
On the Cryptographic Security of Browser-Based Protocols

Florian Kohlar
(geboren in Bochum)

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der Fakultät für

Elektrotechnik und Informationstechnik an der Ruhr-Universität Bochum

Bochum, 2014

Author Contact Information:

florian.kohlar@rub.de

Date of oral exam: 05/07/2013

Thesis Advisor: Prof. Jörg Schwenk

Prof. Dennis Hofheinz

florian.kohlar@rub.de

Dedication

Although the thesis is now written, it would not be complete without a dedication to all the

people who accompanied my through this four-year journey.

I want to thank Prof. Schwenk for believing in me and giving me the chance to work at

his chair and all (active and former) members of the chair of network- and data security in

Bochum, who were a big support all those four years and became more friends than collegues.

Working with you was a pleasure!

I want to dedicate this thesis to my parents, who gave me the possibility to study in the first

place and supported me the whole time, and my wife Annette, who also believed in me and

raised me up whenever I was doubting myself. I also want to thank my grandparents, who took

care (whether I wanted it or not) of everything I could not handle myself in that time.

Last but not least I want to thank all members of the HGI in Bochum, who are showing until

today that good cooperation and teamwork can achieve greatness.

”The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.”

The Lord of the Rings, J.R.R. Tolkien

Abstract

To ensure security on the internet, so-called Authenticated Key Exchange (AKE)

protocols are executed before the transmission of sensitive data. The most im-

portant of these protocols is the Secure Socket Layer (SSL) / Transport Layer

Security (TLS) protocol. It is used for example to secure HTTP connections,

the foundation of the World Wide Web. The cryptographic security of the TLS

protocol was a long openstanding problem, so that no formal statements about

the security of TLS could be made. In consideration of the wide distribution of

this protocol, this deficiency is especially critical for the state of work. This thesis

eradicates this flaw in three steps:

At first the construction of secure AKE protocols is analyzed. The thesis shows

how an AKE protocol with high security properties can be generically constructed

from key agreement protocols with low security properties.

Then a new security model for Authenticated and Confidential Channel Estab-

lishment (ACCE) protocols is given. This model allows for the first time for a

proof of the complete TLS protocol, including all standardized combinations of

cryptographic algorithms. The thesis covers variants for both mutual authenti-

cation and server-only authentication. All results base on universally accepted

cryptographic assumptions and do not make use of so-called Random Oracles.

Finally, the security of the TLS renegotiation protocol is analyzed, wich en-

ables to negotiate fresh security parameters over previously established and se-

cure channels. Up to now it was not known how such a protocol can be modeled

formally. For that reason, a new suitable security model for secure multi-phase

and renegotiable (ACCE) protocols is given first. This model is then used to

analyze the security of the plain TLS renegotiation protocol and a variant imple-

menting recent countermeasure against specific attacks. Based on these results,

a new countermeasure is proposed, that allows for a proof of TLS renegotiation

under the strongest of the new security definitions.

Contents

1 Introduction 1

1.1 Focus of this Thesis . 1

1.2 Authentication and Key Exchange Protocols 3

1.3 Formal Models for Authentication and Key Exchange Protocols . 5

1.4 Benefits and Limits of Reduction-Based Security Proofs 8

1.5 List of Publications . 10

2 Preliminaries and Definitions 13

2.1 The Decisional Di�e-Hellman Assumption 13

2.2 Digital Signature Schemes . 13

2.3 Symmetric Encryption Schemes 14

2.4 Public Key Encryption Schemes 15

2.5 Pseudo-Random Functions . 17

2.6 Message Authentication Codes . 17

2.7 Passively Secure Key Exchange Protocols 18

2.8 Collision-Resistant Hash Functions 19

2.9 The PRF-Oracle-Di�e-Hellman Assumption 19

2.10 The Strong PRF-Oracle-Di�e-Hellman Assumption 20

2.11 Stateful Length-Hiding Authenticated Encryption 21

3 Formal Security Models and Definitions 23

3.1 Generic Security Model . 24

3.1.1 Generic Execution Environment 24

3.1.2 Matching Conversations 27

3.2 Specific Instantiations . 28

3.2.1 AKE Protocols . 28

3.2.2 ACCE Protocols . 32

3.2.3 Multi-Phase and Renegotiable ACCE Protocols 40

4 Generic Compiler for AKE Protocols 57

4.1 Authenticated Key Exchange Compiler 57

V

Contents

4.2 Security Analysis . 59

4.2.1 Authentication . 60

4.2.2 Indistinguishability of Keys 63

5 On the Provable Security of TLS 65

5.1 A Brief Introduction to Transport Layer Security (TLS) 65

5.1.1 Overview . 65

5.1.2 Related Work on the Cryptographic Security of TLS . . . 66

5.1.3 The TLS Handshake Protocol 69

5.2 Truncated TLS-DHE is AKE . 75

5.2.1 Authentication . 77

5.2.2 Indistinguishability of Keys 85

5.3 TLS-DHE with Mutual Authentication is a Secure ACCE Protocol 87

5.4 General Proof Idea for Subsequent Proofs 92

5.5 TLS-DHE with Server-only Authentication is ACCE Secure . . . 94

5.6 TLS-RSA with Server-Only Authentication is ACCE Secure . . . 97

5.6.1 Server-Only Authentication 97

5.6.2 Indistinguishability of Ciphertexts 104

5.7 TLS-RSA with Mutual Authentication is ACCE Secure 105

5.8 TLS-SDH with Mutual Authentication is ACCE Secure 107

5.8.1 Client Authentication . 109

5.8.2 Server Authentication . 113

5.8.3 Indistinguishability of Ciphertexts 113

5.9 TLS-SDH with Server-Only Authentication is ACCE Secure . . . 117

6 On the Security of TLS Renegotiation 121

6.1 Renegotiation Protocols and TLS Renegotiation 122

6.2 Choosing the Right Model for TLS Renegotiation 126

6.3 Renegotiation Security of TLS without SCSV/RIE Countermeasures128

6.4 TLS with SCSV/RIE is not a Secure Renegotiable ACCE 129

6.5 TLS-DHE is a Secure Tagged-ACCE-fin 129

6.5.1 Authentication . 132

6.5.2 Indistinguishability of Ciphertexts 139

6.6 TLS with SCSV/RIE is a Secure Multi-Phase ACCE 141

6.7 TLS with SCSV/RIE is a Weakly Secure Renegotiable ACCE . . 146

6.7.1 On Renegotiation Security of TLS-RSA with SCSV/RIE . 149

6.8 New Countermeasure for TLS Renegotiation 150

VI

Contents

7 Conclusion 153

7.1 Discussion of our Generic Compiler for AKE Protocols 153

7.2 Discussion of the Results on TLS 154

7.3 Discussion of the Results on Renegotation 155

7.4 Extension for Public Key Certification 156

Bibliography 158

Glossary 169

VII

List of Figures

1.1 Di↵erent Man-in-the-middle attacks. 5

2.1 Illustration of the Decisional Di�e-Hellman Assumption 14

2.2 Illustration of the EUF-CMA security experiment of Definition 2.2 14

2.3 Illustration of the IND-CPA security experiment of Definition 2.3 15

2.4 Illustration of the IND-CCA security experiment of Definition 2.4 16

2.5 Illustration of the security experiment of Definition 2.5 17

2.6 Illustration of the security experiment of Definition 2.6 18

2.7 Illustration of the security experiment of Definition 2.7 19

2.8 Illustration of the security experiment of Definition 2.9 20

2.9 Encrypt and Decrypt oracles in the stateful LHAE security experiment 22

3.1 Encrypt and Decrypt oracles in the ACCE security experiment. . . 35

3.2 Encrypt and Decrypt oracles for the multi-phase/renegotiable ACCE

security experiments. 47

4.1 Compiler for secure authenticated key exchange protocols 59

5.1 TLS handshake with mutual and server-only authentication . . . 70

5.2 Ciphersuite-dependent TLS messages 73

5.3 TLS handshake for TLS-DHE with mutual authentication 74

6.1 Summary of the results on TLS and renegotiation 122

6.2 Attack by Ray and Dispensa on TLS renegotiation 123

6.3 Generic TLS handshake with SCSV/RIE renegotiation counter-

measures . 149

IX

1 Introduction

This thesis is focused on the security of real-world cryptographic protocols1,

i.e. protocols that are used to authenticate parties and to establish cryptographic

keys, which are then commonly used to enable a confidential transport of mes-

sages over insecure communication channels. ‘Secure’ authentication in this con-

text means essentially that no malicious party Eve should be able to impersonate

a di↵erent party Alice to some other party Bob (i.e. all parties should only be

able to authenticate themselves to other parties) and secure key exchange means

that when two parties Alice and Bob negotiate a session key used for some ar-

bitrary security context subsequently, no third party Eve should gain any useful

information about this key.

1.1 Focus of this Thesis

In this thesis we elaborate on important questions in the field of security of real-

world cryptographic protocols, especially authenticated key exchange protocols.

The main questions are:

1. How can we construct secure protocols for authenticated key exchange and

how can we modify a protocol secure only against weak adversaries in order

to be also secure against stronger adversaries?

2. How secure is the most important protocol for authenticated key exchange,

the Transport Layer Security (TLS) protocol, in terms of provable security?

3. How secure are widely-used variants of this protocol, e.g. TLS renegotiation?

We will now describe the structure of this thesis, and highlight which chapter

elaborates on which of the above questions.

In the remaining introduction we first describe the notion of ‘authenticated key

exchange’ protocols in Section 1.2. We then briefly introduce di↵erent security

models in Section 1.3 and discuss the benefits and limitations of security proofs

in Section 1.4.
1Actually, interactive two-party protocols for authentication and key exchange.

1

1 Introduction

We recall basic security definitions of important primitives in Chapter 2. These

definition are partially common knowledge (i.e. have frequently appeared in the

literature before) and partially taken from our published results. (The PRF-

Oracle Di�e Hellman (PRF-ODH) assumption described in Section 2.9 is for

example taken from [JKSS12]).

In order to analyze the security of protocols, we first have to define our security

model. For specific reasons (that are later explained in detail) we introduce

di↵erent models. In Chapter 3 we first describe a generic security model in

Section 3.1, from which we then derive specific instantions for Authenticated

Key Exchange (AKE) protocols in Section 3.2.1, Authenticated and Confidential

Channel Establishment (ACCE) protocol in Section 3.2.2, and multi-phase and

renegotiable ACCE protocols in Section 3.2.3. The specific instantions result

from [JKSS10, JKSS12, GKS13].

In Chapter 4 we are going to answer the first question, namely how a secure

AKE protocol can be constructed from basic primitives. We present a generic

transformation from a passively-secure key exchange protocol to a secure au-

thenticated key exchange protocol and prove the security of this protocol. This

result was joint work with Tibor Jager, Sven Schäge and Jörg Schwenk and was

published at ASIACRYPT’10 [JKSS10].

Chapter 5 focuses on the second question, concerning the provable security of

TLS. In order to do so, we first give a brief overview of the TLS protocol in

Section 5.1, and then analyze the security of TLS Ciphersuites with Static Di�e-

Hellman-based Key Exchange (TLS-SDH), TLS Ciphersuites with Ephemeral

Di�e-Hellman-based Key Exchange (TLS-DHE) and TLS Ciphersuites with RSA-

based Key Transport (TLS-RSA), covering both server-only authentication and

mutual authentication. We start in Section 5.2 with analyzing a truncated version

of TLS-DHE in the AKE security model and then show in Sections 5.3 and 5.5

that the unmodified TLS-DHE is secure in the ACCE model and even provides

perfect forward secrecy. We then analyze TLS-RSA and TLS-SDH in the ACCE

model in Sections 5.6 to 5.9, showing that they are secure under an ACCE secu-

rity definition without perfect forward secrecy. The results originate from a joint

research paper with Tibor Jager, Sven Schäge and Jörg Schwenk which was pub-

lished at CRYPTO’12 [JKSS12] and a paper with Sven Schäge and Jörg Schwenk

that is currently in submission.

In Chapter 6 we then approach the third question and analyze the security

of the TLS renegotiation protocol. We start by briefly describing the protocol

and highlighting a recent attack. Then we analyze both the plain protocol and

an extended variant that implements countermeasures against this attack in the

2

1.2 Authentication and Key Exchange Protocols

model for multi-phase and renegotiation protocols. We also propose a new coun-

termeasure that enables a proof in our strongest model for renegotiable ACCE

protocols in Section 6.8. This chapter is based on joint work with Florian Giesen

and Douglas Stebila and was published at CCS’13 [GKS13].

We conclude in Chapter 7 with a short discussion of the achieved results.

1.2 Authentication and Key Exchange Protocols

Protocols for Authentication and Key Exchange are an important part of the

security infrastructure of the internet that we know today. E-Commerce is heavily

relying on data being sent in a secure manner from one party to another, where

a party can be a single person shopping on the internet (in which case the data

may consist of the contents of the shopping basket and accounting information)

as well as a company transmitting important information (where the data may

contain company secrets). As di↵erent the use-cases may seem, the term ‘in a

secure manner’ can be independently translated into the following security goals:

1. Messages between two parties must not be modified (or dropped) by a

third party, even if this third party has full control over the communica-

tion medium, without the parties detecting the modifications.

2. The message content is to be transported confidentially, that is, a third party

with full control over the network and access to the transported messages

must not be able to learn any useful information about the message content.

3. Any party Eve should not be able to send messages to a party Alice on behalf

of another (di↵erent) party Bob.

We refer to the above notions as 1) Integrity, 2) Confidentiality and 3) Au-

thenticity.

Not always do applications require that all three of the above security goals

are fulfilled, there may be di↵erent demands for e.g. online banking, electronic

shopping, electronic voting or social networking. Some security requirements are

more obvious than others. For example it may at first glance seem unimportant

to have a high security standard in place for social networks (as social networking

is basically all about making some private information public and communicat-

ing with friends rather than discussing business matters). An argument for the

contrary may be that Facebook provides a login mechanism to remote, indepen-

dent webservices over Facebook Connect, so the security of Facebook can directly

influence the security of connected webservices.

3

1 Introduction

Authenticated Key Exchange Protocols

The most common method to establish such a secure channel between two parties,

even without sharing some prior distributed secret, is to run an Authenticated

Key Exchange (AKE) protocol. The messages sent in this protocol are refered to

as the ‘handshake’ messages, messages sent after the handshake has successfully

terminated are refered to as ‘application data’. We will use this notation in

subsequent sections.

An AKE protocol basically consists of two components: First, a key exchange

protocol that negotiates secure session keys. These keys are then used to en-

crypt messages with some symmetric encryption scheme under this key in order

to provide confidentiality. The second component of an AKE protocol is a mean

to authenticate parties (and eventually ensure message integrity during the ses-

sion key negotiation). Note that integrity of application data can be implicitly

provided by a subsequent symmetric encryption scheme. Authentication can for

example be realized through the use of signature schemes, symmetric Message

Authentication Codes (MACs) or even implicitly. Quite often it is also required,

that just one party provides authentication, while the other party only ‘profits’

from the confidentiality.

The most prominent and important protocol implemented to protect data-flows

on the internet today is Secure Socket Layer (SSL) which evolved into Transport

Layer Security (TLS), the most recent version being TLS 1.2 [DR08]. For that

reason we later in this thesis focus on the security of this protocol.

Attacks against AKE Protocols

Finding attacks against an AKE protocol by breaking integrity, confidentiality

or authentication often comprises severe ramifications in the real world. Again

the prime example is TLS — a successful attack that reveals the session keys

negotiated by TLS would enable the adversary to make alterations to online

banking communications and similar services implying a financial impact. Some

work has been published on (modeling) di↵erent types of attacks [LLM07, Kra05,

CK01].

When speaking of the security of AKE protocols one has to take into account

the presence of active adversaries that reside between two parties and alter, drop

or inject messages in a message flow between these two parties. We call this

adversary also Man-In-The-Middle (MITM). Figure 1.1 displays three di↵erent

attack scenarios that may occur in the presence of such MITM adversaries.

To prevent certain attacks against key exchange protocols, one could of course

apply standard cryptographic primitives to turn the protocol into an AKE using

4

1.3 Formal Models for Authentication and Key Exchange Protocols

A A AB B BE E E

Key Exchange

Key Exchange

Authentication

Key Exchange

Authentication

Authentication

Key Exchange

Authentication

Key Exchange

Authentication

Channel

Figure 1.1: Di↵erent Man-in-the-middle attacks.

Parties Alice (A) and Bob (B) communicate in the presence of adversary Eve (E).

for example techniques from [BCK98, JKSS10]. When an analysis of a real-world

protocol reveals such a vulnerability, altering the protocol may not be a valid

choice, as e.g. in the cases cited above and also for TLS the implementation of

deployed protocols can seldom be changed. Remark that failing to proof the

security of a protocol in a given security model does not directly imply that this

protocol is vulnerable in the real world. It may as well mean that the security

model is too strong or the protocol does not fit to the security definitions. Imagine

for example a three-party protocol and a security model for two-party protocols.

It is obvious that the protocol can most likely not be proven secure in this model,

but it is also quite clear that this ‘result’ cannot be translated in a security

statement about the protocol.

1.3 An Introduction to Formal Models for Authentication and

Key Exchange Protocols

We now give a brief overview of existing models for analyzing authentication and

key exchange protocols. For easier comparison we concentrate on the following

notions to distinguish the di↵erent models.

Partnering In the presence of passive adversaries a communication partner to

some party Alice can be easily defined as an entity that, at the end of the

protocol execution, has established a common session key. However, it is of-

ten helpful to be able to identify mutually communicating parties (i.e. part-

ners) independent of the session key and before the protocol execution has

finished.

Attacker Capabilities The strength of a model is closely tied to the strength of

the adversary. The capabilities of an attacker commonly range from being

able to send, modify, and drop messages exchanged between parties to learn-

ing secret values, such as negotiated session keys, long-term secrets and even

5

1 Introduction

intermediate session states (e.g. secret Di�e-Hellman exponents chosen dur-

ing the protocol execution) and his restrictions on learning long-term keys

and intermediate values.

Security goals The main goals of cryptographic protocols (especially of browser-

based protocols) are to (mutually) authenticate parties and/or to negoti-

ate ‘secure’ session keys. One could also say, a typical goal is to establish

an authentic and confidential channel between two parties. However, such

properties can be defined in many di↵erent ways, for example one can define

notions for either explicit or implicit authentication of parties.

Bellare-Rogaway Model

Bellare and Rogaway basically started the line of research leading to formal

models for analyzing the security of authentication and key exchange proto-

cols [BR94a]. They are the first to define partnering via so-called ‘matching

conversations’, i.e. secure, explicit authentication is given if the (ordered) set of

received and sent messages matches for two parties engaging in a common proto-

col execution. Confidentiality is then defined by letting the adversary distinguish

the session key of a ‘fresh’ session (i.e. a session in which the adversary did not

actively participate) from a random key.

While this model did not allow for the adversary to learn long-term secret keys

(more specifically the secret key of a public/secret key pair), Bellare and Rogaway

1995 adapted their model to the three-party case and enhanced the adversary with

this capability [BR95]. However, their model was limited to three-party session-

key distribution protocols, where one party distributes session keys between two

other parties. Bellare, Pointcheval and Rogaway in 2000 introduced session IDs

(wich could be defined similar to matching conversations by letting the session id

be the concatenation of all messages sent and received) [BPR00].

Canetti-Krawczyk Model

Bellare, Canetti and Krawczyk in an independent work introduced a model that

allowed for a two-step construction of secure authenticated key exchange proto-

cols [BCK98]. They start by constructing their protocols in an idealized commu-

nication setting, i.e. in networks that for example guarantee message delivery and

integrity protection. Then they describe a compiler that takes a protocol secure

in the idealized setting and transforms it into a protocol secure in a more realistic

setting (where an adversary may have certain control over all exchanged mes-

6

1.3 Formal Models for Authentication and Key Exchange Protocols

sages) They do so by adding so-called ‘authenticators’ or ‘MT-authenticators’2

(e.g. signatures). This work includes a first approach to modeling session cor-

ruption, i.e. to enable the adversary to learn interal values of parties specific

to a session (state). This result was extended by a lot of follow-up papers,

most established of wich is the work of Canetti and Krawcyzk [CK01] (which

is the eponym for this class of models), which was later extended in many vari-

ants [LLM07, Oka07, Cre09, SEVB10, FSXY12].

There are two main di↵erences between Canetti-Krawcyk-related (CK) models

and Bellare-Rogaway-related (BR) models. First, CK models use session IDs to

define partnering, which (dependent on the specific model) must be agreed upon

before the protocol execution or can be arbitrarily defined. BR uses matching

conversations to achieve the same. While session-ids may be more flexible, we

think that the notion of matching conversations is better suited to the specific

applications that we analyze in this thesis. Second, CK models do not explicitly

define secure authentication. They merely define secure key exchange in unau-

thenticated networks, thus implicitly assuming a protection against adversarial

impersonation attempts.

Univeral Composability

The Universal Composability (UC) framework described by Canetti [Can00, Can01]

describes a completely modular approach to construct cryptographic protocols

and analyze their security. Analyzing a primitive or protocol in this model first

requires the definition of an ‘ideal functionality’. This ideal functionality describes

a protocol that, when executed by a trusted party in a secure environment, com-

putes the output of the ideal functionality. The large benefit of this model is that

once such a function has been proven secure, it can be used as a building block to

construct more complex protocols, without needing a seperate security proof for

the assembled construction. This is possible due to a ‘composition theorem’ de-

scribed by Canetti. On the downside, the composition theorem assumes, similar

to certain CK models, unique session IDs that need to be established before the

protocol execution. The protocols that we focus on in this thesis, cryptographic

protocols actually deployed in the real world, however typically do not use such

pre-established session IDs. Hofheinz and Shoup have recently presented a simi-

lar framework to UC, called ‘GNUC’ (Generally Not UC [HS11]), motivated by

their discovery that important definitions of the UC framework are flawed or at

least problematic.3 Although the CK model also aims at a modular construction

2MT stands for ‘message transmission’.
3The original composition theorem by Canetti has been revised several times after its first publication due to

such flaws.

7

1 Introduction

and analysis of authentication and key exchange protocols, it is not comparable

with the UC approach described below as in the UC framework corruptions of

long-term secrets cannot be easily modeled.

For the analysis of complex real-world protocols, UC has some disadvantages.

On the one hand, as mentioned above, globally unique session identifiers are

required by the composition theorem. Although such session IDs can be estab-

lished in many ways (see e.g. the compiler by Barak et al. [BLR04]), few protocols

actually establish usable identifiers beforehand. On the other hand concurrent

protocol runs cannot be analyzed in UC, if the analyzed protocols share some

state value (e.g. a long-term key). When dividing a protocol into seperate ideal

functionalities, this may pose a serious problem.

Remark 1. We remark, that this joint-state problem can be addressed, if a multi-

session secure version of the authentication functionality (in the case of shared

long-term keys) can be provided.

1.4 Benefits and Limits of Reduction-Based Security Proofs

In the following we will discuss the role of security proofs of cryptographic pro-

tocols (especially in the presence of real-world attacks).

Constructing a security proof requires 1) a model describing how protocol exe-

cutions are simulated and what capabilities are given to the adversary and 2) a

security definition formalizing what the adversary (given the previously described

interaction capabilities) must achieve to break the protocol. The proof itself then

tries to reduce any successful adversary against the protocol to solve an under-

lying problem, which is assumed to be hard.4 If it can be shown that there exists

no successful adversary against this protocol running in polynomial time, it is

considered to be secure.

But even if a proof can be given, i.e. the protocol is secure under some definition,

this does not guarantuee that this protocol is resilient against all future attacks.

The reason is that, while trying to model the adversary as strong as possible by

allowing him to learn internal states of the communicating parties, adversaries

in the real world often succeed by exploiting sidechannels. Adversaries may for

example exploit vulnerabilities in the implementation (see BEAST [RD11]), in-

put or output paddings (see [Vau02]) and some real-world attacks have surfaced

that exploit information about the timing of the protocol execution such as the

generation of random values (see for example the attack of Jager et al. against

XML Encryption with PKCS #1 [JSS12]). Distributing malware can also help

4By ‘hard problem’ we mean that the problem is assumed not to be solvable by any PPT adversary.

8

1.4 Benefits and Limits of Reduction-Based Security Proofs

in many di↵erent ways to break the security properties of protocols, as in the

example of the CRIME attack against TLS [RD12].

Standard Model Security vs. Random Oracles

Many security proofs rely on so-called ‘Random Oracles’, giving the commu-

nication partner access to an ideal function that (on any input) outputs a truly

random output. If the same value is input twice, the same output is given (i.e. the

function ‘remembers’ by keeping an internal database of previously asked inputs

and corresponding outputs). Also, this functionality may only be accessed by two

corresponding communication partners. While some results (for example most

security results on RSA or RSA with Optimal Asymmetric Encryption Padding

(RSA-OAEP)) only hold in the Random Oracle Model (ROM), see [Bro06],

Canetti, Goldreich and Halevi have shown there exist cryptographic algorithms

that are secure in the ROM, but for which any implementation of the Random Or-

acle with a cryptographic hash function results in insecure schemes [CGH98]. De-

spite this negative result, there exist examples of how Random Oracles can be in-

stantiated for very specific applications, as for example shown by [HK09a, HJK11]

The usefulness of Random Oracles is still heavily discussed in the research

community (see also [BR93, Den02, BBP04, KP09, KOS10]), so in this thesis we

concentrate on the standard model security of protocols and do not make use of

Random Oracles for any of our security results.

Formal Attacks against Protocols

There exist also some attacks that may not have consequences for protocols in the

real world but invalidate any security proofs. For example protocols with security

proofs given in models close to Bellare and Rogaway can be vulnerable to so-called

Unknown Key Share Attacks (UKS), see [BWM99]. If the adversary is able to

force two protocol participants into accepting the same session key while somehow

violating the authentication condition, the adversay may ‘query’ one of the partic-

ipants for the session key, thus directly breaking confidentiality. One way for the

adversary to achieve this would be to remain passive, except when a certificate

or a signed message is sent. The adversary then replaces the certificate/signature

with his own certificate/signature, but does not modify the signed content.

This attack is possible due to the way the security experiment is defined and can-

not be explained at this point in detail. There exist several results on the limits

of security proofs in existing models and Choo et al. gave a detailed comparison

of several di↵erent models and their strengths [CBH05b, CBH05a, CBH05c].

9

1 Introduction

1.5 List of Publications

In the following we give a list of my publications during my time as PhD student.

All publications were joint work with the listed co-authors.

GJKS11: Florian Kohlar, Jörg Schwenk, Meiko Jensen, and Sebastian Gajek.

On Cryptographically Strong Bindings of SAML Assertions to Transport

Layer Security. IJMCMC, 3(4):20–35, 2011.

JKSS10: Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic

Compilers for Authenticated Key Exchange. In Masayuki Abe, editor, Ad-

vances in Cryptology - ASIACRYPT 2010 - 16th International Conference

on the Theory and Application of Cryptology and Information Security, Sin-

gapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in

Computer Science, pages 232–249. Springer, 2010.

KSS10: Pavol Sovis, Florian Kohlar, and Jörg Schwenk. Security Analysis of

OpenID. In Felix C. Freiling, editor, Sicherheit 2010: Sicherheit, Schutz und

Zuverlässigkeit, Beiträge der 5. Jahrestagung des Fachbereichs Sicherheit der

Gesellschaft für Informatik e.V. (GI), 5.-7. Oktober 2010 in Berlin, volume

170 of LNI, pages 329–340. GI, 2010.

AKS11: Jörg Schwenk, Florian Kohlar, and Marcus Amon. The Power of

Recognition: Secure Single Sign-On using TLS Channel Bindings. In Pro-

ceedings of the 7th ACM workshop on Digital identity management, DIM

’11, pages 63–72, New York, NY, USA, 2011. ACM.

JKSS12: Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On

the Security of TLS-DHE in the Standard Model. In Reihaneh Safavi-Naini

and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd

Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,

2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,

pages 273–293. Springer, 2012.

GJKL11: Nils Gruschka, Meiko Jensen, Florian Kohlar, and Lijun Liao. On

Interoperability Failures in WS-Security. In Ejub Kajan, editor, Electronic

Business Interoperability: Concepts, Opportunities and Challenges, pages

615–635. IGI Global, 2011.

JKSS10*: Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic

Compilers for Authenticated Key Exchange (Full Version). IACR Cryptol-

ogy ePrint Archive, Report 2010/621, 2010. http://eprint.iacr.org/

2010/621

10

http://eprint.iacr.org/2010/621
http://eprint.iacr.org/2010/621

1.5 List of Publications

JKSS12*: Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On

the Security of TLS-DHE in the Standard Model (Full Version). IACR

Cryptology ePrint Archive, Report 2011/219, 2012. http://eprint.iacr.

org/2011/219

GKS12: Florian Giesen, Florian Kohlar, and Douglas Stebila. On the Security

of TLS Renegotiation. In Proceedings of the 20th ACM Conference on Com-

puter and Communications Security, CCS’13, Berlin, Germany, November

04-08, 2013. http://dx.doi.org/10.1145/2508859.2516694

GKS12*: Florian Giesen, Florian Kohlar, and Douglas Stebila. On the Secu-

rity of TLS Renegotiation (Full Version). IACR Cryptology ePrint Archive,

Report 2012/630, 2013. http://eprint.iacr.org/2012/630

11

http://eprint.iacr.org/2011/219
http://eprint.iacr.org/2011/219
http://dx.doi.org/10.1145/2508859.2516694
http://eprint.iacr.org/2012/630

2 Preliminaries and Definitions

In this chapter, we present the formal definitions required to formulate our results.

This chapter is not meant to be read from end to end, its main purpose is to be

consulted whenever the reader encounters an unfamiliar primitive. Thus, readers

with a background in provable security may skip this chapter entirely.

Notation We use ; to denote the empty string, and [n] = [1, n] = {1, . . . , n} ⇢ N
for the set of integers between 1 and n. If A is a set, then we use a

$
 A to

denote that a is drawn uniformly random from A. In case A is a probabilistic

algorithm a
$
 A is used to denote that A returns a when executed with fresh

random coins. We use to denote the security parameter. x
$
 A(y) denotes

the output x of the probabilistic algorithm A when run on input y and randomly

chosen coins.

2.1 The Decisional Di�e-Hellman Assumption

Let G be a group of prime order q (having bit-length polynomial in) and g

a generator of G. The Decisional Di�e-Hellman (DDH) assumption states that

if given (g, ga, gb, gc) for a, b, c 2 Z
q

it is hard to decide whether c = ab mod q.

More formally:

Definition 2.1. We say that the DDH problem is (t, ✏)-hard in G, if for all

adversaries A that run in time t it holds that

��Pr
⇥
A(g, ga, gb, gab) = 1

⇤
� Pr

⇥
A(g, ga, gb, gc) = 1

⇤��
 ✏,

where a, b, c
$
 Z

q

.

2.2 Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen, SIG.Sign, SIG.Vfy), consist-

ing of the key generation algorithm (sk, pk)
$
 SIG.Gen(1) generating a (public)

verification key pk and a secret signing key sk on input of the security parameter

, the signing algorithm �
$
 SIG.Sign(sk,m) generating a signature for message

13

2 Preliminaries and Definitions

g, ga, gb

Real

gc, c := ab

A

Random

gc, c
$
 Zq

gc gc

Figure 2.1: Illustration of the Decisional Di�e-Hellman Assumption

m, and the verification algorithm SIG.Vfy(pk, �,m) returning 1, if � is a valid

signature for m under key pk, and 0 otherwise. Security is formalized in the

following security game that is played between a challenger C and an adversary

A.

1. The challenger generates an asymmetric key pair (sk, pk)
$
 SIG.Gen(1)

and the public key pk is given to the adversary.

2. The adversary may adaptively query q messages m
i

with i 2 [q] of his choice

to the challenger. The challenger responds to each of these queries with a

signature �
i

= SIG.Sign(sk,m
i

) on m
i

.

3. The adversary outputs a message/signature pair (m, �).

Definition 2.2. We say that SIG is (t, ✏, q)-secure against existential forgeries

under adaptive chosen-message attacks (EUF-CMA), if for all adversaries A that

run in time t making at most q queries it holds that

Pr
h
(m, �)

$
 A

C(1, pk) such that SIG.Vfy(pk,m, �) = 1 ^m 62 {m1, . . . ,mq

}

i
 ✏.

SIG.Sign(sk, ·)
A

pk SIG.Vfy(pk,�,m)
?

= 1

mi

�i

(m,�)

Figure 2.2: Illustration of the EUF-CMA security experiment of Definition 2.2

2.3 Symmetric Encryption Schemes

A symmetric encryption (SE) scheme is a pair SE = (SE.Enc, SE.Dec), consisting

of the encryption algorithm SE.Enc(k,m) generating a ciphertext c for message m

under key k, and the deterministic decryption algorithm SE.Dec(k, c) returning

m, if c is a valid encryption and the error symbol ? otherwise. Security is

14

2.4 Public Key Encryption Schemes

formalized in the following security game that is played between a challenger C

and an adversary A.

1. The adversary may adaptively query the challenger for encryptions of arbi-

trary plaintexts m. The challenger responds to each of these queries with

the output of SE.Enc(k,m).

2. The adversary outputs two (fresh) messages m0 and m1.

3. The challenger tosses coin b
$
 {0, 1}. It then sets c = SE.Enc(k,m

b

) and

sends c to the adversary.

4. The adversary may again adaptively query plaintexts m of his choice, with

the restriction that m /2 {m0,m1}. The challenger responds to each of these

queries with the output of SE.Enc(k,m).

5. Finally the adversary outputs a bit b0.

Definition 2.3. We say that SE is (t, ✏, q)-secure under Chosen-Plaintext Attacks

(CPA), if all adversaries A that run in time t making at most q encryption queries

have advantage of at most ✏ to distinguish the ciphertext of m0 from that of m1,

i.e.

|Pr [b = b0]� 1/2| ✏.

SE.Enc(k,mi)

Left

c⇤ := SE.Enc(k,m⇤
0

)

A

Right

c⇤ := SE.Enc(k,m⇤
1

)

ci mi

(m⇤
0

,m⇤
1

) (m⇤
0

,m⇤
1

)

c⇤ c⇤

Figure 2.3: Illustration of the IND-CPA security experiment of Definition 2.3

2.4 Public Key Encryption Schemes

A Public-Key Encryption (PKE) scheme is a triple PKE = (PKE.Gen,PKE.Enc,

PKE.Dec), consisting of the key generation algorithm (sk, pk)
$
 PKE.Gen(1)

generating a (public) encryption key pk and a secret decryption key sk on input of

the security parameter , the probabilistic encryption algorithm PKE.Enc(pk,m)

15

2 Preliminaries and Definitions

generating a ciphertext c for message m, and the deterministic decryption algo-

rithm PKE.Dec(sk, c) returning m, if c is a valid encryption and the error symbol

? otherwise. Security is formalized in the following security game that is played

between a challenger C and an adversary A.

1. The challenger generates an asymmetric key pair (sk, pk)
$
 PKE.Gen(1)

and the public key pk is given to the adversary.

2. The adversary may adaptively query the challenger for decryptions of arbi-

trary ciphertexts c. The challenger responds to each of these queries with

the output of PKE.Dec(sk, c).

3. The adversary outputs a message m⇤.

4. The challenger tosses coin b
$
 {0, 1}. It then sets c0 = PKE.Enc(pk,m⇤)

and c1 = PKE.Enc(pk, r) for a uniformly random message r that is of the

same size as m⇤ and sends c
b

to the adversary.

5. The adversary may again adaptively query ciphertexts c of his choice, now

with the restriction that c 6= c
b

. The challenger responds to each of these

queries with the output of PKE.Dec(sk, c).

6. Finally the adversary outputs a bit b0.

Definition 2.4. We say that PKE is (t, ✏, q)-secure under adaptive Chosen-

Ciphertext Attacks (CCA), if all adversaries A that run in time t making at most

q decryption queries have advantage of at most ✏ to distinguish the ciphertext of

m⇤ from that of a truly random value, i.e.

|Pr [b = b0]� 1/2| ✏.

mi := PKE.Dec(sk, ci)

Real

c
0

:= PKE.Enc(pk,m⇤)

A

pk

Random

c
1

:= PKE.Enc(pk, r)

ci 6= cb mi

m⇤ m⇤

cb cb

Figure 2.4: Illustration of the IND-CCA security experiment of Definition 2.4

16

2.5 Pseudo-Random Functions

2.5 Pseudo-Random Functions

A Pseudo-Random Function (PRF) is a deterministic algorithm PRF which given

a key k 2 KPRF (with log(|KPRF|) polynomial in) and a bit string x outputs

a string z = PRF(k, x) with z 2 {0, 1}µ (and µ being polynomial in). Let

RFµ be a truly random function that outputs a bitstring z 2 {0, 1}µ. Security is

formulated via the following security game that is played between a challenger C

and an adversary A.

1. The challenger samples k
$
 KPRF uniformly random and b

$
 {0, 1}.

2. The adversary may adaptively query q values x
i

with i 2 [q] to the challenger.

The challenger replies to each of these queries with either z
i

= PRF(k, x
i

) if

b = 0 or z
i

$
 RFµ if b = 1.

3. Finally, the adversary outputs its guess b0 2 {0, 1} of b.

Definition 2.5. We say that PRF is a (t, ✏, q)-secure pseudo-random function, if

any adversary running in time t that makes at most q queries has an advantage

of at most ✏ to distinguish the PRF from a truly random function, i.e.

|Pr [b = b0]� 1/2| ✏.

Real

zi := PRF(k, ·)
A

Random

zi := RFµ()

xi

zi zi

Figure 2.5: Illustration of the security experiment of Definition 2.5

Remark 2. In our security analysis we rely on the result by Fouque et al. [FPZ08]

who showed that the PRF used in TLS 1.2 is secure with respect to the above

definition if the compression function of the hash function used in the HMAC-

based key-derivation function of TLS behaves like a pseudo-random function.

2.6 Message Authentication Codes

AMAC is an algorithmMAC. This algorithm implements a deterministic function

w = MAC(Kmac,m), taking as input a (symmetric) key Kmac 2 {0, 1} and a

message m, and returning a string w.

17

2 Preliminaries and Definitions

Consider the following security experiment played between a challenger C and

an adversary A.

1. The challenger samples Kmac
$
 {0, 1} uniformly random.

2. The adversary may query arbitrary messages m
i

to the challenger. The

challenger replies to each query with w
i

= MAC(Kmac,mi

). Here i is an

index, ranging between 1 i q for some q 2 N. Queries can be made

adaptively.

3. Eventually, the adversary outputs a pair (m,w).

Definition 2.6. We say that MAC is a (t, ✏, q)-secure message authentication

code, if for all adversaries A that run in time t and queries at most q messages

holds that

Pr
h
(m,w)

$
 A

C(1) : w = MAC(Kmac,m) ^m 62 {m1, . . . ,mq

}

i
 ✏MAC.

MAC(Kmac, ·) A !
?

= MAC(Kmac,m)

mi

!i

(m,!)

Figure 2.6: Illustration of the security experiment of Definition 2.6

2.7 Passively Secure Key Exchange Protocols

A passively secure Key Exchange (KE) protocol is a protocol KE run between two

parties with the means to establish a common key k in the presence of a benign

adversary. We assume, that when KE terminates, both parties have negotiated

a common key k. Security is now defined by the probability of this adversary

to distinguish the established key from a uniformly random key. We show this

via the following security game that is played between a challenger C and an

adversary A.

1. The challenger executes KE between two honest parties, records the complete

transcript T of messages exchanged and receives the negotiated key k.

2. The challenger samples b
$
 {0, 1} uniformly random and sets K0 := k and

samples K1
$
 {0, 1}K uniformly at random. Then it returns K

b

and the

complete transcript T to the adversary.

18

2.8 Collision-Resistant Hash Functions

3. Finally, the adversary outputs its guess b0 2 {0, 1} of b.

Definition 2.7. We say that a key exchange protocol KE is (t, ✏)-secure against

passive adversaries, if any passive adversary running in time t has an advantage

of at most ✏ to distinguish the established key k from a truly random key k̃, i.e.

|Pr [b = b0]� 1/2| ✏.

Real KE

K := k
A

Random KE

K
$
 K

K,T K, T

Figure 2.7: Illustration of the security experiment of Definition 2.7

2.8 Collision-Resistant Hash Functions

A collision-resistant hash function is a deterministic algorithm H which given a

key k 2 KH (with log(|KH|) polynomial in) and a bit string m outputs a hash

value w = H(k, x) in the hash space {0, 1}� (with � polynomial in). If k is clear

from the context we write H(·) short for H(k, ·).

Definition 2.8. We say that H is a (t, ✏)-secure collision-resistant hash function,

if any t-time adversary A that is given k
$
 KH has an advantage of at most ✏ to

compute two colliding inputs m,m0 with m 6= m0 and H(m) = H(m0).

2.9 The PRF-Oracle-Di�e-Hellman Assumption

Let G be a group with generator g of order q0 (having bit-length polynomial in

). Let PRF be a deterministic function z = PRF(X,m), taking as input a key

X 2 G and some bit string m, and returning a string z 2 {0, 1}µ. Consider the

following security experiment played between a challenger C and an adversary A.

1. The adversary A outputs a value m.

2. The challenger samples u, v
$
 [q], z1

$
 {0, 1}µ uniformly random and sets

z0 := PRF(guv,m). Then it tosses a coin b 2 {0, 1} and returns z
b

, gu and

gv to the adversary.

3. The adversary may query a pair (X,m0) with X 6= gu to the challenger. The

challenger replies with PRF(Xv,m0).

19

2 Preliminaries and Definitions

4. Finally the adversary outputs a guess b0 2 {0, 1}.

Definition 2.9. We say that the PRF-ODH problem is (t, ✏)-hard with respect

to G and PRF, if for all adversaries A that run in time t it holds that

|Pr [b = b0]� 1/2| ✏.

The PRF-ODH assumption is a variant of the Oracle Di�e-Hellman (ODH)

assumption introduced by Abdalla, Bellare and Rogaway in [ABR01], adopted

from hash functions to PRFs and restricted to allow only a single oracle query.

Real

z
1

:= PRF(Xv,m0)
A

Random

z
0

$
 {0, 1}µ

(X,m0)

zi zi

Figure 2.8: Illustration of the security experiment of Definition 2.9

2.10 The Strong PRF-Oracle-Di�e-Hellman Assumption

Let G be a group with generator g of order q0 (having bit-length polynomial in

). Let PRF be a deterministic function z = PRF(X,m), taking as input a key

X 2 G and some bit string m, and returning a string z 2 {0, 1}µ. Consider the

following security game that is played between a challenger C and an adversary

A.

1. The adversary A outputs a value m.

2. The challenger samples u, v
$
 [q0] and z1

$
 {0, 1}µ uniformly random and

sets z0 := PRF(guv,m). Then it tosses a coin b 2 {0, 1} and returns z
b

, gu

and gv to the adversary.

3. The adversary may adaptively query q pairs (X
i

,m0
i

) with (X
i

,m0
i

) 6= (gu,m),

i 2 [q] to the challenger. The challenger replies with PRF(Xv

i

,m0
i

).

4. Finally the adversary outputs a guess b0 2 {0, 1}.

Definition 2.10. We say that the Strong PRF-ODH problem is (t, ✏)-hard for

G and PRF, if for all adversaries A that run in time t making at most q queries

in the above security game it holds that

|Pr [b = b0]� 1/2| ✏.

20

2.11 Stateful Length-Hiding Authenticated Encryption

The definition of the Strong PRF-ODH problem di↵ers in two ways. First,

we allow the adversary to ask a polynomial number of queries to the oracle in

contrast to only a single query. This makes our assumption more similar to

the original Oracle Di�e-Hellman assumption. Second, we also allow queries of

di↵erent messages m0
i

with the same key gu, as long as m0
i

6= m. This makes our

assumption much more comparable with the classical security definition of PRFs,

as now the oracle can also be queried for the challenge key more than once.

2.11 Stateful Length-Hiding Authenticated Encryption

We now define a stateful variant of the definition for length-hiding authenticated

encryption (LHAE) which is attributed to Paterson et al. [PRS11].

A (symmetric) stateful length-hiding authenticated encryption (sLHAE) scheme

consists of two algorithms StE = (StE.Enc, StE.Dec). The (possibly probabilis-

tic) encryption algorithm, given as (C, st0
e

)
$
 StE.Enc(k, len, H,m, st

e

), takes the

following values as input: the secret key k 2 {0, 1}, the length len 2 N of the

output ciphertext, header data H 2 {0, 1}⇤, the plaintext m 2 {0, 1}⇤, and the

current state st
e

2 {0, 1}⇤ of the encryption scheme. It outputs either a cipher-

text C 2 {0, 1}len and the updated state st0
e

or the special error symbol ?. The

deterministic decryption algorithm (m0, st0
d

) = StE.Dec(k,H,C, st
d

) processes se-

cret key k, header data H, ciphertext C, and the current state st
d

2 {0, 1}⇤.

It returns the updated state st0
d

and a value m0 which is either the message en-

crypted in C, or a distinguished error symbol ? indicating that C is not a valid

ciphertext. The encryption state st
e

and decryption state st
d

are initialized to

the empty string ;.

Consider the following security game that is played between challenger C and

adversary A.

1. The challenger draws b
$
 {0, 1} and k

$
 {0, 1} and sets st

e

:= ; and

st
d

:= ;.

2. The adversary may adaptively query the encryption oracle Encrypt q
e

times

and the decryption oracle Decrypt q
d

times. Figure 2.9 shows how these

oracles respond to A’s queries.

3. Finally, the adversary outputs a guess b0 2 {0, 1}.

Definition 2.11. We say that an Stateful Length-Hiding Authenticated Encryp-

tion (sLHAE) scheme StE = (StE.Init, StE.Enc, StE.Dec) is (t, ✏)-secure, if for all

21

2 Preliminaries and Definitions

Encrypt(m
0

,m
1

, len, H): Decrypt(C,H):

u := u+ 1 v := v + 1

(C(0), st
(0)

e)
$
 StE.Enc(k, len, H,m

0

, ste) If b = 0, then return ?

(C(1), st
(1)

e)
$
 StE.Enc(k, len, H,m

1

, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ? or C(1) = ? then return ? If v > u or C 6= Cv or H 6= Hv

(Cu, Hu, ste) := (C(b), H, st
(b)
e) then phase := 1

Return Cu If phase = 1 then return m

Return ?

Figure 2.9: Encrypt and Decrypt oracles in the stateful LHAE security experiment. The values

u, v and phase are all initialized to 0 at the beginning of the security game.

adversaries A that run in time t it holds that

|Pr [b = b0]� 1/2| ✏.

in the above security game. We assume that the number of encryption queries q
e

and decryption queries q
d

is bound by the running time of the adversary.

22

3 Formal Security Models and Definitions

for Cryptographic Protocols

In this chapter we describe several security models for a wide range of di↵erent

protocol types. Our main focus lies on the security of two-party protocols for

authentication and key exchange in various instantiations in the presence of active

adversarys.

An important line of research [BWJM97, CK01, LLM07] dates back to Bellare

and Rogaway [BR94a], where an adversary is provided with an ‘execution envi-

ronment’, which emulates the real-world capabilities of an active adversary. This

approach has become fairly standard in the analysis of cryptographic protocols.

Technically, we model the capabilities of an adversary through queries that he

may ask to an execution environment implemented by a challenger. An adversary

has full control over the communication network, which allows him to forward,

alter, or drop any message sent by the participants, or insert new messages.

We start with defining a generic execution environment and security model in

Section 3.1. We then take this security model and adopt it in Section 3.2 to give

several concrete security models for di↵erent types of protocols. More specific, we

give concrete security models for Authenticated Key Exchange (AKE) protocols

in Section 3.2.1, Authenticated and Confidential Channel Establishment (ACCE)

protocols in Section 3.2.2, and multi-phase (ACCE) protocols in Section 3.2.3.

Usually, models for two-party authentication and authenticated key exchange

protocols only cover the case where both protocol participants authenticate to

each other, which is called mutual authentication. In practice, however, it is

fairly common, that only one party authenticates itself cryptographically during

the protocol execution, while the other party, if required, later performs an out-of-

band authentication (e.g. by a username/password combination over the freshly

established confidential channel). We cover both cases and give definitions for

mutual authentication protocols and one-sided authentication protocols.

23

3 Formal Security Models and Definitions

3.1 Generic Security Model

In this section we describe a generic security model, that we use as basis for the

specific instantiations in the subsequent sections. The generic security model is

basically the intersection of all specific security models, defining the prime sim-

ulation set-up for all subsequently refined execution environments and the basic

queries that an adversary is always provided with.

In the real world protocols are executed between many individual parties and

each party may communicate in multiple sessions with an arbitrary set of other

parties. To be able to make formal statements about the security of a protocol in

such a distributed enviroment and in the presence of an adversary, it is common

to model the adversary as a probabilistic machine running in polynomial time

(also refered to as Probabilistic Polynomial-Time (PPT)-adversary) The adver-

sary interacts with a single entity, the simulator S, that implements all parties.

We also call this simulation the execution environment. Note that the simula-

tor can e�ciently implement all parties (and oracles) since it also implements

all states and thus all (long-term) secrets. An adversary in the real world may

‘tap the wire’, i.e. intercept, modify or drop messages, or use specific attacks to

learn secret values (e.g. by infecting a party with malware he might learn the

long-term key used by this party or the session negotiated between this party

and some other party). The interaction between the adversary and the (simu-

lated) parties is described by queries, that try to approximate realistic security

threats in practice. Note, that the simulation represents an idealized world in

which certain problems of the real world, such as (untriggered) packet losses and

implementation errors, do not exist.

3.1.1 Generic Execution Environment

We now describe a generic execution environment, i.e. how the simulator imple-

ments parties and sessions. We later refine this generic environment to allow us

to simulate the protocols we want to analyze.

