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1. The concept of regularization.

The idea of regularization arose in connection with ill-posed problems. Given a problem
of the form
L(f)=0 (1.1)

where f is an element of a set X (usually a function space) and L: X — X is an operator
(usually differential, or integro-differential), (1.1) is said to be ill-posed when it has no
solutions, or has more than one soiution, or has a unique solution, but this solution does
not depend in a continuons way upon some parameters of the operator L. The idea is to
replace L by a regularized operator L + AM (with A € R, M: X — X), where M is such
that the problem- '

L{f) + AM(f) = (L + AM)(f) =0 (1.2)

is well-posed (i.e. it is not ill-posed) for any A > 0. Insuch a case (1.2) has a unique solution
fa, and one expects that as A approaches 0, fy provides some sort of approximation of a
solution of (1.1) (see [33]).

This concept applies to optimization problems if we take X = R™ and L = Vf where f

is a convex function (f: R"® — R), in which case {1.1) becomes

Vf(z)=0 (1.3)
or equivalently
min J(z). (1.4)

Assume that f is bounded below and take g:R™ — R strictly convex and coercive (i.e.

! lﬁm g(z) = +0c0). Problem (1.3) may have no solution or more than one solution but
Z||—o0

the regularized problem
Juin f(z)+ Ag(z) (1.5)

has a unique solution for each A > 0, because the minimand f + Ag is coercive (using the
fact that f is bounded below) which reduces the problem to a compact set, so guaranteeing

existence of solutions, and also strictly convex, implying uniqueness of the solution. (1.5)
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has a unique solution z{}) and under some reasonable hypotheses (including existence of

solutions of (1.4)) it can be proved that J‘li1'131+ z(A) exists and solves (1.4). The problem

in this regularization approach is that, although f 4+ Mg is strictly convex and coercive for
any A > 0 however small, for very small X this function will be numerically almost as ill
behaved as f, or, in other words, if the system V f(z) = 0 is ill conditioned then the system
(Vf+ AVyg)(x) = 0 will also be ill conditicned when A approaches 0, despite the fact that

it has a unique solution for all A > 0.

2. The proximal point algorithm for optimization in R".

In order to overcome the difficulty just mentioned, it would be desirable to develop a
regularization approach which does not require the regularization parameter A to aproach
0 (say that it works with a constant ). The proximal point algorithm attains such goal.

It generates a sequence {z¥} C R* in the following way:

" e R" (2.1)
241 = argmin{ () + M [lo — ") (22)

where )y is a real number satisfying
0< A< (2.3)

for some A > 0 (which includes the case of A; constant), and ||| is the Euclidean norm.
We will show next that under some reasonable hypotheses the sequence generated by
(2.1), (2.2) converges to a minimizer of f. One approach for this convergence proof goes
through the concept of firm nonexpansiveness, and works in fact for a problem much more
general than (1.3), as we will see in section 4. We follow here an approach based upoen the
weaker notion of Fejér convergence, which works also for the nonquadratic extensions of
the algorithm to be discussed in sections 11 - 15, for which the nonexpansiveness property

does not hold.




A sequence {y¥*} in R” is said to be Fejér convergent to a set U C R™ with respect to

the Euclidean distance if
v+ —uff < ||lv* —uff forall k>0, foralluel. (2.4)

We have the following result

PROPOSITION 2.1. If {y*} is Fejér convergent to U # @ then {y*} is bounded. If a cluster
point y of {y*} belongs to U then § = klim y*.
—o0

PRoOF: (2.4) implies ||y* — u|| < ||y° — u|| for any u € U so that the sequence {y*} is
contained in a ball of center u and radius ||y° — u”, henceforth it is bounded. For the second
statement, let {y’*} be a subsequence of {4*} such that limg_.co yi* = y. Sincey € U,
by (2.4} the sequence {”ylc - y"} is decreasing and nonnegative, and it has a subsequence
(namely {”yj‘ - y“}) which converges to 0. Then the whole sequence converges to 0, i.e.
0= lim |y* — y[| implying y = Jim y*. N

Now we can prove the convergence of the proximal point algorithm.

THREOREM 2.1. Let f:R™ — R be convex and continuously differentiable. Assume the
set U of minimizers of f on R® is nonempty. Then the sequence {z*} generated by (2.1},

{2.2) converges to a point z* € U.

PRroOF: We divide the proof in 4 steps. In Step 1 we prove that {z*} is well defined. In
Step 2 we prove that {z*} is Fejér convergent to U. In Step 3 we establish the uscful fact

that klim (zF+! — 2¥) = 0, to be used in Step 4, where we prove that any cluster point of
—+00

{z*} belongs to U. The results of Steps 2 and 4, together with Proposition 2.1, imply the

statement of the theorem.

STEP 1. The sequence {x*} is well defined.

By induction. Let fi(z) = f(z) + M ”;c - :c"”g. Since f attains its minimum, it is

bounded below, so that I lﬁm Fr(x) = co. Sinee fj is continuous and the minimization in
Z||—0o0

(2.2) reduces to a compact set, fi attains its minimum. Since f is convex and Ap |l:c -z ”
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is strictly convex, fi is strictly convex and so it has a unique minimizer, i.e. z**" is uniquely

determined.

SEP 2. [|oF — 3 < ||k — 7| — o1 — o*|® for all k> 0 and all T € U.

i =37 = et - 2+ 40841

“

=||=* - xk+1”2 + |25+ _3“2 +2(ak — gFH g g),

Since £**1 solves (2.2} we have
0 = Vfi(zFt) = V() + 2Ap(e* — 25).

From (2.5), (2.6) and convexity of f

¥ =l = e A - b4t =2 2t =, 0

—_ i k+1 kt1 = __1__ k1Y pre

= (VA1) M - F) > ) - f@)] 2 0

/\k )‘k
using the fact that T is a minimizer of f. The result follows from (2.7).
Srep 3. lim (2F! - 2%) =0,
k—oo

From Step 2

0 ek — o < Jo* ~ 2~ e+ 3"

2.5)

(2.6)

@7

(2.8)

Since {”:1:" - E”} is decreasing and nonnegative, it is convergent; so the right hand side of

{(2.8) converges to 0. The result follows.

STEP 4. {z*} has cluster points and all of them belong to U.

Existence of cluster points follows from Step 2 and the first statement of Proposi-

tion (2.1). Let T be a cluster point of {z*} and {z7*] a subsequence of {z*} such that

lim z/* = 7. By (2.6)
k—oo
Vi) = 205, (a7 — o),
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By Step 3, khﬁrgo ¥l = klir{:o ¢ = . Taking limits in (2.9) as k¥ — oo, and using

A <€ 3 and continuous differentiability of f,we get Vf(Z) = 0. By convexity of f, 7 € U.
Steps 2 and 4 indicate that both statements of Proposition 2.1 hold and therefore there

exists £* € U such that z* = inm L |

—C0

3. Maximal monotone operators.

A maximal monotone operator is a generalization of a positive semidefinite linear trans-
formation to the nonlinear case, which includes the gradient of a convex differentiable
function.

A € R"¥" i5 positive semidefinite iff 0 < 2'Ax = {z, Az} for all z. Let now T:R™ — R"
(not necessarily linear). 0 < (x,T(r)}does not work. Since 0 < (z, Az} for all z iff
0<{(z—-9y)Alz —¥) = (z —y, Az —~ Ay) for all z,y, we define:

DEFINTTION 3.1: T:R™* - R™ is monotone iff
0<{z—y,T(z)—T(y)) forallz,yecR" (3.1)

EXAMPLE 3.1: T = Vf with f convex and differentiable.

We like to cover also the nondifferentiable case, in which we use subgradients.

DEFINITION 3.2: £ is a subgradient of f at x iff

{&y—2) < f(y) - fl=) VyeR™ (3.2)

Let 3f(z) = {£ : £ is a subgradient of f at #}. The two following properties are well
known.
1. If f is differentiable and convex then 8f(z) = {V f(z)}.
‘2. If f is convex then 8f(z) # @ {for all = in the relative interior of the effective domain of
f-
Of associates to each z not just a vector but a subset of R™, so we need to extend the

notion of monotone operator to point-to-set operators. Let T:R" — P{R"}.
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DEFINITION 3.3: T is monotone iff
0L (z—~y,u—v) forallz,yeR", uweT(z), vel(y). (3.3)

ExaMrie 3.2: T = 9f with f convex. Take £ € T(z), n € T(y). By Definition 3.2
€,y —=) < fy) - f(z) and (~n,y — 7} < f(z) - F(y), implying 0 < {¢ — n,z - y).
DEFINITION 3.4; T is maximal monotone iff '

i} T is monotone.

ii) For all 7' monotone such that T(z) C T'(z) for all =, it holds that T = T".

It can be verified that 8f is maximal monotone for convex f. If we take T: R™ — P(R")
with T(z) C 8f(z) but T(x) # 8f(z) for some z then T is monotone but not maximal.

Since we admit T{z) = @ for some =z, point-to-set operators can always be inverted:

given T:R® — P(R") we define T~ R" — P(R") as y € T~ Y(z) iff = € T(y).

4. The proximal point algorithm for maximal monotone opera-
tors.

The problem of interest is finding a zero of a maximal monotone operator. f T: R" — R"®
then « is a zero of T iff T(z) = 0. If T: R" — P(R"), « is a zero of 1" iff 0 € T(z).
For f convex and T = @f, we have that z is a zero of T iff x is 2 minimizer of f, because

for 0 € T(x) we have that, for all y,

0={0,5— 2 < fly) — (=)

and then f(z) € f(y) for all y € R", so that the problem of finding the zeroes of maximal
monotone operators generalizes the problem of minimizing convex functions.

According to {2.6) the proximal point iteration is characterized by
V(") = 22 (a* — )
which leads to the natural extension

Ae(z® — 2y e T(z5)
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which is equivalent to

2t € (I 4 —T)(=*)
Ak

o e (T4 :,%;T)_l(mk). (4.1)

(4.1) is the iteration of the proximal point method for finding zeroes of maximal monotone
operators.
Before presenting an important result on maximal monotone operators, we introduce

the concept of firmly nonexpansive operator.

DEFINITION 4.1: P:R"™ — R™ is firmly nenexpansive iff
I1P(z) — P < o — vl = (z — ) — (P(=) ~ P)II"- (4.2)

PROPOSITION 4.1. If P is firmly nonexpansive then the sequence defined by =° € R",

*+1 = P(z*) is Fejér convergent to the set of fixed points of P.

ProoF: Apply (4.2) with y = T such that P(F) =%, 2 = z%, P{z) = 2"t and get
e+t -3 < fla* 2 — |l = *4)" (4.3)

Note that (4.3) is just Step 2 of Theorem 2.1.
For P : R® — P(R™"), we say that P is onto if for all y € R" there exists = € R" such
that y € P(z) and that P is one to one if for = 3 y it holds that P(z) N P(y) = . The

proof of the next theorem can be found in [27].

THEOREM 4.1. (Minty’s Theorem). If T:R™ — P(R") is monotone maximal and p > 0

then I+ pT is one to one and onto and (I 4+ pT)™! is firmly nonexpansive.

