, intertwines the operators L, and Ly, We remark that this formalism fol-
lows very closely that of [3], which starts from —82 and generates the potentials
in the manifold of rational solutions of KdV.

The attentive reader might have noticed that the previous construction of
L, is not complete if we do not have a mechanism for generating the elements
in the kernel of L,_;. Fortunately, such mechanism is given by the formula

LB
Xn-2 Xn-2

Xn-1=

[ e steds, (3.66)
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2ud Darbonx

1sr Darboux

Fig. 3.5. Darboux’s method depicted, introducing one parameter on the first iter-
ation and another one on the second. Notice after the first iteration we have a one
dimensional manifold and after the second we get a two dimensional one.

where
Xn—2 < ker Ln-—Z ,
and a, # € €. The proof of this is clementary. Indeed, from L,_) = A oAl

it follows that 1/xy..2 € ker L,_1. Equation (3.66) is just the requirement that
the Wronskian of ¥, and 1/x,-2 be a constant.

Since )
Uy = 0=t (3.67)
Xn-1
and
Up =02, — 0l 1, (3.68)

it follows that each step of the Darboux method introduces a new parameter,
which is essentially the ratio 8/ in equation (3.66). In Figure 3.5 we depict
this process of introducing extra parameters in the potential through Darboux
transformations. In the forthcoming construction, instead of using (3.66) we
shall actually exhibit elements in the kernel of L,_,.

A Few Facts

Let Ul denote the formal adjoint. of the operator U, defined in (3.64). Then, we
have the following elementary fact

Lemma 3.28 Forn > 0,
L =UlU, (3.69)

and

LP = U,Ut (3.70)

Proof: We first prove (3.70) by induction. Suppose that
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L =UuaUl,,
then

Ly = (An—lAL—l) e (An—lAL—l)
' Anﬁl(AI;—lAnkl) e (Azz—lAﬂ—l)An—l
Aﬂ—lUﬂ—lU;—lAl—l

Ul

To prove (3.69), equation (3.65) implies that LU, = UnLg, and hence
UnUlUn = U,L}. But since U, is a monic differential operator and the can-
cellation law holds for such operators [60], it follows that UlU, = Lg. Q. E. D.

Lemma 3.28 implies that the process of applying n Darboux transformations
leads to a factorization of L}. It also implies that ker U, C ker LE. From equation
(3.65) it follows that ker U, is invariant by Ly, and in fact is nilpotent of degree
less than n in this space,

The intertwining operator U, of equation (3.64) is monic and therefore can
be written as [60]

I

_ Wr[‘nala Tty Py (P]

Upp = — 2~ 2 rmrl 3.71

¢ Wr[‘Pl: tTy (Pn] ( )

where span{y,-- -, oa} = ker U, and Wr denctes the Wronskian determinant.
If we compare both sides of the equation L,U, = U, L, we obtain that

Un = Uy — 202 log W, , {3.72)

where W,, = Wi[p,,- -+, ¢,]. Here, @; € ker U, C ker L?.

The next two subsections deal with the particularization of the the Darboux
method to two situations that are directly relevant to the bispectral problem.
The first one turns out to be in direct connection with the rational solutions of
the KdV hierarchy. The link of the second one with the KdV hierarchy became
more transparent in [110].

The Adler-Moser Polynomials

If one iterates the Darboux process starting from g = 0 one obtains from the
results of the previous section that u,, = —282 log W,,. The polynomial W,, after
a suitable choice of parameters and normalization, is nothing more than the n-
th Adler-Moser polynomial. We shall now describe a few more results from {3]
about this remarkable family of polynomials. The first remark is that the choice
of parameters in the sequence of Darboux transformations can be made so that

Uy = —20° log 9n(x -+ £1, 83, ooy Ean1)
satisfies the flows of the KdV hierarchy, i.c.,
Btkun = Xk[’un] .

The sequence 9, satisfies the following properties:
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1. The recursion relation
011 — Ty Onr = (20 4+ 1)02 . (3.73)

2. As a polynomial in z, ¥, is monic and of degree 4, = 1’-51‘2*—1)-

3. The operator L, = —8% + u,, can be factored as
L,=AlA,, (3.74)
where
Ay =0y — vy (3.75)
Uy = O log ¢y (3.76)
and
19?1-1—1

Exercise 3.28 The Adler-Moser polynomials satisfy

Ve 9 V0
LY o¥iVin gy 3.78
Yy U5 905 (3.78)

The Even Family

We conclude this section by particularizing to the case

I 1/4
3;2

Up = .
They were first studied in connection with the bispectral problem by Duister-
maat and Griinbaum. In this case, it turns out that only suitable Darboux
transformations give rational functions. They are, however, even functions of z.

The main goal is to give part of the argument leading to the following result:

Proposition 3.30 The potential u, cbiained by applying n Darbouz transfor-
mations to ug, using al each step o dominant solution can be written for any
n>1as

2—-1/4

-2

T

— 202 log W, (3.79)
with
W, = WI'[‘I,I’)["; + tu".")(}F, T Tp;—l + tow:—l ++ tn—l’d)[-}*-] ; (380)

where the functions ¥F are polynomials in z'/* and log(z). Furthermore, the
asymptotic behavior of v, at & = oo, in o sector of angle smaller than 2m near
to infinity, is u, = O(1/2?).
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We start by exhibiting sequences {47 }iZ} of functions satisfying

Lu"f{»:ft = ";b;'t—l (3.81)
with
Y = g2 cher L, .

For § < I, the trick lies in noticing that®

Lopitiie — (27 £1)% - lz]zz(jul)im/z .

We define ;¥ = 1 and
1
.- 3
ui = ey i (3.82)

for 1 < j <1- 1. Thus, we have that
'l,l’);l: l.j_Ef u.;;'.l:$2j:|:l+1/2 , (3.83)

satisfies equation (3.81) for <! — 1. To extend this for j > { we have to look
at the “+” and the “—" cases separately. In the “+” case, equations (3.82) and
(3.83) can be used to define ¥} for every j > 1. To extend the definition of 7,
for j > 1, firstly we define ; and f; recursively by setting g = i, /(—20),
Bo=0,and fori > 1:

-1
a; = ma’i—l
_ -1 : {1+ 29)
b = 4z'(l+i)'6’_l 2i(l 1)

Secondly, we take, for ¢ > 0,
"4")1_+i def aia:”?""'”z log = + ﬂi$1+2i+1/2 .

It is easy to check that
LDTJ’::-;' = w;‘-i—l . (3-84)

Using equations (3.81) and (3.84), it is straightforward to show that {4 }7)
is a basis for ker L7.