In the following let �, ⌘ 2 N be positive integers. We consider a set of � parties

{P1, . . . , P�

}. Each party P
i

2 {P1, . . . , P�

} is a (potential) protocol participant

with a specific role in the protocol execution specified by variable ⇢5 that has

access to some long-term secret L
i

, maintained in its internal state.

Remark 3. We stress that this also models scenarios where the set of parties may

5The set of possible roles depends on the protocol specification.

24

3.1 Generic Security Model

intially consist of one party only and is step-wisely filled by the environment, since

the long-term secrets are generated independently of the adversary. It makes no

di↵erence if the long-term secrets are generated at setup or on demand. We only

require that the total number of parties is at most �.

Remark 4. L
i

might contain a single secret key corresponding to a public key/secret

key pair or a set of multiple secret keys. This will later be detailed in the extended

execution environments for the di↵erent protocol types.

We assume that each party P
i

is associated with ⌘ oracles ⇡1
i

, . . . , ⇡⌘

i

, where each

oracle ⇡s

i

represents a process that executes one single instance of the protocol,

also called a session. The oracles ⇡1
i

, . . . , ⇡⌘

i

of party P
i

all have access to the

long-term secret L
i

of party P
i

.6 Moreover, each oracle ⇡s

i

maintains as internal

state the following variables:

• ⇤ 2 {accept, reject}.

• k 2 K, where K is the keyspace of the considered protocol.

• ⇧ 2 [�] holding the intended communication partner, i.e. an index j that

points to a globally unique party P
j

.

• Ti,s, the ordered transcript of all messages sent and received by the oracle.

• Some additional temporary state variable st (which may, for instance, be

used to store ephemeral Di�e-Hellman exponents or counters of a stateful

encryption scheme).

In the following, let ⇡s

i

.V denote the content of variable V stored at oracle ⇡s

i

.

The long-term secret L
i

for each party is initialized depending on the protocol

specification. The internal state of each oracle is initialized to (⇤, k,⇧, ⇢,T, st) =

(;, ;, ;, ;, ;, ;), where V = ; denotes that variable V is undefined. Variables

⇧ and ⇢ are set depending on the protocol specification. Furthermore, we will

always assume (for simplicity) that k = ; if an oracle has not reached accept-

state (yet), and contains the computed key if an oracle is in accept-state, so that

we have

k 6= ; () ⇤ = ‘accept0. (3.1)

Generic Adversarial Capabilities

We now describe basic interaction capabilities of an adversary A, which we ex-

tend in the following section to capture certain protocol-specific attacks. The

6In our model we say for simplicity that for each oracle ⇡

s
i of party Pi the role ⇢ is set to the role of Pi.

25

3 Formal Security Models and Definitions

adversary can participate at any protocol execution by asking ‘queries’ to or-

acles, which exactly define and restrict the amount of interaction between the

adversary and the environment. As mentioned above, we here only describe the

basic queries, which are independent of the protocol type, and the internal setup

of the simulator.

Informally, we want to give the adversary the ability to exchange messages be-

tween oracles, learn long-term secrets of parties, and learn session keys negotiated

between two oracles. The Send query enables the adversary to initiate and run

an arbitrary number of protocol instances, sequential or in parallel, and provides

full control over the communication between all parties. The Reveal query may

be used to learn the session keys used in previous/concurrent protocol executions.

The Corrupt query allows the adversary to learn the long-term secret L
i

of party

P
i

and may for instance be used by A to impersonate P
i

.

Formally, an adversary may interact with the oracles described above by issuing

the following queries to the execution environment.

• Send(⇡s

i

,m): The adversary can use this query to send message m to oracle

⇡s

i

. The oracle will respond according to the protocol specification, depend-

ing on its internal state. If the adversary asks the first Send query to oracle

⇡s

i

, then the oracle checks whether m = > consists of a special ‘initialization’

symbol >. If true, then it responds with the first protocol message.

The variables ⇤, k,⇧, ⇢, st are also set after some Send query. When and

how depends on the considered protocol.

• Reveal(⇡s

i

): Oracle ⇡s

i

responds to a Reveal query with the contents of variable

k. Note that we have k 6= ; if and only if ⇤ = accept, see (3.1) above.

• Corrupt(P
i

, [·]): Oracle ⇡1
i

responds with the long-term secret L
i

of party P
i

.7

The second parameter is optional and may be used to learn only parts of

the long-term secret.8

If Corrupt(P
i

) is the ⌧ -th query issued by A we say that P
i

is ⌧ -corrupted.

For parties that are not corrupted we define ⌧ :=1.

Depending on the protocol type, the adversary may have access to further

queries, which are specified later in the appropriate sections. For example, to

show security of Authenticated Key Exchange (AKE) protocols, the adversary is

7Note, that the adversary does not ‘take control’ of oracles corresponding to a corrupted party. But he learns

the long-term secret key, and can henceforth simulate oracles of these parties.
8This is to simulate partial leakage. If a party has access to multiple long-term secret keys, the adversary may

choose to only corrupt a specific key instead of corrupting all keys at once.

26

3.1 Generic Security Model

provided with a Test query which outputs a challenge that the adversary has to

answer (see Section 3.2.1 for details on this query).

3.1.2 Matching Conversations

Bellare and Rogaway [BR94a] have introduced the notion of matching conversa-

tions in order to define correctness and security of an AKE protocol precisely.

We adapt this notion and use it accordingly to define secure authentication for

all following protocol types.

Recall, that Ti,s consists of all messages sent and received by ⇡s

i

in chronological

order (not including the initialization-symbol >). We also say that Ti,s is the

transcript of ⇡s

i

. For two transcripts Ti,s and Tj,t, we say that Ti,s is a prefix of

Tj,t, if Ti,s contains at least one message, and the messages in Ti,s are identical

to and in the same order as the first |Ti,s

| messages of Tj,t.

Definition 3.1 (Matching conversations). We say that ⇡s

i

has a matching con-

versation to ⇡t

j

, if

• Tj,t is a prefix of Ti,s and ⇡s

i

has sent the last message(s), or

• Ti,s = Tj,t and ⇡t

j

has sent the last message(s).

We say that two processes ⇡s

i

and ⇡t

j

have matching conversations if ⇡s

i

has a

matching conversation to process ⇡t

j

, and vice versa.

Remark 5. We remark that matching conversations in the above sense can also

be seen as post-specified session identifiers.9 The ‘asymmetry’ of the definition

(i.e. the fact that we have to distinguish which party has sent the last message)

is necessary, due to the fact that protocol messages are sent sequentially. For

instance in the TLS Handshake protocol (see Figure 5.1 in Section 5.1) the last

message of the client is the (encrypted) ClientFinished message fin
C

. After

sending this message, the client waits for the (encrypted) ServerFinished mes-

sage fin
S

before ‘accepting’. In contrast, the server sends fin
S

after receiving fin
C

.

Therefore the server has to ‘accept’ without knowing whether its last message

was received by the client correctly. We have to take this into account in the

definition of matching conversations, since it will later be used to define secu-

rity of the protocol in presence of an active adversary that simply drops the last

protocol message.

9The post-specified peer model was introduced by Canetti and Krawczyk, for details see [CK02].

27

3 Formal Security Models and Definitions

3.2 Specific Instantiations

We now extend the above execution environment and the capabilites of an adver-

sary for AKE protocols in Section 3.2.1, Authenticated and Confidential Channel

Establishment (ACCE) protocols in Section 3.2.2, and multiphase and renego-

tiable ACCE protocols in Section 3.2.3.

3.2.1 Authenticated Key Exchange Protocols

In this section we refine the generic execution environment presented in the pre-

vious section to formalize the security of AKE protocols. Note, that we will only

consider AKE protocols in the public key setting here, although it is trivial to

modify our model to cover pre-shared symmetric keys.

Extended Execution Environment

We now say that the long-term secrets of each party P
i

2 {P1, . . . , P�

} consist of

a secret key corresponding to a unique long-term key pair (pk
i

, sk
i

), thus L
i

=

sk
i

.10 Additionally, all oracles may assume exactly one of two roles in a protocol

execution, being either Client or Server. We say that the oracle sending the first

message in a protocol execution is the client and its partner oracle is the server.

This means that for all oracles it holds that ⇢ 2 {Client, Server}.

Remark 6. Usually, we speak of the first oracle being the Initiator and the second

oracle being the Responder. However, as we later use this model to analyze the

security of the TLS protocol, we will use the notation Client/Server to better

reflect the roles in this protocol.

Extended Queries The queries available to the adversary in the AKE setting are

identical to the queries detailed in Section 3.1.1, except for the following modi-

fications and additions: We now define in detail, how and when the role ⇢ of a

party is set after a Send query, and we introduce a Test query in order to be able

to define AKE security.

• Send(⇡s

i

,m): This query is identical to the Send query from Section 3.1.1,

with the following additions:

If this query is the first Send query to an oracle ⇡s

i

of party P
i

and m = >,

then P
i

sets its internal variable ⇢ := Client and ⇡s

i

responds with the first

10This is just for simplicity. We could easily extend our model to cover situations where each party may have

more than one long-term key pair.

28

3.2 Specific Instantiations

protocol message. Otherwise it sets ⇢ := Server and ⇡s

i

responds as specified

in the protocol.11

• Test(⇡s

i

): This query may be asked only once throughout the game. If ⇡s

i

has state ⇤ 6= accept, then it returns some failure symbol ?. Otherwise it

flips a fair coin b, samples an independent key k0
$
 K, sets k1 := k to the

‘real’ key computed by ⇡s

i

, and returns k
b

.

Correctness and Security Definition

Correctness of AKE protocols is in the following defined by requiring that all

protocol participants, in the presence of benign adversarys, ‘accept’ and compute

the same session key. Security of AKE protocols is then defined by requiring

that (i) the protocol is a secure authentication protocol, and (ii) the protocol is

a secure key-exchange protocol, thus an adversary cannot distinguish the session

key k from a random key. The first requirement di↵ers for server-only and mutual

authentication, whereas it is interesting to note that the second requirement is

independent of the chosen authentication mode.

AKE Game. We formally capture this notion as a game, played between an ad-

versary A and a challenger C. The challenger implements the collection of oracles

{⇡s

i

: i 2 [�], s 2 [⌘]}. At the beginning of the game, the challenger generates �

long-term key pairs (pk
i

, sk
i

) for all i 2 [�]. The adversary receives the public

keys pk1, . . . , pk� as input.

Now the adversary may start issuing Send, Reveal and Corrupt queries, as well

as one Test query. Finally, the adversary outputs a bit b0 and terminates.

Definition 3.2. Assume a ‘benign’ adversary A, which picks two arbitrary ora-

cles ⇡s

i

and ⇡t

j

and performs a sequence of Send queries by faithfully forwarding

all messages between ⇡s

i

and ⇡t

j

, until the last message according to the protocol

specification has been sent. Let ks

i

denote the key computed by ⇡s

i

and let kt

j

denote the key computed by ⇡t

j

.

We say that an AKE protocol is correct, if for this benign adversary and any

two oracles ⇡s

i

and ⇡t

j

always holds that

1. both oracles have ⇤ = accept,

2. ks

i

= kt

j

2 K.

11Note that we do not include the identity of the (intended) communication partner in the Send query. Instead,

we assume that the exchange of identities of communication partners (which is necessary to determine the

public key used to perform authentication) is part of the protocol.

29

3 Formal Security Models and Definitions

Mutual Authentication. In the following we give the definitions for mutually

authenticated key exchange protocols with and without perfect forward secrecy.

In Property 1 we require that the protocol is a secure authentication protocol,

i.e. for each oracle that accepts with an intended uncorrupted partner, there must

exist a partner oracle of this uncorrupted party that has a matching conversation.

Note that this party may still be corrupted later.

In Property 2 we require that the adversary cannot distinguish the session key k

computed in a chosen ‘Test session’ between uncorrupted parties from a random

key. For protocols with perfect forward secrecy we allow the adversary to corrupt

parties after they have accepted.

Definition 3.3. We say that an adversary (t, ✏)-breaks an AKE protocol with

mutual authentication, if A runs in time t, and at least one of the following two

conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

with internal state ⇤ = accept such that

• ⇡s

i

‘accepts’ with intended partner ⇧ = j when A issues its ⌧0-th query,

and

• P
j

is ⌧
j

-corrupted with ⌧0 < ⌧
j

,12 and

• there is no unique oracle ⇡t

j

such that ⇡s

i

has a matching conversation

to ⇡t

j

.

If an oracle ⇡s

i

accepts in the above sense, then we say that ⇡s

i

accepts

maliciously.

2. When A issues a Test query to any oracle ⇡s

i

and

• ⇡s

i

‘accepts’ with intended partner ⇧ = j when A issues its ⌧0-th query,

• P
i

and P
j

are ⌧ -corrupted with ⌧ =1, and

• A does not issue a Reveal query to ⇡s

i

, nor to ⇡t

j

such that ⇡s

i

has a

matching conversation to ⇡t

j

(if such an oracle exists),

then the probability that A outputs b0 which equals the bit b sampled by the

Test query satisfies

|Pr[b = b0]� 1/2| � ✏.

If an adversary A outputs b0 such that b0 = b and the above conditions are

met, then we say that A answers the Test-challenge correctly.

12That is, Pj is not corrupted when ⇡

s
i ‘accepts’. Recall that uncorrupted parties are ⌧ -corrupted with ⌧ =1.

30

3.2 Specific Instantiations

Definition 3.4. We say that an adversary (t, ✏)-breaks an AKE protocol with

mutual authentication and perfect forward secrecy, if A runs in time t, and at

least one of the following two conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

that accepts maliciously in the sense of Property 1 of Definition 3.3.

2. When A issues a Test query to any oracle ⇡s

i

and

• ⇡s

i

‘accepts’ with intended partner ⇧ = j when A issues its ⌧0-th query,

• P
j

is ⌧
j

-corrupted with ⌧0 < ⌧
j

, and

• A does not issue a Reveal query to ⇡s

i

, nor to ⇡t

j

such that ⇡s

i

has a

matching conversation to ⇡t

j

(if such an oracle exists),

then the probability that A outputs b0 which equals the bit b sampled by the

Test query satisfies

|Pr[b = b0]� 1/2| � ✏.

Server-Only Authentication. In the following we modify the above defini-

tions to define server-only authenticated key exchange protocols with and without

perfect forward secrecy. Note, that the only di↵erence to the above definitions

with mutual authentication is that we restrict the maliciously accepting oracle

to be a Client, i.e. to have internal state ⇢ = Client.

Definition 3.5. We say that an adversary (t, ✏)-breaks an AKE protocol with

server-only authentication, if A runs in time t, and at least one of the following

two conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle ⇡s

i

such that ⇡s

i

maliciously accepts in the sense of Property 1 of Definition 3.3,

and ⇡s

i

has internal state ⇢ = Client .

2. A answers the Test-challenge correctly in the sense of Property 2 of Defini-

tion 3.3 and either

• oracle ⇡s

i

(to which A has issued the Test query) has internal state

⇢ = Client, or

• oracle ⇡s

i

has internal state ⇢ = Server, and there exists an oracle ⇡t

j

such that ⇡s

i

has a matching conversation to ⇡t

j

.

Definition 3.6. We say that an adversary (t, ✏)-breaks an AKE protocol with

server-only authentication and perfect forward secrecy, if A runs in time t, and

at least one of the following two conditions holds:

31

3 Formal Security Models and Definitions

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

that accepts maliciously in the sense of Property 1 of Definition 3.5.

2. A answers the Test-challenge correctly in the sense of Property 2 of Defini-

tion 3.4 and either

• oracle ⇡s

i

(to which A has issued the Test query) has internal state

⇢ = Client, or

• oracle ⇡s

i

has internal state ⇢ = Server and ⇧ = j, and there exists an

oracle ⇡t

j

such that ⇡s

i

has a matching conversation to ⇡t

j

.

We say that an AKE protocol is (t, ✏)-secure (with respect to any of the above

definitions), if it is correct and there exists no adversary that (t, ✏)-breaks it (with

respect to the same definition).

Remark 7. Note that all of the above definitions also model

acrshortkci attacks [BWJM97, Kra05], since we do not require that the client P
i

is uncorrupted. Even if P
i

is corrupted, it must be impossible for an adversary

to impersonate party P
j

to P
i

.

Remark 8. Client-only security can be defined analogously by switching the in-

ternal state ⇢ = Client to ⇢ = Server in the appropriate definitions.

It is easy to see that if ⇡s

i

has a matching conversation to ⇡t

j

when only allowing

server authentication and ⇡t

j

has a matching conversation to ⇡s

i

when only al-

lowing client authentication then ⇡s

i

and ⇡t

j

have matching conversations to each

other and the protocol is AKE secure with mutual authentication. However, the

converse is not true in general.

3.2.2 Authenticated and Confidential Channel Establishment (ACCE)

Protocols

Provably secure authenticated key exchange protocols as described in the previ-

ous section provide sessions keys which are indistinguishable from random strings

(chosen from the same keyspace). While this approach is very appealing, due to

the fact that a key derived in such a protocol execution can be used without lim-

itations for all purposes, this notion is sometimes too strong for specific protocol

variants. Namely, when the session key is already used in some manner during

the protocol execution13. Formally, such a key cannot be proven indistinguish-

able from random — an adversary can simply take its challenge key (obtained

13This may not be true for all protocols that make use of the negotiated session key, e.g. for key confirmation

purposes, but it will become clear that it is problematic for some interesting protocol classes, the TLS

protocol being one of them.

32

3.2 Specific Instantiations

from asking a Test query) and perform checks, if it matches the protocol execu-

tion or not. To still be able to make security statements about such protocols

we introduce a new type of protocols in this section, namely authenticated and

confidential channel establishment (ACCE) protocols.

An ACCE protocol is a protocol executed between two parties. The protocol

consists of two stages, called the ‘pre-accept’ stage and the ’post-accept’ stage.

Pre-accept stage. In this stage a ‘handshake protocol’ is executed. In terms of

functionality this protocol is an AKE protocol as defined in Section 3.2.1,

that is, at least one communication partner is authenticated, and a session

key k is established. However, it need not necessarily meet the security

definitions for AKE protocols. This stage ends, when both communication

partners reach an accept-state (i.e. ⇤ = ‘accept’).

Post-accept stage. This stage is entered, when both communication partners

reach an accept-state. In this stage data can be transmitted, encrypted

and authenticated with key k.

The prime example of an ACCE protocol is TLS. Here, the pre-accept stage

consists of the TLS Handshake protocol (including the encrypted Finished mes-

sages, see also Section 5.1). In the post-accept stage encrypted and authenticated

data is transmitted over the TLS record layer.

To define security of ACCE protocols, we combine the security model for au-

thenticated key exchange of Bellare and Rogaway [BR94a] transferred to the

public key setting [BWJM97] with stateful length-hiding encryption in the sense

of [PRS11].

Extended Execution Environment

The execution environment for ACCE protocols is identical to the extended exe-

cution environment for AKE protocols described in Section 3.2.1.

Extended Queries Compared to simulating AKE protocols, ACCE protocols are

not ‘finished’ once the session keys are exchanged, so the security definition of

ACCE protocols additionally captures the security of messages exchanged in the

post-accept stage. In order to let the adversary interact with oracles in the post-

accept stage, we provide the adversary with the ability to send messages over the

encrypted channel (without knowing the symmetric key used for encryption) and

to learn the plaintexts of messages exchanged between oracles. We also restrict

the Send query to sending plaintext messages, i.e. this query is to be used only

during the pre-accept stage.

33

3 Formal Security Models and Definitions

Similar to the Send query, the Sendpre query enables the adversary to initiate

and run an arbitrary number of protocol instances, sequential or in parallel, and

provides full control over the communication between all parties during the pre-

accept stage. Due to this modification, the original Send query may no longer be

asked. In order to allow an adversary to encrypt plaintext messages and decrypt

obtained ciphertexts, we introduce two new queries. During the post-accept stage,

the Encrypt query enables the adversary to transmit plaintexts and the Decrypt

query enables the adversary to learn the plaintexts of messages sent.

Formally, the queries available to the adversary in the ACCE setting are identi-

cal to the queries detailed in Section 3.1.1, with the following additional queries:

• Sendpre(⇡s

i

,m): This query is identical to the Send query from Section 3.2.1,

except that it replies with an error symbol ? if oracle ⇡s

i

has state ⇤ =

‘accept’. (Send queries in an accept-state are handled by the Decrypt query

below).

• Encrypt(⇡s

i

,m0,m1, len, H): This query takes as input two messages m0 and

m1, length parameter len, and header data H. If ⇤ 6= ‘accept’ then ⇡s

i

returns ?.

Otherwise, it proceeds as depicted in Figure 3.1, depending on the random

bit bs
i

$
 {0, 1} sampled by ⇡s

i

at the beginning of the game and the internal

state variables of ⇡s

i

.

To allow the parties to encrypt the Finished messages in our simulation,

we allow the party itself to call this oracle even before ⇤ = ‘accept’; this

abuse of notation allows the party to construct encrypted protocol messages

while all aspects of the security experiment remain synchronized.

• Decrypt(⇡s

i

, C,H): This query takes as input a ciphertext C and header data

H. If ⇡s

i

has ⇤ 6= ‘accept’ then ⇡s

i

returns ?. Otherwise, it proceeds as

depicted in Figure 3.1.

Similiar to above, we allow the parties to decrypted received Finished mes-

sages in our simulation by allowing the party itself to call this oracle even

before ⇤ = ‘accept’.

Remark 9. As we use this model to analyze TLS and since the TLS record layer

is unidirectional (i.e. there are both encryption and decryption keys, and for most

ciphersuites also MAC keys) all negotiated keys (KC!S

enc , KS!C

enc , KC!S

mac , KS!C

mac) are

revealed by the Reveal query, though one could imagine refinements if desired.

14Although ⇡

s
i .⇧ only contains the party identifier j, in the post-accept stage every oracle ⇡

s
i has a unique

partner oracle ⇡

t
j known to the challenger.

34

3.2 Specific Instantiations

Encrypt(⇡s
i ,m0

,m
1

, len, H): Decrypt(⇡s
i , C,H):

1. (C(0), st
(0)

e)
$
 StE.Enc(k⇢enc, len, H,m

0

, ste) 1. (j, t) := ⇡s
i .⇧

14, m0
 ?, r0 bot

2. (C(1), st
(1)

e)
$
 StE.Enc(k⇢enc, len, H,m

1

, ste) 2. vsi := vsi + 1

3. If C(0) = ? or C(1) = ? then return ? 3. (m, std) = StE.Dec(k⇢dec, H,C, std)

4. us
i := us

i + 1 4. if m 6= ?, r0 protocol response for m

5. (Cs
i [u

s
i], H

s
i [u

s
i], ste) := (C(bsi), H, st

(bsi)
e) 5. If vsi > ut

j or C 6= Ct
j [v

s
i]

6. Return Cs
i [u

s
i] then phase := 1

6. If phase = 1 and bsi = 1 then m0
 m,

7. Return (m0, r0)

Here us
i , v

s
i , b

s
i , ⇢, k

⇢
enc, k

⇢
dec denote the values stored in the corresponding internal variables of ⇡s

i .

Figure 3.1: Encrypt and Decrypt oracles in the ACCE security experiment.

Remark 10. Note that in the case of TLS, a message encrypted by some oracle

⇡s

i

can only be decrypted by its ‘partner’ oracle, as di↵erent keys are used for

the di↵erent communication directions (i.e. a single oracle uses di↵erent keys for

encryption and decryption).

Correctness and Security Definition

Security of ACCE protocols is defined by requiring that (i) the protocol is a

secure authentication protocol and (ii) in the post-accept stage all data is trans-

mitted over an authenticated and confidential channel in the sense of sLHAE

(Definition 2.11).

We now give our definitions of correct and secure ACCE protocols with mutual

authentication, adapted to the modified execution environment. We also model

perfect forward secrecy.

ACCE Game. Again this notion is captured by a game, played between an adver-

sary A and a challenger C. The challenger implements the collection of oracles

{⇡s

i

: i 2 [�], s 2 [⌘]}. At the beginning of the game, the challenger generates �

long-term key pairs (pk
i

, sk
i

) for all i 2 [�]. The adversary receives the public

keys pk1, . . . , pk� as input. Now the adversary may start issuing Sendpre, Reveal,

Corrupt, Encrypt, and Decrypt queries. Finally, the adversary outputs a triple

(i, s, b0) and terminates.

Definition 3.7. Assume a ‘benign’ adversary A, which picks two arbitrary ora-

cles ⇡s

i

and ⇡t

j

and performs a sequence of Sendpre queries by faithfully forwarding

all messages of the pre-accept stage between ⇡s

i

and ⇡t

j

. Let ks

i

= (kClient
enc , kClient

dec)

denote the key computed by ⇡s

i

and let kt

j

= (kServer
dec , kServer

enc) denote the key com-

puted by ⇡t

j

.

We say that an ACCE protocol is correct, if for this benign adversary and any

two oracles ⇡s

i

and ⇡t

j

always holds that

35

3 Formal Security Models and Definitions

1. both oracles have ⇤ = accept,

2. ks

i

= kt

j

2 K.

Furthermore we require that the stateful encryption scheme is correct, i.e. for

all messages m 2 {0, 1}⇤, lengths fields len 2 N that are valid for m, roles ⇢ 2

{Client, Server}, keys k = (k⇢

enc, k
⇢

dec), headers H 2 {0, 1}⇤, and (corresponding)

encryption/decryption states st
e

, st
d

2 {0, 1}⇤ holds that

StE.Dec(k⇢

dec, H, StE.Enc(k⇢

enc, len, H,m, st
e

), st
d

) = m.

Mutual Authentication. In the following we give the definitions for mutually

authenticated and confidential channel establishment protocols with and without

perfect forward secrecy.

Similar to the AKE security definitions we will require in Property 1 that for

every oracle that accepts with a partner identifier pointing to an uncorrupted

party there exists a partner oracle with matching conversations. In Property 2 we

require that the adversary cannot break the security of the underlying encryption

scheme, i.e. create new (valid) ciphertexts or distinguish between the encryptions

of di↵erent plaintexts.

Definition 3.8. We say that an adversary (t, ✏)-breaks an ACCE protocol with

mutual authentication, if A runs in time t, and at least one of the following two

conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

with internal state ⇢ such that

• ⇡s

i

‘accepts’ with partner ⇧ = j when A issues its ⌧0-th query, and

• P
i

and P
j

are ⌧
i

, ⌧
j

-corrupted with ⌧
i

, ⌧
j

> ⌧0, and

• A did not issue a Reveal query to oracle ⇡t

j

, such that ⇡t

j

accepted while

having a matching conversation to ⇡s

i

(if such an oracle exists) and

• there is no unique oracle ⇡t

j

such that ⇡s

i

has a matching conversation

to ⇡t

j

.

If an oracle ⇡s

i

accepts in the above sense, then we say that ⇡s

i

accepts

maliciously.

2. When A terminates and outputs a triple (i, s, b0) such that

• ⇡s

i

‘accepts’ with intended partner ⇧ = j when A issues its ⌧0-th query,

• P
i

and P
j

are ⌧ -corrupted with ⌧ =1, and

• A did not issue a Reveal query to ⇡s

i

, nor to ⇡t

j

such that ⇡s

i

has a

matching conversation to ⇡t

j

(if such an oracle exists),

36

3.2 Specific Instantiations

then the probability that b0 equals bs
i

is bounded by

|Pr[bs
i

= b0]� 1/2| � ✏.

If an adversary A outputs (i, s, b0) such that b0 = bs
i

and the above conditions

are met, then we say that A anwers the encryption-challenge correctly.

Remark 11. In comparison to the AKE definitions (Section 3.2.1), we included

an additional condition in the ACCE security definitions. Namely, we require

that A did not issue a Reveal query to an oracle ⇡t

j

, such that ⇡t

j

accepted while

having a matching conversation to ⇡s

i

, to prevent a trivial attack, which is possible

for all ACCE protocols in which the last message (of the pre-accept stage) m
x

sent was (at least partially) computed by evaluating some probabilistic function

m
x

$
 F(k, in, r) under the established session key k over some publicly known

input in, like for instance the transcript of all messages, and randomness r. For

simplicity we assume, that some server oracle ⇡t

j

sends the last message m
x

to a

client oracle ⇡s

i

(its intended partner). The adversary can now proceed as follows:

By definition, ⇡t

j

has to accept after sending m
x

(without knowing if this mes-

sage was faithfully received by ⇡s

i

). Then (without this condition) it would be

possible to ask a Reveal query to ⇡t

j

and learn the session key k. At this point

A may drop the message m
x

, use the key k to compute a similar message m0
x

by

evaluating the same function with fresh randomness r0 as m0
x

$
 F(k, in, r0) over

the same input in that ⇡t

j

used, and send m0
x

6= m
x

to ⇡s

i

. Then ⇡s

i

will accept

without having a matching conversation ⇡t

j

.

This issue was pointed out by our collegue Yong Li and observed independently

in [BSWW13].

Definition 3.9. We say that an adversary (t, ✏)-breaks an ACCE protocol with

mutual authentication and perfect forward secrecy, if A runs in time t, and at

least one of the following two conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

that accepts maliciously in the sense of Property 1 of Definition 3.8.

2. When A terminates and outputs a triple (i, s, b0) such that

• ⇡s

i

‘accepts’ with intended partner ⇧ = j when A issues its ⌧0-th query,

• P
j

is ⌧
j

-corrupted with ⌧0 < ⌧
j

, and

• A did not issue a Reveal query to ⇡s

i

, nor to ⇡t

j

such that ⇡s

i

has a

matching conversation to ⇡t

j

(if such an oracle exists),

then the probability that b0 equals bs
i

is bounded by

|Pr[bs
i

= b0]� 1/2| � ✏.

37

3 Formal Security Models and Definitions

Remark 12. Note that we do not model Key-Compromise Impersonation Attacks

(KCI) for ACCE protocols with mutual authentication. The reason is rather

practical. One of the TLS ciphersuites we analyze, namely TLS with mutual

authentication and static Di�e-Hellman key exchange, does not provide security

against Key-Compromise Impersonation Attacks. In order to keep the model

and definitions plain and simple, and to avoid giving seperate definitions for the

other ciphersuites that allow for modeling KCI attacks, we leave this out-of-scope

for this work. However, all definitions can be simply adjusted by removing the

restriction on client corruption in Property 1 (e.g. in above Definition 3.8).

Server-Only Authentication. In the following we modify the above defini-

tions to define server-only authenticated and confidential channel establishment

protocols with and without perfect forward secrecy. Note, that similar to AKE

protocols, the only di↵erence to the above definitions with mutual authentication

is that we again restrict the maliciously accepting oracle to be a Client, i.e. to

have internal state ⇢ = Client.

Definition 3.10. We say that an adversary (t, ✏)-breaks an ACCE protocol with

server-only authentication, if A runs in time t, and at least one of the following

two conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle ⇡s

i

such that ⇡s

i

maliciously accepts in the sense of Property 1 of Definition 3.8,

and ⇡s

i

has internal state ⇢ = Client.

2. A answers the encryption-challenge correctly in the sense of Property 2 of

Definition 3.8 and either

• oracle ⇡s

i

has internal state ⇢ = Client, or

• oracle ⇡s

i

has internal state ⇢ = Server, and there exists an oracle ⇡t

j

such that ⇡s

i

has a matching conversation to ⇡t

j

.

Definition 3.11. We say that an adversary (t, ✏)-breaks an ACCE protocol with

server-only authentication and perfect forward secrecy, if A runs in time t, and

at least one of the following two conditions holds:

1. When A terminates, then with probability at least ✏ there exists an oracle

⇡s

i

that accepts maliciously in the sense of Property 1 of Definition 3.9, and

⇡s

i

has internal state ⇢ = Client

2. A answers the encryption-challenge correctly in the sense of Property 2 of

Definition 3.9 and either

• oracle ⇡s

i

has internal state ⇢ = Client, or

38

3.2 Specific Instantiations

• oracle ⇡s

i

has internal state ⇢ = Server, and there exists an oracle ⇡t

j

such that ⇡s

i

has a matching conversation to ⇡t

j

.

We say that an ACCE protocol is (t, ✏)-secure (with respect to any of the above

definitions), if it is correct and there exists no adversary that (t, ✏)-breaks it (with

respect to the same definition).

Remark 13. Also note that the above definitions for protocols that provide perfect

forward secrecy even allow to corrupt the oracle ⇡s

i

whose internal secret bit the

adversary tries to determine (Property 2). We again allow the ‘accepting’ oracle

to be corrupted even before it reaches an accept-state, which provides security

against KCI attacks (Property 1).

Also note that by explicitly di↵erentiating between authentication and confi-

dentiality, we are able to model KCI attacks against protocols without perfect

forward secrecy.

Relation to the AKE Security Definitions from Section 3.2.1

Note that an ACCE protocol can be constructed in a two-step approach.

1. (AKE part) First an AKE protocol is executed. This protocol guarantees the

authenticity of the communication partner, and provides a cryptographically

‘good’ (i.e. for the adversary indistinguishable from random) session key.

2. (Symmetric part) The session key is then used in a symmetric encryption

scheme providing integrity and confidentiality.

This modular approach is simple and generic, and therefore appealing. It can

be shown formally that this two-step approach yields a secure ACCE protocol,

if the ‘AKE part’ meets the security in the sense of Definitions 3.3 to 3.6, and

the ‘symmetric part’ consists of a suitable authenticated symmetric encryption

scheme.

Remark 14. Note that our ACCE security experiment is specifically tailored to

model the properties of TLS and makes use of a Stateful Length-Hiding Authen-

ticated Encryption (sLHAE) according to Definition 2.11. However, in general

other authenticated symmetric encryption schemes may be suitable as well.

However, if the purpose of the protocol is the establishment of an authenticated

and confidential channel, then it is not necessary that the ‘AKE-part’ of the

protocol provides full indistinguishability of session keys. It actually would su�ce

if encrypted messages are indistinguishable, and cannot be altered by an adversary.

These requirements are strictly weaker than indistinguishability of keys in the

sense of Property 2 of Definitions 3.3 to 3.6, and thus easier to achieve (possibly

from weaker hardness assumptions, or by more e�cient protocols).

39

3 Formal Security Models and Definitions

We stress that our ACCE definition is mainly motivated by the fact that security

models based on key indistinguishability do not allow for a security analysis of

full TLS, as detailed in the introduction. We do not want to propose ACCE as a

new security notion for key exchange protocols, since it is very complex and the

modular two-step approach approach seems more useful in general.

Examplary Protocol Execution Let us now review how an adversary would use the

queries to carry out a normal TLS negotiation and renegotiation.

1. First the adversary sends a Sendpre query to the client oracle containing the

symbol >. The client sets its internal variable ⇢ := Client and responds with

the first protocol message, ClientHello. Both oracles draw a random bit

and store it in b, all messages (except for newphase and ready) are recorded

in the transcript T of each party.

2. The adversary delivers the first message from the client to the server by

making a Sendpre query to the server, which returns the next message from

the server to the client (ServerHello, ServerKeyExchange, etc.).

3. The adversary delivers the messages to the client via a Sendpre query. The

client responds with several plaintext messages (e.g. ClientKeyExchange)

as well as a ChangeCipherSpec message and stores all keys (such as the

premaster secret, the master secret and the application keys) in the state

variable st. It also sets its partner id ⇧ according to the received certificate.

There is one more message, the ClientFinished message, which the client

first encrypts using an internal Encrypt call.

4. The plaintext messages are delivered by the adversary to the server using

Sendpre and the encrypted message is delivered using Decrypt. The response

by the server from Sendpre will be a ChangeCipherSpec message and the

response by the server from Decrypt will be the ServerFinished message,

which the server first encrypts by internal calling Encrypt.

5. The encrypted message is delivered by the adversary using Decrypt. The

oracles set ⇤ = accept, copy the application keys into the variable k and

are now ready to use the record layer, which the adversary can now also make

use of by matching Encrypt/Decrypt queries (which are answered depending

on the internal bit b stored at the oracles).

3.2.3 Multi-Phase and Renegotiable ACCE Protocols

In this section we describe a model and give three di↵erent security notions for

multi-phase and renegotiable ACCE protocols, di↵ering in the strength of the

40

3.2 Specific Instantiations

‘cryptographic link’ between subsequent key exchanges. Essentially, a multi-

phase protocol between two parties can have many key exchanges - each called a

phase - linked to a single session. This definition builds on the ACCE definition,

described in detail in Section 3.2.2.

Since our goal is to analyze the security of TLS, we start from the ACCE

model described in Section 3.2.2, rather than from the AKE security model of

Section 3.2.1. The primary di↵erence in our model for renegotiable protocols

is that each party’s oracle (session) can have multiple phases ; each new phase

corresponds to a renegotiation in that session, and can involve the same or di↵er-

ent long-term keys.15 This is qualitatively di↵erent from simply having multiple

sessions, since short-term values from one phase of a session may be used in the

renegotiation for the next phase, whereas multiple sessions only share long-term

values. Each oracle maintains state and encryption/MAC keys for each phase.

Like in TLS, our formalism allows control messages to be sent on the encrypted

channel.

The basic goals of a secure renegotiable ACCE protocol are that (a) an adver-

sary should not be able to read or inject messages on the encrypted channel,

and (b) whenever parties successfully renegotiate, the set of all unencrypted and

encrypted messages sent in all previous phases of that session should match, even

when values from previous phases have been compromised. We then say that

both parties have the same view of all previous negotiations.

Informal Descriptions of the di↵erent Security Definitions

We start by giving (informal) descriptions of the security goals of multi-phase and

renegotiation protocols, which we then elaborate by describing an execution en-

vironment and the adversarial interaction capabilities and giving formal security

definitions.

Secure Multi-Phase ACCE Protocols. This first security notion is a

straightforward extension of the ACCE model to allow multiple, independent

phases per session; notably, we require essentially no link between phases:

• An adversary breaks (multi-phase) authentication if a party accepts in a

phase where long-term keys have not been corrupted, but no matching phase

exists at the peer.

• An adversary breaks confidentiality/integrity if it can guess the bit b in-

volved in a stateful length-hiding authenticated encryption-type confiden-

tiality/integrity experiment.
15Note that TLS standards use di↵erent words. We say a single session can have multiple phases; the TLS

standards refer to a single connection having multiple sessions.

41

3 Formal Security Models and Definitions

We will later show, that the plain TLS renegotiation protocol (i.e. without any

countermeasures) meets this security notion. However, TLS renegotiation has

been shown to be vulnerable against certain attacks (cf. 6.1) that are not covered

by this notion, so we also introduce a new, stronger notion of security.

Secure Renegotiable ACCE Protocols. This is our central security def-

inition, which strengthens the authentication notion: parties should successfully

renegotiate only when they have the (exact) same view of everything that hap-

pened before.

• An adversary breaks renegotiation authentication if a party accepts in a

phase where long-term keys have not been corrupted, but either no matching

phase exists at the peer or some previous handshake or record layer transcript

does not match.

This strong definition requires that the views of parties match when success-

fully renegotiating, even when previous sessions’ long-term secret keys or ses-

sion keys were revealed. We then analyzed TLS renegotiation (more specifi-

cally, a version of TLS already including countermeasures against recent attacks

on TLS renegotiation protocol) and found, that TLS’s Signalling Ciphersuite

Value (SCSV)/Renegotiation Information Extension (RIE) countermeasures do

not fully protect against the case when these secret values are revealed (see Sec-

tion 6.4 for details). As a result, we introduce a slightly weaker, though still quite

reasonable notion of security.

Weakly-secure Renegotiable ACCE Protocols. As mentioned before,

this notion is slighty weaker then secure renegotiable ACCE, but it enables us to

prove (in Section 6.7) that the SCSV/RIE countermeasure for TLS generically

provides it:

• An adversary breaks weak renegotiation authentication if a party accepts in

a phase with uncorrupted long-term keys and session keys for each earlier

phase were not revealed while that phase was active, but either no matching

phase exists at the peer or some previous handshake or record layer transcript

does not match.

We proceed by describing the execution environment for adversaries interact-

ing with multi-phase ACCE protocols, then formally define the various security

notions described above.

Extended Execution Environment

In the following we denote with phases[`] the `th entry in the array phases

and |phases| denotes the number of entries in the array. In order to formalize

42

3.2 Specific Instantiations

multi-phase protocols, we now speak of parties, sessions and phases (instead of

only parties and sessions) and accordingly we modify the execution environment

presented in Section 3.1.1 as follows:

Parties. For each party P
i

the long-term secret L
i

now consists of a list of � long-

term key pairs (pk
i,1, ski,1), . . . , (pki,� , ski,�), instead of containing only a single

keypair. We assume that each party P
i

is uniquely identified by any one of its

public keys pk
i,⇤.

Sessions. As described in Section 3.1.1, each party P
i

can participate in up to ⌘

sessions, which are independent executions of the protocol and can be concurrent

or subsequent; all of a party’s sessions have access to the same list of its long-term

key pairs, as well as a trusted list of all parties’ public keys. Again, we refer to

party P
i

in a specific session s as oracle ⇡s

i

.

Each oracle ⇡s

i

records in a variable ⇡s

i

.⇧ the oracle corresponding to the in-

tended communication partner, e.g. ⇡s

i

.⇧ = ⇡t

j

.16 As well, the variable ⇢ 2

{Client, Server} records the role of the oracle. Parties can play the role of the

client in some sessions and of the server in other sessions, but their role is fixed

across all phases within a session.

Phases. Each session can now consist of up to phases. Analog to ACCE proto-

cols, each phase consists of two stages: a pre-accept, or ‘handshake’, stage, which

is e↵ectively an AKE protocol that establishes a session key and performs mutual

or server-only authentication; and a post-accept, or ‘record layer’, stage, which

provides a stateful communication channel with confidentiality and integrity. A

list ⇡s

i

.phases of di↵erent phase states is maintained; we sometimes use the no-

tation ⇡s,`

i

for ⇡s

i

.phases[`]. There can be at most phases per oracle. The last

entry of ⇡s

i

.phases contains the state of the current phase, which may still be in

progress. Each entry ⇡s

i

.phases[`] in the log contains:

• pk, the public key used by ⇡s

i

in that phase,

• pk0, the public key that ⇡s

i

observed as being used for its peer in that phase17,

• ↵ 2 {0, 1}, denoting the authentication mode used, where ↵ = 0 indicates

that server-only authentication is used in that phase and ↵ = 1 indicates

mutual authentication,

• ⇤, either accept, reject, or ; (for in-progress),
16As the simulator transmits all messages, it can easily determine the matching oracle. If no such oracle exists,

⇡

s
i .⇧ remains ;.

17One of the public keys may remain empty, if no client authentication is requested.

43

3 Formal Security Models and Definitions

• k, the encryption and/or MAC key(s) established by ⇡s

i

in that phase,

• Ti,s, the transcript of all (plaintext) messages sent and received by ⇡s

i

during

the pre-accept stage of that phase,

• RT
s

and RT
r

, the (record layer) transcripts of all ciphertexts sent and re-

ceived (respectively) in the post-accept phase by ⇡s

i

encrypted under the key

established in that phase,

• b, a random bit sampled by the oracle at the beginning of the phase, and

• st, some additional temporary state (which may, for instance, be used to

store ephemeral Di�e-Hellman exponents for the handshake, or state for

the sLHAE scheme for the record layer).

The random bit is chosen as b
$
 {0, 1} and the remaining internal state is

initialized to (⇧, ⇢, pk, pk0,↵,⇤, k,T,RT
s

,RT
r

, st) (;, ;, ;, ;, ;, ;, ;, ;, ;, ;, ;).

Again we say that V = ; denotes that variable V is undefined. When describing

a protocol, we will enumerate the protocol messages. Once a phase of a protocol

accepts (that is, an encryption key has been negotiated and authentication is

believed to hold), then ⇤ is set to accept. Whenever a new handshake initial-

ization message is received, the oracle adds a new entry to its phases list. The

variables ⇧ and ↵ are set at some point during (or before) the protocol execu-

tion, depending on the protocol specification. In case of TLS, the server can send

the message CertificateRequest to request client (thus mutual) authentication

(and thus specify the authentication mode ↵). Otherwise server-only authenti-

cation is used. Upon receipt of a certificate, the communication partner ⇧ can

be determined. Application data messages sent and received encrypted under a

newly established encryption key (e.g. messages sent in the TLS record layer) will

be appended to variables RT
s

and RT
r

in the latest entry of the log. If handshake

messages for the renegotiation of a new phase are encrypted under the previous

phase’s session key (as they are in TLS), the plaintext messages are appended to

variable T in the new entry of the phase log, and ciphertexts are appended to

RT in the previous phase.

Remark 15. The introduction of multiple phases is the main di↵erence compared

to previous AKE and ACCE models. We need to allow multiple authentications

and key exchanges within one oracle to capture the functionality of renegotiation.

When limited to a single phase and when each party has only one long-term key

pair, our execution environment/security experiment is roughly equivalent to the

ACCE model described in the previous section.

44

3.2 Specific Instantiations

Extended Adversarial Capabilites

In the following we extend the queries defined in Section 3.1.1 to be used in

conjunction with multi-phase protocols. As noted above, the security model for

multi-phase protocols is closely related to the ACCE security model, so the follow-

ing queries are closely related to the queries defined in Section 3.2.2. Compared

to the previous models, the adversary is now additionally allowed to trigger new

phases. Instead of adding a further query to model this new capability, we en-

hanced the Sendpre query described in the ACCE section to allow for triggering

new phases. Recall that in renegotiation protocols the handshake messages of all

phases except for the first phase are already sent over the previously established

encrypted channel. Thus, we now di↵erentiate between (encrypted) handshake

messages and ‘regular’ data by assigning a content type to each message and

modify the Encrypt and Decrypt queries accordingly.

• Sendpre(⇡s

i

,m): The adversary can use this query to send any (plaintext)

message m of its choosing to (the current phase of) oracle ⇡s

i

. The oracle

will respond according to the protocol specification, depending on its internal

state. Some distinguished control messages have special behaviour:

– m = (newphase, pk,↵) triggers this oracle to initiate renegotiation of a

new phase (or new session if first phase). Note that the action here may

vary based on the role of the party: for example, when renegotiating

in TLS, a client would prepare a new ClientHello message, encrypt it

by calling the Encrypt oracle below, and then return the ciphertext to

the adversary for delivery; a server would correspondingly prepare an

encrypted HelloRequest message.

– m = (ready, pk,↵) activates this oracle to use the public key pk in its

next phase.

For the above control messages, pk indicates the long-term public key pk the

oracle should use in the phase and ↵ indicates the authentication mode to

use; the oracle returns ? if it does not hold the secret key for pk. Since the

control messages do not specify the identity of the peer, this is again learned

during the run of the protocol.

Delivery of encrypted messages in the post-accept stage are handled by the

Decrypt query below. For protocols such as TLS that perform renegotiation

within the encrypted channel, the oracle may reply with an error symbol ?

if it has at least one entry in phases and m 6= (newphase, ·) or (ready, ·).

• Corrupt(P
i

[, pk]): Oracle ⇡1
i

responds with the long-term secret key sk
i,n

corresponding to public key pk = pk
i,n

of party P
i

, or ? if there is no n such

45

3 Formal Security Models and Definitions

that pk = pk
i,n

. If no specific pk is queried, all long-term secret keys stored

in variable L
i

of party P
i

are returned.

• Reveal(⇡s

i

, `): Oracle ⇡s

i

responds with the key(s) ⇡s

i

.phases[`].k used in

phase `, or ; if no such value exists.

• Encrypt(⇡s

i

, ctype,m0,m1, len, H): This query depends on the random bit b

sampled by ⇡s

i

at the beginning of the current phase. It takes as input a

content type ctype, messages m0 and m1, a length len, and header data H.

Content type control is used for handshake messages. The adversary cannot

query this oracle with ctype = control. To allow the parties to encrypt

protocol messages that must be sent encrypted (e.g. handshake messages sent

in later phases), we allow the party itself to call this oracle with control; this

abuse of notation allows the party to construct encrypted protocol messages

while all aspects of the security experiment remain synchronized.

Content type data is used for record layer messages; in this case, one of

the two messages (chosen based on bit b) is encrypted for the adversary to

distinguish. Encrypt maintains a counter u initialized to 0 and an encryption

state st
e

, and proceeds as depicted in Figure 3.2.

• Decrypt(⇡s

i

, C,H): This query takes as input a ciphertext C and header data

H. If ⇡s

i

has not accepted in the current phase, then it returns ?. Decrypt

maintains a counter v and a switch diverge, both initialized to 0, and a

decryption state st
d

, and proceeds as depicted in Figure 3.2.

If the decryption of C contains a control message, then the oracle processes

the message according to the protocol specification, which may include up-

dating the state of the oracle and/or creating a new phase, and returns

any protocol response message to the adversary, which may or may not be

encrypted by calling Encrypt according to the protocol specification.

The behaviour of the Decrypt oracle in this combined definition for confiden-

tiality and integrity can be somewhat di�cult to understand. It extends that of

stateful length-hiding authenticated encryption as defined in Section 3.2.2 by dif-

ferentiating between control type (i.e. handshake) messages and arbitrary data.

The diverge flag is set, when the adversary successfully injects a valid ciphertext

that was not output by the Encrypt oracle before. Once both diverge flag and

bit b are set to diverge = b = 1, the Decrypt oracle subsequently outputs the

decryption of queried ciphertexts.

Examplary Protocol Execution Let us now review how an adversary would use the

queries to carry out a normal TLS negotiation and renegotiation (for more infor-

46

3.2 Specific Instantiations

Encrypt(⇡s
i , ctype,m0

,m
1

, len, H): Decrypt(⇡s
i , C,H):

1. u u+ 1 1. v v + 1, m0
 ?, r0 ?

2. If (ctype = control) and caller is not ⇡s
i , 2. (ctypekm, std) = StE.Dec(k,H,C, std)

then return ?

