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Abstract

This course makes a comprehensive study of the problem
of warping and metamorphosis of graphical objects. It
- presents a unified view of the metamorphosis problem in-
volving drawings, surfaces, images, volume data, etc. A
detailed discussion of the concept of a graphical object is
introduced in the course. This is necessary to create a solid
foundation preparing the basis for the introduction of a
unified framework involving the problem of warping and
morphing of graphical objects. We try to keep the mathe-
matics simple so that the material will be understood by a
large audience with different background. At the end of the
course we will discuss the use of metamorphosis techniques
in the entertainment industry.
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Preface

These course notes cover an important area of applications of computer
graphics. In fact, the area of object deformation has several applications
that range from the entertainment industry, to important problems in
engeneering. '

The course will not go into too much details of the problem, that is
why we classified it as an elementary course. Nonetheless, some of the
concepts found in these notes are quite new. The course represents the
first attempt on the graphics literature to look at the problem of object
metamorphosis from a unified point of view.

In the applications there are different techniques for deforming ob-
jects, but these techniques seem unrelated. The main reason for this
discrepancy was the lack of the concept of a generic graphical object.
This concept is introduced in chapter 2 of these notes. From this con-
cept we build up a conceptualization of the problem that would cover
the different morphing applications existing on the literature.

The reader will find some redundancy on the topics covered along the
different chapters. This redundancy, although being good for the reader,
is not proposital. Its origing come from the fact that these course notes
were written by four authors. It is necessary to spend a great amount
of time reading the different chapters and devising a compatibilization
between them. This is almost impossible to attain when writing course
notes for a congress, where we have a very limited period of time between
the course acceptance, and the deadline to deliver the course notes.

The course notes were written in English because we will teach this
same course in the SIGGRAPH '95 international conference organized by



the Special Interest Group in Graphics of the Asssociation of Computing
Machinery. This congress will be held in Los Angeles, in August.

We wish to thank everybody that contributed, direct or indirectly,
to the final version of these notes. In particular we wish to thank the
organizing committee of the Coloquio Brasileiro de Matemadtica and our
colleagues of the the VISGRAF group at IMPA, which, are part of the
stimulating working environment that helped to breed these ideas.

Rio de janeiro, April, 15 1995

Bruno Costa
Lucia Darsa

Jonas Gomes
Luiz Velho
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Chapter 1

Fundamentals

These course notes investigate warping and morphing in computer
graphics. Warping and morphing are important graphical operations
with .several applications in many areas. The subject has received a
lot of attention in recent years both from the academia and the indus-
try. On the academic side, research work has already addresﬁed most
of the basic problems quite effectively. On the industry side, applica-
tion software has been developed, incorporating warping and morphing
techniques successfully in various areas.

Warping and morphing transform the shape of graphical objects.
Warping deforms a single object. Morphing interpolates between two
objects. These shape transformations can be applied to the various
types of graphical objects, such as 2D drawings, images, surfaces and
volumes.

Today, we can say that the field has reached a maturity state and is
ready for a broad conceptualization. One of the goals of these notes is
to develop such a conceptualization. We hope that our effort will help
to consolidate the understanding of the current work and will provide a
solid basis for further research.

The conceptual framework presents a unifying view of warping and
morphing. It is based on the notions of graphical object and shape
transformations. These notions make possible an uniform treatment of
the basic problems. In addition, a discussion of the specification and
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computation of these transformations is given with practical examples.

1.1 Metamorphosis
1.1.1 Shape Change in Nature

The shape of objects in the physical world undergo constant changes.
This is inherent of the dynamic aspect of nature. Living beings are born,
grow and die. Their body changes shape as the result of complex genetic
mechanisms.

Growth processes generate internal forces that make organisms de-
velop. As a consequence, their shape is modified. The transformations
induced by these mechanisms are, in general, very complex. Simple
forms gradually evolve into highly intricate configurations. They start
as amorphous blobs of matter and reach a definite embodiment that is
-revealed with the creation of distinctive parts and traits.

A typical example is a plant: a single seed grows into a complete tree,

~ with stems, leaves, etc. Figure 1.1, from (Prusinkiewicz, Hammel and

" Mjolsness, 1993), shows a schema,tlc illustration of some stages of the
evolution of a plant.

7
NN

Figure 1.1: Plant growing,.

““Inanimate things may also have their shape changed under the action



1.1. METAMORPHOSIS 9

of external forces. These forces include environmental phenomena, such
as wind, rain and lightning, as well as, other processes such as mechanical
impact, combustion reactions, etc. Figure 1.2 shows the deformation of
a tube that was bent over another tube.

Figure 1.2: Deformation of a tube.

Depending on the material properties of the object, some deformations
may be permanent and others temporary. This classifies deformations
as elastic and inelastic.

An important characteristic of the shape transformations discussed
above is that, with a very few exceptions, they are continuous deforma-
tions. However, we should point out that non-continuous deformations
also are also present in Nature. Several examples could be given, such
as material fracture, explosions etc. '

1.1.2 Analysis of Shapes

The theory of transformations can be used in the comparison of related
forms and in the study of shape evolution.

A powerful method to analyze the correlation between shapes of the
same class is to consider the transformations required to deform one
shape into the other. In this way, it is possible to classify the members
of a given family based on a few parameters, namely the amount of
deformation from a base shape.
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Figure 1.3; from (Thompson, 1961), shows leaves of different types,
and indicates the transformation that relates them.

Figure 1.3: Shapes of the same class under a transformation.

Transformations also can be used to study the evolution of forms. For
example, as a species develops it goes through a succession of transitional
forms.

Figure 1.4, from (Thompson, 1961), shows three stages of the evolution
of the crocodile. It compares the skull of a modern crocodile (1.4 a) with
those of two other crocodiles from earlier historical periods (Figures 1.4
b and c).

1.1.3 Images and Illusion

Images are pictorial representations over a two-dimensional support.
They can depict bidimensional shapes, such as in a drawing, or even
the projection of three-dimensional objects, such as in a photography.
In both cases, images give the illusion of being the actual objects that
they represent.

“When a sequence of images is exhibited in rapid succession it produces
the illusion of movement, which is called animation. This is the basic
principle of film and television.
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Figure 1.4: Three stages of the evolution of the crocodile.

Photographic images can be distorted in many ways through the use
of optical devices and projections. Video images can also be distorted
using electronic analog devices. If an increasing amount of distortion is
applied to a base image, it is possible to generate animated sequences
that produce the impression of continuous deformation.

Figure 1.5 shows the distortion of an image using an analog electronic

device.

</ L

A ——

—~ (S
L -

Figure 1.5: Image distortion.

I

Two images can be combined by mixing color information. In this
process, first the images must be superimposed and then their color
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values are blended. When the proportions of the mixture between images
A and B change continuously from 100% of A and 0% of B to 0% of
A and 100% of B, then a smooth transition from A to B is achieved.
This visual effect is known as cross dissolve. It is an expressive resource
that has been incorporated in the film language, and it is often used to
indicate the passage of time / space. Figure 1.6 shows a cross dissolve
effect from the classic film “Limite” by the brazilian film maker Mario
Peixoto,

Figure 1.6: Cross dissolve from the film “Limite”.

Cross dissolve techniques have also been used for decades by the film
and video industry, to attain metamorphosis effects between two differ-
ent objects with similar shapes, represented by two different images.

1.2 Uses of Shape Transformations

Shape transformations have many uses in applications that deal with
animation, modeling and analysis of forms.

1.2.1 Animation

The fact that shape transformations are continuous in general, makes
them ideally suited to applications dealing time-varying phenomena.

We can define a continuous shape deformation and make the parame-
ter of the transformation dependent of a time variable. A simple example
is an animation that incorporates stretch and squash using non-uniform
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scaling, (Lasseter, 1987). Figure 1.7 shows a few frames of the anima-
tion of a ball bouncing on the ground enhanced by a stretch and squash
effect. :

® @@
* 00
g

Figure 1.7: Stretch and squash in bouncing ball.

Another way to use shape transformations for-animation is to interpo-
late the shape of two objects. This technique is common in traditional
animation. It consists of creating first a sequence of keyframes depicting
the main events of a scene. These keyframes contain important transi-
tion elements of the motion and convey the action that is taking place
in the scene. Afterwards, the intermediate frames, or the inbetweens
are generated by interpolating the keyframes. In a computer animation
system, the intermediate frames can be computed using shape transfor-
mation techniques. For this, it is necessary to specify the initial and
final shapes and a correspondence between them.

| BRI

Figure 1.8: Keyframing using shape interpolation.

In Figure 1.8, from (Sederberg et al., 1993), an animated sequence of
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a cantering horse is shown. The first and last frames are given, and the
intermediate frames are computed using shape interpolation.

1.2.2 Shape Families

Shape transformations can be used in various ways for modeling pur-
poses. In fact, deformations constitute the basis of powerful operators
that modify the shape of objects. A pioneering example of the use of
deformations as a shape operator appeared in (Barr; 1984). In this work
the non-linear transformations of taper, bend and twist are discussed and
rather complex objects are modeled by the deformation of simple prim-
itive objects. Figure 1.9 shows the action of the operators taper, twist
and bend on a cube.

Figure 1.9: A cube deformed by taper, twist and bend.

Figure 1.10, from (Barr, 1984), shows a rather complex chair con-
structed from simple geometric primitives, superquadrics, using the bend
operator.

Shape interpolation makes it possible to create a continuous family
of shapes with desired features. If a set of shapes with distinct formal
characteristics are defined, we can generate a shape that blends these
characteristics in any proportion using interpolation.

Figure 1.11, from (Chen and Parent, 1989), shows an example of a
family of shapes generated by interpolating two bottles with differen
styles. '

Another example of the use of interpolation to construct a family
of shapes is the multiple master font technology developed by Adobe
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Figure 1.10: A chair constructed using warping operations.

L

==

Figure 1.11: Shape family of bottles.

=

Systems for digital typography. In this case, a new font design is created
by interpolating an existing existing master font. This is illustrated
in Figure 1.12, The word “Morphing” wriften in the second and third
lines uses a font obtained from the font of the first line (Tekton), by
interpolating the parameters of width and weight.

1.2.3 Fitting and Matching

Shape transformations can be used for analysis and correction of forms.
In particular, it may be employed in the problem of form recognition. In
this type of application the goal is to match a given shape to a template.
One way to do that is by computing the amount of deformation necessary
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Morphing
Morphing
Morphing

Figure 1.12: Generation of new fonts by deformation.

to align some features of the shape with each element from a set of
templates. The best match is the one that requires the least amount of
deformation.

Figure 1.13, from (Sclaroff and Pentland, 1994), shows a template, a
set of shapes and the correspondence between the template and each
shape under a deformation.

Figure 1.13: Shape recognition using deformations.

Shape interpolation may be employed to fit the shape of one object
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to another. In this way, it is possible to establish a connection between
two related objects, making their attributes mutually compatible.

One example of shape fitting is the registration of a satellite photo-
graph to a corresponding elevation data set. The image must be dis-
torted to be in perfect alignment with the surface, so that it can be. used
as a texture map for the terrain model.

Figure 1.14, from (Litwinowicz and Miller, 1994), shows the warping
of the picture of a face, so that it fits the corresponding 3D surface. This
distorted image is mapped onto a head model! as a texture.

Figure 1.14: Texture registration.

1.3 Conceptual Framework

Until recently, the research of shape deformation and metamorphosis has
taken a pragmatic approach that led to a somewhat artificial classifica-
tion of object types. Moreover, a diverse treatment has been given to the.
transformations of each kind: images, drawings, surfaces and volumes. -
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The techniques available in the literature were developed for objects of
a certain dimension represented in a particular way. As a consequence,
they may reflect a narrow conceptual vision of the problem.

. 'The present work attempts to demonstrate that all these problems
share a common conceptualization that will be generalized for abstract
n~dimensional graphical objects, regardless of their representation. This
integrated view will show that, despite a few inherent idiosyncrasies,
some of the existing techniques and solutions to most of these problems
can be extended to the others, revealing new connections between them.

‘The framework is based on two unifying concepts:

e graphical objects;

¢ transformations.

The concept of a graphical object allows one to establish an abstraction
that encompasses all types of representations for graphical entities.

The concept of transformation allows one to study in a uniform way
the different classes of operators that modify the geometry and the prop-
erties of graphical objects.

Using this conceptual basis the problem of specifying a shape trans-
formation will be analyzed and the associated computational methods
will be studied.

1.3.1 Graphical Objects

There are many types of graphical objects. They have different charac-
teristics, but share some common properties. From a conceptual point
of view it is advantageous to create a higher level abstraction that cap-
tures the essential features of these objects. This makes possible to
define general operations with graphical objects and to investigate more
effectively the practical problems involved in the their implementation.

Below we list, some types of graphical objects: _

Particle Systems;
2D Vector Drawings;



1.3. CONCEPTUAL FRAMEWORK 19

Images; .
Surfaces;
Volume Data. -

All graphical objects have two basic components:

e shape;

e properties or attributes.

The shape gives the geometry of the object and provides a geometric
support where the properties of the object are defined. These attributes
are normally used to generate renderings of the object. On an image,
the attribute function is responsible for defining the color of the pixels.
In a particle system, the attribute function defines the particle color,
duration, velocity etc.

1.3.2 Transformations

- In order to devise a mathematical model for metamorphosis of graphical
objects, it is necessary to understand the mechanisms underlying an
object transformation.

1.8.3 Shape Transformation Mechanisms

Object metamorphosis involve two basic mechanisms:

¢ shape deformation;

e object combination.

A deformation f:U C R® — R™ can be interpreted either as moving
points of the underlying space, or as a change of coordinates of the space.

In the first case, a point P is mapped into a new point P’ = f(P) of the
space. In the second case, if a point p € U has coordinates

P= (ml,...,:.cn),
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and ‘
P'=f(P)= f(z1,....%n) = (¥1,- - - 1),
then we have
= f1($1,...,$n);
y2 = falz1,...,zn);

Un = falz1,...,20).

The vector (y1,...,¥yn) define the new coordinates of the point P.
Both interpretations are useful, and in fact they have a great influence in
the techniques used to compute the deformation. This will be discussed
with more detail in later chapters.

The problem of shape deformation can be posed as the change of a
coordinate system associated with the object. This formulation gives
a mathematical model that allows effective specification as well as ef-
ficient computation. Coordinates provide a handle that indicate where
deformations should be applied and a framework for numerical imple-
mentation.

"The change of coordinate systems may be specified either as a global
transformation of the space (e.g. an scaling of the whole space}, or its
specification can done in a piecewise manner. There is a large fam-
ily of deformations which can be defined globally. We could mention
the family of linear, afine, and projective mappings, and the non-linear
transformations of taper, twist and bend mentioned earlier in this chap-
ter. '

More complicated transformations are usually specified by parts. In
such a piecewise transformation the space is decomposed into regions
and a simple transformation is applied to each region. It is necessary to
maintain some degree of differentiability between the transformations of
neighboring regions. Plecewise transformations are much more flexible
to be used to attain certain specific results,. but they are much more
difficult to be specified and implemented.

Figure 1.15 shows a comparison of a global and a piecewise transfor-
mations.

Object combination is required in order to compute the interpolation
~ of the object properties. In this process, the two objects must be de-
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<

Figure 1.15: Global and Piecewise specifications.

formed to a common frame of reference such that their properties can
be mixed. The operation consists of two steps: first the corresponding
features in both objects are aligned; second the property information is
blended.

1.4 ‘Warping and Morphing of Graphical Objects

Warping and morphing can be analyzed under the same framework.
These operations have in common several properties and share the same
basic mechanisms. The main difference is that warping is a unary oper-
ation, where we deform one object to obtain a new one. On the other
hand, morphing is a binary operation: we start from two objects and the
goal is to obtain a transition between them. Nonetheless, warping can
be interpreted as a morphing between two versions of the same object,
one that is deformed and another that is not.

We should observe that both operations must take into account the
shape and the properties of the objects. Therefore These two operations
use essentially the same processing pipeline that consists of the following
stages:

1. transformation of the geometry;

2. generation of attributes.

In the case of warping, the geometric transformation is defined relative
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to the shape of t?he object and the generation of attributes requires only
a compatibilization of the attribute values with the deformed geometry.

In the case of morphing, the geometric transformation is based on a
correspondence between common features of the twa objects and the
generation of attributes includes compatibilization and bIendmg (1nter-
polation) of attribute values.

Figure 1.16 ‘shows a diagram of the processing pipeline for warping
and morphing. In this illustration, the first column of operations cor-
responds to the transformation of geometry, and the second column to
the generation of attributes.

Morphing Pipeline

Figure 1.16: Processing pipeline for warping and morphing.

1.4.1 Some Examples

- Defining a graphical object warp, or a metamorphosis between two
graphical objects in general involves a lot of work related with the de-
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l scription of each graphical object and with the specification and com-
putation of the desired transformation.

Finding the correct morphing sequence is in general a very difficult
task. In general we have infinity possiblities for choosing a morphing
sequence between two graphical objects.. The right sequence involves
considerations of different nature: perceptual, physical, computational,
etc.

Figure 1.17 shows a a morphing transformation between the drawing
~ of a banana, and the drawing of an ice-cream cone.

Figure 1.17: Transformation of curves.

Figure 1.18 shows an example of the _Warping of an image. In this
transformation there is a change of the position of each pixel of the
image, which amounts to a distortion in the objects present on the image.

1.5 Paradigm of the Universes

In order to develop a conceptualization to study the problems of warping
and morphing of graphical objects, we will employ the paradigm of the
four universes. This paradigm is a methodology for studying problems
in computational applied mathematics. It was first introduced by Ari
Requicha, (Requicha, 1980), in the context of geometric modeling, and
it was subsequently extended for different areas of computer graphics in
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Figure 1.18: Image Warping.

(Gomes and Velho, 1995a).

1.5.1 Understanding an Area

The problems in computer graphics, such as warping and morphing, are
conveniently modeled, and solved, using methods from different areas
of mathematics. The diversified nature of the models involved calls for
some unifying paradigm that enable us to address the problems at the
appropriate level of abstraction.

These abstraction levels isolate conceptual characteristics intrinsically
attached to the different objects and phenomena. In that way, we can
search for the right mathematical tools to tackle problems in each level.
Once we know these tools, more specific problems can be posed, probably
associated to lower abstraction levels.

1.5.2 Levels of Abstraction

Real world objects are associated to an abstraction level called the Phys-
ical Universe, denoted by P. The mathematical objects describing ele-
ments of the real world belong to the abstraction level called the Math-
" ematical Universe, denoted by M. The elements of M are represented
in the computer using a finite symbolic description which is associated



1.5, PARADIGM OF THE UNIVERSES 25

to a third abstraction level called Representation Universe, denoted by
R. The symbolic descriptions in R are implemented in a computational
system by mapping the finite descriptions from the representation uni-
verse, into specific data structures from another abstraction level, the
Implementation Universe.

Figure 1.19 shows a diagram illustrating the conceptual framework,
with these four abstraction levels.

Phiysical Universe

I

Mathematical Universe

!

Representation Universe

;

Implementation Universe

Figure 1.19: Levéls of Abstraction.

These four levels of abstraction encapsulate common properties of the
objects being studied and allow a global, conceptual view of the methods
and techniques involved. For more details, the reader should consult
(Gomes and Velho, 1995a). '

1.5.3 Conceptual Problems

Once the correct abstraction levels are established for an area, it is
possible to have a global conceptual view of the important problems of
the area. They can be understood and formulated without taking into
account technical details of the specific mathematical models used. The
hierarchy of abstractions makes possible to search, in a systematic way,
for proper mathematical tools, to pose and solve specific problems. The
main problems that can be posed using the universes paradigm are:
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1. D'eﬁne the elements of the. mathematical universe M;
2. Define operations on the elements of the mathematical universe M;
3. Construct representation schemes for the elements of M;

4. Devise appropriate data structures and implementation techniques.

In order to use the above paradigm to properly posing the problem of
warping and morphing, we will need:

¢ Define precisely a graphical object in the mathematical universe;
¢ Define the operations of morphing and warping of graphical objects;

e Devise representation schemes for the spemﬁcatlon of graphical ob--
jects and their transformations;

¢ Devise an implementation framework in order to allow a numerical
computation of graphical objects transformations.

1.6 Structure of the Notes

The structure of the course notes reflects the conceptual approach de-
scribed in the previous section.

‘This first chapter, Fundamentals, focuses on metamorphosis in the
physical world. It describes shape change in nature and the applications
of shape transformations in several areas. The chapter also gives a brief
review of the use of warping and morphing in computer graphics and
introduces the conceptual approach adopted in this work.

Chapter 2, Graphical Objects, presents a unifying model for the de-
scription of different types of shapes in computer graphics. It introduces
a very broad definition of shape, so as to encompass all of the “objects”
used in computer graphics.

Chapter 3, Representation of Graphical Objects, discusses the different
problems in obtaining a finite description of a graphical object from its
continuous description in the mathematical universe.
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Chapter 4, Reconstruction of Graphical Objects, discusses the problem
of recovering a continuous graphical object from its finite description on
the representation universe.

Chapter 5, Transformation of Graphical Objects, develops a general
framework for shape deformation and interpolation. It characterizes the
properties of these two operators and how they affect graphical objects.

Chapter 6, Morphing of Graphical Objects, uses the concepts intro-
duced in the previous chapters in order to give a precise description of
the problem of metamorphosis between two graphical objects.

Chapter 7, Specification of Transformations, investigates the various
alternatives to define the warping and morphing operations. It analyzes
the parameters required to specify these transformations and how to
construct operator representations for them.

Chapter 8, Computation of Transformations, discusses the implemen-
tation of warping and morphing. It presents the pipeline for the com-
putation of discrete shape transformations. It elaborates on the issues
of sampling and reconstruction of graphical objects.

Chapter 9, Warping Techniques, discusses the different methods that
have been used in the implementation of warping and morphing.

Chapter 10, Blending Techniques, Discusses some of the most used
blending techniques.






Chapter 2

Graphical Obj ects

At the end of the previous chapter we discussed the use of adequate
abstraction paradigms for computer graphics. These abstraction levels
allow us to pose the different problems of this area. In these notes we
are concerned with the problem of object metamorphosis. Therefore,
we need a clear concept of the notion of “object”, in order to define
precisely what we mean by metamorphosis, and also, to develop different
metamorphosis techniques.