3.5 Painlevé Property

The problem of constructing, at least theoretically, solutions to systems of equa-
tions of the form

y™ = F(z,yO, ... ,y™ ") (3.85)

3This remark is due to P. Wright [102]
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with F an analytic function far from a singularity is settled by Cauchy’s Method
of Majorants [60]. If ¥ is linear on (y'?,...,y™1), then the solutions to the
Cauchy problem with initial data

y(20) =m0
(3.86)

YD (zg) = e

can be extended in a radius as big as the distance from 2, to the closest singular-
ity of F(z,4°...,5™ V) independently of what the initial data (7o, ..., 1)
However, the picture changes dramatically in the nonlinear case. Even extremely
simple equations such as

Y =y (3.87)

have singularities depending on the initial data. Indeed, its general solution is
given by

1
'y(Z) '* z4c 3
where ¢ = 55! — 2 and 1 € €. Obviously, the singularities develop at 2 = —¢

Definition 3.31 A singularity of family of solution y(z,z) of the system of
equations (3.85) with initial date (3.86) is called movable if its location depends
on the initial value (¥(20) = Mo, . .- Y(2n-1) = M-1)-

Example 3.32 The singularities of the equation

dy z
N__ =z 3.88
are movable.

Given the fact that for nonlinear equations on the complex domain, movable
singularities are a fact of life, it is natural to ask:

Which equations have only the nicest singularities? i.e.. Which ones have
only singularities that are of the form of poles (and not weirder things as essen-
tial singularities or branch cuts)?

This theme was an important one in the end of last century, when a great
deal of research about it was developed. For a comprehensive set of references see
the masterpiece [60]. Unfortunately, a lot of it was almost forgotten. Among the
contributors to the field, the name of Painlevé stands out in his characterization
of second order equations whose movable singularities are only poles. This leads
to the definition:

Definition 3.33 An analytic ODE of the form (3.85) is said to possess the
Painlevé property if the only movable singularities of its solutions are poles
(and not branch cuts or essential singularities).



3.5 Painlevé Property 47

Example 3.34 Equation (3.87) obviously has the Painlevé property, whereas
equation (3.88) does not.

Painlevé (See [85, 60] and references therein) studied second order equations
that possess the above property of the form

¥ =F(z,u,y),

where F is rational in ¥ and ¢ and analytic in z. His result was a long list
of equations, most of them transformable to equations which are integrable in
terms of “known” functions. However for six of those equations this was not the
case, they form the so called Painlevé transcendents.

The theory of integrable systems saw a revival of the interest on this subject
due to the fact that self-similarity solutions of completely integrable partial
differential equations led to Painlevé equations.

Example 3.35 Take the modified-KdV equation

v = 6020, — gy . (3.89)
Search for a solution of the form
1 T
'U(ZB, t} = WW(W) . (3.90)
Then, w must satisfy
W, =20+ 2w+ {(3.91)

where « is an integration constant. Equation 3.91 is exactly the second Painlevé
transcendent, as can be found for example on page 345 of (60].

A vast amount of experimental evidence suggested a strong correlation
between complete integrability of a certain PDEs and the Painlevé property
of its self-similar reductions. In fact, many interesting results were proved by
Ablowitz, Fokas, and collaborators. See [100] and references therein. The need
then arose to a generalization of the notion of the Painlevé property that would
be suvited to PDEs.

The effort to understand the link between completely integrable systems and
the Painlevé property led Weiss, Tabor, and Carnevale to propose a definition
that would be independent of the reduction considered.

Now, in several dimensions, singularities of analytic functions are deter-
mined by (complex) hypersurfaces defined by equations of the form

M¢={(x0!"‘:$ﬂ) | ¢($0:$l:“-:$n) =O} » (392)

where 0 is a regular value of ¢. See [84].

In analogy with the ODE case, Weiss et al requested that the solutions with
singularities along the surface My be single valued, More precisely, they asked
that solutions with singularities along (3.92) to have the form
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acZ (3.93)

U = ¢* T2y Und®
Uy analytic.

Definition 3.36 A PDE is said to possess the Painlevé property if for every
reqular hypersurface My defined by (3.92) and for every w with singularities on
My, the solution u is of the form (3.93}.

Example 3.37 Burgers' equation
Uy +UU; = ol . (3'94)

Indeed, following [100], if one imposes « to be of the form
o0
U=¢"> Usd*, {3.95)
k=0

with ¢, U; analytic near M = {(¢,2)|4(¢, ) = 0}, then matching the asymptotic
behavior of the leading order term gives o = —1.

Exercise 3.38 Show that the coefficients U; in this case satisfy the recursion
relution

J
Uimag+ (G —2Usm1de + Y. Ujmm[Un-1,2 + (m — 1)@ U]

m=0

= 0{Ujozes + 200 — DVjmrade + (1 — DUjmadee + (G~ 1) — 2)Uj¢3] -
Conclude that one has the recursion relation for j =0,1,2...
o¢ii =2 +1)U; = R,
where B; depends on ¢, Uy for k < j and their derivatives.
The multidimensional sine-Gordon equation was studied in [99], and 1t was

pointed out the need of restricting the singular manifold only to certain families.
This led to the following notion of relative Painlevé property:

Definition 3.39 A PDE is said to possess the Painlevé property w.r.l. a certain
family M of hypersurfaces if VM € M and every u with singularities in M, the
solution is single valued of the form (3.93).

Recall that in the case of a hyperbolic equation, the singularities are trans-
mitted along characteristic manifolds, which in this case are of the form

Iz, €)=0.

At the light of the definition of the relative Painlevé property one can restate
Hadamard’s criterion {Theorem 2.11} in the form of the following result:
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Theorem 3.40 A hyperbolic operator L satisfies o strict Huygens’ principle iff
its edjoint LT possesses a Painlevé property relative to the family of character-
istic conoids.






4. Bispectrality

In this chapter we discuss in more detail the bispectral problem, which was ini-
tially posed by A. Griinbaum. We start with a little bit of motivation, although
much more could be said about it. For the early history see [40, 41, 43, 45, 46).

4.1 Motivation to Bispectrality: Band and Time
Limiting

The analysis of the reconstruction problem in limited angle tomography leads
to the analysis of certain integral operators. To obtain information about the
accuracy in the reconstruction it is necessary to obtain the eigenvalues, and
in some cases also the eigenfunctions, of such operators. Even numerically such
problems could become intractable due to the size of the (full) matrices involved.
It turns out, however, that in some cases it is possible to find a differential
operator of simple spectrum with such the original operator. In this case, one
is capable of using sparse matrix techniques to handle the eigenvalue problem
of the discretized problem. For an account of the tomographic problem see
[44, 42, 31).

