
Jianbo Fu is a postdoctoral researcher of the College of Pharmaceutical Sciences in Zhejiang University, China. His current focus includes bioinformatics,
computational biology and omics data analysis.
Qingxia Yang is an associate professor of the School of Geographic and Biologic Information in Nanjing University of Posts and Telecommunications, China. Her
current focus includes bioinformatics, computational biology and omics data analysis.
Yongchao Luo, Song Zhang, Ying Zhang, Hongning Zhang and Hanxiang Xu are PhD/MD candidates of the College of Pharmaceutical Sciences in Zhejiang
University, China. They are interested in bioinformatics.
Jing Tang is an associate professor of the Department of Bioinformatics in Chongqing Medical University, China. Her current focus includes bioinformatics and
computational biology.
Feng Zhu is a tenured professor of the College of Pharmaceutical Sciences in Zhejiang University, China. His research laboratory (https://idrblab.org/) has been
working in the fields of bioinformatics, OMIC-based drug discovery, system biology and medicinal chemistry.
Received: August 13, 2022. Revised: September 24, 2022. Accepted: October 8, 2022
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(1), 1–9

https://doi.org/10.1093/bib/bbac477

Problem Solving Protocol

Label-free proteome quantification and evaluation
Jianbo Fu†, Qingxia Yang†, Yongchao Luo†, Song Zhang †, Jing Tang , Ying Zhang , Hongning Zhang , Hanxiang Xu and

Feng Zhu

Corresponding author. Feng Zhu, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310050, China. E-mail: zhufeng@zju.edu.cn
†Jianbo Fu, Qingxia Yang, Yongchao Luo and Song Zhang contributed equally to this work as co-first authors.

Abstract

The label-free quantification (LFQ) has emerged as an exceptional technique in proteomics owing to its broad proteome coverage,
great dynamic ranges and enhanced analytical reproducibility. Due to the extreme difficulty lying in an in-depth quantification, the
LFQ chains incorporating a variety of transformation, pretreatment and imputation methods are required and constructed. However,
it remains challenging to determine the well-performing chain, owing to its strong dependence on the studied data and the diverse
possibility of integrated chains. In this study, an R package EVALFQ was therefore constructed to enable a performance evaluation on
>3000 LFQ chains. This package is unique in (a) automatically evaluating the performance using multiple criteria, (b) exploring the
quantification accuracy based on spiking proteins and (c) discovering the well-performing chains by comprehensive assessment. All in
all, because of its superiority in assessing from multiple perspectives and scanning among over 3000 chains, this package is expected
to attract broad interests from the fields of proteomic quantification. The package is available at https://github.com/idrblab/EVALFQ.
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Introduction
The proteomic techniques based on mass spectrometry (MS) have
been widely used for revealing pathogenic mechanisms [1, 2],
monitoring disease development [3], discovering diagnostic mark-
ers [4] and so on. There are mainly two approaches in proteomics
including label-free quantification (LFQ) and label-based quan-
tification using labeled proteins/peptides (as shown in Supple-
mentary Figure S1 available online at http://bib.oxfordjournals.
org/). Among these techniques, LFQ shows unique advantages
in the discovery of proteins without the difficult and expensive
use of stable isotope labeling [5]. LFQ has emerged exceptional
in current proteomics owing to its broad proteome coverage [6],
great dynamic ranges [7] and enhanced analytical reproducibility
[8]. The LFQ has thus been applied to facilitate the discovery of
promising therapeutic targets [9–11], investigate the variations in
host microbiota [12, 13] and clarify the metabolism of targeted
drugs [14, 15].

However, in-depth and high-quality quantification remains
extremely challenging despite recent advances in LFQ technolo-
gies [16–19]. Particularly, the challenges are attributed to the
asymmetrical distribution of protein abundances [20], the sys-
tematic bias inherent in technical processing [21] and the missing
values inevitable in an OMICs-based technique [22]. To deal with
these challenges, ≥3 transformation, ≥18 pretreatment and ≥7
imputation methods (shown in Supplementary Table S1 avail-
able online at http://bib.oxfordjournals.org/) are first constructed
to transform data distribution, reduce variability among repli-
cates and impute missing values, respectively; then, thousands
of LFQ chains are generated (shown in Supplementary Method S1
available online at http://bib.oxfordjournals.org/) by sequentially
integrating all these methods [23]. Because the quantification
performance of each LFQ chain is found to be heavily dependent
on the nature of the studied data [19], it is essential, but difficult,
to identify the well-performing LFQ chains that can facilitate in-
depth proteomic quantification [24].

