Co oqwolq.

Brasileiro de Matematica

INTRODUCTION TO METHODS OF
PARALLEL OPTIMIZATION

Yair Censor
Stavros Zenios

YAIR CENSOR (Univ. of Haifa, Israel)
STRAVOS A. 7ZENIOS (univ. of Pennsylvania, USA)

COPYRIGHT @ by Yair Censor e Stravos A. Zenios

Nenhuma parte deste livro pode ser reproduzida,

por qualquer processo, sem a permissao dos autores.

ISBN
85-244-0074-9

Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico

INSTITUTO DE MATEMATICA PURA E APLICADA
Estrada Dona Castorina, 110 - J. Boténico
CEP: 22460.320 - Rio de Janeiro-RJ

To Erga, Aviv, Nitzan and Keren —-- Y.C.

To Christiana, Efy and Elena --- S.4.Z.

Preface

Problems of mathematical optimization are encountered in many diverse
areas of the natural and social sciences and engineering where real-world
applications are found. Developments in the vast field of optimization are,
to & great extend, motivated by these applications and have drawn, over
the years, both from mathematics and from computer science. Mathemat-
ics has provided the foundations for the design and analysis of optimization
algorithms. Computer science provides the tools for the design of data-
structures, and the translation of the mathematical algorithms into numer-
ical procedures that are implementable on a computer. Efficient and ro-
bust implementations of optimization algorithms are crucial when one deals
with the solution of large-scale, real-world applications. Recent technolog-
ical innovations, with the introduction of parallel computer architectures,
are having a significant impact on every area of scientiﬁc computing where
large-scale problems are attacked. In these Lecture Noi;és we introduce par-
allel computing ideas and techniques into both optimization theory and into
some numerical algorithms for large-scale optimization problems.

We examine a broad family of algorithms for constrained optimization.
When viewed from the proper perspective these algorithms satisfy the design
characteristics of “good” parallel algorithms. A basic introduction to paral-
lel computers — what they are, how to measure their performance, how to
design and implement parallel algorithms — is given. This core knowledge
on parallel computers is then linked with the theoretical algorithms. The
combined mathematical algorithms and parallel computing techniques are
brought together to bear on the solution of several important applications:

image reconstruction from projections, matrix balancing, network optimiza-

tion, nonlinear stochastic programming and financial planning.

‘We believe that the value of bringing together applications, mathematical
algorithms and parallel computing techniques, extends beyond the successful
solution of the specific problems at hand. Namely, it introduces the reader to
the complete process from the modeling of a problem through the design of
solution algorithms, and to the art and science of parallel computations. It is
not possible anymore to study these three disciplinary efforts — modelling,
mathematics of algorithms and parallel computing — in isolation from each
other. The successful solution of real-world problems in scientific computing
is the result of coordinated efforts across all three fronts.

These Lecture Notes are prepared especially for an “Advanced Short
Course” delivered at the 19th Colloguium of the Brazilian Mathematical So-
ciety at the Instituto de Mathematica Pura e Aplicada (IMPA) in Rio de
Janeiro, Brazil, in July 1993. As such we had to meet IMPA’s deadline
for publication. Having raced against a deadline is our excuse for many
omissions, oversights, errors and other imperfections that remain in this
manuscript. We are currently working on extending and refining these Lec-
ture Notes, and would, therefore, greatly appreciate comments from readers
who would take the time and make the effort to draw our attention to mat-
ters that need to be corrected, such as references to other works that we
may have missed, other relevant material that should be included, errors or
inaccuracies, etc. We will be happy to acknowledge such help in the next
version of this work.

Yair Censor, Haifa.

Stavros A. Zenios, Philadelphia.

April, 1993.

Acknowledgements

We thank the organizers of the 19th Brazilian Mathematical Colloquium
for giving us the opportunity to present our work in this form. The material
presented here is based largely on our own published works. We express our
appreciation to our past and present collaborators from whom we learned a
great deal.

Particular thanks for many useful discussions and support are extended
to Marty Altschuler, Dimitri Bertsekas, Dan Butnariu, Alvaro De Pierro,
Jonathan Eckstein, Tommy Elfving, Gabor Herman, Dan Gordon, Alfredo
Tusem, Elizabeth Jessup, Arnold Lent, Robert Lewitt, Jill Mesirov, John
Mulvey, Soren Nielsen, Mustafa Pinar and Michael Schneider. Much of the
work of Yair Censor in this area was done in collaboration with the Medical
Image Processing Group {MIPG) at the Department of Radiology, University
of Pennsylvania.

This work was supported by grants from the National Institutes of Health
(HL-28438), the Air-Force Office of Scientific Research (AFOSR-91-0168)
and the National Science Foundation {CCR-9104042 and SES-9100216).
Computing resourcesl were made available though the North-Kast Paral-
lel Architectures Center (NPAC) at Syracuse University, the Army High-
Performance Computing Research Center (AHPCRC) at the University of
Minnesota, Thinking Machines Corporation, Cray Research Inc., and Ar-

gonne National Laboratory.

"This Book was followed by a full-size publication of the book: Y. Censor
and S.A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications",

Oxford University Press, New York, NY, USA, 1997 (576pp., ISBN 0-19-510062-X)."

celano
Typewritten Text
"This Book was followed by a full-size publication of the book: Y. Censor
and S.A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications",
Oxford University Press, New York, NY, USA, 1997 (576pp., ISBN 0-19-510062-X)."

Contents

1 Introduction
1.1 How Does Parallelism Affect Computations
1.2 A Classification of Iterative Algorithms
1.3 Parallel Computations with Iterative Algorithms
1.4 Organization of the Lecture Notes
2 Generalized Distances and Generalized Projections
21 Imtroduction.
2.2 Bregman Functions and Generalized Projections
2.3 Generalized Projections onto Hy[;erplanes
2.4 Characterization of a Family of Bregman Functions
2.5 Characterization of Generalized Projections
3 Tterative Methods for the Convex Feasibility Problem
31 Imtroduction.
3.2 A Reviewof Some Methods

3.2.1 The Method of Successive Orthogonal Projections
3.2.2 The Cyclic Subgradient Projections Method
3.2.3 An “Interior Points” Algorithm

7

11
13
16
20
21

25
25
26
32
37
41

CONTENTS

324 The Schemes of Qettli and Eremin 53
3.3 The Block-Iterative Projections (BIP) Algorithm 55
3.3.1 Convergence of the BIP Algorithm 58
3.4 Bregman’s Sequential Algorithm 62

Row-Action Algorithms for Linearly Constrained Optimiza-

tion Problems 67
41 Introduction. @ . e e 67

4.2 The Problem, Solution Concepts and the Special Environment 68

421 TheProblem 68
4.2.2 Approaches and Solution Concepts. 69
4.23 The Special Environment. 72
4.3 Row-Action Methods, Controls and Relaxation Parameters . 73
4.4 The Method of Bregman 77
4.5 'The Interval-Constrained Problem, 85
4.6 Row-Action Algoritllms for Norm Minimization 89
4.6.1 ‘The Algorithm of Kaczmarz 39
4.6.2 The Algorithm of Hildreth. a1

4.6.3 ART4 ~ An Algorithm for Norm-Minimization Over
Linear Intervals 92

4.7 Row-Action Algorithms for Shannon’s Entropy Minimization 95

Proximal Minimization Algorithms with D-Functions - 99
5.1 Introduction. L. 99
5.2 Convergence Analysis of the PMD Algorithm 103

5.3 Special Cases. L 111

CONTENTS 9

6 Applications 113
6.1 Matrix Balancing L. 114
6.1.1 Applications of Matrix Balancing 115

6.1.2 Mathematical Models for Matrix Balancing 126

6.1.3 Iterative Algorithms for Matrix Balancing 134

6.2 Image Reconstruction from Projections. 143
6.2.1 Applications of Image Reconstruction 145

6.2.2 Mathematical Models for Image Reconstruction 146

6.2.3 Algorithms for Image Reconstruction 149

6.3 Planning Under Uncertainty: Stochastic Network Optimizationl156

6.3.1 Problem Formulation 159
6.3.2 Applications P, 168
6.3.3 An Iterative Algorithm for Stochastic Network Opti-

mization L oo o i77

7 Decompositions for Parallel Computing 191
7.1 Introduction to Parallel Computing -. .. 192
7.1.1 Models of Computation: Flynn’s Taxonomy 195
7.1.2 Some Unifying Concepts of Parallel Computers 198
7.1.3 Parallel Prefix Operators for Data-Paralle] Computing 205
7.1.4 Measures of Performance 208

7.2 Parallel Computing for Matrix Balancing 211
7.2.1 Control-Parallel Computing with RAS 211
7.2.2 Data-Parallel Computing with RAS 219

7.3 Parallel Computing for Image Reconstruction 225

7.3.1 Vector Computing with Block-MART 226

10 CONTENTS

7.3.2 Parallel Scheme I: Parallelism Within a Block 227

7.3.3 Parallel Scheme II: Parallelism with Independent Blocks231

7.3.4 Parallel Scheme III: Parallelism Between Views 233

7.3.5 Parallel Computations with MART and Block-MART 235

7.4 Parallel Computing for Stochastic Network Optimization . . . 236
7.4.1 Experiments and Numerical Results 238 .

A The Connection Machine System 247

Chapter 1

Introduction

Computing power improved by a factor of one million in the period 1955
1990, and it is expected to improve by that much more just within the
next decade. Iow can this accelerated improvement be sustained? The
angwer is found in novel computer architectures: multiple, semi-autonomous
processors coordinating for the solution of a single problem. The late 1980’
have witnessed the advent of massive parallelism: the number of processors
that are brought to bear on a single problem could be several thousands, or
even millions. This rapid technological development is expected to transform
in a significant way the exact sciences, the social sciences and all branches
of engineering. The American Academy of Arts and Sciences devotes the
Winter 1992 issue of its Journal, DEDALUS, to an analysis of the coming

“New Era of Computation”.

Massive parallelism is improving by a quantum leap the size and complex-
ity of models that can be represented on and solved by a computer. These

Lecture Notes give an introduction to methods of parallel computing for

11

12 CHAPTER 1. INTRODUCTION

optimization problems. The Notes take firstmost an algorithmic approach.
Specific iterative algorithms are presented, their mathematical convergence
is established and their suitability for parallel computations is discussed.
The algorithms, in turn, are strongly influenced by the structure of several
real-world applications. Some significant problems from several important
areas of application are discussed in detail too. Those are drawn from such
diverse areas as operations research and image reconstruction from projec-
tions in diagnostic medicine. Other areas where similar approaches and
techniques are used are also mentioned. Implementations of the algorithms
on specific parallel architectures are given extensive treatment. Alternative
approaches to the parallel implementation of an algorithm are discussed, .
and benchmark results on various computer architectures are summarized.
Those results highlight the effectiveness of alternative implementations on

different architectures.

Several of the algorithms and their underlying theory have a long history
that dates back to the 1930’s. At that time the issue of computations — that
is, implementation of the algorithm as a computer program — was irrelevant.
Here we present the algorithms not just with a view towards computations,
but more importantly, towards parallel computations. It is when viewed
within the context of parallel computing that these algorithms are realized
to posses some important features: They are well-suited for implementation
on a wide range of parallel architectures, with as few as two processors or as

many as millions.

1.1. HOW DOES PARALLELISM AFFECT COMPUTATIONS 13
1.1 How Does Parallelism Affect Computations

Mathematical theory and computational techniques always went hand-in-
hand in the field of optimization. This has been especially true in the con-
text of large-scale applications. For small-scale problems the correctness of
a theoretical algorithm is usually sufficient to guarantee that the underlying
problem can be solved successfully. For large-scale problems theoretical cor-
rectness does not suffice. Can the algorithm be translated into a computer
code that does not exceed the memory limits of available computers? Will
the algorithm work when there are (small) numerical errors in the execu-
tion of its steps, or will the errors be amplified? Does the algorithm require
an inordinate number of operations in order to arrive to the proximity of a
solution, and hence will it exhaust the user’s computer budget and patience?

These issues are important whether the algorithm is implemented on a
uniprocessor or on a multiprocessor, parallel, computer. However, additional
considerations become important when a parallel computer is used for the
implementation. For example, an algorithm that requires a large number
of operations to reach a solution could be more efficient than an algorithm
that requires fewer operations, if the steps of the former can be executed
concurrently. The following additional issues need to be addressed when

designing an algorithm for parallel implementation:

Partitioning problem: Partition the operations of the algorithm into sets
of operations that can be executed concurrently. These modules of the

algorithm are called tasks.

Scheduling problem: Assign each task to one or more processors for si-

multaneous execution. This problem appears, at first glance, to be an

14 CHAPTER 1. INTRODUCTION

issue for the implementor of the algorithm and not for the mathemati-

cian who is designing the algorithm.

However, parallel computers come in a variety of architectures. At
one extreme we have machines with few (four, eight, or so) but ex-
tremely powerful processing units. The CRAY Y-MP (Cray Research)
and the IBM 3090-600 (International Business Machines) are examples
of two currently popular models at this end of the spectrum. At the
other extreme we have computers with thousands of simple processing
elements. The Connection Machine CM-2 (Thinking Machines Cor-
poration), the MassPar and the DAP (Active Memory Technologies)
are examples of currently popular models of this category. Scheduling
the tasks of an algorithm for concurrent execution is a problem for the
algorithm implementor. But the scheduling problem can not be solved
satisfactorily unless the underlying theoretical algorithim is flexible. If
the algorithm can be structured into as many independent tasks as
the number of available processors then the scheduling problem can be
resolved. The role of the algorithm designer is therefore important in

this respect.

Synchronization problem: Specify an order of execution of the tasks,
and instances during the execution of the algorithm where informa-
tion must be exchanged among the tasks, in order to ensure the correct
progress of the iterations according to the algorithm. This problem can
again be viewed as one of computer implementation. But algorithms
whose convergence is guaranteed without excessive requirements for

synchronization are likely to be more efficient when implemented in

1.1. HOW DOES PARALLELISM AFFECT COMPUTATIONS 15

parallel.

While the structure of the mathematical algorithm is our focus when
addressing the aforementioned design issues, the structure of the underlying
application can also play a crucial role in parallel computations. It may be
possible to decompose the problem into domains that can be solved inde-
pendently. For example, in image reconstruction from projections we may
consider the decomposition of a discretized cross-section of the image into
sub-sections. If the sub-sections are properly chosen the image could be
reconstructed from these smaller sections.

This is the background on which these Lecture Notes are being devel-
oped. It is not enough to just know what a parallel computer is. And for a
mathematician, it is not enough to “develop parallel algorithms”. In order
to successfully attack a significant real-world problem we ilave to carefully
study the modelling process, the appropriate parallel computing architec-
ture, and develop algorithms which are suitable for both.

It is important to stress that the design of an algorithm should not be
linked to the specifics of a parallel computer architecture. Such an approach
would render the algorithms obsolete once the architecture changes. Given
also the diversity of existing parallel 'architectures this approach would find
limited applicability. The major thesis of these Lecture Notes is that al-
gorithms should be flexible enough to facilitate their implementation on a
range of architectures. Indeed, we present algorithms for several optimiza-
tion problems that — when viewed from the proper perspective — are flex-
ible enough to be implementable on a broad spectrum of parallel machines.
The rest of this introduction makes these ideas more precise. Examining the

general structure of the iterative algorithms, we understand their suitabil-

16 ' CHAPTER 1. INTRODUCTION

ity for parallel implementation, as well as their flexibility for adaptation to
different architectures.

Details of the implementation of a parailel algorithm is also an important
problem, but one which is bound to be linked closely with the computer
architecture. We discuss implementation issues too. To the extend possible,
implementations are discussed in a way that is linked to a class of machines,

not to any specific hardware model.

1.2 A Classification of Iterative Algorithms

We arc dealing with applications that can be modeled by a system of linear

or nonlinear equations or inequalities, i.e., a system of the form
filz)*0, i=1,2,..., I, (1.1)

where z € R/, the J-dimensional Buclidean space, f; : ®/ — R, and = stand
for equality signs, inequality signs or a mixture of such. The Lecture Notes
are focused on well-defined applications, models and algorithms, but this
generic description allow us to classify a broader set of iterative procedures
and discuss their suitability for parallel computations.

Solving a. feasibility problem (1.1) may be attempted if the system is
Jeasible, ie, {z € R | fi(x) 0, i=1,2..., I} #0, or even if it is
infeasible. The mathematical model may also be set up as an optimézation
problem with an objective function fy : R/ -» R imposed and (1.1} serving

as constraints,

opt folz)
subject to fi(z) %0, i=1,2,..., I,

1.2. A CLASSIFICATION OF ITERATIVE ALGORITHMS 17

with or without additional constraints of the form z € @, where Q C R/
is a given subset, describing, for example, box constraints, and opt stands
for either min or maz. Specific examples of such probiems are described, as
they arise in our fields of applications, in the next chapters and references
to others are given.

Special-purpose iterative algorithms designed to solve these problems
may employ iterations which use in each step a single row of the constraints
system (1.1) or a group of rows. A row-action iteration has the functional

form
o = Ry (2%, fin), (1.3)

where i(k) is the control index, 1 < i(k) < I, specifying the row which is
acted upon by the algorithmic operator R;(;). The algorithmic operator gen-
erates, in a specified manner, the new iterate z*+! from the current iterate
z*, and from the information contained in fitky. Rixy may depend on addi-
| tional parameters which vary from iteration to iteration such as relaxation
parameters, weights, tolerances, etc.
The system (1.1) may be decomposed into M groups of constraints

(called blocks) by choosing integers {m;}#, such that
D=mp<mi < - <mpy1<my=1, (1.4)
and defining for each #,1 < ¢ < M, the subset
I={my_1+1, mea1+2,...,m}, (1.5)
vielding the partition

{1,2,..., I} =L UILU-- Ul (1.8)

18 CHAPTER 1. INTRODUCTION

A block-iteration has then the functional form

Bt k)){fl}left(k) (1.7)

where €(k) is the control index, 1 < t(k) < M, specifying the block which is
used when the algorithmic operator By, generates ¥ from z* and from
the information contained in all those rows of {1.1) whose indices belong
to Iyz). Again, additional parameters may be included in each Byyy. The
special-purpose iterative algorithms that we consider in our classification
scheme may address any problem of the form (1.1) or (1.2) and may be

classified as having one of the following four basic structures.

1. Sequential Algorithms. For this class of algorithms a control se-
quence {i(k)}$2, is defined and the algorithm performs, in a strictly
sequential manner, row-action iterations, from an appropriate initial

point until a stopping rule applies, according to (1.3).

2. Simultaneous Algorithms. Algorithms in this class first execute

simultaneously row-action iterations on all rows

k+11 .R;(SC ,fi), i=1,2,... 1, (1.8)

using the same current iterate z*, and the next iterate zF*! is then

generated from all intermediate ones 2%+ by an additional operation
=5, (1.9)

Here S and R; are algorithmic operators, the Ri’s being all of the

row-action type.

1.2. A CLASSIFICATION OF ITERATIVE ALGORITHMS 19

3. Sequential Block-Iterative Algorithms. Here the system (1.1) is
decomposed into fixed blocks according to (1.6) and a control sequence
{t(k)}32o over the set {1,2,..., M} is defined. The algorithm performs
sequentially, according to the control sequence, block iterations of the

form (1.7).

4. Simultaneous Block-Iterative Algorithms. In this class, block
tterations are first performed using the same current iterate z*, on all

blocks simultaneously
"t = Byaf {filien), t=1,2,..., M, (1.10)

and the next iterate 2% is then generated from the intermediate ones
mIc+1,|‘t by

ot = §({gPM), (1.11)

Here S and B; are algorithmic operators, the B;’s being of the block-
iteration type (1.7).

An important generalization of block-iterative algorithms is that of vari-
able block-iterotive algorithms. In this kind of algorithms block iterations
are performed according to formula (1.7). The blocks I;(k), however, are not
determined a priori according to (1.6} and kept fixed, but are rather free to

be nonempty subsets

0# Iy C L (1.12)

This means that as the iterations proceed both the sizes of the blocks and

the specific assignments of constraints to blocks may change in a much more

20 CHAPTER 1. INTRODUCTION

general manner than the scheme with fixed block sizes. Of course, conver-
gence theory of such an algorithm could still impose certain restrictions on
hov.ur the sets I,y may be reconstructed.

Although not formulated so before, many special-purpose iterative algo-
rithms that were proposed and implemented over the years can be identified
according to this classification. As we proceed through these Lecture Notes,
the algorithmic structures will become clearer with the presentation of spe-

cific algorithms.

1.3 Parallel Computations with Iterative Algo-

rithms

We examine now two approaches for introducing parallelism in both the
sequential and the simultancous algorithms. We address, in particular, the
problem of task partitioning, that is, identifying operations of the algorithm
that can be executed éoncurrently.

A sequential row-action algorithin uses information contained in a single
row fiyx) and the current iterate x*, in order to generate the next iterate
#**1, The control index i(k) specifies the order in which rows are selected.
Is it possible to select rows in such a way that two (or more) rows can be op-
erated upon simultaneously, without altering the mathematical structure of
the algorithm? This can be achieved if at every iteration only different com-
ponents of the updated vector are changed. The algorithmic operator Ry
is a vector-to-vector mapping. If Ry and Rj(gyq) use different components
of z* to operate upon, and leave the others unchanged, then the operations

can proceed concurrently. Identifying row-indices i(k) such that the oper-

1.4, ORGANIZATION OF THE LECTURE NOTES 21

ator can be applied concurrently on such rows depends on the structure of
the family {f;(z)}/_,. We will see that several important problems have a
structure that allows us to identify such row-indices. The parallel algorithm
is, with this approach, mathematically identical to the serial algorithm.

The parallelism in the simultaneous algorithms is obvious. The iterates
(1.8) can be executed concurrently using up to I parallel processors. The
step (1.9) is a synchronization step where the processors must cooperate,
and exchange information contained in the I vectors {z**1i}_ in order to
compute the next iterate zF1,

The block algorithms — sequential or simultaneous — lead to parallel
computations in exactly the same two ways outlined above. However, the in-
troduction of blocks permits more flexibility in handling the task scheduling
problem. The blocks can be chosen in a way that ensures that all proces-
sors receive tasks of the same computational difficulty. Hence, all processors
complete their work in (more or less) the same amount of time. Delays while
| processors wait on each other are minimized. The specification of block-size
will typically depend on the computer architecture. For massively parallel
systems it is preferable to create a very large number of small blocks. Fewer

blocks are needed for systems with a small number of processors.

1.4 Organization of the Lecture Notes

Chapter 2 introduces the notion of a generalized distance. It uses then gen-
eralized distances to define generalized projections onto convex sets and par-
ticularly onto hyperplanes. Several properties of generalized distances and

projections are established. This chapter lays the theoretical foundations

22 CHAPTER 1. INTRODUCTION

from which the algorithms of subsequent chapters are developed.

Chapter 3 defines the convex feasibility problem and introduces itera-
tive algorithms for its solution. Methods based on successive orthogonal
projections, cyclic subgradient projections, Bregman’s nonorthogonal pro-
jections are presented together with some well-known algorithms of Cim-
mino, Agmon-Motzkin-Schoenberg, Oettli, Eremin and others. Convergence
results are established and some of the felationships of the algorithms to
each other are pointed out.

Chapter 4 defines the problem of optimizing functions that belong to
a special class — known as Bregman functions — over linear equality, in-
equality and interval constraints. Bregman's general row-action iterative
algorithm is presented and its convergence established. This chapter then
develops as special cases several well-known algorithms such as Kaczmarz's
method for norm- minimization over equality constraints, Hildreth’s method
for norm minimization over inequality constraints, and a method called
ART4 for norm-minimization over interval constraints. Specializations for

entropy optimization are also presented.

The algorithms of chapter 4 are applicable only to Bregman functions.
Linear programming problems can not be solved directly with these methods.
Chapter 5 presents a proximal minimization algorithm that facilitates the
solution of linear programming problems using nonlinear perturbations based
on generalized distances. The algorithms of chapter 4 are then applicable,
and some special cases are presented.

Chapter 6 discussed three distinct areas of applications that give rise
to optimization problems such as those discussed earlier. One application

is the problem of matriz balancing, that is, of adjusting the entries of a

1.4, ORGANIZATION OF THE LECTURE NOTES 23

matrix to satisfy certain consistency requirements. Such problems arise in
economics, transportation, telecommunications, regional planning and so on.
The application areas are briefly reviewed, and the chapter shows how cer-
tain approaches to modeling these problems lead to optimization problems.
Specific algorithms, derived as special cases from the results of chapter 4
are presented. The second application is the problem of image reconstruc-
tion from projections. Such problems appear in diagnostic medicine, non-
destructive material testing, seismic tomography and other areas. The chap-
ter shows how certain approaches to modeling these problems lead to convex
feasibility or optimization problems. The final application is from the area
of operations research, and, in particular, for the problem of optimizing a
multi-period problem in the face of uncertainty in the data. A stochastic
network programming formulation of this problem is presented and its ap-
plication to portfolio optimization for financial planning is briefly discussed,
together with other related applications. An algorithm for solving this prob-
lem, drawing from the results of chapters 4 and 5 is developed.

Chapter 7 develops the link between the theoretical algorithms of chap-
ters 3 — 5, and the applications of chapter 6, with parallel computing. An in-
troduction to parallel computations is first given. This is followed by discus-
sions on the parallel implementation of algorithms for solving the three major
application areas of matrix balancing, image reconstruction and stochastic
network programming. Experiences with the computational efficiency of

these algorithms, when implemented in parallel, are presented.

Chapter 2

Generalized Distances and

Generalized Projections

2.1 Introduction

A generalized distance is a real-valued nonnegative function of two vector
variables D(xz, y), defined in a specific manner, which may be used to “mea-
sure” the “distance” between x and y in some generalized sense. When defin-
ing generalized distances it is customary to allow nonsymmetry (i.e., D(z, y)
D(y,z)) and not to insist on the triangle inequality which a traditional
distance function must obey. Because of the lack of symmetry such distances
are also referred to sometimes as “directed distances”. Under certain con-
ditions, one can use a generalized distance to define projections ontoe convez
sets. This is done by minimizing D(z,y) over all z in the set, for some fixed
y whose projection onto the set is sought. In this chapter we present a fam-

ily of generalized distances and their associated generalized projections that

25

26 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

serve as basic tools in the subsequent developments in optimization theory.
The material in this chapter is taken from Bregman’s pioneering paper [31]
and from Censor and Lent [47], De Pierro and Tusem [188], Censor et al. [49)],
and Teboulie [219]. Much work has been done on generalized distances and
their applications during recent years. Some (but by no means all) represen-
tative sources are: Csiszdr [59], Eckstein [80], Chen and Teboulle [53] and
Byrne [35].

2.2 Bregman Functions and Generalized Projec-

tions

Let S be a nonempty, open, convex set, such that the closure § C A, where
A is the domain of a function f : A C R® — R. Assume that f(x) has
continuous first partial derivatives at every « € S, and denote by V f(z) its
gradient at x.

From f(x), construct the function Ds(z,y), Dy : S x § T R?™ - R, by

D{z,y) = Dy(z,y) = flz) — fy) — (Vi) z — y)- (2.1).
Dy (z,y) may be interpreted as the difference f(z) — h(z) where h{z) repre-
sents the tangent hyperplane to the epigraph of f at the point (y, f(y)) in
R |
We adopt the following notation for the partial level sets of Dy (r,y). For
any « € i,
Lily;@) = {z € § | D(z,y) <
Ly(z,0) = {y € 5| D(z,y) < o}.

The reason for collecting the conditions (i)-(vi) in the following defini-

(2.2)

tion under one heading is that these are precisely the conditions which are

2.2. BREGMAN FUNCTIONS 27

needed to ensure the applicability of certain iterative methods for linearly
constrained, equality, inequality and interval convex programming problems,

when the function D(z,y) has the form (2.1).

Definition 2.2.1 (Bregman Functions.) A function f : ACR* — R is
called a Bregman funclion if there exists o nonempty, open, conver set S,

such that S C A and the following hold:

(i) f(x) has continuous first partial derivatives at every x € S;
(ii) f(z) is strictly conver on S;
(#3) f(z) is continuous on §;

(iv) for every a € R, the partial level sets Ly (y,) and La(z, @) are bounded
for every y € S, for every z € S, respectively;

(v) if limg o y® =y* €5, then limg..oo Dp(y*, 4F) =0;

(vi) if limg_.0o Df(a:k,y"“) =0, Hmy_,00 9* = y* € 5, and {2*} is bounded,

then limg_,oo 2F = y*.

We denote the family of Bregman functions by B, refer to the set S as the
zone of the function f, and write f € B(S).

Lemma 2.2.1 For every f € B(S), D(z,y) > 0 and D(z,y) = 0, if and
only if x = .

Proof. This is a basic result in convex analysis which says that the assertion
of this lemma is equivalent to the strict convexity of f (Definition 2.2.1
(i1)), when f is differentiable (Definition 2.2.1(i)). See, e.g., Bazaraa and
Shetty [19, Theorem 3.3.3]. m]

28 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

Definition 2.2.2 (Generalized Projections.) Given) CR" and y € S,
o point z* € QNS for which

min D{z,y) = D(z",y) (2.3)
ZERNS

(i.c., the minimum exists and the equality holds) is denoted by Po(y) and is

called o generalized projection (or simply, o projection) of the point y onto

the set (.

The next lemma guarantees the existence and uniqueness of generalized

projections.

Lemma 2.2.2 If f € B(S), then for any closed convex set Q@ C R™, such that
QNE #£0, and for any y € S, there exists a unique generalized projection
z* = Poly).
Proof. For any w € N5, the set

B={z€5 | D(s,5) < D(w,y)} (2.4)

is bounded [because of the boundedness of the partial level sets, Definition
2.2.1(iv})] and closed [because D(z,y) is continuous in z on S, by Definition
2.2.1(iii)]. Therefore, the nonempty (since w € BNQ) set 7' = (ANTF)N B is
bounded; and, since the intersection of closed sets is closed, 7' is also closed,
hence compact. Consequently, D{z,y) as a continuous function of z takes
its infimum on the compact set T' at a point z* € T. For every z € NS
which lies outside B, we have D(w,y) < D(z,y). Hence, z* satisfies (2.3)
and is a generalized projection of y onto {1.

To show uniqueness, suppose that there are two points u, v € NS, such
that u # v and

D(uvy) = D(Uay) = miIlD(zay)a
NS

2.2. BREGMAN FUNCTIONS 29

for some y € S. Then, %-('u. + v} € QNS because of the convexity of 2N 5.
We recall that the closure of a convex set is convex (see, e.g., Rockafellar
[196, Theorem 6.2]), and the intersection of convex sets is convex. But, since

f is strictly convex,

DG (utv),y) = fGu+v)— fly) —(VF(y), tu+v) —y)
< 3f(u) + 57 () - 3F(0) - 3£ ()
~5{(VF@),u—v) — $(VFy),v—y)
= %[D('U,, y) + D('U,y)] = mianQnED(zv y))

which is a contradiction. - O

Example 2.2.1 The function

fz) =3 =] (2:5)

is a Bregman function, with
A=8=8=R" (2.6)
and D{z,y) is then, according to (2.1),
D(z,y) =14 llz—y|. (2.7)

The generalized projection of any point y onto any closed, convex set §2 is,

in this case, the usual orthogonal projection.

Example 2.2.2 The “zlogz” (Shannon’s) entropy functional, ent z, maps
the nonnegative orthant R} of the n-dimensional Euclidean space R" into

R according to
n
entz=—> z;logx;. (2.8)
i=1

Here “log” denotes the natural logarithms and, by definition, 0log0 = 0.

30 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

The next lemma, shows that this is indeed a Bregman function and the Dy-

function is given by eq. {2.10).

Lemma 2.2.3 The function (—ent z) is a Bregman function with A = RY

and zone S, defined by

S,={zeR"|z; >0, Yi=12,...,n} (2.9)

Proof. (i) and (i) of Definition 2.2.1 are simple. Property (iii) is valid due
to the convention 0log 0 == 0. For the function —ent 2 we have that
n n
Diz,y) =Y xjlog(zi/y;) — 1) + > uj (2.10)
i=1 i=1
which is the well-known Kullback-Licbler cross enfropy function from statis-
tics. Fixing y let any component of z go to +o0. Then D(z,y) — oo as
well and so, for any o € R, Li{y, <) is bounded. A similar argument shows
that Ly(z, &) is bounded, proving (iv). Property (v) also follows from (2.10).
Assume now that the premises of property (vi) are satisfied. It is suf-
ficient to show that any convergent subsequence of {z*} converges to y*.
Consider a general term of (2.10), namely £ : Ry x (R \ {0}) — R defined
by
t(z,) = s(log(a/y) - 1) +1, (2.11)

z > 0 and y > 0. For any fixed y,
o) 2 0, (2.12)
for all > 0, and

t(z,y) =0 ifandonlyif z=y. (2.13)

2.2. BREGMAN FUNCTIONS 31

Now consider a convergent subsequence {z**} of {z*} and assume that z*s —

T, a5 § — 00.

n

ks Z z; ,y;f’“) — 0, as s — co. (2.14)

From (2.12) it follows, that for each 7,
t(mJ ,yj *}— 0, as s — o0. (2.15)

Noting that a:f’ — %; and y;-c"’ — yj, consider two cases. If ¥; > 0, then
(2.13) and (2.15) imply that yf = =;. If y; =0, then (2.11) and (2.15) imply

that T; = 0, and again y; = ;. Hence y* =17. O

Example 2.2.3 Denote the Cartesian product of n intervals (a, b) by {(a, b)",
let §=(-1,1)", and define

fla)==> 4/1- (2.16)

i=1
'Then it is straightforward to confirm that f meets conditions (i)-(iv) of
Definition 2.2.1. By suitable scaling and translation of the argument, f can
be transformed so that its zone is the Cartesian product of a collection of n

arbitrary open bounded intervals.

Example 2.2.4 If f is a Bregman function, then f(z) + {c,z) + 8, for any
c € N™ and B € R, also meets the conditions and produces exactly the same
D ¢-function, and therefore must also be a Bregman function. More examples

can be found in Teboulle [219].

32 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

2.3 Generalized Projections onto Hyperplanes

A key role in the iterative projection methods for linearly constrained convex
programming discussed in Chapter 4 is played by generalized projections on
hyperplanes. Therefore we take a closer look at these projections now. A

hyperplane is a set of the form
H={zeR"| (a,z) =0}, (2.17)

where @ € W and b € R are given. To facilitate our presentation, we

introduce the following definition.

Definition 2.3.1 (Zone Consistency.) (i) A function f € B(S} with zone
S is said to have the zone consis;tency property with respect to the hyperplane
H if, for every y € S, we have Py(y) € S. That is, the function has
the property that the generalized projection of any point y € S onto the
hyperplane H remains in S.

(it) f € B(5) with zone § is strongly zone consistent with respect to the
hyperplane H if it is zone consistent with respect to H as well as with respect

to every other hyperplane H' which parallels H and lies befween y and H.

The following lemma characterized generalized projections onto hyper-

planes.

Lemma 2.3.1 Let f € B(S), H = {z | {a,z) = b}, and assume that f is

zone consistent with respect to H. For any given y € S, the system
Vi{z*) = Vi(y) + A, (2.18)

{@,z") =b (2.19)

2.3. GENERALIZED PROJECTIONS ONTO HYPERPLANES 33

determines uniquely the point =™ which is the generalized projection of y onto
H. For a fized representation of H (i.c., for fizted a € R™ and b € N), the

system olso determines uniquely the real number X

Remark 2.3.1 For some fired o € R"™ and b € R representing the hyper-
plane H, the X obtained from the system (2.18)-(2.19) is called the general-

ized projection parameter associated with the generalized projection of y onto

H.

Proof of Lemma 2.3.1. Consider the constrained minimization problem
(2.3) with Q@ = H. Due to the zone consistency assumption, we look for a
minimum within the open set S, so that we can write the Lagrangian of this

problem as

Lz, g, A) = f(2) = fly) = (V) z —) — Alla, 2) — b), (2.20)

and the necessary conditions for a point to be the generalized projection of

y onto H are then
V.L(z,y, A} =0, ViL(zy,\) =0, (2.21)

from which (2.18)-(2.19) follow. To show the uniqueness of z* and the pa-
rameter A, for given a and b, assume that z** € R" and the parameter u

also solve (2.18)-(2.19), i.e.,
ViE™) =V (y) + pa, (2.22)
(CL, .’IJ**) =b, (223)

and that z* # z**. Then, multiplying (2.18) through by z** — z* and using
{(2.19) and (2.13), we get

(Vf(z"),z" —z*) = (Vf(y),z™ — 2”). (2.24)

34 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS
Since z* # z** we know, from (2.1) and Lemma 2.2.1, that

@) - f@") > (V)™ - o), (2.25)
thus, combining (2.24) and (2.25),

F@*) = f(=@") > (VFy), 2™ = z%). (2.26)

Using similar arguments, after first multiplying (2.22) through by z* — 2" ,

we gbtain
f@) = f@™) > {Vf{y) =" — =) (2.27)

The contradiction 0 > 0 is then obtaired by adding up (2.26) and (2.27).

Consequently x* = z* which implies also that A = p. O
¥

Remark 2.3.2 It is also important to note, and easy to check, that, if
(2.18) is considered alone and X is prespecified, then for given a and y, z* is

uniquely determined.

What is fairly obvious in the case of orthogonal projections needs verifi-
cation here. The next result is a statement about the signs of the parameters

associated with generalized projections onto hyperplanes.

Lemma 2.3.2 Let H = {z | {a,z) = b} andy € S. For any f € B(5)
which is zone consistent with respect to H, we have for the parameter M
associated with the generalized projection of y onto H, in some particular

representation (i.e., a 5= 0 and b given) of H, that

Mb—{o,)) >0, ify¢H, (2.28)

A =0, if y € H. (2.29)

2.3. GENERALIZED PROJECTIONS ONTO HYPERPLANES 35

Proof. From (2.18), (2.19), we get, if z* # y, that

(Vi) = Vi) s" —y) = Ma, 2" — y);

but
(Vf(z*) - Vf{y),z" —y) = D(z",y) + D(y, "),
and also
(@, 3" —y) = b~ (a,y).

Therefore, if y & H,
)\(b - (a'! y)) = D(m*i y) + D(ya :17*)9 (230)

and the result follows from Lemma 2.2.1. If {a,y) = b, then z* = y is the
unique generalized projection of ¥ onto H; thus, A =0 0

Assume that orthogonal projections are performed successively onto two
given parallel hyperplanes (i.e., having the same normal vector a) starting
from some initial point. In this case the final point is the same point that
we would reach by orthogonally projecting the initial point onto the second
hyperplane. The same thing happens with generalized projections, as the

next lemma shows.

Lemma 2.3.3 Let Hy and Hy be two parallel hyperplanes in R™ with rep-

resentations
H1={:L'| (a,:c)=b1}, H2={.7J| (a,a:)::bg},

and let y € §. Then, for any f € B(S) which is zone consistent with respect
to both hyperplanes,

P, (P (¥)) = Py (y), (2.31)

36 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS
and the associnted projection parameters obey the equation
A+ 5\2 = Mg, (232)

where A, 1 = 1,2, is the parameter associated with projecting y onto H;, and

A is the parameter associated with projecting Py, (y) onto Ha.

Proof. From Lemma 2.3.1 we have

V(') = Vi) + N e, {a,z') =b, (2.33)
VF(z?) = Vi) + Ae, {a,z%) = b, (2.34)
Vi(E2) = Vi(z) + haa, {a,3%) = by, (2.35)

describing the projections of y onto Hy, of y onto Ha, and of z! = Py, (y)
onto Hy, respectively. Now, substitute (2.33) into (2.35) to obtain .

Vi(EY) = Vi) + M+ Aa, (a,£%) = by (2.36)
The uniqueness of projection implies that 22 = 22 and that A\ + Ao = Ag. O
Lemma 2.3.4 If the conditions of Lemma 2.3.3 hold, with

Hi={z|(as) =7}, M=1{s|{oz)=0),

then I' < A, if and only if v < &, where T and A are the parameters associ-

ated with the projections of y onto H1 and Ha, as represented, respectively.
Proof. Observe that
v.f(zl) =Vi{y) +Ta, (g zl) =T (2.37)

Vi(zh) = VI(y) + Aa, {(a,2®) =6 (2.38)

2.3. CHARACTERIZATION OF BREGMAN FUNCTIONS 37

Subtracting and then taking the inner product with 2% — 2! gives
(VA =V, 22 =28 = (A -T) (6 —7), (2.39)

and the left-hand side equals D(z!, 22) + D(22, 2!), which is nonnegative by
Lemma 2.2.1. o

2.4 Characterization of a Family of Bregman Func-

tions

The six conditions of Deﬁnition 2.2.1 are burdensome and also are not all
directly formulated for the function f. Some of them are related to f through
the level sets or through properties of the Dy-functions. Therefore it is
useful to provide more easily checkable conditions that would guarantee that
f € B(S}. In this subsection we present such conditions for functions defined

on all R" derived by De Pierro and Tusem [188].

Theorem 2.4.1 Let f: R™* — R be o function which satisfies the following
two properties:

(I) f is twice continuously differentiable and strictly convez;

(1) limyz ool f (2)/ || 2 [I] = oe.
Then f € B(R™).

The proof of Theorem 2.4.1 requires four lemmas. Before presenting
them, observe that, in Definition 2.1.1, conditions (v) and (vi) hold trivially
in the interior of the zone, as a consequence of condition (i), and need to
be checked only on the boundary of S. So, when considering functions

defined on all i*, those conditions are trivially satisfied. Also, in this case,

38 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

condition (ii) is a consequence of (1), which also implies conditions (i) and
(iii) of Definition 2.1.1. The only difficulty lies in condition (iv}.

Consider a function g : 7\ {0} — R which has the following properties:

(I11) g is twice continuously differentiable;

(IV) lim g o0 9() = 00

(V) the function h : ™ — R defined by h(z) = g(z) ||z ||, if = # 0, and
h{0) = 0, is strictly convex.

For x # 0, define the function @, : R4y — R as

wx(A) = (w7, VI(Az)), (2.40)

where R, is the set of positive real numbers. Because of (III), ¢, is con-

tinuously differentiable. The sequence of four lemmas now follows.

Lemma 2.4.1 For any x # 0, (1) < 0 implies pz(A) <0, for all X €
(0, 1.

