
Efficient and Provably Secure Signature Schemes in the
Standard Model

Sven Schäge

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der Fakultät für
Elektrotechnik und Informationstechnik an der Ruhr-Universität Bochum

Bochum, Mai 2011

Author Contact Information:
sven.schaege@nds.rub.de

Thesis Advisor: Prof. Jörg Schwenk
Thesis Reader: Prof. Eike Kiltz
Oral Examination: 17.06.2011

Abstract

A digital signature scheme is the electronic realization of a classical signature: Alice can
produce signatures on documents of her choice, whereas everyone can verify that these doc-
uments have indeed been signed by Alice. Besides encryption systems, digital signature
schemes constitute the most important primitive of modern cryptography and an indispens-
able ingredient of electronic business. To be useful in practical applications, it is important
that digital signature schemes are secure and efficient at the same time. This thesis presents
four results on digital signature schemes which address this challenge: a new and efficient
signature scheme that is secure under the Strong Diffie-Hellman assumption; tight security
proofs for two large classes of signature schemes that are secure under the Strong Diffie-
Hellman assumption or the Strong RSA assumption; new security notions, transformations
and constructions of two-tier signature schemes; and a new and efficient ring signature scheme
that is solely secure under the Computational Diffie-Hellman assumption. Security of all of
these schemes is proven in the standard model while relying on well-analyzed factoring-type
and DL-type complexity assumptions.

iii

iv

Zusammenfassung

Digitale Signaturschemata stellen das elektronische Pendant zu klassischen Signaturen dar:
Alice kann zu beliebigen Dokumenten eine Signatur erstellen. Mit Hilfe dieser Signatur kann
öffentlich überprüft werden, dass das entsprechende Dokument tatschlich von Alice unterze-
ichnet wurde. Die Sicherheitseigenschaften eines Signaturschemas müssen dabei insbesondere
garantieren, dass niemand außer Alice gültige Signaturen erzeugen kann, welche auf Alice
als Urheber hinweisen. Neben Verschlüsselungssystemen gehören digitale Signaturverfahren
zu den wichtigsten Bausteinen der modernen Kryptografie und stellen ein unverzichtbares
Werkzeug für den elektronischen Geschäftsverkehrs dar. Im praktischen Einsatz ist wichtig,
dass sie nicht nur starken Angriffen widerstehen können sondern auch gleichzeitig hohe Ef-
fizienz bieten. Die vorliegende Arbeit präsentiert vier Ergebnisse aus dem Forschungsgebiet
der effizienten und beweisbar sicheren digitalen Signaturen: ein effizientes digitales Sig-
naturschema, das sicher unter der Strong Diffie-Hellman Annahme ist; neue und effizien-
tere Sicherheitsreduktionen für zwei allgemeine Klassen von digitalen Signaturschemata;
neue Sicherheitsdefinitionen, Transformationen und Konstruktionen von Two-Tier Signatur-
schemata; und ein neues und besonders effizientes Ringsignaturschema, welches nur auf der
Computational Diffie-Hellman Annahme basiert. Alle betrachteten Schemata sind sicher im
Standardmodell und basieren auf schwachen und gut untersuchten Komplexitätsannahmen.

v

vi

Acknowledgments

I would like to thank my supervisor Jörg Schwenk for supporting me, believing in me, and
giving me the freedom to pursue my research interests. My thanks also go to my thesis reader
Eike Kiltz for giving me invaluable advice and support. I would like to thank all previous and
present members of the Horst Görtz Institute for IT-Security for contributing to a relaxed
atmosphere. Special thanks go to all members of the Chair of Network and Data Security
with whom I had a lot of productive, interesting, funny, and entertaining discussions. I feel
very privileged for having them as my colleagues. In particular I would like to thank my
office-mate Tibor Jager for very interesting and fruitful discussions, his moral support, and
for being a very good friend and companion on our journey into the theoretical foundations
of cryptography. I would also like to thank Mathias Herrmann and Florian Kohlar who have
become very good friends to me. Finally I would like to thank my beloved wife Behnas and
our wonderful daughter Elina Niloufar. There are no words to express my gratitude for their
support and love.

vii

viii

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Publications . 2
1.3 Previous Publication . 3
1.4 Overview . 3
1.5 Provably Secure Signature Schemes . 3

1.5.1 General Results . 3
1.5.2 Security Model: Standard Model . 4
1.5.3 General Types of Signature Schemes 5

1.6 Comparison of Signature Schemes . 7
1.6.1 Efficiency . 7
1.6.2 Tightness Of Security Proofs . 8
1.6.3 Weaker Security Assumptions . 8
1.6.4 Response Time: Offline/Online Signatures and Batch Verification . . 10

1.7 Constructions of Signature Schemes from Complex
Primitives . 10

1.8 Signature Transformations - Transformations from Signature Schemes with
Weak Security Properties to Schemes with Stronger Properties 11

1.9 Application of Signature Schemes in Higher-Level Protocols 12
1.10 Signature Schemes with Special Properties:

Privacy-Preserving Signatures . 12

2 Preliminaries 15
2.1 Notation . 15
2.2 Prime Numbers . 15

2.2.1 Primes and RSA Moduli . 15
2.2.2 Injective Prime Mapping . 16
2.2.3 Safe RSA Moduli . 17
2.2.4 Bilinear Groups and Secure Bilinear Maps 17

2.3 Complexity Assumptions . 17
2.3.1 Factoring-Based Complexity Assumptions 17
2.3.2 Discrete Logarithm Based Assumption 18

2.4 Hash Functions . 19

ix

2.4.1 Security of Hash Functions . 20
2.5 Chaining Function . 21
2.6 Combining Function . 22
2.7 Pseudo-Random Function . 24
2.8 Chameleon Hash Function . 25
2.9 Multi-Generator Programmable Hash Function in Prime Order Groups . . . 26

2.9.1 Multi-Generator Programmable Hash Function 27
2.10 Signature Scheme . 28
2.11 Security Notions . 28

2.11.1 Existential Message Unforgeability 29
2.11.2 Definition of Security . 30

2.12 Two-Tier Signature Schemes . 30
2.12.1 Security of Two-Tier Signature Schemes 31

2.13 Ring Signature Schemes . 32
2.13.1 Definition . 32
2.13.2 Ring Unforgeability . 33
2.13.3 Ring Anonymity . 33

3 Twin Signatures, Revisited 35
3.1 Twin Signatures . 35

3.1.1 Generic SRSA-Based Twin Signature Scheme 36
3.2 An SDH Based Twin Signature Scheme . 37
3.3 Security . 37
3.4 Improved Chaining Function . 41
3.5 Offline/Online Signature Schemes . 42

4 Tight Proofs for Signature Schemes without Random Oracles 43
4.1 Settings . 44

4.1.1 The Strong RSA Setting . 45
4.1.2 The Strong Diffie-Hellman Setting . 45

4.2 Signature Classes . 46
4.2.1 SRSA Based Combining Signature Scheme (SCMB,SRSA) 46
4.2.2 SDH Based Combining Signature Scheme (SCMB,SDH) 46
4.2.3 SRSA Chameleon Hash Signature Scheme (SCH,SRSA) 47
4.2.4 SDH Based Chameleon Hash Signature Scheme (SCH,SDH) 47
4.2.5 The Cramer-Shoup Signature Scheme (SCS,SRSA) 47

4.3 Security . 48
4.3.1 The SRSA Based Schemes . 48
4.3.2 The SDH Based Schemes . 51
4.3.3 Security of the Chameleon Hash Signature Class 52
4.3.4 Security Analysis of SCMB,SRSA . 53
4.3.5 Security Analysis of the Cramer-Shoup Signature Scheme 56
4.3.6 Security Analysis of SCMB,SDH . 59

x

4.3.7 A Note on Strong Existential Unforgeability 62
4.4 Efficiency Improvements . 62

4.4.1 SRSA-Based Signature Schemes . 62
4.4.2 Efficiency of the Original Reduction 63
4.4.3 Efficiency of the New Reduction . 65
4.4.4 SDH-Based Signature Schemes . 65
4.4.5 Efficiency of the Original Reduction 66
4.4.6 Efficiency of the New Reduction . 67

5 Two-Tier Signature Schemes 69
5.1 Statically Secure Two-Tier Signature Schemes - A New Weak Security Notion 72
5.2 Construction of Statically Secure Two-Tier Signature Schemes from Chameleon

Hash Functions . 73
5.3 Generalizing the Shamir-Tauman Transformation: A New Transformation

from Weakly Secure Signature Schemes to Fully Secure Schemes using Stati-
cally Secure Two-tier Signature Schemes . 74

5.4 A New Transformation from Statically to Adaptively Secure Two-Tier Signa-
ture Schemes . 75
5.4.1 Transformation from Statically Secure to Adaptively Secure Two-Tier

Signature Schemes . 75
5.5 Construction of Adaptively Secure Two-Tier Signature Schemes from Chameleon

Hash Functions . 77
5.6 New Transformation to Strongly Secure Signature Schemes 79

5.6.1 Efficient Transformation to Strongly Secure Signature Schemes 79
5.6.2 Comparison with the Bellare-Shoup Construction 82

6 Ring Signature Schemes 83
6.0.3 Related Work on Ring Signature Schemes 83
6.0.4 Contribution . 84

6.1 A New CDH-based Ring Signature Scheme 84
6.2 Efficient Ring Signature Scheme RSIG . 86
6.3 Security . 86

6.3.1 Ring Unforgeability . 86
6.3.2 Ring Anonymity . 89
6.3.3 Digital Signature Schemes . 90

7 Conclusion 91

xi

xii

Chapter 1

Introduction

In a digital signature scheme Alice, the signer, can use her secret key to sign arbitrary
messages. The output of such a process is called signature. Given a signature, Alice’s public
key and the message anyone can verify that the signature is valid, i.e. it has actually been
produced on this message with the help of her secret key. The security properties of the
scheme have to guarantee that nobody is able to produce valid signatures without Alice’s
secret key. In this way, a signature proves that Alice is the true originator of the signature.

Besides public key encryption systems, digital signature schemes are the most important
primitive of modern cryptography. They provide user and message authentication, message
integrity, and constitute the only cryptographic constructions that allow to convince anyone
(and not only a designated receiver) that a signed message has been sent by a certain user.
This gives a digital mechanism that irreversibly binds the signer to the signed document
(non-repudiation) – an important pre-requisite for contract signing and digital business.
Their security properties make digital signature schemes a key building block in a plethora
of higher level protocols and the most important tool for constructing trust-hierarchies like
the public key infrastructure (PKI) or the PGP web of trust.

Digital signature schemes belong to the realm of public-key cryptography that since the
seminal works of Diffie and Hellman [46] (1976) and Rivest, Shamir and Adleman [90] (1978)
first came into the focus of (public) scientific attention. Since then research on this field has
made tremendous progress.

1.1 Scope

In this thesis, I 1) present new and 2) improve existing signature schemes which provide
high security guarantees under weak security assumptions while being highly efficient. Such
schemes make signature-based applications more attractive as fewer additional resources are
required to implement security mechanisms. At the same time they foster confidence in these
applications as security only relies on very weak and well-analyzed security assumptions. My
results encompass many practical and theoretical aspects of digital signature schemes ranging
from very theoretical topics like new security definitions, transformations, and security proofs

1

to rather practical issues like efficiency improvements of existing signature schemes.
In this thesis, my main focus lies on digital signature schemes. However, the results I

obtained in my PhD phase at Ruhr-Universität Bochum broadly deals with secure authen-
tication mechanisms (which signature schemes are an important part of). I also worked on
authentication methods and applications of signature schemes in higher-level applications
like cloud computing, e-voting, and key-agreement protocols.

1.2 Publications

Below, I provide a list of my relevant results.

Refereed Conference Proceedings

Tight Proofs for Signature Schemes without Random Oracles 2011

• Sven Schäge. Accepted for EUROCRYPT 2011, Tallinn, May 15th-19th, 2011. Springer,
LNCS, 2011.

Generic Compilers for Authenticated Key Exchange 2010

• Tibor Jager, Florian Kohler, Sven Schäge, Jörg Schwenk. ASIACRYPT 2010, Singa-
pore, December 5th-9th, 2010. Springer, LNCS 6477, 2010.

Towards an Anonymous Access Control and Accountability 2010
Scheme for Cloud Computing

• Meiko Jensen, Sven Schäge, Jörg Schwenk. 3rd International Conference on Cloud
Computing (CLOUD), Miami, Florida, USA, July 5th-10th 2010. IEEE Computer
Society, 2010.

A New RSA-Based Signature Scheme 2010

• Sven Schäge, Jörg Schwenk. AFRICACRYPT 2010, Stellenbosch, South Africa, May
3th-6th, 2010. Springer, LNCS 6055, 2010.

A CDH-Based Ring Signature Scheme with Short Signatures 2010
and Public Keys

• Sven Schäge, Jörg Schwenk. Financial Cryptography Fourteenth International Con-
ference, FC 2010, Tenerife, Spain, January 25th-28th, 2010. Springer, LNCS 6052,
2010.

Twin Signatures, Revisited 2009

• Sven Schäge. Provable Security Third International Conference, ProvSec 2009, Guangzhou,
China, November 11th-13th, 2009. Springer, LNCS 5848, 2009.

2

1.3 Previous Publication

This thesis presents four of my main results.

• The signature scheme of Chapter 3 originally appeared in the proceedings of Provable
Security 2009 as “Twin Signature Schemes, Revisited”.

• The results on tight security proofs given in Chapter 4 originally appeared in the
proceedings of EUROCRYPT 2011 as “Tight Proofs for Signature Schemes without
Random Oracles” and were presented in May 2011.

• The results on two-tier signature schemes of Chapter 5 have been obtained in very
recent work and will be submitted to an international conference soon.

• The ring signature scheme of Chapter 6 originally appeared in “A CDH-Based Ring Sig-
nature Scheme with Short Signatures and Public Keys”, joint work with Jörg Schwenk,
which was presented at Financial Cryptography 2010.

In all these works, I am the main (or only) contributor.

1.4 Overview

The first chapter of this thesis is devoted to a broader introduction to digital signature
schemes. It gives an overview over general issues like feasibility results, security models, and
construction principles of digital signature schemes. Of particular importance is Section 1.6
as it sums up important research directions and challenges in research on digital signature
schemes. The second chapter formally introduces the cryptographic primitives, definitions,
and complexity assumptions required in this thesis. Chapter 3 to Chapter 6 present four of
my main results on digital signature schemes. Each chapter is preceded by a brief introduc-
tion and where adequate with additional information on related work. Chapter 7 sums up
and interprets the results of this thesis before it turns to a brief outlook on future research
directions.

1.5 Provably Secure Signature Schemes

In the following, we provide an overview on the existing results on digital signature schemes
and provide background information on security models, security assumptions, security
proofs, and security transformations.

1.5.1 General Results

In a series of works initiated by Lamport [71], Bellare-Micali [5], Naor- Yung [82], and
Rompel [92] showed how to construct signature schemes from one-way functions. From a

3

complexity theoretic point of view, this is the best result available since signature schemes
trivially give rise to one-way functions (in fact the key generation algorithm of a signature
scheme – when restricting its output to only consist of the public key – always constitutes
a one-way function). We note that all of the above results rely on tree-based structures of
signature schemes (see below). Before we can deal with construction principles of signature
schemes in more detail, we have to introduce the security model that underlies our analyses.

1.5.2 Security Model: Standard Model

In this thesis we concentrate on schemes which are secure in the so-called standard model (or
plain model). In this model, the adversary’s resources are bounded polynomially and security
is based solely on the underlying complexity assumption. As a result, the standard model
requires very weak set-up assumptions. However, there are also models in cryptography
which assume that all parties have access to a certain cryptographic primitive in its idealized
form. The two most important models in this category are the random oracle model and
the generic group model. Both have frequently been used for the design of provable digital
signature schemes.

The Random Oracle Model. The random oracle methodology is a general approach
to argue about the security properties of cryptographic schemes [7]. First a cryptographic
scheme is proven secure in an ideal model, the random oracle model (ROM), where all parties
have access to a function – the random oracle – that outputs truly random bit strings. In
practical realizations of the scheme, the random oracle is substituted by a cryptographic
hash function. The idea behind this substitution is that good cryptographic hash functions
should behave like random functions (oracles).

The Fiat-Shamir Heuristic. In 1986, Fiat and Shamir proposed a general way to produce
signature schemes from secure (3-move) identification protocols [53]. Roughly, the signer acts
almost exactly like the prover in the identification protocol. The only difference is that it now
computes the challenge values, which are originally drawn at random by the verifier, using
a random oracle and the message to be signed. The Fiat-Shamir heuristic is a very general
methodology to obtain efficient signature schemes (also called signatures of knowledge [37])
that can be based on standard security assumptions like the factoring assumption or the
discrete logarithm assumption.

Critics. The random oracle model represents a very strong idealization of the real world
and in 1998, Canetti, Goldreich and Halevi [32] showed that there exist (rather artificial)
signature schemes which have a security proof in the random oracle model but are insecure
when instantiated with any hash function. Subsequent results showed that such examples
also exist for more practical signature schemes [33, 60].

Since these seminal results cryptographic research focused more and more on efficient
cryptographic schemes that are solely secure in the standard model which does not assume
any primitive to be available in its idealized form. However, most of the existing signature
schemes are still only secure in the random oracle model while there exists only few signature

4

schemes that are secure in the standard model.

Generic Models. Another model with special setup assumptions is the generic group [97,
76] model that was later extended to also cover rings (generic ring model) [72]. In these
models all parties are only provided with idealized versions of the underlying mathemati-
cal structures (like groups or rings) in which the corresponding cryptographic schemes are
defined in. The generic models have been used to study the security of several complexity
assumptions like RSA [1] or the q-Strong Diffie-Hellman [16] assumption. However, simi-
lar to the random oracle model, positive results obtained in the generic models cannot be
regarded as sound cryptographic security proofs. In fact, there exist popular examples of
computational tasks which are provably as hard as some underlying well-analyzed number-
theoretical problem in the generic model but which is very easy to solve when using concrete
instantiations of rings or groups [68].

1.5.3 General Types of Signature Schemes

The existing signature schemes fall in one of two categories according to their underlying
construction principle: tree-based signature schemes or hash-and-sign signature schemes.
Tree-based signature schemes can be based on very general assumptions while hash-and-sign
schemes generally provide better efficiency.

5

Tree-based Signature Schemes. Besides the general results on signature schemes of
[71, 5, 82, 92], several works have presented tree-based signature schemes that rely on more
concrete security assumptions like the factoring, RSA, and Computational Diffie-Hellman
assumption. Among these works are important results by Goldwasser-Micali-Rivest [61],
Goldreich [59], Merkle [77], Dwork-Naor [48], Cramer-Damgard [42, 43], Boneh-Mironov-
Shoup [23], and Catalano-Gennaro [34]. The basic idea of tree-based signatures is to step-
wisely construct a (binary) tree where each node can be used to authenticate (sign) a single
message. Additionally, each parent node authenticates its children. A signature basically
consists of a path, i.e. a set of chain-authenticated nodes, from the message to the root node
which in turn serves as the scheme’s public key. The signature size is thus dependent on
the depth of the tree. Several of the above results show how to construct shorter tree-based
signatures by allowing for larger branching factors of the tree at the cost of a slight increase
in the public keys size. In essence, they exploit a trade-off where the tree depth can be
decreased logarithmically if the size of the public parameters is increased linearly. Recently,
the tree-based construction principle was used to build leakage-resilient signature schemes
from leakage-resilient chameleon hash functions [52]. For more details we refer the original
papers. In particular [23] gives a good overview on tree-based signatures.

Hash-and-Sign Signature Schemes. Hash-and-sign signatures can be shorter than tree-
based signatures as they do not require signature schemes to consist of a linear number (in
the bit size of the input message) of elements. Today, there exist many realizations of hash-
and-sign signature schemes in the random oracle model like [50, 94, 84, 8, 88, 22, 58, 57].

In 1999, Gennaro, Halevi and Rabin [56] and independently Cramer and Shoup [45]
presented the first hash-and-sign signature schemes that are secure in the standard model.
Both schemes are secure under the Strong (or Flexible) RSA assumption [3]. Subsequent
works presented further schemes that rely on the Strong RSA assumption. Except for the
work by Naccache, Pointcheval, and Stern [80], these schemes either provide better efficiency
than [45] like the Zhu [103, 104] and Fischlin [54] signature scheme or are very suited for the
design of protocols that prove knowledge of a valid signature without revealing it like the
scheme by Camenisch-Lysyanskaya [30].

Starting with Boneh and Franklin in 2001 [19], the (constructive) use of bilinear groups
in cryptography paved the way for signature schemes with very short signature size. The
decisive advantage of bilinear groups is the very compact representation of group elements.
In 2004, Boneh and Boyen presented the first hash-and-sign signature scheme that makes use
of bilinear groups [17]. The Boneh-Boyen signature scheme was proven secure under a new
flexible assumption, the q-Strong Diffie Hellman (SDH) assumption. In 2004, Camenisch and
Lysyanskaya also presented a signature scheme that relies on bilinear groups [31]. Unlike
the Boneh-Boyen scheme, their scheme is proven secure under the LRSW [75] assumption.
However, in the same paper Camenisch and Lysyanskaya propose a variant that is based on
the SDH assumption in bilinear groups. The corresponding security proof was provided two
years later in [85, 2]. In 2005, Brent Waters presented a signature scheme (as a by-product of
his identity-based encryption system) that is solely secure under the Computational Diffie-
Hellman assumption in bilinear groups [102]. In 2008, Hofheinz and Kiltz presented two new

6

signature schemes, an SRSA-based signature scheme and an SDH-based scheme [64]. The
SDH based signature scheme delivers the shortest standard model signatures so far. In 2009,
Waters and Hohenberger presented the first signature scheme in the standard model which
is solely secure under the RSA assumption and so solved a long-standing open problem [66].

Stateless versus Stateful Signature Schemes. Several of the early signature schemes
like those by Merkle [77] and Naor-Yung [82] and even some very recent schemes like the
one by Hohenberger-Water [65] are stateful, i.e. the signer has to store some data that is
refreshed after each signing procedure. In tree-based signature schemes this state is often
used to help the signer keep track of which nodes of the tree have already been used for
signing. This is crucial because if the signer would use a single leaf twice for signature gen-
eration, the adversary could use the corresponding signatures to generate new signatures on
fresh messages. For this reason it is very important to protect the signers state from adver-
sarial manipulations. As a consequence, implementing a stateful signature scheme requires
much more effort than stateless schemes: not only the secret key (which is fixed after the
initial generation and thus can be implemented using secure read-only memory) must be
protected against tampering attacks but also a continually updated state (which requires
secure read/write memory).

In 1986, Goldreich showed how to turn stateful tree-based signature schemes into state-
less schemes using pseudo-random functions [59]. Applying his results to the Goldwasser-
Micali-Rivest scheme [61], Goldreich so obtained the first stateless signature scheme which
is provably secure in the standard model. However, this transformation requires a blowup
in the number of leafs of the tree from t to t2.

1.6 Comparison of Signature Schemes

Whether or not a signature scheme is useful for a certain application depends on several
factors. In this section we give a brief overview on the most important features.

1.6.1 Efficiency

One of the most important characteristics of a signature scheme is the size of the transmitted
data (per message).

As a public key must only be transmitted once for each signer, this size is typically
dominated by the length of a signature. However, in scenarios where a signer often has
to retrieve new public keys the size of the public key plays an important role too. This
is especially important when, besides the message and the signature, the verifier must also
process a chain of certificates.

The size of the scheme’s parameters in turn is related to the underlying complexity
assumption and the quality of the security reduction. The parameter lengths are chosen
such that if an adversary would be able to break the security of the signature scheme it
would also be able to break a very hard instance of the complexity problem that underlies
our security assumption.

7

The signature size is of course also related to the signing and verification complexity.
The larger the size of the concrete parameters of the signature scheme.

We note that in some applications the response time of the involved parties (signing
and verification complexity) may be very import. In such systems it may be useful to
employ additional mechanisms to speed up the time complexities as batch verification [4] or
offline/online signatures [51] see 1.6.4.

1.6.2 Tightness Of Security Proofs

In cryptography, a security proof typically has the form of a security reduction. To show
that a digital signature scheme S is secure under complexity assumption C, one has to
show that any successful PPT attacker A against S can be used (in a black-box-way) to
build a successful attacker B – the simulator – that breaks the complexity assumption. To
prove asymptotic security it is only necessary to show that B is a probabilistic polynomial
time algorithm. However, following the exact (or concrete) security approach introduced by
Bellare, it is very useful to also quantify these reductions [9]. This helps to gain estimates
on the required parameter sizes of the scheme when aiming for a certain security level. Let
us go into more detail.

A typical formulation of a security assumption says that a given problem at hand cannot
be solved by any polynomially bounded adversary that runs in time t with success probability
greater than ε. In a similar way, the formal definition of a secure signature scheme states that
no t′-time adversary is able to produce a forgery with probability ε′ while making q queries
to the signing oracle. Of course, in both cases the running time and the success probability
depends on the size of the problem that an adversary must solve (i.e. the size of the input
parameters available as described in the description of C, or the system parameters of S).
The larger the size, the harder the problem. To account for this, all parameters (respectively
their sizes) are described as functions of the security parameter κ.

The tightness of the security reduction is a quality criterion for constructions of signature
schemes. Surely we have that the running time of B is greater than that of A because B is
used by A in a blackbox manner. Thus, t′ ≥ t. On the other hand in case t′ = t, B’s success
probability ε′ cannot be greater than that of the success probability of A: ε′ ≤ ε. If ε ≈ ε′

while t ≈ t′ the security reduction is called tight. Otherwise, for example if ε′ ≤ ε2 or ε′ ≤ qε
the reduction is said to be loose. It is important to note that, at the same level of security,
loose security reductions require the scheme’s parameters to be larger than tight reductions.
Section 4.4 provides a detailed example of this effect.

1.6.3 Weaker Security Assumptions

Security of most signature schemes relies on complexity (security) assumptions. Usually
these assumptions belong to a broader category of assumptions like factoring-based, discrete
logarithm based, or lattice-based assumptions. The schemes presented in this thesis all rely
on factoring-based or discrete logarithm based complexity assumptions.

8

Cryptography has always been interested in finding relations between these assumptions.
Some seemingly different assumptions have been proven to be equal but in most cases the best
one can hope for is to show that one assumption implies another. As an example we mention
the factoring, the RSA, and the SRSA assumption. It is well known that any attacker that
breaks the factoring assumptions is able to break the RSA assumption. However, the converse
is not known to be true. Correspondingly the SRSA assumption is known to imply the RSA
assumption, as any successful attacker against the RSA assumption can be used to break the
SRSA assumption. Again the converse is not known to be true (at least not using a reduction
with a security loss of at least a polynomially, in the security parameter, large factor). In
complexity theoretic terms, such implications show that the factoring assumption is weaker
than the RSA (or the RSA assumption is stronger than the factoring assumption). Similarly
the Strong RSA assumption, as the name suggests, is stronger than the RSA assumption.

Intuitively, weaker security assumptions provide higher security guarantees. This is be-
cause a system that is secure under a very weak security assumption (like factoring) can
remain secure even if stronger security assumptions have been broken. It is one of the most
important tasks of cryptography to devise new and efficient schemes that rely on very weak
security assumptions (or at least weaker than in state-of-the-art solutions).

Unfortunately, it seems very hard to prove that the above assumptions actually hold.
All we have today is evidence. This is founded on two research directions. The first one
is cryptanalysis, where researches devise new attacks that have better running time, space
efficiency or success probability than previous solutions. Good security assumptions have
withstood all attacks that have been proposed so far. Second, a considerable amount of work
has been invested in analyzing security assumptions in restricted models (e.g. generic models)
of computations (see Section 1.5.2). Such models assume that the attacker is only provided
with the generic operations of the underlying mathematical structure. For example, he may
not exploit knowledge of the bit representation of a given group or ring element. However,
as Jager and Schwenk showed, results in generic models may not have implications for real
world implementations [68]. They showed that the computation of the Jacobi symbol, which
is efficiently feasible in practice, is equivalent to factoring in the generic ring model. So
problems which are provably hard in a generic model may be trivially solvable in practice.

Besides the analysis of relations between security assumptions theory says little about
the quality of a concrete security assumptions. Cryptographers prefer security assumptions
which are very simple and well-established (i.e. well-analyzed by security experts over a
longer period of time). Also, security assumptions with a static amount of input elements
seem to be more attractive than schemes where the size of the set of input values given to the
attacker is polynomially dependent on the security parameter (so-called q-type assumptions,
like SDH). Finally, cryptographers prefer to base their schemes on hardness problems where
the attacker must output a single solution for each instance (like for example the factoring
problem or the RSA problem). This stands in contrast to problems where the attacker may
output one of an exponentially large set of solutions (like SRSA).

9

1.6.4 Response Time: Offline/Online Signatures and Batch Veri-
fication

In real-time applications, the response time of the involved parties may be very import. On
the verifier’s side this can be done by employing signatures that allow for efficient batch ver-
ification [4]. In such schemes, signatures are first combined with each other. The resulting
combination is then input to a modified verification procedure. In this way several signature
schemes can be verified at the same time. Batch verification pays off whenever the initial
combining of signature schemes can be accomplished very efficiently when compared to the
original verification procedure. This makes batch verification particularly useful in pairing
based signature schemes, as the application of the bilinear pairings typically dominates the
costs of the verification process. Instead of applying the pairing separately for each signa-
ture, it is only applied to a combination of signatures. This process relies on homomorphic
properties of the produced signatures and cannot applied to signature schemes in general.
Batch verification can also be applied to more complex variants of signature schemes like
ring signature schemes and group signature schemes [29].

On the signer’s side, response time (signing complexity) can be improved by employing
offline/online signature schemes [51]. In such schemes the bulk of the work for producing
a signature can be done in advance, for example in times when the signer’s computational
device is not working to full capacity. Obviously, this work must be message-independent.
When the signer finally wants to sign a message the remaining work load is very small. Many
existing signature schemes give rise to offline/online variants in a straight-forward manner. In
particular signature schemes that are constructed using signature transformations inherently
support such an operation mode. Typically the remaining workload reduces to finding a
collision for a chameleon hash function. However, usually offline/online signatures require a
small growth in the size of the secret key as compared to the original scheme, for example
the secret key of the chameleon hash function is additionally needed in the signing process.

1.7 Constructions of Signature Schemes from Complex

Primitives

The signature schemes obtained using a general construction from one-way function are too
inefficient to be used in practice. However, one can construct efficient and secure signature
schemes from more complex primitives as well. As documented by Boneh and Franklin
in [19], Moni Naor observed that secure signature schemes can directly be obtained from
identity-based encryption systems. Popular examples of signature schemes which follow this
line of construction are the very short signature scheme by Boneh, Lynn, and Shacham
(which is secure in the ROM) [21] and the CDH-based signature scheme by Brent Waters
that is secure in the standard model [102].

10

1.8 Signature Transformations - Transformations from

Signature Schemes with Weak Security Properties

to Schemes with Stronger Properties

Building efficient and secure signature schemes in the standard model while relying on reason-
able security assumptions is a highly non-trivial task. This is because the standard security
definition of signature schemes grants the adversary substantial attack capabilities.

What has proven very useful in the past is to define weakened security definitions of signa-
ture schemes while, at the same time, delivering a signature transformation that generically
maps signature schemes secure under such a weak security definition to signature schemes
that are secure in the standard sense. This considerably reduces the complexity in the de-
sign process because now the developer can confine himself to building schemes that only
fulfill a subset of the security properties required by (fully) secure schemes. Formal security
definitions of signature schemes are provided in Section 2.11. Applying the right transfor-
mation then (rather automatically) delivers a secure signature scheme without additional
design efforts.

