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INTRODUGAO

Este minicurso é uma introducéo elementar aos processos estocasticos
espaciais. A leitura dessas notas requer apenas familiaridade com céleulo
{em particular séries) e com um primeiro curso em probabilidade. Eu ten-
tei escolher o caminho mais curto para chegar a dois exemplos simples de
sistemas de particulas {esse é 0 outro nome para processos estocdsticos espa-
cials): passeios aleatérios com ramificacao e processo de contato na arvore.
Esses dois exemplos ja sio suficientes para modelizar varios fenomenos
fisicos e biolégicos. A andlise matematica desses sistemas de particulas
requer o uso de técnicas importantes como acoplamento e renormalisacao.
Parte deste material é baseado em artigos recentes (posteriores a 1990) e
é um raro exemplo de pesquisa matematica atual que pode ser exposta ao
nivel de graduagao.

O capitulo I é uma rdpida introdugio a probabilidade. O capitulo II
considera cadeias de Markov, em particular passeios aleatérios e processos
de ramificacdo em tempo discreto. O capitulo III trata do primeiro exem-
plo de sistema de particulas: passeio aleatério com ramificagao. Mostramos
que é possivel que esse sistema morra localmente e sobreviva globalmente
e damos nma condicdo necesséria € suficiente para que isto aconteca. Cal-
culamos os valores criticos para dois exemplos e discutimos a continuidade
das transicoes de fase.

O capitulo IV considera o processo de contato na drvore. O processo de
contato foi introduzido por Hazris (1974) no reticulado Z¢ e s6 recentemente
foi considerado na arvore por Pemantle {1992). O estudo do processo de
contato na drvore usa 0s processos vistos nos capitulos anteriores: ramifi-
cacgio ¢ passeio aleatério com ramificagio. Isso faz com que a analise do
processo de contato na 4rvore seja muito mais simples do que em Z%. Mas
mesmo na &rvore o estudo do processo de contato é longe de ser trivial e

j4 se encontram as dificuldades usuais no estudo de sistemas de particulas,



em particular ndo se consegue fazer contas exatas. No final do capitulo IV
menciono problemas abertos atuais.

Agradeco a Pablo Ferrari por sugerir a minha participagao no Coléquio
Brasileiro de Matemdtica (1995) e a Ellen Saada por ter lido partes dessas

notas € por varias sugestoes.



Chapter 1

A SHORT REVIEW OF PROBABILITIES
ON COUNTABLE SPACES

1. Probability space

Consider {2 a countable space. A probability P is a function from the
set of subsets of Q to [0,1] with the two following properties.

P(Q) =1
and if A, C Qforn > 1, and A; N A; = 0 for i # j then

P(Un314n) = 3 _ P(4y)
n2l

Problem 1.1 Prove that P(#) = 0 and that P(A°) = 1 — P(A) for any
subset A of Q.

We now give an example of a probability model. Assume a coin is
tossed 2 times then Q = {HH, HT,TH,TT} is all possible outcomes. It
seems reasonable (in the case of a fair coin) to define P(s) = 1/4 for each
s € (L. '

The subsets of § are called events. We say that the sequence of events
A, is increasing if A, C A, foreach n > 1.

Proposition 1.1 Let (2, P) be a probability space, A, B, and A, be
events. We have the following properties

(i) If B C A then P(AN B°) = P(A/B) = P(A) — P(B).

(ii) For any sequence of events A, we have P(Un>145) < 22,51 P(4xn)-

(iii) If A, is a sequence of increasing events then limn,_.oo_P(An) =
P (Unzl Ap).



(iv) If A, is a sequence of decreasing events then lim, ., P(A,) =
P(nnZlAn)-

Proof of Proposition 1.1
Observe that B and AN B¢ = A/B are disjoint and their union is A.
Hence
P(A) = P(A/B) + P(B)
and this proves (i).
We now prove (iii). Assume A4, is an increasing sequence of events,
define

A= | A and By = 4, B, = Ap/Au_y forn > 2
n21

Now the B,, are disjoint and their union is still A therefore
P(A)=> P(B,)=P(A)+ Jim > (P(Ap) — P(Ap-1))
n>1 p=2

So we get
P(A) = P(A1) + lim (P(A,) — P(41))

and this proves (iii).
We now use (iii) to prove (ii). For any sequence of events 4, we may
define

Ca={] 4
=1
and C7, 1s increasing. We also have that for any two events A and B
P(AUB)=P((A/(ANB))UB) = P(A/(AN B)) + P(B)

= P(A) + P(B) — P(AN B)

Hence
P(AUB) < P(A) + P(B)

4



and by induction we get for any finite union
(1.1) P(U Ap) < ZP(Ap)
=1 p=1

Now using (iii) we know that P(C,) converges to the probability of the
union of C, which is the same as the union of the A,. Making n go to
infinity in (1.1) yields

lim P(C,) = P(U A) < ZP(AP)
p=1 p=1

and this concludes the proof of (ii). For (iv) it is enough to observe that if

A, is a decreasing sequence then A¢ is an increasing sequence and by (iii)

lim P(AZ) = P(| ) A%) = P(([} 4)?) =1— P([) 4x)

N ==t OC
n>l n>1 n>l
and this concludes the proof of Proposition 1.1.

Problem 1.2 Prove that for any events A and B we have

|P(A) — P(B)| < P(AN B°) + P(A° N B)

For any sequence of events A, we define the events

limsup A, = m U A, andliminf A, = U ﬂ Ap

n>lp>n n>lpzn

Problem 1.3 Check that w is in limsup A, if and only if w is in A,
for infinitely many distinct n. And check that w is in lim inf A, if and only

if w is in A, for all n except possibly for a finite number of n.

Proposition 1.2 We have the following inequalities for any sequence
of events A,
P(liminf A,) < liminf P(A,)

5



P(limsup A,) > limsup P(A4,,)

n—co

Proof of Proposition 1.2
Define B, = N>, A, and observe that B, is an increasing sequence of

events. Hence by Proposition 1.1

lim P(B,)= P(| | Bn) = P(liminf A,)

1n— 00 et
Since P(A,) > P(B,) we get

liminf P(A,) > lim P(B,)= P(liminf A,)

n—00
and this proves the first inequality in Proposition 1.2

Problem 1.4 Prove the second inequality in Proposition 1.2.
2. Independence

Given an event, B such that P(B) > 0 we define the conditional prob-
ability
__ P(ANB)
P(A|B) = “FE)
Problem 2.1 Prove that the function A — P(A|B) = Pg(A) defines
a new probability 2. Prove that Pp(A|C} = P(A|BNC) if P(BNC) > 0.

We say that the events A and B are independent if P(A N B) =
P(A)P(B). '

Problem 2.2 Prove that if A and B are independent so are A and B¢,
and A® and B°®.



More generally we say that the events A;, Ao, ..., A, are independent

if for all integers 7;,%2,...,%p in {1,...,n} we have
P

P(ﬂ Aij) = H?:lP(Aij)
j=1

We now state a property that we will use several times in the sequel.

Borel-Cantelli Lemma If A, is a sequence of events such that

> P(4,) < o0
n>1
then P(limsup A,) = 0.

Conversely, if the A, are independent events and

Y P(Ag)=co

nzl
then P(limsup A,) = 1.

Observe that the independence assumption is only needed for the con-
verse,

Proof of Borel-Cantelli Lemmma

We first assume that Y -, P{A,) < co.

Define B, = Up,>, A4, and_since B,, is a decreasing sequence we have

lim P(By) = P(Np>1B,) = P(limsup A,)

n—00

On the other hand

‘ P(Bn) <Y P(4,)

p2n

but the last sum is the tail of a convergent series therefore

lim P(B,)= P(limsupA,) < lim > P(4,)=0

p>n



For the converse we need the two assumptions: independence of the
A, and that the series is infinite. Using that the AS are independent, for
any integers m < n we have that

P([) A) = T_, P(A5) = I}, (1 — P(4,))
p=m
Since 1 —u < e~ we get
(2.1) P([) A) < & Lopmm P4
p=m

Fix m and define C,, = ﬂp_,m A5 The sequence C, is decreasing and

Na= %
n>m

We now make n go to infinity in (2.1) to get

lim P(Cy) = P( () Ca) = P[] 45) € lim ¢™ e ") =
n>m p=m

where we are using that for any m, Hm, E;;”:m P(A,) = co. So we have

that - oo
P(([) 4 =P(|J 4) =1

p=m

and now we make m go to infinity to get

ﬂ U Ap) = P(limsup 4,) =1

m>1 p=m

And this completes the proof of the Borel-Cantelli Lemma.



3. Discrete random variables

A random variable is a function from € to some set S. If the set S is
countable we say that the random variable is discrete.

If X,,..., X, are random variables with values in S, ...,.5, countable
sets, we say that these random variables are independent if for any A; C 5;,

1 <7< n, we have
P(X1 €A1,...,Xn€An)=P(X1 EAl)X...XP(XREAn)

If S is a subset of the integers and if 3, 5 [¢|P(X = z) is finite we define
the expected value of the random variable X by

E(X) = Z 2P(X = )
TES

Problem 3.1 Prove that if X is a random variable whose values are

positive integers then

E(X)=Y P(X > k)

k>1

We define the conditional expected value of X by

E(X|4) =) zP(X = z|A)
zES

We conclude this quick overview with the notion of generating function.
For a random .variable whose values are positive integers we define the

generating function

gx(s) = E(sX) = Z s"P(X =n) for s € [-1,1]

n>0

Problem 3.2 Prove that gy is well defined on [-1,1].