Proof. Assume that there exists a Ag € (0,1) such that
z{Ao) > 0. (2.41)
Let Ay =inf{A [A > Xg, ©.(A) =0}, so that
wi{A) >0, for X € {Ag, M)- (2.42)
Since @, is contineous, A; is well-defined and
ee01) =0 o ew

also, the derivative

(P’m()\l) <0, (2'44)

2.4. CHARACTERIZATION OF BREGMAN FUNCTIQONS 39

because otherwise, (A} < pz(Ay), for A € (A —¢, A1), for some positive
¢, in contradiction with (2.42). From (2.43), (2.44), we have

0> 2X1z (M) + A (A1) = 2M(z, Vg(hiz)) + Az, V2g(M2)z)
=204, Vo)) + (1, V2(y)y), with y= Az, (2.45)
where V?g is the Hessian matrix of g. From condition (V), we have

0 < {y, V2h(y)y) = 2y, Va(y)} + {y, Vig(v)y),

in contradiction with (2.45). O
Lemma 2.4.2 For every z # 0, there exzists u > 1 such that ez} > 0.

Proof. Otherwise, 0 > (1) = (x, Vg(uz)), for all 4 > 1. Then, by the
mean-value theorem, g(uz) < g(z) would hold for all 4 > 1, in contradiction

with (IV). m|

Lemma 2.4.3 The set V = {x € R*\ {0} | (z,Vg(z)) < 0} = {z €
RN\ {0} | wx(1) < 0}, is a bounded set.

Proof. Suppose that there exists a sequence {z*}2, C V such that
limg—.oo || 2% ||= co. Let z* be a cluster point of {z*/ || * ||}. Take any
g > 1. Given ¢ > 0, take k such that I &%/ || = ||) = z* ||< ¢/p and
f[z®||> o Let A= u/ || zF||< 1. So,

[| Az® — pz* i< e. (2.46)

By Lemma 2.4.1, Az* € V, and p > 1, implies | Az® ||> 1. Because
of continuity of pg, theset V=V Nn{z e %" | ||z ||> 1} is closed, and
therefore (2.46) implies that uz* € V C V. So, Opr () <0, forall g > 1, in

contradiction with Lemma 2.4.2. O

40 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

Lemia 2.4.4 If f satisfies conditions (I) and (II) of Theorem 2.4.1, then
(2) linyp oo (f(z) — (0, 2)) = 00, for all a € R™; and
() Iy oo [{(7 — @), V() — f(z)] = oo, for all a € R

Proof. (i) This part is an exercise in Ortega and Rheinbolt [184, p.110].
Using (IT}, take M such that f(z)/ ||z = 2 || e |, for || z [{> M. Then,
lafllz||< flz)= |allll=|< f(z) — {(a,2), and the left-hand side tends to
infinity as || z ||[— oo, if a # 0. If a = 0, (i) follows directly from (IT).

(ii) For an arbitrary p > 0, consider the function
Flz) = flz+a)+p.

Clearly, f satisfies (I) and (I1). So, g(x) = f(x)/ ||z || satisfies (II), {IV),
(V), and, from Lemma 2.4.3, the set V = {z € ®*\ {0} | (z,Vg{z)} < 0}
is bounded. Take M such that, for || ¥ [|> M, (¥, Vg(y)) = 0. Then, 0 <
(g, Vo)) = (1/ ly D[y, VF () — F(y)] implies that 0 < (y, VF(y)) — f(w),
for || y|> M.

Letting « = y + a, we obtain that, for || z ||> M+ |fa|],

0<{(z~a),Vf(e)) - fle)—p = p<{(lz—a),Vflz))— f(z)

Since p is arbitrary, (ii) holds. O
Proof of Theorem 2.4.1. As noted before, only condition (iv} in Definition

2.2.1 has to be checked. We have
Li(y,e) = {z | f(2) - (Vf¥),7) L a+ fly) — (VI)}
Applying Lemma 2.4.4(i} with o = V f(y), vields

lim [f(z) — (VF(y), 2)] = o,

||z} oo

2.5. CHARACTERIZATION OF GENERALIZED PROJECTIONS 41
thus Li(y,) is bounded for all y € R™. For

Loz,) = {y | ((y —=), Vi) - f¥) < a— f(=)},

apply Lemma 2.4.4(ii) with a = z, and conclude that

lim {{(y —2), Vi) - f(v)] =

Iyl —

So, La(y,) is bounded for all z € R, O

Condition (II) is not necessary for a function to belong to B, even for
twice continuously differentiable functions defined in all R™, as the following

example, with n = 1, shows:

1s..2 :

F{rt—4x4+3), if <1

foye | 3)y it w <,
—logz, if z>1.

It is straightforward to verify that f is a twice continuously differentiable

Bregman function; but, lim,—, 4o [f(z)/z] = 0.

2.5 Characterization of GGeneralized Projections

The characterization of generalized projections given below depends on the

following basic result which we repeatedly use in the sequel.

Theorem 2.5.1 Let f € B(S) and let Q T R" be a closed convex set such
that QNS £ 0. Assume thaty € S, implies Po(y) € S. Let z € QN'S, then

for any y € S the inequality
Dy(Paly),y) < Dslz,4) — Dys(z, Paly)), (2.47)

holds.

42 CHAPTER 2. GENERALIZED DISTANCES AND PROJECTIONS

Proof. This is a specialization of Bregman [31, Lemma 1] for the case of

D;-functions. Define the function
G(u) = Df(“‘a :l}) - Df(u:PQ(y))‘ (248)

Expanding G(u) according to (2.1) shows that it is an affine function of the
form (u,a} + b, where the vector a and the real b are independent of u, thus
G(u) is convex. For any A, 0 < A < 1, we denote uy = Az + (1 — A) Pa(y)

and obtain, due to the convexity of G{u), that

Dy (ux, y)~Dy{ur, Pa(y)) < MDys(z,y)—Dy(z, Pa(y))]+(1-X)D¢(Paly), v).
(2.49)
This leads, for A > 0, to

Dy(z,y) — Dylz, Paly) — Dp(Paly).y) = Q/X)[Dy(us,v) = Di(Paly),y)]
= (/X)) Ds{ur, Paly))- (2.50)

The first term on the right-hand-side of (2.50) is nonnegative because of
(2.3). The second term tends to zero as A — 0 because straightforward

calculation shows that

Vme(‘T’ Pg(y}) |.’13=Pq('y}= 0) (251)

using (2.1) and Definition 2.2.1(i). m]
From this, the following characterization of generalized projections is

obtained.

Theorem 2.5.2 Under the assumptions of Theorem 2.5.1, for any x € S,

z* = Pp(x)} if an only if

(u—z*", Vfi{z) - Vf(z*) <0, Yuens. (2.52)

2.5. CHARACTERIZATION OF GENERALIZED PROJECTIONS 43
Proof. From the definition of Dy, we verify that
D¢(v,z) = Dg(u,x) ~ De{u,v) +{Vf(x) - Vf(v),u—v). . (2.53)

If v = 2* = Pp(z) , then (2.52) follows from (2.47) and {2.53). In the
other direction, if (2.52) holds, then for some z* € S, {2.53) reduces, because

of the nonnegativity of Dy, to
Dy(z*,2) < Df(u,x), Yue NS, (2.54)

which means that z* = Pn(z). m

This was proved in a different way by Teboulle in {219, Theorem 2.1].
For the special case f(x) == 1 ||z||?, with § = ®*, Theorem 2.5.2 reduces to
the well-known result about orthogonal projections, see, e.g., Kinderlehrer

and Stampacchia [142, Theorem 2.3 in Chapter I].

Chapter 3

Iterative Methods for the

Convex Feasibility Problem

3.1 Introduction

The convez feasibility problem (CFP, for short) is to find a point in the
nonempty intersection @ = N2, # @ of a finite family of closed convex
sets Q; € N7, ¢ = 1,2, ...,m, in the n-dimensional Euclidean space R*. This
fundamental problem has many applications in mathematics as well as in
other fields, including those treated later in these Lecture Notes. When the

sets are given in the form
Qi ={z € R™| gi(x) <0, g; is a convex function }, (3.1)

then we deal with the problem of solving a system of inequalities with convex
functions, of which the lirear case is an important special case.
In this chapter we present several iterative methods for the convex fea-

sibility problem, aiming at a description of the methods along with some of

45

46 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

the apparent connections between them. Section 3.2 contains a brief review
of the following methods.

() The method of successive orthogonal projections (SOP) of Gubin,
Polyak and Raik, [105] also known in recent literature on image recovery as
the method of projections onto convex sets (POCS), see, e.g., Youla [230],
Sezan and Stark [209)].

(ii) The cyclic subgradient projections method {CSP) of Eremin [85],
Raik [194] and Censor and Lent [48].

(iii} The interior points algorithm (IP) and the (8, 7)-algorithm of Aha-
roni, Berman and Censor [4].

(iv) The general schemes of Oettli [183] and of Eremin [84, 85].

The Block-Iterative Projections (BIP) method of Aharoni and Cen-
sor [3], see also Flam and Zowe [92] and Butnariu and Censor [33], discussed
in Section 3.3, generalizes the SOP method by allowing a great flexibility,
in each iterative step, in choosing the subset of constraints sets {Q;} with
respect to which the iteration is performed.

Replacing orthogonal projections, in the SOP method, by generalized
one gives rise to Bregman’s sequential algorithm for the convex feasibility
problem, presented in Section 3.4.

In contrast with the constructive approach taken here, the reader will
find existence results for systems of (mainly strict) inequalities involving
convex functions in Fan et al. [91], and in [196, Section 21].

Many of the methods obey a specific control sequence and employ re-
laxation parameters. A control sequence {i(k)}72, is a sequence of indices
according to which individual sets ¢); may be chosen for the execution of an

iterative algorithm. Here are some important controls.

3.1. INTRODUCTION 47

1. Cyclic control. i(k) = k(mod m) + 1, where m is the number of sets

in the convex feasibility problem.

2. Almost cyclic control. i(k)}32, is almost eyclic on {1,2,---,m} if
1 <i(k) < m, for all £ > 0, and there exists an integer C' such that,
forall >0, {1,2,---,m} C {i(k+1),i(k+2),---,i(k+ C)}.

Almost cyclic controls are less restrictive than the cyclic control and
therefore add an important option as to how the application of a
method to a particular problem may be carried out. This flexibil-
ity could be very important in devising parallel implementations of

the algorithms. A cyclic control is almost cyclic with C' = m.

3. Repetitive control. The control {i(k)}$2, is called repetitive on
{1,2,--- ,m}if1<ik)<m,forall k>0, and forevery 1 <1< m
and every k > 0, there exists a k' > & such that i(k') = 1.

4. Remotest set control. This is obtained by determining i(%k) such that:
d(ﬂ?k, Qi(k:)) == ma.x{d(mk, Ql) | i=1,2,.--, m} (32))
where d(z*, Q;) is the Buclidean distance between z* and the set Q;.

Other controls, i.e., the approrimately remotest set control, the most violated
constraint control, and the threshold conirol, are mentioned in Section 4.3
below.

The sequence {A\x}32, of relazation parameters, appearing in several
methods, allows, loosely speaking, to overdo or underdo the move preseribed
in an iterative step. Relaxation parameters add an extra degree of freedom
to the way a method might actually be implemented and have important

practical consequences.

48 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

3.2 A Review of Some Methods

3.2.1 The Method of Successive Orthogonal Projections

A well-known iterative algorithm for solving the convex feasibility problem
is the method of successive orthogonal projections (SOP, for short) of Gu-
bin, Polyak and Raik [105]. Starting [rom an arbitrary point, the method
generates a sequence {z* 122, that converges to a point in @, by perform-
ing successive, possibly relaxed, orthogonal projections onto the individual

convex sets (.

Algorithm 3.2.1 The SOP Method.

Initialization: 2° € R" arbitrary.

Iterative Step:
2V = g 4 APy, (2F) — o), (3.3)

where Pg, ., (z¥) stands for the orthogonal projection of z* onto the
set Qi) and {Ax}52, are relaxation parameters confined to 7 < A, <

2 —n, for all k£ > 0, with some 5 > 0.

Gubin et al. [105] proved convergence of the SOP method under cyclic
control and their proof carries over easily to the almost cyclic case. They
also proved convergence for-the remotest set control.

The SOP method is particularly useful when the projections onto the
individunal sets are easily calculated. In general, however, application of this

method would require at each iterative step the solution of a subsidiary

3.2. A REVIEW OF SOME METHODS 49

minimization problem associated with the projection onto the current set,

namely,
; k
min || z" -y |, 3.4
min |2 -y (3.4)
where |- || stands for the Euclidean norm. An instance of easy enough pro-

Jjections is the linear case, where @); are half-spaces in R, in which the SOP
method coincides with the relaxation method of Agmon [3] and Motzkin and
Schoenberg [165].

For the convex feasibility problem with sets of the form (3.1) the iterative
step of the SOP method requires that a move will be made in a direction
determined by Vg, (z**1), the gradient of Gitx) calculated at the next, and
momentarily not yet known, iterate z*+!. Methods which circumvent this

difficulty in various ways are described below.

3.2.2 The Cyclic Sﬁbgradient Projections Method

The cyclic subgradient projections method (CSP, for short) differs from the
SOP method since it requires at each iterative step a move in the direction
of the gradient (or subgradient) calculated at the current available iterate,
ie., Vgi(k)(a:k). In this way some of the computational difficulties associated
with the SOP method are circumvented. The CSP method presented by

Censor and Lent [48] is as follows.

Algorithm 3.2.2 CSP Method.
Initialization: z° € ®" arbitrary.

Iterative Step:

(ke
B+l _ ok gi(k)(m)

SN PO

£, ' (3.5)

50 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

where g (z) = max{0, g:i(z)}, t* € Bg;'('k)(a:k) is a subgradient (see,
for example, [196, page 214] of g:Ek) at the point z* and the relaxation
parameters { A }5o, are confined to the interval 1 < Ay £ 2 — €, for

all k > 0, with some e1,e9 > 0.

Control: {i(k)}2, is almost cyclic on {1,2,...,m}.

Remotest-set-controlled, or other noncyclically controlled methods with
the same iterative step can be derived from the schemes of Oettli and of
Eremin described below. The CSP method is actually a slight generaliza-
tion of the method of Eremin [85] and of Raik [194]. An extension of the
CSP method to the reverse convex feasibility problem was proposed and ex-

perimented with, though convergence was not proven, by Censor et al. [45].

3.2.3 An “Interior Points” Algorithm

An orthogonal projection of a point @ onto a set () amounts to an orthogonal
projection of x onto the particular hyperplane & which separates x from @,
and supports ¢ at the closest point to . In view of the simplicity of an
orthogonal projection onto a hyperplane, it is natural to ask whether one
could use other separating supporting hyperplanes instead of the particular
hyperplane through the closest point to z. Aside from theoretical interest,
this approach leads to algorithms useful in practice, provided that the com-
putational load of finding such other hyperplanes favorably competes with
the work involved in performing -orthogonal projections onto the given sets.

With these thoughts in mind, a general framework for the design of

algorithms for the convex feasibility problem is given by the, so-called,

3.2. A REVIEW OF SOME METHODS 51

(6,1) — algorithm. With a given point z € R and a given closed and con-
vex set @ C R" we associnic a set Ag(x) in the following manner. Choose
0<d<1land 0 <nandlet B= B(x, éd(z, Q)) be the ball centered at
with radius éd(z, @), where d(z, Q) is the Euclidean distance between z and
Q. For z & @ denote by Hq,q the set of all hyperplanes which separate (see,
for example, [196, page 95]) B from Q.

Define:
Ao(z) = {z}, if zeq@,
{m—l—)\(PH(:E)—.’E) [HGH:L-,Q, n <)\52—77}, if z&@Q.
(3.6)

Algorithm 3.2.3 The (6,7)-Algorithm.
Initialization: z° ¢ ®" arbitrary.

Iterative Step:
2t e AQi(k} (".Bk)z (3.7)

Control: {i(k)}f2, is a repetitive control sequence (see Section 3.1 above).

The next convergence theorem is proved in Aharoni et al. [4].

Theorem 3.2.1 A sequence {mk}g":() generated by a (6,1)- algorithm with
6> 0 and n > 0 converges to a point in () = Mz Q.

Observation. For § = 1 and any # > 0 the (8, m)-algorithm coincides
with the SOP method because then all hyperplanes in H, g are also sup-

porting () at the closest point to z.

52 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

Another realization of the (§,7n)-algorithm is the interior points (IP} al-
gorithm of [4]. Here is a concrete version of this algorithm for the convex
feasibility problem with sets of the form (3.1). A prerequisite of this algo-
rithm is the availability of interior points in the individual sets, thus the sets

(); have to be solid sets (i.e., have nonempty interiors).

Algorithm 3.2.4 Algorithm IP.

Initialization:

Step 1. Locate interior points y* such that g;(y%) < 0, i = 1,2,...,m.

Choose an arbitrary 2° € ®".
Iterative Step:
Step 2. Given 2*, pick Qi) by i(k) = k{mod m) + 1.
Step 3. If gy (zF} < 0, set 2%*+! = 2F and return to Step 2.
Step 4. If gi{k)(:r;k) > 0, define z(8) = 8y**%) + (1 — A)z*, where 0 < 9 < 1.

Step 5. Solve the single equation gy (2(#)) = 0, denote by 6; the smallest

value of # for which z(8)} solves this equation, and set 2% = z(6;).
Step 6. Calculate a subgradient ¢, € dg; (2*).

Step 7. Let
(tk: zk) — <tk: mk)
(Rl &

where 0 < 5 < A, € 2 — i are relaxation parameters, and return to

= b 4 N tk, (3.8)

Step 2.

3.2. A REVIEW OF SOMFE METHODS 93

3.2.4 The Schemes of Qettli and Eremin

The methods of Oettli [183] and of Eremin [84, 86] are algorithmic schemes

for the solution of the convex feasibility problem with sets of the form (3.1).

Algorithm 3.2.5 Oettli’s Scheme.
Initialization: z° € R" is arbitrary.

Iterative Step:

i .
AR L VY ;[P?S:”)‘? i 2 & Q. (3.9)

Here Q = N2, Q; and ¢ : R" — R is defined by

o(z) = ploi (2), 93 (2), ..., gi{=)),

where g (z) = max{0, gi(z)}. In the definition of the auxiliary function
tp, we are free to choose any monotonic norm p: ®™ — R, (see, for
example, 184, page 52]. t* € dp(zF) is any subgradient of ¢ at ¥ and
the relaxation parameters A, € (0,2) are such that 3324 A\ (2 - Ag) =
+co.

Control: The control of the method is determined by the choice of the

monotonic norm p.

Various choices of the monotonic norm p in Oettli’s scheme give rise to
different concrete algorithms. Choosing p to be the log-norm in R™ yields

the remotest-set-controlled method of subgradient projections for solving

54 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

the convex feasibility problem. However, we believe (but are unable to ver-
ify) that there is no monotonic norm p that upon substitution into Qettli’s
scheme yields the CSP method, Algorithm 3.2.2.

The Scheme of Eremin resembles that of Oettli but is not quite identical

to it.

Algorithm 3.2.6 Eremin’s Scheme.
Initialization: 20 € RN is arbitrary.

Tterative Step:

z*, if d(z¥) <0, (3.10)
% — A f‘liexﬁ,}! e*, otherwise, '

where d : R® — R is a suitably chosen continuous convex function and

ef = e(z*) with e : B* — R" a suitably chosen mapping.

Relaxation Parameters: {\;}32, are confined to ¢ < Ay < 2 — 9, for

all & > 0, with some €1, > (0.

Control: Determined by the choice of the functions 4 and e.

We do not go here into any further details and direct the reader to
Eremin's papers for the precise conditions on the functions d and e involved
in the scheme. Various specific methods may be derived from Eremin’s
algorithmic scheme through a proper choice of the functions d and e. In

particular, the choice d(z) = max 1<icm gi(z) and & = Vit (x*) with

3.2. THE BLOCK-ITERATIVE PROJECTION ALGORITHM 95

i(k) € {i] gi(z¥) = d(=*)}, again gives rive to a remotest-set-controlled
gradient projections method, and is, therefore, equivalent to Oettli’s method
with the l,-norm. Other choices of d and e, which are equivalent to choices of
the ly-norm and the weighted {;-norm in Oettli’s scheme, are given in (86, 87]
To the best of our knowledge it is not possible to choose d and e such that
the CSP method will be obtained, thus, the cyclic case has to be studied

separately.

3.3 The Block-Iterative Projections (BIP) Algo-

rithm

The SOP method (Algorithm 3.2.1) as well as its generalization in the
(6, m)~Algorithm (Algorithm 3.2.3) are sequential algorithms. A fully simul-
taneous iterative projections method is obtained by projecting the current
iterate z* separately and concurrently onto each and every set (J;, i =
1,2,---,m, and then taking the next iterate z¥*! to be a convex combina-
tion of all the projections Py, (z*). This idea was first suggested for the case
of linear equations by Cimmino [55], see also in Gastinel’s book [98).

The Block-Iterative Projections (BIP) method is an algorithmic scheme
which encompasses both SOP and the fully simultaneous Cimmino idea.
Its added novelty lies in the fact that it allows the processing of blocks (i.e.,
groups of sets ;) which need not be fixed in advance, but may rather change
dynamically throughout iterations. The number of blocks, their sizes, and
the assignment of sets (; to blocks may all vary, provided that the weights
attached to the sets are not allowed to fade out, i.e., they have to fulfill a

technical condition given in Theorem 3.3.1 below.

56 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

Let T = {1,2,...,m}, and let {Q; | ¢ € I} be a finite family of closed
convex sets. The intersection @ = N{Q; | i € I} is again assumed to be
nonempty. Denoting the nonnegative ray of the real numbers by Ry, a
mapping w : T — Ry is called a weight vectorif 3.y w(i) = 1.

A sequence {w* | k= 0,1,2,...} of weight vectors is called fairif for every
¢ € I there exist infinitely many values of k for which w*(i) > 0. Given a
weight vector w, we define the convex combination Py(z) = Y, w(#)F;(x)
where P;(z} is the orthogonal projection of onto the set ;. The general

scheme for block-iterative projections is as follows:

Algorithm 3.3.1 The BIP Algorithm.

Initialization: 2° € N is arbitrary.

Tterative Step:
gl =zF 1 ,\k[Pwk(:Ek) - :Ek], (3.11)

where {w*} is a fair sequence of weight vectors and {A;} is a sequence

of user-determined relazation parameters.

The special case where the weight vectors are given by w® =), with
et € N being the tth standard basis unit vector (having one in its tth coordi-
nate and zeros elsewhere), gives rise to a row-action method (see Section 1.2,
and Chapter 4, below). The BIP algorithm then coincides with the SOP
method {Algorithm 3.2.1), and {i(k)} is a control sequence of the algorithm.
For example, a cyclic control sequence dictates i(k) = k(mod m) -+ 1.

At the other extreme, choosing any sequence of weight vectors {w®} with

wh(i) #£0, for all k =0,1,2,..., and all i € I, leads to a fully simultaneous

3.3. THE BLOCK-ITERATIVE PROJECTION ALGORITHM 57

Cimmino-type algorithm in which allsets {Q;} are being acted upon in every
iterative step; see [8, 39, 133].

A block-iterative version with fixed blocks may be obtained by partition-
ing the indices of T as I = [;UI;U--- Uy into M blocks and using weight
vectors of the form

wh = Dier, ,, wh(i)el,
where {t(k)} is a control sequence over the set {1,2,..., M} of block indices.

In this case, if one considers the linear inequalities problem with
Qi = {zeR*|{d},z) < b}, (3.12)

for every i € I, where a* € ®*, b; € R, then a block version of the relax-
ation method of Agmon, Motzkin, and Schoenberg (AMS) [3, 165, 153] is
obtained. Proposed in [42] and referred to as “block-AMS” in [41} and as

“block-Cimmino” in [42], this method has the following form.

Algorithm 3.3.2 The Block-AMS or Block-Cimmino Algorithm.
Initialization: z° € R is arbitrary.

Tterative step:

oFH = gk 4 N, [> wk(i)ci(xk)ai} : (3.13)
i€lyry
where {t(k)} is a cyclic or almost cyclic control sequence on {1,2,..., M}

and c;(z*) is defined by

¢;(2*) = min (0, éf—(az’—xk)) . (3.14)

I |12

o8 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

"The generality of the definition of a fair sequence of weight vectors per-
mits also variable block sizes and/or variable block assignments to be used.
This turns out to provide a necessary mathematical justification for some of
the block-iterative algorithms used heuristically in the field of image recon-

struction from projections, see [118, 117].

3.3.1 Convergence of the BIP Algorithm

The following notation will be used. For any J C I and any weight vector w,
define w(J) = 3;¢; w(j). For any B C R™ denote by J(B) the set of indices
of those sets @; which do not meet B, ie. J(B)={ieI|BnQg; = 0}. For
a singleton B = {x} write J({z}) = J(z} ={iel|a & Q:}.

B(z,p) = {y e R | |z — y||< p} is the ball with radius p centered at
z € R". Finally, define = 4 A[P;(z) — 2] = P; \(z)} and = + A[Py(z) — 2] =

Py s (z), where A € R and w is a weight vector.

Proposition 3.8.1 If x € R*, then for every y € Q; and every A € [1,2 —

9] with some fized 71,70 > 0,
| Pia(@) —yll < llz—yll. (3.15)
Moreover, if x € QQ;, then the inequality is strict,

Proof. The following holds

1 Pa(=) = yIP=llz -y ? +X% | Pi(2) - 2||* +2X(z — 3, Pi(z) - =)

= llz—yl* +A(A - 2) | B(2) - 2|* +2X(Pi(z) — @, Pi(=) — 1)

A

lz—yl|* —mim | Pi(e) — =) < |z —y|? (3.16)

3.3. THE BLOCK-ITERATIVE PROJECTION ALGORITHM a9

This follows from the fact that z — Pi(z) supports Q; at P;(z), which
provides that (Fy(z) — , Pi(z) — y) < 0, for every y € Q;. See, e.g., {105,
Lemma 1}. The last inequality of (3.16) is strict if z & ;. O

Proposition 8.3.2 Letg € Q =n{Q; | i € I}, and X e [11,2 — 9], with

71,72 > 0 be fized, and let w be any weight vector. Then for every z € R*
[Pup() —gll<llz—ql. (3.17)

Proof. Obviously, Py a(z) = 3> ;c; w(i) P a(x), and repeated use of Propo-
sition 3.3.1 with y = ¢ shows that P; () € B = B(q, || —q ||). The convex

combination must, therefore, also be in B. |

Proposition 3.3.3 Let u € R*, J = J(u), A € [11,2 — 1] with 1,72 > 0
fized, and let w be any weight vector. Then for every r > 0 there emists o

real nonnegative vy such that if |z||< r then
[Pua(z) —ull < [l2 —ulf +yw(J). (3.18)
Proof. Define
n = max{| Pia(z) —ull [z]|<r, jeJ, A€ n,2-m]}

and v = max{yi, r+ ||u||}. Then, by Proposition 3.3.1, || PjA(z) - u| <
||z~ || whenever j € J, implying that

I Poat@) —ull =l Tieswli) [Pra(2) — ul + Zjgs w(i) [Fialz) — o] |
Swlm+I-w())|z—ul
=z —u | +w Y n-z-ul)
<z —ull +yw(J}). O

60 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS

Proposition 3.3.4 Let ¢ €), and let B C R” be any compact set, J =
J(B); Let X € [71,2— 1) with 71,72 > 0 fized; and let w be any weight vector.

Then there exists an o > 0 such that, for every z € B,

| Poa(z) —all < 1z — gl — cw(J). (3.19)

Proof. Define o = min{(]|z —¢g|| — | Pja(z) —¢qll) | z € B, s J}.
From Proposition 3.3.1 and the compactness of B, it follows that o > 0.
From the definition of @ we have that || Pja(z) —¢|| < ||z — ¢l — @, for
every = € B and every j € J. Using this and the fact that if 7 € J then
| Pialz) —alt < |z — q], we get

I Poa(a) = qll =l 3 w(i) [Piala) — gl + 3 w(i) [Piale) — d] ||

jed igJ
<w()z — gl —e) + 1 —w(D)] [z —qll= ||z~ gl ~ow(J). O

To formulate the convergence theorem we use some additional notation.
For a given fair sequence {w*} of weight vectors we write F({w*}) = {i €
I'|3°%° ,wk(3) = 400} and define the set @ = N{Q; | i € F{{w*})} with
the convention that if F({w*}) = 0 then @ = R".

Theorem 3.3.1 If Q # 0, if {w*} is any fair sequence of weight vectors,
and if { Ay} is any sequence of relaxation parameters for which Ay € [11,2—73)
forallk =0,1,2,--- where 7,72 > 0, then any sequence {z*} generated by

the BIP Algorithm (Algorithm 8.8.1) converges to a point * € Q.

Proof. Any sequence {x*} generated by the BIP Algorithm is Fejer-
monotone with respect to @, i.e., for every k = 0,1,2,---, || 2*t1 — ¢ ||

< ||z¥ —q| for any ¢ € Q. This follows from Proposition 3.3.2 and, in

3.3. THE BLOCK-ITERATIVE PROJECTION ALGORITHM 61

turn, implies that {z*} is bounded. Next we show that {z*} is convergent.
Assuming the contrary, it has two or more distinct accumulation points. Let
u be one of them, let v be the one closest to u (if there are several such v,
pick any), and let 7 = [|u — v||. We first show that u € Q. The sequence
{llz* — ||} is monotonically decreasing and bounded from below. Since u
is an accumulation point of {z¥}, it follows that [|z* — g || — ||u—gq | as

k — oo, and that, for all £ =0,1,2,...,
lz* —qll = lu—qll. : (3.20)

Suppose that u € . Choose p > 0 such that p < r/2 and B = B(u, p)
satisties BN Q; = @ for every j € J{u). Let J = J(B), and let v and « be

as in Propositions 3.3.3 and 3.3.4, respectively. Define

[
v+a’

E=p

and choose k such that || ¥ —u ||< ¢. Since v is also an accumulation point
and p < 7/2, there exists an 7 > k such that 2™ ¢ B. Choose the first such

m. Then, by Proposition 3.3.4,

m—1 m—1
Iz — gl < [la* —qll —a > w' () <llu—qll+e—a 3 w'(J). (3.21)
t=k =k
Using (3.20) and (3.21), we get
m—-1 ¢
> wh(J) < —. (3.22)
t=k @
On the other hand, by Proposition 3.3.3,
m—1
2™ —ufl < |2 —ul + v 3 wi(J), (3.23)

t=k

62 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS
which, together with (3.22), yields
| 2™ —u < e-}-%ﬁmp, (3.24)

contradicting ™ ¢ B, and hence showing that u € (). Using Fejer mono-
tonicity with regard to u, which amounts to the monotonic decrease of
{|| ¥ — . ||}, the conclusion that {z*} converges to u follows. Note that
u € @ has only been shown under the (false} assumption of several distinct
accumulation points. Hence the limit =* of any {z*} generated by the BIP
Algorithm still needs to be characterized, and we show that it belongs to
Q. Assume that z* € @, for some iy € F({w*}), ie., 1 p2gwh(ip) = +oo.
Choose a ball By centered at z* such that By Ny, = . Let k be such that

£™ & By whenever m > k. By Proposition 3.3.4 there exists a > 0 for which

lz™ — g}t < l|z* ~ gl Z w'(J(B1)), (3.25)

for every m > k. But since ig € J(B)) and ig € F(w®), we have

m—1
. i _
Jim > wh{J(B1)) = +oo,
t=k
implying || ™ — q |-+ --c0, as m — oo, which is impossible. O

The condition 4 € F(w*) is quite mild. In cases of practical importance,
such as the row-action case or cases where fixed weights are attached to the

constraint sets, the condition holds and actually yields 0=0q.

3.4 Bregman’s Sequential Algorithm

Bregman constructed in [31] a sequential algorithm which (asymptotically)

solves the CFP by performing successive generalized projections onto the in-

3.4, BREGMAN’S SEQUENTIAL ALGORITHM 63

dividual sets Q, starting from an arbitrary point. We present this algorithm
now.

Let f € B(S) be given as well as a family of closed convex sets Q; C
R iel

Algorithm 3.4.1 Successive Generalized Projections.

Initialization: 2° € § is arbitrary.

Iterative Step: .
ol = P (2F), k=0,1,2,... (3.26) -

where {¢(k)}x>0 is a control sequence.

For this algorithm to be well-defined we need the following assumption:
Assumption A2: f ¢ B(S) is zone consistent with respect to each Q;, i =

1,2,--.,m,

Theorem 3.4.1 Let f € B(S) be a given Bregman function with zone S. Let
a CFP be given by a finite family of closed convex sets Q;, i€ I, such that
Q@ = Nier@i and QNS # 0. Let i(k) = k(mod m) + 1, k > 0, be a eyclic
control sequence. Under these conditions, any sequence {Sﬂk}kzg generated

by Algorithm 8.4.1, under Assumption A2, converges to a point z* € Q.

Proof. The proof consists of three steps: (i) {z*}i>¢ is bounded, hence
confains at least one accumulation point; (ii} every accumulation point of
{z*}x>0 belongs to Q; (iii) {z*}x>0 has a unique limit point.

(1) For any z € QNS we have, according to Theorem 2.5.1 and Algorithm
3.4.1, under Assumption A2,

Df(mk+l, a:k) < Df(z, :Ek) - Df(z, a:k“), (3.27)

64 CHAPTER 3. CONVEX FEASIBILITY PROBLEMS
which yields, using Lemma 2.2.1, the inequality,
Di(z, 2" < Dp(z,a*), VzeQnS, Vk>0. (3.28)

This property is called D;— Fejer monotonicity of the sequence {z*} >0 with

respect to N'S. This implies that {z*}zs0 is bounded because
z® € Ly(z,@), VEk >0, (3.29)

with @ = Dy(z,2°) and assumption (iv) of Definition 2.2.1 applies.

(ii) Let {z*}rer, with K C Np = {0,1,2,3,...} be a subsequence con-
verging to z*. Let {x*}rear, M C K, be a subsequence all whose elements
belong to one set, say @;. From the sequences {1}, 1=2,3,...,m,
one can extract convergent subsequences, so we assume, without loss of gen-
erality, that

Pl =g i =1,2,...,m, (3.30)
k—oo, ke M

and z*!' = z*. Since {z* 1 }pcp C @y, it follows that
e @y, Viel (3.31)

By (3.28) and the nonnegativity of Dy, limg .o Df(z,:ck) exists for any
z€QNS. In view of (3.27), limg_e0o Df(mk“,mk) = 0 thus also
lim Ds(z**! %) =0. (3.32)

k—oo, k€M

Assumption (vi) of Definition 2.2.1 can be repeatedly used to show that,

from (3.30) and (3.31),
I R By (3.33)

which, by (3.31), shows that x* € Q.

3.4 BREGMAN’S SEQUENTIAL ALGORITHM 65

(iii) Let
li k=g S ,
poom ot =o' € QnNSs, (3.34)
1- k — gk i .
ol T =T EQRNS, (3.35)

for some Ky C Ny and Ko C Ny, be two convergent subsequences of

{z*}rem, generated by Algorithm 3.4.1. Define
h(z*) = Dy(s",2*) — Dy(a*, 2%, (3.36)
and recall an argument from step (ii) of this proof which guarantees that

lim h(z*) =T (3.37)

k—oc

exists. Therefore, repeating this limit once over X7 and then over Ko, and

‘using assumption (v) of Definition 2.2.1, we obtain

F= —Dy(s",2%) <0, (3.38)
h = Dyg(z**,2*) >0, (3.39)

vielding
Dy(z*, ™) = Dy(z**,z*) = 0, (3.40)

which implies z* = z**.]

Chapter 4

Row-Action Algorithms for
Linearly Constrained

Optimization Problems

4.1 Introduction

The main feature of row-action methods is that they are iterative procedures
which, without making any changes to the original constraints matrix A, use
the rows of A, one row at a time. Such methods are important and have
demonstrated effectiveness for problems with large or huge matrices which
do not enjoy any detectable or usable structural pattern, apart from a high
degree of sparseness.

In this chapter, we present row-action methods for handling huge and
sparse systems (i.e., whose number of unknowns and number of equations

or inequalities, each fall in the range of hundreds of thousands), linear or

67

68 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

nonlinear, of equalities or inequalities. These methods, scattered in the
literature, differ among themselves in various aspects. Some of them are
old, some are new, and they were used in different and unrelated fields of
application resulting in duplication of efforts and repeated discoveries.

In defining and bringing row-action methods together in a coherent pre-
sentation we have two aims in mind. First, to facilitate cross-fertilization
between various fields of application where row-action methods are, or might
be, used, and second, to pave the way for a better insight into their mathe-
matical nature.

Several row-action methods for linearly constrained optimization can be
treated in a unified manner within a framework which employs generalized
Bregman distances and generalized projections. We present this uniform
framework here but first discuss some general matters related to row-action

methods.

4.2 The Problem, Solution Concepts and the Spe-
cial Environment

4.2.1 The Problem

In many fields of application and in different scientific disciplines, including
some of those described in later chapters of these Notes, the modeling of the

physical or mathematical problem leads to a system of linear equations.
(o, zy=b;, i€, (4.1)

where I = {1,2,...,m}, o € ®*, o' £ 0, x € R*, b € R. We also write

the system (4.1} as Az = b where A denotes the m x n matrix whose ith

4.2, SOLUTION CONCEPTS 69

row is (o")T and T stands for transposition.

This system is sometimes underdetermined due to lack of information,
often it is greatly overdetermined in which case the chances that it is self-
contradictory (inconsistent) are high. Facing reality, we have to be ready to
deal with severely ill-conditioned systems. Even if none of these unpleasant
situations occur, we might have reason to believe that the exact algebraic
solution of the system is less desirable, in terms of the original problem for

which the system was set up, then some other, differently defined “solution”.

Such a belief may be nourished by evidence about measurements inaccu-
racy, noise corruption of data, discretization in the model, etc., and therefore,
in such cases, as well as in the situations described above, it is useful to turn
to a different solution concept rather than aim at the exact algebraic solution

of the system.

4.2.2 Approaches and Solution Concepts.

The underlying idea is to try to use the information contained in the system
(4.1) in a way which will reflect our limited belief in the equations, and
there are indeed several different ways of doing so. Fach of the approaches
described below leads to a variety of solution concepts and the decision which
one to choose in any particular application rests with the user and should

usually be made with reference to the specific problem at hand.

(i) The feasibility approach: Here one seeks at point z that Kes within a
specific vicimity of all hyperplanes defined by the equations (4.1). This

is done by prescribing some tolerances e;, for all i € I, and aiming at

70

CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

any solution z € R™ which lies in the intersection of all hyperslabs

b — oy < o o) <hi+oy, i€l (4.2)

Tolerances a; have to be set in such a manner that the feasible region
is not empty but also not too large. Inequalities of the form (4.2) are
called interval inequalities and the feasibility problem will be called
an inferval feasibility problem. If we deal with a solution method that
does not take advantage of the fact that the inequalities come in pairs
we regard the system (4.2) simply as a system of one sided linear
inequalities with twice as many inequalities, obtained by multiplying

one of the two sets of inequalities by (—1).

(ii) The optimization approach: A predesignated objective function f(x),

[+ ’* — R, according to which a particular element will be sorted out
from the feasible region (4.2), as the solution of the original real-world

system, must be chosen. If the resulting optimization problem:

minimize f(z), subject to bj—o; < {af,x) <bj4oy, i€, (4.3)

does not have a unique solution, a secondary optimization criterion is
sometimes used, i.e., another objective function g(z) is optimized over

the set of solutions of (4.3).

The problem (4.3) is an interval programming problem; and one would
prefer a solution method that benefits from the extra slab-structure
of the constraints over a one sided linearly constrained optimization
technique. Tn both the feasibility approach and the optimization ap-

proach additional information about the real-world preblem may take

4.2. SOLUTION CONCEPTS 71

the form of additional inequalities that will further restrict the feasible
set. A common case is that of box constraints

wi$$isvi: 2._—“'1,2,...,?'1.,

which may reflect some a-priori information about the desired solution.
Although these inequalities can be regarded as interval inequalities
(with @; = (', z), where ¢’ is the ith standard basis vector), a good

solution method should take care of them in a simpler way.
(iif) The regularization approach: Here the problem:
“solve” Az =1b subject to z € Q, (4.4

where Az = b is the system (4.1) and () represents additional con-

straints, is treated by replacing it with
Minimize [f(z) + rg{Az — b)] subject to = € Q, (4.5)

where f : " — R and g : R™ — R, are some suitably chosen convex
functions and r is a user’s specified parameter reflecting the relative
importance attached to each summand. Least squares regularization,
where f(z) and g(z) are both of the form || z || is by far the most
common approach. Application of row-action methods to (4.5) in this
case was suggested by Herman, Hurwitz and Lent [112]. Other choices
of f and g are possible, see, e.g., Kovarik [143]. Frieden [95, 96] used
an entropy regularization approach where both f(z) and g(x) are of

the form 3, z; In ;.

72 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

4.2.3 The Special Environment.

An indispensable part of the mathematical problem involved in any of the
approaches described above is the environment within which the problem is
addressed. In some significant application fields the environment is distin-

guished by a combination of some or all of the following properties.

(i) Dimensionality: The system (4.1} is huge, e.g., n > 10° and m even
greater, see, e.g., Held et al. [109} and Herman and Lent [114].

(ii) Sparseness: The matrix A of the system (4.1) is sparse. For exam-
ple, in image reconstruction from projections, see, e.g., Herman and

Lent [114], less than 1% of the entries are nonzero.

(iii) Lack of structure: One fails to recognize any structure in the dis-
tribution of nonzero entries throughout A. Alternatively, one might
sometimes be able to detect a special structure but be unable to take

advantage of it.

(iv) Time restriction: It is not only that computation time has a price,
but in some applications (image reconstruction from projections for
medical diagnosis is an example, again) there might be an inherent time
restriction, i.e., a solution-which is acceptable in terms of the original
real-world problem (say, of radiological usefulness) is demanded within

minutes of data collection.

{v) Computation power restriction: Sometimes solution methods are
explicitly required to perform efficiently on a machine with low memory

or other specifications.

4.2. ROW-ACTION METHODS 73

A prime example is the practical problem of computerized tomography,
see Chapter 6 below, where the combination of all five properties usually de-
scribes the environment for the problem in any of the mentioned approaches.
Situations where some of these environiental properties hold, appear in var-
ious other fields, some of which are discussed in Chapter 6.

In such an environment the use of general purpose techniques might be
impractical and solution techniques have to be carefully chosen so as to be
able to cope with the environmental situation in a computationally feasible

way.

