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Abstract

In recent years, radar has emerged as a key technology for many civilian applications,
for instance, autonomous driving, industrial monitoring, urban sensing and assisted
living for elderly. However, many problems related to interference mitigation, detec-
tion within clutter, antennas imperfections and poor resolution remain fundamental
challenges. Hence, there is a pushing need to develop innovative, efficient and robust
signal processing techniques to solve inherent radar challenges.
A crucial element affecting a radar operation is the surrounding environment. The
undesired returns from the environment can result from mutual interference between
targets or clutter due to terrain scattering. Correspondingly, those returns can greatly
degrade the radar systems performance. In this regard, the waveform diversity offered
by MIMO radar is exploited where each antenna can transmit different waveform,
that can be adapted dynamically to the surrounding environment. To this end, the
existence of a priori information about the surroundings is crucial for the classical
waveform design. In this thesis, we tackle this problem proposing different strategies
based on the radar operation mode and the priori information available. Those
strategies are stemmed from information theory and machine learning perspectives
proposing novel and robust solutions for the current environmental challenges fac-
ing radar systems. This dissertation intensively discusses those strategies within
two main parts. In the first part, we assume the radar scene consists of spatially
close multiple extended targets, whose spectrum overlaps in the frequency domain
while the radar’s goal is to identify those targets. However, high interference might
obstruct the information extraction, and directing the beamformers towards the
targets’ locations as in conventional beamforming might not be convenient in this
case. Thus, we propose a joint information-theoretic transmit-receive beamforming
design, where we utilize mutual information (MI) as a metric to design beamformers.
We devise an optimization procedure to maximize the MI between the target returns
and the received signal. Interestingly, our results show that MI is greatly affected
by how spatially near the targets are. For a deeper understanding of those findings,
we further mathematically analyze the prominent effect of MI on spatial correlation,
which is shown to vary based on the signal to noise ratio regime (SNR).
In the second part, we reconsider the availabilty of a priori information. In this
regard, we assume the radar is in detection mode, with no information about the
surroundings nor the targets. An additional encountered difficulty is the presence
of an unknown dynamic environment, where the targets can change their directions
and fade away. Furthermore, we assume the presence of disturbance (clutter plus
noise) of unknown statistics. Thus, a model based approach as proposed in the first
part would be too complicated and simplified models would be prone to mismatches.
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Abstract

Therefore, we address this problem utilizing the advances of reinforcement learning
(RL) to explore unknown environments. Herein, the radar acts as an agent which
interacts with the unknown dynamic environment and learns through trial and error.
Subsequently, the agent develops its own behavior rules based on the experience
gained from this interaction. Those rules are then used to optimize the transmit
beamformers for cognitive multi-target detection. We further prove the robustness
of such approach across different harsh environments and sophisticated disturbance
models.
Motivated by our interesting findings in machine learning, this thesis further seeks
the potential of utilizing data driven approaches to tackle several challenges related
to direction of arrival estimation (DOA). In general, it is difficult to enhance the
resolution of the current DOA algorithms without either increasing the number
of antennas or the antenna array aperture. However, for many applications, such
requirement might be problematic, thus we present a more efficient alternative. This
thesis proposes to use the received signal of a small number of antennas to extrapolate
the received signal of other virtual antennas using a novel deep neural network (DNN)
architecture. Our findings show that a small antenna array can notably achieve the
resolution of a larger one. In addition the DNN can even de-noise the received signal
in the prediction procedure. This one particular advantage arising from using DNNs
can be further utilized to remove distortions in the received signals. For instance,
multipath and array imperfections are considered two of the foremost sources of
signal distortions affecting DOA precision and accuracy. In this regard, we propose a
DNN framework enhancing the performance of the state of the art multiple signal
classification (MUSIC) algorithm. Such solution enables MUSIC to resolve coherent
sources resulting from multipath and at the same time overcome the errors arising
from imperfections of the antenna array.
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Kurzfassung

In den letzten Jahren hat sich das Radar als Schlüsseltechnologie für viele zivile
Anwendungen herauskristallisiert, z. B. für das autonome Fahren, die industrielle
Überwachung, die Stadtüberwachung und das betreute Wohnen für ältere Menschen.
Viele Probleme im Zusammenhang mit der Störungsminderung, der Erkennung
in Stör-signalen, der Unzulänglichkeit der Antennen und der geringen Auflösung
stellen jedoch nach wie vor grundlegende Herausforderungen dar. Daher besteht
ein dringender Bedarf an der Entwicklung innovativer, effizienter und robuster Sig-
nalverarbeitungstechniken, um die mit dem Radar verbundenen Herausforderungen
zu lösen.
Ein entscheidendes Element, das den Betrieb eines Radars beeinflusst, ist die Um-
gebung. Unerwünschte Reflektionen aus der Umgebung können durch gegenseitige
Interferenzen zwischen Zielen oder durch Störungen aufgrund von Geländestreuungen
entstehen. Dementsprechend können diese Reflektionen die Leistung des Radar-
systems erheblich beeinträchtigen. In diesem Zusammenhang wird die Wellenformdi-
versität des MIMO-Radars genutzt, bei der jede Antenne eine andere Wellenform
übertragen kann, die dynamisch an die Umgebung angepasst werden kann. Zu diesem
Zweck ist das Vorhandensein von A-priori-Informationen über die Umgebung ein
entscheidender Faktor für den klassischen Wellenformentwurf. In dieser Arbeit gehen
wir dieses Problem an und schlagen verschiedene Strategien vor, die auf der Betrieb-
sart des Radars und den verfügbaren Vorabinformationen basieren. Diese Strategien
stammen aus der Informationstheorie und der Perspektive des maschinellen Lernens
und bieten neuartige und robuste Lösungen für die aktuellen Herausforderungen,
denen sich Radarsysteme in der Umwelt stellen müssen. In dieser Dissertation werden
diese Strategien in zwei Hauptteilen intensiv diskutiert. Im ersten Teil gehen wir
davon aus, dass die Radarszene aus mehreren, rümlich nahen, ausgedehnten Zielen
besteht, deren Spektrum sich im Frequenzbereich überschneidet, während das Ziel
des Radars darin besteht, diese Ziele zu identifizieren. Starke Interferenzen können
jedoch die Informationsgewinnung behindern, und die Ausrichtung der Beamformer
auf die Standorte der Ziele, wie beim herkömmlichen Beamforming, ist in diesem Fall
nicht sinnvoll. Daher schlagen wir ein gemeinsames informationstheoretisches Sende-
Empfangs-Beamforming-Design vor, bei dem wir die Transinformation als Metrik für
das Design von Beamformern verwenden. Wir entwickeln ein Optimierungsverfahren
zur Maximierung der Transinformation zwi-schen den Zielsignal und dem empfan-
genen Signal. Interessanterweise zeigen unsere Ergebnisse, dass die Transinformation
stark davon beeinflusst wird, wie nah die Ziele räumlich beieinander liegen. Um
diese Ergebnisse besser zu verstehen, analysieren wir darüber hinaus mathematisch
die herausragende Wirkung von Transinformation auf die räumliche Korrelation, die

ix



Abbreviations and Notation

nachweislich in Abhängigkeit des Signal-Rausch-Verhältnisses (SRV) variiert.
Im zweiten Teil betrachten wir die Verfügbarkeit von A-priori-Informationen. Dabei
gehen wir davon aus, dass sich das Radar im Erfassungsmodus befindet und keine
Informationen über die Umgebung oder die Ziele vorliegen. Eine weitere Schwierigkeit
ist das Vorhandensein einer unbekannten dynamischen Umgebung, in der die Ziele
ihre Richtung ändern und verschwinden können. Außerdem gehen wir davon aus, dass
Störungen (Clutter plus Rauschen) mit unbekannter Statistik vorhanden sind. Ein
modellbasierter Ansatz, wie er im ersten Teil vorgeschlagen wurde, wäre daher kom-
pliziert, und vereinfachte Modelle wären anfällig für Unstimmigkeiten. Daher gehen
wir dieses Problem an, indem wir die Fortschritte des Reinforcement Learning (RL)
nutzen, um unbekannte Umgebungen zu erkunden. Dabei agiert das Radar als Agent,
der mit der unbekannten dynamischen Umgebung interagiert und durch Versuch und
Irrtum lernt. Anschließend entwickelt der Agent seine eigenen Verhaltensregeln auf
der Grundlage der aus dieser Interaktion gewonnenen Erfahrungen. Diese Regeln
werden dann verwendet, um die Sendestrahlformer für die kognitive Mehrzielerfas-
sung zu optimieren. Wir beweisen außerdem die Robustheit eines solchen Ansatzes
in verschiedenen rauen Umgebungen und bei anspruchsvollen Störungsmodellen.
Motiviert durch unsere interessanten Erkenntnisse im Bereich des maschinellen Ler-
nens, wird in dieser Arbeit das Potenzial datengesteuerter Ansätze zur Bewältigung
verschiedener Herausforderungen im Zusammenhang mit der Schätzung der Ankunfts-
richtung (DOA) untersucht. Im Allgemeinen ist es schwierig, die Auflösung der
aktuellen DOA-Algorithmen zu verbessern, ohne entweder die Anzahl der Antennen
oder die Öffnung des Antennenfeldes zu erhöhen. Für viele Anwendungen könnte
eine solche Anforderung jedoch problematisch sein, weshalb wir eine effizientere
Alternative vorstellen. In dieser Arbeit wird vorgeschlagen, das Empfangssignal
einer kleinen Anzahl von Antennen zu verwenden, um das Empfangssignal anderer
Antennen mit Hilfe einer neuartigen Deep Neural Network (DNN) Architektur zu ex-
trapolieren. Unsere Ergebnisse zeigen, dass eine kleine Antennengruppe die Auflösung
einer größeren erreichen kann. Darüber hinaus kann das DNN das empfangene Signal
bei der Vorhersage sogar entrauschen. Dieser besondere Vorteil, der sich aus der
Verwendung von DNNs ergibt, kann weiter genutzt werden, um Verzerrungen in
den empfangenen Signalen zu entfernen. Zum Beispiel werden Mehrwegeffekte und
Array-Unvollkommenheiten als zwei der wichtigsten Quellen von Signalverzerrungen
angesehen, die die DOA-Präzision und Genauigkeit beeinträchtigen. In diesem Zusam-
menhang schlagen wir einen DNN-Framework vor, der die Leistung des modernen
Algorithmus zur Klassifizierung mehrerer Signale (MUSIC) verbessert. Eine solche
Lösung ermöglicht es MUSIC, kohärente Quellen, die aus Mehrwegeffekten resultieren,
aufzulösen und gleichzeitig die Fehler zu überwinden, die durch Unzulänglichkeiten
der Antennengruppe entstehen.
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Symbols

PD probability of detection

PFa probability of false alarm

AE autoencoder

AR auto-regressive

ARMA Auto regressive-moving average

BCD block coordinate descent

CFAR constant false alarm rate

CR cognitive radar

CRB Cramér Rao bound

DNN deep neural network

DOA direction-of-arrival-estimation

DoF degrees of freedom

FMCW Frequency modulated Continous Waveform

GLRT generalized likelihood ratio test

ICA inner convex approximations

KKT Karush-Kuhn-Tucker

MDP Markov decision process

MI mutual information

MIMO multiple-input multiple-output

ML machine learning

MMIMO massive multiple input multiple output

MMSE minimum-mean squared error

MSE mean-squared error

MUSIC multiple-signal classification

MVDR minimum variance distortionless response

NN neural network

PSD power spectral density
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1 Introduction

1.1 Motivation and Objective

For decades radar has played a significant role in military and security applications.
However, its development has gradually broadened to include civilian applications,
including traffic control, indoor surveillance, and urban sensing. Furthermore, radar
has become a key technology for the ongoing advances of autonomous driving. In
fact, the fast-growing market of fully autonomous vehicles has fueled the ongoing
interest to develop innovative signal-processing techniques for radar systems. It is
foreseeable that if the technical issues are resolved, by 2030 up to 15 % of the cars
could be fully autonomous [Mck].
The term radar is stemmed from the acronym RAdio Detection And Ranging, where
a classical radar transmits electromagnetic waves to illuminate a certain area. The
reflected waves are then exploited to detect targets, providing range and speed
measurements. With multiple antennas, radars can also estimate the direction-
of-arrival-estimation (DOA) which enables along with the range information both
target detection and localization. As a matter of fact, the recent leap in computing
architectures and high-speed processors have enabled the application of sophisticated
and effective signal processing methodologies to render even further information.
Specialized radars nowadays can even perform signature analysis providing details on
the shape, size, and components of the target as well as its material composition. This
has opened the door for further radar applications such as through-the-wall imaging,
indoor monitoring for vital signs detection, and assisted living for elders [Ami17].
Despite the significant advances in radar signal processing, there are still several
inherent challenges facing the current radar systems hindering the further development
of radar for those new areas. The undesired returns from the surrounding environment
remain one major challenge as it is a key performance degradation factor. Those
returns can appear in many forms, for instance, they can result due to mutual
interference between targets that might be all of the equal importance within the
illumination area. Another form would be clutter originating from terrain scattering,
which is of no interest to the radar, user due to reflections from the operating radar or
other radar or wireless systems. The radar must distinguish true targets from other
objects, however, the fore-mentioned reflections might be mistaken for a genuine
target, hence generating a false alarm. Furthermore, strong clutter reflections can
even mask far-range targets leading to a missed detection.
Such a problem can be tackled by appropriately managing the radar-transmitted
radiation power. This is done through shaping a desired transmit beampattern
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Chapter 1. Introduction

that minimizes clutter and interference from other targets. This can be achieved
primarily if the transmitted beampattern has a null in the interference direction,
consequently, it can be eliminated by the receiver enhancing the target’s detection.
Traditional phased array radar focuses the transmitted beam in the direction of the
expected target by changing the relative phases of the transmitted waveform from
the transmit antennas [GDH+15]. However, if the interference source is near the
target direction, phased array radars will be incapable of simultaneously mitigating
sources of interference and at the same time efficiently detecting the existing targets.
This is due to the fact that the transmitter must focus the beampattern forming
a phase front in the target direction. Unlike phased array radar, multiple-input
multiple-output (MIMO) radar has the ability to transmit an independent waveform
from each antenna. This waveform can be chosen freely, either to maximize the
power at the target locations or minimize the cross-correlation among the reflected
signals at the receiver [Fri12a,BF03,LS07]. At each receive antenna, all the returns
are processed using M different matched filters. Each of those filters is matched to
the M independent transmitted waveforms. Thus, for every transmitter (Tx)-receiver
(Rx) antenna pair, the channel properties can be processed (i.e., virtual array [LS07]).
This waveform diversity empowered MIMO radar with superiority in multiple aspects
compared to phased array radar, including higher parameter identifiability, flexible
transmit beampattern design, and direct applicability of adaptive localization and
parameter estimation techniques. For those reasons, in the past several years the
research in waveform diversity has intensely flourished. With the aid of the latest
advances in digital waveform generators and solid-state transmitters, the transmitted
waveform can be dynamically adapted to optimize radar performance for certain tasks
and scenarios. Fundamentally, the optimal waveform design problem can be casted
according to a certain desired performance criterion. For instance, the waveform
can be optimized to improve robustness to clutter or interference or to enhance
detection [Fri07]. The radar design is usually driven by assumed models of target
and interference plus noise environment. Those models are known a priori in some
scenarios, possibly based on previous radar experiences, whereas in other scenarios,
the radar has to interpret the environment without any prior knowledge sources. An
important question here is how the waveform can be designed in both cases (i.e.,
known and unknown environments) to provide robustness across various sources of
interference.
In this thesis we exploit both cases to provide an answer to this question. The
known environment case is exploited in chapter 3, where we assume that the Tx has
prior knowledge of the targets’ second-order statistics, locations a,nd their number.
This scenario can be explained in a target identification mode, assuming it has
already been detected. In other words, the primary goal here is to extract more
information about a certain target decreasing the a priori uncertainty about it. In
this case, an appropriate metric to design the waveform is to maximize the amount of
information retrieved about each target. In this sense, information theory is known to
provide a method to quantify the decrease in the uncertainty about a certain random
variable [FG12]. In section 3.3, the surrounding environment consists of two closely

2



1.1. Motivation and Objective

spaced extended targets mutually interfering with each other plus noise. To maximize
the mutual information between the received signal and the target signature, we
jointly design the transmit-receive beamformers. The results show that optimizing
the beamformers for very close targets significantly affected the mutual information
(MI). This motivated further analysis on how spatial correlation affects the MI in
section 3.4. Using the notions of majorization theory, we prove mathematically that
MI has a changing behavior with respect to the spatial correlation of the target
matrix elements.
In chapter 4, the latter case of an unknown environment is exploited. We assume that
the surrounding scene consists of multiple point targets plus clutter and noise. The
environment is further assumed to be non-stationary and totally unknown. In fact,
the radar has no prior information about the number of targets, their locations, and
clutter statistics. The radar here is in a target acquisition mode, where the receiver
blindly performs multi-target detection. Here, we make use of the current advances
in machine learning, where Reinforcement Learning (RL) techniques can offer a
solution to such a problem. RL is a learning approach that addresses model-free
problems through using a software-defined agent, which learns from the observations
collected from the environment and takes the best possible action according to a
reward function [SB18]. By utilizing a cognitive MIMO radar system as this software
agent, it can develop its own behavior rules gaining environmental experience driven
by those observations. This experience can be then passed to the transmitter to
optimize the transmitted waveforms to maximize the probability of detection (PD)
through a perception-action cycle of cognition. Due to the non-stationarity of the
environment, this cycle is repeated continuously. Our algorithm shows robustness
regardless of the disturbance statistics in stationary and non-stationary cases.
In chapter 4, a massive MIMO radar system model is adopted, where the performance
of the algorithm is assessed as the number of virtual transmit-receive spatial channels
Nv increase asymptotically. Our findings proved that as Nv increases, the probability
of false alarm (PFa) decreases asymptotically (Nv → ∞) till it reaches the nominal
value while the PD increases. Furthermore, in [HBH10] it has been shown that
the target localization accuracy increases as the number of antennas increases as
well as the clutter suppression capabilities. In addition, [HBH10] concludes that
more antennas provide better resolution. The question here is: can we enhance the
estimation accuracy and increase the resolution without increasing the number of
antennas? This is possible by increasing the antenna array aperture using sparse
arrays. In [WYWL14,LV18,PV10] several sparse arrays structures are presented,
showing that it is possible to use fewer antennas in a large aperture to provide
similar performance to a linear filled array. Although such an approach provides a
low hardware cost solution, however, it is characterized by its large aperture size,
which might not be preferable if compactness is the driving design requirement. In
this regard, we propose a novel solution to this problem in chapter 5 using deep
learning. Our approach employs deep learning for reconstructing the signals of a
virtual large antenna array. The algorithm uses the received signal of a small antenna
array to extrapolate the received signal of other antennas in a larger antenna array.
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In other words, we try to emulate the received signal of a large ULA using only a
significantly smaller sub-array, without the need to increase the array aperture size,
through training a deep neural network. Such a solution can enhance the angular
resolution and target detection while satisfying both the low cost and compactness
requirements. Furthermore, we prove that such technology can be used to boost the
DOA estimation accuracy of a small antenna array. Surprisingly, our results show
that the deep neural network has further denoising capabilities, as the performance
obtained by using actual high antenna arrays is not only tightly approximated, but
exceeded at low SNR for high angle ranges.
Motivated by the key strengths of deep learning in denoising the input signals, in
chapter 6 we propose using deep learning to overcome two of the most common
challenges facing the State-of-the-art DOA algorithms (i.e. coherent sources and
array imperfections). In general, the current DOA estimation algorithms encounter
several problems such as accuracy and precision of estimates in non-ideal scenarios,
e.g., multipath and antenna imperfections. For instance, in the presence of multipath
propagation, the signal coming directly from the target and the corresponding
multipath signal becomes correlated. In such a scenario, the rank of the received signal
covariance matrix is less than the number of impinging signals, which significantly
affects the estimation performance. This is due to the fact that most of the existing
state-of-the-art algorithms require a full rank covariance matrix to output an accurate
estimation [LWS05,TC13]. Spatial smoothing techniques have been widely applied
to solve this problem de-correlating the received signals, however, this adds more
processing overhead, which might be a limiting factor in real-time applications.
Another major challenge is antenna array imperfections which generally occur in
practical applications due to the non-idealities in the antenna array such as mutual
coupling, gain and phase gradual changes over time and as well as changes in the
antenna locations. Along with multipath, those two challenges affect the DOA
estimation greatly. Hence, we proposed deep learning as a unique solution to both
problems yielding a robust DOA estimation without the need for any pre-processing
in real-time. Fundamentally, neural networks are only trained once, then they can
be directly used for estimation.
In the following, we provide the outline and contributions of this thesis.

1.2 Outline and Contributions

As previously discussed, there are several challenges facing the current radar systems.
This thesis’s primary focus is to design and optimize the transmitted waveform
based on information theory and machine learning perspectives that is robust against
possible sources of interference and clutter. Furthermore, we provide an analysis of
how the information retrieved about the target can be affected by spatial correlation.
In addition, we utilize machine learning capabilities to enhance the DOA performance
at the receiver providing further robustness against antenna array imperfections and
multipath. Next, we provide a summary and focus on the main contribution of each
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chapter in this thesis.

• Chapter 2: Preliminaries provides some theoretical foundations to the content
of this thesis. We discuss why information theory is a proper metric in radar
and machine learning. In addition, we provide some relevant definitions as MI,
neural network (NN) and RL. Furthermore, we discuss the Majorization theory
which will be later used for our analysis of spatial correlation and its effects on
MI. Moreover, we discuss the DOA problem and some of the state-of-the-art
DOA algorithms.

• Chapter 3: MI based MIMO Radar Beamforming is divided into two main
parts. Part 1 proposes a joint information-theoretic design for transmit and
receive radar beamformers for spatially near multiple extended targets. We
maximize the MI between the received signals and the target signatures, which
allows the extraction of the unknown features, which may include shape,
dimensions, and material. However, high interference caused by spatially
near targets might obstruct the information extraction, and directing the
beamformers towards the steering vector as done in conventional beamformers
does not solve this problem, especially for extended targets. In this chapter,
an iterative algorithm is presented to solve this problem using alternative
minimization, dividing it into two blocks. The first block is solving for the
transmit beamformers successively using block coordinate descent (BCD),
and the second one is solving for the receiver beamformers using minimum
variance distortionless response (MVDR). We also show the effect of using our
beamformers on the waveform design problem. Numerical results indicate that
this algorithm can achieve substantially higher MI than the existing conventional
methods. Thus, except for some degenerate cases, having fixed beamformers
instead of optimized ones lead to significant performance degradation.
Part 2 further analyses the effect of spatial correlation MI for MIMO radars.
Unlike the work done in literature for statistical MIMO radar, we consider
the spatial correlation of the target matrix elements to study the correlated
MIMO radar performance. There is a trade-off between coherent processing
gain in correlated MIMO radar and spatial diversity gain of target scatterers
in uncorrelated MIMO radar. We address how the MI between the received
signal and target channel matrix is affected by spatial correlation. Using
majorization theory and the notion of Schur-convexity, we prove that MI has a
changing behavior with respect to spatial correlation, where at low signal-to-
noise ratio (SNR), the MI is Schur-convex, i.e. showing increasing performance
as correlation increases. However, this behavior changes at high SNR, since
MI is Schur-concave at high SNR, hence it decreases as the spatial correlation
increases. Moreover, we investigate the conditions for spatially uncorrelated
MIMO radar. According to these conditions, as the operating frequency
increases with respect to the target location and dimensions, the received paths
become more uncorrelated. Hence, the setup with lower operating frequency
(more correlated) performs better compared to the higher frequency setup at
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low SNR. However, at high SNR, this behavior is reversed. The content of this
chapter is based on the work done in the following papers:

– [J1] A. M. Ahmed, A. A. Ahmad, D. Erni and A. Sezgin, ”Maximiz-
ing Information Extraction of Extended Radar Targets Through MIMO
Beamforming,” in IEEE Geoscience and Remote Sensing Letters, vol. 16,
no. 4, pp. 539-543, April 2019.

– [C2] A. M. Ahmed, A. Sezgin and E. A. Jorswieck, ”Impact of Spatial
Correlation in MIMO Radar,” 2019 53rd Asilomar Conference on Signals,
Systems, and Computers, CA, USA, Nov. 2019, pp. 1528-1533.

• Chapter 4: based Cognitive Beamforming considers the problem of multi-
target detection for massive multiple input multiple output (MMIMO) cognitive
radar (CR). The concept of CR is based on the perception-action cycle that
senses and intelligently adapts to the dynamic environment in order to optimally
satisfy a specific mission. However, this usually requires a priori knowledge of
the environmental model, which is not available in most cases. We propose a RL
based algorithm for cognitive multi-target detection in the presence of unknown
disturbance statistics. The radar acts as an agent that continuously senses
the unknown environment (i.e., targets and disturbance) and consequently
optimizes transmitted waveforms in order to maximize the PD by focusing the
energy in specific range-angle cells (i.e., beamforming).
Furthermore, we propose a solution to the beamforming optimization problem
with less complexity than the existing methods. Numerical simulations are
performed to assess the performance of the proposed RL-based algorithm in both
stationary and dynamic environments. The RL based beamforming is compared
to the conventional omnidirectional approach with equal power allocation
and to adaptive beamforming with no RL. As highlighted by the proposed
numerical results, our RL-based beamformer outperforms both approaches in
terms of target detection performance. The performance improvement is even
particularly remarkable under environmentally harsh conditions such as low
SNR, heavy-tailed disturbance and rapidly changing scenarios. The content of
this chapter is based on the following works:

– [J3] A. M. Ahmed, A. A. Ahmad, S. Fortunati, A. Sezgin, M. S. Greco
and F. Gini, ”A Reinforcement Learning Based Approach for Multitarget
Detection in Massive MIMO Radar,” in IEEE Transactions on Aerospace
and Electronic Systems, vol. 57, no. 5, pp. 2622-2636, Oct. 2021.

– [C3] (Invited Paper) A. M. Ahmed, S. Fortunati, A. Sezgin, M. S.
Greco and F. Gini, ” Robust Reinforcement Learning-based Wald-type
Detector for Massive MIMO Radar,”The 29th European Signal Processing
Conference (EUSIPCO 2021), Dublin, Ireland, August 2021, pp. 846-850.

• Chapter 5: Deep Learning based DOA Estimation for Small MIMO An-
tenna Arrays presents a multiple-signal classification (MUSIC)-based DOA
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estimation strategy using small antenna arrays, via employing deep learning
for reconstructing the signals of a virtual large antenna array. To achieve the
required high angular resolution, radars require large aperture, which impacts
the hardware complexity. With the aid of NN we overcome this problem.
Not only does the proposed strategy deliver significantly better performance
than simply plugging the incoming signals into MUSIC, but surprisingly, the
performance is also better than directly using an actual large antenna array
with MUSIC for high angle ranges and low test SNR values. We further analyze
the best choice for the training SNR as a function of the test SNR, and observe
dramatic changes in the behavior of this function for different angle ranges.
The work done in this chapter is based on the following paper:

– [J2] A. M. Ahmed, U. S. K. P. M. Thanthrige, A. E. Gamal and A.
Sezgin, ”Deep Learning for DOA Estimation in MIMO Radar Systems via
Emulation of Large Antenna Arrays,” in IEEE Communications Letters,
vol. 25, no. 5, pp. 1559-1563, May 2021.

• Chapter 6: Deep Learning for DOA Estimation for Coherent Sources using
Imperfect Antenna Array proposes a robust algorithm for DOA estimation
of coherent sources in presence of antenna array imperfections is presented.
We exploit the current advances of deep learning to overcome two of the most
common problems facing the state-of-the-art DOA algorithms (i.e. coherent
sources and array imperfections). We propose a deep autoencoder (AE) that is
able to correctly resolve coherent sources without the need for spatial smoothing,
hence avoiding possible processing overhead and delays. Moreover, we assume
the presence of array imperfections in the received signal model such as mutual
coupling, gain/ phase mismatches, and position errors. The deep AE is trained
using the covariance matrix of the received signal, where it alleviates the effect
of imperfections, and at the same time act as a filter for the coherent sources.
The results show significant improvement compared to the methods used in
the literature. The material in this chapter is based on the following paper:

– [C1] A. M. Ahmed, O. Eissa and A. Sezgin, ”Deep Autoencoders for DOA
Estimation of Coherent Sources using Imperfect Antenna Array,” 2020
Third International Workshop on Mobile Terahertz Systems (IWMTS),
Essen, Germany, May 2020, pp. 1-5.