So far, several powerful tools have been developed to analyze
or evaluate label-free proteome quantifications [19, 25]. Among
these, Perseus [25] provides diverse methods but does not

conduct any evaluation; Normalyzer [26] provides the assessment
of normalizations; NAguideR [22] evaluates various imputations.
Since the LFQ chain involves not only transformation but also
pretreatment and imputation, any evaluation that focuses only
on a single type of method might not be able to reflect the overall
performances of LFQ chains [16]. ANPELA is thus the first tool
enabling performance assessments for the entire LFQ chain [23].
However, due to its web-based nature, it is impossible for ANPELA
to conduct the comprehensive scanning of all possible LFQ chains
(>3000 as shown in Supplementary Method S1 available online at
http://bib.oxfordjournals.org/). Therefore, it is crucial to construct
a new tool that realizes a comprehensive evaluation of the
quantification performances by scanning all possible (>3000 as
shown in Supplementary Method S1 available online at http://bib.
oxfordjournals.org/) chains. However, no such tool is available yet.

In this work, an R package named EVALFQ was thus con-
structed, which enables the performance evaluation for 3128 LFQ
chains. Particularly, this R package is able to (1) automatically
evaluate the performances using multiple criteria, (2) explore the
LFQ accuracy based on spiking proteins and (3) discover the well-
performing LFQ chains by comprehensive assessment. Because
of its superiority in assessing from multiple perspectives and
scanning among thousand chains, EVALFQ is expected to attract
broad interests from the fields of proteomic quantification.

Materials and methods
Collection of the benchmark datasets analyzed in
this study
As shown in Table 1, the first study provided the sequential
windowed acquisition of all theoretical fragment ion mass spectra
(SWATH-MS) proteome data based on the 113 malignant tumorous
tissues and 111 adjacent tissues from prostate cancer patients.
And the proteomics dataset was quantified by OpenSWATH.
In the second study, the peak intensity proteomic data were
detected based on 101 malignant tissues and 98 paired non-
tumor tissues from hepatocellular cancer patients and quantified
by MaxQuant. In the third study, one spectral counting proteomic
dataset was provided with 17 muscle homogenates of obese

Table 1. Detailed information of the studied benchmarks together with their corresponding acquisition techniques and adopted
quantification tools

Study ID Dataset description Assumption held Quantification tool
(mode of acquisition)

References

PXD004691 113 malignant tumorous tissues and 111 adjacent tissues
from prostate cancer patients

A, B, C OpenSWATH
(SWATH-MS)

[27]

PXD006512 101 malignant tissues and 98 paired non-tumor tissues
from hepatocellular cancer patients

A, B, C MaxQuant
(Peak Intensity)

[28]

Katsanos et al. 17 muscle homogenates of obesity individuals and 16
muscle homogenates of lean individuals

A, B, C Scaffold
(Spectral Counting)

[29]

PXD014956 7 non-mouse proteins of 5 ratios spiked into 5 SGs of
C2C12 mouse cell lysate

A, B, C OpenSWATH
(SWATH-MS)

[30]

PXD002025 7 wild-type male mice and 5 transgenic male mice
overexpressing cytochrome P450 aromatase

A, B, C Progenesis
(Peak Intensity)

[31]

PXD002099 3 samples spiking with 2 fmol 48 UPS1 proteins and 3
samples spiking with 50 fmol UPS1

A, B, C Progenesis
(Peak Intensity)

[32]

IPX0001804000 103 malignant and 103 paired noncancerous adjacent
tissues from lung cancer patients

A, B, C MaxQuant
(Peak Intensity)

[33]

PXD000672 18 tumorous tissue biopsies and 18 non-tumorous
biopsies from renal cell carcinoma patients

A, B, C OpenSWATH
(SWATH-MS)

[34]

PXD002882 21 tissues from Crohn’s disease patients and 10 tissues
from healthy individuals

A, B, C MaxQuant
(Peak Intensity)

[35]

