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STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS

Megna est veritas et .... Yes, when it gets a chance.
There is a law, no doubt — and likewise

a law regulates your luck in the throwing of dice.

1t is not Justice, the servant of men, but accident,
hazard, Fortune — the ally of patient Time —

that holds an even and scrupulous balance. '

Joseph Conrad, Lord Jim.
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1. INTRODUCTION

Let the time-evolution of some natural process be described by a transformation
f: M = M on a manifold M. Physically observable quantities correspond to real,
or complex, functions ¢ defined on the phase space M. Thus, experimental data on
the system comes, usually, in the form of sequences of “measurements” p( f4(2)), where
z € M and j > 0. From such data one tries to extract the main intrinsic properties of
the underlying dynamical process.

Very often, these time-series w{f#(z)) behave in a rather complicated and “erratic”
way as time j varies, even for simple evolution laws f. Moreover, time-series may depend
very sensitively on the initial state of the system: arbitrarily small modifications of
z € M typically lead to quite different values of p(f¥(z)) for j large. These facts are
illustrated by Figure 1.1, where the values of ¢(f7(2)) are plotted against time 7, for
the following case. The map f is the Hénon diffeomorphism of the plane R?, given by
F(z,y) = (1 - 1.42% +y,0.3x). The observable function i is simply ¢(z,y) = . Time
7 increases in the horizontal axis from 0 to 100, and the two graphs correspond to two
nearby choices of the initial state, respectively, z = (0,0) and 2’ = (0.01,0). Note that
both sequences seem to behave quite randomly. Moreover, despite the fact that the
values of (f7(z)) and w(f7(2)) are close to each other if j is small, just by continuity,
the two sequences apparently become uncorrelated after only a few iterates.

Figure 1.1: Time-series for two nearby initial states of the Hénon map

Such “chaotic” behaviour means that the dynamics may be hard to understand in
deterministic terms, and that a stochastic analysis of the time-series may be a more
fruitful approach. That is, one regards time-series as essentially random sequences,
and focus on determining their statistical properties. Of particular interest are those
properties which are intrinsic to the dynamical system, that is, independent of the choice
of a (typical} initial state z, even more so if they are robust under small modifications
of the system. :

The present work is devoted to the study of the statistical properties of deterministic
systems with chaotic dynamical behaviour. In the sequel we introduce some of the
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mathematical notions and problems involved in this program, as well as & few basic
examples. We also give a brief outline of the historical background, see e.g. [PT93] for
more information.

Rigorous statements and proofs are presented in Chapters 2 through 5, for various
classes of systems covering most known cases. Along the way, we introduce several
of the teclniques devised for the study of such systems. Most of the time, we restrict
ourselves to discrete-time systems, namely smooth or piecewise-smooth transformations
on manifolds. However, a large share of what we do applies also to flows or semi-flows
as we shall briefly comment. In Chapter 6 we discuss some of the recent developments
and open problems in this area, including a program towards a global understanding
of chaotic systems recently proposed by Palis [PT93], [Pa), largely inspired by a proba-
bilistic viewpoint as we adopt here.

1.1. Physical measures.
A first, basic question concerns the existence of asymptotic time-averages

Ey(p) = lim th (F(z))

n—++oo 1

for “many” points £ € M. Clearly, E.{y) cxists whenever = is a periodic point of f,
ie. whenever f8(z) = & for some & > 1. More generally, Birkhoff’s ergodic theorem
asserts that asymptotic time-averages exist for almost every point, with respect to any
f-invariant probability measure. This is most relevant if f is volume-preserving, that
is, leaves invariant some smooth (Lebesgue) measure on the manifold M. However,
arbitrary invariant measures may lack physical meaningfulness. In general, we take
“iany” above to mean “positive measure set” with respect to some Lebesgue measure.

Furthermeore, one wants to understand if, and when, time-averages can be indepen-
dent of the initial point. Suppose that, for every continuous function ¢ : M — R, the
average E.{p) exists and is independent of the point  taken in some positive measure
set B C M. Then

p E(p) = Ex{p)  (any z € B)

defines a nonnegative linear operator on the space C"(M, R} of real continuous functions
which, by the representation theorem, can be thought of as a Borel measure j: on M:

n—p-4oo 71

f«,ud,u =FE(p)= lim th Fiz) (any = € B).

Observe that such a measure g can be “physically observed” by computing time-averages
of coutinuous functions for randomly chosen points £ € M (positive probability of
getting = € B).

This totivates the following definition. An f-invariant probability measure p is
a physicel, or SRB (for Sinai-Ruelle-Bowen) measure for f if there exists a positive
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Lebesgue measure set of points x € M such that

n—1

00 [ea=Ee)= lm 05 elf@)  forovey p e UK

The set of points £ € M satisfying this property is called the (ergodic} basin of y, and
is denoted B(x). The previous considerations can then be summarized in

Problem 1. Given 7 C M such that f(U; U, investigate the existence of some SRB
measure g with support contained in U. Study the uniqueness and the ergodicity of p.
Describe its basin B(u).

SRB measures are believed to exist in great generality (the assumption that such
a measure exists is usually implicit in numerical studies of experimental systems}, but
actual constructions are known only for certain classes of systems, see Chapters 2 ff..
Also, the following simple counterexample, due to Bowen, shows that this is a matter
of some subtlety.
Example 1.1. (see e.g. [Ta95]) This consists of a vector field in the plane with two
saddle-points A, B exhibiting a double saddle-connection. The two saddle-connections
bound an open region L containing another equilibrium point C, which is a source.
Under appropriate assumptions on the eigenvalues at the saddle points A and B, the
trajectory X(2) of any point z € L\ {C} accumulates on the boundary of L as time
t  ++oa. See Figure 1.2. However, given any continuous ¢ with p{A4) # (B), the
time-average

T
lim % fo e(X(2)) dt

Ta4oe

does not exist (for any such 2): both p{4) and w({B) are accumulation points.
L

Figure 1.2: Bowen’s counterexarnple

It is an important open question whether examples such as these can be made generic
(Bowen’s counterexample has codimension 2 in the space of flows). In the interval,
[HK90] have given examples of quadratic maps without SRB measures, and of quadratic
maps whose SRB measure is the Dirac measure «npported on a repelling fixed point.
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1.2. Correlation functions.

Trom now on we let U C M be some open set with f(I') C U. We suppose that
F admits 2 unique SRB measure g with support contained in U, and we analyse the
systewmn (|0, p).

The next step is to try and understand whether, and how fast, memory of the past is
lost by the system as time evolves. In more precise terms, one wants to know to what
extent observations w( f™(z)) made at some instant n >3 1 are affected by initial values
#(2} of some given observable ¢ (possibly with ¢ = ). This is naturally expressed by
means of the correlation functions

Catot) = [0 pau— [wiu- [wau

Note that C,{w,9¥) = 0 corresponds, in probabilistic terms, to w o f™ and 3 being
independent random variables. We say that (f, i) is mizing if Cn{p,¢¥) — 0 for every
pair (g, %): the value of ¢ o f* becomes less and less dependent of the value of 1 as
time goes to infinity. We say that (f, i) is ezponentially mizing (or, has ezponentiol
decey of correlations) if this “loss of memory”™ occurs exponentially fast: there is 7 < 1
and for cach {1, 9) there is C > 0 such that

(1.2) [Culp, ¥} £ O™ foralln > 1.

The following simple examples are meant to illustrate these ideas. First, a word of

warning: one usually takes i, ¢ varying in some convenient Banach space of functions
F, and then the previous definitions are relative to that space {e.g. the existence and
the value of 7 may depend on F). The particular choice of the Banach space varies with
the context, F may not contain characteristic functions.
Example 1.2, Let M ={0,1], f be given by f{z) =1~ |2z — 1], and g be Lebesgue
measure. It is not difficult to find 7 < 1 such that given any pair of intervals I, J C M
there is ¢ > 0 such that ¢ = xr, ¥ = x; satisfy (1.2). On the other hand, if M = §1,
[ is a rigid rotation, and g is Lebesgue measure, then C',(xt, x) does not converge to
gero, for any intervals I, J C S

An important difference between these two examples concerns hyperbolicity: in the
first case f is uniformly expauding, while in the second one f completely lacks hy-
perbolicity. In fact, an important theme here is that a small amount of hyperbolicity
(together with topological mixing, say) suffices for exponential decay of correlations.
The following example shows that this theme should be taken with some precaution.
Example 1.3. (sec e.g. [CI96] and Section 3.5) Let f : [0,1] — [0,1] satisfying, for
some ¢ € (0, 1),

(i} f is increasing and €% on [0, ¢] and on (¢, 1], with f(0) = 0 and f(c*) = 0;

(i) £/(0) =1, but |f/(x}] > 1 for z # 0 {including x = ¢*); moreover f7(0) > 0;

See Figure 1.3, Then f does not admit a finite invariant measure which is absolutely
continnous with respect to Lebesgue measure, but it has an infinite absolutely contin-
uous invariant measure o The system (f, i} has polynomial decay of correlations, i.e.,
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(1.2) holds if the righthand side is replaced by Cn~* for some d > 0, but it is not
exponentially mixing.

i

0 c ¥)

Figure 1.3: A map with polynomial decay of correlations

We shall see in Section 3.5 that p is not an SRB measure for f. The map f does
admit a unique SRB, but this is the Dirac measure supported on the neutral fixed point
0. So, despite the fact that the map looks prevalently expanding, its behaviour on
typical orbits is not at all hyperbolic: the Lyapunov exponent lim n~tog |(f")(z)] is
equal to zero at Lebesgue almost every point z.

1.3. Randomness.

Other important characterization of almost independence (more precisely, weak corre-
lation) of successive observations may be given through central limit and large deviations
theorems. Both kinds of results describe the oscillations of finite-time averages

LS wtsta)

around their expected value f wdy. We begin by quoting classical statements for inde-
pendent identically distributed random variables.

Theorem 1.1 {central limit theorem for i.id.or.ov.). Let Xop,...,Xp,... be in-
dependent identically distributed random varinbles taking values in R, with average
X = E{X,) < oo and variance o° = B((Xn — X)) € (0,1). Then, given any open
interval A C R, the probability of

n—1
- 1 2
% {(X;-X)e A converges to Wor f ez? di
; o Ja
=0

as 1 —+ +eoo.
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Theorem 1.2 (large deviations theorem for ii.d.r.v.). Let Xg,... , Xn,..., X,
and ¢ be as in Theorem 1.1, Assume, moreover, that E{etX») < co for every t € R.
Then, given any € > 0, the probability P(n,€) of

1 n—1 B ,
I~ Z(Xj - X)|[>e
=0
converges to zero exponentially fast as n — 400, in the sense that

lim sup 1 logP(n,€) <0.
n—+oo T
Each of these theorems is part of a whole family of related results which includes
considerably more sophisticated statements. See Appendix B for proofs, additional
information, and references to the literature.
Going back to our dynamical context, we say that an observable o satisfies the central
limit theorem for (f, ) if there is ¢ > 0 such that, for every interval A C R,

1

I © . 1 =
p{ze M: ﬁjzn(tp(ff(w))—f«,adu)eA})—) \/2?0/‘;6 o% di,

as n — +oo. On the other hand, we say that ¢ salisfies the large deviations theorem
for (f, p) if, given any € > 0 there is A{e) > 0 such that

n—1

it € M 12 S (o @) - [wdi)] >y < e

=0

for every large n > 1. As we shall see, properties such as these hold when p has
sufficiently fast decay of correlations. In some sense, this means that individual time-
series behave in an essentially “random” way over large ranges of time.

Summarizing this discussion, we state
Problem 2. Determine whether (f, i) satisfies the mixing properties, the central limit
theorem, and or the large deviations theorem, for all the observables in some appropriate
Banach space. Estimate the rate of decay of the correlation functions.

1.4. Stochastic stability.

CQuite often, the mathematical formulation f : M — M of a given physical process
involves simplifications, where a “main” part of the process is isolated (this is what f is
meant to deseribe) and external influences are discarded as too complex to be taken in
cousideration and, hopefully, too small to be relevant. Clearly, this procedure requires
a justification, specially if, as it frequently happens, the simplified system f turns out
to be structurally unstable (meaning that arbitrarily close transformations g may have
very different dynamical behaviour, see Section 1.5 for a more precise definition).
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In many instances where such external influences are not completely understood, or
are too complex to be effectively expressed in deterministic terms, one can think of them
as 2 kind of random "noise”. One then speaks of stochastic stability if the presence of
small noise has only a small effect on the asymptotic behaviour of f. In more precise
terms, for each small € > 0 one considers iterates

.'Bj=fj0"'0f1(.'17), "I:GUI J'EO,

where the f; are chosen randomly and independently from each other in the e-neighbour-
hood of f, according to some given distribution law. It is convenient to assume that
F(0) ¢ U, to ensure that f;(U) C U for every i. Then, under general conditions, there
exist probability measures jz, with supp e C U and

. 1 n-1
ngr-l{loa E ; gﬂ(ﬂ'}j) - [‘{3 dﬂs

for all continuous ¢ : M — R and “many” (positive probability) random trajectories
(z5);>0 with o € U. We say that (FIU, 1) is stochastically stable if pt, converges to p
in the weak*-sense, that is,

/-tpd,ucﬁfqodu for all ¢ € C°{M,R)

as € — 0 (if g, is not unique then we require convergence to u for all such stationary
measures with support contained in I7). .

While structural stability requires very rigid constraints on the dynamical system,
stochastic stability is likely to hold quite in general. Indeed, another informal theme
is that systems with exponential decay of correlations tend to be stochastically stable:
known counterexamples, such as the next one, are nongeneric in some way or another.

i

172}

0 172 1
Figure 1.4: An expanding map that is not stochastically stable
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Example 1.4. ([Ke82], see [BaY93]) The example is a continuous piecewise affine and
expanding map f : [0,1] — [0,1]: thereare e =0 < e <3 =1/2< g <es =1
and o; > 1, i = 1,2,3,4, such that f'{z) = (—1)i0; for all = € (¢;,¢i41). See Figure
1.4, Moreover, f(1/2) = 1/2 and, due to the presence of this periodic turning point,
the map f is not stochastically stable.

Problem 3. Find gencral conditions on the system ensuring stochastic stability.

Further understanding of the dynamical behaviour (resonances, distribution of peri-
odic points, ... ) can be obtained from other important invariants, such as the correla-
tion spectrum or dynamical zete functions. See [Ba95], [Ru94], and references therein.
Although we do not treat these invariants explicitly here, their study is closely related
to that of the problems stated above.

1.5. Brief history.

Duily life observations, e.g. of mechanical processes subject to friction, or of simple
chemical reactions, may suggest that systems typically evolve to a steady (equilibrium)
state. Indeed, it was believed for a while that most dynamical systems are gradient-
like: a finite number of periodic motions, to which converges every trajectory of the
system; in particular, there are only finitely many (periodic) attractors whose basins of
altraction cover a full probability subset of the phase space.

On the other hand, more sophisticated natural phenomena, such as turbulence in the
motion of viscous Auids, hinted at much richer forms of dynamical behaviour. Early
attempts by Landau-Lifschitz to describe turbulence were based on the idea of high-
dimensional invariant tori contained in the phase-space and carrying gquasi-periodic
flows: they suggested that presence of a large number of rationally independent fre-
quences might explain the complicated patterns associated to turbulent motion. How-
ever, this was chalenged by Ruelle-Takens [RT'71], who showed that the proposed mech-
anism for the formation of such tori does not actually lead to quasi-periodic motion.
They suggested that, instead, turbulence is associated to the presence of some “strange”
kind of attractor.

About a decade earlier, Smale had been astonished to find out that smooth flows and
transformations may exhibit infinitely many periodic motions in a robust way: after any
small perturbation of the system an infinite number of such periodic motions continues
to exist. His efforts to understand this phenomenon lead him to discover the *horseshoe
map”, and thus to introduce in Dynamics the concept of hyperbolicity [Sm67]. His
notion of hyperbolic {or Axiom A) systems, unified (generic) gradient-like systems, the
horseshoe, and the class of systems introduced by Anosov [Ang7].

The theory of hyperbolic systems was developed to near completion throughout the
sixties and the seventies, and provided a powerful framework for the understanding of
complicated dynamics. In particular, (nonperiodic) hyperbolic attractors were the first
“strange” attractors whose behaviour may be considered to be understood. The ergodic
theory of these systems was most successfully built in the seventies, through the work of
Sinai, Ruelle, Bowen, [Si72], [BR75], [Ru76]. Moreover, contributions by a large number
of people, culminating with [Ma86}, see also [Ha97], showed that hyperbolicity is the
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key condition for structural stability of a system. A system is structurally stable if there
is a one-to-one correspondance between its orbits and the orbits of any nearby system,
preserving the direction of time.

However, it was soon realized that nonhyperbolic (and thus, nonstable) systems also
exist in a robust way. In patticular, [Ne79] showed that many (Baire second category)
diffeomorphims have infinitely many attracting periodic orbits, thus proving unfounded
expectations that generic systems might have only finitely many attractors.

In fact, a number of simple models motivated by concrete preblems in Nature were
being found, which did not fit the framework of uniform hyperbolicity. This included
the now famous Lorenz flows [Lo63], Hénon attractors [He76], and Feigenbaum-Coullet-
Tresser cascades of period-doubling, [CT'78|, [Fe78]. Although structurally unstable,
these phenomena are very robust: they persist for many (positive probability), or even
all, small perturbations of the initial system. Lorenz observations pointed out that
sensitive dependence on the initial state is a source of fundamental unpredictability
in deterministic systems. All in all, these discoveries showed that the requirement of
(uniform) hyperbelicity and (structural) stability is too restrictive, and that a broader -
and more flexible framework is necessary to encompass the relevant phenomena taking
place in natural systems.

A large part of the recent work in Dynamics in recent years has, thus, been devoted
to the study of the properties of chaotic systems having only some weak form of hyper-
bolicity. The program we described in the previous sections has been carried out for a
large class of nonuniformly hyperbolic transformations of the interval, as we shall see in
Section 5. A large deal of information is available also concerning Lorenz-like attractors
of flows, which we shall mention in the Section 6.3. Moreover, this program has also
been brought close to completion in the, more subtle, case of Hénon-like attractors, as
we shall also see in Chapter 6.

Recently, Palis has been proposing a number of ideas and conjectures [PT93], [Pa,
aiming at a global description of systems with complex dynamical behaviour. At the
core of his program is the conjecture that every system can be approximated by ancther
having only finitely many attractors which, in addition, have well-defined statistical
properties: unique SRB measure, stochastic stability. A more precise formulation will
be given in the last section.

Notes.

This text is organized as follows. In Chapter 2, we treat the class of smooth expanding
maps, that is, maps whose derivative expands every tangent vector, with expansion rate
uniformly bounded away from 1. Although comparatively simple, these maps have
rather nontrivial features and serve as a good introduction to Chapter 4, where we
give a unified presentation of ergodic properties of uniformly hyperbolic attractors of
diffeomorphisms. The results are by now classical, but the approach we follow in this
chapter, borrowing some key ideas from [Li95], is new.

Before that, in Chapter 3, we extend the results in Chapter 2 to piecewise smooth
expanding maps in dimension 1, including Lorenz-like maps and maps with infinitely
many smoothness domains, Besides their intrinsic interest, piecewise expanding maps
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are also instrurnental in the study of many smooth nonuniformly hyperbolic systems,
such as Lorenz-like attractors of flows or unimodal maps of the interval. Indeed, in
Chapter 5 we decribe a tower construction associating a piecewise expanding map in a
(noncompact) l-dimensional space to each unimodal map in a large class of nonuniformly
hyperbolic transformations of the interval. Combined with other tools (e.g. cocycles),
this allows us to give a rather complete picture of the ergodic behaviour of such maps.

As we already said, Chapter 6 is devoted to a more informal discussion of recent
developments, mostly about nonuniformly hyperbolic systems.

In a forthcoming version the discussion on Hénon-like attractors will be expanded
into a whole new chapter, and more background material will be included. I also plan
to add new sections to Chapter 3 (higher dimensions}) and to Chapter 5 (stochastic
stability). This will also be a chance to correct any injustices I may be commiting to
people who have contributed to this field, despite the effort I have put into giving the
correct references.

This work started as a set of handwritten notes for a course I lectured at IMPA in
the (southern hemisphere) summer term of 1996. Remarks by participants in the course
and other colleagues helped improving the initial text. It wish to thank J. F. Alves,
V. Araijo, C. Bonatti, M. Benedicks, A. Castro, . Coilet, M. J. Costa, [.. J. Diaz,
M. A. Hertz, V. Horita, G. Keller, F. Ledrappier, C. Liverani, M. J. Pacifico, J. Palis,
E. Pujals, amnong others, for helpful conversations on topics related to this work.
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2. EXPANDING MAPS ON MANIFOLDS

Let M be a compact connected manifold and f: M — M be a smooth map. We say
that f is expanding if there exists ¢ > 1 such that

(2.1) [|Df(z)-v|| = ollol| forallze M and veT:M,
for some riemannian metric || - || (the particular choice of such a metric is not relevant
here).

A standard class of examples is provided by the following construction. Let F: R* —
R* be a linear map such that F(Z") ¢ Z". Then there exists & unique map f on the
n-dimensional torus M = R"/Z" such that fow = mo F, where x : R" — M is the
canonical projection. Moreover, if all the eigenvalues of F have norm larger than 1 then
this induced map f is expanding. Clearly, existence of a constant ¢ > 1 as in (2.1) is
a C! open condition on the map. Thus, any smooth transformation of M close enough
to f, in the C* sense, is also an expanding map.

In this chapter we prove

Theorem 2.1. Let f be a C** expanding map, for some vp € (0,1]. Then
(1) f edmits a unique invariani measure fig which is absolutely continuous with
respect to m; moreover, o is ezact (thus ergodic) and dyio/dm is strictly positive;
in particular, py is the unique SRB-measure of I ’
(2) (f,#o) is exponentially mizing end satisfies the cenfral limit theorem, in the
Banach space of v-Hélder continuous functions, for any v € (0, vo);
(3) (f, o) is stochastically stable under small random perturbations.

The proof is based on the fact that ergodic properties of f may be derived from spec-
tral propertics of its fransfer {or Perron-Frobenius) operator, acting in some convenient
space of functions ¢: M — R. The transfer operator £ 13 defined by

(22) o= Y Tk

flzi=y

(note that the sum is over a finite number of terms). The determinant is with respect to
the riemannian metric we have chosen; observe that different choices lead to operators
which are conjugate and, thus, have the same spectrum. The usefulness of £ stems, in
the first place, from the duality property

@3) [y im= [ etwo pyim

(whenever the integrals make sense), which is a direct consequence of the definition and

the formula for the change of variables.
The relation (2.3) implies, in particular, that fixed points of £ are directly related
to absolutely continuous f-invariant measures. Indeed, if wo is a nonnegative L'(m)
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function satisfying Lwo = (9o then po = wom/ f@om is an f-invariant probability
measure and, of course, g < m. Conversely, if a finite f-invariant measure o is
absolutely continuous with respect to m then wp = dpo/dm satisfies Lipg = @p.

In order to prove that such a fixed point does exist we use the notion of projective (or
Hilbert) metric associated to a convex cone in a vector space, introduced by G. Birkhoff
[Bi67]. This notion and its main properties are recalled in Section 2.1.

Then, in Section 2.2 we construct a cone C' in the space of Holder continuous func-
Lions, which is mapped strictly inside itself by the operator £. It follows that £: C — C
is a contraction with respect to the projective metric £ associated to € and the first
statements in the theorem are deduced from this fact, see Section 2.3.

The contraction property also enables us to further describe the spectral properties
of £ to show, in Section 2.4, that the system (f,pg) obtained in this way has expo-
nential decay of correlations in the space of Holder continuous functions. Moreover, it
satisfies the central limit theorem in that same space. This last statement is derived
from cstimates obtained in the course of proving exponential mixing, together with an
abstract central limit theorem for dynamical systems, Theorem 2.11, which we also
prove in Section 2.5.

Finally, in Section 2.6 we develop a similar analysis for appropriate “perturbed”
transfer operators, to prove stochastic stability under a very general random scheme.
The method also yields a statement of deterministic stability: the absolutely continuous
invariant measure depends continuously on the expanding map, in the C'1to-topology.

2.1. Cones and Projective Metrics.
Let E be a vector space. By a cone in E we mean any subset ¢ C E'\ {0} satisfying

veC and i>0 = twvel.
The cone ig convez if
v,v2 €C and t,i2>0 = fuyy+iwme el
We define the closure C of C by

wel ¢ thereare v € C and (t,), “\ 0 such
that (w+tzv) e Cforalln > 1.

In all that follows we assume
(2.4) Cn(-C)={0}.
Given v, vy € C' we define

afvy,v2) =sup{t > 0:v2 —tv; € C} and PBlvy,vs) = inf{s > 0: 51 —~ve € O}
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(with the convention sup® = 0, inf § = oo, where B denotes the empty set). Note that
a(vy, vz) < Blvy,vs) for all vy, vz € C. Indeed,

up—tvy € C, sv1—vp € C = (s —t)v € C (by convexity)
= (s — ) > 0 (otherwise —v; € C, contradicting (2.4) ).

Moreaver, a(v,v3) < +oo and B{vy, v2) > 0 for all vy, 23 € C. Indeed,

(v, v3) = +0o => there is (tn)n — -+00 50 that uy —tpvy € Cforalln 21
= thereis (f,,) — 0 such that £ vz — v, € C for alin>1
= —u; € C, contradicting (2.4),

and B(vy,v) =0= —m € C is proved in the same way. Now we let

O(v1,v2) = log%»’-:—z; (with # = 400 if @ =0 or f ="+00).

In view of the previous remarks #{v;, v;) is well-defined and takes values in [0, +00].

Proposition 2.2.  8(-,-) is e metric in the projective quotient of C, that is,
a) B(v1,v3) = 8(va,v1) for allvy,v2 € C

b) 6(vy,va) + O(vz,v3) > O(vy, vz} for all vy, v2,v3 € C

¢) B(vr,v2) =0 & there exists £ > 0 such that v, = tug.

Proof: We claim that o(ve,v1) = B(v1,v2) 1. Suppose first that e(vz,v1} > 0. Then

1
alvy, 1) =sup{t > 0: vy —tvy €C} = sup{; >0: v —vyg €C}
= (inf{s > 0:sv1 — vz € chHl= Blvy,v2) "t

On the other hand,

afvg,v1) =0 & v —tu gC, forallt>0
& sy —w¢l, foralls>0 & fluy,vz) =+oo,

Lence the claim holds also in this case. Analogously, B(vz, v1) = afvy,v2)~". Part a) of
the proposition follows immediately.

To prove part b), we claim that a(vy, v2)a(vy, va) £ afvy,vs) for all v, vp,v3 € C.
This is obvious if a{vy,v2) = 0 or af(va,v3) = 0 and so we consider afvy,vs) > 0 and
@(vz,v3) > 0. Then there are {r,), 7 o(v1,v2) and ($n)n " a(va,v3) with

vy — vy € C and vz — spvz € C = v3 — 8101 € C (by convexity)
= 8§57y < a(v1,vs) foralln > 1,
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Passing to the limit as n — 400 we prove the claim. Analogously, 8(vy,v2)f(ve, v3) <
B(uy,v3). Part b) is now an easy consequence.
Finally,
(v, 12) =0 & vy, v) = Blvy,v2) = 7 € (0,+c0).

Then there are (¢n)n 7 and (sa)n N\ 7y such that
wp—ty €Cloraltn>1 = w—vynel
P o wequ=0 (by (20)).
Spy ~ve €Cforalln>1 = yyy-—-wmel
This proves part c) of the proposition. O

We call 8(., ) the projective metric associated to the convex cone C. Note that the
projective metric depends in a monotone way on the cone. Indeed, let C; C C; be two
convex cones in E and ey(-,+), fi(-,-), 0;(-,+) be the corresponding objects, i = 1,2, as
defined above. Clearly,

a1(v1,v2) € ag(vy,v2) and  Bi{vy,v2) > Paler, v2)
and so ¢y (v1,v2) = B2(vy, ve) for all vy, vs € C; C Ca.

More generally, let Ey, E; be two vector spaces and C; € F;, ¢ = 1,2, be convex
cones. Let L: E; — E3 be a linear operator and assume that L{C;) C Ca. Then

ai{vy,va) =sup{t > 0:va —tu; € O}
<supft > 0: L{vy — iv) € C2} (because L(Cy) C C3)
=sup{t > 0: L{vg} — tL{vy) € C1} = aa(L(v,), L{v2))

and, analogously, £1(vy,v2) > Fa(L(v1), L{w;)). Therefore,
61(vi,va) = 82(L(v1), L(wz)) for all vy, vz € Ch.

In general, L need not be a strict contraction, with respect to ¢y and &, but the next
proposition asserts that this is the case if L{C}) has finite 6;-diameter.

Proposition 2.3. Let D = sup{62(L{v1), L{v2)) : m,v2 € C1}. If D < 400 then
92(L(v1), L('Ug)) < (1 - e_D)el('!)]_,'l}g) fOT‘ all vi,U2 € Cl-

Proof: We may suppose a1(v1,v2) > 0 and Bi(v1,v2) < +oo for otherwise there is
nothing to prove. Then there are (t,), 7 @1{v1,v2) and (5,)n v Bi(vy, v2} such that

vz — £ Uy ECI

St — 1 € 01} = 82{L(va—thv ), L{spuy —w)) < Dforalln > 1.



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS 19
As a consequence, there are (T}, )y, and (Sy)n such that lim (log %:) < D and

Lispun — vg} — T L{ug — tnvl) eCy & (sn+ tnTn)L(Ul) -1+ T,—,,)L(‘Uz) € Cy
Sp +inTn
cnToinin
= Ba(L{n1), L(w)) < -3 T T,
Sp + 050

S, L{vg — tpav1) — L{sn v1 — v2) € Cp = az(L(v1), L(v2)) 2 TS

Then

sntinTn 14 5a )_

92(L(u1),L(vz))S1°E( 1+7T,  Sp+taS,

= log (‘:—" + Tn) —log(14+T,) = log (:—" + Sn) + log(1+ Sn)

loglon/ta) ( o= gy et dz
_/0 (e’+Tn_e3+Sﬂ)

Sn em(Sn - Tn)
< wr— | o
< log (tn) o (e + Th)(e® + 5n)

Sy Ts
< 21(1-2).
<t (32) - (1-3)

Passing to the limit as n — +co we conclude that

02(L(v1), L(v2)) < O1(vy,v2) - (1 - e D).
The proof is complete. [

Example 2.1. Let E = R? and C = {(z,y) : ¥ > |z|}. The projective quotient of &
can be identified in a natural way with (—1,1) x {1}, thus, with the interval {-1,1).
Given —1 < #; < @z < 1 we have

a(z1,22) = sup{t > 0: (z2,1) - £(z1,1) € C}

1—
=supft>0:1—t >z —tm} = T2
1—.’.[.'1
_$2+1
Blz1,T2) = ponrag

and so #(x1,T2) = log R(—1, 31,23, 1), where R denotes the cross-ratio of four points
a < b < ¢ < din the real line

o

Rla,bycyd)= S22 4=

o
=]
=%

[+
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In this sense, projective metrics generalize the usual hyperbolic (Poincaré) metric in the
interval (or the disk), see e.g. [MS93]. Moreover, Proposition 2.3 may be thought of as
an extension of Schwartz lemma.

Example 2.2. Let X be a compact metric space and E = C°(X) be the space of
continucus real-valued functions defined on X. Take

C=C,={pcB:p(z)>0forallze X}
Then, for any 1,12 € C
e(p1,02) =supf{t > 0: (p2 —ty)(z) >0 forall z € X}
=inf{ﬂ($) :a:EX} and
1
Blern) =sup{ 2(@):z e x|

Therefore

81, p3) = log SRLP2/P1) _ | {ML@Q R X}.

inf(2/n) or(@)pa(y)
Example 2.3. Let X and E be as before and take C' = C{a, v}, the set of all ¢ € E such

that {z) > 0 for all # € X and logy is (a,r)-Hélder continuous. This last condition
means that

exp(—ad(z,¥)") < elz) < exp(ad(z,y)") for all 3,y € X.

e(v)
Given 1,02 € C and #y,13 > 0 we have
vy o 1191(z) + tapa(z)
L —e—t—————= < exp{ad{z,y)”) forall z,y e X,
)2 i) + tapaly) < TP v

and so C is a convex cone. Now, a(p1, p2) is the supremum of all ¢ > 0 satisfying, for
all o,y € X,

exp{—ad(z,y)

D) (92 — te1)(z) > 0 t < L2(z)
. ©1

- (o2 — to1)(z)
W o2 =t @) =
& t(explad(z, y})er(y) — #1(2)) < explad(z, )" )o2(y) - ¢a2(2)
exp(ad(z, y}")p2(y) — va(=)
~ explad(z, ¥)*)er(y) — o1 (2)
{2 — tp1)(z)
(w2 — to1)(y)
< explad(z, y)")e2(z) ~ valy)
~ explad(z, )" )1 () — w1 (y)

exp(ad(z, y)*) &

z exp(-ed(z, y)") &
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In other words, a(p1, p2) equals

o [w2(z) explad(z, y)")p2(x) — p2(y) }
inf { o,y €X,w
()’ explad(e, 1) )er(a) —ealy) | Y € TTEIY
and f(w1,w2) is given by a similar expression, just with supremum in the place of
infimum.

The following simple example shows that, for general convex cones, the projectiviza-
tion of {i : (i, 1) < oo} need not be a complete metric space, cf. Proposition 2.6 in
Section 2.3. '

Example 2.4. Let X be a compact manifold and E = C'(X,R) be the Banach space
of C? real functions on X endowed with the Cl-topology. Consider the convex cone
C={p¢cE:p(z)>0forallz € X} Let ¢ be a strictly positive function on X which
is continuous but not differentiable, and let {¢n)n be a sequence of strictly positive C*
functions converging uniformly to . Clearly, the projective metric 6 of the cone C
is given by the same expression as in Example 2.2. Using this remark, it is easy to
see that (@n)s is a f-Cauchy sequence in the cone €. On the other hand, it can not
be @-convergent in C, since the §-limit would also be a uniform limit and thus would
coincide with ¢.

2.2. Transfer operators and invariant cones.

Let f: M -+ M be a C't*0 expanding map on a compact connected manifold M.
Up to rescaling, we may suppose that the diameter of M is not larger than 1, and we
do so once and for all. We also let m be the riemannian volume, normalized so that
m{M) =1,

The assumption of expansivity (2.1) implies, in particular, that the derivative Df is
an isomorphism at every point, i.e., f is a local diffeomorphism. As a consequence, all
the points ¥ € M have a same number k > 1 of preimages (the degree of f). Moreover,
given any preimage = of y, there exists a neighbourhood V of yand amap g: V — M
such that f o g = identity and g(y) == z. Since f is expanding, such a local inverse
branch g must be contracting:

dlg(¥),9(v")) <o d(y',¥")

for every y’,4" in V (¢ > 1 is the expansion rate of f, recall (2.1} ). Moreover, by
compactness of M, the neighbourhood ¥V may be chosen containing the ball of radius
p > 0 around y, for some uniform constant p > 0. Summarising,

(i) there exists k > 1 such that every point y € M has exactly k pre-images under f;

(ii) there exist po > 0 such that, giver ¢, y2 € M with d(y1,¥2) < po, One may write
f_l(yj) = {lea N ,Ijk}, J = 1,2, with

d(71, 22) < 0~ 1d(y1,y2) foreachi=1,... k.
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Now consider the linear operators £ and U/ on B = C°(M, R), defined by

k

(Lo)() =D el det Df(z:)I™"  and  (Up)(z) = w(f(z))

i=1

Then (2.3) may be written

[tcordm= [ o) im.

We fix pp > 0 as in (i) and, for ¢ > 0 and 0 < v < 1, we define C(a,v) to be the
convex cone of functions z € E satisfying

(1) (z) >0 for all x € M;

(2) log v is {a, v)-Holder continuous on pg-neighbourhoods, i.e.,

dlynye) < po = () £ explad(yy, v2))e(vz)-

Proposition 2.4 (invariance). There is A; < 1 such that £{C(a,?)) C C(\ a,v) for
every sufficiently large a > 0.

Proof: Clearly, v > 0 = Lyp > 0, because f is surjective, and so we only have
to deal with condition (2). Let y,y2 € M with d(y1,y2) < po and write f~(y;) =
{*j1,-.- ywir}, 5 = 1,2, as in (ii). Using the fact that log|det Df(z)| is (ag, vo)-Hélder
for some ag > 0, we obtain, for every p € C(a, v),

=

(LoY() = > olzi:)|det Df(z:)|~"
i=1
k
<D wlwa) explad(@i, w2:)") - | det D (z2:)| ™" explag d(wsi, 721)"°)
i=1
k
< exp((ag™ + ag)d(y1, y2)") Z (w2:)| det Df{zz)|™?
i=1

<exp(had(y,ye)”) - (Lo)lya),

as long as Ay € (¢71,1) and a > ag/{A1 — o~¥). We used the fact that d{z15, ;)0 <
{71, 92)*° < d(y1,y2)" (because v < vy and the diameter of M is less than 1. 0O
We denote § = 8,,, the projective metric associated to the convex cone Cla,v).

Then, cf. Example 2.3, 8(p1,w2) = log(B(e1, wa)/a(p1, w2)) where a1, p2) is given
by

o iup f 200 xplad(z,n))ea(s) - paly) |
(2.5) mf{{pl (), exp(ad(@, 3) ) or(z) = 21(y) | T,y €Mz #y, and d(zr,y) < pg}
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and B(p1,2) has a similar expression, with inf replaced by sup. We also consider the
cone
Cy={p€eE:p()>0foralzeM}

The projective metric 8. associated to C, was calculated in Example 2.2, where we got
04+ (ip1, 02) = log(By (11, w2) /4 (101, 02)) with

arlon o = { 2@ iz M) md il = sup {Ee) o e )
Proposition 2.5 (finite diameter). D, = sup{8{p1,¥2) : v1.92 € ClAra,v)} is

finite, for everya >0, v >0, Ay < 1.
Proof: The proof has two steps: first we show that

g- diameter(C(A1a, »)) € 84-diameter(C(Ma,v)) + K' (A1),

then we obtain
d..- diameter(C(e, v)) < K"(a),

where K'(-), K"(-) < +o0. Given any 1,92 € C(M1 a,v),

explad{z, ¥)" Y2 (z) — p2(y)
exp(ad(z, v)*)p1(z) — v1(y) _
wa, . explad(z,y)"*) — exp(a Xy d{z, ¥)") P2
2 o ) ol ) —expla m (57 =

where
. z—zM
Kl:lnf{z__.;;—Tl 1z > 1}.
Note that K, € (0,1), since

— 2™ — 2™ 1—A

z—z . z—2z 1
lim ——~—=1 and lim == <L
i do0 z — z-M st z—zo 14X

It follows that a(p,¢2) > Kiay(p1,w2). Analogously, Bly1, w2} < K2 Bi(e1 pa)s
with
_Al

Kz-*—-sup{z— :z>1}€(1,+oo).

z—zM

We obtain 8(p1, v2) < 04 (1, p2) + log Kz —log K and this concludes the first step of
the proof.
Now, observe that

By (o1, 02)
a1, p2)

= logsup {m o(y)

(2.6) 81 (11,p2) = log
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It is casy to see that if @ € C(a,v) then log is (b, v)-Hélder continuous over the whole
manifold M (not just on pg-neighbourhoods), for some b > 0. Indeed, by compactness
and connectedness, there is ¥V > 1 (depending only on M and pg) such that given any
#x,y € M there are zp = 2, 21,... , 2y =y with d(z;_1,z) < pg foralli =1,... ,N and
S d(zio1,2) < 2d(z,3). Then

N _ N
{p(z‘)) < exp (Zad(zi—l,zi)")

1 #lzim1 i=1

o) _
plz) |

T

i=1

N 124
< exp (Na (Z ci(z,-_l,zg)) ) < exp(N a2 d(z,y)")

and one may take b = 2Na. It follows that, given any ), vz € C(a,r), we have

w2(z) v wry)
log —/—— < bd(z,y)" <b and log-—3f <
Eo(y) < P4EY) & or(z)

for every &,y € M, hence 84 (w1, 92) < 2logh. O

As a consequence of Propositions 2.2, 2.3, and 2.4, the operator £ : C(a,v) — C(a, )
is a Aj-contraction with respect to the metric 8 = 0, ,, with A; =1 — e~ 21,

2.3. Absolutely continuous invariant measure.

In order to prove that £ has some fixed point @y we take advantage of the fact that
the cone . is complete for the corresponding projective metric. More precisely, we
have the following staternent.

Proposition 2.6 (completeness). Any 0.-Cauchy sequence (pn)y in Cy is 84-
convergent in Cy. Morecover, if one normalizes  p,dm = 1 for alln > 1, then (),
is also uniformly convergent.

Proof: Let (¢n}n be a 8;-Cauchy sequence, normalized by Jendm=1foraln> 1
In particular, (s5), is 8-bounded and so, recall (2.6), there exists By > 0 such that

1 en@ely)
B~ ‘Pn(y)lpl(m) -

for all z,y € M and every n > 1. In particular,

L onle)

Ry~ ou(y) =

for all @,y € M and every n > 1, where Ry = Ry sup{p,(s)/p1(t) : 5, € M}. On the
other hand, the normalization [ ¢n, dm =1 implies inf ¢y, < 1 < sup g, and so

Ra

1
A < oplz) K Ry foreveryz € M and n > 1.
2
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Now, the Cauchy condition means that, given any £ > 0, there exists N > 1 such that
forall kK, 1> N

sup{pw/w1) o

- . o Pk P
- < = e f<inf= <1 <sup— <e*
inf (¢x /1) e P

(because [ prdm = [ordm implies inf(pr/pr) <1< sup(wr/epr)). It follows that

sup |ex — @1} < sup || - sup

ﬂ-l‘ < Ry(ef — 1),
7!

This means that (), is a Cauchy sequence with respect to the uniform (supremum)
metric, and so it is uniformly convergent. Let yp be its uniform. limit, observe that
@o > Ry and 50 g € Cyy.. Passing to the limit as | — +oo we get

e_sginfﬁgls.ﬂlpﬂ,{e‘.

Po (2

for all k > N. This proves that both sup(¢n/wo) and inf(@n /o) converge to 1, and so
8, {(pn, po) converges to zero, asn —oo. 0O

Remark 2.1. The form of the normalization condition in-the previous proposition is
somewhat arbitrary; it may be replaced, e.g., by suppy =1, which makes sense in the
more general context of Examples 2.2 and 2.3.

We apply the previous result to the sequence ¢n = £71. Since £ is a §-contraction
(¢n)n is 6-Cauchy and so it is also 64-Cauchy: recall that 6, < 9, since Cy D Cla,v).
On the other hand,

fgandm=f(£“1)-1dm=fldm=1, foralln>1,

by (2.3). Hence, ¢n converges uniformly to some o € C',. In fact, g € C(Ara,v),
because the Holder continuity condition in the definition of these cones is closed under
uniform Hmits. Since £ is a bounded operator with respect to the norm {|- ||o of uniform
convergence, (observe that :

l|Cw — Lllo < & sup | det Df| i — llo

where k = #f(y) for any ¥ € M), it follows that @o is a fixed point of £. As a
consequence, gp = o is an f-invariant measure of probability:

f(pd#u=fwodm=fw(£aoo)dm=f(tﬂo f)tpodm=f(tp°f)dﬂu

for every p € C°(M,R). Finally, dug/dm = ¢ 2 R3' > 0 and so po is equivalent to
Lebesgue measure .
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2.4. Exponential mixing.
Lel @ € C(Arn, v). The previous arguinents give

04 (L" @, 0} < 6(L" v, 00) < B, po}AT < D1AT

and so
sup |£™ ¢ — o < Ra(e®1 ™ — 1) € RzAT

for some constant Bz > 0 and every n > 1. This may be scen as a statement of
exponential loss of memory in the system: the iterates (L7 )m of an initial mass
distribution ¢ m converge exponentially fast to the equilibrium distribution @y m. As we
now show, a simtlar argument provides an exponential bound for correlation functions.

Proposition 2.7. Given ¢ a v-Hélder function and ¢ an L'(m) function on M, there
is Iy = Kole, ) > 0 such that

\/(g’) o fModin — .[wdm, '/‘godm

Proof: Suppose first that v € C{A1e,v). Tt is no restriction to assume f[pdm = 1.

Then, denoting [l4] = [ |4 duo,
o o o k1 n
‘/('(/:of")t,orlm—/'J;')d,u[)J = ’/ P (‘C v _ 1) dpg) < 1 £y -1
. Yo Yo

(PN =)yl < Rallplly AT

< KoA? foralln > 0.

Il
0

Now let @ be a general »-Hélder function and A > 0 be such that ¢ is (A, v)-Hélder.
For 13 > 0, we write

¢ =vh—y¢p whae ¢} = —(|¢p| +)+ B.

(Jlml Iy, vt are (A, r)-Hélder continuous and th > B. Taking B = (A/Ma) we get
<pB € C{A) a,v) and so the proposition lLolds for <pB By linearity it holds for . O

Remark 2.2. Note, for future reference, that the constant Ko = Ko(yp, %) constructed
in the proof of Proposition 2.7 has the form

Ko(p, ) < Kpll9l1(llell: + Ho ()

where If,, () denotes any number A such that ¢ is (A, v)-Hélder, and K > 0 is inde-
pendent ol @ and #. Indeed, the first part of the proof gives

Koleh ) < Rallpll: f o dm < Ryflbll( f lo| dm + B) < Raflla(Rellooll1 + %)

and our claim follows by noting that one may take Ko(p,%) < Ko(w}, %) + Ko(eg, ¥)-
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Corollary 2.8 {exponential decay of correlations}. Given v-Hilder continuous
functions ¢, and 2, there is K = K(yp1, p2) > 0 such that

< KA} forallnz0.

\f(‘f’lOfn)‘P2d#0_f'P1dM0[<P2dﬂo

Proof: Just take 1 = ; and ¢ = pagpe. O

Let F, = f~"(F), for n > 0, where F is the Borel o-algebra of M. A function
&M — R is F,-measurable if and only if £ = &, o f™ for some measurable &, (if £ is
F,-measurable then every preimage £~1(y)} is of the form f~"(A,) for some 4, € F,
just define £,|4, = y). Moreover, Fp D F1 2 - D Fu D -+ An f-invariant measure p
is called ezact if the o-algebra

Foa=[)Fn
n20

_is p-trivial, in the sense that all Fo-measurable functions are constant p-almost every-
where. Note that exact measures are ergodic: if A C M is f-invariant then x4 € Foo-

Corollary 2.9 (uniqueness and exactness). The measure po is ezact end it is the
unique f-invariant measure which is ebsolutely continuous with respect to m.

Proof: We have already shown that gy and m are equivalent measures. Let ¢ € L' (i)
be Fuo-measurable. Then for every n > 0 there is i, a measurable function such that
P = 1, o f. Note that ||u||1 = |}#ll1 < o0. By Proposition 2.7 and Remark 2.2, given
any v-Holder continuous function ¢, there is Kg() > 0 such that

f(ap»-[wua)aodm‘ - ‘f(T[’nOf”)qodm"f't,bdpgfrpdm‘

< Kg (@)lialli AT = Ko (@)|[ll1 AT = 0

and so

[~ [vamypim=o.

Hence 1) = [ 1 dpp almost everywhere, with respect to m and pp, and this proves that
tto is an exact measure. Finally, if ;¢ is another invariant measure with 1+ < m then
ft € wo and 50 & = pgsince g is ergodic. O

Let L3{Fo} = {£ € L?(o) : £ is Fp-measurable}, for each value of n 2 0. Observe
that L2(po) = L*(Fo) 2 LA*(F1) D ... D L*(Fu) D and

poisexact & [ | L (Fn) = {constants}.
n>i

Given ¢ € L3(y19) and n > 0, we denote E(p | F,) the orthogonal projection of p to
L3 (F).
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Corollary 2.10. For every v-Holder continuous function p with f(pd,uo = {) there is
Ry = Ry(y) such that ||[E{p | Fo)llz < RoA} for alln > 0.

