
ADVANCED METHODS FOR HARDWARE
REVERSE ENGINEERING

DISSERTATION

zur Erlangung des Grades eines Doktor-Ingenieurs
der Fakultät für Elektrotechnik und Informationstechnik

an der Ruhr-Universität Bochum

by Christian Kison
Bochum, Mai 2018

Copyright c© 2018 by Christian Kison. All rights reserved.
Printed in Germany.

To my beloved family.

Christian Kison
Place of birth: Soltau, Germany
Author's contact information:

Christian.Kison@rub.de

www.rub.de

Thesis Advisor: Prof. Dr.-Ing. Christof Paar
Ruhr-Universität Bochum, Germany

Secondary Referee: Prof. Dr. Jean-Pierre Seifert
Technische Universität Berlin, Germany

Thesis submitted: 30.05.2018, 2018
Thesis defense: 10.07.2018, 2018
Last revision: July 5, 2019

v

vi

Everything not saved will be lost.
�Nintendo "Quit Screen" message

vii

viii

Abstract

In daily life, it has become impossible to avoid electronic systems in our surroundings. We
encounter them daily either in direct form, such as a Personal Computer (PC) and a laptop,
or indirectly as part of an embedded system, such as mobile phones and key locking systems.
In our modern world, we can use the electronics in our everyday activities to communicate our
thoughts, ideas, and feelings over digital channels and subconsciously in routine work. They all
have the common goal of creating a more comfortable life for us. Accordingly, these technological
advancements and innovations leave a substantial user-speci�c digital footprint that holds daily
routine and personal information that requires protection.
Consequently, innovations come with a risk if immature designed cryptographic systems are

applied. We could leak con�dential data, industrial expertise, or military insights. These risks
become threats in the presence of malicious adversaries that try to exploit or even create sys-
tem weaknesses for personal gains. Attackers can bypass embedded system security or create
security vulnerabilities at the very root by altering any core Integrated Circuit (IC) component.
For example, they could modify the circuitry during the design or fabrication. Malicious circu-
ity, known as hardware Trojans, or vulnerability discovery can invalidate sophisticated security
measure or deny the IC's service. They pose a major threat to today's military systems, �nan-
cial infrastructures, transportation security, and safety of household appliances. Even though
advanced countermeasures against hardware Trojan insertion by an untrusted o�shore fab exist
(e.g., split manufacturing, Trojan-aware hardware design techniques), they are not a panacea
since they might be circumvented. Thus, detection of inserted hardware Trojans is the only
reliable mechanism to witness malicious circuitry. Since many resources are required to analyze
and detect hardware Trojans in manufactured ICs (by using visual inspection), it is believed that
only few institutions can actually address such concerns. This limits sophisticated institutions to
perform further threat assessements of advanced hardware trojans e.g physical parasitic Trojans.

The focus of this thesis is to enhance the Hardware Reverse Engineering process for the sci-
enti�c community and tackle the existing prejudice that invasive hardware reverse engineering
is expansive and is only possible within wealthy institutions. We ease the deprocessing that is
necessary for hardware reverse engineering that enables us to carry out more hardware security
audits. Furthermore, we want to show additional steps for to detect advanced parasitic hardware
Trojans that are hard to detect with known academic techniques.

The �rst project, Security Implications of Voltage Contrast, introduces a new Region of In-
terest (ROI) detection method with the Scanning Electron Microscope (SEM) in a Voltage
Contrast (VC) analysis. This technique allows us to gain valuable knowledge about the under-
lying hardware in a frontside and backside attack, which is bene�cial for the hardware reverse
engineering. Furthermore, we use the VC analysis in a new side channel attack for key leak-
age that designers and manufacturers must consider for future hardware protection. We use

ix

Abstract

an XMEGA32A4U as our Device Under Test (DUT). The second project covers Security Im-
plications of Intentional Crosstalk and evaluates the security of a new parametric Trojan, the
crosstalk Trojan. In a proof of concept, we design an intentional crosstalk on a publicly available
AES core that triggers secret key leakage and in the fully-�edged OR1200 processor to lever-
age user privileges. We discover that current hardware reverse engineering cannot cover this
kind of malicious circuitry and extend the known process to mitigate the former. In the third
project, Hardware Reverse Engineering of complex CPU-Microcode we target a modern fully
�edged AMD K8 CPU to reverse engineer the microcode and extract the microcode ROM. In
this thesis the focus is set on the microcode extraction that allows to gain knowledge of the mi-
crocode engine. We reveal the complex, highly optimized ROM architecture of a sophisticated,
optimized CPU and use the knowledge gained to construct our own microcode updates.

The results of this project shows that we are able to gain valuable knowledge of even com-
plex CPU internals and proprietary designs with common reverse engineering equipment. Fur-
thermore, hardware reverse engineering can be extended to ease the planar deprocessing to a
signi�cantly smaller ROI while gaining valuable knowledge for any reverse engineering. Thus,
much e�ort can be eliminated when using further techniques e. g., from the Failure Analysis (FA)
community as support. Furthermore, we address the problem of parametric hardware Trojan
detection and demonstrate a mitigation of the crosstalk Trojan that was introduced.

x

Abstract

Keywords

Hardware Reverse-Engineering, Side-Channel, Physical Attack, Invasive Attacks, Hardware Tro-
jans.

xi

xii

Kurzfassung

Fortgeschrittene Methoden für Hardware Reverse Engineering

In unserem täglichen Leben ist es unmöglich, den Umgang mit elektronische Systeme in unserer
Umgebung zu vermeiden. Wir begegnen ihnen täglich entweder in direkter Form als PC und
Laptop oder indirekt als Teil eines eingebetteten Systeme, wie zum Beispiel Mobiltelefonen und
digitale Schlösser. Wir nutzen sie in unserem Alltag um unsere Gedanken, Ideen und Gefühlen
über digitale Kanäle auszutauschen. Sie alle haben das gemeinsame Ziel, uns ein komfortableres
Leben zu ermöglichen. Dementsprechend hinterlassen all diese Technologien und Innovationen
einen digitalen Fingerabdruck unseres Alltages und unserer Person, der abgesichert sein muss.
Folglich bringen diese technologischen Fortschritte und Innovationen leider oft auch Sicher-

heitsrisiken mit sich, wenn unausgereifte kryptogra�sche System zum Einsatz kommen. Wir
könnten geheime Informationen, industrielle Geheimnisse oder militärsiche Vorgänge unabsicht-
lich verraten. Diese Risikien werden zu Bedrohungen, wenn Angreifer mit böswilligen Absichten
anwesend sind, die Sicherheitsmechanismen eingebetteter Systeme direkt an der Wurzel aushe-
beln, indem sie auf unterster Ebene Chip-Komponenten ändern und zum Beispiel Integrierte
Schaltungen während des Entwurfs und der Fertigung modi�zieren. Böswillige Schaltungen, die
auch als "Hardware-Trojaner"bezeichnet werden, können hochentwickelte Sicherheitsmaÿnah-
men ungültig machen oder notwendige Dienste behindern. Sie stellen eine groÿe Bedrohung für
heutige militärische Systeme, die �nanzielle Infrastruktur, die Transportsicherheit, sowie Haus-
haltsgeräte dar. Obwohl fortgeschrittene Gegenmaÿnahmen gegen hardware Trojaner (Split-
Manufacturing, Trojaner-bewusste Design Techniken) existieren, sind diese kein Allheimittel da
diese umgangen werden könnten. Damit bleibt nur die Detektion von ggf. eingesetzten Hard-
ware Trojanern, durch visuelle Inspektion als verlässlicher Erkennungsmechanismus. Da für die
Analyse und Erkennung von Hardware-Trojanern in Endprodukten (durch visuelle Inspektion)
viele Investitionen und Ressourcen benötigt werden, glaubt man, dass nur wenige Institutionen
solche Probleme lösen können.Folglich können nur wenige Institutuionen eine Gefahrenabschä-
tung von Hardware Trojanern durchführen, besonders für weiterführende hardware Trojaner,
beispielsweise parasitäre hardware Trojaner.

Der Fokus dieser Arbeit liegt auf der Verbesserung des Hardware Reverse Engineering Pro-
zesses bei der Analyse von Systemen mit komplexen kleinen Hardwarestrukturen für die wissen-
schalftliche Gemeinschaft. Wir erleichtern die Deprozessierung der Hardware, welche für Hard-
ware Reverse Engineering generell benötigt wird. Auÿerdem zeigen wir zusätzliche erforderliche
Schritte um fortgeschrittene parasitäre Trojaner erkennen zu können.
Das erste Projekt, Sicherheitsimplikationen von Spannungskontrast, zeigt eine neue Erken-

nungsmethode, mit der ein kleiner interessanter Bereich mithilfe des Rasterelektronenmikroskop
in einer Spannungskontrast-Analyse identi�ziert werden kann. Wir verwenden eine Spannungs-
kontrast-Analyse in einem neuen Seitenkanalangri�, die den geheimen Schlüssel ermittelt. Gleich-

xiii

Kurzfassung

zeitig ermöglicht sie durch Vorder- und Rückseiten-Angri�en wertvolle Erkenntnisse über die zu-
grunde liegende Hardware zu gewinnen. Der XMEGA32A4U ist der hierbei eingesetzte Versuch-
schip. Das zweite Projekt behandelt Sicherheitsimplikationen beabsichtigter kapazitiver Über-
sprecher und untersucht einen neuen parametrischen Trojaner, den Crosstalk-Trojaner. In einem
Proof of Concept konzipieren wir ein beabsichtigtes Übersprechen auf einer internen Leiterbahn
in einem ö�entlich verfügbaren AES-Modul, in welchem der Trojaner einen geheimen Schlüs-
sel o�enbart. In einem weiteren Versuch mit einem modernen vollwertigen OR1200-Prozessor
erhöht er bei gezielter Auslösung die Rechte eines Nutzers auf Adminrechte. Wir zeigen, dass
der derzeitige Hardware-Reverse-Engineering Vorgang diese Art bösartiger Schaltungen nicht
abdeckt, und erläutern die nötigen Erweiterungen für den bisher bekannten Prozess. Im drit-
ten Projekt, Hardware Reverse Engineering eines komplexen CPU-Microcodes, haben wir eine
moderne, vollwertige AMD K8-CPU untersucht, um den darauf verwendeten Mikrocode zu er-
mitteln und den Mikrocode-Speicher zu extrahieren. Wir zeigen die komplexe, hochoptimierte
ROM-Architektur einer vollwertigen kommerziellen CPU und nutzen das gewonnene Wissen,
um eigene Microcode-Updates zu erzeugen.

Die Ergebnisse der Projekte zeigen, dass auch moderne, komplexe CPU-Interna und proprie-
täre Designs erfolgreich analysiert werden können. Der Hardware Reverse Engineering Prozess
kann erweitert werden, um die planare Verarbeitung auf eine signi�kant kleinere Regionen zu
begrenzen, was den Vorgang erleichtert und gleichzeitig ermöglicht, wertvolles nützliches Wissen
für den Reverse-Engineer zu gewinnen. Wir zeigen, dass viel Aufwand erspart werden kann, wenn
weitere unterstützende Techniken aus der Failure Analysis verwendet werden. Darüber hinaus
befassen wir uns mit dem Problem der Erkennung von parametrischen Hardware-Trojanern und
demonstrieren eine Abschwächung des eingeführten Crosstalk-Trojaners indem wir den Stand
der Technik des Hardware Reverse Engineerings erweitern.

xiv

Kurzfassung

Schlagworte

Hardware Reverse-Engineering, Seitenkanalangri�e, Physikalische Angri�e, Invasive Angri�e,
Hardware Trojaner

xv

xvi

Acknowledgements

This thesis is the result of the last four years, which I spent at the Chair for Embedded Security
at the Ruhr-University Bochum and the Bundeskriminalamt in Wiesbaden. I've visited confer-
ences, workshops and had hackathon-like meetings all over the world, meeting people with the
same interests which were often also their hobbies. In the last four years, I traveled in more-
or-less regular intervals between Wiesbaden and Bochum, balancing my work life, and social
life with sports and family visits �in the North�, as often as possible. Wherever I was headed I
felt like having a second, third or even temporary fourth home. It was a fun time of meeting
and working with people, having a slightly di�erent mindset compared to students in the north,
where i am from. Here, I would like to express my gratitude and thank those, who made all of
this possible and enjoyable.

First and foremost, I would like to thank my family for all of the support throughout the years.
I know that I can always count on them and ask for their support and help, being a safe-net
and backbone. Thank you for all your support, faith, love and the courage to challenge myself
in such a remote place. In Wiesbaden, I would like to thank my friend and colleague Jürgen
Frinken, who fought the BKAs bureaucratic hurdles with me. Thank you for introducing me to
this topic, the inspiring work and the experience throughout the years. Back in Bochum, I would
like to thank my �atmates Benjamin, Phillip and Marc for the great time we had. Knowing
Marc back from the days in Brunswick, we �rst joked on taking this path and now �nished it.
I have to admit that it felt great beating him constantly (even drunken) in Mario Kart.

Coming back to academia, I am very grateful to my supervisor, Christof Paar. Aside from
the scienti�c guidance and the helpful advises, you always managed to motivate me. I am very
grateful for the wonderful working atmosphere at our chair and want to thank my colleagues
and friends. Special thanks go out to my escape room mates Basti and Max for challenging
every room record with me and Christian Zenger for the �freibeuter� evenings.

Furthermore, I would like to thank Johann Machnik, Gerhard Wagner and my colleagues at
KT52 for being helpful with their vast experience and knowledge whenever I needed an advice.
Also thanks to the BKA badminton team, the MTV1817 volleyball team and the RUB Europa-
haus for a good counterbalance to my work life.

I would also like to thank further co-authors (in alphabetic order) for the joint research work:
Gunnar Alendal, Omar A. Awad, Georg G. Becker, Malte Elson, Robert Gawlik, Thorsten
Holz, Nikol Rummel and Sebastian Wallat. A very big �thank you� goes to those (un)lucky
enough to proof-read my thesis in the various stages of writing: Jürgen Frinken, Erik Krupicka,
Daniel Kison, Marius Eggert and Dennis Grubert. Last but not least, I want to thank our team

xvii

Acknowledgements

assistant, Irmgard Kühn, who manages so many of the administrative tasks, keeps it o� our
backs, and is in general great, friendly person to talk to.

xviii

Table of Contents

Imprint . v
Preface . vii
Abstract . ix
Kurzfassung . xiii
Acknowledgements . xvii

I Preliminaries 1

1 Introduction 3

2 State-of-the-Art Hardware Reverse Engineering 11

2.1 PCB Reverse Engineering . 11
2.2 Chip-level Reverse Engineering . 12

2.2.1 Depackaging and Physical Preprocessing 12
2.2.2 Software-based Post-processing. 17

2.3 Gate-level Netlist Reverse Engineering . 18

II Security Implications of Voltage Contrast and Intentional Interconnect
Crosstalk 19

3 Voltage Contrast Side Channel Analysis 21

3.1 Introduction . 21
3.2 Related Work . 22
3.3 Background . 24

3.3.1 Voltage Contrast . 24
3.3.2 Static Voltage Contrast . 24
3.3.3 Dynamic Voltage Contrast . 25

3.4 Voltage Contrast Analysis . 27
3.5 Voltage Contrast Side Channel Analysis (VCSCA) 29

3.5.1 Obtaining Voltage Contrast Traces . 29
3.5.2 Locating AES Bit wires in a VCSCA . 30
3.5.3 Extracting additional netlist information 34
3.5.4 Template Attack with VCSCA . 35
3.5.5 Simple VCSCA . 36

xix

Table of Contents

3.6 Backside Voltage Contrast Analysis . 37
3.6.1 ROI identi�cation . 38
3.6.2 Preparation . 38
3.6.3 Backside Traces . 39

3.7 Discussion . 39
3.8 Conclusion . 41

4 Security Implications of Intentional Capacitive Crosstalk 43
4.1 Introduction . 43
4.2 Background and Related Work . 45

4.2.1 Hardware Trojans . 45
4.2.2 Chip-level Hardware Reverse Engineering 45
4.2.3 Threat Model . 46

4.3 Crosstalk Trojan Design Methodology . 46
4.3.1 Capacitive Crosstalk . 46
4.3.2 Design Methodology . 49

4.4 Case Study I: Cryptographic Designs . 51
4.4.1 Crosstalk Trojan Design . 52
4.4.2 Crosstalk Trojan Implementation . 53

4.5 Case Study II: OpenRISC 1200 . 54
4.5.1 Crosstalk Trojan Design . 55
4.5.2 Crosstalk Trojan Implementation . 56

4.6 Mitigating the Risk of Parasitic Trojans . 57
4.6.1 Parametric Crosstalk Trojan Detection . 59
4.6.2 On Sophisticated Parasitic Trojans . 60

4.7 Discussion . 60
4.8 Conclusion . 62

III Real-World SoC Embedded Security Analysis 63

5 Microcode Mask ROM Extraction from a modern CPU 65
5.1 Introduction . 66
5.2 Background and Related Work . 68

5.2.1 Microcode Background . 68
5.2.2 Related Work . 68
5.2.3 Mask Read-Only Memory (ROM) Readout 69

5.3 Reverse Engineering Microcode . 70
5.3.1 AMD K8 and K10 . 70
5.3.2 Update Mechanism . 71
5.3.3 Framework/Low-Noise Environment . 72

5.4 Hardware Reverse Engineering of Microcode ROM 73
5.4.1 Microcode masked ROM Overview . 73
5.4.2 ROM structure and Memory Identi�cation 74
5.4.3 ROM Acquisition . 75

xx

Table of Contents

5.4.4 Microcode Extraction . 78
5.5 Physical Mapping . 79

5.5.1 Microcode Emulation . 80
5.5.2 Physical Ordering . 80

5.6 Conclusion . 82

6 Conclusion and Future Work 83

IV Appendix 85

A Voltage Contrast Side Channel Analysis Appendix 87
A.1 Additional Figures . 87

B Security Implications of Intentional Capacitive Crosstalk Appendix 89
B.1 Case Study: Cryptographic Designs . 89
B.2 Case Study: CPUs . 89

C Microcode ROM 91
C.1 NOR ROM contact-layer . 91
C.2 Microcode ROM FIB Images . 91

Bibliography 91

List of Abbreviations 105

List of Figures 107

List of Tables 112

List of Algorithms 113

About the Author 117

Publications 119

Conferences and Workshops 121

xxi

xxii

Part I

Preliminaries

1

Chapter 1

Introduction

In our daily life, it has become impossible to avoid electronic systems in our surroundings. We
encounter them in the direct form, such as a PC and laptop or indirectly, as part of an embedded
system, such as mobile phones and key locking systems with the common goal to create a more
comfortable life. We use them in our everyday activities to communicate our thoughts, ideas,
and feelings over digital channels or subconsciously in routine work.

With Home automation, we allow digital systems to control one of our most important and
intimate zones. They can observe the house's inside temperature, open windows, and stove.
They can even automate daily tasks, such as starting the heater, opening rolls or the door
without being physically near the house.

Sensors and actors in the car environment are responsible for our entertainment and safety
while some applications allow piloting on the driveway. They have become inevitable in today's
fuel usage optimization and especially in critical safety applications, ranging from airbag control
to smart break assistance in pedestrian protection. They can even make ethical decisions when
choosing crash prevention courses.

Safety critical applications also appear in other �elds, such as health care, aerospace, and
industry applications, surveying potential dangers e. g., in hazardous environments. Even non-
economic areas, like the military, space exploration, and political parties depend on electrical
systems, such as digitally controlled military equipment and poll systems. They are increasingly
accepted in a number of countries. These systems often enjoy such high levels of trust that they
have become a pillar of our society.

Figure 1.1: Multiple packaged micrcontroller ICs(left) and a depackaged IC(right).

3

Chapter 1 Introduction

The core of almost any embedded and digital system is an IC or a more advanced Central
Processing Unit (CPU). Some exemplary microcontrollers ICs are shown in Figure 1.1. Depend-
ing on their applications, we have systems with varying complexity. While small power-saving
Microcontroller (uC) can be used in small home automation projects, other more complex sys-
tems, such as modern cars, have more than 100 controllers. Computationally expensive ICs
like CPUs and Graphics Processing Units (GPUs) are used in servers and desktop machines.
Between them reside the embedded systems with a �uid transition on both sides. With today's'
smartphone calculating powers, it has become hard to count them as a part of an embedded
system or a fully hand-held desktop machine. Cars have also become increasingly powerful
with complex automatic pilot/driving applications. Even Application Speci�c Integrated Cir-
cuits (ASICs) as dedicated hardware chips for one speci�c task, containing a static circuit, are
included.
The increase in computational power has allowed arti�cial intelligence with neuronal networks

to reemerge, bene�ting from dedicated ASICs and complete human tasks in fascinating ways.
Various scienti�c �elds, such as biology, medicine, and computer science apply specialized neu-
ronal networks in their research. Another miscellaneous application, GO, known as the last
board game with a human in the lead, has been conquered with neuronal networks running
on Tensor Processing Unit (TPU) ASICs. An ever-increasing demand for new IC designs and
solutions exists.

IC Design High-volume IC production is based on a vast, globally distributed network of
designers, vendors, and fabrications. Designers and vendors are economically driven to opti-
mize their design and use the latest fab while the fab pushes to ever smaller technology sizes.
Starting with Moore's law from the 1970s, it was estimated that Complementary Metal Oxide
Semiconductor (CMOS) technology size shrinks by half every 18 months. Hereby, the width of
the transistor gate is the naming factor of the technology node, even though in modern tech-
nologies, this is not always true. In fact, in the 14 nm technology size introduced by Intel in
2017, not a single element is close to the size of 14 nm. This might be an indicator that Moore's
law might no longer hold true. Nevertheless, the industry continues the naming convention of
the technology (half-)nodes.
The IC industry earned 412.2 billion USD in the year 2017. International Roadmap For

Devices And Systems (IRDS)'s estimations for the �rst ICs with 7 nm technology are expected
in 2019, while 5 nm is expected to be produced in the year 2021. Each shrinkage introduces
new problems and further requirements on the purity of the materials. New equipment requires
constant parameter �ne-tuning while maintenance is enough to reset all e�orts. The requirements
for further technology nodes can be illustrated with the actual size under 10nm: this gate width
is equivalent to less than 100 atom layers. Small impurities can easily result in one defective
transistor out of the billions rendering the sample useless. Any defect, such as a transistor that
does not meet speed or power constraints, results in a worse yield. Hence, new technology is only
enrolled when it results in an economic advantage. To this extent, the vendors introduce ever
more sophisticated techniques, like 3-dimensional gates (FinFET), Silicon-on-Insulator (SOI)
processes, hyperscaling, and UV light lithography, driving the price for a new fab to a new
height of 8.5 billion USD.
The yield of the fab is a direct factor for the IC industry's margin, causing it to become the

most important factor for the economic rentability. This sets the resources for yield improve-

4

ments as basically unlimited. To underline its importance, the IRDS even has its own yield
enhancement group, optimizing solely this �eld. The specialized process for �nding, identifying,
and preventing IC faults during the fabrication is the Failure Analysis (FA). By creating a
process of analyzing faults and �ne-tuning the fabrication, the yield has steadily improved. FA
research is presented yearly at the ISTFA1 conference.

Failure Analysis (FA) techniques are dedicated to locating and isolating the faults pro-
duced during the fabrication or further preparations. They include all production steps from a
large area fault during packaging to small cracks in the gate isolation or impurities in the wafer.
Please note that FA techniques are applied from the vendor with all the necessary information of
the layout, a debugged interface and simulations. They do not include basic design choices prior
to simulations. If the fault cannot be explained by the extended debugging interface in a chip,
�rst non-invasive techniques for a coarse ROI localization can be used, such as measuring side-
channels, like heat, photonics, electro-magnetic (EM) emanation, and power consumption. For
�ne localization advancement, more invasive techniques e. g., Laser Voltage Probing (LVP), VC,
and Atomic Force Microscopy (AFM), which exploit the physical characteristics of the CMOS
technology, are considered. Once their results are compared to simulated data from Electronic
Design Automation (EDA) tools, the ROI location can be determined with high accuracy. Some-
times, multiple techniques can be cascaded to further pinpoint the ROI.

Once the fault has been isolated, the last steps of the precise sample preparation are completed
with a Focused Ion Beam (FIB) system to determine the exact fault. The FA has the major
drawback that only a small number of samples�or even just one unique sample�exist. Depro-
cessing in a small technology size remains a challenge. Sample preparation requires expertise
and necessary equipment to reliably reveal the faults. Please note that it might be necessary to
prepare the sample for the FA technique(s) as well, without damaging the sample or excluding
other techniques with this step.
FA processes have been well studied due to ample funding, and they are powerful tools in used

to analyze the inner workings and state of the IC. They are useful to gain additional knowledge
of any IC-internals. Since this highly specialized equipment is bought by the industry, it comes
with a heavy price tag that academia is unable to spend. Furthermore, to fully utilize the FA
techniques, in-depth knowledge from the devices is mandatory. If this knowledge is not present,
the IC has to be reverse engineered.

Hardware Reverse Engineering: In general, the process of acquiring in-depth layout
and schematic information of an unknown IC and its environment is called Hardware Reverse
Engineering. It is the main focus of this thesis. In the context of an IC design supported FA, the
engineer acquires necessary details from the designer. Nevertheless, in most cases, customers
and third-parties do not have such a source of information, even though design internals of
discontinued ICs are required.
Rapid advances and innovations result in short technology life cycles for hardware and soft-

ware components. Once the hardware has a new revision, old ICs become obsolete and are
discontinued. This becomes a problem when outdated hardware components wear out and fur-
ther equipment depends on highly specialized, proprietary interfaces. They become unavailable

1International Symposium for Testing and Failure Analysis

5

Chapter 1 Introduction

for repairs or replacements since nanoscale chip repairs are generally very di�cult. In the worst
case, expensive industrial equipment, tools, and machines are on standstill due to a single defect
IC component with unknown circuitry or some valuable data persists in inaccessible memory.
Hence, the chip must be reverse engineered for reproduction or forensic analysis. Forensic ap-
plications can access lost (key-)data and determine evidence in law enforcement cases through
hardware reverse engineering.

Special ASICs Intellectual Property (IP) cores are increasingly included during the IC design
phase. They are inserted either as hard-wired or soft cores, depending on the buyers' license
and preference. Hard-wired cores are delivered as already-routed layouts, while soft cores are
placed and routed during the IC design and are usually more expensive due to their �exible
options. Depending on the license, a certain number of copies or design changes are allowed.
The hard-wired cores are usually performance-critically routed, or given unannotated to counter
overproduction and intellectual theft. The already optimized design has been researched, de-
veloped, and tested. If enough knowledge has been generated, it is patented. In the presence
of malicious competitors that try to cut their investments and illegally copy or overproduce an
already �nished design, the legitimate IP holder requires a means of control. Hence, hardware
reverse engineering can be used to analyze the suspected designs and detect IP fraud. Interest-
ingly, this shows hardware reverse engineering has two faces as it is �rst used to reverse engineer
protected IP cores, but also for detection of the former.

In the cryptographic community, the risk of proprietary 'security-by-obscurity' systems is well
known. Multiple examples from the recent past show that vendors sometimes design immature
and dangerous cryptographic systems. They risk leaking personal data, industrial expertise, and
military insights once the obscurity vanishes. Once the chip is deployed and a vulnerability is
discovered, (hardware) patches are possible (in very few cases) and might force massive hardware
rollbacks and damage the reputation. In order to protect against these risks, it is recommended
to use well-known cryptographic primitives, and vendors need to certify security-related designs.
Hardware security audits guarantee security by testing against non-invasive and semi-invasive
attacks in certi�ed laboratories. Reverse engineering can lead to the discovery of further weak-
nesses (e.g. Side-Channel Analysis (SCA) or invasive probing attacks) and improve security
certi�cates.

Security risks become threats in the presence of malicious adversaries that try to exploit or
create system weaknesses for personal gains. They can bypass embedded system security or
create vulnerabilities at the very root by altering any core IC component, e.g. modify the cir-
cuitry during design or fabrication. In the worst case, an adversary starts tampering during
the IC design phase and denies further security patches after roll-out. Malicious circuity a.k.a.
known as 'hardware Trojans' can invalidate sophisticated security measures or deny the IC's ser-
vice. Therefore, they pose a major threat to today's military systems, �nancial infrastructures,
transportation security, and household appliances [143]. Since ample resources are required to
analyze and detect hardware Trojans in manufactured ICs (by using visual inspection), only a
handful of institutions can actually address such concerns [143].
With further advances in Trojan design, only invasive hardware reverse engineering strategies

can counter such circuits, particularly when no golden model is present, or the golden model

6

has to be veri�ed [145, 143]. Nevertheless, the search for countermeasures has become of in-
creasing interest in academia. Embedded system security has become an important academic
sub-discipline with high industrial participation. In particular, they attempt to (i) �nd respec-
tive malicious circuits [26], (ii) secure the IC design [153, 52], or (iii) secure the production
chain [74, 15].

