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Abstract

Computers and the Internet have facilitated almost every aspect of our life, except
the ability to control on who can access our private data. While information com-
mitted to a sheet of paper or to old-fashioned, chemically developed film is relatively
easy to control—the medium can be trusted to behave as expected—this is not nec-
essarily the case for information stored and processed on a computer: Users have no
meaningful assurance that the systems they use are as secure as claimed or behave
as advertised. In recent years researchers have developed several approaches to im-
prove on this front, however many of these approaches effectively mean abandoning
existing architectures; the migration path from existing systems towards environ-
ments the allow for a tighter control is thus often rather long and in some cases
nonexistent.

Instead of abandoning all existing architectures, the work at hand deals with the
question how we can stay in control and improve the protection of private infor-
mation that we store and process on today’s existing computer systems. We argue
that at least three preconditions should be fulfilled to gain the basic ability to retain
control over data on a computer system: we need to proactively discover potential
attack vectors, analyze existing systems to gain precise knowledge on their inner
workings, and, based on both fields of research, must provide effective means of mit-
igations for existing and novel threads. Using the example of the seemingly harmless
SVG format, we show how offensive research can help us to preemptively develop
new mitigation mechanisms, before attacks can exploit flaws in existing standards.
In the following we analyze the cryptographic protocols of TextSecure, a instant
messenger that claims to preserve the confidentiality of messages and the authentic-
ity of conversations. We aim at either verifying or falsifying the developers’ claims
by fully understanding the system at hand. We show unusual application of crypto-
graphic primitives, attacks, and how these issues can be mitigated. We also follow up
on the third precondition outlined above: the ability to detect and mitigate attacks.
We present a system that allows for the detection of malicious code on websites
directly within the browser. To this end we apply heuristics and machine learning
techniques to identify the relevant malicious website elements that we then modify
such that the intended attack is mitigated. The methods we present can be applied
in many different contexts—from a technical point of view the nature of the data
we intend to protect is not relevant. However, in the thesis at hand we aim at the
protection of private data.

Up to this point we focussed on retrofitting existing systems with protective mech-
anisms. However, intricate knowledge about a system and attacks may indeed also
mandate the decision to abandon the existing technology base and start over, a



situation we also face when developing solution for new fields of technology. This
is especially relevant in technological fields that are core-elements of our daily life,
such as mobile communication and transportation—fields where not using avail-
able technology can have a tremendous negative impact on our life. If we have the
chance or the obligation to start over, security and the protection of private, per-
sonal and personally-identifiable information must not be treated as addons, but
must be essential building blocks of every system architecture and implementation,
without negatively impacting functionality. Using the example of electric vehicle
charging—most likely a very important part of tomorrow’s individual transport—
we show how the authentic transmission and storage of billing-relevant data and be
ensured, without compromising every customer’s locational privacy.
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Zusammenfassung

Im Gegensatz zu fast allen anderen Aspekten unseres täglichen Lebens ist die Kon-
trolle des Zugangs zu und der Verbreitung von privaten Daten durch den Einsatz
von Computersystemen nicht einfacher geworden. Ist Information auf einem Blatt
Papier oder einem klassischen, chemisch entwickelten Film noch relativ einfach zu
kontrollieren – dem Medium kann vertraut werden, dass es sich exakt so verhält,
wie es der Benutzer erwartet – gilt dies nicht uneingeschränkt für Daten, die auf
heutigen Computersystemen gespeichert und verarbeitet werden: Der Benutzer hat
keinerlei Garantie bezüglich Verhalten und Sicherheit des Systems. Ansätze dies zu
ändern resultierten in der Forschung der vergangenen Jahre vielfach im vollständi-
gen Überbordwerfen bestehender Architekturen; ein Migrationspfad von existieren-
den Systemen hin zu besser kontrollierbaren Umgebungen ist daher häufig lang und
nicht in jedem Fall gegeben.

Angesichts dessen beschäftigt sich die vorliegende Arbeit mit der Frage, wie und un-
ter welchen Bedingungen die Kontrolle über private Daten auf existierenden Compu-
tersystemen verbessert werden kann. Der Autor argumentiert, dass zumindest drei
Vorbedingungen erfüllt sein müssen, damit grundsätzlich die Möglichkeit besteht,
Kontrolle über die auf einem Computersystem gespeicherten und verarbeiteten Da-
ten zu behalten: proaktive Erforschung potentieller Angriffsvektoren, Kenntnis der
genauen Funktionsweise des zu schützenden Systems durch dessen Analyse und,
auf basierend auf beidem, die Verfügbarkeit von Erkennungs- und, wenn möglich,
Schutzmechanismen. Am Beispiel des offensiven Potential des scheinbar harmlosen
SVG-Datenformats zeigt die vorliegende Arbeit, wie proaktive Schwachstellenfor-
schung dazu geeignet ist, neuartige Schutzmaßnahmen zu entwickeln, bevor An-
greifer sich global existierende Mängel in existierenden Standards und Software zu
Nutze machen können. Die Arbeit beschäftigt sich im Weiteren mit der Analyse
der kryptographischen Protokolle des Sofortnachrichtendiensts TextSecure, um
auf Basis der vollständigen Kenntnis des Systems eine Aussage über die tatsächlich
gebotene Sicherheit zu treffen. Auffälligkeiten in der Verwendung kryptographischer
Primitive werden aufgezeigt, ebenso wie daraus resultierende Angriffe und wie diese
zu verhindern sind. Im Folgenden behandelt die Arbeit die dritte oben genannte
Bedingung für den Erhalt der Kontrolle über auf Computersystemen gespeicherte
Daten: Die Fähigkeit Angriffe zu erkennen, ihren Effekt zu begrenzen und sie nach
Möglich zu verhindern. Unter diesem Aspekt wird ein System vorgestellt, dass auf
Basis heuristischer Methoden und maschinellem Lernen die Erkennung von Schad-
code auf Webseiten direkt im Browser des Benutzers erlaubt. Relevante Elemente
bösartiger Webseiten können hierbei so modifiziert werden, dass der Angriff nicht
zur Ausführung kommt. Die vorgestellten Techniken haben dabei ein weiteres An-
wendungsfeld – die Natur der zu schützenden Daten ist hier schlussendlich unter



technischen Aspekten nicht maßgeblich – die vorliegenden Arbeit legt den Fokus
jedoch auf den Erhalt der Kontrolle über private Daten.

Bis zu diesem Punkt hat sich die vorliegende Arbeit auf die nachträgliche, systemer-
haltende Integration von Schutzmaßnahmen fokussiert. Gerade jedoch in Technolo-
giefeldern, die fester Bestandteil des täglichen Lebens sind, wie z.B. mobile Kommu-
nikationsnetze oder individuelle Mobilität, ist es mit dem nachträglichen Erweitern
existierender Systeme um Sicherheitskomponenten nicht getan. Ist die Verwendung
einer Technologie für den Benutzer (nahezu) alternativlos, darf Sicherheit und der
Schutz privater, persönlicher und personenbeziehbarer Daten kein Additiv, sondern
muss integraler Bestand der Technologie sein, ohne in funktionalen Einschränkun-
gen zu resultieren. Wie dieses Ziel zu erreichen ist, wird am Beispiel der im Aufbau
befindlichen Ladeinfrastruktur für Elektrofahrzeuge verdeutlicht. Die vorliegende
Arbeit zeigt, wie die authentische Übermittlung von abrechnungsrelevanten Daten
sichergestellt und dennoch verhindert werden kann, dass ein detailliertes Bewegungs-
profil jedes einzelnen Benutzers anfällt.
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1
Introduction

I’m sure they’ll lien to Reason.
—Neal Stephenson, Snow Crash

Throughout the history of mankind, humans have always created data. Most of it
is lost, though, as the amount of data effectively stored was almost negligible com-
pared to the amount of data created. Oral tradition—the transmission of cultural
knowledge through vocal utterance—has turned out to be of rather ephemeral, im-
precise nature; most, if not all of the data stored this way in prehistoric ages is lost
or has been distorted beyond recognition.

One of the earliest forms of non-ephemeral data storage is rock art, man-made
markings on natural stone, which date back to the Upper Palaeolithic period, i. e.,
the Late Stone Age. The purpose of the data recorded here remains speculative,
but its nature is public, necessarily accessible to everyone who happened upon it.
While it makes sense to assume that also in these early periods of human existence
there must have been secret or even private data, none of it has been stored on a
medium.

The amount of stored data increases with the invention of writing systems. The
moment of exit from prehistory, i. e., the beginning of recorded history, differs vastly
for various regions of the world: forms of proto-writing, i. e., systems of ideographic
or mnemonic symbols, have been dated to as early as the 6th millennium BC. In
contrast, some civilizations of northern Europe remained in proto-history1 until the
Middle Ages, while mediterranean societies of the classical antiquity are known to
1 i. e., their history is only documented in the writings of other civilizations
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1 Introduction

have had writing systems and stored both public and secret data. A well-known
example of the latter kind can be found in Homer’s Ilias: Bellerophon carried a
dyptich—two (wax) tablets connected with a hinge that could be sealed—containing
the written order for the intended receiver to kill him2, a fact the carrier of the
message was not aware of.

As literacy permeated wider parts of Greek and Roman societies, people did not
only commit public or secret data to storage media, but also wrote private notes
and letters [150, p. 804]. The word private itself has its origin in the Latin adjective
privatus, meaning to be without office, non-public, personal. Put into perspective
of the (pre)history of mankind, the concept of storing private data is thus rather
recent.

Making a large step through time into our modern world, besides public, secret, or
private data, we are also confronted with the concept of personal and personally
identifiable information—data not necessarily by, but about a human being. Also,
data storage has shifted from hand- or machine-written script to storing digital
representations of data. As permanent digital storage was first developed, storing
data was rather expensive, thus private data was seldom stored digitally, while secret
data was. Private data only found its way on digital storage media with the advances
of magnetic storage, that made digital storage space cheap.

Today, humans increasingly often store and process their own data digitally. For
this purpose they use computing devices—be they mobile, like smartphones, or
stationary, like personal computers—that still do not give them the same amount of
control about their data as recording the data on a piece of paper by handwriting
or recording it on a strip of old-fashioned, chemically developed film. One could
say that we exchange control about our data against the many benefits modern
computing and storage devices offer.

We also store more data than ever before, and what is more: The amount of data
we willingly produce and store seems almost insignificantly small when compared to
the amount of data that is stored about us. The places we go, the people we talk to,
meet or potentially met, because they were at the same place at the same time, the
products we buy or even only look at.

If a flat or house has been burglarized, the inhabitants often feel violated, due to the
realization that their presumingly private space is not as safe and as private as they
grew to expect it—after all a stranger has just walked in and ransacked the place.
Users of compromised computers do not necessarily share these feelings—it’s just
the computer after all. However, given the large parts of our lives that we keep infor-
mation on on our mobile and immobile computing devices, the emotional state after
2 Ilias 6, 165-175
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1.1 Motivation

a compromise could probably be expected to be more similar. The effect of having a
personal computer compromised is rather comparable to having the contents of ones
deposit box and identity card stolen, all the private and sometimes embarrassing
family pictures littered on a busy market place, and sometimes also losing access
to all of the above. When it comes to their account data, even the sometimes vo-
cal fraction of “I have nothing to hide”-proponents suddenly finds something worth
hiding. Similarly, the public accessibility of tax data that is common in some Scan-
dinavian countries is unimaginable to many people just south of the border, who
consider this data private.

Extrapolating from this example we could conclude that one aspect of privacy is
the ability to control the flows of (personal) information we emit, wittingly or un-
wittingly. This interest unites people from a large variety of demographics, from
well-known actors like Mary E. Winstead, who expressed discontent with the fact
that private photos of herself were accessible to non-intended audiences, stating “To
those of you looking at photos I took with my husband years ago in the privacy of
our home, hope you feel great about yourselves.” [232], to the teenagers that danah
boyd and Alice E. Marwick interviewed in the course of their research [44]. Their
results contrast a 2008 survey by Harris Interactive of 2,089 teenagers that found
that only 41% indicated that they were concerned about privacy and security issues
when using their mobile [100]. Instead, boyd and Marwick find that all teens have
a sense of privacy, although their definitions of privacy vary widely [44].

1.1 Motivation

Irrespective of our notion of privacy or private data, certain preconditions have to
be met for us to be able to enforce it. Here we close the loop to computer security,
which we opened up with the above example paralleling a burglarized flat and a
compromised computer: Computer security is not an end in itself. Much of it aims
at guaranteeing that data remains in the expected state: keeping confidential data
confidential, private data private and generally ensuring the integrity and availability
of existing data—be it stationary or in transfer—as well as, that computations are
not manipulated in an undesirable fashion.

An ideal precondition for achieving these goals would be the ability to trust our
hardware to behave only in expected ways, i. e., that we must be aware and in
control of its complete set of features. The same is required for all software that
builds on top of the hardware base, from the microcode that defines a CPU’s behavior
to BIOS, bootloader, operating system kernel and components, drivers, third-party
software.
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However, while science has advanced many of these aspects—such as formal CPU
verification [127], trusted computing base [231], verifiable micro-kernels and com-
pilers [132] to name just a few—it takes time for these technologies to arrive in
off-the-shelf software and systems, as some indeed represent a paradigm shift. In
the meantime the prevalent approach is to retrofit security and privacy enhancing
technologies or build on top of existing components to raise the stakes for an at-
tacker. Code signing is an approach to increase trust insofar as users receive some
assurance that the application they are going to install on their system has indeed
been released by the issuer they expect—if none of the signing keys in the certifi-
cate chain has been compromised. Modern operation systems apply Address Space
Layout Randomization (ASLR), support processors’ NX bit and other techniques in
an attempt to make it harder for the attacker to guess the right address to jump
to after he was already able to inject code or to prevent the execution of undesired
code. Methods to ensure the control flow integrity [8] of a program to prevent it
from entering unexpected or undesired states have been retrofitted to proprietary
systems [73], as has a trusted and capability-based Document Object Model (DOM)
in the context of web browsers [104]. The state of network security is in parts sim-
ilar, for instance, certificate pinning has been introduced as a hotfix for the fact
that there are man-in-the-middle attacks and that those attacks are facilitated by
the complexity and operational failures of the existing Certificate Authority (CA)
system [212].

Assuming that our systems are imperfect, we thus must deviate from the pretense
that we can fulfill the above ideal precondition, which demands a trustworthy system.
Instead, we formulate a more modular set of preconditions that allow us to work
with existing technology without needing to wait for a silver bullet. And while—
with this work—we aim at better protecting private and personal information, these
preconditions are of a more universal nature, i. e., can serve to better secure any
kind of data. We introduce these preconditions below.

Awareness of attack vectors. If we are completely unaware of a certain attack
vector, we may be unable to defend ourselves. Thus, as a precondition A we need
to strive for information that allows us to gain a more complete view of potential
threats and attack vectors. This can be done by analyzing existing malicious code,
a field that has seen many advances in recent years [133, 229, 230], preemptively
pursuing offensive research to gain an advantage over potential attackers [70, 80,
110, 117, 123, 210], or extrapolating from existing vulnerabilities, flaws, and attack
methods [124, 125, 234].
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Review and analysis of technology. The existence of a solution that claims to
protect someones confidential or private information is necessary, but not sufficient
as the example of the Heartbleed Bug3 in OpenSSL shows [27]. Source code needs to
be read, its availability alone is not enough; software and technology that strives to
fulfill a certain purpose needs to be reviewed and analyzed to determine, if it does
indeed fulfill this purpose and does not willingly or unwillingly compromise it. In
this context we must not limit ourselves to verifying a system’s functionality, but
also draw from the knowledge we gained on adversarial techniques following precon-
dition A. In an attempt to avoid or at least reduce the need for this requirement we
could posit a precondition that would mandate the exclusive use of fully formally
verified code. While such code exists [132] and this may be a valid approach for
future software engineering, it does neither help secure existing technology and soft-
ware, nor does it prevent flawed protocols or standards. Thus, as a precondition B,
trust in purportedly secure or privacy-enhancing technology should preferably only
be given after the respective technology has received public scrutiny, where possible,
and extensive review. Or, to use Claude Shannon’s maxim: “The enemy knows the
system.” So users should better be (made) aware of its properties, too.

After the review of a system or technology we can either arrive at the conclusion that
it fulfills its claims and does not contain flaws (to the best of our current knowledge),
or that it does not fulfill its claims and is flawed. While some flaws can be fixed and
the system amended, this is not possible if a technology or the design of a systems is
fundamentally flawed. In this case we can take two different courses of action, which
we will detail in the next two paragraphs: Option 1 is to try and build protective
measures on top of the flawed system, an approach made popular, for instance, by
the Anti-Virus industry. Option 2 is to start over and design a better system. A
well-known example of the latter approach is Stanford’s Clean Slate program4, which
aimed at redesigning the Internet with today’s experience and knowledge.

Means of detection or mitigation of a compromise. If we store data that we
consider private—like personal photos, tax or bank account details, or online gaming
credentials—on a computer system and this system is compromised by an attacker,
we are unable to control the (egress) flow of our data. Thus, using our awareness of
existing flaws and attack vectors we need to build means of mitigation or at least
detection of a compromise to maintain control over our information. We formulate
this requirement as precondition C.

3 http://heartbleed.com/
4 http://cleanslate.stanford.edu/
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Security and privacy by design. If we depend on technology in a way that not
using it would incur severe penalties and significantly alter our lifestyle, as a general
design principle we need to make sure that this technology empowers us—the user—
to make an informed decision about who can access our personal information and
does not treat security as an add-on but as a foundation. In the best case, this
principle is applied when deciding on the initial design. However, if—after the
analysis of a system—we arrive at the conclusion that it is fundamentally flawed
and can or should not be amended, security and privacy by design is the paradigm
that should guide architectural and development decisions during a redesign.

Moving out from the computer system perspective to larger systems, the Global Sys-
tem for Mobile Communications (GSM) is a well-known negative example: Many
aspects of our lives revolve around the fact that we have access to mobile communi-
cation and in some situations, e. g., when we have an accident, we depend on these
technologies to get help in a timely manner. Yet, its cryptographic foundations are
flawed and the use of this technology induces a constant penalty on our privacy, as
we leave a rather detailed movement trail in our carriers’ databases, readily there
to be accessed—and out of our control. GSM and similar systems are prime exam-
ples for the fact that well-researched cryptographic primitives must be applied in a
correct fashion from the beginning and effective means of privacy control need to be
deep-rooted within a technology, as it is hard to impossible to impose these means
on existing systems and infrastructure later on.

Neither the preconditions we formulated nor the principle of security and privacy
by design are any guarantee for the ability to protect private—or to that end any—
information on computer systems. However, they can be seen as a smallest common
denominator that can allow us to achieve the goal of protecting private data on a
computer.

1.2 Topics and Contributions

Chapter 2 contributes to precondition A above in such that we present an effective
mitigation approach for new classes of attacks that resulted from offensive research.
Web browsers present a large and almost ubiquitous attack surface—an attack sur-
face that is even enlarged by independently maintained browser plugins and addons
that also parse website elements and thus are as susceptible to malicious code, as
the browser itself. Armed with a cornucopia of potential attack vectors, malicious
actors have found the herd of unsuspecting users to be a veritable source of in-
come from criminal actions. Many of the uses a criminal has for a compromised
computer deeply violate the private space this computer constitutes for the affected
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user. Or as Krebs puts it: Nearly every aspect of a hacked computer and a user’s
online life can be and has been commoditized [137]. We explore the effect of small,
but in their outcome revolutionary changes that HTML5 introduced to the world
wide web: Scalable Vector Graphics (SVGs), which formerly were embedded using
<embed> or <object> tags and traditionally lacked browser support, were now part
of the HTML standard and could also be included in novel ways, such as with <img>
tags, CSS or inline. However, SVGs are more than just an image, although they
are considered as such from a security point of view. Rather they should be con-
sidered as complete one-file web applications that can contain HTML, JavaScript,
Flash, and other interactive content. We discuss several novel attack techniques
targeted at major websites, various modern browsers, email clients, and comparable
tools. We examine and present how current filtering techniques are circumventable
by using SVG files and subsequently propose an approach to mitigate these risks.
We also explore how the privacy of users, who rely on application layer web proxies
to browse websites anonymously, is impacted by the fact that SVGs and various
include methods are handled improperly by many of such proxies.

Chapter 3 contributes to the precondition B and approaches a privacy-enhancing
technology from an analytical point of view. We analyze the cryptographic protocol
of TextSecure, a popular mobile instant messaging application. TextSecure
aims at providing confidential, authentic text communication to everyone, who is
able to install an Android app from Google’s Play store. TextSecure follows the
paradigm posited by Bruce Schneier on 2014’s TrustyCon that “one-click encryption
is one click to many” [81] and aims to be a no-click solution to message encryption.
To the best of our knowledge we are the first to analyze TextSecure’s protocol,
which curiously mixes key establishment and message exchange, but nevertheless can
achieve stateful authenticated encryption given that appropriate means of mutual
authentication of all parties involved in a message exchange are established. For our
analysis we can rely on previous work on attacks against cryptographic protocols—
offensive work that contributed to improve precondition A in this field.

Chapter 4 focuses precondition C from the perspective of web-based threats: We
aim at a better detection of attacks against a user’s computer and a better protection
against a compromise. We discuss the dangers of the modern web, where the focus
of attacks has shifted from server- to client-side applications, or, as Moshchuk et
al. put it: In the span of just a few years, spyware has become the Internet’s
most “popular” download [168]. We analyze the attack surface and—taking known
insufficiencies of browsers into account—present a novel approach for detecting and
mitigating a diverse set of attacks against the DOM tree, protecting users of mobile
devices and personal computers alike from the execution of unwanted code. To this
end we apply light-weight instrumentation of JavaScript.
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Chapter 5 applies the principle of security privacy by design to a concrete techno-
logical field. We focus on the protection of information that allows to infer habitual
behavior about a person: the way we move in (public) space, as recorded by the
data points we create when we make a purchase. We explore the field of locational
privacy using the example of charging an electric vehicle using public charging sta-
tions, where it is highly desirable for the vendor not to have anonymous customers
and thus be able to continue to use existing post-paid billing processes. Thus, we
propose an architecture that allows to preserve customers’ locational privacy in the
absence of anonymous payments. At the time being, a clean slate approach can be
recommended in this context, as e-mobility infrastructure is still in its early stages
of evolution and many existing approaches primarily aim at functionality, leaving
both security and privacy something to be desired.

1.3 Publications

In the course of his work the author contributed to several academic publications.
The knowledge gained in the process forms the basis for this thesis, which as a con-
sequence contains both published and unpublished material. This section outlines
all publications in chronological order and identifies the author’s respective contri-
butions.

IceShield: Detection and Mitigation of Malicious Websites with a Frozen DOM
In this publication, we introduce a novel approach to analyze browser-based attacks
by demonstrating how dynamic analysis of websites can be accomplished directly in
the browser. We show how features of ECMA Script 5 can be used to freeze object
properties, so they cannot be modified during runtime. We implemented a proto-
type version of IceShield and demonstrate that it detects malicious websites with a
small overhead even on devices with limited computing power such as smartphones.
Furthermore, IceShield can mitigate detected attacks by changing suspicious el-
ements, so they do not cause harm anymore, thus actually protecting users from
such attacks. The paper is joint work with Mario Heiderich and Thorsten Holz,
published at the 14th International Symposium on Recent Advances in Intrusion
Detection (RAID), 2011 [106]. The authors thank Jörg Schwenk for supporting the
idea to work on this topic and create this very paper. The author’s contribution lies
in the analysis of malicious websites and the development of heuristics distinguish-
ing elements of code between benign sites and sites containing malicious code. He
is also responsible for the implementation of the machine learning approach and the
evaluation. Chapter 4 is based on this publication, which has been supported by the
Ministry of Economic Affairs and Energy of the State of North Rhine-Westphalia
(Grant 315-43-02).
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The Bug that made me President After analyzing the demonstration website and
source code of the Internet voting system Helios, we discovered several small flaws
that can have a large security and privacy critical impact. An attacker is able to
extract sensitive information, manipulate voting results, and modify the displayed
information of Helios without any deep technical knowledge or laboratory-like pre-
requisites. The aim of this paper was, besides improving a widely-use voting system,
to raise awareness in the electronic voting community that online voting applications
should at least follow the latest vulnerability mitigation guidelines. E-Voting soft-
ware driven by web browsers are likely to become an attractive target for attackers.
Successful exploitation can have impact ranging from large scale personal informa-
tion leakage, financial damage, calamitously intended information and state modifi-
cation as well as severe real life impact in many regards. We published our findings
at the International Conference on E-Voting and Identity (VoteID), 2011 [108]; the
paper was joint work with Mario Heiderich, Marcus Niemietz, and Jörg Schwenk.
The author contributed to the attack scenario and provided background and context
on electronic and Internet voting systems.

Crouching Tiger—Hidden Payload: Security Risks of Scalable Vector Graph-
ics In this paper, we introduce several novel attack techniques targeted at major
websites, as well as modern browsers, email clients and other comparable tools. In
particular, we illustrate that SVG images embedded via <img> tag and CSS can
execute arbitrary JavaScript code. We examine and present how current filtering
techniques are circumventable by using SVG files and subsequently propose an ap-
proach to mitigate these risks. The paper, published together with Mario Heiderich,
Meiko Jensen, and Thorsten Holz at the 18th ACM Conference on Computer and
Communication Security (CCS), 2011 [107], showcases our research into the usage
of SVG images as attack tools, and determines its impact on state-of-the-art web
browsers such as Firefox 4, Internet Explorer 9, and Opera 11. The author’s con-
tribution lies in the analysis of the prevalence of language elements of SVG used in
the wild, which allowed to develop an purification approach that has only a negligi-
ble negative impact on the representation of benign SVG files. He also contributed
to the development of heuristics implemented in SVGPurifier and showed that the
approach is applicable in a real-world setting through a large-scale study. Chapter 2
builds upon this research and extends it. While the author was not partial to find-
ing the attack vectors in the first place, they are still illustrated in the chapter to
underline the adversarial potential of SVG images as offensive tools and to allow for
a better understanding of the mitigation approach. The initial research has been
supported by the Ministry of Economic Affairs and Energy of the State of North
Rhine-Westphalia (Grant 315-43-02).
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Predentifier: Detecting Botnet C&C Domains from Passive DNS Data The
Domain Name System (DNS) is mainly used for benign and legitimate Internet
activities. Nevertheless, it also facilitates malicious intentions. Domain names have
started to play an increasingly important role in the Command and Control (C&C)
infrastructure of botnets. These domains can be added to blocklists or taken down,
yet attackers can simply evade the countermeasures by creating hundreds of new
domains every day. We propose a framework called Predentifier that combines a
host’s DNS configuration properties with secondary data to derive a set of distinctive
features that can be used to describe the behavior of a host to detect C&C domains
at an early stage. We employ methods of statistical learning to determine whether
a domain belongs to a C&C server or if it is benign. We further show that it is
possible to leverage passive DNS data to identify C&C domains without infringing
on employment or customer rights, respecting their privacy. In this publication,
together with Marc Kührer and Thorsten Holz, we summarize the author’s Master’s
thesis as a chapter of Advances in IT Early Warning [89], a book published by
Fraunhofer Verlag in 2013.

Improving Location Privacy for the Electric Vehicle Masses In this technical
report, we propose a solution to preserve the locational privacy of users of elec-
tric vehicles, who recharge these vehicles using public charging infrastructure. Our
approach is based on a group signature scheme that we adapt to the setting of
next-generation cars. As every technology roll-out takes place in a certain legal
framework, our approach aims at retrofitting privacy-enhancing technology to regu-
latory circumstances that may have been set with the best intentions for protecting
customers, but ultimately threaten their privacy. The report is joint work with Sven
Schäge, Martin Goll and Thorsten Holz and has been published as HGI-TR 2013-
001 [91]. The author provided the initial idea, devised the approach and the adaption
of the group signature scheme together with Sven Schäge and was responsible for
the system design and architecture. Chapter 5 builds upon this work and generalizes
it, while still using electric mobility as a working example. The work was supported
by the German Federal Ministry of Economics and Technology (Grant 01ME12025
SecMobil).

mXSS Attacks: Attacking well-secured Web-Applications using innerHTML Mu-
tations This paper demonstrates a new class of XSS vectors, the class of mutation-
based XSS (mXSS) vectors, which may occur in innerHTML and related properties.
mXSS affects all three major browser families: IE, Firefox, and Chrome. We were
able to place stored mXSS vectors in high-profile applications like Microsoft Hot-
mail, Yahoo! Mail, Rediff Mail, OpenExchange, Zimbra, Roundcube, and several
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commercial products. mXSS vectors bypass currently deployed server-side XSS pro-
tection techniques (like HTML Purifier, kses, htmlLawed, Blueprint and Google
Caja), client-side filters (XSS Auditor, IE XSS Filter), Web Application Firewall
(WAF) systems, as well as Intrusion Detection and Intrusion Prevention Systems
(IDS/IPS). We describe a scenario in which seemingly immune entities are being
rendered prone to an attack based on the behavior of an involved party, in our case
the browser. This paper is joint work with Mario Heiderich, Jörg Schwenk, Jonas
Magazinius, and Edward Z. Young. It was published at the 20th ACM Conference on
Computer and Communications Security (CCS), 2013 [111]. The author’s contribu-
tion lies in evaluating the attack surface, i. e., the prevalence of innerHTML usage on
the web and evaluating the developed light-weight client-side mitigation approach.
He was able to demonstrate an exceptionally low overhead, both in terms of in-
creased transfer volume and rendering speed in a controlled, as well as, a real-world
scenario.