Proof: It suffices to note that
1B6p | F)lle = sup{ [ &pduo € € L(7,) and lilla = 1)

= sup{f(qbof"):pgoodm 1 € L¥(p0) and ||9]|; = 1}
< Kg (v po)AT
(since |4z < |[¥|l2 = 1 and we suppose [ @dpo= [pwadm=0). 0O

Remark 2.3. The following description of the action of £ in L? is contained in what
we have done so far. Let wp be as above and H = {p € L%(m) : [edm = 0}. We
have L(iq) = @o and L(H) C H, by (2.3). Consider the isometry k : L*(m)} — La2(ju),
1{w) = p/wo, and introduce P : L2(pg) — L3*(po), P = ho Lo k™1, and

N = h(H) = {¢ € L}(m) :fwdpo =0}.

It fotlows that P(1) = 1 and P(N) C N, and (2.3) asserts that P is the adjoint operator
of U+ L{y0) — L3(po), U{9) = 9 o f. Let us denote LE(F,.) = N N L2(F,). Then U
and P are unitary operators with U(L2(F,)) = LI{(F.41) and P(LE(Fp1)) = LE(Fn).
Exactness means that £2(up) splits as an orthogonal sum

L3*(j1p) = {constants} @ N = {constants} @ (B3, [Li(F) L(:';(J:n+l)]) ,

where © denotes orthogonal complement. The last corollary implies that the compo-
nents of any ¥ € L%(uy) in this splitting decrease exponentially fast as n — +ea.

2.5. Central limit theorem.

Based on the previous analysis, we now show that the oscillations of the Birkhoff sums
of a -Holder observable function around their expected value converge, in distribution,
to a gaussian process. First, we state and prove an abstract central limit theorem for
measurable (noninvertible) transformations.

Theorem 2.11. Let (M, F, 1) be @ probebility space, f: M — M be a measurable map
such thet ;i is f-invariant and f-ergodic, and ¢ € L*(u} be such that [¢du = 0. Let
Fu denole the non-increasing sequence of o-algebras F,, = F~™F), n > 0. Assume that

o0

[IE($ | Fn)l]2 < oo.

n=0

Then o 2 0 given by

(27) o= [#aur2y [apo
n=1



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS 29

is finite and 0 = 0 if and only if g =uo f —u for someu € L2(). On the other hand,
if @ > 0 then, given any interval A C R,

‘ 1 n—1 . 1 -——‘3,-
u{zeM.ﬁgé(ﬂ(ﬂ:))EA}—}m/z_wLe 307 dt

as n — oo.

As an immediate consequence of this theorem and Corollary 2.10, we gel; the following
central }imit statement for expanding maps:

Proposition 2.12 (central limit theorem).
Let ¢ be a v-Holder continuous function and

Uz=f¢2dﬂo+2j§f¢(¢°fj)dﬂo, wherc¢=<p—f<pduo-

Then a is well-defined and ¢ = 0 if and only if ¢ = uo f —u for some p € o). If
> 0 then for every interval ACR

uo{:ce M %:2;; ({p(fj(m))—ftpduu) e A} ,+ ajﬁﬁe-fé i,

as n — +oo.

In the remaining of this section we prove Theorem 2.11.

Proof: The general idea is to try and write ¢ =7+ (o f — for functions #, ¢ € L3(j)
such that

i) 71;(( o f* — ) converges to zero in measure as n. — +00 (we prove a stronger fact:
it converges to zero in L3() );

ii) the (identically distributed) random variables 570 f™ satisfy a kind of independence
condition, to be stated in (2.8).

The first property means that, given any & > 0,
limn g {m EM: C(f™(z)) — ¢l=)| > E}
\/—I

and implies that

n-1

3 1 o fi _1_ o7 —
Z(¢ o fiy= njzzo(n P+ 5o =4)

3-0
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has the same limit distribution as 71; E;.:& 7o fi. Tt does not seem possible to take the

random variables o f™ to be independent, in which case (most of) the theorem would
follow directly from Theorem 1.1. Instead, we construct 7 in such a way that

(2.8) E(mof" | Fut1)=0 foreveryn >0,

then we invoke the fact that the conclusion of Theorem 1.1 remains true under this
condition. In the language of probability theory, (2.8) means that (5o f*), is a re-
versed martingale difference, and the statement we have just made is usually called the
martingale central limit theorem; see Appendix B.

Let us fill-in the details. We introduce the operator U: L2(y) — L*(u) given by
Up=of, and we let P be the adjoint operator [(P)edu = f ¢(Up)du. Note that
U is an isometry onto L2{F) C L2(Fy) = L*(u), and so P: L2(F,) — L*(Fy) is also an
isometry. Moreover,

U(L*(Fu)) = LA(Fp1) and  P(EA(Fnyi)) = LHF),

for cach n > 1. Now we define

o> 00

(== PIE@|F) and = "PHE($|F;) - E(¢| Fi))-

=l =0

Since ||[PI(B(¢ | Fi)llz = I|E(¢ | Fi)lz2, the hypothesis of the theorem ensures that
the series defining ¢ converges in L3(u). It also follows that

As a consequence, \/L;(C o f" — () converges to zero in measure. Next,

1 111
ﬁ(COf -4

< %(EICOf“Iler lll2) = %ncuz 0 a5 m = +oo,

IPHES | ) - B | Fi)llz = 1B | F;) - B(b [ Fian)llz
< EG | Fiil2

{because E($ | F3) — E(¢ | Fj41) coincides with the orthogonal projection of E(d | F5)
to L2(Fj11)*), and so the series defining 7 is also convergent in L2(z). Now we write

7= E(¢ | Fo) + P(E(b | F1)) + P*(E(¢ | F2)) +- -
~ B | F1) —PE(S| F2)) - PHE($| Fa)) - -

Clearly, E(¢ | Fo) = ¢. Moreover, for every j > 1,

PITNE( | F3)) = UPHE($ | 73)) = PI(B( | F)) o f.
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Indeed, B(¢ | F5) € LA(F;) implies PI=1(E(¢ | F7)) € L*(F1), and UP = id | I*(F1)
because the adjoint operators U/, P are isometries to their images. Therefore, we may
rewrite

n=¢+Y PHEQ|F) - S PIEWGIF))ef
i=1 =1
=¢—C+Cof.

Now, E(¢ | ;) — E($ | Fys1) € L*(Fjs1)* implies PI(E($ | F3) — E(¢ | Fin)) €
L2(F1)*, for all § > 0, and so

pe LY(F)t, thatis, E{(n|F)=0.
The martingale property (2.8) is an immediate consequence:
E(nof" Ifﬂ+1)=E(?7|f1)0fn=0, for all n > 0.

In particular, the variables 5 o f™ are two by two orthogonal:
f(nofk)(nof") du=0 forevery k>n 320,

because 7o f¥ € L2(Fn+1). This gives

ln--l 1 n—1 1 n—1
2 T iz — 1> P2
HﬂHz—;;IIWOf’Hz—;Il;uﬁ’llz—]lﬁ;n*’f’llz-

Since . ,
B S PUREEE T S TS S 0
llﬁjgﬁ«ﬁ f \/ﬁjgon Plla=liZ=(Co f Ollz = 0,

we conclude that
1 n—1 i
Il = imll 72 32 60 £1

=lim%(§f(¢°fk)2d#+2 3 f(tﬁof")(fﬁc’f')du)

0<k<i<n-1

:lim(f¢2du+2f§ (1—%)[¢(¢ofj)dp)

=[¢2du+2j§f¢(¢°fj)d#-
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For the last equality note that

[#t60 Pru= [ B@1 7)o Pl (bocause do 1 € ()
< 1B | Fll2lléo Fll: =BG | Fllz Idlla

and so
¥l i . j oo . j
llzgn[w 5 )du+2j§f¢(¢ 7))

< 2||¢uz(i INEW | F)lk+ S IEG a)||z)

ji=n
< 2||¢I|2(EZ B | Fllz+ D 1B fj)llz)
j=1 j>ne
where the last expression can be made arbitrarily small by fixing € > 0 close to zero
and then taking n 3> e~ ', In this way we have shown that
lInllz = o2,

recall that o is defined in (2.7). In particular, we get that ¢ < +oco. Moreover, ¢ = 0
implies 77 = 0 and so ¢ = (o f — {. Conversely, if ¢ has the form ¢ = uwo f —u then we
may take { = u and 7 = 0 and then, by the previous arguments, ¢ = {|n||]2 = 0. This
proves the first part of the theorem. From now on we suppose ¢ > 0. Let a < b be
fixed. Given § > 0 we take € > 0 such that

2
e” 3.7 dt.

1
Pla—e,b+¢) < ®la,b) +4, where P(r,s) =
( ) < 2ab) (ne) = —= |

Then we take n; > 1 such that

,u{J:GM:

> e} <4§ forevery n > ny.

1 £
ﬁfc o f* = ()(x)

By the martingale central limit theorem, see Appendix B, there exists ny > n; such
that

,u,{meM Z (Fi(z)) e(a—s,b+a)}S(IJ(a—e,b+€)+c5.
=0

Since % Z;‘;{} do fi € (a,b) implies

n—1

\/—ZWOPG(G g,b+e) or \%(COF‘—C)\M
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we conclude that

n-1

u{xe M: %Zqﬁ(fj(z)) € (a,b)} < &la—e,b+e)+26 < P(a,b)+ 36

F=0

This shows that
) 1 n—1 .
l;msupu{m eM: — Zqﬁ(f’(:r:)) € (a,b)} < B(a,b), .

and a similar argument gives liminf > ®(a,b). O

2.6. Stochastic stability.

Next we prove that expanding maps f: M — M are stable under random perturba-
tions. We consider parametrized families fi: M — M of C1t¥o-Hjlder continuous maps,
where ¢ belongs in some metric space T. Suppose that there is 7 € T such that

f-=f and T3t fi€ cltvo (M R) is continuous at 7.

This means that if ¢ is close to 7 then f; is uniformly close to f and D, is close to Df
with respect to the vg-Holder norm

memw=mmmc@m=weM}+Wp¥E%%§§9m:ayeMm<dmm)sm}.

An important particular case is T = some neighbourhood of f in OVt¥ and f, =
¢ We also consider a family (fc)eso of regular probability measures in T such that
supp §. — {7} as € =+ 0. Then we are interested in comparing the asymptotics of
random trajectories

z;=fr; 000 fe, (5)

where t,... ,t4,... are independent random variables with distribution ., with the
asymploties of deterministic trajectories Filz).

For that we introduce perturbed versions of the linear operators U and £ we used
before for the map f:

Ueo)(@) = wlfla)) (L@ = Y o@D

Felz)=y

and alsc

(awm=fmmmwﬁ)_@w@=fmmmmm,
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acting on E = C°(M,R). By Fubini’s theorem and (2.3)
[ Eoromwin = [ ( [@wwan.o) vuane
= [ (feoramane ) a.
- f ( f w(m)(uﬂp)(x)dm(m)) db,(t)
- [ot@) ( / (Utw)(x)dee(t)) dm{z)
= [ o) Opiz)im(a).

Hence, if ¢, is a nonnegative L!(m) function with £.¢, = ¢, and Jpedm =1 then
He = e i3 & stationary probability measure:

(2.9) ‘/(ﬁgtj:)dpzs = /‘t,bd,us for all ¢ continuous.

We proceed to show that there exists such a function . Moreover, it is unique and it
is close to @g if & is small.

Our assumptions imply that if ¢ > 0 is small enough then every f; with t € supp &
is a C expanding map, with uniform bounds ¢ > 1 and ag > 0 for the rate of
expansion of f; and the Hélder constant of log | det Df,|, respectively. This means that
the estimates in the proof of Proposition 2.4 apply uniformly

L4(Cla,¥)) C C{A1a,v) for every @ suppb,,

aslongasoe~l< A < landa> ag/ (A —o~1). Therefore, by convexity and closedness
of the cone C(Aie,v),

L.(Ca, v)) C C(hra,v) for every small e > 0.

Arguing as we did before for @, = £"1, we conclude that Pen = Egl converges uni-
formly to some . € C{Aa,v), which is a fixed point of Es. We take pe = w. m. Note
that this probability measure is equivalent to m.

Next, we show that sz determines the asymptotics of almost all random trajectories
{(%;);>0, In the sense that

n-—1

1
=2 wleg) - faodﬂa,
j=0
for m-almest all choices of the initial point o and f.-almost all choices of the pertur-
bations t1,...,¢;,.... First, we state a consequence of the previous arguments which is

also interesting in itself,
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Corollary 2.13 (exponential mixing for the random perturbations). Given ¢

a v-Hilder function and ¥ an L(m)-function on M there is Ko = Ko(p,¥) > 0 such
that

‘f(ff;'yf))(pdm—[wdpsftpdml < KoA} foralln >0 ande > 0 small.

Proof: Analogous to Proposition 2.7, just replace U, £, 1o, %o, by fjs, fe, ey Pes
respectively,. O

Now consider the probability measure v, = e X Y defined on M x Ti“ by
ve(A X By x -+ X By) = pte(A) X 0c(B1} % -+ % 8(Br)
for Borel sets A C M, By,..., By C T, and k > 0. We introduce the shift map
e MxTV o MxT, ozt tz,...) = fulz)tn.. )

It is easy to see that v, is a o-invariant measure, because p. is stationary, recall (2.9).
Hence, by the ergodic theorem,

5 1 n—-1 ]
Pz, by, t2,...) =lim - Z(tp omg){o? (=, b1, t2,...))
i=0
exists for v.-almost every (z,t1,82,...) € M x TN, Here o is the canonical projection
mo: M x TN = M, mo(z, t1, 22, ...) = . Note that mo(o?(z, 11, f2,. . .}) is precisely what
we have been denoting x;. We are left to show that

Plx, 1, bz, - )= f(@oﬂo)dvg =f(pdus ve-almost everywhere,
For each k > 0 we define
Ful@ytrre - b) = [G(:c,tl,... ho bty )dBe(tre ) dOe(tisz) o
Since  is o-invariant, i.e., Po o = &,
Fole) = [ Blottar ... )dBL(E)BLLE)
- f FFuu (@), 2y . ) (£2)dBe(25) - - O (t1)

- f Folfur (2))dBe(t1) = (FeBo)(z)



36 MARCELO VIANA

for p.-almost all £ € M. Then Corollary 2,13 implies
/(‘;50 “/%@a)&ﬂdm: f(ﬁ? (P'o)‘Pdm"'f@od#sfsﬂdm"-) 0
for all v-Hélder . Therefore,

(,’b’nzf@gdue =f‘,5dl/e =/((p07|’0)dl}5 ':ftpd,us

m-almost everywhere, and so also p.-almost everywhere. More generally, for k& > 1,
@k(-‘ﬂ} tl) rrr oy tk) = f G("’Uv tlv rer g tka tk+1: ‘e )dge(tk+l)d9£(tk+2) .-

=[¢(ft1($);t2,--- :tk:tk-(-h---)dge(tk-i-l)dge(tk-i-Z)---
= @r-1(fs, (®), 12, ... 1 ts).

It follows, by induction, that for every k > 0
Py = f 0 die, (pe % Hf)-almost everywhere.

This gives § = [ @ dp, at (e x 0%)-almost every point, and so completes our argument.

Proposition 2.14 (stochastic stability). ¢, converges uniformly to @ as e — 0.
In particuler, pe — pp weakly™ ase = 0.

Proof: Proposition 2.7 gives, for some R > 0,

‘ [ vim = [

and a similar result for Es is deduced in precisely the same way, using Corollary 2.13,

‘ [ @2 vyim - [,

Now, given y € M and ¢ € supp &, we write

< R|lplly AT

< Rl A7

i) ={z1,...,m} and 75 = {6 Thehs
with sup{d(z;¢,7:): 1 <i < &, t € suppf,, y € M} = 0 as £ = 0. From

k k
Loly) =) wlw)|det Df (=)™ and Lip(y) =Y ()| det Df(wi)]

i=1 i=1
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one concludes easily that

L
1-¢e) < —3?(—3"1 <1+£&() forallye M, tesuppb., v € Cla,v),

Lop(y)

where £(¢) is independent of y, t, or i, and converges to zero as€ — 0. As a consequence,
given any ¢ € C(e,v),

fefp(y) _

< £(¢) for all y € M and so || L0 — Lollp < £ollo -
) £(e) ¥ 1L — Lol < E()iILolo

1

Applying this to each ¢ = £*1, 0 < < n, we get

n—1
U(Eg 1- L l)t,bdml fog—"-l(f:s — L)L) wm'
i=0

n—1 - . ~ )
S [ - o n@z yim

i=0
n—1 .
< SNEe — )L Do T2 #lln sup el ™
i=0
n—1
< 3 £e) -sup 1L 1] [l - sup o]~
=0

< Kné(e)||¥|l1, where K depends only on f.
In the last inequality we use the fact that £i1 € C(Ma,v) and [ L£i1dm = 1, hence

sup |£¥*1 1| admits an upper bound independent of i, see the proof of Praposition 2.6.
Altogether, the previous estimates imply

‘f(‘ﬁs—(f’u)?f)dm‘ - U¢dus—f¢duo

for every n > 0, € > 0 small, and ¢ € L'(m). Therefore

< (Kné(e) + 2RADNY] |

[lwe — wollo < (Kné(e) +2RAT)
for every n > 0. We fix n > 0 such that A} > £(e) > AT*! and then we get

[lee — wollo < K' &(e}1og E(€)

for some K’ > 0 depending only on f. This proves the proposition. [
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A special feature of these uniformly expanding systems is that all the previous ar-
muments could be carried out with no assumption on the class of regular probability
distributions &, (apart from supp8. — {7}). In particular, one may easily extract
from Proposition 2.14 the following statement of stability of the absolutely continuous
invariant measure under deterministic perturbations of the map.

Let f be an expanding map and {gn)» be any sequence converging to f in C1Ho (M).
Define &, to be the Dirac measure supported on g, for all € € (1/n + 1,1/n). Then,
as a particular case of Proposition 2.14, the densities @)/, = @a,4, of the stationary
MCASUres ft1/y, = Ho,g, converge uniformly to ¢ a8 n — +co. This proves that the
absolutely continuous invariant measure varies continuously with the expanding map.
In more precise terms,

Corollary 2.15 (deterministic stability). Let f be as before and g be another ez-
panding map, close to f in CYY(M). Lel po 4 be the fized point of the corresponding
transfer operator and pg g = @pgm. Then wog is uniformly close to @g, in particular
itn,g s close Lo o in the weak™-sense.

Notes.

Most of this chapter is due to Ruelle, who developed the transfer (Perron-Frobenius)
operator approach to smooth expanding maps, see [Ru89]. Projective metrics associated
to cones were defined by G. Birkhoff [Bi67] and provide an elegant way to express spec-
tral properties of the transfer operator, and were first used in this setting of Dynamics
by [I"S79], in their proof of the Perron-Frobenius-Ruelle theorem.

Central limit theorems for dynamical systems have been studied by a large number
of people. The key idea in the proof of Theorem 2,11 (approximation by a martingale
difference) is due to [Go69)], and has now become standard, see e.g. [Du91]. Recent
works include [DG86] [Chas], [Li].

Stability of smooth expanding maps under {a somewhat different model of} random
perturbations was first proved by [Ki86], [Ki86a]. Kifer’s books [Ki86}, [Ki88] are main
references for this field. See also [BI87].
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3. PIECEWISE EXPANDING MAPS

In the previcus chapter we tock the map f to be everywhere smooth. Here we weaken
this assumption and study the ergodic properties of piecewise smooth expanding maps.
In doing this we restrict ourselves to the one-dimensional setting, that is, maps of the
interval I = [0,1] or the circle §* = [0,1]/(0 ~ 1), and we use M to represent both
I or §'. As mentioned before, piecewise expanding maps are interesting not only by
themselves, but also as tools in the study of other class of systems. Such applications
are given, e.g., in Chapter 5 and Section 3.5.

Some of the examples we have in mind are described in Figure 3.1. The tent map
is among the simplest piecewise expanding maps. It has f! constant and strictly larger
than 1 in absolute value, in each of the monotonicity intervals [0, ¢} and (c,1]. In the
second example, a Lorenz-like map, |f'(z)| > ¢ > 1 for all z # 1/2 and |fi(1/2%)] =
o0o. This kind of maps appear naturally associated to the so-called geometric Lorenz
attractors of flows in 3 dimensions, see [ABS77], [GW79]. Finally, the Gauss map, which
plays a central role in the theory of continued fractions, is given by f(z) = 1/z — [1/z]
for = % 0 and f(0) = 0.

An important technical point is that, in general, the transfer operator £ of these
piecewise smooth maps does not preserve the space of (Hélder) continuous functions.
On the other hand, under appropriate assumptions, £ does preserve the space of observ-
ables with bounded variation. Moreover, the regularity of these observable functions,
expressed in terms of variation, improves under the action of £. This enables us to
develop for such maps a version of the reasonings we used in Chapter 2.

! — 1 !

e 7o 10 12 1 01817 1
Figure 3.1: Tent map, Lorenz-like map, Gauss map

Recall that the variation vary of a function ¢ : M — R is defined by

T
varp = sup »_ [(@i-1) — ¢(z4)]

i=1

where the supremum is taken over all finite partitions 0 =z < %1 < -+~ < Tn = 1,
n > 1, of M (when M = S§' = [0,1]/(0 ~ 1), take < to mean the orientation induced
by the usual order in [0,1]). The variation varg@ = var(p|n) of  over an arbitrary
interval § C M is defined by a similar expression, with the supremum taken over all the
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Ty E1y. .. B € 7 With infy < 29 <2y < -+ < 2, < supy. The following elementary
properties will be used a number of times:

(vi) var,{i1 +pa) < vary, ¢y + vary, @o;
(v2) vary (i1 * 2) < vary @i sup,, [pa| + sup,, |@1] var, @o;
(v3) var,(p - ¥) < var, @ sup, [¢| + sup, |Dypj fn le|dm, ifyis CY
{(v4) vary, |¢| < vary @ '
(vB) vary(wo h) = varyy 0, if o1 —= R(n) is a homeomorphisin;

)

(v6) vary [ ot,)d8(t) < [varye(t,-)do(f) for every probability measure ¢ on a
space T, and every ¢ : T x M — R with varp{t,") < coforallt € T.

One says that v has bounded variciion if varp < co. Then ¢ has at most countably
many discontinuity points.

Let us explain what we mean by a piecewise expanding map f: I — I of the interval.
The definition for circle maps is analogous. Most of the time we consider only maps
with finitely many intervals of monotonicity, but we also discuss the infinite case in
Sections 3.4 and 3.5. We always assume properties (E1) and (E2) below. Condition
(E3) is introduced near the end of Section 3.1, and in Section 3.3 we use yet another
coudition (E4).

(E1) (regularity) There exist 0 = ap < a; < --- < ; = 1 such that the restriction of
ftocach ;= (a;_1,a;) is of class CY, with [Df(z)| > Oforallz € yandi=1,... 1
Moreover, the function gy, = 1/|D f|s;| has bounded variation for i =1,... 1.

In particular, (fln;) and gn, admit continuous extensions to %; = [@:i—1,a;], for each
i = 1,...,l. Since modifying the values of 2 map over a finite set of points does not
change its statistical properties, we may assume that f is either left-continuous or right-
continuous (or both) at a;, for each ¢ = 1,...,I. Then let P!} be some partition of I
into intervals 5 such that ; C 5 C 7; for some i and (f|y) is continuous. Moreover,
for n > 1, tet PO Le the partition of I such that P (z) = PW(y) if and only if
PU(fi(e)) = PO(fi(y)) for all 0 < j < n. Given 7 € P, denote g™ = 1/|Df"|nl.
Then we assume, furthermore,

(E2) (expansivity) There exist C; > 0 and A; < 1 such that sup g,(,") < CyA} for all
nePM andalln > 1.

Example 3.1. Let 0 =ag < @) <--- < a; = 1 and f be a function defined on [0, 1] such
that each f|{ai—1,0:), i = 1,...,1, admits a C? extension to 7; = [a;_1,0;] satisfying
|Df(x)} 2 M > 1 for all x € ;. Then, clearly, (E1) and (E2) hold for f.

In what follows we choose Cy > 0 large enough so that varg,, < C; foralli=1,...,1.
The l'ollowing consequence of (E2) will be useful later on. Givenn € P™ and 0 < j < n,
let & € PY), 7 € P, and ¢; € PE=3~1) be defined by 7 C &, fi(y) C i, and
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FHn) € ¢;. Using property (v2) we conclude that

n-1

var g < 3 supgf; 77V - vargg, - sup )
j=0
n—1 . .
< SO G- O X = (G AT
i=0

We fix Az € (A1,1) and Cp = sup{(CF/A1) A1 /A2)" : » = 1} and conclude that
(3.1) var g,(,") < CMy foraline P®) and all = > 1.

3.1. Absolutely continuous invariant measures,
Let £ denote the Perron-Frobenius operator of f, defined by

Lp= (ga9) © (1M X0y = £ o (Fln)™Y xsny-
n;ﬂ[ . ] ) ﬂ;ﬂ[wﬂ ] )

Note that (f|):n — f(n) is strictly monotone. Fhe product [{gqe) o (F[n)~] xs(m is
understood to be zero outside f(n). The change of variables formula yields, once more,

[worpan= [ otwe ram
Proposition 3.1. There are Cy > 0 and Ao < 1 such that
var(L” ) < Cy A] var(p) + Co f |¢|dm
for every n > 1 and every function ¢ with bounded variation.

Proof: It follows from the definition that

Lro= 3 (85 @)o (f*1n)~  xsn(y, for each n > 1.
nepPim

Using properties (v1), (v2}, (v5), we find
var(Lhp) < 3 [ (var gi™ + 2sup 9,(,"’) - sup |(why)| + sup g{™ - var(soln)] ,
pEP)
note that var xu(;) = 2. Now use the following consequence of the mean value theorem

and (vd4) (see also Remark 3.1 below):

62 suwpl(olnl < varlplnl + — [ lpldm < var(yl) + s [ telam.
7
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Replacing above,

var(Cg) < 3 [ (Cady +2C12) - (var(som)m—}ﬂ—) / |sa|dm) O var(tpln)]

nep=

<402 Y var(pln) +3G0 3 f Il
nePim : E‘P'f"’

< C3A5 var p + Kg(n)‘[]tpldm,

where C3 = 403, Az = Az, and Ka(n) = 3C2A3(#P™) sup{m(y)~! : n € P}, This
is nearly what we want, but we must remove the dependence of K3 on n. For that we
fix N > 1 such that C3AY £ 1/2 and denote = max{K3(n) : 1 < n £ N}. Then,
given any n > 1, we write n = ¢/N +r with ¢ > 0 and 1 < r < V. Successive use of the
previous bound gives

var(L ) < I?f |£™N pldm 4 CaAl var(£hN o)
-~ 1
<R [ lpldm+ G war( V)

= 1
(1 +-+ )K/|<p|dm+ 2—qvar(£‘.” i)

201
N 1, .,
< (1+'--+2—q)K/|¢,o|dm+2—qCa/\3vartp

(we have used the fact that |C¢| < L], hence [ |Lep|dm < [|3p|dm for all ).
conclude the proof by choosing Cp > max{2K Ca} and max{2-V¥ A3} < Ap < 1. El

Remark 3.1. It may happen that some of the intervals 7 € P consist of a single
puint, = [z, z], in which case {3.2) does not make sense, but this may be bypassed as
follows. Let Q be the covering of M = I, 5! obtained by replacing each 5 = [z, 2] € P™
by £ = [z —e,2 + €] N M, for some small £ > 0, and leaving all the other y ¢ 7™
unchanged. Then m(£) > 0 for ever £ € @ and so the same arguments as before yield

var (£™p) < 4ChA3 Z var(p|€) + Ks(n)f|¢| dm,
£EQ

as long as we replace 7 € P by £ € Q in the definition of K3(n). Choosing ¢ > 0 small
enough we ensure that every point & € M belongs in at most two intervals £ € Q. Then
2ecq var(pl€) < 2vary and so the previous estimates remain valid, with Cj = 8C,.

Corollary 3.2. Let C(a) denote the cone of functions p: M — R such that p(z) > 0
forallz ¢ M and vary < a [ pdm. Then, if a is large enough, there is N > 1 such
that

LY¥(C(a)) C Cla/2).
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Proof: Take A =1/2 and N > 1 such that CoMY < 1/4. Then, for p € C(a),

. .
var(£™p) < Zvanp-}-Cg/wdm < (%+Cq) fqum < -;-fepdm,

aslong as @ > 2Co. DO
In the sequel we use the following compactness statement

Lemma 3.3 (Helly’s theorem). Let ¥ : M = R, n > 1, be a sequence of functions
on M and assume that there are constants K1 > 0 and K3 > 0 such that sup ¢, < Ky
and var i, < Ko for everyn > 1. Then there exists a subsequence (Y, ) @nd a funclion
Yo : M — R with supyhy < K; and varthy < K such that (1, )i converges to 1p as
i — oo, m-almost everywhere end in L'(m).

Proof: Clearly, it suffices to consider the case M = [0,1]. Write 3} (z) = var(¥x|[0, z])
and ¥, = ¥} —tn. Then (#%), are uniformly bounded sequences of nondecreasing
functions. We choose (ny)x so that ¥ (g) converges to some real number YiE(g) as
% — o0, for every rational ¢ € [0, 1]. Clearly, YE(g1) < ¥if (g2) whenever 1 < ¢2. Then
we extend 9 to nondecreasing functions in the whole [0,1] by setting

PE(z) = mf{yF(g) : g € [z, 1] N Q}.

We claim that @b,ifk (z} converges to ¥ (z) as k — oo, for every continuity point = of
¥ (a cocountable set). Indeed, given any such = and any § > 0, we may fix rational
numbers ¢1 < x < go such that

VE@) — 8 < ¥F (@) < ¥ () S ¥ile) S W () + 0.
Then, for every sufficiently large k,
E(z) — 26 < (q) — 6 < ¥ (q) < ¥E, (2) < ¥ (@) < 9 (02) + 8 < ¥f() + 20

and this proves the claim. Next, let P be right-continuous functions coinciding with
1,;')31 at every point of continuity of 'd)f,k, and define ¥ = ¥g — ¥y . It follows that ¥n,
converges to 1y except, possibly, on a countable set of points E. In particular, 1n, — %o
m-almost everywhere and in L(m). Finally,

[ola)| = li};ﬂwn,‘ (e)] < Ku and
Z [o(az) — Polbs)i = H;“Ziﬁ’n,,(ﬂj) — 1, (b)| stjlcpvarqb"k < K,
j=1 j=1

for every ¢ and a; < by < --- < a, < b, in [0,1]\ E. Since tho is right-continuous, this
proves that supty < K; and vartp < K2. U
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Corollary 3.4. The map f has some absolutely continuous invariant probability mea-
sure pg. Moreover, if p is any such measure then p = pm, where v has bounded
variation.

Proof: Let ¢, = %}:;:01 £31. Proposition 3.1 implies that {p,), has uniformly
bounded variation:

1 n—1 . 1 n—1
var p, < EZV&I‘(CJ 1) < - ZCg/dmz Co-
F=0 i=0

In addition,

ln—l 111—1
ndm = — [ﬁjldm=— fdm:lforallnzl

and so (¢, ) is also uniformly bounded: cf. (3.2),
SUp @y, < var ¢y, + f:pndm <Cp+1.

Therefore, by Helly's theorem, there exists a subsequence (gy, )i converging in L!(m)
to some function wg with bounded variation. Write

1
(33) ['[Pnk = @n, + n_k(c'“k 1- 1)
and note that ||£"1f]; =1 for all n > 1. Moreover, £ is a bounded operator in L(m):

[ 160 = Lot < [ 20— whim = [ 1o~ ylam.

Henee, passing to the limit in (3.3) we get Lpp = wp, which means that gy = g m is
an invariant measure for f.

Next, let p be an arbitrary f-invariant absolutely continuous probability measure.
Then p = 4 m with ||¢[1 = 1 and L4 = 1). We want to prove that 1 coincides Lebesgue
almost everywhere with some bounded variation function . Let (¥1); be a sequence
of functions with bounded variation converging to 1 in L*(m). It is no restriction to
suppose |||l < 2 for all ! and we do so. Then Proposition 3.1 yields

111—1 ) lnr-l )
var Ejguﬁ’#l: < ;;Co (Aﬂvar¢¢+f|1pi[dm) %Cnflf.f):ldmi 2C,

and we also have [|1 377 £y < ||4u]ly < 2. Hence, by the same arguments as

""J Liy satisfies the assumptions of Helly’s

before, for each fixed ! the sequence L 3277
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theorem. It _follows that there exists a function ¢ and a subsequence (ny)x such that
= ;.‘;0'1 L4y converges to 4 in L*(m). Moreover, vargy < 2Co and |1 < 2. These
two last facts ensure that we may apply Helly’s theorem also to (t¢);, to conclude that
some subsequence (¢, ); converges in L'{m) to a function ¢ with vare < 2Cy. On the

other hand,

fip—1

I~ il = Bl - > €90k~ Dl < e~ ol
j=0

implies that ¢y converges in Ll(m)} to ¢. Thus, ¥ = ¢ Lebesgue almost everywhere,
andsop=9ym=pm. 0O :

Corollary 3.5. f has only finitely many ergodic absolutely continuous invariant prob-
ability measures. :

Proof: Let i be any such measure. Corollary 3.4 implies that there is some open
interval J such that ¢ = du/dm > 0 on J. Then the same must be true on 72N,
for every n > 0. In particular, m and p are equivalent measures on each f*(J). As
a consequence, Lebesgue almost every = € f"(J) is generic for u: the time-averages
n~! E;.‘;Ul ©(f7(x)) converge to [ dp, for every continuous function ¢. On the other
hand, we must have a; € f*(J) for some @ > 0 and some i € {1,.-+,1-1} (respectively,
i € {1,---,I} in the case of circle maps). Otherwise, the length of f*(J) would be
unbounded as 7 — oo (because the map is expanding on each monotonicity interval) and
this would, obviously, contradict the fact that fr(J) c I. Now, the previous comments
imply that intervals f"(J} obtained in this way, for different ergodic measures, are
necessarily disjoint. Thus, there are at most 1 -1 {respectively, [) such measures. O

Example 3.2. For tent maps and Lorenz-like maps, recall Figure 3.1, one may take
I = 9. Tt follows that every absolutely continuous invariant measure pq i3 ergodic, and
so there is only one such measure. Indeed, suppose there is some measurable set A with
f1(A) = A and 0 < pp(4) < 1. Then

m(B) = —-—"—,mff(z)A) and f2(B) = —"—‘Muif(gc‘;i‘:)

define two absolutely contimious invariant probability measures. The corresponding
densities ¢; = dpy/dm, i = 1,2, are functions of bounded variation, and this implies
that both A and A¢ have nonempty interior. It follows that ¢; belongs in both A and
A¢, a contradiction.

On the other hand, the following simple example shows that in general one can
not expect g to be unique, nor LN(C(a)) to have finite diameter in C(a), unless f
satisfies some condition of dynamical indivisibility. Let f : [0,1] — [0,1] be given by
f(z) = (1/2) — |1/2 — 23| for = € [0,1/2) and f(z) =1 - 13/2 — 2z} for = € (1/2,1]-

Then both x[g,1/2) 7 and Xx{1/2,1) ™ are invariant measures for f, absolutely continuous
with respect to Lebesgue measure.
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To ensure uniqueness of the absolutely continuous invariant measure, as well as the
mixing properties to be studied in the forthcoming section, we introduce our next as-
surmnption on the expanding map f:

(E3) (topological mixing) There is an interval I, C I such that f(I,} = I, every

arbit f*{z), € (0,1), eventually enters I,, and f|I, is topologically mixing: for

each interval J C I, there is n > 1 such that f*(J} = I..

In the case of circle maps we simply require that for every subinterval .J of I, = §!
there be some n > 1 such that f*(J) = S!.

Example 3.3. Let f: I - I be a tent map with ¢ = 1/2 and |Df(z}| = ¢ > +/2 for
all z # e. Take I, = [f%(c), f(c)]. The first two conditions in (E3) are easy. We prove
that f|1, is topologically mixing. Let J C I, be an interval. First, we claim that f*(J)
must eventually contain the fixed point p > ¢ of f|I,. Indeed, otherwise one would be
able to construct a sequence of intervals

J=L22NhD - DJdyD

in the following way. If f*~1(J,_;) does not contain ¢, take J, = J,_,. Note that
m(f*(Jn)) = om{f*""1(Juz1)). If f771(Ja_1) does contain ¢, then take J, C J,_;
such that f*~'(J,) coincides with the largest of the two intervals P U Jeo1)N[F0),
or f*"Y(Juo1) N e, f(e)] Then m(f*(J)) 2 (o/2)m{f"~(Ju—1)). Moreover, f(J,)
can not contain ¢, since we suppose that p € f*t1(J,,). Therefore, Jn41 = Jn and so

" () 2 0m( () 2 Sl ()

As we suppose 02 > 2, it follows that the sequence m({f*(J,)) is unbounded, which is
a contradiction. This proves that p € f™+(Jy,,) for some n; > 0. Then, p € f2(J) for
every n > my and, by expansivity, [e,p] C f™2(J) for some ny > ny. It follows that
[£3(c), f(e)] € fr=+3(J). Now, it is easy to check that f3(c) < p for all ¢ > V2. If
Fe) < ¢, we get [£2(c), f(c)] C F4(J) and the claim is proved. Otherwise, there
nmust be some odd number & > 3 such that f(c) < ¢ and [f*(c), f(c)] C fr+*(J).
Then [f2(c), f(c)] € fr2+5+1(J) and the claim is proved also in this case. We have
proved that (E3) holds for tent maps as above,

In this context o > /2 is also necessary for topological mixing. A similar argument
shows that Lorenz-like maps with [Df(z)| > ¢ > /2 for all © # 1/2 satisfy (E3) for
I, = I. We also leave it to the reader to check that the Gauss map Hz)=1/z - [1/z]
is topologically mixing on I, = I.

Corollary 3.6. If f is topologically mizing then it admils o unique ahsolulely continu-
ous invariant probability measure py. In addition, pg is ergodic and its support coincides
with I,.

Proof: Let g1, v, be fixed points of the operator £, with [ ¢ dm =1 = J w2 dm. Let
X1 ={z: ¢1(z) > pa(2)} and Xz = {z : ¢1(z) < w2(z)}, and consider the pair of
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absolutely continuous measures ) = (91 — w2)xx, m and pa = (w2 — ©1)xx, m. Since
®1 — g is a fixed point of £,

(01— pim= [ Lo—pym=[ (o= pa)im
X1 X1 .f_l(xl)

Sf (‘Pl—‘Pz)dmﬁf (1 — p2) dm.
FUXa)nx, X

This implies that m(f~1(X1) N X1) = m(X1) = m(f (X)), and an analogous state-
ment for X can be proved in precisely the same way. Altogether, this ensures that
both py and g, are invariant under f.

Then, by Corollary 3.4, each density du;/dm, i = 1,2, is a function with bounded
variation. It follows that either du;/dm is almost everywhere zero, or else its support
contains some interval J; C I,. Furthermore, in this last case the support must contain
the whole I, , as a consequence of the assumption of topological mixing (E3). Since the
supports of gy and py are disjoint, we conclude that one of these two measures must
be identically null, which means that either @1 > 42 Lebesgue almost everywhere or
@2 > 1 Lebesgue almost everywhere. In any case, we have p; = p2 Lebesgue almost
everywhere, because these two functions have the same average value 1, and this proves
the uniqueness statement.

Ergodicity is now an easy consequence, Let A C I* be any Borel subset such that
1o{A) > 0 and f(A) = A (this is more general than FH(A) = A). Now let us define
1(B) = po(BN A)/pa(A), for every Borel subset B. Then p is an absolutely continuous
f-invariant probability measure:

_ (T MBINA) _ pelTHBOA) _ pe(BOA) gy

u(f~1(B)) = 1to(A) to(A) ro(A)

For the second equality note that f~'(BNA) = f~!(B)n f~1(4), and the assumption
on A implies A € f~3(A) and po{f~(4)\ A) = 0. Thus, 4 = po and so po{d) = 1.
(|

3.2. Decay of correlations and central limit theorem.

Here we show that, under assumptions (E1)-(E3), the system (f, 20) has exponential
decay of correlations and satisfies a central limit theorem in the space of functions with
bounded variation. Moreaver, the absolutely continuous invariant measure fg is exact.
Actually, we take two different approaches to the problem. For the first one we need
the further assumption that |Df] is bounded, in other words, there is 4 > 0 such that

(3.4) gy{z)> 6 forallzenandne P,

This condition allows for substantial simplification of the arguments, but is not gatisfied
by some important examples, such as the Lorenz-like maps. That is why in the second
part of this section we present a more general approach, requiring only our standing
hypotheses (E1), (E2), (E3).



48 MARCELQO VIANA

For the time being we suppose that {3.4) holds, On the other hand, in this case we
nced not assume either the existence or the unigueness of gy, our arguments providing
new proofs of these facts. Let I, be as in (E3). We redefine C'(a) to be the cone of
functions ¢: I, — R such that () > 0 for all z € I, and vary, ¢ < a f; wdm. This is
a slight modification with respect to the notations in Corollary 3.2, but the statement
and proof of the corollary remain valid. Let # = 8, be the projective metric associated
to C'(e). We also replace the partitions P, § > 1, by their restrictions to I,, which we
denote in the same way, since no confusion can arise from doing so.

Proposition 3.7. There is k > 1 such that D = sup{8(¢)y, ) : 1,4 € L5V (Cla))}
is finite.

Proof: We begin by deriving a useful bound for (i1, ¥2), ¥1,¥2 € Cla/2). It is no
restriction to suppose [ 4 dm = [4p2dm =1 and we do so. Then we have

var(z — %1}91) < varys -+ %Va“/}l < %fﬂ/’z dm + %fﬁh dm
< a.f('tj;g - %u’)l)dm.

0t < (g2/t)(x), this yields

1 g,
’“3“,"1'!,)—;( )-.';FEI,;}.

.
-3
2

Cowmbined with (3 — 01 ){x)

a1y, o) > inf {

Analogously,

B(1,¢2) < sup {3, z—:(xz) iz € I*}.

Now we claiim that there are £ > 1 and < > 0 such that
1
(3.5) yfqumginfwgsupipg;fwm

for all € £¥V(C(a)). Since £¥¥(C(a)) € C(a/2), it follows that
a2 min {307} wnd g ) <max (s, 5]

for all (normalized ) 41,12 € L¥N(C(a)). Choosing v < 1/v/3, we find D < 4log(1/7).

Tlhus, we are left to prove (3.5). Observe that sup{m(n) : g € P(™} goes to zero as
1 —+ 00, because of (E2). We fix ¢ > 1 such that m(n) < 1/2e for all € PN), Next,
we choose j > 0 such that fUON (5) = I, for every n € PUN): existence of such a 7 is
a consequence of (E3). Finally, we take k = g + j. Let ¢ = £*V ¢ with » € C(a). The
mean value theorem implies

m:,,) fn ¢ dm —inf(pln) > 2 ( fr ¢ dm — m(n) ir}f(wln))

var{ioln) >
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for each n € PN Adding over all 5,

vary = 2a/zpdm - 2aZm(q) inf(ep|n) = 2a[gadm —2a m’?xinf(tp[n)
n

and then, using ¢ € Ca),
maxinf{p|y) = E[cpdm.
n 2
In other words, inf(y|n0) > 1 [ @dm for some ng € PN, Then, for any y € I,
B() = (£ o)) = 3 (68 e) o (PN )
c .

> 57 @M} o (£V10) M (w),

(Cno

where the first sum is over all ¢ € PEN) with y € F*¥(¢), and the second one is
restricted to those of such ¢ which are contained in 7. Observe that, since f*¥(no)
covers I,, this second sum involves at least one term. On the other hand, for any such
term

G0 @) 2 5 [ pam
by (3.4) and the choice of 7. Altogether, we have shown that
inf 3 > %tska(pdm= %5””[¢dm.
Moreover,
sup ¥ < fi;’)dm-i-var‘tj)g (a+1)/1,bdm,

and 30 we completed the proof of the claim. [

Let (' be the cone of nonnegative functions ¢ M — R. The corresponding projective
metric 84 is given by
sup{w2/¥1)
inf(pa2/¢1)
and satisfies 04 (@1,92) < 0(p1,2) for all @102 € C(e). Proposition 3.7 implies
that £5¥ is a A-contraction with respect to the metric 8, with A = 1 —e™". Asa
consequence, the sequence {£” 1), is Cauchy with respect to 8 and so also with respect
to 8, . Moreover, recall (3.5), there is v > 0 such that

8+ (p1,02) = log

y<inf L1 <sup L71 < % for all large enough n > 1.

Hence, by the same argument as in Proposition 2.6, (£" 1), converges uniformly to
some function @y € C(a). Of course, %Z;‘;ol £41 must also converge to @ and this
proves that @y coincides with the function o constructed in Corollary 3.4.
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Proposition 3.8. Given ¢ with bounded variation and v an L'(m) function on M,
there is C = Clip, ) > 0 such that |[(p o f*)pdm — [¢dug [ edm| < CA™ for all
= 0.

Proof: This is very similar to the proof of Proposition 2.7. Assume first that w € C(a).
It is no restriction to suppose | wdm = 1. Then

/ ?P(Enlp—‘ﬂu)dml < [l sup 1£™ o — ol

Jwerpdn = [ v
Morcover,

il

1 n
sup |[£™ @ — ol < sup |yo|sup <= (60+(£ o) _ 1)

Y

<1 (eC’A“ _ 1) < CAP
i
where C', C* are independent of i, %, or n. In the third inequality we use
9+ (f’n @, ‘PD) < B(C""kN(f,kN ‘P): Cn—kN(ckN (P())) < CmAn—kN ﬁ(f,kN @, LkN ‘Pﬂ)
< o An—kN D< Cr AN

This completes the proof when ¢ € C(a).

Now, given a general function ¢ with bounded variation, we write @ = @t —~, with
wt(x) = var(p|[0, z]) + B, where B is some large positive constant. Note that yt are
nondecreasing functions with var w* < var p + fp(1) — (0)| < 2var w. By choosing
Bz max{2]g(0)], (4/a) var ¢}, we get inf ¢y = w*(0) > B/2 and

B
vargoi£2var<p5a§£af¢pidm.

Then the proposition holds for goﬁ and so, by linearity, it holds for ¢. 0O

Remark 3.2. Let us write ||g||av = [ |¢|dm + var y. The constant C(p, %) obtained
in the proof above has the form '

Cly,w) = const |||y (sup ke + var @) < const ||9||1 |||z,

where the last equality is a consequence of (3.2):
fitp]dfn+var tp < sup || + var ¢ < f|tp}dm+2vargog 2 (szp|dm+var tp) .

Using the same arguments as in Chapter 2 (cf. Proposition 2.7 and Corollary 2.8),
one concludes that (f, p29) has exponential decay of correlations

f((pl o f™*Ypadpy — [(,01 dug /(pz dpp| < Clpr,p2)A™ foralln > 0,
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and a central limit property (see Corollary 2.10 and Section 2.5)

1 n—1 . 1 _%
ug{mzﬁ;(sa(f’(m))—fwdpo)EA}—)]AJ 2ﬂ_e 2T dt asn —* 00,

for bounded variation functions ¢y, s, . In this way one also proves that pp is tlie
unique f-invariant probability measure absolutely continuous with respect to Lebesgue
measure, and that it is an exact measure. These conclusions will be recovered, in a
more general setting, later on. :

Now we explain how the previous conclusions can be derived without assuming the
derivative of the map f to be bounded. The basic ingredient is to show that the spectrum
of the transfer operator acting on the space of functions of bounded variation may be
decomposed

{3.6) spec(L) = {1} Uy, with % contained in a disc of radius A < 1.

As a direct consequence of this quasi-compacity property, we get that (£, po) has expo-
nential decay of correlations, with rate of decay not larger than A, and we also deduce
a central limit theorem. A difference with respect to the previous approach is that we
must prove exactness first, in order to obtain (3.6).

Let BV denote the space of functions with bounded variation, endowed with the
complete norm

lollny = varo+ [ loldm

Proposition 3.1 ensures that £ is a bounded operator on BV, actually, we get a stronger
fact:

£l =var £ + [ 1276l dm < Codvarp+ (Co-+ 1) [iolam
< max{Co)},Co + 1} |lwflpv, for every n 2 1.

