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Foreword

Perhaps one of the mogt striking (and still somewhat
puzzling) ways of performing substantial change in the dynamical
structure (bifurcation) of a system is through the creation and
unfolding of a cycle, in particular a homoclinic cycle. Poincaré
first noticed the.existence of homoclinic orbits in his prize
essay on the 3-body problem. BSubsequently, in "Les méthods noﬁ-
velles de la Mécanique Céleste?, he expressed amazement about
the complexity of the-orbit structure of a diffeomorphisms in the
presence of a transverse homoclinic orbit., More than forty years
latter, Birkhoff showed that any such homoclinic orbit is accu-
mulated by periodic ones and in the sixties Smale put this faect
into the framework of (persistent) hyperbolic sets with dense sub-
sets of periodic orbits. .

In the last twenty years or so several results were obtained
concerning the dynamics of a parametrized family of diffeomorphisms
going through a homoclinic bifurcation. (Some authors relate ho-
moclinic bifurcations to chaotic 5ehavior and strange attractors).
Similarly for vector fields and endomorphisms (but this is not
discussed here). We intend in these notes to present part of such
development, specially in two dimensions, and to indicate how frac-
tional dimensions of Cantor sets play'a relevant role in this con-
text. In particular, they are instrumental in measuring how fre~
quently a value of the parameter yields a hyperbolic diffeomorphisn
{(i.e., with a hyperbolic limit set). A number of related topics
are also treated, like cascades of bifurcations (homoclinic tan-
gencies, period doubling, saddle-nodes)}, comparison of unfoldings
of homoclinic tangencies and those of quadratic maps of the inter-
val, diffeomorphisms which persistently exhibit homocliniec tangen-
cies (most of them with infinitely many sinks), Markov partitions
of basic sets and a result on the shape of some strange attractors,
Several open questions and conjectures as well as some generalizaw
tions %o higher dimensions are mentioned, specially at the and of

Chapbter VI. We present proofs of the results or at least the cone-
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cepts and main ideas involved.

We should end by saying that our interest here is to treat
general (or generic) families of diffeomorphisms and so, as signi-
ficant as they may be, we do not discuss specific eguations {the or
Melnikov method)., Nor do we discuss resulis on homooclinic orbits
associated to singularities of vector fields, such as Silnikov's.
Finally, we only mention references we consider necessary for our

text without intention of being in any way complete.
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CHAPTER 1

* INTRODUCTION - EXAMPLES

In this introduction ﬁe discuss a number of dynamical sys-
tems with (trénsverse) homociinic orbits just to have some' exam-
pleé which motivate the following chapters. First we need some
definitions. We deal with diffeomorphisms ¢:1M + M of a com-
pact manifold to itself. In this chapter it will be enough to

agssume ¢ to be Cl, for some of the later results we need _¢

to be C2 or 03. Alsc the compactness of - M 'is not always

needed - some of the examples in this chapter will be on Rz.

We say that p € M is a hyperbolic fixed point of ¢ . if
w(p) = p and if (d¢)p has no eigenvalue of norm one. TFor such
a hyperbolic fixed point, one defines the stable and the unstable

manifold as

w*(p)

fxe M| @i(x) +p for i -+ +=]

and

w'(p)

{xe M| ¢i(x) + p” for i+ -},

According to the invarianf manifold theorem [9] {sece also
the Appendix) both Ws(p) “and - W'(p) are injectively immersed
submanifolds of M, are as differehtiablp as ¢, and have di-
mensions equal to the number of eigenvalués_of (dcp)P with norm
smaller than one, respectively bigger than one. One can give the
correspgnding definitions for periodic points, i.e. fixed points

of some power of .
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If ¢ R™ + ®" is a linear map with no eigenvalues of
norm one, then the origin 0 is alhyperbolic fixed point and
wS{0), w?(0) are coﬁplemenfary linear subspaces: R = W (0) @
® W(0). '

We say that if p is a hyperbolic fixed point of g, g
is homoclinic to p if p # g € Wi (p) n ¥ (p), d.e. if q £ p
and if lim ¢i(q) =p (thié last form of the definition makes

it
clear why Poincaré called such points "bi-assymptotigue"). We

say that g is a transverse homoclinie point if w3(p) and

w?(p) intersect transversally at q, di.e. if
T (M) = wS T (W" .
o) = 7 (W(p)) @ T (vi(p))

It is clear that linear diffeomorphisms have no homoclinic

points. We proceed now to show how to deform a linear map in
such a way as to get a homoclinie point. We start with the linear
map ¢t R® + R?, w(x,y) = &x, 1/2 y). The stable manifold is the

yv-axis, the unstable manifold is the x-axis. Next consider the

{0.2 .
( ? ) homoclinic intersection

{x+y=2}
\\4’/

~
(0'1-)4/. /\/— { x+y=1}
hY
N
AN
~ N

“ N
SP D Mo e
(0,0) (1,0)- (2,0)

composition VYet, whére ¥ R2 -+ R2 is a diffeomorphism of the



form

¥(xy) = (xef(xry),yar(xey)),
where T is some smooth function. This means that V¥ is push-
ing points along lines of the form [x+y=c} = t, over a distance
which only depends on c¢. We take I a smooth function which is

zero on {-»,1] and such that f£(2) » 2, In this case the stable
and unstable manifold ‘WS(O) and Wu(O) for the diffeomorphism
Yoyp intersect ocutside the origin.

In fact, due to the construetion, {[(x,y) | x=0, v < 2]
belongs to W°(0) and [(x,y) | x s 1, y=0} belongs to w'(0).
Also .

Y({{x,y) | 1 s x= 2, y-= 0_})

belongs to w*(06). From this and the deseription of ¥ we obtain
the homoclinic intersection, see the above Tigure. By choosing

f appropriately we can produce a transverse homoclinic point.

Not much can be said about the global configuration of w3(0)

and Wu(O), but this configuration will be very complicated -

see later in this introduction.

Our next example, the pendulum, contains a line of non-

transverse homoclinic points. Consider the differential eguation

g = -sin 0, g € R/ 2w,

which defines a system of ordinary differential equations'bﬁ the

anulus:

D .
[}

¥

[
[}

~sin § (1)

with 8 € R/2m, vy € R.
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We take the time one map of this system, i.e. the diffeo-
morphism ¢ such that ¢(B,y) = (6,?) whenever there is a solu-
tion (8(t),y(t})) of (1) with (8{0),y(0}) = {8,y) and
(a(1),y(1)) = (8,¥).. Then the fixed points of ¢ are (§=0, y=0)
and {g=m, y=0). The first is not hyperbolic (the eigenvalues of
(dw)(o’o) have norm one) but the second is: it has a one dimen-
sional stable and a one dimensional unstable manifold. In order
to determine the positions of these stable and unstable manifold
it is important to note that the function

E(B,y) = -cos § + % Y2

is constant along solutions of (1) - it is the energy, -cos @

being the potential energy and % yz = g being the kinetic

|-

energy. This means that both W'(m,0) and W5(m,0) are given

by

-cos B + y2 = 1.

In the next figure this homoclinic line is indicated to=

gether with some other energy levels.



By a small perturbation of ¢ one can make w“(n,o) and
WS(n,0) +to intersect transversally (using a perturbation as in
the first example, or refering to the Kupka-Smale theorem [29]).

In the following example, the horseshoe, see Smale [29,30-A],
we have transverse homoclinic poinfsland stilllare fairly well
able to describe globally the stable and the unstable manifold,

In orxrder to describe‘théidiffepﬁérphism;jlét Q- be a square in
R? and let @ map Q. as indicated below, such that on both

components of @ N m_l(q),‘  is affineland preserves both ho-

rizontal and vertical directions, and such that 1, 2, 3, and 4



are mapped to i’; 2, 3", and 4, In Q, ¢ has two fixed
peints p and 5 as indicated; we restrict our attention to p.
Since ¢ dis affine on Qn w-l(Q), the stable and unstable mani-
folds W°(p) and w%(p), near p, are straight lines. In order
to find the continuation one has to iterate ¢_1 (for W%(p)) and
P (for Wu(p)). Inside @ +this gives pieces of straight lines,
horizontal for W°(p) and vertical for W'(p). With a few ite-

rations one gets the following picture.

S

v

o
uH{“
)
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As a last reﬁark on this example, observe that, however
far we iterate, the intervals I,,I,,I,c w3(p) will never be
intersected by Wu(p). There are in fact a countably infinite
number of such intervals, and Ws(p) n Wu(p) consists of the

boundary points of a Cantor set in Ws(p).

As a last example we discuss a homoclinic bifurcation

which appears when modifying the previous example. We speak of
a homoclinic bifurcation if in a one-parameter family of diffeod
morphisms, a pair of homoclinic intersections colides, forms a

tangency and then disappears, or, reversing the direction, if a

pair of homoclinic points is generated after a tangency.

In the previous example such bifurcations are obtained
when composing ¢ with a map (x,y)r“b(x,yﬂd), which slides
the image, in particular the image of Q, down. - In the next
figures we show the effect on the geometry of the stable and
unstable manifold ws(p“) and W?(p“) for increasing values

of Mj; din the first figure we have just the previdus example.

1.
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2. 3.
< } y,
— =ar
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In the second f;gure one sees the first non-transverse
homoclinic orbit (four iterations are indicated); from the third
figure it is clear that near one such homoclinic bifurcation
there are many others - see also Chapter III.

The complexity of the configuration of stable and unstable
manifold in the last examples is typical for the case where one
has at least one transverse homeclinic point. One can convince
oneself of this complexify by trying to draw examples, keeping

in mind that:

- W3(p) and ¥w'(p) are p-invariant, i.e. @{W(p)) = w¥(p)
and o(W'(p)) = ¥'(p);

- w¥(p) and W% (p) have no self inférsections;

- near p, ¢ 1is well approximated By'the linear map (dm)P -
this has the following consequeﬁée,(i.lemﬁa, [22], see

also the Appendix): ir { is a.smoﬁth.curve intersecting

W%(p) transversally then the forward images iy = 9 (1) contain



compact arcs m, c Li which approach differentiably a compact

are m in W9(p).

For n-dimensional diffeomorphisms the situation is basical-
1y the same except that if the codimension of W {p) or W%(p)
is bigger than one, they don't "separate" the ambient manifold

any more.

The first time that these homoclinic points were cons-
tructed was by Poincaré in his prize essay [27]. The existence
of these homoclinic points implied the non-convergence of certain
power series expressions for solutions of a Hamiltonian system,
comparable with the Hamiltonian system describing the restricted
3=body problem. This indicated that cexrtain gualitative informa-
tion, like "stability", was unobtainable by these analytic power

series methods.

Later it was realized that the dynamics of a diffeomorphism
¢, or the topology of its orbits, shows a great complexity if
and only if ¢ has some hyperbolic periodic point with a homo-

clinic intersection of its stable and unstable manifold. Although
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this last statement is in no way a theorem (and can he expected
to be true only in a generic sense) many results in these notes
can be interpreted as partial results in this direction. On
the other hand we also deal with "stability results" concerning
the dynamics in the presence of a homoclinic point. They deal

with the not infrequent situation that the dynamics of a diffeo-
morphism ¢ (with homoclinic point), although extremely compli-
cated, remains unchanged in a topological sense when @ 1is ‘

slightly perturbed.
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CHAPTER TIIT

DYNAMIC CONSEQUENCES OF A TRANSVERSE

HOMOCLINIC INTERSECTION

In this chapter we analyse the dynamical complexity due to
one transverse homoclinic orbit. Although our discussion refers
to the two-dimensional situafion; the results and their proofs

can be extended to arbitrary dimensions.

1. Description of the situation - linearizing coordinates.

Let o: M5 M be a C2 diffeomorphism of a surface M
to itself and let p € M be a hyperbolic fixed point of saddle

type, i.e. @(p) = p and (dp)(p) has two real eigenvalues )

and o with 0 < {A|.< 1 < |o|. For simplicity we assume that
*2
g
A
*1
these eigenvalues are positive, so 0 < ) < 1 <« g. From the the-

ory of hyperbolicity (see Appendix) we know that:

- the stable and unstable separatrices of p, W (p) and w(p),

are CZ; ’
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- there are Cl linearizing coordinates in a neighbourhood of
p, i.e. Cl coordinates X,, X, such that p = (0,0) and

such that ¢(xl,x2) = (L.xl, o.xz).

We assume that W (p) and W"(p) have points of trans-

verse intersection different'ffbm P - such points, or their

orbits, are called homoclinid‘o: biassymptotic to p. Let g

denote one of these intersections. We assume that q dis primary
in the sense that the arcs Lu, joihing ﬁ and q in Wu,

S

and 4%, joining p and g in W°, form a double point free

closed curve.

All indicated homocliniec points"The encircled homoclinic pedints
are primary. are not primary.

Note that whenever p has homoclinic poihts, it has
primary homoclinic points - if all intersections of Wu(p) and
wS(P) are transverse, then the number of primary homoclinic.or-
bits is finite.

Let the linearizing coordinates be defined on U and let
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their image be the square (-1,+1) x (-1,+1) c R>. We consider

extensions of the domain of definition of these linearizing co=-
ordinates. Identifying poihts in. U - with the corresponding points

in ﬁz, we have: if ¢_l(

[h,2) x (=1,+#1)) 0 U = ¢, we can extend

the domain of the linearizing coordinates Jxl, x, to
¢-l([k,l) X (-l,+1j) using -the formulas
-1 -1
xl = )\ ‘(xlﬂcp)l , xz =0 '(xqucp)'

Repeating this constructios one caﬁ extend the linearizing
coordinates along any segment in :ws(ﬁ) starting in p - one only
has to take the original domain U sufficiéntly small. This fol-
lows from the fact that Ws(pfl has no self intersections. In
the same way one can extend the domain of these linearizing coor-
dinates along the unstable separatrix Wu(P)- Homoclinic inter;
sections however form an ébstruction tﬁra'éimultaneous extension
along both the stable and the-unétable separatrix. In our situa-
tion where q dis a primary:homoclinic=point, we extend the li-
nearizing coordinates both aiong tY . and t®, the arcs in wip)
and W%(p) joining p and q - howevér these coordinates will

be bivalued near ¢ as indicated below.

R R )
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Situation in M. ‘//////, <denotes the neighbourhood of g

on. which the linearizing coordinates are bivalued.

7.

Image of the part of .6 wi(U)' which the linearizing
coordinates are defined. ////}T*Zdenotes the two images of the
above neighbourhood of q.

Now we consider in the domain of these extended coordinates
a rectangle R = [-a = Xy 2 b, -as x,< B}, a,b,a,p » O, con-

taining LS, the arc in Ws(p) Joining p and q, and such

that for some N:

- RN ¢"(R) consists of one rectangle containing p for

0 < n< Nj;

N .
- RN g (R) consists of two connected compenents, one contain-

ing gq, as indicated in the figure, i.e,
{x. =b, =a = x, < g} N N(R) = ¢

' N
and ¢ ({-a < X, s b, x, = B})N R =¢g.
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For what follows it is 4dimportant that one can choose R
so that N is arbitrarily big - just take 8 small. By taking
8 small and hence N big, ¢N(R) will become a very narrow
strip around 4". So transversality of W (p) and W°(p) at gq
then implies transverse intersection of the sides éf R and
¢ (R).

The main object of interest in this chapter is the maximal
invariant subset of R under wN, i.e. the set of those points
.N(

r € R such that wk r} € R for all k€ E.

2. The maximal invariant subset of R -~ topological analysis.

From now on we denote ¢N by ¥: We denote the maximal
invariant subset of R under Y by A = {r € R [ Wk(r) € R for
all k € Z}, Denoting the corners of R by 1, 2, 3, and 4 and
their images in ¥(R) by 1/, 2', 3/, and & ,.the relative posi-

tions of R and Y(R) are as indicated in the figure, i.e. the
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¥(R)

w2 (p) >
1

lf

w(p)

+

sides of R and ¥(R) intersect transversally and the topology

of the pésitions of R dits sides and its éorners relative to
their images under Y are as in the figure.' We denote the com-
ponents of RN ¥(R) by O and 1, O containing p and 1

containing q.

Theorem. For any sequence {ai} with a; = 0 or 1, there

ez’
is at least one point r € A such that Yl(r) € a, for all

ie &,

Proof. We call a closed. subset S c R a vertical strip if it is

bound (in R) ‘b&-two diéjoint continuous curves ¢, and ¢,

connecting the side 1, 2 with the side 3, b, If S is a
_verfical strip then ¥(s) 1 R contains fwo vertical strips, one

in O and one in 1. Let now {a;} - be a sequence as in the
iCE :
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’/////; vertical strip.

theorem. We construct a nested sequence of vertical strips

1 2 * o =0

S, 8,5 .2t S_=a3 S, is a vertical strip in
. - i i o2y :

Y(g_l) ns,; 8, is a ve?#%cal strip in Y‘(g_z) n' s, gtc.,
S, = N 8,. For each.point =r € S_, Y*i(r) €a., i= O.

; i w : =oi

iz=0 E

Horizontal strips are similarly defined and we have ho-

r;zontal strips T, o @2 > Ty>... such that for r¢ T, = ;;115.
t'(r) € a; for all iz 1. ‘Now S N T, # ¢.. Otherwise, for
some i, S, N T, =¢, but S, ' contains a lineé from side

1o o *o

1, 2 to the side 3, 4 and T, “contains a Iine.from 1, & to 2,3.

o
These lines have to interﬁect. . . o |

For any point T € $_ N T, ¥ (r) € a; for all i€ Z.

Frém this it follows also that r € ‘A.
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3. The maximal invariant subset of R - hyperbolicity and in-

variant foliations.

N
In this section we use more information about Y = ¢ res-
tricted to R. In the linearizing coordinates on a neighbourhood

of 45, +the arc in W°(p) joining p and q, we have
R={-ac< X, £ by, ~a g X, < 8},

see Section 1. We only have to describe Y in those points of

R which are mapped back into R, di.e. in Y"l(R) N R. In the

A ¥i(p) . w(p)
S NN 77177
\ N .
\\\ N\ 4 .
< W (p)

p [N\ R YNNNNNN

¥
1171777 ¥ (®) n R, SN v(R) 0 R

component of Y-I(R) N R containing p and gq, ¥ 4is linear,

s - N N .
in fact 'f(xl,xz) = () e xz) with 0 < ) < 1< 0.

The other component of R 0 Y-ltR) is mapped to the com-
ponent of R n Y(R) containing q. Tﬁis component of R N ¥(R)
is the region where the linearizing coordinates, constructed in
Section 1, were bivalued, or rather where we have apart from the

linearizing coordinates following Ws(p) and which are in the
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above figure the Cartesian coordinates of the plane, also the
iinearizing coordinates following Wu(p). We denote by o) 92
the coordinate vector fields of the linearizing coordinates fol-
lowing W°(p) and by e, eé the coordinate vector fields of
the linearizing coordinates following Wu(p); see the figure

below,

w{p)

WS (p)

For ¥, restricted to the component of R N ?-l(R) which
is mapped on a neighbourhood of g, we have (d?)el(r) =

= Mo (¥(x)) ana (ar)ey(r) = oM.ep(¥(x)).