In computer graphics, a multitude of different elements constitute the
mathematical universe, such as points, curves, surfaces, fractals, volume
arrays, images, 3D-images, data sets, vector graphics, raster graphics,
etc. These different objects are manipulated on the computer using
similar techniques. However, in general, the relationship between these
techniques is hindered because there does not exist a unifying concept
that encompasses the different objects, their representation and imple-
mentation on the computer.

The objective of this chapter is to introduce the concept of a graphical
object, so as to include, in a unified way, the many elements we will use
to apply the metamorphosis operations. This concept was introduced in
(Gomes et al., 1994).

The concept of a graphical object, and its different representations, en-
able us to relate seemingly different algorithms and techniques existing
on the computer graphics literature. Besides the impact on the develop-
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ment of new algorithms and on the understanding of existing ones, this
concept has also a great influence on systems design and development.

2.1 The Concept of a Graphical Object

Intuitively, a graphical object consists of any of the entities processed
in a computer graphics system: points, curves, surfaces, fractals, 2D-
vector graphics, 3D-vector graphics, image, 3D-image, volume data, etc.
A simple definition, broad enough to encompass all of the above objects,
is given below.

A graphical object @ consists of a finite collection I = {Ur,...,Un},
of subsets, U; C R®, of some euclidean space R"™, and a function
FrUr1U---UUpy — RP. The family U is called the geometric data set
of the object. The union U = Uy U--: U U, defines the shape of the
object, and f is the attribute function of the object. The dimension of
the graphical object is defined to be the dimension of the shape U.

The shape U defines the geometry and the topology of the object,
and the function f defines the different properties (attributes) of the
object, such as color, texture, scalar fields, vector fields, etc. Each of
these attributes is defined by a function fi:U — RPi, §=1,.. 4k, such
that p1 +pg + -+ + pr = p, and the attribute function f,

[U=01U0--- Ul >R @ - @RPF = RP,
has coordinates f = (fy,..., fe).

Essentially, a graphical object is a function f:U — RP, where U is
the object shape, and f is the attribute function. However the reader
should observe the subtle distinction we made between the shape and
the geometric data set of a graphical object. The geometric data set
is used to in order to characterize some distinguished features of the
object shape, which might be relevant for the solution of some specific
problems. The examples below will clarify the need for this distinction.

Graphical Object and Decomposition

A subset U C R® of the euclidean space. U is naturally a graphical
object, and its default attribute function is the standard inclusion i: U/
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— 3, i(p) = p.

Consider a subset U C R®, and suppose that we obtain a decomposi-
tion of the set U as shown in Figure 2.1.

Figure 2.1: Shape decomposition.

The geometry of the inner edges, defining the decomposition, might
be of great relevance to solve some problems related with the object U.
This is the case in several applications, such as computation of scene
illumination using radiosity, finite element analysis computation, etc.
These inner edges are part of the geometric data set of the graphical
object. Therefore, different decompositions of U define different graph-
ical objects. Nevertheless, all of these graphical objects have the same
shape U.

Signals

It is clear from the definition of a graphical object that any function
f:U C R* — R™ is a graphical object. U is the shape, and the func-
tion itself defines the attributes of the graphical object. In engineering
a function is called a signal. Therefore our definition of graphical ob-
ject includes signal as an example. This is very important because the
different signals used in computer graphics and its applications, such as
the color, audio and the image signal.
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Image

An image is a function f:U C R? — R™. The shape of the image is
the set U. It is, in general, a rectangle of the plane, and coincides with
the geometric data set. The function f is the attribute function of the
image. To each point p € U, f(p} defines the attributes of p. These
attributes are, in general, color, opacity, scene depth etc.

Given two distinct images, as shown in Figure 2.2, the shape is the
same: a rectangular region of the plane. The difference between these
two graphical objects resides in the attribute function, which is respon-
sible for the grayscale intensities that define the woman’s face and the
cheetah.

Figure 2.2: Distinct graphical objects with the same shape.

In the examples of figure 2.2 the attribute function specifies the texture
that characterizes the geometric information of the woman face and the
cheetah. When this geometric information is very important to the
solution of some problems, we must incorporate it into the geometric
data set of the graphical object. This remark will be very important in
later chapters. This is best illustrated with the example of a segmented
image discussed below.

Segmented Image

In Figure 2.3(a) we show the image, of an woman’s face. In Figure
2.3(b), we show the same image with a polygonal curve defining the face
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“boundary”. The shape of the image in (a) is the rectangle of its domain,
and coincides with its geometric data set. The shape of the segmented
image in (b) is same rectangle of the plane, but the geometric data set
also contains the curves that define the boundary of the face. Therefore,
these two images define two different graphical objects with the same
shape, the same attribute function, but with different geometric data
set.

Figure 2.3: Two different graphical objects.

Circle and Vector Fields

The shape of the unit circle on the plane is defined by the equation
O ={(z,y) €R%a? +y? =1},

The map N: C — R?, N(z,y) = (z,y), defines a unit vector field normal
to the circle C. In the same way, the map T: C — R?, T(z, ) = (—y, ),
defines is a unit tangent vector field to C, that points in the clock-
wise direction (see Figure 2.4). These two vector fields are attributes
of the circle. They define the attribute function f:C — R* = R & R,

f(z,9) = (z,y, -y, z).

Particle System

A particle system consists of a finite family U;, i = 1,...,n, of subsets
of the space. Each Uj, called a particle, has different attributes, such as
color, weight, external forces, opacity, duration in time etc.
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Figure 2.4: Circles with normal and tangent unit vector fields.

Particle systems have been used to simulate a wide variety of natural
phenomena in computer graphics, such as fire, rain, etc.

2.1.1 Graphical Objects and Metamorphosis.

The importance of the distinction we made between the shape and the
geometric data set of a graphical object is greatly dependent on the
application. We will give below a preview of the role of the concept of
graphical objects in the context of object metamorphosis, using images.

Intuitively, a metamorphosis consists of a continuous transition from
some object Oy to another object Oy (see Chapter 1). In this process
we should take into account both the geometry and the attributes of
each graphical object @) and Oy. The geometric data set of each object
1s used to obtain the transition between the geometric features of both
objects. Along with the change of object geometry, we should perform
a transition from the attributes of object ¢ to those of object O3. We
summarize these two steps by saying that during the metamorphosis
operation the objects undergo a geometry alignment and an attribute
interpolation. This two step process that comprises the metamorph051s
transformation is illustrated in Figure 2.5.

In brief, when the objects have distinct shape with different features,
it is necessary to first merge the different geometric features, before
changing the attributes. Since morphing involves two objects, and in

e
t
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Object (O; [ Metamorphosis > gbject (0,

. DataSet .

Altibuts interpolatior

Figure 2.5: Object metamorphosis.

general it is very difficult to obtain a geometric alignment between them,
we perform the warping operation to obtain an approximate alignment,
and then we blend the two warped object.

In a cross dissolve between two images we are just interpolating the
image attributes, without any geometry alignment (see Figure 2.6, from
{Gomes and Velho, 1995b}).

Figure 2.6: Cross dissolve between two images.

In Figure 2.7, from (Gomes and Velho, 1995b), we show a comparison
between the simple cross dissolve and a metamorphosis transformation
with geometry alignment. Image (c) shows a cross dissolve of the images
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in (a) and (b). In this case there is only attribute interpolation, and this
causes several alignment problems {eyes, mouth, ete.). The image in (d}
shows an attribute interpolation with an alignment of the geometry. The
reader should pay special attention to the alignment of the face contoiir,
the montl, and the eyes.

© @

Figure 2.7: Image metamorphosis.

2.2 Shape Description

When defining a graphical object, a very delicate and important point
is related to the mathematical description of its shape, that is, how the
object shape is specified. In general we use functions to describe shapes,
this method is called functional shape description. In this case we can
devise two different ways to obtain the shape description: émplicit and
parametric.
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2.2.1 Implicit Shape Description
"The implicit description of a shape U C R*'is defined by ¢
U={peR"; f(p) € A},

_ where fiRF DV DU - R™, isa function, and A is a subset of R™.
- This set is denoted by f ~1(A). The most common case occurs when the .
-set A is a unit set {c}, ¢ € R™. In this case, we have :

U=fHe)={peRrR"; flp)=c}

This is illustrated in Figure 2.8, for k=2 and m = 1.

Figure 2.8: Implicit object.

The reader should observe that f is a k-dimensional vector valued
function. Therefore it has k coordinates f(p) = (f1(p),-.:; fu(p)). The
equation f(p) = c in fact constitutes a system of &k equations

hip)=ciy
fa(p) = c2;
fk(p) = Ck,
where ¢ = (c1, ¢, .. .,cx). Intuitively, this shows that the solution has

m — k degrees of freedom and therefore, it defines a graphma.l ob_]ect of
dlmensmn k —m in R
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When the shape of a graphical object O is described implicitly, we say
that O is an implicit object.

We should observe that if f:IJ — RP is the attribute function of an
implicit object O, defined by an implicit function g: U — R™, then.Ois -
completely described in a functional form by the function A: U — RPF™, °
defined by h = (g, f), where g defines the shape, and f describes the .
object attributes. ' :

A verjz comprehensive survey of the use of implicit graphical objects
in computer graphics is given in (Gomes and Velho, 1992).
Implicit objects are very flexible to manipulate on the compute. They

can describe a wide variety of object shapes in computer graphics. This
is illustrated by the two classes of implicit objects studied below.

Blobs

The pioneering work showing the potential of implicit models was done
by J. Blinn, (Blinn, 1982). This work was motivated by the need to

display molecular structures more accurately. The model is based on
electron density maps. We start from a finite number of points which
define the skeleton of the shape. For each point p; of the skeleton we
define a density function D;, using a Gaussian, centered at p;. That is,

Di(x) =b; exp(—airf),

where r; = ||x—p;| is the euclidean distance from x to the skeleton point
pi- The parameters a and b are respectively the standard deviation and
the height of the function.

The implicit function f is defined by the sum

f(m ZDl(:B):

where n is the number of pomts on the skeleton.

A more flexible shape specification is given in terms of the radius p
of an isolated point skeleton, and the blobbyness factor 8 that controls
how the point blends with others. The new equation is

Bi
. Di(x) = cexp(}O - B) (2.1)

1
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Since ¢ now is included in the centribution of each term, it can be set
to a standard value such as 1. The effect of changing the level surface
can be achieved through the blobbyness factor.

The implicit function D; defines an algebraic distance which has spher-
ical symmetry around each point p;. Therefore, the implicit shapes de-
fined by each D; is a spherical shape. This functxon can be generalized
to allow for arbitrary quadric shape functions if r? is substituted in the
equation by xQ);x.

~ Figure 2.9, from (Wyvill, 1994), shows a textured blobby object gen-
erated using an skeleton consisting of two points. Initially we have two
spherical shapes, and as the points get closer together the shape of the
implicit object changes because the effect of the density function of each
skeleton point overlaps.

Figure 2.9: Blob models.

The reader should notice that the implicit objects in Figure 2.9 have
a texture. This texture is an attribute, defined by some function g: O
— R, which associates to each point of the object shape, the intensity
value of the texture. :

Hypertexture

These graphical objects were introduced simultaneously by (Perlin and
Hoffert, 1989) and (Kajiya and Kay, 1983). A hypertexture is defined
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by & modulation of an implicit shape function

H(D,2) = falfar(.. HDE)), -

where D is the implicit shape function, and f; are density modulation
functions. - ' '

The equation H(D,z) = ¢ gives an implicit description of a graphi-
cal object. The repeated modulation process, with conveniently chosen
modulation functions, results in a very effective method to describe ob-
jects with a “fuzzy geometry”, such as fur and hair. An example of an
object generated with a hypertexture object is shown in Figure 2.10,
taken from (Perlin and Hoffert, 1989). '

Figure 2.10: Image of a hypertexture object.

2.2.2 Parametric Shape Description

In a parametric description, the shape U C R* of a graphical object is
described by defining a coordinate system on U. This coordinate system
is defined by a function ©:V C R™ — U, withm < k. V is called the
parameter space. Intuitively, a point p € U is described by p = o(v),
v € V, with m degrees of freedom. Therefore the graphical object has
dimension m. '
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Parametric Curves and Surfaces

When m = 1 in the above definition, we obtain a parametric curve in
the k-dimensional space. It is defined by a function ¢:I C R — R,
where T is some interval of the real line. When & = 2 we have a plane
curve, and when k& = 3 we have an spatial curve.

A parametric surface in 3-space is defined by a map ¢: U C R? — R3,
from the 2-dimensional plane. This is illustrated in Figure 2.11.

- Figure 2.11: Parametric shape description.

Parametric curves and surfaces have its own long chapter in the evo-
lution of shape description techniques in computer graphics. A compre-
hensive study of this topic is done in (Farin, 1988).

2.2.3 Piecewise Shape Description

It is not always possible to describe the shape of an object globally using
an implicit or parametric form (see (Hoffmann, 1989)). Therefore, when
describing a complex object, its shape is, in general, decomposed, and
each set in the decomposition is described either implicitly or paramet-
rically. Shape descriptions of this type are called piecewise descriptions.
Figure 2.12 shows an example of a complex shape which has a parametric
piecewise description.

It is possible to use a piecewise implicit, piecewise parametric, or even
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i Figure 2.12: Parametric piecewise shape description.

a hybrid piecewise (implicit/parametric) description.

2.2.4 Shape Geometry and Topology

It is very common to impose certain topological or geometrical restric-
tions when defining a shape. These restrictions are used to guarantee
some properties of the object’s topology. and geometry which are of great
importance in the solution of specific problems. A good example, is the
use of shapes that are characterized as manifolds. Manifold shapes are
locally equivalent to euclidean spaces, but globally their topology can
be quite complex. B

Shape description is-a very important, and widely studied, topic in the
area of geometric and solid modeling. It would be impractical to go over
details here. For more information, the reader should consult (Hoffmann,
1989), (Gomes et al., 1993}, or the abundant references therein.

2.2.5 Point Membership Classification

Apart from the shape description technique used to define the object’s
shape, it is important to point out that, from the description of a shape
O, we must be able to compute the characteristic function xo of the
shape: ' '
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Xo =

1 pe

0 p¢O.

The characteristic function allows us to characterize the shape: it
distinguishes points that belong to the shape, for which {» = 1, from
points that do not belong to it, where £» = 0. For this reason, this
function is well known in the geometric modeling literature by the name
of point membership classification function. Robust methods to com-
pute this function constitute an important part in the process of shape
description and representation.

From a computational point of view an object is well described, when
its point membership classification function is defined, and it is com-
putable. Of course we have to precise the meaning of the work com-
putable. The interested reader should consult (Blum, 1991).






Chapter 3

Representation of
Graphical Objects

We can use only a finite number of variables and parameters in -any
computational process. Therefore, in order to manipulate a graphical
object in the computer it is necessary to devise a discretization of the
object’s shape and its attributes. As described before, in Chapter 1, this:
operation takes us from the, continuous, mathematical universe to the,
discrete, representation universe.

In this chapter we will study the problem of representation of a graph-
ical object. That is, our objective is to obtain a reasonable, and correct,
answer to que question: how different graphical objects are mapped into
the representation universe? :

3.1 Object Representation

Intuitively, an object representation is a relation between the mathe-
. matical and the representation universe. It associates to each object a
discrete description of its geometry, topology and attributes. This is
necessarily a two-step process:

o discretization of the object’s shape;

o discretization of the object’s attribute function.
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When we define a representation ¢ of some graphical object @, it is
very important that we are able to recover O from its representation .
This operation is called reconstruction. Therefore, the mathematical and
representation universes are related by the operations of representation
and reconstruction as illustrated in Figure 3.1.

/ Continuous <> “ﬂl::r:::::lﬁal \
Hepfesantatlon - Reconstruction
& Discrete <“—> Hﬂpl::f::r;a:lnn /

Figure 3.1: Discretization and reconstruction of graphical objects.

In this chapter we will study the representation of graphical objects.
"The reconstruction operation is also of fundamental importance in com-
puter graphics. It will be discussed with details in next chapter.

We should remark that we will study object representation from a
global point of view. In this way, we will not focus on specific represen-
tation techniques for different graphical objects. Our main concern is
to present a general framework for object representation. In this frame-
work, we will see that the problem of representing an image is exactly
the same of representing a geometric model, because both of them are
graphical objects.

The reason for the existence of a classical distinction between image
and geometric model representation, is related to the fact that images
and geometric models have been historically considered as completely
different graphical objects. We think that there is a simple explanation
for this singular fact: an image has a very well defined and trivial shape
(in general, a rectangle in the plane), therefore the discretization pro-
cess is focused on the attribute function. It seems natural to borrow
techniques from the area of signal processing in order to obtain a repre-
sentation. In geometric modeling the emphasis has been on the object’s
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shape rather on its attributes. Therefore, objects with complex shapes
require more elaborated representation techniques.

It should be clear that by the representation of an object we mean
a discretization of its shape and its attributes. The shape of an object
can be described in many different ways, and its representation is highly
influenced by its description. The attributes of a graphical object are
defined by a function whose domain is the object’s shape. Therefore, its
representation reduces to the classical problem of function representation
studied in the area of signal processing.

These two facts split the study of object representation into two dif-
ferent areas:

+ funcfion representation;

¢ shape representation.

‘We should point out however that these two faces of the representation
problem are interrelated. This is clear from the fact that a shape can be
defined using a functional description. In fact, the basic ingredients in
the definition of a function are its domain U, and the expression f which
allows us to compute the image f(p) for each point p € U. Function
representations can be obtained by either decomposing the domain U,
into simpler subsets, or decomposing the function expression f(z) into
simpler ones. As we will see in this chapter, both methods are useful
when representing graphical objects.

3.2 Function Representation

The shape of a graphical ob ject can be defined using a functional descrip-
tion. Also, a functional description determines the object attributes.
Therefore the study of function representation is of most importance.

Consider some function space 2, that is, §2 consists of an space whose
elements are functions. A representation of a function f € Q) is done
by decomposing f using some prescribed “dictionary”. The dictionary
is defined by some family {gx; X € A, gy € @} of functions. For any
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function f of the space, we write

F=> g (3.1)

AEA

where the sum is supposed to exist.

"The correspondence
(e )rea (3.2)

constitutes a representation of the function f using the dictionary {gy}.
‘This decomposition is called the analysis of the function f, and equation
(3.1) which allows us to reconstruct the function f from its representa-
tion, is called the syntheses. Of course, the mathematical details of
function representation can get quite complicated. In fact, just to men-
tion some problems, we could list: '

e give a clear definition of the space of functions ;

construct the dictionary {g,};

study the problem of syntheses and analysis associated with some
prescribed dictionary;

devise robust techniques to compute the representation, and to re-
construct a function. :

We will not go over these details here. Defining the space of func:
tions needs a substantial knowledge of the theory of measure and inte-
gration. Constructing good dictionaries is one of the purposes of the
non-elementary theory of functional analysis. Therefore, we will only
discuss briefly some representation techniques commonly used in com-
puter graphics. This discussion will lack the mathematical rigor, but
it will give the reader the opportunity to devise the beauty and the
difficulties of the area of function representation.

‘From a computational point of view we need a version of the recon-
struction equation (3.1) with a finite number of terms on the sum. In
general we write

N
IN=) ckgr, (3.3)
k=1
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where we impose the condition
If =fnll 0 as N — oo, (34)

for some prescribed norm || || on the space of functions.

There are some cases where the reconstruction of the function f does
not use the same family of functions g, from the dictionary. These
functions are used to obtain another family g, and coefficients & such
that

F=Y & (3.5)
)

From the point of view of operator theory, a function representation
scheme is a non-singular linear operator R: {3; — (s between two space
of functions. The reconstruction is done by the inverse operator R~1.

Point Sampling

This is the simplest and mostly used function representation scheme.
We choose a sequence

(.. by, et T, .),

of points from the domain of the function f, and the representation is
the sequence obtained by evaluating f at the points of (¢;):

Fro (ony FE1), f(R0), F(tL) - ).

This is illustrated in Figure 3.2.

The decomposition dictionary is defined by the family of Dirac delta
masses ’
§(t—t), keZ

In fact a well known property of these masses show that

;) = [ F&)8(t — t;)dt. (3.6)

This representation technique is called point sampling.
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Figure 3.2: Point sampling.

Area Sampling

From the point of view of the general theory of functions, it does not
make much sense to evaluate a function at a sequence of points. In fact,
if we had defined precisely the concept of a function space, we would
have identified functions which differ in sets of measure zero.

Apart from technical considerations, it is easy to convince ourselves
that if a function is not continuous, point sampling is prone to severe
problems. This is illustrated in Figure 3.3, which shows that samples of -
f(t1) and f(t2) are quite distinet, in spite of the fact that the points #;
and ¢y are close.

tr ta

Figure 3.3: Discontinuity and peint sampling.
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As we will study later, discontinuities introduce arbitrarily high fre-
quencies in the function, and in this case we need to use more robust
representation techniques. A very common representation technique in
this case consists in substituting point sampling by some average tech-
nique. This accounts for the substitution of the Dirac mass § in equation
(3.6) by some function that performs a weighted average.

Average representation techniques are generically known in the com-
puter graphics literature by the name of area sampling. Different. choices
of the dictionary weighting functions, originate different area sampling
techniques. Area sampling has been used in the generation of sinthetic
images for a long time. They come with different flavors: analytical
sampling, a-buffer, supersampling, etc. What distinguishes these differ-
ent area sampling techniques are essentially the computational method
used.

In what follows, we will discuss some of the most used averages for
area sampling computation.
Box Average

This is the simplest case. We take a partitiona =ty <& < - <itp =0
of the interval [a, b] where the function f is defined. The dictionary func-

tions gg, k = 0,...,n — 1, are defined by normalizing the characteristic
function X, 1.,,] ©f each partition interval [ty, tx+1]. That s,
. 1
Gk = tk—{-l 1 Kltratrpa): . .

The graph of this function is illustrated in Figure 3.4. Tt is called a boz
function.