Communication Reduced Interaction Protocol Between Customer, Charging Sta-
tion, and Charging Station Management System From a network operators per-
spective, charging stations are the one network element, where a customer can not
only receive energy, but also deliver information into the network. This paper deals
with the question how the customer’s interaction with the network can be minimized,
in an attempt to reduce the potential attack surface. The paper was published to-
gether with Karl-Heinz Krempels, Christoph Terwelp, Stefan Wüller, and Sevket
Gökay at the 3rd International Conference on Smart Grids and Green IT Systems
(SMARTGREENS), 2014 [138]. The author redesigned the initial protocol from a
cryptographic engineering perspective to ensure that customer authentication actu-
ally takes place. He also demonstrated how the protocol could be further modified
to adequately protect customers’ locational privacy. This work was supported by
the German Federal Ministry of Economics and Technology (Grant 01ME12025 Sec-
Mobil).

How Secure is TextSecure? This paper [90], which is under review at the time of
writing, provides the first complete description of TextSecure’s complex crypto-
graphic protocol and the first thorough security analysis of TextSecure. Among
other findings, we present an Unknown Key-Share Attack on the protocol, along with
a mitigation strategy, which has been acknowledged by TextSecure’s developers.
Furthermore, we formally prove that—if our mitigation is applied—TextSecure’s
push messaging can indeed achieve the goals of authenticity and confidentiality.
This is joint work with Christian Mainka, Christoph Bader, Florian Bergsma, Jörg
Schwenk, and Thorsten Holz. The authors thank Tibor Jager for insightful com-
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ments and Dominik Preikschat for his initial analysis and documentation of a pre-
vious version of TextSecure’s source code in his Bachelor’s thesis. The author’s
contribution lies in the reconstruction of TextSecure’s protocol, together with
Christian Mainka, and the further development of the initial attack vectors, together
with Christian Mainka and Christoph Bader. He also pointed out and described two
other issues and devised mitigation strategies for all flaws found in TextSecure.
Chapter 3 builds upon this work, which is in submission at the time of writing. This
work was supported by the German Federal Ministry of Economics and Technology
(Grant 01ME12025 SecMobil).
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2
Security and Privacy Risks of Scalable Vectors Graphics

Fools make feas and wise men eat ’em.
—Benjamin Franklin, Poor Richard’s Almanack

In the introduction to this work we phrased the active research into novel attack
vectors and consequentially the development of better mitigation techniques as pre-
condition A, necessary to protect private data on computer systems.

Classical image formats, like JPEG or PNG, were just that: images. While one could
of course try to interpret such images as arbitrary data, web browsers generally
did not, although image parsers themselves contained vulnerabilities in the past.
With the inclusion of Scalable Vector Graphics (SVGs) into the HTML5 standard
this paradigm changed. We show the severe implications on users’ security and
also discuss privacy aspects of the fact that a living, and thus constantly evolving,
standard is not always fully understood by all developers. We discuss various novel
attack vectors and show how they can be mitigated, thus enlarging the foundation
of defensive work.

2.1 Introduction

One of the factors behind the huge success of the World Wide Web is its ability
and capacity for viewing image files within a web browser. Compared to the text-
only formats, an image can convey considerably more information. A typical browser
supports many different image file formats, such as JPEG, PNG and GIF files, whilst
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Figure 2.1: A classic GhostScript/SVG example

the vast majority of websites on the Web contain at least one graphic in either one
form or another. Since image files are complex and need to be parsed and rendered
before they can be displayed by a browser, it comes as no surprise that the images
have security implications. To give an example, there were several cases in the past
where the validation routine of image libraries contained security flaws leading to
vulnerabilities [1, 2, 4]. For this reason, we need to consider the risk of images as
the attack vectors.

One image format that had received limited scrutiny and little attention from the
web development community is Scalable Vector Graphics (SVG [5]). This family of
file formats comprises several specifications and specification drafts for composition
and rendering of the vector based images and graphics. SVG is based on XML
and was first published by the W3C in 1999. SVG images have not gained much
traction from the web developers, as the support provided by major browsers was
not consistent and only a small subset of SVG features had been known to work
reliably on a sufficiently large base of the web browsers. Browsers, like Firefox 1.5,
already supported a decent subset of SVG features in November 2005, showcasing
SVGs such as the famous GhostScript Tiger shown in Figure 2.1. This particular
image is often used to illustrate the abilities of the vector based graphics to display
complex structures. Other browsers, namely Internet Explorer, did not support
SVG, unless a user installed an external plug-in.

All this has significantly changed with the appearance of HTML5: the W3C and
WHATWG draft specifications for HTML5 require modern web browsers to support
SVG images’ embedding in a multitude of ways [114]. SVG images can now for
example be engrafted in a given document either in the classical way via specific
tags such as <embed> or <object> tags, or in the novel ways such as with <img> tags
or inline in any HTML5 document. Internet Explorer 9 currently supports a large
subset of SVG features as tests with the tech previews and available beta versions
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show. Furthermore, both Firefox and Webkit-based browsers, such as Chrome and
Safari, as well as Opera, provide thorough SVG support.

Hitherto, SVG is mainly used in the context of screen and print design, as well as
in the cartography and medical imagery, which all can be attributed to the lack of
proper browser support [163]. This is however expected to change, owing to the SVG
support being implemented in all modern web browsers, consequently lifting SVG
files from being a niche format for W3C-compliant and plug-in-equipped browsers
only, to a widely used toolkit for enhancing images, diagrams and rich-text docu-
ments across the board. Depending on the rendering client’s capabilities, an SVG file
can contain interactive and animated elements. Processing events and raster images,
embedding videos, and rich-text are also feasible. Contrary to popular belief, SVG
files should thus not be considered to be plain images or animations, and it is neces-
sary to treat them as fully functional, one-file web applications capable of potentially
containing HTML, JavaScript, Flash and other interactive code structures.

2.1.1 Contribution

In this chapter, we elaborate on the security risks of improper SVG handling. Before
we discuss ways to mitigate these risks, we introduce several novel attack techniques
of using SVG images to target modern, real life web applications (such as Medi-
aWiki installations like Wikipedia, DeviantArt, and other high profile websites), as
well as their unsuspecting users. Specifically, in Section 2.3 we present an Active
Image Injection (AII) attack, in which arbitrary JavaScript code can be delivered
via SVG files. Several other attacks such as SVG-based cross site scripting attacks
or SVG chameleons (i. e., files that are interpreted differently depending on how
they are opened) are also delivered. AII attacks are particularly important, since
they are caused by faulty SVG implementations in modern browsers, thus affect
all websites allowing users to embed external images. Our initial research thereby
significantly extends and partly falsifies the information available in the Browser
Security Handbook, so far only covering risks connected to browser-deployed SVG
in plugin containers. Furthermore, we discuss how current state-of-the-art filtering
techniques are deceivable via using SVG files.

The basic idea behind all of our attacks is the fact that SVG files can accommodate
active content, whereby browsers actually interpret this content, as it is standard-
compliant. This idea is related to similar attacks that take advantage of code em-
bedded in document formats [18, 60, 153] and we show that SVG images can be
turned into an attack vector. In addition, we demonstrate the damaging potential
of SVG files embedding arbitrary data formats and show how this property can
be used to carry out attacks using Adobe Reader, Java Runtime Engine and Flash
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Player vulnerabilities. We discuss the impact of our attack on modern browsers such,
showing that especially inline SVG grants new possibilities for bypassing website-
and browser based XSS filters.

To mitigate the risks introduced by SVG-based attacks, we debate and evaluate sev-
eral defense strategies. We showcase a filtering solution that is capable of removing
potential malicious content from a given SVG file. Our approach does not break the
functionality of the core features of fully interactive and descriptive SVG images. In-
stead, we extend an existing and widespread filtering software to support filtering of
illegitimate and malicious content from SVG files, without damaging the benign file
structure and contents. We have formerly implemented a prototype of the system
and tested it with 105,509 SVG images obtained from Wikipedia. We found that we
can filter 98.5% of the files without causing any difference in the visual appearance
of the image, and for the remaining 1.5% we determined the visual deviation to be
negligible in more than half of the cases.

2.1.2 Outline

The remainder of this chapter is structured as follows: in Section 2.2, we first pro-
vide technical background on the SVG file format and discuss various deployment
techniques, as well as, related work. In Section 2.3 we present several novel attack
vectors against websites and browsers, and discuss their impact. In the following
Section 2.4 we show how SVG-based attacks can be effectively mitigated and present
a large-scale evaluation of our approach in Section 2.5. We end the chapter with a
discussion and a summary.

2.2 Technical Background

This section provides a brief overview of the SVG file format and discusses the attack
surface enabled by this image format, i. e., we illustrate the different ways available
for an attacker to send arbitrary SVG files to a victim.

2.2.1 Overview and Benefits

The Scalable Vector Graphics (SVG) file format was introduced in 1999 when it was
published by the W3C in an attempt to combine the best of both the specification
drafts for Precision Graphics Markup Language (PGML) developed and published
by Adobe, and the Vector Markup Language (VML) developed and published by
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Microsoft, Autodesk, Hewlett Packard, and others, all in 1998. SVG is a vector
graphics format, i. e., it uses geometrical primitives such as points, lines and curves
to describe an image, while it supports both static and dynamic content. The above
mentioned static content and dynamic behavior are described in an XML-based
format, which implies that SVG files are in fact text files.

The impact of SVG on the Internet can be described with the following character-
istics:

• Scalability: SVG files are, as the name indicates, scalable based on their na-
ture as vector graphics. This means that graphical output devices of any size
can render SVG images without significant information loss or facing deficien-
cies in display quality. In times of websites’ inhomogeneous output devices
such as browsers, feed- and screen readers, smartphones and Wireless Markup
Language (WML) compatible cellphones, this enables web developers to pub-
lish rich online documents without having to worry about the screen dimension
of the device requesting the document.

• Openness: Unlike classical, raster-based image formats, SVG files are neither
stored in a binary format nor is there a compression scheme rendering the
actual content of the file unreadable for the human eye. SVG images can be
enriched with metadata and comments, so that a (handicapped) human as
well as a program (e. g., a search engine or comparable parser) can effecively
extract relevant information from the file in question. In this case accessibility
is ensured by storing more descriptive information in a given file, compared to
the rather limited possibilities of image comments provided by GIF and PNG
files, or the embedded Exchangeable Image File Format (EXIF) data in RAW
and JPEG images. Note that gzipped SVG files (also know as SVGZ) create
an exception, for they use lossless compression as means to reduce the file size.

• Accessibility: Related to the aforementioned openness, an SVG image can
be enriched with sufficient metadata and information to be Web Accessibility
Initiative (WAI) compliant, i. e., visually impaired users can extract relevant
information by having their tools parse and read the metadata embedded in
the SVG. Furthermore, screen readers can (theoretically) parse SVG data and
describe the shapes and visuals used by the image, allowing a broader range
of users to benefit from its contents. In contrast, raster-based images are void
of this kind of support.

• XML compliance: SVG images are supposed to consist of valid XML. This
commissions browsers to pre-validate the structure and well-formedness of an
SVG image before rendering its contents. These validation possibilities ensure
consistent quality of SVG images, while at the same time preventing malformed

17



2 Security and Privacy Risks of Scalable Vectors Graphics

SVG files from being shown and causing damage to the processing device. Yet
the validity aspect and well-formedness constraint do not apply in case of the
inline SVG as a part of HTML5 documents, which we inspect in greater detail
in Section 2.3.4.

The SVG family consists of several members and we use the following three file types
as examples in later sections:

• SVG Full 1.1: SVG Full describes the full SVG feature set including 81
different SVG elements and tags. The specification is designed without a
special focus on the devices parsing the SVG data.

• SVG Basic 1.1: SVG Basic is supposed to deliver a subset of the SVG Full
specification to ease the implementation for developers of browsers for PDAs
and handheld devices. SVG Basic only provides 70 of the 81 SVG elements
specified in SVG Full 1.1. Contrary to SVG Tiny 1.2, the SVG Basic 1.1
features also include support for SVG fonts.

• SVG Tiny 1.2: SVG Tiny is specifically designed for smartphones and simi-
lar mobile devices with limited computing, rendering, and display capabilities.
The subset of allowed SVG elements and tags has been reduced to 47 ele-
ments. SVG Tiny also ships several exclusive possibilities for event binding
and external resource loading which we discuss in Section 2.3.

Additionally, the SVG specification provides interface descriptions for an SVG Doc-
ument Object Model (DOM), which implies that SVG files also offer some dynamic
capabilities. Users can create SVG files capable of providing event handling, effects,
time-based changes and animations, as well as zoom effects and other helpful dis-
play enhancements. A large set of filters can be applied to the elements of SVG
files to even more greatly increase the possibilities for image transformation and
animation.

The ability to combine SVG with the XML Linking Language (XLink) features
allows SVG files to link elements to other elements in the same image file, other
image files or arbitrary objects referenced via Uniform Request Identifiers (URIs).
Furthermore, these image files support the implementation of International Color
Consortium (ICC) and Standard Red-Green-Blue (sRGB) color profiles, allowing
the embedment of arbitrary content such as Flash, PDFs, Java and HTML via the
<foreignObject> element.
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2.2.2 HTML, SVG, and XML

Being historically an XML-based language, processing of SVG documents has been
quite different from the way browsers process classic HTML websites. For instance,
a slight violation of the XML syntax, such as missing closing tags or attribute value
quotations, typically cause SVG processors to exit with an error. However, with the
integration of SVG capabilities into modern browsers, this strict parsing approach
got amalgamated with their more tolerant way of processing HTML, CSS, JavaScript
and the like.

This mixture is causing browsers to process SVG through using two different pro-
cessing modes: an HTML processor engine for CSS and JavaScript contents, and an
additional SVG parser supporting XML-specific features like XML transformations
(e. g., XSLT), XML Entity resolution, and tracking of XML Namespace bindings.
Depending on the particular website’s style of using SVG, the browser switches be-
tween the two processing modes on the go. For instance, encountering an inline
<svg> tag within an HTML5 document causes the browser to switch from HTML
mode to XML/SVG mode. Vice versa, if the browser encounters an HTML-specific
tag (e. g., <p>) within an SVG mode context, it automatically closes all open SVG
elements, switches to HTML mode, and renders the given tag.

As we show in the following sections, this approach is error-prone and may cause a
lot of SVG-related vulnerabilities in most state-of-the-art browser engines.

2.2.3 Deployment Techniques

The capabilities, in terms of scripting and content inclusion of SVG files, strongly
depend on how they are embedded in a website or loaded by the browser attempting
to display them. In this section, we focus on five diverse manners of SVG files being
deployed by a webserver or web application. In addition, we outline the attack
surface we have discovered in connection to the five deployment techniques. The
specific attack vectors we use are discussed in detail in Section 2.3, followed by
Section 2.4 focusing on how to mitigate and defend against those attacks.

1. SVG deployed via uploaded files: A large number of tested web applica-
tions (e. g., MediaWiki and Wikipedia, OpenStreetMaps, DeviantArt, Open-
ClipArt, and several other free image hosting services) consider SVG files to
be equivalent to raster images such as PNG, JPEG, and GIF files in terms
of security implications. MediaWiki and Wikipedia claim to block the upload
of SVG files containing script code, but we did manage to easily bypass this
restriction. As we show in the next section, SVG files should be displayed
and executed with a heavily limited set of features to prevent universal XSS
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attacks, since these files might contain scripts, embed arbitrary content and
process events. In addition, we discovered alternative course of action for out-
maneuvering the capability limitations of current browsers, which are used
to protect sensitive DOM properties such as a website’s cookies. Those are
discussed in detail in Section 2.3.2.

2. SVG deployed via CSS backgrounds and img tags: This way of deploy-
ing malicious SVG files can be considered as the most dangerous and effective
attack, granted that the majority of the web applications judge <img> tags as
part of user generated HTML to be harmless: <img src="evil.svg">.
Filter software, such as the HTMLPurifier [235], OWASP AntiSamy [68], and
similar tools whitelist image tags and a large number of web applications allow-
ing user-generated HTML are prone to be sensitive to a novel class of attacks
we term active image injections. Again, we underline that SVG files should be
displayed and executed with a heavily limited set of features to prevent uni-
versal XSS attacks. In Section 2.3.2 and 2.3.5, we particularize on the attack
vectors we discovered through using this presumably harmless way of deploy-
ment, and outline an innovative method of attacking browsers and high traffic
web applications.

3. SVG deployed via inline SVG: The HTML5 specification draft suggests
the web browsers to support websites providing inline SVG. This means a
developer and an attacker are equally able to inject arbitrary SVG content
right into the markup tree of a HTML document. The browser will then
switch its parsing mode, use an intermediary layer to parse the (possibly non-
well-formed) SVG content, clean it up, pass it on to the internal XML parser
and layout engine, and then commence parsing and rendering the remaining
optional HTML content. The last step likely includes even more inline SVG
elements [69] that are capable of interacting with the already parsed content.
In Section 2.3.4, we illustrate how this facilitates XSS filter bypasses of existing
websites, filter libraries, and most importantly browsers and comparable user
agents.

4. SVG deployed as font file (SVG Fonts): The SVG standard specifies
several possibilities to create font files completely consisting of SVG data [3].
Modern browsers allow their inclusion via CSS and the @font directive. In case
when the browser supports SVG fonts, for every character with an SVG font
assigned, the parser checks whether the character has a representation as an
SVG path/glyph data and applies this to the view port if possible. SVG fonts
provide a prominent range of features for detailed and complex font formatting,
Unicode support, alternative glyphs, default behavior for missing glyphs, and

20



2.2 Technical Background

more. We detected attack vectors allowing the deployment of arbitrary plug-in
content via SVG fonts working on a variety of desktop and mobile user agents.

5. SVG deployed via iframe, embed, or object tags: The attack surface is
comparably large to the one for the classic XSS and does not differ much from
the regular <iframe> and <script> injections. It will thus not be discussed
in more depth in this chapter.

2.2.4 Related Work

Not surprisingly, being one of the most common problems in the area of web security,
the Cross Site Scripting (XSS) problem has received a lot of attention during the last
decade. [37, 40, 98, 126, 129, 131, 151, 176, 194, 220, 226]. On the offensive side,
several different kinds of attacks were studied [40, 129, 151]. Approaches to prevent
XSS attacks include information flow and taint tracking [98, 176, 194, 220], and
analysis on the client- or server-side [37, 131, 220]. John’s dissertation elaborated
on the attack and defense techniques in detail [126], while Phung et al. presented
specific defense techniques against client-side and JavaScript-based attacks [193].
Nevertheless, none of these works dealt with the threat of malicious image files in the
JavaScript execution context. In this chapter, we introduce a new way to mitigate
innovative attacks that in turn highlight the fact that in the era of HTML5, even a
previously unsuspicious <img> tag may introduce security vulnerabilities due to the
tight integration of SVG images into the modern browsers.

One exception is the work by Barth et al., who discussed attacks and mitigations
around faulty and jaunty content sniffing [24]. Deprecated browsers such as Opera
9 and Internet Explorer 6 allowed to execute JavaScript by combining image tags
with JavaScript URIs, but none of the tested modern browsers supports this kind
of render behavior anymore, as this particular attack vector has been recently fixed.
In contrast, the risks of Cross Site Scripting and related attacks against browsers
induced by SVG images have not yet been investigated.

SVG as a subject itself surfaced rarely in the scientific security community. One
notable exception is given by Damiani et al. [71], who dealt with access control
requirements of parts of SVG files. Their assumption was that SVG files containing
sensitive personal information should be rendered differently for different viewers,
hence requiring some parts of an SVG document to be deleted (or kept encrypted).
However, they did not manage to cope with the threat of misusing SVG files as attack
vectors. In the same line of work, Mohammed et al. [161, 162, 163] investigated
the use of SVG images in medical contexts, where certain security guarantees have
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to be granted for sensitive information contained in an SVG image. Again, their
publication did not resolve the offensive use of SVG files.

One area of research closely related to the results presented in this chapter deals
with the problem of code embedded in document formats. For example, Backes et
al. showed that maliciously prepared PostScript files can be used as an attacker
vector [18], and Checkoway et al. discussed malicious TEX files that can, among
other consequences, lead to an arbitrary code execution and data exfiltration based
on TEX’s Turing-complete macro language [60]. Even pure text files might contain
shellcode as shown by Mason et al. [153]. We continue this line of scientific enquiry
and present attacks related to SVG images and show how they can be mitigated.

An orthogonal area of research are alternative browser designs [26, 65, 96, 223].
These browsers explore how the security of state-of-the-art browsers can be im-
proved, for example by creating separate protection domains. The results presented
in this chapter need to be taken into account when designing more secure browser
and especially the fact that <img> tags might lead to suspicious content have to be
considered, as we detail below.

2.3 Attack Vectors Using SVG Files

Based on the prerequisites discussed in the previous section, we now introduce sev-
eral different attacks based on SVG files and discuss their security impact.

2.3.1 Responsible Disclosure and Ethical Aspects

We describe several novel attacks related to SVG files and their security impact,
ranging from universal XSS attacks to triggering vulnerabilities based on SVG im-
ages. Presenting such attacks is obviously an ethically sensitive area and one ques-
tion that arises is if it is acceptable and justifiable to publish the attack details. In
the following, we describe most attack vectors from a high-level point of view and do
not present all implementation details. Furthermore, we have contacted all major
browser vendors and informed them about these problems; several reported prob-
lems have already been fixed. As a result, an attacker cannot easily take advantage
of these identified attack vectors.

While these attack vectors are interesting, our findings are not an end in themselves.
They allow us to introduce an approach to mitigate the attacks presented in this
chapter based on removing suspicious content from SVG files at the server side in
Section 2.4. Thus, we effectively extend the set of tools available to defend against
attackers.
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2.3.2 Local JavaScript Execution and SVG Chameleons

One of the least sophisticated attack techniques (that is still rather likely to work in
real-world scenarios) is tricking the victim into saving an SVG image from a website
and opening it later on for repeated viewing pleasure. There are only a few ways for
technically less affine users to tell a classic raster-based image (PNG/JPEG/GIF)
apart from an SVG image. Once saved locally and double-clicked, the browser
will open the file—since most users do not have a dedicated software installed that
changes the application to handle the SVG MIME type. The SVG file is conse-
quently opened from a file URI and in case it contains JavaScript, this code will be
executed in the same context. Depending on the web browser the victim is using, the
JavaScript can then attempt to read other files from the hard-disk or neighboring
directories, and cause a data leakage incident. A thrifty adversary can cause the
locally running JavaScript to load an applet from an arbitrary domain, thus even
bypassing many of the security restrictions modern browsers apply for local script
execution.

Similar attacks could be performed with SVG Chameleons, i. e., files containing both
SVG and HTML content. Using in-line XML transformation (XSLT), we managed
to craft an SVG file that acts like an image if embedded via <img>, CSS or similar
ways, but unfolds to a full stack HTML file containing no SVG elements anymore
as soon as opened directly [61]. This attack works with Gecko-based browsers, since
it appears to be the only layout engine supporting in-line XSLT in SVG files. The
attack would involve uploading an SVG Chameleon to a website such as Wikipedia,
and trick the victim into right-clicking the image shown embedded and choosing to
view the original. As soon as that happens, the XSLT will transform the SVG into
an HTML file and execute embedded script code or worse[103].

Interestingly, some browsers such as Firefox do not allow cookie access in case the
SVG file is being opened directly. This is especially important in cases where an at-
tacker can upload SVG files to the same domain a targeted user is being logged into.
The reason for that limitation is a different handling of the SVGDOM compared
to the regular website’s DOM. The SVGDOM does not know properties such as
document.cookie or even document.body. We discovered ways to get around this
limitation, though, by having the SVG create a <foreignObject> tag containing
an Iframe loading the affected website. After the onload event of the Iframe, we
injected JavaScript into its scope capable of extracting sensitive data such as the
cookies and bypassing the more or less unconscious security restrictions.
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2.3.3 Facilitating Cross Site Scripting Exploits

SVG images provide many options for rather uncommon ways to execute JavaScript.
Typical web developers are not necessarily aware of these ways and filter software
that aims at protecting websites agains XSS attacks does consequentially not cover
these vectors. As Heiderich [104] detailed in his PhD thesis, SVG Tiny, for instance,
allows to execute JavaScript using a handler element with an event attribute.
Listing 2.1 illustrates this example. If the event that is assigned to the handler is
specified as load, the handler element’s text content will be executed as JavaScript
without user interaction. Filters following a blacklist approach are typically unaware
of these unusual ways of code execution and are thus unable to detect and prevent
this kind of attacks.

Listing 2.1: Example for uncommon SVG-based JavaScript execution
via <handler> tag

<svg xmlns="http :// www.w3.org /2000/ svg">
<handler

xmlns:ev="http :// www.w3.org /2001/ xml - events "
ev:event="load">

alert (1)
</handler >

</svg >

Heiderich also demonstrated another, equally uncommon way of embedding mali-
cious JavaScript in SVG files, which is shown in Listing 2.2. By utilizing SVG’s
<set>, we can dynamically equip an <feImage> tag with an xlink:href, which
points to a data: URI. While this kind of image element is intended to apply
overlay effects for SVG elements using external resources, the URI in the example
contains another SVG image that in turn contains malicious JavaScript. The script
is executed immediately on loading the <feImage> tag.

Listing 2.2: Example for uncommon SVG-based JavaScript execution via <set> tag
<svg

xmlns="http :// www.w3.org /2000/ svg"
xmlns:xlink="http :// www.w3.org /1999/ xlink">
<feImage >

<set
attributeName ="xlink:href"
to="data:image/svg+xml; charset =utf -8;
base64 , PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53
My5vcmcvMjAwMC9zdmciPjxzY3JpcHQ %2 BYWxl
cnQoMSk8L3NjcmlwdD48L3N2Zz4NCg %3D%3D"/>

</feImage >
</svg >
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Among others, these ways of executing JavaScript from within an SVG file were used
to bypass the filter used by the software MediaWiki, which is the most commonly
used open source wiki software and, among many others, the platform used by
Wikipedia.

2.3.4 Facilitating Filter Bypasses

One discriminating feature between the rendering behavior of HTML on the one
hand and XHTML- and XML-based websites and documents on the other is the
handling of entities in plain text tags. These tags are HTML elements that typ-
ically contain plaintext information, such as <script>, <style>, or <noscript>,
<noframes> and <nostyle> tags. In HTML documents, entities such as &#x61; are
treated as such, while in XHTML and XML documents these entities will be treated
as their canonical representation (in our example: a). This leads to the situation
that in XHTML/XML contexts the code <script>&#x61;lert(1)</script> will
lead to the execution of the alert method, which, in contrast, would simply lead to
an error indication by the script engine in in the context of a HTML document.

As SVG files are regular XML documents, they are interpreted in the former way.
From a web security point of view it is worth noting that, for most browsers, this
behavior also applies to inline SVG. In consequence, the handling of entities as
their canonical representation can be transfered to regular HTML documents, under
the condition that somewhere in their markup tree they contain an opening <svg>
tag. While the <script> example above will not execute in an HTML document,
<svg><script>&#61;lert(1)<p> will.

For reasons of usability, browsers’ parsers are traditionally rather tolerant about well-
formedness. This also extends to inline SVG, which in consequence needs neither
attribute delimiters, nor requires balanced tags or closing tags. The <p> element
in the last example is enough for the parser to conclude that the inline SVG ended
and the following should again be interpreted as HTML. In an attempt to correctly
interpret our malformed code, the browser thus closes <svg> and <script> by itself,
which necessarily triggers the execution of the alert method. When we initially
published these findings this technique in combination with an injection, allowed for
bypassing most of the common XSS filters.

2.3.5 Active Image Injection

Several ways of abusing SVG files to execute JavaScript in situations where no
script execution should happen at all have been fixed after we reported them back
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to browser vendors. Some vendors even completely restricted access to the DOM
from an SVG context. This makes it very hard to execute same-domain JavaScript
from within SVG files delivered via CSS, image tags, CSS fonts, or other ways in
which browsers deliver images. Even if a web browser can be tricked into executing
JavaScript via SVG deployment methods unintended for this, the script will run in
the context of about:blank and cannot get access to the deploying website’s DOM.
This effectively disables XSS attacks, since they require their payload to execute on
the targeted domain and not on a bogus fully qualified domain name (FQDN) such
as about:blank.

A yet unsolved problem for several state-of-the-art web browsers is plugin content.
The Opera browser, for instance, allows to use SVG files in order to deploy plugin
content such as Flash, Java, and PDF files, depending on which plugins have been
installed and registered on the user’s system. This does not only hold for SVG files
embedded via tags such as <embed>, <object>, or <iframe>, but also for <img>
tags and CSS. This means that an attacker can execute arbitrary plugin code on a
victim’s machine without any user interaction by just having the victim browse a
website containing an image tag. The image can be delivered from any arbitrary
domain, thus most high-traffic websites and web applications allowing user generated
image content are affected by this problem.

The Opera security team has been informed about this issue in summer 2010, but
so far this vendor did not immediately address the issue with a sufficient fix. This
left applications such as Facebook, Google Mail, Yahoo! Mail, and many other
websites prone to this kind of Active Image Injection attack—in case their users
visited the page with Opera version 9 to 11. An example showcase had been set up
to demonstrate the severity of the vulnerability, also trying to enforce an urgent fix
from the Opera team [102].