The first statement ensures that (4.1) is a true regularization, in the sense that z*+!
is uniquely determined; the second one implies convergence of (4.1). However we will
continue with our approach, and so we will use only the fact that I + T is onto, which
guarantees existence of z¥+! € (I 4 pT)~(z*). We will use neither uniqueness of gh¥l
nor firm nonexpasiveness of (I + xT)~'. We will need also the following lemma, which can

be rephrased as saying that maximal monotone operators are closed.
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LEMMA 4.1. If klim y* =9, lim z* =%, T is maximal monotone and y* € T{z*) then
. —00

k—co

y € I(Z).

PROOF: Define T as
T(z) ifz#7%

T'(z) = { TFHUF) ifz=5

We claim that T is monotone. We need to check
y—v,z—2)20 Vz,2, VyeT'(z), Wel() (44)

and by monotonicity of T it suffices to check (4.4) for ' =¥, 2’ = Z. By monotonicity of
T:
{y— y*, 2z — zk) >0 Yz, VyeT(2) (4.5)

Taking limits in (4.5):
{y—~v,z—z)=20 Vz, VyeT(z). (4.6)

So (4.4) holds and T" is monotone. Since T(x) C T'(z) for all z and T is maximal we
conclude that T = T, in particular T(z) = T'(z) = T(z) U {7}, i.e. ¥ € T(Z) and the

lemma is proved. 1

THEOREM 4.2. If T:R" — P(R") is maximal monotone and there exists T such that
0 € T(%) then the sequence {z*} defined by

e R" {(4.7)

S e (T4 /\lkT)’I(a:”) (4.8)

with 0 < A < A converges to a vector * such that 0 € T{z*).
ProoOF: We repeat the steps of the proof of Theorem 2.1.
STEP 1. The sequence {z*} is well defined.

{z*} is well defined by Minty’s Theorem.
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step 2. [t —|” < ||o* — T||” - =4+ — 2*||* for all k and all T such that 0 € T(Z).

As in Theorem 2.1

st = 2 = e+ = 3l — et = o = (ruget - 241) 0,644 —5) 20 (49)
k

because 0 € T(T), and (4.9) follows from monotonicity of T
SteP 3. lim (z**1 —2*)=0.
k—oa

Follows from Step 2 as in Theorem 2.1.
STEP 4. {«*} has cluster points and all of them are zeroes of T.

Existence of cluster points follows from Step 2 as in Theorem 2.1. Let & be a cluster
point of {z*} and {z/*} a subsequence of {z*} such that klim z* = . From Step 3

— 00

klim ¥+ = 3 and from (4.8)
— 00

A (27 — 2y € T(avt). (4.10)

The left hand side of (4.10) converges to 0, because Ay < A, but we cannot take limits in
the right hand side in 2 straightforward way. This is the point where maximality of I' has
to be used. We invoke Lemma 4.1 in {4.10) with y* = Xj, (z%% —g7+1), 5 =0, 2* = gt +1,
z = &, and conclude that 0 € T(%), so Step 4 is proved. As in Theorem 2.1, Steps 2 and 4

and the Fejér convergence theorem establish the result. 1

We proceed now to extend Theorem 4.2 to a Hilbert space. Steps 1-3 of Theorem 4.2
hold with the same proof but it is not true any more that a bounded sequence has cluster
points. We need to introduce the concept of weak convergence.

Let H be a Hilbert space.

DEFINITION 4.2:

i) A sequence {x*} C H is strongly convergent to = € H (z* 2 z) iff
— 00

0= klin:o ”a:k - m"z = klgy; (a:" - :c,:ck — a:)
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it} A sequence {z*} C H is weakly convergent to = € H {z* kvibo z) iff

0= kl.i.f& (m"—z,y) forally € H.

z¥ — =z implies trivially (via Canchy-Schwartz) that z* kir z but the opposite
—00

k—oo

o
implication does not hold: take H = £ = {z = {zn}nen : Z‘.’cﬁ < oo} with {z,y) =

n=1

Zznyn. Take {c*} C H with ¢f = 6, (Kronecker’s delta). Then c* k:wo'o 0 because

n=1

o0
kll’lll.lo (e" HO,H) = kll{iolo (ek,y) = k]in;o yi = 0, using gyﬁ =0. Not.e t},lat ||e"|| =1 for

all k and (ck,ej) =0, ”ek - ej” = /2 for all j # k. For weak convergence we have the
following result (see, e.g. [31 pp.141-143,177]).

THEOREM 4.3. (Bourbaki-Alaoghi). I {z*} C H is bounded then {z*} has a weakly

convergent subsequence,
We also need an extension of Lemma 4.1 to weak convergence.
LEMMA 4.2. If % o 7, zF k—_%:o %, T is maximal monotone and y* € T(z*) then
7eTE). |
PROOF: As in the proof of Lemma 4.1 it suffices to prove:
{y —7,z—7%) > 0for all 2, for all y € T(x) (4.11)

and we know

(y - y*, 2~ 2*) > Ofor all z and all y € T(z2). (4.12)
By Banach-Steinhaus’ Theorem (see, e.g., [31]) the sequence {z*} is bounded. Let u* =

—_— - . w
y—y*, vF = z—zF u=y—7, v=1z—3, so that {v*} is bounded, v¥ — u,v* = v
k—oco k—rco

We claim that klim {u*, v*) = (u,v):
— 00

(e, 0%) = (w0l = [ = w,0*) + (0" - )] < [ — [ o] + [ * = o). (413)
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The right hand side of (4.13) converges to 0 and the claim is established, so that the left
hand side of {4.12) converges to the left hand side of {4.11) and then (4.11} follows from
(4.12). The lemma is proved. §

With the help of Theorem 4.3 and Lemma 4.2 we extend Theorem 4.2 to:

THEOREM 4.4. If T: H — P(H) is maximal monotone and there exists ¥ € H such that
0 € T(T) then the sequence

P eH (4-14)

#F e (I + %T)_l(x"), (4.15)
k

with 0 < M < X, is weakly convergent to a point 2* € H such that 0 € T(z*).

ProoF: Steps 1, 2 and 3 of Theorem 4.2 hold without changes. For Step 4 we must
restrict the result to weak cluster points (i.e. weak limits of subsequences) and prove that
any weak eluster point is a 0 of T'. Existence of weak cluster points follows from Theorem

4.3, and by (4.15)

Ajp (27 = 2Py € T(aHY) (4.16)
where {z/%} is a subsequence of {z*} such that zi* kl’ #. By Step 3 we have z/++! kib
— o0 — 00

2. In order to take limits in (4.16) we apply Lemma 4.2 to (4.16), noting that A, (z/* —
pietly 0 by Step 3, and we get that 0 ¢ T(£), completing the proof of Step 4.

Unfortunately, the Fejér convergence theorem does not hold with weak limits, so we
must prove that there is only one cluster point in a direct way. Assume & and ¥ are two
weak cluster points. By Step 4, 0 € T(#), 0 € T(2) and therefore, by Step 2, {||=* — ||}

and {“a:" ~ &||} converge, say to o and §. Then
lle* = &) = || — " + 13 - 3)I° + 2 (=* — 5,8 — &). (4.17)

{4.17) implies

2(z* — 2,2 - %) = ot — B — 13— 2|°. (4.18)

12



-Since z

—  # for some subsequence {z%*} we have lim (z% — 3, % —£) =0 and
k—oo k—o0
- then, from (4.18)

12 - 2]l = o® — 82, (4.19)
In a similar fashion [o* —&[|* = |o* — 3| + | — 2|® + 2(z* — %, — &), so that

2(zt — %,& - &) = B? — a® — ||z — 2|*, implying
— 00

|~ &||* = 8% — o®. (4.20)

From (4.19), (4.20), ||# — :':EH2 =0, i.e. # = &, so that the weak cluster point is unique.

5. Convergence rate of the proximal point algorithm.

It is not difficult to establish convergence rate results (basically linearity of the conver-
gence rate) but this easiness is somewhat tricky; the hypotheses which allow such a simple’
proof mean basically that the operator T is quite regular to begin with: for the case of
T = Vf with f convex, these hypotheses are almost equivalent to demanding that f have
a unique minimizer z* and that V2 f{z*) be positive definite, in which case it is not clear
why one should regularize it. Later on we will present linear convergence results for some
cases where such hypotheses do not hold, as linear programming, i.e. with f defined as

cz fAr=>b x>0
+co  otherwise

) = { (5.1)

without demanding uniqueness of the solution, but the probf is much harder. We start
by recalling that a function g is Lipschitz continuous at z if there exists o such that
llg(z) — g()ll < & lx — y|| for y in some neighborhood of z. The natural extension to
operators T: H — P(H) is to say that given £ and u € T(z) there exist o such that
[l —v[| < oz~ y| for all y in a neighborhood of z and all v € T{y). In particular we
have

DEFINITION 5.1: If T'is a maximal monotone operator (T: H — P(H}), we say that 71
is Lipschitz continuous at 0 with constant o if there exists 8 such that ||z —F|| < ||yl

whenever 0 € T(Z), y € T(z) and ||y|| < 3.
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Note that Lipschitz continuity of -1 at 0 implies that there exists at most one & such
that 0 € T(z), because if we have 0 € T(E), 0 € T(&), we get ||z —F|| < oy] and
we can take # = £, y = 0 which gives |T— &) = 0,ie. F=2 HT = Vf with f
convex, Lipschitz continuity of T~! at 0 implies uniqueness of the minimizer of f and .
|z — Z|| < ¢ ||Vf(z)]] where T is the minimizer and z is close to 5. ¥ V2f(Z) is positive
definite and its smaller eigenvalue is # > 0, we have Lipschitz continuity with ¢ = %,
because V f{z) = V2f(% 4 8(z — T))(z — F) with 0 < 8 < 1, so that [V f(z}]} = Tllz — =,
where 7 is the smallest eigenvaluerf V*f(Z + 8(z — T)) and we have 7 > in for z close
encugh to T, so that [z —Z|| £ %”Vf(a:)[[ This shows that when T™' is Lipschitz
continuous at 0 it hardly needs regulanzation, but this hypothesis allows a very simple

linear convergence proof.

THEOREM 5.1. If T is maximal monotone, T~! is Lipschitz continuous at * with constant
o and there exists T such that 0 € T(Z) then T is the only zero of T and the sequence
defined by the proximal point method (ie. (4.11}, (4.12)} satisfies, for k large enough,

[|*+ (5.2)

g
VI+(@h?

so {*} converges to T superlinearly if klim A = 0 and linearly otherwise, with an asym-
—00

ol

1+oA

ptotic error constant bounded by
Proor: Using Definition 5.1 with z = 257, we get
l=* — | < o |ly| for all y € T(z**') such that |y]] < 8. (5.3)

By (4.12) Ae(z* — c**1) € T(z*+'). Since Az < 3 and Jim (z¥+! — z*) = 0 by Step 3
— o0
of Theorem 4.4, we have ||)\k(.r" — z"“"l)” < B for large enough k, so that we can take
y = dx(z* — 2*+1) in (5.3) obtaining:
25+ — 2" < o222 [|o*+ - HF < PN (flat - 3 - - F) (5.9)
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using Step 2 of Theorem 4.4 in the rightmost inequality of (5.4). (5.2} follows immediately

from (5.4), implying superlinear convergence when klim Ag = 0. For the last statement of
—o0

the theorem, get from (5.4)
e+~ < o23(e* - 7 - 5+ ~ 3] 5

which implies ||z**! — 7| < \/ﬁ l|l=* —z|f. m

Some results are available for special cases where T~ is not Lipschitz continuous at 0.
Yor instance, if f is polyhedral (i.e. its epigraph is a polyhedron, e.g. problem (5.1)) and

bounded below on R", it has been proved in [29] that convergence is indeed finite.

