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A geometria integral e um assunto que comencou com Buffon no
seculo 18. Acompanhou o nascimento da teoria da medida, o estudo de
corpos convexos e o desenvolvimento da topologia.

A escolha dos resultados apresentados aqui e parcial. Deixei de lado
ramos importantes para insistir nos balbucios (Buffon e os paradoxos de
Bertrand), e nos resultados ligados 4 topologia, 4 teoria das folheacoes
e 4 geometria complexa. O ultimo capitulo tem raizes na matemat-
ica do seculo passado e apresenta conjeturas e perguntas em geometria
conforme,

Sistematicamente deixei de lado as provas tecnicas de um resultado
geral para sé apresentar as ideas com a prova de um caso particular.
Uso e abuso de figuras: no titulo geometria integral tem geometrial

Tenho muito prazer em dar esse curso no Brasil, onde alguns resul-
tados mencionados no texto foram provados.

Agradeco a Danie! Lines ¢ Harold Rosenberg para ter concertado o
ingles. Os erros que sobram vem de acrescimentos de ultima hora.

Enfim o estimulo de Manfredo do Carmo chegou no momento certo
para que un projeto se transformasse em livro.

Rémi Langevin
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1 Introduction

In 1777 Buffon published his Essai d’arithmétique morale [Bu], where
he describes the needle experiment.

A _ 'F"fm,m
R g
SRV B b
[ E/g d
G D

Figure 1: Buffon’s calculation

The first paragraph of the essai is:

La mesure des choses incertaines est ici mon objet: je vais tacher de
donner quelques régles pour estimer les rapports de vraisemblance, les
degrés de probabilité, le poids des témoignages, Uinfluence des hasards,
Pinconvénient des risques, et juger en méme temps de la valeur réelle
de nos craintes et de nos espérances. After some considerations about
a game called ”franc-carreau”, where the players gamble on the proba-
bilities of a coin falling entirely in a tile or accross some division line,
Buffon proves that, when a needle is thrown "at random” on the boards
of a parquet, if the length of the needle is equal to the width of the
boards, the probability it will lay across two boards is 2/m. He admits
without the slightest doubt that the right probability measure on the
space of positions of the needle is the measure 2L,”|al:1:/\a!t9| which we shall
consider below.

The appearence of the number 7 hides a circle. The physicist Paul
Langevin described in 1908 a way to visualise a proof of Buffon’s obser-
vation.

Let us throw thousands of needles and move them using only trans-
lations paraliel to the boards or perpendicular to them with length an
integer multiple of the width of the board. As all relative positions
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Figure 2: Needles and rearranged Needles

(angle, distance of the needle to the lines boundary of the boards) are
equally likely, we can rearrange the needle along a very large circle ase
in fig.2 having essentially the same amount, say N, of needles above any
point of the circle. The total amount of needles is close to N.L, where L
is the length of the circle and the number of needles crossing the lines is
close to

N.(number of intersection points of the lines with the circle)

that is 2N.D, where D is the diameter of the circle. The required prob-
ability is then 2N.D/N.L = 2,

A hundred years will be needed to clarify the notion of probability
involved. Before coming to that, let us give a conventional proof con-
firming Buffon’s result. Locate the position of the needle on the floor by
the position of its tip and the angle of the needle with the direction of
the lines. Using as before translations parallel to the boards, or multiple
of the width of the boards, we can suppose that our needle has its tip
on the vertical segment AB of fig 3. We assume that AB has length 1.
Call z the distance between the tip of the needle and A.

Therefore the set of all possible positions of the needle is [AB[.S1,
{or rather R/Z - S'). The needle meets the line Lp if z + sing > 1 and
Ly if z 4 sinf < 0.

The ratio between the dashed area and the area of the rectangle
10,1].[0, [ is 2/m.
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Figure 3: localization of the needle

0

T n

Figure 4: domain corresponding to the needles which lay across two
boards

2 The birth of the notion of geometric measure

2.1 Cauchy and Crofton

In 1832, in a communication to the French Academy of Sciences, Cauchy
noticed that the length of a convex curve is the average of the lengths
of the orthogonal projection of the convex curves on all lines through
the origin. More generally, for any rectifiable planar curve C, denote
by m(C,L) the "abolute length” of the ortogonal projection of C on the
line L, the length of the projection counted with multiplicity. In modern
language:

m(C, L) = [ card(p W)dp)iv € L
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Then:

Theorem 2.1.1 Cauchy formula[Cau]
w2
f m(C, Lg)d# = 2(lengthof C)
—n2

Cauchy’s proof amounted to prove the formula for a segment, and then
approximate any curve by inscribed polygons.

Ilosel
Figure 5: area of the needles crossing the lines in [0, 1[x[0, #[

From Cauchy’s communication to the french academy in 1832 [Cau],
to Crofton’s mémoire (1868) [Cro] 36 years where needed to clarify the
notion of a measure on the set of affine lines. Let us quote Crofton: The
expression "at random” has in common language a very clear and defi-
nite meaning; one which cannot be better conveyed than by Mr Wilson’s
expression "according to no low”... There s always a direct reference
to the assemblage of things to which it belongs and from which we take,
and not till then, we can proceed to sum up the favorable cases,... But
there are several clusses or questions in which the totality of cases is not
merely infinite, but of an inconceivable nature... We can thus continu-
ally suppose variations of the experiment, each variation giving a new
infinity of cases. (then Crofton justifies the choice of the measure on
the plane). What means: an infinity of lines drawn at random on the



plane, what is the nature of this aggregate? First, since any direction is
as likely as the others, as many of the lines are parallel to any direction
as to any other. As this infinite sysiem of parallels is drawn at random,
they are as thickly disposed along any part of the perpendicular as along
any other...

Crofton did found the right answer as we will see in next section.
Nevertheless, at the turn of the century the choice of a measure on a
continuum was not obvious, because there were too many possibilities.

2.2 Bertrand’s paradoxes

Let us give three different answers proposed by the probabilist Bertrand
to the same problem of elementary geometry. At that point, integral
geometry was close to desappear. The question is (see pictures below):
what is the probability for a chord of a circle taken at random to be
longer than the side of an equilateral inscribed circle? The three different
answers Bertand proposes will come from three different ways to choose
the chord.

1)Chose an arbitrary point A on the circle. Using the rotational
symetry of the picture we can forget about A and choose now another
point B on the circle, endowed with arc length measure.

Figure 6: probability 1/3

The chord is then longer than the side of the inscribed equilateral
triangle with probability 1/3.

2)Chose at random the affine line supporting the chord. The rota-
tional symetry of the picture allows us to forget about the direction of
the line.
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Figure 7: probability 1/2

As cos(w/3) = 1/2 the probability is now 1/2.
3)Chose at random the middle of the chord in the disc {the measure

is the Lebesgue measure on the disc). We ignore chords through the
origin, as they form a set of measure zero.

Figure 8: probability 1/4

Then the probability is 1/4.

Poincaré will take integral geometry out of this dead end. For him,
(see for example his book published in 1912 [Poin] , the most interesting
measure is the one which is invariant under the group of affine isome-
tries of the plane. Only isometries preserving the origin are allowed by
presentations 1) and 3). In 2) translations also act on the set of affine
lines and preserve our measure. It was also Crofton’s answer.



3 The euclidean plane

3.1 Geometric measures on sets of lines

We will start with the Euclidean geometry of the plane. The group
of Euclidean motions M acts on the points of R2. It leaves invariant
the Lebesgue measure dz A dy. It acts also on the set of affine lines
of the plane A(2,1). The oriented lines through the origin of R? form
a circle, as any oriented half-line cuts the unit circle in a point. This
correspondence defines the topology of the set of oriented lines through
the origin. The set of unoriented lines is the quotient of this first circle
by the retation z ~ —z We denote this set by G(2,1). We can visualize
the latter identifying a line (distinct {rom the x-axis) with its intersection
(different from the origin) with the circle tangent at the origin to the
x-axis of next picture.

cercle des droites veclorielles
nion orlentées

cercle des droites veclorielies
orientées

Figure 9: Oriented and non oriented directions.

A non-oriented affine line corresponds to each point t of a direction
D; just take A, to be the perpendicular through t to D. Using oriented
directions we would get oriented affine lines A% (2,1). In that case we
consider an oriented direction Dt and the affine line perpendicular to a
point t € DT (which can be identifies with its coordinate on the oriented
line D*). Let 8 be the oriented angle of the x-axis and D¥. We see that
the oriented affine grassmannian A+ (2, 1) is a cylinder S* xR. on which
natural coordinates are # and ¢. From the angular measure |df| on the
unit circle and the Lebesgue measure |dt| on the line D, we get a measure
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[df A dt| on the set of oriented affine lines. This measure is invariant by
a rotation of center the origin. A translation of vector v moves the line
(6,¢) to the line (6,t+ < €|v >; it also leaves invariant the measure
|d@ A dt|. As an exercise, let us represent on the cylinder S! x R the
oriented affine lines through the extremity O’ of the vector v on the
picture below.

AN

Figure 10: oriented lines through the origine and through another point.

We will call the family of lines through a point, or the family of lines
parallel to a given direction a linear pencil. The equation of a line of a
linear pencil is a linear combination of the equations of any two different
lines of the family.

Remark: The oriented affine lines through the point m = (a, b) are
the intersection of the cylinder z? 4+ y% = 1 with the plane of equation
z = ax + by. Parallel lines are the intersection of the cylinder with a
vertical plane through the origin.

The projection (forgetting the orientation) of A" on A defines the
measure, still denoted |d# AdE|, on A¥(2,1). this projection also permits
us to recognize that .A(2,1) is the Mobius band obtained from the rect-
angle [0, 7] X R identifying (0,t) with (7, ~t). the next picture shows
the set of lines corresponding to the small rectangle [¢y, 65].[t1, ¢2].

11
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Figure 11: The Mobius band.

3.2 The Gauss map

During this section, curves will be of class C*°. An essential tool in the
study of hypersurfaces of IR”™ and first planar curves, is the Gauss map
v which to each point m of an oriented curve C' associates its oriented
normal, N(m) = Ry/2(T(m)) where T(m) is the oriented unit tangent
at m to the curve.

v:C — 8§t

eSOl

Figure 12: The Gauss map.

The jacobian k(m) of y at a point m € C is called the curvature of €
at that point. Notice that we can define a Gauss map with value in £,

12



forgetting the orientation of N(m). Notice also that the tangent map
T : C = S' mapping a point m € C to the oriented unit tangent to C
at m, has the same jacobian k(m). We will use the map C — AT (2,1)
the paragraph ”envelopes” of next section.

Remark: Let m € C be a noncritical point of the Gauss map. Then
the point m is a nondegenerate critical point of the orthogonal projection
of C' on the oriented line L(z) defined by N (z).

Proof: Locally C has the equation y = f(x) where 2 is a coordinate
on the line generated by T'(z) and y on the line L(z). We can choose the
euclidean coordinates z,y such that f(0) = 0. We also have f'(0) = 0.
The curvature k(m) is in that case just f”(0). If the curvature is nonzero,
the orthogonal projection of C on L has the nondegenerate hessian f”(0).
a

For a direction L, denote by x(C, L) the number of critical points of
the orthogonal projection of C' on L. The change of variable theorem
implies then that there exists a neighbourhood v of m such that

[ kmldm= [ luio, 1)L

n—1

The result holds globally on C.

Theorem 3.2.1

[ Wetmlam= [ ui(C, pyaz
c Pr

Proof: The proof relies on Sard’s theorem. The set ¥ of critical
values of 7 is of zero measure. Its inverse image y~!(X) is the union of
critical points of 7, where & = ( and noncritical points of ¥ with image
in ¢ which form a set of measure zero. The complement of v~1(£) is a
denumerable union of open sets of C. Discarding at most a denumerable
set of points if necessary, we get a denumerable union {J;(U;) of open set
of C' where the restriction of v is a diffeomorphism on its image. Using
the change of variable theorem and summing on i we get:

Jemlim= [ mlim = S = [ i€, Ly

i FPrny
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We can also count "most” of critical points with a sign. Assign to
the non degenerate critical points of the orthogonal projection of the
oriented curve C' on the oriented line Lt the sign ¢(m) = (—1)inde=(m),
When the two unit vectors contained in L are non degenerate values of
the Gauss map, we can, at each point mn such that v(m) C L orient the
line L using the normal N({m) to define e(m). Thus we get:

pCL)y= 3 (e(m))

~¥(m)eL

Theorem 3.2.2 If one of the integrals
[ ktmidm = [ julc, pydL
c FProy

is finile, then:

fc k(m)dm = fP oLy

To prove this last theorem, is is enough to track the signs in the
proof of the preceeding one.
A classical theorem for embedded closed planar curve states that:

Theorem 3.2.3
| jc k(m)dm| = 27

It is a consequence of the following fact that we will explain below:
p(C, L) = 2 - degree(Gauss map) = 2

when C is a simple closed curve, and when p{C, L) makes sense.
As a corollary we get the inequality:

fc |k(m)|dm > 2n

14
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Figure 13: Thickening of a curve.

3.3 Volume of the tube around a curve

We will use the previous definitions to compute the volume of a small
tubular neighbourhood of a closed planar curve C, and the volume of
the thickening on one side of the curve.

Let C; be the carve

Cr ={C(t) + TN (@)}
The tubular neibourhood of C
Tub, (C) = {mld(m,C) < r}

is the union
Tub, (C) = {U—TSTSY‘CT}

The tubular neighbourhood lemma tells us that for r small enough
the map:

{t,7) > {C() + 7N ()}

is diffeomorphism. Let us also define the thickening (on the side of N)

of C:
Th, (C) = {UogrerCr)

The volume of T'h,.(C) is the integral:

vol[Th, (C)] = /0 . vol(Cr)

15



The projection, ”counted with multiplicity” of the curve C; on a line L
is obtained, modifying the projection of C on intervals of length = with
one extremity a critical value of the orthogonal projection of C on L.
See fig.13. To give a formula suppose first that the orthogonal projection
7r on L is a Morse function, that is, has only non degenerate critical
points, which all have different images. Then a critical value ¢ € Lis
the image of one critical point m. € C. The normal N (m) is parallel
to L and allows us to define the interval I(¢) = [¢,c+ TN(m)]. The
projection of C on L defines a function (with integer values) on L:

e(C, L) (y) =t ()

Depending on the local position of C', N(m) and the line orthogonal to
L in ¢, we define a sign

e(c) = e(m.) = £1

(this generically makes sense, as the critical value ¢ will, for almost
every line, be the image of a unique critical point; see section 7.3 for
more precise statements). then:

€(c) =
= +1if Cislocallynot onthe sideof N(m}, —~1ifC'is locallyonthe side of N (m)

Remark: To change the orientation of N will change the sign of €(c).

Proposition 3.3.1 The function ¢(C5, L) is equal, when 7y, is a Morse
function, to

@(Cr L) = @(C, L)+ e(c) -2 1y

In the formula the summation is over all critical values ¢ of 7z, and
1) is the characteristic function of the interval I{c).

Observe that the degree of the Gauss map « can be computed using
any generic line L, that is, here, any line such that the projection 7y, is
a Morse function. This degree is

2 <le)

We now also that the set of non-generic lines is of measure 0. We know
that, depending of the orientation of the curve, this degree is &:1. The

16



proof follows from the definition of the function (C, L) See fig. Rewrite
Cauchy’s formula for C using the functions ¢:

2 - length(C,) = ]L . fL o(Cy, L)
1

Using the proposition, the remark on the degree of v, and permuting
the order of integration (this makes sense when the curve is compact
smooth arc) one gets the:

Theorem 3.3.2
vol(Th.(C)) = r - length(C) + (1) . 1 . ¢
and, using also the previous remark, we get the corollary:
Corollary 3.8.83 for r small enough,
vol(Tub (C)) = 2r - length(C)

In the section higher dimensional convex bodies, we will gener-
alise this proof to higher dimensions.

17



4 Two dimensional convex bodies and transla-
tions

4.1 Envelopes

We mentioned in the previous section the map C — A(2, 1) which as-
sociates to each point m € C its oriented affine tangent. Conversely,
to a smooth one-parameter family of affine lines, corresponds in gen-
eral a curve,which is the envelope of this family of lines. Let Dy =
{a(t)z+b(t)y+c(t) = 0} be a smooth family of lines where a(t), b(t), c(t)
are smooth functions of t. The lines D; and Dy have an intersection in
the plane if they are not parallel. When A goes to zero this intersection
point may have a limit m(t). Let us give a sufficient condition for the
points m(t) to exist, and belong to a curve C which admits the tangent
D(t) at the point m(t).

Theorem 4.1.1 Let D; be a smooth family of lines of equations a(t)x+

b(t)y + c(t) = 0;(z,y) € R2. If for all t € [, f], the determinant

a(t)  b(t)

“lew vo

C. that is, the curve is the union of the points: m(t) = D; N Dy, where

D! is the affine line of equation ' (t)z + ¥'(t)y + ¢/(t) = 0. Moreover if
a(t)  b(t) el

the determinant det a:’(t b'(t)y 't | is also different from zero,
a’(t) b)) (Y)

the curve is smooth at m(t) and the tangent to C at m(t) is D(t).

is different from zero, the family envolves a curve

We will note D"(¢) the line of equation a”(t)z 4 b"(t)y + c"(t) = 0.
Proof: Let us find the intersection point of D; and D;4r,. We need
to solve the linear system:

at)z+b(t)y+c(t)=0
alt + )z + b{t+ h)y+c(t+h) =0

A first order Taylor expansion of the second equation gives:

a(t)e +b(t)y+c(t) =0
(a(t) + ')A+ o(h))z + (b(t) + b'()h + o(h)}y + (c(t) + ¢ ()R + o(R)) = 0

This is equivalent to the system:

18



a(t)z +b{t)y +c(t) = 0
[t} + o(h)]z + [V'()h + o(h)]y + [¢'(t)h + o(h)] = O
If the determinant det 3,((?) ;((?) # 0, the limit of the solution,
when h goes to zero, is the solution m(t) of the system:
a(t)e +b(t)y+c(t)=0
dt)e+b(y+(t)=0
(we shall refer to that system as (*)).
a(t) o(t) c(t)
The condition det | a'(t) b'(t) ¢t | # 0 guarantees that the
a”(t) b”(t) c”(t)
three lines IJ, D' and D" do not belong to the same linear pencil. Up
to terms negligible compared with h the point m(t + h) is the point
Dy Dy, which show that the limit of the line containing the chord
m{t), m(t + k) is D;; See next picture m]

Figure 14: a non degenerate piece of envelope

Linear pencils are in that sense ”degenerate” envelopes.

4.2 Support functions and hérissons

The name hérisson (french word for hedge hog) has been chosen because
the skin of this animal cannot fold to much without inconvenience be-
cause of its spikes. We will call hérisson the envelope of a family of lines
parametrised by their direction. In fact our definition gives oriented

19



affine lines, as we can orient Dy by R,/;(u}. More precisely, each lines
of the family D,, v € S! admits the equation:

D, = {m| < m|u >= h(u)}

where u is a unit vector, and h(u) a real function. The system(*)which
gives the points of the envelope becomes:

< m|u >= h(u)
< mlRya{w) >= (dh/dv) ()

and has automatically a non zero determinant. Let Q be a compact
convex body. We can define a function h(u) by :

h(u) = sup[< mju >;m € Q]

The line D, of equation < m|u >= h(u) is the support line of ¢} in the
oriented direction .

Figure 15: support function

It touches @ and @ stays on one side of D,. The convex body @ is
the intersection of the half spaces < m|u >< h{u).

Proposition 4.2.1 When 8Q) is a smooth curve of nowhere zero cur-
vature, it is the envelope of the family D,,. The radius of curvature of
8Q at the point where D, is tangent to the curve is h(u) + h"(u), where
h is the support function defining the family D,. Conversely a bounded
smooth support function h such that h-+h" is everywhere strictly positive
has an envelope which is the boundary of a compact convez body.

20



In a generalized sense the boundary 8@ can always be seen as the enve-
lope of the family D,. The condition (¥*) is always satisfied. At a point
where 9Q) has a right and a left tangent which are different, the family
D, contains an arc in the pencil of line through that point.

Proof: When it is different from zero, the curvature of the bound-
ary 0@}, with the (conterclockwise) boundary orientation, is positive.
Let us compute the radius of curvature of a hérisson, and prove that,
if it is always positive, the hérisson is the boundary of a smooth con-
vex body, whith everywhere positive curvature. The caracteristic point
m(u) = (D, N D'(u)) satisfies the equations:

< mlu >= h(u); < m|Ryp(u) >= h'(u)

Let 8 be the angle ((0,1), ).The rotation Ry sends the vector (1,0) to
u and (0,1) to Ry/z(u). The two equations are equivalent to:

R_g(m) = (h(u), #'(x))
The solution is then:
m(u) = Ry(h(u), h'(w))
Therefore, the derivative of the map G : v — m(u) is:
Rgynpa(h(u), b'(w)) + Re(R'(u), A" (u))

Here we identify the derivative with respect to « € S and the derivative
with respect to #. This vector is just Ry, r/2(R(x) + h"(u)). Of course
the tangent to the envelope is, at least when h+A" # 0, the line D,,. The
map G is the inverse of the Gauss map v, and we have just proved that
its jacobian is A{u) + h"(u). The radius of curvature p of the envelope

is then:
p(u) = 1/k(m(u)) = h(u) + A" (u)

The envelope is locally convex and closed, therefore it is the boundary
of a compact convex body. Conversely, the condition & > 0 implies that
there is only one point m(u) on 9Q satisfying:

< mu)|u >=h{u) =sup < mlu>;me€Q
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Moreover, the Gauss map is invertible because k& # 0. Therefore the
tangents to C can be parametrised by u € S1, Observe that D, is
orthogonal to u. The limits

limS—rO;5>ODu N Du+5

and
lim5—>0;5>0Du N Du+5

exist because @ is convex. The point m(u) has to be equal to both:
limsoos>0Du O Dyt

and
lim&-)(};ts(ﬂDu 0 Du+6

as, if any of these limits were different, the tangent at that point would
also be D, which is imposssible, as v is a bijection. ad
Remark: Using standard arguments in singularity theory, one can
check that for a generic support function h, a plane hérisson will have
only non degenerate cusps (where R(u) = 0, R'(u) # 0).
As an example the hérisson defined by the support function h(8) =
cos38 is pictured below

Figure 16: cos 36



4.3 Minkowski sum and mixed volumes

The intersection of a compact convex body with one of its support lines
D, has to be convex, that is has to be a segment. Let us define the
Minkowsk: sum of two convex bodies @3 and @, by:

Q1+ Q2 = {m1 + ma|my € Q1,m3 € Q3}

One verifies that the support line of Q; + Q2 orthogonal to the vector
1 € S! has the equation:

< mlu >= hy(u) + ho(u)

where () + Q2 are the support functions of Q; and Q3. In other words,
hi-hs is the support function of Q1 +Q2. Of course scalar multiplication
(homothety) is compatible with the Minkowski sum:

AQ = Q + AQ when A+ A =X, 20,2220

Figure 17: Minkowski sum of a triangle and a convex body of smooth
boundary

Remark: When the two convex bodies have at every point of their
boundary, a strictly positive curvature, the boundary of @, + Q3 is the
set of points {my(u) + mo(u), s € S}

Proposition 4.3.1 The volume of the Minkowski sum AQ; +u@Qs is an
homegeneous polynomial in A and u:

vol(AQ1 + pQ2) = AvolQ1 + (A - p)V (Q1, Q2) + pPvolQ,
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Figure 18: aera of a convex body in terms of the support function

Proof: We will compute the area of a convex body € in terms
of its support function k. Mixing the support function A and the arc
length ds of the boundary dQ one gets (see fig )

vol(Q) = b0 hds

An unambiguous , but heavier notation would be:

vol(@) = /a BV els)ds

where ¢ : S oht(o@) — 0Q is a parametrisation by arc length of 9Q,

and N (c(s)) is the exterior normal at ¢(s) € Q. We have computed in
terms of the support function the ratio between the arc length and the
length swept by the normal:

L _ R(w) = jee(@)| = h(w) + K" (W)

Here R(u) denotes the radius of curvature of the envelope of the lines
< m|u >= h(u) at the caracteristic point m(u}. We get:

vol(Q) = %./:5'1 h(h + B'")du

Recalling that the support function of the Minkowski sum of AQ; + uQ2
is: Ay + ha (h1 and hy being the support functions of @ and Q3), we
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get :

vol (AQy + p@Q2) = %fsl (Ahy + pha)[(Aha + pha) + (Ahy + pho)]du

1 1
= 5 JL by + 2 + ., sha) e + )+

1 1
45 Jo )b+ ) + 5 [ (uba) Ok + A8

The first two integrals are respectively A%vol(Q;) and p2wol(Q3).
The sum of the two last ones is Ay times an integral mixing the two sup-
port functions and the two radii of curvature. This integral V(Q;, @;)
is called the mized volume of Q; and Q. a

We "see” the mixed volume on fig minkowski sum of a triangle and a
convex of smooth boundary above. It has also interesting interpretations
in algebraic geometry see [Teid].