Due to the transversality of W (p) and W (p) ~and to

the thinness of Y¥(R), for N big, e, @and o are linearly

independent. Also, by choosing R and Y(R) ,thin, we may assume

1 1, el {(or its in-

that the matrix +transforming e 2

e intoe e

verse) is almost constant.

Theorem. For R sufficiently thimn, and hence N big, the maximal

invariant subset

‘A= N ¥R) in R is hyperbolic.
ncd ; :
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Proof. A continuous cone field C on RN Y(R) is a map which
assigns to each r € RN Y(R) a two-sided cone C(r) im Tr(M)’

given by two linearly independent vectors wl(r), Wz(r):

+

e(r) = {ve Tr(M) [ v = al.wl(r) + az.wz(r) with a,.a, 2 o] .

Continuity of € means that Wy and W, depend continuously
on r. An unstable cone field is a continuous cone field on

RN tY(R) such that

- for each T € RN Y(R) A ¥ I(®),
{at)(c(r)) c Int(c(¥{=)}) U {0}, (*)

- for each r € Rn ¥(R) n v "X (R) and 0 £ ve c{xr),
flay (v} > ||v]ls where the norm is taken with respect to the

basis @11 €5
Below we construct such an unstable cone field. From the

existence of such a cone field it follows that there is a con-

tinuous direction field E'(r), defined for ré€ I y1(R), such

that 120

- E(r) c c{r);

- a maps E(r) to E(¥{(r)) whenever r € .ﬂ Yi(R), and
for 0 £ v € E(r)}, e

liay €| = v.

|v]| for some v > 1 {**}

*
(*) where O denotes the zero vector in Tr(M).
(#%)
E is obtained by taking the intersections of the forward
images of the cone field € under dY.
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Replacing ¥ by ?-l, one constructs in the same way a
stable cone field and the direction field ES, which is dinvariant
under and contracted by d¥. Then T,(M) = E: ® Ei is the re=

quired splitting for hyperbolicity - see the Appendix,

Now we come to the construction of the uhstable cone field
on RN ¥Y(R}. 1In the component of RN ¥(R) containing p we

siﬁply take cones axound e extending 45° +to both sides. In

2

the other component of R N Y(R) there is (assuming R .and
¥(R) sufficiently thin) an angle g, smaller than 907, so that
for each point r 4in that component of R N v{R), the cone
around ez(r), extending over an angle o to both sides, con~
tains eé(r) in its interior. This is due to the fact that el(r)
and eé(r) are linearly independent. The unstable cone field C
is just defined as the field of cones, centred on e, and extend-
ing 45", respectively a, to b&th sides of e, depending on the
component of RN R(Y).

In order to show that this cone field has the required
properties, we introduce constants A, B, and B’ so that:
whenever r &€ RN Y(R) and v = vl.el(r) +1v2.92(r) € Tr(M) then

for v € c(r) we have |v.| = A.|v2[, on the other hand whenever

1]

|vl| < B.IVE}, then v ¢ C(r); whenever v = vi.ei(r) +
+ v'.eé(r) and [vi| < Bi.lvé|, then v € CG(r). If N is so

2
N
big that [%4 ‘A < min(B,B’), then dY maps cones in the in-
terior of cones. Also for N sufficiently big, the lengths of

vectors in our cones are strictly increased by dY.

So for N big enough our cone field has the reguired prop-
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erties, but the cone - field was constructed after choosing N -
¥ is defined in terms of N: Y = ¢N and the domain of the cone
field is defined‘in terms of Y¥: domain = R 0 Y(R). However the
way to raize N, is to make R +thinner. This decreases the
domain where the cone field has to be defined. The fact that Y
changes from wN to mN’, N’ » N, has no influence on the ar-
ei and eé do not change.
So R and N may be ajusted afterwards. This completes the

guments: the vector fields L) e,

proof of the hyperbolicity of A,

Observe that we proved slightly more: there are vector
fields e" ¢ By and e°¢ E; and a constant vV > 1, such that
for all v € A, [ar(e™())| = V.”eu(r)“ and Hd?(es(r))” <

< v hle% ()

Now we come the second subject of this section. The cone
fields, just constructed, will now be used to construct the stable
aq? the unstable foliation. We only describe the construction of
the unstable foliation. First the definition.

An unstable foliation for A = (1 ¥ (R) is a foliabion

icZz
F of .a neighbourhood of A (here we take R n ¥{R)) such that

1. for each r € A, F (r), the leaf of 3" containing r,

is tangent to E"(x);

2. for each r, sufficiently near 4, ¥(F'(r)) > F%(¥(r)).

We require the tangent directions of leaves of 3“ to vary con-
tinuously. In fact, in the present case, where we deal with a Cz

diffeomorphism ¥ and co-dimension one foliations, one can re-

Cl+c

quire them to be s sSee the Appendix.
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Construction of the unstable foliation. We recall the relative
X

positions of R, Y¥(R), and ¥~

R) in the figure below.

7

¥Y(R)

S

QAW RN ¥ (R) V7177, (Ra ¥ He)Nv(R)

We take a C° foliation J° (not yet the unstable folia-

tion) on (¥(R) U ¥ "1(R)) n R so that:

1. din RN ¥(R) +the tangent directions of leafs are contained

in the unstable coness

2, the image under ¥ of leaves in (R n Y—l(R)) n ¥(R) has

tangent directions contained in the unstable cones;

3. +the four arcs of 3R N ¥-1(R) are leafs of §u, the union

of these four arecs denoted by EO;

4. +the four arcs of 3(Y(R)) N R are leafs of J°, the union

of these four arcs is denoted by El;

5. ¥ maps leaves of 3O near Eo to leaves of 3“ near El'

Since all the cones of the unstable cone field are centered arocund

the vertical wvector field °, and contain, where defined eé,

it is clear that such a foliation ﬁu exists.
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For foliations as described above we define the operator

¥y T*(gu) has the following leaves:

in (RN Y-l(R))\Y(R), the leaves of 3= and Y,.(F") are the

same

in (rRn ¥Y(R)}), the leaves of ?*(Eu) are connected components

of Y idmages of leaves of 5“ intersected with (R n Y(R)).

Due to the above conditions 3, 4, and 5, also Y¥(§u) is ¢=2.

From invariant manifold theory it follows that the limit

1im ¥ (FY) = 3"
i

exists. This limit depends on the choice of the "initial folia-

tion" 5%, The limit is C'; if ¢ is €2, +this limit is

l+e

C s see the Appendix.

Observe that we can extend our vector fields e” and e®

in Eu, respectively E®, to tangent vector fields of & and

F° (35 is just an unstable foliation for Y-l) so that for

some constant % » 1, and all r € R A ¥(R) n Y-l(R),

-

Hat (e®(=))ff = V.

(=)

and
”dY(es(r))” < J.Hes(r”

Stable and unstable foliations can be constructed for any
basic set of a Cl»diffeomorphism in dimension 2 [16]. 1In higher
dimensions the existence of such foliations is not known, The
fact that for 03 diffeomorphisms in dimension 2 these foliations

1+¢€

are C will not be used in this chapter but will be quite

essential in the following chapters.
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4, The maximal invariant subset of R - structure.

We divide A, +the maximal invariant subset of R, in
blocks. For each sequence A = (a-k’a-k+1""’ak-1’ak) with
ai =0 or 1, we define the A-block as AA ={r€ A i Yl(r) € 2,

for i = -k,...,k}; we call K the radius of A.

As we saw in the last section, expansions and contrac%ions
of vectors along unstable, respectively stable foliations are at
least by a factor Vv » 1, respectively v-l. Let ¢ be the
maximal length of a component of a stable or unstable leaf in
Rn ¥Y(R).

Proposition. Let Ay be an A-block and let A have radius K.
K

Then the diameter of A, is at most 2.¢.9 3 for ¢, ¥ see
above.

Proof. For any two points p’, p* in the same component of

R n Y(R} there are unique arcs tM(p’,p") and L5(p',p) in

leaves of 3“, respectively J°, jointing p’, respectively p’,

with the intersection of the unstable leaf through p° and the

i

stable leaf through p’. When p’, p are both in A,, then
this whole configuration will remain in the same component of

Rn ¥Y(R) when we apply ¥-, i = -K,...,+K. This implies that
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the lengths of 4 (p’,p") and L%(p',p") and 1%(p',p’) both

at most c.G—K. This implies the proposition.

From the above proposition and the result of section two

we obtain:

Theorem. The size of an A-box AA goes to zero as the radius
of A goes to infinity. For each infinite sequence

seey a_é,a_l,ao,al,az,..., a; = 0O or 1, there is exactly one

point =z € A such that Vv (r) ¢ a; for all i. There is a ho-
F
)

meomorphism h: A -+ (Z (product topology on (z )E such that
2 2

for r¢€ A, hir) = cer2B 38 528 ,81,8,,... With v (r) € 2, -

I a: (zz)z -+ (Zz)z is the shift operator, i.e. U({ai}iez)
- ] . r_ .
= [ai}iEz with aj = a;, ,, then
HE
A = fi
h h
H4 g 7
(£,) (2,)
cormmutes.

Remark 1. It follows from the above theorem and its pfoof that

if g_ isg Cl close to ¥, then the same conclusions hold for

the maximal invariant set A of § 4in R. Namely if C 4is an
unstable cone field for Y whose domain is slightly extended
beyond RN ¥(R), +hem € is also an unstable cone field for ¥

if Y  is sufficiently ¢l close to Y. Then all the above ar-

guments apply, with the obvigus modifications, to ¥. This mpﬁgs
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that for such ?, A, there is a conjugacy H: A + K, di.e. a ho-

meomorphism sugh that the diagram below commutes.

¥ A
A A
A
: ¥ (A My
A —— }

This is a special case of structural stability of basic sets.

Remark 2. The periocdic points are dense in A, This f011§w5
from the corresponding statement for (zz}z and g: any finite
sequence can be completed to an infinite periodic sequence. It
is clear that all tpe§e‘periodio points‘are of saddle type (one
expanding and one contracting direction). Tor the use in the
next chapters, we add one more observation about these periodic
orbits. In genefal we say that a fixed point p of a diffeomort
phism @ dis dissipative if |det{dp)(p)| < L. The same applies
to periodig points,rsay of period k; Jjust replace ’¢ ﬁy @k.
Now if the fixed point p with which we started this dhapter
(see Section 1) is dissipative, then, for R sufficiently thin
(or N big)r all the periodic points in A will be aissipative.
If p'§ A ié g periodic point of ¥, and hence of @y and if
R i@fthin the p' will spend most of each orbit-(under itera-
tion of @) in a small neighbourhood of 'p. The dissipativeness

then follows from ﬂk

) :
k \
aet(ap ) (o' ) = T aet(a9) (o3(p7)).
i=0
Remank/3. It follows also fromithe above constructions that A

has "local product structure" in the sense that if r,r’ € A are
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1
in the same component of R N Y(R), +then the intersection of the

stable leaf F°(r) through r and the unstable leaf FH (")

)

through 1 also belongs to A. In fact, if h(r) = {ai]_ez and
i )

hir’') = [a;]iEZ’ _then F°(r) corresponds to the sequences

{ Ebi]iez | b, = a, for iz 0}
:
and F"(r') corresponds to the sequences

[_[b;}iez | b} = al for i< 0}

S8ince r, r’ are in the same component of R n ¥(rR), a_ =a’,
! o o

so that the point in F°(x) n F%(r) corresponds to the sequence

...;a_z,a_l,a; =B yRs8,,..,

3. Conclusions for the dynamics near a transverse homoclinic

orbit.

We return to the diffeomorphism 0 (see Section 1} and
discuss the consequences of the results in Sections 2 to 4 on
Y = mN. We found and analysed the maximal closed invariant sube-
set A in R under the map Y. This set A is contained in

RN ¥(R) whose components are denoted by © and 1. A corres-

. . N=1 .
ponding invariant set for ¢ is defined as A = U ¢1(A),
20

Proposition. The set ﬁ, as defined above is the disjoint union
. N-1 '
of {p}, A-{p}, ¢(A‘{P})a---v¢ (A'{P})-

" Eroof. We oniy have to show that for 0 < i < Ny, AnN w-i(h) = {p}

In fact let € A, and 9 (r) € A for some 0 < i < N. Then
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r¢g 1 and also mk'N(r) = Wk(r) has the same properties, i.e
v¥(r) € & and @ (+¥(r)) € A. 7This implies that ¥¥(r) € 0 ror

dll1 k and hence that r = p. This proves the proposition,

it is clear that A is a hyperbolic set for @, and that
the periodic orbits are dense in ﬁ. As we have observed before
% (transverse) homoclinic orbit implies great complexity of the
éatterns formed by the corresponding separatrices. In this di-

rection we can prove.

a~

Proposition. In the above situation, A is contained in the

closure of both the stable and the uﬁstable manifold of p.

~

Proof. Since the periodic orbits are dense in A it is enough

to prove that each periodic point of A is contained in W>(p)

(and in W"(p))}. Since both wS(p) (and WwY(p)) are invariant

under ¢, it is enough to prove that the periodic points of A

are in W°. For any periodic point r € A, the unstable sepa-
ratrix Wu(r) contains a leaf of the unstable foliation and hence

intersects W°(p). Then it follows (iterate ¢'1) .that this pe=

riedic point r is contained in the closure of Ws(p); In the
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same way one proves that it is centained in the clqsﬁfe of Wu(p).

6, Homoclinic points of periodic orbits.

Let again ¢: M + M be a diffeomorphism but‘now with a
pefiodic orbit [P sPyareeaPy_ 414 ¢(pi) = Py moa kX, with
period k which is of saddle type. Stable and uﬁstable mani -
folds are denoted by Hs(pi) and Wu(pi). Therg @re two types
of{homoclinic orbits, nam:ly intersections of Wa(pi) and Wu(pi)
- they are just homoclinic orbits of a hyperbolicp Séqdle fixed

. ifS

) J
mod k. TFer % = j-i, we then have also interseghjotis of Ws(pj)

point for ¢k - and intersections of Ws(pi) and Wu(p

and Wu(p. etc.. This means that we get'sbmething like a

J+t)
oycie whose "period" is the smallest number £ such that 4.t

is a multiple of k. If the intersection of Ws(pi) and Wu(pj)

is transverse, so are the interseciion of Ws(pj) iand Wu(pj+t),

1= u
oz W(p,,,) amd W(p,,,.),

also the Appendix, this means that Ws(pi) is accumuldting on

etc.. By the A-lemma [22], see

Hs(pj) and hence intersecting Wu(pj+t) transversalli, hence

accumulating on W(p. etc., so that we finally get & transa-

J+t)
verse intersection of Ws(pi) with Wu(pi) anyway .,

An example of this last phenomenon occures in any generic
2-parameter family of diffeomorphisms 9, R Ra, M€ Rz, such
that wo(o) = 0 and' such that (dmo)(o) has eigenvalues

w2Mi/3 N o . .
e = this is the subharmonic bifurcation with resonance 1:3

[3]. Stable and unstable separatrices are then as indicated

below.
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7. Transverse homoclinic intersections in arbitrary dimensions.

As we remarked in the beginning of this chapter, all re-
sults and proofs can be extended to diffeomorphisms o9: M + M,

where M iz an n-dimensional manifold. So one obtains:

Theorem. TLet ¢o: M+ M be a Cl- diffeomorphism with a hyper-
bolic fixed point p. Let g be a point of trans-.erse inter~

section of Wu(p) and W?(p). Then there is a neighbourhood U

of the closure of the orbit O_(q)A = U ¢*(q) such that the
maximal invariant set. ﬁ under @ iiz U 4is a nontrivial basic
set (see the Appendiij. Also, there are neighﬁourhoods Vp and
Vq of p and g aﬁd there.is-ﬁn integer N{,-such that the
maximal invariant set A under mN in V = Vp U Vq is also a
nontrivial basic set and. such that ¢N|A is conjugated with the

shift on (.22)z as in Sectdion 4.
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8. Historical note.

The main ideas in the chapter were developed by Poincaré
E27], who realized that homoeclinic points are accumulated by ho-
moclinic points, by G.D. Birkhoff Eh] who showed that homoclinic

peints are accumulated by periodic points, and by S. Smale [ 29]
who esgentially obtained the main theorem of Section 4. Transverse
homoclinic orbits were also studied in [16-3].

The maximal invariant set in R is often called a horse-
shoe and the map YIR a horseshoe map. Due to the topology of
R2 there are two types of transverse homoclinic orbits but for
both cases the analysis is the same; our figures refer to the

less conventional case in which one does not "see" a horseshoe.

In the conventional case one has:

¥(R)

Y

hd
A

.

instead of

Y(R)
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CHAPTER III

HOMOCLINIC TANGENCIES: CASCADE OF BIFURCATIONS,

SCALING AND QUADRATTIC MAPS

1. General comments. Cascade of homoclinic tangencies.

In this chapter we discuss the unfeolding of a homoclinic
tangency for one—parameter:families {@H} of diffeomorphisms of
a surface M2. As a consequence of such unfolding the dynamics
(orbit structure) of the diffeomorphisms undergoes a great number
of changes (bifurcations) as the parameter evolves near the value
say M = 0 corresponding ;o the homoclinic tangency. In parti-
cular the homoeclinic tangency is accumulated by other homoclinic
tangencies for values of | approaching zero. Also many peri-
odic points appear (or disappear) or lose hyperbolicity and
change index (i.e., dimension of stable manifold)., Although the
expression "chaotic" is not in general well defined, sometimes
authors apply it (among othexr situations) to a small neighbour-
hood of U = 0 in which these bifurcations occur calling it a
chaotic region. Still, it may happen that in cextain cases a
large porﬁion of this region is occupied by values of | forxr
which mu has persistently a hyperbolic limit set (and thus it
has a persistent or stable gynamics) ; this is discussed in
Chapter V.I Here, in the fi?st three sections, we describe the
bifurcation phenomena mentiéned above starting with a quadratic

homoelinic tangency and unfolding it as to create homoclinic or-
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bits. And in the last section we relate this unfolding with the
well known family of quadratic maps of the interval of fubd =35@u.

Let ¢: MXR + M be a ¢’ map suéh.that 9, = $: Mx{p}oM
is a diffeomofphism for each pH € R. We sha;l denote such a fa-
mily of diffeomorphisms simply by [mu] or Jjust m“. The reason
we take the family %o be 03 (and not Cl or 02) come from
the discussion of the period doubling bifurcation‘(or £lip) to be
presented in the next section of this chapter and is also due to
the degree of differentiability of the leaves of the stable and
unstable feliations that we need in our setting - see Chapter II.
These foliations may themselves be differentiable: if they are
codimension one then they are Cl if the map is- 02 and Cl+e
(Cl plus HBlder) if the map is 03; see Chapter II and 1IV.