6. Approximate versions of the proximal point algorithm.

Let P, = (I + = T) !, so that the proximal point algorithm for finding the zeroes of
Ak

the maximal monotone operator T' can be written as
z® e R® (6.1)

aF ! = py(®). (6.2)

Note that the equality in (6.2) is legitimate by the one-to-one statement of Minty’s
Theorem. Two approximate versions of the algorithm can be obtained by requiring that,

instead of (6.2), zF*! is chosen so that it satisfies just
[le*** = Pu(z*)f| < ex (6.3)
or
."Ek+1 - Pk(:x:k)u <ep ”$k+1 - .'J:k” . (6.4)
All previous convergence results {including the convergence rate) can be established for

oo
algorithms (6.3) and (6.4), when e; is such that ZE" < oo, The price to be paid is a
k=0

considerable complication in some of the proofs (see {29]).
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7. Augmented Lagrangians.

After establishing the convergence properties of the proximal point method, it is worfch-
while to discuss its usefulness in optimization. The first observation is that the proximal
point method should be seen more as a conceptual scheme than as an implementable
algorithm. Though in general fi(z) = f(z) + Az ":c" - z“z is easier to minimize than f,
because of its more regular behavior, each iteration of the proximal point method requires
minimization of a function on R™, for which some other numerical procedure must be
used. The virtues of the proximal point method will make themselves evident only when
the subproblems are substantially easier than the original problem.

Now, there are many situations in which it pays to replace one minimization problem by a
sequence of minimization problems. One of them is the case of constrained original problem
and unconstrained subproblems. Another one could be inequality constrained original
problem and equality constrained subproblems. All the applications of the proximal point
method and its extensions which we will consider in the remainder of the text will be of
one of these two types. In this section we discuss the so called augmented Lagrangian
method, which substitutes a sequence of unconstrained subproblems for a consirained
original problem. We will show that this method is just a particular instance of the
proximal point method, and our results of the previous sections will provide a convergence
analysis for the augmented Lagrangian algorithm far easier than a direct study.

The problem under consideration is
min f(z) . (7.1)

sit. gi{z) £0 (1<i<m) (7.2)

with f,g:: R™ — R convex and differentiable. The standard Lagrangian for this problem
is L:R" x R™ — R. defined by

L(z,y) = =)+ ;yigi(?»') ify>0 (1.3)

+00 otherwise.
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One approach to solve (7.1)-(7.2) is to generate two sequences, {z*} ¢ R", {y*} C R™
so that, given y* > 0,

«* = argmin L(z, y*) (7.4)

zER"

and then y* is updated in some appropriate way. Computationally, the trouble lies in the
discontinuity of L(z, - ). This leads to the notion of an augmented Lagrangian with better
differentiability properties. For z € R, let 2+ € R" be defined as .r:," = max{z;,0}. Take

@ > 0 and define the augmented Lagrangian L,:R™ x R™ — R. as
1 m
Lafz,8) = () + = (s + 2002 P — 97} (7.5)
i=1

A simple computation shows that L,(z,y) is differentiable if f and g; are differentiable

(however L, is not twice differentiable, even when this holds for f and ¢;). In fact

V.Lalz,y) = Vf(z) + Z(y.- + 2agi())t Vgi(z). (7.6)

=1

The augmented Lagrangian method generates {z*} C R*, {y*} € R™ through:

¥’ eRT (7.7)
and given y* € R™
. z* = argmin L.(z,y*) {7.8)
zER?
uf ! = (5 + 200:(="))*. (7.9)

Consider now the dual objective ¢:R™ — R defined by
-ply) = min, L(z,y) (7.10)

with L as in (7.3). It is easy to see that ¢ is concave,
We prove next that the sequence {y*} generated by (7.7)-{7.9) is the same as the sequence
generated by the proximal point method applied to —p.
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THEOREM 7.1. Let {§*} € R™ be the sequence generated by the proximal point method

for Iélliln {—¢(¥)}, with Ax = L, and {y*} the sequence given by (7.7)-(7.9). If§° = ¢°
JeRm
then 7% = yF for all k.

PrRooF: By induction. True for k = 0. Assume y* = 7*. Since

) 1
7+ = argmin{-¢(y) + |y - |}

we have
1 _ —
5o @ — k) € Bp (). (1.11)
By definition of 8f and ¢, {7.11) is equivalent to

:21- @H’I —yF g = u) < P(TT) — p(u) for all w > 0 (7.12)
o

ie.

o(u) < (@) ~ (yH’l y* " — u} for all w > 0. (7.13)

Since (7.13) determines 7*+' uniquely, it suffices to check that (7.13) holds with y*+
substituting for 7**1, By (7.6), (7.8), (7.9), (7.3)

0 = V. Lo(a*,y*) = VA(=*) + D (vF + 200:(z*))" Vagi(=")
=1

= Vf(e*) + i ¥ 1Vgi(z*) € 8, L(=* 4" ). (7.14)

i=1
(7.14) implies that =¥ minimizes L{ - ,y**") and, by (7.10)
Py = f(=") + Zy"+’g.($")- (7.15)
i=1

{7.15) gives an expression for the first term in the right hand side of (7.13) with y*+!

i
instead of F*+1, Next we evaluate the second term, i.e. 2= (yF+! —y*,y** —u). By (7.9)

yiH ¥ = max{-yk, 2agi(2*)} 2 200:(z%) (7.16)
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which implies

k+1(

yE (yF — oF) = 2048+ gi(2*). (1.17)

So, for any u = 0

k41 k+1

%(yf“—y.")(y?“—ua) =y} ge(w")—%(y; ~yF)ui < v gi(e* )~ vigi(a®). (7.18)

From (7.15), (7.18)

1
Py ) — o (M oy - )

2 f@)+ Y ui T ee) - D uf aie) + ) wini(a®)
i=1 =1 i

i=1

= Lz, u) > mrgig L(z,u) = p(u). (7.19)

(7.19) shows that (7.13) holds with y*+1 substituting for F**?, so that y*+1 = g%+ and

the induction step is complete. 1

Theorem 7.1, combined with Theorem 4.2, ensures convergence of the sequence {y*}
generated by the augmented Lagrangian method to a maximizer y* of the dual objective ¢
{whenever problem (7.1)-(7.2) has solutions), i.e., by standard duality results, to a vector
y" of optimal Karush-Kuhn-Tucker multipliers for problem (7.1)-(7.2). Convergence of
the sequence {x*} cannot be immediately obtained from the proximal point theory (this
requires some additicnal hypotheses, including a Slater condition, i.e. existence of 7 such
that g:(Z) < 0 for all ), However, it is immediate from the fact that =¥ minimizes
L( - ,y**?!) that if the sequence {z*] converges to z* then the pair (z*,y*) is a saddle
point of L, and again standard convex duality results imply that z* is 2 solution of (7.1)-

(7.2).

8. Penalization.

Consider problem
min f(z)

st.zeS

(8.1)
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with § C R™ closed. One approach to deal with (8.1) is the introduction of a penalty
function g, satisfying g(x) = co if z ¢ 5. For A > 0, the problem

min {f(z) + Ag(=)) (82)

will have its solutions in § (if it has solutions at all). If (8.1) has solutions and ¢ is
appropriately chosen, then (8.2) will have a unique solution 2(A) and under some additional

hypotheses it can be proved that Jl\in%) £(}) exists and solves (8.1). As in the case of

regularization, the trouble is that (8.2) becomes ill conditioned for very small A (i.e., for
points x close to the boundary 85 of 5, g(z) is very large and Ag(x) becomes sort of
indetermined when A approaches 0). The idea here is to combine penalization with the
proximal point approach so as to get convergence even when A is far from 0. This is
related somehow to the so called exact penalty functions, where ¢ is chosen so that z(})
obtained from (8.2) solves (8.1) for some fixed A. The difference is that in the exact penalty
function approach existence of A is theoretically gua.rante;ad but. the value of X is not known
beforehand, so that it may be so small that the indetermination discussed above is still
present. The proximal point approach on the other hand will work with an arbitrary A
(or a sequence Ap bounded above). We will attain this goal through the introduction of 2
distance-like function D: § x § — R4 (where S is the interior of §) such that D(z,y) =0
iff = y and D(z, y) approaches infinity as y approaches the boundary 85 of §. We will
consider two classes of such “distances”: Bregman distances (which in fact are defined on
S x 5) and p-divergences. In both cases the proximal poiﬁt approach consists of generating
a sequence {x*} with z* € S and

FrLag e argmin{ f(z) + /\kD(.?:,:Uk)}. (8.3)
zER”?

9. Bregman functions and distances.

Let S be an open and convex subset of R™ and S its closure. Consider a convex real

function h defined on S and let D;:'§ x § — R be
Di(z,y) = h(z) — h(y) — VA(y)'(z — y)- (9.1)
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h is said to be a Bregmen function {and D) the Bregman distence induced by k) if the

following conditions hold:
B1) k is continuously differentiable on §.
B2) h is strictly convex and continuous on 5.
B3) For all § € R the partial level sets I'1(y,6) = {x € 5 : Di(z,y) < 6}, Doz, 8) = {y €
5 Dy(x,y) < §} are bounded for all y € §, all © € T respectively.
B4) If {y*} C § converges to y* then Dx(y*,y*) converges to 0.
B5) If {z*} C § and {y*} C § are sequences such that {z*} is bounded, kll‘ngo y* = y* and

Jim Dy (z%,4¥) = 0 then Jim ot =y,

S is called the zome of h. It is easy to check that Dy(z,y) > Oforallz € 5,y € §
and Dy(z,y) = 0if and only if # = y. We remark that B4 and B5 hold automatically

, when z*,y* arein S, asa consequence of B1, B2 and B3, and so they need to be checked
only at points in the boundary 85 of S. It has been proved in [13] that when § =R" a

* sufficient condition for a convex and differentiable function A to be a Bregman function is
i, 1=

Before presenting examples of Bregman functions, we introduce two subclasses to be
used in the sequel.

A Bregman function / is said to be boundary coercive if:

B6) If {y*} C S is such that Jim y* = y € 85, then Jim Vh(y*)(z — v*) = —co for all
‘z€S.
A Bregman function k is said to be zene coercive if:

BT) For every y € R" there exists z € 5 such that Vhi(z) = y.