4.4 Inequalities

Inequalities between functions of length, volume, mixed volume of con-
vex bodies is a very rich topic, including isoperimetric inequalities. The
interested reader can consult [Bo-Fe], [Schnei] for example.
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5 Grassmann manifolds

5.1 Definition of vectorial and affine Grassmann mani-
folds

Let us now show that the set G(n,p), called Grassmann manifold, of
vectorial subspaces of dimension p of R™ has a natural structure of a
(n - p)-dimensional manifold. Consider a p-dimensional subspace hg of
IR™. Let us denote by Ag its othogonal subspace (hg has dimension n-p).
Any p-dimensional subspace i of R™ transverse to hi is the graph of a
linear map Ly from hg to A , and any such graph is a p-dimensional
subspace transverse to k3. Chosing bases in ho and hg the matrix
of that map is a p X (n — p) matrix. This procedure defines a chart
of G(n,p). Using all the p-dimensional subspaces of R™, we get an
atlas of G(n,p). It is, in fact, enough to consider the (;) p-dimensional
coordinate subspaces to get an atlas.

Figure 19: A chart of G(n,p)

Remark: The Grassmann manifold G(n,1), that is the set of lines
of IR, is the projective space P,_;. It is the quotient of the sphere S™~1
by the antipodal map, g — (—¢). The Grassmann manifold G(n,n — 1)
is also diffeomorphic to IP,,_; as you can see using the correspondance
between a plane and its orthogonal line. Using the same diffeomorphism
we can see that the hyperplanes containing a given line form a P, C
P,_;. After defining a riemannian metric on G(n,1) we shall see that
the diffeomorphism G(n,1) — G(n,n — 1) is also an isometry.
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Using the action of the group of linear isometries on G{(n, p) we will
prove that the Grassmann manifolds are compact.

Lemma 5.1.1 The Group O(n) of linear isometries of IR* is compact.

Proof: The product $”xS™X...x.S™ (n times) is compact . The set
of orthonormal bases of R™ is a closed subset of $? x $™ x...x §™, defined
by the equations < u;ju; >= 0. 1t can be identified with the linear map
which sends the canonical basis (e, e3,...,e,) to the orthogonal basis
(w1, Uz, .., un).The group O(n) is therefore a compact set. m

Theorem 5.1.2 The Grassmann manifold G(n,p) is homeomorphic to

the quotient:
S0(n)/SO(p) x SO(n— p)

Proof: Let us first prove that the two sets are the same. The
image by an element g of O(n} of the p first vectors (e, 3, ..., &) of the
canonical basis generate a p-dimensional subspace k& of R™. Let us call

E, : O(n}) = G(n, p)

this map. Let us now consider two isometries, g3 € O(p) and g2 €
O(n — p). They determine an isometry (g, ® g2) € O(n). The image
of go (g1 ® g2) is again h. A subspace h of dimension p admits an
orthogonal basis (u1, ug, ..., 4p); the orthogonal At admits an orthogonal
basis (t(p41)s - Un) and the basis (uy,...,u,) is the image by a linear
map of the form go(¢g1@g2) of the canonical basis (ey, ..., e,). Therefore,
the kernel of the map E, is the subgroup [(g1® g2)] € O(n). This proves
the set equality G(n,p) = O(n)/[O(p) X O(n — p)]. To prove that the
topologies coincide, one needs essentially to prove that the map from
an orthogonal system (u,...,up) to the linear subset A it generates is
continuous. This is easy, lengthy and boring, therefore we "leave that
proof to the reader”. ]

Remark: Equally exciting is to prove that the topology on G(n, p)
obtained using the Haussdorff distance on the intersections of p-dimensional
subspaces with the closed unit ball (or with the unit sphere) is again the
same as the manifold topology.

Remark: The orthogonality in R™ provides a diffeomorphism be-
tween G(n,p) and G(»,(n — p)). This diffeomorphism is an isometry
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for the riemannian metrics invariant by the action of the isometries we
define below.

The set A(n, p) of affine p-dimensional subspaces form a fiber space
over G(n, (n — p)) with fiber R{*~?), The fibration map associates to a
p-dimensional affine subspace H of R™ its orthogonal complement ht.
The intersection H N kL gives the isomorphism between the fiber and
R™.

5.2 Metrics and measures

The group of linear isometries of R™ acts on G(n,p). It is natural to
look for a metric on G{(n, p) which is invariant by this action. to do that,
first observe that our charts

{linear maps h > h'}

give also the tangent space in h to G{n, p). The euclidean metric of R™
allows us to choose an orthogonal basis in A and in h*. Let us put on
the (p x (n — p)) matrix space the natural euclidean norm:

|IM|? = (squares of the coef ficients)

This defines on G(n,p) a riemannian metric invariant by the action of
the linear isometries. We leave as an exercise for the reader to check
that the covering map from §n=1) to G(n, 1) is a local isometry.

The measure associated to this riemannian metric is also invariant
by the group of linear isometries.

Remark: The previous results can be rephrased in terms of homo-
geneous spaces. One then observes that the measure defined above is a
quotient of the Haar measure on O(n), and that the metric we defined
on G(n,p) is such that the projection O(n) =+ G(n,p) is a riemannian
submersion.
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6 The Gauss map and what can be done in
higher codimension

6.1 Gauss map and principal curvatures

We consider first the case of an embedded submanifold M of R™. It
is then oriented (the normal vector N(m) in m € M points out of the
bounded component of R™ \ M), we can define the Gauss map:

v: M = S mey N(m)

We will also consider a projective Gauss map, also denoted by + when
there will be no ambiguity, using the line L(m) normal in m to M:

¥: M =Py, m— L{m)

Its critical values are images under the natural projection of the critical
values of the (spherical} Gauss map and the critical points of both Gauss
maps are the same. The Gauss (or Gauss-Kronecker) curvature K(m)
in m € M is the jacobian at m of the (spherical) Gauss map. The eigen-
values of dy(m): k1, k2, ..., kn—1 (there may be repetitions) are called the
principal curvatures of M in m. To each corresponds an eigenvector e; ,
and these eigenvectors can be chosen to form an orthonormal basis. The
second fundamental form II(m) is defined by:

II{m)(v) =< dy(m){v)|v >

It can be diagonalised in an orthonormal basis, precisely the one we have
chosen before to diagonalise dy . The symmetric functions of curvature
are the coefficients of the polynomial

n—1

det[Id + tdy(m)] = TT(1 + kit)(1 + kat)...(1 o+ knat) = D o3 (m) ¢
0

When possible, we shall drop the point m in o;{m).

Remark: Consider an i-dimensional subspaces h C T,,M. In a
neighbourhood of the point m the intersection M N {(h @ L(m)) is an
hypersurface of & @ L(m). Denote by K(m,h) the Gauss-Kronecker
curvature of this last hypersurface, oriented by N(m).
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Proposition 6.1.1

oi(m) = const ] K(m,h)
G(Tm M, i)
where G(Ty, M, i) is the Grassmann manifold of i-dimensional subspaces
h c T, M and const is a constant depending only on dimensions.

The proof amounts to compare the integral of the proposition with
a trace of A(y) acting on the exterior algebra A'(TnM).("folklore”,

[Lan5]}).
We can locally write an equation:

Ty = f(:l:1, L2y anay 27,1_1)

for M, choosing the first (n-1) coordinates to be on axes generated by the
vectors ¢; and the last on the axis generated by the normal N(m). Then
the Hessian of f at m is a diagonal matrix with entries &1, k2, ..., kn—1 -
This proves the:

Proposition 6.1.2 The point m is a degenerate critical point of the
orthogonal projection of M on the line L(m) generated by the normal
N{(m) if and only if m is a critical point of the projective Gauss map.

Corollary 6.1.8 The set of lines L € IP,_y such that the projection py,
on L admits degenerated eritical points is of zero measure.

Proof: By Sard theorem, those lines, which are critical values of the
projective Gauss map, form a set of measure zero. O

The proof of the Exchange theorem of section 3 can be copied to get
the:

Theorem 6.1.4 Erchange theorem in codimension 1
K(m)|dm = j M, L)dL
[ mtdm= [, 1)

6.2 Lipschitz-Killing curvature

Suppose now that M is a submanifold of codimension p > 1 of R”". The
dimension of M is n. We denote by A/(M) the normal bundle of M and
by M (m) its fiber: (TuM)L C Ty M. We can either
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e Define a generalised Gauss map from the unit normal bundle A (1)
of M to S¥—! by y(m,v) = w. Denote by K (m,v) its jacobian at
the point (m,v) € A1 (M). This makes sense as the unit normal
bundle has a natural metric, induced by its embedding in TRY )
which makes the bundle projection a riemannian submersion:

§ | iver= restriction of the ambient euclidean metric

§ [horizontal space= pull back of the metric of M

We also define the projective normal bundle PA/(M) as the quo-
tient of A’'{M) by the antipodal map on each fiber; we denote by
PAN(m) the fiber of this bundle.

1)The Lipschitz-Killing curvature of M at m is:

K(m)=1/2 /M oy Km0

When the dimension of M is even K{m,v) = K(m, (—v)) so we
can write:

K(m) = flem) K (m, v)

2)The absolute curvature of M at m is:
K|(m) = f K(m,v
KUm) = [ 1Ko

Notice that in general |K|{m) # | K (m)|.

o Consider, for each v € A'(m) the orthogonal projection Pm,w
of a neighbourhood of m on the subspace T,M @R -v. At m
we can compute the Gauss-Kronecker curvature of the hypersur-
face py v(neighbourhoodofm). Let us call it also K(m,v). The
Lipschitz-Killing curvature and the absolute curvature are then
obtained by the same formula as above;

K(m)=1/2 jN oy Km0

and:
K|(m _.—/ K({m,
| K|(m) ]PJV()I (m, v)|
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Proposition 6.2.1 The two definitions of K(m,v) given above coin-
cide.

Proof: Let us take a point (m,v) of the unit normal bundle. If
K(m,v) # 0, locally, the inverse image by the Gauss map of

R-véh T M

is an n-dimensional submanifold V € A1 (M) transverse at (m,v) to the
fiber A'1(m). Observe that if (z,w) is a point of V, the vector w is
orthogonal to P, o (TeM) at pr {2). Let J{z,w) be the jacobian of the
projection of T,V onto the horizontal space H. Almost by definition
of the horizontal space it is also the jacobian of the restriction to To, .V
of the differential of the projection of the fiber bundle A1(M) onto its
base space M. Using the splittings :

Tt NUM) = H & T (N (m))
RY = T, M & N (m)

the linear map dG(m, v) has the matrix:

( (dG(m,v)[H)  (0) )
* Id

Therefore, using the first definition of K (m,v):
K(m,v) = det(dG(m, v)|H

As
GV (z,w) = w = y(pm o(2)
One has, using the second definition of K (m,v), which uses the projec-
tion pm, v(M) :
J(m, v) K (m,v) = detd(G|V(m, v)) = J(m, v).det(dG|H)

a
An exchange theorem can now be stated in any dimension and codi-
mention:
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Theorem 6.2.2 General exchange theorem
K|(m)|dm = f M, L)dL
S, lmiam = [ fui(ad, 1)
Proof: Use the change of variable theorem for the map
G :NY (M) — SV,

the first definition of the Lipschitz-Killing curvature, and use Sard’s

theorem as before. mi
Example
Let C be a curve in R3.We will use the Frenet frame (T,N,B),T(m)

unit tangent vector to C in m given by the orientation, N (m) = ‘% and

B(m) = T(m) A N(m). Let 8 be the angle between a vector v € N(m)
and the principal normal N(m) in the normal plane oriented by the base
N(m), B(m). then K(m,v) = k(m) - cosf, where k(m) is the curvature
of C' at m. This proves:

Proposition 6.2.3 For a space curve C C IR®, the absolute curvature

satisfies:
|K|(m) = 2k(m)

Remark: Using our second viewpoint we can also associate to each
projection py, (M) a second fundamental form 7, ,.

6.3 Total curvature of submanifolds

As in the previous section, M is an n-dimensional submanifold of codi-
mension p of R",

Definition 6.3.1 The total curvature of M is :
Lo(M) = g [ |K]
0 = g
2|Py-1| Im
The constant is chosen in a way that round spheres ¥ contained in an

affine p-space of RY satisfy Lg(X) = 1, extending the choice Lo(point) =
1,which one may view as the starting point of integral geometry!
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Theorem 6.3.2 Fzchange theorem

1 1
Lo(M) = 5 I
0( ) 2I'IPN'—ll H)N_;LQ(M,L) 2|IPN...1| M| |
where Lo(M, L) is the number of critical points of the orthogonal projec-
tion of M on L.

Remark: From now on the notation Lg(M, L) is more convenient than
the usual one: |u|(M, L),as it will give a nicer form to the reproductibil-
ity property of the p-length functional (see chapter Blaschke formulas
and kinematic formulas).

Proof: It reduces to an application to the generalised Gauss map:

v:PN(M) =Py,

of the coarea formula:

Jo. A0 D= [ L

A point m € M is a critical point of the orthogonal projection pr, on the
line L if and only if L is contained in the normal space at m to M, that
is, if and only if L € P(A/(m)). This shows that the number #§y~'(L) is
just the number Lo(M, L). Finally observe that for almost all lines L,
the orthogonal projection on L is a Morse function (see [Mi2]), which

implies that
Lo(M, L) = f(eritical values of pr.)

In particular, for curves and surfaces immersed in R3 we get:

Proposition 6.3.3 Let C be a curve in IR, then:

LO(C Lg C L

2|lP?|/1P2

This formula is usually writien as:

Lk=3 [ e
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Proposition 6.3.4 Let M be a surface immersed in R3, then:

=1 -1
LO(M) = TP‘ZI-'[F LU(M’ L) - 2“1321 fMqu

This formula is usually written as :

S El= [y
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7 Higher dimensional convex bodies and related
matters

7.1 Support function

As in the case of IR? let us consider a function H : =Y — R. To such
a map corresponds a family (parametrised by S (»=1)y of hyperplanes of
R™:
u— h={z| < z|v >= H(u)}

We have observed in part 4 (Prop 4.2.1) that a support function on S*
defines the boundary of a convex body if (b’ 4+ k") is everywhere strictly
positive. A.D. Alexandrov [Al] observed that, if a support function H :
Sn=1 3 R satisfies det[hessian({H) + Id - H] > 0 then the hyperplanes
of equation < m|u >= H(u) envelope the boundary of a convex body.
The Minkowski sum is defined as in the dimension 2 case:

Q1+ Q2 = {myg + ma|my € Q1,m2 € Q2

In the same way as in the plane case, the mixed volumes V{(p, Q1, ¢, @2), p+
g = n appear as coefficient of the homogeneous polynomial vol(AQ; +

#Q2) .

Theorem 7.1.1 Let Q1 and Q2 be two compact convex bodies of IR".
The volume of the convez body (MQ1 + pQ2) is an homogeneous polyno-
mial of weight n in A and p:

vol (AQ1 + p@2) =
= /\“volQl-l—)\”_lpV(n—l, Q1, 1, Q2) 4.+ XNuV (p, Qu, g, Q2)+... +u" volQ

Proof: We need, as before to observe that the support function of the
Minkowski sum is the sum of the support functions of the convex bodies
A@Q and p@Q9, and to use the formula:

vol(} = 1H-det[JlLIes:;(H)+Ial-H]
gn—

where again H is the support function of Q. 0

36



7.2 Quermassintegrals and Steiner’s formula

A particular case is the case where the second convex body is the unit
ball B{0,1). The Minkowski sum @ + rB(0, 1) is the thickened convex
set:

Qr = {mld(qu) < 7‘}

There are two other ways to compute vol(),.

Proposition 7.2.1 vol(Q,) is a polynomial in r, the coefficients of
which are the symmelric functions of curvature defined in the previous
paragraph:

n=l pti
{ = vol f

Proof: Let us consider the map ¢, from 90 to 9Q; defined by:
¢:m—rm+tN(m),0<t<r

which, for a fixed t, maps Q to dQ;. The reader can check that 7,,8Q
and T, 18 (m)0Q: are parallel. We can compute the jacobian {det(dé¢):

n—1

|det(d@s)| = |detId + tdy(m)| = > o,t?

p=0

Integrating on 9@, and for 0 < ¢ < r, one gets:

n—1 p+1
voll), = vol() + /
Q: = volQ gﬂ T e

a
To state a second way of computing volQ, we need first to define the
Quermassintegrales of the compact convex body €.

Definition 7.2.2
M Q —-"/ { Q
p41(Q) (1) vol(pr(Q))

where py, is the orthogonal projection on the (n-1-p)-dimensional space
h.
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In particular M; is the volume of Q). By convention M, is 2.

Theorem 7.2.3 Steiner’s formula

n—1

volQ, = volQ + Y, (p11 ) Mp 1 (Q) - P+

p=0

Proof: The proof uses induction on the dimension. The convex @, is
the union of @ and the parallel hypersurfaces 9¢Q:,,0 < ¢; < r. There-
fore:

volQ, = volQ + f vol(9Qy, )t
0
Let us compute vol (8Q,) using Cauchy’s formula:

n—1

Wn—2

vol (0Q:,) =

] vol (p1(8Qs,)
G(nn—1}

where w,,_» is the volume of the unit (n-2)-sphere, and A is a hyperplane
of R™, The projection py(8Qy,) is the Minkowski sum of the projection
pr(0Q) and the ball B(0,1,) of radius ¢; in h. Therefore by the induction
hypothesis it is a polynomial in #;:

n—2

vol (pr(0Q1,)) = vol(prdQ) + > (F71) Mpy1 (prOQ)E™

p=0

Integrating the constant term, for 0 < t; £ r will give the coefficient
of r in Steiner’s formula. To get the other terms we proceed with the
induction. Let hy C hq—q C ... C ko C by C R" be a flag of nested
subspaces of codimension (qy...,2,1) of R™. The projection pp, satisfies:

phq - phq o phq_l O .. Oph2 Ophl

We call flaf space the set of hy C hy—y C ... C b2 C hy C R". The
natural map Ay C fger C .. C ha C hy CR® = A1 <2 < ¢
defines , for each %, a fibration of total space the flag space and base the
Grassmann manifold G(n, n—1). These fibrations endowed with natural
metrics we shall not explicit in general inherit measures invariant by the
action of the group of isometries which can be locally decomposed in
the product of a measure on the fiber and a measure on the base. This
justifies our frequent use of Fubini’s theorem, in particular when a given
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flag space admits two different projections on two different Grassmann
manifolds. Integrating on the flag space

F(o,n=1,.n—q)={R"Dhy D hs D hny}

we get :

t- [ o = ! =
cons L(n,n—l,...n—q) ve (phq( Q)) -/G(n.n—q) ve (phq (Q)) Mq

0

Remark: Identifying the coefficient of r* in the two expressions of

vol(),, we get an equality between a quermassintegrale and an integral
of a symmetric function of curvature on Q.

7.3 Orthogonal projections, polar varieties, and p-length
of an n-dimensional submanifold of IR"

In this paragraph we shall modify the definition of Quermassintegrale so
that it can be extended to any submanifold, and will also carry a sign
information.

Definition 7.3.1 Let 'y, be the set of critical points of the orthogonal
projection py, of M on h, and let v, = pp(T'y) be the critical locus of py,.
We shall call I'y, a polar variely .

It is not in general a manifold but is one almost everywhere for almost
every h.

In this paragraph we shall often use the word generically which
means; "up to a suitably chosen measure zero set”, the measure should
be natural, and the choice is often part of a nontrivial theorem involving
sometimes a computation in a jet space. A theorem of Thom [Th] implies
that generically (for almost every h) -3 is almost everywhere a (dim(h)-
1)-submanifold of & if dim(M) > dim(h) — 1. If dim(M) < dim(h) — 1
then 54 is just pp(M) and has generically the same dimension as M.
Moreover generically the projection of I'y, on 7, is one-to-one and a
local diffeomorphism.

Polar varieties will appear again in the study of foliations and of
complex singularities.
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Figure 20: The polar curve T, and its projection 7

Instead of proving the afirmation, we shall justify it, by describing
'y (and its projection 44) in a neighbourhood of a point m where M is
not flat.

Proposition 7.8.2 Let h be a linear subspace of RN of dimension n
and let M™ ¢ RN be an n-dimensional submanifold. Let m be a critical
point of the orthogonal projection py on h. Let H be the affine subspace
orthogonal to h and containing m. Let v be a unit vector conitained in
(TnM)* Nk and w be a unit vector contained in Ty M N At . Then,
if I o(w) is different from zero, the polar variety I'y is transverse to
ToMNht.

Proof: Choose a local parametrisation ® of M such that

o o

L = Lo s
o, =—(m)=w e (h-NTpM), o, (m) € (Rw)~fori>1

Then at m,

dettpn (), () P ) =0

The derivative at m of that determinant is different from 0:

aJ od a® 0
3—tld€t[ph(a_tl')1 ph('aTzL ey ph(ﬁ)] (m) =

40



~det[’ph(%§)aph(at )y o ,Ph(g?)](m)‘l‘

2
+ T detlon(Gp), o i) o PG )

i>1

So:
© ) 9% b o0

a det[Ph( ) ph(at Lquh(ﬁ)] =

2
— detipn( (3 ‘1; ) oh(Geds P

as we have chosen the coordinates such that ph(-g%)(m) = 0. It is not

difficult now to check that the component of ph((%:—%f) on w is non zero
if and only if I, ,(w) is non zero.

In a similar way, when A is p-dimensional we have the:

Proposition 7.3.3 Leth be a linear subspace of RN of dimensionp < n
and let M™ C BN be an n-dimensional submanifold. Let m be a critical
point of the orthogonal projection py on h. Let H be the affine subspace
orthogonal to h and containing m. Let v be a unit vector contained in
(TM)*Nh . Then, if I,y | TnM N kY is non degenerate, the polar
variety Ty is iransverse to T, M N AL,

Proof: As thesecond fundamental form 17, , | T MOA* is symmetric
we can choose a basis (by, ..., by—ps1) of Try M N AL made of eigenvectors.
The polar variety I'p, is the intersection of the polar varieties ['s; where
the n-dimensional spaces h; are generated by £ and all the vectors of
the base (b1, ...,0,—p41) except b;. Then we can apply the previous
proposition to the projections py;. g

Definition 7.3.4 The p-length of M, L,(M) is:

LP(M) = C(Nv n,p) |7h|dh
G{N,p+1)

where |yn| denotes the volume of yp (when p = O, 7y, is a finite set
and |y, is the number of points §(vn) of vx). The constant C(N,n,p) is
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chosen so that if M is the boundary of an e-tubular neighbourhood of a
p-dimensional submanifold C' of RN, then:

limesoLy(M) = [C|

If tM denotes an homothetic image of M by an homothety of ratio

t > 0 then:
Ly(tM) = 17 Ly (M)

This motivates the choice of the constant EIIT’IN_-ll occuring in the def-
inition of Lg, since a sphere of any dimension (> 1) satisfies |yr| = 2
for every line L € G(N,1) = Py_1, and in particular so does a small
sphere of radius ¢ centred at a point p.