Let us start studying homoclinic tangencies and their un-
folding. Let p = P, ‘be . a fixed point for 9, "and let q be a
homoclinic tangency wvelated to p, +that is q 4is a point of
tangency between W°(p) and WZ(p). We assume that w3(p) and
w{p) have a guadratic {parabolic) contact at q, and just call

a4 or its orbit ©(q) a quadratic homoclinic tangency.
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We choose local coordinates (xl,xé) near ¢q so that we
can express the local components of W°(p)} and W%(p) contain-

ing q by

W (p)

w(p)

’

[(xl,xz); x, = 0}

[(x)0%,)5 x, = ak]) ,‘ (1)

where a £ 0. Since p 1is hyperbolic,lwe have for u small a
unique fixed point %4 near p, and the mapping ﬁ -+ p“ is dif~
ferentiable (Implicit Function Theorem).:,Also the local graphs
s u . .
of W (pH) and W (pu) near ¢ and M ' near zero, depend dif-
ferentiably on WM.
Assuming Wu(p“), as function of [, +o move transver- .

saly with respect {o Ws(p“) we can write (changing coordinates)

that Ws(pu) is given by x, = 0 and wq(pu) by
X, = axi + b, a £0 and b #£ O (2)

and say that the aquadratic homoclinic tangency unfolds generical-
ly. These aséumptions correspond to mild nondegeneracy conditions;
they are satisfied by most (Baire second category) l-parameter fa-
‘milies in our setting. Taking a< 0 and b » 0 im (2) above,
we get for the relative positions of the 1oca1.components of

Ws(pu) and Wu(pu):

ws g W N w®
/\wu ’ /\u / \Wu
: H < O : M=0 ‘ T M >0
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" We now prove one of the statements in the introduction of

i

this chapter.

. Theorem. Let [mu} be a one-parameter family as above with a
gquadratic homoclinic tangency.'q at‘ WM = 0 related to the fixed
(periodic) saddle p- and suppdse it unfolds generically. Then
there is a sequence “n + 0 sth that wu has hamoelinic tan-

n

gencies q 2+ q related to p - P
Hn Mn

Proof. Let r = w-N(q) for some large‘rN » 0 and suppose the
tangency unfolds into transversal homoclinic points for i » O.
Given | > 0 and small, there are small pieces of parabolas (seé'
discussion on unfelding of homoclinic taﬁgencies) T: (= W: riear

and T° ¢ ¥ near »r.
4 ARt fy e Ny me

u ’ ' !
W .
"8
R——
r
1-\5 /

Now taﬁe M= ﬁ arbitrarily small. Clearly, if =n > 0 . is large
then m&“(rg) intersects TE.‘ But if we take | > O much smal-
ler thaﬁ. i we have, for the same integer n, that @;n(Fj) n

n P: = ¢. Since m;n(P:) and T: depend ¢* on , there is

some H, < g4 for which w“n(Es ) and T  are tangent say at a.. .
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We can repeat the argument for smalle} values of ﬁ aﬁd so we
can construct ‘the sequenges un’ an fas desired, proving the
result in the case indicated in the figure above. The‘rgader
can easily adapt the arguments to other cases, like the:éne in

the figure below.

S W
le . ! ;.// a \ : ._u

Remark. In the proof of the theorem we cén take the hdméclinic

tangencies q“ to be of quadratic'contéct: due to different
n

v

last tangency for decreasing values of - W. One can even show

curvatures, w;n(rs) and TS have a quadratic contact af.their

that these homeclinic tangencies can be chosen to unfold gene-

pically.

2, Saddle-node and period doubling bifurcations.

We will now show that while creating'ﬁ horseshoe the fa-
mily of diffeomorphisms goes through other bifurcations besi@es
infinitely many homoclln1c tangenc1es.

Let us brlefly recall two of the three othexr blfurcatlons

(besides homoclinic of heteroclinic tangen01es) that can occur

‘for generic lfbarameter families of diffedmpfphisﬁs; Let
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be a family and . a b : rbolic fixed point for .
[wu}“ER ily and .xg yper P @,

Then for M small, mur has a fixed point e called the con-
finuation of xo; which is near X, for small |4 and has the

same index as X e Thus for Pxy to be a bifurcating orbit, we
. o

must have one or two eigenvalues say pl, p2 of d¢u at x
: ‘ o

Mo

to have norm one. For generic families, we have three possible

cases:

a) py =1 and_.|p2| < 1 '(or |p2| = 1),

B) p, = -1 and [92| < 1 ((or [PZ| > 1),

c) 91 ele, Py = e'-:l'9 for some Teal .

Case (¢}, with further generic assumptions, corresponds to the
so called Hopf bifﬁrcation and it will not be considered here

since we will impose that our mappings will be area contracting.

03 ¢u-invariant line we or

M
Wc(pu) which is tangent at W = M to the eigenspace associated

In cases (a) and (b) there is a

to Py = 1 or Py = =1, This is called the central manifold for

(see the Appendix). Thus if we let £ = mu/ws, we have the

% b

.8

following expressions:

f“(x) ;+ax2+b(u-uo)+h.o.t. (3)

£, (x) ~xtax +b{K)x+h.o.t, b(0) = 0 : (%)

where (3) corresponds to the first case and (4) to the second;
h.o.t. stands for higher order terms.

In (3) we take a # O call the orbit a saddle-node. We

also take b # 0 and say that the saddle-node unfolds generically.
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These are conditions that are clearly satisfied by generic fa-

milies. It is easy to see from (3) that £,

and thus wu, has
two hyperbolic fixed peoints for u < uo and none for u > uo or

vice-versa. If we consider a > 0, b > 0 and |921 < 1 we

have the following unfolding of the saddle-node: a sink and a

'saddle collapse and then disappear, as shown in the figures:

The double arrows in the figures mean that the normal contraction

is stronger than along Wﬁ. If we consider the curves u - xl

H’
Mo xﬁ of fixed points, we get:
1
K/
“0 - >/0\/ WC
773 >

x X
M 3]




Notice that the two curves are differentiable for g small, p < Mo
If we follow the curve py - x& for HTHD, we can then refturm along
H = x& with.decreqsing values of M. So the two branches can natu-
rally be oriented as above [or vice~versa). In words: if we follow
the curve of saddles for increasing values of y, up to |y = Hys we
then return along the curve of sinks for decreasing values of (.
This fact will piay a role in the next theorem,

Now we consider the expressiog (4) above corresponding to
the eigepvalue Ay = ~1l. Similarly to what we have done before in
(2) and (3), we take a £ O (whioh is a gemeric condition)} and call

1 .
the orbit a period doublings bifurcation (or flip) and we say that

it unfolds generically if %E £ 0 (another genemic conditionl!),
db
M u=,

there exists a unigue fixed point which is a sink and for u > Mo

|u=uo

when a » 0 and < 0, we can easily show that for u < Mg

a source (both with negative eigenvalues) and a period two sink
EECAC S Berloc IWo

(with positive eigenvalue). Thus the name period doubling

‘bifurcation. The .results are of course similar in the o¢ther
db

cases, where a and aa—“o may have signs different from

the ones above. The assumptions anq resulté are also similar
for period doubling bifurcations of periodic orbits by just
considering the power of the map equal fo the period. For
instance, a sink of pepiod k may bifurcate into a source of
period k (both with corresponding negative eigenvalues) and a
sink with twice the pericd (aﬁd‘positive eigenvalues). All these

congiderations are ‘'of pourse along the center manifold; normally

to it we ﬁay have a contraction or expansion, The unfolding and
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the curves of fixed and period two periodic orbits are as follows:

In the second fignpre, if we identify points on the same orbit of
the double periad sinks we obtain a topological l-manifold - the
curve of sinksg for u < My = branching off into two topological
l-manifolds one formed by the cufve of sources and the other by
the curve of dquble ﬁeribd sinks, Notice that the sink to the
left and the source to the right both have the same period (and
a corresponding negative eigénvalue for dfk, k being the pe-

K
riod).
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3. Cascades of period doubling bifurcations and sinks.

We now discuss the definitions and assumptions of the next
theorem showing the existeﬁce of many sinks (or sources) and pe-
riod doubling bifurcations while creating a horseshoe.

Let R be a rectangle in R and {¢g} a family of dif~

feomorphisms of R into R~ such that

1} e_;(R) N R =g,
2) mu/R is dissipative (area contracting) for -1 g_g s 1,
that is Idet(dmu)] < 1 on R,

3) 9y has periodic points and they are all saddles;

4) 9, (R)ns; =9, ?u(R) ns,=¢, -lspus 1, wibre S,
S2 are two opposite sides in the boundary of R; say the
vertical sides,

5) wu(T) nR-=6¢, wu(B) NR=¢, =-lspus 1, whers T is
the top side of R and B dis the bottom side.

We also consider the following generic {Baire secdnd ca-
tegory) condition oﬁ the family [mu] which we assumed %ﬁ be
dissipative on R

6) @u has at most one nonhyperﬁolic periodic orbit for each
=1 = W £ 1 and this orbit must be either a saddle-node or
a period doubling bifurcation which must unfold gene}icéliy.
{Because ®, is area contracting there is no Hopf bifurcation.)
Although we did not feormally require ¥y to be a horseshoe @ab-
ping like in Chapter II, that is precisely the situation we h;ve

in mind. In this case, we say we have a family creating a horse-
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sHoe, like ih thé pitctures,

P A cPl(Rj




.

It is also impdrtant to notice that when we unfold a generic ho-.
.mocliﬁic tangency we do obtain a family of diffeomorphisms that
creates a horseshoe, Of course, to get the area decreasing prop-
erty, we assume the Jacobian of the map at the fixed (or periodic)
saddlelwith a homoeclinic tangency to have norm less than one.

To see this let mu be such that
(i)' v, has a fixed saddle p and |det(dwo) | < 1
p"
(ii) there is generic homoclinic tangency gq associated to p.

We then clame that there exists a rectangle R, a number § > 0
and an integer N » 0 such that @S/R creates a horseshoe for

-6 < p < $§: take R to be a very thin rectangle very near q

and parallel to the local component of W (p), as in the figure
u u
wu W_6 W6
o

LA

NG,
LSS IIIILN s
1

2
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The fact that we can‘choose R, 53 and N as wished comes frém
the folleowing considerations. In Cl: coordinates linearizing
- Py and defined in a neighbourhood of Sa in Wz, we choose R
to be thin and sufficiently close to Wz so that its projection
on 'Wg parallel to Wz ‘contains w;N(q) for some large N as
T u
well as a fundamental domain z,mo(z) in W_. One can then apply
arguments similar to the ones in Chapter II to show that ¢S/R
is area decreasing for -6 £ | < & and that ¢E/R has its.ma-
ximal invariant set hyperbolic wifh dense subset of periodiq o~
bits. We point out that the construction above also follows di-
regtly from the last section of the present chaptef. In fact we
observe that although the configuration R, ws(R) resembles the
situation in Chapter II, the rectangles considered are quite dif-
ferent: there we had a loog rectangle containing p and qj
“here the rectangle is contained in a small neighbourhood of q.
For B, R » R® as above, let Per(¢u)r be the set of pe=-
' ri?¢ic'0rbits of' ®, and P = {(x,u); x ¢ Per(mu)}. We now de=~
.fiﬁg the topological space P = P/w, where the eguivalence rela-
_tiéﬁ ~ 1is the identification of points in the same orbit. A
component of P through (0{(x),u) is a continuous curve in B
. passing through -(0(x),n), where ¢{x) denotes the orbit of x.

Notice that P looks locally like a curve except at period doub-

ling (or undoubling)} bifurcation where it branches and ldoks like
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pgrioq 2k

period
Theorem [35]. Let ®, R - m2 be a family of difﬂpqurphisﬁs
satisfying conditions (1) to (). Then each go;(x)!i)' ¢ ¥ has
a component containing attracting periodic orp%ts (sin?s) of P§-
riod 2"k for each n = 0, where k is the periqd Q% x foF
@y
Proof. Let (0(x),1) ¢ ¥ and asswie first that dp,(x) has
positive eidgenvalues, k being the pe;iog of x (for éimplicity
we are assuming that ¢u preserves orientatiqh!- By tge Impligit
Function Theorem, there is a (unique) continugusg pdéh ' on h
through (0(x),1} which we follow for decreasing values af M.
We then must reach either a saddlefnode or a period pndopbling
bifurcation for otherwise we could follows T up to M x [-;};
by conditions (4) and (5) the maximal invariant set of é in R
is bounded away-from 3R (periodic points gan not escape through
3R} and we can not terminate I 4in M x (-1,1) because we can
always prqlong-a path of saddle points. But P_y pas no perio%ig
points in 'R and so we must reach a saddle-node or-a perigd un-
doubling bifurcation. In both cases we tﬁen follpwjﬁhe payh of
sinks that emanates from the bifurcafing orbit cﬁqngihg the di=

rection relative to u - i.e,, increasing values of M i (see dis- |,
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1

cussions before on saddle-ﬁgdes ghq geriqd doubling bifurcation§h

ink
5+ saddle

saddle (x,%)

(x!l)
saddle

Mx{1}
Mx{1)

In what follows we alsays prolong I' at a perigd doubliﬁg or un-
doubling bifurcation avoiding saddleg with corrgsponding negatiQe
eigenvalues (Moebius paths) and orient the path + (or to the right
or to inecreasing values of H) if 4t is a path of sinks and -
if it is a path of saddles. Noy we can not meach back M x {1}
since 9, has only periodic saddles and also we can not have a
cyecle, i.e. a closed orientqd path of periodip oxrbits, since the
initial path starting at M X {1] could not helong to it (see
figures above). So prOlongiﬂg P we muat reach either a saddler
node and we can again prolong I' follewipg the orientation abave
or we reach a pericd doubling ox undowkling bifurcation, in whigh
case we can also prolong [ iq a wunique yay avoiding Meebius

paths, as in the figures



..

sink
sink
‘ M 7 M
sink saddle
saddl sink
sink sink
>
M M
saddle sink

It is then clear, following the above procedure, that we do not
return to M X {1} for the reasons we explained‘before. We also
claim we can not terminate I’ in-M % (-1,1) 4if we go through
only finitely many bifurcating - orbits or even infinitely many
ones say (xi,ui) with bounded periods. In fact, in the firast
case, from our discussions on hyperbolic and generic bifurcating
periodic orbits, we .could clearly prolong I'. In the second case
we can consider a-limifing-point (%,u) ef (xi,Hi) and argue
that (X,u) € P and t?en by %hg%genericity assumption (&) on @,
{X,4) . had to be 1ooa11;“isolated as a bifurcating owrbit -of bound-
ed period which is not the case. .Thus ﬁe must go fhfough infini-
tely many bifurcating periodic orbits with unbounded periods.
This can be achieved only if we go through infinitely many period
doubling bifurcations with unbounded periods, which then clearly

implies the result in this case where we started the path at a



=49~

saddle (O(x),l) € B with positive eigenvalues.

Let us now begin with (0(x),1) ¢ P such that tho eigen-
values of dwgfx) are negative, k the period of =x, and a
path through it in P - a Moebius path. We will show that the
result is dlso ﬁrue in this case. Before we do that, let us again
grient our paths in the positive y-direction along a path of sinks
and in the negative W-direction both along a path of saddles with
positive eigenvalues (which we just call path of saddles) and
along a Moebius path. So iet I' be a Moebius path starting at
M‘x {1). As argued before, T must go through bifurcating orbits
and the first one must be a period doubling bifurcation. We then
follow the path of saddles of twice the period that emanatos from
it. At the next bifurcating orbit we repeat fhe procedure of pro-
loﬁging I" along the unique non Moebius path emanating from it.
But already at this point ‘we may get a cycle! That is, a closed
oriented path of periodic orbits not containing any Moebius curves.

The figure below illustrates this possibility

B

saddle
cycle

M sink
o e
e - e
2 1 M

‘saddle

Mx{ 1}



Iﬁ this case, we procesd witﬁ the Hoepius path in the left. This
pa%h can not return to the cytld or to M x {1} and so it must go
,thfbugh a new bifuycatihé orbit. So we can repeat the same pro-
‘ceﬁﬂre of prolonging T witﬂ nof Moebius paths. We then may or
may not create a ;ew cydie. If not, we argue as in the first case
and bbﬁain the re#ult. ff we crdate a new cycle then necessarily
we mist have the same nunibet bf %ériod doubling and period un-
doubling bifurcations - see brevious figures. Each one has =a
Moghius path emanating from it. We claim that one of these
Moebius path must go thrdugh ? new - that is, not in the cycles -
period doubling bifurcating orbit: if mnot, then each Mocebius path
in the gycles must have its etid peoints in a well defined pair pe-
riod undoubling - périod doubling bifurcations, but this contra-
dicts the fact that the first ohe is connected to M x {1} ({and
g0 it is not attached to any period undoubling bifurcation).

Tnis shOWS that, with the procedﬁre we have stablished, we can
always prolong I din a way thai: new bifurcating orbits are in-
trodpoedi As beforé their' periods must be unbounded, which im-
plies the result also in this &&8sé, The proof of the theorem is

completeo,

4. Homoclinic tangengies. SCaling and quadratic maps.

We consjider a one-paramétef'family of diffecomorphisms
@u: MM, M a a-manifoid, which has for p = 0 a homoclinic
tangency. Let p'.“l denote the saddle point of ¢u which is re-

lated, for W4 = 0, to this tangenpy. We assume the tangency of
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Wu(po) and wﬂtpo) to be genetrioc (parapolic contact) and also
to unfold generically.

. Before we gb ifito technicalities, we want to give a heu-
ristic idea of tHe comstruction to be described in this section
and its consequénces. Near P, Wwe take linearizing coordinates

x, v so that glx;y) =0.x, 0.y) with 0< |A] < 1< Jo

. We

assume ) and ¢ to be positive (otherwise we replace g by’

mz), and that %.0 < 1 (4f r.0c > 1 we replace ¢ by, w-l and

if A.0 = 1 our constrbhction does not work). Let g and 'r be
r 1

! D ':pn(Bn)

a4
n
A ) sus

‘g

Y

points on the orbit of tangehcy in the domaiﬁ of the linearizing
coordinates as indicated. So, for some N, ¢N{r) # Q. lFﬁr each
Sufficiently big n; we take a ﬁox Bn neér"q such that
mn(Bn) is a box near r as indicated., We consider ¢:+N(Bn),
and especially its position.relétive to Bn' As waé already
announced earlier, if one chooses Bn caréfully_then, for n
sufficiently big, ¢:+N(Bn) will cross over Bﬁ so as to create
a horseshoe.  We shall not only prove this but even show that,

after applying n-dependent coordinate transformaticns to both the

x, y variables and the u wvariable {denoting the new variables
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~

by X, ¥, and 1), ¢E+N converges for n - = +to the map ﬁﬁ s
. A e . w2 e (%
given by o5(%,¥) = (¥, ¥7+). ) _
Taking the box B in these {n-dependent) coordinates

equal to B = {(%,¥) | [X] £ 3, |¥| s 31 we get the horseshoe

ﬁﬂ:@)

3

9

~
—_—— = X

formation when [1 decreases from say 4 to -4, at least for n
sﬁfficiently big. )

Note that this limiting map is not a diffeomorphism any
more. This is related to the faét that mu is area contracting
at %4 and hence that ¢n+N, for n -+ =, becbmes more and more
area contracting.

For the limiting map, the value X is unimportant. Res-

tricting to the ¥ ~variable we have

e ~ ~
YV ey o+ U,

which is the well known one-parameter family of quadratic one-di-

mensional maps which was studied e.g., in [6].