In this case, in each interval [tg, tr+1], the function f is represented by
the analytical average

1 tr41 ‘
[asyi=—— [ foa
R tea1 — Lk Jig

of the function f on the interval [tg,fx41).

The reader should notice that the above dictionary of characteristic

functions introduces high frequencies on the reconstructed function, be-
cause of the discontinuities.
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ik e

Figure 3.4: Graph of thé box function.

Triangle Average

Improved average dictionaries are obtained by successive smoothing of
the characteristic function dictionary above. In a first step, by convolv-
ing the box function gy, with itself, we obtain the hat function hy = gr*gy.,
which on the interval [¢x_1,%411] is given by

0 - t<Stgoy, or b2 igg
t—1p—
hi(t) = ?#_} ¢ € [te—1,ti]
' fericte © € [ tirl]

The graph of this function is shown in Figure 3.5

Higher Degree Averages

Continuing with the smoothing process, will lead us to splines dictionar-
ies of order 2, 3, 4, and so on. Figure 3.6 shows the graph of a basic spline
of degree 2, defined by three successive convolutions s = g * gk * L.
This family of splines approximate the gaussian function as the degree
grows to infinity.
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Figure 3.5: Graph of the hat function.

Y

Figure 3.6: Graph of a basic cubic spline function.

Supersampling

This average technique consists in obtaing a partition of the ‘function
domain U into a finite number of sets

U=Ju.
i

In order to compute the function average on each partition set U;, we
choose a finite number of points py, s, . .., Pn, semple the function f at
these points, and take the arithmetic average

13 s,

i=1
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as the sample of the function in U;.

It can be shown that as the number of points increase to infinity, the
above average converges to the analytical average of the function on the
set U;, that is :

1& 1
lim = )= —— f u}du.

e ; f(i) Area(Vs) Ju; f()
For this reason, we consider supersampling as being an area sampling
tecnhique.

3.2.1 Quantization

We discussed in the previous sections the problem of function discretiza-
tion. We concentrated our discussion in representing the function by
simpler functions from a dictionary, It is very important to observe that
the representation values must also be discretized in order to obtain a
finite representation for the function.

The process of discretizing the representation values is called quanti-
zalion.

3.3 Shape Representation

We have already mentioned before the relationship between functional
and shape representation. A function f:U/ — R™ is basically character-
ized by its domain and an equation y = f(z), defining the correspon-
dence rule. In order to represent f we have two options: decompoese
the equation f or the domain U. Of course there is a close relationship
between these two approaches. In the section about function representa-~
tion we discussed function decomposition, and in this section we discuss
domain decomposition.

When we have a very complex shape, in general it cannot be defined
by a glebal functional description. In this case, we must devise more
complex representation schemes. These representations subdivide into
two main categories:

» Constructive Shape Representation;
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e Decomposition Shape Representation.

Constructive Shape Representation;

This representation is based on the existence of some algebra defined
over, a collection of subsets of the space. We select a finite number
of simple shapes s1,52...5n, and from them we obtain more complex
shapes by representing them using an arithmetic expression from the
algebra

S = f(s1,82,...,8n).

The simpler objects are called primitive graphical objects, or simply
primitive shapes. Primitive objects are chosen based on he fact that
they should be easy to describe and represent. In simpler words, in the
constructive shape representation, complex objects are constructed from
simpler objects using shape operators.

A classical example of constructive shape representation is given by
the CSG! representation used for solid modeling (Requicha, 1980). This
representation uses the Boolean algebra of sets, with the operations of
union, intersection, and complementation. This representation is illus-
trated in Figure 3.7: Figure (a) shows a graphical object, and figure
(b) shows how this object is constructed from the primitive shapes of a
square with side of length 1, and a circle of radius 1, both centered at
the origin.

The object in Figure 3.7 is obtained by conveniently traversing the
tree structure on Figure 3.7(b) and performing the indicated operations
according to the following semantics

e — is the set subtraction operation (left branch minus right branch);
o + is the usual set union operation;
e S(s1,82) is the scaling transformation of the plane;

o T(z,y) is the translation of the plane by the vector (z,y).

1C8G means Constructive Solid Geometry
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I !

(a) | )

Figure 3.7: CSG constructive representation.

In order to avoid degenerated shapes, the set operators used by the
CSG representation need to be combined with a topological operation
which performs a regularization. We do will not enter in details here.
The interested reader should consult (Hoffmann, 1989).

Another important example of constructive shape representation is
given by the use of Binary Space Partition trees (BSP trees). In (Naylor,
1994) the reader can find a good description of the use of BSP trees
to represent shapes. In (Radha, 1993) BSP trees have been used to
represent images. :

Shape Representation by Decomposition

In a decomposition representation, the object shape is subdivided into
a family of disjoint subsets

U=JU. . (3.7)
A

This representation is based on the well known “divide and conquer”
paradigm. The geometry of each subset U, is easier to describe, and
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a combinatorial scheme allows us to reconstruct the original object at
least with a good degree of approximation. Different decomposition tech-
niques can be used, based on the huge multitude of space decomposmon
techniques (see (Carvalho, Gomes and Velho, 1993)).

A classical use of decomposition representation is the BRep represen-
tation used in geometric modeling?. In this representation the object’s
shape is defined by its boundary, and the boundary is represented by a
decomposition into vertices, edges, faces and shells (Baumgart, 1975).
A combinatorial scheme is necessary to guarantee the correct topology
of the boundary shape of the reconstructed object. This representation
is illustrated for a ¥“two dimensional solid” in Figure 3.8 '

Figure 3.8: Boundary representation by decomposition.

Matrix Representation

The. oldest example of a representation by decomposition of a graphical -
object is certainly the matrix representation used to obtain a digital
image from a continuous one. This decomposition has been extended to
represent volumes, and has influenced the development of other decom-
position representation techniques. : '

2BRep stands for Boundary Representation
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Consider an image f:[a,b] x [c,d] C R? — R™. The matrix decom-
position is obtained by making a uniform decomposition of the image’s
shape

U=la,b x[c,d] ={(z,9) eR}a <z <bh and c < y < d}.
‘We define a grid, Ay, on U,
Ay ={(zsy) €eUsz; =4 DAz, ypo=k-Ay jk€Z, Az,AyecR},

as illustrated in Figure 3.9.

Y

Figure 3.9: Matrix representation of an image.

Each rectangle in the decomposition is completely described by the
coordinates (zj,¥x). The image attribute function is represented (sam-
pled) in each rectangle and the value obtained is associated with the
integer coordinates (4,k). The image f:U C R? — R™ is conveniently
represented by the m X n matrix A == (a;z) = (f(z;,ye)). This is the
reason for the name matriz representation.

In the literature the matrix representation is also called raster rep-
resentation, because the graphical object represented by this method
is known by the name of ruster graphics. We prefer the name matrix
representation, because it reflects the generality of the representation
and its extensions to higher dimensional spaces. On the contrary, the
term raster representation, is closely related with image display on raster
devices (where the matrix representation came from).
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The matrix representation can also be used to represent graphical
objects other than images. The bidimensional grid defined on the image
domain U is easily extended for n-dimensional euclidean space. By
conveniently enumerating the grid cells, we define the object’s geometry
and topology. In each cell, we define the object’s attributes by restricting
the attribute function to the cell, and representing this restriction using
some function representation technique. In Figure 3.10, from (Gomes
and Velho, 1995b), we show matrix representations of 1D (circle), 2D
(disk) and 3D (solid torus) graphical objects.

\

Discretization

/

Figure 3.10: Matrix representations of different objects).

Reconstruciisn

7N

Discrate Unlverse

In the area of solid modeling the matrix representation is called spatial
enumeration. It is a very popular representation method for volume data
(see (Kaufman, 1994)). In computer graphics in general, if is called a
volume array. Researchers from image processing prefer to refer to a
tridimensional matrix representation of a solid by the name of 3D-image.

The process of obtaining a matrix representation from a continuous
description of a graphical object is called rasterization. The continuous
description of a graphical object is usually called a vector description.
For this reason, on the literature the word rasterization appears as the
operation that converts from vector to raster graphics.

We should point out that the rasterization operation consists of two
steps:
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e discretize the object’s shape into the matri:f_;;blocks;

& compute the object’s attributes for each blogk. .

Adaptive Decompositions

The mairix representation uses a uniform spatial grid to obtain a de-
composition of the object. More efficient decomposition representations
use an adaptive subdivision of the object’s shape. The adaptiveness cri-
teria in general exploits some properties of the attribute functions of the
object. Well known examples of these representations are the quadtree,
for bidimensional graphical objects, and the octree, for 3-dimensional
objects. Figure 3.11(a) shows an adaptive decomposition by triangles;
Figure 3.11(b) shows a quadtree decomposition.

B Figure 3.11: Adaptive decompositions.

We should point out here the poor choice of the names used for these
adaptive representation by decomposition: these names make a confu-
sion between the representation method, and the subjacent spatial data.
structures used to associate the representation with some computer lan-
guage for implementation purposes. :



Chapter 4

Reconstruction of
Graphical Objects

As we mentioned in the previous chapter, when we define a representa-
tion ¢’ of some graphical object O, it is very important that we are able
to recover (2 from its representation (0. This operation is called recon-
struction. The mathematical and representation universes are related
by the operations of representation and reconstruction, as illustrated in
Figure 4.1

In this chapter we will study the problem of representation and recon-
struction of graphical objects. These two problems are related to two
important questions:

How is it possible to obtain a continuous description of a graphical
object from the discrete version of its representation?

The reconstruction operation is of fundamental importance in com-
puter graphics. An image must be reconstructed by some display de-
vice, such as a monitor, before it can be viewed. To perform computer
calculations with a graphical object, it must be reconstructed, so that
the computations can be done on the continuous domain.

We must observe that the reconstruction process occurs whenever the
object must be materialized. The materialization process depends on
the application. From the user’s point of view the reconstruction pro-
cess must be performed, so that we can observe the object; from the
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Figure 4.1: Discretization and reconstruction of graphical objects.

system’s point of view, correct reconstruction is a guarantee of the cor-
rect semantics of the object representation.

4.1 Representation and Reconstruction

The representation of a graphical object is complemented by the recon-
struction operation. More precisely, we start with a graphical object
O, represent it obtaining another object (3. In order to perform some
operations with the represented object (Jz, we need to reconstruct it,
obtaining another continuous object O,. When the original object &
coincides with the recomstructed object O,., @ = O, we say that the
reconstruction is ezact.

When the object shape is very simple {e.g. an image), the problem of
representation reduces to the problem of discretization and reconstruc-
tion of iis atéribute function. When the object shape is complex, we
have also to cope with shape discretization and reconstruction.

Ideally, both in shape and attribute discretization, we should be able
to obtain exact reconstruction from the discrete representation of the
object. The experience from image processing shows that this is a very
difficult task. If we are not able to perform an exact reconstruction, we
must devise a reconstruction methodology to recover important proper-
ties of the object on the continuous domain. These properties are related
with the object shape, and its attributes:

s recover the topology;
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e recover the geometry;

e recover the object attributes.

The object characteristics that we should recover in the reconstruction
process is greatly dependent on the applications. In general, a good
conipromise consists in using representations that allow us to recover
the topology, and obtain a good approximation of the object geometry
and some of its attributes.

This problem is well illustrated by the simple example of the B-Rep
representation shown in Figure 3.8, of Chapter 3 (page 57). We should
remark however, that, in some applications, maintaining the object’s
topology is not the most important focus of the problem.

| Representation and reconstruction are the two major problems we face
when working with graphical objects. More specifically,

e we must devise robust representation schemes. This means that we
must devise discretization methods that carry relevant information
about the geometry, topology, and the attributes of the graphical
object.

s we must develop reconstruction techniques in order to obtain the
original object from its representation. Since the representation is,
in general, not unique, reconstruction techniques are closely related
to each particular representation.

Therefore, good solutions for the representation/reconstruction prob-
lemn have a great dependency on each specific problem. When we dis-
cretize and reconstruct images, we usually exploit the relationship be-
tween resolution and visual acuity. Visual acuity is also exploited when
we use polygonal decimation to reduce the number of polygons accord-
ing to the distance that the object is being observed. On the other hand,
when the representation is used as input for a milling machine, the re-
construction process must generate the object’s shape within tolerance
bounds which are acceptable for the manufacturing process.
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4.1.1 Reconstruction and Extension

The problem of function reconstruction is in fact a special case of a
very important problem in topology, known by the name of function
ertension. This problem can be pose in the following way:

Consider a domain U of the euclidean space R™, a subset A C U, and
amap f:A— V CR™ The problem of mapping extension consists in
finding a map h:U — V, such that the restriction h|A of h to the set A
coincides with f, that is h|A = f.

In general we impose additional conditions on the extended map A.

It is clear that the reconstruction problem is an special case of the
extension problem. In a close inspection of the two problems show us
that the main distinction is a matter of point of view: when we use the
term reconstruct, it means that the function f: A — V was obtained by
somehow restricting a previously known function h. When we use the
term extend, it means that we have no previous information about f.

4.2 Function Reconstruction

In this section we will discuss the problem of function reconstruction.
We start with a function f, and obtain its representation fy. When fy
undergoes a reconstruction process, we obtain a function f,.. Ideally we
should look for exact reconstruction, that is f, = f, but this is very
difficult to obtain. In order to understand why, we should point out
that the reconstruction process consists in recovering the function from
the dictionary elements

fr=3 g (4.1)
A
Several problems may arise which prevent f, from being equal to f:

o The dictionary might have an infinite number of “basis” functions
g». This means that the sum in (4.1) is infinite, and must be trun-
cated during computation;

¢ The dictionary basis functions g might not have compact support.
Therefore, they must be restricted to some bounded domain for
computations; '
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e The representation process, for obtaining the coefficients ¢y, may
introduce a loss of information about the function (representation
is not exact).

A very important and illustrative case occurs when we use represen-
tation by point sampling. A partial, but relevant, answer for the recon-
struction from point sampling problem is given by the famous theorem
of Shannon (Shannon, 1949). In order to state the theorem, we consider
a function f with finite energy

fR F2(1)dt < oo, (4.2)

and such that there exists a constant K > 0 satisfying

fw)=0, for |ul> K. (4.3)

where f is the fourier transform of the function f. The function is
said to be band limited. '

Finite energy is a very plausible condition from a physical point of
view. The condition on equation (4.2) states that the function does not
have arbitrarily high frequencies. In fact, this condition implies the f
derivatives up to a certain order are bounded, and this means that f
does not vary too much.

Shannon’s theorem states that, under the above conditions, if f is
sampled by taking points 1/(2K) apart, then the point sampling repre-
sentation is exact. More precisely, we can recover f from its samples,
using the equation

inm{2K
f= 3 A i), (44)

n=—0o

The sampling interval in Shannon theorem is At = to41—t, = 1/(28).
Therefore the sampling rate is ¢ = 1/At = 2Q. This is the minimum
number of samples we should take per unit interval, if we wish to recover

the function f completely from its samples. This sampling rate is called
Nyquist rate. Of course, higher sampling rate than Nyquist’s rate can
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be used to obtain exact reconstruction. Using more samples than the
Nyquist rate, is called supersampling.

The graph of a typical dictionary function used in the Shannon theo-

rem, )
. sinm(2Kt —n
= 9Kt —n) = — VT
gn(t) = sincw (2Kt — n) TRt —n)

is shown in Figure 4.2, for n = 0.. Notice that these functions do not
- have compact support. Therefore the reconstruction equation (4.4) does
not furnish exact reconstruction in practice.

(4.5)

Figure 4.2: Graph of the Shannon basis function.

In general, the dictionary functions in the Shannon reconstruction aré
substituted by simpler functions with compact support, which are simple
to compute. The most used functions are the box, triangle and higher
degree splines studied before.

Figure 4.3 illustrates the reconstruction process with these dictionary
functions for the one-dimensional case. In (a) we have a box recon-
struction, the resulting function is piecewise constant. In (b) we show
a reconstruction with a hat function, the resulting function is piecewise
linear. In (c) we show the reconstruction with basic splines of degree 3.
In this case the resulting function is a piecewise cubical polynomial of
differentiability class C2.

Notice that as we increase the dégree of the reconstruction basis, we
obtain smoother reconstructions. Lower degree filters introduce high
{.
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frequencies in the reconstructed signal. Higher degree filters smooth out
high frequencies, and have the effect of blurring the reconstructed image.

] WWTW

mum

Figure 4.3: Reconstruction with box, hat and spline dictionaries.

4.3 Shape Reconstruction

When we have a functional description of a shape, all of the discus-
sion from the previous section applies to the problem of shape sampling
and reconstruction. The additional problem when dealing with shapes,
consists in representing and reconstructing the shape topology.

The operation of shape reconstruction is usually called structuring.
When the object is defined using a parametric description, the struc-
turing is easy, because it is trivially induced by the structuring of its
domain. In general the domain is decomposed using a matrix represen-
tation. For implicit descriptions of graphical objects, the problem of
sampling and reconstruction is much more difficult. This problem has
been discussed to some extent in (de Figueiredo, 1992).

A simple, but illustrative, example of shape representatlon and recon-
struction is shown in the following section.



68 | CHAPTER 4. RECONSTRUCTION OF GRAPHICAL GBJECTS

Circle Sampling and Reconstruction

In Figure 4.4(a)-(b) we show the discretization of a circle using 5 sam-
ples. In Figure 4.4(c) we make a linear reconstruction of the circle from
its samples, obtaining a pentagon. In this reconstruction process, we
obtain the exact topology, and a coarse approximation of the circle’s
geometry. In figure 4.4(d), we make a linear reconstruction of the circle
from the same samples, using a wrong topology information.

(a)

Figure 4.4: Circle representation and reconstruction.

Figure 4.5(c) shows a linear reconstruction of the circle, from four sam-
ples. In Figure 4.5(d) we reconstruct the circle from the same samples,
using cubical (Bezier) reconstruction.

(2) (b) (c) (d)

Figure 4.5: Linear and cubical reconstruction.
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4.4 Aliasing

In this section we will discuss briefly a very important problem that
occurs when we perform point sampling, without taking into account
the Nyquist sampling rate.

4.4.1 Aliasing and Sampling

Intuitively, Shannon theorem says that if a function has finite energy,
and does not have arbitrarily high frequencies, than it is possible to
obtain-an exact point sainpling representation by sufficiently increasing
the sampling rate. This can be seen- by looking at the function in the
frequency domain, using a Fourier transform to go from the spatial to
the freiluency domain. This is illustrated in Figure 4.6.

The comb function shown in (b) is a sum of Dirac delta functions
spaced according to the sampling rate, in such a way that the samples
of the signal f, shown in (c), are obtained by multiplying f by the comb
function.

It is well known from Fourier analysis that the Fourier transform of a
comb function is another comb function with different spacing between
two consecutive impulses. Also, multiplication in the spatial domain cor-
respond to convolutions in the frequency domain (Gonzalez and Wintz,
1987). These classical results are vital to derive (e) and (f): the comb
function shown in (e) is the Fourier transform of (b), just like (d) is the
Fourier transform of (a); and (f), which is (¢) in the frequency domain,
is also obtainable as a convolution of (d) and (e).

According to Figure 4.6, sampling in the spatial domain, is equiva-
lent to convolution with a comb function on the frequency domain, and
the frequency of this comb function varies inversely with the sampling
frequency.

From the above scenario, we conclude that if the sampling rate is suffi-
cient high, and the function is band limited, we do not have overlapping
in the spectrum of the sampled function (Figure 4.6(f)). Therefore, it
is possible to recover the original spectrum of the function f from the
spectrum of the sampled function, using some filtering technique. From
the original espectrum, we reconstruct the function f using the inverse
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* Figure 4.6: Sampling process in spatial and frequency domains.

Fourier transform. In this process we obtain the reconstruction equation
(4.4).

On the other hand, when the sampling rate is not sufficiently high
the function frequencies overlap in the convolution process (see Figure
4.6(f)). When this happens, it is impossible to separate the frequencies
of the original function from the frequencies introduced by the sampling
process. Therefore, during the reconstruction high frequencies will be in-
troduced. These high frequencies interfere with the original frequencies,
causing a distortion of the reconstructed function. This phenomenon is
called aliasing.

Figure 4.7; from (Gomes and Velho, 1995b), illustrates the distortion
caused by aliasing in the sampling process. The image in (a) was sampled
using a sampling rate compatible with the image frequencies. Aliasing
artifacts are not noticeable. The image in (b) was sampled using a low
sampling rate and the aliasing caused a distortion on the window shade.

4.4.2 Aliasing and Reconstruction

In general, the process of sampling and reconstruction is prone to ar- -
tifacts. Sampling artifacts are known as aliasing, and reconstruction
artifacts arise because, in general we do not have exact reconstruction.
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@ | (b)

Figure 4.7: Aliasing artifacts

When we sample a function with aliasing, it is impossible to have exact
reconstruction. When it is sampled without aliasing, exact reconstruc-
tion is still, in general, impossible because of the several reconstruction
problems mentioned previously on this chapter. But since the sampling
was done according to bounds imposed by the Shannon theorem, we
have greater flexibility in choosing reconstruction basis, which seems
more adapted to the problem at hand.

Figure 4.8, from (Gomes and Velho, 1995b), shows the same image
from Figure 4.7(b) reconstructed using two different reconstruction ba-
sis. In figure (a) it was reconstructed with the hat basis. Comparing
this image with the image from Figure 4.7(b), we observe that the high
frequencies have been smoothed out. This is even more noticeable on the
image in Figure 4.8(b), which was reconstructed using the cubic spline
basis. ' A

‘We should point out that the distortions on the windows shade caused
by aliasing have not disappeared in Figure 4.8, by the use of better
reconstruction basis. Aliasing distortions can only be avoided, or at

‘least minimized, by taking precautions before sampling. According to
the statement of Shannon theorem, this can be done in two different
ways:
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(5 )

Figure 4.8: Reconstruction with different basis (from (Gomes and Velho,
1995)).

¢ increasing the sampling rate;

e smoothing out the image high frequencies.