To illustrate the point of the previous paragraph, we shall discuss a beautiful
analysis developed in a series of papers by Slepian and collaborators[95, 92,
93, 94] The motivation comes from Communications Theory, which was the
underlying application Slepian et al had in mind [94].

Communications Theory uses as 2 main tool the Fourier transform. Given
a signal g(t) € L*(IR) its Fourier transform is given by!

§(w) = Flgl(w) & \/% fm g(t)e™* d .

The physical interpretation of |§(w)|* being the density of energy at the
{(angular) frequency w.

When signals are transmitted along physical channels, even under fairly
ideal situations, they are forced into some kind of band limiting. Let's sup-
pose that the channel does not allow frequencies above the frequency (2. This
amounts to a multiplication by the characteristic function X[-1,0) of the interval
[—42,02).

1This integral being taken in the sense of an L? limit,
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It turns out that such signals are also limited by a finite duration. This
amounts for a multiplication by a characteristic function of the interval [T, TY.
Hence, it is a natural question to ask how good is the reproduction after the
following process:

9 Xraid = Flx-rmg) = x-eaFxi-rngl - (4.1)

The corresponding integral operator is given {modulo a multiplicative con-
stant) by

T i -
oy = { O AL, o

The problem of analyzing the quality of the reconstruction of the signal then
boils down to studying the singular value decomposition of 4, i.e., studying the
eigenvalues and eigenvectors of the operator A*A.

Exercise 4.1 Show that

T sin 2(t—s s -
(A*Ag) (t)={ 0 gls)ds iéhf’[ﬂﬂ,ﬂ (4.2)

and that T A*A defines o compact self-adjoint operator on L*(IR).

We remark that numerically the problem of computing the eigenvalues of
T % A*A is not a trivial one, since this operator when discretized gives a full
matrix.

At this point a “miracle” occurs. Slepian, Landau, and Pollak found a dif-
ferential operator L, with simple spectrum, that commutes with T. Hence one
can compute the eigenfunctions (and eigenvalues) of T by computing the cor-
responding eigenfunction of L. More specifically, the differential operator

. d N 2.2
L.gl—)dt((T t)dtg) t°g .
has the property that
L, Tj=0.

Furthermore, L has simple spectrum.

Exercise 4.2 Show that if an operator |. with simple point spectrum at A # 0
commutes with T, then it shares the A-eigenspace with T.

In the references [92, 93] different extensions of this were found in the case
of discretizations of time and frequency.

Obviously, the above situation is quite exceptional. However, its conse-
quences in communications theory were interesting enough to justify the ques-
tion of what are the most general kernel one can have with the “commuting
property.”
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Griinbaum studied several instances where generalized Fourier transforma-
tions yielded the commuting property.?
For instance, take the familiar harmonic oscilator operator of quantum me-

chanics )

— d 2
H= d_.’l,‘z'-l-m .

It leads to a decomposition of LZ2(IR} in terms of products of Hermite polynomi-
als by exp(—%%/2). More precisely, we recall that the k-th Hermite polynomial
given by

o2 df

Hy(z) & (_I)ke dz*

e k=0,1,2,...,

and
he 2 Hi(z)e =12 |

The function hy, satisfies,
Hhy = (Zk + l)hk .

For such results, a good reference is [70].

Exercise 4.3 Show that the Hermite polynomials satisfy the three-term recur-
sion relation

Hopi(z) ~ 2zHy(z) + 2nHy1{z) =0, n=1,2... (4.3)

The Fourier analysis corresponds, in this case, to decomposing the given
function in the basis of L*(IR) formed by the orthonormal set {h4};”,. So we
would write an arbitrary function g € L(R} as

o0
ag= Z bkhk .
k=0

As before, the physical interpretation of |b|? is that of the energy at level
k. In this case the “frequency” space is discrete.

The analog of the kernel sin{£2(z — y))/(z — ¥), which appeared in equa-
tion (4.2), is given by the kerncl '

hiz, ) €Y hie(2)haly) -

k=0

F.A. Griinbaum has shown the following result:

Theorem 4.4 (F.A. Grinbaum [{6]} For every N there ezists a differential
operator commuting with the integral operafor with kernel h(z,y).

For every T there exists a tridiagonal matriz (with simple spectrum) com-
muting with the matriz

2We substitute the usage of ¢ for z from now on to conform with the standard practice.
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(Gij(T))lgg,jSN ;
where Gi(T) = [, hil€)h;(£)dE.

The proof of this result (though not given here) turns out to be related to
the fact that the Hermite polynomials satisfy a three-lerm recursion relation.
Criinbaum also verified that the above mentioned property of commutativity is
true whenever one works with one of the so called classical orthogonal polyno-
mials. (Jacobi, Laguerre, Bessel, Hahn, etc.) See [46] and references therein.

In conclusion, the instances where the “commuting property” held were
associated to the fact the family of eigenfunctions satisfied both an eigenvalue
problem of the form

Liz)p = Mg,

and another one of the form
B\ = B(a)p -

Here, L and B are either differential operators or difference operators, depending
on whether we are in a continuous-continuous situation (s.a. the classical Fourier
transform mentioned first}, or a coutinuous-discrete situation, like the situation
discussed in Theorem 4.4.

The simplest case seems to be the continuous-continuous one. In fact, it
is the best understood so far. From now on we shall concentrate in it. The
reader interested in the discrete cases should consult the recent work [47] and
references therein.

In the continuous case, the bispectral problem could be rephrased as follows:

Problem Find all instances of differential operators L{z,d;) such that there
exists a family of eigenfunctions ¢(z, A) satisfying simullaneously the equation

L{z,8;)p=Aeg .
and a differential equation in the spectral parameter of the form

B}, 8x)p = Olz}p .

It is crucial that one normalizes the operators somehow. Otherwise, one
could produce repetitious classes of bispectral operators just by multiplying the
above examples, say, by functions of z alone.

This could be done for example, requiring that the differential operator
L be constant and its second highest coefficient vanish. This could always be
accomplished by Liouville's change of variables. If we are dealing with second
order operators the final result is an operator in Schrédinger’s form:

L=-8+u=).
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Definition 4.5 Let L(x, ;) and B(z,8y) be differential operators of positive
order and O(z) a smooth function independent of k. The triple (L, B,©) is
called bispectral if there exists a family {p(z, k)} such that

Lo= Ak, - (4.4)
for some non-constant smooth function A(k) and

Be = 0{z)p . (4.5)

A few examples are in order.