This being the limiting map, ¢S+N "contains" approxima-

(*)

In the final statement of the result, we replace n+N by n.
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tions of this one-parameter -family and hence contains much of its
complexity, see [34]: hyperbolic sets, period doubling etc..
Because it will be used later, we give here omne example of
extending a fact about gquadratic maps to the one—parameéer fami-
lies like P, For [ near zero, the map ¥ = ?2 +{  has an
attracting fixed point near zero. Let Mp ™ 0 be the sequence
of y-values corresponding to ﬁ = 0 in the different reparame-
trizations of the H-variable. Then for n sufficiently-+big and

+N

Hoonear W, mz has an attracting fixed point.

Now we give a more formal and complete description of the
result. First we have to state some extra assumptions on the
l-parameter family wu. As we mentioned already we assﬁme that
the eigenvalues 5, g of (dcpo)p0 are posgitive and satisfy
hao < 1. Also we need 02 linearizing coordinates of pu. For

. o " 2
this reason we reguire wu(x) to be C in {d,x}. The C
linearizing coordinates (u-dependent) then exist, provided some

generic (even open and dense) conditions are satisfied by the

eigenvalues X and g, see [32].

Theorem. For a one-parameter family wu as above, with gq .a
point on the orbit of tangency for W = 0, thefe are for each
positive integer n reparametrizations u = Mn(ﬁ) of the 4

variable and |l-dependent coordinate transformations
%, 7} b= v ~(%,¥
(‘:Y) - v, 5 (%69)

such that:

~ for each compact set K- in the h, X, ? space the images of
K under the maps



54~

(~i;:§:) == (Mn(ﬁ),‘i’ (i,?'))

nyd

converge, for n - =, to (0,q);
- +the domains of the maps
(B,%,5) — (@, (¥ sog? (oot o))
= A, BT ()" e,

converge, for n -+ = {o¢ all of RS, and the maps converge, for
n+®, 'to the map
(B,5,9) —~ (T,6;(%,7))

with §r(%,5) = (F,5°+).

T#is theorem is aﬂ expanded version of a remark in §6.7
(p.336) of [7]. |
Proof. We start Wi?h carefully choosing u—depéndent c? linear-
izing coordinates near P, We denote them by (x,y). For u=0

we have ¢°(x,y) = (Ax,0y) with 0< } < 1< g and Ai.0 < 1.

Let g be a point on the orbit of tangency in the "local" stable

" (0,1)
ag

manifold of p and r ‘such a point on the "local" unstable ma-
nifold of p. By multiplying =x, ¥ with constants, we arrange

that q = (1,0) and r = (0,1). Since both r and q are on

L
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. . (1 N
the orbit o? tangengy? there is an N _such that @O(r) ? 9.
Fogr u near Zero we aggpt our lingarizihg coordinates so that:

- mu(o,l) is a lopdl maximum of the y-cobrdinate rpstricted to
u
w »
(Pu)s

- the x-coordinate of mg(Q,l) is 1.

1, b
2 ey
| _o(0,1) = o)

We "preparametrize" our bhifurcation ggpéﬁater M dn such a way
H | ) .
that the y~-coopdingte of ¢§(0,1) is M4

;
With all these preparations wp can write mS, near (0,1),

as .
(x!1?YE &*’(I!Q)‘+ (Hl(u#¥rY)gH2(u’st))
with
Hl(“'ng) = o.¥ + Hl(“!x:Y)l
= ~e
Hzgggﬁ’Y) =Ry M+ Yux s Hg(“:x!Y))l
where a, B, Y are non-zero constants, and where, for y = x &
=y = 0: .
-l 4 aN
Hl = ayHl = HHl = 0,
*

1[}
ar
(]
o
4
224
=13
1}
o/
|
(=]

HZ = axﬂz = BYHZ ulz 'Y'YHE yulla uullz =
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The functions Hi and ﬁi are clearly ¢? since mu is
¢ anduthe X,y-coordinates are 02.
Next we define an n-dependent reparametrization of u and
I

KW-dependent coordinate transformation by the following Tormulas:

- - - - 2 2
M =0 2n.u O S 4 =-Uﬁn.u + y.kn.c nolgt
x =1+ 0 & =g (x=1)
=11 -2n - - _f 2n n
=g Vo= 8.

v =0 + O 2 ¥y

Note that these are not vet the final repareametrizations
and coordinate transformations but the final ones will be easily
deducible from these.

Note also that ¢ and A depend on | apnd hence on (1 although
this is not expressed in the above formulas.

Finally note that a fixed box in the X, ¥ coordinates, gives

for n - » Dboxes converging to q In the x, ¥y coordinates.

Ve now start with oﬁr main calculation: expressing
mE+N in terms of [, X and ¥.

Let' {{,%,¥) denote a point. The (u,x,y) variables of

this point are (see above):

- n - - -
W =g NV £ R ] » x=1+0 3

-1 =-2n =
y&a + 0 Y.

After applying mS to thip ppint we get as x, ¥ coordinates
(W does not change)

X = kq.(1+c-n§ v + e ™.y

0
4

Next we apply ﬁf and fipd:
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x = 1+ 0.0 hF + H (uaT (14677R) 07 F)

=) =3 -2T1= k(! -
v = 8.07PF o (670 - vt 0™

n ;. =hn= e n - -n -
+ Yo o{l+g X)) + HZ(U,K (1eg™™) 07 F) .
Transforming this back fo the X, ¥ coordinates, and denoting

the values of these cooidinates of the mHew point by %, ¥ we

have:

X = a§+cn.ﬁl(c-2n.ﬁ-y.An+d-n, AL (14g™R), 7Y
b 2 i 2 2

F = ¥ +I+y. A g e X4 n.Hz(c' m ey AR ™,

Ao (14077R) ,0TPF)

Next we need to show that in thg above expression certain parts
converge to zero for n -+ # in the 02 topology (uniformly on
compacta in the W, X, ¥ coordinates}),

In the expression for ¥, the term y. M o™X goes clear-
1y to zero because Mg < 1. The terms involving ﬁi are more
complicated. We first observe that when

(ﬁ-ir§)
remains bounded, the corresponding values of
(U:x’(Y'%))

which are substituted in ﬁi satisfy:

o= o(a™™) 1
x = o(A™) *

y=1 = o{g™) Jf

N

as n goes to infinite.
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Next we define

5 (0,%,%) = gn.ﬁl!(c"zn.ﬁ_—y.kﬂu-c"n', V(e ™ %), 07T
Then i '
L e - A . . . y . i
ﬁl(o,o,o) = qn,Hl(py,An+s naR 6y = cn.(o(kn)+0(12n)),
. {

which converges to zero for n -~ ». Next, the first and second
order derivatives of ﬁi(ﬁ,i,i) converge to zero (uniformly on
compacta); this follows from % , **i , and O0< A < 1 = in
faot the derivatives of ﬁl are easier to dstimate tHan ﬁl
itsplf. T‘ﬂis is the way in which one pbroves that 'ﬁl goes to
Zerp as annhuneed, The same protedure works for the correspond-

ing expression in the formula for Y.

So for n 4+ » the transfdrmation formulas %% converge to

|
:'c';'ai
7) 7 \e52 . /)
¥° o+

By the substitution

f =
u
w

<

1]
0
)

this limiting transformation becomes'

s (7, ),
¥ ¥R

Now the theprem is essentially proved: - we have the an-

nounced transformation as limit of ¢:+N, composed with suitable

caordinate transfo;mations and reparametrizations of W3 the dif-
fexence betweoen ¢n in the staFement of the theorem and ¢n+N in

the p;oof is immaterial - N is fixed and. the Eonclusion’in only

?or n, or N+n, bpig.



-59-

CHAPTER IV

CANTOR SETS °

As already indibafed in earlier chapters, theiclosure of
a set of homoclinic intersections is often a Cantor set. In the
following chapters we shall have to impose, in the formulations
of several theorems, conditions on such Cantor sets. These con-
ditions will involve numerical invariants which we discuss in this
chapter. Since the'Cantof sets occuring are not of the most ge-
neral type we begin our disouséion with the description of "dy-
namically defined Cantor-sets": they form the clgss of Cantor

sets with which we mainly deal,

1. Dynamically defined Cantor sets.

We consider the following situation: ¢: M+ M idis a e
diffeomorphism of a 2-manifeld M which has a hyperbolic Tixed
point p of saddle type which is part of a non-trivial basic set
Ay, 1.e. gf a hyperbolic invariant set, whose'periodic peoints are
dense,'and which has a dense orbit - as an example one may think
of the "maximal invariant subset of R " as analysed in Chapter IL
By defimitiom, AN WS(P), as a subset of Ws(p) is a dyhamical-
ly defined Cantor set. With this we mean the following. Let
a: R Ws(p) be a smooth identification, say such that
avlo(m|ws(p))ua ' is a linear contraction (see.tBl]) and let K

be an open and compact neighbourhood of 0O in a-l(ﬁs(p) n oA,
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then K is called a dynamically defined Cantor set. Usually we
e#en assume that K is obtained by intersecting a"l(ws(p) n A)
with an interval K0 c R, contgining ¢, and whose boundary
points are not contained in a-l(ws(p) N A). We discuss some of
the main properties of these Cantor sets; we continue to refer to

the above situation.

Scaling. If a-lo(mlws(p))om is a linear contraction by A,
2caling

which we assume positive, then, since A 1is invariant under @,
LK = KN (x.KO)

where, for AcC@® and X3 € R, A.A = {X.a | a € Al. This means
that the choice of the interval Ko is not very essential: in

each interval [A.az,a) one has the same geometry.

Expanding structure. There is a smooth expanding map V¥: K -+ K

with some remarkable properties. We first construct this map.

As in Chapter II we choose an unstable foliation Ju, defined

on a neighbourhood U of A. Since the diffeomorphism ¢ is C%
this foliation is ¢ *®, If the interval K, is sufficiently
big, then we have a projection w, along leaves of Eu,_ of a
neighbourhood U’ of A to a(K ); clearly w(A) = a(X). This
projection is in general not unigque: one leaf of 3u may have
more than one intersection with a(K_ ). Since A is totally
discomnected, one can still make M, on a small neighbourhood

of A, continuous and hence differentiable (in fact

c!*®). The

derivative of w|(W%(p) N U') is bounded and bounded away from

zero since the components of W (p) N U are leafs of the stable
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foliation, which is transverse to’ F%. For N suffiéiently big,

¥ = a-lanow-Noa: K o+ K_

is, where defined, expanding in the sense‘fhat the derivative has
orm biggér than one. Indeed, thé possibié con%ractioné in
7|(w"(p) N U') are compensated by ﬁ_N. From the above comns-
truction it follows that ¥(K) = K (we also denote TlKl by ¥)

and that V¥ dis gl+e on a meighbourhood of. K.

Our assumpthion that Ko has to be sufficieﬁfly gib is no

' T

real restriction due to the scaling p}opefty. The'ﬁon;uniqueness
of ¥, due to the non-unigqueness of is still a problem to

which we shall return in the discussion of Markov partitions.

Markov partitions. Tor a Cantor set K and an exban@ing map Y

as above, we define a Markov partition as a finite set of disjoint

inte?vals Kl,...,Kk (o Ko such %héé ’ ‘ ¢ .

- ¥ is defined on a neighbourhood of each X,, i z}l;

- K is contained din .U\ Ki’ and the boundary of each Ki is
égnéained in Kj; oo

- for-eao# iz }Fl YéK;) is an interval, which is the convex

hull (in R) of a finite collection of the intervals of the
Markov partition; .

- for each i = 1 and n sufficiently big, ¥7(Xn X,) = K.

For a given Cantor set K as above there are Markov par-
titions; one can even make the intervals Ki as small as one
wishes. For the construction of such Markov partitions one needs

however to make special choices when defining ¥. The existence
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of these Markov partitions follpws from the construction of Markov
partitions for basic sets of diffeomorphisms, applied to the basic
set A of ¢, see [5]. .

Here we only indicate how to make such a Markov partition

when our bhasic set A is the horseshoe (see Chapter I). In this

_case W'(p) and W°(p) are as indicated below; A=W (p)n w¥(p).

el G(Ko)

_____ -V}
"1.5 - 1:1 Tl Taxs {" P SV 5 :
= . :
| o :
\ N b
\ K j
\-.__________“-—_/‘_‘,\U)‘ R IR A
f'——'_—"“'**’&/-—p—"___*‘\
L - ‘
i | i '
! N ||i !
5 T D R N K O
(:' /\ U", .\-‘ == —_——f —-/I
~=t-
o
o + 2 3 4 § 6 7 8 a8 1o M 2 13 114 IH- R
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p o 1 P ) IR L_4
= i = : ‘ Kﬂ
1 R-;: 5 X K5 K, Ky K
l 1 + y
= T =1 I, =1
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In W7(p) we indicated 16 intersections with W (p) (numbered
from O +to 15), they are all in a(Ko). In a "separate copy
of R" we indicate the inverse images of these points by o

and indicate the intervals Kl,...,KB of the Markov partition,

In the figure with W (p) and W (p) we indicated a(lc'o)
and U, the neighbourhocod of A on which we assume 3% to be
defined; note that with this choice of U and a(]{o), the pro=-
jection m (projecting U along fibres of %= to a(Ko)) is
uniguely defined. As expanding map we take

Y = a-lonum-laa.

The action of ¥ on the points ©0,...,16 is then given by:

0 i 2 3 L 5 6 7
i i + + + 4 i 4
] 3 4 T 8 11 12 15
t T + + t t + +

15 14 13 12 11 10 9 8

Taking as intervals of the Markov partition Kl,...,K8 as
indicated in the above figure, their images are Y(Ki) = Ii' From
this it 4is simple to verify that Kl,...,K8 forms indeed a
Markov partition.

Observe that if Kl,...,Kk is a Markov partition of a dy-
namically defined Cantor set K with expanding map V¥, one gets
a Markov partition with more and shorter intervals by-just taking
as new intervals connected components of Y-l(Ki). So one can

refine a Markov partition without redefining Y.
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So far we have seen the basic properties of dynamically
defined Cantor sets. For the purpose of what follows it is con-

venient to use these properties as definition,

+

Definition. A dynamically defined Cantor set is a Cantor set

.

Kc R, together with an interval KO, K c Ko < R, a real num-

1*€  Lap ¥: K » K, which can be

ber A, O0< |A{ < 1, and a ¢
extended to a neighbourhood of K, so that'ail the above asser-
tions about scaling, expanding structure and Markov partitions

hold.

Examples. In each of the examples below we define the Cantor set
by a Markov partition and expaﬁdihg ma;. Observe that with a
Markov partiton [Kl,...,Kk] aﬁd expan&iné\map ¥, we have as

. ©
Cantor set K = {] ¥ % (Kl Uewot) Kk). Further, we consider only

i=0 .
-examples where YlKi is affine, i.e. has constant derivative.

Our first example is the midig-Cantor set. In this case
1
Kl = [Os E (l‘&)]
Ky = I3 (1sd), 1]
2 2

and ‘ir|Ki maps K, affinely to [0,1]; the scaling constant
. 1 . . .

can be taken as ) = 5_(1-a)' For o = 1/3 +this is the most

well known Cantor set; in any case, for this construction one

needs 0 < g < 1.
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-1
¥ (Kl U K2)

’

_——— e =

;
'
]
1
!
H -2
bt —d b — [P B S (K U K,)

" The second example, or rather a class of examples, covers

the affine Cantor_gefs. They are defined by a seguence of inter-

. . r A r
vals Kl""’Kk with endpoints K&, Ki so that 0 = K/ <« K| <«

1 1
L r 4 o . T
< Kj < K, < Ky <oan< K Y|Ki maps K. affinely onto [0,K.];

as scaling constant one can take ) = Ki/Ki.

o
H
&

r
K K K K
°c K K K Xa 3 3 3
f o F — —
] ' 1 | 1 ]
i ] ] i ] i
) 1 | i i
i I t | 1 1
1 . M| l 1) —_— — — — =
-1

v~ (UK,)

Finally we define generalized affine Cantor sets. They

are obtained as the affine Cantor sets, only now the image T(Ki)

may be smaller. If we denote the endpoints of Ki as above by

k' and k¥ with .. < K' < KX < K* . <.. then :¥(X.) should
i i i i i+l i
just be an interval of the form [K& , K, ) with §, < 3'..
Ji J i €1 1

In this case one s#%ill has to verify whether ¥ is expanding,
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whether there is scaling and whether Y (K,NK) = K for big n.

In the special example below we have

¥ (K,nK) = (K,UK,) N K
?(Kan) = K
¥ (KnK) = (KUX,) n X

S S S

e =

I
|
=
L

One sees that Y is expanding, ?n(KiﬂK) =K for n=z 2. In

order to have scaling one needs O to be fixed point of the af-

fine map ?|K2.

Bounded distorsion property. The above examples are special in

the sense that ¥ was affine on each Ki. This is of course in

1
general not the case. However, as we shall see, the "distorsions"
due to the fact that the derivative of ¥, and its iterates, is

not locally constant, are bounded in a very strong sense. It is

for these estimates that we required ¥ to be c1*¢

Theoxem. Let Kc R beé a dynamically defined Cantor set with

expanding map Y. Then, for every ¢ > 0 +there is a & > O

~

such that, whenever 1% Qop 2ee

QO)IQ_l! Q_z y+-. and ao! 5

are two sequences in X such that
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la, - 4,1 < &3

¥la_g) = a_y,q» v(d_;) = d_;;, 3
the interval (q_i,ﬁ_i) is contained in the domain of ¥
it follows that E

ln 1 (eM) (a )] -l (WYY ED] | < e

for all i > Q.

Proof. From the fact ?pat ¥ is expanding it follows that for

some ¢ > 1 q ;-4 .| < 6.07". Since Y is Cl+e, and ¥
! =i Fed

is bounded away from zero, there is a constant C such that

- ~ ~ ~g, 1
f@ﬂ |Y’ (q-i)l -%l\y" (q—i)l | < C. a_i-Q_ile < C'ae'(c e) . From

; 1
this, and the fact that (v7)'(a_;) = TT ‘i”(q_j), it follows
. '=i
. =€
)l =c® . 2. By
1-o

choosing & small we can make this last expression smaller +than

i i ~
that | [(¥7) (a_j)| - @l (v*} (q_;
C.
We want to make two remarks on this last theorem. First,
it is clear that we used Y +to be Cl+e; in order to have this,
we required our 2-dimensional diffeomorphism @ to be CB. It

¥ ds only Cl, the above theorem is not wvalid. However, if we

would have started our constructions with a C- diffe&morphigm @,
and heﬁce obtained a Cl 'eiﬁanding map ¥, the above the;rem
would still be true for this map Y. The proof of ‘this, which is
of course based on the fact thaf. T is obﬁainéd from a Czlbasic
set, is contained in the proof of “é&ntinuity.of thiékness" in
[17] and [20]. |

Second, for K and Y as in the above theorem we can
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construct very fine Markov partitions Kl""’Kk of K. Then
the distorsion of ?i, on an interval of its domain of defini-
tion which is mapped by Ti into one of the Kj's, due fto the
variation of the derivative, is bounded, independent of i, and
can be made smaller by refining the partition. This means that
by taking a sufficiently fime Markov partition one gets a situa-
tion which is well approximated by a generalized affime Cantor
set (see the examples). This means that results, true for ge-
neralized affine Cantor sets, are often true for all dynamically
defined Cantor sets. This idea is formalized in the thermodynamic

formalism [ 5] .