The functional L; has been applied to measure the ability of an algae
to house little mobile marine animals (see [Ja-La]). As an exercise, the
reader may check the value of the constant in the definition of L; when

M is a surface in R® :
1
LyM) = — f
()= 7 [

Hint: Compare the projections of a round cylinder and of its axis on the
plane k € G(3,2) :
In section 8 we will show that the functionals L, satisfy a linear
kinematic formula relating them to the functional Ly.
a

7.4 Tubes (2)

The main tool to add a sign information to the varieties «; is d’Ocagne’s
theorem. Let M be an oriented surface of IR® and let & be a plane. Let
m be a critical point of the orthogonal projection of M on h such that
IT.(w) # 0, where w is a unit vector generating h*. Then we have
seen in the previous subsection that the projection py (I Nv(m)) of the
critical points of p;, |pr contained in a neighbourhood v(m) of m form
an oriented curve 7y in a neighbourhood of py{m).

Theorem 7.4.1 d’Ocagne’s theorem The Gauss curvature of the
surface M at m is related to the normal curvature Il (w) in the direc-
tion w and the curvature k., of v al pp(m) by:

K (m) = I (w) - by, (pa(m))
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Proof: First recall that the orientation of M imposes the choice of
the normal vector N (m) used in the definition of the Gauss map and of
the second fundamental form. This normal vector N(m) belongs to A,
and therefore is normal to -y, at py(m), define the orientation of 4. The
vector N (m) is also normal at m to the curve C = M N (bt @ RN (m)).
Meusnier’s theorem implies in particular that the curvature at m of the
curve C is Il,(w). We will now compute dy(m) using at the target
the orthogonal basis (w,e€), where e is a unit vector tangent to v, at
pr(m), and at the source the basis(not orthogonal but of determinant
one ) (w,¢), where ¢ is a tangent vector to I'y, at m such that pj(e) = .

The matrix of dvy(m) is:
Ha(w) 0
+  dF(paim))

where ¥ is the Gauss map associated to +;. Therefore:

_ o Haw) ()
K(m"det(* d‘if(ph(m)))

(W]

Remark: Suppose m is a point of negative Gauss curvature K (m) <
0. If h* is an asymptotic direction of T, M, then II,(w) = 0 and
the critical curve v, will have a cusp at p,(m). As the curvature goes
to infinity when a point approches a cuspidal point, this agrees with
d’Ocagne’s theorem.

The generalisation of this theorem to higher dimension hypersurfaces
M™1 C R™ is straigtforward. The subspace h is now p-dimensional,
v has generically dimension p-1, and the intersection C = M n (bt &
RN (m)) is now an hypersurface of the (n-p+1)-dimensional affine space
(containing the point m € M), (At @ RN (m)). At m, C is oriented by
N(m),so we can compute the Gauss-Kronecker curvature K{(C, N(m), M)
of C at m. As 7, is also oriented by N(m) at py(m), the Gauss-
Kronecker curvature K (v, N(m), pn(m)) is also well-defined.

Recall that in the previous paragraph we showed that if the restric-
tion to (' & RN (m)) of the second fundamental form II,, is non de-
generate, that is if I((C, N(m), m) is different from zero, then I'y, is, in
a neighbourhood of m, transverse to A*.
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Figure 21: v, with a sign
Theorem 7.4.2 Let h be a p-dimensional subspace of R™ and M an
hypersurface. If K(C, N(m), m) is different from zero, then :
K(m) = K(C, N(m),m) - K (74, N (m), pa(m))
Proof: Use at the target an orthonormal basis
(€1, €2, ey €n—py €1, very Ep—1),

split between 1 and Ty, (m)Th, and at the source the basis of determi-
nant one: (€1, ...,€n_p, 01, ..., ¢p_1) Where a; is a vector tangent to 'y
at m satisfying pn(o;) = €;, and repeat the previous computation. O
That way we can see 7, as a weighted variety (or a chain), weighting
generically the points w € 4 with the sign €(w) defined below:
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Definition 7.4.3
€{w) = sign[(C, N(m),m)]

where m is the (generically unique) point in vy, which projects on w and
where C = (h* @ BN (m)) N M is the oriented "vertical” intersection
considered above.

We need now to define the sign ¢(w) when M is of codimension higher
than one. Each generic projection on a p-dimensional space h determines
two varieties I'y and <. At a generic point w € 44 a normal line v is
well-defined. When the dimension of C' = M N (k' G v) is even, the sign
of the Gauss-Kronecker curvature of the orthogonal projection of C on
TmC @ v does not depend on the choice of the unit vector generating
the line v. So we can still define

e{w) = sign(K(C,m,v))

when the dimension dim(C)=n —p+ 1 is even.
A d’Ocagne theorem will still be valid, for generic A and m € T'y,
when the dimension of M (and v} will also be even:

I{(Ml may) = 'K(C’ m, ) - ‘K(f}'h:ph(m)'l V)

In particular, when % is a line L, vy, is generically finite and ¢(w) is
well defined if M is even dimensional, or if M is an oriented hypersurface.
Then:

€(w) = sign(K (M, m, L)) or sign(K (M, m, N(m)))

In the first case it coincides with (~1)79e(™) where the index is the
Morse index of the critical point m of the Morse function pp (its parity
does not depend on the orientation of L, as dim(M) is even).

Definition 7.4.4 We will call 7,1" the chain obtained by considering
along v, the almost everywhere defined weight e(w)

Definition 7.4.5 We will call | v |the integral:

7 1= j @)
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D’Ocagne’s theorem implies that the sign e(w) behaves nicely through
compositions of projections. Let us consider a flag by C by C ... C Ay
of nested linear subspaces of RY such that dim(hy) < dim(M). Let
m € Tj, be a critical point of pp, such that K(M N (hf @ RN (m))
is not zero. Let wy = pj, (m),wz = Pry (M), ey = p,(m). Sup-
pose also that the projection of v, on 7, is such that the curvature
K (Yhiy, N[(A:)E N hips @ RN (m)], N(m)) is non zero at wiy,. Then we
can define the sign:

i +1,4) = 5ign(K (Vheyy N ()" N higs ® RN (m)], N(m))
Similarly, projecting v; on i for j > i, we can define an index
Definition 7.4.6

e(hi, hi) = e(4,1) = sign(K (ya; N [(R:)* N h; @ BN (m)], N(m)))
Proposition 7.4.7 The signs €(j, ¢) multiply in a nice way:
e(f,8) =€e(g, ) -e(l,)ifi< i<
and in particular:

e(w) = H (et 4+1,4)

We can now apply Steiner’s method to compute the volume of Tub, (M),
and Th,(M) when M is of codimension 1, replacing the Quermassinte-
grales by the signed lengths | 7§ |. This is what we have already done
for plane curves in §3. Let us prove a theorem for compact surfaces in
IR3. Its generalisation to M™ C RY is natural but cumbersome.

Theorem 7.4.8 The volume of the thickening Th.(M) of the compact
oriented surface M immersed inlR> is:

_ 1 1,
volTh,.(M) = r[vol(OM) + L jG(S,?) [ vn | +§T‘ ./le [z |

Proof: To prove the formula, we have to compare two functions on
the plane & defined using the vertical (orthogonal to k) affine lines L,
through points y € h:

wno(y) = §(Ly N M)
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ent(y) = §(Ly N M)
where My is the surface:
M; ={m+tN(m),m € M}

Let us also denote by 'th ¢ the critical locus of the orthogonal projection
of M, on h, and by 7“ the corresponding weighted curve.

The discontinuity Tocus of cpho is contained in the curve 3, the
distribution derlva.tlve of ppo is 'yh In the same way, the distribution
derivative of ¢y is 7h .

Lemma 7.4.9 For a given h, the difference Chi — Pho 18

t
Pht — PrO = fo [ 'Yff,t |

Figure 22: [ |7, |

Proof: (of the lemma) The curve «3 is parallel to +:
Yhe = {w+ EN(m),w € v}

where m is the (generically unique) point of I'y, which projects on w €
Y. For almost every h, almost every w the curve 7 is smooth in a
neighbourhood of w. Then so is v, in a neighbourhood of w + tN (m);
the vector N(m) = N(w) is orthogonal to all the curves v,,,0< 7 < ¢
at the point w + 7N (m).
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It is clear that, out of the union of the curves v5,,0 < 7 < ¢, the
functions @ o and @y, are equal. In a neighbourhood of a small smooth
arc a of ya,, itself of the form a; = {w+tN(w),w € & C 74}, we can
take a patch of the form:

{w +8-Nw),wy =w+tN(w),w € o}

On this patch the difference (@pi4t, — @ny is 2 - €(w). The area of
the patch is ff"’t‘ |7n,6]- Then the functions g, and @po may have
different values in y € b,y & vn, ¥ € va, only if y belongs to some curve
Yr,0,0 < # < t; more precisely, if y is not a center of curvature of -+,

then:
one(y) — eno= Y €la)
eEA

where A is the set:
A={ach|y=a+7mN(m), 7o <t,pr(md) =e¢ €

O
Let py 1, be the projection of the curve 4, on a line L C h. We get a
function ¢y, 10 defined by:

enLo= », €2

u€py ()

Cauchy’s formula implies that:
+ |_ d
|7 = flP, Ph,L,0dL

As the same is true for the curves 7,*1'“ we need now to compare the
functions ¢n 1 and @i Lo ,

Notice that the projection of the cusp of 44 is not critical for the
projection pr, : M — L, as the tangent to <y, at that point is not
orthogonal to L. We can compute the integral on L :

[r—onea=tl T en D))

critical pointsof pr
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Th

Figure 23: critical points of py 1,

where we define the sign €, 7 using the curve -, oriented by py(N(m)) =
N(m) = N{w); D’Ocagne’s theorem proves that this integral is:

f (onie—enpo) =t > €(2)]
L eritical pointsof py

We can now perform the same induction as for convex bodies to get:

T

1 1
ol Th, (M) = rlvol(M —rf —zf
wol The(8) = rfool(M)+ v [ n 4372 [ 1
and integrating from —r to 4r
volTub,(M) = 2r[vol(M) + R / 7L |
3 Jp,

this formula gives the "usual” one:

47

volTub, (M) = 2rvol(M) + 3 - x(M)

as | v [= p(M, L) = x(M). o

The universal constants in the general formulas are more compli-
cated, but we can conclude that, up to universal constants depending
only on the dimensions involved, the volume of Tub,.(M) and of Th,. (M)
when M is an oriented hypersurface, are polynomials in r whose coeffi-
cients are the oriented p-lengthes L} (M) = fG( N1y | 7|
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7.5 The localization of the p-lenghts L,

In 1939 H.Wey! [Wey] has computed the volume of the tube Tub,(M)
in another way, proving of course it is a polynomial in r, the coefficients
of which are integrals on M of functions that can be computed from the
curvature tensor. From the previous result we get equalities between
Weyl’s integrals of curvature and the oriented p-lengths.

A natural question is: is it possible to "localize” the (non-oriented)
p-lengths L,(M)7

The answer is positive. Let us first define the function A;(m) on a
surface M C R3. In the chapter The Gauss map and what can be
done in higher dimensions) we expressed the symmetric functions of
curvature o;(m) of an hypersurface as integrals of Gauss curvature of
properly chose sections. Now define:

Definition 7.5.1
1

m(m) = S fp o P

Where 1Py (TrnM) = G(T:nM, 1) = {lines in Tp,M}, and | k(m,l) | is
the absolute value of the curvature at m of the curve M N (I ® L(m)).

For future calculations it is useful to introduce the following notation.
Let p : E — B be a riemannian fibration and V C E a submanifold
transverse to the fibers F(y) = p~'(y), y € B. Let # = {#(z)} be the
horizontal plane field of the fibration.

The normal bundle N — M is endowed with a metric turning it
into a riemannian fibration. At z € N, TN is the orthogonal sum
t(N N Fyp) @ V(2) where V(z) is a subspace transverse to the fibers
of complementary dimension as #(2). Denote by Jacpy(s) the jacobian
of the orthogonal projection of V' (z) to #(z). Then the coarea formula
([Bu-Za)] )} yields:

[ Veerulds = [ 1F@w) N NIy

and more generally, if
6 M E

is an immersion transverse to the fibers, N = ¢(A), then:

f \Jace||Jacpy(z)|de = f |F(y) N N|dy.
M B
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Now we can "localize” L1(M).

Proposition 7.5.2 For M a surface in IR3,

Ly(M) = %jM b

Proof: Let w: E = F(3,2) =+ G(3,2) = G be the tautological line
bundle, £ = {l € G,m € I}.
Define also the projective tangent bundle of M: Py (M) = U,ncpr P (T M).
Let ¢ : P{(M) — E be the map:

¢(m, 1) = (h =1+, pp(m))

where py, is the orthogonal projection on the plane &, and let ¢(IPy (M)) =
N. We have just recalled that:

Sl = o o 1Fecbllacrnl,

so we compute the jacobians. Let { be a line through m in T,,M ,
L(m) C T;,nM denotes the line normal to M at m, h = I the subspace
of R?® orthogonal to [ and W the orthogonal to L(m) in h; see next
picture. We choose a basis of Ty, 1 (IP1(M)) as follows:

-Uy is a unit vector tangent to the circle fiber of IP; (M) at m

-Ur is a horizontal lift of a unit vector tangent to the polar curve I',
at m.

-Uy is a horizontal lift of a unit vector tangent to (I@® L(m))N M at
m.

Also, let U, be a horizontal lift (in E) of a unit vector tangent to
the critical locus 7y, at y = pr(m).

The volume of the parailelepiped generated by the first three vectors
is |cosf|, where @ is the angle between T}, ', and h.

The image d¢(Ur) is the vector *cos# - U,. The vectors dg(Uy)
and d¢(U;) are projected by the differential dn of the projection = :
E(3,2) = G(3,2) on two orthogonal vectors of T;4(,,)G(3,2), the first
unitary and the second of norm |k(m,!}|.

Hence

[Jach(m)||Jacpy| = |k(m, 1),
and the proposition follows by integrating over the fibers of IP; (M).
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Remark: A different proof of the proposition can be found in

[La-Shi] based on a Meusnier’s formula.
a

///
5
S

L{m)

Figure 24: Localization of Lm)

More generally we can define the functions h;(m) on an hypersurface
M C R". Let h be an i-dimensional subspace of 1;, M, and L(m) be the
normal line to M at m. Denote by |K|(z, k) the absolute value of the
Gauss-Kronecker curvature at m of the hypersurface M N{h & L(m}) of
h @ L(m).
Definition 7.5.3

1
h-m:—_/ K|(m, h)dh,
!( ) 'UOIG(TE—I,@) G(TmM,i) | I( )

where again G(Tm M, 1) is the sel of i-dimensional subspaces of Ty M.

The next proposition is now natural:
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Proposition 7.5.4 The functions h,_;(m) localize the i-length L;(M);
more precisely,

f hn—i(m) = const - Li(M),
M

where the constant const depends only on dimensions.

The proof can be found in [La-Ro2].
The definitions of the function h;(m) in higher codimensions can also
be found in [La-Ro2].
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8 Blaschke’s formulas and kinematic formulas

It is not by chance that the name ”integral geometry” was used (and
probabily invented by) Blaschke.[Bla]. One essential tool will now be
a measure on the group of afline isometries invariant by left and right
composition by an element of the group. Choosing an origin 0 of the
euclidean plane we can write the group of affine isometries as the semidi-

rect product:

G = R? x SO(2)

The invariant measure is then dg = |dv A df|, where dv is the volume of
R?, and # the angle of the rotation. The existence of such an invariant
volume on a Lie group is a more general phenomenon; see [Sa2].

8.1 Poincaré’s formulas
The first directly generalises Cauchy’s:

Theorem 8.1.1 Poincaré’s formula Let Cy and Cs be two compact arcs,
then:

] H(CL N Cy) = dlength(Cy) - length(Cy)

g

Proof: Let us consider the map
G:C;xCyx ST =G

(1, ma, 8) — (translation my — ma) o R

to compute the jacobian the choice of the origin is irrelevant, so we can
choose my, and see that it is: |sing|, the angle at m; of (translation m —
my) o Rg(C1) and Cy. The coarea formula gives:

[; Heincy) = | o 9

Integrating the left term on S! give the theorem. a
Remark: We can reformulate that proof, saying that the kinematic
density satisfies locally

|dg| = |sinf|dsy A dsy A dB)

where 8 is the angle at a point P € C1 N g(Cy) of the two curves.
In the same vein is the:
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Theorem 8.1.2 Let —m < 8 < 7 be the angle at an intersection point
of the oriented curves C| and C,. Then:

/ > 18] = 2nlength(C}) - length(Cy)
g cinCy

the only difference with the previous proof is that we need to compute
Jo 18] - |sinb|db.

8.2 Blaschke formulas

As usual in this book we will presentonly the simplest cases of the theory.
A comprehensive reference is Santald’s book [Sa2] . Blaschke formulas
compute averages of Euler characteristics of intersections of a compact
domain with boundary of R? and the image of another by all the isome-
tries. The "miracle” is that averaging the Euler characteristic of the
intersection D; N D, of two such domains on all affine isométries, the
result can be calculated using only integrals defined separately using D,
and D;. Let us attribute weight zero to area, weight one to length and
weight two to integrals of curvature along curves. Just observe that the
weight is related to their place in the formula giving the volume of a
tube or in Steiner’s formula. As often it is easier to prove first a formula
"with no sign”. So, let us first prove a formula for the total curvature
of the boundary of a domain:
definition The total curvature of an arc piecewise of class C€ is:

T©) = [ 1kl+3 164
where the angles 8; at the corners are oriented, defined by the oriented

tangents {0 the two curves.
Then one has the :

Theorem 8.2.1
/g‘TB(Dlﬂg-Dg):/gTa(Dgng-Dl)=

= 2n{vol(D1)TO(Ds) + length(8D1)length(0D,) + T D;)vol(D3)]
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Proof: Let us first compute:

n=[1f kg
G Ja(DingD;)

The map g ++ g™! is an isometry of §G. So the integral I; is equal to:

I =f/ Elld
' g[ a(gDsz)[ g

The integral I; is split into two pieces: one taking care of pieces of
8(D1 N gD;) images of arcs of dDy, the other taking care of pieces of
#(Dy N Dy) images of arcs of 8D;. For the first piece we use the second
expression of I, for the second piece, the first expression. The measure
of the set of isometries which send an infinitesimal arc ds of 8D, centered
in my € 8Dy into Dy is 2mvol(D3). In the same way, the measure of the
set of isometries which send an infinitesimal arc ds of 91, centered in
my € 0Dy into Dy is 2mvol(Dy)
We then get

I=27r] k| -vol(D vol(D f k
1 [aD1l| (D2) + vol(Dy) 3D2||]
The angles of d(Dy N D) are of two kinds:
the angles 6, b € B between an arc of dD; and an arc of g(6D3) ,
and the angles 87,7 = 1,2 of 312y or ¢(8D;) (here all angles are between

—7x and 7). Let
= [
gz’Eh
=[S0
gielz
L= [ ¥l
Ybep

Inverting as above the orders of integration we get:

L+ 1= 21r[2 |6'11| -vol(D3) + vol(Dy) - Z |Bf[]
fEIl fEIz

Summing with I; we get :

L+IL+I= 211'[T8(D1) . 'UOl(Dg) + ’UOl(D1) . Ta(Dg)]
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The integral I is an avatar of Poincaré’s formula (proved in previous
subsection) for all the pairs of curves, one contained in D, and the
other in 8D;. We conclude that:

Iy = 2nlength(0D,) - length(0Dy)

O
Taking care of the signs of the curvature and the angles in the pre-
vious formula we get:

Theorem 8.2.2 (Blaschke’s formula) The following weighted homo-
geneous formula holds:

ng(DlﬂgDz)=fgx(DgﬂgD1)=

= 2r[vol(D1)x(Da) + length(8Dy)length(0D2) + x(Dy)vol(D2))

Proof: The Gauss-Bonnet theorem for a compact domain D of R2
with boundary a piecewise C? boundary is:

X(D):/aDk +506

where the sign of the curvature is defined using the boundary orientation
of dD and where 6; are exterior angles at corner points counted with
the appropriate sign; see do Carmo’s book [dCa].

Let us compute first, exactly as in the previous theorem:

I = f [ / kldg
g JaDngD;
We then get

I = 2n] ja k- vol(De) + vol(Dy) /a oA

As in the previous theorem, consider: the angles 6,56 € B between an
arc of 3D; and an arc of g(9D;) , and the angles ¢/,7 = 1,2 of D; or
g(0D3) (again all angles are between — and 7). Let

12=/g§ja}

ieh
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Figure 25: Gauss-Bonnet for a planar domain with boundary(and cor-
ner)

Iy = /292

tEIz

I4—f29b

¢ beB
Exactly as above we get:

I+ I = 27> 6} - vol(Da) +wol(Dy) - Y 67]
ich icl

Summing with [} we get :
h4+bhL+h= 21T[X(D1) . ’UO!(Dg) + UOl(Dl) . X(Dz)]

Now observe that if we take care simultaneously of the sign of the angles
8, and of the orientation ¢(F) of the frame I made of the tangent vectors
to 8D, and 8D, we get to compute:

f (F) = 2rnlenth(C) - length{Cs)
g ClﬂCQ

Notice that the density |sinf|ds; -dsz-df coincide with the differential
form sinfds; A dss A df. The integral above is equal to the integral of
theorem 8.1.2 as #¢(F) = |4].
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We conclude that:

Iy = 2wlength(3Dy) - length(0D3)

R

.
L
\

Al
. \\\\\\\\‘ \\\\\\

Figure 26: Blaschke formula

8.3 Linear kinematic formulas, variation of a functional

In 1950, at the beginning of his book ”multidimensional variation” [Vi]
Vitushkin proposes the following general construction: Let M be a com-
pact submanifold of IR™. The intersections of M with almost ail affine
subspaces are also submanifolds. More precisely, the intersection of M
with an affine subspace of dimension N — p achieves its maximal di-
mension n 4+ p — N and is a transverse intersection on an open sub-
set of A(N,N —p)if (n4+p > N. It is void on another open sub-
set of A(N,N — p). the other cases form a subset of measure zero of
A(N,N — p). Consider any functional F defined on submanifolds of
euclidean space like

e The Euler characteristic x(Af)
o The total curvature Ly(M)

e the number of connected components of M: cal N(M)
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Then intersecting M with affine subspaces H such that the dimension
of M N H is p, and averaging we get:

Definition 8.3.1 The variation F, of the functional I is the integral:

f F(M N H)
A(N,N-p)

We can now state a theorem relating the variation of the total cur-
vature and integrals of functions locally defined on the manifold:

Theorem 8.8.2 let M be ¢ compact connected smooth (at least C?)} n-
dimensional submanifold of RN ; then:

(Lo)p(M) = const - L,(M)

Notice that:
(Lo)n(M) = Lo(M) = vol(M)

The variations of the Euler characteristic are linked to the symmetric
functions of curvature o;, the key result is Gauss-Bonnet’s formula:

2
X(M) = vol S /M K

when M is an n-dimensional hypersurface. We have observed that
Wey!’s formula computing the volume of the tube Tub, (M) implies that:

+ -
Ly (M) = const - fM On—p

The following reproductibility formulas are equivalent to Chern’s linear
Kinematic formulas.