This implies that the norms {|£*||pv are uniformly bounded, and so the spectral radius
of £ is not larger than 1. Since we already constructed a fixed point ¢q for £, we
conclude that the spectral radius is exactly equal to 1.

Next, we show that £ is well approximated by compact {even finite rank) operators,
in order to prove that its essential spectral radius is strictly smaller than 1. As before,
let P be the partition of the ambient space into monotonicity intervals of f*. We
- define linear operators 7, : BV =+ BV, n > 1, by

() (z) = E{p |0} = hﬁ/lpdm, for every £ € 7 and n € P,
n
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Since P is a finite partition, the range of =, is finite-dimensional, and so the same is
true for the operator £ o m,,. On the other hand, ¢f. the proof of Proposition 3.1,

var(L — Llma) = var > (g8 - {0 = B(elm)) o (F* ) x g0 m)
nePln)
< z (var y,(ln) + 3sup g) var(p|n)
pepPin}
< (CaA3 + 3C1AT ) var g,

note that sup, e — E(p|n)| < var, (¢ — E(p|n)) = vary . Moreover,

f |[L™Mp — LT dim < sup 1L — Lm0 < Z supg,g") -sup | — Elp|m)]
yePin} "
< C1AY Z var(ep|n) < C1AY varep.
geP)

it follows that || L™ — L7mg|lpy < (C2AY + 4C1AT) < Gy, for C3 = Cy + 4Cy and
Az = A2 2 Ay, and this implies that the essential spectral radius of £ is at most X3 < 1.

As a consequence, we may write spec{£) = {op = 1,01,...,0%} U Ty, where each oy
is an cigenvalue with finite multiplicity and norm 1, and £y is contained in some disc
of radius A < 1. Here A may be either the essential spectral radius of £, or the largest
norm of an eigenvalue in the open unit disc. For the next step we need the following
fact, whose proofl we postpone:

(M} the measure g is mixing, and even exact, for the map f;

Recall that exactness means that every set in
oC
ﬂ (B, B = Borel g-algebra of M,
n=0

has cither or full measure. See [Ma87, Prop IL8.5] for a proof of the fact that every
exact measure is mixing:

w(f™AYNB) = p(A)u(B) asn —+oo for every A, B € B.
Assuming (M) we can prove that k = 0, i.e., there are no eigenvalues with norm 1
other than o = 1. Indeed, suppose there is a nonzero function ¢; € BV such that

Ly; = oip; with |o;] = 1. Recall from Corollary 3.6 that the support of g is the whole
I,. Therefore, ¢;/po is defined almost everywhere on I,, and ¢; /ip € L (o)

f|‘Pi/‘P0|dﬂu = flwiidm < sup ;] < co.
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Then the mixing property implies,
[eterenan = [to Migsm = [(oo ) eideon)dio -
—?f‘Pf_iﬂo /(‘Pi/fpo)dﬂo=f90(¥’o[fpi dm) dm

for every @ € L®{pg). It follows that ol = L"p; converges pointwise to wo [ ¢: dm,
but this can only happen if o; = 1 and ¢; = o J i dm. Thus, we have shown that 1 is
indeed the only eigenvalue of £ with norm 1, moreover, its eigenspace is I-dimensional.
Furthermore, its algebraic multiplicity must also be equal to 1: otherwise, there would
be 3y € BV such that £ = @+ ntfp for every n 2 1, contradicting the fact that the
sequence [|[£?]|pv, > 1, is bounded.

Proposition 3.9 (quasi-compacity). The specirum of £ acting on the space BV of
functions with bounded variation may be writlen spec(L) = {1}UXg, where 1 is a simple
cigenvalue and S is contained in a disc of radius A < 1. Moreover, the corresponding
spectral splitting is given by BV = Ripg @ Xo, with Xo = {w: [pdm=0}.

Proof: It only remains to check the last statement and this is easy. Just note that the
splitting BV = Ryg @ Xp is invariant under £. Then spec(L) = {1} Uspec(£|Xo) and
so we must have spec(£}Xo) =Zp. 0O

Corollary 3.10 (exponential decay of correlations). Given any 1,2 € BV,
there is € = C(p1, p2) > 0 such that

< CA" foralin = 0.

f(tm o fM)padpo — f<P1 dﬂuftpz dito
Proof: Note that

f(‘Pl o f™)pzdue — /901 d#ofﬁoz dyg = [501 (ﬁn(tﬁw’u) - ‘Pof(#’z&ou) dm) dm
= f?lﬂ"(ﬂo(%%)) dm,

where mo{1)) = ¥ — o [ ¥ dm is the spectral projection onto Xo = {¢ : f@dm = 0}.
Clearly, this is bounded from above by

f|golldm-sup|£"(7ro((ﬂzsao))| < f|<,01]dm- i£™ (malipzeo)) BV <
SC'A"fIW1id'”' [Imo{wao}ltBy < C"A"flﬁﬂlldm' | p2i70llmv

for some C’, ¢’ > 0. Hence, we may take C(p1,p2) = C" [ 1| dm |l@2@ollv. O

The next result follows, in the same way as Corollary 2.10 and Proposition 2.12.
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Corollary 3.11 (central limit theorem). Let @ be a function with bounded variation
and 0% = f ¢ dpo + 22;11 [ d(d o f)dug, where ¢ = ¢ — [ odie. Then o < 00 and
o =0 i and only if ¢ = wo f —u for some u € L2(up). Moreover, if ¢ > 0 then for
every interval A C R

1 n—1 ) 1 2
;Lg{::: € M: ﬁj—gd)(ﬂ(w)) € A} — fA = 27?3_57 dt  asn— oo

In the remaining of the section we justify the claim {M) above. The next lemma
asserts that, choosing N large, the iterates f™ have uniformly small distortion over
a subset of monotonicity intervals of f**¥ covering most of the ambient M; more-
over, those monotonicity intervals may be chosen with the additional property of being
wapped by f* onto (full) monotonicity intervals of f¥. Clearly, the relevance of such
a gtatement of bounded distortion goes beyond the present application.

Lemma 3.12. Given 8 > 0 there is N > 1 such that for every n > 0 there is a subsel
Quin C PN of monotonicity intervals of f*+N with to{Usegu w2 1— 8 and

(1) (1) € PN for every 1 € Quyn;

(2)
o1& () o pi(d)

o) — Hn(f"(f])) - ;1,0(7]) forevery £ Cn € Quyn.

Proof: The first step is to construct a subset QF  , of P("+N) such that (1) hoids for
every 7 € QL 4+ aud the remaining monotonicity intervals have small total measure if
N is large. By definition, given any &£ > 1, an interval 5 belongs in P®*) if and only if
{i) fi(z) ¢ {ag,a1,...,w} for every x € interior () and every 0 < i < k;
(ii) for cach a € 8 there is some 0 < i < k for which fi(a) € {ag,a1,...,a}.
{More acurately, an interval 7 satisfies (i) and (i) if and only if there is some interval
10 € P¥} such that interior(n) C no C closure(n); but such fine points are irrelevant in
this context, and we disregard them from now on.) In particular, if 7 ¢ PO+N) gatisfies

(3.7) Fi(a) ¢ {ag,a1,...,;} for every 0 <i < n and every a € 9y,

then f*(y) € P, We just take QL, » to be the set of all intervals 5 € PH+M) for
which (3.7) holds. Now, let 0 < 1 < n be fixed and suppose that 7 has

Fiep) N {ag,a1,... Yt # B

Then fi(n) is contained in some interval ¢ € PUHN=1) whege boundary intersects the
set {ao,@1,...,a1}. Of course, there are at most 2{ such elements of P®+¥—%} and
() < ¢y )\'1""”_" for cach one of them. It follows that the pg-measure of their union
is bounded by 20Cy sup fg AT~ and then, by invariance, the same bound is valid for
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the pg-measure of all the 7 € PM+HN) not satisfying (3.7) for a given value of 4. Hence,
as we claimed, the total measure of the n ¢ QL v is less than

n—1

o0
Z 21C, sup |wal APV < 2IC) sup o Z pLE
i=0 k=N+1

w | T

as long as NV is large enough.

Next, we want to show that (2) is true for every n in some (large) subset of Qiin-
We need only to explain how to deduce the first inequality in (2), since the second one
follows from a completely dual argument. We shall use the relation

,Ll.o(f"(f)) - ffﬂ(g) o dm _ fE((poof")]Dfnldm
P"U(f"(f)) Ifn(.n) Yo dm .I‘,]((PD °f")|Df“]dm

o infy ((po 0 f")IDF"|/0) pa(€)
= sup, ((wo o f*) | Df™}/w0) Ho(n)

Define 9(z) = 1/|Df(z)| for every z ¢ {aq,...,ar}. Note thal our assumptions imply

vary = Z var g, < ChAil < 00
RePt)

and

1
/ L guo <suplpol 3= [ 1Dfldm < suplool 3 miF(m) < Lsuplio] < oo.
¥ peptt) * 1 neP}

Let Q2 consist of all the intervals 7 € PN gsuch that for every 0 € i < n the
element ¢; of P(*N=1 containing f*(7) satisfies

inf(i|G N—i
WIG) o _ ymeN-re

(3:8) Sup(plCs) =

Then, for any 7€ @2y,

. -1, _1
inf, |DF"] 'i—[l inf($|G) E (1- APHY=O/4Y 5 ﬁ (1= Xo/4) 3 B2

sup,, |[Df*| 7 o sup(¥G) T i koM

i=0

if NV is large. Now let us estimate the total measure of the intervals ¢ € POFY—1) that
do not satisfy (3.8). There are two cases to consider, depending on the value of the

supremum. Clearly, .
f ” din 2 AT TS 1(¢)
¢
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if the sum is taken over those ¢ for which sup(1|¢) < ,\(""'N 9% On the other hand,
sup(p[¢) > )\(""LN"’)M implies
Inf(sh|C) {n+N-i)/2
war(yle) 2 sup(wic) (1 - > A .
| sup(¥[¢} '
Thercefore, the number of such intervals ¢ does not exceed 1\1_("+N_£)/2
their total gg-measure is bounded by

vary, and so

(n+N—i)/2

Ay PN g OO qup || = €A

var 9 sup |l
Putting these two estimates together we get that the jg-measure of the union of all the
intervals ¢ € PUHN-9 not satisfying (3.8) is less than

CIAlrEN =872 where C) = f % dpo + C1 vary sup |pq.

Since yeg is invariant under every fi, we conciude that the total pg-measure of the
intervals n € PUFNIN Q2 s bounded by

n--1

AN/ (B2 o E
5o 5 i<,
i=0 k=N+1

if NV is large enough.

Now, note that varpy < oo and [(1/@e) dpo = fdm = 1. This means that all the
previous reasonings apply also to ¥ = g. Thus, there exists a subsct @3 wv of Plat+N)
such that, as long as N is large enough,

inf (o £*(x ) _ AN s e
sup{po fi(x )

for every 0 < ¢ < nand n € Q3 , and the total gg-measure of PN\ 03 s less
than G/4 if is IV large enough,

At this point we take @,y = Q,l,+Nﬂ Qf,_,_Nﬂ Qf,+N. By construction, the intervals
in PEHNIN Qv have total pp-measare less than 8, and

po(f7(£)) N ol£)
so(f{€)) ~ o(m)’

for every € C iy € Quyn. As we have already said, the other inequality in (2) is obtained
in just the smime way. O
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Proposition 3.13 (exactness). If f is a piecewise ezpanding map f satisfying (E1),
(E2), (E3) then the ebsolutely continuous invariant measure o is ezact and so, in
particular, it is mizing for f.
Proof: Let Z C I, be such that foi each j > 1 there is a Borel set Z; with Z = f~1(Z;).
We show that if zo{Z) > 0 then o(Z) = 1. Note that Z; = f(F7(2;)) = f(2),
since f is surjective {e.g., because it is topologically mixing). Fix g < 1o(Z)/3 and
let N = N{(f) be as given by Lemma 3.12. By Lebesgue differentiation theorem, there
exists Zp C Z with pp(Zp) = po(Z) > 38 and :
lim inf 2Z0J)
01 I|<r  po{J)
where the infimum is taken over all closed intervals of length less than r that contain a.
In particular, given any & > 0 there exist r > 0 and a set 2. C Zy such that 1p(Zc) > 20
and

=1 forall ae Zy,

o p(ZNJ)
inf ———+
Wi<r  pold)

Take 1 > 0 large enough so that |g| < r for every 5 € P{*+¥), and let Quyn be given
by the lemma. The fact that po{Ze) = 2P implies that Z. intersects some ne € Qnin.

Then
tof{ne \ Z) <e¢ andso po{f™(n:) \ Zn) < e
pole) po(f™(ne))

Recall also that ¢ = f*(n:) € PW), which is a finite partition. Assumption (E3)
implies that there is ¢ > 1, depending only on N = N(#), such that f2(¢.) = L. Let
% > 1 be the number of elements of P(® that intersect (., and let §;, 1 <4 < &, be
those intersections of ¢ with elements of Pla), Then f7 is monotone on (;, for every
0 < i < &, and the union of all the f9((;) covers I,. We claim that given & > 0 there
exists £, > 0 such that

>1—¢ foralla€ Z,.

po{A) <er = pol{fHA)) <é

for every Borel set A C ¢ and every 1 < i £ . Indeed, the similar statement with
Lebesgue measure m in the place of pg is a direct consequence of the smoothness of
F9, and so it suffices to recall that uy is equivalent to m on I,. Now, for any § > 0 let
g1 > 0 be as before and choose £ > 0 above small enough so that ePe < g1. Then

po(Gi \ Za) < 10{Ce \ Za) < Pepa(Ge) S a1
gives
po(FHEI\ Zntq) = 1o(fU(G\ Za)) S 6.

Adding over i = 1,..., &, and recalling that po is an invariant measure

sl \ Z) = po(L\ Znrg) S 3 #0(£2(G) \ Znta)) < K.

i=1
Since § > 0 is arbitrary and & is bounded by the number of elements of P@, which
does not depend on &, we conclude that po(Z, \ Z) =0, that is, wo(Z)=1. O
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3.3 Stochastic stability.

Example 1.5 shows that not ell piecewise expanding maps are stochastically stable.
However, as we shall now show, stochastic stability does hold under a mild “generic”
condition {E4) to be stated below. Observe that, unlike the smooth expanding maps
treated in Chapter 2, piecewise expanding maps are, generally, not structurally stable.

The present statement of stochastic stability is analogous to the one we obtained
before in the smooth case. We let T be any metric space and T 3 ¢ —+ f; be any
parametrized family of piecewise expanding maps satisfying

i fr=F ast—rT

for some 7 € T. {We shall explain below which topology we want to consider in the
space of plecewise expanding maps). Moreover, let (6c}e>o be an arbitrary family of
probabilities on T, such that

suppf: = {7} ase— 0.

We show that for cach small € > 0 there is a probability measure g, on M such that

n—1

1
T—LZIP(J:J-) —)f:,od,us as 1 — +oo,
—

for every continuous function ¢ : M — R and m x 88-almost every random trajectory
a3 = fi; 0--- o fi, (x). Furthemore, . converges to g as € — 0.

The precise content of the condition that f, — f as ¢ — T requires some words
of explanation. Let us start by the circle case. We require that, for every ¢ in a
necighbourhood of 7, there exist

a[)(t) < G.l(t) < e a;_l(t) < (L;(t) = ao(t)

such that

(i) the restriction f; to (@;—1(t),a:(t)) is a C! map, for each i = 1,... ,{;

{ii} |Dfid > 0 on the complement of {a;{t),...,a(t)}.
For i = 1,...,{, we denote 1,4 = (g;-1(¢),a;(t}}, and let q.‘:,-,;:r,vi—} 7:,¢ be the affine
bijection mapping e; to a;{t}). Then we ask that there be some C; > 0 close to C; do
that, for every 1 =1,... 1,

(1} i(t) s ai(r)=a; as t = 7;

(2) (1/|D feln:sl) © ¢hs 2 converges uniformly to (1/|Df|m]) as t > r;

(8) var(1/| D felni ]} < Gy if ¢ is close to .
We shall denote g,, = (1/|Df|m), foreach i=1,... L
Example 3.4. Let ag(t) < ai(t) < -+ < q—1(t) < a(t) = ap(t) be continuous
functions, defined for ¢ in some metric space T and taking values in 8. Let (fi)er be
a family of transformations on M such that



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS 59

(a) each fi|(ai-1(t), ai(t)) has a C? extension to [a;—1(t), a:(#)] with [Dfi| = /A > 1
(b) each (fio ¢is) : [ai—1,a:] —+ S varies continuously with ¢ in the C?-topology.
Then, clearly, (f.); is continuous at every 7 € T, in the sense we have defined.

The definition of continuity for families of piecewise expanding maps of the interval is
similar, but it is convenient to avoid the phenomenon of (random) trajectories escaping
I, and never returning. With that in mind, we always take the unperturbed map f = f:
to extend to some larger interval [Gg, &) 2 (fo,dt) 2 I., in such a way that

(i) the restrictions of f to both (&g, a1) and (e;—1,@:) are of class cl

(ii) [Df|n| > 0 and var(1/|Df[nf) < Ci for both 7 = (@, a1) and 1= (ar-1,a);

(iii) f([&0, &1]) C (&0, &), and f9({Ga, &1]) = L. for some q > 1.

Then we require that, for each ¢ close to 7, there exist

o = ig(t) < ar(t) < --- < ay_1(t) < &@ft) = &

satisfying the analogs of conditions (1), (2}, (3). In particular, fe([@o, @&1]) C (8o, &) for
every t close enough to 7.

Example 3.5. Let f:1 — I be a tent map and ¢ be its turning point, recall Figure
3.1. As we have seen in Example 3.3, f is topologically mixing on I, = [f*(c), f(¢}} if
IDf| > v/2. In this case one may take [ = 2, and it suffices to choose 0 < & < f2(¢),
a) = ¢, and f(c) < @z < 1, such that f(@g} = f(@2) > do-

Another important class of continuous families of piecewise expanding maps is pro-
vided by the following construction.
Example 3.6. Let f, : [0,1] = [0,1], t € T', be Lorenz-like maps given by

_ [hi(z-1/2]%) ifz<1/2
felz) = {,:mz —1/2]*) 1fz >1/2

where a; € (0,1) varies continuously with ¢, and the hi are C? strictly monotone maps
depending continuously on t in the C2-topology. For the sake of definiteness, we let h,°
be decreasing with k" (0) = 1 and h; (1/2%) > 0, and k" be increasing with EF(0)=0
and hf(1/2%) < 1. We also take ki to be such that |Dfi(z)] > 1/, for some A<l
and every t € T and = # 1/2, which ensures that the f; are piecewise expanding maps.
Then (f,); is continuous at every 7 € T it is clear that f may be C? extended to some
[@p, 2] as above, and C2-closeness of ki to hE is easily seen to imply uniform closeness
of 1/|Df;| to 1/]Df], together with uniformly bounded variation for 1/|D fi| on each of
the intervals (dg,1/2) and (1/2, @2} .

Observe that if (X,)¢er is a continuous family of flows in three dimensions exhibiting
geometric Lorenz attractors, cf. [GWT79], then the corresponding family (fi)ier of
one-dimensional Lorenz-like maps as in this example. It follows that such a family is
continuous in the sense defined above, which means that the topology we introduced
above is natural also for these applications in the setting of flows.
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We use £ = (ty,... ,tn,...) to denote the generic element of T, with 7 representing
{r,...,7,...). Since modifying a map over a finite set of points does not affect its
statistical properties, it is no restriction to suppose that every f is left-continuous at
a;(t) or else every f, is right-continuous at a;(t), for all 0 < i <[ and £ close to 7. Let
P, be any partition into subintervals 7, such that

- (a) w4 € g C closure(my;) for some i € {1,...,1};

(1) and {fi|s) is continuous, for every m, € P.

For n = 1, we write f* = fi, o fy, and let ’F’E(") be the partition given by
PPN a) = PPy) & Py, (f (@) =Py, () for every 0 < § < .

It follows from (2) that we may choose ;\1 < 1 close to Ap, so that

(3.9) sup(1/iD i Imel) < C1AT for all T € PL(R) and ¢ close to 7.

Morcover, (2) aund (3) imply, cf. (3.1)7,

(3.10) var(l/fof%nﬂ) < CoA} forally e PL(H) and ¢ close to ,

where Cy > 0 and Ay < 1 may be taken close to Cz and Az, respectively.
To state our final hypothesis on the expanding map f, we introduce the notations

by = lim f(z} and b} = lim+ f(z),

3
Z“—?ﬂi I—iﬂ.‘—

for cach 0 < 7 < I (except that, by convention, by = b} and & = b/ in the case M = I).
Then we suppose

(E4) for every » > 0 and 0 < £ <, we have f"(bf:) ¢ {ay,...,a—1, o}, if M = 8%,

respectively, f*(bF) ¢ {do, a1y .. -1, &}, if M = I.

In fact a slightly weaker condition suffices for stochastic stability, namely, that no b;rk
be a periodic point for f. Observe that, in either form, this is not an open condition,
as it concerns the behaviour over an infinite time-scale.

Condition (E4) will used through the following direct consequences. The length m(z)
of cach interval € P is positive, and so d,, = inf ,epm m(n) > 0 for every n > 1.
Then, for each fixed n > 1, there is a neighbourhood V,, of 7 in T such that given any
t1,...,tn € ¥, there is a bijection

P 91;—)1756'!’2("), with m 259 =n as t— 1.

In particular, if ¥, is chosen small enough, m(z,) > 8, for some 5n__> 0 close to d,, and
every ) € P, Moreover, up to further restricting Vi, we may suppose that the family
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of intervals {nUm 1 € ‘P(“)} has overlap index 2: every point belongs in no more than
2 of its elements. :

After these preliminaries, we may start proving that piecewise expanding maps sat-
isfying (E1)-(E4) are stochastically stable. First, we introduce transfer operators corre-
sponding to the perturbed maps fi,

Uep(z) = p(filz)) Lepl) =Y ﬁ((ﬁlm)‘l(y))
n

where the sum is over all the 7 € P for which y € f,(n:). We also introduce their
iterates

Uy o(z) = o7 () te=Y I-I%,,'((fﬁ'ln;)“(@))
7 3

where the sum is over all n € P such that y € f*(n). The same arguments as in the

proof of Propesition 3.1 yield Co > 0 and A < 1, close to Cg and Mg, respectively, such
that

(3.11) var(£y ) < CoA var ¢ + Ca f|(p|dm
for every ty,...,t, in ¥, and ¢ with bounded variation.

Lemma 3.14. There are C > 0 and A € (0,1), and for each n > 1 there is a neigh-
bourhood Yy, of T, such that

g o - £° glfs < EAn(var o + f lpldm)

Jor every t1,... ,t, € ¥, and every function ¢ with bounded variation.

Proof: For notational simplicity, we write f =" and f;™" to mean ( eyt and (ff[n) ",
respectively, Then

f |3 @—L" | dm

< o J7™ DI — (9o S~ DS | &
) [f N G TG || dm

(3.12) )
+2(f o £~ |DF | dm
= \J gm0

+ f lpo £ thg"ldm),
FrmON ()
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the suns being over all 7 € P, The first sum may be estimated as follows. If£y,... &s
are taken in some neighbourhood Y of 7 then, at every point in f™(7) N f{*(z,),

[(@o fT DA™ = (o f ™D
<lpo fy™) = (@o SIS +lwe ST IDFTT — DFTT
< var(p|nUn) 6‘15\’1‘ + sup |y €n(Y)

where £,(Y) = 0 when Y — {7}. Recalling that {nU, : € P} has overlap index
2, and choosing ¥ small enough so that

#P™ 6,(Y) < 13,
we conclude that the first sum in (3.12) is bounded by

)y (&I\'; var(igly U ng) - sup [yl e,m) < 26,32 var g + G X7 suplg]
7

< 3C, AT var ¢ 4+ C1 A} f Jp|dmn.

Moreover, using once again the continuity of fy at ¢t = 7,
m(NfE ) € (YY) and m(f(n) \ f7 (1)) < £ulY),

where &, () has the same meaning as before. It follows that the second sum in (3.12)
is bounded by

Z?sup [@ICLAT £,(Y) < 2sup |plCL A < 26,37 (var v+ f |(,a|dm) .
Il

ag long a8 } 4 is small (:_nough 80 that P £:.{Y) € 1. To conclude the proof it suffices
totake C =5C, and A= X;. 0O

Now we introduce the linear operators

-~

O.) = ] Unp(a) dbe(t)  Eeply) = [ Cooly) dbele)

and note that

f(ﬁe¢)wd7n= f"f)(Ee(P)
for every ¢ € L*°(m) and every ¥ € L(m). This is, simply, because the analogous

duality property holds for Uy and £, for every ¢ (use Fubini's theorem in the same way
as in Section 2.6). Moreover, (3.11) implies (recall property (v6) of the variation)

(3.13) var(£'g) < CoAl var ¢ + 6‘0] o] dme
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for every n > 1 and every function ¢ with bounded variation. Then, cf. Corollary
3.4, there is a nonnegative function ¢. which is fixed under the operator L., that is,

~

Le 0. = ¢.. We normalize . by asking that [ @-dm =1, and denote pe = e M. Then
i is a probability measure and it is a stationary measure:

[(ﬁs'f’) dite =f7.b(f.gtps)dm= jlbwsdm:[deue

for every integrable function ¥.

Proposition 3.15 (exponential mixing for the random perturbations). There
are A < 1 and K > 0 such that, given  with bounded variation and ¢ € Ll(m),

‘ @z wein= [van | wdml < R lplay [ #ldm

for all n > 0 and every small enough e > 0.

The approach we take for proving this proposition is to think of Le as a kind of
perturbation of £, to deduce that L. is quasi-compact from the fact that £ is quasi-
compact. The following perturbation lemma is what we need in this setting.

Lemma 3.16. Let C >0, A< 1, A< 1, and P, : BV - BV, e = 0, be a family of
linear operators satisfying

(1) [Pepdm = [pdm andp 20 = Py > 0;

(2) 11P2lisv < CAlellsy + Clielli;
foreveryn>1,e20,andp € BYV. Suppose that

{a) givenn > 1 there is g(n) > 0 so that, for all p € BV and 0 < e = e(n}),

1Pre — Prolls < CA|lellavi

(b) spec(Po) = {1} U Ep where 1 is & simple eigenvalue and Lo C {z € C: |2] < A}.

Fiz o € (max{VA, vA},1). Then, for any small enough & > 0, spec(P;) = {1} U Ze,
where 1 is a simple eigenvalue and B C {z € C: 2| £ al.

Proof: As a first step, we claim that if n is sufficiently large and 0 < £ < e(n) then
R(P?,z") = (z"I —P?)~! is a bounded operator on BV for any z with o £ |2| < 1. To
prove this, we write

R(P™, &) = ("] = P3) + (Pp —P2))

— (T -PP)- (I + Ry, (P —PEN)

(3.14) = (1 +3 (R(PR,2")(PE - 1:';;))") R(P}, ™).
k=1
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Of course, the operator R(PF, z") is bounded, since z does not belong in the spectrum
of Py. A main tool is the sequence ||| - |||,,of norms on BV defined by

el = 8™ lllley + llells,

where max{v/A, vVA} < # < o. Note that 8*||p|lzv < ||||ll, < 2|l¢llsv, and so each
1] 1ll,, i equivalent to ||-||pv. Then, in order to prove that the sum in (3.14) converges
in the space of bounded operators on BV, it suffices to show that {for all large n)

(3.15) MRPy, 2%} (P = Po)lll, < 1.

We start with a few simple obscrvations. Assumption (1) implies that Xo = {¢ €
BY : fydm = 0} is invariant under Py. Any accumulation point g of %Z?;UI Pl
Is a fixed point of Py with fwedm = 1, and such accumulation points do exist, by
flelly’s theorem. In view of assumption (b), the accumulation point ¢y is unique, and
the spectral splitting corresponding to the decomposition spec(Py) = {1} U Zy must be
BV = Rypp @ X, Condition (1) also implies [(PF — Pi}eodm = 0 for every n > 1,
g€ > 0, p € BV. In other words, the image of P} — P[' is contained in the eigenspace
Xg of Pa. Now, for some K > () and any ¥ € X,

X3 Tt T nag—n 1 T
WPl < 2Pgllnv < 2KA™llpy < 2KA767" (1], < 5 (2"l

if n is large, recall that [z > o > 8 > V/A. Then [[|(z"] — Py, = (/202"
for every ¢ € Xy, which gives

HFR{PG, 2)| Xolll, < 20217" < 207

Next, from assumptions {2) and (a) we get

WP - PR)elll, < 0" (2CA™lollsy + 2C]loll) + CA”lellay
<206 (A" + X" 120" |ollmv + |lelh)
< 200" Il

1
for all large 2 and 0 < ¢ < (n), recall that 6 > /A, Combining these estimates we find
(3.16) I2(Pg, 27) (PE = PF)IIl, < 4C8"|2|™ < 4CO"0 ™"

Since ¢ < o, this implies {3.15) and completes the proof of our claim.

As an immediate consequence, we get that the spectrum of P, contains no point z
with ¢ < |z| < 1, whenever 0 < ¢ < e{n) for some sufficiently large n. Let us denote
Ue = {2 € spec(Pe) 1 |2 > 1} and B, = {z € spec(P:) : |z| < ¢}. Note that U, is
contained in the unit circle (and nonempty), as assumption (2) implies that the spectral
radius of P¢ is equal to 1. For each £ > 0, let ¥, be the eigenspace of P, associated
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to U., and #¢ : BV — ¥, denote the corresponding spectral projection. We are left
to prove that U, = {1} and 1 is a simple eigenvalue or, in other words, that Y. has
dimension 1. With that in mind, we show that ||r* — z°[||,, is small if 0 < & < &(n)
and n is large. Fix ¢ < 01 < 1 < op and let CP denote the circle of radius o7 around
the origin, for [ = 1,2 and = > 1. Noting that 7 is also the spectral projection for P2
associated to spec(P?) N {w € C: o} < |w| < o3},

1

T = — R(P?, w) dw.
7 ey TP

for each £ > 0. Then, recall also (3.14), (3.16),

2
£ 1 Tt ) 11
NNl=® — =/, € o Zlength(C, )'jélgn [||R(PE,w} — R(PF, w)|ll,
=1 t

<

hE

of sup 1S (BPR P2 - PE) N,
k=1

=1 |lEl=e

<

)=

00 2
4C9" 1
op Y (4CE T <Y s 16007 < 5

-
Il

1

if  is large and 0 < € < &(n). It follows that, given any ¢ € Y. N Xy,

' 1
Mk, = lllx<elll = 11(x€ = 7")elll, < el

and so ¢ = 0. Since Xg is a hyperplane, this proves that Y; is 1-dimensional. O

We apply this statement to Pp = £ and P = L., any small ¢ > 0. Assumption (1) is
clear from the definitions, (2) was proved in Proposition 3.1 and in (3.13), (a) is a direct
consequence of Lemma 3.14 and Fubini’s theorem, and (b) was obtained in Proposition
3.9. Then, Proposition 3.15, with A = o, follows from this lemma in just the same way
as we derived Corollary 3.10 from Proposition 3.9.

Observe that, through the arguments following Corollary 2.13, the previous proposi-

tion implies
n-—1
L1
lim ~ ,zo wlz;) = ftpd,us

for every continuous function ¢ and m x 6N-almost all random trajectories z; = fg (z).
At last, we are in a position to prove the main result in this section.

Proposition 3.17 (stochastic stability). p. converges to @g in LY(m) ase — 0.

Proof: Let > 0, A< 1,and ¥, n > 1, be as in Lemma 3.14, that is,

eyl £l < G5
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for all ty,... ¢ € Y3, and each n > 1. Given any n > 1, take € > 0 to be small enough
so that supp &, C ¥, . Then,

1E21—£ri1, < CA™.

On the other hand, Proposition 3.15 implies that

< KA® f]¢|dm < KA™ sup |y

\ [E1-poypam| - ‘ [ wim= [ v

for every n > 0 and £ sufficiently small, and every bounded function 4. Hence
||E’E‘ 1|l € KA™ foralln> 0 and ¢ > 0 small.

In a similar way, using Corollary 3.10, ||£7 1 — @], < KA" for all n > 0 and some
K >o0. Altogether, this gives

[ — wol|1 < KA™ + KA™ + CX*

if € is small enongh, depending on n. The right hand side can be made arbitrarily small
by clhoosing n large and so the proof is complete. O

Remark 3.3. Since every Eg preserves Xg = {p € BV : ftpdm = 0}, the spectral
splitting corresponding to spec(fs) = {1} UE, must be BV = Ry, & Xy. It follows that
the spectral projection 7€ is given by #y¢ = ¢, [ v dm, and so Proposition 3.18 implies
that ||re. — ma]l1 = ||we — @oll1 =+ 0 as £ — 0.

3.4 Infinitely many monotonicity intervals.

A large part of what we have been doing extends, under appropriate conditions, to
piccewise expanding maps with countably many domains of smoothness. In this sec-
tion we briefly describe some of the lines along which such an extension can be carried
out, in particular, we prove a statement of existence of absolutely continuous invariant
measure, The following example of a piecewise expanding map with no absolutely con-
tinuous invariant measure {either finite or infinite) shows that some set of assumptions
is necessary for this.

Example 3.7. ([Ry83]) Let f :{0,1] — [0,1] be given by f(0) = 0 and

Fl@) =2z 273 forz €y = (277,279) and each j > 1.

Let p be any f-invariant measure (possibly infinite). Suppose first that p(m;) > 0.
Then p{f"(m)) = p{m) > 0 for every n > 1. Since the preimages f~"(i;) form a
decreasing sequence of intervals whose intersection consists of the single point 1, we
conclude that p{{1}} = pu(m) > 0. Now suppose that p{n;} = 0 foreach 1 < j < k,
but pe(7j;41) > 0. The same arguments as before, applied to #;4.1 and the restriction
f:[0,27%) = {0,27%], shows that u({27*}) = p(gke1) > 0. Finally, if p{ng) = 0 for
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every j > 1 then p({0}) > 0. Hence, in cither case i can not be absolutely continuous
with respect to Lebesgue measure. In fact, the only invariant measures of f are Dirac
measures supported on the fixed points {0, 2=k, k > 0}. We leave to the reader to check
that Lebesgue almost every orbit converges to 0, and so the Dirac measure at zero is
the unique SRB measure of f,

Throughout, we suppose there is a countable partition of M into intervals n;, § = 1,
such that the restriction of f to each 7; is a C? diffeomorphism onto f(n;). We denote
gy; = 1/|Df|n;] and A; = sup gy;, and then we suppose that

{a) there is A such that A; € A <1 for every j 2 1.
For the time being, we assume that there are K; > 0 and ¢ > 0 such tha
(b1) for each j > 1, the restriction of f to #; is of class C2, with

|D2(fIm;)|

supsup i———2= = supsup |Dgy;| < K13
PSP [ Sy P P!

(c1) m(f(n;)) = 6 for every j > 1.
For the inequality in (b1) just note that

1 __D(flm)
D(fl"b‘)) B :FD(fln:')z'

Assumptions (bl), {c1) are unnecessarily strong, and we shall relax them later in this
section. On the other hand, they already include some relevant examples, such as the
Gauss map and small perturbations of it. Another interesting application is in the
study of maps with neutral fixed points, as in Example 1.3 in the Introduction, which
we discuss in the next section.

From the expression of the transfer operator

Dy, =D(:i:

Lo = (gq,9) o (Flm) ™" Xsta0s
jz1

we get

var Lp < 3 ( var (ga;) o (l15)™") +2 sup |(gm;0) © (Flm)™"].
= f(n4) Fns)

Using properties (v3), {v5) and assumptions (a) and (b1),

var_((gn; ©) @ (fln;) ") = var (gn, ¥) < sup gy, - vary +sup | Dgy;| f wdm
Flns) 5 nj 5 5 y

<A vartp-l-Kl/ i dm.
i L0
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On the other hand, by (3.2),

s |(gn; ) 0 (Fln;) 7Y < Ja, ((ga; 0) © (Fln;) 1)+

1 o (-1 .
+m(f(’7j))/;={,,j)|(‘° (Flns) D (flm;}~ " dm

1
Savarg+ (Ki+3) | |oldm.
W 8" 1y,
Replacing above, we conclude that
2
(3.17) var Lip < 3Avarp + (3K + E)/|(p| dm

for every function ¢ with bounded variation.

Proposition 3.18. Let f be a piccewise smooth map with countably many smoeothness
domains salisfying (a), (b1), (c1) above, and suppose that 3A < 1. Then f has some
absolutely continuous invariant probability measure pg. Moreover, if p is any such
measure then i@ = pm, where ¢ has bounded variation.

Proof: Let us write K, = 3K, + 2/4. Tterating (3.17) and using once more the fact
that [ |Cpldm < [ LIw|dm = [ 4| dm for every integrable function , we get

var (L") < 3Avar (£ 1) + K, f | dm < (3X)" varp + K, Z (3A) f[(p] dm,
F=0

for every n > 1 and every bounded variation function ¢. This is analog to Proposition
3.1, and now the proposition can be proved in the same way as Corollary 3.4. 0O

Conditions (bl) and, specially, (e1) are too restrictive far certain applications, see
Chapter 5 and Example 3.8 below. In the sequel we explain how the conclusion of
Proposition 3.18 may be derived under more general hypotheses: we keep (a) but replace
(11) and (c1) by

(b2} var,, g, < KpA; for each j > 1;

(c2) ngl A < K
for some Ky > 0. Clearly, (b2) is weaker than (bl), and it is easy to sce that (c2) is a
consequence of (b1) and (cl}: for appropriate z; € 5,

% >3 ) m{n;) =3 gy () ZA

izl m{f( n;}) izl Lz

The following example of a piecewise expanding transformation satisfying (a), (b2),
(¢2), but not {c1), is inspired by the study of unimodal maps of the interval, that we
shall address in Chapter 5.
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Example 3.8. Given ¢ > 1 let J.g = [-1,—¢7%) and J4q = {e~9,1]. Moreover, for
each r > ¢ denote

I—r = [_e-—r,_e—r—l) I+,. — (e-r—l’e—r]_

Then let ¢ > 1, K > 0, and f:[~1,1] = [-1,1] be any map such that
(i) f is C* on each of the intervals J_g, Jiq, and Iy, Iy, for r 2 g;

(ii) |Df(z)| > o for every z € J_qU Jyq, and |Df(z)| 2 o for every x € I, U l4r

and every v = q;

(iii) var (1/(Df|J:|:q)) < K, and var (1/(Df|Ii,,)) < Ko~ for every r > q.
Any such map f satisfies (a), (b2), (¢2): condition (ii) implies (a), (iii) implies (b2),
and (c2) is clear. It is also easy to see that maps satisfying (i), (i1}, (iil) do exist. For
instance, one may take f to be affine on each of the monotonicity intervals J_g, J1q,
Iy Ipp,r> g, with jDf| =0 onJ_4UJy; and |Df| =0 on I_, Ul foreachr > gq.
Note that in this case,

length(f(J1.)) =0"(1—e"})e™™

for all # > gq. Therefore, if one chooses ¢ < e then there is no lower bound for the length
of the images of monotonicity intervals, which means that (cl) is not satisfied.

In the remaining of this section we show that the conclusion of Proposition 3.18
remains valid under these more general consitions (a), (b2), (c2). Let = > 1 and 7 be
a monotonicity interval for f*. For each 1 € i < n, the (i — 1)th iterate Fn) is
contained in some monotonicity interval n;) of f, and the “itinerary” j(1}, ..., j(n)
completely characterizes 7. In more precise terms, given any monetonicity interval 7 of
f™ we may write

n={z€M: f(x) €y forevery 1 i < n}
for a unique choice of §(1),5(2),. .-, 3(n). Then g = 1/|Df"n| bas
sup g,(]") <Ayt Agm) AT and varg,('“) < Kandja) ' Ajm) £ Kon A"
(using (b2), cf. also {3.1) ). Then, as in the proof of Proposition 3.1,

var{£"p) < A" varp + Z(var g,(,") + 2sup g,(,"‘)) sup j(w[n)l
n

where the sum is over all the monotonicity intervals 5 of f*.

The main difficulty in estimating this sum lies on the fact that the length of the
menotonicity intervals is not bounded from below. To bypass this, we split the sum into
two parts: first, we consider the sum over a convenient finite subset G{n) of intervals 7,
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and apply to it the same argument as in the finite case; then, we use assumption {c2)
to bound the sum of the remaining terms. Let & 3 n be fixed such that

e PP VRS
ixk

We take () Lo be the set of intervals i for which max{j(1},...,j(n)} < &, and denote
8, = nf{m(y) : y € G(n)} > 0 (recall Remark 3.1). Then,

> (var gl + 2sup gi) sup [(¢ln)]
REG(n)

< E (K2n+2)A"(varcp+m(n)f|tp|dm)

nEG(n)

< (Kan+ 2)A" varp + (Kan + 2)/\"#%‘”) f o] dm.

On the other hand,

> (varg{™ + 2sup g} sup |(pln) <SUP|‘P|ZZZ (Kam+2)Ai0) - Xy,
ngEG(n) i>ki=1

where the last sum is over those (§(1), ..., j(n)} so that §{{) = max{j(1),...,5()} = 7,
and £ is minimum with this property. It follows that

Z (va.ru.v,"J + 2supg(“) Ysup |(e|n)] < sup !(plzz (Kan + 2)A; (Z/\ r-l

y¢Gin) ik I=1

< sup || Y (Kon® + 20) A K5
ik
< sup Jip| (Kgn® + 20) 2"

in view of our choice of k. Replacing these estimates above,

vl £ n 2 n 2 #G(n)

var(L"p) < (Kan + 3)A" var @ + (Kan® + 2n)A" sup || + (Kan + 2)X — || drme
n

Fix Ay € (X,1) and then choose Ky 3 K3, so that
(Kan + 3)A™ < KoAl and  (Kpn? + 2n)A" < KoMy for every n > 1.

Morcover, denote L(n) the factor multiplying the integral. Then,

var(L"p) < Ko (varp +sup |p|) + Lin [|¢,a| dm.
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Now we only have to remove the dependence on n of the integral term, and this can be
done using the same idea as in the last part of the proof of Proposition 3.1: fix N 2> 1
large enough so that KoAY < 1/2 and then, given any n > 1, divide n = QN +r with
g > 0and 1 <r<N. Inthis way we find, increasing Ky if necessary,

(3.18) var(£L"p) < Ko} (var g +sup |¢|) -+ Ko [ 2| drm.

Using also [ |C4|dm < [ || dm and sup || < var9 + [ || dm, one concludes that the
sequence (£ 1), is uiformly bounded and has uniformly bounded variation. At this
poiut the arguments in the proof of Corollary 3.4 carry on completely to the present
context, proving the following generalization of Proposition 3.18.

Proposition 3.19. If f is a pieccwise smooth map with countably many smoothness
domains satisfying (a), (b2), (c2) above, then the conclusions of Proposition 3.18 remain

valid for f.

The following simple criterium for finitude is now an immediate consequence, cf. the
proof of Corollary 3.5. Let € = U$2,d7;, the set of points where f fails to be smooth.
If f*(C) is finite for some n > 1 then f has only finitely many absolutely continuous
invariant measures.

3.5 Maps with neutral fixed points.
In this section, we apply the previous ideas to the class of maps in Example 1.3.
Recall that we let f : [0,1] — [0, 1] satisfy, for some ¢ € (0,1),

(i) f is increasing and C? on [0,¢] and on (¢, 1], with £(0) = 0 and fet) =0
(i) DF(0) = 1, but |Df(z)| > 1 for = # 0 (including 7 = ¢*); moreover D? f(0) > 0;

We prove that f admits an absolutely continuous invariant measure g which is o-finite,
but not finite. Moreover, g is unique up to multiplication by a constant. On the other
hand, given any continuous function ¢

n--1

(319) LS ol - v(0)
3=0

for Lebesgue almost every point z, which means that the SRB-measure of f is the
Dirac probability supported at the nentral fixed point 0 (and not p). In particular, the
Lyapunov exponent is zero

.1 nrnl .
"_lir_'x_lm n log|Df™(z)] =0 at almost every point z € [0,1].
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f(e)

G

0 Cicz ¢© fla) !
Figure 3.2: Inducing a piecewise expanding map

A first step is to replace f by a plecewise expanding map f: (0,1] — {0,1] defined
as follows. Denote ¢1 = ¢, & = (0,c1], & = {c1, 1], 571 = (fléo)™* and f7' = (fl€1)~"
Let g = (c1, f{e1)] € & and, for each § > 1, let cj41 = fo '(c;) and 1 = (¢j41,¢5] C o
Then define f by f|£1 = f}& and f|77_.,- = fI|n; for j > 1; see Figure 3.2.

Note that I, = (0, f(c)] is invariant under f, in the sense that f(I,) C I,. Moreover,
V() € I, where N > 1 is the first integer such that f¥(1) < f(e1). For simplicity,
we suppose f2(c;) > e in all that follows. Then f is topologically mixing on I,, as we
shall sce in the next paragraph: for any nonempty open subinterval J of I, there exists
n > 1 such that f*(J) = I.. Note that when f2(c;) < ¢, the map f : I, — I, is not
even surjective. However, one may still prove that the second iterate f 2 is topologically
mixing restricted to {0,¢;). We leave the study of the case f2(c;) < ¢ as an excreise
to the reader.

Let us prove our claim that f is topologically mixing on I, . We start by noting that
for any interval open J C I, there must be m > 0 such that f‘“(J ) contains some ¢;,
J = 1: otherwise, since f is uniformly expanding on each 7;, the length of the iterates of
J would be unbounded. Then f™(J) > {c;,ci+eq) for some £, > 0. Moroever, replacing
m by m + 1 if necessary, we may suppose 7 = 1. This means that, up to replacing our
interval by a convenient iterate, it is no restriction to suppose right Irom the start that
J contains an interval (¢, c1+€1) with €1 > 0. Then F(1) D (0,¢3) for some g2 > 0, and
50 f(J) D n; for some § > 1. Tt follows that f2(J) D (e1, f(e1)] and, as a consequence,
FAIT) contains (0, f2(e1)] = (0,e1} U (e1, f(c1)]. On the one hand, this implies that
FHT) D (ea, f(e1)], and so f5(J) 2 (0, f%(e1)] On the other hand, as we suppose that
S*(e1) > 1, the interval L = (¢1, f%(c1)] contains some interval (cy, ¢, +£3) with 5 > 0.
Then, repeating a previous argument, f5(J) D f2(L) D (a1, f{e1)]. Altogether,

(7)) 20, Fe)) U (e, fle)] = L,

which coneludes the argument.
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Now we show that f|I, satisfies assumptions (a), (b1), (c1) of Section 3.4. Let
A = sup |[Df|(n Wmno)|~!. Then, by construction,

|Df(z)| > A>1, ateveryz€ I,

and this gives (a). Assumption (cl1) follows immediately from the observation that
f(m;) = (1, f(1)) for every j > 1, and so the family of intervals {f(n;) : 7 > 0} is
finite. In order to check (bl), we begm by noting that our assumptions (i}, (ii) give

|D? £

(3.20) |D(og DJ)| = "5

< Ky forsome Kg > 0.

The following consequences are easy to deduce:
(1) There is K; > ( such that, given any j > 1 and =,y € 13,

1 _ Dfi(z)

S D) <

Proof: Just use (3.20) together with the fact that ST fi =) - Fi ) € m(lL) £ 1.
(2) There is K, > 0 such that, given any 7 > 1 and zy € my,...,2; € 5,

i
2 D] <

Proof: Using (1) one gets |[Df'(z)|~ = m(m)/m{f' (m)) < constm(m).
(3) There is K3 > 0 such that |D2f[/IDf]? < K.