It is important to note that it is not reasonable to weaken the standard notion in an
arbitrary way. To be actually useful, every new definition must be accompanied by a cor-
responding signature transformation that allows to securely (and efficiently) construct fully
secure schemes from schemes that conform to this new notion. This restricts the set of pos-
sible modifications of the security definition. By now, there exists several useful signature
transformations. The transformations by Cramer et al. [44], Even et al. [51], and Shamir
and Tauman [96] map signature schemes that are secure under random message attacks to
fully secure schemes (we refer to Section 2.11 for the formal security definitions). The results
in [51, 96] also show how to build fully secure signature schemes from weakly secure schemes.
Huang et al. [67] and Bellare and Shoup [13] showed how to construct strongly secure sig-
nature schemes from any signature scheme that is secure in the standard sense. Recently,
Hohenberger and Waters [66] and Brakerski and Tauman [25] show how to map signature
schemes which are universally/selectively secure under generic chosen message attacks to
weakly secure schemes.

The importance of this design methodology cannot be overestimated. In fact, many
schemes published in the last years have used this approach. And also in the retrospect
several existing schemes can be found to implicitly follow this design methodology. Among
these schemes are for example the very short signatures by Boneh and Boyen [17] and
Hohenberger and Waters [66].

A signature transformation roughly consist of two parts. First it contains a description
of how to construct a signature scheme B from a given (weakly secure) signature scheme
A. Second it provides a security reduction showing that any attacker B (as modeled in the
standard notion of security) which breaks the security of scheme B can efficiently be used
to construct an attacker A that breaks the security properties of scheme A. The intended
conclusion is that, under the assumption that there exist no successful attacker A against the
security of the weak signature scheme A, there cannot exist a successful attacker B against

11

the constructed scheme B (as it would imply the existence of A).

There are two main criteria to measure the quality of a signature transformation. Prob-
ably the most obvious is to analyze the efficiency of the constructed signature scheme B. Of
course, it is much more preferable to use transformations where B is only slightly less efficient
than the starting scheme A. The second criterion deals with the security reduction of the
signature schemes. As sketched before, security reductions should be formulated concretely
(i.e. in a quantitative way) rather than asymptotically to find estimates for the necessary
parameter lengths in concrete instantiations. As with security proofs based one complexity
assumptions, loose reductions require that B uses larger parameter sizes to provide the same
level of security as A. Therefore the quality of the security reduction also has immediate
consequences for the efficiency of B. Finally, we emphasize that improvements of signature
transformations - typically more efficient constructions or tightened security reductions -
have a much broader application than improvements to single signature schemes. This is
because the obtained improvements transfer to all signature schemes which rely on the cor-
responding transformation. Thus, developing new or improved signature transformations is
of utmost value in cryptography.

1.9 Application of Signature Schemes in Higher-Level

Protocols

Digital signature schemes are a valuable tool in many higher-level protocols. Usually, they
are used as the primitive of choice for authentication and integrity protection. Examples
range from today’s most important key-agreement protocol TLS (with server certificate) to
cloud computing and identity management systems.

However, there are also variants of signature schemes like two-tier signature schemes
(formally introduced in Section 2.12) that provide relatively weak security guarantees while
offering highly efficient signing and verification algorithms. Such schemes cannot be used as
substitutes for classical signature schemes in most applications. But often they can be used
as technical tools to improve the efficiency of more complex protocols. For example, two-tier
signature schemes can be used to make several signature transformations more efficient (as
shown in Chapter 5).

1.10 Signature Schemes with Special Properties:

Privacy-Preserving Signatures

Since the development of the first signature schemes, the basic concept of signature schemes
has continually been extended and given rise to signature primitives that fulfill additional se-
curity properties. A great portion of these efforts focus on signature schemes with anonymity
guarantees for the signer.

Two of the most popular variants of these so-called privacy-preserving signature schemes

12

are ring signature schemes [91, 14] and group signature schemes [6, 12]. The concept of
privacy-preserving signatures may sound paradoxical at first, as signature schemes are typi-
cally used to uniquely identify the signer of a certain message whiland even prove this relation
to third parties. However, a ring signature (or group signature) basically states that the ac-
tual signer of a message originates from a well-specified set of possible signers. Verification
only allows the verifier recognize that the signer is indeed part of this set while the security
properties of the scheme guarantee that the signer cannot be identified among the other
members of the set. Although being useful in many scenarios on their own, such schemes
are often used as key ingredients in higher-level systems. Applications of these types of
signatures range from trusted computing [26] over privacy-preserving identity management
systems [28] to the construction of designated verifier signatures [73].

13

14

Chapter 2

Preliminaries

2.1 Notation

In cryptography, the provided level of security of a system is usually dependent on the length
of the used parameters. To allow for asymptotic analyses, security statements depend on a
security parameter κ ∈ N. We use 1κ to describe the string that consist of κ ones.

Sets, Strings, Intervals. If S is a set we write |S| to denote its size. For a set S, we

use x
$← S to denote that x is drawn from S uniformly at random. If s is a string, we

write |s|2 to denote its bit-length. For a, b ∈ Z, a ≤ b we write [a; b] to denote the set
{a, a+ 1, . . . , b− 1, b}. When dealing with bit strings, we use 0i (1i) for i ∈ N to denote the
string that consists of i zeroes (ones). These strings can be concatenated. For example, we
use 1i0j to denote the bit string that consists of i ones followed by j zeroes. For clarity, if
s is a bit string we may also use s||s to denote the result when concatenating s with itself.
For mi ∈ {0, 1}lm we use mi = mi,1 . . .mi,lm to denote the binary representation of mi with
mi,lm being the most significant bit.

2.2 Prime Numbers

2.2.1 Primes and RSA Moduli

In the following, we use P to denote the set of primes. We use Pi,j = P ∩ [2i−1; 2j − 1] with
i, j ∈ N i ≤ j to denote the set of primes in [2i−1; 2j − 1]. Observe that for 2 ≤ i ≤ j we
have P ∩ [2i−1; 2j − 1] = P ∩ [2i−1; 2j].

Prime Number Theorem.

Theorem 2.1 ([93]) Let π(x) denote the number of primes less than or equal to x. For
x ≥ 55, we have that

x

log(x) + 2
< π(x) <

x

log(x)− 4
. (2.1)

15

As a direct application of this theorem we can easily prove the following corollary.

Corollary 2.2 If l ≥ 7, |Pl,l| is lower-bound by

|Pl,l| > (2l − 1)/(ln(2l − 1) + 2)− (2l−1 − 1)/(ln(2l−1 − 1)− 4). (2.2)

2.2.2 Injective Prime Mapping

In one of our signature schemes we will make use of an injective function toPrime : {0, 1}l → P
for mapping bit strings to primes. We will now present two instantiations of this function.

The first one has been proposed in [80]. It requires a prime mapping function nextPrime :
{0, 1}l → P1,l+1 that maps l-bit strings to the set of primes P1,l+1. Let l > 2. Then, the
function nextPrime maps to the smallest prime that is equal or greater than the input value
(when interpreted as a natural number). Technically, nextPrime computes the next odd
integer that is greater than or equal to its input value and executes a primality test. If
the result of this test is negative nextPrime simply increments the input value by two. This
process is repeated until the result is positive. Observe that, as a direct application of the
Bertrand-Chebychev theorem we get that there exists at least one prime greater than 2l and
smaller than 2l+1. Thus, even for the largest input value, 2l− 1, there exists an output value
in [2l; 2l+1 − 1]. (By the prime number theorem this prime is approximately around l + 2l.)
Naccache, Pointcheval and Stern define:

toPrime(m) = nextPrime(m · 2Q), (2.3)

where Q is chosen such that the existence of a prime in any set [m · 2Q; (m + 1) · 2Q[, for
m < 2l is guaranteed. Following [80] this can be realized under reasonable number-theoretic
assumptions if Q ≈ 5 log2 l resulting in about 20l primality test (as part of nextPrime).

A second instantiation has recently been proposed by Hohenberger-Waters [66]. In con-
trast to the Naccache-Pointcheval-Stern method, primes can be much smaller. However, in
contrast to the above solution there may not exist an efficient algorithm to compute, given a
prime, its pre-image. At the heart of the Hohenberger-Waters solution is a pseudo-random
function PRF = (PRF.KeyGen,PRF.Eval) (for completeness we provide the formal definition of
pseudo-random functions in Section 2.7). The key to this function kPRF ← PRF.KeyGen(1κ) is
public. Assume PRF.Eval maps ((log2 l)

2 + l)-bit strings to l-bit strings. Hohenberger-Waters
define:

toPrime(m) = PRF.Eval(kPRF, i||m), (2.4)

where i ∈ [0; (log2 l)
2] is called the resolving index of m which is the minimal value in

[0; (2 log2 l)
2] such that the output of PRF.Eval(kPRF, i||m) is prime. Hohenberger showed

that the probability of any PPT to find two colliding input values is negligible given that
the pseudo-random function is secure as defined below. For a proof we refer to the original
paper [66]. We note that there exists efficient pseudo-random functions which solely rely on
standard assumptions like the factoring assumptions.

16

2.2.3 Safe RSA Moduli

Definition 2.3 (Safe Prime) Let p be an odd prime with p = 2q + 1 for some q ∈ N. If q
is prime, p is called a safe prime.

Definition 2.4 (Safe Composite) Let n be a composite and n = pe11 · . . . · pel
l be its prime

factor decomposition. If all the pi for i ∈ [1; l] are safe primes, n is called a safe composite
(or safe modulus).

Definition 2.5 (Balanced Primes) Let p, q ∈ N. We say that p and q are balanced if
|p|2 = |q|2.

Definition 2.6 (RSA Modulus) Let p, q ∈ N be distinct and balanced primes. Then we
call n = pq an RSA modulus. If n is a safe composite, we say that n is a safe RSA modulus.

Definition 2.7 (Quadratic Residue) Let n be an RSA modulus. We call QRn = {x|∃y ∈
Z∗n : y2 = x mod n} the set of quadratic residues (modulo n).

2.2.4 Bilinear Groups and Secure Bilinear Maps

Definition 2.8 (Bilinear groups) Let G1 =<g1>, G2 =<g2> and GT be groups of prime
order p. The function e : G1 × G2 → GT is called bilinear pairing (or bilinear map) if it
holds that

1. ∀a ∈ G1, b ∈ G2, x, y ∈ Zp : e(ax, by) = e(a, b)xy (bilinearity),

2. e(g1, g2) 6= 1GT
is a generator of GT (non-degeneracy), and

3. e is efficiently computable (efficiency).

We call B = (G1, g1,G2, g2,GT , p, e) (asymmetric) bilinear group. If G1 = G2 we say that
B = (G1, g1,GT , p, e) is a symmetric bilinear group.

2.3 Complexity Assumptions

The signature schemes presented in the thesis rely on security assumption which fall into
one of two classes: factoring-based or discrete logarithm based assumptions.

2.3.1 Factoring-Based Complexity Assumptions

The RSA assumptions has been introduced in the seminal work by Rivest, Shamir and
Adleman [90].

17

Definition 2.9 (RSA assumption (RSA)) Let l = l(κ) be a polynomial in the security

parameter. Let p, q
$← Pl,l+1 and n = pq. Let α

$← {x|x < φ(n), gcd(x, φ(n)) = 1} ∩ P and

u
$← Z∗n. We say that algorithm A (tRSA, εRSA)-solves the RSA problem when, in time tRSA,

A has success probability at least εRSA in breaking the RSA problem such that

Pr [(x)← A(n, u, α), x ∈ Z∗n, xα = u mod n] ≤ εRSA,

where the probability is over the random choices of u, p, q, α and the random coins of A.

Definition 2.10 We say that the (tRSA, εRSA)-RSA assumption holds, if no attacker can
(tRSA, εRSA)-solve the RSA problem.

In 1997, Barić and Pfitzmann introduced the strong SRSA assumption [3].

Definition 2.11 (Strong RSA assumption (SRSA)) Let l = l(κ) be a polynomial in

the security parameter. Let p, q
$← Pl,l+1, and n = pq. Let u

$← Z∗n. The Strong RSA
problem is to compute (u1/e mod n, e) ∈ Z∗n × N for some e ≥ 1. We say that algorithm
A (tSRSA, εSRSA)-solves the SRSA problem when, in time tSRSA, A has success probability at
least εSRSA in breaking the SRSA problem such that

Pr [(x, y)← A(n, u), x ∈ Z∗n, y > 1, xy = u mod n] ≥ εSRSA,

where the probability is over the random choices of u, p, q and the random coins of A.

Definition 2.12 We say that the (tSRSA, εSRSA)-SRSA assumption holds, if no attacker can
(tSRSA, εSRSA)-solve the SRSA problem.

2.3.2 Discrete Logarithm Based Assumption

The discrete logarithm (DL) assumption is one of the most popular complexity assump-
tions used in cryptography. However, seldom cryptographic schemes solely rely on the DL
assumption. Often, schemes are based on assumptions which imply the DL assumption.

Definition 2.13 (Discrete Logarithm problem) Let l = l(κ) be a polynomial. Let G
be a group of prime order p with |p|2 = l. Let g

$← G be a random generator of G. The

discrete logarithm problem (DL) in G is, given g, gx ∈ G with x
$← Zp, to compute x. We

say that algorithm A (tDL, εDL)-solves the DL problem in G when, in time tDL, A has success
probability at least εDL in breaking the DL problem such that

Pr [x← A (g, gx)] ≥ εDL,

where the probability is over the random choices of g ∈ G and x ∈ Zp and the random coin
tosses of A.

18

Definition 2.14 We say that the (tDL, εDL)-DL assumption holds, if no attacker can (tDL, εDL)-
solve the DL problem.

The computational Diffie-Hellman assumptions was introduced in the seminal work of
Diffie and Hellman in 1976 [46].

Definition 2.15 (Computational Diffie-Hellman problem) Let l = l(κ) be a polyno-

mial. Let G be a group of prime order p with |p|2 = l. Let g
$← G be a random generator

of G. The computational Diffie-Hellman problem (CDH) in G is, given g, ga, gb ∈ G with

a, b
$← Zp, to compute gab ∈ G. We say that algorithm A (tCDH, εCDH)-solves the CDH prob-

lem in G when, in time tCDH, A has success probability at least εCDH in breaking the CDH
problem such that

Pr
[
gab ← A

(
g, ga, gb

)]
≥ εCDH,

where the probability is over g, a, b and the random coin tosses of A.

Definition 2.16 We say that the (tCDH, εCDH)-CDH assumption holds, if no attacker can
(tCDH, εCDH)-solve the CDH problem.

The Strong Diffie-Hellman (SDH) was introduced in 2004 by Boneh and Boyen [17].
Since then, several very efficient cryptographic schemes have been proposed that rely on
SDH. Among them we can also find the shortest signature scheme that is secure in the
standard model[64].

Definition 2.17 (Strong Diffie-Hellman assumption (SDH)) Let l = l(κ) be a poly-

nomial. Let (G1, g1,G2, g2,GT , p, e) be a bilinear group with g1
$← G1, g2

$← G2, and |p|2 = l.

Let x
$← Zp. We say that the (qSDH, εSDH, tSDH)-SDH assumption holds if for all tSDH-time

attackers A that are given T =
(
g1, g

x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2

)
∈ Gq+1

1 × G2
2 with (q = qSDH)

and x ∈ Zp it holds that

Pr
[
(g

1/(x+c)
1 , c)← A(T)

]
≤ εSDH,

where c ∈ Zp and the probability is over the random choices for g1, g2, x and the random
bits of A.

2.4 Hash Functions

In the standard definition, a hash function HF = (HF.KeyGen,HF.Eval) consists of two algo-
rithms.

• HF.KeyGen(1κ): given the security parameter κ this probabilistic algorithm outputs a
hash key kHF in the key space KHF.

• HF.Eval(kHF,m): given a key kHF ∈ KHF and a message m from the message spaceMHF

(usually we have MHF = {0, 1}∗) this deterministic algorithm outputs the hash value
y in the hash space YHF.

19

2.4.1 Security of Hash Functions

Security of hash functions is defined through the following attack games between a challenger
C and an attacker A.

CR – Fully Collision-Resistant Hash Functions. This is the standard security
definition for cryptographically secure hash functions.
Hash key. The challenger C runs HF.KeyGen(1κ) to obtain a fresh hash key kHF. Next, C

gives kHF to A.
Collision. Finally, A outputs m,m′ ∈MHF with m 6= m′.

TCR – Target Collision-Resistant Hash Functions. A weaker but also useful notion
of security defines target collision-resistant hash functions. This primitive was first intro-
duced in [82]. The security definition of target collision-resistant hash functions considers a
slightly less powerful attacker. In particular, the attacker must choose m before it receives
the hash function’s key.
First message. In the first step, the adversary A outputs a message m ∈MHF.
Hash key. The challenger C runs HF.KeyGen(1κ) to obtain a fresh hash key kHF. Next, C

gives kHF to A.
Collision. Finally, A outputs m′ ∈MHF with m′ 6= m.

In each of the above games attacker A wins if m and m′ collide, i.e. HF.Eval(kHF,m) =
HF.Eval(kHF,m

′). We denote the success probability of an adversary A (taken over the
random coins of the challenger and the adversary) to win one of the above security games
X with X ∈ {CR,TCR} as AdvHF,A,X .

Definition 2.18 (Secure Hash Function) An adversary A is said to (tHF, εHF)-break the
(full/target) collision-resistance (security) of hash function HF if A has success probability
AdvHF,A,X = ε with X ∈ {CR,TCR} while running in time tHF. HF is said to be (tHF, εHF)-
secure if there exists no PPT adversary that (tHF, εHF)-breaks the (full/target) collision-
resistance (security) of HF .

Both types of collision-resistant hash functions can be used for message space extensions
(from {0, 1}l to {0, 1}∗) for signature schemes. Using fully collision-resistant hash functions,
messages longer than l bits simply have to be hashed before signing. However, the application
of target collision-resistant hash function requires that a new kHF has to be chosen for each
new signature and prepended to the signature [10, 78].

Despite their common usefulness for domain extension, these primitives are fundamen-
tally different. The general transformation from one-way functions to digital signature
schemes [5, 82, 92] also shows that target collision-resistant hash functions can be con-
structed from one-way functions. In contrast, Simon showed that fully collision-resistant
hash functions cannot be based on one-way function [99] using black-box constructions.

In the following, if we require a hash function to be simply ’collision-resistant’ without
specifying the type of collision-resistance, we always refer to a fully collision-resistant hash

20

function. In signature schemes, the key of a fully collision-resistant hash function kHF is
usually generated once and then fixed in the schemes public key. If kHF is clear from the
context we may write h(·) for HF.Eval(kHF, ·).

2.5 Chaining Function

We will now define chaining functions w : Rchain ×Mchain → Rchain that combine an input
message m ∈ Rchain with a random value r ∈ Rchain. Chaining Functions will be used in
Chapter 3 to describe the signature schemes of Section 3.1 and Section 3.3. In the context of
signature schemes, chaining functions have already been introduced by Cramer, Damg̊ard,
Pedersen in [44] (although not under a dedicated name). The abstraction presented here
is very convenient in the signature description and for proving Lemma 3.3. In their SRSA-
based signature scheme Naccache, Pointcheval, Stern instantiated the transformation of [44]
while concentratating on a restricted class of chaining functions that are based on the XOR
operation [80].

Definition 2.19 (Chaining Functions) Let lchain = lchain(κ) be a polynomial. Let Wκ

for κ ∈ N be a collection of functions of the form w : Rchain × Mchain → Rchain with
|Rchain| ≤ 2lchain. Let W = {Wκ}κ∈N. We say that W is (tchain, εchain)-chaining if for all
attackers A there exists a negligible function εchain = εchain(κ) and the following properties

hold for w
$←Wκ:

1. For all m ∈Mchain it holds that w(Rchain,m) = Rchain (injectivity).

2. Given z ∈ Rchain, m ∈ Mchain, it is easy to find r ∈ Rchain such that w(r,m) = z
(invertibility).

3. For all r̄ ∈ Rchain, it holds for all tchain-time attackers A that

Pr
[
w(r̄, m) = w(r̄, m′); (m,m′)← A(r̄, w), m,m′ ∈Mchain, m 6= m′

]
≤ εchain,

where the probability is over the random coins of A (collision-resistance).1

4. For all m ∈Mchain and given random r, r′ ∈ Rchain, it holds for all tchain-time attackers
A that

Pr
[
w(r,m) = w(r′,m′); m′ ← A(r, r′,m,w), m′ ∈Mchain

]
≤ εchain,

where the probability is computed over the random coins of A and the random choices
of r and r′ (second pre-image resistance).

1If w is also a permutation or just injective in the second input parameter, this requirement is trivially
fulfilled.

21

If used in signature schemes, w is fixed at random during the key generation phase.
In [80], Naccache et al. implicitly show that W = {W2κ}κ∈N is chaining for Mchain =

{0, 1}κ and Rchain = {0, 1}2κ with κ ∈ N if

W2κ = {w(r,m) = r ⊕ (m||m)}.

The advantage of this function is its statistical security. The drawback is its inefficiency
when signing long messages.

Lemma 2.20 The above function W is (·, 2−κ)-chaining according to Definition 2.19.

Proof. Properties 1 and 2 are obvious. Property 3 follows from the fact that for
any two m,m′ ∈ {0, 1}κ with m 6= m′ it also holds that m||m 6= m′||m′ and hence r ⊕
m||m 6= r ⊕ m′||m′ for all r ∈ R. To show Property 4, suppose we are given a random
m ∈ {0, 1}k and random r, r′ ∈ {0, 1}2κ. Assume that there exists m′ ∈ {0, 1}k such that
r ⊕m||m = r′ ⊕m′||m′. We then must have that r ⊕ r′ can be represented as r̄||r̄ for some
r̄ ∈ {0, 1}k. For a given random pair r and r′ this only happens with probability 2−κ. �

2.6 Combining Function

In this section, we introduce a new family of functions called combining functions. We will
subsequently use the concept of combining functions to generalize several signature schemes
without random oracles in Chapter 4.

Definition 2.21 (Combining Functions) Let Vk for k ∈ N be a collection of functions
of the form z : R × M → Z with |Z| ≤ 2k. Let V = {Vk}k∈N. We say that V is
(tcomb, εcomb, δcomb)-combining if for all attackers A there exist negligible functions εcomb(k)

and δcomb(k) and the following properties hold for z
$← Vk.

1. for all m ∈ M it holds that |R| = |Zm| where Zm is defined as Zm = z(R,m). For
all m ∈ M and all t ∈ Z there exists an efficient algorithm z−1(t,m) that, if t ∈ Zm,
outputs the unique value r ∈ R such that z(r,m) = t, and ⊥ otherwise.

2. for t
$← Z and r′

$← R we have for the maximal (over all m ∈ M) statistical distance
between r′ and z−1(t,m) that

max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣} ≤ δcomb.

3. for all r ∈ R, it holds for all tcomb-time attackers A that

Pr
[
z(r,m) = z(r,m′); (m,m′)← A(z, r), m,m′ ∈M, m 6= m′

]
≤ εcomb,

where the probability is taken over the random bits of A.

22

Table 2.1: Examples of statistically secure combining functions. Let V = {Vk}k∈N with
Vk = {z(r,m)}, l, lr, lm ∈ N, lr > lm and p be prime.

z(r,m) R M Z combining
EX1 r +m mod p Zp Zp Zp (·, 0, 0)
EX2 r ⊕m {0, 1}l {0, 1}l {0, 1}l (·, 0, 0)
EX3 r +m [0; 2lr − 1] [0; 2lm − 1] [0; 2lr + 2lm − 2] (·, 0, 2lm−lr)

In the following, we assume that when used in signature schemes, z
$← Vk is chosen uniformly

at random during the key generation phase.
In Table 2.1, we present three concrete examples (EX1, EX2, EX3) of statistically secure

combining functions. The following lemma shows that these examples are valid combining
functions with respect to Definition 2.21.

Lemma 2.22 EX1 and EX2 constitute (·, 0, 0)-combining functions and EX3 constitutes a
(·, 0, 2lm−lr)-combining function.

Proof. Let us first analyze EX1 and EX2. We have that M = R = Z = Zm for
all m ∈ M and we can efficiently compute r as r = t − m mod p or r = t ⊕ m for all
given t ∈ Z and m ∈ M. Furthermore, since z is bijective in both input parameters
z−1(t,m) is uniformly distributed in R for all m ∈ M and random t ∈ Z. Thus, δcomb = 0.
Finally, since z is a bijection in the second input parameter, it is collision-free (property
3) in both examples and we have that εcomb = 0. Now, let us analyze EX3. For given
m ∈ M and t ∈ Z, z−1(t,m) outputs r = t − m if t − m ∈ R and ⊥ otherwise. To
show that z is collision-free, observe that m 6= m′ implies r + m 6= r + m′ for all r ∈ R.
To analyze D = maxm∈M

{
1/2 ·∑r∈R |Pr[r′ = r]− Pr[z−1(t,m) = r]|

}
first note that for

t′
$← Zm, z−1(t′,m) is uniform in R since |Zm| = |R| implies that z−1(·,m) defines a

bijection from Zm to R. For t′
$← Zm and t

$← Z we get

D = max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m′) = r]
∣∣}

= max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[z−1(t′,m) = r]− Pr[z−1(t,m) = r]
∣∣}

≤ max
m∈M

{
1/2 ·

∑
t0∈Zm

|Pr[t′ = t0]− Pr[t = t0]|
}

=
|Zm|

2
· (1

|Zm|
− 1

|Z|) =
|Z| − |Zm|

2|Z|

=
2lm − 2

2(2lm + 2lr − 2)

≤ 2lm−lr

23

�

Three further examples of combining functions can be obtained when first applying a
(th, εh)-collision-resistant hash function that maps (long) messages toM. Lemma 2.23 guar-
antees that the results are still combining according to Definition 2.21.

Lemma 2.23 Let Zcomb be a (tcomb, εcomb, δcomb)-combining function with message spaceMcomb,
randomness space Rcomb, and output space Ycomb. Let HF = (HF.KeyGen,HF.Eval) be a
(tHF, εHF)-collision-resistant hash function with message space MHF and hash space YHF.

Then it holds that Z ′comb = {Z ′κ}κ∈N with Z ′κ = {z(r,HF.Eval(kHF,m))|z $← Zκ, kHF ←
HF.KeyGen(1κ)} is (min{tcomb, tHF}, εcomb + εHF, δcomb)-combining with message space MHF,
randomness space Rcomb, and output space Ycomb.

Proof. Assume V is (tcomb, εcomb, δcomb)-combining and H is (th, εh)-collision-resistant.

Let z
$← Vk and h

$← Hlm . Set M′ = {0, 1}∗ and z′(r,m) = z(r, h(m)). First observe
that given m ∈ M′ and t ∈ Zm we can always compute r ∈ R (or ⊥) just by finding an
appropriate r for h(m), z(r, h(m)) using the properties of z.

Now, for contradiction assume that an attacker A can find collisions for z′ in time
min{tcomb, th} with probability better than εh + εcomb. Let (m,m′) be such a collision. Then,
we have either found a collision (m,m′) of the hash function (if h(m) = h(m′)) or a collision
(h(m), h(m′)) in the combining function (h(m) 6= h(m′)). In the first case, A has computed
a hash collision in time equal or less th with a probability greater than εh + εcomb ≥ εh. This
contradicts the fact that H is (th, εh)-collision-resistant. On the other hand, if A has found
a collision in the combining function, this means that A can break the collision-resistance
of V in time less or equal than tcomb with probability greater than εh + εcomb ≥ εcomb. This
contradicts the fact that V is (tcomb, εcomb, δcomb)-combining.

To proof the probability bound δcomb, observe that since h(M′) ⊆M we finally have

max
m∈M′

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t, h(m)) = r]
∣∣}

≤ max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣}

≤ δcomb.

�

2.7 Pseudo-Random Function

A collision-resistant hash function PRF = (PRF.KeyGen,PRF.Eval) consists of two algorithms.

• PRF.KeyGen(1κ): given the security parameter κ this probabilistic algorithm outputs
a hash key kPRF in the key space KPRF.

24

• PRF.Eval(kPRF,m): given a key kPRF ∈ KPRF and a message m from the message space
MPRF this deterministic algorithm outputs the value y in the output space YPRF.

Security of Pseudo-Random Functions. Security of a pseudo-random function is
defined through the following attack game between a challenger C and attacker A.
Key generation. In the first step, C generates a fresh key kPRF ← PRF.KeyGen(1κ).
Adaptive queries. Next,A can adaptively query oracleO(kPRF, ·) with messagesm1, . . . ,mq

for q = q(κ). On inputmi ∈MPRF with i ∈ [1; q], O(kPRF, ·) outputs PRF.Eval(kPRF,mi) ∈
YPRF.

Test Query. Finally, A outputs a test query m∗ ∈MPRF with m∗ /∈ {m1, . . . ,mq}.
Challenge. The challenger draws a random coin b ∈ {0, 1}. If b = 0, C computes y∗0 ←

PRF.Eval(kPRF,m
∗). If b = 1, C randomly draws y∗1 ∈ YPRF. Then it sends y∗b to A.

Attacker’s response. Given y∗b , A outputs b′ ∈ {0, 1} indicating its guess of b.
We denote the advantage of A to win the above security game as

AdvA,PRF = |Pr[b = b′]− 1/2|.

Definition 2.24 (Pseudo-random function) We say that A (tPRF, εPRF)-breaks the secu-
rity of PRF if A runs in time tPRF and has success probability the AdvA,PRF ≥ εPRF to win in
the above security game. PRF is called (tPRF, εPRF)-secure if there exists no polynomial-time
attacker A that (tPRF, εPRF)-breaks the security of PRF .

2.8 Chameleon Hash Function

Chameleon hash functions were (explicitly) introduced in 2000 [70]. Intuitively, a chameleon
hash function is a randomized hash function for which it is very hard to find collisions.
However given its secret key, one can easily compute collisions even for given messages. For-
mally, a chameleon hash function CH = (CH.Gen,CH.Eval,CH.Coll) consists of three efficient
algorithms.

• CH.Gen(1κ): this probabilistic algorithm outputs a secret key SKCH and a public key
PKCH.

• CH.Eval(PKCH,m, r): given a public key PKCH, a message m from the message space
MCH, and a random r from the randomization space RCH this deterministic algorithm
CH.Eval outputs a chameleon hash value y in the hash space YCH.

• CH.Coll(SKCH, r,m,m
′): this algorithm deterministically outputs, on input SKCH and

a triple (r,m,m′) ∈ RCH×MCH×MCH, a value r′ ∈ RCH such that CH.Eval(PKCH,m, r) =
CH.Eval(PKCH,m

′, r′).

An invertible chameleon hash function CH = (CH.Gen,CH.Eval,CH.Coll,CH.Inv) [96] addi-
tionally consists of a fourth algorithm CH.Inv:

25

• CH.Inv(SKCH, y,m): given the secret key SKCH, a hash value y ∈ YCH and a message
m ∈MCH this algorithm outputs r ∈ RCH with CH.Eval(PKCH,m, r) = y.

Definition 2.25 (Collision-Resistant Chameleon Hash Function) We say that CH is
(tCH, εCH)-secure if for all tCH-time adversaries A that are only given PKCH it holds that

Pr

 CH.Eval(PKCH,m, r) = CH.Eval(PKCH,m
′, r′);

(SKCH, PKCH)← CH.Gen(1κ), (m,m′, r, r′)← A(PKCH),
r, r′ ∈ RCH, m,m

′ ∈MCH, m 6= m′

 ≤ εCH,

where the probability is over the random choices of PKCH and the coin tosses of A. We say
that CH is strongly collision-resistant if we solely require that (m′, r′) 6= (m, r) (rather than
m 6= m′).

We also require that for arbitrary but fixed keys (PKCH, SKCH) output by CH.Gen and for
random r ∈ RCH, CH.Eval(PKCH,m, r) is distributed equally for all messages m ∈ MCH.
In the case of invertible chameleon hash functions we additionally need that for randomly
distributed values y ∈ YCH and all m ∈ MCH the distribution of CH.Inv(SKCH, y,m) is
indistinguishable from uniform in RCH.