4.3 Row-Action Methods, Controls and Relax-

ation Parameters

Definition 4.3.1 (Row-Action Method.) A row-action method (RA-method,

Jor short) is an iterative algorithm which has the following properties:

1. no changes are made to the original matriz;
2. no operations are performed on the matriz as a whole;
8. in a single ilerative step access is required to only one row of the matriz;

4. in a single iterative step, say when 81 is calculoted, the only iterate

needed is the immediate predecessor x*.
Several remarks concerning this method are in order.

(a) We consider the concept of RA-method as a general framework within

which various concrete algorithms may or may not fall. As will be

74

CHAPTER 4. CONSTRAINED QPTIMIZATION PROBLEMS

seen below, the framework is broad enough to include various kinds
of algorithms differing in nature and structure, as well as in the prob-
lems which they are designed to solve. Moreover, there are algorithms
which are not formulated as RA-methods at all but lend themselves
to a row-action implementation. One such example, which is discussed
below, is Hildreth’s algorithm, Section 4.6.2. Note that Richardson’s
method (not considered here, see, e.g., Young [231] also has a row-

action implementation.

(b) In what follows we will be particularly interested, for obvious reasons, in

R.A-methods which are further characterized by the fact that the algo-
rithms present modest arithmetical demands. While this requirement
ig not precisely defined and might well be considered as a universal
goal, we stress it here to make the point that in the special environ-
ment described above (particularly dimensionality), performing oper-
ations which are just a little more complicated might quickly reduce
the practicality of a method. Some of the methods described in the se-
quel comply to this demand less than others; e.g., Hildreth’s algorithm
requires the storage and calculation of a sequence of dual vectors and
Bregman’s algorithm requires the execution of a generalized projection

at each iterative step.

(c) In [45] we used the term “row-generation methods”, but row-action

methods seems more appropriate and helps to make clear the distinc-
tion between the methods and row-generation capability. The latter
refers to the situation where it is possible to avoid storing the matrix

of system (4.1} explicitly, and instead to have the nonzero entries of

4.3. ROW-ACTION METHODS 75

the ith row, together with their locations, generated from the experi-
mental data each time, anew. Property (iii) in Definition 4.3.1 makes
R A-methods favorable in such cases. In the absence of row-generation
capability one would, of course, consult any of the efficient methods

for storing a sparse matrix (see, c.g., Duff [78]).

The combination of the four restrictions in Definition 4.3.1 together with
the additional condition of modest arithmetical demand is enouglh to make
RA-methods preferable choices when any of the described approaches is
taken within the special environmental of Section 4.2.3. Next, we introduce

some notions common to RA-methods.

Definition 4.8.2 (Control Sequence.) A sequence of indices {i(k)}$2,
according to which the rows of the matriz A are taken up, is called a control
sequence of an RA-method, i.e., in the iterative step k — k4 1 the i(k)th

row 15 used.

The most important controls were already defined in Section 3.1. These
are the cyclic, the almost ¢yclic, the repetitive and the remotest set controls.
Here we give some additional controls.

In RA-methods, constraint sets (J; are often associated with the equa-
tions of the system (4.1). Usually the sets @; are hyperplanes H; = {z €
R | {a*,z) = b;} or halfspaces L; = {x € R™ | {a’,z) < b;} or hyperslabs,

which are intersections of pairs of parallel halfspaces.

Approximately remotest set control. Denote maxierd(z®, Qi) = 6(z¥),

and choose the i(k}’s to satisfy the condition

hm d(z®, Qi) =0 = lm 6(zF)=0 (4.6)
k—oo k—o0

76 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

Obviously, every remotest set control is an approximately remotest set
control, but it is also true that every cyclic control is an approximately
remotest set control {see Gubin et al. [105, Lentma 4]), and these facts
make the approximately remotest set control an important theoretical

tool.

Most violated constraint control. This control, closely related to (3.2),
is obtained by determining which constraint is most violated by the
iterate =%, e.g., if Q; = {2z € R* | fi(x) < 0}, i € I, are the constraint

sets under consideration, then one has to determine at each step
figy (z) = max fi(2*), (4.7)
and take i(k) as the control index if fiy(z*) > 0.

Threshold control. (McCormick [156]). Let {7;}72, be a given sequence of
positive real numbers converging to zero, and suppose that z*, i(k—1)
and j(k—1) have been determined. With j(k) = 7(k—1), i(k) is chosen

ag the [irst member of the sequence
-1+ 1L ik-1)+2, -, m—1,m, 1, 2, -, i(k),

that yields
| (@i®), %) — bygy) 12 i Il @7], (4.8)

and, if this condition cannot be met, the process is repeated with j{k)

incremented by one.

Intuition tells us that controls like the remotest set control or the thresh-

old control are more sophisticated than the cyclic control and therefore might

4.4. THE METHOD OF BREGMAN 77

lead to a faster convergence of the RA-method to which they are applied.
On the other hand, one must bear in mind that in the special environment
we are in, any of the controls other than a cyclic or an almost cyclic control
may violate the additional requirement of arithmetical simplicity, and thus
make the RA- method impractical. For this reason we emphasize in the se-
quel only those two controls, although sorne RA-methods can accommodate

other controls too.

4.4 The Method of Bregman

Consider the problem

min f(z},
subject to {a,z)} <b;, i1€I={1,2,...,m}, (4.9)
z€S.
Let H; = {z | (o}, z) = b}, Qi = {z | {a},z) < b;}, denote Q@ = N%,Q;,
and assume that @N S # 0. A = (a;;) is the m X n matrix whose ith row is
(a))T. Assume that all @* # 0. Assume that f € B(S), see Definition 2.2.1,

and that f is strongly zone consistent with respect to every H;. Define the

following sets:
Z={zxec8|3 z&R™ such that Vf(z) = —AT2}, (4.10)

Zog={z € 8|3 z2€ RN, such that Vf(z) = — ATz}, (4.11)

which are assumed nonempty in the sequel.
Bregman’s iterative method takes at each iteration a hyperplane H;,

projects onto it the current iterate, and decides accordingly what the next

78 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

iterate will be. The sequence of indices that governs in this way the appli-
cation of the method to a problem is the control sequence of the method.
Bregman deals only with the cyclic case, whereas here the almost cyclic
control is established. This extension (almost cyclic control is less restric-
tive than cyclic) is absolutely necessary for the development of the interval

programming method in the next section.

Algorithm 4.4.1 Bregman’s Scheme with Almost Cyclic Control.

Initialization: Assume

20 & Zy is arbitrary, and

(4.12)
2 is such that Vf(z%) = —AT2°.
Iterative Step:
V() = Vi) + oa®,
Skt = 2F —¢petl®), (4.13)

Cy; = m%ﬂ(Zﬁk),Bk),

where By, is the parameter associated with projecting z* onto Hygy.
We assume throughout that the representation of every hyperplane is
fixed during the whole iteration process, so that the values of By are

well defined.

Control: The sequence {i(k)}?2, is almost cyclic on I

The next lemma gives insight into the behavior of Algorithm 4.4.1 and

justifies the geometric interpretation given in Remark 4.4.1.

4.4. THE METHOD OF BREGMAN 79

Lemma 4.4.1 Fork =0,1,2,..., the iterates produced by Algorithm 4.4.1

are all zF1 ¢ Qir)- Moreover if z* ¢ niQyk), then g+l g Hyqy.

Proof. Let z and y be any two points in 5. Then, the following identity is

easily derived:
D{z,y) + D(y,z) = (Vf(2) = V§({y),z —). (4.14)

Let #°+1 be the projection of z* onto Hjy, and assume that (4.13) is

1

solvable for z**1. Then, replacing = by zF*! and replacing y by #%*! in

(4.14), we get, by Lemma 2.2.1,
(cx — Bi){a®, 2P+t — g8+1y > 0, (4.15)

From (4.13),
Cr < erw
and, by definition,
('), 2441y = by g,

therefore,

(a'®), zhHy < bi(k) (4.16)

follows and proves the first part of the lemma.

To prove the second part, we look ahead to (4.17), where it is shown that
2% > 0, for all k. We are assuming that z* ¢ intQyk), SO bi(k)—(ai(’“),mk) <0,
which, from (2.28)-(2.29), implies that By < 0.

But then, from (4.13), ¢t = By, and z*t! is the generalized projection

of z* onto Higy. : m|

Remark 4.4.1 For the special case f(z) = 1 ||z ||* (Example 2.2.1), and

with the cyclic control, this is a quadratic programming method, see [121, 73,

80 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

150]. In the quadratic programming case, the iterative step (4.13) assumes
a very simple form; but, in the general case, the iterative step (4.13), which
is a set of n nonlinear equations, has to be solved at each step, and it is the
effectiveness of the method chosen to solve this inner-loop subproblem that

determines the overall performance of the method.

There are three possible cases that mnay occur in a typical step when the
i(k)th constraint is taken up. If z* € Hjky, then zk zF; if oF ¢ Qi)
then z**t! is the projection of z* onto Hygy or the projection of z* onto
another hyperplane ffi(k}, say, which is parallel to Hjy) and lies entirely

within Q;y. All of these possibilities are covered by (4.13).

4 respectively.

We now present a convergence theorem for Algorithm 4.4.1 as applied to
the standard problem {4.9}. Bregman’s original method of proof, from [31],

iz followed closely, validating the almost cyclic control.

Theorem 4.4.1 Assume the following:
(i) f € B(S);
(ii) f is strongly zone consistent with respect to each H;, i€ I, of (4.9);
Algorithm 4.4.1.
(1) {i(k)}2, is almost cyclic on I with constant C;
(iv) Zy # .
Then, any sequence {z*} produced by Algorithm 4.4.1 converges to the

point x* which is the solution of (4.9).
Proof. The proof consists of the following steps.

Step 1. a* € Zy, for all k > 0.

4.4. THE METHOD OF BREGMAN 81

Step 2. Define the Lagrangian L(z, z) of (4.9), and show that lim L{z*, z*), as

k — oo, exists.
Step 3. Dy(z**1,2%) - 0, as k — 0.
Step 4. {z*} is bounded.
Step 5. Any accumulation point of {z*} is feasible for (4.9).
étep 6. z* is the solution of (4.9).
Step 1. We show that
a® € Zy, for all k> 0. (4.17)

We proceed by induction. Observe that z° € Zy, by (4.12). Assume that
@ € Zy, for all | < k; let i(k) be the next index, and abbreviate i(k) = 4.

Then, from (4.13}, together with A%¢! = af, we get
Vi) = AT 4 ol = AT (2* — cret) = —AT 2L (4.18)

showing that z¢+! € Z. But ¢; < zF, by (4.13); therefore, z* > 0 implies
that 2**1 > 0, concluding the proof of (4.17). O

Step 2. Define the Lagrangian of (4.9} as
L{z,z) = f(z) + (z, Az — b). (4.19)

First, the values of the Lagrangian at (z*, z*) form an increasing sequence,
ie.,

dp = L{z® 2Py — L2k, 2F) >0, for all k. (4.20)
This can be shown as follows. From (4.19), (4.20), (2.1), and from

(2%, Azky = (AT 2% ab) = ~{V f(zF), &), (4.21)

82 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

which holds for all k because of (4.17), we may write
di = Dp(ahHh 28y — (1 2 28 by ¢ (V(R) — V() 26 (4.22)
which yields, by (4.13),
dp = D(a®, 28) 4 eplbs — (aF, 2MTH]. (4.23)

The conclusion that dy > 0, for all k, now follows; for, fromn Lemma 2.2.1,
Dy (z®1,2*) > 0, while for the second summand we know from Lemma 4.4.1
that ¥+ € @y, i = i(k), so that b; — {a?, z"t1) > 0.

By (4.17), we know that 2f > 0, so that the only way c; could be
negative is if it were equal to By. But, from (2.28)-(2.29), we see that
in this case = ¢ Q;; hence (see Lemma 4.4.1), 2**1 € H;, implying that
b; — {at, 1y = 0, thus proving that, in any case, the second summand in
(4.23) is also nonnegative.

Going further, we prove existence of the limit

lim L{z*,2*) = F, (4.24)

k—oo
say. In view of (4.20), we have only to show that
{L{z*, 2*)} is bounded from above for all k. (4.25)
To see this, take any z € @ N S, and verify that
(AT2F 2 — 2%y = (2%, Az) — (2F, Ax®) < (2F b~ A, (4.26)

because

Az <b. (4.27)

4.4. THE METHOD OF BREGMAN 83

From (2.1), (4.17), (4.26), we get
Dy(z,a%) < f(2) = f(2*) + (2¥,b — Ay = f(2) — L(at, %), (4.28)
from which we infer that, for any z € Q N5,
L(z",2%) < f(=) — Dy(z,2%) < f(2), (4.29)

because of Lemma 2.2.1, thereby proving (4.25).

Step 3. The convergence to zero of the differences of consecutive iterates,
often a cornerstone in the proof of convergence of iterative methods, can now
be deduced without difficulty. Here the difference is in the sense of the I +-

function associated with f(z) according to (2.1), i.e.,
Df(a:k“,a:k) —0, as k— oo, (4.30)

From (4.23), we take 0 < Dg(z*,2%) < dj and use (4.24) to see that
di — 0, as k — oo, thus validating {4.30).]

Step 4. Now, we show that
the sequence {z*} is bounded. (4.31)

From (4.20) and (4.28), we see that Ds(z,2%) < f(z) — L(z%,29) = a=
constant; therefore, from the boundedness of the partial level set Lo(z, 0)
[see Definition 2.2.1(iv)], statement (4.31) follows. o

Step 5. We prove the feasibility of any accumulation point z* of {mk}
Let 2% — z*, as j — oo. By multiple application of Definition 2.2.1(vi),

together with (4.30) and (4.31), it follows that

.’L'kj+t — CU*, as J — 00, for every te {0; 11 2: ey C} (432)

84 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

where C ig the constant of almost cyclicality.

Consider the semi-infinite array which has C' + 1 rows, with {a:ks"“"t}_.‘;":l
in the tth row. We show that, for each ¢ € I, some row of the array contains
an infinite tumber of elements belonging to ;.

For cach i € I, at least one element in each column of the array must
belong to €;, otherwise ahmost cyclicality is violated. It follows that there
must be some row in the array, infinitely many elements of which belong to
2;, because if all rows had only a finite number of elements belonging to Q;,
there would be only a finite number of elements belonging to ¢}; in the entire
array. Thus, one can extract from the rows of the array subsequences all of
which converge to the same ", which belong to each of the @;’s. Therefore,
" € QN S, where Q = N, @, because Q; is closed for every i € I and
because of the strong zone consistency assumption. a

Step 6. Here, we show that, if z* is a cluster point of {z*}, then it is a
solution of (4.9). We then take advantage of the strict convexity of f{x) to
conclude the proof.

Denote by Iy and I the sets of indices of inactive and active constraints
at =¥, respectively,

h={iell(as*) <b},
IL={iel](a',z*)=b}.

Our proof of Step 6 needs the following proposition.

(4.33)

Proposition 4.4.1 If 2* € QNS is a cluster point of {x*} produced by
Algorithm 4.4.1, then there exist a subsequence {z"i }3??__0 which converges to

¥ and has the property that zfj =0, foralli € 1) and all j.

The proofl of this proposition is constructed by an elaboration of the

argument used in Step 5, and is given in full detail in the Appendix of {39].

4.5. THE INTERVAL-CONSTRAINED PROBLEM 85

We now return to Step 6. Using the subsequence of Proposition 4.4.1, we
may write
(2", Axi — by = (AT 2% ghi — z*), (4.34)
because zfj =0, for i € I, while {a},z*) = b;, fori € I, and I = [; U L.
From (4.17) we have that A7z% = —V f(2*), so that
(2%, Az*—b) = —(V (&), 2% —2*) = Dp(a*, 2M) = F(a*)+ £ ("), (4.35)

which tends to zero as j — oo, because of Definition 2.2.1(iii) and (iv).

Therefore, using again the continuity of f on S, we have
Hm L(z%, 2%} = lim[f(z%) 4 (2%, Axh — b)) = f(2%), as j— oo (4.36)
From (4.24) and (4.29), it now follows that
Fz*) < f(=), forall ze QNS, (4.37)

which proves that z* is a solution for (4.9). Because of the strict convexity
of f, imposed by Definition 2.2.1(ii), z* must be unique, which proves that

k

z" — z*, as k — oo, with z* being the solution of (4.9). O

Remark 4.4.2 Strong zone consistency is required in Theorem 4.4.1 to en-
sure that the iterates stay within S regardless of the value that ¢y of (4.13)

takes.

4.5 The Interval-Constrained Problem

Consider the convex programming problem with interval constraints
min f(y):
subject to 1 < {¢/,y) < &, jeJ={2,...,p} (4.38)
Yy e S. ‘

86 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

This problem could easily be transformed to the form of (4.9), to which
Bregman’s Algorithm 4.4.1 may be applied directly. But doing so would re-
sult in & problem with 2p constraints, forcing us to deal with that number of
dual variables. This doubling of the number of dual variables makes a con-
siderable difference when dealing with a large or huge number of inequalities.
For example, in the area of image reconstruction from projections, where an
approach leading to a problem of the form (4.38) is taken [114], the number
of interval constraints (pairs of inequalities) can be as large as 300,000.

The method for interval convex programming (i) attaches only one dual
variable to each interval constraint, and (ii) requires only half as many it-
erative steps as would be needed if Algorithm 4.4.1 were applied directly to
the transformed problem.

"This interval convex programming method is obtained by choosing a
particular strategy for the application of Algorithm 4.4.1. The almost cyclic
control, introduced into Algorithm 4.4.1, is an indispensable tool for vali-
dating the process.

Before stating the algorithm, we set up the following definitions and

notations,
H(¢,0) = {y e R | (#,3) = ;} (4.39)
denotes a hyperplane whose representation is fized and determined by ¢7

and 8;. The constraints of (4.38) will be described by the half spaces
Qi+ = {y] {#,9) <65}, (4.40)

Q- ={y 1y < (¢, 9} (4.41)

for all j € J, so that Q5 = Q4+ NQ;-.
Again denote @ = [']?:1 Q;, and assume that ¢/ #£ 0, for all j € J.

4.5. THE INTERVAL-CONSTRAINED PROBLEM 87

Define
U={yeS|3ueh?, such that Vf(y) = —dTu}, (4.42)

where @ stands for the p x n matrix whose jth row is (¢/)%, and assume

U () throughout.

Algorithm 4.5.1 Method for Interval Convex Programming.

Initialization: Assume that

y0 € U is arbitrary, and

(4.43)
u® is such that Vf(y%) = -7,

Iterative Step:
Vi) = V) + de'®),
ubtl = F — dpedl®) (4.44)
dy = mid{u?(k), Ap, T},
where A and I'; are the parameters associated with the generalized
projection of y* onto H (quj(k),ﬁj(k]) and H (q&j(k),fyj(k)), respectively.

mid(a, b, c) denotes the median of the three real numbers a, b, c.

Control: The sequence {j(k)}?2, is almost cyclicon J = {1,2,...,p}.

Remark 4.5.1 For the special case f(y) = % || y ||* (see Example 2.2.1
and Remark 4.4.1), Algorithm 4.5.1 coincides with “Algorithm Scheme I” of
Herman and Lent [114]. Thus, the algorithm discussed here is a generaliza-
tion of Herman and Lent’s result to linearly constrained problems with an

objective function f that is a Bregman function.

88 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS
The next theorem establishes the convergence of Algorithm 4.5.1.

Theorem 4.5.1 Let f € B(S) be strongly zone consistent with respect to the
hyperplanes H(¢7,6;) and H($',;), for all j € J. Assume that QNS # 0
and that ¢ # 0, for all j € J. Assume also that {7(R)}2, is almost cyclic
on J and that U # 0. Then, any sequence {y*}2, generated by Algorithm
4.5.1 converges to a solution of ({.38).

Sketch of Proof. The complete proof is given in Censor and Lent [47],

here we give only its basic outline. Define

T =gl by =5, (4.45)
o7 =gl by =y, (4.46)

for all j € J. Then, the problem

min f(y),
. i+ .
subject to (aﬁj_,y) <y, foralljeJ, (4.47)
(@ ,y) <bj-, foralljeJ,
vES,
has the same solution as (4.38). Associate dual variables z}" and z; with
the constraints of (4.47), and interlace the vectors zt and 2~ obtained in

this way into a dual vector z, having 2p components, defined by
PL (zf’,zf,zj,z;,...,zf,z;,...,z;",z;). (4.48)
The single dual variable to be used for each interval constraint of (4.38)
will be the corresponding component of

==zt

-z (4.49)

4.6. ROW-ACTION ALGORITHMS FOR NORM MINIMIZATION 89

The proof consists of applying Algorithm 4.4.1 to the problem (4.47), in
such a way that pairs of inequalities originating from one interval constraint
in (4.38) are taken up in an almost cyclic order, but the decision as to
whether to take first H (qu(’“},éj(k)) and then H (qﬁj(k},'}'j(k)), or vice versa,
varies from pair to pair, depending on the sign of the j(k)th component of
the current vector u* of dual variables. Of course, such a strategy would not
be permissible without the extra feature of almost cyclicality introduced in
Theorem 4.4.1. i

41 and then to j~. generalized z; * = 0. Therefore, O

4.6 Row-Action Algorithms for Norm Minimiza-
tion

We specialize the methods presented in Sections 4.4 and 4.5 for the Bregman
function f(z) = § || = ||* (Example 2.2.1). By doing so we obtain the
following algorithms:

(i) for linear equality constraints — the algorithm of Kaczmarz [138].

(if) for linear inequality constraints — the algorithm of Hildreth, see [73,
121, 150} and

(ii) for linear interval constraints — the ART4 algorithm of Herman and

Lent [114].

4.6.1 The Algorithm of Kaczmarz
Algorithm 4.6.1 Kaczmarz’s Algorithm.

Initialization: 2° € R{AT) - the range of A7.

90 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

Iterative Step: .
by — (a"¥), z*)
|| k) ||2

k41

PAARIESEELE k) (4.50)

Control: The sequence {i(k)} is almost cyclic on I.

Relaxation: ¥k, e < Ap <2 - €9, for some e1,¢€2 > 0.

In the unrelaxed case, i.e., when A\ = 1 for all & > 0, the convergence
of this algorithm can be obtained from the study of Bregman’s method
in Section 4.4. With f{z) = || « ||*, § = § = ®*, and only equality

constraints, the problem (4.9) becomes,

min 3 || z |2 (4.51)
st (ot x)=b, iel

Kaczmarz’s algorithm is then obtained from Algorithm 4.4.1. A look at
Lemma 4.4.1 shows that, since only equality constraints are present, 25! €
H.i(k) always holds and ¢ = By, for all k& > 0. Thus, the dual iterates z*
need not be updated at all. For the underrelaxed case, ie., g < Az < 1,
for all k& > 0, the convergence can be obtained from the relaxed Bregman
method discussed by De Pierro and Iusem [188].

The general case, with the full range of relaxation parameters, can be
treated separately, see, e.g., [115].

Geometric interpretation. Given z* and the hyperplane Hyw = {z €
R | {a"®), 1) = by}, determined by the i(k)th equation, 21 lies on the
line, through x*, perpendicular to Hjx). For unity relaxation, A, =1 for all
E > 0, z*t! is the orthogonal projection of z* onto Hyry. The relaxation

option actually allows the next iterate 5! to be inside the line segment

connecting =* and its orthogonal reflection with respect to Higy.

4.6. ROW-ACTION ALGORITHMS FOR NORM MINIMIZATION 91

4.6.2 The Algorithm of Hildreth.
Algorithm 4.6.2 Hildreth’s Algorithm.
Initialization: 2® € R is arbitrary and z° = —A7T20,

Iterative Step:
zFHl = g 4 g at® _ (4.52)

k+1 k

25 = 2k o eil®) (4.53)

with

bigy — (¥, "’k)) (4.54)

= mi k
€k = I (zi(k)’ M EERNE
Control: The sequence {i(k)} is almost cyclic on I.

Relaxation: Yk >0, ¢1 <X <2 — €q, for some €1, ¢y > 0.

Again, for unity relaxation where A;, = 1, for all k > 0, the convergence
follows from Bregman’s method in Section 4.4. The underrelaxed case can be
obtained from the extension of De Pierro and Iusem [188]. The convergence
for general relaxation parameters in the interval (€1, 2 — eo] has been treated
separately by Lent and Censor [150].

Geometric interpretation. Given z* and the closed halfspace Ly ={z €
R | (iR 2y < bi(k)}, determined by the i(k)th inequality of the problem

min § ” z ||? (4.55)
st {a',z) <b;, il
then, if 2% ¢ Ligy then 21 is the (possibly relaxed) orthogonal projec-

tion of z* onto Ligy- 1f z* belongs to the bounding hyperplane Hj(yy then

92 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

zF+l = 2 Pinally, if 2% € int Ly, ie, if (ai®) k) < bi(x), then a move
perpendicular to the bounding hyperplane Hy () is made. In this case, either

k+1 is the orthogonal projection of zF onto Higy.

cp = zik{k) or, otherwise, x

A simultaneous version of Hildreth's row-action algorithm was proposed
and studied by Iusem and De Pierro [134]. In that algorithm a convex
combination of individual Hildreth-steps with respect to all halfspacés, is
taken as the next iterate zt1,

4.6.3 ART4 — An Algorithm for Norm-Minimization Over

Linear Intervals

The problem
min} |z ws6)
sty < {ehz) <&, iel,
is of the form (4.38) and Algorithm 4.5.1 applies. The desire to solve a
problem with such interval constraints comes from the approach described in
Section 4.2.2, where an inconsistent system of equality constraints (at, z) =
bi, © € I, is replaced by intervals by defining -y; = b; — o; and 6; = b; + o for
all ¢ € I. A practical difficulty is to properly choose the ”tolerances” oy so
that the system of interval constraints is feasible but not too large.

A study of this sort in the field of image reconstruction from projections
was reported by Herman and Lent [114].

The ART4 (ART stands for “Algebraic Reconstruction Technique”) al-
gorithm is an extension of Hildreth’s Algorithm 4.6.2 designed to efficiently
handle the interval constraint. It is actually the idea embodied in ARTA4
that motivated Censor and Lent in their developx.nent of Algorithm 4.5.1 for

interval convex programming. ARTA4 is retrieved from Algorithm 4.5.1 by

4.6. ROW-ACTION ALGORITHMS FOR NORM MINIMIZATION 93
taking f(z) = g ||z .
Algorithm 4.6.3 ARTH4.

Initialization: 2% ¢ }" is arbitrary and 2 € ®™ is such that 20 = — AT 0.

Iterative Step:

2 = o - opat®) (4.57)
2P = 2k o (R (4.58)
with
iny — (@i0), 2Ry 0 — (ai(k)| k)
R k i{k)) Yi(k) :
G = mid (z"i(k)’ ™z 7 02 (4.59)

where mid(a,b,c) stands, as mentioned before, for the median of the

three real numbers a,b, and c.
Control: {i{k)} is almost cyclic on L.

Relaxation: Unity, i.e., Ay =1, for all k > 0.

In a typical iterative step the i(k)-th hyperslab is employed. Given z*,
the next iterate z**! will be inside the slab or on one of its bounding hyper-
planes, according to the value of ;. This value of ¢ is determined by the
“mid” operation and depends on the distances of z* from the two bound-
ing hyperplanes and on the value of the i(k)-th component of the k-th dual

vector 2%,

94 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

If additional box constraints are present in problem {4.56) then they can

be handled in a simple manner as follows. The problem now is

min 3 | = ||
sty <{ahx) <&, i€l (4.60)

wj<zj <y, 1<j<n

and the algorithm, which was suggested by Herman et al. [116], is called

ART2.

Algorithm 4.6.4 ART2,
Initialization: &% € ®" is arbitrary and 2° € ™ is such that 20 = —AT20.

Iterative Step:

ghtl = gk 1 opat®) (4.61)
2= gk o gilR) (4.62)
with
Sy — (ai(k} :Ek) ey — (ai(k) mk)
s k i(k)) Yi(k))
¢k = mid (zi(k)’ [a® 2 7 [l 2. (4.63)
and z* denotes the vector whose t-th component is
wy, if &k
o if EZF <wy,
aF =8 2F i wy < 3F <oy (4.64)

Vg, if T < .'L?'ic

Herman and Lent [114] showed the convergence of ART2 to a solution

of problem (4.60).

4.7. ROW-ACTION ALGORITHMS FOR SHANNON'S ENTROPY MINIMIZATIONOS

4.7 Row-Action Algorithms for Shannon’s Entropy
Minimization

We now specialize the methods of Sections 4.4 and 4.5 for the Bregman

function f(z) = > i—1%jlog z; (Example 2.2.2). By simply calculating
gradients, the first equation of (4.13) takes the form

3:;?"'1 = m_’: - exp (cka;(k)), i=12,..., n {4.65)
We look at problems of the form

s T
min 7% x; log x;

— {4.66)
st. zE@NS,
where S = R and @ is one of the following constraints sets:
th={zeR*| Az =1}, (4.67)
@:={zeR"| Az <b}, (4.68)
Qi={z€R"| c< Az < b}, {4.69)

Bregman’s algorithm for the solution of (4.66) with Q = Q1 is a row-
action iterative procedure which performs successive generalized projections
onto the individual hyperplanes of (4.66). Applying Algorithm 4.4.1 in this

case yields the following

Algorithm 4.7.1 Bregman’s Row-Action Method for Linear Equal-
ity constrained Entropy Maximization.

Initialization: ¥ ¢ ®7 , is such that for an arbitrary 20 € ®™
++ ¥ +

3;5—' = exp [(—ATzo)j -1, j=1,2,..,n. (4.70)

96 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

Tterative Step: Given z* choose a control index i(k) and solve the system

:t,‘?-‘-l = -'L';c - eXp (Ckﬂ';‘()): i=12,...,n (4.71)

(1, 0Py = by (4.72)

The system (4.71)-(4.72) represents an entropy projection of z* onto the
hyperptane Hypy = {z € R" | (a'®)) = biky} resulting with the next
iterate z*+1. Tt is a system of n + 1 equations, of which the first n are not
linear, in the n + 1 unknown :c;?"’l, i=12... ,n, and ¢x. It must be
solved by some iterative method such as the Newton-Raphson method, see,
e.g., [184]. This creates a gap between the theoretical algorithm and its
practical implementation. An alternative algorithm for the same problem,
i.e., (4.66) with Q = @, is MART (Multiplicative Algebraic Reconstruction

Technique) which employs a closed-form formula for the iterative updates.

Algorithm 4.7.2 MART.

Initialization: u® € R™ is arbitrary, and z° € R is defined by

I+log af=(-A"u");, j=12.., n (4.73)
Iterative Step:
(k)
by b AkaJ’ .
$?+1 = :E.;c ((at(:;g)ﬂﬂk)) Y 1) 25 ey T (474)

Control: {i(k)}32, is an almost cyclic control sequence on .

4.7. ALGORITHMS FOR ENTROPY MINIMIZATION 97

Relaxation: {\;}52, is a sequence of relazation parameters'such that
O<e< A <, (4.75)
for all £ > 0, with some fixed ¢ > 0.
To prove convergence of MART, the following assumptions need to be
made.
Assumption 4.7.1 (i) Feastbility: Q) NRT # 0.

(ii) Signs: Forall =1,2,..., nandalli € I,

af;- >0 and b > 0, (4.76)

and
@i #£0, i€l (4.77)
(iii) Normalization: Az = b is scaled so that for all j=1,2,..., n,

and alli €7, o} <1

Assumption 4.7.1 (ii) is not too restrictive because it can be made to hold
in practice. For example, in image reconstruction from projections (which
provides some of our own motivation for studying entropy optimization), see,
e.g., [40], a} > 0 holds by the nature of the problem. &; > 0 means that any
equation with zero right hand side should be removed from the constraints
at the start, a very reasonable thing to do when reconstructing an image
from its projections.

Assumption 4.7.1(iii) is also easy to satisfy. We do not know how MART

would behave if Assumption 4.7.1(i) were violated.

98 CHAPTER 4. CONSTRAINED OPTIMIZATION PROBLEMS

The convergence of a sequence {z*} produced by MART to the solution
of the linearly constrained entropy optimization problem can be derived
indirectly from the general theory of Bregman by studying the relationship
between MART and Algorithm 4.7.1. This was done by Censor et al. in [49].
However, a direct proof of convergence can be given, see, e.g., [151], to

validate the following result.

Theorem 4.7.1 If Assumptions 4.7.1 hold, then any sequence {z*} gener-
ated by Algorithm 4.7.2 converges to the unique minimizer of problem (4.66)

with @@ = G as in (4.67).

Chapter 5

Proximal Minimization
Algorithms with
D-Functions

5.1 Introduction

The proximal minimization algorithm is designed to solve the optimization
problem
min f{x)
st. x€X,

(5.1)

where I : R* — R is a given convex function and X C R" is a nonempty
closed convex subset of the n-dimensional Euclidean space ®*. The approach
is based on converting (5.1) into a sequence of optimization problems with
strictly convex objective functions obtained by adding quadratic terms to

99

100 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS

The method is as follows. There is a (given or constructed) sequence

{c(t)} of positive numbers for all £ € Ny, Ng = {0,1,2,3,...}, with

Im inf c(t}=c¢> 0. (5.2)
{—o0

Algorithm 5.1.1 The Proximal Minimization Algorithm.
Initialization: z(0) € W™ arbitrary,

Titerative Step:

w(t+1) = argminge x {F(z) + [1/2¢(8)] |z — y(#) |I*},

(5.3
y(t+ 1) =z(t + 1),
Equivalently, the algorithm is written as
{t +1) = arg min{ F(2) + [1/26(9)] |}z - (2) [*}. (5.4)

"The origins of this algorithm go back to Minty [160], Moreau [162], and
Rockafellar [197, 198]. In addition to considerable theoretical interest in the
family of proximal point algorithms, of which it is a member, this algorithm
is also an important computational tool. This is s0 because the dual prob-
lem of a strictly convex optimization problem is differentiable and can be
solved by simple iterative procedures like dual coordinate ascent. For sev-
eral important problem classes, these dual algorithms can be decomposed
for parallel computations; the results of such investigation are reported in

Nielsen and Zenios {180, 178].

5.1. INTRODUCTION 101

In this chapter, we generalize the proximal minimization algorithm by
replacing the quadratic term in (5.3) by Dg-functions for which convergence
of the algorithm can be preserved. The material given here is taken from

Censor and Zenios [52].

"The original proximal minimization algorithm (5.3} is obtained from our
scheme by choosing the Dg-function of Example 2.2.1. A different choice
leads to a proximal minimjzation algorithm with entropy additive terms. In
the case of linear programming (F and x € X are all linear), the latter leads
to pure entropy optimization problems for which the special-purpose algo-
rithms of Chapter 4 are applicable. Such an approach of replacing a linear
programming problem by a sequence of entropy problems was heuristically
suggested by Eriksson [89]. He discusscs also a specific strategy for choosing
the parameters {c(¢)} and a solution algorithm. However, no overall conver—l
gence analysis is given there. The practical question of whether any efficient
useful algorithm results from this new look at tllings has been addressed by
Nielsen and Zenios [180, 178, 177], where encouraging computational results
are reported. |

The fundamental proximal point algorithm for solving the problem 0 €
T(z) for an arbitrary maximal monotone operator 7" and its specialization
for T' = @F (the subdifferential of F') make it clear why quadratic additive
terms in (5.3) are mandatory; see, e.g., [197]. Therefore, we do not resort to
the operator theory, but rather follow the more direct method of Bertsekas
and Tsitsiklis [26]. It is quite conceivable that the idea of incorporating Dj-
functions could propagate in other directions within the theory of proximal

point and related methods.

The idea of replacing quadratic penalty terms by nonquadratic ones

102 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS

exists already with respect to other algorithms; see, e.g., [25, Chapter 5]
Teboulle [219] has recently derived what he calls “entropic proximal maps”
and used them to construct generalized augmented Lagrangian methods. Al-
though his paper can be considered a close companion to this chapter, his re-
siitts do not include the PMD algorithm (Algorithm 5.1.2) that we describe
here. See also Chen and Teboulle [53]. An important work on monotone op-
erators and the proximal point algorithm is Eckstein’s thesis [79]. Moreover,
in his recent paper [80], Eckstein showed how to construct proximal point
algorithms with Bregman functions, thereby further extending the scope of
the connection between Bregman functions and proximal minimization pre-
sented in this chapter.

Another recent related study is Eggermont’s [81]. Nonquadratic additive
terms are used there, but with only nonnegativity constraints. Of particular
interest is the connection revealed there between multiplicative iterative algo-
rithms and the well-known EM- algorithm for maximum likelihood estima-
tion in emission tomography; see Shepp and Vardi [211} and other references
in [81]. The algorithms of [81], however, are not special instances of our
proximal minimization algorithm with Dg-functions. Finally, we mention
the work of Tseng and Bertsekas [222], where they use the entropy proxi-
mal term in the proximal minimization algorithm to study the exponential
multiplier method.

The prozimal minimization algorithm with Dy-functions, henceforth ab-
breviated PMD, is as follows. Given are a function f with zone S, and a

positive sequence {c(t)} for which (5.2) holds.

Algorithm 5.1.2 PMD.

5.2. CONVERGENCE ANALYSIS OF THE PMD ALGORITHM 103
Initialization: z(0} € S is arbitrary,

Iterative Step:

o(i-+1) = argmin {Fla) + [1/c(]Ds(z,2(e)}. (55)

In order for this algorithm to be well defined, we make the next assumption.

Assumption A3, The PMD algorithm (5.5) generates a sequence
{z(t)} such that z(t) € S, for every t = 0,1,2,

This assumption is needed, because D is defined on § x §. Tt actually
tells us that, given F' and X of (5.1), we are free to choose only such f and
5 that Assumption A3 would hold. If X C S, then Assumption A3 trivially
holds, which is true for the quadratic case f(x) = (1/2) || 2]|?, where § = R™.

We show later that it holds also for the entropy case.

5.2 Convergence Analysis of the PMD Algorithm

The analysis given here follows the one given in [26, Chapter 3.4.3}. Propo-
sition 5.2.1 secures the existence and uniqueness of the minimum of {F{z) -+
(1/¢)Dy{x,y)}. Propositions 5.2.2, 5.2.3 and 5.2.4 are not directly necessary
for the proof of convergence, but they extend to the Dg-function setting
some closely related results from [26]. The final convergence result is given
in Theorem 5.2.1.

Denote by X the solution set of problem (5.1}, i.e.,

X*={z*€e X | F(z") < F(z), vz e X . (5.6)

104 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS

Proposition 5.2.1 Let f € B(S). For everyy € 5 and ¢ > 0, the minimum
of {F(z) + (1/c)Ds(=,y)} over X NS is attained at a unique point, denoted
by z4(y, c), provided that F(x) is bounded below over X.

Proof. For all ¢ > 0 and y € 5, the level sets
{re XNS|F(z)+ (1/e)Ds(z,y) <}, acR, (5.7)

are bounded. This is true because otherwise, for some ¢ > 0 and y € R",

there would exist an unbounded sequence {z*} € X N'S for which
Dy(z*,y) < cfa - L), (5.8)

where L is the lower bound for F((z} over X. But this would contradict (iv)
of Definition 2.2.1; thus, the level sets (5.7) must be bounded.

This allows us to equivalently search for the minimum of
F(z) + (1/c)Ds(z,y)

over a compact subset of X NS instead of over X N S. The Weierstrass
theorem (e.g., [26, Proposition A.8]), then implies that the above-mentioned
minimum is attained. The strict convexity of Df(z,y) with respect to z for
fixed y, (see Lemma 2.2.1), and the strict convexity of the function f, ensure

the uniqueness. D

Proposition 5.2.2 If Dy(xz,y) is jointly convez with respect to both = and
¥, i.e., as @ function on R, then the function ®,: S — R, defined by

Bely) = mg}ﬁg{”m) +(1/c)Dylz,)}, (5.9)

is convex over S,

3.2. CONVERGENCE ANALYSIS OF THE PMD ALGORITHM 105

Proof. Let y',4° € $ and @ € [0,1]. Denote zt = 2p(1f,c), for i = 1,2.
Using the convexity of F and joint convexity of D f(z,), we have

a®(y?) + (1 — 0)2(y?)

= olF(@}) + (/Dy} y)] + (1~ @)[F() + (1/6)Dyla?h 1)

> Flazh+(1- a)x%) + (1/e)Dy(az; + (1 - @)z}, dayt 4 (1 — a)y?)

> min,y 5{F (@) -+ (1/0) Dy, ay' + (1 - a)y?)}

= @(ay’ + (1 - a)y?). =

Proposition 5.2.3 Let f € B(S) together with the assumption of Proposi-

tion 5.2.2. Then the function ®.(y) is continuously differentiable on S and

its gradient is given by

Voe(y) = VA F(y) " [ly — zs(y,)| /¢, (5.10)

where T' denotes matriz transposition.

Proof. Consider any y € 5, d € ®*, and & > 0 such that y+ad € S. Using

the directional derivative ®.(y;d), we have

F(zs(y,e)) + (1/e)Ds(2s(y,), y + ad)
> Bo(y + ad) > Boly) + a®L(y; d) (5.11)
= F(as(y, c)) + {1/ Dyl (y,) y) + a®y(y; d),

where the second inequality in (5.11) follows from the convexity of @, (Propo-

sition 5.2.2). Therefore, using (2.1), we get from (5.11)

(1/)f(y) — fly +ad) + (Vf(y) — Viy + ad), z¢(y,¢) — y)
HV f(y + ad), ad)] > ad(y;d).

(5.12)

Since

m([£(y) - f(u+ad)/a+ (/o) (Vi(y+ad),ad)] =0, (5.13)

106 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS

Im ([VF(y) - Vi(y + ad)]/o] = =V*/(3)d,

(5.14)
we obtain from (5.12) by dividing by « and letting o — 0,
(V2 f()d Ty — ag(y, c)l/c) > Be(y;d), VdeR™. (5.15)
Replacing d by —d in (5.15), we get
— (V2 f(y)d, [y — sy,)/) = Tly; —d) = —¥(yi d), (5.16)

where the second inequality is a standard relation for directional derivatives
of convex functions; see, e.g., [26, p.648].

The relations (5.15) and (5.16) imply that

®,(y;d) = (V2 f(y)d, [y — w5y, 0)l/e), VdeR", (5.17)

or equivalently that &, is differentiable and that its gradient is given by

(5.10). Since P, is convex (Proposition 5.2.2), its gradient is continuous;
see, 6.g., [26, Proposition A.42].

O
The next proposition gives a relation between S*, the minimum set of

®.(y), the zone S of the Bregman function f, and the solution set X*. For

a function f with zone 5 = N", we get, as a spacial case, that X* = 5%,
which was given in [26, p.234].