B6 will be a key concept in connection with proximal point methods for the following
reason. It is clear from B1-B5 that if A is Bregman function with zone § and §' is an
open subset of S then & is also a Bregman function with zone 5’, i.e. we cannot recover
S from h. On the other hand, we want to use I, for penalization purposes, in order to
minimize functions on a closed convex set C. The information about the set € in the

algorithms considercd in the sequel will be encapsulated in Dy, so that € will have to
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be recoverable from h. BG fits this situation, because divergence of VA at 85 makes S
univocally determined by . In all our algorithms we will take C equal to the closure S of
the zone S of the Bregman function h.

B7 is required in the convergence analyses of the proximal point method for variational
inequality problems discussed in scetion 11 and of the approximate version of the proximal
point method discussed in section 15. It is equivalent to Rockafellar’s concept of essential
smoothness.

We will give now some cxamples of Bregman functions.

EXAMPLE 9.1: § = R", h(z) = r* Mz, with M € R"*" symmetric and positive definite.
In this case Dy(z, ) =(z —y)M(z —y) = ||z — y]ﬁ‘,f

EXAMPLE 9.2: S=R%, h(z) = ij log z;, extended with contimuity to JRY with the
j=1

convention that 0log 0 = 0. In this case Dy (z,y) = Z(m, log = + yj — %), which is the
=1

Kullback-Leibler divergence, widely used in statistics.

EXAMPLE 9.3: § = R}, h(z) = » (25 —~af) witha > 1,0 < f < 1. Fora =2,

=1

B = 1 we get Da(x, ) =z — g +E (VE; — /45 and for a = 1, f = } we get

S/
Dn(z,y) = Z 2/ \/y—.l)2

j=1
The Bregman functions of Examples 9.1 and 9.2 are zone and boundary coercive, and
the same holds for Example 9.3 for &« > 1. For o = 1 this h is boundary but not zone
coercive, h as in Example 9.1 but with § = R}, instead of R" is neither zone nor
boundary coercive.
The following elementary property of Bregman distances follows easily from (9.1) and

conditions B1-B&.

PROPOSITION 9.1. If h is a Bregman function with zone 5 then
i) Da(2,) — Da(2,2) - Da(21) = {Vh(y) = Vh(2),z — ) for all s € iz € S,
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i) Vo Dy(z,y) = VA(z) — Vh{y) for all z,y € 5,
1) Dy{ - ,y) is strictly convex for all y € 5.

B6 and B7 are related. We conjecture that B7 implies B6. This is true at least in
one significant case, as the following proposition shows. Assume that § is a box, ie.
§={(a;, ;) x +++ % {an,b,), with a; € RU{—cc}, b; € RU {40}, ¢; < b; (1 £ j < n),
and that h is separable, i.e. A(z) = E;-‘:l hi(z;), with b; : [, 5;]— R.

PROPOSITION 9.2, If 5 is a box and h is separable then
1) D, is zone coercive if and only if imy_q; h;(t) = —00, limy_.p; h;(t) = +o0 for all 5.
ii) Dy is boundary coercive if and only if limy_.q; ;(t) = —oo for all § such that a; >

and lim, .y, hj(t) = 400 for all j such that b; < +co.

Proor:
i) It is immediate that k; is strictly convex for all j, and also that V4 is ento if and only
if k} is onto for all j. Since h; is strictly convex, &' is increasing and the result follows.
ii) Note that VA{y*)(z — ¢y*) = E_,—1 J(yJ Xzj — y;‘) If h is boundary coercive and
a; > —oo, take ¢ € S, yj—‘ =x;if j # 1, yF = a; + 1/k, so that limp—o y* = ¥ with
yj = zj for j # 4, yi = a;. Then VA(y*) (= — y*) = hi{a; + 1/k)(z: — a; + 1/k) and
limg— oo VR ) (x — v%) = (2; — a;) limp—oo Bl(a; + 1/k) = (2; —a;) limy—.,, Ri{(). Since
z € S, we have z; > a; and so limy_.,, h{(t) = —oco. We can prove in a similar way that

lim,—;, hi(t) = 400 when b; < +oo. The reverse implication is immediate. [ |

COROLLARY 9.1. If§ is a box and h is separable then zone coerciveness implies boundary

coerciveness,

10. The proximal point method with Bregman distances.

The problem of interest is:
min f(z)
_ (10.1)
st.z€§
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with § C R" open and convex, S the closure of S and f convex and continuous on S. The

proximal point method with Bregman distances is defined as:
Les (10.2)
et = argmin{ f(z) + A Dy(z,z)} (10.3)
s

where h is a Bregman function with zone 5 and A satisfles
0< A <A (10.4)

for some A > 0.
We proceed to the convergence analysis. We assume from now on that (10.1) has solu-

tions, so that f is bounded helow on 5.

THEOREM 10.1. If problem (10.1) has solutions and h is boundary coercive with respect to
S then the sequence {x*} generated by (10.2),(10.3) converges o a solution #* of problem
(10.1).

PROOF: We follow the same line as in Theorem 2.1, with D, instead of |2
STEP 1. The sequence {z*} is well defined and contained in S.

Let # be 2 lower hound for f on 5 and Ffx(z) = flz) + X Dulz, z¥). Then fi(z) 2
B+ A Dy (=, z* } and it follows from B3 that the level sets of fi are bounded, so that the
minimization in {10.3) reduces to a compact set and the minimum is attained. f; is strictly
convex by convexity of & and Proposition 9.1(3ii), so that the minimum is unique and PLag)
is uniquely determined.

We prove next that 2¥+1 € §. It is easy to check from (10.3) that z*+7 is the only z € §
such that

M Vh(z*) € 8(f 4 Ah)(x). (10.5)

We will show that, under B6, 8(f + Axh)(z) = 0 for all = € 35, which implies, in view of
(10.5), that z**! ¢ 5. Take z € 05 and assume that there exists £ € 8(f + Aphi)(z). Take
z € S and define

yt=(1—en)z + ez (10.6)
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with tlirn ge = 0. Then yf € §, by convexity of §, and k]im yt = z. So
00 oo

sek'(z —7) = £'(y* — 2) < f(y*") ~ (=) + M(h(y*) - h(x))
< f(¥') - Flz) + MRy (v - 2)

< e f(z) — F(=) + At

TR (e ) (107)

using (10.6) in the first equality, definition of 8(f + Axk) in the first inequality, B2 and
convexity of k in the second inequality, (10.6) again and convexity of f in the third one.

+ From (10.7)

1 o (@) = () + € — )] < VRO (2~ o). (10.8)

Since zlim y* = x € 85, B6 implies that the right hand side of (10.8) goes to —co as
— 00

£ goes to oo, while the left hand side has a finite limit. This contradiction implies that

B(f + Axh) =@ for all x € S and so 2**! € 8.
STEP 2. Dy(T,2**!) < Di(%,z%) — Dy(z*+!, z¥) for all k and every solution T of (10.1).

We use Proposition 9.1(i) with = 7,y = 2*,z = o**! and get
Dy(Z,2*) — Di(Z,z* 1) — Dy (2%, 2*) = (Vh(z*) — VA(z*), 24 — 7). (10.9)

From (10.3)
0 € 8[f + MDu(-, 2")(=*). (10.10)

From (10.10) and Proposition 9.1(ii)
MlVA(*) — Vh(zH)] € af(e*), ' (10.11)
Let y* = Ae(Vh(z*) — VR(z*t1)). From (10.9) and the deﬁnition‘of subgradient
Da(3,54) - D(E, M) - Dy(eH o) = A -3 2 ) - £(E)

(10.12)

and the result follows because T minimizes f on 5.
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StEP 3. {z*} is bounded, and klim x#* = & implies klim et = g
— 00 —00

From Step 2 { Dx(, )} is decreasing and nonnegative, hence convergent, and Dy (zF+1,2%) <
Dy(T, 2%) — Dp(%,2%") so that -
Jim Di(z* ) = 0. (10.13)
Since {D4(%,z*)} is decreasing, we have Dy(ZF,2*) € Du(T,2°) and thercfore {z*} is
bounded by B3. If len;o =3 for a subsequence {z%*} of {z*} then kli'ngo 2t =3 by
BS5. |
STEP 4. The sequence {x*} has cluster points all of which are solutions of (10.1).

Take a solution T of (10.1). Let 2 be a cluster point of {z*} and {7} a subsequence of

{z*} such that k]im it = #. Existence of # follows from Step 3 which also ensures that
—c0 :

lim z#*+! =, From (10.12)

k—oo

1, 1. B

0< i(f(?«’*“) - f(@) € (=) - f(=)

k (10.14)

< Di(,2%*) — Da(&, 2 *!) - Da(a™*,2%*) — 0
—+00

using convergence of {Dy(Z,2%)} and B5. From (10.14), taking limits as k goes to

o, f(8) = f(Z). Since S is closed and {z*} C S, we have 2 € S and so & solves
(10.1).

In order to complete the proof we need a Fejér convergence theorem for Bregman
distances, which in fact holds, but we can proceed directly: Iet & be a cluster point
of {z%} and take a subsequence {z/*} of {z*} such that klim zf = % Then by B4

— 00
klim Dp(#,2/*) = 0. By Step 4 & solves (10.1) and so by Step 2 {Dy(2,z*)} is a non-
— o0
negative and decreasing sequence with a subsequence converging to 0. It follows that the

whole sequence converges to 0 and by B4 again we get klim =z
-+ 00

We remark that for this case we cannot use firm nonexpansiveness instead of Fejér

convergence. If we define Py: 5 — 5 as

Pi(z) = aiggljn {£(v) + M Da(y, )}
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it is not true that
Dy (Pr(z), Pe(y)) € Du(z,y) — Doz — y, Pe{z) — Pi(y)) for all 2,y € §
and the same happens with
| Du(Pi(2), Pe(v)) < Dr(z,y) — Di(z — Pi(z),y — Pe(y))for all 2,y € §

which would be the natural extensions of firm nonexpansiveness toc Bregman distan-
ces. In fact Py is not even nonexpansive with respect to Dy, i.e. it is not true that
Dy (Pi(z), Pe(y)) < Dy(z,y) forallz,y € S.