9



Proposition 3.1 If X and Y are two independent random variables

with values on the positive integers we have that

gx+v(s) = gx(s)gy (s)

Proof of Proposition 3.1

gx+y(s) =) s"P(X +Y =n)

n>0
but

P(X+Y =n)= Y P(X:k;Y:n—k)=Xn:P(X=k)P(Y=n—k)

where the last equality comes from the independence of X and Y.

n

gx4v(s) =) "y P(X =k)P(Y =n—k)
n>0 k=0

= Z s"P(X =n) Z s"P(Y =n)

n>0 n20

where the last equality comes from results about the product of two absolute
convergent series. This completes the proof of Proposition 3.1.

10



Chapter II
DISCRETE TIME MARKOV CHAINS
1. Definitions

A discrete time stochastic process is a sequence of random variables
(Xa)n>o defined on the same probability space and having values on the
same countable space §. We will take S to be the set of positive integers
in most of what we will do in this chapter.

A Markov process is a stochastic process with the property that for
n > k the conditional distribution of X, given X}, is independent of (X;)i<k-
More precisely, a stochastic process X,, is said to be Markovian if for any

states Z1,Zz,..., Tk Tn id S, any integers ny < ng < ... < np < n we have
P(Xp = 2p|Xn, = 21, X, = T2, . Xny = k) = P(Xp = 22| X0, = T4)
We define the one-step trg.nsition probability by

p(i,7) = P(Xpy1 = j|Xp =i} foralli,jeSandaln>0

Observe that we are assuming that the transition probabilities do not de-
pend on the time variable n, that is we consider Markov chains with sta-
tionary transition probabilities. The p(3, j) clearly have the following (prob-
ability) properties -
pli,j) > 0and Y p(i,5) =1
jes

Problem 1.1. Prové that if the distribution of X, and the p(, j) are

given then the law of the Markov chain is completely determined. More

precisely, prove that for any » > 0 and any ég,%1,...,ir in S we have
P(Xg = ig,X]_ = il, . .,Xn = in) = P(Xg = ig)p(io,il) . .p(in_l,in)

11



Define the n-steps transition probability by
Pl )} = P(Xpgym =jlXm=1)foralli,j€Sandall m >0

We have the following matrix multiplication like rule:

Proposition 1.1 For any positive integers r < n

Palind) =Y prlis E)pn—r(k, 5)

kes
where we define po{i,j) =1 ifi=j and po(i,7) =0 if i # j.
Proof of Proposition 1.1
We have the following decomposition for r < n
{Xn=j}= U{Xn =i Xr =k}
keS
and the events in the union are mutually exclusive. Hence
Pa(id) = P(Xn = j|Xo=i)= Y  P(Xn =5 X, = kXo=1)
kES
The last term is equal to
> P(Xn = j1X, = k; Xo = ) P(X, = k|Xo = i)
kES
but by the Markov property we get that this sum is equal to
> P(Xn =X, =k)PX, =k|Xo=1) =D _ pr(i, k)pn-r(k.J)
keS kesS

this completes the proof of Proposition 1.1.

We will now turn to the classification of the states of a Markov chain.
We sdy that two states ¢ and j are in the same class if there are integers

b1

12



n1 > 0 and ng > 0 such that p,, (%, ) > 0 and p,,,(7,7) > 0. In words, ¢ and
j are in the same class if the Markov chain can go from i to j and j to ¢ in

a finite number of steps with positive probability.

Problem 1.2 Prove that the relation "to be in the same class than”

is an equivalence relation on &.

For each state i in & we define the random variable
T;=inf{n>1: X, =14}

and if the inf does not exist we take T} = co. We define the probability
that the first return to ¢ occurs at time n > 1 by

(i) = P(Ti = n}Xo = 1)

Observe that
> fa(§) = P(T; < ool Xo =) < 1
n=0

We say that state i is recurrent if 3o fo(¢) = 1, a nonrecurrent state
is said to be transient. In words, a recurrent state is one for which the
probability that the Markov chain will return to it after a finite (random)
time is one. The next theorem gives us a recurrence criterion in terms of

the pn(i,1) which are usually much easier to estimate than the f,(i).

Theorem 1.1 A state i in S is recurrent if and only if

an(z', 1) =00

n=0

To prove Theorem 1.1 we will need several observations and one lemma.

13



Observe that the Markov chain reaches ¢ at time n > 1 only if T} is
less than n. Hence

{Xn=i}= | {Xa=4Ti =k}

where the events in the union are pairwise disjoint. Therefore

P(Xp =i|Xo=1) =pn(i,i) = Y _ P(Xp =4Ti =k|Xo =)
k=1
But P(X, =4T; = k‘|Xg =i)=P(X, = ?|T, =kXy= i)P(Ti = leg =
1) = Pr-k(t, 1) fx(?) and this implies that

(1.1) Palis) = pui(i,)fi(d) for n > 1

k=0

where we define fo(7) = 0. We define the generating functions by

Pi(s) =Y _ pali,i)s™ and Fi(s) = _ fa(i)s" for |s| < 1

n=0
There is a very simple and useful relation between these two generating
functions. First observe that by the multiplication rule for absolute conver-
gent series we have

o0

Fi(s)Pi(s) =Y > ful)pa—i(i,i)s"

n=0 k=0

but using (1.1) for n > 1 and fu(i) = 0 we get

Fi(s)Pu(s) = an t,4)8" = Pi(s) — po(i,7) = Puls) — 1
and so

(1.2) Py(s) = for all |s| < 1

_ 1
1 - F;(s)
14



We will now need the following well known power series result

Lemma 1.1 Assume that ay > 0 for all k > 0 then
(a) if 3_poy ak converges then the following limit from the left exists

oo o0
lim Zaksk = Z ay,
s—1—

k=0 k=0

(b} If
lim Y aps* =L < oo

s—1-

k=0
then imy 00 Zf:u ay is equal to L.
Problem 1.3 Prove Lemma 1.1.

We are now ready for the
Proof of Theorem 1.1
Assume that state ¢ is recurrent then by Lemma 1.1 (a) we have

‘l 3 — 3 — 1
lim R =3 0
So (1.2) implies that
liIi.'l_ Pii(s) = o0

Using Lemma (1.1) (b) we get
o0
lim Py(s) = n{l,1) =
lim Pii(s) nzﬂp (3,8) = 00

And this proves that recurrence implies that the preceding series is infinite.

For the converse, assume i is transient then by Lemma 1.1 (a) we get

lim Fi(s) = Y hi<1

n=0

15



and so by (1.2)
lir_{l_ Py(s) <

&

but the preceding limit is by Lemma 1.1 (b) equal to 3.7 o pa(,7) < oo.
This completes the proof of Theorem 1.1.

We now show that recurrence is a class property.

Corollary 1.1 All states that are in the same class are either all

recurrent or all transient.

Proof of Corollary 1.1
Assume that states i and j are in the same class, by definition this

means that there are positive integers m and n such that
palis§) > 0 and pm(j,6) > 0

Observe that by Proposition 1.1 we have for any states ¢, 7, £

Prmtn(is ) =Y Pl K)Palhs 4) 2 pmlis Opa(L, )
kes

We iterate twice the preceding the inequality to get

pm+n+r(juj) > Pm(j, "':)pr(ia z')pn("i-.' .7)

for any positive integer r. We now sum on all » to get
oo oo @0
Y Prtntr(55) 2 Y pmld, )peli, pn(i, 5) = PG i)pnr 5) Y po(is i)
r=0 r=0 r=0

Therefore if Y777 pr(2, 1) diverges so does Yo pr(4, 7). Since ¢ and j
can be interchanged this completes the proof of Corollary 1.1.

We now give an interesting characterization of the recurrence property.

16



Theorem 1.2 A state i is recurrent if and only if the Markov chain
returns to i infinitely many times with probability 1.

Proof of Theorem 1.2
We define the event of at least n returns to ¢ by

E,(i) = {Xs =t for at least n distinct k}

and let g,(i) = P(E,(i)). The Markov chain will visit state i at least n
times if and only if after the first return it visits ¢ at least n — 1 times.
Hence -
ga()) = 3 Feldgn-1() = gna (D)) for n > 2

k=1
where f(i) = Soe, fi(i). Proceeding by induction and using that g1(¢) =
f(%) we get that

ga(1) = f(5)"

Observe that limy,—co g (i) is 1 or 0 according whether f(#) = 1 (i is recur-
rent) or f(i) < 1 (i is transient), respectively. Since the events (En(2))n>1

are decreasing we get

n]LII;ogn(i) = nlEIgoP(En(i)) = P( ﬂ E.(3))

n>1
= P(Xy = i for infinitely many k)

and this completes the proof of Theorem 1.2.
2. Random walks

This is our first example of Markov chain. We begin by considering the
one dimensional random walk on the integers. The states of this random
walk are on § = Z. The one-step transition probabilities are p(i,i+1) = p
and p(i,i — 1) = 1 — p = ¢ and all other entries of p(7, j} are 0. We use

17



Theorem 1.1 to determine for which values of p € [0, 1] the one-dimensional

random walk is recurrent.
Problem 2.1 Prove that if p is 0 or 1 then all states are transient.