Fig. 1.1 summarizes the challenges discussed in the previously mentioned chapters
along with the solutions proposed. As this figure suggests, those solutions are
stemmed from machine learning and information theory perspectives.

1.3 Contributions Outside the Scope of the Thesis

There are other contributions with my students and colleagues that are not included
in this thesis as the following:
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Figure 1.1: Overview of some of the challenges facing the current radar systems and
the proposed solutions covered in this thesis from Information Theory
and Machine Learning (ML) perspectives.

• Journal Papers

– [J4] P. Hillger, P., M. van Delden, U.S.M Thanthrige, A.M. Ahmed et
al. ”Toward Mobile Integrated Electronic Systems at THz Frequencies,”
Journal of Infrared, Millimeter, and Terahertz Waves, vol. 41, pp. 846-869,
June 2020.
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• Conference Papers

– [C5] U. S. K. P. M. Thanthrige, A. M. Ahmed and A. Sezgin, ”Supervised
Learning based Super-Resolution DOA Estimation utilizing Antenna
Array Extrapolation,” 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5.

– [C4] J. Wittemeier, A. M. Ahmed, T. N. Tran, A. Sezgin and N. Pohl,
”3D Localization Using a Scalable FMCW MIMO Radar Design,” 2020
German Microwave Conference (GeMiC), Cottbus, Germany, 2020, pp.
100-103.

– [C7] (Invited Paper) E. Čǐsija
”
A. M. Ahmed, A. Sezgin and H. Wymeer-

sch, ”Ris-Aided mmWave MIMO Radar System for Adaptive Multi-Target
Localization,” 2021 IEEE Statistical Signal Processing Workshop (SSP),
Rio de Janeiro, Brazil, 2021, pp. 196-200.
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2 Preliminaries

This chapter provides an overview of the key theoretical concepts used throughout
the thesis. The thesis presents solutions to radar challenges from both information
theory and machine learning perspectives, as illustrated in Fig. 1.1. Thus, this
chapter explains the fundamental principles of both concepts and how they can
be applied to radar systems. The thesis is divided into two main parts. The
first part examines solutions from the transmitter 's perspective, and the second
part explores solutions from the receiver 's perspective. Chapters 3 and 4, mainly
focus on the waveform design from the transmitter side to aid MIMO radars to
overcome traditional limitations like interference and clutter. Therefore, the related
concepts are explained in section 2.1. Therein, the concept of waveform diversity and
related metrics are introduced. Additionally, section 2.3 provides an introduction to
majorization and other related definitions that will be used in the waveform design
problem discussed in chapter 3. In section 2.4, the concept of cognitive radar is
introduced, which is further discussed in chapter 4. Section 2.5 provides a brief
introduction to some machine learning concepts used throughout the thesis, including
NN and RL. Lastly, in section 2.6, we address the problem of DOA estimation
from the receiver side and investigate the use of machine learning techniques to
improve estimation performance. The basic problem of DOA estimation and some
state-of-the-art algorithms and their challenges are discussed.

2.1 Overview of Waveform design for MIMO Radars

The first part of this thesis (chapters 3 and 4) discusses the waveform design problem
for MIMO radars. This section proposes relevant definitions and metrics proposed in
these chapters.

2.1.1 MIMO Radars

Generally, MIMO radars can be classified into two types: colocated or widely
distributed (statistical) radars. In colocated MIMO radar, the transmitter and
receiver are relatively close, such that the radar observes the same target’s radar
cross section (RCS). This allows significant coherent gain when combining the probing
signals, such gain can be achieved through designing the transmit beampattern. In
this case, the radar offers better resolution, higher parameter identifiability, and
higher sensitivity to detect slow targets [LS07]. This type of radar is explored in our
work in the first half of chapter 3 and in chapter 4.
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In the latter type, a MIMO radar with widely separated antennas captures the spatial
diversity of the target’s RCS. With the aid of non-coherent processing, the diversity
gain for target detection and parameter estimation can be obtained [HBC08]. The
statistical radar model is used in our work in the second half of chapter 3.
For both types of radar, the corresponding waveform design problem has been
under on-going research, to optimize not only target detection but also identification,
revealing its unknown characteristics [FG12]. Characteristics of interest might include
shape, dimensions and material. Perhaps one of the first questions to arise is the
choice of the design metric to satisfy different radar goals.
In this thesis, we study the problem of waveform design for both radar types to
improve radar detection and classification capabilities. The selection of a proper
metric is based on the radar operation as further explained in the next subsection.

2.1.2 Waveform Design Metrics

MIMO radars offer waveform diversity, meaning different antennas can transmit
different waveforms, that can be correlated or uncorrelated. Consequently, this
diversity offers better utilization of the available degrees of freedom, through designing
the transmit waveform. This in turn improves the performance of target detection
and parameter estimation, availing as well new operating modes such as classification
and identification. The waveform design problem has been under ongoing research,
where the transmitted waveform is optimized based on the environment and the
radar's different operating modes. To achieve this, several optimization metrics have
been proposed in the literature, each tailored to a specific radar operating mode as
explained next.

Optimal Detection vs Optimal Estimation Waveforms

The related work in this thesis is divided into two main categories. In the first
category, we assume that the radar is in detection or search mode in chapter 4, where
we propose optimizing the transmit beampattern as a metric to detect unknown
deterministic point targets. In more detail, the transmitted waveform is optimized
to concentrate the transmitted power towards the angles that most likely contain
the targets while minimizing transmitted power in the other angles. This waveform
can be described as a detection waveform, where no prior information is assumed
about the target locations [Bel93]. Hence, to detect the presence or absence of a
certain target, a relevant threshold test can be utilized from detection theory. In
more detail, greater energy can be expected in the reflected waveform if a target is
present compared to a no-target case.
In the second category, we propose information-theoretic metric (i.e., MI) to optimize
the transmitted waveform to minimize the mutual signal-dependent interference
between multiple stochastic extended targets in chapter 3. An extended target can
be characterized as a group of infinite point targets. It can be described with a
certain impulse response, while a point target is described with a scalar RCS [Che09].
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The waveform design problem for an extended target is different from other radar
waveform types. These types of waveforms require more information about the target
and interference (i.e., their second-order statistics). Hence information theoretic
waveform design metrics can be optimal in such cases, where the goal is detecting
a particular target of interest. Such waveforms can be beneficial for parameter
estimation, identification, and, classification purposes after the targets have been
successively detected in the initial probing phase. Those waveforms are called
estimation waveforms as explained in [Bel93]. In the next section, we further define
these information-theoretic metrics and explain their relevance to radar.

2.2 Information Theory and Radar

Information theory has been first applied to radar signal processing in 1953 in [WD53].
The concept of information in radar differs completely from its counterpart in
communications. Radar systems mainly seek information about a target, whereas
a communication system exploits information regarding a transmitted message. In
that sense, Bell in [Bel93] addressed the use of information theory to adaptively
design the radar-transmitted waveform. He formulated the waveform design problem
to extract more information about the target from the received signal observations.
The target was modeled as an extended target, which is defined as a target of a
significant physical extent, hence, they do not act as a simple point target that reflects
an attenuated scaled version of the transmitted waveform. However, due to their
physical extent, they experience significant interference in the reflected signal. For
narrow bandwidth waveforms, the point target assumption is often valid, however, as
the bandwidth of the transmitted waveform Bs becomes comparable to c∆z, where
c is the speed of light and ∆z is the spatial extent of the target, the point target
model will not be accurate. In this case, the reflected signal must be modeled as the
reflection of several point in an extended region of space. The designed waveform
in that sense is considered optimal to identify or characterize the extended target
under investigation. Bell called those waveforms extraction waveforms. A proper
metric , in this case, would be MI. The next subsection provides more details about
MI and its definition.

2.2.1 Mutual Information

MI is an information-theoretic quantity that measures the mutual dependence between
two random variables. Specifically, it quantifies the amount of shared information
between those variables. In more details, the MI denoted as I(X;Y ) between two
random variables X and Y represents the amount of information provided about
X when observing Y . Hence, intuitively MI is zero if X and Y are statistically
independent. This in turn means that knowing X gives no information about Y and
vice versa. However, if both variables are dependent then as the MI increases, the
uncertainty about variable X decreases when observing Y . The formal definition of
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I(X;Y ) in terms of the joint probability distribution P (X, Y ) of X and Y is

I(X;Y ) =
∑

x∈X

∑

y∈Y
P (x, y) log

P (x, y)

P (x)P (y)
, (2.1)

where P (x) and P (y) are the marginal distributions of X and Y respectively [Sha48].
MI can be also defined in terms of both random variables’ entropy (i.e., entropy
measures the amount of uncertainty associated with the random variable) such that

I(X;Y ) = H(X)−H(X|Y ), (2.2)

where H(X) is the entropy of X and H(X|Y ) the conditional entropy (i.e., amount
of information needed to describe X given that Y is known) [CT06].
Therefore, in the context of radar, MI can be used to measure the amount of informa-
tion that the received signal provides on the target’s parameters and characteristics.
Thus, if we observe a received signal (i.e., Y ) reflected from a target to estimate a
certain parameter (i.e., X), then if the waveform is designed to maximize the MI
between them, the more accurately we can classify this target. In chapter 3, further
discussion is provided on the operational meaning of using MI in radar and how it
can be related to other waveform design metrics.

2.3 Majorization Basic Definitions

In this section, we introduce the Majorization theory used in 3.4 and the related
definitions.
Majorization is a useful mathematical tool to describe describes a partial order
between two vectors x, y ∈ Rn [MOA11], it depicts if the components of x is less
spread out or more nearly equal than the components of y.

Definition 1. If x and y have a descending order components, where x1 ≥ x2 ≥
x3 . . . xn ≥ 0 and y1 ≥ y2 ≥ y3 . . . yn ≥ 0, then we say x majorizes y with notion x ⪰
y if [JB07]

m∑

k=1

xk ≥
m∑

k=1

yk,m = 1, . . . , n− 1 and
n∑

k=1

xk =
n∑

k=1

yk. (2.3)

The next definition describes the behavior of function f when applied to vectors x
and y.

Definition 2. A function f defined on A ⊂ Rn is said to be Schur-convex on A if

x ⪰ y on A =⇒ f(x) ≥ f(y),

and Schur-concave on A if

x ⪰ y on A =⇒ f(x) ≤ f(y).
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The next lemma provides a condition to test the Schur convexity of a valued vector
function.

Lemma 1 (Schur-Ostrowski Condition, [JB07, Lemma 2.5]). Let I ⊂ R be an open
interval and let f : In→ R be continuously differentiable. f is said to be Schur-convex
on In if

f is symmetric 1 on I,

and for all a ∈ In

(xi − xj)(
∂f

∂xi
− ∂f

∂xj
) ≥ 0 ∀ 1 ≤ i, j ≤ n, (2.4)

and Schur-concave if the inequality in eq. (2.4) is in the opposite direction [JB07].

The symmetry condition in Lemma 1 limits its applicability to only symmetric
functions. Hence, there have been several works to deal with this restriction. Hwang
in [Hwa79] generalized the Schur condition in Lemma 1 for partially ordered sets.
He introduced a corresponding notion for the Schur-Ostrowski condition, where
∂f
∂xi
≥ ∂f

∂xj
for all x ∈ Rn and i, j = 1, . . . , n where j dominates i in the partially order

points and the resulting inequalities (j > i).

Theorem 1. [Hwa79] Let f(x1, . . . , xn) be a function defined over the domain D,
such that x = [x1, x2, . . . , xn]

T . Let P = [p1, p2, . . . , pn]
T be a set of points partially

ordered by ’≥’, and a = [a1, a2, . . . , an]
T , b = [b1, b2, . . . , bn]

T be two set of weights
where ai and bi are associated with pi for i = 1, . . . , n, then

f(a1, . . . , an) ≥ f(b1, . . . , bn),

for all a majorizing b on P if and only if f for every i and j, pi ≥ pj fulfills

∂f

∂xi
≥ ∂f

∂xj
∀ x ∈ D.

Simply the Schur convexity of the function demonstrates whether f is an order-
preserving function or not as per Definition 2. This concept is most commonly used
in a wireless communication context, specifically in resource allocation problems for
multi-user or MIMO systems. Section 3.4 further discusses the application of those
functions within the waveform design problem for MIMO radar system.

1A function is symmetric if the argument vector can be arbitrarily permuted without changing
the value of the function
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2.4 Cognitive Radar (CR)

The waveform diversity offered by MIMO radars as explained in 2.1 has opened new
frontiers for adapting the transmitted waveform based on the feedback the radar
gets from the environment. This type of cognition employing adaptive Tx and Rx is
called cognitive radar.
CR paradigm has been first introduced by Haykin taking inspiration from the echo-
location of some mammals like bats or dolphins [Hay06], and cognition in human
brains [HXS12]. CR is described as a radar system that senses the environment,
learns from it, and makes decisions based on what it has learned to accomplish
certain assigned tasks through a perception-action cycle of cognition. As a matter
of fact, this cycle starts with the illumination of the environment by transmitting a
waveform, then from the reflected radar echoes, it learns the dominant information
about the target and the surroundings (perception). Finally, it adapts the optimal
transmit waveform accordingly to accomplish a desired goal (action) [Hay06]. In
a non-stationary environment, this cycle is repeated continuously, where the non-
stationarity can be caused by statistical weather variations, stochastic disturbance,
or the presence of unknown non-static targets. Whereas, the disturbance in radar
is produced by two components, the clutter and white Gaussian noise. In [HXS12],
Haykin clearly distinguishes between traditional feed-forward radar, fully adaptive
radar, and a CR. A radar is considered adaptive when it employs global feedback
including the environment in this feedback loop, where adaptive filtering at the
receiver or adaptive beamforming at the transmitter might be applied [Gue10].
However, CR develops its own behavior rules from the experience gained, stores it in
the memory, and extends this knowledge to the transmitter. This is followed by a
set of smart decision actions. Thus, to choose those actions, CR should benefit from
all the available degrees of freedom (DoF), i.e., polarization, time, frequency, code,
and beam patterns. Hence, it can be deduced that CRs would benefit significantly
from the waveform diversity at the transmitter offered by MIMO radar systems.
Consequently, optimization, machine learning, and deep learning can be considered
important leveraging technologies for the future evolution of CR [Gin21]. In chapter 4,
we investigate a CR MIMO system that perceives the environment and uses machine
learning tools to take its decisions intelligently.

2.5 Machine Learning (ML) and Radar

In the last few years, machine learning approaches emerged to provide solutions for
problems in various research domains such as signal processing, communications,
and economics. In particular, the use of machine learning techniques improved
the performance of some traditional signal processing approaches overcoming their
limitations. Furthermore, machine learning is most useful when there is no model to
describe a certain behavior, or when the existing models fail due to assuming the
existence of a priori information. In particular, radar can intelligently be adapted,
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whether on Tx or Rx side, according to accurate environmental awareness which can
be provided by machine learning.
Motivated by those approaches, in this thesis, we revisit some of the classical radar
signal processing problems and we provide novel solutions to traditional challenges
using machine learning. In the next subsections, we briefly provide an overview of
the methods used.

2.5.1 ML: Neural Networks (NN)

An artificial NN, a subset of machine learning, is defined as a network of interconnected
nodes called neurons, which are used to train a computing system to solve a certain
task by simulating the human brain neurons. This network can recognize the
patterns within numerical data (i.e., classification). In addition, it can model the
relationship between inputs and outputs similar to a mathematical function (i.e.,
regression) [Sch15]. It is compromised of some node layers: an input layer, one or
more hidden layers, and an output layer as in Fig. 2.1. Each hidden layer has a
certain number of nodes, each has certain inputs and outputs. Each input ai is
multiplied by a weight wi , then all those weighted inputs are added together with a
predefined bias. The resulting sum is passed through a nonlinear activation function
f turning the unbounded input into a bounded one as shown in Fig. 2.2.
It is important to note that the nonlinearity introduced by the activation function

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: Simple Neural Network

is essential to learn the complex functional mapping between the inputs and outputs.
Otherwise, the NN would be adding a series of linear weighted combinations. There
are several activation functions such as rectified linear unit (ReLU), sigmoid, and
Tanh. For instance, in chapter 5 we used the ReLU function which is defined as

f(x) = max(0, x). (2.5)

In every layer, the nodes are connected to the nodes in other layers in order to send
and receive data. In a fully connected NN, each node in every layer is connected to
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a1
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[
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]

Figure 2.2: Single Neuron

each node in the previous and the next layer.

Network Training

The training process is performed by successively feeding data through the network,
getting output from the NN, then comparing the predicted output Ŷ with the actual
one Y using an error function. In this thesis, we used the mean-squared error (MSE)
which is defined as

MSE =
1

n
∗

n∑

i=1

(Yi − Ŷi)2, (2.6)

where n is the number of nodes. The network goal throughout the training is to
optimize the weights minimizing this error using backpropagation. The weights
are first updated for a single row of data, then this process is repeated for all the
available training data set. This entire cycle is called epoch, the network usually
takes multiple epochs to train.

Overfitting vs Underfitting

Typically, increasing the number of hidden layers might be a good idea to enhance
the performance. However, this might lead to overfitting (i.e., the network models
too well the input training data). Hence, the network wonâFIXME™t be able to
generalize to different unseen data (i.e., validation or test data).
On contrary, underfitting refers to a network that can not fit certain training data
nor be generalized to unseen new data.
Both over and underfitting lead to poor performance. A good fit network is one that
can both model the training data and is generalized to other data.
Commonly, the NN maps a known labeled input data to a known output under
external supervision, which is known as supervised learning. However, if no predefined
data is available, then these types of networks will not be of use. Hence, in this case,
the computing software must find a solution to the given task on its own. This is
done using reinforcement learning algorithms.
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2.5.2 ML: Reinforcement Learning (RL)

RL is an area of machine learning, where an agent learns how to make decisions
to achieve a certain goal. This is done by trial and error interactions with the
environment [SB18]. Typically an agent performs the course of actions, then it
evaluates its goal achievement through two types of information collected from the
environment in response to those actions: its current state and a reward. The reward
is defined as a scalar feedback signal, which the agent always seeks to maximize. It
is specific to a certain task and a corresponding goal [MRT12]. The interactions
with the environment in RL is formally described by Markov decision processes
(MDP) [SB18].

Definition 3. A Markov decision processes (MDP) is defined by a tuple {S,A,P,r},
where S is a finite set of states, A is a finite set of actions, P is the transition
probability from state s to s′ ∈ S after action a ∈ A is performed, r is the immediate
reward evaluated after a is executed.

A policy π: S → A is a function that maps a state s ∈ S into an action a ∈ A.
Moreover, it defines which action has to be executed at each state. Thus, at time
k ∈ [0, K], the agent observes the state sk, then based on a specific policy π, it takes
action ak = π(sk) . Consequently, a new state sk+1 will be reached with probability
P(sk+1|sk, ak) and a reward rk+1 ∈ R will be received. The observed information
from the environment, the reward rk+1, and sk+1 are used to improve the policy.
This process is repeated till the optimal policy is reached.
To provide a score to a given state, a state value function Vπ : S → R is introduced.
This function is defined as the expected cumulative reward received by the agent for
starting from state s and following policy π. More formally, the state value function
for policy π is defined as

Vπ(s) = Eπ

[ ∞∑

k=0

γkrk+1|Sk = s

]
, (2.7)

where Eπ [·] denotes the expected value of a random variable when the agent follows
the policy π at any time k. The scalar γ ∈ [0, 1] denotes the discount factor which
controls the weight given to future rewards. In addition, let us define as Q-function
the optimal action value function for policy π, where Q : S ×A → R is defined as
the expected cumulative reward for starting from state s and taking action a :

Qπ(s, a) = Eπ

[ ∞∑

k=0

γkrk+1|sk = s, ak = a

]
, (2.8)

therefore the optimal state value function can be written as

V∗
π(s) = argmax

a∈A
Qπ(s, a). (2.9)
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The environment surrounding the agent can be time-variant, and the agent can face
new situations. Hence, the RL model must be optimized to be dynamic and navigate
through real-time situations. In chapter 4, we address this particular situation,
where the agent’s task is to track multiple unknown targets in a real-time dynamic
environment.

Exploration vs Exploitation

One challenge in designing RL algorithms is the trade-off between exploration and
exploitation. In more detail, the agent must follow the same actions which were tried
in the past and proved to maximize the reward. However, the agent is required also
to acquire new knowledge through discovering new actions. Hence, the agent remains
in a dilemma of whether to exploit the existing experience or explore a new one with
the aim of finding better actions. Therefore, the agent must always keep the balance
between exploitation and exploration, without favoring one over the other. This
can be done using ϵ greedy approach, where it selects the action with the highest
estimated reward mostly. However, with some probability ϵ, it chooses to explore
a random action independent from the reward estimates. In chapter 4 we further
discuss how this approach is adopted in our system.

2.6 Direction of Arrival (DOA)

In the second part of this thesis, discussed in chapters 5 and 6, the problem of DOA
estimation is addressed and how the classical approaches can be further improved
using concepts from machine learning (ML) previously explained in section 2.5.
DOA estimation refers to estimating the direction of several target electromagnetic
waves through receive antennas that form a sensor array. DOA has a wide range of
applications, e.g., radar, sonar, and wireless communications [Tre02]. There are many
DOA estimation techniques that can be classified into multiple categories. There are
conventional methods that depend on the locations of peaks in the spatial spectrum
to determine the DOA, i.e., delay and sum beamforming and MVDR [LWS05]. There
are also the subspace methods i.e. which depend on the eigenstructure of the spatial
correlation matrix, offering high resolution DOA estimation [TC13]. In addition,
there are parametric-based approaches like the maximum likelihood (ML) technique,
that use a statistical structure for the process of generating data [Sva99].

2.6.1 System Model

Assume that L targets are impinging on a receive array consisting of N antennas
as in Fig. 2.3, whose DOA is θ1, . . . , θL. Here, we assume the transmit signal is
modulated by a carrier frequency fc. At the receiver, the radio frequency signals are
modulated to the baseband to be further processed. In addition, assume that the
signal has a limited bandwidth Bs with a maximum travel time ∆T for a plane wave.
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Hence, the narrow band model assumption will be valid if Bs∆T ≪ 1 [TC13]. The
received signal is sampled at Ks uniquely spaced time instants 1, . . . ,Ks to obtain
multiple snapshots gathered in matrix Z = [z(1), . . . , z(Ks)], with

z (ks) =
L∑

l=1

a (θk) sl (ks) + ñ (ks) , for ks = 1, . . . , Ks

= A(θ)s (ks) + Ñ (ks) .

(2.10)

(2.11)

sl(ks) is the transmit waveform of the l th source, and ñ (ks) is the zero-mean Gaussian
noise. a (θl) denotes the imperfection free steering vector and is defined as

a (θl) =
1√
N

[
1, e−j2π d

λ
sin θl , · · · , e−j2π d

λ
(N−1) sin θl

]T
, (2.12)

while A(θ) = [a (θ1) ,a (θ2) , · · · ,a (θL)] and s (ks) = [s1 (ks) , s2 (ks) , · · · , sL (ks)].
The covariance matrix of the received signal z is

R = E
[
z (ks) z

H (ks)
]

= A(θ)RsA
H(θ) +Rñ,

(2.13)

(2.14)

where Rs = E
[
s(ks)s

H(ks)
]
and Rñ = E

[
Ñ (ks) ÑH (ks)

]
The noise here is assumed

to be white Gaussian, i.e., Rñ = σñI, where σñ is the noise variance. The estimated
covariance matrix from the antenna array observations ks = 1, · · · , Ks is

R̂ =
1

Ks

Ks∑

ks=1

z (ks) z
H (ks) . (2.15)

d d

z1(t) z2(t) z3(t)

θl

zN(t)

d sin(θl)

wave front of target l

Figure 2.3: DOA
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2.6.2 Beamforming Methods: Minimum Variance Distortionless
Response (MVDR)

Conventional methods such as delay, and sum beamforming view the DOA estimation
as a spatial spectrum. The parameters are located within the spectrum, where the
power is most concentrated. Hence, it is affected by the resolution limitation due to
the finite array aperture. In addition, increasing the SNR or the number of samples
will not offer a solution to this problem [Tre02]. The MVDR beamformer formulates
the spatial spectrum problem as a constrained optimization problem, overcoming
the resolution limitation as

min wHRw

s.t wHa(θ) = 1
(2.16)

In eq. (2.16), the objective function minimizes the output power from all directions
while the beamformer concentrates on the desired direction θ. After applying lagrange
multipliers, the solution of eq. (2.16) becomes

wMVDR =
R−1a(θ)

aH(θ)R−1a(θ)
. (2.17)

The MVDR power spectrum is expressed by

PMVDR(θ) =
1

aH(θ)R−1a(θ)
. (2.18)

The MVDR beamformer’s performance depends on the array aperture, SNR, and
the number of snapshots. Furthermore, the performance degrades significantly in the
presence of coherent or correlated interference. In addition, this kind of beamformer
is sensitive to imperfections in the antenna array [Tre02].

2.6.3 Subspace Methods: Multiple-Signal Classification (MUSIC)

Subspace methods are known to offer superior performance compared to conventional
beamforming. They exploit the eigenstructure of the covariance matrix in eq. (2.13),
where the eigenvalue decomposition of R is denoted by

R = UsΛsU
H
s +UñΛñU

H
ñ , (2.19)

where E [·] denotes the expected value, Us and Uñ are matrices containing the
eigenvectors, which represent the signal and noise subspaces, respectively. Λs =
diag(λ1, . . . , λL) and Λñ = diag(λL+1, . . . , λN ) contain the corresponding eigenvalues
of the target and the noise, respectively. If the signal covariance matrix Rs is a
full rank matrix, i.e., rank(Rs) = L, then the matrix aH(θ)Rsa(θ) would have a
rank of L. In addition, the eigenvalues satisfy the property λ1 ≥ λ2 ≥ · · · , λL =
λL+1 · · · = λN = σñ. In this case, the steering matrix and the signal eigenvectors
span the same subspace, which corresponds to the largest L eigenvalues. Meanwhile,
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they are orthogonal to the noise eigenvectors, which corresponds to the remaining
M − L eigenvalues. Exploiting the orthogonality between the noise and steering
vector subspaces where

a(θ) ⊥ Uñ, (2.20)

the expression of the MUSIC spectrum which provides the received signal energy
distribution for all receive directions is given by

PMU(θ) =
1

aH(θ)UñUH
ñ a(θ)

. (2.21)

In order to separate the noise and signal subspaces, the number of targets L is
assumed to be known in MUSIC. MUSIC is known to provide sharp peaks in the
desired directions, providing high resolution and improving the estimation accuracy.
However, it highly depends on the SNR, the number of antennas, and the number of
samples. In chapter 5, we prove that MUSIC performance can be improved without
the dependency on increasing either the SNR or the number of antennas. Further
limitations occur in multipath scenarios since the rank of Rs becomes deficient. This
is due to the correlation between the signals arriving at the receiver, hence the
orthogonality assumption in eq. (2.20) will not be satisfied. This leads to significant
performance degradation for subspace methods as MUSIC. Further pre-processing
would be required in this case to mitigate the coherence among the signals. and
restore the rank of Rs. Hence, spatial smoothing techniques can be applied in this
case to remove the signal coherence as in [QR11a], however in some cases this is
done at the expense of the resolution capability [PK89]. In chapter 6, we present an
alternative to spatial smoothing MUSIC (SS-MUSIC) using deep learning without
the need to compromise resolution.
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3 Mutual Information (MI) based
MIMO Radar Beamforming

This chapter investigates the role of information theory in radar waveform design.
We first provide an overview of the main ideas behind the use of information theory
in radar waveform design in sections 3.1 and 3.2. Afterward, this chapter is mainly
divided into two parts. First, in 3.3, we propose a joint design for the transmit-
receive beamformers to maximize the MI in colocated MIMO radars. The colocated
MIMO radar system model is presented in 3.3.1, then the optimization problem is
formulated and solved in 3.3.2, the simulation results are shown in 3.3.3. second, in
3.4, we further investigate how spatial correlation can affect MI and what are the
contributing factors. This is done through utilizing a statistical MIMO radar model
in 3.1, where the conditions for spatial de-correlation of a MIMO radar channel are
discussed as well. Furthermore, 3.4.3 presents a measure of spatial correlation and
revisits the optimum waveform design. Afterwards, the Schur-convexity of the MI
function in high and low SNR is examined, then numerical results are provided in
section 3.4.4. Finally, 3.5 draws conclusions.