Example 4.6 The simplest one is given by
oz, k) = exp(ikz) .
In this case one obviously has
—o=Kp.
and a similar equation swapping the roles of = and k.

This example, is a particular case of a more general one given by the next
example.

Example 4.7 Take f(z) a solution of Bessel’s equation
[
fzz + ;f = f ]

and set
oz, k) = flzk) .
Then, obviously ¢ is bispectral.

Yet another trivial example is supplied by taking f{z) a solution of Airy’s
equation
fzz = Zf )
and taking
gp(:t:,k) = f($+k) .

So far all the above examples are rather trivial and mathematically unin-
teresting since they were obtained by means of switching the roles of x and .
One of the first miracles in the bispectral problem is that besides the potentials
described in the above trivial examples, one also has the rational solutions of
KdvV, ie, if u(z) = —282 log 9,(z), then u is bispectral.

The maximal dimension of the space of common eigenfunctions of equations
(4.4) and (4.5) is called the rank of the bispectral triple (L, B, @). All the above
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examples led to rank 2 triples. It was shown in [33] that generic KdV potentials
have rank 1.

We close this seckion with a lemma that played a crucial role in the work
of [33]. We recall the definition of the ad-operator from Lie Algebra theory.

ad (M) € [L, M] .

Lemma 4.8 (Duistermaat-Grinbaum(33]) If (L, B, O) is a bispectral triple with
B{k,8y) o differential operator of order m then

(ad Y™ @ =0.

The proof of this result is a direct consequence of the fact that the compat-
ibility condition of (4.4) and (4.5) is given by

[Z,8]p = [, Ble .

Hence, . ) _
(adz ) (@)p = (1Y (adrY (Bw . (4.6)

Without loss of generality, we can assume that we have performed a change of
variables so that B = B(\,#). In this case, the order of the an operator in the
variable A decreases by one each time one performs the operation ad,. Since
B(),8,) is of order m, when j = m + 1 the RHS of equation (4.6} vanishes.
Since, (ady)™"" @ is a differential operator independent of A the result follows.
Q. E. D.

Exercise 4.9 Let’s consider the symbol of the operator B(A,8), i.e., the poly-
nomial

B(X, €) = bp(NE™ + ...+ b (N)E° .
Show that the operator on the LHS of equation (4.6) is given by
k21

(0P (B) = 55|, BOLE).-

Conclude from the previous exercise that if L is bispectral then (at least
formally) it satisfies a generalized string equation, i.e., an equation of the form

(L, P] = f(L), (4.7)

wiere P = (ad;)™ (), and f(-} is proportional to b{-}.
Using Lemma 4.8 it can be shown that if u(z) is bispectral, then it must be
a rational function of x.

3The author is indebted to M. Pedroni and ‘T. Shiota for a nice discussion leading to this
remark.



4.2 The Results of Duistermaat and Griinbaum a7
4.2 The Results of Duistermaat and Griinbaum

In this section we focus on the bispectral problem for Schrdinger operators.
We write one of these operators as

L=-8+u. (4.8)

We shall say that u(z) is a bispectral potential if the operator L of equation
(4.8) is bispectral.

Our first goal in this section is to report the full description of the class
of bispectral Schrédinger operators. It was first given in [33] with the help of
Darboux transfermations, which were described in Section 3.4. Before we discuss
this description we should make two remarks.

"The first remark concerns the fact that one can show that the bispectral po-
tentials are necessarily rational functions of 2. This results comes as a byproduct
of a detailed analysis of the coefficients of the operator in Lemma 4.8. See [33]
for details.

The second remark concerns the trivial symmetries possessed by the class
of bispectral potentials.

o Translations in z, i.e., transformations of the form
u(z) » u(z+c},
where ¢ is a constant.

» Scaling in the variable x, i.e., transformations on the variable = of the
form

T er,

which induces the transformation in u of the form
u(z) — %ulez) .
¢ Addition of a constant to the potential
u(z) - w(z) +¢.
We are now ready to state the main result in [33].

Theorem 4.10 (Duistermaat end Grinbaum [33]) Modulo the triviel symme-
iries mentioned above, the bispectral potentials are

u(z) ==z, (4.9)

or
u(z) = — | (4.10)
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Fig.4.1. Flows of the KdV hierarchy tangent to the rank one bispectral potentials.

or those obtained from u{z) =0 or from

u(z) = ~ 1 (4.11)

by means of finitely many rational Darbouz transformations.

The proof of this result is fairly technical, and goes beyond the scope of the
present work. We refer the reader to [33] for the original proof. For more recent
approaches and extensions see [107, 101].

As stated above the most interesting classes of bispectral potentials are not
explicit. They are exactly the ones obtained by applying Darboux transforma-
tions. We shall now make a few comments about these.

The first class of nontrivial bispectral potentials is exactly the rational so-
lutions of the KdV hierarchy. Indeed, they are obtained by applying Darboux
transformations to % = 0 and because of the results of Section 3.4 they are
composed of potentials of the form

uw=—282log ¥, ,

where 9, is the n-th Adler-Moser potential.

From a geometric viewpoint, they are integral surfaces of the first n flows of
the KdV hierarchy, and stationary solutions of all the higher order ones. See Fig-
ure 4.1. They have in their closure potentials of the form given in equation (4.10)
with ¢ = v(v = 1) where v € Z»,. However, except for lower dimensional sets
in the space of parameters, they are not of the form {4.10}. For this reason the
potentials in this class are called the KdV family.

From the point of view of bispectral operators, the potentials in the KdV
family can be singled out by the fact that they are generically of rank 1, in fact
except for the situations when they degenerate into Bessel potentials, they have
rank 1. The proof can be found in [33]. One could then say that the bispectral
property is preserved by the KdV flows when we restrict ourselves to rank 1
bispectral potentials.

Oun the other hand, the potentials in the orbit of rational Darboux transfor-
mations issued from ug as in equation (4.11) is much more mysterious. As we
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Fig.4.2. Flows of the KdV hierarchy transversal to the rank 2 bispectral potentials.

mentioned before they were found in connection with the bispectral problem in
[33).

They turn out to be always of rank two and even in z. Because of the latter
property they are called the even family.