2. Numerical invariants of Cantor sets.

In this section we define three numerical invariants for
Cantor sets, namely the Hausdorff dimension, the limit capacity
and the thickness. Then we discuss the Lebesgue measure of the
difference of two Cantor sets in the real line, in terms of these
invariants and finally we give some relations between these in-
variants when applied to the same Cantor set.

Before we can define the Hausdorff dimension, we need to
introduce some preliminary notions. Let X = R be a Cantof set
and U = [Ui}iEI a finite covering of K with open intervals in
R. We define the diameter d(u) of u as the maximum of L(Ui),
i € I, where L(Ui) denotes the length of U,. Define

Ha(u) = E Li. Then the Hausdorff o measure of K is
i€l
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m_ (K} = 1im ( inf H (u)).
a e+0 u covers K «
d(u) < 8

It is not hard to see that there is a unigue number, the

Hausdorff dimension of K, denoted by HD(K), such that for

o < HD{X), ma(K) = ® and for ¢ > HD(K), ma(K) = 0.

In order to define the limit capacity, let Ne(K), K again
a Cantor set in R, be the minimal number of intervals of length

¢ needed to cover K. Then the limit capacity of K, denoted

by d(K), 4s defined as :
o N (X)
“n €

d{K) = lim sup
g—+0

To define the thickness, we consider the gaps of K: a gap
of K is a connected component of ®R\K; a bounded gap is a
bounded connected component of R\K. Let U be any bounded gap
and u be a boundary point of U, se wueg K. Let € be the

maximal interval in R such that:

- u is a boundary point of Cj
- G contains no point of a gap U’ whose length 4(U’) is at
least the length of TU.

Uq ( U2 o
A}

T

U Y {
AY

S Y
e

7

{

T
.
1

7
E c
U, u', U, U, are gaps of K; L(u') » (), L(Ui) < 4(U).
The thickness of XK at u is defined as 7(K,u) =
= L(Cc)/t(U). The thickness of K, denoted by 7(K), is the
infimum over these 71 (EK,u) for all boundary points u of boun-

ded gaps.
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Now we come to +the discussion of the Lebesgue measure of

the difference of two Cantor sets. Let: Kl, K2 be subsets of R.

We define their difference as

K,-K, = {t € R | T k) € Ky ky € Ky, sueh that k;-k,= t]

2? 12

Proposition [ ]. Let K,+K, ©c R be Cantor sets with limit ca-

pacity d and d_ . If d +d2 < 1 +then the Lebesgue measure of

1 2 1

Kl-K2 is zero.

Proof. Let di, dé be numbers such that d, < di, dy < d; and

di+dé < 1. Then there is an g, such that for 0 < ¢ < C
’

- '
Ki can be covered with ¢ + intervals of length ¢; this fol-

1

lows directly from the definition of limit capacity. The differ-

ence of two intervals of length ¢ is an interval of length Ze.

-d} -d!
So Kl-K2 is contained in ¢ 1. e 2 intervals of length 2¢.
The total length of these intervals, ﬁisregardingoverlap, is
l-di-dé :
2.¢ - %, Since di+dé < 1, this can be made arbitrarily small

by choosing ¢ small. Hence the Lebesgue measure of Kl'Kz is

Zero.

Proposition [17]. Let K,sK, © R be Cantor sets with thickness

Tl and T2- It Tl.'r2 > 1 then one of the following three al-
ternatives occurs: Ki‘ is contained in a gap of K2; K2 is con-
tained in a gap of Kl; Kl n K2 ﬁ ¢+ 4As a consequence, Kl-K2

has positive Lebesgue measure and it even ceontains nontrivial in-

tervals.

Proof. We assume that neither of the two Cantor sets is contained

in a gap of the other and we assume that .Kl n K2 = ¢, and derive
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a contradiction from this. If U u are bounded gaps of K

1t 2
K,, we call (Ul’Uz) a gappair if U, contains exactly one

l’

boundary point of U, (and vice-versa). Since neither of the
Cantor sots is contained in a gap of the other and since they are
disjoint, there is a gappair. Given such a gappair (Ul,U2) we

construct:

either a point in Kl n Ka, o

or a different gappair (Ui,U2) with ¢(U]) < 1{u,),

or a different gappair (Ul,U’z) with {,(U'z) < {,(Uz).

This leads to a contradiction: even if we don't find a point in
Kl n K2 after applying this construptién a finite number of times,

we get a seguence of gappairs (U§i),U£i)) such that L(Ugi)) or

(

li)) goes to zero, take

L(Ugl)) goes to zero; assuming (U

'Fle.

qi £ Ugi) and any accumulation point of {qi} ‘belongs to‘Kl

Now we come to the announced consiruction. Let the rela-

1 and U2 be as indicated.

—_— U1
{ ( 3} 3
Ay LY 7 x

———————
U

tive pogitdion of U

Let Cg and Cz be maximal intervals "arounqﬁ u, {to

the left and to the right) comntaining no points of gaps of K,
which are at least as long as Ui (see the definition of thick-'

ness and the figure below).

i C{i le Uy ——»je—— Ci‘ _
g !
. y [ 1 1
f [—X X )L H ] T
! ' L i | ' r A
ey e Y, =i Cy i
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1(e7) t(c,)

) ' e(uy)

4
4(02)‘> L(Ul), or both., So the right endpoint of U, is in C]

Since T.,.T

> 1, > 1. So L(Ci) > ¢(U,) or

172

or the left endpoint of Ul is in Cg,

first. Let u be the right endpoint of U2. If uce K1 then

or bhoth, Suppose the

we are done, since u € K, anyway. If u ¢ K,, then u is

2

contained in a gap. U] of X, with L(Ui) < L(Ul) and (U’,UE)

is the required gappair. This completes the proof.

Proposition. Let Kl and K2 be Cantor sets in R with

Hausdorff dimension h1 and h2. If hl+h2 > 0, themn, for

almost any scalar ) € B, the Lebesgue measure of Kl - R.Kz is
positive. Almost any scalar means here that we only have to ex-

clude from R a set of Lebesgue measure zero.

For the proof of this proposition, which is much more com-
plicated than the proofs of the first two propositions, we refer
to [14].

Next we come to the relations between the different in-

variants when applied to the same Cantor set.
Proposition. Let K< R be a Cantor set. Then d(K) = HD(K).

Proof. For any d' > d(K) and ¢ sufficiently small, there is

a covering of K with e_d intervals of length e. For such a
. " - d. I dh’

covering u, and d' » d', we have Hdﬂ(u) =€ . . For g

going to zero, this lasit expression goes to zero. This means that

for any d' » d¢{K), the Hausdorff d' measure of K is zero, and

the proposition follows.
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Proposition. Let K< R be a dynamically defined Cantor set.

Then d(K} = HD(K).

Outline of the proef. We prove the proposition only for affine

Cantor sets (see the examples in the previous section). For the
extension to the general case we give some indications and refe-~
rences to the literature. For the affine case we can even prove

more.

Lemma. Let K be an affine Cantor set defined by a Markov par-
tition Kl""’Kk (see the examples in the previous section) with
L(Ki) = A; and such that the convex hull of K {or of

K, U...u Kk) is a unit interval., Let O < d < 1 be the unique

number such that I kg = 1. Then d(X) HD({K) = 4.

Proof. We first derive a contradiction from the assumption that
a(K) > d. Take 4’ > d(X) » d. Let €, be so that for 0 < e <e,
K can be covered with c-d’ intervals of length g. Hence Ki
can be covered with e'dl intervals of length hjee {for g < eok
in other words, for ¢ < kieo’ Ki can be covered with
(e.lgl)-d' intervals of length ¢. Applyving this to all the in-
tervals K;s we obtain: For ¢ < min (li.eo), K can be cover-
ed by e-d‘-(z Ag') intervals of 1e:gth €. Now, since d' » 4,
z ki!< 1, say I A:l = a{d’). Note that, since we assume
a(K) > a, even g(al(E)) < 1. Letting 3% = min A, we derived:
1

For e < x"o’ K can be covered by a(d’).e-d{ intervals
of length ¢. By repeated application of this argument we get,
for N > O:

?
For ¢ < A .¢ K can be covered by (a(d’))N.c 4 intervals of
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longth ¢. So the limit capdcity is at most

L o@D @) ),
Nogeo t JM(KN.dO) B

on ald’)

>

i
n
For d sufficiently near d(K), this last expression is smaller

than d(K); +this is the required contradiction.

Next we derive a contradiction from the assumption
HD{K) < d. Take HD(K) < d* < d. There are coverings
u = {Ul,...,UN} of K with arbitrarily small diameter for which
Hd,(u) = I L(Ui)d' is also arbitrarily small. We assume the
covering | to be such that no gap between differenti Ki‘s is
contained in one element of the covering. This will be t@e case
if we require 'Hd,(u) to be smailer than some g(d’'). From
these assumptions it follows that. there are %k disjoint subsets
I(1)yeaasE{k} of {1,...,N] such that for each J= 1,004,k
LA I
formation Yj = ?|Kj, we get for each 1 £ j £ k a new cofering

is a covering of Kj‘ Using the affine trans-

of K whose elements are {¥j(Ui)}

, 1€T1(3)"
’ N .
Let m, = 3 L(?i(Uj))d =34, 3 (Y. Let m. =
i€I(§) 3 iex(y) + Jo
. , .
= min(m,...,m ). We claim that my s % L(Ui)d . Otherwise
-a’ ar
we would have for each j=1,....,k, z Ao WU s
, ; 1EI(j)N J t
d - I I '
L(Ui) , hence T L(u )d > hd . I L(Ui)d , SO0

N
E . X
i=1 i€I(4) * S !
N v’ ¢ N ¢ ' ' '

d d d
z L(Ui) > (T Kj ). T L(Ui) ; but this contradicts the fact
i=1 i=1

df
that I Aj > 1,

So, starting with a (finite) covering | with Hé,(u) <

1
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< g(d’) we obtaih, by restricting to a well chosen K. and then
enlarging it by ¥, = YlKi? a new covering 1’ with:

- Hg (W) s Hy (u) <'s£d’);

s

- lias less elements than i;.

Repeating this construction we finally get a covering with no

elements; this is the required dbn%raﬁiction and concludes the

proof of the lemma,

As to the proof of the ggneral case, we observe that the
first estimate, velating the limit capacity d{(K} with the con-
traction rates Xl""’kk can easily bp extended to generalized
affine Cantor sets ard then can Be treated by the texmodynamic
formalism; see the remark at the énd gf Section 1, On the other
hand, a calculation of. the Hausdorff dimension of dynamically de-
fined Cantor sets by the termodynémical-formalism was undertaken
in [15]. In both cases the vesult is fhe‘égmé:

The Hausdorff dimensicn and the limit capapity of K are
both equal to the comstant d, for whiéh the preséure of
-ddn(|Y'}) is zero, where Y’ is the derivative of the expand-

ing map defining X, se [15, 5].

Remﬁrk. The above proposition is a consequence of the régularity
of dynamically defined Cantor sets. It makes that the propbsi-
tions on the measure of the difference of twa Céntor'sefs,:in
terms of limit capacity and Hausdorff dimenSi;n, cover, for dy-
namically defined Cantor sets, almost all cases - the excepiions

being d(Kl) + d(Kz) =1 and K, - A\K, for exceptional values

of ).
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Proposition. If K is a Cantor set in R with limit capacity

«, then the thickness of K is at most o1/ (1-a) _ 5,

Proof. It follows easily from the definitions and the previous

discussions, that for the middle § Cantor set we have

T(K,) = (1-B)/28
and :

alky) = @ 2/ 2 - (1-0)).

Let now K< R be a Gantor set with limit capacity d(X) = a-
Then for

‘a';gﬂ 2/(tn 2 - m(1-8)) < 1 (1)

we have that the-Lebesgue measure of K = K is zero, The in-

26/ (a-1)

‘equality (1) is equivalent with g > 1 - For these

values of 8, +the thickness of K satisfies

B
50/ (a-1)

2. (1-2%/(a-1)y

T(KB) <

For these values of g the Lebesgue measure of K - Ka is zero,

S0

212/ @) 1/

T(K) < za/(u-lj-

2.

This proves the proposition.

3. Local dinvariants and continuity.

We cornclude this chapter with some remarks on localized
versions of the numerical ‘invariants for Cantor sets introduced
so far, and on the (continucus) dependence of these invariants on

the Cantor set, at least for dynamically defined Cantor sets.
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We give the definition of local thickness; local Hausdorff
dimension and local limit capacity are simiiarly defined. Let
K< R be a Cantor set and k € K. The local thickness 7 (K,k)

of K at k is defined as

t(K,k) = iim (sup (K)). .
: ge+0 HKcK

K contained in an
g -neighbourhocd of k

For dinamically defined Cantor sets the notions have soma addi-
tional properties. Let K be a dynamically defined Cantor set
with expanding map Y. Then for every Uc K, U open, there
is some =n so that ¥7(U) = K. From this and the bounded dis-
torsion property it follows that the local invariants 7 (K,k),
HD(K,k), and d(X,k) are, in the dynamicall& defined case, all
independent of k. Also, since the limit capacity and the Haus-
dorff dimension are invariant under.diffeomorphisms, one has in
this case HD(X,k) = HD(K) = d(K} = d(X,k). The thickness is not
invariant under diffeomorphisms, énd we may have 1 (XK) < 7(K,k).

This localization was introduced in [20], at least for the
thickness.

For a discussion of the continuous dependencé of the in-
variants on the Cantor set, we restrict completely to the dynam-

ically defined case. Let K be a Cantor set with Markov parti-

tion Kl""’KL and expanding map ¥ which is Cl+s with Hblder
I P .
constant €, di.e. with ¥ ?p)-Te(q)] < € whenever p # q. We
P-q

say that the Cantor set K is near K, if K admits a Markov

par@}#ion ﬁl""’ﬁt and expanding map ? such that:
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- {ﬁi} is near {Ki} in the sense %hé%.corresponding endpoints
are near;
i 1

- ¥ is. C near VY;

l+e

- ¥ is ¢ with the same HBlder comsiaiit c.

Using again bounded distorsion i%ffoiiows that the (local)
thickness depends CDﬁfinuouslylon K, séé ﬂZO] for details.
The corresponding continuity of the Hadédorff dimension, and
hence of the limit capdcity was obta;ned 1n El5] as a consequence
of theé variational prirciple.

Observe that if ¢ ds a Cj &iffebﬂorphism in dimension
two with basic set A and saddle pqiﬁ%. P, then for a o3
nearby diffeomorphism $ with basic set K ahd saddle point D,
the dynamically defined Cantor sets wh(ﬁ§ NA and WO (B)n A
will be near in the above sense (4t ﬁhtpj and W(B) are
suitably parametrized). This follaws ffﬁﬁrthe continuous depen-

1l+g

dence of basic sets énd their C s%able and uwnstable folia-

tions on diffeomorphisnls.
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CHAPTER V

HOMOCLINIC TANGENCIES, CANTOR SETS AND MEASURE

OF BIFURCATION SETS

In this and-the following chapters we discuss results re-
lating the invariants of Cantor sets from the previous chapter
with homoclinic¢ bifurcatioms. Here we déal especially with ques-
tions about the (relative) méasure af the bifurpation‘sets We
begin with the definition of hyperpolic'or non-bifurcating diffeo~
morphisms. Then we construct a special family of diffeomorphisms

¢ {in fact a class of such families) which has a'hochlinic bi-

¥l
furcation for | = 0, This l-parameter family will be used to

illustrate the resulis, which will be stated in general, and fto in-

dicate how to prove these results.

1. Hyperbolic diffeomorphisms.

In the present section we deal with diffeomorphisms which
are not bifurcating. First we discuss the definitiop of these so

called hyperbolic diffeomorphisms, then we say wﬁy‘these are Jjust
the non-bifurcating diffeomorphisms, ang final}y,give‘ an example.,
Let @: M+ M he a diffeomorphism on a compact manifold,

1

In the present section we take ¢ to be C and M of arbitrary

dimension. For x &€ M, we define the & and @ limit as

n,
a(x) = {ye M| = n; + -» such that ¢ 1(x) + ¥}

w(x)

It

n,
{ye M| 1 n, -+ +=  such that g (x) + v}.
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The positive limit set of ¢ dis then defined as

L' (p) = U w{x).
xeM

From the definition it is clear that L¥(p) is a comﬁact
invariant se%, invariant in the sense that oL (p)) = L7 (0), and
that for each x € M, ¢ {x) approaches L (p) as n goes to
infinite. So L+(¢) and ¢|L+(m) describe the assymptotic be-
haviour of orbits (i.e. sequences {¢n(x)}nez) in M fof H -+ @,
Siﬁilar;Y: one can define L7 (). Although not needéd here, we
also recall that a point x is called nonwandering if for any -
neighbourhood of it there is an integer n sucﬁ that o™ (U) N U £
£ 9. _The union of such points is a closed set denoted by Q(@)
and we have ;+(¢) U L7(e) = a(p); also any homoclinic point is
~ nonwandering.

We say that a compact set K c M, invariant under the
actisn of ¢, dis hyperbolic if there is a continuous splitting
of .TK(M) as Tp(M) = E; @ E;, i,e. for each x € K. a split=

ting TX(M) = E; ® Ei depending continuously on x, such that

- the splitting is invariant under the action of dg;

-~ there are constants 0 » 1 and € >» 0 such that for v € E§
and n » 0,

. C lee™ () =z c.om v

and such that for v € E; and n » O,

lap™(v)] = ¢" Lo ™ |lv

Here H H denotes the length of a vector with respect to some

Riemannian metric.
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We say that a compact invariant set X as above has a
cycle if there are points XyseoosXy = X, not all in HK, such
that
- a(xi) and w(xi) are contained in K for all i=l,...,k;

- w(xi) N a(xi+l) #¢ for i=0,.,..,k=1.

If K has no cycle we say that K has the no-cycle property.

Finally we say that the diffeomorphi;m ¢ d4is hyperbolic
if its positive limit set is hyperbolic and has the no-cycle prop-
erty.

It follows from [ 18] thaf this notion is eguivalent with:
the Q-limit set . of ¢ is hyperbolic, is the closure of its pe-
riodic orbits and has no cyqles. In this ;ituation we have the
-stability theorem [[30] which in our terminology can be formu;
lated as:

Theorem. Let ¢: M + M be hyperbolic. Then there is a neigh-
bourhood U of @ dim Diffl(M), the space of C' diffcomor-
phisms, such théf any 5 € U is hyperbolic and thewre is a homeo-
morphism h: L¥(p) » L7($) which makes the following diagram
commutative:

L* (o) — 2 L¥(p)

e
Fpeey - ® -
LY (§) ——F— 1Y(§).
We then say that . the hyperbolicity of ¢ dimplies that o is

LT -stable. In other words, the topology of the dynamics, at

least when restricted to.the psotive limit set, does not change
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if we pertlhrb ¢ inside U. THis is the opposite of what hap-
pens at a bifurcating diffeomoiphism, where the topology of the
d&namics may change as a conseqﬁence of an arbitraprily small per-
turbation. Moreover, by vesults of Liao [11] and Mané [12] in di=-
mension two the assumption of hyperbolicity in the above theorem
'turns out to be not only sufficient, but also necessary for the
conclusion. That the no~cycle property is necessary in any di-
mension had been proved in [23]. The (-stability Conjecture
states precisely that £ dis Q-stable iff Q{f) is hyperbolic

arid has no cycles®. So for the purpese of this chapter, we de-

fine a bifurcating diffeomgrphism simply as a diffeomorphism

which is no? hyperbolic. Also if wu is a L-parameter set of
diffeomorphisms, we define its bifurcation set B as
B =‘[u | ?y is not hyperbolic}.