Define

S* = {y* € 8| By} < Bly), Vye S} (5.18)

Proposition 5.2.4 Let V2f(z) be nonsingular for all z € §*. Then,

X*NS =8 (5.19)

5.2. CONVERGENCE ANALYSIS OF THE PMD ALGORITHM 107

Proof. The function F(z) - (1/c)D¢(z,y) takes the value Fly)forz =y

because of Lemma 2.2.1. It follows that
Bo(y) S Fly), WyeXns. (5.20)

If 2* € X*, then (5.19) holds and we have

D.(z")

iA

F(2%) < Fles(y, o)) < Flas(y,0)) + (1/)Ds(ws(y, ¢),9)

= o.y), Wes, (5.21)

because always Dy(z,y) > 0. Thus, z* minimizes $.(y) over S, i.e., 2* € §*.

Conversely, if z* € §*, then we have, from (5.10),
eVB(2*) = V2 f(2")T[2* — 2¢(2",¢)] = 0, (5.22)
which implies that 2* = 27(2* ¢) € X N 5. Using again (5.20), we have
F(2") = ®c(z") < ®o(y) S Fy), VYyeXnS, (5.23)

and therefore z* € X N 5. O

Finally, we present the convergence proof of the PMD algorithm.

Theorem 5.2.1 Let f € B(S), let Assumption A3 hold and assume that
X*NS # 0. Then any sequence {z(t)} generated by a PMD elgorithm,

where c(t) > 0 and liminf,_,, c(t) = ¢ > 0, converges to an element of X*.

Proof. The proof consists of three steps. First, we prove that {z(t)} is
bounded; then, we show that all its accumulation points belong to X*; and

finally, we prove that there is a unique limit point.

108 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS
Step 1. We have

F(z(t+1)) = [1/c®)]Ds((t+ 1), 2(t))

o (5.24)
< F(z) + [1/c(t)) Dy(z, (), Yz e XnNS,
from which follows that, for all z € X NS with
F(z) < Flz(t+1)), (5.25)
it is true that
Dy(z(t+ 1), 2(t)) < Dy(z,3(t)), (5.26)

Therefore, z{(¢ + 1) is the unique generalized projection of z(t) onto the
convex set

Q={seX|F(z) < Flz(t+ 1)} (5.27)

Using Theorem 2.5.1 and the fact that X* C £2, we have

0 < Dy(a(t +1),2(t) < Dy(a,x(t)) - Dy(a*,a(t + 1), (5.28)
for every z* € X*NS. Thus,

Dy(z* 2t + 1)) < Di(z*,=(t)), Vz*eX*nS§, VWt (5.29)

This last inequality amounts to saying that {z(¢)} is Dj-Féjer-monotone
with respect to the set X* NS, and it implies that {(¢)} is bounded because

it means that

z(t) € Laofz*, @), it, (5.30)

with a = Dy(z*, (0)), and condition (iv) of Definition 2.2.1 applies.
Step 2. Let {z(t)}ser, T C Np, be a subsequence converging to £ € X N
S. Recall that, by Lemma 2.2.1 and (5.29), the sequence {Ds(z*, z(8) reno

5.2. CONVERGENCE ANALYSIS OF THE PMD ALGORITHM 109

is nonnegative and nonincreasing; thus, lim Dy(z*, x(t)) exists for any z* €

X*NS. In view of (5.28),
im Dy(a(t+1),z(¢)) =0, as t — oo;

thus, also

lim Dy(e(t+ 1), z(¢) =0, (5.31)
wr

which by Assumption A3 implies that {z(t + 1)};cr also converges to .

Next, observe that (5.24) remains true with z = x(t); thus,
Fla(t+1)) = [1/c@]Dy(x(t + 1), 2(t)) < Fle(t), W, (5.32)
because Dy (2(t), #(t)) = 0. This implics
F(z(t)) = Fz(t+ 1)) = [1/c()]Ds(z(t + 1),2()) >0, V&. (5.33)

Therefore, {F(2(t})}ten, is nonincreasing and {F{z(t)}}ier converges to
F(z®).
Let ¥ € X*NS and o € (0,1), and set

r=az"+ (1 - a)z(t+ 1)
in (5.24). From the convexity of F(z), we get
Fla(t + 1)) + [1/e@]Dr(=(t + 1}, 2(8))
< Flaz* + (1 a)z(t+ 1))
+[1/e®)] Dy (ax™ + (1 — @)zt + 1), 2(t)) (5.34)

< al(z*) + (1 — o) F{z(t + 1))
H1/e@IDplaz® + (1 — a)a(t + 1), 2(t)),

110 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS
which, by (2.1), can be rewritten as

ac(t){[F(a(t + 1)) — F(z")]
< f@(t+1) ~ alz* -zt + 1)) — fla(t+ 1)) (5.35)
—e(V [((t)), 2" — =(t + 1))

Dividing by ¢, taking the limit as @ — 0%, and denoting by f'(;-) the

directional derivative, we get
c(t)[F(z(t+ 1)) — F(=")]

< fllz(E+1)a" —z(t+ 1)) ~ (Vf(z(@),z* —z(t + 1))
= (Vf(z(t+1)) = VFi(z(t), 2" — =t + 1))
= Ds(z*, 2(t)) — Ds(z*, z(t + 1)) — Dy(z(t + 1), z(¢)). (5.36)

The optimality of z* and the fact that ¢(t) > ¢ > 0, for all #, guarantee
the nonnegativity of the left-hand side of (5.36) for all £.

From the existence of limy_.oo Dys{a*, z(t)), for any z* € X* N 5, we
obtain

lim Dy (o, 2(2)) - Dyla", 2(t +1))] =0, (5.37)
et

and the remaining term in the right-hand side of {5.36) also tends to zero

by (5.31). Thus,

0= lim [F(a(t + 1)) — F(z")] = F(z™) - F(z*), (5.38)
teT

and so x%° € X~
Step 3. Let
limz(t) = 2* € X*N§, {5.39)

L0

teT)

5.3. SPECIAL CASES. 111

lim (¢) = 2™ € X" NS, (5.40)

teTy
for some 71 C Ny and T5 C Ny. Defining

H(x(t)) = Dy(a*,a(t)) — Dy(z™, a(t)), (5.41)

it follows that the limit
im H(z(t))=H (5.42)

t—oo

exists. Therefore, we have, by Lemma 2.2.1,

H= tlim H(z(t)) = —Dys(z*,2*) <0, (5.43)
tehy
H= tlim H(z(t)} = Df(z*,2™) =0, (5.44)
teTs
yielding
Dy(z*, z*) = Dg(2™,2*) = 0, (5.45)
which implies that o™ = z**.]

5.3 Special Cases.

Choosing the Bregman function f(z) = (1/2} ||z ||? with A = § = § =
R™ gives Dy(z,y) = (1/2) || z — y * and immediately returns the PMD
algorithm to its original form with quadratic additive terms.

For f(z) = —ent(z), of Example 2.2.2, we have

n

Dy(z,y) Z ilog(z;/y;) — 1] + Zyj,, (5.46)

and the iterative step of the entropy-type PMD algorithm is obtained from
(5.5).

112 CHAPTER 5. PROXIMAL MINIMIZATION WITH D-FUNCTIONS
In the case where problem (5.1) is linear programming, F(xz) = (b, z) for
. some given b = (b;) € R", and = € X are linear constraints, (5.5) becomes

z(t+1) = arg min {ijb + [1/e(t)] ij[log zifz;(8)) — 1]

zEX NN =1

+ [1/c(?)] Z T (t)} : (5.47)
3=1

This is essentially a linearly constrained pure entropy optimization prob-
lem obtained by subsuming all linear terms into the entropy functional. For
such problems, the iterative algorithms of Chapter 4, which lend themselves
efficiently to parallel computation are applicable. The advantages, in prac-
tice, of an entropy or otherwise oriented PMD algorithm over the origi-
nal quadratic-additive-term proximal minimization algorithm, depends to a
great extent on two factors. One is the specific form of the original problem
(5.1); the second is the availability of efficient special-purpose algorithms for
performing the step (5.5).

These practical questions have been studied in further experimental re-

search, see, [180, 178, 179).

Chapter 6

Applications

In this chapter we present three practical applications that can be modeled
as nonlinear optimization problems. These are (1) the problem of matrix
balancing, (2) the problem of image reconstruction from projections, and
(3) the problem of planning under uncertainty with stochastic network pro-
grams. In all cases the objective function belongs to the class of Bregman
functions, and hence the row-action algorithms of Chapter 4 are applicable.
A common feature of all applications is that they lead to extremely large
problems. The number of variables are of the order of 10°, and the number
of constraints of the order 10°. The shear size of these problems motivated
users to employ row-action, iterative methods, in order to solve tﬁem in a

practical way.

Along with each nonlinear optimization problem we discuss the practical
applications where it arises, We then discuss the mathematical model and,
in particular, the real-world considerations that led users to optimize a func-

tion that belongs to Bregman’s class. Finally we present specific row-action

113

114 CHAPTER 6. APPLICATIONS

algorithms that have, occasionally, been tailored to the special structure

exhibited by the optimization models.

6.1 Matrix Balancing

A problem that occurs frequently in economics, urban planning, statistics,
demography, and stochastic modeling is to adjust the entries of a large matrix

to satisfly consistency requirements. It is typically posed as follows:

Given a rectangular matrix A, determine a matrix X that is close

to A and satisfies a given set of linear restrictions on its entries.

A w.ell—studied instance of this problem — occurring in transportation plan-
ning and input-output analysis — requires that A be adjusted so that the
row and column totals equal fixed positive values. A related problem occur-
ring in developmental economics requires that the row and column totals (of
a square matrix) be equal to each other, but not necessarily to pre-specified
values.

These problems are known as balancing the matrix A. The terms ma-
triz estimation or matriz adjustment have also been used to describe the
same problems. Because we discuss several balancing problems with differ-
ent consistency requirements, the definition of a balanced matrix is problem
dependent. That is, a matrix is defined to be balanced if it satisfies the given
set of linear restrictions of the problem. Applications of matrix balancing
can be found in the literature in journals of mathematical programming,
statisties, economies, urban planning, numerical analysis, and mathematics.
Matrix balancing is an important problem that has attracted attention in

many different fields.

6.1. MATRIX BALANCING 115

'The matrix balancing applications that we describe can generally be

formulated as one of two problems. These are:

Problem 6.1.1 Given an m x n nonnegative matriz A = (a;;) and positive
vectors u € R™ and v € RN* determine a “nearby” nonnegative matriz X =

(mi3) (of the same dimensions) such that

n

Zmij = ui’ fOT'?:: 1?21"':m5 (6.1)
i=1

m

domy = v, forj=1,2..,n, (6.2)
i=1

and x;; > 0 only if az; > 0.

Problem 6.1.2 Given an n X n nonnegative matriz A = (aij), determine a

“nearby” non-negative matriz X = (xi;) (of the same dimensions) such that

n n
domy = >z, i=12,...,m, (6.3)
i=t i=1
and Tij > 0 only if Gij > 0.

In general, there are infinitely many matrices satisfying the consistency re-
strictions (6.1), (6.2) or (6.3). For either problem to be well-posed the notion
of a nearby matriz has to be defined. Different models and algorithmic ap-

proaches follow naturally from different types of such definitions.
6.1.1 Applications of Matrix Balancing

Economics: Social Accounting Matrices (SAMs)

A Social Accounting Matrix, or SAM, is a square matrix A whose entries
represent the flow-of-funds between the national income accounts of a coun-

try’s economy at a fixed point in time. Each index of a row or a column of

116 CHAPTER 6. APPLICATIONS

A represents an account, or agent, in the economy. Entry a;; is positive if
agent 7 receives funds from agent 1. A SAM is a snapshot of the critical vari-
ables in a general equilibrium model describing the circular flow of financial
transactions in an economy. For balancing problems arising from estimating
SAMs, the balance conditions are the a priori accounting identities that each
agent’s total expenditures and total receipts must be equal. That is, for each
index 7 of the matrix A, the sum of the entries in row ¢ must equal the sum
of the entries in column i. The volume by Pyatt and Round {191] contains a

collection of papers that give an introduction to Social Accounting Matrices.

The agents of an economy include institutions, factors of production,
households, and the rest-of-the-world (to account for transactions with the
economies of other countries). Figure 6.1 shows the major relationships be-
tween accounts in a simplified SAM. Briefly, the production activities gen-
crate value-added which flows to the factors of production — land, labor,
and capital. Factor income is the primary source of income for institutions
— households, government and firms — who purchase goods and services
supplied by productive activities, thereby completing the cycle. Of course,
to be useful for equilibrium modeling, this highly aggregated model must
be disaggregated into subaccounts for each sector of the economny. Estima-
tion of disaggregated SAMs with up to 260 agents has been reported in the
literature, Baker et al. [14], although their solution involved a major compu-
tational effort. As recent algorithms for this problem become widely known,
it is likely that much larger SAMs will be estimated and their solution will

be a routine operation.

SAMs are used as the core database for complex economy-wide gen-

eral equilibrium models. The entries of the SAM provide a convenient

6.1. MATRIX BALANCING 117

Productive

Activities
Institutions Factors
Houscholds
Firms Lljggr
Government ' Capital

Figure 6.1: A simplified SAM.

database used to estimate parameters in an equilibrium model, see, e.g.,
Dervis at al. [72]. For example, researchers at the World Bank have de-
veloped specialized modeling systems based on SAM databases, Kendrick
and Drud [141] and Zenios et ol. [239]. Similar models have been developed
by the United Nations Statistical Office, van Tongeren [225], the Cambridge
Growth Project, Bacharach [10] and Stone [216], and the Statistical Bureaus
of developing and industrialized countries, Pyatt and Round [191].
Inconsistent data is an inherent problem when statistical methods are
used to estimate underlying economic models. Morgenstern devoted his
1963 book to the problem of inconsistency in economic measurements {163].
In particular, the direct estimate of a SAM is never balanced. The following
quote of Sir Richard Stone (Van der Ploeg [190, page 186] summarizes the

sources of inconsistency in SAM modeling.

“...it is impossible to establish by direct estimation a system of
national accounts free of statistical discrepancies, residual errors,
unidentified items, balancing entries and the like since the infor-

mation available is in some degree incomplete, inconsistent and

118 CHAPTER 6. APPLICATIONS

unreliable. Accordingly, the task of measurement is not finished
when the initial estimates have been made and remains incom-
plete until final estimates have been obtained which satisfy the

constraints that hold between their true values. ”

Therefore, the raw estimates of a SAM must be adjusted so that the con-
sistency requirements are satisfied. The balancing problem of adjusting the
initial matrix so that the row and column sums are equal is an example of
Problem 6.1.2. This problem motivates much of the work on matrix balanc-
ing for economic modeling.

A matrix balancing problem also arises when partial survey methods are
used to estimate a SAM. Frequently, estimates are available of the total
expenditures and receipts for each agent in an economy but current data
are not available for the individual transactions between the agents. Ifa
complete (balanced) SAM is available from an earlier period, then the SAM
must be updated to reflect the recent index totals. The problem is then to
adjust the entries of the old matrix A so that the row and column totals equal
the given fixed amounts; this is an example of Problem 6.1.1, see Miller and
Blair [158]. A similar balancing problem occurs when the entries of an input-
output matrix must be updated to be consistent with exogenous estimates
of the total levels of primary inputs and final demands, see, for example,
Morrison and Thuman [164], Harrigan and Buchanan [108] or Jensen and

McGaurr [136].

Transportation: Estimating Origin-Destination Matrices

Networks are used in urban transportation analysis to model traffic flow

over physical transportation systems involving, for example, urban highways,

6.1. MATRIX BALANCING 119

subways, buses, or airplanes. The transportation system is represented as a
network with vertices corresponding to intersections and arcs corresponding
to travel links. Each arc has an associated travel cost function representing
the disutility of travel time as a function of the total flow along that arc. A
user entering the transportation network must choose a path from his origin
vertex to his destination vertex. The matrix representing the rate of traffic
flow between all pairs of vertices is called the origin-destination matriz. Each
entry of the matrix indicates the fraction of the total network traffic that

travels between an origin-destination pair.

The traffic assignment problem is to determine the rate of flow along
each arc and the travel time between each origin-destination pair given the
network representing the system, the travel cost functions, and the origin-
destination matrix. For example, under the assumption that users choose
the path with the lowest total travel timne, the system is in equilibrium if no
motorist can lower his or her travel time by altering their route. The resulting
steady-state distribution of traffic flows is called a user equilibrium. See, for
example, Sheffi [210] and Abdfulaal and LeBlanc [2]. We assume that the
model répresents the network at, for example, a peak travel time and that
the number of #rips is fixed. That is, the total travel demagld is represented
by a fixed n x m origin-destination matriz A, where a;; is the rate of flow

from origin zone ¢ to destination zone j.

The origin-destination matrix, A, is a required input for a wide va-
riety of transportation planning models, LeBlanc and Farhangian [148],
Nguyen [174]. Matrix balancing problems arise when origin-destination ma-
trices are estimated from observed traffic flows on selected sets of arcs {Carey

et al. [37], Jefferson and Scott [135], McNeil [157], Van Zuylen and Willum-

120 CHAPTER 6. APPLICATIONS

sen [242]). For example, data might be collected measuring the total flow
out of each origin vertex and into each destination vertex. The estimated
origin-destination matrix should have the property that when it is used as
an input into the underlying traflic assignment model, the traffic flows pro-
duced as outputs should equal the observed traffic flows. Since there may
be many matrices with this property, the estimated matrix is chosen by
minimizing some properly defined distance between A and a fixed reference
origin-destination matrix Ay which could be an unreliable estimate based on
a previous study.

In bractice, the total flow out of each origin and into each destination is
frequently used for observed traffic flows. If there is a single route connecting
each origin and destination, then the resulting problem of estimating an
origin-destination matrix can be formulated as Problem 6.1.1.

A more general framework for estimating origin-destination matrices is
produced by assuming that a;;, the aggregate flow from origin i to destina-
tion j, is determined by a direct demand function g, g : R R

aij = gla¥, B) + €5, for each (4, 7),

where o is a fixed vector describing the socioeconomic characteristics and
travel time for pair (4,7), and €; is an error term. The vector 8 is then es-
timated together with the matrix A, Nguyen [174] and Ben-Akiva [22]. For
fixed flows, 3 is estimated using least-squares, whereas for fixed 8, A is esti-
mated using matrix balancing. Therefore, this problem can be decomposed
by alternately fixing A and estimating 3, and then fixing 8 and estimating
A. This produces an iterative method converging to optimal joint estimates

for A and (175, 22]. The subproblem of estimating A given a fixed vector

6.1. MATRIX BALANCING 121

is precisely Problem 6.1.1.

Statistics: Estimating Contingency Tables

Contingency tables are used in the classification of items by several criteria,
each of which is partitioned into a finite number of categories. For example,
suppose that IV individuals in a population are classified according to the
criteria marital status and age, which are divided into m and n categories,
respectively. The mn distinct classifications are called cells, and the resulting
m X n contingency table contains the number of individuals in each cell.

For many applications it is important to estimate the underlying cell
probabilities, i.e., the fraction Of- the population N that is classified in each
cell. Determining the cell probabilities directly by sampling the population
is generally not possible because such a procedure is often prohibitively ex-
pensive. Thus, cell probabilities must be derived from partial observations,
A balancing problem arises when prior values for the cell probabilities are
revised so that they become consistent with known information. For ex-
ample, suppose that the marginal distribution of each criterion within the
population is known — e.g., the total number of people in each one of the
n age categories is known, together with the total number of people in each
one of the m categories indicating marital status — and that prior cell values
are given. The prior values could be obtained from an out-of-date general
census, or from another population with similar ethnic and socioeconomic
characteristics, or from a contingency table derived from sampling. The
prior cell values must then be adjusted so that they become consistent with
the known marginal probabilities. This is an instance of Problem 6.1.1.

Deming and Stephan [71] and Stephan [215] describe applications of ma-

122 CHAPTER 6. APPLICATIONS

trix balancing procedures for deriving probability estimates from the 1940
census data for the United States. Friedlander [97] discusses the use of those
techniques by the British government. Ireland and Kullback [132] discuss
algorithms for estimating the underlying cell probabilities of two-way contin-
gency tables based on the principle of minimum diserimination information
— entropy minimization. They also describe the extension to four-way ta-
bles, that is tables whereby each cell is characterized by four characteristics
{e.g., marital status, age, income and education). In the estimation of four-
way tables different marginal totals may be available. For example, one-,
two- and three-way marginal totals can be given. Darroch and Ratcliff [67)

discuss further applications in statistics.

Demography: Modeling Interregional Migration

Estimating interregional migration flows based on partial and outdated in-
formation is a recurrent problem in demography. Such problems arise when
figures are available for net in- and out-migration from every region and an
estimate is needed of the interregional migration patterns. In the United
States, for example, flow mairices with detailed migration characteristics
become available once every ten years from the general census of the popu-
lation. In the interim, however, net migration estimates for every region are
available as by-products from annual population estimates. (Net migration
is the difference between total population change and changes from births
and deaths}). An updated migration matrix is then needed that reconciles
the out-of-date migration patterns with the more recent net figures.
Demographers have postulated several models for estimating interre-

gional migration including gravity models, Markov or fixed transition prob-

6.1. MATRIX BALANCING 123

ability models, and doubly constrained minimum-information models. For a
discussion of alternative formulations see Plane [189] or Eriksson [88]. Plane,
in particular, develops the minimum-information model and shows that it
contains as special cases both the gravity and the fixed rate models.

The doubly constrained minimum-information model gives rise to a ma-
trix balancing problem. It is defined as follows. Let M denote total popula-
tion in all regions, and for each i =1, 2, ..., n, let O; and I; be, respectively,
the net ont-migration and in-migration for region i. Let Zijy i, =1,2,...,n,
i # J, be the model estimated probabilities that any individual in the system
is a migrant from region 4 to region j, and let a;; be some prior estimate of
the probabilities. The minimum-information model can be written as:

N n Ti
s . ij
Minimize Z Z Tij (ln (a_) - 1) (6.4)
i=1 j=1 i
i
' n
s.t. d myy=0iyM fori=1,2,...,n, (6.5)
=1
J#
n
oz =L/M forj=12,...n (6.6)
i=1
4]
The constraints are precisely those of Problem 6.1.1. An additional con-
straint is often imposed to fix the total distance D traveled by all migrants.
If d;; is the distance between regions ¢ and j, the additional constraint is
Z Z T d,'j =D,
i
Stochastic Modeling: Estimating Transition Probabilities

A problem that appears in the estimation of transition probabilities from

macro data is the following:

124 CHAPTER 6. APPLICATIONS

Given the proportion of observations in n alternative states dur-
ing T time periods, estimate the probability of transition between

any two states at the next time period.

Problems of this sort typically appear in marketing research. Obser-
vations are available for the proportion of customers using brand i where
i =1,2,...,n during the time periods { = 1,2,...,T when a market sur-
vey was conducted. Assuming that transition probabilities are constant over
the time interval of the survey, we want to estimate the underlying transi-
tion probability matrix. Let x;; be the probability of the ith brand during
period f, and let a;; be the probability of transition from i to j. Further-
more, let 2* be the (column) vector z* = (2f)7_, and let A be the matrix
{a;; 14,5 =1,2...,n}. The probab.ility vector at time £- 1 can be obtained
from that at time ¢ by applying the transition probability matrix A as fol-

lows:

ot = ATyt (6.7)

where A% is A transpose. In practice, one is given the observations zt, t =
1,2,...,7 and would like to compute the transition probability matrix A
that satisfies the relation (6.7). There are n(n — 1) probabilities a;; to be
estimated and a solution exists if the number of observations is sufficiently
small. In general T > n and no solution exists. For any estimated matrix
A we may expect at most T' non-zero discrepancy vectors z‘t! — ATz, A
quadratic programming model for estimating the transition probability ma-

trix A minimizes a semi-definite quadratic form of the discrepancy vectors:

i((mﬁ-l MATa:t), V(:I:H-l —AT:T,E)), (6.8)
t=1

6.1. MATRIX BALANCING 125

where V is an appropriate symmetric positive semi-definite matrix, such as,
for example, an estimate of the inverse of the covariance matrix. In addition,
we require that the sum of the entries of every row of the estimated matrix.
is equal to one (there is always a transition to some state) and that all
entries are nonnegative. Thus, the matrix estimation problem that arises in
this case can be modeled as the problem of minimizing (6.8) subject to the

constraints

T
Y a; = 1, fori=12...,n, and (6.9)
j=1

ai; = 0, foralls,j. (6.10)

The resulting problem is a reduced version of Problem 6.1.1 without
constraints on the column sums. The estimated matrix A is not related
to any prior estimate of the transition probabilities. Instead the model is
minimizing a quadratic term of discrepancy vectors which are related to the

computed matrix A.

A typical example is the following. Consider the market shares of new
and used cars among car buyers in the United States over a period of five
years. We want to determine the probability of a buyer of a used car switch-
" ing over to a new car and vice versa. One is therefore estimating the entries
of a matrix of transition probabilities, subject to the constraints that all
entries are between 0 and 1, and that the sum of the probabilities over all
states is equal to 1. Another example of estimating transition probabilities
from a set of data on the market shares of three cigarette brands is discussed

in Theil and Rey [221] and Theil [220].

126 CHAPTER 6. APPLICATIONS

6.1.2 Mathematical Models for Matrix Balancing

Many different mathematical formulations have appeared in the literature
for solving maitrix balancing problems. Some are equivalent to each other,
while others are genuinely different, the differences being motivated by the
real-world applications. In this section we review the diverse approaches
to modeling matrix balancing problems and give some of the most popular
mathematical formulations. First we describe the network structure of the
two basic matrix balancing Problems 6.1.1 and 6.1.2. This graph structure
is valuable for understanding both the mathematical structure of the models

and the algorithms.

Network Structure of Matrix Balancing Problems

The connection to network models is established by associating with a matrix
A a directed graph G = (V, E) representing the sparsity pattern of A. For
Problem 6.1.1 the natural graph to associate to A is a bipartite graph with

vertex sets corresponding to the rows and columns of A.

Definition 6.1.1 Bipartite Graph of A.
For an m X n nonnegative matriz A = (ai;), define the bipartite graph G =

(V, E} where

= {ili=12...,m}J{il1i=12...,n}, and
= {{i,5) | ai; > 0},

V is the set of vertices (or, nodes) and E is the set of edges (or, arcs)

of the graph. (See Figure 6.2)

6.1. MATRIX BALANCING 127

S o o

w o
—

Figure 6.2: The transportation graph of A.

This particular graph, in which the vertices are divided into two subsets
with all edges leading from nodes of one subset to those of the other, is
commonly referred to as bipartite. It is possible to define an optimization
problem on bipartite graphs, which is known as the transporfation prob-
lem [94]. With each edge (i,) we associate a variable zi; that denotes flow
from vertex 7 to vertex j and denote the cost of sending x;; units along (4, 7)
by fij(xi;). We define an optimization problem that minimizes the total cost
2ti)eE fij(zi;), subject to conditions on the conservation of total flow at

each vertex:

n
Doy o= w, i=12...,m, (6.11)
i=t

m
Z;Eij = v, Jj=12,...,n (6.12)
i=]

128 CHAPTER 6. APPLICATIONS

IV

0, (6.13)

Ti4

Tij = 0 for all aij = 0. (6.14)

These are precisely the cousistency conditions for Problem 6.1.1. The posi-
tive elements of A are viewed as flows on the edges of G. That is, the element
ai; > 0 is the flow on edge (3, 7). Hence, the relation between Problem §.1.1
and transportation problems in optimization is established.

The natural graph for Problem 6.1.2 is a trensshipment graph with n

vertices and an arc for every non-zero entry of A, defined next.

Definition 6.1.2 Transshipment Graph of A. For an n xn nonnegative

matriz A, define the transshipment graph G = (V, E) where

Ii-

v {1,2,3,...,n}, and
E = {(i,j)|ay > 0}.
(See Figure 6.3)

Similarly to the transportation optimization problem, defined over a bi-
partite graph, we can define a transshipment optimization problem defined
over a transshipment graph. In this graplﬁ model, the entries of A are flows
on the edges of G. The conservation of flow conditions of the transshipment

problem are precisely the consistency requirements for Problem 6.1.2.

Matrix Construction Formulations

Let X = {z;;) be an m x n matrix and denote

E={(i4)}li=1,2...,mandj=12,...,n}.

6.1. MATRIX BALANCING 129

oML o
[—

0o -

Figure 6.3: The transshipment graph of A.

An integral of the matriz X is a sum > (i.)er Tij where T' is a given subset
of E. The matrix balancing problem is to construct a matrix X such that
some of its integrals will obey certain conditions and the matrix itself will

be related in a specific way to another given matrix A = (a;;).

We refer to such problems as matriz construction problems. Matrix bal-
ancing is a special case of matrix construction. Other, related, problems that
can be viewed as special cases of matrix construction appeared in the litera-
ture under the terms matriz scaling (similarity scaling, equivalence scaling,
truncated scaling) [11, 12, 13, 90, 208|, constrained matriz problems [56],
generalized scaling {202, 203, 204], and fair-share matriz allocation [15, 16].

Various conditions on the integrals of the matrix X have been considered
in the aforementioned examples. These include (but are not restricted to):

fixing the row sums and column sums to pre-assigned values; constraining

130 CHAPTER 6. APPLICATIONS

the individual entries of X to lie within specified lower and upper bounds;
confining the row sums and column sums to lie within specified lower and
upper bounds and fixing the sum of all the entries of X to a pre-assigned
value; forcing row sums to be equal to column sums.

The precise relationship between the constructed matrix X and the given
matrix A is what differentiates the various instances of matrix construction

problems. These relationships are of three general types:

1. The form relationship: Here one imposes a certain form-relation that
dictates the desired form of X. One such relation is to demand the
existence of vectors A € R™ and p € R” and a real § € R such that for

a particular m x n weight matrix W the form-relation
X = A+ diag(\) W -+ W diag(u) + 6 diag(A) W diag(p) (6.15)

would hold. Here diag(}) is the diagonal matrix whose diagonal ele-
ments are the components of A\. This relation, proposed by Bachem
and Korte [12], is the most general, and extends several special rela-
tions that were proposed in the past. With the choice W = A b=1
and the substitution r = A+ 1 and s = p + 1 {(where 1 is a vector of

all ones), relation (6.15) becomes

X = diag(r) A diag(s) (6.16)
which leads to the well-known and extensively studied equivalence scal-
ing problem, see, e.g., Schneider [207].

Yet another form-relation between X and A is to demand the existence

of a positive vector z € R* (i.e., z; >0, 7=1,2,...,k) such that the

6.1. MATRIX BALANCING 131

lexicographic vectorial reorderings 2 € R™ and a € ™ of X and A,

respectively, are related by

k

Tq = aq (H zﬁ’f”l) ,» ¢=1,2,3,...,mn, (6.17)
=1

where & = (¢pg) is a k x mn coeflicients matrix of a system of linear

equality or linear inequality integral constraints on X. See Darroch

and Ratcliff [67] and Rothblum [202, 203]. For special cases of the

coefficient matrix @ this form relationship also leads to the equivalence

scaling problem [202].

2. The aziomatic approach: This approach, taken recently by Balinski
and Demange [15, 16], specifies a list of axioms that the relationship
between X and A should satisfy and then establishes a rigid form-

relation which is proven to fulfill the given axioms.

3. Distance optimization: In this approach the constructed matrix X
should be as close as possible to the original matrix A4, subject to
the integral constraints. The notion “close” is defined by some dis-
tance function f(X; A) which measures the “distance” between X and
A. The choice f(X;A) =|| X — A ||%, where || - || denotes the
Frobenius norm, leads to a linearly constrained quadratic optimiza-
tion problem, Cottle et al. [56}, Zenios et al. [239] and Schneider and
Zenios [208]. Another commonly used objective is the negative entropy

functional [208, 239]:

Y w [m (Zﬁ) - 1] . (6.18)

(Li)eE

132 CHAPTER 6. APPLICATIONS

It is important to point out that connections exist between some of the
seemingly different approaches to matrix construction, in particular between
several form- relations and the entropy optimization problem. Entropy op-
timization formulations have also been justified in the literature as resulting
in balanced matrices that are the least-biased, or maximally uncommitted,
with respect to missing information from the original matrix A. Some ax-
iomatic approaches also lead naturally to entropy optimization formulations.
As a result, matrix balancing problems formulated as entropy optimization
models over network flow constraints, are some of the most widely used in

practice. We present several such formulations next.

Entropy Optimization Models for Matrix Balancing

We consider the entropy optimization formulations of Problems 6.1.1 and
6.1.2. That is, we consider the estimated, balanced, matrix X to be “nearby”
the matrix A if the “entropic distance” between them is minimized, as de-

fined below.

Problem 6.1.3 Given an m X n nonnegative matriz A = (a;) and positive
vectors u = (u;) € R™ and v = (v;) € N* determine the matriz X = (zi5)

which solves the optimization problem:

Minimz'ze Z Tij [ln (%) - 1] (6.19)
if

(.)€l

s.t. Z Tij = U, fori=1,2,...,m, (6.20)
{i.j)eE

> miy = v, fori=12,...\n, (6.21)
(tj)ek

) for (i,7) € B, (6.22)

6.1. MATRIX BALANCING 133

and so that a;; =0 = zij = 0.

Problem 6.1.4 Given an n X n nonnegative matriz A = {ai;), determine

the matriz X = (zi;} which solves the optimization problem:

Minimize Z Tij [ln (Z—z) - 1] (6.23)

(ifleE
n n
s.t. Za:ij = Zwﬁ, fori=1,2,...,n, (6.24)
j=1 j=1

T = 0, © for (?,j) € E, (6.25)
and so that aj; =0 = zi; = 0.

We consider now extensions of these problems to situations in which the
given row-sums u; and column-sums v; are confined to an interval in Prob-
lem 6.1.3, or in which the strict agreement between row and column sums,
in Problem 6.1.4, is relaxed to having their differences fall within a specified
interval. This is known as the interval-constrained matriz balancing prob-
lem. Such formulations arise in practical applications when the prescribed
row and column sums are unreliable or when they cannot be specified more
precisely than being confined to certain intervals. Interval-constrained for-
mulations were proposed, independently and in slightly different forms, by

Balinksi and Demange [15, 16] and Censor and Zenios [51].

Problem 6.1.5 Giwen an m X n nonnegative matriz A = (ai;}, nonnegative
vectors u = (w;}, T = (%) € R™ such that 0 < u < %, and nonnegative

vectors v = (y;), T = (T;) € R" such that 0 < v < T, determine the matriz

X = (m5) which solves the optimization problem:

134 CHAPTER 6. APPLICATIONS

Minimize) my [111 (ﬂ) - 1} (6.26)

(L5)eE i
5.t w< Yz <y fori=1,2,...,m, (6.27)
(1.j)eR
v < Y oy <T, forj=1,2,...,n, (6.28)
(i.)eE

zi; >0, for {i,j) € E, (6-29)
and so that ij = 0 = =z =0.

Problem 6.1.6 Given an nxn nonnegalive matriz A = (a;), and a positive
“tolerance vector” € = () € R, € > 0, determine the matriz X = (zi5)

which solves the oplimization problem:

Minimize Y 2y [m (@) ~1 (6.30)
4iEE @i
n T
s.t. —WEiSZCCij—ZSCﬁ <€, fori=12,...,n, (6.31)
j=1 j=1
xij >0, for(i,7) € E, (6.32)

and so that a;; =0 = x5 = 0.

6.1.3 Iterative Algorithms for Matrix Balancing

The row-action iterative algorithms of Chapter 4 are now applied to the
mathematical formulations of the matrix balancing problems. The entropy
function is a Bregman function (see Lemma 2.2.3). It is optimized over
equality constraints (for Problems 6.1.3 and 6.1.4), and over interval con-
straints (for Problems 6.1.5 and 6.1.6). We develop here the specific algo-

rithms for the more general, interval-constrained, Problems 6.1.5 and 6.1.6.

6.1. MATRIX BALANCING 135

Then we obtain as special cases the algorithms for the equality-constrained

Problems 6.1.3 and 6.1.4.

The Range-RAS Algorithm (RRAS)

The Range-RAS (RRAS) algorithm is designed to solve Problem 6.1.5 with
interval constraints on the row and column sums of X. Tt is an adaptation of
the iterative row-action Algorithm 4.5.1 for interval convex programming. It
is, therefore, a primal-dual algorithm with the elements of the sequence {z*}
as primal variables and dual variables denoted by ¥, for i = 1,2,...,m, and
a;f’ , for 1 =1,2,...,n. While the general algorithm is a dual ascent method
which does not perform exact minimization in the dual problem, it turns
out that, for the particular case of RRAS, the dual ascent is indeed exact.
This is the case because the constraints matrix, denoted by ® below, is a
0-1 matrix, i.e., all its entries are either zero or one.

It is useful to reformulate the constraints of Problem 6.1.5 by lexico-
graphically rearranging the m x n matrix X into an mn-dimensional vector
z = (x3),8 = 1,2,...,mn, where s = (i — 1)m + j. The constraints then

take the form

1=
el

< bz < : (6.33)

<

Let the m x mn matrix R be given by

[11...1 | !

|
: 11...1] | | (630
|

136 CHAPTER 6. APPLICATIONS

and the n x mn matrix C be given by

1 [1 | | 1
L | 1 | | 1
c= . | .] (e3)
| | |
1 1| | 1
Both matrices are used to define the matrix ®
R
P = . (6.36)
C

In Algorithm 4.5.1 we identify ® as the constraint matrix and take the

objective function f to be

flz) = s{_‘ixs [In (Z—:) - 1] . (6.37)

After some algebraic manipulations we obtain the following algorithm.

Algorithm 6.1.1 The Range-RAS (RRAS) Algorithm.

Input: An m X n nonnegative matrix A = (a;;), positive vectors u =

(u;), @ = (%) € R end positive vectors v = (;), 7 = (7;) € N,

Step 0: (Initialization) Set & = 0 and :L'?j =a foralli=1,2,...,m and
=12 .. ,n Setpfy =1, fori=1,2,...,m and O';-) = 1, forj =
1,2,...,n.

6.1. MATRIX BALANCING 137

Step 1: (Row Scaling) For i = 1,2,...,m define

k Uy

= E;;%k;;, (6.38)
J_
A= ;;% , (6.39)
compute

Api = mid (gf, pt, pt) (6.40)

and update: |
oy — aEA, i=12...,m §=1,2,...,n, (6.41)
ot = A”—i, i=1,2,...,m. (6.42)

Step 2: (Column scaling) For j = 1,2,...,n define

k Yj
J- , 6.43
Z; Emg ()
i
~k Yy
;= =, 6.44
i
compute
Acf = mid(of,qf,5%) (6.45)
and update
gt = abAdk, i=1,2...m j=1,2,....n (6.46)
k
A i=1,2...,n (6.47)
7 Ao_;s:? H ¥ k]

Step 3: Replace k «— k+ 1 and return to Step 1.

138 CHAPTER 6. APPLICATIONS

The RAS Scaling Algorithm

If the input in the RRAS algorithm is » = ¥ and » = ¥ then for all k, p* = pf
and g = Eff will always be equal to Ap¥ and Acrff, respectively. Thus pf
and a;-“ — which can be interpreted as dual variables — become irrelevant
and the algorithm coincides with the t;,lassical RAS algorithm [145, 31, 10]

for the fixed row-column Problem 6.1.1.

Algorithm 6.1.2 The RAS Algorithm.

Input: Anmxn nonnegative matrix A = (a;;), a positive vector u = (u;) €

R™ and a positive vector v = (v;) € B™.

Step 0: (Initialization) Set k¥ = 0 and 9:% = a5, forall i = 1,2,...,m, and

i=12,...,n

Step 1: (Row Scaling) For i = 1,2,...,m define

& g
L
3
and update:
of —ahpf, i=12,...m, j=12,...,n, (6.49)

Step 2: (Column scaling) For 7 =1,2,...,n define

k Uy
oi = (6.50)
and update
el =akof, i=1,2,...,m, §=1,2,...,n. (6.51)

6.1. MATRIX BALANCING 139

Step 3: Replace k «— k& + 1 and return to Step 1.

Within the graph model of Problem 6.1.3, the RAS algorithm cycles
through the vertices on each side of G' and multiplies the flows on all edges
incident to a vertex by the positive constant necessary to force the sum of

the flows equal to the desired total.

The Range-DSS Algorithm (RDSS)

The Range-DSS (RIDSS) algorithm solves Problem 6.1.6. Here we present
the details of its derivation from Algorithm 4.5.1. The interval constraints

of Problem 6.1.6 may be rewritten as

—e<(R-0C)z <¢, (6.52)

where R — C is the n x n? difference matrix of R and ' given by (6.34) and
(6.35), i.e.,

R-C=

Let us denocte

R—C=1= (), (6.53)

140 CHAPTER 6. APPLICATIONS

and let * = (i) = (4is), s = 1,2,...,7%, be the i — th column of ¥7, the
transpose of ¥. Then the iterative step derived from Algorithm 4.5.1 takes

the form

m§+l _,Eic exp (cklbi(k)) ,8=1,2,..., 'n,21 (6.54)

zF, if ¢ o i(k),

2t = (6.55)
2 —cp, ift=1i(k).

Here {i{k)} is the control sequence according to which the rows of ¥ are
chosen. We assume the cyclic control i(k) = k(modn) + 1 and henceforth
abbreviate i = i(k). {z*} is a sequence of dual vectors.

In this iteration the parameter ¢ is

or = mid (zf,gk,ak), (6.56)

where d* and d" are determined by solving, for ¢ = i(k), the systems:

Ys = ;t:’scexp (dptbis), s=1,2,...,n2, (6.57)
n2
Zyswis = —€ (6.58)
§=1

and

ys = zFexp (Ekq,bis) ,8=1,2...,n% (6.59)
nE
Zys¢is = €. (6.60)
s=1

Substituting (6.57) into (6.58), denoting expd;, = oy and using the fact that
;s takes only the values 0, -+1, and ~1, we get

6.1. MATRIX BALANCING 141

1
pay, — q-@_—k = —g, (6.61)
where
pE > b, ¢= > gk (6.62)
{slwris=1} {slpsa=—1}

Similarly, for @ = expdy, we obtain from (6.59) and (6.60),

_ 1
PO~ q— = ¢;. (6.63)
e
Taking the nonnegative solutions of the quadratic equations (6.61) and (6.63)
we obtain the values of d; and dy, respectively, which go into the mid op-
erator (6.56) to obtain ¢;. Using ¢ in (6.54)(6.55) completes the iterative
step. The RDSS algorithm is thus formulated as follows.