Potentials in the even family do not remain rational by the flows of KdV
hierarchy. Hence, the I{dV hierarchy does not preserve bispectrality in this
context. See Figure 4.2, The following question, first pesed by F. A. Griinbaum,
becomes natural:

Problem 4.11 Is there any interesting hierarchy of nonlinear evolution equa-
tions whose inlegral curves are the even-family bispectral potentials?

The answer to this problem appeared in our joint work with F. Magri[110],
which is described in the next section.

4.3 Virasoro Flows and Bispectral Potentials

The subject of the present section is the relationship between the family of
master symmetries for the KdV hierarchy and the bispectral problem. In Sec-
tion 3.3, using the Nijenhuis tensor N,, we constructed the hierarchy of vector
fields

5 YNy (4.12)

where

1
To(u) = U + 1.

We showed that this hierarchy satisfies a Virasoro type relation, and therefore
it is natural to also call it the (non-negative) Virasoro hierarchy.

It turns out that the vector field 7y is clearly playing a role in the bispectral
problem.



60 4. Bigpectrality

X\ /X

& &

Fig-4.3. On the left: one of the even family manifolds, with the KdV flows transver-
sal. On the right: one of the XdV family manifolds, with the KdV flows in the tangent
space. In both cases the Virasoro flows are tangential.

Exercise 4.12 Show that the infinitesimal generator of the group of symmetries
of scaling transformations is proportional to 7o(u).

What is not at all evident is that the full hierarchy {7;};2, plays a crucial
role in the bispectral problem.
The following result answers the question posed in Problem 4.11

Theorem 4.13 [110] The flows of the master symmetry hierarchy {7;} ., ore
tangent to the even-fomily bispectral potentiols.

In fact, it follows as a corollary of the proof presented in [110] that all the
bispectral potentials decaying at infinity. We shall not repeat the proof of this
result here. The interested reader can find it in [110].

In conclusion one can interpret the above result by saying that the bispec-
tral potentials (decaying at infinity) are organized into nice finite dimensional
manifolds which are invariant by the scaling vector field 7y and the translation
one Xg. The iterates of the Nijenhuis tensor N, applied to 7y yields a family of
tangent vectors to these manifolds. On the other hand, the iterates of N,, to Xj
are tangent to the bispectral manifold only in the case of the KdV family. See
Figure 4.3.
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5.1 Rational Solutions of KdV are Huygens’ Potentials

In this section we describe the family of examples constructed by Lagnese and
Stellmacher of strict Huygens’s operators that are not trivially equivalent to
wave operators. We shall not give all the proofs of their results, since their works
are readily available, and very readable. Instead, we shall give a few proofs based
on a point of view developed in very recent works by Yu. Yu. Berest [20]. We
believe that the approach put forward in the latter is very promising,
The simplest example of the family of examples discovered by Lagnese and
Steillmacher looks like
L=0+ u(xn} s (5.1)

where the potential u belongs to the class of rational potentials that remain
rational by the flows of the KdV hierarchy and O is the D'Alembertian operator
in a suitable number of odd spatial dimension.

More precisely, « is a potential of the form

w (o) = 267 log V(o) , (5.2)

where . is the £-th Adler-Moser polynomial. The Adler-Moser polynomials are
defined (Section 3) by the relations

dy
1?1 = X
VesrPro1 = ook = (2 4+ 1)

The key step in the construction of such families of potentials was the
Darboux method, which we described in Chapter 3. We emphasize, that in the
context of wave operators the variable zy is the time variable. In fact, Lagnese
and Stellmacher’s construction also allows for more general potentials, that are
a sum of Adler and Moser polynomials in the other spatial variables. Recently
Berest and Winternitz generalized this result even further [19].

The main goal of this section is to give a general idea of the proof of the next
result. Although the proof herein is not self-contained we hope to give a flavor
of the main ideas behind it and to entice the reader to look into the literature.
We recommend special attention to the elegant results of [20], from where most
of the ideas in the present exposition have been transcribed.
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Theorem 5.1 (Lagnese and Stelmacher (68]) Let 9, be the k-th Adler-Moser
polynomial end v, as in equation (5.2). If the number n of spatial dimensions
is odd and n > 3 + 2k, then, the operator

L£=0+u(zo) , (5.3)
is a strict Huygens operator.
Furthermore, Lagnese has shown that

Theorem 5.2 (Lagnese [66]) If L is a strict Huygens operator of the form (5.1),
and u(xp) is an analytic potential, then 8% +-u is obtainable from 32, by sequence
of rationel Darbouz transformations.

In other words, the Huygens potential u of Theorem 5.2 is typically of the
form (5.2).

The proof of Theorem 5.1, given by Berest[20], hinges upon the intreduction
of a “quantum” (or non-commutative) version of the “ad” operator, which plays
a fundamental role in Lie Algebra theory and was instrumental in the arguments
of Duistermaat and Griinbaum. For any three (formal) operators L, Ly, and @
we put !

adL'LOQ d-:;rLOQ"*QOLQ f (54)
and its iterates are defined recursively by
adf | 0 ¥ ad;, ;[adf;}O) (5.5)

for k > 1. Notice that if L = Ly one obtains the usual “ad” operator of Lie
algebra theory. Also, if L = }_7 ;64 is an ordinary differential operator and © is
a nonconstant polynomial we obtain a necessary (and under certain conditions
also sufficient) condition for L to be bispectral, which is

ad?'e=0.

Exercise 5.3 Verify that (5.5) implies

¥, 0= 3 o V) prer
ady, r, Z( ) k 0 -
k=0

The following result sheds some light on the connection between strict Huy-
gens operators and the Darboux transformation technique.

Lemma 5.4 (Berest[20]) Let £y be a terminating operalor of the form

I'We use o here to dencte the composition of operators for the last time, henceforth the
composition of operators should be assumed unless otherwise noted.



5.1 Rational Solutions of KdV are Huygens’ Potentials 63

Eo =0+ (au(fﬂ),V) + ug

and L another operator of the same form, both of them defined on the same
causal domain. Suppose that there ezists o differential operator

(w6 = Y balz, 80 (5.6)
Ja|<m
such that for some N > 1
Eﬁo@ o,
and
Olde] =d¢ ,

for all £ € §2. Then, the operator L is also terminating.
Purthermore, if Lg is is p-terminating then L is (p + N — 1)-terminating.