4.5 Resampling

When applying an operation to some graphical object there are several
.advantages in working on the continuous domain (mathematical uni-
verse), rather then on the discrete one (representation universe). There-
fore, instead of transforming the discrete representation of the object,

we should reconstruct it, apply the transformation to the reconstructed
object, and then sample the resulting object. This process, called e~
sampling, is illustrated in Figure 4.9, from (Wolberg, 1990), for the_
one-dimensional case of a function.

In fact, since the object transformatmn might introduce hlgh frequen-
cies in the transformed object, it is advisable that we use some smooth-
ing process (low-pass filter) in order to decrease the frequencies of the
transformed object. This minimizes aliasing problems when sampling
the transformed object. Therefore, the resampling operation should be
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Figure 4.9: Object transformation cycle: reconstruct, transform and
sample.

accomplished according to the illustration in Figure 4.10, from (Wolberg,
1990). ‘

VT
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=l =

Figure 4.10: Resampling steps.

4.6 Everyday Graphical Objects

In our customary use of objects most emphasis is given on the object’s
shape, rather then on the attributes (the exception occurs when the
object is an image). From a geometric point of view the objects can
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be classified according the dimension of its shape, and the dimension of
the euclidean space in which they are embedded. We can identify the
following types of objects:

¢ 1 dimensional objects, embedded into 1-dimensional space. This is
a one-dimensional signal;

1 dimensional objects embedded into k-dimensional space. This is
generally called a k-dimensional curve;

2 dimensional objects, embedded into 2-dimensional euclidean space
(the typical example here is an image);

¢ 2 dimensional objects, embedded into R* dimensional space. There
objects are called k-dimensional surfaces; -

3 dimensional objects embedded into 3-dimensional objects, called
solids.

Objects with fractional dimension, called fractals.

When we consider attributes, a lot more objects appear on the scene.
We could mention, images, hypertextures, volume arrays (3D-images),
etc.

In this section we will describe the commonly used graphical objects,
based on the conceptual description introduced previously. The main
purpose of this section is to fix terminology in order to avoid unnecessary
confusion in later chapters.

Color

This is a particular case of the fact that every signal is a graphical object.
A color is defined by its spectral distribution which consists of a function
Fi[Xa, Xe) — R, which associates to each visible wavelength A its energy
f(A). Tt is interesting to observe that this object is in general used as
an attribute. The problem of color representation and reconstruction is
very important in several applications of computer graphics and image
processing.
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Images

We use the term image when the image f:U C R? — R is considered
in the continuous domain. In general I/ is a rectangle of the plane, and
R" is some finite dimensional representation of some color space. This
is another example of a graphical object which is a signal.

We should observe that an image can also be represented by the graph
{=z,y, flz,y) ; (z,y) € U} of its attribute funetion. This is illustrated
in Figure 4.11, from (Gomes and Velho, 1995b). Ths graph is a surface
embedded into the 3D space, therefore it is another graphical object.
This fact shows that the same underlying concept (an image here) can
be represented by different graphical objects.

Figure 4.11: Image and graph of its attribute function.

Digital Images

This is an image where the domain and the values of the attribute func-
tion have been discretized (sampled and quantized). In general, it is
described using a matrix representation as described in Chapter 3

Drawings

Drawings are constituted by some finite collection of curves on the plane.
It is very common in a drawing that these curves limit some regions of
the plane, and we associate with the drawing, some attributes of these
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regions. These objects are sometimes called two-dimensional solids (See
Figure 4.12).

Figure 4.12: Two-dimensional drawing and solid.

The association of spatial attributes to drawings have been widely used
in illustration applications under the generic name of object oriented
graphics.

When the curves in a drawing are represented by polygonal lines, it is
usually called a Polygonal drawing.

Surfaces and Polyhedral Surfaces

Surfaces are two dimensional objects of the space. A surface can be de-
scribed in different ways. In general a surface is represented using some
polyhedral approximation. When this happens, it is called a polyhedral
surface.

Solids and Polyhedral Solids

The term solid should be used only for a bounded, tridimensiona) set of
the euclidean space. But the reader will find some exceptions to this rule
in the literature. One example is the use of the term two-dimensional
solid described before (see Figure 4.12).

When a solid is represented by approximating polyhedrons, it is called
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a polyhedral solid. In this case, in general, the polyhedra defines the
surface which bounds the solid.

Volume arrays and 3D-images

This is a common name used for the matrix representation of a solid.
Volume array is the name adopted by most computer graphics re-
searchers. In general 3D-image is mostly used by researchers from the
area image processing.

Scattered data

This is the generic name given for the sampling of some object in the
space. Devising reconstruction techniques for scattered data is a very
active research area. Difficult problems exist if we do not impose some
additional restrictions on the underlying graphical object.

Animation

In general, the word animation is used associated to some finite sequence
of images fi,f2,..-,fn- When this sequence is exhibited with some
time frequency, the human eye performs a temporal integration between
them, and we perceive motion.

From the point of view of a graphical object, an animation is a map
F:U x R — R™ where U C R?, and R" is some color space. For each
t € R this map defines an image F: U — R™. The finite sequence which
we usually call an animation is in fact a time sampling of the function
F. We will discuss this with more details later on in these notes.

Audio

An audio signal is just a function f:UU € R — R. This is another
example of a very important graphical object which is a signal.






Chapter 5

Transformation of
Graphical Objects

The transformation between graphical objects is the basic process in
computing with graphics. The main operations in essentially all ar-
eas of graphics processing involve some form of transformation between
graphical objects. Figure 5.1, from (Wolberg, 1990), illustrates the re-
lationships between the main areas of graphics computation.

Computer Graphics

image ‘
Processing Images .m Modeling

Pattern Recognition

Figure 5.1: Main areas of graphics computation.

This diagram shows two forms of graphical objects, and the main areas
of graphics as processes of transformation between them. Apart from
distracting details, the main idea behind this diagram is to show the
distinction of the transformations between graphical objects of different
and same dimensionality. Rendering, for instance, is a process of trans-
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formation of 3D graphical objects into a 2D gré.phica.l object, usually
an image. For an example of a rendering process that outputs drawings
" rather than images, see (Winkenbach and Salesin, 1994).

Our concern, in the study of transformations of graphical objects is
the case where the input and output have the same dimensionality. The
applications of such transformations span the areas of image processing
and modeling, among others.

The discussion in this chapter is restricted to graphical objects and
transformations in the mathematical universe, according to the abstrac-
tion paradigms discussed in chapter 1. This more abstract treatment
provides the means for a general discussion which is independent of the
representation and computational details. Therefore, it is applicable to
all kinds of graphical objects. The conceptual study of the general prob-
lem will be useful in establishing a broader view of the frequently used
2D and 3D cases, and it will help to improve the study of each case.

5.1 Fundamental Concepts

Most of the examples of metamorphosis mentioned in Chapter 1 occur
for real world objects. From the mathematical point of view, this means
that they are realized by transformations between real three-dimensional
objects. In computer graphics, we are interested in the metamorphosis
problems for objects of different dimensions. Several applications involve
metamorphosis in dimensions 1, 2 and 3, ofc even higher dimensional
graphical objects:

» one-dimensional metamorphosis could be used to combine different

audio signal to obtain some audio effect;

e plane metamorphosis between one dimensional objects (drawings),
have been widely used by the desktop publishing industry in order
to obtain font warping effects. Also, Disney animators have used
several metamorphosis effects in the dozens of movies produced.

o three-dimensional metamorphosis of solids and surfaces can be used
to blend different graphical objects, creating new ones. This process
was used extensively in the deformation of the T1000 character of
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the movie “Terminator 2: The Judgment Day”, and on the movie
“The Mask”.

Objects are visualized by projecting them on the screen using a camera
transformation. For real world images we use a photographic, video or
movie camera, and for synthetic models we use a virtual camera. Image
metamorphosis has been widely used in the movie and video industry.
In spite of being a two-dimensional morphing between two-dimensional
objects, when we perform an image metamorphosis we are interested in
obtaining a transition between the three-dimensional objects depicted on
the image.  Therefore, it would be fair to say that image metamorphosis
is a 23-D problem.

When the object is synthesized, we have two options to transform an
object which appear on the image: either working on the object space,
or working on the image space. Working on the object space force us
to use 3D transformations; working on the image space, means that we
. should project the objects on the screen, and use 2D transformations
(see Figure 5.2).

e O~
Q=

(@ b}

sisoydiowiopg qg
3D Metamorphosis

Figure 5.2: Morphing of objects in 3D space: (a} 2D techniques; (b) 3D
techniques.

The camera projection reduces a morphing from the three-dimensional
space to the plane, decreasing in this way the degrees of freedom we have
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to attain some particular effects. Small details of the object shape might
not transform well if we work on the image space. For an illustration
of this fact, the reader should consult (Lerios, Garfinkle and Levoy,
1995). Also, some of the image characteristics come from the correlation
between the objects on the scene (a clear example of this fact are the
shadows). Performing the warping on the image space must take into
account the warping compatibility between these elements.

Working on the image space may give acceptable results if, among
other restrictions, the objects are seen from a similar point of view with
very similar lighting conditions. This is illustrated in figure 5.3, which
shows.a 3D and a 2D warp of a dice. Although the deformation is just
roughly the same, the differences in the transformation of the shadows
and highlights are evident. The results of transforming 3D objects in
the 2D space can be confusing, as the visnal clues given by shadows and
highlights will be wrong.

Figure 5.3: Different results transforming in 2D and 3D spaces.
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When we must obtain morphing effects between two real world ob-
‘jects (e.g. human beings), in general we have no option besides doing
metamorphosis using their images. Nevertheless, when the objects are
synthesized we have the choice to perform the metamorphosis either in
the object orin the image space. In general, working on the object space
gives more flexibility because we have more degrees of freedom, but it is
much more difficult to obtain the desired morphing effects.

5.2 Transformations

A graphical object is essentially a function f: U C R® — RP, where U is
the shape, and f is the attribute function. Therefore, a transformation
between graphical objects involves essentially a functional transforma-
tion, that is, a transformation between two function spaces. A simple
and geometric way to achieve function transformations consists in mak-
ing changes either in the domain U, or in the image set f(U) of the
function f. This has the effect of changing either the object shape, or
the attribute values of the object. In the first case, we say that we have
a domain transformation, and in the second case, we say that we have
a range ltransformation.

The rotation of an image, is an example of a domain transformation;
a change in the color of the pixels of one image is an example of a range
transformation. '

Now we will give an example to show that working on the function
space or making changes in the domain or in the range might give dif-
ferent resulis. ‘ ’

Procedural Texture

A two-dimensional procedural texture is image f: U C R2 — R*, where
the attribute function f is computed in a procedural way. In general,
it depends on a finite number of parameters, and by changing these
parameters, we obtain different flavors for the texture attributes. Figure
5.4(a) and (b) shows two different wood textures generated procedurally.

Procedural textures yield an interesting example to illustrate the prob-
lem of range and function tramsformation. Consider the problem of
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blending the two wood textures shown in Figure 5.4. Value interpolation
here means that we should interpolate the computed texture intensities
on a point-by-point basis. Function interpolation, means that we should
use a functional interpolation. That is, we should interpolate the param-
eters that define each of the wood textures. The entirely different results
obtained, can be seen by the two images in the middie of figure 5.4.

Figure 5.4: Combinations of procedural textures: in color space (lower);
in parameter space {upper).

The choice between using a functional, a domain or a range transfor-
mation, is dictated by different factors which range from the underlying
application to the level of difficulty involved. In our example above,
the combination in the parameter space generates much better results,
since a new texture function is generated. On the other hand, we should
observe that functional interpolation was possible because the two pa-
rameter spaces are the same. A transformation between a wood textured
object and a marble textured object, for instance, needs to be done on
the image space of the two textures.

The idea of interpolating in the parameter space can be taken to ex-
tremes where the parameter spaces are very large, and describe most of
the object information. Karl Sims (Sims, 1991) describes, among other
schemes, how to grow synthetic 3D plants using a “genetic” parameter
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space, an application of morphing very close to natural metamorphoses.
Interpolations between plants that share a common genetic structure,
or a common parameter space, are done to create evolution sequences.
Frames from an interpolation in the genetic space are shown in figure 5.5
(from (Sims, 1991)}.

Figure 5.5: Frames from a genetic cross-dissolve.

We will study domain and range transformations of graphical objects
with more details in the sections to follow.

5.2.1 Properties of Transformations

In the applications we have to impose some restrictions on the mapping.
In general, we need to use mapping of differentiability class C*, with
k > 0, that is, mappings which are at least continuous. Also in general
we require the mapping to be bijective. Therefore the mapping T' will
always posses an inverse T-1. Also it is also natural to require that
both T and T~! have differentiability class C*, with k > 0. When k =0
we say that T is a homeomorphism. When k > 1 we say that T is a
diffeomorphism.

In general, a transformation changes the relation between the points
of the space. By studying the effect of a transformation 7" on points of
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the space, we are able to devise three distinct classes of transformation:

¢ isometry;
e expansion;

e contraction.

An isometry T preserves the distance between points, that is
IIT(X) - T¥)|i = [1X = Yl.

An ezpansion increases the distance between the points of the domain,
that is,
IT(X) -T(Y)|| = CliX - Y],

where, C' > 1. A contraction decreases the distance between points, that
is,
IT(X) -T¥)| < CliX -],

with C' < 1. These classes of transformations are illustrated in Fig-
ure 5.6. Image (b) shows an isometric transformation (rotation) of (a);
image (c) shows a contraction, and image (d) shows an expansion.

Figure 5.6: Isometry, contraction and expansion transformations.
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In general, a transformation changes its behavior from region to region
of ifs domain. This is exemplified by the mapping f: [0, 0o} — R, defined
by f(t) = t?, which contracts on the interval [0, 1/2}, and expands on the
interval [1/2,00) (see Figure 5.7). We should observe that the inverse
mapping g(r) = /z, dashed graph in Figure 5.7, performs exactly in
the opposite way: it expands on the interval [0,1/2], and contracts on
the interval [1/2, co).

1/4)

Figure 5.7: Contracting and expanding map.

The projective warp of the image shown in Figure 5.8 is a two-
dimensional example of a transformation that contracts in some parts
of its domain, and expands on other parts.

Figure 5.8: Projective warping: contraction and expansion.

The chémge of characteristics of a mapping over its domain, creates -.
problems when transforming graphical objects, because in the sam-
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pling/reconstruction process we must use filters with a kernel of variable
size. This has been discussed in the context of texture mapping in (Heck-
bert, 1986). The reader should also consult (Wolberg, 1990} for a more
general discussion in the context of image warping.

5.2.2 Family of Transformations

Graphical object metamorphosis consists of a transition between the
shape and the attributes of two graphical objects. From the mathemat-
ical point of view, this transition is achieved by a continuum of trans-
formations from one object to the other. This notion of a “continuum
of transformations” can be mathematically described using k-parameter
family of transformations.

A k-parameter family of transformations of a subset I/ C R™, is a map
T:U x R* — V. For each vector v € R*, we obtain a transformation
Ty:U — V defining the transformed set T3,(U ). The space R* is called
the parameter space. It is sometimes convenient to take the parameter
space as being a subset of R*, instead of the whole space.

If P € U is a point, the set
O(P) = {Ty(P); ve R},

is called the orbit of the point P generated by the family of transforma-
tions. Intuitively, it describes the trajectory of the point as we vary the
parameter of the family.

Family of Rotations

A rotation R of an angle # around the z-axis is defined by the matrix

cosf sind O
R=] —sinf cosf@ 0
0 0 1

If the angle @ is allowed to vary on the set of real numbers, we obtain a
one-parameter family of rotations R:R® x R — R®. For each 6 € R, we
obtain a rotation Ry of the family.
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. It is immediate to verify that the orbit of a point P out of the z-axis
is a circle with center at the axis. The action of the family on a line
segment parallel to the z-axis, produces a cylinder.

Family of Twists.

A twist around the z-axis is a transformation obtained by rotating a
point around the z-axis by an angle , which varies with the z-coordinate.
Therefore, points with differing z coordinate will undergo an different
amount of rotation. (Barr, 1984).

A twist transformation can be expressed analytically by the matrix

cos f(A) —sinf(6) 0\
R=1] sinf(d) cosf(d) O |,
0 0 1

where the function f is a function of the coordinate z. If the function f
is the identity function, f(z) = z, the twist transformation reduces to a
rotation.

By allowing the angle 6 to vary on the set of real numbers, we obtain
a l-parameter family of twists. It is easy to see that under the action of
the family of twists, the orbit of a point P out of the z-axis is an helix.
Figure 5.9, from (Barr, 1984), shows a sequence of twists of a graphical
object under the action of a one-parameter family of twists.

Animation and Family of Transformations

When k& = 1, we obtain a l-parameter family, 7:U x R — V. In this
case, for each t € R we obtain a transformation T;: U — V. By inter-
preting the parameters as being the time, this family of transformation
represents a change of the set U along the time. This is what is usually
called an animation. Therefore we will interpret a k-parameter family
of transformation as a k-parameter animation.

The reader should observe that a k-parameter animation is itself a
graphical object. Its shape is the set U X R¥, and T is the attribute
function. This is an important point to remind: a k-parameter family
of graphical object is itself a graphical object.



» CRAPTER 5. TRANSFORMATION OF CRAPIECAL OBJECTS

Figure 5.9: Action of the twist family.

An animation is represented by discretizing the parameter space into
a finite mumber of points. In the 1-parameter case, we obtain this dis-
cretization by taking a finite sequence #; < 13 < --- < #,. In this case
we obtain a finite sequence of transformations T3,, ..., T;,. Each T},
is called a frame of the animation. In the general case, the space of
parameters in discretized by using a uniform k-dimensional grid.

5.3 Domain Transformations: Warping

Consider a graphical object with shape U C R, and attribute function
f:U — ®™. A domain transformation is a mapping W : U — U’ C R®
that produces a change of coordinates in the shape of the object. In
general, the spatial relationship between points is not maintained by
this mapping function. A domain transformation can be seen as a tool
for the creation of new deformed graphical objects, as shown in the
diagram below
f o gm

/’ w1

U

w

Ul
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An example of a domain transformation is shown in Figure 5.10. In
this example a shear transformation was applied to the domain of an
image.

Figure 5.10: Domain transformation of an image.

A more interesting example is shown in Figure 5.11. A tridimensional
non-linear warp was applied to the image domain shown in (a), in order
to obtain the image in (b). This example illustrates well the fact that
2D-texture mapping, (Catmull, 1974), is a classical example of image
warping.

Figure 5.11: Texture mapping and warping.

Tt is helpful to analyze examples of domain transformations of one
dimensional objects. Such one dimensional examples will be extensively
used in this chapter, as they are simpler to analyze and understand,
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possess the same basic properties, and are easily extended to higher
dimensions,

Let f : R — R be & graphical object defined by f(x) = sinz The
shape of the object is R, and f is its attribute function. This object
has a graphical representation shown in Figure 5.12(a). Consider the
domain transformation defined by

W(z) = /x, z>0,
and the resulting transformed object g, shown in (b), is obtained as

“1(p) = 2
:I(x) (=)fo Wl(z) } = g(z) = f(z?) = sin2?.

NA N LA
VERVERVER |

(a) (b)

Figure 5.12: Domain transformation: expansion and contraction

Note that the domain is contracted for values of z in [0, 1), and ex-
panded in (3, 4-00). This means thas

b2 — a?| > b — al.

Since
|67 ~ a?| == [b+ al.]b - a,

W is an expansion if b+ a| > 1, and a contraction otherwise. For a
v1(;1n1ty of a, if [(a + €) + a| > 1, W is an expansion. If € — 0, then for
Ja| > 5 2, W is an expansion in the vicinity of a.
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5.3.1 Family of Domain Transformations

The deformation of an object, through a transformation of the domain,
involves two entities: an input object and a domain transformation.
Suppose now that we substitute the transformation of the domain by
some k-parameter family of domain transformation W:U x R¥ — R™.
We would obtain the diagram of transformation

f

U x Rf —— Rr™
W foW™1!
UI

It is interesting to observe that the diagram above allows us different
interpretations:

e Parameterized input object: the object f:U — R™ could be con-
sidered as a k-parameter family of objects f,: U — R™, v € R*,

e Parameterized input transformation: the domain transformation
W could be considered as a k-parameter family of transformations
W, U — U, ve Rk -

¢ parameterized input object and transformation: in this case we split
the parameter space R* = R? @ RP, and consider a g-parameter
family of objects and a p-parameter family of transformations f,: U
— R™, weRY, W, U —-U',veR

We will discuss each of the above cases with more details.

Parameterized input object

In this case, our interpretation of the diagram results in a k-parameter
family of objects which is transformed by the same mapping W of the
domain. Intuitively this means that we have an animation of a graph-
ical object, and for each frame of this animation its domain is being
transformed by the same transformation.
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From the above diagram, the original parametric object is given by
f: U xR — R™ TFor each vector v in R* an object f,, which is
transformed according to

g R"—=R™ g, =f,oW L

A one-dimensional example is shown in Figure 5.13, where the pa-
rameter ¢ is also one-dimensional. In that case, the input object is a
1-parameter family of lines of the plane R? defined by fi(z) = x.t. The
transformation W is a translation given by W(z) = z + a. From the
composition of f; and W1, the transformed object g; is obtained as

Z(;;(i);omw_fl(m) } = gi(z) = fi(z — a) = t(z — a),

and the result, a translated family of lines, is shown in Figure 5.13(c).

flay ==t / £ =(x-a)t

(6] (e

RN

W) =x+a

ft)

Figure 5.13: Parameterized output object: a translation of a parame-
terized input.

A two-dimensional example is shown in Figure 5.14 for the case of
images. Here, the function used as input to the transformation is an
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animation, i.e., it has the form f : UxR — C. A warping transformation
W is then applied to every frame f; of f to produce a transformed image
¢¢- In this example, a 60 degrees rotation was used:

Figure & i Frames of an animation: a fixed rotation of an input ani-
mation

cos § —sin%) (z) _ (z—y\/g,m\/ﬁ+y) .

o T o
sing cosg Y 2 2

Wmm=(

The computation of the transformed animation frames will be done
compositing the inverse warping

—sinf cosy Y 2 2

en=(3h ZD()- (222 220)

and the input frames, resulting in

m+y¢§—wv§+y)
7 ' 2 '

m@w=ﬁ6W*mw=ﬁ(

An interesting application of transformation of k—pémmeter family
of graphical objects is found in the correction of distortions in head-
mounted displays (Watson and Hodges, 1995). Here, an inverse warping
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is used to compensate the distracting distortions caused by the optical
systems in head-mounted displays; the deformation is a function of the
lenses, and therefore the same warping is applied to every frame of the
computer generated animations.

