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Abstract

In this thesis, we develop algorithms for two fundamental analysis tasks on spatial data sequences.
This kind of data arises for example whenever observations of spatial nature are repeatedly
measured, like a GPS sensor measures the position of a moving object. Another example is
sequential data that is usually analyzed by its shape, like temperature-, pressure-, or voltage
graphs.
The first task is to summarize a given set of sequences by a single sequence that aggregates the
common characteristics. We extend the well-known geometric median and (q-)mean of point sets
in Euclidean space to spatial data sequences. We restrict the length of the resulting aggregate
sequence by a constant ` to obtain a compact summary of the given data. The corresponding
problems are named `-median and restricted (p, q)-mean, where p ≥ 1 and q ≥ 1 are assumed
to be constants. In the restricted (p, q)-mean problem we are given n sequences of points from
some metric space, not necessarily of same length, and seek to compute an aggregate sequence
such that the sum of p-dynamic time warping (p-DTW) distances, each raised to the qth power,
from the given sequences to the aggregate sequence is minimal. The p-DTW distance between
two sequences is the pth root of the minimum of the sum of pairwise distances, each raised to the
pth power, between the elements of the sequences, when these are aligned in a monotonic fashion.
Its particular strength is the ability to handle differences in the length and in the temporal
properties (e.g. phase) of the data. Furthermore, it is not sensitive to outliers in the sequences,
e.g. from measurement errors or noise. A shortcoming is that it is not a metric, and it is sensitive
to substantial differences in sampling rates. We provide a polynomial time exact algorithm
for the restricted (2, 2)-mean problem in Euclidean space, a near-linear time (in the number of
sequences) randomized constant factor approximation algorithm for the restricted (p, p)-mean
problem in any metric space, which we derandomize in the Euclidean case, and a near-linear time
randomized (1 + ε)-approximation algorithm for the restricted (p, 1)-mean problem in Euclidean
space.
The setting in the `-median problem is similar, but q is set to one, the points come from a
Euclidean space, and we measure distances using the continuous Fréchet distance. This distance
measure introduces an (implicit) linear interpolation between consecutive elements of a sequence,
yielding a polygonal curve. It is the maximum distance between two points on the curves,
when these are optimally aligned in a monotonic fashion. We show that the `-median problem
is contained in ∃R, a complexity class between NP and PSPACE. Furthermore, we devise
several approximation algorithms for this problem, among them a near-linear time randomized
34-approximation algorithm and a near-linear time randomized (1 + ε)-approximation algorithm
that returns a sequence of length up to 2`− 2.
The second analysis task we study is clustering. Here, we are given a set of sequences and seek to
compute a meaningful partition of the set. More precisely, we want to split the set into k disjoint
subsets, the so-called clusters, such that the elements within a cluster share a common aggregate
sequence and for each given sequence, the aggregate of its cluster is more similar than an aggregate
of any other cluster. To compute the aggregates, we build upon our results on the `-median and
restricted (p, q)-mean problems. We modify an existing algorithm to approximate a generalized
k-median clustering problem. In particular, this problem subsumes the (k, `)-median and the
(k, `, p, q)-mean clustering problems, which are extensions of the `-median and the restricted
(p, q)-mean problems to the clustering setting. In combination with our previous results we obtain
a near-linear time randomized (1 + ε)-approximation algorithm for (k, `)-median clustering and
near-linear time randomized approximation algorithms for (k, `, p, q)-means clustering problem
with constant and super-constant approximation factors, which provide a trade-off between
solution quality and running time. Finally, we study ε-coresets for (k, `)-median clustering. An
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ε-coreset is a small condensate of a given large data set that captures its core properties (for
the application at hand) and is meant to serve as a proxy to run an algorithm on. We prove
that sub-linear size ε-coresets for (k, `)-median clustering exist and provide a near-linear time
randomized algorithm to compute these. We use this algorithm to further improve one of our
previous algorithms for the `-median problem by means of an ε-coreset.
The remainder of the thesis deals with problems that arise from point sequences of high complexity
(the length of the sequence) and of point sequences in a high-dimensional ambient space. These
settings have already been studied under DTW and here we are interested in point sequences
in a Euclidean space under the Fréchet distance. We prove a combined multiplicative and
additive error guarantee when a (1 ± ε)-embedding into a lower-dimensional Euclidean space
is applied to the elements of the sequences. Furthermore, we prove that the Fréchet can not
be recovered up to some constant factor, when the complexity of a given sequence is reduced
by a deterministic algorithm and that the Fréchet distance can not be recovered up to some
factor of (1 + ε), for any ε ∈ [0,

√
2− 1], when the complexity of a given sequence is reduced by

a randomized algorithm. We achieve the latter results by reducing from problems which have
Ω(m) bits one-way communication complexity for sequences of length m.
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1 Introduction

The computer is incredibly fast, accurate, and stupid. Man is unbelievably slow,
inaccurate, and brilliant. The marriage of the two is a force beyond calculation.

Leo Cherne

Compared to the history of other sciences, little time has passed since famous scientists like
Babbage, Lovelace, Peirce, Turing and Gödel laid out the foundation of computer science.
Following their – mostly theoretical – work, a large industry steadily developing and improving
computer hardware quickly emerged. In fact, due to the vast and vivid progress in this area,
computing has rapidly conquered the summit of technology. It now permeates virtually all
aspects of our everyday lives.

One trend is particularly noteworthy and has in fact directed large parts of modern theoretical
computer science: while hardware’s processing speed also undergoes a steady and significant
increase, storage capacity has nowadays reached a tremendous amount, which together with the
growing internet and omnipresence of a variety of sensors, lead to a sheer “data collection frenzy”.
At some point in the recent past, the amount of storable data and the amount of processable
data began to diverge. This is not only due to storage capacity growing stronger than processing
speed, but also to the fact that classic algorithms, which traditionally aim to solve a problem
exactly, usually have at least polynomial running time dependency on the input size, sometimes
even exponential and worse. While polynomial time algorithms have been considered efficient
some decades ago, in the current times of Big Data – a term coined by the rising number of data
sets that can not be processed in a whole by classic algorithms in reasonable time – near-linear
time algorithms stand in focus. In fact, only these are considered feasible in a Big Data setting.

To achieve a near-linear running time, almost always1 sacrifices have to be made, mostly in
the form of approximation or randomization trade-offs. In detail, we do not solve the problem
exactly but settle for an approximate solution, or we only return an (exact) solution with high
probability. A combination of both shows to be particularly successful. Sometimes this even
allows us to obtain sub-linear algorithms. These are algorithms that do not even read their whole
input – their running time dependency on the input size is below linear. Central in this work are
near-linear time (randomized) approximation algorithms. In some rare fortunate cases, we even
obtain sub-linear time algorithms.

Of course, designing an algorithm (e.g. by providing pseudo-code) is only half the work. The other
half consists of a theoretical analysis providing either a correctness- or an approximation-, and
a (worst-case) running time guarantee. Often, analyzing the aforementioned type of algorithm
turns out to be more involved than analyzing a classic algorithm, which also posed a challenge
to our work; if one can not prove that a designed algorithm achieves a certain approximation
factor, or can even prove that the quality of the returned solution may be arbitrarily bad, the
algorithm is called heuristic. In fact, heuristics often play an important role in practice, as
these are usually trimmed to be as time- and space efficient as possible, while – only empirically

1Unless the structure of the input can be exploited, a well-known example for this is the famous binary search.
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IntroductionIntroduction Spatial Data Sequences

verified – returning solutions of sufficient quality. Generally, one can say that it is not desirable
to work with a heuristic in the long term, though. This is evident through the fact that we can
not always judge the quality of the returned solution and only because the algorithm worked
well so far, does not mean it always does, unless proven otherwise. Therefore, it is desirable to
develop algorithms with theoretical guarantees, which is the main motivation of this work.

Apart from designing and improving algorithms, a way to improve processability in the frame of
Big Data is data reduction. This umbrella term is used for techniques that consist of some form of
pre-processing leading to some kind of compression while maintaining accessibility to subsequent
computations. A fundamental observation that led to the development of these methods is
that – depending on the application at hand – massive data sets often carry highly redundant
information and removing this redundancy on the one hand saves storage space while it spares
processing time towards subsequent computations on the other hand. A specific technique that
is based on this observation is the computation of ε-coresets. An ε-coreset is a (problem-specific)
condensate of a much larger set that can serve as a proxy to run subsequent computations on.
ε-coresets (approximately) maintain the core properties (for a certain application) of the original
data set, are much smaller and can be computed efficiently, often in near-linear time.
Another example of data reduction is dimension reduction. Here, the central observation is
based on properties of the space in which the data lives. In particular, many data sets consist
of compound elements comprising a number of features. Often, these large numbers of features
are not necessary to provide the underlying information (of interest) – they can be summarized
to a smaller number of features, while (approximately) maintaining the information. Random
projections represent a specific tool that are based on this observation. These are applicable when
the data lives in a (high-dimensional) Euclidean space, in particular. Here, the data is projected2

onto a random low-dimensional subspace, which constitutes a near loss-less compression in the
sense that pairwise distances between the data points are preserved up to a small error.

Nowadays, the aforementioned techniques are usually combined in a pipeline. For example, one
may start with a random projection to first reduce the dimension of the data set, then compute
an ε-coreset to also reduce the number of elements of the data set and then run an efficient
approximation algorithm on the coreset. In fact, ε-coresets and random projections comprise
another important part of this work. To combine these together with efficient algorithms also
requires a deep and thorough theoretical analysis of each individual part.

1.1 Spatial Data Sequences

With the steady development of computer hardware, a variety of sensors became available. One
popular example are GPS (Global Positioning System) sensors. This system, which was brought
to life in the 1970’s, initially only available to the US military, was soon made publicly accessible.
GPS sensors have long been present in planes, vessels and of course in military devices and
vehicles. Now, GPS sensors are among others also present in every new mobile phone and car, in
some smartwatches and even in some cameras. Data from GPS sensors is arguably the prime
example of spatial data sequences, which are the object of study in this work. GPS data usually
consists of sequences of positions (trajectories) in two- or three-dimensional space, comprising
latitude and longitude and if necessary – for example in planes – altitude. Sometimes these are
also accompanied by additional information, such as acceleration and velocity.
Interesting applications on GPS data arise from route planing and tracking for air-, land- and
maritime vehicles, as well as pure tracking, for example of hikers or animal migration movements.

2In fact the operation is not a proper projection in recent approaches.

2



Spatial Data Sequences IntroductionIntroduction

Tracking is also an important application on position data from other sensors. For example, the
route of a watchman through a (large) facility is often captured using an RFID transponder.
Another example are weather satellites and balloons, which among other data, record position
data. Here, one aims to track phenomena such as hurricanes and tornadoes to better understand
these and ultimately, to forecast their emergence and routes. This is increasingly important in
the light of climate change and its challenges.

A very different form of spatial data sequences comes from devices that have already existed
in an analog form and are now been digitized. Electrocardiograms, blood pressure-, oxygen
saturation-, temperature-, air pressure-, humidity-, seismologic-, voltage-, and current sensors
are only a few examples of such devices. These measure quantities of a human body or physical
quantities in general, which usually results in a sequence of measurements over time, a so-called
time-series. Historically, many forms of time-series are analyzed by looking at their shape. For
example, a doctor can judge the healthiness of a patient’s heart by looking at the shape of their
electrocardiogram. A technician may assess the working condition of an industrial machine by
looking at a temperature and pressure curve – rising temperature and pressure may indicate
machine damage – and so on.
In this sense, time-series can also carry spatial information. Furthermore, it has become usual
that large facilities are monitored by a plethora of sensors. Sometimes, multiple sensors are even
grouped together, forming the features of a high-dimensional time series. In any case, the sheer
number of such time series that arise in modern applications make it impossible to analyze them
by human means. Today, we need computer aided methods to cope.

Finally, spatial data sequences do not only arise from these natural sources, they can also result
from virtual ones. For example, the stock market is a traditional source of time-series, which
usually undergo a shape-based analysis. Furthermore, the internet and social media yield many
forms of data that can be embedded into some space; for example user’s web page access over
time, where every web page is assigned a numerical value in a number of categories used to
characterize them.

1.1.1 Analysis Tasks

In this work, we focus on two basic data analysis tasks, which will prove to be surprisingly hard
on spatial data sequences while they are somewhat easier on isolated points (but also not easy).
The first task is summary/aggregation. Here, we are given a large set of spatial data sequences
and want to compute one (representative) sequence that aggregates/summarizes the properties
of the given sequences. This is particularly useful when one wants to extract knowledge from
data that contains information of some underlying unknown phenomenon.
One example of such a setting for isolated points (or numbers) comes from statistics. Here, one
is given a sample and wants to compute a summary statistic, for example the mean or median.
They provide location information: the central tendency of the data – in a spatial setting, just
this location information is of particular interest. We study a generalization of the mean and
median to spatial data sequences.
We restrict the length of the representative to obtain a compact summary of the common
properties of the given sequences. This is also particularly useful when the given sequences are
corrupted by measurement noise or sampling artifacts, or possess particularities we do not want
to be present in our representative – think of hikers taking a detour.

The second task, called clustering, is to group the data. Here, one is also given a large set of
spatial data sequences and wants to extract a meaningful grouping. In this context, “meaningful”

3
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means that the elements within the same group should be similar in combination of location and
shape. In fact, this task builds upon the summary task: we want to compute groups that share
high similarity to a common representative sequence, while any representative of another group
is less similar. This task is particularly useful when one wants to extract knowledge from data
that contains information from several unknown underlying phenomena.
An example of such a setting for isolated points is k-median clustering. This is an extension of
the geometric median, where one wants to divide the data into k groups, each summarized by a
geometric median, such that every data point is closer to the median of its group than to any
other group’s median.

1.1.2 Choice of Modeling

To develop methods solving the aforementioned tasks, we need to frame our setting by a
mathematical formalism. We choose two models for spatial data sequences and equip each of
them with a measure of dissimilarity, which is a key ingredient to solve the tasks.
The simplest model are point sequences over some arbitrary metric space. The specific choice of
metric space is left to the application at hand, which is not part of our work. We only require
the sequences elements to have metric properties.
We measure dissimilarity using the dynamic time warping distance. This is the sum of element-
wise distances when the sequences are (monotonically) aligned in an optimal way. A particular
strength of this measure is that differences in length and in temporal properties, such as phase,
can be compensated. Furthermore, it is robust towards outliers within a sequence, stemming
e.g. from measurement errors. A shortcoming is that it is prone to substantial differences in
sampling rates.

The second and more involved model are polygonal curves in the Euclidean space. These are
applicable, whenever the sequences elements can be represented by points in Euclidean space.
One advantage of this approach is that we (implicitly) introduce a linear interpolation between
consecutive points of a sequence. This allows to compensate arbitrary differences in sampling
rates and is a reasonable assumption in many cases – measured quantities usually exhibit a
smooth graph. Recall that the concept of differentiability is build on linear approximation and
in turn, smoothness results from differentiability.
We measure dissimilarity using the Fréchet distance. A particular strength of this distance
measure is that it takes into account the whole course of the curves, not only the pairwise
distances among their vertices (the points from the sequences). We note that this behavior is
intrinsic, therefore we do not need a specialized representation, we rather save the vertices only,
that is, the original sequences. A shortcoming is that the Fréchet distance is very sensitive to
the curve’s shapes. Outliers within a sequence may drastically change the outcome.

4



Outline and Results IntroductionIntroduction

1.2 Outline and Results

This remainder of this thesis is structured into four chapters as follows. As a general rule, every
chapter that presents new results also contains thorough reviews of the related literature.

Chapter 2 Here, in a self-contained manner, we introduce all mathematical concepts used
throughout the thesis. We start with mathematical basics that allow a clean and complete
definition of all necessary geometric concepts and building upon these, we define the geometry
fundamentals of spatial data sequences. We introduce the basics of probability theory and range
spaces used to analyze the correctness of our randomized algorithms. Also, we introduce the
underlying models of computation, which are necessary to analyze the running time complexity
of our algorithms. Finally, we present state-of-the-art work on computing the dynamic time
warping and Fréchet distances and on computing simplified sequences under these measures, that
is, sequences of smaller length that are as similar as possible to their original counterparts.

Chapter 3 We study the problems of computing a median polygonal curve, respectively mean
point sequence, under the Fréchet, respectively dynamic time warping distance, of restricted
complexity (number of vertices/length). First, we motivate our extensions of the geometric
median to point sequences by its favorable properties. Then, we study the complexity of exactly
computing a median polygonal curve. Following, we devise approximation algorithms for this
problem. Our main result is a (1 + ε)-approximation algorithm that runs in time linear in the
number of given curves and polynomial in their maximum complexity.
Next, we study the problem of computing variants of a mean point sequence under the dynamic
time warping distance. We show that – for a particular variant – an optimal mean point sequence
in the Euclidean space can be computed in polynomial time, when the length of the mean
sequence is upper bounded by a constant. We call this the restricted problem. Finally, we devise
randomized approximation algorithms for some variants of the restricted mean sequence problem
that run in near-linear time (in the number of given sequences). Our main results are a constant
factor approximation algorithm for point sequences over arbitrary metric spaces, which can even
be derandomized for point sequences over the Euclidean space, and a (1 + ε)-approximation
algorithm for a certain variant and sequences in the Euclidean space.

Chapter 4 We study the k-median and k-means clustering problem for polygonal curves
and point sequences, respectively. We start by adapting a k-median (1 + ε)-approximation
algorithm from the literature and show that under our modification, the algorithm can be used
to approximate any k-median problem that fits a very general definition. In particular, it can be
used to approximate a k-median problem for polygonal curves under the Fréchet distance and a
k-means problem for point sequences under the dynamic time warping distance, as this problem
can be phrased as a k-median problem under powers of the dissimilarity measure. Using our
results from Chapter 3, our main results here are a randomized (1 + ε)-approximation algorithm
for the k-median problem for polygonal curves under the Fréchet distance and a constant factor
approximation algorithm, as well as an algorithm with a large approximation factor (depending on
the maximum length of a given sequence), for the k-means clustering problem for point sequences
over an arbitrary metric space under the dynamic time warping distance. All algorithms run in
near-linear time (in the number of input elements).
Next, we study ε-coresets for the general k-median clustering problem that our modified algorithm
approximates, under the restriction that the input and cluster centers come from a metric space.

5
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We modify a variant of the sensitivity sampling framework, which has been developed by several
authors and been extended and improved throughout several works in the literature. The vanilla
framework is not applicable to polygonal curves under the Fréchet distance (which form a metric
space), but under our modifications we can use related work on the VC (Vapnik-Chervonenkis)
dimension of metric balls under the Fréchet distance, which enables the application. Our main
result is a near-linear time algorithm to compute ε-coresets of size nearly independent on the
size of the original set (the dependence is only logarithmic). Finally, we use the ε-coreset result
to improve the running time dependency on the input size of a median approximation algorithm
from Chapter 3.

Chapter 5 Here, we focus on methods to reduce the dimension of high-dimensional polygonal
curves as well as the complexity of high-complexity polygonal curves. First, we study dimension
reduction. We introduce Johnson-Lindenstrauss embeddings, which can be used to embed a
set of points in high-dimensional Euclidean space into a lower-dimensional subspace. We give a
deep analysis bounding the distortion of the Fréchet distances among a set of polygonal curves
in high-dimensional Euclidean space, when the vertices of the curves are embedded using a
Johnson-Lindenstrauss embedding. Our result here is that the distortion is slightly worse than
the distortion of the inter-point distances, guaranteed by the Johnson-Lindenstrauss embedding.
Namely, it guarantees a distortion of the distances among the points by a factor of at most
(1± ε). The Fréchet distance is also distorted by a factor of at most (1± ε), but also up to an
additive of ±εα, where α is the length of the maximum length line segment occurring in one
of the curves. Finally, we provide experimental results showing that our embedding yields a
reasonable error on real world data. In fact, the empirical distortion in any case is below a factor
of (1± ε), without additive.
Following, we study the problem of reducing the complexity of a high-complexity polygonal curve.
We use the tools of communication complexity and prove that no deterministic algorithm may
compress a polygonal curve, such that the Fréchet distance to any other polygonal curve can be
recovered up to some constant factor. In particular, this applies to well-known simplification
algorithms. Furthermore, we prove that no randomized approximation algorithm may compress
a polygonal curve, such that the Fréchet distance to any other polygonal curve can be recovered
up to a factor of (1 + ε) for any ε > 0. In fact, we only rule out the interval ε ∈ [0,

√
2− 1]. A

constant factor approximation remains possible in this setting.
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2 Preliminaries

Besides it is an error to believe that rigor is the enemy of simplicity. On the
contrary we find it confirmed by numerous examples that the rigorous method is
at the same time the simpler and the more easily comprehended. The very
effort for rigor forces us to find out simpler methods of proof.

David Hilbert

We start with some basic definitions and notations that we will use throughout the thesis. By
log we denote the binary logarithm. By Z we denote the integers, by N we denote the positive
integers, by Q we denote the rationals and by R we denote the reals. For n ∈ N we define
[n] = {1, . . . , n} for brevity. Furthermore, for a closed logical formula Ψ we define by 1(Ψ) the
indicator function, that is, the function that is 1 if Ψ is true and 0 otherwise. Let X,Y be
sets and f : X → Y be a function. For a subset Z ⊆ X we denote by f |Z : Z → Y, z 7→ f(z) the
restriction of f to Z. For a superset W ⊃ X we call any function g : W → Y with f(x) = g(x)
for all x ∈ X an extension of f . In this work use the following asymptotic notation:

Definition 2.0.1 [235] Let f : R>0 → R>0 be a function. We define

O(f) = {g : R>0 → R>0 | ∃c, x0 ∈ R>0∀x ∈ R≥x0 : g(x) ≤ c · f(x)},
Ω(f) = {g : R>0 → R>0 | ∃c, x0 ∈ R>0∀x ∈ R≥x0 : g(x) ≥ c · f(x)},
Θ(f) = O(f) ∩ Ω(f).

Next we give some basic definitions from algebra. These allow a clean definition of the Euclidean
space, which is central in this thesis.

2.1 Algebra Basics

One of the most fundamental algebraic structures are groups.

Definition 2.1.1 [226, 124] A group is a pair (G, ∗) of a non-empty set G together with a
binary operation ∗ : G×G→ G, (g, h) 7→ g ∗ h, that satisfies the following conditions:

• associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

• identity: there exists an element e ∈ G, the so-called identity element, with a∗e = e∗a = a
for each a ∈ G and

• inverses: for each a ∈ G there exists an inverse element a−1 ∈ G with a∗a−1 = a−1∗a = e.

If also a ∗ b = b ∗ a for all a, b ∈ G, we call the group commutative or abelian.

9
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Arguably the most important group is the symmetric group. The symmetric group SX on a
set X is the set of permutations (bijections) σ : X → X together with function composition as
operation. By Sn we denote the symmetric group of degree n, i.e., the symmetric group on [n].

Definition 2.1.2 [124, 35] A (left) group action of a group (G, ∗), with identity element e,
on a set X is a function . : G×X → X, (g, x) 7→ g . x such that for all x ∈ X and g, h ∈ G:

• e . x = x and

• (g ∗ h) . x = g . (h . x).

We say that the group acts (on the left) on X (by .).

Let X be a set and (G, ∗) be a group that acts on X by some group action .. It is a well-known
fact [124], that the action σg : x 7→ g . x of each element g ∈ G is a permutation of X, thus
σg ∈ SX for all g ∈ G. Therefore, groups always act by permuting the set on which they act.
This concept is vastly important and extensively used in geometry. Here, we focus on certain
types of actions. First, we want the action of each element of the group, except for the action of
the identity element, to be a proper permutation.

Definition 2.1.3 [35] A group action . is faithful, if g . x = x for all x ∈ X implies g = e.

Furthermore, for each two elements of the set there shall exist an element of the group whose
action relates them.

Definition 2.1.4 [35] A group action . is transitive, if for all x, y ∈ X there exists a g ∈ G
with g . x = y.

Large parts of modern geometry are based on the concepts of linear algebra.

2.1.1 Linear Algebra

Central objects of study in linear algebra are vector spaces and many geometric spaces, like the
Euclidean space, are extensions of these.

Definition 2.1.5 [226] A real vector space is a triple (V,+, ·) of a non-empty set V , whose
elements are called vectors, together with the operations +: V ×V → V , called vector addition,
and · : R× V → V , called scalar multiplication, that satisfy the following conditions:

• associativity of addition: u+ (v + w) = (u+ v) + w for all vectors u, v, w ∈ V ,

• commutativity of addition: u+ v = v + u for all vectors u, v ∈ V ,

• identity of addition: there exists a zero vector 0 ∈ V , such that 0 + v = v + 0 = v for
all vectors v ∈ V ,

• inverses of addition: for each vector v ∈ V there exists a vector in V , denoted by −v,
with v +−v = −v + v = 0,

• scalar identity: 1 · v = v for all vectors v ∈ V ,

• scalar compatibility: a(b · v) = (ab) · v for all scalars a, b ∈ R and all vectors v ∈ V and

• distributivity: (a+ b) · v = a · v+ b · v and a · (v+w) = a · v+ a ·w for all scalars a, b ∈ R
and vectors v, w ∈ V .
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From the above definition it follows that (V,+) is a group. We call this group the additive group
of the vector space. Also, we call the elements of R scalars. Usually, parts of (V,+, ·) are vector
spaces of their own. We call them subspaces.

Definition 2.1.6 [226] A subspace of (V,+, ·) is a vector space (S,+|S×S , ·|R×S) with S ⊆ V .
It is a proper subspace, if S ⊂ V . A complement to the subspace (S,+|S×S , ·|R×S) is a
subspace (T,+|T×T , ·|R×T ), such that V = S + T = {v + w | v ∈ S,w ∈ T} and S ∩ T = {0}.

We call S and T complementary subspaces. Combinations of vectors under the operations
of their vector space play a central role.

Definition 2.1.7 [226] The linear combination of vectors v1, . . . , vn ∈ V with coefficients
c1, . . . , cn ∈ R is the vector w = c1 · v1 + · · ·+ cn · vn.

Each non-empty set of vectors generates a subspace by linear combinations.

Definition 2.1.8 [226] The subspace (S,+|S×S , ·|S×S) that is spanned by a non-empty set
W ⊆ V of vectors is determined by the set of all linear combinations of the vectors in W :

S = {c1 · v1 + · · ·+ cn · vn | v1, . . . , vn ∈W, c1, . . . , cn ∈ R} .

If a proper subset of a set of vectors spans the same subspace as the set itself, then at least one
vector is in a sense not necessary. We call such a vector dependent.

Definition 2.1.9 [226] A non-empty set W ⊆ V of vectors is linearly independent, if for
all distinct v1, . . . , vn ∈W we have 0 = c1 · v1 + · · ·+ cn · vn only if ci = 0 for all i ∈ [n].

If the vectors are not linearly independent, we call them linearly dependent.

Definition 2.1.10 [226] A basis of (V,+, ·) is a non-empty set B ⊆ V of vectors that is
linearly independent and spans (V,+, ·).

It is well-known [226] that each vector space has at least one basis and all bases of a vector
space have equal cardinality. Furthermore, each vector v ∈ V can be written as a unique
linear combination of any basis B, i.e., there are unique distinct b1, . . . , bn ∈ B and unique
c1, . . . , cn ∈ R, such that v = c1 · v1 + · · · + cn · vn. The following concept is a notion of
expressiveness of the vector space.

Definition 2.1.11 [226] The dimension of (V,+, ·) is the cardinality of its bases.

It is sometimes useful to equip a basis with an order.

Definition 2.1.12 [226] An ordered basis of (V,+, ·) is a tuple B = (b1, . . . , bd), where
{b1, . . . , bd} is a basis of (V,+, ·). The coordinate map with respect to B is

φB : V → Rd, v = c1 · b1 + · · ·+ cd · bd 7→ (c1, . . . , cd).

Note that since all vectors are unique linear combinations of the basis vectors, the coordinate
map is a well-defined and bijective function. It has another useful property, which we now define.
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Definition 2.1.13 [226] A function ρ : V →W from a real vector space (V,+, ·) to a real vector
space (W,+, ·) is a linear transformation, if for all v, w ∈ V and a, b ∈ R we have

ρ(a · v + b · w) = a · ρ(v) + b · ρ(w).

If ρ is bijective, we call it isomorphism.

If there exists an isomorphism between two vector spaces we call them isomorphic. Isomorphic
vector spaces can be identified with each other, since they carry the same structure.

We define a popular and important real vector space, which will be used extensively in this work.

Definition 2.1.14 [226] The real coordinate space is the vector space (Rd,+, ·) with

+: Rd × Rd → Rd, (v, w) 7→ v + w, · : R× Rd, (a, v) 7→ a · v,

defined by (v1, . . . , vd)+(w1, . . . , wd) = (v1+w1, . . . , vd+wd) and a·(v1, . . . , vd) = (a·v1, . . . , a·vd).
The standard basis of this space is (e1, . . . , ed) with e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1).

Each d-dimensional real vector space V is isomorphic to this vector space, because for each
ordered basis B of V the coordinate map φB is an isomorphism [226]. This means that there
is essentially only one d-dimensional real vector space, which explains its importance. In light
of geometry, we call the components (elements) of the vectors in Rd Cartesian coordinates.
Working with this space, we can use the well-known tools from elementary linear algebra, such
as matrices. Following the usual conventions, we regard an element of Rd as column vector.

Next, we define the basics of geometry, which are the central objects studied in this thesis.

2.2 Geometry Basics

We define the most fundamental kind of geometric spaces.

Definition 2.2.1 [226] A metric space is a pair X = (X, ρ), where X is a non-empty set
and ρ : X ×X → R≥0 is a function that satisfies the following conditions for all x, y, z ∈ X:

• identity of indiscernibles: ρ(x, y) = 0 if and only if x = y,

• symmetry: ρ(x, y) = ρ(y, x) and

• triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

If ρ does not satisfy one or more of these conditions, we call X a non-metric space. Both
kinds of spaces enable the notion of distance among their elements, which are generally called
points. If X is a metric space, we call ρ a metric distance function and if X is a non-metric
space, we call ρ a non-metric distance function. If it is clear from the context whether the
space is metric or non-metric, we may simply call ρ distance function.

Of particular interest are functions between metric spaces that preserve distances.

Definition 2.2.2 [35] An isometry between two metric spaces (X,µ) and (Y, ν) is a function
f : X → Y with ν(f(x), f(y)) = µ(x, y) for all x, y ∈ X.

Sometimes we are interested in functions that nearly preserve distances.
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Definition 2.2.3 [195] A D-embedding, where D ∈ [1,∞), from a metric space (X,µ) to
a metric space (Y, ν) is a function f : X → Y where there exists an r ∈ (0,∞) such that
r · µ(x, y) ≤ ν(f(x), f(y)) ≤ r ·D · µ(x, y) for all x, y ∈ X. The distortion of f is the infimum
over all D ∈ [1,∞) such that f is a D-embedding.

For functions on metric spaces there exists an own notion of continuity which is based on the
distance function.

Definition 2.2.4 [234] A function f : X → Y between two metric spaces (X,µ) and (Y, ν) is
Lipschitz continuous, if there exists a k ∈ (0,∞) such that ν(f(x), f(y)) ≤ k · µ(x, y) for all
x, y ∈ X.

We say that f is k-Lipschitz. It is well-known [234] that Lipschitz continuity implies uniform
continuity. We now turn to an advanced geometric space.

Definition 2.2.5 [226] A real normed space is a pair V = (V, ρ), where V is a real vector
space and ρ : V → R is a function that satisfies the following conditions for all x, y ∈ V and
a ∈ R:

• positive definiteness: ρ(x) ≥ 0 and ρ(x) = 0 if and only if x = 0,

• absolute homogeneity: ρ(a · x) = |a| · ρ(x) and

• triangle inequality: ρ(x+ y) ≤ ρ(x) + ρ(y).

We call ρ the norm of V . The norm assigns to each vector x ∈ X of the space a notion of length.
Furthermore, it is a well-known fact [226] that a norm induces a metric distance function among
the vectors of the space: (x, y) 7→ ρ(y − x). Hence, each real normed space is also a metric space.
We define a closely related geometric space.

Definition 2.2.6 [226] A real inner product space is a pair V = (V, ρ), where V is a real
vector space and ρ : V × V → R is a function that satisfies the following conditions for all
x, y, z ∈ V and a, b ∈ R:

• positive definiteness: ρ(x, x) ≥ 0 and ρ(x, x) = 0 if and only if x = 0,

• symmetry: ρ(x, y) = ρ(y, x) and

• linearity: ρ(a · x+ b · y, z) ≤ a · ρ(x, z) + b · ρ(y, z).

We call ρ the inner product of V. An inner product enables the notion of angle between any
two vectors of the space. Also, it is a well-known fact [226] that an inner product induces a
norm: x 7→

√
ρ(x, x). Therefore, each real inner product space is also a real normed space and

thus also a metric space. Furthermore, note that for each subspace S of V there exists a unique
complementary subspace, denoted by S⊥, with vectors {v ∈ V | ∀w ∈ S : ρ(v, w) = 0}, called
the orthogonal complement of S [226].

Of particular interest are linear transformations that preserve inner products.

Definition 2.2.7 [226, 35] An isometry between two inner product spaces (V, µ) and (W, ν)
is a linear transformation ρ : V → W with ν(ρ(x), ρ(y)) = µ(x, y) for all x, y ∈ V . If ρ is
an isomorphism, we call ρ an isometric isomorphism and if also V = W we call ρ an
isometric automorphism.
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If there exists an isometric isomorphism between two inner product spaces, we call them
isometrically isomorphic. An interesting fact [226] is that an inner product ρ can be recovered
from its induced norm ρ′(v) =

√
ρ(v, v) via the identity: ρ(v, w) = 1

4(ρ′(v + w)2 − ρ′(v − w)2).
Consequently, a linear transformation that preserves the induced norms is an isometry.

Theorem 2.2.8 [226] Let (V, µ) and (W, ν) be real inner product spaces and ρ : V →W be a
linear transformation. ρ is an isometry if and only if it preserves the norms induced by µ and ν,
i.e.,

√
ν(ρ(v), ρ(v)) =

√
µ(v, v) for all v ∈ V .

We define a popular and important real inner product space.

Definition 2.2.9 [226, 35] The (standard) d-dimensional Euclidean vector space is the real
coordinate space (Rd,+, ·), equipped with the Euclidean inner product, called dot product, defined

〈(x1, . . . , xd), (y1, . . . , yd)〉 =
d∑
i=1

xi · yi,

the Euclidean norm induced by its inner product, denoted by

‖x‖ =
√
〈x, x〉,

and the Euclidean distance between x, y ∈ Rd, induced by its norm:

‖x− y‖.

Technically, each d-dimensional real inner product space is a Euclidean vector space and isomet-
rically isomorphic to this space [35]. Therefore, there is essentially one d-dimensional Euclidean
vector space. Many geometric spaces have an affine structure, which we now define.

Definition 2.2.10 [35] An affine space is a triple (X,Y, .) of a non-empty set X, a (real)
vector space Y and a faithful and transitive group action . : Y ×X 7→ X of the additive group
of Y . The dimension of (X,Y, .) is the dimension of Y and we say that the vector space Y
underlies the affine space.

We call the elements of X points and the action x 7→ y . x of y ∈ Y we call translation (by
the vector y). We write x + y instead of y . x. For x1, x2 ∈ X we denote by −−→x1x2 = x2 − x1
the vector that translates x1 to x2. Also note that by definition |X| = |Y | [35]. The notion of
subspaces naturally extends to the affine case.

Definition 2.2.11 [35] A subspace of (X,Y, .) is an affine space (X ′, Y ′, .|Y ′×X′) with point
set X ′ = x + Y = {x + y | y ∈ Y ′} generated by a point x ∈ X and a vector subspace Y ′ ⊆ Y ,
which is called the direction of the subspace. Two subspaces are complementary subspaces,
if their directions are complementary.

Note that the subspace generated by any point x ∈ X and any direction Y ′ is unique and that
two complementary subspaces share exactly one point [35]. The subspaces generated by x = 0
are the linear subspaces.

Definition 2.2.12 [35] A projection from (X,Y, .) to a subspace (X ′, Y ′, .|Y ′×X′) parallel to
a complementary (with respect to Y ′) vector subspace Y ′′ ⊆ Y , is the function p : X → X ′ that
maps x ∈ X to the unique point shared by X ′ and x+ Y ′′. p is an orthogonal projection if Y
is an inner product space and Y ′′ is the orthogonal complement of Y ′.
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We now define an old and arguably the most extensively studied geometric space, which fits our
perception of the physical universe.

Definition 2.2.13 [35] The (standard d-dimensional affine) Euclidean space is the affine
space with point set Rd and underlying (standard) d-dimensional Euclidean vector space. The
(metric) distance between points x, y ∈ Rd is given by the length of the vector that translates x
to y.

Note that technically any point set X with |X| = |Rd| yields an affine Euclidean space [35].
Furthermore, an isometry between two Euclidean spaces is a metric isometry [35], which is per
definition of the space an isometry between the associated inner product spaces (and vice versa).
Throughout the whole work, we assume d to be constant.

Despite its affine nature, we endow the Euclidean space with a distinguished reference point,
called origin. Now, we can associate with each point p its position vector, i.e., the vector v
that translates the origin to p and consequently we must associate the zero vector 0 with the
origin. Hence, p = 0 + v must hold for each point p with position vector v. If we now take + to
be the vector addition of (Rd,+, ·) and set v = p, this justifies the choice of Rd as point set.

In the following we will therefore no longer strictly distinguish between points and vectors and
for brevity, we will from now on denote the Euclidean space by Rd. Depending on the situation,
we either view the elements of Rd as points, position vectors, or translations. For example, if
we speak about the distance between x, y ∈ Rd, then x and y are points, if we take the inner
product between x and y, then x and y are position vectors and if we take the norm of x ∈ Rd,
then x is a position vector or a translation vector and the norm gives its length.

This intimate relationship between points, translations and position vectors reflects in the relations
between Euclidean distance, Euclidean norm and Euclidean inner product. For x, y ∈ Rd:

‖x− y‖ =
√
〈x− y, x− y〉 =

√
〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈x, x〉 =

√
‖x‖2 − 2〈x, y〉+ ‖y‖2. (PV)

In this setting, the isometries of the Euclidean space are each given by a multiplication with
an orthogonal matrix A followed by a translation by a vector v, i.e., p 7→ Ap + v [35]. These
mappings are called (Euclidean) motions. Motions naturally form a group under composition,
the so-called Euclidean group. The matrices form a (sub-)group under matrix multiplication,
the so-called orthogonal group.

Definition 2.2.14 [35] The orthogonal group O(d) is the group of real d× d matrices with
determinant in {−1, 1}. The operation of the group is matrix multiplication.

We define some important types of subsets of the Euclidean space, starting with regions. These
have the property that for each two contained points there exists a path (formally a curve, see
Definition 2.3.7) that connects them and that is completely contained in the region.

Definition 2.2.15 [89] An open region is a subset P ⊆ Rd such that for all points p =
(p1, . . . , pd) ∈ P , there exists an ε ∈ (0,∞) such that all points q = (q1, . . . , qd) ∈ Rd with
|pi − qi| < ε for all i ∈ [d] are a member of P .

A closed region P is the union of an open region P ′ with its boundary, i.e., the set of points
p = (p1, . . . , pd) ∈ Rd such that for all ε ∈ (0,∞) there exists a q = (q1, . . . , qd) ∈ P ′ with
|pi − qi| < ε for all i ∈ [d].
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A related type of subsets are compact sets, which are in some sense finite.

Definition 2.2.16 [226] A compact set is a set of points P ⊆ Rd that contains its boundary
and has finite diameter, i.e., supp,q∈P ‖p− q‖ <∞.

Compact sets must not necessarily be closed regions, since they may not be connected. An
important type of regions can be generated from convex combinations.

Definition 2.2.17 [226] A convex combination of a sequence of points p1, . . . , pn ∈ Rd is a
point q = ∑n

i=1 ti · pi, where t1, . . . , tn ∈ [0, 1] and ∑n
i=1 ti = 1.

Of particular interest are convex combinations of two points, which are named line segments,
and the related objects.

Definition 2.2.18 [226, 35] A line is the set of points {p+ λ(q − p) | λ ∈ R}, a half-line is
the set of points {p+ λ(q− p) | λ ∈ R≥0} and a line-segment is the set of points {p+ λ(q− p) |
λ ∈ [0, 1]}, where p, q ∈ Rd.

Each of these is determined by two points p and q. A line segment between two points p, q will
be denoted by pq. Furthermore, for λ ∈ [0, 1] we denote by lp (pq, λ) the point (1 − λ)p + λq,
lying on pq. Each vector v ∈ Rd also naturally determines a line and a half-line through the
origin: {λv | λ ∈ R}, respectively {λv | λ ∈ R≥0}. When there exists a line on which a given set
of points lies, we say that the points are collinear.

We call a set of points convex if it contains all line segments determined by its points.

Definition 2.2.19 [226] A convex set is a subset X ⊆ Rd that contains each line segment pq
determined by any two points p, q ∈ X.

If a set is not convex, we may be interested in a certain convex set that contains it, namely the
convex hull of the set.

Definition 2.2.20 [226] The convex hull of a set X ⊆ Rd is the smallest convex set H ⊆ Rd

that contains X.

It is a well-known fact that the convex hull of X is the set of all convex combinations of the
points in X [226]. Other important convex sets are balls.

Definition 2.2.21 [35] The (closed) ball of radius r ∈ R≥0 around the center point p ∈ Rd,
denoted by B(p, r), is the set {q ∈ Rd | ‖p− q‖ ≤ r}. The sphere of radius r ∈ R>0 around the
center point p ∈ Rd is the boundary of the corresponding closed ball: {q ∈ Rd | ‖p− q‖ = r} and
the corresponding open ball is the volume enclosed by the sphere: {q ∈ Rd | ‖p− q‖ < r}.

Every two distinct points on a sphere determine a circle with the same radius as the sphere.
The two points divide the circle into two parts, which we call arcs. We now define the related
concept of angles.

Definition 2.2.22 [35] The angle between two vectors x, y ∈ Rd, denoted by ^(x, y), is a
number from [0, π] defined by

^(x, y) = arccos
( 〈x, y〉
‖x‖ · ‖y‖

)
.
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We can picture this number as the length of the shorter arc determined by the two intersection
points of the half-lines determined by x and y with the sphere of unit radius around the origin.
Since this circle has circumference 2π, we obtain a number between 0 and π. The following
identity is now immediate: 〈x, y〉 = ‖x‖ · ‖y‖ · cos^(x, y). Combining this with Eq. (PV), we get
the law of cosines: ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos^(x, y).

The objects we defined so far naturally mostly consist of an infinite number of points. We can
cover such an object by a Euclidean grid, which is a finite set of points, such that every point
from the object has a point of the grid in proximity.

Definition 2.2.23 [130] Given a number r ∈ R>0, for p = (p1, . . . , pd) ∈ Rd we define by

G(p, r) = (bp1/rc · r, . . . , bpd/rc · r)

the r-grid point of p. Let X ⊆ Rd be a subset of Rd. The grid of cell width r that covers X is
the set G(X, r) = {G(p, r) | p ∈ X}.

Such a grid partitions the set X into cubic regions and for each r ∈ R>0 and p ∈ X we have that
‖p−G(p, r)‖ ≤

√
dr. We now turn to the geometric spaces in the focus of this work.

2.3 Geometry of Spatial Data Sequences

When dealing with sequences of spatial data, one typically assumes that the elements of the
sequences themselves stem from some metric space, and to measure distances among the sequences
one relies on the distances among their elements. In fact, when comparing two sequences, there
are numerous possibilities to combine the distances among their elements to a single number,
representing their distance. In any case, we take into account a finite number of underlying
distances, resulting in a so-called discrete distance function. However, if we introduce some
kind of interpolation between every two consecutive elements of a sequence – for example a linear
interpolation by connecting them with the line segment that they determine, thereby obtaining
polygonal curves –, then we can take into account an uncountably infinite number of underlying
distances. This results in a so-called continuous distance function. Whether an interpolation
is desired or not depends on the specific type of data and the application at hand.

2.3.1 Point Sequences in Metric Spaces

If we do not assume any kind of interpolation we are dealing with sequences of points from some
metric space, which we simply call point sequences.

Definition 2.3.1 A point sequence over a metric space (M,ϑ) is a tuple (σ1, . . . , σm) ∈Mm,
where m ∈ N>1 is its complexity, denoted by |σ| and σ1, . . . , σm are its vertices.

By M≤m = ⋃m
i=2M

i we denote the set of all point sequences of complexity at most m over (M,ϑ)
and by M∗ = ⋃∞

i=2M
i we denote the set of all point sequences over (M,ϑ). Point sequences can

be merged together.

Definition 2.3.2 The concatenation of a point sequence σ = (σ1, . . . , σ|σ|) with a sequence
τ = (τ1, . . . , τ|τ |) is denoted by σ⊕τ and is defined as the point sequence (σ1, . . . , σ|σ|, τ1, . . . , τ|τ |).
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To define a notion of distance between point sequences of possibly different complexity we need
to align them.

Definition 2.3.3 [227, 95] For m1,m2 ∈ N>1, let Wm1,m2 denote the set of all (m1,m2)-
warpings, that is, the set of all sequences (i1, j1), . . . , (in, jn) with

• i1 = j1 = 1, in = m1, jn = m2 and

• (ik − ik−1, jk − jk−1) ∈ {(0, 1), (1, 0), (1, 1)} for each k ∈ {2, . . . , n}.

In the literature, a warping is also called coupling or matching. We do not use the latter
to distinguish from matchings used to define the continuous Fréchet distance. The discrete
Fréchet distance yields a distance measure that is similar to the Chebyshev distance, which is
the metric implied by the `∞ norm, in the sense that both are determined by a maximum over a
set of underlying distances, whereas the former is over Euclidean distances and the latter over
coordinate-wise distances.

Definition 2.3.4 [95] The discrete Fréchet distance between σ = (σ1, . . . , σm1) ∈Mm1 and
τ = (τ1, . . . , τm2) ∈Mm2 is defined as

ddF(σ, τ) = min
W∈Wm1,m2

max
(i,j)∈W

ϑ(σi, τj).

In this work, we always measure the distance between two point sequences using the p-dynamic
time warping distance. This distance measure is similar to the metrics implied by the `p norms.

Definition 2.3.5 [227] For p ∈ [1,∞) the p-dynamic time warping distance, in short p-
DTW, between two point sequences σ = (σ1, . . . , σm1) ∈ Mm1 and τ = (τ1, . . . , τm2) ∈ Mm2 is
defined as

dDTWp(σ, τ) = min
W∈Wm1,m2

 ∑
(i,j)∈W

ϑ(σi, τj)p
 1

p

.

We call a warping W ∈ arg min
W∈Wm1,m2

(∑
(i,j)∈W ϑ(σi, τj)p

) 1
p an optimal p-warping between σ and τ .

For any m ∈ N>1, (M≤m,dDTWp) is a non-metric space, since the p-dynamic time warping
distance does not fulfill the identity of indiscernibles and the triangle inequality. However, the
p-dynamic time warping distance fulfills a relaxed variant of the triangle inequality [179].

We note that there is a continuous variant of the dynamic time warping distance, but there is no
algorithm to exactly compute this distance measure in general. However, there is an (1 + ε)-
approximation algorithm with running time O(α4m4/ε2 logαm/ε) [193] for point sequences
from

(
Rd
)≤m

, where α is the maximum ratio of the distances between two vertices from both
sequences and a more practical additive approximation algorithm [44] for point sequences over
Rd. Furthermore, very recently a polynomial time exact algorithm for point sequences over R
was published [62].
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Weak Triangle Inequality

As we already mentioned, the dynamic time warping distance fulfills a loose variant of the triangle
inequality. In particular, Lemire [179] shows that given τ1, τ2, τ3 ∈Mm, and p ∈ [1,∞), we have
dDTWp(τ1, τ3) ≤ m1/p ·

(
dDTWp(τ1, τ2) + dDTWp(τ2, τ3)

)
.

We slightly generalize the above inequality in a way that implies a better bound for the distance
between two short point sequences using the distances to a potentially longer point sequence.

Lemma 2.3.6 For any m1,m2 ∈ N, let σ = (σ1, . . . , σ|σ|), υ = (υ1, . . . , υ|υ|) ∈ M≤m1, τ =
(σ, . . . , τm2) ∈Mm2, and p ∈ [1,∞). It holds that

dDTWp(σ, υ) ≤ m1/p
1 ·

(
dDTWp(σ, τ) + dDTWp(τ, υ)

)
.

Proof. Let Wσυ ∈ W|σ|,|υ| be an optimal warping between σ and υ. Let Wστ ∈ W|σ|,|τ | be an
optimal warping between σ and τ , and Wτυ ∈ Wτ,υ be an optimal warping between τ and υ. Let

Sσυ = {(i, k, j) ∈ [|σ|]× [|τ |]× [|υ|] | (i, k) ∈Wστ , (k, j) ∈Wτυ}

and
W ′συ = {(i, j) ∈ [|σ|]× [|υ|] | ∃k ∈ [|τ |] : (i, k, j) ∈ Sσυ}.

Then,

dDTWp(σ, υ) =

 ∑
(i,j)∈Wσυ

ϑ(σi, υj)p
1/p

≤

 ∑
(i,j)∈W ′συ

ϑ(σi, υj)p
1/p

≤

 ∑
(i,k,j)∈Sσυ

(ϑ(σi, τk) + ϑ(τk, υj))p
1/p

≤

 ∑
(i,k,j)∈Sσυ

ϑ(σi, τk)p
1/p

+

 ∑
(i,k,j)∈Sσυ

ϑ(τk, υj)p
1/p

≤ m1/p
1 · dDTWp(σ, τ) +m

1/p
1 · dDTWp(τ, υ),

where the second inequality holds by the triangle inequality and the third inequality holds by
Minkowski’s inequality [226].