In the sequel we take p to be in (0,1). In this case it is clear that the
random walk has a single class: all states communicate. So by corollary 1.1
it is enough to consider one state, take the origin 0 for instance. If n is odd
then p,(0,0) = 0 so we only need to consider even times. It is easy to see
that ‘

2 T T 2n!nﬂ
pzn(0,0)=($)pq = @1

nln!

In order to estimate the preceding probability we use Stirling’s formula:

. n!
m —
n—oo e~/ 2n

see for instance Feller (1968) for a proof. Stirling’s formula yields

=1

P2n(0, 0)

lim ———F——F—=1

e N

It is easy to check that 4pg < 1 if p # 1/2 and 4pg = 1 if p = 1/2.
Therefore y_o~  pn(0,0) = oc if and only if p = 1/2. The one-dimensional

simple random walk is recurrent if and only if it is symmetric (p = 1/2).
We now consider the two dimensional simple symmetric random walk.
That is, S = Z2 and '
p((i,9), (i 4+ 1,5)) = p((i, 4), (5, 5 + 1))

all the other entries of p are 0. We see that there is only one class and
we consider the origin O = (0,0). In order to analyse the two dimensional

random walk we will need the following combinatorial identity.

18



Problem 2.2 Prove that

(1)) = (3)

: 1 n—i/ \n

=0

One way of proving this is to write Newton’s formula for {1+¢)™ and (1+¢)"
in the identity

(14+ "1+ 6" = (1 +t)*"
and identify the coefficients of the polynomials on both sides of the equality.

For the two dimensional random walk to return to the origin in 2n
steps it must move 7 units to the right, ¢ units to the left, j units up and j
units down where 27 + 25 = 2n. Hence

—- - (2”‘)' Zn
P2n(0,0) = Z; ilil(n— 9)i(n — i)! (174
Dividing and multiplying by (n!)? yields
) & nin! n
pea(0,0) = 1) 1/

nln! £ ilil(n — i)}{n — i)!

0,01= ()2 (1) (1) oo

i=0

hence

By Problem 2.2 we get

2
2 n
pn0,0)= (%) a4y
Using Stirling’s formula we have

lim 222000)

n—0oo —_
T

1

19



and this proves that the two dimensional random walk is recurrent.

We now turn to the analysis of the three dimensional simple symmetric
random walk. This time & = Z® and the only transitions that are allowed
are plus or minus one unit for one coordinate at the time, the probability
of each of these six transitions is 1/6. By a reasoning similar to the one we

did in two dimensions we get

n nei

(2n)! on
Pn(0.0)= 33 s = )

i=0 j=0

We multiply and divide by (n!)? to get

on mn n n—i ) o
0,0 = 172 (% )ZZ e VCYE)
Let :
C(Z,j) Wn_n'z—_—ﬂ—for0<z+3<n
and
L o SRLE)
We have
p2n(0,0) < (1/2)2" (2n)mn(1/3 zn:ni: _(1/3)"
> i
but )
s +1e1ar =Y T (" =
i=0 j=0
Hence
(21) pn(0,0) < (1727 (7 ) 1/3)"

20



We now need to estimate m,. Suppose that the maximum of the (i, §)
occurs at {Zg, jo) then the following inequalities must hold

c(ig, jo) = c(to — 1, Jo)
c(io, jo) = cio + 1, jo)
c(io, Jo) > clio, Jo — 1)
c(to, Jo) 2 cfio, jo + 1)
These inequalities imply that
n—ig—1<2jp<n—%+1

n—jo—1<2ip<n—jo+1

and it shows that the approximate values for ip and jo with one unit error
are n/3. We use this in (2.1) to get

pn(0,0) < (1/2)"" ( ") et/ n3) /3"

We use again Stirling’s formula to get that the right hand side of the last
inequality is asymptotic to chnm This proves that Zn>0 pn(0,0) is
convergent and therefore the three dimensional random walk is transient.
In other words there is a positive probability that the three dimensional
random walk will never return to the origin. This is in sharp contrast with

what happens for the random walk in dimensions one and two.
3. The Bienaymé-Galton-Watson branching process

This process was introduced independently by Bienaymé and by Galton
and Watson to model the survival of family names. An initial set of men

which we call the zero-th generation have male children that are called the
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first generation; their children are called the second generation and so on.
We denote the size of the n-th generation by Z,, n > 0. This model has
also been used in several biological problems (survival of genes, for instance)
and physical problems (electron multipliers, for instance). We now give the
mathematical definition of the Bienaymé-Galton-Watson (BGW) process
Zn. We call the objects that are generated particles. The state space S of
Zy 1s the set of positive (including zero) integers. We suppose that each
particle gives rise to Y particles in the next generation where ¥ is a positive

integer-valued random variable with distribution (Px)k>0. In other words
P(Y =k)=py, for k=0,1,...

Moreover we assume that the number of offspring of the various particles in
the various generations are chosen independently according to the distribu-
tion (pr). With these assumptions it is clear that Z,, is a Markov process: in
order to have the distribution of Z, 4 the information we need in (Z) k<n

1s Z,,. In particular the one-step transition probabilities are given by

plisj) = P(Zut1 = j1Za =) = P(D_Yi=j)fori>1,j>0
k=1

where (Y})1<k<i is a sequence of independent identically distributed random
variables with distribution (p;). We assume that state 0 (no particles) is
an absorbing state (or trap) for Z, in the sense that

p(0,4) =0if i > 1 and p(0,0) = 1

We also assume that the first moment exists for the offspring distribution
Pr: there is a finite number m such that

oo
Z k‘pk =m
k=0
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We define the generating function of the offspring distribution by

f(s) = Zpksk for |s| < 1

k=0

Theorem 3.1 Assume that po + p1 < 1 then the BGW branching

process exhibits a phase transition in the sense that
ifm<1then P(Z, > 1, foralln >0[Z;=1)=0

ifm>1then P(Z, 2> 1, foralln>0[Zy=1)=1—-¢>0

Moreover q is the unique solution stricly less than 1 of the equation f(s) = s

when m > 1.

The process BGW is said to be subcritical, critical and supercritical
according wether m < 1, m =1 or m > 1. Observe that the BGW process
may survive forever if and only if m > 1. So the only relevant parameter
of the offspring distribution for survival is m. Of course, the probabﬂity
1 — g of surviving forever depends on the whole distribution (py) through
its generating function.

Before proving Theorem 3.1 we will need to prove a couple of properties
of the BGW process. We now introduce the iterates of the generating
function f: let fy = f and fopy = fofoforn > 1.

Proposition 3.1 For n > 1, the generating function of Z,, conditioned
on Zg=11is f,.

Proof of Proposition 3.1
We prove this by induction. Let g, be the generating function of Z,
given that Zy = 1. We have

01(s) = B(s?|Zo = 1) = E(s"") = f(5) = fu(s)
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so the property holds for n = 1. Assume that g, = f,. First observe
that given Z, = k, the distribution of Z,4 is the same as the distribution
of ZLl Y; where the ¥; are i.i.d. random variables with distribution pg.
Hence

E(s%+1|Z, = k) = (B(s")* = f(s)*

where the first equality comes from the independence of the ¥;. Therefore
Guti1(s) = P(Zn = klZo = 1)f(s)* = ga(f(5))
k=0

and by our induction hypothesis we get g1 = gno f = fano f = futa-
This completes the proof of Proposition 3.1

Proposition 3.2 We have that

E(Zn|Z0 = 1) =m" forn Z 0
Proof of Proposition 3.2

E(Zn41|Zo=1) =Y kP(Znyr =k|Zo=1)=Y  kpns1(L. k)
k=0

By Proposition 1.1 we get

n+1|ZU = 1 Zkzpn 1 j)Pl(jvk)
k=0 j=0

We interchange the two sums (we can do this since all the terms are positive)
and use that

Z@m,— (21125 = j)
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to get

E(Zny1lZo = 1) =Y palL,5}E(Z1]Z0 = j)
i=0
But
E(Z\|Zo = j) = JE(Z1|Zp = 1)
and so

o0
E(Zn|Z0=1) =Y pa(1,1)iE(Z1|120 = 1)
L

We finally get that
E(Z,.H_]_[ZO = 1) = mZJP(Zn = leg = 1) = mE(Zn|Z0 - 1)
j=0

We iterate this equality and use that E(Z;|Zp = 1) = m to complete the
proof of Proposition 3.2.

We are now ready for the

Proof of Theorem 3.1
We start by dealing with the easiest case: m < 1. By Proposition 3.2

Hence
lim P(Z, >1|Z, =1}=0

and the convergence occurs exponentially fast. Observe that since 0 is a
trap for Z, the sequence of events {Z, > 1} is decreasing. We have

lim P(Z, 2 1|2y =1) = P( N{Z. 212 =1)
n>0

=P(Z,>1foralln>0/Z;=1)=0
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and this takes care of the case m < 1.

For the cases m = 1 and m > 1 we will need the following observations.
P(Z, =0]Z5 =1) = f.(0)
and since the events {Z,, = 0} are increasing (in n) we have

Jim £,(0) = P(|J{Zn = 0}|Zo = 1)

n>0

Define g to be the probability of extinction

g= lim f,(0)=P(| J{Z. = 0}|Z0 = 1)
n>0

= P(Z, =0 for somen > 1|Zy = 1)

Since fr41(0) = f(£.(0)) by the continuity of f we must have f(g) = q.
Our task now will be to show that depending on the value of m we will have
g =1 (extinction is certain) or g < 1 (survival has positive probability).