We present now an application of the proximal point method with Bregman distances,
similar to the case discussed in section 7. We show that the proximal point method
allows us to recover another augmented Lagrangian method, namely Bertsekas’ exponential

multipliers method. We consider again

min f(z)

s.t. gi(2) <0 (1<i<m)

(10.15)
with f,¢;: R® — R convex and differentiable. The augmented Lagrangian in this case is

1 m
o = - ;o9 (z) 10.16
Laley) =)+ 5 D we (10.16)
with o > 0. This L, is as many times differentiable in = as the data f, ¢;, which was not
the case for L, as given by (7.5). The exponential multipliers method generates a sequence

{z*} c R"*, {¥*} ¢ R™ through

yO e R—T (10.17)
and, piven y*,
= = argmin L,,,(z,y") (10.18)
2ERn
y:c+l — y,!’ c8i(z*) (10.19)
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As before, we consider the dual objective (y) = zxgitx}‘ {f(m)+§ yigi(z)} = :réuﬁ L(z,y),

defined for y > 0 and the sequence {y*} defined by (10.17)-(10.19) coincides with the

sequence generated by the proximal point method with Bregman distances (with Az =

n

1, h(z) = Z x;log x;), applied to min{—p(y}} st. y > 0.
=1 ’

THEOREM 10.2. Let {g*} be the sequence generated by (10.17)-(10.19), and {g*} be the

sequence obtained through
_ , 1
g+ = argmin {—e(y) + —Daly,v*)) (10.20)
¥20 o

with R} — R given by h(z} = E z;logz;. i y° =3° then y* =§* for all k.

j=1
ProoF: By induction. True for k = 0. Assume y* = §*. For the & under consideration
(10.11) becomes

u* € —p)(FH) (10.21)
with
k_1 uf
;== log| =—]. 10.22
a % (yfﬂ ( )
By (10.22) and definition of 8f
= Z log ( k+1) < p(F) ~ () for all u 2 0. (10.23)
i=1

Since (10.23) determines 7**' uniquely, it suffices to check that (10.23) holds with y*+!

substituting for 71, i.e.

ey — E log ( L+1) ( B u.-) = o(u) for all > 0. (10.24)
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From (10.16)

VeLa(z,y) = Vf(z) + Zm: %4 OV gi(z) (10.25)

i=1

and from (10.18), (10.19)

0=V LQ(:I: yk) —Vf(n:k)+ Z y'C agi(z* )Vg;(xk)

=1

(10.26)
= VIR + ) = VLt )
i=1
so that =¥ minimizes L(-, y*t), i.e.
o(y*™) = f(=*) + Z it gi(=z¥). (10.27)
Now we evaluate the second term in the left hand side of (10.24). From (10.19)
1 y!‘ E .
—log | 5% ) = giz"). (10.28)
@ (y-’““")
Substituting (10.28) in (10.24):
)= 3 3 g () (8- w) = 16+ 3 o)
i=1 {10.29)

= k > i =
L{z®,u) > min Liz,u) = w(u).

So (10.24) holds and y*+1 = ght!, g

As in section 7, our convergence theorem for the proximal point method guarantees that
{y*} converges to a maximizer of ¢ on § = R}, i.e. to an optimal vector of Karush-Kuhn-
Tucker multipliers for problem {10.15). It also follows from {10.26) that all cluster points
of {x*} (if any) are solutions of (10.15), via standard convex duality results, but in this

case also convergence of {z*} does not follow directly from the proximal point convergence
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theory, which deals only with {y*}, and demands some additional hypotheses, like a Slater
condition on problem (10.15). This approach provides a wider and easier convergence
analysis for the exponential multiplier method.

We end this section with an interesting property of the proximal point method with
Bregman functions applied to linear or quadratic programming, namely that the limit of
the generated sequence is the solution of the problem which is closest, in the sense of Dy,

to the initial iterate 2°. Consider problem P:

minf(z) = %xth +ctzr 4y (10.30)
s.t. Az =1b (10.31)
220 (10.32)

with ¢ symmetric and positive semidefinite, A € R™**, b R™, ¢ € R" and v € R. The
proximal point method can be applied to problem P, defining f as:

f(=) if z satisfies (10.31)-(10.32)

+oo otherwise

7o) = {

and using (2.2) or (10.3) with f substituting for f. The property mentioned above holds
when we use the proximal point method with a boundary coercive Bregman function h
with zone § = R7,, which excludes the use of (2.2), corresponding to h(z) = 1/2 Il=)?
whose zone is R". ‘.

Using f, subproblem (10.3) becomes

min f(z) + A Di(z, %) (10.33)
st. Az =b (10.34)
z > 0. (10.35)

If h is boundary coercive with respect to § = R then **1 > 0 by Step 1 of Theorem

10.1, so that (10.35) is superfluous and 4! solves

min f(z) 4+ AeDi(z, z) (10.36)
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st Ar =5 (10.37)

whose Karush-Kuhn-Tucker conditions are:
Xe[VA(z**) — VA + Qe 4 e+ A"l =0 (10.38)
for some «! € R™. Dividing (10.38) by );, summing from £ = 0 to k and defining

vh = T e e = Tig (M) and vt = Fo_g(Ae) et we get
Vh(z**1) — VA(z®) + Qv* + mre+ A'w* =0 (10.39)
which allows us to prove the following intermediate optimality property:

PROPOSITION 10.1. If kb is boundary coercive with respect to R}, then z**! is the

solution of

min Dy (z, z%) ‘ (10.40)
st Qr = Q1! (10.41)
¢tz = 'zt (10.42)
Az =b (10.43)

T > 0. (10.44)

PROOF: . Since zF*' > 0 by Step 1 of Theorem 10.1, (10.44) is superfluous. 2EH i
vially satisfies {10.41)-(10.43), and the Karush-Kuhn-Tucker conditions of problem (10.40)-
(10.43), sufficient by convexity of Dy(:,z*) and linearity of {(10.41)-(10.43), are precisely
(10.39). n ‘

Now we use a result due to Hoffman [17], which implies that if {p*} C R converges to p,
and the polyhedra Vi = {z ¢ R": Hz < p*}, V = {z € R" : Hz < p} , with H € R7*",
are nonempty, then for all T € ¥ there exists Z* € Vx such that T = limg_.o 7*. Let Vi be
the feasible set for (10.41)-(10.44), z* = limy_po 2%, and V = {z € R" 1Qz = Qz*,c'z =
ete*, Az = b,z > 0}. V is nonempty because z* € V. Take any T in V and let {Z*} be
the sequence resulting from Hoffman’s result. By Proposition 10.1 ‘

Du(z"1, 2% < Dp(3*, 2°). (10.45)

Taking limits as & — co in (10.45) and using continuity of D), in its first variable, we

conclude that Dy(z*,z%) < Du(T,z%). So we have proved:

31



PROPOSITION 10.2. z* solves min Dp(z,2%) s.t. z € V.

We claim now that V is precisely the set T of solutions of P. Clearly V € T: for any
z € V we have Qz = Qz*, c'z = c'z* implying f(z) = f{z*) and, since z* solves P by
Theorem 10.1, so does x, i.e. © € T. We prove the remaining inclusicn in the following
proposition.

ProprosITiON 10.3. Jfx is a solution of P thenz € V.

PROOF: Since both & and z* are solutions of P, f is constant in the segment between z
and z* (otherwise, by convexity of f, there is a point in the segment with strictly lower
functional value). It follows that 0 = {Vf(z) -~ Vf(z*),z — z*) = (z — 2*)'Q{z — =*),

implying, by symmetry and positive semidefiniteness of @,

Qz = Qz*. (10.46)
Sinee f(zx) = f(z*), it follows from (10.46) that

cte = c'z*. (10.47)

(10.46) and (10.47) imply that z € V. 11

We have shown that T' = V, which, together with Proposition 10.2, establishes

TuEOREM 10.3. If h is boundary coercive with respect to S = R}  and z* is the limit of
the sequence gencrated by the proximal point method with Dy, applied to problem P then
z* is the solution of

min Dy (z, z¥)
st zelU
where U is the solution set of problem P.

We remark that this result depends upon the fact that z* is strictly positive for all
k, so that (10.35) is superfluous for the subproblem. Strict positivity of z* results from
boundary coerciveness of A (through Step 1 of Theorem 10.1). This result does not hold
for the standard proximal point method (i.c. with h(z) = 1/2|z||*), because in such a
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case +* can have zero components. Observe that for @ = 0 problem P reduces to a linear

programming problem.

Extension of Theorem 10.3 to convex programming problems other than quadratic seems
difficult, because in order to use Hoffman’s result we need that the solution set of the
problem be a polyhedron. Note that by Step 1 of Theorem 10.1 the proximal point method
with boundary coercive Bregman functions with zone § = BT | is an interior point method.
Results similar to Theorem 10.3 have been established for other in;cerior point methods for

linear programmingl {see [1]).

11. The proximal method with Bregman functions for the varia-

tional inequality problem.

The natural extension of the problem minf(z) s.t. = € C (with C C R" closed and
convex) to monotone operators is the so called variational inequality problem, defined in
the following way:

DEFINITION 11.1: Givenr T': R® — P(R") maximal monotone and €' C R" closed and
convex, the problem VIP(T,C) consists of finding # € C such that there exists u € T(z)
satisfying

{e,z—2) > 0 (11.1)
foralz € C.

When T = 8f with f convex, we have 0 < (e, — z} < f(z} — f{z) for all z € C and
therefore z minimizes f on €. Variational inequality problems arise also in other contexts;
see [24).

In the same way as the standard preximal point methed of section 4 can be used to
find zeroes of maximal monotone operators, we can use the proximal point method with a
boundary eoercive Bregman with zone § to solve VIP(T, 5). The algorithm can be written
as:

" €S (11.2)
Find z¥*! such that
0 € [AVoDy(-, 2*) + T)(=F ). (11.3)
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(11.3} is equivalent to

21 € [V, Dy(-,5%) + AiT]*’(m*) (11.4)
I
and is also equivalent, by Proposition 9(ii), to
A [VA(z¥) — VA(zH1)) € T(=F+Y). (11.5)

Two additional condition must be imposed on T in order to establish convergence,

namely paramonotonicity and pseidomonotonicity.
DEFINITION 11.2: T : R® — P(R") is paramonotone if it is maximal monotone and
(u —v,z —y) =0 with u € T(z), v € T(y) implies u € T(y) and v € T(z).

It has been proved in [9, Lemma 1] that 8f is paramonotone when f is convex.

DEFINITION 11.3: T: R" — P(R") is pseudomonotone if for any sequence {z*} conver-
ging to a point £, for any u* € T(z*) such that limsupy_, ., (u¥,2* — 7} > 0 and for any y
there exists # € T(Z) such that liminf_, oo {ut.2®* —y) > (4,2 — y).

It can be shown that when T = 8f for some convex f then T is pseudomonotone. The
same holds true is T is point-to-point anc continuous.

We will sketch next the convergence analysis of algorithm (11.2)-(11.3). A full proof can
be found in [6].

TueoneM 11.1. Let € ¢ R" be a closed convex set with nonempty interior, T a paramo-
notone and pseudomonotone operator such that T(z) # 0 for all r € €' and h a boundary
coercive Bregman function whose zone S is the interior of C. If VIP(T,C) has solutions
and either
a}) h is zone coercive, or
b) sup{{v,z —y}: y € R™,v € T(y)} < oo for all z € C, then the sequence {z*} generated
by (11.2)-(11.3) converges to a solution of VIP(T,C).