Proof: It is clear that |D2f|/|Df|? is bounded on ny. For = € n;, § > 1, just use
{3.20) and (2) in

Df = .1 D(log D
o =D f() (log D)) P

Nz}

E‘i
Ii

(3.21)

Sy
gc:)—b_ ‘”))fo—-'(f*(:c))‘

This proves property (b1) for I

Now we may conclude that f admits an absolutely continuous invariant probability
measure ji = ¢m. If A < 1/3 then this follows from a direct application of Proposition
3.18. To handle the general case A < 1, it suffices to consider a convenient iterate of f
as follows. Fix N > 1 such that AY < 1/3 and let k= fN. Then 1/|Dh] < AV < 1/3,
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wherever the derivative is defined. Moreover, h also satisfies conditions (bl) and (c1)
(possibly for different values of K; and §, but this is irrelevant). Indeed, from

2], N-1 2f
Do )= 3 22 gy )

(Dh)? = Df DFN=i(fi(z))
Nl ope f 1
=2 o sy

ef. (3.21), we conclude that

2
'ﬁ,hl < ZK AN-i-1 <K12A
l’ i=0

which proves (b1) for k. Next, observe that if 71 is a monotonicity interval for /i then
the boundary points of L{7) belong in

N

U F 0 emen, fel) = U F4 (10,01, Sea), £2(en))).

i=1

Since this last set is finite, the family of all the i images i(n) of monotonicity intervals
of ki is finite, and this implies property (c1) for h. Then we may use Proposition 3.18
to mn(.lu(lo that 7 has some absolutely continuous invariant measure ji. Fmally, ft =
Z ( ). i is an absolutely continuous invariant measure for f: since { f B=j,

R N N N-1 N
for=3 (Faie= Y (=i
=1 i=0

Proposition 3.18 also states that the density of any h-invariant absoutely continuous
invariant measure is a function with bounded variation. In particular, if & = 1[Jm is
any f-invariant measure then % has bounded variation: it suffices to note that » is also
invariant under i = f¥, In particular, for any such & there exists an open interval J € I,
stich that inf(s)]J} > 0 and then, by topological mixing, inf($|2,) > 0. This implies that
all such measures are equivalent. Let /3 be the absolutely continuous invariant measure
we have just exhibited. If A4 is a measurable set such that f~1(4) = A and (A) >0

then
#(AN B)
A(A)
defines an absolutely continuous f—invariant measure with jis(A€) = 0, Then, the two

measures ji and 4 being equivalent, ji(A°) = 0. This proves that j is ergodic. As a
cousequence, it is the unique absolutely continuous invariant measure.

fa(B) =
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From i we may now construct an absolutely continuous measure u invariant under
the initial map f: let

oo F-1
(3.22) = (o) + . 3 filiiln;).

i=1i=0

Clearly, j is o-finite. It is also easy to see that it is f-invariant:

o0 j oo j—1
for=Ful@lmo) + 303 £ialng) = (lno) + 3 Y FilAlng) =
i=1li=1 j=14i=0

where the second equality results from

fo(ilno) + 7 Fililns) = fulim) + Y FeBlmg) = for = i = (Rlno) + D _(&lny).
J=1 - j=1 . .

7=1

Observe that each fi(g|n;), 0 < i < j, is an absolutely continuous invariant measure
supported on fi(n;), with density (¢/|Df]) o (fo*). Here, 2" is the inverse of the
restriction of f* to [0,¢], recall also that ¢ denotes the den51ty of the f-invariant
measure . Then, for every y belonging in some #n;, 7 > 1,

dp NP e
d—m(?l) = Z; Wl‘(fo )

Morcover, {dp/dm){y) = @(y) for y € 7. This proves that p is absolutely continuous
with respect to Lebesgue measure, with density given by

dp p —i
(3'23) p=-— dm =P Xn + (Z ID%f,l o fg )XED‘

i=0

Recall that & = (0, 1] = Uj2, 1.
So far, we have not used the fact that 0 is a neutral fixed point, which is now needed
to conclude that y is an infinite measure. Let us begin by the following estimate.

{4) There is & > 0 such that ¢; > e/ for every j > 1.
Since we suppose D2f(0) > 0, there area > 0 and &k > 1 such that ¢j41 > ¢; — ac_? for

every j > k. We take o = min{e;, 2¢z, .. ., ke, 1/2a}, so that (4) is automatic for every
1< j<k. Nowlet j > k and suppose that it satisfies ¢; > a/j. Then

2 . .
e oo’ o j—aa(fj+1) o'
Cj+1201—f1632;—7f—j—+—1(1+ = 2j+1
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(the Iast inequality uses o < 1/2a). This proves (4), by induction. It follows that

oo j—-1 oo oo
wld) = ji(m) + Y % jlns) = ilmo) + 3 D Almj)
i=1i=0 i=0 j=i+1

= i) + 3 a(l0,e) = 3 (inf @)%,
i=0 i=1

which diverges. Thus, the measure g is indeed infinite, as stated.
Now we show that any absolutely continuous f-invariant measure v = #m is a
multiple of g2, In other words, there is some constant C > 0 such that

(3.24) W = 'J)xm (Z |Df l )x&, with tﬁ =g,

i=0

compare (3.23). In particular, » can not be finite. Given any function i, define

Loh = and L h=

fol °fi IDfI oJi

(understood as being identically zero outside f(§o) and f(&1), respectively). Then the
lransfer operators £, of f, and E of f, are given by

Lh = — "1

IDfI IDfI oS = Labt Lok

and

ﬁh‘lDf|°f1 +Z|Df| Plu)™ = Loh+ 37 L4 (e xn,)-

i=1
Let us introduce the function
¥ =1 = (Lo¥) Xgo = ¥ — Lo(¥ X(0,c2])-
Then, by recurrence, we have
- - -~ "~ n_l . oA
¥ =9+ (Lod) xgo = ¥ + {Lo¥) xeo + (L59) Xeo = B + D (L) Xeo + (L5%) Xeo
i=1

fm every n > 1. As part. of proving (2) we got that |[Df"|o fi™ — 0o as n — oc. Then
= (¢/|Df*)o fg™ goes to zero as n — 00, and we conclude that

b=+ Z(Elﬂ'f ) Xeo = W Xno + Z(ﬁu?ﬁ) Xeo-

i=0
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Now, to prove {3.24) we only have to show that tf) = C¢ for some constant C.
Moreover, to do this it suffices to prove that 3 is a fixed point of the operator L
Indeed, we already proved that f has a unique invariant probability measure &, and
this means that every positive function which is a fixed point of £ must be a muitiple
of ¢. The first step in the proof that £t = 1 is

oo

L = L19p — L1{(Lo®) xeo) + 3 LH(# xn;) — 3 LELa®) Xeo Xm, )

F=1 F=1
where we have just used the definitions of 4 and L. Observe that

L1((Lo¥) xeo) = (_c%)ﬁx—ﬁﬁ o ff1=0

because (Lot} Xg, 15 zero on the image £; of f{1. On the other hand,
LH((£o¥) Xeo Xn;) = L3((Lot) Xmy) = L5 (¥ Xmya)»

for every j > 1. This means that the two sums above cancel each other out , except for
the first term in the first sum, and so we get

£ =L+ Lo($xm ) = L1 + (Loth) Xe, -

As v = ¢rm is an f-invariant measure, 3 satisfies 1y = L£1p = Lo + Ly9p. Using this in
the previous equation,

= — Lo+ (Lov) xe, = ¥ — (Lo¥} xg0 = ¥,

as claimed. The proof of (3.24) is complete.
Finally, we show that typical trajectories spend most of the time close to the neutral

fixed point 0. In precise terms,
1
{3.25) (k) = ;#{0 <s<n: fz) € (cgy1, f(ar)]} = 0 asn— oo,

for any k > 1 and Lebesgue almost any point £ € I,. Observe that (3.19) is a direct
consequence of this claim. First, we invoke the fact that ji is an ergodic measure for f,
to conclude that

. 1 . 2 .
{3.26) () = E#{ﬂ <i<m: fz) €} = B{n;) asm o0
for each 7 > 0 and f-almost every point = € I,. Since fi is equivalent to Lebesgue

measure on 1., it follows that Lebesgue almost every x € I, satisfies (3.26). Now
we want to express this information in terms of iterates of the map f. Let k > 1
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be fixed, and = be any point satisfying {3.26). To deal with the two different time
scales, corresponding to our two maps, we introduce the increasing sequence I(7) given
by fi = f%9, for each i > 0. By the definition of f,

Wi+1) =1 +1 if fiz)eny and 1GE+1) =) +5 if fiz)en,ixt,

Given any n > 1, let m be the unique integer such that {{m) < n < {{m+1). Up to
thne mn the f-trajectory of z hits each interval ; exactly méfy,(5) times. So,

n=(n—Um)) +1(m) = (n - Um)) + M, (0) + Y _ jmbhn(3).
Jzi

Given i < m let j be such that fi(z) € ;. 0 < j < k then all the f-iterates of = in the
thne interval [1(3), {7 4 1)) belong in (cgq1, f(c1)]. If 5 > & then exactly k iterates of the
f-orbit of = in the time interval [[(2), (i + 1)) belong in (cge1, f{e1)]- In particular, in
the time interval ({(m),n) there can be at most k iterates in (cp41, f{c1}]. Altogether,
this means that the f-orbit of x spends not more than

b, (0) + E Fmbq, () + kat?m (7) +k
1275k ik

of its [irst n iterates in the interval (cgq1, f(c1)]. This gives, using ijo 0..(7) =1,

m (0) +215j5kj9m(j) +Ej>k k0 () + k/m < 2k
(n —I{m)}/m + B (0) + Ejzl J8n(3) = 0n(0) + Zj?_l 05}

By (3.26), the denominator converges to ji(ng) + 2i»13(n) = p(l) = co. It follows
that 7, (k) = 0 as n — oo, as claimed in (3.25).

Notes.

Existence of absolutely continuous invariant measures, Corollary 3.4, was proved by
Lasota-Yorke [LY73] in the C? case (the map has a C? extension to the closure of each
monotouicity interval). In the same setting, [LY78] obtained the finitude statement in
Corollary 3.5. [Wo78] extended their conclusions to the bounded variation case. The
Markov case was treated e.g. by [Bo79).

Propositions 3.7 and 3.8 are from [Li95a]. Lemma 3.12 was proved by [Bo77] in the
C? case, and extended by [Ra78] to the bounded variation case. They used it to deduce
a stronger version of Proposition 3.13.

A central limit theorem for one-dimensional piecewise expanding maps was proved
by [Ke80).

Stochastic stability for these maps was first proved by [Ke82]. The approach we
follow to get Propositions 3.15 and 3.17, including the perturbation Lemma 3.16, is due
to [BaY93] (their arguments hold in the more general framework of perturbations we
consider here),

Maps with infinitely many monotonicity intervals were studied by [Ry83], who ex-
tewded conclusions of [LY73] and [HK82] to such maps. Transformations with neutral
fixed poiuts got the attention of several people, see e.g. [CI96] and references therein,

¢
Tn(k) =
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4. UNIFORMLY HYPERBOLIC ATTRACTORS

Now we carry on to the setting of uniformly hyperbolic attractors of diffeomorphisms
the program developed in Chapter 2 for expanding maps. We consider f: M = M to
be a diffeomorphism on the manifold M and @ C M to be some positively invariant
open set, in the sense that f{closure (@)) C Q. We assume that the maximal invariant

set
A=) @

n>i

is transitive (i.e. contains dense orbits) and hyperbolic for f. This last property means
that there is a splitting
ToM =E @ FE}

of the tangent bundle to M on A, and there are Ag < 1 and some riemannian metric
| -§] on M, such that

a) Df(z) - B2 = B}y and Df~Mz) - B} = Ef (2
b) (|Df(z)|E2]l < Ao and | Df 7} (@)IBZ|| < Ao for every & € A.

In Appendix A we recall some basic definitions and properties of hyperbolic sets which
are used in the sequel. Our goal in the present chapter is to prove

Theorem 4.1. Let A be a hyperbolic attractor for a C* diffeomorphism f as above.
Then

(1) f admils a unique SRB-measure fz0 supported on A and this measure is ergodic;
moreover, the basin B{up) contains o full Lebesgue measure subset of Q;

(2) (f, o) is exponentiolly mizing and satisfies the central limit theorem in the Ba-
nach space of v-Hélder continuous functions, for any v in some interval {0, 1],

(3) (f,pto) s stochastically stable under small random perturbations.

The idea to prove Theorem 4.1 is, once more, to derive the ergodic properties of f in
the statement from spectral properties of a convenient transfer operator £. However,
there is one crucial difference if one compares this with the context treated in Chapter 2.
In the expanding case the argument relies on local branches of f~! contracting distances:
then, taking advantage of the fact that Lo(y) is defined in terms of p|f ~1{y), one
deduces that the transfer operator improves the regularity of functions, cf. Proposition
2.4. Clearly, this can no longer hold in the general hyperbolic case, where expansion and
contraction coexist: on the contrary, one should expect the operator to worsen, rather
than improve, regularity along the contracting (or stable) direction E*. A related fact
is that SRB-measures are, in general, singular with respect to Lebesgue measure (even
when A = M),

There are two basic strategies to bypass this difficulty. A first one is to take the
transfer operator to act on some larger Banach space containing objects more general
than functions (e.g. the “density” of the SRB-measure). Alternatively, one may try
and keep working with fairly unsophisticated Banach spaces by introducing some kind
of quotient with respect to the contracting direction. The approach we adopt here is
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based on the idea of integrating along this stable direction: instead of dealing directly
with observable functions we always consider their averages on local stable manifolds.

For the sake of clearness, most of the time we shall refer ourselves to a concrete
model, namely solenoid embeddings of the (open) solid torus @ = S* x B* — R?, see
Figure 4.1 and Appendix A. In more precise terms, we shall consider the map f: Q@ = Q
to be in some small C2-neighbourhood A of an embedding of the form

4.1 S§' x B*3 (8,2) — (20 mod Z,¢(8) + Az) € §* x B?
)

where ¢ : ST — B? is of class C?, and the linear operator 4 : R* — B2 has || 4] < 1.
We take advantage of some features of this model, such as globally defined coordinate
systems, to rid the presentation of unnecessary technicalities and thus make the main
ideas more transparent. But we make no essential use of specific properties of these
maps, and all our arguments extend in fairly straiphtforward ways to the general context
of uniforinly hyperbolic attractors,

Figure 4.1: The solenoid on the solid torus @

4.1 Transfer operators and invariant cones,
11 is no restriction to suppose that the diameter of @ is at most 1, and we do so in all
that follows. Let m be Lebesgue measure on @, normalized by m(Q) = 1. We introduce

linear operators
(Up)(z) = o{f(z))
e U @)des DIGI NI, iy € (@)
A= JeT | det DF(F NI~ ify € F(Q)
(Lo)ly) = { 0, otherwise.
Observe that, changing variables y = f{z),

~ o)
L{ﬁ(p)‘t,bdﬂ& = [I(Q) [det DFF-1)] Df(f—l(y))|¢(J)dm(y)

= [ vamr@int) = [ ewyim
Q Q

As meutioned before, we want to analyse the action of £ on observable functions in
teras of corresponding averages on local stable leaves. By a local stable leaf we mean
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any connected component -y of the intersection W*(£)N@Q of the stable manifold of some
point £ € A with the open set (; see Figure 4.1 and Appendix A. Of course, there is no
canonical choice of probabilities supported on stable leaves. Instead, we average with
respect to a whole class of measures, namely, the cone of Hilder continuous densities
D(v) = Dla, u,7), defined by

D(7) = {p: 7 — R such that p{z) >0 for all z € y and log p is (a, x) — Holder},

for each local stable leaf v € Q. It is easy to check that D(v) is a convex cone, let
f = 8., denote the corresponding projective metric. We also need a similar cone

’DI(FY) = D(all Hi,s 7)1

corresponding to better Holder constants a; > 0 and 0 < pp < 1: we shall take
a3 ay>1and 0 < g < py <1, cf Lemma 4.2, (4.7), (4.11) below. Finally, we also
consider the projective metric 64 = 6, associated to the cone of positive densities

Dy(7) = {p: v — Rsuch that p > 0}.

Given w: M — R and p € D(y) we denote by f'r pp the integral of ¢ for the measure
pmy, where m., is the smooth measure induced on -~ by the riemannian metric. We
always suppose f,rp = 1, unless otherwise specificd. Let ¢: M — R and Lo be as
defined above. Given any stable leaf «, let y, and 72 be the stable leaves such that
F(y;) € o for j = 1,2. Then, for any p € D7),

& el
L(ﬁfp)ﬂ = ;fmj) | det Df(f“(y))lp(y)

5 det(Df | v3)(z)| 5 ,
_,;L- #(®) 4t D ()] p(f(:v))—;_[ﬁwm

2

where {Df | ;) denotes the restriction of Df to the tangent space of v; and

| det(Df [ ;)|

In the next lemma we use the fact that local stable leaves form a continuous family
of C? embedded submanifolds of Q, in particular, they have have uniformly bounded
curvature; see Appendix A.

Lemma 4.2. There are M < 1 and Ay < 1 such that, if a is large enough,
) p€ D(y) = p; € D(ia, p,y3) fori=1,2
b) 0" € D(v) = 0;(p}, p) < Mo, ") fori=1,2,
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where 0 and 8; are the projective metrics associated to D(7y) end to D(v;), respectively.

Proof: Clearly, p > 0 = p; > 0. Let K; > 0, respectively Ky > 0, be a Lipschitz
constant for log | det D f]|, respectively for log|det(Df | v;)|. Note that K; depends
only on f, whereas K3 depends also on some uniform bound for the curvature of stable
leaves. Then

{log p; () — log p; ()| < [og p(f z) — log p(f y)| + | log| det D f ()| — log | det D f ()|}
+ |log | det{Df | ;) (x)] — log | det{Df | v;) ()| |
ad(f(z), fy))* + K1 d(z,y) + Kad(z,y)

<
S+ K+ Ko)d(z,y)* £ erdn,y)*

where A, < 1 is a uniform bound for the contraction of f along stable leaves. We

SUPPOSE
K+ K,

e
and then we fix A; € (A, 1) so that e > (K + K2)/{A1 — A¥). This proves a).

Now, in view of Proposition 2.3, to prove b) it suffices to show that D(Aya, g, ;) has
finite diameter in P(y;). This is similar to the proof of Proposition 2.4. Let 84 ; = &
denote the projective metric associated to the cone Dy (v;) of positive densities on 75-
Observe that 64 ; and 6; are given by expressions analogous to Examples 2.3 and 2.4.
Given g/, p" € D(A1a, 1, 7v;) and «,y € 7;, we have

explad(z,y)") = 0" W)/ (z) | explad(z, y)*) - exp(had(z, y)*)
exp(ad(z, y)*) - #(v)/(z) = explad(z, y)) — exp(—Aad(z, 1))

2T

where 7y = inf{(z - z%)/(z — 2=%) : z > 1} € (0,1). Therefore,
aj(pII P”) 2T a+,j(p'l pH)'
In just the same way, one finds 75 > 1 such that g;(o, p”) < 72 84 ;(¢", #"). Thus,
05(0", 0"y < 84, 500", 9") + tog(72/T1)

for every o, " € D{Ma, 1, ;).

Next we find a uniform upper bound for 84 ;(p', p") with p', p” € D(7v;). We nor-
ialize fw pP=1= f%_ " and then the mean value theorem gives

"

-‘f;(w) >

exp{—a (diam-;}*)
exp(a (diam ~;)#)

> exp(—2a).

Recall that we suppose diameter(QQ) < 1. It follows that

oy (P, p") 2 exp(—2a) and By (¢, p") < exp(20)
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and so 8. ;(p',p") < da, for all o/, p" € D(v;). Altogether, we have shown that the
g;-diameter of D(Ae, &, 7v;) is bounded by 4e -+ log(re/m). O

Let us recall a few facts concerning invariant foliations of hyperbolic attractors, see
Appendix A for additional information. As already mentioned, local stable leaves form
a continuous family F7,, of C? embedded submanifolds of . In particular, given any
pair of nearby stable leaves  and 7, there is a C? diffeomorphism

T['=1r("]-r’,"f):'.?—)’}’,

C2-close to the inclusion map of 4 in M. Of course, such a diﬂeomorphisﬁ is not unique,
but for what follows we only need to know that it has been chosen satisfying (p1), (p2),
{p3) below, which is always possible. For instance, in the case of the solenoid it suffices to
take 7 to be the projection along the leaves of the horizontal foliation {S'x {z} : z € B*}
of ¢ = §' x B2 In other words, for each z € B? the unique point {f,z) € ¥ is mapped
by 7 to the unique point (#,z) € 7.

Let 1, 772 be the connected components of fY(v) N Q and 74, 42 be the connected
components of f~1(7) N @ (numbered in such a way that %, is closer to -y, than to
¥}, and let m; = w(7;,9;), for j = 1,2. Let d(y',y") denote the distance between two
points 3, 3" belonging in a same horizontal leaf T', measured along I'. Then there are
constants ag > 0, vp > 0, A, < 1, depending only on f, such that

(p1) = and log | det D] are ao-Lipschitz maps; '

(p2) log | det D (y)| < aod(y, w(y))* for every y € %;

(p3) d(z, ;(z)) < Au d(f (), 7 f(z)) for every £ € §; and j = 1,2.

Indeed, (pl) follows directly from -y and # being the graphs of C? maps B? —+ 8! with
uniformly bounded C? norm. Property (p2) also uses the fact that the tangent spaces
to the leaves of F# form a Hélder continuous subbundle of the tangent bundle TQ, in

. loc
particular,

{4.3) angle(Ty¥, Tr(yyy) < Ao d(y, 7{x)*,

where Ag > 0 and »g € (0,1] depend only on the map f.

To prove (p3), begin by noting that if & is some curve joining £ to m;{z) inside the
horizontal leaf T'y that contains x, then &y i3 expanded by iteration under f. Even more,
the horizontal projection of f(£p) has length larger than oy length{&g), for some uniform
6. > 1. Let & be a curve joining f(z) to = f (z) inside the corresponding horizontal
leaf, with

d(f(x}, 7 f(z)) = length{£1)-

Observe that the angle between f{T'g) and the leaves of the horizontal foliation is
bounded, at every point, by some constant H > 0. On the other hand, the angle
between -y and the leaves of the vertical foliation {{¢} x B?:4 e §'} is also uniformly
bounded, by some constant § > 0 which can be made arbitrarily small by taking f close
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cnough to (4.1). It follows that we can take a curve £; joining f(x) to frj(z) inside
f(T'v), and such that the length of the horizontal projection of £ is smaller than

{1+ H3) length(€,) = (1 + H3) d{f(z), 7 (x)).

| i/ 1/
: L e, T
x I £ ’ fix)

Figure 4.2: Expausion in the space of stable leaves

We suppose that 6 > 0 is so that 1 + HS < oy, and then take oW1+ HE) < A, < 1.
Then, denoling & = f~1(£;), we obtain (p2):

iz, m3(2)) < length(Eo) < o3 (1 + HE)d(f(2), m () < hu d(f{z), 7 f (z)).
For any =, ¥ as before, we define the distence between -y and 4 by

(4.4) d{y,%) = sup{d(y, 7(y)} : y € 3}.

As a direct consequence of (p3), the map induced by f in the space of local stable leaves
is expanding for this distance:

(4.5) d(7,7) = A7 d(v;,%), for every v, %, and j =1, 2.
Next, to every p € D) () we associate the density g: 4 — R defined by

(4.6) Ay) = pl(y)) - | det Da(y)|.

Clearly, 5 > 0. Moreover, as a consequence of (pl), log § = log pom+ log |det Dx is
{1, p11 }-Holder continuous with a; = a1ay’ -+ap Recall that diameter(Q) < 1. This also
implies that log 7 is (&, ¢)-Hélder continuous, for @ = aiaf’ + ap. We suppose
(4.7) > a=aqaal +ag,
so that, in particular, p € Di(v) = § € D(F). (This step is one of the reasons why we
need the auxiliary cone D, (), the other one is in the proof of Lemnma 4.5.) Note also
that f'r p= f"r £, by change of variables,

At last, we are in a position to introduce the invariant cone of observables we are
interested in. Given b > 0, ¢ > 0, and v € (0, 1], we let C(b, ¢, v) be the cone of bounded
functions ¢ : @ — R satisfying conditions (A), (B), (C) below:
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(A) _ﬁf wp > 0 for every v € Ff. and every p € D(v);
(B) the map D(7) 3 p~ log [, wp is b-Lipschitz, that is,

Ilogpr' —Ingwp”l < bo(p', p")
i ¥

for every o', p" € D{v) with [ p'=1= f‘r g, and every v € F£
{C) the map F2, 3 v+ [. L epis (e v)-Hélder, more precisely,

IIngtpp—Ingtpﬁl <ed(r, M)
¥ ¥

for every p € Dy{v) and every pair 7,7 € F.

As a matter of fact, we want to think of the elements of C(b,c,v) as equivalence
classes of bounded functions for the equivalence relation

pr~pz & @1y =paly my-almost everywhere, for every v € Fie

However, replacing an equivalence class by any of its members never results in ambiguity,
and so we ignore this formal distinction, in order not to overload the notations.

(A) and (C) are natural reformulations of the properties we required in the definition
of the cone C{a, v) in Section 2.2. Condition (B) is necessary to compensate for the fact
that the functions ¢ € C(b, ¢, ) may take negative values. Observe, indeed, that (B) is
automatically satisfied (with b= 1) in the particular case when ¢ is nonnegative:

f.e0"  supp’ _ supp//infp
ws) << LI00 — expl02, ") < expl0(6', )
e

In the sequel we take b and ¢ large, and v close to zero, cf. Proposition 4.4 and (4.11).

Lemma 4.3. C(b,c,v) is a conver cone with —C(b,c,v) N C(b,c,v) = {0}.
Proof: The convexity of the cone is a direct consequence of the convexity of the
logarithm function. To prove the last statement we only have to show that

/tpp:ﬁ forall pe P(y)and allve F,, = =0
g,

Let -y be fixed. Given any p-Hdlder continuous function ¥ : y — R and any B > 0; we
may write

W= (" +B)— (@~ +B) where ¥¥(z)= %({1/)(27” + ¥(2)).
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Now, it is casy to see that (¢ + B) € D(y) if B is large enough. Hence, by the linearity
of the integral, f,f wi = 0 for every p-Hoélder 4. Since any bounded function can be

Ll-approximated by p-Hélder continuous functions, it follows that f’r wip = 0 for every

boundeel function ) : v — K. Taking ¥ = |y we conclude that |y = 0 at m.-almost
every point, for arbitrary 4, andso ¢ =0. [

Let us calculate the projective metric @ = Oy, associated to C(b,c,v}), Given
¢ & D(v} with _Lr F=1,

[ w20’

~t >hat<
[r(wz p1)p’ Low
Next, for p, p” € D{7) with f'r pP=1= f'r 0",

[, 020" exp(b8(p', p")) = (f, 020"/ [, p2p")
= [, o1 exp(bO(p', p”))—(f 10"/ [Lere’)

ﬁ,(sﬂz — tp1)p”
S (o2 — t‘Pl)P

exp{bt{p’, o)) & 1 <

We denote the expression in the last fraction by £(g, p”, 91, 2). Then we also have

I (2 — tr)p” I w2p”
m > exp(—08(s, p")) & t < fT o e 0’ o1y 02)-
¥ T

Pinally, given p € D1 () with pr =1, we have p € D{y) with f"r §=1, and

f:,(‘Pz—tfPl)P v [, w2p expled(, 7)) — ( f (pzp/f wap)
L2 —t1)p S expled(n 7))+t < [ e expled(y. 1) — (f; 0id/ [, 010)

Let 9(p, p, w1, ¥2) denote the expression in the last fraction. Then, analogously,

fi{o —tp1)p [y 02p

> exp(—cd{7,7)") &t < -
J5 020

Tl(fh SRS Y (92)-

Therelore, oy, w2) is given by

ll,{f‘PzP [, 020

Lo [ o

ki

[, ez [5 028
‘E(p ,ﬂ 'Pl,(P:! f w1p (p,pltpllrpz)‘lf pn(papalpll(P2)

where the infimum runs over all p' € D(v), o € D(¥), p € D7), and every pair of
local stable leaves v and 4. Moreover, B{p1, @2} is given by a similar expression, with
inl replaced Ly sup.
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Proposition 4.4 (invariance). There is A3 < 1 so that L(C(b, ¢, v)) C C(Azb, Aac, v)
for every large enough b and c.
Proof: Let p € D{y) and p; be as defined above. Lemma 4.2(a) ensures that p; € D(v;)
and so ij wp; > 0 for each j = 1,2. As a consequence, f7(£zp)p = 3; [ ¢p; > 0, which
proves the invariance of (A).

To prove the invariance of condition (B), let ¢,p” € D(y) with [, o' =1 = [ 4"
Denote, cf. (4.2),

' |det(Df | ;)

o= n_ |det(Df | )
4 |det Df|

(Fof) and = BN 0 ).

Moreover, let p; = p_’?./fw f; and py = i/ f“h‘ p}. Then, using condition (B) for o,
followed by Lemma 4.2(b},

f(ﬂso)p” =Z[ wp} =Z[ p}’f wpi < Z/ pg-’-exp(bﬂ(p;,p?))f wpy
7 7 Y 7 U v 7 Y Y

1,7 L7
<Y " exp(8(p}, 7)) f’—f f op; < exp(bA18(pp")) Y f—"’—f f wp}.
F] v Pi 7 4w Pi

By the same arguments as in (4.8),

!f)’_;(m) - % < exp(68(s',p")) < exp (8+(7', "))

Thus, replacing above we conclude that

f (Ly)p" < exp(bhy 0(4, 0") +0(d0")) D f we
y ~ [

i

< exp(bXa 000, ) [ (L),
7
as long as we fix Az € (A1, 1) and suppose b > 1/(A2 — Ay).
Now we prove invariance of condition (C). Given two stable leaves -y and 4, let v; and
7, 3 =1,2, be the connected components of F~Y1)NnQ and f~1{F) N Q, respectively.
Let p € Di{y) C D(7). As we have seen before,

/;(Cw)p = Z[b wp; and [?(Et.a)ﬁ = ZL @B,

J
where (5); : %; — R is defined by

)|det(D TAEDIC: | det(Df | ;) ()|
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Since p; € Di{v;), we may invoke property (C) for ¢ together with (4.5), to conclude

that
| log /
.

i

ooy —1o5 [ i3] < cdny )" < Xl 3,
.

§

where

|det(D | 7;) (x5 )]
T ot Do)

Aj(x) = ps(m;(x)) [ det Dmy(z)| = p(fm;(x)

with m; = (%, ;). Next, we use the following estimate, which is given by the auxiliary

Lemnma 4.5 below:
|log [
ﬁ,.

2

oi; ~log [ p(d)s] < Kod(n, 7Y,
4

i

for some constant Ky > 0 that does not depend on ¢. Altogether,

Ilogf
,

for j = 1,2, and so

¥

7 7

| og [ (Lo)p - log [ (LoY| < (X + Ko)d(1,7)* < Aged(r,7)",
Y ¥

as long as we take Ay € (A, 1) and suppose ¢ > Kp/(Az — AY%). O

In this way we Lave reduced the proof of Proposition 4.4 to proving the following
auxiliary statement.

Lemma 4.8. There is Ko > 0 depending only on f, a, a1, b, such that

Ilogf
,?

£l

o7, — log [ o();] < Kod(1,7)"
¥,

i
Jor every @ € C(b,¢,v) and every v, % € Floy p € Di(7), and j = 1,2.

Proof: We use K, ..., K to denote sufficiently large constants, depending only on f,
t, @1, b. Tlie previous arguments prove that

(1) peDi(r} =+ p€ D(@1, 1, %) = p' = (p)j € D(hay, i, %) C D(G1, 1, 35);

(2) pe D7) = p; € D(May, i, 715) € Dloa, t1,%;) = 0" = pj € D(@1, i1, 7;)-
where d; = a1ag’ +ag. In (1) we suppose that e, is large enough so that Lemma 4.2(a)
lolds with the cone D(@y, p1,7) in the place of D(y) = D{a, g, 7).
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It follows from (1) and (2) that both o’ and p” belong in D(4, #£,7;) which, by (4.7),
is contained in D{a/2, g, 7;) € P(¥;). Hence, using condition (B) for the normalized

4 U ! 1 t
densities p/f-?,- pand p /ff?,- e,
{4.9) Ilogf wop —logf wp"| < b0; (0, ") + |!og/' o - log[ Pl
¥ 3 i - T

In order to bound the two terms on the right hand side, let us take a look at the
relation

P(@) _ plnf()) |det Dr(f()] _|de(DS | %)(@)| |det DF(ry(@)
7@ ~ o)) 1det D ()] 1aetDF ()@ 1det DF@)

First, in view of {p3) and the fact that f is Lipschitz continuous, the distance between
xf(x) and fr;{z) is from above bounded by

(4.10)

d(r f(z), f(2)) + Ky &z, m;(z)) < (1 + AK1) d(x f(z), (x))
< (L+ AuKa) d(v, )

Combining with the assumption p € Dy(7), we find
| log p(r f (%)) — log p(f;(2))] < @r(l + MK} d(7, 7).
On the other hand, by (p2),

] log | det Dw(f (2))| — log | det D‘JTj(LB)I' < agd(f(z), mf (x))* + ag d(z, w;(x})"
< ag(1+ AP) d(v, H)™.

Moreover, since log | det D f| is Lipschitz continuous,
|log | det D (n;(z))| — log| det. Df (z)I] < Kad(w;(z), <) < Kzhu d(1,%)-
Next, using also the Hélder property (4.3) of the tangent bundle to Fj,,

| log | det(D f | 4;)(a)| - log|det(Df | vi){mi())l| € Kad{z, ms(=))}"
< Ksho d(7, 7).

At this point we assume that
(4.11) O<cpu<p+v<m <.
Then, replacing the previous bounds in (4.10),

(4.12) |log ¢'(z) — log p" ()] € Kad(r, 7)™
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for some sufficiently large Ky > 0, and every z € 4 and § =1,2.
In particular,

(1.13) fog [ o/ ~tog | 71 < Ky do, 3y
i i
and
sup;, (p"/p') .
. Or (0 p") =log | =222 | < 2K, dly, 714,
(4.14) +.4(05 %) Og(infﬁj(ﬁ’"/ﬂ') < 2Kad(m7)

Inequality (4.13) provides the kind of bound we want for the last term in (4.9).
To bound the term b8;(p", o), we combine (4.14) with the relation (recall e.g. the
proof of Lemma 4.2)

(4.15) 0:(0", 0"} < 04, 50", ") + log(#2/71),

where

# = inf { exp(a d(z, y)*} - " (y}/p"(z)

exp(ad(z,y)*) — o'{y)/p'(z)

and 7y is given by a similar expression, with inf replaced by sup. All that is left to do
is to bound [log 7| and |log 7). Let us denote

B = (p'(y)/¢'(z)) exp(~ad(z,y)*) and B” = (p"(y)/p"(z)) exp(—ad(z,y)").

Clearly, o' € D(a/2, i, %;) implies log B' < —(a/2) d{z,y)* < 0, and analogously for p”
and B”. In particular,

1L,y E Y withm#y}

[B' - B"| < |log B' — log B"| = | log ¢'(y) — log ¢'(w) — log p" () + log ¢ ().
On the one hand, (4.12) implies
(4.16)  |B'— B"| < |log p'{y) - log p" ()| -+ | log p'(z) — log p" ()| < 2K, d(y, H)".
QOu the other hand,
(417} |B'— B"[ < |log ' (y) - log ¢'(x)| + |log " () — log p"(2)] < 2d; d{z, y)**,
because o', p” € D(&1, p11,%;). Since we are taking p; > £+ u, it follows that
|B’ - Bﬂl < K5 d(IL', 3 )# d(’Y, :f)u)

as long as Ky > max{2K,, 28:}. Indeed, this last inequality is a direct consequence of
(4.16) if d(z, y) > d(v,7), and of (4.17) in the case when d(z,y) < d(v,7). Then,

1- B” |B' — BY| Ky d(z, y)* d(v, 7)” 5
< L4
1-B [ ® T-maxlB, B} = 1= oop(~(a/2)d(z, 5 = "o 407"

log
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Replacing in 7, and 72, we find
log 7y > —Ked(v,7)* and log & < Ked(7,%)",
and so, in view of (4.14) and (4.15),
8;(¢', ") < 2K4d(y, )" + 2K d(7,7)".

Finally, by (4.9) and (4.13),

llog [ wp' —log [ @p" < (2b+1) Kadly, 7" +20Ked(7,7)" < Kod(r, )"

&5 s
for some Ky > 0, which concludes the proof of the lemma. [

In the proof of the next result we use the projectivé metric ©4 associated to the cone
of bounded functions satisfying f'r wp > 0 for every v and every p € D(v). In the same

way as we calculated ©, one checks that ©.4 (i1, @2) = log(B4 (w1, v2)/ o (w1, ip2)), with

Ry Y
b , =inf{ X } and 4 , = 51 { X }
+(@1,02) inf {f,! e (1, 92) P T, o

(taken over every p € D(y) and every stable leaf ).
Proposition 4.6 (finite diameter). Forb > 0, ¢ > 0, v € (0, 1}, the O-diameter
Dy = sup{@(Ley, Lz} : 1,02 € Clbye,v)} of LIC(D, e, v)} is finite.

Proof: As in the proof of Proposition 2.5, the argument has two parts. In a first step,
we bound Dj in terms of the ©-diameter of L(C(b, ¢, v)}. Let p1,42 € C(hab, Age, ).
Given g, o' € D(7) and p € D1(7), we have

exp(b8(p’, p")) — [ 020"/ [ p2e’
W P o1 p2) = < <
exp(b(¢, p")) — [, 10"/ [, 010’
exp(b0(s', ")) — exp(a 007", ")),
= exp(b8(p', p")) — exp(—br2 8(p', 0")} ~

where 1, = inf{(z — 2*)/(z — 27*) : 2 > 1} € (0,1). In just the same way,

E(pru pfr, 1, ‘PZ) <72, TJ(P’: P”, Y1, lp?) € [1'1, 72] : "?(ﬁ: &Y [PZ) € [Tlv T2]y

where 72 = sup{(z — z7*)/(z — 27**) : 2 > 1} € (1,+00). As a direct consequence,
alp1, @2) = 11 (o1, p2) and B(p1,02) < 72 B1(p1,92), and so

(1, w2) £ O4 (w1, 192) + log(ra/71)
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for all 1,02 € C(Xab, dac, v} D L(C(b, c, ).
Now we present the second and last step, where we show that the ©.,-diameter of
L{C(b,c, u)) is finite, that is, there is a uniform upper bound for

(L (£
— /f kil 1,02 € Clb,e,v), p' € D(¥'), o' € D(¥").

oy (5901)9” (Lon)p'’

In fact, we prove a bit more:

L (Co)p"
L (L)’

is uniformly bounded over all 4/, 4" in FZ,.. Using the same notations as before,

p € Clb,c,v), p' € D(Y'), p" € D(v") with / o= / P =1,
. ,TI .r.H

2
f-r" (ﬁtp)p” 2 =1 f.,;.' opy
2 .
f’r' j=1 f.r; ‘PP_{,'

(4.18)

Now, observe that
[ és= [ @ on1cewns |)llae D7 = [ flaes(nrhl 2 Tyt
7 T : )

and, analogously,
f p] < Ty supp”,
o

Fl
where I'y > 0 and I > 0, depend only on uniform bounds for the jacobian |det (Df~1)|
and the riemannian volume of images of local stable leaves. Also, inf g > exp(—a) and
sup p” < exp(e), 48 a consequence of the mean value theorem and f pF=1= f w i
Therefore,
"
f f.r ] I's

This means that normalizing I’ a.nd pj-, that is, replacing them by, respectively,

p;-/f g and p’/f P
%

can affect the quotient in (4.18) only by some factor bounded by (I'2/T'1) exp(2a). Recall
also that p} € D(Aa, p, 'yj) and pf € D(Aa,p,v]), by Lemma 4.2. Hence our claim
that the quotient in (4.18) is umformly bounded will follow if we show that

a0

(4.19) sup =2 ——
e

< 400
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where the supremum is taken over every ¢ € C(b,c,v), every py € D(Ma,p,71) and
p2 € D(a, i, 7y2) with f," M= fv: p2 = 1, and every pair of local stable leaves 1, 72.

Let #; and 62 be the projective metrics associated to D(m11), D{vz), respectively.
First, we use condition (B) to get

f pp1 > exp(—b81(p1,1)) f 1 and f pp2 < exp(bz(p2, 1)) [ ¥l
Y 1! rt] Ya

where a same symbol 1 denotes two slightly different objects, namely the constant
function on v, satisfying f_ﬂ 1 =1, and the constant function on v with f. L, 1 =1 Let
D; be some uniform upper bound for the -diameter of DlAra, i, v) C DY) ¥ € Floe
cf. Lemma 4.2. Then

exp(—Dn) < exp(—=b01(p1,1)) < 1 < exp(bf2(p2, 1)) < exp(Dy)-

Finally, let 1:z = R be given by i(z) = 1{n(x)) | det D (x)], where m = 7(va,m). By
(pl), both 1 and 1 belong in Dlag, 1,72). On the other hand, recall (4.7),

D((I(], 1, ')’2) C D(aﬁa Hy '72) o D(G/z: lu"’]f?.)-
Let Do be a uniform upper bound for the fz-diameter of D(a/2, 1t,72) C D(v2). Then,
using conditions {B) and (C) for the function ¢,

1 1 i -
f“ i < f"’z (p_ f"’” v < exp(bdz(1,1)) expled{y,12)") < exp(b Do + c).
Tool = Tovilovt

‘We conclude that

ep
L’—i < exp(2b Dy + b Do +¢)
f.n A
for all the @, p1, P2, Y1, vz under consideration, which completes the proof of (4.19).
Altogether, we have shown that

f-)-n (L‘P)p” | P
L lA kit LY o= =2 2 bD
f.,- T o 0=, exp(2a 420Dy + b Dy + ¢

for every v € C(b,c ), leaves v, v" € Fl. and normalized densities o' € P{vy’) and

toc

g € D(v"). Then the ©,-diameter of £(C(b,¢,v)) is bounded by log T3. O

4.2 Sinai-Ruelle-Bowen measure.

In what follows we let A = (1 — e~P2) < 1. Then, in view of Propositions 4.6 and
2.3, the operator £ is a Ap-contraction for the projective metric 6.

Similarly to what we did in the expanding case, we now use the sequence {ipn = L™ 1)n
to construct an SRB-measure o for f on A. Tt follows, from £ being a contraction,
that

O (¢, 1) < Olpx, 1) = 0 (exponentially fast) as k,{ = co.
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Note, however, that in the present case (¢n)n can not be expected to converge to a limit
function, since pg and Lebesgue measure are mutually singular, in general. Instead, we
shall use the statement of weak*-convergence given by the next proposition.

For the proof we need the important fact that the local stable foliation is absolutely
continuous: projections along the leaves of Fj} . are absolutely continuous maps with
Hélder continuous jacobians. Before stating and proving the proposition, let us discuss
this property a bit more, see also Appendix A. Denote 7 the quotient measure induced
by Lebesgue measure m in the space of local stable leaves, that is,

(A) =m( U 'y).

yEA

By a disintegration of m with respect to the local stable foliation, one means a family
(Dy)exy, such that each p, is a probability measure on -y and

[ wim= [ ([ 1210,) aitn

for every m- i|1t('g,mb1e function 4. We use the following consequence of the absolute
continuity of 7§ i there are constants ag > 0 and 0 < ¢y < 1, and there exists a function
H : Q — (0,400) such that log H is {ag, vp)-Holder contmuous, and p, = (H{y)m,
defiues a disintegration of m.

Proposition 4.7. Given any ©,-Cauchy sequence (ipp)n in Clb, c,v), normalized by
lc.,) ppdin =1 for alln > 1, and given any continuous function 1 ; Q = R, the sequence

([ pnpdm)  is Couchy in R.

Proof: Consider first the case when 3 > 0 and log ¢ is (a/2, p)-Hélder. In particular,
log 4 is (e/2, j2)-Hélder along each local stable leaf v (with respect to the induced
metric). We write

/Qtp,,y')dm=f([y %ﬂfidp—y) dﬁl(’r)=f(‘[f‘ﬂn"bﬂfr) dm(7y)

where H, = H | . Note that (¢H,) is strictly positive and log(/H,) is (a, x)-Hélder,
as long as we fix a > 209 and p < v, ef. (4.7) and (4.11). Moreover,

windm=f([T%H~;) dm(y)

and fL, > 0 with log H, an (a, p)-Hélder function. Therefore, given &, > 1,

Jy oty [ expH
f‘P‘H > oy{pk, 1) and f’—?pH" < Balor @) for all .
¥ b
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On the otl}er hand, f, pxdm =1= [fo wrdm implies that I, weHy < [, 01 H for some
local leaf 5. Thus,

Sy enpHy < Belen @1) J5 oxHs
.ﬁ, wrpHy = oy (ok w1) fq wiHy

< O+ler ) for all ¥s

implying that

dm
fi‘fﬂb— < e2+wr@)  for all k1> 1.
fQ prpdm
As a consequence,
Py dm
(4.20) V ot dm —f o dm' - f orpdm] [J2224™
Q Q Q Jo b dm

< sup [ (ee+(m,w) - 1) ,

and the proposition is proved in this case.
Now, for an arbitrary g-Hélder continuous function ¢: @ — R, we write

= —v5, where ¥E=(¥lE9)+B

and B > 0 is chosen large enough to ensure that log ¢ is (a/2, )-Holder continuous.
The previous argument applies to 1;')}'3: and so, by linearity, the proposition holds for .

Finally, given any continuous function ¥ and any & > 0, we may take ¥ a p-Holder
function such that sup | — 1[;1 < g. Then, for every k,{ > 1,

i[ sombdm—ftmbdm‘s\f sok«.fidm-[qonﬁdm‘ws,
Q Q Q Q

recall that we suppose [, o ¥n dm = 1 for all . By the previous case, the right hand side
is bounded by 3¢ if k£ and [ are large enough, and so we have proved that fQ enpdm is
a Cauchy sequence also in this case. [

We are now in a position to introduce the SRB-measure g of the map f on Q. For
that we consider ¢, = L£"1, for each n > 1. Then, by Proposition 4.7, {pn)n is a
©-Cauchy sequence, and so it is also a ©,-Cauchy sequence. Moreover,

f o dm = f {(£"1)1dm = f 1(U"1)dm=f ldm=1, foralln2> 1.
Q Q Q Q
Then we define pg to be the weak*-limit of (L™ 1) m = (™). m:

f’t})dnu = lime(C“l)t,b dm = limL(w o f*)dm,
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for each continuous 1 : 2 = R. Clearly, yg is invariant under the map f: for any ¥,
/(y’)of) dpgy = limf(1/)0f"+1)dm=limf(gbof")dm=_[¢dﬂo-
Q : Q

We shall see in the next section that

n-1

(.2) S @) > [
=0

for every 3 € C%(Q,R) and m-almost all z € . As a consequence, g is indeed the
{unique) SRB-measure for the attractor A of f in Q.

Remark 4.1. Given any ¢y € C(b,c,») with fQ wpdm = 1, consider the sequence
($n}n defined by

(,52;5-_.1 == Ck(pg and (ﬁgk = Lk]., for & ?_ 1.
Then (), satisfies the hypotheses of Proposition 4.7: in particular,
O4 (Buy ut1) < O(@n, Pnaa} < AFYH max {O(1, L po), 6(L o, £L1)} < A Dy,

and so the sequence is ©-Cauchy. It follows that (@), is weak®-Cauchy and so
f P dpg = lim f Pagip dm = lim f tap_13 dm = lim f (L£F o) ¥ dm,
Q Q Q

for every continuous . Thus, g is also the weak*-limit of {£* @g) m = (£*). (e m) for
any g € C(h,c,v). .

For the proof of (4.21) we shall need the following lemma which, in rough terms,
asserts that gy behaves as an absolutely continuous measure (with respect to Lebesgue
measure) if one quotients out local stable leaves. Let Fy be the g-algebra of Borel sets
which are union of local stable leaves: B € Fy if and only if B is a Borel subset of M
and, given any local stable leaf 7, either YN B = @ or ¥ C B. Clearly, # is just the
restriction of m to Fq.