Early versions of the Firefox 4 beta browser were prone to AII attacks as well,
but these bugs have been spotted and fixed with Firefox 4 Beta 9, and did not
surface in the final release version. Nevertheless, all browser vendors should monitor
the security boundaries of SVG deployment closely, since small changes can cause
vulnerabilities affecting a majority of web applications at once.

2.3.6 Browser Vulnerabilities

So far we covered attacks utilizing malicious SVG files to be instrumented in attacks
against websites. We demonstrated how SVG files can be used to facilitate XSS
attacks that bypass existing and well-configured filter mechanisms and security best
practices, such as encoding user-generated data into HTML entities. SVG files can
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Figure 2.2: An SVG containing plugin content delivered via favicon

have other purposes for attackers, though, and be used to leverage attacks against the
browser itself, or even against the underlying operating system. During our tests,
it became evident that especially complex SVGs or SVG chameleons containing
executable plugin code have the potential of easily crashing web browsers. We
observed and reported several cases of memory corruption occurring in state-of-the-
art browsers, which were caused by faulty or incomplete implementation of SVG
features, or interference effects between the browser components delivering the SVG
data and other components delivering embedded plugin code and Iframes.

One significant example showing the dangers of SVG files when used as attack tools
against browsers is a specific bug in Opera version 11.50 24581. This version marked
a turning point in the Opera browser history, since it was the first officially released
version supporting inline SVG so far. We investigated an attack scenario where an
attacker creates a website providing an SVG image as favicon. This SVG image
deployed malicious content in form of a Flash file and a Java applet, as well as,
an embedded PDF file. When opening the malicious website, the Opera browser
attempted to load the favicon to decorate the loaded page’s tab and address bar, as
shown in Figure 2.2. Although this context should never execute plugin content or
JavaScript at all, the browser started to play the Flash video we used for testing,
and delivered the applet and PDF file—within the address bar as can be seen in
Figure 2.2. The code was executed in the browser context, thus an exploit like
this could easily haven been escalated from a proof of concept to a full attack,
demonstrating how arbitrary vulnerabilities in browser plugins can be triggered via
image files.

Furthermore, SVG-based attack vectors should be considered relevant for another
category of software as well: mail clients such as Thunderbird and Opera Mail make
use of the same (or only slightly modified) rendering and layout engines as their
respective browser counterparts. We tested the latest versions of Opera Mail and
Thunderbird 3.3, and discovered that both products allow usage of inline SVG inside
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HTML mails. One attack vector caused Thunderbird 3.3 alpha 3 to automatically
store an SVG file in the temporary folder, open it, and execute JavaScript in the
file:// context. The only required user interaction is a click on an arbitrary part of
the displayed mail body. Attacks like this can be used to place malicious software or
to steal sensitive information from the /tmp folder or other directories, depending
on the location of the SVG file and the post-exploitation techniques used by the
attacker.

2.3.7 Compromising User Privacy

In the previous sections we discussed attacks against websites and how SVGs fa-
cilitate the exploitation of browser vulnerabilities. In the following we focus on a
privacy-enabling technology that relies on the ability to completely recognize and
correctly parse all elements of all web standards the various browsers interpret:
application layer web proxies. Users turn to web proxies for a variety of reasons,
prominently among them the desire or need to cloak their identity against the web-
site they are visiting. Application layer web proxies—sometimes still referred to as
CGI proxies, although few are still based on the actual Common Gateway Interface—
are a widespread technology that is based on the rewriting or wrapping of HTML
elements. These proxy servers are web applications that present a web form to
users, where they can enter a URL of the website they want to browse. The proxy
then retrieves the requested URL and presents it to the user. If the target web-
page contains hyperreferences (href) the proxy rewrites these elements, such that
the href again points at the proxy, which will retrieve the target when the user’s
browser requests it. Popular examples of such proxies are HideMyAss5, KProxy6,
webproxy.net, or MetaGer7. While these are popular services backed by commercial
entities, a hidden champion among application layer proxies is Glype8, a free PHP-
based proxy that has more than 4000 publicly accessible instances on the Internet
at the time of writing. Among these instances is also webproxy.stealthy.co, a
platform originally developed to facilitate the dissemination of information during
the Arab Spring. Glype is published in version 1.4.6 at the time of writing.

The promise all these services implicitly or explicitly make to the user, is that the
operator of the target website will be unable to identify the user browsing the website
through the proxy, as each and every request to any target website will be redirected
through the proxy. Thus, the use of such a proxy promises a form of privacy to the
user, i. e., anonymity towards the target website. As HTML is a living standard,
5 https://www.hidemyass.com/
6 https://www.kproxy.com/
7 https://metager.de/
8 https://www.glype.com/
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fulfilling this promise is a constant struggle to keep up with each and every new
aspect not only of HTML, but also of CSS, SVG, and all other languages and file
formats parsed by the user’s browser.

Listing 2.3: Example for proxy circumvention using SVG and data URI
<img src="data:image/svg+xml ,&lt;svg %20 xmlns = ’%68 ttp :%2f/www.w3.org

/2000/ svg ’%20 xmlns:xlink = ’%68 ttp :%2f/www.w3.org /1999/ xlink ’&gt;&lt
;image %20 xlink:hr %65f= ’%68 ttp :%2f/ leakme .com/svg -via -data ’&gt;&lt
;/ image&gt;&lt;/ svg&gt;">

Anonymous users are undesirable for various groups of content providers on the Web.
For the operator of a website, who wants to identify users that pass through a proxy,
or an advertising company, whose revenue depends on the fact that it can serve the
right ads to the right target audience, the incomplete understanding of SVG’s capa-
bilities by proxy developers and operators offer a way to compromise users’ privacy.
Listing 2.3 and Listing 2.4 represent two examples that are not correctly rewritten by
any application layer web proxy we evaluated. The latter example is rather surpris-
ing, as it is a very straight-forward use of SVG syntax and was only slightly varied
from the example found in Mozilla’s Developer Network documentation9. While
HideMyAss or KProxy attract high traffic volumes, the bypass of Glype is worri-
some due to its high proliferation on the Internet and use in contexts that aim at
high profile targets, like webproxy.stealthy.co, that initially aimed at protecting
dissidents against repressive governments. The examples listed here only represent
a current subset of potential occurrences, where developers are unable to keep up
with a standards evolution at all times, and are easily mitigated by amending the
rewriting engine. However, they illustrate that continuously representing a moving
target completely and correctly within a static approach is continuously prone to
failure.

Listing 2.4: Example for proxy circumvention using SVG fill and mask attributes
<svg >

<defs >
...

<mask id="Mask">
<rect x="0" y="0" width="200" height ="200" fill="url(https ://

leakme .com/svg -fill)" />
</mask >

</defs >
<rect x="0" y="0" width="200" height ="200" fill="green" />
<rect x="0" y="0" width="200" height ="200" fill="red" mask="url(

https :// leakme .com/svg -mask)" />
</svg >

9 https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Clipping_and_masking#
Masking
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2.4 Mitigation Techniques

In the following section, we cover mitigation techniques to fend the attacks presented
in the previous part. We start with a discussion of the common XML filtering and
sanitization techniques, point out which problems occur when SVG is being used
in modern web browsers, and list arguments as to why the classic and formerly
approved approaches cannot be applied to SVGs used on the Internet. Based on
these insights, we introduce and discuss SVGPurifier , a PHP-based, server-side SVG
filter software we have developed to mitigate the identified attacks. What is more,
we outline a set of recommendations for browser vendors addressing non-standard
behavior that causes security problems with malicious SVG images and inline SVG
parsing. Some of the listed issues have already been adopted by browser vendors
during the preparatory phase of the paper we published on these issues [107].

2.4.1 XML Sanitization

The most common approach for verifying an XML document’s validity is the use of
Document Type Definitions (DTDs), XML Schema, or RelaxNG descriptions. All of
these languages authorize a precise specification of which XML elements, attributes,
and other tokens may be used within a specific XML document. For instance,
the SVG Tiny specification provides a RelaxNG description of all XML elements
and attributes that may be used in “Tiny”-compliant SVG documents. We have
investigated these descriptions for practical usage in terms of removing malicious
contents from SVG files. Unfortunately, we determined that their capabilities of
restricting SVG contents are more focused on the XML documents’ structure rather
than restricting the content values of the SVG elements and attributes. Though
both XML Schema and RelaxNG provision the means to restrict an SVG attribute
value’s data type to integer, string, URI, or other data types, we concluded this is
insufficient for effectively filtering malicious SVG contents, such as those exemplified
above.

For once, there is no feasible way to restrict the xlink:href attribute of URI data
type to point to same-domain locations only, which would have been essential for
resisting certain XSS attacks. The only viable way to perform such a verification
while using XML Schema or RelaxNG capabilities comes down to setting the at-
tribute’s data type to a restricted string value that must conform to a given regular
expression pattern. Expressing a value restriction as stated above would thus re-
quire a regular expression to be crafted for each type of restriction necessary for
fending off the attacks. Although this might be (somehow and somewhat) feasible
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for same-domain URIs, it is easy to imagine this approach to fail for complete CSS
declarations, Base64-encoded contents, and the like.

Listing 2.5: XML Entity Resolution leading to element injection
<! doctype html ><svg ><style >
&lt;img src=null onerror =alert (1)&gt;<p>

Another example that demonstrates the impossibility of XML Schema to remove
suspicious content from a given file is shown in Listing 2.5. When processing this
code fragment, Firefox 4 resolves the &lt; entity automatically, resulting in the
alert being triggered. The crux is that the XML entity introduces an additional
HTML element “on the fly” during parsing. An XML Schema validator would seen
a <style> element with odd contents, but nothing to be alerted about (note that
the missing closing tags and attribute value quotations are added automatically
by the parser engine.). However, the HTML renderer resolves the entities, hence
introducing the additional <img> tag, and triggering the onerror event due to the
missing null file.

To summarize, we established that common XML validator techniques, like XML
Schema or RelaxNG validation are not capable of fending the specific SVG attack
vectors described above. Especially in the case of inline SVG, where HTML, CSS,
JavaScript, and SVG elements are mixed arbitrarily, the approach of XML Schema
validation must be revoked as completely ineffective in practice.

2.4.2 SVG Purification

Due to the limitations discussed above, we require another way to prevent the attacks
introduced in Section 2.3. The basic idea of our methodology is to purify SVG
images, i. e., remove all suspicious content from a given file and preserve as much
content as possible. As a result of this transformative process, the visual impact
is minimized and the suspicious content is removed. Next, we discuss the overall
design and present some implementation details.

The open source community provides a lot of tools claiming to possess the skills to
filter user generated input for web applications in order to eliminate active markup
and script code. Their main purpose is usually XSS mitigation and markup sanitiza-
tion, as well as restructuring for validity and well-formedness’ sake. For PHP-based
web applications, several filtering solutions are available and those most commonly
used include:
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• kses [99], that has been incorporated into a highly customized version by the
popular WordPress software.

• htmlLawed [190], which claims to be the fastest and most compact, yet com-
plete solution.

• HTMLPurifier [235], which not only sanitizes data from possibly malicious
code fragments, but also generates valid and well-formed XHTML output.

We analyzed all three XSS filters and have managed to bypass each of them, demon-
strating that even the most sophisticated filtering software can never be able to fully
protect against malicious markup. Some of the bypasses worked only for injections
into SVG files, some even in a HTML/XHTML context.

Despite these drawbacks of the server-side filtering approaches, we have decided to
choose HTMLPurifier as the foundation for our SVG attack mitigation tool. One
major reason for this determination was the fact that HTMLPurifier is very well
maintained, receives frequent updates and security fixes. Another reason is the qual-
ity of filtering: we have only identified a few bypasses for this tool and every single
one of them was fixed very quickly upon having contacted the developers. Still, most
importantly, HTMLPurfier ’s internal API allows to filter arbitrary XML data and
is not limited to HTML by design, unlike the other tested tools. This knowledge
allowed us to create an SVGPurifier branch, a software that is using the HTMLPu-
rifier API, but is not touching the core components. Our SVGPurifier has been
supplied with a large array of data based on the SVG specifications defining which
tags and attributes should be allowed in the user-generated SVG files. We explicitly
whitelist tags and attributes, as well as the tag-attribute combinations and specific
value ranges for attributes. Uncommon sources for cross-site scripting attacks, such
as the <set> tag on older Webkit-based browsers, are limited by SVGPurifier.

The <set> tag can be used in SVG files, similarly to the timing driven equivalent
<animate>, although the attributeName value can only consist of a limited number
of values. Specifically, we only allow those values which cannot be used to initiate
or overwrite event handlers, change xlink:href values on the fly, or reposition
elements and element groups on a website. Our tests showed that the <set> and
<animate> tags can be used to assign javascript: and data: URIs to existing
elements. This can either enable attacks by initiating malicious remote inclusions,
or apply malicious URL schemes to the existing elements.

Attacks like the one just portrayed, as well as those shown in Listing 2.6, can be
no longer carried out. Take account of the fact that the <set>/<animate> func-
tionality is not removed completely, only the remote includes and the assignment of
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malicious URL handlers have been blocked. Furthermore, the resulys of our evalu-
ation show that only two files out of more than 100,000 tested instances from the
Wikipedia servers made use of the <set>/<animate> feature at all (see Section 2.5
for details).

Listing 2.6: Initiating JavaScript execution via set/animate elements
<svg xmlns="http :// www.w3.org /2000/ svg">

<set
attributeName =" onmouseover "
to="alert (1)"/>

<animate
attributeName =" onunload "
to="alert (1)"/>

</svg >

SVGPurifier completely forbids and removes <script> as well as <foreignObject>
tags and event handler usage. Later versions of our purification approach might
prove to add a supplementary scripting layer to allow basic JavaScript execution,
but hinder scripts from reading, and overwriting sensitive data, or conduct other
activities capable of leaking sensitive data or deploying malicious code [115]. As
further elaborated on in Section 2.5, our tests showed that none of the analyzed
and purified SVG used actual <script> tags. Surprisingly, a large percentage of
the test files were making use of <foreignObject> tags, which can be used to
include for example base64-encoded binary data. The reason behind it is that the
software Adobe Illustrator uses this tag to hide proprietary metainfo in the SVG
images generated by the tool [9]. Removing these tags does not affect the visual
information provided by the SVG file.

Similar problems can be caused by maliciously crafted SVG Cascading Stylesheets
(SVGCSS). SVG styles support more properties than classic CSS for (X)HTML
documents and specifically extend the feature set with font formatting, typographic
features, extended pointer event behavior, and the possibility to reference to other
SVG elements containing definitions and visual effects. Arbitrary SVG elements can
constitute reference to other SVG elements or even let external SVG files to borrow
visual information or functionality including event handling. Those references can
be defined via FunctionIRI or the fully qualified paths via protocol schemes such
as data, HTTP and others. SVGPurifier guarantees that no external references
can be loaded by elements allowing script execution. The <use> tag on modern
Opera browser versions is conversely problematic. This tag can be utilized to include
external resources executing JavaScript or providing links with potentially malicious
URL handlers.
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Currently, SVGPurifier scans style elements and attributes of the purified SVG for
potentially malicious patterns and neutralizes them by overwriting certain parts of
the payload. This includes replacing strings indicating the use of CSS expressions,
Opera link and link target properties, as well as, data binding approaches with
the placeholder INVALID. Listing 2.7 demonstrates an example for a purification
result. Be assured that we do not forbid dangerous tags such as <set>, but analyze
the attribute values and remove them in case an attack could be initiated by their
contents.

Listing 2.7: A malicious SVG before and after purification
// before
<svg xmlns="http :// www.w3.org /2000/ svg">

<circle r="50" fill="red" cx="30" cy="30">
<set attributeName =" onclick "

to=" javascript :alert (1) //">
<set attributeName ="fill" to="green">

</circle >
</svg >

// after
<svg xmlns="http :// www.w3.org /2000/ svg">
<circle r="50" fill="red" cx="30" cy="30">
<set to=" INVALID " ></set ><set attributeName
="fill" to="green" ></set ></ circle ></svg >

Section 2.5 will further build upon the results of this purification process and provide
insight into how far our (for XML data unconventional) approach affects the visual
information provided by the SVG test set.

SVGPurifier itself has undergone substantial testing from the security community
during a public demonstration over a time-frame of several months [105]. The results
helped us to refine the filtering mechanism and spot all the less obvious and difficult
to find browser behaviors requiring dedicated fixes to deliver effective filtering and
keep the security promise that the tool poses. During the testing phase we logged
about 500 attempts targeted to break the filter functionality of the SVGPurifier
and inject malicious content. Of those, about 15 were successful and resulted in
the refinement of our algorithms. The SVGPurifier performance scales with the
number of SVG tags and elements to sanitize, but can be considered uncritical since
the main use case for the tool is on the server-side and, depending on the respective
application, only needs to be executed once per SVG image (i. e., each SVG image
is transformed on upload to remove suspicious content).

A server-side solution has the advantage that a website owner can performantly
protect its users from attacks using SVGs and not requiring all users to upgrade
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their client-software. Our evaluation showed that the SVGPurifier was capable of
removing malicious code in all of the discussed test cases. We examined possibilities
to craft a purely client-side SVG filter combined with the possibility of limiting DOM
elements and their capabilities. Our initial research showed that this is feasible and
considered as future work.

2.4.3 Unexpected Browser Behavior

We also found several cases of unusual and (depending on the execution context)
often problematic browser behaviors that forced us to adapt SVGPurifier to address
them:

• To the best of our knowledge, the Opera AII attacks mentioned in Section 2.3.5
have not been fixed by the vendor despite several bug reports from our side.
This problem complicated the implementation of SVGPurifier since basically
any external image resource loaded by an SVG file could contain suspicious
plugin code and initiate an attack.

• Most browsers support the SVG <use> tag, but so far only Opera allows to
include external SVG resources containing script code to execute, or links
to show and point to possibly malicious URIs via URL handlers such as
javascript and data. Most browsers tested permit utilizing the <set> as
well as the <animate> tag to transform xlink:href attributes and set them
with JavaScript and data URIs, too. This should be restricted by browsers for
the sake of avoiding injection attacks via <use>, <set>, and <animate>. How-
ever, none of the over 100,000 SVG files we have tested during our evaluation
actually used this feature.

• Plain text tags inside SVG images such as <script>, <style>, <noscript>,
and similar tags allow to use HTML entities, giving them an equivalent syn-
tactical meaning as their canonical forms. This was relevant for several of the
XSS filter bypasses we described in Section 2.3.4. Especially the automated
decoding of entities such as &lt; and &gt; could be used to bypass XSS fil-
ters and common protection mechanisms. Browsers therefore need to be more
selective in determining which entities get automatically decoded and which
do not. For example, Google Chrome went as far as to completely disable the
automated decoding.
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2.5 Evaluation

We have implemented a prototype of SVGPurifier, consisting of 5,663 lines of PHP
code. To evaluate the tool, we compiled a test set of SVG images obtained from
Wikipedia. We chose this platform for several reasons: SVG images are widely used
within Wikipedia, the content of the platform consists of the contributions from a
large community, and among the contributors, the employment of a diverse set of
tools to create the images can be observed. As a result, we have a heterogeneous
test set that enables us to study the robustness and versatility of SVGPurifier.

To download the files, we used wikix, a tool that uses a snapshot of Wikipedia (ex-
ported as XML) to generate the URLs of the SVG files hosted at upload.wikimedia.
org. The latest snapshot of the English Wikipedia at the time of writing the initial
paper referenced a total of 112,646 SVG images. 105,509 were actually available for
download at that time and we used those files for our evaluation.

2.5.1 Evaluation Setup

In order to minimize the impact of SVGPurifier on usability, the tool should not
alter the visual appearance of an image since this would decrease the user experience.
Our implementation only removes elements from an SVG file, thus (by construction)
no new image element will appear in a purified image. However, the cleaning process
might be too aggressive, i. e., cases where we remove elements that have a visual
impact on the resulting image might occur. To evaluate this effect, we compare the
original image with the purified one and determine if the file was altered during
the process. Since the size of our test set is too large for a manual evaluation, we
developed an approach to compare SVG files in an automated way.

Comparing two SVG images for similarity is difficult, resulting from the fact that
there are countless ways of achieving the same visual appearance. Consequently,
contrasting only the XML markup does not enable us to determine if a pair of
images has the same visual appearance. Therefore, we decided to convert the SVG
files to Portable Network Graphics (PNG) format and then perform the comparative
step. PNG is a raster graphics format providing lossless data compression. Each
pixel is defined in an 24 bit RGB color-space with an optional 8 bit alpha channel
(32 bit RGBA). Comparing two PNG files for similarity can thus be achieved by
matching the value of each channel for each pair of pixels, which in turn results in a
numerical value representing the absolute error a. A value of a = 0 indicates that no
difference between the two images was found, while a > 0 denotes some discrepancy.
Note that this evaluation measures the visual impact of our tool and approximates
the deviation caused by the transformation process.

36

upload.wikimedia.org
upload.wikimedia.org


2.5 Evaluation

We tested the following four tools regarding their capability to convert SVG images
to PNG format:

• Apache batik (http://xml.apache.org/batik/)

• rSVG (http://librsvg.sourceforge.net/)

• GIMP (http://www.gimp.org/)

• Inkscape (http://inkscape.org/)

Based on our test set, we have empirically found that the Apache batik toolkit was
able to convert the largest number of files: only 23 of the 105,509 files could not
be converted by the tool, prompting us to remove them from the test set. All files
from the resulting evaluation set were converted to a PNG image with a fixed width,
assuring the aspect ratio’s preservation. As batik does not fully support declarative
animations, we create static PNG images from the SVG files. In this manner, if
an image was animated beforehand, we will only consider the visual state it is in
before the animation begins. There are five different elements within a SVG file
to accomplish animation: <set>, <animate>, <animateMotion>, <animateColor>,
and <animateTransform>. A close analysis showed that only two SVG files in our
test set actually contained one of these elements, which indicates that this feature is
not (yet) widely used. We therefore consider comparison of static images exclusively
to be only a minor limitation of our evaluation.

After converting images to PNGs, we compare the original and the purified image
using the ImageMagick toolkit, which provides methods for a pixel-wise comparison
of raster images, as well as, for gathering statistics on the amount of aberration.
Furthermore, the tool is capable of creating difference images that visually indicate
what regions of an image contain an error, which eventually enables us to manually
examine cases in which actual changes occur. Other than determining the absolute
number of pixels that differ between the two images, we calculate the normalized
mean absolute error for each pair of images as metrics. We consider the normal-
ized mean absolute error to be more relevant in our scenario than the root mean
square error, as the former weights every aberration equally. Moreover, we log both
the size of the original file, and that of the purified one, factually determining the
compression ratio resulting from the purification process.

2.5.2 Evaluation Results

Based on the procedure outlined above, we analyzed all 105,486 files belonging to the
evaluation set. For 98.5% of the samples, no visual difference exists in the appearance
of the original versus the purified image (i. e., absolute error a is 0 and, therefore,
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all other error metrics are 0 as well). The 99th percentile of the normalized mean
absolute error is 0.00000474877, where 0 represents no error at all and 1 indicates
completely dissimilar images.

When investigating the error cases and the corresponding different images, we often
found that although the image contained some kind of aberration that can be ex-
pressed numerically, a visual difference cannot be easily found by a human observer.
Specifically, we manually analyzed 1,000 test cases in which the absolute error was
larger than zero. We tried to determine in how many cases a human observer would
notice an aberration. While this is not believed to be an approach that is valid over-
all (i. e., specific circumstances like medical applications require precise conversion),
a visual impact in the context of a website exists only if a user can actually spot
it.

During the manual inspection process, we spent about 10 seconds on each pair of the
images to compare them (aided by the difference image to support the user). The
results of this manual examination indicate that only 46.3% of the erroneous samples
were perceived as different from their original. Since user experience may differ, we
provided a website at the time of the initial publication, where we presented all
defective images complete with their original and the difference images, inviting
others to freely inspect these cases [6].

2.6 Discussion

Several side effects were observed during the purification process and the evalua-
tion of this process’ results. An additional positive side effect we found was that
due to the removal of elements not contributing to the visual appearance of the
image, SVGPurifier actually compresses files with an average compression ratio of
2.6. Some files had a slightly larger file size after the purification process, which
was caused by the transformation the tool has performed on broken files. In most
cases, the increase in file size was based on the addition of missing closing tags by
SVGPurifier.

1.59% of the files in our test set contained one or more instances of the <foreignObject>
element. In the majority of the 1,686 cases, this element was used as what had ap-
peared to be an artifact of Adobe Illustrator to store a base64-encoded representation
of its proprietary AI file format within the SVG file. SVGPurifier deleted these el-
ements and no visual impact resulted from this removal. However, the image size
was reduced significantly.
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2.7 Summary

With this chapter we advanced precondition A posited in Section 1.1, i. e., we pre-
sented a mitigation approach for a novel attack vector that resulted from offensive
research. To this end we provide an overview of Scalable Vector Graphics (SVG)
and their security impact on the World Wide Web as based on the new HTML5
specification drafts. We show that this image format (which exists for more than
a decade), significantly changes the browser and web security landscape. We intro-
duce several novel attacks against modern browsers and show that this phenomenon
can have major impact on web applications that allow their users to post images.
In particular, we illustrate that SVG images embedded via <img> tag and CSS can
execute arbitrary JavaScript code and similar attacks. Subsequently, the discussed
XSS filter bypasses, which work against several browsers, can have a similarly high
impact on a targeted attack scenario.

To mitigate the attacks presented, we proposed SVGPurifier as a first practical
solution available and capable of removing potentially malicious code from SVG
files. We have empirically shown that the software is usable for real-world scenarios
such as a purification of the SVG files stored by Wikipedia. Furthermore, many of
the identified attacks were already fixed by major browser vendors at the time of
the initial publication [107].
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3
Analysis of a Cryptographic Instant Messaging Protocol

Love your Enemies, for they tell you your Faults.
—Benjamin Franklin, Poor Richard’s Almanack

In Chapter 1 we introduced the review and analysis of technology as precondition B:
We posited that the mere existence of a technical solution that claims to achieve
a certain goal does not necessarily warrant any trust that it does indeed achieve
this goal. There are many examples that support this idea both from a functional,
security, and privacy point of view. A rather notorious example of the latter two
aspects is Cryptocat10, a browser-based chat application that claimed to ensure con-
fidentiality of conversations. Independent reviews showed that the implementation
of the key generation function was flawed [216], among other critical bugs [109]. At
that point Cryptocat already had a significant user base that relied on its—then
unfounded—promises of guaranteeing secrecy of the written word.

In this chapter we contribute to the same goal as Cryptocat’s auditors—building
a justified foundation of trust in a system, based on an unbiased assessment of
what it can and cannot achieve. While the notions of privacy people have can
differ widely and people may not explicitly state these notions, their actions let
us conclude what these persons deem worth protecting: users that choose to use
an encrypted chat solution, for instance, can be expected to have a desire to not
have their conversations overheard, which also implies that they need to make sure
the respective communication partner is indeed the person they claim to be. In this
chapter we venture into the context of mobile chat applications that claim to preserve
the confidentiality of messages, as well as, ensure the authenticity of message and
entity.
10 https://crypto.cat/
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3.1 Introduction

Since more than a decade, Instant Messaging (IM) has attracted a lot of attention
by users for both private and business communication. IM has several advantages
over classical email communication, especially due to the chat-like user interfaces
provided by popular tools. However, compared to the security mechanisms available
for email such as PGP [48] and s/MIME [202], text messages were sent unprotected
in terms of authenticity and confidentiality on the Internet by the corresponding
IM tools: in the early days, many popular IM solutions like MSN Messenger and
Yahoo Messenger did not provide any security mechanisms at all. AOL only
added a protection mechanism similar to s/MIME to their IM service later on and
Trillian’s SecureIM messenger encrypted the data without providing any kind of
authentication. Nowadays, most clients provide at least client-to-server encryption
via TLS. Mechanisms like Off the Record (OTR) communication [42] are available
that provide among other security properties end-to-end confidentiality.

As the popularity of smartphones grows, the Internet is accessible almost everywhere
and mobile communication services gained a lot of attraction. IM is one of the
most popular services for mobile devices and apps like WhatsApp and Skype
are among the top downloaded apps in the popular app stores. Unfortunately, both
applications are closed-source and it is unknown which security mechanisms—beside
a proprietary or TLS-based client-to-server encryption—are implemented. As such,
it is hard to assess which kind of security properties are provided by these apps and
especially end-to-end encryption is missing. In the light of the recent revelations
of mass surveillance actions performed by intelligence services such as NSA and
GCHQ, several secure IM solutions that are not prone to surveillance and offer a
certain level of security were implemented.

One of the most popular apps for secure IM is TextSecure, an app developed by
Open WhisperSystems that claims to support end-to-end encryption of text mes-
sages. While previously focussing on encrypted short message service (SMS) com-
munication, Open WhisperSystems introduced data channel-based push messaging
in February 2014. Thus, the app offers both an iMessage- and WhatsApp-like com-
munication mode, providing SMS+data channel or data channel-only communica-
tions [185]. Following Facebook’s acquisition of WhatsApp, TextSecure gained
a lot of popularity among the group of privacy-concious users and has currently
more than 500,000 installations via Google Play. Its encrypted messaging protocol
has also been integrated into the OS-level SMS-provider of CyanogenMod [184], a
popular open source aftermarket Android firmware that has been installed on about
10 million Android devices [66].
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Despite this popularity, the messaging protocol behind TextSecure has not been
rigorously reviewed so far. While the developers behind TextSecure have a long
history of research in computer security [144, 145, 146, 147, 148, 149] and TextSe-
cure has received praise by whistleblower Edward Snowden [7], a security assess-
ment is needed to carefully review the approach.