Note that bifurcating diffeomorphisms include all diffeo-
morphisms which have at least one periodic orbit which is non-
Hyperbolic (see Chapter III) and also all diffeomorphisms which
have a homoclinic tangenﬁy.

Finally we indicate one non-trivial example of a hyperbolic

diffeomorphism on the 2-sphere 82. It is in fact the horseshoe

example from the intioduction but now in Sz‘ﬁ R2 U = instead of

in  R®. We take in §%3 the diffeomorphic‘iéégg of a square Q

with two semi-circular discs D, and D, attached as indicated.

After these mnotes were written, a proof of the C1 (1-stability

. Conjecture in any dimension was presented in [26], based in

1

Mafié's solution of the € Stability Conjecture.
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%(Q)

9(p,) —] — o(0,)

We let o map QU D1 U D2 inside itself as indicated,

i.e. so that in Q we have the horseshoe example and in Dl

we have ong hyperbolic sink Si, attracting all pdints in Dl’

We oxtend ¢ to the complement of Q U D, U D, in s? in such

a way that there is only one hyperbolic source So and such that

for each x € s® - {q y nl'u Dz), 1im o (k) = 8,0 It is easy
: oo ‘

to verify that in this case the positive limit set consists of

Si1 SO, and the maximal invariant subset in Q. This last set

can be analysed as in Chapter II and is hyperbolic.
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For later reference we let p .denote the indicated saddle
point in Q, see also the introduction; A denotes the maximal
invariant subset of Q. The Cantor sets W° n A asna w¥ n A
are clearly dynamically defined (if o is C3 and if we take a
correct identification of W°(p) and W' (p) with R); these
are the Cantor sets to which the results of Chapteir IV shall be

applied,

2, Construction of a bifurcating family'pf diffgpmbrphisms.

The one-parameter family of diffegamorphisms which we
construct in this section, is based on the example in the last

section of a diffeomorphism in 82 with 4 horseshoe, a source,

2 diffeoomorphism by ;

3,

and a sink., As before, we denote such §
here we assume this diffeomorphism ©®» to be

Let 4 be a curve from . € wi(m) to r, € Wi p) as

indicated in the figure. U denotes a small neighbourhood of ¢
which is devided by the local components of Wo(p) n U and

U

n - - . .
W (p) N U containing r, and r_  in the regions Uys Upr » and
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UIII' We shall obtain our one-parameter family by modifying the

map ¢ din U, i.e. by composing ¢ with Yu, Tu a one-para-
meter family of diffeomorphisms which are, outside U, equal to

the identity.

Before we describle Y , we analyse the dynamic properties
of orbits passing through U; we assume that this neighbourhood
U of & is sufficiently small so that: the following considera-

. . n
tions are valid. If x € U U Uy then ¢ (x)

n -+ 42, 4o the sink Si

tends, for

. ' n
and if x € Upg U Urpp then o (x)}

tends, for n -+ -x o" For x.e U

sy to the goprce S TIL? the po-
‘sitive iterates @ (x}), n -+ 4=, will stay near W (p), but

apart from that they may go to the sink or may stay near A
(A,

see the previous sechion, can be defined as A = W (p)nW>(p));
in any case there are points x € Uprp such that mn(x) € UI for
some positive n. Similarly for =x¢ U

I’V the negative iditerates
-n
© (x), n o 4,

will stay.near W°(p), but apart from that they

mayY go to the soure or may stay near jA; 4in any case there are
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points x € U_ such that ¢ (x) € U

b for some n » O.

III
Now we come to the desoription of the ane-parameter family

Yu moving the points in U. We take ?“ so that:

- for u = -1, Yu is the ddentity;

- for wu > =1, YN pushes points in U down {(in the direction
of UIII) so that for L < 0 U; dis still mapped inside

Up U Upygi

- for u = 0 there is a tangency of ?0(Wu(p)) and w%(p), or

more precisely of ?Q(UI n UII) and Up N U this tan-

ixz!
genoy has parabolic order of contact and unfolds generipally for

M4 » 0 in two intersections.

Below we indicate the stable and ungtable manifold of p

for the'diffeomorphism Yuom, M =0,

A
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From the discussioil df tHe dynamiga of the points in U
under iteratioms of @, it ?biidwa that for u < 0, the posi-=
tive limit set of mu = Yuam is the same as the positive limit
set of ¢. This implies th8¢ the bifuprcation set of the one-pa-
rameter family ®, = Tuq@ is cofitained in R_= {u | w2 0},

In this case we gay that the homocliniec tangency for u = 0

is a first Bifureation.

For n = 0, L+(¢o) = L+(m), but now L+(¢O) has a cycle.
For 4 » 0, the positive limit set of ¢u is strictly bigger than
the positive limit set of ¢. The orbits in L+(mu) - L5 (p) are
limits of orbits which go through U, From the above discussion
of the dynamics of paints in U under itgration of ¢, it fol-
lows even that these wu-ofbits have to pass infinitely often

through YH(UI) N UIII'

We observe that the main properties of the one-parameter
family D, remain after a small perturbation (small in the c3
topology) as long as W = O remains the first bifurcation. So
in fact we comstructed a whole open class of bifurcating ércs of
diffeomorphisms. What folldws is applicable to any element of
this class.

Let A“ denote the horseshoe of mH, i.e. for M e O

M
sink; for W > O, Au is the continuation of A, which can be

A is the positive limit set of 9y without the source and the

obtained, for small positive pn, Uy taking a sufficiently small
neighbourhood V of AQ and then taking Au the maximal in-

variant subset of V for @u. For mu as constructed, A“ is
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independent of py. But this does not persist under small pertur-
bations of thé one-parameter family. So in general wé must allow
for a W-dependence of A = +the same can be said conceérning the
H=dependence of the Saddle point p.

As in Chapter II, we construct the stable and the unstable
" THese folia-
(in this chapter we use only Cl) and depend dif-

foliations 33 and 3; on a neighbourhood of A

. 1
tions are C +e

férentiably on Wd. We can if mnecessary extend the domains of de-
##nition of 35 and 3: by applying le respectively .

I# this way we can obtain that both 33 ‘and 33 are defined in
a neighbourhood- - of the point of first tangency in U, In parti-
‘cular we want both 35 and 3: for M positive and small, be
defined on the disc bounded by the two components of ﬁs(pH) neu
and Wu(pu) M U which made the first tangency. From ﬁow on we
d?note ﬁheSe components, which ére also\}eaves of 35 and 33 by
.ﬁé(p“? and Iﬁu(pu).

)

(p

ﬁg(pu)

The line L“ is defined as the set of points where the leaves of
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F and 33 are tangent. From the fact that the contact of

p ) and ﬁs(po) is parabolic and the fact that the foliations

3: and 3;_ are 'Cl, it follows that L“ is a smooth curve, de-

pending differentiably on u.

Both in 35 and 33 there is a collection of exceptional

leaves - the stable and unstable manifolds of points of AH°
The collection of these leaves is denoted by 3S(A“), 3“(Au)=

they are just the leaves of & 3: passing through points of

$
ul
A,
V)

In the following sections we mainly deal with the geometry

)
restrigted to the disc bounded by ﬁs(p“) and ﬁu(pu).

of the configuration forhed by 35, F', ES(A“), 3“(Au), s when

3. Homoglinic tangencies with bifurcation set of small relative

measure - statement of the result.

’

The result which we discuss in this section has for the
one-parameter family (or class of one-parameter families) cons-

tiucted in the last section the following conseguence.

Theorem. Let ¢H be a one-parameter family as constructed in

the last section. Let d" and d° bve the (1ocal) limit capacity
of w“(po) n A, and Ws(po) nA_. If a"+a® < 1, then

m{Ble ) n [O,H ])

lim 0,
p0+0 u0

where B(¢“) is the bifurcation set of the one-parameter family
wu: B(¢u) = {u €ER | wu is not hyperbolic}, '~ and where m{ )

denotes the Lebesgue measure.
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In the next section we shall descéipibe the structure of the
proof of this theorem which is taken frdm [25], In this section
we discuss more gemeral assumptions utidéy which the cohclusion of
the theorem still holds.

First, we restrict our one-parameber=families to Cg—diffeo—
morphisms mu: M+ M of a compact Repanifold M. It is clear
that we have to assume that our diffgomoppliisms are ¢?: other-
wise we even cannot say what a generic tRngency is. We actually
agsumed ¢ to be 03 but this is not really neopgsary for the

present theorem. If ¢ is only 02 the stable and unstable

feliations are still Cl. The restriction te 2rmanifolds is
somewhat more arbitrary and in faet the résults can be extended
to higher dimensions, but for this we would have to ihtroduce se-
veral new concepts, sep also [33].

Second, we pestrivt to thosse ofie-paramster families m“
which have a homagliniec tangenecy for U = 0 which is generic,
which unfolds generically, and which is a first bifurcation, i.e.
for W< 0, g is hyperbolic. Let L+(cpu) be the positive
limit set of ¢, - We also assume that &jg'L+(¢H) = L: exists
and that it is a compact invariant hyperbolic gubset for @U.
This means that the homeclinic tangeney should not take place in
the 1limit L) of positive limit sets.

Thege restrictions are impoded by the methods of proaf
which will be discussed in the next section. It is nob clear
whether these conditions are really necessary for the conelusion

we ape interested in; small relative measure of the bifurcation

set near zero. In this context it is worth remembring the example
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of a homoclinic bifurcation which we gave in the introduction:

a horseshoe map composed with a "translation downwards". It is
not known whether the first tangency of stable and unstable mani-
fold of p“, as indicated in figure 2, dis a first bifurcation.
If it is, it is a tangency inside the positive limit set. We
have no informatien on the relative measure of the bifurcation
set in this case., TFor a discussion of the last assumptions and
the restrictions which they impose on‘the global topology of the
dynamics of ¢ _, see [24].

Thirdly, and finally, we impose some generic conditions:
for u = 0, %, should only have one orbit of tangency of a
stable and an unstable manifold. Also, in some cases depending
on the global dynamics, we have to require that |det(dwo(po)ﬂ £ 1,
where Py denotes the saddle point related to the homoclinic tan-
gency. (For the one-parameter family constructed in the previous
section one did not have to impose this last condition on the de-
terminant of dmo.)

For a oneé-parameter family ¢u as above and with Py ~ the
saddle point of S related with the homoclinic tangency, we de-
fine the stable and the unstable limit capacity as the (local)
limit capacity of Ws(po) N L; and Wu(po) n L;, where as before
L: is the limit of L+{$u) for u approaching 0 from below.

Then under these more general assumptions we have the same

conclusion;

Theorem. If, in the above situation, the sum of stable and un-

stable limit capacities is smaller than one, then
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m(B(¥,} n [o,u1) )

lim
p040 Mo

4, Homoeclinic tangencies withlbifurcation set of small relative

Egaéure - idea of the proof.

In this section we want to outline the proof of the first
theorem in the previous section (for the one-parameter families
w“ as constructed in Section 2); a detailed exposition of this
proof is in [25] but we ‘hope that the present outline is even
usefull as a preparation for reading the complete proof.

‘As a first step we have

Proposition 1., For each ¢ » O, +there is a “1(0) > 0 so that

for every ‘0 < iy <« ul(c) such that the distance in Lu (see
Section 2) between points of SS(AH) and 3u(Au) is at least

c.ul(c), we have that ?, is hyperbolic.

The proof of this first proposition is based on the fact
that this minimal distance c.ul(c) implies a minimal angle of
intersection between leaves of ES(AH) and Ku(hu) which enables
us to;prove hyperbolicity by the cone construction described in
Chapter II.

For the next considerations we use an identification of L
with R. We denote the points in R corfesponding to Lunﬁs(p“) and
Lu n ﬁu(p“) by a, and bu, and denote the subsets in R cor-

ding to 4 n 3° " .
responding to u n 3 (A“) and 4 0 ¥ (Au) by Au and Bu
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The relative positions are as indicated below.

1
T
>y
B M
The set A_ is the dlffeomorphlc 1mage of a scaled set
in Wu(pu), the diffeomorphism being the C1 prOJectlon along
leaves of 33 to 4, Letb o{u) be the expanding eigenvalue
of dﬂd' at qd. " Then we define the cofresponding "linearized
set"™ LA as
(a)

n
L(a,) = Lim (1, 500" ()
aH,c(u) is the affine transformation fixing a“ and

multiplying distances with o(r); the convergence is with res-

where H

pect to the Hausdorff meftric on compact parts. In the same way

one defines L(Bu).

Proposition 2. For each ¢ > 0, there is a p2(c) > 0 so that

for every 0 < U < uzfc), A n (a “) is contained in a
(c.uz(c))_— neighbourhood of L(Au) and BLl n (au,bu) is also

contained in a (c.uz(c)) - neighbourhood of L(Bﬁ)°

The proof of this proposition is quite elementary and uses
only the definition of derivative.

" For the next proposition we use the notation A+t, where
AcR and t € R, fé denote the ;et A shifted o%er a distance

t to the right.
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Propogsition 3. For each ¢ » O +there is a “3(0) > 0 so that

for any 0 < U < pB(c), L(AH) N (a“,b“) ig contained in a
(c.uB(c)) neighbourhood of L(AO) + (au-ao), and L(B“) n (auﬂh)

is contained in a (c.pj(c)) neighbourhood of L(Bo) + (bu_bo)'

This proposition is somewhat complicated to prove especial-
ly since the scaling factors of L(Au) and L(B“) depend on WM.

The proof is mainly analytical.

In the last proposition we assume that the sum of the

limit capacities of L(Ao) and L(BO) is smaller than one.

Proposition 4. For each & € (0,1) there is a ¢(&) such that

for every 0 < ¢ < ¢(§), there is a uu(c,é) > 0, such that for
each 0 < [ = ph(c,b),

m(fu € [O,H] | aist((L(a)+(a,-a }),(L(B )+(b -b ))) < c.d})

p— < &.
v

The proof of this proposition is based on the fact that
if Ac R is a scaled set with (local) limit capacity d and
if 4’ » d +then there is an eo > 0 such that for any a > O
and 0 < g < eE AN [—a,fu] can be covered by adie"d’ in-
tervals of length e¢.

The final result, the first theorem of Section 3, follows
from the above propositions and the observation that the limit
capacities of L(AO) and L(BD) are egqual to the limit capa-
cities of Wu(po) N A, and Ws(po) N A,. In fact L(AO) and

.L(BO) are equal to these sets, up to an affine transformation.
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CHAPTER VI

INFINITELY MANY SINKS

In this chapter we present a proof of the following re-

markable fact.

‘Theorem [19]. There are subsets w c i of Diffz(sz), U open
and 1 of second category in V¥, such .that each ¢ € y has in-
finitely many sinks.

By 1970, Newhouse [17] had exhibited an open set in
DiffZ(Sz) of nonhyperbolic diffeomorphisms. Similar results

were already known in higher dimensions [1] and even in the ct

setting (the ¢t questioﬂ on 8% is still open). The novelty
to obtain the (02) result on 52 was the use of thickness of
Cantor sets - see Chapter IV - to get full intervals in the%r
arithmetic difference. {Curiously, M., Hall had used the same
concept and obtained & similar result but in the number theoretic
contex {8]). Heré the Cantor sets are intersection points of
leaves of foliations #S(A) and 3u(h), A a basic set of a dif-
feomorphism of Sz,' with a line of points of tangency between
the leaves of extended stable and unstable foliations defined in
a neighbourhood of A - see Chapters II, V. Persistence of in-
tersections of Cantor sets leads then to persistence of orbits of
tangency between stable and unstable leaves of a basic set, which

in turn yields an open set of nonhyperbolic diffeomorphisms. A

few years later this construction was blended together with the
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appearence of a sink when unfolding a homoclinic tangency and the

theorem stated above was obtained.

1. Proof of the theorem.

To shorten somewhat the exposition, we will start the
construction of the sets U, ¥ in Diffz(sz) considering a c®
family of diffeomorphisms: +the family mu exhibited in §370f the
previous chapter. Recall that P, has a basic set A“ {a horse-
shoe) with a fixed point HJ € AH and, as in §3 - Chapter III,
we assume that ¢H is 02 linearizable in a neighbourhood of pu,
M small, which is a generic assumption. Also, ¢, has a para-
bolic orbit of tangency @(q) related to p = P, which unfolds
for U » 0 dinto two transverse homoclinic orbits, We also add
the simple wequireément that [det dmo(p)| < 1. As before, we de-
note by W°(p) and WY(p) +the local components of W°(p) and
¥ (p) to which ®(q) Dbelongs and By ﬁs(pu)‘ and ﬁu(pu) their
continuation for (i mnear zmero. The stable and unstable folia-
tions of AH are denoted by JS(AM) and 3u(A“) and simply by

=}

su and 3: their extended (Cl and., ¢u-in+ariant) foliations de-

fined in a full neighbourhood of Au. These foliations depeﬂd

continuously on (on-compact parts) and their leaves, which are
2 -] 5
c (actually ) curves, depend differentiably dn .

We shall add to mu the following key condition on thicke

ness
T(WHp) A )T (W(p) Ay > 1.

It is clear that we can construct the family ¢“ as before with
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this further condition being imposed.

Congider now the line of tangency L“, near g and for
M small, between the leaves of 3: and 3:. As observed in §2
of the previous chapter, and as a consequence of the different-
iability of 3: and- 35 and continuous dependence on ¢“ (and

in particular on u), we have that L“ is a Cl curve and de-

pends continuocusly on | in the Cl topology. Let dy 4 =
H
= Ws(pu) n Lu, M small and ﬁ:al’“ close to P4 c W3(p), and

Q= ﬁu(p“) n4 ﬁ:aé’“ c ¥*(p) as in tﬁe figure.

!

P
55 ’ /ﬂl
el

#(n,)

Let NS, N: be small neighbourhoods of pu in Ws(pu) and

Wu(p“), respectively., Define the projections ‘ns: NE - Lu,
u, s

s u 1
T 3 N = along the leaves of and H they a C” and
TR TR & © % F.i v axe n
u

they take the Cantor sets KE =N n A, and K: = N: n A, onto

. . u .
neighbourhoods of 9, in 3 (Au) n &u and of qz,u in

35(A“) N4,. Notice that 1(K}) = (W(p) n a,) and T(k3) =

= t(¥3(p) n a,).