The security of chameleon hash functions can be based on standard assumptions like the
discrete logarithm assumption [70] or the factoring assumption [70]. We remark that most
of the existing chameleon hash functions are actually strongly secure. To prove this, all we
need to show is that for all PKCH and all m, CH.Eval(PKCH,m, r) is injective in r. Usually,
this can be done simply by inspection.

Lemma 2.26 Let CH be a (tCH, εCH)-secure chameleon hash function. If for all messages
m ∈MCH and all PKCH generated using CH.Gen(1κ), CH.Eval(PKCH,m, r) is injective in r,
then CH is strongly secure.

Proof. To prove Lemma 2.26 observe that if CH.Eval(PKCH,m, r) is an injection for
all m and all PKCH, we always have for r, r′ with r 6= r′ that CH.Eval(PKCH,m, r) 6=
CH.Eval(PKCH,m, r

′). Therefore, there cannot exist values r, r′ with CH.Eval(PKCH,m, r) =
CH.Eval(PKCH,m, r

′). This implies that for all collisions (m, r), (m′, r′) with (m, r) 6= (m′, r′)
we always must have that m 6= m′. But this is the standard definition of security. �

2.9 Multi-Generator Programmable Hash Function in

Prime Order Groups

In our (ring) signature scheme (Chapter 6) we use the multi-generator programmable hash
function by Hofheinz and Kiltz in groups with known prime order [64] which in turn is derived
from the CDH-based signature scheme by Waters [102]. Intuitively, the multi-generator
programmable hash function offers two indistinguishable key generation routines. The first

26

samples the elements of the key at random. A given input message is evaluated by multiplying
a subset of these elements together. The second key generation routine also outputs a
secret key. This key allows to evaluate the multi-generator programmable hash function in
a different but very useful way. Formally, a multi-generator programmable hash function
SIG = (PHF.KeyGen,PHF.Eval,PHF.TrapGen,PHF.TrapEval) consists of four algorithms.

2.9.1 Multi-Generator Programmable Hash Function

Definition 2.27 (Multi-Generator PHF) The multi-generator programmable hash func-
tion consists of four algorithms.

• PHF.KeyGen(1κ, l): given 1κ, l = l(κ) and a group G of prime order p with |p|2 = lp =
lp(κ), PHF.KeyGen returns l + 1 random group generators u0, u1, . . . , ul ∈ G.

• PHF.Eval(u0, u1, . . . , ul,m): Given the ui and a message m ∈ {0, 1}l, PHF.Eval outputs

u(m) = u0

l∏
i=1

umi
i ,

where (ml, . . . ,m1) is the binary representation of m: m =
∑l

i=1mi2
i−1.

The pair (PHF.KeyGen,PHF.Eval) is called a group hash function.

• PHF.TrapGen(1κ): on input 1κ, l and generators g, h ∈ G, the algorithm PHF.TrapGen
randomly chooses a′0, a1, . . . , al ∈ {−1, 0, 1} and b0, b1, . . . , bl ∈ Zp. Next, it sets a0 =
a′0 − 1 and outputs l + 1 group elements ui = gaihbi for i = 0, 1, . . . , l and the trapdoor
(a0, a1, . . . , al, b0, b1, . . . , bl).

• PHF.TrapEval(a0, a1, . . . , al, b0, b1, . . . , bl,m): Now, given (a0, a1, . . . , al, b0, b1, . . . , bl) and
a message m, the algorithm PHF.TrapEval outputs a(m) = a0 +

∑l
i=1 aimi and b(m) =

b0 +
∑l

i=1 bimi. Note that when the ui have been computed by PHF.TrapGen it clearly

holds that u(m) = u0

∏l
i=1 u

mi
i = ga(m)hb(m).

Hofheinz and Kiltz showed that for every fixed polynomial q = q(κ) the multi-generator pro-

grammable hash function is (1, q, 0, Pq,l)-programmable where Pq,l = O
(

1
q
√
l

)
. This means,

that the group elements output by PHF.KeyGen and PHF.Eval are equally distributed. Fur-
thermore it holds for all possible input parameters to PHF.TrapGen and all M1, . . . ,Mq+1 ∈
{0, 1}l with Mq+1 6= Mi for i ≤ q that

Pr[a(Mq+1) = 0 ∧ a(M1), . . . , a(Mq) 6= 0] ≥ Pq,l.

The corresponding proof and further details on programmable hash functions can be
found in the original paper [64]. A similar but (asymptotically) weaker result (Pq,l = 1

8(l+1)q
)

was implicitly given by Waters in [102].

27

2.10 Signature Scheme

A digital signature scheme SIG=(SIG.KeyGen,SIG.Sign,SIG.Verify) consists of three algorithms.

• SIG.KeyGen(1κ): this probabilistic polynomial time algorithm outputs, given the secu-
rity parameter, a secret key SK and a public key PK.

• SIG.Sign(SK,m): given SK and a message m from the message space MSIG, this
algorithm outputs a signature σ in the signature space YSIG on m.

• SIG.Verify(PK,m, σ): given the public key PK, a message m ∈MSIG, and a purported
signature σ ∈ YSIG, this algorithm check whether σ is a legitimate signature on m signed
by the holder of the secret key corresponding to PK. On successful verification the
algorithm outputs 1, otherwise 0.

In the rest of this work, we only consider correct signature schemes.

Definition 2.28 (Correctness) A signature scheme SIG=(SIG.KeyGen,SIG.Sign,SIG.Verify)
is called correct if for all m ∈MSIG

Pr [SIG.Verify(PK,m, SIG.Sign(SK,m)) = 1; (SK,PK)← SIG.KeyGen(1κ)] = 1.

2.11 Security Notions

We restrict ourself to security definitions that have proven useful to obtain efficient hash-and-
sign signature schemes. As usual in cryptography, security is formalized by first specifying
a successful attacker (or forger) A against a signature scheme. Each attacker can be given
(restricted) access to additional attack capabilities. Usually these capabilities are modeled as
signing oracles that allow A to obtain sample signatures on (several) messages (of his choice).
Furthermore we need to specify what it means for A to be successful. In the existing security
games of signature schemes, A is successful if it can output a new signature σ∗ that has not
been obtained by a signing oracle before. The hardness of computing a forgery differs in
A’s degree of freedom to also specify the message m∗ on which σ∗ is a valid signature on.
For example, m∗ can be given to A at the very beginning of the security game (allowing no
freedom of choice for A at all) or m∗ can be freely chosen by A at the end of the attack
game. We refer to the freedom of A in specify m∗ as the (required) success definition. The
combination of provided attack capabilities and success definition is called the attack model.
Correspondingly, a signature scheme is called secure in a specific attack model if (under
some complexity assumption) no polynomial-time attacker can exist that has access to the
granted attack capabilities and outputs the required type of forgery.

Attack Capabilities. The attack capabilities are formalized by signing oracles O(SK, ·)
that allow A to obtain (several) message/signature pairs. These oracles can be very re-
strictive such that the attacker may not choose any of the signed messages (known/random
message attacks (RMA)) at all or more powerful allowing A to specify (prior to receiving

28

the scheme’s public key and the signatures) the messages on which it wants to receive sig-
natures on (generic chosen message attacks (gCMA)). The most powerful oracle allows A to
adaptively query messages that even may depend on the scheme’s public key and previously
received signatures (adaptive chosen message attacks (aCMA)). These oracles constitute a hi-
erarchy. Any attacker that is successful when only allowed to launch random message attacks
is also successful when granted access to an oracle for generic chosen message attacks. Simi-
larly, any attacker that is successful when allowed to launch generic chosen message attacks
is also successful when granted access to an oracle for adaptive chosen message attacks.

Success Definitions. In the literature we can find three success definitions. Existen-
tial (message) forgeries allow A to output any message/signature pair (m∗, σ∗) such that
m∗ has not been queried before. Selective (message) forgeries require that A must specify
m∗ at the beginning of the attack game. Universal (message) forgeries require that m∗ is
given to A at the beginning to the attack game. These types of forgery are increasingly
powerful. Any A that can compute universal forgeries of a signature scheme SIG can also
compute selective forgeries. Similarly, any attacker that can compute selective forgeries can
also compute existential forgeries. The corresponding security notions are called existen-
tial message unforgeability (EMUF), selective message unforgeability (SMUF), and universal
message unforgeability (UMUF).

In the following we will focus on existential unforgeability as it provides the highest
security guarantees.

2.11.1 Existential Message Unforgeability

Existential Message Unforgeability under Random Message Attacks (Ran-
dom Security) – EMUF-RMA. In this attack model, A is completely passive.
Signature queries, Public Key Generation and Signature Output. The challenger

runs SIG.KeyGen(1κ) to obtain (SK,PK). The adversary is given q random mes-

sages m1, . . . ,mq
$← M, the public key PK, and q signatures σ1, . . . , σq such that

SIG.Verify(PK,mi, σi) = 1 for i ∈ {1, . . . , q}.
Output. The attacker outputs (m∗, σ∗) withm∗ /∈ {m1, . . . ,mq} and SIG.Verify(PK,m∗, σ∗) =

1.

Existential Message Unforgeability under Generic Chosen Message Attacks
(Weak Security) – EMUF-gCMA. In this attack model, the attacker must specify the
signature queries before it receives the public key.
Signature queries. At first the adversary sends a list of q signature queriesm1, . . . ,mq ∈M

to the signing oracle OgCMA(SK, ·).
Public Key Generation and Signature Output. In the next phase, the public key PK is

given to the adversary together with q signatures σ1, . . . , σq s.t. SIG.Verify(PK,mi, σi) =
1 for i ∈ {1, . . . , q}.

Output. The attacker outputs (m∗, σ∗) withm∗ /∈ {m1, . . . ,mq} and SIG.Verify(PK,m∗, σ∗) =

29

1.

Existential Message Unforgeability under Adaptive Chosen Message At-
tacks (Full Security) – EUF-aCMA. The standard notion of security for signature
schemes is called existential unforgeability under adaptive chosen message attacks [62]. Here
the adversary is given access to a signing oracle OaCMA(SK, ·) to adaptively query signatures.
Setup. In the setup phase, the public key PK is given to the adversary.
Signature queries. The adversary adaptively queries OaCMA(SK, ·) with q messages of his

choice, m1, . . . ,mq ∈M, and obtains q signatures σ1, . . . , σq with SIG.Verify(PK,mi, σi) =
1 for i ∈ {1, . . . , q}.

Output. The attacker outputs (m∗, σ∗) withm∗ /∈ {m1, . . . ,mq} and SIG.Verify(PK,m∗, σ∗) =
1.

2.11.2 Definition of Security

We denote the success probability of an adversary A (taken over the random coins of the
challenger and the adversary) to win in one of the above security games Y with Y ∈
{RMA, gCMA, aCMA} as AdvSIG,A,Y .

Definition 2.29 (Secure Signature Scheme) An adversary A is said to (q, t, ε)-break
the existential message unforgeability of signature scheme SIG under random/generic cho-
sen/adaptive chosen message attacks if A has success probability AdvSIG,A,Y = ε with and
Y ∈ {RMA, gCMA, aCMA} after generating at most q queries and running in time t. SIG is
said to be (q, t, ε)-secure if there exists no PPT adversary that (q, t, ε)-breaks the existential
unforgeability of SIG. In case q = 1, SIG is called a (t, ε)-secure one-time signature scheme.
A signature scheme is called strongly secure if in the above security games A may also output
a forgery with m∗ ∈ {m1, . . . ,mq} but (m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)}.

2.12 Two-Tier Signature Schemes

Two-tier signature schemes were introduced by Bellare and Shoup [13]. Informally, a two-
tier signature can be regarded as a ’one-time signature generator’ that is identified by some
long-term key material (SK,PK). The holder of the secret key SK can issue fresh one-
time key pairs (osk, opk). However, in contrast to usual one-time signatures the one-time
key material is related to each other – via the long-term secrets – and not totally in-
dependent. Therefore, signature generation and verification also require these values as
input. As two-tier signature schemes have weaker security properties than classical sig-
nature schemes they allow for more efficient instantiations. A two-tier signature scheme
TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify) consists of the following algorithms.

• TT.KeyGen(1κ): outputs a secret key SK and a public key PK.

30

• TT.OTKeyGen(SK,PK): given (SK,PK) this algorithm outputs new one-time key
material consisting of the one-time secret key osk and the one-time public key opk.

• TT.Sign(SK, osk,m): takes as input the secret keys SK and osk and the message
m ∈MTT and outputs a signature σ on m.

• TT.Verify(PK, opk,m, σ): if σ is a signature on message m with respect to public keys
PK and opk this algorithm outputs 1, otherwise 0.

As with classical digital signatures, we subsequently only consider correct two-tier signa-
ture schemes.

Definition 2.30 (Correctness of two-tier signature schemes) We call a two-tier sig-
nature scheme TT=(TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify) correct if for all m ∈
MTT

Pr

[
TT.Verify(PK, opk,m,TT.Sign(SK, osk,m)) = 1;

(SK,PK)← TT.KeyGen(1κ); (osk, opk)← TT.OTKeyGen(SK,PK)

]
= 1.

2.12.1 Security of Two-Tier Signature Schemes

The existing security definition is due to Bellare and Shoup [13].
We define security of two-tier signature schemes in the spirit of the security notions of

classical signature schemes. The intuition behind the definitions is that we do not want the
adversary to be able to break any of the issued one-time signature schemes (identified with
the corresponding one-time key material). To model this the adversary is granted access to
the one-time oracles of each one-time signature schemes.

Adaptively Secure Two-tier Signature Schemes. In the original security definition
the adversary is first given access to the one-time public keys [13].
Public Key and Signature Generation. In the first phase the adversary is provided

with a public key PK.
Signature queries. In the next step, the adversary is granted q-time access to the oracle

OSK,adapt(·). On input index i ∈ [1; q] this oracle outputs the one-time public key opki.
Given an index i ∈ [1; q] and a message mi, OSK,adapt(·) outputs a one-time signature
σi on mi under one-time key opki such that TT.Verify(PK, opki,mi, σi) = 1. If opki
has not been queried before, OSK,adapt(·) outputs both opki and σi. To implement the
one-time functionality we require that the adversary can query OSK,adapt(·) for each i
only once.

Output. The attacker outputs a forgery (m∗, σ∗) such that there exists i ∈ [1; q] with
m∗ 6= mi and TT.Verify(PK, opki,m

∗, σ∗) = 1.

We denote the success probability of an adversary A (taken over the random coins of
the challenger and the adversary) to win the adapt security game as AdvTT,A,adapt and the
adaptive security game as AdvTT,A,adapt.

31

Definition 2.31 (Secure Two-Tier Signature Scheme) An adversary A (q, t, ε)-breaks
the adaptive security of a given two-tier signature scheme TTif A has success probabil-
ity AdvTT,A,adapt = ε after generating at most q one-time queries and running in time t.
TTis said to be adaptively (q, t, ε)-secure if there exists no PPT adversary that (q, t, ε)-breaks
the adaptive security of TT. For convenience we call a two-tier signature scheme strongly
secure if the generated one-time signature schemes are strongly secure (i.e. (m∗, σ∗) /∈
{(m1, σ1), . . . , (mq, σq)}).

2.13 Ring Signature Schemes

A ring signature scheme allows a signer to sign on behalf of a group of users, the so-called
ring; the only condition is that the signer must also be part of this ring. Technically, a
ring is represented by the set of public keys that correspond to the identities of the ring
members. Using his private key, the signer can now sign a message such that anyone can
check whether the signature has been generated by one of the ring members. At the same
time, there exists no possibility to discover the actual signer. Ring signatures provide signer
anonymity in a very strong sense. In contrast to group signature schemes [38], the anonymity
of the signer cannot be revoked. What makes ring signature schemes very flexible is that
no central management is needed and that the signer can freely choose the public keys in
the ring even without their owners’ consent. Direct applications for ring signature schemes
include designated verifier signatures [69] and secret leaking [91], but ring signature schemes
are in general useful in applications where signer anonymity is desired.

2.13.1 Definition

A ring signature scheme RSIG = (RSIG.KeyGen,RSIG.Sign,RSIG.Verify) consists of the fol-
lowing algorithms.

• RSIG.KeyGen(1κ): generates a secret and public key (SK,PK).

• RSIG.Sign(R, SKi,m): takes as input a tuple of public keys R = (PK1, . . . , PKn), a
secret key SKi with i ∈ {1, . . . , n} and a message m ∈MRSIG and outputs a signature
σ.

• RSIG.Verify(R,m, σ): processes R, a message m and a signature σ to check whether σ
is a legitimate signature on m signed by a holder of a secret key corresponding to one
of the public keys in R. Accordingly, the algorithm outputs 1 to indicate a successful
verification and 0 otherwise.

We subsequently only consider correct ring signature schemes.

Definition 2.32 (Correctness of ring signature schemes) We say that a ring signa-
ture scheme RSIG = (RSIG.KeyGen,RSIG.Sign,RSIG.Verify) is correct if for all m ∈ MRSIG

32

and all possible rings R and all i such that PKi is a public key in R

Pr

[
RSIG.Verify(R,m,RSIG.Sign(R, SKi,m)) = 1;

(SK,PK)← RSIG.KeyGen(1κ)

]
= 1.

Note that for simplicity, we do not assume an explicit setup algorithm. In the following,
all global parameters depend on 1κ. We stress that we do not rely on a trusted setup
authority

2.13.2 Ring Unforgeability

When describing the ring signature scheme in Chapter 6, we concentrate on unforgeability
against chosen subring attacks. This security notion is formalized in the following attack
game between a challenger and an adversary.
Setup. The challenger runs RSIG.KeyGen n times to compute (SK1, PK1), . . . , (SKn, PKn).

Next, R = (PK1, PK2, . . . , PKn) is given to the adversary.
Adaptive signature queries. The adversary adaptively sends q signature queries to the

challenger. For i ∈ {1, . . . , q}, each query Qi consists of a message mi, a set Ri ⊆ R
of public keys and an index ei ∈ {1, . . . , n}. When the challenger receives the i’th
query Qi = (mi, Ri, ei), he computes σi = RSIG.Sign(Ri, SKei

,mi) and sends it to the
adversary.

Output. The attacker outputs (m∗, R∗, σ∗) with m∗ /∈ {m1, . . . ,mq}.2
We denote the success probability of an adversary A (taken over the random coins of the
challenger and the adversary) to win the above game as AdvSIG,A,unf.

Definition 2.33 (Ring unforgeability) We say that a ring signature scheme is (t, ε, q)-
secure, if no t-time attacker has success probability at least ε in the above attack game after
making q signature queries.

2.13.3 Ring Anonymity

The strongest notion of anonymity for ring signature schemes is perfect anonymity. Formally,
we consider the following attack game between a challenger and an unbounded adversary.
Setup. The challenger runs RSIG.KeyGen n times to compute (SK1, PK1), . . . , (SKn, PKn).

The set of the so computed public keys R = (PK1, PK2, . . . , PKn) is given to the
adversary.

Adaptive signature and corrupt queries. The adversary adaptively sends q signature
queries Q1, . . . Qq to the challenger and receives the corresponding answers σ1, . . . , σq.

2We note that a ring signature scheme which is secure under this security definition can easily be adapted
to meet the slightly stronger security notion in [14] which solely requires (m∗, R∗) /∈ {(m1, R1), . . . , (mq, Rq)}:
given message m and subring R we simply sign m̄ = h(h(m)||h(R)) instead of m where h(·) := HF.Eval(kHF, ·)
is a collision-resistant hash function with kHF ← HF.KeyGen(1κ). For any new (m∗, R∗), m̄∗ will now be
distinct from all previous values.

33

At the same time, the adversary may adaptively query up to n secret keys SKi with
i ∈ {1, . . . , n}.

Output. Finally, the attacker outputs a message m∗, a set of public keys R∗ ⊆ R and
two distinct indices i0, i1 ∈ {1, . . . , n} such that PKi0 , PKi1 ∈ R∗. The challenger
randomly chooses b ∈ {0, 1}, computes σ∗ = RSIG.Sign(m∗, R∗, SKib), and sends σ∗ to
the attacker. The attacker then outputs b′, indicating his guess for b.

We denote the advantage of an adversaryA (taken over the random coins of the challenger
and the adversary) to win the above game as

AdvRSIG,A,ano = |Pr[A outputs b′ = b]− Pr[A outputs b′ 6= b]| .

Definition 2.34 (Perfect ring anonymity) We call a ring signature scheme perfectly anony-
mous, if even an unbounded adversary has no advantage (AdvRSIG,A,ano = 0) in winning the
above game.

34

Chapter 3

Twin Signatures, Revisited

In 2001, Naccache, Stern and Pointcheval presented a signature scheme that is proven secure
without random oracles in the standard model. The scheme is secure solely under the Strong
RSA assumption. The basic idea is to securely combine two distinct RSA groups such that
an attacker must break the SRSA assumption in at least one of them. However, the original
scheme was defined in SRSA groups where each group element has a 1024 bit representation.
It is therefore not competitive with state-of-the-art signature schemes which have signature
sizes of 340 bits [17] or below [64]. We generalize the Naccache et al. scheme and improve
its efficiency in several ways.

Contribution. First, we present a new twin signature scheme that is based on the SDH
assumption in bilinear groups. Since the representation of group elements can be much
shorter in bilinear groups (≈ 170 bits) than in RSA groups (≈ 1024 bits), the new signature
scheme allows for much shorter signatures.

Second, we analyze the efficiency of twin signature schemes while concentrating on the
two main issues signature size and computational complexity of the signing and verification
procedure. We reveal a severe efficiency bottleneck in the Naccache et al. scheme when
signing long messages as in the presented form, the signature size is proportional to the
length of the input message. Finally, we give a solution to this problem by designing a new
provably secure chaining function.

3.1 Twin Signatures

One of the theoretically most important signature transformations was presented in 1996
by Cramer et al. [44]. It maps EMUF-RMA-secure signature schemes to EMUF-aCMA-secure
schemes. In contrast to the transformation by Even, Goldreich, Micali [51], the Cramer
et al. construction is very efficient. Given an EMUF-RMAsecure signature scheme it outputs
a fully secure scheme which is only slightly less efficient. Unfortunately to the best of our
knowlegde there is no natural example of a signature scheme which is secure against random
message attacks but not at the same time also secure against generic chosen message attacks.
In 2001 Naccache, Pointcheval, and Stern (NPS) [80] presented an efficient instantiation of

35

the signature transformation by Cramer et al. using an SRSA-based weakly secure signature
scheme.1 Seemingly because of its inherent symmetry they coined the term ’twin signature’
to describe their scheme. The scheme is very efficient although it cannot compete with the
schemes by Gennaro et al. [56] and Fischlin [54].2

In this chapter we provide an SDH-based variant of the twin signature scheme which
yields much smaller signatures than the NPS scheme. Next we present a careful analysis of
how to correctly use collision-resistant hash functions for domain extension in twin signature
schemes. When signing long messages (i.e. > 160 Bits), the signature size (2lm + 2048) of
the original scheme depends on the message size lm. Our main result is a slight modification
of the NPS scheme that reduces the signature size to 2k+ 2048 where k is the output length
of the hash function (k ≈ 160). If the hash function outputs randomly distributed output
values for randomly distributed input values we can even further compress the signature size
to k + 2048.

In the first step, we present a generic variant SSRSA of the SRSA-based twin signature
scheme that was proposed by Naccache, Pointcheval, and Stern (NPS) [80] using chaining
functions as introduced in Section 2.5. We will later show how to improve the original NPS
scheme by introducing a new, specially crafted chaining function.

3.1.1 Generic SRSA-Based Twin Signature Scheme

Let R = {0, 1}lr , M = {0, 1}lm , and W = {Wκ}κ∈N be a (tchain, εchain)-chaining function.
Additionally, let toPrime : {0, 1}lr → N be an efficient function that injectively maps strings
to prime numbers (see Section 2.2.2).
SIG.KeyGen(1κ). Choose two RSA moduli n1 = p1q1 and n2 = p2q2. Then randomly choose

u1 ∈ Z∗n1
and u2 ∈ Z∗n2

. Draw w
$← Wκ. The public key is PK = (n1, n2, u1, u2, w)

and the secret key consists of the factorization of n1 and n2: SK = (p1, q1, p2, q2). We
require 2lr − 1 ≤ min{φ(n1), φ(n2)}.

SIG.Sign(SK,m). Given a secret key SK and a message m ∈M, pick r
$← R and compute

the signature σ = (s1, s2, r)
3 as

s1 = u
1

e1
1 mod n1, s2 = u

1
e2
2 mod n2,

where

e1 = toPrime (w(r,m)) and e2 = toPrime (r) .

1Note that by definiton security under generic chosen message attacks implies security under random
message attacks.

2In the case of [56], this might be due to the fact that the scheme implicitly use the Shamir-Tauman
signature transformation [96] to map the weakly secure signature scheme to a fully secure schemes. This
transformation seems to nicely exploit the additional security guarantees provided by EMUF-gCMA-secure
schemes in contrast to EMUF-RMA-secure schemes.

3We made a small simplification here. In the original paper, not r is part of the signature but the
randomness ω that is used to generate r. We stress that since r is drawn uniformly at random from R we
must have that |ω| ≥ lr = 2lm and therefore ω is also dependent on the message size.

36

SIG.Verify(PK,m, σ). Given a public key PK, a message m, and a signature σ = (s1, s2, r),
verify if the following equations hold:

se11
?
= u1 mod n1, s

e2
2

?
= u2 mod n2,

where

e1 = toPrime (w(r,m)) and e2 = toPrime (r) .

Theorem 3.1 Suppose the (tSRSA, εSRSA)-SRSA assumption holds and W = {Wκ}κ∈N is
a (tchain, εchain)-chaining function. Then, SSRSA is (q, t, ε)-secure against adaptive chosen
message attacks provided that

t ≈ tSRSA + tchain, ε ≤ 2εSRSA + 2q2εchain.

The proof of Theorem 3.1 closely follows [80].

3.2 An SDH Based Twin Signature Scheme

In this section, we present our SDH based twin signature scheme SSDH. Let a bilinear
group (G1, g1,G2, g2,GT , p, e) and a (tchain, εchain)-chaining functionW = {Wκ}κ∈N with R =
{0, . . . , tr} and tr ≤ p be given. Let gT = e(g1, g2).

SIG.KeyGen(1κ). Choose two elements x1, x2
$← Zp. Draw w

$← Wκ. The public key is
PK = (PK1, PK2, w) with PK1 = gx1

2 and PK2 = gx2
2 . The secret key is SK = (x1, x2).

SIG.Sign(SK,m). Given a secret key SK and a message m ∈M , pick r
$← R with r 6= −x2

and w(r,m) 6= −x1 and compute σ = (s1, s2, r) as

s1 = g
1

(x1+w(r,m))

1 , s2 = g
1

(x2+r)

1 .

SIG.Verify(PK,m, σ). Given a public key PK a message m and a signature σ = (s1, s2, r),
verify whether the following equations hold:

e
(
s1, PK1 · gw(r,m)

2

)
?
= gT , e (s2, PK2 · gr2)

?
= gT .

3.3 Security

Theorem 3.2 Suppose that the (qSDH, tSDH, εSDH)-SDH assumption holds and that W is a
(tchain, εchain)-chaining function. Then, SSDH is (q, t, ε)-secure against adaptive chosen mes-
sage attacks with

q = qSDH, t ≈ tSDH + tchain, ε ≤ 2εSDH + 2q2εchain.

37

Proof. By contradiction. Assume algorithm A is a forger that (q, t, ε)-breaks the
existential unforgeability of SSDH. Then, we can construct a simulator B, that interacts
with A and after q signature queries either breaks the SDH problem or the security of
the chaining function in time t with advantage ε. We consider four types of forgeries
m∗, (s∗1, s

∗
2, r
∗) A can output after making q signature queries m1, . . . ,mq and receiving q

responses (s1,1, s2,1, r1), . . . , (s1,q, s2,q, rq):
Type I: r∗ /∈ {r1, . . . , rq}.
Type II: r∗ = ri, i ∈ {1, . . . , q}, w(r∗,m∗) /∈ {w(r1,m1), . . . , w(rq,mq)}.
Type III: r∗ = ri, w(r∗,m∗) = w(rj,mj), i, j ∈ {1, . . . , q}, i 6= j.
Type IV: r∗ = ri, w(r∗,m∗) = w(ri,mi), i ∈ {1, . . . , q}.

We subsequently assume that B at the beginning of the communication guesses which
type of forgery A is going to output (with probability 1

4
). According to this guess, B proceeds

differently. If B’s guess turns out to be wrong, he simply aborts and restarts. Theorem 3.2
then follows by a standard hybrid argument.

Let
(
ĝ1, ĝ

x
1 , ĝ

(x2)
1 , . . . , ĝ

(xq)
1 , ĝ2, ĝ

x
2

)
be the SDH challenge and (m̂, r̂, r̂′) the challenge for

Property 4 of the chaining function. In the following, we provide a proof of security that
proceeds in a sequence of games [98, 11]. Let Pr[Si] denote the success probability for an
attacker to successfully forge signatures in Game i.

Type I Forger
Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks S when inter-
acting with the signing oracle OSK(·). We have

Pr[S0] = ε . (3.1)

Game1. This game is like the previous one except that B constructs the values g1, PK1

and PK2 using the SDH challenge. First, B chooses x1
$← Zp and r1, . . . , rq

$← R. Then,

it computes g1 = ĝ
r(x)
1 , g2 = ĝ2, PK1 = gx1

2 , PK2 = gx2 , where r(x) :=
∏q

i=1 (x+ ri). Note
that B can easily generate g1 by computing the coefficients βi ∈ Z for i ∈ {0, . . . , q} of

r(x) =
∑q

0 βix
i and evaluating ĝ

r(x)
1 =

∏q
i=0

(
ĝ

(xi)
1

)βi

. Since x1 and the ri’s are chosen at

random, the distribution of the constructed values is equal to the previous game. Thus,

Pr[S1] = Pr[S0] . (3.2)

Game2. Now, B simulates OSK(·) by answering A’s signature queries. For each received
message mj ∈M, B outputs σj = (s1,j, s2,j, rj) with

s1,j = g
1/(x1+w(rj ,mj))
1 , s2,j = ĝ

∏q
i=1,i6=j (x+ri)

1 .

The simulator can easily compute s1,j since it knows x1. The value s2,j can be computed
like g1 using the SDH challenge. Since the rj’s have been chosen randomly, the changes are
purely conceptual.

Pr[S2] = Pr[S1] . (3.3)

38

Let us now consider the forgery (m∗, s∗1, s
∗
2, r
∗) output by A. It must hold that

e(s∗1, PK1g
w(r∗,m∗)
2) = e(s∗2, PK2g

r∗

2) = e(g1, g2) .

By assumption, we have that r∗ /∈ {r1, . . . , rq}. Using long division, the simulator can now
compute d ∈ Z and a polynomial r′(x) of degree q − 1 with coefficients in Z such that
r(x) = (x+ r∗)r′(x) + d. Since (x+ r∗) does not divide r(x) we must have that d 6= 0. From

the second verification equation we get that s∗2 = g
1/(x+r∗)
1 = ĝ

r′(x)+d/(x+r∗)
1 . Therefore, B can

compute a solution to the SDH problem as((
s∗2ĝ
−r′(x)
1

)1/d

= ĝ
1/(x+r∗)
1 , r∗

)
.

We finally have that
Pr[S2] = εSDH . (3.4)

Type II Forger
Now suppose B correctly expects A to be a Type II Forger. The proof proceeds analogously
to the proof for Type I Forgers.

Game1. In this game, B chooses random x2
$← Zp and w1, . . . , wq

$← R. Now define
v(x) :=

∏q
i=0(x+ wi). Then, B computes

g1 = ĝ
v(x)
1 , g2 = ĝ2, PK1 = gx2 , PK2 = gx2

2 .

As before, the distribution of the values is equal to the previous game.

Pr[S1] = Pr[S0] . (3.5)

Game2. In this game, B simulates the signing oracle. When receiving a query mj ∈ M,
it first computes rj ∈ R such that wj = w(rj,mj). It then outputs the signature σj =
(s1,j, s2,j, rj) with

s1,j = ĝ
∏q

i=1,i 6=j (x+wi)

1 , s2,j = g
1/(x2+rj)
1 .