3.1.1 Contribution

In this chapter, we perform a thorough security analysis of TextSecure’s protocol.
To this end, we first review the actual security protocol implemented in the app
and provide a precise mathematical description of the included security primitives.
Based on this protocol description, we perform a security analysis of the protocol
and reveal an Unknown Key-Share attack, an attack vector first introduced by Diffie
et. al. [77]. To the best of our knowledge, we are the first to discuss an actual attack
against TextSecure. We also reveal several other (minor) security problems in the
current version of TextSecure. Based on these findings, we propose a mitigation
strategy that prevents the UKS attack. Furthermore, we also formally prove that
TextSecure with our mitigation strategy in place is secure and achieves one-time
authenticated encryption.

In summary, we make the following contributions:

• We are the first to completely and precisely document and analyze TextSe-
cure’s secure push messaging protocol.

• We found an Unknown Key-Share attack against the protocol. We have doc-
umented the attack and show how it can be mitigated. The attack has been
communicated to the developers of TextSecure. We show that our proposed
method of mitigation actually solves the issue.

• We show that if long-term public keys are authentic, so are the message keys,
and that the encryption block of TextSecure is actually one-time authenti-
cated encryption. Thus, we prove that TextSecure’s push messaging—with
our amendments—can indeed achieve the goals of authenticity and confiden-
tiality.

3.1.2 Outline

In the remainder of this chapter we first provide technical background on TextSe-
cure’s protocol in Section 3.2, where we also discuss related work. In Section 3.3
we discuss issues with the protocol and show how these issues can be mitigated. In
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the following Section 3.4 we show that TextSecure can indeed achieve a high level
of security, if our mitigations are applied. In Section 3.5 we discuss the implications
of our work and future fields of analysis.

3.2 Technical Background

We start with a precise description of the protocol implemented by TextSecure.
We obtained this information by analyzing the source code of the Android app and
recovering the individual building blocks of the protocol. TextSecure builds upon
a set of cryptographic primitives. For ECDH operations, these are Curve25519 [36]
as implemented in Google’s Android Native Library. For symmetric encryption,
TextSecure relies on AES in both counter mode without padding and cipher block
chaining mode with PKCS5 padding. For authenticity and integrity, HMACSHA256
is used. Security considerations of the cryptographic primitives are not within the
scope of this work.

For push messaging via data channel, TextSecure relies on a central server11

(T S) to relay messages to the intended recipient. Parties communicate with T S
via a REST-API using HTTPS. T S’s certificate is self-signed, the certificate of the
signing CA is hard-coded in the TextSecure app. Actual message delivery is
performed via Google Cloud Messaging (GCM), which basically acts as a router for
messages.

3.2.1 TextSecure Protocol Flow

TextSecure’s protocol consists of several phases. We distinguish (i) registration,
(ii) sending/receiving a first message, (iii) sending a follow-up message, and (iv)
sending a reply.

Before a client is able to communicate, it needs to generate key material and reg-
ister with T S. When a party Pa first decides to use TextSecure’s data channel
communication, it chooses an asymmetric long-term key pair (a, ga), referred to as
identity key by TextSecure’s developers. It also uses SHA1PRNG as provided by
the Android Native Library to choose a password (pw), a registration ID (regIDa),
and two keys kenc,signal,a, kmac,signal,a, each of 128 bit length. Additionally, the client
chooses 100 asymmetric ephemeral key pairs, so-called prekeys, and one asymmetric
last resort key (klr). When a party calculates a message authentication code (MAC),
it uses HMACSHA256 as implemented by Android’s respective Native Library.
11 textsecure-service.whispersystems.org
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3.2 Technical Background

For a party Pa to send a message to a party Pb, Pa requests one of Pb’s public
prekeys from T S, uses it to derive a shared secret, forms a message, whereof parts
are encrypted and/or protected by a MAC, authenticates with T S, and transmits
the message to T S. T S shares a symmetric long-term key (kenc,signal,b, kmac,signal,b)
with Pb, which it uses to encrypt all parts of Pa’s message that are to be transmitted
to Pb. T S then hands off this encrypted message to GCM for delivery to Pb. If
Pa wants to send a follow-up message to Pb, it derives a new key using a function
f that is seeded with existing key material. When a party does not merely send a
follow-up message, but a reply within a conversation, it also introduces new entropy
into the seed of f and transmits a new ephemeral public key.

3.2.2 Detailed Description of Messages

In the following we give a detailed description of messages sent and processed in the
different phases, as well as the key derivation.

3.2.2.1 Registration

Pa T S GCM

(1) phone#a

g ∈ Curve25519
(a, ga) ∈R Zp × Curve25519
pw ∈R SHA1PRNG[128]
authenticationa =

(
phone#, pw

)

regIDa ∈R SHA1PRNG[128]
kenc,signal,a ∈R SHA1PRNG[128]
kmac,signal,a ∈R SHA1PRNG[128]
Generate 100 prekeys + last resort key (klr)
(xa,i, g

xa,i) ∈R Zp × Curve25519

(2) 204 OK

(3) token ∈R {100000, . . . , 999999}

(4) token, kenc,signal,a, kmac,signal,a, regIDa,
supportSms (bool), authenticationa

(5) 204 OK

(6) ga, gx̄a,0 , . . . , gx̄a,99 , gx̄a,100 = klr, authenticationa

(7) 204 OK

(8) Registration GCM

(9) regIDgcm
a

(10) regIDgcm
a , authenticationa

(11) 204 OK

Figure 3.1: TextSecure registration.

The registration process is depicted in detail in Figure 3.1. To register with TextSe-
cure, a party Pa requests a verification token by transmitting its phone number
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(phone#a) and its preferred form of transport to T S (Step 1), which T S confirms
with a HTTP status 204 (Step 2). Depending on the transport Pa chose, T S then
dispatches either a short message or a voice call containing a random token (Step 3)
to the number transmitted in Step 1. Pa performs the actual registration in Step 4,
where it shows ownership of phone#a by including the token, registers its creden-
tials with the server via HTTP basic authentication [86], and sets its signaling keys.
In this step, the client also states whether it wishes to communicate only via data
channel push message or also accepts short messages. The server accepts if the
token corresponds to the one supplied in Step 3 and the phone number has not been
registered yet.

In Step 6, Pa supplies its 100 prekeys and klr to T S. Prekeys are not transmitted
individually, but within a JSON structure consisting of a keyID z, a prekey gxa,i ,
and the long-term key ga. The last resort key is transmitted in the same way
and identified by keyID 0xFFFFFF. The server accepts, if the message is well-
formed and HTTP basic authentication is successful. Pa then registers with GCM
(Step 8) and receives its regIDgcm

a (Step 9), which it transmits to T S in Step 10 after
authenticating again.

3.2.2.2 Sending an Initial Message

We define the period in which Pa employs one prekey to communicate with Pb
as a session. When a new session is created to exchange messages, three main
cryptographic building blocks are applied: a) a key exchange protocol with implicit
authentication to exchange a secret, b) a key update and management protocol (the
so-called axolotl ratchet [191]), which updates the encryption and MAC keys for
every outgoing message, and c) an authenticated encryption scheme. The process is
depicted in detail in Figure 3.2.

Intuitively, the key exchange is a triple Diffie-Hellman (DH) key exchange using
long-term and ephemeral secret keys. This is the only step in the protocol flow that
uses the long-term keys.

According to the developers [191], the key management protocol provides both for-
ward secrecy (which roughly means that past sessions remain secure even if the
long-term key of a party is corrupted) and future secrecy (which translates to the
idea that even after leakage of a currently used shared key future keys will remain
secure).

The result of the key exchange and key management is input to the authenticated
encryption scheme [189]. The state of the encryption scheme is provided by the
key management system and handed over from every call of the encryption and
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decryption algorithm, respectively, to the next for the whole session. Every new
message is encrypted under a fresh key. The scheme guarantees confidentiality and
authenticity of the exchanged messages, which we discuss in detail in Section 3.4.

Pa T S GCM

(1) get prekey: phone#b, authenticationa

Choose prekey with
prekey ID z
delete gxa,z

(2) gxb,z , z, gb, regIDb

(x̄a,0, g
x̄a,0) ∈R Zp × Curve25519

secret =
(
gxb,z·a, gb·x̄a,0 , gxb,z·x̄a,0

)

(kBA,r, kBA,c) = f (secret, const0, constR)
(x̄a,1, g

x̄a,1) ∈R Zp × Curve25519
(x̄a,2, g

x̄a,2) ∈R Zp × Curve25519
kshared = gxb,z·x̄a,2

(kAB,r, kAB,c) = f (kshared, kBA,r, constR)
(kEnc, kMAC) = f

(
MACkAB,c

(const1) , const0, constK
)

kAB,c = MACkAB,c
(const2)

m ∈M
c = ENCkEnc

(m)
ctra = 0
pctra = 0
χ = (v, gx̄a,2 , ctra,pctra, c)
tag = MACkMAC

(χ)
∗

a
)

b
)

c)

(3) χ, tag, z, gx̄a,0 , ga, regIDa, regIDb,
phone#b, authenticationa

check: regIDb belongs to phone#b

csignal = ENCkenc,signal,b
(χ, tag, z, gx̄a,0 , ga, phone#a)

macsignal = MACkmac,signal,b

(
csignal

)

(4) csignal, macsignal, regIDgcm
a

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”
v = 2

Figure 3.2: Sending an initial TextSecure message.

Key Exchange In the first step, Pa requests a prekey for Pb and receives a JSON
structure consisting of prekeyID z, a prekey gxb,z , and Pb’s long-term key gb. Pa also
receives regIDb from T S an then chooses a new ephemeral key to calculate a secret
as the concatenation of three DH operations, combining Pb’s prekey, Pa’s long-term
key, Pb’s long-term key, and Pa’s freshly chosen ephermeral key.

Key Management (axolotl ratchet) After Pa has completed the initial key ex-
change, it derives two symmetric keys (kBA,r, kBA,c) for receiving messages using f
(cf. Algorithm 1), an implementation of HKDF [136]. f is here seeded with secret.
For all respective parameters of f see Figure 3.2. Pa then chooses a new ephemeral
keypair

(
x̄a,1, g

x̄a,1
)
, which is never used and just exists because of reuse. It then

chooses another ephemeral keypair
(
x̄a,2, g

x̄a,2
)
, which it uses to calculate kshared as

the output of a DH operation that takes Pb’s prekey gxb,z and x̄a,2 as input. Pa then
derives two symmetric keys (kAB,r, kAB,c) for sending messages. Here f is seeded
with kshared and kBA,r. Finally, Pa uses f , seeded with kAB,c, to derive the message
keys (kEnc, kMAC) and in the end derives a new kAB,c as MACkAB,c

(const2), where
const2 = 0x02.
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Algorithm 1 f (input, key, string)
kpr ← MACkey (input)
k0 ← MACkpr (string, 0x00)
k1 ← MACkpr (k0, string, 0x01)
return (k0, k1)

Authenticated Encryption A message m ∈ M is encrypted using AES in counter
mode without padding as c = ENCkEnc

(m). Pa then forms message (3.) and thus
calculates tag = MACkMAC

(χ), where χ =
(
v, gx̄a,2 , ctra,pctra, c

)
. v represents the

protocol version and is set to 0x02. For ordering messages within a conversation ctr
and pctr are used. Both are initially set to 0. ctr is incremented with every message
a party sends, while pctr is set to the value ctr carried in the message a party is
replying to.

Upon receiving message (3.), T S checks if regIDb corresponds to phone#b. It then
encrypts the parts of message (3.) intended for Pb with Pb’s signaling key, using AES
in CBC mode with PKCS5 padding. T S additionally calculates a MAC over the
result, which we denote as macsignal. T S sends both, encrypted message data csignal

and macsignal, to the GCM server, together with regIDgcm
b as the receipient. The

result of this additional encryption layer is that Google’s Cloud Messaging servers
will only be able to see the receipient but not the sender of the message.

The receiving process is depicted in Figure 3.3. Pb receives the message in Step (5.).
First, Pb verifies macsignal and, if successful, decrypts csignal. It looks up its private
key that corresponds to prekeyID z and calculates secret.

Pb then derives two symmetric keys (kBA,r, kBA,c) for sending messages by seeding f
with secret. Afterwards, Pb calculates kshared as the output of a DH operation that
takes Pa’s latest ephemeral key gx̄a,2 and Pb’s private prekey xb,z as input. In the next
step Pb uses f (kshared, kBA,r, constR) to derive two symmetric keys (kAB,r, kAB,c) for
receiving messages and derives the message keys (kEnc, kMAC).

Pb now verifies the MAC and, if successful, decrypts the message. In the end, Pb
also derives a new kAB,c = MACkAB,c

(const2).

3.2.2.3 Follow-up Message

If Pa follows up with a message before Pb replies, Pa derives a new pair (kEnc, kMAC) =
f
(
MACkAB,c

(const1) , const0, constK
)
, which it then uses as detailed above.
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3.2.2.4 Reply Message

If Pb wants to reply to a message within an existing session with Pa, it first chooses
a new ephemeral keypair

(
x̄b,0, g

x̄b,0
)
and calculates kshared as the output of a DH

operation that takes Pa’s latest ephemeral public key gx̄a,2 and its own freshly chosen
ephemeral private key x̄b,0 as input. Pb then derives (kBA,r, kBA,c) by seeding f with
kshared and kAB,r.

GCM Pb

(5) csignal, macsignal macsignal′ = MACkmac,signal,b

(
csignal

)

if macsignal′ = macsignal then:
DECkenc,signal,b

(
csignal

)

get prekey: xb,z
secret =

(
ga·xb,z , gx̄a,0·b, gx̄a,0·xb,z

)

(kBA,r, kBA,c) = f (secret, const0, constR)
kshared = gx̄a,2·xb,z

(kAB,r, kAB,c) = f (kshared, kBA,r, constR)
(kEnc, kMAC) = f

(
MACkAB,c

(const1) , const0, constK
)

tag′′ = MACkMAC
(χ) ∗

if tag′′ = tag then:
m = DECkEnc

(c)
kAB,c = MACkAB,c

(const2)

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”

Figure 3.3: Receiving an initial TextSecure message.

3.2.3 Key Comparison

In an attempt to establish that a given public key indeed belongs to a certain party,
TextSecure offers the possibility to display the fingerprint of a user’s long-term
public key. Two parties can then compare fingerprints using an out-of-band channel,
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for example, a phone call or an in-person meeting. If two parties meet in person,
TextSecure also offers to conveniently render the fingerprint of one’s own long-
term public key as a QR code, using a third-party application on Android, which
the other party can then scan using the same application on their mobile device.
TextSecure then compares the fingerprint it just received to the party’s fingerprint
it received as part of a conversation. Figure 3.4 pictures these fingerprints.

3.2.4 Related Work

The body of work that explicitly aims at providing or analyzing secure instant mes-
saging protocols is comparably small to the prevalence of instant messaging appli-
cations in our daily life: At the 2004 Workshop on Privacy in the Electronic Society
(WPES), Borisov et. al. [42] presented a protocol for “Off the Record” (OTR)
communication. The OTR protocol was designed to provide authenticated and con-
fidential instant messaging communication with strong perfect forward secrecy and
deniability: no party can cryptographically prove the authorship of a message. The
deniability property of OTR has been discussed by Kopf and Brehm [134]. The
work of Di Raimondo et. al. [201], who analyzed the security of OTR, is in its na-
ture closely related to our work. The authors point out several issues with OTR’s
authentication mechanism and also describe a UKS attack on OTR, as well as, a re-
play attack along with fixes. We note, however, that the authentication mechanisms
of OTR and TextSecure have little in common: Though it aims to provide deni-
ability, OTR explicitly uses signatures for authentication while TextSecure does
not. The UKS attack on OTR described by Raimondo et al. [201] directly targets
the key exchange mechanism of the protocol, whereas the attacks presented in this
chapter are rather subtle and exploit the protocol structure and key derivation of
TextSecure.

Besides OTR, which has been widely adopted, there exist protocols for secure instant
messaging like IMKE [143], which aims at being verifiable in a BAN-like logic, but
has never found a wider adoption. SILC [204] also has received a certain adoption
and some discussion, but is rarely used today, as is FiSH [219], a once popular plugin
for IRC clients that used Blowfish with pre-shared keys to encrypt messages.

Thomas [216] analyzed the browser-based instant messager Cryptocat and found
that, due to an implementation error, Cryptocat used private keys of unsufficient
length when establishing a group chat session. Green [94] recently discussed Cryp-
tocat’s group chat approach from a protocol perspective and points out several
issues.
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Further protocols exist that aim at securing instant messaging communication but
have, to the best of our knowledge, not received public scrutiny. Among these are
Threema [217], Surespot [215], and Silent Circle’s SCIMP [166].

3.3 Issues and Mitigation

Based on the recovered protocol description, we can analyze its security properties.
In the following, we discuss our findings.

3.3.1 MAC Image Space Only Partially Used

In Section 3.2, we stated that TextSecure uses HMACSHA256 to calculate MACs.
Surprisingly, TextSecure does not transmit the complete output of HMACSHA256.
The message tag in Figures 3.2 and 3.3 does only represent the first 64 bit of the
256 bit MAC. Upon request, TextSecure’s developers stated that this just hap-
pens to reduce message size. However according to NIST [22, chapter 5.5], a MAC
length of 80 bit is recommended when a MAC is used for key confirmation, which
is the case in TextSecure (at least) in the first message of a new session.

3.3.2 Unknown Key-Share Attack

An Unknown Key-Share Attack (UKS) is an attack vector first described by Diffie
et al. [77]. Informally speaking, if such an attack is mounted against Pa, then Pa
believes to share a key with Pb, whereas in fact Pa shares a key with Pe 6= Pb.

For a better understanding how this can be related to TextSecure, suppose the
following example: Bart (Pb) wants to trick his friend Milhouse (Pa). Bart knows
that Milhouse will invite him to his birthday party using TextSecure (e. g., be-
cause Lisa already told him). He starts the UKS attack by replacing his own public
key with Nelsons (Pe) public key and lets Milhouse verify the fingerprint of his new
public key. This can be justified, for instance, by claiming to have a new device and
having simply re-registered, as that requires less effort than restoring an encrypted
backup of the existing key material. Now, as explained in more detail below, if Mil-
house invites Bart to his birthday party, then Bart may just forward this message
to Nelson who will believe that this message was actually sent by Milhouse. Thus,
Milhouse (Pa) believes that he invited Bart (Pb) to his birthday party, where in fact,
he invited Nelson (Pe).
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(a) Conversation fingerprints (b) Own fingerprint QR code

Figure 3.4: TextSecure fingerprint verification.

Pa Pb T S Pe

(1) get prekey: phone#e, authenticationb (repeat it i times)

(2) gxe,z0 , z0, . . . , g
xe,zi , zi, g

e

(3) ge, gx̄e,z0 , . . . , gx̄e,zi , authenticationb

(4) 204 OK
(5) Verify new public key fingerprint

(6) get prekey: phone#b, authenticationa

(7) g
xb,zj = g

xe,zj , zj , g
b = ge

secret =
(
gxb,zj

a·,gb·x̄a,0 , gxb,zj
·x̄a,0

)

...(
kEnc,AB , kMAC,AB

)
= · · ·

c = ENCkEnc
(m ∈M)

tag = MACkMAC
(c, . . .)

...
(8) . . . , c, tag, zj , phone#b, authenticationa

(9) . . . , c, tag, zj , phone#a

(10) . . . , c, tag, zj , phone#e, authenticationa

(11) . . . , c, tag, zj , phone#a
(12)

Figure 3.5: UKS attack on TextSecure: Pa believes to share a key with Pb but
shares one with Pe.

In detail, the attacker (Bart, Pb) has to perform the steps shown in Figure 3.5 for
this attack (only the important protocol parameters and steps are mentioned):
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(1-2) Pb requests gxe,z0 , . . . , gxe,zi from T S using phone#e.

(3-4) Pb commits gxe,z0 , . . . , gxe,zi to T S as his own prekeys plus ge as its own long-
term public key.

(5) Pb lets Pa verify the fingerprint of its new public key ge. Note that this step
uses QR-codes and is thus offline.

(6-7) Once Pa wants to send the message to Pb, Pa requests a prekey for Pb by using
phone#b. T S returns gxb,zj = gxe,zj and the long-term key gb = ge.

(8-9) Pa computes the secret using gxb,zj and gb from which
(
kEnc,AB, kMAC,AB

)
are

going to be derived. For computing those keys, he uses in fact Pe’s prekey and
identity key although he believes to use Pb’s ones. He then encrypts message
m ∈M, computes the respective MAC tag, and sends it to Pb (GCM omitted).

(10-11) Pb is neither able to verify the tag nor to decrypt the message c. He sends the
ciphertext and message tag to Pe.

(12) Pe processes the incoming message as usual. He computes the same secret as
Pa, because gxb,zj = gxe,zj and gb = ge. The secret is then used to compute(
kEnc,AE = kEnc,AB, kMAC,AE = kMAC,AB

)
so that Pe is able to read and verify

the message.

In Step 10, Pb has to forward the message to Pe, such that it appears to be sent
by Pa. Therefore, he needs to include authenticationa for T S to include phone#a in
Step 11, so that Pe will receive phone#a with the forwarded message. This can be
achieved in several ways:

• T S is corrupted. In this case, it is a trivial task to get or circumvent authenticationa.

• If T S is benign, an attacker might be able to eavesdrop authenticationa. Al-
though TLS is used for all connections between clients and server, future or ex-
isting issues with TLS implementations [12, 13, 128, 156, 157] can not be ruled
out and would allow for a compromise of authenticationa. Another possibility
to obtain authenticationa could be a governmental agency (legally) enforcing
access to the TLS keys.

• In contrast to a party’s other key material, the password is stored unencrypted
and is not protected by TextSecure’s master password. Thus, the easiest
possibility to realize this attack might be for an attacker to recover the pass-
word for authenticationa from TextSecure’s preferences12.

12 File: shared-prefs/org.thoughtcrime.securesms_preferences.xml
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Physical access to a mobile device is the most straight-forward way for an at-
tacker to recover the password and can often be achieved trivially: Devices are
left unattended on tables in bars and clubs, users can be compelled to hand
devices over in a traffic control, stop-and-frisk operations, immigration and
customs, or when passing through airport security. The widely used Android
Unlock Pattern has been shown to be a weaker protection than a three-digit
PIN [218] and can often also easily be recovered from the smudges a user leaves
on the screen during the unlock process [16].

3.3.3 Unknown Key-Share Attack Variant

In this variant, there is no need for the attacker to know authenticationa. Instead,
he must only be able to stop/intercept one message, for example, by controlling one
active network element in the path between Pa and T S, like a WiFi accesspoint.

The attack from the previous section makes Pa (the sender of a message) believe he
shares a key with Pb (intended receiver of that message) while he in fact shares a
key with Pe (actual receiver of the message). To this end, Pb had to replace his own
public key by the public key of the intended receiver.

An attack on Pe is also possible, using similar techniques: Suppose the attacker
replaces his own public key with the public key of the sender. Then any message
that is sent from Pa to Pe may also originate from Pb. This makes Pe (the receiver)
believe in that he shares a key with Pb (claimed sender) while he actually shares a
key with Pa (actual sender).

This is a practical issue in competitions where, for instance, the first to send the
solution to Pe wins a prize.

To mount such an attack using TextSecure, Pb replaces his own public key with
the public key of Pa and lets Pe verify it. We stress again that replacing the public
key and letting Pe verify it is not an issue for Pb in practice. Now, when Pa starts
a new session with Pe, Pb can mount the attack by intercepting the message sent
from Pa to Pe. He relays the message to Pe, but uses his own authenticationb.

3.3.4 Mitigation of Unknown Key-Share Attack

Let us consider the message that is sent in Step 8 of Figure 3.5:

χ, tag, gx̄a,0 , ga, regIDa, regIDe,

phone#e, authenticationa,
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where χ =
(
v, gx̄a,2 , ctra, pctra, c

)
and tag = MACkMAC

(χ). Intuitively, if both Pa’s
and Pe’s identity were protected by the tag, then the attacks above do not longer
work. As identities we propose to use the respective parties’ phone numbers, as they
represent a unique identifier within the system. χ would thus be formed as

(v, gx̄a,2 , ctra,pctra,
phone#a, phone#e, c).

If kMAC is secret (i. e., only shared among Pa and Pe) and if MAC is secure, the
inclusion of both identities in the tag provides a proof of Pa towards Pe that Pa is
aware of Pe as its peer, i. e., that the message is indeed intended for Pe. Moreover,
Pe is convinced that Pa actually sent the message. Thus, Pb will not be able to
mount the above attacks.

Remark 1. Our mitigation resembles the concept of strong entity authentica-
tion [43]. However, this concept is not directly applicable here, since we consider
asynchronous message exchange.

3.3.5 No Cryptographic Authentication

While the Unknown Key-Share Attacks are mitigated if the message in Step 8 is
modified as we propose in Section 3.3.4, the underlying problem is not resolved. It
results from a party’s erroneous assumption that a communication partner’s long-
term identity key is authentic, if they have compared key fingerprints and these
fingerprints matched their assumptions. However, this is not necessarily the case.
Given the attack scenario in Section 3.3.2, a malicious party would always be able
to present a third party’s long-term public key as their own, as only fingerprints are
compared—a party is not required to show their knowledge of the corresponding
secret key.

3.3.6 Mitigation of Authentication Issue

In the following, we present two means of authentication. The first one provides a
mutual cryptographic authentication with the help of digital signatures, while the
second one achieves this goal requiring less effort in terms of implementation and
also integrates seamlessly into TextSecure’s existing user experience.
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3.3.6.1 Signature-based Cryptographic Authentication

Pa and Pb can establish the authenticity of their respective long-term keys as fol-
lows

1. Pa choses a token rA ∈R SHA1PRNG[128] and presents a QR code containing
rA.

2. Pb scans this QR code, creates a signature σ over rA using his long-term private
key, chooses a token rB ∈R SHA1PRNG[128] and creates a QR code containing
both the signature over rA and his own token.

3. Pa scans the QR code presented by Pb and verifies σ with respect to rA using
Pb’s long-term public key. Pa then creates a signature σ′ over (rB, rA) using
his long-term private key and creates a QR code containing σ′.

4. Pb scans the QR code presented by Pa and verifies σ′ with respect to (rB, rA)
using Pa’s long-term public key.

If the verification in Step 3 is successful, Pa is assured that Pb’s long-term public
key is authentic and Pb does know the corresponding private key. Likewise, if the
verification in Step 4 is successful, Pb is assured that Pa’s long-term public key is
authentic and Pa does know the corresponding private key. In comparison to simply
reading out or scanning two fingerprints, a mutual cryptographic authentication
that also requires to demonstrate knowledge of the respective private key requires
the creation of one additional QR code and thus one additional scanning process.
Though we believe that the above solution works it requires some overhead since
signatures are not included in TextSecure, yet. Therefore we propose another
mitigation in the next section (and analyze it in section 3.4) that blends well with
the cryptographic primitives that are already implemented in TextSecure.

3.3.6.2 Alternative Authentication Method

The challenge response process detailed below can achieve cryptographic authentica-
tion with the primitives already used in TextSecure. The process is as follows:

1. Pb chooses a keypair (r, gr) ∈R Zp × Curve25519. It creates a QR code con-
taining chall = gr.

2. Pa scans the QR code, derives resp = challa (= gr·a) and creates a QR code
containing resp.

3. Pb scans the QR code presented by Pa and checks if ga·r =? resp.
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If resp matches ga·r, Pb is assured that Pa knows the private key corresponding
to the long-term public key that Pb expected to belong to Pa. If resp 6= ga·r, the
authentication fails. Here, we call Pa prover and Pb verifier. The process can then
be repeated with reversed roles to achieve mutual authentication of Pb and Pa. We
discuss the security of this approach in detail in the following section.

3.4 Security of TextSecure Key Exchange and Messaging

As mentioned in Section 3.3, the underlying problem that allows for our attacks
is that the shared key between two parties is not cryptographically authentic. In
the same section we explain how to face this problem. In this section we first show
that the method proposed in Section 3.3.6.2 actually solves this issue (under some
reasonable restrictions). Next, we show that if public keys are authentic then so
is k = (kEnc, kMAC). Moreover we show k to be uniformly distributed. Once we
have established this, we finally show that the encryption block of TextSecure
is actually one-time authenticated encryption (a primitive which needs uniformly
distributed and authenticated keys to provide security).

3.4.1 Offline Verification gives authenticity

In this section, we prove the proposed protocol of Section 3.3.6.2 to be secure. Ideally,
we could prove the possession of the secret key through a zero knowledge proof of
knowledge. However, we do not know if the protocol satisfies this strong property.
Rather we prove that if an “honest” verifier accepts, then with high probability the
prover’s public key is unique. Since the public key is later on used in the means
of authentication, this gives authenticity. Note that we do not consider collusion
of parties that deliberately agree to use the same long-term key pair here. In this
case, attacks as above are always possible. We assume in the following that no two
parties collude.

