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Prof. Dr.-Ing. Christina Pöpper, Ruhr-University Bochum (committee member)
Prof. Dr.-Ing. Jan Lunze, Ruhr-University Bochum (committee member)

mailto:andreas.mayer@wuerth.com


Abstract

Today, Single Sign-On (SSO) solutions for major enterprises as well as on the Internet
(e.g. “Sign me in through Facebook/Google”) are flourishing. The large distribution of
SSO is mainly driven by usability, cost savings, and performance. However, the security
aspect is often overlooked. SSO systems provide a valuable single point of attack: If
the SSO solution exhibits a flaw, all federated websites may be affected. Therefore, the
security of SSO systems should be guaranteed under all common and even sophisticated
attack scenarios.

This thesis analyzes the security of SSO by focusing on the Security Assertion Markup
Language (SAML). The XML-based SAML standard is prevalently used in major en-
terprises and has been adopted by many high-profile services, such as Google Apps,
Salesforce, and several e-Government systems. The thesis is divided into three main
parts.

First, it analyzes common SSO threats and investigates two different functionalities
of SAML-based Identity Provider (IdP): Issuing of SAML assertions, and security as a
web application. By analyzing six different real-world IdPs, it shows that all are sus-
ceptible to at least one attack type. The IdPs are vulnerable either to a novel hijacking
attack (called ACS Spoofing), or to specific attacks stealing HTTP session cookies. All
attacks allow an attacker to impersonate the victim to thousands of websites accepting
assertions from these IdPs.

Second, it discusses different channel bindings, which utilize the cryptographic capa-
bilities of the Transport Layer Security (TLS) protocol as a holistic countermeasure.
It presents the first practical implementation of the SAML Holder-of-Key SSO Profile
in the popular SimpleSAMLphp framework. Furthermore, it proposes and implements
a novel variant of this Profile, which binds authentication requests and assertions to
TLS client certificates, and broadens this binding to session cookies. This combined
countermeasure mitigates all attacks described in the first part.

Third, it presents several practical and highly critical attacks on SAML messages. An
in-depth analysis of 14 major SAML frameworks reveals that eleven of them including
Salesforce, Shibboleth, and IBM XS40, could be broken with different XML Signature
Wrapping (XSW) attack techniques. These attacks circumvent the integrity protection
of XML Signature and allow one to log in to any federated website of the SSO domain
as an arbitrary user.

In summary, the work described in this thesis has influenced many SAML frameworks
and systems, which were fixed to mitigate the found attacks. Furthermore, the proposed
channel binding variant is generic and can be applied to other SSO protocols (e.g.
OAuth or OpenID). This can be seen as one step towards a holistic solution to harden
web authentication and SSO without changing existing infrastructure.





Zusammenfassung

Single Sign-On (SSO) Lösungen gewinnen derzeit besonders in großen Unternehmen
und im Internet (z.B. Facebook Connect und Google+ Sign-In) sehr stark an Bedeu-
tung. Die zunehmende Verbreitung von SSO wird hauptsächlich durch den erhöhten Be-
nutzerkomfort, die möglichen Kosteneinsparungen und die Effizienz dieser Technologie
angetrieben. Die Sicherheit dieser Systeme wird dagegen oft vernachlässigt. Gleichwohl
stellt ein SSO-System aber ein besonders attraktives und lohnenswertes Angriffsziel
dar. Eine einzige Schwachstelle kann alle föderierten Webseiten kompromittieren und
den vollständigen Identitätsdiebstahl des Opfers bedeuten. Deshalb ist es unabdingbar,
dass die verwendeten SSO-Technologien sehr sicher und selbst gegen komplexe Angriffe
äußererst resistent ist.

Diese Dissertation beschäftigt sich mit der Sicherheit von Single Sign-On Systemen
auf Basis der Security Assertion Markup Language (SAML). Der XML-basierte SAML-
Standard erlaubt die Realisierung von SSO-Lösungen und zeichnet sich durch eine
hohe technische Reife und große Industrieakzeptanz aus. Zudem wird SAML bei vielen
bedeutenden Diensten wie Google Apps, Salesforce und verschiedenen E-Government
Systemen eingesetzt. Diese Arbeit gliedert sich in drei Hauptteile.

Zuerst werden allgemeine Gefahren und Schwachstellen von webbasiertem SSO analy-
siert und zwei verschiedene SAML Identity Provider (IdP) Funktionalitäten untersucht:
Das Ausstellen von SAML Assertions und die Sicherheit der IdP Webanwendung selbst.
Die Analyse von sechs IdPs zeigt, dass alle in mindestens einer untersuchten Funktio-
nalität Schwachstellen aufweisen. Es kann entweder ein neuartiger SAML-Angriff (ACS
Spoofing) durchgeführt oder aber die HTTP Session Cookies gestohlen werden. Die ge-
fundenen Angriffe erlauben einem Angreifer den vollständigen Identitätsdiebstahl bei
allen föderierten Webseiten der SSO-Domäne.

Im folgenden Teil werden verschiedene Varianten von sogenannten Channel Bindings
diskutiert, die die kryptographischen Fähigkeiten des Transport Layer Security (TLS)
Protokolls als ganzheitliche Schutzmaßnahme verwenden. Es wird die erste praktisch
einsetzbare Implementierung des SAML Holder-of-Key SSO Profiles für das weit ver-
breitete SimpleSAMLphp Framework vorgestellt. Darüber hinaus wird eine neuartige
Variante dieses Profiles diskutiert und implementiert, welches Authentifizierungsanfra-
gen und SAML Assertions an TLS Client-Zertifikate bindet. Diese kryptographische
Verschränkung wird anschließend auf Session Cookies erweitert. Alle im ersten Teil
vorgestellten Angriffsvarianten werden dadurch verhindert.

Im dritten Teil werden kritische Angriffe auf SAML-Nachrichten vorgestellt. Eine
detaillierte Analyse von 14 weit verbreiteten SAML Frameworks zeigt, dass elf von die-
sen – einschließlich Salesforce, Shibboleth und IBM XS40 – mit verschiedenen XML
Signature Wrapping (XSW) Angriffen komplett gebrochen werden können. XSW um-
geht den Integritätsschutz von XML Signature und erlaubt es einem Angreifer, sich mit
jeder beliebigen Identität an jeder föderierten Webseite anzumelden.

Zusammenfassend beeinflussen die Ergebnisse dieser Arbeit eine Vielzahl von SAML
Frameworks und Systemen. Die gefundenen Schwachstellen wurden durch Updates be-
hoben. Darüber hinaus ist die vorgeschlagene Channel Binding-Variante generisch und
kann in jedem anderen SSO-Protokoll (z.B. OAuth oder OpenID), ohne tiefgreifende
Änderung der bestehenden Infrastruktur, verwendet werden. Dies kann als ein Schritt
hin zu einer ganzheitlichen Absicherung von webbasierten Authentifizierungslösungen
und SSO-Systemen gesehen werden.
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1 Introduction

1.1 Motivation

Today’s Internet users are forced to register to each website individually and have to
manage a plethora of accounts and (insecure) passwords as part of their daily job. A
large-scale study has revealed that an average user has about 25 accounts that require
a password [FH07b]. This aspect is not only cumbersome but also seriously insecure,
as users frequently choose weak (easy to remember) passwords and/or reuse them on
several websites. Moreover, password-based authentication solutions are susceptible to
password theft through website spoofing, pharming, social engineering, and keylogging
attacks [FBD+, DTH06, KSTW07, BeE13]. On the other hand, each website has
to reinvent the wheel by building and operating another stand-alone authentication
solution and suffers from high user management costs.

Single Sign-On (SSO), as a subset of identity and access management, was proposed
to tackle the described usability, management, and security issues. With SSO a user
authenticates once to a trusted third party, called Identity Provider (IdP), and subse-
quently gains access to all federated websites (i.e. Service Providers) he/she is entitled
to – without being prompted with another login dialog.

Nowadays, web SSO solutions are wide-spread and their importance still continues to
grow. In this context, the Security Assertion Markup Language (SAML) [CKPM05a]
is a flexible and open XML standard for exchanging authentication and authorization
statements. Since its invention in 2001, SAML has become the dominant technology
for enterprise SSO. SAML is primarily used in research, education, and e-Government
scenarios. For example, REFEDS Research Education and Federations [Gro13a] con-
sists of approximately 16 million users across thousands of institutions worldwide.
SAML was chosen as identification and authentication technology by a number of coun-
tries to provide e-Government services to all citizens (e.g. Germany [Fed12], Switzer-
land [The13a], Denmark [Dan13], and Austria [Hör11]). Furthermore, several high-
profile services, such as Google Apps [Goo13] and Salesforce [Sal13] adopted SAML.
Today, enterprises can choose between many prominent SAML implementations, like
SimpleSAMLphp [Sim13], Shibboleth [Shi13], OpenAM [For13], and OpenAthens [Edu13]
to deploy web SSO within companies. There is a strong trend of adopting SAML in
cloud-based identity management solutions (e.g. OneLogin [One13a] and Okta [Okt13]).
Such services are used by thousands of enterprises (e.g. London Gatwick Airport [Lon13],
Groupon [Gro13b], and LinkedIn [Lin13]) as central SSO solution.

While web SSO greatly enhances the user-friendliness and simultaneously offers many
possibilities to improve the security in web applications significantly (e.g. through
strong two-factor authentication), it also provides a valuable single point of attack:
If the SSO implementation exhibits a flaw or the IdP can be compromised, all Ser-
vice Providers are affected (including well-protected services like Google Apps and
Salesforce). This increases the impact of the attack by several orders of magnitude.
Therefore, the security of web SSO implementations and IdPs should be guaranteed
under all attack scenarios.
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1 Introduction

The history has shown, the development of a secure web SSO solution is a nontriv-
ial task, as it typically involves a combination of complex technologies (e.g. HTTP,
HTML, JavaScript, and XML). Over the past 14 years all relevant solutions (e.g.
Microsoft Passport and Cardspace [Mic13a], OpenID [Ope10], OAuth [JH12], and
SAML [CKPM05a]) exhibited severe security flaws [Sle01, CLGS08, SKS10, WCW12,
SHB12, SMS+12, SB12, GLM+13]. These results are independent from the usage of
the Transport Layer Security (TLS) protocol [DR08], the de facto standard for secure
Internet communication. This clearly indicates that the current application of TLS
alone is insufficient.

1.2 Contribution

The prevalent usage of SAML in highly critical scenarios and the inherent weaknesses
of web SSO solutions, motivate to investigate two different areas:

1. Analysis of New Security Threats. It is important to deeply analyze the
source and the impact of new security threats and attacks to gain new insights
about inherent weaknesses.

2. Development of Countermeasures. A deep understanding of web SSO secu-
rity threats and new attack scenarios is the cornerstone to build effective coun-
termeasures.

This thesis contributes theoretical and practical results in both areas. Thereby, it
focuses on transforming theoretical ideas into feasible attacks and practically usable
countermeasures. The results can be divided into three parts.

First, this thesis dissects common threats of web SSO and investigates two different
functionalities of SAML-based IdPs: Issuing of security tokens (i.e. SAML assertions)
and security as a web application. By investigating six different IdPs, it shows that two
out of three IdPs are vulnerable to each single attack type. Even worse, by combining
the two attacks, all IdP implementations are covered. The security of the token issuing
process is tested by manipulating the HTTP message flow with a novel hijacking attack
(ACS Spoofing). The security of the IdP as a web application is attacked by stealing
the HTTP session cookies, either through cross-site scripting (XSS) [Zuc03] alone, or
with a combination of XSS and UI redressing [Nie11]. All attacks allow an adversary
to impersonate the victim to thousands of websites (including high profile services like
Google Apps and Salesforce) accepting assertions from these IdPs. Finally, it discusses
the pros and cons of several countermeasures.

Second, this thesis discusses different channel bindings, which utilize the crypto-
graphic capabilities of the TLS protocol as a holistic countermeasure. Channel bindings
improve the security of SSO significantly and protect against a wide range of attacks.
This thesis presents the first practical implementation of the SAML Holder-of-Key
SSO Profile [KS10] in the popular SimpleSAMLphp framework [Sim13]. Furthermore,
it shows that the standardized Holder-of-Key SSO Profile is still vulnerable to an al-
ready published attack by Armando et al. [ACC+11]. To mitigate this insufficiency
it proposes and implements a novel variant of this Profile, which binds authentication
requests and assertions to TLS client certificates, and broadens this binding to HTTP
session cookies. This combined countermeasure is practically feasible and mitigates all
attacks described in the first part.
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1.3 Publications

Third, this thesis presents several practical and highly critical attacks on SAML
messages. An in-depth analysis of 14 major SAML frameworks reveals that eleven of
them including Salesforce, Shibboleth, and IBM XS40, could be broken with different
XML Signature Wrapping (XSW) attack techniques. In general, XSW attacks exploit
different views on the same XML document, depending on the particular processing
module. An adversary utilizes this dichotomy to inject malicious content into a signed
SAML message to force the receiver (i.e. the Service Provider) to process them. There-
fore, an adversary can execute arbitrary content without the signer’s agreement. In the
case of SAML these attacks allow one to log in to any Service Provider as an arbitrary
user. Furthermore, the presented attacks invalidate the transport-level security of the
proposed channel bindings. This thesis proposes a first framework to analyze XSW
attacks on SAML, which is based on the information flow between two components of
the Service Provider. This analysis also yields efficient and practical countermeasures
that are applicable in various scenarios. In addition, it presents an automated XSW
penetration test tool for SAML.

Both, the novel attacks presented in this thesis and the proposed holistic countermea-
sures are of general importance. It is likely that the presented attacks are employable
to other web SSO standards as well (e.g. OpenID and OAuth). The investigated coun-
termeasures are generic and can therefore directly be applied to other SSO standards
and Web-based authentication mechanisms. Furthermore, the implementations of the
developed countermeasures are either adopted by the popular open source framework
SimpleSAMLphp or available as a patch therefor.

1.3 Publications
Parts of this thesis are based on four published papers and one paper that is cur-
rently under submission at the time of this writing. Chapter 4 builds upon joint work
with Vladislav Mladenov, Marcus Niemietz, and Jörg Schwenk. This paper is cur-
rently under submission. The channel bindings presented in Chapter 5 were published
in two separate papers [MS11, MKLS13] presented at the 12. and 13. Deutscher
IT-Sicherheitskongress. In addition, further results of Chapter 5 are based on the un-
published paper. The analysis of XSW attacks on SAML described in Chapter 6 were
published at USENIX Security 2012 [SMS+12] and (some minor parts) at the 19. DFN
Workshop [MS12].

1.4 Outline
Chapter 2 gives an overview of SAML and its underlying building blocks. Chapter 3
describes the basic principles of web SSO and in particular its application with SAML.
Common web SSO threats and two different high-impact attacks against IdPs are pre-
sented in Chapter 4. Chapter 5 analyzes several holistic countermeasures which improve
the security of SSO significantly. Furthermore, three SAML specific implementations of
these countermeasures are presented. A deep investigation of XML Signature Wrapping
attacks on SAML, along with a formal framework and practical countermeasures are
presented in Chapter 6. Finally, Chapter 7 concludes and gives some future research
directions.
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2 Foundations

In this chapter, we introduce the foundations of TLS, HTTP session management,
XML, XML Signature, and SAML. They are relevant to this thesis. Readers familiar
with these standards and specifications can safely skip this chapter.

2.1 TLS
The Transport Layer Security (TLS) [DR08] protocol and its predecessor Secure Socket
Layer (SSL) [FKK96] are the de facto standards for secure communication on the
Internet. Both protocols utilize symmetric and asymmetric cryptography to provide
confidentiality, authenticity, and integrity to data transported over a network.

SSL was invented in 1994 and later adopted by the IETF, whereby it was renamed
to TLS. The current version of the protocol – TLS 1.2 – is defined in RFC 5246 [DR08].
TLS can be used to secure the transport layer of any application layer protocol relying
on the TCP/IP model [SK91]. The most important use case of TLS is to secure HTTP
traffic. TLS is supported by all major browsers and web servers.
Security of TLS. Due to the great importance of TLS, it has been subject to sev-
eral security analyzes which revealed minor protocol deficiencies and side-channel at-
tacks [WS96, Ble98, Vau02, AP13]. However, TLS can still be considered secure if TLS
1.2 and its authenticated encryption algorithms are applied [AP13]. Recently published
works by Jager et al. [JKSS12] and Krawczyk et al. [KPW13] confirm this.
TLS Anatomy. TLS consists of two different protocol layers: (1) The TLS Handshake
Protocol and (2) the TLS Record Protocol. The TLS Handshake Protocol is used
to negotiate a cipher suite. It consists of a key establishment, an encryption, and
a message authentication code (MAC) algorithm. Additionally, the TLS Handshake
Protocol enables server and client to authenticate to each other. The TLS Record
Protocol provides confidentiality and integrity to application data.

The TLS specification distinguishes between a TLS session and a TLS connection:

• TLS Session. “A TLS session is an association between a client and a server.
Sessions are created by the handshake protocol. Sessions define a set of cryp-
tographic security parameters that can be shared among multiple connections.
Sessions are used to avoid the expensive negotiation of new security parameters
for each connection.”, [DR08, p.80].

• TLS Connection. “A connection is a transport (in the OSI layering model
definition) that provides a suitable type of service. For TLS, such connections
are peer-to-peer relationships. The connections are transient. Every connection
is associated with one session.”, [DR08, p.78].