We first consider m = 1.

fi(s)= kaksk_l < kak =m=1fors<1

E>1 k>1

So by the mean value Theorem (recall that a power series is infinitely dif-
ferentiable on any open interval where it is defined)

FO)—f(s)=fe){(1l-s)<l—-sfors<1

and so

f(s)>sfors <1

Therefore there is no solution to the equation f(s) = s other than s =1 in
the interval [0,1]. Hence g = 1.
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We consider now m > 1. By continuity of f’ there is 5 > 0 such that
if s >1—nthen 1< f'{s) < f/(1) = m. So by the mean value Theorem,
for s > 1 — n we have f(s) < s. But at s = 0 we know that f(0) > 0
so by the intermediate value Theorem we have at least one solution to the
equation f(s) = s in [0,1), we denote this solution by s;. We now show that
the solution is unique in [0,1). By contradiction assume there is another
solution ¢, in [0,1). But since f(1) = 1 we would have by Rolle’s Theorem
£1 # & in (0,1) such that /(&) = f'(§2) = 1. Since pg + p1 < 1 we have
that f”(s) > 0 for s in (0,1) and therefore f’ is strictly increasing, we have
a contradiction. At this point we know that ¢ = s, or ¢ = 1 since these are
the two only solutions of f(s) = s in [0,1]. By contradiction assume that
g = limy 00 f(0) = 1. For n large enough, f,(0) > 1 — 7. As observed
above this implies that f(f,(0)} < f,(0). But this contradicts the fact that
fn(0) is increasing so ¢ must be the unique solution of f(s) = s which is
strictly less than 1. This completes the proof of Theorem 3.1.

Problem 3.1 Find a necessary and sufficient condition on the py in
order to have ¢ = 0 (survival is certain).

Problem 3.2 Find g in function of # if p = (1 — r)r*.

We now show that the BGW process is not stable in the sense that it

either goes to zero or to infinity: it does not remain bounded and positive.

Proposition 3.3 Assume that pg +p1 < 1 then all the states k > 1 of
the BGW Z,, are transient. Moreover

P(lim Z, =0)=¢

P(lim Z,=x)=1—¢
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Proof of Proposition 8.3
If po = O then the number of particles can only increase from one
generation to the following and we get for each & > 1

palk, k) = (p})"

and since p; < 1 by Theorem 1.1 each state k& > 1 is transient.

I po > 0 then we define for a fixed integer & > 1 the first time of return
to k by -
Tr=inf{n >1: X, =k}

Observe that if the first generation has no pa.ri:icles then there will be no
return to k. So
P(Tpy <|Zo=k)<1-pf <1

This proves that k is transient.

By Theorem 1.2 we know that Z,, returns to each k£ > 1 only a finite
number of times with probability 1. This is only possible.if Z,, goes to zero
or if Z,, goes to infinity as n goes to infinity. But we know that Z, goes
to 0 with probability ¢ so Z, goes to infinity with probability 1 — g. This
completes the proof of Proposition 3.3.

Problem 3.3 Using that limsup, P(Z, = k) < P(limsup,{Z, = k})
prove that lim, ., P{Z,, = k) = 0 for each k > 1.

4. Notes and references

There are many good books on Markov chains. At an elementary level
see for instance Hoel, Port and Stone (1972) or Karlin (1966). A more
advanced book is Bhattacharya and Waymire (1990). On random walks on
a countable space there is the beautiful book of Spitzer (1976) based on
measure theory and Fourier analysis. On branching processes the reader
can consult Harris (1963) or Athreya and Ney (1972).
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Chapter I1I
CONTINUOUS TIME BRANCHING MARKOV CHAINS
1. The critical values

We will now consider a continuous time Markov process. In order to get
the Markov property we need to use exponential distributions to describe
the evolution of the process. Recall that a (continuous) random variable T’
is said to be exponentially distributed with rate k if for each real number ¢
we have

P(T >t)=e "

and the expected value of T is then 1/k.

Consider a system of particles which undergo branching and random
motion on § in continuous time. Let p(z,y) be the probability transitions
of a given Markov chain on a countable set S. The evolution of a continuous
time branching Markov chain on § is governed by the two following rules.

(i) If p(z,y) > 0, and if there is a particle at » then this particle waits
a random exponential time with rate Ap(z,y) and then gives birth to a new
particle at y, A > 0 is a parameter.

(ii) A particle (anywhere on S) waits an exponential time with rate 1
and then dies.

Let bf”\ denote the branching Markov chain starting from a single
particle at z and let 55*(y) be the number of particles at site y at time
t. If the process starts with a finite number of particles it is not difficult
to prove that it has a finite number of particles at 2ll finite times. So the
states of the process b¥ are in

S={neN%:3 n(y) < oo}
yES
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where N denotes the set of positive integers (including 0). Observe that S
is a countable space. The continuous time stochastic process b;_”’A has the
Markov property in the following sense. Take a sequence of times 0 < s <

51 < ... < 5; < t and take a sequence of states (or configurations) in §
Nos sy Moy then

PP = glb3 = ng; b2 = ;.. 05N = ) = PP = bt = me)

The Markov property of the branching Markov chain is a direct consequence
of the lack of memory property of the exponential distributions appearing
in (i) and (ii).

We denote the total number of particles of bf’)‘ by

67 =" b7 ()

yES

Let O be a fixed site of 5. We define the following critical parameters.
A =inf{A: P(p2}] > 1,v¢ > 0) > 0}

Xy = inf{} : P(limsup57*(0) > 1) > 0}.
t—oc

In words, Ay is the critical value corresponding to the global survival of
the branching Markov chain while )y is the critical value corresponding to
the local survival of the branching Markov chain. It is clear that A; < Ag,
we are interested in necessary and sufficient conditions to have two distinct
phase transitions: A\ < As.

When there will be no ambiguity about the value of A that we are
considering we will drop A from our notation,

Let X(¢) denote the continuous time Markov chain corresponding to
p(z,y). More precisely, consider a particle which undergoes random motion

only (no branching), waits a mean 1 exponential time and jumps, going
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from z to y with probability p(z,y). We denote by X (t) the position in S
at time ¢ of this particle. We define

Py(z,y) = P(X(t) = y|X(0) = x)
We have

Pys(0,0) =Y P(X(t+s) = 0; X(t) = y|X(0) = O)

yEeS

and since
PX(t+s)=0;X{1)=y|X(0)=0)=

P(X(t+s) = 01X (t) = y; X(0) = O)P(X(?) = y}X(0) = O)

and using that X (t) has the Markov property we get that the last term is
P,(y,0)P,(0,y). Therefore

Pt+s(01 O) = Z Pt(os y)Ps(ys 0) > Pt(OsO)Ps(O?O)
yeS

Lemma 1.1 If a continuous function f has the property that
flt+s) = f(2) + f(s)

then 1 )
lim = £(t) = sup - (£) € (—00, 00]
t—oo i>0 t

We will prove this lemma below. Lemma 1.1 applied to the function
f(t) =1og P,(0,0)
gives the existence of the following limit,

(1.1) lim E log P,{0,0) = —7 = sup L log P;{0, O).
t—oo { >0t
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Moreover it is clear that ¥ > 0 and since P,{O,0) > e~ (if there are no
jumps up to time t) we get that v is in [0,1].
We are now ready to state the main result of this section.

Theorem 1.1. The first critical value for a branching Markov chain
IS
AM=1

The second critical value is

1
Ag = T for + in [0, 1}

Ag=oco fory=1

In particular there are two phase transitions for this model if and only if

¥ # 0.

Problem 1.1 Show that 7 = 1 if and only if for all £ > 1 we have
pk(0,0) = 0. Use the fact that

ik
Pi(0,0)=) e 5p(0,0)
k>0 )

We start with
Proof of Lemma 1.1
Fix s > 0 then for ¢ > s we can find an integer k(¢, s) such that

0<t—k(t,s)s<s
and iterating the hypothesis of Lemma 1.1 yields

F(2) 2 k(t, 8)f(s) + £t = k(t, 5)s)

Let m(s) = inf,«; f(r) and we get
1 1 1
L1 2 TG, 9)1(5) + 1)
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We now let ¢ go to infinity and use that k(#,s)/t converges to 1/s to get

.. 1
limiint - £(1) > < (5)
Hence ) .
lim inf — £(¢) > sup — f(s)

On the other hand we have

limsup = £(£) < sup =£(s)
s>0 8

t— 00 t
and this completes the proof of Lemma 1.1.

To prove Theorem 1.1 it will be useful to have a differential equation
whose solution is P;(x,y). Conditioning on what happens in the time in-
terval [0, h] we have that

Ijt-l-h(mv O) = Z hp(.’E, y)IJt(y! O) + (1 - h)Pt(w: O)
yeS

where we are are neglecting terms of order higher than h. As h — 0 we get

(12) P{(:E,O) = Zp(ma y)Pt(yaO) - Pﬂ(m’o)

The differential equation (1.2) is called the Kolmogorov’é backward equation
corresponding to the process X (¢). It has a unique solution with the initial
conditions Py(z,0) = 0 for « # O and Fy(0,0) = 1 (see Bhattacharya and
Waymire (1990), chapter IV, section 3). We will use this to prove

Proposition 1.1. Forallz in S and timest we have the representation

formula

E(b2(0)) = X DIPy(z,0)
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Proof of Proposition I.1.
Define m(t,z) = E(bf(0)). Conditioning on what happens in the

interval [0, k] and using that 5P is a Markov process gives
(1.3) m(t+h,z) =Y Ahp(x, y)(m(t,z) + m(t,¥)) + (1 — (A + Dh)m(t, z)
y€S

Again we are neglecting terms of order higher than h. As h — 0 in (1.3)
we get

(14) m'(t,2) = 3 dp(e,y)mit,y) — m(t, )
yES

where the derivative is taken with respect to t. Using (1.2) it is easy to
check that
- t— e(A-l)iP,\t(:E, 0)

is a solution to (1.4) with the initial value m(0,z) = 0 for z # O and
m(0,0) = 1.
This completes the proof of Proposition 1.1.