Consider the security game that is depicted in Figure 3.6. We say that an attacker
(t, ε)-wins the security game if it runs in time t and C outputs 1 with probability at
least ε. We argue that this security game actually models malicious behaviour of an
adversary convincing an “honest” verifier to have public key ga. To this end, suppose
that A publishes the public key ga that is already registered as the public key of Pa
as its own public key. If C returns 1, then A is obviously successful in convincing a
party that follows the protocol honestly that ga is authentic with respect to A (which
it is not). However, if the probability that A succeeds in the security game is small
then this is not very likely to happen which means that ga is registered only once
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C A

a
$← Zp

ga

r
$← Zp

chall← QR(gr) chall

resp

if resp = QR(gar):

return 1

return 0

Figure 3.6: Challenge and Response security game.

with overwhelming probability13. We note that we do not allow the adversary to
challenge back the challenger. This somewhat artificial restriction is due to the fact
that we cannot prove the scheme to be secure without this requirement (see below).
We remark, however, that this protocol is carried out when prover and verifier meet
face-to-face and, moreover, that no data is sent through the data channel. Thus,
the adversary is not a network attacker and in particular has not the capability to
read, replay, delay, alter, or drop any data that is exchanged throughout a protocol
run between two honest parties. A proving party will always be able to confirm who
the verifier actually is and may refuse to prove something to a seemingly malicious
verifier.

Technically, if we wanted to get rid of this requirement we could use an IND-CCA-
secure KEM that supports public keys of the form ga in elliptic curves, e. g., the
PSEC-KEM that is standardized by the ISO [120] and proven to be secure by
Shoup [208] in the random oracle model.

13 Observe that the probability that two parties following the protocol honestly publish the same
public key is 1

|Curve25519|
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Claim 1. If there is an attacker A that (t, ε)-wins the above game (cf. Figure 3.6)
then there is an algorithm B that (t′, ε′)-breaks the DDH assumption in Curve25519
where t ≈ t′ and ε ≤ ε′.

Proof. SupposeA wins the game with probability ε. We construct a DDH-distinguisher
B that runs A as a subroutine. B gets as input (g, ga, gb, gγ) and wants to distinguish
whether γ = ab or not. B simulates C as follows: It creates a QR code containing
gb. If A creates a QR code containing gγ then γ = ab and thus B is able to solve
DDH.

3.4.2 (kEnc, kMAC) is authentic.

Now let us assume public keys are unique. We argue that in this case k = (kEnc, kMAC)
authenticates sender and receiver since these are the only parties to compute k.
Here, we show that the sender (Pa) is authenticated. The proof for the receiver is
similar. To this end, we define the following algorithm that reflects key derivation
(for the first message sent during a session) on the side of the receiver (Pb) where
ga, gx̄a,0 and gx̄a,2 are long-term and ephemeral public keys of Pa, b is the long-term
secret of Pb and z is a pointer to the prekey pair (xb,z, gxb,z ) (cf. Figure 3.3).

Algorithm 2 Key.derive
(
ga, gx̄a,0 , gx̄a,2 , b, z

)
secret← f

(
gxb,z ·a, gb·x̄a,0 , gxb,z ·x̄a,0

)
(kBA,r, kBA,c)← f (secret, const0, constR)
kshared ← gx̄a,2·xb,z

(kAB,r, kAB,c)← f (kshared, kAB,r, constR)
k ← f (MAC(kAB,c, const1), const0, constK)

Let us now consider the security game that is depicted in Figure 3.7. We say that
A (t, ε)-wins the security game if it runs in time at most t and C returns 1 with
probability at least ε. We argue that this security game acutally models authenticity
of k. To this end, suppose again that ga is the public key of Pa 6= A. Note that
this public key is unique. It is given to A, together with the public key gb and a
prekey gxb,z of party Pb by computing k. The goal of A is to impersonate A to Pb.
If A is able to succeed, then it may obviously break the authenticity property. On
the other hand, if the probability for A to succeed is small it is very unlikely for A
to compute the shared key of two honest parties Pa and Pb. By the uniqueness of
public keys this gives authenticity.
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C A

a
$← Zp

b
$← Zp

xb,z
$← Zp

ga, gb, gxb,z

k ← Key.derive(ga, gx̄a,0 , gx̄a,2 , b, z)

k′, gx̄a,0 , gx̄a,2

if k = k′:

return 1

return 0

Figure 3.7: Authenticity of k security game.

Claim 2. If an attacker A (t, ε)-wins the above security game (cf. figure 3.7), then
there is an algorithm B that (t′, ε′)-breaks the CDH-assumption in Curve25519 where
t ≈ t′ and ε ≤ ε′ + t′

2512 .

Remark 2. Following Krawczyk [136], the analysis will view the functions f and
MAC as a non-programmable random oracle [87] for the proof of claim 2.

Proof. We describe a CDH-forger B that runs A as a subroutine. B gets as input
(g, ga, gxb,z ) and wants to compute ga·xb,z . It samples b $← Zp and sends (ga, gb, gxb,z )
to A. Note that B is not able to compute Key.derive. Instead we let B always return
0. We argue that with overwhelming probability this will not be detected by A:
We observe that since f is modeled as a random oracle (and thus the image of f is
uniformly distributed over {0, 1}512) for A to tell the value of k it needs to query f
on MACkAB,c

((const1), const0, constK) since otherwise the value of k is information-
theoretically hidden from A. The same argument applies for the value of MACkAB,c

(which is needed to compute k), kBA,r (which is needed to compute kAB,c) and
secret (which is needed to compute kBA,r). Now, suppose A queries f on secret =
(ga·xb,z , gb·x̄a,0 , gxb,z ·x̄a,0) for some x̄a,0. Since f is modeled as a random oracle, the
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query of A is actually public and thus B can extract ga·xb,z , the solution to the CDH
instance. Thus, if CDH is hard in Curve25519 for A, to be successful, A needs to
correctly guess a bitstring of length 512. This probability can be neglected.

We immediately obtain that k is not only authentic but also uniformly distributed.
Now, a similar (information theoretic) argument applies to keys that are derived
from k for the next messages to be sent and received.

We stress that for our proof to be bootstrapped to the setting with more than one
prekey of Pb, these have to be pairwise distinct (i. e., unique) since otherwise replay
attacks become possible. In particular, Claim 2 does not apply to keys exchanged
relying on the last resort key.

3.4.3 TextSecure Encryption is One-time Authenticated

Next, we prove the actual encryption of TextSecure to be one-time authenticated
encryption. We stress that one-time security suffices for TextSecure since, here,
the actual encryption and MAC keys are updated (and can be seen as fresh, cf.
previous section) with every message to be sent.

3.4.3.1 Cryptographic Primitives

We shortly recall the cryptographic primitives that are used by the TextSecure
encryption procedure.

A message authentication code is a pair of PPT algorithms MAC = (Tag,Vfy) such
that tag $← Tag(k,m) on input a key k and a messagem returns tag for that message.
The algorithm {0, 1} ← Vfy(k,m, tag) returns Tag(k,m) ?= tag. We require the usual
correctness properties. Following Bellare et al. [29, 33] we say that an attacker A
(t, ε)-breaks the strong one-time security of MAC if it runs in time t and

Pr
[
(tag,m) $← ATag(k,) :

Vfy(k,m, tag) = 1
∧ (tag,m) 6= (tag′,m′)

]
≥ ε

where A is allowed to query Tag at most one time (the query is denoted by m′ and
the response by tag′).

A symmetric encryption scheme is a pair of PPT algorithms SE = (Enc,Dec) such
that c $← Enc(k,m) on input a key k and a message m returns a ciphertext c and
m ← Dec(k, c) on input a key k and a ciphertext c outputs m. We require the

61



3 Analysis of a Cryptographic Instant Messaging Protocol

usual correctness properties. We say that an attacker A (t, ε)-breaks the one-time
IND-CPA-security [30] of SE if it runs in time t and

Pr
[
b′

$← AEncrypt(·,·) : b = b′
]
≥ ε

where A is allowed to query Encrypt at most one time on two messages m0 and
m1 of equal length and Encrypt samples a uniformly random bit b and returns c $←
Enc(k,mb).

3.4.3.2 Authenticated Encryption

An authenticated encryption scheme is a symmetric encryption scheme that also
provides authenticity. Security of a Authenticated Encryption scheme AE is captured
through a security game that is played between a challenger C and an attacker
A [32]

• The challenger samples b $← {0, 1} and a key k $← K and initializes a set S = ∅.

• The adversary may then query each of the Encrypt and Decrypt oracles once
and they respond as depicted in Figure 3.8.

• Finally, A outputs a bit b′ and wins if b = b′.

Encrypt(m0,m1, hd)
(C0) $← AE.Enc(k, hd,m0)
(C1) $← AE.Enc(k, hd,m1)
if C0 = ⊥ ∨ C1 = ⊥: return ⊥
S ← S ∪

{
Cb
}

return C

Decrypt(C, hd)
m← AE.Dec(k, hd, C)
if C ∈ S : div← 1
if div = 1 ∧ b = 1 return m
return ⊥

Figure 3.8: Encrypt and Decrypt Oracles in the Authenticated Encryption security
game.

Since the behaviour of oracle Decrypt might not be clear at first sight, we will shortly
explain it. First, we recall that the goal of the adversary is to determine the bit b.
Stated otherwise, if the adversary queries Encrypt on two distinct messages of equal
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length its goal is to determine which message is encrypted. Oracle Decrypt will reveal
this information to A if either A manages to query Decrypt for a ciphertext that
is not authentic, i.e., C /∈ S and that nonetheless does not incur in a decryption
error.

3.4.3.3 Authenticated Encryption in TextSecure

For TextSecure we let hd contain at least (gx̄a,2 , regIDa, regIDb, ctr, pctr), the
ephemeral public key of party Pa, the identifiers of both parties and the counters ctr
and pctr that allow the receiver to determine which key is to be used for decryption.
The key is set to be k = (kxEnc, kxMAC) handed over by the ratchet protocol.

Algorithm 3 TS.Enc(k, hd,m)
c← Enckx

Enc
(m)

χ← (v, gx̄a,2 , ctra, pctra, c)
tag← MACkx

MAC
(χ)

return C← (χ, tag)

Algorithm 4 TS.Dec(k, hd,C)
parse C as C = (χ′, tag′)
parse χ′ as χ′ = (v′,

(
gx̄a,2

)′
, ctr′a, pctr′a, c′)

tag′′ ← MACkx
MAC

(χ′)
if tag′′ 6= tag′ return (⊥,⊥)
m← Deckx

Enc
(c)

if m = ⊥ return (⊥,⊥)
return m

Theorem 1. If there is an attacker A that (t, ε)-breaks the one-time authenticated
encryption security of TS.Ste then there is an attacker BMAC that (t1, ε1)-breaks the
strong one-time security of MAC and an attacker BEnc that (t2, ε2)-breaks the one-
time IND-CPA security of the encryption scheme where t ≈ t1 ≈ t2 and

ε ≤ ε1 + ε2

Proof. The proof is by a sequence of games. First, we will modify the Decrypt oracle
such that its response will be independent of b. If the MAC scheme is secure this
change will be undetected by A. After that we will rely on the security of Enc to
argue that A has only negligible advantage in telling the value of b. By ζi we will
denote the event that A is successful in Game i.
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Game 0. This is the real Authenticated Encryption security game as described
above. Thus, we have:

Pr[ζ0] = ε

Game 1. In Game 1, the challenger proceeds as follows: When the attacker
queries a ciphertext C to the decryption oracle, C always outputs ⊥. Except for
this, C proceeds exactly as in Game 0. Note that Decrypt will return always ⊥ if
div = 0 (i.e., conditioned on div = 0 Game 0 and Game 1 are identical) and will
return m only if div = b = 1. Now, if div = 1 then C /∈ S. In this case the ciphertext
C that was queried to Decrypt by the adversary contains a valid tag which was not
computed before: Either χ 6= χ′ and thus tag authenticates another message than
the one that queried by oracle Encrypt to compute the tag (if there was a query it
all). Or χ = χ′ but tag 6= tag′. By the strong one-time security of MAC (Recall that
strong one-time security requires that it is computationally infeasible to compute a
valid tag, tag′, for message m, even if a valid tag, tag, for message m is known.) we
have:

Pr[ζ0]− Pr[ζ1] ≤ ε1

Game 2. In Game 2, instead of encrypting mb, C samples a random message m,
computes C $← TS.Enc(k, hd,m) and returns C. This change does not affect oracle
Decrypt since due to Game 1 it will return ⊥ anyway. Now, by the IND-CPA-security
of Enc this goes unnoticed from the adversary. Thus, we have:

Pr[ζ1]− Pr[ζ2] ≤ ε2

Claim 3. Pr[ζ2] = 0.

Proof. In Game 2 the Decrypt oracle reveals no information about b due to Game 1.
Neither does the Encrypt-oracle due to Game 2. The claim follows.

3.5 Summary

In this chapter we provided an extensive review and a detailed security analysis of
TextSecure’s protocol. We have shown peculiarities of TextSecure and poten-
tial weaknesses, and that our improvement of the TextSecure protocol mitigates
the UKS attacks. Therefore we have shown, that the protocol from section 3.3.6.2
proves long-term public keys to be unique, i. e., that with overwhelming probability
no two parties share the same public key (except if they collude). Then we proved
that (kEnc, kMAC) are bound to the respective long-term keys of the parties which
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gives authentic keys (that are also uniformly distributed). Finally, we established
that TextSecure’s encryption is actually one-time authenticated. To the best of
our knowledge, this is the first formal verification of the security guarantees offered
by the tool. In the larger context of this thesis, we offered a contribution to ad-
vance on the precondition B posited in the introduction. The insight that can be
attained from our research allows to make a more informed decision on whether to
use TextSecure and possibly in which context, as well as, whether the trust a user
extends to TextSecure is justified insofar that it achieves its self-set goals.
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4
Detection and Mitigation of Malicious Code on Websites

Diru & caution are the parents of security.
—Benjamin Franklin, Poor Richard’s Almanack

In their current state of imperfectness we must assume that systems are flawed and
that some flaws are exploitable. However, while for the time being we may need to
acknowledge that attackers will try to compromise a system and may need to accept
that they sometimes succeed, what we can do is to retrofit existing systems with
means of detection and—in the best case—mitigation of attacks. In this chapter
we thus approach the precondition C and introduce a way to detect and mitigate
drive-by download attacks and other malicious code directly in the browser.

4.1 Introduction

During the last few years, we observed a shift in attacks against end users: instead of
attacking network services, many of today’s attacks focus on vulnerabilities in client
applications. Especially the web browser is a popular target for attackers. There are
many different kinds of threats and attack vectors against current browsers, such
as:

• Drive-by download attacks in which a vulnerability in the web browser or one of
its components/extensions (e. g., Acrobat Reader or Flash plugins) is exploited
to execute code of the attacker’s choice [199]. Often, the goal of a drive-by
download attack is to download (and execute) a so-called loader [95], the first
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stage of a malware infection of the victims computer, which aims at disabling
potential defenses and then downloads and installs the actual malware before
removing itself from the now infected system.

• Cross-Site Scripting (XSS) vulnerabilities that enable an attacker to inject
arbitrary client-side scripts into web pages [131, 151, 226]. XSS vulnerabilities
offer a wide variety of uses to the attacker, among them the theft of private
information.

• Clickjacking (also known as UI redressing) is a technique in which an attacker
tricks a web site visitor into clicking on an element of a different page that is
only barely (or not at all) visible [21].

These and similar attack techniques target different vulnerabilities within a browser
or one of its components. The root cause of this problem is the fact that an at-
tacker can compromise the integrity of almost all DOM properties of a website by
injecting malicious JavaScript code into the website’s source code. Current defense
mechanisms, as well as, reactive analysis and forensic approaches are often slow or
complicated to set up and conduct, since an attacker can use many different ways
to obfuscate the code or make it hard to obtain a copy of the code in the first
place. Several techniques attempting to address this problem have been proposed.
On the one hand, there are analysis frameworks such as Wepawet [64], performing
an offline analysis of a given page in order to detect drive-by download attacks.
Cujo [203] performs an online analysis, but introduces an overhead of more than
1.5 seconds on JavaScript-heavy sites such as Facebook, which negatively impacts
the user experience. On the other hand, there is a huge body of work in which
different techniques are proposed to avoid attacks in the first place [97, 158, 224].
Approaches such as Gatekeeper [97] or Google Caja [158] attempt to find a way
to execute arbitrary JavaScript in a secure environment. Such attempts typically
require working on a subset of the complete JavaScript specification, e. g., Gate-
keeper removes language constructs such as eval() and document.write() from
the JavaScript specification for their analysis. Complementary to these approaches
are novel browser designs, such as Gazelle [224], constructed to address these prob-
lems from the ground up. However, as such approaches tend to focus on a limited
range of attack vectors or lack compatibility with the current infrastructure, many
do not effectively mitigate current threats for the user.

4.1.1 Contribution

In this chapter, we introduce IceShield, a novel approach to perform light-weight
instrumentation of JavaScript, detecting a diverse set of attacks against the DOM
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tree, and protecting users against such attacks. The instrumentation is light-weight
in the sense that IceShield runs directly within the browser, as it is implemented
in JavaScript and does not require any external components. Thus, the runtime
overhead is low and IceShield even works on embedded browsers used, for exam-
ple, in modern smartphones. By performing dynamic analysis, we do not need to
worry about obfuscation since we can inspect the attack attempt during runtime,
exactly at the point where the payload is being decoded, i. e., we can interpret its
plain-text. Furthermore, our approach does not rely on proprietary features and
is thus applicable with every major browser, since the detection is implemented in
JavaScript. It is thus also portable across platforms.

Special care needs to be taken to implement the instrumentation in a robust and
tamper resistant way: since the tool is implemented in JavaScript, an attacker could
try to overwrite our analysis functions during runtime. We rely on a new way
for tamper resistant meta programming in modern browsers, based on safely over-
writing JavaScript core methods and DOM properties with a minimal performance
overhead [104, pp. 123-133]. The basic idea is to take advantage of a new feature
available since ECMA Script 5 (ES5) called Object.defineProperty() [171]. This
allows us to freeze object properties, as well as, methods and native DOM proper-
ties and prevent them from being modified afterwards. This enables us to mitigate
attacks against our instrumentation, where an attacker tries to overwrite the re-
spective method again, reset an overwritten method or access the native methods
we have overwritten to bypass the inspection and detection process. This approach
works on all modern browsers supporting ES5 and later.

As IceShield performs the analysis directly in the browser, it can also mitigate
attacks and protect users and websites utilizing the tool. It allows us to identify
the suspicious elements within a page and change them accordingly. Aiming for
a minimal impact in case of false positives, we pad the parameters in question to
destroy the payload of the potential exploit, but avoid visible impact on the rendered
website. This enables us to actually protect users from attacks, with only a very
low perceivable percentage of false positives.

We have devised a prototypical implementation of IceShield, which we evaluated
in different system contexts: an average workstation, a low-performance netbook
and a smartphone. The runtime overhead of IceShield averages below 12 ms for
the workstation and at 89 ms for the smartphone, and we achieved a detection rate
of 98% using live malicious websites. What is more, we also were able to detect
three exploits that the tool could not have seen before, as they were significantly
newer than the training set, and show that attacks can be mitigated successfully.
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4.1.2 Outline

We start out with an introduction to the problem space and also discuss related
work, before delving into our solution and its implementation. The remainder of
the chapter is structured as follows: in Section 4.2 we introduce the technical back-
ground and basic assumptions underlying our approach, as well as, discuss related
work. In Section 4.3 we describe our system design, detail heuristics and scoring
metric that form the basis for detecting malicious code, and elaborate on our imple-
mentation. We end this chapter with an evaluation of our system and a discussion
of its limitations.

4.2 Technical Background

In this section we present the technical background that motivates our approach
and present our basic idea. We also outline our detection and protection framework
and illustrate its detection range with attack patterns we observed in the wild. At
the end of the section, we discuss related work.

4.2.1 Motivation and Basic Idea

We assume that almost every JavaScript based attack will have to use native meth-
ods at some point in order to prepare necessary data structures (e. g., to store
the shellcode on the heap or stack) and afterwards perform the actual exploit by
triggering a vulnerable function. This is true for heap and JIT spraying attacks,
exploits against vulnerabilities in a browser plug-in or the user agent itself, as well
as security issues in particular websites. The data set of malicious code samples
we assembled during the testing phase of IceShield showed that most malicious
scripts use native JavaScript methods such as concat(), unescape(), substring(),
and similar string functions [174] during preparation and deployment of their ma-
licious payload. The exploit code utilizing these functions is usually heavily obfus-
cated, making static code analysis and detection cumbersome and difficult. The four
JavaScript code examples shown in Listing 4.1 illustrate several novel obfuscation
techniques introduced and discussed on sla.ckers.org. These code snippets are
meant to be a proof-of-concept, thus performing nothing more than a simple call to
alert(/* some data */).

Listing 4.1: Obfuscated JavaScript code samples executing the alert() method
1) ({0:#0= alert /#0#/#0#(1) });
2) (1.. __proto__ .e0=alert )(1. e0);
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3) a=a setter =alert;
4) _=[[$,__ ,,$$ ,,_$ ,$_ ,_$_ ,,,$_$ ]=! ’’+[!{}]+{}]

[_$_+$_$+__+$],_()[_$+$_+$$+__+$](-~$)

Especially the last of the four examples in Listing 4.1 is hard to analyze since it
takes advantage of non alpha-numeric characters. It is an example of so-called
non-alnum obfuscation [104, pp. 67-68], as first introduced by Hasegawa14. This
demonstrates the enormous versatility and flexibility of JavaScript and underlines
the difficulty of static JavaScript code analysis. Furthermore, JavaScript allows
an attacker to create morphing code, a fact that has recently been demonstrated
by Heyes et al. [113]. This suggests that an attacker can render any signature
based malware detection lacking advanced de-obfuscation routines useless, similar
to the limitations of signature based shellcode [211] and malware [183] detection. In
addition, filtering mechanisms working on a layer different than the layer to actually
protect against attacks are not capable of detecting obfuscated code as for example
demonstrated by the large amount of bypasses against the Webkit XSS Auditor [23]
and the Internet Explorer 8 XSS filter [135].

With IceShield, we introduce a new approach to detect and mitigate attacks
against web browsers and to protect the integrity of the DOM. We do not rely
on any form of static code analysis, but rather the creation of an alternative and
light-weight execution context that can be deployed as a script on arbitrary websites
or as a browser extension. We use inline code analysis such that obfuscation does
not hamper our inspection: we can perform the analysis after the de-obfuscation has
taken place and can analyze the exploit attempt in clear text. The analysis itself is
based on detecting attack patterns of suspicious behavior. We describe these pat-
terns in heuristics similar to the ones proposed by Wepawet [64] and Cujo [203],
but we demonstrate how such features can be extended to cover other attack vec-
tors and be used in a live analysis rather than in an offline setting. IceShield can
be run in a low prioritized execution context such as being included on a website
protecting the user of this website from attacks embedded in the website (e. g., via
banner advertisements). The tool can also be deployed as a browser extension or
injected via a proxy to provide a better protection range and independence from the
individual websites potentially including IceShield. Our approach aims to have
minimal footprint and overhead, and we propose a novel way of JavaScript property
mimicking which we discuss in detail in Section 4.3.

14 Hasegawa, Y., Re: New XSS vectors/Unusual Javascript, http://sla.ckers.org/forum/read.
php?2,15812,28465#msg-28465 (June 2009, accessed 03.Oct.2014)
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4.2.2 Dynamic Detection and Protection Framework

IceShield attempts to accomplish several different goals. The first and most im-
portant is to provide the possibility to analyze drive-by download attempts at the
time a malicious websites tries to execute code in the context of the victim’s browser.
By performing this analysis within the context of an actual browser, we are able to
analyze the code dynamically. Thus, IceShield is not affected by any level of code
obfuscation since it can analyze the code after the decoding/decrypting has finished.
This is achieved by dynamically instrumenting objects and functions, and providing
an execution context in which we can analyze their behavior. The instrumentation
enables us to perform parameter analysis allowing inspection of the called meth-
ods and their parameters during runtime. With a set of heuristics and a scoring
based attestation trained with data mining techniques, IceShield can determine,
if the combination of method call and parameter setup indicates malicious intent.
To illustrate the expressiveness of the approach, we use a set of heuristics to detect
different kinds of attacks. Besides new features, we use several heuristics similar to
the ones implemented in Wepawet. The set of heuristics can easily be extended
to enhance IceShield’s detection features in case completely novel attack vectors
become known.

Second, we aim at protecting users against malicious websites: once IceShield has
detected an exploitation attempt, we are able to manipulate potentially malicious
code before an attack takes place. This can, for example, be achieved by modifying
or removing malicious content from the DOM tree. This enables us to protect the
victim from the full consequences of an attack and provide detailed information on
the attack technique itself. Preliminary results suggest that this approach is effective
in practice and enables us to effectively mitigate attacks.

The third goal is to implement the instrumentation in a light-weight and tamper
resistant manner. On the one hand, the overhead of our analysis framework should
be low such that the temporal impact is small and hardly noticeable by a user. On
the other hand, an attacker should not be able to remove our instrumentation since
this would enable a way to bypass our system. We achieve these two objectives
by implementing our instrumentation in JavaScript and introducing a novel way to
use latest features of ES5 [104, p. 133]. If the browser correctly implements ES5
functionality, it is hard for an attacker to bypass the system.

In empirical measurements, we show that the overhead is small: on average, our
instrumentation has an overhead of a few tens of milliseconds even on low-end sys-
tems, which is significantly small compared to the loading time of a web page. The
framework can be used on different browsers and it is portable since IceShield does
not depend on specific features or proprietary extensions.
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We successfully tested IceShield with all modern major browsers such as Firefox
33, Chrome 37, Safari 5, and Internet Explorer 9. This enables a deployment of
IceShield on many different devices in diversity and number. For each page a user
visits, IceShield monitors the behavior of this site by dynamically analyzing the
code that was supposed to be executed. In case this is an exploitation attempt, a
sanitized version of the analysis reports generated by IceShield could in theory
be sent to a central logging site. This enables us to gather information about lat-
est attack vectors since we can take advantage of the diverse user base that uses
IceShield. Existing tools are either customized to one specific environment (e. g.,
HoneyMonkey uses a series of machines with different configurations [225]) or
emulate different browsers like Wepawet does. The shortcoming of emulation is
that it is hard (if not impossible) to mimic all aspects of different browsers, e. g.,
the large number of browser plugins significantly increases the attack surface that
needs to be covered. In contrast, IceShield can be executed within the context of
a diverse set of browsers, and thus can spot attacks even in obscure settings, as long
as at least one user is affected by such attacks and runs IceShield.

4.2.3 Detection Range

Our approach aims to detect a wide array of possible client side attack techniques in-
cluding malware deployments as well as XSS and related attacks. The general attack
patterns that can be detected by our approach can be categorized into the following
items and we designed our detection heuristics accordingly (see Section 4.3.1):

1. Read access to sensitive DOM properties such as document.cookie, URL
tokens, Form and link tokens, and sensitive HTML element attribute values

2. Modification of existing DOM properties, form actions, link targets, src, href,
data and comparable attributes, document.cookie, event flow modifications
and modification of arbitrary innerHTML / outerHTML properties

3. Creation of outbound information channels such as elements loading off-domain
resources and modifications of existing src, href, data and comparable at-
tributes

4. Loading external resources such as dangerous tags via createElement /
createElementNS, modifications of existing src, href, data and compara-
ble attributes, as well as, modification of arbitrary innerHTML / outerHTML
properties
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5. Overlapping of existing elements, framing of targeted websites, markup injec-
tions and absolute positioning, changing of element dimensions and conditional
display

6. Creation of invisible DOM elements such as zero height/width elements, el-
ements outside the view port, transparent elements, changing element align-
ment/z-index and conditional display

IceShield is capable of monitoring arbitrary HTML element attributes which en-
ables us to detect even advanced attacks. It is possible to use regular expression
based patterns to monitor certain attribute classes and groups, such as the new
HTML5 custom data attributes [221], which were originally meant for web develop-
ers to add arbitrary attributes to their documents without destroying the markup
validity.

4.2.4 Related Work

We are not the first to propose techniques to address the problem of malicious code
on the web. We briefly discuss related work in this section and compare the different
approaches to the one we present in this chapter.

In the last few years, several different kinds of low- or high-interaction honey-
clients were introduced such as for example HoneyMonkey [225], Capture-HPC15,
SpyProxy [167], Monkey-Spider [118], or PhoneyC [181]. All of them can only be
used in an (offline) analysis setting and are not capable of actually protecting end-
users due to their high runtime overhead and the complexity involved when using
them.

Wepawet/JSAND [64] and Cujo [203] are closely related to our approach. Wepa-
wet is a framework to detect and analyze malicious JavaScript code in an offline
setting. The tool combines anomaly detection techniques and dynamic emulation
to analyze a given piece of code. Cujo uses similar heuristics to detect drive-by
download, but performs the analysis on a web proxy. This approach introduces on
average an analysis overhead of 500 ms and JavaScript-heavy sites such as Facebook
might even introduce an overhead of more than 1.5 seconds.