Parameterized Input Transformations -

In this case we have a k-parameter family of transformations W: U x R¥
— R™, and one object f:U/ — R™. For each vector v in R* there is a
transformation Wy, : U — R™, and, consequently,

gu:U—R™ g,=foW; L

f)=x
{8)

Wiz =x + ot

]

Figure 5.15: Parameterized output object: a variable translation of an
input. :

This is illustrated in the example of Figure 5.15, for one-dimensional
objects. The input object is simply f(x) = z, and the l-parameter
family of transformations W : R x R — R is given by Wi(z) = z + at,
where ¢ is a fixed real number. The transformed object, shown in (c),
is then

Wl z) =z~ at

a(z)=fo Wt_l(m) } = qf{z) = f(;L‘ — atj =z -w at.
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Note that the output function in this case is also a k-parameter family,
just as in the previous situation.

A two-dimensional example is shown in Figure 5.16, where an ani-
mation is created from a static image and a parameterized family of
transformations.

Figure 5.16: Frames of an animation: rotating an image

In this example, the transformation is a 1-parameter family of rota-
tions, where the parameter is the angle of rotation 6:

cos§ —sinf@\ [z _
Wo(z,9) = (sinB cos# ) (y) | (5.1)
When each transformation is applied to the domain of an image f,

produces an image g which is a version of f rotated by an angle 9, as
follows:

. _{ cosf sinf\ [z
Wy (z,y) = (_sina 0089) (y) '
and therefore

9¢{z,y) = f(zxcosf +ysinb, —zsin@ + ycos ).

As observed before, gy can be interpreted as an animation if the angle
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¢ is increased with time. The resulting animation depicts a rotating
image, as shown by the frames in Figure 5.16.

Parameterized Input Object and Transformation

In this last case, both the input object and the transformation are para-
metric, i.e., the input graphical object is given by f : U x R — R™,
or fy : U — R™, and the transformation is given by W : U x R} — U,
or, as before, W, : U — U’. The transformed object is therefore a
(k + I)-parameter family of transformations,

Guy : U — RB™ ngfuoWJ-I.

Again, this is easily illustrated using a one-dimensional example,
shown in Figure 5.17. The input 1-parameter family of graphical ob-
ject is a family of rotating lines, defined by fu(z) = z.u and the one-
parameter family of transformations is defined by W, (z) = z+a.v, where
@ is a constant (this represents a family of translations). Therefore, the
output gy, is given by

£a00) =ulx-ov)
{e)

W) =x+auv
fb)

Figure 5.17: A parametric output obJect input object and transforma-
tion are variable. :
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“1(p) — o —
;/I::(z-() )= fu o WZEI(:B) } = gu’u(m) = fu(w - a:v) == ’U'«(:C _— G’U),

The uv parameter space of the resulting graphical object has dimension
2 (see Figure 5.18). By choosing any curve in this space we are able to
obtain an animation. The sequence of frames shown in Figure 5.17(c)
was obtained using the curve with equation u = v. Note how (c) is a
natural combination of the “movements” in (a) and (b).

UV

Figure 5.18: Sample path in 2D parameter space

The selection of values for u and v allows precise control over the result
of the transformation. In general, a suitable path in the parameter space
must be chosen to control how the final animation will appear. Paths
with at least C! continuity, such as the one shown in Figure 5.18, are
used to produce smooth animations. Intuitively, the graph indicates the
relationship between the “playback speed” of the input animation (v
axis) and the rate at which the transformation occurs (u axis).

An experienced animator, is able to use such parameterized families
of transformations to produce surprising animations where a subject is
transformed while moving. An example of this kind, using images and
a simplistic rigid warping--rotation—is shown in Figure 5.19.
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Figure 5.19: Frames of an animation: progressive rotation of another
animation

5.4 Range Transformations

In the previous section we studied object transformations by changing
the object shape. An object can also have its attributes transformed
to create a new object. The attributes are defined by the values of
the attribute function, and for this reason these transformations are
called range transformations. These transformations do not modify the
spatial relationship of the points, they alter just the values of the object
attributes.

If the object is defined by f:U — R™, and T:R™ — RP is 3 trans-
formation, the new graphical object is defined by 7: o f/ — R?. This is
illustrated by the diagram below

f

U R™
i Tof T
RP

Recall that a graphical object is defined as a subset I/ and a collection
of its properties f; as

FUCR" SR XR™? X ---XR™*, ri+ro+---+rp=m,
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where f7 : 7 € R™ — R/ are the coordinate functions of the attribute
function f = (2, %,..., f5).

Therefore, we have
T:RM'XR2x..-xR* =R xR™ x ... xR,

or simply T : R™ — RP, where 7" has coordinates 7" = (17, 7%, ..., T*).

The reader should notice that in general we might not have uncoupled
transformations T%:R™ — RP, because the transformation of some of
the object attribute values are not, in general, independent of the other
object attributes.

The simple one dimensional example in Figure 5.20 summarizes the
above discussion, evidencing the amplitude modification character of
range transformations. In this example we take the object f(z) =sinx
and a transformation T(x) = z/2, the output g(x), shown in (b), is
given by )

9(@) =T o f(z)) = =

NANT AT
VAVAVERRAAY

(b)

Figure 5.20: Range transformation of an object.

Two-dimensional range transformations are also easy to obtain. Recall
that in the simplest case, an image is expressed by a function f : U —
C, where the range C is a color space. Therefore, modifying image
attributes amounts to making changes in the image color space. An
example is the gamma, correction transformation used before displaying
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an image. Another widely used example is the luminance mapping which
allows us to obtain a monochrome image form a colored one.

'5.4.1 Family of Range Transformations

Similarly to domain transformations, we should study the use of range
transformation and k-parameter families. The combination of parame-
terized object and transformations result into three distinct situations,
analogous to those discussed for domain transformations:

» Range transformation of k-parameter families of objects:

¢ k-parameter family of range transformations of one graphical ob-
Jject; '

¢ A combination of both of the above situations.

These three situations result in parametric objects that can be repre-
sented by families of transformations, as has been done before for domain
transformations. We will not go over the details of each case here, be-
cause they are analogous to those related with domain transformation.
The three cases are summarized by the diagram below

Uka—Jc»Rmef
TOf T
RZ

In the first case we have { = 0, in the second case we have k = 0, and in
the last case, both k and [ assume non-zero values.

An illustrative example of parameterized range transformation is given
by the operation of cross dissolve between two images. In this case we
have two images f, ¢:U C R? — R3. We define a 1-parameter family of
transformation T: U x [0,1] — R3, by

T(ul,ug,t) = Tt(ul, ug) = (1 — t)f('u.l, u2) + tg(ul,th).
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Figure 5.21: Cross dissolve between two images.

T; is a one-parameter family of images such that when the parameter ¢
varies from 0 to 1, the images in the family vary from f to g. In Figure
5.21 we illustrate the operation of cross dissolving between the face of a
woman {a), and a cheetah (b). Figure (c) shows an intermediate frame,
obtained for the value ¢ = 1/2 of the parameter.






Chapter 6

Morphing of Graphical
Objects |

In the previous chapter we studied the transformations of graphical ob-
jects. In this chapter we will use the concepts introduced before to define
In a precise way the concept of metamorphosis between two graphical
objects. :

6.1 Morphing: Shape and Attribute Combination

Suppose we have two graphical objects O; and O;. Intuitively, a meta-
morphosis operation between these two objects is attainable by devising
a continuous transition from object @) to object Oz. In order to attain
this, we must use a k-parameter family of transformations to obtain
both a shape transition, and a transition between the attributes of the
two graphical objects.

Denote by 2 some space of objects {f: U C R* — R™}. If O; and O
are objects in §2, a morphing or metamorphosis between O1 and s is a
k-parameter continuous family of transformation

0: Oy x R — 0.

Intuitively, for each parameter v € R* from the parameter space, we
obtain a new graphical object ¢,(01), and this family ¢, performs the
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transition from one object to the other, as v varies on the parametric
space.

The reader should notice that the parameter space has dimension k,
this means that we have & degrees of freedom in choosing an animation
of the morphing transformation between ¢; and . Mathematically
this is done by defining a curve c: [O,'"l} — R* on the parameter space.
In this case, we obtain a I-parameter family

woc: (O — Oy,

such that for exact ¢ € [0,1], ¢(c(¢)).0; is a graphical object of the
morphing transformation. The curve ¢ is chosen so that when ¢ = 0 we
obtain ¢(0) = @1, and when ¢ = 1 we obtain ¢(1) = 0.

In general the k-parameter family of transformation that performs the
metamorphosis between object O and Oy splits into two parameterized
families of domain and range transformations. This is illustrated by the
diagram below

UXRPI*CXR‘I
‘ wl T
f U—p—C

the morphing transformation is given by ¢ = T o fo W™l If W is
the identity transformation, g is simply a range transformation of fion
the other hand, if T" is the identity transformation, g turns out to be a
domain transformation of f.

In general, the morphing transformation g is obtained in a two step
process:an intermediate object k is created in a first pass from a domain
transformation of f performs a warp of the object shape, and then a
range transformation T is applied to A in order to change the attributes,
and obtain g. From the above diagram the transformations involved into
this two step process are given by: h = fo W1, and g=Toh.

Figure 6.1 illustrates a morphing transformation between two static
images, with all the intermediate steps. Horizontal arrows depict
warping transformations, and the vertical additions represent attribute '



6.1. MORPHING: SHAPE AND ATTRIBUTE COMBINATION 107

Figure 6.1: A complete image morphing and its éteps.

N

change by cross dissolving. The inputs are the image with the woman
face, in the upper-left part, and the image of the cheetah, just below it.

These two images are warped so that their main features, such as
eyes, mouth and nose are aligned, as shown in the upper right part of
the figure. The cross-dissolve performed between the two original images
and the two warped images are shown in the bottom part of the figure.
The morphing, on the right, is much more appealing than a pure cross-
dissolve, and effectively represents a new, perceptually feasible, object
created as a combination of the two inputs.
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Figure 6.2, from (Gomes and Velho, 1995b), shows 8 frames of the
morphing sequence between the two images discussed 1n ﬁhe previous
paragraph. , - ST

4

LI

Figure 6.2: Frames from a morphing sedue_nééf

We.should point out that the above description holds for the morph-
ing between arbitrary graphical objects. In fact since two images always
have the same shape, there is one important point in the morphing pro-
cess. which is hindered by the above example. In fact, the geometry
alignment phase in general can be obtained only up to a certain: ap-
proximation of the geometry. Therefore, we must perform a blending
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operation in order to get a new object which represent a perfect align-
ment of the geometry of each object.

This blending step is well illustrated in Figure 6.3, from (Lerios,
Garfinkle and Levoy, 1995), for the case of a morphing between two
objects in 3D-space. It shows the warping of each object, to obtain an
approximate allignment of the geometry, and the blending of these two
warps.

Figure 6.3: Warp and blending in 3D space.

Blending techniques will be discussed in Chapter 10.

6.1.1 Parameters and Morphing Transformation

From the diagram on page 106, a morphing transformation between two
graphical objects depends on p + ¢ parameters. Therefore, metamor-
phosis is a (p + g)-parameter animation. Several combinations of these
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parameters are possible, also, the reader should notice that the objects
themselves could be parameterized. Several particular situations ave
possible in the applications. Therefore, we are left with several degr(,eq
of freedom in order to choose a morphing animation.

In the example shown in Figure 6.2, we have two non-parameterized
objects (the woman face and the cheetah), and we define a morphing
transformation between them. This morphing transformation performs
both domain and range transformations. The domain transformation
aligns come features of the image shape, and the range transformation
performs grayscale interpolation.

An important example occurs when we have a morphing transforma-
tion between two parameterized graphical objects. As we well know,
each of these graphical objects can be interpreted as an animation, and
for this reason, a morphing transformation between them is called ani-
mation morphing.

In this case, the parameter space has at least dimension 3:

» one parameter for the transformation;
* one parameter for changing attributes;

» one parameter for the animation of each graphical object.

By carefully manipulating the values of the parameters on the param-
cler spacc, the user can obtain a “parameter path” which performs nice
transitions between the two animations.

In the example of a metamorphosis between the woman face and the
cheetah, the domain warping was attained by using a large number of
parancters to specify the warping family. Even the color attribute inter-
polation in this example was note done by a simple 1-paramcter, linear,
cross dissolve. Some experimentation showed us that it was much more
elfective to blend the face attributes faster than the hair attributes.
Therefore, a non-linear cross-dissolve was used instead.

In a non-linear cross-dissolve technique the color change depends on
the position of the pixel. More precisely, we have the one-parameter
family

Ty, ua,t) = hy(ur, uo, £) f(ur, u2) + ha(ur, vz, £)g(u1, ug),
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where
hi(u1, ug) + holug,ug) = 1

This reduces to the linear cross dissolve for hj(u1,us,t) = 1 — ¢, and
hg(’ujh U2, t) =1t

By observing the morphing sequence shown in image 6.2 the reader
can notice the change of grayscale values in the face and in the hair: it
takes much longer for the hair attributes to be surpassed by those from
the cheetah. The possibility of controlling the progress of warping and
attribute transformations independently is effectively used in practice to
help the creation of more convincing effects.

Figure 6.4 depicts a path on the parameter space in the case of di-
mension 3. The figure also shows the path projection on the ci-plane,
and on the fw-plane.

Figure 6.4: A particular choice of parameters for animation morphing

We can observe in this example that the warp evolves linearly with the
input animation (projection on the wi-plane), but the attribute transfor-
mation does not (projection on the ct-plane). It starts and ends slowly
and accelerates at the middle, so that no attribute combination is no-
ticeable at the beginning or the ending of the animation and it takes
place quickly (compared to warping) during the middle of the anima-
- tion. This particular progression is normally used with few modifications
as a practical template that produces perceptually better results.

We should point out that there is a trade off between the user control
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over the morphing transformation, and the number of parameters: the
smaller the number of parameters the easier it will be to control the
animation of the morphing sequence. As the number of parameters
increase we have to work harder to control the animation, but we have
greater flexibility in choosing the best result.

In general, specifying families of transformation requires a huge num-
ber of parameters. This problem will be discussed in next chapter.

6.2 Some Examples

"The same techniques and remarks discussed above apply for morphing
between objects other than images. Image morphing is an example of a
two-dimensional morphing between two-dimensional graphical objects.
We show some other morphing examples, of different dimensionality,
below:

Drawing Morphing

Figure 6.5 shows a morphing sequence between two drawings. This
is an example of a two-dimensional morphing between one-dimensional
graphical objects.

Figure 6.5: Drawing morphing.
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Surface Morphing 7

Figure 6.6, from (Kent, Carlson and Parent, 1992), illustrates a morph-
ing between polyhedral surface. This is an example of three-dimensional
morphing between two-dimensional graphical objects.

Figure 6.6: Polyhedral surface morphing.

Volume Morphmg

Figure 6.7, from (Lerios, Garfinkle and Levoy, 1995), shows some frames
of a metamorphosis sequence between an orangutan head, and a hu-
man head. These two graphical objects are represented using volume
arrays. This is an example of a three-dimensional morphing between
three-dimensional objects.

Aﬁdio Morphing

The examples above don’t include a case of a one-dimensional morphing
between two one-dimensional graphical objects. An example of this
nature could be obtained using audio signals.

A good example of audio morphing can be found in the movie
“Parinelli, il castrate”, a France/Belgian/Italian production of 1994.
This movie tells the story of the famous opera singer Farinelli, from
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Figure 6.7: Volumetric morphing.

XVIII century. The unique voice of the character Farinelli was obtained
using a very accurate morphing between the voice of the polish soprano
Ewa Mallas Godlewska, and the american counter-tenor Derek Lee Ra-
gin. This process took two years to accomplish.



Chapter 7

Specification of
Transformations

The previous chapter discussed several forms of transformations of
graphical objects in the mathematical universe. To that end, mathe-
matical abstractions for both graphical objects and their transforma-
tions were introduced. The computational use of those abstractions
requires a suitable representation model, which involves some form of
discretization of the elements of the mathematical universe. Represen-
tation schemes for graphical objects were discussed in chapter 3; the
problem of representing and implementing transformations of graphical
objects will be the subject of this chapter and the next.

7.1 Specification

The manipulation of transformations in the computer requires the de-
scription of a transformation using some finite, representation scheme.
Besides the representation problem, we are faced with the specification
of the transformation by the user. Some examples will help to clarify
the problem.

Linear maps on the space R” are completely characterized by knowing
its values at n linearly independent points; affine mappings need n <
1 points. Therefore, in order to specify the transformation from the
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rectangle to the parallelogram in Figure 7.1, the user only needs to
ispecify the image of the points A, B and C. TI‘.E[S is equivalent to
‘'specifying the image of the oriented line segments BA and BC.

Figure 7.1: Affine warping specification.

Projective mappings of the space, need n + 2 points to be completely
characterized. Therefore, to obtain the projective warping shown in
Figure 7.2 the user needs only to specify the correspondence between
the vertices 4, B, C, D in the original image, and the corresponding
vertices A', B’, C" and D', on the warped image.

Figure 7.2: Projective warp with two vanishing points.

From this finite specification of the affine and projective mappings in
the examples above, the computer should be able to reconstruct the Dpro-
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jective mapping and apply it to any point of the image domain. This is
not a difficult task, since these mappings possess an exact representation
by matrix using homogeneous coordinates.

The above examples, although simple, exemphfy our goal when dealing
with transformation on the computer:

e the user should specify a finite, and hopefully small, number of
parameters;
¢ the program should provide a good user interface;

¢ the computer should provide a robust and simple representation
from the user specification.

This is llustrated by the simple diagram in Figure 7.3.

User

l

Specification

l

Representation

Figure 7.3: User interface, specification and representation.

This is our goal when dealing with transformations on the computer.
However, we should observe that non-linear transformations in general
are very difficult to be specified and represented by using a finite number
of parameters. '
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Specification and User Interface

In the metamorphosis problem, we need to specify families of transfor-
mations, and in general, the parameter space has an infinite number
of parameters. Therefore, we need a very flexible way to specify these
parameters.

Take a simple warping transformation, e.g., a rotation around the ori-
gin by an arbitrary angle. One way of representing this transformation,
consists of storing a single parameter that represents the amount of ro-
tation to be performed, and an equation that describes the calculation
to be done with that number. Another, more pictorial, representation
is to store a vector that indicates the rotation. This form of represen-
tation may be easier to be used as an interface, because it is possible to
manipulate it directly, and it provides a natural graphical interface for
the user.

0° 96°
(a) (b)

Figure 7.4: Rotation representation: (a) by angle; (b) by vector.

To achieve certain specific results, as in aligning two graphical objects
through rotation, an angle representation would require some guess work
to accomplish the desired result, while a vector representation allows an
interactive specification of the desired alignment.

The reader should observe that there is a close relationship between
the specification and the representation of a transformation. As we men-
tioned above, in general, projective mappings, and this includes linear
and affine mappings, are represented by matrices, 1ndependent of the
specification method used on the interface.

In the rotation example mentioned above, the conversion between an-
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gles and vectors is trivial, which makes the uncoupling of specification
and representation easy. In general, the two concepts are tightly con-
nected, however, and exact conversions between forms of representation
are rare. This leads to the interchangeable use of the terms transforma-
tion specification and transformation representation.

7.2 Specification x Computation

After the user specification, the transformation is represented on the
computer, and the computation of transformation takes place. This
pipeline is easier to be explained using a client-server model.

In all client-server relationships, some form of specification of the de-
sired results must be given by the client, so that the server is able to
accomplish what has been specified. As the server works based only on
the specification, and not on the desires, the looser the specification is,
the widest range of conforming results can be achieved. In this way,
there are two distinguished phases in such relationships:

¢ Specification, an expression of the desired results;

e Computation, a way to obtain the specified goals.

These two phases, shown schematically in figure 7.5, are related, al-
though not infrinsically. The importance of the distinction between
these phases in morphing is evidenced in the detection of new combina-
tions of existing techniques.

Client [recleaion | garyer H2mRMEIN )| Ragults

Figure 7.5: Specification and computation.

Although in the literature the form of specification was generally as-
sociated with the computation technique being used, it is possible to
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dissociate the two, in order to obtain different forms of specification
with the same underlying technique used to compute the transforma-
tion {Costa, Darsa and Gomes, 1992), as exemplified in section 9.4.

Morphing in practice requires a good level of user specification to
approach the desired results. The specification of a generic warping
can be done in several ways and the choice of a particular method will
influence both the user interface and the computation.

The example of the projective wa.rpiné described in the beginning
of this chapter is not really the common rule of the game. Usually,
we need to manipulate a huge number of parameters to specify some
warping in order to achieve certain prescribed goals. These goals could
be of a perceptual nature, or could be related with some other criteria
determined by the underlying application. -

7.3 Defining a Specification

All forms of specification are based on the idea of defining the transfor-
mation by manipulating only a finite, and hopefully small, number of
parameters. From these specification, mathematical techniques should
be used to compute the transformation for any point on the warping
domain.

In order to specify a transformation f: U C R® — R™, we must define
its domain U, and for each point p € U, we must find the rule to abtain
the transformed point p’ = f(p). When the set I/ has only a finite, and
small, number of points, p1,...,pn, (n small), it is very easy to specify
f{p:) for each i. On the other hand, if U has a huge number of points,
possibly infinitely many, specifying the transformation at each point is,
in general, an impossible task, unless we are restricted to some specific
class of transformation (e.g. projective mappings).

Therefore, we should devise techniques that allow us to specify the
transformation only at a finite number of elements. There exists difer-
ent methods for finding the best specification for each problein, and this
constitutes a whole chapter that pervades different areas of mathemat-
ics. In fact, most of the mathematical problems consist in finding some
function with certain prescribed properties.
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Here we are concerned with graphical object metamorphosis. The
most suited function specification for our problem, consists in using
function extension: we specify the transformation only at some finite -
set of elements of the domain. From these elements, the function is
reconstructed (extended) to the whole domain.