3. (C(0), st
(0)

e)
$
 StE.Enc(k, len, H, ctypekm

0

, ste) 3. If (v > u) or (C 6= Cv), then diverge 1

4. (C(1), st
(1)

e)
$
 StE.Enc(k, len, H, ctypekm

1

, ste) 4. If (b = 1) and (diverge = 1), then m0
 m

5. If (C(0) = ?) or (C(1) = ?), then return ? 5. If ctype = control,

then r0 protocol response for m

6. (Cu, ste) (C(b), st
(b)
e) 6. Return (m0, r0)

7. Return Cu

where (k, b, diverge) = ⇡s
i .phases[`

⇤].(k, b, diverge) and `⇤ is the last phase ⇡s
i accepted.

Note: k may be a ‘multi-part’ key with di↵erent parts for encryption, decryption, and MAC;

we assume StE.Enc and StE.Dec know which parts to use.

The ‘protocol response for m’ may be encrypted by the party internally making an Encrypt call.

Figure 3.2: Encrypt and Decrypt oracles for the multi-phase/renegotiable ACCE security

experiments.

mation about the TLS handshake, see Section 5.1).

1. First the adversary uses the Sendpre query to deliver newphase and ready

messages to the client and server. The client responds to the Sendpre query

with a ClientHello message and sets ⇢ = Client and pk to the public key

provided by the query; the server responds with ? and sets ⇢ := Server

and pk accordingly. Both oracles draw a random bit and store it in b, all

messages (except for newphase and ready) are recorded in the transcript T

of each party.

2. The adversary delivers the first message from the client to the server by

making a Sendpre query to the server, which returns the next message from

the server to the client (ServerHello, ServerKeyExchange, etc.). Depend-

ing on whether the server requests client authentication, the variable ↵ is set

either to 0 or 1. The variable pk0 is filled by the client (and server, if ↵ = 1)

with the public key extracted from the received certificate.

3. The adversary delivers the messages to the client via a Sendpre query. The

client responds with several plaintext messages (e.g. ClientKeyExchange)

as well as a ChangeCipherSpec message and stores all keys (such as the

premaster secret, the master secret and the application keys) in the state

variable st. There is one more message, the ClientFinished message, which

the client first encrypts using an internal Encrypt call.

4. The plaintext messages are delivered by the adversary to the server using

Sendpre and the encrypted message is delivered using Decrypt. The response

by the server from Sendpre will be a ChangeCipherSpec message and the

47

3 Formal Security Models and Definitions

response by the server from Decrypt will be the ServerFinished message,

which the server first encrypts by internal calling Encrypt.

5. The encrypted message is delivered by the adversary using Decrypt. The

oracles set ⇤ = accept, copy the application keys into the variable k and

are now ready to use the record layer, which the adversary can now also make

use of by matching Encrypt/Decrypt queries (which are answered depending

on the internal bit b stored at the oracles). All messages that are now sent are

recorded in the record layer transcripts RT
s

of each oracle and all messages

that are received in RT
r

accordingly.

When the adversary wants to trigger client-initiated renegotiation, it sends

a newphase message via a Sendpre query to the client, who responds with a

ClientHello message encrypted via an internal Encrypt call.

6. The adversary delivers this to the server by a Decrypt call; the server responds

with an encrypted protocol message, and so on. Note that the plaintext

handshake messages are appended to the new phase’s transcript T and the

ciphertext handshake messages are also appended to the current existing

phase’s transcripts RT
s

and RT
r

.

7. When the oracles accept in the phase, they begin using the encryption keys

for the new phase.

Correctness and Security Definitions

In the original security definition for ACCE protocols, security is defined by

requiring that (i) the protocol is a secure authentication protocol, thus any party

⇡s

i

reaches the post-accept state only if there exists another party ⇡t

j

such that ⇡s

i

has a matching conversation (in the sense of Definition 3.1) to ⇡t

j

, and (ii) data

transmitted in the post-accept stage over a secure channel is secure (in a sense

similar to sLHAE).

We extend this notion to include security when a session has multiple phases

that can be renegotiated. We will give several security definitions with di↵erent

levels of security against renegotiation attacks, as described in Section 6.1.

Each security notion is formally described as a game played between an ad-

versary A and a challenger C, with the same overall setup but di↵erent winning

conditions. In each game, the challenger implements the collection of oracles

{⇡s

i

: i 2 [�], s 2 [⌘]}. At the beginning of the game, the challenger generates

� long-term key pairs (pk
i,1, ski,1), . . . , (pki,� , ski,�) for each party P

i

; we assume

that, within a party, all public key pairs are distinct. (That distinct parties have

48

3.2 Specific Instantiations

distinct key pairs is necessary for the protocol to be secure.) The adversary re-

ceives all parties’ public keys as input. The adversary may issue Sendpre, Corrupt,

Reveal, Encrypt, and Decrypt queries to the oracles and eventually terminates.

Table 3.1 at the end of the section provides a comparative summary of the

various security notions introduced in this section, as well as a summary of the

results on TLS that appear in the rest of this paper.

Definition 3.12 (Correct multi-phase ACCE). Assume a ‘benign’ adversary A,

which picks two arbitrary oracles ⇡s

i

and ⇡t

j

and performs a sequence of Sendpre

queries by faithfully forwarding all messages between ⇡s

i

and ⇡t

j

. We say ⇧ is

a correct multi-phase ACCE protocol if, for this benign adversary, any oracles

⇡t

j

and ⇡s

i

with destination address ⇡s

i

.⇧ = ⇡t

j

, and for all `, `0 2 [] for which

⇡s

i

.phases[`].T and ⇡t

j

.phases[`0].T are matching conversations, it holds that

• ⇡s

i

.phases[`].⇤ = ⇡t

j

.phases[`0].⇤ = accept,

• ⇡s

i

.phases[`].↵ = ⇡t

j

.phases[`].↵, and

• ⇡s

i

.phases[`].k = ⇡t

j

.phases[`0].k.

Confidentiality. All of our notions for secure multi-phase and renegotiable ACCE

protocols will require confidentiality/integrity of the post-accept stage record

layer in each uncorrupted phase. Intuitively, an adversary should not be able

to guess the bit b used in the Encrypt/Decrypt oracles in a phase where she has

not impersonated the parties (i.e. corrupted the long-term secret keys before the

phase accepted) or revealed the session key of the party or its peer.

Definition 3.13 (Confidentiality/integrity). Suppose an algorithm A with run-

ning time ⌧ interacts with a multi-phase ACCE protocol ⇧ in the above execution

environment and returns a tuple (i, s, `, b0). If

C1. ⇡s

i

.phases[`].⇤ = accept; and

C2. A did not query Corrupt(P
i

, ⇡s

i

.phases[`].pk) before ⇡s

i

accepted in phase `;

and

C3. A did not query Corrupt(P
j

, ⇡s

i

.phases[`].pk0) before ⇡s

i

accepted in phase `,

where ⇡s

i

.⇧ = ⇡t

j

; and

C4. A did not query Reveal(⇡s

i

, `); and

C5. A did not query Reveal(⇡t

j

, `0), where ⇡t

j

= ⇡s

i

.⇧ is ⇡s

i

’s intended communi-

cation partner, and `0 is any phase for which ⇡t

j

.phases[`0].T is a matching

conversation to ⇡s

i

.phases[`].T ; and

49

3 Formal Security Models and Definitions

C6. |Pr [⇡s

i

.phases[`].b = b0]� 1/2| � ✏,

then we say that A (t, ✏)-breaks confidentiality/integrity of ⇧.

Secure multi-phase ACCE. First we state a straightforward extension of the ACCE

model to protocols with multiple phases, but with essentially no security condition

relating one phase to another. This definition captures the properties of TLS

without any renegotiation countermeasures, and will be used as a stepping stone

in our generic results in Chapter 6. For this simplest notion of authentication,

an adversary should not be able to cause a phase to accept unless there exists a

phase at the peer with a matching pre-accept handshake transcript, provided she

has not impersonated the parties (i.e. corrupted long-term secret keys before the

phase accepted).

In A1 and M we will redefine the NoMatch-condition from [BR94a]. In A2 we

exclude leaking of the secret long-term keys of the accepting party (necessary for

example to counter

acrshortkci attacks [Kra05]). In A3 we exclude corruptions of the peer. In A4

(only for server-only authentication), we ensure that the adversary only wins by

making a client-oracle maliciously accept. In A5 we exclude trivial attacks that

exist for protocols with explicit key confirmation and probabilistic computations

under the negotiated key.

Definition 3.14 (Secure multi-phase ACCE). Suppose an algorithm A with run-

ning time ⌧ interacts with a multi-phase ACCE protocol ⇧ in the above execution

environment and terminates. If, with probability at least ✏, there exists an oracle

⇡s

i

with ⇡s

i

.⇧ = ⇡t

j

and a phase ` such that

A1. ⇡s

i

.phases[`].⇤ = accept; and

A2. A did not query Corrupt(P
i

, ⇡s

i

.phases[`].pk) before ⇡s

i

accepted in phase `;

and

A3. A did not query Corrupt(P
j

, ⇡s

i

.phases[`].pk0) before ⇡s

i

accepted in phase `;

and

A4. if ⇡s

i

.phases[`].↵ = 0 then ⇡s

i

.⇢ = Client; and

A5. A did not query Reveal(⇡t

j

, `0) for any `0 such that ⇡t

j

.phases[`0].T is a match-

ing conversation to ⇡s

i

.phases[`].T before ⇡s

i

accepted in phase `; and

M. there is no `0 such that ⇡t

j

.phases[`0].T is a matching conversation to ⇡s

i

.phases[`].T

then we say that A (t, ✏)-breaks authentication of ⇧.

50

3.2 Specific Instantiations

A protocol ⇧ is a (t, ✏)-secure multi-phase ACCE protocol if there exists no

algorithm A that (t, ✏)-breaks confidentiality/integrity (Definition 3.13) or au-

thentication (as defined above) of ⇧.

The secure multi-phase ACCE definition when limited to a phase per session

and a single key pair per party (= � = 1) collapses to the original ACCE

definition.

Secure renegotiable ACCE. We next strengthen the authentication notion to in-

clude renegotiation. Intuitively, an adversary should not be able to cause a phase

to accept unless there exists a phase at the peer with a matching pre-accept

handshake transcript (M0(a)) and all previous phases’ handshake and record layer

transcripts match (M0(b)), provided she has not impersonated the parties in the

current phase. We will show in Section 6.8 that TLS with our proposed counter-

measure satisfies this definition.

Definition 3.15 (Secure renegotiable ACCE). Suppose an algorithm A with

running time ⌧ interacts with a multi-phase ACCE protocol ⇧ in the above ex-

ecution environment and terminates. If, with probability at least ✏, there exists

an oracle ⇡s

i

with ⇡s

i

.⇧ = ⇡t

j

and a phase `⇤ such that

A1-A5 as in Definition 3.14 with `⇤, and either

M0(a) ⇡t

j

.phases[`⇤].T is not a matching conversation to ⇡s

i

.phases[`⇤].T or

M0(b) for some ` < `⇤, ⇡s

i

.phases[`].TkRT
s

kRT
r

6= ⇡t

j

.phases[`].TkRT
r

kRT
s

;

then we say that A (t, ✏)-breaks renegotiation authentication of ⇧.

A protocol ⇧ is a (t, ✏)-secure renegotiable ACCE protocol if there exists no

algorithm A that (t, ✏)-breaks confidentiality/integrity (Definition 3.13) or rene-

gotiation authentication (as defined above) of ⇧.

Weakly secure renegotiable ACCE. Unfortunately, TLS, when combined with SCSV/RIE

countermeasures, does not satisfy Definition 3.15 because, as we will see in Sec-

tion 6.4, revealing session keys in earlier phases allows the adversary to change the

messages on the record layer in earlier phases, but the SCSV/RIE countermeasure

will not detect this.

Of course, revealing earlier phases’ session keys while that phase is active and

still expecting detection when renegotiating later is a strong security property,

and the lack of this property does not imply an attack in most scenarios. Our

desire to characterize the renegotiable security of the SCSV/RIE countermeasure

motivates a slightly weaker renegotiation notion: when previous phases’ session

51

3 Formal Security Models and Definitions

keys are not revealed while that phase is active and the current phase’s long-

term secret keys are not corrupted, the adversary should not be able to cause

a phase to accept unless there exists a phase at the peer with a matching pre-

accept handshake transcript and all previous phases’ handshake and record layer

transcripts match.

Definition 3.16 (Weakly secure renegotiable ACCE). Suppose an algorithm

A with running time ⌧ interacts with a multi-phase ACCE protocol ⇧ in the

above execution environment and terminates. If, with probability at least ✏,

there exists an oracle ⇡s

i

with ⇡s

i

.⇧ = ⇡t

j

and a phase `⇤ such that all conditions

from Definition 3.15, as well as the following additional conditions are satisfied:

A6. A did not issue a Reveal(⇡s

i

, `) query before ⇡s

i

accepted in phase ` + 1, for

every ` < `⇤, and

A7. A did not issue a Reveal(⇡t

j

, `) query before ⇡s

i

accepted in phase ` + 1, for

every ` < `⇤;

then we say that A (t, ✏)-breaks weak renegotiation authentication of ⇧.

A protocol ⇧ is a (t, ✏)-weakly secure renegotiable ACCE protocol if there exists

no algorithm A that (t, ✏) breaks confidentiality/integrity (Definition 3.13) or

weak renegotiation authentication (as defined above) of ⇧.

Remark 16. While conditions A6 and A7 prohibit the adversary from revealing

encryption keys of previous phases while active for the purposes of breaking au-

thentication, the confidentiality/integrity aspect of Definition 3.16 still places no

such restriction on previous encryption keys being revealed.

Tagged-ACCE security model

In this section we introduce a variant of the ACCE model from which we can prove

a generic result on the renegotiable security of ACCE protocols implementing the

countermeasures discussed in Chapter 6. The tagged-ACCE execution environ-

ment is an extension of the ACCE security model to allow for providing arbitrary

tags and is derived from the multi-phase ACCE definition (Definition 3.14) by

limiting it to a single phase (= 1) and at most one public key per party (� = 1).

The phases log phases is extended with an additional per-phase variable tag.

• Send(⇡s

i

,m). The adversary can specify an arbitrary tag during session ini-

tialization.

– If m = (newphase,↵, tag), oracle ⇡s

i

sets its internal variable ⇢ Client,

sets authentication mode ↵, stores tag, and responds with the first pro-

tocol message.

52

3.2 Specific Instantiations

– If m = (ready,↵, tag), oracle ⇡s

i

sets ⇢ Server, authentication mode

↵, stores tag, and responds with the next protocol message, if any.

The freshness and winning conditions of tagged-ACCE are unchanged from the

ACCE definitions with perfect forward secrecy from Section 3.2.2.

Tagged-ACCE-fin security model

We will work with a further variant, tagged-ACCE-fin, which is not a fully general

security model but instead is tied specifically to generic TLS protocols of the form

given in Figure 6.3 (cf. page 149). It adds the following query:

• RevealFin(⇡s

i

): If ⇤ = accept, then return the fin
C

and fin
S

values sent/received

by the queried oracle. Return ; otherwise.

The following queries are modified:

• Encrypt(⇡s

i

, ctype,m0,m1, len, H): The adversary is not prevented from mak-

ing queries with ctype = control.

• Decrypt(⇡s

i

, C,H): No semantic meaning is associated with ctype = control

messages. In other words, line 5 of Figure 3.2 is removed.

We extend the Encrypt and Decrypt queries to allow the adversary to send and

receive messages on the encrypted channel with content type control . The

freshness and winning conditions of tagged-ACCE-fin are unchanged from ACCE.

Remark 17. Revealing the Finished messages is very specific to the TLS protocol

family and is not necessarily relevant for other protocols. Imagine, for example, a

variant of the SCSV/RIE countermeasure where a separate hash of the complete

transcript as it was sent over the channel is used as an authenticator. Since this

value can be computed by any passive adversary, leaking this value could not

a↵ect security.

Renegotiation Protocols without Forward Secrecy.

Due to the high complexity of the model for renegotiable protocols we restrict

our results to protocols with perfect forward secrecy. However, in a future work

one could easily extend our definitions to allow for analyzing protocols without

forward secrecy, such as protocols that use an RSA-based key transport mech-

anism. In the following we briefly discuss the necessary changes to our definitions.

Authentication For renegotiation authentication, public keys used in phase `

cannot be corrupted while the post-accept stage of phase ` is still active, as it

53

3 Formal Security Models and Definitions

could allow the adversary to compute the session key and thus inject messages un-

detectably. One could add the following restrictions to Definition 3.16 to consider

protocols without forward secrecy:

A7. A did not query Corrupt(P
i

, ⇡s

i

.phases[`].pk) before ⇡s

i

accepted in phase

`+ 1, for every ` < `⇤; and

A8. A did not query Corrupt(P
j

, ⇡s

i

.phases[`].pk0) before ⇡s

i

accepted in phase

`+ 1, for every ` < `⇤, where ⇡s

i

.⇧ = ⇡t

j

.

Confidentiality. For confidentiality/integrity, public keys used in phase `

can never be corrupted, as it could allow the adversary to compute the session

key and distinguish ciphertexts. One could replace the following restrictions in

Definition 3.13 to consider protocols without forward secrecy:

C20. A did not query Corrupt(P
i

, ⇡s

i

.phases[`].pk); and

C30. A did not query Corrupt(P
j

, ⇡s

i

.phases[`].pk0).

54

3.2 Specific Instantiations

Secure

multi-phase

ACCE

Weakly secure

renegotiable

ACCE

Secure

renegotiable

ACCE

(Defn. 3.14) (Defn. 3.16) (Defn. 3.15)

Secure against Ray–Dispensa-type attack

⇥

X with query

restrictions A6,A7

X

Authentication

A2. Corrupt pk before acceptance not allowed not allowed not allowed

A3. Corrupt peer’s pk before acceptance not allowed not allowed not allowed

A5. Reveal session keys during active handshake not allowed not allowed not allowed

A6. Reveal session keys of previous phases allowed not allowed allowed

A7. Reveal session keys of previous phases allowed not allowed allowed

M. every phase that accepts has a matching handshake

transcript at some phase of the peer
implied

M

0
(a) every phase that accepts has a matching

handshake transcript at the same phase of the peer
implied implied

M

0
(a) when a phase accepts, handshake and record

layer transcripts in all previous phases equal those at

the peer

implied implied

Confidentiality/integrity (Defn. 3.13) implied implied implied

TLS ⇤ without countermeasures — ⇥ (Sect. 6.3) ⇥ (Sect. 6.3)

Tagged-ACCE-fin-secure TLS ⇤ with SCSV/RIE

countermeasure

— X(Thm. 1) —

TLS RSA ⇤ with SCSV/RIE countermeasure ?1 ⇥ (Sec. 6.7.1) / ?1 ⇥ (Sect. 6.4)

TLS-DHE with SCSV/RIE countermeasure X (Cor. 2) X (Cor. 2) ⇥ (Sect. 6.4)

Secure multi-phase TLS ⇤ with new (Sect. 6.8)

countermeasure

— — X(Thm. 6.4)

TLS RSA ⇤ with new (Sect. 6.8) countermeasure ?1 ⇥ (Sec. 6.7.1) / ?1 ⇥ (Sec. 6.7.1) / ?1

TLS-DHE with new (Sect. 6.8) countermeasure X (Thm. 6.4) X (Thm. 6.4) X (Thm. 6.4)

1
TLS RSA ⇤ key transport ciphersuites may be able to be shown secure under notions with suitable

restrictions on forward secrecy.

Table 3.1: Summary of security notions and results on TLS

55

4 Generic Compiler for (Mutually)

Authenticated Key Exchange Protocols

This chapter includes results from joint work with Tibor Jager, Sven Schäge

and Jörg Schwenk, published at ASIACRYPT’09 [JKSS10]. In the following we

describe a compiler that allow us to combine arbitrary key agreement protocols

(which need only be secure against passive adversaries) with a digital signature

scheme to form a Authenticated Key Exchange (AKE) protocol as defined in

Section 3.2.1 without relying on Random Oracles.

The compiler allows for a modular design of new AKE protocols, using existing

protocols (e.g. TLS, IPSec IKE) or new ones (e.g. zero-knowledge authentication,

group signatures). The formal security proof is simplified considerably, since the

security of key agreement and authentication protocols can be proven separately,

and our theorems yield the security of the combined protocol.

Related Work. At CRYPTO’03, Katz and Yung presented a first scalable

compiler that transforms any passively secure group key exchange protocol to an

actively secure AKE [KY03]. Their compiler adds one round and constant size

(per user) to the original scheme, by appending an additional signature to each

message of the protocol. Our compiler, while limited to two-party key exchange

protocols, only adds two signatures, independent of the number of rounds of the

key exchange protocol.

There also exist several results on group key exchange for di↵erent setup condi-

tions and security requirements, e.g. the works by Manulis et al., see also [BM08a,

BM08b, Man09, BBM09, MPT10].

4.1 Authenticated Key Exchange Compiler

Let us now describe our generic AKE compiler. The compiler takes as input the

following building blocks (which have been defined in Chapter 2).

• A key-exchange protocol KE,

• a digital signature scheme SIG,

• a message authentication code MAC,

57

4 Generic Compiler for AKE Protocols

• and a pseudorandom function PRF.

Let � = �() be the length of the nonces. In the following let Ti

x

denote the

content of transcript T
x

as received by an oracle of party P
i

.

Remark 18. Note, that there is no long-term value (e.g. long-term public keys)

which is used in several executions of the protocol and all parameters need to

be generated freshly for each session.18 This is mainly due to the fact, that we

have to embed a challenge transcript into the Test session without knowing the

(long-term) secret keys involved.

The compiled protocol proceeds (examplary between two oracles ⇡s

i

and ⇡t

j

) as

follows (see also Figure 4.1).

1. Oracles ⇡s

i

and ⇡t

j

run the key exchange protocol. For instance, both oracles

may run the well-known Di�e-Hellman protocol [DH76]. Throughout this

protocol run, both oracles compute a key k and record a transcript that

consists of the list of all messages sent and received.

2. The key k computed by KE is used to derive two distinct keysK = PRF(k, ’KE’)

and Kmac = PRF(k, ’MAC’), where ’KE’ and ’MAC’ are some arbitrary fixed

constants such that ’KE’ 6= ’MAC’.19

3. Then ⇡s

i

samples a random nonce r
i

$
 {0, 1}�, and sends it to ⇡t

j

, ⇡t

j

samples

r
j

$
 {0, 1}� and sends it to ⇡s

i

.

4. Oracle ⇡s

i

computes a signature �
i

$
 SIG.Sign(sk

i

,Ti

1) under ⇡s

i

’s secret

key sk
i

, where Ti

1 = (Ti

KE||ri||rj) is the transcript of all messages sent and

received by ⇡s

i

so far. Then ⇡t

j

computes a signature over the transcript

Tj

1 = (Tj

KE||ri||rj) of all messages sent and received by ⇡t

j

. Let Ti

2 = (�
i

||�
j

)

denote the signatures sent and received by ⇡s

i

, and Tj

2 = (�
i

||�
j

) be the

signatures sent and received by ⇡t

j

.

5. ⇡s

i

sends a MAC t
i

= MAC(Kmac,Ti

2||0) over transcript Ti

2 using the key

Kmac computed in 2. ⇡t

j

replies with t
j

= MAC(Kmac,T
j

2||1).

6. ⇡s

i

accepts, if SIG.Vfy(pk
j

,Ti

1, �j) = 1 and t
j

= MAC(Kmac,Ti

2||1), that

is, if �
j

is a valid signature for Ti

2 under ⇡t

j

’s verification key pk
j

and if

w
j

is a valid MAC under key Kmac for Ti

2||1. ⇡t

j

accepts if it holds that

SIG.Vfy(pk
i

,Tj

1, �i) = 1 and w
i

= MAC(Kmac,T
j

2||0). Finally, if both oracles

accept then the key K is returned.
18For instance, to instantiate the key exchange protocol with an encrypted key transport scheme (in a secure

matter according to our model and definition), we require the used public keys to be generated freshly at

the beginning of each protocol execution!
19Note that we assume here implicitly, that the output key space of KE matches the input key space of PRF.

This fact is not only important for correctness, but also for the security proof.

58

4.2 Security Analysis

Observe that the signatures and MACs are verified using the internal transcripts

of oracles ⇡s

i

and ⇡t

j

. The intention behind the idea of embedding the transcripts

in the protocol is to detect any changes that an active adversary makes to the

messages sent by ⇡s

i

and ⇡t

j

. Informally, in the two-layer authentication consisting

of the signature scheme and MAC, the signature is used to authenticate users and

thwart MITM attacks on the key-exchange protocol, while the MAC is used as

an implicit ’key confirmation’ step to avoid UKS attacks [CBH05b, CBH05a]

This allows us to prove security requiring only pretty weak security properties

from the utilized building blocks, namely we require that KE is secure against

passive adversaries only, that the digital signatures are existential unforgeable

under (non-adaptive) chosen-message attacks, and that the MAC and PRF meet

their standard security notions.

Pi Pj

 �
KE

���������������!
obtain k,Ti

KE obtain k,Tj
KE

K := PRF(k, ’KE’) K := PRF(k, ’KE’)

Kmac := PRF(k, ’MAC’) Kmac := PRF(k, ’MAC’)

�
ri

���������������!

 �
rj

���������������
record Ti

1 = (Ti
KE||ri||r

i
j) record Tj

1 = (Tj
KE||r

j
i ||rj)

�i := SIG.Sign(ski,Ti
1) �j := SIG.Sign(skj ,T

j
1)

�
�i

���������������!

 �
�j

���������������
abort if abort if

SIG.Vfy(pkj ,Ti
1,�j) = 0 SIG.Vfy(pki,T

j
1,�i) = 0

else else

record Ti
2 = (�i||�j) record Tj

2 = (�i||�j)

wi := MAC(Kmac,Ti
2||’0’) wj := MAC(Kmac,T

j
2||’1’)

�
wi

���������������!

 �
wj

���������������
abort if abort if

MAC(Kmac,Ti
2||’1’) 6= w

i
j MAC(Kmac,T

j
2||’0’) 6= w

j
i

else accept else accept

Figure 4.1: Compiler for secure authenticated key exchange protocols

4.2 Security Analysis

Theorem 4.1. Let � be the length of the nonces r
i

and r
j

. Assume that the

pseudo-random function PRF is (t, ✏prf , qprf)-secure, the signature scheme used to

sign messages in the protocol is (t, ✏sig, qsig)-secure, the message authentication

code MAC is (t, ✏mac, qmac)-secure, the key exchange protocol is (t, ✏ke)-secure, and

qprf , qmac 2, and qsig ⌘.

59

4 Generic Compiler for AKE Protocols

Then for any adversary that (t0, ✏AKE)-breaks the compiled AKE protocol in the

sense of Definition 3.3 with t ⇡ t0 holds that

✏AKE ✏A + ✏KE

 2⌘�

✓
⌘�

2�
+ ✏sig + ✏prf + ✏ke + ✏mac

◆
.

We prove the above theorem by two lemmas. Lemma 4.1 states that the AKE

protocol meets property 1) of Definition 3.3, Lemma 4.2 states that it meets

property 2) of Definition 3.3.

4.2.1 Authentication

Lemma 4.1. For any adversary A running in time t0 ⇡ t, the probability that

there exists an oracle ⇡s

i

that accepts maliciously is at most

✏A ⌘�

✓
⌘�

2�
+ ✏sig + ✏prf + ✏ke + ✏mac

◆
,

where all quantities are defined as stated in Theorem 4.1.

Proof. The proof proceeds in a sequence of games, following [BR06, Sho04].

The first game is the real security experiment. By assumption there exists an

adversary A that breaks the security of the above protocol. We then describe

several intermediate games that step-wisely modify the original game. Next we

show that in the final security game the adversary has only negligible advantage in

breaking the security of the protocol. Let break(a)
�

be the event that the adversary

makes an oracle maliciously accept in the sense of Definition 3.3 in Game �. In

the following let Ti,s

X

denote the transcript T
X

as recorded by ⇡s

i

and likewise Tj,t

X

the transcript T
X

as recorded by by ⇡t

j

.

Game 0. This is the original security game. Assume an adversary A breaking

Property 1 of Definition 3.3 with probability ✏A, i.e.

Pr[break(a)0] = ✏A.

In the sequel we will show that ✏A is negligible for any algorithm A.

Game 1. This game proceeds exactly like the previous game, except that the

simulator aborts if there exists any oracle ⇡s

i

that chooses a random nonce r
i

or r
j

which is not unique. More precisely, the game is aborted if the adversary

ever makes a first Send query to an oracle ⇡s

i

, and the oracle replies with random

nonce r
i

or r
j

such that there exists some other oracle ⇡s

0
i

0 which has previously

sampled the same nonce.

60

4.2 Security Analysis

In total less than ⌘� nonces r
i

and r
j

are sampled, each uniformly random from

{0, 1}�. Thus, the probability that a collision occurs is bounded by (⌘�)22��,

which implies

Pr[break(a)0] Pr[break(a)1] +
(⌘�)2

2�
.

Note that now each oracle has a unique nonce r
C

or r
S

, which is included in

the signatures. We will use this to ensure that each oracle that accepts with

non-corrupted partner has a unique partner oracle.

Game 2. We try to guess which oracle will be the first oracle to accept maliciously.

If our guess is wrong, i.e. if there is another oracle that accepts before, then we

abort the game.

Technically, this game is identical to Game 1, except for the following. The

challenger guesses two random indices (i⇤, s⇤)
$
 [�]⇥ [⌘]. If there exists an oracle

⇡s

i

that ‘accepts’ maliciously, and (i, s) 6= (i⇤, s⇤), then the challenger aborts the

game. Note that with probability 1/(⌘�) we have (i, s) = (i⇤, s⇤), and thus

Pr[break(a)1] = ⌘� · Pr[break(a)2].

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first oracle that ‘accepts’ maliciously, as otherwise the game is

aborted. Thus, his winning probability is reduced by a factor of ⌘�.

Game 3. This game proceeds exactly like the previous game, except that the

simulator aborts if ⇡s

i

accepts and Ti,s

1 6= Tj,t

1 .

Claim 3. We claim that

Pr[break(a)2] Pr[break(a)3] + � · ✏sig.

by the EUF-CMA security of the digital signature scheme. The proof of this

claim exploits that the transcripts Ti,s

1 = (Ti,s

KE||ri||r
i

j

) and Tj,t

1 = (Tj,t

KE||r
j

i

||r
j

) are

unique with overwhelming probability since r
i

and r
j

are unique due to Game 1.

Technically we first guess the party P
j

, such that ⇡s

⇤
i

⇤ receives a signature �
j

that

can be verified under pk
j

, and implement the public key pk from the signature

challenge into pk
j

. In order to make ⇡s

⇤
i

⇤ accept, the adversary needs to present a

signature over Ti,s

1 . However, the partner oracle ⇡t

j

will output a signature over

Tj,t

1 6= Ti,s

1 , which the adversary cannot use. Hence, if ⇡s

⇤
i

⇤ accepts in this scenario,

the adversary must have output a signature over Ti,s

1 which was never output by

⇡t

j

.

61

4 Generic Compiler for AKE Protocols

Game 4. This game proceeds exactly like the previous game, except that the

simulator now chooses a uniformly random key k̂ to derive Kmac and K as Kmac =

PRF(k̂, ’MAC’) and K = PRF(k̂, ’KE’).

Claim 4. We claim that

Pr[break(a)3] Pr[break(a)4] + ✏ke.

by the security of KE against passive adversaries. Note that we must have

Ti,s

1 = Tj,t

1 if ⇡s

i

or ⇡t

j

accept, as otherwise we abort due to Game 3. This implies

that the adversary forwards all messages of KE without altering anything. Tech-

nically we implement the key exchange challenger in ⇡s

⇤
i

⇤ and its partner oracle

⇡t

j

. The partner oracle can be easily determined, as it uniquely maintains the

same transcript Tj,t

1 = Ti,s

1 due to Game 3. If the key k is derived from the key

exchange, we are in Game 3, while if k is drawn randomly we are in Game 4. We

can thus directly use an adversary distinguishing Game 4 from Game 3 to break

the security of KE against passive adversaries.

Game 5. This game proceeds exactly like the previous game, except that the

simulator now chooses a uniformly random key]Kmac (instead of Kmac, which is

computed as Kmac := PRF(k, ’MAC’)) to compute w
i

and w
j

.

Claim 5. We claim that

Pr[break(a)4] Pr[break(a)5] + ✏prf .

by the security of the pseudorandom function PRF. We exploit that we have

exchanged the ‘real’ key k computed in KE with a ‘random’ key k̃ in Game 4.

Technically we implement the PRF challenger in ⇡s

⇤
i

⇤ and its partner oracle ⇡t

⇤
j

⇤ .

If Kmac is computed as PRF(k̃, ’MAC’), we are in Game 4. If the key Kmac is

drawn randomly, we are in Game 5. Any adversary that can distinguish between

Games 5 and 4 can thus be used to break the security of the PRF.

Game 6. This game proceeds exactly like the previous game, except that the

simulator aborts if ⇡s

i

or ⇡t

j

accepts and Ti,s

2 kwi

6= Tj,t

2 kwj

.

Claim 6. We claim that

Pr[break(a)5] Pr[break(a)6] + ✏mac.

Recall that in Game 6 we must have Ti,s

1 = Tj,t

1 due to our abort condition from

Game 3, and that we have replaced the key k computed in KE with a uniformly

random key k̃ in Game 4 and the key Kmac used to compute the MACs in this

protocol instance with a uniformly random key]Kmac in Game 5. Thus, if we have

62

4.2 Security Analysis

Ti,s

2 kwi

6= Tj,t

2 kwj

, then the adversary must have forged a MAC to make ⇡s

i

or ⇡t

j

accept. We can then use the adversary to break the security of MAC as follows.

We implement a MAC challenger in ⇡s

i

and ⇡t

j

and use this challenger to compute

MACs over Ti,s

2 and Tj,t

2 when necessary. Now when oracle ⇡s

i

(or ⇡t

j

) receives w
j

(w
i

respectively), it verifies if it matches the MAC it has computed itself (or as

in this case learned from the MAC challenger). If the simulator aborts, we have

that oracle ⇡s

i

(or ⇡t

j

) accepted, but Ti,s

2 kwi

6= Tj,t

2 kwj

. As MAC is a deterministic

function, it makes no di↵erence whether Ti,s

2 6= Tj,t

2 or w
i

6= w
j

. One oracle (in

order to accept) must have received a MAC that was not computed by its partner

oracle. We can then forward this MAC value to the MAC challenger and break

its security.

Note that in Game 6 an oracle accepts only if there exists another oracle having

a matching conversation, as the game is aborted otherwise. Thus, no adversary

can break Property 1 of Definition 3.3 in Game 6.

Collecting probabilities from Game 0 to 6 yiels Lemma 4.1

⇤

4.2.2 Indistinguishability of Keys

Lemma 4.2. For any adversary A running in time t0 ⇡ t, the probability that A

answers the Test-challenge correctly is at most 1/2 + ✏KE with

✏KE ✏A,

where all quantities are defined as stated in Theorem 4.1.

Proof.(Sketch). We proceed in a sequence of games which is very similar to the

sequence of games We merely add one further game. Let break(b)
�

be the event that

the adversary answers the Test-challenge correctly in the sense of Definition 3.3 in

Game � and let Adv
�

:= Pr[break(b)
�

]� 1/2 denote the advantage of A in Game �.

Consider the following sequence of games.

Game 0. This is the original security game. We assume an adversary A breaking

Property 2 of Definition 3.3 with probability 1/2 + ✏KE.

Game 1. In this game, we make the same modifications as in Games 1 to 6 in

the proof of Lemma 4.1. With the same arguments as before, we have

Adv0 Adv1 + ✏A,

63

4 Generic Compiler for AKE Protocols

Game 2. This game proceeds exactly like the previous game except that the

simulator now chooses K uniformly at random from the keyspace. We exploit

that we have already exchanged the function PRF(k, ·) with a uniformly random

function F̃ (·) in Game 5.

Claim 2. We claim that

Adv1 = Adv2.

In Game 2, the adversary receives a uniformly random key K. However, by

collecting probabilities from Game 0 to 2 we obtain that Game 2 is indistin-

guishable from Game 0 (except for some negligible probability), which proves

indistinguishability of ’real’ from ’random’ keys. Thus, the protocol meets Prop-

erty 2 of Definition 3.3. ⇤

64

5 On the Provable Security of TLS

This chapter includes results from joint work with Tibor Jager, Sven Schäge

and Jörg Schwenk, one part published at CRYPTO’12 [JKSS12] and the other

part currently in submission. It comprises a brief description of core of the TLS

handshake protocol (version 1.2) and our security results on all relevant TLS

ciphersuites. As previously stated we rely on results of Fouque et al. [FPZ08] on

the security of the PRF used in TLS 1.2, so our results are restricted to versions

of TLS that support suitable primitives. We first show that a truncated version

of TLS, in which the Finished messages are sent in plain, yields a secure AKE

protocol. Then we show, that the ciphersuites TLS-DHE, TLS-SDH and TLS-

RSA yield secure ACCE protocols.

5.1 A Brief Introduction to Transport Layer Security (TLS)

In this section, we present the core of the current version of the TLS protocol -

TLS 1.2 [DR08]. We first give a general overview of the structure of the protocol

and then describe the messages sent during a protocol execution in detail.

5.1.1 Overview

The TLS protocol consists basically of two stages. A first stage in which par-

ties authenticate to each other and establish cryptographic key material and a

second stage in which the previously established keys are used to encrypt trans-

mitted data in order to ensure confidentiality. We often refer to the first stage as

handshake protocol and to the second stage as Record Layer.

The major changes from TLS 1.0 [DA99] and TLS 1.1 [DR06] to TLS 1.2 in-

clude a di↵erent error handling procedure to prevent certain attacks (e.g. TLS 1.1

introduced an explicit Initialization Vector and handled padding errors di↵erently

in order to prevent so-called Cipher Block Chaining (CBC) attacks) and, perhaps

most importantly, switching from a (fixed) MD5/SHA-1 hash function combina-

tion in the PRF to ciphersuite-specific hash functions, with SHA-256 being the

new standard.

A ciphersuite determines the set of algorithms to be used in the protocol ex-

ecution. The two communicating parties agree on the key exchange algorithm

65

5 On the Provable Security of TLS

(according to standard mostly RSA key transport or Di�e-Hellman (DH) key

exchange) and parameters (e.g. key length), the MAC algorithm, the digital sig-

nature scheme and the symmetric encryption scheme and its mode of operation

used to encrypt data in the second stage, i.e. after the handshake protocol.

Indistinguishability of TLS Application Keys.

The full TLS Handshake does not provide indistinguishable keys due to an

interleaving of the key exchange part of TLS (the TLS Handshake protocol) and

the data encryption in the TLS record layer, as the two stages are not completely

seperated and independent of each other. This interleaving provides a ‘check

value’ that allows to test whether a given key is ‘real’ or ‘random’. More precisely,

the final messages of the TLS Handshake protocol (the Finished messages),

which are essential to provide security against active adversaries like e.g. MITM

attackers, are first prepended with constant byte values (which provides us with

known plaintext), then integrity protected by a MAC (which is instantiated with

a pseudo-random function) and encrypted with the keys obtained from the TLS

Handshake protocol. Thus, whenever an adversary receives a challenge key in

response to a Test query, he can try to decrypt the Finished message and check

validity of the MAC. If this succeeds, he will output ‘real’, and otherwise ‘random’.

Even changing the behavior of the Test query to only return the decryption

keys (and not the MAC keys) does not help, since the adversary could still use

the known plaintext bytes to answer the Test query successfully. Therefore it

is impossible to prove the full TLS Handshake protocol secure in any security

model based on indistinguishability of keys, such as the AKE model described in

Section 3.2.1.

5.1.2 Related Work on the Cryptographic Security of TLS

Because of its eminent role, TLS and its building blocks have been subject to

several security analyses. In 1996, Schneier and Wagner presented several minor

flaws and some new active attacks against SSL 3.0 [WS96]. Starting with the fa-

mous Bleichenbacher attack [Ble98], many papers focus on various versions of the

PKCS#1 standard [Kal98] that defines the encryption padding used in TLS with

RSA-encrypted key transport [CJNP00, JK02, KP09, KOS10]. At Crypto’02,

Johnson and Kaliski showed that a simplified version of TLS with padded RSA

is Indistinguishable under Chosen-Ciphertext Attacks (IND-CCA) secure when

modeling TLS as a ‘tagged key-encapsulation mechanism’ (TKEM) [JK02] un-

der the strong non-standard assumption that a ‘partial RSA decision oracle’ is

available.

66

5.1 A Brief Introduction to Transport Layer Security (TLS)

Automated Proof Techniques. In an independent line of research, sev-

eral works analyzed (simplified versions of) TLS using automated proof tech-

niques in the Dolev-Yao model [DY83]. Proofs that rely on the Dolev-Yao model

view cryptographic operations as deterministic operations on abstract algebras.

There has been some work on simplified TLS following the theorem proving and

model checking approach, i.e. Mitchell et al. used a finite-state enumeration tool

named Murphi [Mit98] while Ogata and Futatsugi used the interactive theorem

prover OTS/CafeObj [OF05]. Paulson used the inductive method and the the-

orem prover Isabelle [Pau99]. Unfortunately it is not known if these proofs are

actually cryptographically sound. Bhargavan et al. [BFCZ08] go two steps far-

ther: First, they automatically derive their formal model from the source code

of an TLS implementation, and second they try to automatize computational

proofs using the CryptoVerif tool. Chaki and Datta [CD09] also use source code

of TLS, automatically find a weakness in OpenSSL 0.9.6c, and claim that SSL

3.0 is correct.

Universal Composability Approach. In 2008, Gajek et al. presented the

first security analysis of the complete TLS protocol, combining Handshake and

record layer, in the UC framework [Can01] for all three key exchange protocols

static Di�e-Hellman, ephemeral signed Di�e-Hellman, and encrypted key trans-

port [GMP+08a]. The nonces r
C

and r
S

exchanged between client and server

can be seen as an instantiation of the protocol of Barak et al. [BLR04] to agree

on a globally unique session ID. However, the ideal functionalities described in

this paper are strictly weaker than the security guarantees we expect from TLS:

For the Handshake part, only unauthenticated key exchange is modelled (F
KE

),

and thus the secure communication channel functionality (F
SCS

) only guarantees

confidentiality, not authenticity of endpoints. The paper further assumes that

RSA-OAEP is used for encrypted key transport, which is not the case for current

versions of TLS.

Küsters and Tuengerthal [KT11] claim to prove composable security for TLS

assuming only local session identifiers, but leave out all details of the proof and

only point to [GMP+08a].

Proofs in the Random Oracle Model. Morissey et al. [MSW08] analyzed,

in a paper that is closest to our results, the security of the truncated TLS Hand-

shake protocol (cf. Section 5.2) in the Random Oracle model and provided a

modular proof of security for the established application keys. They make ex-

tensive use of the Random Oracle model to separate the three layers they define

in the TLS Handshake, and to switch from computational to indistinguishability

based security models. The proof of Morissey et al. proceeds in three steps, and

67

5 On the Provable Security of TLS

the order of messages of the TLS Handshake is slightly changed to better separate

these three steps. They first consider a very weak class of passively secure key

exchange protocols where the session key cannot be computed from the session

transcript. As an example, when considering encrypted key transport (of the pre-

master secret) this requirement can easily be fulfilled if the employed public key

encryption scheme is One-Wayness under Chosen-Plaintext Attacks (OW-CPA)

secure. Next they define a slightly stronger security notion that additionally

protects against UKS attacks and show that it applies to the master secret key

exchange of TLS. As before security of the key is defined in a one-way sense.

In the last step they show that the ‘application keys’ (i.e. the encryption keys

and MAC keys) produced by TLS fulfill the standard notion of security, namely

indistinguishability from random values. The use of the ROM is justified by the

authors by the fact that it seems impossible to prove the PKCS#1 v1.5 based

ciphersuites of TLS secure in the standard model. This argumentation does not

a↵ect our work, since we only consider Di�e-Hellman-based ciphersuites.

The modular proof strategy used in this paper is essentially bound to the ROM,

since secure protocols for the premaster phase only yield secure protocols for

the master phase if the master secret is derived from the premaster secret by

evaluating a Random Oracle. Thus the ROM is used not only to allow for a

security proof for TLS-RSA ciphersuites, but also enables a modular proof.

However, this model has been criticized fundamentally in several works starting

with [CGH98]. (In this context we note that the informal argumentation for the

necessity of the ROM, namely that a security proof in the standard model would

imply an encryption scheme under the RSA assumption secure against Chosen-

Ciphertext Attacks (CCA), what was believed to be a hard, long-standing open

problem at the time of publication of [MSW08], has been invalidated recently

by Hofheinz and Kiltz which presented a CCA secure encryption scheme that is

secure under the factoring assumption which is weaker than the RSA assump-

tion [HK09b].)

Security of the TLS Symmetric Encryption Scheme. In a very re-

cent work, Paterson, Ristenpart, and Shrimpton [PRS11] introduce the notion

of length-hiding authenticated encryption, which aims to capture the proper-

ties from the TLS record layer. Most importantly, they were able to show that

CBC-based ciphersuites of TLS 1.1 and 1.2 meet this security notion. This work

matches nicely our results on the TLS Handshake protocol. Their paper extends

the seminal work of Bellare and Namprempre [BN00, BN08] on authenticated en-

cryption, and on the analysis of di↵erent Mac-then-Encode-then-Encrypt (MEE)

schemes analyzed by Krawczyk [Kra01] and Maurer and Tackmann [MT10].

68

5.1 A Brief Introduction to Transport Layer Security (TLS)

This is an important building block for our work, since it allows to capture the

precise notion of a TLS-based Authenticated and Confidential Channel Estab-

lishment (ACCE). TLS-ACCE is used implicitly in many security applications

(e.g. the Same Origin Policy of webbrowsers), and explicitely stating the security

guarantees o↵ered by TLS-ACCE is an important step towards a future anaysis

of these protocols.

Recent Developments. In 2011 Brzuska et al. [BFWW11] presented new

security definitions for key exchange protocols which are weaker than AKE but

still generally composable with symmetric primitives. Their proof does essen-

tially rely on Random Oracles to model how TLS derives the master key and the

application keys. Technically, this allows for example to reduce the security of

TLS-DHE to the Computational Di�e-Hellman (CDH) assumption, as opposed

to requiring the stronger Decisional Di�e-Hellman and PRF-ODH assumptions.20

In contrast to our work, they do not cover server-only authentication (and it is

not clear if their composability guarantees also hold in the server-only setting).

Also, Brzuska et al. [BFS+12] proposed relaxed game-based security notions

for key exchange. This approach may serve as an alternative to our ACCE-based

approach to circumvent the impossibility of proving the TLS Handshake secure

in a key-indistinguishability-based security model.

5.1.3 The TLS Handshake Protocol

In this section we now describe the message flow of TLS in detail. The basic

protocol flow in TLS is fixed (and the same) for all ciphersuites, di↵ering only in

(i) the content of the messages sent and (ii) the set of messages sent depending

on the ciphersuite and the type of authentication (server-only or mutual).

Figure 5.1 depicts the message flow of TLS if the server additionally requests

client authentication (left side) and the message flow if only server-authentication

is required (right side). Depending on whether client authentication is requested,

the number of messages sent in the TLS Handshake Protocol ranges from 9 to 13

messages. The messages can contain cryptographic information as Di�e-Hellman

group parameters and public keys as well as constant byte values. In the following,

20When using Random Oracles to derive keys, the output of the Random Oracle is indistinguishable from

random if only a single input, for example the premaster secret Di�e-Hellman value g

cs, where g

c is the

client and g

s the server share, is hard to compute for the adversary. When using a PRF the output is only

distributed indistinguishable from random if the key g

cs is indistinguishable from random in the first place.

This allows to use the CDH assumption in contrast to the DDH assumption in the security proof when

relying on Random Oracles.

69

5 On the Provable Security of TLS

C S

m0 : HelloRequest

m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate

m4 : ServerKeyExchange

m5 : CertificateRequest

m6 : ServerHelloDone

m7 : ClientCertificate

m8 : ClientKeyExchange

m9 : CertificateV erify

m10 : ChangeCipherSpec

m11 : StE.Enc(ClientF inished)

m12 : ChangeCipherSpec

m13 : StE.Enc(ServerF inished)

pre-accept stage
———————————————————–

post-accept stage

Stateful symmetric encryption

C S

m0 : HelloRequest

m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate

m4 : ServerKeyExchange

m6 : ServerHelloDone

m8 : ClientKeyExchange

m10 : ChangeCipherSpec

m11 : StE.Enc(ClientF inished)

m12 : ChangeCipherSpec

m13 : StE.Enc(ServerF inished)

pre-accept stage
———————————————————–

post-accept stage

Stateful symmetric encryption

Figure 5.1: TLS handshake with mutual (left) and server-only (right) authentication. Dotted

lines mark control messages that contain no cryptographic information. StE.Enc(m)

denotes a stateful symmetric encryption of message m.

we list all messages sent during a TLS protocol run with mutual authentication

and explain their explicit content and function.

m0 HelloRequest. This message can be sent by the server to initiate a (new)

TLS negotiation. This message does not contain any information (it only

contains the value ‘0’) and is not included in the computation of signatures

or Finished messages. Each message of the handshake protocol is prefixed

with the handshake type that allows to distinguish them from other (non-

handshake) messages.

m1
m2 ClientHello/ServerHello. The Hello messages contain a random 32 byte

value (nonce) that is used in a later stage to derive the master secret. The

nonce sent by the client is denoted as r
C

, the one sent by the server as

r
S

. Note that for the client only 28 bytes are chosen completely at random

while 4 bytes are derived from the local time of the client. The Client Hello

message also includes a list of ciphersuites supported by the client. The

Server Hello message contains the server’s choice of the ciphersuite that is

then used by both parties. The Hello messages may also contain additional

information such as the compression method applied to the messages before

sending and possible protocol extensions. Since this additional information

is not cryptographically relevant we omit details on this.