This concept allows multiple secure TLS connections between a client/server pair,
which share the same TLS session.
TLS Handshake Protocol. The TLS Handshake Protocol supports two protocol
variants: A full handshake for establishing a new TLS session and an abbreviated TLS
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2.1 TLS

1. ClientHello

C S

Optional or situation-specific messages

2. ServerHello

3. Certificate

4. ServerKeyExchange

5. CertificateRequest

7. Certificate

8. ClientKeyExchange

9. CertificateVerify

10. ChangeCipherSpec

11. Finished

6. ServerHelloDone

12. ChangeCipherSpec

13. Finished

Full TLS Handshake Abbreviated TLS Handshake

1. ClientHello

C S

2. ServerHello

5. ChangeCipherSpec

6. Finished

3. ChangeCipherSpec

4. Finished

C : TLS client S : TLS server

Figure 2.1: Message flow for a full and an abbreviated TLS handshake.

handshake to resume an existing TLS session. The message flow of both protocol
variants is depicted in Figure 2.1.
Full TLS Handshake. In the following, we describe a TLS protocol run between
client C and server S:

1. C → S: C initiates the TLS protocol run by sending a ClientHello message to
S. This message indicates the highest supported TLS version, a Session ID, client-
generated random numbers, a list of suggested cipher suites1 (i.e. combinations
of cryptographic algorithms), and a set of understood compression methods.

2. S → C: S returns a ServerHello message containing the preferred TLS protocol
version, a server chosen Session ID, server-generated random numbers, the chosen
cipher suite, and the used compression method.

3. S → C: Next, S sends Certificate containing the server’s certificate and
optionally a certificate chain.

4. S → C: The optional ServerKeyExchange message is used to convey addi-
tional key material (i.e. for ephemeral Diffie-Hellman). In the case of a RSA key
exchange this message is not necessary.

5. S → C: By sending the (optional) CertificateRequest message, S requests
a client certificate from C. This message includes the allowed certificate types
(e.g. RSA and DSS) and a list of the distinguished names of acceptable certificate
authorities.

6. S → C: S sends the ServerHelloDone message to indicates the end of the nego-
tiation phase and that S has conveyed its key exchange messages. Subsequently,
C verifies the validity of the server certificate and starts his key exchange phase.

1http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
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2 Foundations

7. C → S: If requested by S in step 5, C sends its client certificate CertC .
Otherwise, this message is omitted.

8. C → S: The ClientKeyExchange message must be sent to S. Its content
depends on the type of negotiated key exchange. In the case of RSA, a premaster
secret encrypted with the public key from the server’s certificate is included.
Otherwise, a public key (e.g. ephemeral Diffie-Hellmann) or an empty message
(Diffie-Hellmann) is sent.

9. C → S: This optional message is only sent if S requested a client certificate.
C signs the hash value of all concatenated handshake messages sent in step 1 to
8 with the private key of the client certificate. This signature is embedded into
CertificateVerify and sent to S. Subsequently, S computes the same hash
value and verifies the validity of the received signature with the public key of
the client certificate CertC . In this step C proves possession of the private key
belonging to the client certificate.

10. C → S: The static ChangeCipherSpec message is sent to S which indicates
that C will from now on use the newly negotiated cipher suite and corresponding
key material.

11. C → S: C immediately computes the Finished message finC and sends it
protected under the new algorithms and keys to S. finC is computed as follows:

finC := PRF(ms,“client finished”, hash(handshake messages)),

where ms is the master secret derived from the premaster secret, “client finished”
is a fixed string, and handshake messages is the concatenation of all previous
handshake messages (step 1 to 10). PRF is a pseudorandom function as defined
in [DR08, p.13].

12. S → C: The static ChangeCipherSpec message is sent to C which indicates
that S will from now on use the newly negotiated cipher suite and corresponding
key material.

13. S → C: Upon reception of the client’s Finished message finC, S decrypts it
and validates its correctness. Subsequently, S calculates finS as follows:

finS := PRF(ms,“server finished”, hash(handshake messages))

Please note that the concatenation of the handshake messages additionally in-
cludes the plaintext of finC and the server’s ChangeCipherSpec message. Upon
reception, C decrypts finS and validates its correctness.

Abbreviated TLS Handshake. The abbreviated TLS protocol run is used when
TLS client and server agree to use a previously established TLS session. This protocol
variant is frequently used in practice to avoid full TLS handshakes which are perfor-
mance critical. According to RFC 5246 [DR08, p.35], the message flow is as follows:
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“The client sends a ClientHello using the Session ID of the session to be
resumed. The server then checks its session cache for a match. If a match is
found, and the server is willing to re-establish the connection under the spec-
ified session state, it will send a ServerHello with the same Session ID value.
At this point, both client and server MUST send ChangeCipherSpec mes-
sages and proceed directly to Finished messages. Once the re-establishment
is complete, the client and server MAY begin to exchange application layer
data. (See flow chart below.) If a Session ID match is not found, the server
generates a new session ID, and the TLS client and server perform a full
handshake.”

It is important to note that an abbreviated TLS handshake changes both Finished
messages which were maintained in the TLS session state information by client and
server.
TLS Renegotiation. After establishing a TLS connection, either client or server can
request – at any time – renegotiation of the current TLS connection. The client can
initiate this process by sending a ClientHello message and the server may request TLS
renegotiation by sending a HelloRequest message to the client. Both variants trigger
a new full TLS handshake which renegotiates fresh session keys, new cipher suites, and
refreshes server/client authentication. The whole renegotiation phase is carried out
under the protection of the existing TLS connection. As with the abbreviated TLS
handshake, renegotiation changes both Finished messages of the current TLS session.

2.2 HTTP Session Management
The Hypertext Transfer Protocol (HTTP) is the basis for today’s World Wide Web
(WWW). HTTP is designed as a request and response protocol in a client-server model.
For example, a browser (i.e. the client) sends an HTTP request (i.e. asking for data or
invoking a function call) to a web server. Then, the web server processes the request
and sends back an HTTP response to the browser. A message pair consisting of a
request and a related response is called transaction. HTTP is a stateless protocol that
treats each transaction independently with no relation to previous messages. However,
nearly every web application requires to maintain the state of each user over multiple
transactions.

HTTP cookies [Bar11] are used to transform stateless HTTP transactions into state-
ful user sessions by explicitly linking them together. They are sent with every HTTP
request from the browser to the web server.

Technically speaking, cookies consist of name-value pair containing session informa-
tion. A web server can instruct a browser to store a cookie by sending an additional
HTTP header, embedded in an HTTP response, as follows:

Set-Cookie: SessionID=280-9757248-2350101; domain=docs.foo.com;
path=/accounts; expires=Sun, 30 Mar 2014 05:23:00 GMT;
secure; HttpOnly

A cookie can have further attributes, such as domain and path that define the scope
of a cookie (in our example docs.foo.com/accounts). The expires attribute indicates
when a cookie expires and is therefore automatically removed from the browser. The
secure flag defines that a cookie can only be sent over a secure channel (e.g. TLS).
HTTPOnly makes a cookie inaccessible by client-side scripts (e.g. JavaScript).
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Stored HTTP cookies are automatically sent back to the server by adding an addi-
tional HTTP header as follows:

Cookie: SessionID=280-9757248-2350101

This simple mechanism is supported by all browsers. HTTP cookies are often used
to store the result of an initial authentication. We will call such cookies session cookies
or authentication cookies in the following.

2.3 XML
The eXtensible Markup Language (XML) [BPSM+08] is a widely-used markup lan-
guage that describes encoding rules for documents used over the Internet. XML was
developed by the World Wide Web Consortium (W3C). The main design goals of XML
are:2 straightforwardness, generality, platform-independence, flexibility, and human-
legible.

XML was mainly designed for documents (e.g. OpenDocument, Office Open XML,
and XHTML) but it’s application scope has broadened. Nowadays, it is prevalently
used for exchanging arbitrarily structured data over communication protocols (e.g. Web
Services) or for representing various data structures (e.g. configuration files).
XML Document. By definition, an XML document is a text string consisting of a
concatenation of characters. XML allows the legal characters of Unicode [Kwa95] and
ISO/IEC 10646 [Oht95] including tab (U+0009), line feed (U+000A), and carriage return
(U+000D).

An XML document consists of the following building blocks which form a document
tree (cf. Figure 2.2):

• Declaration. “XML documents should begin with an XML declaration which
specifies the version of XML being used.”, [BPSM+08, Section 2.8]. Additionally,
the declaration may specify which encoding is used for the characters, such as
8-bit Unicode Transformation Format (UTF-8).

• Tags. A tag is a special markup construct that allows the definition of arbitrary
data structures. Tags start with a “<” and end with a “>” character. Three tag
types are differentiated: (1) start-tag (e.g. <staff>), (2) end-tag (e.g. </staff>),
and (3) empty-tag (e.g. <staff />).

• Elements. An element consists of a start-tag, text content or further child
elements, and a corresponding end-tag (e.g. <salary>1,000,000</salary>).
Empty elements are a special case, where no content is present (e.g. <staff
/>). Each XML document has one root element that incloses all other child
elements. In our example <staff> is the root element.

• Attributes. An attribute consists of a name-value pair that is placed within
a start-tag or empty-element tag. For example, Id="1" is an attribute of the
<employee> element.

• Character Data. Is the textual content of an attribute or element, such as
“Gates” in the <lastname> element.

2http://www.w3.org/TR/REC-xml/#sec-origin-goals
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staff

employee

firstname

 Bill 

salary

XML Document XML Document Tree

<?xml version="1.0" encoding="UTF-8"?>
<shop:staff xmlns:shop="shop-URI">
  <employee Id="1">
    <firstname>Bill</firstname>
    <lastname>Gates</lastname>
    <salary>1,000,000</salary>
  </employee>
</staff>

Id=“1“

lastname

Gates

 1,000,000

Figure 2.2: An XML document (left) and it’s corresponding tree-based notation (right).

• Entities. In XML, some characters have special meaning. To make those char-
acters usable in character data XML defines entities. For example, <, >, and &
are such characters. If these characters are displayed in the character data, they
have to be encoded as &lt;, &gt;, and &amp;. Besides those predefined entities,
XML allows the definition of new entities.

Besides tags, XML can consist of other markup constructs, such as comments,
CDATA sections, and processing instructions. Please see [BPSM+08] for more in-
formation about those markups.

XML defines a special property for XML documents called well-formedness. A doc-
ument is well-formed if it follows a list of syntax rules specified by XML. The most
important rules are:3

• Only legal Unicode characters are used.

• The XML document contains a single root element that includes all other ele-
ments.

• Each start-tag has a corresponding end-tag.

• Elements are properly nested (no overlapping or missing elements).

XML Namespaces. An XML document may contain elements and attributes from
different sources. Therefore, it is possible that there exist identical elements or at-
tributes with the same identifier but different semantics. XML namespaces [BHL+09]
allow to prevent naming conflicts of elements and attributes in an XML document.
They introduce unique names by attaching a prefix, that is bound to a Uniformed Re-
source Identifier (URI) [BLFM98]. In our example in Figure 2.2, the element <staff> is
member of the namespace shop that is bound to shop-URI. The namespace is declared
in the start-tag of <staff> and applied by attaching the prefix shop: in front of the
element name. All other elements are member of the default namespace as they do not
possess a namespace prefix.

3Please see the XML specification for more details [BPSM+08].
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<element name="employee">
<complexType>

<sequence>
<element name="firstname" type="xs:string"/>
<element name="lastname" type="xs:string"/>
<element name="salary" type="nonNegativeInteger"/>
<any minOccurs="0" processContents="skip"/>

</sequence>
</complexType>
<attribute name="Id" type="ID"/>

</element>

Figure 2.3: XML Schema definition of the <staff> element.

XML Schema. The W3C recommendation XML Schema [WF04] is an XML-based
language that is used to describe the structure of XML documents.4 The XML Schema
expresses a set of rules, such as element data types (simple or complex), order, and
quantity of the elements. A document is valid if it is well-formed and compliant to the
rules of the corresponding schema.

Figure 2.3 shows an example of an XML Schema defining the <employee> element
from our example used in Figure 2.2. This complex type element contains a sequence
of four elements <firstname>, <lastname>, <salary>, <any>, and an attribute Id.
The first two elements are defined as strings and <salary> as a non negative integer.
The <any> element has a special purpose and is explained later. The ID datatype of
the attribute is used to define unique identifiers. Therefore, each <employee> can be
referenced by a unique Id. This ensures that a valid document cannot consist of two
<employee> elements with the same Id value.

Regarding to the attacks presented in Chapter 6, we want to highlight one important
aspect. XML Schema defines an <any> element that can be used as wildcard place-
holder. It allows documents to contain additional elements that are not specified in
the XML schema. In this context, the <any> element’s processContents attribute is
crucial as it influences the XML Schema validation rules. This attribute can be set to
three different modes:

• processContents="lax". The elements should be validated against the given
namespace. If no schema is available, no errors are thrown and the content is
valid.

• processContents="skip". The element is not validated at all. Therefore, any
arbitrary content can be injected without invalidating the XML Schema.

• processContents="strict". The element must be validated against the given
namespace. This is the default value.

Considering the example from Figure 2.3, the <employee> element can contain one
arbitrary element, attached to any arbitrary namespace, after the <salary> element.

4Another way of describing an XML document structure is the Document Type Definition (DTD).
DTD has been superseded by XML Schema and is not relevant to this thesis.
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<Signature ID?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*

</Signature>

Figure 2.4: XML Signature data structure ([ERS+08], Section 2.0). (“?”: zero or one
occurrence; “+”: one or more occurrences; “*”: zero or more occurrences).

2.4 XML Signature
The W3C recommendation XML Signature [ERS+08] defines syntax and processing
rules for creating, representing, and verifying XML-based digital signatures. According
to traditional signatures, XML Signature provides data integrity, message authentica-
tion, and non-repudiation5 to the signed content. The standard is very flexible and
allows to sign any type of digital data from multiple resources. For example, it is possi-
ble to sign a whole XML tree or only specific elements thereof. Additionally, one XML
Signature can cover several local and global resources that are addressable by URIs.

2.4.1 XML Signature Structure

An XML Signature is represented by the <Signature> element defined in the names-
pace http://www.w3.org/2000/09/xmldsig#.6 Figure 2.4 provides its basic struc-
ture. The <SignedInfo> element contains a collection of the signed resources. Each
signed resource is represented by a <Reference> element consisting of the URI attribute
that points to the signed data and the hash value of the resource (<DigestValue>).
Additionally, the <Transforms> element specifies the processing steps which are ap-
plied prior to digesting of the resource. The <CanonicalizationMethod> and the
<SignatureMethod> element specify the algorithms used for canonicalization and sig-
nature creation. The <SignedInfo> element itself is protected by the signature. The
Base64-encoded value (according to the rules specified in RFC 4648 [Jos06]) of the
computed signature is deposited in the <SignatureValue> element. In addition, the
optional <KeyInfo> element transports key management information required for sig-
nature validation (e.g. keys, key names, and X.509 certificates). Finally, the <Object>
element is optional and may contain any data.

XML Signature Types. A <Signature> element can be placed at any position in an
5The XML Signature standard supports symmetric (MAC) and asymmetric (DSA and RSA) signature

algorithms. Note that only asymmetric algorithms provide non-repudiation.
6For simplicity, namespace declarations and prefixes are omitted if they are not contextually relevant

for understanding.
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Figure 2.5: Enveloped, enveloping, and detached XML Signatures.

XML document. The relation between <Signature> element and signed content leads
to three different types of XML Signatures illustrated in Figure 2.5:

• Enveloped Signature: A signature placed within the signed content is called
an enveloped signature. Therefore, the <Signature> element is a descendant
relative to the signed contents in the XML tree. Enveloped signatures are applied
in SAML assertions and protocol messages (cf. [CKPM05a], Section 5.4.1).

• Enveloping Signature: The <Signature> element surrounds the signed parts.
Therefore, the signed content is merged together with the signature. Typically,
the <Object> element is used to embed the signed data.

• Detached Signature: The <Signature> element is independent from the signed
contents and thus neither inside nor a parent of the signed data. The signed
contents may reside in the same XML tree or in separate entities (e.g. an external
document). Detached signatures with signed content in the same document are
typically applied in SOAP-based Web Services.

2.4.2 XML Signature Processing

XML Signature Creation. The construction of an XML Signature proceeds in
two steps (cf. Figure 2.6). First, the <Reference> elements are created. There-
fore, each data object being signed is converted by the applied transformation al-
gorithms. Examples of transforms extract relevant/unnecessary data (e.g. XPath
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Figure 2.6: XML Signature creation (based on [GP04, p.62]).

filtering), canonicalize, apply XLST transformations or encode/decode (e.g. Base64
encoding, compression) the data object being signed. Transforms are optional and
an ordered list of transformations is subsequently applied to a data object. The
newly formed data object is used as input for the hash computation and the calcu-
lated digest is stored in the <DigestValue> element. To this end, the URI attribute,
<DigestMethod>, <DigestValue>, and the <Transforms> elements are taken together
to create a <Reference>. The second step is the signature creation. For this purpose,
all <Reference> elements, <CanonicalizationMethod>, and <SignatureMethod> are
placed into <SignedInfo>. The <SignedInfo> element is canonicalized using the algo-
rithm from the <CanonicalizationMethod> element. Then, <SignedInfo> is signed
using the signature algorithm given by the <SignatureMethod> and the (private) key
k. Finally, the Base64-encoded signature value is stored inside the <SignatureValue>
element. Optional key management information can be added in the <KeyInfo> ele-
ment. Any arbitrary data may be included using the <Object> element.

XML Signature Verification. An XML Signature is validated in two steps (cf. Fig-
ure 2.7).7 First, the <SignedInfo> element is canonicalized with the specified algorithm
from <CanonicalizationMethod>. The output of the canonicalization is used for the
signature verification by application of the algorithm specified in <SignatureMethod>.
For this purpose, the verifier uses the key retrieved from the <KeyInfo> element or by
other means. Second, the references are validated. Thereby, the signed content of each
<Reference> element is retrieved by de-referencing the URI attribute, transformed, and

7Please note, that regarding to the XML Signature standard, we reversed the order of operation for
signature verification. We (1) process signature validation and (2) validate the references. The
other way around (as stated in the standard), would expose a critical reference attack surface as
Hill [Hil07] has shown.
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Figure 2.7: XML Signature verification.

digested with the specified methods. The calculated hash values are compared with
the content of the <DigestValue> elements.