2.3.2 Polygonal Curves in the Euclidean Space

If we apply a linear interpolation between each two consecutive data elements by connecting
them with the line segment that they determine, we obtain polygonal curves from the sequences.
We formally define curves.

Definition 2.3.7 [89, 21] A (parameterized) curve is a continuous function τ : [0, 1]→ Rd.

If there exist two distinct t1, t2 with τ(t1) = τ(t2), we say that τ self-intersects. A crucial
tool when working with curves are reparameterizations, these are the continuous extensions of
warpings/couplings.
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Definition 2.3.8 [21] A reparameterization is a continuous and bijective function h : [0, 1]→
[0, 1] with h(0) = 0 and h(1) = 1. By H we denote the set of all reparameterizations.

We now define polygonal curves.

Definition 2.3.9 [21] A polygonal curve is a curve τ , such that there exist h ∈ H, v1, . . . , vm ∈
Rd, no three consecutive on a line, called vertices, and t1, . . . , tm ∈ [0, 1] with t1 = 0 < · · · <
tm = 1, called instants, such that

τ(h(t)) =


lp
(
v1v2,

h(t)−t1
t2−t1

)
, if h(t) ∈ [0, t2)

...
lp
(
vm−1vm,

h(t)−tm−1
tm−tm−1

)
, if h(t) ∈ [tm−1, 1]

.

In the following we will assume that h is the identity function, because the Fréchet distance,
which is subsequently defined, is invariant under reparameterizations [21]. We only need h to
keep our definition general. Further, we call m the complexity of τ , denoted by |τ |, and we call
the line segments v1v2, . . . , vm−1vm the edges of τ . Sometimes we will argue about a subcurve
τ of a given curve σ. We will then refer to τ by restricting the domain of σ.

Remark 2.3.10 In Definition 2.3.9 we introduced h and the restriction of every three consecut-
ive vertices not being collinear to avoid distinguishing between complexity and proper complexity.
For example, let σ ∈ Rd∗ be a curve with vertices v1, v2, v3 and v4, and instants t1, t2, t3 and t4.
Assume that v1, v2 and v3 are collinear, but v1, v2, v3 and v4 are not. Clearly, σ has complexity
4, but its proper complexity would be 3, since we can remove v2 without changing the appearance
of σ.

Now, assume that t2−t1t3−t1 >
‖v2−v1‖
‖v3−v1‖ . In such a case we need h to compensate the parameterization of

σ, such that σ(h(t2)) is on the correct relative position on v2v3 and so we can use lp
(
v1v3,

h(t)−t1
t3−t1

)
,

thereby effectively removing the unnecessary vertex v2.

The continuous Fréchet distance has been introduced more than a hundred years ago by Maurice
Fréchet [114] and nearly thirty years ago was rediscovered by Alt and Godau [21], who used it
for shape matching in computational geometry.

Definition 2.3.11 [114, 21] The Fréchet distance between curves σ and τ is defined as

dF(σ, τ) = inf
h∈H

max
t∈[0,1]

‖σ(t)− τ(h(t))‖.

Sometimes, given two curves σ, τ , we will refer to an h ∈ H as matching between σ and τ .

Note that there must not exist a matching h ∈ H, such that maxt∈[0,1]‖σ(t)− τ(h(t))‖ = dF(σ, τ).
This is due to the fact that in some cases a matching realizing the Fréchet distance would
need to match multiple points p1, . . . , pn on τ to a single point q on σ, which is not possible
since matchings need to be bijections, but the p1, . . . , pn can get matched arbitrarily close to q,
realizing dF(σ, τ) in the limit, which we formalize in the following proposition.

Proposition 2.3.12 Let σ, τ : [0, 1]→ Rd be curves. Let r = dF(σ, τ). There exists a sequence
(hi)∞i=1 in H, such that lim

i→∞
max
t∈[0,1]

‖σ(t)− τ(hi(t))‖ = r.
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Proof. Define ρ : H → R≥0, h 7→ max
t∈[0,1]

‖σ(t) − τ(h(t))‖ with image R = {ρ(h) | h ∈ H}. Per

definition, we have dF(σ, τ) = inf R = r.

For any non-empty subset X of R that is bounded from below and for every ε > 0 it holds that
there exists an x ∈ X with inf X ≤ x < inf X + ε, by definition of the infimum. Since R ⊆ R
and inf R exists, for every ε > 0 there exists an r′ ∈ R with inf R ≤ r′ < inf R+ ε.

Now, let ai = 1/i be a zero sequence. For every i ∈ N there exists an ri ∈ R with r ≤ ri < r+ ai,
thus lim

i→∞
ri = r.

Let ρ−1(r′) = {h ∈ H | ρ(h) = r′} be the preimage of ρ. Since ρ is a function, |ρ−1(r′)| ≥ 1 for
each r′ ∈ R. Now, for i ∈ N, let hi be an arbitrary element from ρ−1(ri). By definition, it holds
that

lim
i→∞

max
t∈[0,1]

‖σ(t)− τ(hi(t))‖ = lim
i→∞

ρ(hi) = lim
i→∞

ri = r = inf R,

which proves the claim.

Now we introduce the classes of polygonal curves we are interested in. Let σ, τ be polygonal
curves. We define the relation σ ∼ τ ⇐⇒ ∃h ∈ H : σ = τ ◦ h, which is an equivalence
relation [21].

Definition 2.3.13 For d ∈ N, we define by Rd∗ the set of equivalence classes with respect to ∼,
of polygonal curves in ambient space Rd, and by Qd

∗ we define the set of equivalence classes with
respect to ∼, of polygonal curves in ambient space Rd, where all vertices of the curves come from
Qd. For m ∈ N we define by Rdm, respectively Qd

m, the subclass of polygonal curves of complexity
at most m.

In the following, we identify each polygonal curve σ, as well its whole equivalence class, with
the representative that is parameterized such that h in Definition 2.3.9 is the identity. Then,
(Rd∗,dF), respectively (Qd

∗,dF), is a metric space, as is (Rdm,dF), respectively (Qd
m,dF), for any

m ∈ N>1 [21].

2.4 Probability Theory

We define the basics of probability theory, which is the foundation of randomized algorithms and
their analysis. The underlying model of each probabilistic experiment is a probability space.

Definition 2.4.1 [202, 237] A probability space is a triple (Ξ, E ,Pr), of a non-empty set
Ξ, the so-called sample space, a σ-algebra E ⊆ 2Ξ containing the so-called events, and a
function Pr: E → [0, 1], E 7→ Pr[E], the so-called probability function, satisfying the following
conditions:

• ∅ ∈ E,

• ∀E ∈ E : (Ξ \ E) ∈ E,

• for all sequences (Ei)∞i=1 of events in E we have (⋃∞i=1Ei) ∈ E,

• Pr[Ξ] = 1 and

• for all sequences (Ei)∞i=1 in E of pairwise disjoint events we have Pr [⋃∞i=1Ei] = ∑∞
i=1 Pr[Ei].
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The elements of Ξ are the possible outcomes of the probabilistic experiment, consequently only
one can occur at a time. We call them elementary events. Let E ∈ E be an event. Pr[E]
is the probability that one of the elementary events in E occurs and by E = Ξ \ E we denote
the complementary event. From the above definition it is immediate that Pr[E] = 1− Pr[E].
Events can depend on one another.

Definition 2.4.2 [202] Let E1, . . . , En ∈ E be events. These are (mutually) independent if
and only if for any I ⊆ [n] we have

Pr
[⋂
i∈I

Ei

]
=
∏
i∈I

Pr[Ei].

It is often of interest whether at least one event from a collection of events occurs. The following
bound on this probability is called union bound.

Proposition 2.4.3 [202] Let E1, . . . , En ∈ E be events. It holds that

Pr
[
n⋃
i=1

Ei

]
≤

n∑
i=1

Pr[Ei].

Sometimes we want to study the probability of an event, given that another event will occur.

Definition 2.4.4 [202] Let E,F ∈ E be events with Pr[F ] > 0. The conditional probability that
E occurs, given that F occurs is

Pr[E | F ] = Pr[E ∩ F ]
Pr[F ] .

From this definition, we have that two events E,F are independent if and only if Pr[E | F ] = Pr[E],
respectively Pr[F | E] = Pr[F ]. Furthermore, Pr[E | F ] = 1− Pr[E | F ]. The following bound,
which we developed specifically for our randomized algorithms, combines the union bound with
conditional probabilities.

Proposition 2.4.5 Let E1, . . . , En, F ∈ E be events, with Pr[F ] > 0. It holds that

Pr
[
F ∩

n⋂
i=1

Ei

]
≥ 1−

(
Pr[F ] +

n∑
i=1

Pr[Ei | F ]
)
.

Proof. We have:

Pr
[
F ∩

n⋂
i=1

Ei

]
= 1− Pr

[
F ∪

n⋃
i=1

Ei

]

= 1− Pr
[
n⋃
i=1

(Ei ∩ F ) ∪
n⋃
i=1

(Ei ∩ F ) ∪
n⋃
i=1

(Ei ∩ F )
]

= 1− Pr
[
F ∪

n⋃
i=1

(Ei ∩ F )
]
≥ 1−

(
Pr[F ] +

n∑
i=1

Pr[Ei ∩ F ]
)

≥ 1−
(

Pr[F ] +
n∑
i=1

Pr[Ei | F ]
)
.

In the first equation we use De Morgan’s law, the first inequality follows from Proposition 2.4.3,
and the last inequality follows, since Pr[Ei | F ] ≥ Pr[Ei ∩ F ] for all i ∈ [n].
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2.4.1 Sampling

Sampling is the process of repeatedly drawing elements from some non-empty set with a certain
probability, cf. [202]. The result of a sampling process is a multiset S, which we call sample. The
most popular type of sampling is uniform sampling: we sample uniformly and independently
(with replacement) from a non-empty and finite set X, if each element of X is drawn with
probability 1

|X| and each draw is independent of the draws that already took place. Formally, the
underlying sample space is X |S|, where we neglect the order of the elements of the elementary
events. We can easily verify that for each s ∈ S and x ∈ X we have Pr[s = x] = 1

|X| , by a
counting argument. Without loss of generality, we assume that s corresponds to the first draw.
There are 1 · |X||S|−1 tuples, such that s = x, and there is a total of |X||S| tuples in the sample
space, each of which occur with the same probability. Thus, Pr[s = x] = |X||S|−1

|X||S| = 1
|X| . We now

turn to a more involved type of sampling.

Superset Sampling

This technique was coined by Kumar et al. [173] and also applied by Ackermann et al. [6]. Here,
we draw a sample S uniformly and independently with replacement from a non-empty finite set
X, and we want our sample to contain a uniform and independent sample from a subset Y ⊆ X.

Proposition 2.4.6 Let X be a non-empty finite set and Y ⊆ X be a non-empty subset. Let S
be sampled uniformly and independently with replacement from X and let F be the event, that
there is a subset S′ ⊆ S of size at least n ∈ N, with S′ ⊆ Y . For each s′ ∈ S′ and y ∈ Y it holds
that Pr[s′ = y | F ] = 1

|Y | .

Proof. The sample space is X |S| and consists of |X||S| tuples, each of which occurs with the
same probability. In

(|S|
n

)
·|Y |n · |X||S|−n of them are at least n elements from Y . Thus, Pr[F ] =

(|S|n )·|Y |n·|X||S|−n
|X||S| .

Without loss of generality, we assume that s′ corresponds to the first draw from Y . There are(|S|
n

)
· 1 · |Y |n−1 · |X||S|−n tuples such that s′ = y and at least n elements are from Y . Hence,

Pr[(s′ = y) ∩ F ] = (|S|n )·1·|Y |n−1·|X||S|−n

|X||S| . Finally, we have

Pr[s′ = y | F ] = Pr[(s′ = y) ∩ F ]
Pr[F ] =

(|S|n )·1·|Y |n−1·|X||S|−n

|X||S|

(|S|n )·|Y |n·|X||S|−n
|X||S|

= 1
|Y |

.

2.4.2 Random Variables

Random variables and the associated concepts are central in probability theory. These are
functions that depend on the outcome of an underlying probabilistic experiment. In computer
science they are often used to analyze some value computed by a randomized algorithm.

Definition 2.4.7 [237, 202] A (real) random variable is a (measurable) function X : Ξ→ R.
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If X takes only a finite or countably infinite number of values, for example when Ξ is finite
or countably infinite, then we call X a discrete random variable. In the following we write
X = x shorthand for the set of events E ∈ Ξ with X(E) = x. The notion of independence
naturally extends to random variables.

Definition 2.4.8 [202] Let X1, . . . , Xn be random variables. These are (mutually) independent
if and only if for any I ⊆ [n] and x ∈ R we have

Pr
[⋂
i∈I

(Xi = x)
]

=
∏
i∈I

Pr[Xi = x].

We can get some information about a random variable by taking its weighted average value,
where the weights are with respect to the probability function.

Definition 2.4.9 [237, 202] Let X be a random variable. The expected value of X is

Exp[X] =
∫

Ξ
X(E) dPr[E].

Of course, if X is a discrete random variable, we have
Exp[X] =

∑
x∈{X(E)|E∈Ξ}

x · Pr[X = x].

Or if Ξ is even finite, we have
Exp[X] =

∑
E∈Ξ

X(E) · Pr[E].

The expected value also extends naturally to conditional probability and since we only use it
with respect to discrete variables, we give a constrained definition.

Definition 2.4.10 [202] Let E ∈ E be an event with Pr[E] > 0 and X be a discrete random
variable. The conditional expectation of X with respect to E is

Exp[X | E] =
∑

x∈{X(F )|F∈Ξ}
x · Pr[X = x | E].

Of course, if Ξ is finite, we have
Exp[X | E] =

∑
F∈Ξ

X(F ) · Pr[F | E].

The (conditional) expected value is also called mean or expectation. Furthermore, it has a
variety of valuable properties, one of which is the linearity of expectation:

Theorem 2.4.11 [237] Let X,Y be random variables and a, b ∈ R. It holds that

Exp[a ·X + b · Y ] = a · Exp[X] + b · Exp[Y ] .

The expected deviation of a random variable from its mean is also often of interest.

Definition 2.4.12 [237, 202] The variance of a random variable X is defined

Var[X] = Exp
[
(X − Exp[X])2

]
.

The standard deviation of X is defined

std[X] =
√

Var[X].
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Probability Distributions

The distribution of probabilities among all subsets of the range of a random variable that
correspond to possible events is specified by its probability distribution. Informally, by
using the probability distribution of a random variable we can abstract from and forget
about the underlying probability space. We start by introducing some basic and well-known
discrete probability distributions.

Definition 2.4.13 [237] A random variable X follows the discrete uniform distribution if
X takes only values x1, . . . , xn ∈ R and for each i ∈ [n] we have Pr[X = xi] = 1

n .

Any random variable defined on an element of a uniform sample from a non-empty finite set
naturally follows the discrete uniform distribution. We define another distribution that is related
to sampling.

Definition 2.4.14 [202] Poisson trials are sequences X1, . . . , Xn of random variables that
only take the values 0 and 1. If Pr[Xi = 1] = Pr[Xj = 1] for all i, j ∈ [n], we call them
Bernoulli trials.

These types of random variables are often used to model a repeated random experiment that is
either successful or unsuccessful.

Contrary to the former, the following distribution is a continuous probability distribution.
It is extensively used and of central importance in probability theory.

Definition 2.4.15 [237, 202] A random variable X follows the normal distribution with
mean µ ∈ R and standard deviation σ ∈ (0,∞), if the underlying probability space is (R,B(R),Pr),
where B(R) denotes the Borel σ-algebra1 of R and Pr: B(R) → [0, 1] is a probability function
satisfying

Pr[x ≤ X ≤ y] = 1√
2πσ

∫ y

x
exp

(
−(z − µ)2

2σ2

)
dz

for all x, y ∈ R ∪ {−∞,∞} with x ≤ y.

Note that by definition we have Pr[X = x] = 0 for all x ∈ R, thus

Pr[x < X < y] = Pr[x ≤ X < y] = Pr[x < X ≤ y] = Pr[x ≤ X ≤ y].

The sum of two independent normally distributed random variables with means µ1 and µ2
and variances σ2

1 and σ2
2 is again normally distributed with mean µ1 + µ2 and variance σ2

1 +
σ2

2 [237]. Furthermore, the product of a constant a ∈ R with a random variable that follows the
standard normal distribution, i.e., the normal distribution with zero mean and unit variance,
is a normally distributed random variable with zero mean and variance a2 [237].

Finally, the sum of k independent squared random variables that follow the standard normal
distribution is a random variable that follows the Chi-squared distribution with k degrees of
freedom [237] and has mean k [159].

1We omit the formal definition and only provide this information for the sake of completeness.
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2.4.3 Concentration Inequalities

Concentration inequalities provide upper bounds on the probability that a random variable
deviates from its mean. In the context of randomized algorithms, they are often useful for
proving that certain bad events are unlikely to happen. Arguably the most basic among them is
Markov’s inequality:

Theorem 2.4.16 [202] Let X be a random variable with X(E) ≥ 0 for each E ∈ Ξ. Then for
all x ∈ R>0 it holds that

Pr[X ≥ x] ≤ Exp[X]
x

.

More advanced and distribution-dependent inequalities can be obtained on top of Markov’s inequal-
ity by applying the Chernoff method, cf. [41]. These inequalities are named Chernoff bounds.

Theorem 2.4.17 [202] Let X1, . . . , Xn be independent Poisson trials. For δ ∈ (0, 1) it holds
that

Pr
[
n∑
i=1

Xi ≤ (1− δ) Exp
[
n∑
i=1

Xi

]]
≤ exp

(
−δ

2

2 Exp
[
n∑
i=1

Xi

])
.

Theorem 2.4.18 [41] Let X be a random variable that follows the Chi-squared distribution
with k degrees of freedom. For any a ∈ (0,∞) it holds that

Pr[|X − k| ≥ 2(
√
ka+ a)] ≤ 2 exp(−a).

The following theorem combines sampling from a metric space with a Chernoff bound and comes
in very handy when one wants to approximate the median of the sample space.

Theorem 2.4.19 [150] Let X = (X, ρ) be a metric space and let ε ∈ (0, 1]. Let T ⊆ X and
let W be a non-empty sample, drawn uniformly and independently at random from T with
replacement. For any fixed σ1, σ2 ∈ T with

∑
τ∈T ρ(τ, σ1) > (1 + ε)∑τ∈T ρ(τ, σ2) it holds that

Pr
[∑
τ∈W

ρ(τ, σ1) ≤
∑
τ∈W

ρ(τ, σ2)
]
< exp

(
−ε

2|W |
64

)
.

2.5 Model of Computation and Complexity

Models of computation are the basics to design algorithms and to analyze their complexity. In
the following, we define the models relevant to this work.

Definition 2.5.1 [77] A random access machine, in short RAM, is a model of computa-
tion consisting of a CPU (central processing unit) that runs a program (a finite sequence of
instructions indexed by the integers 0, 1, . . .) that operates on an infinite array (indexed by the in-
tegers 0, 1, . . .) of registers – the elementary storage cells, which can store arbitrary integer values.
The CPU maintains a program counter that determines the instruction to execute. It is initially
set to 0 and after a instruction is executed (except for a branch instruction) it is incremented
by one. The set of instructions is restricted and mainly consists of addition, subtraction and
memory transfer with direct and indirect addressing. The model does not support a distinguished
input to the program, rather the input is encoded into the program. Initially, all registers are
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set to zero and when the program halts – when all instructions have been executed or a negative
address is encountered in indirect addressing –, the output is the content of the registers at halting
time. The running time of the instructions, except for those loading the input (which take one
time step per value to load) is assumed to be either one (unit cost model) or proportional to the
number of bits needed to encode the values (logarithmic cost model). The latter is more realistic
since any machine that can only store integers from a bounded range needs a logarithmic number
of registers to store a large integer.

A great benefit of the RAM (under the logarithmic cost model) is that it can be simulated by a
Turing machine with only polynomial running time blowup [77, 17, 225]. Therefore, for a given
problem we can show membership of classic complexity classes, such as P and NP, by defining and
analyzing a RAM. However, this comparatively old model is not adequate for modern computers.
The instruction set is too restricted, furthermore it is not viable not to distinguish between
program and input and to assume that that arbitrary integers can be stored in the registers
(when not using the logarithmic cost model). The following model addresses these issues.

Definition 2.5.2 [169, 115, 126] A word RAM a modification of the RAM model. Except
for the following, it does not differ from the RAM model. First, it is parameterized by a fixed
number w ∈ N and the registers can store so-called words – integers in the range 0, . . . , 2w − 1,
represented by strings of w bits. Since real computers can only store values consisting of a bounded
number of bits in their elementary storage cells, this is more realistic than assuming that the
registers can store arbitrary integers. Second, it has a rich instruction set, consisting among
others of conditional and unconditional jumps for program flow, integer modular arithmetic,
integer division and remainder, bit-shifting and bitwise boolean operations. This is in line with
the basic instructions that modern CPUs possess. Each instruction is assumed to have constant
running time and the model has a distinguished input to the program, which initially is suitably
encoded into the registers.

To ensure that the word RAM can store pointers to the given data elements, it is usually
assumed [116, 117] that w ≥ logn, where n is the number of input elements. This is the so-called
transdichotomous assumption and it is very reasonable, since one wants to analyze the running
time depending on the number of input elements and independent of their size.

The word RAM can also be simulated with polynomial running time blowup by a Turing machine,
when w is at most polynomial in n [204, Proposition 1.4 and above]. It is nowadays the canonical
model used in large parts of computer science [97].

However, in some fields, like computational geometry, it is generally crucial to compute analytic
functions (like roots and trigonometric functions) exactly, for example for deciding if two geometric
objects intersect. In these computations, irrational numbers naturally arise, which can neither
be stored in the word RAM model nor in the classic RAM model. To circumvent these technical
difficulties, the following model was introduced, which is the canonical model in computational
geometry. If not mentioned otherwise, this is the standard model used in this work.

Definition 2.5.3 [235, 219] A real RAM is another modification of the RAM model, developed
specifically for use in computational geometry. It does not differ from the RAM model, except
that it has a distinguished input (like the word RAM), that the registers can store arbitrary real
numbers and that the available instructions include exact arithmetic and analytic functions such
as trigonometric functions, the exponential function and logarithms.
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In this work, we also allow use of rounding functions d·e and b·c in unit time, whenever the
resulting integers consists of O(logn) bits.2

A major drawback of the real RAM is that it can not be simulated by a Turing machine in
general, cf. [45], due to the problem of representing real numbers. This shows that it is a highly
unrealistic (in the practical sense) assumption that arbitrary real numbers can be stored in the
registers. However, “without this assumption it is virtually impossible to prove the correctness
of any geometric algorithms” [194], cf. [168]. Nevertheless, through the problems of simulating
arbitrary real RAMs on classic Turing machines, it is in general not an easy task to prove
membership of a classic complexity class for a geometric problem, cf. [196]. While this is possible
for some (decision) problems (e.g. by assuming that the input is rational and avoiding roots), it
depends heavily on the problem at hand and in fact, there exists an own branch of complexity
theory for computation with real numbers, cf. [38, 37].

Fortunately, recent research has shown that there is no necessity on using real numbers for most
geometric algorithms. Rather, one can rely on sufficiently precise approximations by rational
numbers, which requires only a bounded number of bits, cf. [228]. The number of bits needed to
correctly run a geometric algorithm is called its input-precision and is input dependent [97].
In the course, the following model was developed.

Definition 2.5.4 [97] A novel real RAM (introduced under the name real RAM – we call it
novel real RAM to distinguish from the “old” real RAM) is an extension of the word RAM (under
the transdichotomous assumption). This model combines the realistic properties of the word RAM
with the simplifying properties of the real RAM. It has two types of registers, word registers,
for storing words, and real registers, for storing reals. In contrast to the other models it has a
limited number of registers, namely 2w of each type and for computations on the word registers
it has the same instructions available as the word RAM. However, computations on the real
registers can only comprise arithmetic and square roots. To prevent unnatural computing power it
can only cast words to reals by memory transfer from the word registers to the real registers. The
other direction is not allowed. Similar to the word RAM its input is initially suitably encoded
into the real and word registers. For details, see [97].

Before we define the relevant complexity classes, we introduce a general randomness assumption
on all models, i.e., we assume that all models have access to an infinite string of random bits
whose values are determined by fair and independent coin tosses. We assume that O(logn)
consecutive unread random bits can be read in unit time, where n is the number of input elements.
Therefore, uniform sampling from [n] can be carried out in time O(1).

2.5.1 Complexity Classes

We start with the fundamental complexity classes from classic complexity theory.

Definition 2.5.5 [23] By P we denote the class of decision problems that can be decided by an
algorithm with polynomial running time on a RAM (logarithmic cost model3).

Definition 2.5.6 [23] By NP we denote the class of decision problems where a solution (also
called certificate or witness) to an instance of the problem can be verified together with the instance
by an algorithm with polynomial running time on a RAM (logarithmic cost model).

2This restriction is necessary since otherwise PSPACE-complete problems can be solved in polynomial time [232].
3This is only necessary when numbers occur in the computation that are super-polynomial in the input size.
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Definition 2.5.7 [23] By PSPACE we denote the class of problems that can be decided by an
algorithm with polynomial space on a RAM (logarithmic cost model).

The following complexity class has recently been defined in the context of geometric algorithms
and algorithmic game theory, cf. [231].

Definition 2.5.8 [231, 97] By ∃R we denote the class of decision problems that can be reduced
to the problem of deciding whether an ETR formula is true or false with polynomial running
time on a novel real RAM. An ETR (existential theory of the reals) formula is an existentially
quantified formula over any polynomials (involving variables and the constants 0 and 1) compared
by <,≤,=,≥, > and connected by ∧,∨,¬ and ⇐⇒ .

This class fits into the landscape of classic complexity theory [23, 231]:

P ⊆ NP ⊆ ∃R ⊆ PSPACE .

To show that a problem is contained in ∃R, if possible, one can phrase it as a discrete decision
problem and design a real verification algorithm that decides the problem.

Definition 2.5.9 [97] A discrete decision problem Q is a function from the set of all finite
integer sequences to the set of truth values {0, 1}. A real verification algorithm A for Q is
an algorithm such that, for a constant c ≥ 1 and any instance I to the problem,

• A has running time at most nc on a novel real RAM with parameter w ≤ c · logn, where n
is the number of input values,

• if Q(I) = 1 there exists a solution for I, consisting of a sequence of integer values and
a sequence of real values, both of size at most |I|c, which A accepts when given as input
together with I and

• if Q(I) = 0 then A rejects any two sequences of real values and integer values that are given
together with I as input.

The following powerful theorem enables the aforementioned insight.

Theorem 2.5.10 [97] Any discrete decision problem that has a real verification algorithm is
contained in ∃R.

2.6 Range Spaces

Range spaces are structures, which are mainly studied in the context of sampling in the field of
statistical learning theory, cf. [245]. We start with a formal definition.

Definition 2.6.1 A range space is a pair (X,R), where X is a set, called ground set and R
is a set of subsets R ⊆ X, which are called ranges.

Range spaces can be projected onto a subset of the ground set.

Definition 2.6.2 [130] The projection of (X,R) onto a subset Y ⊆ X is the range space
(Y,R|Y ), where we denote R|Y = {R ∩ Y | R ∈ R}.

Further, each range space has a complementary range space.
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Definition 2.6.3 [130] The complementary range space of (X,R) is (X,R), where R =
{X \R | R ∈ R}.

We say that a subset Y ⊆ X is shattered by R, if R|Y contains all subsets of Y . A measure of
the combinatorial complexity of a range space is the VC dimension.

Definition 2.6.4 [130] The VC (Vapnik-Chervonenkis) dimension of (X,R) is the max-
imum cardinality of a shattered subset of X.

Note that F and F have equal VC dimension and for any Y ⊆ X, the projection of F onto Y
has VC dimension at most the VC dimension of F , see for example [130].

Range spaces do not have to be finite and can be discretized by means of ε-nets.

Definition 2.6.5 [130] A set N ⊆ X is an ε-net for (X,R) if for any range R ∈ R, we have
R ∩N 6= ∅ when |R ∩X| ≥ ε|X|.

A subsystem oracle can be used to compute ε-nets deterministically.

Definition 2.6.6 [53] Let (X,R) be a finite range space. A subsystem oracle is an algorithm
which for any Y ⊆ X, lists all sets in R|Y in time O(|Y |D+1), where D is the VC dimension of
(X,R).

We use the following theorem to obtain ε-nets when provided with a subsystem oracle.

Theorem 2.6.7 [53] Let (X,R) be a range space with finite ground set and VC dimension D,
and ε > 0 be a given parameter. Assume that there is a subsystem oracle for (X,R). Then an
ε-net of size O

(
D
ε log Dε

)
can be computed deterministically in time O

(
D3D ·

(
1
ε log 1

ε

)D
· |X|

)
.

We define the (ε, η)-approximation of a range space, which also yield a form of discretization
that captures the properties of the range space.

Definition 2.6.8 [136] Let ε, η ∈ (0, 1) and (X,R) be a range space with finite non-empty
ground set. An (η, ε)-approximation of (X,R) is a set S ⊆ X, such that for all R ∈ R

∣∣∣∣ |R ∩X||X|
− |R ∩ S|

|S|

∣∣∣∣ ≤
ε ·

|R∩X|
|X| , if |R ∩X| ≥ η · |X|

ε · η, else.

The following theorem is useful for obtaining (ε, η)-approximations. In particular, the beneficial
link between VC dimension and sampling can be observed.

Theorem 2.6.9 [136] Let (X,R) be a range space with finite non-empty ground set and VC
dimension D. Also, let ε, δ, η ∈ (0, 1). There is an absolute constant c ∈ R>0 such that a sample
of

c

η · ε2 ·
(
D log

(1
η

)
+ log

(1
δ

))
elements drawn independently and uniformly at random with replacement from X is a (η, ε)-
approximation for (X,R) with probability at least 1− δ.
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2.7 Computing Distance Functions

Computing distance functions between spatial data sequences is usually quite costly in terms
of running time. For example the discrete Fréchet distance between two point sequences σ and
τ can be computed in time O(|σ| · |τ |) by a dynamic program, which we omit here, since the
discrete Fréchet distance is not in the focus of this work. The p-dynamic time warping distance
can be computed by a similar dynamic program in equal time.

2.7.1 Dynamic Time Warping Distance

The canonical algorithm for computing the dynamic time warping distance between two point
sequences is by Sakoe and Chiba [227]. To compute the p-dynamic time warping distance we
slightly modify their dynamic program to handle values of p other than one:

Algorithm 1 p-Dynamic Time Warping Distance
1: procedure p-DTW(σ = (σ1, . . . , σ|σ|), τ = (τ1, . . . , τ|τ |))
2: D ← array[0 . . . |σ|][0 . . . |τ |]
3: for i = 0, . . . , |σ| do
4: for j = 0, . . . , |τ | do
5: D[i][j]←∞
6: D[0][0]← 0
7: for i = 1, . . . , |σ| do
8: for j = 1, . . . , |τ | do
9: D[i][j]← ϑ(σi, τj)p + min{D[i− 1][j], D[i][j − 1], D[i− 1][j − 1]}

return p
√
D[|σ|][|τ |]

Since this algorithm is a straight-forward adaption, the following corollary follows from the result
of Sakoe and Chiba [227].

Corollary 2.7.1 Given two point sequences σ and τ , Algorithm 1 computes the p-dynamic time
warping distance in time4 O(|σ| · |τ |).

We note that recently a slightly faster algorithm for computing the dynamic time warping distance
for the special case that ϑ is a distance induced by a norm whose unit ball is a symmetric polytope
with a constant number of facets, each of constant complexity, was developed. For example, this
is the case when ϑ(p, q) = ‖p− q‖1 or ϑ(p, q) = ‖p− q‖∞, where ‖·‖1, respectively ‖·‖∞ , denotes
the `1 norm, respectively `∞ norm. The algorithm has running time O(n2 log log logn/ log logn)
for two sequences of complexity n each [122].
On the other hand, for any δ > 0 there is no O(n2−δ) time algorithm for computing the dynamic
time warping distance, unless the Strong Exponential Time Hypothesis fails [52]. The Strong
Exponential Time Hypothesis states that for all δ > 0 there is some k ≥ 3 such that there is no
O(2(1−δ)n) time algorithm that solves k-SAT (the satisfiability problem for boolean formulas of
at most k literals in a clause) for formulas of n variables. Though, there exist a near-linear time
(1 + ε)-approximation algorithm for a restricted class of point sequences in Rd [12].

4For simplicity, we assume that ϑ can be evaluated in constant time.
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2.7.2 Fréchet Distance

The canonical algorithm for computing the Fréchet distance between two polygonal curves is by
Alt and Godau [21]. This algorithm is based on repeatedly solving the decision problem whether
dF(σ, τ) ≤ r for a given r ∈ [0,∞). To solve this decision problem the algorithm uses the concept
of free space, which we now introduce.

Definition 2.7.2 [21] The r-free space, where r ∈ [0,∞), between two line segments s1 = p1p2

and s2 = q1q2 (where p1, p2, q1, q2 ∈ Rd) is the set

{(λ1, λ2) ∈ [0, 1]2 | ‖lp (s1, λ1)− lp (s2, λ2)‖ ≤ r}.

The r-free space between two polygonal curves σ, τ ∈ Rd∗ is the set⋃
i∈[|σ|−1]
j∈[|τ |−1]

{(λ1 + i, λ2 + j) | (λ1, λ2) ∈ Fi,j},

where Fi,j is the r-free space between the ith edge of σ and the jth edge of τ .

The r-free space between two line segments is called a free space cell and is a convex set. The
whole r-free space is called the free space diagram.

Proposition 2.7.3 [21] For any r ∈ [0,∞) and any two line segments the r-free space is a
convex set.

Alt and Godau’s central insight is that dF(σ, τ) ≤ r if and only if there exists a curve γ in the
r-free space with γ(0) = (1, 1) and γ(1) = (|σ|, |τ |) and whose coordinates are non-decreasing.
This curve corresponds to the limit of a sequence of matchings realizing the distance r between
the curves, see Proposition 2.3.12.

Proposition 2.7.4 [21] For any r ∈ [0,∞) and any two polygonal curves σ, τ ∈ Rd∗ we have
dF(σ, τ) ≤ r if, and only if, there exists a curve γ in the r-free space between σ and τ , with
γ(0) = (1, 1), γ(1) = (|σ|, |τ |) and that is monotone in both coordinates.

Since the cells of the r-free space are convex, the existence of such a curve can be checked by
computing only the borders of the cells, which can be done efficiently.

Theorem 2.7.5 [21] There exists an algorithm that, given an r ∈ [0,∞) and two polygonal
curves σ, τ ∈ Rd∗, decides whether dF(σ, τ) ≤ r and has running time O(|σ| · |τ |).

Finally, Alt and Godau have shown that for every two polynomial curves σ, τ there exists only a
finite number (depending only on the complexities of the curves) of values – the so-called critical
values –, of which one is their Fréchet distance. These values are determined by

(1) the distances between the first and last vertices of the curves (which must be matched to
each other),

(2) distances between vertices and edges and

(3) the common distance of two vertices on one curve to the intersection of their bisector with
an edge of the other curve.
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We call (1) a vertex event, (2) an edge event and (3) a monotonicity event. By parametric
search on the sorted sequence of the critical values one can compute the Fréchet distance. The
parametric search is guided by solving the decision problem dF(σ, τ) ≤ r.

Theorem 2.7.6 [21] There exists an algorithm that, given two polygonal curves σ, τ ∈ Rd∗,
computes dF(σ, τ) and has running time O(|σ| · |τ | · log (|σ| · |τ |)).

We note that for any δ > 0 there is neither a O(n2−δ) time algorithm for computing the discrete
nor the continuous Fréchet distance, unless the Strong Exponential Time Hypothesis5 fails [51].
Though, there exists an algorithm that runs in expected time O(n2√logn(log logn)3/2) for two
curves of complexity n each [57, 58] and a (1 + ε)-approximation algorithm for a restricted class
of polygonal curves that runs in near-linear time [85, 86].

2.8 Simplification

Simplification is a problem that is strongly related to compression. It appears in many problems
concerning spatial data sequences as a sub-problem, often to deal with overfitting or to reduce
running time. Here, we are given a point sequence or polygonal curve and we want to compute
another point sequence/curve that has small distance to the original sequence/curve and is of
smaller complexity, where the target complexity is a parameter of the problem. The idea is
that the low-complexity sequence/curve can be used as a substitute for the high-complexity
sequence/curve, since it is geometrically close to it by the (weak) triangle inequality.

2.8.1 Point Sequences

Here we focus on simplifications of point sequences with respect to the p-dynamic time warping
distance.

Definition 2.8.1 For a point sequence τ ∈Mm we denote by simpl(`, α, τ) an α-approximate
minimum-error `-simplification of τ , i.e., a point sequence σ ∈ M≤` with dDTWp(τ, σ) ≤ α ·
dDTWp(τ, σ′) for all σ′ ∈M≤`.

We present a dynamic programming solution for the problem of computing such an approximate
minimum-error simplification. Our algorithm can be seen as a special case of the result of Brill
et al. [49, 50] for computing a mean of restricted complexity, but since our statement is different,
we include a proof for completeness.

5Actually, the author even proves that this is the case unless a weaker variant of the Strong Exponential Time
Hypothesis fails, but this implies the stated result.
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Algorithm 2 2-Approximate Minimum Error Simplification under p-DTW
1: procedure DTW-Simplification(τ = (τ1, . . . , τm), `, p)
2: C ← array[1 . . .m][1 . . . `] with elements in M≤`
3: D ← array[1 . . .m][1 . . . `] with elements in R≥0
4: P ← {τ1, . . . , τm}
5: for each i = 1, . . . ,m do
6: for each j = 1, . . . , ` do
7: if j = 1 then
8: q∗ ← arbitrary element from arg minq∈P

∑i
k=1 ϑ(τk, q)p

9: D[i][j]←∑i
k=1 ϑ(τk, q∗)p; C[i][j]← (q∗)

10: else
11: i′ ← arbitrary element from arg mink′∈[i]

(
D[k′][j − 1] + min

q∈P

∑i
k=k′ ϑ(τk, q)p

)
12: q∗ ← arbitrary element from arg minq∈P

∑i
k=k′ ϑ(τk, q)p

13: D[i][j]← D[i′][j − 1] +∑i
k=i′ ϑ(τk, q∗)p; C[i][j]← C[i′][j − 1]⊕ (q∗)

14: j∗ ← arbitrary element from arg min
j∈[`]

D[m][j]
15: return C[m][j∗]

We first show that no simplification that can be constructed from τ ’s vertices is better than the
result of Algorithm 2.

Lemma 2.8.2 Given as input a point sequence τ = (τ1, . . . , τm) ∈Mm, Algorithm 2 returns a
point sequence from P≤` that minimizes the p-DTW distance to τ among all point sequences in
P≤`, where P = {τ1, . . . , τm}.

Proof. We show that C[m][j∗] satisfies

dDTWp (τ, C[m][j∗]) = min
σ′∈P≤`

dDTWp(τ, σ′).

We claim that there is a point sequence σ ∈ P≤` such that

dDTWp(τ, σ) = min
σ′∈P≤`

dDTWp(τ, σ′),

and such that the optimal warping between τ and σ does not match two vertices of σ with the
same vertex of τ . To see this, consider an optimal warping W ∈ Wm,|σ′| between τ and some
point sequence σ′ = (σ′1, . . . , σ′j) ∈ P≤`. Let (i, j) ∈W and (i, j + 1) ∈W . If (i− 1, j) ∈W then
removing (i, j) yields a new warping with a cost at most equal to the cost of W . Similarly, if
(i + 1, j + 1) ∈ W then removing (i, j + 1) from W yields a new warping with a cost at most
equal to the cost of W . If (i− 1, j) /∈W , then we can remove σ′j from σ′. If (i+ 1, j + 1) /∈W ,
then we can remove σ′j+1 from σ′. We conclude that there exist a point sequence σ′′ ∈ P≤` such
that dDTWp(τ, σ′′) ≤ dDTWp(τ, σ′), and an optimal warping W ∈ Wm,|σ′′| between τ and σ′′ for
which there are no i ∈ [m], j ∈ [`] such that both (i, j) ∈W and (i, j + 1) ∈W .

For each i ∈ [m], let τ|i = (τ1, . . . , τi). By construction, each D[i][j] stores the minimum distance
between τ|i and any point sequence σ from P j , where the distance is attained by a warping that
does not match two vertices of σ to the same vertex of τ . Hence, D[m][j∗] stores the minimum
distance between τ and any point sequence in P≤`, and C[m][j∗] stores a point sequence from
P≤` with distance D[m][j∗] from τ .
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Now we show that this simplification is a 2-approximate minimum-error `-simplification among
all possible minimum-error `-simplifications.

Lemma 2.8.3 Given as input a point sequence τ = (τ1, . . . , τm) ∈Mm, Algorithm 2 returns a
2-approximate minimum-error `-simplification under the p-DTW distance.

Proof. Let P = {τ1, . . . , τm}. By Lemma 2.8.2, C[m][j∗] is a point sequence in P≤` that minimizes
the distance to τ among all point sequences in P≤`.

We show that C[m][j∗] is a 2-approximate minimum-error `-simplification. Let τ∗ = (τ∗1 , . . . , τ∗|τ∗|)
be an optimal (1-approximate) minimum-error `-simplification of τ , and let σ∗ = (σ∗1, . . . , σ∗|τ∗|),
where for each i ∈ [|τ∗|] we let σ∗i ∈ arg minq∈P ϑ(q, τ∗i ) be arbitrary. Let W ∗ ∈ Wm,|τ∗| be an
optimal warping between τ and τ∗. Then,

dDTW
1
p(τ, C[m][j∗]) ≤ dDTW

1
p(τ, σ∗) = min

W∈Wm,|τ∗|

 ∑
(i,j)∈W

ϑ(τi, σ∗j )p
1/p

≤

 ∑
(i,j)∈W ∗

ϑ(τi, σ∗j )p
1/p

≤

 ∑
(i,j)∈W ∗

(
ϑ(τi, τ∗j ) + ϑ(τ∗j , σ∗j )

)p1/p

(I)

≤

 ∑
(i,j)∈W ∗

2pϑ(τi, τ∗j )p
1/p

= 2 dDTWp(τ, τ∗),

where in Eq. (I) we applied the triangle inequality.

We use the above lemmas to prove the correctness and further analyze the running time of
Algorithm 2.

Theorem 2.8.4 Given as input a point sequence τ ∈Mm, Algorithm 2 computes a 2-approximate
minimum-error `-simplification of τ under the p-DTW distance in time O(m4`).

Proof. Correctness of Algorithm 2 follows from Lemma 2.8.3. It remains to bound the running
time of the algorithm. To do so, we consider the operations taking place in the body of the
nested loop. For each i, j, we iterate over O(m) values for i′ and for each value of k′ we compute
minx∈P

∑i
k=k′ ϑ(τk, q)p in time O((i − k′) · m) = O(m2). Hence, the total running time is

O(m4`).

2.8.2 Polygonal Curves

Simplifications for polygonal curves under the Fréchet distance are defined analogously.

Definition 2.8.5 For a polygonal curve τ ∈ Rd∗ we denote by simpl(`, α, τ) an α-approximate
minimum-error `-simplification of τ , i.e., a curve σ ∈ Rd` with dF(τ, σ) ≤ α · dF(τ, σ′) for all
σ′ ∈ Rd` .

We can use an existing approach by Imai and Iri [149] that, similar to Algorithm 2, computes a
simplification using the vertices of the original curve. When this approach is combined with the
algorithm by Alt and Godau [21] it can be used to compute simplifications with respect to the
Fréchet distance.
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Theorem 2.8.6 [59] Given a curve σ ∈ Rdm, a 4-approximate minimum-error `-simplification
can be computed in O(m3 logm) time.

Unfortunately, the approximation factor of this approach is twice the approximation factor of
the approach for point sequences. This is due to the linear interpolation and also shows in the
relation between Fréchet and discrete Fréchet distance:

Let τ, σ ∈ Rd∗ with vertices vτ1 , . . . , vτ|τ |, respectively vσ1 , . . . , vσ|σ|. It holds that [95]

ddF((vτ1 , . . . , vτ|τ |), (vσ1 , . . . , vσ|σ|)) ≤ dF(τ, σ) + max
{

max
i∈[|τ |−1]

‖vτi − vτi+1‖, max
i∈[|σ|−1]

‖vσi − vσi+1‖
}

and
dF(τ, σ) ≤ ddF((vτ1 , . . . , vτ|τ |), (vσ1 , . . . , vσ|σ|)).
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3 Median of Spatial Data Sequences

This chapter is twofold, the first part is dedicated to the problem of computing a median of
a set of polygonal curves in the Euclidean space with respect to the Fréchet distance and the
second part is dedicated to the problem of computing a median of a set of point sequences in
an arbitrary metric space with respect to the dynamic time warping distance. These problems
are adaptions of the geometric median of points in the Euclidean space, in the sense that both
minimize the sum of distances between the given objects and the median object. The geometric
median itself is a generalization of the well-known statistical median [98].

The geometric median problem was probably first considered by Pierre de Fermat in 1643 with
a pure geometrical motivation: he sought to find a point that minimizes the sum of distances
to three given points in the (Euclidean) plane. Much later in 1909, Alfred Weber studied a
facility location problem, i.e., locate a facility in such a way that the sum of costs of transporting
goods to the facility is minimized, thereby he obtained a generalized variant of Fermat’s problem
where the objective is to find a point that minimizes the sum of distances to a given set of n
points (in the Euclidean plane), cf. [93]. The nowadays geometric median problem is a simple
generalization of Weber’s problem to a set of points in Rd.

The geometric median is a statistic that should be of consideration whenever a measure of central
tendency of a set of points under the presence of outliers is needed. This is due to its three
central properties [93]:

• Robustness: It is stable when up to 50% of the points are arbitrarily corrupted, e.g. by
measurement noise. This means that more than 50% outliers are necessary to move the
median outside the range of the non-outliers.

• Uniqueness: For each non-empty set of points in Rd there exists a median and the median
is unique whenever the points are not collinear.

• Equivariance: The geometric median is equivariant under Euclidean motions, i.e., if we
apply a motion to the given point set then its median is the median of the original point
set with the same motion applied.

A drawback from the computational side is that the geometric median can generally not be
computed exactly for d ≥ 2 using only arithmetic operations and kth roots [29, 28] – it can also
not be constructed by hand using ruler and compass [200]. However, already in 1937 an iterative
procedure that produces a sequence of points converging to the geometric median was discovered
[250, 251]. Furthermore, modern optimization algorithms are capable of approximating the
median to an arbitrary level of accuracy and even run in near-linear time, see e.g. [75].

The appealing aggregation properties (robustness and uniqueness), as well as the computational
tractability of the geometric median motivate us to study variants of the problem adapted to
spatial data sequences. Aggregation is particularly important in a Big Data context, but also in
the general problem of analyzing the underlying phenomenon of the given observations (the data
set at hand) and aggregation of spatial data sequences has to this day been studied extensively,
but the literature is quite heterogeneous.

37



Median of Spatial Data SequencesMedian of Spatial Data Sequences

One line of research studies the problem of computing a so-called average sequence, or (weighted)
Fréchet mean with respect to the dynamic time warping distance [208, 209, 215, 214, 216, 49, 50,
230]. An average sequence, or Fréchet mean, is a sequence that minimizes the sum of (weighted)
squared distances to the given set of sequences. This problem is particularly popular in the data
mining and computational biology community with applications ranging from speech and signal
recognition to DNA alignment.

Another line of research studies the problem of computing a so-called middle curve, or mean
curve with respect to (variants of) the Fréchet distance [134, 135, 15, 16, 64]. Here, the data
sequences are interpreted as polygonal curves and the objective is to compute a curve that
minimizes the maximum distance to the input curves. This problem is particularly relevant in
the geographic information systems and data mining communities with applications such as
handwriting recognition, trajectory analysis and time series analysis in general.

Another very different approach studies the problem of computing a so-calledmedian trajectory [55,
56]. Here, a set of trajectories, represented as polygonal curves in R2 that start and end in the
same points s and t, is given and a median trajectory is computed using the arrangement of lines
induced by the curves. A basic definition, the so-called simple median, is the curve obtained
by starting in s and ending in t, while always following the median level line segment in the
arrangement. An advanced definition, the so-called homotopic median imposes an additional
restriction on the median curve. Here, it is assumed that the input curves are homotopic with
respect to a certain punctured plane, i.e., there are poles (points) placed in the large faces of
the arrangements and all input curves can be continuously deformed one into another without
crossing a pole. The homotopic median is obtained similar to the simple median, but we only
change the line segment we follow in the arrangement when the resulting curve respects the
homotopy type of the input curves. While this approach is certainly interesting and meaningful,
there is no obvious extension to polygonal curves in Rd since those would not induce such an
arrangement whenever d > 2. This strongly narrows its applicability.

A follow-up approach [244] that was inspired by the aforementioned approach studies the so-called
majority median, which aims to overcome further shortcomings of the homotopic median: there
must not be large faces in the arrangement and further, there must not be a large subset of input
trajectories that are homotopic. The majority median is constructed very differently, by using a
certain planar graph and graph algorithms, but aims to fulfill similar properties as the simple
and the homotopic median.