Since the wi’s are chosen uniformly at random from R, so are the ri’s because w is a
permutation in the first input parameter.

Pr[S2] = Pr[S1] . (3.6)

Similar to the previous case, B can compute a polynomial v′(x) and d ∈ Z with d 6= 0 such
that v(x) = (x + w(r∗,m∗))v′(x) + d because w(r∗,m∗) /∈ {w(r1,m1), . . . , w(rq,mq)} and
thus (x+w(r∗,m∗)) does not divide v(x). The simulator then outputs a solution to the SDH
problem as ((

s∗2ĝ
−v′(x)
1

)1/d

, w(r∗,m∗)

)
.

39

We have that
Pr[S2] = εSDH . (3.7)

Type III Forger

Game1. In this game, we let the simulator choose both secret keys x1, x2
$← Zp. It sets

g1 = ĝ1, g2 = ĝ2, PK1 = gx1
2 , and PK2 = gx2

2 .

Pr[S1] = Pr[S0] . (3.8)

Game2. Next, B makes two random guesses for distinct indices j, k
$← {1, . . . , q}. For all

i ∈ {1, . . . , q}\{j, k}, the simulator proceeds according to SIG.Sign to simulate OSK(·) using
the secret keys x1 and x2. In particular, this means that the ri are chosen uniformly at
random from R. For the j’th signature, B computes rj such that w(r̂, m̂) = w(rj,mj) using
the challenge for the chaining function. For the k’th signature, B sets rk = r̂′. Since r̂ and r̂′

originate from a random challenge for the chaining function and the remaining ri are chosen
randomly we still have that

Pr[S2] = Pr[S1] . (3.9)

Game3. By assumption, we have that A outputs a forgery m∗, (s∗1, s
∗
2, r
∗) with r∗ = ra for

some a ∈ {1, . . . , q} and w(r∗,m∗) = w(rb,mb) for some b ∈ {1, . . . , q}. We have that a 6= b.
Now, B aborts if b 6= j or a 6= k. Since rj and rk are perfectly indistinguishable from the
remaining ri we have that

Pr[S3] = 1/q2 · Pr[S2] . (3.10)

Otherwise, B has found a solution to the challenge for Property 4

w(r̂′,m∗) = w(rk,m
∗) = w(ra,m

∗) = w(r∗,m∗) = w(rb,mb) = w(r̂, m̂).

Pr[S3] = εchain . (3.11)

Type IV Forger

Game1. As before, we let the simulator choose both secret keys x1, x2
$← Zp. It sets g1 = ĝ1,

g2 = ĝ2, PK1 = gx1
2 , and PK2 = gx2

2 . Clearly,

Pr[S1] = Pr[S0] . (3.12)

Game2. To simulate the signing oracle, B simply uses x1 and x2 as specified by SIG.Sign.
Hence,

Pr[S2] = Pr[S1] . (3.13)

By assumption we have that B w(r∗,m∗) = w(rj,m
∗) = w(rj,mj) for some j ∈ {1, . . . , q}.

From the definition of the attack game we also know that m∗ 6= mj. So, B has found a
collision for the chaining function (Property 3) and

Pr[S2] = εchain . (3.14)

40

Putting together Equations (3.1)-(3.14), we get that ε = εSDH for Type I and Type II
forgeries, ε = q2εchain for Type III forgers, and ε = εchain for Type IV forgers. Clearly,
ε ≤ εSDH + q2εchain for each type of forger. Finally, considering B’s initial guess we have that
ε ≤ 2εSDH + 2q2εchain what proofs Theorem 3.2. �

3.4 Improved Chaining Function

In this section, we analyze the efficiency of twin signature schemes when signing long mes-
sages. We concentrate on two issues. The first issue concerns the computational efficiency
of the scheme. Recall the chaining function from Section 2.5 (Lemma 2.20). Since in the
SRSA based scheme the input of p and hence the computational efficiency depends on the
message size lm, Naccache et al. recommend to apply a hash function h(·) := HF.Eval(kHF, ·)
with kHF ← HF.KeyGen prior to the prime mapping function toPrime [80, §B.2]: w′(r,m) =
h(r⊕ (m||m)). Now, toPrime must only map values of maximal length k to prime numbers.
One can easily see, that this improvement does not address the signature size, since r, by
condition lr = 2lm, still depends on lm. This is our second issue. A further improvement is
to first apply the collision-resistant hash function to the input message and then to sign the
resulting hash value: w′′(r,m) = r ⊕ (h(m)||h(m)). Now, we have that lr = 2k and, as a
result, r and the signature size are independent of lm. For both improvements (w′ and w′′) we
must assume that the underlying hash function is collision-resistant and so rely on additional
complexity assumptions to maintain provable security (as long as the hash function does not
solely rely on complexity assumptions that are provably weaker than SRSA, SDH respec-
tively). We stress that we use hash functions solely for the purpose of (message) domain
extension, not as instantiations of random oracles. For practical parameters, say k = 160,
we now have that lr = 320. The final question is if this situation can further be improved.
Ideally, we would have that lr = 160. This has several benefits. First, prime mapping can
be twice as fast. Second, the signature size could be reduced by 160 bits. Surprisingly, we
can show that when using hash functions with the additional property that random input
strings are mapped to uniformly distributed output strings, we can do without the string
concatenation:

w̃ : {0, 1}k × {0, 1}∗ → {0, 1}k
w̃(r,m) = r ⊕ h(m) .

Lemma 3.3 Let HF = (HF.KeyGen,HF.Eval) be a (tHF, εHF)-collision-resistant hash function.
Furthermore, assume that for every kHF ← HF.KeyGen(1κ) HF.Eval(kHF,m) is uniformly
distributed in {0, 1}k (k = k(κ)) for random m ∈ {0, 1}∗. Then, W = {Wk} with Wk =
{w̃(r,m) = r ⊕ HF.Eval(kHF,m)| kHF ← HF.KeyGen(1κ)} is (tHF, εHF)-chaining.

Proof. The first two properties can be verified by inspection. Let again h(·) := HF.Eval(kHF, ·).
Property 3 holds because r̃⊕h(m) = r̃⊕h(m′) implies h(m) = h(m′). So, any attacker that
breaks Property 3 also breaks the collision-resistance of the hash function. To show that w̃

41

Table 3.1: Efficiency Comparison of Chaining Functions. Elements in G1 have around 170
bits [18, 79], while RSA moduli have at least 1024 bits. Let lmax = max{4lm, 2048}.

scheme chaining function signature size in bits #prim. tests #pairings
SSDH r ⊕ h(m) k + 340 – 2
SSRSA r ⊕ h(m) k + 2048 O(k) –
SSRSA r ⊕ (h(m)||h(m)) 2k + 2048 O(k) –
[80, §B.2] h(r ⊕ (m||m)) 2lm + 2048 O(k) –
[80] r ⊕ (m||m) 2lm + lmax O(lm) –

fulfills Property 4 observe that r̃ ⊕ h(m) = r̃′ ⊕ h(m′) implies r̃′ ⊕ r̃ ⊕ h(m) = h(m′) for
given random r, r′ ∈ {0, 1}k and m ∈ {0, 1}∗. Now, for contradiction, assume there exists
an attacker A that can find m′ with probability ≥ εh in time th. Then we can construct
algorithm B that uses A to find collisions in the hash function. At first B chooses uniformly
at random m̄ ∈ {0, 1}∗ and computes y = h(m̄). Next, B chooses a random m ∈ {0, 1}∗
and a random r ∈ {0, 1}k, computes h(m), r′ = y ⊕ h(m) ⊕ r and runs A on (m, r, r′).
As h(m) is random in {0, 1}k, so is r′. Finally, A outputs m′ and since we have that
r′ ⊕ r ⊕ h(m) = h(m′) = y = h(m̄) and because m̄ 6= m′ with overwhelming probability, B
has found a hash collision. This contradicts the fact that HF is (tHF, εHF)-collision-resistant.

�

3.5 Offline/Online Signature Schemes

In this section, we present a modification that further improves the efficiency of SSRSA

and SSDH by turning them into offline/online signature schemes [51]. The key idea is to

precompute s1 using a random z ∈ R in the offline phase as s1 = u
1/z
1 mod n1, s1 = g

1/(x1+z)
1

respectively. In the online phase, when the signer wants to sign message m, she only has to
find r such that z = w(r,m) and compute s2 = u

1/(r)
2 mod n2, s2 = g

1/(x2+r)
1 respectively.

In this way, we can save costly inversion and exponentiation operations in the online phase.
However, the efficiency gain seems rather small when compared with what can be achieved in
offline/online signature schemes that are based on signature schemes which utilize chameleon
hash functions [70], like for example [96].

42

Chapter 4

Tight Proofs for Signature Schemes
without Random Oracles

It is no secret why cryptographers are interested in tight security proofs: besides being
theoretically interesting, they allow for shorter security parameters and better efficiency.
The research which led to the results of this chapter was also motivated by the observation
that for several of the existing Strong RSA based signature schemes without random oracles
we do not know if tight security proofs exist. Those schemes which we know to have a tight
security proof, also have some limitations concerning practicability (which in turn cannot
be found among the signature schemes with a loose security reduction). In 2007, Chevallier-
Mames and Joye addressed this problem in the following way [39]: they took a tightly secure
signature scheme, the Gennaro-Halevi-Rabin scheme [56], and improved its efficiency by re-
designing one of its most time-consuming functions.1 The problem with such an approach
is that it only affects new implementations of the considered signature scheme. Therefore,
we take the same approach as Bernstein at EUROCRYPT ’08 who proved tight security for
the original Rabin-Williams signature scheme in the random-oracle model [15]. However, in
contrast to Bernstein we concentrate on schemes that are secure in the standard model.

Contribution. This chapter deals with the following question: are there tight secu-
rity proofs for the existing practical signature schemes by Cramer-Shoup [45], Zhu [104],
Camenisch-Lysyanskaya [30] and Fischlin [54] (which we only know to have loose security
reductions)? We answer this question in the affirmative and present the first tight proofs
for the above signature schemes. However, our result is not limited to the original schemes.
In our analysis, we generalize the schemes by Camenisch-Lysyanskaya, Fischlin and Zhu
by introducing a new family of randomization functions, called combining functions. The
result of this generalization is an abstract signature scheme termed ’combining scheme’. In
a similar way, we introduce a second general class of signature schemes called ’chameleon
hash scheme’ that can be regarded as a generalization of the Cramer-Shoup signature scheme.

1Basically, they introduced a new method to map messages to primes which is much more efficient in the
verification process than the original method from [56] by choosing a random prime and making use of a
chameleon hash function to map the input message to that prime.

43

Then, we prove the combining signature scheme and the chameleon hash scheme to be tightly
secure under the SRSA assumption when instantiated with any secure combining function,
respectively chameleon hash function.2 Finally, we show that our results do not only hold
under the SRSA assumption. We analyze whether there also exist tight security reductions
for analogous schemes based on the SDH assumption in bilinear groups. Interestingly, most
of the above schemes have not been considered yet under the SDH assumption (except for
the Camenisch-Lysyanskaya scheme), although, at the same security level, the group de-
scription is much shorter in bilinear groups than in factoring based groups. We develop a
SDH based variant of the combining signature scheme and the chameleon hash scheme and
prove it to be existentially unforgeable under adaptive chosen message attacks with a tight
security reduction. In doing so, we present the first SDH based variants of the Fischlin,
the Zhu and the Cramer-Shoup signature scheme and the first tight security proof of the
SDH based Camenisch-Lysyanskaya scheme. When instantiated with existing combining
functions (respectively chameleon hash functions), we obtain short and efficient signature
schemes. Our results can be interpreted in two positive ways: 1) Existing implementations
of the affected signature schemes (with a fixed parameter size) provide higher security than
expected. 2) New implementations can have shorter security parameters what transfers to
higher efficiency.

Technical Contribution. In the existing proofs, the simulator partitions the set of
forgeries by at first guessing j ∈ {1, . . . , q} where q is the number of signature queries made
by the attacker. Only if the attacker’s forgery shares some common values with the answer
to the j-th signature query the simulator can break the SRSA assumption. Otherwise the
simulator just aborts. The number of signature queries rises polynomially in the security
parameter and the security proof loses a factor of q here. Our main contribution is a new
technique that renders the initial guess unnecessary. As a consequence, any forgery helps
the simulator to break the SRSA assumption. This results in a tight security proof.

Related Work. Our work is related to the existing hash-and-sign signature schemes
without random oracles that are proven secure under the SRSA or the SDH assumption.
Table 4.1 gives an overview on the available results.

4.1 Settings

For convenience, we also describe two general setup and key generation procedures (set-
tings) in Section 4.1.1, and Section 4.1.2. When describing our signature schemes in Sec-
tions 4.2.1, 4.2.2, 4.2.5 we will refer to the corresponding setting and only describe the
signature generation and verification algorithms.

2Unfortunately the security proof of the SRSA based chameleon hash scheme does not directly transfer
to the Cramer-Shoup signature scheme. This is simply because in the Cramer-Shoup scheme the keys of
the chameleon hash function are not chosen independently. Nevertheless, the proof of the Cramer-Shoup
signature scheme is technically very similar to the proof of the chameleon hash scheme. For completeness,
we also provide a full proof of (tight) security of the Cramer-Shoup signature scheme in Section 4.3.5.

44

Signature Scheme Security
Assumption

Security Loss Prime
GenerationOriginal Our

Reduction Reduction
Gennaro-Halevi-Rabin [56] SRSA O(1) INJ
Cramer-Shoup [45] SRSA O(q) O(1)
Naccache-Pointcheval-Stern [80] SRSA O(1) INJ
Fischlin [54] SRSA O(q) O(1)
Zhu [104] SRSA O(q) O(1)
Camenisch-Lysyanskaya [30] SRSA O(q) O(1)
Chevallier-Mames-Joye [39] SRSA O(1)
Hofheinz-Kiltz [64] SRSA O(q)
Boneh-Boyen [17] SDH O(1)
Camenisch-Lysyanskaya [31, 85, 2] SDH O(q) O(1)
Hofheinz-Kiltz [64] SDH O(q)

Table 4.1: Tightness of SRSA and SDH based signature schemes. INJ indicate that the
signature scheme requires an injective mapping of messages to primes. As a consequence the
verifier must perform O(|m|2) primality test to find a prime.

4.1.1 The Strong RSA Setting

Definition 4.1 (SRSA setting) In this setting, SIG.KeyGen(1κ) outputs (SK = (p, q),
PK = n) for a safe modulus n = pq such that p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′

are primes. All computations are performed in the cyclic group QRn. Let li = li(κ) for
i ∈ {n, t, c, e,m} be polynomials. We require that |n|2 = ln and |p′|2 = |q′|2 = ln/2 − 1.
Furthermore, we assume that the (tSRSA, εSRSA)-SRSA assumption holds. We let u, v, w
be public random generators of QRn with unknown logu v, loguw, and logv w. When us-
ing combining functions z(r,m), we assume that M ⊆ [0; 2lm − 1], Z ⊆ [0; 2lz − 1] and
R ⊆ [0; 2lr−1]. We let E ⊆ [2le−1; 2le−1] denote the set of le-bit primes. Finally, we require
that lm ≤ lc, lz, lr < le < ln/2− 1.

4.1.2 The Strong Diffie-Hellman Setting

Definition 4.2 (SDH setting) Let lp = lp(κ) be a polynomial. In the SDH setting, all
computations are performed in the cyclic groups of (G1, g1,G2, g2,GT , p, e) with |p|2 = lp. The

PPT SIG.KeyGen(1κ) chooses x
$← Zp and outputs (SK = x, PK = gx2). We assume that the

(qSDH, tSDH, εSDH)-SDH assumption holds. Finally, we suppose that the values a, b, c ∈ G1 are
public random generators of G1 such that loga b, loga c, and logb c are unknown. combining
functions z(r,m), we assume that Z ⊆ Zp and R ⊆ Zp.

45

4.2 Signature Classes

For convenience, we now introduce two general signature classes. The combining signature
scheme SCMB constitutes an useful abstraction of the Camenisch-Lysyanskaya, the Fischlin,
and the Zhu signature scheme using combining functions. The chameleon signature scheme
SCH can be regarded as a general variant of the original Cramer-Shoup signature scheme
where we do not specify a concrete instantiation of the chameleon hash function. In the
following we will make use of the combining functions given in Table 2.1 of Section 2.6.

4.2.1 SRSA Based Combining Signature Scheme (SCMB,SRSA)

In the SRSA setting, SIG.Sign(SK,m) randomly chooses r ∈ R and e ∈ E and computes

a signature σ = (r, s, e) on message m with s =
(
uvrwz(r,m)

) 1
e . Let us now show, that our

construction indeed generalizes the claimed signature schemes. Observe that we can easily
obtain the Fischlin scheme [54] when we instantiate the combining function with EX 2 of
Table 2.1. Furthermore, we can also get the Camenisch-Lysyanskaya scheme [30] using EX 3.
This becomes obvious if we substitute v by v′ = vw as uvrwr+m = u(vw)rwm = u(v′)rwm.
3 We note that when we use the Camenisch-Lysyanskaya scheme with long messages we
first have to apply a collision-resistant hash function to the message. What we essentially
get is Zhu’s scheme [103, 104]. By Lemma 2.23, the resulting function is still combining.
The verification algorithm SIG.Verify(PK,m, σ) takes a purported signature σ = (r, s, e) and

checks if se
?
= uvrwz(r,m), if |e|2 = le, and if e is odd.

4.2.2 SDH Based Combining Signature Scheme (SCMB,SDH)

We also present a SDH based variant SCMB,SDH of the combining signature scheme. We
remark that for the Camenisch-Lysyanskaya scheme there already exists a corresponding
SDH based variant, originally introduced in [31] and proven secure in [85, 2]. Similar to
SCMB,SRSA, we obtain the SDH based Camenisch-Lysyanskaya scheme when instantiating
the combining function with EX 1. In the same way, we can also get SDH based variants
of the Fischlin signature scheme (using EX 2) and of Zhu’s scheme (using Lemma 2.23). In
the SDH based combining scheme, SIG.Sign(SK,m) at first chooses a random r ∈ R and a

random t ∈ Zp \ {−x}. It then computes the signature σ = (r, s, t) with s =
(
abrcz(r,m)

) 1
x+t .

Given a signature σ = (r, s, t), SIG.Verify(PK,m, σ) checks if e (s, PKgt2)
?
= e

(
abrcz(r,m), g2

)
.

3To be precise, our generalization slightly differs from the Camenisch-Lysyanskaya scheme. In the original
scheme, it is required that lr = ln + lm + 160. As a result, the authors recommend for 160 bit long messages
that lr = 1346, ls = 1024, and le = 162. In our scheme, we simply require that lm ≤ lr < le < ln/2−1. Then,
we can set lr = 320, ls = 1024, and le = 321 for a probability εcomb = 2−160. Therefore, the signature size
of our signature scheme is much shorter (only (320 + 1024 + 321)/(1346 + 1024 + 162) ≈ 66% of the original
signature size) and the scheme is more efficient (since shorter exponents imply faster exponentations) than
the original scheme.

46

Table 4.2: Comparison of signature generation and verification. We implicitly require that
the verifier checks that the signature components are in the correct ranges (except for e in
the SRSA setting).

SRSA setting SDH setting

e
$← E, r

$← R, σ = (r, s, e) t
$← Zp \ {−x}, r $← R, σ = (r, s, t)

Chameleon sign s =
(
uvch(r,m)

) 1
e s =

(
abch(r,m)

) 1
x+t

Hash verify se
?= uvch(r,m), e odd?, |e| = le? e (s, PKgt2) ?= e

(
abch(r,m), g2

)
Combining sign s =

(
uvrwz(r,m)

) 1
e s =

(
abrcz(r,m)

) 1
x+t

verify se
?= uvrwz(r,m), e odd?, |e| = le? e (s, PKgt2) ?= e

(
abrcz(r,m), g2

)

4.2.3 SRSA Chameleon Hash Signature Scheme (SCH,SRSA)

The signature scheme SCH,SRSA is defined in the SRSA setting. SIG.KeyGen(1κ) additionally
generates the key material (SKCH, PKCH) for a chameleon hash function. The value PKCH

is added to the scheme’s public key. (SKCH is not required. However, it may be useful when
turning the signature scheme into an online-offline signature scheme [96].) The signature
generation algorithm SIG.Sign(SK,m) first chooses a random r ∈ R and a random prime

e ∈ E. It then outputs the signature σ = (r, s, e) on a message m where s =
(
uvch(r,m)

) 1
e .

To verify a purported signature σ = (r, s, e) on m, SIG.Verify(PK,m, σ) checks if e is odd, if

|e|2 = le, and if se
?
= uvch(r,m).

4.2.4 SDH Based Chameleon Hash Signature Scheme (SCH,SDH)

Let us now define a new variant of the chameleon hash signature scheme that is based on
the SDH assumption. Again, SIG.KeyGen(1κ) also adds the public key PKCH of a chameleon
hash function to PK. In the SDH setting, SIG.Sign(SK,m) first chooses a random r ∈ R and
a random t ∈ Zp \{−x}. Using SK = x, it then outputs the signature σ on m as σ = (r, s, t)

where s =
(
abch(r,m)

) 1
x+t . To verify a given signature σ = (r, s, t) on m, SIG.Verify(PK,m, σ)

checks if e (s, PKgt2)
?
= e

(
abch(r,m), g2

)
. A suitable chameleon hash function can for example

be found in [70].

4.2.5 The Cramer-Shoup Signature Scheme (SCS,SRSA)

Let us now review the Cramer-Shoup signature scheme that is defined in the SRSA setting.
The Cramer-Shoup scheme SCS,SRSA additionally requires a collision-resistant hash function
HF = (HF.KeyGen,HF.Eval) with MHF = {0, 1}∗ and YHF = {0, 1}lc . The message space is
so extended to M = {0, 1}∗. We assume lc < le < ln/2− 1.

• SIG.KeyGen(1κ) also computes a random le-bit prime ẽ and kHF ← HF.KeyGen(1κ). The
secret key is SK = (p, q) the public key is PK = (n, ẽ, kHF).

47

• SIG.Sign(SK,m) first chooses a random r ∈ QRn and evaluates (the chameleon hash
function) c = rẽ/vh(m) mod n where h(·) := HF.Eval(kHF, ·). Then it draws a random

le-bit prime e 6= ẽ and computes the value s =
(
uvh(c)

)1/e
mod n. The signature is

σ = (r, s, e).

• SIG.Verify(PK,m, σ) re-computes c = rẽ/vh(m) mod n and checks if s
?
=
(
uvh(c)

)1/e
mod

n, if e is odd, and if |e|2 = le.

Unfortunately, the proof of the more general chameleon hash scheme class does not for-
mally transfer to the Cramer-Shoup signature scheme because in the Cramer-Shoup scheme
the key material of its chameleon hash function is not chosen independently. In particular,
the chameleon hash function uses the same RSA modulus and the same value v. This re-
quires slightly more care in the security proof. We provide a full proof of the Cramer-Shoup
signature scheme in Section 4.3.5.

4.3 Security

Theorem 4.3 The Cramer-Shoup signature scheme, the combining signature class (in both
the SRSA and the SDH setting), and the chameleon signature class (in both the SRSA and
the SDH setting) are tightly secure against adaptive chosen message attacks. In particular,
this implies that the Camenisch-Lysyanskaya, the Fischlin, the Zhu, and the SDH based
Camenisch-Lysyanskaya scheme are tightly secure against strong existential forgeries under
adaptive chosen message attacks.

We subsequently provide the intuition behind our security proofs. We also show how
to transfer our technique to SCH. In Section 4.3.4, we present a full proof of security for
SCMB,SRSA, which seems to us to be the technically most involved reduction. The proof of
SCMB,SDH proceeds analogously and appears in Section 4.3.6. In Section 4.3.5 we provide a
full proof of security of the Cramer-Shoup signature scheme.

4.3.1 The SRSA Based Schemes

Let us first consider the SRSA based schemes, where B is given an SRSA challenge (û, n) with
û ∈ Z∗n. Assume that attacker A issues q signature queries m1, . . . ,mq ∈ M. As a response
to each query mi with i ∈ [1; q], A receives a corresponding signature σi = (ri, si, ei) ∈
R × QRn × E. Recall that the existing security proofs for schemes of the combining class
(e.g. [54]) consider two forgers that loosely reduce from the SRSA assumption. This is
the case when it holds for A’s forgery (m∗, (r∗, s∗, e∗)) that gcd(e∗,

∏q
i=1 ei) 6= 1.4 Given

that |e∗|2 = le this means that e∗ = ej for some j ∈ [1; q]. Let us concentrate on the
case that r∗ 6= rj. The proof of the remaining case (e∗ = ej, r

∗ = rj and m∗ 6= mj) is
very similar. It additionally exploits the properties of the combining function. The proofs

4The proof of the case gcd(e∗,
∏q
i=1 ei) = 1 is straight-forward.

48

in [45, 54, 103, 30, 104] work as follows: the simulator B at first guesses j
$← {1, . . . , q}.

By construction, B can answer all signature queries but only if A outputs a forgery where
e∗ = ej it can extract a solution to the SRSA challenge. In all other cases (if e∗ = ei for some
i ∈ {1, . . . , q}\{j}), B just aborts. Since the number of signature queries q rises polynomially
in the security parameter, the probability for B to correctly guess j in advance is q−1 and thus
not negligible. However, the security reduction loses a factor of q here. Our aim is to improve
this reduction step. Ideally, we have that any forgery which contains e∗ ∈ {e1, . . . , eq} helps
the simulator to break the SRSA assumption. As a result, the simulator can completely
avoid guessing. The main task is to re-design the way B computes A’s input parameters:
for every i ∈ {1, . . . , q}, we must have exactly one choice of ri such that B can simulate the
signing oracle without having to break the SRSA challenge. On the other hand, if A outputs
(m∗, (r∗, s∗, e∗)) with e∗ = ei for some i ∈ [1; q] and r∗ 6= ri, B must be able to compute a
solution to the SRSA challenge. Let us now go into more detail.

For simplicity, assume that B can setup A’s input parameters such that the verification
of a signature σ = (r, s, e) always reduces to

se = ûf(r) mod n. (4.1)

Suppose that neither û nor f : R → N are ever revealed to A. We exploit that the ri are
chosen independently at random. So, they can be specified prior to the signature queries.
Now, B’s strategy to simulate the signing oracle is to define r1, . . . , rq such that for every
i ∈ [1; q] it can compute a prime ei ∈ E with ei|f(ri). Without having to break the
SRSA assumption, B can then compute si = ûf(ri)/ei and output the i-th signature as
(ri, si, ei). Let us now turn our attention to the extraction phase where B is given A’s
forgery (m∗, (r∗, s∗, e∗)). By assumption we have e∗ = ei for some i ∈ [1; q] and r∗ 6= ri. B
wants to have that gcd(e∗, f(r∗)) = D < e∗ (or f(r∗) 6= 0 mod e∗) because then it can find
a solution to the SRSA challenge by computing a, b ∈ Z \ {0} with af(r∗)/D + be∗/D = 1
using extended Euclidean algorithm and outputting

(s∗)aûb = ûD/e
∗
, e∗/D.

B’s strategy to guarantee gcd(e∗, f(r∗)) = D < e∗ is to ensure that e∗ = ei 6 |f(r∗). Unfortu-
nately, B cannot foresee r∗. Therefore, the best solution is to design f such that ei 6 |f(r∗)
for all r∗ 6= ri.

Obviously, B makes strong demands on f(r). We will now present the basic idea that
stand behind our construction of f(r).

Design Philosophy. Recall polynomial interpolation. Given two sets A = {a1, . . . , aq} ⊆
N and B = {b1, . . . , bq} ⊆ N one can easily design a polynomial f of maximal degree q with
the following property: for every i ∈ [1; q] it holds that

c = ai ⇒ f(c) = bi.

In the following we want to modify the properties of this function according to the require-
ments of our security reduction in Section 4.3. First, f should be linear such that it can

49

efficiently be embedded in the exponents of only two group elements. Second, for f to be
useful in the simulation phase and the extraction phase of the security reduction we need
equivalence instead of implication. Of course, we can only buy these additional properties
by relaxing others: if we consider the definition of the SRSA assumption (and Equation 4.1),
it is perfectly sufficient to just require bi|f(c) instead of f(c) = bi. In the simulation phase
this immediately transfers to the situation where the simulator has to pretend that it can
compute solutions to the SRSA problem. On the other hand, if c 6= ai we get (by the required
equivalence) that also bi 6 |f(c) what directly gives rise to a solution to the SRSA problem.

Lemma 4.4 Suppose we are given a set of q primes P = {e1, . . . , eq} with 2le−1 ≤ ei ≤ 2le−1
for i ∈ [1; q] and q integers c1, . . . , cq ∈ [0; 2le−1 − 1] (|ci|2 < le for all i ∈ [1; q]). Then we
can construct an efficient linear function f : [0; 2le−1 − 1]→ Z such that

ek|f(c)⇔ c = ck

for all k ∈ [1; q].

Proof. Let

f(c) :=

q∑
i=1

ci

q∏
j=1
j 6=i

ej − c
q∑
i=1

q∏
j=1
j 6=i

ej.

First assume c = ck. Then f(c) reduces to

f(ck) =

q∑
i=1
i 6=k

(ci − ck)
q∏
j=1
j 6=i

ej = ek

q∑
i=1
i 6=k

ci

q∏
j=1
j 6=i,k

ej = 0 mod ek.

Now assume c 6= ck. Then we have

f(c) =

q∑
i=1

(ci − c)
q∏
j=1
j 6=i

ej =

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i

ej + (ck − c)
q∏
j=1
j 6=k

ej

= ek

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i,k

ej + (ck − c)
q∏
j=1
j 6=k

ej

= (ck − c)
q∏
j=1
j 6=k

ej mod ek.

Since the ei are distinct primes and as |ck − c| < ek, it holds that (ck − c)
∏q

j=1,j 6=k ej 6=
0 mod ek what proves Lemma 4.4. If we assume that |ci| < le + 1 for all i ∈ [1; q] we can also
have c1, . . . , cq ∈ [−2le ; 2le − 1]. �

50

We can now directly use Lemma 4.4 and define f(r) as

f(r) =

q∑
i=1

ri

q∏
j=1
j 6=i

ej − r
q∑
i=1

q∏
j=1
j 6=i

ej, (4.2)

for r1, . . . , rq ∈ R. Observe that we must guarantee in the proof of security that the
e1, . . . , eq ∈ E are distinct primes. As the prime numbers are chosen at random from a
large set |E| in the signature generation, a union bound can easily show that collisions occur
only with negligible probability.

4.3.2 The SDH Based Schemes

Under the SDH assumption, the situation is very similar. Here we also analyze three possible
types of forgeries (m∗, (r∗, s∗, t∗)): 1.) t∗ /∈ {t1, . . . , tq}, 2.) t∗ = ti with i ∈ [1; q] but r∗ 6= ri,
and 3.) t∗ = ti, r

∗ = ri (but m∗ 6= mi) with i ∈ [1; q]. Again, we concentrate on the second

case. At the beginning, B is given an SDH challenge
(
ĝ1, ĝ

x
1 , ĝ

(x2)
1 , . . . , ĝ

(xq)
1 , g2, g

x
2

)
. This

time, B chooses PK = gx2 . In the SDH setting, Equation (4.1) transfers to

e(s, PKgt2) = e(ĝ
f(r,x)
1 , g2)⇔ sx+t = ĝ

f(r,x)
1 . (4.3)

In contrast to the SRSA setting, f is now a polynomial with indeterminate x and maximal

degree q. Again, B must keep f(r, x) and the ĝ
(xi)
1 secret from A. We define

f(r, x) =

q∑
i=1

ri

q∏
j=1
j 6=i

(x+ tj)− r
q∑
i=1

q∏
j=1
j 6=i

(x+ tj),

for r1, . . . , rq ∈ R and distinct t1, . . . , tq ∈ Zp. Using the SDH challenge, B can easily

compute ĝ
f(r,x)
1 since f(r, x) has maximal degree q. The following lemma shows that f(r, x)

indeed has the required properties.