70

5.1 A Brief Introduction to Transport Layer Security (TLS)

m3 ServerCertificate. This message contains the server certificate cert
S

(or

a certificate chain), which binds a public key to the owner of the certificate

(i.e. the server). Besides the server identity, the certificate may contain a

subset of the following information, depending on the ciphersuite used:

• public parameters for a Di�e-Hellman based key exchange (a prime

number p, a generator g for a prime-order q subgroup of Z⇤
p

and a public

Di�e-Hellman key (or ‘share’) gs (where s
$
 Z

q

is the corresponding

secret key) in TLS-SDH,

• a public key pk
S

(consisting of RSA-modulus N and exponent e with

gcd(e,'(N)) = 1) used for encrypted key transport in TLS-RSA or

• a public key pk
S

of a signature scheme in TLS-DHE.

Note that the client learns the identity of its communication partner not

before receiving this message. A certificate may contain additional informa-

tion, which is out-of-scope for our security analysis. We also omit details on

Public-Key Infrastructures (PKIs).

m4 ServerKeyExchange. This message is commonly sent for TLS-DHE and

contains public parameters for a DH based key exchange (as defined in the

previous message) along with a signature covering both nonces r
C

, r
S

and the

public parameters. It is not sent in TLS-RSA and TLS-SDH ciphersuites, if

the server certificate contains valid key material.

m5 CertificateRequest. By sending this message the server requests the client

to provide a certificate. The message contains a list of valid certificate types

and hash/signature algorithm pairs that the client may use. This message

may also contain a list of certificate authorities trusted by the server and is

only sent when client authentication is required.

m6 ServerHelloDone. Sending this message, the server tells the client to pro-

ceed with the next phase of the protocol and check the validity of the server

certificate received in m3.

m7 ClientCertificate. This message contains the client certificate cert
C

(or

a certificate chain). The certificate contains the client identity and a public

key pk
C

for a signature scheme. For TLS-SDH ciphersuites, the certificate

also contains a fixed Di�e-Hellman public key gc used for computation of

the premaster secret (pms) (where the g is the genenerator specified in the

server certificate and c
$
 Z

q

is the corresponding secret key). If the client

does not have access to a suitable certificate matching the server’s require-

71

5 On the Provable Security of TLS

ments, it must send a certificate message containing no certificates.21 Note

that the server learns the identity of its communication partner not before

receiving this message. This message is only sent when client authentication

is required.

m8 ClientKeyExchange. The client always sends this message, the content de-

pends on the negotiated ciphersuite:

• a public DH key gc (which as before must match the parameters received

by the server) in TLS-DHE (and TLS-SDH with server-only authenti-

cation),

• a 48-byte (premaster) secret encrypted under the public key of the server

in TLS-RSA, or

• an empty string in TLS-SDH, if the client certificate contains a static

DH key.

m9 CertificateVerify. Here, the client sends a signature �
C

computed on

the concatenation of all messages exchanged so far (that is m1 to m8). This

message is only sent when client authentication is required and the client cer-

tificate has signing capabilities, i.e. it does not contain static Di�e-Hellman

keys.

m10
m12 ChangeCipherSpec. This message consists of a single byte of value ‘1’ and

indicates, that subsequent messages will be encrypted under the newly es-

tablished keys. This message is considered a seperate protocol and not belong

a part of the handshake protocol.

m11
m13 ClientFinished/ServerFinished. The Finishedmessages contain a state-

ful encryption of the following information:

fin
C

:= PRF(ms, labelkH(m1, . . . ,m10)), and

fin
S

:= PRF(ms, labelkH(m1, . . . ,m10, finC22,m12))

where label =‘client finished’ for the ClientFinished message fin
C

and

label =‘server finished’ for the ServerFinished message fin
S

, and H denotes

a collision-resistant hash function. That is message m11 = StE.Enc(kClient
enc ,

len, H, fin
C

, st
e

) and message m13 = StE.Enc(kServer
enc , len, H, fin

S

, st
e

), where

kClient
enc , kServer

enc and the master secret (ms) are defined and computed as be-

low.

21In that case the server may then decide to continue without client authentication or to abort.
22Note, that m11 contains an encryption of finC , and that finS is computed over plaintext handshake messages

only.

72

5.1 A Brief Introduction to Transport Layer Security (TLS)

mutual server-only mutual server-only server-only

TLS-RSA TLS-RSA TLS-SDH TLS-SDH TLS-DHE

ClientHello rC rC rC rC rC

ServerHello rS rS rS rS rS

ServerCertificate certS certS certS , g
s certS , g

s certS

ServerKeyExchange -23 - - - gs

ClientCertificate certC - certC , g
c - -

ClientKeyExchange PKE.Enc(pms) PKE.Enc(pms) - gc gc

Figure 5.2: Ciphersuite-dependent TLS messages

In the following we will explain, how intermediate keys and application keys

are derived from the messages exchanged between the two parties.

Computing the premaster secret. The premaster secret pms is either

chosen by the client (in TLS-RSA) or computed as gcs for DH-based ciphersuites,

where g is a generator for some prime-order subgroup chosen by the server, gs is

the public DH key of the server and gc the public DH key of the client.

Computing the master secret. The master secret ms is computed by ap-

plying the PRF of TLS, keyed with the premaster secret pms, to a fixed label

label1 and the nonces exchanged between the parties r
C

, r
S

.

ms := PRF(pms, label1||rC ||rS)

The master secret will then be used to derive application keys and to compute

the Finished messages.

Computing the application keys. The four application keys (encryption

and MAC keys for each direction) are also computed using the PRF of TLS,

where the inputs are now the master secret ms, another fixed label label2 and

(again) the random nonces r
C

, r
S

.

KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac := PRF(ms, label2||rC ||rS)

We also define

kClient
enc = kServer

dec := KC!S

enc ||KC!S

mac , and

kServer
enc = kClient

dec := KS!C

enc ||KS!C

mac .

We refer to these application keys as encryption keys. In the following we use

k
S

short for the encryption key(s) kServer
enc = kClient

dec and k
C

short for the encryption

key(s) kClient
enc = kServer

dec . These encryption keys are then used to key a stateful

length-hiding authenticated encryption scheme as defined in Definition 2.11.

23‘-’ means that the message is not sent (or empty) in this setting

73

5 On the Provable Security of TLS

Figure 5.3 exemplary depicts the full message flow for the TLS ciphersuite with

mutual authentication and ephemeral Di�e-Hellman key exchange in detail.

C S

(certC , skC)(certC , skC) (certS , skS)

rC
r � {0, 1}�1

m1 : rC , cs-list

rS
r � {0, 1}�1

tS
r � Zq, TS = gtS mod p

�S := SIG.Sign(skS , rC ||rS ||p||g||TS)
m2 : rS , cs-choice

m3 : certS

m4 : p, g, TS ,�S

m5 : cs-request

m6 : done

If SIG.Vfy(pkS ,�S , rC ||rS ||p||g||TS) = 0! ⇤ = reject

tC
r Zq, TC = gtC mod p

�C := SIG.Sign(skC ,m1|| . . . ||m8)

pms := T tC
S mod p

ms := PRF(pms, label1||rC ||rS)
KC!S

enc ||KS!C
enc ||KC!S

mac ||KS!C
mac := PRF(ms, label2||rC ||rS)

finC := PRF(ms, labelkH(m1, . . . ,m10)) m7 : certC

m8 : TC

m9 : �C

m10 : flagenc

m11 : (C11, ste) = StE.Enc(kClient
enc , len, H, finC , ste)

If SIG.Vfy(pkC ,�C ,m1|| . . . ||m8) = 0! ⇤ = reject

pms := T tS
C mod p

ms := PRF(pms, label1||rC ||rS)
KC!S

enc ||KS!C
enc ||KC!S

mac ||KS!C
mac := PRF(ms, label2||rC ||rS)

finS := PRF(ms, labelkH(m1, . . . ,m10, finC ,m12))
m12 : flagenc

m13 : (C13, ste) = StE.Enc(kServer
enc , len, H, finS , ste)pre-accept phase

If finS 6= PRF(ms, labelkH(m1, . . . ,m10, finC ,m12))! ⇤ = reject

If finC 6= PRF(ms, labelkH(m1, . . . ,m10))! ⇤ = reject
———————————————————————————————————–

post-accept phase StE.Enc(k⇤
enc, len, H, data, ste))

Figure 5.3: TLS handshake for TLS-DHE with mutual authentication

Attack Focus. We do neither consider abbreviated TLS Handshakes24, nor

side-channel attacks (such as the Bleichenbacher attack against PKCS #1.5 [Ble98]

or the BEAST (Browser Exploit Against SSL/TLS) attack25 discussed in [Bar04,

Bar06]). Moreover, we do not consider attacks based on side-channels such as er-

ror messages, or implementation issues (e.g. the cross-protocol attack by Schneier

24Note that the server can always enforce a full TLS Handshake
25This vulnerability was fixed in TLS 1.1

74

5.2 Truncated TLS-DHE is AKE

and Wagner [WS96]) and for simplicity also assume that TLS compression is not

used, excluding attacks like CRIME [RD12].

5.2 Truncated TLS-DHE with Mutual Authentication is a

Secure AKE Protocol

In this section we prove the security of a modified version of the TLS Hand-

shake protocol. As previously discussed in Section 5.1.2, it is impossible to prove

the full TLS Handshake protocol secure in any security model based on key-

indistinguishability, like the model from Section 3.2.1, because the encryption

and MAC of the Finished messages provide a ‘check value’, that can be ex-

ploited by an adversary to determine the bit b chosen by the Test query.

Therefore we consider a ‘truncated TLS’ protocol as in [MSW08, MSW10]. In

this truncated version, we assume that the Finished messages are sent in clear,

that is, neither encrypted nor authenticated by a MAC. More precisely, we modify

the TLS protocol depicted in Figure 5.1 such that

• message m11 contains only fin
C

(instead of StE.Enc(kClient
enc , len, H, fin

C

, st
e

)),

and

• message m13 contains only fin
S

(instead of StE.Enc(kServer
enc , len, H, fin

S

, st
e

)).

This simple modification allows to prove security in the key-indisinguishability-

based security model from Section 3.2.1.

Introducing the PRF-ODH Assumption

At first sight, a more direct approach to give a security proof of TLS-DHE

might be to reduce the security of the protocol (at least of the key exchange

part) to the DDH problem. However, this is not possible in a security model

that allows the adversary to corrupt parties, i.e. learn long-term secret keys. The

problem that denies such a proof occurs when embedding the DDH challenge.

An adversary can always test the simulator’s knowledge of the secret exponents

corresponding to the (public) Di�e-Hellman shares sent during the key exchange.

To this end the adversary proceeds as follows. Note that the simulator has to

embed (part of) the DDH challenge in the server’s key exchange message without

(cryptographically) knowing the identity of the client. So when the adversary

intercepts a ServerKeyExchange message, it always chooses a fresh random ex-

ponent from the corresponding DH group, corrupts the client to learn the client’s

signing key and responds to the server with the modified ClientKeyExchange

message. The server cannot compute the resulting session key, because it knows

neither the secret exponent of the DH share it has sent (as it was taken from the

75

5 On the Provable Security of TLS

DDH challenge) nor the secret exponent from the client’s share (as it was chosen

by the adversary).

It is important to note, that we may have to deal with a successfull adversary,

which is able to break some primitive later in the protocol execution26. Thus,

to be able to use such an adversary to break the security of this primitive, we

first have to e�ciently simulate all oracles to the adversary, which we cannot do

in the above mentioned case. We cannot compute the DH key and thus cannot

compute the ServerFinished message.

Theorem 5.1. Let µ be the output length of PRF and let � be the length of the

nonces r
C

and r
S

. Assume that the pseudo-random function PRF is (t, ✏prf , qprf)-

secure, the signature scheme used to sign messages in TLS is (t, ✏sig, qsig)-secure,

the hash function H is (t, ✏H)-collision resistant, the PRF-ODH-problem is (t, ✏prfodh)-

hard with respect to G and PRF, the DDH-problem is (t, ✏ddh)-hard in the group

G used to compute the TLS premaster secret, and qprf ⌘ and qsig � ⌘.

Then for any adversary that (t0, ✏ttls)-breaks the truncated ephemeral Di�e-

Hellman TLS Handshake protocol in the sense of Definition 3.4 with t ⇡ t0 holds

that

✏ttls 4 · ⌘�

✓
⌘�

2�
+ � · ✏sig +

5

4
· ✏ddh +

5

2
· ✏prf + ⌘�

✓
✏prfodh + ✏prf +

1

2µ

◆◆
.

We consider three types of adversaries:

1. Adversaries that succeed in making an oracle accept maliciously, such that

the first oracle that does so is a Client-oracle (i.e. an oracle with ⇢ = Client).

We call such an adversary a Client-adversary.

2. Adversaries that succeed in making an oracle accept maliciously, such that

the first oracle that does so is a Server-oracle (i.e. an oracle with ⇢ = Server).

We call such an adversary a Server-adversary.

3. Adversaries that do not succeed in making any oracle accept maliciously, but

which answer the Test-challenge. We call such an adversary a Test-adversary.

We prove Theorem 5.1 by proving three lemmas. Lemma 5.1 bounds the proba-

bility ✏client that a Client-adversary succeeds, Lemma 5.2 bounds the probability

✏server that a Server-adversary succeeds, and Lemma 5.3 bounds the success prob-

ability ✏enc of a Test-adversary. Then we have

✏ttls ✏client + ✏server + ✏enc.

26Take as example an adversary that on input of a valid ServerFinished message can output a di↵erent, but

collidingServerFinished message, that will be accepted by the client.

76

5.2 Truncated TLS-DHE is AKE

5.2.1 Authentication

Lemma 5.1. For any adversary A running in time t0 ⇡ t, the probability that

there exists an oracle ⇡s

i

with ⇢ = Client that accepts maliciously is at most

✏client ⌘�

✓
⌘�

2�
+ � · ✏sig + ⌘�

✓
✏prfodh + ✏prf + ✏H +

1

2µ

◆◆

where all quantities are defined as stated in Theorem 5.1.

Proof. The proof proceeds in a sequence of games, following [BR06, Sho04]. The

first game is the real security experiment. We then describe several intermediate

games that modify the original game step-by-step, and argue that our complexity

assumptions imply that each game is computationally indistinguishable from the

previous one. We end up in the final game, where no adversary can break the

security of the protocol.

Let break(1)
�

be the event that occurs when the first oracle accepts maliciously

in the sense of Definition 3.4 with ⇢ = Client in Game �.

Game 0. This game equals the AKE security experiment described in Section 3.2.1.

Thus, for some ✏client we have

Pr[break(1)0] = ✏client.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists

any oracle ⇡s

i

that chooses a random nonce r
C

or r
S

which is not unique. More

precisely, the game is aborted if the adversary ever makes a first Send query to

an oracle ⇡s

i

, and the oracle replies with random nonce r
C

or r
S

such that there

exists some other oracle ⇡s

0
i

0 which has previously sampled the same nonce.

In total less than ⌘� nonces r
C

and r
S

are sampled, each uniformly random from

{0, 1}�. Thus, the probability that a collision occurs is bounded by (⌘�)22��,

which implies

Pr[break(1)0] Pr[break(1)1] +
(⌘�)2

2�
.

Note that now each oracle has a unique nonce r
C

or r
S

, which is included in

the signatures. We will use this to ensure that each oracle that accepts with

non-corrupted partner has a unique partner oracle.

Game 2. We try to guess which client oracle will be the first oracle to accept

maliciously. If our guess is wrong, i.e. if there is another (Client or Server) oracle

that accepts before, then we abort the game.

77

5 On the Provable Security of TLS

Technically, this game is identical to Game 1, except for the following. The

challenger guesses two random indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. If there exists an

oracle ⇡s

i

that ‘accepts’ maliciously before, and (i, s) 6= (i⇤, s⇤) and ⇡s

i

has ⇢ 6=

Client, then the challenger aborts the game. With probability 1/(⌘�) we have

(i, s) = (i⇤, s⇤), and thus

Pr[break(1)1] = ⌘� · Pr[break(1)2].

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first oracle that ‘accepts’ maliciously and has ⇢ = Client, as

otherwise the game is aborted.

Game 3. Again the challenger proceeds as before, but we add an abort rule. We

want to make sure that ⇡s

⇤
i

⇤ receives as input exactly the Di�e-Hellman value T
S

that was selected by some other uncorrupted oracle that received the nonce r
C

chosen by ⇡s

⇤
i

⇤ as first input (note that there may be several such oracles, since

the adversary may send copies of r
C

to many oracles).

Technically, we abort and raise event abortsig, if oracle ⇡s

⇤
i

⇤ ever receives as

input a message m3 = cert
S

indicating intended partner ⇧ = j and message

m4 = (p, g, T
S

, �
S

) such that �
S

is a valid signature over r
C

||r
S

||p||g||T
S

that

verifies under cert
S

, but there exists no oracle ⇡t

j

which has previously output �
S

.

Clearly we have

Pr[break(1)2] Pr[break(1)3] + Pr[abortsig].

Note that the experiment is aborted, if ⇡s

⇤
i

⇤ does not accept maliciously, due to

Game 2. This means that party P
j

must be ⌧
j

-corrupted with ⌧
j

= 1 (i.e. not

corrupted) when ⇡s

⇤
i

⇤ accepts (as otherwise ⇡s

⇤
i

⇤ does not accept maliciously). To

show that Pr[abortsig] � · ✏sig, we construct a signature forger as follows. The

forger receives as input a public key pk⇤ and simulates the challenger for A. It

guesses an index �
$
 [�], sets pk

�

= pk⇤, and generates all long-term pub-

lic/secret keys as before. Then it proceeds as the challenger in Game 3, except

that it uses its chosen-message oracle to generate a signature under pk
�

when

necessary.

If � = j, which happens with probability 1/�, then the forger can use the

signature received by ⇡s

⇤
i

⇤ to break the EUF-CMA security of the signature scheme

with success probability ✏sig, so Pr[abortsig]/� ✏sig. Therefore if Pr[abortsig] is

not negligible, then ✏sig is not negligible as well and we have

Pr[break(1)2] Pr[break(1)3] + � · ✏sig.

Note that in Game 3 oracle ⇡s

⇤
i

⇤ receives as input a Di�e-Hellman value T
S

such

that T
S

was chosen by another oracle, but not by the adversary. Note also that

78

5.2 Truncated TLS-DHE is AKE

there may be multiple oracles that issued a signature �
S

containing r
C

, since the

adversary may have sent several copies of r
C

to several oracles.

Game 4. In this game we want to make sure that we know which oracle ⇡t

j

will issue the signature �
S

that ⇡s

⇤
i

⇤ receives. Note that this signature includes the

random nonce r
S

, which is unique due to Game 1. Therefore the challanger in this

game proceeds as before, but additionally guesses two indices (j⇤, t⇤)
$
 [�]⇥ [⌘].

It aborts, if the adversary does not make a Send query containing r
C

to ⇡t

⇤
j

⇤ or if

⇡t

⇤
j

⇤ responds with messages containing �
S

and �
S

is not forwarded to ⇡s

⇤
i

⇤ .

We know that there must exists at least one oracle that outputs �
S

such that

�
S

is forwarded to ⇡s

⇤
i

⇤ , due to Game 3. Thus we have

Pr[break(1)3] ⌘� · Pr[break(1)4].

Note that in this game we know exactly that oracle ⇡t

⇤
j

⇤ chooses the Di�e-Hellman

share T
S

that ⇡s

⇤
i

⇤ uses to compute its premaster secret.

Game 5. Recall that ⇡s

⇤
i

⇤ computes the master secret asms = PRF(T tc
S

, label1||rC ||rS),

where T
S

denotes the Di�e-Hellman share received from ⇡t

⇤
j

⇤ , and t
c

denotes the

Di�e-Hellman exponent chosen by ⇡s

⇤
i

⇤ . In this game we replace the master secret

ms computed by ⇡s

⇤
i

⇤ with an independent random value fms. Moreover, if ⇡t

⇤
j

⇤ re-

ceives as input the same Di�e-Hellman share T
C

that was sent from ⇡s

⇤
i

⇤ , then

we set the master secret of ⇡t

⇤
j

⇤ equal to fms. Otherwise we compute the master

secret as specified in the protocol. We claim that

Pr[break(1)4] Pr[break(1)5] + ✏prfodh.

Suppose there exists an adversary A that distinguishes Game 5 from Game 4.

We show that this implies an adversary B that solves the PRF-ODH problem.

Adversary B outputs (label1||rC ||rS) to its oracle and receives in response

(g, gu, gv, R), where either R = PRF(guv, label1||rC ||rS) or R
$
 {0, 1}µ. It runs A

by implementing the challenger for A, and embeds (gu, gv) as follows. Instead of

letting ⇡s

⇤
i

⇤ choose T
C

= gtC for random t
C

$
 Z

q

, B defines T
C

:= gu. Similarly,

the Di�e-Hellman share T
S

of ⇡t

⇤
j

⇤ is defined as T
S

:= gv. Finally, the master

secret of ⇡s

⇤
i

⇤ is set equal to R.

Note that ⇡s

⇤
i

⇤ computes the master secret after receiving T
S

from ⇡t

⇤
j

⇤ , and then

it sends m8 = T
C

. If the adversary decides to forward m8 to ⇡t

⇤
j

⇤ , then the master

secret of ⇡t

⇤
j

⇤ is set equal to R. If ⇡t

⇤
j

⇤ receives T
C

0
6= T

C

, then B queries its oracle

to compute ms0 = PRF(T v

C

0 , label1||rC ||rS), and sets the master secret of ⇡t

⇤
j

⇤ equal

to ms0.

79

5 On the Provable Security of TLS

Note that in any case algorithm B ‘knows’ the master secret of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ , and

thus is able to compute all further protocol messages (in particular the finished

messages fin
C

and fin
S

) and answer a potential Reveal query to ⇡t

⇤
j

⇤ as required

(note that there is no Reveal query to ⇡s

⇤
i

⇤ , as otherwise the experiment is aborted,

due to Game 2). If R = PRF(guv, label1||rC ||rS), then the view of A is identical

to Game 4, while if R
$
 {0, 1}µ then it is identical to Game 5, which yields the

above claim.

Game 6. In this game we replace the function PRF(fms, ·) used by ⇡s

⇤
i

⇤ with a PRF

challenge. If ⇡t

⇤
j

⇤ uses the same master secret fms as ⇡s

⇤
i

⇤ (cf. Game 5), then the

function PRF(fms, ·) used by ⇡t

⇤
j

⇤ is replaced as well. Of course the same random

function is used for both oracles sharing the same fms. In particular, this function

is used to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 implies an algorithm breaking the security

of the pseudo-random function PRF, thus

Pr[break(1)5] Pr[break(1)6] + ✏prf

Game 7. In Game 6 we have replaced the function PRF(fms, ·) with a random

function. Thus, the ServerFinished message expected by ⇡s

⇤
i

⇤ is

fin⇤
S

= Ffms

(label4||H(m1|| · · · ||m12)),

where m1|| · · · ||m12 denotes the transcript of all messages sent and received by

⇡s

⇤
i

⇤ . In the next game we would like to argue, that the adversary is not able to

predict fin⇤
S

, unless there is an oracle ⇡t

⇤
j

⇤ having a matching conversation to ⇡s

⇤
i

⇤ ,

because Ffms

is random.

Before we can do so, we need to make sure that oracle ⇡t

⇤
j

⇤ (the only other

oracle potentially having access to Ffms

, due to Game 6) never evaluates Ffms

on

any input label4||H(m0) with

m0 6= m1|| · · · ||m12 and H(m0) = H(m1|| · · · ||m12). (5.1)

Therefore we add another abort condition. We abort the game, if oracle ⇡t

⇤
j

⇤

ever evaluates the random function Ffms

on an input m0 such that (5.1) holds.

Since (5.1) implies that a collision for H is found, we have

Pr[break(1)6] Pr[break(1)7] + ✏H

80

5.2 Truncated TLS-DHE is AKE

Game 8. Finally we use that the unique (due to Game 7) hash of the full tran-

script of all messages sent and received is used to compute the Finishedmessages,

and that Finished messages are computed by evaluating a truly random function

that is only accessible to ⇡s

⇤
i

⇤ and (possibly) ⇡t

⇤
j

⇤ due to Game 6. This allows to

show that any adversary has probability at most 1
2µ of making oracle ⇡s

⇤
i

⇤ accept

without having a matching conversation to ⇡t

⇤
j

⇤ .

The Finished messages are computed by evaluating a truly random function

Ffms

. This function is only accessible to oracles sharing fms, and evaluated on a

unique hash value derived from the full transcript containing all previous mes-

sages. Thus, if there is no oracle having a matching conversation to ⇡s

⇤
i

⇤ , the

adversary receives no information about Ffms

(label4||H(m1|| · · · ||m12)). Therefore

we have Pr[break(1)8] = 0 and

Pr[break(1)7] Pr[break(1)8] +
1

2µ
=

1

2µ
.

Collecting probabilities from Game 0 to Game 8 yields Lemma 5.1. ⇤

Lemma 5.2. For any adversary A running in time t0 ⇡ t, the probability that

there exists an oracle ⇡s

i

with ⇢ = Server that accepts maliciously is at most

✏server ⌘�

✓
⌘�

2�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏H +

1

2µ

◆

where all quantities are defined as stated in Theorem 5.1.

Proof. Let break(2)
�

be the event that occurs when the first oracle accepts mali-

ciously in the sense of Definition 3.4 with ⇢ = Server in Game �.

Game 0. This game equals the AKE security experiment described in Section 3.2.1.

Thus, for some ✏server we have

Pr[break(2)0] = ✏server.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists

any oracle ⇡s

i

that chooses a random nonce r
C

or r
S

which is not unique. With

the same arguments as in Game 1 from the proof of Lemma 5.1 we have

Pr[break(2)0] Pr[break(2)1] +
(⌘�)2

2�
.

81

5 On the Provable Security of TLS

Game 2. This game is identical, except for the following. The challenger guesses

two random indices (i⇤, s⇤)
$
 [�]⇥ [⌘]. If there exists an oracle ⇡s

i

that ‘accepts’

maliciously, and (i, s) 6= (i⇤, s⇤) and ⇡s

i

has ⇢ 6= Server, then the challenger aborts

the game. Note that if the first oracle ⇡s

i

that ‘accepts’ maliciously has ⇢ = Server,

then with probability 1/(⌘�) we have (i, s) = (i⇤, s⇤), and thus

Pr[break(2)1] = ⌘� · Pr[break(2)2].

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first oracle that ‘accepts’ maliciously and has ⇢ = Server, as

otherwise the game is aborted.

Game 3. The challenger proceeds as before, but we add an abort rule. We want

to make sure that ⇡s

⇤
i

⇤ receives as input exactly the Di�e-Hellman value m8 = T
C

that was selected by some other uncorrupted oracle.

Technically, we abort and raise event abortsig, if oracle ⇡s

⇤
i

⇤ ever receives as input

a message m7 = cert
C

indicating intended partner ⇧ = j and message m9 = �
C

such that �
C

is valid, i.e. SIG.Vfy(pk
C

, �
C

,m1|| . . . ||m8) = 1, but there exists no

oracle ⇡t

j

which has previously output �
C

. Clearly we have

Pr[break(2)2] Pr[break(2)3] + Pr[abortsig].

Note that the experiment is aborted, if ⇡s

⇤
i

⇤ does not accept maliciously, due to

Game 2. This means that party P
j

must be ⌧
j

-corrupted with ⌧
j

= 1 (i.e. not

corrupted) when ⇡s

⇤
i

⇤ accepts. To show that Pr[abortsig] � · ✏sig, we construct

a signature forger as follows. The forger receives as input a public key pk⇤ and

simulates the challenger for A. It guesses an index �
$
 [�], sets pk

�

= pk⇤,

and generates all long-term public/secret keys as before. Then it proceeds as the

challenger in Game 3, except that it uses its chosen-message oracle to generate a

signature under pk
�

when necessary.

If � = j, which happens with probability 1/�, then the forger can use the

signature received by ⇡s

⇤
i

⇤ to break the EUF-CMA security of the signature scheme

with success probability ✏sig, so Pr[abortsig]/� ✏sig. Therefore if Pr[abortsig] is

not negligible, then ✏sig is not negligible as well and we have

Pr[break(2)2] Pr[break(2)3] + � · ✏sig.

Note that in Game 3 oracle ⇡s

⇤
i

⇤ receives as input a Di�e-Hellman value T
C

such

that T
C

was chosen by another oracle, but not by the adversary. Note also that

this oracle is unique, since the signature includes the client nonce r
C

, which is

unique due to Game 1. From now on we denote this unique oracle with ⇡t

⇤
j

⇤ .

82

5.2 Truncated TLS-DHE is AKE

Note also that ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ share a premaster secret pms = T tS
C

= T tC
S

, where

T
C

= gtC and T
S

= gtS for random exponents t
S

and t
C

chosen by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ ,

respectively.

Game 4. In this game, we replace the premaster secret pms = gtCtS shared by

⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ with a random value gr, r
$
 Z

q

. The fact that the challenger has

full control over the Di�e-Hellman shares T
C

and T
S

exchanged between ⇡s

⇤
i

⇤

and ⇡t

⇤
j

⇤ , due to the modifications introduced in the previous games, provides us

with the leverage to prove indistinguishability under the Decisional Di�e-Hellman

assumption.

Technically, the challenger in Game 4 proceeds as before, but when ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤

compute the premaster secret as pms = gtC tS , the challenger replaces this value

with a uniformly random value gpms = gr, r
$
 Z⇤

p

, which is in the following used

by both partner oracles. Suppose there exists an algorithm distinguishing Game 4

from Game 3. Then we can construct an algorithm B solving the DDH problem

as follows. Algorithm B receives as input a DDH challenge (g, gu, gv, gw). The

challenger defines T
C

:= gu and T
S

:= gv for the Di�e-Hellman shares chosen

by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ , respectively. Instead of computing the Di�e-Hellman key as in

Game 3, it sets pms = gw both for the ‘client’ and the ‘server’ oracle. Now if

w = uv, then this game proceeds exactly like Game 3, while if w is random than

this game proceeds exactly like Game 4. The DDH assumption therefore implies

that

Pr[break(2)3] Pr[break(2)4] + ✏ddh.

Note that in Game 4 the premaster secret of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ is uniformly random,

and independent of T
C

and T
S

. This will provide us with the leverage to replace

the function PRF(gpms, ·) with a truly random function in the next game.

Game 5. In Game 5 we make use of the fact that the premaster secret gpms of

⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ is chosen uniformly random, and independent of T
C

and T
S

. We thus

replace the value ms = PRF(gpms, label1||rC ||rS) with a random value fms.

Distinguishing Game 5 from Game 4 implies an algorithm breaking the security

of the pseudo-random function PRF, thus

Pr[break(2)4] Pr[break(2)5] + ✏prf .

Game 6. In this game we replace the function PRF(fms, ·) used by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤

with a random function. Of course the same random function is used for both

oracles ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ . In particular, this function is used to compute the Finished

messages by both partner oracles.

83

5 On the Provable Security of TLS

Distinguishing Game 6 from Game 5 again implies an algorithm breaking the

security of the pseudo-random function PRF, thus

Pr[break(2)5] Pr[break(2)6] + ✏prf .

Game 7. In Game 6 we have replaced the function PRF(fms, ·) with a random

function. Thus, the ClientFinished message expected by ⇡s

⇤
i

⇤ is

fin⇤
C

= Ffms

(label3||H(m1|| · · · ||m10)),

where m1|| · · · ||m10 denotes the transcript of all messages sent and received by

⇡s

⇤
i

⇤ . Again we would like to argue that the adversary is not able to predict fin⇤
C

,

unless there is an oracle ⇡t

⇤
j

⇤ having a matching conversation to ⇡s

⇤
i

⇤ , because Ffms

is random.

Before we can do so, we need to make sure that oracle ⇡t

⇤
j

⇤ (the only other

oracle potentially having access to Ffms

, due to Game 6) never evaluates Ffms

on

any input label3||H(m0) with

m0 6= m1|| · · · ||m10 and H(m0) = H(m1|| · · · ||m10). (5.2)

Therefore we add another abort condition. We abort the game, if oracle ⇡t

⇤
j

⇤

ever evaluates the random function Ffms

on an input m0 such that (5.2) holds.

Since (5.2) implies that a collision for H is found, we have

Pr[break(2)6] Pr[break(2)7] + ✏H

Game 8. Finally we use that the unique hash of the full transcript of all messages

sent and received by ⇡s

⇤
i

⇤ is used to compute the Finished messages, and that

Finished messages are computed by evaluating a truly random function that

is only accessible to ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ due to Game 7. This allows to show that any

adversary has probability at most 1
2µ of making oracle ⇡s

⇤
i

⇤ accept without having

a matching conversation to ⇡t

⇤
j

⇤ .

The Finished messages are computed by evaluating a truly random function

Ffms

, which is only accessible to oracles sharing fms, and the full transcript con-

taining all previous messages is used to compute the Finished messages. If there

is no oracle having a matching conversation to ⇡s

⇤
i

⇤ , the adversary receives no

information about Ffms

(label3||m1|| · · · ||m10). Thus we have

Pr[break(2)7] Pr[break(2)8] +
1

2µ
=

1

2µ
.

Collecting probabilities from Game 0 to Game 8 yields Lemma 5.2. ⇤

84

5.2 Truncated TLS-DHE is AKE

5.2.2 Indistinguishability of Keys

Lemma 5.3. For any adversary A running in time t0 ⇡ t, the probability that A

answers the Test-challenge correctly is at most 1/2 + ✏enc with

✏enc ✏client + ✏server + ⌘� · (✏ddh + 2 · ✏prf) .

where ✏client+✏server is an upper bound on the probability that there exists an oracle

that accepts maliciously in the sense of Definition 3.4 (cf. Lemmas 5.1 and 5.2)

and all other quantities are defined as stated in Theorem 5.1.

Proof. Assume without loss of generality that the A always asks a Test query

such that all conditions in Property 2 of Definition 3.4 are satisfied. Let break(3)
�

denote the event that b0 = b in Game �, where b is the random bit sampled by the

Test query, and b0 is either the bit output by A or (if A does not output a bit)

chosen by the challenger. Let Adv
�

:= Pr[break(3)
�

]� 1/2 denote the advantage of

A in Game �. Consider the following sequence of games.

Game 0. This game equals the AKE security experiment described in Section 3.2.1.

For some ✏enc we have

Pr[break(3)0] =
1

2
+ ✏enc =

1

2
+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses

b0 uniformly random, if there exists any oracle that accepts maliciously in the sense

of Definition 3.4. Thus we have

Adv0 Adv1 + ✏client + ✏server,

where ✏client + ✏server is an upper bound on the probability that there exists an

oracle that accepts maliciously in the sense of Definition 3.4 (cf. Lemmas 5.1

and 5.2).

Recall that we assume that A always asks a Test query such that all conditions

in Property 2 of Definition 3.4 are satisfied. In particular it asks a Test query

to an oracle ⇡s

i

that ‘accepts’ after the ⌧0-th query of A with intended partner

⇧ = j, such that P
j

is ⌧
j

-corrupted with ⌧
j

> ⌧0. Note that in Game 1 for

any such oracle ⇡s

i

there exists a unique ‘partner oracle’ ⇡t

j

such that ⇡s

i

has a

matching conversation to ⇡t

j

, as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses

indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. It aborts and chooses b0 at random, if the adversary

85

5 On the Provable Security of TLS

issues a Test(⇡s

i

) query with (i, s) 6= (i⇤, s⇤). With probability 1/(⌘�) we have

(i, s) = (i⇤, s⇤), and thus

Adv1 ⌘� · Adv2.

Note that in Game 2 we know that A will issue a Test query to oracle ⇡s

⇤
i

⇤ . Note

also that ⇡s

⇤
i

⇤ has a unique ‘partner’ due to Game 1. In the sequel we denote with

⇡t

⇤
j

⇤ the unique oracle such that ⇡s

⇤
i

⇤ has a matching conversation to ⇡t

⇤
j

⇤ , and say

that ⇡t

⇤
j

⇤ is the partner of ⇡s

⇤
i

⇤ .

Game 3. Let Ti

⇤
,s

⇤
= gu denote the Di�e-Hellman share chosen by ⇡s

⇤
i

⇤ , and

let Tj

⇤
,t

⇤
= gv denote the share chosen by its partner ⇡t

⇤
j

⇤ . Thus, both oracles

compute the premaster secret as pms = guv.

The challenger in this game proceeds as before, but replaces the premaster

secret pms of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ with a random group element gpms = gw, w
$
 Z

q

.

Note that both gu and gv are chosen by oracles ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ , respectively, as

otherwise ⇡s

⇤
i

⇤ would not have a matching conversation to ⇡t

⇤
j

⇤ and the game would

be aborted.

Suppose that there exists an algorithm A distinguishing Game 3 from Game 2.

Then we can construct an algorithm B solving the DDH problem as follows. B

receives as input (g, gu, gv, gw). It implements the challenger for A as in Game 2,

except that it sets Ti

⇤
,s

⇤
:= gu and Tj

⇤
,t

⇤
:= gv, and the premaster secret of ⇡s

⇤
i

⇤

and ⇡t

⇤
j

⇤ equal to pms := gw. Note that B can simulate all messages exchanged

between ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ properly, in particular the finished messages using knowledge

of pms = gw. Since all other oracles are not modified, B can simulate these oracles

properly as well.

If w = uv, then the view of A when interacting with B is identical to Game 2,

while if w
$
 Z

q

then it is identical to Game 3. Thus, the DDH assumption

implies that

Adv2 Adv3 + ✏ddh.

Game 4. In Game 4 we make use of the fact that the premaster secret gpms

of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ is chosen uniformly random. We thus replace the value ms =

PRF(gpms, label1||rC ||rS) with a random value fms.

Distinguishing Game 4 from Game 3 implies an algorithm breaking the security

of the pseudo-random function PRF, thus

Adv3 Adv4 + ✏prf .

86

5.3 TLS-DHE with Mutual Authentication is a Secure ACCE Protocol

Game 5. In this game we replace the function PRF(fms, ·) used by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤

with a random function Ffms

. Of course the same random function is used for

both oracles ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ . In particular, this function is used to compute the key

material as

KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac := Ffms

(label2||rC ||rS)

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the

security of the pseudo-random function PRF. Moreover, in Game 5 the adver-

sary always receives a random key in response to a Test query, thus receives no

information about b0, which implies Adv5 = 0 and

Adv4 Adv5 + ✏prf = ✏prf .

Collecting probabilities from Game 0 to Game 5 yields Lemma 5.3. ⇤

Summing up probabilities from Lemmas 5.1 to 5.3, we obtain that

✏ttls ✏client + ✏server + ✏enc

 2 · (✏client + ✏server) + ⌘� · (✏ddh + 2 · ✏prf)

 4 ·max{✏client, ✏server}+ ⌘� · (✏ddh + 2 · ✏prf)

 4 · ⌘�

✓
⌘�

2�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ⌘�

✓
✏prfodh + ✏prf + ✏H +

1

2µ

◆◆

+ ⌘� · (✏ddh + 2 · ✏prf)

= 4 · ⌘�

✓
⌘�

2�
+ � · ✏sig +

5

4
· ✏ddh +

5

2
· ✏prf + ⌘�

✓
✏prfodh + ✏prf + ✏H +

1

2µ

◆◆
,

which yields Theorem 5.1.

5.3 TLS-DHE with Mutual Authentication is a Secure ACCE

Protocol

We now adapt the proof of truncated TLS-DHE given in the previous section

and additionally reduce to the security of the symmetric encryption scheme used

to encrypt the Finished messages. We then receive a proof of the full TLS

handshake protocol.

Theorem 5.2. Let µ be the output length of PRF and let � be the length of the

nonces r
C

and r
S

. Assume that the pseudo-random function PRF is (t, ✏prf , qprf)-

secure, the signature scheme used to sign messages in TLS is (t, ✏sig, qsig)-secure,

the DDH-problem is (t, ✏ddh)-hard in the group G used to compute the TLS pre-

master secret, the hash function H is (t, ✏H)-collision resistant, the PRF-ODH-

87

5 On the Provable Security of TLS

problem is (t, ✏prfodh)-hard with respect to G and PRF, and qprf ⌘ and � qsig.

Suppose that the stateful symmetric encryption scheme is (t, ✏sLHAE)-secure.

Then for any adversary that (t0, ✏tls)-breaks the ephemeral Di�e-Hellman TLS

protocol in the sense of Definition 3.9 with t ⇡ t0 holds that

✏tls 4⌘�

✓
⌘�

2�
+ �✏sig + ✏ddh + ⌘�✏prfodh + (⌘�+ 2) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆
.

To prove Theorem 5.2, we divide the set of all adversaries into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call

such an adversary an authentication-adversary.

2. Adversaries that do not succeed in making any oracle accept maliciously,

but which answer the encryption-challenge. We call such an adversary an

encryption-adversary.

We prove Theorem 5.2 by the following two lemmas.

Lemma 5.4 bounds the probability ✏auth that an authentication-adversary suc-

ceeds and Lemma 5.5 bounds the probability ✏enc that an encryption-adversary

succeeds. Then we have

✏tls ✏auth + ✏enc.

Lemma 5.4. For any adversary A running in time t0 ⇡ t, the probability that

there exists an oracle ⇡s

i

that accepts maliciously is at most

✏auth 2 · ⌘�

✓
⌘�

2�
+ � · ✏sig + ✏ddh + (⌘�+ 2)

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

where all quantities are defined as stated in Theorem 5.2.

Note that ✏auth ✏client+✏server, where ✏client is an upper bound on the probability

that there exists an oracle with ⇢ = Client that accepts maliciously in the sense of

Definition 3.9, and ✏server is an upper bound on the probability that there exists

an oracle with ⇢ = Server that accepts maliciously. We claim that

✏client ⌘�

✓
⌘�

2�
+ � · ✏sig + ⌘�

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

✏server ⌘�

✓
⌘�

2�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏H + ✏sLHAE +

1

2µ

◆

88

5.3 TLS-DHE with Mutual Authentication is a Secure ACCE Protocol

and thus

✏auth ✏client + ✏server

 ⌘�

✓
⌘�

2��1
+ 2�✏sig + ✏ddh + ⌘�✏prfodh + ✏prf

◆

+ ⌘� (⌘�+ 1) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆

 ⌘�

✓
⌘�

2��1
+ 2�✏sig + ⌘�✏prfodh + (⌘�+ 2) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆
.

The bounds on ✏client and ✏server are derived similar to the proofs of Lemma 5.1

and Lemma 5.2 in Section 5.2.1. We only extend the proofs by one game-hop

that exploits the sLHAE-security of the encryption scheme. This is necessary, as

an adversary can violate the matching conversations definition, and thus make

an oracle malicously accept, by creating a new, valid encryption of fin
C

(or fin
S

),

which is distinct from the ciphertext output by the corresponding client (or server)

oracle.

Lemma 5.5. For any adversary A running in time t0 ⇡ t, the probability that A

anwers the encryption-challenge correctly is at most 1/2 + ✏enc with

✏enc ✏auth + ⌘� (✏ddh + 2 · ✏prf + ✏sLHAE) .

where ✏auth is an upper bound on the probability that there exists an oracle that

accepts maliciously in the sense of Definition 3.9 (cf. Lemma 5.4) and all other

quantities are defined as stated in Theorem 5.2.

The proof of this lemma again extends the proof of Lemma 5.3 by one game-hop

that exploits the sLHAE-security of the encryption scheme.

Proof. Assume without loss of generality that A always outputs (i, s, b0) such

that all conditions in Property 2 of Definition 3.9 are satisfied. Let break(4)
�

denote

the event that b0 = bs
i

in Game �, where bs
i

is the random bit sampled by ⇡s

i

, and

b0 is either the bit output by A or (if A does not output a bit) chosen by the

challenger. Let Adv
�

:= Pr[break(4)
�

]� 1/2 denote the advantage of A in Game �.

Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Sec-

tion 3.2.2. For some ✏enc we have

Pr[break(4)0] =
1

2
+ ✏enc =

1

2
+ Adv0.

89

5 On the Provable Security of TLS

Game 1. The challenger in this game proceeds as before, but it aborts and chooses

b0 uniformly random, if there exists any oracle that accepts maliciously in the sense

of Definition 3.9. Thus we have

Adv0 Adv1 + ✏auth,

where ✏auth an upper bound on the probability that there exists an oracle that

accepts maliciously in the sense of Definition 3.9 with mutual authentication (cf.

Lemma 5.4).

Recall that we assume that A always outputs (i, s, b0) such that all conditions

in Property 2 of Definition 3.9 are satisfied. In particular it outputs (i, s, b0) such

that ⇡s

i

‘accepts’ after the ⌧0-th query of A with intended partner ⇧ = j, and P
j

is ⌧
j

-corrupted with ⌧
j

> ⌧0. Note that in Game 1 for any such oracle ⇡s

i

there

exists a unique ‘partner oracle’ ⇡t

j

such that ⇡s

i

has a matching conversation to

⇡t

j

, as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses

indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. It aborts and chooses b0 at random, if the adversary

outputs (i, s, b0) with (i, s) 6= (i⇤, s⇤). With probability 1/(⌘�) we have (i, s) =

(i⇤, s⇤), and thus

Adv1 ⌘� · Adv2.

Note that in Game 2 we know that A will output (i⇤, s⇤, b0). Note also that ⇡s

⇤
i

⇤

has a unique ‘partner’ due to Game 1. In the sequel we denote with ⇡t

⇤
j

⇤ the

unique oracle such that ⇡s

⇤
i

⇤ has a matching conversation to ⇡t

⇤
j

⇤ , and say that ⇡t

⇤
j

⇤

is the partner of ⇡s

⇤
i

⇤ .

Game 3. The challenger in this game proceeds as before, but replaces the premas-

ter secret pms of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ with a random group element gpms = gw, w
$
 Z

q

.

Note that both gu and gv are chosen by oracles ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ , respectively, as oth-

erwise ⇡s

⇤
i

⇤ would not have a matching conversation to ⇡t

⇤
j

⇤ and the game would

be aborted.

With the same arguments as in Game 3 in the proof of Lemma 5.3, we have

Adv2 Adv3 + ✏ddh.

Game 4. As in Game 4 in the proof of Lemma 5.3, we now make use of the fact

that the premaster secret gpms of ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ is chosen uniformly random. We

thus replace the value ms = PRF(gpms, label1||rC ||rS) with a random value fms.

90

5.3 TLS-DHE with Mutual Authentication is a Secure ACCE Protocol

Distinguishing Game 4 from Game 3 implies an algorithm breaking the security

of the pseudo-random function PRF, thus

Adv3 Adv4 + ✏prf .

Game 5. As in Game 5 in the proof of Lemma 5.3, we replace the function

PRF(fms, ·) used by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ with a random function Ffms

. Of course the same

random function is used for both oracles ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ . In particular, this function

is used to compute the key material as

KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac := Ffms

(label2||rC ||rS)

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the

security of the pseudo-random function PRF, thus we have

Adv4 Adv5 + ✏prf .

Note that in Game 5 the key material KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac of oracles ⇡s

⇤
i

⇤

and ⇡t

⇤
j

⇤ is uniformly random and independent of all TLS Handshake messages

exchanged in the pre-accept stage.

Game 6. Now we use that the key material KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac used

by ⇡s

⇤
i

⇤ and ⇡t

⇤
j

⇤ in the stateful symmetric encryption scheme uniformly at random

and independent of all TLS Handshake messages.

In this game we construct a simulator B that uses a successful ACCE adversary

A to break the security of the underlying sLHAE secure symmetric encryption

scheme (Definition 2.11). By assumption, the simulator B is given access to an

encryption oracle Encrypt and a decryption oracle Decrypt. B embeds the sLHAE

experiment by simply forwarding all Encrypt(⇡s

⇤
i

⇤ , ·) queries to Encrypt, and all

Decrypt(⇡t

⇤
j

⇤ , ·) queries to Decrypt. Otherwise it proceeds as the challenger in

Game 5.

Observe that the values generated in this game are exactly distributed as in

the previous game. We thus have

Adv5 = Adv6.

If A outputs a triple (i⇤, s⇤, b0), then B forwards b0 to the sLHAE challenger.

Otherwise it outputs a random bit. Since the simulator essentially relays all

messages it is easy to see that an adversary A having advantage ✏0 yields an

adversary B against the sLHAE security of the encryption scheme with success

probability at least 1/2 + ✏0.

91

5 On the Provable Security of TLS

Since by assumption any adversary has advantage at most ✏sLHAE in breaking

the sLHAE security of the symmetric encryption scheme, we have

Adv6 1/2 + ✏sLHAE.

⇤

Addig up probabilities from Lemmas 5.4 and 5.5, we obtain that

✏tls ✏auth + ✏enc

 2 · ✏auth + ⌘� (✏ddh + 2 · ✏prf + ✏sLHAE)

 ⌘�

✓
⌘�

2��2
+ 4�✏sig + 3✏ddh + 2⌘�✏prfodh + 4✏prf + ✏sLHAE

◆

+ 2⌘� (⌘�+ 1) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆

which yields Theorem 5.2.

5.4 General Proof Idea for Subsequent Proofs

For simplicity let us concentrate on the proof idea for server-only authentication.