3.1 Why MI is a good metric for waveform design ?

MI for waveform design was introduced as a possible metric by Bell [Bel93] in 1993.
In his paper, the design of radar waveform was proposed by maximizing the MI
between target impulse response and the received signal as previously explained
in section 2.2. Bell called such waveforms information extraction waveforms or
estimation waveforms. This is due to the relationship between MI and the lower
bound on the parameter estimation error. In his paper, Bell used an extended target
model, where the reflected signal is the convolution of the transmitted waveform with
the target impulse response, which represents the target’s scattering characteristics.
He further showed that the optimum waveform design is to distribute the available
energy among the various scattering modes of the extended target, which is the same
mechanism as the classic water-filling algorithm. In his paper, the target response
was modelled as a realization of a Gaussian random process with a known spectral
variance. Yang and Blum in [YB07] extended this approach by formulating the same
problem using statistical MIMO radars. They provided a comparison between the
waveform design from two perspectives. First, minimizing minimum-mean squared
error (MMSE) in estimating the target impulse response, and second, maximizing the
MI between the impulse response and the received signal. It was shown that if the
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transmitter has knowledge of the target’s second-order statistics, both optimization
problems yield the same waveform design. Those findings depict that superior MI
improves the target parameter estimation. Furthermore, in [RBG11] the authors
provided a comprehensive comparison between SNR-based and MI-based waveforms.
Therein, the authors showed that both waveforms have different transmit spectra,
where the SNR-based waveform concentrate most of the transmitted energy towards
one dominant frequency band. However, the MI-based waveform tend to spread
its energy across a few dominant frequency bands. This is due to the logarithmic
relationship between both metrics. Generally the MI spectral density at frequency
f is given by MI(f) = ln (1 + SNR(f)), where SNR(f) is the SNR spectral density
at frequency f . Hence, via Taylor series approximation, the MI spectral density is
nearly equivalent to the SNR spectral density for frequency components with small
coefficients. However, the MI spectral density is nearly equivalent to the logarithm of
the SNR spectral density for frequencies with large components. Consequently, the
values of those large components are lowered through the logarithm function. This
in turn enables less dominant frequency components in the MI spectral density to be
rather significant. Hence, those components are allocated energy when MI waveforms
are optimized through the water-filling algorithm. Intuitively, this explains why
MI-based waveforms are most suitable for estimation and classification purposes
since it conveys information from the less dominant frequency components in the
target response. Those findings further justify the operational use of using MI as a
metric in the radar waveform design problem. In the next section, we will discuss
the relevant state-of-the-art and the contribution of this chapter.

3.2 Related Work

The work in [YB07] modeled the channel similar to the point-to-point MIMO channel
model in communications, where all the targets are included in one spatio-temporal
channel matrix. Hence, the optimal solution leads to water-filling over the eigenmodes
of this matrix. However, this might always lead to allocating low power to targets
observed through weak modes of the channel matrix. Hence for multiple targets,
such an approach might not be desirable.
Leshem et. al in [LNN07] tackled this problem, where they reformulated the system
model to include the effect of each target in the presence of another target as
interference. The optimization problem is cast similar to sum-rate maximization.
However, this complicated the optimization problem as it became highly nonlinear in
all the variables. Therefore, the authors in [LNN07] fixed the transmit beamformers
to conventional beamformers to relax the problem, where the beamforming vectors are
chosen to be in the direction of the steering vector. This transformed the optimization
problem into a power allocation over multiple targets.
Though using conventional beamformers offers a high gain in the target direction,
that does not apply in an environment where interference exists from other sources
[LLH14a]. The challenge in such environments is to modify the transmit and
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receive beamformers jointly to match the target and null interference. Liu et. al.
in [LLH14b] addressed this problem from a signal-to-interference-and-noise ratio
(SINR) perspective, where they proposed an iterative optimization algorithm to solve
for the transmit and receive beamforming vector for only point targets. However,
since extended targets have many scattering centers, they overlap over the frequency
spectrum. Therefore, in some frequency bins, the total SINR might be high because of
dominating targets with higher reflection centers, therefore, the information retrieved
about weak targets can be lost. To the best of our knowledge, no one tackled this
problem from MI perspective due to its complexity, since the optimization variables
for each target now become vectors scaled with the number of antennas.
In the first part of this chapter, we jointly design information-theoretic transmit and
receive radar beamformers for spatially near multiple extended targets with colocated
radar. We propose an optimization algorithm to solve this problem utilizing the
concept of alternating minimization. Interestingly for two extended near targets with
the overlapping spectrum, the waveform is well separated across the frequency range,
unlike the case for conventional beamformers.
In the second part of this chapter, we further extend our investigations to include
statistical MIMO radar. In addition to the advantages shown of using MI to design
radar waveform for colocated MIMO, several works in the literature investigated
the same information theoretic approach for statistical MIMO radar. For instance,
the authors in [TTP10] addressed statistical MIMO radar waveform design based
on MI in the presence of colored noise. They show that the optimum waveform in
this case should match the target and noise eigendirections. However, in [TTP10]
they ignored the effect of spatial correlation and assumed the channel matrix to be
independent and identically distributed.
In general, there is a trade-off between coherent processing gain in correlated MIMO
radar and spatial diversity gain of target scatterers in uncorrelated MIMO radar. The
authors in [HBC08] show that by utilizing spatial diversity in statistical MIMO radars,
it can overcome bandwidth limitations and offer high-resolution target localization.
In addition, they derive conditions for spatial de-correlation of the reflected paths
to achieve diversity gain. Those conditions are influenced by the antenna spacing,
operating frequency, and the target location and dimensions. In this chapter, we
induce spatial correlation to the target matrix elements by violating those conditions,
in order to study the effect of correlation on the performance of statistical MIMO radar
waveform design based on MI. In more detail, we investigate how the MI between
the received signal and target channel matrix is affected by spatial correlation in the
presence of colored noise.
The contribution of this chapter is:

1. We jointly optimize the transmit and receive beamformers to maximize the MI
between the target signatures and the received signal for colocated MIMO radar.
The optimization problem becomes nontractable as the objective function is
non-convex in terms of the two variables. We examine herein this problem, by
utilizing the concept of alternating minimization, where we fix one variable

27



Chapter 3. Mutual Information (MI) based MIMO Radar Beamforming

and solve for the other, and vice versa. If we solve only for the receiver beam-
formers and fix the transmit ones, the problem becomes similar to minimizing
the interference on each target, which is similar to the MVDR beamformers.
However, if we fix the receiver beamformers and optimize the transmit ones
jointly for all the targets, the problem will still be non-convex. Here, we use
the BCD methodology, which divides the problem into multiple blocks and
successively solves it with respect to each block. we show the effect of our
algorithm on the MI performance.

2. We apply the resulting beamformers to the waveform design problem as de-
scribed in [LNN07]. Interestingly for two extended near targets with the
overlapping spectrum, the waveform is separated across the frequency range,
unlike the case for conventional beamformers. In addition, using the gen-
erated waveforms along with the optimized beamformers shows significant
enhancement in the MI performance especially at higher transmit powers.

3. We investigate the effect of spatial correlation in statistical MIMO radar from
MI perspective. Using majorization theory and the notion of Schur-convexity,
we prove that MI has a changing behavior with respect to spatial correlation,
where at low SNR, the MI is Schur-convex, i.e. showing increasing performance
as correlation increases. However, this behavior changes at high SNR, since
MI is Schur-concave at high SNR, hence it decreases as the spatial correlation
increases. Moreover, we investigate the conditions for spatially uncorrelated
MIMO radar. According to these conditions, as the operating frequency in-
creases with respect to the target location and dimensions, the received paths
become more uncorrelated. Hence, the setup with a lower operating frequency
(more correlated) performs better compared to the higher frequency setup at
low SNR. However, at high SNR, this behavior is reversed.

3.3 Transmit - Receive Beamforming

We consider a collocated MIMO radar that uses transmit and receive beamforming.
It consists of an uniform linear array (ULA) withM transmit and N receive elements.
Assume that those elements transmit K waveforms simultaneously to detect L
targets each at θl. In this model, the transmit and receive beamforming vectors are
designed jointly to detect spatially near multiple extended targets. Those targets
are characterized by multiple scattering centers and large areas compared to the
resolution cell. Thus, one target can extend the bounds of a single range cell.
We assume that the radar bandwidth is sufficiently large to resolve the target’s
scatterers. Hence, the target impulse response is modeled as a collection of idealized
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nondispersive point targets as

ψl(t) =

Q∑

r=1

αl,qδ(t− τr) (3.1)

where Q is the number of scatterers and αl,q is the complex amplitude of each
reflection center with a corresponding delay of τr. A stochastic target model is
assumed in this section, whose power spectral density (PSD) is in turn a stochastic
process. This process modeled as a Gaussian random variable whose second-order
statistics are known [Bel93]. The Fourier transform of ψl(t) can be expressed as

hl(fd) =

∫ τhl

0

ψ(τ)e−j2πfτdτ, (3.2)

where hl(fd) is the target frequency response which is considered to be equally spaced
sampled such that fd ∈ W ≜ {f1, f1 +∆f , . . . , fD}, where ∆f is the spacing between
frequency samples. In addition, τhl

is the finite duration of ψl(t). Thus, assuming a
zero mean Gaussian process, the spectral variance of hl(fd) can be defined as

σ2
hl
(fd) = E

[
|hl(fd)|2

]
(3.3)

Throughout this chapter, we assume the target spectral variance is known, this can
be gathered through measurements or using a feedback system, such as CR (for more
details about CR, please refer to 2.4). Furthermore, we assume that the radar has
prior estimate about their locations [LNN07]. Those assumptions can be justified
if the radar is in tracking or classification mode, this means that the targets have
been already detected in the search mode as previously explained in 2.1. In those
applications, the waveform is adaptively modified in each transmission to recognize
a known target in a closed loop radar or CR framework. As a result, the radar
in this case can classify the target after gaining a thorough understanding of the
channel [GVN07]. In this chapter, we only focus on the design of the waveform. In
the upcoming chapters, we will discuss in detail how to detect targets and estimate
their corresponding location in the search mode.

3.3.1 Colocated MIMO Radar System Model

The radar transmits simultaneous beams, where each beam is dedicated to each
target to detect it in the presence of others as interference (i.e., K = L). In more
detail, the radar focuses the energy of L transmitted orthogonal waveforms towards
the spatial directions of those targets using transmit beamformers. The transmitted
wideband signal in the frequency domain at fd is given by1

S(fd) =
L∑

l=1

vl(fd)sl(fd), (3.4)

1A wide band signal is assumed here to capture the details of the extended targets’ response, since
the radar is assumed to be in classification mode.
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where sl(fd) is the transmitted waveform normalized to unit energy, directed towards
target l using transmitting beamforming vector vl(fd) ϵ CM×1 at frequency fd, where
l ∈ L ≜ {1, . . . , L}. A total power constraint is assumed such that Pmax =

∑L
l=1 Pl,

where Pl is the transmit power dedicated for target l across all frequencies such
that Pl =

∑fD
fd=f1

∥vl(fd)∥2. It is assumed that target waveforms sl, where sl =
[sl(f1), .., sl(fD)], are orthogonal to each other. The received signal at target l would
be given by 2

xl(fd) = aT (θl, fd)vl(fd)hl(fd)sl(fd) +
L∑

i ̸=l

aT (θi, fd)vi(fd)hi(fd)si(fd), (3.5)

where aT (θl, fd) is the steering vector of the target l, which is a result of the
propagation phase delay between the transmit antennas as

a(θl, fd) =
[
1, e−jr sin(θl), . . . , e−jr(M−1) sin(θl)

]T
(3.6)

where r = 2πd
λ
. Here channel reciprocity is assumed, and if the receive steering vector

is a(θl, fd), then the transmit one is aT (θl, fd). At the receiver array, the received
signal for target l becomes

yl(fd) = a(θl, fd)xl(fd) + ñ(fd), (3.7)

where ñ(fd) a white Gaussian noise vector with zero mean and variance σ2
ñ . Afterward,

the signal received is processed by a bank of matched filters matched to each waveform.
So the output would be

y(fd) =
L∑

l=1

a(θl, fd)xl(fd)s
∗
l (fd) +

L∑

l=1

ñ(fd)s∗l (fd), (3.8)

where s∗l (fd) is the matched filter response of target l at frequency fd such that
|sl(fd)|2 = 1. Moreover, the noise and the matched filter are statistically independent,
hence the variance of the noise will remain σ2

ñ . Eventually, the received signal y(fd) is
processed by N receiving antenna array whose beamforming vector is given by wl(fd)
to produce scalar signal z(fd) = wH

l (fd)y(fd). The signal z(fd) can be rewritten as
the sum of desired signal for lth target and interference as following

z(fd) = zl(fd) + zi(fd), i ̸= l, (3.9)

where the desired signal component is defined as

zl(fd) = wH
l (fd)A(θl, fd)vl(fd)hl(fd),

2It is worth noting that we assume the radar observes a certain orientation of the extended target,
if this changes then hl(fd) and σ2

hl
(fd) will change accordingly.
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with rank one matrix A(θl, fd) = a(θl, fd) a
T (θl, fd). Further, the interference and

noise signal for target l is defined as

zi(fd) = wH
l (fd)

L∑

j ̸=l

A(θj, fd)vj(fd)hl(fd) +wH
l (fd)ñ(fd).

In section 2.2, the MI between two random variables was explained and the corre-
sponding definitions were given. In this work, as a metric for the waveform design,
we use the conditional MI of the received signal and the target impulse response,
given that the transmitted signal is known, which is denoted by I(hl(fd), z(fd)|sl(fd)).
This is due to the fact that conditional MI takes into account the knowledge of sl(fd)
at the receiver unlike I(hl(fd), z(fd)), which only maximizes the mutual information
between the received signal and the target response, regardless of the signal used.
Thus, using only I(hl(fd), z(fd)) might lead that the resulting waveform might not
be optimal given the design constraints of the transmitted signal. Therefore, for a
certain fd, the conditional MI 3 can be written in terms of the differential entropy as

I(hl, z|sl) = H(z|sl)−H(z|hl, sl). (3.10)

Since the target responses are modeled as Gaussian distributed random variables,
then the MI between target l and the received signal z(fd), given that sl(fd) is
transmitted, is

I(hl(fd), z(fd)|sl(fd)) =

∆f log


1 +

|ul,l(fd)vl(fd)|2 σ2
hl
(fd)∣∣∣

∑L
j ̸=l ul,j(fd)vj(fd)

∣∣∣
2

σ2
hj
+ |wH

l (fd)|
2
σ2
ñ


 , (3.11)

where ul,j(fd) = wH
l (fd)A(θj , fd). It is worth noting the second term in the logarithm

in eq. (3.11) denotes the E(SINRl) = E(|zl(fd)|2/|zi(fd)|2), where SINRl is the signal-
to-interference-plus-noise ratio for target l. We refer the reader to [Bel88] for detailed
derivation of eq. (3.11).
The total MI across all frequencies between the received signal and target l can be
depicted as

I(hl; z|sl) =
fD∑

fd=f1

I(hl(fd), z(fd)|sl(fd)), (3.12)

where hl = [hl(f1), .., hl(fD)], z = [z(f1), .., z(fD)], and sl = [sl(f1), .., sl(fD)].
Next, we will formulate a joint optimization problem to design not only the transmit-
ted waveform spectrum but also the transmit and receive beamformers. The main

3for simplicity, we will refer to the conditional MI as MI for the rest of the chapter.
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objective function P0 can now be written as

P0 : max
V

L∑

l=1

I(hl; z|sl)

s.t.
L∑

l=1

fD∑

fd=f1

∥vl(fd)∥2 < Pmax,

(3.13)

where V is the set of optimization variables such that V ≜ {vl,wl|∀fd ∈ W ,∀l ∈ L}.
For simplicity, we refer to vl(fd) and wl(fd) as vl and wl respectively. Here, we
consider ∥.∥2 as the Frobenius norm.

3.3.2 Optimization Problem

In this section, the objective function given in eq. (3.13) is further discussed. First,
note that solving such a problem is very challenging as the beamforming vectors
and transmitted powers need to be jointly optimized across different frequencies for
each target. This is since the problem is non-convex due to the fractional term in
the log function. In contrast, minimizing with respect to one variable and keeping
the other fixed is relatively easier [NSW09]. This concept is utilized here, where the
main problem is solved iteratively, rather than through a joint optimization over the
beamformers and powers. To this end, the problem defined in eq. (3.13) is divided
into three problems (i.e., P1,P2 and P3) solved alternatively. Our approach is to
initially optimize the power spectrum in P1, while fixing the beamformers, then in
P2 and P3, solve for the receive and transmit beamformers respectively while fixing
the power spectrum till convergence. Initially, the problem in eq. (3.13) is solved for
the power spectrum assuming that the beamformers vl and wl are fixed ∀l as follows

P1 : max
Pl(fd)

L∑

l=1

fD∑

fd=f1

I (hl(fd), z(fd)|sl(fd))

s.t.
L∑

l=1

fD∑

fd=f1

Pl(fd) ≤ Pmax, ∀l ∈ L, ∀fd ∈ W ,

(3.14)

such that Pl(fd) = ∥vl∥2. Since the beamformers are fixed, P1 can be considered as
a power spectrum allocation problem for each target under a total power constraint
Pmax. This problem can be solved using the Lagrangian method, where the multipliers
are solved using bisection as in [LNN07]. The next step is to solve for the beamformers
using the output Pl(fd) from eq. (3.14) ∀fd and ∀l as discussed in the following.

Alternating Minimization of vl and wl

It is noticed that the objective function P1 and its constraint consist of a large
number of individual functions, that corresponds to fD frequency bins. The proposed
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approach to this problem is to solve for each frequency bin using the power Pl(fd)
from eq. (3.14), specified to each frequency fd. So eq. (3.13)) can be reformulated as

min
vl,wl

−
L∑

l=1

I (hl(fd), z(fd)|sl(fd))

s.t. ∥vl∥2 ≤ Pl(fd), ∀l ∈ L.
(3.15)

However, the problem is still non-convex in terms of two vector variables. Hence,
the concept of alternating minimization is utilized here, where eq. (3.15) is solved
through alternating between both variables, i.e., optimizing vl for a fixed wl and
vice versa at each frequency fd.

Receive Beamforming

The algorithm starts by fixing the transmit beamformers and solves for the receive
ones. If E(|zi(fd)|2) = E(zi(fd)zi(fd)H), then we can mathematically re-arrange
eq. (3.11) as

I(hl(fd), z(fd)|sl(fd)) =

∆f log

(
1 +

|ul,lvl|2 σ2
hl∑L

j ̸=l w
H
l A(θj)vjvH

j A
H(θj)wlσ2

hj
+ σ2

ñw
H
l wl

)
, (3.16)

where for simplicity, we refer to ul,l(fd), A(θj)(fd), σ
2
hl
(fd) as ul,l ,A(θj), and σ

2
hl

respectively. Furthermore, define the interference plus noise covariance matrix

Ri+n =
L∑

j ̸=l

A(θj)vjv
H
j A

H(θj)σ
2
hj
+ σ2

ñ (3.17)

Thus, then for fixed vl and Pl(fd), the problem in eq. (3.13) can be re-casted as

P2 : min
wl

−
L∑

l=1

log

(
1 +

∣∣wH
l A(θl, fd)vl

∣∣2 σ2
hl
(fd)

wH
l Ri+nwl

)
, (3.18)

As the optimization here is over the logarithmic sum with independent variables,
each term in the summation can be solved independently. In fact, to minimize the
interference caused by other targets, one can use the standard MVDR previously
explained in subsection 2.6.2 where the receive beamformers for target l would be
given as [LWS05]

wl =
R−1

i+na(θl)

aH(θl)R
−1
i+na(θl)

. (3.19)
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Transmit Beamforming

After solving for the receive beamformers, the algorithm would now solve for the
optimal vl by solving the following problem

P3 : min
vl

−
L∑

l=1

I (hl(fd), z(fd)|sl(fd))

s.t. ∥vl∥2 ≤ Pl(fd), ∀l ∈ L.
(3.20)

The optimization problem P3 is still non-convex and NP-hard [LDL11], since we
still need to jointly optimize over vl and vj in eq. (3.11) inside the fraction term.
Eq. (3.20) is rewritten as

P3 : min
vl

F (v1,v2, . . . ,vL)

s.t. ∥vl∥2 ≤ Pl(fd), ∀l ∈ L.
(3.21)

Due to the separability of the constraints of eq. (3.21), and assuming that F is twice
differentiable, then this problem can be efficiently solved using coordinate descent
algorithms obtaining the Karush-Kuhn-Tucker (KKT) solution of P3, specifically
using BCD [WZY+18,LDL11]. The algorithm solves eq. (3.21) cyclically by optimizing
one block at a time, i.e., vk, while fixing all other blocks of variables (i.e., vj ̸=k). The
algorithm first initializes all beamformers randomly such that v1 = [v1,v2, . . . ,vL].
Afterward, the following update rule at iteration i+ 1 is accomplished

vi+1
l = min

vl

F
(
vi+1
1 ,vi+1

2 , . . . ,vi+1
l−1,vl,v

i
l+1, . . . ,v

i
L

)
(3.22)

This procedure is applied till the objective function is not decreasing anymore at each
coordinate direction. For further proof of the convergence, the reader is recommended
to refer to [Ber08]. BCD is most useful in solving large-scale optimization problems,
hence such an algorithm is suitable for our problem if there are large numbers of
extended targets present and consequently a large number of transmit beamformers.
Under the power constraint: ∥vl∥2 ≤ Pl(fd), the proposed algorithm would try
to allocate vl that would increase the information known about all targets, then
use this beamformer to solve for others, till it reaches an iteration stage where all
transmit beamformers are optimal for all the targets, and the mutual information
is not increasing anymore. Algorithm 1 describes how to utilize BCD to solve
for radar transmit beamformers. The variable ∇vl

F(γl) in eq. (3.23) denotes the
gradient of the function defined in eq. (3.15). If the fractional term in the MI
expression in (3.11) is redefined as SINRl = P̃l/Ĩl , then the gradient can be written
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Algorithm 1 Transmit Beamforming

Input v1, a(θl, fd), σ
2
hl
(fd), σ

2
ñ , wl(fd), Pl(fd) ∀ l = 1, .., L.

Output optimal vl
⋆ at fd

Initialization i = 1
repeat

γi+1
1 = v1

for l = 1, 2,..., L do
γi+1
l =

[
vi+1
1 ,vi+1

2 , . . . ,vi+1
l−1 ,vl,v

i
l+1, . . . ,v

i
L

]

di+1
l = PVl

(
vi
l −∇vl

F(γi+1
l )

)
(3.23)

▷ di+1
l is the gradient projection direction for vl

PVl
=





vl, ∥vl∥ ≤
√
Pl(fd)√

Pl(fd)vl

∥vl∥ , ∥vl∥ >
√
Pl(fd)

(3.24)

▷ PVl
[.] is the orthogonal projection to Vl

vi+1
l = vi

l + ξi+1
l di+1

l (3.25)

end for
i = i+ 1

until
∥∥vi+1 − vi

∥∥ > ε

as ∇vl
F (v1,v2, . . . ,vL) = −

∑L
j=1Dl(j), and

Dl(j) =





2σ2
hl
uH
l,l vl ul,l

Ĩl (1 + SINRl)
, j = l

−2σ2
hj
P̃ju

H
j,l vl uj,l

Ĩ2j (1 + SINRl)
2 , j ̸= l.

Algorithm 1 applies projected gradient descent [LDL11], where the function moves in
the direction of the negative gradient in each coordinate, afterwards it is projected
onto the feasible set. Hence, eq. (3.23) finds the search direction dl of the gradient
to solve for eq. (3.21). Furthermore, eq. (3.24) ensures the satisfaction of the power

budget through projection onto a ball constraint Vl =
{
vl| ∥vl∥ ≤

√
Pl(fd)

}
.

Amrijo Rule

In this algorithm, the step size ξl in the gradient direction introduced in eq. (3.25) is
very important. A small step size would lead to a huge number of iterations, and
a large step size could make the algorithm unstable. So, backtracking- Amrijo line
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search is used to find the optimal step size [Ber08], where ξi+1
l > 0 is the smallest

step size satisfying :

F(vi
l + ξi+1

l di+1
l ) ≤ F(vi

l) + ξi+1
l β∇vl

F(γi+1
l )Tdi+1

l .

The constant β is chosen to be 0.1. Afterward, using the output transmit beamformers
from algorithm 1, the overall iterative algorithm 2 solves eq. (3.13) as follows

Algorithm 2 Joint Transmit Receive Beamforming

Input a(θl, fd), σ
2
hl
(fd) ∀ l = 1, .., L.

Output optimal vl
⋆ ,wl

⋆ for target at each fd
Initialization randomly select v1 = [v1,v2, . . . ,vL].
repeat

Compute Pl(fd) from eq. (3.14) ∀ fd = f1, .., fD.
for fd = f1, f2,..., fD do

Compute wl(fd) from (3.19) using v1

repeat
Compute vl(fd) with algorithm 1 using Pl(fd).
Compute wl(fd) from (3.19) using vl(fd).

until convergence
end for

until convergence

3.3.3 Numerical Analysis

In this section, numerical results are presented to verify the performance of the
algorithm proposed. In the following simulations, a collocated ULA is used with λ/2
spacing, with 10 elements at the Tx and Rx, respectively. The array aperture is
small that all antennas can view the same aspect of the target, and the noise is white
Gaussian with σ2

ñ = 1. It is assumed that the power spectral densities of the targets
and their angles are known similar to [LNN07]. The radar signals have a bandwidth
of 80 MHz with central frequency of 8 GHz, and the total number of frequency bins
are chosen to be 100. It should be noted that as the frequency spacing ∆f decreases,
the total number of frequency bins would subsequently increase. This would affect
the complexity of Algorithm 2, since the optimization problems P2 and P3 are solved
iteratively per frequency bin. Thus, the choice of a suitable ∆f is important such
that captures the variation in the target spectral variance without increasing the
complexity of the algorithm. In the simulation results, each point in the figures is
acquired by averaging over 500 realizations.
The effectiveness of the presented algorithm is compared to the performance of the
same radar but with a conventional beamformer at the transmitter and MVDR at
the receiver, where the conventional beamformer is defined as

vl(fd) =
1√
M
a(θl, fd).
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3.3.4 Beamforming design only

In this set of simulations, the effect of optimizing the beamformers only is examined.
This means that the beamformers are optimized without optimizing the waveform,
(i.e., without solving problem P1). Thus, the power allocation and corresponding
frequencies are not optimized, and fixed equal power allocation is applied across all
frequencies. In more detail, it is assumed that the power is uniformly distributed
across the frequency bins without the need of computing P1 in eq. (3.14). Thus,
in Algorithm 2, Pl(fd) = Pl/100, ∀fd ∈ W. The spectral variance of the targets
(σ2

h(fd)) is chosen similar to various Gaussian shapes.
In the first set of simulations, it is assumed that there are 4 static targets close in the
angle at 60◦, 64◦, 69◦, 70◦, and the radar system acquires information about them all.
The results are shown in terms of MI defined in eq. (3.13)) using optimal beamformers
v⋆
l and wl

⋆ for every target, versus the total SNR for all targets across the frequency
range. The stopping criterion of the algorithm is met when ε = 10−4, by which it
usually converges after 20-25 iterations on average. It is noticed from Fig. 3.1 that
the proposed algorithm outperforms the conventional MVDR beamformers in terms
of MI at close angles, and both curves have different slopes, this means that the
information extracted about those targets is higher although their angles are very
near.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

80

100

SNR (dB)

M
I

Figure 3.1: Performance comparison of the proposed algorithm( ) and conventional
with MVDR beamformers ( ) for close targets.

In the second set of simulations, the extreme case is simulated, where the targets are
very far from each other in angle at 0◦, 45◦, 90◦, 135◦, the proposed algorithm gave
the same MI as the conventional beamformers in Fig. 3.2. Since the interference, in
this case, is very low, and target 1, 3, and 2, 4 respectively are orthogonal to each
other, so it is optimal to direct the beamformers in the steering vector direction.
In the next set of simulations, we jointly design the beamformers and the waveform
using Algorithm 2. The effect of this joint design is shown and compared to only
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Figure 3.2: Performance comparison of the proposed algorithm ( ) and conventional
with MVDR beamformers ( ) when target 1 & 3 are orthogonal as well
as 2 & 4.

designing the waveform as introduced in [LNN07].