Three assumptions are held for the benchmarks: (A) all proteins are equally important; (B) the level of protein abundance is constant among all samples; (C)
the intensities of most proteins are not changed under the studied condition. Study IDs were collected from PRIDE [36], iProX [37] and so on.
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individuals and 16 muscle homogenates of lean individuals,
which was quantified by Scaffold. The SWATH-MS proteomic
data were provided in the fourth study based on seven non-
mouse proteins of five ratios spiked into five sample groups
(SGs) of C2C12 mouse cell lysate and quantified by OpenSWATH.
In the fifth study, the peak intensity of the proteomic dataset
consisted of seven wild-type male mice and five transgenic male
mice overexpressing cytochrome P450 aromatase, which was
preprocessed by Progenesis. The sixth study provided the peak
intensity proteome data based on three samples spiking with 2
fmol 48 UPS1 proteins and three samples spiking with 50 fmol
UPS1, which was quantified by Progenesis. The seventh study gave
one peak intensity proteomic dataset with 103 malignant and 103
paired noncancerous adjacent tissues from lung cancer patients,
which was quantified by MaxQuant. The eighth study provided
the SWATH-MS proteome dataset containing 18 tumorous tissue
biopsies and 18 non-tumorous biopsies from renal cell carcinoma
patients, which was preprocessed by OpenSWATH. Finally, the last
study described peak intensity proteome data of 21 tissues from
Crohn’s disease patients and 10 tissues from healthy individuals,
which was preprocessed by MaxQuant. Moreover, all processed
datasets (Table 1) can be downloaded at https://idrblab.org/
evalfq/download/All.Processed.Datasets.xlsx.

To test the functions of EVALFQ, a variety of benchmarks
were collected from renowned proteomic databases [36,37] and a
recent publication [29]. In total, nine benchmarks were assessed
in this study. As shown in Table 1, the quantification tools and
the acquisition modes of these benchmarks were very diverse,
which included: SWATH-MS, Peak Intensity and Spectral Counting
(quantified by four different quantification software tools). Since
the application of each method should obey their individual
assumption (as shown in Supplementary Table S1 available online
at http://bib.oxfordjournals.org/), three assumptions held for
the analyzed benchmarks were also provided in Table 1. These
assumptions included: (A) all proteins are equally important; (B)
the levels of protein abundances are constant among samples
and (C) the intensities of most proteins are unchanged under the
studied condition. All data were from PRIDE [36] and iProX [37].

Construction of the LFQ chain by sequential
method integration
As shown in Supplementary Table S1 available online at
http://bib.oxfordjournals.org/, 3 transformation, 18 pretreatment
(centering, scaling and normalization) and 7 imputation methods
are available for transforming data distribution, reducing
variabilities among replicates and imputing missing values. There
were three types of assumptions for these 18 pretreatment
methods: (1) all proteins should be equally important, which
is the prerequisite for applying the centering and scaling
approaches; (2) the level of protein abundance should be constant
among all samples, which is the priori hypothesis for some
normalization methods including MEA, MED, MAD and TIC and
(3) the intensities of the vast majority of the proteins should
be unchanged under the studied condition, which is demanded
by some other normalization methods including CYC, EIG, LIN,
LOW, PQN, QUA, RLR and TMM. LFQ chain is thus composed
of five sequentially integrated steps: transformation, centering,
scaling, normalization and imputation (Supplementary Table
S1 available online at http://bib.oxfordjournals.org/). In other
words, a random, comprehensive and sequential integration of
all 28 methods can result in 3128 LFQ chains of five steps. The
detailed information on the construction of the LFQ chain, by
sequentially integrating the methods of five steps, is explicitly

explained in Supplementary Method S1 available online at http://
bib.oxfordjournals.org/, and the abbreviation of each method
was in Supplementary Table S1 available online at http://bib.
oxfordjournals.org/.

Independent criteria enabling assessment from
multiple perspectives
Five independent criteria available for assessing the perfor-
mances of LFQ chains were provided in EVALFQ. (1) Criterion
Ca: precision of LFQ based on proteomes among replicates.
Criterion Ca was popular for evaluating the capacity of reducing
intragroup variations among different samples. Its value is
larger than 0 and a lower value denotes a more thorough
removal of variations. (2) Criterion Cb: classification ability of
LFQ between distinct SGs. Criterion Cb was applied for evaluating
the ability to classify multiple classes. Its value is between 0
and 1, and a large value (close to 1) denotes high classification
performance. (3) Criterion Cc: differential abundances analyses
by reproducibility optimization. Criterion Cc was effective for
evaluating the reproducibility of differential abundances. Its
value is between 0 and 1, and a large value (close to 1) denotes
high reproducibility. (4) Criterion Cd: consistency of the identified
markers among different datasets. Criterion Cd was used to assess
the robustness of markers among different datasets. Its value is
between 0 and 1. If it is close to 1, it refers to the highest robustness
of the identified markers. (5) Criterion Ce: LFQ accuracy based
on spiking and background proteins. Criterion Ce can reflect
the degree of correspondence between the processed data and
references. When there were minimized variations, the medians
of differences between the processed data and references were
equal to 0. All five criteria were well established by the previous
publications. Detailed information on all those assessing criteria
is provided in Supplementary Method S2 available online at http://
bib.oxfordjournals.org/.