In the following let k
S

:= kServer
enc denote the symmetric encryption key computed

by the server and k
C

:= kClient
enc (= kServer

dec) denote the encryption key computed by

the client. Let k(C)
S

:= kClient
dec = kServer

enc denote the symmetric key that is computed

by the client oracle to decrypt messages encrypted by the server, let k(S)
S

be the

corresponding key computed by the server, and let k(C)
C

and k
(S)
C

be the encryption

keys of the client computed by client and server, respectively. Similarly, we let

m(S) be a message sent or received or a value computed by the server, and m(C)

by a client respectively. For authentication we consider an adversary that makes

the client oracle maliciously accept, i.e. it accepts although there is no matching

conversation with some other uncorrupted oracle. We consider several cases and

subcases.

In Case 1 the adversary does not modify the client Di�e-Hellman share (in

TLS-DHE and TLS-SDH) or the encrypted premaster secret (in TLS-RSA),

whereas in Case 2 it does so. In Case 1 we now consider two subcases. In

Case 1.1 the adversary does not modify any of the random nonces r
C

, r
S

. In

Case 1.2 it does make such a modification. In Case 1.1 we again consider two

subcases. In Case 1.1.1 the adversary does not modify any of the remaining

92

5.4 General Proof Idea for Subsequent Proofs

messages m1 to m11 exchanged between client oracle and server oracle, whereas

in Case 1.1.2, it does so. We now reduce each of these cases to the security

of the stateful encryption scheme. We always embed the sLHAE challenge key

into k
(C)
S

, the symmetric key that is computed by the client oracle to decrypt the

encryption of fin
S

. In Case 1.1.1 and Case 1.1.2 we have that k
(C)
S

= k
(S)
S

,

i.e. client oracle and server oracle compute the same key for k
S

and the queries

granted in the sHLAE security game are used to compute the output m13 of the

server oracle.

We have to show that the adversary even with the help of the server oracle can-

not make the client oracle accept without breaking one of the underlying security

assumptions.

In Case 1.1.1, the master secrets, the encryption keys and the fin
S

messages

computed by client and server oracle are equal and all indistinguishable from

random from the adversary’s point of view. By the definition of security (cf. p.

36 and 38), the adversary must thus have computed a new encryption m012 of

fin
S

which is distinct from the message m13 that is computed by the server oracle

to make the client oracle accept. If we embed the sLHAE challenge key into

k
(C)
S

= k
(S)
S

, and use the encryption queries granted in the sLHAE security game

to computem13 we can directly break the security of the sLHAE scheme. In Case

1.1.2 the master secret and encryption keys computed by client and server oracle

are equal and indistinguishable from random. However, when client and server

oracle compute the Finished messages they use distinct transcripts. First, by

the security of the hash function the hash values of these transcripts di↵er as well.

Second, by the security of the PRF and since the input values to the PRF are

distinct, the values for fin
S

computed by the client oracle and server oracle, fin(C)
S

and fin(S)
S

, must di↵er as well for the two oracles with overwhelming probability

2�µ. In this case the adversary cannot use the output of the server oracle to make

the client oracle accept because due to the correctness of the sLHAE encryption

system there cannot be two distinct plaintext for one ciphertext. Instead it has

to compute a new encryption of fin(C)
S

on its own. Such an adversary can directly

be used to break the security of the sLHAE scheme.

InCase 1.2 the adversary modifies (at least) one of the nonces r
C

, r
S

exchanged

between client and server oracle. In Case 2 we have that the adversary modifies

the message m8 sent by the client, such that the premaster secrets computed by

client and server are distinct with overwhelming probability. The proofs for Case

1.2 and Case 2 are similar. In Case 1.2 we first have to show for each cipher-

93

5 On the Provable Security of TLS

suite that the premaster secret pms exchanged between client and server oracle

is indistinguishable from a random value to the adversary. In Case 2, we need to

show that pms(C) is indistinguishable from a random value to the adversary and

that it is distinct from (and actually independent of) pms(S) (with probability

2⌫ where ⌫ is the bitsize of pms) because of the adversary’s modifications to m8.

Next we have to show that the master secret computed by the client oracle ms(C)

is indistinguishable from random and distinct to ms(S). In Case 2 this is because

the key to thePRF, pms(C), is already indistinguishable from random and distinct

from pms(S). In Case 1.2, this is because client and server use distinct nonces

r
S

, r
C

as input to the PRF to compute the master secrets while pms(C) = pms(S)

is indistinguishable from random to the adversary. So by the security of thePRF,

with probability 2�µ ms(C) is distinct from ms(S). We can now substitute the

output values k
(C)
C

, k
(C)
S

, fin(C)
C

, fin(C)
S

of the second application of the PRF with

truly random values. By the security of the PRF the adversary cannot recognize

this modification. Now, since a) k(C)
S

is drawn uniformly at random and b) k(C)
S

is never used at any point before, we can draw k
(C)
S

also after the client oracle has

received the last protocol message m13 (and independently of the adversary and

all the computations within the server oracle). This shows that no information

about the random key k
(C)
S

is leaked. We can thus embed the sLHAE challenge

key in k
(C)
S

. If the adversary makes the client oracle accept we can directly break

the security of the sLHAE scheme. In Case 1.2 and Case 2, we do not have

to exploit any of the Encrypt queries granted by the sLHAE security game. This

shows authentication.

To show that the adversary cannot break the encryption challenge we observe

that in TLS the client only accepts, if all the values used for the computation

of the encryption keys are unmodified. In particular, Case 1.1.2 also rules out

that the adversary modifies one of the remaining messages which are sent from

the client oracle to the server oracle. If the client oracle accepts, both client and

server oracle thus have computed the same encryption keys. We can now directly

plugin the sLHAE challenge either in k
(C)
C

= k
(S)
C

or k(C)
S

= k
(S)
S

. Any adversary

that breaks the encryption challenge can be used to break the sLHAE security.

5.5 TLS-DHE with Server-only Authentication is ACCE

Secure

Theorem 5.3. Let µ be the output length of the PRF and � be the length of the

nonces r
C

and r
S

. Assume that the pseudo-random function PRF is (t, ✏prf , qprf)-

94

5.5 TLS-DHE with Server-only Authentication is ACCE Secure

secure, the hash function is (t, ✏H)-secure, the signature scheme used to sign mes-

sages in TLS is (t, ✏sig, qsig)-secure, the sLHAE scheme is (t, ✏sLHAE)-secure, and

the PRF-ODH-problem is (t, ✏prfodh)-hard with respect to G and PRF.

Then for any adversary that (t0, ✏tls)-breaks the TLS-DHE Handshake proto-

col with server-only authentication in the sense of Definition 3.11 (with perfect

forward secrecy) with t ⇡ t0 and qprf � 1, and qsig � ⌘, it holds that

✏tls 2·
(⌘�)2

2��1
+2�·✏sig+8(⌘�)2·

�
2�µ + 2�⌫ + ✏H

�
+9(⌘�)2·(✏prfodh + ✏prf + 2✏sLHAE) .

When proving server-only authentication we consider two types of adversaries.

Type 1. The adversary breaks the server-only authentication property of Defini-

tion 3.11 for a client oracle (Property 1).

Type 2. The adversary answers the encryption challenge correctly for clients that

do not accept maliciously (Property 2).

To prove that no adversary of Type 1 exists (again except for some negligible

error probability) we proceed as follows. At first we exclude certificate forgeries

and ensure uniqueness of the random nonces. Then we exclude modifications

of the random nonces and the server share by reducing security to that of the

signature scheme, since the server signature is computed over all these values. To

do so, technically we first guess the server party j for which the adversary outputs

a signature forgery with probability 1
�

. We replace the public key pk
j

of this party

with the challenge public key pk0 of the signature security game. For simulation

of oracles of party P
j

we use the signature oracle granted in the signature security

game. We then guess the server oracle ⇡t

j

and its partner (client) oracle ⇡s

i

with

probability 1/(d2�). (Note that we have already guessed the server party holding

the server oracle.)

We now consider two cases: either the client Di�e-Hellman share has been

modified by the adversary (Case 2) or not (Case 1). In Case 1 we directly

substitute the master secret ms that is computed between oracles ⇡s

i

and ⇡t

j

by

a truly random value. Any adversary that can recognize our modification can be

used to break the PRF-ODH assumption.27 To this end consider that we send the

concatenation of the fixed label label1 and the random nonces to the PRF-ODH

challenger who responds with z
b

, gu and gv. (For details see Definition 2.9.) Now

we first embed the gv share from the PRF-ODH challenge in the message m4 sent

by ⇡t

j

. Then we set gu to be the Di�e-Hellman share of ⇡s

i

included in message m8

and use z
b

as the master secret for the client and server oracle. Note that gu and

gv are distributed exactly as before, since they are chosen at random. Also we now
27Due to the nature of the PRF-ODH assumption we do not replace the premaster secret pms separately.

95

5 On the Provable Security of TLS

use the PRF-ODH oracle to simulate that ⇡t

j

has access to the secret key v (in case

the adversary modifies m8). Now if z
b

is the real output of PRF this corresponds

to the situation where ms is computed according to the protocol specification.

However if z
b

is random this exactly corresponds to the situation where ms is

drawn uniformly random. So under the PRF-ODH assumption no adversary can

notice our substitution of the master secret with a truly random value in Case 1.

The remaining part of the proof is similar to that of TLS-RSA with server-only

authentication: we now again consider two subcases of Case 1, Case 1.1.1 and

Case 1.1.2. Observe that in this proof we do not require two additional subcases

Case 1.1 and Case 1.2 since the random nonces are protected by adversarial

modifications via the signatures. Either one of the messages m1 to m11 have been

modified in transit (Case 1.1.2) or not (Case 1.1.1). In Case 1.1.1 we thus

assume that only the message m13 has been modified. In this case the adversary

has to compute a new encryption of fin(C)
S

= fin(S)
S

to make the client accept which

breaks the security of the sLHAE scheme. If the adversary modifiesm1 tom11, the

Finished messages fin
S

(i.e. fin(C)
S

and fin(S)
S

), can, exploiting the security of the

hash function and thePRF, be substituted with random values that are distinct

with probability at least 1 � 2�µ. So in Case 1.1.2, fin(S)
S

is independent from

fin(C)
S

and the adversary cannot use the output of the server oracle to compute

m13 such that the client accepts and has to compute this message on its own.

However, this breaks the security of the sLHAE scheme. In Case 1.1.1 and

Case 1.1.2 we use the Encrypt queries to compute the output of the server oracle

m13.

The Cases 2 can be reduced to the security of the sLHAE scheme. We embed

the sLHAE challenge in the key k
(C)
S

of the client oracle that is used to decrypt

server messages. As in previous proofs k(C)
S

is independent of the adversary and

all computations made by the server oracle. However, now any message that

makes the client accept breaks the security of the sLHAE scheme.

To prove that no adversary of Type 2 exists (again except for some negligi-

ble error probability), we exploit that in the previous proof we technically also

showed, that the client will not accept if any of the messages sent by the client

will be modified. Since any message that is used to derive the encryption keys

will not be modified, the encryption keys of client and server oracle are equal.

With the same arguments as before, we can now substitute the encryption keys

by random values and directly plugin the sLHAE challenge in either k(C)
C

= k
(S)
C

or k(C)
S

= k
(S)
S

. This means that for the corresponding key every ciphertext gen-

erated by the client or server oracle has been produced using the Encrypt query of

96

5.6 TLS-RSA with Server-Only Authentication is ACCE Secure

the sLHAE game. Similarly the Decrypt query is used to decrypt all these queries

on behalf of the receiving oracle. Since both DH shares are drawn randomly in

each session we also have perfect forward secrecy.

5.6 TLS-RSA with Server-Only Authentication is ACCE

Secure

In this section we show that TLS-RSA with server-only authentication is ACCE

secure under Definition 3.10.

Theorem 5.4. Let µ = µ() be the output length of thePRF, ⌫ = ⌫() be the

length of the premaster secret, and � = �() be the length of the nonces r
C

and r
S

. Assume that the pseudo-random function is (t, ✏prf , qprf)-secure, the hash

function is (t, ✏H)-secure, the public key encryption scheme is (t, ✏pke, qpke)-secure,

and the sLHAE scheme is (t, ✏sLHAE)-secure. Then for any adversary that (t0, ✏tls)-

breaks the server-only authenticated TLS-RSA Handshake protocol in the sense

of Definition 3.10 with t ⇡ t0 and qpke � ⌘, and qprf � 2, it holds that

✏tls
(⌘�)2

2��1
+ 8⌘�2(2�⌫ + 2�µ + ✏H) + (8⌘�2 + ⌘�)(✏pke + 2✏prf + 2✏sLHAE).

We prove Theorem 5.4 via two lemmas. Lemma 5.6 bounds the probability

✏auth that an adversary succeeds in making the client oracle accept maliciously.

Lemma 5.7 bounds the probability ✏enc that an adversary answers the encryption

challenge correctly while not making client oracle accept maliciously. Then we

have

✏tls ✏auth + ✏enc.

5.6.1 Server-Only Authentication

Lemma 5.6. For any adversary A running in time t0 ⇡ t, the probability that

there exists a client oracle ⇡s

i

that accepts maliciously with respect to Defini-

tion 3.10 is at most

✏auth
(⌘�)2

2�
+ 4⌘�2(✏sLHAE + 2✏prf + ✏H + 2�⌫ + 2�µ + ✏pke).

where all quantities are defined as stated in Theorem 5.4.

Proof. The proof proceeds in a sequence of games, following [BR06, Sho04].

The first game is the real security experiment. We then describe several inter-

mediate games that modify the original game step-by-step, and argue that our

complexity assumptions imply that each game is computationally indistinguish-

able from the previous one. In particular, the di↵erence of the success probability

97

5 On the Provable Security of TLS

of the adversary in two subsequent game is negligible. We end up in the final

game, where no adversary can break the security of the protocol.

Let break(1)
�

be the event that occurs when a client oracle accepts maliciously

in the sense of Definition 3.10 in Game �. If required, we use x(S) to denote the

value of x that is computed by a server oracle and x(C) the value of x that is

computed by a client oracle (e.g. pms(S) denotes the premaster secret computed

by the server).

Game 0. This game equals the ACCE security experiment described in Sec-

tion 3.2.2. Thus, for some ✏auth we have

Pr[break(1)0] = ✏auth.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists

any oracle ⇡s

i

that chooses a random nonce r
C

or r
S

which is not unique. More

precisely, the game is aborted if the adversary ever makes a first Send query to

an oracle ⇡s

i

, and the oracle replies with random nonce r
C

or r
S

such that there

exists some other oracle ⇡s

0
i

0 which has previously sampled the same nonce.

In total less than ⌘� nonces r
C

and r
S

are sampled, each uniformly random from

{0, 1}�. Thus, the probability that a collision occurs is bounded by (⌘�)2 · 2��,

which implies

Pr[break(1)0] Pr[break(1)1] +
(⌘�)2

2�
.

Note that now each oracle has a unique nonce r
C

or r
S

, which will be used to

compute the master secret.

Game 2. We try to guess which client oracle will be the first to accept maliciously.

If our guess is wrong, we abort the game.

Technically, this game is identical to the previous, except for the following. The

challenger guesses two random indices (i⇤, s⇤)
$
 [�]⇥ [⌘]. If ⇡s

i

is the first client

oracle that ‘accepts’ maliciously and (i, s) 6= (i⇤, s⇤), then the challenger aborts

the game. Since there are at most ⌘� oracles the probability to guess correctly,

i.e. we have (i, s) = (i⇤, s⇤), is � 1/(⌘�) , and thus

Pr[break(1)1] ⌘� · Pr[break(1)2].

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first client oracle that ‘accepts’ maliciously, as otherwise the

game is aborted.

98

5.6 TLS-RSA with Server-Only Authentication is ACCE Secure

Game 3. In this game we guess the party that holds the communication partner

of the client oracle. Technically we draw j⇤
$
 [�]. If ⇧ 6= j⇤ for client oracle ⇡s

⇤
i

⇤

we abort.

We get

Pr[break(1)2] � · Pr[break(1)3].

In the following we will consider two distinct cases. In the first case, Case 1,

the adversary does not modify the ciphertext containing the premaster secret,

message m8, which is sent from the client oracle to the server oracle. In the

second case, Case 2, it does so.

Case 1:

Game 4. In this game we exchange the ciphertext c of the premaster secret

sent by ⇡s

⇤
i

⇤ , message m8, by an encryption c0 of a truly random message r (and

independently of pms). However, both client and server continue to use pms

as computed by the client. Since the challenger implements all server oracles it

can, whenever the ciphertext c0 is received by any server oracle of P
j

⇤ , set the

premaster secret to pms. We show that this modification is indistinguishable from

the previous game when the Public-Key Encryption (PKE) scheme is secure. Any

adversary that can distinguish these two games can be used to break the security

of the public key scheme as follows.

First, we embed the challenge public key of the PKE challenger in pk
j

⇤ . Next

we draw a random pms for oracle ⇡s

⇤
i

⇤ and send it to the PKE challenger. The

challenge in turn responds with an encryption c⇤ of either pms or an independently

drawn random value r. Let ⇡t

j

⇤ be the server oracle where we exchange m8 with

c⇤ but continue to use the original pms. For all other oracles ⇡t

j

⇤ of P
j

⇤ with

t 2 [⌘] and t 6= t⇤ we use the decryption queries granted in the PKE security

game to decrypt m8 and set the pms of the server oracle as given in the plaintext

of m8 unless the server oracle receives c⇤. Whenever c⇤ is received by any server

oracle we simply set the premaster secret of that oracle to pms. Observe that if

c⇤ is an encryption of pms we are in the previous game. However, if c⇤ encrypts

an independently drawn random message we are in the current game. So any

adversary that distinguishes these two games can directly be used to break the

security of the PKE scheme.

We have

Pr[break(1)3] Pr[break(1)4] + ✏pke.

We note that in this game the adversary does not obtain any information on

pms from m8.

99

5 On the Provable Security of TLS

We now consider two subcases. Either the adversary does not modify any of the

messages r
C

or r
S

in transit (Case 1.1) or it does so (Case 1.2).

Case 1.1:

Game 5. In this game, we substitute the master secret generated by the client

oracle and the server oracle by a single truly random value. Any adversary that

can distinguish between this and the previous game can be used to break the

security of the function PRF.

To show this, observe that since pms is drawn uniformly at random and no

information about pms is revealed to the adversary via m8 due the previous

game we can directly embed the security challenge of the PRF challenger: we use

a PRF query (granted in the PRF security game) to compute the master secret.

If the answer has been computed with PRF we are in the previous game. If the

answer is a truly random value, we are in the current game. So any adversary

that distinguishes this game from the previous can directly be used to break the

security of the PRF.

We have,

Pr[break(1)4] Pr[break(1)5] + ✏prf .

Recall that neither r
S

nor r
C

have been modified by the adversary. We are now

in a game where the master secret ms of client and server oracle are equal and

the truly random function used for computing ms can only be accessed by ⇡s

⇤
i

⇤

and ⇡t

⇤
j

⇤ .

At this point we define another two subcases. Either the adversary does not

modified any of the (remaining) messages of m1 to m11, Case 1.1.1, or it does,

Case 1.1.2.

Case 1.1.1:

In this case, the adversary must by definition modify m13 to make the client

oracle accept maliciously.

Game 6. However, we now guarantee, that the adversary has no knowledge of

the encryption keys generated by the client oracle and the server oracle. We do

so by first replacing the PRF used to compute these keys (and fin
S

) by a truly

random function, and then substituting fin
S

and the encryption keys k
S

and k
C

with truly random values. Any adversary that can detect this modification can

be used to break the security of the PRF.

To show this, observe that since ms is drawn uniformly at random we can

directly embed the security challenge of the PRF challenger: we use a PRF query

100

5.6 TLS-RSA with Server-Only Authentication is ACCE Secure

(granted in the PRF security game) to compute the encryption keys and fin
S

.

If these values have been computed with thePRF, we are in the previous game.

If these values are truly random, we are in the current game. So any adversary

that distinguishes this game from the previous can directly be used to break the

security of the PRF.

We have

Pr[break(1)5] Pr[break(1)6] + ✏prf .

Game 7. In this game we show that any successfull adversary can be used to

break the security of the encryption system. We know that the adversary outputs

a message m012 6= m13 which makes the client adversary accept. This can only

happen if m012 is a distinct, valid encryption of m13. However, then m012 can be

used to break the security of the sLHAE encryption scheme as follows: since the

encryption keys are random we can directly plug-in the sLHAE challenge (in k
S

)

that is used to encrypt and decrypt messages sent from the server oracle to the

client oracle. When we need to generate m13 that is computed by the server

oracle we use one Encrypt query as granted by the sLHAE challenger. Since the

adversary outputs a new ciphertext m012 that has not been generated by Encrypt,

this directly breaks the security of the sLHAE game.

Pr[break(1)6] ✏sLHAE.

Collecting probabilities we get

✏auth
(⌘�)2

2�
+ ⌘�2(✏sLHAE + 2✏prf + ✏pke).

In the following, we will only explain the di↵erences to the proof of Case 1.1.1.

Case 1.1.2:

In this case, the adversary has modified any of the remaining messages m1 to m11

on transit. We now substitute the output values of the pseudo-random function

keyed with ms by truly random values. Since the encryption keys do only depend

on r
C

and r
S

, we can substitute them by the same random keys. However, the

computation of fin
S

does also depend on the messages m1 to m11. By assumption,

the values m1 to m11 computed and received by the two oracles do di↵er at some

point. Thus, when hashing the concatenated messages, the corresponding outputs

can only be equal with probability at most ✏H – otherwise we can use the adversary

to produce a collision and break a security of the hash function. Since the inputs

to PRF are now distinct with overwhelming probability we can substitute fin(S)
S

101

5 On the Provable Security of TLS

and fin(C)
S

28 by independently drawn random values. With the same argument as

before, our modification can only be detected by the adversary with probability

✏prf . We now abort if the output values of the PRF are equal which only happens

with probability 2�µ.

At this point the server oracle cannot help the adversary to compute a message

m13 which will make the client oracle accept. Thus, to make the client oracle

accept, the adversary must compute m012 to be an encryption of fin(C)
S

. However,

since fin(S)
S

is distinct from fin(C)
S

the adversary cannot use m13.

We now embed the sLHAE challenge in k
(C)
S

which is used by the client to

decrypt messages sent by the server. Then the adversary against server-only

authentication outputs a new ciphertext m012 that has not been generated by

Encrypt which breaks the security of the sLHAE game.

Collecting probabilities we get

✏auth
(⌘�)2

2�
+ ⌘�2(✏sLHAE + 2✏prf + 2�µ + ✏H + ✏pke).

Case 1.2:

In this case the adversary has modified either r
C

or r
S

in transit. Since these

values are input to the PRF when computing the master secret we can substitute

ms(S) andms(C) by independently drawn random values. We abort if these values

are equal which only happens with probability 2�µ. In the next step we replace

fin(C)
C

and fin(C)
S

and the encryption keys k(C)
S

k
(C)
C

with independently drawn truly

random values. Due to the security of the PRF these modifications cannot be

detected by the adversary. Since k
(C)
S

is never used at any point before we can

also draw this value after the client oracle receives the encryption of fin
S

and

independently of all the computations of the adversary and the server oracle. We

now embed the sLHAE challenge into k
(C)
S

.

To make the client oracle accept the adversary must compute m012 to be an

encryption of fin(C)
S

under k(C)
S

. Thus, if the adversary outputs a new ciphertext

m012, it directly breaks the security of the sLHAE game as before. Observe that to

simulate the server oracle correctly, we do not have to query Encrypt to generate

m13.

Collecting probabilities we get

✏auth
(⌘�)2

2�
+ ⌘�2(✏sLHAE + 2✏prf + 2�µ + ✏pke).

28Recall that fin
(C)
S refers to the ServerFinished message that is re-computed by the client (for verification)

102

5.6 TLS-RSA with Server-Only Authentication is ACCE Secure

Case 2:

We now have that the adversary modifies message m8 which is sent from the

client oracle to the server oracle and contains the premaster secret pms. We first

substitute the ciphertext c (i.e. the encrypted premaster secret) that is sent by

the client oracle, by an encryption of a truly random message r independently

drawn from pms. If r is equal to pms which happens with negligible probability

2�⌫ we abort, otherwise we continue. The client will continue to use the randomly

drawn pms. The server oracle will use whatever it receives as m8. We show that

our modification is indistinguishable from the previous game when the PKE is

secure. Any adversary that can distinguish these two games can be used to break

the security of the public key scheme as follows.

We embed the challenge public key of the PKE challenger in pk
j

⇤ . For all other

oracles ⇡t

j

⇤ of P
j

⇤ with t 2 [⌘] and t 6= t⇤ we use the decryption queries granted

by the PKE challenger to decrypt m8 messages. We let the client oracle draw the

random pms and then sent it to the PKE challenger who returns a ciphertext c⇤

which either encrypts pms or a truly random value. Next we send c⇤ to the server

oracle ⇡t

⇤
j

⇤ . Observe that if c⇤ is an encryption of pms we are in the previous game.

However, if c⇤ encrypts an independently drawn random message we are in the

current game. So any adversary that distinguishes these two games can directly

be used to break the security of the PKE scheme.

We now have that pms(C) and pms(S) are independent (while pms(C) is uni-

formly random). Observe that no information about pms(C) is revealed neither

to the adversary nor to the server oracle. In the next step we replace the master

secret ms(C) by a truly random value. Then with the same arguments as above

we replace the Finished messages fin(C)
C

and fin(C)
S

and the encryption keys k(C)
S

k
(C)
C

by independently drawn truly random values. These modifications are all

indistinguishable by the adversary by the security of the PRF. Observe that now

k
(C)
S

can also be drawn after the client oracle receives m13 (and independently of

all previous values) since it is never used before. Now we can embed the sLHAE

challenge key into k
(C)
S

and any message that makes the client oracle accept can

be used to break the sLHAE scheme. We do not have to use any Encrypt query

granted by the sLHAE security game.

Collecting probabilities we get

✏auth
(⌘�)2

2�
+ ⌘�2(✏sLHAE + 2✏prf + 2�⌫ + ✏pke).

⇤

103

5 On the Provable Security of TLS

5.6.2 Indistinguishability of Ciphertexts

Lemma 5.7. For any adversary A running in time t0 ⇡ t, the probability that A

answers the encryption-challenge correctly is at most 1/2 + ✏enc with

✏enc ✏auth + ⌘�(✏pke + 2✏prf + ✏sLHAE).

where ✏auth is an upper bound on the probability that there exists a client oracle that

accepts maliciously in the sense of Definition 3.10 with server-only authentication

(Lemmas 5.6) and all other quantities are defined as stated in Theorem 5.4.

Proof. Assume without loss of generality that the adversary A always outputs

a triple such that all conditions in Property 2 of Definition 3.10 are satisfied. Let

break(2)
�

denote the event that b0 = bs
i

in Game �, where bs
i

is the random bit

sampled by the client oracle ⇡s

i

, and b0 is either the bit output by A or (if A does

not output a bit) chosen by the challenger. Let Adv
�

:= Pr[break(2)
�

]� 1/2 denote

the advantage of A in Game �.

Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Sec-

tion 3.2.2. For some ✏enc we have

Pr[break(2)0] =
1

2
+ ✏enc =

1

2
+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses

b0 uniformly random, if there exists any oracle that accepts maliciously in the sense

of the ACCE definition.

Thus we have

Adv0 Adv1 + ✏auth,

where ✏auth is an upper bound on the probability that there exists a client oracle

that accepts maliciously in the sense of Definition 3.10 (cf. Lemma 5.6).

Recall that we now assume that A outputs a triple (i, s, b0) such that the or-

acle ⇡s

i

‘accepts’ with a unique partner oracle ⇡t

j

, such that ⇡s

i

has a matching

conversation to ⇡t

j

, as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses

indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. It aborts and chooses b0 at random, if the adversary

outputs (i, s, b0) with (i, s) 6= (i⇤, s⇤). With probability 1/(⌘�) we have (i, s) =

(i⇤, s⇤), and thus

Adv1 ⌘� · Adv2.

104

5.7 TLS-RSA with Mutual Authentication is ACCE Secure

Note that in Game 2 we know that A will output (i⇤, s⇤, b0). Note also that ⇡s

⇤
i

⇤

has a unique ‘partner’ due to the previous game. In the sequel we denote with

⇡t

⇤
j

⇤ the unique oracle such that ⇡s

⇤
i

⇤ has a matching conversation to ⇡t

⇤
j

⇤ , and say

that ⇡t

⇤
j

⇤ is the partner of ⇡s

⇤
i

⇤ .

Subsequently, we only consider the case that the adversary does not modify

any of the messages of the pre-accept stage.

Due to proof of Lemma 5.6, we can subsequently only deal with adversaries that

do not modify messages exchanged between client ⇡s

⇤
i

⇤ and server oracle. Then

we can use all the game-hops of the previous proof to the position where both

the server and the client oracle compute the keys used for the sLHAE scheme as

uniformly random keys. In this way we end up in Game 6 of the previous proof.

Game 3. In this game we can directly plug-in the sLHAE challenge. We randomly

decide to embed the sLHAE challenge key into k
(C)
C

= k
(S)
C

or into k
(C)
S

= k
(S)
S

.

With probability� 1/2 our choice is correct (i.e. the adversary attacks the sLHAE

ciphertexts generated under this key). We have

Adv2 2� · Adv3.

This means that for the corresponding key every ciphertext generated by the

client or server oracle has been produced using the Encrypt query of the sLHAE

game. Similarly the Decrypt query is used to decrypt all the queries on behalf of

the receiving oracle. If A outputs a triple (i⇤, s⇤, b0), then the challenger forwards

b0 to the sLHAE challenger. Otherwise it outputs a random bit. Since the chal-

lenger essentially relays all messages it is easy to see that an adversary A having

advantage ✏0 yields an adversary against the sLHAE security of the encryption

scheme with success probability at least 1/2 + ✏0.

Since by assumption any adversary has advantage at most ✏sLHAEin breaking

the sLHAE security of the symmetric encryption scheme, we have

Adv3 1/2 + ✏sLHAE.

Collecting probabilities we get that ✏enc ✏auth + ⌘�(✏pke + 2✏prf + 2✏sLHAE).

⇤

5.7 TLS-RSA with Mutual Authentication is ACCE Secure

Theorem 5.5. Let µ be the output length of thePRF, ⌫ be the length of the

premaster secret, and � be the length of the nonces r
C

and r
S

. Assume that

105

5 On the Provable Security of TLS

the PRF is (t, ✏prf , qprf)-secure, the public key encryption scheme is (t, ✏pke, qpke)-

secure, the hash function is (t, ✏H)-secure, the signature scheme is (t, ✏sig, qsig)-

secure, and the sLHAE scheme is (t, ✏sLHAE)-secure.

Then for any adversary that (t0, ✏tls)-breaks the TLS-RSA Handshake protocol

with mutual authentication in the sense of Definition 3.8 with t ⇡ t0 and qpke, qsig �

⌘, qprf � 2, it holds that

✏tls 4✏ca+
(d`)2

2��2
+2`·✏sig+16d`2(2�⌫+2�µ+✏H)+(16d`2+d`)(✏pke+2✏prf+2✏sLHAE).

We consider the following three types of adversaries.

Type 1. The adversary breaks the authentication property of Definition 3.8 and

the first oracle that maliciously accepts is a client oracle (i.e. an oracle with

⇢ = Client).

Type 2. The adversary breaks the authentication property of Definition 3.8 and

the first oracle that maliciously accepts is a server oracle (i.e. an oracle with

⇢ = Server).

Type 3. The adversary answers the encryption challenge correctly for sessions in

which client and server have mutual authentication.

The proof is similar to the proof of Theorem 5.4 (for TLS-RSA with server-only

authentication) given above. We can argue that no adversary of Type 1 exists

(except for some negligible error probability) because we have already shown in

the proof of Theorem 5.4 that the client only accepts if the messages sent by the

client and server have not been modified in transit, even without authentication

of the client. The only additional message sent from the client to the server

oracle in the mutual authentication setting is the Certificate Verify message m9

which contains a fresh signature (that is also computed over the random nonces).

However, we can argue that any modification to the signature on transit results

in the client to not accept. This is because the ServerFinished message is

computed over all previous messages, which would then be di↵erent for the client

(which re-computes it for verification over the unmodified signature it sent) and

the server (which computes it over the modified signature it received) oracle.

To prove that no adversary of Type 2 exists (again except for some negligible

error probability) we now exploit that the random nonces, contained in messages

m1 and m2, and the encryption of the premaster secret, message m8, are signed

by the client. If the Type 2 adversary modifies any of these messages, we can

directly use the adversary to output a signature forgery. We can now substitute

m8 by the encryption of a truly random value under the assumption that the

public key encryption system is CCA secure. As before, the adversary now cannot

106

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

gain any information on pms from the ciphertext. Based on this modification and

the security of the PRF we can in the next step substitute the master secret ms

by a truly random value. With a truly random master secret we can now, again

by the security of thePRF, substitute the Finished messages fin(S)
C

and fin(S)
S

and

the encryption keys k(S)
C

and k
(S)
S

with truly random values. We can now embed

the sLHAE key into k
(S)
C

. Since the nonces and m8 are protected from adversarial

modifications, we must have that k
(S)
C

= k
(C)
C

. Now there are two cases. If the

adversary modifies any of the messages m1 to m10, the ServerFinished messages

fin(S)
S

and fin(C)
S

can, exploiting the security of the hash function and thePRF,

be substituted by uniformly random values which are distinct with probability

1 � 2�µ. The message m11 output by the client oracle thus cannot help the

adversary to make the server oracle accept. The adversary must compute an

encryption of fin(S)
C

on its own. Otherwise, in case m11 (ClientFinished) is the

only message modified by the adversary, they will be substituted by the same

random value, i.e. fin(S)
C

= fin(C)
C

. In such a case, any adversary that makes the

server oracle accept maliciously has to compute a new encryption m011 of fin
(S)
C

=

fin(C)
C

. In both cases we can use the Encrypt query from the sLHAE security game

to generate m11. Therefore, to make the server accept, the adversary must now

break the security of the sLHAE scheme.

To prove that no adversary of Type 3 exists (again except for some negligible

error probability) we exploit that no message up to, but not including, m13 has

been modified on transit. Then the keys for the sLHAE scheme can be substituted

by uniformly random values and we can directly plugin the sLHAE challenge in

one of the encryption keys into either k
(C)
C

= k
(S)
C

or k
(C)
S

= k
(S)
S

. This means

that for the corresponding key every ciphertext generated by the client or server

oracle has been produced using the Encrypt query of the sLHAE game. Similarly

the Decrypt query is used to decrypt all these queries on behalf of the receiving

oracle. An adversary that solves the encryption challenge can so directly be used

to break the security of the sLHAE scheme.

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

In this section we show that TLS-SDH with mutual authentication and client

static Di�e-Hellman keys is ACCE secure. We only consider the case where the

client certificate contains a static DH key, in contrast to the case where the client

only provides a certificate containing a public key of a digital signature scheme

and chooses fresh DH shares for each connection. We think that the first case is

more interesting as it allows to reduce the security of the protocol to the standard

DDH assumption, in contrast to the second scenario, which would again require

107

5 On the Provable Security of TLS

a reduction to the (non-standard) PRF-ODH assumption.

Theorem 5.6. Let µ be the output length of the PRF and let � be the length of

the nonces r
C

and r
S

. Assume that the pseudo-random function is (t, ✏prf , qprf)-

secure, the hash function is (t, ✏H)-secure, the DDH-problem is (t, ✏ddh)-hard in

the group G used to compute the TLS premaster secret, and the sLHAE scheme

is (t, ✏sLHAE)-secure. Assume that no party will accept in a TLS handshake, if the

public key of the communication partner is equal to the public key of that party.29

Then for any adversary that (t0, ✏tls)-breaks the static Di�e-Hellman TLS Hand-

shake protocol with mutual authentication in the sense of Definition 3.8 with t ⇡ t0

and qprf � 2, it holds that

✏tls 4
(⌘�)2

2�
+ 4�2

· ✏ddh + 12⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ)

+ �2(✏ddh + d(2✏prf + 2✏sLHAE))

(⌘�)2

2��2
+ 5�2

· ✏ddh + 26⌘�2
· ✏prf + 14⌘�2

· ✏sLHAE + 12⌘�2
· ✏H.

We prove Theorem 5.6 by proving two lemmas. Lemma 5.8 bounds the proba-

bility ✏auth that an adversary succeeds in making any oracle accept maliciously.

Lemma 5.11 bounds the probability ✏enc that an adversary does not succeed in

making an oracle accept maliciously, but which answers the encryption challenge

correctly. Then we have

✏tls ✏auth + ✏enc.

Lemma 5.8. For any adversary A running in time t0 ⇡ t, the probability that

there exists an oracle ⇡s

i

that accepts maliciously is at most

✏auth
(⌘�)2

2��1
+ 2�2

· ✏ddh + 6⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ),

where all quantities are defined as stated in Theorem 5.6.

Note that ✏auth ✏client + ✏server, where ✏client is an upper bound on the probability

that there exists an oracle with ⇢ = Client that accepts maliciously in the sense of

Definition 3.8, and ✏server is an upper bound on the probability that there exists

an oracle with ⇢ = Server that accepts maliciously. We claim that

✏client
(⌘�)2

2�
+ �2

· ✏ddh + 3⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ), and

✏server
(⌘�)2

2�
+ �2

· ✏ddh + 3⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ),

and thus

✏auth ✏client + ✏server

 2 ·

✓
(⌘�)2

2�
+ �2

· ✏ddh + 3⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ)

◆
.

29This can easily be realized technically.

108

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

We split up the proof of Lemma 5.8 in two separate lemmas, Lemma 5.9 and

Lemma 5.10, which we give (and prove) in the following sections.

5.8.1 Client Authentication

Lemma 5.9. For any adversary A running in time t0 ⇡ t, the probability that

there exists any ⇡s

i

with ⇢ = Client that accepts maliciously with respect to Defi-

nition 3.8 is at most

✏client
(⌘�)2

2�
+ �2

· ✏ddh + 3⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ)

where all quantities are defined as stated in Theorem 5.6.

Proof. The proof again proceeds in a sequence of games. As before we use

di↵erent subcases to organize the proof. When denoting the di↵erent subcases we

stay consistent with the general proof outline. We end up in a final game, where

no adversary can break the security of the protocol. Let break(3)
�

be the event

that occurs when a client oracle accepts maliciously in the sense of Definition 3.8

in Game �.

Game 0. This game equals the ACCE security experiment described in Sec-

tion 3.2.2. Thus, for some ✏client we have

Pr[break(3)0] = ✏client.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists

any oracle ⇡s

i

that chooses a random nonce r
C

or r
S

which is not unique. More

precisely, the game is aborted if the adversary ever makes a first Send query to

an oracle ⇡s

i

, and the oracle replies with random nonce r
C

or r
S

such that there

exists some other oracle ⇡s

0
i

0 which has previously sampled the same nonce.

In total less than ⌘� nonces r
C

and r
S

are sampled, each uniformly random from

{0, 1}�. Thus, the probability that a collision occurs is bounded by (⌘�)22��,

which implies

Pr[break(3)0] Pr[break(3)1] +
(⌘�)2

2�
.

Note that now each oracle has a unique nonce r
C

or r
S

, which will be used to

compute the master secret.

Game 2. We now try to guess two distinct indices (i⇤, j⇤) with i⇤, j⇤ 2 [�], such

that the first oracle ⇡s

i

that will accept maliciously with ⇢ = Client belongs to

party P
i

⇤ , i.e. i = i⇤ and has communication partner ⇧ = j with j = j⇤. If

109

5 On the Provable Security of TLS

the first oracle to accept maliciously is ⇡s

i

with i 6= i⇤ or ⇡s

i

has ⇧ = j with

j 6= j⇤, then the challenger aborts the game. Since there are at most � parties,

the probability to guess correctly, i.e. we have (i, j) = (i⇤, j⇤), is � 1/�2 , and

thus

Pr[break(3)1] �2
· Pr[break(3)2].

Game 3. In this game we want to substitute the premaster secret pms computed

by all oracles ⇡s

i

⇤ and their partner oracles ⇡t

j

⇤ for s, t 2 [⌘] by a randomly chosen

value. We can exploit the fact that the premaster secret will be the same for

all sessions of parties P
i

⇤ and P
j

⇤ in this setting (static Di�e-Hellman keys and

mutual authentication) and that we know the party P
i

⇤ holding the oracle that

will accept maliciously first and its communication partner P
j

⇤ due to the previous

game.

The challenger in this game proceeds as before but replaces the Di�e-Hellman

public keys in the certificates for P
i

⇤ and P
j

⇤ with the Di�e Hellman values

(ga, gb) from a DDH challenge tuple (g, ga, gb, gc). Observe that ga and gb are

distributed exactly as the public keys that have originally been chosen by the

challenger. The challenger then proceeds as follows. Whenever two oracles of

P
i

⇤ and P
j

⇤ communicate with each other, the premaster secret will be set to gc,

otherwise the pms will be computed honestly and then set by the challenger. The

challenger can do so, since it knows the secret keys for all public keys. It knows

the corresponding secret Di�e-Hellman key of the communication partner of P
i

⇤

or P
j

⇤ and can so compute the premaster secret.

If gc = gab then we are in the previous game, whereas if gc 6= gab we are in

the current game. It follows that we can use an adversary that can distinguish

between this game and the previous game to break DDH.

We have

Pr[break(3)2] Pr[break(3)3] + ✏ddh.

Game 4. We now try to guess index s⇤ with s⇤ 2 [⌘], such that the first oracle

of P
i

⇤ that will accept maliciously is ⇡s

⇤
i

⇤ . If the first oracle to accept maliciously

is ⇡s

i

⇤ with s 6= s⇤, then the challenger aborts the game. Since there are at most

⌘ oracles for each party, the probability to guess correctly, i.e. we have s = s⇤, is

� 1/⌘ , and thus

Pr[break(3)3] ⌘ · Pr[break(3)4].

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first client oracle that ‘accepts’ maliciously with ⇧ = j⇤, as

otherwise the game is aborted.

110

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

We now consider two cases. Either the adversary does not modify any of the

messages r
C

or r
S

in transit (Case 1.1) or it does so (Case 1.2).

Case 1.1:

Game 5. In this game, we substitute the master secret generated by the client

oracle and the server oracle by a truly random value. Any adversary that can

distinguish between this and the previous game can be used to break the security

of the PRF.

To show this, observe that since pms is drawn uniformly at random due to

the previous game, we can directly embed the security challenge of the PRF

challenger: we use a PRF query to compute the master secret. If the answer has

been computed with the PRF we are in the previous game. If the answer is a truly

random value, we are in the current game. So any adversary that distinguishes

this game from the previous can directly be used to break the security of the

PRF.

We have,

Pr[break(3)4] Pr[break(3)5] + ✏prf .

We are now in a game where the master secret of client and server oracle are

equal and truly random, and where neither r
S

nor r
C

have been modified by

the adversary. At this point we define two subcases. Either the adversary does

not modify any of the (remaining) messages m1 to m11, Case 1.1.1, or it does,

Case 1.1.2.

Case 1.1.1:

Game 6. In this game, the adversary must by definition modify m13 to make the

client oracle accept maliciously. However, we first substitute fin
S

and the encryp-

tion keys generated by the client oracle and the server oracle by truly random

values. Any adversary that can distinguish between this and the previous game

can be used to break the security of the PRF. To show this, observe that since

ms is drawn uniformly at random we can directly embed the security challenge of

the PRF challenger: we use a PRF query to compute fin
S

. If the answer has been

computed with the PRF we are in the previous game. If the answer is a truly

random value, we are in the current game. So any adversary that distinguishes

this game from the previous can directly be used to break the security of the

PRF. We have,

Pr[break(3)5] Pr[break(3)6] + ✏prf .

111

5 On the Provable Security of TLS

Game 7. In this game we show that any adversary that wins can be used to

break the security of the encryption system. We know that the adversary outputs

a message m012 6= m13 which makes the client adversary accept. Since fin
S

is a

truly random value this can only happen if m012 is also a valid encryption of

m13. However, this encryption can be used to break the security of the sLHAE

encryption scheme as follows: we embed the sLHAE challenge key into k(C)
S

= k
(S)
S

and use the Encrypt query to compute m13. Now the adversary outputs a new

ciphertext m012 that has not been generated by Encrypt which breaks the security

of the sLHAE game.

Pr[break(3)6] ✏sLHAE.

Collecting probabilities we get that

✏client
(⌘�)2

2�
+ �2

· ✏ddh + ⌘�2
· (2✏prf + ✏sLHAE).

In the following, we will only explain the di↵erences to the proof of Case 1.1.1.

Case 1.1.2:

In this case, the adversary has modified any of the remaining messages m1 to

m11 on transit. We first substitute the output values of the PRF when keyed

with ms by truly random values. Since the encryption keys do only depend on

r
C

and r
S

we substitute the values that have been computed by the client oracle

and the server oracle by the same random keys. However, the computation of

fin
S

does depend on the messages m1 to m11. Since m1 to m11 are distinct, so

must be their hash values, as otherwise we can use the adversary to break the

security of the hash function. The distinct hash values are input to the PRF and

we can substitute fin(S)
S

, fin(C)
S

and k
(C)
S

= k
(S)
S

by independently drawn random

values. If fin(C)
S

= fin(S)
S

, which happens with probability 2�µ, we abort. Otherwise

(fin(C)
S

6= fin(S)
S

), the server oracle will not compute a message m13 that will make

the client oracle accept. To make the client oracle accept the adversary must

compute m012 to be an encryption of fin(C)
S

.

Now we again embed the sLHAE challenge in k
(C)
S

= k
(S)
S

. Then the adversary

outputs a new ciphertext m012 that has not been generated by Encrypt which

breaks the security of the sLHAE game.

Collecting probabilities we get that

✏client
(⌘�)2

2�
+ �2

· ✏ddh + ⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ).

Case 1.2:

In this case the adversary has modified either r
C

or r
S

in transit. Since these

values are input to the PRF when computing the master secret we can by the

112

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

security of the PRF substitute ms(S) and ms(C) by independently drawn random

values. With probability 2�µ these values are equal and we abort. Otherwise we

proceed as follows. Similar to before, we can by the security of the PRF show

that k(C)
S

can be substituted with a uniformly random key that is drawn after the

client oracle receives the last message m13. Thus k
(C)
S

is independent of the server

oracle and the adversary. Since k
(C)
S

is a uniformly random value independent of

any value computed by the server oracle and unknown to the adversary we can

as before embed the PRF challenge in k
(C)
S

.

Thus, if the adversary outputs a message that makes the client accept, it di-

rectly breaks the security of the sLHAE game.

Collecting probabilities we get that

✏client
(⌘�)2

2�
+ �2

· ✏ddh + ⌘�2
· (2✏prf + ✏sLHAE + 2�µ).

⇤

5.8.2 Server Authentication

Lemma 5.10. For any adversary A running in time t0 ⇡ t, the probability that

there exists a ⇡s

i

with ⇢ = Server that accepts maliciously with respect to Defini-

tion 3.8 is at most

✏server
(⌘�)2

2�
+ �2

· ✏ddh + 3⌘�2
· (2✏prf + ✏H + ✏sLHAE + 2�µ)

where all quantities are defined as stated in Theorem 5.6.

Proof. Due to the symmetry of the handshake the proof is essentially that of

Lemma 5.9. The only di↵erence is that now the message m13 can be modified in

‘transit’. However by the definition of matching conversation this does not result

in a successfull adversary. ⇤

5.8.3 Indistinguishability of Ciphertexts

Lemma 5.11. For any adversary A running in time t0 ⇡ t, the probability that

A answers the encryption-challenge correctly is at most 1/2 + ✏enc with

✏enc ✏auth + �2
· ✏ddh + 2⌘�2

· (✏prf + ✏sLHAE).

where ✏auth is an upper bound on the probability that there exists a client oracle

that accepts maliciously in the sense of Definition 3.8 (Lemmas 5.9) and all other

quantities are defined as stated in Theorem 5.6.

113

5 On the Provable Security of TLS

Proof. Assume without loss of generality that the A always outputs a triple

such that all conditions in Property 2 of Definition 3.8 are satisfied. Let break(5)
�

denote the event that b0 = bs
i

in Game �, where bs
i

is the random bit sampled by

the oracle ⇡s

i

, and b0 is either the bit output by A or (if A does not output a bit)

chosen by the challenger. Let Adv
�

:= Pr[break(5)
�

]� 1/2 denote the advantage of

A in Game �.

Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Sec-

tion 3.2.2. For some ✏enc we have

Pr[break(4)0] =
1

2
+ ✏enc =

1

2
+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses

b0 uniformly random, if there exists any oracle that accepts maliciously in the sense

of the ACCE definition.

Thus we have

Adv0 Adv1 + ✏auth,

where ✏auth an upper bound on the probability that there exists an oracle that

accepts maliciously in the sense of Definition 3.8 (cf. Lemma 5.9).

Recall that we now assume that A outputs a triple (i, s, b0) such that the or-

acle ⇡s

i

‘accepts’ with a unique partner oracle ⇡t

j

, such that ⇡s

i

has a matching

conversation to ⇡t

j

, as the game is aborted otherwise.

Game 2. We now try to guess indices (i⇤, j⇤) with i⇤, j⇤ 2 [�], such that when

the Adversary terminates and outputs (i, s, b0) it holds that i = i⇤ and oracle ⇡s

i

⇤

has communication partner ⇧ = j with j = j⇤.

If the Adversary terminates and outputs (i, s, b0), and i 6= i⇤ or ⇡s

i

has communi-

cation partner ⇧ = j with j 6= j⇤, the challenger aborts the game. Since there are

at most � parties, the probability to guess correctly, i.e. we have (i, j) = (i⇤, j⇤),

is � 1/�2 , and thus

Pr[break(3)1] �2
· Pr[break(3)2].

Game 3. With the same arguments as in Game 3 of the proof of Lemma 5.9 we

exchange the premaster secret pms computed in all sessions between parties P
i

⇤

and P
j

⇤ with a randomly chosen value.

Thus we have

Adv2 Adv3 + ✏ddh.