Algorithm 6.1.3 The Range-DSS (RDSS) Algorithm.

Input: An n X n nonnegative matrix A = (a;;), a positive vector € = (¢;) €

R”.

Step 0: (Initialization) Set k = 0 and a:% =aqi; for all 4,7 =1,2,...,n. Set

=1, fori=12,...,n.

Step 1: (Computation of Scaling Parameters) Choose a control index from
a cyclic control sequence {i(k}} with i(k) = k(modn)+1, and calculate

the sums

n n
P =D Tin s Gk =D Ty (6.64)
=1

=1
Compute ¢ and @ as the nonnegative roots of (6.61} and (6.63),

respectively, with p = pi, ¢ = g, and ¢ = i(k).

142 CHAPTER 6. APPLICATIONS

Step 2: (Update) Calculate

A.Of(k] = mid {pﬁk}wgk:ak} (6.65)

and update:

el if i =ik}, # i(k),

_q;f;m: mi.cj/Apf(k), if i # k), 7 =i(k), (6.66)
:cfj, otherwise,
5 if i #i(k),
gtz P fidilk) (6.67)

Pic(k)/APic(k), if i=1i(k).

Step 3: Replace k& « &+ 1 and return to Step 1.

The DSS Scaling Algorithm

In the special case when € = 0 we obtain the DSS algorithm that solves
Problem 6.1.4. In this case a; = @ = oy and, therefore, dj, = dy, = d, = cx.

Since oy = exp ¢y, the iteration (6.54) becomes

aktl = k(g)¥is,
Since then also oy = \/g, the DSS algorithm can be written as follows.
Algorithm 6.1.4 The DSS Algorithm.

Input: An n x n nonnegative matrix A = {ay;).

Step 0: (Initialization) Set £ = 0 and r.!:?j =ai, forall4,j =1,2,...,n.

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 143

Step 1: (Computation of Scaling Parameters) Choose a control index from

a cyclic control sequence {i(k)} with i(k) = k(modn)+1, and calculate

the sums
: “ k . = k
j=1 j=1
Compute
Pk
=4[~ 6.69

Step 2: (Update) Update:

zhiap, if i =i(k), j 5 i(k),

B =0 ko if i i(R), § = i(k), (6.70)
:U‘%, otherwige,

Step 3: Replace £ — &k + 1 and return to Step 1.

In the graph model, the DSS algorithun scans the vertices of G and selects
a vertex that violates the flow conservation conditions. Then the flows on
edges directed into and out of that vertex are scaled so that conservation of

flow at that vertex is satisfied.

6.2 Image Reconstruction from Projections

Many significant problems in diverse fields of applications in science and
technology are inversion problems. An object — described by a vector z
— is related to some data b through a relation Oz = b, and the recovery

of z requires essentially the inversion, in some well-specified sense, of the

144 CHAPTER 6. APPLICATIONS

operator (. The inversion problems discussed in this section are those of

wmage reconstruction from projections.

Image reconstruction problems differ widely depending on the area of
application in which they are formulated. Even within one field, such as
medical, industrial, etc., very different reconstruction problems are encoun-
tered because of the physically different ways the data may be collected. In
spite of such differences there is a common mathematical nature to recon-
struction problems which is the following. There is an unknown (two- or
three-dimensional) distribution of some physical parameter. This parameter
could be, for example, the X-ray linear attenuation coefficients of human
tissue, or the attenuation coeflicients of the material in a nuclear reactor, or
the density of electrons in the sun’s corona. A finite number of line integrals
of this }Sarameter can be estimated from physical measuréments, and an es-
timate of the distribution of the original parameters is desired. In the X-ray
Transmission Computerized Tomography {CT) case the total attenuation of
the X-ray beam between a source and a detector is approximately the inte-
gral of the linear attenuation coeflicient along the line between the source

and the detector.

Since a line in two- (three-) dimensional space can be parametrized by
two (four) independent parameters, the process of associating with a function
of two (three) variables the set of all its line integrals is a transformation
from a two- (three-) dimensicnal space into a two- (four-) dimensional space.
There is an obvious mathematical generalization, to arbitrary dimensions,
of this transformation which has been referred to as the X-ray fransform.
For the two-dimensional case it is the same as the, now classical, transform

introduced by Radon.

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 145

In this terminology, the aim of image reconstruction from projections can

be reformulated as follows:

Estimate a function from approximate values of its X-ray trans-

form at a finite number of points.

6.2.1 Applications of Image Reconstruction

Problems of image reconstruction appear in numerous and diverse fields of
applications. The mode of data-collection, the function to be reconstructed,
the dimension of the function and so on may differ widely depending on the
application.

Due to the vastness of the field and the desire to keep these Lecture Notes
brief, we give here just a short bibliography. The list is selective, rather then
exhaustive and is mainly aimed to give the reader some useful directions.

The basic, classical, treatise on image reconstruction is Herman’s book [110].
Books with different, more specialized, emphases are written by Natterer [173],
by Bates and McDonnel [18], by Deans [68] and by Kak and Slaney [139].
From the many specialized issues of Journals that were devoted to this field
over the recent years we mention the following few: a 1983 special issue of
the Proceedings of the IEEE [111], a 1990 special issue of Linear Algebra and
Its Applications [44] and the recent special issue of Physics in Medicine end
Biology [1].

More specialized books in the field are Hurt’s [127] book on phase re-
trieval and zero crossings, the book by Craig and Brown [57] on inverse
problems in astronomy, and the books edited by Udupa and Herman [223],
by Nolet [181] and by Stark [214]. Recent conference proceedings include 124,

146 CHAPTER 6. APPLICATIONS

104, 120, 119] and many others. Review and tutorial papers were published
in a steady How, see, e.g., [103, 113, 39, 40, 41, 187, 46] and the recent re-
port by Roerdink [200]. Finally we mention also a recent thesis on computed

tomography for nondestructive material evaluation [9].

6.2.2 Mathematical Models for Iinage Reconstruction

There are two distinctly diflerent approaches to the development of math-
ematical models for image reconstruction. One methodological path is to
formulate a continuous model and use mathematical tools for the analytic
inversion of the model operator (J. The formulae of the inverse operator
are then “discretized” for computer implementation. In contrast to this, the
so-called finite series-expansion approach to the problem, starts off with a
discretized model. This approach leads to a linear or nonlinear system of
equations or inequalities, or an optimization problem, in the n-dimensional
Euclidean space ™. After a solution coneept is chosen an iterative algorithin
is usually used and when iterations are stopped the current iterate z¥ € R*,
for some k, is taken as the reconstructed image.

The basic model in the series-expansion approach to the image recon-
struction problem of X-ray transmission is formulated in the following way:
A Cartesian grid of square picture elements, called pixels, is introduced into
the region of interest so that it covers the whole picture that has to be recon-
structed. The pixels are numbered in some agreed manner, say from 1 (top
left corner pixel) to n (bottom right corner pixel) (see Fig. 6.4). The X-ray
attenuation function is assumed to take a constant value z; throughout the
Fth pixel, for j = 1,2,...,n. Sources and detectors are assumed to be points

and the rays between them are assumed to be lines. Further, assume that

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 147

Yiew at angle @

line of sources

Mock of

Co rays
descrelized fmage ¥

domain

< / N

£
Py
~

/ only these pixcls
are updzated when
this block is
processed,

L

line of detectns
Figure 6.4: Fully discretized model for transmission image reconstruction.

the length of intersection of the ith ray with the jth pixel, denoted by as;, for
alli=1,2,...,m, j=12,...,n, represents the weight of the contribution
of the jth pixel to the total attenuation along the ith ray.

The physical measurement of the total attenuation along the ith ray, de-
noted by b;, represents the line integral of the unknown attenuation function
along the path of the ray. Therefore, in this discretized model, the line inte-
gral turns out to be a finite sum and the whole model is described by a system

of linear equations. This is the feasibility model for image reconstruction.

Problem 6.2.1 Given a measurement vector b € R™, and a nonnegative
m X n matriz A = (ai;), determine the vector x € R™ which solves the

system of equations:

148 CHAPTER 6. APPLICATIONS

ki3
Z"Eja‘ij s bi, 1= 1,2,...,'m. (671)
j=1

If the system of equations is inconsistent — something which occurs in
practice due to measurement errors or missing information — one needs
to make additional modeling assumptions. Occasionally, the choice of an
algorithm for solving the problem will be determined by the performance
of the algorithm when applied to inconsistent systems. For example, some
algorithms can be shown to converge to an accumulation point that can be
characterized as a “solution” to the feasibility problem.

If the system of equations is underdetermined -— a common occurrence
in practical applications when only a few observations can be made — one
may use an optimization criterion to select the most “suitable” solution. In
this respect, the minimization of a negative entropy functional has received
widespread attention from users. The image reconstruction problem can

then be formulated as the following entropy optimization model.

Problem 6.2.2 Given o measurement vector b € R™, and o nonnegalive
m X n matriz A = (ay), determine the vector x € R™ which solves the

optimization problem

n

Mi?éig}lize jg;lmj In z; (6.72)
Tt

st mjey = b, i=1,2,...,m (6.73)
i=1

It is worth pointing out the similarity between this entropy optimization
model for image reconstruction, and the mode! for matrix balancing, Prob-

lem 6.1.3. In particular, the matrix balancing problem can be viewed as a

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 149

problem of image reconstruction in which measurements are taken from only

two, orthogonal, projections.

6.2.3 Algorithms for Image Reconstruction

We present now algorithms for both the feasibility and the entropy opti-
mization models for image reconstruction, i.e. Problems 6.2.1 and 6.2.2
respectively. The algorithms are based on the material of Chapters 3 and
4, and they are specialized for the structure of the image reconstruction

models.

Algebraic Reconstruction Technique (ART) for Systems of Equa-

tions

This section reviews the variable-block Algebraic Reconstruction Technique
(ART) algorithmic scheme for solving systems of linear equations that arise
from the fully discretized model of transmission tomography. Mathemati-
cally speaking, this scheme is a special instance of the more general Block-
iterative Projections (BIP) method of Section 3.3. However, the variable-
block ART scheme deserves to be looked at separately because of its im-
portance to image reconstruction from projections. It includes the classical
row-action ART, the fixed-block ART (i.e., Block Kaczmarz algorithms),
as well as the Cimmino version of SIRT (Simultaneous Iterative Recon-
struction Technique), as special cases. It serves as a unifying framework for
the description of all these popular iterative reconstruction techniques. The
novelty added to all those by the variable-block ART scheme lies in the fact
that it allows the processing of blocks (i.e., groups of equations) which need

not be fixed in advance, but may rather change dynamically throughout it~

150 CHAPTER 6. APPLICATIONS

erations. The number of blocks, their sizes and the assignment of equations
to blocks may all vary, provided that the weights attached to the equations

do not vanish.

The behavior of iterative reconstruction algorithms when the underlying
system of equations is inconsistent is an interesting question because noise
and other inaceuracies in data would usually malke any consistency assamp-
tion unrealistic. Results related to the behavior of ART, fixed-block ART
and SIRT when applied to an inconsistent system are available in the litera-
ture, see, e.g., [43, 82, 107, 217, 218]. This question is still open, in general,
for the variable-block ART.

Another important issue is the implementation and practical perfor-
mance of block iterative reconstruction algorithms with fixed or variable
blocks. In addition to studying the algorithms in terms of quality of recon-
structed images there is a potential of using block-iterative algoritluns on

parallel machines. We briefly survey some recent results on these matters.

Consider a system of linear equations, obtained from the fully discretized
model for transmission tomography image reconstruction, which has the
form (6.71). Unless otherwise stated we assumed that the system is con-
sistent, i.e., that, given A and b, the set {z € R" | Az =.b} is nonempty.

Algorithmic behavior for inconsistent systems is discussed separately below.

Let w = (w(i)) € N™ be a weight vector with w(i) > 0 for all ¢ and
S w(i) = 1. Recall {Section 3.3) that a sequence {w*}$, of weight
vectors is called foir if, for every ¢, there exist infinitely many values of %
for which w*(i) > 0. This guarantees that no equation is zero-weighted

indefinitely. To prevent equations from fading away by positive but steadily

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 151

diminishing weights we require that, for every 4, the stronger condition
(=]
> wh(s) = 40, (6.74)
k=0

holds.
The sequence of weight vectors {w*} actually determines which block is
used at each iteration by attaching positive weights to equations that belong

to the current block and zero weights to the rest.

Algorithm 6.2.1 Variable-block ART — The General Scheme.
Initialization: 20 € ®" is arbitrary.
Iterative Step:

m c_{qt ek .
g = 2F 0 Y Wk () (—y‘ o,)) a'. (6.75)
i=1

Il |12

Here {A;}32, is a sequence of relazation parameters chosen by the user.

As a direct corollary of Theorem 3.3.1 we obtain

Theorem 6.2.1 If the system of equations in 6.71 is consistent and {w*}
are weight vectors with property (6.2.5), and if the relazation parameters
{Ae} are such that 1 < A < 2 — 1y, for all k > 0, with 7,70 > 0, then
any sequence {z*} generated by Algorithm 6.2.1. converges to a solution of

Problem 6.2.1.

The variable-block ART algorithm allows processing of the information

contained in groups of equations, called blocks. The number of blocks, their

152 CHAPTER 6. APPLICATIONS

sizes (i.e., the number of equations in each block) and their specific structure
(i.e., which equations are assigned to each block), may all vary from one
iterative step to the next. The following special cases of Algorithm 6.2.1

have been studied separately in the past.

Row-action ART. This classical sequential ART is obtained by choosing
the weight vectors as w® = ¢} where e! € %" is the t-th standard basis
vector (having one in its t-th coordinate and zeros elsewhere). Each
block contains a single equation and the index sequence {i(k)} with
t < i(k) < m, for all k, is the control sequence of the algorithm which
determines the index of the single equation upon which the algorithm
operates at the k-th iterative step. The iterative steps take obviously

the form

bigy — (a¥®), =) 4i6)

k+1 .k
@i =@+ Ak [ait |2 i

3 , forall j=1,2,...,n. (6.76)

Cimmino-type SIRT. In this fully simultaneous reconstruction algorithm
all equations are lumped, with fixed weights, into a single block and
are acted upon simultaneously in every stép. The iteration formula
is precisely (6.75) with w* = w, for all £ > 0, and w(i) # 0, for
all 7 = 1,2,...,m. See Gilbert [101], Lakshminarayanan [146] and

van der Sluis and van der Vorst [224).

Fixed Block ART. Here the index set I == {1,2,...,m} is partitioned as
I=I1UlU..-Ulps into M blocks. {t(k)} is a control sequence over
the set {1,2,..., M} of block indices and the weight vectors are of the
form wh = ;¢ Ty w¥(i)e!. This guarantees that equations outside
the £(k)-th block are not operated upon in the k-th iterative step. The

block-Kaczmarz procedure of [83] is thus obtained.

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 153

In addition to these well-known special cases the variable-block ART
enables the implementation of dynamic ART algorithms in which the block
formation strategy might vary during the iterative process itself. Such vari-
ations in the block formation strategy may be used to accelerate the initial
convergence towards an acceptable reconstructed image. It is possible under
the regime of the variable-block ART to perform multilevel image recon-
struction. By multilevel approaches we mean methods in which we repeat-
edly change during the iterative process the system of equations to be solved

and/or the way the system is organized into blocks.

Because of their computational appeal (simplicity, row-action nature,
etc.) and their efficacious performance in some specific situations, ART
methods have been applied to inconsistent systems of equations as well.
The surprisingly good results prompted studies of the behavior of the algo-
rithms when applied to such systems. For example, row-action Kaczmarz’s
is known to be “cyclically convergent”. This implies the convergence of
the subsequences of iterates lying on each of the hyperplanes of the sys-
tem. This result also holds for the fixed block Kaczmarz method. The
fully simultaneous Cimmino method has been shown to converge locally to a
weighted least squares solution if the system is inconsistent, see, e.g., Jusem
and De Pierro [133]. We are not aware of any study that would in any way
unify these results by making a statement about the behavior of the variable

block ART method for inconsistent systems.

154 CHAPTER 6. APPLICATIONS

Multiplicative Reconstruction Technique (MART) for Entropy Op-

timization

A special-purpose block-iterative algorithm for entropy maximization used
for image reconstruction is the block Multiplicative Algebraic Reconstruction
Technique (block-MART). This algorithm is a block-variant of the MART
algorithm of Gordon et al. [102], which in turn can be obtained as a special
case of Algorithm 4.7.2. The block-MART algorithm, and its convergence
analysis, are given in Censor and Segman {50], see also the recent work of
Byrne [35].

The set of row indices of the constraints matrix A is first partitioned into

{t,e,....1t = U .Un (6.77)

For each £, 1 < ¢ < M, I is the index set of a block of constraints. To each

block I, t = 1,2,..., M, a fixed system of weights is assigned by defining

0 <wi <1, forall i € I, such that » wf = 1. (6.78)
i€],

If, however, a block contains a single equation then w! = 1. The block-
iterative algorithin for entropy maximization over linear equality constraints

can be stated as follows:

Algorithm 6.2.2 Block-MART.

Initialization: Choose an arbitrary 4% ¢ ®™ and compute z? € R such
that 1 —loga$ = — (ATuU)j, §=1,2,...,n, where AT is the trans-

pose of A.

6.2. IMAGE RECONSTRUCTION FROM PROJECTIONS 155

Iterative step:

k+1: k H exp[t(k)dk] i=12,...,n, (6.79)
“ff:(k)

where

d* = log (zbi—) , (6.80)

a, o)
The choice of blocks is governed by a cyclic (or almost cyclic) control

sequence {t(k)} :

t(k) = k (modM) + 1. (6.81)

The iterative step of the algorithm can also be written in the form:

.1;;?'"1 = m;‘ exp { Z w; k)dk 7} . (6.82)

""EIt(k)
" This form is more suitable for computer implementations, both for efficiency
and stability.

"The block-iteration has the functional form (see Chapter 1):

¥t = By [svk, {fi}ielttkl] (6.83)

where By is an algorithmic operator which uses the current iterate z*
and the information in all rows in the #(k) — th block of constraints. The
information in row i is denoted by f;. In the case M = I the block-iterative
scheme is a row-action one and block-MART coincides with MART [102,
149, 151, 46, 50, 238]. The case M=1 is a fully simultaneous version in which

156 ' CHAPTER 6. APPLICATIONS

all constraints are lnmped into a single block. This case can be interpreted
as a parallel block-iterative algorithm which enables several processors to

perform in parallel the operations
ZFHLE = B, [x‘“,{ﬁ-}ieh] L t=1,2,..., M, (6.84)

and then let
M
=g [{m’f“’ﬁ}t:l] (6.85)

where the operator § is defined via Hf‘il. While being mathematically equiv-
alent here to the fully simultaneous case it is, of course, different from the

implementation point of view and it is suitable for parallel implementation.

6.3 Planning Under Uncertainty: Stochastic Net-
work Optimization

It has long been recognized (Dantzig [63]) that traditional deterministic
mathematical programs are not suitable for capturing the truly dynamic
behavior of many real-world applications. A primary reason is that such ap-
plications involve data uncertainties. Data uncertainties arise in a dynamic
setting because information which will be needed in subsequent decision
stages is not yet available to the decision maker or modeler. In applications
from financial planning such information would be future asset prices and
returns. Applications from logistics planning and wtility service scheduling
exhibit uncertain supplies or demands, as well as uncertain transportation
or construction costs. Stochastic programming was first proposed (indepen-
dently by Dantzig [63] and Beale [20]) as a way to overcome the problem of

uncertain problem data.

6.3. STOCHASTIC NETWORK OPTIMIZATION 157

Although there has been significant progress in the ability of researchers
to solve stochastic programs, these programs often turn out to be very com-
plex for practical applications. Their solution on the computer often proves
prohibitively expensive. Solving deterministic “mean value” or “worst case”
approximations may lead to solutions which are far from optimal, Birge [27].
Reformulating the stochastic program into a large-scale deterministic equiva-
lent, taking uncertainties explicitly into account, is often possible. However,
the deterministic program may again be very expensive to solve. This is not
only because of sheer size, but also because any special structure exhibited

by the stochastic program is largely lost in the deterministic equivalent.

In this section we consider the application of the row-action algorithms of
Chapter 4 to the development of an algorithm for strictly convex stochastic
network problems. {A survey of models and solution techniques for nonlinear
network optimization problems is given by Dembo, Mulvey and Zenios [70].)
We employ a decomposition technique for two-stage stochastic network prob-
lems by splitiing (or replicating) first-stage decision variables as suggested
in Rockafellar and Wets [199]. This reformulation preserves the network
structure. The subsequent application of a row-action algo{rithm results in

further decomposition that is suitable for parallel computing.

A limitation of the algorithm is that it is applicable only to problems with
strictly convex objective functions, like the quadratic form we use in this sec-
tion, or entropy functions of the form }°; x; log z;. The linear stochastic pro-
gram cannot be solved directly with this algorithm. Nevertheless, row-action
algorithms can be used as building blocks in the proximal minimization al-
gorithms discussed in Chapter 5. Our discussion in the present chapter is

restricted to the nonlinear program. The solution of linear stochastic pro-

158 CHAPTER 6. APPLICATIONS

grams — using the row-action algorithms of this chapter together with the
proximal minimization algorithms from Chapter 5 — is discussed by Nielsen

and Zenios [178, 179, 180].

There is a vast literature on thé theory, algorithms and applications of
stochastic programming. We cite here some of the relevant articles that
develop solution algorithms for large-scale stochastic optimization models,
such as the stochastic network programs we study here. Research over the
last twenty years has largely concentrated on (i} devising efficient decom-
position methods for solving the deterministic equivalent program (Dantzig,
Dempster and Kallio [64] Van Slyke and Wets [212, 213], Ruszezynski ,
Infanger [130]}, (ii) designing or exploiting parallel computing machinery
to speed up the solution process (Wets [227], Dantzig [65], Mulvey and
Ruszezynski [167], Qi and Zenios [193]}, and (ili) on retaining any special
structure present in the stochastic program, (Qi [192], Wallace [226], Mulvey
and Vladimirou [170, 168], Nielsen and Zenios [177, 179]).

Recently, Rockafellar and Wets {199] introduced the progressive hedging
algorithm, a decomposition algorithm based on augmented Lagrangean the-
ory. This algorithm retains any structure present in the sub-problems, and
is also suitable for implementation on parallel computer architectures. Spe-
cial structure in the sub-problems is preserved by splitting (i.e., replicating)
first-stage variables and then using an augmented Lagrangean penalty to
ensure that the replicated variables converge to a common value. Progres-
sive hedging was used by Muivey and Vladimirou [168] for the solution of
stochastic programs with network recourse. The split-variable formulation
was also used by Lustig et al. [152] in order to exploit the sparsity structure

of stochastic programs when using interior point methods. It was also used

6.3. STOCHASTIC NETWORK OPTIMIZATION 159

by Nielsen and Zenios [177] to exploit the network structure in the design of

massively parallel algorithms.

There has also been extensive interest in the use of parallel computing
techniques for solving stochastic programs. Wets [227] proposed the use of &
large number of very simple processors to solve (multistage) stochastic pro-
grams. Ariyawansa and Hudson [7] implement and test on a multiprocessor
a version of Van Slyke and Wets’ [213] algorithm. Dantzig and Glynn [66]
demonstrate that nested decomposition, Monte Carlo importance sampling
and parallel programming can be combined to solve a class of multistage

stochastic programs.

6.3.1 Problem Formulation

We now formally define the two-stage stochastic nonlinear program with

recourse. The dynamics of the situation we are modeling are as follows:

A decision maker must make a decision for current actions, facing
an uncertain future. After these first-stage decisions are made, a
realization of the uncertain future is observed, and the decision
maker determines an optimal second-stage decision. The objec-
tive is to minimize the cost of the first-stage decision plus the

expected cost of the second-stage decisions.

This framework {and the algorithmic approach we introduce next) can
be generalized to more than two stages. We concentrate here exclusively on
the two-stage model. Extensions to multi-stage models are given in Nielsen

and Zenios [179].

160 CHAPTER 6. APPLICATIONS

The Two-stage Stochastic Program

To formulate the two-stage stochastic program we need two sets of decision

variables:

x € R denotes the vector of firsi-stage decisions. These decisions are

made before the future events are observed.

y € B"2 denotes the vector of second-stage decisions. These decisions are
made after some realization of the uncertain future has been observed.
They are unavoidably constrained by the first-stage decisions, and de-

pend on the realization of the uncertain future data.

Let us first formulate the second-stage problem: Once a first-stage de-
cision = has been made, some realization of the uncertain future has been
observed. Let bold-face letters g, r, B, v, C denote the stochastic quan-
tities that deseribe the uncertain future, and let the corresponding roman-
face letters denote a specific realization of these stochastic quantities. The
uncertainties of the second-stage problem are represented by a {possibly)
stochastic objective function g : ®"2 - R, the (possibly) stochastic mg X ng
real constraint matrix B, the (possibly) stochastic resource vector, r € 82,
the vector v € ®™ of (possibly) stochastic upper bounds on the second-
stage variables, and the (possibly) stochastic mg % n1 matrix C which com-
municates information about the impact of the first-stage decision to the
second-stage problem.

The second-stage problem is then to find an y that optimizes the cost
of the second-stage decision, for a given value of the first-stage decision z.
We denote the value of the second-stage problem by Q(g,r, B,v,C | z);

its arguments denote its dependence on the realization of the stochastic

6.3. STOCHASTIC NETWORK OPTIMIZATION 161

quantities, and the fact that it is conditioned on the value of the first-stage
variables x. (}(-) is obtained as the optimal value to the following nonlinear

prograrmn:

Minimize g(y) (6.56)
8.t. By = r—Cgz, (6.87)
0<y<w. (6.88)

If this second-stage minimization problem is infeasible, we understand its

value to be cc. Let now

Qz) = &{Q(g,1,B,v,C | z)} (6.89)

denote the expected value of the second-stage optimization problem, where
expectation is computed over possible realizations of the stochastic quantities
g, r, B, v, C. The two-stage stochastic program is then formulated as an
optimization problem in the first-stage variables z that optimizes the cost of
the first-stage decisions plus the expected cost of the second-stage decisions.

It is written as follows:

[SNLP]
Mﬂééﬁﬂzc flz) + Qx) {6.90)
5., Az = b, (6.91)
0< < u® (6.92)

‘The first-stage objective function is f : #%1 +—» R. The my X n, real matrix
A, and the vector b € R™ gpecify constraints on the first-stage decision, and

the vector 4" € R™ represents upper bounds on the first-stage variables.

162 CHAPTER 6. APPLICATIONS

We consider here the case where the stochastic quantities g, r, B, v and
C have a discrete and finite joint distribution, represented by the scenario
set Q= {1,2,...,5}. Denote by p, the probability of realization of scenario

s, e,
p° = Prob {(g,r,B,v,C) = (¢°,7%, B°,v*,C*)}, forall s € Q. (6.93)

1t is assumed that pf > 0, for all s € £, and that Ef=1 p° = 1. When this is
the case, we can write the expected value of the second-stage optimization

problem as:

s
Q(z) =Y p°Q(g%, 7%, B®,0°,C° |), (6.94)
s=1
Under the assumption of a finite, discrete event space, the stochastic

nonlinear program [SNLP] can be reformulated to the following large-scale

deterministic equivalent nonlinear program, see Wets [228]:

[DNLP]
S
,Minimize — f(z) + ;p"gs(ys) (6.95)
s.b. Az = b, (6.96)
Céz -+ BSy® = 7°, for all s € Q, (6.97)
0<z < s, (6.98)
0 <y <°, for all s € Q. (6.99)

This deterministic equivalent nonlinear program consists of m; + 5 - mo
equality constraints and n; + S - ng variables. The constraint matrix for
the deterministic equivalent nonlinear program has the dual, block-angular

structure:

6.3. STOCHASTIC NETWORK OPTIMIZATION 163

¢! Bl
C? B2

Cs BS
The Case of Network Problems

We now address the case where the constraint set (6.96)—(6.97) takes the
form of flow conservation constraints for some network problem. Specifically,

we assume that the matrices

A

— | and B*

s
are both node-arc incidence matrices for each scenario s € 3. That is, each
column of these matrices has two nonzero entries. One entry is +1 and the
other is a negative real number; we use —m;; to denote this number. Index
i specifies the row with the +1 entry, and index j specifies the row with the
real-valued entry. A network model is obtained by associating each row of
the matrix with a node, and by associating an arc between two nodes when
the corresponding rows have nonzero entries. The arcs are directed from the
row with the +1 entry to the row with the real-valued entry.

Even with the assumption that the submatrices represent network flow

problems, the full problem [DNLP] is not a network problem due to the
repeated occurrence of Cz in {6.97) for all scenarios s € Q. The first-

stage variables x avr, in this context, complicating variables and solution ap-

164 CHAPTER 6. APPLICATIONS

proaches based on Benders’ (or generalized Benders') decomposition suggest
themselves [23, 99, 100, 159]. An example of such an algorithmm developed
specifically for stochastic programs is the L-shaped decomposition method

of Van Slyke and Wets (213] and its regularized version, Ruszezynski [205].

Split Variable Formulation

The algorithm we are developing transforms the original network problem
[DNLP] into a large network with side-constraints. This is achieved by

replicating the first-stage variables x into a set of variables z° € ™, for each

s € ©. Doing this — and adding the requirement that gl=z2= . =2°
— we obtain the equivalent nonlinear program
[RNLP]
g
- Mipimize ;ps(f (@*) +9°(u")) (6.100)
s.b. Az® =1, for all s € Q, (6.101)
Csz® + By® = r°, for all s € €}, (6.102)

0<2® <4¥ for all s € €1, (6.103}
0<y® <8, for all s € Q, (6.104)

ol = xf, for all s € Q. (6.105)

By this reformulation, we have obtained a network with side-constraints.
In the absence of the side-constraints (6.105), the problem decomposes com-
pletely into S nonlinear network problems. The algorithm we develop ex-
ploits this special structure by decomposing the problem into S network
problems, iteratively solving these and then enforcing the side-constraints.

The side constraints (6.105) are known as non-anticipativity constraints.

6.3. STOCHASTIC NETWORK OPTIMIZATION 165

That is, the first stage decisions z° can not anticipate the future. Given
two scenarios s1 and sy that are undistinguished from each other when the

first-stage decisions are made, then we must have z%1 = 752

Matrix Structure

Let M = S (mi+mz)+(5—1)-n1, N =8 (n; +ng) and let T denote the
n1 X ny identity matrix. The constraint matrix for [RNLP] has dimension

M x N. We denote this matrix by @, that is,

A
ct Bl
A
c? B2
b= (6.106)
A
¢S BS
I I
I I

It is evident from the structure of the constraint matrix that the problem
decomposes by scenario if the non-anticipativity constraints are ignored. We

also denote by v € RM the right-hand side of [RNLP], i.e.,
V= (7 [T | |87 | ()T] 0..0).
Similarly, we denote by z € RV the set of decision variables, i.e.,

2= (T DT T G5,

166 CHAPTER 6. APPLICATIONS
and by © € R the upper bounds on z, i.e.,
ol = (@) [@) |- | (@) (05)T)
Finally, we let F(z} denote the objective function of [RINLP]:
F(z)=F(a',y', - ZP F(z) + g° (). (6.107)

The replicated nonlinear program (6.100} — (6.105) can be written in compact

matrix form as

[RNLP]
Minimjze F(z) (6.108)
zeRN
d
s.t. 7 < 2z < 7 , (6.109)
0 IN U

where Iy is the N x NV identity matrix. We will be using this compact matrix
notation to develop the row-action algorithm. However, the precise iterative
steps of the algorithm depend on the network substructures of the matrix &.

Hence, the algebraic formulation of the network substructures is given next.

Algebraic Représentation of Network Problem

‘We assume for the sake of symmetry that the underlying network structure
is the same for all the scenario problems. We denote this structure by the
graph G = (N, A), where N = 1,2,...,m; + my is the set of nodes, and
A={(i,7) | 1,7 € N} C NxN is the set of arcs. Let 6] = {j | (¢,5) € A} be
the set of nodes having an arc coming from node ¢, and é;" = {i | (1,7) € A}
be the set of nodes having an arc going to node j. We partition the node

set into two disjoint sets, N! and N2. N! consists of the m, nodes whose

6.3. STOCHASTIC NETWORK OPTIMIZATION 167

incident arcs are all first-stage so that their flow-conservation constraints do
not depend on the realization of the uncertain quantities. N% = N\ N! are
the my nodes with stochastic right-hand sides or incident second-stage arcs.

We also partition the arc set A into two disjoint sets A! and A2, corre-
sponding to (replicated) first-stage and second-stage decisions, respectively.
Denote by zf;, (i,7) € Al, and v (6,4) € A?, the flow on the arc lead-
ing from node i to node j under scenario s € §. The upper bound of a
(replicated) first-stage arc zf; is denoted by u; and the upper bound of a
second-stage arc yj; is denoted by v;;- The multiplier on arc (3, j) is denoted
by my; for (4,7) € A' and by m; for (4,7) € A%. The network optimization

model for a single scenario s € §2 is given by:

[NLP(s)]
SMinimize >0 pfi(zh)+ DD po) (6.110)
' (i,j)eAl (i,f)EA2
st Do w— D munl = bi, ¥ie N, (6.111)
jes} ke
Do w3 mial+
jestnan kes; NN
> ¥— Y. migk=ri, VYie N%(6.112)
jesinaz kes; NN?
0 < ojy < ufj, (6.113)
v(i,j) € Al
0 < y5; < vjj, (6.114)
v(i,j) € A

'The complete stochastic network problem [RNLP] is obtained by repli-

cating the network problem [NLP(s)] for each scenario and including the

168 CHAPTER 6. APPLICATIONS

non-anticipativity side constraints:

wl; =13, for all s € Qand (4,5) € AL, (6.115)

We have in this section been referring to quantities pertaining to an arc
(i,7) € A under scenario s € £ by using subscripts “(i, 7)” and superscript

s”. We nced to establish the correspondence between the matrix/vector

notation established at page 165 and the algebraic notation of this section:

113 ”

If (41,71) denotes the first arc in A, “#;” and “milm” refer to the same
quantity (see (6.3.1)). This connection is made formal in an obvious way by

defining a lexicographic ordering of the arcs in A.

6.3.2 Applications

We discuss here three real-world applications where data uncertainty is a
key factor in formulating a mathematical model. All tlﬁ’ee applications can
be modeled using a stochastic programming formulation, with the network
structure described above. While the network structure is not essential for
the devclopment of the model, it has certain advantages for the development
of specialized solution algorithms. It also makes it easier to understand the

model.

Finance: Asset/Liability Management

A generic description of a portfolio manager’s problem is the following:

Construct a portfolioc of assets whose performance measures will

remain invariant under a wide range of economic scenarios.

6.3. STOCHASTIC NETWORK OPTIMIZATION 169

For now we leave unspecified the notion of performance measures and
the precise nature of the economic scenarios. The key idea is to decide what
goals we waﬁt our portfolio to achieve, specify measures that quantify the
achievement of the goals, and make sure that the goals will still be met when
the economic environment changes.

The precise goal of the portfolio manager depends on the underlying
application. We describe here three practical applications where one needs

to deal with the inherent uncertainties of the new fixed income securities:

Indexation: Passive portfolio managers would like to build a portfolio that
will track a prespecified index. For example, Shearson-Lehman and
Salomon Brothers publish a monthly. morigage index that reflects the
overall state of this segment of fixed-income markets. An investor who
wishes to invest in mortgages may be satisfied if his or her portlolio
closely tracks the index. The performance measure of such a portfolio
is the difference in return between the portfolio and the index. This
difference has to be very small, for all changes in the index caused by
interest rate movements and by variations in the cashflows generated

by the securities in the portfolio.

Liability Funding: Insurance and pension fund companies are typically
heavily exposed to complex fixed-income securities, like mortgages.
These instruments are considered as an investment for funding a variety
of the liabilities held by these institutions. The goal of the portfolio
manager is to construct a portfolio of mortgages that will fund the
future stream of Habilities. Uncertainty here appears once more in the

form of interest rate changes and changes in the timing of payments

170 CHAPTER 6. APPLICATIONS

from the securities. Furthermore, the timing of the liability stream
may also be subject to uncertain variations: For example, the timing of
payments to holders of single premium deferred annuities may change

as annuitants exercise the option to terminate their investment.

Debt Issuance: Government agencies, like Fannie Mae and Freddie Mac,
fund the purchase of mortgage assets by issuing debt. The problem of
a portfolio manager is to decide which type of debt — maturity, yield,
call-option — to issue in order to fund the purchase of a specific set
of assets. Of course, there is no reason to assume that the assets have
been pre-specified: The model may choose an appropriate asset mix
from a large universe of securities. The timing of the cashfiows from
both assets and liabilities may be uncertain in this application. The
goal of the portfolio manager is to ensure that the payments against
the issued debt will be met from the available assets, irrespectively of

the timing of cash flows and fluctuations in interest rates.

Problems such as those described above are routinely addressed in prac-
tice. For example, Worzel et al. [229] describe the development of indexation
models for a major insurance company. Zenios and Kang [241] illustrate the
use of mathematical models for funding liability streams. Holmer [126] de-
scribes the asset/liability management systen developed by Fannie Mae. A
collection of recent articles on different aspects of these problems is found in
Zenios [237).

We classify the asset/liability management models into: 1. Static, 2.
Single-period, stochastic, and 3. Multiperiod, dynamic and stochastic. It

is important to understand how the models address increasingly more com-

6.3. STOCHASTIC NETWORK OPTIMIZATION 171

plex aspects of the asset/liability management problem. Only then can the
portfolic manager decide which model may be more appropriate for the ap-
plication at hand. Of course, this decision has to be weighted against the
increasing complexity — both conceptual and computational — of the mod-
els {123, 236]. The models in the third class are stochastic programining

problems.

Static models: Such models build a portfolio that meets the target under
the current state of the economy, and hedges against small changes
from the current state. For example, a term structuré of interest rates
is input to the model which matches assets and liabilities under this
structure. Conditions are then imposed to gnarantee that if the term
structure deviates somewhat from the assumed value, the assets and
liabilities will move in the same direction and by equal amounts. This
is the fundamental principle behind portfolio immunization. See, for
example, Christensen and Fabozzi [54] for a discussion of the finance-
theoretic principles behind immunization, and Dahl et al. {61, 62, 60]

for operational (optimization) models.

Single-period, stochastic models: A static model does not permit the
specification of a stochastic process that describes changes of the eco-
nomic environment from its current status. However, modern finance
abounds with theories that describe interest rates, and other volatile
factors, using stochastic processes; see, e.g., Ingersoll [131]. Stochastic
differential calculus is often used to price interest-rate contingencies.
For complex instruments analysts resort to Monte Carlo simulations,

an idea pioneered by Boyle [29] for options pricing. See, for exam-

172 CHAPTER 6. APPLICATIONS

ple, Hutchinson and Zenios [128] for its application to the pricing of
mortgage securities. A stochastic asset/liability model describes the
distribution of returns of both assets and liabilities in the volatile en-
vironment, and ensures that movements of both sides of the balance
sheet are highly correlated. This idea is not new: Markowitz pioneered
the notion of risk management for equities via the use of correlations in
his seminal papers [155, 154]. However, for the fixed income world this
approach has only recently received attention. Its validity is advocated
in Mulvey and Zenios [172], and an application from the mortgage mar-

ket is described by Holmer [126].

Multiperiod, dynamic and stochastic models: A stochastic model, as
outlined above, is myopic. That is, it builds a portfolio that will have
a “well behaved” distribution of error (error = asset return - liability
return} under the specified stochastic process. For example, the mean
value of the error should be positive, and its variance small. However,
the single-period model does not account for the fact that the port-
folioc manager is likely to rebalance the portfolio once some surplus is
realized. Furthermore, as the stochastic process evolves across time
different portfolios may be more appropriate for capturing the correla-
tions of assets and liabilities. The single-period model may recommend
a conservative strategy, while a more aggressive approach would be jus-
tified once we explicitly recognize the manager’s ability to rebalance

the portfolio.

What is needed is a model that explicitly captures both the stochastic

nature of the problem, but also the fact that the portfolio is managed

6.3. STOCHASTIC NETWORK OPTIMIZATION ' 173

in a dynamic, multi-period context. Stochastic programs with recourse
provide the framework for dealing with this broad problem. The signif-
icance of this class of models for portfolio optimization was recognized
in the early seventies by Bradley and Crane [30]. With the recent
advances in high-performance computing this approach has been re-
ceiving renewed interest from the academic literature — Mulvey and

Vladimirou [169], Zenios {234] and Hiller and Eckstein [122].

The multiperiod and stochastic model captures the dynamics of the

following situation:

The portfolio manager must make investment decisions —
i.e., decide on the composition of the portfolio — facing an
uncertain future. These are the first-stage decisions of the
stochastic programming formulation. Once the first-stage
decisions are made a realization of the uncertain future is
observed, and the manager determines an optimal second-
stage (or, recourse) decisions. The objective is to maximize

the expected utility of terminal wealth,

A precise mathematical formulation of this problem is given in Zenios [234];
see also Mulvey and Vladimirou [171] or Hiller and Eckstein [122] for
related formulations. If the uncertain future were known with com-
plete certainty at the time of the first-stage decision, then the portfolio

manager would have a much simpler problem to solve.

We now turn to a second application of stochastic network programs from

engineering planning.

174

Hydroelectric Power Scheduling

CHAPTER 6. APPLICATIONS

L)) p
\

Yildrana 1

Twrej-Taj2 P

o
Temjor-Tte + |12
o
I‘ r ¥

hriny

Codilla

nifiry

Figure 6.5: The Tajo reservoir system.

Planning the generation of electricity for hydroelectric power systems is a

complex process. Decisions made today for the coming hours depend on

the current state of the system, electricity demand, water inflows and so on.

There are numerous constituents who are affected by the results of decisions

on the volume of dam releases. Water release has an impact on irrigation,

recreation and flood control, in addition to generating power. Rosenthal [201]

modeled the scheduling of reservoir releases as a nonlinear network, and he

developed a system for the Tennessee Valley Authority.