A related concept [71] follows the direction of using homotopy, using the same setting as in
[55, 56]. Here, the objective is to minimize either the maximum homotopy area between the
median and the input trajectories or the sum of homotopy areas between the median and the
input trajectories. This approach only works if the trajectories do not self-intersect. In this case
the homotopy area between two trajectories (polygonal curves) σ, τ is well-defined. The homotopy
area of H : [0, 1]× [0, 1]→ R2, which is a continuous deformation of σ into τ (this means that
H(t, 0) = σ(t) and H(t, 1) = τ(t) for all t ∈ [0, 1] and H is continuous in both arguments),
between σ and τ is A(σ, τ,H) =

∫ 1
0
∫ 1

0

∣∣∣ H∂t1 × H
∂t2

∣∣∣ dt1 dt2 . The homotopy area between σ and τ
is infH : [0,1]×[0,1]→R2 A(σ, τ,H), where the infimum ranges over all continuous deformations of σ
into τ . Intuitively, this measure can be seen as a sum-based variation of the Fréchet distance.

However, all of these median trajectory approaches suffer from various limitations. The topic of
computing an average sequence or (weighted) Fréchet mean of a set of point sequences under
the dynamic time warping distance is still active research and recent lines of research dealing
with polygonal curves under the Fréchet distance [87, 59, 60, 207, 44] (and also under the
discrete Fréchet [61] and Hausdorff [207] distances) follow and extend variants of the problems
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of computing an average sequence, respectively a middle or mean curve. These extensions are
phrased in the light of k-clustering and are named (k, `)-center clustering and (k, `)-median
clustering. Here, one does not only want to compute a curve that aggregates the whole given
set of curves, but k curves that each aggregate an element of a k-partition of the set, a hidden
structure one wants to uncover. A notable similarity that all these approaches have in common
is that one is interested in computing aggregate curves of complexity at most `. If such a
bound is not enforced, then the complexity of the aggregate can grow as large as the sum of the
complexities of the given curves [181], leading to severe overfitting [98] and overfitting is not
desirable since one wants to aggregate the properties of the underlying phenomenon and not the
peculiarities of the given curves. Furthermore, the continuous nature of the Fréchet distance
actually enables the aggregation of the given curves by a curve of small complexity.

(k, `)-center clustering and (k, `)-median clustering are derived from the famous k-center clustering
and k-median clustering methods of points in Rd; we will look at these problems in detail in
Chapter 4. For k = 1 they correspond to the well-known minimum enclosing ball problem [252]
and the geometric median problem. Consequently, the (1, `)-center clustering problem is related
to the problem of computing a middle curve as well as computing a median trajectory that
minimizes the maximum homotopy area to the input trajectories. The (1, `)-median clustering
problem is related to the problem of computing an average sequence as well as computing a
median trajectory that minimizes the sum of homotopy areas to the input trajectories. In this
chapter, we study the (1, `)-median problem for polygonal curves under the Fréchet distance,
which we simply call `-median problem, and the related (p, q)-mean problem for point sequences
under the p-dynamic time warping distance. We also call the (1, `)-center problem the `-center
problem for simplicity. In Chapter 4 we extend our techniques and study the (k, `)-median
clustering problem and the related (k, `, p, q)-mean clustering problem.

We start our journey by studying the `-median for polygonal curves under the Fréchet distance.

3.1 Polygonal Curves

First, we formally define the problem that we study in this section, then we closely review the
related work.

3.1.1 Problem Definition

Arguably the most natural way to formulate this problem is as optimization problem of computing
a polygonal curve of bounded (constant) complexity that minimizes the Fréchet distances between
the given curves and the median curve.

Problem 3.1.1 The `-median (optimization) problem is defined as follows, where ` ∈ N>1
is a fixed (constant) parameter of the problem: given a set T = {τ1, . . . , τn} ⊂ Rdm of polygonal
curves, compute a polygonal curve c ∈ Rd` , such that cost(T, c) = ∑n

i=1 dF(τi, c) is minimal.

The following is a corresponding decision problem. Here we have an additional parameter r and
the problem asks whether there exists a polygonal curve of bounded complexity such that the
sum of distances to the given curves does not exceed r.
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Problem 3.1.2 The `-median decision problem is defined as follows, where ` ∈ N>1 is a
fixed (constant) parameter of the problem: given a set T = {τ1, . . . , τn} ⊂ Qd

m of polygonal curves
and a number r ∈ Q, decide whether there exists a curve c ∈ Rd` , such that cost(T, c) ≤ r.

It is easy to see that Problem 3.1.1 and Problem 3.1.2 are related: if we have an algorithm
A that decides Problem 3.1.2, we can use it as a black box in a modified exponential search
[34] to approximate Problem 3.1.1 (with restriction T ⊂ Qd

m) within any factor 1 + ε, in time
O((log(r∗) + log(1/ε)) ·TA(m,n)), where r∗ = arg minc∈Rd

`
cost(T, c) and TA denotes the running

time of A. Note that we may not solve the problem exactly, since we require that r ∈ Q and r∗
may be an element of R \Q.

In the following sections, we are shorthand referring to the `-median by median.

3.1.2 Related Work

This `-median problem is relatively unexplored. It has only recently been introduced by Driemel
et al. [87] in 2016. They developed the first (1 + ε)-approximation algorithm and a constant
factor approximation algorithm for this problem, for curves in R. The algorithms both have
running time in O(nm logm) (for constant ε). Very recently, Buchin et al. [61] proved that the
problem is NP-hard and W[1]-hard in n.

Contrary to the related `-center problem, for polygonal curves under the Fréchet distance,
which asks to compute a polygonal curve in Rd of complexity at most ` that minimizes the
maximum Fréchet distance between the center curve and the input curves and was also introduced
by Driemel et al. [87], there is no result on the hardness of approximation. The `-center problem
is also NP-hard [59] and there exists a (1 + ε)-approximation algorithm and a constant factor
approximation algorithm for curves in R [87], which also have running time in O(nm logm) (for
constant ε). Furthermore, there is a constant factor approximation algorithm for the `-center
problem for curves in Rd with running time O(nm logm+m3 logm) by Buchin et al. [59]. They
also proved that the problem is NP-hard to approximate1 within a factor of (1.5− ε) for d = 1
and (2.25− ε) for d ≥ 2. Also, they proved that it remains NP-hard even if the restriction on
the complexity of the center curve is dropped.

We summarize the main algorithmic results on both problems under the Fréchet distance.

Problem Approx. Fact. Running Time Ambient Space Reference

`-center
1 + ε O(nm logm), ε const. R [87]
3 O(nm logm+m3 logm) R2

[59]6 O(nm logm+m3 logm) Rd

`-median

1 + ε O(nm logm), ε const. R [87]
1 + ε (bi-criteria)

n · 2O(ε−2+logm)
Rd

Corollary 3.1.26
3 + ε (bi-criteria) Corollary 3.1.22

34 O(m3 logm+ logn) Corollary 3.1.18
65 O((n+ log5 n)m logm) R [87]

Both problems and variants of them have also been studied under the discrete Fréchet distance.
Just as their counterparts under the continuous Fréchet distance, they are NP-hard [59, 61]. The
`-median problem under the discrete Fréchet distance is W[1]-hard in n and the `-center problem

1Where ` is part of the input.
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under the discrete Fréchet distance is NP-hard to approximate within a factor of (2 − ε) for
d = 1 and (2.25− ε) for d ≥ 2 [59]. When the vertices of the sought center curve are restricted to
come from the set of all vertices of all input curves, the `-center problem is called middle curve
problem [16, 64]. This problem and its variants are NP-hard and W[1]-hard in n [64].

We summarize the main algorithmic results on these problems under the discrete Fréchet distance:

Problem Approx. Fact. Running Time Ambient Space Reference

`-center
1 O((mn)2`m log(mn)) R2

[61]1 + ε O((ε−d` + logm)mn) Rd3 O(nm logm) [59]

`-median 1 + ε
nm log2(m)2O(ε−1 log ε−1)

Rd [207]
O(ε−d`n2m) [61]

middle curve 1 O((mn)`m logm) Rd [64]2 + ε O((ε−d` + logm)mn)

To the best of our knowledge, there are only results on the NP-hardness of the `-median problem in
the literature and it is unknown whether the problem is contained in NP or any other complexity
class. In the following, we show that the problem is contained in ∃R.

3.1.3 Exact Computation

Here we present a real verification algorithm for deciding Problem 3.1.2, thereby proving that
Problem 3.1.2 is contained in ∃R. The idea of the algorithm is to guess the median and the
corresponding distances between the input curves and the median and to then verify them using
Alt and Godau’s algorithm.

Theorem 3.1.3 The `-median decision problem (Problem 3.1.2) is contained in ∃R.

Proof. It is easy to see that Problem 3.1.2 can be phrased as a discrete decision problem Q,
see Definition 2.5.9. An instance I is structured as follows: the first two integers represent the
numerator and the denominator of r, the third integer denotes the number of input curves n
and the following n integers m1, . . . ,mn represent their complexities. The following ∑n

i=1 2mi · d
integers represent the rational coordinates (numerator and denominator) of the input curves.
Clearly, Q(I) = 1, iff there exists a curve c ∈ Rd` , such that ∑n

i=1 dF(τi, c) ≤ r and else Q(I) = 0.

A real verification algorithm A for Q proceeds as follows, where a solution for Q is one integer
value, followed by a sequence of up to d` real values that represent the complexity and the
coordinates of a curve c and n real values r1, . . . , rn that represent the distances between c and
the input curves: A checks whether ∑n

i=1 ri ≤ r, if so, it sequentially runs Alt and Godau’s
algorithm to check whether dF(τi, c) ≤ ri for all i ∈ [n]. If any of the tests fails, A rejects, else it
accepts.

Clearly, A accepts, if and only if, there is a solution to I. The running time of A is in
O(ndm` log(m`)), thus A fulfills the requirements of Definition 2.5.9. Furthermore, by The-
orem 2.5.10 the claim follows.
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On the positive side, Theorem 3.1.3 helps us to narrow down the real complexity of computing
a median, which is somewhere in between NP and ∃R. On the negative side, the utilized real
verification algorithm is highly nondeterministic, which does not help us to understand the
structure of the problem. In the following we aim to reduce the amount of nondeterminism and
provide a better understanding of the geometry of the problem. As we will see, the developed
approach still depends on nondeterminism and a completely deterministic approach is not in
sight.

Assume that we are only provided with the distances between the curves in T and an optimal
median c. Based on this knowledge we are able to narrow down the region containing c, see
Fig. 3.1. In the following, we show that this information is even sufficient to compute c or another
optimal median. For this purpose we define and analyze a generalization of Alt and Godau’s
free space diagram. We assume that each curve τ ∈ T is assigned a radius rτ ∈ R≥0 and we
use the generalized free space diagram to decide whether there exists a polygonal curve c that
simultaneously satisfies dF(c, τ) ≤ rτ for all τ ∈ T and if existent, compute c. Just as Alt and
Godau we solve the problem by deciding whether there exists a polygonal curve in the free space
diagram that satisfies certain properties. Since our problem involves n curves, our generalized
free space diagram has n dimensions instead of only two.

We note that a related approach has been introduced to compute a mean curve of a set of
polygonal curves under the weak Fréchet distance [134]. However, this approach uses product
spaces over simplicial complexes in Rd. Another related approach uses an n-dimensional free
space diagram to compute the Fréchet distance of a set of curves [90]. This extension of the
Fréchet distance can be pictured as the minimum length of a rope that connects n people walking
on n curves that may vary in speed without ever going backwards.

Figure 3.1: Three polygonal curves with enclosed white region that contains the sought median
curve. The start-, respectively endpoints, are restricted to lie within the corresponding
gray shaded areas inside the white region.

We start by generalizing the cells used to construct the free space diagram. We give a slightly
modified definition for two-dimensional cells using the radii rτ . Note that free space cells are
subsets of the two-dimensional Euclidean space.

Definition 3.1.4 The free space cell of two curves σ, τ ∈ T , i ∈ {2, . . . , |σ|} and j ∈
{2, . . . , |τ |} is the set Cσ,τ,i,j = {(λ1, λ2) ∈ [0, 1]2 | Iσ,τ,i,j(λ1, λ2) 6= ∅}, where

Iσ,τ,i,j(λ1, λ2) = B
(
lp
(
vσi−1, v

σ
i , λ1

)
, rσ
)
∩ B

(
lp
(
vτj−1, v

τ
j , λ2

)
, rτ
)
⊂ Rd

is the locus of σ, τ, i, j and (λ1, λ2), and vσi , respectively vτj , is the ith vertex of σ, respectively
jth vertex of τ .

When we move through such a cell and track the loci of our trajectory, we capture a region that
is covered by these loci. This region, if existent, contains the sought curve c by definition.
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Definition 3.1.5 The locus cover of a free space cell Cσ,τ,i,j is the set

Lσ,τ,i,j =
⋃

(λ1,λ2)∈Cσ,τ,i,j

Iσ,τ,i,j(λ1, λ2).

A locus cover is just a union of loci, which are intersections of two balls of (possibly) different
radius. It is easy to see that loci are convex and we prove that the locus covers and the cells
themselves are also convex, which makes both easier to handle from both the computational and
analytical sight.

Lemma 3.1.6 For any non-empty set T ⊂ Rd∗, all σ, τ ∈ T , i ∈ {2, . . . , |σ|} and j ∈ {2, . . . , |τ |}
the free space cell Cσ,τ,i,j, as well as the locus cover Lσ,τ,i,j, is a convex set.

Proof. The condition
Iσ,τ,i,j(λ1, λ2) 6= ∅

is equivalent to
∥∥∥lp (vσi−1, v

σ
i , λ1

)
− lp

(
vτj−1v

τ
j , λ2

)∥∥∥ ≤ r′, for r′ = rσ + rτ . Therefore, Cσ,τ,i,j is
an r′-free space cell in the sense of Definition 2.7.2 and is convex by Proposition 2.7.3.

For λ ∈ [0, 1] we define bσ(λ) = B
(
lp
(
vσi−1, v

σ
i , λ

)
, rσ
)
and bτ (λ) = B

(
lp
(
vτj−1, v

τ
j , λ

)
, rτ
)
for

brevity. By Definitions 3.1.4 and 3.1.5 and by distributivity we have that

Lσ,τ,i,j =
⋃

(λ1,λ2)∈Cσ,τ,i,j

(bσ(λ1) ∩ bτ (λ2)) =
⋃

λ2∈[0,1]

⋃
λ1∈[0,1]

(bσ(λ1) ∩ bτ (λ2))

=
⋃

λ2∈[0,1]

 ⋃
λ1∈[0,1]

bσ(λ1)

 ∩ bτ (λ2)

 =

 ⋃
λ1∈[0,1]

bσ(λ1)

⋂ ⋃
λ2∈[0,1]

bτ (λ2)

 .
Since ⋃λ1∈[0,1] bσ(λ1), respectively ⋃λ2∈[0,1] bτ (λ2), is just the convex hull of bσ(0) and bσ(1),
respectively bτ (0) and bτ (1), Lσ,τ,i,j is the intersection of convex sets and is thus convex itself.

Now, we generalize these definitions to the given set of curves T . Using the intersection of balls
instead of pairwise distances is crucial, because three or more balls can have empty intersection,
although all pairwise intersections are non-empty. Note that the generalized free space cells are
subsets of the n-dimensional Euclidean space.

Definition 3.1.7 The free space cell of T and (i1, . . . , in) ∈
n∏
i=1
{2, . . . , |τi|} is the set

C(i1,...,in) = {(λ1, . . . , λn) ∈ [0, 1]n | I(i1,...,in)(λ1, . . . , λn) 6= ∅},

where
I(i1,...,in)(λ1, . . . , λn) =

⋂
j∈[n]

B
(
lp
(
v
τj
ij−1v

τj
ij
, λj
)
, rτj

)
⊂ Rd

is the locus of T , (i1, . . . , in) and (λ1, . . . , λn), and vτjij is the ij th vertex of τj.

The generalization of the locus cover is straight-forward. See Fig. 3.2 for a depiction in R2.

Definition 3.1.8 The locus cover of a free space cell C(i1,...,in) is the set

L(i1,...,in) =
⋃

(λ1,...,λn)∈C(i1,...,in)

I(i1,...,in)(λ1, . . . , λn).
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Figure 3.2: The white enclosed region is the locus cover of the free space cell of the three line
segments in green, blue and red.

Using Lemma 3.1.6, we prove that the generalized cells and their locus covers are convex sets.

Proposition 3.1.9 For any non-empty set T ⊂ Rd∗ and all (i1, . . . , in) ∈ ∏n
i=1{2, . . . , |τi|}, the

free space cell C(i1,...,in), as well as the locus cover L(i1,...,in), is a convex set.

Proof. Let {τ1, . . . , τn} = T . We prove the claim by induction on n. For the case n = 2,
Cτ1,τ2,i1,i2 and Lτ1,τ2,i1,i2 are convex by Lemma 3.1.6. For λ ∈ [0, 1] and i ∈ [n] we define
bτi(λ) = B

(
lp
(
v
τj
ij−1v

τj
ij
, λ
)
, rτj

)
for brevity, where vτjij is the ijth vertex of τj .

Assume the claim holds for C(i1,...,in) and L(i1,...,in). Now, consider T ′ = T ∪ {τn+1}, with
τn+1 ∈ Rd∗, in+1 ∈ {2, . . . , |τn+1|} and bτn+1(λ) = B

(
lp
(
v
τn+1
in+1−1v

τn+1
in+1

, λ
)
, rτn+1

)
for λ ∈ [0, 1].

Let the corresponding cell and locus cover be denoted CT ′,(i1,...,in+1) and LT ′,(i1,...,in+1).

By Definitions 3.1.7 and 3.1.8, we obtain

LT ′,(i1,...,in+1) =
⋃

(λ1,...,λn+1)∈CT ′,(i1,...,in+1)

 ⋂
j∈[n+1]

bτj (λj)


=

⋃
(λ1,...,λn+1)∈[0,1]n+1

 ⋂
j∈[n+1]

bτj (λj)

 =
⋂

j∈[n+1]

 ⋃
λj∈[0,1]

bτj (λj)


=

 ⋃
(λ1,...,λn)∈[0,1]n

 ⋂
j∈[n]

bτj (λj)

⋂ ⋃
λn+1∈[0,1]

bτn+1(λn+1)


=

 ⋃
(λ1,...,λn)∈C(i1,...,in)

 ⋂
j∈[n]

bτj (λj)


⋂

 ⋃
λn+1∈[0,1]

bτn+1(λn+1)


= L(i1,...,in) ∩

 ⋃
λn+1∈[0,1]

bτn+1(λn+1)

 , (I)

where the third and fourth equation follow from distributivity.

Since ⋃λn+1∈[0,1] bτn+1(λn+1) is just the convex hull of bτn+1(0) and bτn+1(1) and L(i1,...,in) is
convex by induction hypothesis, LT ′,(i1,...,in+1) is the intersection of convex sets and is thus convex
itself.

Now, assume that CT ′,(i1,...,in+1) is not convex. Then there exist (κ1, . . . , κn+1), (λ1, . . . , λn+1) ∈
CT ′,(i1,...,in+1) and t ∈ [0, 1], such that (1−t) ·(κ1, . . . , κn+1)+t ·(λ1, . . . , λn+1) 6∈ CT ′,(i1,...,in+1), but
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(1−t) ·(κ1, . . . , κn)+t ·(λ1, . . . , λn) ∈ C(i1,...,in) by induction hypothesis. Using Eq. (I), this means
that bτn+1(κn+1) and bτn+1(λn+1) intersect L(i1,...,in), but bτn+1((1− t) · κn+1 + t · λn+1) does not.
Let p ∈ bτn+1(κn+1)∩L(i1,...,in) and q ∈ bτn(λn+1)∩L(i1,...,in). By convexity, pq ⊆ L(i1,...,in). Since
every xy with x ∈ bτn+1(κn+1), y ∈ bτn+1(λn+1) satisfies xy ∩ bτn+1((1− t′) · κn+1 + t′ · λn+1) 6= ∅
for any t′ ∈ [0, 1] by definition, pq ∩ bτn+1((1 − t) · κn+1 + t · λn+1) 6= ∅ holds, which implies
bτn+1((1− t) · κn+1 + t · λn+1) ∩ L(i1,...,in) 6= ∅, a contradiction.

We can now define the free space diagram, which is a subset of the n-dimensional Euclidean
space that uses the free space cells as elementary building blocks.

Definition 3.1.10 The free space diagram of T is the point set

F =
⋃

(i1,...,in)∈
n∏
i=1
{2,...,|τi|}

{(λ1 + i1 − 1, . . . , λn + in − 1) | (λ1, . . . , λn) ∈ C(i1,...,in)}.

We note that in this definition, every two adjacent cells share at least one common point and a
point p = (p1, . . . , pn) ∈ F can be found in the cell with index

ι(p) = (min{bp1c+ 1, |τ1|}, . . . ,min{bpnc+ 1, |τn|}).

For brevity, we now denote the locus of a point p = (p1, . . . , pn) ∈ F by

I(p) = Iι(p)(1(p1 < |τ1|) · (p1−bp1c)+1(p1 ≥ |τ1|), . . . ,1(pn < |τn|) · (pn−bpnc)+1(pn ≥ |τn|)).

Like Alt and Godau, we are interested in computing a certain curve through the free space
diagram.

Definition 3.1.11 For a subset X ⊆ Rn, we define by C(X) the set of curves σ : [0, 1] → X.
By M(X) we define the subset of curves σ : [0, 1]→ X, such that for every i ∈ [n] the function
σi : [0, 1]→ R, which denotes the ith component of σ(t), is increasing in t.

We define the reachable free space, which captures the properties of the reparameterizations used
in the Fréchet distance.

Definition 3.1.12 The reachable free space of T is the point set

RF = {p ∈ F | ∃σ ∈M(F)∃t ∈ [0, 1] : (σ(0) = (1, . . . , 1) ∧ σ(t) = p)}.

We formally prove our main intuition, which is analogous to the key observation used in Alt and
Godau’s algorithm [21].

Theorem 3.1.13 If, and only if, (|τ1|, . . . , |τn|) ∈ RF then there exists a curve σ : [0, 1]→ Rd,
that satisfies dF(σ, τ) ≤ rτ for all τ ∈ T .

Proof. If (|τ1|, . . . , |τn|) ∈ RF , let γ ∈ M(F) be a curve in F with γ(0) = (1, . . . , 1) and
γ(1) = (|τ1|, . . . , |τn|). γ corresponds to a closed region in Rd, i.e., the union of the loci of the
points of γ. This region must contain the sought curve σ by Definitions 3.1.7 and 3.1.8.

Now, for p ∈ F we define

f(p) = lexicographically smallest point in I(p).
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Since the lexicographic order on the Cartesian product over reals is a total order (see e.g. [138]),
I(p) is a compact set and p ∈ F , such a unique element exists and thus f(p) is well-defined.

For i ∈ [n], let vτi1 , . . . v
τi
|τi| be the vertices, of τi. Let V = maxi∈[n] maxj∈{2,...,|τi|}‖v

τi
j − v

τi
j−1‖.

Now, by Definition 3.1.7 we have for any two points p, q ∈ F that ‖f(p)−f(q)‖
‖p−q‖ is maximal iff

moving from p to q translates the border of a ball determining f(p) to f(q), such that the
center of this ball traverses a maximum length edge. Therefore, ‖f(p)−f(q)‖

‖p−q‖ ≤ V and hence f is
V -Lipschitz (see Definition 2.2.4).

Since γ and f are continuous in their respective domains, the function σ = f ◦ γ is continuous,
too. σ is the curve we are looking for. We now prove that σ has distance at most rτ to every
τ ∈ T . For every i ∈ [n], by definition of γ we have dF(σ, τi) ≤ maxt∈[0,1]‖σ(t) − τ ′i(t)‖ ≤ rτi ,
where

τ ′i(t) =

τi(0), if t = 0
lp
(
vτidγi(t)e−1v

τi
dγi(t)e, λi(t)

)
, else,

γi(t) denotes the ith component of γ(t) and λi(t) = γi(t) − dγi(t)e + 1. Namely, τ ′i and τi
represent the same curve but under different parameterizations, where the parameterization of τ ′i
is determined by γ and adheres to the restrictions imposed by the Fréchet distance by definition
of γ.

If (|τ1|, . . . , |τn|) 6∈ RF , either there is no γ ∈ C(F) with γ(0) = (1, . . . , 1) and γ(1) =
(|τ1|, . . . , |τn|). Therefore by Definition 3.1.7 there is at least one τ ∈ T and a t ∈ [0, 1]
such that there is no point p ∈ Rd with

• ‖τ(t)− p‖ ≤ rτ and

• for all τ ′ ∈ T \ {τ} there is a t′ ∈ [0, 1] such that ‖τ ′(t)− p‖ ≤ rτ ′ ,

hence there is no curve σ that satisfies dF(τ, σ) ≤ rτ for all τ ∈ T . Or all curves γ ∈ C(F) with
γ(0) = (1, . . . , 1) and γ(1) = (|τ1|, . . . , |τn|) are not contained in M(F), therefore σ can not exist
by Definitions 2.3.8 and 2.3.11.

By definition the curve σ must not be polygonal and it is generally not a viable idea to compute
it, since one might not find a compact representation for it2. However, Theorem 3.1.13 enlightens
the key concepts that can be used to derive the desired result. Therefore, in the following we
aim at computing a polygonal curve of bounded complexity with similar properties. We capture
this in the following theorem.

Theorem 3.1.14 Assume that there exists a polygonal curve γ ∈ M(F) with |γ| = `, γ(0) =
(1, . . . , 1) and γ(1) = (|τ1|, . . . , |τn|). Let vγ1 , . . . , v

γ
` be the vertices of γ.

For all polygonal curves σ ∈ Rd` with vertices vσ1 ∈ I(vγ1 ), . . . , vσ` ∈ I(vγ` ) it holds that dF(σ, τ) ≤ rτ
for all τ ∈ T .

Proof. Let f be the function that maps vγi to vσi for all i ∈ [`]. We follow the argumentation
of the proof of Theorem 3.1.13 and show that we can extend f to a continuous function from
{γ(t) | t ∈ [0, 1]} to {σ(t) | t ∈ [0, 1]}, such that f ◦ γ = σ and thus dF(σ, τ) ≤ rτ for all τ ∈ T .

Assume now that we divide γ into line segments p1p2, . . . , pk−1pk, so that for each j ∈ [k − 1]
there exists a tuple (i1, . . . , in) ∈ ∏n

i=1{2, . . . , |τi|}, such that pjpj+1 ⊆ C(i1,...,in). The required
2One may represent it as a spline, but the number of polynomial pieces might be large.
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extension of f might not be possible, if the convex hull of I(pj) and I(pj+1), denoted by Hj , is
not contained in the union of loci determined by pjpj+1, denoted Ij = ⋃

t∈[0,1] I(lp (pjpj+1, t)),
for any j ∈ [k − 1].

Assume for a j ∈ [k − 1], this is the case, i.e., Hj 6⊆ Ij . Then there is a t ∈ (0, 1), q1 ∈ I(pj) and
q2 ∈ I(pj+1) such that s = lp (q1q2, t) = (1−t)q1 +tq2 6∈ Ij . Let C(i1,...,in) be the cell that contains
pjpj+1 and for a ∈ [n] let λj,a = pj,a − bpj,ac, λj+1,a = pj+1,a − bpj+1,ac, ua = lp

(
vτaia−1v

τa
ia
, λj,a

)
and wa = lp

(
vτaia−1v

τa
ia
, λj+1,a

)
, where pj,a, respectively pj+1,a, is the ath component of pj ,

respectively pj+1, and vτaia , respectively v
τa
ia+1, is the iath, respectively (ia + 1)th, vertex of τa.

From Definition 3.1.7 we know that ‖q1−ua‖ ≤ rτa and ‖q2−wa‖ ≤ rτa for each a ∈ [n]. Further,
we obtain for each a ∈ [n]:

xa = lp
(
vτaia−1v

τa
ia
, (1− t)λj,a + tλj+1,a

)
= (1− [(1− t)λj,a + tλj+1,a])vτaia−1 + [(1− t)λj,a + tλj+1,a]vτaia
= (1− λj,a + tλj,a − tλj+1,a)vτaia−1 + (λj,a − tλj,a + tλj+1,a)vτaia
= (1− t− λj,a + tλj,a)vτaia−1 + (λj,a − tλj,a + tλj+1,a)vτaia + t(1− λj+1,a)vτaia−1

= (1− t)[(1− λj,a)vτaia−1 + λj,av
τa
ia

] + t[(1− λj+1,a)vτaia−1 + λj+1,av
τa
ia

]
= (1− t)ua + twa.

Therefore, by the triangle inequality ‖s − xa‖ = ‖[(1 − t)q1 + tq2] − [(1 − t)ua + twa]‖ ≤
(1 − t)‖q1 − ua‖ + t‖q2 − wa‖ ≤ rτa and hence s ∈ Ij , a contradiction. As a consequence,
we can extend f to a continuous function that maps every point in {γ(t) | t ∈ [0, 1]} to a
certain point of {σ(t) | t ∈ [0, 1]}. Let tγ1 , . . . , t

γ
` be the instants of γ and tσ1 , . . . , t

σ
` be the

instants of σ. For i ∈ [` − 1] and p ∈ {γ(t) | t ∈ (tγi , t
γ
i+1)} we define f(p) = σ(gi(p)), where

gi(p) = min{t ∈ (tσi , tσi+1) | σ(t) ∈ I(p)}. Since I(p) is a compact set and by definition γ has no
self-intersections, each gi is well-defined and therefore f is also well-defined.

Let V = maxj∈{2,...,|σ|}‖vσj − vσj−1‖. Analogously to the argumentation in the proof of The-
orem 3.1.13 it can be shown that f is V -Lipschitz, hence f ◦γ = σ is continuous and consequently
dF(σ, τ) ≤ rτ for all τ ∈ T , which yields the claim.

Now that we have gained some insights on the geometry of the problem through Proposition 3.1.9
and Theorems 3.1.13 and 3.1.14, we formulate the rough procedure that an algorithm, which
is less dependent on nondeterminism than the algorithm described in Theorem 3.1.3, and that
utilizes these insights may follow.

Polygonal Chain Stabbing

Since free space cells are convex, analogously to Alt and Godau’s approach, we focus on their
borders. Namely, we want to compute a monotonic polygonal curve γ of complexity at most
` that starts in (0, . . . , 0), ends in (|τ1|, . . . , |τn|) and visits an admissible sequence of borders
of the reachable free space cells while always staying within the convex hull of two consecutive
borders, where a sequence of borders is admissible, if for every two consecutive borders there
exists a cell that contains them. If we have computed γ, by Theorem 3.1.14 any curve that has
its vertices in the loci of γ’s vertices is a median curve c (for suitable radii rτ1 , . . . , rτn). If we
can compute a suitable representation of these loci, we can compute the median c.

For the sake of completeness, we now formally define these borders as follows.
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Definition 3.1.15 The jth outgoing border, where j ∈ [n], of a cell C(i1,...,in) is the set

∂jC(i1,...,in) = {(λ1 + i1 − 1, . . . , λn + in − 1) | (λ1, . . . , λn) ∈ C(i1,...,in), λj = 1}.

See Fig. 3.3 for a depiction of the loci of such a border.

Figure 3.3: Loci corresponding to incoming and outgoing borders of a cell, colored with respect
to the corresponding line segment.

A similar setting has already been studied for convex objects in R2 [94, 125]. Here, a polygonal
curve is called a polygonal chain and a polygonal curve or line segment that visits (intersects) an
object is said to stab it. Since polygonal curves and line segments (when we interpret these as
polygonal curves of complexity two) are directed, an order of visitation is induced.

The central idea in these approaches is to compute a so-called wedge data structure for a
maximum length sub-sequence of objects that can be visited by a line segment in the order of the
sequence. This idea originates from Melkman and O’Rourke [199] and has later been extended
by Guibas et al. [125]. A wedge data structure yields a description of all line segments that stab
a given sequence of convex objects in order and Guibas et al. extend this idea to a chain-stabbing
wedge, whereas the former they call line-stabbing wedge and use these as a building block.

Now, an algorithm for computing such a curve γ could compute for every admissible sequence of
outgoing borders a polygonal chain stabbing wedge, thereby checking if the complexity restriction
is met, and then check if the wedge contains a monotonic curve that starts in (0, . . . , 0) and ends
in (|τ1|, . . . , |τn|). Of course this approach comes with a high running time, since there are up to
(2n−2)

∑n

i=1(|τi|−1) < 2n2m admissible sequences of borders.

Unfortunately, the approach in [125] only works for certain convex objects in R2 and our cell
borders are “complex” (n− 1)-dimensional convex objects in Rn. For computing loci there is
also an existing approach [221]. However, this approach is also limited. It only works for balls
of equal radius in R3 and while polygonal curves in R3 are a common input, the restriction to
equal radii is not acceptable, though.

In summary, we have found a potentially viable approach to compute a median curve c, when
provided with the optimal radii rτ1 = dF(c, τ1), . . . , rτn = dF(c, τn). The running time of
this approach can already be bounded as Ω(22n2−2n). However, there are still open problems:
extending the approaches of Guibas et al. and Ramos.

3.1.4 Randomized Approximation Algorithms

We have gained geometrical insights into the problem, but failed to design a deterministic
algorithm that solves the problem exactly. This is not very surprising, since the problem is
related to the geometric median problem (for curves of complexity one), for which no exact
algorithm exists (under standard models of computation). Since the problem is also NP-hard,
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we now focus on efficient approximation algorithms. In the following, we formulate randomized
approximation algorithms, which we successively improve by developing some central ideas.

Prelude

We describe a simple sampling scheme that can be applied to any data set from a metric space and
yields a good approximation in reasonable time. However, a drawback is that the approximate
median stems from the data set itself and therefore does not adhere to the complexity restriction
on the median curve. In detail, we draw two uniform samples from the input. The first sample
contains so-called candidates and the second sample contains so-called witnesses. The candidates
contain a good approximate median with high probability and the witnesses are used to evaluate
the cost of each candidate. Finally, the candidate that evaluates best against the witnesses is
returned. We formally prove that this certain candidate is a good approximate median with high
probability.

Proposition 3.1.16 Given a finite set T ⊂ Rdm, for any ε, δ ∈ (0, 1/2) we can use a uniform
sample S of cardinality O(ln(1/δ)/ε) of candidates and a uniform sample W of cardinality
O(ln(|S|/δ)/ε2) of witnesses, to obtain with probability at least 1 − δ a (2 + ε)-approximate
`-median for T with up to m vertices.

Proof. Let c∗ ∈ arg minc∈Rd
`

∑
τ∈T dF(c, τ) be an optimal `-median for T . Since S is a uniform

sample and by linearity we have Exp[dF(s, c∗)] = 1
|T |
∑
τ∈T dF(τ, c∗), for any s ∈ S. Now, let

B1+ε =
{
τ ∈ T | dF(τ, c∗) ≤ (1 + ε)

|T |
∑
τ∈T

dF(τ, c∗)
}
.

For any σ ∈ B1+ε by the triangle inequality it holds that∑
τ∈T

dF(τ, σ) ≤
∑
τ∈T

(dF(τ, c∗) + dF(c∗, σ)) ≤ (2 + ε)
∑
τ∈T

dF(τ, c∗).

Thus, it holds that cost(T, σ) ≤ (2 + ε) cost(T, c∗). For i ∈ [|S|], let Fi denote the event that
si 6∈ B1+ε. By Markov’s inequality we have that Pr[Fi] ≤ 1

1+ε < 1.

Further, by independence and by choosing |S| ≥
⌈

2 ln(2/δ)
ε

⌉
the probability that B1+ε ∩ S = ∅ is

Pr

 |S|⋂
i=1

Fi

 ≤ 1
(1 + ε)|S|

≤ 1
exp( ε2 |S|)

≤ exp(−εln(2/δ)/ε) = δ

2 .

Let c∗S ∈ arg mins∈S
∑
τ∈T dF(τ, s). We do not want any bad candidate t ∈ S with∑τ∈T dF(τ, t) >

(1 + ε)∑τ∈T dF(τ, c∗S) to have ∑w∈W dF(w, t) ≤∑w∈W dF(w, c∗S). By Theorem 2.4.19, a union
bound over the elements of S and by choosing |W | ≥ 64

ε2 ln(2|S|/δ), the probability for this event
is bounded by

|S| exp
(
−ε

2|W |
64

)
≤ |S| exp (− ln (2|S|/δ)) ≤ δ

2 .

Now, if we take the s ∈ S that minimizes ∑w∈W dF(w, s), by a union bound, with probability at
least 1− δ it holds that∑

τ∈T
dF(τ, s) ≤ (1 + ε)

∑
τ∈T

dF(τ, c∗S) ≤ (1 + ε)(2 + ε)
∑
τ∈T

dF(τ, c∗) ≤ (2 + 4ε)
∑
τ∈T

dF(τ, c∗).

The claim follows by rescaling ε by 1
4 .
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A great benefit is that this algorithm can be implemented to run in timeO
(
ln
(

ln(1/δ)
δε

)
ε−2m2 logm

)
using two for-loops (one over the candidates and one over the witnesses) and Alt and Godau’s
algorithm to compute the distances. For this reason, in the following we refine and extend this
idea.

Simple and Fast 34-Approximation

Here, we present a 34-approximation algorithm for the `-median problem which builds upon
the ideas of Proposition 3.1.16. To fix the problem with the complexity of the resulting
curve, we simplify the candidate s ∈ S that evaluated best against the witnesses W using an
efficient minimum-error `-simplification approximation algorithm. Though this downgrades the
approximation factor, Algorithm 3 is very fast in terms of the input size. Indeed, it has worst-case
running time logarithmic in n and sub-quartic in m.

Algorithm 3 `-Median by Simplification
1: procedure `-Median-34-Approximation(T = {τ1, . . . , τn}, δ)
2: S ← sample d2(ln(2)− ln(δ))e curves from T uniformly and independently

with replacement
3: γ ← d−64(ln(δ)− ln(d4(ln(2)− ln(δ))e)e
4: W ← sample γ curves from T uniformly and independently with replacement
5: t← arbitrary elem. from arg min

s∈S
cost(W, s)

6: return simpl(`, α, t) . [21, 149]

Next, we prove the quality of approximation of Algorithm 3.

Theorem 3.1.17 Given a parameter δ ∈ (0, 1) and a set T = {τ1, . . . , τn} ⊂ Rdm of polygonal
curves, Algorithm 3 returns with probability at least 1− δ a polygonal curve c ∈ Rd` , such that
cost(T, c∗) ≤ cost(T, c) ≤ (6 + 7α) · cost(T, c∗), where c∗ is an optimal `-median for T and α is
the approximation factor of the utilized minimum-error `-simplification approximation algorithm.

Proof. First, we know that dF(τ, simpl(`, α, τ)) ≤ α ·dF(τ, c∗), for each τ ∈ T , by Definition 2.8.5.

Now, there are at least n
2 curves in T that are within distance at most 2 cost(T,c∗)

n to c∗. Otherwise,
the cost of the remaining curves would exceed cost(T, c∗), which is a contradiction. Hence, each
s ∈ S has probability at least 1

2 to be within distance 2 cost(T,c∗)
n to c∗.

Since the elements of S are sampled independently we conclude that the probability that every
s ∈ S has distance to c∗ greater than 2 cost(T,c∗)

n is at most (1− 1
2)|S| ≤ exp

(
−2(ln(2)−ln(δ))

2

)
= δ

2 .

Now, assume there is a s ∈ S with dF(s, c∗) ≤ 2 cost(T,c∗)
n . We do not want any t ∈ S \ {s} with

cost(T, t) > 2 cost(T, s) to have cost(W, t) ≤ cost(W, s). Using Theorem 2.4.19 we conclude that
this happens with probability at most

exp
(
−−64(ln(δ)− ln(d4(ln(2)− ln(δ))e)

64

)
≤ δ

d4(ln(2)− ln(δ))e ≤
δ

2|S| ,

for each t ∈ S \ {s}.
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Using a union bound over all bad events, we conclude that with probability at least 1 − δ,
Algorithm 3 samples a curve s ∈ S, with dF(s, c∗) ≤ 2 cost(T, c∗)/n and returns the simplification
c = simpl(`, α, t) of a curve t ∈ S, with cost(T, t) ≤ 2 cost(T, s). The triangle inequality yields∑

τ∈T
(dF(t, c∗)− dF(τ, c∗)) ≤

∑
τ∈T

dF(t, τ) ≤ 2
∑
τ∈T

dF(s, τ) ≤ 2
∑
τ∈T

(dF(τ, c∗) + dF(c∗, s)),

which is equivalent to

n · dF(t, c∗) ≤ 2 cost(T, c∗) + cost(T, c∗) + 2n2 cost(T, c∗)
n

⇐⇒ dF(t, c∗) ≤ 7 cost(T, c∗)
n

.

Hence, we have

cost(T, c) =
∑
τ∈T

dF(τ, simpl(`, α, t)) ≤
∑
τ∈T

(dF(τ, t) + dF(t, simpl(`, α, t)))

≤ 2 cost(T, s) +
∑
τ∈T

α · dF(t, c∗) ≤ 2
∑
τ∈T

(dF(τ, c∗) + dF(c∗, s)) + 7α · cost(T, c∗)

≤ 2 cost(T, c∗) + 4 cost(T, c∗) + 7α · cost(T, c∗) = (6 + 7α) cost(T, c∗).

The lower bound cost(T, c∗) ≤ cost(T, c) follows from the fact that the returned curve has `
vertices and that c∗ has minimum cost among all curves with ` vertices.

Combining Theorem 3.1.17 and Theorem 2.8.6, we obtain the following corollary.

Corollary 3.1.18 Given a parameter δ ∈ (0, 1) and a set T ⊂ Rdm of polygonal curves, Al-
gorithm 3 returns with probability at least 1− δ a polygonal curve c ∈ Rd` , such that

cost(T, c∗) ≤ cost(T, c) ≤ 34 · cost(T, c∗),

where c∗ is an optimal `-median for T , in time O(m2 log(m) ln2(1/δ) + m3 logm), when the
algorithms by Imai and Iri [149] and Alt and Godau [21] are combined for `-simplification.

Proof. We use Theorem 2.8.6 together with Theorem 3.1.17, which yields an approximation
factor of 34.

Now, drawing the samples takes time O(ln(1/δ)) each. Evaluating the samples against each
other takes time O(m2 log(m) ln2(1/δ)) and simplifying one of the curves that evaluates best
takes time O(m3 logm). We conclude that Algorithm 3 has running time O(m2 log(m) ln2(1/δ) +
m3 logm).

An Outlook to the (k, `)-Median Problem

In Chapter 4 we present an approximation algorithm for (k, `)-median clustering. In fact, this
algorithm is more general, it can approximate every generalized k-median clustering problem, when
provided with a problem-specific plugin algorithm for solving/approximating the corresponding
median problem. Explanation and formal details are provided in Section 4.2. Here, it suffices
to know that any algorithm serving as such a plugin is required to have an additional input
β ∈ [1,∞) and needs to give a (probabilistic) guarantee that its return value, which may comprise
a set of items, contains an (approximate) median for an arbitrary fixed subset T ′ of the input
that has size at least a β-fraction of the input size.
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The following algorithms are designed to fulfill these requirements, such that they can be used as
the required plugin. However, if we set β = 1 these algorithms can also be used to approximate
the `-median problem. All we have to do is to evaluate the candidates that the algorithms return
against the input and return the best one.

(3 + ε)-Approximation by Simple Shortcutting

Here, we present an algorithm that returns candidates, containing with high probability a
(3 + ε)-approximate `-median of complexity at most 2`− 2 for a subset that takes a constant
fraction of the input.

To achieve a better approximation factor than that of Algorithm 3, we want to avoid simplification.
We note that the approximation factor of Algorithm 3 can be improved – for example by using a
larger candidate sample, but not by much. Instead of simplification we want to discretize the
regions containing the median’s vertices by well-adjusted grids and compute a good approximate
median by enumeration and validation, which is a basic approach in geometric approximation
algorithms. Since we are working with the continuous variant of the Fréchet distance there is a
considerable drawback: the vertices of an `-median c∗ do not have to be located in the balls of
radius r = dF(τ, c∗), centered at an input curve τ ’s vertices – due to the continuous nature they
can be located anywhere with distance r to an edge.

We circumvent this by introducing so-called shortcutting lemmata. Shortcutting is a technique,
which has already been used in the literature [54, 82, 83], and whose underlying idea is simple:
replace a sub-curve by the line segment determined by its start point and end point. It has
mainly been used for partial curve matching under the Fréchet distance, but it also shows to be
very effective for our purposes, when shortcuts are carefully introduced. We start with a simple
lemma, which states that we can indeed search the aforementioned balls if we accept a resulting
curve of complexity at most 2`− 2. See Fig. 3.4 for a visualization.

Figure 3.4: τ is a curve from the input that is close to an optimal median σ. By inserting a
shortcut we can find a curve σ′ that has the same distance to τ as σ but with all
vertices contained in the balls of radius dF(τ, σ) centered at τ ’s vertices.

Lemma 3.1.19 Let σ, τ ∈ Rd∗ be polygonal curves. Let vτ1 , . . . , vτ|τ | be the vertices of τ and let
r = dF(σ, τ). There exists a polygonal curve σ′ ∈ Rd2|σ|−2 with dF(σ′, τ) ≤ dF(σ, τ) and every
vertex contained in at least one of B(vτ1 , r), . . . , B(vτ|τ |, r).

Proof. Let vσ1 , . . . , vσ|σ| be the vertices of σ. Further, let tσ1 , . . . , tσ|σ| and tτ1 , . . . , tτ|τ | be the instants
of σ and τ , respectively. Also, for h ∈ H (recall that H is the set of all continuous bijections
h : [0, 1] → [0, 1] with h(0) = 0 and h(1) = 1), let rh = max

t∈[0,1]
‖σ(t) − τ(h(t))‖ be the distance
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realized by h. We know from Proposition 2.3.12 that there exists a sequence (hx)∞x=1 in H, such
that lim

x→∞
rhx = dF(σ, τ) = r.

Now, fix an arbitrary h ∈ H and assume there is a vertex vσi of σ, with instant tσi , that is
not contained in any of B(vτ1 , rh), . . . , B(vτ|τ |, rh). Let j be the maximum of [|τ | − 1], such that
tτj ≤ h(tσi ) ≤ tτj+1. So vσ is matched to τ(tτj )τ(tτj+1) by h. We modify σ in such a way, that vσi is
replaced by two new vertices that are elements of B(vτj , rh) and B(vτj+1, rh), respectively.

Namely, let t− be the maximum of [0, tσi ), such that σ(t−) ∈ B(vτj , rh) and let t+ be the minimum
of (tσi , 1], such that σ(t+) ∈ B(vτj+1, rh). These are the instants when σ leaves B(vτj , rh) before
visiting vσi and σ enters B(vτj+1, rh) after visiting vσi , respectively. Let σ′h be the piecewise defined
curve, defined just like σ on [0, t−] and [t+, 1], but on (t−, t+) it connects σ(t−) and σ(t+) with
the line segment s(t) =

(
1− t−t−

t+−t−
)
τ(t−) + t−t−

t+−t− τ(t+).

We know that ‖σ(t−)− τ(h(t−))‖ ≤ rh and ‖σ(t+)− τ(h(t+))‖ ≤ rh. Note that tτj ≤ h(t−) and
h(t+) ≤ tτj+1 since σ(t−) and σ(t+) are the closest points to vσi on σ that have distance rh to vτj
and vτj+1, respectively, by definition. Therefore, τ has no vertices between the instants h(t−) and
h(t+). Now, h can be used to match σ′h|[0,t−) to τ |[0,h(t−)) and σ′h|(t+,1] to τ |(t+,1] with distance
at most rh. Since σ′h|[t−,t+] and τ |[h(t−),h(t+)] are just line segments, they can be linearly matched
to each other with distance at most max{‖σ′h(t−)− τ(h(t−))‖, ‖σ′h(t+)− τ(h(t+))‖} ≤ rh. We
conclude that dF(σ′h, τ) ≤ rh.

Because this modification works for every h ∈ H, we have dF(σ′h, τ) ≤ rh for every h ∈ H. Thus,
lim
x→∞

dF(σ′hx , τ) ≤ dF(σ, τ) = r.

Now, to prove the claim, for every h ∈ H we apply this modification to vσi and successively to
every other vertex vσ

′
h
i of the resulting curve σ′h, not contained in one of the balls, until every

vertex of σ′h is contained in a ball. Note that the modification is repeated at most |σ|−2 times for
every h ∈ H, since the start and end vertex of σ must be contained in B(vτ1 , rh) and B(vτ|τ |, rh),
respectively. Therefore, the number of vertices of every σ′h can be bounded by 2 · (|σ| − 2) + 2
since every other vertex must not lie in a ball and for each such vertex one new vertex is created.
Thus, |σ′h| ≤ 2|σ| − 2.

We now present Algorithm 4, which works similar as Algorithm 3, but uses shortcutting instead
of simplification. As a consequence, we can achieve an approximation factor of 3 + ε instead
of a factor of (2 + ε)(1 + α) (where (2 + ε) comes from the candidate sampling and (1 + α)
comes from simplification with approximation factor α ≥ 1). Indeed, this factor is the best
we can achieve by the previously used techniques in combination with simplification. Thus, to
achieve an approximation factor of (4+ε) one would need to compute the optimal minimum-error
`-simplifications of the input curves and to the best of our knowledge, there is no such algorithm
for the continuous Fréchet distance.