Joint Beamforming and Waveform Design

The authors in [LNN07] used MI to design multiple waveforms for extended targets,
using fixed beamformers. In this set of simulations, the joint design proposed in
Algorithm 2 is compared to the approach described in [LNN07], where the authors
only optimize the power spectrum of the waveforms. Here, we used different spectral
variances, to show the effect of interference of multiple targets across the spectrum,
as shown in Fig. 3.4a.
Fig. 3.3 first compares both approaches across SNR. It is shown that the MI of
the approach in [LNN07] saturate at higher powers where the interference is very
high, meanwhile, the optimized beamformers show very good performance at the
same powers, since the interference is nulled. This behavior is further explained
in Fig. 3.4 showing the spectrum of the transmitted waveforms. On one hand,
Fig. 3.4b shows the waveform transmitted for both targets at 73◦, 70◦ using fixed
conventional beamformers as proposed in [LNN07] with total input SNR of 18 dB for
the two targets. It is noticed that the two waveforms overlap in many frequencies,
although they are spatially near which is not optimal from MI perspective as it
may cause interference and information loss. On the other hand, Fig. 3.4c shows
the same waveform problem but using the optimized beamformers generated from
Algorithm 2, interestingly, the waveforms of the two targets are almost separated
across all frequencies, with higher power allocation for some bins, which decreases
the interference between both targets and increasing the MI retrieved.
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Figure 3.3: Performance comparison of the proposed algorithm in ( ) and conven-
tional with MVDR beamformers in ( ) when optimal power allocation
is used with two targets at 70◦, 73◦.

3.4 Impact of Spatial Correlation

Comparing Fig. 3.2 and Fig. 3.3 , it can be noticed that MI can be greatly affected
by correlated targets. Motivated by those results, in this section, we further analyze
this behavior on a larger scale. Generally, the spatial correlation among the signals
received at the receiver has a great impact on the performance of the MIMO radar.
Since highly correlated signals would possibly increase the coherent processing
gain, uncorrelated signals would emphasize more the spatial diversity of the target
scatterers [FHB+06]. Therefore, we need to analyze and model the spatial correlation
observed from the different paths between the transmitter and receiver. In [HBC08],
the authors provide conditions for correlated and uncorrelated statistical MIMO
radars. In this section, those conditions are manipulated and their effect on the MI
is analyzed.

3.4.1 Statistical MIMO Radar System Model

Assume an extended target consisting of Q scatterers, each scatterer is considered
independent, and isotropic. The target is illuminated by statistical MIMO radar
with widely separated antennas with M transmitters and N receivers as in Figure
3.5, with transmitter m at position ρm= (xtm, ytm), and receiver n at position ρn=
(xrn, yrn). The scattered signal from one scatterer q located at position ρq = (xq, yq),
received at ρn at time instant t is given by

yqn(t) =
M∑

m=1

hqmnsm(t− τtm(ρq) + τrn(ρq)) + ñn(t), (3.26)
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(a) Target spectral variance of two targets at 73◦, 70◦

used for waveform design.
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(b) Waveform using conventional beamformers
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(c) Waveform produced using the jointly optimized
beamformers.

Figure 3.4: Effect of beamforming on the waveform design for target 1 ( ) and
target 2 ( ).
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where sm(t) is the waveform transmitted by transmitter m, ñn(t) is the noise at
receiver n. Defining hmn as the channel from m to receiver n for all Q scatterers,
which is given by

hmn =

Q∑

q=1

αq exp(−j2πfc[τtm(ρq) + τrn(ρq)]) (3.27)

defining αq as the reflectivity of the scatterer, which is a zero mean, i.i.d complex
Gaussian random variable with the variance of 1/Q [LS08]. In addition, if Q is large
enough, then hmn will be Gaussian as well. The time delay τtm(ρq)=d(ρm, ρq)/c is
the propagation delay between transmitter m located at position ρm and scatterer
q, where d(ρm, ρq) is the distance between m and q, and c is the speed of light.
Accordingly exp(−j2πfcτρm(ρq)) is the phase shift due to the propagation from m
to q, and similarly exp(−j2πfcτrn(ρq)) is the phase shift due to propagation from
scatterer q till receiver n, where τrn(ρq) is the propagation time delay between q and
n. Similar to [HBC08], we assume that the bandwidth of the waveform transmitted
is not wide enough to resolve individual scatterers. Therefore, we assume that
sm(t− τtm(ρq)+ τrn(ρq)) ≈ sm(t− τtm(ρ0)+ τrn(ρ0)), where we assume that the radar
cross-section of the target (RCS) has a center of gravity located at ρ0 = (x0, y0).
Furthermore, the path gains hmn is organized in a N ×M matrix H, as shown
in [HBC08], the structure of this matrix is

H = KΣG. (3.28)

If Q is large enough, then the elements of H are jointly Gaussian, since αq is a
complex Gaussian random variable. The transmit paths are organized in a Q×M
matrix G, where G = [gT

1 ; . . . ;g
T
Q], where

gT
q = [exp(−j2πfcτt1(ρq)), . . . , exp(−j2πfcτtM(ρq))]. (3.29)

The receive paths are in a N ×Q matrix K, where K= [k1, . . . ,kQ], and

kT
q = [exp(−j2πfcτr1(ρq)), . . . , exp(−j2πfcτrN(ρq))]. (3.30)

The reflectivity of all scatterers is organized in a diagonal Q×Q matrix Σ, where
Σ =diag([α1, . . . , αQ]), and Σ ∼ CN (0,Rα).
If the number of samples in the duration of the transmitted waveform is denoted by
Ks, then we can obtain the total received signal across all Ks time samples as

yn = hT
nS

T + ñn, (3.31)

where yn = [yn(1)yn(2) . . . yn(Ks)], hn = [h1nh2n . . . hMn]
T , S = [s(1)s(2) . . . s(Ks)]

T ,
where s(ks) = [s1(ks) s2(ks) . . . sM(ks)]. We assume that Ks ≥ max(M,N). From
eq. (3.31), we define the received signal from all the antennas as

Y = SH+ Ñ , (3.32)
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Figure 3.5: MIMO radar with an extended target, containing of four point targets.

in which Y ∈ CKs×N, Y = [y1 y2 . . .yN ], H ∈ CN×M is the target scattering matrix
containing all the path gains hmn from transmit to receive antennas, Ñ ∈ CKs×N is a
colored noise matrix with independent and identically (i.i.d) distributed columns,
where Ñ = [ñ1 ñ2 . . . ñN ]. Moreover we define ȳ = vec(Y), h̄ = vec(H), and
n̄ = vec(Ñ ), where vec(X) is obtained by column wise staking of the matrix X.
Consequently, eq. (3.32) can be rewritten as

ȳ = S̃h̄+ n̄, (3.33)

where S̃ = IN ⊗ S. We assume that H and Ñ are independent, with distributions

h̄ ∼ CN (0,Rh̄) ,

n̄ ∼ CN (0,Rn̄) ,

where Rh̄ ∈ CMN×MN is the positive semidefinite correlation matrix of the target,
defined as Rh̄= E[h̄h̄H], and Rn̄ ∈ CNKs×NKs is a positive semidefinite correlation
matrix of the noise.
The target channel vector h̄ can be defined as 4

h̄ = vec(H) = vec(KΣG)

=
(
GT ⊗K

)
vec(Σ)

(3.34)

4vec(ABC) =
(
CT ⊗A

)
vec(B)
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Therefore, Rh̄ can be rewritten in terms of Rα as

Rh̄ =
(
GT ⊗K

)
(I⊗Rα)

(
GT ⊗K

)H
. (3.35)

Let the eigendecomposition of Rh̄ and Rn̄ be

Rh̄ = UhΣhU
H
h ,

Rn̄ = Un̄Σn̄U
H
n̄ ,

where Uh, Un̄ are unitary matrices, while Σh, and Σn̄ are diagonal matrices, with
vectors σh, σn̄ on the diagonals respectively, such that σh = ([σh,1, σh,2, . . . , σh,MN)],
σn̄ = ([σn̄,1, σn̄,2, . . . , σn̄,NK]) are diagonal matrices whose elements are arranged in
descending order. It should be noted that Rh̄ has MN singular values, and we always
assume that Q is large enough, such that MN ≤ Q.

3.4.2 Measure of Spatial correlation of MIMO Radar

In the previous section, the system model for a widely separated MIMO radar was
introduced, where a stochastic model was presented for the channel H whose elements
are the path gains from the Tx to the Rx. Based on this model, multiple questions
might rise: what makes different path gains correlated or de-correlated? Furthermore,
if a correlation exists, would the MI be affected in this case as previously noticed in
Fig. 3.2 and Fig. 3.3 ? Most importantly, what is a proper metric to compare the
correlation between two channels? Is the statistical definition of correlation enough
in this case? This section and the next one, address those questions. Initially, we
answer the first question by providing specific conditions that control the correlation
relationship between the channel elements.
Suppose that there are two transmit antennas at locations ρm = (xtm, ytm) and ρi =
(xti, yti) respectively, while the receive ones are at ρn = (xrn, yrn) and ρj = (xrj, yrn)
respectively as shown in Figure 3.5. Furthermore, the target is located at ρ0 whose
dimensions are defined as dx along the x-axis and dy along the y-axis. Are the path
gains hmn (i.e., path from Tx antenna at ρm to Rx antenna at ρn) and hij correlated
or not ?
According to the derivation provided in [FHB+06], if at least one of the following
conditions is met, then the channel is considered as uncorrelated.

xtm
d(ρm, ρ0)

− xti
d(ρi, ρ0)

>
λc
dx

ytm
d(ρm, ρ0)

− yti
d(ρi, ρ0)

>
λc
dy

xrn
d(ρn, ρ0)

− xrj
d(ρj, ρ0)

>
λc
dx

yrn
d(ρn, ρ0)

− yrj
d(ρj, ρ0)

>
λc
dy
,

(3.36)
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where λc is the operating wavelength.
Using the example provided in [FHB+06] for clarification if the target is at a distance
d = 104λc and with dimension, dx or dy = 10λc , then the separation between
the antennas ρm and ρi must be of order 103λc to have a spatially de-correlated
paths. In this context, the target can be viewed as an antenna with aperture dx
illuminating the two transmit antennas. Then, the channel elements de-correlate if
the spacing between both antennas is large enough such that they do not fall in the
same beamwidth illuminated by the target. This example illustrates how one factor
(i.e., the spacing between the antennas) can affect the spatial de-/correlation.
However, as noticed from the previous conditions, other factors contribute to the
correlation of the channel. Those factors are:

1. Spacing between transmit/receive antennas

2. Operating frequency

3. Target Dimensions

4. Distance between the target and the antennas.

Next, we further explore how correlation can be mathematically described and how
to measure whether one channel matrix is more correlated than the other.
Normally in statistics, a diagonal covariance matrix demonstrates that the random
variables are uncorrelated, independent from the values of auto-covariances on
its diagonal. This measure will not be enough to compare two channels if their
paths are uncorrelated but have different powers. Hence, in the next definition, a
new measure is introduced to compare different covariance matrices in addition to
their statistical independence. This definition is derived using Majorization theory
previously explained in 2.3.

Definition 4 ( [JB07, Definition 4.2]). If we have two arbitrary target covariance
matrices, R1

h̄
and R2

h̄
, with eigenvalues σh1 , and σh2 respectively, arranged in

descending order such that σh1,1 ≥ σh1,2 ≥ . . . ≥ σh1,T ≥ 0 and σh2,1 ≥ σh2,2 ≥ . . . ≥
σh2,T

≥ 0, where T = MN, with constraint that tr(R1
h̄
)=tr(R2

h̄
). we say that R1

h̄
is

more correlated than R2
h̄
, if σh1 ≽ σh2 such that

L∑

l=1

σh1,l
≥

L∑

l=1

σh2,l
for 1 ≤ L ≤ T − 1. (3.37)

This definition can be intuitively described as the larger the first L eigenvalues of
the channel covariance matrix, the more correlated the channel is. Thus, according
to Definition 4, the random variables are considered uncorrelated, if the covariance
matrix is diagonal, in addition to having equal auto-covariances values on the
diagonal [JB07, Remark 4.1].
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Example 1. If R1
h̄
and R2

h̄
are both diagonal matrices, with eigenvalues σh1 =

[4, 0, 0, 0], and σh2 = [1, 1, 1, 1] respectively, then R1
h̄
is extremely correlated, while

R2
h̄
is totally uncorrelated.5

3.4.3 The Effect of Spatial Correlation on MI-based waveform

The measure of correlation defined in Definition 4 allows us to analyze the impact of
spatial correlation on performance measures for different channels. In this section,
we will revisit the MI-based waveform design problem but for widely separated
MIMO radars (unlike colocated MIMO radar model in 3.3.1). We will investigate
how the waveform design for maximizing the MI between ȳ and h̄ can be affected by
the spatial correlation of h̄. First, we derive the optimal waveform for the widely
separated MIMO system model in the following.
The expression of mutual information between ȳ, and h̄, if the transmitted waveform
is known, in a matrix form is given by [TTP10]

I(ȳ; h̄|S̃) = N [log[det(S̃Rh̄S̃
H +Rn̄]− log det(Rn̄)]]. (3.38)

Then, the optimization problem of waveform design to maximize the MI with a total
power constraint of PT can be formulated as

max
S̃

log[det(S̃Rh̄S̃
HR−1

n̄ + INK)]

s.t. tr(S̃S̃H) ≤ PT .
(3.39)

Lemma 2. [Fie71] The optimal structure of S̃ to satisfy (3.39) is the following

S̃opt = Un̄

[
0MN×(NK−MN) Σs

1/2
]T

UH
H . (3.40)

Σs is a square diagonal matrix, Σs ∈ CMN×MN with elements σs,i on its diagonal.
This means that the left and right singular vectors of the optimal waveform must
be equal to the eigenvectors of the noise and the Hermitian of the channel matrices
respectively [TTP10].

In more details, in eq. (3.40), the left singular vector of the optimum waveform
refers to the eigenvector of the noise covariance matrix in increasing order, while the
right singular values refer to the eigenvector of the covariance matrix which should
be in decreasing order, i.e. the eigenvalues of the noise and the target are sorted in
oppositional order according to the following theorem.

Theorem 2. [Fie71] For positive semidefinite matrices A and B, with eigenvalues
α1 ≥ α2... ≥ αn, β1 ≥ β2... ≥ βn.

n∏

i=1

(αi + βi) ≤ det(A+B) ≤
n∏

i=1

(αi + βn+1−i). (3.41)

5In this chapter, the correlation as per Definition 4 will be referred as spatial correlation, while
through out the thesis, the usual statistical correlation will be referred only as correlation.
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Hence, if the eigenvalue decomposition of A = UAΛAU
H
A and B = UBΛBU

H
B, then

the upper bound is achieved for UA =PUB, where P is a permutation matrix with
ones on the anti-diagonal such that

P =




0 0 . . . 1

0 . . . 1 0
...

...
...

...

1 0 . . . 0



,

and the lower bound is achieved for UA =UB. Eq. (3.40) only provides the
optimal structure of the matrix to satisfy problem (3.39), however, the optimal
power allocation must yet be found. Hence, to solve for the optimal transmit power
allocation, we must solve for the singular values σs,i in matrix Σs of the optimal

waveform S̃opt in eq. (3.40). Thus, rewriting eq. (3.39) as

max
σs,i

MN∑

i=1

log

(
σs,i σh,i
σn̄,MN−i+1

+ 1

)

s.t.
MN∑

i=1

σs,i ≤ PT ,

(3.42)

then we can obtain the optimal solution using the celebrated water filling algorithm
[TTP10], such that

σs,i =

(
1

λ
− σn̄,MN−i+1

σh,i

)+

,

where λ is the water-level and is determined based on the total power, by solving
the following equation

MN∑

i=1

(
1

λ
− σn̄,MN−i+1

σh,k

)+

= PT .

Schur Convexity Analysis of MI Expression

In this subsection, we analyze how the MI of the proposed optimal waveform described
previously can be affected by spatial correlation. Since, according to Definition 4, the
eigenvalues of two different covariance matrices can be compared using Majorization
theory as defined in section 2.3, eq. (2.3). Thus, since the MI is a function of the
eigenvalues of the target covariance matrix, then subsequently the MI can be defined
as a Schur-convex or Schur-concave function with respect to those eigenvalues (see
Definition 2). Recall that those functions are order-preserving functions. Accordingly,
this can give further explanation of how the function behaves with respect to the
correlation of signals reflected from the target scatterers. In what next, the Schur
convexity/concavity of the MI will be proven.
As per Lemma 2, the eigenvalues of the noise and the target are assumed to be
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in oppositional order to obtain the optimum solution, as explained in Theorem 2.
Therefore, we rewrite the MI in eq. (3.42) as

f (σh,i) =
MN∑

i=1

log

(
σs,i σh,i
σn̄,MN−i+1

+ 1

)
. (3.43)

Hence, to prove the Schur convexity or concavity of the function, we use Theorem 1
to check for the Schur condition defined in Lemma 1 with respect to the eigenvalue
of σh. Recall from Lemma 1, we need to calculate the following

(σh,i − σh,j)(
∂f

∂σh,i
− ∂f

∂σh,j
) ≥ 0 ∀ 1 ≤ i, j ≤ n, (3.44)

To do this, we take the partial derivative of eq. (3.43) such that 6

∂f

∂σh,i
=

σs,i
σh,iσs,i + σn̄,MN−i+1

. (3.45)

Since elements of σh are arranged in descending order, (σh,i − σh,j) ≥ 0. Hence, the
Schur convexity of MI is dependent on the sign of

∂f

∂σh,i
− ∂f

∂σh,j
,

which is defined as

σs,i
σh,iσs,i + σn̄,MN−i+1

− σs,j
σh,jσs,j + σn̄,MN−j+1

, (3.46)

is totally dependent on the optimum power allocation values and the noise eigenvalues.
Since, the water-filling solution in eq. (3.42) is dependent on the SNR, therefore, the
behavior of the function will be analyzed in four cases: at high and low SNR for
colored and non-colored noise.

Lemma 3. In case of non-colored, independent, identically distributed (i.i.d) noise,
in high SNR regimes, the water-filling solution to eq. (3.42) is given by σs =

PT

MN
1T

(equal power allocation p), hence, eq. (3.46) would be always smaller than zero, hence
Schur-concave. However, in low SNR regimes, the solution of eq. (3.42) would be
σs = [PT , 0, . . . , 0], where the power is only given for the strongest eigenmode of the
target. Consequently, eq. (3.46) would be always positive, since the second term in
(3.46) would be 0, and the first term is positive, then according to Lemma 1, the
function is Schur-convex.

Theorem 3. In case of colored-noise, in high SNR regimes, eq. (3.46) is Schur-convex
if

max
1≤i<j≤MN

σh,i − σh,j
σn̄,MN−j+1 − σn̄,MN−i+1

≤ 1

p
, (3.47)

and Schur-concave otherwise, where p = PT

MN
.

6To use Theorem 1, we assume that σh is a partially ordered vector, σh,i > σh,j .
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instance i j (3.47)

1 1 2 3

2 1 3 2

3 1 4 0.75

4 2 3 1

5 2 4 0.3

6 3 4 0.125

Table 3.1: Evaluation of eq. (3.47) using values in example 2

Proof. We can further simplify eq. (3.46) to be the following

(
σh,i +

σn̄,MN−i+1

σs,i

)−1

−
(
σh,j +

σn̄,MN−j+1

σs,j

)−1

. (3.48)

Hence, in order for eq. (3.48) to be greater than 0, then the following must apply

σh,i +
σn̄,MN−i+1

σs,i
≤ σh,j +

σn̄,MN−j+1

σs,j
, (3.49)

since in high SNR regimes, the optimal water-filling solution is nearly equal to power
allocation σs,i=σs,j=p. Therefore, after some mathematical reordering in eq. (3.49),
we can get the result in eq. (3.47).

Example 2. If we assumed MN = 4, σh = [5, 2, 1, 0.5] and σn̄ = [8, 4, 3, 2]. Then
we have 6 cases demonstrated in Tab. 3.1 with their corresponding values of the
left-hand side (L.H.S) of eq. (3.47). The maximum value of eq. (3.47) here occurs
when i = 1, and j = 2, therefore in order to apply Theorem 3, then p = 1

3
.

In low SNR, the effect of colored noise will not be significant, as only the first
eigenmode of the target would be triggered, hence lemma 3 will hold as well in case
of low SNR with colored noise.
This changing behavior of the MI in low and high SNR, gives an indication that
according to Definitions 3 and 4, spatially correlated channels behave better in low
SNR, however in high SNR, it is better to have an uncorrelated channel.
In the following section, we simulate this changing behavior by controlling the spatial
correlation. Moreover, for further insights, we manipulate the spatial correlation
conditions for MIMO radar which were previously discussed in section 3.4.1, by
changing the operating frequency and analyzing its effect in low and high SNR.

3.4.4 Numerical Analysis

In the first set of simulations, the performance of the MI function is analyzed across
different spatial correlations. In theorem 3, it is proven that MI has a changing
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Figure 3.6: Normalized Mutual Information (MI) (with respect to the maximum
value) as a function of τ which represents the degree of correlation (τ = 0
totally uncorrelated, τ = 1 totally correlated channel) for different total
SNR values (0 dB,5 dB, and 20 dB) assuming colored noise.

behavior in high and low SNR regimes. Here, we illustrate this behavior through
numerical evaluation. We assume that M = N = 2 and Ks = 2. The eigenvalues
of Rn̄ for colored noise case are [8, 4, 3, 2]. We keep the eigenvalues of the noise
fixed, and change the total power value to vary the SNR. In order to simulate the
effect of correlation, the eigenvalues of Rh are defined as σh=τ ∗ [1, 0, 0, 0] + (1−
τ)[0.25, 0.25, 0.25, 0.25], hence, the eigenvalues will vary from uncorrelated when
τ = 0 to highly correlated when τ = 1.
In figure 3.6, the MI is plotted across different SNR values, and the MI is normalized
at each SNR, where at SNR 0, it can be seen that the MI is increasing as the
correlation increases. Since the MI is Schur-convex at low SNR, it increases with
increasing the correlation. However, when the SNR is increased to be 20 dB, the
function has a decreasing behavior since it is Schur-concave at high SNR, where
the maximum of MI is achieved when τ=0, and then decreases with increasing the
correlation. Yet, at intermediate SNR at 5 dB, the function is behaving neither
Schur- convex nor concave.

3.4.5 Spatially Correlated MIMO Radar Setup

In the second set of simulations, we simulate the scenario in Figure 3.5 using the
model of a widely separated MIMO radar with M= 2 and N= 2. Here, we want
to check the effect of the operating frequency on the spatial correlation conditions
in eq. (3.36). Hence, we carefully chose the other factors defined in eq. (3.36) such
that they will not affect the correlation, to verify the effect of frequency. Hence,
the coordinates of the transmitter are (2,4.8) and (2.2,4) meters, while the receivers
are located at (0,2) and (0,4). We assume that there is a distributed target with
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Q = 1000, its center is located at (2,2) meters, and dx = dy = 2m. The parameters
are chosen such that we have two different channels H, one spatially correlated by
violating the rules in eq. (3.36), and the other matrix spatially de-correlated. From
the four factors stated, we changed the first working frequency to be fc = 0.1 GHz,
which makes the channel correlated, while in the second case fc = 8 GHz, decreasing
λc and therefore obeying the mentioned conditions. Figure 3.7 shows the performance
of MI at both frequencies, which agrees with the behavior explained before since the
low-frequency curve performs better at low SNR, where the spatial correlation is
high. This agrees with corollary 3 where at low SNR the function is Schur-convex.
However, as the SNR increases, the high-frequency curve achieves higher MI, since
the spatial correlation decreases. Accordingly, to achieve maximum MI at high SNR,
the channel elements must be de-correlated. It is worth noting that those results are
derived based on using MI as a reference for the radar performance. However, the
effect of correlation in low SNR on DOA estimation requires further investigation. It
is known that correlation among different paths coming from different targets might
degrade the estimation performance as discussed later in chapter 6. Since the Rx can
not differentiate between them and estimate their individual DOA. Meanwhile, if
those paths are coming from the same target, the correlation might overcome the low
SNR, improving the performance. This investigation is however left to future work.
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Figure 3.7: Mutual Information as a function of SNR for two different operating
frequencies at 0.1 GHz (highly correlated channel) and 8 GHz (less
correlated channel) showing the change in behavior of MI function in
high and low SNR .

3.5 Summary

In the first part of this chapter, a novel joint transmit-receive beamforming algorithm
was proposed under a multiple extended targets interference scenario. The beamform-
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ers were obtained to maximize the MI through two-step optimization. Significantly,
the optimized beamformers enhance the MI in high interference cases, where the
targets overlap in frequency range compared to the conventional method. As the
targets become sufficiently far from each other, it is optimal to direct the transmit
beamformers in the steering vector direction, as the interference is low in this case.
Moreover, the effect of the jointly optimized beamformers was investigated on the
waveform design. The newly generated waveforms were separated across the fre-
quency range, offering better MI, unlike conventional beamformers which fail to avoid
interference at high powers. In the second part, we further investigated the effect
of spatial correlation in a statistical MIMO radar. We used MI between the target
random response and the reflected signal as a metric in presence of colored noise.
We proved that MI is a Schur-convex function with respect to spatial correlation at
low SNR, i.e. monotonically increasing function. Contrarily, this behavior changes
at high SNR, and the function is Schur-concave. Moreover, we applied those findings
to statistical MIMO radar setup, by changing the operating frequency to control the
spatial correlation of the reflected paths. The simulations show that at low SNR,
the performance of the radar is better at low frequencies, which is surpassed by the
high-frequency operating radar at high SNR conditions.
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4 RL based cognitive Beamforming

In chapter 3, we studied the optimal beamforming design for MIMO radar from
information theoretic perspective. We assumed that the radar has prior information
about the surrounding environment (i.e., number, location of the targets and inter-
ference). This can be justified in a target identification mode, when the targets are
already detected. However, in this chapter, we assume a target acquisition mode,
where the radar has no information about the surrounding. We further assume the
existence of disturbance (i.e., clutter plus noise) of unknown statistics. In addition,
the radar scene is dynamic, which may be due to the fact that the targets are
changing their directions or fading. Here, we utilize the benefits of RL to solve such
problem. Furthermore, we investigate the application of MMIMO radar to provide an
asymptotic bound on the performance. In section 4.1, we provide a literature overview
of MMIMO radars along with the use of ML for radar signal processing. In addition,
we summarize the main contributions of this chapter. Afterwards, in 4.2 we discuss
the system model and the detection problem. In 4.3, we propose a novel algorithm
for multi-targets detection with the aid of RL. We propose a new approach to solve
the beamforming optimization problem, reducing the computational complexity of
such problem in 4.4. The performance of the algorithm against various static and
dynamic environments is examined through extensive simulations in 4.5. Finally, the
chapter is concluded in section 4.6.

4.1 Related Work

Recently, MMIMO has transformed from just an idea [Mar10] to reality, where
commercial solutions with up to 64 fully digital transceivers are adopted for 5G [Hua]
Specifically, in this chapter, we focus on colocated MMIMO. The MMIMO radar
has been recently shown to be able to provide robustness against the unknown
disturbance distribution [FSG+20]. Moreover, as foreseen in [BSW+19,OMBK17],
thanks to its higher DoF, a MMIMO can detect small unmanned vehicles (UAV)
whose RCS can be up to three orders of magnitude smaller than manned vehicles.
However, together with these benefits, the MMIMO paradigm brings with it new
challenging issues. One of the main open problems of MMIMO radar is the design
of robust algorithms for detection and estimation with scalable complexity as the
number of deployed antennas increases. Moreover, cognitive MMIMO radar, requires
optimizable waveforms [GGSB18]. Hence, the design of scalable and fast accurate
optimization algorithms is necessary. The current existing work relying on semi-
definite programming (SDP) to solve the beampattern optimization problem would
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impose further computational complexity and processing overhead on the MMIMO
problem. This is due to the fact that in those papers, the beamforming is done over
two computationally demanding steps. In the first step, the covariance matrix is
optimized. In the second step, this matrix is used to synthesize the beamformers.
Complementary and equally essential to the waveform diversity at the transmitter, is
the receiver cognition, which guides the radar decisions and controls the choice of the
waveforms. In [Hay06,BBS+15,HXS12], the authors utilized Bayesian filtering for
the perception-action cycle, where the receiver makes probabilistic predictions on the
next environmental state given the current state. This approach however may lead to
model mismatches as it depends on prior information on the environmentâFIXME™s
statistics. To avoid this dependence, RL is adopted for cognitive radars in [LLH+19,
ZZY08].
RL is a learning approach addressing model-free problems by using software-defined
agents, which learn from the observations collected from the environment, and take
the best possible actions according to a reward function [SB18]. Those interactions
with the environment are formally described as a Markov decision process (MDP)
as previously explained in section 2.5.2. The use of machine learning with CR
has been recently explored in the literature. In [LLH+19, ZZY08] RL-CR is used
for dynamic spectrum allocation, while in [JHS19] the authors use CR for target
detection in an end-to-end learning approach. They propose an alternating procedure
to jointly design the transmit waveform and the detector. A neural network is
used to approximate the generalized likelihood ratio test (GLRT) while the transmit
waveform is fixed. Consequently, for a fixed detector, they train the transmitted
waveform using deep RL. However, there is no statistical guarantee on the resulting
detection performance that may seriously degrade in the presence of a mismatch
between the actual disturbance model and the one used for training. Moreover, they
don’t address multi-target detection.
In [MBH15], the authors use machine learning approaches to estimate the optimal
detection threshold, based on a non-linear transformation of the order statistics.
They use an offline library for the disturbance distributions, where they assume a
priori known covariance matrix to build this library.
In [GGDD20], RL has been used in indoor mapping for UAV applications. Mechanical
beamforming using the UAV rotation is used for target detection. However, only
Gaussian noise is considered in the detection algorithm.
In the context of MMIMO, the work in [JLY16] exploits random matrix theory to
analyze the detection performance. However, the approach proposed in [JLY16]
requires the cumbersome requirement of many observations.
Unlike the previous approaches, we propose a fully data-driven algorithm that does
not require any offline knowledge of possible disturbance distributions nor their
covariance matrix and thus avoids issues with model mismatches.