Lemma 4.8. There is K > 0 such that, for every ¢ € LY(F),

—I%Lwdmifﬂ')dﬂosff];#)dm-

Proof: Let v, ¥ be local stable leaves and H, = H]y and H; = H|% be as in the
proof of Proposition 4.7. In addition, let I}T = (Hy o x)|det Dr|, with = = 7(%,7).
Recalt that log H is' (ag, vo)-Holder, with (ag, vo) depending only on f. Therefore, up
to choosing a, ay larger than ao, and g, p; smaller than vy, as in (4.7), (4.11), we have
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H, € Dy{y) and Hj, H., € D(a/2,1,%). Then properties {B) and (C) give, for each
Yk = cx 1,

foocHy  [youfly [ onHy =
Sy TR TR AT L < exp(b04.(Hy, Hy) + cd(1, 7)) € exp(bDo -+
Toonth ~ Tyoclhs J,on p(b0,.(Hy, Hy) (1:%)") < exp(bDo +¢)

where Dy is a uniform bound for the f-diameter of D(a/2, 11, %) C P{7), see Lemma 4.2.
For simplicity, we write K = exp{c + bDg). Recalling that

[(_L%Ha) dﬁ(ﬁr)=[<pkdm=l

we conclude that _fT i Hy < K for every local stable leaf #v. Then

[Q pekyam= [ o) ( f (ckl)HT) ai() < K [ diitn) = K [Q Wdm,

note that functions 3 € L (Fo) are constant on each stable leaf . Passing to the limit
as k — oo, [duo < K [y dm. The dual inequality [ wdpo = K~ ot dm may be
derived in just the same way, and so the argument is complete. [1

4.3 Decay of correlations. :
Our next goal is to prove the following statement of exponential decay of correlations
with respect to Halder continuous functions.

Proposition 4.9 (decay of correlations). Given any v-Hélder continuous function
@ and any p-Hélder continvous function W, there is Ca = Ca(i, %) > 0 such that, for
alln >0,

a) lfQ('(}b o fMlpdm — Iﬁ’dﬂﬁfqﬂodml < CoAy
b) | f(¢o fYedpo — [¥duo| < C2AZ
Proof: First we suppose that 9 > 0 and log is (a/2, p}-Holder. Then, as in {4.20),

‘/ YL p)dm Hf 'l,b(ﬂ""’ktp)dm‘ < sup ¥ f (£n+k¢‘) dm (ee+(ﬂntp|£n+k§0) - 1)
Q Q Q
< sup f pdm (e“g_la(‘*"'ﬁm“’) - 1)
Q
< supy [ pdm (ecé"‘; - 1)
Q

<y sww [ pm,
Q
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for every ¢ € C(b,c,v), where Cj, C§ > 0 are independent of 9 or ¢. The third
inequality uses Proposition 4.6. Since

f'gff(ﬁ"(p)dm:f(qpof")tpdm and lim f 'a,b(E""'k(,a)dm:fwduo/ wpdm
Q Q k=oo Jg Q
{by the definition of pg, together with Remark 4.1), we conclude that
(4.22) ‘ [ woryoan= [ vauo fQ «pdm’ <ciag sup v [ pdm
Q Q

and this implies a) for the class of functions ¢ and ¢ as above.

Now we prove b), under the further assumption that ¢ > 0 and log is {cy, »)-Hélder
continnous for some small ¢; > 0. We need the following statement, whose proof we
postpone for a while (see Lemma 4.10 below):

{4.23) (L) e Cbe,v) forevery [ >0,
as long as ¢ > 0 is small enough (depending only on f). Indeed, (4.23) allows us to
replace @ by w(£1) in (4.22), thus getting
U(@pof"yp(z:‘ndm—fapdﬂuf :,o([l‘l)dm‘ < CY A Supd)f (L 1)dm.
Q Q Q

Passing to the Hmit as { — oo,

’f(?!wf")wduo—/tbd‘uofsoduo

for all n > 0.

So far we have proved a) and b) for strictly positive ¢, % such that log is (e, v)-
Holder and log ¢ is (a/2, u)-Holder. The general case is a straightforward consequence.
Just write p = (pg — g with

<0y 'z‘supiﬁfwdun

1
§=§(]‘P|i<P)+B

and B > 0, and decompose % in the same way. Take B large enough so that logpp
be (e, #)-Holder and log ¢E be (a/2, p)-Holder. Then use the previous particular case,
together with linearity of the integral, to complete the argument. [

That is, we reduced Proposition 4.9 to checking the claim (4.23). We restate this
claim in the next lemma. The proof uses the same kind of ideas as that of Lemma 4.5.



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS 99

Lemma 4.10. There is ¢ > 0, depending only on the map f, such that given any
function ¢ > 0 such that logp is (c1, v)-Hilder continuous, then

w(L1) € C(b,c,v) for everyl 2 0.

Proof: Indeed, 1 € C(b,c,v) and so, by Proposition 4.4, £H € Cb,c,v). Tt follows
that

fso(c‘l)psz«aj(c'l)p>o,
it T

for every p € D(v), which proves property (A). We have already observed that (B) is
automatic for nonnegative functions, as long as b = 1. '

To prove property (C), let -y, ¥ be arbitrary local stable leaves, and let p € Di{7).
FixI> 0and let vy and 35, J = 1,..., 2! the connected components of f~!{7)NQ and
J7H(#) N Q, respectively. Then,

z det (Df'
Ltp(ﬁ'l)p=zf (0o £ (po £y 12 DLDIN Tdit {)}Tf)l

J=1"1
4 det (D7) 0
- JZ=1 :“((po fom) (pofiom) | [det Df'lJllmm | det D,
where 7y = =(¥J,7vs), and
21
I3 o (50 f | det (2172
Ltp(ﬁ l)p—;::lf%(tp Mo ) g DAl
2!
_ t t 1y [ det (DF* 3]
= J=1‘/:‘“(f;:'0f)(pcwrof ) (| det Dirlof)_.——-—met SR

Since all the functions involved here are positive, property {C) will follow if we show
that

log (Sﬂ(fl'ff.l(ﬂ?)) p(fimy(z)) |det (DF|va)l(ms ()
w(fi(z)  plrfi(=)) | det (D f*|7s) (=}
|det Df*|(z) |det Dmyl(z) )
Tdet Df¥|(ms(z)) |det Dx|(f!(=))
!

is bounded in norm by cd(7, %), at every £ € % and for every J =1,...,2%
Let ['p be the horizontal leaf containing = and £ C I'g be a curve joining x to ms(z)
such that length(&) = (z,ms(x)). The key remark is that the angle of each iterate

FYTq), i = 0, to the horizontal direction is bounded, at every point, by some constant
H > 0 that depends only on f. It follows that

(4.25) dist(f'ms (), 7 f'(2)) < Hd(1,7),

(4.24)
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and
(4.26) dist{f*(z), fims(z)) < length(f'(&)) < (1 + H) d{v, 7).
More generally, the distance from f#(z) to fims(z) is bounded by
(4.27) length(f*(¢}) < (1+ H) A7 d(v,7)
for every 0 €4 < . By the assumption on ¢ together with {4.26),
|llog @(f'75(2)) ~ log w(f'(@))| < ex(1 + H)” d(7,4)* < ex(1 + HY d{7,7)"-
Analogously, p € Dy(7) together with (4.25) give
|log p(f'ms(@)) — log plm f(2))] < ar H™ d{y, 7).

On the other kand, using (4.27) and the fact that log | det D f| is Lipschitz continuous,

| log | det Df*|(x) — log | det Df*|(ms{z))| < K7 d(v,7)
for some large K7 > 0. Recalling also (4.3),

[ogdet (DFlys)|(ms(2)) — log | det (Df*|30)|(z)| < Ksd(r, 7)™,

for some Kg > 0, and

|Tog | det Dy (z) — log | det Derf(f'(2))] < Ao d(7s,7s)" + Ao d(7, 7)™
=< 2AU d('?'l’?)uo'

In view of our choice of g, p1, v in (4.11), we conclude that (4.24) is bounded by
Cl(l + H) d(’?’, :Y)u + Ky d('r'n ﬁ’)u

where the constant Ky > 0 depends only on f and a;. At this point, we assuine
that « > 0 has been taken large enough so that Ky < ¢/2, and then we choose any
o <¢/(21+H). O

Remark 4.2. The form of the constant Ca(i, %) in Proposition 4.9 is relevant for the
sequel. By the mean value theorem, sup |p| < fQ lo| dm + |||l (diameter Q) if ¢ is
(llell.., #)-Hélder continuous. Therefore, the argument in the proof of the proposition
viclds

(428)  Calo,$) ~ const ( /Q ledm+||sollu) ( fQ |w|dm+||¢nﬂ)-
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The Holder term |||, is essential, as shown by the following type of examples. Let
$:Q — [0,1] be a C? function with :

f pdm >0 and support(¥)NA=40.
Q

Then 9, = ¥o f~™ is a sequence of C* functions with wi’n of?)ldm = fQ Pdm > 0,
but [ n djto = 0 for all . > 0. Note that ||, |, is not bounded.

On the other hand, it is possible to improve the estimate of (4.28) in the following
useful way. In the first step of the proof we took logy to be {a/2, u)-Holder, to ensure
that 1 H, € D(y) for every 7. Now, for this last conclusion it suffices that log be
{a/2, p)-Hoélder elong stable leaves. Thus, actually, the proof of Proposition 4.9 gives

42 i) coust ( / feldm+ el ) ( / lam + I,

[ls]l3, denoting any uniform Holder constant for the restriction of 1 to each stable leaf.

Corollary 4.11. Given any v-Hélder continuous function p, there is C3 = Cs{p) > 0
such that, for every 1 € LY(Fg) end alln >0,

a) I‘I‘Q(Tpof")vdm_f'ﬁbdﬂﬁfq wdm| SCSASIQ l4h| dm
b [ o f) pdio — [ duo [ e duol < CsAG fo [l dm.

Proof: This is a direct consequence of Proposition 4.9 and the last part of Remark
4.2. If ¢ is Fp-measurable then it is constant on each stable leaf, and so we may choose
%15 = 0. Then take Ca(p) = const (Jg leldm +ligl). O

Corollary 4.12 (ergodicity and SRB property). The measure fip is ergodic and
satisfies

1
Ezgp(fj(x))_’fﬂﬂdﬂu asn — o0,
j=0

for every continuous function 0:@ = R and m-almost all z € Q). In particular, po 15
the unique SRB-measure for f in Q.

Proof: Clearly, given any continuous g and any pair of points 2, z2 belonging in &
same stable leaf, then

n—1 n—1
; 1 ,
% E w(f?(x1)) converges <> - E w(f7(x2)) converges,
3=0 j=0

and in that case the two limits are the same. Let A be the set of points z € Q such

that limn~? E;.‘;,; w(f3(z)) does not exist, for some continuous ¢. Then A is a union of
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stable leaves and the ergodic theorem gives po(A) = 0. Applying Lemma 4.8 to 9 = xa
we get m(A) = 0.

Now, given any continuous , define @(z) = limn=1 E i Yio(f(x)). We have just
shown that ¢ is defined almost everywhere, with respect to both measures 1o and m.
Morcover, by the ergodic theorem, ¢ € L}(Fp) and $a f = ¢ at pg-almost every point.
Lemma 4.8 for the characteristic function of {z € Q : @{f(z)) = @{z)} gives that
$o f = at m-almost every point. Then part a) of Corollary 4.11 implies

I/ t,oduu qﬁdm’ ‘f (Go ™) (;Sdm—/(pdyofqﬁdm‘ < C;;A“/ || dm

for every 1 > 0 and every V-H(')'lder function ¢. Therefore,

55=f95f1uo=f‘.°dun

m-ahnost everywhere and pg-almost everywhere, This proves ergodicity and the SRB-
property, simultancously,. O

4.4 Central limit theorem.
The main result in this section is the following abstract central limit theorem, which
may be considered a version of Theoremn 2.11 for invertible maps.

Theorem 4.13. Let (A, G, 1) be a probability space, ¢ € L*(u) be such that [ ¢dp =0,
and fiA — A be an invertible map such that both f and f~' are measurable, and u
is f-invariant and f-ergodic. Let Go C G be such thet G, = f™™(Gy), n € Z, is a
non-increasing sequence of o-algebras. Assume that

(4.30) S B G)lla<co and 36— E($ | G-n)ll2 < oo,
n=0 n=0

and let

a2=[¢’du+2§1f¢(¢oﬂ)du.

Then o is finite, and o = 0 if and only if ¢ = v o f — u for some u € L (). Moreover,
if o > 0 then, for any interval A C R,

L({mEM'Lrilgb(fj(m))eA})—) ! fe_gfdt asn — oo
‘ Vi oVam I '

Proof: The strategy is basically the same as in the noninvertible case, that is, we
decompose ¢ = 5+ (o f — ¢, where n,{ € L*(u) are as in the proof of Theorem 2.11.
In order to do that, we begin by writing ¢ = ¢+ + ¢, with ¢+ = E(¢ | Go) and
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¢~ = ¢ — E(¢ | Go), then we decompose each of the two terms ¢% and ¢~ separately.
The argument for ¢ is similar to the one in Theorem 2.11, based on the first part of
(4.30), and for ¢~ we use a dual version, relying on the second statement in (4.30).

For each j, we denote E(¢ | G;) = ¢ — E(¢ | G;), the orthogonal projection of ¢
to L2(G;)". We also let P be the adjoint operator of U : L?(p) — L*(u). Observe
that U7 and P are unitary operators mapping, respectively, L*(G;) onto L*(Gj41) and
L*(G;4+1) onto L*(G;), for each j. Then, we introduce

¢t=-S"PIE@|GY snd mt=D PIB|G;) -~ E@]Gi))
j=1 =0

= _ZUj(E(¢ |G.;)) and %~ = ZUj(E(qﬁ | G_jn1) — E($]6G-3))-

Jj=0 =1

Since P and U are isometries to their images, {4.30) ensures
[ee] [=e]
1CF e < S UE@ ] Gi)lla <00 and ¢TI < D 16— B9 1 G=5llz < oo
i=1 =0

Moreover, G;¢1 C G; implies that E{¢ | G;) — E(¢ | Gj41) is orthogonal to E(¢ | Gi+1)
and so :

latlle < STNE@ 1 65) — B(é | Gilllz = STIE(@ | Gl < oo
j=0

i=0

Also, B( | G—341) = Bl | 6-5) = B(9 | G-5) = B(# | G-sa) € L*(G_;) is orthogonal
to B(¢ | G5} € LG ;)1 and so

W2 < S 1B | G-jr) — B 1G-l2 < ZIIE(¢ | G-j41)lz < o0.

F=1 i=1
We have shown that ¢, 7%, ¢, 7~ arein E3(p). On the other hand,

B($|6-5) — Bl | Goj1) € LHG—j) © L*(g—j) forall 21
= UI(E($]G) - B(¢| Gi+1)) € L2 (Go) o LG forallj>1
= g e L*Go) © L*(G1)-

and, in a similar way, 7" € L2(Go) © L2(G)) (recall that © denotes orthogonal comple-
ment). As in the proof of Theorem 2.11, one obtains 7+ = ¢ — ¢t o f + ¢, moreover,
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a similar calculation yields

N =U(E($| Go)) + UM(E( | G-1)) + U (ES | G_p)) + ---
~U(E($|6-1)) - UB($ | G-2)) — US(E(d | G-a)) - - --
= (81 Go) + U(B($ | Go) + UP(E($ | G_)) + US(E($ | G_)) + -
= B(p [ Go} ~ U(B($]G-1)) ~ UR(Ei($ | G_)) — ---
=¢7 -U{(T)+( =¢" = ("o f+( .
Finally, we set = 7" + 5~ and { = ¢t + ¢, It follows that ¢ = n+Cof— ¢ and
{i) %(C o f*—¢) = 0in L3(y) and in measure, because ¢ € L2(p);

(i) no f» € L*(G) © L*(Gn11) for every n > 0, and so 5o f™ is a reversed martingale
difference for the sequence (Gn)nzo-

At this point we have completely recovered the ingredients of the noninvertible case,
and the proof proceeds in precisely the same way as that of Theorem 2.11, 0O

Returning to our setting of uniformly hyperbolic attractors of a diffeomnorphism f,
we obtain the following direct application of the previous theorem.

Proposition 4.14 (central limit theorem). Lefy be o v-Hilder continuous function
and o > 0 be given by

o =f¢2duo+2jz=;f¢(¢°fj)dﬂn,

where ¢ = o — fpdup. Then o is finite and o = 0 if and only if ¢ = wo f —u for some
u € L*(110). Moreover, if ¢ > 0 then, for any interval A C R,

1 n-1 . 1 2
ug({:r:EM:quﬁ(f’(x))eA}) —)m[{e_mdt 25 7 — 0o,

Proof: We consider A = M,,50/™(Q), § = Borel o-algebra of A, and ¢ = po. Moreover,
we take Gy to be the restriction to the attractor A of the o-algebra Fy (consisting of
those Borel subsets which are union of local stable leaves). Clearly, G, = f~"(Gy) is a
decreasing sequence. We are left to check the hypothesis (4.30). The first statement is
a direct consequence of Corollary 4.11(b):

1B | Ga)ll2 = sup { [ #€du0 ¢ € 126, o) with ¢l = 1}

< sup { [ 800 5o+ € L2(Go, o) with I}z = 1}
< CSAga ’
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because [ ¢dug = 0 and |[¢|l1 < [[¢|la = 1. As for the second property, it follows
directly from the Holder continuity of . Indeed, E(¢ | G_p) is constant on each nth
image 7 = f(7) of a stable leafl v, and

inf (¢ | n) < E(¢|G=n)(n) < sup(¢]n)

Since diameter n < C, 7, for uniform constants C, > 0and A, € (0,1), and the function

¢ is (A, v)-Hélder, for some A > 0, we get that
16— B(d | G-n)llz < 16— B{d | G-n)llo < ACT AT".

This means that we are indeed in the conditions of Theorem 4.13, and so the proof is
complete. O

4.5 Stochastic stability.

In this last section we prove that the maps f:@Q — @ we have been considering
are stable under small random perturbations. The setting is formally the same as in
previous sections. We consider an arbitrary parametrized family (fi)eer of C? maps
from @Q to §), where T is any metric space. We suppose that, for some T € T,

fr=14f and T 3t+ fis continuous at 7 (with respect to the C2-topology).

The basic example corresponds to T being some neighbourhood of f in the space of C?
embeddings of @ into itself, with f, = ¢ for each t € T. We also consider an arbitrary
family (6;)e>a of regular probability measures on T such that

supp 8 = {7} as e =0,

Then we construct, for each small € > 0, a probability measure p. which is stationary
under the random process associated to ((fe)ier, 0e):

(4.31) [(qumwgdmm=/wws

for every continuous function % : @ — R. Moreover, this measure u. determines the
asymptotic time-averages of continuous functions over almost all random trajectories

&5 = foy o o) 1
17 '
;;wmﬁfw%

for every continuous ¢ and (m x 6M)-almost every (z,t1,...,t;,...). Finally, we show
that p. converges weakly to the SRB-measure fp of f when € — 0.

Our strategy for proving these statements is somewhat different from the one we
used in the expanding case. In Section 2.6 we took advantage of the fact that the
cone C(a, 1), that had been constructed for studying the unperturbed map f, is also
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invariant under transfer operators £, associated to the perturbations f;. As it turns
out, the corresponding statement no longer holds in the present setting. The reason
is that the definition of our cone C(b,¢,v) involves the stable foliation Fi e and the
proof that C(b,¢,v) is invariant under the operator £ makes nse of the invariance of

t5c under the map f {more precisely, we needed the fact that the preimage of a local
stable leaf is a union of local stable leaves).

One way to bypass this difficulty is to replace C(b, ¢, ¥} by some other convex cone,
invariant under the transfer operator of every f; with ¢ close to 7. Such a cone may be
obtained, for instance, substituting in the definition of C(b, ¢, #) the foliation e by a
larger class of submanifolds of @ with an invariance property with respect to every fi.

An alternative approach, that we take here, relies on considering the skew-product
map

(4'32) F:QXTN—)QXTN,. F($3tlat2}t37"')=(fh(z)ytZ,tSa"')?

and developping for this F, and every small ¢ > 0, a theory similar to the one pre-
sented in the previous sections for f, with m x 95’ in the role of Lebesgue measure
m. The statements of stability made above are then easily deduced from this theory.
This approach also provides information on the individual behaviour (e.g. correlation
functions) of typical random iterates, although we do not pursue this aspect here.

A good part of this treatment of the “random” system (F,m x 68 consists in adapt-
ing arguments we used previously for f, profitting from their robustness under small
perturbations: most of what we have done so far remains valid, with uniform estimates,
when f” is replaced by f;, 0---of;,, for any n > 1 and any fi,, ..., fi, in a sufficiently
small C? neighbourhood V of f. We give the guidelines of each step but, as a rule,
do not reproduce in detail those arguments which appeared already in the unperturbed
case and which can be translated in straightforward ways to the present sefting. The
reader who has gone through the previous sections should find no difficulty in providing
those details, and may find it a good exercise to do so.

The constants A1, Az, Ay, Ag, Ay, Ay, o, v € (0,1), and a, b, ¢ > 0, have the
same meaning as before, but may take slightly different values. More precisely, all
these constants are uniform, meaning that they may be chosen depending only on f.
We use ¢ = (t,¢2,3,...) to represent a generic element of TN, and we also denote
o(t}) = (t2,¢3,...). Up to replacing, right from the start, the metric space T by a
sufficiently small neighbourhood of 7, we may suppose that every fi, t € T, belongs in
a neighbourhood V of f as above (where the estimates of the unperturbed case remain
valid). The precise conditions we need on V are stated at a few places along the way.

We start by introducing linear operators i and Ly, for t; € T, given by

(T2)(z,1) = (@ 0 F)(z, ) = 2(fi, (), 0(%))

and

(f; (). 0) | det D (£ I iy € £, (Q);
0, otherwise.

(€0, @)y, o)) = {
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for every function ®: @ x TN — R We also define, for € > 0 and & as before,
(E0)y,00) = [ (Ca®)w o) doelt).

Let 7o : @ x TN = R be the canonical projection mq (z,t) = . We say that a function
@:Q x T® = R depends only on x if it can be written & = g o m for some ¢ : Q-R
Observe that if ® depends only on z then so do £y, ® and C.®, for every t; € T and
£ > 0. Thus, we may also think of these operators as acting on the space of functions
defined on @, and somgj;inies we do so.

A main property of U and £, is the following duality relation, which follows directly
from the definitions and Fubini’s theorem, using the change of variables y = f;; Yz):

(4.33) f ST d(m x 0F) = f (£e®)T d(m x 61).

whenever the integrals make sense. This estalishes a close link between the operator L.
and stationary measures of our random process, as illustrated by the following remarks.

Let ji; be a probability measure on @ x TN given by & = ® (m x 6, and suppose
that @ : Q x TY — R is a fixed point of L. Then (4.33) gives, for any ¥,

(ToF)dp= [ (TW)ddimx 6}y = | ¥od(mx 6)= [ ¥dp.
/ / / /

In other words, j is an invariant measure for . The converse is proved in the same way:
the density of an F-invariant measure absolutely continuous with respect to m x o is
necessarily a fixed point of £.. Now suppose that this fixed point & depends only on
z, and write & = pomg. Then p=pmisa stationary probability measure on §Q. To
see this, let ¢ : @ — R be continuous, and define ¥ : Q X TN 5 R by ¥z, t) = ¥{z).
Then, since ®(z,o(t)) = p(z) = ®(z,1), and d{m x 68 (z, o (t)) d6(t1) represents just
the same as d(m X 68 )(z, 1),

[ ( [ Do () dpre(z))dBelts) = [ B(foy (5), o (), o(8)) d(m x 8 (=, o (£))dBe (b1)

= f(@ o F)(z,t) ®(z, 1) d(m x 67)(w,£)

=[(\I!oF)dﬁ€=f‘Ildﬁe=f¢dﬂe-

In general, fs need not have a fixed point and the stationary measure . need not
be absolutely continous with respect to Lebesgue measure. However, the considerations
we have just made motivate our approach for constructing the stationary measure.
Similarly to what we did in the unperturbed case, cf. Proposition 4.7, we shall prove
that successive push-forwards of (m x 6Y) form a sequence of probability measures

F(m x 65y = (£71) (m x 67)
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that converges weakly to some measure £ on @ x TV. Let p. be the measure on @
defined by

e = (Wﬁ)sﬁe-
We shall seduce that g, is the stationary measure we are looking for, from the fact that

every E?l depends only on z.
An important tool in this construction is the local stable foliation of the map F'. The
same kind of arguments as one uses for constructing the local stable foliation 7 of

the map f, see Appendix A, shows that there exists a (unique) foliation ﬂfm of @xTH
satisfying properties (1), (2}, (3), (4) below. At this point we suppose that all the maps
fe are in a suffciently small neighbourhood V of f, cf. previous comments.

(1) Each leaf 72 _(z,t) through a point (z,t) is a C? submanifold of @ x {t}, with

foc
uniformly bounded curvature.

(2) F(ffoc(:c,g)) is contained in A;:m(F(:z,g)), for every (z,t) € @ x TR, and
F: Fipola,t) = Fioel F(2,0))

is a A,-contraction, for some uniform constant A, € (0,1).
(3) Given (y,o(t)) € @ x TN and any ¢; € T, the intersection

FYF2(y, o)) N{Q x {£})

has exactly two connected components, and they are also leaves of fﬁ,c.

(4) The foliation ﬂfoc is absolutely continuous with respect to (m x 8Y).

Let us explain property (4) in more precise terms, before proceeding. Let m, be the
wmeasure induced by (m x 88) in the quotient space (the space of leaves) of FJ,., that is,

Fie(d) = (mx 8™ [ | 7
ycA

for every measurable subset A of the quotient space. Given any vy € J::,’;,c, let ., be
the smooth measure induced on « by the riemannian metric of M. In (4) we mean that
there exists a continuous function

H.:Qx TV = (0, +o0),

bounded away from zero and infinity, such that {pe, = (He | v)m, : v € F2,.} defines
a disintegration of (n x 8%) along the leaves of the foliation: given any ¥ € L'(m x oM,

f\IJd(m x 01 2[(/;(W 7 dpm) difie ().
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Moreover, H, may be taken such that log H is (ag, vo)-Holder continuous en every
Q % {t}, with ap > 0 and ¥ € (0,1) depending only on the initial map f.
Given a leaf v € F3,_ we define cones of Holder continuous densities D(y) = D(a, 4, 7)

loc

and Di{7y) = D(aa, f£1,7), in just the same way as before:
D(v) = {p: v = R such that p{z) > 0 for all z € v and log p is (a, p) — Holder},

and similarly for D1(y). The constants e, 4, a1, #1 are chosen as in (4.7), {4.11).

For any bounded function & defined on v and any p € D(y) we let _[r ®p denote the
integral of ® with respect to the measure pm, supported on 7. The folowing simple
consequence of Fubini’s theorem will be useful later:

(4.34) L Ewro= [ ( L (t:h@)p) d8.(31)-

For each £ € TV we denote Jf‘,-"oc(g) the restriction of the foliation Aﬂm to @ x {t}. We
often identify @ » {t} with @, through the canonical bijection

¢ (@x{th 3 (s zeq,

thus thinking of each Fj, () also as a foliation of @. Observe that after identification
the action of F on the leaves of this foliation is described by the map f;,.
For v € F}(o(t)) and each ¢, € T', let y1¢,, 72,4, € Fi.(t) be the connected compo-

nents of
FHy)n(@ x {&}),
cf. property (3} above. Then, for any p € D(7) and any bounded funection P,

2 det(D ;
(4.35) L (Le, )= ; L " Ppi s Pity = %—g’—l‘“)—l@o for)s
compare (4.2). As in Lemma 4.2, there is some uniform constant A; < 1 so that
Pits € D(Ma, p,Yiy,) for every j =1,2.
Moreover, there is some other uniform constant A < 1 so that
B0 (000 Phes) < MiB(g,p"), forall ¢, 0" € D(y) and 5 =1,2,

where 0 and 8;,, are the projective metrics associated to the cones D(y) and to D(v;,,),
respectively.

The next step is to define a projection map 7 = n{},v) from a leaf ¥ to another
leaf « of the local stable foliation of 7, as well as a notion of distance d(v,7%) between
the two leaves. Let v € F, (o)) and 7 € F2 (0(s)) for some o(t) = (l2,%3,...) and
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a(s) = (83,53,...) in TV, Identifying both Q x {o(t)} and @ x {o(s)} with @, we may
consider v and ¥ as submanifolds of 7, and then define 7 in just the same way as in
Scetion 4,1, In more precise terms, we set

T = ﬁ‘(’?l ’Y) = d),,-—(l!) o W(qﬁa(g) (:Y)a ¢a(§) (7)) o ¢a(§_),
where 7 (ba(5)(F), Paqy (7)) is a8 defined in Section 4.1. Analogously, given any y € %,

d(y! W(y)) = d(¢g(§) (y)s ¢’a(§} (ﬂ-(y)))‘l

where the right hand side is meant as in Section 4.1. R
For t) € T, let s = (31,52, 83,...), recall that ¢ = (t1,82,83,...). Let vy, € F2 (1)
and ¥, € FL.(5), 7 =1,2, be the connected components of

FoU (@ {t}) and FHH)N(Q x {s]),

respectively, and denote ;4 = m(F;.,, %56, )- Then we have the following analogs of
properties (pl) and (p3):

{ql) 7 and log | det Dx| are ap-Lipschitz maps;

(a3) d{z, 754,(x)) < Aod(fr, (), wfr, () forallz € F54, , =1,2, and ¢, € T.
where A, < 1, ag > 0, and »y € (0,1), depend only on the unperturbed map f. Indeed,
(q1) is a consequence of the fact that stable leaves have uniformly bounded eurvature,
and {q3) is proved in the same way as (p3), with f,, in the place of f (and further
restricting the neighbourhoof V of f, if necessary).

We also need an analog of property (p2), but this is more subtle. Indeed, (p2)
rclied on the Hélder property (4.3} of the tangent spaces to stable leaves, which has
no straightforward analog in the present situation. To see this observe that, although
the canonical identifications ¢,(y and d,(5) allow us to think of both A,"‘:,c(a(g)) and
ﬁ,’:m(a(g)) as foliations of (2, in general these foliations do not coincide. For instance, a
leaf - of one foliation may intersect a leaf ¥ of the other foliation transversely at some
point ¥, in which case

{4.36) d(y,7(y)) =0 but angle(Ty7, Trey7) > 0.

An exception occurs in the particular case o(f) = o(s), since a Hilder property similar
to {4.3) can be proved for leaves 7, y; within a same @ x {z(£)}, any o(t) € TN:
denoting n = w{y,72),

(4.37) angle(Tev1, Tr(z)¥2) S aod(z, m(2))® forallze .

This property follows from the same methods as (4.3), and will be useful below. How-
ever, this particular case is not sufficient for our purposes (the statement of the analog
of condition (C) in the definition of the new cone of observable functions in Q x TN
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must involve all the pairs of local stable leaves 7y and 7 in .7’:',’06) and so we must deal
with the difficulty expressed by (4.36).

The way we overcome this is by defining the distance d(7,%) between two general
stable leaves in a careful way. Similarly to what we did before, we consider

di(7,%) = sup{d{y, 7(y)) : ¥ € 7}

But a a key point is to take angles in consideration too, when determining how far apart
two leaves are from each other. Given any point z € v € F,.(a(t)), let vz be the leaf
of F .(o(s)) that contains z. We define ’

3(7,7) = sup{angle(Tz7, T:7:)/** 1 z € v},

and define 8(%,+) in the same way, just reversing the roles of vy, ¥ and o(t), o(s). Our
definition also involves explicitly the distance between o(£) and o{s) (this will be useful
in the proof of Lemma 4.16): we let

da(1,7) = lo(®) — o (@) = D 27" dltigr, 5e41)

=1
Finally, we define
(438) d(fY: :Y) = max{dl(qa :‘?)1 dZ('Ya :Y)‘l 3(’}',”?’), 3(’71 'Y)}

Of course, 8(v, %) = 8(%,7) = da(7,%) = 0 when @(t) = o(s), and so in that case d{v, 7)
coincides with the “usual” distance di (7, 7)-

Now, observe that 7 = m(F,7) = T(Yu(z)s ) © T(Fr V() 204 7(F, Ya))(¥) = 7 (),
for any ¥ € . So,

log | det Drr|(y) = log | det Dy, M ((y)) + log | det DalF, vl (¥)-

By definition, m{y) belongs in Yr(y) N+, and so the first term on the right hand side is
bounded by

a0 angle(Tr ()T Tr(e)Yn(y)) < @208(1,7)*° < cod{y, 7)™

for some universal constant ag > 0. Also by definition, 4 and 7.y are both leaves of
the foliation f-‘foc(a(g)). Hence, by (4.37), the second term on the right hand is bounded
by
aod(y, 7(¥))** S aodi(1,7)* £ aod(7, 7).
In this way we conclude the analog of (p2) we were looking for:
(q2) log| det Da|(y) < {ao + co)d(y, 7)™ for every y € 7.
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Now we also need to generalize the expansion property (4.5) to arbitrary pairs v and
¥ of leaves in the local stable foliation of F. This easily done, in the following way.
Up to further restricting the metric space T, the leaves of the foliation .7?,’,,6 {viewed as
submanifolds of (}, via canonical identification) are uniformly close to the leaves of the
stable foliation 7 of f. Then, let v; € ff,f,c(,t,) and vz € .7?,“‘“(2) be any two leaves
intersecting at some point z, with £ = (¢1,22,83,...) and § = (£, 82,53,...). Since the
action of F on 7y, 72, is described by a same map f,, a small perturbation of f, we
have

(4.39) angle(Thl 1 F{m), Ty, (2)F{v2)) = o angle(Tom1, T v2)

for some constant ¢ > 1 depending only on f. Let v € Afoc(a(g)) and § € f,’;,c(a(_a)) be
arbitrary leaves, and let § = 1,2 and ¢; € T. Then,

a('Ys :T) > Ja(’Yj.n 3 ;’Yj,h)

follows from applying the previous relation to 7 = vj.,, a0y z € 71, and y2 = Y4,z
(the leaf of Aﬁc{ﬁ) through 2). Analogously, 8(%,7) =2 ¢8(%,4,, Vit ). On the other
hand, (q3) gives

di{7,7) 2 A7 (000 ¥

for every 7 = 1,2 and ¢; € T, Finally,

da(7,3) = Yo (t) = o()l = 3 27 d(tita, si41)

i=1

oo
=2 27 d(t, 5:) = 21t — sl = 2da(iy, Fits -
i=2

1t is no restriction to suppose 2 > ¢ > A7! > 1 (decreasing ¢ in (4.39) and increasing
Ay in (g3), if necessary), and then these remarks give

(4.40) A7) 2 A 0,0 F0)

for every j = 1,2 and t; € T. This is the analog of (4.5) that we wanted.

Finally, given any leaves -y, ¥ of r\fm and given any p € Di(y), we let 5:7 — R be
defined by

Ay) = p(r(y)) - | det Dr(y).

In the same way as before, our choice of a, i1, a1, g1 in {4.7) ensures that 5 is in D{¥).

Now we have all we need to give the definition of our cone &(b, e, v} of observable
functions in @ x TN. At this point this is a direct translation of the definition of the
cone C(b,c,v) in Section 4.1. We let E(b,c,») consist of all the bounded functions
@ :Q x TV = R that satisfy
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(AA) fv $p > 0 for every v € f-’foc and every p € D{v);
(BB) log f'r ®p is b-Lipschitz as a function of p € D(7):

|log [ ®p' —log f ®p"| < b8, p")
T ¥

for every p', p" € D(y) with f‘r p=1= f'r p", and every v € f'ﬁm;
(CC) f,y ®p is (c, v)-Hoélder as a function of :

|log/®p—10gf¢’ﬁ| < ed(y, 7)Y
~ ]

for every p € Dy(7) and every pair v,% € f-',ic

The argument of Lemma 4.3 applies to 6‘(1:, c, v), so that this is indeed a convex cone
satisfying condition (2.4). We denote © the corresponding projective metric, and we
also let @.,. be the projective metric associated to the cone of strictly positive functions
on Q@ x TV, They can be calculated in the same way as ® and O, in Section 4.1, in
fact, one obtains similar expressions (up to replacing v € T by v € A,’ac).

Let @ & C(b,c,»). The same argument as in the proof of Proposition 4.4 shows that
there exists a uniform Az < 1 such that, given any ¢; € T and any T, E .7?,‘:,6,

(1) [ (L, ®)p > 0 for every p € D7),
(2) for every p', " € D(7),

exp(-032006,") [(La®” < [ (L. )0 < exp(®Xa6(8'6") [caarer
¥ it ¥

(3) for every p € Di{7),

exp(—cha d(7,7)) f (Lo, ®)p < [ (L1, 8)5 < exp(chad(v,7)) f (Le,®)p,
¥ v ¥

as long as b > 0 and ¢ > 0 are fixed large enough. This means, in other words, that
£4,(Cb,¢,v)) € Cuab, Aac,v)

for every £, € T. Moreover, integrating with respect to d8.(t;), cf. (4.34), we conclude
that the same relations (1), (2), (3) hold with L, in the place of £;,. Therefore,

L (E(b,c,v)) € CAgb, Aae, v).
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A straightforward translation of the first part of the proof of Proposition 4.6 shows
that there is T > 0, depending only on Ay, so that

O-diameter (C) < & ,-diameter {€)+T

for every subset C of C(Ab, Asc, v). In particular, we may take € = L, (C(b, ¢, v)), any
hheT,orC= EE(C(b, ¢, v)).

Besides, the same arguments as in the second part of the proof of Proposition 4.6
show that there is I'y > 0 such that

f (Lo, ®)p" < Puf (Lo, @)p'
7'

b

forall t; € T, & ¢ C'(b, o), ¥, ¥ € f‘,’c, and normalized densitics p € D(v'),

0

p" € D(¥"). Integrating with respect to df.(t;) we get

[ Ewr <o [ Eans
;-YH'

;rl

for every @, 4", 7", o, p" as above. Consequently, the @+—diameter of L.(C(b,c,v)) is
bounded by 2log T'y. We conclude that, denoting Dy = 2log 'y + T,

©-diameter (Z:4C (b, c, v))) < Day < oo,

and so Ee is a Ag-contraction for the projective metric é, with Ap =1 — g~ D2,

This implies that (E’E‘l) is a Cauchy sequence for 8. Then it is also Cauchy for @)+,
since ®, < 8. It follows that the sequence of probability measures (E?l)(m x 87} is
weak*-Cauchy, meaning that for every continuous function ¥ QxTN SR,

f\P (E’;l) dimx8Y), n>1,

is a Cauchy sequence in R. This last claim is proved in the same way as Propaosition
4.7, using the absolute contimiity of the foliation A,“;c stated in property (4) above,
including the fact that H may be taken uniformly Hélder continuous on leaves of the
foliation.

On the other hand, it enables us to define a probability measure . on  x TV by

letting
f U djz, = lim f ¥ (£71) d(m x 6%)

for each continuous function ¥ : Q x TN - R. It is easy to deduce from (4.33) that this
fle is F-invariant: for every continuous @,

f(mop) dfi =Iimf(\I!oF) (£r1) d(m x 08) =1imf\I'(E;'+11)d(m><6§) = f\pdﬁe.
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Moreover, the probability measure g on @ defined by

f’rbdﬂ'e = f(qp o) dfic for each continuous 4 : Q@ —+ K,
is a stationary measure, recall (4.31). Indeed, let 4 : @ — R be any continuous function,

and ¥ : Q x TN = R be given by ¥(x,2) = (¥ o mo}(z,1) = (z). By definition and
Fubini’s theorem,

/ ( [otutn dez(tl)) dpe ()

= [ ([ wterow) (1)) (o, )
=t [ ([ 9(sue)0) da(t)) (B2 1), 0) dlm )z 0)
= tim [ (%o F)@,0)(B21) (5,010} dBe(ts) dlm x 01,0 0)

Since £7 1 depends only on =, we may write

/ ( [#ta@) dasul)) pelz) = im [ (@ o F) o, (R 1), 1) i x 82) (5,
= tim [ 9@ L V(a8 dlm % )0

= [ ) dpete) = [ 4@ ducto)

which is precisely what stationarity means.

Next, we want to prove that p. describes the asymptotic Birkhoff averages of every
continuous function w: @ — R over {m x 65)-almost every random trajectory. This is
stated in a precise form in Proposition 4.17 below. For the proof we need the following
lemma.

Lemma 4.16. Let ¥ : Q x TN — R be any bounded function such that ¥ > 0 and
log(¥|y) is (a2, p)-Holder continuous along every leaf v of the stable foliation Fy,..

(1) For every ® € C(b,c,v) there exists C(®) > 0 such that

O (20 ®)d(m x 68) — [ Wdp, [ Bd(m x6;)
/ Jvaf

for every n > 1.
(2) If U satisfies & = Vo F at (m x 0Y)-almost every point, then W is almost
everywhere constant:

< C(#)AZ sup 0,

U(xz,t) = f\I' dite for (m x 8Y)-almost every (z,t) € @ x ™,



116 MARCELO VIANA

Proof: The proof of part (1) is based on the arguments leading to (4.20) and to the
first part of Proposition 4.9. For 1 < n < k, denote ®, = L@ and By = LFD. We

write
Jowvaomxoy= [ ([ aun. 1)

v
and analogously for [ &, ¥ d(m x 8%y, Moreover,

[ @ndim o= [ ( /1 &, (I, lv)) e,

and analogously for [ @y d(m x 8Y). Recall that log H. is (ag, ¥p)-Hélder continuous
along leaves of the local stable foliation of F. In particular, log (H.|y) is (a, p)-Hélder
along every stable leaf v, recal (4.7), {4.11). Moreover, our assumptions on U imply
that log (¥ H.|y) is also (e, p)-Holder continuous along every leaf 4. Then, from the

expression of B, = log(B4 /i),
f-r Or (He [ 7)
8 (i, 1)

f-, (I)A: (‘I]Hs I 'Y)

ot S, LA ®,., D for all ~.
T, (T, [) = (B e) - orelly

> dp (Pg, P,) and

Morcover, using (4.33),
(4.41) /P d{m x 0%) = f@(ﬁ"n d{m x 6Ny = /cpd(m x 6%)

and, analogously, [ & d(m x 6Y) = { & d(m x 6Y). As consequence, there must be some
local stable leaf 4 so that f_} B (H, [4) < f"r @, (H, | 4), and then

f,r /i3 (lIJHE F ) < G4 (Dy,, ‘I),,) f.g ] (He [ %)
f.r &, (VH, l 'Y) - Q-!—((bk:(pn) fﬁ, &, (H, | 'AY)

< exp(84 (@1, Bn))

for every . This implies

O, 0 dfm x gN ~
%@W% < exp(©4(®x, Bn)),

and so

U@kw(mxaz*) - fcp,,\p d(m x 6)

f 2 d{m x oY)

T @,V d(m x 65) ~ 1

f B, d(m x 6V

(4.42) <sup ¥ f @] d(m x 6) (exp(B4 (g, &) — 1).
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It is easy to see from the definition of L. that |£.T| < L.|T)| for every function T on
Q x TV, Then, using also the analog of (4.41) for |®],

[aldim <y < [ Eriolam <o) = [ 101 dm 0
The fact that L. is a Az-contraction for the projective metric © implies that
B4 (@x, ) < B(®p, Ba) < AF7O(Rh—nt1,81) < DoAZY
where Dy > 0 is an upper bound for the ©-diameter of Eg(a(b, ¢, v)). It follows that
exp(04(@g, B,)) — 1 € C2A7
for some Ca > 0 depending only on D, and Az. Replacing in {4.42) and passing to
the lunit as & — oo we obtain the conclusion of part (1) of the lemma, with C(®) =

Cy [ ®d{m x 6Y).
In particular, if ¥ is such that Yo =W at (m x §Y)-almost every point,

fw¢>d(mxa§)=f(npoF")qad(mx9§)=fm(E:¢)d(mxef:)

for every n > 1. the last term converges to J @ dpe [ @d(m x 6Y) as n goes to infinity,
cf. Remark 4.1. Therefore,

(4.43) f (uy - f \Ildﬁs) Bd(m x 65) =0,

for every & € a(b, e,v). We are left to explain why this implies
(4.44) o — f Udi. =0 (m x 8))-almost everywhere.

First, note that every bounded function on Q@ x T can be approximated in. Ll{m x 6Y)
by a v-Hilder function. Next, every v-Hélder function may be written as the difference
of two strictly positive functions whose logarithm is (c, v)-Holder continuous. Next,
every function T > 0 such that log ¥ is (¢, v)-Holder belongs in the cone C(b,c,v).
Indeed, conditions (AA) and (BB) are automatic, since T is positive. To check (CC),
observe that given v € Fi, (t) and 7 € Ffi,.(s), and given p € D),

|log[Tp——1ongﬁ| = ]logfTp—long(poar)]del:D'fr”
¥ ki ¥ 5

= |1og [ Yo —log [ (Ton~)0
¥ v
< sup{|log T (2, £} — log T(r~1(z),8)] : z € 7}



118 MARCELO VIANA

Hélder continuity of log Y implies that the last term is bounded by
¢ (max {d(z, 7~1(2)), ||t - sl|})"” < ¢ (max {di (7, %), do(1,7)})" < ed{7, %),
as we wanted to prove. In view of these remarks, (4.43) implies that

f(lll—/kpdﬁs)d)d(mxﬁrj):ﬂ

for every bounded function ®. Taking & = ¥— [ T dfi. we obtain (4.44), thus completing
the proof. 0O

Proposition 4.17. Given any continuous function p: Q@ — R, we have

n—1
.1
{4.45) lim - Z;(p(xj) = fSOd!LE
i=
for (m x 8 -almost every (z,1) € Q x TV, where zj= fy; 0000 fi, (x).

Proof: Let & : Q x TN — R be defined by &(z,2) = ¢(z). Observe that o(z;) is
precisely the same as O(F7(z,t)). Then, by the ergodic theorem, the set B = B(yp) of
points in Q x T™ such that the limit in (4.45) exists has ji.(B) = 1. It is easy to see that
(z,t) belongs in B if and only if F(z,t) does. That is, the characteristic function yp
satisfies g = yp o F. Moreover, B is a union of entire local stable leaves of F, which
means precisely that g is constant on every stable leaf. Then the {positive) function
xa + 1 satisfies the assumptions of Lemma 4.16(2), and so it is constant

xg 1= f(xB +1)dfe = fe(B) +1

{m x 8)-almost everywhere, Then either xp = 0 almost everywhere or yp = 1 almost
everywhere, with respect to the measure (m x 85). The first alternative would lead to

fie(B) = f xs djte = lim f xa(E8 1) d(m x 6%) = o,

(the last integral is zero for every n), contradicting the ergodic theorem. Therefore, we
must have (m x 8¥)}(B) = 1. Now let 8 : @ x TV -3 R be the Birkhoff average of &.
More precisely,

Blz,t) = hm Z@F’a‘t) lu.{l_lmnz:wx, Tj=fr o000 fy,
if (z,1) € B, and ,B(a:,g) = 0 otherwise. Once again, it is easy to see that 8 is constant
on stable leaves and satisfies fo F' = 8. Moreover, § > inf ¢ at every point in B. Then
B+ |inf | + 1 is a strictly positive satisfying the assumptions of Lemma 4.16(2), and
s0 it is constant (m x 6)-almost everywhere. Then 3 is also constant (m x 6¥)-almost

cverywhere
b0 = [ B = [@aic= [ pane

for (m x 8M)-almost every point (z,2) € @ x TV {the second equality is part of the
crgodic theorem). O
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Proposition 4.18 (stochastic stability). Ase —0, the stationary measure i, con-
verges lo the SRB measure po of f in the weak™ lopology:

‘/‘"t‘bci,uS — fu')d,uu , for any continuous function ¢ : @ =+ R.
Proof: As every continuous function is uniformly approximated by p-Holder continuous
functions, it suffices to consider the case when 3 is p-Hélder continuous. Moreover,
every p-Hélder function 3 may be written ¢ = ¢+ — ¢~ where ¥t > 0 and log ¢¥ are
(a/2, j1)-Holder continuous. Therefore, we may assume right from the start that
$>0 and logis (%,u) — Hélder.