We recall, from definition 2.16 that an operator £ is said to be terminating
{at level 1) if it admits an elementary solution whose Hadamard’s coefficients
of series (2.17) are all zero for v > uy. Also, as before, d; denotes Dlrac s delta
measlre at the point £,

For a proof of Lemma 5.4 we refer the reader to [20]. This result makes it
natural to think of a further “discrete symmetry” of strict Huygens operators.
Following Berest (oppus cit), we introduce the following:

Definition 5.5 An operator £ is said to be N-gauge related to Ly if there exists
a nevervanishing function 6(z) € C®(R2), such that

adf . 0=0, (5.7)

for some N > 1.
We remark that if both £ and £y are formally self-adjoint operators, then
L is N-gauge to related to Lo iff £, is N-gauge to related to L. Therefore,

we have a symmetric and (obviously) reflexive relation in the class of formally
self-adjoint operators.

Exercise 5.6 Show that the property of being N-gauge related is also transitive
in the above mentioned class and therefore defines an equivalence relation.

We now give an idea of the proof of Theorem 5.1. To do that we use the
following Lemma due to Berest, whose ingenious proof can be found in [20].

Lemma 5.7 (Berest [20]) Let O be the k-th Adler-Moser polynomial, and set
N =deg(¥) + 1.

Then,
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L=Ly+ uk(xg) ,
is N-related to Ly.

Exercise 5.8 Show that the k-th Adler-Moser polynomial has degree k{k--1)/2.

Now, once we have the result 5.7, we take

3
_Zai, 3

i=1

which is 1-terminating. It follows from Lemma 5.4 that the operator
2 e
Ly =0z, — Zaz,- + (2o}
i=1

is p-terminating, with p = (n—1)/2, provided n > 3+ 2k is odd. This ends the
proof of Theorem 5.1.

5.2 Iso-Huygens Deformations

In this section we shall diseuss some of the results of Berest{15] on deformations
preserving a strict Huygens' property of differential operators. We shall refer to
such deformations as iso-Huygens deformations.

Here we shall make use of the theory of transformation groups, which is
briefly reviewed in Appendix A. The goal is to describe the result of Berest that
characterizes the algebra of iso-Huygens symmetries. As remarked in Section 4
this algebra coincides with the one that preserves the bispectral property of
Duistermaat and Griinbaum.

Let’s take £ = 0 + u and consider the augmented system

Lip=0
{3;;,11::0 fori:]_’..',n * (58)

The reason for adding the equations of the form &,,1 = 0 is to force the deformed
potentials to depend only on the time variable £y = # and not on the spatial
variables.

The first step in Berest’s approach is to study the trivial point transfor-
mations of system (5.8). The family of trivial transformations of Definition 2.4
leads to vector fields of the form

+ y(z, t,u) g

X= §° +Z§* +,\(m) 7

6‘¢

which must satisfy
XO oy =pul, (5.9)
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where X @ denotes the second extension of the vector field X, as explained in
the Appendix A

Let’s call the algebra of trivial iso-Huygens deformations gy. Then, g is
generated by 2y, Xy, £, To, A§ with these generators given as follows

2y = qf'% (5.10)
X = % (5.11)
& = 61 i=1,...n (5.12)
T = %t%%—%;m xi——ww 3 (5.13)
A = m,-a%—zja—xi 1<i<j<n (5.14)

Although the algebra gy above seems rather uninteresting, it is the crucial
step in the construction of the full algebra g of iso-Huygens deformations. In-
deed, Berest was able to construct a recursion operator, whose iterates give such
algebra. In order to obtain g one has to allow more general transformations then
the point transformations defining the trivial symmetries. In other words, one
has to allow Lie-Bicklund transformations. We briefly review the definition of
the latter in the Appendix A.

Henceforth, in this section, we use the notation

u‘)def D

1=1

n

and
of D
'd)t & _ij 3
where the D/Dzx; denotes the total derivative, as defined in the Appendix A.
We then have

Lemma 5.9 (Berest[15]) The most general form of the canonical Lie-
Bécklund operator admitted by the system (5.8) is of the form

- = L oty 3 3
= (A¢~B¢t—!§0 ¢i)%+u~éa, (5.15)
where o
=Y ap(z,t,u,u,. . A%, (5.16)
k=0

with similar series for B and €, and yu = p(z, t, 4, u, .. ).

It turns out that the algebra gg coincides with the algebra generated by 2

Attention we are renaming the generators.
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2 = ¢% (5.17)
Ay = ¢za¢+m% (5.18)
RS qpi—w i=1,...n (5.19)
To = t¢t+ E Tl — )az) + (u+ tut)— (5.20)
Af = (- ajw,)a ; lsi<isn (5.21)
Let’s define the recursion operator R as the 2 x 2 block operator
2
Rd_‘*f( 19 +4:qz;;“*3t K _OA) : (5.22)

We remark in passing that the {1,1) block of R coincides, except for an
unimportant constant, with the recursion operator of soliton theory.
Now, we think of R as acting on column vector fields through the identifi-

cation 3 9 )
T 'U u
V=l )(T),EL_ ) Pl 55 = ( o) ) {5.23)

We are now ready to state the nice result of [15]

Theorem 5.10 The effect of the recursion operator R on the vector fields {5.17)-
(5.21) is to produce o hierarchy of vector fields that generates the full algebra g
of iso-Huygens deformations of (5.8) by means of

Zm = RZ (5.24)
Xy = RA; (5.25)
&y = REL (5.26)
Ter1 = RTx (5.27)
AL, = RAZ, (5.28)

fork e ZZD'

Exercise 5.11 The vector fields ebtained by means of the recursion operator R
satisfy the following Virasoro-type relations (among many others [15])

(71, Ton] = (m — O Tt (5.29)
and
(70 Xm] = (m + %)A’Hm (5.30)

The relations (5.29) and (5.30) are the same satisfied by the corresponding
ones in Theorem 3.22.
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5.3 Conclusion

In this section we shall highlight the connections between the different topics
discussed throughout these notes. We shall also try to point out to some topics
we believe will be of increasing interest in the near future.

At a first glance, one might say that the main thread permeating the dif-
ferent subjects in these notes is the class of potentials known as rational so-
lutions of the KdV, which were obtained by means of Darboux transforma-
tions in Section 3.4. These are, in turn, the potentials that added to a suitable
D’Alembertian yield strict Huygens operators. They are also bispectral poten-
tials, as discussed in Section 4.2.

However, the bispectral problem for Schrédinger operators admits another
class of solutions, the even family potentials of Section 3.4. Initially, these po-
tentials seemed to be out of place in the general picture which came with the
characterization of bispectral Schridinger operators given by Duistermaat and
Griinbaum. A better understanding came about in [110] with the crucial remark
that all the bispectral Schrdinger potentials (decaying at infinity) are invariant
by the (nonnegative} Virasoro flows. These flows were described in Section 3.3
with the aid of recursion operators. This furthered the link with the theory of
integrable systems, and in particular with the KP hierarchy. After all, the Vi-
rasoro algebra, and more generally, the so called W, algebras are at the heart
of present day understanding of KP symmetries.