114

5.8 TLS-SDH with Mutual Authentication is ACCE Secure

Game 4. We now try to guess index s⇤ with s⇤ 2 [⌘], such that when the Adver-

sary terminates and outputs (i, s, b0) it holds that s = s⇤. Since there are at most

⌘ oracles for each party, the probability to guess correctly, i.e. we have s = s⇤, is

� 1/d , and thus

Adv3 d · Adv4.

Note that in this game the adversary can only break the security of the protocol,

if oracle ⇡s

⇤
i

⇤ is the first client oracle that ‘accepts’ maliciously with ⇧ = j⇤, as

otherwise the game is aborted.

Game 5. In this game we exchange the encryption keys computed by ⇡s

⇤
i

⇤ (and the

partner oracle having a matching conversation with ⇡s

i

) with uniformly random

keys. To show this, we, for reasons of simplicity, will make several changes at the

same time and argue for each, that the adversary cannot detect this change.

Master secret. With the same arguments as in the previous proof we exchange

the master secret with a uniformly random value.

Encryption Keys. With the same arguments as in the previous proof we

exchange the encryption keys with a uniformly random value. Observe that

since ms is drawn uniformly at random we can again directly embed the security

challenge of the PRF challenger: we use a PRF query to compute the encryption

keys as

KC!S

enc ||KS!C

enc ||KC!S

mac ||KS!C

mac := PRF(ms, label2||rC ||rS)

If the adversary can detect whether the keys have been computed with the PRF

or if the answer is a truly random value, we can directly use this adversary to

break the security of the PRF.

Summarizing these changes we get that

Adv4 Adv5 + 2 · ✏prf .

Game 6. In this game we can directly plug-in the sLHAE challenge into either

k
(C)
C

= k
(S)
C

or k(C)
S

= k
(S)
S

. With probability � 1/2 our random choice is correct

(i.e. the adversary attacks the sLHAE ciphertexts generated under this key). We

have

Adv5 2� · Adv6.

This means that for the corresponding key every ciphertext generated by the

client or server oracle has been produced using the Encrypt query of the sLHAE

game. Similarly the Decrypt query is used to decrypt all these queries on behalf of

the receiving oracle. If A outputs a triple (i⇤, s⇤, b0), then the challenger forwards

115

5 On the Provable Security of TLS

b0 to the sLHAE challenger. Otherwise it outputs a random bit. Since the chal-

lenger essentially relays all messages it is easy to see that an adversary A having

advantage ✏0 yields an adversary against the sLHAE security of the encryption

scheme with success probability at least 1/2 + ✏0.

Since by assumption any adversary has advantage at most ✏sLHAE in breaking

the sLHAE security of the symmetric encryption scheme, we have

Adv6 1/2 + ✏sLHAE.

Collecting probabilities we get that

✏enc ✏auth + �2
· ✏ddh + 2⌘�2

· (✏prf + ✏sLHAE).

⇤

116

5.9 TLS-SDH with Server-Only Authentication is ACCE Secure

5.9 TLS-SDH with Server-Only Authentication is ACCE

Secure

Theorem 5.7. Let � be the length of the nonces r
C

and r
S

. Assume that

the pseudo-random function PRF is (t, ✏prf , qprf)-secure, the sLHAE scheme is

(t, ✏sLHAE)-secure, and the Strong PRF-ODH-problem is (t, ✏prfodh, qprfodh)-hard with

respect to G and PRF.

Then for any adversary that (t0, ✏tls)-breaks the TLS-SDH Handshake protocol

with server-only authentication in the sense of Definition 3.10 with t ⇡ t0 and

qprf � 1, and qprfodh � ⌘, it holds that

✏tls 2 ·
(⌘�)2

2��1
+ 8(⌘�)2 · (✏H + 2�µ) + 9(⌘�)2 · (✏prfodh + ✏prf + 2✏sLHAE) .

To prove the security of TLS-SDH with server-only authentication we again con-

sider the two types of adversaries against server-only authenticated TLS as de-

scribed in Section 5.5.

To prove that no adversary of Type 1 exists (again except for some negligible

error probability) we first proceed as in the proof of TLS-DHE with server-only

authentication. We first exclude modifications of the server share which is con-

tained as a long-term key in the server certificate. An adversary able to output a

valid signature (verifiable under the key used by the simulator to generate certifi-

cates) for a new DH public key could directly be used to forge a certificate. We

then guess the server oracle ⇡t

j

and its partner (client) oracle ⇡s

i

with probability

1/(⌘�)2.

Now we again follow the outline of the proof of TLS-DHE with server-only

authentication and consider two cases. We have the same cases and subcases as

before. Either the adversary does modify the client share (Case 2) or not (Case

1). Either the adversary does not modify any of the nonces in transit (Case

1.1), or it does (Case 1.2) so. Either the adversary does not modify any of the

remaining messages m1 to m11 in transit (Case 1.1.1), or it does (Case 1.1.2)

so.

In Case 1.2, Case 1.1.1, and Case 1.1.2 we exploit the Strong PRF-ODH

assumption to show that the master secret is indistinguishable from random.

As before, in Case 2 the master secret ms(C) computed by the client oracle is

indistinguishable from random and with overwhelming probability distinct from

ms(S).

To show that the master secret is indistinguishable from random in the subcases

of Case 1, we need to exploit the Strong PRF-ODH problem. We need the

enhanced (as compared to the original PRF-ODH assumption) capabilities of the

adversary in the Strong PRF-ODH game because any Type 1 adversary can try

117

5 On the Provable Security of TLS

to engage in several (qprfodh) sessions with the same server-oracle and the same

client share (only using distinct nonces). Thus, the attack capabilities granted in

the original PRF-ODH game do not su�ce to correctly simulate the behaviour of

the oracles. In Case 1 we substitute the master secret that is computed between

oracles ⇡s

i

and ⇡t

j

by a truly random value. Any adversary that can recognize

our modification can be used to break the Strong PRF-ODH assumption. Again

consider that we send the concatenation of the first label and the random nonces

to the PRF-ODH challenger, who responds with z
b

, gu and gv. At P
j

we first

embed the gv share from the PRF-ODH challenge in the certificate (without

changing the distribution, since gv is random). Also we now use the PRF-ODH

challenger to simulate that oracles of P
j

have access to the secret key v. In the

communication between oracles ⇡s

i

and ⇡t

j

, we set gu to be the Di�e-Hellman

share of ⇡s

i

and use z
b

as the master secret for the client and server oracle. Again,

gu is distributed exactly as before. We can now simulate all adversarial queries

to P
j

including those where the adversary re-uses gu as the client-share. This is

because the nonce generated by the server is always fresh and thus the message

input to the Strong PRF-ODH oracle is distinct from the values used in the first

step of the Strong PRF-ODH security game. Now, if z
b

is the real output of PRF

this corresponds to the situation where ms is computed honestly, if it is random,

ms is random too. So under the PRF-ODH assumption no adversary can notice

our substitution of the master secret with a random value in Case 1.1.1, Case

1.1.2, and Case 1.2. The remaining part of the proof is again similar to that of

TLS-DHE with server-only authentication.

The Cases 2, 1.2 and 1.1.2 can all be reduced to the security of the sLHAE

scheme. We embed the sLHAE challenge in the key k
(C)
S

of the client oracle that

is used to decrypt server messages. Since fin(S)
S

is independent from fin(C)
S

, the

adversary cannot use the output of the server oracle to compute m13 such that

the client accepts. Thus it has to compute this message on its own. However,

this breaks the sLHAE assumption. In Case 1.1.1 the adversary has to compute

a new ciphertext on the same message fin(S)
S

= fin(C)
S

to make the client accept.

However this also breaks the security of the sLHAE scheme.

To prove that no adversary of Type 2 exists (again except for some negligible

error probability), we proceed similar to the previous proof of TLS-DHE with

server-only authentication. We first exploit that the client will not accept if any

of the messages is modified. Next, we can directly plug-in the sLHAE challenge

into either k
(C)
C

= k
(S)
C

or k
(C)
S

= k
(S)
S

. This means that for the corresponding

key every ciphertext generated by the client or server oracle has been produced

118

5.9 TLS-SDH with Server-Only Authentication is ACCE Secure

using the Encrypt query of the sLHAE game. Similarly the Decrypt query is used

to decrypt all these queries on behalf of the receiving oracle. So any successful

adversary breaks the security of the sLHAE game.

119

6 On the Security of TLS Renegotiation

This chapter includes results from joint work with Florian Giesen and Douglas

Stebila, published at CCS’13 [GKS13, GKS12]. In this chapter we will analyze

the TLS renegotiation protocol as described in the Introduction in Section 6.1

under the security definitions given in Section 3.2.3.

We will first discuss how unmodified TLS renegotiation, without the SCSV/RIE

countermeasures proposed in RFC 5746 [RRDO10] and described in short in

Section 6.1, fits into our model, and show how the attack of Ray and Dispensa

is captured in the model in Section 6.2. Then we analyze the security of TLS

with the SCSV/RIE countermeasures. We first see, in Sections 6.3 and 6.4, that

the SCSV/RIE countermeasures are not enough to prove that TLS satisfies our

strongest notion, a secure renegotiable ACCE (Definition 3.15). Our goal, then,

will be to show that TLS with the SCSV/RIE countermeasures is both a secure

multi-phase ACCE in Section 6.6 and a weakly secure renegotiable ACCE in

Section 6.7. Ideally, we would do so generically, with a result saying something

like ‘If a TLS ciphersuite is a secure ACCE, then that TLS ciphersuite with

SCSV/RIE is a weakly secure renegotiable ACCE’.

However, we cannot do so generically since the protocol is modified to include

the countermeasure values in the ClientHello and ServerHello messages, and

thus we cannot make use of the ACCE security of the particular TLS ciphersuite

in a black-box way. Moreover, we must ensure that revealing the Finished

values from the previous handshake does not impact its security. Although these

barriers prevent a generic black-box result, we stress that a white-box result can

be achieved that only requires small changes. In Section 6.5 we describe an

intermediate result necessary to achieve above mentioned goals.

Summarized Course of Action We will provide a sequence of definitions and re-

sults that justifies the security of the SCSV/RIE countermeasure. Figure 6.1

summarizes our approach.

1. Define an extended ACCE security model, called tagged-ACCE-fin specific

to TLS, in which the adversary can reveal Finished messages after the

handshake completes and supply tags to be used in extensions.

121

6 On the Security of TLS Renegotiation

TLS-DHE

ACCE

Thm.5.2, p87

TLS-DHE

+ tags

tagged-ACCE-fin

Thm. 6.1, p130

multi-phase ACCE

TLS +

SCSV/RIE

Thm. 6.2, p141

weakly secure renegotiable ACCE

Thm. 6.3, p146

TLS + new

countermeasure
renegotiable ACCE

Thm. 6.4, p151

Legend:
Protocol

Model
A B

A is a secure B

C

D

E
If C is a secure D,

then C is also a secure E

Figure 6.1: Summary of the results on TLS and renegotiation

2. Define tagged TLS as a modification of a standard ciphersuite in which

arbitrary opaque data can be placed in an extension field in the ClientHello

and ServerHello messages.

3. Explain how the existing proof of that TLS-DHE is ACCE secure can be

modified in a very minor way to show that tagged TLS-DHE is tagged-

ACCE-fin-secure.

4. Show that, if a tagged TLS ciphersuite is tagged-ACCE-fin secure, then that

TLS ciphersuite with SCSV/RIE is a secure multi-phase ACCE.

5. Show that, if a TLS ciphersuite with SCSV/RIE is a secure multi-phase

ACCE, then it is also a weakly secure renegotiable ACCE.

Combined, these results yield (a) a general result justifying the security of the

SCSV/RIE countermeasure, and (b) that TLS-DHE with SCSV/RIE counter-

measures is a weakly secure renegotiable ACCE.

Remark 19. Note that a tagged TLS protocol even allows us to prove the security

of TLS-DHE under the DDH assumption, instead of requiring the much stronger

PRF-ODH assumption.

We finally also provide a new variant of TLS renegotiation in Section 6.8, that

meets even our strongest security notions.

6.1 Renegotiation Protocols and TLS Renegotiation

A renegotiation protocol is a protocol, which allows two parties to either (a) obtain

a fresh session key, (b) change cryptographic parameters, or (c) change authen-

tication credentials. For example, if a client needs to authenticate using a client

certificate but wishes to not reveal his identity over a public channel, he could

122

6.1 Renegotiation Protocols and TLS Renegotiation

first authenticate anonymously (or with pseudonymous credentials), then renego-

tiate using his real certificate; since the renegotiation messages are transmitted

within the existing record layer, the transmission of his certificate is encrypted,

and thus he obtains privacy for his identity. We will examine TLS renegotiation

in detail, especially in light of previously identified practical attacks related to

TLS renegotiation.

Despite the utility of renegotiation in real-world protocols - beyond TLS, rene-

gotiation, rekeying, or reauthentication is also used in the Secure Shell (SSH)

protocol, Internet Key Exchange version 2, the Tor anonymity protocol, and oth-

ers - there has been almost no research in the literature on the security of protocols

involving renegotiation, with the exception of a brief note on the TLS renegoti-

ation attack by Farrell [Far10] and the recent thesis of Gelashvili [Gel12], which

uses the Scyther tool to automatically identify the TLS renegotiation attack.

Rekeying has been studied in the context of group key agreement for applications

such as mobile ad hoc networks, but without reference to AKE security models.

An Attack against TLS Renegotiation

All versions of TLS [DA99, DR06, DR08], and SSL v3 [FKK11] before it, sup-

port optional renegotiation. After the initial handshake is completed and secure

communication begins in the record layer, either party can request renegotiation.

The client can request renegotiation by sending a new ClientHello message in

the current record layer (i.e. encrypted under the current session key); the server

can request renegotiation by sending a HelloRequest message in the record layer,

which triggers the client to send a new ClientHello message.

Alice Eve Bob
(TLS server)

Bob
(application)

handshakeEB

record layerEB

m
0

m
0

handshakeAB

d
e
l
a
y
e
d

b
y
E
v
e

record layerAB

m
1

m
1

m
0

km
1

Figure 6.2: Ray and Dispensa’s man-in-the-middle renegotiation attack on TLS-reliant

applications

123

6 On the Security of TLS Renegotiation

In November 2009, Ray and Dispensa [RD09] described a Man-In-The-Middle

attack that exploits how certain TLS-reliant applications - such as Hypertext

Transfer Protocol (HTTP) over TLS [Res00] - process data across renegotiations.

The attack is shown in Figure 6.2. The attacker Eve observes Alice attempting

to establish a TLS session with Bob. Eve delays Alice’s initial ClientHello and

instead establishes her own TLS session with Bob and transmits a message m0

over that record layer. Then Eve passes Alice’s initial ClientHello to Bob over

the Eve-Bob record layer. Bob views this as a valid renegotiation and responds

accordingly; Eve relays the handshake messages between Alice and Bob, who

eventually establish a new record layer to which Eve has no access. Alice then

transmits a message m1 over the Alice-Bob record layer.

Strictly speaking this is not an attack on TLS, but on how some applica-

tions process TLS-protected data. It results from some applications, includ-

ing Hypertext Transfer Protocol Secure (HTTPS) [RD09] and SMTP over TLS

(SMTPS) [Zol09], concatenating m0 and m1 and treating them as coming from

the same party in the same context. For example, if Eve sends the HTTP request

m0 and Alice sends the HTTP request m1, where

m0 = ‘GET /orderPizza?deliverTo=123-Fake-St - X-Ignore-This: ’

m1 = ‘GET /orderPizza?deliverTo=456-Real-St - Cookie: Account=111A2B’

(where - denotes new-line character), then the concatenated request (across

multiple lines for readability) is

m0km1 = ‘GET /orderPizza?deliverTo=123-Fake-St -

X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St -

Cookie: Account=111A2B’

The ‘X-Ignore-This:’ prefix is an invalid HTTP header, and since this header,

without a new line character, is concatenated with the first line of Alice’s request,

so this line is ignored. However, the following line, Alice’s account cookie, is still

processed. Eve is able to have the pizza delivered to herself but paid for by Alice.

It should be noted that Ray and Dispensa’s attack works for both server-only

authentication and mutual authentication modes of TLS: the use of client certifi-

cates in general does not prevent the attack [RD09, Zol09].

Countermeasures Added to TLS Renegotiation

The immediate recommendation due to this attack was to disable renegotiation

except in cases where it was essential. Subsequently, the Internet Engineering

Task Force (IETF) TLS working group developed RFC 5746 [RRDO10] to provide

124

6.1 Renegotiation Protocols and TLS Renegotiation

countermeasures to this attack, with the goal of applicability to all versions of TLS

and SSL 3.0. Two countermeasures were standardized: the Signalling Ciphersuite

Value (SCSV) and the Renegotiation Information Extension (RIE). These were

adopted by major TLS implementation providers and web browsers and servers,

including Apache, Apple, Google, Microsoft, Mozilla, and OpenSSL. In RIE,

the parties include the key confirmation value (i.e. the Finished message) from

the previous handshake in a ClientHello/ServerHello extension [BWNH+03],

demonstrating they have the same view of the previous handshake, or a dis-

tinguished null value if not renegotiation. The verification data extracted from

the ClientFinished message is denoted with client verify data, the data

extracted from ServerFinished with server verify data. SCSV is a slight

modification that is more compatible with buggy implementations.

Renegotiation Information Extension (RIE). This countermeasure essentially pro-

vides handshake recognition, confirming that when renegotiating both parties have

the same view of the previous handshake. With this countermeasure, each client

or server always includes a renegotiation information extension in its respective

ClientHello or ServerHello message. This extension contains one of three

values. If the party is not renegotiating, then it includes a fixed ‘empty’ string

which denotes that the party supports and understands the renegotiation exten-

sion, and the party is in fact not renegotiating. If the party is renegotiating, then

it includes the handshake/key confirmation value from the previous handshake:

the client sends the previous client verify data value while the server sends

the concatenation of the previous client verify data and server verify data

values. Intuitively, by including the verify data from the previous handshake, the

parties can be assured that they have the same view of the previous handshake,

and thus the attack in Figure 6.2 is avoided.

Signalling Ciphersuite Value (SCSV). SCSV was designed to avoid interoperability

problems with TLS 1.0 and SSL 3.0 implementations that did not gracefully

ignore extension data at the end of ClientHello and ServerHello messages.

With SCSV, the client uses an alternative method in its initial handshake - an

extra, fixed, distinguished ciphersuite value (byte codes 0x00,0xFF) including in

its ciphersuite list - to indicate that it knows how to securely renegotiate. Old

servers will ignore this extra value; new servers will recognize that the client

supports secure renegotiation, and the server will use the RIE in the remainder

of the session. In other words, the only di↵erence between SCSV and RIE is in

the ClientHello message of the initial handshake: with RIE, the client sends

an empty extension, whereas with SCSV the client sends a distinguished value in

125

6 On the Security of TLS Renegotiation

the list of supported ciphersuites.

6.2 Choosing the Right Model for TLS Renegotiation

In this section we will shortly reason our choice of the security model for analysing

TLS renegotiation. We also briefly discuss a composability-based approach.

TLS Renegotiation and existing Countermeasures Based on the TLS renegotiation

attack of Ray and Dispensa, TLS without countermeasures is not secure in our

model for renegotiation (see also Section 6.3 for details). We subsequently show

that, generically, TLS with the SCSV/RIE countermeasures is a weakly secure

renegotiable ACCE protocol. Recall that in this slightly weaker — but still quite

reasonable — model, the adversary is slightly restricted in the previous secrets

she is allowed to reveal.

Our approach for proving the renegotiable security of TLS with SCSV/RIE

countermeasures is modular. We cannot generically prove that if a particular TLS

ciphersuite is ACCE-secure, then that ciphersuite with SCSV/RIE is a weakly

secure renegotiable ACCE, because the protocol itself is modified by including

SCSV/RIE and hence a black-box approach does not work. Instead, we consider

a modified version of TLS, where an arbitrary tag can be provided as an exten-

sion, called tagged TLS (see also Section 3.2.3). Via a chain of results and models,

we show that if a tagged TLS ciphersuite is secure in an ACCE variant where

Finished messages are revealed, then that TLS ciphersuite with SCSV/RIE is a

weakly secure renegotiable ACCE protocol. This provides a generic justification

for the security of SCSV/RIE. Proving that a TLS ciphersuite is secure in this

tagged variant model seems to be almost no harder than a proof that that ci-

phersuite is ACCE-secure; we only needed to change a few lines from the ACCE

security proof given in Section 5.3.

We give an exemplary proof of the ephemeral Di�e–Hellman TLS ciphersuites,

although other ciphersuites could be proven as well with small e↵ort.

Remark 20. Although these ciphersuites are not currently as widely used as

RSA key transport-based ciphersuites, they are growing in use, for example with

Google’s 2011 announcement that their default ciphersuite is ephemeral elliptic

curve Di�e–Hellman [Lan11].

New Countermeasure for TLS. TLS with SCSV/RIE cannot meet our strongest

notion of renegotiable security, only the weaker notion of weakly secure renego-

tiable ACCE. In the strong definition, even if the adversary learns the session key

126

6.2 Choosing the Right Model for TLS Renegotiation

of one phase, parties who later renegotiate still should detect any earlier message

injections by the adversary. Though the ability to learn session keys of phases

while the protocol is still running makes the adversary quite powerful, this may

be realistic in scenarios with long-lived session keys, for example with session

resumption. We present in Section 6.8 a simple adjustment to the renegotiation

information extension — adding a fingerprint of the transcript of the previous

phase’s record layer — so TLS can achieve this stronger security notion. This

countermeasure can be seen as providing record layer recognition, confirming that

both parties have the same view of all communicated messages, rather than just

handshake recognition as in the SCSV/RIE countermeasure.

On Composability and the Similarities to ACCE. It would be desirable to prove the

security of the TLS renegotiation countermeasures via some kind of compos-

ability framework, such as UC or the game-based composability framework of

Brzuska et al. [BFS+12]. Unfortunately, this is not possible. The TLS renego-

tiation countermeasures are not achieved by composing in a black-box manner

one protocol or primitive with another. Instead, the SCSV/RIE countermeasure

looks inside the protocol and changes it in a white-box way: it modifies the mes-

sages sent by the protocol, and re-uses an internal value. Thus we cannot make

use of existing security results in a black-box compositional way. Our approach

is the ‘next best thing’: we modify an existing security definition (ACCE) in

what seems to be a minimal way, adding just enough ‘hooks’ to get at the in-

ternal values needed to modify and re-use the required values for the SCSV/RIE

countermeasure. We are then able to prove in a fully generic way that any TLS

protocol that satisfies this slightly modified ACCE notion with hooks is, when

using the SCSV/RIE countermeasure, secure against renegotiation attacks. Since

the hooks added are quite small, it is not much work to change a proof that a

TLS ciphersuite is ACCE secure to show that it satisfies this slightly modified

ACCE notion as well.

We chose the ACCE-based approach (see Section 3.2.3) over the game-based

composability approach of Brzuska et al. [BFS+12] because renegotiation in TLS

makes extensive use of the interplay between the handshake and record layer.

Modeling TLS Renegotiation Now we briefly describe how to map TLS renegoti-

ation into our security model and highlight a few components of that mapping,

and the alterations necessary when modeling TLS renegotiation instead of plain

TLS.

Oracles generally respond to Send, Encrypt, and Decrypt queries as specified by

the TLS handshake and record layer protocols. The Send control message m =

127

6 On the Security of TLS Renegotiation

(newphase, pk) when sent to a client causes the client to send a new ClientHello

message, and when sent to a server causes the server to send a new HelloRequest

message. For the Encrypt and Decrypt queries, we use a content type field ctype

that corresponds to the ContentType field of the TLSPlaintext datatype in the

TLS record layer specification [DR08, §6.2.1]:

Packets with ContentType=change cipher spec (20) or handshake (22) are

considered in our model to have ctype = control and packets with ContentType

=application data (23) are considered in our model to have ctype = data. We

do not explicitly handle messages with ContentType=alert (21). The Reveal

query reveals the encryption and MAC keys derived from the master secret, not

the master secret itself.

6.3 Renegotiation Security of TLS without SCSV/RIE

Countermeasures

In this section we analyze the security of TLS renegotiation (without counter-

measures) with special focus on the attack by Ray and Dispensa [RD09].

Ray-Dispensa Attack against TLS Renegotiation without Countermeasures Recall the

TLS renegotiation attack by Ray and Dispensa, as described previously in Sec-

tion 6.1 (see also the figure below). The adversary Eve observes Alice attempting

to establish a TLS session with Bob. Eve delays Alice’s initial ClientHello and

instead establishes her own TLS session with Bob and transmits a message m0

over that record layer. Then Eve passes Alice’s initial ClientHello to Bob over

the Eve–Bob record layer.

Bob views this as a valid renegotiation and responds accordingly; Eve relays

the handshake messages between Alice and Bob, who will eventually establish a

new record layer to which Eve has no access. Alice then transmits a message m1

over the Alice–Bob record layer. Intuitively, this is a valid attack: Alice believes

this is the initial handshake, but Bob believes this is a renegotiated handshake.

Formally, this attack is captured in our weakly secure renegotiable ACCE model

of Definition 3.16 as follows. Assume Alice and Bob each have a single oracle

instance, and Eve has carried out the attack described in Section 6.1. Then

for Bob’s oracle ⇡1
Bob, the value of `⇤ is 2: the last entry in phases where Bob

has a matching handshake transcript to some handshake transcript in Alice’s

oracle ⇡1
Alice is the second (and last) phases entry. The adversary has broken

renegotiation authentication at both Alice and Bob’s instances. At Alice by

128

6.4 TLS with SCSV/RIE is not a Secure Renegotiable ACCE

satisfying condition M

0
(a) (Alice’s first handshake transcript does not match

Bob’s first handshake transcript), and at Bob by satisfying both M

0
(a) (Bob’s

second handshake transcript does not match Alice’s second handshake transcript)

and M

0
(b) (for every ` < 2, Bob’s `th handshake and record layer transcript does

not match Alice’s `th transcripts). Thus TLS without countermeasures is not a

weakly secure or secure renegotiable ACCE.

6.4 TLS with SCSV/RIE is not a Secure Renegotiable ACCE

Definition 3.15 requires that, even when the adversary can reveal previous phases’

session keys, the parties will not successfully renegotiate if the adversary has

manipulated the record layer. The SCSV/RIE countermeasures do not protect

against this type of adversary. They only provide assurance that handshake

transcripts from previous phases match exactly. TLS itself of course provides

integrity protection for record layer transcripts via the MACs, but Definition 3.15

allows the adversary to reveal the encryption and MAC keys of previous phases.

Thus, an adversary who reveals the current encryption and MAC keys can modify

record layer messages but Alice and Bob will still successfully renegotiate a new

phase (although the adversary must not alter the number of messages sent, as

the number of record layer messages sent in the previous phase happens to be

protected by SCSV and RIE countermeasures).

We emphasize that while this demonstrates a theoretical weakness in TLS rene-

gotiation countermeasures compared to our very strong security model, it does

not translate into an attack on TLS renegotiation countermeasures when inter-

mediate phases’ encryption and MAC keys are not revealed.

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

Figure 6.3 in Section 6.1 shows a generic TLS ciphersuite, along with the SCSV/RIE

extensions denoted with a dagger. By tagged TLS, we mean the generic TLS ci-

phersuite from Figure 6.3, without any of the SCSV/RIE extensions shown in

green, but where an arbitrary string can be placed in the ext
C

and ext
S

fields. In

other words, it is a normal TLS ciphersuite, but with an arbitrary extension field

that just carries strings that are not being interpreted as having any particular

meaning.

As noted in the beginning of this section, we cannot generically prove that,

if a TLS ciphersuite is ACCE-secure, then the tagged version of that cipher-

suite is tagged-ACCE- or tagged-ACCE-fin-secure, as we have made white-box

129

6 On the Security of TLS Renegotiation

modifications to the TLS protocol in introducing the SCSV/RIE countermea-

sure. Thus we cannot use its security results in a black-box manner. However,

in most cases, a white-box approach, where the actual security proof is modi-

fied/extended, should be possible, and even very easy. This was indeed the case

when we examined tagged TLS-DHE.

For completeness, we will show that TLS-DHE is a secure tagged-ACCE-fin

protocol. The proof follows almost exactly the proof that TLS-DHE is a secure

ACCE protocol given in Section 5.3. The intuition that leaking the Finished

messages does not a↵ect security is as follows. The ACCE proof of TLS-DHE

exploits the fact that the pseudo-random function is keyed with a value chosen

uniformly at random; the proof then replaces the application keys and Finished

messages with uniformly random values, which are then completely independent

of any information exchanged during the handshake. We can use the same tech-

nique to show that no adversary having access to the plaintext Finishedmessages

can break the security of the sLHAE scheme used in the record layer. Including

arbitrary extra data in the handshake messages does not impact security.

Theorem 6.1 (Tagged TLS-DHE is a secure tagged-ACCE-fin). Let µ be the

output length of PRF and let � be the length of the nonces r
C

and r
S

. Assume

that the pseudo-random function PRF is (t, ✏prf , qprf)-secure, the signature scheme

is (t, ✏sig, qsig)-secure, the DDH-problem is (t, ✏ddh)-hard in the group G used to

compute the TLS premaster secret, the hash function is (t, ✏H)-collision resistant,

and the PRF-ODH-problem is (t, ✏prfodh)-hard with respect to G and PRF. Suppose

that the stateful symmetric encryption scheme is (t, ✏sLHAE)-secure.
For any adversary that (t0, ✏tls)-breaks the tagged TLS-DHE in the sense of Def-

inition 3.14 in the tACCE execution environment with t ⇡ t0 and qprf � 1, and
qsig � ⌘ it holds that

✏tls 4⌘�

✓
⌘�

2�
+ �✏sig + ✏ddh + ⌘�✏prfodh + ✏prf + ✏sLHAE + (⌘�+ 1) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

Recall that � and ⌘ are the maximum number of parties and sessions per party;

in tagged-ACCE-fin, the number of phases and number of keypairs � are both

at most 1.

To prove Theorem 6.1, we again divide the set of all adversaries into two cate-

gories:

1. Adversaries that succeed in making an oracle accept maliciously. We call

such an adversary an authentication-adversary.

2. Adversaries that do not succeed in making any oracle accept maliciously, but

which answer the encryption/integrity challenge. We call such an adversary

an encryption-adversary.

130

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

We again prove Theorem 6.1 by two lemmas. Lemma 6.1 bounds the prob-

ability ✏auth that an authentication-adversary succeeds, Lemma 6.2 bounds the

probability ✏enc that an encryption-adversary succeeds. Then we have

✏tls ✏auth + ✏enc .

131

6 On the Security of TLS Renegotiation

6.5.1 Authentication

Lemma 6.1. For any adversary running in time t0 ⇡ t, the probability that there
exists an oracle ⇡s

i

that accepts maliciously is at most

✏auth 2 · ⌘�
✓
⌘�

2�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏sLHAE + ⌘�

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

where all quantities are defined as stated in Theorem 6.1.

Note that ✏auth ✏client+✏server, where ✏client is an upper bound on the probability

that there exists an oracle with ⇢ = Client that accepts maliciously in the sense

of Definition 3.14, and ✏server is an upper bound on the probability that there

exists an oracle with ⇢ = Server that accepts maliciously. Also note that as

✏Server is an upper bound, this implicitly covers the case of performing server-only

authentication in all phases (and by definition no server oracle can then accept

maliciously, resulting in ✏Server = 0).

We claim that

✏client ⌘�

✓
⌘�

2�
+ � · ✏sig + ⌘�

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

✏server ⌘�

✓
⌘�

2�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏H + ✏sLHAE +

1

2µ

◆

and thus

✏auth ✏client + ✏server

 2 · ⌘�
✓
⌘�

2

�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏sLHAE + ⌘�

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2

µ

◆◆
.

Proof of Lemma 6.1: ✏client

Proof. We first show, that the probability that there exists an oracle with ⇢ = Client that

accepts maliciously in the sense of Definition 3.14 is negligible. The proof proceeds in a sequence

of games, following [BR06, Sho04]. The first game is the real security experiment. We then

describe several intermediate games that modify the original game step-by-step, and argue that

our complexity assumptions imply that each game is computationally indistinguishable from

the previous one. We end up in the final game, where no adversary can break the security of

the protocol.

Let break
(1)

� be the event that occurs when the first oracle that accepts maliciously in the

sense of Definition 3.14 with ⇢ = Client in Game �.

Game 0. This game equals the multi-phase ACCE security experiment used in Section 3.2.3.

Thus, for some ✏client we have

Pr[break(1)
0

] = ✏client .

Game 1. In this game we add an abort rule. The challenger aborts if there exists any oracle

⇡s
i that chooses a random nonce rC or rS which is not unique. More precisely, the game is

aborted if the adversary ever makes a first Send query to an oracle ⇡s
i , and the oracle replies

132

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

with random nonce rC or rS such that there exists some other oracle ⇡s0

i0 which has previously

sampled the same nonce.

In total less than �⌘ nonces rC and rS are sampled, each uniformly random from {0, 1}�.

Thus, the probability that a collision occurs is bounded by (�⌘)2 · 2��, which implies

Pr[break(2)
0

] Pr[break(2)
1

] +
(�⌘)2

2�
.

Note that now each oracle has a unique nonce rC or rS , which is included in the signatures. We

will use this to ensure that each oracle that accepts with non-corrupted partner has a unique

partner oracle.

Game 2. We try to guess which client oracle will be the first oracle to accept maliciously and

the phase in which this happens. If our guess is wrong, i.e. if there is another (Client or Server)

oracle that accepts before or if they accept in a di↵erent phase, then we abort the game.

Technically, this game is identical, except for the following. The challenger guesses two

random indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. If there exists an oracle ⇡s

i that accepts maliciously, and

(i, s) 6= (i⇤, s⇤) and ⇡s
i has ⇢ 6= Client, then the challenger aborts the game. Note that if the

first oracle ⇡s
i that accepts maliciously has ⇢ = Client, then with probability 1/(� · ⌘) we have

(i, s) = (i⇤, s⇤), and thus

Pr[break(2)
1

] = �⌘ · Pr[break(2)
2

] .

Note that in this game the adversary can only break the security of the protocol if oracle ⇡s⇤
i⇤

is the first oracle that accepts maliciously and has ⇢ = Client; otherwise the game is aborted.

Game 3. Again the challenger proceeds as before, but we add an abort rule. We want to make

sure that ⇡s⇤
i⇤ receives as input exactly the Di�e–Hellman value TS that was selected by some

other uncorrupted oracle that received the nonce rC chosen by ⇡s⇤
i⇤ as first input (note that

there may be several such oracles, since the adversary may send copies of rC to many oracles).

Technically, we abort and raise event abortsig, if oracle ⇡s⇤
i⇤ ever receives as input a message

m
3

= certS indicating intended partner ⇧ = j and message m
4

= (p, g, TS ,�S) such that �S is

a valid signature over rCkrSkpkgkTS , but there exists no oracle ⇡t
j which has previously output

�S . Clearly we have

Pr[break(1)
2

] Pr[break(1)
3

] + Pr[abortsig] .

Note that the experiment is aborted, if ⇡s⇤
i⇤ does not accept maliciously, due to Game 2. This

means that party Pj must not be corrupted when ⇡s⇤
i⇤ accepts (as otherwise ⇡s⇤

i⇤ does not accept

maliciously). To show that Pr[abortsig] � ·✏sig, we construct a signature forger as follows. The

forger receives as input a public key pk⇤ and simulates the challenger for A. It guesses index

�
$
 [�], sets pk� = pk⇤, and generates all long-term public/secret keys as before. Then it

proceeds as the challenger in Game 3, except that it uses its chosen-message oracle to generate

a signature under pk� when necessary.

If � = j and the corresponding public key is pkj , which happens with probability 1/(�),

then the forger can use the signature received by ⇡s⇤
i⇤ to break the EUF-CMA security of the

signature scheme with success probability ✏sig. Therefore we gain that Pr[abortsig]/(�) ✏sig; if

Pr[abortsig] is not negligible, then ✏sig is not negligible as well and we have

Pr[break(1)
2

] Pr[break(1)
3

] + �✏sig .

133

6 On the Security of TLS Renegotiation

Note that in Game 3 oracle ⇡s⇤
i⇤ receives as input a Di�e–Hellman value TS such that TS

was chosen by another oracle, but not by the adversary. Note also that there may be multiple

oracles that issued a signature �S containing rC , since the adversary may have sent several

copies of rC to several oracles.

Game 4. In this game we want to make sure that we know the oracle ⇡t
j which will issue

the signature �S that ⇡s⇤
i⇤ receives. Note that this signature includes the random nonce rS ,

which is unique due to Game 1. Therefore the challanger in this game proceeds as before, but

additionally guesses two indices (j⇤, t⇤)
$
 [�] ⇥ [⌘]. It aborts, if the adversary does not make

a Send query containing rC to ⇡t⇤
j⇤ and ⇡t⇤

j⇤ responds in this phase with messages containing �S

such that �S is forwarded to ⇡s⇤
i⇤ .

We know that there must exist at least one oracle that outputs �S in some phase such that

�S is forwarded to ⇡s⇤
i⇤ , due to Game 3. Thus we have

Pr[break(1)
3

] �⌘Pr[break(1)
4

] .

Note that in this game we know exactly that oracle ⇡t⇤
j⇤ chooses the Di�e–Hellman share TS

that ⇡s⇤
i⇤ uses to compute its premaster secret.

Game 5. Recall that ⇡s⇤
i⇤ computes the master secret as ms = PRF(T tc

S , label
1

krCkrS), where

TS denotes the Di�e–Hellman share received from ⇡t⇤
j⇤ , and tc denotes the Di�e–Hellman

exponent chosen by ⇡s⇤
i⇤ . In this game we replace the master secret ms computed by ⇡s⇤

i⇤ with

an independent random value fms. Moreover, if ⇡t⇤
j⇤ receives as input the same Di�e–Hellman

share TC that was sent from ⇡s⇤
i⇤ , then we set the master secret of ⇡t⇤

j⇤ equal to fms. Otherwise

we compute the master secret as specified in the protocol. We claim that

Pr[break(1)
4

] Pr[break(1)
5

] + ✏prfodh .

Suppose there exists an adversary A that distinguishes Game 5 from Game 4. We show that

this implies an adversary B that solves the PRF-ODH problem.

Adversary B outputs (label
1

krCkrS) to its oracle and receives in response (g, gu, gv, R), where

either R = PRF(guv, label
1

krCkrS) or R
$
 {0, 1}µ. It runs A by implementing the challenger

for A, and embeds (gu, gv) as follows. Instead of letting ⇡s⇤
i⇤ choose TC = gtC for random

tC
$
 Zq, B defines TC := gu. Similarly, the Di�e–Hellman share TS of ⇡t⇤

j⇤ is defined as

TS := gv. Finally, the master secret of ⇡s⇤
i⇤ is set equal to R.

Note that ⇡s⇤
i⇤ computes the master secret after receiving TS from ⇡t⇤

j⇤ , and then it sends m
8

=

TC . If the adversary decides to forwardm
8

to ⇡t⇤
j⇤ , then the master secret of ⇡t⇤

j⇤ is set equal to R.

If ⇡t⇤
j⇤ receives TC0

6= TC , then B queries its oracle to compute ms0 = PRF(T v
C0 , label

1

krCkrS),

and sets the master secret of ⇡t⇤
j⇤ equal to ms0.

Note that in any case algorithm B knows the master secret of ⇡s⇤
i⇤ and ⇡t⇤

j⇤ , and thus is able

to compute all further protocol messages (in particular the finished messages finC and finS) and

answer a potential Reveal query to ⇡t⇤
j⇤ as required (note that there is no Reveal query to ⇡s⇤

i⇤ ,

as otherwise the experiment is aborted, due to Game 2). If R = PRF(guv, label
1

krCkrS), then

the view of A is identical to Game 4, while if R
$
 {0, 1}µ then it is identical to Game 5, which

yields the above claim.

134

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

Game 6. In this game we replace the function PRF(fms, ·) used by ⇡s⇤
i⇤ with a random function

F . If ⇡t⇤
j⇤ uses the same master secret fms as ⇡s⇤

i⇤ (cf. Game 5), then the function PRF(fms, ·)

used by ⇡t⇤
j⇤ is replaced as well. Of course the same random function is used for both oracles

sharing the same fms. In particular, this function is used to compute the Finished messages

by both partner oracles.

Distinguishing Game 6 from Game 5 implies an algorithm breaking the security of the pseu-

dorandom function PRF, thus

Pr[break(1)
5

] Pr[break(1)
6

] + ✏prf .

Game 7. In Game 6 we have replaced the function PRF(fms, ·) with a random function. We

now want to make sure, that the ServerFinished message still cannot be predicted by an

adversary. Remember that the ServerFinished is computed as

fin⇤C = F (label
4

||H(m
1

|| · · · ||m
12

)),

where m
1

|| · · · ||m
12

denotes the transcript of all messages sent and received by ⇡s⇤
i⇤ .

Before we can do so, we need to make sure that the only other oracle potentially having

access to F , which is ⇡t⇤
j⇤ , never evaluates the function F on any input label

4

||H(m0) with

m0
6= m

1

|| · · · ||m
12

and H(m0) = H(m
1

|| · · · ||m
12

).

We now abort the game, if oracle ⇡t⇤
j⇤ ever evaluates the conditions hold. Since that directly

implies a collision for the hash function H, we have

Pr[break(1)
6

] Pr[break(1)
7

] + ✏H

Game 8. Now we use that the full transcript of all messages sent and received (including the

tags) is used to compute the Finished messages, and that Finished messages are computed

by evaluating a truly random function that is only accessible to ⇡s⇤
i⇤ and (possibly) ⇡t⇤

j⇤ due to

Game 7.

The Finished messages are computed by evaluating a truly random function Ffms, so they

are completely independent of the master secret of the current phase. This allows us to show

that any adversary has probability at most 2�µ of learning the Finished messages. We have

Pr[break(1)
7

] Pr[break(1)
8

] +
1

2µ
.

Also note, that leaking the Finished messages now does not reveal any information about

this phase to the adversary.

Game 9. Finally we use that the key material KC!S
enc kKS!C

enc kKC!S
mac kK

S!C
mac used by ⇡s⇤

i⇤ and

⇡t⇤
j⇤ in the stateful symmetric encryption scheme is drawn uniformly at random and independent

of all TLS handshake messages. This game proceeds exactly like the previous game, except that

the challenger now aborts if oracle ⇡s⇤
i⇤ accepts without having a matching conversation to ⇡t⇤

j⇤ .

Thus we have Pr[break(1)
9

] = 0.

The only remaining way for an adversary to make the client oracle ⇡s⇤
i⇤ maliciously accept

and win is to output a fresh, valid encryption of the Finished message finS , which must be

135

6 On the Security of TLS Renegotiation

distinct from the ciphertext output by ⇡t⇤
j⇤ . If the adversary now outputs such a ciphertext, we

can directly use it to break the security of the sLHAE scheme, thus

Pr[break(1)
8

] Pr[break(1)
9

] + ✏sLHAE = ✏sLHAE .

⇤

Proof of Lemma 6.1: ✏server

Proof. We now show that the probability that there exists an oracle with ⇢ = Server that

accepts maliciously in the sense of Definition 3.14 is negligible. Let break
(2)

� be the event

that occurs when the first oracle that accepts maliciously in the sense of Definition 3.14 with

⇢ = Server in Game �.

Game 0. This game equals the ACCE security experiment described in Definition 3.14. Thus,

for some ✏server we have

Pr[break(2)
0

] = ✏server .

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle

⇡s
i that chooses a random nonce rC or rS which is not unique. With the same arguments as in

Game 1 of the first proof we have

Pr[break(2)
0

] Pr[break(2)
1

] +
(�⌘)2

2�
.

Game 2. This game is identical, except for the following. The challenger guesses three random

indices (i⇤, s⇤)
$
 [�] ⇥ [⌘]. If there exists an oracle ⇡s

i that accepts maliciously, and (i, s) 6=

(i⇤, s⇤) and ⇡s
i has ⇢ 6= Server, then the challenger aborts the game. Note that if the first oracle

⇡s
i that accepts maliciously has ⇢ = Server, then with probability 1/(�⌘) we have (i, s) = (i⇤, s⇤),

and thus

Pr[break(2)
1

] = (�⌘) · Pr[break(2)
2

] .

Note that in this game the adversary can only break the security of the protocol if oracle ⇡s⇤
i⇤

is the first oracle that accepts maliciously and has ⇢ = Server; otherwise the game is aborted.

Game 3. The challenger proceeds as before, but we add an abort rule. We want to make sure

that ⇡s⇤
i⇤ receives as input exactly the Di�e–Hellman value m

8

= TC that was selected by some

other uncorrupted oracle.

Technically, we abort and raise event abortsig, if oracle ⇡s⇤
i⇤ ever receives as input a mes-

sage m
7

= certC indicating intended partner ⇧ = j and message m
9

= �C such that �C =

SIG.Sign(skC ,m1

k . . . , km
8

) is a valid signature but there exists no oracle ⇡t
j which has previ-

ously output �C . Clearly we have

Pr[break(2)
2

] Pr[break(2)
3

] + Pr[abortsig] .

Note that the experiment is aborted if ⇡s⇤
i⇤ does not accept maliciously, due to Game 2. This

means that party Pj must not be corrupted when ⇡s⇤
i⇤ accepts. To show that Pr[abortsig]

136

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

(�) · ✏sig, we construct a signature forger as follows. The forger receives as input a public key

pk⇤ and simulates the challenger for A. It guesses index �
$
 [�], sets pk� = pk⇤, and generates

all long-term public/secret keys as before. Then it proceeds as the challenger in Game 3, except

that it uses its chosen-message oracle to generate a signature under pk� when necessary.

If � = j and the corresponding public key is pkj , which happens with probability 1/(�),

then the forger can use the signature received by ⇡s⇤
i⇤ to break the EUF-CMA security of the

signature scheme with success probability ✏sig, so Pr[abortsig]/(�) ✏sig. Therefore if Pr[abortsig]

is not negligible, then ✏sig is not negligible as well and we have

Pr[break(2)
2

] Pr[break(2)
3

] + �✏sig .

Note that in Game 3 oracle ⇡s⇤
i⇤ receives as input a Di�e–Hellman value TC such that TC was

chosen in some phase by another oracle, but not by the adversary. Note also that this phase of

this oracle is unique, since the signature includes the client nonce rC , which is unique due to

Game 1. From now on we denote this unique oracle and phase with ⇡t⇤
j⇤ .

Note also that ⇡s⇤
i⇤ and ⇡t⇤

j⇤ share a premaster secret pms = T tS
C = T tC

S , where TC = gtC and

TS = gtS for random exponents tS and tC chosen by ⇡s⇤
i⇤ and ⇡t⇤

j⇤ , respectively.

Game 4. In this game, we replace the premaster secret pms = gtCtS shared by ⇡s⇤
i⇤ and

⇡t⇤
j⇤ with a random value gr, r

$
 Zq. The fact that the challenger has full control over the

Di�e–Hellman shares TC and TS exchanged between ⇡s⇤
i⇤ and ⇡t⇤

j⇤ , due to the modifications

introduced in the previous games, provides us with the ability to prove indistinguishability

under the Decisional Di�e–Hellman assumption.

Technically, the challenger in Game 4 proceeds as before, but when ⇡s⇤
i⇤ and ⇡t⇤

j⇤ compute the

premaster secret as pms = gtCtS , the challenger replaces this value with a uniformly random

value gpms = gr, r
$
 Z⇤

p, which is in the following used by both partner oracles.

Suppose there exists an algorithm distinguishing Game 4 from Game 3. Then we can con-

struct an algorithm B solving the DDH problem as follows. Algorithm B receives as input a

DDH challenge (g, gu, gv, gw). The challenger defines TC := gu and TS := gv for the Di�e–

Hellman shares chosen by ⇡s⇤
i⇤ and ⇡t⇤

j⇤ , respectively. Instead of computing the Di�e–Hellman

key as in Game 3, it sets pms = gw both for the client and the server oracle. Now if w = uv,

then this game proceeds exactly like Game 3, while if w is random then this game proceeds

exactly like Game 4. Thus,

Pr[break(2)
3

] Pr[break(2)
4

] + ✏ddh .

Note that in Game 4 the premaster secret of ⇡s⇤
i⇤ and ⇡t⇤

j⇤ is uniformly random and independent

of TC and TS . This will provide us with the ability to replace the function PRF(gpms, ·) with a

truly random function in the next game.

Game 5. In Game 5 we make use of the fact that the premaster secret gpms of ⇡s⇤
i⇤ and

⇡t⇤
j⇤ is chosen uniformly at random, independently of TC and TS . We thus replace the value

ms = PRF(gpms, label
1

krCkrS) with a random value fms.

Distinguishing Game 5 from Game 4 implies an algorithm breaking the security of the pseu-

dorandom function PRF, thus

Pr[break(2)
4

] Pr[break(2)
5

] + ✏prf .

137

6 On the Security of TLS Renegotiation

Game 6. In this game we replace the function PRF(fms, ·) used by ⇡s⇤
i⇤ and ⇡t⇤

j⇤ with a random

function F . Of course the same random function is used for both oracles ⇡s⇤
i⇤ and ⇡t⇤

j⇤ . In

particular, this function is used to compute the Finished messages by both partner oracles.

Distinguishing Game 6 from Game 5 again implies an algorithm breaking the security of the

pseudorandom function PRF, thus

Pr[break(2)
5

] Pr[break(2)
6

] + ✏prf .

Game 7. In Game 6 we have replaced the function PRF(fms, ·) with a random function F .

We now want to make sure, that the ClientFinished message still cannot be predicted by an

adversary. Remember that the ClientFinished is computed as

fin⇤S = F (label
3

||H(m
1

|| · · · ||m
10

)),

where m
1

|| · · · ||m
10

denotes the transcript of all messages sent and received by ⇡s⇤
i⇤ .