Lemma 4.5 Given a set T = {t1, . . . , tq} ⊆ Zp and q values c1, . . . , cq ∈ Zp, we can easily
build a linear (in c) function f(c, x) with f : Zp × Zp[x] → Zp[x] that maps polynomials of
maximal degree q in indeterminate x to polynomials of maximal degree q such that

(x+ tk)|f(c, x)⇔ c = ck

for all k ∈ [1; q].

Proof. Let

f(c, x) :=

q∑
i=1

ci

q∏
j=1
j 6=i

(x+ tj)− c
q∑
i=1

q∏
j=1
j 6=i

(x+ tj).

51

First assume c = ck. Then f(c, x) reduces to

f(ck, x) =

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i

(x+ tj) = (x+ tk)

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i,k

(x+ tj).

Now assume c 6= ck. Then we have

f(c, x) =

q∑
i=1

(ci − c)
q∏
j=1
j 6=i

(x+ tj)

=

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i

(x+ tj) + (ck − c)
q∏
j=1
j 6=k

(x+ tj)

= (x+ tk)

q∑
i=1
i 6=k

(ci − c)
q∏
j=1
j 6=i,k

(x+ tj) + (ck − c)
q∏
j=1
j 6=k

(x+ tj).

Since the ti are distinct it holds that (x+tk) 6 |(ck−c)
∏q

j=1,j 6=k(x+tj) what proves Lemma 4.5.
�

Similar to before, to apply Lemma 4.5 we must guarantee that the ti are all distinct. Since
the ti are chosen from Zp, this probability is negligible.

4.3.3 Security of the Chameleon Hash Signature Class

The chameleon hash class is also tightly secure in the SRSA and the SDH setting. For
convenience let ci = ch(ri,mi) for i ∈ [1; q] and c∗ = ch(r∗,m∗). Altogether there are again
three types of forgeries to consider: 1) e∗ /∈ {e1, . . . , eq} (t∗ /∈ {t1, . . . , tq}), 2) e∗ = ei (t∗ = ti)
but c∗ 6= ci , and 3) e∗ = ei (t∗ = ti), c

∗ = ci but m∗ 6= mi. The proof of 1) is straight-forward
and very similar to the proof of Type I forgers of the combining class. The proof of 3) clearly
reduces to the security properties of the chameleon hash function. The proof of 2) requires
our new technique to set up f(c) (f(c, x)) (similar to the proof of the Cramer-Shoup signature
scheme in Section 4.3.5). Recall, that the proof of the combining class concentrates on the
equations se = ûf(c) and f(c) =

∑q
i=1 ci

∏q
j=1,j 6=i ej − c

∑q
i=1

∏q
j=1,j 6=i ej in the SRSA setting

(and sx+t = ĝ
f(c,x)
1 and f(c, x) =

∑q
i=1 ci

∏q
j=1,j 6=i(x + tj) − c

∑q
i=1

∏q
j=1,j 6=i(x + tj) in the

SDH setting). In the proof of the combining class the ci are random values (ci = ri) that can
be specified prior to the simulation phase. In the proof of the chameleon hash class we take
a similar approach. Now the ci are the output values of a chameleon hash function. In the
initialization phase of the proof we choose q random input pairs (m′i, r

′
i) ∈M×R, i ∈ [1; q]

to compute the ci = CH.Eval(PKCH,m
′
i, r
′
i). Then we prepare the function f(c) (f(c, x)) with

C = {c1, . . . , cq} and a set of q random primes le-bit primes (random values t1, . . . , tq ∈ Zp)
as in the proofs of the combining class using Lemma 4.4 (Lemma 4.5). Next, we embed

52

f(c) (f(c, x)) in the exponents of the two group elements u, v (a, b). In the simulation
phase we give the simulator SKCH to map the attacker’s messages mi to the prepared ci
by computing ri = CH.Coll(SKCH, r

′
i,m

′
i,mi). In this way we can successfully simulate

the signing oracle. In the extraction phase, the properties of the chameleon hash function
guarantee that c∗ /∈ {c1, . . . , cq} (otherwise we can break the security of the chameleon hash
function). This ensures that we can find a solution to the SRSA challenge (SDH challenge).

4.3.4 Security Analysis of SCMB,SRSA

Lemma 4.6 Assume we work in the SRSA setting such that the (tSRSA, εSRSA)-SRSA as-
sumption holds and V is a (tcomb, εcomb, δcomb)-combining function. Then, the combining sig-
nature class as presented in Section 4.2.1 is (q, t, ε)-secure5 against adaptive chosen message
attacks provided that

ε ≤ 9

2
εSRSA + 3εcomb + 3qδcomb +

3q2

|E| + 9 · 22−ln/2, t = tSRSA − TSRSA,comb(q
2).

The proof of Lemma 4.6 is the first step in the proof of Theorem 4.3. It implies that the
original Camenisch-Lysyanskaya, the Fischlin and the Zhu’s signature scheme are tightly
secure against existential forgeries under adaptive chosen message attacks. Proof. Assume
that A is a forger that (q, t, ε)-breaks the strong existential unforgeability of SCMB,SRSA.
Then, we can construct a simulator B that, by interacting with A, solves the SRSA problem
in time tSRSA with advantage εSRSA. We consider three types of forgers that after q queries
m1, . . . ,mq and corresponding responses (r1, s1, e1), . . . , (rq, sq, eq) partition the set of all pos-
sible forgeries (m∗, (r∗, s∗, e∗)). In the proof, we treat all types of attackers differently. At the
beginning, we let B guess with probability at least 1

3
which forgery A outputs. Lemma 4.6

then follows by a standard hybrid argument. We assume that B is given an SRSA challenge
instance (û, n). Let Pr[Si] denote the success probability of an attacker to successfully forge
signatures in Game i.

Type I Forger (e∗ /∈ {e1, . . . , eq})
Suppose B guesses that A is a Type I Forger.
Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks SIGCMB,SRSA

when interacting with the signing oracle O(SK, ·). We have that,

Pr[S0] = ε. (4.4)

Game1. Now, B constructs the values u, v, w using the SRSA challenge instead of choosing

them randomly from QRn. First, B chooses q random primes e1, . . . , eq
$← E and three

random elements t′0, t
′′
0

$← Z(n−1)/4 and t0
$← Z3(n−1)/4. In the following let ē :=

∏q
k=1 ek,

ēi :=
∏q

k=1,k 6=i ek and ēi,j :=
∏q

k=1,k 6=i,k 6=j ek. The simulator computes u = û2t0ē, v =

5Using explicit bounds on the prime counting function [93], we can lower bound the number of primes in
E for le ≥ 7 as |E| > (2le − 1)/(ln(2le − 1) + 2)− (2le−1 − 1)/(ln(2le−1 − 1)− 4).

53

û2t′0ē, w = û2t′′0 ē using the SRSA challenge. Since the t0, t
′
0, t
′′
0 are not chosen uniformly at

random from Zp′q′ we must analyze the success probability for A to detect our construction.
Observe that (n − 1)/4 = p′q′ + (p′ + q′)/2 > p′q′. Without loss of generality let p′ > q′.
Now, the probability of a randomly chosen x ∈ Z(n−1)/4 not to be in Zp′q′ is

Pr[x
$← Z(n−1)/4, x /∈ Zp′q′] = 1− |Zp′q′|

|Z(n−1)/4|
=

(p′ + q′)

(2p′q′ + p′ + q′)
<

1

q′ + 1
< 2−(|q′|2−1).

With the same arguments we can show that t0 is also distributed almost uniformly at random
in Zp′q′ and Z3p′q′ . Since the ei are primes smaller than p′ and q′ it holds that ei 6 |p′q′.
Therefore, the distribution of the generators is almost equal to the previous game and we
get by a union bound that

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (4.5)

Game2. Now, B simulates O(SK, ·) by answering A’s signature queries. Subsequently,
set zj = z(ej,mj) and z∗ = z(e∗,m∗). The simulator B sets PK = n and for all j ∈
{1, . . . , q} it chooses a random rj ∈ R and outputs σj = (rj, sj, ej) with sj = (uvrjwzj)

1
ej =

û2(t0+t′0rj+t′′0 zj)ēj . The distribution of the so computed values is equal to the previous game
and

Pr[S2] = Pr[S1] . (4.6)

Game3. Now, consider A’s forgery (m∗, (r∗, s∗, e∗)). Define ê = (t0 + t′0r
∗ + t′′0z

∗). For
A’s forgery it holds that (s∗)e

∗
= û2ēê. We also have that gcd(e∗, 2ēê) = gcd(e∗, ê) since by

assumption we know that gcd(e∗, 2ē) = 1. We will now analyze the probability for the event
gcd(e∗, ê) < e∗ to happen. If gcd(e∗, ê) = e∗ (or ê = 0 mod e∗) B simply aborts and restarts.
Since |e∗|2 = le, it holds that gcd(e∗, p′q′) < e∗. Write t0 ∈ Z3(n−1)/4 as t0 = t0,1 + p′q′t0,2
where t0,2 ∈ [0; 2] and t0,1 ∈ [0, p′q′ − 1] and observe that A’s view is independent from t0,2.
Let T = ê − p′q′t0,2. We now argue that there exists at most one t̃0,2 ∈ [0; 2] such that
T + t̃0,2p

′q′ = 0 mod e∗. This is crucial because if A produces forgeries with T + t̃0,2p
′q′ = 0

mod e∗ for all t̃0,2 ∈ [0; 2] it always holds that gcd(e∗, ê) = e∗ and B cannot extract a solution
the the SRSA challenge (using the techniques described below).
Assume there exists at least one such t̃0,2. Then, we have that T + t̃0,2p

′q′ = 0 mod e∗. Let
us analyze the remaining possibilities t̃0,2 ± 1 and t̃0,2 ± 2 as A = T + t̃0,2p

′q′ ± p′q′ mod e∗

and B = T + t̃0,2p
′q′ ± 2p′q′ mod e∗. Since gcd(e∗, p′q′) < e∗ we know that p′q′ 6= 0 mod e∗.

As T + t̃0,2p
′q′ = 0 mod e∗ we must have that A 6= 0 mod e∗. Also, because e∗ is odd we

know that 2p′q′ 6= 0 mod e∗ and thus B 6= 0 mod e∗. So, because there can only exist at
most one t̃0,2 ∈ [0; 2] with gcd(e∗, ê) = e∗ and since this t̃0,2 is hidden from A’s view, A’s
probability to output it is at most 1/3. This means that with probability at least 2/3, B has
that gcd(e∗, ê) = d < e∗. From A’s forgery (m∗, (r∗, s∗, e∗)), B can now find a solution to the
SRSA challenge by computing a, b ∈ Z with gcd(e∗/d, 2ēê/d) = ae∗/d+ b2ēê/d = 1 and

ûd/e
∗

= ûa(s∗)b, e∗/d.

Finally, we have that
Pr[S3] ≥ 2 · Pr[S2]/3 (4.7)

54

and
Pr[S3] = εSRSA . (4.8)

Plugging in Equations (4.4)–(4.8), we get that ε ≤ 3
2
εSRSA + 3 · 22−ln/2.

Type II Forger (e∗ = ei and r∗ 6= ri)
Now suppose B expects A to be a Type II Forger. We only present the differences to the
previous proof.

Game1. First, B randomly chooses q distinct le-bit primes e1, . . . , eq and q random elements
r1, . . . , rq ∈ R. Additionally, it chooses three random elements t0, t

′
0, t
′′
0 from Z(n−1)/4. Next,

B computes u = û2(t0ē+
∑q

i=1 riēi), v = û2(t′0ē−
∑q

i=1 ēi), and w = û2t′′0 ē using the SRSA challenge.
Again,

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (4.9)

Game2. Now B simulates the signing oracle O(SK, ·). On each signature query mj with
j ∈ {1, . . . , q}, B responds with σj = (rj, sj, ej) using the precomputed rj and ej and
computing sj as

sj = (uvrjwzj)
1
ej = û2((t0+t′0rj+t′′0 zj)ēj+

∑q
i=1 riēi,j−rj

∑q
i=1 ēi,j) = û2((t0+t′0rj+t′′0 zj)ēj+

∑q
i=1,i 6=j(ri−rj)ēi,j) .

Since we have chosen the ei to be distinct primes we have by a union bound that

Pr[S2] ≥ Pr[S1]−
q2

|E| . (4.10)

Game3. Now consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption there is a i ∈ {1, . . . , q}
with e∗ = ei and ri 6= r∗. Then we have that(

(s∗) · û−2((t0+t′0r
∗+t′′0 z

∗)ēi+
∑q

j=1,j 6=i(rj−r
∗)ēi,j)

)ei

= û2(ri−r∗)ēi .

Since |ri − r∗| < ei and ei is an odd prime we have that gcd(2(ri − r∗), ei) = 1 and as before

we can compute û
1
ei which is a solution to the SRSA challenge.

Pr[S3] = εSRSA . (4.11)

Summing up Equations (4.9)–(4.11), we get that ε ≤ εSRSA + q2/|E|+ 3 · 22−ln/2.

Type III Forger (e∗ = ei and r∗ = ri)
In case B expects A to be a Type III Forger, there are only minor differences as compared
to the previous proof.

Game1. First, B randomly chooses q le-bit primes e1, . . . , eq and q random z1, . . . , zq ∈ Z.
Then, B draws three random elements t0, t

′
0, t
′′
0 from Z(n−1)/4. Next, B computes u, v, and w

as u = û2(t0ē+
∑q

i=1 ziēi), v = û2t′0ē, and w = û2(t′′0 ē−
∑q

i=1 ēi).

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (4.12)

55

Game2. This game is equal to the previous game except that we require the ei to be all
distinct. We have that

Pr[S2] ≥ Pr[S1]−
q2

|E| . (4.13)

Game3. Now B simulates the signing oracle. For each query mj with j ∈ {1, . . . , q},
B computes rj = z−1(zj,mj). If rj /∈ R, B aborts. Otherwise B outputs the signature
σj = (rj, sj, ej) with sj being computed as

sj = (uvrjwzj)
1
ej = û2((t0+t′0rj+t′′0 zj)ēj+

∑q
i=1 ziēi,j−zj

∑q
i=1 ēi,j) = û2((t0+t′0rj+t′′0 zj)ēj+

∑q
i=1,i 6=j(zi−zj)ēi,j) .

The properties of the combining function guarantee that the rj are statistically close to
uniform over R such that,

Pr[S3] ≥ Pr[S2]− qδcomb . (4.14)

Game4. This game is like the previous one except that B aborts whenever there is a collision
such that zi = z(ri,mi) = z(ri,m

∗) = z∗ for some ri. Observe that we must have m∗ 6= mi,
otherwise A just replayed the i-the message/signature pair. For all tcomb-time attackers this
happens with probability at most εcomb. Therefore,

Pr[S4] ≥ Pr[S3]− εcomb . (4.15)

Consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption, there is one index i ∈ {1, . . . , q} with
e∗ = ei and r∗ = ri. For this index it holds that(

(s∗) · û−2((t0+t′0r
∗+t′′0 z

∗)ēi+
∑q

j=1,j 6=i(zj−z∗)ēi,j)
)ei

= û2(zi−z∗)ēi .

Since we have excluded collisions, it follows that zi 6= z∗. As |zi − z∗| ≤ ei, B can compute

û
1
ei as a solution to the SRSA challenge. Finally,

Pr[S4] = εSRSA . (4.16)

Summing up Equations (4.12)–(4.16), we get that ε ≤ εSRSA+εcomb+qδcomb+q2/|E|+3·22−ln/2.
Clearly, the running time of B is t + TSRSA,comb(q2) where TSRSA,comb(q2) denotes the

additional time to compute u, v, w, the signatures in the simulation phase, and the solution
to the SRSA problem. TSRSA,comb(q2) is dominated by q2 exponentiations in Z∗n. �

4.3.5 Security Analysis of the Cramer-Shoup Signature Scheme

The original proof in [45] considers three types of forgers that after q queries m1, . . . ,mq and
corresponding responses (r1, s1, e1), . . . , (rq, sq, eq) partition the set of all possible forgeries
(m∗, (r∗, s∗, e∗)). For the following two forgers the original proof already tightly reduces to
the SRSA assumption.

56

For a Type I Forger it holds that e∗ /∈ {e1, . . . , eq}. The proof is very similar to the
proof of Type I Forgers in the combining class.

A Type II Forger outputs a forgery such that e∗ = ej for some j ∈ [1; q]. It holds
that c∗ = (r∗)ẽvh(m∗) = (rj)

ẽvh(mj) = cj mod n. This proof reduces security from the implicit
chameleon hash function and the hash function. (c∗ = cj with m∗ 6= mj constitutes a collision
in the chameleon hash function or a hash collision.)

The only loose reduction is the proof of Type III Forgers.
A Type III Forger outputs a forgery with e∗ = ej for some j ∈ [1; q]. It holds that

c∗ = (r∗)ẽvh(m∗) 6= (rj)
ẽvh(mj) = cj mod n. We will now present a new reduction for Type

III Forgers that makes use of the technique described in Section 4.3.1.
We assume that B is given an SRSA challenge instance (û, n). Intuitively, we must only

give a new proof for the case that the adversary outputs a forgery with e∗ = ej for some
j ∈ [1; q] and c∗ = (r∗)ẽvh(m∗) 6= (rj)

ẽvh(mj) = cj mod n. Recall (4.1) and (4.2). In our new
proof the ri now correspond to the output values of the implicit chameleon hash function
ch(r,m) = rẽvh(m) mod n. Nevertheless these output values, as well as the ei, can also
be specified already in the initialization phase. This is because the simulator B is given
the secret key of the chameleon hash function what enables him to map the adversary’s
messages to the prespecified values. Since f(r) is linear, B can efficiently be embedded in
the exponents of u, v. By assumption the adversary outputs a forgery that maps to a new
output value of the chameleon hash function (c∗ = (r∗)ẽvh(m∗) 6= (rj)

ẽvh(mj) = cj mod n). As
before we can use it to extract a solution to the SRSA assumption.

Lemma 4.7 Assume the (tSRSA, εSRSA)-SRSA assumption holds. Moreover let h : {0, 1}∗ →
{0, 1}lc be a (th = tSRSA, εh)-collision-resistant hash function. Then, the Cramer-Shoup
signature scheme is (q, t, ε)-secure against Type III forgers provided that

q = qSRSA, ε ≤ εSRSA + εh +
q2

|E| + 23−ln/2, t ≈ tSRSA − TSDH,comb.

Proof.

Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks SIGCMB,SRSA

when interacting with the signing oracle O(SK, ·). We have that,

Pr[S0] = ε. (4.17)

Game1. Now, B constructs the values u, v using the SRSA challenge instead of choosing

them randomly from QRn. First, B chooses q random primes e1, . . . , eq
$← E and two

random elements t0, t
′
0

$← Z(n−1)/4. Let again ē :=
∏q

k=1 ek, ēi :=
∏q

k=1,k 6=i ek and ēi,j :=∏q
k=1,k 6=i,k 6=j ek. Then B chooses q random values c′1, . . . , c

′
q

$← QRn. Next it chooses ẽ
$← E

such that ẽ /∈ {e1, . . . , eq}. For all i ∈ [1; q] it then computes ci = (c′i)
ẽ mod n. The values

u, v are computed as v = û−2ẽ(t0ē+
∑q

i=1 ēi) and u = û2ẽ(t′0ē+
∑q

i=1 h(ci)ēi). For convenience let

57

v′ = û−2(t′0ē+
∑q

i=1 ēi) and observe that (v′)ẽ = v mod n. The distribution of the generators is
almost equal to the previous game and we get by a union bound that

Pr[S1] ≥ Pr[S0]− 2 · 2−(ln/2−2) . (4.18)

Game2. In this game the simulator aborts if there is a collision among the randomly chosen
ei. We have that

Pr[S2] ≥ Pr[S1]−
q2

|E| . (4.19)

Game3. Now, B simulates O(SK, ·) by answering A’s signature queries. For all j ∈
{1, . . . , q} it first computes rj ∈ QRn as rj = c′j(v

′)h(mj) mod n. Observe that by con-

struction rẽj/v
h(mj) = cj mod n. Next B outputs σj = (rj, sj, ej). The distribution of the so

computed values is equal to the previous game and

Pr[S3] = Pr[S2] . (4.20)

Game4. Now, consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption we have e∗ = ej but
c∗ 6= cj for some j ∈ [1; q]. In this game the simulator aborts if c∗ and cj make the hash
function collide. We get that

Pr[S4] ≥ Pr[S3]− εh . (4.21)

Otherwise B can compute a solution to the SRSA assumption. For A’s forgery σ∗ =
(r∗, s∗, e∗) it now holds that e∗ = ej but h(c∗) 6= h(cj). We have that

(s∗)e
∗

= uvh(c∗) mod n

= û2ẽ((t0−t′0h(m∗))ē+
∑q

i=1(h(ci)−h(c∗))ēi mod n

which is equivalent to(
(s∗)û−2ẽ((t0−t′0h(m∗))ēj+

∑q
i=1,i 6=j(h(ci)−h(c∗))ēi,j

)ej

= û2ẽ(h(cj)−h(c∗))ēj mod n.

Similar to before we use that |h(cj)−h(c∗)| < ej to show that gcd(ej, 2ẽ(h(cj)−h(c∗))ēj)) = 1.
So B can find a, b ∈ Z with aej + b2ẽ(h(cj) − h(c∗))ēj) = 1 and generate a solution to the
SRSA challenge by computing

û1/ej = ūa
(

(s∗)û−2ẽ(t0−t′0h(m∗))ēj+
∑q

i=1,i 6=j(h(ci)−h(c∗))ēi,j

)b
.

We finally have

Pr[S4] = εSRSA.

�

58

4.3.6 Security Analysis of SCMB,SDH

Lemma 4.8 Assume we work in the SDH setting such that the (tSDH, εSDH)-SDH assump-
tion holds and V is a (tcomb, εcomb, δcomb)-combining function. Then, the combining signature
class as presented in Section 4.2.1 is (q, t, ε)-secure against adaptive chosen message attacks
provided that

q = qSDH, ε ≤ 3εSDH + 3εcomb + 3qδcomb +
3q2

p
, t = tSDH − TSDH,comb(q

2).

In particular, this means that the SDH based Camenisch-Lysyanskaya scheme is tightly secure
against existential forgeries under adaptive chosen message attacks.

Proof. The proof of Lemma 4.8 is the second step in the proof of Theorem 4.3.
We consider three types of forgers that after q queries m1, . . . ,mq and corresponding re-
sponses (r1, s1, t1), . . . , (rq, sq, tq) partition the set of all possible forgeries (m∗, (r∗, s∗, t∗)).(
g1, g

x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2

)
.

Type I Forger (t∗ /∈ {t1, . . . , tq})
Suppose B guesses that A is a Type I Forger.

Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks SIGCMB,SDH

when interacting with the signing oracle O(SK, ·). We have that,

Pr[S0] = ε. (4.22)

Game1. Now, B constructs the values a, b, d using the SDH challenge instead of choosing

them randomly. First, B chooses q random values t1, . . . , tq
$← Zp and three random elements

t0, t
′
0, t
′′
0

$← Zp. In the following let t̄ :=
∏q

k=1(tk + x), t̄i :=
∏q

k=1,k 6=i (tk + x) and t̄i,j :=∏q
k=1,k 6=i,k 6=j (tk + x). The simulator computes a = gt0 t̄1 , b = g

t′0 t̄
1 , c = g

t′′0 t̄
1

Since the t0, t
′
0, t
′′
0 are chosen uniformly at random from Zp we have

Pr[S1] = Pr[S0] . (4.23)

Game2. Now, B simulates O(SK, ·) by answering A’s signature queries. As before, let
zj = z(rj,mj) and z∗ = z(r∗,m∗). The simulator B sets PK = gx2 and for all j ∈ {1, . . . , q}
it chooses a random rj ∈ R and outputs σj = (rj, sj, tj) with sj = (uvrjwzj)1/(x+tj) =

g
(t0+t′0rj+t′′0 zj)t̄j
1 .

Pr[S2] = Pr[S1] . (4.24)

Game3. Now, consider A’s forgery (m∗, (r∗, s∗, t∗)). We have that t∗ /∈ {t1, . . . , tq} and

e(s∗, PKgt
∗

2) = e(abr
∗
dz(r

∗,m∗), g2)

59

which is equivalent to

s∗ =
(
abr

∗
dz(r

∗,m∗)
)1/(x+t∗)

= g
t̄(t0+t′0r

∗+t′′0 z(r
∗,m∗))/(x+t∗)

1 .

B can now find a solution to the SDH challenge by computing D ∈ Zp with D 6= 0 and a
polynomial f ′(x) ∈ Zp[x] of degree q − 1 such that t̄ = f ′(x)(x+ t∗) +D. We get that

g
1/(t∗+x)
1 =

(
(s∗)1/(t0+t′0r

∗+t′′0 z(r
∗,m∗))g

−f ′(x)
1

)1/D

.

Finally, we have that
Pr[S3] = Pr[S2] = εSDH . (4.25)

Plugging in Equations (4.22)–(4.25), we get that ε = εSDH.

Type II Forger (t∗ = ti and r∗ 6= ri)
Now suppose B expects A to be a Type II Forger. We only present the differences to the
previous proof.

Game1. First, B randomly chooses q distinct elements t1, . . . , tq ∈ Zp and q random elements
r1, . . . , rq ∈ R. Additionally, it chooses three random elements t0, t

′
0, t
′′
0 ∈ Zp. Next, B

computes a = g
(t0 t̄+

∑q
i=1 ri t̄i)

1 , b = g
(t′0 t̄−

∑q
i=1 t̄i)

1 , and d = g
t′′0 t̄
1 Again,

Pr[S1] = Pr[S0] . (4.26)

Game2. Now B simulates the signing oracle O(SK, ·). On each signature query mj with j ∈
{1, . . . , q}, B responds with σj = (rj, sj, tj) using the precomputed rj and tj and computing
sj as

sj = (abrjdzj)1/(x+tj) = g
(t0+t′0rj+t′′0 zj)t̄j+

∑q
i=1,i 6=j(ri−rj)t̄i,j

1 .

Pr[S2] ≥ Pr[S1]− q2/p . (4.27)

Game3. Now consider A’s forgery (m∗, (r∗, s∗, t∗)). By assumption there is a k ∈ {1, . . . , q}
with t∗ = tk and rk 6= r∗. Then we have that

s∗ =
(
abr

∗
dz
∗)1/(x+t∗)

=
(
g

(t0+t′0r
∗+t′′0 z

∗)t̄+
∑q

i=1(ri−r∗)t̄i)
1

)1/(x+t∗)

=
(
g

(t0+t′0r
∗+t′′0 z

∗)t̄+
∑q

i=1,i 6=k(ri−r∗)t̄i+(rk−r∗)t̄k)

1

)1/(x+tk)

(4.28)

Again we can compute D 6= 0 and f ′(x) with t̄k = f ′(x)(x + tk) + D using long division.
Therefore,(

s∗g
−((t0+t′0r

∗+t′′0 z
∗)t̄k+

∑q
i=1,i 6=k(ri−r∗)t̄i,k+(rk−r∗)f ′(x))

1

)1/D(rk−r∗)
= g

1/(x+tk)
1

(4.29)

60

constitutes a solution to the SDH challenge.

Pr[S3] = Pr[S2] = εSDH . (4.30)

Summing up Equations (4.26)–(4.30), we get that ε ≤ εSDH + q2/p.

Type III Forger (t∗ = ti and r∗ = ri)
In case B expects A to be a Type III Forger, there are only minor differences as compared
to the previous proof.

Game1. First, B randomly chooses q values t1, . . . , tq ∈ Zp and q random values z1, . . . , zq ∈
Z. Then, B draws three random elements t0, t

′
0, t
′′
0 from Zp. Next, B computes a, b, and c as

a = g
t0 t̄+

∑q
i=1 zi t̄i

1 , b = g
t′0 t̄
1 , and c = g

t′′0 t̄−
∑q

i=1 t̄i
1 .

Pr[S1] = Pr[S0] . (4.31)

Game2. This game is equal to the previous game except that we require the ti to be all
distinct. We have that

Pr[S2] ≥ Pr[S1]−
q2

p
. (4.32)

Game3. Now B simulates the signing oracle. For each queries mj with j ∈ {1, . . . , q},
B computes rj = z−1(zj,mj). If rj /∈ R, B aborts. Otherwise B outputs the signature
σj = (rj, sj, tj) with sj being computed as

sj = (abrjdzj)1/(x+tj) = g
(t0+t′0rj+t′′0 zj)t̄j+

∑q
i=1,i 6=j(zi−zj)t̄i,j

1 .

Therefore,
Pr[S3] ≥ Pr[S2]− qδcomb . (4.33)

Game4. Consider A’s forgery (m∗, (r∗, s∗, t∗)). By assumption, there is one index k ∈
{1, . . . , q} with t∗ = tk and r∗ = rk. This game is like the previous one except that B aborts
whenever there occurs a collision m∗ 6= mk such that zk = z(rk,mk) = z(rk,m

∗) = z∗. For
all tcomb-time attackers this happens with probability at most εcomb. Therefore,

Pr[S4] ≥ Pr[S3]− εcomb . (4.34)

It now holds that(
s∗g
−((t0+t′0r

∗+t′′0 z
∗)t̄k+

∑q
j=1,j 6=k(zj−z∗)t̄k,j)

1

)(x+tk)

= g
(zk−z∗)t̄k
1 .

Compute D 6= 0 and f ′(x) with t̄k = f ′(x)(x+ tk) +D as before. We now have that(
s∗g
−((t0+t′0r

∗+t′′0 z
∗)t̄k+

∑q
j=1,j 6=k(zj−z∗)t̄k,j+(zk−z∗)f ′(x))

1

)1/D(zk−z∗)

= g
1/(x+tk)
1

61

is a solution to the SDH challenge. Finally,

Pr[S4] = εSDH . (4.35)

Summing up Equations (4.31)–(4.35), we get that ε ≤ εSDH + εcomb + qδcomb + q2/p.
Clearly, the running time of B is t+ TSDH,comb(q2) where TSDH,comb(q2) denotes the addi-

tional time to compute a, b, d, the signatures in the simulation phase, and the solution to
the SDH problem. TSDH,comb(q2) is dominated by q2 exponentiations in G1.

�

4.3.7 A Note on Strong Existential Unforgeability

All presented SDH based signatures fulfill our strong notion of security. This is because in
the proof we must have m∗ 6= mi only if t∗ = ti and r∗ = ri. Now, assume we additionally
let m∗ = mi. Then, we must also have that s∗ = si. Consequently, A did not output a valid
forgery because (m∗, σ∗) ∈ {(m1, σ1), . . . , (mq, σq)}. It rather re-sent one of the previous
queries together with the corresponding response obtained from the signing oracle.

For the SRSA based signatures, the situation is similar. Consider forgeries (m∗, (r∗, s∗, e∗))
where we have for one i ∈ [1; q] that e∗ = ei and r∗ = ri. This is the only case where we
must require that m∗ 6= mi to successfully complete the reduction. Now we can argue like
before since m∗ = mi of course implies s∗ = si.

4.4 Efficiency Improvements

We now give detailed information on the efficiency improvements that can be achieved by
our new reductions.

4.4.1 SRSA-Based Signature Schemes

The best known attack against the SRSA problem is the number field sieve. The general
number field sieve describes an attacker that asymptotically can factor n with probability 1 in
time e((64/9)1/3+o(1))(ln)1/3(log ln)2/3

. The special number field sieve has even better asymptotic
complexity but can only applied to factor near high powers. In the following we use the
recent extrapolation-based approach of ECRYPT II to find appropriate estimates of RSA
moduli lengths [49].

The ECRYPT II method assumes that the security level κ is related to the bit-length of
the RSA modulus ln as

κ = log2(e) · (ln · ln(2) · 64/9)1/3 · (ln(ln · ln(2)))2/3 − 14

which is equivalent to

2κ = e(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3 · 2−14.