In order to give a precise definition of an specification, we need to use
the concept of geometric data set of a graphical object (see the definition
of a graphical object in chapter 2).

Consider two graphical objects 0y and Os, with geometric data sets
Up=UlU-- U}, and Uy = U U---UZ. A specification of a transfor-
mation between O and O consists of a set of ordered pairs

P ={(sidi) ; s C U}, di CUP}, (7.1)
and a family of transformations
Wis c Ul — d; c UL (7.2)
This family of transformations {W#} defines a transformation
W:Usi cU' — ud; c U2

The' réquired transformation W:(; — @3 is obtained by extending W
to the whole object shape U!. In other words, the transformation W
is defined so that its restriction to each set s;, W|s;, coincides with the
transformation W#: s; — d;.

" We should observe that the elements s; of the geometric data set of
the object (71, can have any dimension ranging from 0 (discrete set) to
the dimension of UL, In a similar fashion, the dimension of the elements
d; range from 0 to the dimension of the graphical object Oz. Some
examples of elements of 0, 1 and 2 dimensions will be seen in the next
sections. We should observe that nothing prevents the use of different
dimension subsets at the same time. One such example is the use of
points, polylines and curves together to establish the correspondences
"between two images in (Litwinowicz and Williams, 1994).

An interesting point to note is that such forms of specification are
equivalent to sampling the transformation function, and then represent-
ing the transformation by this set of samples. During the computation
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phase, the warping is extended to the whole domain in order to be ap-
plied to the graphical object. This is an instance of the problem of
structured and unstructured sparse data interpolation, which has many
well known solutions.

7.3.1 Classification of Specifications

With the objective of devising a classification for the existing specifica-
tion of warping techniques, it is convenient to introduce the concept of
the source set § and target set D as follows:

S = {s; C U] there exists d; C U’ such that (s;,d;) € P}
and

D = {d; C U’| there exists s; C U such that (s;,d;) € P}

Different configurations of $ and D result in different specifications,
and therefore different transformations. Based on the above definition,
we can devise three specification techniques that have been largely used
in the literature for obtaining object metamorphosis:

e specification by partition;
s specification by features;

* automatic specification.

We will study each of these methods in the following sections.

7.3.2 Specification by Partition

In a specification by partition, we obtain a decomposition of the shape
of both objects that constitutes a partition. That is, the elements U;, J
J=1,2,1=1,2,...,n, satisfy

-U?=1U§=U i=12
oUJﬂ =@, fori#k, j=12
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More precisely,
. (so,do),(sl,dl) EP=>s3Nsi=@anddgNd; =@
o Us=U;es8,Ui=Ugepdi > Us=U and U = U".

This is illustrated in Figure 7.6. The object shape and its underlying
space are decomposed, and the transformation must be specified for each
element of the decomposition.

Figure 7.6: Morphing specification by partition.

Specification by partition has an straight dependence on the structure
of the domain decomposition: well structured decompositions are easy to
work with, while arbitrary decompositions are more difficult to represent
and to maintain. :

In general, we use well behaved partitions such as triangulation, or
cellular decompositions. In general, hese partitions define an unstruc-
tured grid over the object shape, and for this reason they are generically
called mesh. For this reason, specification by partition could also be
called specification by meshes. In the mesh based approach, two meshes,
with equivalent combinatorial topologies, are created as part of the ge-
ometric data set of the graphical object. Each mesh defines a partition
of the object domain.

Regular meshes, besides greatly simplifying data manipulation in the
implementation, also facilitate user comprehension of the process. In any
case, the user is responsible for specifying the transformation between
two corresponding meshes to attain the desired results.
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There are some particular cases of meshes that are specially relevant.
Polygonal or polyhedral meshes, for instance, are a natural choice that
can give good results when coupled with robust reconstruction tech-
niques in the computation phase. However, the direct specification of
a transformation through manipulation of meshes is a laborious task in
2D, and it is almost 1mpract1cable to be used in 3D.

The use of meshes of spline curves (Smythe, 1990) or surfaces suggests
a naturally smooth transformation, and was used in image morphing ap-
plications for the first time for the special effects of the movie “Willow”
in 1988 (see (Wolberg, 1990)). Although spline meshes permit an ex-
tremely efficient computation for sampled implicit objects (discussed in
the next chapter), this kind of specification is restrictive sometimes. As
noted before, positioning the points of the mesh over the interesting
features is a difficult task, and the regularity of the mesh does not nec-
essarily match the “natural” structure of the underlying object. We
should point out that because of continuity properties of the warping,
the values of the transformation in a mesh greatly influences the results
of neighboring meshes.

By definition, specification by partitions try specify the transformation
for the entire object domain. This specification enables the user to define
more precisely what takes place in all parts of the domain. Although,
because of continuity restrictions changes in one set of the partition
induces changes in neighboring sets. This forces the user to work on
partition domains which do not directly influence the desired results.

7.3.3 Feature Based Specification

In a specification by features, the source and target sets, S and 1, do not
define partitions. Note that a partition specification we try to specify
the transformation for the entire domain, while a feature specification
leaves the mapping function in (U — U,) undefined. In general, some
useful conditions are required from the specification to yield reasonable
warps. Adjacency relationships in a partition specification, for instance,
must be the same in S and D for the warping transformation to be con-
tinuous. Also, feature specifications usually satisfy a non-overlapping
condition between each feature, so as to avoid problems of multiple defi-
nition at feature intersections when defining the warping W. Additional
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constraints to the specification of the features is,'in general, imposed
when defining some wa.rpmg techniques. : :

In feature based spec1ﬁcat10n only distinguished features and thelr
transformations are specified by the user. The warp will be:computed -
in such a way to map each feature of the graphical object to the cor-
responding transformed state. This corresponds to reconstructing the
warping transformation from its spec1ﬁcat10n on JU.St a few selected fea-
ture positions. -

Zero-dimensional Features

An important case of feature based warping is the point based specifi-
cation. In this case, each feature is described by a point which belongs
to the geometric data set of the graphical object. Point based morphing
specification is largely used in commercial image morphing.

In some particular cases, it is possible to reconstruct the warping
exactly, from a point based specification. This is the case of the affine
and projective warpings, as shown in the beginning of this chapter.

3

One-dimensional Features

This is an example where the features are specified by curves defined
on the shape of the graphical object. Therefore the specification uses
1-dimensional features.

Figure 7.7 illustrates a warping specification by one-dimensional fea-
tures for the case of images. Several oriented line segments are added
to the source image of the woman. These segments become part of the
geometric data set of the woman image. They are positioned in such a
way to mark disntingueshed features of the face. These segment features
are conveniently mapped onto similar features of the target image, in
order to specify the transformation.

An implementation of an image morphing system where the features
are described by oriented line segments, was done at Pacific Data Images
(Beier and Neely, 1992). The system was used to create the classical
morphing sequence in Michael Jackson’s video clip “Black or White”.
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Figure 7.7: Feature specification.

Features of Higher Dimension

The example of one dimensional feature shown above illustrates the case
when we have 1-dimensional features (segments), 2-dimensional graph-
ical objects (images) in 2-dimensional space (plane). This specification
technique described above of one-dimensional features has been extended
recently by (Lerios, Garfinkle and Levoy, 1995), to specify morphings of
objects in 3-dimensional space. This extension uses features of differ-
ent dimensions: points, segments, rectangles or a 3D-box. Figure 7.8,
from (Lerios, Garfinkle and Levoy, 1995), illustrates the use of differ-
ent features to specify a morphing between a dart and a plane. Figure
(a) shows the dart and its features; figure (b) shows the plane and the
corresponding features.

Another interesting use of one-dimensional features has been proposed
by George Wolberg (Wolberg, 1989). He addresses the problem of warp-
ing an arbitrary shaped subset of an image which is specified just by
two corresponding outlines. A thinning operation is used to determine
the mapping for the interior region of the outlines.

Physics Based Features

This is an area of warping techniques where a lot of activities is going
on. In this case, the features have a physical meaning, such as point
masses, forces, force fields, velocity and so on.
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()

Figure 7.8: Segment specification in 3D space.

By specifying these features the warping computation is done by the
convenie i interpretation of physical meaning of the features in a con-
venient physical system. The dynamical or kinematic equations of the
physical system are solved in order to compute the desired warping.

Tn general, the obvious advantage of feature specification is that the
user only needs to specify the transformation at relevant features. In
practice, however, users are frequently forced to add secondary features
in order to obtain a better control over the warping reconstruction pro-
cess.

7.3.4 Autoratic Specification

A warping is defined by a mapping function that establishes a spatial
correspondence between all points from the shape of the input object, to
the points in the shape of the output object. The warping specification
technicues described above enable the user to specify the transformation
only at some finite number of elements belonging to the geometric data
set of the graphical object.

When the source and the target sets § and D are empty, from the user
point of view, we have an automatic specification, also called specification
by parameters. These techniques are not based in a specification by
the user of spatial relationships between domains, these specifications
are detected by some automatic algorithm and the warping sequence is
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“generated. Ideally, just the two ini)ut graphicai objects should be given,
and the computation phase would be responsfble for determmmg the
- suitable mapping functlon

" In Figure 7.9, there should be no user interferencé to obtain a warping
family that transforms an arbitrary triangle 1nto an arbitrary quadrilat-
eral.

- Figure 7.9: Automatic specification.

For automatic and semi-automatic techniques, the correspondence of
characteristics is not present in the specification, but is automatically de-
termined by the computation phase instead. It is still necessary, though,
to specify other parameters that help to control the progress of the trans-
formation. Ideally, users should be required to provide just the minimum
data that is sufficient to obtain the desired results. This leads us toward
the development of semi-automatic warping techniques.

One approach is to use some pre-processing step to find the relevant
features of the objects. The algorithm establishes a correspondence be-
tween marked features which can finally be used to compute the trans-
formation. Another possibility is to determine the appropriate mapping
directly from the analysis of the objects, without exp11c1t1y manipulating
features.

Partia,l automation can also be obtained by some form of feature digi-
talization, where the specification is captured from the real world. Roto-
~ scoping of actors with their desired features physically marked (painted
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on them, for example) is an effective alternative that can reduce specifi-
cation time dramatically. Figure 7.10 shows a sequence and the con-
trolling features, which were rotoscoped from an actor’s face (from
(Litwinowicz and Willlams, 1994)).

Figure 7.10: Rotoscoped features and resulting animation.

Totally automatic warping techniques have been used for very specific
applications. A relevant and quite successful example is found on the
multiple master font technology developed by Adobe Systems. This is
a system which enables the automatic creation of new fonts by speci-
fying the parameters of font width and weight. This is illustrated in
Figure 7.11.

A similar technique has been used by Adobe in the product Super
ATM. In this application, when there is a need for some screen font
which is not available, the program creates the font by interpolating
parameters from existing loaded fonts.

Nonetheless, use of automatic warping specifications are still rare—
although some efforts in this direction have been made—and are loose
by definition, leaving little control to the user. Despite these automation
attempts, the form of specification and the user interface are essential
issues in current morphing techniques.
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Morphing
Morphing
Morphing

Figure 7.11: Generation of fonts by automatic warping.

7.4 Warping, Attribute Combination and Morphing

We have seen that a general morphing transformation is in fact a com-
position of various other transformations. The specification of a morph,
therefore, amounts to specifying eath of its sub-transformations. The
separate specifications are not clearly distinguished in many approaches,
where from one main specification all the transformations are inferred,
avoiding excessive user input. The analysis of different types of speci-
fications separately, though, proves to be helpful, as different types of
information have different specification requirements.

Most of the discussion in this chapter is biased towards warping trans-
formations, reflecting the importance given to it in the literature and the.
greater complexity of warping specifications. There are a few differences,
however, when warping transformations are being used to create morphs.
First of all, warping is a unary operation, i.e., it takes one object and
an specification as input producing one warped object as output; on the
other hand, the morphing transformation is a binary, operation. It takes
two objects and a specification and produces one morphed object.

In a plain warping transformation, the specification is totally arbitrary,
with practically no restrictions imposed on the user. Basically, there
is no such thing as a “natural” deformatiorn, which could be inferred
directly from the object; a user specification is an intrinsic necessity.

For morphing transformations, the two input objects can be seen as
an expression of what has to be done, as usually there is a natural
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association between features of the objects that must be matched in the
transformation. In fact, human beings can easily and instantaneously
associate features of two input objects if they are structurally similar.
This can be seen in figure 7.12, where there is an obvious correspondence
between the characteristics of the two images.

The morphing techniques, though, still do not take advantage of most
of the information that is present in the input objects, relying in the
specification of the transformation to generate the morph between the
objects. Ideally, just the two input eobjects would be enough to create
a “gtandard” transformation that maps one object into the other. One
such attempt, based on neural networks, is described in section- 9.5.
Another reasonable approach would be based on pattern recognition
techniques, but this is still an underexplored area.

Figure 7.12: Two structurally similar graphical objects.

7.4.1 Attribute Combination Specification

As we have already seen, the transformation of the shape of the objects
- is not sufficient to generate a complete transformation of two ebjects.
The attributes of the objects at each point of their domain also have
to be transformed so that a complete metamorphosis transformation is
accomplished. This corresponds to generating intermediate values for
the attributes for each step of the transformation. '

Take, for instance, the color attribute: a transformation between a
green object and a red object would show an object that gradually
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changes its color from green to red. The way the color of the interme-
diate object is computed is dependent on the scheme used to represent
the colors and on the intrinsic characteristics of colors. In this simple
example, suppose that each color is represented as a red, green, blue
vector; then, a linear interpolation of two colors produces RGB values
representing colors that lie perceptually between the two original colors.
Other, more complex attributes, may require more complex combination
transformations to result in values which are able to furnish reasonable
transitions between the two original inputs.

Global and Piecewise Transformations

An important tool that helps achieving particular effects is the speci-
fication of the rate of transformation in a piecewise and localized way.
This results in objects whose parts are transformed at different times.
In figure 7.13, from the morphing sequence shown in Figure 6.2, page
109, the change of the grayscale values of the woman’s face was done in
a localized way. Grayscale intensity of the face predominate over those
of the woman hair.

Figure 7.13: A local attribute transformation: face transformed before
hair.
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Naturally, as in the warping case, a transformation could be given
explicitly, through the use of a mathematical formula or a surface de-
scribing the function. A more practical interface is to allow the values of
the function to be specified at selected places, and let the computation
phase interpolate the values in between. Research in this direction has
appeared in the literature. The interested reader should consult (Lee
et al., 1994), (Lee et al., 1995a}, and (Lee et al., 1995b).

The specification of the sparse values of the function plays a very
important role, affecting the result of the morphing transformation and
the ease-of-use of the user interface. There are two ways to specify a
local attribute transformation:

e Independent of the warping — in this case, the function takes
an absolute position (z,y)} as parameter, and consequently the at-
tribute combination is dissociated from the underlying warping
transformation. The same results would be obtained if the two
transformations were used in a totally independent way.

e Dependent of the warping — the function takes as parameter a
warped position W(z,y), and thus the attribute combination trans-
formation accompanies the warping transformation, making the re-
sulting morph consistent and harmonious. Naturally, this is the
case more applicable to morphing.

In this way, the specification of a local attribute combination that will
be used for morphing must be done in conjunction with the warping
specification. In a feature based specification, for instance, the values
would be associated with each of the marked features, emphasizing the
idea that the specification will “move” as the features are transformed.
In a spline mesh specification, the local attribute combination values
would be associated to each control point of the mesh.

Note that what is specified at each node or feature is in fact a function
relating attribute combination amounts to time, so that the attribute
combination changes locally as time passes. The techniques for com-
bining the values, however, can be applied in the same way, as these
functions are all evaluated at a particular moment when generating a
frame of the animation.






Chapter '8

Computation of
Transformations

In the previous chapters, object manipulations were performed in the
continuous domain, an ideal setting that allows perfect, infinitely pre-
cise, transformations. However, the representation of continuous objects
presents several problems, specially in the intrinsically digital world of
finite memory computers.

Representing continuous objects is impractical, unless in some very
specific cases where the object is defined by some mathemtical equation.
Therefore, various schemes are employed to represent approximations of
continuous objects so as to be able to reconstruct them as precisely as
possible. The variety of object representations is the main factor that
affects the computation of transformations. This topic was discussed in
chapter 3.

This chapter starts by analyzing some of the problems that arise when
domain and range transformations are applied to digitally represented
objects. This is a prelude to a deeper, closer to implementation, anal-
ysis of the various techniques used to compute warping and morphing
transformations.

An attempt is made to isolate the idiosyncrasies of different object
representation techniques, and extract the essence of each technique.
This broader view enables those techniques to be applied to a more
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general class of graphical objects than initially imagined.

8.1 Representation of Graphical Objects

Fractical object transformations have to deal with objects that are
stored under schemes appropriated for computation. The specification,
representation and computation of domain and range transformations
involve various levels of manipulation of the data structures represent-
ing the object under transformation.

Transforming the object’s attributes can be easier or harder than
transforming its shape, depending on the representation type. More-
over, some of the techniques are unequivocally bound to a certain form
of representation, depending on some of its particularities to achieve the
desired results and efficiency.

Previous work on 210 morphing has concentrated on images and draw-
ings. For images, the range transformation, i.e., the alteration of the val-
ues of the pixels, is usually very simple, with no complications other than
relatively standard averaging involved (see (Wolberg, 1990) or (Costa,
1994)). When domain transformations are involved, however, several
complication arise related to sampling and reconstruction problems. For
this reason a wide variety of specification and implementation techniques
have been developed.

In image morphing, the warping technique usually determines the pos-
sible forms of specification, the efficiency of the computation, the type
of the user interface and even the techniques used for the range trans-
formation. Naturally, most work in image morphing has been directed
to warping techniques, and therefore this is the area from where other
forms of morphing have the most to learn. It will be shown that some of
the image morphing techniques can be successfully extended to handle
other forms of graphical objects and higher dimensional cases.

The same is true for techniques used to transform 3D objects. In fact,
the classification of techniques in terms of dimensionality seems to be
inappropriate, as the applicability of techniques is much more closely
related to the scheme of representation than to the dimension of the
object.
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8.2 Discrete Graphical Objects

A graphical object was defined in chapter 2 as a function f: U C R™ —
R™, where U is the shape, f is the attribute function, and R™ is the
attribute space. Representing such objects generally involves some form
of finite sampling. In the case of images, for instance, which are defined
in the continuous domain as f : U € B2 — C (C is a color space}, the
. usual representation is through the use of a set of samples of f ta.ken at
a finite number of locations p;.

f*={{pi,si)lsi = f(ps), ;s C U}

Note that both the domain and the range of the image are digitally
represented. The sample positions usually possess some form of struec-
turing that makes a consistent representation of the samples easier. A
natural structure is the matrix representation which uses a a rectangular
grid, aligned with the major axes of the domain of the image, in such a
way that a digital image can be described in a tabular form by a matrix
of sample values (see chapter 3.

Analogously, a digital animation is a representatlon of a continuous
animation through samples taken at a finite number of positions and
instants of time. Since an animation is a function f : R x U C R%2 —
C, the positions at which the samples are taken involve time as well.
Sampling an animation in time produces animation frames, each of which
is a digital image. Similar problems of structuring the samples occur
with animations, so that frames are usually—but not necessarily—taken
at regular time intervals.

Other forms of representation present similar situations, involving
samplings of the domain and range of the functions. As usual, regu-
larly structured samples are easier to work with, as the position of the
samples is not stored but inferred, and different objects can have their
sampling structure made compatible in a simpler fashion.

8.2.1 Sampling and Reconstruction

As seen in chapters 2 and 3, there are two main operations involved in
the use of digital and continuous objects: sampling and reconstruction.
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Their relationship is depicted in the diagram in Figure 8.1. Sampling
1s the process of transforming a continuous object into a digital object,
and reconstruction is the process of transforming a digital object into a
continuous object through some form of interpolation.

Reconstruction

Continuous Discrete
Objects Objects

Sampling

Figure 8.1: Sampling/Reconstruction relationship.

Most object transformations—specially the ones considered here—
would benefit from the use of continuous objects instead of discrete
ones, both in terms of quality and ease of implementation. Therefore,
for the best results, object transformations would be ideally computed
on the continuous objects of the mathematical universe. Since objects
are really stored as sampled digital objects, the conversion between the
two forms of representation is an integral part of the implementation of
object transformations. This relationship is more evident in the diagram
in figure 8.2, from (Wolberg, 1990). |

"The reconstruction process is essentially an interpolation process, and
thus any interpolation technique can be used. Ideal interpolations can be
derived from sampling theory, but other types of interpolation are more
feasible, natural and do produce good approximations of the original
signal in practice.

"The reconstruction and sampling processes are closely related and can-
not be treated separately, as a badly sampled object cannot be properly
reconstructed, as discussed with details in chapter 4. Intuitively, if a
complex image is sampled at a single position, there is no way to re-
construct the original image from the samples, as almost all information



8.3. INVERSE AND FORWARD METHODS 139

Tat et Y resampfing e f ey
i i

- original image ~final Image

§

.
f 3
3 H i

i
; !

reconstruction warp smoothing

Figure 8.2: Digital object transformation cycle: reconstruct, transform
and sample.

has been lost.

. On the other hand, if a single sample of a flat color image is taken,
the reconstruction of the original object is easy and precise. This trivial
image example indicates that the required sampling rate is dependent on
the nature of the object being sampled: more “detailed” objects require
a higher number of samples.

8.3 Inverse and Forward Methods

This section is based on the contents of chapter 7 from (Gomes and
Velho, 1995b). For additional material, the reader should also consult
(Wolberg, 1990).

When we have a transformation T: U — U’ , of the space, it is possible
to devise two different interpretations for it:

e T is considered as transforming points of the space U, taking each
point p, and moving it to a new position p' = T'(p) on the space;



140 _ CHAPTER 8. COMPUTATION OF TRANSFORMATIONS

e T can be considered as a change of coordinates of the space U.