Figure 6.5 depicts the reservoir system for the lower Tajo area in Spain,

over a three-period model. The system consists of nine dams (names shown}

6.3. STOCHASTIC NETWORK OPTIMIZATION 175

and an auxiliary reservoir system. Every dam is represent by three nodes
— one for each time period of the model. This model was developed by
Dembo et al. [69] in order to plan the hydroelectric power generation by
Hidroeléctrica Espandla. The necessary data for the model — which is
complex to formulate here in its details — consist of: (1) the network
topology, specified by the geographical location of the dams and their inter-
connections, (2) limits on reservoir storage, level of turbine operations, pump-
ing and spillage, (3) hydroelectric production coefficients for each reservoir,
obtained from engineering analysis of its storage capacity and the turbine
technology. Important input data are also the water level in the reservoirs,
and the electricity demand. Both of these quantities are uncertain. Demand
for electricity exhibits both a daily and a seasonal variation, that can be
estimated at best by a set of scenarios. The same is also true for the water
level that depends on rainfall. Different scenarios of rainfall are estimated
based on historical observations and on weather forecasting. These uncer-
tainties are fundamental to the operation of the system, and they can not
be glossed over. Dembo et ol. [69] developed, indeed, a stochastic network
optimization model for this problem. The objective function is obtained
by simulating the marginal benefits of using hydroelectric power over ther-
mal fuel. The detailed formulation developed by Dembo et al. [69] fits the

structure of a stochastic network program.

Planning Air-Traffic Ground Holding Policies

The US air traffic system is an exceedingly complex web of airports, aircraft,
air traffic controllers at all airports, and a centralized flow control facility

in Washington, DC. The complexity of the air traffic systemn in Europe is

176 CHAPTER 6. APPLICATIONS

intensified by the lack of coordination of 42 different control centers among
99 countries. This situation has been complicated even further with the
efforts to integrate the former Eastern European countries into the rest of

the European system.

The systems are highly congested. Traffic flow is carefully monitored,
and controlled, so that flights proceed without risk to safety. One key con-
trol mechanism is ground holding, whereby a flight is delayed for departure,
if congestion is anticipated at the destination airport. Ground holding is a
safe, and relatively inexpensive solution, as opposed to holding aircraft “in
flight” before landing clearance is granted. While the air traffic control sys-
tem does an excellent job in monitoring traffic so that high safety standards
are maintained, there is substantial room for improvement. In particular it
is considered possible to improve the efliciency — that is, cost effectiveness
— of the system without sacrificing anything in safety. It is estimated that
the ground delays in the US in 1986 averaged 2000 hours per day. This
is equivalent to grounding a total of 250 airplanes, or the equivalent of a
carrier the size of Delta Airlines. A study by the West German Institute for
Technology estimates the avoidable cost of air traflic delays, due to ground
holding alone, to be $1.5 billion in 1990. Various aspects of the air traffic sys-
tem are discussed in Odoni [182], Del Balzo [17], Richetta [195], Zenios [235]

and references therein.

The ground holding policy problem attempts to find optimal holding poli-
cies, given information about the number of flights scheduled for departure
during the planning horizon, and the travel time to the destination airport.
Even for the simple case where only a single destination airport is analyzed,

its capacity is uncertain due to weather conditions. The problem is compli-

6.3. STOCHASTIC NETWORK OPTIMIZATION 177

cated further by the presence of multiple airports: ground holding decisions
at each one have a cascade effect on all others. A stochastic programming
formulation for the single-destination airport problem has been developed
by Richetta [195]. Numerical experiments with the model, applied to data
obtained from Logan airport in Boston, MA, show that substantial redue-
tions in total delay can be realized when using the stochastic progranmming,

dynamic, models as opposed to the more commonly used static models.

6.3.3 An Iterative Algorithm for Stochastic Network Opti-

mization

We apply now the row-action Algorithm 4.4.1 to the replicated nonlinear
programming formulation of the stochastic program. We first present a de-
tailed description of the algorithm for the equality and bound constraints
on z, (6.109). We then go further to specialize the algorithm for the net-
work flow constraints and the non-anticipativity constraints, thus giving the
details of an implementable procedure. After initialization, the algorithm
proceeds by projecting upon one constraint of {6.109) at a time, updating
the dual price of the constraint and the primal variables occurring in the con-
straint in order to maintain dual feasibility and complementary slackness.
We express the order in which constraints are considered using a control
sequence, £(v), such that constraint £(v) is considered at iteration v. For
clarity of notation we will abbreviate €(v) by £. Let ® denote the £ row
of @ and let v, denote the £ element of v. i€ {1,..., M} the constraint
considered is H(®!,). If £ ¢ {M + 1, M + N} we consider the simple
bounds on the (£ — M)th variable.

Let m € RM*N be a vector of dual prices associated with the rows of

178 CHAPTER 6. APPLICATIONS

the constraint set (6.109), and let ¢f € RM+V denote the £ unit vector.
Assuming that F(z) is a Bregman’s function and has the strong zone con-
sistency property with respect to the hyperplanes H (@e, ~¢), we can re-state

the general Algorithm 4.4.1 for the formulation of the replicated stochastic

program:

Algorithm 6.3.1 General Row-Action Algorithm for problem RNLP.

Step 0: (Initialization) v « 0. Get 7° and 2° such that

T
@
V(%) = - 7. (6.116)

In

Step 1: (Iterative step over equality constraints). For£ € {1,2,..., M}

solve for 2+% € RY and 8¥ the equations:
VF(z't2) = VF(")+ 8%, (6.117)
& e H(SY 7). (6.118)
Update the dual price:
Tt = ¥ — el (6.119)
Step 2: (Iterative step over simple bound constraints). For £ € {M+
1
1,...,M + N} project z::ﬁ, upon its bounds:
oL
If z:‘nff <0, let ¥ and 2“*! be the solution of:

VE(H) = VF("+5)+ 8, (6.120)

2, = 0 (6.121)

6.3. STOCHASTIC NETWORK OPTIMIZATION 179

1
If z;f:,,j} > up_pg, let B¥ and z¥*! be the solution of:

VF("Y) = VF(zV) + g, (6.122)

2yt = wp . (6.123)

1
o< z;jn";. < ug.pr, let B and z¥*! be the solution of:

VE(zH) = VF(VF5)+ 8, (6.124)

pal
g = mz, (6.125)

Update the dual price:

T = s el (6.126)

Step 3: Set » — v+ 1 and proceed from Step 1.

Specialization to Quadratic Stochastic Networks

We specialize now the general algorithin to the case of quadratic network
flow problems with non-anticipativity constr.‘aints. Since we work with the
replicated problem it is convenient to use “zj;” for both first- and second-
stage Qariables. We thus assume that F takes the form

Flz)= > (%wfj(mfj)z + quzfj) . (6.127)

(i,j)€A,5€02

for wi; > 0. The coeflicients w;; and gf; incorporate the scenario probabil-
ities, p*. Let My = §- {(m; + ma). Then rows 1,..., M| of the constraint

matrix ® correspond to network flow conservation constraints, and rows

180 CHAPTER 6. APPLICATIONS

My +1, ..., M correspond to the non-anticipativity constraints that take the

simple form

for some (i,5) € A and s € Q. For the dual price mg, £ € {1,..., M}, asso-
ciated with the flow conservation constraint for node ¢ € N under scenario
s € £ we use the notation 7§, For the dual price m¢, £ € {M +1,..., M + N},
associated with the simple bound constraints for z7; (i.e., the reduced cost
of xf;}, we use the notation mj;. We now proceed to develop the specific pro-
jection formulae for use in Steps 1 and 2 of Algorithm 6.3.1. The complete

algorithm is given as Algorithm 6.3.2.

Projection on Flow Conservation Constraints

First we derive the projection on the flow conservation constraints of a gen-
eralized network, (6.111)-(6.112). We consider in this section the flows on
the incoming arcs, z§; for k € §;7, and the flows on the outgoing arcs, zj; for
JjE 5{’“ for a node i € N! under some scenario s € Q. The derivation of the
projection upon flow conservation constraints for nodes i € N 2 is similar.
The Bregman projection z® of the current iterate y° upon the hyperplane

H{®, ;) determined by the flow conservation constraint on node i is the

solution to

VF(z®) = VF(y) + 6, (6.128)
e H(D). (6.129)

Of course, if y° € H(®*,y;), then 5§ = 0 and 2° = y°. If the current iterate

6.3. STOCHASTIC NETWORK OPTIMIZATION 181

does not satisfy flow conservation, we define the node surplus o] as
of =bi— (D u5i— > muyh). (6.130)
jest kes;
Applying the iterative step (6.117) to the functional form of the objective

function (6.127) and using the structure of the rows of the constraint matrix

® that correspond to network flow constraints we get:

1
= v +6- — for j € &7, (6.131)
i
m .
Thi = Y — O wsm forkeé;. (6.132)
ki

Substituting these expressions for xf; and zf; into (6.111) we get:

1 —_
D, Wi+ B o) = 3 mwalul — B 25 = b, (6.133)
jest Y e Wi '
From this and (6.130) we get
af
g = —5 (6.134)

2jesy w_1} + Dkes; wte
Using this result in (6.131) and (6.132) gives us the desired formulae for

updating all primal variables incident to node i. The dual variable for this

node (7} is updated by adding 7 to its current value, ¥ — 7§ + 5.

Projection on Simple Bound Constraints

We now develop the specific projections on the simple bounds, (6.113)-
(6.114) corresponding to Step 2 of the general row-action algorithm. Denote

by y§; the current value of the variable. If yi; < 0, we get from (6.120) that

0 =5 = g + = (6.135)

182 CHAPTER 6. APPLICATIONS

The primal variable is thus set to 0, and the Bregman parameter is
8= “wijisj* (6.136)

The dual price of the constraint is updated by subtracting £ from its current
value, §; « mf; — .
If y§; > uf; we similarly set the primal variable z; to the upper bound,

ufj, and from (6.122) compute the Bregman parameter to be

8= (uf —)l (6.137)

and update the dual price of the bound constraint by subtracting § from it.

Finally, if 0 < g§; < uf; we get from (6.124)

= v+ 2 (6.138)

ij
and then set the dual price 7; to 0.

Projections on Non-Anticipativity Constraints

We now develop the iterative step (6.117) for the equality, non-anticipativity

constraints. A non-anticipativity constraint (6.115) takes the form

for some (i,5) € A' and some s € . In order to map these constraints

onto the matrix @ (6.106), let u(s) be a row index such that ®**) for s =

2,3,...,5 is the row of @ that corresponds to the constraint :r;t-lj —zf; = 0.
If y is the current iterate, the Bregman projection upon this constraint

solves

VF(z) VF(y) + poH), (6.140)

6.3. STOCHASTIC NETWORK OPTIMIZATION 183

where z is the projected point. This system can be written as

1 | ﬁﬁ_s JB

Ty ST =Yyt LT TV e (6.142)
ij if
Solving this, we get
ol = fy = % T Wil (6.143)

i.e., the point (yilj, y;-"j) is projected upon the point with coordinates equal to

the weighted average of yilj and yj;, where w}j and wj; are the weights.

Closed Form Solution for Non-Anticipativity Constraints

In this section we obtain a closed form solution for the projection on all
5 — 1 non-anticipativity constraints relating to a first-stage variable Zij, Le.,
the constraints z}; = zj; for all s € Q, and some (i,5) € Al. This result
has important implications for the massively parallel implementation of the
algorithm. We consider the effect of repeated projections on this subset of
the constraints (6.115). The almost cyclic control framework of the row-
action algorithm allows repeated projections upon only these constraints
until convergence (within some tolerance) of the variables zj; to a common
value, 2;;. We show that &;; can be obtained analytically rather than using
the iterative scheme.

We focus on the non-anticipativity constraints for the replications of a

single first-stage variable z;;, which take the form

wl: — 2 =0, (6.144)

184 CHAPTER 6. APPLICATIONS

-5 =0

xij - xij =

Let VF; : #5 - RS denote the subvector of the gradient VF corresponding

1

to the .5 replications of the first-stage variable, xj;, ..., azfj, and, similarly, let

®;; denote the submatrix of ® consisting of the columns corresponding to

1 S

x,ij, "‘1$ij'

By repeated projection upon these non-anticipativity constraints, such

that the vt projection is upon the constraint m%j - mf}”) = (we obtain a
sequence of points ¥ € RS satisfying
- ¢
VE;(a") = VE;(y) + 3 Akatl), (6.145)
k=1
where A* is the Bregman parameter corresponding to the ith projection, y

is the starting point, and u(€) is the row index that corresponds to the non-
anticipativity constraints; see the discussion on page 182. The limiting point
z* € RY satisfies
o
VEy(s") = V() + 3 XaLeD (6.146)
k=1
and must, by (6.144), have all components identical, i.e., z* = (£, ..., £;;)7

for some #;; € N.

Let
A= N,
{klé(k)=s}
for £ = 2,...,5. Using the fact that F'(y) is the quadratic function (6.127),

rewrite {6.146) as the square system in S variables, :ﬁij; A% .. AS:

A 1o
Ty = y:'lj+w_12As:

ij s=2

6.3. STOCHASTIC NETWORK OPTIMIZATION 185

1

. 2 2
7 i w?j
. s 1 .g
wi
In matrix form, this is
Ht=y, (6.148)
where
1 :_11_ :11_ :11_
wij wi_‘l' wij
i
1 oL
H=| 1 - , (6.149)
]
1
1 Fij

and t = (£;;, A%, ..., A5)T. By inverting H we can solve for £. Since we are
only interested in #;;, not A?, ..., A%, we need only calculate the first row of

H™!, denoted by . Due to the special structure of H, we easily get

SN\T
det H) H ‘L_’)l 137 wij)

7

where det(H) is the determinant of H. The inner product of the first column
of H, which consists of all ones, and the first row of H~! must equal 1, and
therefore 3°5_, h® = 1. Hence

5§ 1 S8

det(H) = H — D) Wi
1 Wi =1
Note that det(H} > 0, so system (6.148) has a unique solution. Solving for
Ei; we get
)3l .;;,yU
ZS lfu'JI

By =hTy= (6.150)

186 CHAPTER 6. APPLICATIONS

. . . wl w w?, g
Since z is a first-stage variable, ot = == F‘l Also, 35 p* =1, 50
the result can be simplified to
s
i =) Py (6.151)
s=1

The Row-Action Algorithm for Quadratic Stochastic Networks

We have now completed all the components required for the row-action algo-
rithm applied to the quadratic stochastic network. The complete algorithm

proceeds as follows:

Algorithm 6.3.2 Row-Action Algorithm for Quadratic Stochastic
Networks

Step 0: (Initialization) v «— 0. Get #° and 2° such that VF(20) =
T

d
- 7%, For example, 7° = 0 and
In
q‘?.
(25)° = ——F, forall (i,j) € 4", s € Q, (6.152)
1]
g5,
W) = ——1, forall (i,5) € A%, 5 € 0, (6.153)

1]

Step 1: (Solve scenario subproblems). For all s € ()

Step 1.1: (Solve for flow conservation constraints) Let

&

(By+E = % — for all i € N?, (6.154)
Ciest w; + ety
§
(B = Ay for all 4 € N16.155)
hiaad - Lo

1
Yijest wg + Lwesy Tu,

6.3. STOCHASTIC NETWORK OPTIMIZATION

For all first-stage nodes i € N1:

()4 = (&)’ -+ (B)HE
(@) = (zfy)” — (B
(w45 = () - (B,

For all second-stage nodes i € N?:

(yzg)y+u = (yfj)u+(ﬁf)u+
W) = (gl - (B
(m)FE = (xf) - (BF)FE

Step 1.2: (Solve for the simple bounds).

For all first-stage arcs (i, j) € Al:

and

(sz
(ij)”+5 + wi; (=

0

)U+1)y+§

(sz

—fora,lljeé
wi;

e — g (uf — (a5;)"2)

187

i for all j € &}, (6.156)
w

1
Zk for all k € 67,(6.157)
W

(6.158)

(6.159)
13

wg* for all k € 67, (8.160)

(6.161)

if (:r:j)'”rz > ufj,

if (ag;)+¥ <0,

if0< (mfj)“f% < ufj.
(6.162)

if (= 3 > uf,
lf (Eij)”_? < 0

if 0 < (xf;)"+5 < uj
(6.163)

188 CHAPTER 6. APPLICATIONS

For all second-stage arcs (i,§) € A%

Bl

Ui if (y5;)" % > v,
B 1
)yt =1 0 it (g5 <0,
syt
)+ + T2 i 0< ()t <o
6.164)
and
S VS s (s (y5)0 3 if (g_)u+% > s,
(ﬂ'u) z 'wu(vu (yu)) i i > g,
(rf M = (ng)"+E + wilul) s if ()% <0,
0 0 < (y5)"*2 < v
(6.165)

Step 2: (Solve for non-anticipativity constraints):

For all first-stage arcs (i, 7) € AL

S
gy = 3. ph)"t, (6.166)
s=1
(x)"H — &y forallse Q. (6.167)

Step 3: Let v +— v + 1 and return to Step 1.

Chapter 7

Decompositions for Parallel

Computing

In this chapter we address the issue of implementation of row-action algo-
rithms on parallel computer architectures. The nature of these algorithms
— often in conjunction with the structure of the application — makes them
suitable for decomposition into independent tasks. The decomposition is
sometimes facilitated by the structure of the mathematical algorithm. For
example, simultaneous algorithms (as characterized in Chapter 1) decom-
pose naturally for parallel computations. Sometimes the decomposition is
facilitated by the structure of the problem. In image reconstruction, for ex-
ample, we can envision the partitioning of a discretized image into domains

that are reconstructed independently from each other.

The discussion in this chapter concentrates first on machine-independent
issues. The potential parallelism of an algorithm or an application is ana-

lyzed without special attention to the architecture of any particular system.

191

192 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

But we then proceed to discuss details of mapping the algorithm/problem
onto specific architectures. Computational results are presented that illus-
trate the effectiveness of alternative implementations.

There are two Teasons why row-action algorithins have become very at-
tractive methods for parallel optimization. First, due to their row-action na-
ture — that is, working with only one row of the constraints matrix at a time
— it has been possible to devise specific implementations that decompose
naturally for parallel processing. Second, the large scale of the applications
where the row-action algorithms have traditionally been applied prompted
users to look into the technological development with parallel computers in
order to advance their modeling capabilities.

‘We review first some general principles of parallel computations. For each
of the applications presented in Chapter 6 we select a suitable algorithm,
and discuss its potential for parallel implementation. Finally, we present a
summary of empirical results to illustrate the performance of each algorithm

when implemented on a suitable parallel architecture.

7.1 Introduction to Parallel Computing

Parallelism in computer systems is not a recent concept. Indeed, ENIAC
—- the first electronic digital computer built at the University of Pennsylva-
nia in Philadelphia between 1943 and 1946 — was designed with multiple
functional units for adders, multipliers and so on. The primary motivation
behind this design was to deliver the computing power required by the ap-
plications but not yet feasible with the electronic technology of that time.

The shift from vacuum tubes to transistors, integrated circuits, and very

7.1. INTRODUCTION TO PARALLEL COMPUTING 193

large scale integrated circuits (VLST) rendered parallel designs obsolete and

uniprocessor systems reigned throughout the seventies.

The first milestone in the evolution of parallel computers was the Iliac
IV project at the University of lllinois in the 1970’s. A brief historical note
on this project can be found in Desrochers [74]. The array architecture of
the Illiac prompted studies on the design of suitable algorithms for scientific
computing. Interestingly enough, a study of this sort was carried out for
linear programming [186] — one of the first studies in parallel optimization.
The Illiac never went past the stage of the research project however and only

one machine was ever built.

The second milestone was the introduction of CRAY 18 in 1976. The
term supercompuier was coined at that time to indicate the fastest avail-
able computer. The CRAY 18 is not manufactured any more and is not the
fastest machine available. It still serves, however, as the yardstick against
which supercomputers are measured. The vector architecture of the CRAY
introduced the notion of wectorization of scientific computing. Designing
or restructuring of numerical algorithms to exploit the innovative computer
architecture — in this case vector registers and functional units — became
once more a critical issue. Vectorization of an application could range from
simple modifications of the software implementation with the use of compu-
tational kernels, streamlined for the machine architecture, to more substan-
tive changes in data structure and the design of algorithms that are rich in
vector operations.

Since the mid-seventies supercomputers and parallel computers have
been evolving rapidly in the level of performance they can deliver, the size of

memory available, and the increasing number of parallel processors that can

194 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

be applied to a single job. At the same time such equipment are becoming
widely accessible to the scientific and academic community in North Amer-
ica, Europe and the Far East; see for example Dufl [77]. Supercomputers
are usually multimillion dollar systems based on state-of-the-art electronic
cireuitry and cooling systems, installed at a few sites worldwide and usually
accessed through high speed networks. Ounly very few systems qualify for
this title. On the other hand, parallel computers are usually designed with
off-the-shelf processing units communicating either through shared memory
or via some message passing network. Their price is usually well below
81 million. Several manufacturers are marketing parallel systems which are
more accessible to researchers and practitioners. Dongarra and Duff [75] pro-
vide a comprehensive list of high performance computers that is pericdically
updated as new products enter — and leave — the market. Textbook intro-
ductions to parallel processing systems are given in Desrochers [74] Hockney
and Jesshope [125] and a collection of papers is available in the tutorials by

Hwang [129] or Kowalik [144].

The proliferation of parallel hardware is having a significant impact on
several areas of scientific computing. Researchers can now simulate complex
phenomena and analyze alternative hypotheses without resorting to expen-
sive and time consuming experimentation. Furthermore, computational ex-
periments are carried out without exhausting one’s computer budget and pa-
tience. Vector and parallel computing is having a significant impact in fields
like weather forecasting, aircraft and automobile design, image processing,
astrophysics, quantum mechanics and molecular chemistry, oil reservoir sim-
ulation, seismology, computer animation, manufacturing, electronic circuit

design and so on. Buzbee and Sharp {34] offer a perspective on the state

7.1. INTRODUCTION TO PARALLEL COMPUTING 195

of supercomputers and their usage. Studies on the strategic importance of
supercomputing, its potential for further development and its influence on
technology and international cooperation (or competition) are provided by

Karin and Smith [140] or Lazou [147].

7.1.1 Models of Computation: Flynn’s Taxonomy

There is a lot of flexibility in how a parallel computer architecture can be
realized. Indeed, this flexibility has hampered acceptance of parallel comput-
ers by a broad spectrum of industrial and business users, since no standard
parallel architecture seems possible. Before we proceed with a classifica-
tion of computer architectures it is important to understand the distinction

between a supercomputer and a parallel computer.

Supercomputer is defined as the fastest machine at any point in time.
Some computers, however, may be very efficient for some tasks (e.g.,
array processing}, while they lack substantial capability for others (e.g.,

list processing). Hence, this definition is rather vague.

Parallel computer refers to a class of computer architectures, with multi-
ple processing units. Detailed classifications are given below. A paral-
lel computer does not automatically qualify as a supercomputer. How-
ever, it is widely accepted that improved supercomputing performance

can only be achieved using parallel architectures.

A broad classification of parallel architectures was offered in Flynn [93].
While several extensions have been added, see, for example, Hockney and

Jeeshope {125], Flynn’s taxonomy is still fundamental in understanding par-

196 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

allel architectures. He identified four classes, depending on the interaction

of the instructions of a program with the data of the problem:

SISD (Single Instruction stream Single Data strearn.) Systems in this class
execute a single instruction on a single piece of data before moving
on to the next instruction and the next piece of data. Traditional

uniprocessor, scalar, computers fall under this category.

SIMD (Single Fnstruction strearn Multiple Data stream.) A single instrue-
tion can be executed simultaneously on multiple data. This of course
implies that the operations of an algorithm are identical over a set of
data, and that data can be arranged for concurrent execution. This is
one type of parallel computing and some of the successful instances of
SIMD machines are the Connection Machine CM-2, the Active Mem-

ory Technology DAP and Masspar.

MISD (Multiple Instruction stream Single Data stream.) Multiple instrue-
tions can be executed concurrently on a single piece of data. This
form of parallelism has not received, to our knowledge, extensive at-
tention from researchers. It appears in Flynn’s taxonomy for the sake

of completeness.

MIMD (Multiple Instruction stream Multiple Data stream.) Multiple in-
structions can be executed concurrently on multiple pieces of data.
The majority of parallel computer systems fall into this category. Mul-
tiple instructions indicate the presence of independent code modules
that may be executing independently from each other. Each module

may be operating either on a subset of the data of the problem, have

7.1. INTRODUCTION T0O PARALLEL COMPUTING 197

copies of all the problem data, or access all the data of the problem
together with the other modules in a way that avoids read/write con-
flicts. The Intel hypercubes, the CRAY X-MP and Y-MP, the Alliant,
the Convex and the Connection Machine CM-5 are MIMD systems.

A mode of computing that deserves special classification is that of vector
computers. While vector computers are SIMD machines they constitute a
class of their own. This is due to the frequent appearance of vector capabil-
ities in many parallel systems and most supercomputers. Also the develop-
ment of algorithms or software for a vector computer — like, for example,
the CRAY -— poses different problems than the design of algorithms for
a system with multiple processors that operate synchronously on multiple
data — like, for example, the Connection Machine. The processing elements
of a vector computer are equipped with functional units that can operate
efficiently on long vectors. This is usually achieved by segmenting the func-
tional unit so that arrays of data can e processed in a pipeline fashion. The
pipeline units are loaded either directly through memory or via vector Tegis-
ters. Furthermore, multiple functional units may be available both for scalar
and vector operations. These functional units may operate concurrently or
chained, with the results of one unit being fed directly into another without
need for memory access. Using these machines efficiently is a problem of
structuring the underlying algorithm with (long) homogeneous vectors and
arranging the operations to maximize chaining or overlap of the multiple
units.

Another major classification of parallel machines is made based on their
memory organization: Shared memory machines are those where multiple

processors can access directly all the memory of the system. Communica-

198 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

tion among processors takes place by writing and reading data to and from
this common memory. The algorithm designer has to ensure that no read or
write conflicts arise (i.e., no two processors access the same memory location
simultaneously) otherwise the integrity of the data can not be guaranteed.
Distributed memory machines are those where each processor has direct ac-
cess only to some local memory. Communication among processors takes
place by exchanging messages through some communication network. Ac-
cessing the local memory is a very efficient operation, while communication
among, processors is much more expensive. Distributed memory systems are
cquipped with sophisticated routing algoritlnns that direct messages from
the sending to the receiving processors. Nevertheless, it is the algorithm de-
signer who has to specify which processors communicate at different phases

of the execution of an algorithm.

7.1.2 Some Unifying Concepts of Parallel Computers

Flynn's taxonomy created the impression that a uniform model of parallel
computer architectures were not possible. However, some recent concepts
allow end-users to a get a uniform view of a parallel computer system, in-
dependently of the underlying architecture. We discuss these concepts here.
Going a step further, we have also seen the emergence of models for parallel
programming that are independent of the underlying hardware: controAl-lewel

and data-level parallelism. These concepts are also discussed in this section.

Single Program Multiple Data, (or, SPMD). The distinction between
MIMD and SIMD gives way to the unified notion of SPMD. Parallelism

can be viewed as the operation of a single program on multiple sets

7.1. INTRODUCTION TO PARALLEL COMPUTING 199

of problem data. Each data set is operated upon by its very own

processing elements.

Using a linear programming solver to solve multiple related instances
of a linear program — as, for example, in the analysis of multiple
scenarios in a portfolio management model — is an SPMD application.
Whether each solver executes exactly the same pivot steps or not is
irrelevant to the programmer. Of course an SIMD computer would
impose this restriction, and could be inefficient if each solver should
execute different pivot steps. If most of the sblvers execute identical
steps, efficiency will be substantially improved. An MIMD computer
might be more efficient. But the main point is that the parallel program

looks, at least to the user, the same for both computers.

SPMD has been motivated by the computing paradigm of SIMD ar-
chitectures, as introduced by Hillis [124] for the Connection Machines
CM-1 and CM-2. However, it is likely that MIMD architectures will
be more effective environments for the execution of SPMD applica-
tions. The advantage of SPMD is that the user need not worry about

the details of the computer architecture.

Distributed Virtual Memory, (or, DVM). The distinction between dis-
tributed memory and shared memory architectures becomes less signif-
icant with the introduction of the notion of distributed virtual mMemory.
This idea was originated by software systems that facilitate the devel-
opment of parallel applications on distributed, and possibly heteroge-
neous, computing environments. Examples of such systems are LINDA

from Scientific Computing Associates [38], Parasoft EXPRESS [185] or

900 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING
PVM [21].

Within a DVM environment a distributed architecture can be viewed
as a system with (shared) virtual memory. The algorithm designer,
of course, has to deal with the problem of data integrity to avoid in-
correct results. However, the fact that memory is implemented in a
distributed environment is of no direct consequence to him. It is the
developer of the distributed computing environment who has to keep
track of global objects. Where is a global object (like a common vari-
able) stored? One approach would be to distribute all global objects to
local memories. Another approach would be to distribute the address
of all global objects to local memories, and let each processor fetch the
data only if and when it is been used by the application. Of course,
these designs tradeoff space with time efficiency. Once more, how-
ever, the analyst need not be concerned about the shared/distributed
memory distinction. Indeed, systems like LINDA, EXPRESS or PVM
have made it possible to port applications between shared memory ma-
chines, distributed memory machines and heterogeneous networks of
workstations with little effect on performance and no reprogramming
effort. See Fig. 7.1 for the performance of a simulation model for pric-
ing financial instruments across a variety of computer platforms and

parallel architectures, Cagan et al. [36].

Heterogeneous Parallel Processing. In the early days of parallel pro-
cessing — and in the quest for a “winner” parallel computer — the
debate on the right architecture was quite heated and often dogmatic.

With the emergence of unifying computing paradigms — like SPMD

7.1. INTRODUCTION TO PARALLEL COMPUTING

Digital DECstation 5000
workstation network

Intel iPSC/860
distributed memory
multiprocessor

Sequent Symmetry (386)
shared memory
multiprocessor

L — ¥

v F A ®

o & a5 0 T W

T e & T 0

Q
6 Perfect Linear Speedup
L. A
54 o e
4. oS
o
A
e
Ry
1 %384 seconds
01 2 3 45 6 7 8
Number of Workstations
304 .
251 Pofect Linear Speedup uff
o
20 L
R
B B
101 i
5{ .7
69 seconds
0 5 10 15 20 25 30
Number of Nodes
104

g Perct Linear Speedup S B sec]

i <

4 N

j e

I

7 'A./S’?Dsemnds

0 2 4 6 8 10
Number of Nodes

201

Figure 7.1: Distributed computing performance of a simulation model across

different computer platforms and parallel architectures.

202 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

and the distributed virtual memory — the notion of heterogeneous
parallel processing is finding widespread acceptance. By this term
we mean a parallel computing environment consisting of multiple ma-
chines — some of which could be parallel processors themselves —
linked together through some communication network or a fast switch-

ing device.

For example, networks of workstations can be linked together in a most
cost-effective form of parallel processing. Fiber optics provide data-
transfer rates (100 Mbits/sec) that were until recently found only on
tightly coupled systems. Software systems like LINDA or EXPRESS
allow users to decouple their problems in distributed virtual memory
environment. Multiple workstations will then grab pieces of work from
this environment, complete them at their own pace (depending on
workload, and the performance of each workstation) and return the
results. Of course there is no reason to assume that all the servers
on the network are identical workstations, or even just workstations.
Some of the servers could be more advanced parallel architectures. For
example, an array processor attached to the network could be used to
execute any linear algebra calculations, while workstations could be
executing the less homogeneous operations. The results illustrated in

Fig. 7.1(a) were obtained on a heterogeneous network of DECstations.

Models of Parallel Programming

We now turn to the two distinet types of parallel programming: confrol par-
allelism and data parallelism. These modes of parallel programming should

not be confused with the variety of parallel computer architectures charac-

7.1. INTRODUCTION TO PARALLEL COMPUTING 203

terized by Flynn {93] in his taxonomy of computer architectures. In this
section we discuss models for writing parallel programs. These models are

independent of the hardware on which the programs are written.

Control-Level Parallelism

In control parallelism a program is decomposed into instructions that are
independent of each other. These instructions can be executed concurrently.
A well-known type of control parallelisin is pipelining. Consider, for example,

the simple operation

Y —aX+Y

where X, Y are n-dimensional vectors and o is a scalar. (This is known
as a SAXPY.) On a computer with two functional units (an adder and a
multiplier) it is possible to pipeline the X multiplication with the +V
operation. As soon as the first product result-becomes available both the
adder and the multiplier will be kept busy. Assuming that the adder and
multiplier operate on scalars, and that addition and multiplication require
the same number of machine cycles, then pipelining the two operations will
complete the SAXPY twice as fast than a machine with a single functional
unit. The maximal improvement in performance that can be gained from
the control parallel execution of a SAXPY is a factor of two.

The performance of control parallelism is bounded by the number of
independent instructions. Even a small fraction of the code that has to be
executed serially will give rise to a bottleneck. We know, from Amdahl’s
law [6], that if a fraction s of the execution time of an algorithm is serial,

while the remaining 1 — s is parallelized on P processors, then the speedup

204 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

of the application is bounded from above by 1/s; see equation (7.1).

Data-Level Parallelism

In date parallelism the same instruction (or, similar instructions) are per-
formed on many data elements simultaneously by many processors. For
example, the SAXPY operation on n-dimensional vectors can be completed
in just two steps using n processors : one step will execute the product aX
for all components of X simultaneously and the next step will execute +¥
on all components of ¥ simultaneously. The improvement in performance
is, in this case, proportional to the size of the problem, i.e., n.

The performance of data parallelism is bounded by the number of data
elements that can be handled concurrently, while the performance of control
parallelism is bounded by the fraction of the instructions that have to be
executed serially. The argument in favor of data parallelism is the following:
As problems get bigger the number of data that need to be operated upon in-
creases, while the complexity of the algorithm /program remains unchanged.
Hence, more and more processors can be utilized efficiently for large scale
problems in the case of data parallelism.

Early applications of data parallel programming were implemented on
SIMD architectures, like the Connection Machine CM-2, Active Memory
Technology DAP and Masspar. Hence, identical instructions had to be ex-
ecuted on all selected vector memory addresses. With the introduction of
single-program multiple-data systems, like the Connection Machine CM-5,
it is possible for the vector processor to decode its own instructions. This
allows for somewhat inhomogeneous operations to be carried out at different

addresses of the vector memory. For example, a Enear-programming-solve

7.1. INTRODUCTION TO PARALLEL COMPUTING 205

can be an instruction sent by the controller to the parallel vector PIocessor.
Multiple linear programs could be stored in vector memory and the vector
processor could execute the same instruction on selected memory locations.
The fact that linear-programming-solve will consist of several instructions
executing a simplex method or an interior-point algorithm is transparent to
the user. So is the fact that, most likely, a different sequence of simplex or
interior-point steps will be executed for each vector. When the notion of
mstruction in its classical meaning (i.e., add, multiply, fetch) is replaced by
a sequence of such simple instructions (i.e., by a program), executed in lock-
step, we refer to the underlying parallel machine as Single Program Multiple
Data (SPMD). This designation distinguishes the parallel computer realiza-
tion from the simpler — but more restrictive — SIMD architecture, or the

more general — but more complex — MIMD architecture.

7.1.3 Parallel Prefix Operators for Data-Parallel Computing

The fact that identical (or very similar) operations need to be executed
in the data parallel model might imply that only highly-regular numerical
algorithms are suitable for this form of parallelism. That this need not be
the case can be shown using an abstract model of a data parallel computer:
the Vector-Random Access Machine (V-RAM) of Blelloch [28].

The V-RAM is a standard RAM with the addition of vector memory
and a parallel vector processor, Fig. 7.2. The vector memory is a sequence
of locations containing linearly ordered collections of scalar values, known
as simple vectors. It is an important feature of this model that the vector
lengths need not be identical. This is one of the major distinguishing features

of data parallel machines from vector computers. The vector processor exe-

206 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

cutes primitive instructions (in parallel) on sets of simple vectors and scalars
from the vector and scalar memories. For example, the SAXPY operation
corresponds to the multiplication of a vector X in the vector memory by an
element ¢ from scalar memory, and the addition of the result to a second
vector Y in vector memory.

Blelloch introduced two classes of vector instructions: scens, or parallel
prefix operations, and segmented scans. He showed that a V-RAM endowed
with these two instructions could implement a wide variety of applications,
while maintaining a level of parallelism proportional to the amount of data
in the problem. (In particular, the level of parallelism is proportional to
the length of the parallel vector processor of a specific realization of a data
parallel machine.) An equally important outcome of the V-RAM model is
that it permits the complexity analysis of data parallel algorithms, but this

issue is not addressed here.

Parallel Prefix Operations

The data-parallel implementations of some of the algorithms discussed later
make use of the parallel prefix operators. The two basic prefix operators are
the scan and spread.

The ®-scan primitive, for an associative binary operator @ takes a se-
quence {zg, T1,-- ., Txn} and produces another sequence {ya, y1,...,Yn} such
that 4 = 2o ® 21 ® ... @ x;. These sequences are referred to as parallel
varighles, as their elements reside on different processing elements of the
parallel computer. The ®-spread primitive, for an associative binary op-
erator ®, takes a sequence {zg,z1,...,2,} and produces another sequence

{y0,¥1,- -, ¥yn} such that y; = zg @z ® ... ® Tx. In the implementations

7.1. INTRODUCTION TO PARALLEL COMPUTING 207

Progra Sealar
m
B Memury Vector Memory
Controller Scalar Parallel Vector
Processor Processor
Scalar Vector
Instructions Instructions

Figure 7.2: The Vector — Random Access Machine (V-RAM) model of Blel-

loch for data parallel computers.

of these primitives on parallel machines (like, for example, the Connection
Machine CM~2 or MassPar) the communication network facilitates the ex-
change of data between processing elements during the calculation of the
® operator. However, the parallel prefix operators hide from the user the

details of the hardware and the communication network.

Another variation of the scan primitives allows their operation within
segments of a parallel variable. These primitives are denoted as segrnented-
®-scan. 'They take as arguments a parallel variable and a set of segment bits
which specify a partitioning of the elements of the variable into contignous

segments. Segment bits have a 1 at the starting location of a new segment

208 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Processing Element =012 3 4 5 6 7 8
X = [513 4 3 9 2 6 1
Segment Bits (Sb) =[101 0 0 0 1 0 O
Y = add — scan{X, Sb) = [05 6 3 7 10 19 2 8
copy — scan(Y, S5b) . = [00 0 6 6 6 6 19 19.
reverse — copy — scan(¥,Sb) = [6 6 1% 19 19 19 9 9 9

Figure 7.3: The Segmented add-scan end copy-scen primitives.

and a 0 elsewhere. A segmented-®-scan operation re-starts at the begin-
ning of every segment. Fig.7.3 illustrates the use of segmented-add-scan and
segmented-copy-scan on a small example. When processors are configured
as a two-dimensional grid, scans within rows or columns are special cases of

gsegmented scans called grid-scans.

7.1.4 Measures of Performance

How does one evaluate the performance of an algorithm executing on a par-
allel computer? There is no simple answer to this question. Instead, several
measures of performance are usually employed. Depending on the objective
of the experimental study — that is, of the algorithm implementation —

different measures may be more appropriate [76, 137}

Definition 7.1.1 (Speedup.) Speedup (or “speedup factor”) is the ratio of
solution time of the algorithm ezecuting on a single processor, to the solution

time of the same algorithm when ezecuting on multiple processors. It is, of

9]
0)
1]
9]
19 |
9 1]

7.1, INTRODUCTION TO PARALLEL COMPUTING 209

course, understood that the sequential algorithm is ezecuted on one of the

processors of the parallel system.

Linear speedup is observed when a parallel algorithm on p processors runs i)
times faster than on a single processor. Sublinear speedup is achieved when
the improvement, in performance is less than p due to the presence of se-
quential segments of code, processor synchronization, overhead in spawning
independent tasks and so on. Superlinear speedup is unusual. It indicates
that the parallel algorithm takes a different ~ and more efficient - solution
path than the sequential algorithm. Tt is often possible in such situations to
improve the performance of the sequential algorithm based on insight gained
from the parallel algorithms.

Amdahl’s law [6] specifies that the speedup when moving from a unipro-
cessor machine to one with P processors is given by

Speedup = 3 (7.1)

L
+p/P’
where s is the fraction of serial execution of the application, and p is the
fraction of execution time that can be performed in parallel (s + p = 1).
Even with an infinite number of processors, speedup can not exceed 1/s.
As scientists observed that 10% of a typical application could not be par-
allelized (input/output, initializations, serial bottlenecks of the algorithm)
they concluded that a speedup of 10 was the best one could expect.
This limited view of parallelism has today few followers. Parallel com-
puters are not just used to solve 10 times faster an existing application.
Instead, they were used to solve in about the same time 1000-fold bigger in-

stances of the same problem. When an application is scaled in size, to fit in

210 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

the larger number of processors, the serial part usually remains unchanged.
What scales up is the parallel part. Hence, linear speedups can be expected.
Consider a problem with a serial execution part s and a parallelizable part
p. When a P processor system becomes available, the application would be
scaled. If the parallel part would scale linearly then the execution time for
the larger application would be s - p- P. A modified Amdahl’s law, due to

E. Barsis from Sandia, is given in Gustafson [106]:
Scaled speedup = s +p - P.

Definition 7.1.2 (Efficiency.) Efficiency is the ratio of speedup to the num-

ber of processors.

Efficiency provides a convenient way to measure the performance of an algo-
rithm independently from the level of parallelism of the computer architec-
ture. Linear speedup corresponds to 100% (or 1.00) efficiency. Factors less
than 1.00 indicate sublinear speedup while superlinear speedup is indicated

by factors greater than 1.00.

Definition 7.1.3 (MFLOPS.) The acronym stands for Million Floating-
point Operations per Second. Observed MFLOPS rates are considered the

yardstick for the evaluation of algorithms on supercomputers.

All measures have merit and provide insightful information. At the same
time they provide only a partial measure of performance. High speedup for
example with an inherently slow algorithm is of little use when an alternative
algorithm exhibits much faster convergence when executing on a uniproces-

sor. Similarly, high MFLOPS rate with an algorithm that is performing

7.1. MATRIX BALANCING 211

redundant calculations is not as meaningful as reduced MFLOPS rate by an

algorithm that requires fewer operations.

7.2 Parallel Computing for Matrix Balancing

We now discuss parallel computing techniques for the implementation of
algorithms for the matrix balancing problem. We focus in particular on
Problem 6.1.3, and we look at alternative ways to parallelize the RAS Al-
gorithm 6.1.2. The application of RAS to this problem is well suited for
both control-level and data-level parallel implementations. Computational
results with the alternative implementations are reported.

The control-parallel implementation of RAS was developed in Zenios
and Tu [240] and the data-parallel implementation in Zenios [233]. The
Range-RAS RRAS algorithm has also been implemented using data-level
parallelism, and the implementation as well as computational results are

reported in Censor and Zenios [51].