Then, as in {4.20), there is some uniform constant G > 0, so that

| wten yam— [ i Uy < sup ] (exp(@4 (€7 1,£7 1)) = 1)

Q Q
< sup [¢| CA3

for every j > 1 (L is the transfer operator of the unperturbed map f). Passing to the

limit as j — oo,
| wter vam~ [ wang
Q

Similarly, taking & = 1 and ¥ = 1 o 7 in Lemma 4.16(1),

‘qu(ﬁ‘z ydm— [ e

On the other hand,

< CAR sup #.

< C A} sup 9.

.—_’L@(Egnd(mxe?)—fmdﬁz

n—1
Eri-YE - L) (L 1) d
ngd) (. - £)(L' 1) dm

V ¢(Eg1—£'*1)dm|=
Q

n—1

=

i=0

n—1
< L. - L)L 1) dm.
_gsupwfqu YL 1) dm

(@)L — L)L 1) dm
Q

The first inequality uses (4.33), for functions that depend only on z. In the second one
note that sup [*~*¢| < sup 3. We claim that, for each fixed i,

(4.46) Ll(ﬁe—ﬁ)(ﬁil)]dm—)ﬁ as e — 0.
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Let us assume this statement for a while, and explain why the proposition is now an
casy consequence. Indeed, we find that

n—1
‘ fQ Wlr1 - 1)dm[ <3 sup - £ile) < sup B - ule)

i=0

where £;(g) is a generic notation for a function of (f, €) such that £;(e) — 0 whene — 0,
keeping j fixed, Together with the previous bounds this gives

f Pdu, — f P

Given any § > 0, fix n large enough so that 2CA% < §/2. Then

’f'.i’dﬁe—/v’)d#o

if e > 0 is small enough so that £,{£) < §/2. This completes the proof of the proposition,
up to justifying claim (4.46). .
Let ¢ > 0 be fixed and denote ¢ = £*1. We start by noting that

fql(fs — L)p|dm =fUQ(£¢ — LYypdf(t)

</ ( / Ee = £yl d ) an.().

as a consequence of Fubini's theorem. Thus, in order to prove the claim, it suffices to
show that

< (2CAZ + £n(e)) sup ¢ for every n > 1.

<4,

dm

f {(Le— L)pldm -0 ast -7
Q

To do that, we disintegrate the integral with respect to the partition of @ into local
stable manifolds v € 5} of f:

fQ (Lo — L)p| dm = f ( [! Ko — L)l H_,) din(y).

Morcover, for each v € F},, , we write
f (Lo = L)l H, = |$: - I Hyt
v NS QNFQ)

+f I$c|H-,+f |é| H,
N fARNF(Q) ANF QN Fe(Q)
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where ¢ = (¢po f~1)|/det Df o f~1| and @, = (o f; ')/|det Df,o f{*|. Observe that &
converges uniformly to ¢ as ¢ — 7, because we suppose that f; — f in the C? topology
(C! would be sufficient here). This ensures that the first term on the right hand side
goes to zero as ¢ — r. Moreover, the riemannian volume of 7N F(\ f(Q) and of
¥ FQY\ f:(Q) in ¥ converges uniformly to zero as £ — 7. Thus, the other two terms
also converge to zero. It follows that

[|(£t—£)(p|H.,——)0 astorr,
T

uniformly in v € Fj,, and so [, [(£: — L)p|dm converges to zero as ¢ — 7. As we
already pointed out that this implies our claim (4.33). [

We conclude this section by deducing that the SRB measure yp varies continuously
with the difecomorphim f. To explain this, let g be any map C? close to f. Then
g(Q) C @ and the maximal invariant set

A= {]™Q)

n>0

is a hyperbolic attractor for g, see Appendix A. Everything we did here applies to g,
if it is close enough to f, and so g has a unique SRB measure jg g supported on Ag.
Moreover,

Corollary 4.19 (deterministic stability). The measure pg,g is close to po = fo,f
in the weak® topology, if g is C* close to f: given any continuous function 9 : Q- R,

fﬁ')dﬂo,g—*fll)dﬂwa asg = [.

Proof: This uses precisely the same argument as Corollary 2.15. Let (gn)n be any
sequence converging to f in C2(M). Define 8. to be the Dirac measure supported on
gn, for all € € (1/n+ 1,1/n). Then the stationary measure g, € € (1/n+1,1/n},
coincides with the SRB measure yig g, of gn and, as a particular case of Proposition
4.18, these stationary measures converge weakly to i as n — +o00. (]

Notes.

Uniformly hyperbolic systems were introduced by Smale, see {Sm67], and have been
studied by a large number of people both from the topological and the ergodic view-
points. See e.g. [Sh87] and references therein.

SRB measures were first constructed by Sinai [Si72] for Anosov diffeomorphisms.
This was extended by Ruelie [Ru76] for general hyperbolic (Axiom A) diffeomorphisms,
and by Bowen-Ruelle [BR75] for Axiom A flows. See also [Bo75).

A key idea in our approach, “to integrate out local stable manifolds”, is due to
[Li95), and our presentation ows a good deal to his paper. He proved exponential
decay of correlations for volume-preserving uniformly hyperbolic maps, taking some
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advantage of the a priori knowledge of the SRB measure (the riemannian volume). A
main difference in the general hyperbolic attractors is that we have to start by finding
the SRB measure (Proposition 4.7 and subsequent considerations).

We also push the arguments further to prove stochastic stability (a preprint version
of [Li95] also contained a discussion of stochastic stability). Stability of uniformly
hyperbolic attractors was proved by [Ki74], [Ki86a), for a different model of random
perturbations. [Yo85] proved stochastic stability in the same sense as we consider here,
under an assumption of absolute continuity on the probability distributions ge.

The proof of the central limit theorem for invertible maps (Theorem 4.13) is inspired
by [DG86).
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5. NONUNIFORMLY HYPERBOLIC UNIMODAL MAPS

In this chapter we study the statistical properties of a large class of nonuniformly
hyperbolic maps of the interval. For simplicity, we state the results for the quadratic
family

fF R=R flz) =a—x?, acR,
but all the arguments can be extended to general smooth unimodal maps with negative
schwarzian derivative and nondegenerate critical point. The dynamics of these quadratic
maps depends in a crucial way on the value of the parameter a. We begin by listing
some main facts, referring the reader to [MS93] for definitions and more information.

Figure 5.1: A quadratic map f{z) =a— z2

1t is easy to see that if a < —1/4 then every trajectory J*(x) goes to —co0 asn — +00.
The same happens, for all typical trajectories, whena > 2: the exceptions form a Cantor
set K with zero Lebesgue measure. Moreover, K is a uniformly hyperbolic set for f:
there are ¢ > 1 and N > 1 such that |(fV)'(z)| > o for every = € K. The asymptotic
dynamics of f is much richer if a is in between —1/4 and 2, which we always suppose
from now on. Denoting ¢ = (—1 — /I + 4a)/2, the fixed point with largest absolute
value, the interval I = [g, —g] is invariant under f, that is, FeI) c I. All the trajectories
starting outside I go to —oo as n — -+oco, but the behaviour of f|f may take very
different forms.

For an open and dense subset H of values of @ € (—1/4,2) the map admits a unique
attracting periodic orbit O, which attracts every typical trajectory in the invariant
interval: the basin B(Q) = {z € I : f*(z) = O} is an open, full Lebesgue measure
subset of J. Moreover, B(©) contains the critical point ¢ = 0, and K = I\ B{O) is
a uniformly hyperbolic set for f. From a statistical point of view the situation is still
very simple: the Dirac probability measure uniformly distributed along the periodic
attractor is the SRB-measure of f|I.

Another interesting case corresponds to the orbit of the critical point being non-
recurrent, that is,

(5.1) inf |F*(c) — ¢| > 0.
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Then the map is expanding over its critical orbit, in the sense that there are b > 0 and
A > 1 such that

(6.2) [(FY(fle))| 2 A for every n > 1.

Moreover, a similar property holds for Lebesgue almost every point x € I, if one allows
b to depend on z, In this case, Lebesgue almost every orbit starting in 7 has a limit
distribution, which is described by an absolutely continuous f-invariant probability
measure jig. This measure gp is unique and ergodic, and it is supported on a finite
union of subintervals of f. Then, in particular, the trajectory of every typical point
x € I is dense in those subintervals. Observe, however, that condition (5.1} holds only
for an {uncountable) zero Lebesgue measure set of values of a.

Here we study another, much larger, set of parameter values ¢ € {—1/4,2)\ H for
which the map exhibits complex asymptotic behaviour. As we shall see below, it suffices
to assume (5.2) together with a much weaker form of {5.1), to ensure the existence of
an SRB-measure pz9 which is absolutely continuous with respect to Lebesgue measure
and which has very rich statistical properties. A crucial point is that these weaker
conditions are satisfied by a set of parameter values with positive Lebesgue measure. In
the sequel we give a precise definition of the systems we shall be dealing with, as well
as the statement of the main result.

Before that, let us mention that the two types of behaviour we have been discussing
are typical for quadratic maps: a recent result of [Ly] asserts that for Lebesgue almost
cvery value of the parameter a € (—1/4, 2} either f has an attracting periodic orbit or
it adnits an absolutely continuous invariant measure.

We make the following assumptions on the orbit of the critical point ¢ = 0: there
are constants A, > 1 3 o > 0 (the precise condition is at the beginning of Section 5.1)
such that

(U WY (fle))] = A2 for every n > 1;

(U2) [f*(c) — e|l 2 e7" for every n > 1;

{U3) f is topologically mixing on the interval I, = [f%(c), f(c)].

A few words of motivation are in order on these hypotheses. The Collet-Eckmann condi-
tion (U1) eans that f is expanding on its critical orbit, and is our main hyperbolicity
assumption on the map. Property (U2) should be compared to (5.2): we allow the
critical orbit to be recurrent, but we impose a bound on the speed of the recurrence.
Altogether, these two conditions ensure a certain amount. of expanding behaviour for the
map f, as we shall see. Both of them can be further weakened, for instance multiplying
the right hand side by a positive constant, but we keep this formulation for the sake
of simplicity. The topological inixing condition (U3) plays essentially the same role as
in previous cases, and we just add that in the present setting it is equivalent to asking
that f be non-renormalizable. Recall that f is called renormalizable il there exists a
subinterval J C I and an integer k > 2 such that

c€interior (J), e filNfor0<i<k, fHJIcJ
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As alrcady mentioned, (U1), (U2), (U3) hold, simultaneously, for a large (positive
Lebesgue measure) set S of values of the parameter a. Observe that S is disjoint
from H, since no a € H satisfies (U1). Indeed, if f has an attracting periodic orbit O
then ¢ € B(©) implies that (f")'(f(c)) converges to zero (exponentially fast).

Our goal is to prove

Theorem 5.1. Under assumptions (U1}, (U2), (U3),
(1)} f admits a unique absolutely continvous invariant probobility measure jig; more-
over, pg is ergodic and so it is an SRB-measure for f;
(2) (f,1o) has exponential decoy of correlutions and satisfies the central limil theo-
rem in the space of functions with bounded variation; :

Moreover, (f, ito) is stochastically stable, in a strong sense, under certain random
perturbations. The proof of this result uses a “perturbed” version of the arguments we
shall develop in Sections 5.1 through 5.4 to prove Theorem 5.1, and we do not present
it here. We just give the precise content of this stability statement, and refer the reader
to [BaV96) for the proof and further information.

The class of random perturbations one considers in this setting is necessarily more
restricted than in the situations we treated before. For instance, statements of deter-
mistic stability analog to Corollary 2.15 or Corollary 4.19, are known to be false for
general quadratic maps [HK90}. We consider perturbations within the quadratic family,

IRatr—)ft(a:)=f(:r:)+t=(a+t)—:t:2,

and we also impose certain conditions on the probability distributions (8)g>0- A main
one is that #. be absolutely continuous with respect to Lebesgue measure m, and sup-
ported on some subsinterval J. of [—€,¢]. The two other conditions, of a somewhat
maore technical kind, are

il;% (esup ggi) <oo  and log % concave on Je.
Then we conclude that the random scheme admits a unique stationary measure p., that
describes the asymptotic time averages of almost every random trajectory. Moreover,
as the noise level £ goes to 0 the density du./dm of the stationary measure converges
in L'(m) to the density du./dm of the SRB measure pip.

1t is worth pointing out that the dynamics of these systems is very fragile under
deterministic perturbations: the fact that H is dense in the parameter interval (-1 /4,2)
implies that the maps we are dealing with may be approximated by other quadratic
maps having a periodic attractor and, thus, simple statistical features. This makes the
stochastic stability statement all the more striking in the present setting.

In the sequel we sketch our approach to proving the ergodic properties in the state-
ment of Theorem 5.1. [t is, once more, based on studying the spectrum of convenient
transfer operators. However, this time the “natural”® operator

fo) = 2 e
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is not a right object to look at. To begin with, this is not well defined at ¥ = f(c).
Moreover, the expansion properties of the dynamical system played a crucial role in all
the situations we studied so far. This may lead one to suspect that for the present class
of maps, which combine some amount of expansion with strong contraction (near c),
the operator defined above may have poor spectral properties, and this is indeed so.

Instead, the basic strategy is to try and reduce this setting of nonuniformly hyperbolic
dynamics to that of piecewise uniformly expanding maps treated in Chapter 3. More
precisely, in Section 5.1 we describe a procedure associating to each quadratic map
f : I - I satisfying (U1) and (U2}, an expanding map £+ I -+ I defined on a countable
union [ = Ugso(By % {k}) of disjoint intervals. To make F expanding we have to
consider an adapted riemannian metric on I, of the form

II ) ”(:c.k) = 'LU(](iC, k)l ) l}

where | - | is the usual length {along each interval By) and wg is a convenient nonneg-
ative function. Correspondingly, instead of the usual transfer operator, we consider its
conjugate under maltiplication by the cocycle wo,

_ 1 wolé)
| £(€)| wolL)

(5.3) Lop(Q)= D w(£),

fey=¢

where f'(£) = f'(x) for each £ = (&, k) € 1. This tower extension f is constructed in
such a way that mo f=fowm wherem: [ - I is the canonical projection given by
w(z, k) = z. In other words, given any (z, k) € I thereis! > 0 so that fla, k) = (f(z),1).

Then R )
) wo(f(€
PO

is just the jacobian of f at £, with respect to the new metric. We introduce tlie measure
mg = wpm and then, by change of variables,

(5.4) f (Lot dimo = [ w(p o ) dmo,

whenever the integrals make sense. We take Lo to act on the space BV(J) of functions
with bounded variation on f, whose precise definition will be shortly given. We prove
that Ly is 2 quasi-compact operator, from which we deduce ergodic properties of f
Their analogs for f follow, easily, using 7o f=fom

5.1. Towers, cocycles, transfer operators.

Here we give the precise definitions of the objects introduced in the paragraphs above.
Throughout, we suppose that the constant « in (U2) has been taken small enough so
that €2® < /A.. Then, starting the construction of the tower extension f : F=1 we
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fix 8 € (3a/2,2c). We also fix p > A > 1 such that p > €™ and Ape® < VAs. We use
two more constants 1 < ¢ < gg and 0 < & € &, where op € (1,A) and 0 < 8y € « are
given by Lemma 5.2 below. We denote by C various large positive constants depending
only on @ and A, and use C(:-) for large positive constants depending also on other
parameters involved in our constructions. For simplicity, we write ¢; = F4(c) for each

iz0.

E, T

x y fix) fy) 808 Eo
Figure 5.2: The tower extension fil=i

We define By = [ox — €7, cx + €P¥], for each k > 1, and Bg = I = [g,—q]. Then
we let [ = UpspBx, where Bz = By % {k}. Observe that the critical point ¢ is not
contained in Bg, for any k > 1, since (U2) implies |cx| > e~%* > g8k This simple fact
will be useful in a number of occasions. As we already said, we want f to be such that
f(z, k) = (f(x),!) for some ! > 0 depending on (z,k). The definition of f is given by
the following pair of rules:

(1) whenever possible, f maps (z, k) one level higher in the tower, i.e, I =k+1;
(2) if this is not allowed, that is, if f(z} ¢ Bg4.1, then f sends (z, k) directly to the
ground level: { = 0.
Rule (1) admits an exception when k = 0: a point {z,0) goes up to level 1 only if z is
close to zero, otherwise it remains in level 0. The precise expression is

(f(z),0) if either f(z) & By or else k =0 and |x| 2 §;

flz, k) = { (f{z),k+1) otherwise.

Typically, a point (z,0) moves around in the zeroth level Ey for a while, until it hits
(—8,8) x {0} at some time m > 0. Then it starts climbing the tower

FmHi(z,0) = (f*t(z),7) for0<j<h

Unless f™(z) coincides with the critical point ¢, the integer k is finite and at the
next iterate the orbit falls back to the ground level: fmHhtl(z,0) = (f™*+4+1(z),0).
Observe also that we must have & > H(4), for some integer H(#) > 1 which can be
made arbitrarily large by choosing & small enough.
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Next, we define our cocycle wp. First, we set wg(x,0) = 1 for every = € By. Given
any point (z, k) € Ey, k > 1, there are two possibilities. If there is z € (0, &) such that
F¥(2,0) = (z, k) then we define

wy(z, k) = A¥|(FFY ()]

(it is casy to see that z is unique, when it exists). If there is no such z then we set
simply wo(zx, k) = 0. For each k > 0 we shall denote W, = {z € By, : wo(z,k) > 0}.
Note that every W}, is an interval, whose closure contains ¢x. We also write

W. = U(Wk X {k})'

k20

As mentioned before, we associate to wp the riemannian metric || - ||(z .6y = wo(z, k)| - |
and the Borel measure my = wym.

Remark 5.1. By definition wp and mg are supported on W,, reflecting the fact that
points in I\ W, are transient for f, and so play no role as far as asymptotic behaviour
is concerned. Let us note that certain points in the ground level Ep are also transient:
F(W.} does not intersect (f(8), f(c)] x {0}, and f3(W.) C f(W.) does not intersect
[£2(c}, £4(6)) x {0}. To see this, suppose there exists (z, k) € W, such that

either (i) flx,k) € (F(6), f(@]x {0} or (ii) f*(z,k) € (F(9), f(e)] x {0}.

Then either f(z) € (f(8), F(c)] or F2(z) € [f2(e), F(d)), respectively. In both cases we
must have = € {—4,8): this is immediate in (i), and easy to obtain in (ji}, if one assumes
that & > 0 is small enough so that f2(c) < f2(8) < f*(c). Now, in order that the ith
iterate of (z, k) be in Ey, for i = 1 or ¢ = 2, we must have k + ¢ > H(4). Assume that
0 < § < 1/64 is small enough so that this implies length(Bg) < 2e~8* < 1/64. Then,
since © € By N (—4,4), the interval By, must be contained in {—1/32,1/32). It follows
that |f'(z)] < 1/16 for every y € By, and so

1 1
o=l < e = (@)~ cpa| < e < P

= (£7(z) — cusal S oAU < e A4
(because |f'| < 4 and e < €2* < /A, < 2). This means that Fi(z, k) € Exys for
i = 1,2, contradicting the choice of (z, k).

For any point (y,!) such that fy,1) € W,, we denote

1 wﬂ(ya l)
W) wo(F (3, 1))

(5.5) oy, ) =
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Clearly, g(y,!)} > 0 if and only if (y,1} is in W.. Moreover, as we already pointed out,
in that case 1/g{y,[) is the jacobian of f at (y,1), with respect to the metric || - || (or,
equivalently, with respect to the measure mo)-

Given a measurable function ¢ : [ — R we define

var ¢ = Z var{ip|Ex) sup ¢ = sup sup{@|Bx) [:pdmo = Z[ wg dm
k>0 k20 k>0 B

where m denotes Lebesgue measure on By = Ey. Then we define the BV-norm of ¢
flellBy = var g + sup|¢| + f || dmo,

and take BV{J) to be the (Banach) space of functions ¢ : I - R such that [|¢]|ev < oo.

Finally, we describe the transfer operator Lo associated to f. Givenpe BV(f ) and
(z,k) € W, we let

(y:t) wﬂ(y:i)
(56)  Loplmky= > Taerns= 3 wedwd)
P O L L s A

Observe that the sum involves exactly one term if z € Wy, with &k > 2, and exactly two
terms if z € W1. For k = 0 there may be infinitely many terms: at most one for each
value of [ > 1, and at most two for [ = 0. Then we extend Loy to I\ W, by asking that
it be constant on each connected component of By \ Wi, k > 1. More precisely, we let
ax < by be the endpoints of the interval Wy, then we define

limsupy_m: Lop(y, k) iz <ag

5.7 Lowp(z, k) = i
(5.7 ow(z, ¥) {limsupy_,b; Lopl{y, k) ifz > be.

This seemingly unnatural definition is designed so that var{Lop) and sup |Lap| are left
unchanged: the variation of Loy over By coincides with the variation of Loy over Wy,
and a similar fact is true for the supremum. Of course, the same holds for | Lopdmo,
because mg is supported on W, . In particular, the duality relation (5.4) is not affected
by this convention.

Clearly, £y is a nonnegative operator, in the sense that it maps nonnegative functions
to nonnegative functions. Then, (5.4) also implies that Lo is nonincreasing with respect
to the Ll-norm:

(5.8) f|[,0¢] dmy < [£0|¢|dm0 = f|¢|dmn for every 1.
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5.2 Uniform expansion for the tower map,

We shall see in the next sections that Lo is a bounded, and even quasi-compact,
operator from BV([) to itself. More precisely, 1 is a simple eigenvalue and the rest of
the spectrum is contained in a disk of radius strictly smaller than 1. ‘T'he proof of this
relies on properties of uniform expansion of the map £ :  — I that we obtain in Lemma
5.4 below. First, we state and prove two key lemmas on the expanding behaviour of
certain iterates of the map f.

Lemma 5.2. There are gg > 1, b > 0, and 8 > 0 such that for any 0 < § < §y there
is ¢(8) > 0 such that, given enyz € I and n > 1,

(1) ¥ 2, fz),..., [P YUaz) ¢ (=8,8) then [(f*) (z)| 2 c(8)ag;
(2) (2) 4, in addition, f*(z) € (6,8} then [{f*)(z)| = bo}.

Proof: The arguments in the proof are now standard in one-dimensional dynamics.
First, given §; > 0 there are m > 1 and ¢y > 1 such that

(59) I(fm)’(y)i = alm whenever Ys f(y)l ey fm—l(y) ¢ (_613 61)

Indeed, {Ul) and [Si78] imply that all the periodic points of f are repelling, and then
(5.9) is a consequence of [MS93, Section IIL3]. In the sequel we fix §; > 0 small,
depending only on @ and A, cf. (5.13)-(5.14). By (U1) and [No8&8], there are oz > 1,
dz > 0, K2 > 1 such that, given any 1 €1 < m,

(5.10) |(f')’(y)|z;};a; whenever f(y) € (~62, 82).

We take o9 = min{oy, 02, A} and § = min{é, 82} and, for each 0 < § < &, we define
¢(d) = inf{(|f{z)[/0)™ : = € I\ (=4,8)}. The constant b > 0 will be defined below,
with b < (1/K3). Clearly, for all 0 < | < m,

(5.11) Y @I 2 e@ab iy, f(5),---s F ) € (—4,0).

Given n and z as in the statement, we denote T = Fz),for0<j < n. Ifx; & (—6,,61)
for all 0 < j < n then the lemma follows immediately from (5.9), (5.10), (5.11). Indeed,
writing n = gm + [, with 0 <! < m, we get

[F2 4 @) = [ G @G ()] 2 o(d)at (67)7,

which gives (1). Moreover, if f*(z) € (—§,4) then we may replace c¢{d)a} by K;'a in
this estimate, thus proving (2).

From now on we suppose that the trajectory of = up to time n does intersect (—d;, 81),
and we define 0 < vy < --- < vy, < n as follows. Let vy be the smallest § > 0 with
x; € (—~d1,81). For each ¥, ¢ > 1, define

pi = max{k > 1: |5, 4; — c;| < &P for every 1 < j < k}.
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Then let vy, be the smallest n > r > v; + p; for which = € (~61,0d1). For the time
being we fix 1 < i < s, and write p = p; and v = ;. The previous definition and (U2)
yield [zy45 — ¢;] < e~ B=¥|c;| and so

(1 — e FE N () < f muag)l S L+ e~@=2) | f'(c;)ls
forall1 € j <p. Then
1 r L
(5.12) 6|(f”)’(c1)| < () (o) < CHSFY ()]
with €71 = [[ 5, (1 — e77*/?), recall that we take § — a > /2. Morcover,

e~ Plrtl) < [Ty +p41 — ept1| £ lTwp — cpl(1+ e-p(ﬂ_a)”f'(cp)la

and so, by recurrence,

P
e~ PP < g, 4y~ ao| [T (1 + 7PN (57) (el < Gl (ea)lluf? -
i=1

Combining this with (5.12) and (U1), we conclude that
1 1 _
(5.13) P @ 2 Sl )Pl 2 G0y,

Up to taking &, small enough with respect to o and A, we may suppose the p; (uni-
formly) sufficiently large so that (5.13) implies

G182 GO 2

(Ap)l’i"’l > Kz.\p"'*'l,

Q

for each 1 < i < s, recall that e PA, > e™2®A; > A%p% At this point we write
[(f™Y (=} = H;.:ﬂl |f'(x;)| and partition the time range [0, n) into subintervals J C [0,n)
as follows. Let |J| denote the number of elements of each given J. First, we suppose

vy + ps < n. For J = [0,11) and for each J = (1 + pi, ¥ig1), 1 < i < 5, we have

170 = K3'ed,

jed

as a consequence of (5.9) and (5.10}. The same holds for J = (v, + pg,n) if |za] < 8.
In general, J = (¥ + ps,n) has

[ 7@l 2 e@ab’,

€S
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by (5.9) and (5.11). Moreover,

[F @) > Kool

jed

for cach J = [m, s + pi], 1 €1 < s, recall (6.14). Altogether, this proves both parts
(1) and (2) of the lemma when v, + p, < n, since we take b < (1/K3). Now we treat
the case v; + ps = n. We only have to consider J = [1s,m), as the previous estimates
remain valid for all other subintervals involved. In general, (5.9) and (5.11) give

1117l 2 e@al™

JeJ

Part (1) follows, in the same way as before. In order to prove (2),weletg=n—p,—1.
Then 0 < ¢ < py and so, recall also (U2),

1
fTu,| > 6> |2l 2 Jegar| — |zn ~ cqrt| e—olatl) _ —Blg+1) > ae—&(qﬂ)_

Morcover, (5.12) holds for v = v, and p = g. Hence,
Y @)l 2 FHEY )llen,] > Syt > Lyort
G 4 R o -C

We take b = (CK3)™1, for C > 0 as in the last term. ]

As we already said at the beginning of this section, we take the constant § in the
definition of our tower satisfying 0 < § < §y, and we also fix o € (1, o0

Lemma 5.3. There is C > 0 such thai, given any 2 € (—8,48) end k > 1,
(1) #1f7(2) —¢;| < e P forevery1 < j < k, then

1Y U@
¢S e ¢

(2) if, in addition, |f5+1(2) = crqq| 2 e PG then

UYUEN 2 A and (7Y ()] 2 St

Proof: This follows from the same arguments as {5.12)~(5.14). Indeed, the assunption
together with (U2) imply

(1= N () < IFF DN < (1 + @B F (el
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for every 1 < j < k. Then, multiplying over 1 < 7 < k and taking C as in (5.12), we
get the conclusion of (1):

S el S (Y UGN < QS @)

The first claim in (2) is a direct consequence of (1) and (U1}, and the second one can
be derived as follows. Given z and k as in the statement,

e~BE+) < | P () — g | = ((F5)Y @I (2) — all

for some y in the interval bounded by ¢; and f(z). Then f#(y) is in between FHz)
and ¢j4 for each 0 < j < k and so (1) remains valid with y in the place of f{z}. In

particular, |(f*)(y}| € C|(f*) (e1)] and s0

(5.15) e~PUHD < CI(F¥Y (e 1£(2) — eal < CUMY (el et

This implies . . -
1@ 2 Gl 2 eIy ol

and so, using the conclusion of (1) once again,
1 1 _ 1 _ 1
@1 2 SV EIF ) 2 GHRY (@262 2 Z0 e 2 Gt

{because § < 2o and Ape® < Vi), O

We denote by P the partition of I into monotonicity intervals of o> 1,
characterized in the following way. For every k > 1, let

Up = {("51 k)e By f(ms k) = (f(m):k+ 1)}

and D, D be the connected components of By \ Uy. That is, points in Uy are sent
by f to an upper level of the tower, whereas points in D.,‘cF U Dy, are mapped down to
the ground level Ey. Note that Uy is a neighbourhood of ¢, but D,’f may be empty.
For k =0, we set

Uy =(—6,0]x {0}, U =(0,8)x{0}, Dg= lg,—8] x {0}, DF =I[6,—q] x {0}
Then, we take
PO = (U, Pg, DY 1k > 1} U Uy, U, Dy, Df Y-

Then, for any n > 1, we take P to be -the nth iterate of P, That is, by definition,
P (¢,) = PP (&) if and only if PO{fi(&1)) = PU{(f¥(42)) for each 0 < i < m.
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In what follows we always assume that every 7 € P™ has strictly positive length,
moreover, the intersection of 7 with W, is either empty or an interval with positive
length. Note that in order to have this it suffices that the orbits of

¢, 0), (£5,0), and (exte ) k>1,
{

be two-by-two disjoint injective sequences on I, which can always be obtained by slightly
modifying 4 and 4 if necessary (so as to avoid a countable set of relations involving these
two constants).

We shall also need the iterated versions g™ of g, defined by

My — FEVY e af 1)) = 1 wo(E)
g™ (&) = g(&) g(F(€)) - g(f" (€D RICIG)

for every & = (z, k) such that f#(€) € W, for 1 < i < n. For use in Lemma 5.5, let us
observe that, cf. (5.5),

(5.16) Lip©) = 3 ((g‘"’w) o (F*lm~"x ,-n(,,)) ©

nepin}

for every n > 1 and £ with f‘({) eW,for1 <i<na.

Remark 5.2. It follows from our definitions that if {z, &) belongs in U, N Wy, &k > 1,
and z € (0, 6) is such that f¥(z,0) = (z,%), then

1wz, k) 1 Y@ L

PN wolFlz k) P @)] WY (T~ X

The same remains true for (z,0) € (—8,6) = U U Uy, On the other hand, if (z, k) is
in DN Wy, k > 1, and z is as before,

1wk 1 NEYEE N
FEmGer  F@ T 7yE <7

as a consequence of Lemma 5.3. Observe that k > H(4), where H(4) is the minimum
height from which orbits starting in (~4,8) x {0} can fall down back to Ey, cf. Section
5.1. We suppose that § > 0 is small (and so H(§) is large enough) so that this implies
Cp~* < 1/X. Moreover, Lemma 5.2 gives g™ (z,0) < 1/{c(6)oF) for every point (z, 0)
whose trajectory remains in Ep up to time n > 1. These remarks express the uniformly
expanding character of f.

gl k) =

9l k) =

Lemma 5.4.
(1) Let v C n € P be such that fi(y) C Eo for every 0 < j < n. Then

Go™™  if f*{y) C (—4,8) x {0}

() «
Sgpg . { C(8)e™™ in general
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Moreover, vary g™ < 2sup, g™,
(2) Let y C N W, for somen € P} gnd let 0 < { < min{k,n — 1} be such that
fi(v) € Brotyi for0<i <1 and fi(y) € Bo forl < i< n. Then

apa < { O I €502 0
’ng = L c@®)atp ket in general

Moreover, var, g™ < 2sup, ™.
(3) Let v € nNW, for some 7 € P®) gnd let 1 > 0 be such that fi(y) € Eyy for
0<i<n. Then g™ =A™ on . '

Proof: The first statement in (1) follows immediately from Lemma 5.2 and the obser-
vation that )

Mg k) = ——r
7@ = e
for every (x,k) € v. For the second statement we use the fact that f has nepative
schwarzian derivative:

st =L@ - 55 @ =5 <0

Tndeed, since the class of maps with negative schwarzian derivative is closed under
composition, we have Sf* < 0. Then ()" and {f™Y must have opposite signs at
every local extremum of the first derivative, in other words, every local minimum of
(f™)' is negative, and every local maximum of (f*) is positive. Since the derivative is
nonzero on the interior of each monotonicity interval, we conclude that 1/|(f*)'(z)| has
no local maximum, and so it has at most one local minimum on . As a consequence,
var, g < 2sup, g, as claimed.

For the first claim in (2), let (z,k — ) € v and z € (0,4) with o {z,0) = (z,k —1).
Then, by Lemma 5.3(2) and Lemma 5.2(1),

" I P (€ U €
A 70T I
= WY @Y I
< Ak CpRATE . ()oY,

Moreover, C(6) may be replaced by C if
RN = (=) € (6,0)-

The last statement in (2) follows from applying to 1/|(f***~7)!(z)| the same argument
as we used in the previous case (1) for 1/|(f") (=)}
Finalty, (3) follows immediately from the first observation in Remark 5.2. O
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5.3. Absolutely continuous invariant measures.
The main result in this section is Proposition 5.6, a version of Proposition 3.1 for the
tower map f. From it we deduce that f and f admit absolutely continuous invariant

measures pip and pg, respectively.

We begin by proving a partial statement, Lemma 5.5, which contains most of the
technical difficulty of Proposition 5.6. The proof is fairly long, but the reader should
find it useful to bear in mind that it is closely related to the calculation leading to
Proposition 3.19. Indeed, the key fact which is implicit in the argument is that the
first-return map of f to the ground floor Ey is uniformly expanding, with properties
akin to (a), (b2}, (¢2) of Section 3.4; see Remark 5.2.

Lemma 5.5. There is C > 0 and, for each n > 1, there is C{n) > 0 such that for
every @ € BV(I) and every intervel A C Ey,

ar(C3e) < vax(xaLfe) < Co~(uarp+sup lol) + C(n) [ foldmo

Proof: Fix n > 1 and any interval A C Fy. Whenever our estimates involve some
constant C{4), it is implicitly stated that the dependence on § may be removed (that
is, C(8) may be replaced by C) if A is contained in {—§,4) x {0}. For the sake of
readability, we split the proof into several steps.
Step 1: We find a usefu] expression {5.18) for x4 L3, by decomposing backward
orbits of points in 4 according to the instant when they have fallen down to the
zeroth level Ey.
Let T'(0) be the set of all nonempty intervals -y of the form y = N f~1(A), withy € PO
and 1 C Ey, and let T(0) be defined in the same way, except that 5 C B} for some
& > 1. Then, recalling (5.16) and the fact that A C W,,

(5.17) xalie= >, (@€57'@) o (FIM) xpy+ 2. (0£57"0) o Gl " xsem) -
XEL(0) Fel(0)

Siuce g is zero outside W,, we may just as well replace each ¥ € T(0) by y = 5N W,.
We call G(0) the set of all intervals -y obtained in this way. Now we repeat the sane
procedure for each 4 € L'(0) in the place of A. In this way we find sets of intervals I'(1)
and G(1) as follows: each y € [(1} is given by

=nn f(4)
for some 5 € P@® such that 5 C By and f{n) C Fg, and each v € G(1) has the form

v=nnfHA)nW,
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with 77 € P@ contained in Ey for some k > 1 and f{n) € Eo. Replacing in (5.17), we
get that x4 L3¢ is given by

1
3 (23 0) o (P xpap + 2. D (09T o () Xy -
ZE.I‘_(I) F=0v€6(j)

Repeating this operation n times, we obtain

xaLe="_(6p) o (F 1M Xpngy+
~yerl

n—1
+ E Z (Q(‘T+1)£E_J_1‘P) ° (f1+1|'7)_1Xf:'+1(7) .
=0 1€G(7) ‘

(5.18)

Here T' = [(n) is set of all intervals v = nnt (f*)2(A) with 77 € P and fi(n) C By
for 0 < i < n, and G(j) is the set of all

y=qn (fH) AW,
where 5 € PUH1) is contained in some Ej with £ 2 1, and fi(n) € Ey for every

1 € i < j+1. Then, using properties (v1}, (v2), (vb), stated near the beginning of
Chapter 3, we find

n—-1
var(xale) < 3 var(i,g™e) + Y 3 vareng LT )
(5-19) ~el i=0 1€6(4)

=: 81+ 5.

Step 2: We bound the first term $; on the right hand side of (5.19), see (5.21).
Suprema are bound in terms of variations and Li-porms, through the mean value
theorem. We use the fact that the lengths of the monotonicity intervals involved in
8, are bounded from below and their number is bounded from above, by constants
depending only on n.

Using property {v2) of Chapter 3,

(5.20) S5 < Z (v'e;r g + 2sup g(")) -sup || + SI;p g™ var .
el Y ¥

For each v € I', we also denote 5 the monotonicity interval 5 that containsg y (this is
for notational coherence with the sequel of the calculations). Moreover, we let G(S1) be
the set of all these 4 = n. Since

G(81) ¢ PO = {5 € P such that fi(n) C Eo for all 0 < i < n},
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and P:0) is a finite set of nonempty intervals depending only on n, there is some large
congtant &'(n) > 0 such that
i 1

#G(51) <C{n)  and m® < C(n) for all ¥ € G(51).

Then, by the mean value theorem,

1
supw < supyw < varey + —f lp|dmp < vare + C(n)‘[[cp| dmy .
¥ ¥ 7 ma() J4 T

Of course, we also have var., p < varg w. Replacing this and Lemma 5.4(1) in (5.19},

S X (C@ovarp+CECM) [ loldmo)
SEG(S1) T

< C(8)o™{ Z vz_;.rga)+C(5)C(n)[|<p| dmg.

FEG(Sh)

(5.21)

Step 3: We decompose the last term Sz in (5.19) into three parts, according to the
height of the tower level containing the interval v € G{j}.

For each v € G(j) we define j(v) = 7, and also k(y) = k if v+ C Ep. Observe that k(y)
is at least H (&) since, by consiruction, all these intervals oy are contained in W, . Then

we split

n—1
S2 = Z Z var(x, g9ty )
F=0yegG{j)

S(S v 3+ 5 Jmarura

320 “K(m2N  n—j-1Sk(n)<N  k(1)<n-j-1

where N > n is to be fixed below, as a function of n only.
Step 4: We bound the term s; in Sa, see (5.22). The main point is that use of
Lemma 5.3 introduces in the estimates a factor p~%, which can be made small by
choosing N large.
For each v with k = k(y) = N let ¥ = (f*~"1)"Yy) C Ey_(n_j—1). Since fis
monotone on each level By, k& > 1, we have that 4 is an interval and f'" is monotone on
%, Let 7 the atom of P containing 5. Then

L3 = (g M) o (fr3 )

on vy, and so
i —ful fR—F—1]~y—
X299 TILET e = (g ™) o (F M)
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Then, using (v2), (v5), and applying Lemma 5.4(2) to g™ (withl=n-j-1),

n—1
sy, >, CEOXN I (var g + suplel).
i=0 k(2N T ¥

Since f—’f|Eo is at most 29-to-1, and Ey contains at most two intervals of monotonicity
mapped to Fy by f, the sum above ranges over at most 2711 intervals 7y for each given
value of § = j{v) and k = k(y). Therefore, the previous inequality gives

n-1

0 <Y 3 PHCENTI g0 varg + suplel)
(5.22) et

< C@)2 e p Y (varp + sup o))

{note that p > 1 and o < 2A).
Step 5: We bound the second term sz in Sz, see (5.23). The mean value theorem
is invoked to bound suprema in terms of variations and L!-norms. This uses the
fact that the number of monotonicity intervals involved in s is bounded from above,
and the lengths of their intersections with W, are bounded from below, by constants
depending only on n and N.

Using Lemma 5.4(2) as in Step 4, we find

52y Y. CEACTITHp i var g + supel)
T

J=0  a—j—-1gk(7}<N

where ¥ C Eyy)—(n—j—1) is defined as before. A slight difference with respect to the
previous case is that 4 may not be an interval, if k(y) = n — j — 1. However, this is
not important, since in this exceptional case 4 is just the union of two (symmetric)
subintervals of U; x {0} and Uy x {0}, respectively, and then it suffices to consider
each of these subintervals separately. From this point on the argument is essentially the
same as in Step 3. We let ¥ = ANW, , where 7 is the element of P containing 4, and
we call G(s2) the set of all j constructed in this way. By definition,

Gls2) PN = {pnW, :n€ P and fi(y) C Uien By for all 0 < i < n}.
Since P M) ig g finite set of nonempty intervals contained in W, which depends only
on 7 and N, we may find C{n, N) > 0 large enough so that

1
G(sy) < C(n, N and re— < C(n, N
# ( 2) ( ) mg (’7’) ( )

for all 4 € G(s2). Then, the same calculations as we used to deduce (5.21), give

(5.23) 5 SO0 3 vare)+CE)C(N) [ loldmo.
Y€G(a2)
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Step 6: We bound the last term s3 in Sz, see (5.24). The reasonings are the same as
in Step 5. Combined with the previous estimates, this gives the preliminary bounds

for the variation of x4 L2y in (5.25), (5.26).
Using similar arguments and objects % € G(s3) for those intervals v € G(§) with k(v) <
n—j—1, wefind

(5.24) 83 < Z CAFp ke~ var(ﬁ"' )+C'(6)C(n)f|tp[dm0,
Y€G(sa)

where j = j(), k = k(v), and { = j + k + 1 < n. Note that we used once more the fact
that £o does not increase the L'-norm, cf. (5.8).
Replacing (5.21) - (5.24) in (5.19) we conclude that

var(ﬁ ) < C{)e™™ Z var @ + Z C (8o~ var(LE L)
FEG(SUG(s2) | H€C(ss) T

{5.25)
+C(8) (2" M) o™ (var @ + sup Jg|) + C(6)C(n, N) / o] drmeg

for general A C Fp, and

var(ﬁ ) < Coe™" Z var(p-i- Z 1 o tvar(£3 )
YEG(51)UG(s2) | 4€G(s3) ¥

(5.26)
+6 (@) o™ (varg-+ suplel) + Cu, V) [ Il dma,
it A C (—4,6) x {0}. The factor in the second term of (5.26) is important for the last

part of the argument. Note that the calculations we have just presented yield a factor
CA~*p~* which one may replace by 1 as we did, since & > H(§) » 1.

Step 7: If the sum over 4 € G{s3) in (5.25) is not void, we proceed by recurrence:

we apply the previous estimates to each such % in the place of A. _
A few notational arrangements are necessary at this point. We change the name of
the G(-), of the 4, and of their indices & and j, to Gi, %1, k1, and ji, respectively.
Corresponding objects appearing at the ith step (for each ;..;) will be denoted G;, %;,
ki, and j;, and we also let &; = j; + 1 + %;. By construction, every of these 4; is a
subset of (—4,d) x {0}, and so we may apply (5.26) to it (rather than (5.25)). After one
recurrence step,

var Lye < C(0)o "(2 va.r«p +C Z varga Z C()g~h1—t v1r(£" hi=hy)

72 142

CUO)(L + #G1(s5)) [(2"p-")ahﬂ(var«p +supli) + Cn M) [ 1o dmu] ,
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the sums running over 41 € G1(S1) U Gi{s2), over 41 € Gi(s3), A2 € Ga(S1) U Ga(sa),
and over 4y € Gy(sa), 42 € Ga(s3), respectively. By construction, each 41 € Gi(sa) is
contained in some monotonicity interval 7, € P guch that f‘(m) C Uk <k, By for all
0 < ¢ < I;. Since the correspondence 4, — 1y is one-to-one, and k; < §; £ n, we
conclude that #G(s3) € C(ly, k1) € C(n) for large enough C(l4, k1) and C(n). In fact,
this same argument shows that #G;(s3) < C(n) for all 1 £ j < n. Hence, after at most
7 steps,

n

var Lo < C(8e™™ Z (C Z var t,o)

Ti

(5.27) izl e V=17
+C(6) C(n) ((2"9‘”)a'"(vaw +supll) +Cw M) [ 1o dmn) ,

the second sum being over 1 € Gi{sa),...,%i—1 € Gi-1{s3), ¥ € Gi(S1) U Gi(s2).
Observe that the intervals 4; occurring in (5.27) are all contained in distinct atoms of
the partition P™ and so they are two-by-two disjoint. Therefore, the variations of ¢
over such intervals add up, so that the first term on the right hand side of (5.27) is
bounded by C(8)o~" varp. Now we fix N >» n in such a way that

Cln)-2"p~ N <1,

and then the second term is also bounded by C{d)o~"({var ¢ + sup |¢|). Moreover, once
we have chosen N in this way, depending only on n, we may replace C(n, N} by C(n)
in the last term. Finally, since 4 is also fixed at this point, we may omit the reference
to &, replacing C(§) by C in {5.27). O
Proposition 5.6. Given any & € (1, o) there is C' > 0 such that

(1) var(£lp) < Co"(varp + sup |p]) + C [ || dmo;

(2) sup(Lgp) < Co—(varp +sup |¢|) + C [ lldmo
for any function ¢ € BV(I) and any n > 1.

Proof: Let 1 < & < & < o. First, we fix n = np and decompose

oo

var L% = Z\E‘r It

k=0
For k > ng and (z,k)} € Wy x {k} there exists a unique (y, & — ng) € Ex_y, such that
f™(y, k — np) = (z, k). Then, by Lemma 5.4(3),

2 o(z, k) = g7 (1, k — no)e(y, k — o) = A7 p(y, k — no),

and so

varﬁo = V)‘:':.}‘ }ﬁ""(p</\ T yar .
Wi

k~ng

]
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If & < np then the same argument gives
var Lg%p < 2235 var £507*p
B Eq

(the factor 2 accounts for the fact that f is 2-to-1 on Ep). Combining with Lemma 5.5,
for A= Ey and n =ng — k < no,

var L3%p < 2A7*[Co™ " var ¢ + sup ]} + C(no) f liof drmg] -
k

Recall that we are taking & < ¢ and that we have chosen o < A. Thus, adding the
previous estimates over all & > 0,

var £30p < A7 var @ + ngCo ™" (var g + sup |i|) -+ n0C(no) f o] drmo
(5.28) < C57™ (var p + sup |¢|) + C(no) f |eldmg,

as long as the constants €' and C(ng) in the last term be fixed large enough with respect
to the ones in the second term.

In order to prove part (1) of the proposition one must now remove the dependence
on ng of the factor in the last term in (5.28). We start by proving a shmilar inequality
for the supremum:

(5.29) sup | C20 | < G5~ (var @+ sup i) + C(no) f lpldmo.

In doing this it is convenient to consider separately the suprema over the the upper and
over the lower part of the tower. On the one hand, we note that

sup  |£5%p| = sup {
>

sup |£5°0[) < sup (A™™ sup [pl) < A7 sup ]y,
Uk s ng Ex k>»np Wi x{k} k>ng

k—ng

as a direct consequence of Lemma 5.4(3) applied ny times, Since ¢ < A, this implies
(5.29) when the supremum of [£3°¢] is attained over the union of the By with & > ng.
From now on we suppose otherwise, that is, we suppose that sup |£3°| is attained on
some level By with k € ng. Using the mean value theorem,

tip

1
sup |[£8%] = sup |£5%p] < var £3%p <+ —f L dmyg.
p|L5%] Efl o'l £ 2r~o P mo(Er) Ekl 0" | dmo
Clearly, mo{E;) > 0 for every ! > 0: it suffices to note that each W contains a neighbour-

hood of ¢;. As a consequence, Sup;¢n, 1/mg{E}) is less than some constant C(ng) > 0
depending enly on ng. Combining this with (5.8), we obtain

sup 52| < var L3 + Clna) [ lpldma,
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so that now (5.29) follows from (5.28).

At this point we choose an integer g large enough so that 2057 < 572 < 1/2, where
C is the constant multiplying &~"°(var¢ + sup) in (5.28), (5.29). Then, given any
n > 1, we write n = pg +r with 0 < r < g. Using the inequalities above p times with
ny = q, and once more with ng =r,

g9 var L§ % + sup [£5%p]) + C( q)f|t,o| dma

N}Il—‘

var(£ge) <

IA

&P (var Lhp + sup [Lhp|) + Cl@){(1+271 + -+ 27 ptL f|¢p|dmg

Q o=

IA

5 (var -+ suplpl) + (20(@) + C(27) [ Il dmo

Finally, as r < ¢ and g has already been fixed, we may bound 2C(g) + C(r)2779 by
some constant C independent of n. O

For constructing absolutely continuous invariant probability measures for the maps
f and f we also need

Lemma 5.7. mg = wpm s a finile measure on 1.