Ideally, the results of hardware reverse engineering provide a complete understanding of the
underlying IC. With modern multi-billion transistor ICs, this is an infeasible task without au-
tomatic solutions. Even considering that tedious tasks can be automated, human interactions
are required for understanding the resulting sea-of-gate. Thus, the task of hardware reverse
engineering is a dedicated, specialized task, often taking several months of work. Reverse en-
gineering only selected parts of the IC eases the process and saves resources. Once the exact
implementation of the interesting parts, such as hardware Advanced Encryption Standard (AES)
accelerator or memory encryption unit, is known, there are further non-invasive or semi-invasive
attacks possible against which the designs are not protected.

Side Channel Analysis (SCA) Non-invasive attacks are attacks that do not change or
alter the chip internally and externally. They observe the DUT during operation to attack
the implementation of an algorithm through their observed side channels. These include heat,
photonics, EM emanation, sound, and power consumption. These observations allow derivation
of internal signals and secret key material with di�erent leakage models and data hypotheses.
This highlights that any algorithm running in the IC can be attacked with side channel at-
tacks if the implementation is known and no generated on-chip randomness is used. Hence
a-priory hardware reverse engineering is mandatory for unknown proprietary algorithms before
they can be attacked with SCA. Semi-invasive die preparation improves existing side channels,
such as the EM emanation. Otherwise, it creates access to side channels, such as the photon
emission from the backside of the chip. Please note that side channels have also been used
for hardware reverse engineering in Side Channel Analysis for Reverse Engineering (SCARE)
attacks [106, 47, 60, 151, 10, 142, 68, 53, 40].

In the context of the three topics of the IC design, the failure analysis and side channel
analysis interdisciplinary topics can support the academic topic of hardware reverse engineer-
ing. Figure 1.2 shows possible intersections with highlighted topics that are related to this thesis.

Aim and contributions of the thesis: The aim of this thesis is to improve hardware
reverse engineering. The contributions of this thesis show that the current state of hardware re-
verse engineering (1) can be linked with other side-channel and failure analysis techniques. This
can be done to help the hardware reverse engineer prior to the tedious gate-level netlist reverse
engineering. It is (2) not su�cient to include advanced emerging parametric Trojans and (3)
can be extended with a proposed process-�ow to detect parametric Trojans. An overview with
contributions (1) to (3) can be seen in Figure 2.2. Finally, this work (4) shows the reverse
engineering process of an optimized mask NOR ROM in a modern, fully-�edged CPU to help
reverse engineer its microcode engine and content. To show statement (1), we introduce the
Voltage Contrast Side Channel Attack (VCSCA) that uses the VC to gain additional knowledge
of the function of wires and gates within the sea-of-gates. In order to show the statement of (2)

7

Chapter 1 Introduction

Figure 1.2: An incomplete intersection Diagram of Hardware Reverse Engineering, the Failure
Analysis coupled with the IC Design and Side Channel Attacks point out some
possible interdisciplinary topics.

and (3), this thesis presents a new parametric Trojan that is impossible to detect using state-
of-the-art hardware reverse engineering and gate-level netlist reverse engineering. In fact, it is
di�cult to see the Trojan if the reverse engineer does not know of its existence.

Please note that this thesis focuses on the hardware aspect of deprocessing and die reverse
engineering prior to the gate-level netlist. Some publications rename "hardware reverse engineer-
ing" as IC reverse engineering or silicon reverse engineering to highlight the sub-Printed Circuit
Board (PCB) reverse engineering. Algorithms and techniques for post gate-level netlist reverse
engineering have a sizeable academic community to automatically detect high-level abstractions,
but are not the main part of this thesis. Another adjoining academic �eld camou�ages gates
to increase the reversing e�ort. Some publications have been done in academia, but during the
time of this work, no real-world camou�aged gates emerged that would have an impact on the
practical current, state-of-the-art hardware reverse engineering. Hence, both academic topics
are mentioned and discussed in the respective chapters.

Structure: This thesis is divided into three parts, followed by an appendix. Part I con-
sists of the preliminaries, including this introduction and the current state of hardware reverse
engineering (Chapter 2). Part II presents the academic analysis of voltage contrast and ca-
pacitive crosstalk projects in detail. We start with a side channel attack against a real-world
XMega32A4U in Chapter 3 to obtain a full key recovery of a dedicated AES core and review
di�erent methods of how the VC can support a hardware reverse engineer in his tasks (contribu-
tion(1)). Chapter 4 includes the implementation of a new kind of parametric hardware Trojan
that exploits the capacitive crosstalk e�ect for malicious purposes (contribution (2), (3)). Chap-
ter 5 in Part III covers the hardware reverse engineering of microcode mask ROM from a real-

8

world, fully-�edged and modern CPU (contribution (4)). The thesis concludes with suggestions
for future work and closing remarks in Chapter 6.

9

10

Chapter 2

State-of-the-Art Hardware Reverse

Engineering

In this chapter, we systematically survey hardware reverse engineering. To this end, we examine
diverse methods and techniques to analyze Integrated Circuits (ICs) and Application Speci�c
Integrated Circuits (ASICs) in order to retrieve the crucial (annotated) gate-level netlists of a
hardware design in Section 2.1 and Section 2.2. The goal of the reverse engineer is to understand
(parts of) the design's inner workings in order to perform another high-level task, i.e. to detect
counterfeit products or to inject hardware Trojans. Therefore, we brie�y discuss the state of the
gate-level netlist reverse engineering (Section 2.3), which focuses on the retrieval of high-level
Register Transfer Level (RTL) information (e.g. control unit or datapath components). Please
note that the gate-level netlist can be obtained through several means in multiple real-world
scenarios, i.e.

(1) chip-level reverse engineering (see Section 2.2),

(2) bitstream reverse engineering in case of Field Programmable Gate Arrays (FPGAs),

(3) directly from the layout in case of an untrusted (o�-shore) foundry or from an Intellectual
Property (IP) provider.

Note that this model is consistent with prior research on hardware security [9, 35, 116, 26].
A survey of anti-reverse engineering techniques is out of the scope of this work, but the

interested reader is referred to [59].

2.1 PCB Reverse Engineering

The deprocessing of hardware reverse engineering starts at the Printed Circuit Board (PCB) and
package level of the piece of hardware. Firstly, the IC is removed from the PCB e. g., through
desoldering or drilling. The challenge to protect the die is becoming ever more di�cult with
reduced die size, Ball Grid Array (BGA) grid pitch, die thickness, and even under�lled �ip-chip
packages. Secondly, the mold package must be removed with wet-chemical or mechanical means.
Hereby, the die is to be protected, which often results in choosing wet-chemical depackaging, as
the die is protected by the seal-layer1 from the front side. The backside o�ers enough silicon
in bulk to withstand carefully applied depackaging processes as well. The bonding wires are
of special concern, as newer copper bondings are, compared to gold bonding wires, di�cult

1passivation, often SiO2

11

Chapter 2 State-of-the-Art Hardware Reverse Engineering

to preserve. For invasive hardware reverse engineering, the wires can be neglected once their
connectivity is known or the connectivity can be derived. Advanced techniques for �nding
bonding wire connectivity can be completed with (3D) micro-X-ray-tomography or selective
packaging delayering with a mill.

2.2 Chip-level Reverse Engineering

To learn the gate-level netlist of an ASIC post-manufacturing, chip-level reverse engineering has
to be performed when the gate-level netlist cannot be obtained through other sources. Here, the
goal is to deprocess and image the IC layers until the IC is fully digitized and interpreted as an
error-free gate-level netlist. To this end, various steps are involved: (1) depackaging and mechan-
ical preprocessing, (2) delayering and imaging, and (3) software-based post-processing [108]. An
overview can be seen in Figure 2.2. The hardware reverse engineering is coupled with the IC
design process it is supposed to reverse. Common practices (e.g. routing styles, standard cell
rows,) and optimizations(e.g. �ipped standard cell rows, . . .) have great potential to ease,
correct, and optimize steps in the hardware reverse engineering process. They are indicated
with dashed double arrows in Figure 2.2. Each step for hardware reverse engineering will be
explained in more detail in the following. The interested reader is referred to [155] for details in
the IC design process. A schematic of a stacked IC can be seen in Figure 2.1.

2.2.1 Depackaging and Physical Preprocessing

The �rst hurdle of chip-level reverse engineering is to depackage or decapsulate the molded chip
to gain access to the physical design. This process depends on the package and is done through
wet-chemical or mechanical means. In particular, the die must be protected from any harm.
Typically, wet-chemical depackaging is chosen since the die is protected by a seal-layer from the
front side (often a SiO2 passivation layer). Note that the backside usually has a silicon bulk
stabilizing the die to withstand careful depackaging processes. Additionally, bonding wires are
of special concern during any (semi-)invasive attacks while the chip remains operational.
Special packages, e.g. fully embedded ceramic packages or metal cases, might be hard to etch.

They have to be mechanically drilled with a powerful Computerized Numerical Control (CNC)
drill or by hand. Please note that Cu bondings are of special concern for future work with the IC
industry mitigating to Cu processes, for production cost reasons. After fully depackaging the die,
preparation to retrieve the physical design from Figure 2.2 is started. Prior knowledge through
Failure Analysis (FA) andVoltage Contrast Side Channel Attack (VCSCA) as introduced in
Chapter 3 are very valuable at this point.
Deprocessing. Hardware reverse engineering through visual inspection is an invasive, de-

structive process used to extract functionality information from the ICs. Therefore, IC dice are
thinned in an alternating delayering and scanning process to obtain an image of every stacked
metal and polysilicon layer.
The delayering process is a combination of wet chemical, mechanical, and plasma processes

(often summarized as Chemical Mechanical Polishing (CMP)) to optimize the planarity of the die
and the contrast for the imaging step via Scanning Electron Microscopes (SEMs)[108, 145]. In
particular, planarization of the current layer with a large surface-to-thickness ratio is challenging.

12

2.2 Chip-level Reverse Engineering

Figure 2.1: An overview of a stacked IC in a copper process. The front-end is built �rst with all
the technology cells while the back-end interconnects respective cells. The schematic
shown is a copper process with 5 metal layers and a SOI technology(see the buried
SIO2). Source in the list of Figures.

13

Chapter 2 State-of-the-Art Hardware Reverse Engineering

Figure 2.2: IC Reverse Engineering compared to the IC design process. LVS: Layout versus
Schematic; DRC: Design Rule Check. *The Placed and Routed Design (P&R Design)
includes cell instances for proprietary standard cells (for the fab) during the IC Design
process, in contrast to unannotated designs during Hardware Reverse Engineering.
Contributions of this thesis are shown in green.

14

2.2 Chip-level Reverse Engineering

Furthermore, it is very bene�cial if the locations of the Region of Interest (ROI) are known, as
the necessary planar surface is reduced signi�cantly. The reverse engineer can then focus on his
ROI while neglecting the rest of the chip [85]. These steps usually require expensive equipment
and experienced users, as the shrinking technology node makes the process of planar delayering
exponentially di�cult. The risk to destroy the ICs under investigation always remains and
requires multiple samples. The equipment resources increase with shrinking technology size,
along with the necessary imaging time, precision, alignment, and calibration needs.

The complexity of deprocessing is further increased with current material changes to decrease
costs and improve physical properties e. g., low K-materials and copper wire/via technologies.
Each IC requires slight adjustments in equipment parameters and processing duration. In the
following, we brie�y introduce possible equipment.

Mechanical Polishing/Lapping tools are mandatory to polish in a "planar" way. It is
mandatory to �x the sample on a �at surface prior to the polishing process. Two kinds of
automated polishing methods are known: (1) is the lapping with a �at lapping stone while
(2) is a very precise CNC drilling machine. Both types have adjustable spring forces used to
press the sample with de�ned forces onto the lapping substrate. Surface alignment is done
with a collimator or an accurate height measurement with a CNC-like setup. Please note that
the IC surface can initially be curved due to packaging materials creating mechanical stress.
Furthermore, as the lapping in the corners and edges is more intense (as a constant force is
applied to a smaller area), a "bullseye" e�ect easily happens. This forces a reverse engineer to
reduce the lapping time as much as possible and remove more material with other techniques.

Wet chemical processes have the major drawback of being isotropic, which can become
harmful as deprocessing requires a planar surface in contrast to isotropic etching behavior. An
example with two interconnects can be seen in Figure 2.3. Furthermore, the chemicals for etching
(mostly �uoric-acid) SiO2 are hazardous and toxic. It is not recommended to use them at all
without the necessary safety gear. There are wet chemical processes used to selectively etch
materials, such as Al and Cu. These can be used in one of the last steps, e. g., to etch Al to
highlight the underlying Ti/TiN compared to the W vias shown in the imaging.

Figure 2.3: Isotropic compared to anisotropic etching. The isotropic etch might underetch struc-
tures, decreasing the stability. Anisotropic etching can done during plasma (dry)
etching.

15

Chapter 2 State-of-the-Art Hardware Reverse Engineering

Dry/Plasma Etching is the process of etching with a plasma source, known as etch species.
It can be either charged (ions) or neutral (atoms and radicals). A signi�cant advantage to wet
etching is the "directional", anisotropic etching which is more bene�cial for planar processes.
Plasma etchers are usually cut-o� chambered machines where the Fluorine+ radicals are fewer
in numbers and exist only in a small chamber without human access during the processing. It
is well researched in the context of the IC design process. Gases can be used to etch di�erent
materials selectively[21].

Broadband Ion Beams use the same physical principles as a Focused Ion Beam (FIB).
Ions are accelerated to hit the surface of the IC at a very small angle but are not focused
on a single spot or rastered. This physically knocks out ions from the surface of the sample
in a slow process. As in the plasma process, di�erent gas combinations can be used to specify
a selectivity in the materials to be removed or speed up the process, imitating the plasma process.

Every IC has a di�erent chip manufacturing process due to cost optimizations or technol-
ogy node requirements. Therefore, di�erent conductors, semiconductors, and dielectrics must
be investigated and selectively removed without destroying the functional information of the
IC [108]. Recipes from the IC fabrication or the FA are used or at least used as a starting
point. For modern, nanoscale technologies, it is essential to use the necessary equipment to
approximate or measure remaining layer thickness. Deprocessing quality can be assessed with
invasive cross-sectioning or non-invasive optical-based thickness measurements.

Imaging In state-of-the-art reverse engineering, digitalizing and imaging is performed using
a SEM or even a more eroding FIB. Since modern technology sizes hit the di�raction limit of
optical microscopes, more advanced visualizing tools are mandatory. Such modern equipment
is costly, but it results in higher magni�cation of images. A clear brightness yielded from the
SEM images is bene�cial for post-processing as it allows us to distinguish between vias, wires,
and spin-on dielectric (SOD), see Figure 2.4. Usually, the sample has to be prepared to prevent
the accumulation of electrical charges during the imaging process. The deposition of a very thin
C surface layer through evaporation or low vacuum chambers are reasonable solutions. Further
parameters, like acceleration voltage and precise stage movement, are bene�cial for the following
stitching and imaging processes.

Figure 2.4: Example of metal 1 layer is shown. Brightness allows to distinguish between
wires(light grey), vias, and the SOD(dark areas). The brighter dots are vias be-
tween Metal 1 and Metal 2.

16

2.2 Chip-level Reverse Engineering

An in-depth understanding of the physics of the processes and the necessary equipment are
mandatory for achieving an adequate delayering quality. Basic recipes and processes are taken
from the FA community as they have similar goals when isolating faults.

2.2.2 Software-based Post-processing.

In order to generate a functional chip representation from the digitized tile images (mosaic of a
big image) of the previous step, the tile images have to be stitched and vectorized. This step
can be separated into a Back End of Line (BEOL) and a Front End of Line (FEOL) process.

Vectorization/BEOL. To vectorize the BEOL, di�erent image processing techniques have
to be used to di�erentiate lines that are wires, circles and, dots(vias), as shown in Figure 2.4.
In older process technologies, they appear due to the material mass di�erences of the aluminum
wires and the tungsten vias. This di�erence can be used to separate the vias from the wires in
a �rst step. Further geometrical constraints from the routing and placement geometries can be
applied to improve the results.

Known wire extraction is based on edge detection[90] or grid based[78]. To improve the
detection, image �lters can use common geometrical design rules for vectorization. As the
routing is commonly done in full λ steps, a constant minimal separation distance can be used
to create a Design Rule Check (DRC) grid. Matching these with the underlying image allows
for the detection and extraction of line segments. During the common routing process, two
following layers have primary routing directions with a 90-degree shift. If the Metal-2 layer is
routed horizontally, the next Metal-3 layer is routed vertically to create an orthogonal mesh,
which is helpful for automatic line detection.

Cell Matching/FEOL. As most IC are built from a standard-cell library, containing around
50-300 cells, we �rst identify standard cells, including their rotated and mirrored versions to �nd
their instances positions. Each standard cell is �rst recognized manually, and its function is re-
verse engineered once. Layers containing the active area, poly-silicon, and Metal-1 are necessary
for manual cell reverse engineering. When the cell is identi�ed, it can be automatically detected
by using the images from the FEOL(e.g. poly-Silicon and M1) through image processing. As
the (stitched) images are never free of faults, the image processing has to be robust and tol-
erant in order to recognize cell instances. Hence, pattern recognition, like template matching,
is preferable. With robust cell image �lters, the image can still be recognized with small de-
fects(scratches, dust) and small routing di�erences (cell I/O, Metal-1 routing) in the image IC
structures. Figure 2.5 shows the three standard cells that were detected.

Additionally, it is possible to automate the manual part in the FEOL recognition with Layout
Versus Schematic (LVS)-like algorithms[51]. The images are �rst vectorized as in the BEOL
process and in the following cell-parted in order to isolate single cell candidates. Then, a LVS
algorithm is compared with each possible standard cell to �nd the function of the respective cell
candidate. The authors of [51] automatically isolated and identi�ed standard cell functionality
with a database of known cell libraries. This LVS-like algorithm compares the transistors and
its connections with annotated known transistor connection networks in a database. This allows
us to identify cells, even if the cell library is from a di�erent technology size or has di�erent
bu�er strengths. Finally, with the standard cell instances in the FEOL and their connections
through the metal lines in the BEOL, the ROI is extracted as a gate-level netlist.

17

Chapter 2 State-of-the-Art Hardware Reverse Engineering

Figure 2.5: Cell Recognition of three standard cells on Metal-1. Small scratches in the bottom
part and routing optimization on Metal-1 might disturb the recognition.Not that
recognized cells are also mirrored and rotated.

2.3 Gate-level Netlist Reverse Engineering

After having speci�ed how a reverse engineer can access the gate-level netlist for ASICs designs,
we now provide an overview of publicly documented reverse engineering techniques to retrieve
high-level information (e.g. control units or hierarchy information of submodules). Please note
that gate-level netlist reversing techniques for FPGAs designs can be applied at this point as
well.
Chisholm et al. [38] presented a work�ow on how to reverse engineer module-level descrip-

tions from gate-level netlists, addressing the synergy of the human analyst's creativity and the
computer's ability to solve repetitive tasks. In a case study, Hansen et al. [71] described sev-
eral best practices for a human analyst to reverse engineer gate-level netlist. Shi et al. [127]
evaluated a technique to automatically reverse engineer a Finite State Machine (FSM) from
gate-level netlists. Meade et al. [100] extended this technique in order to retrieve the state tran-
sition function for the reverse engineered FSMs. In further work, Meade et al. [99] developed a
technique to separate control unit registers from datapath registers. In order to automatically
reverse engineer functional submodules in a larger hardware design, diverse techniques have
been developed based on Boolean function analysis [126], pattern mining of simulation traces
and model checking [92], module boundary identi�cation [135, 134], and word-level structure
identi�cation [93].
Since the functional identi�cation of subcircuits requires us to �nd the correct matching be-

tween known subcircuits and the subcircuit under inspection, a reverse engineer has to �nd the
correct input permutation. To avoid this computationally demanding task, Gascón et al. [64]
addressed this problem with a template-based solution.

18

Part II

Security Implications of Voltage

Contrast and Intentional

Interconnect Crosstalk

19

Chapter 3

Voltage Contrast Side Channel Analysis

This chapter demonstrates how the Scanning Electron Microscope (SEM) becomes a
powerful tool for Side Channel Analysis (SCA) and Hardware Reverse Engineering
through Voltage Contrast analysis. This enables an attacker to locate AES bit-wires
in the top metal layer and thus, to recover valuable netlist information. An attacker
gets a valuable entry-point to look for weaknesses or Intellectual Property (IP) in the
AES circuit. The results were published in [85] and extended by a backside approach
in Section 3.6. The publication is a joint work with Jürgen Frinken.

Contents of this Chapter

3.1 Introduction . 21

3.2 Related Work . 22

3.3 Background . 24

3.4 Voltage Contrast Analysis . 27

3.5 Voltage Contrast Side Channel Analysis (VCSCA) 29

3.6 Backside Voltage Contrast Analysis . 37

3.7 Discussion . 39

3.8 Conclusion . 41

Contribution: In the context of this project, my contribution is the initial idea,
implementation and evaluation of the given approach.

3.1 Introduction

A crucial part in hardware reverse engineering is to know the location of their ROI prior to their
delayering process. Without this knowledge, the literal search for the needle in the haystack can
become a major obstacle for the reverse engineer. ROI s are usually security-sensitive elements,
e.g., fuse bytes, cryptographic algorithms or proprietary parts of an IC [81, 130]. We may have
luck if vendors �mark� sensitive areas with a shield or we already know the basic structure from
a similar IC within the same vendor family. However, this is an exception especially in today's
multi-million gate IC s. Identifying crucial elements is often extremely di�cult.
The classical approach is a stepwise delayering down to the silicon substrate while taking

images from each layer. After assembling and overlaying the di�erent layers, a hardware reverse

21

Chapter 3 Voltage Contrast Side Channel Analysis

engineer can begin to interpret the logical cells to �nd his ROI. Even with semi-automated tools
that help to recognize standard cells of a library and wirings, we need to attend and review
the process of millions of gates to get a �awless netlist from the chip structure: There is no
feedback mechanism that alerts of the reverse engineer about mistakes and even the slightest
mistake in the image acquisition might lead to faulty connections and a completely di�erent
circuit behavior. To make things worse, it is di�cult to completely planarize the die with low to
medium prized equipment, resulting in bad layer images and therefore worse recognition rates
with the current chip-area-to-layer-thickness ratio.
Pinpointing the delayering process to a ROI reduces the costs and processing time when the

user can focus on keeping the structure of the ROI still recognizable, neglecting the rest of
the chip. Another reason is to achieve better signal-to-noise-ratio with located EM-traces or
make other (fault-)attacks possible [120, 121]. Sometimes this might even enable more advanced
analysis like inter-gate side channel leakages as discussed in [137].

3.2 Related Work

In order to �nd the hot spot or ROI, multiple more practical approaches emerged, often in
combination with use of a Side Channel (SC). The EM near-�eld cartography, thermal analysis
and optical photon emission are the three most noteworthy examples [120, 121, 113, 19, 32, 58,
129]. All techniques are semi-invasive attacks[131]. They depackage the IC to strengthen existing
side channels like EM emanation (to make pinpointed small loop measurements possible) and to
gain access to additional SC s like photon emission and heat distribution. The mentioned semi-
invasive techniques are possible from the top- and backside of the chip, whereby the backside
approach usually needs additional equipment for milling and thinning the silicon bulk [58].
To be precise enough for locating the smallest activity areas, spatial located EM emanation

cartography takes several hours. It �nds multiple high Signal-to-Noise Ratio (SNR) spots along
the power distribution, as the radiation is directly related to the power consumption. Further-
more EM emanation often results in better SNR from the frontside, as the probe can be moved
closer to the emanation source [120, 121, 113]. Nevertheless this approach allows to �nd a ROI
within µm range. Thus, we can can skip most parts of the chip and concentrate on the ROI.
The drawback for EM near-�eld cartography is the long measurement time to scan the whole
die surface and may show multiple hot spots.

In the case of the photon emission, the price of the equipment maps directly onto the measur-
ing time and quality: An IR-range sensitive camera with good Quantum E�ciency (QE) and
low dark-current costs several 10k USD. Transistors have a probability to emit a photon during
a state transition which passes through the thinned silicon backside. A �rst mandatory prepara-
tion is the thinning of the silicon bulk on the backside. The basic idea is to capture the emitted
photons and visualize them in a highly spatial resolute setup. This becomes a major obstacle
for modern CMOS processes, due to the di�raction limit of IR light. Additional preparation
steps after the thinning, like a Numerical Aperture Increasing Lens (NAIL) , might become nec-
essary [144]. This extends the preparation time and bears the risk of breaking the chip. After
a camera-dependent image integration time, we can �nd the activity of individual transistors
during the loop execution of one code fragment [129]. By increasing the supply voltage during
the interesting clock cycles, the authors enhance the IR photon emission probability to highlight

22

3.2 Related Work

corresponding areas. Using this technique the authors of [124] successfully extracted an AES
key by observing the memory access pattern of the subbytes routine. Meanwhile [58] pinpoints
a Picosecond Imaging Circuit Analysis (PICA) attack on single transistors to �nd xor values.
Finding the respective hot spots and transistors is done with an optical long time image inte-
gration like in [124, 129]. Once a ROI has been determined, PICA can be used to see transistor
switches in high-frequency ICs.

Surface Liquid Crystal (LC) is a wide spread analysis method based on the thermal radiation
for failure analysis in the industry. It is well established and can be exploited for ROI localisa-
tion from the attacker's point of view. LC s allow spatial resolutions of 4 µm and better[19].
For modern CMOS processes this approach has equal spatial limitations, due to the IR light
di�raction limit. Therefore new approaches like the Fluorescent Microthermal Imaging (FMI)
emerged which try to �uoresce light with shorter wavelength [19]. Furthermore did the authors
of [46] try to extend the thermal hot spot detection to the IC backside. Depending on the
camera, are thermal and photon emission failure analysis methods quali�ed to �nd the ROIs.
Both approaches are usually done over multiple program executions to heat-up or gather enough
emitted photons in a normal working chip. These failure analysis methods face big challenges
and di�culties with the upcoming CMOS sizes and decreasing power supply voltages. The mod-
ern CMOS size is below the di�raction limit of IR light and the decreasing power supply voltage
drops the probability of photons being emitted and reduce the produced heat due to smaller
currents.

This chapter uses the SEM as advanced inspection tool. Access to a suitable SEM should
not be problematic as bigger institutes and universities with mid-class laboratories usually own
one, due to their distribution in many academic �elds. Companies and private persons can �nd
second hand SEM s for under 10k EUR or rent it on a hourly basis. A well-funded hardware
reverse engineer usually has access to a SEM for taking layer images. Once the setup is built
and the Device Under Test (DUT) is vulnerable to our approach, we are able identify the ROI
faster as the EM cartography and have less sample preparation compared to the photon emission
analysis. Furthermore we don't require to run the chip multiple times and have better spatial
resolution than thermal analysis methods.
Our contribution in this chapter is the following:

(1) We demonstrate an approach to pinpoint the AES location within the XMEGA micropro-
cessor with Voltage Contrast (VC) analysis.

(2) We exploit the VC as a SC and perform a full key-recovery in a template-attack and a
Simple Side Channel Analysis (SSCA).

(3) Using the VC images reveals additional information of the AES circuit useful for a reverse
engineer. Furthermore are we showing the potential of VC SC in a Side Channel Analysis
for Reverse Engineering (SCARE) approach to �nd additional circuit netlist information.

(4) The results show a possibility to counter hardware-obfuscation and hardware protection
and to verify parts of an extracted netlist.

23

Chapter 3 Voltage Contrast Side Channel Analysis

The rest of this section is structured as follows: Section 3.3.1 describes the di�erent VC
analysis methods and their physical understanding. Section 3.4 locates the AES circuit with the
common Dynamic Voltage Contrast (DVC) analysis. Section 3.5 is the main contribution that
gives a Proof of Concept (POC) for the VCSCA. The DUT is a widespread Atmel XMEGA
microcontroller. We show a template-attack and a SSCA approach to recover the full AES key.
Section 3.8 concludes this work.

3.3 Background

In this section, we will introduce the required background information and reference to more
detailed descriptions. We start with the voltage contrast in general and continue with the
dynamic voltage contrast and Capacitive Coupled Voltage Contrast (CCVC), respectively.

3.3.1 Voltage Contrast

The SEM has become a powerful diagnostic tool during the last 60 years, used in many ap-
plications for IC inspection and failure analysis. When an electron beam-gun �res (primary)
electrons on a scanning surface, secondary electrons are hit out of a solid specimen. These emit-
ted secondary electrons have usually low energy (0 - 50 eV), which makes them easily detectable
by using a positive electrical-�eld metal-plate as a detector. Out of the SEM images are the
secondary electron images the most widely used, due to their ease of production and similarity
to light microscope with improved depth of �eld [24].
During VC failure analysis, the natural negative charge of the electrons is used to view di�erent

voltage potentials, with the help of their electrical �eld and their direct in�uence on secondary
electrons. Note that VC also works with positive ions in a FIB since only the di�erence in charge
is important. Using VC with positive ions from a FIB achieves better results1 and the voltage
interpretation of brightness and darkness is reversed compared to the SEM VC [23, 24, 28]. VC
analysis needs the chip to be depackaged to gain access to the die surface.
VC analysis can be classi�ed into two categories, which are on the one hand the static VC

methods, including Passive Voltage Contrast (PVC) and Active Voltage Contrast (AVC) and on
the other hand the Dynamic Voltage Contrast (DVC).