Compared to the previous references, the contribution of this chapter can be
summarized as the following :

1. We derive an original RL-based MMIMO CR detection algorithm in the presence
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of disturbance that does not rely on any prior information about the statistical
model of the disturbance, or the number of targets, while maintaining the
constant false alarm rate (CFAR) property.

2. By exploiting the specific feature of a MMIMO system described in [FSG+20,
Corollary 1], we propose a reward function calculated in terms of the probability
of detection (PD) regardless of the disturbance distribution.

3. We propose a beamforming optimization approach that can scale up with a
large number of antennas, where we optimize directly for the beamforming
matrix without the need to optimize for the covariance matrix first.

4. As suggested by the numerical results, the algorithm is able to detect low SNR
targets with a radar operating under a constraint on the probability of false
alarm PFA = 10−5. Moreover, it is robust to environmental changes, e.g., it can
detect fading targets and targets changing their angular positions.

5. We analyze the overall robustness of the detector across different (unknown)
disturbance distributions.

4.2 Problem Formulation

We consider a colocated MIMO radar system with M transmit antennas and N
receiver antennas. Both are ULA with d = λc

2
spacing between the antennas, where

λc is the operating wavelength.

4.2.1 System Model

The complex baseband version of the received signal at continuous time t reflected
from one point-like target is defined as [Fri12b,LS07]

ŷ(t) = αar(θ)at(θ)
T s(t− τ) + c(t) (4.1)

where ŷ(t) ∈ CN . The transmit and receive arrays are characterized by the array
manifolds: at(θ) and ar(θ), respectively, where θ is the target direction. Hence,
ar(θ) = [1, e−jrsinθ, . . . , e−jr(N−1)sinθ]T and at(θ) is defined similarly, where r = 2πd

λc
.

α ∈ C is a deterministic unknown variable that accounts for the radar RCS and the
two-way path loss following Swerling 0, while τ is the time delay due to the target
position with respect to the radar. c(t) ∈ CN is the random disturbance vector,
which is produced by clutter and white Gaussian noise. s(t) ∈ CM is the narrowband
transmit signal from all M antennas, generated as linear combination of independent
orthonormal signals sorth(t) ∈ CM , where1

s(t) = Vsorth(t), (4.2)

1A narrow band model is assumed here, since the radar is in the search mode detecting point
targets.
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and V = [v1, . . . ,vM ]T ∈ CM×M , vm ∈ CM describe the beamforming weight matrix.
Thus, the number of beamformers are equal to the number of transmit antennas.
Moreover, V is a square matrix which must obey the trace constraint tr{VVH} = PT ,
where PT is the total transmit power. Furthermore, the beam pattern produced
by the transmitted waveforms can be expressed as B(θ) = aT

t (θ)RV a
∗
t (θ), where

RV = VVH [LS07,Fri12b].
At the receiver, the received signal is processed by a linear matched filter sorth(t)
tuned at delay τ̂ considering a single transmitted pulse such that

Y(τ̂) =

∫ T

0

ŷ(t)sHorth(t− τ̂)dt. (4.3)

Hence,

Y = αar(θ)a
T
t (θ)V

∫ T

0

sorth(t− τ)sHorth(t− τ̂)dt+ C, (4.4)

where Y ∈ CN×M and C =
∫ T

0
c(t)sHorth(t− τ̂)dt. We assume that the matched filter is

perfectly tuned to the target delay [Fri12b], hence τ̂ = τ and
∫ T

0
sorth(t− τ)sHorth(t−

τ̂)dt = I. Rewriting eq. (4.1) to be in a vector form as

CNM ∋ y = vec(Y) = αh(θ) + c, (4.5)

where vec(·) denotes the vectorization operator.
Moreover c = vec(C) denotes the spatially colored disturbance vector. Then, utilizing
the properties of the Kronecker product, the vector h is defined as:

h(θ) = (VTat(θ))⊗ ar(θ). (4.6)

It is worth mentioning that the sampling procedure (in fast-time, i.e. in range)
is assumed to be done correctly respecting Nyquist theorem after the matched
filter [Fri12b].

4.2.2 Disturbance Model

The statistical characterization of disturbance is a difficult task [BSW+19], generally,
it is usually unknown. Despite the fact that various disturbance models have been
adopted in radar literature, the dynamic nature of the clutter may limit their
validity [FGGR17]. To avoid any model misspecification, robust approaches should
be used.
Here, building upon the results obtained in [FSG+20], we adopt the following, very
general, disturbance model:

Assumption 1. [FSG+20] Let {cn: ∀ n} be the true and thus unknown disturbance
process, which is a stationary discrete and circular complex valued process. It is only

assumed that its autocorrelation function rC [m]
∆
= E{cnc∗n−m} has a polynomial decay.
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4.2. Problem Formulation

It should be noted that such an assumption is weak enough to encompass all the
most practical disturbance models such as auto-regressive (AR), Auto regressive-
moving average (ARMA) or general correlated non-Gaussian models [FSG+20].
In order to detect the presence of targets embedded in unknown disturbance, the
detection problem is formulated as a binary hypothesis testing problem described in
the next subsection.

4.2.3 Detection Problem

It is assumed that the received signal in eq. (4.5) is processed by a bank of spatial
filters, each tuned to a specific angle range. Such filter divides the radar field of view
into separate B discrete angle bins, such that {θb; b = 1, . . . , B}, and in total the
system transmits K pulse waveforms, k ∈ {1, . . . , K}. Hence, after spatial filtering,
for angle bin b, at pulse k, eq. (4.5) can be redefined as

ykb = αk
bh

k
b + ckb . (4.7)

The hypothesis testing problem for each angle bin b is cast as

H0 : ykb = ckb k = 1, . . . , K

H1 : ykb = αk
bh

k
b + ckb k = 1, . . . , K.

(4.8)

The null hypothesis H0 indicates that the cell under test contains only disturbance,
i.e., clutter and noise, while the alternative H1 denotes single target detection. The
entries of disturbance ckb are sampled from a complex random process, satisfying the
general Assumption 1, having unknown covariance matrix Γb,k = E{(ckb )(ckb )H}. The
detection is performed per pulse, as the targets number, corresponding spatial angles
and SNR can change from pulse k to another2. This also applies to the disturbance
statistics, it can change in time and space. Hence, we assume a single snapshot
scenario. In order to differentiate between H0 and H1 in eq. (4.8), a test statistic is
required, where

Λ
(
ykb
) H1

≷
H0

λ. (4.9)

Since in radar applications, it is of fundamental importance to control the PFA, the
threshold λ has to be chosen to satisfy the following

Pr{Λ
(
ykb
)
> λ|H0} =

∞∫

λ

pΛ|H0(a|H0)da = PFA, (4.10)

where pΛ|H0 is the probability density function (pdf) of Λ
(
ykb
)
under H0. Usually,

conventional model-based test statistics as GLRT, or Wald test are used to solve
for eq. (4.9), yet they can not be directly applied here. This is due to the fact

2For simplicity, in the rest of the chapter, we will refer to k as time index related to pulse k.
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Chapter 4. RL based cognitive Beamforming

that the functional form of the pdf of ckb is unknown. Instead, we apply a robust
Wald-type detector derived in [FSG+20], which requires the disturbance model only
to satisfy Assumption 1. This detector is asymptotically distributed, (i.e., Nv →∞)
as chi-squared χ2

2 random variable under both H0 and H1 (see Appendix A.1).
This Wald-type test requires the availability of an asymptotically Normal estimator of
αk
b which is

√
Nv consistent. As shown in [FSG+20], the following estimator satisfies

the above-mentioned requirements:

α̂k
b =

(hk
b )

Hyk
b∥∥hk

b

∥∥2 . (4.11)

Consequently, a robust Wald-type test for each angle bin b, is given by

Λk
b,RW =

2|(hk
b )

Hyk
b |2

(hk
b )

HΓ̂b,khk
b

, (4.12)

where Γ̂b,k is the estimate of the unknown Γb,k. Further details about the calculation

of Γ̂b,k and the asymptotic distribution of Λk
b,RW are provided in Appendix A.

The threshold λ which satisfies eq. (4.10) regardless the disturbance distribution, can
be expressed as [FSG+20]:

λ = H−1
χ2
2
(1− PFA), (4.13)

in which H−1
χ2
2
(λ) is the inverse of the CDF function Hχ2

2
(λ) =

λ∫
−∞

pΛk
b,RW

(a|H0)da.

Eq. (4.13) guarantees the CFAR property for the robust Wald-type detector in
eq. (4.12). However, the CFARness is only one aspect of a radar detection scheme.
The second primary goal is to have good detection performance in terms of PD. In the
next section, we propose a RL based algorithm that is able to enhance the detection
while maintaining the CFAR property.

4.3 RL-Based Massive MIMO CR

In this section, a detailed description of the proposed RL-based multi-target detection
algorithm is provided. For this, a MMIMO CR is adopted in our system, where a CR
continuously senses the environment and takes decisions by adjusting its transmitted
waveform as previously explained in 2.4. In this section, we propose an intelligent
methodology for the CR to take its decisions, using RL. In more detail, we will map
the aforementioned RL tools defined previously in section 2.5.2 into our MMIMO
CR setup.

4.3.1 SARSA Algorithm and Target Detection

The acronym state-action-reward-state-action (SARSA) is derived from the state-
action-reward-state-action sequence to update the values of the Q-function [PM17].
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4.3. RL-Based Massive MIMO CR

SARSA is an on-policy RL algorithm, which evaluates and improves the same policy
that is being used for action selection. In contrast, off-policy algorithms, evaluate
and improve a policy different from the one used for action selection. SARSA falls
under the category of model-free reinforcement learning algorithms because it does
not require a model of the environment.
In our MIMO radar problem, the agent has to maintain a state-action matrix where
Q ∈ R(Lmax+1)×(Lmax+1) of elements Q(sk, ak)

3, where Lmax is the maximum number
of targets that any MIMO radar can identify. This matrix is initialized with 0,
afterwards based on the execution of a certain action, the agent shifts from one state
to another then updates the Q-function according to the following update rule [SB18]

Q (sk, ak)←Q (sk, ak) + ξ (rk+1 + γQ (sk+1, ak+1)−Q (sk, ak)) (4.14)

The learning rate ξ ∈ [0, 1] is used to control how much the recent experiences override
the old ones. For instance, as ξ increases, the influence of the recent experiences on
the Q function increases. Meanwhile, the discount factor γ determines the impact
of the future rewards. For example, γ = 0 forces the agent to exploit only current
rewards, while when γ = 1, this makes the agent takes into account future long-term
high rewards. In the following subsections, the SARSA terms are explained according
to the radar definitions.

4.3.2 The set of States

To define the state space S, the statistic Λk
b,RW from eq. (4.12) is utilized. If Λk

b,RW is
greater than the defined threshold λ from eq. (4.13) for the angle bin b at pulse k, a
new statistic Λ̄k

b is set to 1, otherwise it is 0:

Λ̄k
b =

{
1 Λk

b,RW > λ

0 otherwise.
(4.15)

Hence, Λ̄k
b indicates whether or not it is likely for the angle bin b to contain a target.

Hence state sk is then defined as the total number of angle bins where the targets
could be located at pulse k:

sk =
B∑

b=1

Λ̄k
b . (4.16)

Hence, the set of possible states can be written as S = {0, . . . , Lmax}.

4.3.3 The Set of Actions

The MMIMO radar, i.e., the agent, starts by initially transmitting an orthonormal
waveform at k = 0, by setting the beamforming matrix Vk given in eq. (4.6) to be

3Here k represents time index, so sk is the state at time index k.
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Chapter 4. RL based cognitive Beamforming

equal to the identity matrix, i.e., Vk = I. We assume a discrete radar field of view
divided into b angle cells. Hence, ykb is the received signal of single snapshot at angle
bin b.
The number of targets sk+1 is calculated based on eq. (4.16) which gives an indication
of the status of the environment. Based on this observation, the agent takes a certain
action. An action can be defined as two tasks. The first task is the process of
selecting the candidate angle bins which most likely contain the targets based on
the current environmental state. The second task is the optimization of the beam-
forming matrix, V, to focus the transmit power towards those angle bins. Hence,
the cardinality of the set of actions A can be set as Lmax, which is the maximum
number of targets that the radar can detect. Consequently, an action can be de-
fined as ak ∈ A = {Θi|i ∈ {0, 1, . . . , Lmax}}. Specifically, the agent has to identify
Θi = {θ̂1, . . . , θ̂i} which are the i angle bins that most likely contain targets. Here θ̂
is the estimated angle bin which contains a target, while A = {Θ0,Θ1, . . . ,ΘLmax} is
the set of all possible angle bins.
In order to build the set Θi, the highest i values of Λk

b,RW, defined in eq. (4.12), are

chosen. In other words, we rank all the angle bins based on their Λk
b,RW, and the best

i angles are chosen. With the completion of the last step, the agent is now ready to
optimize the beamformers towards the chosen angles.
The weighting matrix V has to be optimized, in order to synthesize the corresponding
beam pattern. Therefore, the transmitted power is concentrated towards those angle
bins in Θi, which may contain targets as shown in Fig 4.1.
This is done by maximizing the minimum of the beam patternB(θ̂j) = aT

t (θ̂j)RV a
∗
r(θj),

with RV = VVH , θ̂j ∈ Θi and under the power constraint tr(RV ) = PT . The resulting
optimization problem is stated as follows:

maxVminj∈Ti{aT
t (θ̂j)VVHa∗

r(θ̂j)}
s.t. tr(VVH) = PT ,

(4.17)

where Ti = {1, . . . , i}. Details of the optimization problem and its solution are
provided in section 4.4.

4.3.4 The Reward

The reward defines the goal of the RL problem, hence the radar agent’s sole ob-
jective is to maximize the total cumulative reward function in the long run [SB18].
Consequently, it defines how the agent should behave, as the agent learns what are
the good and bad actions. In our case, the goal is to detect all the targets even
those masked within the disturbance. This is achieved through specific actions, i.e.,
optimizing the beampattern. Therefore, the reward is expressed in terms of the
estimated P̂ k

Db
as

P̂ k
Db

= Q1

(√
ζ̂kb ,
√
λ

)
, (4.18)
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Figure 4.1: Focusing the beampattern towards possible detections

ζ̂kb = 2|α̂k
b |2

∥∥hk
b

∥∥4

(hk
b )

HΓ̂b,khk
b

, (4.19)

where Q1 (., .) is the first order Marcum Q function [Nut74], α̂k
b is defined in eq. (4.11)

and Γ̂b,k is defined as in eq. (A.1). The theoretical derivation of eq. (4.18) and
eq. (4.19) can be found in [FSG+20]. In fact, the reward is chosen to be a function of
eq. (4.18) as it provides accurate detection in an asymptotic regime when the number
of spatial virtual antenna channels Nv grows unbounded, i.e., Nv →∞. Furthermore,
the robust Wald-type detection in eq. (4.15) satisfies the CFAR requirement even in
a single-snapshot scenario.
The reward function is composed of two parts: negative and positive rewards. The
negative reward can be considered as a penalty for the agent in case of false detections.
Hence, the positive reward is the summation of P̂ k

Db
for the angle cells defined in i,

while the negative reward is the summation of P̂ k
Db

for the rest of the cells, which is
likely not to contain any target. The best case scenario occurs when there is a target
in every bin such that sk = B, as this means that the decision statistic Λk

b,RW > λ, ∀b
(i.e., b targets are detected).
The reward for each time step k will be defined as:

rk+1 =

sk∑

b=1

P̂ k
Db
−

B−sk∑

j=1

P̂ k
Dj
, (4.20)

where P̂ k
Db

is the probability of detection as in eq. (4.18) calculated for target b at θbk
after taking observing state sk and taking action ak. The reward does not require
any ground truth data for training, it is updated in every time step using only the
feedback it gets from the environment. In this case, this feedback is the estimated
detection probabilities in eq. (4.18), which is calculated online from the environment
for every angle bin. Thus, the algorithm proposed depends completely on an online
learning mechanism.
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4.3.5 Policy

In order to determine which action the agent has to take at each step k, an action
policy must be defined. This policy controls the size of Θi (i.e., i) which defines the
action ak. In our algorithm, i is defined based on the ϵ greedy policy, which is a simple
policy balancing exploration and exploitation as previously mentioned in section 2.5.2.
In fact, the agent could follow the same actions which were tried in the past and
proved to maximize the reward (i.e., exploitation). However, the agent is required
also to acquire new knowledge through discovering new actions (i.e., exploration). In
the ϵ greedy policy, the variable ϵ refers to the probability of exploring new actions

randomly. In more details, the optimal action aopt
∆
= argmaxa∈AQ (sk+1, a) is taken

with a probability of 1 − ϵ, while another random action arnd (excluding aopt) is
chosen with a probability of ϵ such that

ak+1 =

{
aopt with prob. 1− ϵ
arnd with prob. ϵ.

(4.21)

This implies that, if we set ϵ = 0, the agent will not explore anything and would
always choose aopt. Whereas, if we set ϵ = 1, the action is selected randomly, and
the agent would not exploit the information previously learned and saved in the
state-action matrix Q. In the following example, we further clarify how the matrix
Q is filled and how an action is defined.

Example 3. Suppose that the maximum number of targets that the radar can detect is
set to Lmax = 3, thus Q ∈ R4×4. Here, there are 4 possible discrete states and actions
values, where4 A = {a0, a1, a2, a3} and S = {s0, s1, s2, s3}. Therefore, according to
the state and actions definitions explained in 4.3.2 and 4.3.3, then S = {0, 1, 2, 3}
and A = {Θ0,Θ1,Θ2,Θ3} respectively. Initially, at k = 0, the matrix is initialized
with zeros. Then, the agent would start filling its entries Q(sk, ak) using eq. (4.14)
in every time step k. In the first iteration, the following update is rule is used

Q (s0, a0)←Q (s0, a0) + ξ (r1 + γQ (s1, a1)−Q (s0, a0)) (4.22)

where Q (s1, a1) would be initially zero and r1 is calculated as in eq. (4.20). Thus, at
k = 0, if s0 = s0 = 0 and a0 = a0 = Θ0, the value in Q (s0, a0) would be updated.
This also means that there are no targets in the radar scene. Then, this matrix
would keep updating its entries for every k. To understand how the action is taken,
let us observe the matrix at k = 17 for instance, the state sk+1 = s2 = 2, which
indicates that there are only two angle bins that most likely contain the target based
on (4.16). In addition, the ϵ greedy algorithm chose ak+1 = aopt as per eq. (4.21)
and the Q matrix at k = 17 is given by Tab. 4.1.

4Please note that sl with superscript denotes the value of the state, while sk with subscript denotes
the state at time k (i.e.,s0 = s0 means the state at k = 0 has the value of s0), al and ak are
denoted similarly.
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States

Actions
a0 a1 a2 a3

s0 0.4508 0 0 0

s1 1.4376 2.2586 1.5617 2.4848

s2 0.5118 1.5951 2.5540 1.4495

s3 0 0 1.5345 0

Table 4.1: Q matrix at k = 17

In the first few time steps, aopt might cause miss-detection. This can be seen in
the case of k = 17, where if sk+1 = 3, then the next action ak+1 = aopt = a2 will be
chosen with probability 1− ϵ. However, as the Q matrix is updated every time step
based on the new evaluated reward, the probability of miss detection decreases over
time. Hence, in the final time step k = 50 as shown in Tab. 4.2, if sk+1 = 3, then
the next action ak+1 = aopt = a3. It is worth mentioning that the Q matrix does not
require any training since it learns by experience from the environment in every time
step.

States

Actions
a0 a1 a2 a3

s0 0.4508 0 0 0

s1 4.2332 2.0142 4.3149 5.2843

s2 0.5118 3.4302 4.4225 4.7489

s3 1.8499 0 1.5345 2.3170

Table 4.2: Q matrix at time k = 50

In the following algorithm, the steps of our MMIMO radar SARSA are summarized.

4.4 Optimization Problem

In this section, a solution for the beamforming optimization problem in eq. (4.17) is
discussed. As a matter of fact, SDP relaxation is a widely used method to solve this
problem [WZLT18,WFGG18,LMS+10], however, SDP complexity increases with
the size of V, hence using SDP for the MMIMO application previously described
would not be realistic. Moreover, SDP involves a relaxation of the original problem,
and getting a feasible solution requires a heuristic randomization process. The high
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Figure 4.2: RL-CR cycle

complexity of the solution described in [LAA14,FS08,WZLT18] to the optimization
problem is due to its two-steps structure: in the first step, RV is synthesized; then in
the second step, the beamformer matrix V is generated from RV .
To reduce the computational complexity, we propose another approach based on
inner convex approximations (ICA)) [SFL+16]. This allows finding V, in an iterative
fashion. Our approach, as opposed to SDP, guarantees to obtain a KKT point of
the original problem and avoids rank relaxation issues of the SDP approach. The
authors in [SFL+16] used ICA to solve for the rate capacity expression in a wireless
communication context, however, we adapt and modify their optimization approach
to fit our radar problem. To this end, we write the optimization problem, eq. (4.17)
as follows

max
V,ζ

ζ

s. t. ζ ≥ 0, tr
(
VHV

)
= PT

ζ − fj(V) ≤ 0 ∀j ∈ Ti.

(4.23)

(4.24)

(4.25)

Here the function fj(V) is defined as fj(V) ≜ aT
t

(
θ̂j

)
VVHa∗

r

(
θ̂j

)
. Problem

eq. (4.23) is non-convex and difficult to solve due to constraints in eq. (4.25) which
are not convex. To overcome this difficulty, we propose to iteratively approximate
the non-convex feasible set from inside with a convex feasible set by approximating
the function fj(V). The approximation of the function fj(V) writes

f̃j(V; Ṽ) = fj(Ṽ) + ⟨∇Vfj(Ṽ),V − Ṽ⟩, (4.26)

where ∇Vfj(Ṽ) is the gradient of function fj(V) with respect to V computed at the

fixed point Ṽ and ⟨A,B⟩ = ℜ{tr(AHB)}. Obviously, using this approach we get
an inner convex approximation of the original non-convex feasible set. To see this,
note that the function fj(V) is a quadratic convex function in V which results in its
approximation being its under-estimator. Hence, we have the following relation

ζ − fj(V) ≤ ζ − f̃j(V; Ṽ) ≤ 0 ∀j ∈ Ti (4.27)
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Algorithm 3 SARSA

Initialize Q = 0Lmax

Initialize state s0 = 1, action a0 = 1, K = 50 and Vk = I
repeat for each time step k:

Take action ak by transmitting waveform eq. (4.2) using Vk

Acquire the received signal yk
b , ∀ b = 1, . . . , B

Calculate sk+1 from eq. (4.16)
Evaluate the reward rk+1 as in eq. (4.20)
Choose action ak+1 as eq. (4.21), identify Θi and Ti

Q (sk, ak)←Q (sk, ak) + ξ (rk+1 + γQ (sk+1, ak+1)−Q (sk, ak))

sk ← sk+1;ak ← ak+1

if sk+1 ̸= 0 then
Solve for Vk+1 in eq. (4.17) using algorithm eq. (4)

else
Vk = I

end if
until Observation time ends

This inner convex approximation approach iteratively enhances the lower-bound on
the convex function fj(V) and eventually converges to a KKT point of problem

eq. (4.23). Let m be the iteration index and Ṽm be the beamforming matrix at
iteration m. The successive inner convex approximation approach is based on solving
the following problem iteratively until convergence.

max
V,ζ

ζ

s. t. ζ ≥ 0, tr
(
VHV

)
= PT

ζ − f̃j(V; Ṽm) ≤ 0,∀j ∈ Ti,

(4.28)

(4.29)

(4.30)

Problem eq. (4.28) is convex and the optimal solution can be found efficiently with
an interior-point solver such as in [GB14]. The algorithm for finding the KKT point
of problem eq. (4.23) is listed in algorithm 4.

Proposition 1. Algorithm 4 guarantees convergence to a KKT point of the non-convex
problem eq. (4.17).

Proof. Please refer to Appendix A.2.

4.5 Numerical Analysis

In this section, the cognitive MMIMO radar using the SARSA algorithm is simulated,
where the agent is in a continuous learning mode of the surrounding environment,
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Algorithm 4 Iterative Inner Convex Approximation Algorithm

Set m = 0 and initialize Ṽ0 such that tr
(
(Ṽ0)HṼ0

)
= PT .

repeat
Solve problem eq. (4.28) approximated around point Ṽm.

Set Ṽm+1 as the optimal solution of problem eq. (4.28)
m← m+ 1

until convergence

taking decisions while learning. The performance is averaged over 104 Monte Carlo
runs. Tab. 4.3 summarizes the values of the parameters for the SARSA algorithm.

Parameter Value

Learning rate α 0.8

Exploration rate ϵ0 0.5

Discount factor γ 0.8

Number of States S 11

Number of actions A 11

Time steps K 50

Initial state s0 1

Table 4.3: Reinforcement learning parameters

4.5.1 Simulation Setup

In our simulations, the angle grid is divided into B = 20 angle bins. The angular
locations would be represented in terms of the spatial frequency ν, which is defined
as

ν
∆
=
dfc
c

sin (θ) (4.31)

where fc is the carrier frequency and c is the speed of light. Hence, the steering
vector for the transmit or receive can be redefined in terms of ν

ar(θ) = [1, ej2πν , . . . , ej2π(N−1)ν ]T , (4.32)

Furthermore, the angle grid can be expressed as a spatial frequency grid where
ν = [−0.5 : 0.45]. We further assume the existence of four targets at spatial frequency
locations ν = {−0.2, 0, 0.2, 0.3} ⊂ ν, with SNR = [−5dB,−8dB,−10dB,−9dB]
respectively.
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4.5.2 Disturbance Model

The disturbance model is chosen to mask the target angles, where the disturbance
power is spread all over the spatial frequency range. Hence, the potential of our
RL cognitive radar algorithm can be analyzed in such a harsh environment. The
disturbance entries of ckb is generated according to the model of circular SOS AR (p)
[FSG+20] as

cn =

p∑

i=1

ρicn−i + wn, n ∈ (−∞,∞) , (4.33)

where p = 6, driven by identically independent (i.i.d.), t-distributed innovations wn

whose pdf pw is defined as [FGG16,FSG+20] :

pw (wn) =
µ

σ2
w

( µ
K
)µ
(
µ

K +
|wn|2
σ2
w

)−(µ+1)

. (4.34)

µ ∈ (1,∞) is the shape parameter controlling the non-Gaussianity of wn. Specifically,
if µ→ 1, then pw is a heavy-tailed pdf with highly non-Gaussian behavior. However,
the pdf becomes Gaussian if µ → ∞. The scale parameter is defined by K =
µ/ (σ2

w (µ− 1)). We set in our simulations µ = 2 and σ2
w = 1. Hence, the normalized

PSD of the disturbance is given by [FSG+20]

S(ν)
∆
= σ2

w

∣∣∣∣∣1−
p∑

n=1

ρne
j2πν

∣∣∣∣∣

−2

, p = 6. (4.35)

The coefficient vector ρ is defined as

ρ =[0.5e−j2π0.4, 0.6e−j2π0.2, 0.7e−j2π0, 0.4ej2π0.1, 0.5ej2π0.3, 0.6ej2π0.35]T .

The disturbance PSD is shown in Fig. 4.3, where the target angles are marked in red
dashed lines. Note that the disturbance PSD has multiple peaks.

4.5.3 Study Case 1 : Stationary Environment

To exploit the benefits of RL, we compared the the proposed RL-based beamformer
against two types of beamforming,

• omnidirectional equal power allocation with no RL. Here, the antennas emit
orthonormal waveforms and the power is divided equally across all antennas

• adaptive beamforming represented by Alg (2) with no RL.