~98 -

Now, if NS, NS are small neighbourhoods, and | is po-

gitive and small, then
(1) the Cantor sets HS(K:) and nS(Kﬁ) are not in the gaps of

one another nor in ‘Lp/ﬂ:(KS) and &u/ﬁz(K:), respectively,

(2) T(K:) is close to T(KE) and T(KE) is close to T(Kz)

by continuity of thickness,

{3) T(HS(K;)) is close to T(KE) because the derivative of n:

u

is almost constant Since the neighbourhood NH

is smallj simi-

larly, T(ﬂ:(KS)) is close to T(KS).

From (2) and (3) we get T(ﬂS(K:)).T(n:(Kz)) » 1, and from this
and {1) we conclude that n:(K:) n ﬂE(KS) # ¢. This means that,
for all d > 0 aﬂd small say O < pu < 4§ for some & > O, tThere
are in Lu points of tangency between the leaves of ES(AH) and
Gu(Au). Since Ws(p“) is @ense in: 3S(h“) and Wu(pu) is dense
in 3u(Au), densiiy in (0,6) we have values of U so that ®,
has homoclinic tanggncy near q. These homoclinic tangencies are
parabolic since near 'q each leaf of 3u(A0) and each leaf of
&S(Ao) have different curvatures and so the same ig true for the
leaves of EH(AH) and 3S(Au) for W amall, Even more so they
unfold generically: near q and for small values of ., the
leaves of 33,, as differentiable functions of 4, more trans-
.versely across the leaves of 33 since this is the case for the
leaves ﬁu(p) and W°(p) as we imposed when constructing the
family ¢H' ‘

Let us show that there is a generic (second category} set
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G c (0,8) .so that if..u € ¢ then 9, .has infinitely many .sinks.
For that it is enough. to. show that for each integer. W *» 0. . the -
set BN _of;valugs~of u. «for which @u has at least N.. sinks
is open and dense_in (0,&). Since sinks are persistent. under.
small €T  (r-= 1) .perturbations of: the map, openéss of By is
clear., To show density,  consider any. Mg € (0,6) and any neigh-
bourhood--_N0 . of My We have.shown .above that there exists Q
ﬁl'e N, .sudhfthatn~¢ﬁl :hés a parabolic homoclinic. tanggney :..
which unfolds,generiqally. ;Then,.as proved in §3 - Chapter III,
there exists?;pl‘warbitrarilf close to gﬂl such that iy, ohas.
a sink Sl’ ‘pr we take a small neighbourhood Niw‘of- Mg cdn

N0 s0 that,: for every: “:E'Nf" wu has a sink . neayr. - S

Sl.,H. 1°

Again in%.Nl"weﬂfind —ﬁz such that--¢ﬁ - has a parabolic homo=-
2

tlinic tangerney which unfolds generically. Tpat yields Uy € Ny

such that *¢H”‘has a new'sink’' ‘§,' besides - * Wecan pro-

. Sl,}-ié"
ceed by induction in exactly the same manner, proving our state-’
ment. Thﬁé; wé'point out, we have obtained a.parametrized ver-
sion of the theorem (aithodgh'this was not deménded)._'

- Fikially, we can take Y - an open set as required - as a
sufficiently smdll neighbourhgod im Diffz(sz)' OT B, 'for some
u*E (0,5')‘-.: If u is small then any g Eer has a' basic set A.
close to Aé* and having a fixed foint péj close ?0 pu* and,
by continuity of thickness in the ¢® topology, was(pg) n Ay
is'élOSe to T(Ws(pu*) n AH*) anﬁ T(Wu(pg).ﬂ Ag) is close‘to
T(Wu(p“*) n Au*), dmplying that their product is bigger than one.

Again ‘the ektended foliations- 32 and 32, defined in a neigh-
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bourhood of Ag’ are Cl close to 3:* "and - 3:* and define

near q a line of tangencies of their leaves say - Lg which is

Cl close to Lu*. ‘Also, we can define C1 projections
s u u s 1
: N . :t N c
Mgt NgN Aty and mg: Nofg sty

respectively, and thus both of them having almost.constant deriva=

5 u
close to 1w and
(Vo (Vi

tives. So the Cantor sets obtained as intersections of the leaves
of .3u(ﬂg) and '3S(Ag) with 1y have a‘point in common and aon-
sequently there is near g a point of tangency between leaves of
these foliations. We can now proceed as abdve to show that for
each! N » 0 +the subset of Yy with at least N sinks is open
and:dense. The only poimt to be careful abeut is when arguing on
the density:. one approximates a given diffeomorphism in Yy by a
¢ one which is 02 linearizable in a neighbourhood of its fixed
sad&le, the continuation of p, so that we can apply 83 of Chapter
ITT as to obtain sinks. We conclude that there exists a second
category subset U of VY such that if ® € W then ¢ has in-

finitely many sinks. The theorem is proved.

Comments and quegﬁions.'

The first comment is that in the open set Y c Diff?(s?),
constructed in the proof of the theorea, ﬁll diffeomorpﬁisms are
nonhyperbolic as we defined in §1 - Chapter V. Thisrfollows from
the fact that densily in ui the diffeomorphisms have a homoclinic

!
tangency and such an orbit is either in the limit set, and then
the limit set is not hyperbolic; or else it corresponds to a cycle
in the limit set, and this again implies nonhyperbolicity. Notice

that our definition of hyperbolicity for p € Diffl(M) concerns
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Lzm) - the positive limit set - and includes. the no-cycle condi=-
tion besides the usual notion of hyperbalibity and therefore in'
our sense hyperbolicity becomes ‘an "open property" in DiffL(M)‘
(and hence in Diff (M), r'z 1). We can also consider hyperbo=-
lidity for the nonwandering set Q(p), g € ﬁ.' Again, all gpts "
in V are not (-hyperbolic: they all have an;orbit of tangency
between stable and unstable leaves of a basic set (the horseshoe
whith is the continuation of Aoy, and since.such orbit is non-
Cur second cotment concerns stability of ¢ € y,~mor9‘speau1cal-
ly L*-stability and the similar notion of N-stability: @ is ¢¥ O-stable if
for any $ C* near ¢ there is a homeomorphism‘ﬁ:ﬂ(¢)4ﬂ($)such that
¢’ near ¢ there is’a homeomorphism - h: Q{p) + Q(§) such that
hp () = ghi{x) for all x € Qfp). We make a iit%le digression
to point out that the two notions are the same in the Cl topo-
1

logy. This follows from the fact that if ¢ ' is either € Lt -

stable or N-stable, then L (p)} = 0(p) = P(yp),' where Plp) in=
dicates the set of periodiC'points; This in turn follows from

Pugh's closing lemma: if x € Q(p) or x€ L+(¢) and is iso=

lated from P(p) then we can ot perturb ¢ away from P(wp)"
so Lo obtain & new periodic orbit through =x. Of course ¢ and
its perturbation cannot be L+-conjugate nor n-éonjugate; The

" gorresponding question in the ¢ topology, T =2, is open
(and very difficult). Returning to the open-sef B = Diffz(sz),
it follows the result of Liao and Mané (§1 - Chapter V) that

1

since‘no!'@ G‘y is hyperbolic then it cannot be‘ C ,L+¢stab1e

or Q=stable, In the present case this can be ﬁroved directly
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using that the diffeomorphisms with homoclinic tangencies are
dense'in V. It alsc:follows from the more interesting fact that
0. €U is L'-stable (or N-stable). To show that @ € L is
not“ccg‘ Lﬁistable it is enough to show that densily:in Yy  the
elements_ere not 02: L+-stable. By playing with gaps of Cantor

sebs in onr construction of |, one can show that densily in Vv

the diffebmorphisms have a homoclinic tangency which is isolated

I Y

in the noﬁwandering set and so it is either isolated in the posi-
tive limitLeet LY (if it belongs to it) or it is far from it:
iﬁ‘either'ceée.with a"dz' pef{urbaéion.away from the rest of LT
we -introduce a new horseshoe and so many new periodic orbits.
Thus: the "initial diffeomorphism with the homoclinic tangency can-
notfbe<Lf-conjugateeto the perturbed one. Another argument:

whep unfolding a homoclinic tangeney tp_create a sink as in the
préef of tﬁe'theorem, we st create in.this process a nonhyper-
bolic pericdic Orblt generlcally a saddle-node. Thus, densily in
the 02 topology in | the d;ffeomorphlsms have periodic saddle-
nodes and agaln, they cannot be L -stable because with small C
perturbatlon we camn change the number of perlodlc orblts of a
glven perlod (see §2 ~ Chapter III) Similarly, mo ¢ € v is

02 Q stable.

. Related to the comments above, we want to pose the follow-
ing. very interesting gquestions: o

,

(1) ‘"Aré’ the hyperbolic dlffeomorphlsms denge in" - Diff (S ) 2

(2): Ave the hypeibolic diffeomorphisms dense in Diffi(D?), T?

the 2-torus?
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These questions (dating back to more than 25 years ago, and due
to Smale) were sharply revived dﬁé to possible applications of
techniques developed recently by Mané in his recent and remark-
able solution of the Cl stability conjecture (an n-dimensional
diffeomorphism is globally stable if and only if it is hyperbolic
and all stable and unstable manifolds are in general position) Clj.
For instance, using these techmiques A.L. Araujo [2] showed that
densily in Diffl(Mz) there are hyperbolic.attractors and re-
pellors.

We now want to relate the main results in Chapters V and
VI, discuss some exteﬁsions of then as ﬁell as some open problems.

First of all, it might be asked why in unfolding a homo-
clinic tangency for a famlly ¢ say at |y = 0, one uses Ysmall"
limit capacltles (or Hausdorff dlmen51ons) to get mostly hyper-
bolic diffeomorphisms for values of W near Zero, and, on the
other hand, one uses "bié" thickness to get.an intervallsay [0,8]
and a dense subset uc [0,5] so that Py has infinitely many
sinks for all u € u?‘ Is thefe any way of relaping to some extend
these results? In this direction we sﬁggest the following cone
jectures: . |
Conjecture L. For generic ¢u’.-if P, has a homoclinic tangency
related to a bagic set Ao whose stable and unstable limit capa-
cities satisfy d°+d" » 1, then
n(B(9,) n [0,u])

lim inf
HO*O . _uo

> 0

where, as before, B(wu) = {u G,R | @u is not hyperbolic}ﬂ
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A weakexr, still important, versjon of this conjecture is
T Pe—— -

to consider lim sup dIin the above exprgssion. -

Conjecture II. With the same setting as in the first conjecture,

let u = {ue€R | mH has infinitely many sinks]. Then,

m(bn Lo,u,1)

> O,
M

lim sup
uoao

o

A result congerning measure of bifurcation set, similar
to that in Chapter V, is also true for gycles instead of just
homoclinic orbita (i.e{ l-cycles}. This is discussed in the
Appendix, where we also pose conjectupes similar to the apove.
More recently, the ;esu}ﬁ_has been extended to homoclinic orbits
.fip higher dimensions, We nqtice, howévep, that it is an interest-
ing open question whether in higﬁer dimensions the local stable
(or unstable) Ximit capacity is the same at all points of a basic
set.

The theorem in the present chapter was extended consider-
ably by Nevhouse [18] (see also [27-4]), s:i.nce‘in the new version there is no a
priori assumption an thijgkness: a family .¢u having a fixed
(periodic) saddle whose Jacobian has norm less than one and a re-
lated quadratic hgmoclinic tangency unfglding generically gives
rise to hochlinigltanggncies related tg hgrseshoes ;f arbitréfily
Pig thickness. Ag a qppsequence; if ¢“ ﬁaé a homocliﬁica tgn_
ﬁency as above at W = 0, thqn.there gre intervals Ii arbitra-
Fily close to u = O .ﬁﬁ R and dense subsets u; © I, such that
N has infinitely meny sinks for eﬁcﬁl'u ¢ #i_ (The last argu-

pént of a key lemma in E19] seems incomplete; however, C. Robinson
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very recently asserted its completion).

Notice that utider the assumptions of Chapter V for a fa-
mily mu (actually an opén eclass of families). specially the
hypothesis d°+a“ < i on capacities or dimensions of the basic
set related to the homoclinic tangency, the Lebesgue measure of
the intervals I, above would be assymptotically very small re-
lative to the interval EO,uo] we conzlder in the j~space. On
the other hand, they would be quite sizable when d°+d" > 1 if

Conjecture II is true.
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APPENDIX T

1. Hyperbelicity. Stable manifolds and foliations.

The purpose of this appendix is to collect a number of re-
sults from the literatura, mainly from [ 9], which were used in
. i
the previous chapters. These results afe ali re%ated to the no-
tion of hyperbolicity (norms of eigenvalues being different from
one) and are based on the construction af objécts which are ine
variant under a dlffeomorphlsm v by applylng @ to a non-in-

variant object and then taking a limit.
. 1

Stable manifold theorem. Let ¢@: M. ~+ M bhe a Ck- diffeomorphism,

k=21, and let p€ M be a fixed point, i.e. w(p) = p, such

!
that (dcp)p has no eigenvalue of norm one (in this case one calls

. p a hyperbolic fixed point}.  Then the stable manifold',

1

Ws(ﬁ) ={xe M| lim ¢n(x) = p}E . -

n-xo

is an‘injectively immérsed' Ck suﬁmanifold of M, If .a is Ck
near ¢, ¢ has a hyperbolic fixéd point P neaxr p épd the
stable manifold WS(E) is near W (p) at least if we féstricf
ourselfes to compact neighbourhoods of D énd P in.'ws(ﬁ) and
Wi (p). | | _

Applying the same théorem to m'l, “wé obtain. the unstable
manifold Wu(p). One way to-prbve this theorem is to take a

"generic" submanifold W ¢f M of the right dimension ‘and con-

taining p, and proving that g (W) has a limit for n o e
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and that this limit is the stable manifold. If @: mn + R"Y is

linear and p = 0, then one can &asily see how this worksg. This
idea to construct the stable manifold is alsoc the basic jdea of

the so=called A-lemma,

Theotrem. Let ¢@: M+ M be a Ck diffeomorphism, k = 1, with
k "
a hyperbolic fixed point p. Let Vc M bea C submanifold

such that:

- aim(v) = daim{(w®(p));

- V has a point q of ftransverse intersection with Wu(p).

Then o (V) converges to: W (p) in the following sense. For
each n one can choose a disc D < m'h(v), which is a neigh-
bourhood of ¢ (q) in ¢ (V) such that

TR
where D is a disc-neighbourhood of p in W°(p) and where the

convergence is in the sense of Ck submanifolds.

There is a first generalization of the stable manifold
' theorem where the fixed point is replaced by a so~-called hyper-

bolic set of which we'shall now give ' a definition. Let ¢;'M‘4 M

i . .
be a C diffeomorphism, k z 1. A compact set A C M dis a

hyperbolic set for ¢ if ¢(A) = A and if there is a splitting

T, (M) = E: & E; for each x € A such that:

- the splitting depends continuously on x;

- the splitting is invariant, l.e. g@(Ey) = o(x) and o(E3) =
. _
p(x)

T E



-109-

- there are congtants ¢ » 1 and € > 0 such that for any

v E E; and n > O,

VH’

Nae™(+)|| = c.o™.

and such that for any v g Ei and n » 0O,

.

-1 -

™ (W)} <« ¢™ o™ v

Here “ H denotes the norm of tangent vectors of M with respect
to some fixed Riemannian metric on M.

Note that a hyperbolic fixed point is a special case of a

hyperbolic set.

Generalized Stable Manifold Theorem. Let A M bhe a hvperbolic

set for a Ck diffeomorphism ¢, k = 1. Then for each x ¢ A

‘the stable manifold

Wo(x) = {ye M| r11im (e (x),9"(y)) = 0}

{where o denotes the distance with respect to some Riemannian
metric on M) is an injectively immersed c¢¥  submanifold.

Ws(x) depends continuously on x in the following sense.

Let Embk(D,M) be the space of o embeddings of a disc
D {whose dimension equals the dimension of E; which we assume
to be independent of x) 4in M. Then there is a continuoiis map
F: A - Embk(D,M) such that for each x € A, the image of & (x)
is a neighbourhood of x in Ws(x).

In the above situation (hyperbolic sets and their collec-
tion of stable manifolds) it is often usefull to use local stable

manifolds which are defined as follows
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Wz(X) = {ye M| 1im p(p™(x),9"(¥)) = © and

11-#°

Cop(e™(x),9"(y)) = ¢ for all = = 0].

These local stable manifolds are, for e sufficiently small,

embedded disks which depend continuously on Xx.

We come now to a different generalizmation of the stable
manifold theorem, It provides many more invariant manifolds for
fixed points, not hecessarily hyperbolic, of diffeomorphisms.

In describing these results we prefer to use diffeomorphisms de-
fined on R instead of on a general manifold M,

Theorem. Let o: R™ + R" .be a Ck diffeomorphism, k = 1,

+ n
with (0} = 0. Let R =V, &V,

be a splitting such that foxr

some a € R,

- d¢(vi) = Vis i = 1,2;

- the norms of the eigenvalues of dw]Vl are smaller than aj

- the norms of the eigenvalues of dcp|V2 are greater than a,

Then .there is a locally invariant Cl—manifold V  such that 0 ¢V
and TO(V) = Vl. V is locally invariant in the sense that
v n (V) contains a heighbourhood of © in V. The manifold V

is in general not unique and not Ck.

When we come to normally hyperbolic invariant manifolds,
we shall say more about the exact amount of differentiabili}y of
these (locally) invariant ﬁanifolds like V in the above theorem.
But we first want to indicate how also the manifolds in the above

theorem can be obtained by a limiting process.



=111~

Sketch of the construction of V. We can write the map @ as

+

p(x) = L{x) + $(x), where L is linear, in facit L = (d¢)0, and
where &£(0) = 0 and (d$)0 = 0. Next we choose a function ¥ on
®" which is identically equal to one on a neighbourhood of‘the

origin and which is equal to zZero cutside the unit disk. We de-

fine
F(x) = L(x) + ¥(3.x).8(x),

where ¢ 4is a small positive number. For ¢ small, 5 is a
diffeomorphism which, in a small neighbourhood of the origin is
equal to @. It can be shown that for ¢ sufficiently small,
the manifolds ﬁ-n(Vl) converge for n =+ = (remember that vy
was invariant under (dcp)D = L). This limit V is an invariant
manifold for ¢ and hence a locally invariant manifold for o
as required.

As applications of the above theorem, we construct now the

centre manifold, the centre-stable manifold and the centre-unstable

manifpold. First the centre-stable manifold. Let o R” 4 R" be
as in the above theorem. There is some a > 1 such that all
eigenvalues of (dgp)0 which are in norm smaller than a are
exactly all eigenvalues of (dw)o which are in norm smaller than
or equal to one. For this value a > 1 we construct the corres-

ponding splitting Rn = Vl & Vv and apply the theorem. The re-

2
sulting locally invariant manifold is called the centre-stable
manifold and is demoted by W°S(0). Ir ¢ dis ¢, k=1, k fi-

nite, then one can choose WCS(O) to be Ck. The centre-unstable

manifold for ¢ dis just the centre-stable manifold for ¢-l; it
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is denpted by wcu(o). The centre manifold is just the inter-

sectiop of a centre-stable and a centre-unstable manifold:

wo(0) = w°5(0) n w°™(o0).