ProoF: We follow the steps of Theorem 10.1. The first difficulty arises in Step 1. We

1

cannot use anymore a compactness argument to ensure existence of #¥t!, In view of

(11.2) it suffices to prove that ApV.Dy{-,z*) 4 T is onto. For the standard proximal

point method, i.e. for h(z) =1/2 ﬂmuz, this follows, as discussed in section 4, from Minty's

34



theorem. In this case the following result can be proved: if either of hypotheses (a) and (b)
of the theorem holds, then there exists y € 5 such that 0 belongs to XV Dy (y, o%) + T(y)

#+1 is guaranteed. Boundary coerciveness ensures that z#+!

and therefore existence of z
belongs to the interior of C. Hypothesis (b) holds in several important cases, e.g. when
T = 3f with f convex, or when T is strongly monotone (i.e. {z —v,z —y) > 8|z — y|I*
for some # > 0 and all z, y, v € T(z), v € T(y)). Uniqueness of 3:""'1 follows from strict
convexity of h and the fact that z*+! belongs to 5 follows from boundary coerciveness of
h, as in the proof of Theorem 10.1.

For Step 2, we take a solution T of VIP(T, C), use T instead of §f, and follow the proof

of Theorem 10.1 up to (10.11), obtaining
Du(F,2*) — Dp(T, z*1) — Du(a*H, 2%) = (uF, e — 7) (11.6)

 with u* € T(a**+'). Now we take v € T(Z) such that (v,a**! — ) > 0, which exists

because T solves VIP(T, (), and by monotonicity of T we have
(W, ef T T > (o, —F) >0 (11.7)
because u* € T(x**+!). From (11.6) and (11.7):
| DT, 2" — Dp(z, 287" — Da(a*t,2*) > (b, 2 -3 2 0 (11.8)

and then Step 2 holds. Step 3 is proved exactly as in Theorem 10.1, and it follows then
that the leftmost expression of {11.8) converges to 0, i.e.

lim {u*, 2" —5) =0 (11.9)

koo

for all solution ¥ of VIP(T, C), where u* € T(z*t1).
Now we proceed to Step 4. Given a cluster point & of {z*} we take a subsequence{z’*}
of {*¥} which converges to . It can be proved from (11.9) that, if Tis pseudomonotone

then there exists & € T(%) such that

(&, ) = 0. (11.10)



(if £ does not belong to S, such an & may not be the limit of a convergent subsequence of
{u#*}, which may even be unbounded).

Let T be a solution of VIP(T, C). Then there exists & € T(F) such that
{w,o—-T) 20 (11.11)

for all z € § and therefore
(@, & —F) > 0. (11.12)

By (11.10)-(11.12) and monotonicity of T, since @ € T(Z), we get
0<HE,E—7) < (i, 5—F) =0 (11.13)

which implies

) (11.14)

S
&l

0= {7} ={i,
and therefore 0 = {4 — @,# — T). By paramonotonicity of T we conclude that & € T{2).
Then, using {11.11)-(11.14), for any z € 5,

@,z — &) = {G,z - I) + (4,7 — &) = (T,z —7) 2 0. (11.15)

Since # € T(%), we have shown that & solves VIP(T,C). Since £ is any cluster point of
{z*}, we conclude that all cluster points of {z*} are solutions of VIP(T,C). Using the
same argument as in the end of Theorem 10.1, we conclude that there is only one cluster

point, i.e. the whole sequence converges to a solution of VIP(T,C). I

12. -divergences.

In this section we discuss another class of “distances”, which will be called d,(-,-),
defined on the positive orthant of R” (i.e. corresponding to § = R} of section 10). Take

w:Rit — R, convex and thrice continuously differentiabie, satisfying

p(1)=¢'(1) =0, ¢"(1) >0, limy'(t) = —co. (12.1)
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DEFINITION 12.1: If ¢ satisfies (12.1) and the hypotheses above then dy: R . xR}, —+ R
defined by

n
do(z,y) =y ym(%) (12.2)
i=1 4
is said to be a p-divergence.
The next properties follow easily from Definition 12.1 and (12..]‘.),(12‘2).
PRrOPOSITION 12.1,
i) dy(z,y) > 0 for all 2,y e R,
i) dy(z,y) =0 iffz =y,
i} the level sets of dy(-,y) are bounded for all y € R},
iv} the level sets of dy(z,-) are bounded for all z € R},
v} dy(z,y) is jointly convex on z,y, and strictly convex in =,

vi) Jim do(y,y*) = 0 iff Jim ¥ =1

EXAMPLE 12.1: ¢1(t) =tlogt — 1 1. Then

ey (1) = (z510g g +y;—zj) (12.3)
; H

i=1

i.e. dp, is the Kullback-Leibler divergence and can therefore be extended to R} x R%,.
Up to additive linear terms in k and multiplicative constants in ¢, h, the pair (p1, hy) with

hy(z) = E};, zjlogz; is the only pair (i, k) such that d, = Dy,

EXAMPLE 12.2: @y(t) =t —log £ —1. Then
dp, (2, y) = dp, (4, 7). (12.4)
EXAMPLE 12.3: @y(t) = (v/t — 1)2. Then

dou(@,0) = Y (V5 — V- (125)
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w-divergences have been recently extended in [2] to other open polyhedra besides RY .
Let £ = {z € R" : Az < b}, where b belongs to R™, A € R™*" has full column rank
and E has nonempty interior (which implies m > n). Given ¢ satisfying (12.1) we define
A, ExE—-Ras:

Bylz,y) = Z(b - ,y)w[m] (12.6)

{af, 1} 4

where @' (1 € i € m) are the rows of A, We will not discuss this extension in the sequel,

but most results on -divergences given in sections 13-15 can be extended to this situation.

13. The proximal point methed with @-divergences.

Now the problem of interest is
min f(z)

st. >0

(13.1)

with f:R" — R convex, and the proximal point method with y-divergences for problem

{13.1) generates a sequence {z*} C R™ given by
2% >0 (13.2)

2 = argmin{f(z) 4+ Md,(x, 2F)} (13.3)
TERn

with )y satisfying 0 < Ax < X for some X > 0. The optimality conditions for (13.3) say
ot
that uz € 9f(z*+!) with uf = —App' (Jw;,-n) If f is differentiable, z*+! is the solution =

of the system
VH(e); + v’ ( ) —o. (13.4)
i

(13.4) is a nonlinear system of n equations in the n unknowns z4,... ,&,.
As in the previous cases, when (13.1) has solutions, the minimization problem in (13.3)

reduces to a compact subset (lim,—., ¢(t) = oo by (12.1)), guaranteeing existence of z¥+!,
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and uniqueness of z**! follows from convexity of f and Proposition 12.1{v), so that Step
1 in the convergence analysis of sections 2, 4 and 10 holds for this case, The problem .
is that the sequence {z*} generated by (13.2)-(13.3) is not Fejér convergent to the set of
solutions of {13.1) with respect to d,,, i.e., we may have a solution ¥ of (13.1) such that
do(%, 2*) > d,(F,2%t!). The convergence analysis of the proximal point method with
yp-divergences is much harder and we will just give an ontline of the convergence proof.
In the first place we will relax the notion of Fejér convergence to quasi-Fejér convergence.
DEFINITION 13.1: A sequence {y*} C R}, is quasi-Fejér convergent to a set I/ C R},
with respect to a y-divergence d,, if for each u € U there exists a sequence {g;} C Ry
oo
such that Z gr <ooand, forall k>0
k=0

do(t, g™ < dylur,y*) + e (13.5)

Proposition 2.1 holds with quasi-Fejér convergence substituing for Fejér convergence, as

the next proposition shows.

PropPosiTION 13.1. If {y*} C R}, is quasi-Fejér convergent to U C R, with respect
to a p-divergence d,, then {y*} is bounded. If a cluster point ¥ of {y*} belongs to U then
=_ Y k
¥v= kll.rgo v

Proor:

i) Take u € U and & as in Definition 13.1. Let 8= )  &x. Then dy(u,v¥) < dy(u,3°) +
k=0
k-1
Z ex < d,(y,y°) + B and the result follows from Proposition 12.1(iv).
F=0

ii) Let § € U be a cluster point of {g*} and {y7*} a subsequence of {y*} such that
o0
. - § . .
klim y’* = ¥. Given any § > 0, take k such that Z £ £ 2 and k such that jp > k
k=F :

and d. (y,y’k) <4 (k exists by Proposition 12.1(vi)). Then for k > j; we have

= 6. (13.6)

1\9[05

)]
ep(yay )<dv(!l1 JE)+£E s ; +E 14 SE
=X =k

39



Since 8 is arbitrary, (13.6) implies llg{.lo d.(7, y¥) = 0 and then k}ir{.lo y* = 7 by Propo-

sition 12.1(vi). W

It turns out to be the case that the sequence {z*} generated by (13.2)-(13.3) is not even
quasi-Fejér convergent to the set of solutions of (13.1) with respect to di, (in fact, if a
solution Z of (13.2) belongs to GR} then d,(Z,z*) is not even defined). However, under
some conditions on i, {z*} is quasi-Fejér convergent to the set of solutions of (13.1) with
respect to the Kullback-Leibler divergence, i.e. with respect to dy with #(t) = ¢1(t) =
tlogt —t + 1, which admits points in R} as a first argument and for which Proposition
13.1 holds with I ¢ RZ, § € R%}. More precisely, consider the sequence {x*} generated
by (13.2)-(13.3) with some d,,, let U be be the set of solutions of (13.1}, take 7 € U and

define §; as
i = dy(F, =) — dy(7,2*). (13.7)
ProrosiTion 13.3.
=<}
i) If'(t) < "(1)log t and there exists A such that A, > X > 0forall k then Z b < o0
k=0
(and so {z*} is quasi-Fejér convergent to U).
ii) Ifﬂty- < ©'(t) < ¢"(1)log t then & < 0 (and so {z*} is Fejér convergent, and a fortior

quasi-Fejér convergent, to U).

The proof of this proposition is rather involved and can be found in [19, Prop. 4.1]
and [21, Prop. 3]. We remark that 1y, of Examples 13.1, 13.2 and 13.3 satisfy
the inequalities in the hypotheses of Proposition 13.2. In view of the first statement of
Proposition 13.1 and of Proposition 13.2, the sequence {z*} is bounded when /() <
@"(1)1og t and Ax = X > 0 or when ﬂ}ﬂ < ¢'(t) € ¢"(1)log t and by Proposition 13.1,
it suffices to prove that the cluster points of {z*} belong to I/ to ensure convergence of
{z*} to a solution of (13.1). We mention that if the sequence {z*} converges to a point

Z > 0 and f is differentiable then it is immediate that ¥ solves (13.1), because from (13.4).

k+1
Z:
Vf(w*+1)=—w'( o )

2
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Z*+1
and lim x?’“ = lim 2% =%; > 0 so that klim @' (—‘—r) = ¢'(1) = 0 and therefore

Jim, Jim 2 7
Vi(Z); = 0 (using A < A) for all j, i.e. 7 is the unrestricted minimizer of f, but
in general T is just a cluster point which can have some zero components and f is not
differentiable. Under the hipotheses of Proposition 13.1(i) and (i1) it can be‘proved that
all cluster points of {x*} belong to U, but the proofs {[19, Prop. 4.3] and [21, Prop. 6])

are also rather involved. The final result is

THEOREM 13.1. If either

i) ¢'(t) < ¢'(1)log ¢ and A > X for some X > 0, or
i) /(1) < @(8) < p(D)log 4,

then the sequence {z*} generated by (13.2)-(13.3} converges to a solution of (13.1).