To each point p = (z1,...,2,), T associates new coordinates’

Y = (y1,...,9a) = T(x1,...,3,). The coordinates of p in the
new system are defined by 77 (y1,...,9n).

Considering the above “dual” interpretations for a transformation,
results into two distinct ways to proceed for its computation: forward
and inverse methods.

For continuous objects, the choice of applying a forward or inverse
method is immaterial, as the mapping was done on a point-by-point
basis. For discrete objects, however, these two situations are significantly
distinct.

We will exemplify this using digital images. Of course, it generalizes
to matrix representations of graphical objects of different dimensions.
Some care must be taken, however, when applying this technique to
some other representation technique of a graphical objects.

8.3.1 Forward Method

Forward mapping processes points in the input with T, determining their
mapped position in the output. Since we are working with a discrete
object, mapping any set of regular point samples does not necessarily
cover all pixels in the output image, leaving holes in it.

On the other hand, since the output image is discretized, many point
samples may “overlap”, being mapped to the same output pixel. More-
over, the output pixels can be produced in any order, regardless of the
traversal of the input. In general, forward mapping may require exces-
sive computation in point sampling unimportant areas, and leave other
areas unsampled. Costly computations are required to properly and
evenly sample the input image. Taking the pixel geometry as an area
instead of a point avoids most of the problems just mentioned (see Fig-

ure 8.3). The mapped pixel p, can is approximated by a quadrilateral, -

which, after intersected with the regular output grid can be used to
determine the influences of p; in the output pixels.

In this technique, the values of the mapping on the regular grid of the
output image, are computed from its values at the unstructured grid

L4
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Figure 8.3: Forward mapping of an input pixel p;.

obtaining by transforming the regular grid of the input image. This is
illustrated by Figure 8.4.

(b}

Figure 8.4: Reconstruction of regular grid values from irregular one.

8.3.2 Inverse Methods

Inverse mapping works on the output image, transforming each point
with 77! to determine its originating position in the input image. The
coverage of the input image is analogous to that of the output image
in forward mapping point sampling, i.e., the input image may not be
fully covered, samples can overlap in the input and be produced in any
order, etc. In this case, however, overlaps in the input image indicate
important areas to be sampled with more accuracy, and holes indicate
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areas that do not affect significantly the output image. The output image
is sampled evenly, and in the order output pixels should be produced. In
spite of these properties, artifacts common to all sampling processes can
appear. It is not surprising that almost all implementations of digital
image transformations use inverse mapping. Naturally, by considering
pixels as approximating quadrilaterals the input image pixels influences
can be more precisely computed, as they would if a high number of point
samples were used (see Figure 8.5).

KTI\

d. 7 2

Input Image Output Image

Figure 8.5: Inverse mapping of an output pixel p,.

In this method, the values of the waping on the unstructured grid
obtained from the grid of the target image, by the inverse mapping 7!
are computed from the image values on the regular grid of the source
image. This is illustrated in Figure 8.6.

8.4 Multiple-pass Warping

A transformation T is separable if it can be expressed by a composition
of a finite number of transformations f;, ¢ = 1,...,n. That is,

T = frofn10..0fa0 f1.

The reader should not confuse the concept of separability above with
the similar concept used in image processing related to separable filter
kernels. There, the mapping composition operation is substituted by
the multiplication operation.
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Figure 8.6: Reconstruction of irrregular grid values from the regular one.

If each of the functions f; is simpler to compute than T, it may be
more efficient to implement T indirectly as a composition of these simpler
functions. A simple example of this fact is found in the implementation
of projective warps. A plane projective warp with two arbitrary vanish-
ing points can be computed by defining projective warps with vanishing
point over the coordinate axis. By combining these two classes of pro-
jective warps with arbitrary rotations of the plane, we are able to obtain
_projective warpings with arbitrary vanishing points. This is illustrated
by the sequence of images in Figure 8.7: from left to right, we have the
original image; a projective warp with vanishing point at the z-axis; a
rotation of 45 degrees in the clockwise direction; another projective Warp
with vanishing point at the y-axis.

The above example shows that a generic projective warp can be real-
ized as the composition of two simpler projective warps and a rotation.
This fact has a great influence both on the warping computation and the
user specification. It has been used by some popular image manipulation
and illustration programs.

When an n-dimensional graphical object is given by its matrix repre-
sentation, it seems natural to try a decomposition of a warping T of the
object into n simpler warps ' '

T =s570820...,08p, . (8.1}

where each s; affects only the i-coordinates of the graphical object shape.
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Figure 8.7: Projective warp by sucessive composition.

That is,
8i(Z1y e ey Tjye oy Tp) = (ml,...,sf(m,...,a:n),...,mn).

When this decomposition is possible, it simplifies the warping com-
putation a lot, since it reduces an n-dimensional warp to n sucessive
I-dimensional warps. In the literature the term separable is used only
when we have the decomposition in equation (8.1).

~ In the case of images, when the warping transformation A is separable,
it is possible to compute it by applying separately the horizontal

9(z,y) = (91(z, v}, ¥),

and vertical
f(&'?, y) = (3:1 f2($? y))

warps. Therefore, we have a two-pass warping. In brief, horizontal lines
are invariant by the horizontal warp, and vertical lines are invariante by
the vertical warp.

We will perform the computations to find the 1-dimensional warps f
and g from h. These computations were taken from (Gomes and Velho,
1995b). Suppose that & has coordinates b, and he, that is,

h(z,y) = (hi(z, ), ha(z, ). (8.2)
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We must find f and g in such a way that h = go f, f is a horizontal
warp, and g is a vertical warp. Since we have a two-step process, we
have 3 coordinate systems: the system (z,y) of the original image; the
system (w,v) obtained from (z,y) by the horizontal warp f; and the
sistem (7, s) obtained from the system (u,v) by the vertical warp g.
These three systems are illustrated in Figure 8.8.

Figure 8.8: Horizontal and vertical warps.

Therefore, we can write

(7'1 3) = h(:l:, y) = (h‘l(ma y): h2($3y)) (83)

Qur purpose is to determine the transformations f(z,y) and g(u,v).
Since f is a vertical warp, and g is a horizontal warp, we have

F(@,9) = (=, filz,9)), (8.4)

and ‘
g(u: v) = (g1(u, v),v). (8°5)

Therefore

(Ta 3) = g(u,v) = g(f(xiy)) = g(mf fl(ma y)) = (91(3/', fl(ﬂ,‘, y)): fl(wa(ys)é)

Comparing equations (8.6) and (8.3) we obtain

Ay =h(my), B X
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therefore f(z,y) = (z, ho(z,y))-
Now, we will compute g(u, v). We know that
g(u,v) = h(z,y) = (he(2, 9), ha(z,9). (8.8)

By comparing this equation with the equation (8.5), and using the fact
that © = «, we obtain '

gl(u: 1)) = hl(may) = hl(ua y)' (8‘9)

Therefore, we need to determine a function ¢ which relates the coordi-
nates y and (u,v), that is, y = p(u,v). We will have

gl(ua 'U) = hl(u:‘p(ua 'U)), (8'10)

that is, g(u,v) = (ha1(x, ¢(u, v)),v).

The existence of the function ¢ is granted if g is a 1-to-1 map. But we
should observe that even in this case, we face the problem of computing
¢, and in general this is not an easy task. We will give an example when
the warping A is a rotation of the plane.

8.4.1 Two-step Rotation

If the warping transformation 4 is a rotation of the plane by an angle 6,

we have
cosf —sinf - T
Wz, y) = ( sin¢  cos@ ) ( y ) (8.11)

" From this equation we obtain -
hi(z,y) = = cos@ — y sind, (8.12)

and
ha(z,y) =z sinf + y cosd (8.13)

Using the expression of hg(z,y) in the equation (8.12), along with
equation (8.7), we obtain

filz,y) =z sinf +y cosb, (8.14)
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and this determines the transformation f which accomplishes the verti-
“cal warp. ‘

Now we will proceed to obtain the ho:izontal warp.’ Using equation
1 (8.9) with the expression of hi(x,y), in equation (8.12), we obtain
- q{u,v) =ucosf —ysind. (8.15)

Now; we need to compute y as a function of the coordinates 4 and v
(that is, we need to compute the function ¢ which appears in equation
© (8.10)). We have

v="fi(z,y) ==z 511;9 + y cosf, | (8.16)
therefore - g
v — u sin : ,
y=—_ 5  %° cosf # 0. ; (8.17)

Substituting the value of ¥ from above, in equation (8.15), we obtain

the equation
—u sinf

g1(u,v) = u cosf — - ind, (8.18)

cos
which determines the horizontal warp of the decomposition. Note that
the horizontal warping is not defined for values & = k7 + /2. Moreover,
it is clear that when @ approaches one of these values, there is a greta
distortion of the horizontal warp. We conclude that in order to perform
a 87° rotation in an imagem it is advisable to make a 90° rotation,
followed by a rotation of 3° in the opposite direction.

Figlife 8.9, from (Wolberg, 1990), shows a 30° rotation of an image
obtained in two steps: a horizontal followed by a vertical warp.

The reader should notice that when we implement mulfiple-step warp-
ings. we might face problems with the intermediate one-dimensional
‘warpings. A fairly common case, known by the name of “botileneck
problem” in the literature, occurrs when one of the intermediate trans-
formations is not injective. In this case, some points collapse.

Additional material about multiple pass warp of images can be found
in (Wolberg, 1990). In particular, this reference describes some three
pass warping alternatives for images, which do not present the bottleneck
problem.
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Figure 8.9: Two-step image rotation.

8.5 Thé Blending Step

We have seen in chapter 5 that a morphing transformation is an at-
tribute combination preceded by warping transformations that align the
domain of definition of the graphical objects involved. For the attribute
combination—and the combined attributes—to make sense, the warped
objects must be coincident. Since an object is defined by a subset of
the space and an attribute function, this is equivalent to saying that the
two objects are defined over the same subset of the space, or that we
have one object with two attribute functions. These two attribute func-
tions are then combined resulting in a single object which is a transition
between the two original ones.

Thls ideal scenario is not easy to achieve in practical situations. Usu-
ally, it is not possible to obtain a perfect alignment of the objects with
two generic warping transformations, using warping techniques such as
the ones described later. This creates the need for specific techniques
that make the two domains compatible, performing a blendmg step that
generates a single object.

For certain types of object representation, such as boundary repre-
sented objects with differing discretizations, this is a specially signifi- .
cant problem. In the simple example in figure 8.10, it is shown that,
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two such objects may have incompatible combinatorial topologies, even
though the geometries are reasonably aligned. A blending step is neces-
sary to obtain a single object, basically reconstructing the warped input
objects from their sampled boundary, and resampling the reconstructed
boundary under a common sampling structure. In this case, the simplest
blending step would be just picking up one of the objects, assuming the
geometry output from the warps is close enough.

=0
Wy =1

> blend

warp
Ry

Figure 8.10: Blending in a morphing between two B-Rep objects.

In general, blendings produce small alterations in the shape of the ob-
jects, requiring them to be relatively similar. More advanced techniques
may even eliminate the need of a warping phase in some circumstances,
transforming moderately differing objects in one step with excellent re-
sults (Sederberg and Greenwood, 1992), but a warping phase will always
lelp to achieve specific results by giving additional user control.

These advanced techniques are frequently automatic, guided by some
form of heuristics, since transformations are an inherently ambiguous
problem: a blending between two objects is a multiple solution problem
, with no single “correct” answer; the choice of the best solution depends
on the application. Sometimes, it reduces to a perceptual problem,
and user interaction is required to indicate the better alternative for a
particular result. Attempts to define a metric of the quality of a blending
allow an arguably best solution to be picked up by an optimization
algorithm, as shown in description of the physically based blending in
section 10.3.






Chapter 9
Warping Techniques

Given a certain specification, there are various choices in implementing
the transformation, not only in selecting the type of reconstruction, but
also in deciding how the object data will be warped. Some of the algo-
rithms and forms of specification are intrinsically associated, although
different combinations are possible, and in fact, can originate improved
warping techniques. In this section, various algorithms which appeared
in earlier work will be discussed, and in particular a technique merging
previously dissociated specification and algorithms.

9.1 Triangle Mesh

In this algorithm, the deformation is described by two triangular meshes,
one defines the undeformed coordinate system, and the other defines a
deformation of that system (see Figure 9.1). The two meshes must have
the same combinatorial structure, so that the correspondence between
pairs of triangles is well defined.

Tn general, when using a triangle mesh warping, we know the warp-
ing transformation w at the vertices of the triangulation, and we must
extend it to a transformation W defined on the whole domain. This
reconstruction process is attained by extending the transformation to
the edges and the interior of each triangle imposing some smoothness at
the common edges of neighbor triangles.
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fa) {b)

Figure 9.1: Triangle mesh deformation: (a) original; (b) deformed.

A simple way to obtain a continuous extension is possible by the use
of barycentric coordinates (see (Birkhoff and Maclane, 1960}). Consider
a a triangle A with vertices po, p1 and ps. For each p € A there exists
real numbers Ag, A1, and Ag, with A; > 0 and g+ Ay 4 Ao = 1, such that

2= Aopo + A1p1 + Aepa.

Therefore, we define

W (p) = Aow(po) + Arw(p1) + Aow(py).

This is very effective, and easy to implement, but the resulting warping
does not have good smoothness properties.

In fact the method of barycentric coordinates constructs a piecewise
linear map, which is linear inside each triangle but has just C? continuity
at common edges. Therefore, the appearance of some artifacts during
the warping will be unavoidable. This is illustrated in Figure 9.2.

Practical tests have shown that the artifacts are more noticeable when
the mesh has very irregular triangles. Besides using a “regular” triangu-
lation, a more expensive solution consists in the use of a higher degree
interpolating function which has at least C? continuous at the common
edges.

The triangle meshes used as input to this algorithm can be specified
in various ways. The crudest form is to directly construct both triangle
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Figure 9.2: Discontinuity of barycentric coordinates mapping.

meshes, ensuring their cross consistency. Obviously this is a tedious
and error prone work, and the required data structures are inconvenient
to maintain. A much better alternative is to use a form of feature
specification, where the features are marked as points or line segments,
and apply an automatic triangulation algorithm to construct the mesh.
An automatic triangulation that produces regular triangles, such as a
Delaunay triangulation (Preparata and Shamos, 1985), which maximizes
the smallest of the internal angles of each triangle, is a natural choice.
A triangulation with restrictions can be used if line segments are also
used as features.

This algorithm has been used to deform digital images by scan con-
verting (Foley et al., 1990} each triangle in the deformed state, and
applying an inverse mapping to each of the pixels thus obtained to de-
termine the originating area. Obviously, since it defines a coordinate
system mapping independently of the object representation, this algo-
rithm is applicable to other forms of representation. For instance, draw-
ings can be easily transformed by mapping just their vertices accordirg
to the global mapping described by the meshes. We should observe that
mapping just the vertices is incorrect if the edges are not invariant under
this particular change of coordinates, although the results are perfectly
acceptable, and even attenuate discontinuities for barycentric triangle
mappings.

Special care must be taken with automatically generated meshes to
handle a problem that could be avoided in the manual construction of
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the meshes: the foldover, where the mesh “folds” upon itself. As the
association of the features in the source and destination sets is arbitrary,
the mesh in the source corresponding to the automatic triangulation in
the destination is not necessarily a valid partition (see Figure 9.3). The
net effect is that the mapping relation will not be one-to- one any more:
it may not be an injective function, or it may not be a function at all.
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Figure 9.3: Triangle mesh foldover: (a) source; (b) destination.

9.1.1 3D Triangle Mesh Warping

This 2D triangle mesh technique can be naturally extended to 3D, and
even to dimension =, using simplexes (see (Birkhoff and Maclane, 1960)):
a mesh of tetrahedrons is given in two different states, one deﬁning a
coordinate system and the other a deformation of it. For correspond-
ing tetrahedrons, interior points can be easily mapped using barycen-
tric coordinates. In this form, this algorithm is suitable for any object
representation. In particular, for voxel based volumetric objects, a 3D
rasterization of the interior of the tetrahedrons is required.

Describing the deformation directly with the tetrahedron mesh is not -
viable unless it is obtained algorithmically somehow. Just like the 2D
case, an automatic triangulation of points used to indicate features is a
feasible and easy to use alternative, and an automatic triangulation can
be used to generate the meshes. A regular triangulation, such as a 3D
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Delaunay triangulation, will minimize the edge and face discontinuities
introduced by the linear mapping inside each tetrahedron.

9.2 Free-form Warpings

This is a generic technique for computing a warping specification by the
use of free-form coordinate systems. By changing the control parameters
of the free-form coordinate curves, we obtain a change of coordinates
which performs the desired warping.

9.2.1 Two-pass Spline Mesh

This algorithm was developed specifically for use with digital images. It
takes advantage of the matrix representation of images. Instead of trans-
forming an image directly, an intermediate image is created, which is
further deformed to achieve the final result. This corresponds to a com-
position of two simpler transformations—one containing just the hori-
zontal displacements and the other just the vertical-—that is equivalent
to the desired deformation. Purely horizontal or vertical deformations
are much easier to implement for digital images, specially in avoiding
sampling and reconstruction problems. Such decomposable transforma-
tions were introduced in section 8.4.

(&)

~ Figure 9.4: Spline meshes.

The two-pass spline mesh warping uses as input two regular spline
meshes, such as those in Figure 9.4, restricted to have rectilinear splines
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at the edges of the image, and non-crossing splines elsewhere. Once
again, the first mesh defines the undeformed coordinate system and the
other describes the deformation of that system.

The two passes are analogous, and can be performed in any order.
In the horizontal pass, each horizontal scanline is intercepted with the
vertical splines in the undeformed and deformed states, as depicted in
Figure 9.5(a). The deformed state is determined in this pass by con-
sidering just the horizontal displacements. These interceptions are then
interpolated to obtain the scanline mapping function, as shown in Fig-
ure 9.5(b), by placing interceptions with the deformed splines in one axis
and interceptions with undeformed splines in the other. This mapping
function relates all points of the scanline in the undeformed coordinate
system to their deformed state. This process is repeated for each scanline
to obtain a horizontally deformed image.

+

0 O

oo

LI LT EITIIIL] S,

Figure 9.5: Scanline warping: (a) interception; (b) mapping function.

An example can be seen in figure 9.6. The input image on the top left
is deformed according to the mesh shown. First, just the horizontal dis-
placements are considered to produce the intermediate image on the top
' right. Then, this horizontally warped image is used in the second pass,
where the vertical displacements are considered, yielding the completely
deformed image on the bottom right.

Although this technique proves to be quite versatile and efficient, the
fact that it is based on a mesh specification requires the user to enter
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Figure 9.6: Horizontal and vertical passes, with intermediate image.

too much information while defining the deformation. This is specially
true in less important areas of the domain, where a precise control is not
needed and some kind of automatic process could be used, as discussed
previously.

The spline meshes may be directly created and modified, or indirectly
obtained in an attempt to reduce unnecessary user input. It is easy
to see that, despite its efficiency for digital images, the two-pass spline
mesh warping technique is of limited use for other representations. It is
possible to use spline meshes to define coordinate systems and deform
drawings, for instance, but the two-pass approach is useless in such cases.

This section was strongly based on (Wolberg, 1990), where the reader
can find a very detailed description of the algorithm of two-pass spline
mesh warping.
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9.2.2 3D Three-Pass Spline Mesh Warping

The original 2D algorithm is applicable to digital images; its extension is
correspondingly applicable to voxel based volumetric models. It is useful
not only for morphing of volumetric data, but also as a tool for modeling
volumetric objects through deformation, according to the “lump of clay”
modeling paradigm (Sederberg and Parry, 1986). A major advantage of
volumetric models is that there is no special treatment given to objects
with different topologies, and therefore, the topology of an object can
easily change during the transformation.

The 3D algorithm, three-pass spline surface mesh warping, performs
three passes on the volumetric data, each of them computing the defor-
mation in just one direction. The composition of these passes results
in a complete deformation of the object, as shown in the pipeline in
Figure 9.7. This effectively reduces the problem of warping the 3D solid
to that of warping several 1D voxel strips, or scanlines. The passes of
the algorithm are performed sequentially, but the deformation of each
scanline in each pass is independent of the other scanlines, and therefore
is suitable for parallelization, as is the 2D algorithm.

Input y| Warping inthe |y} Warping in the | o f Warping inthe | Fully Warped
Object x direction ™1 ydirection 71 Zzdirection Output Object

Figure 9.7: Three-pass warping pipeline.

Each pass of the algorithm performs the deformation in the direction
of one of the Cartesian axis z, y or z. A mesh is composed of a lattice of
control points Cj;x, with m points in the z direction, n in the y direction
and g in the z direction, totaling mnp control points, in such a way that
each control point can be easily referred to by integer indices. The pass
for the x axis is as follows, and the others are performed analogously:

¢ An intermediate mesh I is created by considering just the displace-
ments of the control points in the z direction from the original mesh
S to the deformed mesh D. In this way, the control points of I will
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have the same y and 2z coordinates of the corresponding point in §
and the x coordinate of the corresponding point in D.

e A spline surface S; is fitted to each set of control points of with a
constant 7 index, resulting in surfaces that are roughly perpendic-
ular to the direction. An identical process is performed to obtain
‘the I; spline surfaces passing through the control points of 1.

e Each voxel strip in the z direction is intercepted with the S; and I;
surfaces, resulting in two sets of collinear interceptions.

¢ For each voxel strip, the interceptions with S; and I; are fitted with a

 spline curve, resulting in a scanline mapping function which is used

to map voxels in the source object to their z-direction deformed
positions.

The minimization of sampling and reconstruction problems is now a
simpler one-dimensional problem, that is performed on a scanline basis.
This simplification helps making this algorithm a very efficient procedure
to warp volumetric data with good quality results. '

An implementation of this algorithm (Darsa and Costa, 1995) has been
used to produce the results in figure 9.8. In this case, the specification
of the warping was not done directly with 3D meshes, as will be shown
in section 9.4, but the computation of the warping was done in three
passes using spline meshes just as described -above. These images were
rendered with the Volvis system (Avila et al., 1994).