Based on these independent criteria, EVALFQ enabled the per-
formance assessment of LFQ chains from multiple perspectives
[38]. Users can apply one or more criteria discussed above for
assessing LFQ chains by parameter settings. Particularly, the per-
formance of 3128 potential LFQ chains can first be ranked sep-
arately using each criterion. Different ranking numbers were
assigned to each method by the corresponding criteria. Then, an
overall ranking of a studied LFQ chain was defined by the sum
of the multiple ranking numbers under multiple criteria. The
smaller the sum is, the higher an LFQ chain ranks.

Installation and configuration steps of EVALFQ
package
To ensure the correct installation of EVALFQ package, the
following tools must be installed in the order listed below.
First, install the R language from the R website. The process of
installing R depends on the type of operating system. Second,
install the RStudio from the RStudio website. Third, install
various R packages required as dependencies, including affy,
Biobase, BiocGenerics, impute, limma, metabolomics, pcaMethods,
ProteoMM, ROTS and vsn. Some packages can be downloaded from
GitHub (https://github.com/), some packages can be downloaded
from Bioconductor (http://bioconductor.org/) and the remaining
packages are available on CRAN (https://cran.r-project.org).
The detailed information on the required packages is shown
in Supplementary Method S3 available online at http://bib.
oxfordjournals.org/. Fourth, install the devtools package and
load this package. Fifth, install the EVALFQ package. During
the installation of EVALFQ, an error message stating ‘ERROR:
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Figure 1. The schematic diagram illustrating the way to identify the well-performing LFQ chains based on multiple criteria. The performances under each
criterion (Ca–Cd) were shown using the diameters of each circle (long, medium and short diameters indicated ‘superior’, ‘good’ and ‘poor’ performances
under each criterion). The overall performances of each LFQ chain were classified into three groups: ‘Good ’ (performing consistently ‘Superior/Good’
under all criteria, colored in light green background), ‘Fair’ (performances among criteria fluctuating dramatically, colored in light blue background) and
‘Poor’ (performing non-‘Superior’ under all criteria, colored in pink background). The abbreviations of each method in the LFQ chains are described in
Supplementary Table S1 available online at http://bib.oxfordjournals.org/, and the datasets analyzed here included PXD004691, PXD006512 and Katsanos
et al. (shown in Table 1). The BOX-NON-ATO-QUA-KNN (highlighted in red bold font) showed ‘Good/Superior’ performances under all criteria for Katsanos
et al. but performed ‘Poor’ for PXD004691 (in red bold font).

dependency ‘Package Name’ is not available for package ‘EVALFQ’
indicates that the dependency package named ‘Package Name’
is not installed successfully. Users can reinstall that specific
package using the instructions in Supplementary Method S3
available online at http://bib.oxfordjournals.org/.

Implementation and features in the EVALFQ
package
EVALFQ is an R package based on the General Public License
(GPLv3) and is available for free through the GitHub repository.
It evaluates the performance of LFQ chains based on multiple

criteria, and identifies the well-performing one(s) by a compre-
hensive scanning of >3000 potential LFQ chains. The manual of
the EVALFQ R package developed in this study is shown in Supple-
mentary Method S3 available online at http://bib.oxfordjournals.
org/. A typical assessment in EVALFQ includes three sequential
steps:

(S1) File Selection. The input data could be a variety of files
generated by 18 popular quantification software tools, which are
based on three modes of acquisition (SWATH-MS, Peak intensity
and Spectral counting). SWATH-MS is a measurement that allows
for the detection and quantification of nearly all detectable
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Table 2. Performances of representative LFQ chains on three datasets (collectively assessed by four criteria)

All performances were ranked and colored to ‘Superior’, ‘Good’ and ‘Poor’ using the background of dark blue, light blue and light red, respectively. The
abbreviations of LFQ chains are described in Supplementary Table S1 available online at http://bib.oxfordjournals.org/. As shown, the performances of different
chains varied substantially. Particularly, the performances of some chains were consistently ‘Superior’ (depicted by dark blue background under all criteria);
the performances of another some were always ‘Poor’ (highlighted by light red background under all criteria); the remaining representative chains performed
‘Good’ (light blue) or ‘Superior’ under some criteria but exhibited ‘Poor’ performance under the others.