The full characterization of bispectral operators of order greater than
two is still open, despite recent advances. These advances have taken place
in different fronts, and trying to survey them would take us too far afield.
We hope to have enticed the reader into browsing at the recent literature
[47, 46, 45, 105, 108, 106]. We content ourselves in remarking that the rational
solutions of the KP hierarchy also yield bispeciral operators. More precisely, it
was shown in [107} that Sato’s polynomial 7-functions for the KP hierarchy pro-
duce bispectral operators. * Using very elegant methods of algebraic geometry,
G. Wilson [101] characterized all the bispectral operators associated to com-
mutative rings of differential operators of rank one. These in turn correspond
exactly to polynomial r-functions for KP.

Wilsen's beautiful characterization, however, calls for an extension to higher
rank, which to this date has not been completed. One should not forget to men-
tion, though, that substantial progress has been made in the work of A. Kas-
man {63, 64] concerning the higher rank case and its connection to Calogero-
Moser systems.

The link between the strict Huygens’ property and bispectrality becomes
even stronger when investigated at the light of deformations preserving such
properties. Indeed, the main result of Berest in [15], as we saw in Section 5.2 is
the existence of a recursion operator in the class of Lie-Bicklund symmetries of

3The result stated in [107] was only about the polynomial r-functions obtained from Schur
functions, however the method used apply equally as well for the more general polynomial
7-functions. See [109]
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Huygens operators £ of the form
£ =0+u(zg) -

These symmetries when acting on the potential u coincide with the symmetries
of the bispectral problem. The latter in turn, are the ( nonnegative) Virasoro
flows, which were studied in Section 3.3.

Another way of phrasing the last remark is the following: Strict Huygens
potentials and bispectral potentials share the same family of symmetries, as can
be seen from comparing the results of the commutation relations from obtained
from Theorems 5.10 (Sec. 5.2) and 3.22 (Sec. 3.3).

Iso-Huygens Deformations KdV Hierarchy/Master Symmetries

{ [7;17E] = (‘i‘l _j)7}+l 3 { [Tj1Tl] = (l _j)7:1'+1 ’
[T, 4] = (5 + 5) X - [, X3] = (G + 3) X -

The full implications of the above coincidence are still not understood. Cer-
tainly the rational solutions of KdV are invariant by the (nonnegative) Virasoro
flows and by the KdV flows. Furthermore, they are bispectral and enjoy a strict
Huygens property. On the other hand, Lagnese and Stellmacher have shown that
the only potentials u = u(xo) one can add to the D’Alembertian (in a sufficiently
high odd number of space dimensions) and still get a Huygens operator are the
ones in the class of rational solutions of KdV. The ones in the even family are
therefore ruled out, in apparent contradiction with the iso-Huygens deformation
result. The plausible hint to this apparent contradiction comes from the remark
that the deformations allowed by Berest are in fact leaving room for the action
of the trivial group of deformations, The latter would obviously change the form
of the operator £. This subject certainly deserves further investigation.

On the front of generalizations to several dimensions, progress has been
made both for Huygens property and more recently for bispectrality, see [20,
19, 16, 15, 17, 18].

One final subject not touched here, among many others, is the study of
lacunze for higher order linear hyperbolic operators with constant coefficients.
Once again the prospects of interesting connections are very encouraging [10,
11, 34, 17]



A. Symmetries of Differential Equations

In this appendix we discuss a few ideas behind the use of symmetries in the
study of differential equations, with particular aim at Huygens’s property. The
use of symnetries in differential equations, and in science in general is fairly
old. However, the systematic use of these ideas is due to Sophus Lie, whose
monumental work is often forgotten. We shall not give here a due account of
such theory, we refer the interested reader to the literature [5, 7, 21, 57, 59, 82]

Symmetries of Differential Equations

When studying systematically symmetries of differential equations, it is natural
to think of the equation as defining a manifold in a sufficiently high dimensional
space. The solutions of the equation led to parametrizations of such manifold.
This is the origin of the concept of skeleton of a differential equation. More
precisely, let’s consider the equation of the form

Flz,u,du,...,0%) =0, (A1)

where as usval z € R” is the independent variable and u is the dependent one.
The symbols du... 9% denote the derivatives of @ with respect to z.

Definition A.1 The skeleton of the differential equation A.1 is the manifold in
RN defined by the equation

Flz,y) =0, (A.2)
where y € R™, N = m + n, and m is the appropriate dimension to capture all
the derivatives of v up to the order of (A.1).

For a motivation and application see the enthralling article of Ibragimov’s
[58] whence the next example is taken.

Example A.2 The skeleton of the Ricatti equation

2 . d

i 2
U Fu = = =
2’ dx

is the surface in IR* defined by the equation
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2 2
E—y +2z=0.

The next ingredient in the systematic study of symmetries is to consider
families of transformations preserving the skeleton. These transformations could
be either discrete or dependent on a continuous variable. OQur focus now is on
the continuous ones, which would hopefully be smoothly dependent on the pa-
rameters. Each of the corresponding parameters would lead to a one parameter
group of transformations. It turns out that the restriction of having a group is
too stringent. Furthermore, it is more convenient to handle vector fields (Lie
algebras) then their fows (Lie groups). Hence, one is led to consider tangent
vector fields to the skeleton.

Since one is concerned with solutions of differential equations, not any vector
vector field tangent to the skeleton would be of interest. Generic vector fields on
the skeleton might yield cne-parameter groups of transformations that do not
preserve derivatives. This leads us to the concept of “prolongation” of vector
fields.

For example, if one is only concerned with one dependent  and one inde-
pendent variable u, we would like to preserve

du = dw “ dz (A.3)

Let’s take a one parameter group of transformations dependent on the param-
eter £. Let’s denote these transformations by

(@,w) = (E(z,40), 4z, w6)) , (A.4)
and set, as usual,
¥ dufdr . {A.5)
The condition di = #1,d% leads to
0t o i g 693
gd+ad-(am+a y) .