3.3.2 Static Voltage Contrast

The static VC is performed on chips with a removed passivation layer or even partly delayered
chips. Static VC is split in the two sub-techniques PVC and AVC. The PVC does not connect
the DUT to any signals or voltages and thereby shows the charging up of �oating gates and
capacitances. It is often used to �nd shorts and imperfectly connected wires and structures
during chip manufacturing. The DUT does not have to be functional anymore, allowing to take
VC images of intermediate layers. Note that is possible to create �oating structures by removing
metal layers or by wire cutting with a FIB [115]. To pinpoint shorts and badly connected wires,
the structures are split and analyzed separately by applying a voltage in the AVC.

1With individually optimized parameters

24

3.3 Background

Figure 3.1: Passive Voltage Contrast. Floatin structures charge up while grounded structures
are supplied with electrons from the GND signal.

Figure 3.1 shows the PVC. Isolated structures are charging up, due to secondary electrons be-
ing hit out of the structure. In the immediate consequence, the majority of produced secondary
electrons are prevented to reach the detector by the inverted electrical �eld. These structures ap-
pear dark in the image. Grounded structures do not appear bright, because of the high yield[115].

AVC di�ers from PVC as it applies voltages in some structures to force them to look dark or
bright in �awless structures. Is the outcome not as expected, a short or open connection can
be assumed. Knowing the detailed place-and-route of the netlist and structures is very helpful,
but not mandatory. The authors of [136] use the PVC to detect stealthy dopant-level circuits
(trojans).

3.3.3 Dynamic Voltage Contrast

DVC is performed during dynamic rather than the static operation of the DUT. In the scope
of an IC or Microcontroller (uC), the device is running normally while performing the voltage
contrast. If the device is still under the passivation layer, CCVC can be applied. CCVC exploits
the property that the voltage potentials of the top metal-wires are electrically coupled with the
covering dielectric passivation of the die, forming a capacitor. Therefore, CCVC is performed
while the passivation layer is still covering the die and the chip is still operational, or at least
voltages can be applied to top wires and structures.
When a line or wire buried under the passivation is assumed to have the voltage Up, an voltage

US is generated through capacitive e�ects. This e�ect can be described as a transfer function
US/Up, which depends on the electrical (UE) and geometrical (de, dp, W) parameters. UE and

25

Chapter 3 Voltage Contrast Side Channel Analysis

dE are the extraction grid potential and distance, while dp and W represent the buried line
depth and width, respectively[18]:

US

Up
= f(UE , dE , dp,W) (3.1)

The CCVC phenomena is made visible with a SEM through dynamic changes. Therefore the
CCVC is separated into two phases shown in Figure 3.2.

(a) Charging phase

(b) Read-out phase

Figure 3.2: Capacitive Coupled Voltage Contrast with its two phases. First charging phase
accumaltes charges. After a clock cycle the metal changed and the accumulated
charge is release when hit by an electron.

The �rst phase charges up the ICs surface with the electron-beam with location-depending
accumulated charges (due to US), coupled to the underlying electrical potentials (Up). In the

26

3.4 Voltage Contrast Analysis

second phase, the accumulated electrons are hit out as secondary electrons. Compared to the
normal structures, are more electrons detected, 'brightening' the structure. We can utilize this
phenomenon when the electrical potential of the top layers is data-dependent. Please note that
this is not always the case as modern CMOS processes route the VCC or GND signal through
the top metal layer. The data dependency leaks further information in a SC that are meant to
be kept secret. This has already been seen as a theoretical threat in [30]. We show a practical
attack and utilize the CCVC as a SC, not considered in the SC community so far2.

Furthermore we emphasize that the authors of [122, 123] show a possibility for backside CCVC
or E-beam probing (EBP). This imposes a big threat for IC vendors and designs if backside
CCVC is scalable to big areas like the shown frontside approach. Backside CCVC has the poten-
tial to become one of the most threatening SCs, as there are almost no IC backside protections in
today's IC structures. In this chapter we show a POC for the frontside CCVC that is extended
to the backside in Section 3.6. We refer to frontside CCVC throughout the rest of this chapter,
if not stated otherwise.

Note that the DUT needs to be depackaged and we require the passivation layer, which
classi�es the CCVC as a common semi-invasive approach. If the attacker is able to remove the
passivation with the DUT still operational, other DVC s are possible as well. Therefore we will
stick to the term of DVC throughout this chapter, rather than CCVC. Figure 3.2 shows the
electrical properties of the CCVC, separated in charging phase in Figure 3.2a and read-out phase
in Figure 3.2b.
We described in Section 3.3.2 the possibility to distinguish between high and low voltages on

the surface from the brightness in the SEM image. With carefully selected SEM parameters, we
can see dynamic changes during the clock transition for a short time. By optimizing the param-
eters, we were even able to observe changes in the second metal layer3, easily distinguishable as
90◦ rotated wires.

As the CCVC is built from two phases and especially the �rst phase needs some time to charge
the surface, the clock speed of the DUT has to be very slow. With an external clock, this can be
done in a trivial manner. In more complex scenarios, clock stretching [28], invasive mechanical
probing or even EM-based attacks on ring oscillators [20] could be feasible. By reducing the size
of the ROI in the SEM a clock speed of some Hz to some kHz might be possible, as only this
small region is charged and read-out. Other DVC techniques solve this problem by introducing
a pulse gate in stroboscopic SEMs [148]. Academic publications show scans within GHz clock
speed range[149], while commercial EBP products can be found with similar capabilities[123].

3.4 Voltage Contrast Analysis

In this section we describe a DVC analysis for successfully locating the AES circuit of our DUT.
The DUT is a decapsulated XMEGA32A4U, an 8-bit uC with a dedicated AES hardware unit.

2To the best of our knowledge
3layers from top to bottom

27

Chapter 3 Voltage Contrast Side Channel Analysis

The AES-128 core needs 376 clock cycles to en- or decrypt blocks of 16 bytes, with the option
to xor the result once more for di�erent AES modes [16].
The user can read the last round key from the key register. After each block encryption, the

key has to be set again. The AES hardware is driven by the peripheral clock, which can be fully
controlled externally or can be set to a multiple of the internal generated CPU clock.

Locating the AES Circuit

As a �rst test, we tried to identify the AES circuit by looping the AES encryption with unknown
data at 2 MHz, while performing a DVC in the SEM. The CPU is in sleep mode during the
encryption. The electron beam accelerating voltage is set to 1 keV and the beam scanning
time is set to repeat as fast as possible. We achieved best results with a Through the Lens
Detector (TLD). Figure 3.3 shows the result of the DVC.

(a) AES area.
(b) Zoomed-in AES area with labeled regions. Im-

age is saturated for improved visiblility.

Figure 3.3: AES located with DVC. The regions are �ickering like noise.

A high activity in the bottom right corner indicates a repetitive computation, assumed to be
the AES circuit. To verify our assumption we run a normal CPU program without using the
AES core and observed the ROI. As it did not show any activity during the veri�cation run, we
concluded that the ROI is indeed the AES.
As shown in Figure 3.3 we were already able to identify the AES circuit by simply running

the algorithm and observing the top metal layer using the SEM. We note that this step is
considerably simpler and faster compared to other approaches such as EM cartography, thermal
imaging or photon emission discussed in Section 3.2. Also, the EM trace acquisition is often
non-trivial. Subsequently, a reverse engineer can focus his attacks on the ROI.

28

3.5 Voltage Contrast Side Channel Analysis (VCSCA)

3.5 Voltage Contrast Side Channel Analysis (VCSCA)

This section is the main contribution of this chapter. We describe a Side-Channel Analysis (SCA)
with the DVC explained in Section 3.3.3. We use the VC as a side channel and perform a SCA
to retrieve additional information of the AES circuit positions. Additionally, we recover the
full AES key in 2 SCAs explained in Section 3.5.4 and Section 3.5.5. However, the attack has
a signi�cant potential as a general-purpose tool for extracting data and performing hardware
reverse engineering against unknown circuits. This tool has a big potential, even for modern
CMOS processes, if we include backside CCVC shown in [122], [123] and Section 3.6.

Before explaining the VCSCA in more detail, we want to point out, that we performed an
optional EM-based collision-attack in advance. This additional SCA was done to synchronize
the retrieved byte-order and timing information with ROI 1-3 in Figure 3.3b. This allowed us
to identify ROI 1 as the addroundkey subroutine. After this section, this information became
obsolete, as the DUT is vulnerable to the more powerful introduced VCSCA. Nevertheless, the
combination with another SCA is a general-purpose approach to further reduce the ROI, even
if the VCSCA is not applicable. We describe the setup and attack of the VCSCA in more detail
during this section.

3.5.1 Obtaining Voltage Contrast Traces

A straightforward AES encryption program for the XMEGA has been written. It receives a 16
byte key and plaintext over USART and encrypts an AES-128 data block. Just before the AES
is starting, the clock is set to react to an external pin and the main CPU is con�gured to enter
sleep-mode.

In Section 3.3.3 we explained that the accumulated charges from the charging-phase disappear
quickly after the clock transition. Hence, we have to time a single picture very accurately. To
circumvent this problem, we decided to start recording a movie using the SEM software and
cover multiple clock cycles in one recording. During the VCSCA the clock has been set to 3 Hz.
The SEM parameters are the same as described in Section 3.4. The �nal setup can be seen in
Figure 3.4.

Figure 3.4 shows the setup of the VCSCA. This rather complex setup is needed as the DVC
needs to be synchronized with the external clock. The dynamic changes appear only for a brief
moment, which led us to start recording a movie. For synchronizing the DUT clock with the
recording, an uC (3) is set up to simulate a keyboard to start the recording of video traces within
the SEM -control Software (2). The clock is set to 3 Hz as this is the optimized speed to see each
DVC change on the surface, without overlapping charging e�ects from the clock cycle before.
This can be seen in Figure 3.5. About every 4-5th frame in the recorded video is a 'clock-frame'.
They have visible DVC changes and minimal charges from the previous clock cycle. The PC
(4) is used to generate, send and validate the plaintext, key and received ciphertext. 300 video
traces with 200 frames each were acquired for the VCSCA. Each frame has the image resolution
of 1024 x 885 pixels. Plaintext and keys are chosen randomly, but are known.

29

Chapter 3 Voltage Contrast Side Channel Analysis

Figure 3.4: The setup for the VCSCA. We run the DUT within the vacuum chamber while
externally controlling the clock frequency.

3.5.2 Locating AES Bit wires in a VCSCA

In this section, we determine the Pearson correlation coe�cient between all pixels and the emu-
lated internal AES bit values. The AES is emulated in software with known key and plaintext.
Therefore we know every intermediate value but concentrate on the �rst AES round. The cor-
relation is done on every pixel in every frame extracted from the (video-)traces. Overall this
makes 1024×885×300 values for each frame and hypothesis to calculate the Pearson correlation
from.
Note that we are using the absolute bitvalue (Hamming weight) of single bits and know the

key, plaintext and respective processing order from an optional SCA collision Attack. This
reduces the computation time signi�cantly, as we know in which frames (clock cycles) the bytes
are processed. The CPU overhead for calculating the hypothesis can be neglected. This step can
further be optimized to work on some smaller regions and selective pixels if necessary. Please
note that we do not try to optimize our trace number or calculation time. Other possible
correlation-based approaches could lead to better results but are not the focus of this thesis.
The result of the di�erential VCSCA can be seen in the correlation image in Figure 3.6.
Figure 3.7 shows the correlation images of further bits after di�erent AES subroutines

(addroundkey and subbytes). Each has di�erent peak-locations, showing the position of the
processed bits. Images labeled with 'inverted' invert the sign of the Pearson correlation. Each
image cuts negative correlations to 0. With this we get two di�erent images for each bit processed
that show logically inverted signals and their locations as well. The corresponding hypothesis
and respective clock cycles are listed in the subcaption. A high correlation for addroundkey,
subbytes and the plaintext was found in respective 16 consecutive clock cycles. Interestingly
we found the plaintext bits on the very same spots as the addroundkey, indicating a common
load/store unit or bus structure within the AES.

30

3.5 Voltage Contrast Side Channel Analysis (VCSCA)

(a) frame x (b) frame x+1

(c) frame x+2 (d) frame x+3

(e) frame x+4

Figure 3.5: Consecutive frames within one trace. A clock transition takes place, while the SEM
scans the last third of frame x+3. The previous clock e�ect fades out (a)-(d). The
colors are inverted for improved visualisation.

31

Chapter 3 Voltage Contrast Side Channel Analysis

(a) highlighted bit in a VCSCA (b) target bit inverted

Figure 3.6: Results of the correlation based VCSCA of the 8th addroundkey-bit in clock cycle
42. The colors are inverted for improved visualisation.

This information immediately allows an attacker to retrieve unknown keys in a template based
VCSCA approach. This attack is done in Section 3.5.4 to recover the full AES key.

Before we introduce a template based key extraction we would like to emphasize the fact
that the correlation images provide valuable information for a reverse engineer or sophisticated
attacker. We know the location and meaning of selected wires in the highest metal layers.
This reveals the location of AES calculations on gate-level when the wires are tracked into the
FEOL(polysilicon layer). The attacker is able to interpret neighboring and connected signals
immediately. This might reveal further weaknesses or even whole Intellectual Property (IP)
cores.

Furthermore, it is also possible to apply other approaches easily, as the locations of the AES
bits in top metal layers are known. Mechanical probing or fault attacks are two examples to
retrieve or alter intermediate AES bits. Figure 3.8 shows cropped images of the 2 top metal
layers from the XMEGA microcontroller scanned with a SEM, overlayed with the extrapolated
correlation image of addroundkey bit 2. The correlation image is 50% transparent to visualize
the manual mapping process.

In Figure 3.8 we demonstrate that we are capable of identifying the tracked wires of bit 2 in the
�rst two metal layers. Continuing this, we would be able to pinpoint the location of the origin in
the polysilicon and the next 'processing steps' after the addroundkey subroutine. Nevertheless,
this is out of the scope for this speci�c attack. It is noteworthy that the two marked wires from
the top layer are connected in the second layer. This is a good indication that we hit the right
wires from our results.

32

3.5 Voltage Contrast Side Channel Analysis (VCSCA)

(a) ark bit1 (b) ark bit2

(c) inv ark bit1 (d) inv ark bit2

(e) sub bit1 (f) sub bit2

Figure 3.7: Di�erent correlation images found in clock cycle 42; addroundkey, inverted addround-
key and subbytes. The colors are inverted for improved visualisation.

33

Chapter 3 Voltage Contrast Side Channel Analysis

(a) Top metal layer

(b) Metal layer beneath the top metal layer

Figure 3.8: Marked wire of bit 2 of addroundkey in the two top layers. The black �cloud" is
the extrapolated correlation image in this ROI. The colors are inverted for improved
visualisation.

3.5.3 Extracting additional netlist information

So far we analyzed bits within the AES circuit that are supposed to be part of the AES calcu-
lation. We did not look into the possibilities of how the subbytes routine or other subroutines
are built. Therefore we provide a SCARE like approach in this section.

We applied every 2 → 1 function from the 8 addroundkey-bits possible and used the result
as a new hypothesis. Each possible 2 → 1 function is given in Table 3.1 from [68]. The results
of the 2bit-function hypotheses revealed additional circuit operations not known so far. For
example, we did �nd a correlation of a xor between Bit 3 and Bit 4 of the addroundkey bits.
This allows us to build basic netlist operations and we are able to verify an extracted netlist
(by usual means) with these �ndings or counter hardware obfuscation techniques like the one
introduced in [110]. Some hardware protection might even play in our hands by routing sensitive
wires through multiple layers, including the top metal [33].
Following this approach we are able to (partly) reverse engineer whole subroutines, without

invasive methods. This is not in the scope of this chapter and can be done in future work. This

34

3.5 Voltage Contrast Side Channel Analysis (VCSCA)

Index f(B,A) Boolean
Name

of f f(1, 1) f(1, 0) f(0, 1) f(0, 0) equation

0 0 0 0 0 0 Zero
1 0 0 0 1 B +A NOR2
2 0 0 1 0 B ·A AND2B
3 0 0 1 1 B NOTB
4 0 1 0 0 B ·A AND2A
5 0 1 0 1 A NOTA
6 0 1 1 0 B ⊕A XOR2
7 0 1 1 1 B ·A NAND2
8 1 0 0 0 B ·A AND2
9 1 0 0 1 B ⊕A XNOR2
10 1 0 1 0 A A
11 1 0 1 1 B +A OR2B
12 1 1 0 0 B B
13 1 1 0 1 B +A OR2A
14 1 1 1 0 B +A OR2
15 1 1 1 1 1 One

Table 3.1: 2→ 1 functions. The output bits are used as a hypothesis in the Pearson correlation
with intermediate AES bits. Once a high correlation is found, a respective connected
cell in the front-end can be identi�ed.

small POC shows the great potential for the VC side channel in SCARE like approaches.
In the following sections, we use the VC in more common SCAs, to recover the AES key with
our current setup. We execute a template-attack and independently another SSCA on a single
trace in a no-plaintext, no-ciphertext, and no-key attack. In both cases, we retrieve the AES
key successfully.

3.5.4 Template Attack with VCSCA

The setup for the key-recovering template attack is the same as described in Section 3.5.1, with
the di�erence of choosing a constant (assumed unknown) key for all the traces. 250 Traces are
acquired and random plaintexts are AES-128 encrypted by the DUT.
The 'templates' are the correlation images generated in Section 3.5.2. The idea is to correlate
the frames that process a speci�c byte and correlate the resulting addroundkey bit with a sin-
gle key bit hypothesis. The resulting correlation image is either the 'normal' or the 'inverted'
correlation image e.g. of bit 8 shown in Figure 3.6.

To explain the process, we give a short example of the 8th bit of byte 16 of the i-th trace
(pi_16_8). As we know the that the 16th byte is processed in the 42nd frame of each trace, we
extract this frame from every trace. Let us assume that our hypothesis of the 8th keybit of byte
16 is �1". We correlate each pixel of these frames with the addroundkey hypothesis which is
calculated (pi_16_8 xor hypothesis). This results in a correlation image that is either close to
Figure 3.6a or Figure 3.6b. If the assumption is correct, we will get a correlating image close to

35

Chapter 3 Voltage Contrast Side Channel Analysis

Figure 3.6a. Otherwise, the hypothesis is wrong and the 8th bit is �0". Repeating this process,
every keybit can be recovered. Taking 250 traces is an estimated value to make sure that the
attack succeeds, as we need to extract the right clockframes of the DVC video and to get a good
average over noisy images. We veri�ed that the attack is feasible with fewer traces.

3.5.5 Simple VCSCA

Realizing that the XMEGA reuses the same circuit for every byte sequentially, the bit locations
are the same for every round and byte within the AES. Therefore, we aim to �nd plain or
key bytes directly being loaded or processed during the AES setup. Interestingly we found the
plaintext being loaded 13 clock cycles before the addroundkey function on the same bit locations
as the addroundkey bit. This indicates a common load/store unit or a bus architecture. In this
section, we assume not knowing the key once more. Knowing that the plaintext is being processed
right before the addroundkey allows an attacker a no-plaintext, no-ciphertext and no-key SSCA
against the XMEGA AES engine. The aim of this section is, therefore, a POC of the simple
VCSCA with a single trace and 1 byte.
Section 3.5.2 already revealed the location and timing of individual addroundkey bits being

processed. These bits have a key dependence through the xor with the plaintext, which can
be read-out 13 clock cycles before. Therefore, this attack �rst recovers the plaintext bit and
secondly reads-out the processed addroundkey bit in a SSCA. The recovered bits are xored

to get the corresponding keybit as we only target the �rst round. This is repeated for 8 bits
within byte 16 in a single trace. Figure 3.9 shows the wire positions for 2 bits that we used for
recognition. The wire positions are chosen from multiple options, as they are reliable measured
by the DVC and are easily recognizable.

(a) Bit 2 (b) Bit 5

Figure 3.9: Correlation Image of keybits within clock cycle 48. The colors are inverted for
improved visualisation.

In Figure 3.10 we demonstrate the simple VCSCA based on Bit 5. Other bits can be read-out
in a similar manner.

36

3.6 Backside Voltage Contrast Analysis

(a) Clock 32 plaintext (b) Clock 45 addroundkey

Figure 3.10: Extracted states of byte 16 bit 5 within one trace. We know that bit 5 of byte 16
runs through this wire at clock cycle 32. Since the wire within the mask is bright,
the bit is set. (The colors are inverted for improved visualisation).

A direct XOR of both values, reveals the 5th keybit of byte 16. The keybit correctness was
veri�ed for every bit in Byte 16. We discovered that is not easy to �nd a trace that shows all bits
recognizable at once, as the DVC images depend on the previous top-metal layer voltage and
the exact beam position during the clock transition. We veri�ed that is is possible to acquire at
least one key-byte with one single trace. We did not look for further keybits since the recognition
was done manually. It is possible to automate this process in future work when more traces are
used to work on averaged images.

3.6 Backside Voltage Contrast Analysis

In this section, we demonstrate the capability to acquire backside VC traces. Related work
in[122] and [123] have shown that backside EBP is possible with certain preparation e�ort.
Their work is aimed at the FA community and shows the feasibility for a single location. Our
aim is to extend the preparation and show that a hardware security threat is present.
In an abstract overview, we thin the backside of a DUT after a ROI detection and read the

underlying interconnects with the VC. We try to extend the Shallow Trench Isolation (STI)
trenching to cover multiple bits at the same time. This allows to apply the introduced VCSCAs
from previous sections. To show the feasibility of such an attack, we acquire VC traces and
argue that the attack is feasible.
As we require an preparation from the FIB we �rst need to pinpoint our ROI, see Section 3.6.1.

In the following, we prepare the ROI with an CNC drill to remove the bulk silicon. Then, the
FIB is used to remove silicon in a controlled, limited area process, see Section 3.6.2. After the
preparation we obtain backside traces in Section 3.6.3. They are comparable to the frontside
Traces in Section 3.5.1 and can be used for the same approaches from Section 3.5.3, Section 3.5.4
and Section 3.5.5.

37

Chapter 3 Voltage Contrast Side Channel Analysis

3.6.1 ROI identi�cation

Several methods for ROI detection have been discussed in Section 3.2. Once the ROI is located,
we can prepare the backside of the IC with the ROI in mind. With current FIB capabilities, the
ROI can be roughly 100µm by 100 µm. Note, that the area can be extended signi�cantly with
state-of-the-art plasma FIB or similar Broad Ion Beam (BIB) machines. Here, the challenge is
to remove silicon uniformly which is the limiting factor for current FIB optics.

In the following, we can skip the process of ROI pinpointing, as we know where the AES is
located from the previous sections. Hence, we arbitrarily chose a 100µm by 100 µm area directly
underneath the AES location. The chosen ROI can be seen in Figure A.1 in Appendix A.1 .

3.6.2 Preparation

For the backside attack, we need to remove several µm silicon from the bulk (usually >150 µm)
in multiple steps. First, the chip is mechanically polished to reduce the biggest part of the Si in
a coarse way. The silicon is mostly used to stabilize the whole IC and thus, not critical while the
chip is used. This process thins the bulk as close as possible to the backside without damaging
the chip and bond wires. Here, 10 to 15µm Remaining Silicon Thickness (RST) are feasible
without damages to the structures. Afterward, the last two steps are done in a FIB or BIB/Ion
Mill to slowly sputter the remaining silicon without damaging active areas. We sketch the three
steps in Figure 3.11.

The XMEGA32A4U is backside thinned with a dedicated CNC to around 15 µm RST. Please
note that this preparation step is very challenging for RST<5µm, as warp packages, heat, and
mechanical limitations. The dedicated equipment usually comes with a high price tag.
In the following, the sample is further thinned as illustrated in Figure 3.11. By thinning

the remaining silicon with the FIB down to STI level, we are able to see the p- and n-active
regions with VC in the FIB live view. This can be seen in the traces in Figure 3.13. This means
that once a FIB is accessible, the operator does not need to be an expert when the sample
is monitored during the process. The process duration is depending on the RST and the FIB
parameters within some hours. Please note that if the processing time is important, di�erent
gases and plasma FIB can be used.
Once the ROI is evenly at STI level, we carefully trench the STI only (which can be seen

in Figure 3.13). We can see the active regions in the FIB to navigate and cut into the STI.
Depending on the remaining SIO2 underneath the gates, we achieve as similar CCVC or PVC
e�ect as described in Section 3.3.1. The STI trenches are placed in straight lines and are usually
very narrow. We trench a complete row within minutes. This allows seeing the gates on the
poly-silicon layer and their VC changes, see Figure 3.13.
In the case of complete STI removal, the state is not volatile as we describe a static AVC.

Nevertheless, this process cannot be maintained inde�nitely as the structures are hit by electrons.
This in�uences the charge and state of the wires and gates signi�cantly [123]. In fact after several
minutes of running the default AES engine within the SEM, we encountered di�erent ciphertext
outputs due to the electron charges. An example of the trenched STI over multiple interconnects
can be seen in Figure 3.12.

38

3.7 Discussion

Figure 3.11: The IC is thinned from the backside. In the �rst step he is mechanically polished
down to approximately 15 µm. The second step is done in the FIB until the p- and
n-wells can be seen, see Figure 3.13. The last step trenches the isolation between
the gates, see Figure 3.12.

3.6.3 Backside Traces

After preparation we run the AES hardware engine with an external, controlled clock as in
Section 3.5.1. We are able to see VC changes in a very narrow trench of the DUT. Hence, we
obtain VC traces from the ultra-thinned backside approach, see Figure 3.13.
With the acquired traces the the techniques from Section 3.5.2 and Section 3.5.4 can be re-

applied. Nevertheless they did not match any known AES bits. We think, the arbitrarily chosen
ROI did not have any intermediate values.

3.7 Discussion

In this section we want to state the limitations and possibilities of the VCSCA. The VCSCA is
related to known EBP techniques from the FA community, but extended for hardware reverse
engineering and SCAs. We note that current ROI detection techniques, see Section 3.2, are
versatile and suitable for ROI detection in modern technology nodes. Once a ROI has been
determined, the front and backside approaches described in this chapter can be applied.

39

Chapter 3 Voltage Contrast Side Channel Analysis

(a) Backside ROI without any Si (broken) (b) Backside ROI removed STI

Figure 3.12: STI trenching in a small area on a sample. The STI can be cut in a straight line
reducing preparation time and steps.Within the trench the polysilicon interconnects
can be seen and read by a voltage contrast. To the right we see a thin layer of
remaining silicon.

Frontside LimitationWith the advances in the semiconductor industry the number of layers
have steadily increased to nowadays more than 10 layers with the uppermost layers being a GND
and VCC distribution network. Only small uC, and ASICs, are build in old technologies using
all of the 4 to 6 metal layers for routing. Hence, the frontside VCSCA is applicable to small uC
like our XMEGA32A4, but has less chance to succeed in modern ICs. Meshed high security chips
and modern sub 20 nm technologies are not vulnerable to frontside VCSCA. The uppermost
grounded layer acts as a shield against other (semi-invasive) attacks, such as EBP, frontside
photon emission, EM SCA, Even FA techniques with perfect knowledge of the IC layout
face the problem to contact buried signals in a 10 layer stack for debugging purposes.

Backside Limitation By opening the IC from the backside, we tackle prior shortcomings
and ICs security mechanism, e.g. meshes and shields. Backside preparation techniques are re-
searched with great interest from the FA community, hence vendors usually provide dedicated
equipment that thins down to 5µm RST [114, 39]. Mainly the following ultra thinning to STI
level[123, 39] requires advanced preparation equipment like the FIB, increasing the resources
for this approach. Please note that a FIB can be rented or outsourced in third-party services.
Even though the FIB work requires expertise, the end-point is remarkable. In the end, the
STI trenching (step 3 from Figure 3.11) is not trivial and requires experience. Nevertheless, we
conclude that any adversary with access to a FIB is able to prepare the target with moderate
costs. From a security point of view we would like to highlight that the authors do not know of
any (practicable) countermeasure against backside deprocessing.

During this work, we required multiple samples during the last preparation step and, worth
noting, the VC with the electron beam has an in�uence on the processed internal data. A some
point in time, the wires under inspection are charged due to the electrons hitting its surface.

40

3.8 Conclusion

Figure 3.13: 2 frames from the backside VC Traces. The bright and dark yield are the dotted
active areas. The trenches hit the STI to see the metal and poly lines in a VC.
One trench missed the STI due to a miscalculation, rendering this sample broken.
Changes within the trenches are logical high or low interconnects and gates.

This induced erroneous behavior during inspection and requires a good preparation and VC pa-
rameter tuning in the SEM or FIB. In the latter case, the sample is further sputtered and thus
destroyed by hitting ions. To understand the limits and capabilities of backside VC, important
parameters, such as electron acceleration, detector technique, process materials and electron
beam intensity per area are important parameters require further research [123]. Each sample
requires �ne-tuning to �nd the �ne line between erroneous behavior and an undisturbed VC
analysis.