Problem 1.2 Show that
t— e(’\_l)tPM(as, 0)
is the unique solution to (1.4) with the initial conditions m(0,z) = 0 for
2 # O and m(0,0) = 1.
To prove Theorem 1.1 we also need the following

Lemma 1.2. If there is a time T such that E(b$(0)) > 1 then
lim sup,_, ., P(3Y(0) > 1) > 0.

Proof of Lemma 1.2.
We will construct a super-critical Bienaymé-Galton-Watson process—

which is dominated (in a certain sense) by the branching Markov chain.
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To do so we will first consider the following Markov process b, whose evo-
lution is coupled with the evolution of ? in the following way. Up to time
T by and b9 are identical. At time T we suppress all the particles of by
which are not at site O and we keep the particles which are at . Between
times T and 27 the particles of b, which were at O at time T' evolve like the
particles of b which were at O at time T. At time 27" we suppress again
all the particles of b, which are not at O. And so on, at times kT (k > 1)
we suppress all the particles of b, which are not at O and between kT and
(k + 1)T the particles of b, evolve like the corresponding particles of bo.

Now we can define the following discrete time process Z. Let Zp =1
and Zp, = BkT(O). We may write

-
Zy= Y Yifork>1
i=1

where Y; is the number of particles located at O that a single particle
initially located at O generates in T units time. In other words each Y;
has the same law as b$(Q). Moreover the Y; are independent one of the
other and of the ones appearing in previous generations, therefore Z, is a
Bienaymé Galton Watson process. We also have that E(Z;) > 1, so Zk is
a supercritical BGW process. On the other hand by our construction we
have coupled the processes b? and b, in such a way that bi(z) < bP(x) for
allzin S and all ¢ > 0. And so

P(Z: 2 1) < P(53r(0) 2 1)

But P(Zx > 1,Vk > 0) > 0 so making k go to infinity in the last inequality

concludes the proof of Lemma 1.2.

We are now ready for the
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Proof of Theorem 1.1
We first compute the first critical value A;. By Proposition 1.1 we have

E(j6?]) = Z E(bY(2)) = ZPM(O,R:)E(A_I)‘ = e(A—1M
€S z€S

Fix any time T > 0 then E(|bQ|) = e*~V7T, define Z; = |bJp| then Zj is
a BGW process. Ohserve that Zj is supercritical if and only if A > 1. We
also have that

P(Zi > 1, forall k> 0)= P(|b¢p| > 1, forallk > 0) =p

Since 0 is an absorbing state we have for s < ¢ that {|p¢| > 1} C {[p9] > 1}
and so the function ¢t — P(|b{| > 1) is decreasing and therefore it has a
limit as ¢ goes to infinity. This limit must be equal to p. But p > 0 if and
only if A > 1. This proves that A\; = 1.

We now turn to the computation of A;. Using (1.1) and Proposition
1.1 we get that for all £ > 0

E(b7 (0)) < e

for € = A — 1 — A\y. Consider first the case ¥ < 1, observe that if A < ﬁ
then C < 0. Let
Ar = {b2(0) 2 1}

we have
P(A;) < E(b(0)) < eF

By Borel-Cantelli Lemma,

(1.5) P(limsup Ax) =0
k

In other words P(b(0) > 1 for infinitely many k) = 0. So the process is

dying out locally along integer times. We now take care of the non-integer
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times. If we had particles at O for arbitrarily large continuous times it
would mean that the following event happens for infinitely many integers
k: all particles at O disappear between times k and k + 1. But for distinct
k's these are independent events which are bounded below by a positive
probability uniform in k. So the probability that this event happens for
infinitely many k’s is zero and (1.5) implies that

P(limsupbP(0) > 1) =0
=200
This shows that Xy > 1—1-,1- for v < 1. Consider now vy =1,
P(A;) < eCF

where C = —1, so again by Borel Cantelli A < A for any A. This shows
that Az = Q.
For v < 1 we will now prove the opposite inequality for A;. Suppose

that A > ﬁ For € > 0 small enough we have that A > 1—}r—e' By (1.1}

there is T’ large enough so that
%longp(0,0) > -y — €
and therefore by proposition 1
E(3(0)) 2 "

with D = AM(—y —e+1) —1 > 0. Since E(b2(0)) > 1 we can apply Lemma
1.2 and we get

(1.6) limsup P(6°(0) > 1) > 0

t—o0
We also have that
PHO(0)>1) < P(Fs 2 t:02(0) > 1)
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we make ¢ — 0o and get
limsup P(b7(0) 2 1) < P(lim supb7(0) > 1)
this together with (1.6) show that
P(iiinsupb?(O) >1)>0

hence Ay < 1_}1; This finishes. the proof that Ay = ﬁ and the proof of

Theorem 1.1.
2. Two examples.

We first consider the simple random walk. In this example, S = Z and
pzz+l)=p plz,z-1)=¢=1-p

Consider the asymmetric branching random walk on Z. A particle at
« gives birth to a particle at z + 1 at rate Ap. A particle at x gives birth to
a particle at & — 1 at rate Ag. A particle dies at rate 1.

For this example v is easily computed. Let pa,, (O, O) be the probability
that the discrete time random walk is in O at time 2n. An elementary

computation shows that

(2.1) lim —P2n(0,0)

=1
n— 0o (4pq)n(1rn)'“1/2

It is then easy to get the

Lemma 2.1.

1
tlfﬁloi log P,{0,0)=2,/pg — 1 = —.

38



Proof of Lemma 2.1

Observe that the continnous time simple random walk on Z Pz, y)
waits a mean 1 exponential time between two jumps. Therefore the number
of jumps up to time ¢ is a Poisson process with parameter ¢. This implies
that i

Pz,y) =) e ™' —pn(z.y)
n>0

where p,(x,y) is the probability that the discrete time random walk goes
from z to y in n steps. Observe that p,(0,0) = 0 if and only if n is odd,

therefore
Zn

P,(0,0) = Ze—iﬁp%(o,m

n>0
Using (2.1) we see that there are strictly positive constants C; and C such
that foralln > 1

(22)  Ci(4p)*(xn) ™2 < p2a(0,0) < Caldpg)"(rn) ™/

Therefore
- .t2‘n

(2n)!

P(0,0) <1+ Y et ——Cal4pg)"(mn)~'/?

n>1

and we get that

o n _
P(0,0)< ) e ‘—CaV/ipq = Cyell=1+2vPD)

n20
this last inequality implies
1
lim sup n log P(0,0) < 2\/pg—1
T—o0
We now turn to the other inequality.

2n

P(0,0)2 1+ Y ' ——Ci(4pg)™(an)~*/*

2 @)
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Set Cy = C1 /7 and observe that /i < 2n + 1 to get

P(0,0)> 1 Z g Bl h \/4—2n+1

1 >0e (2n+ 1) 2V
A simple computation shows that there is C; > 0 such that for any ¢ > 0

Z t2n+1 et

(2n + 1)' -
We get .
I%U?,CU 2 ?C%Cheﬂ—1+2vﬁﬁ)

and so

hmlnf logﬂ(O 0)>2/pg~1
this completes the proof of Lemma 2.1.

Problem 2.1 Show that there is C > 0 such that for all £ > 0 we have
2n--1
¢ > Cel

= 2n+1)! =

Now that -y has been computed we may apply Theorem 1.1 to get
1
2,/Pq

Observe that pg < 1/4 and that the equality holds if and only if p = ¢ = 1/2.
Therefore the simple branching random walk on Z has two phase transitions

A1== 1 A2:=

if and only if p # q. In other words, any asymmetry in this model provokes
the appearance of two phase transitions.

'The other example we will consider is the brarching random walk on a

homogeneous tree. Here S is a homogeneous tree (also called Bethe lattice)
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which is an infinite connected graph without cycles, in which every vertex
has the same number of neighbors that we denote by d > 3. We assume
here that p(z,y) = 1/d for each of the d neighbors y of z. Se in this sense
this is a symmetric model but we will see that the behavior is very similar
to the one of the asymmetric branching random walk on Z.

Sawyer (1978) has computed asymptotic estimates of p,(0,0) for a
large class of random walks on a homogeneous tree. In our particular case

(nearest neighbor symmetric random walk) his computation gives

. pZ‘n(OsO) _
nll..néo n—3/2Rn =C

where C' > 0 is a constant and R = ?@. Doing exactly the same type of

computation than in Lemma 2.1 gives

.1
and therefore by Theorem 1.1
d
M =1 Ay = ——=
' 2T avd-1

It is easy to check that for any d > 3, «y is strictly positive and therefore
there are two distinct phase transitions for the simple symmetric branching

random walk on a tree.
3. The first phase transition is continuous

Define p(\) = P(b%*| > 1,Vt > 0). Recall that A; has been defined

Ay =inf{A > 0: p(}) > 0}

Theorem 3.1 The first phase transition is continuous in the sense that
the function
A= p(A)
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Is continuous at A;.