peptide fragments in a sample [39]. A list of software is acquired
for preprocessing the data of SWATH-MS, including DIA-UMPIRE,
OpenSWATH, PeakView, Skyline and Spectronaut. Peak intensity is
an acquisition method that allows the comparison of peptide
signal intensities at the analytical level of LC–MS [40]. A list of
software is acquired for preprocessing the data of peak intensity,
including MaxQuant, MFPaQ, OpenMS, PEAKS, Progenesis, Proteios SE,
Scaffold and Thermo Proteome Discoverer. Spectral counting method
can count the number of identified peptides or obtained spectral
fragments [40,41]. A list of software is acquired for preprocessing
the data of spectral counting, including Abacus, Census, DTASelect,
IRMa-hEIDI, MaxQuant, MFPaQ, ProteinProphet and Scaffold. The file
format generated by these tools could be readily found in the
User Manual. The function PrepareInuputFiles() allows the readers
to upload their output files generated by those quantification
software tools. Detailed description can be found in the online
User Manual.

(S2) Data Analysis. One of the key features of EVALFQ lines is its
capacity of providing diverse methods, scanning thousands of LFQ
chains and finally discovering the well-performing one. Therefore,
the performance evaluation of each LFQ chain based on multiple
criteria was realized by two functions: lfqevalueall() for treating the
data without spiking proteins, and lfqspikedall() capable of quanti-
fying the data with spiking proteins. The output files generated by
these functions were explicitly described in Supplementary Table
S2 available online at http://bib.oxfordjournals.org/.

(S3) Results Visualization. With the implementation of function
lfqvisualize(), a heatmap chart that ranks all 3128 potential LFQ
chains was generated to display the performance under each
criterion using different colors (dark blue, light blue and pink were
used to indicate the performance of ‘Superior’, ‘Good’ and ‘Poor’,
respectively). As a schematic diagram, Figure 1 showed a number
of chains of the representative performance (10 for consistently
‘Superior/Good’, 10 for no ‘Superior’ under any criterion and 10
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Figure 2. Accuracies of representative LFQ chains that were assessed using five SGs of various spiking protein concentrations. (A) SG1 versus SG2, (B)
SG1 versus SG3, (C) SG1 versus SG4, (D) SG1 versus SG5, (E) SG2 versus SG3, (F) SG2 versus SG4, (G) SG2 versus SG5, (H) SG3 versus SG4, (I) SG3 versus
SG5 and (J) SG4 versus SG5. All samples in each group were collected from the benchmark PXD014956 [30]. The horizontal dashed line represented
an expected logFC of zero (completely consistent with spiking proteins). Violin plots in GRAY indicated the LFQ chain that was adopted in the original
publication of the benchmark PXD014956 [30]. As illustrated, there are chances to identify an LFQ chain of better performance than the original one
(colored in dark blue), and there are still great probabilities to discover the LFQ chain of much worse performance than the original one (colored in red).
The abbreviations in each LFQ chain are explicitly described in Table 1.

for very diverse performances among different criteria) for three
benchmark datasets. All in all, EVALFQ is featured by its capability
of identifying well-performing LFQ chains.

Results and discussion
Great variances among the performances of
different LFQ chains
To assess the ability of EVALFQ in identifying the well-performing
LFQ chain, three benchmarks of various modes of acquisitions,
PXD004691 [27], PXD006512 [28] and Katsanos et al. [29] acquired
based on SWATH-MS, Peak Intensity and Spectral Counting, respec-
tively, were collected (shown in Table 1). Table 2 gave the per-
formances of the representative LFQ chains for each dataset
(collectively accessed using multiple criteria). As shown, for all
these benchmarks, the performances of different chains varied
greatly (Case Study S1 explicitly described the variances in the
performances of different LFQ chains among criteria). It is likely
that some chains may not work well under one or more criteria for
the proteomic data quantified by different quantification tools,
and it is therefore critical to systematically assess the perfor-
mance of each LFQ chain based on multiple criteria as realized
in EVALFQ package.