It is assumed that the total power PT = 1 and for fair comparison the same detector
Λk

b,RW is used in all cases according to eq. (4.15) in each time step. In this set of
simulations, the environment is assumed to be temporally stationary. The difference
in behavior of the MMIMO radar with/without RL is analyzed. The results were
averaged over 104 Monte Carlo runs.
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Figure 4.3: Disturbance PSD along with targets angles locations (red dashed lines
for study case 1 and black ones for study case 2)

Scenario 1: PD across time

In this scenario, the performance of the algorithm is analyzed for a MMIMO regime
where Nv =MN = 104 and PFA = 10−4. Fig. 4.4 depicts the difference between our
proposed algorithm and omnidirectional MMIMO. In order to obtain those figures, we
calculated the threshold in eq. (4.15) within each time step, then the average is taken
across all Monte Carlo runs. Fig. 4.4a demonstrates better detection performance
for all targets even the ones with low SNR. It can be shown that the algorithm
learns across time: in the first ten time steps, the agent is learning the disturbance,
enhancing its experience as time passes. Conversely, in the omnidirectional approach
in Fig. 4.4b the targets with lower SNR are mostly masked under the disturbance
peaks, as in the case of ν = 0 and ν = 0.3. To measure the convergence of our
algorithm, we report the immediate reward function as in eq. (4.20) in Fig. 4.5. In
fact, as depicted in the figure, the reward converges after 20 time steps. This result
is consistent with Fig. 4.4a, where the agent performance becomes very good after
k = 20. However, it is worth mentioning, that the convergence of the reward depends
heavily on the environment and the number of targets in the scene with respect to
the size of the Q matrix. To verify this claim, we further increased the number of
targets to 9 while keeping the same size of the Q matrix. It can be shown from
Fig. 4.6, that, in this case, the convergence is reached after 150 time steps k = 150.
This is due to the fact that the Q matrix becomes less sparse as the number of targets
increases w.r.t the matrix size.

Scenario 2: PD vs Nv

In this scenario, we simulated the P̂D estimated from the closed-form expression in
eq. (4.18), averaged over time for each target, as a function of the spatial virtual
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Figure 4.4: Detection performance of (a) proposed RL beamforming vs. (b) omnidirec-
tional with equal power allocation under PFA = 10−4 andNv =MN = 104.

antenna channels Nv. Here, the number of transmit and receive antennas are M =
N = [10, 12, 16, 21, 27, 35, 46, 59, 77, 100].
The results in Fig. 4.7 show that as Nv increases, the P̂D increases for all the
targets. However, the suggested algorithm provides better performance than the
omnidirectional and adaptive case for all targets except ν = −0.2 as in Fig. 4.7a. In
this case, the adaptive algorithm shows the best performance. This is due to the
high SNR of this target, in addition, it lies within low disturbance. The low P̂D as
Nv → 103 shown in Fig. 4.7b, 4.7c and 4.7d, is due to the harsh operating conditions,
since PT = 1 and the nominal PFA = 10−4. Furthermore, the corresponding targets
are located within heavy disturbance.
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Figure 4.5: Reward calculated as in eq. (4.20) for RL-based beamformer with PFA =
10−4 and Nv =MN = 104.
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Figure 4.6: Reward behavior in static environment for 9 targets.

Scenario 3: PD vs PFa

In this scenario, the receiver operating characteristics (ROC) curve is simulated
across a range of PFA = [10−5, 10−4, 10−3, 10−2, 1] with Nv = 104 As shown in Fig. 4.8,
mainly the potential of the RL-based cognitive MMIMO radar is shown in low PFA

regimes. As a matter of fact, most practical radar applications have to maintain
preassigned low PFA values. Hence, we conclude that our proposed algorithm is
more suitable for those practical systems in general. Meanwhile, it is notably visible
from Fig. 4.8a, that the P̂D is 1 across all PFA. This is due to the fact that this
target has relatively high SNR and is located within relatively low disturbance PSD.
This means that omnidirectional and adaptive systems can perform well in those
conditions. Meanwhile, the P̂D for targets with low SNR is much higher for the
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Figure 4.7: P̂D using RL and alternative approaches of existing targets across different
virtual antenna array size with PFA = 10−4 a) ν = −0.2 with SNR = −5
dB b) ν = 0 with SNR = −8 dB c) ν = 0.2 with SNR = −10 dB d)
ν = 0.3 with SNR = −9 dB.

proposed algorithm compared to the omnidirectional and adaptive solutions, i.e.,
ν = 0 in Fig. 4.8b, ν = 0.2 in Fig. 4.8c. For both algorithms, P̂D approaches 1 for as
the PFA → 1 .
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Figure 4.8: P̂D using RL and alternative approaches of existing targets across different
PFA with Nv = 104 a) ν = −0.2 with SNR = −5 dB b) ν = 0 with
SNR = −8 dB c) ν = 0.2 with SNR = −10 dB d) ν = 0.3 with
SNR = −9 dB.

Scenario 4: Narrow-band clutter

In this simulation, we consider a narrow-band clutter model with a strong peak at
ν = 0 as in Fig. 4.9. In more detail, for such a scenario, there are two possible
cases, the first case is when there is clutter imposing very strong peaks at certain
angles, while there are no targets present at those angles. In such a case, both the
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omnidirectional and RL beamformer would foresee such a problem as the decision
statistic Λk

b,RW can achieve the nominal PFA of 10−4 for Nv ≥ 104 regardless of the
unknown disturbance distribution and the particular choice of the beamformer (please
refer to [FSG+20] for details).
However, in the second case, in which there is a target hidden within those clutter
angles, the omnidirectional approach would fail to detect such a target. Therefore,
in order to improve the detection performance, the beamformer has to be chosen
accurately. As a matter of fact, indeed the procedure in eq. (4.17) only maximizes the
worst beampattern towards certain angles. However, in order for the beamformer to
apply strong notches to suppress the impact of interference, the optimization problem
must be changed to maximize the SINR. However, this is only possible if prior
information about the interference spatial angles is available. Such an assumption
is rarely practical. Meanwhile, our proposed RL approach improves the detection
performance and, at the same time, maintains the CFAR with respect to the unknown
disturbance distribution.
In order to support this claim, four targets are simulated at ν = {−0.2, 0, 0.2, 0.3}.
From Fig. 4.10 a, it is noticed that our algorithm is able to detect the target at
ν = 0 hidden within the strong clutter while the orthogonal waveform could not as
shown in Fig. 4.10 b. This shows that our algorithm can detect targets within strong
interference. Furthermore, in the presence of clutter with strong peaks at certain
angles, our approach would still foresee such a problem. Hence, with the aid of RL
beamformer and the asymptotically accurate statistic, it can achieve CFAR property
and remarkably good detection performance.

4.5.4 Dynamic Environment

In these simulations, the environment changes, and the performance of our algorithm
is analyzed such that the radar agentâFIXME™s capability to adapt to those changes
is tested. The number of total time steps is 100 and the results are averaged over
1000 Monte Carlo runs.

Scenario 5 : Changing Spatial frequencies

In this scenario, the targets’ spatial frequencies are changed after 50 time steps. In
this case, ν is changed from [−0.2, 0, 0.2, 0.3] to [−0.05, 0.05, 0.25, 0.35] where the
new spatial frequencies are depicted in dashed blue in Fig. 4.3. In this case, we aim
at simulating a dynamic environment as shown in Fig. 4.11, while their respective
SNR remains the same, where Nv = 104 and PFA = 10−4. On one hand, Fig. 4.11b
shows the performance of the omnidirectional case, where it can detect only targets
whose new spatial frequencies are located where the disturbance PSD is low, i.e.,
ν = 0.1. On the other hand, the RL based beamforming algorithm can detect all the
targets, even those lying close to the disturbance PSD peaks. Since the algorithm
is an online learning framework, no training was considered to generate Fig. 4.11.
Thus, it can be noticed at K = 50, there are a few time steps where the detection
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Figure 4.9: Clutter PSD with narrow peak at ν = 0
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Figure 4.10: Performance of (a) RL based beamforming vs (b) Omnidirectional one
in the presence of narrow clutter peak at ν = 0.

74



4.5. Numerical Analysis

20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

Time

𝜈

0

0.2

0.4

0.6

0.8

1

(a)

20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

Time

𝜈

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.11: Detection performance of (a) RL based beamforming vs (b) omnidirec-
tional with equal power allocation for dynamic environment: changing
angles at K = 50.

values drop, then goes up again. This happens because the agent requires a few time
steps to adapt to the new environment, hence updating the Q function accordingly.
Similar to scenario 1, Fig. 4.12 shows the reward behavior across time as calculated
in eq. (4.20) and averaged over the Monte Carlo runs. The reward shows convergence
after K = 20 time steps. Then when the environment is changed by changing the
angles, the agent senses that change through exploration. Hence, the drop in the
reward is seen after K = 50 time steps, where the agent starts re-learning the changes,
then after 10 time steps, the reward converges again.
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Figure 4.12: RL reward in dynamic environments: changing angles at K = 50.

Scenario 6: Fading Targets

Here we simulate a different change in the environment, where we assume that the
targets are fading and their SNR is decreasing. In Fig. 4.13, the targets’ SNRs are
assumed to decrease by 20% every 30 time steps. Hence, by K = 90, all targets’
SNRs would have decreased by 60%. In Fig. 4.13b, the omnidirectional approach
could not detect most of the targets after the first 30 time steps. Furthermore,
the first target located at ν = −0.2, which proved very good performance in the
previous simulations due to its good SNR starts fading at K = 90. This proves that
the omnidirectional approach fails in the fading scenarios since the radar here does
not learn anything from the environment, unlike in the RL case. Hence, it can not
adapt to such changes. However, our proposed RL based beamforming algorithm
obviously proves to have a reliable performance across the entire time steps. It can be
concluded that RL cognitive MMIMO radar can adapt very well to all environmental
changes with very good performance. The corresponding reward behavior is shown
in Fig. 4.14, where the algorithm can adapt to those changes in the SNR without
any convergence issues.

Scenario 7: Changing number of targets

In this scenario, we simulated total time of K = 60 pulses, with Nv = 104, PT = 1
and PFA = 10−4. The targets angles and SNR change over five time intervals
[1, . . . , 10, 11, . . . , 20, 21, . . . , 35, 36, . . . , 50, 51, . . . , 60] as below

1. k = 1→ 10, two targets at angles ν = {−0.2, 0} with respective SNR of -5 and
-9 dB.

2. k = 11→ 20, no targets at all

76



4.5. Numerical Analysis

20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

Time

𝜈

0

0.2

0.4

0.6

0.8

1

(a)

20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

Time

𝜈

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.13: Detection performance of (a) RL based beamforming vs (b) omnidirec-
tional with equal power allocation for dynamic environment i.e., target’s
SNR decreases by 20 % every 30 time steps.

3. k = 21→ 35, five targets at angles ν = {−0.2, 0, 0.15, 0.25, 0.3} with respective
SNR of -6, -8, -10, -11 and -12 dB

4. k = 36→ 50, two targets at angles ν = {0, 0.2} with respective SNR -9 and -8
dB.

5. k = 51→ 60 there exist 4 targets at angles ν = {−0.05, 0.05, 0.15, 0.25, 0.35}
with respective SNR -8,-7,-10 and -13 dB.

As depicted in Fig. 4.15, the RL beamformer is able to track all the targets, while
the orthogonal beamformer failed to track most of the targets whose SNR is low or
hidden within the clutter. In more detail, in the time interval (1), both approaches
can detect ν = 0.2 as it has high SNR, unlike the case when ν = 0, where the RL
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Figure 4.14: RL reward in dynamic environments: fading targets.

approach shows better detection.
In time interval (2) both algorithms don’t detect any targets due to the accuracy
of the detection statistic used Λk

b,RW as Nv grows asymptotically. In time interval
(3), the omnidirectional approach faces difficulties detecting angles ν = {0, 0.3} as
they lie within high clutter PSD. In addition, it also fails to detect angle ν = 0.25
although it lies within low clutter PSD, due to the fact that this angle has very low
SNR = −11 dB. In time intervals (4) and (5), similar behavior is observed, where the
omnidirectional approach fails to detect targets having low SNR or lying within high
clutter PSD. However, our RL beamformer can even detect targets suffering from
both problems at the same time as the case in time interval (5) with angle ν = 0.35.

Computational complexity

In order to evaluate the complexity of the optimization algorithm proposed in
Algorithm (2), the computational time/complexity is measured using the Matlab
tic-toc function. This is done for both our algorithm and the conventional SDP
solution presented in [LMS+10] using the same simulation conditions. Fig. 4.16 shows
both solutions achieve similar performance for lowM values. However, as the number
of transmit antennasM increases asymptotically, our proposed algorithm shows much
less time complexity compared to the SDP solution. Hence, it can be deduced that
Algorithm (2) is highly efficient for MMIMO regimes. In order to test the robustness
of our algorithm, we analyze its performance against different disturbance scenarios
characterizing harsh environments. We compare the performance of our RL-based
waveform matrix selection scheme against omnidirectional transmission with equal
power allocation. In the latter case, the orthonormal waveforms are transmitted and
the total power is equally divided across all antennas under the constraint PT = 1.
We analyze three different scenarios.
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Figure 4.15: Detection performance of (a) RL based beamforming vs (b) omnidirec-
tional with equal power allocation for dynamic environment i.e., target’s
SNR and number changes over five time intervals.

4.5.5 Robustness

In this set of simulations, we verify the overall robustness of the joint RL/Wald-type
detector. To this end, extensive investigations have been performed to check its
effectiveness against different (unknown) disturbance distributions by using PFA and
PD as performance metrics. More specifically, the CFAR property (i.e., the PFA) and
the power of the test (i.e., the PD) are assessed for i) different level of disturbance
spikiness and ii) for different (autoregressive) model orders.

Varying the Spatial Channels

Fig. 4.17 shows the P̂D for the target at ν = 0.3 as function of Nv for a pre-assigned
PFA = 10−4. It can be shown that the estimated P̂D of the RL algorithm through
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Figure 4.16: Performance evaluation of proposed optimization algorithm (2) and SDP
solution as in [LMS+10]

multiple Monte Carlo runs agrees perfectly with the theoretical nominal one provided
in eq. (A.5). Furthermore, theoretically, the robust Wald-type test used achieves
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Figure 4.17: P̂D at PFA = 10−4 across Nv

the CFAR property w.r.t. all the disturbance distributions satisfying Assumption 1.
Hence, when a sufficiently large number of transmitting and receiving antennas is
used as proven in [FSG+20], a constant PFA is achieved for Nv ≥ 104. This behavior
does not depend on the particular beamforming algorithm. Such a case is shown in
Fig. 4.18, where we simulate the PFA of spatial frequency ν = 0 across Nv, with the
same setup as in study case 1, for both the RL and the omnidrectional approach.
It can be seen that both approaches provide a constant false alarm as Nv → 104.
Hence, this confirms the CFARness of the proposed RL- based scheme.
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Figure 4.18: PFA across different spatial channels Nv with nominal PFA = 10−4

represented by dotted black line.

4.5.6 Varying the Disturbance non-Gaussianity Levels

In this scenario, we assess the robustness of our algorithm against a different level of
non-Gaussianity of the disturbance. We choose Nv = 104 and PFA = 10−4. Fig. 4.19
shows the P̂D as function of the non-Gaussianity parameter µ. The results show
a constant P̂D for the target at ν = 0.3 across different values of µ. This proves
that the algorithm has a robust and constant superior behavior compared to the
omnidirectional approach. In addition, as expected, the estimated P̂D match perfectly
with the nominal theoretical one provided in eq. (A.5). In Fig. 4.20, the CFARness
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Figure 4.19: P̂D at PFA = 10−4 and N = 104.

of the algorithm is assessed against the disturbance spikiness. Fig. 4.20 shows that
our RL algorithm provides a constant PFA across µ, similar to the omnidirectional
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approach. Both algorithms achieves the nominal P̄FA = 10−4. This proves the
theoretical results in Eq. A.3, which indicates that the CFAR property is always
(asymptotically) achieved using the Wald-type statistic Λk

b,RW irrespective of the
specific waveform matrix V. This is a consequence of eq. (A.3) that shows that,
under H0, Λ

k
b,RW(yk

b,g|H0) is distributed as a central χ2
2 random variable regardless of

V.
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Figure 4.20: PFA at Nv = 104 across µ.

4.5.7 Varying the Order of Auto-Regressive (AR) Process

The robustness of the RL algorithm is further validated across more general dis-
turbance models. In this scenario, the P̂D is evaluated across many orders of the
AR. Specifically, p (i.e. the order of the AR process) varies in p ∈ [1, . . . , 10]. The
magnitude of ρn in eq. (4.35) is chosen such that

ρn ∈ [0.8, 0.7, 0.7, 0.6, 0.6, 0.4, 0.4, 0.5, 0.5, 0.3]

while the corresponding spatial frequency of ρn is selected from

ν ∈ [0, 0.1,−0.1, 0.2,−0.2, 0.1,−0.1, 0.4,−0.4, 0.5]

For instance, if p = 1, then ρ = 0.8ej2π0, while if p = 2, then

ρ =
[
0.7e−j2π0.1, 0.8ej2π0, 0.7ej2π0.1

]
.

Fig. 4.21 shows the probability of detection of the target at ν = 0. Note that at
ν = 0 we always have a disturbance peak, regardless of the value of p. Despite
that, the P̂D of this target using our algorithm is constantly higher compared to the
omnidirectional case, no matter the order of the AR. It can be noticed a slight drop
in the case of AR(1) (i,e., p = 1) as all the disturbance energy, in this case, is focused
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on the target at ν = 0, while an AR(p > 1) will spread it all over multiple spatial
frequency points. Again here, the estimated P̂D agrees with the theoretical nominal
P̂D in eq. (A.5).
Finally, Fig. 4.22 shows that the CFAR property with respect to the order p is
satisfied for both the proposed RL-based and the omnidirectional algorithms. Again,
this represents a numerical validation of the theoretical result that the CFAR property
is satisfied using the Wald statistic Λk

b,RW in any disturbance statistics independent
on V.
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Figure 4.21: P̂D at PFA = 10−4 across several p
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Figure 4.22: PFA at Nv =MN = 104 across p.
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4.6 Summary

In this chapter, we studied the problem of multi-target detection for a MMIMO
CR in the presence of an unknown disturbance. We proposed a novel RL based
beamforming algorithm, which could detect the targets with very low SNR even if the
environment is dynamic. Specifically, the CR acted as an agent sensing the unknown
environment (i.e., targets and disturbance) by illuminating it by transmitting a set
of waveforms. Afterward, a reward function is calculated from the reflected echoes.
This reward has been defined as the closed form asymptotic expression of the P̂D as
the number of virtual spatial antenna channels Nv go to infinity that is the MMIMO
regime [FSG+20]. The agent’s goal is to maximize the reward through a course of
actions without any a priori knowledge about the disturbance distribution, or the
targetsâFIXME™ number. In our case, those actions were tailoring the beampattern
by optimizing the beamformer according to the acquired knowledge.
Furthermore, we presented a novel approach for beamforming optimization, which
is scalable as the size of Nv increases and does not increase the complexity. Our
numerical results showed a really good PD performance for our algorithm as Nv →
104 compared to the adaptive and omnidirectional approaches. In addition, the
ROC confirmed the advantages of adopting a RL-based approach when the targets
are embedded in a spatially correlated heavy-tailed disturbance. The probability
of detecting the low- SNR targets improves significantly. Moreover, a dynamic
environment has been simulated by changing target angles, number along with
target fading. In both cases, the proposed RL-based beamformer is able to adapt
to the fast-changing environment, without any a priori knowledge, and to provide
better performance than the classical (omnidirectional) beamformer. Furthermore,
the robustness of the detector proposed is investigated. The performance of the
algorithm has been assessed for various unknown disturbance models. Our RL-based
Wald-type detector is able to achieve the CFAR property with respect to a wide
range of (unknown) disturbance models. At the same time, the RL-based waveform
selection scheme will provide the detector with a remarkable increase of its PD while
keeping the CFAR property. Last but not the least, the estimated PD obtained
by using the RL-based scheme agrees with the theoretical closed-form expression
provided in [FSG+20].
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5 Deep Learning based DOA for
Small MIMO Antenna Arrays

In the last chapter, we studied the multi-target detection problem from ML perspec-
tive. In this chapter, we extend our studies to exploit the DOA problem, where we
investigate the current advances of deep learning to enhance the resolution of MUSIC
algorithm for MIMO systems. In general, the radar angular resolution is affected
by the antenna aperture size. In addition, specifically, the resolution of MUSIC
algorithm is affected by multiple factors: the number of antennas, the number of
snapshots, and the SNR. In this chapter, we investigate the degradation of MUSIC
performance using a small number of antennas specifically in low SNR regimes.
Furthermore, we propose an efficient solution to solve this problem, without the
need to increase the number of antennas, the aperture size, the number of snapshots,
or the spacings between the antennas. This is done with the aid of deep learning.
In section 5.1, we provide an overview of the current approaches for enhancing the
DOA resolution without increasing the physical number of antennas. In addition,
we briefly discuss the contribution of this chapter. Afterward, in section 5.2, we
formulate the system model, then we propose to use the received signal of a small
number of antennas to extrapolate the received signal of other antennas using a deep
neural network (DNN) architecture in 5.3. We compare the performance of our DNN
across small and large arrays in different SNR scenarios, furthermore, we perform
extensive analysis to select the best training and test SNR in section 5.4. Finally,
the chapter is concluded in 5.5.

5.1 Related Work

Accurate DOA estimation can be achieved using large antenna arrays at the cost of
increased hardware and computational complexity. However, multiple input multiple
output (MIMO) radars with co-located antennas can offer virtual enlargement of
the aperture at the receiver, using relatively few physical antennas. This in turn
significantly increases the maximum number of targets that could be detected and
enhances the angular resolution at a compact size, due to the fact that MIMO
radars can transmit multiple probing signals, which can be correlated or uncorrelated
[LS07,BF03]. As an alternative approach, sparse array radars (also known as thin
array radars) have been extensively studied in the literature and found to offer similar
advantages as MIMO radars [Mie17]. The idea is to decompose a filled array into two
sub-arrays, breaking the uniform spacing rule, hence achieving a larger aperture. By
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this means, it can offer similar target detection and angular resolution capabilities as
the MIMO radar [UY16] with lower hardware cost. For this purpose, several array
configurations were proposed in the literature [Mof68,PV10,QZA15]. However, sparse
arrays suffer from the effect of grating lobes due to the non-uniform spacing between
the antennas, which leads to large estimation errors [KB10]. Furthermore, existing
vector space DOA methods such as the MUSIC algorithm can not be directly applied,
due to the rank deficiency of the correlation matrix. Hence, a spatial smoothing
variant of MUSIC is proposed in [PV11] for rank enhancement at the cost of increased
computational cost. This is due to the fact that spatial smoothing must be performed
for every DOA estimation.
A comparison between MIMO and sparse array radars has been conducted in [Mie17],
where MIMO radars were found to be preferable when compactness is essential since
sparse arrays are characterized by their large aperture size. However, sparse arrays
might be preferable when the hardware cost is the driving requirement, yet sparse
arrays are not robust to sensor failures unlike ULA [LV18], which could present an
added challenge. In this chapter, we attempt to emulate the received signal of a
large ULA using only a significantly smaller sub-array, without the need to increase
the array aperture size, through training a deep neural network. This is followed by
using the trained model for each received pulse to estimate the DOA via employing
MUSIC without any further processing, thereby delivering the advantages of sparse
arrays without increasing the aperture size, and without compromising accuracy.
Also, no additional computational cost due to spatial smoothing is required. Briefly,
the contribution of this chapter is the following:

1. DOA resolution enhancement of small antenna arrays using a DNN that learns
the mapping between received signals of two differently-sized antenna arrays.
Surprisingly, the performance obtained by using actual large antenna arrays is
not only tightly approximated, but exceeded at low SNR for high-angle ranges.

2. Analysis of the best training SNR as a function of the test SNR, as well as in
presence of test SNR uncertainty. Interestingly, the behavior of this function is
observed to vary dramatically for different angle ranges.

3. Analysis of the denoising capabilities of the proposed DNN. We attribute -
based on experimental evidence - our approach’s superior performance to the
large antenna setup at high angle ranges and low SNR, to a denoising DNN
functionality that effectively increases input SNR.

5.2 System Model

Consider a co-located MIMO radar system with M Tx antennas and N Rx antennas.
Here, each transmit antenna with index m transmits a narrow-band signal sm(t) with
non-dispersive propagation, that is perfectly orthogonal to the rest and consists of a
train of K non-overlapping pulse waveforms; each with duration T . For simplicity, we
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consider Tx and Rx antennas in a ULA configuration with antenna spacing of d = λc/2,
where λc is the wavelength. We further assume that there are L targets in the scene.
The RCS - based on pulse k - and the DOA of the l-th target are given by αl,k ∈ C
and θl, respectively. In this chapter, the target RCS is modeled based on the Swerling
model II, where it is fixed during the pulse interval T and changes independently
from one pulse interval to another [Swe60]. We define the transmit and receive

steering vectors of the l-th target as at(θk) =
[
1, ejrd sin θk , . . . , ejrd(M−1) sin θk

]T
and

ar(θk) =
[
1, ejrd sin θk , . . . , ejrd(N−1) sin θk

]T
, respectively. Here, (·)T is the transpose,

and r = 2π
λ
. Here, we consider all targets as point targets. In that case, the received

echo (reflected signal) from the target does not expand beyond the radar resolution
cell [BL98]. The received signal yk(t) ∈ CN after transmitting pulse k is hence [LS07],

yk(t) =
L∑

l=1

αl,k ar(θl)a
T
t (θl)s(t− τl) + ñ(t), (5.1)

where ñ(t) ∈ CN is independent and identically distributed (i.i.d) Gaussian noise
with variance σ2

ñ and s(t) = [s1(t), . . . , sM (t)]T . τl is the time delay due to the target
position with respect to the radar. Next, at each receive antenna, the received signal
yk(t) is cross-correlated withM matched filters corresponding to each transmit signal
tuned at delay τ̂ as given below

Zk(τ̂) =

∫ T

0

yk(t) s
H(t− τ̂)dt. (5.2)

We assume that the matched filter is perfectly tuned to the target delay [Fri12b],
hence τ̂ = τl. Due to the perfect orthogonality of the transmit waveforms, Zk in
eq. (5.2) is

Zk =
L∑

l=1

αl,k ar(θl)a
T
t (θl)I+

∫ T

0

ñ(t)sH(t− τ̂)dt. (5.3)

Here, I is an identity matrix. In this model, we assume perfectly orthogonal waveforms.
However, if this is not the case, such that Rs =

∫ T

0
s(t − τ̂)sH(t − τ̂)dt ̸= I is not

the identity matrix, then two challenges would arise. First, the transmit steering
vector would be effectively altered with the correlation matrix Rs, where the updated
transmit steering vector would be âT

t (θl) = aT
t (θl)Rs. Second, the noise would be

spatially correlated, and hence conventional DOA algorithms can not be directly
applied, as further pre-whitening techniques may be needed as in [Zhe17]. Next, we
rearrange eq. (5.3) as

Y = A(θ)Φ+ Ñ , (5.4)

whereY ∈ CMN×K is the receive signal and it is given asY = [vec(Z1), . . . , vec(ZK)].
Here, vec(Zk) denotes the conversion of the matrix Zk of eq. (5.3) into a column
vector. The steering vector matrix A(θ) is given by [d(θ1), . . . ,d(θL)], where d(θl) =
at(θl)⊗ ar(θl). Further, the RCS matrix Φ ∈ CL×K corresponding to all L targets is
given as Φ = [ϕ1, . . . ,ϕK ], with ϕk = [α1,k, . . . , αL,k]

T .
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Figure 5.1: Training the Deep Neural Network.
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DOA estimation
using MUSIC

Figure 5.2: Antenna array reconstruction using the DNN.