2.5 SAML

The Security Assertion Markup Language (SAML) [CKPM05a] is a widespread XML-
based data format used for exchanging authentication and authorization statements
about subjects. SAML dates back to 2001 and is maintained by the OASIS Security
Services Technical Committee (SSTC).8 The most recent version, SAML V2.0, was
published in 2005. Currently, SSTC is working on a revision of SAML that will be
called SAML V2.1.

The most important use case of SAML is to realize browser-based Web Single Sign-
On. Another typical application scenario is the use of SAML together with WS-
Security [NKMHB06] in SOAP [GHM+03] to provide authentication and authoriza-
tion mechanisms to Web Services. One major property of the SAML framework is its
high flexibility due to extensible points in its XML schemas. Therefore, it is open and
customizable for new application scenarios. For example, the Moonshot Project9 aims
to apply the SAML framework to non web application scenarios (e.g. mail, file store,
remote access, and instant messaging).
Anatomy of SAML. The SAML standard is quite complex and distributed over
several documents [CKPM05a, CHK+05, CKPM05b, CMPM05]. It consists of the
following four building blocks (cf. Figure 2.8):

8https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
9https://community.ja.net/groups/moonshot
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Profiles
Combinations of assertions, protocols,

and bindings to support a defined use case

Bindings
Mappings of SAML protocols
onto standard messaging and

communication protocols

Protocols
Requests and responses for

obtaining assertions and doing
identity management

Assertions
Authentication, attribute, and

entitlement information

Figure 2.8: The four SAML building blocks ([RHP+08, p.16]).

• Assertions. Identity information and claims about a subject are contained in
security tokens called SAML assertions.

• Protocols. Define how assertions are exchanged between the actors.

• Bindings. Specify how to embed assertions into transport protocols (e.g. HTTP
or SOAP).

• Profiles. Define the interplay of assertions, protocols, and bindings that are
necessary for the needs of a specific use case to be met.

Another important SAML concept is the possibility to express and share configu-
ration information (e.g. key material) between SAML parties through SAML Meta-
data [CMPM05]. This specification enables business partners to establish and maintain
trust relationships to build identity federations.

2.5.1 Assertions
A SAML assertion carries claims and statements about a subject asserted by a trusted
party. For example, a SAML assertion could state the following claims: A subject
named “Bill Gates” is an employee of the company “Microsoft Inc.” and possesses the
email address “bill.gates@microsoft.com”. A SAML assertion is issued by an asserting
party and processed by a relying party.

Figure 2.9 provides the basic structure of an assertion represented by an <Assertion>
element. It is defined in the namespace urn:oasis:names:tc:SAML:2.0:assertion.

An <Assertion> element has three mandatory attributes. The SAML version is
stated in Version, ID supplies the unique and randomly chosen request identifier,
and the time of issuing is identified in IssueInstant. The <Issuer> element is re-
quired and specifies the SAML authority that certifies the claim(s). The issuer should
be unambiguous to the relying party. <Subject> defines the principal about whom all
statements within the assertion are made. <NameID> is optional and represents the sub-
ject by a text string (e.g. an email address). <SubjectConfirmation> is an optional
element (zero or more) that “provides the means for a relying party to verify the corre-
spondence of the subject of the assertion with the party with whom the relying party
is communicating.”, [CKPM05a, p.18]. The Method attribute defines the method used
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<Assertion Version ID IssueInstant>
<Issuer>
<Signature>?
<Subject>?

<NameID>?
<SubjectConfirmation Method>*

<SubjectConfirmationData NotBefore? NotOnOrAfter?
InResponseTo? Recipient?>?

</SubjectConfirmation>
</Subject>
<Conditions NotBefore? NotOnOrAfter?>?

<AudienceRestriction>*
</Conditions>
<Advice>?
<AuthnStatement>*
<AuthzDecisionStatement>*
<AttributeStatement>*

</Assertion>

Figure 2.9: SAML assertion data structure.

to make this determination. SAML specifies three different mechanisms: (1) bearer
(allow any party that bears the assertion), (2) sender-vouches (use other criteria not
included in the assertion), and (3) holder-of-key (allow any party that proves knowl-
edge of specific key information). <SubjectConfirmationData> specifies additional
constraints or data required for the subject confirmation (e.g. key information used
by the holder-of-key mechanism; see Section 5.5). The <SubjectConfirmationData>
possesses four optional attributes:

• NotBefore. Specifies a time before the subject cannot be confirmed.

• NotOnOrAfter. The time after the subject can no longer be confirmed.

• InResponseTo. The value of InResponseTo must match the ID of the authen-
tication request (see Section 2.5.2) that has been sent to obtain the assertion.

• Recipient. To prevent malicious forwarding of assertions to unintended relying
parties, this value specifies the relying party’s endpoint to which the asserting
party can send the assertion.

The <Conditions> element comprises the conditions under which the assertion is
to be considered valid. The two optional attributes NotBefore and NotOnOrAfter
specify the assertion’s validity period. The optional <AudienceRestriction> element
is used to define the assertion’s intended audience. Optionally, additional information
in <Advice> can aid in the processing of the assertion. This information may be ignored
by relying parties without changing either the assertion’s semantics or validity.

The three <*Statement> elements are used to specify contextually-relevant assertion
statements:

• Authentication Statement. The <AuthnStatement> element describes that
the asserting party has successfully authenticated the subject by a particular
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means at a specific time. The <AuthnStatement> element is used in SAML-based
web SSO. <AuthnStatement> must contain an <AuthnContext> element and an
AuthnInstant attribute. <AuthnContext> describes the context of an authenti-
cation event (e.g. subject was authenticated by password) and the AuthnInstant
attribute specifies the time the subject was authenticated. An assertion must have
a <Subject> element if it contains a <AuthnStatement> element.

• Authorization Decision Statement. The <AuthzDecisionStatement> spec-
ifies something that the subject is authorized to do (e.g. “Bill Gates is allowed
to use the company’s airplane.”).

• Attribute Statement. The <AttributeStatement> element states attributes
about the subject (e.g. “Bill Gates is the world’s second-richest person.”).

To assure the integrity and authenticity of the security claims made, the whole
<Assertion> must be protected by an enveloped signature by including a <Signature>
element.

2.5.2 Protocols

SAML defines a simple request/response protocol to exchange SAML protocol mes-
sages. In this context, a SAML requester is a party that uses the SAML protocol to
request a service and the SAML responder uses the SAML protocol to respond to a
request for a service [HPM05b, p.9]. Furthermore, SAML Protocols [CKPM05a] de-
fine how SAML specific elements are embedded into request and response messages,
and describes rules how they are processed (i.e. generated or consumed). SAML V2.0
defines six abstract SAML request/response protocols:

• Authentication Request Protocol. This protocol enables a SAML requester
to request an assertion containing an authentication statement.

• Assertion Query and Request Protocol. Specifies a mechanism to query
for SAML assertions. For example, a SAML requester can ask for an existing
assertion by sending the assertion’s ID or can request an assertion with a specific
statement element (e.g. an authorization decision statement).

• Artifact Resolution Protocol. This protocol provides a mechanism to resolve
a SAML artifact (i.e. a unique, fixed length identifier) to a SAML protocol
message (either request or response).

• Name Identifier Management Protocol. Provides a method to modify (for-
mat and value) or delete a name identifier linked to a subject.

• Name Identifier Mapping Protocol. A mechanism to map a name identifier
on request. For example, it is possible to obtain an alias for a principal.

• Single Logout Protocol. A protocol that allows to logout some or all active
sessions of an authenticated subject simultaneously.

The authentication request protocol is utilized in SAML-based web SSO. Therefore,
we describe this protocol in more detail. For more information about the other proto-
cols, see [CKPM05a].
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<AuthnRequest ID Version IssueInstant Destination?
ForceAuthn? ProtocolBinding? AssertionConsumerServiceURL?>

<Issuer>?
<Signature>?
<Extensions>?
<Subject>?
<NameIDPolicy>?
<Conditions>?
<RequestedAuthnContext>?
<Scoping>?

</AuthnRequest>

Figure 2.10: SAML authentication request data structure.

Authentication Request Protocol. In order to request an assertion including
an authentication statement, SAML defines the <AuthnRequest> message. Figure 2.10
provides the basic data structure (attributes irrelevant to this thesis are omitted).

The attributes ID, Version, and IssueInstant are mandatory and have the same
purpose as in the <Assertion> element. All other attributes are optional. Destination
specifies the endpoint (as URI) to which the request has been sent. ForceAuthn is a
Boolean value which is used to force the SAML responder to (re-)authenticate the
subject, regardless of any existing authentication context. ProtocolBinding specifies
the binding method (see Section 2.5.3) the SAML responder has to use for the issued
response message. The AssertionConsumerServiceURL (ACSURL) attribute specifies
the endpoint URL to which the SAML requester must deliver the issued assertion. All
elements of <AuthnRequest> are optional. The <Issuer> element includes the iden-
tifier of the SAML requester. An extension point for optional protocol messages is
<Extensions>. This element allows any arbitrary content. <Subject> specifies the re-
quested subject of the resulting assertion and <NameIDPolicy> contains the constraints
on the name identifier that are to be employed in specifying the requested subject.
<Conditions> allows to specify conditions (e.g. limited validity time) that the SAML
responder may use for the creation of the assertion. <RequestedAuthnContext> de-
scribes the authentication method (e.g. password-based) and/or the level of assurance
required to prove the identity of the subject. <Scoping> restricts the list of trusted
SAML responders and if the request message can be relayed. The authentication re-
quest may be protected by an enveloped signature by including a <Signature> element.
In practice, the <Signature> element is used rarely in this context.

Based on the received authentication request the SAML responder creates a <Response>
message that contains at least one assertion with an authentication statement. Fig-
ure 2.11 presents the basic data structure. The attributes ID, Version, IssueInstant,
and Destination have the same purpose as in the authentication request. InResponseTo
is an optional attribute used to reference the ID identifier of the original <AuthnRequest>.
The <Status> element is mandatory and carries the outcome of the authentication
request. The result is indicated by an <StatusCode> element and optionally by two ar-
bitrary strings (<StatusMessage> and <StatusDetail>). For example, <StatusCode>
could use urn:oasis:names:tc:SAML:2.0:status:Success to state that the request
succeeded. The response can contain one or more assertions and may be protected by
an enveloped signature (<Signature>).
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<Response ID Version IssueInstant Destination? InResponseTo?>
<Issuer>?
<Signature>?
<Extensions>?
<Status>

<StatusCode>
<StatusDetail>?
<StatusMessage>?

</Status>
<Assertion>*

</Response>

Figure 2.11: SAML response message data structure.

2.5.3 Bindings
The “Security Assertion Markup Language (SAML) V2.0 Technical Overview” docu-
ment [RHP+08, p.13] states:

“The means by which lower-level communication or messaging protocols
(such as HTTP or SOAP) are used to transport SAML protocol messages
between participants is defined by the SAML bindings.”

In summary, SAML V2.0 defines six different SAML bindings:

• HTTP POST Binding. Specifies a method to transport SAML protocol mes-
sages as Base64-encoded content within an HTML form.

• HTTP Redirect Binding. Specifies a method to transport SAML protocol
messages as a URL parameter by an HTTP redirect message.

• HTTP Artifact Binding. According to [CHK+05, p.26], “In the HTTP Ar-
tifact binding, the SAML request, the SAML response, or both are transmitted
by reference using a small stand-in called an artifact. A separate, synchronous
binding, such as the SAML SOAP binding, is used to exchange the artifact for
the actual protocol message using the artifact resolution protocol defined in the
SAML assertions and protocols specification”.

• SAML SOAP Binding. Specifies a method to transport SAML protocol mes-
sages within SOAP [GHM+03]. This binding is applied in Web Service scenarios.

• Reverse SOAP (PAOS) Binding. According to [CHK+05, p.13], “The reverse
SOAP binding is a mechanism by which an HTTP requester can advertise the
ability to act as a SOAP responder or a SOAP intermediary to a SAML requester”.
For example, this binding used in the “Enhanced Client or Proxy Profile” (see
Section 2.5.4).

• SAML URI Binding. Describes a method to resolve a SAML URI into a
specific SAML assertion.

HTTP POST, HTTP Redirect, and HTTP Artifact Binding are utilized in SAML-
based web SSO. Therefore, we describe these bindings in more detail. For more infor-
mation about the other bindings, see [CHK+05].
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<body onload="document.forms[0].submit()">
<form method="post" action="https://sp.example.com/acs">

<input type="hidden" name="SAMLResponse" value="PHNhb...g==">
<input type="submit" value="Continue">

</form>
</body>

Figure 2.12: HTTP POST binding of a SAML response.

HTTP POST Binding. The HTTP POST binding is used in application scenarios
where SAML requester and SAML responder do not communicate directly but make
use of an intermediary. In web SSO this intermediary is an HTTP user agent (e.g. a
browser). The SAML protocol message is embedded, as Base64-encoded content, into
a hidden field of an HTML form control (cf. Figure 2.12). Depending on the SAML
protocol message, the form field is named either SAMLRequest or SAMLResponse. The
action attribute of the form element specifies the destination endpoint of the receiving
party. The HTML form is transmitted using the HTTP POST method. Necessary user
interaction can be avoided by utilizing JavaScript (cf. Figure 2.12, line 1). The HTTP
POST binding allows to transport SAML protocol messages of arbitrary length.
HTTP Redirect Binding. This binding allows SAML requester and SAML respon-
der to communicate indirectly through an intermediary. As with the HTTP POST
binding, this intermediary is an HTTP user agent. The SAML protocol message it-
self is transmitted within a URL parameter (either SAMLRequest or SAMLResponse) as
shown in the following example:

https://sp.example.com/Response?SAMLResponse=fVFN...g==

The conversion of a SAML protocol message into a URL parameter is done by the
DEFLATE encoding that must be supported by all endpoints. This encoding proceeds
as follows:

1. Compression. The XML message is compressed with the DEFLATE mecha-
nism [Deu96].

2. Base64-Encoding. The compressed data is Base64-encoded.

3. URL-Encoding. The Base64-encoded data is URL-encoded as specified in RFC
3986 [BLFM05] and attached to the URL as query string.

The URL is sent as HTTP response, containing an HTTP 302 redirect status code10,
to the user agent. This triggers an HTTP redirect to the given URL. The user agent
accesses the addressed resource and thereby transports the attached parameters to the
SAML receiver. In practice the HTTP Redirect binding has one important limita-
tion: Browsers restrict the maximum length of a URL. For example, Microsoft Internet
Explorer allows at maximum 2,083 bytes.11

10Other possible HTTP status codes are 303 (“see other”) or 307 (“temporary redirect”). We use the
status code 302 because it is supported in HTTP 1.0 [BLFF96] and therefore the most compatible
variant.

11http://support.microsoft.com/kb/208427/en-us
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HTTP Artifact Binding. This binding also utilizes an intermediary (i.e. HTTP
user agent) and can be composed with the HTTP POST or the HTTP Redirect Bind-
ing. This binding transmits a fixed-length reference, called artifact. The artifact is
embedded using the identifier SAMLart and can be resolved to an corresponding SAML
protocol message. More details about the artifact format can be found in [CHK+05,
Section 3.6.4].
RelayState Parameter. All three described bindings optionally allow the use of a
further parameter called RelayState. The “Bindings for the OASIS Security Asser-
tion Markup Language (SAML) V2.0” document [CHK+05, Section 3.1.1] defines this
parameter as follows:

“Some bindings define a “RelayState” mechanism for preserving and con-
veying state information. When such a mechanism is used in conveying a
request message as the initial step of a SAML protocol, it places require-
ments on the selection and use of the binding subsequently used to convey
the response. Namely, if a SAML request message is accompanied by Re-
layState data, then the SAML responder MUST return its SAML protocol
response using a binding that also supports a RelayState mechanism, and
it MUST place the exact RelayState data it received with the request into
the corresponding RelayState parameter in the response.”

2.5.4 Profiles
In summary, SAML defines 13 profiles that utilize assertions, protocols, and bindings
to realize a wide range use cases. In the following, we briefly introduce the profiles that
are important in the context of web SSO:

• Web Browser SSO Profile. This profile defines how browser-based SSO can
be realized by utilizing the authentication request protocol. Browser-based SSO
is the most important use case of SAML. This profile is highly flexible and can
be combined with HTTP Redirect, HTTP POST, and HTTP Artifact bindings.

• Enhanced Client and Proxy (ECP) Profile. This profile assumes an HTTP
user agent with special capabilities to realize web SSO. The enhanced HTTP user
agent is able to relay and/or use the Reverse SOAP and SOAP bindings.

• Single Logout Profile. This profile defines how the SAML Single Logout Pro-
tocol can be used. It is very flexible and allows non-intermediary bindings, such
as SOAP binding, and all three intermediary bindings.

• Name Identifier Management Profile. This profile defines how the Name
Identifier Management Protocol can be applied with HTTP POST, HTTP Redi-
rect, HTTP Artifact, and SOAP bindings.

A detailed description of the Web Browser SSO profile and its variants is given in
Chapter 3. Specific details of all other profiles are described in [CKPM05b].
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In this chapter, we give a high-level overview of Single Sign-On (SSO) and describe
three SAML SSO use cases in detail. Next, we outline the security measures applied
on SAML-based SSO. Afterwards, we introduce all SAML Frameworks, Systems, and
Services relevant to this thesis. In particular, we give a more detailed overview of the
SimpleSAMLphp [Sim13] framework. We finalize this chapter by presenting related
web SSO standards.

3.1 Motivation

Today’s Internet users have to manage many identities for different web applications.
This leads to the password fatigue phenomenon, where users are forced to remember a
plethora number of passwords. For example, a recent large-scale study of password use
and password re-use habits revealed that a common Internet user manages about 25
accounts and types an average of eight passwords a day [FH07a]. Therefore, password
management is time-consuming and excessive login procedures are annoying from the
users perspective. User often try to solve the password problem by choosing weak
passwords with low entropy and/or reuse the same password for multiple websites,
resulting in severe security problems [MT79, Obe10, QA11, Rag12].