Sequential architectures repetitively working on parts of data are especially vulnerable, as
consecutive parts(e.g bytes) are processed at the same position that can be probed at di�erent
times. Note, that in the case of missing crucial keybit locations, key material can be retrieved
with di�erential cryptanalysis using intermediate bits [29]. With the gained knowledge a reverse
engineer has a perfect start to mark and follow the signals in a reverse engineered layout, see
Chapter 2. Furthermore, additional hardware reverse engineering explained in Section 3.5.3 and
advanced SAT-based reverse engineering for gate-level schematics [82] can be applied in future
work.

3.8 Conclusion

In this chapter we revise an approach to pinpoint the ROI for IC s with VC images. This reduces
the complexity of hardware reverse engineers by gaining apriori knowledge of the location of
security-relevant ROI and allows to perform EM-based SCA with better signal-to-noise ratio.
Furthermore this enables more advanced SCA s like inter-gate leakages discussed in [137] and
reduces the exhaustive search for fault attacks.

41

Chapter 3 Voltage Contrast Side Channel Analysis

The shown approach is at least as fast and easy to comparable approaches like EM cartography,
thermal imaging and photon emission. The only required tool is a SEM, well distributed in
universities and institutes due to its application in many academic �elds. A SEM can be bought
second hand for under 10k USD. Specialized commercial EBPs for high speed measurements are
also available.
We use the VC as a side channel that exploits the capacitive coupling e�ect of top metal layers

through the covering passivation. We are able to see voltage alterations of the IC s surface in
a SEM, revealing secret information through top metal-wire voltage changes. A POC with
a XMEGA microcontroller to locate and identify top metal layers holding intermediate AES
bits is given. Any sophisticated attacker can track the wires to the polysilicon layer, revealing
data �ip-�ops and memory structures of the AES. Furthermore we use the VC in multiple SCA
approaches to recover the full AES key.
For the VCSCA template-attack, less then 100 traces are enough to reveal the key, while the

simple VCSCA is performed in a no-plaintext, no-ciphertext and no-key attack scenario. Addi-
tionally we show a SCARE approach to recover further netlist information, that can be used to
reverse engineer hardware circuits in a non-invasive way. The gained information can be used
to partly verify an extracted netlist or to counter simple hardware obfuscation techniques.

Finally, the backside VC or EBP preparation initially shown in [122] and [123] can be expanded
to area sizes relevant for the backside VCSCA as we have shown in Section 3.6. The VCSCA is
a high hardware security threat, as the shown front side VC approaches are also applicable to
the unprotected IC backside.

42

Chapter 4

Security Implications of Intentional

Capacitive Crosstalk

With advances in shrinking process technology sizes, parasitic e�ects of closely routed
adjacent wires so-called crosstalk are still a relevant problem in practice since they
directly in�uence performance and functionality. Even though there is a solid under-
standing of parasitic e�ects in genuine hardware designs, the security implications
of such undesired e�ects have been scarcely investigated. This chapter is based on a
publication in the IEEE TIFS journal [84].

Contents of this Chapter

4.1 Introduction . 43

4.2 Background and Related Work . 45

4.3 Crosstalk Trojan Design Methodology . 46

4.4 Case Study I: Cryptographic Designs . 51

4.5 Case Study II: OpenRISC 1200 . 54

4.6 Mitigating the Risk of Parasitic Trojans . 57

4.7 Discussion . 60

4.8 Conclusion . 62

Contribution: This chapter is a joint work with Omar Awad and Marc Fyrbiak
under my supervision.

4.1 Introduction

Since the early days of IC design and manufacturing, parasitic e�ects, such as crosstalk, have
been a major issue for the digital electronics industry [67]. These e�ects occur due to densely
routed interconnects, thus posing an important challenge for advancing technology sizes as par-
asitic e�ects impair functionality and reduce performance (e.g., by lowering bus frequencies). To
overcome such physical e�ects, hardware designers have developed strategies to analyze placed-
and-routed hardware layouts prior to manufacturing for parasitic capacitances, resistances and
inductances [155]. This step creates a precise analog circuit model so that circuit simulations can

43

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

be investigated for undesired physical e�ects. Several mitigations have been proposed to combat
parasitic e�ects such as increasing the space between wires and the use of data encodings [152].
As modern IC design and fabrication processes have been moved o�shore, increasing distrust

among participating stakeholders, the need to ensure the trustworthiness of manufactured ICs
has risen dramatically [26]. Malicious circuity a.k.a. hardware Trojans, can invalidate sophis-
ticated security measures or deny an IC's service, thus posing a signi�cant threat to today's
military systems, �nancial infrastructure, transportation systems, and safety and household ap-
pliances [143]. Since signi�cant resources are required to analyze and detect hardware Trojans
in manufactured ICs, (e.g., visual inspection), only a handful of institutions can address such
concerns [143].
To make matters worse, several scienti�c works have demonstrated parametric design strate-

gies [66] based on physical parasitics in IC manufacturing that exhibit close to zero logic over-
head. These approaches are hard to detect with non-invasive or semi-invasive techniques. As
Trojan design advances further, only invasive hardware reverse engineering strategies will be
able to counter such Trojans, particularly when no golden model is present or the golden model
must be veri�ed [145, 143]. As a result, the search for countermeasures has become of increasing
interest; to (1) identify Trojan circuits early [26], (2) secure the IC design [153, 52, 4], and
(3) secure the production chain [74, 15].
Goals and Contributions. In this paper, we focus on parametric hardware Trojans based on

parasitic e�ects. Our goal is to demonstrate that crosstalk-based e�ects can be reliably exploited
to realize adversary-controllable faults in digital logic implemented only by rerouting existing
wiring resources. The approach has a zero-gate overhead. To this end, we present a general
Trojan design methodology for crosstalk Trojans and con�rm its devastating consequences in
two security-relevant case studies. Finally, we present a novel countermeasure to detect such
Trojans by enhancing state-of-the-art visual inspection techniques.
In summary, our main contributions are:

� Generic Crosstalk Hardware Trojan. To the best of our knowledge, we present the
�rst generic building block for parametric hardware Trojans based on capacitive crosstalk.
We show that almost any victim wire can be targeted by an adversary so that the DRC
is not violated. We also illustrate that such Trojans are stealthy and hard to detect with
currently employed visual inspection techniques and hardware Trojan detection strategies.

� Security Implications. We assess the threat and capabilities of the crosstalk Trojan
using two o�ensive case studies: (1) we subvert the security of an AES IP core to leak the
secret key and (2) we perform a privilege escalation in an OR1200 CPU which is capable
of running a modern Operating System (OS) and executing arbitrary code with elevated
access rights. Both case studies are built using gates from the 45nm NanGate FreePDK45
library. Implementation strategies for capacitive crosstalk Trojans are highlighted and
future research directions to mitigate their risk are described.

� Parametric Hardware Trojan Mitigation. We extend state-of-the-art hardware re-
verse engineering work�ows based on visual detection to identify the characteristic proper-
ties of crosstalk hardware Trojans in a semi-automatic matter. Reverse-engineered layout
wires are analyzed for parasitic capacitance to highlight potential crosstalk Trojans in the
IC design.

44

4.2 Background and Related Work

4.2 Background and Related Work

We now provide fundamental technical background regarding parametric crosstalk in IC de-
signs. State-of-the-art hardware Trojans (Section 4.2.1) and hardware reverse engineering (Sec-
tion 4.2.2) techniques are described followed by the assumed threat model (Section 4.2.3).

4.2.1 Hardware Trojans

Hardware Trojans have been of strong interest to the scienti�c community since an initial report
by the DoD [3] in 2005. A hardware Trojan consists of a payload circuit delivering malicious
functionality (e.g., the leakage of cryptographic keys or the denial of service) and an optional
payload activating trigger circuit (e.g., a counter or side-channel based a factor such as heat or
age). For a comprehensive survey of o�ensive and defensive techniques for hardware Trojans,
the interested reader is referred to [26].
O�ensive Hardware Trojans Research. Hardware Trojans can be inserted at various

stages of design and manufacturing processes (e.g., in RTL or gate-level netlists [83, 94, 109]).
Recent scienti�c works have demonstrated parametric Trojans [158, 22, 66] by exploiting the
parametric characteristics of the physical layout. For example, Becker et al. [22] manipulated
dopant polarity to undermine the security of cryptographic primitives. Yang et al. [158] de-
veloped analog Trojans as small as a single cell to elevate rights on a modern CPU. Ghan-
dali et al. [66] introduced a path delay Trojan that generates a delay fault through the charging
or discharging of capacitances by exploiting rare signal paths. Other parametric Trojans use
aging-based triggers [128]. The Trojans are inactive after manufacturing, but they become ac-
tive after a long period of operation. They also can use a reduced supply voltage to trigger a
Trojan probabilistically [89]. Further work leaked side channels at Trojan activation [55] and
used parametric characteristic to gain side channel information [111].
Defensive Hardware Trojans Research. Defensive research focuses on the detection

of hardware Trojans based on diverse characteristics such as triggers, payload features, and
physical attributes [143]. To detect Trojan characteristics, side-channel analysis [26] and static
and dynamic design analyses [72, 154, 159, 70] have been proposed. If a Trojan is embedded at
a malicious foundry, hardware reverse engineering by visual inspection [143] is one of the few,
if not the only, approach that has a realistic chance of �nding evidence of a hardware Trojan.
Several countermeasures aim to protect a design against hardware Trojan insertion through
design alteration and modi�ed fabrication processes [153, 52, 74, 15]. While design changes
involve hardware obfuscation which can be relatively low cost, fabrication process changes are
more economically questionable. For example, splitting manufacturing across multiple foundries
results in multiple die pieces which must be stacked. This approach adds non-trivial connection
problems known from 3D-integration processes [150].

4.2.2 Chip-level Hardware Reverse Engineering

Deprocessing. Chip-level reverse engineering by visual inspection is an invasive process to ex-
tract the functional information of an IC [108, 145]. It consists of alternating phases of delayering
and imaging processing of each stacked metal and polysilicon layer(s) of an IC die. Delayering
is a combination of wet chemical, mechanical, and plasma processes to optimize the planarity of

45

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

the die and SEM contrast for the imaging step. Typically, these steps require expensive equip-
ment and experienced analysts due to shrinking process technology sizes. Detailed deprocessing
steps are out of the scope of this paper, but the interested reader is referred to [108, 145].
Image Processing. SEM images can be post-processed to extract wires, vias, and standard

library cells in an e�ort to recombine acquired layer images, thus reconstructing the original de-
sign layout (see Figure 4.13 in the Appendix). Typically, image processing involves cell matching
based on correlation and templates [105]. For example, a cell can be manually selected and man-
ually analyzed to expose its (Boolean) functionality. Then a template is constructed and each
repeated instance is identi�ed using correlation or template-based image processing [145].
Gate-level Netlist Extraction. Once all layers are aligned to each other, gates, wires and

vias are extracted to acquire a �at gate-level netlist [108]. During this extraction, parasitic
information and geometrical wire information are abstracted. The only information available
to the reverse engineer is what is connected, not how it is connected. This approach makes it
impossible to locate parametric hardware Trojans since parametric information is lost. Hence,
current state-of-the-art IC hardware reverse engineering techniques are insu�cient to detect
parametric Trojans.

4.2.3 Threat Model

We assume an adversary with the ability to implant a malicious circuit in the layout of the
IC design. Such adversarial capabilities occurs in several scenarios: (1) untrusted foundries,
(2) malicious third-party IP cores, and (3) malicious insiders and CAD tools. In the case
of a malicious foundry, the adversary has to reverse engineer parts of the design to identify
relevant gates and signals where the hardware Trojan must be attached [62]. The goal of the
adversary is to induce a reliable exploitable fault into the target design via crosstalk e�ects to
realize a subsequent attack. Our threat model is consistent with prior research on hardware
Trojans [153, 52, 143].

4.3 Crosstalk Trojan Design Methodology

We now provide details of the capacitive crosstalk e�ect and present our capacitive crosstalk
hardware Trojan design methodology that exploits the crosstalk e�ect between metal lines and
wires. The adversary causes a fault by rerouting several aggressor wires to a selected victim
wire.

4.3.1 Capacitive Crosstalk

In general, crosstalk is caused by two e�ects: (1) inductive crosstalk, and (2) capacitive crosstalk.
Inductive crosstalk between two adjacent wires depends on a change in the electric current in
one or both wires which generates a changing magnetic �eld, inducing a current in nearby
wires. Capacitive crosstalk between two adjacent wires depends on a change in the voltage in
one or both wires which generates a coupling current that generates noise pulses. For modern
nanometer technology sizes, both spacings between wires and wire thickness have decreased to
reduce parasitic resistance. Since taller and narrower wires are now placed closer to each other,
coupling capacitance is the predominant e�ect for advanced modern technology sizes [63]. Hence,

46

4.3 Crosstalk Trojan Design Methodology

we neglect inductive crosstalk e�ects for the remainder of the paper. The interested reader is
referred to [155] for more information on inductive crosstalk.

(a) Micrometer Technology.(b) Nanometer Technology.

Figure 4.1: In modern processes nanometer technology interconnects are designed thinner to
connect more compact logic cells. To counter resistance issues interconnects are man-
ufactured taller which increases the plate capacitor area (marked in gray). While
distance is smaller between two interconnects for modern technologies, parasitic ca-
pacitance Cx is increased.

Figure 4.1 illustrates these wire geometries. Note that the coupling capacitance C increases
for nanometer technology sizes, as the area A (marked in gray) is larger and the distance d is
smaller compared to micrometer technology sizes. Equation 4.1 clari�es the connection between
area, distance, and the capacitance. Parameter ε is the relative static permittivity multiplied by
the electric constant ε01. The separation distance d refers to the distance between interconnects
and the A is the capacitive area.

C = ε
A

d
(4.1)

Based on the increased coupling capacitance, a transition in one wire wa may generate noise
in an adjacent wire wv due to the coupling current between the two wires. More precisely, the
former wire wa is the aggressor while the latter is the victim, see Figure 4.2.
In Figure 4.2 the victim wire remains constant while the aggressor wire is switching. During a

transition in the aggressor wire, the victim wire voltage is pulled up due to coupling capacitance
between the two wires, resulting in a glitch referred to as a coupling noise pulse. The resulting
noise pulse and noise peak are depicted in Figure 4.3. Note that the peak of the coupling
noise pulse in the victim wire occurs when the transition at the aggressor wire is completed.
The relevant phase of the noise glitch emerges between t1 and t2 when the glitch is above the
threshold voltage Vt. If a sequential clock edge signal arrives during this time, an unintended
fault in the victim wire is caused. The noise pulse can be accumulated by the switching of
multiple aggressor wires at the same time.

∆Vv =
Cx

Cgnd−v + Cx

1

1 + k
∆Va (4.2)

1The electric constant ε0 is de�ned as ε0 = 8.85418782 · 10−12 s4A2

m3kg
.

47

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

Figure 4.2: Crosstalk noise in a driven victim wire (marked in red) due to coupling current in
aggressor-victim capacitance Cx and an aggressor wire (marked in blue). Ra and Rv

are the respective resistances, while Cgnd values are the capacitances to GND.

with

k =
Ra (Cgnd−a + Cx)

Rv (Cgnd−v + Cx)
(4.3)

Figure 4.3: Crosstalk peak noise and noise duration on a victim wire. ∆Vv is the maximal
crosstalk peak. Vt is the technology dependant threshold voltage used to recognize
a logical high. It is exceeded for the time twidth.

To clarify the relationship between crosstalk and its mitigations, we utilize the coarse-grained
approximation of crosstalk e�ects shown in Equation 4.2 [155]. Value ∆Vv represents the added
voltage induced by crosstalk e�ects. Values Cx and Cgnd−v represent the aggressor-victim capac-
itance and the capacitance to GND, respectively. Value ∆Vv depends on resistances Ra and Rv

and the voltage of the aggressor ∆Va. The peak noise becomes dependent on the time constant
ratio k of the aggressor to the victim [155]. Note that more accurate crosstalk models such as
the L-model and pi-model exist and the interested reader is referred to [80, 42].
Crosstalk Mitigation. Several mitigation strategies have been studied [125, 42] to cope

with the undesired e�ects of crosstalk. For example, the capacitance C can be decreased by
(1) shortening the wire length (a�ecting A in Equation 4.1), or (2) increasing the separation
distance (a�ecting d in Equation 4.1). The delay timing is crucial as multiple aggressors cause
an additive e�ect if transitions occur at the same time. Other crosstalk mitigations include

48

4.3 Crosstalk Trojan Design Methodology

(3) modifying the driver logic timing with repeaters, (4) increasing the driver for the victim
reduces the accumulated crosstalk noise, and (5) alternating adjacent signals between low to
high and high to low transitions in�uences the crosstalk peak ∆Vv and shortens twidth.
Unfortunately, from an adversarial point of view, various possibilities remain to induce faults

using capacitive crosstalk even if mitigations are applied in the target design.

4.3.2 Design Methodology

We now provide insights on victim wire selection and the use of aggressor routing structures and
timing adjustments to deliberately induce a crosstalk e�ect for reliable exploitation. Figure 4.4
shows the high-level idea of our Trojan design methodology: several aggressor wires are closely
routed to the victim wire. The coupling length is the accumulated length in which wires are
routed adjacently and closely to produce a practical crosstalk e�ect.

Figure 4.4: Generic model of the proposed hardware Trojan design methodology with several
aggressor wires routed close to the victim wire. Based on additive coupling e�ects,
a fault is induced in the victim when all aggressor wires switch at the same time.

Victim Wire Selection

An adversary with the capabilities described in Section 4.2.3 may select almost any number of
arbitrary (security-relevant) victim wires (e.g., datapath of a cryptographic IP core) for fault
injection. The victim wire must be re-routed to achieve a coupling length yielding a crosstalk
e�ect (e.g., 1.25 mm). If the victim wire is in the critical path or its delay is close to the critical
path delay, re-routing might cause the wiring delay to exceed the circuit maximum path delay.
In such rare cases additional delay corrections to reduce the parasitic delay can be applied, e.g.
increasing driver strength or re-placing cells to create shorter signal paths.

Aggressor Wires

Several aggressor wires must be routed close to a victim wire and switch at the same time to
reliably trigger a fault in the victim wire via crosstalk. We now detail several possible routing
structures for aggressor wires and strategies for �ne-grained delay adjustment. If the aggressor
wire is in the critical path or its delay is close to the critical path delay, re-routing may cause
an increase in the maximum path delay. The same delay corrections discussed in the previous
section can be applied.
Aggressor Wire Routing Structure. We present two strategies with 8 aggressor wires,

and 4 aggressor wires routed adjacent to a victim wire, see Figure 4.5. The circuit in Figure 4.5a

49

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

does not have alternating (main-)routing directions for a layer nor does it show a correct rela-
tionship between a two layer gap and layer speci�c spacing between two metal lines as this is
technology and layer dependent.

(a) Eight aggressor wires routed adjacent to a
victim wire on di�erent metal layers. Al-
ternating routing directions between metal
layers are omitted for simplicity.

(b) Four aggressor wires routed adjacent to a
victim wire on the same metal layer.

Figure 4.5: Aggressor wire routing structure strategies with di�erent numbers of aggressor wires
(marked in blue) routed adjacent routed to a victim wire (marked in red) to reliably
generate a crosstalk e�ect in the victim wire.

Our case studies in Section 4.4 and Section 4.5, use the four-aggressor wire routing structure
as it implements a reliable Trojan trigger. The layer separation gap is substantially bigger than
the intra-layer DRC distance and the alternating routing style of the metal layers2 prevents
long coupling lengths when the common style is not violated. Hence, this favors the use of
our 4 aggressor routing wire strategy but leaves a potential for stealthiness improvements with
the 8 aggressor strategy, see Section 4.7.
Aggressor Wire Timing Adjustments. Precisely-timed simulations are needed to achieve

the simultaneous switching of aggressor wires and thus generate the accumulated crosstalk e�ect
in the victim wire. Since our threat model assumes only the manipulation of the layout but no
changes in digital logic gates, only existing wires and their propagation delays, also called �ight
times, can be manipulated. We use an RC delay model (Elmore Delay) to describe how to adjust
signal arrival times for crosstalk Trojans. Although the RC delay is a simple approximation,
it is su�cient for coarse timing approximations and allows for �ne-tuning with state-of-the-
art simulations. For further information on advanced wire RC delay models and higher order
models, we refer the interested reader to [155]. If an aggressor wire is a global input wire, an
adversary has to orchestrate a precisely-timed external transition to cause the fault.
To achieve an accumulated crosstalk peak, the arrival time of the aggressor charges have to

occur at the same point in time. In other words, the di�erence between the arrival times, called
slack, has to be close to zero. A positive slack means that the arrival time is too early, while
negative slack means that it is too late. Each aggressor wire i is delayed for a speci�c time τi
so that ∀i : τi < max(τ0, . . . , τn) to compensate an additional logic stage in other aggressors or

2The alternating routing style switches the primarily routing direction after every layer: Metal-1, Metal-3,

. . . are routed vertically while Metal-2, Metal-4, . . . are routed horizontally to ease the routing.

50

4.4 Case Study I: Cryptographic Designs

delay di�erences within one clock cycle. To realize a zero slack, timing-driven placement and
routing algorithms have been proposed [103].
Using a general RC delay model, the non-linear transistor and wire current-voltage (I-V) and

capacitance-voltage (C-V) characteristics are estimated with an average resistance and capaci-
tance over a gate's switching range [155]. This model treats a transistor and wire segment as
a switch in series with a resistor and abstracts wires with respect to R and C components in
di�erent models (e.g., Pi-model, T-Model, . . .). Gate and wire segments are nodes through
which a signal must pass and each element induces a speci�c delay depending on its I-V and
C-V characteristics. An approximation of a required aggressor delay τi can be expressed with an
Elmore delay model [54] as the sum over each node (gate or wire) j by multiplying the node's
capacitance Ci with the resistance Rij on the shared path from the node to the aggressor wire
(adjacent to the victim wire):

τj =
∑
i

RijCi (4.4)

After de�ning each τi, the adversary selects the (driving) transistor size, wire width, spacing,
and layer usage to trade o� delay, bandwidth, energy, and noise. He can change the parasitic
resistance R and capacitance C of aggressor wires and re-route the layout accordingly. Both re-
sistance and capacitance increase with wire length l, so the RC delay of a wire increases with l2.
Note that the Elmore delay model is only a �rst approximation in complex modern technologies.
Typical Electronic Design Automation (EDA) tools obtain higher accuracy by approximating
delays based on higher moments using moment matching techniques (e.g., asymptotic waveform
evaluation [155]). An adversary can reuse existing timing analyzer(s) in EDA tools which com-
pute and simulate accurate delay information τi for the aggressor wires. Note that so far we
have neglected to address process variations. We discuss this topic in Section 4.7.

4.4 Case Study I: Cryptographic Designs

It is necessary that an underlying cryptographic primitive is not manipulated to realize security
services such as con�dentiality. Since most cryptographic primitives in use are resistant to
traditional mathematical attacks, adversaries typically leverage implementation attacks such as
SCA and Fault Injection (FI) to disclose key material. Even though SCA and FI countermeasures
have been investigated in great detail by the scienti�c and industrial communities [25], they do
not address malicious design manipulations.
In our �rst case study, we focus on the FI of cryptographic designs by leveraging crosstalk

Trojans. Before we detail Trojan design (Section 4.4.1) and implementation (Section 4.4.2),
we summarize the general structure of a cryptographic block cipher primitive and the publicly
available, third-party AES IP core used in this case study.
General Structure of Cryptographic Designs. Typical cryptographic IP cores employ

FSMs to implement the control unit that determines data �ows for state and key transforma-
tions. An FSM consists of inputs to handle current state and security-critical data path inputs,
and control signals to steer the data path. For example, for low area, iterative cryptographic
block cipher implementations, security-critical data path signals include round counter informa-
tion. A manipulated round counter dramatically reduces the security level as multiple round
transformations can be skipped eventually resulting in key recovery using (straightforward)
cryptanalysis.

51

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

Third-Party AES IP Core [65]. In this case study we utilize an open source, third-
party AES IP core from OpenCores [65]. This encryption core consists of an iterative round
transformation structure and an FSM and a round counter in the control path. As a result, it
provides an appropriate case study for cryptographic designs in general.
We deliberately omit gate-level reverse engineering steps for the sake of simplicity. Several

works previously targeted datapath reverse engineering for cryptographic designs [140, 61] and
control path reverse engineering [126, 99].

Figure 4.6: Crosstalk Trojan in AES IP core created by rerouting four I/O pad wires (2 plaintext
wires and 2 key wires) to cause a crosstalk e�ect in the control path. On activation,
the induced fault causes the last round to toggle yielding state after one round
transformation and thus e�ectively leaking the 128-bit key.

4.4.1 Crosstalk Trojan Design

We now present our crosstalk Trojan for the AES IP core [65].
Victim Wire Selection. We identi�ed a victim wire by manual analysis: last_round[1],

see Figure 4.6 to introduce a fault into the round counter and thus leak cryptographic key mate-
rial. The �ag last_round[1] indicates the �nal round of the encryption process, while a counter
v_calculation_cntr[9] indicates di�erent options and counts the number of bytes processed
in each round. In this case study, the victim wire is modi�ed by a fault during computation so
that last_round[1] is high. The counter v_calculation_cntr[8] will independently reach a
value above 6 at some point of time which results in the current internal state being sent to the
global output for external read-out.
We induce a fault in the �rst round after the initial AddRoundKey transformation so that the

state only consists of the plaintext XORed with 128 bits of the main key. This key can be trivially
recovered by XORing the state with the known plaintext. If AES-192 or AES-256 are used, an
additional fault occurs after the second AddRoundKey transformation to expose an additional 64
or 128 bits, respectively.
Aggressor Wire Selection. To induce a crosstalk e�ect into the selected victim wires, we

choose the four-aggressor wire routing structure described in Section 4.3.2. Since cryptographic
IP cores generally do not contain infrequently-triggered wires, we chose user-controlled global
input wires as the aggressor wires. Two plaintext wires (DATA_I[7] and DATA_I[6]) and two

52

4.4 Case Study I: Cryptographic Designs

wires of the set_key functionality (KEY_I[5] and KEY_I[4]) were selected since the IP core
expects the key to be present some hundred cycles before the plaintext. The four aggressor
wires should never switch simultaneously during normal operation and it is unlikely that the
Trojan would be activated by mistake. The accumulated crosstalk noise of each aggressor wire
in a narrow time window of several hundred picoseconds (depending on the technology size)
results in a voltage higher than the threshold 0.54V . Following the methodology described in
Section 4.3, four aggressor wires and the victim wire were rerouted as 1.25mm parallel wires,
see Figure 4.7.
Aggressor Wire Timing Adjustments. Our Trojan trigger condition is a timed, speci�c

pattern applied to the four selected I/O aggressor pins. To counter the longer wire delays,
the gate driver strength has been adjusted. An encryption process with the targeted (for the
adversary unknown) key ku is performed at the time we trigger the Trojan. AES is started
336ns after simulation start. The high-to-low transition of the VALID_DATA_I wire in Figure 4.8
shows that the input plaintext is transmitted and the calculation starts. The four aggressor
wires are switched at 340ns and 345ns (4ns and 9ns after encryption start) which constitutes
an abnormal usage of the IP core. Since the crosstalk Trojan requires transitions to trigger
the aggressor wires, they are �rst set to logic zero before being discharged. When activated,
the crosstalk Trojan toggles the last_round D-Flip�op (DFF) to a logic high state at an early
encryption stage. This transition leads to a premature ciphertext output that leaks key material.
To leak the whole 16-byte key, the pattern must be entered exactly 4.8ns after encryption start.
The resulting crosstalk noise and Trojan activation are depicted in Figure 4.8.

Figure 4.7: Implementation of the crosstalk Trojan in the AES IP core. Aggressor wires (marked
in blue) are global inputs, thus the attacker has complete control of the delay ele-
ments τ0, . . . , τ3. These elements can be user-de�ned after tape-out. The victim
wire (marked in red) indicates that the count in the round counter is larger than the
number of AES rounds.

4.4.2 Crosstalk Trojan Implementation

We now provide technical details of our crosstalk Trojan.
Place-and-Route. We performed place-and-route using Cadence SoC Encounter version 8.1

to place driver and receiver cells of both aggressor and victim wires 1.25mm apart by �xing
their gate and wire positions. We deliberately chose this strategy, even though it contradicts
the threat model de�ned in Section 4.2.3, to demonstrate a zero-gate overhead crosstalk-based
Trojan since the use of distant driver and receiver cells is likely to appear in typical designs (e.g.,
bus signals and interfaces).

53

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

Figure 4.8: SPICE simulation of the triggered crosstalk Trojan for the AES IP core where the
victim wire n3831 exceeds the threshold voltage. We marked the trigger at t = 340ns
that discharges the wires, followed by the trigger at 345ns. The second mark shows
the leaked AES state beginning at 353ns.

Design Veri�cation and Parasitic Extraction. DRC, LVS and Parasitic Exctraction
(PEX) checks were veri�ed in Mentor Calibre using rule decks provided by the 45nm FreePDK
process design kit [104]. PEX RC parasitics were extracted using hierarchical extraction with
generated H-Cells for the standard cells. Since full-chip parasitic extraction is infeasible due
to circuit size, we only extracted parasitics for aggressor and victim wires and their respective
driver and receiver gates.