62

In the following we assume that the maximal success ratio of any adversary against the
SRSA problem is

SR(B) =
εB
tB
≤ e−(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3 · 214. (4.36)

In a first step let us recall the running time of the simulator.

• In the original security reduction, the simulator runs in time tA + TSRSA,comb(q) where

TSRSA,comb(q) is dominated by the time to compute uf(c) = u
∏q

j=1 ej+(ci−c)
∏q

j=1,j 6=i ej for
i ∈ [1; q] given u, e1, . . . , eq, and ci.

• In our new security reduction, the simulator runs in time tA + TSRSA,comb(q2) where

TSRSA,comb(q2) is dominated by the time to compute uf(c) = u
∏q

j=1 ej+
∑q

i=1(ci−c)
∏q

j=1,j 6=i ej

given u, e1, . . . , eq, and c1, . . . , cq.

We subsequently assume that TSRSA,comb(q),TSRSA,comb(q2) < tSRSA/2. We must clearly
have that both 2TSRSA,comb(q) and 2TSRSA,comb(q2) are polynomials in the security param-
eter. This is because if TSRSA,comb(q),TSRSA,comb(q2) ≥ tSRSA/2, tSRSA can be computed in
polynomial time too and the SRSA problem, contrary to our assumption, can be solved in
polynomial time.

4.4.2 Efficiency of the Original Reduction

The original reduction of the SRSA-based combining class states that:

t = tSRSA − TSRSA,comb(q), ε ≤ 9qεSRSA/2 + 3εcomb + 3δcomb +
3q2

|E| + 9 · 22−ln/2.

This gives the following bound on SR(A):

SR(A) =
ε

t

=
ε

tSRSA − TSRSA,comb(q)

≤
9qεSRSA/2 + 3εcomb + 3δcomb + 3q2

|E| + 9 · 22−ln/2

tSRSA − TSRSA,comb(q)

≤ 9qεSRSA

tSRSA

+
3εcomb + 3δcomb + 3q2

|E| + 9 · 22−ln/2

tSRSA − TSRSA,comb(q)

≤ 9qSR(B) +
3εcomb + 3δcomb + 3q2

|E| + 9 · 22−ln/2

tSRSA − TSRSA,comb(q)

≤ 9qSR(B) + 3εcomb + 3δcomb +
3q2

|E| + 9 · 22−ln/2

≤ 9q(e−(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3 · 214) + 3εcomb + 3δcomb +
3q2

|E| + 9 · 22−ln/2

63

We are interested in the minimal choice of ln, lr, and le. A rough estimate for |E| is given
by

|E| > 2le

le
− 2le−1

le − 1
=

2le(le − 1)− 2le−1le
le(le − 1)

=
2le−1(le − 2)

le(le − 1)
.

For 3 < le we get 1
2
< le−2

le−1
and

|E| > 2le−2

le
.

With 2ln−1 ≤ n < 2ln and 2lq−1 ≤ q < 2lq we get that

9q(e−(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3 · 214) + 3εcomb + 3δcomb +
3q2

|E| + 9 · 22−ln/2

≤ 2lq+4(e−(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3 · 214) + 3εcomb + 3δcomb +
22lq+2

|E| + 26−ln/2

≤ 2lq+4 · 2− log2(e)·(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3+14 + 3εcomb + 3δcomb +
22lq+2

|E| + 26−ln/2

≤ 2lq+18−log2(e)·(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3

+ 3εcomb + 3δcomb +
22lq+2le
2le−2

+ 26−ln/2

≤ 2lq+18−log2(e)·(ln·ln(2)·64/9)1/3·(ln(ln·ln(2)))2/3

+ 3εcomb + 3δcomb + 22lq+4−lele + 26−ln/2.

This value should be smaller than 2−κ. Now assume we use the concrete combining functions
EX2 and EX3. In both cases we get that εcomb = 0. For EX2 we also get that δcomb = 0,
whereas for EX3 we have that 3δcomb < 2lm−lr+2.

To have each of the summands be smaller than 2−κ−2 (resulting in a sum smaller than
2−κ) we obviously need

le − log2(le) > 2lq + 6 + κ

and at least
16 + 2κ < ln.

For EX3 (EX2 already specifies lr = lm) we additionally get that

lr > κ+ lm + 4.

The first term gives us

lq + 20 + κ < log2(e) · (ln · ln(2) · 64/9)1/3 · (ln(ln · ln(2)))2/3

what results in ((lq + κ+ 20)/ log2(e))3 < (ln · ln(2) · 64/9) · (ln(ln · ln(2)))2 and

9 · (lq + κ+ 20)3

64 · ln(2) · (log2(e))3
< ln · (log ln)2

to bound SR(A) ≤ 2−κ. In Table 4.3 we provide exact values for lr, le, and ln for q = 230,
q = 240, and q = 250.

64

Security level κ = 80 Security level κ = 128
Orig. Reduction New Reduction Orig. Reduction New Reduction

q lr le ln lr le ln lr le ln lr le ln
230 244 154 2593 274 154 1395 292 202 5673 322 202 3652
240 244 174 3095 284 174 1395 292 222 6470 332 222 3652
250 244 194 3652 294 194 1395 292 242 7331 342 242 3652

Table 4.3: Efficiency improvements for the Camenisch-Lysyanskaya signature scheme (EX2)
using our new security reduction. The table presents the bit sizes of the modulus n and the
random values r and e for different numbers q of signing queries and a target security level
of 2−κ. The given values also hold for the Fischlin scheme (EX1) (except that by design
lr = lm).

4.4.3 Efficiency of the New Reduction

The new reduction of the SRSA-based combining class has the following properties:

t ≈ tSRSA − TSRSA,comb(q2), ε ≤ 9εSRSA/2 + 3εcomb + 3qδcomb +
3q2

|E| + 9 · 22−ln/2.

When using EX3, our new reduction affects the first and the second summand. We get

9 · (κ+ 20)3

64 · ln(2) · (log2(e))3
< ln · (log ln)2

and
lr > κ+ lm + lq + 4.

The last equation shows that the required size of lr is significantly worse than in the
original reduction (we have to account for the number of signature queries q) for EX3.
However for EX1 we have that δcomb = 0 and it always holds that lr = lm. So we can fully
benefit from the improvements resulting from 9·(κ+20)3/(64·ln(2)·(log2(e))3) < ln ·(log ln)2.

4.4.4 SDH-Based Signature Schemes

The best known attack on SDH is Cheon’s attack that describes an attacker P such that

SR(P) =
εP
tP

= Ω(

√
q

p
). (4.37)

Based on this result we make the assumption that
√

q
p

is the maximal success ratio of

any adversary against the SDH problem

SR(B) ≤
√
q

p
. (4.38)

Let us again start by bounding the running time of the simulator.

65

• In the original security reduction, the simulator runs in time tA + TSDH,comb(q) where

TSDH,comb(q) is dominated by the time to compute g
∏q

j=1(x−tj)+(ci−c)
∏q

j=1,j 6=i(x−tj) for
i ∈ [1; q] given g, g2, . . . , gq, t1, . . . , tq, and ci.

• In our new security reduction, the simulator runs in time tA + TSDH,comb(q2) where

TSDH,comb(q2) is dominated by the time to compute g
∏q

j=1(x−tj)+
∑q

i=1(ci−c)
∏q

j=1,j 6=i(x−tj)

given g, g2, . . . , gq, t1, . . . , tq, and c1, . . . , cq.

Similar to before, we subsequently assume that TSDH,comb(q),TSDH,comb(q2) < tSDH/2.

4.4.5 Efficiency of the Original Reduction

The original reduction of the SDH-based combining class states that:

q = qSDH, t = tSDH − TSDH,comb(q), ε ≤ 3qεSDH + 3εcomb + 3δcomb +
3q2

p
. (4.39)

This gives rise to the following bound on SR(A):

SR(A) =
ε

t

=
ε

tSDH − TSDH,comb(q)

≤
3qεSDH + 3εcomb + 3δcomb + 3q2

p

tSDH − TSDH,comb(q)

≤ 6qεSDH

tSDH

+
3εcomb + 3δcomb + 3q2

p

tSDH − TSDH,comb(q)

≤ 6qSR(B) +
3εcomb + 3δcomb + 3q2

p

tSDH − TSDH,comb(q)

≤ 6qSR(B) + 3εcomb + 3δcomb +
3q2

p

≤ 6q

√
q

p
+ 3εcomb + 3δcomb +

3q2

p

We are interested in the minimal choice of p. With 2lp−1 ≤ p < 2lp and 2lq−1 ≤ q < 2lq

66

κ = 80 κ = 128
Orig. Red. New Red. Orig. Red. New Red.

q lp lp lp lp
230 258 198 354 294
240 288 208 384 304
250 318 218 414 314

Table 4.4: Efficiency improvements for the SDH-based Camenisch-Lysyanskaya signature
scheme. lp is the bit size of the group order p for different numbers q of signing queries and
a target security level of 2−κ.

we get that

6q

√
q

p
+ 3εcomb + 3δcomb +

3q2

p
≤ 6q

√
q

p
+

3q2

p

≤ 2lq+3

√
2lq

2lp−1
+ 3εcomb + 3δcomb +

3 · 22lq

2lp−1

≤ 2lq+3

√
2lq

2lp−1
+ 3εcomb + 3δcomb +

22lq+2

2lp−1

≤ 2lq+3+lq/2−(lp−1)/2 + 3εcomb + 3δcomb + 22lq+2−lp+1

≤ 23lq/2+7/2−lp/2 + 3εcomb + 3δcomb + 22lq+3−lp .

This value should be smaller than 2−κ. EX1 gives lr = lm and εcomb = δcomb = 0. For lp ≥
3lq + 7 + 2κ we get 23lq/2+7/2−lp/2 ≤ 2−κ and 22lq+3−lp ≤ 22lq+3−(3lq+7+2κ) = 2−4−lq−2κ ≤ 2−κ.
Thus

lp ≥ 3lq + 8 + 2κ

suffices to bound SR(A) ≤ 2−κ when using EX1. We give exact values for lp in Table 4.4.

4.4.6 Efficiency of the New Reduction

The new reduction of the SDH-based combining class states:

q = qSDH, t = tSDH − TSDH,comb(q2), ε ≤ 3εSDH + 3εcomb + 3qδcomb +
3q2

p
.

67

In a similar way as before we get

6

√
q

p
+ 3εcomb + 3δcomb +

3q2

p
≤ 6

√
q

p
+

3q2

p

≤ 6

√
2lq

2lp−1
+

3 · 22lq

2lp−1

≤ 6

√
2lq

2lp−1
+

22lq+2

2lp−1

≤ 2lq/2+3−(lp−1)/2 + 22lq+2−lp+1

≤ 2lq/2+7/2−lp/2 + 22lq+3−lp .

Now we can set lp ≥ lq+7+2κ and get that 2lq/2+7/2−lp/2 ≤ 2−κ and 22lq+3−lp ≤ 22lq+3−(lq+7+2κ) =
2−4+lq−2κ. If we assume that

κ ≥ lq − 4

which is reasonable and typically given in concrete security analyses (κ = 80 and lq ≤ 50 ≤
80) we get 2−4+lq−2κ ≤ 2−κ. Thus

lp ≥ lq + 8 + 2κ

suffices to bound SR(A) ≤ 2−κ for EX1. We give exact values in Table 4.4.

68

Chapter 5

Two-Tier Signature Schemes

The design of new signature schemes in the standard model is a seemingly difficult task.
What has proven very useful in the past is the application of transformations from other
cryptographic primitives to signature schemes.

Two Important Signature Transformations. Let us consider two important trans-
formations that turn signature schemes with weaker security properties to schemes with
strong security features. The first example is the generic transformation by Even et al. (sub-
sequently denoted as gCMA→aCMA transformation) which constructs EMUF-aCMA-secure
signature schemes from EMUF-gCMA-secure schemes. The main idea is to use the weakly
secure signature scheme to sign a fresh one-time public key opk. The corresponding secret
key osk is then used to sign the message m. The final signature σ consists of the signature
σ1 on opk, the one-time signature σ2 on m, and opk: σ = (σ1, σ2, opk).

Another general transformation (in the following called aCMA→STR-aCMA transforma-
tion) was presented by Huang et al. [67] and independently by Bellare and Shoup [13]. It
generate a strongly EMUF-aCMA-secure signature scheme – where adversaries are also al-
lowed to output new signatures on previously queried messages – from a EMUF-aCMA-secure
signature scheme and a strongly secure one-time signature scheme. Similar to the Even et al.
transformation the construction proceeds in two steps. First, the EMUF-aCMA-secure signa-
ture scheme is used to generate a signature σ1 on m||opk where m is the message to be signed
and opk is a fresh one-time public key. Next, the signer generates a one-time signature σ2

on σ1 using osk. Again the final signature σ consist of three elements: σ = (σ1, σ2, opk).

We note that both of the above transformations essentially rely on one-time signature
schemes. Since signature schemes trivially imply one-time signature schemes one could at
least in the Even et al. transformation utilize a new instance of the basic signature scheme as
a substitute for a dedicated one-time signature. However, since they must only provide much
weaker security guarantees than classical signature schemes, one time signature schemes are
in general more efficient than usual signature schemes [87, 89].

Drawbacks of the Existing Transformations. With respect to signature size, both
of the above transformations have two serious drawbacks. First, the final signature must
always contain the one-time public key to allow for a verification of σ1 and σ2. Second, the

69

security reduction looses a factor of q (where q is the number of signature queries made by the
attacker) which in turn transfers to larger parameter sizes for equal security guarantees as
compared to tight reductions. To illustrate the latter problem consider how a simulator would
embed the challenge for the one-time signature. In the attack game this situation occurs
whenever the adversary re-uses one of the opki (as part of signature σi = (σ1,i, σ2,i, opki))
with i ∈ {1, . . . , q} in his forgery σ∗ = (σ∗1, σ

∗
2, opk

∗) such that opk∗ = opki and σ∗1 = σ1,i. In
this case, security cannot be reduced to the underlying signature scheme since σ∗1 is not a
signature on a new message. The simulator’s strategy to solve this problem is to guarantee
that such a re-use of σ1,i always corresponds to a break of the one-time signature scheme.
Indeed, since σ∗1 = σ1,i and opk∗ = opki we must have by assumption that σ∗ 6= σi (otherwise
σ∗ would not be a forgery) and σ2,i must be a valid signature on a new message what
contradicts the security guarantees of the one-time signature scheme. Now to embed the
one-time signature challenge, the simulator at first guesses i (indicating which value si the
attacker is going to re-use in the forgery) and uses the one-time oracle to obtain opki and to
generate σ2,i. As a consequence of this guess, the simulator only succeeds with probability
1/q in the security reductions.

Two-tier Signature Schemes. Bellare and Shoup [13] showed how to tackle the lat-
ter problem using a new primitive called two-tier signature scheme.1 Two-tier signature
schemes can be regarded as an intermediate primitive located between one-time signature
schemes and usual signature schemes. The signer first generates a long term public key pair
(SK,PK). Whenever he desires he can construct fresh key material for a one-time signature
scheme (oski, opki) and sign a message mi. The distinguishing property of two-tier signature
schemes (as compared to usual one-time signature schemes) is that the one-time keys are not
pairwisely independent given (SK,PK). As a consequence the so generated one-time sig-
natures share the following useful property: if any of the issued one-time signature schemes
(identified by its key material) is broken, so is the two-tier signature scheme. As two-tier
signature schemes can be build from classical three move identification protocols there exist
efficient variants secure under standard assumptions like the discrete logarithm assumption
or the factoring assumption.

Contribution. In this chapter, we present new instantiations of two-tier signature schemes
from chameleon hash functions. Using our construction, we for the first time show how to
solve the above problems simultaneously. First, we present a new security notion for two-tier
signature schemes called static security (formally defined in Section 5.1) that is much weaker
than the original definition (adaptive security as defined in Section 2.12.1). Then we show
how to build statically secure two-tier signature schemes from chameleon hash functions.
When we apply our construction to the Even et al. transformation (as a substitute for
classical one-time signatures) we directly obtain the Shamir-Tauman transformation. This
result for the first time fully clarifies the relationship between the Even et al. transformation

1The original motivation for two-tier signature schemes was the Fiat-Shamir heuristic [53]. Bellare and
Shoup analyzed the security of signature schemes that are generated via the Fiat-Shamir heuristic while not
assuming random oracles. Instead the hash function in the Fiat-Shamir heuristic is solely required to be
collision-resistant.

70

and the Shamir-Tauman transformation. A previous analysis by Catalano et al. [35] already
observed that chameleon hash functions give rise to one-time signature schemes but it did
not explain why the security Shamir-Tauman reduction tightly reduces to the underlying
security assumption (as compared to the Even et al. construction that looses a factor of q in
the security proof). Next, we present a general transformation from statically secure two-tier
signature schemes to adaptively secure schemes. We so obtain efficient and adaptively secure
two-tier signature schemes from standard assumptions via a new construction.

In contrast to the existing construction that is derived from the Fiat-Shamir heuristic,
both of our chameleon based constructions (the statically secure and the adaptively secure)
have a very useful property: given the message m and the corresponding one-time signature
on m one can easily compute the public one-time key. If we use this construction as a stand-
alone substitute for one-time signatures the advantage is small. For verification we still must
transmit the corresponding one-time public key: the verifier uses message and signature
to compute his version of the one-time public key and compares it with the one received.
However, in cascaded constructions like the signature transformations by Even et al. and
Bellare-Shoup/Huang et al. our construction pays off.

To (informally) explain this, recall that after applying one of these transformations a
signature consists of σ = (σ1, σ2, opk) where σ1 is a classical signature on message opk (re-
spectively m||opk) and σ2 is a one-time signature on message m (respectively σ1) that can be
verified with opk. The security properties of the classical signature scheme guarantee that
σ1 only correctly verifies under public key PK if opk (respectively m||opk) is exactly the
message that was used to produce σ1. Any other message will result in a verification fail. In
our chameleon hash based construction we can, given m (respectively σ1) and σ2, compute
a candidate for opk. Whether our candidate actually is the correct one-time public key is
implicitly checked when verifying σ1. Therefore we do not need to transmit opk! Also it is
well known that chameleon hash functions can be generated from standard assumptions like
the discrete logarithm assumption or the factoring assumption which are weaker than most
of the existing assumptions used to construct signature schemes. Therefore two-tier signa-
ture schemes derived from chameleon hash functions can be based on the same well-studied
standard assumptions as those derived from three move identification protocols. Moreover,
the most efficient instantiations proposed in [13] rely on ’one-more’ assumptions like the
one-more discrete logarithm assumption or the one-more root inversion assumption. In
contrast, we can easily provide an instantiation example that relies on the mere discrete log-
arithm assumption using existing chameleon hash functions. It is not only based on weaker
assumptions but, exploiting the special properties of two-tier signature schemes based on
chameleon hash functions, also more efficient when applied in cascaded constructions (like
the aCMA→STR-aCMA transformation) than the existing solutions. We also stress, that,
as we do not have to derive security of the two-tier signature scheme from properties of an
underlying identification protocol, our security analysis is somewhat more simple. In partic-
ular, we do not have to restrict ourself to protocols that are secure under concurrent attacks.
Our security guarantees directly follow from the security of the chameleon hash functions.
Similar to the Bellare-Shoup construction, the cost for our approach is that SK and PK

71

have to be added to the long-term key material. We stress that efficiency improvements for
transformations generally have great impact. In contrast to improvements made to a single,
concrete scheme enhanced transformations automatically improve all signature schemes that
rely on this transformation.

Related Work. Our result clarifies and improves several previous results. Besides im-
proving the Bellare-Shoup transformation, it extends the result of Catalano et al. from 2008
who showed how to obtain usual one-time signatures from chameleon hash functions [35].
Our transformation from statically secure two-tier signature schemes to adaptively secure
schemes can be regarded as a generalization of the Even et al. transformation (1989) that
only works for classical weakly secure (one-time) signature schemes [51]. Furthermore our
final transformation from fully to strongly secure signature schemes can be regarded as a
Shamir-Tauman-like (2001) [96] improvement of the Huang et al. construction from 2008.
We use chameleon hash functions to shorten the signature size and tighten the security proof.

5.1 Statically Secure Two-Tier Signature Schemes - A

New Weak Security Notion

We now introduce our new security notion. The main difference to the Bellare-Shoup defini-
ton is that the adversary may not query one-time public key prior to signatures. One-time
public keys are only output together with the signatures on the queried messages.

Statically Secure Two-tier Signature Schemes. Our new security definition is
defined by the following attack game.
Public Key and Signature Generation. In the first phase the adversary is given a public

key PK.
Signature queries. Next, the adversary can adaptively access the oracle OSK,static(·) q

times. Given a message mi with i ∈ [1; q], OSK,static(·) outputs a fresh one-time key
opki and a one-time signature σi on mi such that TT.Verify(PK, opki,mi, σi) = 1.

Output. The attacker outputs a forgery (m∗, σ∗) such that there exists i ∈ [1; q] with
m∗ 6= mi and TT.Verify(PK, opki,m

∗, σ∗) = 1.

We denote the success probability of an adversary A (taken over the random coins of
the challenger and the adversary) to win the static security game as AdvTT,A,static and the
adaptive security game as AdvTT,A,adapt.

Definition 5.1 (Secure Two-Tier Signature Scheme) An adversary A is said to (q, t, ε)-
break the static security of a given two-tier signature scheme TTif A has success probability
AdvTT,A,static = ε after generating at most q one-time queries and running in time t. TTis
said to be (q, t, ε) statically secure if there exists no PPT adversary that (q, t, ε)-breaks the
static security of TT. We call a two-tier signature scheme strongly secure if the generated
one-time signature schemes are strongly secure (i.e. (m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)}).

72

5.2 Construction of Statically Secure Two-Tier Signa-

ture Schemes from Chameleon Hash Functions

We now show how to generate statically secure two-tier signature schemes from chameleon
hash functions. The idea behind our construction is the following. Whenever the signer
wants to generate new one-time key material it evaluates the chameleon hash function on
random input values (i.e. message m′ and randomness r′). The result of this computa-
tion is the one-time public key. The corresponding input values form the one-time se-
cret key. To compute a one-time signature on message m we use the secret key of the
chameleon hash function to compute a collision r such that (m, r) and (m′, r′) map to
the same output value opk. More formally: let CH = (CH.Gen,CH.Eval,CH.Coll) be a
chameleon hash function. Then the following construction yields a two-tier signature scheme
TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify).

• TT.KeyGen(1κ): computes CH.Gen(1κ) = (SKCH, PKCH) and sets SK = SKCH and
PK = PKCH.

• TT.OTKeyGen(SK,PK): randomly chooses message m′ ∈M and randomness r′ ∈ R
and computes opk = CH.Eval(PK,m′, r′). The secret one-time key is set to osk =
(m′, r′).

• TT.Sign(SK, osk,m): parses osk as (m′, r′). Then it computes a collision for opk using
CH.Coll as σ = CH.Coll(SK, r′,m′,m) = r.

• TT.Verify(PK, opk,m, σ): checks if CH.Eval(PK,m, σ) equals opk. In this case it out-
puts 1, otherwise 0.

Theorem 5.2 Let CH = (CH.Gen,CH.Eval,CH.Coll) be a (tCH, εCH)-secure chameleon hash
function. Then for any polynomial q = q(κ) the above construction yields a (q, t, ε) statically
secure two-tier signature scheme TT with t = tCH and ε = εCH. Moreover, if the chameleon
hash function is strongly secure so is TT.

Proof. Assume there exists a successful adversary A against TT. We show that we can
build a simulator B that uses A to break the security of the chameleon hash function.

By assumption, B is given the public key PKCH of the chameleon hash function. In
the first step B gives PK = PKCH to A. Next B simulates oracle OSK,static(·): whenever
A queries message mj ∈ M with j ∈ [1;n], B chooses a random σj ∈ R and computes
opkj = CH.Eval(PK,mj, σj). The one-time public key opkj and the one-time signature σj
on mj are given to A. Observe that these values are exactly distributed as in the orig-
inal attack game. Finally, A outputs a forgery (m∗, σ∗) such that there exists i ∈ [1; q]
with TT.Verify(PK, opki,m

∗, σ∗) = 1. But this means that CH.Eval(PK,mi, σi) = opki =
CH.Eval(PK,m∗, σ∗) and since we have m∗ 6= mi (or (m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)} in
the case of strong security), B has found a collision of the chameleon hash function. This
concludes the proof of Theorem 5.2. �

73

5.3 Generalizing the Shamir-Tauman Transformation:

A New Transformation from Weakly Secure Signa-

ture Schemes to Fully Secure Schemes using Stat-

ically Secure Two-tier Signature Schemes

We now show how to generically substitute the weak one-time signature scheme in the
gCMA→aCMA transformation with statically secure two-tier signatures. This tightens the
security reduction. Let SIGweak = (SIG.KeyGenweak, SIG.Signweak, SIG.Verifyweak) be a weakly
secure signature scheme. Assume TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify) is
a statically secure two-tier signature scheme. Then we can build the following fully secure
signature scheme SIG = (SIG.KeyGen, SIG.Sign, SIG.Verify).

• SIG.KeyGen(1κ): run SIG.KeyGenweak(1κ) and obtain (PKweak, SKweak). Next, run
TT.KeyGen(1κ) and obtain SKTT and PKTT. Set SK = (SKweak, SKTT) and PK =
(PKweak, PKTT).

• SIG.Sign(SK,m): to sign a message m, run TT.OTKeyGen(SKTT, PKTT) to get a
new key pair (osk, opk). Compute the signatures σ1 = SIG.Sign(SKweak, opk)2 and
σ2 = TT.Sign(SKTT, osk,m). Output the final signature as σ = (σ1, σ2, opk).

• SIG.Verify(PK,m, σ): if it holds that SIG.Verifyweak(PKweak, opk, σ1) = 1 and at the
same time TT.Verify(PKTT, opk,m, σ2) = 1 output 1. Otherwise output 0.

Theorem 5.3 Suppose that TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify) is a two-
tier signature scheme that is (t′, εTT) statically secure. Furthermore, assume that SIGweak =
(SIG.KeyGenweak, SIG.Signweak, SIG.Verifyweak) is a signature scheme that is (qweak, t

′, εweak) weakly
secure. Then the above construction yields a (q, t, ε) fully secure signature scheme SIG =
(SIG.KeyGen, SIG.Sign, SIG.Verify) provided that q = qweak, t ≈ t′, ε ≤ 2εweak + 2εTT. The
security reduction is tight.

The proof of Theorem 5.3 is very similar to the proofs in [51, 96].
Proof. Let A be an attacker against SIG. Suppose A queries messages m1, . . . ,mq.

Moreover let σ1 = (σ1,1, σ2,1, opk1), . . . , σq = (σ1,q, σ2,q, opkq) be the corresponding signatures
on these messages. The simulator B at first draws uniformly at random b ∈ {1, 2} indicating
its guess of A’s final forgery (m∗, σ∗ = (σ∗1, σ

∗
2, opk

∗)). With probability ≥ 1/2 this guess is
correct.

If b = 1, B assumes that opk∗ /∈ {opk1, . . . , opkq}. In this case B can use A to break
the security of the weakly secure signature scheme SIGweak. In the first step A gener-
ates SKTT and PKTT using the algorithm TT.KeyGen(1κ). Then it computes q key pairs

2As [51] point out this value is message independent and can be precomputed yielding offline/online
signatures. In this case, the only remaining task to complete the signature generation is to sign m using a
one-time signature scheme what greatly shortens response times.

74

(osk1, opk1), . . . , (oskq, opkq) using TT.OTKeyGen(SKTT, PKTT). In the next step B sends
opk1, . . . , opkq to Oweak(·) and receives the public key PK and signatures s1, . . . , sq. B sets
σ1,i = si for all i ∈ [1; q] and outputs PKweak = PK. Now when A queries message mi, B
simply computes σ2,i = TT.Sign(SKTT, oski,mi) and outputs σi = (σ1,i, σ2,i, opki). Observe
that all values are distributed exactly like in the original attack game. Eventually A outputs
(m∗, σ∗ = (σ∗1, σ

∗
2, opk

∗)). Since by assumption opk∗ /∈ {opk1, . . . , opkq}, (opk∗, σ∗1) breaks
the security of SIGweak.

If b = 2, B assumes that there exists an index j ∈ [1; q] such that opk∗ = opkj. In this
case B can use A to break the security of the statically secure two-tier signature scheme
TT. In the first step A generates SKweak and PKweak using SIG.KeyGen(1κ). Let PK be
the challenge key for the two-tier signature scheme. B sets PKTT = PK. Now when A
queries message mi, A sends mi to oracle OSK,static(·) and receives opki and si. B sets
σ2,i = si. Then B uses SKweak to compute σ1,i = SIG.Sign(SKweak, opki) before outputting
σ = (σ1,i, σ2,i, opki). Observe that all values are distributed exactly as in the original attack
game. Eventually A outputs (m∗, σ∗ = (σ∗1, σ

∗
2, opk

∗)). Since by assumption opk∗ = opki for
some i ∈ [1; q], (m∗, σ∗2) breaks the security of TT.

This concludes the proof of Theorem 5.3. �

Corollary 5.4 If we apply our construction of statically secure two tier signature schemes
based on chameleon hash functions to the above transformation and exploit the special proper-
ties of the construction (the one-time public key can be generated from the one-time signature
and the message) we immediately get the Shamir-Tauman construction.

In Section 5.6.1 we will provide a detailed security proof of a new transformation for
constructing strongly secure signature schemes. In the proof, we in detail show how to
exploit the properties of chameleon hash based two-tier signatures. This technique can
easily be adapted to the conceptually more simple proof of Corollary 5.4.

5.4 A New Transformation from Statically to Adap-

tively Secure Two-Tier Signature Schemes

We now show how to obtain adaptively secure two-tier signature schemes from chameleon
hash functions. To this end we present a transformation that constructs adaptively secure
two-tier signature schemes from statically secure schemes. The main idea is to use a two key
technique in the spirit of the gCMA→aCMA transformation. As a consequence we need to
double the size of the long-term key material.

5.4.1 Transformation from Statically Secure to Adaptively Secure
Two-Tier Signature Schemes

Let TTstatic = (TT.KeyGenstatic,TT.OTKeyGenstatic,TT.Signstatic,TT.Verifystatic) be a stati-
cally secure two-tier signature scheme. Then we can build the following adaptively secure

75

two-tier signature scheme TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify).

• TT.KeyGen(1κ): runs TT.KeyGenstatic(1
κ) twice and obtains (SK1, PK1) and (SK2, PK2).

It sets SK = (SK1, SK2) and publishes PK = (PK1, PK2).

• TT.OTKeyGen(SK,PK): given SK = (SK1, SK2) and PK = (PK1, PK2) this algo-
rithm computes (osk, opk)← TT.OTKeyGenstatic(SK1, PK1).

• TT.Sign(SK, osk,m): given SK = (SK1, SK2) and osk this algorithm first computes a
new one-time key pair (osk′, opk′)← TT.OTKeyGenstatic(SK2, PK2). Then it computes
the signature σ1 = TT.Signstatic(SK1, osk, opk

′) and σ2 = TT.Signstatic(SK2, osk
′,m)

and outputs σ = (σ1, σ2, opk
′).

• TT.Verify(PK, opk,m, σ): if it holds that TT.Verifystatic(PK2, opk
′,m, σ2) = 1 and at

the same time TT.Verifystatic(PK1, opk, opk
′, σ1) = 1 this algorithm outputs 1, other-

wise 0.

Theorem 5.5 Let TTstatic = (TT.KeyGenstatic,TT.OTKeyGenstatic,TT.Signstatic,TT.Verifystatic)
be a (qstatic, tstatic, εstatic) statically secure two-tier signature scheme. Then the above construc-
tion yields a (q, t, ε) adaptively secure two-tier signature scheme provided that q = qstatic,
t = tstatic, ε ≤ 2εstatic. Moreover, if TTstatic is strongly secure so is TT.