SSO as a subset of identity and access management, was developed to tackle the
described usability, management, and security issues. In general, with SSO a user
authenticates only once and subsequently gains access to all websites and services he
is authorized to.

3.2 A Helicopter View

In this section, we give a high-level overview of SSO and two common use cases. Ad-
ditionally, we introduce principals, roles, and some other important SSO terminology.

3.2.1 SSO Roles and Terminology

An SSO system consists of different entities, whereby an entity is defined as “an active
element of a system – e.g., an automated process, a subsystem, a person or group of
persons – that incorporates a specific set of capabilities.” [Shi00, p.167]. Furthermore,
according to [Int96, p.4] a principal is defined as “an entity whose identity can be
authenticated”. Therefore, a principal may possess authentication credentials. Each
principal can have one or several assigned tasks and positions in an SSO protocol run,
defined as roles.

In SSO, we distinguish the following roles:

• User U . A principal with the role user is a natural person which authenticates
himself to the IdP and wants to access resources at different Service Providers.
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• Subject S. A identified principal is a subject. This may be a human or any kind
of entity (e.g. a computer). In the case of SSO, the subject is typically a user U .

• User Agent UA. The user agent is a software component guided by user U . In
practice, UA is a common web browser.

• Identity Provider IdP . A principal with the donned role of an Identity Provider
creates, maintains, and manages identity and attribute information of users. Fur-
thermore, an IdP authenticates users and issues assertions for federated1 Service
Providers.

• Service Provider SP . A Service Provider is a principal that provides resources
or services to users or other entities. In order to authenticate principals that
want to access resources, an SP requests and consumes assertions from federated
IdP s. A Service Provider is often referred to as Relying Party (RP ).

Furthermore, we introduce terminology relevant to SSO:

• Assertion A. An assertion is a set of claims and attribute information about a
subject S, issued by an IdP (see Section 2.5.1).

• Credentials. Data that is transferred to establish the claimed identity of a prin-
cipal [Int91]. Therefore, credentials are used to transform an unknown principal
into a subject S.

• Login. In a login process the user submits credentials to an IdP in order to
establish a security context.

• Resource R. A resource can be any kind of data (e.g. files, web pages, etc.), a
service provided by a system, or an item of system equipment (e.g. hardware).
In web SSO a resource is referred by means of URI references [BLFM05].

• Security Context. A security context is an authenticated user session main-
tained by a lower protocol or network layer. For example, a security context may
be established with HTTP session cookies (cf. Section 2.2).

3.2.2 IdP- and SP-started SSO Scenarios

There are two possibilities with whom (either SP or IdP ) user U can start an SSO
protocol flow. Consequently, we differentiate two scenarios:

1. Scenario I: IdP-started SSO. In this use case, depicted in Figure 3.1, user
U starts his browsing session by accessing IdP (1). Thereafter, U authenticates
himself to IdP , resulting in a security context (2). IdP presents U a list of links
to all federated Service Providers. This can be explicitly in the case of a web
portal or implicitly while U is acting with the IdP’s website. By clicking on one
of those links, U is sent to SP conveying an assertion A issued by IdP (3). The
user agent UA thereafter submits the assertion to SP (4). Finally, SP presents
the accessed resource R (5).

1According to [HPM05b, p.6] a federation is “an association comprising any number of SP s and IdP s”.
SAML defines this association as a mutual trust relationship (e.g. between an IdP and an SP ).
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1. Access portal

U

2. Authenticate user U

3. Convey assertion A to SP

4. Submit assertion A and
request resource R

5. Resource R

UA SP IdP

Figure 3.1: Scenario I: IdP-started SSO (web portal use case).

2. Scenario II: SP-started SSO. The SP-started SSO scenario is depicted in
Figure 3.2. In this setting, U first visits SP to access a resource R (1). SP sends
U , together with an assertion request, to IdP (2). Thereafter, UA requests an
assertion from IdP (3). The IdP may authenticate U if no security context exists
(4). After authentication, IdP responds with assertion A (5). UA submits the
assertion to SP (6). Finally, SP responds with resource R (7).

1. Request resource R

U

4. Authenticate user U

5. Convey assertion A to SP

6. Submit assertion A and
request resource R

7. Resource R

UA SP IdP

2. Sent to IdP and 
request assertion

3. Request assertion

Figure 3.2: Scenario II: SP-started SSO.

3.3 SAML Web Browser SSO Profile
The SAML Web Browser SSO Profile [CKPM05b, pp.14–20] defines how assertions,
protocol messages, and bindings are used to realize IdP- and SP-started web SSO in
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IdP-started SSO SP-started SSO
SAML Binding <AuthnRequest> <Response> <AuthnRequest> <Response>
HTTP Redirect – – X –
HTTP POST – X X X
HTTP Artifact – X X X

Table 3.1: Possible SAML Bindings for IdP- and SP-started SSO.

SAML. The profile allows for both scenarios a wide variety of options on which SAML
bindings are applied to exchange SAML messages between SP and IdP . In the IdP-
started use case, assertions (or a reference to them) may be sent by the HTTP POST
or the HTTP Artifact Binding. The SP-started scenario additionally allows HTTP
Redirect, HTTP POST, or HTTP Artifact bindings to exchange assertion request mes-
sages. For both message pairs, every combination of allowed bindings is possible (see
Table 3.1). The concrete choice depends on general conditions such as the message
size or the entities capability to support Web Services. In the following, we present a
detailed description of the three most common SAML Web SSO Profile instantiations
which work with any arbitrary browser (zero-footprint property).

3.3.1 IdP-started SSO using POST Binding
Figure 3.3 illustrates the detailed exchange of an IdP-started SSO protocol run. For this
scenario the HTTP POST Binding is used to transmit the SAML <Response> message
from IdP to SP using UA as intermediary. In detail, the message flow consists of the
following steps:

1. UA → IdP : User U requests the portal webpage by accessing, for example,
/portal on IdP .

2. UA ↔ IdP : If the user is not yet authenticated, IdP identifies U by an arbitrary
authentication mechanism.2

3. IdP → UA: Upon successful authentication, IdP sends the portal webpage with
a list of HTTP links to all federated SP s.

4. UA → IdP : The user clicks on one of these HTTP links. Thereby, IdP is
informed about which SP to access and the optional RelayState parameter (cf.
Table 3.2) conveys the resource address URIR of the desired SP ’s resource.

5. IdP → UA: IdP creates an authentication assertion A := (IDA, IdP, SP, U),
including the unique assertion’s identifier IDA, the entity IDs of IdP , SP , and
user identity U (respectively S). Subsequently, A is signed with the IdP’s private
key K−1

IdP .3 The signed assertion A is embedded, together with the fresh response
identifier ID1, into a <Response> message and is sent Base64-encoded in an
HTML form, along with RelayState=URIR, to UA.

6. UA → SP : A JavaScript event in the HTML form triggers the HTTP POST of
<Response> to ACSURL (cf. Table 3.2).

2The applied authentication method is independent from SAML. To enhance security, many real-world
IdPs offer support for strong two-factor authentication.

3As we will see in Chapter 6, there exist two further SAML signing types, but all of them have the
same goal – to protect the integrity and authenticity of the assertion.
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Figure 3.3: SAML Web SSO Profile with POST Binding (IdP-started).

SAML parameter Notation Description
AssertionConsumerURL ACSURL XML attribute included in the SP’s

<AuthnRequest> that specifies the end-
point to where IdP must send the
assertion.a

RelayState URIR Separate URL GET or HTTP POST pa-
rameter (depends on used SAML binding)
that specifies the initial URI the user wants
(IdP-started) or wanted (SP-started) to
access at SP .

a In the case of IdP-started SSO, the ACSURL is maintained by the IdP .

Table 3.2: Relevant SAML parameters.

7. SP → UA: SP consumes A, verifies the XML signature, and authenticates user
U resulting in a security context. Finally, SP grants U access to the protected
resource R by redirecting U to URIR (not shown in Figure 3.3).

3.3.2 SP-started SSO using Redirect/POST Bindings
Figure 3.4 illustrates the detailed flow of an SP-started SSO exchange. In this preva-
lently used variant, the HTTP Redirect Binding is applied to transmit the SAML
<AuthnRequest> message to IdP and the HTTP POST Binding is used to sent the
SAML <Response> message to SP . In detail, the message flow consists of the following
steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
resource R by accessing URIR. This starts a new SSO protocol run.
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Figure 3.4: SAML Web SSO Profile with Redirect/POST Bindings (SP-started).

2. SP → UA: SP determines that no valid security context (i.e. an active login ses-
sion) exists. Accordingly, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with URIR (cf. Table 3.2),
as an HTTP 302 (redirect to IdP) to UA. ID1 is a fresh random string and SP the
identifier of the Service Provider. ACSURL (cf. Table 3.2) specifies the endpoint
to which the the assertion must be delivered by IdP .

3. UA→ IdP : Triggered by the HTTP redirect, a server-authenticated TLS connec-
tion is established between UA and IdP . UA uses the established TLS connection
to transport <AuthnRequest(ID1, SP, ACSURL)>, along with URIR, to IdP .

4. UA ↔ IdP : If the user is not yet authenticated, the IdP identifies U by an
arbitrary authentication mechanism.

5. IdP → UA: IdP creates an authentication assertion A := (IDA, ID1, IdP, SP, U),
including the unique identifier IDA and ID1 from the request, the entity IDs of
IdP , SP , and the user identity U (respectively S). Subsequently, A is signed
with the IdP’s private key K−1

IdP . The signed assertion A is embedded into a
<Response> message, together with ID1 and the fresh response identifier ID2,
and is sent Base64-encoded in an HTML form, along with the RelayState=URIR,
to UA. According to the SAML standard, the IdP must use ACSURL as HTTP
POST destination ([CKPM05a], Section 3.4.1).

6. UA → SP : A JavaScript event in the HTML form triggers the HTTP POST of
<Response> to ACSURL.

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. Subsequently, SP verifies
the XML signature, and authenticates user U resulting in a security context.
Finally, SP grants U access to the protected resource R by redirecting U to
URIR (not shown in Figure 3.4).
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Figure 3.5: SAML Web SSO Profile with Redirect/Artifact Bindings (SP-started).

3.3.3 SP-started SSO using Redirect/Artifact Bindings
Figure 3.5 illustrates the detailed flow of an SP-started SSO exchange using Artifact
Binding which facilitates a back-channel (i.e. direct communication between SP and
IdP ). In this variant, the HTTP Redirect Binding is applied to transmit the SAML
<AuthnRequest> message to IdP and the HTTP Artifact Binding is used to directly
send the SAML <Response> message from IdP to SP . The HTTP Artifact Binding
can use either HTTP redirect (used in this example) or HTTP POST to transmit the
SAML artifact. In detail, the message flow of SP-started SSO with Redirect/Artifact
Bindings consists of the following steps (cf. Figure 3.5):

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
resource R by accessing URIR. This starts a new SSO protocol run.

2. SP → UA: SP determines that no valid security context (i.e. an active login ses-
sion) exists. Accordingly, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with URIR (cf. Table 3.2),
as an HTTP 302 (redirect to IdP) to UA. ID1 is a fresh random string and SP the
identifier of the Service Provider. ACSURL (cf. Table 3.2) specifies the endpoint
to which the the assertion must be delivered by IdP .

3. UA→ IdP : Triggered by the HTTP redirect, a server-authenticated TLS connec-
tion is established between UA and IdP . UA uses the established TLS connection
to transport <AuthnRequest(ID1, SP, ACSURL)>, along with URIR, to IdP .

4. UA ↔ IdP : If the user is not yet authenticated, the IdP identifies U by an
arbitrary authentication mechanism.
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5. IdP → UA: Upon a successful authentication, IdP creates an authentication
assertion A := (IDA, ID1, IdP, SP, U), including the unique identifier IDA and
the request identifier ID1, the entity IDs of SP , IdP , and the user identity
U (respectively S). Subsequently, IdP generates a fresh SAML artifact Art,
which is sent as HTTP 302 redirect query parameter SAMLart=Art, along with
the RelayState=URIR, to UA. According to the SAML standard, the IdP must
use ACSURL as HTTP redirect destination ([CKPM05a], Section 3.4.1).

6. UA → SP : Triggered by the HTTP redirect, a server-authenticated TLS connec-
tion is established between UA and SP . UA uses the established TLS connection
to transport SAMLart=Art and RelayState=URIR, to SP .

7. SP → IdP : SP sends a SAML <ArtifactResolve({ID2, SP, IdP, Art)}K−1
SP

)>
message protected by an XML Signature and embedded into a SOAP message,
to IdP . Thereby, ID2 is a fresh, unique identifier of the <ArtifactResolve>
message. Transmission is done over a mutual authenticated TLS connection.

8. IdP → SP : IdP extracts the SAML artifact from the message and uses it as a
reference to assertion A. IdP creates a signed <ArtifactResponse({ID3, ID2,
SP , IdP , A}K−1

IdP
)>, including ID2 and the fresh response identifier ID3, the

identities SP , IdP , and the assertion A. The message is sent as a SOAP message
over the mutual authenticated TLS connection to SP .

9. SP → UA: SP consumes the <ArtifactResponse> message and requires that
ID2 is included in the artifact response and ID1 is enclosed in the assertion.
Subsequently, SP verifies the XML signature, extracts A and authenticates user
U resulting in a security context. Finally, SP grants U access to the protected
resource R by redirecting U to URIR (not shown in Figure 3.5).

3.4 SAML Security Considerations
In this section, we summarize the SAML Web Browser SSO Profile security considera-
tions, which are scattered over many SAML standard documents [CKPM05a, CHK+05,
CKPM05b, HPM05a]. Therefore, a developer can easily overlook some important se-
curity measures.
Transport Layer Security. SAML utilizes server (unilateral) authenticated SSL
3.0 [FKK96] or TLS [DR08] communication channels to maintain confidentiality and
integrity, if needed.4 In concrete, this is recommended for transportation of the SAML
<Response> or the SAML artifact from IdP over UA to SP [CKPM05b, Section 4.1.3.5]
(see step 5 and 6 in Figure 3.3, Figure 3.4, and Figure 3.5). Additionally, SAML
recommends to protect the transmission of the <AuthnRequest> message by a server
authenticated TLS connection [CKPM05b, Section 4.1.3.3] (see step 3 in Figure 3.4 and
Figure 3.5). Mutual authenticated TLS connections must be utilized to resolve SAML
artifacts to assertions [CKPM05b, Section 4.1.4.4] (see step 7 and 8 in Figure 3.5).
Message Security. SAML utilizes XML Signature to protect the integrity and au-
thenticity of assertions and protocol messages on the message-layer. SAML mandates
that assertion(s) enclosed in a <Response> message must be signed [CKPM05b, Sec-
tion 4.1.4.5]. Instead, <AuthnRequest> messages may be protected by an XML Sig-
nature [CKPM05b, Section 4.1.3.3]. In the case of the artifact resolution protocol,

4For simplicity, we will use the term TLS in the following.
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<ArtifactResolve> and <ArtifactResponse> should be signed [CKPM05a, Sections
3.5.1 and 3.5.2].

Additionally, assertions and artifacts possess three further security properties:

1. One-Time-Use. An IdP only accepts a SAML artifact once. Subsequent
<ArtifactResolve> requests with the same artifact result in an empty response
[CKPM05a, Section 3.5.3]. Accordingly, SPs enforce the same property by only
processing assertions with a fresh and unknown IDA attribute. Hence, the SP
maintains a list of consumed assertions whose lifetime has not expired.

2. Restricted Lifetime. The assertion’s and the artifact’s lifetime must be limited
to a maximum of a few minutes [HPM05a, Sections 6.4.1, 6.5.1]. Therefore, the
clocks of SP and IdP have to be synchronized and should differ by at most a few
minutes.

3. Request/Response Matching. The SAML response message and the as-
sertion contain the original ID attribute of the previous SAML request mes-
sage. This ID can be embedded as InResponseTo attribute in the assertion’s
<SubjectConfirmationData> element and in the enclosing response message.
Therefore, unsolicited messages may be detected by the SAML receiver by eval-
uating the value of InResponseTo. In the case of IdP-started SSO this is not
possible, due to the missing <AuthnRequest> message.

3.5 Analyzed SAML Frameworks, Systems, and Services
This thesis analyzes several SAML implementations. We distinguish between frame-
works, systems, and services. Frameworks are used to build new SAML solutions (e.g.
SPs or IdPs). They may be open or closed source and are often widely deployed in
software components and projects. Systems are ready-to-use hardware solutions that
facilitate SAML functionality (e.g. an XML security gateway). Finally, services are
websites which provide a SAML interface to interact with other entities. This may
be a website which supports SAML-based SSO (i.e. an SP) or a web based identity
management solution (i.e. an IdP).

In the following, we introduce the analyzed SAML frameworks, services, and systems
in alphabetical order:

• Apache Axis 2. The open source project Apache Axis 2 [Apa13a] is a prevalent
used Web Services framework. Axis 2 provides capabilities to enrich existing web
applications with Web Services as well as to build stand-alone server applications.
The framework supports a variety of different features and Web Service (WS)
standards. For example, the WS-Security standard, including XML Signature
and SAML support, is realized by using the Apache Rampart [Apa13b] security
module.

• Cloudseal. Cloudseal [Clo13] is a SAML-based IdP service offering identity
management features, two-factor authentication, and support for a wide range of
SPs (e.g. Salesforce and Google Apps). Additionally, Cloudseal provides a Java
SDK to integrate SAML web SSO into existing applications.

• Guanxi. The Guanxi project [You13] is an open source Java framework which
implements the SAML 2.0 standard. The framework provides IdP and SP func-
tionalities to realize browser-based SSO.
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• Higgins 1.x. The Higgins 1.x project [Ecl13] is a Java-based open source frame-
work providing identity services. The project implements SAML-based SSO and
is hosted by the Eclipse Foundation.

• IBM Datapower XS40. The IBM Datapower XS40 hardware appliance [IBM13]
is an XML security gateway typically applied in enterprise architectures. The ap-
pliance fully supports WS-* standards and SAML. Please note that our findings
are applicable to the whole IBM Datapower gateway series.