The (lecally) invariant manifolds which we have seen so

far are all examples of normally hyperbolic invariant manifolds.

This notjon is defined as follows. Let g: M+ M be a Ck dif-
feomorphism, k 2 1. A submanifold Vc M is said to be a nor-
mally hyperhbolie invariant sibmanifold if (V) = V and if there
is a splitting Tx(M) = Tx(V) @ Nz @ N; for each x € V such
that
- the splitting depends contintigusly on x;
-~ the splitting is invariant under dyp, i.e. dm(Ni) = N;(x)
and d.cp(N;:) = N;(x);
- for some Rlepmannian metric, apd constants C > 0, o0 > 1, T = 1,
one has for every triple of unit vectors v € TX(V), n® ¢ Ni s

and n" € N; and any n » O

[(a9™)n" | 4.4 and Agae™)n®l _ o1 gom,
T (ao™)vI* {3 )

In this case one gall V even r-normally hyperbolic.
This notion of normal hyperbdlicity is of importance since
it implies & certain minimal amount of differentiability of the

inyvariant manifold. This is the cortent of the following

Theorem, Let Vc M be an v-normally hyperbolic invariant mani-
k
fald for a C diffeomorphism gp. If k = [r] + 1, [xr] is the

integer part of r, and if V is compact and Cl, then V is
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Ir

¢T in the following sense. V is loecally the graph of a ol ]

function whose [r]th derivative is (r-[r])-HBlder.

Although in [9] this theorem is only stated for r an in-
teger (theorem 4.1 on page 39) the general case folldws from re-

mark 2 (on page 38) dealing with Hbldeyr sections.

In the above theorem we required V +to be compact. This
means that this theorem cannot be immediately be applied to the
~locally invariant submanifolds with which the previous theorem
was dealing. S5till, one can prove in the same way that if in the
previous theorem Vl is an r-normallf hyperbolic invariant sub-
manifold for (dp}_ then, for any x’ such that r’ < r and

’
such that k = [»’] + 1, one can choose V to be c™ .

Finally we have to say something about the stable and un-
stable foliations on a neighbourhood of a basic set of a diffeo-
morphism ¢: M+ M on a 2Z-manifold M, Thelconstruction of such
a foliation was given in Chapter II (in the case of a horseshoe).
Here we are concerned with its differentiability.

For diffeomorphisms ¢t M » M as above, we construct a

1ift
P(M) Ple) r(M)
o ‘ m
. -

where P(M) = [{(x,L) | x€ M, L dis a one dimensional linear
subspace of TX(M)} is the projectivised tangent bundel of M,

and P(p) is the diffeomorphism induced by ¢ on P(p). Clear-
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1y, if © dis €5 then P(p) is 571,

Consider an unstable foliation ¥ as constructed in
Chapter IT. If its domain of definition is U g M, then we ge%
a (locally) invariént manifold T e« P{M) by defining
U= {(x,L) | x € U, L 4is the tangent space of the 3" leaf

through x}. We call the foliation 3" ¢* whenever the carres-

ponding manifold U is Ca. This is somewhat unconventional:

o a+1

if ﬁ is € then the leaves of 3“ are C . But the reason

for this definition is that if U is € then also the "pro-

jections along leaves", as used in the Chapters V and VI,Vare c*,
One can verify that U is (1+e)-normally hyperbolic for

Pyp for some g > 0. Although i is not compact and only local-

1y invariant, the conclusion of the last theorem is still valid

(this is due to the careful definition of F° on (Rn¥ TR (R).

Hence, if @ is €5, P(p) is € and U is cI*®; ir o is

CZ, U 41s only Cl.
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APPENDIX II

2. Markov partitions.

In Chaptexr IV we mentioned the e;istence of’ Markov pa%ti-
tions . for dynémically defined Cantor sets and their relation with
Markov partitions for hyperbolic diffeomorphisms in dimension two.

.Here we shall explain these points further.

Let g: M Q M be a hyperbollc.dlffeomorphlsm on. a compact
2-manifold M. Let A. be a basic set for ¢ of saddle type,
i.e. Al is a compact 1nvar1ant set, contalned in the p051t1ve
limit set L (¢), Whlch contaLns a dense orblt, and such that
in the hyperbolicléplitting, restricted to A, Eu and E° aré
both one-dimensional. We assime A %o be non-trivial in the
senselthat it éontains mére than one.periodic orbit. Also we
agssume A mnot to bhe ﬁperiodic" in the follow1ng sense.,- We_éay
fhat A is perlodlc‘lf for certain integers n # 0, .A haé no
dense orbit of m . In this case there is an n # 0 éuch‘that
A can be decompOSed 1n n nor- perlodlc ba51c sets of ¢ .

For x € A we deflne local stable and unstable manlfolds.

w;‘(x) ={yveM| lim p{e” (x),tp (y)) =0 and:
for a1l n's:O, p(m (x ), (Y)) < €} o
WS (x) (vex| L 0 (6" (x),¢"(y)) = 0 and

N

for all n = O, D(?n(x):¢n(Y)) < g},

where p. denotes the distance with respect to some fixed Rieman=
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nian metric. From the local product theorem [ 5] we know that

i P . n 5 N
for x,x’ € A sufficiently nedr, We(x) and We(x } have a
unique point of intersection and that this point of intersection
alsoc belongs to A.

Since J i1is non-trivial, and due to the local product
theorem, W:(x) N A is a Cantor set for each x € A. We say

that x 4is a boundary point of A in the unstable diregtion if

x 4is a boundary point of W:(x) nA, i.e. if x is only accu-
mulated from one side by points in w:(x) na. IFf x is a
boundary point of A din the unstable direction, then, due to the
local product theorem, the same holds forléll poigts in
Ws(x) N A. So the bou#dary points in the unstable direction are
locally intersections of local stable manifolds with A. TFor
this reason we denote the set of boundary points in the.unstable
direction by aSA. The boundary Roints in the stable direction
afe similarly defined; the set of these boundary points is de-
noted by aun.

Our construction of Markov partitions for A is.based on

the following theorem which we quote from [21].

Theorem. For a basic set A as above there is a finite number

of (periodic) saddle points Pi""!PE such that
S
A0 U VERRD) = 2 M

Similarly, there is a finite number of {periodic) saddle points

u u
'pl,...,pnu such that

An (lij w“(p‘:.:)) =3 A.
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We note that this theorem, which is tipically two-dimen-

i

sional, makes the construction of Markov partitions in dimension

two much simpler than in higher dimensions, compare [5].

Now we come to the definition of a Markov partition for a

bagic set A as introduced above. Such a Markov partition con-

sists of a finite set of boxes, i.e. diffeomoxrphic images of the

square Q = [-l,+l]2, say B, = Yl(Q)""’BL = YL(Q) such that

- AC g Bi;
i
e e . ] -
- Bi n B‘:.| =¢ if i # Js
I
- m(asBi) < g aSB:l and

-1 .
o (BuBi) c g augj ' where

28 = Y {{(xy) | -I< x=21, [y} =1)) and
.8, ;‘wi({(x,y) | |x] =1, -15ys< 1}).

um i

The geometric consequences of this last condition are indicated
below
B,
J1
—L_¢(Bi)
B B
Ky ko
B.
Ja
/
-1
o (B,) B
3

all horizontal boundaries Belong to 9

and all vertical ones to au .

S
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Usually one alsg requires that ¢(Bi) N Bj is either
empty -or connected. For our present considerations this is not
important, but one can always satisfy this last condition by

taking the boxe5 of the Markov partition sufficiently small..

For the congtruction of a Markov partition we take arcs

5

_ Ii,...,In in Ws(pi),...,ws(pz ) and arcs I;,...?IE in

s u
u, u u, u s s u u
W (Pl)s','_° + W (pn ), where PyseresPy and ProeresPy are
u . 5 m
(periodic) saddle points as in the above theorem, such that for
each 1, aIf < U I? and a1 < U I?. It is possible to.satisfy
- - :
these last conditions since both (U Wu(p?)) n A and
i .

() WS(P;)) N A are dense in A,
J

We shall prove that if the arcs Ii,,{.,Ii and

IE,...,IEH are sufficiently long, they "divide" A according to
a Markov partition. To be more precise, we fix g > O suffi-

ciently small and say that x € A dis enclosed by the above arcs

if
Ws(x) n (U I?) contains x or contains points on both
J sides of x,
and if
W:(x) n (U Ij) contains X or contains points on both
J sides of x.
We claim that if all Ig "and I? extend at least to
length & from the saddle point p?, p? along w“(pg), Ws(pi)

in both directions, then for & sufficiently big, they enclose

all points of 4.
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We prove this claim by contradiction. Let xi be a point
of A which is not vet enclosed when & = i for i € N. By
compactness {xi] has an accumulation point, say x. We show
that for some finite LD there is a neighbourhood of X such
that all its points are enclosed whenever {_ = {o. We have to
distinguish between X € 3, A and § 4 3,0 and also between
Xx€ 3 A and x¢ 3 A. Ve consider the case X € 3 A, x¢ 31

the other cases can be treated similarliy.

V(%)

We (%)

In the above figure we indicated local stable and unstable mani-
folds of points x € A near Xx. Since X € 3 A, X€ U Wu(p?)
J
so for some Ll'_and Loz 4y, X Dbelongs to U Ig. Since
J

U Wu(pg)) na and (U Ws(pi)) N A are both dense in A, for
3 i o

some LE and 4 = L2’ J Iz and U Ig contain segments as
d J :

indicated.
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- W (%)
17
J
S -
- W (%)
X
Ij,
Igh

For all 4 = Lo = max(&l,bz) there is clearly a full
neighbourhood of X in which all the points are surrounded.
This gives the required contradiction and completes the proof of
the claim, .

From now onlwg assume that the arcs I? and VI? are so

long that all pointg of A are enclosed. For j - (U I? U Ig)
3 J

we define an equivalence relation: x ~ x' 1if we can join x by

x’  without crossing any of the arcs I; or I?. Now it is easy

to see that one can congtyuct for each equivalence class a box,
containing that equivalepce class in its interior and whose

boundary consists of segments of |J I§ and of U Iz and such
C J- ' J
that the interior of thg box contains no points of U Ii or of
v J
u : co .
g Ij’ These boxes,; one for each eguivalence class form a Markov

partition. Notice that ¢(3_B,) c g 3B, because m(g I?) c

s
[ Q ij

-1 -
- and g (auaij < % Bqu because @ 1(u IE) < U Ig.
J

J
Observe that glthough points of A\ may lie in the common
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boundary of two boxes, there is for each x € A a unigue box B
such that x € (B°n A). 1In fact we can obtain a Markov parti-
tion with ail the boxes disjoint by replacing each box B by the

smallest box B such that:

- 38 consists of parts of local stable and local unstable

mahifolds.

Now we choose a saddle point p &€ A and consider
w3{p) N A, or, more precisely for an arc I° in Ws(ﬁ) "we con-
sider I® N A. We take I° so long that it passes through all
the boxes of the Markov partition. So for each box B, BN s
consists of a number, at least one, of arcs in the s-direction
passing from one component of auB to the other component of

3 B,
u

u S "% local components
of I°

This fact, that one box B can be crossed several times
by K isi§nqggyeniént because it makes the definition of a pro-
‘jectisn of A on AN i° ambiguous. For this reason we shall
describe how to refine the Markov.partition for a fixed IS, 80

as to obtain a new Markov partition in which each box is passed

exactly once by Is.
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Let I I° be components of B n I°. Let ¢(Il) and

w(Iz) be conta;ned in the boxes Bl and B,; the componént of

2
s - . -
I°n By, containing ¢(Ii) is denéted by I,. If B, =B, we

start again with B, = B, instead of B and fi Anstead of I..
We repeat this until we get B, # B,; this must finally happen
since under positive iterations of @ Il and 12 get more and
more separated in the u-direction.

We have now the following situation.

u 1 B ,;1,,,¢(E)
Iz | . ) w(Il)
By
r y///// ’
)
|@(L,) 5,

The region 'K of g{B), indicated in the above figure is just

a connected component of ¢(B) - U Bj)’ where |J B, 'is the
3 :

‘ - J .
union of all the boxes of the Markov pdrtition., Now weé refine

our Markov partion by removing from' B the stip m—l(K), thus
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splitting B in two smaller boxes. It is not hard to see that
we obtain in this way a new Markov partition in which Il and
12 are not in the same box any more. So we deminished the set
of pairs of components of 1° n (u Bj) by one. VRepeating tﬁis
conétruction sufficiently often we obtain a Markov partition in

which each box is crossed exactly once by I°.

Next we dgfine a projection m: A 2+ A n{IS by taking in
each box of theKMarkov partition the projection along locdal un-
stablé manifolds into the intersection of 1% with that box.
Then we define the expanding map V: I°n A+ %0 A as
¥ = ﬂo¢-N (this is the same as in Chapter IV except for the pa-
rametrization &: R » W (p)). Extending the projection T from
A to the union of the boxes of the Markov partition of A, we
get the map Y defined on a set of intervals Kl,...,Kk in IS;
each interval is mapped by ¥ diffeomorphically onto one of the
intersections of I° with a box of the Markov partition of A.
The intervals K;,...,K ~ form the Markov partition of °n A
with expanding map VY.

With these constructions it is clear that the ideas of the
example in Chapter IV, namely the construction of Markov parti—‘

tions when the basic set is the horseshoe, carry over to the

generxral situation.



-124f

APPENDIX IIX

3. Heteroclinic cycles.

We discuss here an extension of the theorem on unfolding
of homoclinic tangencies and measure of bifurcation sets (Chapter
V).

Again we consgider a family of diffeomorphisms mu on M2
and assume that 0, is hyperbolic for p < 0; i.e. L+(wu) is
a hyperbolic set with the mno-cyecle property for all y < 0. We
can write [ 30], [18]

+
L (wo) =L U.wuU Ly

where Li is closed, mo-invariant and transitive (it has a dense
orbit); also, the periocdic orbiis are dense in Li' The sets Li
are called basic sets. We again assume that we have a cycle _F
in L+(mo) but we now assume the cycle to involve more than one

basic seb, say j of them, Lil"'°’Li-' Recall that the notion
J

of cycle was introduced in Chapter V - Section 1. We now define
d®(T) = max dS(Li ) and a"(T) = max du(Li ). Sdimilar to
1cks ] k lzks j k

the families of diffeomorphisms in Chapter V, we consider mu
such that:
- ¢“ is hyperbolic for pu < 0

- P, has a cycle I with a unique orbit of tangency of stable
and unstable manifolds, which is quadratic and unfolds gene-

rically.

As before, let B(¢u) ={LER ] ®, #s not hyperbolic} and let.

7/
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m( )} denote the Lebesgue measure.

Theorem [24]. For a family [@u} as above,. il dS(T) + du(F) < 1,

then
m(B(p ) n Lo,u_])
1im K - o.
u0+0 Mo

The following two pictures indicate examples of cycles as above,
the first one involving two fixed saddles asmbasiciSets and the

second one involving a horseshoe and a saddle.,

*

]

fixed saddles

S17%2
Fig. 1 Ty, = fixed sources

8.8, = fixed sinks



Y
|a1
s, = fixed saddle
8, = fixed saddle part of a horseshoe
Fig. 2 .
ry = fixed source
2,8, = fixed sinks

(We leave to the reader to complete the main features of Fig. 2)

Again, we suggest a strong correlation between the condi-
tion a&°(I') + a*(T) < 1 and the hyperbolicity of ® for W

small.
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Conjecture. TFor a family ®, as above if a®(r) + a“(T) > 1,

then
m(B(CPu) n [Osuo])
W}

lim inf > 0,

po—po

sl

If we change 1lim inf by 1lim sup in the conjecture above,

still remains a very interesting question.

We observe that theorem above, as well as the correspond-
ing one in Chapter V for homoclinic tangencies, extend previous
resul in [21-A] where L(¢u) was supposed to be finite for W < O.
Also the result concerned 1lim inf instead of fhe full limit of

the relative measure of the bifurcation set.
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APPENDIX TV

4. On the shape of some strange attractors

(following Szewc and Tangerman)

It is well known from numerica examples provided by Hénon
aroﬁnd 1976 [8-A] that "strange" attracfors in the plane may have
the shape of the unstable separétrix of a saddie point ﬁith asson~
ciated homeoclinie intersections. This phenomenon haé not yet
been explanied in a satisfactory wéy - also it ﬁay diséppear when
the diffeomorphism is perturbed (without destrofing.thé homoclinic
intersections). A partial explanation however has been given in-
dependently by B. Szewe and F. Tangerman around 1981 but was never
published. Their argument, in the simplest form, leadé to:
Progosition. Let ¢: R2 -+ R2 be a diffeomopphism with a hyper~

bolic saddle point p such that:

- w%(p) andg Ws(p) have a homoclinic intersection q, i.e.
P # a
~ the norm of det{dp) is everywhere smaller than onej

- Wu(p) remains in a bounded region of RZ.

Then there is a non-empty oyen set U cC Rz, such that for each
x € U, wix)c Wu(p), i.e. the distance from wn(x) to wW¥{p)

goes to zero for n geoing to infinite.
+

2 .
Proof. Let UcC R be a bounded open subset whose boyndary con-

sists of segments of _Wu(p) and Ws(p). Such U exist: due to
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the homoclinic intersection q one can form a closed curve con-

sisting of segments of Wu(P) and Ws(p).

Consider mn(U) for n =z 0. Its boundary consists also
of segments of W°(p) and W (p); the segments of w3 {p) be-
come shorter and converge to p for increasing n. From this
and the boundedness of Wu(p) it follows that the bdundary of
9 (U), and hence 9 (U) stays in a bounded part of ®*. This
means that on U ¢"(U), |det dp] < 1-¢ for some ¢ > 0, and

nz=0
hence that the area of ¢n(U) goes to zero as n increases.

This means that for any x¢ U and =n > 0, n big,
o (x) is near the boundary of ¢n(U) and hence near W%(p) U
U WS (p). Since the part of the boundary formed by W°(p) has
decreasing length, g (x) is close to W (p). ' This means that

w(x) ¢ w(p).

Note that this proposition explainsg that certain attractors
are contained in ﬁﬁfgﬁ but not that they fill out all of it.
In fact there could only be one periodic attractor in ﬁﬁfgs.
In that direction it would be interesting to have non-existence

results for periodic attractors.

It is not hard to see that the above proposition applies
to the Hénon map H: R? o R2 given by H(x,y) = (1-(1,4).x2+y,
(0,3).x); +the existence of a homoclinic intersection was proved
in [16-4]. In fact both Szewc and Tangerman proved more, namely
that one can, in the case of the Hénon map, choose U +to be a

neighbourhood of W'(p).
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Aﬁother example can be obtained from the second example in
the introduction (the pendulum) by a small perturbation, With a
first perturbation we make the diffeomorphism, or even the dif=
ferential equation attracting towards the ([E=1} level without
perturbing the dynamics inside the {E=1l}] 1level. With a second
perturbation.we make transverse homoclinic intersections in all
the branches of the separatrices of the saddle point {(m,0) (and
hence destroy {E=1} as an invariant set). Although this example
is not defined on the plane but on an annulus, the arguments of

the proof still work.
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