Theorem 8.3.3 (Reproductibility formulas) Let M be a compact con-
nected smooth (at least C*) n-dimensional submanifold of RN, then:

LI (M) = const. L), (M)
For n = dim(M), for i =n, (L§)a(M) = vol(M)

The p'h variation of Lo is the integral [y n_p) Spram On—p, SO We
get
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Theorem 8.3.4 (Chern’s linear kinematic formulas)

f g; = const - f f Jy
M A(N,N—p) JMnH

In this form the name ”"reproductibility” given to that property of the
symmetric functions of curvature becomes clear. Chern was asking if this
was a characteristic property of those functions. The theorem concerning
the p-length function and the fact they are integrals of the locally defined
functions h,_, proves that the functions h,_, also are reproductible.

Proof: (of the reproductibility formulas)

Let GA(N,p+ 1,1)be the flag space of all couples L C A; h a
(p+1)dimensional vector subspace of RY and L an affine subspace in 4.
let H be the affine subspace of RV:

H=Lah"

Lemima 8.3.5 If the line L is transverse to 7y, the intersection LN~y
is the set of critical values of the orthogonal projection of (M N H) on
L.

Proof: A critical point w of the projection of (M NH on L is a critical
point of the projection of M on h, as L cannot belong to the image
pr(Tm (M) of the tangent space to M at m by py.

Conversely, the projection of the tangent space Ty, (M) is orthogonal
in b to (Tn(M)) Nk and is the tangent space at w to 7y, when -y is
smooth. If L is transverse to vy then:

pn(Tn(M N H)) = pu(k* + (T (M) N h)T) = {0}

which implies that
Pi(Tom (M 0 H)) = {0}
0
Observe now that the flag space GA(N,p+ 1,1) can be identified
with the flag space AG(N, N — p, 1) of vectorial lines contained in affine
(N-p)-spaces.
By definition

L,(M :const-/
p( ) Glnps1 |'Yh|
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Using Cauchy’s formula for v, we get:

LM zconst-/ NnL
(1) [ ovprn 00D

Using the lemma and the previous identification between flag spaces we
get:

Ly(m) = const - | NN CAULED

Integrating on the fibers of the fibration
Ag(N:N_pa ]-) “-}.A(N,N—p)

we get the desired equality. 0

To get the result concerning signed length it is enough to observe
that the sign e(w) is precisely the sign of the Gauss-Kronecker curvature
of the projection of MNA on (T, M NH)+ L. This last sign is also equal
to (—1)dex(m) where index(m) is the Morse index of the projection of
M N H on the line L , oriented by N(m), if M is an odd dimensional
codimension one submanifold.

As an exercise, juggling with flag spaces, the reader can prove that
a variation of one of the previous variations is a variation, that is:

Proposition 8.3.6 For i < p, one has:

L M——const-/ LiiMnH
p(M) (N, N—pti) i )
LY (M) = const - LIMnH
p( ) (N.N—p+i) [ ( )

8.4 General kinematic formulas

We have described a natural path leading from Blaschke’s formula to
Chern’s kinematic formulas: Consider two objects in IR™, move the sec-
ond, integrate some curvature function on the intersection, and average
on G. The result is a weighted homogeneous polynomial in curvatures
integrals on the two initial objects.
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Theorem 8.4.1 Chern’s kinematic formulas [Che] . If one of the inte-
grals is absolutely convergent, then both following integrals are finite and
equal:

f LF(Ming(My) = 3 const- LF(My) - LT (M)
g ptg=i

As before const replaces constants depending only on dimensions.

The reader who needs the constants will find them in Santald’s book
[Sa2].

8.5 Pohl’s, Banchoff-Pohl’s formulas and other formulas
involving linking numbers

The ancestor of the linking number is the index ic{m) of a point m
with respect to an oriented closed plane curve €. When the curve is
also simple the isoperimetric inequality is:

L?—47A>0

where L is the length of the curve and A is the area it bounds. Equality
holds if and only if the curve is a circle.
For non simple closed curves we have ([Pol] [Ba-Po])

Theorem 8.5.1
I? - 4x jm? (ic(2))? > 0

Equality holds for a circle, or a multiple circle (a circle traversed several
times or several coincident circles each traversed in the same direction
any number of times).

This can be generalized to higher dimensions. For example let C' be
a closed space curve, then the linking numbers of affine lines with the
curve also satisfy an analogous inequality [Ba-Po]

Theorem 8.5.2

L?-2 link(C,D)> 0
A(3,1)

Equality holds here only for C a circle, which may be multiple.
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Kinematic-like formulas using the linking number of two curves can
also be obtained and have been applied to obtain a better estimate of the

osmotic pressure of a solution of circle-shaped molecules as a function -
of the concentration [Po2], [Edwl], [Edw2], [Del], [Dup] .
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9 Integral geometry and topology

The development of this chapter of integral geometry really started in
1949, although Fenchel’s results [Fel] [ |k| > 27 was already proved in
1929.

9.1 Integral geometry of polyhedral surfaces in IR®

It is more elementary to first prove results concerning polyhedral sur-
faces, so we will first present Banchoff’s proof of the Gauss-Bonnet
theorem;[Banl] . Let us first define a polyhedral surface in S3. The
basic pieces are the closed plane triangles. Any triangle has in its bound-
ary three edges and three vertices. Triangles, edges and vertices will be
called simplices. A polyhedral surface is a union of triangles o; satisfying
the foliowing properties:

1. The interiors of the o; are disjoint.

2. The union of the o; is connected, and homeomorphic to a closed
surface.

3. The intersection of two triangles is a simplex.

As the triangles are usual euclidean triangles, given a vertex v € &
we define the segment e(v, o) as the image of the edge of o opposite to
v by the homotethy of center v and ratio 1/2.

The link of v is the union:

L{v) =Ue(v,0);v €0

If q edges contain the vertex v, the planes containing an edge which
contains v form q projective lines inlPy. Let us call C, (for critical) or
C(v) the union of the projective lines defined previously. Any plane
through v not belonging to C cuts £(v) in a finite number of points.
If all the triangles containing the vertex v are in the same plane, for a
plane P € P\ C one has

f(L(v) N P) =2
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The number (L{v) N P) is always even. [t is natural to mesure how
"nontrivial” the plane P is with respect to v by:

¢(v, P) = (1/2)[2 - #(L(v) N P)]

We can now define the exirinsic curvature of v as the integral:
k(v) = f (v, P)dP
P

Intrinsically, that is inside the polyhedral surface M = Ug;, at each
vertex we can compute the intrinsic curvature k(v) as the difference of
2m with the sum of the angles in v of the triangles which contain v.

k(v)=2m— ) a(i,v)ve fi

$

The ambiguity between the two definitions we gave of k(v) desappears
with the following theorem:

Theorem 9.1.1 theorema egregium, (remarkable theorem in latin)
The intrinsic and the extrinsic way of computing k(v) give the same
result

Proof: Let us compute the measure of the planes which intersect
one side e of L(v). In P, the length of the arc formed by the planes
through v, intersecting e and orthogonal to the plane containing v and
e is the angle « of the triangle containing v and e at e. The measure of
the planes through v that intersect e is then 2ce. In fig below we draw
the corresponding set of oriented planes in S2.

psfigfigure=oriented.eps,height=6cm,width=10cm
Figure 27: oriented planes intersecting e as vectors in S*

Summing on all the edges of £(v) we get :

JRCOLI EERD IR

ecL(v)

or :

~/Pz ¢(U,P)=27r—2ae
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which is the relation we sought after between the extrinsic integral
/ p, (v, P} and the intrinsic defect or excess of angle (compared to a
point of the euclidean flat plane): 2r — Peel(v) Qe m}

We can now prove the polyhedral version of the Gauss-Bonnet the-
orem:

Theorem 9.1.2 (Polyhedral Gauss-Bonnet theorem)
Let M be a polyhedral surface embedded (or immersed) in IR3 then
its total curvature satisfies:

2. k) =21 x(M)

vveriezxof M

Proof: Every triangle (face of M) has three edges, and, as M is a
surface, every edge belongs to two faces. Let consider the set D of all
pairs ¢ € f of an edge contained in a face. There is a map between D
and the set F of all faces and a map between D and the set £ of all

edges.
)

(3)
N
)

/ \8

Figure 28: diagramm

(2
By the first map, a face has three inverse images: the pairs formed
by one edge of the face and the face itself. By the second an edge has

two inverse images: the pairs formed by the edge and one of the two
faces which contain it. Then:

4D =3 §F =2 4
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Let us denote the set of vertex of M by V. The sum )y, k(v) is 2x{VM
minus the sum of all the angles of the faces of M. It is then equal to
20V — - (§F). Adding 0 = =[3 - §F — 2 - €], we get:

om - (§F) - 2m - (HE) + 27V = k(v)
v

The first term is 27 - x(M). W]

9.2 Critical points and Gauss curvature, Chern and Lashoff’s
theorem

In subsection The Gauss map, we have proved an exchange theorem.
The same is true, with exactly the same proof, for hypersurfaces in
R™, in particular surfaces in R?. First suppose that M is an oriented
hypersurface of R®. Let N(m) € S™ ! be the oriented normal in m
to M. The Gauss map sends m to N(m), we note K(m) its jacobian
at m. The projective Gauss map sends m to the non-oriented normal
L(m) € P,_;. Let us observe that, even if M is not orientable, then the
projective Gauss map and the absolute value |K(m)}| still make sense.
Starting with a line L, let |uf(M, N) be the number of critical points
of the orthogonal projection pr, of M onto L. If the manifold M is ori-
ented, we can compute the index of each critical point of the orthogonal
projection on the line L, generated and oriented by a vector z € S»~! |

Let us define: _
BN = 3D (m1yet

m eritical

if the dimension of M is even, the previous sum does not depend on the
orientation of L, and indeed can also be defined without assuming that
M is orientable.

Theorem 9.2.1 (Ezchange formula)

[ em)lm= [ (a4, L)

When the previous integrals converge, and if either M is oriented, or
M is even dimensional, an analogous equality , keeping track of signs,
holds.
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Theorem 9.2.2
K(m dm:/ M, L)L = x(M
/M (m) . #(M, L)dL = x(M)
Using Morse inequality, the theorem of Chern and Lashoff is now a
natural application of the first exchange theorem [Ch-La] :

Theorem 9.2.3 The total curvature of a surface of genus g embedded
or immersed in R>is bigger or equal to 27 (29 + 2). More generally, if
M is a compact hypersurface immersed in R", one has:

f |K (m)|dm > vol(Pa_, - Z B:(M)
M t=1,..,n—-1
Where the numbers f3; are the Betti numbers of M.
First we need a lemma:

Lemma 9.2.4 For almost any line L (that is except for a measure zero
set in Py ), the orthogonal projection of M on L is a Morse function.

To prove the lemma the reader will need to check that the hessian of a
local equation of M as a graph of a function from the tangent plane at
m to the normal line at m coincides with the second fundamental form
of M in M. Degenerated critical points of the projection on a line are
then critical points of the Gauss map, and the critical values in P,_; of
the Gauss map form a subset of measure zero.

To prove the theorem we need only to integrate on P,_; the Morse

inequality:
(M, L) 2 37 Bi(M)

i=1,...,n—1

When M is a surface 3, ., Bi(M) =2g+2.

9.3 Total curvature of closed curves and knots
Historically the first result in this line is Fenchel’s theorem .

Theorem 9.3.1 The total curvature of a closed curve C immersed in

IR? satisfies:
/ Ik > 2x
c
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In 1949, independently, Fary, Fenchel and Milnor proved that ”more
topology implies more geometry”. [Far] [Fe2] [Mill] .

Theorem 9.3.2 If the curve C is knotted (that is embedded and not the
boudary of an embedded disc) then its total curvature satisfies:

f0|k|>4rr

The proof of the first theorem and of the large inequality [ |k| > 4w
are a consequence of an easy topological argument,

Lemma 9.3.3 The orthogonal projection py on the line L of an im-
mersed curve C satisfies, if C is not in a plane orthogonal to L:

|ul(C, L) 2 2

If moreover C is knotted, and the projection pr, is o Morse function,
then:
[ul(C, L) > 4

Proof: For all lines L (except one if the curve is planar) the projec-
tion pr, has at least one maximum and one minimum, so |p|(C, L) > 2.
Let us now suppose that there exist a direction L such that py, is a Morse
function and such that |u|(C, L) = 2. Let @ and & be the minimal and
maximal values of the function pr; let m, and m; be the correspond-
ing critical points of pr, . Any plane F; orthogonal to L in @ < ¢t < b
intersects the curve C' transversly in exactly two points. Let I; be the
segment joining the two points C' N F;. the union :

.U | LUz
a<t<b

is an embedded disc with boundary C, and C cannot then be knotted.
o ‘

9.4 More theorems involving the topology of an immer-
sion or of an embedding

the next question concerns embeddings of surfaces in R* Does the
topology of the embedding force "more geometry”? In particular do
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g@&@
{2 fe)
Figure 29:

topological conditions imply a lower bound for the total curvature of a
submanifold? The answer is often yes.

Let us state a result of this type about tori in R3. We will add a
point ”at infinity” to R® to get the compactification $3. Naturally an
embedding in IR® can then be considered simultaneously as an embed-
ding in S3.

Theorem 9.4.1 [La-Rol]. Let T be a torus embedded in IR>. If T' is
knotted, that is if the two components of S*\ T are not both solid tori
D? x S, then
f K (m)|dm > 87
T

Recall that Chern-Lashoff’s theorem proves that for any immersed torus

oite has:
f K (m)|dm > 47
T
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Using the exchange theorem, we need to prove the following inequality:

Lemma 9.4.2
|#|(T, L) < 6 = T isnot knotted

Proof: There exists a direction L such that |u|(T, L) is 4 or 6. The
proof is easier when |u|(T,L) is 4. Let T} be the set (pr)~!(—o0,t].
Suppose that the four critical values are ¢ < b < ¢ < d, and the cor-
responding critical points mg, my, me, mq. The interior of T \ T} is the
union of two cylinders C; and C,. In the closure of C; we can choose a
monotonous arc ¢ (for the projection on L), joining my to m., and in
the same way an arc a; in C3. The union of these two arcs is a closed
curve o such that its orthogonal projection on L has two critical points.
The intersection of T with the plane P, = (pr)~(t),b < t < c is the
union of two disjoint circles Cy; and Cia. One, at least, is innermost
and therefore bounds a disc D; in P. We can then choose an embedded
arc ¢; joining the two curves Ci; and Cy2 and meeting them only at
its end points. When ¢ goes from b to ¢, the arc ¢; sweeps a disc Dy
contained in the component of $3\ T which does not contain Dy.

The boundary of D; and the boundary of Dy intersect in one point.
Both then are non zero in Hy(T). So if we cut the component of S\ T
along D, we get a ball B2, proving that the component was a solid torus
S1x D2, Cutting the other component of S*\ T along D? we get another
ball B3 proving that the second component of $2\ 7 is also a solid torus.

We need now to find similar discs in the two components of S\ T
with the weaker hypothesis |u|(T, L) = 6. Now the Morse function py,
has six critical points my,ms, .., mg. With no loss of generality we can
suppose that the critical values are 1,2, ...,6. The intersection F,/,NT
is a disjoint union of closed curves embedded in T'. Let n{i41/2) be the
number of connected components of the intersection Fiyy/; NT. There
are two possibilities for the sequence n{i + 1/2),1 <4 <5: (1,2,1,2,1)
and (1,2,3,2,1).

Let us first consider the case (1,2,1,2,1). Let C = Pa 1 N 7T.
Since C is a simple closed curve on 7', it separates T into two connected
components: A and B, One ,say is A = T \ open disc, and the other
B = D?* an open disc. Suppose that the level Py, is contained in A,
and denote by C, and Cj the two connected components of Py, N7T.
Let o) be an arc from a point of Py, /9 to C intersecting ¢, which
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satisfies: (pz) o )'() < 0,14+ 1/2 <t < 3+ 1/2. Similarly let ay
joining P45 to C intersecting Cp. Let a be the union @ = oy U ay.
See fig below

i PR W

Figure 30: Construction of a monotone arc joining critical points

As in the easy case |p|(T, L) = 4, we can construct two embedded
discs, the interior of which meet just one component of $3\ T. In
the plane Pyy;/y, one, at least, of the curves C, and Cj bounds a disc
D,. Suppose then C, = dD;. This disc is contained in one of the
components of $2\ T. The curve ¢, following the same proof as in the
case |u|(T', L) = 4, bounds a disc Dj contained in the other component
of 3\ T.

Again, the boundary of Dy and the boundary of D, intersect in one
point. Both then are non zero in Hy(T). So if we cut the component
of 83\ T along D; we get a ball B3, proving that the component was
a solid torus. Cutting the other component of $2\ T along D? we get
another ball B® proving that the second component of $2\ T is also a
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solid torus.

Let us now consider the case (1,2,3,2,1). Let A be the part of
T above Psp /2 and B be the part below. If B were to contain only
critical points of index 0, A would contain two critical points of index 1
and one of index 2, to guarantee the connectedness of T. Then T would
be a sphere. Therefore,we know that B contains a point of index 1. As
Py41/2NT is three closed curves, B has to contain two critical points of
index 0 (one is my). B has two connected components. If A were not
connected, it would contain one critical point of index 1 at most, and
inspection will show that 7' would be one or two spheres. Therefore we
know that A is connected and contains two critical points of index 1.
Let C, Cy, C be the three components of Py1,/,NT, labelled so that C,
and C} do not bound a disc in B. C, and Cjy are then both generators
of 7y (T). Let P be the one point compactification of Psyy/5. One of
the circles Cy, Cy, say C,, bounds a disc D; in P whose interior does
not meet Cy U C,. Then the connected component of $°\ T containing
D, is a solid torus. As before we can construct an arc « such that the
restriction of pr, to @ has only two critical points, and which meets C,
and Cj in one point. It bounds a disc D; which contains an embedded
arc joining C, to C in P meeting C, and C} only at its endpoints. The
disc D, is then contained in the other component of S\ T, bounds
the nontrivial curve @ on T, so that the other component is also a solid
torus, proving that 7' is unknotted. |

In a similar way we can prove the

Theorem 9.4.3 Let S be a surface of genus 2, and suppose that one of
the Morse projection pr, has siz critical points on S, then it is unknotted
which means that it is isotopic to the surface of fig below.
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{6 pta)

Figure 31: Standard embedding of a surface of genus two

The -proof can be found in [La-Rol] .

9.5 The equality case: tight immersions

The theory of tight immersions started whith N.H.Kuiper’s article [Kuil]
in 1960, It was followed by many others. Good references are aiso [Kui2]
[Kui3].

We have just seen that the total curvature of a sphere satisfies:

j K| > dn
M

Gauss-Bonnet’s theorem implies that:

f K =4r
M

When the total curvature of the sphere M is 4r, the Gaussian cur-
vature has to be everywhere nonnegative, which implies that M is the
boundary of a convex body.

Definition 9.5.1 Tight immersions are immersions which achieve equal-
ity in the theorem of Chern and Lashoff:

/ K| = 27(2g+2)
M

where g is the genus of the oriented surface M.
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To avoid heavy notation we will denote by M the surface and its im-

age by the immersion. To feel more comfortable the reader may suppose
M is embedded. Let us denote H(M) the conver hull of M:

'H(M) = {,\1m1 + Xdama; lambda; > 0; M+ A= 1}

Let us call the convezr envelope of M the boundary 3% (M) of the convex
hull of M.

Let z € 52 be a unit vector, and let p, be the orthogonal projection
of M on the oriented line generated by z.

Definition 9.5.2 The topset Top(M, z) of M in the direction z is the
intersection of M with the plane of equation:

< zlm >= mazpr (< zfm >)

Let us discriminate the indices of the critical points of a projection
Pz.

Definition 9.5.3
p2(z) = f{eritical pointsof index 20f p, }

to2(2) = #{critical pointsof indez Gor2o0f p.}
w1(2) = H{eritical pointsof index Lof p,}

When we need fo specify the surface m, or nonzero measure subset v of
a surface where we count eritical points we write:

to,2(M, 2}, po2(v, 2), p1(M, z) or p1 (v, 2)

When a point m € M has positive curvature, the Gauss map is a
diffeomorphism from a neighbourhood v of m on its image v(v) C SZ.

Moreover:
poa(v) = [ K = [ K]
“(v) v v

Similarly we get in a small enough neighbourhood of a point of negative

curvature:
[ mw=-[x=[1x
(v} v v
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Remark: As by hypothesis M is tight, one has:

lj ,[ [
- zZl = I{ = I{ =4r
5 Jatorld) = | K

where if K > 0; Kt = K,if K <0; Kt =0 and:

1
3 - 1(z) = 4ng

Proof: Rephrasing the theorem of Chern and Lashoff one gets:

1
st — +
> js oa(?) fM K

o=

whereif K < 0; K~ =-K,if K >20; K~ =0

We know that the projection p, should have at least a maximum
and a minimum, which have to belong to the convex envelope 3H (M) .
There cannot exist more than two critical points of p, where the Gauss
curvature is positive, otherwise:

and:

f Hoz2(z) > 4w
SZ

which will contradict tightness.
It follows that the point m € M where K > 0 must belong to the
intersection of the envelope of M and M as:

f K| = 4x
aH(M)

At a point m of 8H (M) the Gauss curvature has to be nonnegative,
as it is a maximum of the function py(m). m]

Lemma 9.5.4 For almost every z € S, the topset Top(M, z) is a point,
the only point m € M where N(m) =z

Proof: If that is not the case the function pg2(z) would be > 3 for a
non zero measure set of $2 . This contradicts tightness, as we can see
using the exchange theorem. 0
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Lemma 9.5.5 Let Top(M, z) be the topset of the immersed surface in
the direction z, and let v be the mazimum of the orthogonal projection
p, on the oriented azis defined by z (v = pz(Top(M, z) ).

Let W be a compact "isolated” subset of the topset in the direction z
of an immersion of a compact surface M, that is a piece of Top(M, z)
which admits an open neighbourhood U such that, for a positive ¢,

supaUP: = Y — 3¢

Then we can follow the piece W in U when we move 2’ in a neighbour-
hood of z. More precisely there exists a neighbourhood v(z) of z € 5?
such that for almost any 7’ € v(2)

p2(v(2),2) 2 1

Proof: The function p,(m) is continuous on M x 5%, so if we choose
m € U, there exists a neigbourhood v(z) C 52 such that, for z' € v(z)

Ipz(m) — pzr (m)| < €
in particular for m € W,
p(m) 2 po(m) —e=7—¢
and for m € 8U,
pa(m) <pe(m)+e<y—3ete=7y-2¢

This implies that the point in U where p, takes its maximum value does
not belong to the boundary, but to the interior. The conclusion follows
now from the fact that for almost all z € §? all critical points of p, are
non degenerate. O

Corollary 9.5.6 Any topset Top(M, z) of a tight immersed surface is
connected.

The next step of the proof is motivated by the idea that in some sense
a topset of a tight immersion has to be tight, in fact a point, a disc, a
plane convex curve or a planar domain bounded by convex curves.

To prove such a result it is natural to consider the topset of a topset.

Let Top(M, z;) be the topset of the immersion M in the direction
z;. It is contained in a plane orthogonal to z;. We can construct the
toptopset Top((Top(M, 21)22).
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Lemma 9.5.7 If M is a tight immersed surface, then the toptopset as-
sociated to two orthogonal vectors (z1,22), Top((Top(M, z1)z2) is con-
nected.

Proof: Let again -y be the value p,, (Top(M, z1) and let ¥* be the value
Pz, (Top(Top(M, 21}, 22)).

Suppose that Top((Top(M, z1)2;) is the union of two disjoint closed
sets W, and W,. Choose two open neigbourhoods Uy and Uy of W, and
Wy in M, with disjoint closure.