• Java Open Single Sign On (JOSSO). The Java Open Single Sign On (JOSSO)
project [Atr13] is a Java-based open source framework providing SSO to web
applications. JOSSO implements the SAML standard and facilitates IdP and SP
functionalities.

• OIOSAML 2.0 Toolkit. The OIOSAML 2.0 Toolkit [Dan13] is an open source
project of the Danish IT and Telecommunications Agency which provides an SP
framework for SAML-based SSO. The Toolkit is available for Java and .NET
and is for example used in Danish public sector federations (e.g. eGovernment
business and citizen portals).

• Okta. Okta [Okt13] is a leading on-demand identity and access management
service for enterprises with over 300 customers (e.g. London Gatwick Airport,
Groupon, and LinkedIn).5 The IdP supports a large variety of SAML-based
SPs, including Google Apps, Salesforce, WebEx, Citrix GoToMeeting, Box.net,
EchoSign, and Workday. Furthermore, it is important to remark that Okta also
supports SSO with more than 1,300 websites by applying form-based authentica-
tion.

• OpenAM. The open source project OpenAM [For13], formerly known as SUN
OpenSSO, is an identity and access management middleware, used in major en-
terprises. It fully supports SAML-based SSO.

• OneLogin. OneLogin [One13a] offers identity and access management as a cloud
service for over 700 customers, including Netflix, Steelcase, Pandora, PBS, and
more than 12 millions of licensed users.6 Additionally, OneLogin supports iden-
tity management features, user directory integration (e.g. Microsoft Active Di-
rectory), and various strong authentication methods (e.g. two-factor and X.509
client certificate). The IdP supports SAML-based SSO with over 150 SPs, in-
cluding Box, Concur, Google Apps, NetSuite, Salesforce, Workday, Yammer, and
Zendesk. Furthermore, it is important to remark that OneLogin also supports
SSO with more than 2,800 websites by applying form-based authentication.

• OneLogin Toolkits. The free OneLogin Toolkits [One13b] are used to integrate
SAML SP functionalities into various popular open source web applications like
Wordpress, Joomla, Drupal, and SugarCRM. Moreover, these Toolkits are used
by many OneLogin customers (e.g. Zendesk, SAManage, KnowledgeTree, and
Yammer) to enable SAML-based SSO. There are Toolkit versions for Java, .NET,
PHP, Python, and Ruby available.

5http://www.okta.com/company/pr-2013-05-01.html
6http://www.onelogin.com/onelogin-announces-12-millionth-licensed-user/
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• OpenAthens. The OpenAthens [Edu13] software suite is a SAML standard
compliant platform to realize IdP and SP. The library is available in Java and
C++. OpenAthens is for example used to authenticate 1.5 million users of the
National Health Service (NHS).7 NHS is the publicly funded healthcare system
of England. In summary, OpenAthens has over 4 million users worldwide, with
customers including 50% of UK universities, the Department of Veterans Affairs
(USA), Philips Research and South Australia Health.

• OpenSAML. The OpenSAML project is an open source framework providing a
set of C++ and Java libraries to support developers working with SAML. The
current version of OpenSAML supports SAML 1.0, 1.1, and 2.0. OpenSAML is
one of the most prevalent deployed SAML libraries. It is used in the well-known
Shibboleth [Shi13] SSO solution as well as for the software developer kit (SDK)
of the electronic identity card of Switzerland (SuisseID) [The13a].

• Salesforce. The Salesforce [Sal13] platform is a prominent cloud-based cus-
tomer relationship management (CRM) software. The cloud service offers a
SOAP/REST Web Services API. Therefore, Salesforce supports browser-based
SSO with SAML and can act either as IdP or SP.

• SimpleSAMLphp. The SimpleSAMLphp project [Sim13] is a PHP-based open
source framework. This framework is very popular and mainly used in educa-
tion based federations (e.g. the Danish eID Federation). More details regarding
SimpleSAMLphp can be found in Section 3.6.

• SSOCircle. SSOCircle [SSO13] is a free public IdP service that facilitates SAML
2.0 support. Besides password-based authentication SSOCircle provides X.509
certificate and two-factor authentication to users. The IdP supports all SAML
2.0 compliant SPs. For example Google Apps, GMail, Salesforce, and ServiceNow
work out of the box. Additionally, SSOCircle can act as OpenID IdP.

• WIF. The Windows Identity Foundation [Mic13b] developed by Microsoft is a
.NET framework for building identity-aware applications. WIF supports SAML
and different WS-* standards. This framework is for example used in Microsoft
Sharepoint.

• WSO2. WSO2 [WSO13b] offers fifteen open source software applications to
build enterprise cloud platforms. All products support SAML and different WS-
* standards. For example, WSO2 StratosLive [WSO13c] is a free Java-based
platform as a service (PaaS) operated by WSO2 which supports browser-based
SSO with SAML.

• WSO2 Identity Server. The open source WSO2 Identity Server (IS) [WSO13a]
provides security and identity management for enterprise web applications, ser-
vices, and APIs. SSO with SAML 2.0, OpenID, and Kerberos KDC is supported.
The IS can be used standalone or in conjunction with WSO2 StratosLive.

7http://www.eduserv.org.uk/newsandevents/news/2013/openathens-for-nhs-england-staff
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3.6 SimpleSAMLphp
We introduce SimpleSAMLphp (SSP) [Sim13] in more detail, because the functionality
of this open source framework was extended as part of this thesis. SSP is a native PHP
framework implementing the SAML 2.0 standard based on Pat Patterson’s “Lightbulb”
project.8 The SSP project is led by Andreas Åkre Solberg from the UNINETT group.9
Since the first public release in September 2007, SSP has acquired a large user base,
especially in the pan-european education and research area. One of the largest appli-
cation scenarios is WAYF10 – Where Are You From – the Danish e-ID federation for
research and education with ≈300.000 active users. Furthermore, SSP is constantly
evolving and benefits from a large set of external contributors.

The SSP framework has two main focuses: (1) SAML 2.0 SP functionality and (2)
SAML 2.0 IdP functionality. Besides SAML 2.0, SSP also supports other identity proto-
cols, such as Shibboleth 1.3, A-Select, CAS, OpenID, WS-Federation, and OAuth. The
SP framework could be easily integrated into existing web applications, even non-PHP
environments are supported. The IdP functionality supports several authentication
modules (e.g. LDAP, Radius, CAS, OpenID, and two-factor authentication with Yu-
biKey).

SSP uses the object oriented programming paradigm approach and contains an Ex-
tension API that allows the integration of third-party modules. Furthermore, the
project is well-documented and translated into 20 languages. Besides this reasons, SSP
is known as a fairly secure framework [SMS+12] and the penetration tests and source
code observations made throughout this thesis have shown that SSP is not susceptible
to the presented attacks (cf. Chapter 4). Moreover, SSP already supports state-of-the-
art defense-in-depth techniques, such as HTTPOnly cookies, X-Frame-Options, and
the secure flag for cookies (cf. Section 4.5.4).

3.7 Related Web SSO Standards
Besides SAML, there exist several other web SSO standards. In this section, we give a
short overview of the most relevant standards.

OpenID 2.0. OpenID 2.0 [Ope10] is an open and user-centric web SSO standard orig-
inally developed by Brad Fitzpatrick. Since 2005, OpenID has been rapidly
adopted by over 50,000 websites and nowadays more than one billion OpenID
enabled user accounts provided by major IdPs (e.g. AOL, Microsoft, Google, and
Yahoo) exist.11 However, hardly anyone uses OpenID in practice as the login
process remains a difficult task due to the inconsistent user experience.12

In contrast to SAML, OpenID is solely used on the Internet by tech-savvy con-
sumers but not within enterprises. OpenID has two key properties. First, it is
decentralized and thus everyone can set up it’s own OpenID server. Second, it
does not require any pre-registration or trust establishment of SP to IdP . At the
present time, the OpenID Foundation specifies a successor of OpenID 2.0 called
“OpenID Connect”. This protocol is completely different and relies on the OAuth
2.0 standard.

8http://blog.superpat.com/2008/03/03/long-live-simplesamlphp/
9https://www.uninett.no/english

10http://wayf.dk/
11http://openid.net/get-an-openid/what-is-openid/
12http://www.webmonkey.com/2011/01/openid-the-webs-most-successful-failure/
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OAuth 2.0. While the OpenID standard focuses on authentication, OAuth 2.0 [JH12]
is an authorization framework. It enables resource owners (either users or ap-
plications) to authorize third-party applications, to allow limited access to their
server resources, without sharing their credentials. This may be done either on
behalf of a resource owner (by an approval interaction) or by granting the third-
party application to obtain access on its own behalf. Therefore, OAuth 2.0 is not
a native web SSO protocol, but it is frequently used in web SSO solutions (e.g.
Amazon, Facebook Connect, Google, Microsoft, and Twitter).
Although OAuth 2.0 is an open and extensible specification, it does not support
the application of cryptography, such as signing, encryption, or channel binding.
It completely relies on the security guarantees TLS provides.13 Eran Hammer,
the resigned lead author of OAuth 2.0, has stated that “When compared with
OAuth 1.0, the 2.0 specification is more complex, less interoperable, less useful,
more incomplete, and most importantly, less secure”.14 OAuth 2.0 is known to be
abused by third-party applications which misuse the authorizations rights granted
to download personal data from social networks.15

BrowserID. BrowserID [Moz13] is an open authentication protocol to realize web SSO.
It is used in Mozilla Persona16, which is a decentralized authentication system
prototyped by the Mozilla Foundation. BrowserID authenticates users by the use
of email addresses. It is focused on providing easy usage, security, and privacy.
At the time of this writing, BrowserID and Persona are still in the beta phase.

13http://hueniverse.com/2010/09/oauth-2-0-without-signatures-is-bad-for-the-web/
14http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
15http://facecrooks.com/Internet-Safety-Privacy/why-you-should-not-install-fun-

entertaining-facebook-applications.html
16https://login.persona.org

34

http://hueniverse.com/2010/09/oauth-2-0-without-signatures-is-bad-for-the-web/
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/
http://facecrooks.com/Internet-Safety-Privacy/why-you-should-not-install-fun-entertaining-facebook-applications.html
http://facecrooks.com/Internet-Safety-Privacy/why-you-should-not-install-fun-entertaining-facebook-applications.html
https://login.persona.org


4 Attacks on Web SSO
In this chapter, we dissect common web SSO threats and investigate two different
functionalities of SAML-based IdPs: Issuing of security tokens (i.e. SAML assertions)
and security as a web application. By investigating six different IdPs, we show that two
out of three IdPs are vulnerable for each single attack type. Even worse, by combining
the two attacks, we can cover all IdP implementations.

4.1 Introduction
The security of an SSO system is only as strong as the security of its weakest part and
typical SSO systems combine HTTP, HTML, JavaScript, and XML technologies. Thus,
SSO offers an attractive target to attackers: a security bug in the IdP implementation
based on one of these technologies may allow to access all federated websites. To phrase
it differently: breaking SSO makes identity theft easy. We thus expect that SSO may
be a subject to sophisticated attack scenarios in the near future. Hence, it is natural
to ask: are current SSO systems, and IdPs in particular, as secure and robust as they
should be?

Unfortunately, the answer is “no”. In this chapter, we present successful attacks
on six prominent IdPs (Cloudseal [Clo13], Guanxi IdP [You13], OneLogin [One13a],
SSOCircle [SSO13], WSO2 Identity Server (IS) [WSO13a], and Okta [Okt13]), using
two different attack classes:

1. Class I: ACS Spoofing. ACS Spoofing is a novel hijacking attack against the
SAML Web Browser SSO Profile [CKPM05b]. This attack allows the adversary to
redirect the SAML assertion issued by the IdP to himself, and thus to impersonate
the victim to every federated SP. The only prerequisite for this attack is that the
victim has to visit a webpage controlled by the adversary. We show the practical
feasibility of this attack in four popular SAML-based SSO solutions (Guanxi IdP,
OneLogin, SSOCircle, and WSO2 IS).

2. Class II: Attacks against the IdP web application. We discovered mul-
tiple cross-site scripting (XSS) [Zuc03] vulnerabilities in five real-world IdPs.
These flaws allowed us (in two cases only in combination with a UI redress-
ing attack [Nie11]) to steal the victim’s HTTP session cookies set by four IdPs
(Cloudseal, OneLogin, Okta, and SSOCircle), resulting in a complete identity
theft of the victim user. Again, the victim only has to visit a webpage con-
trolled by the adversary, and in two cases (Cloudseal and Okta) to perform a few
additional mouse clicks or drag-and-drop actions on this webpage.

In summary, all six evaluated SSO systems exposed severe flaws (cf. Table 4.1),
which affected all federated SPs (including well-protected applications like e.g. Google
Apps and Salesforce). It is important to remark that the attacks presented break SSO
systems even if strong two-factor authentication is deployed.
Contribution. In this chapter, we make multiple contributions, both in scholarly and
non-academic research contexts. Our main achievements can be detailed as follows:
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Affected ACS Cookie Common Vulnerabilities
SSO system SPs Spoofing theft and Exposures (CVE)
Cloudseal Opena – X Assignment in process
Guanxi IdP Opena X – Direct communication
Okta ≈1,300 – X CVE-2013-0114
OneLogin ≈2,800 X X CVE-2012-4962, -4963
SSOCircle Opena X X CVE-2013-0115, -0116, -0117
WSO2 IS Openb X – CVE-2012-4961
a All federated SPs are affected.
b All SPs that accept SAML assertions issued by these IdPs are affected.

Table 4.1: Results of our practical evaluation.

• We describe a novel and high-impact attack on SAML-based SSO services (ACS
Spoofing), resulting from a logical flaw.

• We show that even services that are not vulnerable to ACS spoofing may still be
broken when a combination of XSS and UI redressing attacks is used to steal the
IdP’s session cookie.

• We discuss the pros and cons of several countermeasures against ACS Spoofing
and cookie theft.

Responsible Disclosure. We promptly reported all vulnerabilities found to the
liable security teams as well as to the Computer Emergency Response Team (CERT).1
The time to fix the reported issues ranged between a few days and several months.
Paper. This chapter is based on a paper which is currently under submission. The
authors of this paper are Andreas Mayer, Marcus Niemietz, Vladislav Mladenov, and
Jörg Schwenk. The ACS Spoofing attack was discovered by myself and (at the same
time) independently by Vladislav Mladenov. Additionally, I found the ACS spoofing
vulnerabilities in OneLogin, SSOCircle, Guanxi IdP, and WSO2 IS. Vladislav Mlade-
nov analyzed Cloudseal and Okta. Furthermore, he independently approved the ACS
Spoofing vulnerability of OneLogin and developed an automated attack against this
IdP. Most of the XSS and UI-redressing attacks (Okta, SSOCircle, Cloudseal, WSO2
IS) were discovered by Marcus Niemietz. The XSS flaw in OneLogin was found by
myself.
Outline. The following section will outline important web SSO threats. Next, we
will give an overview of related work. We present the ACS Spoofing attack, a practical
evaluation of vulnerable IdPs, and specific countermeasures in Section 4.4. Results of
combined XSS/UI redressing attacks are supplied in Section 4.5, along with practi-
cal countermeasures. In Section 4.6, we briefly review a previously discovered attack
combining logical flaws and three specific countermeasures. Finally, we conclude in
Section 4.7.

4.2 Web SSO Threats
Besides the fact that browser-based SSO protocols may be error-prone like standard
security protocols [Low95, Low96], they are built upon several standards and technolo-
gies based on different layers of the TCP/IP model [SK91]. On the transport-layer,

1http://www.cert.org/
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TLS is facilitated to establish server-authenticated communication connections provid-
ing integrity protection and confidentiality. Moreover, on the application layer HTTP,
HTML, XML, SOAP, and active JavaScript content are used to splice together the
SAML Web Browser SSO Profile. Given the complexity of each technology and the
security critical dependencies between them, the following threats for web SSO and the
resulting HTTP sessions arise:

• Weak Same Origin Policy. The HTTP session cookies of IdP and SP are stored
under the Same Origin Policy (SOP), i.e. a human-readable domain name is the
“access key”. Thus, attacks on the Domain Name System (DNS) like [Kam08]
directly influence the security of these cookies. The same is true for SAML
assertions and artifacts which are sent through the browser via HTTP POST or
HTTP Redirect bindings.

• Broken Certificate Authority Infrastructure. Typically it is argued that
domain names are protected by TLS server certificates. However, inherent weak-
nesses of the certificate authority (CA) infrastructure have recently led to suc-
cessful attacks against Comodo and DigiNotar [Lea11]. Furthermore, Stevens
et al. [SSA+09] were able to construct a fake CA certificate with the same MD5
hash as a valid TLS certificate by conducting a chosen-prefix collision attack.
An adversary in possession of such trusted CA certificate can create new trusted
server certificates for any domain name. Moreover, Soghoian and Stamm [SS11]
introduced the compelled certificate creation attack, in which intelligence agencies
may compel CAs to issue bogus TLS server certificates. This enables governmen-
tal attackers to covertly intercept and eavesdrop any secure TLS connection.

• Misunderstood Security Indicators. Most Internet users routinely ignore
and dismiss browser warnings on invalid certificates [DTH06, SEA+09] which
appear when the server’s certificate is self-signed, has expired, or does not match
the DNS name of the server. If the user accepts an invalid or forged certificate,
HTTP session cookies or SAML assertions/artifacts are sent to the wrong server
and the security of the session is compromised.

• Broken Routing Infrastructure. Flaws in the Border Gateway Protocol
(BGP) [RLH06], the core routing protocol of the Internet, empower an attacker to
eavesdrop and modify Internet traffic anywhere in the world [BFMR10, GSHR10].
This may compromise the security of assertions, artifacts, and HTTP session
cookies.