Proof. Assume there exists an attacker A against the adaptively secure two-tier signature
scheme. Let opk1, . . . , opkq denote the answers to A’s queries for one-time public keys. Let
m1, . . . ,mq be the messages queried by A and σ1 = (σ1,1, σ2,1, opk

′
1), . . . , σq = (σ1,q, σ2,q, opk

′
q)

the corresponding signatures on the mi. Suppose (i∗,m∗, σ∗ = (σ∗1, σ
∗
2, opk

′∗)) be the forgery
output by A such that TT.Verify(PK, opki∗ ,m

∗, σ∗) = 1. By assumption, the simulator B is
given the challenge public key PKa of a statically secure two-tier signature scheme together
with q-time access to the oracle OSKa,static(·). Then B computes some additional key material
SKb, PKb using TT.KeyGenstatic(1

κ). Next B draws a random coin b ∈ {1, 2} indicating its
guess for one of the following two cases. With probability ≥ 1/2 this guess is correct.

If b = 1 (Case 1), B assumes that A outputs a forgery σ = (σ∗1, σ
∗
2, opk

′∗) that verifies
under one-time public key opki with i ∈ [1; q] such that opk′∗ = opk′i. In this case, B sets
PK = (PK1, PK2) with PK1 = PKb and PK2 = PKa. To simulate the signing oracle, B
uses SK1, PK1 to compute fresh one-time keys (oski, opki)← TT.OTKeyGenstatic(SK1, PK1)
for i ∈ [1; q]. The forger can adaptively query these one-time public keys opk1, . . . , opkq.
When A queries message mi with i ∈ [1; q], B sends mi to the signing oracle OSK2,static(·)
to receive a one-time public key opk′i and a one-time signature σi,2 on mi. Next, B uses
SK1 and oski to compute a one-time signature σi,1 = TT.Signstatic(SK1, oski, opk

′
i) on opk′i.

Observe that the values sent in the simulation phase are distributed exactly as in the original
attack game. Finally A outputs a forgery σ = (σ∗1, σ

∗
2, opk

′∗) that verifies under one-time
public key opki with i ∈ [1; q] such that opk′∗ = opk′i. Since by assumption m∗ 6= mi

(or (m∗, σ∗2) 6= (mi, σ2,i) in the case of strong security), (m∗, σ∗2) breaks the security of the
statically secure two-tier signature scheme.

76

If b = 2 (Case 2), B assumes that A outputs a forgery σ = (σ∗1, σ
∗
2, opk

′∗) that verifies
under one-time public key opki with i ∈ [1; q] such that opk′∗ 6= opk′i. In this case, B sets
PK = (PK1, PK2) with PK1 = PKa and PK2 = PKb. To simulate the signing oracle, B
uses PK2 to compute fresh one-time keys (osk′i, opk

′
i) ← TT.OTKeyGenstatic(SK2, PK2) for

all i ∈ [1; q]. Next, B sends (1, opk′1), . . . , (q, opk′q) to OSK1,static(·). As an answer, B receives
q one-time public keys opk1, . . . , opkq and signatures σ1,1, . . . , σq,1 on the opk′i such that
TT.Verify(PK, opki, opk

′
i, σi)=1. The forger can now adaptively query these one-time public

keys opk1, . . . , opkq. When A queries message mi with i ∈ [1; q], B uses SK2 to compute
σi,2 = TT.Signstatic(SK2, osk

′
i,mi). The final signature is σi = (σi,1, σi,2, opk

′
i). Observe that

the values sent in the simulation phase are distributed exactly as in the original attack game.
Finally A outputs a forgery σ = (σ∗1, σ

∗
2, opk

′∗) that verifies under one-time public key opki
with i ∈ [1; q] such that opk′∗ 6= opk′i. Since we have that opk′∗ 6= opk′i, (opk′∗, σ∗1) breaks
the security of the statically secure two-tier signature scheme. This concludes the proof of
Theorem 5.5. �

5.5 Construction of Adaptively Secure Two-Tier Sig-

nature Schemes from Chameleon Hash Functions

If we use our statically secure two-tier signature scheme that is based on chameleon hash
functions we can further improve the efficiency of the construction. The reason for this is
that again opk′i can be computed from the message m and the signature part σ2. Therefore
opk′i need not be transmitted to the verifier. Let CH = (CH.Gen,CH.Eval,CH.Coll) be a
chameleon hash function and H be a hash function that maps values from the output space
of the chameleon hash function to the message space. Then the following construction yields a
fully secure two-tier signature scheme TT = (TT.KeyGen,TT.OTKeyGen,TT.Sign,TT.Verify).

• TT.KeyGen(1κ): runs w ← HF.KeyGen(1κ) and CH.Gen(1κ) (twice) to obtain two
key pairs (SK1, PK1) and (SK2, PK2). It sets SK = (SK2) and publishes PK =
(PK1, PK2, w).

• TT.OTKeyGen(SK,PK): randomly chooses message m′ ∈M and randomness r′, σ1 ∈
R and computes t′ = CH.Eval(PK2,m

′, r′) and opk = CH.Eval(PK1, h(t′), σ1) with
h(·) := HF.Eval(w, ·). The secret one-time key is set to osk = (m′, r′, σ1). The one-
time public key is opk.

• TT.Sign(SK, osk,m): parses osk as (m′, r′, σ1). Then it computes a collision of the
chameleon hash function σ2 = CH.Coll(SK2, r

′,m′,m) such that CH.Eval(PK2,m, σ2) =
CH.Eval(PK2,m

′, r′). The final signature is σ = (σ1, σ2). Observe that σ does not con-
tain t = CH.Eval(PK2,m, σ2).

• TT.Verify(PK, opk,m, σ): computes t = CH.Eval(PK2,m, σ2) and checks whether it
holds that opk = CH.Eval(PK1, h(t), σ1). In this case it outputs 1, otherwise 0.

77

Theorem 5.6 Let CH = (CH.Gen,CH.Eval,CH.Coll) be a (t′, εCH)-collision-resistant chameleon
hash function and h be a (t′, εh) collision-resistant hash function. Then for any polynomial
q = q(κ) the above construction yields a (q, t, ε) adaptively secure two-tier signature scheme
TT with t ≈ t′ and ε ≤ 3/2εCH + 3εh. Moreover if CH is strongly secure so is TT.

The proof of Theorem 5.6 is very similar to the proof of Theorem 5.5. The only difference
is that we can exploit the special property of our statically secure two-tier signature schemes
that is based on chameleon hash functions. First, we only need a single secret key element
SK = SK2. Second, each one-time public key can be computed from the message and
the corresponding one-time signature. In the above construction of adaptively secure two-
tier signatures we exploit this property only once. As a result t (that corresponds to opk′

in the previous proof) need not be transferred (as compared to the generic construction
of Section 5.4.1). However, when we apply our construction to the aCMA→STR-aCMA
transformation we can exploit this property for a second time. Namely, all one-time public
keys of our adaptively secure two-tier signature scheme can be computed and need not be
transferred to the verifier.

Proof. Let opk1, . . . , opkq denote the answers to A’s queries for one-time public keys.
Let m1, . . . ,mq be the messages queried by A and σ1 = (σ1,1, σ2,1), . . . , σq = (σ1,q, σ2,q) the
corresponding signatures on the mi. Let i∗,m∗, σ∗ = (σ∗1, σ

∗
2) be the forgery output by A

such that TT.Verify(PK, opki∗ ,m
∗, σ∗) = 1. In the proof we will distinguish three different

cases.

• For Type 1 forgeries we have t∗ = CH.Eval(PK2,m
∗, σ∗2) = t′i∗ = CH.Eval(PK2,mi∗ , σ2,i∗).

Any forger that outputs Type 1 forgeries can be used to break the security of the
chameleon hash function with the keys (SK2, PK2). This is because since t∗ = ti,
(m∗, σ∗2) and (mi, σ2,i) constitute a collision of the chameleon hash function.

• We also consider Type 2 forgeries where we have that t∗ = CH.Eval(PK2,m
∗, σ∗2) 6=

t′i∗ = CH.Eval(PK2,mi∗ , σ2,i∗) and h(t′i∗) 6= h(t∗). Since we must have the equal-
ity CH.Eval(PK1, h(t′i∗), σ1,i∗) = opki∗ = CH.Eval(PK1, h(t∗), σ∗1), (h(t′i∗), σ1,i∗) and
(h(t∗), σ∗1) constitute a collision of the chameleon hash function (SK1, PK1).

• In the remaining case, (Type 3 forgeries) it holds that t∗ = CH.Eval(PK2,m
∗, σ∗2) 6=

t′i∗ = CH.Eval(PK2,mi∗ , σ2,i∗) but h(t′i∗) = h(t∗). A Type 3 forger can easily be used
to break the security of the underlying hash function when given a challenge key w.

At the beginning, the simulator tosses a random coin b ∈ {1, 2, 3} indicating its guess
for Type 1, 2, or 3 forgeries. With probability ≥ 1/3 this guess is correct. According to its
guess the simulator proceeds differently.

If b = 1 (Type 1 Forgeries) assume that PKCH is the challenge of the chameleon hash
function. The simulator B at first sets PK2 = PKCH. Next, it generates (SK1, PK1) ←
CH.Gen(1κ). When B is asked to output a new one-time key opki, B at first randomly
generates message m′i and randomness ri and r′i. Then it computes t′i = CH.Eval(PK2,m

′
i, r
′
i)

and outputs opki = CH.Eval(PK1, h(t′i), ri). When A queries message mi, B generates a

78

random σ2,i and computes ti = CH.Eval(PK2,mi, σ2,i) and σ1,i = CH.Coll(SK1, ri, h(t′i), h(ti))
using SK1. Then it outputs σi = (σ1,i, σ2,i). Eventually A outputs a forgery (i∗,m∗, σ∗ =
(σ∗1, σ

∗
2)). By assumption we have that t∗ = ti∗ and m∗ 6= mi∗ . Therefore (m∗, σ∗2) and

(mi∗ , σ2,i∗) constitute a collision of the chameleon hash function. Observe that all values are
distributed exactly like in the original attack game.

If b = 2 (Type 2 Forgeries) the simulator B sets PK1 = PKCH. Next, it generates
(SK2, PK2) ← CH.Gen(1κ). When B is queried to output a new one-time key opki, B
generates random m′i, ri, and r′i. Then it computes t′i = CH.Eval(PK2,m

′
i, r
′
i) and out-

puts opki = CH.Eval(PK1, h(t′i), ri). When A queries message mi, B sets σ1,i = r1 and
computes σ2,i = CH.Coll(SK2, r

′
i,m

′
i,mi) using SK2. Then it outputs σi = (σ1,i, σ2,i).

Eventually A outputs a forgery (i∗,m∗, σ∗ = (σ∗1, σ
∗
2)). By assumption we have that t∗ =

CH.Eval(PK2,m
∗
i , σ

∗
2) 6= ti∗ and h(t∗) 6= h(ti∗). Therefore (h(t′i∗), σ1,i∗) and (h(t∗), σ∗1) indeed

constitute a collision of the chameleon hash function. Observe that all values are distributed
exactly like in the original attack game.

Finally, if b = 3 the simulator B computes (SK1, PK1)← CH.Gen(1κ) and (SK2, PK2)←
CH.Gen(1κ). The simulator proceeds exactly as in the description of the scheme except that
it embeds the challenge key w′ for the hash function in the public key w := w′. Eventually A
outputs a forgery with t∗ 6= ti∗ but h(t∗) = h(ti∗). Therefore t∗ and ti∗ constitute a collision
of the hash function. Observe that all values are distributed exactly like in the original
attack game.

This concludes the proof of Theorem 5.6.

�

5.6 New Transformation to Strongly Secure Signature

Schemes

We can now apply our new construction of two-tier signature schemes to improve the Bellare-
Shoup transformation that uses fully secure signature schemes and strongly, adaptively secure
two-tier signature schemes to construct strongly secure signature schemes. We exploit the
special property of our construction that one-time public keys can be computed given one-
time signatures and messages.

5.6.1 Efficient Transformation to Strongly Secure Signature Schemes

Assume that CH = (CH.Gen,CH.Eval,CH.Coll) is a strongly collision-resistant chameleon
hash function and H = (HF.KeyGen(1κ),HF.Eval(w,m)) is a collision resistant hash function.
Additionally, assume that SIGfull = (SIG.KeyGenfull, SIG.Signfull, SIG.Verifyfull) is a fully secure
signature scheme. Then the following construction yields a strongly secure signature scheme
SIG = (SIG.KeyGen, SIG.Sign, SIG.Verify) that is secure against existential forgeries under
adaptive chosen message attacks.

79

• SIG.KeyGen(1κ): runs w ← HF.KeyGen(1κ) and CH.Gen(1κ) twice to obtain (SK1, PK1)
and (SK2, PK2). Then it runs SIG.KeyGenfull(1

κ) to obtain (SKfull, PKfull). It sets
SK = (SKfull, SK2) and publishes PK = (PKfull, PK1, PK2, w).

• SIG.Sign(SK,m): randomly chooses randomness m′ ∈M, r′, σ3 ∈ R and computes t =
CH.Eval(PK2,m

′, r′), opk = CH.Eval(PK1, h(t), σ3), and σ1 = SIG.Sign(SKfull,m||opk)
with h(·) := HF.Eval(w, ·). Then it computes the collision σ2 = CH.Coll(SK2, r

′,m′, σ1)
CH.Eval(PK2, σ1, σ2) = t. The final signature is σ = (σ1, (σ2, σ3)). Observe that σ does
not contain neither t nor opk.

• SIG.Verify(PK,m, σ): computes t = CH.Eval(PK2, σ1, σ2), opk = CH.Eval(PK1, h(t), σ3)
and checks whether SIG.Verify(PK,m||opk, σ1) = 1. In this case it outputs 1, otherwise
0.

Theorem 5.7 Let CH = (CH.Gen,CH.Eval,CH.Coll) be a (t′, εCH)-collision-resistant chameleon
hash function, SIGfull be a (qfull, t

′, εfull) fully secure signature scheme and H be a (t′, εh) col-
lision resistant hash function. Then the above construction yields a (q, t, ε) strongly secure
signature scheme SIG with q = qfull, t ≈ t′, and ε ≤ 2εCH + 4εh + 4εfull.

Proof.
Assume there exists an attacker A that breaks the security of the fully secure signature

scheme. Let (σ1,1, (σ2,1, σ3,1)), . . . , (σ1,q, (σ2,q, σ3,q)) be the signatures returned as responses
to A’s signature queries m1, . . . ,mq and let (σ∗1, (σ

∗
2, σ

∗
3)) be A’s forgery.

In the proof we consider five cases.

• In the first case (Case 1) we have that m∗||opk∗ has not been queried before: m∗||opk∗ /∈
{m1||opk1, . . . ,mq||opkq}. Any attacker that outputs such types of forgery can be used
to break the security of the underlying fully secure signature scheme.

• In the second case (Case 2) there exists an i ∈ [1; q] with m∗||opk∗ = mi||opki implying
opk∗ = opki and m∗ = mi. It holds that h(t∗) = h(ti), t

∗ = CH.Eval(PK2, σ
∗
1, σ

∗
2) =

ti = CH.Eval(PK2, σ1,i, σ2,i), and (σ∗1, σ
∗
2) 6= (σ1,i, σ2,i). Thus (σ∗1, σ

∗
2) and (σ1,i, σ2,i)

constitute a collision in the chameleon hash function with the key material (SK2, PK2).

• In the third case (Case 3) there exists an i ∈ [1; q] with m∗||opk∗ = mi||opki implying
opk∗ = opki and m∗ = mi. It holds that h(t∗) = h(ti), t

∗ = CH.Eval(PK2, σ
∗
1, σ

∗
2) =

ti = CH.Eval(PK2, σ1,i, σ2,i), and (σ∗1, σ
∗
2) = (σ1,i, σ2,i). We have that σ∗3 6= σ3,i since

otherwise σ∗ would not be a valid forgery. Therefore σ∗3 is a new one-time signature
on message mi under one-time public key opki.Thus (h(ti), σ

∗
3) and (h(ti), σ3,i) break

the strong unforgeability of the chameleon hash function with the keys (SK1, PK1).

• In the fourth case (Case 4) there exists an i ∈ [1; q] with m∗||opk∗ = mi||opki im-
plying opk∗ = opki and m∗ = mi. It holds that t∗ = CH.Eval(PK2, σ

∗
1, σ

∗
2) 6= ti =

CH.Eval(PK2, σ1,i, σ2,i) but h(t∗) = h(ti) . This breaks the security of the hash func-
tion.

80

• In the last case (Case 5) there exists an i ∈ [1; q] with m∗||opk∗ = mi||opki imply-
ing opk∗ = opki and m∗ = mi. It holds that t∗ = CH.Eval(PK2, σ

∗
1, σ

∗
2) = ti =

CH.Eval(PK2, σ1,i, σ2,i) and h(t∗) 6= h(ti). Since opk∗ = opki we have that opk∗ =
CH.Eval(PK1, h(t∗), σ∗3) = opki = CH.Eval(PK1, h(ti), σ3,i). This breaks the security of
the chameleon hash function with the keys (SK1, PK1).

Observe that the above cases cover all possible forgeriesAmight output. Let us now show
how the simulator B can set up the input parameters and answer the signature queries in
each of the cases. At the beginning of the simulation, B tosses a random coin b ∈ {1, 2, 3, 4}
indicating its guess for Case 1 (b = 1), Case 2 (b = 2), Case 3 or 5 (b = 3), or Case 4 (b = 4).
With probability ≥ 1/4 this guess is correct. According to its guess the simulator proceeds
differently.

• In Case 1 the simulator sets PKfull = PK ′full, where PK ′full is the challenge public
key received from the full security attack game. All other keys are generated exactly
as in the description of the construction. Using oracle O(SK ′full, ·) and SK2, B can
easily answer all signature queries. Observe that all transmitted values are exactly
distributed as in the original attack game.

• In Case 2 the simulator sets PK2 = PK ′CH, where PK ′CH is the challenge public key
received from the chameleon hash security game. All other keys are generated exactly
as in the description of the construction. Since SK2 is unknown, B cannot com-
pute collisions of the chameleon hash function PK2 as described in the construction.
However, B can now compute collisions for PK1. To compute a signature on query
mi, B randomly chooses message m′, and randomness σ2 and r′ and computes t =
CH.Eval(PK2,m

′, σ2), opk = CH.Eval(PK1, h(t), r′), and σ1 = SIG.Sign(SKfull,m||opk)
with h(·) := HF.Eval(w, ·). Then it computes t′ = CH.Eval(PK2, σ1, σ2) and the col-
lision σ3 = CH.Coll(SK1, r

′, h(t), h(t′)) such that CH.Eval(PK3, h(t′), σ3) = opk. The
final signature is σ = (σ1, (σ2, σ3)). Observe that all transmitted values are exactly
distributed as in the original attack game.

• In Case 3 and Case 5 the simulator sets PK1 = PK ′CH, where PK ′CH is the challenge
public key received from the chameleon hash security game. All other keys are gen-
erated exactly as in the description of the construction. Using SKfull and SK2, B
can answer all signature queries as described in the construction. Observe that all
transmitted values are exactly distributed as in the original attack game.

• In Case 4 the simulator sets w = w′ where w′ is the challenge key received from the
attack game of the cryptographic hash function. All other keys are generated exactly as
in the description of the construction. Observe that all transmitted values are exactly
distributed as in the original attack game.

�

81

In contrast to the Huang et al. transformation, our final construction tightly reduces to
the signature scheme and the chameleon hash function. Let us now compare our construction
with the one presented in [13].

5.6.2 Comparison with the Bellare-Shoup Construction

The Bellare-Shoup construction is derived from three move identification protocols via the
Fiat-Shamir heuristic except that the hash function is not modeled as a random oracle but
solely as a collision-resistant hash function. Let CM be the first, CH the second, and R the
third message sent in such an identification protocol. The one-time signature only consists
of R – a single 160 bit exponent. However, in cascaded constructions the one-time public
key CM must also be transferred and in identification protocols CM is a group element.
For comparison, recall the well-known zero-knowledge protocol for proving knowledge of
a discrete logarithm [94]. Here, the Bellare-Shoup construction requires to transmit one
exponent and a group element CM where CM is approximately 1024 bits. Our construction,
when using a discrete logarithm based chameleon hash function, requires only two exponents
to be transferred to the verifier amounting to only 320 bits! We stress that all constructions
presented in [13] require at least a single group element CM and some additional values.
The most efficient construction is based on the Schnorr protocol [94] and consists of a group
element and a single exponent. However, the security of the resulting two-tier signature
is based on the ’one-more’ discrete logarithm assumption which is weaker than the mere
discrete logarithm assumption. Therefore, when used to construct strongly secure signature
schemes our instantiation is not only more efficient than the most efficient instantiation
of [13] but also based on weaker security assumptions.

82

Chapter 6

Ring Signature Schemes

The CDH assumption became practical for standard model signature schemes with the in-
troduction of bilinear pairings into cryptography. In 2005, Waters showed the existence of
a hash-and-sign signature scheme that is secure under the CDH assumption in the standard
model [102]. Since then several signature schemes, including ring signature schemes [95],
sequential aggregate signature schemes, multisignature schemes, and verifiably encrypted
signature schemes [74] have been proposed that are secure in the standard model. In this
chapter we develop a new and efficient ring signature schemes without random oracles that
is solely based on the CDH assumption in symmetric bilinear groups.

6.0.3 Related Work on Ring Signature Schemes

The first (explicit) ring signature scheme by Rivest, Shamir and Tauman [91] was proven
secure in the random oracle/ideal cipher model [7, 41]. Since then, several ring signature
schemes have been proposed in the random oracle model. However, today only a handful of
ring signature schemes proven secure without random oracles exist.

While the scheme of Chow et al. [40] published in 2006 provides unconditional anonymity,
unforgeability is based on a new strong assumption that is given without any evidence for its
validity. In the same year, Bender, Katz and Morselli proposed a ring signature scheme based
on trapdoor permutations, but since it uses generic ZAPs for NP it is impractical for real
world applications [14]. In the same work the authors also presented two 2-user ring signature
schemes without random oracles that are secure under the CDH and the LRSW assumption.
Disadvantageously, these schemes only allow to issue signatures on rings of maximal size
2. This is security critical since in a ring signature scheme the provided level of signer
anonymity is primarily determined by the number of ring members. Thus, dependent on the
application and his requirements on an appropriate security level the user should decide on
the size of the ring. In 2007, Shacham and Waters presented a ring signature scheme [95]
that is full key-exposure anonymous, a strong security notion stemming from [14], under the
Subgroup Decision assumption [20]. Unfortunately, this assumption relies on groups with
composite order such that a trusted setup procedure is necessary in the setup phase. Also, the
representation of group elements is rather large (about 1024 bits). Unforgeability is based on

83

the CDH assumption and the signature size is 2n+2 group elements, where n is the size of the
ring. In the same year, Boyen presented a new signature scheme with perfect anonymity [24].
Unforgeability of this scheme is based on a new complexity assumption, the Pluri-SDH
assumption, while evidence for its usefulness is provided by a security analysis in the generic
group model. The signature size consist of n group elements and n integers (of 160 bits)
while each public key consists of at least three group elements. Recently, Chandran, Groth
and Sahai proposed a new signature scheme with perfect anonymity that is secure under
the Subgroup Decision assumption and the Strong Diffie-Hellman assumption [36]. Since
the above remarks concerning the trusted setup of [95] also hold here, the authors present
two variants of their ring signature scheme. The second variant accounts for maliciously
generated common reference strings by heuristically guaranteeing (by using a factorization
algorithm) that the composite group order output by the setup algorithm is hard to factor.

Except for the schemes by Chandran et al. [36] and Dodis et al. [47] (in the random oracle
model), all existing ring signature schemes offer signature sizes that are at least linear in the
ring size. Both, [36] and [47] provide better (asymptotic) efficiency when several messages
are signed using the same ring.

6.0.4 Contribution

In this chapter we present a new ring signature scheme for rings of arbitrary size. Anonymity
is perfect, unforgeability solely relies on the CDH assumption in bilinear groups. Security is
proven in the fully untrusted common reference string model. The signature size is very small,
accounting for only n + 1 group elements. Since we use programmable hash functions [64],
a drawback of our scheme is that we require relatively large global parameters, consisting of
around 160 group elements. However, these parameters can be re-used for all instantiations
of the scheme that use the same bilinear group. Advantageously, in our ring signature
scheme, each public key consists of a single group element such that for large groups (e.g.
>1000), the public parameters only account for a small portion of the data required for
signature generation and verification. Finally we provide a new proof technique for Waters-
like signature schemes which is very clean and compact at the same time. The main drawback
of our scheme is that it only provides security under chosen subring attacks, where the
attacker is not allowed to query secret keys of honest ring members. We stress that our ring
signature scheme is much more practical than the CDH-based scheme by Bender, Katz, and
Morselli that is also secure under the CDH assumption. First, our scheme can be used to
sign messages for rings of arbitrary length, not only for 2-user rings. Second, in our scheme a
public key contains only a single group element whereas in the Bender et al. scheme a public
key consists of a complete group hash function.

6.1 A New CDH-based Ring Signature Scheme

In the following, we briefly recall some of the basic properties of bilinear groups. Definitions
6.1 and 6.3 help to support the intuition behind our security proof. In [23], Boneh, Mironov

84

and Shoup use a similar approach to describe their tree-based signature scheme. However,
in contrast to [23], we focus on proving security under the classical CDH assumption, where
the challenge and the solution consist of elements from a single group G. We therefore
concentrate on symmetric bilinear groups. We stress that, after some minor modifications,
we can base our signature schemes on asymmetric bilinear maps e : G1 × G2 → GT with
an efficient homomorphism Φ : G1 → G2. However, security is then based on the co-CDH
assumption.

Definition 6.1 (Secure bilinear map) Let l = l(κ) be a polynomial. Let B = (G, g,GT , p, e)
be a symmetric bilinear group with |p|2 = l. A bilinear map e : G ×G → GT is (t, ε)-secure
if for all t-time adversaries A it holds that

Pr [e(g, g′) = e(h,A(g, g′, h)) | g, g′, h ∈R G, h 6= 1G] ≤ ε,

where the probability is taken over the random coin tosses of A and the random choices of
g, g′, and h.

One can easily see that in symmetric bilinear groups, breaking the security of a bilinear map
is equivalent to breaking the CDH assumption.

Lemma 6.2 Let (G, g,GT , p, e) be a symmetric bilinear group. Then, e is (t, ε)-secure if
and only if the (t, ε)-CDH assumption holds in G.

Proof. By contradiction. Let (G, g,GT , p, e) be our bilinear group. First, assume
attacker A can break the security of the bilinear map in time t with advantage at least ε.
Then, algorithm B can solve the CDH assumption in G in time t with advantage ε by using
A as a black-box. Let ḡ, ḡa, ḡb be B’s CDH challenge in group G. B sets g̃ = ḡa, g̃′ = ḡb, and
h̃ = ḡ and runs attacker A on (g̃, g̃′, h̃). As a result, A outputs h̃′ such that e(g̃, g̃′) = e(h̃, h̃′).
Since equivalently e(ḡa, ḡb) = e(ḡ, h̃′), h̃′ is a solution to the CDH problem.
Now, assume adversary A (t, ε)-breaks the CDH assumption in G. Let g̃, g̃′, h̃ ∈ G, h̃ 6= 1G
be B’s challenge against the security of the bilinear map. Since h̃ is a generator, there exist
a, b ∈ Zp such that h̃a = g̃, and h̃b = g̃′. B runs A on h̃, g̃, g̃′. Because A outputs h̃ab, we
have that e(g̃, g̃′) = e(h̃, h̃ab), and thus A’s output is a correct solution to B’s challenge. �

Let again B = (G, g,GT , p, e) be a bilinear group with a secure bilinear map e.

Definition 6.3 (Collision generator for bilinear groups) A collision generator for e is
a polynomial time algorithm that on input two elements g, h ∈ G outputs a collision (g′, h′) ∈
G such that

e(g, g′) = e(h, h′).

For symmetric pairings there exists an efficient collision generator that can output all possible
collisions: given g, h randomly choose r ∈ Zp and compute g′ = hr and h′ = gr.

85

6.2 Efficient Ring Signature Scheme RSIG

In this section we present our ring signature scheme RSIG that allows for very short pub-
lic keys and signatures. In RSIG, the global parameters consist of l + 2 random elements
h, u0, u1, . . . , ul ∈ G that give rise to a group hash function u(m) = u0

∏l
j=1 u

mj

j and a
symmetric bilinear group (G, g,GT , p, e) with a secure bilinear map.

RSIG.KeyGen(1κ). Each user i chooses a random element xi ∈ Zp as his secret key SKi.
The corresponding public key is PKi = gxi .

RSIG.Sign(PK1, . . . , PKn, SKt,m). Given a ring of n public keys, the holder of secret key
SKt with t ∈ {1, . . . , n} can sign a message m ∈ {0, 1}l in the following way: for all
i ∈ {1, . . . , n+ 1} \ {t} he chooses ri ∈R Zp and sets

si = gri .

Then, he computes

st =

h · n∏
i=1
i 6=t

PK−rii ·
(
u0

l∏
j=1

u
mj

j

)−rn+1


1/xt

.

The final signature is σ = (s1, . . . , sn+1).

RSIG.Verify(PK1, . . . , PKn,m, σ). Given a set of n public keys, a message m, and a ring
signature σ = (s1, . . . , sn+1), verify the following equation:

n∏
i=1

e(si, PKi) · e
(
sn+1, u0

l∏
j=1

u
mj

j

)
?
= e(g, h) .

6.3 Security

In this section, we show that RSIG provides ring unforgeability and perfect ring anonymity
according to Definition 2.33 and 2.34 (correctness can easily be verified by inspection).

6.3.1 Ring Unforgeability

Theorem 6.4 Suppose the (tCDH, εCDH)-CDH assumption holds in the group G. Then the
ring signature scheme RSIG is (t, ε, q)-secure against chosen subring attacks provided that

ε ≤ εCDH/Pq,l, t ≈ tCDH.

86

Proof. By contradiction. Assume there exists an adversary A that breaks the security
of the ring signature scheme in time t with probability ε after q signature queries. Then, one
can construct an algorithm B that uses A as a black box to solve the CDH assumption. We
assume that B is given a random challenge for the CDH-problem:

(
ḡ, ḡa, ḡb

)
∈ G3. The main

idea behind our proof is the following. Recall Definition 6.3 and Lemma 6.2. Given two group
elements g, h ∈ G, it is easy to generate all pairs (g′, h′) ∈ G2 such that e(g, g′) = e(h, h′).

On the other hand, given three group elements g, g′, h, the problem of finding a corre-
sponding h′ is as hard as solving the CDH problem. Our aim is to transfer this situation to
the unforgeability game of our ring signature scheme: the simulator has to choose the input
parameters for the attacker such that answering signature queries is as easy as computing
collisions and computing a forgery is as hard as breaking the CDH assumption.

Let Pr[Si] denote the success probability for an attacker to successfully forge signatures
in Game i.

Game0. This is the original attack game. By assumption, attacker A (t, ε, q)-breaks RSIG
when interacting with the challenger. We have,

Pr[S0] = ε (6.1)

Game1. This game is like the previous one except that B constructs the global parameters
and the secret and public keys using the algorithms of the programmable hash function and
the CDH challenge. First, B randomly chooses: n elements xi ∈R Zp for i = 1, . . . , n, l + 1
elements a′0, a1, . . . , al ∈R {−1, 0, 1}, and l+ 1 elements b0, b1, . . . , bl ∈R Zp. Let a0 = a′0− 1.
Then, for all i ∈ {1, . . . , n} and j ∈ {0, . . . , l} B computes

g := ḡa, h := ḡb, PKi := ḡxi , uj := haj ḡbj .

using the CDH challenge. Due to the properties of the multi-generator programmable hash
function the distribution of the so computed values is equal to the distribution in the previous
game. Thus,

Pr[S1] = Pr[S0] . (6.2)

Game2. Now, B simulates the challenger in the attack game by answering A’s signature
queries (mj, Rj, ej). For convenience, let a(m) = a0 +

∑l
i=1 aimi and b(m) = b0 +

∑l
i=1 bimi.