Proof: Of course, mo(Fq) = m{Fo) = m{I) is finite. Moreover, for each & > 1,
,\k
mg(E, =/ w w,kdma::[ e dm{x),
o) = J,, oo R dm@) = [ gy )

where z € (0, §} is uniquely defined by *(2,0) = (z, k). We change variables z = f*(z),
and then we get

mo(Bx) = [ A*am(z) = ¥ m(¥i),
Yi
where ¥; = {z € (0,8) : F¥(z) € W,}. Next, we abserve that
2e™P% > m(By) 2 m(We) 2 -—l(fk W (e m(f(%) 2 A" tm(Y),

where the third inequality is a consequence of (5.16} and the mean value theorem.
Replacing above, and recalling that we have chosen /A, > Ap and g > 0,

(5.30) mo(Br) € V2CANNTF/2e=PRIZ < \JoCA p~*

for every k > 1. Since p > 1, the claim follows immediately. O
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Proposition 5.8.
(1) f has some invariant probability measure tiy that is absolutely continuous with
respect to mo;
(2) f has a unique invariant probability measure pp absolutely continwous with re-
spect to Lebesque measure m on I, and pp s ergodic.

Proof: Part (1} is quite similar to Corollary 3.4. Recall from Lemma 5.7 that mo(f)
is finite. Proposition 5.6 implies that the sequence ¢, = n~ ;'_01 £3(1/mo(D)) is
uniformly bounded and has uniformly bounded variation, By Helly’s theorem (Lemma
3.3) there exists a subsequence @n, converging in L' (mgp} to some function o in BV(J).
The operator £y being continuous with respect to the norm of L'(myg), recall (5.8), it
follows that ¢g is a fixed point of £o. Then, using (5.4}, the absolutely contimious
measure flp = oo 8 f—invariant, and

n~1
ftpndmo-w- —ZfCJ l/mn(f dmo——Zf(I/mn I))dmg=1

for every n > 1. Therefore, [ podmp =1and so fipisa probability measure.
To prove (2), we take pg = m.flo, where 7 : J — I continues to denote the projection
w(x, k) = x. In other words, for cach Borel subset A of I,

po(A) = fo(n™(A)) = Y fo{(A N Be) x {k}).
k=0 .

Then py is a probability, and the relation = o f = f o ensures that pp is f-invariant:

sl fH(4)) = fuo(r ™ (F(A)) = fo(f (™M (A))) = fro(m ™! (4)) = po(A).

Moreover, tp is easily seen to be absolutely continuous with respect to Lebesgue mea-
sure. In fact, if A has zero Lebesgue measure then the same is true for every AN By,
for every & > 0. This implies mo({A N Bx) x {k}) = 0 for all k£ > 0, and so p9(4) = 0.
A main ingredient to prove that pg is unique and ergodic is the result of [BL89)
asserting that any unimodal map with negative schwarzian derivative, nondegenerate
eritical points, and no periodic attractors is ergodic with respect to Lebesgue measure: if
A C I satisfies f~1(A) = A then either m(A) = 0 or m(A®) = 0. Then such an A must
have po{A) = 0 or tp(A%) = 0, which proves ergodicity of po. Now, we claim that the
neasure g is equivalent to Lebesgue measure m on the interval I, = [f2(¢), f(¢)]. This
can be seen as follows. Since wg has bounded variation, and [ g dmg = 1, there is some
interval y C W. such that inf. o > 0. Then the density of jip with respect to the usual
length is bounded away from zero on «y. As a consequence, inf, ) (duo/dm) > 0. On
the other hand, the assumption of topological mixing (U3) ensures that fN(w(v}) =1,
for some N > 1. It follows that

. {dpa . dyo 1
53 fl—1| > —_— ] ————— 0
(5:31) in (dm) 2 Il (dm s Y]
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which implies our claim. Finally, let » be any f-invariant probability measure which
is absolutely continuous with respect to Lebesgue measure. It is easy to see that the
support of ¥ must be contained in I,, and so v is absolutely continuous with respect to
po. Since pg is ergodic, it follows that ¥ = pg (because ergodic measures are minimal
for the relation of absolute continuity), proving uniqueness. &

Closing this section, we prove that the support of g contains

= WA\ ([F2(e), F(8)) U (f8), F(9)]) x {0}

Then supp p must coincide with Ws: ¢ = LJpg implies that gy is identically zero on
I\ f7(1), for every n > 1, and we have seen in Remark 5.1 that N,»1 f*([) is contained
in WJ.

Lemma 5.9.
(1) inf (@ol[F2(5), f(8)] x {0}) > 0
(2) inf (wo|Wi) > 0 for every k > 1.

Proof: Let v; € W, be some-open interval such that inf., @o > 0. By the topological
mixing assumption (U3), there exists some n; > 0 such that

a(fr1(n)) = f (nim)) = L

In particular, ﬂ(f”l('n)) contains the fixed point p = (=1 + +/1+4a)/2 > 0 of f.
Moreover, up to slightly modifying J if necessary, we may suppose that no endpoint
(er £eP*) x {k} of a level Ey, k > 1, projects down to p. Then there exists some open
interval 2 C f™1{7y1) such that =(4;) contains p. Clearly, =( f7{~2)) must contain p for
every n > 1. Now we suppose that p 3 ¢ for every & > 1 (if this happens to be false, we
simply replace p by any other periodic orbit of f whose orbit does not intersect (—4, 3},
and the argument proceeds along the same lines). Then, there exists some finite time
nz > 0 at which the point £ € 2 satisfying m(£) = p falls down to Ep: f™(€) = (p,0).
Up to another arbitrarily small modification of 5, we may suppose that the orbit of
¢ does not pass through any of the boundary points of the monotonicity intervals in
P, Then f72(£) contains some open neighbourhood 73 of (p,0) in Eg. Let ngz > 0
be minimum such that f"¢(w(7ys)) intersects {—6,8). Then f™ (ya) = f**(n(ys)) x {0}
contains [d, p] x {0}. Let us denote

o1 = f([8,0] x {0}) = [p, f(8)] x {0} and o1 = f2({5, 5] % {0}) = [F*(é), p] x {0}.
Then o Uog = [f2{8), ()] x {0}. We use the following property

mftpo>0=> inf o > 0,
ftn
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whiﬁch is a direct consequence of the fact that g is a fixed poiat for the transfer operator
of f. Since o; C f™ (1), withn =ny +ng + na, we get that inf,, o > 0 for i =1,2.
Part (1) of the lemma follows immediately.

Moreover, given (y,k) € Wy, k > 1, and z & (0, §) such that f*{z) =y,

(5.32) w0y, k) = (Chpo)(y, 1) = 2420 R0 5 2 inp (y11265), 7)< (0})-

This proves part (2). 0O

Remark 5.3. This last relation also yields another useful conclusion:

20(4 ) < = sup (ollF8), £(8)] % {0)) < o sup 0,

and so

o o
(5.33) Z sup(ipg| Bx) < Z 227F sup gy < o0,
k=0 k=0

5.4. Quasi-compacity and decay of correlations.

In this section we prove that the measures fiy and g we have just constructed are
exact, and so also mixing, for the corresponding dynamical systems fand f (Proposition
5.13). As a consequence, the transfer operator £g is quasi-compact and both systems

(f,io} and (f, o) have exponential decay of correlations in corresponding spaces of
functions with bounded variation. Proposition 5.13 also provides another proof of the
ergodicity of gy (besides implying that fig is also ergodic). For the proof we need a few
_preparatory lemmas. .

Lemma 5.10. Givene > 0 there exists N > 0, and for each n > 1 there exvisis a subset
Q(n, NY of P@+N) such that

(1) f™n) & PN and f™(n) C Uglo Br Jor every n € Q(n, N);
(2) the fp-measure of the union of the intervals n ¢ Q(n, N) is at most ¢.

Proof: Let us denote 8, k > 0, the set of boundary points of the elements of the
partition P{(1) contained in Ey. That is,

8o = {q,—4,0,6,—q} = D5 VAU UAUF LADF

and, for each k& > 1, )

& = BD; uati,u 3D:’.

Observe that each &, k£ > 1, contains at most 4 points. For n > 1, N > 1, and
71 € PV let (k(:));, be the sequence given by

fin) C By, for each i > 0.
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Let + > 0 be fixed in the following way: for what concerns the present lemma 7 is
arbitrary, but for the proof of Lemma 5.11 it is convenient to choose T = log(Ap)/log8.
Then define Q(n, N) to be the subset of intervals 7 € PW+nY guch that

NkEEN+n-—drfor0<i<n
(ii) FH(9m) is disjoint from Oipy forevery 0 Sé < m;

Condition (i) is an analog of (3.7): it implies that f"(n) belongs in P(V). The case
i = n in condition (i) means that f*(5) € Ey for some k < N. Thus, property (1) in
the statement is satisfied by every element n of Q(n, N). Now we only have to show
that the total measure of those intervals n for which either of (i} or (ii) fails can be
made arbitrarily small by increasing N.

Let 0 < i < n be fixed. Then (i) fails for a given 5 € PN+ if and only if

i (U &)

k>N+(n—i)r

We have shown in Lemma 5.7 that the mg-measure of the tower levels Ey decreases
exponentially fast with k, recall (5.30). Then the same is true for the jip-measure, since
fio = wo mp and g is a bounded function. So

.&0( U Ek) S Klp_N_(n_i)T,
k> N+(n—i)r

for some K, > 0. Since jig is f—invariant., it follows that the fig-measure of the union of
all the 5 € PV such that (i) fails is also bounded by KqpN—-n—i)r,

Keeping 0 < i < n fixed, let us also estimate the total measure of the elements of
PN+n) that satisfy (i) but not (ii). Let ¢ = ¢ be the element of P¥+"—%) containing
Fi(x). Since (ii) breaks down, some boundary point of ¢ must be in d,(;). On the other
hand, in view of (i), there are at most 8 + 6{N + (n — é)7) such intervals (: 8 inside Eg
and not more than 6 inside each Ey, 1 < k < N + (n — é)7. Moreover, the mg-measure
of each one of them is bounded by A~¥—?=%, because the jacobian of fN*+("~%) with
respect to myg is everywhere larger than AN+®—% cf, Remark 5.2. Using once more the
fact that ¢q is bounded, we conclude that the jip-measure of the union of these intervals
¢ € PN+ §5 at most

(8 -+ 6(N + (n— )r))) AN~ < 14KG(N + 5 — AN -(>—0
for some K3 > 0. Then, because jij is f—invariant., the same bound applies to the jip

measure of the union of all the intervals n € PN+ for which (i) holds but (ii) fails.
We conclude that the total measure of the monotonicity intervals 5 of FN+n for which
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either (i} or (ii) fails for some 0 < i < n is bounded by

" .
Z (I{Ip_N_(n—i)T + 14K2(N +n - i)A"N_("—")) <
i=0

<o V(S Kap ) + ATNE(D T 14K (N 4 AN/
3=0 ji=0
< Kap™V + KaA~N2,

for some K3 > 0. This can be made smaller than £ by choosing N sufficiently large,
and so the proof is complete. [

Lemma 5.11. Given N > 1 and g5 > 0 there exists &1 > 0 such that for any n > 1,
any interval n € Q(n, N), and any Borel subset £ C 5

M) e = mFrE) <es.

m(n) ~
Proof: Most of the proof is based on the same ideas as Lemmas 5.2 and 5.3. The main
new ingredient is to use condition (i) k(i) < N + (n — i)7 in the definition of Q(n, N),
cf. proof of Lemma 5.10, taking 7 sufficiently small, e.g., 7 = log(Ap)/ log 8.

Suppose first that 5 C Ep and f*(5) C Ep. In this case we prove that f* has
uniformly bounded distortion on 7 (depending on N, but not on n nor on #}. Let s
consider the sequence of iterates 0 < vy < 11 +p1 < v < -+ - < ¥y < V5 +p5 < 0 defined
by

(a) f'j(n) CEyfor0<j<m,forvy+p<j<rvpandl <i<s—1,and for

Vst ps<js<m

M) M CBy,_jfory; <j<vy+pand1<i<s;

Let «y = n(n) C I and z,y € . First we consider 0 < j < »1. Using fi(y)N(~6,8) = @,
and Lemma 5.2 together with the mean value theorem,

p—1 =1
> [ tog (S ) - log £ (P < 3 3P0 <
i=0 3=0
vy —1
(5.34) < Z const o7 1|71 ()] £ const | £ (7).
i=0

For the same reasons,

it1—1

(5.35) > {log|f (F )] ~log | (F ()] < const|f*+ (v)]

F=vitpitl
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forevery 1 <i<s-—1, and

n—1

(5.36) > |loglf (@)l = loglf (FF @) < const |f*(7)].

j=vstpatl

Now let j = v, and denote &; = d(f%(¥),c). Then

g1 (a))| - gl (P ()] < const Lo
Next we consider v; < § < »; + p;- Lemma 5.3(1) implies
lf7 4 ()] | D5l e~Ppi
Az < const ——— | Pil < const ——-m < const .
As a consequence,
vi+1 g
[f ()] € const Ay, which implies M < (:01131’.-'—2‘.——(?-2-I .
A? A;
Using Lemma 5.3(1) again
1P L4 ()] Fadd]
—,6(3 ) < const Az < const—A—

H i

On the other hand, by definition the of By, Fx, and assumption (U2), fi{7) does not
interscet (—ye~*U=), ye~2li=*)), where v =1 — e*~#. It follows that

vipi vitpi

3 Jloglf(Fa)] - logl (PN < Y, consterU—)| ()|
. j=vitl
(5.37)
j=ri+l i ;

Putting (5.34), (5.35), (5.36). (5.37) together, and noting that A; < 1, we find

n—1 J vi
(639 3 |loglf( )|~ log (PNl < const Y- LT 4 const| i)
i=0 i=1 t

Of course, |f*(v)| € const. Lemmas 2 and 5.3(2) imply

|74 ()| < const (Ap)"~"|f"(y)| < const (Ap)"*™"
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for each 1 < < s, and (5.15) gives

A} > conste PFHD| (7Y (c;}|~! > conste P4,
Now, condition (i) in the definition of Q(n, N} implies

pi=kitp) SN+n-vi—p)r SN+ (n—w)r
and so, recall that 7 = log(Ap)/log8 and ef < /A, < 2

S-S ety < S a0y

kS
< 4N 22(“"‘")" < const4".

i1
Replacing in (5.38), we conclude that f™ has bounded distortion on

n—1

(5.39) > Jlog £ (f ()] - log | F'(F1 ()| £ const 4™,

i=0

In equivalent terms, f" has bounded distortion on 7, as we had claimed

. In particular,

in this case we may take &1 = {ea/m(I)) exp(—K1), where K1 > 0 denotes the right

hand term in (5.39).
Now the remaining cases can be treated easily. If 5 is not contained

in Eg then we

define pg + 1 > 1 to be the first iterate for which fPo+! C E,. Then we modify the first

condition in (a) to f7(5) C Ey for py+ 1 < § < v;. The sum

vy —1

S |log £ (£ (N - log | £ (F ()|

i=po+1

is estimated in just the same way as (5.34). For the sum over 0 < j
simpler version of (5.37): since f7(n) C Eyoy44,

< pp we use a

Po Po
> Nog |7(f7 (@) - log | F'(fI (1)) £ 3 const e+ (Oe=Al+4(0)
j=0 F=0
oo
(5.40) < E const e®~* < const.,
k=1

Thus, this last sum just adds a constant term to (5.38), and so does
conclusion in (5.39): f* has bounded distortion on 7 also in this case.

not affect the
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Finally, suppose that F™(n) is not contained in Ey. Then we let ¥ = v, be the last
iterate for which f¥(n) C Eg, and we do not define p,. The previous case shows that
F* has bounded distortion on 7, ¢f. (5.39).

v—1

2 loglf (F (@) ~ log | (F (W))| < Ki.

=0

In general, we can not expect f to have bounded distortion on f*(5): for instance, this
last interval may contain the critical point c¢. But it is easy to see that, given g3 > 0
there is e4 > 0 such that for every { C f¥(n)

(5.41) o L, L mi)

m(Fem) = m(Frim) =

Finally, /=¥~ has bounded distortion on f""’l(n): 28 in (5.40), we find

n—1

Y- ol (£ @) - log|f'(F ()] < Kz,

F=uv+1

for some K, > 0 independent of v, n, and . Now the conclusion of the lemma can be
deduced as follows. Given ez > 0, take €4 = (e2/m(I)) exp(—K3). Next, take €3 > 0 as
in (5.41). Finally, let £y = g3 exp(—K3). Then,

me) | mE) ., | mie) L miE) e

m) = T ) ST mfem) S mfm) T md)

in particular, m{(f*(£)) < ;. O

Let B be the Borel o-algebra of I and B be the Borel o-algebra of f. By definition,
the invariant measure pg is exact for f if

BeB,= ﬁf‘"(B) = we(B)=0 or up(I\B)=0.

n=0

Analogously, we say that fig is exact for f if

BeBo=(1F"B = B =0 o po(f\B)=0.

p}:

n=0

i

We continue to denote % : f — I the canonical projection.
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Lemma 5.12.
(1) If A C I belongs in B, then n=*(A) C I belongs in Boo.

(2) Forany Ac I in B., thereare A_ C Ay C I so that m~1(A_) C AC n™ (Ay)
and A \ A_ is a countable set.

Proof: The first part is easy: if A = f~"{An) for some Borel subset A, C I, then

zer A err)cdAe w(f“(m)) = f*(r(z)) € An
& frz) e n M An) © z € F M (AL)),

that is, 7~3(4) = f(x~1(An)). _
To prove part (2), let Ay = x{A) and

Ao =4\ F e 5 2 0D,
n=0

It is clear that A C w—'(A,), so let us prove that 7~2(A.) C A. Given any z € A_
there exists some £ € A such that x(€) = z. Then we only have to show that any other
ne I such w(n) = z also belongs in A. Now, the elements of Em are characterized by
the property

[Cl € Aand f*(¢1) = F™(¢2) for some n > 1] = (¢ A

Therefore, we are left to show that for any ¢ and 7 as above there is n > 1 such that
(&) = f*(n). To this end, since n(f"(£)) = w(f*(n)) for every n > 1, it suffices to
show that there exists n > 1 such that f*(£) and f*(n) belong both in Ep.

To prove this we introduce the following notion. Given = € (—4,4), we define the
falling time p(z) of = to be the smallest integer 7 > 1 such that fi+1(x,0) € Ey. The
same kind of argument as in (5.15) gives, recall also (U1),

(42) P 3 |7 _ gl > ZPOY (el - S 2 P,
C Ca;
Fix y=1—¢*"# > 0. Up to taking § small, we may suppose that p{z) > H{d) is large
enough so that the previous relation implies
(5.43) Al < o2 (in particular = # 0 = p(z) < oo).

Let us write £ = (2,k) and 5 = (z,1). The definition of A_ ensures that the f-orbit
of z € A_ is disjoint from the critical orbit, and so p(f™(2)} is finite for every n > 1.
Suppose there is no n > 1 such that both f(£) and f*(£) are in Eg. Then each of their
orbits must start climbing the tower again before the other one falls down to Ey. That is,
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there must be an infinite sequence of times 0 < ¥y < 1 < --- such that f*i(z) € (—4,4)

(one of the orbits moves from Eg to B1)} and #4a < v + p(f*4(2)) (while the other is

still climbing up) for all ¢ > 1. To check that this leads to a contradiction, we write
= p(f*i(z)) and note that

Vil — Vi €20 = () = Gl ey | S €717
= | (2)] 2 yemein ) > qemop

- (in the last implication we use (U2) ) Combining this with (5.43) and ** < VA,
,YZ > ARt | frid (z)lz > 72A2i+1e—2am > ,Y2Aga+1~(vi/2),

and 50 pi41 < pi/2 for every i > 1. Since the p; are positive integers, the sequence p;
can not be infinite. This gives us the contradiction we were looking for. O

Proposition 5.13 {exactness). The measure tip s ezact for f and po is exact for f.

Proof: First we prove that g Is exact. Let A € Boc., that is, for every j > 1 there
exists a Borel set A; such that A= f-3(A;). We want to show that if tio(A) > 0 then
a7\ A) = 0. Fix £ > 0 once and for all, small enough so that po(A) > 3¢, Let @ be an
arbitrary constant in (0,1). By Lebesgue differentiation theorem and the fact that fg
is absolutely continuous with respect to Lebesgue measure m on I, there exist Bg C A
and 7 > 0 such that g Ba) > 2 and

m(J N A)
Tmy 2

for every closed interval J with length less than r containing some point § € By, Let
N = N{g) be as in Lemma 5.10, and fix r > 1 large enough so that all the elements of
P+ have length less than r. Since pD(Bg) > 2, some element ng of Q(n, N) must
intersect By, recall Lemma 5.10(2). Then

m(ng \ A)
m(w) S

Let €2 > 0 be any small number, and &; > 0 be as given by Lemma 5.11. We choose
# < g1, so that the previous relation implies

m(f(me) \ An) = m(f(ms \ A)) < &3

(given £ € g then f™(€) is in A, if and only if € is in A = f-"(A,)). By the construction
of O(n, N) in Lemma 5.10(1), (s = f(7s) is an element of the partition P(*} contained
in some Ievel E; of the tower with ! < N. Observe that there are only finitely many such
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intervals ¢g. Hence, there is ¢ > 1 depending only on IV (and so completely determined
by € > 0} such that

(5.44) 7(£9(4e)) = f(n(¢e)) = 1.

Let ¢;, 1 < i < &, be the (nonempty) intersections of (s with elements of the partition
P Since g C U<y By, the number x of such intersections is finite and depends only
on IV (since ¢ is also determined by N). It is easy to see that given any €3 > 0 there
exists g9 > 0 such that

m(B)<ex = mfYB)) e
for every subset B of the I: just take ez = e3/47 and use |(f9)’| < 49. Then, from
m(G \ fin) <m(Ga\ An) <&

we find N A i .
M1\ Angqg) = m(FUG\ 45)) S €3,
As a consequence,
m( U a(F(G)\ An+q)) <hey < eyq
Cohi=1
where €4 > 0 can be made arbitrarily small by reducing e3 (which corresponds to
recducing &) without changing « (that is, keeping £ and N fixed). Recall also that pp is
absolutely continuous with respect to Lebesgue measure m on I. It follows that, given
any ¢5 > 0, one has

(5.45) #D(U 2(FG\ Anse)) < o0
i=1

if @ (and so also £4) are taken small enough.
At this point we are close to our goal, which is to prove that I\ A has zero measure.

Observe that L 3 o
fo(I\ A) = o (f™+9(I)\ Antq),
simply because /iy is f-invariant and A = f-("+0(A, | ). We claim that
©48)  w(FID\ Ang) € (Un (o \ Ansa) ) U (U £y 252 0)).
i=1 10

This last set is only countable, and so the combination of (5.45) and (5.46) implies that

po(I\ A) = po(frr9(I)\ Anyq) <es.
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Since eg is arbitrary, this gives that fig(f\ A) = 0 as we wanted to show. Thus, all that
remains to be done to conclude that fiy is exact is to prove the claim (5.46).

For this, let & be any point in frr9(I)\ Anyq, and take 13 € I such that fA+9(n) =
£. By (5.44) there exists 1 < i < wand &z € Fo9(¢) such that m(£:1) = m(6z). More-
over, (i C f"19(I), by construction, and so we may take 7, € I such that frte(r;) = &2.
We need to show that either

(5.47) mé) =7(€2) € | F{es 15 2 0}).

>0

or else £2 ¢ fiqu. Suppose (5.47) does not hold. Then, as in Lemma 5.12, there exists
j = 0 such that . _ B N N )
frrati(ny = fitg) = F(ée) = £ (n)

As 1y ¢ A, because £ ¢ ﬁn.;.q, it follows that = ¢ A, and so

&2 € PG\ Ansg.

This establishes the claim (5.46). We have shown that fig is an exact measure for f.

The statement that ug is exact is an immediate consequence: given any A € By, the
preimage 7 (A4) belongs in By, by Lemma 5.12(1), and then po(4) = fo(m—1(4)) is
either 0or1l. [

Proposition 5.14 (quasi-compacity). There ezists T <1 such that the spectrum of
the operator Ly aciing on BV (i) may be written spec(Lo) = {1}UZy, where 1 is a simple
eigenvalue and Ty is conlained in the disk of radius 7. The corresponding invariant
splitting is BV(I) = Rypy @ Xo, where Xo={p € BW{I): [ ¢dmq = 0}. In particular,
the speciral projection my asseciaied to the eigenvalue 1 is given by m1{p) = o [ wdmg.

Proof: It follows from Proposition 5.6 that
IC3olloy < C5~"(var p +sup|p]) +C f lol dma < Clgllby

for every ¢ € BV(I), where C > 0 and & € (1, o) do not depend on ¢ nor on 7. Then
I|£3]lpv € C for every n > 1, and so the spectral radius of Lo is at most 1. As we
already constructed a fixed point g for Lo, the spectral radius is exactly 1. Now the
proof has two main steps. First we show that the essential spectral radius of Ly is
bounded by 1/& < 1. This implies that the spectrum is the union of a finite set of
eigenvalues of finite multiplicity contained in the unit circle, with a compact subset of
a disc of radius 7o < 1: 7o is either the essential spectral radius of Lo or the norm of
the second largest eigenvalue. Then we deduce from Proposition 5.13 that 1 is the only
eigenvalue in the unit circle, and that it has multiplicity 1.

The basic idea to bound the spectral radius of £y is to show that the iterates L£§
are well approximated by certain operators with finite-dimensional range. We begin by
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noting that, as a consequence of Remark 5.2 and Lemma 5.4, there exists C' > 0 such

that
supg™ < Co™  -and varg™ < Qo™ foralln > 1.

Given any n > 1, fix N > n such that my(UgsnEx) < ", and then define
an: BV(D) = BV(I) and a,n:BV(I) = BV()

by choosing an arbitrary point x, in each monotenicity interval 7 € P and then
setting

oy (p) = Z ‘P(wn) Xn and an,N(’p) = Qi (‘P ' X(UkSHE;‘))-
nPin}

Observe that the range of oyn v has finite dimension:
(]ima,,,N(BV(f)) < #{n e P™ ;5 C Ey for some k < N} < co.

We claim that there is Cp > 0 such that
(5.48) 1£8 — Loan,nllBy < Coz ™™
for every n > 1. Since each LJoy, v has finite-dimensional range, it follows that the
cssential spectral radius of Lo is not bigger than 1/7, as we claimed.

To prove claim (5.48) we use the relation
(5.49) (€8 — Lien,w)ellBy < IL5 (0 — wn)llBy + (L5 — Loan)enllBy ,
where 9N = ¢+ X(UycnEe)- To bound ||£8(w — pn)|lBv we apply Proposition 5.6 to the

function @ — 9N = @ X(uys wEy)- Since var(p—pn) < varg and sup [ — o] < sup |y,
we find

var L3 — on) < Co(var o+ suplpl) + C [ I — gl dmo
sup|£3p — pw)| < Co~(varp +suplol) + € [ lo = on] drmo.
Mareover, in view of our choice of N,
fl‘P — pn]dmg < mog(Ugs v Ei) sup || <7 " sup |g].

It follows that

(5.50) 1€ (@ — war)llBv S 405" (var + sup lel) < 4Ca 7" |lplly -
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Next, we estimate ||(L3 — Ljan)en||y. Given a monotonicity interval 5 of f* and
given y € f(n), we denote y, = (f*[n) (). Then, for every ¢ € BV(),

sup |(£8 — L3an)p| <sup > g™ (o)) — Pzl
Y yefr(n)
< -n < -n .
< ;C’a vgrd) < Co " vary

Let ¥y = ¥ — P(xy). Note that sup, jthy| < vary ¢ = var, ¥y, Then, recall (5.16),

var(£3 — Cen)d = var 3 (g‘") b x,,) o ()
5
<y (vgrg(”) sup |thy| + sup g™ var g, + 2 sup g™ sup lql)
7 n 7 T

< Z (4Co~" var ¥) <4Co "vary,
n

Finally,
f (L8 ~ £oan)b] dmo < molf) sup [(£] ~ Locn)p] < mo(f) Cavar y.

Summarizing,
1(£8 — Lyan)dlley < Ko™ vary < K& "|l¢|lBv,

where K = C(5 + mo(f)). We use this relation for ¢ = g. Observing that lenilev <
llellav » we get

(5.51) (£h — Lian)enlisy < Ko lenliy < Ko™ lplav .
Combining in (5.49), (5.50), (5.51), we obtain (5.48) with Co = 4C + K
(£5 - Loann)eley < (4C + K)o "l¢llay -
Now we proceed to the second step of the proof. Let A; € S? be an eigenvalue of Lo
and ; € BV (I) be a corresponding eigenfunction: Lo¢1 = Miy1. Then L) = pLge

and this implies that ¢; = 0 at every point in the complement of f"(I }, for each n > 1.
Thus, by Remark 5.1, ¢; is identically zero in the complement of

=W\ (0, F£() U (F(9), £(e)]) x {0}
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On the other hand, we showed in Lemma 5.9 that the fixed point g of Ly is strictly
positive on W;. Then we may write ¢y = ¢, for some function ¢. Observe that ¢
belongs in L!{jio):

f 16| dio = ] le1| dmo < [lalay < co.

On the other hand, Proposition 5.13 implies that the measure jig is mixing for the map
f. Then, in particular,

[weinsdn— [vaga [ sdpo,
for every bounded function . Now, the left hand side may be written

f W o f)ddjio = [ (%0 fVYpr dmo = [ W(LRer) dmg = [ $(¥Fr) dmo,

and the right hand side

[ i [ bdia= [ v(en [ dho)ima= [ wloo [ o1 dmo)dma.

Thence, AT¢p; converges to g [ 3 dmg weakly in L'{mg). Clearly, this implies that
A1 = 1 and @1 = g [ P1 dme. This proves that 1 is the only eigenvalue in the unit
circle, and that its eigenspace ker(£Lg — id) has dimension 1.

In fact, one can say more: A; =1 has algebraic multiplicity 1, meaning that

dimker ((Lo —id)*) =1 for every n > 1.

Otherwise, there would exist a nonzero function ) € BV(f ) such that Lovhg = 10 + @p-
Then, by recurrence,
Loa=nPo+ oy foreveryn 21,

which would contradict the conclusion obtained previously that the norms ||£3|| are
uniformly bounded.

Thus far we have shown that spec{Lq) = {1} U Iy, where Ly iz contained in a disk
of radius 7, for some = < 1, and 1 is a simple eigenvalue. Finally, the splitting

BV(]) = Rpo ® Xo,  Xo={p €BV: f(pdmo =0)

is invariant under £g, with spec(Cy|Rpo) = {1} and 1 ¢ spee(Lo]|Xp). Hence, it must
be the spectral splitting associated to the decomposition spec(Lp} = {1} UZg. Clearly,
the projection m; onto the first factor is given by my () = @ [pdmg. O
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Proposition 5.15 (decay of correlations). Let 7 € (r,1) where 7 is as in Proposition
5.14. There exists C' > 0 such that

{1) given any ¢ € BV(I), any % € LY(my), and enyn > 1,

< O [1glev [I¥lls

U(«ﬁof")sadﬂo—f@dpo[gadﬁo

for everyn =2 1;
(2) given any p € BV(I), any bounded function: I = R, and anyn 2 1,

‘f(’ﬁ"f")v’duo—fﬂ’d#ofqad.uo

Proof: To prove (1) we write

< €7 ||ollv sup 9]

o impdio- [ddu [odia= [ 430000 dmo— [ Beo( [ 610 dma) dmo
= [#(c5tee0 - wol b podmo) )dmo
QObserve that
var $ipo = 3  var(@eol £)

k>0
< var(|Bi) sup(yol Ex) + sup |21 Ex)| var(wo| Ex)

k>0
(5.52) < (supvar(p|Ex)) > sup(wol Ex) + (supsup |(¢|Ex)]) D var(wol Bx)
520 >0 k>0 =
< varg Y sup (ol Bx)| +sup |¢| > _ var(iwo| B)
k20 k>0

recall Remark 5.3. Moreover,

sup [@ipo| = Sup sup [{@wol Bi)| < sup (sup |(|Ex)| sup(ol Ex)) < sup @} sup o

and
/I‘f"ﬂoldmo Ssupltﬁlf(pudmo-

This proves that,

(5.53) I@wollav < Killgllev, andso  pwo € BV(),
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where Ky = 3,5 5up(¢o| Bx} + var g + f 10 dmo , recall Remark 5.3.
Now, wp being a fixed point of Lo,

£33 v0) = ol [ D ondma) = L3900 = po [ @podmo) = L (mo( ),
where mo(¢) = ¢—wo [ ¢ djio is the projection onto the factor Xy of the spectral splitting
Rypq @ Xy, recall Proposition 5.14. Since spec{£y]|Xy) = Zo, which is contained in the
disk of radius 7, we get that

sup | L5 (mo(@ o)) | < I|£5 (mo(@ o))} < Ko™ @ ollsy < (KoK lleallsv) 7 [|2llBv

for some K > 0 and every n > 1. Replacing above,

‘f{rﬁof")sadﬁo—f@dmf«ﬁdﬂo

< [ 1l dmo - sup |25 (rolip )|

< (KoK Jlwollav) 77 [|2]lv [[#]l1

and so it suffices to take ¢ > KoK lleallBv-

_ Now part (2) can be deduced easily. Given ¢, € BV(I) define 4(z, k) = ¢(z) and
¥(z, k) = ¢(z). Then

(550 [ titamo < ma(fysup ] < m(F)sup I,

in particular ) € L(mp). Moreover, the function ¢ is bounded and satisfies

sup var(p|Ey) = sup var{y[By) < var ¢ < oco.
k>0 k20

Then, as in (5.52), (5.53), l¢wollsy < K1ll@llav, which ensures that ¢ € BV(I). So,
in just the same way as in the previous situation,

‘[(%"Of")tpduo—fwduofsoduo - ‘f(«ﬁof")aadﬁo—f@dnof@dﬁo

(5.55) < (KoK llwollev) 7 llelley mo( ) sup 4] .

We just take €' > KoKy mo(D) ||lwollay. O
Corollary 5.16 (central limit theorem). Let ¢ € BV(I) and

o= [Rdm+23 [#60 Fdpo, where 6=~ [ pduc
[ #0423 [ o P fon
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Then ¢ < oo and @ = 0 if and only if ¢ = po © f — u for some u € L*(pg). Moreover,
if o > 0 then for every interval ACR

n—1 2
,ug{:nEI: %Zqﬁ(ﬁ(m)) € A} —)[Aa lzwe“i‘ﬂdt as n — +oo.

j=0

Proof: This follows the steps of Corollary 2.10 and Proposition 2.12. It is no restriction
to suppose [ @duo = [ pwodm =0, and we do so. Let Fn = f~"(B), where B is the
Borel o-algebra of I. Then

1B | Fallz = SUP{f Yeoduo : ¢ € L*(F,) and [¢llz = 1}
= sup{f@ o f™)pdug : 9 € L (o) and jlg||z = 1}.

Define ¢{z, k) = (x) and $(z, k) = 9(z), for each ¢ € L?(g). We claim that the
function ¢ € L'(myg). Indeed, by Remark 5.1 and Cauchy-Schwarz inequality,

ldmo= [ fles"dio < ( [vitaao) ( [1ido)
[itime [t [ )
= (f(fPUIW.-)“Idmo) v ([W’Iz duo) 1/2.

Using (5.30) and (5.32), there exists some constant K3 > 0 so that

o O
f (ol W.)"Vdmo < 3 mo(Ex) sup(o|W. N Ey)™" < ) KBk 2=k
k=0

k=0
o0

<Y Kyem @k < o
k=0

since we have chosen A < g and Age® < /A;. Thus, denoting Ky the square root of the
last term in the previous expression,

[ 1itdma < Kltgll < o,
proving our claim. Then, compare (5.55),
IE(e | Falliz < SUD{_[(J) o f*)¢ podmy : € L2 (ma) and [fl: < K2}

< (KoKalwollav)™llellevEz < Ks7*||wllBv,

where Ky = KoK1Kalleollsv. In particular Yoo . ||BE{p | Fs)||} is finite, and so the
corollary follows directly from Theorem 2.11. 0O
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Notes.
Abundance (positive Lebesgue measure set of parameter values) of quadratic maps

with absolutely continuous invariant measure is a result of Jakobson [Ja81]. Several
other proofs and extensions appeared since then, e.g. [CE80], {BC85), [BCY1], [NS91].

Exponential decay of correlations was proved independently by [KN92] and [Yo82].
They used (other) tower extensions and cocycles, in much the same way we do here.

Stochastic stability was proved by [KK86] when the critical point is nonrecurrent, cor-
responding to an uncountable zero Lebesgue measure set of parameters, and by [BeY92]
for a set of parameters with positive Lebesgue measure slightly different from the one we
consider here. [KK86] considered a more general random perturbation scheme. Both
papers dealt with stochastic stability in the weak sense: weak* convergence of the
stationary measure to the absolutely continuous invariant measure. Strong stochastic
stability (L' convergence) had been obtained in a unpublished paper of [Co84].

Our presentation is based on [BaV96], who proved the full statement of Theorem 5.1,
together with a result of exponential decay of correlations for the random perturbations
scheme. The approach is inspired by the treatment of uniformly expanding maps in
[BaY93).
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6. RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES

Here we discuss some of the recent results in the study of “chaotic” dynamical sys-
tems, in line with the ones we presented before. We make no attempt to “completeness”,
but we expect this overview to give the reader a fair idea of the progress attained in
this field, and to indicate some likely trends of future research.

6.1 Hénon-like attractors.
The prototype for this class of systems is the Hénon model in the plane M = R?

f=fap: MM,  f(z,y)=(1-az’+y,ba),

introduced by [He76] as the simplest class of systems exhibiting complex dynamical
behaviour, related to the presence of a “strange” attractor. Figure 6.1 describes the
attractor for the parameter values @ = 1.4, b= 0.3 initially considered by [He76].

Figure 6.1: Hénon attractor

Some elementary features of Hénon maps are easy to derive. For instance, the jaco-
bian of f is everywhere equal to —b, and f is a diffeomorphism for every b # 0, with
inverse given by

FHE M) = 0 in g — 1+ a(b7ig)").

It is also not difficult to see that for {a,b) in a fairly large portion of the parameter
space the map f admits some invariant region U, in the sense that f{closure(U)) C U.
This happens, for instance, for (a,b) close to (1.4,0.3) (another example is 1 <a < 2
and b close to zero) and Hénon’s experiments suggested that orbits in such a region U
are attracted to an invariant set A with a complicated geometric structure.

The proof of Hénon’s conjecture that this A is indeed a nontrivial attractor (not
just an attracting periodic orbit with very high period) turned out to be a very hard
problem. A proof that strange attractors do occur in the Hénon model came only a few
years ago, through the work of Benedicks and Carleson.
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Theorem 6.1 [BCY91]. There ezists a subset E C R? with positive Lebesgue measure
such that for every (a,b) € E the map f admits a compact invariant set A such that

(1) the basin B(A)={z€ M : f*(z) = A as n — +oo} has nonempty interior;

(2) there ezists z) € A whose forward orbit {f*(z) : n > 0} is dense in A and there
exist ¢ > 0 and a tangent vector v to M = R? af 7, such that

1D (=)l > e™|u|| for every n = 1.

In particular, A can not contain periodic attractors. The parameter subset E they
construct in the proof of this theorem is located near (a,b) = (2,0). Existence of a
global strange attractor close to {a,b) = (1.4,0.3) remains an important open problem.

A characteristic feature of these systems is that they combine two very different types
of behaviour. At points (z,y) far from {x = 0} the map f is essentially hyperbolic: it is
not difficult to construct an unstable cone field (around the horizontal direction, i.e., the
direction of {1,0) ) and a stable cone field (around the direction of (1, 2az) ). However,
these cone fields can not be extended to the whole phase-space, due to the folding taking
place near £ = 0: for |z| small the derivative maps nearly horizontal tangent vectors at
(,y) to vectors inside the stable cone at f{z,y).

Fig 6.2: Homoclinic tangency and critical saddle-node cycle

Since then, attractors combining hyperbolic and folding behaviour have been shown
to occur in very general contexts of bifurcations of dynamical systems. [MV93] proved
that the generic unfolding of 2 homoclinic tangency by a parametrized family of surface
diffeomorphisms is always accompanied by the formation of such attractors, for a pos-
itive Lebesgue measure set of parameters. A version of this result in manifolds of any
dimension was proved in [Vi93].

A stronger conclusion was obtained by [DRV96] for a related bifurcation mecha-
nism, critical saddle-node cycles: the bifurcation parameter is always a point of positive
Lebesgue density for the set of parameters corresponding to nonhyperbolic attractors.
Even more, in many cases the attractor has a global character: the basin contains a
prescribed neighbourhood of the original cycle. Moreover, destruction of a hyperbolic
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set (a horseshoe) through collision with a periodic attractor also leads to formatlon of
a global strange attractor [Co).

Here, Hénon-like attractors always refers $o nonuniformly hyperbolic attractors such
as those constructed in these papers. A precise definition of strange atiractor is proposed
in Section 6.4, inspired by the properties of these systems, but for the time being we
avoid being too strict in the use of the term.

Theorem 6.2 [BeY93]. Hénon-like strange attractors support a unigue invariant SRB
measure.

More precisely, [BeY93) prove that there exists a unique invariant probability measure
¢ which is ergodic, has a positive Lyapunov exponent

. ,
A= lim —log||Df*|| >0 p-almost everywhere,
n—+doo n

and has absolutely continuous conditional measures along unstable manifolds (absolute
continuity is with respect to the riemannian measure on each unstable manifold). Then
general arguments, e.g. from [PS89), show that u is an SRB measure: given any con-
tinuous function ¢

-—Z(p f’(:f:)—)fquu ast—>+oo
J=0
for a positive (2-dimensional) Lebesgue measure subset of points z in the basin B(A}
of A,

An important problem in this setting, raised a number of years ago by Ruelle and by
Sinai, concerns the exact relation between the topological basin and the ergodic basin
of nonuniformly hyperbolic attractors. More precisely, given a nonuniformly hyperbolic
attractor A supporting an SRB measure y, is B{u) always a full Lebesgue measure
subset of B(A) 7

The next theorem sets an affirmative answer to this question for Hénon-like attrac-
tors: there are no “holes” in the topological basin B(A) (consisting of points whose
asymptotics are not described by p).

Theorem 6.3 [BeV1]. Through Lebesgue almost every point in B(A) there is e local
stable manifold which intersects A. Moreover,

1=
;j;o‘»"(fj(m))"?/wdu ast — 400,

for every continuous function p and for Lebesgue almost every x € B(A).

As before, Lebesgue refers to the 2-dimensional Lebesgue measure. Also, by a stable
manifold we mean a curve which is exponentially contracted under all positive iterates
of f.

Proceeding with the study of the statistical properties of Hénon-like systems (f, 1),
Benedicks and Young proved recently
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Theorem 6.4 [BeY3]. The system (f,n) has exponential decay of correlations in the
space of Hilder continuous functions.

Theorem 6.4 [BeY3]. The system (f, i) satisfies a central limit theorem in the space
of Hilder continuous functions.

Their basic strategy is to construct a Markov extension of the initial map exhibiting
many of the features of a uniformly hyperbolic set (a “horseshoe with infinitely many
branches”).

The next result brings this study close to conclusion, essentially completing the so-
lution for Hénon-like attractors of Problems 1, 2, 3 stated in the Introduction.

Theorem 6.6 [BeV2]. Hénon-like sirange attractors are stochastically stable under
certain random perturbalions.

The class of random perturbations we consider in this theorem includes

i ft(miy) = f(a:,y)+t,

where the random variable ¢ takes values in an e-neighbourhood of 0 € R?, according to
an absolutely continuous probability distribution & such that e(df./dm) is uniformly
bounded away from zero and infinity.

6.2. Multidimensional attractors,

In all the situations considered in the previous section the attractor is essentially a
I-dimensional object, both from a topological and a dynamical point of view, indepen-
dently of the dimension of the ambient manifold. What we mean by this is that not
only the topological dimension of all these attractors is equal to 1 but, moreover, the
map exhibits a unique positive Lyapunov exponent (a single direction of expansion) en
typical points. That is to say, sensitive dependence on initial conditions close to these
points occurs only along one direction: in complementary directions nearby orbits tend
to approach as time increases.

A class of high dimensional Hénon-like attractors was introduced in [Vi97]. Similarly
to the systems we have been discussing, they combine hyperbolic behaviour and folding
behaviour. Yet, these high dimensional attractors have substantially different proper-
ties, in particular, they are much more robust than their low dimensional counterparts.
To explain this, let us consider the simplest model studied in [Vi97]. These are smooth
maps f of the cylinder M = S! x R given by

(6.1) £(8,z) = (g(8),a(8) — =°),

where g(-) is an expanding map of the circle, and a(-) is some Morse function on S,
For instance, g(f) = d# mod Z for some large d € N, and a(f) = ag + asin(2rf) where
ap € (1,2) is such that the critical point ¢ = { is nonrecurrent for the quadratic map
h{z) = agp—x?, cf. (5.1). The parameter o is taken to be small, in particular, ag+|e| < 2.
Then its easy to find a compact interval I C R such that f(§* x I) C interior(S* x I.
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The next theorem states that both Lyapunov ezponents are positive at almost every
orbit in the invariant region, and the same is true for any map in a neighbourhood of
f. In other words, these maps exhibit sensitive dependence on the initial state in all
directions in phase-space, ‘

Theorem 6.7 [Vi97]. Let f be as above, with o sufficiently small. Then there exists o
neighbourhood N of f is the space of all C® maps from M = §* x R to itself, and there
exists a constant cg > 0, such that

o1 n
lim inf ~ log |Df" (2)0]| 2 co

Jor every f € N, every nonzero vector v € T, M, and Lebesgue almost every point
ze Sl x 1

A main point distinguishing these examples from the quadratic maps in Chapter 5
and the Hénon-like attractors in Section 6.1, is the nature of the critical region, i.e. the
region in phase-space where the folding effect occurs.

For quadratic maps f of the interval there is a well-defined critical point ¢ = 0. Then,
to have the map display expanding behaviour (positive Lyapunov at most points) one
must be certain that contraction that takes place every time an orbit passes close to the
critical point does not accumulate too much. For instance, it is easy to check that if

|f7(c) ~ e <47"

for some n > 1, then f*(closure(J)) C J and |(f*)'| < 1, for J = (~247",247"). This
implies that f has a periodic attractor, and then the Lyapunov exponent is negative
at ahnost every bounded orbit. Thus, for the quadratic map to exhibit nonperiodic
behaviour some condition on the parameter is needed, preventing the iterates of the
critical point ¢ from returning too fast to the neighbourhood of c. That is the meaning
of (5.1) and of assumption (U2) in Chapter 5. As mentioned in there, this last condition
is satisfied by a set of parameters with positive Lebesgue measure. A considerably more
sophisticated form of this approach is used in the case of Hénon attractors, whose critical
set [BCO1] is, roughly speaking, of Cantor set with very small dimension.

For the systems in (6.1) the critical set C is easily identified: it is just the curve
81 x {0}, where the derivative of f fails to be an isomorphism. However, one can no
longer expect to be able to prevent iterates of C from being close to C in the way we did
for 1-dimensional quadratic maps in (U2). The reason is clear: both C and its iterates
have topological dimension 1, in a 2-dimensional ambient manifold, and so having some
F7(C) intersecting C is a robust phenomenon: it can not be avoided through any sort
of small parameter modifications. Let us point out that this is not specific to these
examples, rather it is a very general feature of multidimensional maps, as the critical
set genericaily looks like a codimension 1 submanifold.