• Browser-Side Flaws. TLS transmits HTTP session cookies, SAML asser-
tions, and artifacts over a server authenticated connection. In contrast, the
user agent saves them unprotected in the Document Object Model (DOM) or
in the browser’s cookie storage. Therefore, these authentication tokens are sus-
ceptible to many web related attacks like XSS [Zuc03] or cross-site request forgery
(CSRF) [The13b]. Furthermore, the introduction of HTML5 heralds a new area of
browser vulnerabilities, e.g. the <svg>-tag attack, which even works if JavaScript
is disabled [HNS+12].

• Message-Level Security. SAML facilitates XML Signature [ERS+08] for au-
thenticity and integrity protection of SAML messages (e.g. assertions). There-
fore, an XML Signature vulnerability may break the whole SSO protocol (see
Chapter 6).
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In summary, the security of web SSO protocols and the resulting authenticated user
sessions depend on the security of the TLS protocol, DNS and BGP, the CA infras-
tructure, browser-side flaws, XML Signature, and last but not least on user behavior.
Finally, it is important to remark that “. . . browsers, unlike normal protocol principals,
cannot be assumed to do nothing but execute given security protocol.”, [GPS05].

4.3 Related Work

One of the first widely adopted Single Sign-On protocols was Kerberos [NYHR05],
which is now extensively used within organizations for authentication. The Kerberos
protocol and related three party schemes have been subject to detailed security analyzes
without revealing severe flaws (e.g. [BCJ+06, BK07]). Therefore, several browser-based
SSO protocols, based on the well-understood Kerberos protocol, have been proposed
over the last 14 years. Unfortunately, it turned out that all relevant solutions exhibit
intrinsic security issues.

In 1999 Microsoft’s SSO solution Passport was released. Kormann and Ruby [KR00]
have analyzed Passport and identified several risks and attacks based on the threats
presented in Section 4.2. Later, Slemko [Sle01] demonstrated how to effectively steal a
user’s Passport identity. Gajek et al. [GSSX09] have studied Microsoft Cardspace, the
successor of Passport. They have revealed a security token replay attack that allows
identity theft by facilitating a clever DNS spoofing attack.

An alternative SSO framework is the prevalently deployed SAML Web Browser SSO
Profile [CKPM05b]. Since SAML offers very flexible mechanisms to make claims about
identities, there is a large body of research on how SAML can be used to improve
identity management (e.g. [HJK08, YsJ10]) and other identity-related processes like
payment or SIP on the Internet [LS10, TFP+06]. In all these applications, the security
of all SAML standards [CKPM05a, CHK+05, CKPM05b, CMPM05] is assumed.

In an overview paper on SAML, Maler and Reed [MR08] have proposed mutually
authenticated TLS as the basic security mechanism: “In an HTTP context, security
architects consider Secure Sockets Layer/Transport Layer Security (SSL/TLS) with
mutual authentication as a security baseline.” (p. 17). Please note that even if mutually
authenticated TLS would be employed, it would not prevent the attacks presented in
Chapter 6 because we only need a single signed SAML assertion from an IdP, which we
can get through different means (e.g. log entries, registering as a legitimate customer,
freely available example assertions from tutorials, etc.). Moreover, there exist specific
side-channels, which could be exploited by an adversary. Let us e.g. mention chosen-
plaintext attacks against SSL/TLS predicted by [WS96] and refined by [Bar06], or the
Million Question attack by Bleichenbacher [Ble98]. Other complications arise with the
everlasting problems with SSL PKIs [SSA+09, Lea11, SS11].

In 2003, Groß has initiated the security analysis of SAML from a Dolev-Yao point of
view, and presented three different attacks [Gro03]. The analysis has been formalized
in [BG05]. This work has influenced a revision of the standard [CKPM05a]. In [GP06],
Groß and Pfitzmann have analyzed the revised standard and again have found deficien-
cies in the information flow between the SAML entities. They have demonstrated the
impact by constructing a concrete exploit.

In 2008, Armando et al. [ACC+08] have built a formal model of the SAML 2.0 Web
Browser SSO protocol and have analyzed it with the model checker SATMC. By intro-
ducing a malicious SP they have found a practical attack on the SAML implementation
of Google Apps. However, this attack was possible because Google did not correctly
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implement the SAML 2.0 Web Browser SSO Profile. A security flaw on the formal
model of the SAML 2.0 standard specifications was not found. Another attack on the
SAML-based SSO of Google Apps has been found in 2011 [ACC+11]. Again, a malicious
SP has been used to force a user’s web browser to access a resource without approval.
Thereby, the bogus SP has injected malicious content in the initial unintended request
to the attacked SP. After successful authentication on the IdP this content has been
executed in the context of the user’s authenticated session.

The fact that SAML protocols consist of multiple layers has been pointed out in [Cha06].
In this paper, the “Weakest Link Attack” has enabled adversaries to succeed at all levels
of authentication by breaking only at the weakest one.

A variety of other browser-based protocols have been proposed and adopted for SSO
on the public Internet, including OpenID [Ope10] and OAuth [HL10, Har12]. Regarding
to [SHB12] and [SKS10] OpenID has been shown susceptible to phishing, man-in-the-
middle (MITM), and session related attacks. Furthermore, Hammer has discovered a
critical session fixation attack in OAuth [Ham09]. In 2012, Sun and Beznosov [SB12]
have examined real-world OAuth 2.0 implementations of three major IdPs (Facebook,
Google, and Microsoft) and 96 Facebook SPs. They have uncovered several critical
vulnerabilities that have allowed an adversary to access the victim user’s profile and to
impersonate as the victim user to SPs.

Another work pointing out the importance of SSO protocols has been published by
Wang et al. [WCW12]. This work has analyzed the security quality of commercially
deployed SSO solutions. The authors have found eight serious logic flaws in high-profile
IdP and SP websites (such as Google, Facebook, and Paypal). Each vulnerability has
allowed an adversary to sign in as the victim user.

Recently, Bai et al. [GLM+13] have proposed “AuthScan”, a framework to automat-
ically extract the authentication protocol specifications from implementations. They
have found multiple security flaws in several important SSO protocols (e.g. Facebook
Connect, BrowserID, and Windows Live Messenger Connect).

4.4 ACS Spoofing Attack

This novel attack relies on a logical flaw in the IdP’s SAML interface implementation,
at the interplay between XML and HTTP, and allows the adversary to steal fresh and
valid assertions. It affects all SPs having a trust relationship with the IdP.

4.4.1 Threat Model

Our threat model only assumes the adversary to be able to lure the victim to a web-
site controlled by him. Thus our adversary has far fewer resources than the classical
network-based adversary. Since there is no need to read the network traffic, we may
assume that the user agent of the victim always communicates over encrypted TLS
connections. Moreover, the victim may only accept communication partners with valid
and trusted server certificates.

4.4.2 Attack Description

Precondition. To launch an ACS Spoofing attack, the adversary only needs to
register a domain, install a (free) TLS server certificate trusted by all major browsers,
and set up a malicious website Advws. If the victim is not logged in to the IdP, the
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Figure 4.1: Novel ACS Spoofing attack on standard SAML Web Browser SSO.

adversary may additionally masquerade as an SP to the victim. However, no trust
relationship between adversary and IdP is necessary, i.e. there is no need for the
adversary to register as an SP with the victim IdP.

When the victim visits the malicious website Advws, the attack is carried out auto-
matically. If the user is already authenticated to the Identity Provider IdP , the attack
executes in a fully transparent manner, without any further user interaction.2 Other-
wise, the adversary may mask the malicious website Advws as a Service Provider S̃P ,
thus the victim who has to authenticate to IdP believes that he has started an SSO
protocol flow, which is in fact run with the accessed (malicious) S̃P . Setting up a “Bad
SP” is not harder than setting up an ordinary website, since no trust relationship with
IdP must be established.
Attack. Figure 4.1 illustrates the detailed flow of the ACS Spoofing attack. It consists
of the following steps:

1. UA→ Advws: User U navigates its user agent UA to the malicious website Advws.
Therefore, an HTTP GET request for the corresponding URL is sent to Advws.

2. Advws → SP : Advws requests a protected resource URIR on an arbitrary SP re-
sulting in a new parallel SSO protocol run.

3. SP → Advws: SP determines that no valid security context exists. Accordingly,
SP issues an authentication request <AuthnRequest(ID1, SP, ACSURL)> and
sends it Base64-encoded, along with URIR (cf. Table 3.2), as an HTTP 302 (redi-
rect to IdP) to Advws. ID1 is a fresh random string and SP the identifier of the
Service Provider. ACSURL (cf. Table 3.2) specifies the endpoint to which the
assertion must be delivered by IdP .

4. Advws → UA: Advws acts as a proxy and changes the ACSURL in the unpro-
tected <AuthnRequest> to ACSURL = BadURL, which is a URL controlled by the
adversary.3 An example of a malicious <AuthnRequest> is shown in Figure 4.2.

2As the victim is using SSO to reduce the number of sign-on tasks, this is a very likely assumption.
3If the attacked SP does not check the InResponse attribute of the assertion (e.g. the OneLogin
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<AuthnRequest ID="dkihjmldfnppdnjhaeknadmbbdbjcahggcbcmcbc"
IssueInstant="2013-06-21T20:17:39.998Z" Version="2.0"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
AssertionConsumerServiceURL="https://www.badsp.com/harvest">
<Issuer>php-saml-sp</Issuer>
<NameIDPolicy AllowCreate="true"

Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"/>
</AuthnRequest>

Figure 4.2: Malicious <AuthnRequest> modified by Advws.

5. UA→ IdP : Triggered by the HTTP redirect, a server-authenticated TLS connec-
tion is established between UA and IdP . UA uses the established TLS connection
to transport <AuthnRequest(ID1, SP, BadURL)>, along with URIR, to IdP .

6. UA ↔ IdP : If the user is not yet authenticated, IdP identifies U by an arbitrary
authentication mechanism.

7. IdP → UA: Upon a successful authentication, IdP creates an authentication
assertion A := (IDA, ID1, IdP, SP, U), including the unique identifier IDA and
ID1 from the request, the entity IDs of IdP , SP , and the user identity U . Sub-
sequently, A is signed with the IdP’s private key K−1

IdP . The signed assertion
A is embedded into a <Response> message, together with ID1 and the fresh re-
sponse identifier ID2, and is sent Base64-encoded in an HTML form, along with
the RelayState=URIR to UA. According to the SAML standard, the IdP must
use the ACSURL = BadURL as HTTP POST destination ([CKPM05a], Section
3.4.1).

8. UA → Advws: A JavaScript event in the HTML form triggers the HTTP POST
of <AuthnResponse> to BadURL (which is under the control of Advws).

9. Advws → SP : The adversary Advws can now impersonate user U by submitting
A to the ACS endpoint of the legitimate SP.

10. SP → Advws: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. Subsequently, SP veri-
fies the XML signature, and authenticates user U resulting in a security context.
Finally, SP grants the adversary Advws access to the protected resource R by
redirecting him to URIR.

4.4.3 Practical Evaluation
We evaluated six real-world SSO systems against ACS Spoofing and the results are
presented below.

SSOCircle. SSOCircle [SSO13] was vulnerable to ACS Spoofing.

Guanxi. Our code observations revealed that the IdP code of Guanxi [You13] was
vulnerable to ACS Spoofing. This was later confirmed by the lead developer,
which immediately released a security fix.4

Toolkits [One13b] and Google Apps), the adversary may create a malicious <AuthnRequest> on his
own. In this case, Steps 2 and 3 can be omitted.

4http://codebrane.com/blog/?p=2895

41

http://codebrane.com/blog/?p=2895


4 Attacks on Web SSO

WSO2 Identity Server. The WSO2 IS [WSO13a] was vulnerable to ACS Spoofing.
The flaw was fixed in version 4.0. Interestingly, when authenticating to the WSO2
StratosLive cloud services [WSO13c], the <AuthnRequest> did not contain an
ACSURL at all. By inserting an arbitrary ACSURL into the <AuthnRequest>,
the adversary could set a new permanent assertion consumer endpoint on the IdP.
Therefore, the adversary only needed to send one spoofed authentication request
message to the IdP, to automatically receive every assertion from all users that
try to authenticate to the attacked SP. Even worse, the adversary was able to set
a new malicious default ACSURL for every federated SP.

OneLogin. OneLogin [One13a] was vulnerable to ACS Spoofing. Furthermore, it was
possible to automate the attack: when the victim accessed the website Advws,
the adversary opened for every SAML SP a new iFrame carrying a malicious
URL along with a self-generated <AuthnRequest> targeted to OneLogin’s SAML
endpoint. Subsequently, the browser loaded each iFrame and launched multiple
ACS Spoofing attacks in parallel. This attack variant enabled the adversary to
steal assertions for every configured SAML SP with a single access to the malicious
website on victim’s part. This attack was possible, as the federated SPs did not
recognize unsolicited SAML response messages.

4.4.4 Countermeasures
In this section, we present three countermeasures against ACS Spoofing:

1. Whitelisting. One way to mitigate ACS Spoofing is to use a whitelist of allowed
ACSURL values for each and every SP, stored at the Identity Provider IdP . This
may induce a significant management overhead for large IdPs. The exchange of
ACSURL values could be done with SAML metadata [CMPM05] which is used
to establish federations.

2. Signing Authentication Requests. In theory, signing authentication requests
would make the injection of malicious ACSURL for an adversary impossible.
According to the SAML V2.0 Standard, the <AuthnRequest> should be signed
([CKPM05a], Section 3.4.1). However, our investigation shows that this is usually
not the case in actual real-world implementations. Only one out of six evaluated
IdPs (Cloudseal) used signed <AuthnRequest> messages. Moreover, the SAML
standard states that the ACSURL of a signed <AuthnRequest> is always a trusted
destination ([CKPM05a], Section 3.4.1). This opens another interesting attack
vector, which we successfully executed on WSO2 IS. Interestingly, WSO2 chose to
implement <AuthnRequest> signing to mitigate ACS spoofing. Our observations
revealed that the XML Signature verification module of WSO2 IS was susceptible
to XML Signature wrapping attacks [MA05], which render the integrity protection
of XML signatures useless and makes the injection of malicious content possible.
Furthermore, WSO2 IS accepted <AuthnRequest> messages which were signed
with an arbitrary key or when the signature was completely removed. Therefore,
successful ACS spoofing attacks may be possible even if signed <AuthnRequest>
messages are used. We show in Chapter 6 that XML Signature wrapping vulner-
abilites are widespread on SAML-based SPs.

3. Recipient Attribute Evaluation. To mitigate ACS Spoofing attacks, the IdP
can embed the value of the ACSURL from the SAML request into the issued asser-
tion as Recipient attribute in the <SubjectConfirmationData> element. Only
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if the value of this attribute is equal to the SP’s own ACS endpoint, the asser-
tion can be considered valid. Unfortunately, the SAML standard mandates this
attribute as optional ([CKPM05a], Section 2.4.1.2). Therefore, only some SPs
evaluate it. Google Apps for example checks the Recipient attribute.5 Sadly,
OneLogin fixes the attribute to the correct value, regardless of which value the
ACSURL in the request contained, thus rendering this countermeasure useless.
Additionally, the OneLogin Toolkits [One13b] used in Wordpress, Joomla, Sug-
arCRM, and Drupal to provide SAML functionality, do not check the Recipient
attribute at all. Again, XML Signature wrapping attacks on signed assertions
may render this countermeasure useless.

In summary, all three countermeasures may prevent ACS Spoofing but have their
own downsides. While whitelisting imposes a significant management overhead for
large IdPs, signing authentication requests may again open the door for ACS Spoofing
attacks, if XML Signature wrapping vulnerabilities exist (see Chapter 6). Finally,
Recipient attribute evaluation facilitates an optional SAML attribute, which is not
often used in practice.

4.5 IdP Session Compromise: XSS/ UI Redressing

In this section, we focus on compromising the authenticated IdP session of the victim
user by stealing the appropriate HTTP session cookies.

4.5.1 Threat Model

Our threat model for XSS and UI redressing attacks is similar to Section 4.4.1 and
assumes the adversary to be able to lure the victim to a website controlled by him.
Beforehand, the adversary has to find an injection vulnerability (i.e. XSS) that allows
him to steal the IdP’s session cookies. Thus our adversary has far fewer resources than
the classical network-based adversary from Dolev-Yao [DY83]. Since there is no need
to read/modify the network traffic, we may assume that the user agent of the victim
always communicates over encrypted TLS connections. Moreover, the victim may only
accept communication partners with valid and trusted server certificates.

In advance, the adversary registers a domain, installs a (free) trusted SSL server
certificate, and sets up a malicious website Advws. We assume that the victim user
is authenticated to the IdP when accessing Advws and therefore possesses a session
cookie. If this is not the case, the adversary may additionally masquerade as an SP to
the victim and may initiate an IdP login process. In order to additionally launch UI
redressing attacks (e.g. if CSRF protection is in use), the adversary has to convince
the user to perform some innocent-looking click and/or drag-and-drop events (e.g. by
playing an attractive game).

4.5.2 Attack Description

We exploit XSS flaws in the IdP’s web application to steal the victim user’s session
cookies.

According to the OWASP Top 10 2013 [OWA13], XSS is the most prevalent security
flaw in web applications. XSS vulnerabilities are based on improperly filtered data that

5https://developers.google.com/google-apps/help/faq/saml-sso#recipient
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"><script>document.location="http://attacker.com/harvest.php?c="
+document.cookie</script>

"><img src=x onerror=document.location=’http://attacker.com/
harvest.php?c=’+document.cookie

Figure 4.3: Two examples of malicious scripts for cookie theft.

is injected in a webpage and sent to the browser. Afterwards, the injected malicious
content is executed in the victim’s browser. Three different classes of XSS flaws exist:
stored, reflected, and DOM based XSS [Zuc03, Kle05]. In our practical evaluation we
focus on stored and reflected XSS. Figure 4.3 gives two examples of malicious scripts
an adversary may use to inject in a benign website to steal the session cookies.

If the IdP applies CSRF protection (e.g. anti-CSRF token [Shi04]), we use a combi-
nation of UI redressing attacks and XSS. UI redressing attacks [Nie11] seduce a victim
to unintentionally click on an invisible web page, using multiple transparent or opaque
layers. While the victim thinks he is clicking on a harmless web page element, he is
tricked into doing exactly what the adversary wants him to do.