7.2.1 Control-Parallel Computing with RAS

The RAS algorithm 6.1.2 iterates by scaling the rows of the matrix (Step 1)
before it proceeds with the scaling of the columns of the matrix (Step 2).
It is easy to observe that the row-updates are independent from each other.
Each row can be updated given the current value of the row entries, and the
target row sum. Hence, multiple rows can be scaled simultaneously and in
parallel. Once all row-scaling operations are completed the algorithm may
proceed with the simultaneous and parallel scaling of the columns.

How, precisely, is the control of the algorithm arranged for parallel com-

212CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

putations leaves some room for experimentation. At the one extreme the
algorithm may consider each row-scaling operations as a task that can be
scheduled for execution on the next available processor. If there are more
rows than there are processors then each processor will process the next
available task. The advantage of this approach to task scheduling is that
load balancing is achieved. That is, processors will terminate in approxi-
mately the same time: slower processors will process fewer rows. If there are
some dense rows in the matrix then those processors assigned to them will
process fewer rows. The disadvantage of this approach is that processors
must inquire about the availability of tasks and initiate a task. On some
computers the overhead from task initiation could be substantial.

At the other extreme of task scheduling one could consider grouping rows
together into as many groups as there are processors., and assign one group
to each processor. This approach requires only one task initialization, and
hence reduces the overhead of the implementation. The size of each group
— l.e., number of rows — has to be adjusted for the speed of the processors
and the number of non-zero entries in each row.

An alternative approach to the parallel solution of Problem 6.1.3 is to
work with a simultaneous version of RAS. Such a version will work concur-

rently on both rows and columns of the matrix. It is stated as follows:

Algorithm 7.2.1 Simultaneous RAS Algorithm.

Input: Anm xn nonnegative matrix A = (a;;), a positive vector u = (u;) €

R™ and a positive vector v = (v;) € R™.

Step 0: (Initialization) Set & =0 and X® = A. Choose A, \s € (0, 1).

7.2. MATRIX BALANCING 213

Step 1: (Compute Row Scaling Factors) For i = 1,2,...,m define

Ap
k Ui
P = (7.2)
Loz
J
Step 2: (Compute Column Scaling Factors) For j = 1,2,...,n define
Ag
ok = | X (7.3)

T\l
T
Step 3: (Update the matrix) For i =1,2,..., m and i=12,... n define

k+1 _ k k _k
T = piTof (7.4)

Step 4: Replace k — &+ 1 and return to Step 1.

The simultaneous RAS algorithm can be implemented in parallel in a
way similar to RAS. That is, multiple processors could compute the scaling
factors for multiple rows. Then the scaling factors for multiple columns will
be computed in parallel. And finally the updating of the matrix entries can
be performed in parallel for all entries. We note however that the simulta-
neous RAS can better utilize a larger number of processors, since both rows

and columns can be iterated upon in parallel.

Computational Results

We report now computational results with the parallel implementation of
both RAS and simultaneous RAS on the Alliant FX/8. The Alliant FX/8
is a shared-memory vector multiprocessor, with 8 processors. Bach processor
has vector functional units. The implementations take advantage of the

vector architecture.

214 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Problem No. of | No. of non-zero

rows x columns " entries
USE537 504 x 473 57247
MAKESB37 523 x 533 9586
MRIO (approx.) 6000 x 6000 | (approx.) 370000

Table 7.1: Test problem characteristics.

Test problems were derived from regional input/output accounts. The
first source is the National table for the U.S. for 1977 [32]. This set of data
consists of the “Make” and “Use” maitrices, with a classification scheme of
537 sectors. The second source is the multiregional input/output accounts
of the U.S. for 1977 [166]. This set of accounts consists of input/output
tables for the 50 States and the District of Columbia, using an industrial
classification scheme of approximately 120 sectors. For our test problem we
assembled a table of Make submatrices along the diagonai, and inter-regional
trade flows off the diagonal that provide coupling between the regions. The
resultant table has approximately 6000 (= 50 x 120) accounts and over

370000 nonzero transactions, both inter- and intra-regional.

To create balancing problems based on the available data we computed
the row and column sums of each test problem, and then added noise to the
entries of the matrix. Thus we obtained tables whose entries do not add up
to the computed control totals. The characteristics of the test problems are

summarized in Table 7.1.

To provide a benchmark against which to evaluate the performance of

the parallel algorithms we first run RAS on a VAX 8700 large mainframe

7.2. MATRIX BALANCING 215

Problem | Error VAX 8700 FPS M64/60
Iterations | CPU Time | Iterations | CPU Time
USE537 10-8 31 0:00:10 25 0:00:1
10-8 46 0:00:15 41 0:00:2
10-12 78 0:00:26 73 0:00:4
MAKES37 104 443 0:00:30 713 0:00:11
10-% 66827 1:13:06 22980 0:05:54
108 — | > 20:00:00 273701 1:12:28

Table 7.2: Benchmark solution times with RAS in hrs:min:sec.

and a Floating Point Systems M64,/60 attached array processor. The results

are summarized in Table 7.2.

Parallel Computing on the Alliant FX/8

The results on the Ailiant FX/8 with the parallel implementation of RAS

are summarized in Table 7.3. The algorithm was implemented on a single

processor in a way that takes advantage of the vector capabilities of the

Alliant.

The algorithm was then parallelized by allowing multiple row-scaling

operations to be performed concurrently, before the algorithm would pro-

ceed with the concurrent scaling of multiple columns. Significant speedup

is achieved with parallel computations using all 8 processors of the system,

216 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Problem: MAKE537 | MAKE537 | MAKES37 | USE537
Error: 10~ 1078 1078 10712
Iterations: 802 80057 342081 70
Scalar: 00:01:19.9 02:10:20.8 09:20:51.0 | 00:00:31.0
Vectorized: 00:00:51.3 01:23:13.4 05:55:15.9 | 00:00:18.5
2-CPUs: 00:00:25.7 00:41:37.6 02:59:33.9 | 00:00:09.5
3-CPUs: 00:00:17.5 00:28:13.0 02:00:46.9 | 00:00:06.4
4-CPUs: 00:00:13.5 00:21:39.1 01:31:54.9 | 00:00:04.9
5-CPUs: 00:00:11.0 00:17:32.9 01:14:57.7 | 00:00:04.1
6-CPUs: 00:00:09.5 00:14:56.1 01:03:37.7 | 00:00:03.5
7-CPUs: 00:00:08.3 00:13:04.0 00:55:39.6 | 00:00:03.1
8-CPUs: 00:00:07.5 00:11:45.0 00:49:45.9 | 00:00:02.7

Table 7.3: Solution time on the Alliant FX/8 in hrs:min:sec.

The average speedup factor — average for the solution of MAKES3T to three
different levels of accuracy, and for the solution of USE537 — is shown in
Fig. 7.4 as a function of the number of processors. The speedup is almost
linear. The small inefliciency {around 10%) is due to the overhead in initial-

izing the tasks and the convergence test which is a sequential operation.

Using the simultaneous RAS with weights A, = A; = 0.8 in the multi-
processing environment and comparing it with the uniprocessor implemen-
tation of RAS we obtained the speedup curve of Fig. 7.5. Although it
appears that the speedup is superlinear, a more careful examination of the
results indicated that the simultaneous RAS is more efficient than RAS

even on a single processor. Were we to develop the speedup curve based

7.2. MATRIX BALANCING 217"

Speedup
a4 Linear Speedup
Observed Speedup
6.
4
24
0 v . . .
0 2 4 6 8

No. of processors

Figure 7.4: Speedup factors vs rh;.morfvprogéésors on the Alliant FX/8 with
the parallel implementation of RAS.

Speedup

0 t 4 & 8 No. of processors

Figure 7.5: Speedup factors with simultaneous RAS on the Alliant FX/8.

218 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Iterations of simultaneous RAS

Tterations- ol RAS

® MAKES37
7 A STONE
6 X 30 %30
5

4,

3.

2.

0.3 0.370 0.440 0.510 0.580 0.650 0.720 0.790 0.860 0.930

Figure 7.6: The performance of simultaneous RAS compared to the perfor-

mance of RAS for varying values of the parameters A, = As.

on a comparison of the parallel simultaneous RAS with the uni-processor
implementation of the simultaneous RAS we would obtain a curve identical
to that of Fig. 7.4. Nevertheless, we present the results of Fig. 7.5 since it is
the experimentation with parallel computing that revealed the potential of

the simultaneous RAS as a more efficient sequential algorithm.

Fig. 7.6 illustrates the relative performance of simultaneous RAS with
respect to RAS with varying parameters A,, A, for three test problems:
STONE, MAKEB37 and a randomly generated 30 x 30 matrix. These results
were obtained on the VAX 8700. We observe that a fair amount of fine tuning
is required in order to find the set of parameters that make the simultaneous

RAS outperform RAS.

7.2. MATRIX BALANCING 219

f

l total (v;)
1-axis - .
AN AR T ¢ A A T
| e R
0-axis E::/E
total (u) //f
~F= -
= Z
S
Z
Er
7
scale (i, ;)
value (2}

Figure 7.7: Data-parallel representation of a dense matrix.

7.2.2 Data-Parallel Computing with RAS

The RAS algorithm for matrix balancing problems has a natural map to
data-parallel computations. In particular, each element of the matrix can be
assigned to a distinct processing element. Processing elements that store the
data of a row will coordinate to compute a row-sum, and then proceed with
the scaling of the row-entries. Multiple rows can be updated concurrently,
and the implementation will proceed similarly to update column sums. It
is convenient to think of the processing elements as being arranged into a
two-dimensional grid, with each element connected to its North, East, West,
and South neighbors. Fig. 7.7 illustrates the mapping of data onto a two

dimensional grid of processing elements.

220 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING
Data-Parallel Implementation for Dense Problems

The data-parallel implementation of RAS for dense problems uses the map-
ping of data to processors as illustrated in Fig. 7.7. Every processor stores
the matrix entry a;; and the scaling factor. In addition, both the row total
u; and the columm total v; are stored at the same processor. Hence the
(i, 7)-th processor stores a5, 4, v; and the scaling factor.

With this mapping of data to processors the RAS algorithm is imple-
mented as lollows: First, use an add-spread parallel prefix operation along
the vertical (0 — th) axis of the processors to spread the partial sum of
the matrix entries in each column to some temporary memory location of
each processor in the column. Each processor then proceeds to divide the
column total v; by the partial sum, therefore computing its own value of
the scaling factor. All processors in the same row will compute identical
scaling factors at this point, but they do so locally without any need for
communications. The implementation uses redundant computations in or-
der to eliminate communication overhead. Finally, each processor uses its
local copy of the scaling factor to multiply its entry of the matrix. The
same operations are then repeated along the horizontal (1 — st) axis of the

processors to carry out the row scaling.

Data-Parallel Implementation for Sparse Problems

To represent sparse problems we will make use of the segmented parallel
.~y 3 " i " H :

prefix operations. The non-zero entries of the matrix are arranged along

multiple processors in a one-dimensional array. The non-zero entries are

arranged both row-wise and column-wise. Segment bits are used to denote

7.2. MATRIX BALANCING 221

contiguous segments that contain the data of complete rows and columns.
Every non-zero entry of the matrix is, therefore, stored twice: once in a row-
wise format that allows row scaling and once in a column-wise format that
allows column scaling. This scheme has some redundancy, but allows the effi-
cient use of segmented-scan operations. This scheme for representing sparse
matrices was proposed by Blelloch [28]. Zenios and Lasken [232] proposed,
independently, a similar scheme for representing sparse network problems.
The two schemes are equivalent, if one associates with a sparse matrix an
incidence graph. That is, with each row or column of a matrix associate a
node and with a non-zero entry introduce an arc between the corresponding
row-node and column-node. See, for example, definitions 6.1.1 and 6.1.9.
Blelloch’s scheme for representation of a sparse matrix is identical to the
Zenios-Lasken scheme for the representation of a network. A comparison
of alternative data- structures for the representation of network problems is
given in Nielsen and Zenios [176].

Fig. 7.8 illustrates the sparse representation of a small matrix. The

various data stored at each processor are described below:

1. A field s-row of segment bits. It is used to partition the processors
into contiguous segments such that processors in the same segment

correspond to entries of the same row,

2. A field a-row that holds the value of the entry a;;. The matrix entries
are allocated row-wise: entries of the same row belong to the same

segment.

3. A field r-total holds the row total values u;. All processors in the same

row segment hold identical values.

222 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

1 a1z ap a4 ais| m
2| an Uz
3] an U3
4 Q42 Q43 Uy
5 asz Qs3 4s Hs

v Y2 Va Vg Vs

NEWS address

of VP 1 2 3 4 5 6 7 8 5 10 11 12
S-ROW 1 0 0 0 1 1 1 0 1 0 1] 1
A-ROW @12 @13 Me Gys G21 Q31 dap Ga3 Qg2 053 ds4

R-TOTAL My My My Wy uz WMy U4 M4 Us Us U
P-ROW 36 9% m 1 2 4 7 5 8 10
P-COL 5 6 1 7 9 2 8 10 3 11 4

C-TOTAL ViV Yy Vs V¥ W3 Vy V3 Voo Vs Vs
A-COL @2y @i 13 Qa2 Qs Q3 G4z Bs3 Q14 Qsq Q15

S-COL 1 0 1 0 o 1 0 0 1 0 1 1

Figure 7.8: Data-parallel representation of a sparse matrix.

7.2. MATRIX BALANCING 223

4. A second field of segment bits s-col partitions the processors into con-
tiguous segments, such that processors in the same segment correspond

to entries of the same column.

5. A field a-col holds the value of the entry a;; in column-wise order. This
field provides redundant information, since the non-zero entries have

already been stored row-wise in field a — row.

6. A field c-total holds the column total values vj. All processors that
correspond to the same column (i.e., are in the same column segment)

hold identical values.
7. A field scale holds the scaling factors for either row or column.

8. Two fields p-row and p-col hold pointers to map the non-zero entries
from the row-wise field a-row to the column-wise field a-col and vice

VEersa.

With this representation of sparse problems one iteration of RAS is
executed as follows: A segmented-add-scan operation on field a-row (that
is, an add-scan over the row segments) computes the sum of the entries in
each row. This partial sum is then used to divide the row total field r-total
thus computing the scaling factors. Note that —- by the definition of the
segmented-scan operator — only the last processor in each segment has the
sum of all the entries in the row and hence only the scaling factor of the last
processor is the correct one. A reverse segmented-copy-scan is used to copy
the correct scaling factor to all processors in the same segment. Finally,
each processor proceeds to multiply its copy of the matrix value with its

local copy of the scaling factor. Before the algorithm can proceed with the

224 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Test Error | 32K CM-2 | Alliant FX/8 | CRAY X-MP
problems (sparse} | (dense)

USE537 10-% 0.45 0.18 1.04 0.30
MAKES37 || 1074 11.41 6.13 7.50 6.90

Table 7.4: Comparisons of execution times (seconds) of the data-parallel and

control-parallel implementations of RAS.

column scaling the non-zero entries, just scaled following a row operation,
have to be copied from the row-wise to the column-wise representation. This
is a rearrangement of the contents of the memory field e-row according to
the sparsity structure of the matrix. The addresses stored in the pecinter
field p-row are used to copy the non-zero entries of the matrix from the row
field g-row to the column field a-col. The algorithm then proceeds with a

column scaling, which is similar to the row scaling described above.

Computational Results on the Connection Machine CM—2

‘We summarize now computational results obtained using RAS on the Con-
nection Machine CM-2. (For a brief description of the CM-2 see Ap-
pendix A.} The test problems are identical to those used for the control-
parallel implementation of section 7.2.1. Table 7.4 summarizes the results,
and compares the performance of the data-parallel with the control-parallel
implementation, and against the benchmark implementation of the algo-

rithm on a CRAY X-MP vector supércomputer.

7.3. PARALLEL COMPUTING FOR IMAGE RECONSTRUCTION 225

7.3 Parallel Computing for Image Reconstruction

We discuss now the parallel implementation of algorithms for image recon-
struction. We consider, in particular, the implementation of the block-
MART Algorithm of Censor and Segman [50] applied to the entropy op-
timization model for image reconstruction, i.e. Problem 6.2.2. We propose
three parallel variants of the algorithm. All three are logical special cases of
the general block-MART. Therefore no separate mathematical analysis is
needed. However, the three schemes demonstrate different speedup factors.
This example serves as an indication of the 'ﬂexibility of block-iterative al-
gorithms for parallel computations. The implementation was carried out on
a CRAY X-MP/48 which is a shared-memory vector multiprocessor. Spe-
cial attention was placed on implementing the algorithm in a way that take

advantage of the vector architecture.

"The block-MART algorithm was implemented as the reconstruction al-
gorithm within the SNARK77 package [161]. SNARKT7T is a programming
environment designed to facilitate the implementation and testing of recon-
struction algorithms. In particular, based on user specifications of an image
and the geometry of data collection, SNARK77 will create a discretized im-
age and simulate the data measurements. This information is then passed on
to the reconstruction algorithm that proceeds to reconstruct the image spec-
ified by the user. In this section we discuss alternative implementation that
take advantage of the multiprocessor and vector capabilities of the CRAY.

This material is based on the work of Zenios and Censor [238].

226 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

7.3.1 Vector Computing with Block-MART

The iterative step of the block-MART Algorithin 6.2.2 can be wriften in

the form:

t(k) &
3:;?“ = 'Lf exp { > wi()di-”a,ij] . (7.5)
iGIt{k)

Instead of computing the term under the summation sign for each pixel j
and then updating the corresponding x;, we proceed as follows. For every

pixel 7 we accumulate the terms
wg(mdffaij (7.6)

in a correction array. Once all the terms are accumulated we update the
jth elements of z*. This computational scheme can be computed in two
intermediate steps — accumulating the correction terms and updating the

vector z*

— that are rich in vector operations.

We formalize these two steps, omitting temporarily the iteration index k&
for the sake of simplicity of explanation. Given an iteration index & a block
index ¢ = #(k) is chosen according to a cyclic rule. A list of all pixels inter-
sected by rays that belong to the block Iy is given by Ji(s), s =1,2,..., 5},
where S; is the number of elements in the set {7 € J | ai; > 0,7 € L}
Cy(s) is a temporary correction array, associated with the tth block, for
s = 1,2,...,5. If the total number of pixels intersected by the ith ray is
L; then LISTi(.) is an array of the indices of these pixels. LIST;(.) is itself
indexed by I = 1,2,... L;. Together with LIST;(.) we get from SNARKT7
an array LENGT H;(.) which contains, for every [= 1,2,..., L;, the length
of intersection of the pixel LIST;(l) with the ith ray. For a given block, the

correction array Cy(.) is computed as follows:

7.3. IMAGE RECONSTRUCTION 227

Initialize:

Ci(s) —0, s

1,2,...,5. (7.7}
Compute, for all i € I;:

Ci (LISTi(D)) — C, (LIST:()) + widi » LENGTH;(I). (7.8)

Updating the image vector = is computed by the iterative step, for all 5 =

1,2,...,St:

z, + exp [logz, + Cy(s)], (7.9)

where 7 € Ji(s). The computations in equations (7.7)—(7.9) are imple-
mented using coded BLAS (i.e., Basic Linear Algebra. Subroutines) kernels
from the CRAY library, [58]. The kernels use the vector capabilities of each
processor of the CRAY . Results with the scalar and vectorized codes are sum-
marized in Table 7.5. All runs with block-MART were carried out with 45
blocks per view. We observe significant improvement in performance due to
vectorization: the improvements range from a factor of 5.8 with row-action
MART on the smaller problems to over 10 with block-MART on the larger
problems. block-MART achieves slightly better performance than MART
due to the longer vectors that appear in the block-MART calculations.

7.3.2 Parallel Scheme I: Parallelism Within a Block

The first parallel scheme deals with local changes in the algorithm and is
therefore the easiest to implement. The operations performed on equations of
a single block are structured for possible concurrent execution. The following

four steps are executed during one iteration over the equations of a block:

228 CHAPTER 7. DECOMPOSITIONS IFOR PARALLEL COMPUTING

Phantom MART | Block-MART
HEAD6G4 452.86 77.53
SHEPP64 471.24 81.19
SHEFP512 3543.10 108.81
SHEPP1024 N/A 312.71

Table 7.5: Solution times for test phantoms on the CRAY X-MP/48 (CPU

seconds.)

Step 1: Choose the rays that form the block using SNARKT77 utilities.
Given a user specified size of the block (i.e., the number of rays per
block) SNARK77 will determine the rays that form this particular
block. Recall that each ray gives rise to an equation which i5 a con-

straint in the optimization problem.

Step 2: For each ray ¢ in the block determine the simulated measurement
b, the list of pixels j intersected by it — LIST;(.) — and the lengths
of the intersections a;;. This information is computed by SNARKT77
(using the utilities WRAY and PSEUDO) based on the geometry of

data collection and the discretization of the phantom.
Step 3: Compute the correction terms Cy(.) as discussed in Section 7.3.1.

Step 4: Update all pixel intensities 2:; as discussed in Section 7.3.1.

These four steps are executed for each block and are repeated until some
iteration number limit is reached or some convergence criterion is satisfied.
Blocks are processed in a cyclical manner. It is possible to utilize multiple

processors during the execution of some of the steps.

7.3. IMAGE RECONSTRUCTION 229

Step 1 is executed in a GUARDed mode, thus avoiding two or more
processors from assigning the same ray to a block more than once. This step
is not particularly time consuming. SNARK?TY7 just goes through the list of
rays and picks a user specified number of them according to a simple rule.

For example, choose the first ray that has not been used already.

Step 2 is computationally intensive. SNARK?77 uses the geometry of the
phantom and the orientation of the rays to determine the list of pixels inter-
sected by each ray and the lengths of intersections. The exact specifications
of the phantom — known to SNARK?7T7 but, of course, unknown to the re-
construction algorithm — are used to compute the simulated measurements.
These operations can be executed concurrently for all rays in the block. The
relevant SNARKT7 utility routines (PSEUDO and WRAY) are declared mi-
crotasked and a copy of each is executed in parallel for multiple rays in a
block. Computations are executed in parailel for up to four rays {i.e., the

number of processors on the CRAY we use) at a time.

In Step 3 the correction term is computed for each ray. Again multiple
rays can be processed in parallel. Finally, updating of the pixel intensities x;
using equation (7.9} is executed in a guarded mode. This avoids the updat-
ing of a single pixel by muitiple processors when such a pixel is intersected
by several rays that are operated upon in parallel. However, the use of the
protected mode inhibits the vectorization of Step 3.

The performance of this parallel scheme was evaluated reconstructing the
phantoms SHEPP512 and SHEPP1024 with the vectorized block-MART
code using block sizes of 45 blocks/view. Results are summarized in Ta-
ble 7.6. While this scheme demonstrates almost linear speedup factors the

results of Table 7.6 are misleading: the microtasked code is significantly

230 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

No. of Speedups

CPUs | SHEPP512 | SHEPP1024
2 1.97 1.83
3 2.97 2.95
4 3.72 3.97

Table 7.6: Speedup factors with parallel scheme I and no vectorization.

slower than the non-microtasked code when executed on a single processor.
This is due to the way the GUARD statement is used during execution of
Step 4. Updating the pixel intensities z; as per equation (7.9) involves the
computation of the expression on the right hand side and storage of the
results in vector z. While the computations can be executed in parallel,
updating the vector must be guarded from concurrent execution. Placing
the updating step in a GUARDed segment of code introduces minimal wait
states between the processors. This is the reason why Scheme I achieves
significant speedup factors. However, the presence of the GUARD state-
ment inside the iterative loop inhibits vectorization and the microtasked
code tuns much slower on a single processor as shown in Table 7.7. On
machines with few processors multitasking should be used only if it will not
interfere with the execution of vector calculations. In the modification of
the parallel scheme I, that we introduce next, we implement multitasking in
a way that preserves vectorization. Speedup factors are then reduced some-
what. The almost linear speedup factors reported in Table 7.6 are indicative
of the performance that can be expected from the parallel algorithm on a

scalar mutliprocessor.

7.3. IMAGE RECONSTRUCTION 231
Problem Scalar | Vectorized Parallel
1-CPU 4-CPUs
SHEPP512 | 1140.49 sec 108.81 sec | 459.89 sec | 123.49 sec
SHEPP1024 N/A | 312.71 sec | 945.94 sec | 263.00 sec

Table 7.7: Trading off vectorization for parallelism.

No. of Speedups

CPUs || SHEPP512 | SHEPP1024
2 1.82 1.80
3 2.49 1.97
4 2.97 3.15

Table 7.8: Speedup Factors with Vectorized Parallel Scheme 1.

Placing the whole iterative step inside a GUARDed segment of code
increases the wait states between the processors but maintains vectorization.
Speedup factors with this modification (which we call vectorized parallel
scheme I) are summarized in Table 7.8. The overhead due to the use of
microtasked directives is around 10% (i.e., the microtasked code will run

only 10 % slower on a single processor than the non-microtasked code).

7.3.3 Parallel Scheme II: Parallelism with Independent Blocks

The block nature of the algorithm and the geometry of image reconstruction
problems provides a mechanism for introducing parallelism with large gran-
ularity tasks. It is possible to instruct SNARK77 to generate independent
blocks. (Two blocks are termed independent if their respective rays do not

intersect any common pixels.) With independent blocks it is known a priori

232 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

1 View at angle ¢

line of sources

block of
descretized image &
domain
™~
) 0
=
7 .
/L] /

only these pixels
are updated when
this black is
processed,

fine of detectors

Figure 7.9: Parallel computing with independent blocks.

that no write conflicts will arise between the tasks for a given view, and

there is no need to use GUARDed code segments.

Independent blocks are formed by grouping together rays that belong
to the same view, as illustrated in Fig. 7.9. With this parallel scheme,
synchronization is needed whenever the algorithm starts operating on blocks
in a different view. It is possible that some processors may still be operating
on blocks in a different view, in which case write conflicts may arise in
updating the intensities of pixels shared between tasks. A barrier mechanism
is set up to avoid this problem by imbedding the iteration over all blocks in
a view, within an outer iteration over all views. The inner iteration is then

parallelized while the outer is executed sequentially. Hence, all processors

7.3. IMAGE RECONSTRUCTION 233

No. of Speedup

CPUs || SHEPP512 | SHEPP1024
2 1.82 1.79
3 2.32 1.93
4 3.01 | 3.11

Table 7.9: Speedup factors with parallel scheme IT.

must terminate execution of the inner iteration before operations on a new
view may begin.

The performance of this parallel scheme was evaluated by reconstruct-
ing the phantoms SHEPP512 and SHEPP1024 with the vectorized block-
MART code using 45 blocks/view. Results are summarized in Table 7.9.
The observed speedup factors are almost identical to those of the vectorized
scheme I above. This is due to the efficiency of the implementation of paral-
lel computations with the microtasking directives on the CRAY. Even tasks
with small granularity (such as those of scheme I) start with very little over-
head. On systems with large overhead for task initiation Parallel Scheme IT

is preferable.

7.3.4 Parallel Scheme III: Parallelism Between Views

A third parallel scheme is illustrated in Fig. 7.10 where all rays in a single
view are grouped together as a block and are operated upon in parallel.
The algorithm is a simultaneous block-iterative algorithm as characterized
in Chapter 1. For all M different views in the parallel geometry of data

collection, let I; contain the indices of all rays in the ¢th view. For each

234 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

t, 1 < t < M, define an intermediate image 2**1* by using, for all j,

j=1,2,...J, the formula

$?+1,t - (m?)lfM II exp (wﬁdfaij)) (7.10)
i€l

With this as a particular representation of equation {1.10) take the op-

erator S of equation (1.11) to be the following:

m-'f:Jrl

M k+1.1
L= T2 i=12,004 (7.11)

=1
This simultaneous block-iterative version of MART is mathematically equiv-

alent to a fully simultaneous algorithm with

I
w;?"‘l = :c? Hexp (wid‘;"aij)) (7.12)

i=1
for all ;7 = 1,2,...J, where all rays are lumped into a single block. How-
ever, from the computational point of view it offers yet another, completely
different, parallel scheme for implementing block-MART for image recon-
struction. Since all pixel intensities must be updated by the rays of each
view (and hence in parallel by multiple processors) temporary storage must
be used for the correction factors computed by each view. The algorithmic
operator then aggregates the intermediate correction factors and updates the
vector z. At present we have no computational experiences with this parallel
scheme, which we introduce for the sake of completeness. It has, however,
the highest potential for performance improvement on a multiprocessor due
to the large granularity of the tasks. Furthermore, the synchronization step

where the intermediate correction terms are updated can be partitioned for

7.3. IMAGE RECONSTRUCTION 235

discretized

image

domain
all rays in
each single view

/ comprise one block

Figure 7.10: Parallel computing between views.

parallel execution. This scheme is more suitable for message passing archi-
tectures or with shared memory multiprocessors with higher overhead for

task initialization.

7.3.5 Parallel Computations with MART and Block-MART

By varying the number of equations in a block we may execute a range of
algorithms from row-action MART to a fully simultancous block-MART.
All previous experiments were carried out with block-MART using block
sizes of 45 blocks/view. One of the advantages of block-MART is that
the structure of the algorithm provides a natural mechanism for the intro-

duction of parallelism using different task sizes. Hence, we repeated the

236 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

4 —
Speedup
factor
3
\@
[~—~——]3 CPUs
|2 CPUs T —
P———— "‘_\
"—-—______________\
-______-h
1
0 No. blocks/view
] 60 120 180 240 300 360 420 480

Figure 7.11: Speedup factors with varying block sizes.

experiments with parallel scheme I on problem SHEPP512 and varying the
block sizes. Results are summarized in Fig. 7.11. Intermediate block sizes
(30 blocks/view for this particular problem) appear to be optimal. At.this
point blocks are large enough to provide large tasks. At the same time there
are enough blocks {and therefore tasks) available to achieve load balancing

between the processors and to avoid excessive synchronization delays.

7.4 Parallel Computing for Stochastic Network

Optimization

Stochastic programming problems remain one of the major challenging prob-

lems in computational mathematical programming. The size of these prob-

7.4. STOCHASTIC NETWORK OPTIMIZATION 237

lems grows with the number of scenarios that are included in the formulation.
Furthermore, any special structure that might have been present in a deter-
ministic formulation of the problem is substantially complicated with the

stochastic programming formulation.

In this section we describe the data-level parallel implementation of
the row-action algorithm for stochastic network problems presented in sec-
tion 6.3. The implementation is carried out én the Connection Machine
CM-2, and is used to solve some of the largest stochastic network problems
that have been reported in the literature. The specialization of the row-
action algorithms for the massively parallel solution of stochastic networks

is reported in Nielsen and Zenios [177].

In order to implement a sparse, stochastic network solver we use an ex-
tension of the data-structures used to represent the graph arising from the
sparse matrix balancing problem, see section 6.1.2. Each network subprob-
lem is stored in a one-dimensional grid of processors of dimension (m; +
my) + 2(n1 + ng). With each arc (i, j) we associate two Processors: one
at the tail node i and one at the head node j. An additional processor is
associated with each node. Processors that correspond to the same node —
i.e., are assigned to arcs incident to the same node — are grouped together
into a contiguous segment. This is the data-structures introduced in Zenios
and Lasken [232]. In this way the segmented scan operations (Section 7.1.3)
can be employed for the implementation of the algorithm.

In order to solve the stochastic network problems we use a two- dimen-
sional grid of processors, of dimensions § x (m; + my) + 2(n1 + ng). Each
row of this grid is used to represent a single network problem as outlined

above. Since the network topology is identical for all scenarios, the mapping

938 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

of arcs into processors and the partitioning of processors into segments, will
be identical for each row of the grid. Hence, the control of the algorithm
is identical for each row of the grid (i.e., for each network problem). Row
s will store the data of the network problem for the s-th scenario. This
configuration is illustrated in Fig. 7.12. The algorithm iterates along the
row-axis until some convergence criteria is satisfied for all the rows. Once
the single scenario networks are solved by iterations along the row- axis, the
algorithm exccutes the projection on the non-anticipativity constraints using
scan operations along the column-axis.

The projection on the non-anticipativity constraints, i.e., (6.166)—(6.167),
is executed in parallel for all first-stage (replicated) variables. Each first-
stage variable (with replications) occupies two columns of the two-dimensicnal
grid representing the stochastic program (Fig. 7.12). Each processor holds
the scenario probability p® and the component zj; of the current iterate, and
computes their product. The products are then added and distributed back
to each processor {using the spread-with-add parallel prefix) as the projected

point, fi:,;j .

7.4.1 Experiments and Numerical Results

In this section we report on the performance of the algorithm on a number
of test problems from financial applications. We also investigate the effect
of stochasticity in the network parameters on the performance of the algo-
rithm. The row-action algorithm for solving stochastic network problems
was implemented on the Connection Machine CM-2.

Each projection on the non-anticipativity constraints is called a major

iteration. Iterations for the solution of the scenario subproblems are called

7.4. STOCHASTIC NETWORK OPTIMIZATION

1wt

(Network) wm:
0 12 3 ¢ 5 6 7 8 910 12 134

0 axis /;

{Scenarios) ﬁ

F, I, - /

A A A A
Nemﬁm
for scenanio 5

Data Fields in the 5 -th row cotrespancling to scepario 5.

NEWS address
ofVPrloogxds ! @ 1 2 3 4 5 6 7 § ¢ 0 11 12 13)4

Node I b1 2 2z 3 3 33 4 4 4« 3 5 3
Segment bits I o ¢ 1 9 1 0 o0 o 1 e 0 I 0 9

Supply/Demand |nil) ail} sil) af2) 22 i) wb) % RO} 2l4} S} wid) n(5) wis) nis)

Capaciy & L1U(L4) vay) © viHNUES o ULOUES) ® UgIUEs)
Seng address 0 & 10 3 7 4 4

in NEWe 5 1 3 9 2 14 12 8 1
coordinares

along xxis 7

Sapbc 1o 1 5 0 1 0 1 1 0 8 0 0 0 o o

239

Figure 7.12: Data-parallel representation of a stochastic network problem.

240 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Problem | Scena- | Nodes | Arcs Det. Eqv.
rios Rows x Columns

Deter 0 18 121 334 1923 x 5468
Deter 1 52 121 335 5527 % 15737
Deter 2 80 91 249 6095 x 17313
Deter 3 72 121 335 7647 x 21777
Deter 4 70 61 163 3235 % 9133
Deter 5 48 121 335 5103 x 14529
Deter 6 40 121 335 4255 x 12113
Deter 7 60 121 335 6375 x 18153
Deter 8 36 121 335 3831 x 10905

Table 7.10: Characteristics of the test problems Deter 0 - Deter 8.

minor.

TFest Problems

We use as test problems a set of asset allocation models from Mulvey and
Vladimirou {170, 171]. Due to the requirement of our implementation that
the objective must be quadratic, we minimize >(; e ,se S(a:fj)g. Table 7.10
lists the characteristics of the test problems and the size of the deterministic

equivalent nonlinear program.

Results on the Connection Machine CM—2

The problems were solved on a CM-2 with 8K processors (1K = 1024}. The

algorithm was terminated when both the absolute node surplus/deficit was

74. STOCHASTIC NETWORK OPTIMIZATION 241

Problem | Major | Minor | Time
Itns. Itns.
Deter 0 9 - 850 10.5
Deter 1 9 875 19.0
Deter 2 7 625 22.0
Deter 3 9 875 31.4
Deter 4 5 325 6.7
Deter 5 10 950 24.7
Deter 6 9 900 19.4
Deter 7 11 1025 22.3
Deter 8 11 1050 22,7

Table 7.11: Solution times (seconds) of test problems on the CM-=2 with 8‘K'

processing elements.

below a small tolerance € > 0 for each node, and each non-anticipativity
constraint was violated by less than €, for € = 1073, Results are shown
in Table 7.11. We imposed a limit of 100 minor iterations between the
execution of a projection on the non-anticipativity constraints (constituting
a major iteration). Convergence of the network subproblems {to within the

tolerance) was checked every 25 iterations.

The results show that all of these problems were solved in less than half a
minute, and required only up to 11 major iterations. These problems could
be solved in under 5 seconds each on a CM-2 with 64K processing elements.

It is also interesting to observe that the solution time does not depend on

242 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

Seconds 1m.1 on. ChM-2

—epme— OBN, |RIS4D/70
800 S
600
400 -
200 -

o
g._._.p===’=—;-_".,.: : . i

T v
Deter0 Deterd Deteré Deteri Deter3

Figure 7.13: Comparing the row-action algorithm on the 8K CM-2 with the
general purpose solver OBN on an IRIS4D/70.

the number of scenarios, or the size of the equivalent nonlinear program. For
example, Deterd was solved in much less time than Deter6 although it has

twice as many scenarios.

To provide some basis for evaluation of the results of Table 7.11 we
summarize in Fig. 7.13 the results obtained using the row-action algorithm
with the results obtained by Lustig et al. [152] using the interior point code
OBN. Lustig et al. used OBN within a successive-quadratic programming
(SQP) framework in order to solve a nonlinear program. The time reported
in Fig. 7.13 is the average time for the solution of several quadratic pro-

grams within SQP, as obtained from their report. The row-action algorithm

7.4. STOCHASTIC NETWORK OPTIMIZATION 243

Scenaries Det. Eqv. 8K PEs 32K PEs
Rows x Columns | e=10"3 | ¢=10"% [¢ = 10~3 | ¢ = 10~¢
128 13583 x 38689 30.1 46.2 104 16.2
512 54287 x 154657 108.2 155.4 30.7 46.3
1024 108559 x 309281 210.8 326.5 57.3 86.3
2048 217103 x 618529 407.5 623.1 113.1 163.6
8196 | 868367 x 2474017 N/A| N/A N/A | 11 min,

Table 7.12: Solving large-scale problems (solution times in seconds)

substantially outperforms OBN. It should be noted, however, that OBN is
a general purpose optimizer while the row-action algorithm is specialized
for the network structured problems. It is interesting to observe that the
solution time for the row-action algorithm increases only marginally with
problem size, while substantial increase is observed for OBN. The interior
point algorithms cannot be used to solve directly the much larger problems
we solve next since that would involve factorization of 100K x 100K matri-
ces. The conclusion drawn from the results of Fig. 7.13 is that the special-
purpose algorithms scale nicely with problem size and are very competitive

with general purpose optimizers.

Solving Large-Scale Problems

To test the élgorithm on large-scale problems, we modified the largest
problem, Deter3, by replicating the scenarios until there were 128, 512,1024,
2048 and 8196 scenarios, respectively.

The problems were run on an 8K and a 32K Connection Machine CM—2

244 CHAPTER 7. DECOMPOSITIONS FOR PARALLEL COMPUTING

MFLOPS rate 3o0o-

—a— 8KCM2
200 4 ——— 3ZKCM2
100
— - -
o L] T T 1 T

1 L} s
4 8 16 32 64 128 256

YP-ratio

Figure 7.14: CM-2 MFLOPS rates for an 8K and a 32K CM-2.

with 32Kbytes of random-access memory per processing element. Results

are shown in Table 7.12, with final tolerances of e = 1072 and ¢ = 10~

This experiment demonstrates the suitability of the algorithm for solving
large-scale stochastic problems. The largest problem, 8196 scenarios, having
a deterministic nonlinear equivalent of 868,367 constraints and 2,474,017
variables, was solved to the tightest tolerance in about 11 minutes on the
32K CM-2. We also observe that the algorithm scales very effectively for
larger problems on bigger machine sizes. For example, 512 scenarios are
solved in 108.2 sec. on the 8K CM-2. Using a system with 32K processing
elements we solve a problem with four times as many scenarios in almost

the same time, 113.1 sec.

7.4. STOCHASTIC NETWORK OPTIMIZATION 245

Based on the solution of the large-scale problems (Table 7.12) we can
calculate the computational rate of the algorithm. The MFLOP rates for
the large scale runs are shown in Fig. 7.14. For example , the 2048 scenario
problem was solved in 113.1 seconds on a 32K CM-2 and the number of
floating point operations per second for this run is 276 MFLOPS. A fully
configured CM~2 with 64K processing elements, solving a problem with 4096
scenarios would achieve twice this computing rate, 552 MFLOPS. On a 64K
CM-2 equipped with maximum memory the solution of a 64K scenario prob-
lem — the largest problem which would fit on the machine — would take
about 30 minutes for € = 10~ and about 44 minutes for ¢ == 104, Although

such systems are available we do not have access to them at this time.

Appendix A

The Connection Machine

System

In this Appendix we describe briefly the characteristics of the Connectioh
Machine CM-2 that has been used for all the data-parallel implementations
in these lecture notes. Other existing systems, like MassPar, DAP and the
Connection Machine CM-5, have characteristics similar to the CM-2. The
implementations discussed in the lecture notes are applicable to those sys-
tems as well. The details of the hardware of the CM-2 discussed here are
not crucial in the understanding of the data-parallel implementations. Nev-
ertheless, it is instructive to understand the hardware configuration of one

system where data-parallel algorithms can be implemented.

The Connection Machine is a fine grain SIMD — Single Instruction
stream, Multiple Data stream — system. Its basic hardware component is an
integrated circuit with sixteen processing elements (PEs) and a router that

handles general communication. A fully configured CM has 4,096 chips for a

247

248 APPENDIX A. THE CONNECTION MACHINE SYSTEM

total of 65,536 PEs. The 4,096 chips are interconnected as a 12-dimensional
hypercube. Each processor is equipped with local memory of 8Kbytes, and
for each cluster of 32 PEs a floating point accelerator handles floating point

arithmetic.

Operations by the PEs are under the control of a microconirotler that
broadcasts instructions from a front-end computer simultaneously to all the
elements for execution. A flag register at every PE allows for no-operations;
i.e., an instruction received from the microcontroller is executed if the flag

is set, and ignored otherwise.

Parallel computations on the CM are in the form of a single operation
executed on multiple copies of the problem data. All processors execute
identical operations, each one operating on data stored in its local memory,
accessing data residing in the memory of other PEs, or receiving data from
the front end. This mode of computation is termed data level parallelism
in contradistinction to control level parallelism whereby multiple processors
execute their own control sequence, operating either on local or shared data.

To achieve high performance with data level parallelism one needs a
large number of processors that could operate on multiple copies of the
data concurrently. While the full configuration of the CM has 65,536 PEs
this number is not large enough for several applications. For example, in
balancing matrices of dimension 1000 x 1000 we need 108 processors. The
CM provides the mechanism of virtual processors (VPs) that allows one PE
to operate in a serial fashion on multiple copies of data. VPs are specified
by slicing the local memory of each PE into equal segments and allowing the
physical processor to loop over all slices. The number of segments is called

the VP ratio (i.e., ratio of virtual to physical PEs). Looping by the PE over

249

all the memory slices is executed, in the worst case, in linear time. The set
of virtual processors associated with each element of a data set is called a
VP set. VP sets are under the control of the software and are mapped onto

the underlying CM hardware in a way that is transparent to the user.