Post-Layout SPICE Simulation. We performed post-layout SPICE simulation with the
Synopsys HSIMplus Fast SPICE simulator using a low threshold transistor model taken from
the FreePDK 45nm predictive technology model. Post-layout simulation of the AES core was
performed using the Xilinx ISE design suite. No DRCs or simulation timings were violated.

4.5 Case Study II: OpenRISC 1200

General-purpose CPUs enforce a separation of kernel mode code from restricted user mode code
to mitigate damage caused by vulnerabilities. Since an exploitable bug of a user-mode software
application, such as a web-browser, typically results in adversary control of memory, an attacker
is then able to execute malicious software on a user's machine. Subsequent privilege escalation
attacks in which the adversary gains elevated access rights, i.e. kernel model accesses all system
resources, are even more damaging.

In our second case study, we focus on FI to realize privileged escalation on a complex, mod-
ern processor. Prior to presenting our Trojan design (Section 4.5.1) and implementation (Sec-
tion 4.5.2) we describe our system model, the adversary's capabilities, and details of our employed

54

4.5 Case Study II: OpenRISC 1200

third-party OpenRISC 1200 processor IP core. This case study was inspired by Yang et al. [158]
who realized an analog Trojan to elevate privilege rights for a OpenRISC 1200 processor.
System Model and Attacker Capabilities. We assume the following typical system model

for the OpenRISC 1200 processor: the adversary is able to leverage an exploitable bug in the
software running on the OpenRISC 1200 to gain an arbitrary memory write primitive (e.g., by
a classical bu�er over�ow). The adversary writes a speci�c user-mode instruction triggering an
a priori inserted crosstalk Trojan to elevate privilege rights.
Third-Party OpenRISC 1200 Processor [107]. The OR1200 is an open source IP core.

The publicly-available design is written in Verilog HDL. The implementation includes a power
management unit, debug unit, tick timer, programmable interrupt controller, central processing
unit (CPU), and memory management hardware. Peripheral systems and a memory subsystem
may be added using a standardized 32-bit Wishbone bus interface. The OR1200 has performance
comparable to an ARM10 processor architecture. Generally, the OR1200 is intended for use
in a variety of embedded applications, including telecommunications, portable media, home
entertainment, and automotive applications. A GCC toolchain and a Linux kernel port for
OR1K, which runs on the OR1200, have been implemented.

Figure 4.9: Implementation of the crosstalk Trojan in an OpenRISC 1200 IP core. Aggressor
wires (marked in blue) are controlled by an adversary-crafted instruction, respective
delay elements τ0, . . . , τ3 did not require any adjustments. We adjusted delay element
τc to 0.2ns for the clock tree of the SR[0] FF indicating user mode (= 0) or supervisor
mode (= 1). See Section 4.5.2 for further details on clock tree adjustments.

4.5.1 Crosstalk Trojan Design

We now present our crosstalk Trojan for the OR1200 CPU.
Victim Wire Selection. Since the processor mode (e.g., user or supervisor mode) indicator

of the OpenRISC 1200 is stored in a bit of the supervisor register [107], i.e. SR[0], it is targeted
to force a privilege rights elevation that is similar to Yang et al. [158]. This �ag grants supervisor
rights (arbitrary use of the CPU) when set. Thus, once a user mode application can be exploited,
a fault is induced in the supervisor register to obtain supervisor rights.
Aggressor Wire Selection. The four-aggressor wire routing structure described in Sec-

tion 4.3.2 was chosen to induce a crosstalk e�ect in the selected victim wire. Since general-
purpose CPUs include various rarely-switched wires related to unde�ned and reserved instruc-
tion �elds, the ff1 (�nd �rst) instruction was selected as it can be executed with user mode
rights and consists of unused instruction �elds, see Figure 4.10. Three opcode wires (alu_op[0],
alu_op[1], alu_op[2]) were used to identify the instruction. A reserved instruction bit �eld

55

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

(ex_insn[10]) from the ff1 instruction was also used in the attack. Since typical assemblers
set the reserved bit �eld to 0, the Trojan is generally not activated by mistake. As a result, the
execution of a genuine ff1 instruction does not trigger the Trojan. Following the methodology
described in Section 4.3, we re-routed the four aggressor wires and the victim wire as 1.25mm
parallel wires, see Figure 4.9.

l.�1 Find First 1

opcode 0x38 D A reserved reserved opcode 0x0 reserved opcode 0xf

6 bits 5 bits 5 bits 5 bits 1 bit 2 bits 4 bits 4 bits

Figure 4.10: OpenRISC 1200 ff1 instruction [107]. The reserved Trojan trigger bit is marked
in red.

Aggressor Wire Timing Adjustments In contrast to the previous case study, we are
not able to directly change the timing of the internal aggressor wires. However, our chosen
aggressor wires are all in the same vicinity and logical stage and thus require no further timing
adjustments.
Victim Wire Timing Adjustments. Since the destination DFF of the victim wire has an

early rising-edge, it might miss the noise peak of the crosstalk Trojan. Hence, it is necessary
to manipulate the internal delays, especially the setup and hold times of the victim DFF. To
create a fault, setup and hold times are delayed to coincide with the crosstalk noise peak. The
shift can be seen in Figure 4.11. A clock delay can be introduced by changing the clock tree
(e.g., rerouting towards the DFF). To set the required delay, we leverage the propagation delay
of existing clock bu�ers and increase/decrease the skew with a delay macro in Cadence SoC
Encounter. In our case, we shifted the DFF clock by 0.2ns and re-routed the design. Note
that the SoC Encounter macro might add further gates (e.g., bu�ers) or change existing gate
sizes for timing adjustments. The resulting crosstalk noise and Trojan activation are depicted
in Figure 4.12.

Figure 4.11: The shift in clock net timing for the victim DFF.

4.5.2 Crosstalk Trojan Implementation

We now provide technical details of our crosstalk Trojan.
Place-and-Route. Similar to the approach used in Section 4.4, place-and-route was per-

formed using Cadence SoC Encounter version 8.1. We inserted the Trojan after tape-out, reran

56

4.6 Mitigating the Risk of Parasitic Trojans

Figure 4.12: SPICE simulation of the triggered crosstalk Trojan for the OR1200 IP core. The
victim wire to_sr[0] exceeds the threshold voltage and switches the supervisor
mode register (SR[0]) at t = 67ns.

place-and-route using the back annotated netlist and ensured that original timing constraints
were met. The design was synthesized using the Nandgate 45nm open cell library with a clock
frequency of 200MHz and Wishbone interfaces for data and instructions. External debug port
and power management interfaces were included.
Design Veri�cation and Parasitic Extraction. DRC, LVS and PEX were veri�ed in

Calibre using rule decks provided by the 45nm FreePDK process design kit. PEX RC parasitics
were extracted using hierarchical extraction with generated H-Cells for the standard cells. Since
full-chip parasitic extraction was infeasible due to circuit size, we only extracted parasitics for
aggressor and victim wires and their respective driver and receiver gates.
Post-Layout SPICE Simulation. We simulated the OpenRISC 1200 using the Wishbone

bus interface with Synopsys HSIMplus Fast SPICE simulation based on the freePDK 45nm
predictive technology model. We veri�ed that switching three out of four aggressor wires does
not yield a su�cient accumulated crosstalk peak to accidentally trigger the Trojan. A fault in
the victim wire is only induced by switching all four wires.

4.6 Mitigating the Risk of Parasitic Trojans

The class of parametric Trojans, including our crosstalk Trojan, leverages parasitic e�ects with
negligible, close to zero gate overhead. These Trojans hide within place-and-route layout infor-
mation. As we have shown in Section 4.2.2, current IC reverse engineering strategies abstract
parasitic and geometrical wire information and thus cannot identify parasitic hardware Trojans
automatically.
Our proof-of-concept crosstalk Trojans are built from long straight wires. Finding such long

wires by manual visual inspection is possible, although it is a daunting and time-consuming

57

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

task for a million-node GDS layout. Moreover, the problem will be more challenging for future
reduced technology sizes, see Section 4.6.2.
We now provide insights into how crosstalk Trojans may be detected in practice using im-

proved reverse engineering strategies. In general, this problem is addressed by retaining parasitic
information after a vectorized design is obtained, see Figure 4.13.

Figure 4.13: Improved IC reverse engineering with additional steps to analyze parasitic informa-
tion (marked in gray). Parasitic extraction and Trojan detection can be realized
with existing EDA tools.

Parasitic Extraction. The major purpose of parasitic extraction in IC design is to generate
an accurate (analog) circuit model circuit so that digital and analog circuit responses can be
simulated. Digital circuit and cell responses are analyzed and simulated for delay and loading
calculations such as timing analysis, power analysis, circuit simulation, and integrity analysis.
Analog circuits are often run using detailed test benches to indicate if extra extracted parasitic
information allows a designed circuit to continue to function normally. Parasitic extraction is
typically infeasible for modern layout sizes (depending on design size and simulation details).
Although �eld solvers provide physically accurate solutions, they are only applicable to small
designs or design parts due to high computational e�ort. For example, annotated parasitic mod-
els can be simulated with SPICE on the scale of several thousands of nets. Hence, approximated
pattern matching solutions are commonly used in commercial tools for modern integrated circuit
designs. Nevertheless, they become inaccurate for smaller technology sizes such as 32nm and

58

4.6 Mitigating the Risk of Parasitic Trojans

28nm [34]. In the scope of a multi-million net IC design, a previous separation or partitioning
is mandatory to simulate suspicious areas for accurate parasitic Trojans. This approach im-
plies that parasitic extraction can only support reverse engineering by �nding known parametric
Trojans if we simulate a reduced ROI. In the following section, we provide a proof-of-concept
detection technique for the crosstalk Trojan.

4.6.1 Parametric Crosstalk Trojan Detection

Detection Model Capabilities. We assume that the reverse engineer has access to the unan-
notated layout to detect crosstalk Trojans. Such access capability occurs for (1) chip-level reverse
engineering (see Section 4.2.2), and (2) access to the layout by an untrusted IP provider. To es-
timate parasitic crosstalk capacitances we require HSPICE models, however, accurate HSPICE
models are typically not available as they are fabrication trade secrets. Moreover, HSPICE sim-
ulations are infeasible for modern IC designs due to CPU intensive calculations. As a result, we
must employ heuristics to identify suspicious areas where crosstalk Trojans may be implemented.
Suspicious Wire Extraction. Since manual visual inspection of modern IC designs with a

technology size of 45nm or smaller is practically infeasible (due to the vast amount of wires),
we aim to identify the suspicious wires of a crosstalk Trojan in an automatic fashion. To this
end, the reverse engineer analyzes the layout and respective SPICE model by ranking all wires
by length. Long wires are characteristic for parametric Trojans based on crosstalk, as described
in Figure 4.1 and Equation 4.1. In practice, this ranking step can be performed within hours
for typical IC designs.
Interconnection Capacitances Estimation. After wire ranking, the reverse engineer per-

forms a parasitic extraction and identi�es whether any capacitance value exceeds the average
case by a certain threshold, i.e. 200%. In this process, the reverse engineer determines the
interconnection capacitance matrix between individual entries on the n longest wires to identify
characteristic capacitances of crosstalk Trojans. As the capacitance depends on the technology
used, thresholds on the average value of long wires are approximated rather than being set to
�xed numbers. Millions of nets can be analyzed with this capability once the geometric structure
is exported [56].
Proof-of-Concept Detection. To identify the crosstalk Trojan described in Section 4.5,

the GDSII layout was directly employed and the deprocessing, stitching, and image processing
steps were omitted for the sake of simplicity. Even though multiple commercial third-party tools
for layout edit and extraction are available, not every reverse engineer has access to these tools
and, thus the freely available KLayout tool was used to extract geometries and materials from
the layout, and FasterCap was used to estimate the capacitances.
First, wires were ranked according to their length and the n = 100 longest wires were extracted.

This number was limited to 100 due to high computation e�ort requiring several hours on a
standard laptop. Aggressor wires were ranked the 6th to 10th longest. Only clock sub-trees and
several data buses were longer. Second, the interconnection capacitance matrix for the n = 100
longest entries was determined, and each wire where the capacitance value is higher than 200%
above the average was marked as suspicious. All 5 wires which are part of the crosstalk Trojan
(4 aggressor wires and 1 victim wire) were identi�ed. Afterward, we simulated the 5 isolated
wires with inaccurate SPICE models and identi�ed the crosstalk fault manually. The faulted
signal is the sr[0] register signal, which leverages the user's rights.

59

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

In summary, we were able to identify crosstalk Trojans in an automated manner. We neither
optimized coupling lengths nor obfuscated interconnects, as described in Section 4.7 . Once
coupling lengths are shortened by around 20%, coupling wires become challenging to identify by
only analyzing their length.

4.6.2 On Sophisticated Parasitic Trojans

Similar to other hardware Trojan obfuscation schemes [160], several strategies can be used to
increase the stealthiness of characteristic long aggressor wires. Obfuscation strategies which
hamper our proposed mitigation are now described.
Increased Routing Complexity. Aggressor and victim wires can be routed with complex

structures (corners or curves), through multiple layers, or split-up and re-emerge at multiple
points. An adversary can approximate the coupling capacitance to the victim with sophisticated
tools. This capacitance can be kept constant during complex routing. Furthermore, dense
adjacent wires can be camou�aged as a bus by increasing/decreasing the numbers of aggressor
wires or inserting dummy wires to obtain a standard bus width (e.g., 8, 16, and 32 wires).
Victim Threshold Decrease. Another way to decrease the required coupling length is to

change the threshold voltage of the victim gate by doping or body biasing. Dual-Vt design is
common in ICs and allows transistors to be designated as high or low threshold devices. Low
threshold devices are fast and used where the delay is critical, and high threshold devices are
slow and used elsewhere to reduce static power [66].
Increased Aggressor Voltage. Capacitive coupling noise is increased with an increased

aggressor voltage ∆Vaggressor, as seen in Equation 4.2. An adversary might pick a power supply
or charge pump, often required for analog circuits, or memory cells, as aggressors. For example,
EEPROM and �ash circuits require high voltage to erase memory cell states.
DRC Violations. In special scenarios, an adversary might be able to violate DRC without

raising suspicions. In-house fabrication or malicious insiders decrease the wire separation gap.
This is an e�ective way to increase capacitive crosstalk, as discussed in Section 4.3.1.
Dielectric Changes. Changing the dielectric between the routed aggressors and the victim

has an immediate e�ect on the ratio of Cx and the respective ground capacitance. In a visual
inspection process, a reverse engineer needs at least one additional step to see local changes in
the dielectric. With the additional hardware reverse engineering step, the reverse engineer has to
trade o� computation power versus extracting the longest wires and simulating their capacitance
matrix, if the wire length can be further shortened. Hence, the arms race between hiding and
�nding (crosstalk) Trojans continues.

4.7 Discussion

Generality and Impact. We have demonstrated that a capacitive crosstalk Trojan can be used
as a targeted fault injection primitive in two o�ensive use cases for a modern 45nm technology
size. We have also demonstrated the leakage of sensitive cryptographic key material and mounted
a privilege escalation attack on a modern CPU. Since only the layout of the chip was changed,
the standard IC design �ow was not interrupted or altered. To this end, the adversary must
know the position and meaning of the faulted signal (e.g., by reverse engineering).

60

4.7 Discussion

An adversary can circumvent fault injection mitigation techniques in the data and control
paths with additional (crosstalk) Trojans as he has white-box access to the layout. This step
may require additional reverse engineering e�ort.
General Adversary Proceeding. As stated in our threat model, cf. Section 4.2.3, we

assume the possibility of (re)placing-and-routing the layout and approximating the technology
�les. In principle, there are two distinct attack points: (1) before tape-out by a malicious
designer, and (2) after tape-out by a malicious foundry.
In the former case, a malicious designer may insert a crosstalk Trojan during the initial

place-and-route, whereas in the latter case, a malicious foundry is faced with the challenge of
(re-)generating a malicious layout while maintaining the original functionality. In particular, an
adversary may keep original placement information and only re-route the design after Trojan
insertion. As a result of an additional re-routing step, existing cells might be changed (e.g., due to
gate re-sizing) or gates might be added (e.g., bu�ers to meet timing constraints). These changes
do not a�ect the logic function of the abstracted gate-level netlist as discussed in Section 4.6.
To demonstrate the feasibility of zero-gate overhead crosstalk-based Trojans, we utilized a

pre-placed layout in the AES case study (Section 4.4) and added manual straight routes for the
Trojan. The OR1200 case study (Section 4.5) shows the practicality of crosstalk-based Trojan
insertion into a fully placed-and-routed large-scale hardware design.
Stealthiness. To main consistency with existing literature, we de�ne the term stealthiness

as a property that re�ects stealth during testing and operation. Since crosstalk Trojans are
triggered by adversary-selected aggressor wires, wire selection directly a�ects Trojan stealthiness.
To maximize the stealthiness, we must minimize the probability that all aggressor wires switch
simultaneously by accident. For example, in modern complex CPU designs, an adversary can
access a variety of internal wires in exception handling units, power management units, or
debugging units that could serve as potential aggressor wires. Furthermore, primary inputs may
be selected as aggressors that must be activated in a narrow time frame to create an additive
e�ect. In the presence of pipelining (e.g., for an unrolled cryptographic implementation or
processor pipelines), it is possible to stretch an instruction trigger sequence over multiple clock
cycles. A technique by Ghandali et al. [66] can be used to automatically identify rarely switching
paths, i.e. potential aggressor wires.
Reliability. Generally, the adversary tries to maximize both stealthiness and reliability.

In our use cases, we utilized 4 aggressor wires to increase the stealthiness while we assume
the process variations (5% capacitance changes) to be insigni�cant for the reliability. For the
unlikely case that process variations become a practical hurdle, the adversary can increase the
crosstalk noise with the discussed design methods (e.g., increase the wire length, see Section 4.3)
until the e�ect is reliable again. Note that for our parameters a higher number of aggressor wires
will not have a signi�cant bene�cial impact on the induced crosstalk peak as the distance to the
victim wire is the major limiting factor. When aggressor 1 to 4 are switching simultaneously,
they generate a noise peak as close to Vt while the 5th aggressor wire contribution is supposed
to push the peak above. Since the 5th contribution is small, it may become unreliable with
worst-case process variations and environmental changes. Hence, adding a 5th aggressor wire
decreases the reliability, limiting us to 4 aggressor wires to balance stealthiness and reliability
for our parameters.
Generally, an adversary tries to maximize both stealthiness and reliability. In our use cases, we

utilized four aggressor wires to increase the stealthiness while assuming that process variations

61

Chapter 4 Security Implications of Intentional Capacitive Crosstalk

(10% capacitance changes) are insigni�cant for reliability. In the unlikely case that process
variations become a practical hurdle, the adversary can increase the crosstalk noise with the
discussed design methods (e.g., increase the wire length, see Section 4.3) until the e�ect is
reliable again. For our parameters, an increased number of aggressor wires will not have a
signi�cant bene�cial impact on the induced crosstalk peak as the distance to the victim wire is a
major limiting factor. When aggressors 1 to 4 are switching simultaneously, they generate a noise
peak close to Vt while a 5th aggressor wire contribution would not push the peak much higher.
Since the 5th contribution is small, it may become unreliable with worst-case process variations
and environmental changes. Hence, adding a 5th aggressor wire decreases the reliability, limiting
us to four aggressor wires to balance stealthiness and reliability.

4.8 Conclusion

In this paper, we leveraged the parasitic e�ects of closely routed adjacent interconnects to
design parametric malicious circuits, a crosstalk Trojan. Since these Trojans can be realized by
only rerouting existing interconnections, they can possess a zero gate overhead which is both
stealthy and hard to identify with standard visual inspection techniques. In two case studies, we
demonstrated that crosstalk Trojans provide reliable, adversary controllable faults to (1) insert
malicious circuitry in a cryptographic AES IP to leak the secret key and (2) elevate user access
rights to allow arbitrary code execution in ring 0 for a modern and fully-�edged CPU. We then
investigated how the currently employed visual inspection hardware reverse engineering work�ow
has to be enhanced to cope with parametric hardware Trojans in a semi-automatic fashion. To
this end, we developed a novel automated layout-level mitigation which exposes characteristic
wire lengths of crosstalk Trojans. Finally, we highlighted potential implementation strategies
that must be considered for future hardware Trojan detection.
Since we believe that crosstalk Trojans are a building block of stealthy and hard-to-detect

hardware Trojans, we recommend that the research community includes parametric characteri-
zations in the hardware reverse engineering process to detect such advanced hardware Trojans.

62

Part III

Real-World SoC Embedded Security

Analysis

63

Chapter 5

Microcode Mask ROM Extraction from a

modern CPU

Modern x86 processor microcode is an abstraction layer that interprets user-visible
CISC instructions to hardware-internal RISC microinstructions. The microcode ar-
chitecture is the closest partially programmable engine to the hardware, with unknown
security control mechanisms. The purpose is to enable the vendors to modify CPU
behavior in-�eld, and thus patch erroneous microarchitectural hardware processes or
even implement new features. Unfortunately, microcode is proprietary and closed-
source. It is closely hardware-coupled and hard-wired on the die creating a big hurdle
for the security community without access to hardware reverse engineering equipment.
In this chapter we overcome this hardware hurdle and extract a complete microcode
ROM. We explain the structure and reconstruct its physical mapping to understand
the ROM content. This reveals insights into the proprietary CPU innings and shows
a sophisticated, hybrid ROM implementation. This chapter is based on the two pub-
lications [88, 87] in a joint work with Koppe, Kollenda, Fyrbiak and Gawlik.

Contents of this Chapter

5.1 Introduction . 66

5.2 Background and Related Work . 68

5.3 Reverse Engineering Microcode . 70

5.4 Hardware Reverse Engineering of Microcode ROM 73

5.5 Physical Mapping . 79

5.6 Conclusion . 82

Contribution: In the context of this project, my contribution is the deprocessing
of the K8 AMD CPU and the analysis of the microcode Read-Only Memory (ROM)
to retrieve valid microcode instructions with their initial interleaved sequence from a
hardware point of view. Finally a physical mapping from the corrected virtual address
space to hardware ROM has been done.

65

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

5.1 Introduction

Similar to complex software systems, bugs exist in virtually any commercial CPU hardware
and can cause erroneous behaviour [41, 157] that leads to even severe consequences on system
security, e.g., privilege escalation [50, 96] or leakage of cryptographic keys [27, 86, 95, 73, 91, 31].
As hardware bugs are hard to patch after tape-out, errata sheets from embedded to general-
purpose processors inform and warn about incorrect behavior with accompanying workarounds
to prevent hardware damage and safeguard program execution [75, 7]. Such notes contain
instructions for developers on how these bugs can be bypassed, mitigated or improved e.g., by
means of recompilation [101] or binary re-translation [36]. However, these interim solutions are
not always suited for complex hardware design errors which require hardware modi�cations [118].
Dedicated hardware units to counter bugs are imperfect [96, 119] and involve non-negligible
hardware costs [17]. Please note, that hardware bugs can be encountered in any electronic
system containing IC hardware.

Two publicly known hardware bugs, throughout the years, are the infamous Pentium fdiv
bug [157] and the recently shown Spectre and Meltdown [86, 95, 73, 91, 31]. They highlight the
importance of microcode updates in a complex CPU. Hardware bugs in CPUs are usually found
by debugging erroneous behavior[157] or detected during academic research[86, 95, 73, 91, 31].
After deployment, any hardware is �xed and necessary patches become expensive with IC device
numbers in the millions. It shows a clear economic need for �eld updates in order to turn o�
defective parts and patch erroneous behavior, especially when system security or humans safety
is in danger. Note that the implementation of a modern processor involves millions of lines of
HDL code [139] and veri�cation of functional correctness for such processors is still an unsolved
problem [75, 7].

Since the 1970s, x86 processor manufacturers have used microcode to decode complex in-
structions into series of simpli�ed microinstructions for reasons of e�ciency, optimizations,
and diagnostics [112]. From a high-level perspective, microcode is an interpreter between
the user-visible Complex Instruction Set Computer (CISC) Instruction Set Architecture (ISA)
and high-performance internal hardware based on Reduced Instruction Set Computer (RISC)
paradigms [132]. Initially, microcode was implemented in read-only memory, although manufac-
turers introduced an update mechanism by adding a microcode Random Access Memory (RAM)
for patches.

Once an erroneous CPU behavior is discovered e.g. the recent Spectre and Meltdown, man-
ufacturers publish a microcode update, which is loaded through the Basic Input/Output Sys-
tem (BIOS)/Uni�ed Extensible Firmware Interface (UEFI) or OS during the boot process. Due
to the volatile nature of the patch RAM, microcode updates are not persistent and have to be
reloaded after each processor reset or boot. With the possibility of microcode updates, processor
manufacturers obtain the �exibility and reduce costs of correcting erroneous behavior with few
additional hardware resources. Note that both Intel and AMD deploy a microcode update mech-
anism since Pentium Pro (P6) in 1995 [37, 76] and K7 in 1999 [37, 5], respectively. Unfortunately,
CPU vendors keep information about microcode secret. Publicly available documentation and
patents merely state vague claims about how real-world microcode might actually look like, but
provide little other insight. A throughout bug and security evaluation is not possible due to
the big hurdle of hardware reverse engineering. Necessary expensive equipment and delayering
experience limit the researchers access to the internal microcode implementation. Research in

66

5.1 Introduction

hardware reverse engineering has mostly been done on PCB scale systems or small microcon-
trollers. Nevertheless, hardware faults and bad (crypto-)designs have been found [133, 81] in the
past.
Goals. In this chapter, we focus on the hardware ROM of the microcode in a modern x86

CPUs and our goal is to answer the following research questions:

(1) What is microcode and what is its role in x86 CPUs?

(2) How does the microcode update mechanism work?

(3) How is the microcode hardware (ROM) structured?

(4) What is the content of the microcode ROM?

In order to answer Question (1) and (2), we emphasize that information regarding microcode
is scattered among many sources (often only in patents). Hence, an important part of our work
is dedicated to summarize this prerequisite knowledge. Furthermore, we tackle shortcomings
of prior attempted security analyses of x86 microcode, which were not able to reverse engineer
microcode [37, 11], neither from the software nor the hardware side. After we obtain a detailed
understanding of the x86 microcode for several CPU architectures and its performance, we can
derivate hardware assumptions to locate and reverse engineer the microcode implementation.
This allows us to tackle the hardware hurdle and answer questions (3) and (4). As a result, we
obtain an understanding of the inner hardware of CPU updates that would, in the end, allow
us to even generate our own updates that focus on potential applications of microprograms for
both defensive and o�ensive purposes.
Our analysis focuses on the AMD K8/K10 microarchitecture since these CPUs do not use

cryptographic signatures to verify the integrity and authenticity of microcode updates. Note,
that Intel started to cryptographically sign microcode updates in 1995 [37] and AMD started to
deploy strong cryptographic protection in 2011 [37]. We assume that the underlying microcode
update mechanism is similar, but cannot analyze the microcode updates since we cannot decrypt
them.
Contributions. In summary, our main contributions in this chapter are as follows:

� In-depth Analysis of Microcode. We provide an in-depth overview of the opaque role
of microcode in modern CPUs. In particular, we partly reverse engineer the fundamental
ISA of a microcode including the updates as deployed by vendors to patch CPU defects
and errors.

� Hardware Reverse Engineering. We show the hardware reverse engineering �ndings of
a highly optimized hardwired mask ROM in a modern, fully-�edged CPU. The extensive
optimizations are partly known from modern Dynamic random-access memory (DRAM)
structures, transferred to masked ROM. We successfully retrieved single microinstructions
from the masked ROM.

� Physical Mapping. We face the problem of �nding sequential microcode instructions by
emulation and show the result of the mapping directly on the underlying physical mask
ROM. This enables us to read the microcode operation implementation.

67

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

5.2 Background and Related Work

In the following, we �rst provide the background information needed to understand the mi-
crocode and gain basic knowledge for the underlying hardware presented in this chapter. In
addition, we discuss related work that demonstrated mask ROM readout and the capabilities of
microcode.

5.2.1 Microcode Background

Microcode is part of the abstraction layer between the outward facing, complex instruction set
and the inner, simpler hardware-bound architecture of CPUs [132]. During the decoding of an
instruction, di�erent decoders can be used: 1© a direct (or short) path decoder, handling simple
and fast instructions, 2© a long decoder, handling more complex instructions and 3© the vector
(or microcode) decoder, handling the most complex and seldomly used instructions. The direct
and long decoder are directly implemented in hardware, while the vector decoder uses a software-
assisted design. For the rest of this chapter, we call instructions implemented by the direct or
long decoder direct path instructions and those implemented with the help of microcode vector
path instructions. The reason for the hybrid approach is that hardware decoders are in�exible
and costly in hardware, especially in regard to die size, but o�er a faster translation compared to
the microcode decoder, which is clocked and far more complex. Another feature that is realized
with the help of microcode is the ability to update the microcode and thus patch erratas in CPUs
without the need to resort to expensive product recalls and fabrication mask updates [98, 88].
This update functionality is used by Intel, AMD and ARM processors. The vendors provide
the microcode updates and details on how to apply them to BIOS or UEFI vendors and OS
developers. The updates are loaded shortly after the start of the system using a dedicated
Model-speci�c register (MSR). Updating the microcode requires kernel privileges. On modern
CPUs the updates are (believed to be) protected by strong public key cryptography.