Before we can do so, we need to make sure that the only other oracle potentially having

access to F , which is ⇡t⇤
j⇤ , never evaluates the function F on any input label

3

||H(m0) with

m0
6= m

1

|| · · · ||m
10

and H(m0) = H(m
1

|| · · · ||m
10

).

We now abort the game, if oracle ⇡t⇤
j⇤ ever evaluates the conditions hold. Since that directly

implies a collision for the hash function H, we have

Pr[break(2)
6

] Pr[break(2)
7

] + ✏H

Game 8. Finally we use that the full transcript of all messages sent and received (including

the tags) is used to compute the Finished messages, and that Finished messages are com-

puted by evaluating a truly random function that is only accessible to ⇡s⇤
i⇤ and (possibly) ⇡t⇤

j⇤

due to Game 7.

The Finished messages are computed by evaluating a truly random function Ffms, so they

are completely independent of the master secret of the current phase. This allows us to show

that any adversary has probability at most 2�µ of learning the Finished messages.

Thus we have

Pr[break(2)
7

] Pr[break(2)
8

] +
1

2µ
.

Also note, that leaking the Finished messages now does not reveal any information about

this phase to the adversary.

Game 9. Finally we use that the key material KC!S
enc kKS!C

enc kKC!S
mac kK

S!C
mac used by ⇡s⇤

i⇤ and

⇡t⇤
j⇤ in the stateful symmetric encryption scheme is drawn uniformly at random and independent

of all TLS handshake messages. Thus, this game proceeds exactly like the previous game, except

that the challenger now aborts if oracle ⇡s⇤
i⇤ accepts without having a matching conversation to

⇡t⇤
j⇤ . Thus we have Pr[break(2)

9

] = 0.

The only remaining way for an adversary to make the server oracle ⇡s⇤
i⇤ maliciously accept

and win is to output a fresh, valid encryption of the ClientFinished message finC , which must

be distinct from the ciphertext output by ⇡t⇤
j⇤ . If the adversary now outputs such a ciphertext,

we can directly use it to break the security of the sLHAE scheme, thus

Pr[break(2)
8

] Pr[break(2)
9

] + ✏sLHAE = ✏sLHAE .

138

6.5 TLS-DHE is a Secure Tagged-ACCE-fin

⇤

Collecting probabilities of both previous sections yields Lemma 6.1. We obtain that

✏auth ✏client + ✏server

 2 · ⌘�
✓
⌘�

2

�
+ � · ✏sig + ✏ddh + 2 · ✏prf + ✏sLHAE + ⌘�

✓
✏prfodh + ✏prf + ✏H + ✏sLHAE +

1

2

µ

◆◆
.

6.5.2 Indistinguishability of Ciphertexts

Proof of Confidentiality

Lemma 6.2. For any adversary A running in time t0 ⇡ t, the probability that A answers the

encryption-challenge correctly is at most 1/2 + ✏enc with

✏enc ✏auth + �⌘ (✏ddh + 2✏prf + ✏sLHAE) ,

where ✏auth is an upper bound on the probability that there exists an oracle that accepts mali-

ciously in the sense of Definition 3.14 (cf. Lemma 6.1) and all other quantities are defined as

stated in Theorem 6.1.

Proof. Assume without loss of generality that A always outputs (i, s, b0) such that all condi-

tions in Property 2 of Definition 3.14 are satisfied. Let break(3)� denote the event that b0 = b in

Game �, where b is the random bit sampled by the Test query, and b0 is either the bit output

by A or (if A does not output a bit) chosen by the challenger. Let Adv� := Pr[break(3)�] � 1/2

denote the advantage of A in Game �. Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment used in Section 3.2.3. For some

✏enc we have

Pr[break(3)
0

] =
1

2
+ ✏enc =

1

2
+ Adv

0

.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b0 uni-

formly random if there exists any oracle that accepts maliciously in any phase in the sense of

Definition 3.16. Thus we have

Adv
0

 Adv
1

+ ✏auth ,

where ✏auth is an upper bound on the probability that there exists an oracle that accepts mali-

ciously in the sense of Definition 3.14 (cf. Lemma 6.1).

Recall that we assume that A always outputs (i, s, b0) such that all conditions in Property 2

of Definition 3.14 are satisfied. In particular it outputs (i, s, b0) such that ⇡s
i accepts with

intended partner ⇧ = j, and Pj is not corrupted. Note that in Game 1 for any such phase ⇡s
i

there exists a unique partner phase ⇡t
j such that ⇡s

i .phases[1].T has a matching conversation

to ⇡t
j .phases[1].T , as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses indices

(i⇤, s⇤)
$
 [�] ⇥ [⌘]. It aborts and chooses b0 at random if the adversary outputs (i, s, b0) with

(i, s) 6= (i⇤, s⇤). With probability 1/(�⌘) we have (i, s) = (i⇤, s⇤), and thus

Adv
1

 �⌘Adv
2

.

139

6 On the Security of TLS Renegotiation

Note that in Game 2 we know that A will output (i⇤, s⇤, b0). Note also that ⇡s⇤
i⇤ has a unique

partner due to Game 1. In the sequel we denote with ⇡t⇤
j⇤ the unique oracle and phase such

that ⇡s⇤
i⇤ has a matching conversation to ⇡t⇤

j⇤ , and say that ⇡t⇤
j⇤ is the partner of ⇡s⇤

i⇤ .

Game 3. The challenger in this game proceeds as before, but replaces the premaster secret

pms of ⇡s⇤
i⇤ and ⇡t⇤

j⇤ with a random group element gpms = gw, w
$
 Zq. Note that both gu and

gv are chosen by oracles ⇡s⇤
i⇤ and ⇡t⇤

j⇤ , respectively, as otherwise ⇡
s⇤
i⇤ would not have a matching

conversation to ⇡t⇤
j⇤ and the game would be aborted. Thus, both oracles compute the premaster

secret as pms = guv. Let Ti⇤,s⇤ = gu denote the Di�e–Hellman share chosen by ⇡s⇤
i⇤ , and let

Tj⇤,t⇤ = gv denote the share chosen by its partner ⇡t⇤
j⇤ .

Suppose that there exists an algorithm A distinguishing Game 3 from Game 2. Then we can

construct an algorithm B solving the DDH problem as follows. B receives as input (g, gu, gv, gw).

It implements the challenger for A as in Game 2, except that it sets Ti⇤,s⇤ := gu and Tj⇤,t⇤ := gv,

and the premaster secret of ⇡s⇤
i⇤ and ⇡t⇤

j⇤ equal to pms := gw. Note that B can simulate all

messages exchanged between ⇡s⇤
i⇤ and ⇡t⇤

j⇤ properly, in particular the finished messages using

knowledge of pms = gw. Since all other oracles are not modified, B can simulate these oracles

properly as well.

If w = uv, then the view of A when interacting with B is identical to Game 2, while if w
$
 Zq

then it is identical to Game 3. Thus,

Adv
2

 Adv
3

+ ✏ddh .

Game 4. In Game 4 we make use of the fact that the premaster secret gpms of ⇡s⇤
i⇤ and ⇡t⇤

j⇤

is chosen uniformly random. We thus replace the value ms = PRF(gpms, label
1

krCkrS) with a

random value fms.

Distinguishing Game 4 from Game 3 implies an algorithm breaking the security of the pseu-

dorandom function PRF, thus

Adv
3

 Adv
4

+ ✏prf .

Game 5. In this game we replace the function PRF(fms, ·) used by ⇡s⇤
i⇤ and ⇡t⇤

j⇤ with a random

function Ffms. Of course the same random function is used for both oracles (in their respective

phases) ⇡s⇤
i⇤ and ⇡t⇤

j⇤ . In particular, this function is used to compute the key material as

KC!S
enc kKS!C

enc kKC!S
mac kK

S!C
mac := Ffms(label2krCkrS) .

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security of the

pseudorandom function PRF. Moreover, in Game 5 the adversary always receives a random key

in response to a Test query, and thus receives no information about b0, which implies Adv
5

= 0

and

Adv
4

 Adv
5

+ ✏prf = ✏prf .

Note that in Game 5 the key material KC!S
enc kKS!C

enc kKC!S
mac kK

S!C
mac of oracles ⇡s⇤

i⇤ and ⇡t⇤
j⇤ is

uniformly random and independent of all TLS handshake messages exchanged in the pre-accept

phase.

140

6.6 TLS with SCSV/RIE is a Secure Multi-Phase ACCE

Game 6. Now we use that the key material KC!S
enc kKS!C

enc kKC!S
mac kK

S!C
mac used by ⇡s⇤

i⇤ and

⇡t⇤
j⇤ in the stateful symmetric encryption scheme is drawn uniformly at random and independent

of all TLS handshake messages.

In this game we construct a simulator B that uses a successful ACCE adversary A to break

the security of the underlying sLHAE secure symmetric encryption scheme. By assumption,

the simulator B is given access to an encryption oracle Encrypt and a decryption oracle Decrypt.

B embeds the sLHAE experiment by simply forwarding all Encrypt(⇡s⇤
i⇤ , ·) queries to Encrypt,

and all Decrypt(⇡t⇤
j⇤ , ·) queries to Decrypt. Otherwise it proceeds as the challenger in Game 5.

Observe that the values generated in this game are exactly distributed as in the previous

game. We thus have

Adv
5

= Adv
6

.

If A outputs a triple (i⇤, s⇤, b0), then B forwards b0 to the sLHAE challenger. Otherwise it

outputs a random bit. Since the simulator essentially relays all messages it is easy to see that

an adversary A having advantage ✏0 yields an adversary B against the sLHAE security of the

encryption scheme with success probability at least 1/2 + ✏0.

Since by assumption any adversary has advantage at most ✏sLHAE in breaking the sLHAE

security of the symmetric encryption scheme, we have

Adv
6

 1/2 + ✏sLHAE .

⇤

Adding up probabilities from Lemmas 6.1 and 6.2, we obtain that

✏tls ✏auth + ✏enc

 d`

✓
d`

2��2
+ 4`✏sig + 3✏ddh + 2d`✏prfodh + 4✏prf + ✏sLHAE + 2 (d`+ 1)

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

 4d`

✓
d`

2�
+ `✏sig + ✏ddh + d`✏prfodh + ✏prf + ✏sLHAE + (d`+ 1) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

 4⌘�

✓
⌘�

2�
+ �✏sig + ✏ddh + ⌘�✏prfodh + ✏prf + ✏sLHAE + (⌘�+ 1) ·

✓
✏prf + ✏H + ✏sLHAE +

1

2µ

◆◆

which yields Theorem 6.1.

Note, that we do lose some tightness compared to the original ACCE proof of TLS-DHE. For

the authentication game, we additionally have to guess the phase in which the adversary makes

an oracle maliciously accept, and for the encryption game we also have to guess the phase to

which we input the challenge keys.

6.6 TLS with SCSV/RIE is a Secure Multi-Phase ACCE

We begin by showing that including the SCSV/RIE countermeasure does not weaken security.

In other words, putting the Finished messages in the ClientHello and ServerHello does

not introduce any vulnerabilities. Having done so, in the next subsection we will show how

including the SCSV/RIE countermeasure yields a weakly secure renegotiable ACCE.

Theorem 6.2 (TLS with SCSV/RIE is a secure multi-phase ACCE). Let ⇧ be a generic tagged

TLS ciphersuite as described in Section 3.2.3. Assume that ⇧ is (t, ✏tagged)-tagged-ACCE-fin-

secure. Let ⇧0 denote ⇧ with the SCSV/RIE countermeasure as described in Figure 6.3. For

any adversary that (t0, ✏mp)-breaks the multi-phase ACCE security of ⇧0 with ⌧ ⇡ ⌧ 0, it holds

141

6 On the Security of TLS Renegotiation

that ✏mp 2✏0, where ✏0 is obtained from ✏ by replacing all instances of � in ✏ with � · � and

replacing all instances of ⌘ in ✏ with ⌘ · . (Recall that �, ⌘, , and � are the maximum number

of parties, sessions per party, phases per session, and keypairs per party, respectively.)

Proof. The basic idea of the proof is as follows. We will construct a multi-phase ACCE

simulator S for ⇧0 that makes use of an tagged-ACCE-fin challenger C for ⇧. S will simulate

every (party, public key) pair and every (session, phase) pair with distinct parties and sessions

in C. For the most part, S will relay queries down to C and return the result. However, for

queries that relate to renegotiation (Send, Decrypt), S needs to carefully manage the handshake

messages and transition one session in C to another.

First, consider when the adversary is causing two honest parties to negotiate their first phase

in a session. The simulator will pass these queries down to the tagged-ACCE-fin challenger and

pass the responses back up to the adversary. Eventually these sessions may switch to using

the encrypted channel, in which case the simulator will also pass the encrypted channel queries

down to the tagged-ACCE-fin challenger.

Now the adversary may eventually ask the two honest parties to renegotiate. The simulator

will construct the RIE extension by obtaining the Finished messages issuing a RevealFin query

to the tagged-ACCE-fin challenger. Then the simulator will ask the parties to start a new

session with those RIE extension values as the arbitrary data. Finally, it will encrypt those

handshake messages using the Encrypt oracle of the existing session and give those ciphertexts

to the adversary. If the adversary delivers the exact ciphertexts, then even though the simulator

cannot decrypt the ciphertexts it can still carry out the handshake because it knows they are the

right ciphertexts. If the adversary delivers modified ciphertexts, then the simulator rejects. This

is the correct behaviour unless the adversary managed to forge ciphertexts in the underlying

tagged-ACCE-fin.

Second, consider when the adversary is playing the role of a corrupted party with an honest

party. In other words, the adversary has issued a Corrupt query for a long-term key of some

party (which the simulator answered by issuing a Corrupt query to the corresponding party in

the tagged-ACCE-fin challenger). For the initial handshake, the simulator simply relays the

handshake messages down to the tagged-ACCE-fin challenger and returns the responses. How-

ever, once the handshake completes, the multi-phase ACCE simulator has no clue whether a

ciphertext it receives contains a data message or a control (handshake) message, yet it needs

to start a new handshake if it receives a control message. Fortunately, as soon as the initial

handshake completes, the multi-phase ACCE simulator can issue a Reveal query to the under-

lying session in the ACCE challenger. And because the adversary is the peer in this phase, it

will never be a valid session for the multi-phase ACCE authentication game or the multi-phase

ACCE confidentiality/integrity game, and thus the simulator does not violate any freshness

condition in the underlying tagged-ACCE-fin game by issuing a Reveal query.

The simulator S. The details of the simulation follow. For each (party, public key) pair (i, pk)

in the multi-phase ACCE experiment, S will allocate a distinct party, abstractly denoted i|pk,

in the tagged-ACCE-fin experiment run by C. Similarly, each phase ` in a session s in the

multi-phase ACCE experiment will correspond to a session, abstractly denoted s|`, in the

tagged-ACCE-fin experiment.

S answers the adversary’s multi-phase ACCE queries as follows. In all of the following, let `

142

6.6 TLS with SCSV/RIE is a Secure Multi-Phase ACCE

be the current phase of ⇡s
i , let pk denote ⇡s

i .phases[`].pk, pk
⇤ denote ⇡s

i .phases[`+ 1].pk, and

suppose ⇡s
i .⇧ = ⇡t

j .

• Send(⇡s
i ,m): The behaviour of S’s simulator of the Send oracle depends on whether the

initial handshake or a renegotiation is occurring. First we consider the initial handshake:

– If m = (newphase, pk,↵) and ⇡s
i .phases is empty:

S at first issues a Send(⇡s|1
i|pk, (newphase,↵, empty)) query to C and returns the result.

– If m = (ready, pk,↵) and ⇡s
i .phases is empty: S issues a Send(⇡s|1

i|pk, (ready,↵,

empty) query to C; no result is received or returned.

– Ifm = m
1

= (rC , cs-list, extC) in Figure 6.3, S aborts if extC 6= empty. Otherwise,

S sends issues a Send(⇡s|1
i|pk, (rC , cs-list)) query to C and returns the result.

– If m = m
2

k . . . km
6

and m
2

= (rC , cs-list, extS) in Figure 6.3, S aborts if extS 6=

empty. Otherwise, S sets m0
2

= (rC , cs-list) and issues a Send(⇡s|1
i|pk,m

0
2

k . . . km
6

)

query to C and returns the result.

– If m = m
7

k . . . km
11

or m = m
12

km
13

, S relays the query to C and returns the result.

Now consider renegotiation handshakes. For renegotiation handshakes, the only Send

queries issued will involve newphase or ready messages.

– If m = (newphase, pk⇤,↵), ⇡s
i .phases is not empty, and ⇡s

i .⇢ = Client: S issues a

RevealFin(⇡s|`
i|pk) query to C to obtain finCkfinS . S starts in phases a new phase

` + 1 of ⇡s
i with authentication mode ↵ and public key pk⇤. S obtains handshake

message m⇤
1

by issuing a Send(⇡s|`+1

i|pk⇤ , (newphase,↵, finC)) query to C. S then issues

an Encrypt(⇡s|`
i|pk, control,m

⇤
1

,m⇤
1

, len, H) query to C and returns the result.

– If m = (newphase, pk⇤,↵), ⇡s
i .phases is not empty, and ⇡s

i .⇢ = Server: S starts in

phases a new phase `+1 of ⇡s
i with authentication mode ↵ and public key pk⇤, sets

m⇤
0

= ServerHelloRequest, issues an Encrypt(⇡s|`
i|pk, control,m

⇤
0

,m⇤
0

, len, H) query

to C, and returns the result.

– If m = (ready, pk⇤,↵) and ⇡s
i .phases is not empty: S starts in phases a new phase

`+1 of ⇡s
i with authentication mode ↵ and public key pk⇤. S issues a RevealFin(⇡s|`

i|pk)

query to C to obtain finCkfinS . S issues a Send(⇡s|`+1

i|pk⇤ , (ready,↵, finS)) query to

C; no result is received or returned.

The actual handshake messages in renegotiation handshakes are delivered using Decrypt

queries.

• Corrupt(Pi, pk): S issues a Corrupt(Pi|pk) query to C and returns the result.

• Reveal(⇡s
i , `): S issues a Reveal(⇡s|`

i|pk) query to C and returns the result.

• Encrypt(⇡s
i , ctype,m0

,m
1

, len, H): S aborts if ctype = control. Otherwise, S issues an

Encrypt(⇡s|`
i|pk,m0

,m
1

, len, H) query to C and returns the result.

• Decrypt(⇡s
i , C,H): First suppose that all of conditions C2–C5 of Definition 3.13; namely

that neither the phase’s owner public key pk nor the peer’s public key pk0 has been

corrupted, nor have the session keys been revealed. Now we explain each part of the

renegotiation handshake:

143

6 On the Security of TLS Renegotiation

– Suppose ⇡s
i .⇢ = Server and the last query that ⇡s

i received was Send(⇡s
i , (ready, . . .))

or Send(⇡s
i , (newphase, . . .)). If C does not equal the last ciphertext that was sent

by ⇡t
j , then abort. Otherwise, S issues a Decrypt(⇡s|`

i|pk, C,H) query to C. (Note this

returns ?.)

Then S issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
1

) query to C, where m⇤
1

is the handshake message

obtained by S from C in the Send(⇡t
j , (newphase, . . .)) query above. S receives

m⇤
2

k . . . km⇤
6

from C, issuing an Encrypt(⇡s|`
i|pk, control,m

⇤
2

k . . . km⇤
6

, . . .) query to en-

crypt them, and returns the resulting ciphertext C 0. 30

– Suppose ⇡s
i .⇢ = Client and the last query that ⇡s

i received was Send(⇡s
i , (ready, . . .)).

If C does not equal the last ciphertext that was sent by ⇡t
j , then abort. Otherwise,

S issues a Decrypt(⇡s|`
i|pk, C,H) query to C. (Note this returns ?.) Then S issues a

Send(⇡s|`+1

i|pk⇤ ,m
⇤
2

k . . . km⇤
6

) query to C, where m⇤
2

k . . . km⇤
6

are the handshake messages

obtained by S from C in the Decrypt(⇡t
j , . . .) query in the bullet point immediately

preceding this one. S receives m⇤
7

k . . . km⇤
11

from C, encrypts m⇤
7

k . . . km⇤
10

by is-

suing an Encrypt(⇡s|`
i|pk, control,m

⇤
7

k . . . km⇤
10

, . . .) query, and returns the resulting

ciphertext C 0 along with m⇤
11

.

– Suppose ⇡s
i .⇢ = Server and the last query that ⇡s

i received was the Decrypt query

in the first bullet point in this list. If C does not equal the last ciphertext that

was sent by ⇡t
j , then abort. Otherwise, S splits the ciphertext as C⇤

km⇤
11

and

issues a Decrypt(⇡s|`
i|pk, C

⇤, H) query. (Note that this query returns ?.) Then S

issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
7

k . . . km⇤
11

) query to C, where m⇤
7

k . . . km⇤
10

are the handshake

messages obtained by S from C in the Decrypt(⇡t
j , . . .) query in the bullet point

immediately preceding this one. S receives m⇤
12

km⇤
13

from C, encrypts m⇤
12

by issuing

an Encrypt(⇡s|`
i|pk, control,m

⇤
12

, . . .) query, and returns the resulting ciphertext C 0

along with m⇤
13

.

– Suppose ⇡s
i .⇢ = Client and the last query that ⇡s

i received was the Decrypt query in

the second bullet point in this list. If C does not equal the last ciphertext that was

sent by ⇡t
j , then abort. Otherwise, S splits the ciphertext as C⇤

km⇤
13

and issues a

Decrypt(⇡s|`
i|pk, C

⇤, H) query. (Note this returns ?.)

Then S issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
12

k . . . km⇤
13

) query to C, where m⇤
12

is the handshake

message obtained by S from C in the Decrypt(⇡t
j , . . .) query in the bullet point

immediately preceding this one.

– All other Decrypt(⇡s
i , . . .) queries: S issues a Decrypt(⇡s|`

i|pk, C,H) query to C and

returns the result.

Now suppose otherwise, namely that one or more of conditions C2–C5 of Defintion 3.13

is violated, so either the phase owner’s public key pk or the peer’s public key pk0 has been

corrupted, or either Reveal(⇡t
j , `

0) or Reveal(⇡t
j , `

0) has been called.

If it has not already done so, S issues a Reveal(⇡s|`
i|pk) query to C and obtains session key

k containing encryption and MAC keys KC!S
enc ||KS!C

enc ||KC!S
mac ||KS!C

mac . Using the appro-

30Note that here, and throughout the Decrypt query, our simulator S is not disadvantaged by its call to C.Decrypt

not returning plaintext because, in this first part, it ‘knows’ what the plaintext handshake message is from

having simulated the other side; and in the second part, it can reveal the session key and become able to

decrypt the ciphertext itself.

144

6.6 TLS with SCSV/RIE is a Secure Multi-Phase ACCE

priate encryption key, S steps through all previous calls to Decrypt(⇡s
i , . . .) to bring the

decryption state std up-to-date. Now we explain each part of the renegotiation handshake:

– Suppose ⇡s
i .⇢ = Server and the last query that ⇡s

i received was Send(⇡s
i , (ready, . . .))

or Send(⇡s
i , (newphase, . . .)). S uses KC!S

enc and std to decrypt C and obtain m⇤
1

or

?, in which case S aborts. S issues a Decrypt(⇡s|`
i|pk, C,H) query to C. (Note this

returns ?.)

Then S issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
1

) query to C. S receivesm⇤
2

k . . . km⇤
6

from C, encrypts

them by issuing an Encrypt(⇡s|`
i|pk, control,m

⇤
2

k . . . km⇤
6

, . . .) query, and returns the

resulting ciphertext C 0.

– Suppose ⇡s
i .⇢ = Client and the last query that ⇡s

i received was Send(⇡s
i , (ready, . . .)).

S then uses KS!C
enc and std to decrypt C and obtain m⇤

2

k . . . km⇤
6

or ?, in which cases

S aborts. S issues a Decrypt(⇡s|`
i|pk, C,H) query to C. (Note this returns ?.) Then S

issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
2

k . . . km⇤
6

) query to C.

S receives m⇤
7

k . . . km⇤
11

from C, encrypts m⇤
7

k . . . km⇤
10

by issuing an Encrypt(⇡s|`
i|pk,

control,m⇤
7

k . . . km⇤
10

, . . .) query, and returns the resulting ciphertext C 0 along with

m⇤
11

.

– Suppose ⇡s
i .⇢ = Server and the last query that ⇡s

i received was the Decrypt query in

the first bullet point in this list. S splits the ciphertext as C⇤
km⇤

11

. S uses KC!S
enc

and std to decrypt C⇤ and obtain m⇤
7

k . . . km⇤
10

or ?, in which case S aborts. S

issues a Decrypt(⇡s|`
i|pk, C

⇤, H) query to C. (Note this returns ?.)

Then S issues a Send(⇡s|`+1

i|pk⇤ ,m
⇤
7

k . . . km⇤
11

) query to C. S receives m⇤
12

km⇤
13

from C,

encrypts m⇤
12

by issuing an Encrypt(⇡s|`
i|pk, control,m

⇤
12

, . . .) query, and returns the

resulting ciphertext C 0 along with m⇤
13

.

– Suppose ⇡s
i .⇢ = Client and the last query that ⇡s

i received was the Decrypt query in

the second bullet point in this list. S splits the ciphertext as C⇤
km⇤

13

. S uses KS!C
enc

and std to decrypt C⇤ and obtain m⇤
12

or ?, in which case S aborts.

S issues a Decrypt(⇡s|`
i|pk, C

⇤, H) query. (Note this returns ?.) Then S issues a

Send(⇡s|`+1

i|pk⇤ ,m
⇤
12

k . . . km⇤
13

) query to C.

– All other Decrypt(⇡s
i , . . .) queries: S issues a Decrypt(⇡s|`

i|pk, C,H) query to C and

returns the result.

Correctness of the simulator. The simulation presented by S is perfect except in its handling

of Decrypt queries when the peer’s public key ⇡s
i .pk has not been corrupted. During renegotia-

tion, the simulator S rejects any ciphertext C that is not exactly equal to the ciphertext C(�1)

sent by the peer in the previous query. It is possible that C is in fact a valid ciphertext. How-

ever, at the time the improper simulator occurred, all of conditions C1–C5 of Definition 3.13

were satisfied. And under the assumption that C is a valid ciphertext, if S was to make a query

Decrypt(⇡s
i , C,H) to C, then S would receive either ? if C’s secret challenge bit b in ⇡s|`

i|pk is 0, or

m 6= ? if the secret challenge bit b = 1. In other words, S can (t0, ✏0)-break the confidentiality

of ⇧ in the tagged-ACCE-fin experiment, with ⌧ ⇡ ⌧ 0 and ✏0 � ✏tagged.

145

6 On the Security of TLS Renegotiation

Attack on a correct simulator. Finally, suppose no failure event happens as described above,

and suppose the adversary breaks the multi-phase ACCE security of ⇧0. We show how to

translate this attack into an attack on the ACCE-tag-fin security of ⇧ in C.

Confidentiality/integrity. First suppose that the multi-phase ACCE adversary for ⇧0 suc-

ceeds in breaking confidentiality/integrity (Definition 3.13), namely by outputting a tuple

(i, s, `, b0) for which b0 = ⇡s
i .phases[`].b, and that adversary never violated conditions C1–

C6 of Definition 3.13. Let pk denote ⇡s
i .phases[`].pk. Since S only violates conditions C1–

C6 for ⇡s|`
i|pk.phases[1] when the adversary violates them for ⇡s

i .phases[`], S has not violated

these conditions either. The simulator S outputs the tuple ((i|pk), (s|`), 1, b0); it holds that

b0 = ⇡
s|`
i|pk.phases[1].b in ⇧. Thus, we have that S (t0, ✏c)-breaks the (tagged-ACCE-fin) confi-

dentiality/integrity of ⇧, where ⌧ ⇡ ⌧ 0 and ✏c is obtained from ✏ by replacing all instances of �

in ✏ with � · � and replacing all instances of ⌘ in ✏ with ⌘ · .

Authentication. Now suppose that the multi-phase ACCE adversary for ⇧0 succeeds in break-

ing authentication (as in Definition 3.14, namely by causing to exist a phase ⇡s
i .phases[`]

which has accepted (condition A1), have not been trivially compromised (conditions A2–A5),

and have no phase with a matching handshake transcript at the peer (condition M). Since

S only violates conditions A2, A3, or A5 for ⇡s|`
i|pk.phases[1] when the adversary violates

them for ⇡s
i .phases[`], S has not violated these conditions either. Moreover, condition A4 for

⇡
s|`
i|pk.phases[1] is satisfied precisely when ⇡s

i .phases[`] is. Thus, we have that S (t0, ✏a)-breaks

the (tagged-ACCE-fin) authentication of ⇧, where ⌧ ⇡ ⌧ 0 and ✏a is obtained from ✏ by replacing

� and ⌘ in ✏ as in the previous paragraph.

The result follows. ⇤

Remark 21. A simulation similar to the one in the proof allows us to prove that TLS with

SCSV/RIE countermeasures is a multi-phase ACCE protocol, even when di↵erent ciphersuites

are used in di↵erent phases. The simulator interacts with a di↵erent tagged-ACCE-fin chal-

lenger for each ciphersuite; when a renegotiation inside one ciphersuite will result in a new

ciphersuite, the simulator uses the Encrypt/Decrypt queries in the old ciphersuite to encrypt

the Send messages from the handshake of the new ciphersuite. Unfortunately, for this multi-

ciphersuite simulation to work, it is essential that public keys not be shared across ciphersuites:

this technique could show that switching between an RSA-based ciphersuite and an ECDSA-

based ciphersuite is safe. However, to analyze using the same RSA public key in two di↵erent

ciphersuites, one would have to take an alternative approach, as it may not be possible to

generically prove that re-using the same public key in two ACCE protocols is safe.

6.7 TLS with SCSV/RIE is a Weakly Secure Renegotiable

ACCE

We are now in a position to show that the use of the SCSV/RIE countermeasure in TLS results

in a weakly secure renegotiable ACCE. We will do so generically, starting from the consequence

of the previous theorem: that TLS with SCSV/RIE is a secure multi-phase ACCE.

Theorem 6.3 (TLS with SCSV/RIE is a weakly secure renegotiable ACCE). Let ⇧ be a TLS

ciphersuite with SCSV/RIE countermeasures, as described in Figure 6.3. If ⇧ is a (t, ✏mp)-

146

6.7 TLS with SCSV/RIE is a Weakly Secure Renegotiable ACCE

secure multi-phase ACCE protocol, and PRF is a (t, ✏prf)-secure pseudorandom function, then

⇧ is a (t, ✏)-weakly secure renegotiable ACCE, with ✏ = ✏mp + ✏prf .

Intuitively, the use of the RIE countermeasure guarantees that each party who renegotiates

has the same view of (a) whether they are renegotiating, and (b) which handshake is the ‘pre-

vious’ handshake. We can chain these together to obtain the property of a secure renegotiable

ACCE: parties who renegotiate have the same view of all previous handshakes. If this is vi-

olated, either the non-renegotiable aspects of TLS have been broken, or a collision has been

found in the computation of the renegotiation indication extension.

Proof. Suppose A breaks the weak renegotiable ACCE security of the protocol ⇧. We will

show that either A directly breaks the multi-phase ACCE security of ⇧ or A can be used

to construct another algorithm that breaks either the security of the PRF or the multi-phase

ACCE security of ⇧.

We approach the proof in three cases: either A has broken the confidentiality/integrity of the

weakly secure renegotiable ACCE, or A has broken the weak renegotiation authentication of

the weakly secure renegotiable ACCE, and the latter can happen by meeting either condition

M

0
(a) or M0

(b).

Confidentiality/integrity. Since the winning conditions for the confidentiality/ integrity part

of the security game are the same for both definitions, every adversary who breaks confiden-

tiality/integrity in the weakly secure renegotiable ACCE security game for ⇧ directly breaks

confidentiality/integrity in the multi-phase ACCE security game for ⇧.

Authentication — M

0
(a). Suppose A wins the weak renegotiable ACCE security experiment

for ⇧ using condition M

0
(a). Either there is no ` at all such that ⇡t

j .phases[`].T matches

⇡s
i .phases[`

⇤].T , or there is such an ` but ` 6= `⇤.

First consider the case where there exists no phase ` at all such that ⇡t
j .phases[`].T matches

⇡s
i .phases[`

⇤].T . That meets condition M of Definition 3.14 for ⇧.

Now consider the case where there is an ` such that ⇡t
j .phases[`].T matches ⇡s

i .phases[`
⇤].T

but ` 6= `⇤. Assume without loss of generality ` < `⇤ (otherwise we could swap the oracles).

There must exist some value n 2 [`� 1] such that ⇡s
i .phases[`

⇤
� n].T 6= ⇡t

j .phases[`� n].T .

In particular, j `�1, since in ⇡t
j ’s first phase its outgoing message m

1

contains extC = empty

but ⇡s
i received a messagem

1

with extc 6= empty. Let j be minimal. Then ⇡t
j .phases[`�n+1].T

matches ⇡s
i .phases[`

⇤
�n+1].T . In particular, messages m

1

of those two transcripts are equal,

and so are messages m
2

of those two transcripts. Since RIE is being used, m
1

and m
2

contain

fin
(�1)

C and fin
(�1)

S , and since ⇡s,`⇤�n+1

i accepted, both ⇡s,`⇤�n+1

i and ⇡t,`�n+1

j used the same

fin
(�1)

C and fin
(�1)

S values. But at each party, fin(�1)

C and fin
(�1)

S are the hash (using a PRF) of

the handshake transcripts from phases ⇡s,`⇤�n
i and ⇡t,`�n

j , and we know that these handshake

transcripts are not equal. This means a collision has occurred in PRF, which happens with

negligible probability.

Thus, assuming PRF is secure and ⇧ is a secure multi-phase ACCE, no A can achieve condi-

tions M0
(a) and A1–A7.

Authentication — M

0
(b). Now suppose A wins the weak renegotiable ACCE security ex-

periment for ⇧ using condition M

0
(b) but not M

0
(a). In particular, for every `0 < `⇤,

147

6 On the Security of TLS Renegotiation

⇡s
i .phases[`

0].T = ⇡t
j .phases[`

0].T but there is some ` < `⇤ such that ⇡s
i .phases[`].RTskRTr 6=

⇡t
j .phases[`].RTrkRTs. Choose ` minimal. Let v be the smallest index such that the vth cipher-

text Cv of ⇡s
i .phases[`].RTskRTr is not equal to the vth ciphertext of ⇡t

j .phases[`].RTrkRTs.

Assume without loss of generality that Cv was received by ⇡s
i as the vth ciphertext but was

not sent by ⇡t
j as the vth ciphertext. (The alternative is that Cv was sent by ⇡s

i as the vth

ciphertext but was not received by ⇡t
j as the vth ciphertext. However, we could then focus on

everything from ⇡t
j ’s perspective and apply the same argument.)

This means that when A called Decrypt(⇡s
i , Cv, H), if b = 0 then Decrypt returned (?, ·),

whereas if b = 1 then Decrypt returned (m0, ·) where m0
6=?. Our simulator can thus output

(i, s, `, b0) for its guess of b0 as above, and this will equal b with probability at least ✏, making

condition C6 hold in Definition 3.14. We need to show that conditions C1–C5 also hold for

(i, s, `).

Since A wins the weak renegotiable ACCE experiment using condition M

0
(b), we have that

A1–A7 all hold. We want to show that, at the time that ⇡s
i accepted in phase `+1, conditions

C1–C5 also hold for (i, s, `).

• C1: A1 directly implies C1, since if ⇡s
i has rejected in any phase prior to `⇤ then it would

not have a phase `⇤.

• C2 and C3: Conditions A2 and A3 of Definition 3.16 do not imply that A did not ask

Corrupt queries prohibited by C2 and C3. However, we do have that ⇡s
i .phases[`].T =

⇡t
j .phases[`].T ; in other words, A was not active in the handshake for phase `. Thus, A

is equivalent to an adversary who did not ask any Corrupt queries for public keys used in

phase ` until after ⇡s
i accepts in phase `.

• C4: A6 directly implies C4, at the time that ⇡s
i accepted.

• C5: Since ⇡s
i chooses nonce rC (if a client) or rS (if a server) randomly, except with

negligible probability there is no `0 < ` such that ⇡s
i .phases[`

0].T = ⇡s
i .phases[`].T . By

A7, A did not issue Reveal(⇡t
j , `) before ⇡s

i accepted in phase ` + 1. Thus at the time

that ⇡s
i accepted, A did not issue Reveal(⇡t

j , `
0) to any phase with ⇡t

j .phases[`
0].T =

⇡s
i .phases[`].T , satisfying condition C5.

Thus, assuming ⇧ is a secure multi-phase ACCE no A can achieve conditions M

0
(b) and

A1–A7. ⇤

We can combine Theorems 6.2 and 6.3 to obtain the central result of the paper, justifying

the security of the SCSV/RIE countermeasure:

Corollary 1 (TLS with SCSV/RIE is a weakly secure renegotiable ACCE). If a tagged TLS

ciphersuite ⇧ is a secure tagged-ACCE-fin protocol as described in Section 3.2.3 and PRF is a

secure pseudorandom function, then that TLS ciphersuite ⇧ with SCSV/RIE countermeasures

as described in Figure 6.3 is a weakly secure renegotiable ACCE.

For concreteness, we can combine this with Theorem 6.1 to obtain:

Corollary 2 (TLS-DHE with SCSV/RIE is a weakly secure renegotiable ACCE). Under the

same assumptions on the building blocks as in Theorem 6.1, TLS-DHE with SCSV/RIE coun-

termeasures is a weakly secure renegotiable ACCE protocol.

148

6.7 TLS with SCSV/RIE is a Weakly Secure Renegotiable ACCE

6.7.1 On Renegotiation Security of TLS-RSA with SCSV/RIE

C S

(IC = pkC , skC)(IC = pkC , skC) (IS = pkS , skS)pre-accept stage
rC

r
 � {0, 1}�

†extC

8
<

:
empty, if initial,

fin
(�1)

C , if reneg
m1 : rC , cs-list,

†extC

rS
r
 � {0, 1}�

†If extC 6= fin
(�1)

C : ⇤ reject

†extS

8
<

:
empty, if initial,

fin
(�1)

C kfin
(�1)

S , if reneg

keyexS . . .

m2 : rS , sid, cs-choice,
†extS

m3 : certS

m4 : keyexS

m5 : get-cert

m6 : done

†If extS 6= fin
(�1)

C kfin
(�1)

S : ⇤ reject

If ¬verify(keyexS) : ⇤ reject

keyexC . . .

�C SIG.Sign(skC ,m1

|| . . . ||m
8

)
pms . . .

ms PRF(pms, label
1

||rC ||rS)

KC!S
enc ||KS!C

enc ||KC!S
mac ||KS!C

mac PRF(ms, label
2

||rC ||rS)

finC PRF(ms, label
3

||H(m
1

|| . . . ||m
10

))
†store fin

(�1)

C finC
m7 : certC

m8 : keyexC

m9 : �C

m10 : flagenc

m11 : (C11, ste) = StE.Enc(KC!S
enc ||KC!S

mac , len, H, finC , ste)

If SIG.Vfy(pkC ,�C ,m1

|| . . . ||m
8

) = 0 : ⇤ reject

pms . . .

ms PRF(pms, label
1

||rC ||rS)

KC!S
enc ||KS!C

enc ||KC!S
mac ||KS!C

mac PRF(ms, label
2

||rC ||rS)

If finC 6= PRF(ms, label
3

||H(m
1

|| . . . ||m
10

)) : ⇤ reject

finS PRF(ms, label
3

||H(m
1

|| . . . ||m
12

))
†store fin

(�1)

S finS
†store fin

(�1)

C finC
⇤ accept

m12 : flagenc

m13 : (C13, ste) = StE.Enc(KS!C
enc ||KS!C

mac , len, H, finS , ste)

If finS 6= PRF(ms, label
3

||H(m
1

|| . . . ||m
12

)) : ⇤ reject

†store fin
(�1)

S finS
⇤ accept

post-accept stage

StE.Enc(KC!S
enc ||KC!S

mac , len, H, data, ste)

StE.Enc(KS!C
enc ||KS!C

mac , len, H, data, ste)

Figure 6.3: Generic TLS handshake protocol with †SCSV / RIE renegotiation countermeasures

As the security definitions for multi-phase and renegotiation protocols in Section 3.2.3 only

149

6 On the Security of TLS Renegotiation

cover protocols providing forward secrecy, TLS ciphersuites without forward secrecy, e.g. RSA

key transport-based ciphersuites, cannot be shown to be secure or weakly secure renegotiable

ACCE protocols. However, it is plausible that the definition can be modified to consider pro-

tocols without forward secrecy, in which case RSA key transport may be able to proven secure.

In such a scenario, it should be possible to show that such ciphersuites, when using SCSV/RIE,

also satisfy a non-forward-secure notion of weak renegotiation security; or when using the new

countermeasure in Section 6.8, also satisfy a non-forward-secure notion of renegotiation se-

curity. A diagram showing the message flow for a generic TLS ciphersuite with SCSV/RIE

countermeasures appears in Figure 6.3.

6.8 New Countermeasure for TLS Renegotiation

We now present a new TLS renegotiation countermeasure that provides integrity protection

for the record layer transcript upon renegotiation (even when previous phases’ session keys are

leaked while the phase is still active), thereby achieving the full security of Definition 3.15. This

countermeasure is quite straightforward: by including a hash of all record layer messages in the

renegotiation information extension, parties can confirm that they share the same view of their

previous record layers.

The renegotiation information extension already contains a fingerprint of the previous phrase’s

handshake transcript via the client verify data (fin(�1)

C)31 and server verify data (fin(�1)

S)

values. We modify the renegotiation information extension to include an additional value, the

fingerprint of the encrypted messages sent over the previous phase’s record layer. In particular,

if negotiating:

extC fin
(�1)

C k PRF(ms(�1), label
5

kH(RT(�1)

s kRT(�1)

r)) , (6.1)

where ms(�1) is the previous phase’s master secret, H is a collision-resistant hash function, and

RT(�1)

s kRT(�1)

r is the client’s view of the previous phase’s record layer transcript; the server uses

RT(�1)

r kRT(�1)

s instead. Appropriate checks are performed by the server. With this additional

information, the two parties will now not complete renegotiation unless they have matching

views of the record layer transcripts from the previous phase.

Remark 22. Note that the proof does not require the server to also send its view of the record

layer transcript; the server simply checks what it receives from the client and stops if it is not

what it expects. The same is actually true as well of the RIE countermeasure, and the proof of

Theorem 6.3 would go through if only extC contained fin
(�1)

S . However, if the security model

is altered to allow Corrupts of the current phase’s public keys but not Reveals of the previous

phase’s session keys, then having both extC and extS include each party’s view of the the

transcript is required to achieve security.

In practice, it is not di�cult to, on an incremental basis, compute hashes of the ciphertexts

sent and received over the record layer in that phase. In particular, it is not necessary to store

all record layer messages to input to the hash function all at once, as common programming

APIs for hash functions allow the hash value to be provided incrementally. However, the cost

of the MAC computation can dominate the cryptographic cost of record layer computations

[GSF+04].

31fin
(�1)
X indicates a Finished message from the previous phase

150

6.8 New Countermeasure for TLS Renegotiation

Alternatively, if the sLHAE scheme for the record layer is implemented as an encrypt-then-

MAC or MAC-then-encrypt, it should be possible to use MAC contained in the last encrypted

message of the sLHAE scheme instead of the hash value computed above; this would result in

no additional performance impact and would be easier to implement.

Theorem 6.4 (TLS with new countermeasure is a secure renegotiable ACCE). Let ⇧ be a

TLS ciphersuite with the original RIE countermeasures as in Figure 6.3 but using extC as in

equation (6.1). If ⇧ is a (t, ✏mp)-secure multi-phase ACCE protocol, H is a (t, ✏H)-collision-

resistant hash function, and PRF is a (t, ✏prf)-secure pseudorandom function, then ⇧ is a (t, ✏)-

secure renegotiable ACCE, where ✏ = ✏mp + ✏H + ✏prf .

The proof proceeds similarly to that of Theorem 6.3. The main di↵erence is that, in one case,

the removal of restrictions A6 and A7 means we can no longer reduce down to a violation of

confidentiality/integrity in the multi-phase security of ⇧, and instead have to rely on the new

countermeasure to detect non-matching record layer transcripts and reduce to the security of

the PRF and hash function.

Proof. The proof proceeds similarly to that of Theorem 6.3. Suppose A breaks the rene-

gotiable ACCE security of the protocol ⇧. We will show that either A directly breaks the

multi-phase ACCE security of ⇧ or A can be used to construct another algorithm that breaks

either the security of thePRF, the collision resistance of H, or the multi-phase ACCE security

of ⇧.

As before, we approach the proof in three cases: either A has broken the confidential-

ity/integrity of the secure renegotiable ACCE, or A has broken the renegotiation authentication

of the secure renegotiable ACCE, and the latter can happen by meeting either condition M

0
(a)

or M

0
(b). The first two cases, confidentiality and authentication for M

0
(a), proceed exactly

as in the proof of Theorem 6.3.

Authentication — M

0
(b). Suppose A wins the renegotiable ACCE security experiment for

⇧ using condition M

0
(b) but not M0

(a).

When conditions A1–A7 hold, then the same argument as in the proof for case M

0
(b) of

Theorem 6.3 still holds, in which case conditions C1–C6 hold and A can be used to break the

confidentiality/integrity of ⇧ in the multi-phase ACCE experiment.

However, in the secure renegotiable ACCE experiment, the adversary is no longer constrained

by conditions A6 and A7, so it can make Reveal queries while the phase is active. This means

that conditions C4 and C5 are no longer satisfied, so we cannot reduce to the confidential-

ity/integrity of ⇧ in the multi-phase ACCE experiment when such Reveal queries are issued.

Instead, we make use of the new countermeasure, and apply an argument similar to that for

case M

0
(a) of Theorem 6.3.

If A wins using condition M

0
(b) but not M

0
(a), then, for every phase `0 < `⇤, holds that

⇡s
i .phases[`

0].T = ⇡t
j .phases[`

0].T . But by definition there exists a phase ` < `⇤ such that

⇡s
i .phases[`].RTskRTr 6= ⇡t

j .phases[`].RTrkRTs. Choose ` maximal. Then ⇡t
j .phases[` + 1].T

matches ⇡s
i .phases[` + 1].T . In particular, messages m

1

of those two transcripts are equal,

and so are messages m
2

of those two transcripts. Since the new countermeasure is being used,

m
2

contains extC , which itself contains the output of PRF(ms(�1), label
5

kH(RT(�1)

s kRT(�1)

r)).

Since ⇡s,`+1

i accepted, both ⇡s,`+1

i and ⇡t,`+1

j used the same value in extC . But at each party,

this value is the value of the PRF applied to the hash of the record layer transcripts from phases

151

6 On the Security of TLS Renegotiation

⇡s,`
i and ⇡t,`

j , which we know are not equal. This means a collision has occurred either in H or

PRF, which happens with negligible probability.

Thus, assuming PRF is secure, H is collision-resistant, and ⇧ is a secure multi-phase ACCE,

no A can achieve conditions M0
(a) and A1–A5. ⇤

152

7 Conclusion

In this chapter we conclude the thesis by discussing our main results. We first discuss our generic

construction of secure AKE protocols. Then we discuss our results on the TLS protocol, and

finally our results on the security of multi-phase and renegotiation protocols.

7.1 Discussion of our Generic Compiler for AKE Protocols

Our construction described in Chapter 4 combines a Key Exchange (KE) protocol with a digital

signature scheme (and one-way functions) to achieve an authenticated key exchange protocol.

To protect against active Man-In-The-Middle (MITM) adversaries in our generic scenario, it

seems su�cient to simply include the transcript of the KE protocol into the authentication

protocol, such that any modification of messages in the KE protocol is automatically detected

in the authentication protocol (since the transcript is included). Unfortunately, this simple

construction cannot be proven secure in the BR model. An adversary has the same access to

the transcript of the protocol, and can modify messages in the authentication protocol in a

specific way to perform Unknown Key Share Attacks (UKS) as described in Section 1.4. To

avoid this attack, a secret value only known to the communication partner of the key exchange

protocol (i.e. the session key) must be embedded in the authentication protocol in a generic

way.

In our compiler, we send an additional pair of messages after the key exchange and the au-

thentication protocol. These messages contain a cryptographic checksum over the transcripts

of both protocols. This checksum is basically a MAC, computed over the transcript of both

the KE and the authentication protocol, using a key derived from the negotiated session key

(which is returned by the key exchange protocol) and a Pseudo-Random Function.

An alternative would be to modify a value that is present in all secure authentication proto-

cols, in such a way that it does not change the security properties of the protocol: In a generic

authentication protocol, a random challenge rA guaranteeing the freshness of the message(s)

must be sent from party A to party B, which is answered with a response sB from B. Instead

of using the challenge rA directly to compute the response, one could use a derived value r0A
from the same distribution:

r0A := H(k, rA, rB , transcriptKE), s0B := SIG.Sign(skB , r
0
A),

where H is a hash function modeled as a Random Oracle and k is the key that is output by

the underlying KE protocol. Please note that r0A is never sent but has to be computed by A

and B. Thus the adversary E does not learn r0A. This construction does not alter the security

properties of the authentication protocol. However, a security proof for this compiler would

require the Random Oracle model, so this construction is left out-of-scope.