We remark that convergence of {z*} to a solution of (13.1) can be proved also when
y does not satisfy (i},(ii) of Theorem 13.1 but then some conditions must be imposed
upon problem (13.1) (e.z- boundedness of the set U) which is undesirable, since the
proximal point method is devised for ill-posed problems, and so it is important to establish
convergence under minimal hypotheses on f (i, on the other hand, can be chosen at will).

The proximal point method with (-divergences can be used to solve variational inequality
problems when the set C is equal to R% ;. It is easy to verify that in such a case VIP(T, C),
with T : R* — R", reduces to finding » € R" such that

T(z) >0 . (13.8)
220 (13.9)
{2,T(z)) =0 (13.10)

which is called the nonlinear complementarity problem for T (NCP(T') from now on). The

algorithm is:

>0 (13.11)

and given z*, find ¥+! > 0 such that
0 € [AeVzdy(e, %)+ T)(25H1). (13.12)
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The convergence analysis combines the arguments in the proof of Theorem 13.1 (including
quasi-Fejér convergence with respect to dy) with those in the proof of Theorem 11.1. As
in Theorem 11.1, something akin to zone coerciveness is needed for a general T. The
equivalent property is Hm;—co tp;'(t) = +too (we remark that the fact that lime_o'(2) =
—co, which follows from (12.1), ensures that all ¢-divergences satisfy a property similar to

boundary coerciveness). The following result has been proved in (6]:

THEOREM 13.2. I T is paramonotone and pseudomonotone, and either
a} hm,_o'(t) = oo, or
b} sup{{v,z — v} :y € R",v € T(y)} < oo forallz 20,

then the sequence generated by (13.11)-(13.12) converges to a solution of NCP(T).

Observe that hypothesis (a) of Theorem 13.2 holds for ¢; and w3 of Examples 12.1 and
12.3, but not for ¢, of Example 12.2.

Theorem 13.2 can be extended to VIP(T,C) for the case in which C is a polyhedron of
the form {x € R" : Az < b} where A is an m x n matrix of rank n, using the extensions

of varphi-divergences to this class of polyhedra introduced in [2].

14. Convergence rate results for the proximal point method with
Bregman distances or y-divergences.

Convergence rate results similar to those of section 5 can be established for these exten-
sions. Consider first the proximal point method with Bregman distances for the problem
min f(z) s.t. ® € 5. It has been proved in [23] the if f is twice conkinuously differen-
tiable at the limit z* of {z*} and V2 f(2*) is positive definite then z* converges linearly

to z* and superlinearly if klim Ax = 0. Similar results hold for the proximal method with

p-divergences when /(1) € ¢"(1)log t and Ay > X > 0, in which case the convergence

rate is linear {[23]) or when f%(-l-l < ¢'(t) € ¢"{1)log ¢ in which case we get a linear

convergence rate, and a superlinear one when klim A =0.
—+ 00

In a similar way, we have linear or superlincar convergence rates for the proximal methods

‘with Bregman functions or ¢-divergences applied to variational inequality or nonlinear

42



complementarity problems respectively, under rather strong assumptions on the operator
T. We must assume, as in section 5, that 7! is Lipschitz continuous at 0 (which already
implies existence of at most one solution) and that the limit z* of the sequence {z*}
belongs to § in the case of Bregman funclions or to RY in the case of y-divergences, in
which case it is easy to prove that 0 € T(z*), i.e. that z* is a zero of 7°. In the case of
Bregman functions, it is also required that V?A(z) be continuous, and positive definite for
all z € § (this is a very mild assumption, satisfied by all interesting Bregman functions).
The following two theorems have been proved in [6]. p(M) denotes the spectral radius of

a square matrix M.

THEOREM 14.1. Assume that the limit z* of the sequence {z*} generated by (11.2)-(11.3)
belongs to S and that T~ is Lipschitz contimuous at 0. Then,
i} if iMgowee Ak = O then X* converges superlinearly to z*,

i) if Ax > X for all k and some X > 0 then ¥ converges linearly to =* and

i e _ ohe()
k—oo |lz* —z*| 4 (1+0'25*2P(H)2)1/2

where g is the Lipschitz constant and H = V2h(z*)71.

THEOREM 14.2. Assume that the limit t* of the sequence {z*} generated by (13.11)-
(13.12) is fully positive and that T~! is Lipschitz continuous at 0. Then
i) if imgoreo Ap = 0 then z* converges superlinearly to z*,

i) if A > X for all k and some } > 0 then z* converges linearly to z* and

”$1‘+1 - $*|[B _ [1 N (0:\90"(1))_2] -1/2

*
i

where B is the diagonal matrix with diagonal entries ¢"(1)/z} (1 £ j < n), z} =
min;{z}} and o is the Lipschitz constant.

If we compare the asymptotic error constants of Theorems 14.1(ji) and 14.2(ii) with that
of Theorem 3.1, we observe that they differ just by the presence of the spectral radiuses

of H and B in the former. The reasen is that when z* belongs to S or R}, Di(z,y)
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and d,(z,y) can be approximated, in a neighborhood of z*, by ||z — y||}; and ||z — ¥|%,
so that the sequences {z*} generated by (11.1)-{11.2) or (13.11)-{13.12) behave, for large
enough k, as the sequence {z*} of the standard proximal point method (4.1) with ||| 4,
Il g respectively, instead of ||-||.

As discussed in section 5, the results above are not too interesting, because positive
definiteness of V2 f(z*) is almost as much as strong convexity of f, and Lipschitz continuity
of T7! at 0 is almost as much as strong monotonicity of T, in which case the problems
are quite well behaved to begin with. Also the interior point condition on the solution is
quite testrictive. Such conditions, however, cannot be easily removed, because we have
examples of strictly convex functions such that V?f(z*) is not positive definite at the
solution of problems 10.1 or 13.1 (e.g. f(z) = i (z; — 1)* with § = R?%) for which

i=1
convergence is sublinear for any -divergence and any Bregman distance. Nevertheless,
there is an interesting case which does not satisfy such conditions and for which a linear

(or superlinear) convergence rate can still be established: Linear Programming. Consider

clr if Az =0, z20

. (14.1)
+o0 otherwise

f(w). -{

and assume that there exists T > 0 such that AT = b. In this case (13.2)-(13.3) becomes

250 (14.2)

2" = argmin{e'z + Ardy(z, %))} (14.3)
z

s.t. Az =5 (14.4)

The convergence rate results above can be extended to this case, even when the linear
programming problem has many selutions (in which case not even the slightly weaker
condition of Lipschitz continuity of T7~! at 0 holds), though the finite convergence property
of the standard proximal point method mentioned in section 5 cannot be attained. Namely,
the sequence defined by (14.2)-(14.4) converges to a solution x* of the linear program with

a linear convergence rate under hypothesis (i} of Theorem 13.1 and superlinearly under
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hypothesis (ii) of the same theorem when klim Ax = 0. The proof is relatively simple if
— 0

the linear programming problem has a unique solution and quite harder otherwise (a key
element is the fact that the set of solutions of a linear program is a'-‘I-)onhedron, see [22]).
Under a weak nondegeneracy assumption {existence of at least one nondegenerate primal-
dual eptimal pair (z*,y*)) it can be proved that any sequence {¥*} of Lagrange multipliers
for constraints (14.4) in the subproblem (14.3)-(14.4) converges to a dual solution of the
linear program. '

The situation is more complicated for the proximal point method for Bregman functions.
In the first place, in order to eliminate the positivity constraints from the subproblems,
as in (14.3)-(14.4), we must take a boundary coercive Bregman function with zone § =
R%,. It is then natural to consider a separable h, as defined in section 9, i.e. h(z) =
Son i hi(z;) with h; : Ryy — R. It has been proved in [6] that the proximal method
with a separable and boundary coercive Bregman function converges linearly when applied
to a linear programming problem if lim, 5 th}(t) < oo for all j, but for any & such
that lim,_,o th}(t) = co for some j, there exist linear programming problems for which
convergence is sublinear. lim; .o th}(t) < oo for all j holds for h(z} = 377, z;logz; (this
case is already covered in the results for p-divergences because Dy = d, with ¢(t) =
tlogt — ¢ + 1) and also for h(z) = 3.7, ¢;log(P;(z;)) where P; is a polynomial with
nonnegative coeflicients, but almost all other examples of boundary coercive Bregman
functions with zone § = R} fail to satisfy this condition and therefore may generate
sublinearly convergent sequences when applied to linear programming problems.

The proximal point method with ¢-divergences for linear programming has been applied
to multicommodity transportation problems with excellent computational results, using a
highly parallelizable computer. In this application {developed in [34]) the linear program
is of the form minelz s.t. Az =56, 2 > 0, with A >0, b > 0, and p(t) =tlogt —t + 1, so
that (14.3), (14.4) become

n

el - argmin dr+ A Z (:v_,' log (%) + :L‘f - :L'j) (14'5)
J=1 Fi

st. Az =b (14.6)
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In order to solve the A-th subproblem (14.5)-(14.6} a method called MART is used. Let
a’ (1 €1 <‘m) be the rows of 4 and a;; (1 <i <m, 1<j < n) its entries. Observe that
(14.5) is equivalent to

n
min &z + Em,— log x; (14.7)
=1
st Az =50 ‘ (14.8)

with ¢; = ;f\*‘; —1—log zf MART, which is highly parallelizable, generates a sequence {z*}
as follows., The rows of A are used in a predetermined order (say cyclically). Let {(£) be

the row to be used in iteration £. Then the sequence {z!} is defined by

_z'; = 5"(1"'"&:') (14.9)

b ey, s
£+ = ot ((‘ﬁ) : (14.10)
The sequence {z!} converges to a solution of (14.7)-(14.8) (sce [8]) i.e. to the k+1-th iterate
of the proximal point method with ¢-divergences, as in (14.5). Usually a few iterations of
MART are enough to generate an appropriate z¥+1 (i.e. such that {z*} converges rapidly
to a solution of minc'z s.t. Az = b, 2 > 0). We remark that Ay, =¥ and ¢ appear only in

the initialization step (14.9) of MART (through é&).

15. Approximate versions of the proximal point method with

Bregman functions or ¢-divergences.