Compared to these two tools, we use a similar set of detection heuristics, but
IceShield can analyze the actual DOM tree within the browser and thus perform
a more fine-grained analysis. Furthermore, the overhead is an order of magnitude
lower compared to Cujo. In addition, our tool protects users from attacks since we
can modify parameters passed to native methods to mitigate potential attacks.
15 http://projects.honeynet.org/capture-hpc
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An advantage of our approach compared to recent proposals such as Zozzle [67] is
the light-weight implementation and the portability. However, our current prototype
has a higher false-positive rate which could potentially be lowered by using more
elaborated machine learning techniques.

IceShield neither necessarily requires user decision nor interaction to protect. Com-
parable solutions, like NoScript16, rely on their users’ decision-making abilities for
effective protection—in case the user trusts a domain that spreads malicious code,
the protection is rendered useless and will be bypassed.

4.3 System Design

In this section, we provide a detailed overview of the dynamic instrumentation and
detection techniques used by IceShield. We discuss how such an instrumentation
can be implemented in a robust way and present the different components and
analysis techniques used by the tool.

4.3.1 Heuristics to Identify Suspicious Sites

The set of heuristics and rules can be kept slim, as the parameters we need to inspect
are typically de-obfuscated by the script we observe, before they are assessed by
the rules. This reduces the overhead to a minimum and allows us to conduct a
more detailed analysis of malicious code, than any other form of de-obfuscation.
We developed the heuristics by manually analyzing recent attacks and tailored the
heuristics to allow for a detection of a wide variety of attack patterns, by generalizing
what we observed before. Some heuristics are applied in a comparable way by
Wepawet [64]. We enlarge the feature coverage, for instance, by also observing
behavior like the creation of potentially dangerous elements. The existing heuristics
serve as a proof-of-concept; new rules can easily be added to the system. However,
when we initially published this research, our features already covered all relevant
attack vectors. The list below describes the heuristics used in the prototype. The
different features correspond to the attack patterns we have discussed in Section 4.2.3
and illustrate the range of attacks we can discover with IceShield. The individual
rules are internally being applied with identifiers to protect the users privacy and
ease later database-based analysis and cumulation:
16 https://addons.mozilla.org/en-US/firefox/addon/noscript/
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1. External domain injection: Having a script inject an external domain into ex-
isting HTML elements can indicate malicious activity that aims at comman-
deer existing links or forms. The prototype differentiates between injection
of <embed>, <object>, <applet>, and <script> tags, as well as, <iframe>
injections.

2. Dangerous MIME type injection: We highlight when a script sets a MIME type
such as application/java-deployment-toolkit that changes how a browser
interprets an existing DOM object.

3. Suspicious Unicode characters: When arguments to a native method contain
characters like %u0b0c or %u0c0c, this can indicate a code execution attempt.

4. Suspicious decoding results: We record if decoding functions such as unescape()
or decodeURIComponent() contain suspicious characters.

5. Overlong decoding results: When a decoding function receives an especially
long argument, this can indicate the preparation of a payload. The prototype
uses a threshold of 4096 characters, based on our previous evaluation of existing
attacks and, in contrast, the behavior of benign sites.

6. Dangerous element creation: Some elements are found often in malicious con-
texts, such as <iframe>, <script>, <applet>. We record their use and distin-
guish between elements being created with and without an explicit namespace
context.

7. URI/CLSID pattern in attribute setter : We note when an element attribute is
set to an external URI, data/JavaScript URI or a Class ID (CLSID) string.

8. Dangerous use of the innerHTML property: We record when a script tries
to inject a string containing HTML elements such as <iframe>, <object>,
<script>, or <applet> into the value of an existing element.

4.3.2 Dynamic Instrumentation and Detection

We use inline code overwriting and hooking as the basic techniques to perform the
instrumentation such that we can check for the heuristics introduced above. We
create a context that allows us to inspect name and parameters of called functions
dynamically at runtime, wrap the native JavaScript methods into this context and
overwrite the original. We retain the original method inside IceShield’s scope for
later use, a form of overwriting also sucessfully applied in other contexts, such as
binary analysis [83, 228].
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The pseudo-code shown in Listing 4.2 demonstrates the basic principle of method
overwriting and wrapping we utilize. If our heuristic analysis does not flag an at-
tack attempt, we will call the original method without modifying its parameters.
If IceShield’s internal scoring mechanism indicates that a certain threshold has
been reached, we can either completely block the method call in question, or can
modify the set of arguments only and leave the intended code flow intact while still
preventing the attack. For example, a typically long string of shellcode would simply
be nulled before it can be passed to the original version of the method unescape().
Besides being able to mitigate attacks, this approach also allows us to better under-
stand the actual flow of malicious code, although it may be heavily obfuscated.

Listing 4.2: Pseudo-code illustrating the instrumentation performed by us.
var method_to_overwrite_with = function () {

var original = window . native_method ;
var result = analyze (

this.name , this. arguments
);

if( result === ’malicious ’) {
return defend_user ();

}

return original .call(this , this. arguments );
}

Object . defineProperty (window , ’native_method ’,
{

value: method_to_overwrite_with ,
configurable :false

});

As outlined before, IceShield makes use of an ECM Script 5 feature called
Object.defineProperty() [171] to provide a robust implementation of the instru-
mentation. Object.defineProperty() allows to define new object properties, as
well as, overwrite existing ones. Its capabilities also extend to methods and native
DOM properties, while allowing us to provide a descriptor literal that specifies the
option that should apply for the respective property. This descriptor literal can be
be used with six different descriptors, which are:

1. value: The value that will be associated with the defined property.

2. get: A function can be assigned that will serve as a getter—it will be called as
soon as get access to the property occurs.

3. set: A function can be assigned for serving as a setter—it will be called as
soon as set access to the property occurs.
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4. writeable: This descriptor influences if the property is read-only or not, default
permission is read-write access.

5. enumerable: If set to false, the property will not be enumerated by a for-in
loop such as for(var a in object).

6. configurable: If this descriptor is set to false, it will make sure that the property
is frozen and cannot be modified anymore. Neither can the property be deleted
nor is the browser supposed to restore the original state on deletion.

The most relevant descriptor for IceShield is configurable and the possibility to set
it to false, thereby freezing the property state. Freezing means that no other script
can modify the property or any of its child properties again. It will not even be
affected by a delete operation, which makes our approach tamper resistant against
an attack, which tries to change or reset overwritten methods, or tries to bypass
our inspection and detection process by accessing the original native methods. The
same is true for property retrieval maneuvers that work on Gecko based browsers
such as Components.lookupMethod(top, ’alert’)—an attacker is unable to use
this technique to bypass IceShield. The object freezing can also be accomplished
by using the method Object.freeze(). Batch processing of several objects to be
frozen at once can be accomplished by using Object.defineProperties() [170].
Heiderich elaborated on ECMA Script 5 Object Extensions and their protective
potential in his PhD thesis [104, pp. 127-128, 133].

All modern user agents such as Firefox 4 and up, Chrome 6-10 and up, and Internet
Explorer 9 and higher versions support object freezing. However, older or obscure
browsers that do not fully support ES5 will not provide reliable tamper resistance
for IceShield, which means that an attacker can potentially bypass the system.
However, as most browsers have by now successfully implemented (semi-)automatic
update mechanisms, modern browser variants, such as Chrome 38, Firefox 33, and
Internet Explorer 11 make up the vast majority of the market [62], such that older,
deprecated browser versions that do not allow object freezing are less relevant today.
Additionally, we performed several tests to verify the degree to which also older
browsers support the standard. Initially, some of the early user agents we tested,
such as Safari 5 7533.16 allow to overwrite a frozen object property. These artifacts
can be considered to be software bugs: we tested later versions of the Webkit engine
noticing the problem does not exist anymore. Consequentially, our approach allows
to retrofit protective mechanisms also to rather old browsers.

Our tool will not attempt to modify the user agent protected location object [175].
The majority of modern browsers forbid getter access to this object, as well as,
its child nodes for the sake of user privacy and to avoid security problems. If
JavaScript is executed via direct location object access—for example, via the vector
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location=name—it will be executed within the scope we control, so we do not need
to apply additional protection mechanisms. This is the same for location methods
like replace(), apply() or the property document.URL [169].

To make sure that IceShield will notice even more exotic code execution attempts,
it turned out to be not sufficient to just intercept calls to native methods relating
to window and window.document, but also monitor read and write access for several
DOM properties. The same is necessary for dynamic creation and manipulation of
HTML elements and tags. Consequently, we overwrite the setter and getter methods
of several HTML element prototypes, as we detailed in the original paper [106].

4.3.3 Scoring Metric

We use techniques from the area of machine learning to decide whether or not a
given site is malicious. Specifically, we use the features discussed in Section 4.3.1 as
input for a decision function F . We treat these heuristics observed by IceShield
when visiting the site as vector x of the form (f1, f2, . . . , fn) and define a linear
decision function F (x) using a weight vector w and a bias term b as

F (x) =
{
wTx− b > 0 if x is a malicious site
wTx− b ≤ 0 if x is a benign site

The decision surface underlying F is the hyperplane wTx+b = 0, which also induces
a way to distinguish between instances of benign and malicious sites based on the
behavior observed by IceShield. In our proof-of-concept implementation we use
Linear Discriminant Analysis (LDA [101]) to find a linear combination of weights
that separate the two classes, but other machine learning algorithms could be used
as well. To find the optimal weights w and bias term b, we use a corpus of labeled
benign and malicious sites as our training set (see Section 4.4).

The decision function F (x) induces a scoring metric f(x) that we can use to actually
detect malicious sites. The scoring metric is defined as f(x) = wTx and f(x) > b
indicates an instance of a malicious site, while f(x) ≤ b denotes a benign site.
We can also use the scoring metric as some kind of ranking: higher values of f(x)
indicate a site that tries to exploit multiple vulnerabilities of a visiting browser. As
noted above, other scoring metrics can be integrated into IceShield, we just chose
LDA due to its simplicity and to demonstrate how an actual metric and data mining
algorithm can be incorporated into the tool.
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4.3.4 User Protection

IceShield is also capable of changing the parameters passed to native methods
in case the heuristic analysis indicates a malicious attempt. The easiest way to
do so is to just overwrite the suspicious argument with an empty string or add
randomly dimensioned padding to maliciously looking strings before passing them
to the actual method. To avoid interference with the user experience, we null the
payload of the possible exploit, which mitigates the danger to the user, but in most
cases has no visible impact. The IceShield prototype currently defuses a possible
exploit payload in case the heuristics indicate any form of overflow or heap spray.
This means that strings longer than 4096 bytes containing suspicious characters, as
well as, suspicious MIME types and CLSID strings assigned to new and existing
DOM elements, are being modified.

Unlike approaches either completely allowing or disallowing JavaScript execution
such as NoScript or the Internet Explorer XSS Filter, IceShield has minimal impact
on the user experience since only the critical function call is being defused, whereas
the rest of the (possibly benign) JavaScript codeflow is not affected at all. This also
minimizes the negative effects of false positives our tool might have in practice.

4.3.5 Implementation as Browser Extension

The purely JavaScript based approach that we introduced so far has a few limita-
tions which we discuss next. We found several ways to circumvent and attack our
own tool while testing our approach, but we also came up with new techniques to be
able to harden it against those detection bypasses. In the following, we first discuss
several limitations, before we present a robust design of the general approach as a
browser extension. Note that this reduces the portability since IceShield needs to
be customized for each browser, but the tool is better hardened against tampering at-
tempts targeting our instrumentation. While the extension is browser-specific, each
extension is still portable across operating systems and hardware platforms. Fur-
thermore, the core technology of our approach remains the same for each browser.

4.3.5.1 Iframes

One of the biggest challenges for our JavaScript approach and comparable tools are
<iframe> tags pointing to JavaScript URIs [222] or resources using the data protocol
handler (so called data URIs as defined in RFC 1998 [152]). An iframe containing
a src attribute pointing to such an URL executes the JavaScript or similar code
contained in the URL as soon as the user agent’s parser has reached this position
in the DOM tree. The JavaScript is not being executed in the window context
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we can control with our tool, but in an implicitly created fresh context. This, of
course, renders our approach useless since there is no way we are able to monitor the
execution in the previously described manner. Listing 4.3 illustrates this problem,
and we verified this behavior in all major browsers.

Listing 4.3: Iframe and object tag setup to bypass analysis
<iframe src=" javascript :evil ()" ></iframe >
<object data="data:x ,%3 cscript >evil ()%3c/script >" ></object >

The same effect can be observed for <object> tags since most user agents have
them behave similarly to <iframe> tags depending on what source they point to.
The example in Listing 4.3 also shows how an object tag using a data attribute acts
equivalently to an <iframe> with a src attribute.

4.3.5.2 Links

Similar to the previously described iframe problem, an <a> tag applied with a target
attribute either set as _blank, _top, or just a bogus value and a JavaScript or data
URI as href attribute value will have the given code be executed in a new window
context. This again bypasses the detection mechanism and renders an implementa-
tion in pure JavaScript bypassable. The target attribute is usually used to specify
if a link should open in the same or rather a new window. The target attribute can
also be used to open a link in a specifically named window context.

This feature is necessary for websites making heavy use of frame sets, frames, and
pop-up windows. In case the user agent receives a target attribute value that does
not exist in the currently existing scope, the link will open in the same window, but
a new window context.

4.3.5.3 META Redirects

Many user agents provide the possibility to emulate HTTP header information in-
line by using <meta> tags combined with the http-equiv and the content at-
tributes. An attacker can abuse this feature by forcing the user agent to perform
a redirect after a given amount of time ranging from 0 to n seconds as shown in
Listing 4.4.

Listing 4.4: META refresh example bypassing analysis
<meta http -equiv=" refresh " content ="0; url= javascript :x()" />

Again, JavaScript and data URIs are being used to execute script code. It strongly
depends on the user agent in how far this kind of attack is capable of bypassing our
approach. Browsers based on the Gecko layout engine [172] do not allow META
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redirects to JavaScript URIs anymore, but they still support data URIs to be used
instead. All other tested browsers such as Chrome, Opera and Internet Explorer
still support JavaScript URIs in this use case. While some of them execute the
JavaScript code in the scope our tool controls, all browsers supporting data URIs
can use those as a working bypass.

4.3.5.4 DOM Element Surveillance

The solution to the problems discussed above can be found in scanning and analyzing
the website’s markup during parsing of the DOM tree. This can be accomplished by
using two user agent features: the DOM event DOMContentLoaded and the possibility
to select all existing DOM elements with the query document.getElementsByTag-
Name(’*’) [173]. Before the document is actually loaded and rendered, the script
can loop over the existing DOM elements and check assorted tag attribute combi-
nations such as <iframe> and src or <a> and href or the mentioned <meta> and
content. Listing 4.5 illustrates how this pre-evaluation of JavaScript code can be
implemented.

Listing 4.5: Example for markup analysis before execution
document . addEventListener (" DOMContentLoaded ", function (){

var elements = document . getElementsByTagName (’*’);
for(var i in elements ) { analyze ( elements [i]. src);}

}, false);

In case the protocol handlers javascript: or data: appear at the very beginning
of the strings to check, a pre-evaluation can take place: the code can be executed
in an environment again controlled by our tool. Most user agents allow line-breaks,
tabs and several more control characters merged into the protocol handler so a
pre-filtering is mandatory.

To avoid interferences with the website’s functionality and user experience, this can
be done in a cloned version of the existing DOM. After evaluation and analysis, the
results can be channeled back to the tool’s logging components and be merged with
the already existing scoring. Tests have shown that this approach works very well in
practice already with most passive attack vectors requiring user interaction. Active
JavaScript execution via <iframe> and src combinations can be intercepted too,
but most user agents besides Chrome add unnecessary limitations. Note that such
an approach is not affected by heavy obfuscation either since the relevant data is
being taken and analyzed directly from the already existing DOM tree and not the
raw markup itself. The script accesses the code that has already been de-obfuscated
and normalized by the user agent itself.
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Nava demonstrated with Active Content Signatures (ACS) [180] how a <plaintext>
tag can be used to render all markup following after an arbitrary branch in the DOM
tree can be rendered inactive for thorough inspection, modification, and sanitization
before being inserted in the DOM tree again. This approach can be used to effectively
deal with the mentioned problems around <iframe>, <object> and similar tags.
This way, no race conditions can appear since the plaintext tag is turning every
element into a single passive text-only DOM element providing unlimited amount
of time for analysis and removal of malicious code.

4.3.5.5 Browser Extensions

Phung et al. [193] showed how similar approaches can be used to protect specific
websites and applications against JavaScript based attacks such as XSS, CSRF and
other attacks targeting the users of the attacked website or application [126]. Their
approach encapsulates the native JavaScript methods and properties with an Aspect
Oriented Programming (AOP) related approach based on a specific policy tailored
to the website’s features and specifics [75]. We suggest to move further and create
browser-specific extensions such as a Firefox plug-in or an Internet Explorer Browser
Helper Object (BHO) to provide more generic protection as well as gain better
hardening against tampering attempts against our solution by attacker-provided
code.

Extensions for Google Chrome are easy to create, but do not provide the amount of
flexibility necessary for our tool to work. This is due to the technique of using isolated
worlds, meaning a read-only mirroring for important and security critical DOM
properties [25]. Our approach requires the ability to overwrite DOM elements of
the website to protect users against attacks. An extension for Gecko based browsers
fulfills all requirements necessary to make our approach work from within the browser
as well as BHOs for the Internet Explorer. Besides the described JavaScript based
version of IceShield, we have also implemented a Greasemonkey user script and a
browser extension for Firefox that performs basically the same task.

4.3.6 Fingerprinting

IceShield is designed to be hard to detect by an attacker. We consider this to
be important since many drive-by download attacks we observed fingerprinted the
visiting user agent and deployed their payload conditionally. The same behavior
is shown by several current exploit kits [178]. As a first step to be stealth, our
tool consists exclusively of JavaScript code and does not make use of any external
resources such as style sheets or images. Thus, an attacker has no possibility to read
style sheet information via window.getComputedStyles() or utilize image tags and
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error handlers to find out about the existence of our tool. IceShield also does not
pollute the global scope such as the OWASP ESAPI tool [187] or other comparable
libraries. Instead, we use an architecture wrapped in an anonymous function. Any
declared variable will reside inside this function scope, and thus does not leak into
the global scope.

Since the tool is making heavy use of overwritten native methods, an attacker could
easily find out about its existence via several child properties of those methods if no
further precautions are met. Let window.alert be overwritten by a custom function.
An attacker can call the toString() or valueOf() method of window.alert which
will result in leaking the source code of the overwriting function, instead of the string
function alert() { [native code] }.

The solution to avoid leakage via toString and its child nodes, is to overwrite
the window.alert.toString.toString with its parent method window.alert.to
String, as shown in Listing 4.6.

Listing 4.6: Approach for effective toString mimicking
alert . toString = function (){

return ’function alert () { [ native code] }’
}
alert . toString . toString = function (){

return ’function toString () { [ native code] }’
}
alert . toString . toString . toString = alert . toString . toString ;

This effectively overwrites the whole toString() chain and implicitly affects value
Of(), too. Thus an attacker will not be able to detect the presence of our tool by
using these two methods or a combination thereof. This approach works well in all
tested browsers. Note that an adversary capable of executing arbitrary JavaScript
in the attacked DOM might always find ways to detect the presence of IceShield.
Thus the tamper resistance established via the ES5 object capabilities is of immane
importance for our approach.

A major aspect of fingerprinting are timing attacks, which are in general a very hard
problem to deal with. This aspect can be considered as a limitation of IceShield
that we have so far not managed to get around: an attacker can make use of the
fact that functional string concatenation and operator based string concatenation
will have a completely different code flow as soon as the String.concat() method
has been overwritten. An attacker can thus perform two concatenation operations:
if the timing value for the first one (i. e., done functionally with concat()) differs
significantly from the second one (e. g., performed with the + operator), then a
method modification must have taken place. This could cause the attacker to not
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deploy the payload to avoid detection, and thus waste precious attack code, possibly
containing exploits against unreported vulnerabilities.

4.4 Evaluation

In this section, we describe the settings and datasets we used to evaluate the pro-
totype version of IceShield. We also present an overview of the detection and
performance results obtained during several experiments.

4.4.1 Evaluation Environment

We compiled two datasets for the evaluation of IceShield: Our known-good dataset
consists of the top 61,554 websites chosen from the top list of the Alexa traffic rank-
ing [11]. To minimize the possibility that malicious sites exist in this set, we checked
all URLs against the malwaredomainlist.com (MDL) blocklist [142], which lists
currently active malicious sites. The known-bad dataset is composed of 81 sites se-
lected from MDL [142], each identified by a unique URL. While the number of URLs
may seem to be small, all URLs in this dataset point to exploit kits like for example
Phoenix, Neosploit, or Eleonore. An exploit kit is a framework to serve a variety of
pre-built exploits to the unsuspecting user to initiate a drive-by attack [199]. We
chose to focus on exploit kits as each instance of an exploit kit represents a whole
class of exploits, and Curtsinger et al. showed that such a set is representative for
current attacks [67]. Given this result, we can use a smaller known-bad set to test
for a much larger number of actual malicious sites. Since the quality of the results
we can achieve with a supervised learning algorithm depend on the training set, we
manually verified all URLs in our malicious training set to confirm that they are
indeed pointing to malicious websites that perform some kind of attack.

To demonstrate the versatility of our approach, we evaluated IceShield on three
different devices:
• An average workstation equipped with an Intel Core i7-870 processor and 8
GB RAM, running Ubuntu 10.04 Linux and Firefox 3.6.8

• As an example of a typical mid-range system, we used a netbook ASUS EeePC
1000H with an Intel Atom N270 and 1 GB RAM, running Ubuntu 10 Linux
distribution and Firefox 3.6.12.

• To evaluate the performance of our tool on a low-end device, we performed tests
on a Nokia n900 smartphone with a 600 MHz ARM7 Cortex-A8 processor and
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Figure 4.1: Evaluation setup for IceShield: We inject the instrumentation code via
a proxy and send the result to a database.

256 MB RAM, running a Maemo Linux distribution and Firefox 3.5 Maemo
Browser 1.5.6 RX-51

We performed tests on all three devices and did not have to adjust IceShield for
any of them: as long as the browser on the device supports the features we require,
the underlying platform is not relevant.

The evaluation environment is completed by a proxy server to inject IceShield into
the HTML context of the visited pages, and a logging infrastructure, as depicted
in Figure 4.1. Once a website has been successfully loaded in the browser, we
log the following data points: the URL visited, execution time of IceShield and
onload time of the respective page as well as the features observed in this website
as discussed in the previous section. Furthermore, we log whether the URL belongs
to the malicious or the benign set.

4.4.2 Classification Results

For the instantiation of our classification algorithm, we used the top 50 sites from
the Alexa traffic ranking as benign and 30 samples. Consequentially, the test set
consists of the 61,504 sites ranked below the top 50 sites used in the training set,
and the remaining 51 instances of exploit kits found in the known-bad dataset.

The resulting model allows for the detection of 50 of the 51 malicious sites in the
known-bad set. At the same time we achieved a false positive rate of 2.17%. A
manual investigation of the one missed malicious sample yielded that this exploit
relied on a Java file (instead of JavaScript) to be executed by a browser plugin to set
a DOM variable, which was required for the execution of the exploit. As we did not
execute Java in our evaluation environment, the de-obfuscation routine was unable
to read the necessary value and the execution stopped. Hence, we were unable to
observe any relevant feature, except that the site accessed document.cookie two
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times. When retesting this site with a browser that had Java enabled, we could
indeed observe a relevant feature set, which allowed for a successful detection of this
exploit, too.

At first glance, a false positive rate of 2.17% may look prohibitivly high. However,
as IceShield does not rely on completely blocking access to the respective site, but
only disarms questionable elements in the DOM tree, the user will in most cases not
notice a false positive, as the benign elements of the site will continue to work as
expected.

We drew a 10% random sample from the result set of the false positives (resulting in
134 sites) to evaluate the usability of sites that have parts of the DOM removed. For
82.9% of the sample, the removal of DOM elements was not noticeable by human
testers, while 9.2% of the sites remained partially usable, while, e. g., banner ads
were not displayed correctly. A mere 7.5% of the false positives suffered severe
usability issues as a consequence of an incomplete DOM tree. In consequence, we
can determine an effective false positive rate, i. e., the percentage of cases, where the
tool’s presence is noticed by the user in a negative fashion, at only about 0.37%.

4.4.3 Detecting Unknown Exploits

We also evaluated, whether IceShield is capable to detect previously unseen attack
vectors. To this end we cataloged websites that served individual exploits against
browsers and plugins, such as an Internet Explorer exploit (CVE 2010-3962) or
the so-called _Marshaled_pUnk exploit, which abused a memory corruption flaw in
Apple Quicktime’s QTPlugin.ocx ActiveX control (CVE 2010-1818). We explicitly
verified that both samples were not contained in the known-bad set. When exposing
IceShield to these completely unknown samples, both attack vectors were clearly
labeled as a malicous by our heuristics and model, and consequentially mitigated.
This example underlines that our approach offers significant flexibility and can detect
and mitigate novel, as well as, widespread older threads.

Similarly positive results were obtained when testing against an exploit delivered
via MHTML (CVE-2011-0096). Payloads deployed by this method are known to
bypass most available filter mechanisms, as the subset of characters necessary to
execute JavaScript is very small and does completely omit quotes and parentheses.
However, while the payload was delivered Base64-encoded, the exploit necessarily
needed to fall back to a set of native functions that IceShield monitored during
decoding and execution. The encouraging suggestion we can draw from these results
it that IceShield is indeed capable to detect novel attacks that were unknown at
the time of training the system.
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4.4.4 Performance Results

Under the aspects of usability on the one hand and stealthiness on the other, it
is important to keep the execution time of IceShield low. As execution time,
we log the time difference between the execution of the first line of code and the
time immediately after we have overwritten and wrapped all required methods and
objects. This is accurate since the first line that is executed is var timestamp =
Date.now();, as IceShield is injected such that it is executed first in the browser.
We measure the onload time as the difference between the execution of the first line
of code and the moment when the process of rewriting the document is finished,
i. e., the DOM is ready. We define the overhead as the percentage of the onload
time that is needed to execute IceShield.

We recorded all times on the high-end workstation. Analyzing the Alexa data set,
we found that the execution time ranges from 2 ms to 760 ms. While the maximum
execution time seems high, it stays well below 25 ms in the large majority of the
cases, as can be seen in Figure 4.2: the average execution time measured over all
samples is 11.6 ms, which corresponds to an average overhead of 6.27%. The 99.5th
percentile is 25 ms. In summary, these results indicate that the execution time and
overhead is very low for the vast majority of websites and hardly noticeable by the
user in practice given the typical time it requires to load a web page.

0 100 200 300 400 500 600 700 800
Execution time (ms)

0

10000

20000

30000

40000

50000

60000

70000

Si
te

s

Figure 4.2: Cumulative distribution of the execution time of IceShield

88



4.4 Evaluation

We also evaluated the performance of IceShield against several common JavaScript
benchmarks such as SunSpider [227], Google’s V8 Benchmark [93], and the Slick-
Speed [165] benchmark. Only the V8 benchmark showed a significant performance
loss due to its excessive use of native functions: the benchmark result on the tested
workstation changed from 376 points without using IceShield to 222 points with
having the tool observing the DOM. However, we believe that this is not very rele-
vant in practice, since the V8 benchmark focuses on rendering and number crunching
tasks, rather than representing real-life web application test scenarios. SlickTest did
not show any noticeable performance changes while the confidence interval displayed
in the SunSpider results insignificantly changed from 2.7% to 4.4% when having
IceShield active and running.

Fast execution and a low overhead is even more relevant on devices that rely on bat-
tery power. Thus, we conducted performance tests on a netbook and a smartphone
(and again on a high-end workstation for comparison). As test cases, we selected
seven interactive, high-profile websites. We accessed each URL ten times with each
device and present in Table 4.1 the average over all runs. Even wth limited hard-
ware, IceShield manages to perform reasonably fast. The execution time exceeds
100ms only on twitter.com and stays below in all other test cases. On average, our
tool executed in 8.7 ms on a high-end workstation, in 50.4 ms on a netbook, and in
89.3 ms on a smartphone.

Table 4.1: Execution times on different platforms
Site (#DOM nodes) High-End PC Netbook Smartphone
Google.com (113) 8.2 ms 48.9 ms 80.9 ms
Google Maps (436) 8.0 ms 50.1 ms 93.4 ms
Twitter.com (1032) 8.1 ms 49.4 ms 102.4 ms
Facebook (195) 11.6 ms 56.3 ms 92.6 ms
Yahoo! (818) 8.4 ms 48.5 ms 92.4 ms
Youtube (745) 7.9 ms 50.7 ms 79.8 ms
Baidu (52) 8.4 ms 48.7 ms 83.6 ms
Average 8.7 ms 50.4 ms 89.3 ms

Note that in recent months we have observed a huge improvement in the performance
of JavaScript engines in the different browsers. If this trend continues, we can expect
that the performance of IceShield even increases in the future.
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4 Detection and Mitigation of Malicious Code on Websites

4.5 Discussion

There are several limitations IceShield is faced with in its current proof-of-concept
state. In case an attacker deploys a malicious PDF, Java Applet, or Flash file with-
out using any native DOM methods to create the necessary tags and attributes, the
heuristics used by IceShield might not collect enough information to deliver an ad-
equate score. A malicious website containing nothing more than <embed src="evil
.pdf"/> and avoiding utilization of native DOM methods will still be able to deploy
and execute its payload.