A point m € 8U; is in Top(M, z1) = W1 UW: if and only if p,, (m) =
v. As Top(Top(M, z1), z2) is in the open set U; U Us it does not con-
tain any point of U; U 8Us, so a point m of 8U; N T'op(M, 1) satisfies
Pz {m) < v*. This implies that the function p,, does not take the value
v on any of the closed sets

dU; N {m|pz, (m) > 7"}

(see picture below)

Figure 32: toptopset, 21, 22

Hence the function p,, achieves on (QU; U8U2) N {m|p,,(m) > v*} a
maximal value, strictly smaller than -, which we will note v — 3¢;¢ > 0.
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Let us now tilt the z; —azis by a very small angle 0 < 5 < 7/2in the
direction z;. We observe that the function p,, where z = z,cosn+235iny,
has for small enough 5 two local maxima . We choose 1 small enough
to have, for any m € M, |p,(m) - p., (m)| < .

Let us now study the function p, on the open set:

Uf = {mlpz,(m) > 7"} N T;

and on its closure U;.
Claim The function p, takes its maximal value on U; in the interior

Ur.

T

Figure 33:
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Fig. the domains U}
Let us now take a point m € 8U; N {m|p,,(m) > 7"}, we have:

pz(m)szl(m)+€$7"3ﬁ+€=’}’—26

The value of p, at a point w € Top(Top(M, 21), 22) is cosyy+ sinny* (as
px (w) = v and p,, (w) = ) Then for a point m € dUF N{m|p,,(m) >
+*} we have, as p,,(m) S v* and p,, (m) < ¥:

pz(m) < pa(w)

Hence the restriction to QU of p, takes its maximal values at the points

of Wy UW,. Take again a point w € W;, we can construct a differentiable

curve ¢(t), ¢(0) = w, ¥t € [0, 1) ¢(t) € U; starting at w tangent to z; }; we

can suppose %(0) = z2. The curve is normal at w to Top(Top(M, z1), 22)
dp

and tangent to the plane containing T'op(M, z1) . As —zﬁ =1, wecan
compute:
dp.(c)
dt

As the curve ¢(t) goes from w = ¢(0) to the interior of U; (which is also
the interior of U}), and as the function p, is strictly increasing along
that curve, the function p, has in U} values which are greater than the
maximal value p,(w) achieved on 8U;. therefore the restriction of p, to
U? has a topset in the interior of U} (for i=1,2). This imples that:

= (sinn) - 14 (cosn)-0 = siny > 0

pa(z) 2 2and o > 3
and again contradicts tightness. o

Corollary 9.5.8 For any tight immersion of a surface in [R® the topset
in any top plane contains its convez envelope (the boundary of its convex
hull) in this plane.

Using local maxima of the restriction to Top(M, 21) of p,, we prove
the same way the:

Corollary 9.5.9 The topset Top(M, z1) is either a point, a convex closed
curve or a planar domain with boundary convex closed curves.

81



When the topset T'op(M, 21) is not a point let us call top 1-cycle the
outer convex curve in T op(M, z;). If the topset is a disc, we will say
that the top-cycle is simple

Lemma 9.5.10 Let M be a tight surface and let U C M be a topological
disc; we denote by M \ U the complement of U in M. Suppose that the
boundary vy = QU is a top I-cycle associated to the topset Top(M, z1).
Then either U or M\ U is the plane interior Int(conv(y)) of the plane
disc bounded by «.

Proof: Let ussuppose that U is a topological disc. If U is Int(conv(y)}),

then:
| juqzo
u

If not, for z; or —z;, U has a topset contained in its interior, providing
an open set of direction z such that Top(U, z) is a point contained in
the interior of I/, Then:
/ |K| >0
U

Replacing U by the plane disc with boundary + will then decrease stricly

the total curvature of M. (the new immersion is a priori only C! but

we can smooth it increasing as little as we want the total curvature , in

particular the increase of the total curvature is smaller than  f; |K]|,

and keep the contradiction, even in the smooth case). mi
We have proved the:

Theorem 9.5.11 An immersed tight orientable surface is obtained from
the boundary N of a convex body by replacing a finite (> 2) number of
convezx plane discs by surfaces of negative curvaiure contained in the
convez hull of N with boundary the convez plane curves boundaries of
the previous discs.

Remark: A torus of revolution is a tight embedded torus.

One can also construct immersed and non embedded tight tori; [Lan5].
The idea is to construct a ruled surface (with double points) spanned by
segments, the extremities of which belong to two plane convex curves
situated in parallel planes. The end points of the segments are chosen
using the two Gauss maps of the curves to spin them properly.

With more topology one can prove that the projective plane and the
Klein bottle do not admit tight immersions in IR?; [Kuil].
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contour apparent de la projection orthogonale de V sur la feuille

lieu de contact
de {a surface
tendue V

avec un pian
qui est tangent
a la surface

le long du
cercle

partie cachée

du lieu critique
de la projection
orthogonale de V
sur |a feuille

a) Un exemple de surface de genre 3 tendue

cercle de contact
de T avec un de
ses plans tangents
horizontaux

b} le tore de révolution T est tendu

Figure 34: A tight embedded surface

remorse We have not said much about polyhedral surfaces. An
important difference with smooth surfaces is the fact tightness is not
equivalent to the {wo piece property.

Definition 9.5.12 A compact subset A in RN satisfies the two piece
property if any affine hyperplane separates A in at most two connecled
components.

A good reference to start the study of polyhedral surfaces is Banchoff’s
article [Banl].
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10 Integral geometry in spheres

The results of this paragraph come from [La-Ro2]. When C is a subman-
ifold of dimension p of SV, we shall use the notation |C] for the p-volume
of C'. We sometimes for aesthetic reasons shall use the notation L,(M).

10.1 The spherical formula of Cauchy and Crofton

We shall prove it for surfaces M € §3, the proof for hypersurfaces of
S™ is identical. The proof for higher codimension submanifolds is more
technical; see [Sa2] [La-Ro2]. We denote by Ly(M) the area of the
surface M C S3.

Theorem 10.1.1

1

Lo(M) = —/ IM N ld,
™ Je(a2)

where | is a geodesic circle of S* which we can think of as a 2-plane
through the origin of R*; |M 1| is the number of points of M N 1.

Proof: Denote by P(F) the projective space of vectorial lines of the
vector space £. From the restriction to M of the tangent bundle to
53 we construct the fiber bundle IP(T'S%|ys) replacing the fibers R? by
projective planes IP5. Denote by IP,, (T'53|ps) its fiber above the point
m € M; it is a riemannian fiber bundle on M. Consider the map

¢ IP(TS3|m) = G(4,2), ¢(m, L) =1

where [ is the geodesic circle whose tangent at m is L € IP(T,, M).
Write the tangent space to G(4,2) at Iy as an orthogonal sum:

TlnG(4# 2) = Tfu{llm € l} ® Tlu{”-glo,m}’

where ¥, -, is the geodesic 2-sphere orthogonal to [ at m.
Write T, 1) (PS3|a) = V & H, where V is the tangent space to the
fiber and H = VL. Then d¢ is given by the matrix:

Id *
0 Pri !
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where py. is the orthogonal projection of T,M to Thy(Sim) = L.
Then:

Jac(de)| = / le(L*, T, M))| =
foo sy 9N = [, leos(angle(t Tt = 7
Since
“1(7)| = f InM

Lran @7 @1= [0l
we have:

/ A M| = 7| M| = 7Lao(M)

G(4,2)

a

10.2 Flags

A flag in a vector space is a nested sequence of subspaces
(h1 C hy C ... C Ry)

We call it complete if it contains a subspace in each dimension.

Let us denote by |u|(M,F) the number of contact points of the
submanifold M and the codimension one foliation F. The notion makes
sense even if the foliation admits a singular locus, as far as it is of
codimension higher than one.

In 82 a complete flag is just a pair ¥g C £y, where oy is a pair of
antipodal points (z,—2), intersection of $? with a vectorial line and %,
a geodesic circle intersection of S? with a vectorial plane.

In 5% a complete flag is a a sequence

Yo C Xy C2

of spheres, intersection of $3 with vectorial subspaces of R* of dimension
1,2,3. Replacing 1,2,3 by 1,2,...k and R* by R¥*!, we get the definition
of a complete flag of S*.

Definition 10.2.1 We denole by Cy the set of complete flags of S*

We start with curves C C S? to give the flavour of the proofs, al-
though the significant results start in S3. We can define the total number
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of contact points of a curve C' with the foliations associated to a complete
flag A:
Geom(C', A) = {(C'NZy) + |p|(C, F (o)

In Bourbaki style, the first number would be the number of contact
points of (C'N X;) with the point foliation of ;. We can now define:

Definition 10.2.2

i
Geom(C) = m L, Geom(C, A)

The number Geom(C, A) plays the same role as the total number of
critical points of the orthogonal projection of the curve on a line in plane
geometry. Let us first construct a sequence of foliations by curves in 52
associated to a complete flag A, which will better and better follow the
foliations Fp of ¥; by points and the foliation F(3g) of S2.

L

Figure 35: foliation

Choose a point 2 € Xy and delete from $? a small disc B(z,¢) of
radius € centered at #. The circle X is divided in two arcs of length =,
61 and & by the two antipodal points (z, —z) of £ Now follow, starting
near z, 8; with very thin nested arcs with boudary on the boundary of
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the small disc up to the (—z) € Ly. Then continue the construction of
the foliation with arcs, the left side of which will sneak along §; from
(—z) to x and the right part of which will sweep half of the sphere 3 by
curves mostly equal to arcs (geodesic arcs) of the foliation F(3g). The
last leaf is £y N (complement o f the small disc). Proceed symetrically to
fill up the other half of 3;. We shall call F, the foliations associated to
A. Do not ask the author what exactly means ¢ in the construction!

Observe that the foliation we have constructed is a product foliation
by intervals of $%\ B(z,¢). This gives a diffeomorphism sending S? \
B(z,€) to the plane, the leaves of the foliation to the horizontal affine
lines and C to another closed curve.

As the projection of this image curve on the vertical has at least two
critical points, we know that C has at least two points of contact with
the foliation.

Corollary 10.2.3 Any closed curve in 5% satisfies:
Geom(C) > 2

In the sphere S3, By C ¥; C X; allows us to define a pencil of
circles F(Xg) in X the circles of Xy which contain ¥Xp In the same way
¥ C B3 C 5% allows us to define a pencil of 2-dimensional geodesic
spheres F(%): the geodesic spheres which contain ¥;.

We define:

Definition 10.2.4
Geom(M, A) = §(M 1 1) + [l (M (1 Sa), F(So)) + |ul(M, F(Z1))

and: 1

vol(C3) Je,

Let us now construct the foliations F, approximating the foliations
defined by the complete flag A. The point z is disjoint from M and we
choose € such that the ball B(z,¢) does not meet M. Let H; and Hj be
the hemispheres of 33 bounded by ;. Let F2 be the one dimensional
foliation of £, \ (B(z, €) NZT;) defined above. The trace on I3 of F¢ will
be F2, Fach leaf a of F? (more precisely, each leaf o of FZ, together
with an arc (we choose one of length < 7 -¢) on dB(z,€) N X, joining

Geom(M) = Geom(M, A)
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the extremities of ) bounds a disc in £y Let D({a) be the "small” one;
there will be only one ambiguous case: when « is an arc of ;. Starting
with the small arcs o emerging near x which sneak along 4; we obtain
discs D{a) which are thin flat tongues. Now inflate those to obtain thin
glove fingers following é,. When the discs D(c) spead over Hy, inflating
them slightly provides thin pancakes, foliating a thickening of H;. Next
step fills one of the half spheres , say B, of boundary ., inflating the
last pancake of the previous step dissimetrically. One of the sides will
sweep B, following the pencil of geodesic spheres F (%), the other side
will just move slightly . We are in fact sweeping the ball B, exactly as
we swept a disc of 5%, bounded by a geodesic circle £; . We proceed
symmetrically to fill the other half of $3. The foliations F2 we have
constructed prove the following lemma:

Lemma 10.2.5 For any flug A in general position with respect to M,
there exists a sequence of foliations F2 by discs of S®\ B(z, €) such that:

Limesolp| (M, -7:3) = Geom(M, A)

Moreover the foliations F2 are product foliations defining a diffeomor-
phism
&, : 53\ B(z,¢) » R®

Proof: The reader should to check that the contact points of F2 and
M, for ¢ small enough, correspond to points counted in Geom (M, A).
O

Morse theory applied to the R-valued function defined by the folia-

tion F2 implies that
|l (M, ) 2 2+ 2,

so we get,using the considerations of the chapter Integral geometry
and topology the theorem :

Theorem 10.2.6 Let M be a surface embedded in S2, then
Geom(M) > 2g+2
If M is a knotted torus, then
Geom(M) > 8
and if M is a knotted (oriented) surface of genus g then:
Geom(M) > 2g +4
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Instead of integrating Geom(M, A) we could have integrated sepa-
rately the different terms

BM N Ey), [pl((M N Z2), F(Eo)), ul(M, F(E1)).

Integrating on Cs a geometric term which depends only on one of the
constituents of the complete flags A just multiply by a constant depend-
ing only on dimensions the corresponding integral on the set of geodesic
k-spheres of S3.

We can now recognize spherical versions of the p-lengths defined in
section higher dimensional convex bodies and related matters:

L,(M) = C(N,n, j dh
p(M) (N, n,p} G(N'pﬂ)l"!'hl

where |y4| denotes the volume of 44 (when p = O, ~; is a finite set
and || is the number of points () of 4). Recall that the constant
C(N, n,p) has been chosen so that if M is the boundary of an e-tubular
neighbourhood of a p-dimensional submanifold C of R™, then:

First observe that the set of antipodal pairs in S® is the Grassmann
manifold G(4,1), the set of geodesic circles is G(4,2) and the set of
geodesic spheres is G(4, 3).

The reader will easily believe that the integral:

];?(4,2) H(M n 21)

is proportional to the area of M. Define in S

Definition 10.2.7
|
Ly (M =—/ SN M
=1 [ iEinm

T
To unify notations we will note:
|Z1 M| =H(E N M)

A pencil F(Z;) of geodesic 2-spheres of axis a geodesic circle 3;
defines a projection pr(z,) of 5%\ T; on the set {leaves of (F(21))}
which is a circle. Restricted to M \ (M N X;) this projection has in
general a discrete critical locus vg, and a finite number of critical values
|vs,|. Define:
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Definition 10.2.8

1

Lo(M) = 2v0lG(4,2) Ja(4,2) 1z

As the function px(x,) is generically a Morse function on M \ (M N ;)
the number |yg, | is generically equal to the number [g|(M, F(X;)). So
the integral of the last term of Geom(M, A) is proportional to Lo(M).

To define the 1-lenth L,(M), project M on a geodesic sphere X,
following the geodesic arcs orthogonal to it. These arcs are contained
in the geodesic circles containing the two points A% N S2 = (z, —2)
where h is the subspace of IR? such that AN S® = ;. We say that the
points (z, —z) = h%* N 5® are conjugate to Xz. The arcs are of the form
i\ (z, —z); (z, —z) C Z;. Loosing only a measure zero set of spheres,we
can suppose that none of the conjugate points z, —z to geodesic spheres
Yo are on M. Denote by px, this projection on X3 and by 7y, its critical
locus.

Definition 10.2.9
1
L) == [ sl

e G(4,3)

It is also true, but less straitforward to prove, that the integral of the
middle term of Geom(M, A) is proportional to L;(M). This last result
is a consequence of the following kinematic-type formula:

Theorem 10.2.10 Let M be a surface in S° Then:

LMy =1 fG 210D

T

where £ runs over the set of all geodesic 2-spheres of S°.

Proof: First observe that the constant is obtained considering small
spheres of geodesic radius t. Then L;(S;) &~ 4t and fg(4'2) L,(SinX) =
47t. Recall that by definition

1
L) = 55 [
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The Cauchy-Crofton formula in S? says:

1
=z ni
el 5 fG 62 lye N

where [ runs over the set of geodesic circles in .

The inverse image of the orthogonal projection onto ¥ of the geodesic
circle { is a sphere 3. the points of yg N[ are the critical points of the
orthogonal projection of £; " M onto /. The reader is invited to com-
pare this argument with the argument proving the linear reproductibil-
ity formula in section Blashke’s formulas and kinematic formulas.
Hence:

1 1
LM:-/ f mr:-f S0 M, F (),
1( ) A2 6(4,3) Jaa2) h’z | 472 D(4,3.2) |,U,i( i ) ())

where F(I) is the (singular) foliation of the 2-sphere 3; by geodesic circles
orthogonal to I. Here D = D(4,3,2) is the space of flags (£,1),Z D L.
The flag space D fibers over G(4, 3) and over G(4, 2), so using Fubini’s
theorem for both fibrations, we get:

1
LM:—/ 4L20M=f Lo(SnM
1(M) 47? Jo(4,3) Lol ) G(4,3) of )

a
Gathering our results we can express Geom(M) in terms of the p-
lengths or of integrals of the functions h;.

Theorem 10.2.11 [La-Ro2] Let M be a compact surface in §%; then:

Geom(M) = 72 Lo(M) + 473 L1 (M) + 27%v0lG (4, 2) Lo( M)

Geom(M) = / [° + 2nhy + gvolG(4,2)|K|]
M

10.3 Functions h;

In this subsection we construct functions on M the integral of which
are the spherical p-lengths L,(M) analogous to the euclidean p-lengths
defined in section higher dimensional convex bodies and related
matter and define the functions which localize them.
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Let £p41 be a (p+1)-dimensional geodesic sphere of SV it is the
intersection of a (p+2) plane h; of R™! with S™. The intersection
(h1)+ N SY is called the (geodesic) sphere conjugate to X,11; we denote
it by X7,1. The set of geodesic spheres of dimension (N-p-1) containing
the (N-p-2) gedesic sphere £3 ., foliate SN\ Y.r+1- Moreover each leaf
of the foliations meets ¥, in two antipodal points. The foliation then
defines a projection pg,,, of § N \Z},; on[P,y;. Consider the restriction
of this projection to M \ (M NZ3,,).

Definition 10.3.1 The polar variety I's,,, is the closure of the set of
critical point of the restriction px,, | M\(MNZ3, )
The critical locus vyx,,, is the closure of the inverse image by the

COvETing map
w1 §PTL 5 [prtl

of the critical locus of px,,,, |M\(Mng;+l).

To define the p-lenth we need just to integrate the p-volume |vs,,, | of
72P+1 )

- Definition 10.3.2

L, (M) = const /
P( ) G(N+1,p42) |7Ep+1 I

where the constant depends only on the dimensions involved and is cho-
sen in such a way thai:

limy oLy (Tub, (M)) = p — volume(M)
if M is p-dimensional.

When M is of codimension 1 the functions A;(m) are defined exactly
as in the euclidean case using the second fundamental form of M C S™.
The numbers |k(m, k)| are absolute values of the determinant of the
restriction of this second fundamental form to h C T, M, expressed in
an orthonormal basis.

Remark: The inverse image (exp,) ' (M) C T,,S™ has at m ¢
(expm)~1(M) the same fundamental form as M C S™ at m € M

We can know state a localization theorem:
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Theorem 10.3.3 Let M be a codimension 1 submanifold of S™. The
functions hy,_;(m} localize the i-lenghts L;(M); more precisely:

f hn_1_; = const - L;(M)
M
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11 Integral geometry of foliations

A foliation F of a manifold M is a partition of M by connected subman-
ifolds called leaves in a way such that locaily the connected components
of the intersection of a leaf with open sets of a suitable family, the dis-
tinguished charts, have a product structure. See [Ca-Li] for a rigorous
definition and basic properties of foliations; another more riemannian
viewpoint can be found in [To], a very complete reference is [Go] .

We will soon need to relax a little the definition, accepting a singular
locus %, a stratified set of codimension bigger than one . The foliated
manifold in this case is M \ .

Many results will still be valid if we suppose only the existence of
a p-plane field, dropping the integrability condition, (a plane field P is
integrable if there exists a foliation such that it is tangent to it).

11.1 Codimension 1 foliations of a domain of IR***

Let W C IR™ be an open subset, and let F be a codimension 1 orientable
foliation of W. As JF is orientable, a unit normal N(m) is defined at
cach point m € W. Symmetric functions of curvature associated
to a foliation

As through every point m of the foliated space passes a leaf Ly, of
F, the symmetric functions of curvature of the leaf L,, at the point m
defined by:

detId + t(dy)(m) = Zt'

give functions af‘ defined on W. the first result computing the integrals
f o} where obtained by D. Asimov :

Theorem 11.1.1 [Asi] Let F be an oriented codimension 1 foliation of
the flat torus T™'. The the integrals of symmetric functions of curva-

ture satisfy:
/ of=0,i>1
Tnr+l

Proof: Note N(m) the unit vector normal in m to the leaf of F
through m, defined by the orientation of F. (The torus 7' is the quotient
R™=1 /22" or R™ /A for an (n+1)-dimensional lattice A, so vectors
define an element of the quotient torus). There exists a fundamental
domain W C R™!, the unit cube for the "square” torus R™!/ZZ"+! of
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the projection R™*! — T. So we can identify the normal at m to Ly
and the normal at 7 € R™™ to L, . Consider the map

m — m+tN(m)

When ¢ is small enough this map is a diffeomorphism. Its differential
computed using an orthonormal basis split between T),F and T, F* is:

(t-d'y(m)-l-fd O)
* 1

Its jacobian is
det(Id+ t{dy)(m)) = ¢ - o

The integral:
| det(ra+tian)im) = [ 143 o
T

is equal to the volume of the torus. Therefore the integrals of the coef-
ficients of the monomials t/,1 < ¢ < n are all zero. O
Asimov, and then Brito Langevin and Rosenberg then computed
integrals of curvature associated to foliations of compact manifolds of
constant curvature using carefully chosen differential forms.[B-L-R].
Here we will prove first euclidean results and sketch their extensions
to constant curvature spaces using again an exchange theorem.

Contacts with affine hyperplanes and the exchange theorem

Let H be an affine hyperplane of IR"*! | The traces F|g of F on H is
generically a foliation of (WNH) with only isolated singularities forming
a set L(F|g). In fact generically those singularities are hyperbolic,that
is, here, of one of the two types: center or saddle. ~We attribute signs to
those singular points:

e(saddle) = —1 and e(center) = +1
Definition 11.1.2 the number |u|(F, H) is the number of singular points

of F|lg when |u|(F, H) is finite,and the singularities are all hyperbolic,
the number u(F, H) is:

prH(FH)= Y ¢(m)

mED(F|x})
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W

Figure 36: center and saddle

Remark: The singular point m of F|g is a point where the leaf L,,
is tangent to H. We can also locally project L,, on the normal in m to
H (and L,;). We get a function which is in general a Morse function,
for which the Morse index of m satisfies:

(_l)Morseindem af m - e(m)

The sign ¢(m) is, when the dimension of the leaves of F is even, the sign
of the Gauss curvature of L., at m.

Analogously with the manifold case we will call the integral f, |K|
{or fi |k] when W is of dimension 2) the total curvature of F

Theorem 11.1.3 foliated ezchange theorem

S 1= [, Wl D)

Moreover, if one of the previous integrals are finite:

[r=] —wtEm
w A(3,2)

To prove this theorem, we will define the polar curves of the foliation
and a foliated Gauss map.

Polar curves

The critical points of the orthogonal projection of a leaf L of F on
a line & are in general isolated on L.
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Definition 11.1.4 The closure of the union of those critical points

I'(F,é) = U erit(psic)
L

is generically almost everywhere a smooth curve (it may have singular
points).

Proposition 11.1.5 [Th2] Generically the polar curve I'(F, d) is trans-
verse to §+

Remark: When T'(F,T,,F1) is tangent to T, F the Gauss curvature
of the leaf L,, is zero, as, in that case, the differential of the Gauss map
of the leaf L, restricted to T,,I'(F, T FL) is zero.