4.5.3 Practical Evaluation
Of the six IdPs tested, only Cloudseal and Okta were not vulnerable to ACS Spoofing, as
they whitelist or ignore the ACSURL parameter. However, we were able to compromise
the security of both IdPs with a combination of XSS and UI redressing attacks. Our
penetration test revealed that no IdP applies X-Frame-Options in HTTP response
headers to mitigate UI redressing attacks. While three IdPs (Okta, OneLogin, and
WSO2 IS) use the secure flag to protect session cookies during transit, only WSO2 IS
applies HTTPOnly cookies to prevent XSS attacks.

Okta. Okta [Okt13] was susceptible to a combined XSS/UI redressing attack. The at-
tack we found requires a few specific clicks and a drag-and-drop event to insert a
malicious XSS vector. Note that all these actions appear harmless to the victim.
The combination allowed us to steal sensitive data, such as the IdP’s authentica-
tion cookie. The victim has to perform the following (invisible to him) steps for
a successful attack:

1. First, the victim has to visit a webpage controlled by the adversary. This
webpage consists of three different elements: an iFrame rendered invisible
by using the CSS opacity property and two elements for social engineer-
ing. In our proof of concept, these are two images: a ball and a basket
(cf. Figure 4.4). The iFrame is loaded from the URL https://foobar.okta-
admin.com/admin/settings/emails – the wildcard foobar should be replaced
with the subdomain of the victim. At the time of the attack, the victim has
to be logged in to Okta.

2. The Okta webpage inside the invisible iFrame has a User Activation button,
which allows us to open a View/Edit User Activation Email window. We
reach this window by triggering user’s click on this invisible button, e.g. by
asking the victim to press a “Start Game” button.

3. Inside this window, there is a form field where the user can type in the
title. The information submitted via this title field is not filtered suffi-
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Figure 4.4: Combined XSS/UI redressing attack on Okta.

ciently by the server. Thus, we can inject JavaScript code into this field,
which will then be executed in the victim’s browser (e.g. <img src=x
onerror=alert(document.cookie) x="). However, the victim has to ac-
tively inject the JavaScript code. (We cannot directly fire an HTTP POST
request due to an existing CSRF [The13b] protection). This can be achieved
by using the two pictures where the ball contains the malicious JavaScript
code and where a drag of this ball injects this code into a dragable element
like the title field.

4. The crucial point of the attack is to get the victim to inject the XSS vector
of the adversary into the title field. In order to do so, the victim has to drag
the ball into the basket. In our case, the ball has the HTML5 event handler
ondragstart with our XSS vector as its data. Upon the event of dragging the
ball into the basket, the vector will automatically be dropped into the title
field, for the reasons of the basket being placed exactly over it.

5. The victim has to submit the form with the XSS vector inside its title field
by clicking on the Submit button. This can be done with an element like
the moving basket. To compel the victim to clicking on the basket, a game
score that increases with each click may be introduced.

6. When the form is submitted, the malicious code will automatically be saved
and executed. This allows the adversary to retrieve the session cookie of
the IdP stored in the browser, and thus impersonate the victim (i.e. as ad-
ministrator). As IdP administrator the adversary is able to compromise the
security of the whole Okta service. (Please note that we also have a stored
XSS vulnerability here, although during normal operations the infected page
will rarely be visited by the victim.)

Additionally, we found another stored XSS flaw which allowed us to send eMails
with malicious content to new or existing Okta users.
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Cloudseal. We found one persistent XSS that allowed us to steal the session cookies
with a combined XSS/UI redressing attack in Cloudseal [Clo13].

OneLogin. One reflected XSS vulnerability was found in OneLogin. The XSS flaw
concerning https://app.onelogin.com can be easily exploited due to the fact
that there is no CSRF protection. A simple HTTP GET request triggered by the
browser (e.g. by image loading) is sufficient.

SSOCircle. Out of the four XSS vulnerabilities we found in SSOCircle, two could
be exploited by HTTP GET requests. As in the case of OneLogin, no CSRF
protection was deployed.

WSO2 IS. Five out of seven XSS vulnerabilities we found were persistent and feasible
through the use of HTTP requests. WSO2 IS deploys HTTPOnly cookies. There-
fore, we were not able to steal the session cookies. Nevertheless, these findings are
severe, as there are many other ways to exploit XSS, aside for the cookie theft. For
example, the Browser Exploitation Framework [BeE13] arrestingly demonstrates
several methods (e.g. capturing and transmitting user’s keystrokes).

Guanxi IdP. We lacked a concrete web application using this framework. Therefore,
we could not evaluate Guanxi IdP for XSS vulnerabilities.

4.5.4 Countermeasures
In this section, we briefly review best-practice countermeasures against cookie theft,
along with known weaknesses:

1. Enforcing Secure Transport. To mitigate cookie theft effectuated via eaves-
dropping on the network traffic, the cookies are sent over TLS connections. This
policy is enforced by setting the cookie’s secure flag in the Set-Cookie HTTP
response header. Since the rise of comfortable packet sniffers to intercept unen-
crypted cookies (e.g. Firesheep [But10]), this option is prevalently used. However,
cookie theft via XSS is still possible. In 2011, Bortz et al. [BBC11] have demon-
strated that cookies, sent via TLS connections, does not provide session integrity
against an adversary that can host content on a related domain. This attack type
may result in session hijacking and session substitution.

2. XSS Filtering. According to the OWASP Top 10 [OWA13] XSS is the most
prevalent security flaw in today’s web applications. XSS attacks can be miti-
gated by server- and client-side filtering. In practice, server-side defense of XSS
is primarily used. However, Nadji et al. [NSS09] have shown, that server-side
filtering, as stand-alone countermeasure, is insufficient. On the other hand, Bates
et al. [BBJ10] have analyzed existing client-side XSS filters and have found severe
security flaws in them. Even a combination of both techniques cannot prevent
XSS attacks as Heiderich et al. [HFJH11] have shown.

3. HTTPOnly Cookies. A simple and effective way to prevent cookie theft
through injection attacks like XSS [Zuc03] is to use the HTTPOnly flag. In this
case, access of client-side scripts to these cookies are blocked by the browser. How-
ever, other attack techniques such as cross-site tracing [Man03] and using XML-
HttpRequests [Pal07] can be employed, allowing an adversary to steal HTTPOnly
cookies. In addition, HTTPOnly cookies are not widely deployed [ZE10] and may
disrupt a webpage’s functionality.
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4. Cryptographic Cookie Protocols. Some ineffective efforts to secure cookies
by deploying public key-based authentication mechanisms have taken place [PS00,
FSSF01, LKHG05]. The proposed cookie protocols guarantee authentication,
confidentiality, and integrity. However, neither signing nor encrypting cookies
does deter an adversary from transferring a cookie from one browser to another.

5. Anti-CSRF tokens. To forbid the processing of malicious server side HTTP
requests to do actions like cookie theft one can use anti-CSRF tokens. In this
scenario, the server checks in the current HTTP request, if the user or rather
the victim is sending a CSRF token, in form of a not guessable random string,
generated by the previous HTTP request. If so, the server will accept the request;
otherwise it will be rejected. However, this countermeasure does not work in the
case of UI redressing attacks due to the reason that the victim will be lured to
send a valid token to the server.

6. X-Frame-Options. To mitigate UI redressing X-Frame-Options have been pro-
posed. By sending an additional X-Frame-Options header in the HTTP response
message, a website can instruct a browser not to render the content of the webpage
inside an iFrame. This mitigates UI redressing. X-Frame-Options are supported
by all major browsers. However, Heiderich [Hei12] has shown that this defense
can be bypassed via Java applets or LiveConnect.

In summary, all existing best-practice countermeasures against cookie theft can be
bypassed in several ways. Therefore, we propose a novel and practical countermeasure
to mitigate cookie theft in Section 5.7.

4.6 RelayState Spoofing Attack

In this section, we review a previously discovered attack by Armando et al. [ACC+11].

4.6.1 Threat Model

The threat model for RelayState Spoofing attacks is similar to the one for XSS and UI
Redressing attacks from Section 4.5.1. The adversary requires an XSS vulnerability for
each attacked SP implementation and no IdP XSS flaw is necessary.

4.6.2 Attack Description

The RelayState Spoofing attack combines a logical flaw in the SSO implementation (the
RelayState parameter URIR can be changed by the adversary, and this parameter
will be used in a final redirect triggered by SP ) with implementation bugs at the
Service Provider SP (an XSS attack can be launched through an HTTP redirect query
string parameter). The attack flow is similar to the ACS Spoofing attack but instead
of changing ACSURL the adversary changes URIR. The attack flow is depicted in
Figure 4.5.

In step 2 or 4, the adversary injects an XSS attack vector into the parameters of
the RelayState URIR. After successful authentication at the honest SP (i.e. after
successful verification of the SAML assertion), the maliciously-crafted URIR is loaded
by a browser redirect, and the XSS attack is automatically executed in the browser.
Two preconditions must be met for this attack to be successful: (1) injectability of
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Figure 4.5: RelayState Spoofing attack on standard SAML Web Browser SSO.

XSS code into URIR and (2) XSS-vulnerable implementations of SPs. The first pre-
condition normally holds in SAML-based SSO scenarios, because URIR is not part
of the XML-based data structures authentication request or assertion, and can thus
not be integrity protected by an XML signature. Instead, the SAML standard recom-
mends to protect the integrity of the URIR by a separate signature ([CHK+05], Section
3.4.3). However, [ACC+11] and our own investigations show that this is normally not
the case in practice.6 The second precondition has been shown to be reasonable by
[WCW12] and [SB12], where numerous implementation bugs for SPs have been docu-
mented. Additionally, Armando et al. have presented two successful attacks on Novel
Access Manager 3.1 and Google Apps.

Although, this attack is not as severe as ACS Spoofing (only a single SP is affected),
it is still a critical security flaw. By misusing the SSO protocol flow, the adversary can
ensure that the victim user has an authenticated session with the attacked SP, which is
a precondition for cookie theft via XSS. Furthermore, an adversary can use this attack
as launching pad to automatically execute CSRF attacks.

Finally, an attack related to RelayState Spoofing is login CSRF [BJM08], whereby
the adversary forges a cross-site request to the honest website’s login form, resulting
in logging the victim into this website as the adversary. This CSRF attack variant as
also applicable to SAML-based SSO.

4.6.3 Countermeasures
Armando et al. [ACC+11] propose three countermeasures to mitigate RelayState Spoof-
ing attacks:

1. Cookie Linking. To mitigate RelayState Spoofing, SP could set a cookie
C when returning the HTTP redirect with the <AuthnRequest> to the user’s
browser (step 2, Figure 3.4). This cookie is afterwards automatically returned
with the SAML assertion to SP (step 6, Figure 3.4). SP can use cookie C to
decide if authentication request and response are carried over the same commu-
nication channel. Therefore, SP may be able detect a RelayState attack. This

6None of the six investigated real-world IdPs protected the integrity of the URIR parameter.

48



4.7 Conclusion

countermeasure only provides means to mitigate the attack, as cookies itself ex-
hibit many security problems (cf. Section 4.5.4).

2. User Consent. The IdP could explicitly ask user U for consent to access
URIR on SP before issuing assertion A. This must be done for each SSO pro-
tocol run. Therefore, a vigilant user may recognize the RelayState attack as a
unsolicited SP access. There are two main drawbacks: (1) This countermeasure
breaks the user-friendliness of SSO and (2) the user is forced to make security
decisions (which is a bad idea as the experience with SSL security indicators
shows [DTH06, SEA+09]).

3. Binding to Client Certificates. An interesting countermeasure is the use of
mutual authenticated TLS sessions between UA and SP by using client certifi-
cates. When user U accesses SP (Figure 3.4, step 1), he proves possession of
the private key, belonging to the user’s client certificate, during a TLS hand-
shake. Thereafter, SP includes n||HMACk||n(RSAmod) into the ID attribute of
the issued <AuthnRequest>, where n is a random string, k a secret key only
known to SP , and RSAmod the RSA modulus of the certificate’s public key.
Then, SP sends the authentication request to the browser and the SSO proto-
col proceeds as usual until UA sends assertion A to SP (Figure 3.4, step 6).
After receiving A, SP checks if the assertion was sent over the same mutual au-
thenticated TLS session, by comparing the InResponse attribute (carrying the
ID attribute from the authentication request) with the newly calculated HMAC
H ′ = n′||HMACk||n′(RSAmodulus), where n′ is taken from the InResponse at-
tribute. If H ′ and InResponse are equal, SP can be sure that no RelayState
attack occured in the SSO protocol run.

4.7 Conclusion
Developing a secure SSO solution is a nontrivial task. Our findings show that vulner-
abilities in actual SAML-based SSO deployments can be severely exploited, leading to
a complete failure in regards to the security of the IdP and all federated SPs.

Due to the fact that SAML is a very flexible and extensible standard, the correspond-
ing specifications are complex and distributed over a bulk of documents. Developers can
get lost in the specification and may overlook important security-relevant constraints.
This can result in vulnerable implementations, as the discovered ACS Spoofing attack
demonstrates. Nevertheless, SAML is a matured and well-designed standard. Through-
out the specification, multiple security recommendations are given for the purpose of
avoiding common pitfalls. Still, this does not guarantee the absence of flaws in real-
world implementations.

Even if the SSO protocol is considered secure, the prevalent cookie-based client au-
thentication creates an attack-surface sufficient for identity theft done through XSS and
combined UI redressing attacks. Our results confirm the significance of these attacks
for the security of SSO systems.

In order to fix the mentioned security problems, we have presented several coun-
termeasures against each attack. However, each mitigation technique is specific and
imposes its own downsides.
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In this chapter, we describe several channel bindings which improve the security of web
SSO significantly. Furthermore, we present three different channel binding implemen-
tations.

5.1 Introduction
Given the complexity of the technologies applied in web SSO (e.g. HTTP, HTML,
JavaScript, and XML) and the inherent weaknesses of the entities (e.g. DNS, PKI, and
browser) and participants (e.g. unaware users) involved, raises the following general
question: How can we holistically secure browser-based SSO?

Given the set of attacks presented in the previous chapter, we can identify the root
cause for most of the vulnerabilities. It is the missing cryptographic binding between
the message-layer (e.g. SAML assertions) and the underlying transport layer protocol
(i.e. TLS). While both layers have their own security measures they are independent
of each other and not interconnected. For example, a signed assertion is integrity-
protected and authenticated on message-layer (cf. Section 3.4), but can be used over
any server authenticated TLS connection, whether the user or the adversary established
it.

The concept of channel bindings establishes a cryptographic interlace between a
secure channel and the data from a higher layer transmitted over that channel. channel
bindings have been proposed in RFC 5056 [Wil07] and have been applied to TLS in
RFC 5929 [AWZ10].

According to RFC 5056 [Wil07, p.3], we define the notion of a secure channel as
follows:

“A packet, datagram, octet stream connection, or sequence of connections
between two end-points that affords cryptographic integrity and, optionally,
confidentiality to data exchanged over it. We assume that the channel is
secure – if an attacker can successfully cryptanalyze a channel’s session keys,
for example, then the channel is not secure.”

We discuss three channel binding variants applied to SAML that bind the identity
information (i.e. the SAML assertion) cryptographically to an underlying secure chan-
nel. For web SSO we utilize the TLS protocol as a secure cryptographic primitive that
establishes such a secure and authenticated channel between two entities. Each channel
binding presents its own strengths and weaknesses compared to each other, while at
the same time improve the security of SSO significantly:

• Server-Endpoint Binding. The Server-Endpoint Binding, as described in RFC
5929 [AWZ10], makes security decisions based on the TLS server certificate’s
public key (or a hash of it). In this case, the browser recognizes the web server.
Therefore, the browser may remain anonymous in most situations, disclosing its
identity consciously only to a well-known web server.
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• Unique-Session Binding. Web server and browser recognize a specific TLS
connection with a cryptographic value which is characteristic for that connection.
RFC 5929 proposes to use the first TLS Finished message sent during the TLS
handshake. This unique value is used to bind the SAML assertion to a particular
TLS connection that has been agreed between both entities. This channel binding
variant provides a high level of anonymity because each cryptographic value is
session specific and not linkable to a identity.

• Holder-of-Key Binding. In this scenario, the web server recognizes the browser
based on a (self-signed) TLS client certificate. This is similar to the Server-
Endpoint Binding, with the duties of browser and web server exchanged. Holder-
of-Key (HoK) has been standardized by OASIS as SAML V2.0 Holder-of-Key
Web Browser SSO Profile [KS10].

All three channel bindings still exhibit security deficiencies that allow various attacks
(e.g. ACS and RelayState Spoofing or cookie theft). Since our goal is to propose
a countermeasure which successfully mitigates all attacks and threats presented in
Chapter 4, we concentrate on extending the SAML HoK Profile because it already
possesses good security properties and is deployable without changing existing Web
infrastructure (e.g. browser, web server, and TLS stack). Instead, Server-Endpoint
and Unique-Session Binding both need changes in existing Web infrastructure. We use
the strong cryptographic binding of HoK in a more holistic approach and suggest to (1)
additionally link the HTTP session cookies of IdP and SP to the same client certificate
(along the lines of [DCBW12]), and (2) to also bind the SAML authentication request
to this certificate.
Contribution. In this chapter, we present the following contributions and achieve-
ments:

• We present the first practical implementation of the SAML V2.0 Holder-of-Key
Web Browser SSO Profile [KS10]. Our implementation supports SP and IdP
functionalities and was adopted by the popular SimpleSAMLphp framework in
version 1.9.1

• Second, we propose an improved variant of the SAML HoK Profile called HoK+,
which additionally protects against a variety of other attacks (e.g. RelayState
Spoofing [ACC+11]).

• Third, we discuss broadening the scope of the HoK+ approach to include HTTP
session cookies along the lines of [DCBW12] and with the aim of closing a large
security gap present in numerous modern web applications.