After substitution of (A.5) and solving for %, gives

au au
= 3;+u13u A
M=, . oz (A.6)
o Ty

Equation (A.6) becomes more palatable, and well suited for generalizations,
if we define the total derivative operator (familiar in calculus of variations):

D gy @ i, i, i)
Dz 3z T ¥, +u26 tuyg - 2+ ey (A7)

where
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u def dfu
T ek
Using the above definition we get
7, = D8/ D5
""" Dz’ Dz

Exercise A.3 The higher order derivatives of u transform as the following
(recursive) equation

i Diig_, /DE

= "Dz Dz

S h>1. (A.8)

At this point, it is natural to seek what is the transformation rule for vector
fields on the space {z,u, uy,...,u). This is also given in terms of total deriva-
tives. The expression is the result of the next lemma, whose proof is a simple
exercise.

Lemma A.4 Given a vector field on (z,u) space of the form

d &
the corresponding vector field in the extended space (z,u, uy, ..., u;) obtained by

transforming the variables uy, ..., ux s0 as to preserve the tangency conditions
dug_) = updz is given by

a9 9 2
W_pd 0. . 00 wd
K = g TG T gy T T g

where the vector fields 1™ are computed recursively by

(k-1)
w_ D D& (A.9)

g Dz Dz

The above result can be easily extended for several independent and depen-
dent variables [21]. In the case of n independent variables the total derivative
operator has to be generalized to

D a a a d

;= = Uy F Ui+ Uiy
3 D.’,L‘.‘- 8:1:,- + 16u ij a’fl‘j ultz...auilizm ]

with the summation convention fully enforced for ecological reasons.
The extended transformations of a given vector field of the form

a i}
X=§i£+ﬂa

i

is given by
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u —~
U
dﬁ=il1di€’
du=ugdx
]
X X
Fig. A.1l. Contact Transformation.
d a n @ ’ ad
x® g0 0 w0 w0
f 6.’5;‘_ + Wau A aui nntg...!k auiliz...ik

with the coefficients obtained from

m" = Din — (Di&;)u; ,
~and from 1)
& 1
nzgli)z...ik = Diknilz'g...ik_l - (Dikgj)uiiizv--ik-l.'i .
for £ > 2.

Lie-Backlund Transformations

In the previous Section we were concerned with transformations of the form
(z,u) = (B(z, u;€), 8z, u5€)) (A.10)

These are called point transformations since they do not involve derivatives of
the variables.

It turns out that many times it is interesting to have more general trans-
formations where the derivatives would alse play a role, for example,

{z,u, u ) | F(z,u, v;e)ils,u, uie), & (F(z,u, u;e)| , (A1)
1 1 1 1 1

where u denotes all the first order derivatives of 1. As before, it is crucial that
1

such transformations preserve tangencies. See Figure A.1.
This leads to the concept of contact transformations.
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Definition A.5 A contact transformation is o transformation of the form (A.11)
that preserves the contact condition

It is clear from the construction of the prolongation of the transformations,
that if one starts with point transformations such as (A.10} then the prolonga-
tion would be a contact transformation. A natural question would be whether
the converse is true. In other words, are there more general contact transfor-
mations than the ones obtained by prolongations of contact transformations?
The answer to this question is no, if the dimension of the space of dependent
variables is 7n > 1. More precisely, one has the following important result

Theorem A.6 If m > 1, then the group of contact transformations of
the form (A.11) is the first prolongation of the group of point transforma-
tions {A.10).

Contact transformations, due to their high content of geometrical infor-
mation played an important role in mechanics and optics. As matter of fact,
Huygens himself used them in his constructions. (See page 194 of [57]). One
example of a contact transformation is Legendre’s transformation that relates
the Lagrangian formulation with the Hamiltonian one. They also play an im-
portant role in the study of first order PDEs, since under those transformations
the class of first order PDEs is preserved. Furthermore, solutions are sent into
solutions.

A natural generalization of the concept of contact transformations would be
to require that higher order of tangency be preserved under the transformations.

More precisely, let’s consider transformations of the form:

Te fo =~ . -
(0w, v ,o.., v )= (%, &,..., &), {A.12).
1 k 1 k
where one requests that a tangency condition of order & -holds. This means that
if we denote by w# the j-th component of the vector u, § =1,...,m, and define
j a0
- - S S
Flyite B:vil e 8:::.-,

the derivative of order s of »7. The tangency condition means that the equation

J — i
dui, i, = U rda

!dﬂﬂ (A. 13)

is preserved by T for all s < k. See Figure A.2 for a pictorial description of the
cage of second order tangency. :
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AN
Fig. A.2. A Transformation preserving second order tangency (osculation).

Once again, one is tempted to ask the question whether one can find more
general transformations than the ones obtained by prolongations of contact
transformations (or point transformations). Lie conjectured a negative answer
to this question, and Bécklund confirmed Lie’s conjecture. His result states

Theorem A.7T {Bicklund) Every group of tangent transformations of order
k < co is the prolongation of a group of point transformations for m > 1, and
of a group of contact transformations for m = 1.

For a proof of this result we refer the reader to [57, 6].

Finally, one is led to consider infinite order tangent transformations, i.e.,
transformations of the form

(o, w,eeey vy ) (B8, &, T,..0), {A.14)
1 k 1

for which equation (A.13) holds for all orders.

Definition A.8 A transformation of the form (A.14) which leaves invariant
the set of equations (A.13) for all k is called ¢ Lie-Bicklund transformation.

The reader is referred to the excellent book ({57, 6]) where one can find a
number of examples.
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Errata

A few typos were detected after printing started. Certainly not all of them are
listed here, so please send any additional correction to zubelli@impa.br

Chapter 2
— Page 9, line 7: Add “of the” to the end of the line to obtain “...closure
of the”.
— Page 9, line 11: Substitute “even n” by “even n — 1”.
— Page 9, line 13: Delete “the” from “...with the second order...”
— Page 11, first line of third paragraph: Substitute “and” by “an” to
get “...notion of an operator”.
Chapter 4
— Page 51, line 12: Change “...spectrum with such the...” to “...spec-
trum commuting with the...”

— Page 51, lines -11 and -13: Take away the “s” from “Communications
Theory” to get “Communication Theory”

— Page 52, lines -3: Idem.
— Page 53, line 7: Add “is” after “polynomial”.

— Page b4, line -5 (Last paragraph): Add “leading coefficient of the”
between “the” and “differential” to get “...requiring that the leading
coeflicient of the differential”.

— Page 60, line -10: Between the words “that” and “all”, insert “the
{non-negative) Virasoro flows are tangent to” to get the following:
“..that the (non-negative) Virasoro flows are tangent to all the ...”

Chapter 5 .

— Page 67, line -2: Substitute “for the” by “to” in order to get
“...equally as well to more general ...”