To prove the foliated exchange theorem we need to introduce a foli-
ated Gauss map with values in A(3,2):

Definition 11.1.6
vr(m) = the af fine plane tangent at m to F

Proof: To compute the jacobian of the foliated Gauss map vy at
a point m € W we will use, when I'(F,T,,F* is transverse to T, F,
in the domain, the frame uy, u, ..., tn, w1, %2, ..., 4y orthogonal basis of
TmF, u, unit vector tangent at m to I'(F, T FL. In A(3,2) we use at
v#(m) the frame vy, vy, vs, where vy, v form an orthogonal basis of the
horizontal space at yx{m) of the riemannian fiber bundle A(3, 2) — P,
and where v3 is a unit vector tangent to the fiber of A(3,2) — P2, In
these bases, the matrix of dvyr is:

V7L o )
* |cosg]

where ¢ is the angle between T,,,I'r and T,, F*

As the volume of the parallelogram determined by the frame u;, us, u,
is also |cos¢| , and as the map dvyz|r,, is just the Gauss-Kronecker map
of the leaf L,,, the jacobian we are looking for is just [K]|.

On the one hand, when ['(F, T, F' is tangent to T),F the Gauss-
Kronecker curvature K is zero. On the other hand using a frame split
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Figure 37: the computation of the jacobian of y£

between T;, F and T, F+ we see that at such a point the matrix of dyr

is: dy(m) .
("% i)

where in the formula dv is the Gauss map of the leaf L,,. As the rank
of dy(m) is one the point m is critical for v#, by Sard’s theorem the
measure of the images by yr of these points is zero. a

Let us first give some applications of the foliated exchange theorem
in dimension 2. We note |k[(m) the absolute value of the curvature of
the leaf L,, of F through m.

Theorem 11.1.7 [La-Le2] Let D € IR* be the unit disc and F be an
orientable foliation with isolated singularities, tangent to 3D. Then:

/|k1241r-2
D

the minimal value is achieved by the foliation (a) of the next picture.

Proof: Let us choose an orientation of F; that induces an orien-
tation of 9D \ sing(F). Among the singularities of F on 8D let A be
those where the orientation of 3D changes. The set A is finite and has
an even number of points A = a1, as, ..., az,. Let G, be the set of lines
which meet D, do not meet A, and cut A in two subsets containing an
even number of points; let G, be the similar set of lines cutting A4 in
two subsets of odd cardinality. Cauchy’s formula implies that the sum
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a
K{F)= 2t -4 ~, 2,28

[+
k(F)= 2T~ 6,28 K(F)= 2n+88Y 2 v 2,97

Figure 38: 3 exemples of foliations of the disc

of the measures of G, and G, is 2r (the length of D). If a line L is
in G, then, if it contains no singularity of F, |u|{F,L) > 1 (see next
picture)

Using the exchange theorem, we get the inequality:

j || > measure(Ge) = 2r — measure(G,)
D

In order to finish the proof we need a lemma:

Lemma 11.1.8 for any finite subset A of the unit circle D the measure
of the set G, of lines cutting A in two odd subsets satisfies:

measure(G,) < 4
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Remark: When A = a, —a is made of two opposite points,

measure(G,) = 4, when A = §), measure(G,) = 0, when A is the
union of the vertices of a regular 2n-gon, measure(G, goes to # when n
goes to infinity.

The proof of the lemma is elementary but technical and can be found
in [La-Le2] .

Let now D C IR? be a domain homeomorphic to a disc and with a
piecewise €2 boundary 8D.

Definition 11.1.9 The internal distance d(my, mo) of two points m,
and my is:
d(mq, mq) =

= inf{length()|y: [a,d] = D a regular curve ,v(a) = mi, v(b) = mq
where length(y) is the length of the curve v

We get that way a metric on D. In fact the assumptions made on D
imply that given the two end points there exists exactly one minimising
curve joining them. Such a curve will be called a geodesic of D.

Definition 11.1.10 The diameter of D is defined as:

d = sup{d(mi, mp)|m, € D, my € D}

Theorem 11.1.11 [La-Po] Let F be a foliation (by curves) of D, tan-
gent to 9D, with isolated singularities of positive index, not necessarily
orientable. Then:

/ K| > length(9D) — 2d
D

Definition 11.1.12 the index of an isolated singularity m of ¢ non-
orientable foliation is a half integer (m) € %Z which is half of the
degree of the map

D, : S (m) = P

associating to a point ¢ of a small enough circle ceniered at m the di-
rection of the line T, F. (if the singularity is orientable, the index is the
usual one).
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Figure 39: diameter of a topological dise

Proof: Let us first show that we can eliminate the case when F
has a singularity of index one, studying only the case where F has two
singularities of index 1. which are of sunset type (see next picture).

All singularities can be substituted by a source/sink or a sunset
singularity without increasing the total curvature of the foliation by
more than a given €. This can be done by considering on the boundary
of a small disc D, of radius r an homotopy between the ”angle” function
determined by F and the "angle” function of one of the models of the
next picture.

A source/sink can be replaced by two sunsets using the modification
indicated in the next figure:

Let P and () be two sunsets of F, and v be a geodesic of D joining
P to . we need to estimate the number of contact points of F with
an affine line L. all lines, but a measure zero set, meet the disc D in a
finite number of segments.

Let [a, b] be a connected component of LN D such that [a, b]Ny = 0.
Then [a, b] divides D into two discs, one of them containing P and Q.In
the other disc, F is orientable, and therefore there is at least one point
of contact between F and the segment [, b]. See next figure:
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Figure 40: sunset

IMigure 41: source/sink and sunset

Let n(L) be the number of segments of L N D in which L meets 7,
and ¢(L) the number of segments of D M L which do not. then we have:

ll(F, L) 2 e(L)

Cauchy’s formula yields:

/A(2,1) #{(componentsof LN D} = %]A(z,l) #{L N 8D} = length(dD)

Applying Cauchy’s formula to the arc y we get length(y) = § fA(z,l) 4(LN
7). Then we have:

length(0D) = [4(2 5

D+ = [ w0 [ e
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Figure 42: transformation of a source/sink into two sunsets

-

Figure 43: forced

using the exchange theorem and the inequality on |u|(F, L) we get:

length(@7) < 2 -length(y) + [ (2, DIuI(F, ) = 2-length(y) + [ Ik
o D

a

With the same techniques, one can obtain inequalities for foliations

of a compact flat annulus, and for foliations of a disc extending a given

line field defined on the boundary. In the second case a sort of ”length”

of the envelope of the one parameter family of affine lines defined by the
boundary condition will play a role [La-Po].

When the disc D is not convex we can show there do not exists tight

foliations tangent to 8D with singulaties of positive index. This comes
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from the fact that if P € 9D is a point of inflexion, and a regular point
of F, then there is an open set of affine lines which have more than one
contact point with F in a neighbourhood of P. But we can exhibit a
sequence J,, of foliations of D satisfying the hypothesis of our theorem
such that:

TR fD k] = length(8D) — 2d

We can think of the limit of this sequence of foliations as a [oliation all
leaves of which have corners along 9D, in order to force on 8D all the
critical points of the orthogonal projections of the leaves on lines; see
next picture.

Figure 44: A tight singular foliation F; non-singular F,, close to F

11.2 Codimension one foliations of spaces of constant cur-
vature

When the foliated space is a domain W in S™ or H", one can also
prove an exchange theorem, replacing Gauss-Kronecker curvature by the
determinant of the second fundamental form obtained from the normal
vector given by the orientation (in an orthonormal basis) that we will
still denote by K, and replacing the euclidean affine hyperplanes by
codimension one totally geodesic subspaces H € A. The form of the
theorem is the same for W ¢ H™!, W ¢ R™1, W c §*t!. In each
case the set A admits a measure invariant by the action of the isometries
of the space [Sa2] p.28 and 307. In dimension 2, we can choose (local in
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the case of S?) coordinates (r,#);r € R*,8 € IP; on a neighbourhood
of a geodesic 9. Choose a point m € vg; the geodesics rays through m
form a circle S?, identifying them with their unit tangent vectors at m. A
geodesic v of H? or R? which does not contain m is orthogonal to exactly
one geodesic ray starting at m and intersects it at a point ¢. This is true
for all geodesics of S different from the ”equator” conjugated to m, and
not containing m. This defines the coordinates 8(v), r(y = d(m, y). the
measures are:

o m=|dr Adf|if W CR?
e m = |cosr-dr Adf|if W C §?
o m = |coshr - dr A d] if W C H?

We have seen the first measure in the chapter the euclidean plane;
for the other two see [Sa2]. the (natural) formulas for the measures on
the set A of totally geodesic hypersurfaces in R®**, §7=1 and H**! can
also be found in [Sa2] .

Theorem 11.2.1
[o1g1= [ 1,y
w A

Proof: We need to replace the orthogonal projections on lines. A
geodesic 1 defines a one-parameter family, called a pencil Py, of totally
geodesic hypersurfaces: those orthogonal to it. In H™*! a pencil is a
foliation and defines a projection on the geodesic L ; In $™*! a pencil
defines a foliation of S"*1\ S™ and a projection of St \ S* on IP;.

Definition 11.2.2 The polar curve I'p is the closure of the set of points
where a hypersurface of the pencil P is tangent lo the foliation.

Remark: as in the euclidean case, I'p is for almost all P, almost
everywhere a smooth curve.

Definition 11.2.3 The foliated Gauss map vy : W — A associates to
a point m € W the totally geodesic hypersurface tangent at m to the leaf
L., of F through m.
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The computation of the jacobian of v is the same as in the euclidean
case, observing that the totally geodesic hypersurfaces orthogonal to the
geodesic I(m) through m orthogonal to L,,, and the totally geodesic
hypersurfaces through m, form two submanifolds of A othogonal in A
for the natural riemannian metric of A. O

The following theorem is now a consequence of the fact that the
intersection of a foliation of S® with a generic totally geodesic S? has at
least two singular points.

Theorem 11.2.4 Let F be a foliation of S° having a finite number of

singularities, then
f K| > 22
$3

Using the Poincaré-Hopf theorem on all the generic S%’s we prove also
the following theorem:

Theorem 11.2.5 If one of the previous integrals is finite,then:

K = 272
g3

Let us now state a theorem for foliations with only saddle-like sin-
gularities of compact surfaces of constant curvature (-1) [La-Lel]. It is
similar to the result of Le — Rol in the sense that it translates in terms
of total curvature a topological property of those foliations,

Theorem 11.2.6 Let M be a compact surface without boundary en-
dowed with a hyperbolic metric (that is a metric of constant curvature
(-1)) and F a foliation the only singularities of which are saddles. The
total curvature of F satisfies:

fM k[ > (12Log2 — 6Log3)|x(M)|

Remark:
o We will give below examples of foliations which achieve the mini-

mal value given by the theorem.

o Ifall the saddles have an even number of separatrices (in particular
if F is orientable), one can show that the total curvature of F
satisfies:

[ 11> 4Log2 - [x(m)
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e It is hopeless to look for a generalisation to all surfaces; see [La-Lel)

We will need a few facts from hyperbolic geometry. the hyper-
bolic plane H? is identified with the interior of the unit disc (Poincaré’s
model). The boundary S, of this disc is the circle at infinity of T2,
The geodesics of 1% are the arcs of circles orthogonal to So, contained
in 2. Recall that by analogy with the notation ,4(3,1) used for the
set of affine lines of R®>we denote by A the set of all geodesics of HZ, Tt
has a measure invariant by the action of the hyperbolic isometries Two
distinct points m and m' of H? are joined” by a unique geodesic; it is
also the case if m and m’ are in S.; in that case we say that the points
are the points at infinity of the geodesic. Three distinct points of So
define that way an asymptotic triangle and all asymptotic triangles are
isometric (there is a global isometry of H? sending one on the other).
An asymptotic triangle has, as one can check using the Gauss-Bonnet
theorem, area 7. Let p: 1> = M be the universal covering map. If the
restriction of p to the interior of an asymptotic triangle is injective, we
will also call its image in M an asymptotic triangle. In order to get foli-
ations minimising total curvature, we need first to construct a foliation
JF. on an asymptotic triangle 7 (see next picture)

Let b be the center of symmetry of 7. The foliation F, has just one
singularity, at b, a three prong saddle. The separatrices starting at b are
geodesic rays joining b to the points at infinity of T they intersect in
b in equal angles (equal to 27 /3). To get F, just fill each sector with
geodesically convex curves, in such a way that the boundary of T is the
union of three leaves. If the projection p is injective on T, we can project
F. on M; see next picture
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Figure 45: foliation of an asymptotic triangle

Figure How to fit an asymptotic triangle on a hyperbolic pair of
pants

The total curvature of that foliation of the asymptotic triangle is
2Log2-Log3) as we will see below. Let now M be a closed orientable
hyperbolic surface of genus g. Choose on M a family of 3¢ — 3 compact
disjoint geodesics slicing M into g pairs of pants (each pair of pants
is topologically a disc with two holes). Choose in each pair of pants
three disjoint geodesics spiraling towards the boundary (see the picture
above).

We can then fill the surfaces with copies of the model foliation con-
structed above, achieving the lower bound given by the theorem. Using
Whitehead transformations we can split the saddles with more than two
separatrices into three prong saddies without increasing the curvature
by more than ¢, see picture below and [F-L-P] for a carefull construction.

As the singularities of 4 are all saddles, one cannot find in 4 White-
head discs, that is discs with boundary made either of a finite number
of arcs of leaves, or of a finite number of arcs of leaves and one arc
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Figure 46: a Whitehead transformation

transverse to F.

Fil L1

Figure 47: Whitehead discs

We can also, without increasing the total curvature by more than e,

brake all the saddle connections. The foliation F of M lifts to a foliation
H of H>.
Affirmation We can associate to each saddle s of H a set of geodesics
A, of measure bigger or equal to (6Log2-3Log3), and an injection of
A, in H? sending each geodesic to a point where it is tangent to H.
Moreover the respective images B; C H? and By ¢ H? of the sets of
geodesics A; and Ay associated to different saddles are disjoint.

The fact that F has 2|x(M)| saddles, and a carefull application of
the foliated exchange theorem will end the proof of our result about
hyperbolic surfaces.

109



Lemma 11.2.7 any half-leaf § of H which does not end at a saddle goes
to a point of the circle at infinity Se,

Proof: First observe that the behaviour at infinity of the half leaves of
H does not change if we change F by an isotopy (if ¢ is an homeomor-
phism of H? lifting of a homeomorphism of M isotopic to the identity,
then sumeIHz[d(m, $(m))] is finite). This proves the lemma if the half
leaf p(8) of F is compact or spirals towards a compact leaf: a compact
leaf of F cannot be null-homotopic in M , as it cannot bound a disc, and
then is (free}homotopic to a closed geodesic. If the closure p(d) does not
contain a compact leaf, we can choose a leaf §; € B(d) and a closed curve
¢ transverse to F and intersecting &;. The curve C' meets § infinitely
many times, as it cannot bound a foliated disc, it is also homotopically
not null-homotopic, so its lift to H? will stay at bounded distance from
the closed geodesic in the same free homotopy class. As the foliation #
of H? does not admit Whitehead discs, the half-leaf § meets a compo-
nent of p~!(C) in at most one point. The intersection in H? U S, of
the sequence of nested half-spaces which J enters (see next picture) is
exactly one point of S, because it cannot contain any point of H?, as
the distance between two different lifts of C is bounded below (it cannot
contain two points of S, without containing the geodesic joining them).
O

Remark: Two separatrices § and ¢’ starting at the same saddle s
of H converge to distinct points of S.

Proof: This is true when the union p(d) U p(¢’} meets at least
twice a closed simple curve C' transverse to the foliation F, as, again,
H has no Whitehead discs, so any component p~!(C) meeting § or &
separates the points at infinity of § and &. If such a curve C does
not exist, then p(4) and p(&’) spiral towards compact leaves dg and 4
of F. If § and & where isotopic, the compact leaves & and &, should
also be, as two geodesics which have compact projections cannot share
a point at infinity if they do not coincide. If §;=4) the union of two
arcs starting at s of respectively p(é) and p(§’) , with an arc transverse
to F joining their endpoints, will bound a Whitehead disc, providing a
contradiction. If § and &) were distinct , they should bound an anulus.
This annulus cannot contain singularities of F because the singulaties
of F, all saddles, will give to the anulus a negative Euler characteristic.
Looking at the same time at 7 and F the reader will check that the
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only remaining possibility is that p(8) and p(é') are spiraling toward the
same leaf of F, on the same side, which again will allow the construction
of a Whitehead disc.
a
so we can associate to each saddle of H three points of S,, which
define an asymptotic triangle A; (see next picture).

Figure 48: Asymptotic triangle associated to a saddle s

We will call the three geodesics joining these points at infinity the
asymptotes of s. Two asymptotes starting at distinct saddles cannot in-
tersect in H? (as it will force an intersection of some of the separatrices),
so the asymptotic triangles associated to distinct saddles have disjoint
interiors.

Fix now a geodesic L of H? which does not contain any saddle of
FH, is not asymptotic to any separatix of H, and is not tangent to any
separatrix of H (these conditions are generic).

Definition 11.2.8 Given a generic geodesic L, the couple (s, D), s a
saddle of H , and D one of its three asympiotes , is called admissible if
it satisfies the following conditions:

-s¢ D

-3 and A, are on the same side of D

-L does not intersect D and separates s from D

To each L-admissible couple (s, D) we will associate a compact do-
main T p see picture below).
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Figure 49: the domain T 4

The two separatrices starting at s and asymptatic to D cut [H? into
two domains. We will call D, p the closure of the one which does not
contain the points at infinity of L. Let us call H*(L,s) the closed half
plane of boundary L which contains s, and 75 p the connected compo-
nent of H+(L,s)N D;,p which contains s. The domain T p is compact
and homeomorphic to a disc (see picture above).

If (s,D) and (s, D) are two L-admissible couples, only the four
following situations are possible:

-T,,p is contained in Ty pr

-Ty pr is contained in Ts p

-Ty,p and Ty pr are disjoint

-Ts,p and Ty pr have disjoint interiors and s = &/

in particular the situation of the next picture is impossible.

Lemma 11.2.9 For any L-admissible couple (s, D), the collections of
arcs LN T, p is tangent to H at at least one point.

Proof: the compacity of T p and the fact that the set of saddles of
‘H is discrete implies that T p can contain at most a finite number of
domains Ty pr. 1t is then enough to prove the lemma for a minimal (for
the inclusion) domain T p (see next picture).
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Figure 50: impossible position of the two domains T 4 and 7}s’, d']

If the lemma is false, T; p is a disc which does not contain in its
interior any singularity of H and the boundary of which is made alter-
natively of arcs of leaves of H and arcs transverse to #. Moreover, the
definiton of an L-admissible couple implies that, in a neighbourhood of
s the third separatrix starting at s (the one which is not asymptotic to
Dj is not contained in T p (see next picture)

The only possibility for Tsp is to be a "rectangle” (see picture
above). The arc of the leaf between the points 2 and 3 on the above
picture belongs to one of the separatrices starting at s and asymptotic
to D, say the one which contains the point 1. Let us now consider the
arc of separatix joining 1 to 2. this arc does not meet the segment of
L. of extremities 1 and 2, and, with this segment, bounds a Whitehead
disc, providing a contradiction. O

We will call strongly L-admissible a couple (s, D) if it is L-admissible
and if L meets A; (and then the two sides of A different from D). Then,
given L, a saddle s cannot belong to more than one couple strongly
L-admissible, and the domains T p corresponding to different couples
strongly L-admissible are disjoint.

To a saddle s of #H let us now associate the set A; of geodesics L
such that there exists an asymptote I of s such that the couple (s, D)
is strongly L-admissible. We obtain the required injection i, : A, — H?
associating to a geodesic L one of the points of LNT; p where L is tangent
to H (see lemma 2). We can choose the injection ¢, in an equivariant

)
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Figure 51: domain T, 4 which is not minimal

way, that is, if o is an automorphism of the universal covering H? — M,
and o* the induced transformation on the set of geodesics A, then, for all
saddles s of H, i5(;j00" =0 oi;. Let us call B, the image i;(A,) C H2.
As, for a fixed L, the domains T p corresponding to distinct strongly
L-admissible couples are disjoint, we have: B,N By = 0 if s #£ &', To
_prove the affirmation stated above, we need now to check the inequality
m(A;) > (6Log2 — 3Log3). Let us first proof a lemma of hyperbolic
geometry.

Lemma 11.2.10 Let 0 < o < @ be the angle between two geodesic rays
starting at a point s € I and asymplotic to a geodesic D (see picture
below), and let f(a) be the measure of the set of geodesics which do not
intersect D but separale D and s, Then:

a)f(a) = —2Log sin(a/2)

bif < a<m 0<f<mand 0 <y < are three angles such that
a+ B4y =2m, then

fa) + f(B) + f(y) = 6Log2 — 3Log3

- Prooft a) As f(m) = 0 it is enough to prove that f'(a) = —cotg(a/2).
Let h{a) be the (hyperbolic) distance between s and D, the quantity
f'(e) - da is equal to the measure of the set of geodesics intersect-
ing a geodesic segment of infinitesimal length dh = h'(a) - da with
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Figure 52: position of the third separatrix

an angle bigger or equal to /2. This measure is proportional to dh
and the coefficient (2cos(«/2), can be computed using the ”euclidean”
formula, tangent to the hyperbolic one if the origin is in dh. Then
f'(@) = 2cos{a/2) - B'(a). Hyperbolic trigonometry provides the for-
mula cosh(h(a) = m (see for example [Thu2] formula 2.6.12). Af-
ter checking that h'(a) = 1/2sin(e/2), we get the required formula
f(a) = —cotg(a/2).

b) Triples («, 8, %) of angles between 0 and 7 parametrise the vertices
of an asymptotic triangle. For example, if the point s is on the boundary
of the triangle, one of the angles, say ¥ = #, and

fla) + f(B) + f(v) = —2Log[sin(a2) - sin((r — )2)] = 2Log(2/sina)

Then:
fle)+ f(8)+ f(v) > 2Log2 > 6Log2 — 3Log3

If the point s tends to a vertex of the asymptotic triangle, then one of the
angles goes to 0 and f(a)+ f(8) + f(v) goes to +oo. to prove assertion
(b) it is enough to check that the only extremum of f(a)+ f(8)+ f(v) in
the triangle is achieved when s is a center of symmetry and @ = f = v =
2m/3. This is true, as the differential of the function f(a)+ f(8)+ f(v)
is —cotg(a/2) - de is zero only if cotg(a/2) = cotg(8/2) = cotg(v/2),
thatisif e=fF=v=1n/3 0
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Figure 53: The only extremum of f(a)+ f(8)+ f(7)

Coming back to a saddle s of H, two cases are possible:
-s belongs to the asymptotic triangle A; (or to its boundary), then
the previous lemma implies that:

m(As) = 6Log2 — 3Log3

-s is exterior to A; (see next picture) then the couple (s, D;), (i = 1,2)
is strongly L-admissible for m-almost all geodesics I. which does not
intersect D; and separating the point ¢t € 36, (see picture below) from
D;.

Then

m(As) > f(a) + f(8) = f(e) + f(B) + f(r) > 6Log2 — 3Log3

We proved the affirmation; let us now deduce the theorem from the
affirmation. For each saddle 3; of F we choose a lift s; in H?. Recall
that the number of (three prong) saddles of F is h = 2x(M). Let B
be the disjoint union of the sets B;,. As for any automorphism & of
the covering, we have: 0B = UL, A,,, the sets B and oB are disjoint
if ¢ # Id, and this implies that the restriction to B of the covering
projection p is injective.

Suppose first there exists a neighbourhood U of B such that the
restriction of p to U is also injective. Then the total curvature of F is
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Figure 54: outside of the asymptotic triangle 4,

bigger than or equal to 31, m(A,,) > 2+ |x(M)| - (6Log2 — 3Log3). If
such a neighbourhood U would exist, the theorem would be proven.