5.2.2 Related Work

Before presenting the results of our reverse engineering process, we brie�y review existing liter-
ature on microprogramming, ROM extraction and related topics.
Microprogramming. Since Wilkes' seminal work in 1951 [156], numerous works in academia

as well as industry adopted and advanced microprogrammed CPU designs. Diverse branches
of research related to microprogramming include higher-level microcode languages, microcode
compilers and tools, and microcode veri�cation [8, 112, 141]. Other major research areas focus on
optimization of microcode, i.e., minimizing execution time and memory space [79]. In addition,
several applications of microprogramming were developed [69] such as diagnostics [102].
Since microcode of today's x86 CPUs has not been publicly documented yet, several works

attempted a high-level security analysis for CPUs from both Intel and AMD [37, 11]. Even
though these works reported the workings of the microcode update mechanism, the purpose of
�elds within the microcode update header, and the presence of other metadata, none of the
works was able to reverse engineer the essential microcode encoding. Hence, they were not
able to build microcode updates on their own. Nevertheless we emphasize that [11] has a good
understanding of the microcode hardware, as even a helpful die shot from the K8 is included.

68

5.2 Background and Related Work

We note that Arrigo Triulzi presented at TROOPERS'15 and '16 that he had been able to
patch the microcode of an AMD K8 microarchitecture [146, 147]. However, he did neither
publish the details of his reverse engineering nor the microcode encoding.
Imperfect CPU Design. Although microcode updates can be leveraged to rectify some

erroneous behavior, it is not a panacea. Degrading performance with microcode updates due
to additional condition checks are willingly accepted even though they cannot be applied in
all cases. An infamous example is AMD's K7, where the microcode update mechanism itself
was defective [37, 5]. In order to tackle these shortcomings, diverse techniques have been pro-
posed including dynamic instruction stream editing [43], �eld-programmable hardware [119],
and hardware checks [17, 96].
Trusted Hardware. The security of applications and operating systems builds on top of

the security of the underlying hardware. Typically software is not designed to be executed on
untrusted or potentially malicious hardware [48, 27, 50]. Once hardware behaves erroneously
(regardless of whether deliberately or not), software security mechanisms can be invalidated.
Numerous secure processors and Trusted Platform Modules (TPMs) have been proposed over
the years [138, 97, 45]. Commercially available examples include technologies such as Intel
SGX [44], AMD Paci�ca [6] and ARM Trustzone [14].
However, the periodicity of security-critical faults [75, 7] and undocumented debug features [50]

in closed-source CPU architectures challenges their trustworthiness [44, 117].

5.2.3 Mask ROM Readout

Mask ROMs are used in high volume uCs and CPUs that sacri�ce the �exibility of the memory
content for a better memory density. In large volume production, this cuts costs and results in a
better die yield. Dedicated stand-alone mask ROMs chips can be bought and are mostly found
in old videogame cartridges. These chips can be read electrically and do not o�er any kind of
security. Note however that because such chips are easy to read they often are supplemented by
security processors to prevent trivial cloning. Further advanced mask ROMs can be encrypted or
hard to reach due to modern IC manufacturing processes with up to 13 layers. Hardware reverse
engineering ROM is, therefore, depending on the processes and materials used in manufacturing
as shown in Chapter 2. The ROM readout is hard to automate, resulting in projects distributing
ROM pictures to multiple users for manual readout[1]. Nevertheless, (half-)automated image
processing solutions[2, 13] exists to reduce the process overhead.
Prior (academic) ROM read-out has been done optically on small uCs or dedicated ROM

memory. This reduces preparation e�ort as the masked ROM is somewhere in the top layers.
Small dies from uCs have few layers that can be removed with a single wet chemical deprocessing
step[12, 13, 2, 131] and have a single ROM block, built in a single memory type. Note that some
memory types require additional preparation steps e.g. staining[131].
Prior to delayering the microcode memory structure of the AMD K8 in Section 5.4, we ex-

pected a ROM structure, as a highly optimized, fast memory structure that is build as small as
possible without any performance drawbacks. This saves space on the die during manufacturing
resulting in a smaller die and a better yield. This kind of memory can only be read and never
altered. Thus, we expected NAND or NOR mask ROM.
In this chapter, the DUT is a modern, fully-�edged CPU with around 10 layers and sophisti-

cated technological optimizations with unknown content. The technology size is 130nm.

69

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

Please note that this technology size is hard to resolute with optical microscopes and requires
a precise, accurate delayering process. With regard to the ROM type that has been identi�ed
in the DUT, we refer the interested reader to the NOR mask ROM by contact layer in the
appendix C . A comprehensive collection of ROM types can be found in [131]. The extraction
of the NOR ROM contact layer can be done optically if the deprocessing to reach the respective
layer is adequate.

5.3 Reverse Engineering Microcode

In this section, we provide an overview of the AMD K8 and K10 microarchitecture families and
revealed by our reverse engineering approach. Furthermore, we present our analysis setup and
framework that includes prototype implementations of our concepts and supported our reverse
engineering e�ort in a semi-automated way. This section is not the main contribution of this
thesis. Hence, the software approach is brie�y described to give basic insight necessary for the
hardware reverse engineering.
Our software sided analysis primarily covers AMD K8 and K10 processors because�to the

best of our knowledge�they are the only commercially available, modern x86 microarchitectures
lacking strong cryptographic protection of microcode patches.1

5.3.1 AMD K8 and K10

AMD released new versions of its K8 and K10 processors from 2003 to 2008 and 2008 to 2013,
respectively. Note that the actual production dates may vary and in 2013 only two low-end CPU
models with K10 architecture were released. K9 is the K8's dual-core successor, hence the di�er-
ence is marginal from our point of view. Family 11h and 12h are adapted K10 microarchitectures
for mobile platforms and APUs.
All of these microarchitectures include a microcoded Instruction Decode Unit (IDU). The

x86 instruction set is subdivided into direct path and vector path macroinstructions. The former
mainly represent the frequently used, performance critical macroinstructions (e.g., arithmetic
and logical operations) that are decoded by hardware into up to three microinstructions. The
latter are uncommon or complex, and require decoding by the microcode sequencer and are
stored in microcode ROM. Vector path macroinstructions can produce many microinstructions
and even loops are possible. During execution of the microcode sequencer, hardware decoding is
paused. The microcode is structured in triads of three 64-bit microinstructions and one 32-bit
sequence word [37].In 2002 AMD described an example microinstruction in patent RISC86 [57].
The sequence word indicates that decoding is complete or contains the address of the next triad.
The microcode ROM is addressed in triad-length steps. Thus, an example address space ranging
from 0x0 to 0xbff contains 3,072 triads. The microcode, stored in the ROM, is responsible for
the decoding of vector path macroinstructions and handling of exceptions, such as page faults
and divide-by-zero errors.

1In the context of this section, my contribution the analysis of the microcode ROM to retrieve valid microcode

instructions with their initial interleaved sequence from a hardware point of view. Additionally a physical mapping

from the corrected virtual address space to hardware ROM has been done.

70

5.3 Reverse Engineering Microcode

5.3.2 Update Mechanism

The K7, released in 1999, is AMD's �rst microarchitecture supporting microcode updates. AMD
kept the update feature secret until it was exposed along with three K8 microcode patches in
2004. The update mechanism did not change throughout to the 12h family. The patches and
the update mechanism were reverse engineered from BIOS updates [11]. Microcode updates
are stored in a proprietary �le format, although pieces of information have been reverse en-
gineered [37, 11]. Starting with the K10 microarchitecture, AMD started to publicly release
microcode updates, which bene�ts the Linux open-source microcode update driver. Our view
of the �le format is depicted in Table 5.1 including the header with checksum and number of
triads, match register �elds, and triads. It should be noted that triads in microcode updates are
obfuscated with an algorithm we do not specify further due to ethical considerations.

B↓ Bit→ 0 31 32 63
0 date patch ID
8 patch block len init checksum
16 northbridge ID southbridge ID
24 CPUID magic value
32 match register 0 match register 1
40 match register 2 match register 3
48 match register 4 match register 5
54 match register 6 match register 7
64 triad 0, microinstruction 0
72 triad 0, microinstruction 1
80 triad 0, microinstruction 2
88 triad 0, sequence word triad 1 ...

Table 5.1: Microcode update �le format.

Microcode Update Procedure. The microcode update binary is uploaded to the CPU in
the following way: First, the patch must be placed in accessible virtual address space. Then
the 64-bit virtual address must be written to MSR0xc0010020. Depending on the update size
and microarchitecture, the wrmsr instruction initiating the update takes around 5,000 cycles to
complete. A patch rejection causes a general protection fault. Internally, the update mecha-
nism veri�es the checksum, copies the triads to microcode patch RAM, and stores the match
register �elds in the actual match registers. Patch RAM is mapped into the address space of
the microcode ROM, whereby the patch triads directly follow the read-only triads in the ROM
structure.

Match Registers. The match registers are an integral part of the update mechanism. They
hold a microcode ROM address, intercept the triad stored at that location, and redirect control
to the triad in patch RAM at the o�set match register index · 2. A shared address space
enables microcode in the patch RAM to jump back to microcode ROM, e.g., to reuse existing
triads. Due to the complexity of the microcode update procedure, we assume it is implemented
in microcode itself. We summarize our understanding of the microcode update mechanism in

71

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

Figure 5.1. AMD's patent [98] from 2002 describes an example microcode patch device and
provides an idea of how the internals work.

Figure 5.1: Overview of the AMD microcode update mechanism.

5.3.3 Framework/Low-Noise Environment

Since we did not have access to CPU internals, we had to be able to apply our extracted
(and crafted) microcode updates and experimentally reverse engineer the CPU's behavior (e.g.,
register value changes and memory addresses). To pinpoint exactly where the changes caused
e�ects (down to a single macroinstruction), we had to eliminate any noise from the operating
system code execution or parallel threads out of our control. For example, common operating
systems implement task switching or fully symmetric multiprocessing, which is undesirable in
our setting.
The newly generated updates' code execution is capable of triggering abnormal behavior and

then can most likely cause a system crash. Hence, we built a low-noise environment where we
have full control of all code to realize accurate observation of the CPU state and behavior. It
represents one minimal computer with an AMD CPU that runs our low-noise environment and is
connected to a Raspberry Pi via a serial bus. To enable monitoring and control, the mainboard's
power and reset switch, as well as the power supply's, are connected to GPIO ports. The
Raspberry Pis run Linux and can be remotely controlled from the Internet. These development
machines are used to design test cases and extend the microcode API. Furthermore, test cases
can be launched from the development machines. This process automatically transfers the test
case and the latest API version to the desired nodes(AMD CPUs), which then autonomously
execute the test case and store the results. Our test setup consists of three nodes consisting of
a K8 Sempron 3100+ (2004), K10 Athlon II X2 260 (2010), and K10 Athlon II X2 280 (2013)
processor.
With the low-noise framework, we have successfully reverse engineered some parts of microcode

format that allows us to write our own microcode updates. As the software part of the microcode
is not the main contribution of this thesis, we refer the interested reader to [88]. Even though
we had a basic understanding of the microcode, allowing us to modify and write arbitrarily,

72

5.4 Hardware Reverse Engineering of Microcode ROM

some microcoded instructions remain unknown to us. They used CPU internal registers and
were hard to interpret without code �ow. Hence, we required the masked ROM and hardware
mapping to get a better understanding of the microcode ISA. In the following, we'll concentrate
on the hardware side of the AMD K8 mask ROM.

5.4 Hardware Reverse Engineering of Microcode ROM

In addition to microcode update mechanism, we reverse engineered the microcode in a black box
scenario. The goal of the hardware analysis is to read and analyze the non-volatile microcode
ROM to support reverse engineering of the microcode encoding. Furthermore, in combination
with the physical mapping this allows to analyze the actual implementation of microcoded
macroinstructions(vector path).
Our chosen DUT is a Sempron 3100+ (SDA3100AIP3AX) with a 130nm technology size since

it features the largest size of the target CPU family (which facilitates our analysis). Note that
the larger technology size allows for additional tolerance margins in both the delayering and the
imaging of the individual structures. In contrast to traditional uC, general-purpose x86 CPUs
feature a much larger die size and are stacked up to 12 layers, which increases hardware reverse
engineering e�ort. This CPU is built in a SOI process.
We expected the targeted non-volatile microcode ROM to be stored in a cell array architec-

ture. Other memory types to implement microcode ROM, such as �ash, Electrically Erasable
Programmable Read-only Memory (EEPROM), and RAM, are either too slow, unnecessarily
large, or volatile.

In the following, we depackaged multiple samples from the metal heat sink with a drill. The
underlying die is mounted as a �ip-chip with the backside on top, revealing a silicon bulk on the
backside. On the front side of the die is the PCB to connect the die with the BGA sockel. Hence,
it is removed with fuming acid without damaging the chip protected by the passivation(SIO2).
As an unknown manufacturing technology, we expected multiple failed attempts during depro-
cessing. Therefore, multiple dies for di�erent processing steps have been prepared 1©- 5©. This
allows multiple tries to adjust and �ne-tune the equipment to acquire high quality prepared
microcode mask ROM images.

5.4.1 Microcode masked ROM Overview

The �rst extracted die 1© is thinned from the backside to get possible ROI locations from
the visible functional blocks. Once the ROI location is known, the following deprocessing and
analysis steps[85] facilitates our deprocessing. The backside Si bulk(> 150µm) can be removed
mechanically in a CNC polishing process or with wet chemicals e. g., TetraMethyl Ammonium
Hydroxide (TMAH) and Potassium Hydroxide (KOH). In our case we chose to etch with TMAH
due to the SOI fabrication process of the DUT. The comparison of default bulk processes and the
SOI can be seen in Figure 5.2b. Brie�y, the SOI process is attractive because it greatly reduces
the source/drain di�usion capacitance, resulting in faster and power-e�cient transistors[155].
The interested reader is referred to [155].
The ratio of etch rates between Si and SIO2 is, in a low temperature environment, high enough

to create a highly selective etch process[21]. This allows us to manually by inspecting the sample

73

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

(a) Si-bulk process (b) SOI process

Figure 5.2: Si-bulk process compared to SOI

every 10 minutes, without removing the SOI barrier. After etching for several hours, only the
SiO2 barrier and a very thin SI area under the gates is left. The thin remaining Si does not
block visible light.
The result after the etching can be seen in Figure 5.3. Note that the general die structure is

almost identical to the die image provided in [49] which helped in our initial analysis to identify
our ROI: the microcode ROMs. Please note, that an overview can also be seen by using an
infrared light above 1200 µm after depackaging. This reduces the preparation e�ort but sacri�ces
resolution due to the long wavelength.
We identi�ed four ROM blocks (R1 to R4) consisting each of 8 subarrays. Prior to delayering

the microcode memory structure of the AMD K8, we expected a ROM structure, as a highly
optimized fast memory structure that is build in high density. This saves space on the die,
resulting in a smaller die and a better yield overall being more economic during fabrication.
Thus we expect NAND ROM or NOR ROM. Each introduced ROM can encode the content in
di�erent layers and therefore di�erent layouts [131]. Nevertheless, at this point in time, we did
not know the exact memory structure, so we utilize the thinned die 1© in order to identify the
memory structure in the following.

5.4.2 ROM structure and Memory Identi�cation

The �rst die 1© is further used to identify and understand the ROM structure. Therefore the
CPU is �xed on sample holder and a hole of 5 µ by 5 µm is created with the FIB capabilities
from the ultra thin backside. The sample can be seen in Figure C.2 in the Appendix.
During the process, starting from the backside, we can see every layer of the memory structure.

As memory structures are regular in a big area. The exact location of inspection is not that
critical and even allows failed attempts. As we are capable to navigate with the FIB, we
arbitrarily chose one location. Note, that the mask ROM area is big enough for multiple attempts
if one layer was mistakenly removed and even allows to reveal each layer in a di�erent spot if
desired. The (manually) vectorized images of the intermediate layers can be used to construct
a 3D layout and identify the ROM memory type.
As can be seen in Figure C.2, we encountered a layout resembling Figure C.1 as regular NOR

ROM arrays using the contact layer (vias) for programming. In NOR ROM with active layer
programming, the logic state is encoded by the presence or absence of a transistor [131]. The

74

5.4 Hardware Reverse Engineering of Microcode ROM

Figure 5.3: Die shot of AMD K8 Sempron 3100+ with di�erent CPU parts. The image was
taken with an optical microscope with low magni�cation. The die is corrugated due
to a remaining thickness below 10 micrometers.

memory structure is altered for improved performance, but the basic structure from Figure C.1
is still applicable.
In this case, an advanced bitline-folding architecture [77] encodes the logic state by either

placing a via on the right or the left bitline. The twisted bitline architecture can be seen in
Figure 5.4 and in the bottom of Figure 5.6. This speci�c ROM may only have a single via set
at any time; setting both will result in a short circuit. We used this characteristic to improve
the image processing in Section 5.4.4.

5.4.3 ROM Acquisition

Further samples 2©- 5© are used to extract the ROM content by deprocessing. Multiple samples of
the same CPU type were used to increase the quality and success chance, as the planar delayering
is exponentially di�cult with increasing die size and decreasing technology sizes [108, 85]. In
order to visualize the ROM array, we delayered (e.g., removed individual stacked layers) from
the top of the die. The main challenge during delayering is to uniformly skim planar surfaces
parallel to the individual layers. Typically, the delayering process alternates between removing
a layer and imaging the layer beneath it [108]. Focusing on our ROI, we were able to neglect
other areas of the chip resulting in a more planar surface in the important region(s). Note that

75

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

Figure 5.4: Transposed/Twisted bitline architecture reduces the capacitance between two bit-
lines. Sense Ampli�ers(SA) amplify the di�erence of two bitlines.

hardware reverse engineering of the whole CPU architecture would require a more controlled
delayering process and several months to acquire and process the whole layout. One full ROM
region (R1) can be seen in Figure 5.5.

In order to remove layers, we used a combined approach of CMP and plasma etching. During
inspection of the 7th layer2, we encountered the expected ROM array structure. We acquired
images of individual layers using a SEM since optical microscopy reaches di�raction limits at
this structure size. Compared to colored and more transparent images from optical microscopy,
SEM images only provide a gray-scale channel, but with higher magni�cation. In SEM images,
di�erent materials can be identi�ed due to brightness yield.

The physical storage is composed out of three larger regions of ROM (R1 to R3), which were
later identi�ed as the area containing the operations, and a smaller region (R4) containing the
sequence words. Our work performs permutations such as inversion and interleaving of bit rows
to receive whole operations in correct bit order. The R1 to R4 can be seen in Figure 5.3. In
addition, the algorithm for constructing triads out of three operations is reverse engineered.
The triads are built by loading a single operation out of each of the three regions R1 to R3 and
loading the corresponding sequence word from region R4. Thereby the operations belonging to
one triad have the same o�set relative to the start of their corresponding region. The di�erent

2counted from top to bottom

76

5.4 Hardware Reverse Engineering of Microcode ROM

subregions of a single ROM region are illustrated in Figure 5.5. We will use the same naming
convention in the following.

Figure 5.5: SEM image of region R1 showing arrays A1 to A4 and the SRAM holding the mi-
crocode update.

We were likewise able to locate the microcode patch RAM, which is loaded with the microcode
updates during runtime. The RAM needs to be placed physically close to the rest of the mi-
crocode engine to keep signal paths short. The area between arrays A2 and A3 was classi�ed
as Static Random Access Memory (SRAM) and is marked in Figure 5.5. This location also
contains a visually di�erent control logic, which indicates a di�erent type of storage than the
rest of the region. It should be noted that the usage of two di�erent classes of storage in this
close proximity implies a highly optimized hardware layout, prior unknown in publications to
the best of the authors' knowledge. The SRAM marked in the �gure contains 32×64 bits, which
is the size of data needed for 32 triads per region. This corresponds to the maximum update
size of 32 triads determined in our software experiments. Due to the additional complexity of
implementing a fast readable and writable memory in hardware, the SRAM occupies roughly
the same space as a ROM block with 256 triads. This highlights the better density and hence
the economic advantage of mask ROM.
With the knowledge of the triads size and structure from the former sections, the hardware

layout suggested that the triads are organized in four arrays (A1 to A4) per region (R1 to R4),
with A1, A3 and A4 containing data for 1024 triads each and corresponding 768 triads in A2
which is physically smaller than the other arrays. This organization means that the �rst triad,
will use a microinstruction extracted from R1:A1, R2:A1 and R3:A1 as its operations and the

77

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

sequence word is obtained from R4:A1. As the regions are no longer relevant after combining
the triads, they will be omitted in further notations.

Each of the arrays is subdivided into blocks B1 to B4, each containing 256 triads. The
exception to this is the array A2; while the hardware layout suggests the presence of four blocks
with a smaller number of triads each, we mapped the contents to three blocks with 256 triads
each. This means array A2 contains only 768 triads in contrast to the 1024 triads contained in
the other arrays.

5.4.4 Microcode Extraction

In Figure 5.6, we highlighted how bits are programmed by this memory type. Bright spots
represent a via going down from a metal line, which is either connected to GND or VCC. We
chose to represent the individual cells as set to logical '1' if the left via was set and '0' if
the right one was set. This convention does not necessarily correspond to the correct runtime
interpretation. However, permutations are commonly applied to the ROM memory, hence a
misinterpretation can be corrected in a later analysis step in software.

Figure 5.6: Partially interpreted bits in one ROM subarray.

In order to analyze the microcode ROM bits for any permutations, we processed the acquired
SEM images with a slightly altered rompar script [13]. Using its image processing capabilities,
we transformed the optical via positions into bit values.

Microcode ROM Bit Analysis. In order to group the bit values into microinstructions,
we carefully analyzed the ROM structure and we made three crucial observations:

78

5.5 Physical Mapping

(1) Each alternating column of bits is inverted due to mirroring of existing cells. With a
common GND line in between two cells, as seen in Figure C.1, the structure is more
e�cient.

(2) We identi�ed that the ROM employs a transposed bitline architecture [77], that is often
referred in combination with DRAM techniques. The twisted bitline architecture can be
seen in Figure 5.4 and in the bottom of Figure 5.6. Therefore, the bit inversion has to be
adjusted to each block.

(3) Each block from Figure 5.5 is separated into 32 × 16 bit-columns and 32 rows. One 16
bit-column, as seen in Figure 5.6, can be separated into 2×8 bit each contributing a single
bit to a microinstruction.

With all three observations in mind, we were able to derive microinstructions from the images.
In detail, on row consisting of 32× 16 = 32× 2× 8 bit blocks generates 8 microinstructions by
extracting one bit, always with the same o�set, out of the 8-bit blocks. Hence, the ROM allows
us to �nd more complex microinstructions and experimentally reverse engineer their meaning.
Note, that this only results in multiple unrelated microinstructions, not necessarily consecutive
ordered sequences.
Overall, we identi�ed three ROM blocks (R1 to R3) consisting of 4 subarrays. Each of the 3

ROM blocks has the capability to store 30 kB. Note that our results match the visible blocks
in [49]. Furthermore a small SRAM array was identi�ed which can be seen in Figure 5.5, most
likely being the microcode RAM. We would like to emphasize that this is a rather uncommon
practice and is the �rst time we encounter a hybrid memory structure consisting of RAM and
ROM. As SRAM is a volatile memory type it cannot be read-out optically. We want to remind
that the vias positions are hardwired and cannot be changed after shipping. The only possible
way to patch bugs in the ROM is to employ the microcode update procedure described in
Section 5.3.2 with the shown SRAM.

5.5 Physical Mapping

So far the results are multiple unrelated microinstructions, not necessarily consecutive ordered
sequences. By establishing a link between the addresses used in the microcode ROM and the
physical layout present in the hardware, we try to order the microinstructions in order to read
whole implementations of x86 instructions. We de�ne two di�erent classes of addresses:

� virtual addresses are used when the microcode software refers to a speci�c triad, e.g. in
the match registers or jumps.

� physical addresses are the addresses assigned to triads after ROM readouts with initial
interleaving and reordering.

Please note that the address granularity for microcode is one triad, the individual operations
forming a triad are not addressable. Thus, it is our goal to reverse engineer the mapping of a
given virtual address to its corresponding physical address. In the following, we had made an
educated guess on an initial sequence from the hardware perspective. This initial sequence is in
the following corrected by emulating di�erent microcode sequences possibilities with a developed

79

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

microcode engine. This intermediate order, in combination with the initial hardware ordering
results in the �nal mapping that we present in Section 5.5.2. Please note that this approach is
also applicable to the similar architectures.
In the initial ROM read-out we chose an arbitrary sequence of the arrays A1 to A3 within

one ROI and set A2 at the end to build a big sequence of zeros in the smallest array A2.
This leads us to assume that A2 contains the highest addresses and the ROM is �lled up
with zeros. With the help of this observation, we have been able to cluster tailing zeros by
an 8 microcode interleaving with two consecutive rows alternating. By testing and emulating
di�erent translations, we are able to identify the microinstruction order within the arrays in the
following section.

5.5.1 Microcode Emulation

In this chapter, we have shown the possibility to reverse engineer the microcode content its
update mechanism. The shown microcode ROM is a hard-wired NOR mask ROM that uses
the contact layer for programming. The ROM structure found was a hybrid memory structure,
mixing SRAM in the microcode ROM and share addresses decoders. Further techniques known
from DRAM patents have been identi�ed to improve the performance of the ROM. Around 100
kB ROM content has been retrieved and mapped to the virtual physical addresses within the
microcode address space. With this, the implementation of vector path macro-instructions in
the AMD K8 is known. This allows to analyze the microcode updates and gives a deep insight
of the CPU internals working.
And last but not least in cooperation we are able to implement our own microcode instruc-

tions, in real-world AMD K8 CPUs. Malicious microcode trojans, defense mechanisms(e. g., for
spectre) and utility functions have been shown with microcode updates in [88, 87].

5.5.2 Physical Ordering

The results from the emulation are hence applied to the physical images and therefore gain the
physical order in the raw microcode ROM. Since the approach is in general the same for every
array we describe it with A4 as an example. The �rst microinstruction is in row 0 with o�set(i)
0 on the top-right side in Figure 5.7.
Please note that every row has exactly 8 microinstructions stored. Each block consists of 32

rows. Figure 5.7 shows A4 and the sequence in which order to extract the microinstructions.
Each ith opcode from a row is taken and the arrow to the next row followed. Each same-indexed
instruction from two consecutive rows (which build a row-pair, e. g., r0/r1 and r2/r3 are two
pairs) are alternatively used until the end of the block. This means in each block we iterate
the rows in the following sequence: [0, 1, 4, 5, 8, 9, ..., 28, 29] before increasing the index i and
rerunning this sequence. Since each row has exactly 8 microinstructions, we retrieve 8 × 16
microinstructions in the correct order. Once these 16 rows are retrieved, the next block is read
out in the same way. Please note that this appears like 16 rows per block are left behind. They
are written in a left alignment in Figure 5.7 and will be read-out later in the process.
This sequence is repeated until row 29 from B4 is read. At this point, we identi�ed the next

microinstruction in B4 row 30/31 followed by row 26/27, again starting with the �rst indexed
microcode(i = 0). This is indicated on the left side of Figure 5.7. The sequence for each block on
the left side is [30, 31, 26, 27, 22, 23, ..., 2, 3]. Furthermore, the �ow goes backward from B4 to B1

80

5.5 Physical Mapping

Figure 5.7: Reversed microinstruction mapping in the physical array A4. Beginning in the
topright we acquire 1024 microinstructions with the sketched read-out.

until we reach B1 row 2,3. Again, after one block has reached row 2/3, the o�set i is increased
before jumping in the in next block. In this manner, we retrieve 1024 ordered microinstructions
from array A4.

Array A1, A2, and A3 are similarily build to A4. The same approach can be applied with
minor changes due to the e�ciently designed hardware structures. In fact, A1 and A3 are
inverted (in detail; mirrored along the horizontal axis) to use shared structures. Hence, the
starting point is in the high rows 30,31 of block 4 and the direction is reversed towards lower
indexed rows. Nevertheless, the round-like movement around one array stays the same.

Please note that the high-level regions R1 to R4 need to be interleaved to create a complete
microcode triad. With a minimal sample extracted in the above-mentioned order, the internal
order of the 3 microinstructions that build one triad is gained in a trivial manner due to the
data �ow of registers: R1-R3-R2-R4. Note that R4 is the ROI containing only sequence words
and is set to be the last in any case. For R4, the above-described approach is the same, slightly
altered to the smaller memory structure.

In the end, we have a continuous physical memory space with addresses starting at 0 and in-
creasing with each triad to 0xEFF. This corresponded with the observation that the microcode
patch RAM starts at the address 0xF00 for the K8 series of processors. This allows to 'disas-
semble' the microcode ROM and see the macro-instructions implementation in a custom build
software.