Proof of Theorem 3.1

By definition of A; we have that if A < A; then p(A} = 0. So the limit .

from the left at X, is

lim p(A)=0
A=A

We also know what the value of p at A; is. For positive integers k define
Zi = |b§]. Then Z is a BGW and

P(Ze > 1, for all k > 0) = P(b0| > 1, for all k > 0) = p(})

where the last equality comes from the fact that lim;_,., P(|6] > 1) exists
and is equal to p(A). By proposition 1.1 we have that E(Z;) = e(*~1), So
at A; = 1 the BGW process Z;, is critical and therefore p(A1) = 0. This
together with the previous computation of the left limit shows that p is left
continuous at A;.

We now turn to the right continuity. We may construct simultaneously
two branching Markov chains with birth rates respectively equal to A p(z, )

and Ayp(z,y) where A; < Aa. Denote the two processes by b? M and b? Az

To do our simultaneous construction we construct b~*? in the usual way.
That is, for all sites z,y in S each particle at & waits an exponential time
with rate Aop(z,y) and gives birth to a new particle located at y. After each
birth we consider a Bernoulli random variable independent of everything
else which has a success probability equal to X, /Aa. If we have a success
then a particle is also created at y for the process b? A provided that the
particle at z which gives birth in the process b? 2 also exists in the process
bio A, Observe that this construction shows that the process with higher
birth rates has more particles on each site of § at any time. In particular
this implies that A — p(}) is an increasing function.

Consider now for a fixed time ¢ the following function

fi3) = P > 1)
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We will show that A — f,(}) is a continuous function. As explained above
we may construct simultaneously the branching Markov chains with param-
eters A and A + k where A > 0. We get

(3.1) 0 < (A4 h) = fi(0) = P(Ip0M* > 1; (b7 = 0)

Consider N(t) the total number of particles born up to time ¢ for the process
bO A From (3.1) we get for any positive integer n

(3.2)

0< fiA+R)— fiN) < PIN() < my 78] 2 15167 = 0)+ P(N(2) > m)

In order to have [bZ %] > |67 at least one of the Bernoulli random vari-
ables involved in the simultaneous construction must have failed, therefore

from (3.2) we get
0< filA+h) - V)€1 - (_)-‘:A—_h "+ P(N(t) >n)
We now make 2 — 0 to get
(3.3) 0< lilfsglpft()\ + k) — f:(\) S P(N(t) > n)
Since ¢ is fixed, the number of births up to time ¢ is finite and
nlEEOP(N(t) >n)=0

Using this observation in (3.3) shows that A — f;()) is right continuous.
The proof of left continuity is similar and this proves that f; is continuous.
Observe that

(34) p() = inf £i(Y)

A function g is said to be upper semicontinuous at A if a constant ¢ is
such that ¢ > g(}) then there isa § > 0 such that if [h| < 6 then ¢ > g(A+h).
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We now prove that p is upper semicontinuous. Assume ¢ > p(A) then by
(3.4) there is a tg such that ¢ > f;,(A) > p()). But f;, is continuous so for
any € > 0 there is é > 0 such that if || < § then

fro(A+h) < fi{A) +€
Pick € = (¢ — fi,()\))/2 to get
fo(A+h)<c
By (3.4) again this implies that
p(A+h) <c

This concludes the proof that p is upper semicontinuous. The final step is
to prove that since p is semicontinuous and increasing it is right continuous.
Fix A > 0, let ¢ = p(A) + ¢, by semicontinuity there is & > 0 such that if
|h| < & then

pA+h)<c=p(A)+e

But if & is also strictly positive we use that p is an increasing function to
get
0<p(A+h)—p(A) <e

and this shows that p is right continuous and therefore completes the proof
of Theorem 3.1.

Problem 3.1 A function g is said to be lower semicontinuous if —g -
is upper semicontinuous. Prove that a function ¢ is continuous at ¢ if and

only if it is upper and lower semicontinuous at .

Remark. Observe that the proof that p is right continuous is fairly
general and can be applied to a wide class of processes. That the limit
from the left is zero at A; is always true. So the main problem in showing
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that the phase transition is continuous is to prove that p(A;) = 0. This
is in general a difficult problem, here we take advantage of the branching

structure of the process and there is no difficulty.
4, The second phase transition is discontinuous

We say that the second phase transition is discontinuous in the follow-

ing sense.

Theorem 4.1. Assume that § = Z¢ or a homogeneous tree and
assume that p(x,y) is translation invariant. If the branching Markov chain
has two distinct phase transitions i.e. A\; < Ag then the function ¢ defined
by

o(\) = P(li]t:nsupb?”\(O) > 1)
—o0

is not continuous at Agz.

Proof of Theorem 4.1
We will prove that if A > Aa then

(4.1) o()) = P(limsupbP>(0) > 1) = P(jb)"}| > 1, for all t > 0) = p(})
i—00

In words, above Ao the process must survive locally if it survives globaily.
We now show that Theorem 4.1 follows directly from (4.1). Make A ap-
proach A, from the right in {4.1). Since p is right continuous we have that
p(}) approaches p(Az). But this last quantity is strictly positive if A1 < Ag.
This shows that ¢ has a limit from the right at Ay which is strictly positive.
But the limit from the left at \s is zero. So there is a discontinuity at Aq.

We now turn to the proof of (4.1). For z,y in S we define B the event
that the site z is visited infinitely often by the offspring of a single particle
started at the site y. More precisely

BY = {limsupby(z) > 1}
t—o00
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Define
C¥ = NoesBY

Under the translation invariance assumptions for § and p(z,y) we get
P(BY) = P(B3) = o()\) > 0if A > Xs. Observe that

|P(BY) — P(B})| < P(By N (BY)°) + P(BY N (B})°)

In order to have the event BYN(BY)® it is necessary that y gets occupied
at arbitrarily large times while after a finite time z is empty. But y is
occupied at arbitrarily large times only if there are infinitely many distinct
particles that occupy y after any finite time. Each of these particles has
the same positive probability of occupying x and since distinct particles are
independent one of the other x will get occupied with probability one at
arbitrarily large times. Therefore P(BY N (BY)°) = 0 and

P(BY) = P(BY) =o(})
‘We now consider

P(BY) - P(C¥) = P(BY N (CY)?) < ) P(BYN(BY)°)
zeS8

For the same reason as above each term in this last sum is zero so
(4.2) P(CY) = P(B}) =o(})
for any z,y € 5. We have for any integer time k and integer n that
(4.3) P(C?) 2 P(COI{I6F1 2 n})P(b7] > n)
By the Markov property we have that

PCO{IBZ| 2 n}) > inf P(UL,C™)
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But since offspring generated by different particles are independent we have
PCP{Ipg1 2 n}) 21— (1 - P(CO)"
Using this lower bound in (4.3) gives
(1.4) P(C%) > (1 - (1 = PCO)P(B] 2 )
Now we consider
P(2] 2 1)~ P(Q] 2 n) = P(1 < 62| < )

Recall that Z; = [b9| is a BGW and we know that a BGW either gets

extinct or goes to oo as time goes to infinity. Let
A= {1 < Zr < n}

‘We know that
P(limsup Ag) > limsup P(Ag)
k k

Since the event lim sup,, Ay excludes the possibility that Z, goes to zero or
to infinity as k goes to infinity, this event must have probability zero. So

lim P(Ag)=0
k—oo
We use this observation and make k go to infinity in (4.4)
P(C®) 2 (1~ (1= P(CO)™Mp(Y)

By (4.2) P(C®) = o()) > 0 for X > Xz, using this and making n go to
infinity yields
a(A} > p(A) for A > As

Since the reverse inequality is always true this concludes the proof of (4.1)
and of Theorem 4.1.
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5. Notes and references

We have given an informal description of a branching Markov chain.
For a formal construction of continuous time Markov chains, see for instance
Bhattacharya and Waymire (1990) or Harris (1963).

Theorem 1.1 was first proved in the particular case of trees by Madras
and Schinazi (1992). The general case was proved by Schinazi (1993). The-
orem 4.1 is due to Madras and Schinazi (1992).
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Chapter IV
THE CONTACT PROCESS ON A HOMOGENEOUS TREE
1. The critical values

Let S be a homogeneous tree in which d branches emanate from each
vertex of S. Thus § is an infinite connected graph without cycles in which
each site has d neighbors for some integer d > 3.

We consider the contact process on § whose state at time ¢ is denoted
by 7 and which evolves according to the following rules. -

(i) If there is a particle at site z € S then for each of the d neighbors ¥
of z it waits a mean %7 exponential time-and then gives birth to a particle
on y.

(ii) A particle waits a mean 1 exponential time and then dies.

(ii1) There is at most one particle per site: births on occupied sites are
suppressed.

Observe that (i) and (ii) are particular cases of (i) and (ii) in chapter
TiL. Here M plays the role of X in chapter IIl and p(z, y) = 1/d if z and y are
nearest neighbors on the tree. So the contact process follows the same rules
as a branching Markov chain with the additional restriction (iii) that there
is at most one particle per site for the contact process. This additional rule
breaks the independence property between offspring of distinct particles
that holds for branching Markov chains. Without independence we will not
be able to make exact computations for the contact process. Instead, we
will have to proceed by comparisons to simpler processes.