In general it is impossible to find the neighbourhood U of B, but we
will construct, for each small € > 0, subsets A§ such that m(A4;, \ A5,)
goes to 0 with ¢, and such that we can find an open neighbourhood U* of
the corresponding set B¢ to which the restriction of p is injective. The
foliated exchange theorem implies that the theorem is a consequence of
the existence of the sets Ag,

Let us fix ¢ > 0 and let L be a geodesic of A,,. There exists then an
asymptote D of s; such that the couple (s;, D) is strongly L-admissible.
From s let us consider the geodesic ray orthogonal to D. It intersects
D at a point t. The geodesic D' is orthogonal to that ray at a point
situated between s and ¢, at distance ¢ from ¢ (see the picture below).

We can suppose that D' is transverse to the two separatrices starting
at s; and asymptotic to D and define as with s, D and L a compact
domain T%, py = Ds,pN H::D (shaded on previous picture). Let » be the
number of saddles contained in T, p: ; we can choose a neighbourhood
v, of the boundary 9T;, p of the domain T, 5, such that the total
curvature of #|,, is bounded by e.

We keep in A§, a geodesic L € Ayif and only if:

)L does not intersecct )’ and separates s; from D’
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Figure 55: construction of A€

ii)the distance from L to each saddle s € 7%, ;,/ is at least ¢/n

ili)L is transverse to A in the neighbourhood v, of 9T, p

The exchange theorem and the definition of v, show that the measure
m(As; \ As,) goes to zero with e. Let Bf, C B, be the image of A%, in
12, and let Bt = Uf;Dle..

To finish the proof we will show that for fixed ¢, 7 and 7, the distance
from By, to the union of the conjugates of B;,- is strictly positive (if i = §
we use only conjugation of the covering different from the identity). Let
then @ € Bf, and @' € B;. be such that Q@ and o)’ are very close
(supposing again that o is not the identity if { = j). The condition (jii)
above implies that ¢@Q' is in T, , (see next picture)

The asymptotic triangle associated to the saddle os; is then on the
side of D which does not contain s; (the analogous condition interverting
the roles of s; and s; may also happen). The geodesic L’ tangent to
at 0@}’ should then meet D and D'.

One cannot define a reasonable metric on the set of all geodesics of
R? or 2. Two geodesics intersecting with a small angle should be close.
Then it is impossible to separate parallel geodesics (IR%) or asymptotic
geodesics (geodesics with one point at infinity in common, in the H?
case). But it is possible to define a distance on the set of geodesics
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Figure 56: position of B, and B,

which intersect a given compact K C IH? by:

di (L, L) = sup[(in d(z,y); angle(L,L")]

zebnk yel'nK

if LNL'Nn K =0 (just forget the angle term if LN L' = @)
=angle(L,LYifLOL' =meK

The geodesics L and L’ constructed above satisfy dx(L,L') > 7 > 0
taking K = T}, p, where 7 does not depend on Q,Q" and o. If L and
L’ do not intersect, or intersect far from K, they cannot be close in K
and satisfy the required conditions. Otherwise , as our conditions (ii)
garantees L does not pass by to close to the saddles, this implies the
distance between @} and ¢@’ is bounded below by a positive constant
independant of @@, Q' and ¢. We use the following fact: given & > 0
and a compact K C M containing no saddle of F, there exist o > 0
such that, if two geodesics L; and Ly tangent to # at two points a; and
a, belonging to p~'(K) intersect at an angle bigger than #, then the
distance between a; and a is at least «

In [La-Lel] the reader can find an application of the foliated exchange
theorem to pairs of orthogonal foliations of §2.
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11.3 Tight foliations

We have seen that the foliated exchange theorem and some topological
analysis of the foliation provide inequalities. Do there exist foliations
achieving the equality case? We will call tight such foliations. An exam-
ple of a positive result is the following:

Theorem 11.3.1 Let A be a plane annulus limited by two convez curves
C4 of length 6, and Cy of length 8. We suppose that Cq is the "inner”
one (Cauchy’s formula implies that 6; > 8;). Then the leaves of the
tight foliation of the annulus (tangent to the boundary) are either closed
convex curves isotopic in A to Cy (and Cy) or locally conver curves
spiraling towards convex curves isotopic to Cy. (see picture below). the
total curvature of the foliation is, in that case:

j|k|:51—62
A

Figure 57: Tight foliation of a plane annulus with convex boundary
curves

Proof: Using Cauchy’s formula we know that the set B of affine
lines intersecting C| and not intersecting C; has measure §; — 2. Such
a line L intersect the annulus in a segment [. The foliation F is not
transverse to the interior of I, otherwise the boundary of C) and I
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would form a Whitehead disc for F, which is impossible as F has no
singularity. Then
|ul(F,L) > 1

so the total curvature of F is bigger or equal than the measure of B.
The equality is achieved for the foliations described in the theorem, as
they satisfy:

LeB=|pl(F,L) =1

L¢B=|pg(FL)=0

O

In [Lan2] the reader will find a study of tight (in their isotopy class)
foliations of the torus 72.

Let us now consider the same question for (nonsingular) foliations of

g3,

Theorem 11.3.2 Their does not exist any tight foliation of the sphere
S3.

Proof: We have seen before that the total curvature of a foliation F

of 53 satisfies:
f K| > 2n?
S?.

because for a generic totally geodesic sphere ¥ C S° one has |u|(F,Z) >
2. We have also seen that

K =2r*
53

If a foliation F of S3 satisfy [ |K| = [gs K then the curvature function
should satisfy K > 0. In S* the intrinsic curvature K. of an embedded
surface satisfy K, = K + 1 (one can perform the computation using
the exponential map (see [Spi] ). Novikov’s theorem states that the
foliation has a Reeb component {[Ca-Li] ) with boundary a torus leaf
L. The Gauss-Bonnet theorem applied to L states that [; K. = 0.
Then [; K = —vol(L) < 0 so the leaf has a point of negative {extrinsic)
curvature K, contradicting the hypothesis. The theorem will then be
proved if we can show that:

«znff |K| = 277
33
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Let us consider the singular foliation P of 53 defined by a pencil of
geodesic 2-spheres. It has a one dimensional singular locus: a geodesic
circle C'. The trace of P on a geodesic sphere ¥ transverse to ' is a
foliation with two singular points of index 1 (of type sink/source). The
next object we need is the model Reeb foliation of the thick torus D?x S1,
To obtain it we will construct a foliation of D? x IR invariant by unit
translations in R (we can visualise D* X IR as a vertical thick cylinder).
In the vertical band [—1,1] x R of the (z, z) — plane consider a convex
curve asymptotic to both sides of the band. The equation z = tg(r/2)2?
should provide such a curve. by revolution around the z—azis we obtain
a convex surface asymptotic to the boundary of the cylinder {on the
z —+ +oo side. Translating it vertically, we foliate the thick cylinder. By
construction the foliation is invariant by vertical translation and then
gives a foliation of the thick torus T = (D? x R/(2r - Z). (see picture
below)

Figure 58: Reeb component

We will now shadow the foliation P by nen singular ones, introducing
a very thin Reeb component in a tubular neighbourhood of C.

To construct the foliation in a tubular neigbourhood Tubs,(C) of
radius 2r of C' we will first construct a model in the cylinder DZ, x R,
invariant by vertical translations. In the cylinder D2 xR just put a Reeb
component defined as above. In the anulus D2, \ D2, seen as a subset of
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Figure 59: A piece of a thin Reeb component and how the other leaves
wrap around it

the (z,y) — plane, consider a curve entering, normally to the boundary,
into D2, and spiraling towards the circle 3D? (see picture below).

The product of that curve by the vertical line is a surface of R3
entering normally the cylinder D? x R and spiraling toward the inner
cylinder D? x R. By rotation around the z-axis we foliate the set (D3, \
D?) x IR. So we get the desired foliation of the thick cylinder D? x R.

The quotient by the vertical translations by vectors of lenth 27 is a
foliation of D, x S'. Let us now map D}, x §' to the tubular neigh-
bourhood of (geodesic) radius 2r of C, mapping isometrically S Lon C
and using the exponential map to map the discs D2, centered on points
(0,0,z) € S! onto totally geodesic discs normal to C. that way we ob-
tain a foliation 7, which fits with P|gs\rus, (). The reader will now
believe that

-the geodesic spheres ¥ satisfy |u|(Fr, £) = 2 if T intersects ' with
not too small an angle.
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Figure 60: Horizontal section of the foliation (D% \ D) x R

-There exists a uniform bound, independent of r, for the number
|t (Fr, E) when it is finite.

As the measure of the geodesic spheres which intersect ¢ with an
angle smaller than ¢ goes to zero with ¢, we proved, using the foliated
exchange theorem, that

limr_,g/ |K| = 2#2
53
where | K| is the curvature function defined by the leaves of F,. a

11.4 Codimension higher than one, diverging integrals
and conformal results

We will present here without proofs particular cases of the results of

[La-Ni]
Theorem 11.4.1 Let F be a smooth foliation by curves of a domain

W C IR3. Let Cy be the contact set (in general a curve) of F and the
affine hyperplane H:

Cyp={meW|T.F C H}

j |k|=const/ f |sing|
w A(3,1)vCqx

124

Then



Where at a smooth point m € Cp, ¢ is the angle between Cy and the
leaf of F through m.

Conformal integral geometry of foliations

Let now F be a codimension 1 foliation of a domain W C R®. The
number N~ (X) of negative contact points of ¥ with F is the number
of saddle tangencies of £ and . It is clear that the number N~(X) is
conformally well-defined.

L1<L < k

Figure. possible generic contacts of a sphere and a foliation

A measure on the set S of spheres of R3, considered as a subset of
the set of spheres of S2 is constructed in the chapter The space of
spheres. Using that measure we have the

Theorem 11.4.2 Let F be a smoothe foliation of a domain W C IR,
Then

5/ Ikl—k2|3=fN"(E)dm(2)
6 Jw S
where k; are the principal curvatures of the leaves.

Remark: We could have stated the theorem in 52 as the form |k —
ko|®dv, where dv is the volume element of W, is a conformal invariant.
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12 Complex integral geometry

The n-dimensional complex space C* has a natural hermitian structure,
and an associated scalar product:

< uly >.= Re(< u|v >)

The n-dimensional complex space €" endowed with the quadratic form
[v|? = Re(< v|v > is just a euclidean space of dimension 2n. But,
among the real euclidean planes, some have an extra property: they are
globally invariant by multiplication by complex numbers. The complex
integral geometry will deal with those particular real planes: the com-
plex lines. To compensate the relatively few partial datas given by the
projections on the complex lines and complex subspaces only, and by the
section by the affine complex subspaces only, we need to suppose that
the submanifolds studied have some extra structure. So in this chapter
the submanifolds are local images of C? by a locally defined holomorphic
map.

12.1 Critical points of projections on complex lines

The orthogonal projection of C* onto a complex line of C* is a holomor-
phic map.

Many interesting consequences can be deduced from the properties
of the complex curve C of equation y = az? in a neighbourhood of the
origin.

The tangent space to C at (0,0) is the z-line and the normal space
at (0, 0) is the y-line. Let Dy be the oriented real line of the y complex
line making the angle # with the oriented real axis. The orthogonal
projection Cg of C on the sum :

Eg = (x complex line) @ Dy

has equation :
z = Re(e".z?) ,

z being the real coordinate on Dy determined by the euclidean structure
of € and the orientation cf Dy,.
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Fig. Saddle and turned saddle

projection of the curve projection of the curve

r=x 2
y=x= on T M+N, y=xZ on TnM+N,

Performing the change of variable 2’ = ¢/2.2, we see that the pro-
jections Cy are all isometric, more precisely that Cy is deduced from Cj
(of equation z = Re(z?) by a rotation with a vertical axis and angle
—6/2.

A section of C by the vertical plane F,, containing the real line A,
of the z-complex line has the equation:

z = Re(ap®.e®®) =| a| pPcos (20 + wa)

where ¢, is the argument of @, therefore the maximal and minimal values
of the curvature in (0, 0) of those curves are opposite and of absolute
value 2. | @ | . This implies that at (0.0), Cp has zero mean curvature
and Gaussian curvature 4 | a |2 .

Remark: The projections of the complex curve of equation z = az™
on the 3-spaces Ey are obtained from the projection on Ey by rotations
of angle —8/n. As curvatures depend only on 2-jets at the point where
they are computed, we have proved the following proposition:

Proposition 12.1.1 Let C be a holomorphic curve of €* then the or-
thogonal projections of C on the 3-spaces Ey = Ty, + Dy, where T, is
the complex line tangent at m to C and where Dy is a real line normal
to C in m, have all the same Gaussian curvature at m and have all zero
mean curvature at m.
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12.2 Complex Gauss map and critical points.

The normal space N(m) of C' at m is a complex line. This allows us to
define a map yq of C' toCP; by yq(m} = N(m). At the point (1,0}, the
Fubini-Study metric of CP; is the euclidean metric of the chart given by
the map z/y.

Let K'(A,m) be the gaussian curvature of the projection Ma of M
on the space Fa = T,,M & A.

The Lipschitz-Killing curvature at m, K(m), of an even dimensional
submanifold M of RV is, up to a constant depending only on the di-
mensions involved, equal to the integral on the projective space on (real)
lines of the normal space, of I{{A,m) :

K (m) = const f K(A,m)
IPN(m)
where const indicates a constant depending only on the dimensions in-
volved.

Proposition 12.2.1 The jacobian of the complex GGauss map satisfies :

| det Dyg(m) |>= —K(A,m) = const K (m)

where const is a universal constant.

Proof: It is enough to prove the proposition for the curve C of equation
y = ax? at the origin as the numbers we shall compute depend only on 2-
jets. Let m(«) be the point (z, z%). The complex normal line is generated
by the vector (—2aZ, 1), therefore, using the map z/y, the differential of
the complex Gaussmap is —2a.J, where J is conjugation.

One gets | det Dyp(0) |[=4|a|*. m]

Let us now see what the counterpart of the existence of a complex
Gauss map is when one looks at projections on complex lines. We will
note 7y, the orthogonal projection on the complex line L. Let C be
a holomorphic local parametrisation of the curve C. The differential
D(n-;q:.()) is a linear complex map which implies that its real rank (as
a real linear map) can be only 0 or 2. This implies that a point is a
critical point of #q.C if and only if it is a critical point of #p.C, where
D is a real line contained in Lg.
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Corollary 12.2.2 Let | p | (C, D) denote the number of critical points
of the orthagonal projection of C' on the real line D and | u | (C, Lg) be
the number of critical points of the projection of C on the complez line
L. For every real line D contained in a complex line L one has:

| | (C, D) =| | (C, Lg).

Remark: The critical values of the projection of a complex curve on a
real 2-plane which is not a complex line may contain arcs. A nice study
of this critical locus for a family of planes containing a complex line in
the neighbourhood of non degenerate critical value of the projection on
the complex line can be found in the book by Arnold, Gusein-Zade et
Varchenko [A-G-V] p. 20-21, see fig. 1.2.

Fig. projection of the complex curve y =z
close to the complex y-axis

2 on a real plane which is
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12.3 Polar curves.

We have already met polar varieties I', and 7, respectively the critical
points and the critical locus of the orthogonal projection of a subman-
ifold on the subspace k. They are equally important in the complex
frame; (see for example Teissier [Tei2]. Slightly more generally, a polar
variety is always (the closure of) the set of points where an incidence
relation between the tangent subspaces to a certain object and a fixed
subspace satisfy a given incidence relation. Let us now give the examples
we shall use later.

Definition 12.3.1 Let F be the foliation defined by an algebraic I-form
of C* : w = P.dx + Q.dy. The tangent plane at a point (@,y) to the leaf
of the foliation through (z,y) is the kernel of w, when P and @} are not
both zero. Let L be a complez line. The polar curve T'X(F) is defined by:

M(F) = {{(=,9) Tw(z,v)(L) = 0 and w # 0}.

Observe the choice of upper indices; to be consistent with the previous
chapters we need to define:

Definition 12.3.2

Fipny(F)={(z,y) |w #0 and pp1|r,, , has a critical point at (z,y)}.
Here Ly ) is the leaf of F trough the regular point (z,y).

Of course, it is the curve ME(F)

As in the real case,the name polar curve comes from the fact it is
generically a curve except for a set of lines of measure zero. Again,
we shall extensively use generic properties. In the algebraic context
the measure zero bad set we should avoid is often a closed algebraic
subset.Except for degenerate cases which we ignore, I'y, is an algebraic
curve whose equation is P.a+@.b = 0, where (a, b) is a vector generating
L.

A particular case is when F is the level foliation of a polynomial
f :€* = C. Theintersection of the polar curve I'g (F) with a nonsingular
level f = X of the polynomial is the set of critical points I'z,(f = A).

130



Theorem 12.3.3 Fzchange theorem. Let V be an open piece of a
holomorphic curve, its total curvature satisfies:

K zconst.f V,L).
x| iy 141 04 5)

Proof; The theorem is a consequence of the exchange theorem proved

before for codimension p submanifolds of R™, and of the corollary about

numbers of critical points of the projection on real or complex lineg

proved above, O
A global consequence is the :

Proposition 12.3.4 Let f be a polynomial of two compler variables of
degree d. The total curvature of the algebraic curve C' of equation f =0
is less than of equal lo d(d — 1).

Proof: Let F be the foliation defined by the levels of the polyno-
mial f. To each generic complex line L is associated a polar curve I'p
which has degree less than or equal to d — 1. By Bezout’s theorem the
intersection I'y, N C has at most d.(d — 1) points; these points are pre-
cisely the critical points of the projection of the curve on the complex
line L. One deduces now the proposition from the exchange theorem. O

12.4 Isolated singularities

We shall show that when a sequence of smooth objects tends towards a
singular one a distribution of curvature with support on the singular lo-
cus often arises naturally. The singularity will appear as a condensation
at a point of the behaviour of compact submanrifolds.
Let us first give a real algebraic example. The plane curve C' of
equation:
P +y>=0

is the limit of the family of curves C) of equations:
3yt =

Let us consider the total curvature of the arc of C), contained in a small
ball centered at the singular point.
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Proposition 12.4.1 The following limit :

lim lim | k|
e~>0 A->0 Jo,nB,

erists and is equal to «

58,

Figure 61: One dimension-faithfull picture and one codimension-faithfull
one of )y,

We shall show that such a phenomenon always occurs when one
studies a sequence of levels of a complex polynomial having an isolated
singularity or more generally of a polynomial map to C? having an iso-
lated singularity such that the zero level is a complete intersection. Let
us first recall the topological and algebraic facts we will need. The study
in the neighbourhood B(0,€) of an isolated singularity of the topology

of the level f = A of a complex hypersurface has been done by Milnor
[Mil3] .

Theorem 12.4.2 [Mil3]. Let 0 be an isolated singularity of the complex
polynomial f : € — €. Then for ¢ small enough and X (chosen after
) small enough, the intersection B, N (f = A} of the level f = X with

the ball of radius € has the homotopy type of a wedge of 1 spheres of real
dimension n.

Following Teissier we shall pose u{"*') = u(f). The notation is justified
by the following theorem :
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Theorem 12.4.3 [Teil] or [Tei2]. There ezists a measure zero analytic
closed set of the Grassmann manifold Gny1,1 such that, if H € Goy1:\ i,
the Milnor number u(fiy) takes the generic value ¢ independently of
H.

Let us first consider the case of a polynomial f : €**! — € The
levels of f form a foliation F. At each regular point m of F, T, F is
the tangent hyperplane to the level of f through m. Let us now fix a
(vectorial) complex hyperplane h.

Definition 12.4.4 The polar curve T' is the closure of the set of regular
points m such that T, F = h (here we identify the affine space T, F and
the vector subspace which is parallel to it).

Proposition 12.4.5 [Le2] p. 263 and [Tei2] p. 269 (the polynomial
f does not need to have in this proposition isolated singularities). The
polar curve T'® is contained in an algebraic curve T'* more precisely, if
¥ is the singular locus of f, one has :

Th = ["A\X.
Proof: when the singularity is isolated It is enough to choose a
base ey, - - -, en of & The equations of I'* are in this case :
df(e1) = df(eg) = -+ = df (e,) = 0.

(W]
The following theorem about the total curvature is now a mere trans-
lation of the previous one, using the complex exchange theorem , [Lanl):

Theorem 12.4.6 [Lanl].Let f :C*1! — € be a polynomial.

. f _ _1ynf,,ntl n
sllglo Alln>10 /(E',\nB, | K [= const (—1)"(p""" + u™)

where K is the Lipschitz-Killing curvature of the level C and const a
positive constant.
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Remark: The first study of the curvature of levels f = X of the
polynomial f near an isolated singular point is done in the thesis of L.
Ness [Ne]. She shows in particular that the curvature of the levels is |
unbounded in the neighbourhood of the singularity.

Using more information about the polar curves than just the inter-
section number I'* - Cy we can give a more precise description of how
the curvature of C, concentrates near the singular point. The geometric
picture is that of concentrations of curvature near the vertices of regular
polygons inscribed on circles whose radian are fractional powers of A.
The precise statement for non irreducible curves and the analysis of the
phenomenon in terms of the contact of the branches of the generic polar
curves and Cy was done by Teissier [Teid], after previous results in the
irreducible case by the author [Land].

The seminal example is f = z® — y2. Let us consider the polar curves
Tup = {df(a,d) = 0}. Their equation is 3az? — 2by = 0. The intersection
points of C and Ty p satisfy :

{ 23—yt =)
3az? — 2by = 0.

Their absciss therefore satisfies : 2® — (3a/2)%z! = \. The three
intersection points of the polar curve and C) have abscissas close to
3v/X and ordinate of principal term (3a/2b)2*. This is true, provided
A is small enough, for any point of CP, different from (0,b). Notice
first that the cubic root of A is much larger than the square root of A,
which is the order of the distance of the origin to the curve C). In other
words with a lens of strength (A)~1/2, one sees two parallel lines at finite
distance from the origin :

L

Figure. kmA~%(C»)
as the lines az + by cut C) at points of ordinate of principal part (A)1/2
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for all generic values of (a, b). With a weaker lens of strength (A)!/3, one
sees three branch points :

im)een ={

Each branch point of order two carries a distribution of gaussian curva-
ture of total mass —271'.1 One can, applying the Gauss Bonnet theorem to
the surface C\ N B((A3,0), A31", for a suitably small positive 5, check
that its total curvature is very close to 2r. This property is true be-
cause this ball contains exactly one point of intersection with the polar
curves I'y , for (a, b} not in a neighbourhood shrinking with A, of the non
generic direction (0,6) of CP;.

Remark also that the Gauss Bonnet theorem applied to CANB((0,0),¢
implies that the total curvature of this intersection, for a suitably small
positive £ is very close to 6.

The previous calculations prove that the picture of the real levels
of #® — y? should look much more acute than usually drawn, as the
turn should occur in a very small neighbourhood of the cubic root of A.
Rescaling we see a parabola. See figure below.
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The general case needs more lenses, the strenth of which are deter-
mined using a theorem of Smith and Merle [Sm] et [Me}. See [Tei3].

Let us now give an intuitive justification of this multiscale phe-
nomenon of concentration of curvature. For that consider a family of
branches T} ; of the polar curves Iop = {m| < gradf(m) C Ra,b) =0
(a,b) € A where A is the complement of small open discs centered on
non generic-directions of CP; with a given contact order with Cy which
is larger than one. Among those non-generic directions are the lines L
such that the polar curve Iy, has L1 among its tangents at zero. See
[Tei2}.

Affirmation. Any complete complex curve, the complex Gauss image
of which is contained in A should cross all the curves Fz,bv (a,b) € A
provided it crosses one of them close enough to the origin.

Proof. The condition {a,b) € A implies that the angle of the curve
and the polar branches is bounded away from 0, since in a small enough
neighbourhood of the origin the tangent space to I'y ,, (a,b) € 4, is very
close to the set of non generic directions. The curve C), through a point
close enough from the origin has then to cross the family of branches,
and this implies the Gauss image of the intersection of C’, with the
family of branches contains A.