Algorithm 4 utilizes the superset sampling technique (see Section 2.4.1) to fulfill the requirements
to be used as plugin algorithm for the (k, `)-median approximation algorithm to be presented in
Chapter 4. Therefore, it has running time exponential in the size of the sample S. A further
difference is that we need an upper and a lower bound on the cost of an optimal `-median c∗ for
T ′, to properly set up the grids we use for shortcutting. The lower bound can be obtained by
simple estimation, using Markov’s inequality – with high probability a multiple of the cost of
the result of Algorithm 3 run on a subset S′ ⊆ S with S′ ⊆ T ′ and with respect to S′ is a lower
bound on the cost of c∗ with respect to T ′. For the upper bound we utilize a case distinction,
which guarantees us that if we fail to obtain an upper bound on the optimal cost, the result
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of Algorithm 3 then is a good approximation (factor 2 + ε, an immediate consequence of the
distinction) and can be used instead of a best curve obtained by shortcutting.

Algorithm 4 has several parameters: β determines the size (in terms of a fraction of the input) of
the smallest subset of the input for which an approximate median can be computed, δ determines
the probability of failure of the algorithm and ε determines the approximation factor.
The algorithm first draws a sample S from the whole input and then loops over all subsets
S′ ⊆ S of certain size to find an S′ that is a sample from the subset T ′ ⊆ T . For any possible
S′ the lower and upper bound are computed, the grids are set up and all possible curves are
enumerated. Since the algorithm can not judge which set S′ is a sample from T ′, all possible
curves are returned as candidates.

Algorithm 4 `-Median for Subset by Simple Shortcutting
1: procedure `-Median-(3 + ε)-Candidates(T = {τ1, . . . , τn}, β, δ, ε)
2: ε′ ← ε/3, C ← ∅
3: S ← sample

⌈
−8β(ε′)−1(ln(δ)− ln(4))

⌉
curves from T uniformly and independently

with replacement
4: for S′ ⊆ S with |S′| = |S|

2β do
5: c← `-Median-34-Approximation(S′, δ/4) (Algorithm 3)
6: ∆← cost(S′, c), ∆l ← δn

2|S|
∆
34 , ∆u ← 1

ε′∆, C ← C ∪ {c}
7: for s ∈ S′ do
8: P ← ∅
9: for i ∈ [|s|] do

10: P ← P ∪G
(
B (vsi , (1 + ε′)∆u) , ε′

n
√
d
∆l

)
. vsi : ith vertex of s

11: C ← C ∪ set of all polygonal curves with 2`− 2 vertices from P

12: return C

We prove the quality of approximation of Algorithm 4.

Theorem 3.1.20 Given three parameters β ∈ [1,∞), δ, ε ∈ (0, 1) and a set T = {τ1, . . . , τn} ⊂
Rdm of polygonal curves, with probability at least 1 − δ the set of candidates that Algorithm 4
returns contains a (3 + ε)-approximate `-median with up to 2`− 2 vertices for any T ′ ⊆ T , if
|T ′| ≥ 1

β |T |.

Proof. We assume that |T ′| ≥ 1
β |T |. Let n′ be the number of sampled curves in S that are

elements of T ′. Clearly, Exp[n′] ≥ ∑|S|i=1
1
β = |S|

β . Also, n′ is the sum of independent Bernoulli
trials. A Chernoff bound (see Theorem 2.4.17) yields:

Pr
[
n′ <

|S|
2β

]
≤ Pr

[
n′ <

1
2 Exp

[
n′
]]
≤ exp

(
−1

4
|S|
2β

)
≤ exp

( ln(δ)− ln(4)
ε

)
=
(
δ

4

) 1
ε

≤ δ

4 .

In other words, with probability at most δ/4 no subset S′ ⊆ S, of cardinality at least |S|2β , is a
subset of T ′. We condition the rest of the proof on the contrary event, denoted by ET ′ , namely,
that there is a subset S′ ⊆ S with S′ ⊆ T ′ and |S′| ≥ |S|2β . Note that S′ is then a uniform and
independent sample of T ′ (see Section 2.4.1).
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Now, let c∗ ∈ arg min
c∈Rd

`

cost(T ′, c) be an optimal `-median for T ′. The expected distance between

s ∈ S′ and c∗ is

Exp[dF(s, c∗) | ET ′ ] =
∑
τ∈T ′

dF(c∗, τ) · 1
|T ′|

= cost(T ′, c∗)
|T ′|

.

By linearity, we have Exp[cost(S′, c∗) | ET ′ ] = |S′|
|T ′| cost(T ′, c∗). Markov’s inequality yields:

Pr
[
δ|T ′|
4|S′| cost

(
S′, c∗

)
> cost

(
T ′, c∗

) ∣∣∣ ET ′] ≤ δ

4 .

We conclude that with probability at most δ/4 we have δ|T ′|
4|S′| cost(S′, c∗) > cost(T ′, c∗).

Using Markov’s inequality again, for every s ∈ S′ we have

Pr
[
dF(s, c∗) > (1 + ε)cost(T ′, c∗)

|T ′|

∣∣∣ ET ′] ≤ 1
1 + ε

,

therefore by independence

Pr
[
min
s∈S′

dF(s, c∗) > (1 + ε)cost(T ′, c∗)
|T ′|

∣∣∣ ET ′] ≤ 1
(1 + ε)|S′|

≤ exp
(
−ε2
|S|
2β

)
.

Hence, with probability at most exp
(
− ε
⌈
− 8β(ln(δ)−ln(4))

ε

⌉
4β

)
≤ δ2/16 ≤ δ/4 there is no s ∈ S′ with

dF(s, c∗) ≤ (1 + ε) cost(T ′,c∗)
|T ′| . Also, with probability at most δ/4 Algorithm 3 fails to compute a

34-approximate `-median c ∈ Rd` for S′, cf. Corollary 3.1.18.

Using Proposition 2.4.5, we conclude that with probability at least 1− δ all the following events
occur simultaneously:

1. There is a subset S′ ⊆ S of cardinality at least |S|/(2β) that is a uniform and independent
sample of T ′,

2. there is a curve s ∈ S′ with dF(s, c∗) ≤ (1 + ε) cost(T ′,c∗)
|T ′| ,

3. Algorithm 3 computes a polygonal curve c ∈ Rd` with cost(S′, c∗S′) ≤ cost(S′, c) ≤
34 cost(S′, c∗S′), where c∗S′ ∈ Rd` is an optimal `-median for S′,

4. and it holds that δ|T ′|
4|S′| cost(S′, c∗) ≤ cost(T ′, c∗).

Since c∗S′ is an optimal `-median for S′ we get the following from the last two items:

cost
(
T ′, c∗

)
≥ δ|T ′|

4|S′| cost
(
S′, c∗

)
≥ δ|T ′|

4|S′| cost
(
S′, c∗S′

)
≥ δ|T ′|

4|S′|
cost(S′, c)

34 .

We now distinguish between two cases:

Case 1: dF(c, c∗) ≥ (1 + 2ε) cost(T ′,c∗)
|T ′|

The triangle inequality yields
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dF(c, s) ≥ dF(c, c∗)− dF(c∗, s) ≥ dF(c, c∗)− (1 + ε)cost(T ′, c∗)
|T ′|

≥ (1 + 2ε)cost(T ′, c∗)
|T ′|

− (1 + ε)cost(T ′, c∗)
|T ′|

= ε
cost(T ′, c∗)
|T ′|

.

As a consequence, cost(S′, c) ≥ ε cost(T ′,c∗)
|T ′| ⇐⇒ cost(T ′,c∗)

|T ′| ≤ 1
ε cost(S′, c).

Now, let vs1, . . . , vs|s| be the vertices of s. By Lemma 3.1.19 there exists a polygonal curve c′ with
up to 2`− 2 vertices, every vertex contained in one of B(vs1, dF(c∗, s)), . . . , B(vs|s|,dF(c∗, s)) and
dF(s, c′) ≤ dF(s, c∗) ≤ (1 + ε) cost(T ′,c∗)

|T ′| ≤ (1 + ε) cost(S′,c)
ε .

In the set of candidates, that Algorithm 4 returns, a curve c′′ with up to 2`− 2 vertices from

the union of the grid covers and distance at most
ε δn

2|S| cost(S′,c)
n ≤

ε
δ|T ′|
4|S′| cost(S′,c)

|T ′| ≤ ε cost(T ′,c∗)
|T ′|

between every corresponding pair of vertices of c′ and c′′ is contained. We conclude that
dF(c′, c′′) ≤ ε cost(T ′,c∗)

|T ′| .

We can now bound the cost of c′′ as follows:

cost
(
T ′, c′′

)
=
∑
τ∈T ′

dF(τ, c′′) ≤
∑
τ∈T ′

(
dF(τ, c′) + ε cost(T ′, c∗)

|T ′|

)
≤
∑
τ∈T ′

(dF(τ, c∗) + dF(c∗, c′)) + ε cost(T, c∗)

≤
∑
τ∈T ′

(dF(τ, c∗) + dF(c∗, s) + dF(s, c′)) + ε cost
(
T ′, c∗

)
≤ (3 + 3ε) cost

(
T ′, c∗

)
.

Case 2: dF(c, c∗) < (1 + 2ε) cost(T ′,c∗)
|T ′|

The cost of c can easily be bounded:

cost
(
T ′, c

)
≤
∑
τ∈T ′

(dF(τ, c∗) + dF(c∗, c)) < cost
(
T ′, c∗

)
+ (1 + 2ε) cost

(
T ′, c∗

)
= (2 + 2ε) cost

(
T ′, c∗

)
.

The claim follows by rescaling ε by 1
3 .

Next we analyze the worst-case running time of Algorithm 4 and the number of candidates it
returns.

Theorem 3.1.21 The running time as well as the number of candidates that Algorithm 4

returns is in 2
O

(
ln2(1/δ)·β

ε2
+log(m)

)
.

Proof. The sample S has size O
(

ln(1/δ)·β
ε

)
and sampling it takes time O

(
ln(1/δ)·β

ε

)
. Let nS = |S|.

The outer for-loop runs (
nS
nS
2β

)
∈ 2O

(nS
2β lognS

)
⊂ 2

O

(
ln2(1/δ)·β

ε2

)
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times. In each iteration, we run Algorithm 3, taking time O(m2 log(m) ln2(1/δ) + m3 logm)
(cf. Corollary 3.1.18), we compute the cost of the returned curve with respect to S′, taking time
O
(

ln(1/δ)
ε′ ·m log(m)

)
, and per curve in S′ we build up to m grids of size

 (1+ε′)∆
ε′

ε′δn∆
n
√
d2|S|34

d =
(

68
√
d|S|(1 + ε′)
ε′2δ

)d
∈ O

(
βd(ln(1/δ))d

ε3dδd

)

each. For each curve s ∈ S′, Algorithm 4 then enumerates all combinations of 2`− 2 points from
these up to m grids, resulting in

O

(
m2`−2β2`d−2d(ln(1/δ))2`d−2d

ε6`d−6dδ2`d−2d

)

candidates per s ∈ S′, per iteration of the for-loop.

Thus, Algorithm 4 computes O
(
poly

(
m,β, δ−1, ε−1)) candidates per iteration of the for-loop

and enumeration also takes time O
(
poly

(
m,β, δ−1, ε−1)) per iteration of the for-loop (where

poly(x1, x2, . . .) denotes a polynomial function in x1, x2, . . . ).

All in all, we have running time and number of candidates 2
O

(
ln2(1/δ)·β

ε2
+log(m)

)
.

Since each candidate returned by the algorithm can be evaluated against the input in time
O(nm logm) using Alt and Godau’s algorithm, the following corollary follows.

Corollary 3.1.22 There exists an algorithm that, given a parameter ε ∈ (0, 1) and a set
T = {τ1, . . . , τn} ⊂ Rdm of polygonal curves, returns with constant positive probability a (3 + ε)-
approximate `-median with up to 2`− 2 vertices for T in time n · 2O(ε−2+logm).

(1 + ε)-Approximation by Advanced Shortcutting

Next, we present an algorithm that returns candidates, containing with high probability a
(1 + ε)-approximate `-median of complexity at most 2`− 2 for a subset that takes a constant
fraction of the input. Before we present the algorithm, we present our second shortcutting lemma.
Now, we do not introduce shortcuts with respect to a single curve, but with respect to several
curves: by introducing shortcuts with respect to ε|T | well-chosen curves from the input T , for a
given ε ∈ (0, 1), we preserve the distances to at least (1− ε)|T | curves from T . In this context
well-chosen means that there exists a certain number of subsets of T , of each we have to pick a
curve for shortcutting. This will enable the high quality of approximation of Algorithm 5, which
we formalize in the following lemma.

Lemma 3.1.23 Let σ ∈ Rd∗ be a polygonal curve with |σ| > 2 vertices and T = {τ1, . . . , τn} ⊂ Rd∗
be a set of polygonal curves. For i ∈ [n], let ri = dF(τi, σ) and for j ∈ [|τi|], let vτij be the jth

vertex of τi. For any ε ∈ (0, 1) there are 2|σ| − 4 subsets T1, . . . , T2|σ|−4 ⊆ T , not necessarily
disjoint, and of εn

2|σ| curves each, such that for every subset T ′ ⊆ T containing at least one
curve out of each Tk ∈ {T1, . . . , T2|σ|−4}, a polygonal curve σ′ ∈ Rd2|σ|−2 exists with every vertex
contained in ⋃

τi∈T ′

⋃
j∈[|τi|]

B(vτij , ri)

and dF(τ, σ′) ≤ dF(τ, σ) for each τ ∈ T \ (T1 ∪ · · · ∪ T2|σ|−4).
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Figure 3.5: By using a subset of well-chosen input curves, a shortcut can be constructed that
preserves the majority of distances to the input curves: dF(σ′, τ) ≤ dF(σ, τ) for most
τ ∈ T .

The idea is the following, see Fig. 3.5 for a visualization. One can argue that every vertex v of
σ not contained in any of the balls centered at the vertices of the curves in T (and of radius
according to their distance to σ) can be shortcut by connecting the last point p− before v (in
terms of the parameter of σ) contained in one ball and first point p+ after v contained in one ball.
This does not increase the Fréchet distances between σ and the τ ∈ T , because only matchings
among line segments are affected by this modification. Furthermore, most distances are preserved
when we do not actually use the last and first ball before and after v, but one of the εn

2|σ| balls
before and one of the εn

2|σ| balls after v, which is the key of the following proof.

Proof of Lemma 3.1.23. Let ` = |σ|. For the sake of simplicity, we assume that εn
2` is integral.

For i ∈ [n], let vτi1 , . . . , v
τi
|τi| be the vertices of τi with instants tτi1 , . . . , t

τi
|τi| and let vσ1 , . . . , vσ` be the

vertices of σ with instants tσ1 , . . . , tσ` . Also, for h ∈ H (recall that H is the set of all continuous
bijections h : [0, 1]→ [0, 1] with h(0) = 0 and h(1) = 1) and i ∈ [n], let ri,h = max

t∈[0,1]
‖σ(t)−τi(h(t))‖

be the distance realized by h with respect to τi. We know from Proposition 2.3.12 that for each
i ∈ [n] there exists a sequence (hi,x)∞x=1 in H, such that lim

x→∞
ri,hi,x = dF(σ, τi) = ri.

In the following, given arbitrary h1, . . . , hn ∈ H, we describe how to modify σ, such that its
vertices can be found in the balls around the vertices of the τ ∈ T , of radii determined by
h1, . . . , hn. Later we will argue that this modification can be applied using the h1,x, . . . , hn,x, for
each x ∈ N, in particular.

Now, fix arbitrary h1, . . . , hn ∈ H and for an arbitrary k ∈ {2, . . . , |σ| − 1}, fix the vertex vσk of
σ with instant tσk . For i ∈ [n], let si be the maximum of [|τi| − 1], such that tτisi ≤ hi(t

σ
k) ≤ tτisi+1.

Namely, vσk is matched to a point on the line segment vτ1s1vτ1s1+1, . . . , v
τn
snv

τn
sn+1, respectively, by

h1, . . . , hn.

For i ∈ [n], let t−i be the maximum of [0, tσk ], such that σ(t−i ) ∈ B(vτisi , ri,hi) and let t+i be
the minimum of [tσk , 1], such that σ(t+i ) ∈ B(vτisi+1, ri,hi). These are the instants when σ visits
B(vτisi , ri,hi) before or when it visits vσk and σ visits B(vτisi+1, ri,hi) when or after it visits vσk ,
respectively. Furthermore, there is a permutation α ∈ Sn of the index set [n], such that

t−α−1(1) ≤ · · · ≤ t
−
α−1(n). (I)

Also, there is a permutation ζ ∈ Sn of the index set [n], such that

t+ζ−1(1) ≤ · · · ≤ t
+
ζ−1(n). (II)

Additionally, for each i ∈ [n] we have
tτisi ≤ hi(t

−
i ) (III)
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and
hi(t+i ) ≤ tτisi+1, (IV)

because σ(t−i ) and σ(t+i ) are the closest points to vσ on σ that have distance at most ri,hi to vτisi
and vτisi+1, respectively, by definition. We will now use Eqs. (I) to (IV) to prove that an advanced
shortcut only affects matchings among line segments and hence we can easily bound the resulting
distances for at least (1− ε)n of the curves.

Let

Ivσ
k
(h1, . . . , hn) = {τα−1((1− ε

2` )n+1), . . . , τα−1(n)}, Ovσk (h1, . . . , hn) = {τζ−1(1), . . . , τζ−1( εn2` )}.

Ivσ
k
(h1, . . . , hn) is the set of the last εn

2` curves whose balls are visited by σ, before or when σ
visits vσk . Similarly, Ovσ

k
(h1, . . . , hn) is the set of the first εn

2` curves whose balls are visited by σ,
when or immediately after σ visited vσk . We now modify σ, such that vσk is replaced by two new
vertices that are elements of at least one B(vτij , ri,hi), for a τi ∈ Ivσk (h1, . . . , hn), respectively for
a τi ∈ Ovσ

k
(h1, . . . , hn), and j ∈ [|τi|], each.

Let σ′h1,...,hn
be the piecewise defined curve, defined just like σ on

[
0, t−α−1(k1)

]
and

[
t+ζ−1(k2), 1

]
for arbitrary k1 ∈ {(1 − ε

2`)n + 1, . . . , n} and k2 ∈ [ εn2` ], but on
(
t−α−1(k1), t

+
ζ−1(k2)

)
it connects

σ
(
t−α−1(k1)

)
and σ

(
t+ζ−1(k2)

)
with the line segment

γ(t) =

1−
t− t−α−1(k1)

t+ζ−1(k2) − t
−
α−1(k1)

σ (t−α−1(k1)

)
+

t− t−α−1(k1)

t+ζ−1(k2) − t
−
α−1(k1)

σ
(
t+ζ−1(k2)

)
.

We now argue that for all τi ∈ T \ (Ivσ
k
(h1, . . . , hn) ∪ Ovσ

k
(h1, . . . , hn)) the Fréchet distance

between σ′h1,...,hn
and τi is upper bounded by ri,hi . First, note that by definition h1, . . . , hn are

strictly increasing functions, since they are continuous bijections that map 0 to 0 and 1 to 1. As
immediate consequence, we have that

tτisi ≤ hi(t
−
i ) ≤ hi

(
t−α−1(k1)

)
(V)

for each τi ∈ T \ Ivσ
k
(h1, . . . , hn) and

hi
(
t+ζ−1(k2)

)
≤ hi(t+i ) ≤ tτisi+1 (VI)

for each τi ∈ T \Ovσ
k
(h1, . . . , hn), using Eqs. (I) to (IV). Therefore, each τi ∈ T \(Ivσ

k
(h1, . . . , hn)∪

Ovσ
k
(h1, . . . , hn)) has no vertex between the instants hi

(
t−α−1(k1)

)
and hi

(
t+ζ−1(k2)

)
. We also know

that for each τi ∈ T ∥∥∥σ (t−α−1(k1)

)
− τi

(
hi
(
t−α−1(k1)

))∥∥∥ ≤ ri,hi (VII)

and ∥∥∥σ (t+ζ−1(k2)

)
− τi

(
hi
(
t+ζ−1(k2)

))∥∥∥ ≤ ri,hi . (VIII)

Let Ds,σ =
[
0, t−α−1(k1)

)
, Dm,σ =

[
t−α−1(k1), t

+
ζ−1(k2)

]
and De,σ =

(
t+ζ−1(k2), 1

]
. Also, for i ∈ [n],

let Ds,τi =
[
0, hi

(
t−α−1(k1)

))
, Dm,τi =

[
hi
(
t−α−1(k1)

)
, hi

(
t+ζ−1(k2)

)]
and De,τi =

(
hi
(
t+ζ−1(k2)

)
, 1
]
.

Now, for each τi ∈ T \ (Ivσ
k
(h1, . . . , hn) ∪ Ovσ

k
(h1, . . . , hn)) we use hi to match σ′h1,...,hn

|Ds,σ to
τi|Ds,τi and σ

′
h1,...,hn

|De,σ to τi|De,τi with distance at most ri,hi . Since σ′h1,...,hn
|Dm,σ and τi|Dm,τi
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are just line segments by Eqs. (V) and (VI), they can be linearly matched to each other with
distance at most

max
{∥∥∥σ (t−α−1(k1)

)
− τi

(
hi
(
t−α−1(k1)

))∥∥∥ , ∥∥∥σ (t+ζ−1(k2)

)
− τi

(
hi
(
t+ζ−1(k2)

))∥∥∥} ,
which is at most ri,hi by Eqs. (VII) and (VIII). We conclude that dF(σ′h1,...,hn

, τi) ≤ ri,hi .

Because this modification works for every h1, . . . , hn ∈ H, we conclude that dF(σ′h1,...,hn
, τi) ≤ ri,hi

for every h1, . . . , hn ∈ H and τi ∈ T \ (Ivσ
k
(h1, . . . , hn) ∪Ovσ

k
(h1, . . . , hn)). Thus,

lim
x→∞

dF(σ′h1,x,...,hn,x
, τi) ≤ dF(σ, τi) = ri for each τi ∈ T \(Ivσ

k
(h1,x, . . . , hn,x)∪Ovσ

k
(h1,x, . . . , hn,x)).

Now, to prove the claim, for each combination h1, . . . , hn ∈ H, we apply this modification to vσk
and successively to every other vertex v

σ′h1,...,hn
l of the resulting curve σ′h1,...,hn

, except v
σ′h1,...,hn
1

and v
σ′h1,...,hn
|σ′
h1,...,hn

|, since these must be elements of B(vτi1 , ri,hi) and B(vτi|τi|, ri,hi), respectively, for
each i ∈ [n], by definition of the Fréchet distance.

Since the modification is repeated at most |σ| − 2 times for each combination h1, . . . hn ∈ H, we
conclude that the number of vertices of each σ′h1,...,hn

can be bounded by 2 · (|σ| − 2) + 2.

T1, . . . , T2`−4 are therefore all the Ivσ
k
(h1,x, . . . , hn,x) and Ovσ

k
(h1,x, . . . , hn,x) for k ∈ {2, . . . , 2|σ|−

3}, when x →∞. Note that every Ivσ
k
(h1,x, . . . , hn,x) and Ovσ

k
(h1,x, . . . , hn,x) is determined by

the visiting order of the balls and since their radii converge, these sets do too.

We now present Algorithm 5, which is nearly identical to Algorithm 4 but uses the advanced
shortcutting lemma. In detail, we have to draw a larger sample S to use the advanced shortcutting
and consider the union of all grid points over all curves from S′ for enumerating curves.
Like Algorithm 4, this algorithm can be used as plugin in the recursive k-median approximation-
scheme (Algorithm 9) that we present in Section 4.2.

Algorithm 5 `-Median for Subset by Advanced Shortcutting
1: procedure `-Median-(1 + ε)-Candidates(T = {τ1, . . . , τn}, β, δ, ε)
2: ε′ ← ε/6, C ← ∅
3: S ← sample

⌈
−8β`(ε′)−1(ln(δ)− ln(4(2`− 4)))

⌉
curves from T

uniformly and independently with replacement
4: for S′ ⊆ S with |S′| = |S|

2β do
5: c← `-Median-34-Approximation(S′, δ/4) (Algorithm 3)
6: ∆← cost(S′, c), ∆l ← δn

2|S|
∆
34 , ∆u ← 1

ε′∆
7: C ← C ∪ {c}, P ← ∅
8: for s ∈ S′ do
9: for i ∈ [|s|] do

10: P ← P ∪G
(
B
(
vsi ,

4`
ε′∆u

)
, ε′

n
√
d
∆l

)
. vsi : ith vertex of s

11: C ← C ∪ set of all polygonal curves with 2`− 2 vertices from P

12: return C

We prove the quality of approximation of Algorithm 5.
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Theorem 3.1.24 Given three parameters β ∈ [1,∞), δ ∈ (0, 1), ε ∈ (0, 0.158] and a set
T = {τ1, . . . , τn} ⊂ Rdm of polygonal curves, with probability at least 1− δ the set of candidates
that Algorithm 5 returns contains a (1 + ε)-approximate `-median with up to 2`− 2 vertices for
any T ′ ⊆ T , if |T ′| ≥ 1

β |T |.

In the following proof we make use of a case distinction developed by Nath and Taylor [207,
Proof of Theorem 10], which is a key ingredient to enable the (1 + ε)-approximation, though the
domain of ε has to be restricted to (0, 0.158].

Proof of Theorem 3.1.24. We assume that |T ′| ≥ 1
β |T | and ` > 2. Let n′ be the number of

sampled curves in S that are elements of T ′. Clearly, Exp[n′] ≥ ∑|S|i=1
1
β = |S|

β . Also, n′ is the
sum of independent Bernoulli trials. A Chernoff bound (cf. Theorem 2.4.17) yields:

Pr
[
n′ <

|S|
2β

]
≤ Pr

[
n′ <

Exp[n′]
2

]
≤ exp

(
−1

4
|S|
2β

)
≤ exp

` ln
(

δ
4(2`−4)

)
ε

 ≤ (δ`8`

) 1
ε

≤ δ

8 .

In other words, with probability at most δ/8 no subset S′ ⊆ S, of cardinality at least |S|2β , is a
subset of T ′. We condition the rest of the proof on the contrary event, denoted by ET ′ , namely,
that there is a subset S′ ⊆ S with S′ ⊆ T ′ and |S′| ≥ |S|2β . Note that S′ is then a uniform and
independent sample of T ′ (see Section 2.4.1).

Now, let c∗ ∈ Rd` be an optimal `-median for T ′. The expected distance between s ∈ S′ and c∗ is

Exp[dF(s, c∗) | ET ′ ] =
∑
τ∈T ′

dF(c∗, τ) · 1
|T ′|

= cost(T ′, c∗)
|T ′|

.

By linearity, we have Exp[cost(S′, c∗) | ET ′ ] = |S′|
|T ′| cost(T ′, c∗). Markov’s inequality yields:

Pr
[
δ|T ′|
4|S′| cost

(
S′, c∗

)
> cost

(
T ′, c∗

) ∣∣∣ ET ′] ≤ δ

4 .

We conclude that with probability at most δ/4 we have δ|T ′|
4|S′| cost(S′, c∗) > cost(T ′, c∗).

Now, from Lemma 3.1.23 we know that there are 2`− 4 subsets T ′1, . . . , T ′2`−4 ⊆ T ′, of cardinality
ε|T ′|

2` each and which are not necessarily disjoint, such that for every set W ⊆ T ′ that contains at
least one curve τ ∈ T ′i for each i ∈ [2`− 4], there exists a curve c′ ∈ Rd2`−2 which has all of its
vertices contained in ⋃

τ∈W

⋃
j∈[|τ |]

B(vτj ,dF(τ, c∗))

and for at least (1− ε)|T ′| curves τ ∈ T ′ \ (T ′1 ∪ · · · ∪ T ′2`−4) it holds that dF(τ, c′) ≤ dF(τ, c∗).

There are up to ε|T ′|
4` curves with distance to c∗ at least 4` cost(T ′,c∗)

ε|T ′| . Otherwise, the cost of these
curves would exceed cost(T ′, c∗), which is a contradiction. Later we will prove that each ball we
cover has radius at most 4` cost(T ′,c∗)

ε|T ′| . Therefore, for each i ∈ [2`− 4] we have to ignore up to half
of the curves τ ∈ T ′i , since we do not cover the balls of radius dF(τ, c∗) centered at their vertices.
For each i ∈ [2`− 4] and s ∈ S′ we now have

Pr
[
s ∈ T ′i ∧ dF(s, c∗) ≤ 4` cost(T ′, c∗)

ε|T ′|

∣∣∣ ET ′] ≥ ε

4` .
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Therefore, by independence, for each i ∈ [2`−4] the probability that no s ∈ S′ is an element of T ′i
and has distance to c∗ at most 4` cost(T ′,c∗)

ε|T ′| is at most (1− ε
4`)|S

′| ≤ exp
(
− ε

4`
4`(ln(4(2`−4))−ln(δ))

ε

)
=

exp
(
ln
(

δ
4(2`−4)

))
= δ

4(2`−4) . Also, with probability at most δ/4 Algorithm 3 fails to compute a
34-approximate `-median c ∈ Rd` for S′, cf. Corollary 3.1.18.

Using Proposition 2.4.5, we conclude that with probability at least 1 − 7/8δ all the following
events occur simultaneously:

1. There is a subset S′ ⊆ S of cardinality at least |S|/(2β) that is a uniform and independent
sample of T ′,

2. for each i ∈ [2` − 4], S′ contains at least one curve from T ′i with distance to c∗ up to
4` cost(T ′,c∗)

ε|T ′| ,

3. Algorithm 3 computes a polygonal curve c ∈ Rd` with cost(S′, c∗S′) ≤ cost(S′, c) ≤
34 cost(S′, c∗S′), where c∗S′ ∈ Rd` is an optimal `-median for S′,

4. and it holds that δ|T ′|
4|S′| cost(S′, c∗) ≤ cost(T ′, c∗).

Let Bc∗ =
{
τ ∈ T ′ | dF(τ, c∗) ≤ cost(T ′,c∗)

ε2|T ′|

}
and Bc =

{
τ ∈ T ′ | dF(τ, c) ≤ ε cost(T ′,c∗)

|T ′|

}
. First,

note that |T ′ \Bc∗ | ≤ ε2|T ′|, otherwise cost(T ′ \Bc∗ , c∗) > cost(T ′, c∗), which is a contradiction,
and therefore |Bc∗ | ≥ (1− ε2)|T ′|. We now distinguish two cases:

Case 1: |Bc∗ \Bc| > 2ε|Bc∗ |

We have 2ε|Bc∗ | ≥ (1 − ε2)2ε|T ′| ≥ ε|T ′|, hence Pr
[
dF(s, c) > ε cost(T ′,c∗)

|T ′|

∣∣∣ ET ′] ≥ ε for each
s ∈ S′. Using independence we conclude that with probability at most

(1− ε)|S′| ≤ exp
(
−ε4`(ln(4(2`− 4))− ln(δ))

ε

)
≤ δ4`

44` ≤
δ

8

no s ∈ S′ has distance to c greater than ε cost(T ′,c∗)
|T ′| . Including this bad event, by Proposition 2.4.5

we conclude that with probability at least 1−δ Items 1 to 4 occur simultaneously and at least one
s ∈ S′ has distance to c greater than ε cost(T ′,c∗)

|T ′| , hence cost(S′, c) > ε cost(T ′,c∗)
|T ′| ⇐⇒ cost(S′,c)

ε >
cost(T ′,c∗)
|T ′| and thus we indeed cover the balls of radius at most 4` cost(T ′,c∗)

ε|T ′| < 4`
ε

cost(S′,c∗)
ε .

In the last step, Algorithm 5 returns a set C of all curves with up to 2`− 2 vertices from the
grids, that contains one curve, denoted by c′′ with same number of vertices as c′ (recall that this
is the curve guaranteed from Lemma 3.1.23) and distance at most ε

n∆l ≤ ε
|T ′| cost(T ′, c∗) between

every corresponding pair of vertices of c′ and c′′. We conclude that dF(c′, c′′) ≤ ε
|T ′| cost(T ′, c∗).

Also, recall that dF(τ, c′) ≤ dF(τ, c∗) for τ ∈ T ′ \ (T ′1 ∪ · · · ∪ T ′2`−4). Further, T ′ contains at least
|T ′|
2 curves with distance at most 2 cost(T ′,c∗)

|T ′| to c∗, otherwise the cost of the remaining curves
would exceed cost(T ′, c∗), which is a contradiction, and since ε < 1

2 there is at least one curve
σ ∈ T ′ \ (T ′1 ∪ · · · ∪ T ′2`−4) with dF(σ, c′) ≤ dF(σ, c∗) ≤ 2 cost(T ′,c∗)

|T ′| by the pigeonhole principle.
We can now bound the cost of c′′ as follows:
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cost
(
T ′, c′′

)
=
∑
τ∈T ′

dF(τ, c′′) ≤
∑

τ∈T ′\(T ′1∪···∪T ′2`−4)

(
dF(τ, c′) + ε

|T ′|
cost

(
T ′, c∗

))
+

∑
τ∈(T ′1∪···∪T ′2`−4)

(
dF(τ, c∗) + dF(c∗, σ) + dF(σ, c′) + dF(c′, c′′)

)
≤ (1 + ε) cost

(
T ′, c∗

)
+

∑
τ∈(T ′1∪···∪T ′2`−4)

(
(2 + 2 + ε)cost(T ′, c∗)

|T ′|

)
≤ cost

(
T ′, c∗

)
+ ε cost

(
T ′, c∗

)
+ 5ε cost

(
T ′, c∗

)
= (1 + 6ε) cost

(
T ′, c∗

)
.

Case 2: |Bc∗ \Bc| ≤ 2ε|Bc∗ |

Again, we distinguish two cases:

Case 2.1: dF(c, c∗) ≤ 4ε cost(T ′,c∗)
|T ′|

We can easily bound the cost of c:

cost
(
T ′, c

)
≤
∑
τ∈T ′

(dF(τ, c∗) + dF(c∗, c)) ≤ (1 + 4ε) cost
(
T ′, c∗

)
.

Case 2.2: dF(c, c∗) > 4ε cost(T ′,c∗)
|T ′|

Recall that |Bc∗ | ≥ (1− ε2)|T ′|. We have

|T ′ \Bc| ≤ |T ′ \Bc∗ |+ 2ε|Bc∗ | = |T ′| − (1− 2ε)|Bc∗ | ≤ |T ′| − (1− 2ε)(1− ε2)|T ′|

= (2ε+ ε2 − 2ε3)|T ′| < 1
3 |T

′|.

Hence, |Bc| ≥ (1− 2ε− ε2 + 2ε3)|T ′| > 2
3 |T
′|. Assume we assign all curves to c instead of to c∗.

For τ ∈ Bc we now have decrease in cost dF(τ, c∗)− dF(τ, c), which can be bounded as follows:

dF(τ, c∗)− dF(τ, c) ≥ dF(τ, c∗)− εcost(T ′, c∗)
|T ′|

≥ dF(c, c∗)− dF(τ, c)− εcost(T ′, c∗)
|T ′|

≥ dF(c, c∗)− 2εcost(T ′, c∗)
|T ′|

>
1
2 dF(c, c∗).

For τ ∈ T ′ \ Bc we have an increase in cost dF(τ, c) − dF(τ, c∗) ≤ dF(c, c∗). Let the overall
increase in cost be denoted by α, which can be bounded as follows:

α < |T ′ \Bc| · dF(c, c∗)− |Bc| ·
dF(c, c∗)

2 .

By the fact that |T ′ \ Bc| < 1
2 |Bc| for our choice of ε, we conclude that α < 0, which is a

contradiction because c∗ is an optimal `-median for T ′. Therefore, Case 2.2 can not occur.
Rescaling ε by 1

6 proves the claim.

We analyze the worst-case running time of Algorithm 5 and the number of candidates it returns.
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Theorem 3.1.25 The running time as well as the number of candidates that Algorithm 5

returns is in 2
O

(
ln2(1/δ)·β

ε2
+log(m)

)
.

Proof. The sample S has size O
(

ln(1/δ)·β
ε

)
and sampling it takes time O

(
ln(1/δ)·β

ε

)
. Let nS = |S|.

The outer for-loop runs (
nS
nS
2β

)
∈ 2O

(nS
2β lognS

)
⊂ 2

O

(
ln2(1/δ)·β

ε2

)

times. In each iteration, we run Algorithm 3, taking time O(m2 log(m) ln2(1/δ) + m3 logm)
(cf. Corollary 3.1.18), we compute the cost of the returned curve with respect to S′, taking time
O
(

ln(1/δ)
ε ·m log(m)

)
, and per curve in S′ we build up to m grids of size

 (1+ε)∆
ε

2ε2δn∆
n
√
d4|S|

d =
(√

d|S|(1 + ε)
ε2δ

)d
∈ O

(
βd(ln(1/δ))d

ε3dδd

)

each. Algorithm 5 then enumerates all combinations of 2`− 2 points from up to |S′| ·m grids,
resulting in

O

(
m2`−2β2`d−2d+2`−2(ln(1/δ))2`d−2d+2`−2

ε6`d−6d+2`−2δ2`d−2d

)
candidates per iteration of the for-loop. Thus, Algorithm 5 computes O

(
poly

(
m,β, δ−1, ε−1))

candidates per iteration of the for-loop and enumeration also takes time O
(
poly

(
m,β, δ−1, ε−1))

per iteration of the for-loop (where poly(x1, x2, . . .) denotes a polynomial function in x1, x2, . . . ).

All in all, we have running time and number of candidates 2
O

(
ln2(1/δ)·β

ε2
+log(m)

)
.

Since each candidate returned by the algorithm can be evaluated against the input in time
O(nm logm) using Alt and Godau’s algorithm, the following corollary follows.

Corollary 3.1.26 There exists an algorithm that, given a parameter ε ∈ (0, 1) and a set
T = {τ1, . . . , τn} ⊂ Rdm of polygonal curves, returns with constant positive probability a (1 + ε)-
approximate `-median with up to 2`− 2 vertices for T in time n · 2O(ε−2+logm).

3.2 Point Sequences

We now study the median problem for point sequences from an arbitrary metric space. We start
by formally defining the problem that we study in this section, then we closely review the related
work.

3.2.1 Problem Definition

Here, again the most natural way to formulate the problem is as optimization problem of
computing a point sequence that minimizes the p-dynamic time warping distance between the
given sequences and the median sequence. However, formally we are working with a family
of distances, which we incorporate by adding the parameter p to the problem. Furthermore,
we extend our definition by incorporating another parameter q to capture related higher order
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statistics, such as the mean (q = 2) [98]. In the literature, the corresponding statistic is commonly
named power mean, generalized mean (cf. [67]) or simply q-mean and consequently we name the
problem for point sequences (p, q)-mean.

Problem 3.2.1 The (unrestricted) (p, q)-mean problem is defined as follows, where p, q ∈
[1,∞) are fixed (constant) parameters of the problem: given a set T = {τ1, . . . , τn} ⊆M≤m of
point sequences over some metric space (M,ϑ), compute a point sequence c ∈ M∗, such that
costqp(T, c) = ∑n

i=1 dDTWp(c, τi)q is minimal.

As in the `-median problem, we are also interested in computing a mean of bounded (constant)
complexity. Another (practical) motivation is to prevent overfitting. We call the corresponding
problem the restricted (p, q)-mean problem.

Problem 3.2.2 The restricted (p, q)-mean problem is defined as follows, where ` ∈ N>1 and
p, q ∈ [1,∞) are fixed (constant) parameters of the problem: given a set T = {τ1, . . . , τn} ⊆M≤m
of point sequences over some metric space (M,ϑ), compute a point sequence c ∈M≤`, such that
costqp(T, c) = ∑n

i=1 dDTWp(c, τi)q is minimal.

We note that the case that p = q is prevalent in the literature. Therefore, we call the unrestricted,
respectively restricted, (p, p)-mean problem the unrestricted, respectively restricted, p-mean
problem. If p and q are clear from the context, we drop them from our notation. Note that for
q = 1, similar to the previous section, we are dealing with a median problem. However, the
representative will be called unrestricted, respectively restricted, (p, q)-mean, or simply mean in
this section.

3.2.2 Related Work

Among many practical approaches for the problem of computing a mean, one very influential
heuristic is the DTW barycenter averaging (DBA) method, as formalized by Petitjean et al.
[215]. The core idea behind DBA is a Lloyd’s style (k-means) iterative strategy, which has been
rediscovered many times for this problem in the past (see e.g. [220, 1, 140]). DBA iteratively
improves the solution as follows: given a candidate average sequence c = (c1, . . . , c`′), it first
computes the warpings between c and all input sequences, and then given each set of input
vertices Si matched with the same vertex ci, it substitutes ci with the mean of Si. DBA has
inspired many recent solutions that are successful in practice [233, 203, 184, 81, 210]. However,
it does not give any guarantees. Just like the k-means algorithm, it may even converge to a local
optimum that is arbitrarily far from the global optimum in terms of the target function.

There are few results in the literature with formal guarantees on the running time or the quality
of the solution. Brill et al. [49, 50] presented an algorithm for solving the unrestricted 2-mean
problem defined over Q with the Euclidean distance, with an asymptotic bound on the time
complexity. Their algorithm is based on dynamic programming and computes the mean in time
O(m2n+12nn). The algorithm can be slightly modified, to compute a restricted 2-mean. The
running time then becomes O(m2n+12nn`2). Brill et al. [49, 50] also show that the unrestricted
2-mean problem defined over {0, 1} with the Euclidean distance can be solved in O(nm3) time.
This was later improved by Schaar et al. [230] to O(nm1.87) time.

All hardness results concern the exact computation of the (p, q)-mean. Bulteau et al. [68] proved
that the unrestricted 2-mean problem defined over Q with the Euclidean distance is NP-hard
and W[1]-hard with the number of input sequences n as the parameter. Moreover, they show
that the problem cannot be solved in time O(f(n)) ·mo(n) for any computable function f unless
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the Exponential Time Hypothesis3 fails. Buchin et al. [61] presented an alternative proof of the
above statements, which is more general since it applies to the unrestricted (p, q)-mean problem
for any p, q ∈ N. Also, their results hold for the restricted (p, q)-mean problem, when ` is part of
the input.

We summarize the main algorithmic results on the unrestricted and restricted (p, q)-mean problem.

Problem Appr. Running Time Ambient Space Reference

r. 2-mean
1

O(m2n+12nn`2) (Q, (x, y) 7→ ‖x− y‖) [50]
(nm)2O(d`) (Qd, (x, y) 7→ ‖x− y‖) Thm. 3.2.4

u. 2-mean O(nm1.87) ({0, 1}, (x, y) 7→ ‖x− y‖) [230]
O(m2n+12nn) [50]

r. (p, 1)-mean 1 + ε O(m4 + nm(
p√m
ε )d` logm) Rd Thm. 3.2.18

r. p-mean 2 + ε
O(nm`ε−`) arbitrary metric space Thm. 3.2.7

O
(
nm(mε log m

ε )max{d+1,`}
)

Rd Thm. 3.2.10
u. 2-mean ∞ O(nmi), i: #iter. Rd [215]

We now show that for a special case, namely for point sequences over (M = Qd, ϑ(x, y) = ‖x−y‖),
the restricted 2-mean problem can surprisingly be (deterministically) solved exactly.

3.2.3 Exact Computation of a Restricted 2-Mean in Euclidean Space

The idea of our algorithm is to compute for any two warpings between a point sequence of
complexity `′ and an input point sequence a polynomial function whose sign indicates which of
the warpings yields a smaller distance between the sequences. These functions are then used
to define an arrangement that partitions the space

(
Rd
)`′

. The trick is that while there is an

infinite number of point sequences in
(
Rd
)`′

, to each input point sequence there are only O(m2`′)
warpings and in each face of the arrangement the point sequences have the same optimal warpings
to the input point sequences. Therefore, for an arbitrary point sequence from each face of the
arrangement, we can compute the optimal warpings to the input sequences and then use the
resulting sections to compute an optimal point sequence for these warpings, obtaining the optimal
restricted 2-mean when we eventually hit the face containing it. We use the cylindrical algebraic
decomposition algorithm to compute the arrangement and obtain an element of each face.

In the following, we make use of a simplified structure of the solution space, which holds in case
p = q. This is captured in the notion of sections which we define as follows.

Definition 3.2.3 Let T = {τ1, . . . , τn} ⊆M≤m be a set of point sequences and c = (c1, . . . , c`′) ∈
M `′ be a point sequence, both over some metric space (M,ϑ). For i ∈ [n] and p ∈ [1,∞), let Wi

be an optimal p-warping between c and τi. For j ∈ [`′] we define the jth section of c with respect
to T (and W1, . . . ,Wn) as follows: Sj(c, T,W1, . . . ,Wn) = {τi,k | i ∈ [n], (j, k) ∈Wi}, where τi,k
is the kth vertex of τi.

3This hypothesis states that there exists a δ > 0 such that 3-SAT (boolean formula satisfiability) can not be
solved in time O(2δn) for formulas of n variables.
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If T is clear from the context, we omit it from the notation. Also, we will always omitW1, . . . ,Wn

from the notation, because the specific choice of optimal p-warpings is not of interest. We will
then write Spj (T, c) to clarify that the sections are defined with respect to optimal p-warpings.
An immediate consequence of this definition is the following identity:

costpp(T, c) =
`′∑
j=1

∑
v∈Spj (c,T )

ϑ(cj , v)p,

where `′ denotes the complexity of c.

A central observation is that the vertices of an optimal restricted p-mean c = (c1, . . . , c`′) must
minimize the sum of distances, each raised to the pth power, to the vertices in their section, i.e.,
for all j ∈ [`′]: cj ∈ arg min

w∈M

∑
v∈Spj (c,T )

ϑ(w, v)p. Using this, we obtain the following result, which

originates from [243].

Theorem 3.2.4 There exists an algorithm that, given a set T ⊂
(
Qd
)≤m

of n point sequences
over (Qd, (x, y) 7→ ‖x− y‖), computes an optimal restricted 2-mean in time (nm)2O(d`).

Proof. To simplify our exposition, we restrict ourselves to means of complexity exactly `′ ∈ [`], i.e.,
in the rest of the proof we describe an algorithm for computing an optimal mean of complexity
exactly `′. The complete algorithm consists of iteratively computing the optimal mean of
complexity `′, for each `′ ∈ [`].

For each τ = (τ1, . . . , τ|τ |) ∈ T and all W1,W2 ∈ W`′,|τ | we define for c = (c1, . . . , c`′) ∈
(
Rd
)`′

the polynomial function

Pτ,W1,W2(c) =

 ∑
(i,j)∈W1

‖ci − τj‖2
−

 ∑
(i,j)∈W2

‖ci − τj‖2
 .

Clearly, iff W1 yields a smaller distance between c and τ than W2, then Pτ,W1,W2(c) < 0 and iff
W2 yields a smaller distance between c and τ than W2, then Pτ,W1,W2(c) > 0. Iff Pτ,W1,W2(c) = 0,
both yield the same distance.

Let F = {Pτ,W1,W2 | τ ∈ T,W1,W2 ∈ W`′,|τ |} be the set of these polynomials. The central

observation is that if all functions in F have the same sign for any c1, c2 ∈
(
Rd
)`′

, then c1 and
c2 have the same optimal 2-warpings to the point sequences in T . To see this, for each τ ∈ T let
Wτ ∈ W`′,|τ | be an optimal 2-warping between c1 and τ . Clearly, Pτ,Wτ ,W (c1) ≤ 0 for all τ ∈ T
and W ∈ W`′,|τ |. Now, if all functions in F have the same sign for c1 and c2 it must be that
Pτ,Wτ ,W (c2) ≤ 0 for all τ ∈ T and W ∈ W`′,|τ |. Thus, Wτ is an optimal 2-warping between c2
and τ for each τ ∈ T .

Now, we compute an arrangement of the zero sets of the polynomials in F (cf. [195]), i.e., a
partition of

(
Rd
)`′

into regions where all functions in F have the same sign. For this purpose
we use the cylindrical algebraic decomposition algorithm [76], which also yields a sample from
each face of the arrangement and has running time O(|F |f(`′·d)) for some function f ∈ 2O(d`′).
For each sample c from some face of the arrangement we first compute the optimal 2-warpings
between c and the input point sequences τ ∈ T in time O(nm). Second we compute all sections
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Sj(c) of c and store the point sequence c′ = (c′1, . . . , c′`′) consisting of the optimal (cf. e.g. [165])
means c′j = 1

|Sj(c)|
∑
v∈Sj(c) v, for j ∈ [`′]. This takes time O(nm).

At some point, we obtain a sample from the face containing the optimal restricted 2-mean
c∗ = (c∗1, . . . , c∗`′) (where c∗j is the mean of Sj(c∗) for each j ∈ [`′]), which we return when we
finally return the point sequence c′ that minimizes the objective function. This takes time
O(nmA), where A is the number of cells in the arrangement.

To conclude the proof, note that for each τ ∈ T we have that |W`′,|τ || ≤ m2`′ , thus |F | ≤ nm4`′ .

Hence, A ≤
(

100nm4`′

`′d

)`′d
by [195, Theorem 6.2.1].

As we have already mentioned, we iteratively run the above algorithm to compute means of
complexity `′, for each `′ ∈ [`], in order to find an optimal restricted 2-mean. Each iteration runs
in (nm)2O(d`′) ≤ (nm)2O(d`) . Since ` is constant, the running time is in (nm)2O(d`) .

We note that this approach can not be used to compute a restricted p-mean exactly, for any
p ≥ 1. This is due to the fact that a point x ∈ Rd that minimizes ∑v∈Sj(c,T )‖x− v‖p may not
be computed exactly for p 6= 2 (for p = 1 this is the geometric median problem). However, if we
have an approximation algorithm A that is able to approximate x, we can modify the approach
of Theorem 3.2.4 and let c′j be the result of A instead of the optimal mean. We obtain the
following corollary.