The CM supports two addressing mechanisms for communication. The
send address is used for general purpose communications via the routers.
The NEWS address describes the position of a VP in an n-dimensional grid

that optimizes communication performance. -

The send address indicates the location of the PE (hypercube address)
that supports a specific VP and the relative address of the VP in the VP set
that is currently active. NEWS address is an n-tuple of coordinates which
specifies the relative position of & VP in an n-dimensional Cartesian-grid
geometry. A geometry (defined by the software) is an abstract description
of such an n-dimensional grid. Once a geometry is associated with the cur-
rently active VP set a relative addressing mechanism is established among
the processors in the VP set. Each processor has a relative position in
the n-dimensional geometry and NEWS allows the communication across
the North, East, West and South neighbors of each processor, and enables
the execution of operations along the axes of the geometry. Such opera-
tions are efficient since the n-dimensional geometry can be mapped onto the
underlying hypercube in such a way that adjacent VPs are mapped onto
vertices of the hypercube connected with a direct link. This mapping of an
n-dimensional mesh on a hypercube is achieved through a Gray coding, (see,

e.g., Bertsekas and Tsitsiklis [26]).

Before using a programming language to execute the instructions of a

program, the user has to specify the VP set, create a geometry, and asso-

250 APPENDIX A. THE CONNECTION MACHINE SYSTEM

ciate the VP set with the geometry. Thus a communications mechanism
is established (along both send and NEWS addresses).. For high-level lan-
guages, like CM Fortran or C¥, these specifications are achieved automati-
cally by the compiler when the data-structures are created. When using a
low level language, like the parallel instruction set (Paris) the VP set specifi-
cation and the geometry configuration must be specified explicitly. One the
geometry is specified Paris instructions — parallel primitives — can then
be invoked to execute operations along some axis of the geometry (using
NEWS addresses); operate on an individual processor using send addresses,
or to translate NEWS to send addresses for general interprocessor commu-
nication or communication with the front end. Parallel primitives for the
CM-2, which also appear in other systems, and which have been used in our

implementations, were reviewed in section 7.1.3.

Bibliography

1

[2]

3]

[4]

[5]

[6]

Special Issue on Pully Three-Dimensional Image Reconstruction, vol-

ume 37 of Physics in Medicine and Biology. 1992.

M. Abdfulaal and L.J. LeBlanc. Methods for combining modal split
and equilibrium assignment models. Transportation Science, 13:292—

314, 1979.

A. Agmon. The relaxation method for linear inequalities. Canadian

Journal of Mathematics, 6:382-392, 1954,

R. Aharoni, A. Berman, and Y. Censor. An interior points algorithm
for the convex feasibility problem. Advances in Applied Mathematics,

4:479-489, 1983.

R. Aharoni and Y. Censor. Block-iterative projection methods for
parallel computation of solutions to convex feasibility problems. Linear

Algebre and Its Applications, 120:165-175, 1989,

G. Amdahl. The validity of single processor approach to achieving
large scale computing capabilities. In AFIPS Proceedings, volume 30,

pages 483-485, 1967,

251

252

BIBLIOGRAPHY

[7] K.A. Ariyawansa and D.D. Hudson. Performance of a benchmark par-

[10)

(14

[12]

[13]

(14]

allel implementation of the Van Slyke and Wets algorithm for two-
stage stochastic programs on the Sequent/Balance. Concurrency:

Practice and Experience, 3:109-128, 1991.

A. Auslender. Optimization: Méthodes Numériques. Masson, Paris,

1976.

8.Q. Azevedo. Model-based Computed Tomography for Nondestructive
Evaluation. PLD thesis, Lawrence Livermore National Laboratory,

University of California, Livermore, CA 94551, 1991.

M. Bacharach. Bi-proportional Matrices and Input-Output Change.
Cambridge University Press, U.K., 1970.

A. Bachem and B. Korte. On the RAS-Algorithm. Computing, 23:189-
198, 1979.

A. Bachem and B. Korte. Estimating matrices. Metrika, 28:273-286,
1981.

A. Bachem and B. Korte. Primal and dual! methods for updat-
ing input-output matrices. In K. Brockhofl and W. Krelle, editors,
Unternehmensplanung, pages 117-127, Berlin, W. Germany, 1981.
Springer-Verlag.

T. Baker, F. Van der Ploeg, and M. Weale. A balanced system of
National accounts for the United Kingdom. The Review of Income

and Wealth, 30:461-485, 1979,

BIBLIOGRAPHY 253

[15]

[16]

[17]
(18]
19)
(20]

21

[22]

(23]

M.L. Balinski and G. Demange. Algorithms for proportional matrices

in reals and integers. Mathematical Programming, 45:193-210, 1989.

M.L. Balinski and G. Demange. An axiomatic approach to proportion-
ality between matrices. Mathematics of Operations Rescarch, 14:700-

719, 1989,

J.M. Del Balzo. The US national airspace system for the year 2010.
Journal of ATC, July-September 1989.

R.H.T. Bates and M.J. McDonnell. Image Restoration and Reconstruc-
tion. Clarendon Press, Oxford, 1986.

M.S. Bazaraa and C.M. Shetty. Nonlinear Programming: Theory and
Algorithms. John Wiley and Sons, New York, 1979,

E.M.L. Beale. On minimizing a convex function subject to linear in-

equalities. Journal of the Royal Statistical Society, 17:173-184, 1955.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam.
A user’s guide to PVM: Parallel Virtual Machine. Technical Report
ORNL/TM-11826, Oak Ridge National Laboratory, 1991.

M. Ben-Akiva. Methods to combine different data sources and estimate
origin-destination matrices. Working paper, Department of Civil En-
gineering, Massachusetts Institute of Technology, Cambridge, Mass.,

1987,

J.F. Benders. Partitioning procedures for solving mixed variables pro-

gramming problems. Numerische Mathematik, 4:238-252, 1962.

254

(2]
[25]

[26]

[27]

[28]
[29]
30]

[31]

[32]

BIBLIOGRAPHY

M. Bertero and E.R. Pike, editors. Inverse Problems in Scattering and

Imaging. Adam Hilger, 1992.

D. P. Bertsekas. Constrained Optimization and Lagrange Multipliers
Method. Academic Press, N. York, 1982.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, Englewood Cliffs, New Jersey,
1989.

J. R. Birge. The value of the stochastic solution in stochastic linear
programs with fixed recourse. Mathematical Programminyg, 24:314-325,

1982.

G.E. Blelloch. Vector Models for Data-Parallel Computing. The MIT
Press, Cambridge, Massachusetts, 1390.

P. Boyle. Options: A Monte Carlo approach. Journal of Financial
Economics, 4:323-338, May 1977.

S.P. Bradley and D.B. Crane. A dynamic model for bond portfolio
management. Management Science, 19:139-151, Oct. 1972.

L.M. Bregman. The relaxation method for finding the common point
of convex sets and its application to the solution of problems in convex.
programming. USSR Computational Mathematics and Mathematical

Physics, 7:200-217, 1967,

Bureau of Economic Analysis, U.S. Department of Commerce. Data

tape from Interindustry Economic Division, 1977.

BIBLIOGRAPHY 255

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

D. Butnariu and Y. Censor. On the behavior of a block-iterative pro-
jection method for solving convex feasibility problems. International

Journal of Computer Mathematics, 34:79-94, 1990.

B.L. Buzbee and D.H. Sharp. Perspectives on supercomputing. Sci-
ence, 227:591-597, 1985.

C.L. Byrne. Iterative image reconstruction algorithms based on cross-
entropy minimization. [EEE Transactions on Image Processing, to

appear.

L.D. Cagan, N.S. Carriero, and S.A. Zenios. Pricing mortgage-backed

securities with network Linda. Financial Analysts Journal, 1993. (to

appear).

M.C. Carey, C. Hendrickson, and K. Siddharathan. A method for
direct estimation of origin/destination trip matrices. Transportation

Seience, 15:32-49, 1981.

N. Carriero and D. Gelernter. How to write parallel programs: A guide
to the perplexed. Technical report, Scientific Computing Associates,
New Heaven, CT, 1989.

Y. Censor. Row-action methods for huge and sparse systems and their

applications. SIAM Review, 23:444-464, 1981.

Y. Censor. Finite series-expansion reconstruction methods. Proceed-

ings of IEEE, 71:409-419, 1983,

256

[41])

[42)

[43]

[44]

[45]

[46]

47]

BIBLIOGRAPHY

Y. Censor. Parallel application of block-iterative methods in medical
imaging and radiation therapy. Mathematical Programming, 42:307-

325, 1988.

Y. Censor, M.D. Altschuler, and W.D. Powlis. On the use of Cimmino’s
simultaneous projections method for computing a solution of the in-
verse problem in radiation therapy treatment planning. Inverse Prob-

lems, 4:607-623, 1988.

Y. Censor, P.P.B. Eggermont, and D. Gordon. Strong underrelaxation
in Kaczmarz's method for inconsistent systems. Numerische Mathe-

matik, 41:83-92, 1983.

Y. Censor, T. Elfving, and G.T. Herman, editors. Linear Algebra in
Image Reconstruction from Projections, volume 130 of Linear Algebra

and Its Applications. 1990.

Y. Censor and G.T. Herman. Row-generation methods for feasili-
bility and optimization problems involving sparse matrices and their
applications. In I.S. Duff and G.W. Stewart, editors, Sparse Malriz
Proceedings-1978, pages 197-219. STAM, Philadelphia, PA., 1979

Y. Censor and G.T. Herman. On some optimization techniques in im-

age reconstruction from projections. Applied Numerical Mathematics,

3:365-391, 1987.

Y. Censor and A. Lent. An iterative row-action method for interval
convex programming. Journal of Optimization Theory and Applica-

tions, 34:321-353, 1981.

BIBLIOGRAPHY 257

[48]

[49]

[50]

[51]

[52]

[53]

(54]

[55]

Y. Censor and A. Lent. Cyclic subgradient projections. Mathematical
Programming, 24:233-235, 1982.

Y. Censor, A. R. De Pierro, T Elfving, G.T. Herman, and A.N. Tusem.
On iterative methods for linearly constrained entropy maximization. In
A. Wakulicz, editor, Numerical Analysis and Mathematical Modelling,
volume 24, pages 145-163. Banach Center Publications, PWN - Polish
Scientific Publisher, Warsaw, Poland, 1990.

Y. Censor and J. Segman. On block-iterative entropy maximization.

Journal of Information and Optimization Sciences, 8:275-291, 1087,

Y. Censor and S.A. Zenios. Interval-constrained matrix balancing,.

Linear Algebra and Its Applications, 150:393-421, 1991.

Y. Censor and S.A. Zenios. The proximal minimization algorithm
with D-functions. Journal of Optimization Theory and Applications,

73(3):455-468, 1992.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like
minimization algorithm using Bregman functions. SIAM Journal on

Optimization, 3, 1992, (to appear).

P.E. Christensen and F.J. Fabozzi, Bond immunization: An asset lia-
bility optimization strategy. In F.J. Fabozzi and I.M. Pollack, ediiors,

The Handbook of Fized Income Securities. Dow Jones Trwin, 1987.

G. Cimmino. Calcolo approssimato per le soluzioni dei sistemi di
equazioni lineari. La Ricerca Scientifica XVI, Series I, Anno IX,,

1:326-333, 1938.

258

[56]

[57)

[58]

[59]

[60]

[61]

[62]

[63]

BIBLIOGRAPHY

R. W. Cottle, S. G. Duvall, and K. Zikan. A Lagrangean relaxation al-
gorithm for the constrained matrix problem. Naval Research Logistics

Quarterly, 33:55-76, 1986.

1.J.D. Craig and J.C. Brown. Inverse Problems in Astronomy: @ gquide
to inversion strategies for remotely sensed date. Adam Hilger Ltd,

Bristol and Boston, 1986.

CRAY Research Inc., Mendota Heights. Multitasking User Guide,
Technicel Note SN-0222, March 1986.

1. Csiszdr. Why least squares and maximum entropy? An axiomafic
approach to inference for linear inverse problems. The Annals of Statis-

tics, 19:2032-2066, 1991.

H. Dahl, A. Meeraus, and S.A. Zenios. Some financial optimization
models: III. an algebraic modeling system library. Report 89-12—
03, Decision Sciences Department, The Wharton School, University of

Pennsylvania, Philadelphia, 1989.

M. Dahl, A. Meeraus, and 5.A. Zenios. Some financial optimization
models: 1. risk management. In S.A. Zenios, editor, Financial Opti-

mization, pages 3-36. Cambridge University Press, 1992.

H. Dahl, A. Meeraus, and S.A. Zenios. Some financial optimization
models: II. financial engineering. In S.A. Zenios, editor, Financial

Optimization, pages 37-T1. Cambridge University Press, 1992.

G. B. Dantzig. Linear programming under uncertainty. Manogement

Science, 1:197-206, 1955.

BIBLIOGRAPHY 259

[64] G. B. Dantzig, M. A. H. Dempster, and M. J. Kallio, editors. Large-

[65]

[66]

[67]

[68]

(69]

(70]

[71]

Scale Linear Programming (Volume 1)- ITASA Collaborative Proceed-
ings Series. International Institute of Applied Systems Analysis, Lax-

enburg, Austria, 1981. CP-81-51.

G.B. Dantzig. Planning under uncertainty using parallel computing.

Annals of Operations Research, 14:1-16, 1988,

G.B. Dantzig and P.W. Glynn. Parallel processors for planning under
uncertainty. Annals of Operations Research, 22:1-21, 1990,

J.N. Darroch and D. Ratcliff. Generalized iterative scaling for log-
linear models. The Annals of Mathematical Statistics, 43:1470 — 1480,
1982.

S.R. Deans. The Radon Transform and Some of Its Applications. John
Wiley & Sons, New York, 1983.

R.S. Dembo, A. Chiarr, J.Gomez Martin, and L. Paradinas. Manag-
ing Hidroeléctrica Espafiola’s hydroelectrie power system. Interfaces,

20:115-135, Jan.~Feb, 1990.

R.5. Dembo, J.M. Mulvey, and S.A. Zenios. Large scale nonlinear
network models and their application. Operations Rescarch, 37:353

372, 1989.

W.E. Deming and F.F. Stephan. On a least squares adjustment of
sampled frequency table when the expected marginal totals are known.

The Annals of Mathematical Statistics, 11:427-444, 1940.

260

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

BIBLIOGRAPHY

K. Dervis, J. De Melo, and S. Robinson. General Equilibrium Mod-
els for Development Policy. Cambridge University Press, Cambridge,
1982.

D.A. D’Esopo. A convex programming procedure. Newval Research

Logistics Quarterly, 6:33-42, 1959.

G. R. Desrochers. Principles of Parallel and Mulii-Processing. McGraw
Hili, New York, NY, 1987.

J. J. Dongaxra and I. 8. Duff. Advanced architecture computers. Tech-
nical memorandum 57, Mathematics and Computer Science Division,

Argonne National Laboratory, Chicago, Illinois, 1985. (revised 1987).

K. W. Dritz and J.M. Boyle. Beyond speedup: Performance analysis of
parallel programs. Report ANL-87-7, Argonne National Laboratory,
Chicago, Illinois, Feb. 1987.

I. S. Duff. The use of supercomputers in Europe. Report css -161,
United Kingdom Atomic Energy Authority, Harwell Laboratory, Com-
puter Science Division, Oxfordshire, England, Sept. 1984.

I.S. Duff. A survey of sparse matrix research. Proceedings of The

IEEE, 65:500-535, 1977.

J. Bckstein. Splitting Methods for Monotone Operafors with Appli-
cations to Parallel Optimization. PhD thesis, Department of Civil

Engineering, MIT, Cambridge, MA, 1989.

BIBLIOGRAPHY 261

[80] J. Eckstein. Nonlinear proximal point algorithms using Bregman func-
tions, with applications to convex programming. Mathematics of Op-

erations Research, 18(1):202-226, 1992.

[81] P.P.B. Eggermont. Multiplicative iterative algorithms for convex pro-

gramming. Linear Algebra and Its Applications, 130:25-42, 1990.

[82] P.P.B. Eggermont, G.T. Herman, and A. Lent. Iterative algorithms
for large partitioned linear systems, with applications to image recon-

struction. Linear Algebra and Its Applications, 40:37-67, 1981,

(83] P.P.B. Eggermont, G.T. Herman, and A. Lent. Iterative algorithms
for large partitioned linear systems, with applications to image recon-

struction. Linear Algebra and Its Applications, 40:37-67, 1981.

(84] LI. Eremin. The relaxation method of solving systems of inequalities
with convex functions on the left hand side. Soviet Math. Doklady,
6:219-222, 1965.

[85] LI Eremin. Certain iteration methods in convex programming. Ekon.

Math. Method., 2:870-886, (in Russian), 1966.

[86] LI Eremin. On systems of inequalities with convex functions in the

left sides. Amer. Math. Soc. Translations, 88:67-83, 1970.

[87] 1I. Eremin and V.D. Mazurov. Iteration method for solving problems

of convex programming. Soviet Phys. Doklady, 11:757-759, 1967.

[88] J. Eriksson. A note on solution of large sparse maximum entropy
problems with linear equality constraints. Mathematical Programming,

18:146-154, 1980.

262 BIBLIOGRAPHY

[89] J.R. Eriksson. An iterative primal-dual algorithm for linear pro-
gramming. Report lith-mat-r-1985-10, Department of Mathematics,
Linkoping University, Linkoping, Sweden, 1985.

[90] S. Erlander, K.O. Jérnsten, and J.T. Lundgren. On the estimation of
trip matrices in the case of missing and uncertain data. Transportation

Rescarch, 19B:123-141, 1985.

[91] K. Fan, I. Glicksberg, and A.J. Hoffman. Systems of inequalities in-
volving convex functions. Proceedings of the American Math. Soc.,

8:617-622, 1957.

[92] S.D. Flam and D. Zowe. Relaxed outer projections, weighted averages

and convex feasibility. BIT, 30:289-300, 1990.

[93] M.J. Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, C~21:948-960, 1972.

[94] L.R. Ford, Jr. and D.R. Fulkerson. Flows on Networks. Princeton

University Press, Princeton, New Jersey, 1962.

[95] B.R. Frieden. Restoring with maximum likelihood and maximum en-

tropy. Journal of the Optical Society of America, 62:511-518, 1972.

[96] B.R. Frieden. Image enhancement and restoration. In T.S. Huang,
editor, Picture Processing and Digital Filtering, volume Chapter 5.

Springer-Verlag, New York, 1975.

[97] D. Friedlander. A technique for estimating a contingency table given
the marginal totals and some supplementary data. Journal of the Royal

Statistical Society, 124:412-420, 1961.

BIBLIOGRAPHY ' 263

[98]

[99]

[100}

[101]

[102]

[103]

[104]

[105]

[106]

N. Gastinel. Linear Numerical Analysis. Hermann, Paris, 1970.

A. M. Geoffrion. Elements of large-scale mathematical programming.

Management Science, 16:652-691, 1970.

AM. Geoffrion. Generalized Benders decomposition. Journal of Op-

timization Theory and Applications, 10:237-260, 1972.

P.F.C. Gilbert. Iterative methods for the three-dimensional recon-
struction of an object from projections. Journal of Theoretical Biology,

36:105-117, 1972.

R. Gordon, R. Bender, and G.T. Herman. Algebraic reconstruction
techniques (art) for three-dimensional electron microscopy and x-ray

photography. Journal of Theoretical Biology, 29:471-481, 1970.

R. Gordon and G.T. Herman. Three-dimensional reconstruction from
projections: A review of algorithms. In G.F. Bourne and J.F. Danielli,
editors, International Review of Cytology, volume 38, pages 111-151.
Academic Press, N.Y., 1974.

E. Grinberg and E.T. Quinto, editors. Integral Geometry and Tomog-
raphy, volume 113, American Mathematical Society, Providence, RI,

1990,

L.G. Gubin, B.T. Polyak, and E.V. Raik. The method of projections
for finding the common point of convex sets. USSR Computational

Mathematics and Mathematical Physics, 7:1-24, 1967. (in Russtan).

J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the

ACM, 31:532-533, 1988.

264

[107]

[108]

[109]

[110]

[111]

[112)

[113]

[114]

BIBLIOGRAPHY

M. Hanke and W. Niethammer. On the acceleration of Kaczmarz’s
method for inconsistent linear systems. Lincar Algebra and Its Appli-

cations, 130:83-98, 1990.

F. Harrigan and I Buchanan. A quadratic programming approach to
input-output estimation and simulation. Journal of Regional Science,

24:339-358, 1984.

M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient opti-

mization. Mathematical Programming, 6:62-68, 1974.

G.T. Herman. Image Reconstruction from Projections: The Funda-
mentals of Computerized Tomography. Academic Press, New York,

1980.

G.T. Herman, editor. Special Issue on Computerized Tommography, vol-
ume 71 of Proceedings of The IEEE. The Institute of Electrical and

Electronics Engineers, 1983.

Q. T. Herman, H. Hurwitz, and A. Lent. A storage-efficient algorithm
for finding the regularized solution of a large, inconsistent system of

equations. J. Inst. Maths Applics, 25:361-366, 1980.

G.T. Herman and A. Lent. Iterative reconstruction algorithms. Com-

puters in Biology and Medicine, 6:273-294, 1976.

Q. T. Herman and A. Lent. A family of iterative quadratic optimiza-
tion algorithms for pairs of inequalities, with application in diagnostic

radiology. Mathematical Programming Study, 9:15-29, 1978.

BIBLIOGRAPHY 265

[115] G.T. Herman, A. Lent, and P.H. Lutz. Relaxation methods for image
reconstruction. Communications of the ACM, 21:152-158, 1978.

[116] G.T. Herman, A. Lent, and S.W. Rowland. ART: mathematics and
applications. Journal of Theoretical Biology, 42:1-32, 1973.

(117] G.T. Herman and H. Levkowitz. Initial Performance of Block-Iterative
Reconstruction Algorithms. Springer-Verlag, 1988.

[118] G.T. Herman, H. Levkowitz, HK. Tuy, and S. McCormick. Multilevel
image reconstruction. In A. Rosenfeld, editor, Multiresolution Image
Processing and Analysis, pages 121-135. Springer-Verlag, New York,
1984,

(119] G.T. Herman, A.K. Louis, and F. Natterer, editors. Mathematical
Methods in Tomography, volume 1497. Springer-Verlag, 1990.

[120] G.T. Herman and F. Natterer, editors. Mathematical Aspects of Com-
puterized Tomography, volume 8. Springer-Verlag, 1081,

[121] C. Hildreth. A quadratic programming procedure. Noval Research
Logistics Quarterly, 4:79-85, Erratum, ibid., p.361, 1975.

(122] R.S. Hiller and J. Eckstein. Stochastic dedication: Designing fixed in-
come portfolios using massively parallel Benders decomposition. Man-

agement Seience, 1993. (to appear).

[123] R.S. Hiller and C. Schaack. A classification of structured bond portfolio
modeling techniques. Journal of Portfolio Management, pages 3748,
Fall 1990,

266

BIBLIOGRAPHY

[124] W. D. Hillis. The Connection Machine. The MIT Press, Cambridge,

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Massachusetts, 1985.

R. Hockney and C. Jeeshope. Parallel Computers. Adam Hilger Ltd.,
Bristol, England, 1981.

M.R. Holmer. The asset/liability management strategy at Fannie Mae.

Interfaces, 1993. (to appear).

N.E. Hurt. Phase Retrieval and Zero Crossings. Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1989.

J.M. Hutchinson and S.A. Zenios. Financial simulations on a massively
parallel Connection Machine. International Journal of Supercomputer

Applications, 5:27-45, 1991.

K. Hwang. Supercomputers: Design and Applications. IEEE Computer
Society, Arlington, Virginia, 1984.

G. Infanger. Monte Carlo (importance) sampling with a Benders de-
composition algorithin for stochastic linear programs. Report sol-89-
13r, Department of Operations Research, Stanford University, Palo

Alto, CA, 1990.

Jr. Ingersoll, J.E. Theory of Financial Decision Making. Studies in
Financial Economics. Rowman & Littlefield, 1987.

[132] C.T. Trcland and S. Kullback. Contingency tables with given

marginals. Biometrika, 55:179-188, 1963.

BIBLIOGRAPHY 267

[133]

[134]

[135]

[136]

[137)

(138}

[139]

[140]

A.N. Iusem and A.R. De Pierro. Convergence results for an accelerated
nonlinear Cimmino algorithm. Numerische Mathematik, 49:367-378,
1986.

A.N. Tusem and A.R. De Pierro. A simultaneous iterative method for
computing projections on polyhedra. SIAM Journal on Control and

Optimization, 25:231-243, 1987.

T.R. Jefferson and C.H, Scott. The analysis of entropy models with
equality and inequality constraints. Transportation Research, 13B:123—

132, 1979.

R.C. Jensen and D. McGaurr. Reconciliation techniques in input-
output analysis: some comparisons and implications. Urban Studies,

14:327-337, 1977.

H.F. Jordan. Interpreting parallel processor performance measure-
ments. SIAM Journal on Scientific and Statistical Computing, 8:5-11,
March 1985.

S. Kaczmarz. Angenaherte Auflésung von Systemen Linearer

Gleichungen. Bull. Acad. Polon. Sei. Lett., A35:355-357, 1937.

A.C. Kak and M. Slaney. Principles of Computerized Tomographic
Imaging. IEEE Press, The Institute of Electrical and Electronic Bugi-
heers, Inc., New York, 1988.

S. Karin and N.P. Smith. The Supercomputer Fra. Harcourt Brace

Jovanovich, Boston, Massachusetts, 1987,

268 BIBLIOGRAFPHY

[141] D. Kendrick and A. Drud. SIMS: The SAM integrated modeling sys-
tem. Technical report, The World Bank, 1985. (in preparation).

[142] D. Kinderlehrer and G. Stampacchio. An Introduction to Variational

Inequalities and their Applications. Academic Press, New York, 1980.

[143] Z.V. Kovarik. Minimal compatible solutions of linear equations. Linear

Algebra and and Its Applications, 17:95-106, 1977.

[144] J. S. Kowalik. High Speed Compulations, volume 7 of NATO AST
Series F' in Computer and System Sciences. Springer-Verlag, Berlin,

1984,
[145] J. Kruithof. Telefoonverkeersrekening. De Ingenieur, 3:15-25, 1937.

[146] A.V. Lakshminarayanan and A. Lent. Methods of least squares and
SIRT in reconstruction. Jowrnal of Theoretical Biology, 76:267-295,
1980.

[147] C. Lazou. Supercomputers and Their Use. Oxford Science Publica-
tions, Oxford, England, 1985.

[148] L.J. LeBlanc and K. Farhangian. Selection of a trip table which repro-
duces observed link flows, Transporiation Research, 16B:83-88, 1982.

[149] A. Lent. A convergent algorithm for maximum entropy image restora-
tion, with a medical x-ray application. In R. Shaw, editor, Image
Analysis and Fuvaluation, pages 249-257. Society of Photographic Sci-
entists énd Engineers, Washington, D.C., 1977.

BIBLIOGRAPHY 269

[150] A. Lent and Y. Censor. Extensions of Hildreth’s row-action method for

quadratic programming. SIAM Journal on Control and Optimization,
18:444-454, 1980.

[151] A. Lent and Y. Censor. The primal-dual algorithm as a constraint-set

manipulation device. Mathematical Programming, 50:343-357, 1991,

[152] 1.J. Lustig, J.M. Mulvey, and T.J. Carpenter. Formulating two-stage
stochastic programs for interior point methods. Operations Research,

39:757-770, 1991.

[153] J. Mandel. Convergence of the cyclical relaxation method for linear

equalities. Mathematical Programming, 30:218-228, 1984,
[154] H. Markowitz. Portfolio selection. Journal of Finance, 7:77-91, 19592, -

[155] H. Markowitz. Mean- Variance Analysis in Portfolio Choice and Cap-
ttal Markets, Basil Blackwell, Oxford, 1987.

[156] S.F. McCormick. The methods of Kaczmarz and row orthogonalization
for solving linear equations and least squares problems in Hilbert space.

Indiana Univ. Math. J., 26:1137-1150, 1977,

[157] S. McNeil. Quadratic Matriz Estimation Methods. PhD thesis, Depart-
ment of Civil Engineering, Carnegie-Mellon University, Pittsburgh,
1983.

[158] R.E. Miller and P.D. Blair. Input-Output Analysis. Foundations and
Eztensions. Prentice Hall, N. Jersey, 1985,

[159] M. Minoux. Mathematical Programming: Theory and Algorithms.
John Wiley and Sons, New York, N.Y., 198s.

270

BIBLIOGRAFPHY

[160] G.J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke

[161]

(162]

[163]

[164]

[165]

[166)

[167]

[168]

Mathematical Journal, 29:341-346, 1962.

MIPG, Department of Radiology, Hospital of the University of Penn-
sylvania, Philadelphia, PA 19104. SNARK7TY User’s Manual, Version
2, 1978.

J.J. Moreau. Proximité et dualité dans un espace Hilbertien. Bull.

Soc. Math. France, 93:273-299, 1965.

O. Morgenstern. On the accuracy of economic observations. Princeton

University Press, Princeton, New Jersey, 1963.

W 1. Morrison and R.G. Thumann. A Lagrangian multiplier approach
to the solution of a special constrained matrix problem. Journal of

Regional Science, 20:279-292, .1980.

T.S. Motzkin and L.J. Schoenberg. The relaxation method for linear
qualities. Canadian Journal of Mathematics, 6:393-404, 1967.

The MRPIS Project, The Social Wellare Research Institute, Boston
College. The Multiregional Input-Output Accounts for 1977, Feb. 1988.

J.M. Mulvey and A. Ruszezynski. A diagonal quadratic approximation
method for large scale linear programs. Operations Research Lelters,

12:205-215, 1992.

J.M. Mulvey and H. Vladimirou. Evaluation of a parallel hedging
algorithm for stochastic network programming. In R. Sharda, B.L.
Golden, E. Wasil, O. Balci, and W. Stewart, editors, Impact of Recent

Computer Advances on Operalions Research. Pergamon Press, 1989.

BIBLIOGRAPHY 271

[169] J.M. Mulvey and H. Vladimirou. Stochastic network optimization

models for investment planning. Annails of Operations Research,

20:187-217, 1989.

[170) J.M. Mulvey and H. Vladimirou. Solving multistage stochastic net-
works: An application of scenario aggregation. Networks, 21:619-643,

1991.

[171] J.M. Mulvey and H. Vladimirou. Stochastic network programming
for financial planning problems. Management Science, 38:1643-1664,
1992,

[172] J.M. Mulvey and S.A. Zenios. Capturing the correlations of fixed-

income instruments. Management Science. {to appear).

[173] F. Natterer. The Mathematics of Computerized Tomography. B.G.
Teubner, 1986.

[174] S. Nguyen. An algorithm for the traffic assignment problem. Trans-
portation Science, 8:203-216, 1974,

[175] 8. Nguyen. Estimation of origin-destination matrices from observed
flows. In M. Florian, editoi', Transportation Planning Models. Elsevier

Science Publishers, Amsterdam, 1984.

[176] S. Nielsen and S.A. Zenios. Data structures for network algorithms on
massively parallel architectures. Parallel Computing, 18:1033-1052,
1992.

272

[177]

[178]

[179]

[180]

(181]

[182]

[183]

BIBLIOGRAPHY

S. Nielsen and S.A. Zenios. Massively parallel algorithins for nonlin-

ear stochastic network problems. Operations Research, 41, 1993. (to

appear).

9.5. Nielsen and S.A. Zenios. Proximal minimizations with D-functions
and the massively parallel solution of linear stochastic network pro-
grams. Report 92-01-05, Decision Sciences Department, The Wharton
School, University of Pennsylvania, Philadelphia, PA, 1992.

S.S. Nielsen and S.A. Zenios. Solving multistage stochastic net-
work programs. Report 92-08-04, Decision Sciences Department, The
Wharton School, University of Pennsylvania, Philadelphia, PA19104,
1992, '

S.S. Nielsen and S.A. Zenios. Proximal minimizations with D-functions
and the massively parallel solution of linear network programs. Com-

putational Optimization and Applications, 1(4):375-398, 1993.

Q. Nolet, editor. Seismic Tomography: With Applications in Global
Seismology and Exploration Geophysics. D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1987.

A R. Odoni. The flow management problem in air-traffic control. In
AR. Odoni, L. Bianco, and G. Szegd, editors, Flow Control of Con-
gested Networks, pages 269-288, New York, 1987. Springer-Verlag.

W. Oettli. Symmetric duality, and a convergent subgradient method
for discrete linear, constrained approximation problems with arbitrary
norms appearing in the objective function and in the constraints. Jour-

nel of Approzimation Theory, 14:43-50, 1975.

BIBLIOGRAPHY 273

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear

Equations in Several Variables. Academic Press, New York, 1970.

Parasoft Corporation, Pasadena, CA. Ezpress FORTRAN: User’s
Guide, 1990.

C.E. Pfefferkorn and J.A. Tomlin. Design of a linear programming
system for the Iliac IV. Technical report, Department of Operations
Research, Stanford University, Stanford, California, April 1976.

A.R. De Pierro. Multiplicative iterative methods in computed tomog-
raphy. In G.T. Herman, A K. Louis, and F. Natterer, editors, Mathe-
matical Methods in Tomography, Lecture Notes Mathematics, volume

1497, pages 167-186, Berlin, Germany, 1991. Springer-Verlag,

AR. De Pierro and AN. Iusem. A relaxed version of bregman’s
method for convex programming. Journal of Optimization Theory and

Applications, 5:421-440, 1986.

D.A. Plane. An information theoretic approach to the estimation of

migration flows. Journal of Regional Science, 22:441-456, 1982.

F. Van Der Ploeg. Reliability and the adjustment of sequences of large
economic accounting matrices. Journal of the Royal Statistical Society,

145:169-194, 1982.

G. Pyatt and J. I. Round, editors. Social Accounting Matrices: A
Basis for Planning. The World Bank, Washington, D.C., 1985.

L. Qi. Forest iteration method for stochastic transportation problem.

Mathematical Programming Study 25, pages 142-163, 1985.

274 BIBLIOGRAPHY

{193] R-J. Qi and S.A. Zenios. On the scalability of data-parallel decom-
position algorithms for stochastic programs. Working paper, Decision
Sciences Department, The Wharton School, University of Pennsylva-

nia, Philadelphia, PA 19104, 1993.

[194] E. Raik. Fejer type methods in Hilbert space. Esti. NSV Tead. Akad. -
Toimetised Fuus.-Mat., 16:286-293 (in Russian), 1967.

[195] O. Richetta. Ground holding strategies for air traffic control under
uncertainty. PhD thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, 1991.

[196] R. 'I'. Rockafellar. Conver Analysis. Princeton University DPress,

Princeton, New Jersey, 1970.

[197] R. T. Rockalellar. Augmented Lagrangians and applications to proxi-
mal point algorithms in convex programming. Mathematics of Opera-

tions Research, 1:97-116, 1976.

[198] R. T. Rockafellar. Monotone operators and the proximal point algo-
rithm. SIAM Journal on Control and Optimization, 14:877-898, 1976.

[199] R.T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in
optimization under uncertainty. Mathematics of Operations Research,

16:119-147, 1991.

[200] J.B.T.M. Roerdink. Computerized tomography and its applications:
A guided tour. Technical report, Department of Computer Science,

University of Groningen, 1992.

BIBLIOGRAPHY 275

[201]

[202]
[203]

[204]

[205]

[206]

[207]

' [208]

[209]

R. E. Rosenthal. A nonlinear network fow algorithm for maximiza-
tion of benefits in a hydroelectric power system. Operations Research,

29:763-786, 1981.

U.G. Rothblum, Generalized scaling satisfying linear equations. Linear

Algebra and Tts Applications, 114/115:765-784, 1989,

U.G. Rothblum. Linear inequality scaling problems. SIAM Journal on
Optimization, 2:635-648, 1992,

U.G. Rothblum and S.A. Zenios. Scaling of matrices satisfying line-
product constraints and generalizations. Linear Algebra and its Appli-

cations, 175:159-175, 1992.

A. Ruszezynski. A regularized decomposition method for minimizing a
sum of polyhedral functions. Mathematical Programming, 35:309-333,
1986.

M. H. Schneider. Matrix scaling, entropy minimization and conjugate
duality. I. Existence conditions. Linear Algebra and Its Applications,

114/115:785-813, 1989,

M. H. Schneider. Matrix scaling, entropy minimization and conjugate
duality. II. The dual problem. Mathematical Programming, 48:103-
124, 1990.

M. H. Schneider and S. A. Zenios. A comparative study of algorithms
for matrix balancing. Operations Research, 38:439-455, 1990.

M.I. Sezan and H. Stark. Applications of convex projection theory to

image recovery in tomography and related areas. Tn H. Stark, editor,

276

[210)

[211)

[212]

[213]

[214]

[215]

[216]

BIBLIOGRAPHY

Image Recovery: Theory and Application, pages 415-462. Academic
Press, New York, 1987.

Y. Sheffi. Urban Transportation Networks. Prentice Hall, Englewcod
Cliffs, N.J., 1985.

L.A. Shepp and Y. Vardi. Maximum likelihood reconstruction in emis-
sion tomography. IEEE Transactions on Medical Imaging, MI-1:113-
122, 1982.

R.M. Van Slyke and R. J. Wets. Programming under uncertainty and
stochastic optimal control. SIAM Journal on Control and Optimiza-

tion, 4:179-193, 1966.

R.M. Van Slyke and R. J. Wets. L-shaped linear programs with appli-
cations to optimal control and stochastic programming. SIAM Journal

of Applied Mathematics, 17:638-663, 1969.

H. Stark, editor. Image Recovery: Theory and Applications. Academic
Press, Inc., 1987.

F.F. Stephan. An iterative method of adjusting sample frequency ta-
bles when expected marginal totals are known. The Annals of Mathe-

matical Statistics, 13:166-178, 1942.

R. Stone. The development of economic data systems. In G. Py-
att et al., editors, Social Accounting for Development Planning with.

Cambridge University Press, UK., 1976.

" BIBLIOGRAPHY | 277

[217] K. Tanabe. Projection method for solving a singular system of linear
equations and its applications. Numerische Mathematik, 17:203-214,
1971.

[218] K. Tanabe. Characterization of linear stationary iterative processes for
solving a singular system of linear equations. Numerische Mathematik,

22:349-359, 1974.

[219] M. Teboulle. Entropic proximal mappings with applications to nonlin-
ear programming. Mathematics of Operations Research, 17:670-690,
1992,

[220] H. Theil. Economics and Information Theory, North-Holland, Ams-
terdam, 1967.

(221] H. Theil and G. Rey. A quadratic programming approach to the esti-
mation of transition probabilities. Management Science, 12:714-721,

1966.

[222] P. Tseng and D.P. Bertsekas. On the convergence of the expaonential
multiplier method for convex programming. Technical report no. lids-

p-1995, Laboratory for Information and Decision Systems, MIT, 1992.

[223] J.K. Udupa and G.T. Herman, editors. 8D Imaging in Medicine. CRC
Press, 1991.

[224] A. van der Sluis and IL.A. van der Vorst. SIRT- and CG-type methods
for the iterative solution of sparse linear least-squares problems. Linear

Algebra and Its Applications, 130:257-302, 1990.

278

[225]

[226]

[227]

[228]

[229]

[230)

[231]

[232]

[233]

BIBLIOGRAPHY

J.W. van Tongeren. Development of an algorithm for the compilation
of National accounts and related statistics. Review of Income and

Wealth, 32:25-68, 1986.

S W. Wallace. Solving stochastic programs with network recourse.

Networks, 16:295-317, 1986.

R. Wets. On parallel processor design for solving stochastic prograims.
Report wp-85-67, International Institute for Applied Systems Analy-
sis, Laxenburg, Austria, Oct. 1985.

R. J. B. Wets. Stochastic programs with fixed resources: the equivalent
deterministic problem. STAM Review, 16:300-339, 1974.

K.J. Worzel, C.V. Zenios, and 5.A. Zenios. Integrated simulation and
optimization models for tracking fixed-income indices. Operations He-

search. (to appear).

D.C. Youla. Mathematical theory of image restoration by the method
of convex projections. In I. Stark, editor, Image Recovery: Theory

and Application, pages 29-77. Academic Press, New York, 1987.

D.M. Young. Iterative Solution of Large Linear Systems. Academic
Press, New York, 1971.

S A. Zenios and R. A. Lasken. Nonlinear network optimization on
a massively parallel Connection Machine. Annals of Operations Re-

search, 14:147-165, 1988.

S A. Zenios. Matrix balancing on a massively parallel Connection

Machine. ORSA Journal on Computing, 2:112-125, 1990.

BIBLIOGRAPHY 279

[234] S.A. Zenios. Massively parallel computations for financial modeling

[235]

[236]

[237]

[238]

[239]

[240]

[241]

under uncertainty. In J. Mesirov, editor, Very Large Scale Computing

in the 21-st Century, pages 273-294. SIAM, Philadelphia, PA, 1991.

S.A. Zenios. Network based models for air-traffic control. European

Journal of Operational Research, 49:166-178, 1991.

S.A. Zenios. Asset/liability management under uncertainty: The case'
of mortgage-backed securities. Report 92-08-05, Decision Sciences De-
partment, The Wharton School, University of Pennsylvania, Philadel-
phia, PA19104, 1992.

S.A. Zenios, editor. Financial Optimization. Cambridge University

Press, 1992,

S.A. Zenios and Y. Censor. Massively parallel row-action algorithms
for some nonlinear transportation problems. SIAM Journal on Opti-

mization, 1:373-400, 1991.

S.A. Zenios, A. Drud, and J.M. Mulvey. Balancing large social ac-
counting matrices with nonlinear network programming. Nefworks,

17:569-585, 1989,

S.A. Zenios and S-L. Tu. Vector and parallel computing for matrix

balancing. Annals of Operations Research, 22:161-180, 1990.

S.A. Zenios and P. Kang. Mean-absolute deviation portfolio optimiza-
tion for mortgage backed securities. Annals of Operations Research.

{to appear).

280 : BIBLIOGRAPHY

[242] H.J. Van Zuylen and L.G. Willumsen. The most likely trip matrix
estimated from traffic counts. Transportation Research, 14B:281-293,

1980.

Imprassa na Grafica do

%

pelo Sistema Yerox/1065