The method to prove the existence of two positive Lyapunov exponents for the maps
in Theorem 6.7 must, therefore, be considerably different from those arguments one uses
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for systems where a control of the recurrence of the critical set is possible: one has to
rely on a statistical analysis of the visits of points to the neighbourhood of the critical
set. The way this is done can be sketched as follows. Given a point z = (0,z) € §1 x I,
the contracting effect of the derivative D f(z) is estimated through the logarithm

A(z) = log| — 21|

of the derivative of f along the vertical direction (for nearby maps f one uses the
derivative along the leaves of a nearly vertical invariant foliation). Then the overall
contraction accumulated on the orbit of z up to time n > 1 is given by

i Au(2), where A, (2) = A(f¥(2)).

r=0

The following stochastic properiies of these A, are crucial (see {Vi97] for more precise
statements):
(1) the average value of A, with respect to Lebesgue measure, is positive for each
v > 1, and uniformly bounded away from zero;
(2) A, and A, are fairly independent if i and v are far apart, more precisely, the
correlation between A, and A, decreases very fast as [ — v increases.

This permits to conclude, through a large deviations argument, that for almost every
point z

n—1
|
(6.2) lim inf — > Af)2c0>0

=0

where ¢p > 0 is related to {smaller than) the lower bound in (1). This yields the
conclusion of Theorem 6.7.

Substantial development of this approach allowed {Al] to construct an SRB measure
“for these maps.

Theorem 6.8 [Al]. Let f and N be as before. Then every map f ¢ N has an absolutely
continuous (with respect to 2-dimensional Lebesgue measure) finite invariant measure
1, which is ergodic and so is an SRB measure for f.

In fact, these maps f are ergodic with respect to Lebesgue measure, which implies
that the absolutely continuous measure is unique; see the Appendix of [Al].

The following notion plays a crucial role in the proof of Theorem 6.8. Let ¢; € (0, co)
be fixed. An integer n > 1 is a hyperbolic time for a point z € St x I if

1 n—1
(6.3) % Au(z} 2 a1
v=n—k
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for every 1 < k < n. A main point is that if » is 2 hyperbolic time for z then f~*
contracting at f7(z), for every 1 < k < n, uniformly on z and n and exponentially on
k. Another important consequence is a bounded distortion property for the jacobian of
F~™ close f"(z), as we shall see in a while.

One proves, using (6.2), that almost every point has infinitely many hyperbolic times.
Another important step is to construct a partition {R; : i € N} of (a full Lebesgue
measure subset of} M into rectangles, and a piecewise expanding map F satisfying

(a) F is smooth on each R, in fact F;|R; = f™|R; where n; is a hyperbolic time for
some point in R;;

(b) F|R; is expanding, with uniform expansion rate, and the distortion ||D(logJ 4]
of the jacobian J; = | det(DF|R;)~} is uniformly bounded;

{c) the images F(R;) are rectangles (domains bounded by the union of four smooth
curves) with size and angles at the boundary vertices uniformly bounded from below.

In addition,

(d) the total area of the rectangles R; for which n; is larger than some given n = 1
decreases with n as exp{— const /n).

Existence theorems for certain piecewise expanding maps with finitely many smooth-
ness domains were proved, e.g. by [Ke79] and [GB89], using a high dimensional version
of the notion of functions with bounded variation [Gi84]. An extension of these theorems
for maps with infinitely many smooth domains, proved i in [Al], applies to maps satis-
fying {a), (b}, (c) above. It gives that F admits some absolutely continuous invariant
measure gg. Then the measure

u=§fﬁ‘ (#FI U R,—)

n=0 finy>n

is invariant under f and, using property (d} and the fact that the density of uF has
bounded variation, one checks that p is a finite measure. '

Theorems 6.7 and 6.8 hold for variations of the previous construction where one takes
g to be an expanding map on an arbitrary torus T*. [Vi97] also treats another construc-
tion where the map f is a diffeomorphism, with a multidimensional strange attractor.
SRB measures are expected to exist also for these attractors, but a construction has
not yet been carried out.

In fact, these last examples are part of a large class of diffeomorphisms usually called
partialiy hyperbolic. A ¢! diffeomorphism f : M — M on a compact manifold M is
partially hyperbolic if there exists a continuous splitting TM = E & E° of the tangent
bundle to M, invariant under D f

(1) Df{z)v € By for every v € E;, and Df(z)v € By for every v € ES,
and there exist A < 1 and a riemannian metric || - || on M, such that

(25) either [|[Df]E,|| < A and || Df|B.|| ||(Df|ES)~2]| < A for every z € M,

(20) or [(Df1E=)"2]| < A and [|(Df|Bx) | |IDFIEEN < A for every = € M.
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The first condition in (2s)-(2u) means that the derivative is uniformly hyperbolic (either
contracting or expanding) on the subbundle E. The second condition allows for both
contraction along the central bundle E°, but it requires that the behaviour of Df on E
dominate the behaviour on E°: in case (2s) any contraction exhibited by Df|E° must be
weaker than the contraction rate along the strong-sieble bundle E = E*°; analogously,
in case (2s) any expansion exhibited by Df|E¢ must be weaker than the expansion rate
along the strong-unstable bundle E = E¥Y,

Topological and dynamical properties of partially hyperbolic systems have been stud-
ied for some time. [Sh71] used a skew-product construction to give the first examples
of nonhyperbolic diffeomorphisms of T4 which are C* robustly transitive: any G close
diffeomorphism has orbits dense in the ambient manifold. The maps he obtained in this
way are partially hyperbolic.

Another construction, also yielding partially hyperbolic diffeomorphisms, enabled
[Ma78] to reduce to three the minimum dimension of such examples. He starts with an
Anosov diffeomorphism fy of M = T having two expanding directions and one contract-
ing direction. More precisely, D fo admits an invariant splitting into three subbundles
TM = E3* @ E} ® E§* such that Df|E3® is uniformly contracting, and D fo| E§* and
D fo|E¥ are uniformly expanding, with a larger expansion rate on E§* say. Then he
modifies the diffeomorphism in such a way as to render the weak-unstable direction E§
contracting in a neighbourhood of some periodic point. The new diffeomorphisms f
also admit a D f-invariant splitting

(6.4) " TM = E* @ E° @ E*°

where D f|E** is uniformly expanding, D f|E** is uniformly contracting, and they both
dominate I f|E°. There are invariant foliations F"*, F*¢, F** tangent to each of these
subbundles and, with the help of these foliations, one proves that these diffeomorphisms
are transitive. The nature of Df|E¢ depends on the point, in particular, there are
periodic points where it is contracting and other periodic points where it is expanding,
Therefore, any such f can not be an Anosov diffeomorphism.

Recently, [BD96] provided new constructions of partially hyperbolic diffeomorphisms
which are robustly transitive, including the first examples where the central direction
has dimension larger than 1.

Even more recently, a result of [DPU] displays an intimate relation between partial
hyperbolicity and G persistence of transitiveness, at least for diffeomorphisms in three
dimensions.

Theorem 6.9 [DPU]. Let M be a 3-dimensional manifold, and f be a C' diffeomor-
phism of M which is C* robustly iransitive. Then f is partially hyperbolic, i.e., il
satisfies either (1)-(2s) or (1)-{2u).

Examples by [Bo] show that C' robust transitiveness does not imply the stronger
form of partial hyperbolicity in (6.4). Other such examples, of C' robustly transitive
diffeomorphisms that do not admit an invariant splitting into three subbundles, can be
obtained by a modification of [Ma78), see [BoV].



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS 171

On the other hand, the ergodic properties of partially hyperbolic diffeomorphisms are
still poorly understood. SRB measures were constructed by [Ca93) for diffeomorphisms
derived from Anosov diffeornorphisms through (Hopf, saddle-node, period doubling)
bifurcations of periodic points. In her context, SRB measures coincide with Gibbs u-
states (invariant measures having absolutely continucus conditional measures along the
leaves of the sirong-unstable foliation F*), constructed by [PS82] for general partially
hyperbolic attractors. This approach to finding SRB measures works quite in general,
when the derivative is “predominantly contracting” on the central direction E°, see
[BoV]. When the central direction E° is, on the contrary, “predominantly expanding”,
Gibbs u-states are no longer SRB-measures. Situations of this kind, including examples
of the type constructed by [Ma¥8], are dealt with in an ongoing work by Alves, Bonatti,
and the present author.

6.3. Lorenz-like flows.

Attractors of flows present important new features with respect to the discrete time
case, specially when they involve singularities (equilibrium points} interacting with regu-
lar orbits. Such singular attractors were first introduced by [ABS77], [GW79], as models
for the observations made by Lorenz in [Lo63}. A key fact about these geometric Lorenz
models is that they are robust: any flow close to the initial one has an attractor with
similar properties.

There is now a vast literature on the geometric, dynamieal, and ergodic properties of
these attractors. See e.g. [Sp82], [Bu83], [CT88], [Pe¥2], [Sa92], and references therein.
Curiously enough, the actual occurrence of a strange attractor in Lorenz original equa-
tions remains an unproven conjecture. On the other hand, similar types of robust
attractors have been shown to appear in various types of bifurcations of flows [Ro89),
[Ry89], [ACL95], [MP2], [MP1), [MPP1]. Recently, [MMP2] have been developing a
theory of singular attractors of flows in three dimensions, characterizing robustness in
terms of a hyperbolicity property. For a precise statement of their results we need a few
definitions.

Let (Xe)ier be a C* flow on a manifold M, k > 1, and A € M be compact and
invariant under the flow. One calls A a singular (or Lorenz-like) atiractor if

(a) the flow is transitive on A;
(b) there exists an open neighbourhood U of A such that A = N0 X, (U);
(c) A contains some singularity of the flow (and is not reduced to it).

Singular transitive sets are defined analogously, just taking the intersection over all
t € R in (b). A singular attractor is called C* robust if

Ay = | Y(t)
>0

is again a singular attractor, for any C* near flow (¥;)ier. A similar notion applies to
singular transitive sets, with the intersection taken over ¢ € R.
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We say that A C M is a singular hyperbolic set for the flow if it is invariant and there

exists a continuous splitting
TWM = E** o B

of the tangent bundle over A, which is invariant under the flow and satisfies

(i) E** has dimension 1 and is uniformly contracting;

{il) B¢ is volume expanding and is dominated by E**.
Denote —X the flow obtained from X = (X;)ter by reversing the direction of time.
Theorem 6.10 [MMP2]. Let A be a G* robust singular transitive set of a C* flow on
a three dimensional manifold M. Then A is a singular hyperbolic set, and a singular
atiractor, for either X or -X.

They also characterize the type of singularities that may be contained in a C" robust
singular transitive set: the eigenvalues are necessarily real and satisfy

(6.5) gither A < A3 <0< A3 <A, or Aa>A3>0> =23 > A5
moreover, all the singularities have the same number of contracting eigenvalues.

x HEH- N B 5
I RpiE=l
y Corob o e
N0 L
As A litﬁ?—ﬁ
0 R DA &
Ay r

Fig 6.3: Poincaré map of a Lorenz-like flow

Statistical properties of Lorenz-like attractors of flows may be derived from the infor-
mation on Lorenz-like maps we obtained in Chapter 3. We just mention a few main ideas
in this direction; see e.g. {CT88] and references mentioned in it for further information
and proofs. We begin by recalling some basic facts concerning the geometric Lorenz
models of [ABS77], [GW79]. By construction, these systems have a two-dimensional
submanifold ¥ as a partial cross-section to the flow. More precisely, there is a curve
' C ¥ and a well-defined Poincaré first-return map

P:Z\T =%
The curve I’ corresponds to the intersection of £ with the stable manifold of the singu-
larity O contained in the attractor, and future trajectories of points in I' do not come
back to E. The Poincaré map P is hyperbolic, in the following sense:
(1) P admits an invariant contracting smooth foliation 7 containing I' as a leal;
that is, every leaf F? is mapped by P completely inside some leaf F7, .., and

P|F¢ is a uniform contraction;
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(2) the space of leaves £/F* of this foliation F* is diffeomorphic to an interval,
and the map f induced by P on &/F* is a Lorenz-like map: it is uniformly
expanding, with derivative tending to infinity as one approaches I'.

Then, as we have seen in Chapter 3, f admits a unique invariant probability measure
it which is absolutely continuous with respect to Lebesgue measure m. Moreover, p is
ergodic and so it is an SRB measure for f. Recall also that the density du/dm is a
function with bounded variation, in particular it is bounded.

From g we may now construct an SRB measure pp for the Poincaré return map
P, through the following general procedure [Bo75). Since p is defined on the interval,
identified to the space of leaves of the contracting foliation F*, we may also think of it
as a measure on the o-algebra of Borel subsets of £ which are union of entire leaves of
F*. Using the fact that P is uniformly contracting on leaves of F*, one concludes that

the sequence
Plu, n>1,

of push-forwards of p under P is weak*-Cauchy: given any continuous ¢ : £ = R

[ederi = [woPdu  nz1,

is a Cauchy sequence in R Define, up to be the weak*-limit of this sequence, that is,

[odue=tim [[papru

for each continuous @. Then up is invariant under P, and it is an SRB measure for
the Poincaré return map: this last statement follows from the fact that u is an SRB
measure for f, together with the remark that asymptotic time-averages of continuous
functions ¢ : & -+ R are constant on the leaves of F°.

Next, another general procedure yields an SRB measure px for the flow. Denote
T:Z\T = (0,40c0) the return time to I, defined by,

P(z) = XT(,).
Then 7 is bounded away from zero. Moroever,
P(z) = |logd(z,T)|

for # close to I'. Coombining this with the definition of up and the remark made above
that du/dm is a bounded function, one may conclude that

(6.6) To = [‘rd,up < oo,

Denote by ~ the equivalence relation on T x R generated by (z,7(z)) ~ (P(2),0). Let
N =(ZxR)/ ~ and v = m.{itp x dt), where w : xR = N is the quotient map and df
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is Lebesgne measure in R, Observe that (6.6) means that » is a finite measure. Define
¢ : N = M by ¢(z,t) = Xi(2), and let ux = ¢ pp. The measure px is invariant under
the flow, and one can check that it is an SRB for the flow X:

T
ilzf W(X:(Z))dt—)fzpd,ux as T — 400
1]

for every continuous function ¢ : M — R, and Lebesgue almost every point z € ¢(N).
Other types of singnlar attractors of flows have also been constructed in recent years,
displaying more subtle forms of persistence under perturbations. [Ro93] considered
a modification of the classical geometric Lorenz models where the eigenvalues at the
singularity satisfy
A< A3 <D< A < =M.

In other words, the expanding eigenvalue is dominated by both contracting eigenvalues,
compare (6.5). The singular attractors he obtains in this way have rather different
properties, if compared with the cases we have been discussing, in particular they are
persistent only in a measure-theoretical sense: a singular attractor exists for a positive
Lebesgue measure set of parameters, in generic parametrized families of flows through
the initial one.

[LV1], [LVZ2], introduce an extended geometric model for Lorenz equations, which
combines singular behaviour {presence of singularities) and critical behaviour (folding,
in the sense of Section 6.1). In particular, these critical geometric Lorenz models do
not admit an invariant contracting foliation, as do all the cases we have mentioned
so far. Singular attractors occurring for these flows have the same kind of measure-
theoretical persistence as those [Ro93]). The same kind of persistence holds also for
the spiral attractors in [PRV1], [PRV2]. These are global singular attractors with very
complicated geometric structure, related to the unfolding of homoclinic connections
associated to saddle-focus singularities {two contracting complex eigenvalues and one
real expanding eigenvalue, dominating the contracting ones). See Figure 6.4.

Figure 6.4: A spiral attractor
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In a similar setting, [PR97] proved persistence of suspended Hénon-like attractors,
and even gave the first examples of coexistence of infinitely many such attractors.

In all the cases we have mentioned so far, the singularity contained in the attractor
has only one expanding eigenvalue (the second alternative in (6.5) corresponds to a
repeller, i.e. an attractor for the reversed flow —X). The problem whether robust
singular attractors may contain singularities whose unstable manifold has dimension
larger than 1 was recently solved by [BPV]; given k > 2 and any n > k+ 3, there exisis
a manifold M with dimension n, and there exists a C1-open set of vector fields exhibiting
a transitive attractor that contains a hyperbolic singularity whose unstable manifold has
dimension k. Under further assumptions of regularity, these multidimensional singular
attractors support a unique SRB measure.

Closing this section, we mention that a statement of exponential decay of correlations
was recently proved by [Yo] for yet another important class of systems: plane billiards
with convex scatterers [Si70].

6.4. Finitude of attractors.

As we mentioned in the Introduction, it was believed for some time that most dy-
namical systems should be simple (e.g., should have only finitely many attractors) and
should be stable (robust) under small perturbations. Attempts to make these ideas
precise, mostly in topological terms, proved unsuccessful throughout the sixties and
seventies. Here we want to close with a brief presentation of ideas recently advanced by
Palis [Pa] which in a sense vindicates those early expectations of simplicity and stability
in Dynamics, even if in new, more probabilistic, terms.

We restrict ourselves to the setting of diffeomorphisms on compact manifolds, al-
though the scope of his program is more general (including noninvertible transforma-
tions, smooth flows and, possibly, evolution partial differential equations).

A main ingredient is the conjecture that the diffeomorphisms having finitely many
attractors are dense: any diffeomorphism g may be approximated by another one f for
which one may partition the ambient manifold M as Uy U --- U U U R, so that

(1) each U7, 1 € i < k, is an open set invariant under f and R is a closed set with
zero Lebesgue measure;

(2) every point z € Ui, 1 < ¢ < k, converges under positive iteration to some
compact set A; C U; which is invariant and transitive (contains dense orbits)
for f;

(3) each A;, 1 < ¢ <k is either an attracting periodic orbit or a strange attractor.

The definition of strange attractor is largely motivated by the examples we have been
discussing, specially the Hénon-like attractors: in (3) one means that A;

(1) contains some dense orbit along which the derivative of f grows exponentially
fast, in norm, as n — 4+00;

(2} contains a dense subsel consisting of periodic saddles and coincides with the
closure of the unstable manifold of some of those saddles;

(3) supports an ergodic SRB-measure p; having some positive Lyapunov exponent,
and whose basin B(y;) has full Lebesgue measure in U;.
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(4) is persistent under perturbations of the system: generic parametrized families
of diffeomorphisms f;, s € RP, with fy = f, exhibit a similar attractor for a
positive Lebesgue measure set of parameters s close to zero.

Furthermore, conjecturedly, the dynamics of such systems with finitely many attrac-
tors is robust under small perturbations, in two different senses. A first one concerns
mebric stability of the basins of attraction: given a small perturbation fof any f as
above, for each 1 < ¢ < k there are n; > 1 and attractors f\,—ll, e ,]\;Im, either periodic
or strange, such that the union of the corresponding basins ﬁ',-_l, - ﬁ‘-,,,_. coincides with
B(A;) up to a small Lebesgue measure set. A second one has to do with persistence,
under small random perturbations, of the statistical properties of such diffeomorphisms
on the basin of cach attractor A;: the system (f|U;, p;) is stochastically stable for all

1<i<k.
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APPENDIX A: INVARIANT FOLIATIONS OF HYPERBOLIC SETS

In this appendix we review some basic properties of uniformly hyperbolic sets which
are relevant for the previous chapters, specially Chapter 4. See [Sh87] and [Ma87] for
a presentation of the theory of hyperbolic systems, including proofs of the results we
quote here. The versions for random maps we mention at the end are explicitly stated
and proved in [LQS5]

In all that follows f is a CF diffeomorphism, k > 1, of a compact manifold M, We
say that p € M is a hyperbolic fived point for f if f(p) = p and the spectrum of the
derivative Df(p) : T,M — T,M is disjoint from the unmit circle. This last condition
implies, in particular, that I f{(p) — id is an isomorphism of T,M and so, by a standard
application of the implicit function theorem, the point p ha.s a hyperbolic continuation
for diffeomorphisms close to f. What this means is that if f is a diffeomorphism C*
close to f, then f has a (unique) hyperbolic fixed point 7 close to p.

We define the stable manifold W*(p) and the unstable manifold W*(p) of a fixed
point p, by

Wep)={zeM: li'm fMz)=p} and W°(p)={zxeM: JJim fHz) =p}

Theorem A.1. Let p € M be e hyperbolic fized point of a C¥ diffeomorphism f. Then
W3(p) is en injectively immersed C* submanifold of M. Moreover, :f f is C* near f
then the stable manifold W*(p) of the hyperbolic continuation of p is C* near W*(p) on
compact parts.

A dual result, for the unstable manifold, follows from this just by considering the
inverse =1 in the place of f. Moreover, these notions and conclusions extend to the
case when p is a periodic point of f, that is, if f%(p) = p for some & > 1: it suffices to
replace f by f&.

Hyperbolic sets, cone flelds.

Let A be a compact subset of M that is invariant under f, i.e., f(A) = A, We say
that A is a hyperbolic set for f if there exists a splitting TAM = E{ @ E} of the tangent
bundle to M on A, and there are Ag < 1 and a riemannian metric || - | on M, so that

(1) Df(z)- By = B3, and Df~}(z) - BY = Bj-1();
(2) ||Df(z)|EE|| < Ao and [[Df~1(z)|B2|| < Ao for every z € A.

In practice, one seldom knows a priori the decomposition TaAM = E° @ E*. For-
tunately, in order to prove that a compact invariant subset is hyperbolic it suffices
to exhibit some reasonable approximation of the stable {E°) and the unstable (E)
subbundles. The precise formulation of this is in the next theorem, which involves the
notion of invariant (stable and unstable) cone fields. Let Ta M = F1 & F; be an arbitrary
contimious splitting of the tangent bundle. Given a <1 and # < 1 (and a riemannian
metric [| - || on M) define cone fields A 3 © — CZ(x), and A > z —+ Cf'(z) by

Calz) = {n1 +vz € L ® F2: |2l < alluill}
Ci(z) = {v1 +v2 € F1 @ Fz s [jon]] < bllwa]l}.
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Theorem A.2. Let A be a compact invariant set for a C1 diffeomorphism f. Suppose
that there is.a splitting TaM = F| @ Fy and there are constantsa <1, b <1, and A < 1
so that
Df Y=)-Co(z) € C{u{f (=) and Df(z}- Ci(z) C Ch(f(z))
and
IDf~Ha)wsll 2 A sl and  ||Df(@)wul] 2 A~ leowl|
Jor every x € A, w, € Ci(x), wy € CF(x). Then A is a hyperbolic set for f.

Tle simplest example of a hyperbolic set is the set A = {p} formed by a single
hyperbolic fixed point. A hyperbolic splitting as in the definition is provided by the
cigenspaces 5, respectively B3, of D f{p) associated to the eigenvalues with norm
smaller than 1, respectively larger than 1.

Example A.1 (The horseshoe) Let @ be a square in the plane and consider a
decomposition @ = R; U ---U R of @ into five horizontal strips. Let also Dy and
D3 be two half disks at the top and bottom sides of @. Consider an cmbedding f of
QU D, U D; into itself as described in the figure.

D, AN

Rs
R, Q Q
R3 S, S,
R2
Ri

EN
D /U

Fig A.1: A horseshoe

More precisely,
(a} f maps R,, Ry affinely into vertical strips Sa, Sy crossing @ from top to bottom:
it preserves the horizontal and the vertical directions, contracting by A < 1/2 along
the horizontal direction and expanding by g > 2 along the vertical direction;
(b) f sends Dl, Rl, Dz, Rz inside DI, and R3 inside Dz.
Then f is easily extended to a diffeomorphism of the two-sphere §2 = R? U {co}, with
a repelling fixed point outside @ U )y U Dy. Note that, by (b}, the map f must also

have a fixed point in Dy.
There are two possibilities for the orbit of a point z € @ : either it eventually enters
D, in which case it stays there forever, or it remains all the time in . The set

A=) @

neE
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of points whaose full orbit is inside @ is a hyperbolic set for f. To see this, note first
that A is contained in R, U Ry. Then the hyperbolic splitting Ty M = E* @ E* for f
on A is given by

E:=Rx{0} and E}={0}xR,

recall (a).
Actually, the reguirements in (a) are unnecessarily strong: in particular, given any
map g C! cloge to a map f as above,

Ag= n g (Q)

nel

is a hyperbolic set for g. To see this, fix @ < 1 consider the cone fields
G;(IL‘) = {(i‘l,:i?z) S Tmle : |.’E2| < a|$1|}

C¥(z) = {(£1,22) € T.R? : || £ a|2|}
defined on a neighbourhood U of Rz U Ry4. Clearly,

Df{z) Ci(2z) C Chypalf(@) forx=sorx=u,

and every € U such that f(x) € /. Moreover, vectors in Cj (%) are uniformly expanded
by Df~1(z) and vectors in C%(z} are uniformly expanded by Df(z}, at least if we fix
a large enough. This means that these cone fields fulfill the hypotheses of Theorem A.2
for f. Most important, those hypotheses are robust under small C' perturbations: if
they hold for some map then they also hold (possibly for a slightly different o) for any
C1 close map. Thus these cone fields also satisfy the hypotheses of Theorem A.2 for the
map g. This allows us to conclude that any g-invariant set contained in I is hyperbolic.
In particular this applies to Ag.

Observe that the argument we have just used has little to do with the particular
model we were considering. It shows that robustness under C' small perturbations is
a genera) feature of hyperbolic sets (and a crucial one). We shall make these remarks
more precise later.

Example A.2 (Anosov diffeomorphisms) : Consider a linear isomorphism A of R?
whose representation with respect to the canonical basis of R? is a hyperbolic matrix
with integer coefficients and determinant equal to 1. Then A preserves the lattice z2,
and so there exists a well-defined {(unique) smooth map f from the 2-torus T2 = R? /Z?
to itself satisfying

mroA=fon

where 7 : K2 — T2 is the canonical projection. Moreover, f is a diffeommorphism: its
inverse may be obtained through the same construction, with A~! in the place of A.
Let A and X = 1/ be the eigenvalues of A, with |A| < 1. They are necessarily irrational
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numbers, and the corresponding eigenspaces £* and E* have irrational slope. Given
any w € T2, choose z € R? such that w(z} = w, and then let

El =Dn(z)-E* and E} = Dn(2)-E*

Note that these objects do not depend on the choice of z. Then this defines subbundles
E* = (B2)wer? and E* = (E),era of the tangent space of T, and

TT? = B* @ E®

is a hyperbolic splitting for f: vectors in Ej, are contracted by A under I2f(w), and
vectors in E% are contracted by A under Df~1(z). This proves that the whole ambient
manifold A = T2 is a hyperbolic set for f.

The same argument as in the previous example shows that 72 is a hyperbolic set also
for every map g which is O close enough to f.

Example A.3 (The solenoid) Let §' = R/Z, D? be the closed unit disk in the
complex plane, and let § be the solid torus @ = S x D2, Given 0 < p < 1/(27) and
0< A< p,let f:Q — Q be the map given by

£(8, z) = (20 mod Z, pe®™® + Az).

Figure A.2: The solencid

Geometrically, f acts on the solid torus by stretching along the S direction, contracting
along the D? direction, and wrapping the image twice around the S! direction. The
assumptions on p and X ensure that f is an embedding of @ strictly into itself. Then

the set
A=) Q)
n>0

of those points whose orbit is defined for all times (both positive and negative) is a
hyperbolic set for f. This may be seen by considering cone fields

Cip) = {(8,2) & Tp(S* x D?) : 18] < al3l}
CE(p) = {(6,2) € T,(S* x D*) : || < blé]}

with b = 1 and a sufficiently small, and using Theorem A.2.
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Stability, invariant manifolds.

We noted before that a hyperbolic fixed point is 2 special case of a hyperbolic set. On
the other hand, as we now explain, a hyperbolic set always corresponds to a hyperbolic
fixed point of a convenient diffeomorphism on some Banach manifold. Let A be an
invariant set for a diffeomorphism f, and C(A, M) be the space of continuous maps
from A to M. Let T'(A, M) be the space of continuous sections over A, i.e., the space of
continuous maps

ag:A — TaM suchthat wmoo=id,

where 7 is the natural projection from Ta M to A. Then I'(A, M) is a Banach space for
the C° norm, and one may endow C(A, M) with a natural structure of ‘manifold over
['(A,M). The map Fy : C(A, M) — C(A, M) given by Fy(p) = fof L is C*if f is
C*, and it has the inclusion i : A — M as a fixed point. Most important , this fixed
point is is hyperbolic if and only if A is a hyperbolic set for f.
As a first consequence of this correspondence, we may derive the following result
of persistence and stability of hyperbolic sets under small perturbations of the initial
diffeornorphism.

Theorem A.3. Lel A be a compact invariant set for a O diffeomorphism f on M.
Then there is e a neighborhood N of f in the space of C? diffeomorphisms of M, and
there is a continuous map ¢ : N —» C(A, M) with ¢(f) = ia, such that for everyg € N
the set Ay = ¢(g)(A) is hyperbolic for g and we have $(g) o f|A = g|A, o ¢(g).

Given any z € A and a map g C! close to f, we call the point % = ¢(g)(z) given by
this theorem the hyperbolic continuation of z for g.

Anocther important consequence of the correspondence made above is the existence,
differentiability, and continuous variation with the dynamics, of stable and unstable
manifolds associated to all points in a hyperbolic set A. To explain this we need some
terminology. Fix some small ¢ > 0. We define the local stable manifold of size € of a
point x € A

Wie) = {y € M lim_d(f*(2),1"(s)) = 0 and d(f" (@), f"w) < € for all m 2 0}
Analogously, the locel unstable manifold of size ¢ of z € A is
W) ={yeM: lim_d(f*(z),"(y)) =0 and d(f*(z), f*(y)) < & for all u > O}
The (global) stable and unstable menifolds of z € A are defined by
W)= fye M:_lim_d(f(s), /@) = 0)

and
] _ . : n i =
W@) = {ye M: lim_d(f"(z), ") = 0},
respectively It follows immediately from the definitions that

= {J Frwi@) and W)= | FWE(FE))

n>0 n>0
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Theorem A.4, Let A C M be a hyperbolic set of a C* diffeomorphism f on M, k > 1.
Provided e > 0 is small enough, every local stable manifold W2(z)} is a C* disk embedded
in M with T,W2(x) = ES. Morcover, it varies continuously with the point z € A in
the C* topology. Finally, if g is C*-near f then the local stable manifold W}(%) for g
of the hyperbolic continuation T = $(g}(z) of x is uniformly close to W} (z) in the Cck
topology. '

Local product structure.

Let us restrict to an important subclass of hyperbolic sets, with the additional prop-
erty of having local product structure. Take A to be a hyperbolic set of the diffeo-
morphism f : M — M, and let £ > 0 be fixed as before. Since the local stable and
unstable manifolds of any given point in A are transverse, and these invariant manifolds
depend continuously on the point, it follows that there exists § > 0 such that, for any
pair of points z,y € A with d(z,y) < §, the intersection W7 (x) N W2(y) consists of a
single point, which we denote by [z,y]. We say that A has a local product structure if
[z,94] € A for all z,y € A.

A crucial feature of hyperbolic sets with local product structure is the shadowing
property, expressed in the next theorem. Given a > 0, a sequence = (zx)rez in M is
called an a-pseudo-orbit for the diffeomorphism f if

d(f(wr), Tr1) S @ forevery k€ Z.

If there is some N > 0 such that x4 x = 3, for every k € Z, we say that the c-pseudo-
orbit z is periodic. Given 8 > 0, we say that y € M is a S-shadow for the a-pseudo-orbit
if

d(f*(y),zx) € B forevery ke Z.
Theorem A.5. Let f be a diffeomorphism on M end A be a hyperbolic set with local
product structure. Given any 8 > 0 there is some a > B such thet every a-pseudo-orbit
z = (zr)recz i A has a B-shadow y € A,

In the sequel we state some corollaries of this shadowing lemma. We say that an
f-invariant set A C M is locally mazimal if there is a neighborkood U of A in M such
that A = N,z (0},

Corollary A.6. Let A be o hyperbolic set for the diffeomorphism f. Then A hes a local
product structure if and only if it is locally mazimal.

Let A be a hyperbolic set for the diffeomorphism f in M. We define the stable set
W2(A) and the unstable set W*(A) of A by

Wi AN ={zeM: HHTOQ d(f™(z),A) =0}

and
WHA) = (s e M: lim_d((z),A)=0}



STOCHASTIC DYNAMICS OF DETERMINISTIC SYSTEMS ‘ 183

Corollary A.7. If A is a hyperbolic set with local product structure then

W)= Wiz) end  WHA)= |J we(@).
zEA © xzEA

Corollary A.8. Let A be a hyperbolic set for the diffeomorphism f and suppose that
the resiriction of f to A is topologically mizing. Then

(1) W*(z) N A and W*(z) N A are dense in A for every x € A.

(2) W (z) N W*(y) N A is dense in A for every =,y € A. ]

(3) W*(z) is dense in W*(A) for every z € A and for both + = s and * = u.

We say that a compact set A C M is an atfractor for the diffeomorphism f on M, if
f(A) = A and there is some neighbourhood @ C M of A for which

flclosure(Q)) € @ and A= n F .

n>0

It follows from Corollary A.7 (or from Theorem A.9 below) that if an attractor A is a
hyperbolic set for f then it has local product structure. In particular,

U we(z) =w*(a)

zEA

contains a whole neighbourhood € of A.

Theorem A.9. Let A be o hyperbolic set for the diffeomorphism f on M. Then A is
an attractor for f if and only if for every p € A we have W¥(p) C A.

We define the local stable foliation F{,_ of a hyperbolic set A C M to be the lamination
defined by the local stable manifolds of points in A (given by Theorem Ad). IfAisan
attractor then F7_ is a proper foliation of a neighbourhood of A.

Absolute continuity,

In all that follows we assume that A is a hyperbolic attractor for a C* diffeomorphism
F on M, with k > 2. Let F¢,, be the Jocal stable foliation of A, and W, C M be the
union of the leaves of F,,. We use both W, (z) and F{,.(z) to denote the leaf in F§,
through a point = € W;,,. We say that a submanifold N of M is transverse to Fy, if

N C Wl-::c and T3N$szzc($) = TSM! for every & € Nn“fi:c-

Given submanifolds N; and Nz of M transverse to F3,., we say that P: N; — N2
is a Poincaré map for Fj,_ if it is injective and continuous, and

P(z) e Wi (z)NNy forevery z € Ny
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We say that a Poincaré map P : Ny —+ N, is absolutely continuous if there is a
continuous map J : Ny — R, the jacobian of P, such that

ma(P(A)) =f Jdm; for every Borel subset A C Ny,
A

where my denotes the smooth measure induced on N;, i = 1,2, by the riemannian

metric.
Finally, we say that Ff_ is absolutely {resp. Holder) continuous if every Poincaré
map for ¥ is absolutely (resp. Hélder) continuous.

Theorem A.10. Let f be a C* diffeomorphism on M and te e the local stable
foliation associated to a hyperbolic attractor of f. Then, F¢ . is absolutely continuous
and Holder continuous. Moreover, the jacobien of any Poincaré map for Fi, is also
Hélder continuous.

This theorem is used in Chapter 4 through the following corollary. Let us consider
the disintegration [Ro66], [Ro67] (py)qery,, of the riemannian measure m with respect
to the stable foliation. That is, each p, is a probability supported on the leaf -y, and

Jwam= [ ( [ Vo, ) ditr)

for every integrable function ¢, where 7 is the quotient measure on the space of leaves

of Ff ., defined by
ﬁm(ﬁ):m(U{'y:'y € f-l})

We claim that one may take p, = (H | y)m.,, where m., is the riemannian metric on -,
and H:Q - R is a strictly positive function having log H Hélder continuous.

Before we prove this result let us make a few comments on the stable foliation F,.
Let U be some small open set consisting of local stable leaves. Up to taking a local
chart, we may pretend that U is an open subset of the euclidean space R* @ R*, where
s and u are the dimensions of the invariant subbundles E® and E*, respectively. Then,
with the help of Poincaré maps of Fji, we may define a homeomorphism

®:D"x D* U, @ n) = (PE 7))

where D C R® and D* C R* are disks, satisfying

(1) ®(D* x {0}) is contained in some unstable manifold;

(2) {®(£,n) : 7 € D*} coincides with the stable leaf through ®(£,0), for all £ € D*,
Moreover, in view of Theorems A.10 and A.4, & may be taken so that

(3) @ and ! are Hlder continuous (in both variables) and @ is C? on #;

(4) @ is absolutely continuous, with Hélder continuous jacobian J& = J P.
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Now our claim can be deduced as follows. Let v = ®; ! m, that is, dv = J® df dn. Then
duﬁ = J@(Ea ) )dﬂ

is a disintegration (v )¢ of v with respect to the foliation {{{}xD*: { € D} of DU x D?.
Now, for each v = ®({¢} x D*) let

Py = (2 {E} x D%) .

That is, denoting J;® the jacobian of the C? map (P | {£} x D*) with respect to the
measures 7 and m,, :

dpy = JB(E, -) (8 | (€} x D*).dn = %(& ) dimy.

The family of measures (p,}., obtained in this way is a disintegration of m, and so we
have shown that we may take

H(B(En) = -%(e,n).

This proves our claim, since -1, J®, J,& are all Holder continuous, and J&, Jq® are
bounded away from zero and infinity. Observe also that

i(d) = "(9{‘5} «0) = [ Je(en)deen

where the union and the integral are over the £ € D¥ such that ¥ = ¢~ 1{{£} x D°)
belongs in A {and every § € D¥).

Invariant foliations for random maps.
We close by giving precise statements of versions of the previous results for skew-
product maps

FOxTN 5 Q@xTV, F(rtyts,...) = (fi,(2),t2...)

which are used in Section 4.5. Here T is just a metric space. We continue to suppose
that A = Np3of™{Q) is a hyperbolic attractor for f, and we assume that all the maps
fe, with £ € T, belong in a sufficiently small neighborhood of f.

We define the tangent space at a point (z,t) € Q@ % T to be T, x {t}. We say that
N C QxTV is a submanifold of @ x T if for every (z,) € N the set Ny = NN{(Q x {t})
is a submanifold of @ x {t} ~ Q. Moreover, by definition, the tangent space to NV at
(z,t) € N is T, N, x {t}.

It is easy to check that

A=) F(@xTF)

n2>20
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is compact and Fuinvariant. We define the tangent bundle to @ x T™ over A as

Ti(@xTV = |J (TQx{t})

(z.QEi\

and endow it with the metric || - || given by the riemannian metric induced on each
T.Q x {t}. We also define the derivative of F over A by

DF: T3 (@ x TV} = T3 (@ x TV), DF(z,t)(v,8) = (Dfi, (z)v, a(2)).

Proposition A.11. There is a continuous splitting T3 (Q x TV) = B3 @ B inveriant
under DF, and there is a constant 0 < A < 1 for which

IDFIE*| <A and ||[DFIE*| 2 X7%

This proposition may be proved by using invariant eone fields for [, defined in a
neighbourhood of A. Note that such cone fields area also invariant under every small
perturbation of f.

Then, using this hyperbollc structure for A one can prove the existence of local stable
manifolds for points in A, in much the same way as one proves Theorem A.4.

Theorem A.12. There is A, < 1 and for each (z,t) € R there is ¢ CF disk W, (=, 1)
embedded in @ x {t}, such that

(1) T(Z.E)lec(x’-t-) = Efm,g’

(2) F(Wlic(xi L)) C WI-:J(:(F("‘[’-:I Q)t

(3) F-W,(z,1) = WS (F(z 1) is e As-contraction.
Morcover, the disk W (z,t) varies continuously with the point (x,t) € A in the C*

topology. .

We call Wi (=, t} the local stable mamfold of F at the point (z,t) € A. Then we let
.7-',06 be the foliation of a neighbourhood W,oc of A whose leaves are these local stable
manifolds. We want to state that the foliation .F,oc is absolutely continuous, Theorem
A.13 below, but this requires some words of explanation.

A submanifold N of @ x TV is said to be transverse to F ifNc ,f,c and

TN ® T Wi = T:Q % {8}-

for every (z,£) € N nW,ic. Given submanifolds N1 and N, of Q@ xT™ transverse to ft’ac,
we say that P: Ny — Ng is a Poinearé map for F£,, if it is injective and continuous, and

P(x,t) € Wi (z,t)n Ny for every (z,¢} € N1.
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A Poincaré map P: Ny — N is absolutely continuous if there is a continuous map
J:N; —+ R, the jacobian of P, such that for every f € TN and every Borel subset
Ac Nyn(Q x {t}) we have

ma(P(A)) = fA T, ) dmy

where m; is the riemannian measure on N; N (Q x {¢}) for i = 1,2. We say that P is
Hilder continuous if for fixed £ € T the map P(-,t) is Hélder continuous, with uniform
Hélder constants. Analogously, we define Holder continuity of the jacobian J. Finally,
we say that . is absolutely (resp. Holder) continuous if every Poincaré map for .ﬁ"m
is absolutely {resp. Holder) continuous.

Theorem A.13. Let f and F:Q x TN — @ x TN be as before. The stable foliation .7?,’:,‘:
associated to F is absolutely continuous and Holder continuous, and the jacobian of eny

Poincaré map for Afﬂc is also Holder continuous. Moreover, all the Hdlder constants
involved may be taken uniform (i.e., independent of the map} in a neighbourhood of f.

Let &, be a probability measure on T and 7. be the measure induced by (m x e
on the quotient space (the space of leaves) of Fj:

Aty = (mx o) (U (v v 4})

for every measurable subset A of the quotient space. Recall that given any leafy € .7?,‘;:,
there is £ € TN such that v ¢ Q x {t}. Let m, be the smooth measure induced on v
by the riemannian metric of @ & @ x {t}. Using the previous theorem and the same
arguments as in the deterministic case, one proves that the measure (m x 6%} admits a
disintegration (pe 4}y along the leaves v of Af,_.,c which have Hélder continuous densities
with respect to the corresponding riemannian measure m.. More precisely, there are
constants ag > 0 and D < ¥y < 1, depending only on the map f, and there exists a

continuous function
H.:Q x TV = (0, +00)

bounded away from zero and infinity, such that log H is (ao, vo)-Hblder continuous on
every @ x {t}, and pe = (He | ¥) My, ¥ € Ff,, defines a disintegration of m x én:

[witmxon = [ fein e ) ).

for any ¥ € L'(m x 65).
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APPENDIX B: LARGE DEVIATIONS AND CENTRAL LIMIT THEOREMS

Here we prove the central limit theorem and (a special case of) the large deviations
theorem for independent identically distributed random variables, stated as Theorems
1.1 and 1.2 in the Introduction. ‘The arguments are standard and can be found in
many probability texts, see e.g. [Br68), [Bi79], [Ei85], [Du9l), but are included here for
convenience of the reader. We also give the precise statement of the martingale central
limit theorem, which was used in the proofs of Theorem 2.11 and Theorem 4.11. See
[Ne65] for a proof.

For proving Theorem 1.1 it is no restriction to suppose X =0 and ¢ =1 (it suffices
to replace Xn by (Xn — X)/, if necessary), and we do so. Let F(z) = P(Xn, < 7)
and Gn(z) = P(S. < z) be the distribution functions of X, (any n > 1) and S, =
(X1 + -+ X,,)//n), respectively. Clearly, it suffices to prove that

T
Qn(m)—)H(m)-_-%f e /2dt asn — 00,
—0

for every z € R. We introduce the characteristic functions

10 =B = [

—o0

+oo , +oo |
T dF(z) and ga(t) = E (%) = f e*“ 4G, (z)

-0

of X, and S, respectively. Since Xy, ..., X, are assumed to be independent
n
on(t) = B (¢#5%) = [] B (£5/V7) = fla/v/a)".
i=1
Taylor expansion gives, for each s € R,

fls)= /+oo (1 +isz — %szzz +o(s2)) dF(x)=1- %32 + o(s%),

—00

recall that B(X,) = X = 0 and E{(X?)} = ¢ = 1. As a consequence, log f(s) =
—152 + o(s?) and so, replacing above,

142 12 ey
gn(t)=exp(n 5ot —h{t)=¢ , asn —+oo.

Now, observe that k() is the characteristic function of the normalized gaussian law:

f+°° gita ( 1 e—m2/2) dg = e—t'12 1 f+°° o= (E—it)*/2 gy = =812
—00 Vam VT J s )

1t follows, using the inversion formula for the Fourier transform (and the fact that the
gaussian distribution function H is continuous), that &, must converge to H. This is
what we wanted to prove. []
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Now we prove Theorem 1.2 under an additional assumption, namely

E(Xpet®) < oo and B(X2e*")<oo forallteR
This allows for substantial simplification of technical aspects of the proof, without chang-
ing its basic flavour. On the other hand, this condition is always satisfied in the bounded
case, and so it represents no serious restriction in the context of Dynamics we are in-
terested in. Let ¢ : R — R be the free-energy function
. H(t) = log E(e %)

(any n > 1), note that ¢(0) = 0. Direct differentiation gives ¢'(0) = X =0, and

. E X a X,E tXn - E X" tX 432
#(8) = (er) EE(E:XZ)z (Zne'™)

-5 ((xe-5 (5o gm)) gm0

Note that the inequality is indeed strict: otherwise X,, would be constant, which would
eontradict ¢ > 0. Now we introduce the entropy function h: R — R, defined to be the
Legendre transform of ¢, that is,

h(z) = sup{tz — ¢(t) : t € R}.
The fact that ¢ is strictly convex implies
h{z) > 0 for every z # 0.

It is also easy to see that the supremum in the definition of h(z) may be restricted to
t > 01if z > 0, respectively t < 0 if z < 0. Now, given any £ > 0,

1o .
= X: > tne o t3 Koy o gnelt)
P(n?:l _s)e < E(e }=¢ ,
where the equality follows from the independence assumption. In other words,

'p(% 3 X 2 6] < o)

i=1

for every t > 0, and so
1
P(E E X; > E) < g}

i=l
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Using also ¢ < 0 we conclude that, for every n > 1 and ¢ > 0,

T
PU%E Xi| 2 €) < &M 4 g k=) < pgmmhle),
i=1
where h(e) = min{k(e), h(—€)} > 0, from which the conclusion of the theorem follows
immediately. 0O

Remark: More generally, see Theorem 11.4.1 in [EI85],

limsup % log ’P(% Y X; e K) < inf{h(2) : 2 € K}
=1

for every compact set K C R, and
1 L+
lim inf =1 =) X; > inf{h(z) : o
im inf og’P(n 'E=1 i € 0) 2 inf{h(z) : 2 € O}

for every open set O C R.

Before stating the martingale central limit theorem we recall a few noticns from prob-
ability thecry. Given a sequence X, n > 0, of real random variables on a probability
space (M, F, ), consider the shift map

RN 5 RN, (we))n 2 0= (Wapidno,
and the probability measure v on RY given by
V({(wn)nzu tw € Apye ey Whim € Am}) = p.(Xk_l(Ao), e ,Xk__:m(Am))

for each k& > 0, m > 0, and intervals Ag,... A, C R Then, the sequence (Xn)n>o is
called stationary if the measure v is T-invariant, and ergedic if v is T-ergodic. A relevant
particular case corresponds to having X,, = X o f* for every n 2 0, where X, is some
measurable function and f : M — M is a measurable map: the sequence is stationary
if ;¢ is f-invariant, and it is ergodic if x is f-ergodic.

Now let F,,, n > 0, be a non-increasing sequence of o-algebras on M. Then (X,)nz0
is a reversed martingale difference for (Fp)nzo if

(a) X, is Fp-measurable for every n > 0;

(b+) F(X; | Fay1) =0 for every n = 0.
Condition (b+) just means that [, X, du = 0 for every A € Fuy1. Direct martingale
differences are defined in a similar way, replacing “non-increasing” by “non-decreasing”
and (b+) by

(b-) B(Xn | Faz1) = 0 for every n > 1, and E(X;p) = 0.
A special example corresponds to X, being independent and identically distributed
with zero expectation: then (X, ), is a direct martingale difference for F,, = g-algebra
generated by {X; : § < n}, and a reversed martingale difference for F,, = o-algebra
generated by {X; : j > n} (the c-algebra generated by a set of functions is the smallest
o-algebra with respect to which all those functions are measurable).
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Martingale central limit thorem. Let (Xp)n>0 be a stationary, ergoedic, direct or
reversed, martingale difference, such that ¢ = E(X?) is strictly positive and finite.

Then, for every z € R,

n—1
1 1 z 2202
u({mEM:——ZXj(:n)<z})—> [ et/ gt asn - o0,
\/T_EJ.=0 ovi2r J o
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