Corollary 3.2.5 Let p ∈ [1,∞) and A be an algorithm that, given a set P ⊂ Rd, returns a
point x ∈ Rd with miny∈Rd

∑
z∈P ‖y − z‖p ≤

∑
z∈P ‖x − z‖p ≤ α · miny∈Rd

∑
z∈P ‖y − z‖p, for

some α ≥ 1, in time TA(|P |). Then there exists an algorithm that, given a set T ⊂
(
Qd
)≤m

of n
point sequences over (Qd, (x, y) 7→ ‖x − y‖), computes an α-approximate restricted p-mean in
time TA(n) · (nm)2O(d`).

For p = 1, a (1 + ε)-approximation algorithm can be achieved by letting A be the algorithm
from [75], but the resulting running time is not appealing for an approximation algorithm.
Therefore, we now develop more efficient approximation algorithms for the restricted p-mean
problem defined on point sequences over an arbitrary metric space and later an improved
algorithm for the restricted (p, 1)-mean problem defined on point sequences over the Euclidean
space.

3.2.4 Approximation of a Restricted p-Mean in any Metric Space

We start by describing a simple approximation algorithm that reveals the basic idea underlying
the following algorithms. The algorithm relies on the following observation. If p-DTW is defined
over a metric space (M,ϑ), then the triangle inequality holds for the point-to-point distances in
the sum that defines the p-DTW distance (albeit not for p-DTW distance itself). Assume for
simplicity that p = 1. In this case, there always exists a 2-approximate median that is formed
by points from the input sequences. Enumerating all possible such sequences, then, if the input
consists of n point sequences of length m, leads to an algorithm with running time in O((nm)`+1),
where ` denotes the upper bound on the complexity of the mean. This approach also extends to
other variants of the median problem for different choices of p and q (with varying approximation
factors). One obvious disadvantage of this simple algorithm is the high running time.
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In the following, we use similar observations as above and show that the dependency on n
can be improved to linear while still achieving approximation factors close to 2. We present a
randomized constant factor approximation algorithm for the restricted p-mean problem. The
approximation factor of the algorithm depends on p, and the best it can achieve is 2 + ε for p = 1
and 4 + ε for p = 2, which resemble the famous Euclidean median and mean problems.

Randomized Algorithm

The idea of the algorithm is to obtain for each j ∈ [`′] from the corresponding section Spj (c, T ) of
an optimal restricted p-mean c∗ = (c∗1, . . . , c∗`′) one of the closest input vertices to c∗j . The obtained
vertices in the corresponding order form an approximate restricted p-mean. We formalize the
idea in the following lemma.

Lemma 3.2.6 Let T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)} ⊆ M≤m be a set of
point sequences over some metric space (M,ϑ) and let P = ⋃n

i=1
⋃|τi|
j=1{τi,j}. For any p ∈ [1,∞),

` ∈ N>1 and ε ∈ (0,∞) there exists an `′ ≤ ` and balls B1, . . . , B`′ ⊆ P , of cardinality at least
εn

2p−1+ε each, such that any point sequence c = (c1, . . . , c`′), with ci ∈ Bi for each i ∈ [`′], is a
(2p + ε)-approximate restricted p-mean for T .

Proof. Without loss of generality we assume that τ1,1, . . . , τ1,|τ1|, . . . , τn,1, . . . , τ|τn| are distinct
points. Let c∗ = (c∗1, . . . , c∗`′) ∈ M `′ be an optimal restricted p-mean for T and for j ∈ [`′] let
Sj = {sj,1, . . . , sj,nj} = Spj (c∗) for brevity. Define ∆(Sj) = ∑

v∈Sj
ϑ(c∗j , v)p. We immediately have

cost(T, c∗) = ∑`′
j=1 ∆(Sj). Now, for j ∈ [`′], let αj ∈ Snj be a permutation of the index set [nj ],

such that
ϑ(c∗j , sj,α−1

j (1))
p ≤ · · · ≤ ϑ(c∗j , sj,α−1

j (nj))
p.

Let ε′ = ε
2p−1+ε . For the sake of simplicity, we assume that ε′n is integral. Further, for j ∈ [`′],

we define Cj = {sj,α−1
j (1), . . . , sj,α−1

j (ε′n)}. We have that ϑ(c∗j , sj,α−1
j (ε′n))p ≤

∆(Sj)
|Sj |−(ε′n−1) by the

fact that ϑ(c∗j , sj,α−1
j (ε′n))p is of maximal value, iff ϑ(c∗j , s′)p = 0 for each s′ ∈ Cj \ {sj,α−1

j (ε′n)}
and ϑ(c∗j , s′)p = ϑ(c∗j , sj,α−1

j (ε′n))p for each s′ ∈ Sj \ Cj . For j ∈ [`′], we now define

Bj = {x ∈ P | ϑ(c∗j , x)p ≤ ϑ(c∗j , sj,α−1
j (ε′n))

p}

and by definition we have ϑ(c∗j , x)p ≤ ∆(Sj)
|Sj |−ε′n+1 ≤

∆(Sj)
|Sj |−ε′n for each x ∈ Bj and j ∈ [`′]. Then let

c = (c1, . . . , c`′) be a point sequence with cj ∈ Bj for each j ∈ [`′]. We bound its cost:

cost(T, c) =
`′∑
j=1

∆(Sj) ≤
`′∑
j=1

∑
v∈Sj

(ϑ(c∗j , v) + ϑ(c∗j , cj))p ≤
`′∑
j=1

∑
v∈Sj

2p−1(ϑ(c∗j , v)p + ϑ(c∗j , cj)p)

≤ 2p−1
`′∑
j=1

∑
v∈Sj

(
ϑ(c∗j , v)p + ∆(Sj)

|Sj | − ε′n

)
≤ 2p−1 cost(T, c∗) + 2p−1

`′∑
j=1

∑
v∈Sj

∆(Sj)
(1− ε′)|Sj |

=
(

2p−1 + 2p−1

1− ε′

)
cost(T, c∗) = (2p + ε) cost(T, c∗).

The first inequality follows from the triangle-inequality and the last inequality holds, because
at least one vertex from each τi ∈ T must be warped to each c∗j ∈ c∗, thus |Sj | ≥ n for each
j ∈ [`′].
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Now we present the first algorithm for the restricted p-mean problem. The idea is to uniformly
sample from the set of all vertices of all point sequences, to obtain at least one vertex from
each ball guaranteed by the previous lemma, with high probability. After the sampling, the
algorithm enumerates all point sequences of at most ` elements from the sample and returns a
point sequence with the lowest cost.

Algorithm 6 Restricted p-Mean Constant Factor Approximation (Randomized)
1: procedure mean-C(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)}, δ, ε, p)
2: P ←

⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← sample
⌈
m(ln(`)+ln(1/δ))
ε/(2p−1+ε)

⌉
points from P uniformly and independently at random

with replacement
4: C ← S≤`

5: return an arbitrary element from arg min
c∈C

costpp(T, c)

The correctness of Algorithm 6 follows by an application of Lemma 3.2.6.

Theorem 3.2.7 Given a set T = {τ1, . . . , τn} ⊆ M≤m of point sequences over some metric
space (M,ϑ), three parameters δ ∈ (0, 1), ε ∈ (0,∞) and p ∈ [1,∞), Algorithm 6 returns with prob-
ability at least 1−δ a (2p+ε)-approximate restricted p-mean for T , in time O

(
nm`+1 ln(1/δ)`ε−`

)
.

Proof. For the given ε, let ε′ = ε
2p−1+ε and let B1, . . . , B`′ , `′ ≤ `, be the balls guaranteed by

Lemma 3.2.6. Recall that each ball has size at least ε′n. For each i ∈ [`′] and s ∈ S we have
Pr[s 6∈ Bi] ≤ (1− ε′n

|P | ) ≤ (1− ε′n
nm) = (1− ε′

m) ≤ exp(−ε′/m).

By independence, for each i ∈ [`′] we have Pr[Bi ∩ S = ∅] ≤ exp(−ε′/m)
⌈
m(ln(`)−ln(δ))

ε′
⌉
≤ δ/`.

Using a union bound we conclude that with probability at least 1− δ, S contains at least one
element of Bi, for each i ∈ [`′], and thus Algorithm 6 returns a (2p + ε)-approximate restricted
p-mean for T with probability at least 1− δ by Lemma 3.2.6.

The running time of the algorithm is dominated by computing the cost of all point sequences
of complexity at most ` over S. Since |S≤`| is in O

(
ln(1/δ)`m`

(ε′)`
)
⊆ O

(
ln(1/δ)`m`ε−`

)
and every

distance can be computed in time O(m), this takes time O
(
ln(1/δ)`m`+1nε−`

)
.

We now show that this algorithm can be derandomized when M is finite and surprisingly, this
derandomization comes at almost no extra cost in the asymptotic running time.

Derandomization

We consider metric spaces (M,ϑ) which together with the set of all (metric) balls B = {{y ∈M |
ϑ(x, y) ≤ r} | x ∈M, r ∈ R≥0} form a range space (M,B) with bounded VC dimension D. We
present a deterministic algorithm for the restricted p-mean problem which is applicable under
the additional assumption that there is a subsystem oracle for (P,B|P ) (where P ⊆M is finite),
which is the case for the Euclidean metric. Note that interestingly Huang et al. [146] show that
if one allows (1± ε) distortion on the original distances of a metric space with bounded doubling
dimension, then the VC dimension of the range space induced by the metric balls is also bounded
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as a function of the doubling dimension and ε. However, our algorithm also depends on the
existence of a subsystem oracle which is not always obvious for a given metric.

The following algorithm is a modification of Algorithm 6 where the sampling step is substituted
for a computation of an ε-net of the set of all vertices of all given point sequences. Since the
balls guaranteed by Lemma 3.2.6 are of appropriate size, the ε-net intersects all of them and
by enumeration of all point sequences of at most ` points from the ε-net, we again find a good
approximate restricted p-mean.

Algorithm 7 Restricted p-Mean Constant Factor Approximation (Deterministic)
1: procedure mean-C-D(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)}, ε, p)
2: ε′ ← ε

2p−1+ε , P ←
⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← compute an (ε′/m)-net of (P,B|P )
4: C ← S≤`

5: return an arbitrary element from arg min
c∈C

costpp(T, c)

The correctness of Algorithm 7 follows from Definition 2.6.5 and Lemma 3.2.6.

Theorem 3.2.8 Given a set T ⊆ M≤m of n point sequences over some metric space (M,ϑ)
and parameters ε ∈ (0,∞) and p ∈ [1,∞), Algorithm 7 returns a (2p + ε)-approximate restricted
p-mean for T .

Proof. By Lemma 3.2.6, for any ε ∈ (0,∞) there exist balls B1, . . . , B`′ ⊆ P , `′ ≤ `, of cardinality
at least ε′n each, such that any point sequence c = (c1, . . . , c`′), with ci ∈ Bi for each i ∈ [`′], is a
(2p+ε)-approximate restricted p-mean for T , where ε′ = ε

2p−1+ε . Since we compute an (ε′/m)-net
of P and |P | ≤ nm, S contains at least one point from each of B1, . . . , B`′ by Definition 2.6.5.
Hence, S≤` contains a (2p + ε)-approximate restricted p-mean for T .

We now turn to the Euclidean setting; formally, we now have M = Rd and ϑ(x, y) = ‖x − y‖.
First, we prove that there exist a subsystem oracle for (P,B|P ), when P ⊆M is a finite subset of
the d-dimensional Euclidean space.

Lemma 3.2.9 There is a subsystem oracle for the range space (P,B|P ), where P is a finite
subset of Rd.

Proof. The VC dimension of (P,B|P ) is bounded by d+ 1, see [130]. For any Y ⊆ P , we need to
compute the set B|Y explicitly in time O(|Y |d+2). We first apply the standard lifting (cf. [195])
φ : (x1, . . . , xd) 7→

(
x1, . . . , xd,

∑d
i=1 x

2
i

)
. A point p ∈ Y belongs to some ball B ∈ B, with center

c = (c1, . . . , cd) ∈ Rd and radius r > 0, if and only if, φ(p) lies below the hyperplane hB, where
hB is the hyperplane defined by the equation 〈aB, x〉 = bB, where aB = (2c1, 2c2, . . . 2cd, 1) and
bB = r2 −

∑d
i=1 c

2
i . Notice that hB is non-vertical by definition. Then we dualize: for any

point φ(p) = (y1, . . . , yd+1), D(φ(p)) = {(x1, . . . , xd+1) ∈ Rd+1 | xd+1 = ∑d
i=1 xiyi − yd+1} is a

non-vertical hyperplane in Rd+1 and for any non-vertical hyperplane hB, D−1(hB) is a point
in Rd+1. A standard fact about duality (cf. [195]) is that a point φ(p) lies below a hyperplane
hB if and only if the hyperplane D(φ(p)) lies above point D−1(hB). Finally we construct the
arrangement of hyperplanes in the dual space in time O(|Y |d+1), using the algorithm in [91]. For
each of the at most O(|Y |d+1) cells, we return a subset X ⊆ Y corresponding to the hyperplanes
lying above. The overall running time is O(|Y |d+2).
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Finally, we can analyze the running time of Algorithm 7 in the Euclidean setting.

Theorem 3.2.10 Given a set T ⊂
(
Rd
)≤m

of n point sequences and parameters ε ∈ (0,∞) and
p ∈ [1,∞), Algorithm 7 can be implemented to run in time4 O

(
nm

((
m
ε log m

ε

)d+1 +
(
m
ε log m

ε

)`)).
Proof. The VC dimension of the range space (P,B|P ) is bounded by d + 1, see [130]. By
Lemma 3.2.9, we can use Theorem 2.6.7 to compute an (ε′/m)-net S of (P,B|P ), with size
|S| ∈ O

(
m
ε log

(
m
ε

))
, in time O

(
nm

(
m
ε log

(
m
ε

))d+1
)
. We then compute the dDTWp distance of

any of the candidates from |S|≤` with the n input point sequences in time O
(
`|S|` · nm

)
.

3.2.5 (1 + ε)-Approximation of a Restricted (p, 1)-Mean in Euclidean Space

Here, we study the restricted (p, 1)-mean problem. This is exactly the problem of computing one
median point sequence of complexity at most `, under the p-DTW distance.

First, we introduce an idea that is central in the main result, which is a randomized approximation
algorithm. We formalize this idea in the following theorem, which uses the weak triangle inequality
and provides an upper bound on the expected cost of the restricted (p, 1)-mean obtained by first
sampling an input point sequence uniformly at random and then computing an α-approximate
minimum-error `-simplification of this point sequence.

Theorem 3.2.11 Let T = {τ1, . . . , τn} ⊆ M≤m be a set of point sequences over some metric
space (M,ϑ) and let p ∈ [1,∞). Let σ be a point sequence sampled uniformly at random from T ,
and let σ′ be an α-approximate minimum-error `-simplification of σ under dDTWp, where ` ≤ m.
Then,

Exp
[
cost1

p

(
T, σ′

)]
≤ (2 + α)(m`)

1
p cost1

p(T, c∗),

where c∗ is an optimal restricted (p, 1)-mean of T .

Proof. We have

Exp
[
cost1

p

(
T, σ′

)]
= Exp

[
n∑
i=1

dDTWp(τi, σ′)
]
≤ Exp

[
m

1
p

n∑
i=1

(
dDTWp(τi, c∗) + dDTWp(c∗, σ′)

)]
(I)

= m
1
p · (cost1

p(T, c∗) + n · Exp
[
dDTWp(c∗, σ′)

]
)

≤ m
1
p · (cost1

p(T, c∗) + n`
1
p · Exp

[
dDTWp(c∗, σ) + dDTWp(σ, σ′)

]
) (II)

≤ m
1
p · (cost1

p(T, c∗) + (1 + α)n`
1
p · Exp

[
dDTWp(c∗, σ)

]
)

= m
1
p ·
(

cost1
p(T, c∗) + (1 + α)n`

1
p ·
∑
τ∈T

dDTWp(c∗, τ) · 1
n

)

= m
1
p · (cost1

p(T, c∗) + (1 + α)`
1
p · cost1

p(T, c∗))

≤ (2 + α)(m`)
1
p · cost1

p(T, c∗),

where in Eq. (I) and in Eq. (II) we applied Lemma 2.3.6.
4We assume d to be constant.
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We again turn to point sequences in the Euclidean space. Recall that we are formally dealing with
point sequences over (M = Rd, ϑ(x, y) = ‖x− y‖) and we are interested in computing a median
point sequence c ∈

(
Rd
)≤`

under p-DTW. In the following, we design a (1 + ε)-approximation
algorithm for the corresponding restricted (p, 1)-mean problem. The algorithm is randomized
and succeeds with probability at least 1− δ, where δ ∈ (0, 1) is a user-defined parameter.

The high-level idea is the following. Given a set T of n point sequences, we first compute a rough
estimate of the optimal cost. To do so, we sample a sufficiently large number of input sequences
that we store in a set S, and we compute a 2-approximate minimum-error `-simplification for
each one of them. We detect a sequence in S whose simplification minimizes the restricted
(p, 1)-mean cost, denoted by R. Since S is of appropriate size, a combination of Theorem 3.2.11
with Markov’s inequality implies that with good probability, R is a 4(m`)

1
p -approximation of the

optimal cost.

We can now use R to “guess” a refined estimate for the restricted (p, 1)-mean cost which is
within a constant factor from the optimal cost, by enumerating multiples of 2 in the interval
[R/8 · (m`)−

1
p , R]. Assuming that we have such an estimate, we can use it to fine-tune a grid

that covers balls (of suitable radii) centered at the points of sequences in S. We use the resulting
grid points to compute a set of candidate solutions. The idea here is that with good probability
one of the point sequences in S is very close to the optimal solution, so one of the candidate
solutions will be a good approximation.

Algorithm 8 Restricted (p, 1)-Mean (1 + ε)-Approximation
1: procedure Med-Appr(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)}, ε, p, δ)
2: S ← sample dlog(2/δ)e point sequences from T uniformly and independently

at random with replacement
3: R ← ∅, C ← ∅
4: for each τi ∈ S do
5: τ ′i ← 2-approximate minimum-error `-simplification of τi under dDTWp (Algorithm 2)
6: R ← R∪ {cost1

p(T, τ ′i)}
7: R← minR
8: β ← 2 ·

(
68m1/p

ε + 5
)d

9: IR ←
{
R·2−i
n | i ∈ {0} ∪ [d3 + log(m`)/pe]

}
10: for each r ∈ IR do
11: γ ← ε·r

(2m)1/p
√
d

12: for each τi ∈ S do
13: B(τi, 4r)←

⋃|τi|
j=1B(τi,j , 4r)

14: N ← G(B(τi, 4r), γ)
15: if |N | ≤ ` · β then
16: C ← C ∪N≤`
17: return an arbitrary element from arg min

c∈C
cost1

p(T, c).

Now we analyze the running time and correctness of Algorithm 8. We begin with a bound on
the probability that R is a rough approximation of the optimal (p, 1)-mean cost.

Lemma 3.2.12 Let c∗ be an optimal restricted (p, 1)-mean of T . With probability at least
1− δ/2 it holds that R ≤ 8(m`)

1
p cost(T, c∗).
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Proof. For any τ ∈ T , let τ ′ be a 2-approximate minimum-error `-simplification of τ . Now, let τ
be a point sequence sampled uniformly at random from T . By Theorem 3.2.11 it holds that

Exp
[
cost

(
T, τ ′

)]
≤ 4(m`)

1
p · cost(T, c∗).

By Markov’s inequality we have that Pr
[
cost(T, τ ′) ≥ 8(m`)

1
p · cost(T, c∗)

]
≤ 1

2 . Hence, the

probability that R ≥ 8(m`)
1
p · cost(T, c∗) is

Pr
[
min
τ∈S

cost
(
T, τ ′

)
≥ 8(m`)1/p · cost(T, c∗)

]
≤ 1

2|S|
≤ δ

2 .

Next, we bound the probability that a point sequence in the sample S is conveniently close to
the optimal (p, 1)-mean.

Lemma 3.2.13 Let c∗ be an optimal restricted (p, 1)-mean of T . With probability at least
1− δ/2, there exists a τ ∈ S such that dDTWp(τ, c∗) ≤ 2

n · cost(T, c∗).

Proof. Let τ be a point sequence sampled uniformly at random from T . We have

Exp
[
dDTWp(τ, c∗)

]
=

n∑
i=1

dDTWp(τ, c∗) ·
1
n

= cost(T, c∗)
n

.

By Markov’s inequality it holds that Pr
[
dDTWp(τ, c∗) ≥ 2 · cost(T,c∗)

n

]
≤ 1

2 . Hence,

Pr
[
min
τ∈S

dDTWp(τ, c∗) ≥ 2 · cost(T, c∗)
n

]
≤ 1

2|S|
≤ δ

2 .

The set IR contains a value r such that nr is within a factor of 2 from the optimal cost.

Lemma 3.2.14 Let c∗ be an optimal restricted (p, 1)-mean of T . If R ≤ 8(m`)
1
p cost(T, c∗),

then there exists an r ∈ IR such that cost(T, c∗) ∈ [nr, 2nr].

Proof. We have that cost(T, c∗) ≤ R, since R is the cost of an `-simplification, and by assumption
it holds that cost(T, c∗) ≥ R

8 (m`)−
1
p . By the definition of IR, there exists a j ∈ [d3+log(m`)/pe]∪

{0} such that
2−(j+1) · R

n
≤ cost(T, c∗)

n
≤ 2−j · R

n
.

Hence, the lemma is true for r = 2−(j+1) · Rn .

The following is an upper bound on the number of grid cells needed to cover a Euclidean ball.
Similar bounds often appear in the literature, but they are typically asymptotic and not sufficient
for our needs. Therefore, we prove an exact (non-asymptotic) upper bound.

Lemma 3.2.15 Let x ∈ Rd and r, γ ∈ (0,∞). It holds that

|G (B(x, 8r), γ)| ≤ 2 ·
(

34r
γ
√
d

+ 5
)d

.
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Proof. We use Binet’s second expression [253] for the natural logarithm of the Gamma function:

ln Γ(z) = z ln(z)− z + 1
2 ln

(2π
z

)
+
∫ ∞

0

2 arctan
(
t
z

)
e2πt − 1 dt.

Since arctan(x) ≥ 0 for x ≥ 0 and e2πx − 1 ≥ 0 for x ≥ 0, we have the following inequality:

ln Γ(z) ≥ z ln(z)− z + 1
2 ln

(2π
z

)
⇐⇒ ln Γ(z) ≥ ln(zz)− ln(ez) + ln

(√
2π
z

)

⇐⇒ Γ(z) ≥ zze−z
√

2π
z

⇐⇒ Γ(z) ≥
√

2πzz−
1
2 e−z. (I)

We apply a standard volumetric argument to upper bound |G (B(x, 8r), γ)|, where vol(P ) denotes
the d-dimensional volume (Lebesgue measure) of any P ⊆ Rd.

|G (B(x, 8r), γ)| ≤ vol(B(x, 8r + γ
√
d))

γd
= πd/2

Γ(d2 + 1)
· (8r + γ

√
d)d

γd

≤ πd/2ed/2+1

√
2π
(
d
2 + 1

)d/2+1/2 ·
(8r + γ

√
d)d

γd
(II)

≤ 2d/2+1/2πd/2ed/2+1
√

2π · dd/2+1/2 · (8r + γ
√
d)d

γd

≤ e · (4.2)d√
π · dd/2

· (8r + γ
√
d)d

γd
≤ 2 ·

(
34r
γ
√
d

+ 5
)d

,

where in the first equation we use the formula for the volume of a d-dimensional ball from [195]
and also that the volume of a cell from a grid of width γ is γd. Furthermore, in Eq. (II) we use
Eq. (I).

We now focus on the iteration of the algorithm with r ∈ IR, τi ∈ S, such that r satisfies the
property guaranteed by Lemma 3.2.14 and τi satisfies the property guaranteed by Lemma 3.2.13.
We claim that in this certain iteration, an (1 + ε)-approximate restricted (p, 1)-mean is added to
the set of candidates C.

Lemma 3.2.16 Let c∗ = (c∗1, . . . , c∗`′) be an optimal restricted (p, 1)-mean of T . Let r∗ ∈ Ir be
chosen such that cost(T, c∗) ∈ [nr∗, 2nr∗] and let γ∗ = εr∗

(2m)1/p
√
d
. Let τ = (τ1, . . . , τ|τ |) ∈ S and

assume that dDTWp(τ, c∗) ≤ 2
n · cost(T, c∗) then

1. |G(B(τ, 4r∗), γ∗)| ≤ ` · 2 ·
(

34r∗
γ∗
√
d

+ 5
)d

and

2. there exists a c ∈ G(B(τ, 4r∗), γ∗)≤` such that cost(T, c) ≤ (1 + ε) · cost(T, c∗).

Proof. To prove Item 1, notice that dDTWp(τ, c∗) ≤ 4r∗, which implies that for any vertex
τi of τ , there exists a vertex c∗j of c∗ such that τi ∈ B(c∗j , 4r∗). By the triangle inequality
B(τi, 4r∗) ⊆ B(c∗j , 8r∗). Hence,

75



Median of Spatial Data SequencesMedian of Spatial Data Sequences Point Sequences

B(τ, 4r∗) ⊆
`′⋃
j=1

B(c∗j , 8r∗) =⇒ |G(B(τ, 4r∗), γ∗)| ≤

∣∣∣∣∣∣G
 `′⋃
j=1

B(c∗j , 8r∗), γ∗
∣∣∣∣∣∣

≤
`′∑
j=1

∣∣∣G (B(c∗j , 8r∗), γ∗
)∣∣∣ .

By Lemma 3.2.15, we obtain

|G(B(τ, 4r∗), γ∗)| ≤ ` · 2 ·
(

34r∗

γ∗
√
d

+ 5
)d

.

To prove Item 2, notice that all vertices of c∗ are contained in B(τ, 4r∗). Hence, for each vertex
c∗j there exists a grid point cj ∈ G(B(τ, 4r∗), γ∗) such that ‖c∗j − cj‖ ≤ γ∗

√
d. We will show that

the point sequence c = (c1, . . . , c`′) is a (1 + ε)-approximate restricted (p, 1)-mean for T . For
each i ∈ [n], let W ∗i denote an optimal warping between τi and c∗.

cost(T, c) =
n∑
i=1

dDTWp(τi, c) =
n∑
i=1

min
W∈W|τi|,`′

 ∑
(j,k)∈W

‖τi,j − ck‖p
 1

p

≤
n∑
i=1

 ∑
(j,k)∈W ∗i

‖τi,j − ck‖p
 1

p

≤
n∑
i=1

 ∑
(j,k)∈W ∗i

(‖τi,j − c∗k‖+ ‖c∗k − ck‖)p
 1

p

≤
n∑
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
 ∑

(j,k)∈W ∗i

‖τi,j − c∗k‖p
 1

p

+

 ∑
(j,k)∈W ∗i

‖c∗k − ck‖p
 1

p


≤

n∑
i=1

(
dDTWp(τi, c∗) + |W ∗i |1/p · γ∗

√
d
)
≤

n∑
i=1

(
dDTWp(τi, c∗) + cost(T, c∗) · ε

n

)
= (1 + ε) · cost(T, c∗),

where the second inequality follows from the triangle inequality, and the third inequality follows
from Minkowski’s inequality [226]. We also make use of the fact that |W ∗i | ≤ 2m.

We now prove the correctness of Algorithm 8.

Lemma 3.2.17 Given a finite set T ⊂
(
Rd
)≤m

of point sequences, three parameters δ ∈ (0, 1),
ε ∈ (0,∞) and p ∈ [1,∞), Algorithm 8 returns with probability at least 1−δ a (1+ε)-approximate
restricted (p, 1)-mean for T .

Proof. Let c∗ be an optimal restricted (p, 1)-mean of T . Applying a union bound over the events
of Lemma 3.2.12 and Lemma 3.2.13, we conclude that with probability at least 1− δ it holds that
R ≤ 8(m`)

1
p · cost(T, c∗) and there exists a τ ∈ S such that dDTWp(τ, c∗) ≤ (2/n) · cost(T, c∗).

We show correctness assuming that the above two events hold. By Lemma 3.2.14 we know that
there exists an r∗ ∈ IR such that cost(T, c∗) ∈ [nr∗, 2nr∗].

We focus on the iteration where r∗ is considered. Let γ∗ be the value of γ in that iteration and let
N∗ be the set N in that iteration. By Lemma 3.2.16 Item 1, |N∗| ≤ `β and all point sequences
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of complexity at most ` defined by points in N∗ will be considered as possible solutions. Finally,
by Lemma 3.2.16 Item 2, there is a point sequence in (N∗)≤` which is a (1 + ε)-approximate
solution.

Finally, we bound the running time of Algorithm 8.

Theorem 3.2.18 Given a set T ⊂
(
Rd
)≤m

of n point sequences, three parameters δ ∈ (0, 1),
ε ∈ (0,m1/p] and p ∈ [1,∞), Algorithm 8 returns a (1+ε)-approximate restricted (p, 1)-mean with
probability at least 1− δ and has running time O

((
m4 + nm ·

(
m1/p

ε

)d`
· log(m)

)
· log (1/δ)

)
.

Proof. The correctness follows from Lemma 3.2.17. It remains to bound the running time.

For each one of the point sequences in S, we compute its (2, `)-simplification in O(dm4`) time
using Algorithm 2 (see Theorem 2.8.4) and its (p, 1)-mean cost in O(dnm`) time. Hence,
the total time needed to compute R and then R is O((m4 + nm) · d` log(1/δ)). The set IR
has cardinality |IR| ∈ O

(
log(m`)

p

)
. For each value r ∈ IR, we add at most |N |≤` · |S| =

`

(
` · 2 ·

(
68m1/p

ε + 5
)d)`

· |S| candidates. For each candidate point sequence in C, we compute
the cost in time O(dnm`). Since d, p and ` are considered constants, the total running time is
O

((
m4 + nm ·

(
m1/p

ε

)d`
· log(m)

)
· log (1/δ)

)
.
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4 k-Median Clustering

Clustering is the task of unveiling a hidden structure in a given set of objects. More specifically,
we want to partition the set into so-called clusters such that the elements are more similar within
a cluster than across clusters. The nature of the objects as well as the measure of (dis-)similarity
depends on the application at hand and indeed this diverse and versatile concept has to this day
been studied under numerous expressions, most prominently in the fields of data mining and
machine learning, with applications such as summarization, learning, segmentation, and target
marketing. It has probably first been investigated about six decades ago and was influenced
by a range of scientific disciplines. Today it subsumes a plethora of methods, techniques and
applications, which can not be covered by this manuscript. For an overview on the matter we refer
the reader to one of the detailed books and surveys on the topic, e.g. [255, 13, 153, 118, 155, 154].

In this work, we focus on a particular manifestation of the concept: center based clustering, for
an introduction see e.g. [130, Chapter 4]. Here, each cluster is induced by its representative
center, i.e., it consists of the elements that are closer to its center than to any another center.
Arguably the most popular problems in center based clustering are Euclidean k-center, k-median
and k-means. Here, one is given a set of points in Rd and wants to compute k center points
from Rd that minimize the maximum Euclidean distance between a given point and its nearest
center point, respectively the sum of Euclidean distances between the given points and their
nearest center point, respectively the sum of squared Euclidean distances between the given
points and their nearest center. These problems are naturally motivated by applications like
data summarization [170], facility location [212] and learning a mixture of Gaussians [189].

The k-center and k-median problems are also popular in a more general setting, where input
and cluster centers come from an arbitrary finite metric space. However, metric k-center is
NP-hard to approximate within a factor of (2 − ε) [123] and metric k-median is NP-hard to
approximate within a factor of ((1 + 2/e)− ε) [156]. Their Euclidean counterparts are also hard
to solve and some are even hard to approximate. In general, Euclidean k-center, k-median and
k-means are NP-hard [130]. Euclidean k-means is even NP-hard if either k or d is fixed [19, 192]
and Euclidean k-median is NP-hard when d is fixed [197]. Euclidean k-center and k-means are
NP-hard to approximate within a factor of ((1 +

√
7)/2− ε) [100], respectively within a factor

of (1.0013− ε) [178]. However, if k, and particularly d, are fixed, then there exist polynomial
time approximation schemes for Euclidean k-median and k-means [132]. We further note that
k-median clustering has also been considered in a non-metric setting for distance measures like
Bregman divergences [6].

Popular clustering algorithms that are used in practice are the greedy 2-approximation algorithm
for k-center clustering by Gonzalez [123], a local search heuristic for k-median clustering by Arya
et al. [25] and the famous heuristic by Lloyd [185] for k-means clustering.

Of course, here we are interested in spatial data sequences and due to the versatility of the concept,
clustering of sequential data such as time series, trajectories, and texts, particularly DNA, has
been widely studied to this day. Again, the topic is too broad to provide a general overview, so
we refer the reader to one of the numerous surveys on the matter, e.g. [181, 36, 14, 158].
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In this work, we focus on a notion of clustering that has only recently been introduced [87] and
has quickly become popular [59, 207, 60, 44, 61]. We name it (k, `)-clustering and it subsumes
the (k, `)-center and (k, `)-median objectives, which are derived from k-center and k-median.
Here, one is given a set of polygonal curves/point sequences of complexity at most m each and
wants to compute k polygonal curves/point sequences of complexity at most ` each, such that
the maximum distance between an input curve and a nearest center curve, respectively sum of
distances between the input curves and their nearest center curve, is minimized. These objectives
incorporate the complexity restriction on the centers (recall the introduction of Chapter 3) and
are commonly equipped with variants of the Fréchet and the dynamic time warping distances.

In this chapter we build upon the results obtained in Chapter 3 and we study variants of (k, `)-
median clustering under the (continuous) Fréchet and (discrete) dynamic time warping distance.
First, we modify an existing algorithm to approximate a generalized k-median clustering problem,
which captures (k, `)-median clustering. Furthermore, we develop an algorithm that constructs
ε-coresets for this generalized k-median clustering problem under the restriction that the input
comes from a metric space. We formally define the problem, such that it is suited to capture the
different data types and measures that we use.

4.1 Problem Definition

In the following, let X = (X, ρ) be an arbitrary space, where X is any non-empty (ground-)set
and ρ : X×X → R≥0 is a distance function (not necessarily a metric). We introduce a generalized
definition of k-median clustering, where the input is restricted to come from a predefined subset
Y ⊆ X and the medians are restricted to come from a predefined subset Z ⊆ X.

Problem 4.1.1 The generalized k-median clustering problem is defined as follows, where
k ∈ N is a fixed (constant) parameter of the problem: given a finite and non-empty set
T = {τ1, . . . , τn} ⊆ Y , compute a set C of k elements from Z, such that cost(T,C) =∑
τ∈T minc∈C ρ(τ, c) is minimal.

Later in this work, Y will be the domain of the high-complexity input and Z will be the domain
of the low-complexity (approximate) medians. However, this abstract definition is of more general
interest.

4.2 Algorithm for Clustering in Metric and Non-Metric Spaces

Here we present an algorithm that is able to approximate Problem 4.1.1. Before we do so, we
review the related work.

4.2.1 Related Work

Our algorithm builds upon the clustering algorithm by Ackermann et al. [6], which is a generaliz-
ation of the algorithm by Kumar et al. [173]. The algorithm by Kumar et al. was developed to
approximate a class of Euclidean clustering problems, including Euclidean k-median and k-means,
as well as discrete k-means clustering. It achieves with high probability an approximation factor of
(1 + ε) and has running time nd2(k/ε)O(1) . In this version of the algorithm, sampling, particularly
superset sampling (recall Section 2.4.1), is hardwired into the candidate phase. In this vain, it is
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shown that any clustering problem that satisfies a certain sampling property can be approximated
by the algorithm. Finally, Kumar et al. provide an extension to weighted k-median and k-means
clustering. The algorithms require integral weights and achieve a (1 + ε)-approximation with
high probability in time nd2(k/ε)O(1) logkW , where W is the sum of all weights.

The generalized algorithm by Ackermann et al. was developed to perform k-median clustering
using non-metric distance measures. Their research originated in a project that demanded
to identify a set of representatives in a large set of probability distributions, whose distances
are measured using the Kullback-Leibler divergence. In the course, they noted that almost no
approximation algorithms were known for non-metric clustering problems, a discrepancy to the
popularity of non-metric distance measures used in practice. Ackermann et al. [6] present a
randomized (1 + ε)-approximation algorithm for k-median clustering of probability distributions
under the Kullback-Leibler divergence, of speech data under the Itakura-Saito divergence, of
points in Rd under the Mahalanobis distance and some special and related cases of Bregman
divergences, and also of points from certain metric spaces with bounded doubling dimension.
They achieve this by a simplified and purely combinatorial analysis of the algorithm by Kumar
et al., which does not require metric properties. Also, they generalize the sampling property
developed by Kumar et al.. The running time of their algorithm is roughly n2O(k log k/ε).

4.2.2 The Algorithm

The algorithm in [6] is a recursive approximation scheme that employs two phases in each call.
In the so-called candidate phase it computes candidates by taking a sample S from the input
set T and running an algorithm on each subset of S of a certain size. Which algorithm to use,
depends on the metric at hand. The idea behind this is simple: if T contains a cluster T ′ that
takes a constant fraction of its size, then a constant fraction of S is from T ′ with high probability.
By brute-force enumeration of all subsets of S, one can find this subset S′ ⊆ T ′ and if S is taken
uniformly and independently at random from T then S′ is a uniform and independent sample
from T ′ (see Section 2.4.1). Ackermann et al. proved for various metric and non-metric distance
measures that S′ can be used for computing candidates that contain a (1 + ε)-approximate
median for T ′ with high probability. The algorithm recursively calls itself for each candidate to
eventually evaluate these together with the candidates for the remaining clusters.

The second phase of the algorithm is the so-called pruning phase, where it partitions its input
according to the candidates at hand into two sets of equal size: one with the smaller distances to
the candidates and one with the larger distances to the candidates. It then recursively calls itself
with the second set as input. The idea behind this is that small clusters become larger and will
eventually take a constant fraction of the input, such that candidates for these can be found
in the candidate phase. Furthermore, the partitioning yields a provably small error. Finally,
when k centers are found in each call, the algorithm returns the set of k candidates that together
evaluated best against the input.

We generalize the algorithm in the following way: instead of drawing a uniform sample and
running a problem-specific algorithm on this sample in the candidate phase, we only run a
problem-specific “plugin”-algorithm in the candidate phase, thus dropping the framework around
the sampling property. We think that the problem-specific algorithms used in [6] do not fulfill
the role of a plugin, since parts of the problem-specific operations, e.g. the uniform sampling,
remain in the main algorithm. Here, we separate the problem-specific operations from the main
algorithm: any algorithm can serve as plugin, if it is able to return candidates for a cluster
that takes a constant fraction of the input, where the fraction is an input-parameter of the
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algorithm and some approximation factor is guaranteed (with high probability). The calls to the
candidate-finder plugin do not even need to be (stochastically) independent, allowing adaptive
algorithms.

The following algorithm, Algorithm 9, can approximate every k-median problem compatible
with Problem 4.1.1, when provided with a problem-specific plugin-algorithm for computing
candidates. It has several parameters. The first parameter C is the set of centers yet found
and κ is the number of centers yet to be found. The following parameters concern only the
plugin-algorithm used within the algorithm: β determines the size (in terms of a fraction of the
input) of the smallest cluster for which an approximate median can be computed, δ determines
the probability of failure of the plugin-algorithm, and ε determines the approximation factor of
the plugin-algorithm.

Algorithm 9 Recursive Approximation-Scheme for k-Median Clustering
1: procedure k-Median(T,C, κ, β, δ, ε)
2: if κ = 0 then
3: return C

. Pruning Phase
4: if C 6= ∅ and |T | > 1 then
5: P ← set of

⌊
|T |
2

⌋
elements τ ∈ T , such that min

c∈C
ρ(τ, c) ≤ min

c∈C
ρ(σ, c) for each σ ∈ T \P

6: C ′ ← k-Median(T \ P,C,min{κ, |T \ P |}, β, δ, ε)
7: else
8: C ′ ← ∅

. Candidate Phase
9: K ← Median-Candidates(T, β, δ/k, ε)

10: for c ∈ K do
11: Cc ← k-Median(T,C ∪ {c},min{κ− 1, |T |}, β, δ, ε)
12: C ← {C ′} ∪

⋃
c∈K
{Cc}

13: return arg min
C∈C

cost(T,C)

The quality of approximation and worst case running time of Algorithm 9 is stated in the following
two theorems, which we prove further below. The proofs are adaptations of corresponding proofs
in [6]. We provide them for the sake of completeness. We note that no metric properties are
used in the proofs.

Theorem 4.2.1 Let α ∈ [1,∞) and Median-Candidates be an algorithm that, given three
parameters β ∈ [1,∞), δ, ε ∈ [0, 1) and a finite set T ⊆ Y , returns with probability at least 1− δ
an (α+ ε)-approximate 1-median for any T ′ ⊆ T , if |T ′| ≥ 1

β |T |.

Let T ⊆ Y be a finite set. Algorithm 9 called with parameters (T, ∅, k, β, δ, ε), where β ∈ (2k,∞)
and δ, ε ∈ (0, 1), returns with probability at least 1− δ a set C = {c1, . . . , ck} with cost(T,C) ≤
(1 + 4k2

β−2k )(α+ ε) cost(T,C∗), where C∗ is an optimal set of k medians for T .

Theorem 4.2.2 Let T1(n, β, δ, ε) denote the worst case running time of Median-Candidates
for an arbitrary input set T with |T | = n and let C(n, β, δ, ε) denote the maximum number of
candidates it returns. Also, let Tρ denote the worst case running time needed to compute ρ for
an input element and a candidate.

If T1 and C are non-decreasing in n, Algorithm 9 has running time O(C(n, β, δ, ε)k+2 · n · Tρ +
C(n, β, δ, ε)k+1 · T1(n, β, δ, ε)).
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The following proof is an adaption of [6, Theorem 2.2 - Theorem 2.5].

Proof of Theorem 4.2.1. For k = 1, the claim trivially holds. We now distinguish two cases. In
the first case the principle of the proof is presented in all its detail. In the second case we only
show how to generalize the first case to k > 2.

Case 1: k = 2

Let C∗ = {c∗1, c∗2} be an optimal set of k medians for T with clusters T ∗1 and T ∗2 , respectively,
that form a partition of T . For the sake of simplicity, assume that n is a power of 2 and
w.l.o.g. assume that |T ∗1 | ≥ 1

2 |T | >
1
β |T |. Let C1 be the set of candidates returned by Median-

Candidates in the initial call. With probability at least 1 − δ/k, there is a c1 ∈ C1 with
cost(T ∗1 , c1) ≤ (α+ ε) cost(T ∗1 , c∗1). We distinguish two cases:

Case 1.1: There exists a recursive call with parameters (T ′, {c1}, 1, β, δ, ε) and |T ∗2 ∩T ′| ≥ 1
β |T

′|.

First, we assume that T ′ is the maximum cardinality input with |T ∗2 ∩ T ′| ≥ 1
β |T

′|, occurring in
a recursive call of the algorithm. Let C2 be the set of candidates returned by Median-
Candidates in this call. With probability at least 1 − δ/k, there is a c2 ∈ C2 with
cost(T ∗2 ∩ T ′, c2) ≤ (α+ ε) cost(T ∗2 ∩ T ′, c̃2), where c̃2 is an optimal median for T ∗2 ∩ T ′.

Let P be the set of elements of T removed in the m ∈ N, m ≤ log(n), pruning phases between
obtaining c1 and c2. Without loss of generality we assume that P 6= ∅. For i ∈ [m], let
Pi be the elements removed in the ith (in the order of the recursive calls occurring) pruning
phase. Note that the Pi are pairwise disjoint, we have that P = ∪ti=1Pi and |Pi| = n

2i . Since
T = T ∗1 ] (T ∗2 ∩ T ′) ] (T ∗2 ∩ P ), we have

cost(T, {c1, c2}) ≤ cost(T ∗1 , c1) + cost
(
T ∗2 ∩ T ′, c2

)
+ cost(T ∗2 ∩ P, c1). (I)

Our aim is now to prove that the number of elements wrongly assigned to c1, i.e., T ∗2 ∩ P , is
small and further, that their cost is a fraction of the cost of the elements correctly assigned to c1,
i.e., T ∗1 .

We define R0 = T and for i ∈ [m] we define Ri = Ri−1 \ Pi. The Ri are the elements remaining
after the ith pruning phase. Note that by definition |Ri| = n

2i = |Pi|. Since Rm = T ′ is the
maximum cardinality input, with |T ∗2 ∩ T ′| ≥ 1

β |T
′|, we have that |T ∗2 ∩ Ri| < 1

β |Ri| for all
i ∈ [m− 1]. Also, for each i ∈ [m] we have Pi ⊆ Ri−1, therefore

|T ∗2 ∩ Pi| ≤ |T ∗2 ∩Ri−1| <
1
β
|Ri−1| =

2
β

n

2i (II)

and as immediate consequence

|T ∗1 ∩ Pi| = |Pi| − |T ∗2 ∩ Pi| > |Pi| −
1
β
|Ri−1| =

(
1− 2

β

)
n

2i . (III)

This tells us that mainly the elements of T ∗1 are removed in the pruning phase and only very
few elements of T ∗2 . By definition, we have for all i ∈ [m − 1], σ ∈ Pi and τ ∈ Pi+1 that
ρ(σ, c1) ≤ ρ(τ, c1), hence

1
|T ∗2 ∩ Pi|

cost(T ∗2 ∩ Pi, c1) ≤ 1
|T ∗1 ∩ Pi+1|

cost(T ∗1 ∩ Pi+1, c1).
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Combining this inequality with Eqs. (II) and (III) we obtain for i ∈ [m− 1]:

β2i
2n cost(T ∗2 ∩ Pi, c1) < 2i+1

(1− 2/β)n cost(T ∗1 ∩ Pi+1, c1)

⇐⇒ cost(T ∗2 ∩ Pi, c1) < 2i+12n
(1− 2/β)nβ2i cost(T ∗1 ∩ Pi+1, c1) = 4

(β − 2) cost(T ∗1 ∩ Pi+1, c1). (IV)

We still need such a bound for i = m. Since |Rm| = |Pm| and also Rm ⊆ Rm−1 we can use
Eq. (II) to obtain:

|T ∗1 ∩Rm| = |Rm| − |T ∗2 ∩Rm| ≥ |Rm| − |T ∗2 ∩Rm−1| >
(

1− 2
β

)
n

2m . (V)

Also, we have for all σ ∈ Pm and τ ∈ Rm that ρ(σ, c1) ≤ ρ(τ, c1) by definition, thus

1
|T ∗2 ∩ Pm|

cost(T ∗2 ∩ Pm, c1) ≤ 1
|T ∗1 ∩Rm|

cost(T ∗1 ∩Rm, c1).

We combine this inequality with Eq. (II) and Eq. (V) and obtain:

β2m
2n cost(T ∗2 ∩ Pm, c1) < 2m2n

(1− 2/β)nβ2m cost(T ∗1 ∩Rm, c1)

⇐⇒ cost(T ∗2 ∩ Pm, c1) < 2
(β − 2) cost(T ∗1 ∩Rm, c1). (VI)

We are now ready to bound the cost of the elements of T ∗2 wrongly assigned to c1. Combining
Eq. (IV) and Eq. (VI) yields:

cost(T ∗2 ∩ P, c1) =
m∑
i=1

cost(T ∗2 ∩ Pi, c1) < 4
β − 2

m−1∑
i=1

cost(T ∗1 ∩ Pi+1, c1) + 2
β − 2 cost(T ∗1 ∩Rm, c1)

<
4

β − 2 cost(T ∗1 , c1).

Here, the last inequality holds, because P2, . . . , Pm and Rm are pairwise disjoint. Also, we have

cost
(
T ∗2 ∩ T ′, c2

)
≤ (α+ ε) cost

(
T ∗2 ∩ T ′, c̃2

)
≤ (α+ ε) cost

(
T ∗2 ∩ T ′, c∗2

)
≤ (α+ ε) cost(T ∗2 , c∗2).

Finally, using Eq. (I) and a union bound, with probability at least 1− δ the following holds:

cost(T, {c1, c2}) < (α+ ε) cost(T ∗1 , c∗1) + (α+ ε) cost(T ∗2 , c∗2) + 4
β − 2(α+ ε) cost(T ∗1 , c∗1)

<

(
1 + 4

β − 2

)
(α+ ε) cost(T,C∗) =

(
1 + 4k

kβ − 2k

)
(α+ ε) cost(T,C∗)

≤
(

1 + 4k2

β − 2k

)
(α+ ε) cost(T,C∗).

Case 1.2: For all recursive calls with parameters (T ′, {c1}, 1, β, δ, ε) it holds that |T ∗2 ∩T ′| < 1
β |T

′|.

After log(n) pruning phases we end up with a singleton {σ} = T ′ as input set. Since |T ∗2 ∩ T ′| <
1
β |T

′|, it must be that 0 = |T ∗2 ∩ T ′| < 1
β |T

′| = 1
β < 1 and thus σ ∈ T ∗1 .

Let C2 be the set of candidates returned by Median-Candidates in this call. With
probability at least 1 − δ/k there is a c2 ∈ C2 with cost({σ}, c2) ≤ (α + ε) cost({σ}, c̃2) ≤
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(α+ ε) cost({σ}, c∗1), where c̃2 is an optimal median for {σ}. Since cost(T ∗2 ∩ P, c1) is bounded
as in Case 1.1, by a union bound we have with probability at least 1− δ:

cost(T, {c1, c2}) ≤ cost(T ∗1 \ {σ}, c1) + cost(T ∗2 ∩ P, c1) + cost({σ}, c2)
≤ (α+ ε) cost(T ∗1 , c∗1) + cost(T ∗2 ∩ P, c1)

≤
(

1 + 4
β − 2

)
(α+ ε) cost(T,C∗)

≤
(

1 + 4k2

β − 2k

)
(α+ ε) cost(T,C∗).