5.3 Deep Learning Architecture

Enlarging the antenna array aperture enhances angular resolution capabilities, which
in turn leads to better DOA estimation. Hence, we tackle the problem of mapping
the received signal of two antenna setups of different sizes. A feedforward DNN
is proposed to learn the mapping between the received signals of small and large
antenna setups. The operation of DNN and its relevant definitions were explained in
2.5.1.
Let Ylw ∈ CLw×K and Yhg ∈ CHg×K be the received signals of the small and
large antenna setups as defined in eq. (5.4), respectively. Here, Lw < Hg, where
Lw =MlwNlw and Hg =MhgNhg . Yhg and Ylw are then given as

Ylw = Alw(θ)Φ+ Ñlw , (5.5)

Yhg = Ahg(θ)Φ+ Ñhg , (5.6)

where Ñlw ∈ CMlwNlw×K and Ñhg ∈ CMhgNhg×K consist of independent and
identically distributed (i.i.d) complex Gaussian noise entries. Our approach is based
on the hypothesis that in a complex environment, there is a non-linear relationship
between both received signals corresponding to small and large antenna setups, which
is a priori unknown due to the unknown locations of different targets. We hence train
a DNN to learn this mapping in a data-driven fashion. In the training phase, both
received signals of small and large antenna setups are available, and the DNN learns
the relationship between them. The DNN consists of four fully connected layers,
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where the input layer is of dimension Lw, followed by three hidden layers of dimensions
Lw, Lw, and Hg, respectively, and the output layer is of dimension Hg. The DNN
architecture is shown in Fig. 5.1. Different DNNs with different configurations were
tested to validate this selection. It was observed that the DNN with three hidden
layers is the smallest DNN architecture that led to a good performance, on average.
Since the DNN is not designed for special processing of complex data, the input
and output are defined as Ylw =

[
ℜ(Ylw); ℑ(Ylw)

]
, and Yhg =

[
ℜ(Yhg); ℑ(Yhg)

]
.

Both received and reconstructed signals are normalized to lie between 0 and 1 through
min-max normalization. ReLU is used as the activation function for all the hidden
layers. For the output layer, we tried both linear activation and ReLU, and then we
chose the best performance for each experiment. The available dataset is divided into
training, validation, and testing, with split ratios of 60%, 20% and 20%, respectively.
Training takes place over a maximum of 150 epochs with a batch size of 120. For
the training process, we used an Adam optimizer. Furthermore, the network loss
function is defined as the mean squared error between Yhg and Ylw . In the testing

phase, the DNN is tested using Yl,tst ∈ R2Lw×P̂ , where it predicts Ypre ∈ R2Hg×P̂ ,

as shown in Fig. 5.2. Here, P̂ is the number of testing samples. It is important to
note that in the testing phase, only the received signal of the small antenna setup is
available. The trained DNN is used to predict the received signal of the large antenna
setup using the received signal of the small antenna setup. Next, DOA estimation
is calculated from the predicted received signal Ypre ∈ CHg×P̂ through the MUSIC
algorithm as previously explained in 2.6. The covariance matrix is calculated using
Ns snapshots as

Rpre = E [YpreY
H

pre] = A(θ)E [ΦΦH ]AH(θ) + σ2
ñI,

= UϕΛϕU
H
ϕ +UñΛñU

H
ñ ,

(5.7)

where E [·] denotes the expected value, Uϕ and Uñ are matrices containing the
eigenvectors, which represent the signal and noise subspaces, respectively. Λϕ =
diag(λ1, . . . , λL) and Λñ = diag(λL+1, . . . , λMN) contain the corresponding eigenval-
ues of the target and the noise, respectively. Hence, the expression of the MUSIC
spectrum which provides the received signal energy distribution for all receive direc-
tions is given by

PMU(θ) =
(
dH(θ)UñU

H
ñ d(θ)

)−1
. (5.8)

It is worth mentioning that since MUSIC uses the covariance matrix to calculate
the DOA, it is also possible to use the covariance matrix for training instead of the
received signal. However, both approaches yield the same result. For a comprehensive
evaluation of our model performance, we define two metrics. First, we define the
covariance matrix error as

Re = ∥Rh,tst −Rpre∥F
/
∥Rh,tst∥F , (5.9)

where ∥·∥F is the Frobenius norm, Rh,tst = E [Yh,tstY
H

h,tst], and Yh,tst is the received
signal of the large antenna setup during inference. The analysis of the covariance
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matrix of the received signal has a significant importance here as it is directly used to
calculate the MUSIC spectrum. Second, to evaluate the DOA estimation performance,
the average MSE over Qs trials is used as the performance metric. Here, Qs = P̂ /Ns

. The MSE in radians is given by

MSE =
1

LQs

Qs∑

qs=1

L∑

l=1

(θ̂qs,l − θqs,l)2 (5.10)

Here, the estimated and actual angles of the l−th target in the qs−th trial are given
as θ̂qs,l and θqs,l, respectively.

5.3.1 Can the same DNN estimate the DOA directly ?

To answer this question, we have tried to use a DNN, with a similar architecture,
to map the relationship between the received signal of the small antenna setup
and estimate as well the DOA. However, this approach failed, as the DNN could
not simply learn the direct mapping between the received signal and the spatial
angles. The difficulty here lies in the fact that there are two different tasks to be
done subsequently. The first one is the mapping relationship between both received
signals, while the second one is mapping the received signal to the DOA directly.
Hence, for an end-to-end data-driven approach, two different cascaded DNN must
be used, each trained for the corresponding task. Therefore, one could think of
using another DNN to replace MUSIC in our work after the DNN mapping step
to estimate the DOA directly. However, this would require further investigation re-
garding the DNN architecture, which we plan to consider as an extension to this work.

5.3.2 Computational Complexity

The computational complexity of DNN training is governed by that of backpropaga-
tion, which is given by O(P̂ ne(H

2
g +L2

w)). Here, ne is the number of training epochs,
and O(·) represents the Big O notation for asymptotic computational complexity
analysis. The test-time computational cost for a single trial which consists of Ns

snapshots is O(NsH
2
g +NsL

2
w), which is governed by inference cost along with MUSIC

complexity, which is given by O(npH
2
g +NsH

2
g ) where np is the spatial grid search over

the angles. Thus, the total test-time computational cost is O(Ns(H
2
g + L2

w) + npH
2
g ).

5.4 Numerical Analysis

To train the DNN, we use a GPU server with 32 GB memory and a single NVIDIA
Quadro RTX 5000. The simulation parameters are listed in table Tab. 5.1. We
consider three angle ranges, which span the scope of the incident signal, however,
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Nlw = Mlw 10 Nhg = Mhg 16

Angle grid 1 0 : 25 Angle grid 2 20 : 45

Angle grid 3 40 : 65 Number of targets (L) 4

Table 5.1: Simulation Parameters

similar results were obtained for others. Each range is chosen to span 25 degrees to
place the targets. Also, here we set the minimum spatial distance of five degrees
between two targets to ensure the best spatial resolution of the actual large antenna
setup of 16 × 16 antennas. The proposed results assume that the training and testing
are performed in the same angular ranges of the targets. In order to identify the
corresponding trained DNN for each target, the testing sample is predicted using
the trained DNN of the three ranges and the DNN with the lowest MSE is chosen.
This approach was adopted to reduce the complexity of training on the whole angle
range, however, this is still feasible with a large number of data to span the whole
angle range [0 : 65]. Different training sets are considered in the training phase. For
our simulations, we consider 16 datasets. In those datasets, we use different training
data, where 14 datasets consist of 60000 samples for training and validation, in
each of those sets we train the DNN using a single SNR value from the SNR range
[−16 : 2 : 10] dB. The last two datasets, M1 and M2, contain however data with a
mix of SNR within the same range. M1 and M2 contain equal percentage of data
samples from each training SNR (SNRtrain). The only difference in constructing these
two datasets is the size, as M1 consists of 840000 and M2 consists of 60000 samples
for both training and validation. For the testing phase, we estimate the DOA for
15000 samples in the testing SNR (SNRtest) range of [−16 : 2 : 10] dB. Here, we set
the number of snapshots Ns as 150, resulting in a number of trials Qs = 100. We
assume that changing the SNR affects the noise of the received signal and not the
target matrix Φ.

5.4.1 Deep Neural Network (DNN) Performance Analysis

To gain insights on how the performance of the DNN , we evaluated the training loss
(TL) and validation loss (VL) of the DNN for different training SNRs as shown in
Fig. 5.3. The relation between TL and VL indicates when the patterns learned by
the DNN do not generalize well to unseen data (overfitting regime). In case the TL is
significantly smaller than the VL, then it is highly likely that the DNN is overfitting.
In Fig. 5.3, we used the same SNR in training and validation. Based on the results,
it can be seen that in low SNR regimes (i.e., −14, −10, and −6 dB), there is almost
no gap between both losses. However, as the SNR increases, the TL becomes slightly
lower than the VL at −2 dB, as we train the network for a number of epochs needed
to obtain good accuracy. In addition, the gap between the TL and VL increases
as the SNR increases (i.e., 2, 6, and 10 dB). Furthermore, it can be noticed from
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Figure 5.3: TL and VL of the DNN for different angle ranges and training SNRs.
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the figure that the TL and VL are much lower in positive SNR regimes compared
to the negative ones. This in turn suggests that at high SNR, the learning task
becomes easy, which makes the DNN more amenable to overfitting. Fortunately,
in such noiseless scenarios, the problem motivating this work with smaller antenna
arrays is mild, and one can choose to directly use the small antenna array received
signal for DOA estimation.

5.4.2 DOA Performance

The average MSEs for different training datasets are shown in Fig. 5.4. In this figure,
DOA estimation using the predicted signal of the DNN is compared with the DOA
estimation obtained by directly using the signals obtained from the actual small and
large antenna setups.
Three cases for the DNN prediction task are explored:

• Case 1: Training the DNN with the M1 dataset (mix of SNR values).

• Case 2: Training the DNN with the same SNR as that used in testing.

• Case 3: Selecting the lowest MSE of DOA estimation achieved across all 16
training sets for each testing SNR.

Fig. 5.4 shows that the predicted signal typically leads to better performance than
directly using the signal of the small antenna setup (10×10), especially in the low
SNR regime and for high angle ranges. However, there is one exception to this
statement. As shown in Fig. 5.4(a) and (b), where the small antenna setup performs
slightly better compared to the DNN prediction in high SNR regimes. This is due
to the fact, that both received signals of the small and large setups have similar
DOA performance in high SNR, where the MSE decreases dramatically in both cases.
We believe that the inferior DNN performance, in this case, can be attributed to
overfitting as the TL is lower than the VL as previously mentioned in section 5.4.1.
We consider that Case 2 is the best training scenario, where the same SNR is used for
testing and training. This case might be unrealistic in practical applications unlike
Case 1. However, we use it here as a benchmark for comparison. In section 5.4.4,
we address the performance when there is uncertainty about the test SNR. Fig. 5.4
also demonstrates that training and testing with the same SNR closely follow the
best achievable performance, hence highlighting the impact of knowing the test SNR
value and choosing the simple strategy of training at only that value. In addition,
Fig. 5.4 demonstrates the difference in behavior among different angle ranges. More
specifically, the performance of the DOA estimation obtained from using the signals
corresponding to the actual antenna setups becomes worse for higher angle ranges.
We believe that this is due to the loss of spatial resolution of the ULA as the target
directions shift to the endfire direction of the antenna array (i.e. |θl| ≥ 60). This is
due to the fact that in this range, the beam sharpness reduces remarkably as the
effective array aperture decreases towards those directions [IB05].

93



Chapter 5. Deep Learning based DOA for Small MIMO Antenna Arrays

−16 −12 −8 −4 0 4 810−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNRtest (dB)

M
SE

(r
ad

)

Low Antenna setup 10 × 10 High Antenna setup 16 × 16 DNN Case 1 (Trained by M1) DNN Case 2 (SNRtrain = SNRtest)
DNN Case 3 (The best among all data sets) CRB Antenna setup 16 × 16 CRB Antenna setup 10 × 10

−16 −12 −8 −4 0 4 810−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNRtest (dB)

M
SE

(r
ad

)

−16 −12 −8 −4 0 4 810−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNRtest (dB)

M
SE

(r
ad

)

(a) Angle range 0-25

(b) Angle range 20-45

(c) Angle range 40-65

Figure 5.4: DOA estimation results and Cramér Rao Bounds.
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Figure 5.5: MSE of covariance matrix of predicted received signal compared to the
actual large antenna setup at the same SNR and with SNR offset with
ReLU output activation function.

To further assess the performance of our approach, Fig. 5.4 shows the Cramér Rao
bound (CRB) of the DOA estimation of small and large antenna setups. It can be
seen that the DOA estimation of the DNN-predicted signal approaches the CRB of
the small antenna setup, specifically in the low SNR regime. Further, for higher angle
ranges at low SNR, the MSE of the DNN-based DOA estimation is lower than the
CRB of the small antenna setup. We believe that this is due to the side information
benefit from the large antenna setup training signals, as well as the denoising effect.
Thus, it can be deduced that our approach can enhance the estimation accuracy and
improve the resolution of small arrays as well.
Interestingly, DOA estimation using our DNN-emulated signal outperforms the one
generated using the actual large antenna setup at low SNR and high angle ranges.
A possible explanation of this behavior is that, while pursuing improvement in
generalization performance, the DNN performs denoising to the received signal. We
further examine this hypothesis by evaluating Re as defined in eq. (5.9). Then, we
compare the predicted signal with the actual received signal at a certain SNR offset.
Hence, we define Roffset as

Roffset = ∥Rho,tst −Rpre∥F
/
∥Rho,tst∥F , (5.11)

where Rho,tst = E [Yho,tstY
H

ho,tst], and Yho,tst is the actual received signal at a certain

SNR offset (e.g., if Yh,tst and Ypre are evaluated using SNRtest = −16 dB, then
Yho,tst is evaluated using SNRtest = −8 dB with an offset of 8 dB).
In Fig. 5.5, we plot Re and Roffset using the training datasets of M2 and case

2 with offset values of 8 and 12 dB, respectively. Those offset values are chosen
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Figure 5.6: CRB of the DOA estimation vs Antennas.

based on the observed performance corresponding to both cases. Fig. 5.5 shows
that Roffset has much lower values compared to Re in both cases. That signifies the
statistical similarity between the predicted signal of the DNN and the less noisy
version of the actual received signal of the large antenna setup. Further, as the SNR
increases, Roffset and Re converge to the same value. This underlines the validity of
the hypothesis that the DNN denoises the received signal.

5.4.3 Cramér Rao Bound (CRB) Analysis

The maximum number of targets (Kmax) that theoretically can be uniquely identified
by a MIMO radar is given by [LSXR07]

Lmax ∈
[
2(M +N)− 5

3
,
2MN

3

)
. (5.12)

However, those bounds are asymptotic bounds, and rely on the assumptions that
either the SNR or the number of snapshots is infinite [LS07]. In addition, it is worth
noting that the accuracy of the MUSIC algorithm in identifying the targets is very
sensitive to variations in the SNR and the number of antennas. In Fig. 5.4, we used
the small antenna setup M = N = 10 antennas, while for the large antenna setup we
used M = N = 16 and number of targets L = 4 in both cases. In low SNR regimes,
the small antenna setup suffers from high MSE values of DOA estimation, while the
MSE enhances gradually as it approaches 0 when the SNR increases. One way to
overcome the performance degradation is to increase the number of antennas, which
is not always possible. In Fig. 5.6, we use the CRB to further elaborate this idea.
The CRB of unbiased DOA estimation of MIMO radar is calculated and derived as
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in [HV11].

CRB(θ) =
σ2
ñ

2Ns

{
Re
[
ΦHAH

e

(
I −A

(
AHA

)−1
AH
)
AeΦ

]}−1

.

Here, Ae represents first derivative information of the steering vector matrixA = A(θ)

as given by Ae = Ae(θ) =
[
∂d(θ1)
∂θ1

, ∂d(θ2)
∂θ2

, · · · , ∂d(θL)
∂θL

]
. It is well known that the

estimation error covariance of any unbiased estimator is lower bounded by the CRB.
The figure shows the CRB for the DOA estimation error versus the number of
antennas for different angle ranges at SNR = −10 dB and L = 4. It can be observed
that the CRB decreases as the number of antennas increases. In addition, it can
be noticed that CRB increases as the angle range go higher. This can be explained
due to the loss of spatial resolution of the ULA as the target directions shift to the
endfire direction of the antenna array (i.e., |θl| ≥ 60) previously explained. Hence, in
our proposed method we aim at reducing the DOA estimation error for low SNR
systems and in high angle ranges without the need to increase the number of antennas.
In general, subspace methods as MUSIC, are highly dependent on the SNR of the
received signal. As a matter of fact, those methods suffer from the so-called“threshold
effect”. This involves a severe degradation when either the SNR and/or the number
of snapshots are not large enough [VML15]. Therefore, in case the received signals
suffer from low SNR values, the algorithm cannot detect the desired targets [LYL+17].
In general, for uncorrelated sources, the MUSIC algorithm is asymptotically efficient
(i.e., the noise variance tends to zero). This can be seen clearly in our results. Hence,
our proposed method offers an efficient solution to enhance the efficiency of the small
antenna setup in low SNR and/or high angle range regimes without the need to
increase the antennas or the number of snapshots taken.
It is hence feasible to detect four targets for both considered small and large antenna
setups in the scenario depicted in Fig. 5.4. However, the accuracy of MUSIC suffers
severe degradation as the SNR decreases, and this performance degradation can be
significantly overcome by increasing the number of antennas, which we do through
DNN emulation.

5.4.4 The Best Training Signal-to-Noise ratio (SNR) Values

We first investigate the performance when training with a single SNR value across
all testing SNR values. Fig. 5.7 shows the cumulative average MSEs of the DOA
estimation over all testing SNRs for each training SNR. We observe that the training
set M1 consistently provides a low cumulative MSE. However, it may be difficult in
practice to acquire - and train with - a large dataset due to latency and computational
constraints. Interestingly, the best training SNR value, in terms of cumulative MSE,
shifts from low to high as we move towards higher angle ranges. Further, perhaps
counterintuitively, training with high SNR values can lead to mild performance for
low angle ranges in presence of uncertainty about the testing SNR. Further analysis
is conducted to elaborate the relationship between the training and test SNR, and
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the results are shown in Fig. 5.8. With respect to the average MSE for each pair of
training and testing SNR values, in We observe that positive training SNR values
are in general more favorable, especially as we move towards higher angle ranges and
higher SNR values. However, when comparing with the results in Fig. 5.7. Thus,
we conclude that knowledge of the test SNR favors higher training SNR values,
while a significant uncertainty about the test SNR favors lower training SNR values,
especially for lower angle ranges.

5.5 Summary

We introduced a novel strategy that employs deep learning for emulating large
antenna arrays and demonstrated how it boosts the accuracy of MUSIC for DOA
estimation. We highlighted how the emulated array leads to superior performance
than an actual antenna array with the same number of antennas for high angle
ranges and low SNR values, probably due to the denoising abilities of deep neural
networks. Further, the effectiveness of training at low SNR values in presence of
uncertainty about the test SNR was demonstrated, especially for low angle ranges.
Finally, we investigated the best training SNR values as a function of the test SNR,
and particularly noted the shift in ideal training SNR values from low to high as
we move towards higher angle ranges and higher test SNR values. In this chapter,
we did not address the correlation between different targets, as we assumed perfect
received signals for both arrays. In the next chapter, we propose an approach to deal
with this problem.
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Figure 5.7: DOA estimation comparison of the DNN based signal prediction by
training at a single SNR.
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Figure 5.8: The best training SNR selection for different test SNRs.
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6 Deep Learning for DOA for
Coherent Targets using Imperfect
Antenna Array

In the previous chapter, we introduced deep learning to overcome angular resolution
limitations for DOA estimation in MIMO radar utilizing a small antenna array. The
deep NN has shown denoising capabilities for very low SNR regimes. One related
question is: can we benefit from deep learning as well to overcome other sources of
signal distortion? As a matter of fact, multipath and antenna array imperfections
are both considered the foremost challenges facing DOA algorithms. In this chapter,
we aim to investigate the possible advantages of deep learning techniques to solve the
problem of DOA estimation of coherent targets, originating due to the presence of
multipath. Furthermore, we assume the existence of an imperfect antenna array such
as mutual coupling, gain, phase mismatches, and position errors. In section 6.1, we
review the effect of multipath and antenna array imperfections on DOA estimation,
examining prior work done to solve those problems. In addition, we briefly discuss
the contribution of this chapter. Afterward, in sections 6.2 and 6.3, we reformulate
the system model proposed in eq. (2.11), introducing the effects of errors due to
imperfections and multipath component into the model. Then, we propose a DNN
framework solving both problems simultaneously in section 6.4. The performance of
this framework is assessed against other algorithms from the literature in section 6.5.
Finally, in 6.6, we conclude the work done in this chapter.

6.1 Related Work

There are various challenges affecting the accuracy and precision of DOA estimates
in non-ideal scenarios, e.g., multipath and antenna imperfections. In general, the
application of conventional DOA methods in real-life applications is very limited, as
it requires accurate knowledge of the received signal without any errors. Hence, they
are limited to specific scenarios where the antenna array measurements are ideal
and the targets are not correlated. For example, the MUSIC algorithm can detect
and measure multiple targets at the same time with high-precision measurement
only under ideal array conditions as explained in the previous chapter. In addition,
to those limitations mentioned in chapter 5, its performance degrades significantly
in the existence of array imperfections. Furthermore, phased array radar fails to
correctly detect coherent (fully correlated) targets in a multipath environment using

101



Chapter 6. Deep Learning for DOA for Coherent Targets using Imperfect Antenna
Array

MUSIC. Since, unlike MIMO, phased array radars are only capable of transmitting
the same waveform from all antennas. Thus, with the presence of multipath, the rank
of the signal covariance matrix becomes less than the number of impinging signals,
which significantly affects the estimation performance. To solve this problem, spatial
smoothing techniques have been widely used to remove the coherence between targets
or de-correlate their signals by reconstructing a full rank covariance matrix before
going through the estimation algorithm [QR11b]. However, this adds processing
overhead, making it difficult to use in real-time applications. Moreover, spatial
smoothing only solves the coherence problem and does not solve other problems
like antenna array imperfections which is a common problem in practice. As a
matter of fact, those imperfections generally occur in practical applications due to
the non-idealities in the antenna array such as mutual coupling, gain and phase
gradual changes over time and as well as changes in the antenna locations. For
instance, mutual coupling occurs due to interference from nearby antennas during
transmitting [FW91], while gain and phase inconsistency can result from the aging
of electrical components or thermal effects. All of those factors change the antenna
array response, causing significant degradation in the performance of DOA algorithms
like MUSIC [FW91]. Many approaches in the literature addressed those problems
using auto-calibration algorithms as in [Sva99, LY06]. However, such algorithms
require prior knowledge of the imperfections formulations, which can be challenging
in practical applications. Other approaches used the latest advances in machine
learning, and deep learning to solve this problem as in [LZY18a]. However, the
authors in [LZY18a] only focused on the imperfections problem, where they proposed
a neural network followed by a classifier. However, they didn’t take into consideration
the potential correlation among the targets that can result from multipath.
The contribution of this chapter is the following:

• DOA estimation of spatially close coherent targets with a phased array radar
without any prior spatial smoothing techniques. This is done in the presence
of array imperfections using a unified DNN framework to solve both problems.

• Significant performance enhancement compared to state-of-the-art methods
for coherence removal as SS-MUSIC [QR11b], and to similar algorithms for
imperfections as aforementioned approach found in [LZY18a].

6.2 Array Imperfections

The phased array model in eq. (2.11) is the idealistic received signal without any
imperfections in the antenna array, which is commonly used in the literature. However,
it is quite impractical. Hence, we re-define eq. (2.11) as

z (ks) =
L∑

l=1

a (θl, e) sk (ks) + ñ (ks) , ks = 1, . . . , Ks (6.1)
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where a (θl, e) is the array response after adding the array imperfections and ks is the
time instant. Here we consider gain and phase errors (eg and ep), antenna position
error (epos), and mutual coupling error (emc). To this end, the definition of a (θk, e)
would be as [LZY18a]

a(θ, e) = (IN + αmcEmc)× (IN + diag (αgeg))

× diag (exp (jαeep))× a (θ, αposepos)
(6.2)

eg = [0, 0.2, . . . , 0.2︸ ︷︷ ︸
N
2

,−0.2, . . . ,−0.2︸ ︷︷ ︸
N
2
−1

]T (6.3)

ep =


0,−

π

6
, . . . ,−π

6︸ ︷︷ ︸
N
2

,
π

6
, . . . ,

π

6︸ ︷︷ ︸
N
2
−1




T

(6.4)

The position biases are

epos = [0,−0.2, . . . ,−0.2︸ ︷︷ ︸
N
2

, 0.2, . . . , 0.2︸ ︷︷ ︸
N
2
−1

]T × d (6.5)

The mutual coupling coefficient vector is

emc =
[
0, γ1, . . . , γN−1

]T
(6.6)

where γ = 0.3ej
π
3 is the mutual coupling coefficient between adjacent antennas,

αi ∈ [0, 1], i ∈ {g, p, pos,mc} is weighting parameter for each error. The choice of the
error values in equations (6.3),(6.4),(6.5) and (6.6) is system dependent and can be
changed accordingly. Emc is defined as a Toeplitz matrix with parameter vector emc.
The imperfections model used is a simplified version of the commonly used models,
such a model is adopted similarly to [LZY18a] to facilitate the analysis. However,
the model is irrelevant to the proposed generic machine learning framework, since no
prior information is assumed on the model nor the used imperfection values.
In addition to array imperfections, in any real scenario, the received signals would be
highly correlated, due to the contribution of multipath which makes R rank deficient
or singular. Hence, the next section will define the model of coherent targets.

6.3 Multipath

In order to generate the multipath component of each target, we consider having L
targets arriving from L directions. At time instant ks, there are L transmit signals
sl(ks), ∀l = 1, . . . , L, which arrive as replica of one of them i.e., s1(tn), but phase
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delayed and magnitude weighted [QR11b]. Hence, the transmit waveform sl(ks) in
eq. (6.1) can be redefined as

sl(ks) = gle
jϕls1(ks), l = 1, . . . , L, (6.7)

where gl is the amplitude factor of targets l and ϕl is its phase change. Such a model
will impose rank deficiency on the covariance matrix structure in eq. (2.13), causing
the existing DOA algorithms to fail accordingly. The proposed model simulates a
multipath propagation case, which leads to the presence of perfectly coherent sources.
To solve such a problem, in the next section, we propose a deep auto-encoder to
remove the effects of both coherence and array imperfections.

6.4 DOA based on Deep Learning

In this section, we investigate the use of deep learning to eliminate the errors
resulting from antenna array imperfections and at the same time mitigate the effect
of multipath, thus enhancing the DOA. We propose a composite framework, which
consists of AE that selects the spatial sector where the sources and multipath are
located followed by a beamformer that applies scanning to find the exact DOA. In
the following, we will explain in detail this framework.

6.4.1 DNN Architecture

Here, for the DNN architecture, we propose an AE. AE is a specific type of DNN
which consists of two networks: an encoder and a decoder. The encoder takes in the
input vector, then compresses it to a reduced dimension. This procedure extracts
the main features in the input, afterwards, the decoder takes the encoder’s output
and reconstructs the initial input dimension. In our proposed AE, the first hidden
layer performs the function of an encoder as it reduces the dimension of the input by
extracting the main features of the input. Afterwards, the encoding layer is followed
by four hidden layers that help in the decoding process by retrieving the information
to restore back the input of the AE. Table 6.1 shows the size of all the hidden layers.
The output layer consists of six sub-regions and each region is considered as a decoder
by itself. The AE acts as a spatial filter that divides the region of interest into
six regions, the filters the input using those six output decoders. Therefore, each
decoder retrieves specific information from the input, as shown in Fig. 6.1. The
proposed architecture is different from a fully connected neural network due to the
presence of the encoder in the first hidden layer. The process of encoding-decoding
helps decrease the impact of disturbances in the AE input, by de-noising the input,
retrieving only the useful information. The disturbance in our case is mainly due to
array imperfections, noise, and coherent targets.
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Figure 6.1: Proposed AE consisting of 5 hidden layers with hidden layer 1 acts like
an encoder and the following layers combined act like a decoder.