81

Chapter 5 Microcode Mask ROM Extraction from a modern CPU

5.6 Conclusion

In this chapter we have shown the possibility to reverse engineer the microcode content an its
update mechanism. The shown microcode ROM is a hard-wired NOR mask ROM that uses
the contact layer for programming. The ROM structure found was a hybrid memory structure,
mixing SRAM in the microcode ROM and share addresses decoders. Further techniques known
from DRAM patents have been identi�ed to improve the performance of the ROM. Around 100
kB ROM content have been retrieved and mapped to the virtual physical addresses within the
microcode address space. With this, the implementation of vector path macro-instructions in
the AMD K8 are known. This allows to analyze the microcode updates and gives a deep insight
of the CPU internals working.
And last but not least in cooperation we are able to implement our own microcode instruc-

tions, in real-world AMD K8 CPUs. Malicious microcode trojans, defense mechanisms(e. g., for
spectre) and utility functions have been shown with microcode updates in [88, 87].

82

Chapter 6

Conclusion and Future Work

During the course of this thesis, we have dedicated our research e�orts to the application of
hardware reverse engineering. We challenge previous hardware reverse engineering with para-
metric hardware Trojans and utilize SCA to gain crucial gate-level netlist knowledge prior to
deprocessing. The results are summarized below:
In Chapter 3 we revise an approach to pinpoint the ROI for ICs with VC images. This re-

duces the complexity of hardware reverse engineers by gaining apriori knowledge of the location
of security-relevant ROI and allows us to perform EM-based SCA with a better signal-to-noise
ratio. Furthermore, this enables more advanced SCAs like inter-gate leakages discussed in [137]
and reduces the exhaustive search for fault attacks. We use the VC as a side channel that
exploits the capacitive coupling e�ect of top metal layers through the covering passivation. We
can see voltage alterations of the ICs surface in a SEM, which reveals secret information through
top metal-wire voltage changes. Furthermore, we use the VC in multiple SCA approaches to
recover the full AES key. The backside VC or EBP shown in [122] and [123] is implemented to
read secret material. It shows a substantial hardware security threat, as we have shown that
the backside thinning is applicable to large areas and it can be used in a SCA. Future work can
highlight the threat of the backside VC on security microprocessors. If su�cient pinpointing
backside ROI identi�cation techniques, such as photon emission or Laser Voltage Probing (LVP),
prove to be applicable, vendors and designers must respond with defensive techniques.

In Chapter 4, we leveraged parasitic e�ects of closely routed adjacent interconnects to design
parametric malicious circuits, known as a crosstalk Trojan. Since such Trojans can only be
realized by rerouting existing interconnections, they possess a zero gate overhead, which is both
stealthy and di�cult to identify with standard visual inspection techniques. In two case studies,
we demonstrated that crosstalk Trojans provide reliable, adversary controllable faults to (i) in-
sert malicious circuitry in a cryptographic AES IP to leak the secret key and (ii) elevate user
access rights to allow arbitrary code execution in ring 0 for a modern and fully-�edged CPU.
Since we believe that crosstalk Trojans are a building block of stealthy and hard-to-detect hard-
ware Trojans, we recommend that the community include parametric characterizations in the
hardware reverse engineering process to detect such advanced parametric Trojans. Because the
crosstalk Trojan shown is proof of concept design, we believe an implementation with additional
camou�aging techniques in a real chip shows further security threats.

In Chapter 5, we have shown the possibility to reverse engineer the microcode content and
its update mechanism. The microcode ROM shown is a hard-wired NOR mask ROM that uses
the contact layer for programming. Techniques known from RAM structures have been used to
improve the performance of the ROM. Around 100 kB ROM content has been retrieved and

83

Chapter 6 Conclusion and Future Work

mapped to the virtual physical addresses within the microcode address space. In future work,
the ROM content of similar proprietary microcode architectures can be analyzed to improve the
performance and security of the system.

Hardware reverse engineering is a topic that includes many scienti�c areas that can be re-
searched. We strongly believe it can be further improved by automation, robustness, and speed.
As a result, the security community can use it in mid-cost approaches against malicious circuitry
and hardware Trojans. The industry and academic community show increasing interest in this
kind of engineering, based on the number of publications and dedicated devices on the market.

84

Part IV

Appendix

85

Appendix A

Voltage Contrast Side Channel Analysis

Appendix

A.1 Additional Figures

Figure A.1: The ROI from the backside. On the left side the gas-injection needle from the FIB
can be seen.

87

88

Appendix B

Security Implications of Intentional

Capacitive Crosstalk Appendix

B.1 Case Study: Cryptographic Designs

In the following we provide additional implementation speci�cs for the crosstalk Trojans used in
case study on cryptographic designs described in Section 4.4. More precisely, we provide details
on the resource utilization in Table B.1, Trojan speci�cs in Table B.2,

Design Status Routed
Clock frequency of AES 500MHz
Instances 25106
Hard Macros 0
Std Cells 25106
Pads 0
Net 11848
Special Net 2
IO Pins 31
Pins 43944
PG Pins 50212
Average Pins Per Net 3.709

Table B.1: Excerpt of the general design information for AES IP core after place-and-route.

B.2 Case Study: CPUs

Table B.3 shows the �nal design summary.

89

Appendix B Security Implications of Intentional Capacitive Crosstalk Appendix

last_round DFF vt 0.54V
Setup time of last_round DFF 0.06ns
Hold time of last_round DFF 0.12ns
Coupling length of Trojan 1.25mm
Separation between Trojan wires 70nm
Trojan metal layer Metal 3
Crosstalk peak at victim net 676.6mV
Crosstalk width at victim net 0.74ns

Table B.2: Properties of the crosstalk Trojan within the AES core. The last_round DFF is
directly connected to the victim. Depending on this DFF the core starts to output
the ciphertext. The crosstalk peak needs to be 676mV for the DFF to recognize the
signal as logical high.The AES is clocked at 500Mhz with a 45nm technology size.
Minimum DRC separation gap is 70 nm on Metal-3.

(a) The 5 driver cells right before the
crosstalk Trojan. The 4 aggressor wires
are strong inverters while the receiver is
rather weak.

(b) The 5 receiving gate cells. The victim
is connected to a DFF to store the peak
for multiple clock cycles. This will result
in a key leakage if the victim is faulted
with the crosstalk Trojan.

Figure B.1: AES crosstalk Trojan cells �xed placed and routed a priori to the normal place and
route. Source(a) and destination(b) are 1.25mm apart.

Design Status Routed
Instances 1588885
Hard Macros 0
Std Cells 1588885
Pads 0
Net 689858
Special Net 2
#IO Pins 383
Pins 2201664
PG Pins 3177770
Average Pins Per Net 3.191

Table B.3: Excerpt of the general design information for OpenRISC 1200 IP core after place-
and-route.

90

Appendix C

Microcode ROM

C.1 NOR ROM contact-layer

NOR ROM encoded by the contact-layer mask is implemented by connecting the Metal-1
to di�usion by contacts(vias). It can be seen in Figure C.1. When the wordline (Wx) is pulled
high, the corresponding bitlines are pulled to GND, if an transistor is existent by contact. Com-
pared to NOR mask ROM in the active/implant area, this step is done later in the fabrication.
This implements multiple transistors, but only the programmed ones representing a digital '0'
are connected. The size of one cell is 11λ× 7λ.

Figure C.1: NOR Mask ROM by Contact layer from [131]

C.2 Microcode ROM FIB Images

91

Appendix C Microcode ROM

(a) ROM active area (b) ROM poly-Silicon

(c) ROM Vias (d) ROM Metal-1

(e) ROM within metal-1 and bitlines in the
next layer can be seen

Figure C.2: Di�erent ROM images. Images taken in a dual-beam FIB. These layer stacked
resemble the NOR ROM in Figure C.1

92

Bibliography

[1] Image Decode Project. Webpage. [Online]. Available: http://www.progettoemma.net/

dump/.

[2] Silicon Pr0n rom:mask. https://siliconpr0n.org/wiki/doku.php?id=rom:mask.

[3] Defense Science Board Whasington DC. Report of the Defense Science Board Task Force
on High Performance Microchip supply, 2005.

[4] A. Vijayakumar . Physical Design Obfuscation of Hardware: A Comprehensive Investi-
gation of Device and Logic-Level Techniques. IEEE Trans. Information Forensics and
Security, 12(1):64�77, 2017.

[5] Advanced Micro Devices, Inc. AMD Athlon R© Processor Model 10 Revision Guide, 2003.

[6] Advanced Micro Devices, Inc. AMD64 Virtualization Codenamed �Paci�ca� Technology -
Secure Virtual Machine Architecture Reference Manual, 2005.

[7] Advanced Micro Devices, Inc. Revision Guide for AMD Family 16h Models 00h-0Fh
Processors, 2013.

[8] Ashok K. Agrawala and Tomlinson G. Rauscher. Foundations of Microprogramming :
Architecture, Software, and Applications. Academic Press, 1976.

[9] Yousra Alkabani and Farinaz Koushanfar. Active Hardware Metering for Intellectual Prop-
erty Protection and Security. In USENIX Security Symposium, 2007.

[10] Frederic Amiel, Benoit Feix, and Karine Villegas. Power Analysis for Secret Recovering
and Reverse Engineering of Public Key Algorithms. In Selected Areas in Cryptography,
pages 110�125, 2007.

[11] Anonymous. Opteron Exposed: Reverse Engineering AMD K8 Microcode Updates.
[Online]. Available: http://www.securiteam.com/securityreviews/5FP0M1PDFO.html,
2004.

[12] ApertureLabsLtd. Fun with Masked ROMs - Atmel MARC4. http://adamsblog.

aperturelabs.com/2013/01/fun-with-masked-roms.html.

[13] ApertureLabsLtd. Semi-automatic extraction of data from microscopic images of Masked
ROM. https://github.com/ApertureLabsLtd/rompar.

[14] ARM, Inc. ARM Security Technology - Building a Secure System using TrustZone R©

Technology. [Online]. Available: http://infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29GENC-009492C_trustzone_security_whitepaper.pdf,
2005.

93

http://www.progettoemma.net/dump/
http://www.progettoemma.net/dump/
https://siliconpr0n.org/wiki/doku.php?id=rom:mask
http://www.securiteam.com/securityreviews/5FP0M1PDFO.html
http://adamsblog.aperturelabs.com/2013/01/fun-with-masked-roms.html
http://adamsblog.aperturelabs.com/2013/01/fun-with-masked-roms.html
https://github.com/ApertureLabsLtd/rompar
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29 GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29 GENC-009492C_trustzone_security_whitepaper.pdf

Bibliography

[15] Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekounis, and Daniele
Venturi. Secure outsourcing of circuit manufacturing. Cryptology ePrint Archive, Report
2016/527, 2016. https://eprint.iacr.org/2016/527.

[16] Atmel. Atmel AVR XMEGA AU Manual, 04 2013.

[17] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design. In Proceedings of IEEE/ACM International Symposium on Microarchitecture,
MICRO 32, pages 196�207, 1999.

[18] R. Barille. Analytical formulation of the capacitive coupling voltage contrast of a buried
line. Electronics Letters, 29(20):1756�1758, Sept 1993.

[19] Daniel L Barton and Paiboon Tangyunyong. Thermal defect detection techniques. Micro-
electronics failure analysis: desk reference, page 378, 2004.

[20] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, François Poucheret, Bruno
Robisson, and Philippe Maurine. Contactless electromagnetic active attack on ring oscilla-
tor based true random number generator. In Schindler, Werner and Huss, SorinA., editor,
Constructive Side-Channel Analysis and Secure Design, volume 7275 of Lecture Notes in
Computer Science, pages 151�166. Springer Berlin Heidelberg, 2012.

[21] Friedrich Beck. Integrated Circuit Failure Analysis: A Guide to Preparation Techniques.
Wiley, 1998.

[22] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy
Dopant-Level Hardware Trojans, pages 197�214. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[23] Jack D. Benzel. Bugs in Black and White: Imaging IC Logic Levels with Voltage Contrast.
HEWLETT PACKARD JOURNAL, 46:102�106, 1995. 00000.

[24] Kirk J. Bertsche and Jr. Charles, H.K. The Practical Implementation of Voltage Contrast
as a Diagnostic Tool. In Reliability Physics Symposium, 1982. 20th Annual, pages 167�178,
March 1982.

[25] Shivam Bhasin and Debdeep Mukhopadhyay. Fault injection attacks: Attack methodolo-
gies, injection techniques and protection mechanisms. In Claude Carlet, M. Anwar Hasan,
and Vishal Saraswat, editors, Security, Privacy, and Applied Cryptography Engineering,
pages 415�418, Cham, 2016. Springer International Publishing.

[26] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. Hardware trojan attacks: Threat
analysis and countermeasures. Proceedings of the IEEE, 102(8):1229�1247, Aug 2014.

[27] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug Attacks. In CRYPTO, pages 221�240,
2008.

[28] J.B. Bindell and J.N. McGinn. Voltage Contrast SEM Observations with Microprocessor
Controlled Device Timing. In Reliability Physics Symposium, 1980. 18th Annual, pages
55�58, April 1980.

94

https://eprint.iacr.org/2016/527

Bibliography

[29] Andrey Bogdanov and Takanori Isobe. How secure is aes under leakage. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology � ASIACRYPT 2015, pages 361�385,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[30] Christian Boit, Clemens Helfmeier, and Uwe Kerst. Security Risks Posed by Modern IC
Debug and Diagnosis Tools. In Fault Diagnosis and Tolerance in Cryptography (FDTC),
2013 Workshop on, pages 3�11. IEEE, 2013.

[31] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In
USENIX Workshop on O�ensive Technologies (WOOT), 2017.

[32] O Breitenstein, C Schmidt, and D Karg. Thermal failure analysis by IR lock-in thermog-
raphy. Microelectronics failure analysis desk reference, 5th ed., EDFAS, 2004.

[33] Sébastien Briais, Stéphane Caron, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guil-
ley, Jacques-Henri Jourdan, Arthur Milchior, David Naccache, and Thibault Porteboeuf.
3D hardware canaries. In Cryptographic Hardware and Embedded Systems�CHES 2012,
pages 1�22. Springer, 2012.

[34] Carey Robertson. Solving the next parasitic extraction challenge. http:

//www.techdesignforums.com/practice/technique/solving-the-next-parasitic-

extraction-challenge/, May 2018.

[35] Rajat Subhra Chakraborty and Swarup Bhunia. HARPOON: An Obfuscation-Based SoC
Design Methodology for Hardware Protection. IEEE Trans. on CAD of Integrated Circuits
and Systems, 28(10):1493�1502, 2009.

[36] George A Reis Jonathan Chang, David I August, and Robert Cohn Shubhendu S Mukher-
jee. Con�gurable Transient Fault Detection via Dynamic Binary Translation. InWorkshop
on Architectural Reliability, 2006.

[37] Daming D. Chen and Gail-Joon Ahn. Security Analysis of x86 Processor Microcode.
[Online]. Available: https://www.dcddcc.com/docs/2014_paper_microcode.pdf, 2014.

[38] G. H. Chisholm, R. L. Vero�, S. T. Eckmann, and C. M. Lain. Understanding integrated
circuits. IEEE Design & Test of Computers, 16:26�37, 04 1999.

[39] Robert Chivas and Scott Silverman Michael DiBattista. Adaptive grinding and polishing
of silicon integrated circuits to ultra-thin remaining thickness, 11 2015.

[40] Christophe Clavier. An Improved SCARE Cryptanalysis Against a Secret A3/A8 GSM
Algorithm. In Information Systems Security, pages 143�155. Springer-Verlag, 2007.

[41] Tim Coe. Inside the Pentium FDIV bug. Dr. Dobb's Journal of Software Tools, 20(4) ,
April 1995.

[42] Jason Cong, David Zhigang Pan, and Prasanna V. Srinivas. Improved crosstalk modeling
for noise constrained interconnect optimization. In Proceedings of the 2001 Asia and
South Paci�c Design Automation Conference, ASP-DAC '01, pages 373�378, New York,
NY, USA, 2001. ACM.

95

http://www.techdesignforums.com/practice/technique/solving-the-next-parasitic-extraction-challenge/
http://www.techdesignforums.com/practice/technique/solving-the-next-parasitic-extraction-challenge/
http://www.techdesignforums.com/practice/technique/solving-the-next-parasitic-extraction-challenge/
https://www.dcddcc.com/docs/2014_paper_microcode.pdf

Bibliography

[43] Marc L Corliss, E Christopher Lewis, and Amir Roth. DISE: A Programmable Macro En-
gine for Customizing Applications. In International Symposium on Computer Architecture,
pages 362�373, 2003.

[44] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive,
Report 2016/086, 2016. [Online]. Available: http://eprint.iacr.org/2016/086.

[45] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware Ex-
tensions for Strong Software Isolation. In USENIX Security Symposium, pages 857�874,
2016.

[46] Olivier Crépel, Felix Beaudoin, Lionel Dantas de Morais, Gérald Haller, C. Goupil,
Philippe Perdu, Romain Desplats, and Dean Lewis. Backside hot spot detection using
liquid crystal microscopy. Microelectronics Reliability, 42(9-11):1741�1746, 2002.

[47] R. Daudigny, H. Ledig, F. Muller, and F. Valette. SCARE of the DES. In Applied
Cryptography and Network Security, volume 3531 of Lecture Notes in Computer Science,
pages 393�406, 2005.

[48] Theo de Raadt. Intel Core 2. openbsd-misc mailing list. [Online]. Available: http://marc.
info/?l-openbsd-isc&m=118296441702631, 2007.

[49] de Vries. Understanding the detailed Architecture of AMD's 64 bit Core.
http://www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_

AMDs_64bit_Core.html.

[50] Loïc Du�ot. CPU Bugs, CPU Backdoors and Consequences on Security. In ESORICS,
pages 580�599, 2008.

[51] Roger Durà, Jofre Pallarès, Raúl Quijada, Xavier Formatjé, Salvador Hidalgo, and Fran-
cisco Serra-Graells. Fast and robust topology-based logic gate identi�cation for automated
ic reverse engineering. In ISTFA 2017, 2017.

[52] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. Private circuits
iii: Hardware trojan-resilience via testing ampli�cation. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS '16, pages 142�153,
New York, NY, USA, 2016. ACM.

[53] Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. Building a side channel based
disassembler. In Transactions on computational science X, pages 78�99. Springer-Verlag,
2010.

[54] W.C. Elmore, Los Alamos Scienti�c Laboratory, and U.S. Atomic Energy Commission.
Transient response of damped linear network with particular regard to wideband ampli�ers.
Atomic Energy Commission, 1947.

[55] Maik Ender, Samaneh Ghandali, Amir Moradi, and Christof Paar. The �rst thorough
side-channel hardware trojan. Cryptology ePrint Archive, Report 2017/865, 2017. http:
//eprint.iacr.org/2017/865.

96

http://eprint.iacr.org/2016/086
http://marc.info/?l-openbsd-isc&m=118296441702631
http://marc.info/?l-openbsd-isc&m=118296441702631
http://www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_AMDs_64bit_Core.html
http://www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_AMDs_64bit_Core.html
http://eprint.iacr.org/2017/865
http://eprint.iacr.org/2017/865

Bibliography

[56] FastFieldSolvers. FasterCap - Capacitance extraction at scale, June, 2018. [Online] Avail-
able: https://www.fastfieldsolvers.com/fastercap.htm.

[57] John G. Favor. Risc86 instruction set, January 1 2002. US Patent 6,336,178.

[58] J. Ferrigno and M. Hlavac. When AES blinks: introducing optical side channel. Informa-
tion Security, IET, 2(3):94�98, September 2008.

[59] Forte, Domenic and Bhunia, Swarup and Tehranipoor, Mark M. Hardware Protection
through Obfuscation. Springer, 1 edition, 2017.

[60] Mike Fournigault, Pierre-Yvan Liardet, Yannick Teglia, Alain Trémeau, and F. Robert-
Inacio. Reverse Engineering of Embedded Software Using Syntactic Pattern Recognition.
In On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 527�
536, 2006.

[61] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Ho�mann, S. Hoppach, M. Wilhelm, T. Wei-
dlich, R. Tessier, and C. Paar. HAL�the missing piece of the puzzle for hardware reverse
engineering, trojan detection and insertion. IEEE Transactions on Dependable and Secure
Computing, 2018, to appear.

[62] Marc Fyrbiak, Sebastian Strauss, Christian Kison, Sebastian Wallat, Malte Elson, Nikol
Rummel, and Christof Paar. Hardware reverse engineering: Overview and open challenges.
In IEEE 2nd International Veri�cation and Security Workshop, IVSW 2017, Thessaloniki,
Greece, July 3-5, 2017, pages 88�94, 2017.

[63] Ravikishore Gandikota. Crosstalk noise analysis for nano-meter vlsi circuits. 01 2009.

[64] Adrià Gascón, Pramod Subramanyan, Bruno Dutertre, Ashish Tiwari, Dejan Jovanovi¢,
and Sharad Malik. Template-based circuit understanding. In Proceedings of the 14th
Conference on Formal Methods in Computer-Aided Design, FMCAD '14, pages 17:83�
17:90, Austin, TX, 2014. FMCAD Inc.

[65] Gbur, Jerzy. Advanced Encryption Standard (AES), 2006. https://opencores.org/

project,aes_128_192_256,overview.

[66] Samaneh Ghandali, Georg T. Becker, Daniel Holcomb, and Christof Paar. A Design
Methodology for Stealthy Parametric Trojans and Its Application to Bug Attacks, pages
625�647. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[67] Ilias Giechaskiel and Ken Eguro. Information leakage between FPGA long wires. CoRR,
abs/1611.08882, 2016.

[68] Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal, and F. Valette. Defeating
Any Secret Cryptography with SCARE Attacks. In Progress in Cryptology - LATIN-
CRYPT 2010 , pages 273�293. Springer-Verlag, 2010.

[69] Stanley Habib. Microprogrammed Enhancements to Higher Level Languages - an
Overview. In Workshop on Microprogramming, pages 80�84, 1974.

97

https://www.fastfieldsolvers.com/fastercap.htm
https://opencores.org/project,aes_128_192_256,overview
https://opencores.org/project,aes_128_192_256,overview

Bibliography

[70] S. K. Haider, C. Jin, M. Ahmad, D. Shila, O. Khan, and M. van Dijk. Advancing the state-
of-the-art in hardware trojans detection. IEEE Transactions on Dependable and Secure
Computing, pages 1�1, 2017.

[71] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the iscas-85 benchmarks: a case
study in reverse engineering. IEEE Design Test of Computers, 16(3):72�80, 1999.

[72] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith. Overcoming an
untrusted computing base: Detecting and removing malicious hardware automatically. In
2010 IEEE Symposium on Security and Privacy, pages 159�172, May 2010.

[73] Jann Horn. Project zero: Reading privileged memory with a side-channel.
[Online]. Available: https://googleprojectzero.blogspot.co.at/2018/01/reading-

privileged-memory-with-side.html, 2018.

[74] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara. Securing com-
puter hardware using 3d integrated circuit (IC) technology and split manufacturing for
obfuscation. In Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), pages 495�510, Washington, D.C., 2013. USENIX.

[75] Intel Corporation. 6th Generation Intel R© Processor Family Speci�cation Update, 2016.

[76] Intel Corporation. Pentium R© Pro Processor Speci�cation Update, 2016.

[77] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann Publishers Inc., 2007.

[78] JohnDMcMaster. Silicon Pr0n tools. https://github.com/JohnDMcMaster/pr0ntools.

[79] Louise H Jones. A Survey of Current Work in Microprogramming. Computer, 8(8):33�38,
August 1975.

[80] Andrew Kahng, Sudhakar Muddu, and Devendra Vidhani. Noise and delay estimation for
coupled rc interconnects. In In IEEE AISC/SoC, 1999.

[81] Markus Kammerstetter, Markus Muellner, Daniel Burian, Christian Platzer, and Wolfgang
Kastner. Breaking Integrated Circuit Device Security Through Test Mode Silicon Reverse
Engineering. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS '14, pages 549�557, New York, NY, USA, 2014. ACM.

[82] Shahrzad Keshavarz, Falk Schellenberg, Bastian Richter, Christof Paar, and Daniel Hol-
comb. Sat-based reverse engineering of gate-level schematics using fault injection and
probing. CoRR, abs/1802.08916, 2018.

[83] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and
Yuanyuan Zhou. Designing and implementing malicious hardware. In Proceedings of
the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, LEET'08, pages
5:1�5:8, Berkeley, CA, USA, 2008. USENIX Association.

98

https://googleprojectzero.blogspot.co.at/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.co.at/2018/01/reading-privileged-memory-with-side.html
https://github.com/JohnDMcMaster/pr0ntools

Bibliography

[84] C. Kison, O. M. Awad, M. Fyrbiak, and C. Paar. Security implications of intentional
capacitive crosstalk. IEEE Transactions on Information Forensics and Security, pages
1�1, 2019.

[85] Christian Kison, Jürgen Frinken, and Christof Paar. Finding the aes bits in the haystack:
Reverse engineering and sca using voltage contrast. In CHES, pages 641�660. Springer,
2015.

[86] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. ArXiv e-prints, 2018.

[87] Benjamin Kollenda, Marc Fyrbiak, Christian Kison Philipp Koppe, Christof Paar, and
Thorsten Holz. Pending constructive microcode: Supplementing systems defenses with
microcode. In CCCS 2018), Toronto, Canada, 2018. ACM.

[88] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik,
Christof Paar, and Thorsten Holz. Reverse engineering x86 processor microcode. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1163�1180, Vancouver, BC,
2017. USENIX Association.

[89] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian. Parametric trojans for fault-injection
attacks on cryptographic hardware. In 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography, pages 18�28, Sept 2014.

[90] D. Lagunovsky, S. Ablameyko, and M. Kutas. Recognition of integrated circuit images
in reverse engineering. In Proceedings. Fourteenth International Conference on Pattern
Recognition (Cat. No.98EX170), volume 2, pages 1640�1642 vol.2, Aug 1998.

[91] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring �ne-grained control �ow inside sgx enclaves with branch shadowing. In
USENIX Security Symposium, pages 16�18, 2017.

[92] W. Li, Z. Wasson, and S. A. Seshia. Reverse engineering circuits using behavioral pattern
mining. In 2012 IEEE International Symposium on Hardware-Oriented Security and Trust,
pages 83�88, June 2012.

[93] Wenchao Li, Adrià Gascón, Pramod Subramanyan, Wei Yang Tan, Ashish Tiwari, Sharad
Malik, Natarajan Shankar, and Sanjit A. Seshia. Wordrev: Finding word-level structures
in a sea of bit-level gates. In HOST, pages 67�74, 06 2013.

[94] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan side-
channels: Lightweight hardware trojans through side-channel engineering. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES
2009, pages 382�395, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[95] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.
ArXiv e-prints, 2018.

99

Bibliography

[96] M. Hicks et.al. SPECS: A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. In ASPLOS, pages 517�529, 2015.

[97] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John
Kubiatowicz, and Dawn Song. PHANTOM: practical oblivious computation in a secure
processor. In CCS, pages 311�324, 2013.

[98] Kevin J. McGrath and James K. Pickett. Microcode patch device, August 27 2002. US
Patent 6,438,664.

[99] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang. Gate-level netlist reverse engineering
for hardware security: Control logic register identi�cation. In 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1334�1337, May 2016.

[100] T. Meade, S. Zhang, and Y. Jin. Netlist reverse engineering for high-level functionality
reconstruction. In 2016 21st Asia and South Paci�c Design Automation Conference (ASP-
DAC), pages 655�660, Jan 2016.

[101] Albert Meixner and Daniel J. Sorin. Detouring: Translating Software to Circumvent Hard
Faults in Simple Cores. In IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN, pages 80�89, 2008.

[102] Stephen W. Melvin and Yale N. Patt. SPAM: A Microcode Based Tool for Tracing Oper-
ating Sytsem Events. SIGMICRO Newsl., 19(1-2):58�59, June 1988.

[103] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yo�a. Generation of performance con-
straints for layout. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 8(8):860�874, Aug 1989.

[104] Nangate. Freepdk45nm process design kit. https://www.eda.ncsu.edu/wiki/

FreePDK45:Contents, August 2011.

[105] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz. Reverse-engineering a
cryptographic r�d tag. In Proceedings of the 17th Conference on Security Symposium,
SS'08, pages 185�193, Berkeley, CA, USA, 2008. USENIX Association.

[106] Roman Novak. Side-Channel Based Reverse Engineering of Secret Algorithms. In Pro-
ceedings of the Twelfth International Electrotechnical and Computer Science Conference ,
(ERK 2003), pages 25�26, 2003.

[107] OpenCores. Openrisc 1200 ip core specifcation. https://www.isy.liu.se/en/edu/kurs/
TSEA44/OpenRISC/or1200_spec.pdf, 2001.

[108] Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina Shahbazmo-
hamadi, Lei Wang, John Chandy, and Mark Tehranipoor. A Survey on Chip to System
Reverse Engineering. J. Emerg. Technol. Comput. Syst., 13(1):6:1�6:34, April 2016.

[109] J. Rajendran, V. Jyothi, and R. Karri. Blue team red team approach to hardware trust
assessment. In 2011 IEEE 29th International Conference on Computer Design (ICCD),
pages 285�288, Oct 2011.