Let O be a distinguished vertex of the tree that we call the root. Let 77
be the contact process with only one particle at time 0 located at site = € 5.
Let 57(y) be the number of particles at site y and let InFl=3",es M (¥) be
the total number of particles. We define the following critical values

A =inf{X: P(In2* > 1,vt > 0) > 0}
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Az = inf{) : P(limsupp*(0) = 1) > 0}.
t— o0

We include A in the notation only when there may be an ambiguity about

which value we are considering.

Theorem 1.1
—_ l — d'— 2'

Q=

and

1
2vd-1
In particular we have two phase transitions for the contact process (A; < Ag)
on trees if d > 7.

Ay >

Proof of Theorem 1.1

To get lower bounds for A; and A; we will consider a branching Markov
chain that has more particles than the contact process. Define the branching
Markov chain b7 where a particle at x gives birth to a particle at y with rate
Adp(z, y), where p(x,y) = 1/d if y is one of the d neighbors of z. A particle
dies at rate 1. Since there is no restriction on the number of particles per
site for b we may construct #° and b9 simultaneously in such a way that
1 (x) < b (z) for each z in S. We denote the two critical values of b; by
A1 (b) and Ay(b). Since by.has more particles than 7, we have

/\]_ Z )\1(!)) and )\2 Z z\z(b)

We have computed the critical values for this branching Markov chain in
I11.2, observe that the parametrisation is slightly different here and d) plays
the role here that A plays in II1.2. So we get

d
d—1

d)\l(b) =1 and d).z(b) = 5

This gives the lower bounds for A; and As in Theorem 1.1.
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To get an upper bound for Ay, consider a process 7, with the following
rules. Start the process with a single particle at the root, pick d — 1 sites
among the d nearest neighbors. The particle at the root gives birth to a
new particle at rate A on each of the d—1 sites previously picked. Each new
particle can give birth on all neighboring sites but the parent site. Once a
site has been occupied by a particle and this particle dies, the site remains
empty forever. The death rate for each particle is 1 and there 1s at most
one particle per site.

Define the distance between sites z and y in the homogeneous tree to
be the length of the shortest path between z and y. Define Zo = 1 and 2y
to be the number of sites at distance k of O that will ever be occupied by
a particle of 7;. Observe that each particle in 7j; gives birth (before dying)
with probability ﬁi on each of the d — 1 sites it is allowed to give birth on.
So the the size of the offspring of each particle has a binomial distribution
with parameters d — 1 and AL-H Since a tree has no cycles two distinct
particles of 7j; have independent offspring. Hence Zp is a BGW and it is

supercritical if and only if
A
- 1)——>1
(d=-377 >

and the last inequality is equivalent to A > <t5. On the other hand it is
clear that

{Zp>1,forall k >0} = {7 > 1, forall t > 0}

So the first critical value of 7, is ﬁ. Since the birth rules for 7; are more
restrictive than the one for 0, we may construct 7, and 7; simultaneously
in such a way that #;(z) < ni(x) for each z in S. This implies that -5 is
an upper bound for A; and this concludes the proof of Theorem 1.1.

Problem 1.1. Show that A\; < A ifd 2> 7.
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Problem 1.2. Show that the second critical value of the process 7
(in the proof of Theorem 1.1) is infinite.

2. Characterization of the first phase transition

While it is possible to improve the bounds in Theorem 1.1 (see the
notes and references at the end of the chapter), the exact computation of
the critical values seems hopeless. In order to analyse the phase transitions
we need to characterize the critical values in a way that is amenable to
analysis. We will achieve a very useful characterization of the first phase
transition. Some of the proofs in this section are more technical than in the
previous sections, we will give these proofs at the end of the section.

We start with

Theorem 2.1 For the contact process on a‘homogeneous tree with
degree d > 3, there exist constants c¢(A,d) and C(d) such that

ec()\,d)t S E(ln?l) S C(d)ec(/\,d)t_

Moreover c(A, d) is a continuous function of A.

Theorem 2.1 tells us that the expected value of the number of particles
is "almost” an exponential function of time. Observe that for a branching

process this expected value is exactly an exponential.
It is easy to prove that
‘Theorem 2.2 If A > A; we have that ¢(),d) > 0.
The following converse of Theorem 2.2 is much harder to prove.
Theorem 2.3 If ¢(\,d) > 0 then A > ;.

We now can state the characterization of the first phase transition.
k]
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Corollary 2.1 We have that
A = sup{X : (), d) <0}

Moreover ¢(Ay,d) = 0.

So \; is the largest possible value for which we have ¢(A,d) = 0.

Proof of Corollary 2.1
From Theorem 2.2 and Theorem 2.3 we get the following

lim ¢(\,d) <0and lim ¢(A,d)>0
A AT a—at

Now using that A — ¢()\,d) is a continuous function we get c(A1,d) = 0.
From Theorem 2.2 we know that A; is an upper bound of the set {X :
¢(\, d) < 0}. We just saw that ) is also in this set therefore

A = sup{A : (A, d) <0}

and this completes the proof of Corollary 2.1.

An immediate consequence of Corollary 2.1 and Theorem 2.1 is

Corollary 2.2 We have that at A = M\
1< E(ln*) < C(9)

where C(d) is a constant depending on d only.

So the expected value of the number of particles of the critical con-
tact process remains bounded at all times. This is similar to the critical

branching process for which this expected value is a constant equal to one.

Corollary 2.3 The survival probability for the contact process on a

homogeneous tree with d > 3
A= P(lnd*| 2 1,9t > 0)
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is continuous at A, i.e., the first phase transition is continuous.

As for the second phase transition, the same type of argument that we
used for Branching Markov chains works here too. The proof is complicated
by the lack of independence in the contact process. See Madras and Schinazi
(1992) for a proof of the following

Theorem 2.4. If A} < Ay then the function
. 0,2
A —= P(limsupn,”"(0)=1)
et 0O

is not continuous at As.

We will now prove the results of this section in the following order:
first a lemma then Corollary 2.3, Theorem 2.1, Theorem 2.2 and finally
Theorem 2.3. The following lemma will be useful in two proofs and also
tells us that the contact process is not stable: it either gets extinct or it

goes to infinity.

Lemma 2.1 On the event
Qoo = {InP| > 1, for all t > 0}

we have that
lim |7P] = oo
i—oo

And this implies that if P(2..) > 0 then

. on _
Jlim E(|n;’[) = o0

Proof of Lemma 2.1

For a fixed k& > 1, define a sequence of random times T}, by
Ty =inf{t>1:|n°| =k}
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and for n > 2
T =inf{t > Tooy +1: 0% =k}

If T,, = oo for some n > 1 then we take T} = co for & > n.
Observe that if there are k particles or less the contact process will get

extinct in less than one unit time with probability at least p(k) where

pk) = ( fo 1 e~*ds)*(1 - / ' deeds)H

0

To see the preceding equality observe that the first term in the product is
the probability that k particles die in one unit time while the second term
in the product is the probability that none of the k particles attempt to give
birth during the first unit time. Therefore, by the strong Markov property
forn>2

P(T,, < 00|Tp—1 < 00) <1~ p(k)

" Since the sequence {T;, < oo} is decreasing
P(T, < 00) = P(Tp < c0|Tp—1 < 00)P(Tr—y < 00)
< P(Tp1 < 00)(1 = p(k))
We iterate the preceding inequality n times to get
P(Ty < 00) < (1= p(k)" (1 - p(1))

where the last term comes from the fact that we start with one particle.

‘We now make n go to infinity

JEEOP(Tn < oo} =P([{Tn < o0}) =0
n>1

Therefore after a finite random time there no return to k& > 1. On the

other hand, on . we know that there is no return to 0 so |n{’| must go to
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infinity as f goes to infinity. And this completes the proof of the first part
of Lemma 2.1.

For any k > 1 we have
E(n?1) = E(n? {n?] 2 £)P(0| > k) > kP(1n2] > k)
But we know that
liminf P(|n?| 2 k) > P(liminf |n?| > k)

The event {liminf; . [77] > k} happens if and only if there is a time after
which the number of particles is always larger than k. But this may happen
if and only if the process does not get extinct. Hence

litminfE(|ntO|) > klitxnian(|n?| > k) > kP(litminfm,Q[ > k) = kP(Qoo)
Assume that P{€2.) > 0 then since % is arbitrarily large we get
tlim E(|n?]) = oo if P(1s) > 0

and this completes the proof of Lemma 2.1.

Proof of Corollary 2.8
Define
p(N) = P(7] 2 1, for all ¢ > 0)

By definition of A;, the left limit of p at )\; is zero. The same arguments
we used to prove that p is right continuous for a branching Markov chain
work here (see Theorem 3.1 in chapter III). So p is continuous at A; if and
only if p(A;) = 0.