Layer Size

Input Layer n = 380

Hidden Layer 1 a = 190

Hidden Layer 2 b = 380

Hidden Layer 3 c = 570

Hidden Layer 4 d = 760

Hidden Layer 5 e = 950

Output Layer 6× 380 = 2280

Table 6.1: Sizes of all layers
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6.4.2 Learning Scheme

The input of the proposed DNN is the covariance matrix of the received signal
as defined by eq. (2.13). In order to reduce the dimension of the input layer, we
consider only the correlated elements in the covariance matrix. By exploiting the
symmetry in the correlation matrix, only the strict upper or strict lower triangular
part of the matrix can be considered [LZY18a]. In this design, the off-diagonal upper
right matrix of the covariance matrix is considered. For example, if we have N = 3
antennas, the covariance matrix will be

R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 , (6.8)

then the following input is obtained

r̂ =
[
r12 r13 r23

]T
. (6.9)

Generally, let R ∈ CN×N , then the input vector is r̂ ∈ CN(N−1)/2. Additionally, the
input of the DNN must be real-valued, hence, r̂ is converted from complex to real by
concatenating ℜ(r̂T ) and ℑ(r̂T ) such that

r =
[
ℜ(r̂T ); ℑ(r̂T )

]T
, (6.10)

where r ∈ Cn and n = N(N − 1). The proposed AE is trained to restore the
rank of the matrix, which suffers from rank deficiency due to the coherent targets.
Furthermore, it learns to de-noise the imperfections in the signal similar to the
previous chapter. The proposed AE in Fig. 6.1 decomposes its input into 6 spatial
subregions, each spatial subregion is a specific range of angles and all subregions are
of the same size. To define these subregions, 7 particular spatial angles were chosen
such as

θ(1) < θ(1) < · · · < θ(7) (6.11)

with constant gaps such that θi+1− θi = constant ∀i, i = 1, . . . , 7, and each subregion
j is defined as

[
θj, θj+1

]
where j = 1, . . . , 6. Therefore, if the input vector of the AE

rk is generated using a signal impinging from targets k on the antenna array at angle
θk within grid Θj in the j-th subregion, then the output of the j-th decoder will be
r̄k, which is the estimated value of r̂. while the output of the other decoders will be
zero as there are no signals impinging from those range of angles. The AE is trained
to be able to separate multiple signals transmitted from targets located in different
subregions impinging onto the array simultaneously. Hence, it is able to decompose
the input vector with components belonging to different subregions and extract the
information that belongs to every subregion by retrieving it in the related decoders.
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6.4.3 Training Process

The data set is constructed by generating I training samples of the covariance vector
r corresponding to single-signal scenarios. The data was generated with random
angles that span all subregions. The output of each decoder is determined based
on which subregion the generated r belongs to. Alternatively, the decoder can be
considered a spatial filter. This filter extracts the covariance vector information that
belongs to a particular subregion. In order to build up the training label of the entire
output of the AE, the outputs of the six decoders are concatenated as follows

ȳ =[ȳT
1 , . . . , ȳ

T
6 ]

T (6.12)

in which ȳj is the output of the j decoder. Thus, in a perfect case scenario, the
output of all decoders should be the following

ȳ =


0n×1, . . . ,0, r̄T (Θj)︸ ︷︷ ︸

j th subregion

,0, . . . ,0




T

. (6.13)

To train the AE, MSE between the actual output and the expected one is used as
the loss function. That is,

L(Θj) =
1

2
∥ȳj − r(Θj)∥22

where ȳj is the output of decoder j when r (Θj) is the input as shown in Fig. 6.1. The
optimizer used in the training process to minimize the loss function is a RMSProp
optimizer [LZY18a].

6.4.4 Scanning

After training the network shown in Fig. 6.1, the training label in eq. (6.12) is used
to estimate the original directions of the correlated targets impinging on the array1.
This is done through spatial scanning of the output of each decoder (i.e., filter)
ȳj. The scanning phase aims at calculating the gain of each filter in all directions,
in which the actual targets angles would have large gain values, while the other
directions would have much smaller gains. Afterward, a threshold value is used to
select the angles whose gains have peaks surpassing the threshold. The gain response
of each filter is obtained by

g(j) =
∣∣r̃H (Θi)yj

∣∣ , j = 1, . . . , 6, (6.14)

where the superscript (•)H is the conjugate transpose of the matrices and vectors,
r̃H is the estimated value of r̂, and the complex version of r, while yj is the complex

1It is worth noting that it is possible to directly estimate the DOA from the input signal using a
more complex DNN, but this is left for future work.

107



Chapter 6. Deep Learning for DOA for Coherent Targets using Imperfect Antenna
Array

version of the output of the j-th decoder yj . yj is obtained from yj by concatenating
the first half that represents the real values in ȳj with their corresponding imaginary
values in the second half of ȳj, similarly r̃H (Θi) is obtained from rT (Θi) .

6.5 Numerical Analysis

In this section, we carry out simulations to evaluate our proposed DNN. We used the
python library tensorflow to design and process our DNN. The network is trained
on I = 1200 samples, with learning rate of 0.001, while the batch size is 100 and
the number of epochs is 1000 epochs. We use a ULA of size N = 20 elements with
spacing d = λc/2 to predict directions of signals impinging from targets located in the
spatial range of [−60◦, 60◦], which is divided equally into six subregions. The training
samples are generated randomly from the spatial range with a step of 0.1. The
covariance input vector r (Θi) is generated using Ns = 800 snapshots. To evaluate
the performance of our algorithm, we use forward/backward spatial smoothing along
with the SS-MUSIC in [PK89], and compared it against our DNN in multipath
environment by randomly changing gl and ϕl in eq. (6.7) for every target l.

6.5.1 Gain Responses of each Decoder (i.e., Filter)
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Figure 6.2: Spatial filters response at SNR = 10 dB when two coherent signals located
at (θ1 = −15◦, θ2 = −5◦) are incident to the antenna array. The blue
dashed lines are at −15◦ and −5◦ respectively

The DNN is tested using a covariance vector obtained from two correlated targets
located at θ1 = −15◦, θ2 = −5◦ respectively, which belongs to subregion 3, i.e.
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[−20◦, 0◦], with signal to noise ratio SNR = 10 dB. Those specific directions were
chosen, because they are in the same subregion, making them spatially close, hence it
would be harder to separate them compared to distant targets. The threshold value
to find the peaks in the scanning process is set to 0.3, which is set by experience.
Fig. 6.2 shows the gain obtained from eq. (6.14) for all the filters. It can be depicted
that the spatial gain response of the filter corresponding to the assigned subregion
has higher peaks compared to the other filters. It is clear that the filter managed to
differentiate between both angles despite the fact they are coherent, and the antenna
array suffers from imperfection errors as stated in eq. (6.2).

6.5.2 Performance against Spatial Smoothing-MUSIC
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Figure 6.3: DOA estimation root mean square error (RMSE) in degrees of the pro-
posed DNN method and SS-MUSIC algorithm for two impinging signals
from directions (θ1 = −15◦, θ2 = −5◦)

Fig. 6.3 compares DOA estimation performance of our proposed DNN with SS-
MUSIC in presence of correlated targets and array imperfections combined. The
average RMSE in degrees is used to measure the accuracy of DOA estimates for
various SNR. It can be shown from the figure that the of our DNN starts high
at SNR = 0 dB, then decreases significantly compared to SS-MUSIC as the SNR
increases. It can be seen from the figure that the RMSE of SS-MUSIC algorithm is
heavily impacted by the presence of imperfections due to the fact that it assumes an
ideal steering vector model with no imperfections as in eq. (2.11). It is worth noting
that the proposed machine learning method was only tested in the presence of both
sources of disturbance present at the same time.
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Figure 6.4: DOA estimation RMSE of the proposed DNN framework and DNN found
in [LZY18a] for L = 8 coherent targets

6.5.3 Performance against Algorithm in [LZY18a]

Fig. 6.4 compares the detection performance of our DNN compared to the algorithm
in [LZY18a], where the authors only considered array imperfections and assumes
perfectly uncorrelated targets for DOA estimation. The same training data was used
for both algorithms for fair comparison. The figure shows a consistent behavior for
our algorithm detecting all 8 targets, however, the algorithm in [LZY18a] shows a
lower probability of detection due to its failure to detect all coherent targets.

6.6 Summary

In this chapter, we presented a framework for DOA estimation of correlated targets
in presence of array imperfections. Our approach was based on Deep AE with 5
hidden layers, one acting as an encoder and 4 as a decoder. From the simulations, we
showed that the AE acts as a denoiser, where it could successfully remove the effect
of coherence and imperfections producing accurate DOA estimates compared to the
commonly used SS-MUSIC. Moreover, we compared our algorithm with the approach
in [LZY18a] where the authors only deal with imperfections, and our algorithm
showed better and more consistent behavior.
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7 Conclusion and Future Work

In this chapter, we conclude the main contributions of this thesis and outline some
directions to extend the results addressed in this work.

7.1 Summary of Main Contributions

This dissertation shed the light on some of the major challenges facing the current
radar systems as depicted in Fig. 1.1 proposing robust solutions from machine learn-
ing and information theory perspectives. This thesis studied such problem according
to two main research strands (a) waveform design at the Tx side (b) DOA estimation
at the Rx side. In the first main part of the thesis, chapters 3 and 4, we proposed
to overcome the potential effects of the environmental undesired returns through
waveform design. To this end, we proposed different strategies to tackle this problem
based on the radar operation mode and the priori information available. In this
context, the first radar scene examined in Chapter 3 comprised of multiple extended
targets whose second order statistics are known a priori. Meanwhile, the radar’s goal
was to extract more information about those targets despite the presence of mutual
interference resulting from the overlapping of their PSD. Therein, we proposed a joint
transmit-receive beamforming design using MI as a metric through two step optimiza-
tion algorithm. The results demonstrated the potential superiority of optimizing the
beamformers compared to conventional beamforming, particularly when the targets
are spatially close. Interestingly, the results further showed that as the targets are
sufficiently far from each other, only then the conventional beamformers become
optimal. Motivated by those findings, we mathematically analyzed the influence of
spatial correlation on the general MI expression. We proved that MI is a Schur-convex
function with respect to spatial correlation at low SNR, i.e., monotonically increasing
function. Contrarily, at high SNR, the function becomes Schur-concave.
The second radar scene examined in chapter 4 proposed different environmental
challenge, where the radar’s goal was to detect multiple point targets within distur-
bance (clutter plus noise). In this regard, the surrounding environment was totally
unknown and dynamic, since the targets can fade away, or change directions. We
addressed this issue through proposing a RL algorithm, where the radar acts as
an agent learning the environment through trial and error. In our case, the agent
seeks to maximize a reward function defined in terms of the closed form asymptotic
expression of the PD as the number of virtual spatial antenna channels go to infinity.
This was done through optimizing cognitive beamformers based on the feedback from
the environment. The gains achieved when deploying our approach are illustrated
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through simulations for different system scenarios. Our RL based approach showed
resilient performance for targets embedded in heavy-tailed disturbance. Furthermore,
the probability of detecting the low- SNR targets improved significantly compared
to adaptive approaches. The proposed RL-based beamformer was even able to adapt
to fast changing environment, where the targets angles, number, and SNR changed
rapidly without requiring any a priori knowledge. Moreover, the robustness of the
algorithm has been examined for various disturbance models, where it showed a
remarkable increase in the PD while keeping the CFAR property.
In the second main part of the thesis, chapters 5 and 6, we discussed possible chal-
lenges related to DOA estimation. Armed with data driven approaches, we addressed
DOA algorithms common problems like poor resolution, multipath and physical array
imperfections. In chapter 5, a novel strategy utilizing deep learning to emulate a
large antenna array was introduced. The proposed algorithm enabled the state of the
art MUSIC to resolve more targets using a small antenna array, enhancing the DOA
estimation accuracy. Multiple observations were drawn from the obtained results.
Most notably, the emulated array had superior resolution capabilities compared to
the actual large antenna array with the same number of antennas for high angle
ranges and low SNR values. This is due to the fact that the DNN has denoising
capabilities, thus it can remove signal distortions. Based on those interesting findings,
we were motivated to explore further advantages of such approaches in chapter
6. Therein, we used DNN to overcome possible signal distortions resulting from
both physical antenna array imperfections and multipath. DNN was used to enable
the state of the art MUSIC algorithm to detect coherent targets, mainly caused
by multipath. To make the problem more practically significant, we assumed that
the signal was further distorted by array imperfections, for instance, phase, gain
and mutual coupling errors. The DNN framework was composed of an AE acting
as a denoiser, that could remove the effects of both coherence and imperfections.
The simulations showed that DOA performance of our approach surpassed common
approaches in the literature that deal with each of those problems separately.

7.2 Future Work Directions

Based on our findings in this thesis, several interesting aspects may be explored
further as future research directions as highlighted next:

• MIMO Radar Waveform Design for THz Regimes : It is expected that 6G
systems will soon transition to become multi-modal systems, meaning it will
evolve from communication only to an integrated joint communication and
sensing. Thus, a key question here, is how the radar would be able to detect far
objects within such high attenuation at 6G frequencies, mainly in the THz band.
In addition, THz bands are characterized by molecular absorption loss, which
is caused by water vapor. This phenomena might result in absorption peaks in
the channel response. One interesting approach here, is to design the waveform
to overcome such shortcoming. In addition, a reconfigurable intelligent surface
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reconfgurable intelligent surface (RIS) can be designed and placed to substitute
those losses. This is done through controlling the reflection of each element on
the RIS to obtain a lens focusing behavior forming constructive multipath. In
this context, preliminary work in joint beamforming and RIS design for radar
detection is done in [C7]. Furthermore, the metric to optimize the beamformers
and RIS phases can be derived using an information theoretic criteria. Kullback
Leibler distance between the densities of observations under two hypothesis
can be a fitting metric in this case, from a detection point of view [CT06].

• RL based DOA for Multiple Targets: In chapter 4, we focus our attention
on the detection aspect of the radar problem, i.e., whether a point-like target
exists in a certain range - angle cell. This is done through binary hypothesis
testing for each cell. One research frontier is to further exploit the DOA of the
targets using RL. The exploited scenarios can be reevaluated in terms of DOA
estimation error. Generally, the reward function plays an important role in any
RL algorithm. Thus, it would be interesting to try a different reward function
in this case and examine its effect on the whole performance.

• Non Linearity Mitigation for FMCW Radars: In chapter 4, we dealt with
unknown clutter statistics by means of RL. Likewise, such solution might
be explored to mitigate one of the main issues facing Frequency modulated
Continous Waveform (FMCW) radars. The non linearity of the frequency
sweep causes major degradation in the range resolution. This occurs due to
imperfections in the voltage controlled oscillator (VCO) which is unknown in
practice. Thus, the RL technique presented in chapter 4 can be reused in this
case, where the agent, through trial and error, can learn those errors and try
to correct them.
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A.1 Asymptotic distribution of Λkb,RW

In general, the disturbance statistics Γb,k is unknown. Hence according to [FSG+20,
Remark 1], an estimate of Γb,k are given by

[
Γ̂b,k

]
i,j

=





[
ĉkb
]
i

[
ĉkb
]∗
j

j − i ≤ b[
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i
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j

i− j ≤ b

0 |i− j| > b

(A.1)

where ĉkb = yk
b−α̂k

bh
k
b . Generally speaking, if Assumption 1 holds, then the asymptotic

distribution under H0 and H1 of the Wald statistic is [FSG+20]
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Furthermore, under asymptotic detection performance of (A.3), a closed form ex-
pression for PD can be formulated as

PD (λ)→N→∞ Q1

(√
ζ̂ ,
√
λ

)
, (A.5)

where Q1 (·, ·) is first order Marcum Q function [Nut74]. For detailed proof, please
refer to [FSG+20].

A.2 Proof of Proposition 1

Let us write the non-convex constraint eq. (4.25) in problem (4.23) as

gj(ζ,W) ≤ 0 ∀j ∈ Ti (A.6)

where gj(ζ,W) ≜ ζ − fj(W). In the approximate problem, we replace the constraint
as written in eq. (A.6) with the constraint:

g̃j(ζ,W;W̃m) ≤ 0 ∀j ∈ Ti (A.7)
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such that g̃j(ζ,W;W̃m) ≜ ζ− f̃j(W;W̃m) ≤ 0,∀j ∈ Ti. The function g̃j(ζ,W;W̃m)
satisfy the following properties:

1 The function g̃j(ζ,W;W̃m) is differentiable for all the values of
{
ζ,W̃m

}
∈ F

where, F =
{
ζ,W| ζ ∈ R+, tr

(
WHW

)
= PT

}

2 gj(ζ,W) ≤ g̃j(ζ,W;W̃m) ∀ W̃m ∈ F

3 gj(ζ̃ ,W̃
m) = g̃j(ζ̃ ,W̃

m;W̃m) ∀
{
ζ̃ ,W̃m

}
∈ F

4 ∇Wgj(ζ̃ ,W̃
m) = ∇Wg̃j(ζ̃ ,W̃

m;W̃m)

By following similar steps to [MW78], we conclude that sequence generated by
algorithm 4 converges to a KKT solution of the non-convex optimization problem
eq. (4.23).

116



Bibliography

[Ami17] M. Amin, Radar for Indoor Monitoring Detection, Classification, and
Assessment, 1st ed. CRC Press, 2017.

[BBS+15] K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, and M. Rangaswamy,
“Cognitive radar framework for target detection and tracking,” IEEE
Journal of Selected Topics in Signal Processing, vol. 9, no. 8, pp. 1427–
1439, Dec 2015.

[Bel88] M. Bell, “Information theory and radar : mutual information and the
design and analysis of radar waveforms and systems,” Ph.D. dissertation,
California Institute of Technology, 1988.

[Bel93] M. R. Bell, “Information theory and radar waveform design,” IEEE
Transactions on Information Theory, vol. 39, no. 5, pp. 1578–1597, Sep
1993.

[Ber08] D. P. Bertsekas, Non Linear Programming, 3rd ed. Belmont, Mass,
U.S.A: Athena Scientific, 2008.

[BF03] D. W. Bliss and K. W. Forsythe, “Multiple-input multiple-output
(MIMO) radar and imaging: Degrees of freedom and resolution,” in
Asilomar Conf. on SSC, 2003, vol. 1, 2003.

[BL98] D. K. Barton and S. A. Leonov, Radar technology encyclopedia. Artech
house, 1998.

[BSW+19] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L.
Marzetta, “Massive MIMO is a reality-what is next?: Five promis-
ing research directions for antenna arrays,” Digital Signal Processing,
vol. 94, pp. 3 – 20, 2019, special Issue on Source Localization in Massive
MIMO.

[Che09] S. C.-Y. Chen, “Signal Processing Algorithms for MIMO Radar,”
phd, California Institute of Technology, 2009. [Online]. Available:
https://resolver.caltech.edu/CaltechETD:etd-06082009-131045

[CT06] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.

117



Bibliography

[FG12] L. K. P. F. Gini, A. De Maio, Ed., Waveform Design and Diversity for
Advanced Radar Systems. London, UK: IET Press, 2012.

[FGG16] S. Fortunati, F. Gini, and M. S. Greco, “The misspecified Cramer-Rao
bound and its application to scatter matrix estimation in complex ellipti-
cally symmetric distributions,” IEEE Transactions on Signal Processing,
vol. 64, no. 9, pp. 2387–2399, 2016.

[FGGR17] S. Fortunati, F. Gini, M. S. Greco, and C. D. Richmond, “Performance
bounds for parameter estimation under misspecified models: Fundamen-
tal findings and applications,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 142–157, Nov 2017.

[FHB+06] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and
R. A. Valenzuela, “Spatial diversity in radars-models and detection
performance,” IEEE Transactions on Signal Processing, vol. 54, no. 3,
pp. 823–838, March 2006.

[Fie71] M. Fiedler, “Bounds for the determinant of the sum of hermitian
matrices,” Proceedings of the American Mathematical Society,
vol. 30, no. 1, pp. 27–31, 1971. [Online]. Available: http:
//www.jstor.org/stable/2038212

[Fri07] B. Friedlander, “Waveform design for MIMO radars,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1227–1238, 2007.

[Fri12a] B. Friedlander, “On signal models for MIMO radar,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3655–3660,
October 2012.

[Fri12b] ——, “On transmit beamforming for MIMO radar,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3376–3388,
October 2012.

[FS08] D. R. Fuhrmann and G. San Antonio, “Transmit beamforming for
MIMO radar systems using signal cross-correlation,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 44, no. 1, pp. 171–186, 2008.

[FSG+20] S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco, and B. Himed,
“Massive MIMO radar for target detection,” IEEE Transactions on
Signal Processing, vol. 68, pp. 859–871, 2020.

[FW91] B. Friedlander and A. J. Weiss, “Direction finding in the presence of
mutual coupling,” IEEE Transactions on Antennas and Propagation,
vol. 39, no. 3, pp. 273–284, March 1991.

[GB14] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

118



Bibliography

[GDH+15] L. Guo, H. Deng, B. Himed, T. Ma, and Z. Geng, “Waveform optimiza-
tion for transmit beamforming with MIMO radar antenna arrays,” IEEE
Transactions on Antennas and Propagation, vol. 63, no. 2, pp. 543–552,
2015.

[GGDD20] A. Guerra, F. Guidi, D. Dardari, and P. M. Djuric, “Reinforcement
learning for uav autonomous navigation, mapping and target detection,”
CoRR, May 2020. [Online]. Available: http://arxiv.org/abs/2005.05057

[GGSB18] M. S. Greco, F. Gini, P. Stinco, and K. Bell, “Cognitive radars: On the
road to reality: Progress thus far and possibilities for the future,” IEEE
Signal Processing Magazine, vol. 35, no. 4, pp. 112–125, 2018.

[Gin21] F. Gini, “Grand challenges in radar signal processing,” Frontiers
in Signal Processing, vol. 1, p. 1, 2021. [Online]. Available:
https://www.frontiersin.org/article/10.3389/frsip.2021.664232

[Gue10] J. R. Guerci, “Cognitive radar: A knowledge-aided fully adaptive ap-
proach,” in 2010 IEEE Radar Conference, May 2010, pp. 1365–1370.

[GVN07] N. A. Goodman, P. R. Venkata, and M. A. Neifeld, “Adaptive waveform
design and sequential hypothesis testing for target recognition with
active sensors,” IEEE Journal of Selected Topics in Signal Processing,
vol. 1, no. 1, pp. 105–113, 2007.

[Hay06] S. Haykin,“Cognitive radar: a way of the future,” IEEE Signal Processing
Magazine, vol. 23, no. 1, pp. 30–40, Jan 2006.

[HBC08] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with
widely separated antennas,” IEEE Signal Processing Magazine, vol. 25,
no. 1, pp. 116–129, 2008.

[HBH10] Q. He, R. S. Blum, and A. M. Haimovich, “Noncoherent mimo radar
for location and velocity estimation: More antennas means better per-
formance,” IEEE Transactions on Signal Processing, vol. 58, no. 7, pp.
3661–3680, 2010.

[Hua] Huawei. Huawei launches 5g simplified solution. [Online].
Available: https://www.huawei.com/en/press-events/news/2019/2/
huawei-5g-simplified-solution

[HV11] A. Hassanien and S. A. Vorobyov, “Transmit energy focusing for DOA
estimation in MIMO radar with colocated antennas,” IEEE Trans. Signal
Process., vol. 59, no. 6, pp. 2669–2682, 2011.

[Hwa79] F. K. Hwang, “Majorization on a partially ordered set,” Proceedings of
the American Mathematical Society, vol. 76, no. 2, pp. 199–203, 1979.
[Online]. Available: http://www.jstor.org/stable/2042988

119



Bibliography

[HXS12] S. Haykin, Y. Xue, and P. Setoodeh, “Cognitive radar: Step toward
bridging the gap between neuroscience and engineering,” Proceedings of
the IEEE, vol. 100, no. 11, pp. 3102–3130, Nov 2012.

[IB05] P. Ioannides and C. A. Balanis, “Uniform circular arrays for smart
antennas,” IEEE Antennas and Propag. Mag., vol. 47, no. 4, pp. 192–
206, 2005.

[JB07] E. A. Jorswieck and H. Boche, Majorization and Matrix Monotone
Functions in Wireless Communications, ser. Foundations and Trends in
Communications and Information Theory. Now Publishers, Jul. 2007,
vol. 3, no. 6.

[JHS19] W. Jiang, A. M. Haimovich, and O. Simeone, “End-to-end learning of
waveform generation and detection for radar systems,” in 2019 53rd
Asilomar Conference on Signals, Systems, and Computers, 2019, pp.
1672–1676.

[JLY16] H. Jiang, Y. Lu, and S. Yao, “Random matrix based method for joint
DOD and DOA estimation for large scale MIMO radar in non-Gaussian
noise,” in 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), March 2016, pp. 3031–3035.

[KB10] D. Khan and K. L. Bell, “Analysis of DOA estimation performance of
sparse linear arrays using the Ziv-Zakai bound,” in IEEE Radar Conf.,
2010.

[LAA14] J. Lipor, S. Ahmed, and M.-S. Alouini, “Fourier-based transmit beampat-
tern design using MIMO radar,” IEEE Transactions on Signal Processing,
vol. 62, pp. 2226–2235, 2014.

[LDL11] Y. F. Liu, Y. H. Dai, and Z. Q. Luo, “Coordinated beamforming for
miso interference channel: Complexity analysis and efficient algorithms,”
IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 1142–1157,
March 2011.

[LLH14a] J. Liu, H. Li, and B. Himed, “Joint optimization of transmit and receive
beamforming in active arrays,” IEEE Signal Processing Letters, vol. 21,
no. 1, pp. 39–42, Jan 2014.

[LLH14b] ——, “Joint design of transmit and receive beamforming for interference
mitigation,” in 2014 International Radar Conference, Oct 2014, pp. 1–5.

[LLH+19] P. Liu, Y. Liu, T. Huang, Y. Lu, and X. Wang, “Cognitive
radar using reinforcement learning in automotive applications,”
CoRR, vol. abs/1904.10739, 2019. [Online]. Available: http:
//arxiv.org/abs/1904.10739

120



Bibliography

[LMS+10] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Processing Magazine,
vol. 27, no. 3, pp. 20–34, 2010.

[LNN07] A. Leshem, O. Naparstek, and A. Nehorai, “Information theoretic adap-
tive radar waveform design for multiple extended targets,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 1, pp. 42–55, June
2007.

[LS07] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.

[LS08] J. Li and P. Stoica, MIMO Radar Signal Processing. Wiley, 2008.

[LSXR07] J. Li, P. Stoica, L. Xu, and W. Roberts, “On parameter identifiability of
MIMO radar,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968–971,
2007.

[LV18] C. Liu and P. P. Vaidyanathan, “Comparison of sparse arrays from
viewpoint of coarray stability and robustness,” in IEEE 10th SAM, 2018,
pp. 36–40.

[LWS05] J. Li, Z. Wang, and P. Stoica, Robust Adaptive Beamforming, 2005,
ch. 3, pp. 91–200.

[LY06] M. Lin and L. Yang,“Blind calibration and DOA estimation with uniform
circular arrays in the presence of mutual coupling,” IEEE Antennas and
Wireless Propagation Letters, vol. 5, pp. 315–318, 2006.

[LYL+17] S. Lee, Y. Yoon, J. Lee, H. Sim, and S. Kim, “Two-stage DOA estimation
method for low SNR signals in automotive radars,” IET Radar, Sonar
Navigation, vol. 11, no. 11, pp. 1613–1619, 2017.

[LZY18a] Z. Liu, C. Zhang, and P. S. Yu, “Direction-of-arrival estimation based
on deep neural networks with robustness to array imperfections,” IEEE
Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7315–
7327, Dec 2018.

[LZY18b] ——, “Direction-of-arrival estimation based on deep neural networks
with robustness to array imperfections,” IEEE Trans. Antennas Propag.,
vol. 66, no. 12, pp. 7315–7327, 2018.

[Mar10] T. L. Marzetta,“Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Transactions on Wireless Communica-
tions, vol. 9, no. 11, pp. 3590–3600, November 2010.

121



Bibliography

[MBH15] J. Metcalf, S. D. Blunt, and B. Himed, “A machine learning approach to
cognitive radar detection,” in 2015 IEEE Radar Conference (RadarCon),
May 2015, pp. 1405–1411.

[Mck] Mckinsey. Automotive revolution: perspective towards 2030.
Accessed: 30 Sept 2021. [Online]. Available: https://www.
mckinsey.com/industries/automotive-and-assembly/our-insights/
disruptive-trends-that-will-transform-the-auto-industry/de-DE

[Mie17] J. Mietzner, “MIMO arrays versus conventional thin arrays for 2D and
3D radar applications,” in EURAD, 2017.

[MOA11] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of
Majorization and its Applications, 2nd ed. Springer, 2011, vol. 143.

[Mof68] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. on An-
tennas and Propag., vol. 16, no. 2, pp. 172–175, 1968.

[MRT12] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. The MIT Press, 2012.

[MW78] B. R. Marks and G. P. Wright, “A general inner approximation
algorithm for nonconvex mathematical programs,” Operations
Research, vol. 26, no. 4, pp. 681–683, 1978. [Online]. Available:
http://www.jstor.org/stable/169728

[NSW09] U. Niesen, D. Shah, and G. W. Wornell, “Adaptive alternating minimiza-
tion algorithms,” IEEE Transactions on Information Theory, vol. 55,
no. 3, pp. 1423–1429, March 2009.

[Nut74] A. H. Nuttall, “Some integrals involving the (q sub m)-function,” 1974.
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