Case 2: k > 2

We only prove the generalization of Case 1.1 to k > 2, the remainder of the proof is analogous to
the Case 1. Let C∗ = {c∗1, . . . , c∗k} be an optimal set of k medians for T with clusters T ∗1 , . . . , T ∗k ,
respectively, that form a partition of T . For the sake of simplicity, assume that n is a power of 2
and w.l.o.g. assume |T ∗1 | ≥ · · · ≥ |T ∗k |. For i ∈ [k] and j ∈ [k] \ [i] we define T ∗i,j = ]jt=iT ∗t .

Let T0 = T and let (Tj = Tj−1 \ Pj)mj=1 be the sequence of input sets in the recursive calls of the
m ∈ N, m ≤ log(n), pruning phases, where Pj is the set of elements removed in the jth (in the
order of the recursive calls occurring) pruning phase. Let T = {T0} ∪ {Tj | j ∈ [m]}. For i ∈ [k],
let Ti be the maximum cardinality set in T , with |T ∗i ∩ Ti| ≥ 1

β |Ti|. Note that by assumption
and since β > 2k, T1 = T must hold and also Tj ⊂ Ti for j ∈ [k] \ [i].

Using a union bound, with probability at least 1 − δ, for each i ∈ [k] the call of Median-
Candidates with input Ti yields a candidate ci with

cost(T ∗i ∩ Ti, ci) ≤ (α+ ε) cost(T ∗i ∩ Ti, c̃i) ≤ (α+ ε) cost(T ∗i ∩ Ti, c∗i ) ≤ (α+ ε) cost(T ∗i , c∗i ),
(I)

where c̃i is an optimal 1-median for T ∗i ∩ Ti. Let C = {c1, . . . , ck} be the set of these candidates
and for i ∈ [k − 1], let Pi = Ti \ Ti+1 denote the set of elements of T removed by the pruning
phases between obtaining ci and ci+1. Note that the Pi are pairwise disjoint.

By definition, the sets

T ∗1 ∩ T1, . . . , T
∗
k ∩ Tk, T ∗2,k ∩ P1, . . . , T

∗
k,k ∩ Pk−1

form a partition of T , therefore

cost(T, {c1, . . . , ck}) ≤
k∑
i=1

cost(T ∗i ∩ Ti, ci) +
k−1∑
i=1

cost
(
T ∗i+1,k ∩ Pi, {c1, . . . , ci}

)

≤ (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) +
k−1∑
i=1

cost
(
T ∗i+1,k ∩ Pi, {c1, . . . , ci}

)
. (II)

Now, it only remains to bound the cost of the wrongly assigned elements of T ∗i+1,k. For i ∈ [k],
let ni = |Ti| and w.l.o.g. assume that Pi 6= ∅ for each i ∈ [k − 1]. Each Pi is the disjoint union
]mij=1Pi,j of mi ∈ N sets of elements of T removed in the interim pruning phases, and it holds
that |Pi,j | = ni

2j . We now prove for each i ∈ [k − 1] and j ∈ [mi] that Pi contains many elements
from T ∗1,i and only a few elements from T ∗i+1,k.

For i ∈ [k − 1], we define Ri,0 = Ti and for j ∈ [mi] we define Ri,j = Ri,j−1 \ Pi,j . By definition,
|Ri,j | = ni

2j = |Pi,j |, Ri,j1 ⊃ Ri,j2 for each j1 ∈ [mi] and j2 ∈ [mi] \ [j1], also Ri,mi = Ti+1. Thus,
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|T ∗t ∩ Ri,j | < 1
β |Ri,j | for all i ∈ [k − 1], j ∈ [mi] and t ∈ [k] \ [i]. As immediate consequence we

obtain |T ∗i+1,k ∩Ri,j | ≤
k
β |Ri,j |. Since Pi,j ⊆ Ri,j−1 for all i ∈ [k − 1] and j ∈ [mi], we have

|Ti+1,k ∩ Pi,j | ≤ |Ti+1,k ∩Ri,j−1| ≤
k

β
|Ri,j−1| =

2k
β

ni
2j , (III)

which immediately yields

|T1,i ∩ Pi,j | = |Pi,j | − |Ti+1,k ∩ Pi,j | ≥
(

1− 2k
β

)
ni
2j . (IV)

Now, by definition we know that for all i ∈ [k − 1], j ∈ [mi] \ {mi}, σ ∈ Pi,j and τ ∈ Pi,j+1 that
min

c∈{c1,...,ci}
ρ(σ, c) ≤ min

c∈{c1,...,ci}
ρ(τ, c). Thus,

cost
(
T ∗i+1,k ∩ Pi,j , {c1, . . . , ci}

)
|T ∗i+1,k ∩ Pi,j |

≤
cost

(
T ∗1,i ∩ Pi,j+1, {c1, . . . , ci}

)
|T ∗1,i ∩ Pi,j+1|

.

Combining this inequality with Eqs. (III) and (IV) yields for i ∈ [k − 1] and j ∈ [mi] \ {mi}:

β2j
2kni

cost
(
T ∗i+1,k ∩ Pi,j , {c1, . . . , ci}

)
≤ 2j+1

(1− 2k
β )ni

cost
(
T ∗1,i ∩ Pi,j+1, {c1, . . . , ci}

)
⇐⇒ cost

(
T ∗i+1,k ∩ Pi,j , {c1, . . . , ci}

)
≤ 4k
β − 2k cost

(
T ∗1,i ∩ Pi,j+1, {c1, . . . , ci}

)
(V)

For each i ∈ [k − 1] we still need an upper bound on cost
(
T ∗i+1,k ∩ Pi,mi , {c1, . . . , ci}

)
. Since

|Ri,mi | = |Pi,mi | and also Ri,mi ⊆ Ri,mi−1 we can use Eq. (III) to obtain

|T ∗1,i ∩Ri,mi | = |Ri,mi |−|T ∗i+1,k ∩Ri,mi | ≥ |Ri,mi |−|T ∗i+1,k ∩Ri,mi−1| >
(

1− 2k
β

)
ni

2mi . (VI)

By definition, we also know that for all i ∈ [k−1], σ ∈ Pi,mi and τ ∈ Ri,mi that min
c∈{c1,...,ci}

ρ(σ, c) ≤

min
c∈{c1,...,ci}

ρ(τ, c). Thus,

cost
(
T ∗i+1,k ∩ Pi,mi , {c1, . . . , ci}

)
|T ∗i+1,k ∩ Pi,mi |

≤
cost

(
T ∗1,i ∩Ri,mi , {c1, . . . , ci}

)
|T ∗1,i ∩Ri,mi |

.

Combining this inequality with Eqs. (III) and (VI) yields:

β2mi
2kni

cost
(
T ∗i+1,k ∩ Pi,mi , {c1, . . . , ci}

)
<

2mi
(1− 2k

β )ni
cost

(
T ∗1,i ∩Ri,mi , {c1, . . . , ci}

)
⇐⇒ cost

(
T ∗i+1,k ∩ Pi,mi , {c1, . . . , ci}

)
<

2k
β − 2k cost

(
T ∗1,i ∩Ri,mi , {c1, . . . , ci}

)
. (VII)

We can now give the following bound, combining Eqs. (V) and (VII), for each i ∈ [k − 1]:
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cost
(
T ∗i+1,k ∩ Pi, {c1, . . . , ci}

)
=

mi∑
j=1

cost
(
T ∗i+1,k ∩ Pi,j , {c1, . . . , ci}

)

<
mi−1∑
j=1

4k
β − 2k cost

(
T ∗1,i ∩ Pi,j+1, {c1, . . . , ci}

)
+ 2k
β − 2k cost

(
T ∗1,i ∩Ri,mi , {c1, . . . , ci}

)
<

4k
β − 2k cost

(
T ∗1,i ∩ Ti, {c1, . . . , ci}

)
. (VIII)

Here, the last inequality holds, because Pi,2, . . . , Pi,mi and Ri,mi are pairwise disjoint subsets of
Ti.

Now, we plug this bound into Eq. (II). Note that T ∗j ∩ Ti ⊆ T ∗j ∩ Tj for each i ∈ [k] and j ∈ [i]
by definition. We obtain:

cost(T, {c1, . . . , ck}) ≤ (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) +
k−1∑
i=1

cost
(
T ∗i+1,k ∩ Pi, {c1, . . . , ci}

)

< (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) + 4k
β − 2k

k−1∑
i=1

cost
(
T ∗1,i ∩ Ti, {c1, . . . , ci}

)

≤ (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) + 4k
β − 2k

k−1∑
i=1

i∑
t=1

cost(T ∗t ∩ Ti, ct)

≤ (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) + 4k
β − 2k

k−1∑
i=1

i∑
t=1

cost(T ∗t ∩ Tt, ct)

≤ (α+ ε)
k∑
i=1

cost(T ∗i , c∗i ) + 4k2

β − 2k

k−1∑
i=1

cost(T ∗i ∩ Ti, ci)

≤
(

1 + 4k2

β − 2k

)
(α+ ε)

k∑
i=1

cost(T ∗i , c∗i ) =
(

1 + 4k2

β − 2k

)
(α+ ε) cost(T,C∗).

The last inequality follows from Eq. (I).

The following analysis of the worst case running time of Algorithm 5 is a slight adaption of [6,
Theorem 2.8], which is also provided for the sake of completeness.

Proof of Theorem 4.2.2. Let T (n, κ, β, δ, ε) denote the worst case running time of Algorithm 9
for input set T with |T | = n. For the sake of simplicity, we assume that n is a power of 2. Note
that we always have κ ≤ n.

If κ = 0, Algorithm 9 has running time c1 ∈ O(1). If n ≥ κ ≥ 1, Algorithm 9 has running time at
most c2 · (n ·Tρ +n) ∈ O(n ·Tρ) to obtain P , T (n/2, κ, β, δ, ε) for the recursive call in the pruning
phase, T1(n, β, δ, ε) to obtain the candidates, C(n, β, δ, ε) ·T (n, κ−1, β, δ, ε) for the recursive calls
in the candidate phase, one for each candidate, and c3 ·n ·Tρ ·C(n, β, δ, ε) ∈ O(n ·Tρ ·C(n, β, δ, ε))
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to eventually evaluate the candidate sets. Let c = c1 + c2 + c3 + 1. We obtain the following
recurrence relation:

T (n, κ, β, δ, ε) ≤


c if κ = 0
C(n, β, δ, ε) · T (n, κ− 1, β, δ, ε) + T (n/2, κ, β, δ, ε)
+T1(n, β, δ, ε) + cn · Tρ · C(n, β, δ, ε)) else

.

Let f(n, β, δ, ε) = 1
cn · T1(n, β, δ, ε) + Tρ · C(n, β, δ, ε).

We prove that T (n, κ, β, δ, ε) ≤ c · 4κ · C(n, β, δ, ε)κ+1 · n · f(n, β, δ, ε), by induction on n, κ.

For κ = 0 we have T (n, κ, β, δ, ε) ≤ c ≤ cn ≤ c · 40 · C(n, β, δ, ε) · n · f(n, β, δ, ε).

Now, let n ≥ κ ≥ 1 and assume the claim holds for T (n′, κ′, β, δ, ε), for each κ′ ∈ {0, . . . , κ− 1}
and n′ ∈ [n− 1]. We have:

T (n, κ, β, δ, ε) ≤ C(n, β, δ, ε) · T (n, κ− 1, β, δ, ε) + T (n/2, κ, β, δ, ε)
+ T1(n, β, δ, ε) + cn · Tρ · C(n, β, δ, ε)
≤ C(n, β, δ, ε) · c · 4κ−1 · C(n, β, δ, ε)κ · n · f(n, β, δ, ε)

+ c · 4κ · C(n/2, β, δ, ε)κ+1 · n2 · f(n/2, β, δ, ε)

+ cn · f(n, β, δ, ε)

≤
(1

4 + 1
2 + 1

4κC(n, β, δ, ε)κ+1

)
c · 4κ · C(n, β, δ, ε)κ+1 · n · f(n, β, δ, ε)

≤ c · 4κ · C(n, β, δ, ε)κ+1 · n · f(n, β, δ, ε).

The last inequality holds, because 1
4κC(n,β,δ,ε)κ+1 ≤ 1

4 , and the claim follows by induction.

In the following, we apply Algorithm 9 to the problems of clustering polygonal curves under
the Fréchet distance and point sequences under the dynamic time warping distance. Since
Algorithm 9 approximates the generalized k-median problem, in both cases we obtain certain
expressions of k-median clustering approximation algorithms for the respective input objects and
distance measures.

4.2.3 Application to Polygonal Curves under the Fréchet Distance

Here, we apply Algorithm 9 to the problem of clustering polygonal curves under the Fréchet
distance. We formally define the problem that we aim to approximate.

Problem Definition

Building upon the results in Section 3.1 we want to compute a set of k clusters that are best
possibly described by their `-median. Consequently, the `-median problem (Problem 3.1.1) can
be seen as a special case of the following problem for k = 1.

Problem 4.2.3 The (k, `)-median clustering problem is defined as follows, where k ∈ N
and ` ∈ N>1 are fixed (constant) parameters of the problem: given a set T = {τ1, . . . , τn} ⊂ Rdm
of polygonal curves, compute a set C ⊂ Rd` of k polygonal curves, such that cost(T,C) =∑n

i=1 minc∈C dF(τi, c) is minimal.
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Indeed, by setting X = Rd∗, Y = Rdm ⊆ X, Z = Rd` ⊆ X and ρ = dF, Problem 4.2.3 is
a specialization of the generalized k-median problem (Problem 4.1.1) and can therefore be
approximated using Algorithm 9. We now review the related work.

Related Work

Only recently, Driemel et al. [87] introduced the (k, `)-median and (k, `)-center problem, where
the latter is a similar extension of the `-center problem to the clustering setting. Driemel et al.
proved that (k, `)-center as well as (k, `)-median clustering is NP-hard when k is a part of the
input and ` is fixed. Also, they showed that the doubling dimension of the metric space of
polygonal curves under the Fréchet distance is unbounded, even when the complexity of the
curves is bounded. For this reason, the k-median result by Ackermann et al. [6] for certain metric
spaces of bounded doubling dimension can not be applied. However, the authors developed the
first approximation schemes for these problems, for curves in R. For the (k, `)-median problem
they circumvented the problem of the unbounded doubling dimension and proved that the
sampling property indeed holds, so the k-median algorithm by Ackermann et al. can nevertheless
be applied (for the (k, `)-center problem they used a completely different algorithm). Following
this work, Buchin et al. [59] developed the first constant factor approximation algorithm for
(k, `)-center clustering in Rd. Furthermore, they provide improved results on the hardness of
approximating (k, `)-center clustering under the Fréchet distance: the (k, `)-center problem is
NP-hard to approximate within a factor of (1.5 − ε) for curves in R and within a factor of
(2.25 − ε) for curves in Rd, where d ≥ 2, in both cases even if k = 1. Furthermore, for the
(k, `)-median variant, Buchin et al. [61] proved NP-hardness using a similar reduction. Again,
the hardness holds even if k is equal to 1.

The (k, `)-center and the (k, `)-median problems have also been studied under other distance
measures, like the discrete Fréchet and Hausdorff distance (a distance measure on point sets).
Buchin et al. [59] provide the first constant factor approximation algorithm for (k, `)-center
clustering in Rd under the discrete Fréchet distance. Furthermore, they proved that the (k, `)-
center problem under the discrete Fréchet distance is NP-hard to approximate within a factor
of (2 − ε) for curves in R and within a factor of (3 sin π/3 − ε) for curves in Rd, where d ≥ 2.
The hardness holds in both cases even if k = 1. Buchin et al. [61] developed the first (1 + ε)-
approximation algorithms for (k, `)-center and (k, `)-median clustering in Rd under the discrete
Fréchet distance. Furthermore, they presented an exact algorithm for (k, `)-center clustering in
R2 under the discrete Fréchet distance. Nath and Taylor [207] give the first near-linear time
(1 + ε)-approximation algorithm for (k, `)-median clustering under the discrete Fréchet distance
and a novel (1 + ε)-approximation algorithm for (k, `)-median clustering under the Hausdorff
distance. They achieve these results by using the algorithm by Ackermann et al. [6] in conjunction
with a generalization of doubling dimension that is satisfied by the discrete Fréchet and Hausdorff
distance and implies the sampling property, which they name g-coverability. However, it is not
known whether g-coverability holds for (k, `)-median clustering under the continuous Fréchet
and DTW distances.

We summarize the main algorithmic results on the (k, `)-center and (k, `)-median problem under
the Fréchet distance.
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Problem Approx. Running Time Ambient Measure Reference

(k, `)-center

1 + ε O(nm logm), ε const. R
dF

[87]
3 O(nm logm+m3 logm) R2

[59]6 O(nm logm+m3 logm) Rd
1 O((mn)2k`m log(mn)) R2

ddF
[61]1 + ε O((ε−dk` + logn)mn) Rd3 O(mn logm) [59]

(k, `)-median

1 + ε O(nm logm), ε const. R

dF

[87]
1 + ε (bi-crit.)

n · 2O(ε−3+logm) Rd Coro. 4.2.5
3 + ε (bi-crit.) Coro. 4.2.4

65 O((n+ log5 n)m logm) R [87]
109 O(nm log(m) + nm3 logm)

Rd
Thm. 4.3.8

1 + ε
nm log2(m)2O(ε−1 log ε−1)

ddF
[207]

O((m/ε)dk`mn+mn log2 n) [61]

Approximation Algorithms

As we already hinted in Section 3.1.4, Algorithm 9 can approximate the (k, `)-median problem
for polygonal curves under the Fréchet distance, when provided with Algorithm 4 or Algorithm 5
as plugin algorithm. Note that it then computes a bi-criteria approximation, that is, the solution
is approximated in terms of the cost and the number of vertices of the center curves, i.e., the
centers come from Rd2`−2.

Our main results, which we state below, follow from Theorems 3.1.20 and 3.1.21, respectively
Theorems 3.1.24 and 3.1.25, and Theorems 4.2.1 and 4.2.2. The first result is a (3 + ε)-
approximation that follows by using Algorithm 4 as plugin and the second one is a (1 + ε)-
approximation that follows by using Algorithm 5 as plugin.

Corollary 4.2.4 Given two parameters δ, ε ∈ (0, 1) and a finite set T ⊂ Rdm of polygonal
curves, Algorithm 9 endowed with Algorithm 4 as Median-Candidates and run with parameters
(T, ∅, k, 20k2

ε + 2k, δ, ε/5) returns with probability at least 1 − δ a set C ⊂ Rd2`−2 that is a
(3 + ε)-approximate solution to the (k, `)-median for T . Algorithm 9 then has running time

n · 2
O

(
ln2(1/δ)
ε3

+log(m)
)
.

We note that the following result does not differ in asymptotic running time from the previous
one. However, the hidden constants are larger if we combine Algorithm 9 and Algorithm 5.

Corollary 4.2.5 Given two parameters δ ∈ (0, 1), ε ∈ (0, 0.158] and a finite set T ⊂ Rdm of
polygonal curves, Algorithm 9 endowed with Algorithm 5 as Median-Candidates and run with
parameters (T, ∅, k, 12k2

ε + 2k, δ, ε/3) returns with probability at least 1− δ a set C ⊂ Rd2`−2 that
is a (1 + ε)-approximate solution to the (k, `)-median for T . Algorithm 9 then has running time

n · 2
O

(
ln2(1/δ)
ε3

+log(m)
)
.

Finally, we note that from a practical point of view, both results yield inefficient algorithms due
to the exponential dependency in ε and k and the high polynomial dependency in m.
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4.2.4 Application to Point Sequences under the Dynamic Time Warping Distance

Here, we apply Algorithm 9 to the problem of clustering point sequences under the dynamic time
warping distance. We formally define the problem that we aim to approximate.

Problem Definition

Building upon the results in Section 3.2 we want to compute a set of k clusters that are best
possibly described by their restricted (p, q)-mean. Consequently, the restricted (p, q)-mean
problem (Problem 3.2.2) can be seen as a special case of the following problem for k = 1.

Problem 4.2.6 The (k, `, p, q)-mean clustering problem is defined as follows, where k ∈ N,
` ∈ N>1 and p, q ∈ [1,∞) are fixed (constant) parameters of the problem: given a set T =
{τ1, . . . , τn} ⊆M≤m of point sequences, compute a set C ⊆M≤` of k point sequences, such that
costqp(T,C) = ∑n

i=1 minc∈C dDTWp(c, τi)q is minimal.

Approximating a (k, `, p, q)-mean clustering problem is equivalent to approximating the general-
ized k-median clustering problem, where the distance between any center c and any input point
sequence τ is measured by the non-metric distance function ρ(τ, c) = dDTWp(τ, c)q. Therefore,
Problem 4.2.6 is compatible with Problem 4.1.1 by setting X = M∗, Y = M≤m ⊆ X and
Z = M≤` ⊆ X. Consequently, we can approximate it using Algorithm 9. We now review the
related work.

Related Work

To the best of our knowledge, clustering under the dynamic time warping distance has so far only
been considered in practice, not in theory. In particular, there do not exist clustering algorithms
for point sequences under (p-)DTW that admit formal guarantees on the quality of the returned
solution. Recall that even for the base case (k = 1), almost no algorithms with such a formal
guarantee exist, cf. Section 3.2.

In practice, however, clustering under DTW is popular, but heuristics are prevalent. Often,
generic local search algorithms are used that select their centers from the input (e.g. k-medoids,
which is similar to k-median, but the centers are restricted to come from the input), but a
k-means style averaging approach using DBA (DTW barycenter averaging, see Section 3.2.2)
has also been considered early [215]. We note that the latter allows for centers of arbitrary
but predefined complexity that do not need to come from the input, which is in line with the
(k, `, 2, 2)-mean problem (Problem 4.2.6) and this approach has also been extended to fuzzy
k-medoids and k-means [152], which are extensions of k-medoids and k-means where each element
is not strictly assigned to a cluster.

Only recently, clustering under the continuous dynamic time warping distance has been con-
sidered [44]. This distance measure is a continuous extension of the dynamic time warping
distance – similar to Fréchet distance, an implicit linear interpolation between consecutive points
of a sequence is introduced –, which aims at a better robustness towards time series measured
with vastly different sampling rates. The clustering approach is similar to the approach taken in
[215] and an adaption of DBA, called CDBA, is also provided.
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Approximation Algorithms

First, we extend the methods developed in Section 3.2.4. The following algorithm is an adaptation
of Algorithm 6 that is able to return candidates, containing with high probability an approximate
restricted p-mean for a subset T ′ ⊆ T of certain size, as required by Algorithm 9. Recall, that
the approximation factor is (2p + ε).

Algorithm 10 (1, `, p, p)-Mean Clustering Approximate Candidates
1: procedure Cand(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)}, β, δ, ε, p)
2: P ←

⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← sample d(2p/ε+ 1)βm ln (`/δ)e points from P uniformly and independently at
random with replacement

4: return S≤`

We prove the correctness and analyze the running time of Algorithm 10.

Theorem 4.2.7 Given a finite set T ⊆M≤m of point sequences over some metric space (M,ϑ)
and parameters β ∈ [1,∞), δ ∈ (0, 1), ε ∈ (0,∞) and p ∈ [1,∞), with probability at least 1− δ
the set of candidates that Algorithm 10 returns contains a (2p + ε)-approximate restricted p-mean
for any T ′ ⊆ T , if |T ′| ≥ 1

β |T |. Algorithm 10 returns O((βε−1m ln(1/δ))`) candidates and if the
time needed to evaluate ϑ is constant, then it has running time O((βε−1m ln(1/δ))`).

Proof. By Lemma 3.2.6 applied on T ′, we have that there exist balls B1, . . . , B`′ ⊆ P , `′ ≤ `,
each of cardinality at least

(
ε

2p+ε

)
· |T ′| such that any point sequence c = (c1, . . . , c`′) with ci ∈ Bi

for all i ∈ [`′], is a (2p + ε)-approximate restricted p-mean of T ′. We upper bound the probability
that S does not contain any point from a fixed Bi:

Pr [|Bi ∩ S| = 0] ≤

 |P | −
(

ε
2p+ε

)
· |T ′|

|P |

|S| ≤ (1−
(

ε

(2p + ε)βm

))|S|
≤ δ

`
.

By a union bound we have Pr[mini∈[`′]|Bi ∩ S| < 1] ≤ δ. Hence, with probability at least 1− δ,
there is a point sequence c ∈ S≤` which is a (2p + ε)-approximate restricted p-mean of T ′.

The number of candidates that Algorithm 10 returns, as well as its running time, is |S≤`| ∈
O((βε−1m ln(1/δ))`).

The following corollary follows from Theorem 4.2.7 and Theorems 4.2.1 and 4.2.2. We note
that the achieved approximation factor in this case degrades to (2p+1 + ε), due to the use of
Algorithm 9.

Corollary 4.2.8 Given three parameters δ ∈ (0, 1), ε ∈ (0,∞), p ∈ [1,∞) and a finite set T ⊆
M≤m of point sequences over some metric space (M,ϑ), Algorithm 9 endowed with Algorithm 10
(with parameter p) as Median-Candidates and run with parameters (T, ∅, k, 8k2

ε + 2k, δ, ε/2)
returns with probability at least 1− δ a set C ⊆M≤` that is a (2p+1 + ε)-approximate solution to
the (k, `, p, p)-mean for T . If the time needed to evaluate ϑ is constant, then Algorithm 9 has
running time O(n(mε−2 ln(1/δ))2`(k+2)).
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Again, in the Euclidean case we can derandomize the algorithm and obtain together with
Algorithm 9 a deterministic approximation algorithm for the (k, `, p, p)-mean problem. The
following algorithm is an adaption of Algorithm 7. Recall that B is the set of all metric balls
with respect to (M,ϑ), which is the Euclidean space in this case.

Algorithm 11 (1, `, p, p)-Mean Clustering Approximate Candidates (Deterministic)
1: procedure Cand-D(T = {τ1 = (τ1,1, . . . , τ1,|τ1|), . . . , τn = (τn,1, . . . , τn,|τn|)}, ε, p)
2: ε′ ← ε

2p−1+ε , P ←
⋃n
i=1

⋃|τi|
j=1{τi,j}

3: S ← compute an (ε′/(mβ))-net of (P,B|P )
4: return S≤`

The correctness and running time of Algorithm 11 follow from Definition 2.6.5, Lemmas 3.2.6
and 3.2.9, and Theorem 2.6.7.

Theorem 4.2.9 Given a finite set T ⊂
(
Rd
)≤m

of n point sequences and parameters β ∈
[1,∞) ε ∈ (0,∞), p ∈ [1,∞), the set of candidates that Algorithm 11 returns contains a
(2p + ε)-approximate restricted p-mean for any T ′ ⊆ T , if |T ′| ≥ 1

β |T |. Algorithm 10 returns

O

((
βm
ε log βm

ε

)`)
candidates and has running time1 O

(
nm

((
βm
ε log βm

ε

)d+1
+
(
βm
ε log βm

ε

)`))
.

Proof. By Lemma 3.2.6 applied on T ′, we have that there exist balls B1, . . . , B`′ ⊆ P , `′ ≤ `, each
of cardinality at least

(
ε

2p+ε

)
· |T ′| such that any point sequence c = (c1, . . . , c`′) with ci ∈ Bi for

all i ∈ [`′], is a (2p + ε)-approximate restricted p-mean of T ′. Since we compute an (ε′/(mβ))-net
of P and |P | ≤ nm, S contains at least one point from each of B1, . . . , B`′ by Definition 2.6.5.
Hence, S≤` contains a (2p + ε)-approximate restricted p-mean for T .

The VC dimension of the range space (P,B|P ) is bounded by d+1, see [130]. By Lemma 3.2.9, we
can use Theorem 2.6.7 to compute an (ε′/(βm))-net S of (P,B|P ), with size |S| ∈ O

(
mβ
ε log

(
mβ
ε

))
,

in time O
(
nm

(
βm
ε log

(
βm
ε

))d+1
)
.

The following corollary follows from Theorem 4.2.9 and Theorems 4.2.1 and 4.2.2.

Corollary 4.2.10 Given two parameters ε ∈ (0,∞), p ∈ [1,∞) and a finite set T ⊂
(
Rd
)≤m

of point sequences, Algorithm 9 endowed with Algorithm 11 (with parameter p) as Median-
Candidates and run with parameters (T, ∅, k, 8k2

ε + 2k, δ, ε/2) returns a set C ⊂
(
Rd
)≤`

that is
a (2p+1 + ε)-approximate solution to the (k, `, p, p)-mean for T . Algorithm 9 has running time
O

(
nm

(
m
ε2 log

(
m
ε2

))(k+1)`+d+2
)
.

Now, we use the methods developed in Section 3.2.5. The following algorithm is inspired by
Algorithm 8 and is able to return candidates, containing an approximate restricted (p, 1)-mean
for a subset T ′ ⊆ T of certain size, as required by Algorithm 9. Recall that the corresponding
problem asks for a median point sequence under p-DTW of complexity at most `. We achieve an
approximation factor of 8(m`)1/p. We note that Algorithm 8 could not be extended, unfortunately,
since we would need an upper and a lower bound on the cost of the optimal median point sequence
of the subset T ′ ⊆ T to set up the grids that the algorithm uses. The techniques we use in

1We assume d to be constant.
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Section 3.1.4 to obtain such a lower bound, however, rely on the triangle inequality, which does
not hold under p-DTW.

The main idea of the algorithm is that one can use random sampling and approximate simplifica-
tions to obtain a simple algorithm for computing a set of candidates.

Algorithm 12 (1, `, p, 1)-Clustering Approximate Candidates
1: procedure Cand(T = {τ1, . . . , τn}, β, δ, p)
2: S ← sample d2β · ln(2/δ)e point sequences from T uniformly and independently at

random with replacement
3: C ← ∅
4: for each τ ∈ S do
5: τ ′ ← 2-approximate minimum-error `-simplification of τ , under dDTWp (Algorithm 2)
6: C ← C ∪ {τ ′}
7: return C

Theorem 4.2.11 Given a finite set T ⊆ M≤m of point sequences over some metric space
(M,ϑ) and parameters β ∈ [1,∞), δ ∈ (0, 1) and p ∈ [1,∞), with probability at least 1− δ the set
of candidates that Algorithm 12 returns contains a (8 · (m`)

1
p )-approximate restricted (p, 1)-mean

for any T ′ ⊆ T , if |T ′| ≥ 1
β |T |. Algorithm 12 returns O(β ln(1/δ)) candidates and if the time

needed to evaluate ϑ is constant, then it has running time O(βm4` ln(1/δ)).

Proof. We assume that |T ′| ≥ 1
β |T |. We use a Chernoff bound (cf. Theorem 2.4.17) to upper

bound the probability that |S ∩ T ′| ≤ |S|/(2β). Notice that |S ∩ T ′| is the sum of independent
Bernoulli trials and Exp[|S ∩ T ′|] ≥ |S| · β−1. Hence,

Pr
[
|S ∩ T ′|≤ |S|2β

]
≤ exp

(
−|S|8β

)
≤ δ

2 .

In other words, with probability at most δ/2 no subset S′ ⊆ S, of cardinality at least |S|2β , is a
subset of T ′. We condition the rest of the proof on the contrary event, denoted by ET ′ , namely,
that there is a subset S′ ⊆ S with S′ ⊆ T ′ and |S′| ≥ |S|2β . Note that S′ is then a uniform and
independent sample of T ′ (see Section 2.4.1).

In the following, let τ ′ denote a (2, `)-simplification of any point sequence τ ∈ S′. Then, by
Theorem 3.2.11

Exp
[
cost1

p

(
T ′, τ ′

)
| ET ′

]
≤ 4m1/p`1/p · cost1

p

(
T ′, c∗

)
,

where c∗ is an optimal restricted (p, 1)-mean for T ′. By Markov’s inequality,

Pr
[
cost1

p

(
T ′, τ ′

)
≥ 8m1/p`1/p · cost1

p

(
T ′, c∗

)
| ET ′

]
≤ 1

2 .

Hence, by independence of the random sampling,

Pr
[

min
τ∈S∩T ′

cost1
p

(
T ′, τ ′

)
≥ 8m1/p`1/p · cost1

p

(
T ′, c∗

)
| ET ′

]
≤ 1

2|S|/(2β) ≤
δ

2 .

The claim on the approximation quality now follows by an application of Proposition 2.4.5.

Using Algorithm 2 to compute simplifications, Algorithm 12 needs O(βm4` ln(1/δ)) time to
compute C (see Theorem 2.8.4). The number of returned candidates is O(β ln(1/δ)).
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The following corollary follows from Theorem 4.2.11 and Theorems 4.2.1 and 4.2.2.

Corollary 4.2.12 Given two parameters δ ∈ (0, 1), p ∈ [1,∞) and a finite set T ⊆ M≤m of
point sequences over some metric space (M,ϑ), Algorithm 9 endowed with Algorithm 12 (with
parameter p) as Median-Candidates and run with parameters (T, ∅, k, 48k2

ε + 2k, δ, 0) returns
with probability at least 1− δ a set C ⊆M≤` that is a (8 + ε)(m`)

1
p -approximate solution to the

(k, `, p, 1)-mean for T . If the time needed to evaluate ϑ is constant, then Algorithm 9 has running
time O(nm4(ε−2 ln2(1/δ))k+2).

We have presented approximation algorithms for the problems of (k, `)-median clustering of
polygonal curves under the Fréchet distance and (k, `, p, p)-mean clustering, as well as (k, `, p, 1)-
mean clustering, of point sequences under the dynamic time warping distance. While these
algorithms are highly developed – in the sense that all available insights on the problem have
been incorporated to optimize upon achieved approximation factors and running times – all suffer
from high and unpractical running times. Optimizing these algorithms towards a better running
time, or even designing new algorithms with better running times, requires gaining more insights
(or combining the available insights differently, if possible) on the problem. The experience is
that this often requires a lot of effort, while yielding only small improvements.

Another more vital approach is to pre-process the given data, such that existing algorithms
behave similarly on the pre-processed data, while taking less running time. This may be achieved
by cleverly reducing the amount of data, while keeping the important parts of the data. This
and other approaches are studied in the field of ε-coresets, which we now present. First, we note
that the following results strongly depend on metric properties and are therefore unfortunately
not applicable to clustering under p-DTW.

4.3 Coresets for Clustering in Metric Spaces

The observation underlying coresets is that for many problems a solution to the problem is
completely determined by a subset of the given input set or a set of a certain size that may be
much smaller than the given input set. For example, the minimum enclosing ball, respectively
minimum enclosing sphere, of a point set in Rd is completely determined by a subset of at most
d+ 1 points [96]. A further example is the problem of computing the directional width of a finite
point set P ⊂ Rd. The directional width is the extent of P when projected onto a line through
the origin. Formally, any such line is determined by a unit vector v ∈ Rd and the directional
width is simply maxp∈P 〈p, v〉 −minq∈P 〈q, v〉. Given such a unit vector v, it takes time O(|P |) to
naïvely compute the directional width. However, if we want to compute the directional width for
several directions, this naïve algorithm can be improved to run in time O(ε−d+1) if we accept
a relative error in [(1 − ε), 1] and one pre-processing with running time O(|P |+ ε−d). In this
case we can compute a suitable bounding box B of P , which is possible in time O(|P |), and
cover B with a uniform grid G of O(ε−d) cells. Finally, we run the naïve algorithm on a set S of
O(ε−d+1) points of P determined by the cells of G, instead of P itself, and obtain the desired
approximation [9, 130]. This approach is particularly successful if ε−d+1 � |P |.

Indeed, the aforementioned set S is an example of an ε-coreset. In general, coresets are a form of
problem specific pre-processing: they capture the structure of the input set that is relevant for
the given problem, are substantially smaller than the input set and are meant to serve as a proxy
to run an existing algorithm on. As described above, this may yield a considerable speedup,
even if a brute force algorithm is utilized. Often, coresets carry additional structure, like weights
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or constants, which are then built into the objective function one wants to approximate. This
largely depends on the application at hand and there are indeed applications for which sub-linear
size coresets generally do not exist, see e.g. [128, 206]. Since their recent formal introduction by
Har-Peled and Mazumdar [133], coresets have become very popular and indeed, several notions of
coresets have established. On one side, we have weak and strong coresets. This notion concerns
the behavior of the coreset towards a solution to the problem. Strong coresets guarantee a certain
approximation for all possible solutions, while weak coresets yield this guarantee only for certain
solutions, cf. [205]. Another notion concerns the approximation error itself, which can either be
relative, in this case we have a multiplicative coreset, or absolute, in this case we have an additive
coreset. The canonical notion of an ε-coreset is arguably the multiplicative strong coreset, which
is also the notion coresets have been introduced with.

The techniques used to obtain coresets can mainly be partitioned into two categories: input
filtering and geometric constructions. As the name suggests, in the first category one computes
coresets by picking (important) elements from the given input while ignoring the remainder.
Here, sampling techniques are prevalent. For certain problems, uniform sampling can luckily be
applied. However, for most problems this is not the case. Here, a custom probability distribution
needs to be computed. Since this approach is versatile and particularly successful, a whole
framework, named sensitivity sampling or importance sampling, has formed around it [175, 101].
The other category comprises techniques that leverage properties of the input space, i.e., the
space underlying the given input. Here, coverings, like ε-ball covers or notions of grids, like
uniform or exponential grids, are popular. Probably most constructions utilize sampling, though.

Before its formal introduction in 2004, the concept of ε-coresets has been applied to some
geometric problems [9, 8, 127], including clustering problems. Indeed, the breakthrough of
ε-coresets was the application to Euclidean k-median and k-means clustering by Har-Peled and
Mazumdar [133], which implied the first randomized linear time (1+ε)-approximation algorithms
for these problems (with ε and k fixed). Furthermore, Har-Peled and Mazumdar showed that
their ε-coresets can be used to maintain (1 + ε)-approximate k-median, respectively k-means,
solutions in the insertion-only streaming setting, using polylogarithmic space and update time.

Following the work of Har-Peled and Mazumdar, the coreset literature started to flourish. Since
then, coresets have widely been applied, e.g. to clustering problems [131, 129, 102, 112, 103, 5,
72, 106, 110, 238, 146, 30], statistical problems [79, 248, 105, 26, 188, 259, 148, 260, 217, 206,
48, 147, 73, 163, 258, 242], geometrical problems [128, 111, 92, 10, 7, 143, 119, 104, 2], machine
learning problems [137, 249, 107, 99, 186, 224, 166, 224, 186, 241, 40, 187, 201], optimization
[74, 222, 240, 145] and many more.

In this work, we focus on coresets for generalized k-median clustering, with the restriction that
the underlying space is an arbitrary metric space. In particular, this captures the (k, `)-median
problem for polygonal curves. We start with a formal definition of these ε-coresets, then we
review the related work.
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4.3.1 Problem Definition

We formally define ε-coresets for generalized k-median clustering (recall Problem 4.1.1). However,
in this section we require that the underlying space X = (X, ρ) is a metric space.

Problem 4.3.1 Given ε ∈ (0, 1) and a finite non-empty set T ⊆ Y , compute a (multi-)set
S ⊆ X together with a weight function w : S → R>0, such that for all C ⊆ Z with |C| = k it
holds that

(1− ε) cost(T,C) ≤ costw(S,C) ≤ (1 + ε) cost(T,C),

where costw(S,C) = ∑
s∈S w(s) ·minc∈C ρ(s, c).

S together with w is called a weighted ε-coreset for generalized k-median clustering of T . In the
following, we carefully review the related work.

4.3.2 Related Work

Langberg and Schulman [175] developed a framework for computing relative error approximations
of integrals over any function from a given family of unbounded and non-negative real functions.
In particular, this framework can be used to compute ε-coresets for k-median and k-means
clustering of points in Rd with objective functions based on sums of distances (induced by a
norm) among the points and their closest center. The idea of their framework is to sub-sample
the input with respect to a certain non-uniform probability distribution, which is computed using
an approximate solution to the problem. More precisely, the approximate solution is used to
compute an upper bound on the sensitivity of each data element. The sensitivity is the maximum
fraction of cost that the element may cause for any possible solution. It is a notion of the data
elements importance for the problem and the probability distribution is set up such that each
element has probability proportional to its importance. A sample of a certain size drawn from
this distribution and properly weighted, is an ε-coreset for the underlying clustering problem
with high probability.

Follwing this work, Feldman and Langberg [101] developed a unified framework for approximate
clustering, which is largely based on ε-coresets. They combine the techniques by Langberg
and Schulman with ε-approximations, which stem from the framework of range spaces and VC
dimension developed in statistical learning theory. In result, they address a spectrum of clustering
problems, such as k-median clustering of points and lines in Rd, projective clustering of points
in Rd and also other problems like Euclidean subspace approximation and k-median clustering
in finite metric spaces. We note that using the latter is far from optimal for our problem of
(k, `)-median clustering. Using these coresets means that we would have to choose our centers
from the input, or another predefined finite set, like a set of simplifications of the input. Since
the input curves may be corrupted by noise or sampling artifacts, and simplifications can be
sensitive to such artifacts, this may lead to bad centers in the subsequent clustering computation.

Braverman et al. [46] improved the aforementioned framework by switching to (ε, η)-approximations,
which leads to substantially smaller sample sizes in many cases. Also, they simplified and further
generalized the framework and applied it to k-means clustering of points in Rd.

Feldman et al. [108] modified the approach by Braverman et al. by using another range space,
thereby obtaining small coresets for k-means of points and lines in Rd, and j-dimensional affine
subspace k-clustering problems. Also, their coresets yield an improved streaming algorithm for
Euclidean k-means clustering.
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To the best of our knowledge, there are no results in the literature on ε-coresets for clustering
problems on curves and in the following, we develop an approach that is capable of computing
ε-coresets for the (k, `)-median problem on polygonal curves. We achieve this by applying a
variant of the sensitivity sampling framework. Our first step is to bound the sensitivity of each
τ ∈ T . That is the maximum fraction of cost(T,C) caused by τ , for all possible solutions C.

4.3.3 Sensitivity Bound

We analyze the problem in terms of functions. This allows us to apply the improved sensitivity
sampling framework by Braverman et al. [46]. Therefore, given a set T = {τ1, . . . , τn} ⊆ Y we
define F = {f1, . . . , fn} to be a set of functions with fi : 2Z \ {∅} → R≥0, C 7→ minc∈C ρ(c, τi).
For each C ∈ 2Z \ {∅} we now have cost(T,C) = ∑n

i=1 fi(C).

We give a universal bound on the sensitivities of the input elements. Intuitively, these are the
maximum fraction of cost that an element may cause for any possible solution to the problem.
We formally define the sensitivities of the inputs τ ∈ T in terms of the respective functions and to
comply with the generalized k-median problem we only take into account the k-subsets C ⊆ Z.

Definition 4.3.2 [101] Let F be a finite and non-empty set of functions f : 2Z \ {∅} → R≥0.
For f ∈ F we define the sensitivity with respect to F :

s(f, F ) = sup
C={c1,...,ck}⊆Z∑
g∈F

g(C)>0

f(C)∑
g∈F

g(C) .

We define the total sensitivity of F as S(F ) = ∑
f∈F s(f, F ).

We now prove a bound on the sensitivity of all f ∈ F , which then yields a bound on the total
sensitivity of F . To compute the bound, any (bi-criteria) approximate solution to the generalized
k-median problem can be used. Our analysis is an adaption of the analysis of the sensitivities for
sum-based k-clustering of points in Rd, by Langberg and Schulman [175].

Lemma 4.3.3 Let k′ ∈ N, C∗ = {c∗1, . . . , c∗k} ⊆ Z with ∆∗ = ∑n
i=1 fi(C∗) minimal and

Ĉ = {ĉ1, . . . , ĉk′} ⊆ X with ∆̂ = ∑n
i=1 f(Ĉ) ≤ α ·∆∗ for an α ∈ [1,∞). Breaking ties arbitrarily,

we assume that every τ ∈ T has a unique nearest neighbor in Ĉ and for i ∈ [k′], we define
V̂i = {τ ∈ T | ∀j ∈ [k′] : ρ(τ, ĉi) ≤ ρ(τ, ĉj)} to be the Voronoi cell of ĉi and ∆̂i = ∑

τ∈V̂i ρ(τ, ĉi)
to be its cost. For each i ∈ [k′] and τj ∈ V̂i it holds that

γ(fj) =

1 +
√

2k′
3α

(αρ(τj , ĉi)
∆̂

+ 2α∆̂i

∆̂|V̂i|

)
+
(

1 +
√

3α
2k′

)
2
|V̂i|
≥ s(fj , F )

and Γ = ∑
f∈F γ(f) = 2k′ + 2

√
6αk′ + 3α ≥ S(F ).

Proof. We assume that ∆̂ > 0. By assumption V̂1, . . . , V̂k′ form a partition of T and by
definition ∆̂ = ∑k′

i=1 ∆̂i as well as ∑f∈F f(C) ≥ ∆̂/α for each C = {c1, . . . , ck} ⊆ Z. For
i ∈ [k′], we let B̂i = {τ ∈ V̂i | ρ(τ, ĉi) ≤ 2∆̂i/|V̂i|}. It holds that |B̂i| ≥ |V̂i|/2, since otherwise
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∑
τ∈V̂i\B̂i ρ(τ, ĉi) > ∆̂i, which is a contradiction. By the triangle inequality, we have for each
{c1, . . . , ck} ⊆ Z, i ∈ [k′], j ∈ [k] and τ ∈ T :

ρ(ĉi, cj) ≤ ρ(ĉi, τ) + ρ(τ, cj) ⇐⇒ ρ(τ, cj) ≥ ρ(ĉi, cj)− ρ(ĉi, τ).

Furthermore, since ρ is non-negative: ρ(τ, cj) ≥ max{0, ρ(ĉi, cj)− ρ(ĉi, τ)}.

For each C = {c1, . . . , ck} ⊆ Z, i ∈ [k′] and β ∈ [0, 1] we now have the following bound:

∑
f∈F

f(C) ≥ β
∑
τ∈B̂i

min
j∈[k]

ρ(τ, cj) + (1− β)∆̂
α
≥ βmax

{
0, ρ(ĉi, cj)−

2∆̂i

|V̂i|

}
|V̂i|
2 + (1− β)∆̂

α
,

where among {c1, . . . , ck}, cj is closest to ĉi. Using the triangle inequality and the above bound
yields for each β ∈ [0, 1), i ∈ [k′] and τm ∈ V̂i:

s(fm, F ) ≤ sup
{c1,...,ck}⊆Z

ρ(τm, ĉi) + ρ(ĉi, cj)

βmax
{

0, ρ(ĉi, cj)− 2∆̂i

|V̂i|

}
|V̂i|
2 + (1− β) ∆̂

α

≤ sup
{c1,...,ck}⊆Z

ρ(ĉi,cj)≥2∆̂i/|V̂i|

ρ(τm, ĉi) + ρ(ĉi, cj)

β

(
|V̂i|ρ(ĉi,cj)

2 − ∆̂i

)
+ (1− β) ∆̂

α

Here, again cj is closest to ĉi among {c1, . . . , ck} and the last inequality follows because it can be
observed that the term takes smaller values for ρ(ĉi, cj) < 2∆̂i/|V̂i| than for ρ(ĉi, cj) ≥ 2∆̂i/|V̂i|,
independent of β. Now, to obtain a bound that is independent of cj , we substitute ρ(ĉi, cj) by a
free variable x and let

h : [2∆̂i/|V̂i|,∞)→ R≥0, x 7→
ρ(τm, ĉi) + x

β

(
|V̂i|x

2 − ∆̂i

)
+ (1− β) ∆̂

α

.

The derivative of h is
(1− β) ∆̂

α − β
(
|V̂i|ρ(τm,ĉi)

2 + ∆̂i

)
(
β

(
|V̂i|x

2 − ∆̂i

)
+ (1− β) ∆̂

α

)2

and it can be observed that the sign of this function is independent of x. Therefore, h is a
monotonic function and is thus either maximized at x = 2∆̂i/|V̂i| or when x → ∞. Using
l’Hôspital’s rule we obtain

s(fm, F ) ≤ max


ρ(τm, ĉi) + 2∆̂i

|V̂i|

(1− β) ∆̂
α

,
1

β |V̂i|2

 ≤ αρ(τm, ĉi)
(1− β)∆̂

+ 2α∆̂i

(1− β)∆̂|V̂i|
+ 2
β|V̂i|

.

Therefore,

S(F ) ≤
k′∑
i=1

∑
τm∈V̂i

(
αρ(τm, ĉi)
(1− β)∆̂

+ 2α∆̂i

(1− β)∆̂|V̂i|
+ 2
β|V̂i|

)
= 3α

1− β + 2k′
β
.

By simple calculus, this bound is minimized at β = 1
1+
√

3α
2k′

< 1.
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4.3.4 Coresets by Sensitivity Sampling

Here, we apply the framework of Braverman et al. [46] as used in [108], using a slightly different
range space. The ranges in the range space used to derive our result are open metric balls, which
we now define.

Definition 4.3.4 For r ∈ R≥0, z ∈ Z and Y ⊆ X we denote by B(z, r, Y ) = {y ∈ Y | ρ(y, z) <
r} the open metric ball with center z and radius r. We denote the set of all open metric balls by
B(Y, Z) = {B(z, r, Y ) | z ∈ Z, r ∈ R≥0}.

Now, we are ready to analyze the computation of the actual ε-coresets. We use the reduction to
uniform sampling, introduced by Feldman and Langberg [101] and improved by Braverman et al.
[46], to apply Theorem 2.6.9. In the following, we adapt and modify the proof of Theorem 31 by
Feldman et al. [108] and combine it with results by Munteanu et al. [206] to handle the involved
scaling.