100

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.isy.liu.se/en/edu/kurs/TSEA44/OpenRISC/or1200_spec.pdf
https://www.isy.liu.se/en/edu/kurs/TSEA44/OpenRISC/or1200_spec.pdf

Bibliography

[110] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and Ramesh Karri. Security Anal-
ysis of Integrated Circuit Camou�aging. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer & Communications Security, CCS '13, pages 709�720, New York,
NY, USA, 2013. ACM.

[111] Chethan Ramesh, Shivukumar B. Patil, Siva Nishok Dhanuskodi, George Provelengios,
Sébastien Pillement, Daniel Holcomb, and Russell Tessier. FPGA Side Channel Attacks
without Physical Access. In International Symposium on Field-Programmable Custom
Computing Machines, page paper#116, Boulder, United States, April 2018.

[112] Tomlinson Gene Rauscher and Phillip M. Adams. Microprogramming: A Tutorial and
Survey of Recent Developments. IEEE Trans. Computers, 29(1):2�20, 1980.

[113] D. Real, F. Valette, and M. Drissi. Enhancing correlation electromagnetic attack using pla-
nar near-�eld cartography. In Design, Automation Test in Europe Conference Exhibition,
2009. DATE '09., pages 628�633, April 2009.

[114] Chris Richardson. Contoured Device Sample Preparation for 5 um Remaining Silicon
Thickness (RST) Tolerances, 2014.

[115] Ruediger Rosenkranz. Failure localization with active and passive voltage contrast in FIB
and SEM. Journal of Materials Science: Materials in Electronics, 22(10):1523�1535, 2011.

[116] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A Primer on Hardware Security:
Models, Methods, and Metrics. Proceedings of the IEEE, 102(8):1283�1295, 2014.

[117] Joanna Rutkowska. Intel x86 considered harmful. [Online]. Available: https://blog.

invisiblethings.org/2015/10/27/x86_harmful.html, 2015.

[118] S. Narayanasamy et. al. Patching Processor Design Errors. In International Conference
on Computer Design ICCD, pages 491�498, 2006.

[119] Smruti Sarangi, Satish Narayanasamy, Bruce Carneal, Abhishek Tiwari, Brad Calder, and
Josep Torrellas. Patching Processor Design Errors with Programmable Hardware. IEEE
Micro, 27(1):12�25, 2007.

[120] L. Sauvage, S. Guilley, J.-L. Danger, N. Homma, and Y. Hayashi. Practical results of
EM cartography on a FPGA-based RSA hardware implementation. In Electromagnetic
Compatibility (EMC), 2011 IEEE International Symposium on, pages 768�772, Aug 2011.

[121] Laurent Sauvage, Sylvain Guilley, and Yves Mathieu. Electromagnetic Radiations of FP-
GAs: High Spatial Resolution Cartography and Attack on a Cryptographic Module. ACM
Trans. Recon�gurable Technol. Syst., 2(1):4:1�4:24, March 2009.

[122] Rudolf Schlangen, R Leihkauf, U Kerst, Christian Boit, and Bjorn Kruger. Functional IC
analysis through chip backside with nano scale resolution-E-beam probing in FIB trenches
to STI level. In Physical and Failure Analysis of Integrated Circuits, 2007. IPFA 2007.
14th International Symposium on the. IEEE, 2007.

101

https://blog.invisiblethings.org/2015/10/27/x86_harmful.html
https://blog.invisiblethings.org/2015/10/27/x86_harmful.html

Bibliography

[123] Rudolf Schlangen, Reiner Leihkauf, Uwe Kerst, Christian Boit, Rajesh Jain, Tahir Malik,
K Wilsher, Ted Lundquist, and Bjorn Kruger. Backside e-beam probing on nano scale
devices. In 2007 IEEE International Test Conference, 2007.

[124] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic, and Jean-Pierre
Seifert. Simple Photonic Emission Analysis of AES. In Emmanuel Prou� and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems � CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 41�57. Springer Berlin Heidelberg, 2012.

[125] Kenneth L. Shepard and Vinod Narayanan. Noise in deep submicron digital design. In
Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design,
ICCAD '96, pages 524�531, Washington, DC, USA, 1996. IEEE Computer Society.

[126] Y. Shi, B. H. Gwee, Ye Ren, Thet Khaing Phone, and Chan Wai Ting. Extracting func-
tional modules from �attened gate-level netlist. In 2012 International Symposium on
Communications and Information Technologies (ISCIT), pages 538�543, Oct 2012.

[127] Y. Shi, C. W. Ting, B. H. Gwee, and Y. Ren. A highly e�cient method for extracting fsms
from �attened gate-level netlist. In Proceedings of 2010 IEEE International Symposium
on Circuits and Systems, pages 2610�2613, May 2010.

[128] Y. Shiyanovskii, F. Wol�, A. Rajendran, C. Papachristou, D. Weyer, and W. Clay. Process
reliability based trojans through nbti and hci e�ects. In 2010 NASA/ESA Conference on
Adaptive Hardware and Systems, pages 215�222, June 2010.

[129] S. Skorobogatov. Using Optical Emission Analysis for Estimating Contribution to Power
Analysis. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009 Workshop on,
pages 111�119, Sept 2009.

[130] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning discovers
backdoor in military chip. In Proceedings of the 14th international conference on Cryp-
tographic Hardware and Embedded Systems, CHES'12, pages 23�40, Berlin, Heidelberg,
2012. Springer-Verlag.

[131] Sergei P. Skorobogatov. Semi-Invasive Attacks � A New Approach to Hardware Security
Analysis. PhD thesis, University of Cambridge, 2005.

[132] William Stallings. Computer Organization and Architecture: Designing for Performance
(7th Edition). Prentice-Hall, Inc., 2005.

[133] Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gregor Leander, David Oswald, Falk
Schellenberg, and Christof Paar. Fuming acid and cryptanalysis: Handy tools for over-
coming a digital locking and access control system. In Ran Canetti and JuanA. Garay,
editors, Advances in Cryptology CRYPTO 2013, volume 8042 of Lecture Notes in Computer
Science, pages 147�164. Springer Berlin Heidelberg, 2013.

[134] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan, A. Tiwari, N. Shankar,
S. A. Seshia, and S. Malik. Reverse engineering digital circuits using structural and func-
tional analyses. IEEE Transactions on Emerging Topics in Computing, 2(1):63�80, March
2014.

102

Bibliography

[135] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Malik.
Reverse engineering digital circuits using functional analysis. In 2013 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1277�1280, March 2013.

[136] Takeshi Sugawara, Daisuke Suzuki, Ryoichi Fujii, Shigeaki Tawa, Ryohei Hori, Mitsuru
Shiozaki, and Takeshi Fujino. Reversing stealthy dopant-level circuits. In Cryptographic
Hardware and Embedded Systems�CHES 2014, pages 112�126. Springer, 2014.

[137] Takeshi Sugawara, Daisuke Suzuki, Minoru Saeki, Mitsuru Shiozaki, and Takeshi Fujino.
On Measurable Side-Channel Leaks Inside ASIC Design Primitives. In Guido Bertoni and
Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Systems - CHES
2013, volume 8086 of Lecture Notes in Computer Science, pages 159�178. Springer Berlin
Heidelberg, 2013.

[138] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas Devadas.
AEGIS: Architecture for Tamper-Eevident and Tamper-Resistant Processing. In Interna-
tional Conference on Supercomputing, pages 160�171, 2003.

[139] Sun Microsystems, Inc. OpenSPARC Overview. [Online]. Available: http://www.oracle.
com/technetwork/systems/opensparc/index.html.

[140] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA trojans
through detecting and weakening of cryptographic primitives. IEEE Trans. on CAD of
Integrated Circuits and Systems, 34(8):1236�1249, 2015.

[141] T. Arons et. al. Formal Veri�cation of Backward Compatibility of Microcode. In CAV,
pages 185�198, 2005.

[142] Ming Tang, Zhenlong Qiu, Weijie Li, Shubo Liu, and Huanguo Zhang. Power Analysis
Based Reverse Engineering on the Secret Round Function of Block Ciphers. In Data and
Knowledge Engineering, pages 175�188. Springer-Verlag, 2012.

[143] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan taxonomy and detection.
IEEE Design Test of Computers, 27(1):10�25, Jan 2010.

[144] Li Tian. Simple, novel and low cost numerical aperture increasing lens system for high
resolution infrared image in backside failure analysis . In Physical and Failure Analysis
of Integrated Circuits (IPFA), 2014 IEEE 21st International Symposium on the. 2014.

[145] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse Engineering, pages
363�381. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[146] Arrigo Triulzi. Pneumonia, shardan, antibiotics and nasty mov: a dead hand's tale.
[Online]. Available: https://www.troopers.de/events/troopers15/449_pneumonia_

shardan_antibiotics_and_nasty_mov_a_dead_hands_tale/, 2015.

[147] Arrigo Triulzi. The chimaera processor. [Online]. Available: https://www.troopers.de/
events/troopers16/655_the_chimaera_processor/, 2016.

103

http://www.oracle.com/technetwork/systems/opensparc/index.html
http://www.oracle.com/technetwork/systems/opensparc/index.html
https://www.troopers.de/events/troopers15/449_pneumonia_shardan_antibiotics_and_nasty_mov_a_dead_hands_tale/
https://www.troopers.de/events/troopers15/449_pneumonia_shardan_antibiotics_and_nasty_mov_a_dead_hands_tale/
https://www.troopers.de/events/troopers16/655_the_chimaera_processor/
https://www.troopers.de/events/troopers16/655_the_chimaera_processor/

Bibliography

[148] K. Ura, H. Fujioka, and T. Hosokawa. Stroboscopic scanning electron microscope to
observe two-dimensional and dynamic potential distribution of semiconductor devices. In
Electron Devices Meeting, 1977 International, volume 23, pages 502�505, 1977.

[149] Katsumi URA, Hiromu FUJIOKA, and Teruo HOSOKAWA. Picosecond Pulse Strobo-
scopic Scanning Electron Microscope. Journal of Electron Microscopy, 27(4):247�252,
1978.

[150] D. Velenis, M. Stucchi, E. J. Marinissen, B. Swinnen, and E. Beyne. Impact of 3d design
choices on manufacturing cost. In 2009 IEEE International Conference on 3D System
Integration, pages 1�5, Sept 2009.

[151] Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse engineering Java
Card applets using power analysis. In Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2
international conference on Information Security Theory and Practices. Smart Cards, Mo-
bile and Ubiquitous Computing Systems, WISTP'07, pages 138�149. Springer-Verlag, 2007.

[152] B. Victor and K. Keutzer. Bus encoding to prevent crosstalk delay. In IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest
of Technical Papers (Cat. No.01CH37281), pages 57�63, Nov 2001.

[153] AdamWaksman and Simha Sethumadhavan. Silencing hardware backdoors. In Proceedings
of the 2011 IEEE Symposium on Security and Privacy, SP '11, pages 49�63, Washington,
DC, USA, 2011. IEEE Computer Society.

[154] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. Fanci: Identi�cation of
stealthy malicious logic using boolean functional analysis. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS '13, pages 697�
708, New York, NY, USA, 2013. ACM.

[155] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective,
pages 680�681. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[156] Maurice V Wilkes. The Best Way to Design an Automatic Calculating Machine. In The
Early British Computer Conferences, pages 182�184. MIT Press, 1989.

[157] Alexander Wolfe. For Intel, it's a case of FPU all over again. EETimes [Online]. Available:
http://www.fool.com/EETimes/1997/EETimes970516d.htm, 1997.

[158] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester. A2: Analog malicious hardware.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 18�37, May 2016.

[159] J. Zhang, Feng Yuan, Lingxiao Wei, Zelong Sun, and Q. Xu. Veritrust: Veri�cation for
hardware trust. In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1�8, May 2013.

[160] Jie Zhang, Feng Yuan, and Qiang Xu. Detrust: Defeating hardware trust veri�cation with
stealthy implicitly-triggered hardware trojans. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS '14, pages 153�166, New
York, NY, USA, 2014. ACM.

104

http://www.fool.com/EETimes/1997/EETimes970516d.htm

List of Abbreviations

AES Advanced Encryption Standard

AFM Atomic Force Microscopy

ASIC Application Speci�c Integrated Circuit

AVC Active Voltage Contrast

BEOL Back End of Line

BIB Broad Ion Beam

BGA Ball Grid Array

BIOS Basic Input/Output System

CCVC Capacitive Coupled Voltage Contrast

CISC Complex Instruction Set Computer

CMOS Complementary Metal Oxide Semiconductor

CMP Chemical Mechanical Polishing

CNC Computerized Numerical Control

CPU Central Processing Unit

DFF D-Flip�op

DRAM Dynamic random-access memory

DRC Design Rule Check

DUT Device Under Test

DVC Dynamic Voltage Contrast

EBP E-beam probing

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-only Memory

EM electro-magnetic

FA Failure Analysis

FEOL Front End of Line

FF Flip Flop

105

Abbreviations

FI Fault Injection

FIB Focused Ion Beam

FMI Fluorescent Microthermal Imaging

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPU Graphics Processing Unit

IC Integrated Circuit

IDU Instruction Decode Unit

I/O Input/Output

IP Intellectual Property

IRDS International Roadmap For Devices And Systems

ISA Instruction Set Architecture

KOH Potassium Hydroxide

LC Liquid Crystal

LVP Laser Voltage Probing

LVS Layout Versus Schematic

MSR Model-speci�c register

NAIL Numerical Aperture Increasing Lens

OS Operating System

PCB Printed Circuit Board

PC Personal Computer

PEX Parasitic Exctraction

PICA Picosecond Imaging Circuit Analysis

POC Proof of Concept

PVC Passive Voltage Contrast

QE Quantum E�ciency

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROI Region of Interest

ROM Read-Only Memory

RST Remaining Silicon Thickness

106

Abbreviations

RTL Register Transfer Level

SC Side Channel

SCA Side-Channel Analysis

SCARE Side Channel Analysis for Reverse Engineering

SEM Scanning Electron Microscope

SNR Signal-to-Noise Ratio

SOD spin-on dielectric

SOI Silicon-on-Insulator

SRAM Static Random Access Memory

SSCA Simple Side Channel Analysis

STI Shallow Trench Isolation

TLD Through the Lens Detector

TMAH TetraMethyl Ammonium Hydroxide

TPM Trusted Platform Module

TPU Tensor Processing Unit

uC Microcontroller

UEFI Uni�ed Extensible Firmware Interface

VC Voltage Contrast

VCSCA Voltage Contrast Side Channel Attack

107

108

List of Figures

1.1 Multiple packaged micrcontroller ICs(left) and a depackaged IC(right). 3
1.2 An incomplete intersection Diagram of Hardware Reverse Engineering, the Failure

Analysis coupled with the IC Design and Side Channel Attacks point out some
possible interdisciplinary topics. 8

2.1 IC schematic By Cepheiden - self made (from university scripts and scienti�c
papers), CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1445444 13

2.2 IC Reverse Engineering compared to the IC design process. LVS: Layout versus
Schematic; DRC: Design Rule Check. *The Placed and Routed Design (P&R De-
sign) includes cell instances for proprietary standard cells (for the fab) during the
IC Design process, in contrast to unannotated designs during Hardware Reverse
Engineering. Contributions of this thesis are shown in green. 14

2.3 Isotropic compared to anisotropic etching. The isotropic etch might underetch
structures, decreasing the stability. Anisotropic etching can done during plasma
(dry) etching. 15

2.4 Example of metal 1 layer is shown. Brightness allows to distinguish between
wires(light grey), vias, and the SOD(dark areas). The brighter dots are vias
between Metal 1 and Metal 2. 16

2.5 Cell Recognition of three standard cells on Metal-1. Small scratches in the bottom
part and routing optimization on Metal-1 might disturb the recognition.Not that
recognized cells are also mirrored and rotated. 18

3.1 Passive Voltage Contrast. Floatin structures charge up while grounded structures
are supplied with electrons from the GND signal. 25

3.2 Capacitive Coupled Voltage Contrast with its two phases. First charging phase
accumaltes charges. After a clock cycle the metal changed and the accumulated
charge is release when hit by an electron. 26

3.3 AES located with DVC. The regions are �ickering like noise. 28
3.4 The setup for the VCSCA. We run the DUT within the vacuum chamber while

externally controlling the clock frequency. 30
3.5 Consecutive frames within one trace. A clock transition takes place, while the

SEM scans the last third of frame x+3. The previous clock e�ect fades out (a)-(d).
The colors are inverted for improved visualisation. 31

3.6 Results of the correlation based VCSCA of the 8th addroundkey-bit in clock cycle
42. The colors are inverted for improved visualisation. 32

3.7 Di�erent correlation images found in clock cycle 42; addroundkey, inverted ad-
droundkey and subbytes. The colors are inverted for improved visualisation. . . . 33

109

List of Figures

3.8 Marked wire of bit 2 of addroundkey in the two top layers. The black �cloud"
is the extrapolated correlation image in this ROI. The colors are inverted for
improved visualisation. 34

3.9 Correlation Image of keybits within clock cycle 48. The colors are inverted for
improved visualisation. 36

3.10 Extracted states of byte 16 bit 5 within one trace. We know that bit 5 of byte 16
runs through this wire at clock cycle 32. Since the wire within the mask is bright,
the bit is set. (The colors are inverted for improved visualisation). 37

3.11 The IC is thinned from the backside. In the �rst step he is mechanically polished
down to approximately 15 µm. The second step is done in the FIB until the
p- and n-wells can be seen, see Figure 3.13. The last step trenches the isolation
between the gates, see Figure 3.12. 39

3.12 STI trenching in a small area on a sample. The STI can be cut in a straight line
reducing preparation time and steps.Within the trench the polysilicon intercon-
nects can be seen and read by a voltage contrast. To the right we see a thin layer
of remaining silicon. 40

3.13 2 frames from the backside VC Traces. The bright and dark yield are the dotted
active areas. The trenches hit the STI to see the metal and poly lines in a VC.
One trench missed the STI due to a miscalculation, rendering this sample broken.
Changes within the trenches are logical high or low interconnects and gates. . . . 41

4.1 In modern processes nanometer technology interconnects are designed thinner to
connect more compact logic cells. To counter resistance issues interconnects are
manufactured taller which increases the plate capacitor area (marked in gray).
While distance is smaller between two interconnects for modern technologies,
parasitic capacitance Cx is increased. 47

4.2 Crosstalk noise in a driven victim wire (marked in red) due to coupling current
in aggressor-victim capacitance Cx and an aggressor wire (marked in blue). Ra

and Rv are the respective resistances, while Cgnd values are the capacitances to
GND. 48

4.3 Crosstalk peak noise and noise duration on a victim wire. ∆Vv is the maximal
crosstalk peak. Vt is the technology dependant threshold voltage used to recognize
a logical high. It is exceeded for the time twidth. 48

4.4 Generic model of the proposed hardware Trojan design methodology with several
aggressor wires routed close to the victim wire. Based on additive coupling e�ects,
a fault is induced in the victim when all aggressor wires switch at the same time. 49

4.5 Aggressor wire routing structure strategies with di�erent numbers of aggressor
wires (marked in blue) routed adjacent routed to a victim wire (marked in red)
to reliably generate a crosstalk e�ect in the victim wire. 50

4.6 Crosstalk Trojan in AES IP core created by rerouting four I/O pad wires (2
plaintext wires and 2 key wires) to cause a crosstalk e�ect in the control path.
On activation, the induced fault causes the last round to toggle yielding state
after one round transformation and thus e�ectively leaking the 128-bit key. . . . 52

110

List of Figures

4.7 Implementation of the crosstalk Trojan in the AES IP core. Aggressor wires
(marked in blue) are global inputs, thus the attacker has complete control of the
delay elements τ0, . . . , τ3. These elements can be user-de�ned after tape-out. The
victim wire (marked in red) indicates that the count in the round counter is larger
than the number of AES rounds. 53

4.8 SPICE simulation of the triggered crosstalk Trojan for the AES IP core where
the victim wire n3831 exceeds the threshold voltage. We marked the trigger at
t = 340ns that discharges the wires, followed by the trigger at 345ns. The second
mark shows the leaked AES state beginning at 353ns. 54

4.9 Implementation of the crosstalk Trojan in an OpenRISC 1200 IP core. Aggressor
wires (marked in blue) are controlled by an adversary-crafted instruction, respec-
tive delay elements τ0, . . . , τ3 did not require any adjustments. We adjusted delay
element τc to 0.2ns for the clock tree of the SR[0] FF indicating user mode (= 0)
or supervisor mode (= 1). See Section 4.5.2 for further details on clock tree
adjustments. 55

4.10 OpenRISC 1200 ff1 instruction [107]. The reserved Trojan trigger bit is marked
in red. 56

4.11 The shift in clock net timing for the victim DFF. 56

4.12 SPICE simulation of the triggered crosstalk Trojan for the OR1200 IP core. The
victim wire to_sr[0] exceeds the threshold voltage and switches the supervisor
mode register (SR[0]) at t = 67ns. 57

4.13 Improved IC reverse engineering with additional steps to analyze parasitic in-
formation (marked in gray). Parasitic extraction and Trojan detection can be
realized with existing EDA tools. 58

5.1 Overview of the AMD microcode update mechanism. 72

5.2 Si-bulk process compared to SOI . 74

5.3 Die shot of AMD K8 Sempron 3100+ with di�erent CPU parts. The image was
taken with an optical microscope with low magni�cation. The die is corrugated
due to a remaining thickness below 10 micrometers. 75

5.4 Transposed/Twisted bitline architecture reduces the capacitance between two bit-
lines. Sense Ampli�ers(SA) amplify the di�erence of two bitlines. 76

5.5 SEM image of region R1 showing arrays A1 to A4 and the SRAM holding the
microcode update. 77

5.6 Partially interpreted bits in one ROM subarray. 78

5.7 Reversed microinstruction mapping in the physical array A4. Beginning in the
topright we acquire 1024 microinstructions with the sketched read-out. 81

A.1 The ROI from the backside. On the left side the gas-injection needle from the
FIB can be seen. 87

B.1 AES crosstalk Trojan cells �xed placed and routed a priori to the normal place
and route. Source(a) and destination(b) are 1.25mm apart. 90

C.1 NOR Mask ROM by Contact layer from [131] . 91

111

List of Figures

C.2 Di�erent ROM images. Images taken in a dual-beam FIB. These layer stacked
resemble the NOR ROM in Figure C.1 . 92

112

List of Tables

3.1 2 → 1 functions. The output bits are used as a hypothesis in the Pearson corre-
lation with intermediate AES bits. Once a high correlation is found, a respective
connected cell in the front-end can be identi�ed. 35

5.1 Microcode update �le format. 71

B.1 Excerpt of the general design information for AES IP core after place-and-route. 89
B.2 Properties of the crosstalk Trojan within the AES core. The last_round DFF

is directly connected to the victim. Depending on this DFF the core starts to
output the ciphertext. The crosstalk peak needs to be 676mV for the DFF to
recognize the signal as logical high.The AES is clocked at 500Mhz with a 45nm
technology size. Minimum DRC separation gap is 70 nm on Metal-3. 90

B.3 Excerpt of the general design information for OpenRISC 1200 IP core after place-
and-route. 90

113

114

List of Algorithms

115

116

About the Author

Personal Data

Name Christian Kison
Address Heppenheimerstr 6

65203 Wiesbaden, Germany
E-Mail Christian.Kison@rub.de
Date of Birth June 2nd, 1988
Place of Birth Soltau, Germany

CV

Since 2014 Research in IT-Forensics and examinations, Federal Criminal Police O�ce
2014�2018 PhD studies, Chair for Embedded Security, Ruhr-University Bochum

10/2011�02/2014 Student in Informations-Systemtechnik, Technische Universität Braunschweig
Master Thesis: Reverse Engineering of unknown Hardware
Structures with SCARE Attacks
Final Grade: 1.1

10/2008 �09/2011 Student in Informations-Systemtechnik, Technische Universität Braunschweig
Bachelor Thesis: Implementierung eines farbbasierten Algorithmus
zur Detektion und Klassi�zierung von Markern in VHDL
für eine schwach programmierbare Architektur
Final Grade: 1.6

2008 Abitur, Gymnasium Soltau

117

118

Publications

Peer-Reviewed Conferences, Journals and Workshops

2017 Fyrbiak, Strauÿ, Kison, Wallat, Elson, Rummel, Paar: Hardware Reverse Engineering:
Overview and Challenges
IVSW 2017 - IEEE 2nd International Veri�cation and Security Workshop

2017 Koppe, Kollenda, Kison, Gawlik, Paar, Holz: Reverse Engineering x86 Processor Mi-
crocode
USENIX - 27th USENIX Security Symposium

2015 Kison, Frinken, Paar: Finding the AES Bits in the Haystack: Reverse Engineering and
SCA Using Voltage Contrast
CHES 2015 - Workshop on Cryptographic Hardware and Embedded Systems

2018 Kollenda, Koppe, Fyrbiak, Kison, Paar, Holz: An Exploratory Analysis of Microcode as
a Building Block for System Defenses
CCS '18 - Conference on Computer and Communications Security

2019 Kison, Awad, Fyrbiak, Paar: Security Implications of Intentional Capacitive Crosstalk
IEEE Transactions on Information Forensics and Security (Journal)

Other Publications

2015 Alendal, Kison, modg: got HW crypto? On the (in)security of a Self-Encrypting Drive
series
Hardwear.io 2015 - Hardware Security Conference and Training

Book Chapters

2017 Becker, Fyrbiak, Kison: Hardware Obfuscation: Techniques and Open Challenges
in �Foundations of Hardware IP Protection�, Springer Verlag
ISBN: 978-3-319-50378-3

119

120

Conferences and Workshops

Participation in Selected Conferences & Workshops

2015 CHES'15 (Saint-Malo, France)
2015 HardwearIO (Eindhoven, Netherlands)
2016 ISTFA'16 (Fort Worth, USA)

121

	Imprint
	Preface
	Abstract
	Kurzfassung
	Acknowledgements
	I Preliminaries
	1 Introduction
	2 State-of-the-Art Hardware Reverse Engineering
	2.1 PCB Reverse Engineering
	2.2 Chip-level Reverse Engineering
	2.2.1 Depackaging and Physical Preprocessing
	2.2.2 Software-based Post-processing.

	2.3 Gate-level Netlist Reverse Engineering

	II Security Implications of Voltage Contrast and Intentional Interconnect Crosstalk
	3 Voltage Contrast Side Channel Analysis
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.3.1 Voltage Contrast
	3.3.2 Static Voltage Contrast
	3.3.3 Dynamic Voltage Contrast

	3.4 Voltage Contrast Analysis
	3.5 Voltage Contrast Side Channel Analysis (VCSCA)
	3.5.1 Obtaining Voltage Contrast Traces
	3.5.2 Locating AES Bit wires in a VCSCA
	3.5.3 Extracting additional netlist information
	3.5.4 Template Attack with VCSCA
	3.5.5 Simple VCSCA

	3.6 Backside Voltage Contrast Analysis
	3.6.1 ROI identification
	3.6.2 Preparation
	3.6.3 Backside Traces

	3.7 Discussion
	3.8 Conclusion

	4 Security Implications of Intentional Capacitive Crosstalk
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Hardware Trojans
	4.2.2 Chip-level Hardware Reverse Engineering
	4.2.3 Threat Model

	4.3 Crosstalk Trojan Design Methodology
	4.3.1 Capacitive Crosstalk
	4.3.2 Design Methodology

	4.4 Case Study i: Cryptographic Designs
	4.4.1 Crosstalk Trojan Design
	4.4.2 Crosstalk Trojan Implementation

	4.5 Case Study ii: OpenRISC 1200
	4.5.1 Crosstalk Trojan Design
	4.5.2 Crosstalk Trojan Implementation

	4.6 Mitigating the Risk of Parasitic Trojans
	4.6.1 Parametric Crosstalk Trojan Detection
	4.6.2 On Sophisticated Parasitic Trojans

	4.7 Discussion
	4.8 Conclusion

	III Real-World SoC Embedded Security Analysis
	5 Microcode Mask ROM Extraction from a modern CPU
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Microcode Background
	5.2.2 Related Work
	5.2.3 Mask ROM Readout

	5.3 Reverse Engineering Microcode
	5.3.1 AMD K8 and K10
	5.3.2 Update Mechanism
	5.3.3 Framework/Low-Noise Environment

	5.4 Hardware Reverse Engineering of Microcode ROM
	5.4.1 Microcode masked ROM Overview
	5.4.2 ROM structure and Memory Identification
	5.4.3 ROM Acquisition
	5.4.4 Microcode Extraction

	5.5 Physical Mapping
	5.5.1 Microcode Emulation
	5.5.2 Physical Ordering

	5.6 Conclusion

	6 Conclusion and Future Work

	IV Appendix
	A Voltage Contrast Side Channel Analysis Appendix
	A.1 Additional Figures

	B Security Implications of Intentional Capacitive Crosstalk Appendix
	B.1 Case Study: Cryptographic Designs
	B.2 Case Study: CPUs

	C Microcode ROM
	C.1 NOR ROM contact-layer
	C.2 Microcode ROM FIB Images

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	About the Author
	Publications
	Conferences and Workshops