Another limitation of the prototype is the lack of heuristic coverage on ActiveX based
attacks. This is merely due to the fact that legacy versions of Internet Explorer are
not capable of executing the IceShield code. These problems do not apply for the
Internet Explorer 9 Beta we tested on. Note that this limitation is merely a matter of
implementation and not a substantial problem of scope such as the aforementioned
issue. Another limitation of IceShield, deployed in the JavaScript version by a
website, is given by the Same Origin Policy (SOP). In an attack scenario, where
an exploit will be deployed after redirecting the victim to another domain, a new
window context will be loaded and the protective mechanisms of our approach cannot
work anymore: IceShield cannot “stick” to the users window context since the
domain borders have been crossed. To mitigate this limitation, we can run the tool
on a higher level of execution privileges than the usual website context, for example,
with a Firefox extension or a user script running on Greasemonkey. The Firefox
extension we created successfully addresses this limitation. The Greasemonkey user
script we created is also not affected by this.

The lack of tamper resistance support for older user agents such as Firefox 3, In-
ternet Explorer 8 and Opera 10 is another limitation. These older browsers do not
support features such as Object.defineProperty(), and need workarounds like
obj.__noSuchMethod__. The features necessary for making our approach work safe
and successfully have been implemented in the new versions of these user agents,
which support the latest ECMA Script specification as discussed in Section 4.3.

The heuristics we used to detect attacks as introduced in Section 4.3.1 already cover
a diverse set of possible attacks, as also illustrated by the fact that we detected three
attacks with IceShield that the tool had not seen before. The heuristics are not
complete in a sense of them covering each possible attack vector. Depending on the
actual exploit, our heuristics might be bypassed and allow sophisticated attackers to
deploy their payload. However, IceShield can be easily extended to include more
heuristics that then cover more attack vectors.
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4.6 Summary

4.6 Summary

In this chapter, we presented IceShield, a tool to perform light-weight dynamic
analysis of JavaScript code without needing to leave the context of a browser in
order to detect and prevent attacks. We extended the available repertoire of mecha-
nisms to detect and mitigate a compromise, contributing to precondition C posited
in Section 1.1. IceShield achieves its goals by leveraging inline code analysis and
hooking to wrap native JavaScript methods into a context that enables us to dy-
namically analyze the behavior of these methods. We use methodologies from the
area of machine learning to derive a model of malicious behavior and are able to
efficiently apply this model during runtime. We took intricate care to showcase a
robust implementation that cannot easily be overwritten by an attacker attempting
to interfere with our analysis code. We achieve this goal by applying a novel tech-
nique using features available in the ECMA Script 5 standard and later, which allow
us to freeze object properties. Our empirical evaluation of IceShield against ma-
licious and benign websites shows that the tool achieves a accuracy of at least 98%
in detecting attacks against the browser and was able to mitigate three previously
unknown attack vectors. Its effective false positive rate is low: a user experiences
a reduced functionality of websites only in roughly 0.37% of the sample set. Test
on resource-limited devices have shown that the performance overhead is low, mak-
ing IceShield suitable for deployment even on small devices, like smartphones and
netbooks.
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5
Locational Privacy in the Absence of Anonymous

Payments

Let all Men know thee, but no man know thee
thoroughly: Men freely ford that see the shallows.

—Benjamin Franklin, Poor Richard’s Almanack

The idea of privacy by design has been described as a set of principles that aim to root
privacy-enhancing technology deeply within technical solutions and organizational
structures [53]: privacy should not be an afterthought, but be deeply embedded
into technology, without hampering its functionality. While the latter may sound
straightforward in theory, it may pose significant hurdles in practice. Privacy thus
is taking a similar route security already took: security properites, too, have long
been handled as one of many features of a product or a technology. Slowly, the
realization begins to set in that it must be considered as a foundation instead—a
fact that security researchers have been preaching for years.

For privacy to become a foundation of design, it needs not only to overcome the no-
tion that it (seemingly) hampers functionality, but also that in a given technological
context it contradicts security efforts. However, often enough security and privacy
are just two sides of the same coin, e. g., customer data that is not retained in the
first place cannot be compromised by an attacker later on. Thus, for a more holistic
approach, we rephrase the concept of privacy by design to security and privacy by
design, a principle that the European Commission, for instance, sees as a foundation
for RFID technology [82].
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5 Locational Privacy in the Absence of Anonymous Payments

We apply this concept—which has also found application in recent research on RFID-
based systems [17] and cloud security [47]—to the field of post-paid electronic acqui-
sition of goods or services. To this end, we propose a system that respects both the
vendors’ need for authenticity of billing-relevant data and the customers’ require-
ment for effective protection of personal and personally identifiable data.

5.1 Introduction

Blumberg and Eckersley define locational privacy as “the ability of an individual to
move in public space with the expectation that under normal circumstances their
location will not be systematically and secretly recorded for later use” [39]. In a
world of Big Data, where any fact about an individuals life, once revealed, will po-
tentially be stored indefinitely, it is important to limit the data that is created or
revealed in the first place. While completely anonymous systems would be desirable
in many cases from a customer’s side, legitimate business interests on the side of
the vendor may prevent the adoption of a technical solution that relies on complete
anonymity. In the context of financial transactions, the prevalent academic approach
to protecting a user’s locational privacy is to protect the user’s identity and thus in-
directly conceal their location. Various anonymous electronic cash (e-cash) schemes
have been published (e. g., [45, 51, 57, 58]) since Chaum published his seminal paper
Blind Signatures for Untraceable Payments [56] in 1982. However, none has been
(widely) adopted. Besides posing technical hurdles, e-cash often makes it hard for
the vendor to walk the established path of resolving a dispute with a customer on
front of a court of law, as the customer is not known—although many schemes re-
veal the customer’s identity in case of double spending, but only then. Anonymous
payment schemes also forfeit the option of post-paid good and services, where the
customer needs to be billed and thus is typically known. Finally, there may be ap-
plications where regulations and legal restrictions prohibit the customer from being
anonymous. A vendor in this market will be unable to provide anonymous payment
services to its customers.

Under the premise that the customer must be identifiable, we thus must conception-
ally deviate from the widespread paradigm of anonymizing customers in privacy-
enhancing systems. Our new approach to this problem is to anonymize locations.
In our solution, the user’s identity is explicitly known during a transaction, yet the
user’s location is concealed, effectively hindering the creation of a movement profile
based on financial transactions. We use the increasingly relevant example of re-
charging electric vehicles and paying for energy on the go to showcase our approach.
We do not exclude the possibility that our approach can be adapted to other settings
that require the customer to be known during such a transaction.
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5.1.1 The Example of Electric Vehicles

In a world where oil-dependent mobility comes increasingly under scrutiny, electric
vehicles (EVs) are one possible alternative (again). While around the year 1900
about 38% of the cars in the US were powered electrically, in the following decades
the EV had been marginalized by cars with internal combustion engines. This fact
has often been attributed to the introduction of the electric starter motor that made
combustion engine-driven vehicles as easy to use as electric ones [92]. Today, electric
vehicles are once again a promising concept for solving some of the environmental
and transport challenges we are facing as a civilization.

In the context of privacy-preserving non-anonymous transactions, the EV scenario
offers several interesting constraints. First of all, the proliferation of vehicles and
infrastructure is limited, but rapidly increasing. Today, many major car manufac-
turers offer a series of EVs or plan to do so in the next one or two years. Market
research predicts up to 3.4 million annual world-wide sales of plug-in hybrid (PHEV)
and battery electric vehicles (BEV) in 2020 [195]. While we are aware that most
people leave a cornucopia of movement traces due to their use of existing technology
(e. g., cell phones), we think that technical solutions for emerging fields, like electric
mobility, should be designed with privacy in mind.

Second, at least for the time being, the capacity of most electric vehicle batteries is
rather limited, thus most EVs require relatively frequent charging, both to prevent
deep battery discharge and to counter the users’ range anxiety, i. e., the fear not to
reach a destination on the remaining charge. Many drivers charge whenever they
can. Both in North America and Europe there are currently more than ten thousand
charging stations (CS) accessible to the public [139, 196] and the numbers are on
the rise: the European Commission proposed a minimum target of 795,000 publicly
accessible charging stations throughout the EU [52].

The increasing availability of public charging stations is positive and necessary for
the success of EVs. However, in combination with the need to charge frequently, it
renders vehicle movement profiles more detailed than those derived from fossile fuel
not paid with cash. A vehicle’s movement profile allows to infer habitual behavior of
its owner, both correctly and incorrectly so. “Did a person see an AIDS counselor?
Did an employee skip lunch to pitch a new invention to venture capital investors?
Did she meet with safety regulators to tip them off about work conditions?” [39]
If a person regularly charges her EV in front of a rehabilitation clinic, an entity
interpreting available location data might (falsely) suspect a history of drug abuse.
Persons who park their car in a red light district on a regular basis may simply want
to keep this information to themselves [188].
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Third, cash is not an option for almost all utilities. While even in the US cash ac-
counts for a significant minority of 12.6% of domestic retail payments [10] (Canada:
54% of retail payment volume in 2012 [15]), cash accounted for 78% of the retail
payments in Europe in 2008 and would solve the privacy problem at hand. How-
ever, in most parts of the developed world, utilities deliver energy either based on
a subscription (post-paid) or pre-paid model where the customer’s name is known.
The common element in both scenarios is that an identity is linked to each pay-
ment process. For the foreseeable future, charging an electric vehicle will take much
longer than refueling a traditional car, which is yet another reason to charge where
the vehicle is anyway. As a result, EV charging infrastructure will be much more
distributed, in contrast to the current network of fuel stations. This makes cash
logistics prohibitively expensive: even cost benefits of existing billing infrastructure
aside, maintaining a low cash level in all stations does not scale well in a widely dis-
tributed infrastructure, while retaining a larger amount of cash in charging stations
solicits theft or at least vandalism.

Fourth, the sales of electric energy is tightly regulated in many countries. Many
of these regulations aim at making the market more transparent to the customer.
However, when applied to the relatively new EV scenario some of these requirements
can compromise the locational privacy of the customer. These regulations stem
from the time where electric energy was explicitly sold to households or companies,
i. e., non-mobile entities, and result in requirements for points of sale and storage
of transaction documentation that can compromise the locational privacy of the
customer.

5.1.2 Contribution

In this chapter, we propose a system to authenticate non-anonymous transactions,
while preserving the users’ locational privacy. We use the example of electric vehicle
charging, as it offers several interesting constraints. More precisely, we make the
following contributions:

• We adapt a carefully chosen group signature scheme without compromising its
strong security properties to allow for full compliance with regulations and legal
requirements. These requirements were identified with the help of experts in
the field of commercial law and energy law. The privacy mechanisms protecting
the user’s location data are very strong: not only is it impossible to decide
whether a user has charged her vehicle at a specific CS, it is even impossible
to decide whether a user has ever been charging at one or several CSs more
than once. In compliance with local laws, the system still allows a trusted
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third party to revoke the location anonymity of past billing processes in cases
of a dispute.

• Our solution is complete, in that it covers the charging process from after
authentication to providing all information necessary for the clearing process.
It closely fits existing clearing and billing structures and can be implemented
efficiently on a large scale.

• To the best of our knowledge, we are the first to also offer an implementation
of a practical charging and billing system for electric vehicles that provides
strong protection of the customer’s locational privacy. Our implementation
performs well even on the limited hardware of a CS, while we are able to
process more than one million charging processes per hour using off-the-shelf
hardware at the backend (BE), thus providing a cost-effective way to process
billing information from a large network of CSes.

5.1.3 Outline

The remainder of this chapter is structured as follows: in the next section we provide
technical background and outline our approach, as well as, the design decisions that
followed. We then provide a detailed description of all processes within the resulting
system, present the evaluation of our prototypical implementation and conclude with
a discussion of our approach.

5.2 Technical Background

We begin this section with a definition of the problem space, before outlining our
scheme, which consists of three main phases: (1) authenticating the customer, (2)
authenticating the tuple of customer identity and energy consumption data, and (3)
transmitting this data to a clearing house, all without compromising the customer’s
locational privacy. We end this section with a discussion of related work.

5.2.1 Problem Space

We define the problem space as follows: Electric utility companies that are honest
but curious and want to learn about past, present, and future locations of vehicles,
or any entity obtaining (billing) records from utilities, can infer a movement profile
for every customer, based on these records.
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Under the assumption that

a) the creation of movement profiles without explicit consent of the subject is un-
desired and the existence of unnecessary data is to be avoided,

b) anonymous payments are not an option,

c) the solution should integrate well with existing billing infrastructure and pro-
cesses

we explore how the creation of movement profiles can be prevented, while integrity,
authenticity, and, in parts, the confidentiality of the data transmitted between a
point of sale (i. e., a CS) and a backend is provided. Conceptually, we thus must de-
viate from the widespread paradigm of anonymizing customers in privacy-enhancing
systems. Our new approach to this problem is to anonymize locations, i. e., charging
stations. In this context we identify three core issues:

One way to cryptographically bind a customer identity to metering data are digital
signature algorithms, as they achieve non-repudiation. However, the location where
a charging process took place can be directly inferred, as classical digital signatures
not only guarantee the authenticity of the signed data, but also authenticate entities,
i. e., the respective charging station (Issue 1 ). Location-bound tokens, like the
identifier of the energy meter used for the measurement, naturally compromise the
customer’s locations, but utilities are legally required to retain this information
in many European countries (Issue 2 ). The location of a transaction can also be
inferred from network-based identifiers (Issue 3 ), primarily the charging station’s IP
address, e. g., by correlating BE server access logs with billing data timestamps.

Furthermore, an entity may have access to the network that connects the backend
or a CS to the Internet. Such an attacker might try to infer the origin of a message
by using a timing side channel, but must be unable to attribute the connection
to a specific user. We assume that all attackers are computationally bound and
accordingly unable to break computationally hard cryptographic primitives.

Attacks against the point of sales itself are out of scope of this chapter.

5.2.2 Approach

We address Issue 1 by employing a group signature scheme with strong security
properties that provides very efficient verification procedures for large numbers of
signatures as a central building block of our system. The scheme allows for the
conditional identification of a signer, while in the default case allowing him to remain
anonymous. For every entity that is not in possession of the so-called opening key,
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the actual signer of a message is indistinguishable from every other potential signer
within the same group. Thus, while a customer’s transaction is always linked to his
customer account, our system guarantees unlinkability with respect to location and
time of a transaction.

We address Issue 2 by modifying the signature scheme such that information that
is required by law or regulations, but would compromise the customers’ locational
privacy, is also only conditionally available. In normal operation this information is
as strongly protected, as the signer’s identity itself. In case of a legal dispute, where
this information must be produced by the utility in front of a court of law, such that
an independent entity can assess the proper calibration of the energy meter, the
identifier of charging station and energy meter can be revealed by a trusted third
party. Legally required information was identified with the help of our colleagues
from the faculty of law, who specialize in commercial law and energy law.

We address Issue 3 by anonymizing the sender of billing-relevant information on
the network level. As the communication between charging station and backend
is not highly time critical, we could in principle use high-latency mix networks,
such as Mixminion [72] or Mixmaster [164]. However, as network availability is an
issue, we chose to use the, at the time being, most popular anonymity network,
which increasingly offers good redundancy due to its high number of nodes: the
Tor network [78]. As Tor does not provide protection against exploiting timing side
channels, especially in the presence of low traffic volume, we also discuss how these
kinds of attacks can be mitigated in our application context.

In summary, the authentication and charging process we propose is as follows (cf.
Figure 5.1):

1. The CS authenticates towards the customer and vice versa. The CS retains
the authenticated customer identity.

2. Upon successful authentication, the CS’s power outlet is unlocked and/or put
on-line. Charging begins as soon as the EV is connected.

3. When the power line connection between the CS and the EV is interrupted, the
CS generates a tuple containing all information required for the billing process
(i. e., the authenticated customer identity stored from Step 1, the amount
of energy provided to the user, a timestamp indicating the beginning of the
charging process and a timestamp indicating its end). Each location-bound
token that is legally required is encrypted to the single entity in possession of
the opening key. The tuple is signed using the group secret xi of the respective
CS and the data is transmitted to the BE via the Tor network. To ensure
confidentiality of the transmitted data, we establish a TLS tunnel between CS
and BE prior to transmission.
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Figure 5.1: Charging and Transmission of Metering Data

We are aware that in being compliant with legal regulation, our system is also depen-
dent of legal protection: A high legal hurdle must be placed before the identification
of a signer (i. e., the respective CS) and the disclosure of location-bound tokens. This
could mean, for example, that a court order or the customer’s consent is required.

5.2.3 Roaming

While a significant part of customers can still only charge at CSes owned by the
utility they have a contract with, roaming is desired by most market participants.
In Figure 5.1 the concept is represented by the introduction of a clearing house.
Following the example of the banking and telecommunications sector, efforts are
already under way in the energy sector to establish a clearing house to back a
roaming-enabled charging infrastructure for electric vehicles. As the clearing house
aggregates and verifies metering data from all the CSs, it is capable to provide either
only data clearing or also financial clearing to the associated electric utility compa-
nies, which in turn allows each utility’s customers to roam freely between all other
utilities cooperating with the clearing house. At the time of writing, clearing ser-
vices for EV charging in Europe are neither unified nor sufficiently developed—first
approaches to facilitate the use of charging stations operated by several providers
using only one authentication token are made, for example, by HubJect17 and e-
clearing.net.

17 http://www.hubject.com
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5.2.4 Group Signatures and XSGS

Group signature schemes are an essential part of our approach and thus we explain in
the following how we utilize and adapt this concept and why we chose the eXtremely
Short Group Signature (XSGS) scheme.

The idea of group signature schemes has first been introduced by Chaum and van
Hejst in 1991 [59]. A group signature scheme is a digital signature scheme that
(additionally) provides a (strong) form of sender anonymity. Unlike in classical
signature schemes where each signature is produced by a single signer, in a group
signature scheme each signature is produced on behalf of a group. For the verifier
it is easy to check whether the signature has been produced by one of the current
group members. However finding out who exactly produced the group signature
is impossible. Intuitively, the larger the group is, the better are the anonymity
guarantees provided for each group member—an ideal property for our scenario.

5.2.4.1 Anonymity: Pseudonyms vs. Group Signatures

Group signatures provide a very strong form of anonymity that is usually referred
to as unlinkability: it is not only impossible to map a signature to its creator—
this could be achieved by pseudonyms alone. Unlinkability also implies that noone,
except for a dedicated trusted party called opener, is able to decide whether two
group signatures have been produced by the same signer. We believe that for our
application this property is crucial18. When using pseudonyms for CSs alone to
protect the user’s locational privacy, the verifier could easily build up customer
profiles for every CS which, with more and more user-dependent billing data, could
possibly be narrowed down to a single CS. In this way one could easily reveal the
true CSs behind the pseudonyms. As a consequence, the verifier could easily follow
where and when each user charged its vehicle. Group signatures on the other hand
do not even reveal whether two signature belong to the same CS. So users who
constantly charge their vehicle at the same CS are indistinguishable from those who
travel a lot and often use CSs that they have never visited before.

5.2.4.2 Design Features of the XSGS Scheme

Group signatures vary in the extent of functionality they offer and in the security
guarantees they provide for group members and verifiers. In our work, we utilize
18 We recall once again that user identities have to be known to the verifier for a proper billing

process. Thus it is not possible to anonymize user identities in the bills.
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the XSGS scheme by Delerablee and Pointcheval [76]. The XSGS scheme is an
extended variant of the well-known group signature scheme by Boneh, Boyen and
Shacham (BBS) which achieves very high efficiency with respect to both signature
size and speed [41]. It modifies the BBS scheme in two ways. First, it adds improved
protection of group members against collusions of (corrupted) members who try to
frame a user. In XSGS, even if the issuer itself is corrupted and takes part in that
collusion, its honest group members cannot be framed. Second, XSGS guarantees
unlinkability of signatures to even hold against an adversary that can convince the
opener to open all other signatures. BBS does in general not cover such attacks
(not even when the adversary may convince the opener only once). As a theoretical
benefit of these extensions, the XSGS scheme can be proven secure in the very strong
security model of Bellare, Shi, and Zhang [35]. We believe that these extended
properties of XSGS are necessary in our application. In particular, they allow to
implement the issuer at the same place as the (only) verifier (i. e., the clearing
house), without risking the CS’s anonymity.

5.2.4.3 Support for Batch Verification

An important design restriction of our solution is that we consider a single verifier
that has to verify a huge number of signatures. The group members, on the other
hand, do only have to generate a moderate amount of signatures each day. Thus
our group signature scheme should ideally feature very fast verification procedures.
Kim et al. showed that XSGS supports batch verification [130]. In general, batch
verification [31, 84] identifies the most expensive operation in the verification of a
signature scheme and combines the verification procedures of several signatures into
a single one such that this operation is only executed for a (small) constant number of
times (which is independent of the number of signatures). This can greatly improve
efficiency.

For security reasons, the combination process is setup in such a way that adversaries
cannot produce a combination of invalid signatures which pass the batch verifica-
tion test19. In the XSGS verification, the most expensive operation is the evaluation
of a bilinear operation (the so-called pairing) executed on elements of certain el-
liptic curves. This operation is usually applied in each signature verification. The
batch verifier for the verification process only requires the pairing to be called once,
independent of the number of signatures.

Batch verifiers pay off when the (expected) number of invalid signatures per batch
is very small. In theses cases one can easily apply a divide-and-conquer approach
19 The batch verifier of Kim et al. uses the so-called small exponent test [31].
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to identify the invalid signatures. One recursively divides the batch into two halves
and applies batch verification to these halves. Every batch that does not successfully
pass the batch verification is again divided up into two new batches of half the size.
This process incurs at most log2(n) (where n is the size of the original batch) sub-
processes per invalid signature. However, for larger number of invalid signatures,
this process quickly performs inferior to the separate verification of each signature.

5.2.4.4 Dynamic Groups

XSGS allows for dynamic groups, i. e., group members can be added and removed
without re-initializing the whole scheme. Also, member joins do not require updates
of the group public key (GPK), which is of significant advantage, if we expect the
system (at least in the first years of installment) to often add new group members,
while we consider revocations of credentials to be less frequently required. We stress
that if member joins do not require modifications of GPK, it is impossible to not
modify the group public key when revoking users—we need to signal the verifier that
the set of legal signers has changed. However, the approach underlying XSGS is
very efficient. It is based on dynamic accumulators [50, 182]. In case of a revocation
the group manager modifies the GPK and publishes a set of values that help all
but the revoked users to recalculate the GPK. This information does not have to
be transferred in secret. Instead the group manager can simply make it publicly
available.

5.2.4.5 Group Signatures in an EV Charging Infrastructure

In an e-mobility scenario the application of group signatures to ensure the authen-
ticity of metering data results in the following setup:

N utilities choose to cooperate by utilizing a certain clearing house. Each utility
i provides mi charging stations to the public. A clearing house can act as the
group manager within the group signature scheme, that allows entities to join the
group and can revoke individual signing keys. The group manager cannot, however,
identify individual signers within the group.

Upon setup of a CS, the clearing house allows the CS to join the group. Thus all mi

stations form one group. Anyone (e. g., clearing house, utilities, customers, a judge,
etc.) is able to verify that a tuple (metering data, customer id) has been signed by
a CS within the group and that the signed data has not been altered. If the group
signature scheme includes an opening phase, one entity exists that is able to attribute
any signature to the signer within the group. In the case at hand this could be an
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independent notary or a newly purposely formed institution, i. e., an entity that
can be trusted to act lawfully and is trusted by all market participants. However,
while the metering data will already contain at least the energy consumption and
a timestamp for each the beginning and the end of the charging process, in some
legislations this is not enough to identify the CS for dispute resolution in court.
The energy meter within a CS is calibrated and often sealed, so a for metering data
to stand up in court, also, e. g., the identification number of the meter (meterID)
is required. As the meterID can be attributed to a certain CS, it is a location-
bound token that needs additional protection, lest it will compromise the customer’s
location privacy.

There is already one entity all participants have to trust (the Opener), as it can
disclose the signer, and, consequentially, where a charging process took place. We
thus use an asymmetric encryption scheme to encrypt any location-bound token with
the Opener’s public key. Thus the message sent from the CS to the clearing house
will be formed as shown in Listing 5.1. The Opener may only decrypt the encrypted
message part when the legal constraints for opening the signature are fulfilled.

Listing 5.1: Payload of message used to transmit metering data
metering data , customer id , encOP K (location-bound token),

groupsign (metering data, customer id, encOP K (location-bound token))

5.2.5 Related Work

Locational privacy has been recognized as being desirable as early as 1996 [121]. Its
importance has been recognized for example in the field of pervasive computing [14]
and also in the context of location-based mobile applications [198]. The importance
of location privacy in the context of transportation is underlined by numerous publi-
cations that aim at preserving location privacy in various applications like vehicular
communication systems [79, 88, 116, 205, 237], ticketing for public transport sys-
tems [20, 38, 112], and electronic road toll collection [19, 154, 197]. In the latter
context, Chen et al. [233] propose the use of a group signature scheme to enhance
the users’ privacy. However, the authors did not implement the proposed solution
and fail to evaluate the feasibility of their approach in the given scenario.

A limited amount of publications have considered locational privacy in the context
of e-mobility so far: Chao Li [54] implement a merchant entity of the Compact e-
Cash scheme [49] aimed at the application within a charging station. Liu et al. [140]
propose an anonymous electronic payment scheme that supports two-way anony-
mous payments. Stegelmann’s and Kesdogan’s approach [213] aims at providing
locational privacy in the presence of a smart grid that actively manages EVs as
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energy buffers. We are not aware of an implementation that allows to evaluate the
practicality. While their design incorporates optional anonymity revocation, it relies
on an anonymous electronic cash scheme for billing. None of these approaches can
be used when anonymous electronic payments are not tolerated by legislation or
even just undesired by the vendor.

5.3 System Design

In this section we describe all processes that constitute our system. We describe
every process in the lifecycle of a charging station and also a protocol for user
authentication.

5.3.1 Bootstrapping the System

Before we can start authenticating users, charging vehicles, and securely transmit-
ting energy consumption data, we have to set up the infrastructure.

The clearing house acts as the group manager within the XSGS scheme. It can add
a new CS to the group by issuing a certificate (credential) UCert to CS. A CS with a
valid UCert is also referred to as group member. The clearing house can also revoke
the ability of group members to sign on behalf of the group. An entity sufficiently
independent of clearing house and utilities serves as the opener. In our scenario
N electric utilities choose to cooperate by utilizing a certain clearing house. Each
utility i provides mi charging stations to the public.

In order to bootstrap the XSGS scheme, the group manager first needs to gen-
erate the group (curve) parameters of a bilinear group (including group descrip-
tions, generators, and pairing specification). Technically, the bilinear group consists
of two elliptic curve groups G1 and G2 of prime order p with random generators
G1 ∈ G1 and H,G2 ∈ G2 and the description of a non-degenerated bilinear pair-
ing e : G1 × G2 → Gt such that e(Ga1, Gb2) = e(G1, G2)ab for every a, b ∈ Zp. For
more details we refer to [41]. Next it generates a secret Diffie-Hellman key IK ∈ Zp
(called issuer key) with its corresponding public key W = GIK2 . The issuer key
IK is used to generate certificates for new group members. Given these values, the
opener generates a private key of a chosen-ciphertext secure encryption system, the
opening key OK. The corresponding public encryption key is denoted as OPK.
The public key OPK is used in the signing process of the group signature scheme
to encrypt the signer’s certificate UCert. This enables the opener to reveal which
CS has actually created a given group signature. On a technical level OK consist of
two independent secret keys of an ELGamal encryption system. OPK contains the
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corresponding public keys. It is well known that ElGamal is only chosen-plaintext
secure. However, the system applies the well-known Naor-Yung transformation [177]
which encrypts a given messsage under both ElGamal keys resulting in ciphertext
Z1 and Z2. Additionally, it generates a NIZK proof P of equality of plaintexts in Z1
and Z2. The ciphertext Z consist of Z = (Z1, Z2, P ). The group public key GPK
consist of the paramaters of the bilinear group, W , and OPK.

5.3.2 Setting Up New Charging Stations

Each new CS must join the group before it can sign metering data. Now that group
manager and opener are set up, the group manager can add new charging stations to
the group. Note that all charging stations, independent of the utility that operates
them, will be members of the same group.

The group manager starts the join process by transmitting the GPK to the CS. The
CS draws its private signing key UK ∈ Zp and computes a commitment C = HUK

of UK. Then it sends C together with a NIZK proof of knowledge of UK to the
group manager. On successful verification of this proof, the group manager selects a
random signing key x ∈ Zp for the CS and calculates the group member identifier

A = (G1 · C)
1

IK+x ⇔ e(A,W ·Gx2) = e(G1 · C,G2). (5.1)

The values A and x constitute the certificate UCert of the CS. Intuitively, UCert
is a digital signature over x that can only be computed with the help of IK. The
group manager first sends A to the CS and proves that it knows a corresponding x
that fulfills the above equation. Knowing that its communication partner can indeed
issue certificates, the CS produces a classical signature S using its USK over A as
S = SignUSK(A) and sends (S, certCS) to the issuer. This pair is important when
resolving disputes as it binds the anonymous certificate UCert to a concrete CS that
can be identified via the classical PKI. If the signature is valid, the group manager
sends x to the CS and registers the entry (UCert, C, certCS , S) in a database.