By Lemma 2.1 we have that if p(};) > 0 then E(|5"""']) is not a
bounded function of ¢ and this contradicts Corollary 2.2. Therefore p();) =
0 and this completes the proof of Corollary 2.3.
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Proof of Theorem 2.1

Let A be a subset of S, we denote by n;! the contact process that
started with one particle on every site of A. The contact process is said to
be additive in the sense that if A and B are subsets of S and C' = AU B
then we may construct the three processes nf', nf and nf in such a way
that for any z in § nC(z) = 1 if and only if {(x) = 1 or pP(z) = 1. In
particular we get that

71 < Indl+ Inf’|

Define m(t) = E(|n?|). Using the Markov property, the additivity and

translation invariance of the contact process gives

E(InGsllln?l = k) < kE(In?])

and so
m(t +5) < m(t)m(s)

Subadditivity (see Lemma 1.1 in IIL.1) implies the existence of the following
limit:

.1 .1
(2.1) tlgglo? log m(t) = %1>1£ 7 logm(t) = ¢(A, d)

In a way similar to what was done in section 3 of chapter III it is possible
to show that for fixed ¢ the function

A= E(In{)
is continuous and therefore the function
A= c(A, d)

is upper semicentinuous.
We now turn to the upper bound in Theorem 2.1. For a given site &

if we remove d — 1 of the d edges incident on = we are left with d disjoint
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subtrees, only one of which contains z. This particular subtree is called a
branch adjacent to z, each site has d such adjacent branches. For a finite
subset A of § we say that a site x of A is in the boundary of 4 if at least

one branch adjacent to z has an intersection with A exactly equal to {z}.

Lemma 2.2 Let A be a finite subset of the tree S. There are at least
(1 — 25)|A| sites of A that are on the boundary of A.

What Lemma 2.2 says is that the number of the boundary points is of
the same order as the total number of points for a subset of the tree. For a
proof of Lemma 2.2 see Pemantle (1992) (Lemma 6.2).

We will now prove that

(2.2) mﬁ+ﬂ)2(l—gé7ﬁﬂﬂ3@)

where B(s) is the expected number of particles of 7 that are located on a
given adjacent branch of Q. To see (2.2), we keep at time ¢t only the particles
of n? that are located on the boundary of the set of occupied sites. For each
of these particles we consider at time ¢ + 5 only its offspring located on the
branch adjacent to the particle and which contained only this particle at
time ¢. Then (2.2) is a consequence of Lemma 2.2, the preceding remarks,
the additivity and the Markov properties of the contact process. Again by
additivity we have

B(s) > m(s)/d

This last inequality together with (2.2) gives
m(t+5) 2 (1= —==) 3m(Bm(s)
5) > T-1)7™ 8
Let K(d) = (1 ~ 7&)3, we have that

K(d)ym(t + s) > K(d)m(t)K(d)m(s)
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By superadditivity we get
.1 . 1
(2.3) lim = log K (d)m{t) = sup - log I (d)ym(t)
t—oo t >0t

But K (d) is just a constant therefore the limit in (2.3) must be equal to the
limit in (2.1): ¢(A, d). From (2.3) we see that c(A,d) is a lower semicontin-
uous function of A. This together with (2.1) proves that

A — ¢{}, d) is continuous

Putting together (2.1) and (2.3) gives

Dt < m(h) < (dd— 12)d et

and this completes the proof of Theorem 2.1.

Proof of Theorem 2.2

By Lemma 2.1 if p(A) > 0 then E{|7|) goes to infinity with ¢. So-
by Theorem 2.1 we must have ¢(A,d) > 0. This completes the proof of
Theorem 2.2. A

Proof of Theorem 2.3

We begin by recalling Harris’ graphical construction of the contact
process (for more details see Durrett (1988)). We associate each site of S
with d + 1 independent. Poisson processes, one with rate 1 and the d others
with rate X\. Make these Poisson processes independent from site to site. For
each x, let {T%* : n > 1}, k =0, 1,2,..,d be the arrival times of these d+1
processes, respectively; the process {75 : n > 1} has rate 1, the others
rate . For each z and n > 1 we write a 6 mark at the point (z, T?) while
if k > 1 we draw arrows from (z, T3*) to (z, T>*) where 2p, k=1,...,d
are the neighbors of z. We say that there is a path from (z,s) to (y,1) if
there is a sequence of times 59 = s < §1 < §2 < .. < § < Spy1 = ¢ and
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spatial locations zg = z,%,..,2, = y so that for { = 1,2,..,n there is an
arrow from z;.; to #; at time s; and the vertical segments {z:} x (54, si41)
fori=0,1,..,n do not contain any §. We use the notation {(x,s) — (y,1)}
to denote the event that there is path from (2, s) to (y,t). To construct the
contact process from the initial configuration A (i.e. there is one particle
at each site of A) we let n;'(y) = 1 if there is a path from (z,0) to (y, t) for
some x in A. We will also need to construct the contact process restricted
to a branch B adjacent to 0. We will use the same construction as above
with the additional restriction that the paths must be inside B. We denote
by {(z, s)i(y, t)} the event that there is a path from (z, s) to (y, ) inside
B. We denote by &7 the contact process restricted to B, starting with one
particle at the site z € B.

Using the graphical construction we construct n{ and £° simultane-
ously but for the restricted contact process we only use the arrows that are
located in B.

We now prove Theorem 2.3. Fix a A such that ¢{A,d) > 0.

Let = # O in B, let O' be the neighboring site of O in B and let
{TO! : n > 1} be the arrival times corresponding to the arrows from O to
O'. We have nP(z) = 1 if and only if there is a path from (0,0) to (z,1)
and there is a time smaller than ¢ such that the spatial location of the path
from this time on is in B. In particular there must be an arrow from O to
O’ at a time T and a path from (O, T21) to (z,t) inside B. Therefore

PO(z) = 1) < f P(In > 1:T9" € ds and (0, TO)Ls(x, 1)).
Using that {T'9>! : n > 1} has rate A and the Markov property we get that

PP(z) =1) < [D PO, 5)-Eo(z, £))2ds

We sum over all z # O in B to get

Y PP =1) <\ / Y PO, 5Bz, B)ds

zEB,x#0 r€B, 20
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So we have

(2.4) z PnP{x)=1)< A j: }: PO, 5)2s(2,1))ds + 1

€L zeB

But P((0’, s)—r?in\(:n, 1)) = P(Eiol‘s(a:) = 1) where Etol ** is the contact process
restricted to B starting at time s with one particle at O’. Observe also that
by symmetry the Lh.s. of (2.4) is larger than JE(|nP|) and therefore we
get from (2.4) that

1 t '
SE(PD - 1< [ AB(ES Das.

We use the lower bound in Theorem 2.1 to get
1 cadye o'
et — 1 < Msup B(IE, ).
d s<t

Since ¢(A,d) > 0, the last inequality proves that for any constant K we can
find a time T' > 1 such that

(2.5) B(legL,)) 2 K.

Let p > 0 be the probability that at time £ =1 £P has exactly one particle
and that this particle is located at O'. By the Markov property we get from
(2.5) that

(2.6) E(EQ) > pE(I€2., ) = pK.

We are now going to show that (2.6) is enough to prove that the contact
process restricted to B survives with positive probability. Recall that we say
that a site z € A is in the boundary of A if at least one of the d branches
emanating from z has no other site in A than z. Denote the boundary

of a subset A of the tree by 8(A). Using the graphical construction we
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define a new process £; as follows. &, evolves like £9 up to time T. At time
T we suppress all the particles of {7+ which are not in its boundary, and
we restrict the spatial evolution of the remaining particles in the following
way. Each particle in the boundary at time T generates a process for which
births are allowed only on the branch, adjacent to the initial particle, and
which was empty at time T except for the initial particle. Moreover we
only keep boundary particles whose adjacent empty branch is contained in
B; this last condition eliminates at most one particle. We create like this
at time T, [6(£2)] -1 restricted contact processes which are independent
one of the other. We repeat the preceding step at all times k7: we only
keep the particles in the boundary of &xr and we only allow births in the
corresponding empty branch for each process generated by the particle at
the border of £7. Between times kT and (k+1)T the process evolves using
the graphical construction. If we define the discrete time process

Zy = x|

we get that
L1

Ze=) Y
i=1

where Y; is the number of particles generated by a single particle in the
contact process restricted to a branch in T units time. All the branches are
disjoint and therefore the Y; are independent and they all have the same
law as |€2|. Hence Zy, is a BGW process. By (2.6) and Lemma 2.2 we get

1
>pK{l — —)-1.
E(Z1) > pK(1 . 1) 1

We can pick K large enough so that Z;, is supercritical and therefore
P(Z, > 1,Yk>0) > 0.
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But if Z, survives with positive probability so does £ and therefore 7o.
We have shown that if ¢(\,d) > 0 then A > A;. This completes the proof
of Theorem 2.3.

3. Notes and references

The contact process on Z¢ was introduced by Harris (1974). See Dur-
rett (1991) for a recent account of the contact process on Z¢. Pemantle
(1992) started the study of the contact process on trees. He has better
bounds than the ones in Theorem 1.1. His bounds prove that there are '
two phase transitions for all d > 4. But the methods used by Pemantle are
much more involved than ours. Observe that our comparisons with branch-
ing Markov processes do not allow us to get an upper bound for Az. See
problem 4.2 below.

Theorem 2.1 is due to Madras and Schinazi (1992), Theorems 2.2 and
2.3 are due to Morrow, Schinazi and Zbang (1994).

4. Open problems
4.1 Is A\; < Xs when d = 3? People usually conjecture that the answer

is yes and this is supported by what is known for branching Markov chains.

4.2 Theorem 1.1 proves that dA; converges to 1 as d goes to infin-
ity. Pemantle has proved that limsup,_,., Avd—1 < e, this together
with the lower bound for X, in Theorem 1.1 make us conjecture that
limng_,oo A2v/d — 1 exists, is this true? Is it possible to compute the limit?
See Griffeath (1983) for a related problem on ze,

4.3Isis true that (X, d} < 0if A < A, 7 Thisis related to the uniqueness
of the critical point in percolation theory, see Grimmett (1989).
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