The approximation we discuss here is different in spirit from the approximations pre-
sented in section 6. We do not discuss preservation of convergence of the methods when
the k-th iterate is affected by an error i, but rather iteration formulae which allow easier
computation of the iterates, replacing subproblem {10.3) or (13.3) by simpler ones. The

basic idea is to replace f(x) in

2**1 = argmin{ f(z) + A\eb(z, 2%)} (15.1)
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where § is either Dy, or d, by its linear approximation fi(z) = f(z*) + Vf(z*)!(z — z*)

so that (15.1) becomes, after discarding constant terms,
! = argmin{V f(z*)'z + \e8(z, 2*)). (15.2)

The difference between (15.1) and (15.2) is that in order to find z*+! in (15.1) we have to

solve, in the case of y-divergences,

Az Y f(z); .
i I L . el <7< .
® (E;_:) W (1gj<n) (15.3)
which is a system of n nonlinear equations in unknowns zi,. .., s, while (15.2) reduces to
. kY.
o' (x_;) = ."—Vf)(f )i (15.4)
'} k

which is an uncoupled system. In fact, if ¢' can be easily inverted (as in Examples 12.1,

12.2 and 12.3), (15.4) reduces to the closed formula

J Ak

5 = gk (") (_—vf =), )) : (15.5)
Similarly, in the case of Bregman functions, instead of solving the system
Vh(z) = Vh(z*) - /\—lkv (z) (15.6)
in order to find £5F1, we get, after linearizing f at z*,
Vh(z) = Vh(s*) - ;\l—f F(z*) s
which, if & is zone coercive so that Vh is invertible, gives rise to the explicit formula

oHH = (Vh) 1 [Vh(c*) — %Vf(m")]. (15.8)
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We mention that, as zone coerciveness of k is necessary to have z*1! well defined by
(15.8), a similar condition, namely lim,_,o, @/(t) = 400, is necessary to have z**1 well
defined by (15.5). An adaptation to the method for the case of lim, .. /() < oo can be
found in [21].

These methods can also be seen as steepest descent methods with respect to 8(-,-),

because the first order optimality condition of (15.2), namel).r
Vi(*) + MV6(,2zF) =0 (15.9)
with Ax > 0, is also the first order optimality condition for
minV f(:c"l)‘:t:

st. 8(z,zF) < 6,

" for some 8. In fact, when &§ = D}, with h(z) = 1/2{|z||?, (15.1) is just the usual steepest
descent method with step 1/Ag. It should be clear that we cannot expect convergence
of such scheme without further specifications, in the first place because {f(z*)} is not
guaranteed to decrease; we only have fi(z¥*1') < f.(2¥). As in the case of the usual
steepest descent method, some linear search must be performed to ensure convergence.
We have two basic alternatives for the search. One is te keep an exogenously given Ag,

call y* the solution of (15.2) and take
2 = (1 — o)z + oy

where v, is obtained through a linear search, i.e. we search in the interval between z* and
y*. The other option is to determine A, with a search along the curve given by (15.5) or
(15.8) with a variablé A, that is to say, in the case of (15.8) we take g = 1/A and define
z(jt) as

2(p) = (VY [Vh(") - uV f(z*)] (15.10)

and perform a linear search along x(p) with g in [0, &] for some j > 0.
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We have also choices with respect to the objective function of the linear (or curvilinear)
search. The natural eption is f, but it turns out to be the case that addition of a regula-
rization term to the objective of the search makes it possible to obtain better convergence
results.

It is also clear that, being generalizations of the usual steepest descent method, these
algorithms will share its weaknesses, but there is a remarkable advantage: they will pro-
duce a minimizer of f on the convex set § (with Bregman functions) or R}, (with ¢-
divergences) at a cost just slightly higher (if Vk or ' are easily invertible) than the usual
steepest descent method, which works enly for unconstrained optimization.

The alternatives regarding both the objective and the line for the search mentioned
above give rise to the following algorithns:

1. For minf(x) s.t. = € § with z(g) as in (15.10) and 2° € §,
a) Algorithm BSD1: (ji > 0 exogenously given)

o = argminf(a(4)) (15.11) .
#ef0,i
2B = (). . (15.12)

b) Algorithm BSD2: (p; exogenously given, satisfying pi € [, ji] for some ji 2 i > 0)

oy = argminf((1 - a)z* + az(ur)) (15.13)
o€[0,1]
2 = (1 - ap)e® + e (iun). (15.14)

¢) Algorithm BSD3: (& > 0 and ny exogenously given, with g € [#, 7] for some 7 > 7 >
0)
P = mgmi?{f(z(#)) + neDa(z(p), )} (15.15)

pef0,f
* = o). (15.16)

2. For minf(z) s.b. £ > 0 with 2° > 0, y* equal to the right hand side of (15.5) and )4 in
(15.5) satisfying A € [}, A] for some A > iso, '
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a) Algorithm DSD1:

ax = argminf((1 — o)z* + ay®) (15.17)
oE[0,1]
25 = (1 — o)z + apyt. (15.18)

b) Algorithm DSD2: () exogenously given, satisfying mp < pArdy(z*,y*) for some

7 €(0,1])
o = argmin{ f((1 - a)z* + ay*) + ma} (15.19)
ai[0,1]
¥ = (1 - e )z® -+ axy®. (15.20)

We discuss next the convergence results for the five algorithms presented above. BSD
and DSD stand for Bregman and Divergence Steepest Descent respectively.

In the case of the exact proximal point methods discussed in previous sections, convexity
of f was essential to ensure existence of the iterates, while for these approximate versions
such existence is guaranteed by the linear search, and convergence results are available for
nonconvex functions, as is the case with the usual steepest descent method. On the other
hand, as is also the case for the usual steepest descent method, without the regularized
search we only get weak convergence, in the following sense:.

DEFINITION 15.1: A sequence {z*} C R™ is weakly convergent to ¥V C R™ if
i) {z*} is bounded, -

i) limp_eo(zf — a%¥1) = 0,

iit) Every cluster point of {*} belongs to V,

This notion of weak convergence to a subset of R™ is unrelated to the notion of weak
convergence in Hilbert spaces discussed in section 4. We remark that in R" strong and
weak convergence, in the sense of section 4, are exactly the same, so that no confusion
should arise: the concept in section 4 is used for infinite dimensional spaces and Definition
15.1 for finite dimensional ones.

In addition, for the algorithms with a nonregularized line search (B3D1, BSD2 and
DSD1) we need a level set boundedness assumption on f to ensure boundedness of {z¥},
once again similarly to the situation for the usual steepest descent method.

The following results have been established in [19], [21].
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THEOREM 15.1. If f is differentiable, {z € R" : f(z) < f(z")} is bounded, h is zone
coercive, Dy(x,) 15 quasicovex for all z € § (only for BSD2), limy_,oc ¢'(t) = 400 and
the corresponding problems have solutions, then the sequences {z*} generated by BSDI,
BSD2 or DSDI satisfy
i) {2*} is bounded,

i) limg_oofz® — £f+1) = 0, .

iii} for every cluster point ¥ of {z*} it holds that > 0, V f(Z)'Z = 0 (for DSD1),

iv} for every x € S there exists a cluster point T of {z*} such that (Vf(Z),z —%) = 0 (for

BSD1 and BSD2).

Quasiconvexity of D), in its second variable, required for BSD2 in order to prove item
(ii) of Theorem 15.1, is a rather restrictive assumption. While all ¢-divergences are convex
in their second variable by Proposition 12.1(v), most Bregman distances are not. This

assumption is not needed for BSD1 or BSD3.

THEOREM 15.2. Under the hypotheses of Theorem 15.1, if f is convex then the sequence
{z*} generated by BSD1, BSD2 or DSD1 is weakly convergent to the solution set of the

corresponding problem,

THEOREM 15.3. If f is differentiable, h is zone coercive, limy_ o, @/(t) = +oc and the

corresponding problem has solutions, then
i) the sequence {z*} generated by BSD3 satisfies items (i), (if) and (iv) of Theorem 15.1,
ii) the sequence {z*} generated by DSD2 satisifes items (i), (if) and (iii) of Theorem 15.1.

THEOREM 15.4. Under the hypotheses of Theorem 15.3, if f is convex then the sequences
{z*} generated by BSD3 or DSD2 converge to a solution of the corresponding problem.

The proof of Theorem 15.4 uses the concept of quasi-Fejér convergence with respect to
d,, and Proposition 13.1 to obtain convergence of the whole sequence generated by ]jSD2,
and the analogous versions with Bregman functions for the sequence generated by BSD3.

Of cburse, these algorithms are practical only when ' or Vh can be easily inverted. For

5 =RY,, and ¢ as in Example 12.1 or % as in Example 9.2, we get

2(1/M); = yf = zhexp(—1/ 0V F(z*);) (15.21)
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and the computational work of the algorithms reduces to the line searches. Examples
of Bregman functions with easily invertible gradients can be found in [9] and [19] for
the case of C being a ball, a box (as defined in section 9) or a polyhedron of the form
{z € R" : Az < b} with A nonsingular. In the case of the polyhedron, inversion of Vh

requires solution of linear systems with matrices A and A

Bibliographical notes

References given in the text are mainly for results whose proofs have not been fully
meluded. We acknowledge here the sources of the main ideas and results.

A modern exposition of the rather old concept of regularization discussed in section 1 can
be found in {33]. [25] is an excellent survey on proximal point methods, with an approach
somewhat different from ours, and includes comprehensive references on the subject. The
material in section 2 is based upon [29], though our proofs follow a different approach.
A very good introduction to monotone operators can be found in [7]. [28] is a basic
reference for the f)roxima.l point method for monotone operators. More recent results on
the subject can be found in [26]. The final step in the proof of Theorem 4.4 has been
taken from [29], which is also the basis of sections 5 and 6. The material of section 7
has been drawn from [3], [4] and [30]. The concept of Bregman functions originates in
[5]. The definition of Bregman functions used here is taken from [13], and the notions
of zone and boundary coerciveness were introduced in [18]. The proximal point method
with Bregman distances appeared for the first time in [15], but only for k as in Example
9.2. The method for a general A was first presented in {10}, with a convergence analysis
covering only solutions in the interior of the zone. A convergence analysis including the
case of solutions in the boundary, using zone coercive Bregman functions, can be found in
[11], from where we have taken the proof of Theorem 10.1, excepting for Step 1, where we
use bouﬁdary instead of zone coerciveneés, following [18], which contains also the material
on the characterization of the limit point for linear and quadratic programming presented
at the end of section 10. The exponential multipliers method of section 10 is presented in

[4]. An extensive study of variational inequality problems can be found in [24]. Proximal
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point methods with Bregman functions for finding zerces of monoctone operators were first
discussed in {14], and then extended to variational inequality problems in [6], from where
we have taken the material of section 11. The concept of paramonotonicity was introduced
in [9]. The notion of p-divergence originates in [12] and has been extended and developed
in [32]. The convergence analysis of the proximal point method with @-divergences can
be found in [20] for the case of Ax bounded away from 0 and in [22] for the general case.
The notion of quasi-Fejér convergence appeared for the first time in [18] and was further
developed in [20], from where we have taken the proof of Proposition 13.1. The idea of
using proximal point methods with ¢-divergences for variational inequalities was presented
for the first time in [2]. The results on this subject discussed at the end of section 14 appear
in [6). Linearity of the convergence rate of proximal point methods with Bregman functions
or y-divergences for minimization of strongly convex functions has been proved in [23].
Similar results for monotone operators whose inverse is Lipschitz continuous at 0 are from
[6]. The convergence rate of the proximal point method applied to linear programming
problems is analyzed in [22] for the case of p-divergences and in [6) for the case of Bregman
functions. The approximate versions of the proximal point methods discussed in section
15 have been presented in [21) for the case of y-divergences and in [19] for the case of

Bregman functions.
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