153

7 Conclusion

7.2 Discussion of the Results on TLS

The design of the TLS-DHE Handshake seems to support our proof idea of reducing active ad-

versaries to passive adversaries very naturally. This is not due to the key transport mechanism

itself, but rather to the fact that Ephemeral Di�e-Hellman (DHE) uses signatures computed

over all previously exchanged messages to authenticate the protocol parties. Our proof essen-

tially exploits that this authentication mechanism at the same time also protects the first phase

of the TLS-DHE Handshake from adversarial modifications. We cannot identify a similarly

straight-forward approach for encrypted key transport, as server authentication is done rather

implicitly when verifying the Finished messages. Likewise, the static Di�e-Hellman key ex-

change does not use signatures over the first Handshake messages and our proof technique does

not apply.

The whole TLS protocol suite is much more complex than the cryptographic protocol under-

lying TLS-DHE. It is very flexible, as it allows to negotiate ciphersuites at the beginning of the

TLS Handshake, or to resume sessions using an abbreviated TLS Handshake. We need to leave

an analysis of these features for future work, since the complexity of the protocol and security

model grows dramatically.

The goal of this analysis is to make security statements about TLS-DHE, TLS-SDH and TLS-

RSA on the protocol layer and give rise to new constructions which are provably secure under

standard assumptions solely. As common in cryptographic protocol analyzes, we therefore have

ignored implementational issues like error messages, which of course might also be used to break

the security of the protocol. We leave it as an interesting open question to find an adequate

approach for modeling such side-channels in complex scenarios like AKE involving many parties

and parallel, sequential, and concurrent executions. Another important open problem is to

consider cross-protocol attacks that exploit for instance possible subtle connections between

di↵erent ciphersuites. While the example of [WS96] is impractical (and in this case rather an

implementational issue) there may be other even more sophisticated attacks.

We consider our results as a strong indicator for the soundness of the TLS-DHE protocol.

We also believe that future revisions of the TLS standard should be guided by provable security

results – ideally in the standard model.

Limitations of our Results on TLS

Standard Model Security of RSA Our results do have some important limitations which

we want to point out here. First, for TLS-RSA we need to require that the underlying public

key encryption system is CCA secure. This stands in line with previous works like [GMP+08b,

BFS+12]. However the TLS-RSA ciphersuites all rely on RSA-PKCS#1 v1.5 which is not CCA

secure [Ble98], thus strictly speaking our result does not apply to the current state of TLS-RSA.

However, we believe that our results are still meaningful and useful for the understanding of

TLS and the future development of the TLS standard. They show that changing the encryption

system to a provably secure one pays o↵ in the sense that it allows to obtain a strong security

result for the entire TLS protocol.

We stress that although standardized in PKCS#1 v2.1, TLS does not allow to use RSA-

OAEP [BR94b] because of ‘maximal compatibility with earlier versions of TLS’ [DR08]. Note

that RSA-OAEP is secure against Chosen-Plaintext Attacks (CPA) under the RSA assumption

154

7.3 Discussion of the Results on Renegotation

in the Random Oracle Model only [FOPS01, KP09] — in the standard model it is only known to

be CPA secure under the �-Hiding assumption [KOS10] and the assumption that the employed

hash functions are t-wise independent.

Assuming new Primitives for TLS Our results show that if we replace the encryption

system and the signature scheme with primitives provably secure in the standard model32,

we can obtain provably secure results for TLS that avoid Random Oracles at all. This again

can guide future revisions of the TLS standards, although it is obvious that, for compatibility

reasons, the primitives in TLS should not be simply exchanged with new ones. In general, we

support a careful transition to a more modular structure of TLS in line with one of the most

important goals of the TLS protocol given in the specification of TLS 1.2 [DR08] – extensibility.

The standard is specifically explicit with respect to the support of new public key encryption

mechanisms:

‘Extensibility: TLS seeks to provide a framework into which new public key and bulk

encryption methods can be incorporated as necessary’.

We emphasize that in the past there have already been modifications of TLS that tend into this

direction. For example, while the PRF used in TLS 1.1 is fixed for all ciphersuites, TLS 1.2

allows to use ‘cipher-suite-specified PRFs’. Similarly, we might regard the introduction of

Elliptic Curve Cryptography (ECC) into the SSL/TLS protocol stack as a positive example of

an extension of the TLS standard [BWBG+06]: more and more servers support and use the

e�cient ECC-based ciphersuites as default, the most prominent example probably being Google

that switched to Ephemeral Elliptic Curve Di�e-Hellman (ECDHE) in 2011, to support and

push the use of TLS handshakes with forward secrecy [Ada]. To us, our results not only propose

(and analyze) an alternative instantiation of TLS with di↵erent primitives. They rather help to

lead the process of selecting new, adequate building blocks into a wortwhile direction (towards

provable security in the standard model under standard assumptions).

7.3 Discussion of the Results on Multi-Phase and

Renegotiation Protocols

This thesis only makes use of the multi-phase ACCE and renegotiable ACCE security models

to give proofs of the TLS renegotiation protocol. However, our definitions are very general

and not specifically constructed or limited to TLS renegotiation. We think that the three

di↵erent security notions capture the essence of renegotiation protocols in general and can be

of independent interest for analyzing other protocols that allow for renegotiation.

Let us shortly sum up the di↵erent security notions and discuss their field of application.

The first notion of multi-phase ACCE protocols is arguably the weakest, as it does not require

a cryptographic link between di↵erent protocol phases. It only ensures, that each single phase

yields a secure ACCE protocol in that for each phase in which a party ‘Alice’ accepts (thinking

that her communication partner is ‘Bob’) there exists a ‘corresponding’ phase for the party

‘Bob’. We do not require that it has to be the same phase, such that attacks similar to the

renegotiation attack by Ray and Dispensa as described in Section 6.1 are not captured by

32Natural candidates secure under the RSA assumption are [HK09b] for public key encryption and [HW09] for

signature generation.

155

7 Conclusion

this model. We stress that this attack would not have any impact in the real world if the

application running on the server would distinguish between messages from di↵erent phases

instead of just concatenating them and evaluating them completely in the security context of

the second phase.33 Note that an application for renegotiation can be to switch identities, thus

we only need to to make sure that the parties ‘behind’ the identities remain the same.

To capture such attacks formally, we introduced the notion of weakly secure renegotiable

ACCE protocols. The term ‘weakly’ only indicates that this notion is followed by an even

stronger notion. For protocols to be secure under this notion we now additionally require a

cryptographic link between phases, i.e. a party ‘Alice’ should only accept in a phase n (with

intended communication partner ‘Bob’), if this party ‘Bob’ accepts in a corresponding phase

and it is the n-th phase for ‘Bob’ as well, while forbidding the adversary to learn session keys

of previous phases. For most applications this security notion should be strong enough, as it

(similar to the ACCE notion) implicitly also protects application data sent after a handshake

protocol by encrypting the messages.

To completely cover all cases, we now additionally consider very specific adversaries that are

somehow able to modify application data in a meaningful way without breaking ACCE security.

So the (non-weakly) secure renegotiable ACCE security notion also requires that when parties

accept, their communication partners not only accept in a corresponding phase but also have

‘experienced’ (that is, sent and received) the same set of messages in the previous phase. While

this notion may seem too strong or too hard to achieve, for TLS it is easy to realize, as we show

with our proposed countermeasure in Section 6.8.

7.4 Extension for Public Key Certification

In practice, the security of public key protocols like TLS heavily relies on trust in the underlying

PKI. When analyzing protocols that use certificates to authenticate parties (e.g. by giving

some proof of knowledge or possession that corresponds to some public value contained in the

certificate, e.g. by signing certain values in a TLS handshake), in cryptography we usually

assume that certificates for honest parties are always trusted. That is, either an adversary

cannot create certificates at all or at least he cannot create certificates for these trusted parties.

On the internet we are dealing with Certification Authoritys (CAs), which provide institutions

and individuals with ‘certified’ public keys, i.e. with certificates that have been signed by a CA.

And as long as the signature scheme used to sign certificates is secure (and an adversary does

not obtain a private key used by a CA to sign certificates), we can rely on these certificates

and trust the parties in possession of the private keys corresponding the public keys contained

in the certificates.

However, although in theory this problem may be considered solved, in practice we often

face new and diverse attacks against PKIs. When the security of protocols depends on the

security of the PKI, modeling these additional attack capabilities becomes interesting. Using

the example of the TLS protocol, attacks against CAs can almost immediately be transformed

into attacks against TLS (see for example attacks against Diginotar [Adv] and Comodo [Blo]).

33In this case however it was easier to deploy countermeasures for TLS renegotiation instead of patching all

server applications (or HTTP).

156

7.4 Extension for Public Key Certification

Modeling Public Key Certification One could easily extend any security model described

in Chapter 3 to capture secure public key registration and certification, by letting the execution

environment act as CA, which computed all certificates as a signature over the party’s public

key pki, a unique identifier (for example a random string or a serial number) idi, and some

additional information auxi (that can for example be used to identify the party Pi, like a

domain name or an email address). The certificates are computed with the private key sk

of a certification key pair (pk, sk).34 All oracles would have access to the public certification

key pk. We note, that security proofs might need to rely on di↵erent assumptions to enable

simulatability.

Following this approach, one could give the adversary the power to register (up to n) arbitrary

public keys and make the following change to the partner id ⇧:

• ⇧ 2 [�+ n] holds an index j that now points to a globally unique certificate identity.

Formally, registering a new public key would be performed by asking the following query:

• Register(pk0, aux, proof): Upon receiving this query, the execution environment first

checks whether the adversary ’knows’ the private key sk0 corresponding to the public

key pk0 by evaluating the non-interactive proof proof of possession of sk0. On failure it

outputs an error symbol ?, on success it outputs a certificate, binding the public key pk0

and aux to a new globally unique identity id0 generated by the execution environment.

We need not make the environment ‘generate’ all information (including those used in

the certificates requested by the adversary). This strengthens the model slightly as the

adversary can freely specify aux as part of the certificate. This query could be restricted

to be called at most n times.

Remark 23. We would only require that the proof is non-interactive to simplify the model

(if a common reference string is required we may assume that it is held by the execution

environment and made publicly available). In practice, the concrete implementation of these

proofs of possession is up to the CA [AFKM05] and may also be interactive. We only require

that it is secure under concurrent executions. Examples can be found in RFC 4210 [AFKM05]

and PKCS#10 [NK00].

In general this proof only needs to be sound. However when relying on the knowledge of

secret key (KOSK) assumption, we would require that the proof consists of sk0. One can think

of id0 = idz as being associated with an index z 2 N that is initialized to � + 1. For each call

of Register, z is incremented by one.

34Also, one could easily further extend the model to cover multiple certification authorities.

157

Bibliography

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway, The oracle Di�e-Hellman

assumptions and an analysis of DHIES, Topics in Cryptology – CT-RSA 2001

(San Francisco, CA, USA) (David Naccache, ed.), Lecture Notes in Computer

Science, vol. 2020, Springer, Berlin, Germany, April 8–12, 2001, pp. 143–158.

[Ada] Adam Langley, Google Security Team, Protecting data for the long term

with forward secrecy, http://googleonlinesecurity.blogspot.co.uk/2011/

11/protecting-data-for-long-term-with.html.

[Adv] Microsoft Security Advisory, Fraudulent Digital Certificates Could Allow Spoofing,

http: // technet. microsoft. com/ en-us/ security/ advisory/ 2607712 .

[AFKM05] C. Adams, S. Farrell, T. Kause, and T. Mononen, Internet X.509 Public Key In-

frastructure Certificate Management Protocol (CMP), RFC 4210 (Proposed Stan-

dard), September 2005, Updated by RFC 6712.

[Bar04] Gregory V. Bard, The Vulnerability of SSL to Chosen Plaintext Attack, Cryptol-

ogy ePrint Archive, Report 2004/111, 2004, http://eprint.iacr.org/.

[Bar06] , A Challenging but Feasible Blockwise-Adaptive Chosen-Plaintext Attack

on SSL, SECRYPT (Manu Malek, Eduardo Fernández-Medina, and Javier Her-

nando, eds.), INSTICC Press, 2006, pp. 99–109.

[BBM09] Timo Brecher, Emmanuel Bresson, and Mark Manulis, Fully robust tree-Di�e-

Hellman group key exchange, CANS 09: 8th International Conference on Cryp-

tology and Network Security(Kanazawa, Japan) (Juan A. Garay, Atsuko Miyaji,

and Akira Otsuka, eds.), Lecture Notes in Computer Science, vol. 5888, Springer,

Berlin, Germany, December 12–14, 2009, pp. 478–497.

[BBP04] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio, An uninstantiable

random-oracle-model scheme for a hybrid-encryption problem, Advances in Cryp-

tology – EUROCRYPT 2004 (Interlaken, Switzerland) (Christian Cachin and Jan

Camenisch, eds.), Lecture Notes in Computer Science, vol. 3027, Springer, Berlin,

Germany, May 2–6, 2004, pp. 171–188.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk, A modular approach to the

design and analysis of authentication and key exchange protocols (extended ab-

stract), 30th Annual ACM Symposium on Theory of Computing(Dallas, Texas,

USA), ACM Press, May 23–26, 1998, pp. 419–428.

[BFCZ08] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zalinescu,

Cryptographically verified implementations for TLS, ACM CCS 08: 15th Con-

ference on Computer and Communications Security(Alexandria, Virginia, USA)

159

http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://technet.microsoft.com/en-us/security/advisory/2607712
http://eprint.iacr.org/

Bibliography

(Peng Ning, Paul F. Syverson, and Somesh Jha, eds.), ACM Press, October 27–31,

2008, pp. 459–468.

[BFS+12] Christina Brzuska, Mark Fischlin, Nigel P. Smart, Bogdan Warinschi, and

Stephen C. Williams, Less is More: Relaxed yet Composable Security Notions

for Key Exchange, 2012, Cryptology ePrint Archive, Report 2012/242.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams,

Composability of Bellare-Rogaway key exchange protocols, ACM CCS 11: 18th

Conference on Computer and Communications Security(Chicago, Illinois, USA)

(Yan Chen, George Danezis, and Vitaly Shmatikov, eds.), ACM Press, Octo-

ber 17–21, 2011, pp. 51–62.

[Ble98] Daniel Bleichenbacher, Chosen ciphertext attacks against protocols based on the

RSA encryption standard PKCS #1, Advances in Cryptology – CRYPTO’98

(Santa Barbara, CA, USA) (Hugo Krawczyk, ed.), Lecture Notes in Computer

Science, vol. 1462, Springer, Berlin, Germany, August 23–27, 1998, pp. 1–12.

[Blo] Comodo Blogs, The Recent RA Compromise, http: // blogs. comodo. com/

it-security/ data-security/ the-recent-ra-compromise/ .

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin, Protocol Initialization for the Frame-

work of Universal Composability, Cryptology ePrint Archive, Report 2004/006,

2004, http://eprint.iacr.org/.

[BM08a] Emmanuel Bresson and Mark Manulis, Contributory group key exchange in the

presence of malicious participants, IET Information Security 2 (2008), no. 3, 85–

93.

[BM08b] , Securing group key exchange against strong corruptions and key registra-

tion attacks, IJACT 1 (2008), no. 2, 91–107.

[BN00] Mihir Bellare and Chanathip Namprempre, Authenticated encryption: Relations

among notions and analysis of the generic composition paradigm, Advances in

Cryptology – ASIACRYPT 2000 (Kyoto, Japan) (Tatsuaki Okamoto, ed.), Lec-

ture Notes in Computer Science, vol. 1976, Springer, Berlin, Germany, Decem-

ber 3–7, 2000, pp. 531–545.

[BN08] , Authenticated encryption: Relations among notions and analysis of the

generic composition paradigm, Journal of Cryptology 21 (2008), no. 4, 469–491.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway, Authenticated key ex-

change secure against dictionary attacks, Advances in Cryptology – EURO-

CRYPT 2000 (Bruges, Belgium) (Bart Preneel, ed.), Lecture Notes in Computer

Science, vol. 1807, Springer, Berlin, Germany, May 14–18, 2000, pp. 139–155.

[BR93] Mihir Bellare and Phillip Rogaway, Random oracles are practical: A paradigm

for designing e�cient protocols, ACM CCS 93: 1st Conference on Computer and

Communications Security(Fairfax, Virginia, USA) (V. Ashby, ed.), ACM Press,

November 3–5, 1993, pp. 62–73.

160

http://blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/
http://blogs.comodo.com/it-security/data-security/the-recent-ra-compromise/
http://eprint.iacr.org/

Bibliography

[BR94a] , Entity authentication and key distribution, Advances in Cryptology –

CRYPTO’93 (Santa Barbara, CA, USA) (Douglas R. Stinson, ed.), Lecture Notes

in Computer Science, vol. 773, Springer, Berlin, Germany, August 22–26, 1994,

pp. 232–249.

[BR94b] , Optimal asymmetric encryption, Advances in Cryptology – EURO-

CRYPT’94 (Perugia, Italy) (Alfredo De Santis, ed.), Lecture Notes in Computer

Science, vol. 950, Springer, Berlin, Germany, May 9–12, 1994, pp. 92–111.

[BR95] , Provably secure session key distribution: The three party case, 27th An-

nual ACM Symposium on Theory of Computing(Las Vegas, Nevada, USA), ACM

Press, May 29 – June 1, 1995, pp. 57–66.

[BR06] , The security of triple encryption and a framework for code-based game-

playing proofs, Advances in Cryptology – EUROCRYPT 2006 (St. Petersburg,

Russia) (Serge Vaudenay, ed.), Lecture Notes in Computer Science, vol. 4004,

Springer, Berlin, Germany, May 28 – June 1, 2006, pp. 409–426.

[Bro06] Daniel R. L. Brown, What Hashes Make RSA-OAEP Secure?, Cryptology ePrint

Archive, Report 2006/223, 2006, http://eprint.iacr.org/.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson,

EMV Key Agreement, Cryptology ePrint Archive, Report 2013/031, 2013, http:

//eprint.iacr.org/.

[BWBG+06] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, Elliptic Curve

Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), RFC 4492

(Informational), May 2006, Updated by RFC 5246.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes, Key agreement protocols

and their security analysis, 6th IMA International Conference on Cryptography

and Coding (Cirencester, UK) (Michael Darnell, ed.), Lecture Notes in Computer

Science, vol. 1355, Springer, Berlin, Germany, December 17–19, 1997, pp. 30–45.

[BWM99] Simon Blake-Wilson and Alfred Menezes, Unknown key-share attacks on the

station-to-station (STS) protocol, PKC’99: 2nd International Workshop on The-

ory and Practice in Public Key Cryptography(Kamakura, Japan) (Hideki Imai

and Yuliang Zheng, eds.), Lecture Notes in Computer Science, vol. 1560, Springer,

Berlin, Germany, March 1–3, 1999, pp. 154–170.

[BWNH+03] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright, Trans-

port Layer Security (TLS) Extensions, RFC 3546 (Proposed Standard), June

2003, Obsoleted by RFC 4366.

[Can00] Ran Canetti, Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols, Cryptology ePrint Archive, Report 2000/067, 2000, http:

//eprint.iacr.org/.

161

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[Can01] Ran Canetti, Universally composable security: A new paradigm for cryptographic

protocols, 42nd Annual Symposium on Foundations of Computer Science(Las Ve-

gas, Nevada, USA), IEEE Computer Society Press, October 14–17, 2001, pp. 136–

145.

[CBH05a] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock, Errors in

computational complexity proofs for protocols, Advances in Cryptology – ASI-

ACRYPT 2005 (Chennai, India) (Bimal K. Roy, ed.), Lecture Notes in Computer

Science, vol. 3788, Springer, Berlin, Germany, December 4–8, 2005, pp. 624–643.

[CBH05b] , Examining indistinguishability-based proof models for key establishment

protocols, Advances in Cryptology – ASIACRYPT 2005 (Chennai, India) (Bi-

mal K. Roy, ed.), Lecture Notes in Computer Science, vol. 3788, Springer, Berlin,

Germany, December 4–8, 2005, pp. 585–604.

[CBH05c] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock, On Session Key

Construction in Provably-Secure Key Establishment Protocols, Mycrypt (Ed Daw-

son and Serge Vaudenay, eds.), Lecture Notes in Computer Science, vol. 3715,

Springer, 2005, pp. 116–131.

[CD09] S. Chaki and A. Datta, ASPIER: An Automated Framework for Verifying Secu-

rity Protocol Implementations, Computer Security Foundations Symposium, 2009.

CSF ’09. 22nd IEEE, july 2009, pp. 172–185.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi, The random oracle methodol-

ogy, revisited (preliminary version), 30th Annual ACM Symposium on Theory of

Computing(Dallas, Texas, USA), ACM Press, May 23–26, 1998, pp. 209–218.

[CJNP00] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier, New at-

tacks on PKCS#1 v1.5 encryption, Advances in Cryptology – EUROCRYPT 2000

(Bruges, Belgium) (Bart Preneel, ed.), Lecture Notes in Computer Science, vol.

1807, Springer, Berlin, Germany, May 14–18, 2000, pp. 369–381.

[CK01] Ran Canetti and Hugo Krawczyk, Analysis of key-exchange protocols and their

use for building secure channels, Advances in Cryptology – EUROCRYPT 2001

(Innsbruck, Austria) (Birgit Pfitzmann, ed.), Lecture Notes in Computer Science,

vol. 2045, Springer, Berlin, Germany, May 6–10, 2001, pp. 453–474.

[CK02] , Security analysis of IKE’s signature-based key-exchange protocol, Ad-

vances in Cryptology – CRYPTO 2002 (Santa Barbara, CA, USA) (Moti Yung,

ed.), Lecture Notes in Computer Science, vol. 2442, Springer, Berlin, Germany,

August 18–22, 2002, http://eprint.iacr.org/2002/120/, pp. 143–161.

[Cre09] Cas J. F. Cremers, Session-state reveal is stronger than ephemeral key reveal:

Attacking the NAXOS authenticated key exchange protocol, ACNS 09: 7th In-

ternational Conference on Applied Cryptography and Network Security(Paris-

Rocquencourt, France) (Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,

and Damien Vergnaud, eds.), Lecture Notes in Computer Science, vol. 5536,

Springer, Berlin, Germany, June 2–5, 2009, pp. 20–33.

162

http://eprint.iacr.org/2002/120/

Bibliography

[DA99] T. Dierks and C. Allen, The TLS Protocol Version 1.0, RFC 2246 (Proposed

Standard), January 1999, Obsoleted by RFC 4346, updated by RFCs 3546, 5746,

6176.

[Den02] Alexander W. Dent, Adapting the weaknesses of the random oracle model to the

generic group model, Advances in Cryptology – ASIACRYPT 2002 (Queenstown,

New Zealand) (Yuliang Zheng, ed.), Lecture Notes in Computer Science, vol. 2501,

Springer, Berlin, Germany, December 1–5, 2002, pp. 100–109.

[DH76] Whitfield Di�e and Martin E. Hellman, New directions in cryptography, IEEE

Transactions on Information Theory 22 (1976), no. 6, 644–654.

[DR06] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version

1.1, RFC 4346 (Proposed Standard), April 2006, Obsoleted by RFC 5246, updated

by RFCs 4366, 4680, 4681, 5746, 6176.

[DR08] , The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246

(Proposed Standard), August 2008, Updated by RFCs 5746, 5878, 6176.

[DY83] Danny Dolev and Andrew Chi-Chih Yao, On the security of public key protocols,

IEEE Transactions on Information Theory 29 (1983), no. 2, 198–207.

[Far10] Stephen Farrell, Why didn’t we spot that?, IEEE Internet Computing 14 (2010),

no. 1, 84–87.

[FKK11] A. Freier, P. Karlton, and P. Kocher, The Secure Sockets Layer (SSL) Protocol

Version 3.0, RFC 6101 (Historic), August 2011.

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern,

RSA-OAEP is secure under the RSA assumption, Advances in Cryptology –

CRYPTO 2001 (Santa Barbara, CA, USA) (Joe Kilian, ed.), Lecture Notes in

Computer Science, vol. 2139, Springer, Berlin, Germany, August 19–23, 2001,

pp. 260–274.

[FPZ08] Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer, HMAC is a ran-

domness extractor and applications to TLS, ASIACCS 08: 3rd Conference on

Computer and Communications Security(Tokyo, Japan) (Masayuki Abe and Vir-

gil Gligor, eds.), ACM Press, March 18–20, 2008, pp. 21–32.

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama, Strongly

secure authenticated key exchange from factoring, codes, and lattices, PKC 2012:

15th International Workshop on Theory and Practice in Public Key Cryptogra-

phy(Darmstadt, Germany) (Marc Fischlin, Johannes Buchmann, and Mark Man-

ulis, eds.), Lecture Notes in Computer Science, vol. 7293, Springer, Berlin, Ger-

many, May 21–23, 2012, pp. 467–484.

[Gel12] Rati Gelashvili, Attacks on re-keying and renegotiation in Key Exchange Proto-

cols, April 2012, Bachelor’s thesis, ETH Zurich.

[GKS12] Florian Giesen, Florian Kohlar, and Douglas Stebila, On the Security of TLS

Renegotiation, IACR Cryptology ePrint Archive 2012 (2012), 630.

163

Bibliography

[GKS13] , On the Security of TLS Renegotiation, 20th ACM Conference on Com-

puter and Communications Security, CCS’13, Berlin, Germany, November 2013.

[GMP+08a] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg

Schwenk, Universally composable security analysis of TLS, ProvSec 2008: 2nd

International Conference on Provable Security(Shanghai, China) (Joonsang Baek,

Feng Bao, Kefei Chen, and Xuejia Lai, eds.), Lecture Notes in Computer Science,

vol. 5324, Springer, Berlin, Germany, October 31 – November 1, 2008, pp. 313–

327.

[GMP+08b] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg

Schwenk, Universally Composable Security Analysis of TLS, ProvSec (Joonsang

Baek, Feng Bao, Kefei Chen, and Xuejia Lai, eds.), LNCS, vol. 5324, Springer,

2008, pp. 313–327.

[GSF+04] Vipul Gupta, Douglas Stebila, Stephen Fung, Sheueling Chang Shantz, Nils Gura,

and Hans Eberle, Speeding up secure web transactions using elliptic curve cryptog-

raphy, ISOC Network and Distributed System Security Symposium – NDSS 2004

(San Diego, California, USA), The Internet Society, February 4–6, 2004.

[HJK11] Dennis Hofheinz, Tibor Jager, and Eike Kiltz, Short signatures from weaker as-

sumptions, Advances in Cryptology – ASIACRYPT 2011 (Seoul, South Korea)

(Dong Hoon Lee and Xiaoyun Wang, eds.), Lecture Notes in Computer Science,

vol. 7073, Springer, Berlin, Germany, December 4–8, 2011, pp. 647–666.

[HK09a] Dennis Hofheinz and Eike Kiltz, The group of signed quadratic residues and ap-

plications, Advances in Cryptology – CRYPTO 2009 (Santa Barbara, CA, USA)

(Shai Halevi, ed.), Lecture Notes in Computer Science, vol. 5677, Springer, Berlin,

Germany, August 16–20, 2009, pp. 637–653.

[HK09b] , Practical chosen ciphertext secure encryption from factoring, Advances in

Cryptology – EUROCRYPT 2009 (Cologne, Germany) (Antoine Joux, ed.), Lec-

ture Notes in Computer Science, vol. 5479, Springer, Berlin, Germany, April 26–

30, 2009, pp. 313–332.

[HS11] Dennis Hofheinz and Victor Shoup, GNUC: A New Universal Composability

Framework, Cryptology ePrint Archive, Report 2011/303, 2011, http://eprint.

iacr.org/.

[HW09] Susan Hohenberger and Brent Waters, Short and stateless signatures from the

RSA assumption, Advances in Cryptology – CRYPTO 2009 (Santa Barbara, CA,

USA) (Shai Halevi, ed.), Lecture Notes in Computer Science, vol. 5677, Springer,

Berlin, Germany, August 16–20, 2009, pp. 654–670.

[JK02] Jakob Jonsson and Burton S. Kaliski Jr., On the security of RSA encryption

in TLS, Advances in Cryptology – CRYPTO 2002 (Santa Barbara, CA, USA)

(Moti Yung, ed.), Lecture Notes in Computer Science, vol. 2442, Springer, Berlin,

Germany, August 18–22, 2002, pp. 127–142.

164

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[JKSS10] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk, Generic Compilers

for Authenticated Key Exchange, Advances in Cryptology - ASIACRYPT 2010

- 16th International Conference on the Theory and Application of Cryptology

and Information Security, Singapore, December 5-9, 2010. Proceedings (Masayuki

Abe, ed.), Lecture Notes in Computer Science, vol. 6477, Springer, 2010, pp. 232–

249.

[JKSS12] , On the Security of TLS-DHE in the Standard Model, Advances in Cryp-

tology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 19-23, 2012. Proceedings (Reihaneh Safavi-Naini and Ran

Canetti, eds.), Lecture Notes in Computer Science, vol. 7417, Springer, 2012,

pp. 273–293.

[JSS12] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky, Bleichenbacher’s at-

tack strikes again: Breaking PKCS#1 v1.5 in XML encryption, ESORICS 2012:

17th European Symposium on Research in Computer Security(Pisa, Italy) (Sara

Foresti, Moti Yung, and Fabio Martinelli, eds.), Lecture Notes in Computer Sci-

ence, vol. 7459, Springer, Berlin, Germany, September 10–12, 2012, pp. 752–769.

[Kal98] B. Kaliski, PKCS #1: RSA Encryption Version 1.5, RFC 2313 (Informational),

March 1998, Obsoleted by RFC 2437.

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith, Instantiability of RSA-OAEP under

chosen-plaintext attack, Advances in Cryptology – CRYPTO 2010 (Santa Bar-

bara, CA, USA) (Tal Rabin, ed.), Lecture Notes in Computer Science, vol. 6223,

Springer, Berlin, Germany, August 15–19, 2010, pp. 295–313.

[KP09] Eike Kiltz and Krzysztof Pietrzak, On the security of padding-based encryption

schemes - or - why we cannot prove OAEP secure in the standard model, Ad-

vances in Cryptology – EUROCRYPT 2009 (Cologne, Germany) (Antoine Joux,

ed.), Lecture Notes in Computer Science, vol. 5479, Springer, Berlin, Germany,

April 26–30, 2009, pp. 389–406.

[Kra01] Hugo Krawczyk, The order of encryption and authentication for protecting com-

munications (or: How secure is SSL?), Advances in Cryptology – CRYPTO 2001

(Santa Barbara, CA, USA) (Joe Kilian, ed.), Lecture Notes in Computer Science,

vol. 2139, Springer, Berlin, Germany, August 19–23, 2001, pp. 310–331.

[Kra05] , HMQV: A high-performance secure di�e-hellman protocol, Advances in

Cryptology – CRYPTO 2005 (Santa Barbara, CA, USA) (Victor Shoup, ed.),

Lecture Notes in Computer Science, vol. 3621, Springer, Berlin, Germany, Au-

gust 14–18, 2005, pp. 546–566.

[KT11] Ralf Küsters and Max Tuengerthal, Composition theorems without pre-established

session identifiers, ACM CCS 11: 18th Conference on Computer and Communi-

cations Security(Chicago, Illinois, USA) (Yan Chen, George Danezis, and Vitaly

Shmatikov, eds.), ACM Press, October 17–21, 2011, pp. 41–50.

[KY03] Jonathan Katz and Moti Yung, Scalable protocols for authenticated group key

exchange, Advances in Cryptology – CRYPTO 2003 (Santa Barbara, CA, USA)

165

Bibliography

(Dan Boneh, ed.), Lecture Notes in Computer Science, vol. 2729, Springer, Berlin,

Germany, August 17–21, 2003, pp. 110–125.

[Lan11] Adam Langley, Google Online Security Blog: Protecting data for the long

term with forward secrecy, November 2011, http://googleonlinesecurity.

blogspot.com/2011/11/protecting-data-for-long-term-with.html.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin, Stronger security of

authenticated key exchange, ProvSec 2007: 1st International Conference on Prov-

able Security(Wollongong, Australia) (Willy Susilo, Joseph K. Liu, and Yi Mu,

eds.), Lecture Notes in Computer Science, vol. 4784, Springer, Berlin, Germany,

November 1–2, 2007, pp. 1–16.

[Man09] Mark Manulis, Group key exchange enabling on-demand derivation of peer-to-peer

keys, ACNS 09: 7th International Conference on Applied Cryptography and Net-

work Security(Paris-Rocquencourt, France) (Michel Abdalla, David Pointcheval,

Pierre-Alain Fouque, and Damien Vergnaud, eds.), Lecture Notes in Computer

Science, vol. 5536, Springer, Berlin, Germany, June 2–5, 2009, pp. 1–19.

[Mit98] John C. Mitchell, Finite-State Analysis of Security Protocols, CAV (Alan J. Hu

and Moshe Y. Vardi, eds.), LNCS, vol. 1427, Springer, 1998, pp. 71–76.

[MPT10] Mark Manulis, Bertram Poettering, and Gene Tsudik, A�liation-hiding key ex-

change with untrusted group authorities, ACNS 10: 8th International Conference

on Applied Cryptography and Network Security(Beijing, China) (Jianying Zhou

and Moti Yung, eds.), Lecture Notes in Computer Science, vol. 6123, Springer,

Berlin, Germany, June 22–25, 2010, pp. 402–419.

[MSW08] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi, A modular security anal-

ysis of the TLS handshake protocol, Advances in Cryptology – ASIACRYPT 2008

(Melbourne, Australia) (Josef Pieprzyk, ed.), Lecture Notes in Computer Science,

vol. 5350, Springer, Berlin, Germany, December 7–11, 2008, pp. 55–73.

[MSW10] , The TLS handshake protocol: A modular analysis, Journal of Cryptology

23 (2010), no. 2, 187–223.

[MT10] Ueli Maurer and Björn Tackmann, On the soundness of authenticate-then-encrypt:

formalizing the malleability of symmetric encryption, ACM CCS 10: 17th Confer-

ence on Computer and Communications Security(Chicago, Illinois, USA) (Ehab

Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, eds.), ACM Press, Octo-

ber 4–8, 2010, pp. 505–515.

[NK00] M. Nystrom and B. Kaliski, PKCS #10: Certification Request Syntax Specifica-

tion Version 1.7, RFC 2986 (Informational), November 2000, Updated by RFC

5967.

[OF05] Kazuhiro Ogata and Kokichi Futatsugi, Equational Approach to Formal Analysis

of TLS, ICDCS, IEEE Computer Society, 2005, pp. 795–804.

166

http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.com/2011/11/protecting-data-for-long-term-with.html

Bibliography

[Oka07] Tatsuaki Okamoto, Authenticated key exchange and key encapsulation in the stan-

dard model (invited talk), Advances in Cryptology – ASIACRYPT 2007 (Kuching,

Malaysia) (Kaoru Kurosawa, ed.), Lecture Notes in Computer Science, vol. 4833,

Springer, Berlin, Germany, December 2–6, 2007, pp. 474–484.

[Pau99] Lawrence C. Paulson, Inductive Analysis of the Internet Protocol TLS, ACM

Trans. Inf. Syst. Secur. 2 (1999), no. 3, 332–351.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton, Tag size does

matter: Attacks and proofs for the TLS record protocol, Advances in Cryptology

– ASIACRYPT 2011 (Seoul, South Korea) (Dong Hoon Lee and Xiaoyun Wang,

eds.), Lecture Notes in Computer Science, vol. 7073, Springer, Berlin, Germany,

December 4–8, 2011, pp. 372–389.

[RD09] Marsh Ray and Steve Dispensa, Renegotiating TLS, November 2009, http://

extendedsubset.com/Renegotiating_TLS.pdf.

[RD11] Juliano Rizzo and Thai Duong, BEAST: Surprising crypto attack against HTTPS,

2011, http://www.ekoparty.org/2011/juliano-rizzo.php.

[RD12] , The CRIME Attack, ekoparty Security Conference 8 � edition, 2012,

http://www.ekoparty.org/2012/thai-duong.php.

[Res00] E. Rescorla, HTTP Over TLS, RFC 2818 (Informational), May 2000, Updated

by RFC 5785.

[RRDO10] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, Transport Layer Security (TLS)

Renegotiation Indication Extension, RFC 5746 (Proposed Standard), February

2010.

[SEVB10] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard, A new se-

curity model for authenticated key agreement, SCN 10: 7th International Confer-

ence on Security in Communication Networks(Amalfi, Italy) (Juan A. Garay and

Roberto De Prisco, eds.), Lecture Notes in Computer Science, vol. 6280, Springer,

Berlin, Germany, September 13–15, 2010, pp. 219–234.

[Sho04] Victor Shoup, Sequences of games: a tool for taming complexity in security proofs,

Cryptology ePrint Archive, Report 2004/332, Nov 2004.

[Vau02] Serge Vaudenay, Security flaws induced by CBC padding - applications to SSL,

IPSEC, WTLS ..., Advances in Cryptology – EUROCRYPT 2002 (Amsterdam,

The Netherlands) (Lars R. Knudsen, ed.), Lecture Notes in Computer Science,

vol. 2332, Springer, Berlin, Germany, April 28 – May 2, 2002, pp. 534–546.

[WS96] David Wagner and Bruce Schneier, Analysis of the SSL 3.0 protocol, Proceedings

of the Second USENIX Workshop on Electronic Commerce, USENIX Association,

1996, pp. 29–40.

[Zol09] Thierry Zoller, TLS & SSLv3 renegotiation vulnerability, Tech. report, G-SEC,

2009, http://www.g-sec.lu/practicaltls.pdf.

167

http://extendedsubset.com/Renegotiating_TLS.pdf
http://extendedsubset.com/Renegotiating_TLS.pdf
http://www.ekoparty.org/2011/juliano-rizzo.php
http://www.ekoparty.org/2012/thai-duong.php
http://www.g-sec.lu/practicaltls.pdf

Glossary

ms master secret. 72, 73, 79, 95, 96, 100, 101, 107, 111, 112, 115, 118, 134

pms premaster secret. 71, 73, 86, 90, 94, 95, 99, 100, 103, 107, 110, 111, 114, 140

ACCE Authenticated and Confidential Channel Establishment. 2, 3, 23, 28, 33–45, 48–53, 65,

69, 89, 91, 97, 98, 104, 107, 109, 114, 121, 122, 126–128, 130, 132, 136, 139, 141, 142,

146–148, 150, 151, 155, 156

AKE Authenticated Key Exchange. 2, 4, 23, 26–33, 36–39, 41, 43, 44, 57, 60, 65, 66, 69, 77,

81, 85, 123, 153, 154

CA Certification Authority. 156, 157

CBC Cipher Block Chaining. 65, 68

CCA Chosen-Ciphertext Attacks. 16, 68, 106, 154

CDH Computational Di�e-Hellman. 69

CPA Chosen-Plaintext Attacks. 15, 154, 155

DDH Decisional Di�e-Hellman. 13, 69, 75, 76, 83, 86, 87, 107, 108, 110, 122, 130, 137, 140

DH Di�e-Hellman. 6, 20, 21, 25, 38, 44, 58, 66–69, 71–76, 78, 79, 82, 83, 86, 88, 92, 95, 97,

107, 108, 110, 118, 154

DHE Ephemeral Di�e-Hellman. 154

ECC Elliptic Curve Cryptography. 155

ECDHE Ephemeral Elliptic Curve Di�e-Hellman. 155

EUF-CMA Existential Unforgeability under Chosen-Message Attacks. 14

HTTP Hypertext Transfer Protocol. 124, 156

HTTPS Hypertext Transfer Protocol Secure. 124

IND-CCA Indistinguishable under Chosen-Ciphertext Attacks. 66

KCI Key-Compromise Impersonation Attacks. 38, 39

KE Key Exchange. 18, 153

169

Glossary

MAC Message Authentication Code. 4, 17, 34, 44, 58, 59, 63, 66, 68, 73, 75, 128, 129, 144,

150, 151, 153

MEE Mac-then-Encode-then-Encrypt. 68

MITM Man-In-The-Middle. 4, 59, 66, 124, 153

OW-CPA One-Wayness under Chosen-Plaintext Attacks. 68

PKCS Public Key Cryptography Standard. 8, 66, 68, 74, 154, 157

PKE Public-Key Encryption. 15, 99, 103

PKI Public-Key Infrastructure. 71, 156

PPT Probabilistic Polynomial-Time. 8, 24

PRF Pseudo-Random Function. 17, 20, 59, 62, 65, 69, 73, 93, 94, 96, 97, 100–103, 105–108,

111–113, 115, 147, 151, 153, 155

PRF-ODH PRF-Oracle Di�e Hellman. 2, 20, 21, 69, 76, 79, 87, 95, 96, 108, 117, 118, 122,

130, 134

RFC Request For Comments. 121, 124, 157

RIE Renegotiation Information Extension. 42, 51, 53, 121, 122, 126, 127, 129, 130, 141, 146,

148, 150

ROM Random Oracle Model. 9, 68, 155

RSA Rivest-Shamir-Adleman (Cryptosystem). 9, 66, 68, 126, 146, 150, 154, 155

RSA-OAEP RSA with Optimal Asymmetric Encryption Padding. 9, 67, 154

SCSV Signalling Ciphersuite Value. 42, 51, 53, 121, 122, 126, 127, 129, 130, 141, 146, 148, 150

sLHAE Stateful Length-Hiding Authenticated Encryption. 21, 35, 39, 44, 91–97, 101–103,

105–108, 112, 113, 115–119, 130, 136, 138, 141, 151

SMTPS SMTP over TLS. 124

SSL Secure Socket Layer. 4, 66, 67, 74, 123, 125, 155

TLS Transport Layer Security. 1, 2, 4, 5, 9–11, 17, 27, 28, 32–35, 38–42, 44–47, 49–51, 53, 57,

65–70, 73–76, 87, 88, 91, 94, 95, 108, 117, 121–130, 135, 138, 140, 141, 146–148, 150, 151,

153–156

TLS-DHE TLS Ciphersuites with Ephemeral Di�e-Hellman-based Key Exchange. 2, 65, 69,

71, 72, 75, 87, 92, 95, 117, 118, 122, 154

TLS-RSA TLS Ciphersuites with RSA-based Key Transport. 2, 65, 68, 71–73, 92, 96, 97, 106,

154

170

Glossary

TLS-SDH TLS Ciphersuites with Static Di�e-Hellman-based Key Exchange. 2, 65, 71–73, 92,

107, 117, 154

UC Universal Composability. 7, 8, 67, 127

UKS Unknown Key Share Attacks. 9, 59, 68, 153

171

Florian Kohlar

Curriculum Vitae

Personal Information

born March 9th, 1982.
in Bochum, Germany

Parents Carmen Kohlar, Head of a day nursery in Bochum.
Heinrich Kohlar, Chief inspector at the correctional facility in Bochum.

Brother Tobias Kohlar, Storeman at IKEA.
Partner Annette Klocke, Notary assistant.

Child Levi Alexander Kohlar.
born 2012

Education

School

1988–1992 Basic school, Köllerholzschule, Bochum.
1992–2001 Secondary School, Theodor-Körner-Schule, Gymnasium, Bochum.

graduated with Abitur

University

2001–2008 Diploma degree course, IT-Security, Ruhr-University Bochum.
graduated with Diploma

2009–2013 PhD studies, IT-Security, Ruhr-University Bochum.
graduated with Diploma

Working Experience

2003–2008 Student assistant, Ruhr-University Bochum.
Programming the student management system

2009-2013 Research associate, Chair for Network- and Datasecurity.
Ruhr-University Bochum

Spoken Languages

German Native speaker
English Fluent in speech and writing
French Basic Skills

Am Krüzweg 49 – D-44879 Bochum
H 0160-8073245 • T 0234-32-26798 • u 0234-32-14347

B florian.kohlar@ruhr-uni-bochum.de
1/3

mailto:florian.kohlar@ruhr-uni-bochum.de

Miscellaneous

{ Active member of the Federal Agency for Technical Relief in Bochum

Diploma Thesis

Title Sicherheit von XML-basierten Nachrichten und Dateien
Supervisor Prof. Dr. Jörg Schwenk

PhD Thesis

Title On the Cryptographic Security of Browser-Based Protocols
Supervisor Prof. Dr. Jörg Schwenk

Publications

Florian Giesen, Florian Kohlar, and Douglas Stebila. On the Security of TLS Renegotiation.
IACR Cryptology ePrint Archive, 2012:630, 2012.

Nils Gruschka, Meiko Jensen, Florian Kohlar, and Lijun Liao. On Interoperability Failures
in WS-Security. In Ejub Kajan, editor, Electronic Business Interoperability: Concepts,
Opportunities and Challenges, pages 615–635. IGI Global, 2011.

Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic Compilers for Authen-
ticated Key Exchange. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture
Notes in Computer Science, pages 232–249. Springer, 2010.

Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the Security of TLS-DHE
in the Standard Model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 273–293. Springer, 2012.

Florian Kohlar, Jörg Schwenk, Meiko Jensen, and Sebastian Gajek. Secure Bindings of
SAML Assertions to TLS Sessions. In ARES 2010, Fifth International Conference on
Availability, Reliability and Security, 15-18 February 2010, Krakow, Poland, pages 62–69.
IEEE Computer Society, 2010.

Florian Kohlar, Jörg Schwenk, Meiko Jensen, and Sebastian Gajek. On Cryptographically
Strong Bindings of SAML Assertions to Transport Layer Security. IJMCMC, 3(4):20–35,
2011.

Jörg Schwenk, Florian Kohlar, and Marcus Amon. The Power of Recognition: Secure
Single Sign-On using TLS Channel Bindings. In Proceedings of the 7th ACM workshop on
Digital identity management, DIM ’11, pages 63–72, New York, NY, USA, 2011. ACM.

Pavol Sovis, Florian Kohlar, and Jörg Schwenk. Security Analysis of OpenID. In Felix C.
Freiling, editor, Sicherheit 2010: Sicherheit, Schutz und Zuverlässigkeit, Beiträge der 5.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), 5.-7.
Oktober 2010 in Berlin, volume 170 of LNI, pages 329–340. GI, 2010.

Am Krüzweg 49 – D-44879 Bochum
H 0160-8073245 • T 0234-32-26798 • u 0234-32-14347

B florian.kohlar@ruhr-uni-bochum.de
2/3

mailto:florian.kohlar@ruhr-uni-bochum.de

Project Experience

AROSI
2009

Joint project with esrcypt GmbH and the German Federal O�ce for Information Security
(BSI) with the goal the implement an architecture to realise object security in internal
networks.

—————————————————————

Gematik
2009

Goal of this project was to write a security expertise of the Telematik infrastructure, used
in context with the German eHealth card. My part was to help evaluating the decentralized
components deployed in the environments of the health care providers, specifically to check
if personal data was stored and protected according to data privacy laws.

—————————————————————

Sec2

2010
This project aimed at creating decentralized security solutions for storing collaborative
data on the cloud.

—————————————————————

SkIDentity
2012

This project aimed at creating a bridge solution between secure electronic ID cards and
currently existing cloud computing infrastructures. The goal was to provide trustworthy
identities for the cloud to secure processes and values.

April 2013

Am Krüzweg 49 – D-44879 Bochum
H 0160-8073245 • T 0234-32-26798 • u 0234-32-14347

B florian.kohlar@ruhr-uni-bochum.de
3/3

mailto:florian.kohlar@ruhr-uni-bochum.de

	Introduction
	Focus of this Thesis
	Authentication and Key Exchange Protocols
	Formal Models for Authentication and Key Exchange Protocols
	Benefits and Limits of Reduction-Based Security Proofs
	List of Publications

	Preliminaries and Definitions
	The Decisional Diffie-Hellman Assumption
	Digital Signature Schemes
	Symmetric Encryption Schemes
	Public Key Encryption Schemes
	Pseudo-Random Functions
	Message Authentication Codes
	Passively Secure Key Exchange Protocols
	Collision-Resistant Hash Functions
	The PRF-Oracle-Diffie-Hellman Assumption
	The Strong PRF-Oracle-Diffie-Hellman Assumption
	Stateful Length-Hiding Authenticated Encryption

	Formal Security Models and Definitions
	Generic Security Model
	Generic Execution Environment
	Matching Conversations

	Specific Instantiations
	AKE Protocols
	ACCE Protocols
	Multi-Phase and Renegotiable ACCE Protocols

	Generic Compiler for AKE Protocols
	Authenticated Key Exchange Compiler
	Security Analysis
	Authentication
	Indistinguishability of Keys

	On the Provable Security of TLS
	A Brief Introduction to Transport Layer Security (TLS)
	Overview
	Related Work on the Cryptographic Security of TLS
	The TLS Handshake Protocol

	Truncated TLS-DHE is AKE
	Authentication
	Indistinguishability of Keys

	TLS-DHE with Mutual Authentication is a Secure ACCE Protocol
	General Proof Idea for Subsequent Proofs
	TLS-DHE with Server-only Authentication is ACCE Secure
	TLS-RSA with Server-Only Authentication is ACCE Secure
	Server-Only Authentication
	Indistinguishability of Ciphertexts

	TLS-RSA with Mutual Authentication is ACCE Secure
	TLS-SDH with Mutual Authentication is ACCE Secure
	Client Authentication
	Server Authentication
	Indistinguishability of Ciphertexts

	TLS-SDH with Server-Only Authentication is ACCE Secure

	On the Security of TLS Renegotiation
	Renegotiation Protocols and TLS Renegotiation
	Choosing the Right Model for TLS Renegotiation
	Renegotiation Security of TLS without SCSV/RIE Countermeasures
	TLS with SCSV/RIE is not a Secure Renegotiable ACCE
	TLS-DHE is a Secure Tagged-ACCE-fin
	Authentication
	Indistinguishability of Ciphertexts

	TLS with SCSV/RIE is a Secure Multi-Phase ACCE
	TLS with SCSV/RIE is a Weakly Secure Renegotiable ACCE
	On Renegotiation Security of TLS-RSA with SCSV/RIE

	New Countermeasure for TLS Renegotiation

	Conclusion
	Discussion of our Generic Compiler for AKE Protocols
	Discussion of the Results on TLS
	Discussion of the Results on Renegotation
	Extension for Public Key Certification

	Bibliography
	Glossary