Theorem 4.3.5 For f ∈ F we let λ(f) =
⌈
|F | · 2dlog(γ(f))e

⌉
/|F |, Λ = ∑

f∈F λ(f), ψ(f) = λ(f)
Λ

and D be the VC dimension of the range space (Y,B(Y,Z)).

Let δ, ε ∈ (0, 1). A sample S of Θ
(
ε−2αk′(Dk log(k) log(αk′n) log(αk′) + log(1/δ))

)
elements τi ∈

T , drawn independently with replacement with probability ψ(fi) and weighted by w(fi) = Λ
|S|λ(fi)

is a weighted ε-coreset for generalized k-median clustering of T with probability at least 1− δ.

Proof. We define for C ⊆ Z with |C| = k the estimator

ĉost(S,C) =
∑
τi∈S

w(fi) ·min
c∈C

ρ(τi, c) =
∑
τi∈S

w(fi) · fi(C) =
∑
τi∈S

Λ
|S|λ(fi)

fi(C)

for cost(T,C). We see that

Exp
[
ĉost(S,C)

]
=
|S|∑
i=1

∑
τj∈T

Λ
|S|λ(fj)

fj(C)λ(fj)
Λ =

∑
τj∈T

fj(C) = cost(T,C),

thus ĉost(S,C) is unbiased. We want to bound the error of ĉost(S,C) by applying Theorem 2.6.9.
To do so, we reduce the sensitivity sampling to uniform sampling as follows: We let G be a
multiset that is a copy of F , where each f ∈ F is contained |F |λ(f) times and is scaled by 1

|F |λ(f) .
Note that |G| = |F |Λ. Also, ψ(f) = |F |λ(f)

|G| , |F |λ(f) is integral for each f ∈ F and

∑
g∈G

g(C) =
∑
f∈F

|F |λ(f)
|F |λ(f)f(C) =

∑
f∈F

f(C) = cost(T,C).

Given a sample S′, with |S′| = |S|, drawn independently and uniformly at random with
replacement from G, for C ⊆ Z with |C| = k we define the estimator

c̃ost
(
S′, C

)
= |G|
|S′|

∑
g∈S′

g(C)

for cost(T,C). We see that

Exp
[
c̃ost

(
S′, C

)]
= |G|
|S′|

|S′|∑
i=1

∑
f∈F

f(C)
|F |λ(f)

|F |λ(f)
|G|

= 1
|S′|

|S′|∑
i=1

∑
f∈F

f(C) =
∑
g∈G

g(C).
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Thus, c̃ost(S′, C) is unbiased, too. We now assume that S′ =
{

1
|F |λ(fi) · fi | τi ∈ S

}
. Then,

c̃ost
(
S′, C

)
= |G|
|S′|

∑
g∈S′

g(C) = |F |Λ
|S′|

∑
τi∈S

1
|F |λ(fi)

fi(C) =
∑
τi∈S

Λ
|S|λ(fi)

fi(C) = ĉost(S,C),

so the error bound for c̃ost(S′, C), that we derive in the following, also applies to ĉost(S,C),
hence S together with w is a weighted ε-coreset (see Problem 4.3.1). We now apply Theorem 2.6.9
with the given δ, ε/2 and η = 1/Λ, so the overall error is at most ε · cost(T,C) for each C ⊆ Z
with |C| = k.

For H ⊆ G, C ⊆ Z and r ∈ R≥0, we let range(H,C, r) = {g ∈ H | g(C) ≥ r}. Now, we let
(G,R) be a range space over G, where R = {range(G,C, r) | r ∈ R≥0, C ⊆ Z, |C| = k}. For all
C ⊆ Z with |C| = k and all H ⊆ G we have that

∑
g∈H

g(C) =
∑
g∈H

∫ ∞
0

1(g(C) ≥ r) dr =
∫ ∞

0

∑
g∈H

1(g(C) ≥ r) dr

=
∫ ∞

0
|range(H,C, r)| dr. (I)

Note that the indicator function is integrable under these circumstances and |range(H,C, r)| is
a step function and is integrable, too. Using this identity, for all C ⊆ Z with |C| = k we now
bound the error introduced by ĉost(S,C):

∣∣∣cost(T,C)− ĉost(S,C)
∣∣∣ =

∣∣∣cost(T,C)− c̃ost
(
S′, C

)∣∣∣ =

∣∣∣∣∣∣
∑
g∈G

g(C)− |G|
|S′|

∑
g∈S′

g(C)

∣∣∣∣∣∣
=
∣∣∣∣∫ ∞

0
|range(G,C, r)| dr − |G|

|S′|

∫ ∞
0
|range

(
S′, C, r

)
| dr

∣∣∣∣
=
∣∣∣∣∫ ∞

0
|range(G,C, r)| − |G|

|S′|
|range

(
S′, C, r

)
| dr

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣|range(G,C, r)| − |G|
|S′|
|range

(
S′, C, r

)
|
∣∣∣∣ dr.

Here the second equation follows from Eq. (I).

In the following, let rerror(C, r) =
∣∣∣|range(G,C, r)| − |G||S′| |range(S′, C, r)|

∣∣∣, ru(C) = max
g∈G

g(C),
R1(C) = {r ∈ R≥0 | |range(G,C, r)| ≥ η · |G|} and R2(C) = R≥0 \R1(C). Note that R1(C) and
R2(C) are intervals due to the monotonicity of |range(G,C, r)|. Furthermore, for r ∈ (ru(C),∞)
it holds that |range(G,C, r)| = 0. Using these facts, we further derive:∫ ∞

0
rerror(C, r) dr =

∫
R1

rerror(C, r) dr +
∫
R2

rerror(C, r) dr

≤
∫
R1

ε

2 |range(G,C, r)| dr +
∫
R2

ε

2η|G| dr

≤ ε

2

∞∫
0

|range(G,C, r)| dr + εη|G|
2

ru(C)∫
0

dr

= ε

2
∑
g∈G

g(C) + εη|G|ru(C)
2 . (III)
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Here, the first inequality follows from Definition 2.6.8 and in the last equation we use Eq. (I).
Finally, we bound the last summand in Eq. (III). First note that we have for each g ∈ G:

g(C)∑
h∈G h(C) =

1
|F |λ(f)f(C)∑
h∈F h(C) ≤

λ(f)
|F |λ(f) ⇐⇒

g(C)∑
h∈G h(C) ≤

1
|F |

,

where f ∈ F is the function that g is a copy of and the inequality follows from Definition 4.3.2.
This implies ru(C) ≤ 1

|F |
∑
h∈G h(C). We now further derive:

εη|G|ru(C)
2 ≤ ε

2
1
Λ |F |Λ

1
|F |

∑
g∈G

g(C) = ε

2
∑
g∈G

g(C).

So, all in all |cost(T,C)− ĉost(S,C)| ≤ ε · cost(T,C) for all C ⊆ Z with |C| = k.

The claim now follows from the facts that

• γ(f) ≤ λ(f) ≤ 2 · γ(f) + 1
|F | for each f ∈ F , thus Λ ≤ 2 · Γ(F ) + 1 and Γ(F ) ∈ O(αk′) by

Lemma 4.3.3 and

• (G,R) has VC dimension in O(Dk log(k) log(αk′n)) by the following Lemma 4.3.6.

Lemma 4.3.6 (G,R) has VC dimension O(Dk log(k) log(αk′n)), where D is the VC dimension
of the range space (Y,B(Y,Z)).

Proof. First, we assume that there exists a ϕ ∈ R, such that λ(f) = ϕ for all f ∈ F . Then
all functions in G are scaled uniformly and we can completely neglect the scaling. In this case
(G,R) has equal VC dimension as

Q1 = (T, {T \ (B(c1, r, T ) ∪ · · · ∪ B(ck, r, T )) | {c1, . . . , ck} ⊆ Z, r ∈ R≥0}),

the VC dimension of Q1 is at most the VC dimension of

Q2 = (T, {T \ (B1 ∪ · · · ∪Bk) | B1, . . . , Bk ∈ B(T,Z)}),

Q2 is the projection (see Definition 2.6.2) of

Q3 = (Y, {Y \ (B1 ∪ · · · ∪Bk) | B1, . . . , Bk ∈ B(Y,Z)})

onto T and has thus at most the VC dimension of Q3 and finally, Q3 is the complementary range
space (see Definition 2.6.3) of

Q4 = (Y, {B1 ∪ · · · ∪Bk | B1, . . . , Bk ∈ B(Y,Z)})

and has thus equal VC dimension as Q4. By the k-fold union theorem [39, Lemma 2.3.2] Q4 has
VC dimension O(D · k log(k)), where D is the VC dimension of (Y,B(Y,Z)). For the following,
let c be the constant hidden in this O-notation.

Contrary to the former case, if there are t > 1 distinct values Φ = {ϕ1, . . . , ϕt} ⊂ R, such that
λ(f) ∈ Φ for each f ∈ F and ∀i ∈ [t]∃f ∈ F : λ(f) = ϕi, we apply the techniques of Munteanu
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et al. [206] (see Lemma 11 and Theorem 15 therein).

First, assume that the VC dimension of (G,R) is greater than t · c · D · k log(k). Hence, there
exists a set G′ ⊆ G with |G′| > t · c · D · k log(k), such that |{G′ ∩ R | R ∈ R}| = 2|G′|. Let
{G1, . . . , Gt} be a partition of G, such that for each g ∈ Gi we have g = 1

|F |λ(f)f = 1
|F |ϕi f for an

f ∈ F . Furthermore, for i ∈ [t], let G′i = G′ ∩Gi.

By disjointness, we have |{G′i ∩ Ri | Ri = (R ∩ Gi), R ∈ R}| = 2|G′i| for each i ∈ [t] and also
there must exist at least one j ∈ [t], such that |G′j | ≥

|G′|
t > t·c·D·k log(k)

t = c · D · k log(k),
hence the projection of (G,R) on Gj has VC dimension greater than c · D · k log(k). This is a
contradiction to the former case of uniformly scaled functions in G, thus (G,R) has VC dimension
O(t · D · k log(k)) in this case.

Now, we bound t. Recall that for each f ∈ F , λ(f) =
⌈
|F |2dlog(γ(f))e

⌉
/|F |. Furthermore for each

i ∈ [k′] and τj ∈ V̂i (see Lemma 4.3.3),
(

1 +
√

3α
2k′

)
2
|V̂i|
≤ γ(fj) ≤

1 +
√

2k′
3α

(α+ 2α
|V̂i|

)
+
(

1 +
√

3α
2k′

)
2
|V̂i|

.

Therefore, there can be at most

log


(

1 +
√

2k′
3α

)(
α+ 2α

|V̂i|

)
+
(
1 +

√
3α
2k′
)

2
|V̂i|(

1 +
√

3α
2k′
)

2
|V̂i|



≤ log


(

1 +
√

2k′
3α

)
(
1 +

√
3α
2k′
) (αn/2 + α) + 1


≤ log(9αk′(αn/2 + α) + 1)

distinct values of 2dlog(γ(f))e, which upper bounds the number of distinct values of λ(f).

We conclude that the VC dimension of (G,R) is in O(Dk log(k) log(αk′n)).

4.3.5 Coresets for (k, `)-Median Clustering under the Fréchet Distance

Here we present an algorithm for computing ε-coresets for (k, `)-median clustering of polygonal
curves under the Fréchet distance. The algorithm builds upon our results from Sections 4.3.3
and 4.3.4. To apply those, we still need a bound on the VC dimension of metric balls under the
Fréchet distance, which we derive in the following theorem.

Theorem 4.3.7 The VC dimension of (Rdm,B(Rdm,Rd` )) is O
(
`2 log(`m)

)
.

Proof. We argue that the claim follows from Theorem 18 by Driemel et al. [88]. First, in their
paper polygonal curves do not need to adhere the restriction that no three consecutive vertices
may be collinear and they define Rdm to be the polygonal curves of exactly m vertices. However,
our definitions match by simulating the addition of collinear vertices to those curves in Rdm with
less than m vertices.
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Now, looking into their proof, we can slightly modify the Fréchet distance predicates to use “<”
instead of “≤”, thereby altering the geometric primitives by letting Br(p) = {x ∈ Rd | ‖x−p‖ < r},
Dr(st) = {x ∈ Rd | ∃p ∈ st : ‖p − x‖ < r}, Cr(st) = {x ∈ Rd | ∃p ∈ `(st) : ‖p − x‖ < r},
Rr(st) = {p + u | p ∈ st, u ∈ Rd, 〈t − s, u〉 = 0, ‖u‖ < r} and Mr(st) satisfy ‖p1 − q1‖ < r and
‖p2 − q2‖ < r, which does not affect the remainder of the proof and thus yields the same bound
on the VC dimension.

To compute ε-coresets for (k, `)-median clustering under the Fréchet distance, we first need to
compute bounds on the sensitivities. For k > 1 we use Algorithm 13, a modification of [87,
Algorithm 3], which we now present.

Algorithm 13 Constant Factor Approximation for (k, `)-Median Clustering
1: procedure (k, `)-Median-96-Approximation(T = {τ1, . . . , τn})
2: for i = 1, . . . , n do
3: τ̂i ← approximate minimum-error `-simplification of τi . [21, 149]
4: C ← Chen’s algorithm with ε = 0.5, λ = δ on {τ̂1, . . . , τ̂n} . [72, Theorem 6.2]
5: return C

We prove the correctness and analyze the running time of Algorithm 13.

Theorem 4.3.8 Given a parameter δ ∈ (0, 1) and a set T = {τ1, . . . , τn} ⊂ Rdm of polygonal
curves, Algorithm 13 returns with probability at least 1 − δ a 109-approximate (k, `)-median
solution for T in time O(nm log(1/δ) log(m) + nm3 logm).

Proof. We assume that the approximate minimum-error `-simplifications are computed combining
the algorithms by Alt and Godau [21] and Imai and Iri [149], so the approximation factor is 4 by
Theorem 2.8.6. For i ∈ [n], let τ̂i be the simplification of τi and let T̂ = {τ̂1, . . . , τ̂n}. Note that
dF(τi, τ̂i) ≤ 4 · dF(τ, σ) for all i ∈ [n] and σ ∈ Rd` .

Let Ĉ∗ = {ĉ∗1, . . . , ĉ∗k} ⊂ Rd` be an optimal (k, `)-median solution for T̂ and let C ′ = {c′1, . . . , c′k} ⊆
T̂ be an optimal solution to the discrete (k, `)-median problem for T̂ , i.e. the centers are chosen
among the input. Breaking ties arbitrarily, we assume that every τ̂ ∈ T̂ has a unique nearest
neighbor in Ĉ∗ and for i ∈ [k] we define T̂i = {τ̂ ∈ T̂ | ∀j ∈ [k] : dF(τ̂ , ĉ∗i ) ≤ dF(τ̂ , ĉ∗j )}, such that
T̂1, . . . , T̂k form a partition of T̂ . By the triangle inequality:

cost
(
T̂ , C ′

)
= min

C⊆T̂
|C|=k

k∑
i=1

∑
τ̂∈T̂i

min
c∈C

dF(τ̂ , c) ≤ min
C⊆T̂
|C|=k

k∑
i=1

∑
τ̂∈T̂i

(dF(τ̂ , ĉ∗i ) + min
c∈C

dF(ĉ∗i , c))

= cost
(
T̂ , Ĉ∗

)
+ min

C⊆T̂
|C|=k

k∑
i=1

∑
τ̂∈T̂i

min
c∈C

dF(ĉ∗i , c)

= cost
(
T̂ , Ĉ∗

)
+

k∑
i=1

∑
τ̂∈T̂i

min
σ̂∈T̂i

dF(ĉ∗i , σ̂).

For each i ∈ [k] there must exist a σ̂ ∈ T̂i with dF(σ̂, ĉ∗i ) ≤
∑
τ̂∈T̂i dF(τ̂ , ĉ∗i )/|T̂i|, since other-

wise ∑k
i=1

∑
τ̂∈T̂i minσ̂∈T̂i dF(ĉ∗i , σ̂) > cost

(
T̂ , Ĉ∗

)
, which is a contradiction. We conclude that

cost
(
T̂ , C ′

)
≤ 2 cost

(
T̂ , Ĉ∗

)
. Also, by [72, Theorem 6.2] cost

(
T̂ , C

)
≤ 10.5 cost

(
T̂ , C ′

)
.
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Now, let C∗ = {c∗1, . . . , c∗k} ⊂ Rd` be an optimal (k, `)-median solution for T and C = {c1, . . . , ck}
be a solution returned by Algorithm 13 for T̂ . We derive:

cost(T,C) ≤
n∑
i=1

(dF(τi, τ̂i) + min
j∈[k]

dF(τ̂i, cj)) =
n∑
i=1

dF(τi, τ̂i) + cost
(
T̂ , C

)
≤ 4 cost(T,C∗) + 21 cost

(
T̂ , Ĉ∗

)
≤ 4 cost(T,C∗) + 21 cost

(
T̂ , C∗

)
≤ 4 cost(T,C∗) + 21

(
n∑
i=1

(dF(τ̂i, τi) + min
j∈[k]

dF(τi, c∗j ))
)

≤ 4 cost(T,C∗) + 84 cost(T,C∗) + 21 cost(T,C∗) ≤ 109 cost(T,C∗).

We now analyze the running time. Computing the simplifications takes time O(nm3 logm),
see Theorem 2.8.6. Further, we incorporate the given probability of failure (see [72, Theorem
3.6]) into the running time stated in [72, Theorem 6.2]. Hence, Chen’s algorithm can be run in
time O(nm log(1/δ) logm) when the distances are computed using Alt and Godau’s algorithm
[21].

For k = 1, we use the more efficient Algorithm 3 to compute the bounds on the sensitivities. We
now present the algorithm for computing weighted ε-coresets for (k, `)-median clustering.

Algorithm 14 Coresets for (k, `)-Median Clustering
1: procedure (k, `)-Median-Coreset(T = {τ1, . . . , τn}, δ, ε)
2: if k = 1 then
3: ĉ← `-Median-34-Approximation(T, δ/2) (Algorithm 3)
4: Ĉ = {ĉ}
5: else
6: Ĉ = {ĉ1, . . . , ĉk} ← (k, `)-Median-96-Approximation(T, δ/2) (Algorithm 13)
7: compute V̂1, . . . , V̂k, ∆̂1, . . . , ∆̂k and γ w.r.t. Ĉ (cf. Lemma 4.3.3)
8: compute λ, Λ w.r.t. γ and ψ w.r.t. λ (cf. Theorem 4.3.5)
9: S ← sample Θ(kε−2(d2`2k log(d`m) log(kn) log2(k) + log(1/(2δ)))) elements from T

independently with replacement with respect to ψ
10: compute w w.r.t. λ, Λ and S (cf. Theorem 4.3.5)
11: return S and w

We prove the correctness and analyze the running time of Algorithm 14. Also, we analyze the
size of the resulting ε-coreset.

Theorem 4.3.9 Given a set T = {τ1, . . . , τn} ⊂ Rdm and parameters δ, ε ∈ (0, 1), Algorithm 14
computes a weighted ε-coreset of size O(ε−2(log(m) log(n)+log(1/δ))) for (k, `)-median clustering
with probability at least 1− δ, in time

O(nm log(m) log(1/δ) + nm3 logm+ ε−2(log(m) log(n) + log 1/δ))

for k > 1 and

O(nm log(m) +m2 log(m) log2(1/δ) +m3 logm+ ε−2(log(m) log(n) + log 1/δ))

for k = 1.
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Proof. First note that by a union bound, with probability at least 1−δ Algorithm 13, respectively
Algorithm 3, and the sampling are simultaneously successful (see Theorems 4.3.5 and 4.3.8 and
Corollary 3.1.18). The correctness of the algorithm follows from the observations that the
(k, `)-median clustering objective fits the generalized k-median clustering objective with X = Rd∗,
Y = Rdm ⊂ X and Z = Rd` ⊂ X, therefore Lemma 4.3.3 and Theorem 4.3.5 can be applied, and
the VC dimension of (X,B(Y, Z)) is O(`2 log(`m)) by Theorem 4.3.7.

We now analyze the running time. V̂1, . . . , V̂k, ∆̂1, . . . , ∆̂k and γ can be computed in time
O(nm log(m)) using Alt and Godau’s algorithm [21]. λ, Λ and ψ can be computed in time2

O(n) and the sampling can be carried out in time O(ε−2(log(m) log(n) + log 1/δ)). Finally, w
can be computed in time O(n). If k > 1 we run Algorithm 13 in time O(nm log(1/δ) log(m) +
nm3 log(m)), see Theorem 4.3.8. Else, we run Algorithm 3 in time O(m2 log(m) log2(1/δ) +
m3 logm), see Corollary 3.1.18.

All in all, the running time is then

O(nm log(1/δ) log(m) + nm3 logm+ ε−2(log(m) log(n) + log(1/δ)))

for k > 1 and

O(nm log(m) +m2 log(m) log2(1/δ) +m3 logm+ ε−2(log(m) + log(1/δ)))

for k = 1.

Finally, we note that our results also imply the existence of ε-coresets for (k, `)-median clustering
under the discrete and weak3 Fréchet and the (discrete and continuous) Hausdorff distances,
as the VC dimension of the range spaces induced by the metric balls under these measures is
similarly bounded [88].

Application to the `-Median Problem

Here, we present a modification of Algorithm 4 for approximating Problem 3.1.1. Our modification
uses ε-coresets to improve the running time of the algorithm, rendering it tractable in a big data
setting. The algorithm uses ε-coresets every time it has to evaluate the cost of a center set. The
dramatic effect of this small modification is that we nearly lose the original linear running time
dependency on n in the most time-consuming part of the algorithm, rendering it practical in
the setting of big data, where we have a lot of curves of much smaller complexity than number
(` < m� n).

We note that we can not use ε-coresets to improve the combination of Algorithm 9 and Algorithm 4,
respectively Algorithm 9 and Algorithm 5. This is due to the fact that Algorithm 9 calls itself
with subsets of the original input as input. Therefore, we would need a coreset for every possible
subset, which is prohibitive even in asymptotic running time.

2Here we note that from the bounds in Lemma 4.3.6 it can be seen that the integers resulting from the application
of the ceil function require only O(logn) bits.

3A variant of the continuous Fréchet distance that, informally speaking, allows a point on one curve to be matched
to multiple points on the second curve.
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Algorithm 15 `-Median by Simple Shortcutting and ε-Coreset
1: procedure `-Median-(5 + ε)-Approximation(T = {τ1, . . . , τn}, δ, ε)
2: ĉ← `-Median-34-Approximation(T, δ/4) (Algorithm 3)
3: ε′ ← ε/67, P ← ∅
4: (T ′, w)← (1, 2`− 2)-Median-Coreset(T, δ/4, ε′)
5: ∆← costw(T ′, {ĉ}), ∆u ← ∆/(1− ε′), ∆l ← ∆/((1 + ε′)34)
6: S ← sample

⌈
−2(ε′)−1(ln(δ)− ln(4))

⌉
curves from T uniformly

and independently with replacement
7: W ← sample d−64(ε′)−2(ln(δ)− ln(d−8(ε′)−1(ln(δ)− ln(4))e))e curves

from T uniformly and independently with replacement
8: c← arbitrary element from arg mins∈S cost(W, s)
9: for i = 1, . . . , |c| do

10: P ← P ∪G(B (vci , (3 + 4ε′)∆u/n) , ε′∆l/(n
√
d)) . vci : ith vertex of c

11: C ← set of all polygonal curves with 2`− 2 vertices from P
12: return arg minc′∈C costw(T ′, {c′})

We prove the correctness and analyze the running time of Algorithm 15.

Theorem 4.3.10 Given two parameters δ ∈ (0, 1), ε ∈ (0, 1/2] and a set T = {τ1, . . . , τn} ⊂ Rdm
of polygonal curves, with probability at least 1− δ Algorithm 15 returns a (5 + ε)-approximate
`-median for T with 2`− 2 vertices, in time

O
(
nm logm+m2 log(m) log2(1/δ) +m2`−1ε−2`d+2d−2(log(m) log(n) + log(1/δ)) log(m)

)
.

Proof. Let c∗ ∈ arg minc∈Rd
`

cost(T, c) be an optimal `-median for T . The expected distance
between s ∈ S and c∗ is

Exp[dF(s, c∗)] =
n∑
i=1

dF(τi, c∗) ·
1
n

= cost(T, c∗)
n

.

Now, using Markov’s inequality, for every s ∈ S we have

Pr[dF(s, c∗) > (1 + ε) cost(T, c∗)/n] ≤ cost(T, c∗)n−1

(1 + ε) cost(T, c∗)n−1 = 1
1 + ε

,

therefore by independence

Pr
[
min
s∈S

dF(s, c∗) > (1 + ε) cost(T, c∗)/n
]
≤ 1

(1 + ε)|S|
≤ exp

(
−ε|S|2

)
.

Hence, with probability at most exp
(
− ε
⌈
− 2(ln(δ)−ln(4))

ε

⌉
2

)
≤ δ/4 there is no s ∈ S with dF(s, c∗) ≤

(1 + ε) cost(T,c∗)
n . Now, assume there is a s ∈ S with dF(s, c∗) ≤ (1 + ε) cost(T, c∗)/n. We do not

want any t ∈ S \ {s} with cost(T, t) > (1 + ε) cost(T, s) to have cost(W, t) ≤ cost(W, s). Using
Theorem 2.4.19, we conclude that this happens with probability at most

exp
(
−ε

2d−64ε−2(ln(δ)− ln(d−8(ε′)−1(ln(δ)− ln(4))e))e
64

)
≤ δ

d−8(ε′)−1(ln(δ)− ln(4))e

≤ δ

4|S| ,
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for each t ∈ S \ {s}. Also, with probability at most δ/4 Algorithm 3 fails to compute a 34-
approximate `-median ĉ ∈ Rd` for T , see Corollary 3.1.18, and with probability at most δ/4,
Algorithm 14 fails to compute a weighted ε-coreset for T , see Theorem 4.3.5.

Using a union bound over these bad events, we conclude that with probability at least 1− δ,

• Algorithm 15 samples a curve s ∈ S with dF(s, c∗) ≤ (1 + ε) cost(T, c∗)/n,

• Algorithm 15 assigns c to a curve t ∈ S with cost(T, t) ≤ (1 + ε) cost(T, s),

• Algorithm 3 computes a 34-approximate `-median ĉ ∈ Rd` for T , i.e., cost(T, c∗) ≤
cost(T, ĉ) ≤ 34 cost(T, c∗)

• and Algorithm 14 computes a weighted ε-coreset for T .

Using the triangle inequality yields∑
τ∈T

(dF(t, c∗)− dF(τ, c∗)) ≤
∑
τ∈T

dF(t, τ) ≤ (1 + ε)
∑
τ∈T

dF(s, τ)

≤ (1 + ε)
∑
τ∈T

(dF(τ, c∗) + dF(c∗, s)),

which is equivalent to

n · dF(t, c∗) ≤ (2 + ε) cost(T, c∗) + (1 + ε)n(1 + ε) cost(T, c∗)/n
⇐⇒ dF(t, c∗) ≤ (3 + 4ε) cost(T, c∗)/n.

Let vt1, . . . , vt|t| be the vertices of t. By Lemma 3.1.19 there exists a polygonal curve c′ ∈ Rd2`−2
with every vertex contained in one of B(vt1,dF(c∗, t)), . . . , B(vt|t|, dF(c∗, t)) and dF(t, c′) ≤ dF(t, c∗).
We have dF(t, c′) ≤ dF(t, c∗) ≤ (3 + 4ε) cost(T, c∗)/n. Furthermore, by the ε-coreset gurarantee,
see Problem 4.3.1, we have |∆ − cost(T, ĉ)| ≤ ε cost(T, ĉ). Therefore, ∆l = ∆/(34(1 + ε)) ≤
cost(T, c∗) ≤ ∆u = ∆/(1− ε) and dF(t, c′) ≤ (3 + 4ε)∆u/n. We conclude that the set C of all
curves with up to 2`−2 vertices from P , the union of the grid covers, contains a curve c′′ ∈ Rd2`−2
with distance at most ε∆l

n ≤ ε
cost(T,c∗)

n between every corresponding pair of vertices of c′ and c′′,
thus dF(t, c′′) ≤ (3 + 5ε) cost(T, c∗)/n.

In the last step, Algorithm 15 returns a curve c̃ ∈ C, that evaluates best against the ε-coreset. By
the ε-coreset guarantee and the range of ε, we know that cost(T, c̃) ≤ (1 +ε)/(1−ε) cost(T, c′′) ≤
(1 + 4ε) cost(T, c′′). We can now bound the cost of c̃ as follows:

cost(T, c̃) ≤ (1 + 4ε)
∑
τ∈T

dF(τ, c′′) ≤ (1 + 4ε)
∑
τ∈T

(dF(τ, t) + dF(t, c′′))

≤ (1 + 4ε) cost(T, t) + (1 + 4ε)(3 + 5ε) cost(T, c∗)
≤ (1 + ε)(1 + 4ε) cost(T, s) + (3 + 37ε) cost(T, c∗)
≤ (1 + 9ε)

∑
τ∈T

(dF(τ, c∗) + dF(c∗, s)) + (3 + 37ε) cost(T, c∗)

≤ (4 + 48ε) cost(T, c∗) + (1 + ε)(1 + 9ε) cost(T, c∗)
≤ (5 + 67ε) cost(T, c∗)

Finally, we rescale ε by 1
67 to obtain the desired approximation guarantee.
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We now discuss the running time. Algorithm 3 has running time O(m2 log(m) log2(1/δ) +
m3 logm), see Corollary 3.1.18 and Algorithm 14 has running time

O(nm log(m) +m2 log(m) log2(1/δ) +m3 logm+ ε−2(log(m) log(n) + log(1/δ))),

see Theorem 4.3.5. The ε-coreset has size O(ε−2(log(m) log(n) + log(1/δ))), therefore costw(T ′, ĉ)
can be evaluated in time O(mε−2 log(m)(log(m) log(n) + log(1/δ))), using Alt and Godau’s
algorithm [21] to compute the distances.

The sample S has size O
(

ln(1/δ)
ε

)
and the sample W has size O

(
ln(1/δ)
ε2

)
. Evaluating each

curve of S against W takes time O
(
m2 log(m) log2(1/δ)

ε3

)
, using Alt and Godau’s algorithm [21] to

compute the distances.

Now, c has up to m vertices and every grid consists of
(

2(3+4ε′)∆u
n

2ε′∆l
n
√
d

)d
=
(

(3+4ε′)
√
d

ε′ 34(1 + ε)
)d
∈

O
(

1
εd

)
points (note that ∆u/∆l = (1 + ε′)/(1− ε′)34 ≤ 34(1 + ε)). Therefore, we have O

(
m
εd

)
points in P and Algorithm 15 enumerates all combinations of 2`− 2 points from P taking time
O
(
m2`−2

ε(2`−2)d

)
. Afterwards, these candidates are evaluated against the ε-coreset, which takes time

O

(
m2`−1(log(m) log(n) + log(1/δ)) log(m)

ε2`d−2d+2

)
,

using Alt and Godau’s algorithm [21] to compute the distances. All in all, we then have running
time

O

(
nm logm+m2 log(m) log2(1/δ) + m2`−1(log(m) log(n) + log(1/δ)) log(m)

ε2`d−2d+2

)
.
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5 High Complexity and High Dimensionality

The number of input elements, their complexity and the number of dimensions of the ambient
space are the three main parameters that determine the running times (and storage space
consumption) of the algorithms considered so far, and we mainly focused on obtaining efficient
computational methods for a large number of input elements, while not prioritizing the complexity
and neglecting the ambient dimension – but algorithms running times are often exponential in
this parameter. In this chapter we focus on reducing the dimension, respectively complexity, of
polygonal curves in high-dimensional Euclidean space and polygonal curves of high complexity.

5.1 Dimension Reduction for Curves

Dimension reduction is a collective term for methods that reduce the dimension of a data set,
which is usually a set P ⊂ Rd of points. Of course, there are two aspects in computing that
motivate us to reduce the dimension of the input, namely space and running time, which both
depend on the dimension. Arguably the most prominent examples of dimension reduction
techniques are principal component analysis (PCA) and (metric) embeddings.

In PCA one aims to compute the principal components of P . These are unit vectors that form
an orthogonal basis of Rd that best describes the data. To compute the principal components
one first translates the data set such that the origin is the center of mass, i.e., ∑p∈P

p
|P | = 0. The

first principal component c1 is then the unit length vector w that maximizes the sum of squared
lengths of the position vectors of the (orthogonal) projections onto the line through the origin that
is supported by w, i.e., v1 = ∑

p∈P 〈w, p〉2. To compute the ith principal component, for i > 1, one
first computes a new data set Pi−1 = {p−∑i−1

j=1〈cj , p〉 | p ∈ P}, thereby removing the extent in
the directions of the previous principal components from the original data set, and then picks as ci
the unit length vector w that maximizes vi = ∑

p∈Pi−1〈w, p〉
2. Now, let XP ∈ R|P |×d be a matrix

whose rows are the points from P . In fact, ci is the eigenvector of X = XT
PXP , corresponding

to the ith largest eigenvalue, i.e., vi, of X and since X is a positive semi-definite symmetric
matrix, v1, . . . , vd form an orthogonal basis. Finally, the principal component decomposition of
P is XPW , where W ∈ Rd×d is the matrix whose columns are c1, . . . , cd, in order. For further
information on PCA see e.g. [161].

Intuitively, vi is the variance of the data set in the direction of ci and consequently, P carries
most information in the direction of c1 and least information in the direction of cd. By looking at
v1, . . . , vd, we may notice that there is an i ∈ [d− 1] such that vi � vi+1. In this case, we do not
lose much information if we (orthogonally) project P onto the first i principal components, which
can be carried out by a matrix multiplication XPWi, where Wi is the matrix consisting only
of the first i columns of W . If even vi+1 = 0, we can achieve an isometry (see Definition 2.2.2)
while reducing data. However, since v1 ≥ · · · ≥ vd, the case that v1 = · · · = vd may also occur.
(In practice we rather have v1 ≈ · · · ≈ vd.) This means that in contrast to the first example, our
data set is inherently high-dimensional and we may not reduce its dimension while maintaining
a reasonable error, by using PCA. However, such a case is very unlikely in most applications
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and PCA is very popular in practice. For example, PCA has been applied to face recognition
[183], fingerprint authentication [257], novelty detection (one-class classification) [144], anomaly
detection [223], process monitoring [180], medical imaging [141] and signal classification [239]
and many more.

In contrast to PCA, (metric) embeddings (see Definition 2.2.3) are not data-dependent, i.e.,
they can be applied to any point set independently of its intrinsic dimension and always yield a
certain guarantee on the distortion of the distances. They have been studied quiet extensively in
mathematics in the last centuries, where certain Banach spaces (complete1 normed spaces) were
largely in focus. The most popular examples are the `dp spaces, which are Rd equipped with an
`p-norm, i.e., ‖(q1, . . . , qd)‖p = p

√∑d
i=1 q

p
i , for any p ∈ [1,∞). Of course, these spaces are finite-

dimensional, but there are also infinite-dimensional variants, which are denoted `p. These are
the sequences q = (q1, q2, . . . ) ∈ RN, equipped with the suitable `p-norm ‖q‖p = p

√∑∞
i=1 q

p
i , that

satisfy ‖q‖p <∞. If we let p→∞, we obtain the maximum norm ‖(q1, . . . , qd)‖∞ = maxi∈[d]|qi|,
respectively ‖(q1, q2, . . . )‖∞ = maxi∈N|qi|, with the corresponding space `d∞, respectively `∞ (see
e.g. [226, 195] for further reading).

Let us first note that `d2 can be considered the Euclidean space, since 〈p, q〉 = 1
4(‖p+q‖22−‖p−q‖22)

(see Section 2.2). Therefore, `d2 (and also `2) is also a Hilbert space (a complete inner product
space) and in fact, it is the only `dp (respectively `p) space that is. Some further interesting results
(see e.g. [195] for further details) in this area are that any finite metric space (X, ρ) can be
isometrically embedded into `|X|∞ , with (constant) distortion 2q − 1 ≥ 3 into `O(|X|1/q log|X|)

∞ , and
with distortion O(log|X|) into `dp, for any p ∈ [1,∞) and some suitable d. On the negative side,
for all n ∈ N≥2 there exists a metric space (X, ρ) with |X| = n that can not be embedded into `2
with distortion less than c logn

log logn , where c > 0 is a suitable constant. Furthermore, there exists
some (large) value n ∈ N and a metric space (X, ρ) with |X| = n that can not be embedded into
`2 with distortion less than c logn, where c is a suitable constant. Note that the aforementioned
metric spaces (X, ρ) can be isometrically embedded into `|X|∞ , therefore these results also apply
to this space. Finally, for each m ∈ N with m ≥ 2 there exists a subset P ⊂ `m1 with |P | = 2m
(specifically P = {0, 1}m) that can not be embedded into `2 with distortion less than

√
m and

furthermore, Bartal et al. [31] have recently proven that for every p > 2 there exists an n ∈ N
and a set P ⊂ `p with |P | ≥ n, such that P can not be embedded into `dp with distortion less
than ( c logn

d )
1
2−

1
p , where c > 0 is a suitable constant.

We will now review one further and outstanding result on embeddings that we did not yet
mention. This result states that any finite subset P ⊂ `d2 can be embedded nearly isometrically
into `d′2 , for some well-chosen d′. Clearly, this result is particularly interesting in computer science,
since it allows us to massively reduce data whenever d is much larger than d′. We will see that
this is of relevance whenever d� log |P |.

5.1.1 The Johnson-Lindenstrauss Embedding

In their 1984 seminal paper [160] on extensions of Lipschitz mappings into a Hilbert space, Johnson
and Lindenstrauss introduced a technical lemma, the so-called Johnson-Lindenstrauss lemma,
which became very popular. This lemma states that for all ε ∈ (0, 1) and for any finite
set P ⊂ Rd there is a function f mapping P into a d′-dimensional linear subspace of Rd,
where d′ ∈ O(ε−2 log|P |), that is an 1+ε

1−ε -embedding with high probability (and an isometry in
1A metric space is complete, if every Cauchy sequence of points in the space has a limit also contained in the space.
Since we only consider the Euclidean space in this section, which is complete, we omit a formal definition.
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expectation). Indeed, a reason that the number of ambient dimensions is often assumed to
be constant in analyses of geometric algorithms is because the Johnson-Lindenstrauss lemma
can generally be applied, usually yielding a (1 + ε)-approximation to the problem while nearly
maintaining the asymptotic running time of the method in many cases. We note that in bad
cases, which are unfortunately also frequent, a polynomial running time blow-up occurs.

In their proof, Johnson and Lindenstrauss set f(p) = UTQUp, where Q ∈ Rd×d is the matrix
(orthogonally) projecting a vector onto its first d′ coordinates and U is a matrix chosen uniformly
at random from the orthogonal group O(d) (see Definition 2.2.14). It can easily be verified
that f is an orthogonal projection onto a uniformly random d′-dimensional linear subspace (see
Definitions 2.2.11 and 2.2.12). However, a drawback of the projection property is that the points
still consist of d coordinates each and every coordinate may be necessary, i.e., a dimension can
only be ignored if the corresponding coordinate is zero for all points. To circumvent this, modern
embeddings in the sense of the Johnson-Lindenstrauss lemma set f(p) = Up, where U is a real
d′ × d matrix that is drawn from some suitable random distribution.

Here we present a modern variant of the Johnson-Lindenstrauss lemma that uses a matrix whose
entries are independent random variables that follow the standard normal distribution. The
function does not yield an orthogonal projection (in the strict sense it does not even yield a
projection) but approximately preserves distances (and even inner products, cf. Definition 2.2.7
and Theorem 2.2.8) in a similar manner.

Before we do so, we note that there indeed exists a set P ⊂ Rd of points, such that d′ ∈
Ω(ε−2 log|P |) target dimensions are necessary to maintain a distortion of at most 1 + ε [20, 176,
177]. In this sense, the Johnson-Lindenstrauss lemma is (asymptotically) optimal.

Theorem 5.1.1 [41] For any δ, ε ∈ (0, 1) and any (fixed) finite set P ⊂ Rd it holds for all
p, q ∈ P that (1− ε)‖p− q‖ ≤ ‖f(p)− f(q)‖ ≤ (1 + ε)‖p− q‖ with probability at least 1− δ when
f(p) = Up√

d′
and U is a d′ × d matrix, with d′ ≥ 8 · ε−2 ln

(
|P |2
δ

)
, whose entries are independent

standard normal random variables.

To reveal the underlying technique, we present a succinct variant of the proof in [41].

Proof. Let V = {p− q | p, q ∈ P} and n = |P |. Since f is linear we can assume that the vectors
in V are of unit length. Therefore, in the following we prove (the even stronger statement) that
(1− ε) ≤ ‖f(v)‖2 ≤ (1 + ε) for all v ∈ V , which implies the claim.

For v = (v1, . . . , vd) ∈ V , i ∈ [d′] and j ∈ [d] we define the random variable Xv,i,j = ui,j · vj ,
where (ui,1, . . . , ui,d) is the ith row of U . Since ui,j is standard normally distributed, Xv,i,j is
normally distributed with zero mean and variance v2

j (see Section 2.4.2). We further define
Xv,i = ∑d

j=1Xv,i,j , which is a normally distributed random variable with zero mean and
variance ∑d

j=1 v
2
j = 1 and thus follows the standard normal distribution. Clearly, f(v) =

1/
√
d′(Xv,1, . . . , Xv,d′).

We define Xv = ∑d′
i=1X

2
v,i, which is a random variable that follows the Chi-squared distribution

with d′ degrees of freedom and therefore has mean d′ (see Section 2.4.2). By definition, we have
‖f(v)‖2 = Xv

d′ and Exp
[
‖f(v)‖2

]
= 1 = ‖v‖2. Furthermore, |‖f(v)‖2−1| ≤ ε ⇐⇒ |Xv−d′| ≤ εd′.

Using this we can apply Theorem 2.4.18 with a = ln
(
n2

δ

)
, which yields for any fixed v ∈ V :

Pr[|Xv − d′| ≥ εd′] ≤ 2 exp
(
− ln

(
n2

δ

))
= δ

n2/2 ,
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where we use that d′ ≥ 8 · ε−2 ln
(
n2

δ

)
, which implies 2(

√
d′a+ a) ≤ εd′.

Finally, by a union bound it holds that Pr[maxv∈V |Xv−d′| ≥ εd′] ≤ δ, which yields the claim.

Remark 5.1.2 While we have presented a slightly weaker variant of the lemma, there are
numerous stronger proofs (cf. [80, 113, 4, 182, 164]) of which some rely on other random
distributions, like the Rademacher distribution, which are more efficient to sample from, and
indeed, d′ ≥ 4 · ε−2 ln(|P |) is sufficient such that the error guarantee holds with constant positive
probability [80]. Furthermore, any function from one of the various proofs, like the function f , is
a (1 + ε)-embedding when we rescale ε by 1/3 (which requires d′ ≥ 72 · ε−2 ln

(
|P |2
δ

)
in the case

of f). For this reason we speak of a Johnson-Lindenstrauss embedding.

Johnson-Lindenstrauss embeddings have also extensively been studied empirically and it showed
that d′ ≥ 2ε−2 ln (|P |) is sufficient in practice [246]. To this day, there is a broad range of
applications of these embeddings, e.g. to signal reconstruction [69], regression [121], clustering
[42, 167], classification [213], computational linear algebra [229], computational topology [236],
graph theory [182], data mining [4], approximate nearest neighbor searching [18] and many more.

While the guarantee of the Johnson-Lindenstrauss embedding immediately extends to sequence
distance measures like the dynamic time warping distance and the discrete Fréchet distance by
definition, for the continuous Fréchet distance this is not obvious. This is a simple consequence of
the fact that distances between points on the line segments that connect the consecutive vertices
are also taken into account. Intuitively, a similar guarantee should be possible and indeed, in the
following we show that without any knowledge on the employed method, we can derive a similar
bound using the guarantee of the Johnson-Lindenstrauss lemma.

We note that one may be tempted to believe that it is sufficient to embed the points corresponding
to the critical values (see Section 2.7.2) of the curves to achieve an embedding in terms of the
Fréchet distance. However, by embedding the curves we practically obtain new curves and their
critical values may correspond to points whose preimages must not be points corresponding
to the critical values of the original curves. This can be seen from the fact that the employed
embedding must not be a projection. Therefore, it is not clear if such an approach yields the
desired embedding under the Fréchet distance.

5.1.2 Embedding Polygonal Curves

Now that we have established the fundamentals of embedding points in the Euclidean space via
Johnson-Lindenstrauss embeddings, we aim to embed polygonal curves into a lower-dimensional
ambient space to improve upon the corresponding running time dependency. We first review
some related work.

Related work

The topic of embedding curves (under the Fréchet distance) is relatively unexplored. Only
recently Driemel and Krivosija [84] studied the first probabilistic embeddings of the Fréchet
distance for c-packed curves, which are curves whose intersections with any ball of radius r are of
length at most cr. This class of curves was introduced by Driemel et al. [86] and has so far been
considered a viable assumption for realistic curves, see e.g. [12, 51, 83]. In the setting of Driemel
and Krivosija, a point p is sampled uniformly at random from the unit sphere in Rd (centered at
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the origin), then two curves σ and τ , both of complexity m, are orthogonally projected onto the
line through the origin determined by p. They observed that in any case (even if the curves are
not c-packed), the discrete Fréchet distance between the curves decreases. Furthermore, they
showed that with high probability the discrete Fréchet distance between σ and τ decreases by a
factor upper bounded by a function linear in m. Finally, they proved that there exist c-packed
curves such that the discrete Fréchet distance decreases by a factor lower bounded by a function
linear in m. The latter also holds for the continuous Fréchet distance and for the 1-dynamic
time warping distance. They achieve the upper bound by defining and analyzing guarding sets,
these are subsets of warpings between the curves which determine the discrete Fréchet distance
between the projected curves with large probability.

However, the Johnson-Lindenstrauss embedding has been applied to higher-dimensional ob-
jects than points before. In a very influential work, Agarwal et al. [11] applied the Johnson-
Lindenstrauss embedding to k-dimensional surfaces and curves in Rd and used these results for
the sake of embedding moving points. Similar to Johnson and Lindenstrauss, Agarwal et al.
consider orthogonal projections onto a uniformly random d′-dimensional linear subspace. They
show that such a projection is a (1 + ε)-embedding for any k-dimensional surface of linearization
dimension δ with positive constant probability, when d′ ∈ O(δε−2 log δ/ε). The linearization
dimension roughly corresponds to the (smallest) dimension of an affine subspace that contains
the surface. Furthermore, they prove that this can also be achieved for the union of n surfaces
of (combined) linearization dimension δ, when d′ ∈ O(δε−2 log(nδ/ε)). Weaker results hold for
surfaces of bounded doubling dimension, i.e., the base two logarithm of the smallest number D,
such that a ball of arbitrary radius r > 0 can be covered by D balls of radius r/2. Here, the
pairwise distances of points on the surface can be preserved up to a multiplicative error of (1± ε)
plus an additional additive error of ±ε∆, where ∆ is the geodesic diameter of the surface, when
d′ ∈ O(δε−2 log 1/ε), where δ is an upper bound on the doubling dimension. Furthermore, an
analog holds for any curve of length `. Here, the pairwise distances of points on the curve can be
preserved up to a multiplicative error of (1± ε) plus an additional additive error of ±ε`, when
d′ ∈ O(ε−2 log 1/ε). Agarwal et al. show that no purely multiplicative error-guarantee can be
achieved, even if the curve is polygonal.

Magen [190, 191] shows that applying a (scaled) Johnson-Lindenstrauss embedding not only
to a given set P ⊂ Rd of points, but to P ∪W , where W ⊂ Rd is a well-chosen set of points
determined by P , approximately preserves the height and angles of all triangles determined by
any three points in P . Magen even extends this result and shows that by a clever choice of W ,
the volume (Lebesque measure) of the convex hull of any k − 1 points from P is approximately
preserved when the target dimension is in Θ(ε−2k log|P |). Furthermore, in this case the distance
of any point from P to the affine hull of any k − 1 other points from P is also approximately
preserved. These results are finally applied to projective clustering and approximate nearest
neighbor (affine subspace) problems.

Another work that inspired our approach is due to Sheehy [236]. He noticed that a Johnson-
Lindenstrauss embedding of a set of points yields an embedding for their entire convex hull with
additive error. To be precise, for any finite set P ⊂ Rd, any point p ∈ P and any point q from the
convex hull of P it holds that |‖f(p)−f(q)‖2−‖p−q‖2| ≤ 4εr, when f is a Johnson-Lindenstrauss
embedding of P with parameter ε, where r is the radius of the minimum enclosing ball of P .

However, since curves may be drawn apart from each other arbitrarily, this guarantee is not
of great use for us and in the following, we extend Johnson-Lindenstrauss type embeddings to
polygonal curves and prove a guarantee that only depends on the properties of the curves, namely
their number, their complexity and the length of their edges.
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Extending Common Methods for Points

First, we aim to extend any method from a pool of common methods for embedding points to
a method of embedding polygonal curves. It will show that this extension only nearly yields
an embedding guarantee, therefore, in the following we loosen our terminology and also call a
function an embedding that yields a combined multiplicative and additive error guarantee on the
distances. We generally call this error the distortion.

Since there is a broad family of Johnson-Lindenstrauss type embeddings and any of these can be
utilized, we now give a general definition that captures the core property of these embeddings,
namely their (probabilistic) error guarantee.