The existence of a positive bound to the angle between the branches
considered above of the polar curves and C'), implies also that the size of
the piece of intersection should be of the order of the “transverse size”
of the family of branches (the transverse distance makes sense in the
neighbourhood of a first intersection point of the curve with one of the
branches of the polar curves considered above). See fig. 2° = y* at two
different scales.

Let us finally observe that, in the non-irreducible case, part of the
curvature of Cy may be spread over a ball of radius C’.()\)l/m, for m
large enough, and C a large enough constant. For example m is the
multiplicity at 0 of Cp, if the polynomial f is homogeneous.

The study of P.Rouillé [Rou] of the geometry of a neighbourhood
of an isolated complex singularity of a foliation by level curves of a
polynomial f : €% — € goes beyond integral geometry as he can even
describe the shape of the renormalisation of f = A at a concentration of
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curvature.
Let us now consider a surjective polynomial map f : C"t?- — CP.
The levels of f form a singular foliation of C**? with singular locus Z.

Definition 12.4.7 The polar variety ['* is the closure of the set of reg-
ular points m such that T, F C h.

Proposition 12.4.8 There exists an algebraic variety I'" such that :
—h —_—
I =T"\Z.

Proof: when the singularity is isolated and the intersection is complete
. Let u be a vector of C¥. The equation < f | u >=< A | © > defines
a hypersurface which contains the level f = A. The level f = A is the
intersection of the hypersurfaces < f | « >=< A | u > where u takes all
values in C”\0. The set of hyperplanes tangent at m to the hypersurfaces
containing T F. Let us associate to each polynomial < f | w > with
value in € a polar curve T'(< f | u >, k).

The previous remark shows that the polar variety T'* is the closure
of the intersection of the union of the polar curves I'(< f | u >, k) with
the set of regular points of the foliation F. Let us choose coordinates on
C™**? and C”, and let J be the jacobian matrix :

o . oA
J= dfi O%pip
o .., 9
32’1 3Zn+p
Let €1, -+, €ntp—1 be a basis of h. As the function < f {4 > can be
h
written in the matrix form %. | * [, the equations of I'(< f | u >, })
fn
are :
0=<J|e >=< ] |ez >= -+ =< %J | enp-1 > -
or:
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2R

(*) ﬁ.J.él = :I.:L.J.ég = = .J.hn..}.p_l.
The regular point m belongs to I'* if and only if there exists a vector
u satisfying (*). This amounts to say that the system of vectors of C? :

g1=J.&, ga=Jea, -, Intp-1 = J-én+p—1

is of rank smaller or equal to (p — 1). The equations of I'* are obtained
by equating to zero the set of determinants which guarantees this rank
condition.

The points of I'* N [(f = A)\Z] are exactly the critical points of
the restriction to the smooth part of the leaf f = A of the orthogonal
projection p,: on the complex line At. m|

Milnor’s codimension 1 results were generalised by Hamm [Ha] and
Giusti and Henry [G-H] for complete intersections.

Let now f :C™*! — @P be a surjective algebraic map such that the
origin is an isolated singular point of f and such that the level (f = 0) is
a complete intersection. We will denote by C) the level variety (f = A).
Let us state the algebraic results that we will need.

Theorem 12.4.9 [Ha/. For e smell enough and A # 0 (chosen after €)
small enough, the manifold with boundary (C\ N B.) has the homotopy
type of a wedge of p spheres of real dimension n.

Theorem 12.4.10 [G-H]. There ezists a measure zero analytical closed
set y; of the Grassmann manifold Gpypiyp—1 such that, if

H € Gpipitp-1\7i, the Milnor number u(fiy) takes the generic
value p9, independently of H.

Generalising the codimension 1 case, see [Teil], Greuel [Gre] and Lé
[Le2] independently proved :

Theorem 12.4.11 The intersection multiplicity at 0 of the complete
intersection and a generic polar variety T'" satisfies :

elig»lo ,\lin;o BCAN BeNTh) = (Col'n) = ™ + 4™,
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The following theorem about the total curvature is now a mere transla-
tion, using an exchange theorem in codimension p, of the previous one,

extending the codimension 1 resuit of [Lani}:
i

Theorem 12.4.12 [Lanj].Let f : €t = ¥ be a polynomial such that
the level f = 0 is a complete intersection, then:

lim  lim K [= const (—1)"(p" ! + pu*

iy 0 o, | K | (1) (" + ™)
where K is the Lipschitz-Killing curvature of the level C, and const a
positive constant depending only on dimensions.

Remark: The study of other symmetric functions of curvature , in
the codimension 1 case, was started by Griffiths [Gr], and continued by
Kennedy [Ke] and Loeser [Lo].

Remark:(integral geometry in CIP,) In this paragraph f will
be a homogeneous polynomial map from C"*! ta € of degree greater or
equal to two having only isolated singular points in CIP,. Using a pencil
of projective lines, one can define polar curves (see the chapter spheres
and the chapter foliation for the construction of the curves of contact
of a foliation with a pencil). Then adding the previous result; (there
f:C* =0

li li K |= t (-1 (u" n-t
%0 2% Jo,ns. | K= const (=1)"(u" +#77)

with Bezout’s theorem one gets a geometric proof of Laumon’s results
[Lau] [Lan6]:

Proposition 12.4.13

degree(C*) =[d(d— 1"~ 3 (W +p"T)(m)

m singular
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13 'The space of spheres
Let L be the Lorentz quadratic form defined by:
L(21, 23, ey 2) = (21)% + (:r:g)2 + .. - (:zc,l)2

We will call light cone the isotropic cone of L. We note also L the
associated bilinear form, and call L-orthogonal vectors a, b such that
L(a,b) = 0. One can prove that the set of oriented (n — 3)-spheres of
the sphere §7~2 admits a bijection on the set of points of the quadric A
of equation L = 1.

Proposition 13.0.14 Let ¢ be a path in A. If at each point c() of the
path, the tangent vector v(t)} satisfies:

L(v) > 0, (space — like curve),

the corresponding family of spheres admits an envelope;

if
L{v) < 0, (time — like curve),

at any point of the path, the spheres are nested.

Proof: As c(t) belongs to &, that is satisfies L{c(t)) = 1, one has
L{c(t),v) = 0. The condition for a 1-parameter family of spheres to ad-
mit an envelope is that the L-orthogonal space to the plane generated by
c(t) and v(t) intersects the light cone. Asc(t) and v(t) are L-orthogonal,
it is equivalent to L(v(t)) > 0 o

Proposition 13.0.15 If a speed one space-like curve satisfies:
L") — (L(", )2 > 0
their caracteristic circles admit an envelope.

more geometrically, if ¢ is a speed one space-like curve, let

Ny=¢"-L("¢).c

the previous condition reads L{N,) > 0. We will call tendril such a
curve and azis the envelope of the caracteristic circles.
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The length of the curve is then the total rotation of the family of
spheres along its axis. Let us also observe that L = —1 endowed with
the restriction to each tangent space to L = —1 is a model of H, the
hyperbolic space. Each sphere ¢ of $"~2 is the "boundary at infinity”
of a totally geodesic subspace h of H.

Let G be the group of linear isomorphisms of B® leaving L invariant.
Its restriction to H is the group of isometries of the hyperbolic space H.
To chose a point z in H determines a metric on the sphere $7~2. This
metric is the projection on S™2, sphere at infinity of H, of the metric
on T, (H) using the geodesic rays of origin z.

Different choices of the point z determine conformally equivalent
metrics on the sphere S*~2. The sphere does not even admit a measure
invariant by the conformal group. Fortunately the sets of spheres of
S§7~2 do. In particular, A is endowed with a measure m invariant by
G. That measure can also be seen as the measure, invariant by the
isometries of H, defined on the set of totally geodesic hyperplanes of
H. Let us project the sphere S"~2 stereographically on an affine space
R™2. There, a sphere X is located with its center zy,%3,..., 2n—7 and
its radius r. the measure m is expressed by:

m = |[1/(rY)]dzy Adzg A ... A dzpa Adr|

Remark: Let (v, v, vs, v4) be four vectors of T, A. The volume of
the parallelepiped constructed on these vectors is

|det(vo, 01, v3, v3, va)| = \/{ — det(L(v:,v;))

13.1 Spheres of dimension 0

We will start with spheres of dimension 0 in §, and study their positions
with respect to a ”torus” 7' made of 4 distinct points. An oriented sphere
o disjoint from T bounds an interval I. We will say that o is trivial if I
contains two points of T'. Informally we may say that the small enough
spheres will all be trivial.

Proposition 13.1.1 The torus T which minimises the measure of the
set of non trivial spheres is the torus made of the four vertices of a
square (or its image by the conformal group of the circle).
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ja.

Figure 62: a nontrivial (a}, and a trivial (b) 0-sphere

Proof: The domain Z of & formed by the non trivial spheres is
bounded by segments of light rays formed by the spheres containing one
of the four points of T.

That region is a chain of parallelograms the vertices of which are
spheres formed of two points of T. Moreover the vertices common to
two parallelograms are the spheres made of two non consecutive points
of T. We can, performing if necessary a homography,suppose that those
vertices common to two parallelograms are contained in the horizontal
plane 23 = 0. To move one of those vertices does not change the area
of Z up to order one if the lengthes of the sides of the parallelograms
which are consecutive on a light ray are equal. As the picture should
be symmetrical with respect to the origin, that is possible only if the
lengthes of the arcs of the circle AN (z3 = 0) bounded by the vertices
common to the parallelograms are all equal. This shows that for our
choice of the metric on the circle,T' is the set of vertices of a square.

(W]

As the only conformal invariant of a set of four points is their cross-
ratio, The measure m(Z) is a function of this cross-ratio.
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Figure 63: the set of non-trivial O-spheres

13.2 The circles of 5?

The set of circles of 52 is identified with the points of the 3-dimensional
quadric L = 1 € IR?. The "torus” in that dimension is an embedding
of ST x §° that is two disjoint embedded circles. The two circles C
and Co bound two disjoint discs D; and D3. A circle C' is of alternate
double contact if it is tangent to C; at z; ,to Cy at z and separates S*
in two discs, one containing a neighbourhood of z; € D, and the other
a neighbourhood of zo € Dy.

Remark: The circles of alternate double contact form a tendril.

Question Consider now for each alternate double contact circle
Cthe circle(s) & orthogonal to C in alternated tangency points z; € Cy
and z4 € Cy doubly orthogonal circles. Do they form a tendrill? Remark
that, when C} and C; are circles, the doubly orthogonal circles form a
pencil.

The circle two piece property
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Definition 13.2.1 A top circle C C 8? for a closed subset A C S?
is a circle inlersecting A, bounding two discs Dy and Dy such that the
closure of one , say Dy contains A, and the interior of D, is disjoini
from A,

We will call the intersection C'N A of a top circle with 4 a topset of
A

Definition 13.2.2 A simple closed curve of S? has the circle two piece
property , if it is divided by any circle in al most two connected compo-
nents.

Proposition 13.2.3 A simple closed curve satisfying the circle two piece
property is a (round) circle.

The result is clear as, for any other simple closed curve, perturbing
an osculating circle with minimal contact with the curve will give circles
which contradict the circle two piece property. The circle two piece
property is also meaningfull for 2-dimensional submanifolds with smooth

boundary of §2.

Proposition 13.2.4 The only 2-dimensional manifolds W with smooth
boundary of S* having the circle two piece property are obtained by re-
moving from S$? a finite number of disjoint closed discs D; with boundary
(round) circles.

Lemma 13.2.5 The top sels of a closed set A satisfying the circle two
piece property are connected , that is they are either a point or an arc
of the corresponding top circle. Conversely if all the topsets of a closed
set are connected, then it satisfies the circle two piece property.

Proof: Consider a sequence of increasing discs D} converging to
the disc D; of boundary C such that A C D;. If all the intersections
AN Di of A whith the complement of D} in ¥ are void or connected
the intersections 8D N A are also void or connected and would converge
to at most one interval or a point of C, contradicting the hypothesis
that the topset in C' is not connected. If a circle cuts A in more than
two pieces, a disc D; of boundary C will intersect the closed set 4 in
at least two connected components. We can decrease Dy , keeping two
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connected components in Etz till its boundary is a top circle (first reduce

one component of AN 5; to a point p or an interval containing a point
P, then proceed using circles tangent at p). Therefore D% provide the
top circle intersecting a in two connected components. O

Proof: of the proposition If the boundary of W is not a union
of circles, then , consider one component of W which is not a circle.
Performing a suitable inversion, this component can be seen as the outer
boundary component of w C IR*. Some circle bounding a disc in R?
containing W will be tangent to the outer component of W defining
a non-connected topset. The previous lemma provides a contradiction.
The conditions of the proposition are sufficient because any circle C
tranverse to W intersects each circle 8D; in zero or two points. Then C'
and the discs D; it crosses form a necklace the complement of which has
two open connected components which are the compenents of W\CNW.
0

13.3 Spheres of dimension two

They form a 4-dimensional manifold. We can observe that time-like
curves in & correspond to nested spheres, space-like curves to spheres
enveloping a canal surface. A limit case is the family of osculating
spheres to a surface M of R3, along a line of curvature.The corresponding
curve of § is everywhere tangent to the light cone.

Question Is a closed tendril of & of length bigger or equal to = 7

13.4 The spherical two-piece property

Definition 13.4.1 A closed surface M C S® satisfies the sperical two
piece property, S.T.P.P. if for any sphere ¥ the difference M\ (M N L)
has at most two connected components. Such a surface is called taut

In 1970 T.Banchoff proved the following theorem:

Theorem 13.4.2 [Ban2] A surface embedded in S satisfying the spher-
ical two piece property is either a embedded round sphere or a Dupin cy-
clide, that is the conformal image of a torus of revolution of (complex)
equation

|21] = @, |22| = b; a® + 8% = 1; (21, 22) € €7
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Remark: The Dupin cyclides are in two different ways the envelopes
of one dimensional families of spheres tangent to three spheres bounding
three disjoint balls.

The proof of this theorem is analogous to the proof of Kuiper’s result
about tight immersions. One needs to consider spherical topsets and top
spheres.

Definition 13.4.3 A sphere X is a top sphere if it bounds two balls B;
and By such that:

-the interior of say, By does not meet M
-both By and B, do meet M.

We can weaken that definition:

Definition 13.4.4 A sphere I is said to be a local topsphere of M at
m € M if m belongs to XN M and if m has a neighbourhood U C M
which is contained in one, say By of the balls By and By of boundary
3. If the neighbourhood U C M can be chosen to intersect 2 only in m
then we say that the sphere . is a strict local topsphere.

Proposition 13.4.5 A surface M C S has the spherical two piece
property if and only if every local topsphere is a topsphere.

Proof: Suppose it is not the case, then there exists a point ¢ € int(Bs).
For a sphere ¥’ tangent to M at m, but bounding a closed ball B] which
strictly contains Bj. It is a strict local topsphere of M at m, and the
intersection F'QOM has at least two connected components, one reduced
to m, and one containing g. A third sphere ¥” tangent in p to X', very
close to ¥} and contained in Bj contradicts the spherical two piece
property. O

At a point m, we can consider the pencil of spheres tangent to M
at m which, with the point m is a circle P(m). The support spheres
of M form, if M is not a (round) sphere an interval of this pencil. Let
us call X+ (M, m) and X~ (M, m) the boundary spheres of this interval.
Applying this construction to nested neighbourhoods U; C M;i € IN
such that N, Ui = m we get spheres ¥ (M, m) and E] (M, m) which
converge to the two osculating spheres of M at m: (M, m) and
Yo(M,m). We can also define them using a stereographic projection
of center different from m and the principal curvatures of stereo(M}
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at stereo(m). This last observation implies that, when I,(M,m) and
Eo(M,m) are different, the intersection (M, m) N M is tangent to a
line Li(m) C TrnM and the intersection Lo(M, m) N M is tangent to
a line La(m) C T, M. We call these directions principal directions. A
point where 31 (M, m) = Eo(M, m) is called an umbilic.

Lemma 13.4.6 If M is a taut smooth surface of S® then T (M, m)
and X7 (M, m) coincide with £, (M, m) and Zy(M,m).

Proof:  The interval of P(m) containing the point sphere m and

bounded by X;(M,m) and Z2(M,m) is in that case equal to the set

of topspheres. a
We are ready to prove the:

Theorem 13.4.7 A smooth taut surface embedded in S° is either a
(round) sphere or a smooth torus

Proof:

First notice that a (round) circle of 52 has the spherical two piece
property.

If M has an umbilic m, then it ”lies” between identical spheres
Z1(M, m) = Zy(M, m), and is therefore a sphere. If it does not have any
umbilical point, then there exist two transverse line fields on M, L, (m)
and Ly(m). As M is embedded in S it is orientable, and therefore is a
torus. O

Proposition 13.4.8 A Dupin cyclide is taut.

Proof: The envelope of a time like curve in A is a canal surface,
union of the caracteristic circles of the family. The directions tangent to
this family of circles are principal directions. A Dupin cyclide is in two
different ways a canal surface, and therefore admits two transverse foli-
ations by circles (tangent to the principal directions). The components
of M \ ¥ are the union of plaques of these two foliations. The circle
two piece property applied to the leaves of the two foliations imply that
they are cut in at most two intervals, and can match in at most two
connected components. o
Then an essential lemma is:

Lemma 13.4.9 A spherical top set of a taut embedded torus M satisfies
the circle two piece property.
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Proof: As before B; is the ball of boundary a topsphere ¥ which
contains M in its closure and By the other ball of boundary E. If the
topset does not satisfy the two piece property,in the topsphere X we can
find a circle ' which is a topcircle of £ N M such that the intersection
CNotnNM = CnNM is not connected. As before the intersection
M N X is contained in Dy, a disc of boundary C, and the other disc
Dy of boundary C' does not meet M N %. Choose @ and ¢ on different
components of CNM and b and d in different components of C\ (CNM),
so that these points are in cyclic order on C'. Let v be a geosdesic arc
from b to d in D; and V a neighbourhood of 4 in $2 disjoint from M.
Turning ¥ around C we get a family ¥*. We chose the rotation sign to
leave + out of the component, but chose the rotation small enough to
garantee the existence of a continuous family of paths ¥* joining a to ¢
in Z*NV (B! obtained by continuity from B;). Then the points @ and ¢
will be in different components of BN M as there is no path connecting
aand cin MNC = MNENX!, and as any path in the union of the
hemispheres L containing the arcs 4* joining @ and b should cross V.
Therefore, for t small enough, (with the right sign), &* cuts M in at least
three connected components. (This last argument is qu1te analogous to
Kuiper’s for tight surfaces). m}

Proposition 13.4.10 If M is a taut torus in S° then for any topsphere
¥, XN M is a point or a circle.

Proof: We know by the previous proposition that the top set sat-
isfies the circle two piece property. It cannot be ¥ as M is a torus,
nor contain interior points, which would be umbilical points of M, and
imply again the equality M = X. The topset could apriori also be
E\ {non finite family of round discs}. The boundary of those discs
cannot bound a disc in M without contradicting tautness (consider a
Poncelet pencil of spheres containing ), but then these boundary curves
would be disjoint simple closed curves on M ; three disjoint simple curves
on a torus always disconnect it into more than two pieces, so MNint(By)
would have at least two components. Moving ¥ slightly into B; provides
a sphere ' bounding a ball B! such that M N B, has at least two con-
nected components. The only possibilities left are a point and a circle.
|
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The interval of topspheres tangent at m € M to the taut torus M is
bounded by the two osculating spheres at m, £; and 3;. Let us consider
a sphere ¥ tangent at m to M close to ¥; which is not a topsphere. It
intersects M in a neighbourhood of m into two transverse arcs crossing
at m the tangents of which are form a very acute angle and are close
to the principal direction Ly C T, M. Suppose that the intersection
1N M is the point m. Choose a neighbourhood U C §3 of m such that
the intersection M N U is a small disc. For non topsphere ¥* tangent to
M at m close enough to ¥ the intersection ! N M is contained in U.
As, at m there are four arcs of X*N M with distinct tangents, we can find
two points p and ¢ in £*NM such that any path from p to ¢ in D} passes
through m. Choose in U N E; a very small circle o centered at m, such
that that the small disc 8,it bounds does not contain any of the points p
and ¢. In the pencil of spheres containing 23; ,and following by continuity
the ball By, some interval of spheres ¥7 starting at X; will be such that
B7 contains p and ¢ but does not contain m . For 7 small enough and
with the right sign, 37 does not satisfy the two piece property. Then
we can conclude that the osculating spheres intersect a taut torus M in
circles. Those circles are necessarily lines of curvature, so M is a Dupin
cyclide [Dar] . This ends the proof of the theorem giving the list of taut
surfaces in S3.

13.5 Intersection of surfaces and curves of the sphere $3
with spheres

Let us now show that we can associate to a closed surface or a closed
curve of S$3 a subset of § the measure of which is a conformal invariant
of the surface or curve.

Let M be a compact surface embedded in §% . There exists a radius ¢
(depending on M) such that any sphere & C 52 of radius smaller than ¢
either does not meet M or meets M in a point or a closed curve bounding
a disc in M. Then the measure of the set of nontrivial spheres, that is
the spheres which meet M in more than one curve, or in a curve which
is not the boundary of a disc in M, is a conformal invariant. A smaller
conformal invariant is the measure of the spheres which intersection with
M contains a nontrivial component in the homology of M.
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Definition 13.5.1
nt(M) = measure{non trivial spheres for M}

ntop(M) = measure{c intersecting M nontrivielly in H' (M)}

Let v be a compact closed curve embedded in 53, There exists a
radius e (depending on ) such that any sphere ¥ C S of radius smaller
than ¢ either does not meet «y or meets it in one or two points. Then the
measure of the set of nontrivial spheres for v , here spheres which meet
7 in at least four points, is a conformal invariant of the curve ¥ We can

define:
Definition 13.5.2

nt(y) = measure{nontrivial spheres for y}

NT( = [(rnE-2)*
where @t is the function equal to ¢ when ¢ > 0 and equal to ¢ when

¢ <0

13.6 Questions

e conjecture there exists a positive constant « such that, when
the closed embedded curve ¥ C S° is knotted,

nt(y) > «

e conjecture there exists a positive constant 8 such that, when
the closed embedded surface M C S3 is not a sphere,

nt(M) > g
¢ The Willmore conjecture the following 2-form on a surface

M embedded or immersed in $® is invariant by the action of the
conformal group on §3:

dw = (ky — ks)? - dv
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where k; and k; are the principal curvatures and dv the area form
of M.

The integral on M of this form:

W(M) = /M dw

is then a conformal invariant of the immersed surface. Looking
first at revolution tori of equation

|z1] = @, ]z2] = b; a® + b = 1; (=1, 22) €C*

Conjecture [Will] [Wil2] When M is a torus:
W(M) > 2x*

This conjecture has proved to be particulary rich in connection
with other problems see [Will] [Wil2] [Li-Ya).

There may be an inequality linking W (M) and the measure of the
spheres with non trivail intersection with M.

Mobius energy The author thanks D.Rolfsen for pointing out
the reference [F-H-W] to him. Recently M.F.Freedman, Z-X.He
and Z.Wang defined the Mobius energy of a rectifiable curve em-
bedded in R® by:

1 i

= [ [ =707 [distps (7(0), 7 ()P

where A is the diagonal of the product v X 4. Separately the
integral of the two fractions would diverge, but the sum converges.
They prove that this function is invariant by the M&bius group.

Let ¢([v]) be the crossing number of the knot type [7] (the infimum
of the number of crossings of the projection of the knot -y € [y] on
a plane, when « describes the isotopy class.

Theorem 13.6.1 [F-H-W] The energy E(v) of a simple closed
curve ¥ C IR? satisfies the inequality:

E(y) 2 2me([v]) +4
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The equality E(v) = 4 is achieved only when the curve is a (plane,
round) circle.

Conjecture The Mobius energy and the measure of the set of
spheres intersecting the curve + in at least four points are linked
by inequalities. One may have to take a multiplicity involving the
number of intersection points into account.
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