Well-performing LFQ chains identified based on
multiple criteria
The performances of LFQ chains varied greatly under each
independent criterion. As illustrated in Supplementary Figures
S2A, S3A, S4A, S5A and S6A available online at http://bib.
oxfordjournals.org/, the performances of all LFQ chains were
ranked solely by Criterion Ca, Criterion Cb, Criterion Cc, Cri-
terion Cd and Criterion Ce using the benchmark PXD002025
[31], PXD000672 [34], PXD002882 [35], IPX0001804000 [33] and
PXD002099 [32], respectively. With the decrease in the

performances under one criterion, there were no clear trends
in the performances under other criteria. Moreover, as shown in
Supplementary Figures S2B, S3B, S4B, S5B and S6B available online
at http://bib.oxfordjournals.org/, top-10 LFQ chains identified
solely based on Criterion Ca, Criterion Cb, Criterion Cc, Criterion
Cd or Criterion Ce was provided, respectively. For the top-
performing chains ranked by one criterion, the performances
assessed by other criteria varied greatly. Detailed descriptions
for the performances of LFQ chains based on five criteria are
provided in Supplementary Method S2 available online at http://
bib.oxfordjournals.org/.

To discover the well-performing LFQ chains, EVALFQ package
integrates a strategy that enables a comprehensive assessment
of the performances of >3000 LFQ chains using multiple criteria.
As illustrated in Figure 1 and Supplementary Table S3 available
online at http://bib.oxfordjournals.org/, this strategy was applied
to various benchmarks (PXD004691 [27], PXD006512 [28], Katsanos
et al. [29]), and the detailed assessment results were provided.
Based on the above results, Case Study S2 explicitly showed the
necessity of conducting comprehensive performance evaluation
among all LFQ chains to identify the ones of good performances.
In other words, by comprehensively ranking performances using
multiple criteria, the difficulty in finding well-performing LFQ
chains can be significantly reduced, which can extensively
facilitate the study in current proteomic analysis.

Enhanced accuracy realized by spiking and
background proteins
Spiking proteins were well-studied elements that facilitate perfor-
mance assessment of proteomic quantification [42]. Particularly,
the level of spiking protein should be quantified as an expected
abundance ratio, while the level of background protein remains
unbiased variation [31,43]. By adopting spiking proteins as the
golden standard, Case Study S3 provided a vivid description of the
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way to enhance quantification accuracy based on both spiking
and background proteins. As illustrated in Figure 2, taking the
pair of sample-1 versus sample-2 as an example, with reference
to the chain (LOG-NON-NON-MEA-ZER) adopted in the original
publication (the violin plots in gray), five additional chains were
found well-performing in guaranteeing the deviation from the
expected concentration ratio of spiking proteins (the violin plots
in dark blue). All in all, EVALFQ showed its ability to verify the
accuracy of the LFQ chain by maintaining the true biological
variation of spiking proteins, which enabled the identification
of the most appropriate LFQ chains using the expected protein
abundance ratio as a gold standard. With the advent of the big
data era [44–46], EVALFQ could be the essential supplement to
the available proteomic tools [47–56] and may thus attract broad
interests from the related fields.

EVALFQ package is an essential tool for analyzing proteomic
data with a lot of advantages. This package covers a wide range
of available processing methods, but these methods are limited
to those commonly used. To improve the effectiveness of data
processing, new methods for proteomics should be implemented
constantly, which cannot be automatically completed. Therefore,
our team will update this package continuously and manually
in the future. Additionally, it takes a lot of time to sequentially
evaluate thousands of LFQ chains by utilizing EVALFQ package.
Especially for large-scale proteomic datasets, the calculating time
spent applying this package varies from hundreds to thousands
of minutes. In the future, the computational efficiency of EVALFQ
package will be improved substantially.

Conclusion
This study constructed an R package to enable a handy processing
and comprehensive evaluation of the LFQ chains. Particularly, it is
able to (1) automatically evaluate the performances from multiple
perspectives, (2) explore the quantification accuracy using spiking
proteins and (3) discover the well-performing quantifications by
scanning >3000 LFQ chains. Due to the assessment of over 3000
chains based on multiple criteria from multiple perspectives,
this package could discover the well-performing LFQ chains. This
package could be an essential and powerful supplement to the
available proteomic tools. The EVALFQ package is available at
https://github.com/idrblab/EVALFQ.

Key Points

• The EVALFQ package was developed based on R code for
label-free proteome quantification and evaluation.

• The performances of >3000 LFQ chains can be automat-
ically evaluated using multiple criteria from multiple
perspectives.

• The quantification accuracy was explored based on spik-
ing proteins in the EVALFQ package.

• Using the EVALFQ package, the well-performing LFQ
chains can be discovered by comprehensive assessment.

Data availability
The implemented code and experimental dataset are available
online at https://github.com/idrblab/EVALFQ.
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com/bib.
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