Now since C = HUK and UK is known to the CS we get that

A = (G1 ·HUK)
1

IK+x ⇔ e(A,W ·Gx2) = e(G1 ·HUK , G2). (5.2)

5.3.3 Decommission of Charging Stations

Occasionally it may be necessary to remove a CS from the group, be it because it is
replaced by a CS of a newer generation or to deal with a compromise. We consider
the revocation of a group member’s credentials to be a less frequent event than the
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joining of a new member. Thus, while UCert and UK remain unchanged upon
the joining of a new member, removing a member from the group requires that all
remaining group members receive information on how to re-calculate their group
identifiers A.

Assume the group manager wants to revoke a CS with UCert′ = (A′, x′). First,
it publishes an updated version of the GPK. For example G1, G2, and H are
substituted by G∗1 = G

1
IK+x′
1 , G∗2 = G

1
IK+x′
2 , and H∗ = H

1
IK+x′ . Next each group

member with UCert = (A, x) and secret key UK except for the one to be revoked
has to update its group identifier A to A∗ = A

1
IK+x′ . To this end it is sufficient that

the group manager simply publishes x′.

A∗ = A
1

IK+x′ =
(
G∗1 ·H∗

UK ·A−1
) 1

(x−x′) . (5.3)

Next, each charging station computes a new signature S∗ = SignUSK(A∗) over the
new group member identifier A∗ and sends it to the group manager. The group
manager verifies S∗ from each CS and, on success, updates the existing database
entries with the new values for A∗, C∗ and S∗. Note that the CSs do not have to save
an incremental revocation list of all revoked members to decide on the validity of
newly signed metering data. However, it might be necessary for the group manager
to retain a limited set of old group credentials for the time span that the respective
jurisdiction sets for the resolution of disputes concerning past charging processes.

5.3.4 User Authentication

Before the CS channels electricity into the EV, the customers need to authenticate
themselves towards the CS so they can be billed. At the same time the CS should
authenticate itself towards the customer to prove that it is genuine. This may thwart
attacks where a rogue CS may be setup that exploits access to an EV in a malicious
way.

Besides acting as a group manager in the context of the group signature scheme,
the clearing house could also serve as trust anchor (RootCA) within the PKI used
for user authentication. Each electric utility that cooperates in this system serves
as Intermediary CA and can thus issue certificates to its customers.

We assume that each customer holds a secret signing key skCUS together with its
corresponding public verification key pkCUS , a certificate certCUS , and the public
verification key of the certification authority pkCA. certCUS consists of a signature
over pkCUS and the user’s identity (which has been computed using the CA’s secret
signing key corresponding to pkCA). Similar to before, each CS holds a secret key
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Figure 5.2: PKI for User Authentication

USKCS , a public key UPKCS , a certificate certCS over UPKCS issued by the same
CA, and pkCA.

To authenticate each other, the customer can, for instance, be provided with a
smartcard (equipped with skCUS , pkCUS , certCUS , and pkCA) and a CS can engage
in a classical challenge and response protocol as outlined in Listing 5.2. Intuitively,
it exploits that only the holder of the secret signing key can produce valid signatures
for arbitrary messages. The intial exchange of nonces thwarts replay attacks.

Instead of equipping customers with smartcards, the smartcard can also be bound to
and incorporated in the EV to allow for ISO 15118 compliant authentication [119],
where the vehicle (and not the customer) authenticates towards the CS. Communica-
tion then takes places using a specially equipped power cable instead of a contactless
interface.

Listing 5.2: Challenge Response Protocol for User Authentication
1. CS: rCS ∈R {0, 1}l

send rCS to CUS
2. CUS: rCUS ∈R {0, 1}l

send rCUS to CS
3. CS: sCS = Sign(USK, rCS ||rCUS)

send sCS , certCS to CUS
4. CUS: verify certCS with respect to P KCA

IF successful :
verify sCS with respect to UP K
IF successful :

compute sCUS = Sign(sk, rCS ||rCUS ||sCS)
send sCUS , certCUS to CS

108



5.3 System Design

ELSE: abort
ELSE: abort

5. CS: verfify certCUS with respect to P KCA

IF successful :
verify sCUS with respect to pkCUS

IF successful :
start charging process

ELSE: abort
ELSE: abort

l : security parameter

5.3.5 Ensuring Authenticity of Metering Data

When the charging process is terminated (i. e., the customer chooses to end the pro-
cess or the cable connection between EV and CS is severed), the CS creates a message
M consisting of the authenticated customer identity, the amount of energy consumed
by the customer, two timestamps marking the beginning and the end of the charging
process, and a string that identifies the utility owning the CS. As discussed above,
legal regulations may require transmission and storage of the identifier (meterID)
of the calibrated energy meter or of other certified components of a point of sale.
These identifiers would reveal the physical location of the transaction. To avoid this,
we have to adapt the group signature scheme slightly. Instead of being sent in the
clear, the meterID is probabilistically encrypted using the opener’s encryption key
OPK before being added to M . In the same way other location-critical information
can be incorporated into the group signature. Only the opener can decrypt these
values using its secret decryption key OSK. We stress that while the meterID is
always encrypted with the opener’s public key and never transmitted in the clear, it
is not neccessary to prove that the correct meterID has been incorporated into the
ciphertext. The opener can uniquely identify the CS and any incorrect information
of a CS on its meterID can thus easily be revealed. It is reasonable that each charg-
ing station holds exactly one meterID, such that the mapping of group signature
keys UK and meterID is one-to-one. Thus opening a signature will reveal a unique
CS identity and a unique meterID. We may even assume that the mapping between
UK and meterID is publicly available without compromising the user’s locational
privacy. As sketched above, CS’s group signature s on M consists of an encryption
Z of UCert and a message-dependent NIZK proof showing that CS knows a valid
UCert with corresponding UK which fullfil Equation 5.2 and that UCert has been
encrypted correctly under public key OPK in the ciphertext Z (which is part of s).
Intuitively, these types of message-dependent proofs work like signatures. Generat-
ing them on new messages requires the creator to know A, x, and UK. They are
often referred to as signatures of knowledge [55]. XSGS uses particularly efficient
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NIZKs that can be computed by applying the well-known Fiat-Shamir heuristic [85]
to interactive zero-knowledge protocols in the random oracle model [34].

On a more technical level the proof shows that its creator knows several discrete
logarithms; x, UK, and the secret exponents used to encrypt A with the ElGa-
mal encryption systems. Intuitively, it proves that if the ElGamal ciphertexts were
decrypted, then the resulting plaintext would, together with x, UK fulfill Equa-
tion 5.2. For more details on the computations of the group signature, we refer to
the literature [76, 130].

5.3.6 Transmission of Metering Data

To prevent the disclosure of the CS’s network location, the CS first connects to the
Tor [78] network and establishes a routing circuit. It then starts a TLS session with
the backend (BE) and in the process verifies the certificate presented by BE. We
use a ciphersuite based on Ephemeral Diffie-Hellman (DHE) with CBC-MAC, as it
offers perfect forward secrecy and because of its cryptographic security properties:
it has recently be shown to be provably secure in a strong security model [122]. We
rely on TLS to guarantee that each transmission from a CS reaches the backend.
The BE acknowledges the successful submission by sending the string ACK and a
timestamp. We rely on TLS for the authenticity of the reply.

Although Tor provides sender anonymity, a possible timing side channel exists: if
there is only sporadic network traffic within the system of CSes and BE, an attacker
observing both the network at a CS and the BE could correlate these events with
charging timestamps (somehow obtained) from the clearing house. As the transmis-
sion of billing-relevant data is not time-critical in the example of EV charging, we
can prevent correlation as follows:

Each CS is scheduled to send a transmission of a given size once per 15 minutes.
Each charging process results in one message of typically less than 1000 byte. If
we fix the size of the transmission, for instance, at 5 kByte, it fits several messages
(M, s). We pad each transmission with random data to the maximum size. If a
message (M, s) does not fit in the current transmission anymore, it is scheduled
for the next. If no charging process has been finished within the time window, we
just transmit the string empty and pad the transmission to the defined maximum
size. As all transmissions are of equal size and are encrypted as described above, an
attacker observing the network is unable to distinguish between transmissions that
contain billing data and those that do not. Thus, the attacker gains nothing.
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5.3.7 Verification of Metering Data

When the BE at the clearing house has received (M, s) it verifies the group signature
s by checking the NIZK proof with respect to the GPK and thus determines whether
the consumption data that is bound to the identity of a customer is valid. For details
on the computations, we refer to [76, 130]. If the signature does not verify, it discards
the message as it cannot stem from a CS within the group. On success, the signed
tuple M is passed on to the clearing service for processing. As there is one central
verifier in the system that verifies all metering data, batch verification of group
signatures offers a significant efficiency gain.

5.3.8 Dispute Resolution

In the case of a dispute, the opener can craft a non-repudiable publicly verifiable
proof of the actual creator of a given group signature. The opener will act so only
upon the request of a judge or with the consent of the customer. Note that even after
a message Mi has been subject to the opening process, it is impossible to decide,
whether a CS who signedMi also signed a different messageMj , i. e., the location of
other, potentially unrelated charging events remains hidden. To open the signature
s, the opener uses its secret opening key OK to decrypt the ciphertext Z and
obtain the certificate UCert of the signer. Next it uses its access to the registration
database to obtain UPK and S which correspond to UCert. From this information
it computes a publicly verifiable NIZK proof that UCert is actually encrypted in Z.
Together with the database entry A, certCS , S this convincingly reveals the identity
of the signer in a non-repudiable way. A judge can verify the proof using GPK
and in the process also obtains a proof that the Opener as acted honestly and has
not framed any other participant. In legislations where a meterID or similar needs
to be stored with each transaction, the opener decrypts this information from the
tuple t contained in M and also transmits it to the judge. Upon receiving this
information the judge uses the RSA public key of the RootCA pkCA to verify the
certificate for the CS UPK as V rfypkCA

(UPK) and the CS’s signature of A,S as
V rfyUPK(A,S). He has thus both obtained a proof that the opener acted correctly
and the information, which the CS issued the signature on, is contained in the
disputed message. For more details on the computations performed in the opening
and judging process, please refer to Delerablee and Pointcheval [76].

If all proofs verified in the process outlined above, evidence exists that the metering
information has not been altered during transmission and storage. As the signing
CS (and the meterID) are known at this point, it is also possible to verify the correct
function of the energy meter in the respective CS. Thus, the process offers a high

111



5 Locational Privacy in the Absence of Anonymous Payments

amount of legal certainty for all parties involved: the clearing house, electric utilities
and the customer.

5.4 Evaluation

In this section, we describe how we evaluated our prototype implementation. We
also present an overview of the performance results obtained both for the various
operations of the XSGS scheme and the transmission of data from a CS to the BE.

5.4.1 Evaluation Environment

We aimed at evaluating our approach in a realistic environment. Thus, we imple-
mented XSGS and tested the creation of signed messages, the setup process for
adding new charging stations, and the procedure to decommission charging stations
on a prototype of a CS for EVs built at our department. The CS contains an in-
expensive industrial-grade Intel Atom platform (CS1, cf. Table 5.1) as control unit
that interacts with the energy flow control subsystems within the CS and acts as a
front-end to the user. Additionally, we evaluated our implementation on a Freescale
i.MX53, which is an implementation of an ARM A8 core. Comparable platforms to
both variants can be found in CSes in the market or under development today.

As BE we chose an Intel server platform (cf. Table 5.1). We used this platform to
evaluate all XSGS operations typically performed by the group manager, opener,
judge, or any entity that wishes to verify a signature. We also created signatures
and performed join operations as a comparison to the measurements on the actual
CS. While the Tor network is widely used and considered usable for non-time critical
applications, we also used this platform to evaluate if latency and throughput are
acceptable in our application scenario.

Table 5.1: Evaluation Environment
Hardware Platform OS

CS1 Intel Atom D2550, 1GB RAM Ubuntu 12.04
CS2 Freescale i.MX53, 1GB RAM Ubuntu 10.04
BE Intel Xeon X5650, 2GB RAM Ubuntu 12.04

5.4.2 Evaluation Results

We performed the setup procedure required for adding a new CS 100 times. The
computations necessary on the CS are performed on average in 757.4 ms on CS1
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and 1077.3 ms on CS2, while the computations on the BE took 55 ms on average.
Accordingly, we performed 100 decommission procedures: on average, the compu-
tations performed on CS1 take 49.0 ms (resp. 77.8 ms on CS2), the computations
on the BE take 20 ms. We also performed 100 dispute resolution procedures on the
BE: on average opening a message takes 8.2 ms, while judging takes 6.9 ms.

We evaluate the time required to prepare a message to transmit the metering data to
the BE. Preparing a message 1000 bytes (taken from /dev/urandom) takes 28.5 ms
on average on CS1; on CS2 the process takes 41.5 ms. Preparing a message that
allows for batch verification on the BE takes slightly longer: 28.8 ms on CS1 or
43.1 ms on CS2. In both cases the time required for preparing the messagess scales
linearly with the amount of messages. For a message size up to 100,000 bytes message
creation takes less than 33 ms on CS1 and 54.2 ms on CS2. Figure 5.3 shows that
the size of the message only has a limited impact on the time required to create a
valid signature, as we only sign a hash of the message. Creating a signed message
of one million bytes takes 66.7 ms on average on CS1 and 161.1 ms on CS2. These
results show that ensuring the authenticity of messages by means of group signatures
is feasible on the limited hardware found in a CS. Even more so, as we only need
to generate one signature for each charging process. As even quick charging takes
about 20 to 30 minutes for an 80% charge today and will take at least minutes in the
foreseeable future, the amount of time required for signing the customer’s energy
consumption data is insignificantly small.
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Figure 5.3: Time required for message creation by size

Being able to batch verify messages offers a significant performance increase. While
a CS will typically only create one message every few minutes or every few hours,
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each message has to be verified by the BE. The verification of a normal message
takes 30 ms, a single batch-enabled one is verified in about the same time. Fig-
ure 5.4 shows that verification time increases linearly with the number of messages.
Standard verification allows for processing 41 messages per second on the BE, while
batch verification allows for processing of 93 messages in the same time. When
comparing the time required for verifying one thousand messages, batch verification
is about 2.3 times faster. In a worst case scenario, where a batch contains so many
invalid signatures that it is faster to verify each individual message, we can still
process 147,600 messages per hour using a single CPU core. As the process can
be parallelized at will, a comparable server with eight CPUs cores instead of one is
sufficient for processing more than one million messages per hour.

As transmission times vary due to network latency, we evaluate the network per-
formance separately: We used iperf20 to measure whether the Tor network offers
enough bandwidth for transmitting metering data from the CS to the BE. We con-
trolled that the bandwidth between the host running the iperf server and and the
one running the client is not the limiting factor and repeated our measurements at
various times of the day, building a new Tor circuit for each iteration. We were able
to transfer a minimum of 373 kbit per second and a maximum of 1.07 Mbits per
second through the Tor network. While the actual throughput may vary depending
20 http://iperf.sourceforge.net/
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on the time of day and the chosen circuit, our evaluation shows that it is reasonable
to assume that we can transfer metering data through the Tor network, especially
as the communication between CS and BE is not subject to real-time requirements.
Also note that the BE is not affected by Tor’s limited bandwidth, as there is no need
to obscure the BE’s location and only CSes communicate via Tor.

In summary, we found that our approach performed well on all tested platforms and,
most importantly, is fast enough for our application.

5.5 Discussion

We now discuss possible attacks against both the authenticity of billing-relevant
data and against the user’s locational privacy.

5.5.1 Malicious Customer

While our system is well equipped to counter attackers with capabilities as described
in Section 5.2.1, there exists the theoretical possibility that an attacker, who is a
valid customer in the system, could force a CS1 offline before a revocation of a
different CS2 takes place. Thus CS1 does not realize that the group credentials
have changed and must be recomputed. The attacker then authenticates himself
and charges his EV at CS1, which is possible as user authentication works offline.
The CS signs the metering data with its current credentials. At some point in the
future, when the CS is online again, it transmits the data to the BE. It will then
also receive new group credentials and will again be able to create valid messages.
Still, the BE will discard the delayed metering data from the CS as it has been
generated with the old credentials. Hence, the attacker was able to charge for free
in the meantime. There are at least two counters to this attack. First, if the CS
is up and running again, it may simply re-sign all the unsent metering data with
the updated credential. Second, if the CS is for some reason not able to continue
signature generation, we can still retain old credentials for verification and use the
old group signature to bill the customer correctly.

To be able to resolve disputes that concern metering data that was signed at some
point in the past before one or more revocation events took place, we have to store old
group credentials for the period regulations or utility terms and conditions dictate
for dispute resolution anyway. Also, for operative reasons, most utilities will want
to define a maximum time a CS may be offline before it is marked as faulty in
a monitoring system and a repair crew is sent out. While the system is designed
to be tolerant towards network outages, long periods where a CS is offline will be
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undesirable for management reasons. As a consequence, there will be an archived
GPK available to verify the incoming message, as the dispute resolution period is
longer than the maximum offline time tolerated by the utility operating the CS.

5.5.2 Tracking and Localization Attacks

Ma et al. show that if a set of traces of time and corresponding location of mobiles
nodes exist, where “[t]he traces are anonymous in that the true identity of a partici-
pant has been replaced by a random and unique identifier” [141], a small amount of
side information is sufficient for an attacker to infer the true identity of a user. The
work of de Montjoye et al. [74] supports these claims and shows that even datasets
with coarse traces provide little anonymity, in such that four spatio-temporal points
are enough to uniquely identify an individual with a probability of 95%.

However, neither approach is applicable to our system. We do not conceal the
identity of the user, but cryptographically protect their location. All information
is transmitted encrypted with a provably secure TLS variant. Thus, the attacker
needs to be a legitimate receiver of the data, i. e., the clearing house or a utility.
Both receive the following information: customer A of utility B consumed N kWh of
energy, starting from timestamp X, ending at timestamp Y. Every location-bound
token, like the CS’s public key and the meterID, is encrypted only to the opener
and thus never leaked to any other party. This encrypted data is also transmitted
to both the clearing house and the respective utility. However it is meaningful to
neither party as both lack the appropriate key to decrypt the data.

The data available to an adversary thus does not contain the location of the user, nor
can the attacker use the amount of energy consumed to infer the distance the user
has driven between two charging events, due to external factors that influence power
consumtion, like driving style, speed, etc. For instance, wind resistance increases
with the speed of a vehicle, such that a user can cover a long distance at lower speed
or a shorter distance at higher speed while consuming the same amount of energy.
An attacker may infer a limited amount of information from the timestamps written
at the beginning and the end of the charging process, namely how often a user
charged her vehicle and how long the individual charging processes took. However,
it is indiscernible to the attacker whether these charging processes took place at
different CSs or always at the same CS. The attacker also still lacks the information
of where the relevant CSes are located (assuming there is more than one CS within
reachable distance of the user).

Shokri et al. [200] propose a metric to quantify the performance of a location privacy
protection mechanism (LPPM) that, given a trace of spatio-temporal locations, pro-
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tects the user from localization attacks, meeting disclosure attacks and aggregated
presence attacks by reducing the accuracy and/or precision of the events’ spatio-
temporal information. In their termini our systems applies location hiding as an
online LPPM in a distributed architecture, i. e., we only look at the current event
at the time of its creation and hide all location-bound information by encrypting it
to the opener. As argued above, while records of user interaction exists for billing
purposes, they do not contain any spatio-temporal locations or references to such
data. An adversary, who knows the location of every CS, may determine the location
where the EV could have been charged with a high accuracy (as it was necessarily
at the location of a CS), but he is unable to achieve a high correctness as to where
the EV was actually charged.

A potential information leak could exist, if the billing data the clearing house receives
from a charging station not only contained the information that a user is a customer
of a given utility, but also contained the information which utility owns the CS this
customer just used. For example, given two charge events at two different utilities
separated by 2 hours, there might be only one possible pair of charging stations for
which this would have been feasible. However, the clearing house does not need
to receive this information. It must merely receive the information that a user
is a registered customer of a given utility. At the end of the clearing period the
clearinghouse also receives the accumulated amount of energy each utility dispensed
via its CSs and can thus balance claims against each other.

5.6 Summary

In this chapter we showed that it is possible to follow the principle of security
and privacy by design in a tightly regulated environment while allowing market
participants to continue to use existing processes. We introduced a system that
protect customers’ locational privacy during financial transactions, without relying
on anonymous payments. We focused on the example of re-charging electric vehicles
and are able to protect the customer’s locational privacy during the whole charging
process. Our system also fully supports all requirements needed to bill the customer
after the charging process and enables users to roam between different CSes provided
by different electric utilities. As such, it covers all relevant aspects required for the
charging of EVs.

The basic idea of our approach is to adapt a group key signature scheme to the
tightly regulated setting of selling electric energy as means of propulsion. We de-
scribed all protocol steps and outlined how the system can be deployed in practice.
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In an empirical evaluation, we also demonstrated that the solution has a low over-
head and can scale to millions of charging processes per hour—even on off-the-shelf
hardware.
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6
Conclusion

“See, I told you they’d lien to Reason,”
Fisheye says, shutting down the whirling gun.

—Neal Stephenson, Snow Crash

In this thesis, we presented several approaches to advance the security of software
and systems. While the benefits of improving security can be manifold and our
approaches have as much merit in a corporate context, our intentions are to improve
the situation of the many millions of computer users, who process and store their
private data on mobile and stationary computer systems.

In Chapter 2 we introduced a mitigation technique for novel attacks that are based
on Scalable Vector Graphics, building on offensive research that allowed us to be
proactively aware of attack vectors. SVGs were of limited relevance on the web until
the introduction of the HTML5 standard, which made it mandatory for browsers
to support the format. Being rather one-file-webapplications than simply images
the complexity of a living standard proved and sometimes still proves to be over-
whelming for developers to follow completely. We counter the threats emerging from
this fact by providing SVGPurifier, which removes malicious content from a given
SVG file, without damaging benign file structure and contents. We have tested our
prototype with over 100,000 SVG images and found that we can filter 98.5% of the
files without causing differences in the visual appearance. For the remaining 1.5%
we determined the visual deviation to be negligible in more than half of the cases.
While the risks of SVGs have been mitigated, preemptive offensive research is a
continuous effort that spans fields and disciplines. In the context of web browsers,
we have followed up by presenting a new class of attacks, called mutation-based
XSS [111], while Heiderich et al. also presented a class of attacks that do not re-
quire scripts at all [110]. Others have shown attacks on various approaches that aim
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to counter Return Oriented Programming [206], attacked Acoustic Captchas [155],
SAML implementations [160], the XML-Security standard [209], digital locking sys-
tems [214], One-Time Password Generators [186], or demonstrated the feasibility
and effectiveness of hardware trojans [28].

In Chapter 3 we investigated whether the goals that the authors of an open source
application claim to achieve are fully reflected in the applications key exchange and
messaging protocol and are indeed be achieved by the application. In the introduc-
tion we cited the example of the Heartbleed bug in OpenSSL to support the notion
that the mere availability of source code is not necessarily positive in itself, but only
insofar as it facilitates the review and analysis of software. Just recently we needed
to add Bash21 to the list of widespread open-source software, whose source code did
not receive the appropriate amount of attention in a timely manner. In the chapter
at hand we aim at giving TextSecure the attention a supposedly secure instant
messaging application with more than 500,000 users deserves. We are the first to
formally describe and analyse its complete protocol. In the course of this analysis we
discover several potential weaknesses and show that it is possible to conduct an Un-
known Key-Share attack against users of TextSecure. In the following we discuss
how these issues can be mitigated and show that with our proposed amendments in
place TextSecure does indeed achieve the goals of authenticity and confidentiality.
However, while important, our analysis targets just one element of the vast Open
Source landscape. As we have argued and exemplified, more and continuous effort is
needed to ensure that users do not base their security and privacy expectations on
empty promises. On the other hand it would be applaudable, if software developers
would abstain from simply designing cryptographic protocols from scratch, following
a best-effort approach. Using well-understood protocols that have received exten-
sive scrutiny from the academic community definitively has its merits, although new
protocols are necessary to better apply to specific requirements. Before coming up
with a sparsely documented or even closed source implementation, these developers
should first show their protocols’ soundness in theory in the open.

In Chapter 4 we presented a novel approach to detect and mitigate malicious code
on websites. To this end we create an alternative execution context and use inline
code analysis to the advantage of not needing to worry about obfuscation, as the
code needs to be in its de-obfuscated form directly before it can be executed anyway.
We then inspect the websites’ in-browser representation for suspicious behavior that
we have described in heuristics. To arrive at these heuristics we analyzed a signifi-
cant set of malicious and benign websites to develop meaningful features. We then
use these features to classify code with the help of a supervised learning algorithm.
Our empirical evaluation on different classes of computing devices shows that the
21 CVE-2014-6271, -7169, -6277, -6278, -7186, and -7187
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IceShield’s average runtime overhead is below 12 ms on workstations and 89 ms
on a smartphone, while achieving a detection accuracy of 98% using live malicious
websites. We also were able to detect three exploits that the tool had never seen
before and demonstrate how attacks can be mitigated successfully. If we want to
remain lightweight and directly within the scope of web browsers, there are two basic
paths to follow, that may converge eventually: hardening the DOM on the one hand
and continuously detecting also novel malicious behavior. Following the first direc-
tion, Heiderich [104] has shown how the DOM can be retrofitted with tamper-proof
fine-grained controls to create a trusted and capability-controlled DOM, while, for
instance, Phung et al. [192] have shown how ECMA Script 5 can be used to sandbox
untrusted JavaScript. Following the second direction, it is plausible that the qual-
ity of the detection models of supervised learning approaches degrades as malicious
code evolves over time. Schwenk et al. [207] argue that a lot of work remains to be
done to arrive at autonomous, continuous learning approaches, that do not require
human involvement for defining a ground truth. Leaving the context of browsers
completely, Corona et al. [63] have shown that behavior-based statistical learning
approaches as presented in this chapter can also be successfully applied in different
fields, such as the detection of malicious JavaScript in PDF files. Back in the context
of browsers, other approaches follow the path of hardening and compartmentalizing
(elements of) the browser itself—as implemented in Google Chrome or Microsoft
Internet Explorer—or also involve the respective website to deliver strict definitions
to the browser of which kind of resources it may access from which sources, such as
Content Security Policy (CSP). However, none of these approaches can currently be
considered bulletproof in every situation [46, 159, 179, 236].

In Chapter 5 we follow an alternative route. Instead of amending an existing
technology we follow the principle of security and privacy by design to integrate
the functional requirement of providing data for post-paid billing with the require-
ments of authenticity and prevention of customer movement profiles. We propose a
locational privacy-preserving architecture using the example of a roaming-enabled
charging infrastructure for electric vehicles. By introducing a system that protects
customers’ locational privacy without relying on anonymous payments we show that
privacy-friendly solutions can be integrated with existing business processes and also
provide sufficient flexibility to follow regulatory requirements. An empirical evalu-
ation of our approach shows that it works effectively on limited hardware and can
scale to millions of transactions per hour even on off-the-shelf general purpose hard-
ware. Our approach has also found interest beyond the academic community. Efforts
are under way to integrate it into a commercial PKI solution, which underlines our
claim that security, privacy, and functionality must not be considered conflicting
goals, but together can help to create novel, sustainable solutions that help us solve
today’s and tomorrow’s challenges.
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Outlook and Future Work In this thesis, we do explicitly not adopt the position
that our work provides the one way to achieve a better protection of private, or for
that matter, arbitrary data. We offer but one contribution to improve the status
quo in an ever-evolving context. Although we proactively developed mitigation
techniques for novel attack vectors we followed the line of reactive security, creating
an amendment to the imperfect situation users find themselves in with modern and
regrettably often enough not so modern browsers. We thus necessarily furthered the
arms race that defines large parts of todays computer security. While one could argue
that such an arms race is not sustainable, there are currently no clear indications that
it will end anytime soon, as this would require abandoning most existing systems
and infrastructures and starting over. We can rather expect gradual changes and a
rather long migration path towards more secure and privacy friendly systems and
infrastructures. The process of raising the stakes for attackers is a continuous one
and requires continuous innovation for our defenses to be effective.

We also analyzed privacy-enhancing technology—that does indeed represent a posi-
tive element of this gradual change—with the aim to amend its shortcomings and to
smoothen the path towards privacy-enhancing technologies that are actually usable
for a not technically inclined person. Narrowing the scope to the concrete field of
cryptographic messaging protocols TextSecure is a step forward and we thank its
developers for their applaudable effort. However, new—purportedly secure—instant
messenger apps are published almost on a weekly basis, and almost none is ever
reviewed. And while diversity can be helpful, it also requires interoperability. The
path towards secure and private communication for larger parts of the populace thus
requires a common standard. It should define an efficient, secure, privacy-enhancing
instant messaging protocol that matches todays usability requirements and can be
proven to be secure in a strong security model and allows for a well-defined feder-
ated infrastructure. Such a standardized or even standardizable protocol for instant
messaging communication is a valuable medium-term goal. In the long run however,
secure communication and storage solutions are futile without appropriately secure
underlying systems and infrastructures.

Widening the scope again to look at the larger picture, analyzing existing systems
and novel threats, and pragmatically amending existing technologies to improve
their security properties will be an important task for years to come. However, when
engineering new architectures for emerging fields of technology, it is mandatory to
do better than just “functional”. When rolling out new infrastructures or designing
new systems, security and privacy must be fundamental building blocks of each
and every step in the process—from the initial idea to the details of the actual
implementation.
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