Let I[j] ⊂ {1, . . . , n} be the set of all indices i ∈ {1, . . . , n} such that PKi is a component
of Rj. When receiving a signature query, B at first tests whether a(mj) = 0. In this case,
B outputs the failure signal F1 and aborts. Otherwise B chooses r ∈R Zp and computes a
collision (dḡ, dh) as dḡ = hr and dh = ḡr. Note that by construction e(dḡ, ḡ) = e(dh, h).
The aim of B is to compute sn+1 ∈ G and |I[j]| values si ∈ G (for all i ∈ I[j]) such that∏

i∈I[j]

e(si, PKi) · e(sn+1, u(mj)) = e(g, h)

or equivalently

e

sb(mj)
n+1 ·

∏
i∈I[j]

sxi
i , ḡ

 = e
(
gs
−a(mj)
n+1 , h

)
.

87

In the next step, B chooses y ∈R I[j] and for all i ∈ I[j] \ {y} si ∈R G. The values sy and
sn+1 are computed in the following way:

sn+1 =
(
gd−1

h

)1/a(mj)
, sy =

dḡ · s−b(mj)
n+1 ·

∏
i∈I[j]\{y}

s−xi
i

1/xy

.

B outputs the ring signature σ = (s1, s2, . . . , sn, sn+1). The probability for B to win this
game is

Pr[S2] = Pr[S1 ∧ F̄1] . (6.3)

Game3. In this game B uses A’s forgery (m∗, R∗, σ∗ = (s∗1, s
∗
2, . . . , s

∗
n+1)) to break the CDH

assumption. Adversary B at first checks whether a(m∗) = 0. If not, B outputs the failure
signal F2 and aborts. We get that

Pr[S3] = Pr[S2 ∧ F̄2] . (6.4)

Otherwise, B computes the solution to the CDH problem as follows. Since a(m∗) = 0, we
get that

e

(s∗n+1)b(m
∗) ·

∏
i∈I[∗]

(s∗i)
xi , ḡ

 = e(g, h) ⇔ ḡab = (s∗n+1)b(m
∗) ·

∏
i∈I[∗]

(s∗i)
xi

what constitutes a solution to the CDH challenge.
We finally have

Pr[S3] = εCDH . (6.5)

Now, let us analyze the probabilities for an abort, i.e. for one of the events F1 or F2 to
occur. Surely, the probability that both failure events do not occur depends on the number
of signature queries q and the bit size l of the messages. Since, u(m) is generated by the
multi-generator programmable hash function as defined in Sect. 2.9.1, we can directly apply
the results from [64] to show that

Pr[F̄1 ∧ F̄2] ≥ Pq,l .

Putting (6.1-6.5) together, we get that

εCDH = Pr[S0 ∧ F̄1 ∧ F̄2] = Pr[S0|F̄1 ∧ F̄2] · Pr[F̄1 ∧ F̄2] ≥ ε · Pq,l

which proves Theorem 6.4.

�

88

6.3.2 Ring Anonymity

Theorem 6.5 The ring signature scheme RSIG is perfectly secure.

We give an information theoretic argument. Given a ring signature, we have to show that
each ring member could possibly have created it. Consider a ring signature on message m,
that has been created using SKz. We show that with the same probability it could have
been created using SKy with y 6= z. The proof is straight-forward.

Proof. Fix an arbitrary ring R of n public keys and choose two indices y, z ∈R
{1, . . . , n}. Next, fix a random m ∈ {0, 1}l and n− 1 random values ri with i ∈ {1, . . . , n+
1}\{y, z}. We show that for any ry there exists an rz such that the final signatures generated
by RSIG.Sign with either (ry, SKz) or (rz, SKy) are equal. Since G is a cyclic group with

prime order p, there exists t ∈ Zp and b(M) = b0 +
∑l

i=1Mibi with bi ∈ Zp such that h = gt

and u(M) = gb(M) for all M ∈ {1, . . . , n}.
Let the ring signature consist of all si = gri with i ∈ {1, . . . , n}\{y, z}. Then, the remaining
sy, sz are computed using SKz and the RSIG.Sign algorithm as

sy = gry , sz =

h · n∏
i=1
i 6=z

PK−rii ·
(
u0

l∏
j=1

u
mj

j

)−rn+1


1/xz

.

Now, let rz =
t−
∑n

i=1,i 6=z rixi−rn+1b(m)

xz
. Using SKy we get sz = grz and

sy =

h · n∏
i=1
i 6=y

PK−rii ·
(
u0

l∏
j=1

u
mj

j

)−rn+1


1/xy

= gry

with ry =
t−
∑n

i=1,i6=y rixi−rn+1b(m)

xy
what concludes the proof of Theorem 6.5. �

Table 6.1: Comparison of the Waters signature scheme and S and S0. Unless not stated
otherwise, all values are elements of G. We set u(m) = u0

∏l
i=1 u

mi
i and x(m) = x0 +∑l

i=1 ximi.

Waters [102] S S0

publ. params. g0, h, u0, . . . , ul g, h, u0, . . . , ul g0, g, h
SK hx x ∈ Zp x0, . . . , xl ∈ Zp

PK g = gx0 g0 = gx u0 = gx0 , . . . , ul = gxl

s1 hx · (u(m))r (h · (u(m))r)
1
x g−r

s2 g−r0 g−r (hgr0)
1

x(m)

verification e(s1, g0) · e(s2, u(m))
?
= e(g, h)

89

6.3.3 Digital Signature Schemes

Our new proof technique can also be applied to other CDH based signature schemes. For
example, we can surprisingly easy obtain as a special case (n = 1) of our ring signature
scheme a variant S of the Waters signature scheme that has distinct setup and sign algorithms
but the same verification equation. We briefly compare it with the original scheme by
Waters in Table 6.1. For completeness, we also describe a third variant S0 where the group
hash function constitutes the public key of the user. Both schemes can easily be proven
secure under the standard notion of security for digital signatures by Goldwasser, Micali and
Rivest [62] by adapting the proof of Theorem 6.4.

90

Chapter 7

Conclusion

The previous chapters presented four results:

1. a new SDH-based signature scheme together with an improvement of the SRSA-based
signature scheme by Naccache, Pointcheval, and Stern;

2. the first tight security proofs for two large classes of signature schemes;

3. new security notions, transformations, and efficient constructions of two-tier signature
schemes from chameleon hash functions;

4. a new and very efficient ring signature scheme which is solely secure under the CDH
assumption in bilinear groups.

Despite encompassing several rather theoretical analyses, all these results aim at a very
practical goal – increasing the efficiency of state-of-the art signature schemes while relying
on weak security assumptions. Future research can continue this avenue. Concrete open
(and arguably promising) research problems are:

It is worthwhile to find further results in the spirit of 2). In particular, it is interesting
to find tight security proofs for the CDH-based signature scheme by Waters [102] and the
very efficient SRSA-based and SDH-based signature schemes by Hofheinz and Kiltz [64].
Complementary or alternatively, it may be interesting to devise a framework that allows
to show whether tight security proofs can exist at all for a given signature scheme. With
respect to 4), it seems interesting to analyze how one can extend the proposed ring signature
scheme to guarantee security under stronger unforgeability notions where the attacker can
also corrupt secret keys. A straight-forward approach is to utilize carefully designed and
efficient non-interactive zero-knowledge proofs. The main challenge is to have these proofs
rely on very weak security assumptions, preferably the CDH assumptions or weaker, such
that the resulting scheme still only relies on the CDH assumption. From a practical point of
view it is interesting to find new and promising applications of two-tier signature schemes.
Two-tier signature schemes are particularly useful in scenarios where a party repeatedly
issues one-time signatures for freshly generated one-time keys.

91

Besides the above research directions, there are of course several important long-standing
open problems in the realm of digital signature schemes. Probably the most interesting (and
challenging) is to design an efficient hash-and-sign signature scheme which is solely secure
under the factoring or the DL assumption.

92

Bibliography

[1] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring.
In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479
of Lecture Notes in Computer Science, pages 36–53, Cologne, Germany, April 26–30,
2009. Springer, Berlin, Germany.

[2] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Roberto De
Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture Notes in Computer Sci-
ence, pages 111–125. Springer, 2006.

[3] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, pages 480–494, 1997.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In EUROCRYPT, pages 236–250, 1998.

[5] Mihir Bellare and Silvio Micali. How to sign given any trapdoor permutation. J. ACM,
39(1):214–233, 1992.

[6] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based on general
assumptions. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in
Computer Science, pages 614–629. Springer, 2003.

[7] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-
ber 3–5, 1993. ACM Press.

[9] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to
sign with RSA and Rabin. In EUROCRYPT, pages 399–416, 1996.

93

[10] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making
UOWHFs practical. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture
Notes in Computer Science, pages 470–484. Springer, 1997.

[11] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Vaudenay [100], pages 409–426.

[12] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The
case of dynamic groups. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 136–153. Springer, 2005.

[13] Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable signatures,
and Fiat-Shamir without random oracles. In Okamoto and Wang [86], pages 201–216.

[14] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger def-
initions, and constructions without random oracles. In Halevi and Rabin [63], pages
60–79.

[15] Daniel J. Bernstein. Proving tight security for Rabin-Williams signatures. In Nigel P.
Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 70–87. Springer, 2008.

[16] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Cachin
and Camenisch [27], pages 56–73.

[17] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[18] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Franklin
[55], pages 41–55.

[19] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003.

[20] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
325–341. Springer, 2005.

[21] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of
Lecture Notes in Computer Science, pages 514–532, Gold Coast, Australia, Decem-
ber 9–13, 2001. Springer, Berlin, Germany.

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004.

94

[23] Dan Boneh, Ilya Mironov, and Victor Shoup. A secure signature scheme from bilinear
maps. In Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Computer
Science, pages 98–110. Springer, 2003.

[24] Xavier Boyen. Mesh signatures. In Naor [81], pages 210–227.

[25] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures, ring
signatures and identity based encryption in the standard model. Cryptology ePrint
Archive, Report 2010/086, February 2010. http://eprint.iacr.org/, version from
13th February 2010.

[26] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick Drew McDaniel, editors, ACM
Conference on Computer and Communications Security, pages 132–145. ACM, 2004.

[27] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture
Notes in Computer Science. Springer, 2004.

[28] Jan Camenisch and Els Van Herreweghen. Design and implementation of the demix
anonymous credential system. In Vijayalakshmi Atluri, editor, ACM Conference on
Computer and Communications Security, pages 21–30. ACM, 2002.

[29] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verifi-
cation of short signatures. In Naor [81], pages 246–263.

[30] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In
Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN, volume 2576
of Lecture Notes in Computer Science, pages 268–289. Springer, 2002.

[31] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Franklin [55], pages 56–72.

[32] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-
ited (preliminary version). In 30th Annual ACM Symposium on Theory of Computing,
pages 209–218, Dallas, Texas, USA, May 23–26, 1998. ACM Press.

[33] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology
as applied to length-restricted signature schemes. In Moni Naor, editor, TCC 2004:
1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer
Science, pages 40–57, Cambridge, MA, USA, February 19–21, 2004. Springer, Berlin,
Germany.

[34] Dario Catalano and Rosario Gennaro. Cramer-damg̊ard signatures revisited: Efficient
flat-tree signatures based on factoring. Theor. Comput. Sci., 370(1-3):186–200, 2007.

95

[35] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario Gennaro. Off-line/on-
line signatures: Theoretical aspects and experimental results. In Ronald Cramer,
editor, Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science,
pages 101–120. Springer, 2008.

[36] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size
without random oracles. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and
Andrzej Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in Computer Science,
pages 423–434. Springer, 2007.

[37] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia Dwork,
editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Com-
puter Science, pages 78–96, Santa Barbara, CA, USA, August 20–24, 2006. Springer,
Berlin, Germany.

[38] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages
257–265, 1991.

[39] Benôıt Chevallier-Mames and Marc Joye. A practical and tightly secure signature
scheme without hash function. In Masayuki Abe, editor, CT-RSA, volume 4377 of
Lecture Notes in Computer Science, pages 339–356. Springer, 2007.

[40] Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon Yuen. Ring
signatures without random oracles. In Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Lin,
Shiuhpyng Shieh, and Sushil Jajodia, editors, ASIACCS, pages 297–302. ACM, 2006.

[41] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model
and the ideal cipher model are equivalent. In Wagner [101], pages 1–20.

[42] Ronald Cramer and Ivan Damg̊ard. Escure signature schemes based on interactive
protocols. In Don Coppersmith, editor, Advances in Cryptology – CRYPTO’95, volume
963 of Lecture Notes in Computer Science, pages 297–310, Santa Barbara, CA, USA,
August 27–31, 1995. Springer, Berlin, Germany.

[43] Ronald Cramer and Ivan Damg̊ard. New generation of secure and practical RSA-based
signatures. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume
1109 of Lecture Notes in Computer Science, pages 173–185, Santa Barbara, CA, USA,
August 18–22, 1996. Springer, Berlin, Germany.

[44] Ronald Cramer, Ivan Damg̊ard, and Torben P. Pedersen. Efficient and provable secu-
rity amplifications. In T. Mark A. Lomas, editor, Security Protocols Workshop, volume
1189 of Lecture Notes in Computer Science, pages 101–109. Springer, 1996.

[45] Ronald Cramer and Victor Shoup. Signature schemes based on the Strong RSA as-
sumption. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

96

[46] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

[47] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In Cachin and Camenisch [27], pages 609–626.

[48] Cynthia Dwork and Moni Naor. An efficient existentially unforgeable signature scheme
and its applications. In Yvo Desmedt, editor, Advances in Cryptology – CRYPTO’94,
volume 839 of Lecture Notes in Computer Science, pages 234–246, Santa Barbara, CA,
USA, August 21–25, 1994. Springer, Berlin, Germany.

[49] ECRYPT2 NoE. ECRYPT2 Yearly Report on Algorithms and Keysizes (2009-2010).
Revision 1.0. Technical report, March 2010.

[50] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 10–18, Santa
Barbara, CA, USA, August 19–23, 1985. Springer, Berlin, Germany.

[51] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures.
J. Cryptology, 9(1):35–67, 1996.

[52] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptog-
raphy Conference, volume 5978 of Lecture Notes in Computer Science, pages 343–360,
Zurich, Switzerland, February 9–11, 2010. Springer, Berlin, Germany.

[53] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Odlyzko [83], pages 186–194.

[54] Marc Fischlin. The Cramer-Shoup Strong-RSA signature scheme revisited. In Yvo
Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer
Science, pages 116–129. Springer, 2003.

[55] Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, volume 3152 of Lecture Notes in Computer Science. Springer, 2004.

[56] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without
the random oracle. In EUROCRYPT, pages 123–139, 1999.

[57] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, edi-
tors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria,
British Columbia, Canada, May 17–20, 2008. ACM Press.

97

[58] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature
schemes with tight reductions to the Diffie-Hellman problems. Journal of Cryptology,
20(4):493–514, October 2007.

[59] Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In Odlyzko [83], pages 104–110.

[60] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In FOCS, pages 102–. IEEE Computer Society, 2003.

[61] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution to the
signature problem (abstract) (impromptu talk). In G. R. Blakley and David Chaum,
editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture Notes in Com-
puter Science, page 467, Santa Barbara, CA, USA, August 19–23, 1985. Springer,
Berlin, Germany.

[62] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

[63] Shai Halevi and Tal Rabin, editors. Theory of Cryptography, Third Theory of Cryp-
tography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science. Springer, 2006.

[64] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications.
In Wagner [101], pages 21–38.

[65] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In Antoine Joux, editor, Advances in Cryptology – EURO-
CRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 333–350,
Cologne, Germany, April 26–30, 2009. Springer, Berlin, Germany.

[66] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA as-
sumption. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer
Science, pages 654–670. Springer, 2009.

[67] Qiong Huang, Duncan S. Wong, Jin Li, and Yiming Zhao. Generic transformation from
weakly to strongly unforgeable signatures. J. Comput. Sci. Technol., 23(2):240–252,
2008.

[68] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in the
generic ring model. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture
Notes in Computer Science, pages 399–416. Springer, 2009.

[69] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs
and their applications. In EUROCRYPT, pages 143–154, 1996.

98

[70] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS. The Internet Society,
2000.

[71] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report CSL-98, SRI International Computer Science Laboratory, October 1979.

[72] Gregor Leander and Andy Rupp. On the equivalence of rsa and factoring regarding
generic ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume
4284 of Lecture Notes in Computer Science, pages 241–251. Springer, 2006.

[73] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated verifier signature schemes:
Attacks, new security notions and a new construction. In Lúıs Caires, Giuseppe F.
Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume
3580 of Lecture Notes in Computer Science, pages 459–471. Springer, 2005.

[74] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Vaudenay [100],
pages 465–485.

[75] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym sys-
tems. In Howard M. Heys and Carlisle M. Adams, editors, Selected Areas in Cryptog-
raphy, volume 1758 of Lecture Notes in Computer Science, pages 184–199. Springer,
1999.

[76] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2005.

[77] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer, 1989.

[78] Ilya Mironov. Collision-resistant no more: Hash-and-sign paradigm revisited. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptog-
raphy, volume 3958 of Lecture Notes in Computer Science, pages 140–156. Springer,
2006.

[79] Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. Characterization of elliptic
curve traces under fr-reduction. In Dongho Won, editor, ICISC, volume 2015 of Lecture
Notes in Computer Science, pages 90–108. Springer, 2000.

[80] David Naccache, David Pointcheval, and Jacques Stern. Twin signatures: an alterna-
tive to the hash-and-sign paradigm. In ACM Conference on Computer and Commu-
nications Security, pages 20–27, 2001.

[81] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,

99

Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes in
Computer Science. Springer, 2007.

[82] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, Washington, USA, May 15–17, 1989. ACM Press.

[83] Andrew M. Odlyzko, editor. Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science.
Springer, 1987.

[84] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology –
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa
Barbara, CA, USA, August 16–20, 1993. Springer, Berlin, Germany.

[85] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random
oracles. In Halevi and Rabin [63], pages 80–99.

[86] Tatsuaki Okamoto and Xiaoyun Wang, editors. Public Key Cryptography - PKC 2007,
10th International Conference on Practice and Theory in Public-Key Cryptography,
Beijing, China, April 16-20, 2007, Proceedings, volume 4450 of Lecture Notes in Com-
puter Science. Springer, 2007.

[87] Adrian Perrig. The BiBa one-time signature and broadcast authentication protocol.
In ACM Conference on Computer and Communications Security, pages 28–37, 2001.

[88] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070
of Lecture Notes in Computer Science, pages 387–398, Saragossa, Spain, May 12–16,
1996. Springer, Berlin, Germany.

[89] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures with
fast signing and verifying. In Lynn Margaret Batten and Jennifer Seberry, editors,
ACISP, volume 2384 of Lecture Notes in Computer Science, pages 144–153. Springer,
2002.

[90] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[91] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages
552–565. Springer, 2001.

[92] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
22nd Annual ACM Symposium on Theory of Computing, pages 387–394, Baltimore,
Maryland, USA, May 14–16, 1990. ACM Press.

100

[93] Barkley Rosser. Explicit bounds for some functions of prime numbers. American
Journal of Mathematics, 63(1):211–232, 1941.

[94] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

[95] Hovav Shacham and Brent Waters. Efficient ring signatures without random oracles.
In Okamoto and Wang [86], pages 166–180.

[96] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Joe
Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
355–367. Springer, 2001.

[97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture
Notes in Computer Science, pages 256–266, Konstanz, Germany, May 11–15, 1997.
Springer, Berlin, Germany.

[98] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs,
manuscript, nov. 30, 2004. revised version from jan. 18, 2006., 2004.

[99] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

[100] Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science. Springer, 2006.

[101] David Wagner, editor. Advances in Cryptology - CRYPTO 2008, 28th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, volume 5157 of Lecture Notes in Computer Science. Springer, 2008.

[102] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 114–127. Springer, 2005.

[103] Huafei Zhu. New digital signature scheme attaining immunity to adaptive-chosen
message attack. Chinese Journal of Electronics, 10(4):484–486, October 2001.

[104] Huafei Zhu. A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive,
Report 2003/155, 2003. http://eprint.iacr.org/.

101

Sven Schäge

sven.schaege@rub.deContact
Information

Citizenship: GermanyPersonal
Data

Doctoral Degree (Dr.-Ing.) in Electrical Engineering, Ruhr- 06/2011Education
Universität Bochum
• Pass with distinction
• Thesis: Efficient and Provably Secure Signature Schemes in the Stan-

dard Model
• Advisor: Professor Dr. Jörg Schwenk
• Reader: Professor Dr. Eike Kiltz
• Field of research: provable security, public key cryptography, digital

signature schemes in the standard model

Diploma Degree (Dipl.-Ing.) in IT-Security 12/2006
• Final average grade: 1.3
• Thesis: Efficient Hash Collision Search Strategies on Special-Purpose

Hardware
• Advisor: Professor Dr.-Ing. Christof Paar
• Field of research: embedded security

Student of IT-Security at Ruhr-University Bochum 10/2001-12/2006

Rettungssanitäter (’advanced’ emergency medical technician) 2/2001
Examination, Wiesbaden

Community Service at Arbeiter-Samariter-Bund, 10/2000-08/2001
Ortsverein Bochum
• Worked in the emergency medical service of Bochum as Rettungshelfer

(emergency medical technician).

Albert-Einstein-Schule Bochum (Grammar School) 08/1991-06/2000
• Attended bilingual (English-German) branch from 5th to 10th class.
• History, social studies, geography were taught in English.
• Abitur (A-level): final average grade 1.6

1 of 8

Ruhr-Universität Bochum since 06/2008Recognition
• Fellow of the Research-School

Ruhr-Universität Bochum 09/2003
• Award for best AES implementation in class

German Physical Society 06/2000
• Award of German Physical Society for outstanding grades in physics

Experience
Department of Computer Science since 06/2011
University College London

Research Associate (PostDoc)

• UCL in global university rankings:
QS, THE, ARWU: 4,4,21 (2009); 4,22,21 (2010); 7,17,20 (2011).
• Research interests:

signature schemes, encryption schemes, zero-knowledge proofs.

International School of IT Security AG 04/2009-04/2011
Bochum, Germany

Correspondence Course Supervisor for Network Security

• Supervised students in the course Network Security.

Chair for Network and Data Security 02/2007-06/2011
Dept. of Electr. Eng. and Information Sciences, Ruhr-Universität Bochum

Research Associate

• Supervised, instructed and graded students in several courses, sem-
inars,. . . .

Dept. of Electr. Eng. and Inform. Sciences 02/2007-04/2011
Ruhr-Universität Bochum

Department’s Academic Advisor

• Advised and supported IT-Security students.
• Offered career counseling.
• Organized student exchange programs.
• Represented the department at career events.

2 of 8

Chair for Embedded Security 12/2006-02/2007
Dept. of Electr. Eng. and Information Sciences, Ruhr-Universität Bochum

Security Consultant

• Worked as an external security consultant in an industry project on
Pay-TV security.

G DATA Software AG 03/2006
Bochum, Germany

Teaching

• Organized and held a professional education event for technical em-
ployees. Topics: basics of IT-security, malware, firewalls, spam.

escrypt GmbH 01/2006-05/2006
Bochum, Germany

Security Consultant

• Worked as an external security consultant in an industry project.

G DATA Software AG 04/2005-01/2007
Bochum, Germany

Technical Support

• Provided technical support for G DATA’s security products (e.g.
antivirus software, firewall software).

Chair for System Security 07/2004-01/2005
Dept. of Electr. Eng. and Inform. Sciences, Ruhr-Universität Bochum

Student Research Assistant

• Developed solutions for trusted computing applications based on
XrML (eXtensible rights Markup Language).

Chair for Mathematics and Computer Science 10/2003-04/2004
Department of Mathematics, Ruhr-Universität Bochum

Student Research Assistant

• Assisted Discrete Mathematics instructional team.
• Advised and instructed students. Graded exercises.

Genius Bytes Software Solutions GmbH 09/2003-06/2004
Bochum, Germany

Software Developer

• Developed XML and smart card based applications.

3 of 8

Genius Bytes Software Solutions GmbH 06/2003-09/2003
Bochum, Germany

13 Weeks Internship

• Developed smart card based applications.

Dept. of Electr. Eng. and Inform. Sciences 04/2003-08/2003
Ruhr-Universität Bochum

Tutor

• Advised and trained first semester students as a tutor of the depart-
ment.
• Lectured a weekly course on JAVA.

Volunteering in Emergency Medical Service 09/2001-07/2003
Arbeiter-Samariter-Bund Bochum, Germany

Emergency Medical Technician

• Worked in the emergency medical service in Bochum.

Publications
Books

Finding Hash Collisions 2008

• Sven Schäge. Finding Hash Collisions. VDM Verlag Dr. Müller,
ISBN: 3639066135.

Journals

Security of MS Cardspace and related Single-Sign-On Protocols 2008

• Xuan Chen, Christoph Löhr, Sebastian Gajek, Sven Schäge. Die
Sicherheit von MS Cardspace und verwandten Single-Sign-On Pro-
tokollen. Datenschutz und Datensicherheit - DuD. Volume 32, Num-
ber 8, 515–519. Vieweg Verlag, August 2008.

4 of 8

Refereed Conference Proceedings

Tight Proofs for Signature Schemes without Random Oracles 2011

• Sven Schäge. Accepted for EUROCRYPT 2011, Tallinn, May 15th-
19th, 2011. Springer, LNCS 6632, 2011.

Generic Compilers for Authenticated Key Exchange 2010

• Tibor Jager, Florian Kohler, Sven Schäge, Jörg Schwenk. ASI-
ACRYPT 2010, Singapore, December 5th-9th, 2010. Springer, LNCS
6477, 2010.

Towards an Anonymous Access Control and Accountability 2010
Scheme for Cloud Computing

• Meiko Jensen, Sven Schäge, Jörg Schwenk. 3rd International Con-
ference on Cloud Computing (CLOUD), Miami, Florida, USA, July
5th-10th 2010. IEEE Computer Society, 2010.

A New RSA-Based Signature Scheme 2010

• Sven Schäge, Jörg Schwenk. AFRICACRYPT 2010, Stellenbosch,
South Africa, May 3th-6th, 2010. Springer, LNCS 6055, 2010.

A CDH-Based Ring Signature Scheme with Short Signatures 2010
and Public Keys

• Sven Schäge, Jörg Schwenk. Financial Cryptography Fourteenth
International Conference, FC 2010, Tenerife, Spain, January 25th-
28th, 2010. Springer, LNCS 6052, 2010.

Twin Signatures, Revisited 2009

• Sven Schäge. Provable Security Third International Conference,
ProvSec 2009, Guangzhou, China, November 11th-13th, 2009. Springer,
LNCS 5848, 2009.

Code Voting with Linkable Group Signatures 2008

• Jörg Helbach, Sven Schäge, Jörg Schwenk. Code Voting with Link-
able Group Signatures. 3rd International Conference, Co-organized
by Council of Europe, Gesellschaft für Informatik and E-Voting.CC,
in Castle Hofen, Bregenz, Austria, August 6th-9th, 2008. In GI, LNI
131, 2008.

Efficient Hash Collision Search Strategies on Special-Purpose 2007
Hardware

• Tim Güneysu, Christof Paar, Sven Schäge. Efficient Hash Collision
Search Strategies on Special-Purpose Hardware. Western European
Workshop on Research in Cryptology, WeWORC Workshop 2007,
July 4th-6th, 2007, Bochum, Germany. Springer, LNCS 4945, 2007.

5 of 8

Technical Reports

A Standard-Model Security Analysis of TLS 05/2011

• Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. IACR
Cryptology ePrint Archive, Report 2011/219. Available online at
http://eprint.iacr.org/.

Invited
Talks Scientific Talks

14. Kryptotag of German Gesellschaft für Informatik e.V. held at
Ruhr-Universität Bochum 03/2011

• Yearly scientific event organized by the group ’Angewandte Kryp-
tologie’ (applied cryptology) of the German Gesellschaft für Infor-
matik e.V. . The 14th Kryptotag was held at Ruhr-Universität
Bochum. I was invited to give a talk on tightly secure signature
schemes.

Cryptography Seminar of Institute of Mathematical Research of Rennes,
Université de Rennes 1 12/2011

• Regular seminar of the Institute of Mathematical Research of Rennes
with international speakers. I was invited to give a talk on tightly
secure signature schemes.

Workshop/Conference OrganizationProfessional
Activities

IT-Security Career Event 06/2008, 06/2009, 06/2010
Bochum, Germany
• Co-organized a career event that focussed on students of IT-Security.

About 20 industrial companies attended, for example BMW, T-Systems,
WestLB, Deutsche Bank, IBM, KPMG, Ernst & Young, McKinsey,
Deutsche Bank, Boston Consulting Group,

Organization ECC 2004 09/2004
Bochum, Germany
• Helped to organize the 8th workshop on Elliptic Curve Cryptography

(ECC 2004).

6 of 8

Reviews/Sub-Reviews
• The 15th IACR International Conference on Practice and Theory of

Public-Key Cryptography (PKC 2012), to be held in Darmstadt, Ger-
many, May 21-23 2012.
• Th 31st Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques (EUROCRYPT 2012), to be held in
Cambridge, UK, April 15-19 2012.
• The 17th International Conference on Theory and Apllication of Cryp-

tology and information Security (ASIACRYPT ’11), to be held in Seoul,
Korea, December 4-8 2011.
• Theoretical Computer Science, Elsevier 2011.
• 9th International Conference on Applied Cryptography and Network

Security (ACNS ’11), held in Nerja (Malaga), Spain, June 7-10 2011.
• The 7th Information Security Practice and Experience Conference (IS-

PEC 2011), held in Guangzhou, China, May 30 - June 1 2011.
• Journal of Systems and Software, Volume 84, Elsevier 2011.
• The 14th IACR International Conference on Practice and Theory of

Public Key Cryptography (PKC 2011), held in Taormina, Italy, March
6-9 2011.
• The 15th European Symposium on Research in Computer Security (ES-

ORICS 2010), held in Athens, Greece, September 20-22 2010.
• 3rd IEEE Intl. Symposium on Security in Networks and Distributed

Systems (SSNDS) 2007, held at Niagara Falls, Canada, May 21-23 2007.
• The 10th International Conference on Information Security and Cryp-

tology (ICISC 2007) held in Seoul, Korea, November 29-30 2007.
• Workshop on Cryptographic Hardware and Embedded Systems 2006

(CHES 2006) held in Yokohama, Japan, October 10-13 2006. Top con-
ference in the field.

Network Security I 2007, 2008, 2010Teaching
• Security analyses of various practical systems. Broadcast Encryption,

Pay-TV, DVD Encryption, Mobile Telephony (GSM, UMTS), WLAN
(IEEE 802.11), Firewalls, Intrusion Detection Systems, Malware, Web
Services (XML Security, Microsoft Passport, WS-Security).
• Gave guest lectures, held exercise courses and set questions in the final

exam.

Network Security II 2007, 2008, 2009, 2010
• Security analyses of various practical systems. OpenPGP, S/MIME,

SSL, DNSSEC, VPN (IPSec, PPTP, IP Multicast).
• Gave guest lectures, held exercise courses and set questions in the final

exam.

7 of 8

Cryptographic Protocols 2008, 2009
• Topics: Provable Security, Commitment Schemes, Zero-Knowledge-

Protocols, Multiparty Computations (Shared Secret Schemes, Elec-
tronic Poker, Secure Circuit Evaluation), Universal Composability.
• Gave guest lectures, held exercise courses and set questions in the final

exam.

Seminars, Practical Courses, Projects 2007, 2008, 2009, 2010
• Supervised students.
• Developed experiment descriptions.
• Organized seminars.

Gematik GmbH Research Project 09/2009-08/2010Industry
Projects • Worked on Germany’s prospective electronic health insurance card.

8 of 8