In the 2D case, the specification of the warping using such partition
based techniques was a difficult work, which is worse in three dimen-
sions. The use of alternative specifications, such as the one discussed in .
section 9.4, is a much better option. It has the advantage of an easier
interface and an efficient, viable for parallelization, implementation for
warping volumetric data.

9.2.3 Bezier Warping

In this technique, proposed in (Sederberg and Parry, 1986), objects are
enclosed by a bounding parallelepiped which is split by a regular lattice
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Figure 9.8: Volumetric lobster, warped to raise its claws.

of control points. By altering the position of these control points, a
deformed coordinate system is defined, as shown in Figure 9.9.

;I

|
AT
/

Figure 9.9: Free-form deformation coordinate system: (a) relaxed; (b)
deformed.

The mapping from the relaxed system to the deformed one is rela-
tively simple: each point X is decomposed in three coordinates (s, t,u)
by projecting it onto the three axis of the parallelepiped, and the de-
formed point X' is obtained by transforming (s,%,u) with a Bernstein
polynomial where the coeflicients are the deformed control points. This
effectively defines a map W : % — R®, which is a warp of the three-
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dimensional Euclidean space as described in chapter 5.

For morphing applications, however, there would be no relaxed system,
but two systems following the features of the underlying objects, as
shown in the example in Figure 9.10(a). The mapping must be done
from a deformed coordinate system to another deformed system, and
this can be done with an intermediate step in a relaxed system, shown
in Figure 9.10(b).

{a) m

Figure 9.10: Free-form morphing: (a) direct; (b) with an intermediate
step.

The polynomial transformation from the relaxed system T to the fi-
nal system F is the same as described above, but the map from the
initial system I to the intermediate system T requires the inversion of
the Bernstein polynomial. This inversion involves finding the roots of a
trivariate polynomial with a high degree, which increases with the num-
ber of control points in the lattice. The interested reader should consult
(Nishita, Fujii and Nakamae, 1993).

Since this technique defines in fact a deformation of the ambient space,
it can be easily applied to various different object representations. Also,
the modifications required to apply this technique to 2D are minimal:
a bivariate Bernstein polynomial is used instead, with two-dimensional
control points. It is clear that this deformation technique is very sim-
ilar to the spline mesh deformation described in the previous chapter,
but using Bézier curves instead—other polynomial bases generate corre-
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sponding results. The main difference is that the two-pass spline mesh
warping algorithm was described specifically for digital images, while
this technique simply establishes a deformation of the domain of the
objects, with no reliance on a particular form of object representation.

9.3 Field Based Warping

This technique is used in general connected with the field based warping -
specification studied in chapter 7.

9.3.1 2D Field Based

Thls is the case when the technique is used for graphical objects which
are embedded into the 2-:dimensional euclidean plane. Therefore, ii is
quite suitable as a technique for image warping. It was in this context
which it first appeared in (Beier and Neely, 1992). It was implemented
for the production environment of Pacific Data Images.

The warping mapping is specified among features, and the technique
extends the mapping to the whole object shape, by defining “influence
fields” around each of the features of the image to be warped. As we
discussed on the chapter about warping specification, chapter 7, the fea-
tures are marked with pairs of oriented line segments (vectors) of which
one indicates the original undeformed state and the other the deforma-
tion of that feature. Each feature has its own field of influence, defined as
shown in Figure 9.11. The v coordinate is the distance perpendicular to

-the feature, while v is the distance along the feature. Note that u is nor-

malized according to the segment length but v is an absolute distance,
so that by stretching the vector in a direction, the neighborhood of that -
feature is also stretched along that direction, but not perpendicularly
to it. It is possible to define u and v differently, but Beier and Neely
conducted experiments that indicated the convenience of such definition
in terms of user interface.

Fach feature pair therefore defines a change of coordinates for the en-
‘tire domain, and these conflicting transformations must be combined in
a smooth way to produce a global change of coordinates. This combi-
nation is defined for each point as a weighted average of the positions of
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Figure 9.11: Feature defined coordinate system.

this point if mapped according to each feature, as shown in Figure 9.12.
The point P is mapped by Fi — F} to P| and by Fy — Fj to Pj; the
final mapped point P’ is a weighted average of P| and Pj.

The weight of each feature is inversely proportional to the distance of
the point to that feature, being defined as

‘ P\
weight = (a-{-d) .

In the equation, { is the length of a feature, d is the distance from the
point to that feature, and a, b and p are constants used to adjust the
average. The constant a can be seen as the adherence of the feature: for
values close to zero, points close to the feature will be mapped exactly as
the feature determines; for greater values, points are more loose and free
to move even if they are over the feature. The importance of the length
of the feature is controlled by p: if it is zero, the length is ignored;
otherwise, longer features are more important. The interpretation of
b can be seen as the concentration of strength of the feature: large
values make the strength of the feature large near the feature and small
away from it, with a very quick decrease; small values make this decay
slower, reducing the locality of the feature. Note that different values
of constants can be associated to each feature, although it may be more
convenient to use a global value of b.
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Figure 9.12: Combination of multiple changes of coordinates: (a) origi-
nal; (b) deformed.

Note that, since the mapping of each point depends on all line seg-
ments, the addition of a single line influences the whole deformation, at
least in theory. A careful choice of the constants can restrict the field
of influence of lines, thus practically making the transformation local.
Also, the weight calculation that must be repeated for each point, rela-
tive to each one of the lines, is quite expensive. As the interpolation is
mostly automatic, sometimes the algorithm generates unpredictable re-
sults which can be avoided by tricky manipulations of the line segments,
On the other hand, since this algorithm is executed in one single pass,
there is no bottleneck problem.

"This definition of the coordinate mapping, based on fields of influence
around main features of the image, does not depend in any way on the
structure or particularities of digital images. It is simply a clever and
parameterized form of combination of different transformations, result-
ing in a global change of coordinates that can be easily used to transform
objects in any representation.

9.3.2 3D Field Based

The extension of the field based 2D warping technique to compute warp-
ings of graphical objects which are embedded in the 3-dimensional eu-
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clidean space is is relatively straightforward. This was done in (Darsa,
1994). Another work on the same direction is described .in (Lerios,
Garfinkle and Levoy, 1995). The technique is suited to compute warps of
2-dimensional graphical object in 3-space, such as polyhedral surfaces,
or to obtain deformations of solids, defined, for instance, as volumetric
arrays.

We will describe below the technique introduced in (Darsa, 1994).
The basic difference between this technique and the one described in
(Lerios, Garfinkle and Levoy, 1995), is that the latter uses features of
different dimensions, while fhe former uses 1-dimensional skeletons for
feature specification.

As in the two-dimensional case, important features of the object are
marked with oriented line segments, and a different position of each
segment defines a deformation of the characteristic. In 3D space, there
is an additional degree of freedom which results in an additional segment
in the feature defined coordinate system, as shown in Figure 9.13.

Figure 9.13: 3D feature defined coordinate system.

The two vectors shown in bold, user specified and constrained to be
perpendicular, form an abstraction of a bone. A set of such bones, which
mark all the relevant features in an object, is called an skeleton. To
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obtain a Cartesian coordinate system, an additional axis is obtained from
the cross product between the two vectors in a bone. Each point can
then be projected onto each of these axes to determine its coordinates in
this system. The u coordinate is normalized according to the segment
length, while v and ¢ are absolute distances.

The global change of coordinates defined by the two skeletons is ob-
tained from a combination of the individual changes of coordinates de-
fined by each pair of bones. The combination is a weighted average of
the mappings of a point according to each pair of bones, just like the
scheme used in the 2D case. The weight of each bone is computed as

P \°
weight = (a—i—d) .

The interpretation of the constants a, b and p is identical to that in the
2D case. The resulting technique is expressive and provides user con-
trol over the transformation, through the manipulation of the features
and the subtle adjustment of the constants. There are several ways to
improve the control and locality of this form of mapping, as shown by
(Litwinowicz and Williams, 1994) and (Arad and Reisfeld, 1995).

Figure 9.14 shows a skeleton composed of 3D features, used to deform
the lobster. The results of this deformation can be seen in figure 9.8.
Note that the field based warping was used to deform just a spline mesh
that envolved the lobster, as described in the next section. Equivalent
results were obtained from a direct application of this mapping.

Since this technique simply defines a coordinate mapping, it is inde-
pendent of the object representation. For B-Rep and implicit volumetric
objects; for instance, its application is easy and straightforward. For
discrete volumetric objects, on the other hand, besides the required re-
sampling, this is a computationally expensive technique, since it must
be applied at least to each voxel.

9.4 Field Controlled Spline Mesh Warping

This is a technique that combines the efficiency of the two pass spline
mesh algorithm with the ease of use of feature based specification {Costa,
Darsa and Gomes, 1992). After specifying the features of the image with
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Figure 9.14: Skeleton used to warp a lobster.

oriented line segments, the algorithm uses these features as constraints
to deform a relaxed spline mesh— that can be seen as a lower resolu-
tion image—which is subsequently used as input to the two-pass spline
mesh warping algorithm, or the three-pass algorithm for volumetric data.
More precisely, the spline control points are moved according to the field
of influence—described in the previous algorithm—of each feature.

*An example is shown in figure 9.15. The undeformed image is shown
in (a), with the features shown as dark lines in the original state, and
as lighter lines in the deformed state. Figure 9.15(b) shows the features
superimposed on the deformed spline mesh, with the final deformed
image shown in (c).

A disadvantage of this approach is that many of the problerns of both
algorithms are still present, namely bottleneck and foldover. However,
the unpredictable effects of field warping can be detected beforehand, by
inspecting the automatically deformed mesh for any apparent folding.
Also, it is possible to control the precision of this approximation by
increasing the mesh resolution globally and concentrating control points :
in the interesting areas.
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Figure 9.15: Field/mesh warping: (a) features; (b} mesh warped by
features; (c¢) image warped by mesh.

9.5 Example Based Synthesis

Of the image warping techniques described here, this is the only one
that fits in the automatic specification category. It is based in an anal-
ysis/synthesis paradigm, where example images are fed into a neural
network that “learns” their meaning, and associates them to a set of
user defined parameters (Beymer, Shashua and Poggio, 1993). The cor-
respondence between images is determined by a regularization network
from the optical flow of the images. Afterwards, given any particular
value for the set of parameters, the authors claim that the network is
able to automatically synthesize an image that is an appropriate com-
bination of the many input images.

An interesting point is that the parameters are completely user spec-
ified, in the sense that there is no specific meaning associated to them
by the algorithm besides the image that is used as an example of a par-
ticular parameter value. Suppose the user provides an image of what
he/she considers to be a sad expression nd associates it to a parameter
value of 0, and similarly a “happy” expression which is associated to 1.
The desired semantics is therefore that a parameter of 0.5 should result
in a relaxed expression. Although this is an interesting paradigm, and
some examples are presented, it still remains to be seen whether this
type of automatic interpolation based on Al techniques is sufficiently
predictable and reliable.



Chapter 10

Blending Techniques

In the previous chapters, and specially in chapter 6, about morphing of
graphical objects, we have already discussed the importance of blend-
ing techniques when defining a metamorphosis transformation between
graphical objects. In this chapter we will discuss some of the most com-
mon blending techniques.

10.1 Linear Interpolation

When two graphical objects are embedded into some euclidean space R,
it is possible to obtain a blend of them by taking linear interpolation
between the points of each object. The linear blending of two points P
and @ in R™ is defined by the equation

(1—t)P+Q = P +(Q — P).

The reader should notive in particular, that when we have two func-
tions f,g: U — R™?, which take values in R”, their values can linearly
interpolated, originating another function h: U — R,

h(P)+ = (1 — ) f(P) + tg(P).

This is very useful when we need to blend object attributes. When the
functions f and ¢ represent images, this linear interpolation is classicaly
called cross-dissolve.
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Linear interpolation is a very common blending technique for trian-
gular polyhedral objects. In this case, we just have to interpolate the
corresponding vertices of their combinatorial structure, since the geom-
etry of each piece is invariant by the interpolation process.

Consider, for example, two drawings with the same combinatorial
structures, and assuming that the intermediate steps will also have these
same structures, a blending of their shapes is trivial. Given a reference
vertex in each of the drawings, the remaining vertices are sequentially’
associated, and a linear interpolation is performed between each of these
vertex pairs. The choice of the reference vertices is an important factor in
producing good results, as shown by the two possibilities in Figure 10.1.

Figure 10.1: Two possible reference vertex associations and the respec-
tive blendings.

Naturally, the usual case is to have two input drawings with differing
combinatorial structures, and in this case, to create a linear blend, it is
necessary to make the structures compatible by inserting new vertices in
both structures. As pointed out in (Sederberg and Greenwood, 1992),
the main task in 2D shape blending is that of adding such vertices so
that the resulting sequential vertex correspondence produces the desired
blend. Various heuristics are possible, including a direct homogeneous
distribution of vertices proportionally to the number, of vertices, used by
popular commercial drawing packages {Corel, 1994) or to the perimeter
of the outlines.
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10.2  Merge of Combinatorial Structures

This technique, developed for use with B-Rep objects, is based on the
compatibilization of the structure of combinatorially different objects
(Kent, Carlson and Parent, 1992). The idea is to alter the two objects,
resulting in two new objects that have exactly the same number and
adjacencies of vertices, edges and faces. Once this correspondence is
established, the interpolation beftween the two new objects is straight-
forward, requiring just the interpolation of geometry between pairs of
corresponding vertices. Note that the two input objects must be topo-
logically equivalent and of genus 0, i.e. with no passages through them.

The correspondence algorithm consists in projecting the structure of
both models onto the same sphere. Next, the two structures are merged
by clipping the projected faces of one model to the projected faces of the
other. The merged structure is then mapped onto the surface of both
original models. This generates two new models, that have exactly the
same shape as the original two models, but that share a common combi-
natorial structure. These new objects will usually have several coplanar
faces. Note that the way the projection is done is fundamental for the
success of this technique and can significantly influence the results.

This technique alone, as described in (Kent, Carlson and Parent,
1992}, simply attempts to make the structures compatible, with no in-
tent of mapping parts of one object into similar parts of the other. This
is useful for objects that do not have such similar parts, or if the similar
parts are geometrically aligned beforehand by a warping phase. In fact,
the combination of this blending technique with a warping step results
in an efficient and viable technique for morphing B-Rep objects.

This technique can be naturally extended to 2D approximate bound-
ary models, or drawings. The 2D polygonal shapes are projected onto
a circle, the two structures are merged and subsequently mapped back
onto the original shapes. This results in two objects with equivalent
structures, but maintaining the geometry of the originals. A 2D ex-
ample, that is also helpful in understanding the 3D case, is shown in
Figure 10.2. This technique is compared with other 2D shape blending
methods in the next section.
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Figure 10.2: A merge of two combinatorial structures: (a) projection;
(b) merge; (¢) interpolation.

10.3 Physically Based Blending

This technique is in fact an elaborate heuristic that selects the positions
for inserting vertices so that the resulting vertex correspondence pro-
duces a blend that minimizes work, according to an appropriate energy
model (Sederberg and Greenwood, 1992). The 2D polygonal drawings
are considered to be constructed of an ideal metal wire, so that the work
for bending and stretching this wire can be computed. The best blend is
considered to be the one which requires the minimum work to transform
one shape into another, by bending and stretching the wire.

Given this work metric, the problem is now that of optimizing the
positions of the inserted points so that a minimum work is executed.
Obviously, this problem as posed is of a high complexity, but the re-
striction to insert new vertices only at the position of existing vertices,
proposed in (Sederberg and Greenwood, 1992), reduces the complexity
of the problem to @(mn), where m and n are the number of vertices of
each drawing.

An interesting consequence of the minimization of work performed is
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that matching features in the two drawings tend to be automatically
associated. If there is a feature of one object that matches a feature
of the other object, and these features are positioned relatively close,
the transformation of one feature into the other requires a very small
amount of work. In particular, features that do not move do not re-
quire any work to be transformed, and therefore do not move during
the blending. This is shown in the example in Figure 10.3, where the
feet remain static, while the rest is transformed. For features that are
relatively distant, however, the algorithm fends to confuse characteris-
tics, producing unnatural results. In this case, a warping phase would
be extremely favorable, by bringing the matching features to a closer
position.
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Figure 10.3: (a) Physically based blending; (b) Commercial Software
(Sederberg and Greenwood, 1992).

Note that, although the metric proposed by Sederberg and Greenwood
can give excellent results, the fact that work is a signed quantity, that
can be canceled during the transformation, may lead to peculiar glob-
ally optimal solutions. Consider, for example, the top transformation
in Figure 10.4, where rotation, shrinking and stretching are performed
and, paradoxically, no work is done. With this metric, this transforma-
tion is obviously optimal, since it performs the blending with the least
work possible. This is due to the cancellation of the shrinking with the
stretching, and the rotational work that is not considered in the metric.
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{@

Figure 10.4: Comparison of 2D shape blendmgs (a} physically based;
(b) structure merging,.

The search for better metrics is an important goal in physically based
blending, since the technique for the solution of the optimization prob-
lem remains unchanged. Among the possible improvements of this
heuristic, are the consideration of the total sum of the absolute amount
of work required, the peak of work performed- during the transformation
and the total rotational work.

"This technique is obviously directed to objects represented with polyg-
onal boundaries, although an extension to deal with digital images is
conceivable. This can be accomplished by first obtaining a boundary
description of the regions of the underlying image, either directly user
specified or through the use of an edge detection algorithm. These out-
lines are then transformed performing the least work possible. What
remains is the choice of an appropriate mapping for the inside region of
the outlines.

The 2D merging of combinatorial structures is in fact a technique with
essentially the same approach as the 2D physically based blending: the
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alm is to choose where new vertices should be added to each object
so that the structures are equivalent and a linear blend produces good
results. Of course, the physically based blending is a much more so-
phisticated method, with excellent results that include the matching of
corresponding features if their geometries are relatively similar.

The 2D merging technique, on the other hand, does not manage to
match the features, producing good results only if the input objects do
not have a natural feature correspondence, as the examples given in
{Kent, Carlson and Parent, 1992) and in Figure 10.4.

For morphing applications, feature matching is an essential percep-
tual goal, making physically based blending a much more advantageous
alternative, although a warping step can minimize the importance of
feature matching in blending.

10.4 TImplicit Objects Blending

Blending operations are very well suited for implicitly defined objects,
producing a third implicit object that is a smooth transition between
two intersecting surfaces. The study of the blending functions used to
combine the characteristic functions describing the objects is a relevant
area of research (Rockwood and Owen, 1987). A blending function is a
function B(f1, f2, ..., fn) that takes two or more characteristic functions
as parameters and is itself described implicitly.

For application in morphing, two forms of blending are specially use-’
ful: ezponential (Blinn, 1982) and super-elliptic (Rockwood, 1989). The
exponetial blend produces excellent results when the characteristic func--
tions are algebraic, and is described, for two inputs, by a one-parameter
family of functions

By(z,y) = —log{(1 - t)e™ + te” V]

The blended object is described by a characteristic function that is
obtained simply by the composition of B with f and g, i.e., B(f,g)-

Similarly, the super-elliptic blend, for two implicit objects f and g, is
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given by the function
1
B(f,9) =1 - ((max{0,1 - a1 f})° + (max{0, 1 - azg})#)7.

The parameters & and 3 are used to change the shape of the blend:
a; bias the blend towards the primitive i, and B controls the overall
tightness of the blend.

A general principle is that the shapes of the input objects—given by
the zero level surface of implicit point classification functions—should be
blended so that the result is a function where the zero level surface is a
smooth transition between the zero level surfaces of the input functions,
regardless of the particular function values. Figure 10.5 makes this dis-
tinction more clear, showing different blends of two functions that could
be interpreted as point classification functions.

)= S EHO

i f_z(X) SHi(x)

gz(x) — _ln(e—ﬁ (x) +e-fg(x))

Figure 10.5: Different blendings between two parabolas.

We should remark that while the exponential blend results in a nat-
ural smooth combination of the level surfaces of the two parabolas, the
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average blend generates a function with a null zero level surface. This
result clearly shows that the suitability of a blending technique depends
on the interpretation of the blended data.

10.5 Frequency Domain Blending

This general technique consists applying some fransform T' to obtain
a frequency domain description of the graphical object, perform the
blending between the objects in the frequency domain, and reconstruct
the blended object using the inverse transform 7",

10.5.1 Scheduled Fourier Volume Blending

Two implicit objects, described by point membership classification func-
tions, can be easily combined into a new implicit object given by an
average of the two input functions. Such simple combination is a form
of linear blending, with results that are generally neot suitable for good
quality combination of solids.

An interesting alternative is the blending of the objects in the fre-
quency rather than the spatial domain (Hughes, 1992). This is easily
accomplished by applying a Fourier transform to the objects, combining
their transformed versions with a linear blend, and then bringing them
back to the spatial domain with an inverse Fourier transform.

Once in the frequency domain, it is possible to extract more easily’
other forms of information on the shape of the objects. High frequency
components are responsible for small details on the object surface, while
low frequencies describe the overall shape of the object. In this way, a
scheduled transformation, where the different frequency bands are trans-
formed at different rates, would result in a better transformation: the
higher frequencies of the source object are gradually removed, then the
low frequencies are interpolated, and finally the high frequencies of the
destination object are introduced.

Note that this technique can be easily used on sampled volumetric
data with a Fast Fourier Transform, and its use with implicitly defined
objects is also possible. However, there is a very restricted control over
the transformation in the form of a schedule specification, which is not
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sufficient to yield suitable quality results.

10.5.2 Wavelet Volume Blending

Other approaches in the frequency domain are possible. The use of
wavelets is the most noticeable improvement in this area (He, Wang and
Kaufman, 1994). Volumetrically represented objects are decomposed
into sets of frequency bands, which are then smoothly interpolated. The
reconstruction of the interpolated bands yields the final morphed object.
Figure 10.6, from (He, Wang and Kaufman, 1994), shows a morphing
sequence created by this algorithm.

Figure 10.6: Volumetric wavelet morphing.

The main advantage of this approach is that wavelets possess good
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localization properties on the frequency-scale space. Also, the decom-
position and reconstruction processes in this case can be performed in
a multiresolution form, which allows the control of the level of high
frequency distortion. '
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