Definition 5.1.3 Let P ⊂ Rd be a finite set. A function f : P → Rd′ is a (1 ± ε)-Johnson-
Lindenstrauss embedding for P , if it holds that

∀p, q ∈ P : (1− ε)‖p− q‖ ≤ ‖f(p)− f(q)‖ ≤ (1 + ε)‖p− q‖,

with constant probability at least ρ ∈ (0, 1] over the random construction of f .

We extend the mapping f from points to polygonal curves by applying it to the vertices of the
curves and re-connecting their images in order, see Definition 2.3.9.

Definition 5.1.4 Let τ ∈ Rd∗ be a polygonal curve, t1, . . . , tm be its instants and v1, . . . , vm be
its vertices. Let f be a (1± ε)-Johnson-Lindenstrauss embedding for {v1, . . . , vm}. By F (τ) we
define the (1± ε)-Johnson-Lindenstrauss embedding of τ as follows:

F (τ)(t) =


lp
(
f(v1)f(v2), t−t1t2−t1

)
, if t ∈ [0, t2)

...
lp
(
f(vm−1)f(vm), t−tm−1

tm−tm−1

)
, if t ∈ [tm−1, 1]

.

For a set T = {τ1, . . . , τn} ⊂ Rd∗ of polygonal curves we define F (T ) = {F (τ) | τ ∈ T} and require
the function f to be a (1± ε)-Johnson-Lindenstrauss embedding for the set of all vertices of all
curves τ ∈ T .

In the following, we give an explicit bound on the distortion of the Fréchet distance when this
function is applied to some given curves. We first express the distance between two points on
two line segments by a combination of the distances among their start- and endpoints, using
only the relative positions of the points on the respective segment.

Proposition 5.1.5 Let s1 = p1p2 and s2 = q1q2 be line segments between two points p1, p2 ∈ Rd,
respectively q1, q2 ∈ Rd. For any λp, λq ∈ [0, 1] and p = lp (p1p2, λp) lying on s1, as well as
q = lp (q1q2, λq) lying on s2, it holds that

‖p− q‖2 = − (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2.

Proof. We have:
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‖p− q‖2 = ‖(p1 − λp(p1 − p2))− (q1 − λq(q1 − q2))‖2 (I)
= ‖p1 − λp(p1 − p2)‖2 − 2〈p1 − λp(p1 − p2), q1 − λq(q1 − q2)〉

+ ‖q1 − λq(q1 − q2)‖2 (II)
= ‖p1‖2 − 2λp〈p1, p1 − p2〉+ λ2

p‖p1 − p2‖2 − 2〈p1 − λp(p1 − p2), q1 − λq(q1 − q2)〉
+ ‖q1‖2 − 2λq〈q1, q1 − q2〉+ λ2

q‖q1 − q2‖2 (III)
= ‖p1‖2 − 2λp‖p1‖2 + 2λp〈p1, p2〉+ λ2

p‖p1‖2 − 2λ2
p〈p1, p2〉+ λ2

p‖p2‖2

+ ‖q1‖2 − 2λq‖q1‖2 + 2λq〈q1, q2〉+ λ2
q‖q1‖2 − 2λ2

q〈q1, q2〉+ λ2
q‖q2‖2

− 2(〈p1, q1 − λq(q1 − q2)〉 − 〈λp(p1 − p2), q1 − λq(q1 − q2)〉) (IV)
= (1− λp)2‖p1‖2 + λ2

p‖p2‖2 + (1− λq)2‖q1‖2 + λ2
q‖q2‖2 + 2λp(1− λp)〈p1, p2〉

+ 2λq(1− λq)〈q1, q2〉 − 2〈p1, q1〉+ 2λq〈p1, q1〉 − 2λq〈p1, q2〉+ 2λp〈p1, q1〉
− 2λpλq〈p1, q1 − q2〉 − 2λp〈p2, q1〉+ 2λpλq〈p2, q1 − q2〉 (V)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)〈p1, p2〉+ 2(λp + λq − λpλq − 1)〈p1, q1〉
+ 2(λpλq − λq)〈p1, q2〉+ 2(λpλq − λp)〈p2, q1〉 − 2λpλq〈p2, q2〉
+ 2λq(1− λq)〈q1, q2〉 (VI)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ 2λp(1− λp)‖p1‖‖p2‖ cos^(p1, p2)
+ 2(λp + λq − λpλq − 1)‖p1‖‖q1‖ cos^(p1, q1)
+ 2(λpλq − λq)‖p1‖‖q2‖ cos^(p1, q2)
+ 2(λpλq − λp)‖p2‖‖q1‖ cos^(p2, q1)
− 2λpλq‖p2‖‖q2‖ cos^(p2, q2) + 2λq(1− λq)‖q1‖‖q2‖ cos^(q1, q2) (VII)

= (1− λp)2‖p1‖2 + λ2
p‖p2‖2 + (1− λq)2‖q1‖2 + λ2

q‖q2‖2

+ (λp − λ2
p)(‖p1‖2 + ‖p2‖2 − ‖p1 − p2‖2)

+ (λq − λ2
q)(‖q1‖2 + ‖q2‖2 − ‖q1 − q2‖2)

− (1− λp − λq + λpλq)(‖p1‖2 + ‖q1‖2 − ‖p1 − q1‖2)
− (λq − λpλq)(‖p1‖2 + ‖q2‖2 − ‖p1 − q2‖2)
− (λp − λpλq)(‖p2‖2 + ‖q1‖2 − ‖p2 − q1‖2)
− λpλq(‖p2‖2 + ‖q2‖2 − ‖p2 − q2‖2) (VIII)

= (1− 1− 2λp + λp + λp + λ2
p − λ2

p + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p1‖2

+ (λ2
p − λ2

p + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖p2‖2

+ (1− 1− 2λq + λq + λq + λ2
q − λ2

q + λp − λp + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q1‖2

+ (λ2
q − λ2

q + λq − λq + λpλq − λpλq︸ ︷︷ ︸
=0

)‖q2‖2

− (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2. (IX)

117



High Complexity and High DimensionalityHigh Complexity and High Dimensionality Dimension Reduction for Curves

We obtain Eq. (I) to Eq. (VI) using only properties of the Euclidean norm and the dot product, in
Eq. (VII) we use the geometric definition of the dot product (derived from Definition 2.2.22) and
finally in Eq. (VIII) we apply the law of cosines. Eq. (IX) follows by algebraic manipulations.

Using Proposition 5.1.5 we can now provide bounds on the distances between the two points on
the segments when the segments are embedded in the sense of Definition 5.1.4.

Lemma 5.1.6 Let P = {p1, . . . , pn} ⊂ Rd be a set of points and f be a (1 ± ε)-Johnson-
Lindenstrauss embedding for P . Let p1, p2, q1, q2 ∈ P . For arbitrary λp, λq ∈ [0, 1] and p =
lp (p1p2, λp), p′ = lp

(
f(p1)f(p2), λp

)
, as well as q = lp (q1q2, λq), q′ = lp

(
f(q1)f(q2), λq

)
it

holds that

(1−ε)2‖p−q‖2−ε(‖p1−p2‖2+‖q1−q2‖2) ≤ ‖p′−q′‖2 ≤ (1+ε)2‖p−q‖2+ε(‖p1−p2‖2+‖q1−q2‖2)

is satisfied with probability at least ρ ∈ (0, 1] over the random construction of f .

Proof. First note that the construction of f succeeds with probability ρ ∈ (0, 1] by Definition 5.1.3.
We condition the remaining proof on this event. From Proposition 5.1.5 we now know that

‖p− q‖2 = − (λp − λ2
p)‖p1 − p2‖2 − (λq − λ2

q)‖q1 − q2‖2 + (1− λp − λq + λpλq)‖p1 − q1‖2

+ (λq − λpλq)‖p1 − q2‖2 + (λp − λpλq)‖p2 − q1‖2 + λpλq‖p2 − q2‖2

and

‖p′ − q′‖2 = − (λp − λ2
p)‖f(p1)− f(p2)‖2 − (λq − λ2

q)‖f(q1)− f(q2)‖2

+ (1− λp − λq + λpλq)‖f(p1)− f(q1)‖2 + (λq − λpλq)‖f(p1)− f(q2)‖2

+ (λp − λpλq)‖f(p2)− f(q1)‖2 + λpλq‖f(p2)− f(q2)‖2.

Because every coefficient is non-negative, it can be observed that this sum is maximized under f
when

‖f(p1)− f(p2)‖2 = (1− ε)2‖p1 − p2‖2,

‖f(q1)− f(q2)‖2 = (1− ε)2‖q1 − q2‖2,

‖f(p1)− f(q1)‖2 = (1 + ε)2‖p1 − q1‖2,

‖f(p1)− f(q2)‖2 = (1 + ε)2‖p1 − q2‖2,

‖f(p2)− f(q1)‖2 = (1 + ε)2‖p2 − q1‖2

and
‖f(p2)− f(q2)‖2 = (1 + ε)2‖p2 − q2‖2.

Using the facts that (1 + ε)2 − (1 − ε)2 = 4ε, (λq − λ2
q) ≤ 1

4 and (λp − λ2
p) ≤ 1

4 , we get that
‖p′−q′‖2 ≤ (1+ε)2‖p−q‖2 +ε(‖p1−p2‖2 +‖q1−q2‖2). The lower bound follows analogously.

These bounds finally yield our main theorem which states the desired error guarantee for the
Fréchet distances among the given polygonal curves. Let us first note that these bounds tend to
dF(τ, σ) when ε→ 0.
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Theorem 5.1.7 Let T = {τ1, . . . , τn} ⊂ Rd∗ be a set of polygonal curves and for τ ∈ T let α(τ)
denote the maximum distance between two consecutive vertices of τ . Further, for τ, σ ∈ T let
α(τ, σ) = max{α(τ), α(σ)}. Now, let F be a (1 ± ε)-Johnson-Lindenstrauss embedding for T .
With constant probability at least ρ ∈ (0, 1] it holds for all τ, σ ∈ T that√

(1− ε)2 dF(τ, σ)2 − 2εα(τ, σ)2 ≤ dF(F (τ), F (σ)) ≤
√

(1 + ε)2 dF(τ, σ)2 + 2εα(τ, σ)2,

where the exact value for ρ stems from the technique used for obtaining f .

Proof. First note that the construction of f and thus also F succeeds with probability ρ ∈ (0, 1]
by Definition 5.1.3. We condition the remaining proof on this event.

Let τ, σ ∈ T be arbitrary polygonal curves and vτ1 , . . . , v
τ
|τ |, respectively vσ1 , . . . , vσ|σ|, be their

vertices, as well as tτ1 , . . . , tτ|τ |, respectively tσ1 , . . . , tσ|σ|, be their instants.

We know from Proposition 2.3.12 that there exist two sequences (gk)∞k=1, (g′k)∞k=1 in H, such that

lim
k→∞

max
t∈[0,1]

‖τ(t)− σ(gk(t))‖ = dF(τ, σ),

lim
k→∞

max
t∈[0,1]

‖F (τ)(t)− F (σ)(g′k(t))‖ = dF(F (τ), F (σ)).

We can also assume that lim
k→∞
|gk(t)− gk−1(t)| = 0, respectively lim

k→∞
|g′k(t)− g′k−1(t)| = 0, for any

t ∈ [0, 1] (see Section 2.7.2).

Further, for each g ∈ H and t ∈ [0, 1] there exists an i(t) ∈ {1, . . . , |τ | − 1} and a j(g, t) ∈
{1, . . . , |σ| − 1} with tτi(t) ≤ t ≤ tτi(t)+1 and tσj(g,t) ≤ g(t) ≤ tσj(g,t)+1, such that the following
equations hold:

F (τ)(t) = lp
(
f(vτi(t))f(vτi(t)+1),

t− tτi(t)
tτi(t)+1 − t

τ
i(t)

)
,

F (σ)(g(t)) = lp
(
f(vσj(g,t))f(vσj(g,t)+1),

g(t)− tσj(g,t)
tσj(g,t)+1 − t

σ
j(g,t)

)
,

τ(t) = lp
(
vτi(t)v

τ
i(t)+1,

t− tτi(t)
tτi(t)+1 − t

τ
i(t)

)
,

σ(g(t)) = lp
(
vσj(g,t)v

σ
j(g,t)+1,

g(t)− tσj(g,t)
tσj(g,t)+1 − t

σ
j(g,t)

)
.

Now, for g ∈ H, let tg ∈ arg max
t∈[0,1]

‖σ(t) − τ(g(t))‖ with ‖vτi(t) − vτi(t)+1‖ + ‖vσj(g,t) − vσj(g,t)+1‖

maximal and let t′g ∈ arg max
t∈[0,1]

‖F (τ)(t)− F (σ)(g(t))‖ with ‖vτi(t) − vτi(t)+1‖+ ‖vσj(g,t) − vσj(g,t)+1‖

maximal. It follows immediately that lim
k→∞
|tgk − tgk−1 | = 0, respectively lim

k→∞
|t′g′

k
− t′g′

k−1
| = 0, by

definition. Therefore, we argue that all the following limits exist. We now obtain:
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dF(F (τ), F (σ))2 = lim
k→∞
‖F (τ)(t′g′

k
)− F (σ)(g′k(t′g′

k
))‖2 (I)

≤ lim
k→∞
‖F (τ)(t′gk)− F (σ)(gk(t′gk))‖2 (II)

≤ lim
k→∞

[
(1 + ε)2‖τ(t′gk)− σ(gk(t′gk))‖2

+ ε
(
‖vτi(t′gk ) − v

τ
i(t′gk )+1‖

2 + ‖vσj(gk,t′gk ) − v
σ
j(gk,t′gk )+1‖

2
) ]

(III)

≤ lim
k→∞

[
(1 + ε)2‖τ(tgk)− σ(gk(tgk))‖2 + 2εα(τ, σ)2

]
(IV)

= (1 + ε)2 lim
k→∞

max
t∈[0,1]

‖τ(t)− σ(gk(t))‖2 + 2εα(τ, σ)2

= (1 + ε)2 dF(τ, σ)2 + 2εα(τ, σ)2.

Eq. (I) follows by definition of g′k and t′g′
k
, Eq. (II) follows from the fact that (g′k)∞k=1 converges to

the infimum and by definitions of gk and t′gk , Eq. (III) follows from an application of Lemma 5.1.6
to each element of the sequence and Eq. (IV) follows from the definitions of gk and tgk and the
definition of α(·, ·). The last equation follows from Definition 2.3.11.

Furthermore, we obtain:

dF(F (τ), F (σ))2 = lim
k→∞
‖F (τ)(t′g′

k
)− F (σ)(g′k(t′g′

k
))‖2 (V)

≥ lim
k→∞
‖F (τ)(tg′

k
)− F (σ)(g′k(tg′k))‖2 (VI)

≥ lim
k→∞

[
(1− ε)2‖τ(tg′

k
)− σ(g′k(tg′k))‖2

− ε
(
‖vτi(tg′

k
) − v

τ
i(tg′

k
)+1‖

2 + ‖vσj(g′
k
,tg′
k

) − v
σ
j(g′

k
,tg′
k

)+1‖
2
)]

(VII)

≥ lim
k→∞

[
(1− ε)2‖τ(tg′

k
)− σ(g′k(tg′k))‖2 − 2εα(τ, σ)2

]
(VIII)

≥ lim
k→∞

[
(1− ε)2‖τ(tgk)− σ(gk(tgk))‖2 − 2εα(τ, σ)2

]
(IX)

= (1− ε)2 lim
k→∞

max
t∈[0,1]

‖τ(t)− σ(gk(t))‖2 − 2εα(τ, σ)2

= (1− ε)2 dF(τ, σ)2 − 2εα(τ, σ)2.

Here, Eq. (V) follows by the definition of g′k and t′g′
k
, Eq. (VI) follows, because each element of

the sequence is maximized for t′g′
k
, Eq. (VII) follows from an application of Lemma 5.1.6 to each

element of the sequence, Eq. (VIII) follows from the definition of α(·, ·) and Eq. (IX) follows
from the fact that (gk)∞k=1 converges to the infimum. The second last equation follows from the
definitions of gk and tgk and the last equation follows from Definition 2.3.11.

Remark 5.1.8 In [11, Remark 11] Agarwal et al. argue that their bound on the distortion of
the pairwise distances between the points on the given curve ([11, Corollary 10]) can not be
strengthened to a true embedding guarantee, i.e., a purely multiplicative error. Their bound also
has an additional additive error, namely ±ε`, where ` is the length of the curve. To give proof,
they construct a polygonal curve with vertices 0, p1, p1 + p2, . . . ,

∑n
i=1 pi, where P = {p1, . . . , pn}

is an ε-net of the unit sphere in Rd centered at the origin. This curve can only be truly embedded,
when the distances between each point from P and the origin are preserved. However, their target
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dimension d′ is independent of the cardinality of P , and they argue that since d′ < d by the rank
plus nullity theorem (see [226]) the projection function f , which is linear, has a nullspace of
positive dimension. When ε → 0 a number of points of the ε-net get arbitrarily close to this
nullspace, thereby compromising the purely multiplicative error.

In our case, the target dimension d′ depends on the complexities of the curves, therefore we can
not adapt the construction in [11, Remark 11]. At this point, we note that one fact that is not
yet incorporated into our line of reasoning is that the Fréchet distance between two polygonal
curves is not only determined by distances among vertices, but also by distances between a vertex
and a point on an edge (see Section 2.7.2) – which does not help to improve our error bound,
unfortunately. Interestingly, we can use this fact to argue that a proper additive error must be
possible. Assume that the Fréchet distance between two curves σ and τ is determined by the
distance of a vertex vσ of σ to an edge eτ = vτ1v

τ
2 of τ . Assume that ‖vσ − vτ1‖ = ‖vσ − vτ2‖

and therefore, the nearest point on eτ to vσ, i.e., the orthogonal projection of vσ onto eτ , is
vσp = lp (eτ , 1/2). Now, if by an application of a Johnson-Lindenstrauss embedding f both
distances ‖vσ − vτ1‖ and ‖vσ − vτ2‖ expand by a factor of (1 + ε) and the distance ‖vτ1 − vτ2‖
expands by a factor of (1− ε) (contracts), which is possible (see Fig. 5.1), then the nearest point
to vσf = f(vσ) on eτf = f(vτ1vτ2 ) is vσfp = lp

(
eτf , 1/2

)
and we obtain

‖vσf − vσfp‖2 = (1 + ε)2‖vσ − vτ1‖2 − (1− ε)2 ‖vτ1 − vτ2‖2

4

and
(1 + ε)2‖vσ − vσp ‖2 = (1 + ε)2‖vσ − vτ1‖2 − (1 + ε)2 ‖vτ1 − vτ2‖2

4
by the law of cosines. Furthermore,

‖vσf − vσfp‖2 > (1 + ε)2‖vσ − vσp ‖2

⇐⇒ (1 + ε)2‖vσ − vτ1‖2 − (1− ε)2 ‖vτ1 − vτ2‖2

4 > (1 + ε)2‖vσ − vτ1‖2 − (1 + ε)2 ‖vτ1 − vτ2‖2

4
⇐⇒ (1− ε)‖vτ1 − vτ2‖ < (1 + ε)‖vτ1 − vτ2‖.

Clearly, the last inequality is satisfied for all ε ∈ (0, 1) whenever vτ1 6= vτ2 . Furthermore, if the
Fréchet distance between F (σ) and F (τ) is determined by the distance between vσf and vσpf , then
dF(F (σ), F (τ)) > (1 + ε) dF(σ, τ). Clearly, such a situation may arise. For example when τ is
a line segment and σ consists of three vertices vσ1 , vσ2 and vσ2 , where vσ2 has substantially larger
distance to τ than vσ1 and vσ3 .

We finally note that a similar combined multiplicative and additive error guarantee has already
been studied in the literature, in the context of ε-coresets for k-means clustering [27]. These
coresets are called lightweight coresets and Bachem et al. showed that they have little to no loss
in error compared to strong ε-coresets while massively improving upon the running time of the
downstream algorithm.

In the following, we empirically study our developed method.
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Figure 5.1: For each value of ε we conducted 15 experiments, where we first drew 100 directions
uniformly at random, put a point in each of these directions with distance to the origin
drawn uniformly at random in the range [10−23, 103], and then applied a Johnson-
Lindenstrauss embedding (based on a matrix with standard normally distributed
entries). The plot depicts the change in all pairwise distances, where a value beneath
one indicates that the distance contracted and a value above one indicates that
the distance expanded. It can be observed that in all experiments, some distances
contracted, while others at a time expanded.
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Experiments

We experimentally assess the properties of the developed method using a random matrix with
independent standard normal distributed entries to embed the vertices of the given curves.
This is just the setting that we analyzed in Theorem 5.1.1. We choose the target dimension
d′ = d4 · ε−2 ln(|P |)e, according to the proof in [80]. All experiments are conducted using a
parallelized C++ implementation of Alt and Godau’s algorithm that we developed for this
purpose (Fred: fred.dennisrohde.work). We run all experiments on a dedicated virtual machine
with 4GB RAM and four (virtual) cores of an Intel Xeon E5-2630 v4 CPU.

We use a data set that comprises cyclical measurements of pressure sensors monitoring the
condition of a hydraulic test rig [142]. For a total of six such sensors, it contains 2205 instances
(consecutive cycles) of time series where each sensor took measurements at a frequency of 100Hz
over the course of 60 seconds. This results in 2205 instances of six time series, each of 6000
values. Such a data set is predestined to appear in applications such as anomaly detection. We
choose to build six polygonal curves PS1, . . . , PS6 using this data, each of complexity 2205
and 6000 dimensions. In this sense, we interpret each measurement cycle of each sensor as a
point in R6000 and by taking the Fréchet distance between two curves we measure the maximum
distance between two points from the linear interpolations of the consecutive cycles of the sensors.
Intuitively, this is the maximum distance between two cycles measured by two different sensors,
among all cycles (interpolated). We think that such a setting may be of interest in practice, e.g.
for condition monitoring and especially for anomaly detection.

In 100 reputations each, we compare the CPU time consumed by computing the Fréchet distance
between two curves (input ε = 0) and by first embedding the curves and then computing the
Fréchet distance (input ε > 0). The results can be seen in Fig. 5.2. It can be observed that
for small values of ε, more CPU time is consumed compared to the case that no embedding is
done prior to distance computation. This is due to the embedding taking more time to compute
than is spared in the distance computation. However, for reasonable values of ε, substantial
improvements can be achieved. For example, for ε = 0.25, a speed-up by a factor of 2 is achieved,
while for ε = 0.9 even a speed-up by a factor of roughly 16 is achieved.

To demonstrate the effect of parallelization we also repeated the aforementioned experiments
and measured the wall time. The results can be seen in Fig. 5.3. It can be observed that the
speed-up is proportional to the number of cores.

In both experiments we also measured the relative error achieved by the embedding. The results
can be seen in Fig. 5.4. It can be observed that in nearly all cases, the targeted error, or an
even better error, could be achieved. Only in three cases, the error guarantee was not met.
However, since this guarantee is of probabilistic nature, this is in line with the (small) failure
probability. We think that the absence of an additive error may be explained by the results of
Magen [190, 191]. In detail, he proved that by increasing the target dimension only by a (small)
constant factor, all triangles determined by any three points in the given set are approximately
preserved. This means that a Johnson-Lindenstrauss embedding preserves with good probability
the distances determined by vertex and edge events (see Section 2.7.2).

Finally, we note that it can easily be seen that PCA is not a suitable method for dimension
reduction for polygonal curves. To see this, consider the curves σ and τ with vertices (0, . . . , 0),
(d, 0, . . . , 0), (d, d− 1, . . . , 0), . . . , (d, d− 1, . . . , 1, 0), respectively (0, . . . , 1), (d, 0, . . . , 1), (d, d−
1, . . . , 1), . . . , (d, d − 1, . . . , 1, 1). Both curves are parallel and their Fréchet distance is one.
However, PCA applied to the union of their vertices will identify the dth dimension as least
important, while this dimension is the most important for the Fréchet distance.
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Figure 5.2: In 100 consecutive repetitions each, the CPU time needed to compute the Fréchet
distance between two curves, respectively to embed the curves and then compute the
Fréchet distance, is measured.
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Figure 5.3: In 100 consecutive repetitions each, the (wall) time needed to compute the Fréchet
distance between two curves, respectively to embed the curves and then compute the
Fréchet distance, is measured.
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Figure 5.4: In 200 consecutive repetitions each, the distortion of the Fréchet distance between
two embedded curves is measured.
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5.2 Complexity Reduction for Curves

Recall that Alt and Godau’s algorithm is a part of all algorithms considered so far that involve
polygonal curves. The running time of this algorithm depends super-quadratic on the complexities
of the given polygonal curves. We are interested in improving upon this dependency. An approach
to improve upon this dependency is to compress the curves at hand and, if necessary, provide an
additional (computationally cheap) function that can be used to (approximately) recover the
Fréchet distance between the curves. A way of doing so is by utilizing minimum-complexity
r-simplifications. These are another kind of simplifications, and are related to the already
considered minimum-error `-simplifications. Here, given a polygonal curve σ, one computes
a polygonal curve τ – the simplification of σ – that is of minimum complexity and satisfies
dF(σ, τ) ≤ r. For many applications it leads to an efficient constant factor approximation
algorithm when we substitute the input curves with their minimum-complexity r-simplifications
(with r set to a suitable value). However, as we will see, the complexities of the simplifications
can not be bounded in general. The resulting complexity depends on the curve at hand and the
given value of r and it can be the case that the complexity does not decrease at all. On a high
level, the result of this section is that any reduction of the complexity of a curve may result in
the loss of information crucial for determining the Fréchet distance to other curves.

In the following, we generally study the space complexity of compressing a polygonal curve
while (approximately) preserving its Fréchet distance to any other curve. We use the tool-chain
developed in the field of communication complexity, which was pioneered by Yao [256]. The
models studied in this topic comprise at least two parties (the first two are traditionally called
Alice and Bob) and each of them gets a part of the input, denoted by x, respectively y. Their goal
is to compute a function f(x, y) of the whole input and to do so, they can send messages to each
other and run computations on their part of the input and the messages they have gotten so far.
The quantity that is analyzed is the so-called communication complexity, i.e., the combined
size of the messages (in bits), while the computational running time and space of the involved
parties is not central. Typically, lower and upper bounds on the communication complexity of a
problem of interest are derived and to obtain lower bounds as general as possible, it is assumed
that all parties have unlimited computational power, i.e., they can use infinite running time and
space.

The analysis of communication complexity of course requires a formalized procedure that
provably leads to the function f(x, y) being computed correctly and which thus determines
the messages to share and the computations to carry out. Such a formal procedure is called
communication protocol, or shortly protocol, and if it only involves computations that can
be run in polynomial time, the protocol is efficient, otherwise it is inefficient. Furthermore,
protocols can be either deterministic, which means that the involved parties do not have access
to randomness, or randomized, which means they have. In the latter case, each party may have
an own private source of randomness or all parties share a common source of randomness. The
source of randomness is an infinite sequence of outcomes from fair coin tosses, from which the
parties can read as much as they need. Consequently, in the first case each party has their
own sequence of random coin tosses, which only they can see – this setting is the so-called
private coin model – and in the second case they all can see one public sequence – which is
called the public coin model. Of course, the second model is more powerful, since parties can
see the random coins that the other parties used. However, any protocol in the public coin
model can be modified to a protocol in the private coin model while only slightly increasing its
complexity, cf. e.g. [174, Theorem 3.14] or [247, Theorem 15.4.6].
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In general, if randomness is used, the number of coin tosses read is often also accounted to the
communication complexity and protocols do not need to be correct anymore, they only have to
succeed with a certain constant positive probability2. Also, the number of messages that can
be exchanged in a protocol is usually limited. This is formalized by employing communication
rounds in which every party can send one message each, and requiring the number of rounds to
be bounded by a certain number.

These are the basics of communication complexity and the numerous expressions that go beyond
can not be adequately covered by this manuscript. For further reading we therefore refer the
reader to [174, 247, 23].

We now formally define the model that we use to study the space complexity of compressing a
polygonal curve and approximately recovering its Fréchet distance to any other polygonal curve.

5.2.1 The One-Way Communication Model

A special setting in communication complexity is the so-called one-way communication. The
one-way communication model (cf. [174, Definition 4.1.7]) consists of two parties, named
Alice and Bob, which are given an input x, respectively y, and the protocols are restricted
to employ only one round of communication. Specifically, in any protocol Alice first sends
an intermediate message to Bob whereupon he sends a solution s ∈ f(x, y) ⊂ R (where f is
determined by the problem at hand), which they aimed to recover. This notion of communication
complexity is very natural since it connects to fields like statistical learning theory, online
computation and streaming algorithms as well as information and coding theory and cryptography,
cf. [3, 171, 172, 24, 120, 109].

Since we are here interested in approximately recovering the Fréchet distance between two
polygonal curves when one of the curves is compressed, Alice is given a polygonal curve σ ∈ Rd∗
and Bob is given a polygonal curve τ ∈ Rd∗, where both are of complexity m. Alice’s message
consists of a (one-way) sketch S(σ), which she sends to Bob who then computes an estimation
E(S(σ), τ), which he sends back to Alice. Their goal is that the estimate approximates the
original Fréchet distance between the curves, i.e., dF(σ, τ) ≤ E(S(σ), τ) ≤ η · dF(σ, τ), where
η ∈ [1,∞) is an approximation factor that parameterizes the problem. In the randomized setting,
Alice and Bob may use arbitrarily many public random coins to compute S(σ), respectively
E(S(σ), τ), and the one-way communication complexity of this problem is the minimum
number of bits that Alice may use for S(σ), such that they succeed (with constant positive
probability, if random coins are used) in recovering a solution s ∈ [dF(σ, τ), η · dF(σ, τ)].

Lower bounds on the communication complexity apply to simplification, sketching protocols and
streaming algorithms in general [47]. Upper bounds (by designing protocols) apply to problems
like streaming and nearest neighbor search [22]. We now review the work related to the topic.

5.2.2 Related Work

The one-way communication complexity of distance measures has already been studied in the
literature, for example of the edit distance [211, 151, 162, 33], Hamming distance [157, 78] and
dynamic time warping distance [47]. We now review some selected results and we note that many
of the developed protocols are based on (randomized) hashing.

2Since one can apply probability boosting, the particular probability is mostly not of interest.
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The edit and Hamming distances are measures between two arbitrary finite sequences (from the
same domain, {0, 1} in most cases). The edit distance is the minimum number of insertions,
substitutions and deletions to transform the first sequence into the second one and the Hamming
distance is the number of positions in which the sequences differ.

The one-way communication complexity of the edit distance has been studied extensively. Here,
the so-called remote file synchronization problem or shorthand RFk, has been studied. In
this problem a file (represented as a binary string of length n) that was altered on a client is
to be updated on a remote server with as little communication as possible. The problem is
parameterized by a natural number k and the goal is to reconstruct the altered file when the edit
distance to the original is at most k and otherwise to truthfully report that the edit distance is
large than k. In particular, solving this problem allows deciding whether the edit distance is at
most k or larger. We note that this problem is also often called document exchange problem or
correlated files problem.

It was probably first studied in [211]. Here, an inefficient deterministic one-way protocol is
presented that uses a message of O(k log(n)) bits—which is near optimal (cf. [43]). This protocol
results from a certain hypergraph coloring approach and Bob’s running time is of order nO(k). In
[32] an efficient deterministic one-way communication protocol with slightly larger message size
is presented. This protocol is based on error-correcting codes, particularly Reed-Solomon codes,
and Bob’s running time is sub-quadratic.

In [151] an efficient randomized one-way protocol is provided that uses a message of almost
asymptotically optimal size. This protocol uses an erasure-correcting code, and Bob’s running
time is sub-quadratic. This result was slightly improved several times in terms of the message size.
In [162] a protocol is presented that uses an embedding to the Hamming cube3 in combination
with a sketching procedure for the Hamming distance [218] and a reconstruction procedure. The
protocol in [70] is similar. It also uses an embedding to the Hamming cube; using random walks.
Currently, the best protocol is due to [33] and builds upon the previously mentioned works.

Concerning, the one-way communication complexity of the Hamming distance, the so-called Gap
Hamming distance problem, or shorthand GapHD, has been studied. In this problem one is
interested in deciding whether the Hamming distance between two sequences of length n each is
at most n/2−

√
n or at least n/2 +

√
n, while it is promised that the distance is not in between

n/2−
√
n and n/2 +

√
n. The randomized one-way communication complexity of this problem is

in Ω(n) [254, 157], even though it is already a relaxed variant of deciding the distance.

Finally, concerning the one-way communication complexity of the dynamic time warping distance,
the α-DTW and (α, r)-DTW problems have been studied. In both problems one is given two
sequences of length at most n and in the α-DTW problem one wants to recover an α-approximation
to the DTW distance between the sequences, while the (α, r)-DTW asks to decide whether
the DTW distance is at most r or larger than rα, for a parameter r > 0. Both problems are
parameterized by an approximation factor 1 ≤ α ≤ n. Clearly, any protocol for α-DTW can be
modified to a protocol for (α, r)-DTW and any lower bound for (α, r)-DTW applies to α-DTW.
The main results in [47] are randomized protocols for α-DTW for sequences over a metric space
of size polynomial in n and whose ratio between largest and smallest pairwise distance is also
bounded by a polynomial in n, and a lower bound for point sequences over a (non-)metric space
of at least three elements. The protocols are nearly optimal in the message size and all results
are improved for special cases, like sequences over the integers or over separable metric spaces.

We now summarize the aforementioned results.
3{0, 1}n endowed with the Hamming distance.
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Problem Protocol Type Efficiency Bit Complexity Reference

RFk

deterministic inefficient O(k logn) [211]

efficient

O(k2 + k log2 n) [32]

randomized (public)

O(k log(n) log(n/k)) [151]
O(k log2(n) log∗(n)) [162]

O(k2 logn) [70]
O(k log2 k + k logn) [33]

GapHD randomized (public) ∗ Ω(n) [254]

α-DTW randomized (public) inefficient O(n/α log3 n) [47]efficient O(n/α log(α) log3(n))
(α, r)-DTW randomized (public) ∗ Ω(n/α) [47]

In the following, we derive lower bounds on the space that is needed to store a representation
of a polygonal curve that allows to (approximately) recover the Fréchet distance to any other
(uncompressed) polygonal curve.

5.2.3 Lower Bounds by Communication Complexity

First, we prove that the Fréchet distance can not be approximated up to any factor by reducing
the complexity of one of the curves at hand deterministically, even in one dimension. We
achieve this result by reducing from the equality test communication problem, which requires
a linear number of bits. This implies that the Fréchet distance may degrade arbitrarily by
(deterministically4) performing a proper simplification. Consequently, there is little hope to speed
up the Fréchet distance computation, while (approximately) maintaining the original distance,
by compressing only one curve at hand.

Theorem 5.2.1 Let σ, τ ∈ Rd∗ be polygonal curves with m vertices each. Any deterministic
one-way sketch S(σ) for which there exists a deterministic estimation E(S(σ), τ) satisfying
dF(τ, σ) ≤ E(S(σ), τ) ≤ η · dF(τ, σ), for η ∈ [1,∞), consists of Ω(m) bits.

Proof. We reduce from the equality test communication problem on bit-strings of size m each.
The deterministic communication complexity of this problem is Ω(m) [247, Theorem 15.2.2].

In this setting Alice and Bob are given bit-strings A,B : [m]→ {0, 1} and their task is to decide
whether there exists at least one i ∈ [m] such that A[i] 6= B[i] or not with as little communication
as possible. We give a one-way protocol for this problem, where only one message from Alice to
Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m
vertices each. Both curves consist of one gadget per bit. These are either straight-line- or
zigzag-gadgets, depending on the value of the respective bit. Specifically, for i ∈ [m] we define
the vertices of α:

If A[i] = 0 then vα4i−3 = 2i, vα4i−2 = 2i+ 2/3, vα4i−1 = 2i+ 4/3 and vα4i = 2i+ 2.
Else, if A[i] = 1 then vα4i−3 = 2i, vα4i−2 = 2i+ 2, vα4i−1 = 2i and vα4i = 2i+ 2.

The vertices vβ4i−3, . . . , v
β
4i of β are defined analogously.

4All known simplification algorithms are deterministic.
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We claim that

1. ∃i ∈ [m] : A[i] 6= B[i] =⇒ dF(α, β) ≥ 1 and

2. ∀i ∈ [m] : A[i] = B[i] =⇒ dF(α, β) = 0.

To prove the first item, fix an arbitrary i ∈ [m]. W.l.o.g., assume that A[i] 6= B[i] = 1. We
have the vertices vα4i−3 = 2i, vα4i−2 = 2i+ 2, vα4i−1 = 2i and vα4i = 2i+ 2, as well as, vβ4i−3 = 2i,
vβ4i−2 = 2i+ 2/3, vβ4i−1 = 2i+ 4/3 and vβ4i = 2i+ 2. Now, assume that dF(α, β) < 1. This means,
that vα4i−3 = 2i, vα4i−2 = 2i + 2 and vα4i−1 = 2i must be mapped to some points that lie closer
than 2i+ 1 ∈ vβ4i−2v

β
4i−1. This is a contradiction, because reparameterizations are required to

be non-decreasing by definition. Thus, in the optimal case vα4i−2 and vα4i−1 are mapped to some
points infinitesimally close to 2i+ 1.

To prove the second item, observe that by symmetry of the construction, α and β represent the
same curve and therefore dF(α, β) = 0.

Now, suppose there exist oblivious functions S and E not depending on the data such that
dF(α, β) ≤ E(S(α), β) ≤ η · dF(α, β), for an arbitrary η ∈ [1,∞).

Alice computes the compressed representation S(α) and communicates S(α) to Bob. Bob
evaluates the estimator E(S(α), β).

If E(S(α), β) = 0 then dF(α, β) ≤ E(S(α), β) = 0.

If E(S(α), β) > 0 then dF(α, β) ≥ E(S(α), β)/η > 0.

Thus, Bob can distinguish the above two cases and therefore solve the equality test problem,
which implies that S(α) consists of Ω(m) bits.

Second, we prove that the Fréchet distance can not be approximated within any factor less than√
2 by reducing the complexity of one of the curves at hand probabilistically. We show this by

reducing from the set disjointness communication problem, which also requires a linear number
of bits for any randomized protocol succeeding with constant positive probability, cf. [139].

Theorem 5.2.2 Let σ, τ ∈ Rd∗ be polygonal curves with m vertices each, where d ≥ 2. Any
randomized one-way sketch S(σ) for which there exists a randomized estimation E(S(σ), τ)
satisfying dF(τ, σ) ≤ E(S(σ), τ) ≤ η · dF(τ, σ), for η ∈ [1,

√
2], consists of Ω(m) bits.

Proof. We reduce from the set disjointness communication problem on bit strings of size m each.
These represent subsets of a common ground set. The randomized communication complexity
with public coins is Ω(m) [139, Theorem 1.2].

Now, Alice and Bob are given their bit-strings A,B : [m] → {0, 1} and their task is to decide
whether there exists at least one i ∈ [m] such that A[i] = B[i] = 1 or not with as little
communication as possible. We give a one-way protocol for this problem, where only one message
from Alice to Bob is allowed.

In a first step, Alice and Bob construct from their bit-strings polygonal curves α, β with 4m
vertices each. Both curves consist of one gadget per bit. These are either straight-line- or
notch-gadgets, depending on the value of the respective bit. Thus, for i ∈ [m] we define the
vertices of α:

If A[i] = 0 then vα4i−3 = (4i, 0), vα4i−2 = (4i, 0), vα4i−1 = (4i+ 4, 0) and vα4i = (4i+ 4, 0). Otherwise,
vα4i−3 = (4i, 0), vα4i−2 = (4i, 1), vα4i−1 = (4i+ 4, 1) and vα4i = (4i+ 4, 0).
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And we define the vertices of β:

If B[i] = 0 then vβ4i−3 = (4i, 0), vβ4i−2 = (4i, 0), vβ4i−1 = (4i+ 4, 0) and vβ4i = (4i+ 4, 0). Otherwise,
vβ4i−3 = (4i, 0), vβ4i−2 = (4i,−1), vβ4i−1 = (4i+ 4,−1) and vβ4i = (4i+ 4, 0).

We claim that

1. ∃i ∈ [m] : (A[i] = B[i] = 1) =⇒ dF(α, β) ≥ 2 and

2. ∀i ∈ [m] : (A[i] = 0 ∨B[i] = 0) =⇒ dF(α, β) <
√

2.

To prove the first item, fix an arbitrary i ∈ [m]. If A[i] = B[i] = 1, we have the vertices
vα4i−3 = (4i, 0), vα4i−2 = (4i, 1), vα4i−1 = (4i+ 4, 1) and vα4i = (4i+ 4, 0), as well as, vβ4i−3 = (4i, 0),
vβ4i−2 = (4i,−1), vβ4i−1 = (4i + 4,−1) and vβ4i = (4i + 4, 0). Now, assume that dF(α, β) < 2.
This means, that (4i + 2, 1) ∈ vα4i−2v

α
4i−1 must be mapped to some point that lies closer than

(4i+ 2,−1) ∈ vβ4i−2v
β
4i−1. This is a contradiction, because the circle of radius 2 around (4i+ 2, 1)

does only intersect one point of β, namely (4i+ 2,−1). In particular vβ4i−3 and vβ4i have distance√
5 > 2.

To prove the second item, assume w.l.o.g. that A[i] 6= B[i] for all i ∈ [m]. Otherwise α and β
represent the same curve and have distance 0. Let m = 1 and w.l.o.g. assume that B[1] = 1.
Then we have the vertices vα1 = (4, 0), vα2 = (4, 0), vα3 = (4 + 4, 0) and vα4 = (4 + 4, 0), as well as
vβ1 = (4, 0), vβ2 = (4,−1), vβ3 = (4 + 4,−1) and vβ4 = (4 + 4, 0). Let g be a reparameterization that
maps vα1 to vβ1 and vα4 to vβ4 , as well as v

β
1 v

β
2 and vβ3 v

β
4 to some infinitesimally small sub-segment

of vα1 vα4 each. Since these sub-segments have length less than 1 each, any point of these is mapped
to a point within distance less than

√
2. Now, let g map the remaining segment vβ2 v

β
3 of β linearly

to the remaining middle sub-segment of vα1 vα4 of α. Since this remaining sub-segment has length
larger than 2, again any point is mapped to a point within distance less than

√
2. Since we can

inductively apply this argument for any m > 1, i.e., any number of gadgets, we conclude that
dF(α, β) <

√
2.

Now, suppose there exist oblivious randomized functions S and E not depending on the data
such that dF(α, β) ≤ E(S(α), β) ≤ η ·dF(α, β) with constant positive probability, for an arbitrary
η ∈ [1,

√
2].

Alice computes the compressed representation S(α) using some public random bits and com-
municates S(α) to Bob. Bob computes the estimator E, using some public random bits and
evaluates E(S(α), β).

If E(S(α), β) < 2 then with constant positive probability dF(α, β) ≤ E(S(α), β) < 2.

If E(S(α), β) ≥ 2 then with constant positive probability dF(α, β) ≥ E(S(α), β)/
√

2 ≥
√

2.

Thus, Bob can distinguish the above two cases and therefore solve the set disjointness problem
with constant positive probability, which implies that S(α) consists of Ω(m) bits.

We note that it is not known whether this bound is tight. Also, to the best of our knowledge,
there are no one-way protocols known for approximating the Fréchet distance, leaving this an
open problem.
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6 Conclusions

We conclude the thesis by discussing the limits of our results and the problems that remain open.

6.1 Aggregation/Summarization

In Chapter 3 we studied aggregation/summarization problems for polygonal curves and point
sequences over some metric space that are derived from the geometric median and (q-)mean
problem of points in Rd, namely the `-median and (p, q)-mean/p-mean problems.

For the `-median problem we found an exact algorithm that relies on nondeterminism, but did not
find an algorithm that works completely deterministic. This may be explained by the fact that
the problem is strongly related to the geometric median problem, for which no exact algorithm
exists under standard models of computation. As we turned to approximation algorithms it
showed that we needed to rely on grids to obtain small approximation factors. For the resulting
running times being independent of the curve’s length we introduced shortcutting lemmata,
which have the downside that the obtained median curves may have complexity larger than `.
We note that the potential approach described in Section 3.1.3 could be used as a post-processing
to obtain a median of complexity at most `, though, when the missing components are developed.
Anyway, the following problem remains open:

Open Problem 6.1.1 Does there exist a (1 + ε)-approximation algorithm for the `-median
problem (in Rd) that returns a polygonal curve of complexity at most ` and whose running time
depends only on d, `, m, and n?

Another phenomenon we observed is that by relying on grids the resulting running time became
exponential in `, due to a brute-force enumeration. It is not clear to us if, and how, this step
may be improved, therefore, the following problem also remains open:

Open Problem 6.1.2 Does there exist a (bi-criteria) (1 + ε)-approximation algorithm for the
`-median problem (in Rd) with running time sub-exponential in `?

For the restricted 2-mean problem on point sequences in the Euclidean space we found a
deterministic algorithm solving the problem exactly. We think that this is in line with the
geometric mean being determined by an explicit formula. For other values of p, this algorithm
can be modified but then yields a (1 + ε)-approximation in the best case. Again, this can be
explained by algebraic issues – for p = 1 we again have a strong relation to the geometric median
problem. Following, we devised approximation algorithms for the restricted p-mean problem in
any metric space and the restricted (p, 1)-mean problem in the Euclidean space. The running
times of these algorithms are all exponential in `, again due to the use of grids. It is not clear
whether this dependency is really necessary and the following problem remains open:

Open Problem 6.1.3 Does there exist an approximation algorithm for any restricted (p, q)-
mean problem with running time sub-exponential in `?
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6.2 Clustering

In Chapter 4 we studied the (k, `)-median clustering problem for polygonal curves and the
(k, `, p, q)-mean clustering problem for point sequences in an arbitrary metric space. Unfortunately,
the running times of our (randomized) approximation algorithms for the (k, `)-median problem
are not only exponential in `, but also in k (and also in ε and δ, where ε is a parameter
controlling the approximation factor and δ is a parameter controlling the failure probability).
Again, this is due to brute-force enumerations – here, of subsets. It is not clear whether these
exponential dependencies are necessary, as the (k, `)-median problem is not known to be NP-hard
to approximate. The following problem remains open:

Open Problem 6.2.1 Does there exist an approximation algorithm for the (k, `)-median prob-
lem with running time sub-exponential in k?

As our results for the clustering problems are derived by plugging (modifications of) our results
from Chapter 3 into the same generic algorithm, the same problem remains open for the
(k, `, p, q)-clustering problem:

Open Problem 6.2.2 Does there exist an approximation algorithm for the (k, `, p, q)-mean
problem with running time sub-exponential in k?

We also studied the problem of computing ε-coresets for the (k, `)-median problem. Thereby, we
proved that sub-linear size ε-coresets exist for this problem and also developed an algorithm that
computes these coresets. However, our approach does not work for the (k, `, p, q)-mean problem.
Partly, this is due to the non-metric properties of the dynamic time warping distance. In detail,
our sensitivity bound relies on the triangle inequality, which does not hold for the dynamic time
warping distance, only a weak variant does. It is plausible that a suitable sensitivity bound can
be derived using the weak triangle inequality of DTW, but still, to the best of our knowledge the
VC dimension of metric balls under the dynamic time warping distance is unknown, which is
another missing ingredient. The following problem remains open:

Open Problem 6.2.3 Do there exist sub-linear size ε-coresets for the (k, `, p, q)-mean problem
defined over any metric space?

Another open problem concerns again the (k, `)-median problem. Here, we could only use our
ε-coresets to improve a (1, `)-median algorithm due to the fact that our (k, `)-median algorithm
recursively calls itself on subsets of the input. To improve this algorithm we would need an
ε-coreset for any subset of the input, which is clearly prohibitive.

Open Problem 6.2.4 Can ε-coresets be used to obtain, together with another algorithm, an
approximation algorithm for the (k, `)-median problem that improves upon the running times of
the known approximation algorithms?

6.3 Dimension and Complexity Reduction

In Chapter 5 we studied dimension reduction and complexity reduction for polygonal curves
that preserve the Fréchet distance. We showed that a straight-forward application of a Johnson-
Lindenstrauss embedding to the vertices of polygonal curves nearly (up to a possible additive
error, which depends on the maximum length of an edge of an involved curve) yields a (1 + ε)-
embedding with respect to the Fréchet distance. On real world data, however, this additive error
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is not present, while it is certainly possible in theory. We think that this may be explained by
the work of Magen [190, 191], who showed that a slight increase (by a small constant factor) of
the target dimension leads to a preservation of the heights and areas of all triangles determined
by three points. In this sense, we think that a Johnson-Lindenstrauss embedding preserves with
good probability the vertex and edge events determining the Fréchet distance (see Section 2.7.2).
It is not clear though what happens to the monotonicity events. We think that these events do
only infrequently appear in real world data, which may explain the absence of the additive error
in our experiments. The following problem remains open:

Open Problem 6.3.1 Is there an upper bound on the target dimension of a Johnson-Lindenstrauss
embedding applied on the vertices of a given set of polygonal curves, such that the Fréchet distances
among the curves are guaranteed to be preserved up to a multiplicative of (1± ε)?

Finally, by means of communication complexity we have shown that one can not deterministically
reduce the complexity of a given polygonal curve and recover a constant factor approximation to
the Fréchet distance to any other polygonal curve. For randomized complexity reduction though,
we could only rule out (1 + ε)-approximation, for ε ∈ [0,

√
2 − 1]. In [47], the authors state

that Bringmann obtained a sketching protocol for the Fréchet distance achieving approximation.
Unfortunately, this work is not published, therefore, the following problem remains open:

Open Problem 6.3.2 Does there exist an (efficient) protocol for randomized sketching of the
Fréchet distance of polygonal curves?
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