• Finally, we present a proof-of-concept implementation of our HoK+ Profile that
includes HTTP session cookie binding in SimpleSAMLphp. Additionally, we pro-
vide a performance evaluation of our cookie binding.

Papers. This chapter is based on two published papers [MS11, MKLS13] and one paper
currently under submission. The discovery that the SAML HoK Profile is susceptible
to RelayState attacks and the refined HoK+ Profile were my own work. Furthermore,
all three implementations (HoK, HoK+, and cookie binding) are done by myself.

1http://simplesamlphp.org/docs/trunk/simplesamlphp-changelog#section_5_21
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Outline. The following section will give an overview of related work. In Section 5.3
we will present the Sever-Endpoint Binding followed by the Unique-Session Binding
in Section 5.4. The Holder-of-Key Binding along with the practical implementation
is explained in Section 5.5. Next, we will propose the HoK+ Profile and give further
details of the corresponding implementation in Section 5.6. We will broaden our binding
approach to cookies in Section 5.7 and prove the practical feasibility with a proof-of-
concept implementation and a performance evaluation. Section 5.8 will give some
insights on the practicability of client certificates. In Section 5.9 we will discuss the
pros and cons of the different binding variants and conclude.

5.2 Related Work

In this section, we give an overview of related work existing on channel bindings.
SLSOP and WSKE-Cookies. In 2007 Karlof et al. [KSTW07] have proposed to
cryptographically strengthen the web browser’s Same Origin Policy (SOP) by taking
the server’s TLS certificate into account. They have recommended two variants called
weak- and strong-locked SOPs (SLSOP). The weak-locked SOP is easier to implement
than the SLSOP and enforces that web objects (including cookies) are sent only to web
servers with valid certificate chains. The SLSOP tags each web object with the server’s
public key and solely returns them to web servers if the public key of the server’s
TLS certificate matches. A similar approach called Web Server Key Enabled Cookies
(WSKECookies) has been presented by Masone et al. [MBS07]. In this concept, the
browser stores cookies along with the public key of the web server’s certificate which
initially set them. A WSKECookie is only returned to a web server which proved
possession of the same key pair in following TLS sessions.

In both concepts stolen web objects or WSKECookies are bound to the server end-
point and not to the legitimate browser. Although these approaches make cookie theft
more complicated, an adversary can still use stolen cookies to authenticate as the vic-
tim.
YURLs. Another possibility to implement a binding to the server endpoint is to use
YURLs [Wat06]. A YURL is a URL scheme that includes the hash of the server
certificate’s public key in front of the hostname. The identification of a web server is
carried out by an HTTPSY extension that takes the hash information from the YURL
into account when establishing a TLS connection.
TLS-Federation. Bruegger et al. [BHS08] have proposed TLS-Federation – an ap-
proach to transport identity and authorization information within TLS client certifi-
cates. In summary, the IdP issues a fresh client certificate, with embedded identity
claims about U , that UA uses to authenticate to SP in a mutual authenticated TLS
handshake. Although this idea securely binds the identity information to a TLS con-
nection, current browsers do not provide a practical user interface to manage numerous
client certificates.
Origin-Bound Certificates. In 2012 Dietz et al. [DCBW12] have introduced Origin-
Bound Certificates (OBC), an approach aimed at strengthening client authentication
for the Web with the use of a TLS extension and client certificates. OBC require
fundamental changes of existing infrastructure (e.g. TLS, web server, and browser).
Additionally, the proposed hardened SSO protocol necessitates a new browser API.
Instead, the HoK+ Profile presented in this thesis is compliant to the SAML standard
and feasible without changes within browser, web server, and TLS protocol. In con-

52



5.3 Server-Endpoint Binding

trast to the HoK approach, OBC demand no user interaction (i.e. selecting a client
certificate) and provide a higher level of anonymity, as the browser transparently cre-
ates fresh client certificates for every (sub)domain. However, the OBC approach could
lead to interoperability issues if the certificate and the associated cookies have different
origin scopes. Dietz et al. are (up to our knowledge) the first to discuss HTTP cookie
bindings to TLS client certificates in detail.
Channel IDs. Recently, Balfanz and Hamilton [BH13] have proposed Channel IDs.
This concept uses a new TLS extension for identifying client machines (e.g. browsers)
with an additional asymmetric key pair used in an encrypted TLS handshake message.
The public key of this key pair is the Channel ID that may be used to bind bearer tokens
(e.g. HTTP session cookies) to a specific TLS session. This approach is supported by
the Chrome browser since version 24. However, Channel IDs are still in the state of an
Internet-Draft document that is currently discussed in the IETF TLS working group.2

SAML Channel Binding Extensions. Currently, OASIS is in the process of speci-
fying additional protocol extension elements for SAML [Sca13]. These elements enable
extension-aware SAML Profiles to use and process channel binding parameters in SAML
messages.

5.3 Server-Endpoint Binding
The main idea of the Server-Endpoint Binding is that the browser actively recognizes
SP based on the public key pkSP of its server certificate. In subsequent TLS sessions,
UA sends the assertion to SP , if and only if pkSP of the server certificate has not
changed. This concept even works with self-signed certificates and adopts the Strong
Locked Same Origin Policy (SLSOP) [KSTW07] which relies neither on the security of
DNS nor PKI.

In the SAML-based variant, UA includes pkSP in the token request sent to IdP .
Hence, IdP can check pkSP against a database including the public keys of all registered
SPs. If pkSP belongs to a registered SP, IdP includes it in the issued assertion. The
honest SP can later on verify that the public key contained in the assertion matches
its own and is thus able to detect MITM attacks. However, we remark that it is an
additional effort for IdP to maintain such a database.

Figure 5.1 illustrates the detailed flow of the SP-started SAML SSO Profile with
Server-Endpoint Binding. Subsequently, we describe the individual steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
resource R by accessing URIR. This starts a new SSO protocol run.

2. SP → UA: SP determines that no valid security context (i.e. an active login ses-
sion) exists. Accordingly, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with URIR, as an HTTP 302
(redirect to IdP ) to UA over a server-authenticated TLS connection.

3. UA → IdP : UA extracts the public key pkSP of the server certificate received
from SP in the TLS handshake and adds it to the authentication request. Trig-
gered by the HTTP redirect, a server authenticated TLS connection is established
between UA and IdP . UA uses the established TLS connection to transport
<AuthnRequest(ID1, SP, pkSP , ACSURL)>, along with URIR, to IdP .

2http://www.ietf.org/mail-archive/web/tls/current/msg09559.html
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Figure 5.1: SP-started SAML SSO Profile with Server-Endpoint Binding.

4. UA ↔ IdP : If the user is not yet authenticated, IdP identifies U by an arbitrary
authentication mechanism.

5. IdP → UA: IdP checks pkSP against its database of registered SPs and creates
an authentication assertion A := (IDA, ID1, IdP, SP, U, pkSP ). Subsequently,
A is signed with the IdP’s private key K−1

IdP . The signed assertion A is embedded
into a <Response> message together with ID1 and the fresh response identifier
ID2, and is sent Base64-encoded in an HTML form, along with the HTTP GET
parameter RelayState=URIR, to UA.

6. UA → SP : UA establishes a server authenticated TLS connection with SP and
extracts the public key pk′SP of the TLS server certificate. If pk′SP equals pkSP

of the assertion, UA forwards the HTML form via HTTP POST to ACSURL. If
not, the protocol run is aborted with an error message.

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. Subsequently, SP verifies
the XML signature, and authenticates user U resulting in a security context.
Finally, SP grants U access to the protected resource R by redirecting U to
URIR (not shown in Figure 5.1).

The Server-Endpoint Binding successfully defends against phishing and pharming
attacks. Nevertheless, the SSO protocol is not secure against browser-side flaws like
XSS, as the assertion is not bound to the legitimate UA. Additionally, the protocol only
protects the TLS connection between UA and SP and not between UA and IdP against
MITM attacks. One major advantage of this channel binding is the privacy-preserving
characteristic of the protocol. The browser may remain anonymous in most situations,
and only discloses its identity consciously to a well-known web server (i.e. SP ). We
also note, that no security critical secrets (e.g. private keys) have to be stored in the
browser. The Server-Endpoint binding is only available when TLS cipher suites with
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Figure 5.2: SP-started SAML SSO Profile with Unique-Session Binding.

server certificates are used, which however is the standard case. Hence, “completely
anonymous” session key establishment – where SP remains anonymous as well – is not
supported.

Schwenk et al. [SKA11] have shown how to form a browser-based SSO protocol
that applies the Server-Endpoint Binding. Their approach supports the binding of
cookies, HTTP redirects, and HTTP POSTs. They have shown the applicability of
this concept by presenting a proof-of-concept implementation (realized as a Firefox
browser extension).

5.4 Unique-Session Binding
The main idea of the Unique-Session Binding is that UA and SP actively recognize
a specific TLS connection with a cryptographic value which is characteristic for that
connection. RFC 5929 [AWZ10] defines to use the first TLS Finished message (fin) of
the most recent TLS handshake for this binding variant. This message (and the sec-
ond Finished message) is cryptographically bound to the agreed TLS connection (cf.
Section 2.1). If the client (i.e. UA) initiates a new TLS connection, the first Finished
message is sent by the client to the server. Otherwise, if an existing TLS session is
resumed, the first Finished message is sent by the server to the client. This differenti-
ation has to be done so that the channel binding is specific to each connection and not
to each session. Furthermore, to prevent synchronization problems, TLS renegotiation
requests by client and server should be avoided while an authentication process on the
application layer is in progress.

Figure 5.2 illustrates the detailed flow of the SP-started SAML SSO Profile with
Unique-Session Binding. Subsequently, we describe the individual steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
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resource R by accessing URIR. This starts a new SSO protocol run.

2. SP → UA: SP determines that no valid security context (i.e. an active lo-
gin session) exists and extracts the first Finished message fin′1 from the TLS
handshake. Then, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with URIR, as an HTTP
302 (redirect to IdP ) to UA over a server authenticated TLS connection.

3. UA → IdP : UA extracts the first Finished message fin1 from the established
TLS connection and adds it to the authentication request. Triggered by the HTTP
redirect, a server authenticated TLS connection is established between UA and
IdP . UA uses the established TLS connection to transport <AuthnRequest(ID1,
SP, fin1, ACSURL)>, along with URIR, to IdP .

4. UA ↔ IdP : If the user is not yet authenticated, IdP identifies U by an arbitrary
authentication mechanism.

5. IdP → UA: IdP creates an assertion A := (IDA, ID1, IdP, SP, U, fin1). Subse-
quently, A is signed with the IdP’s private key K−1

IdP . The signed assertion A is
then embedded into a <Response> message, together with ID1 and the fresh re-
sponse identifier ID2, and is sent Base64-encoded in an HTML form, along with
the RelayState=URIR, to UA.

6. UA → SP : UA forwards the assertion A to ACSURL via HTTP POST over the
uphold TLS connection from step 1.

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. The contained Finished
message fin1 must be equal to fin′1 (extracted in step 2) to ensure that the assertion
was received over the same TLS connection. SP verifies the XML signature, and
authenticates user U resulting in a security context. Finally, SP grants U access
to the protected resource R by redirecting U to URIR (not shown in Figure 5.2).

The usage of this binding reveals no additional information about any of the partic-
ipants involved in the communication process, as the Finished message is random and
contains no party identifier. Therefore, one property of the Unique-Binding is privacy
preservation. This solution is also completely independent from other Web infrastruc-
ture, such as DNS and PKI and as long as at least either UA or SP are honest, this
guarantees uniqueness of the Finished message (and therefore of the assertion). Theft
of the assertion does not result in any gain for the adversary, as he is not able to instan-
tiate a TLS session to SP using exactly the same freshness. Furthermore, no security
critical secrets have to be stored in the browser. Like the Server-Endpoint Binding this
approach does not protect the TLS connection between UA and IdP against MITM
attacks.

The Unique-Session Binding is always available, independently of the used TLS cipher
suite. Therefore, it can be used in conjunction with server-only authenticated TLS and
“anonymous” session key establishment.

Kohlar et al. [KSJG10] have described, how such a binding can be achieved for
SAML-based authentication. Currently, no practical proof-of-concept is known because
of the high implementation complexity and the profound changes required in browser,
web server, and TLS stack. In particular, it is difficult to implement TLS interfaces
that expose Finished messages to the application layer (e.g. by a JavaScript function).
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Figure 5.3: SAML 2.0 Holder-of-Key Web Browser SSO Profile.

5.5 Holder-of-Key Binding
The Holder-of-Key (HoK) Binding adds strong cryptographic guarantees to the authen-
tication context and enhances the security of SAML assertion and message exchange
by using mutual authenticated secure channels. It builds on the TLS protocol which is
ubiquitously implemented in all major browsers (including mobile browsers) and web
servers. Therefore, maximum compatibility to existing infrastructure and deployments
is given.

5.5.1 Protocol Overview
The SAML V2.0 Holder-of-Key Web Browser SSO Profile [KS10] is an OASIS standard
based on the browser-based Kerberos scheme BBKerberos which has been proposed
and analyzed by Gajek et al. [GLS08, GJMS08]. In HoK the web server recognizes
the browser on basis of a unique (self-signed) client certificate. The browser proofs
possession of the client certificate’s private key in a mutual authenticated TLS hand-
shake. This approach is supported by all major browsers and web servers, but is rarely
deployed in practice due to the lack of implementations and the belief that use of client
certificates comes along with a complex and expensive PKI infrastructure. However,
for HoK any self-signed certificate is sufficient, as neither IdP nor SP are required
to validate the trust chain of the certificate. The issued assertion is cryptographically
bound to the client certificate by including either the certificate itself or a hash of it in
the signed assertion.

Figure 5.3 illustrates the detailed flow of the SAML Holder-of-Key Web Browser SSO
Profile. Subsequently, we describe the individual steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
resource R by accessing URIR. This starts a new SSO protocol run.
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2. SP → UA: SP determines that no valid security context (i.e. an active login ses-
sion) exists. Accordingly, SP issues an authentication request <AuthnRequest(ID1,
SP, ACSURL)> and sends it Base64-encoded, along with URIR, as an HTTP 302
(redirect to IdP) to UA.

3. UA → IdP : Triggered by the HTTP redirect a mutual authenticated TLS con-
nection is established between UA and IdP . Thereby, IdP proves possession
of the private key belonging to his server certificate. According to the mutual
TLS handshake, UA sends his client certificate CertUA to IdP . UA proves
possession of the private key belonging to the client certificate by successfully
completing the handshake and uses the established TLS connection to transport
<AuthnRequest(ID1, SP, ACSURL)>, along with URIR, to IdP .

4. UA ↔ IdP : If the user is not yet authenticated, the IdP identifies U by an
arbitrary authentication mechanism.

5. IdP → UA: IdP creates an assertion A := (IDA, ID1, IdP, SP, U, CertUA).
CertUA is added to the issued assertion. Subsequently, A is signed with the
IdP’s private key K−1

IdP . The signed assertion A is embedded into a <Response>
message, together with ID1 and the fresh response identifier ID2, and is sent
Base64-encoded in an HTML form, along with the RelayState=URIR, to UA.

6. UA → SP : A small JavaScript embedded in the HTML form triggers a mutual
authenticated TLS handshake, where UA presents a client certificate Cert′UA.
Subsequently, UA forwards the assertion A to ACSURL via HTTP POST over
the TLS connection to SP .

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. A is only valid if the
contained CertUA is equal to Cert′UA from the previous TLS handshake (step 6).
SP verifies the XML signature, and authenticates user U resulting in a security
context. Finally, SP grants U access to the protected resource R by redirecting
U to URIR (not shown in Figure 5.3).

Holder-of-Key does not prevent assertion theft in any circumstance (e.g. via XSS).
However, stolen assertions are always worthless for the adversary, since they are cryp-
tographically bound to the legitimate browser. To successfully attack HoK, the ad-
versary needs knowledge of the private key belonging to the used client certificate.
Consequently, the private key is protected by the browser and/or by the underlying
operating system. It is even possible to store the private key on a secure device (e.g.
smart card) to protect against malware in untrusted environments (e.g. in kiosk sce-
narios, where computers are accessible to everyone at public places). Furthermore,
the protocol protects both TLS connections (between UA and SP as well as between
UA and IdP ) against MITM attacks. It is important to note that the presentation of
a client certificate in step 1 and 2 (i.e. a mutually authenticated TLS handshake) is
strictly optional [KS10, p.10]. We will discuss the consequences of this subtle definition
in Section 5.6.

One disadvantage of the HoK SSO Profile is the limitation on the degree of anonymity.
The public key of the used client certificate is a unique and therefore trackable identifier.
Therefore, TLS client authentication makes the browser uniquely recognizable, which
may be in conflict with privacy considerations. To overcome this downside, we propose
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a slightly modified HoK variant: If UA generates new client certificates – with fresh keys
– for every SSO protocol run, privacy can be realized. Unfortunately, this modification
demands changes in current browser behavior.

5.5.2 Implementation
In the following, we present the first practical implementation of the SAML HoK Pro-
file in the popular SimpleSAMLphp (SSP) framework. This implementation provides
HoK support for both IdP and SP functionality. Our code has been adopted by
SimpleSAMLphp since version 1.9.3 The developed code can be grouped into three
different parts: (1) General modifications, (2) IdP, and (3) SP functionality. They are
described in the following.

General Modifications

In order to enable SSP to create and process HoK assertions, we had to extend some gen-
eral framework classes. First, the SAML2 XML saml SubjectConfirmationData class,
representing the SAML 2.0 <SubjectConfirmationData> element, was modified. Ac-
cording to the specifications [Sca10], we added support for <KeyInfo> elements to
this class. The implementation supports Base64-encoded client certificates embedded
into <X509Certificate> elements. The other two certificate identification methods
(<X509SubjectName> and <X509SerialIssuer>) were not implemented, as they are
not usable with self-signed client certificates and require a PKI.

Another general modification was necessary to enable SSP to convert SimpleSAMLphp
specific metadata arrays, which may indicate HoK support, to valid SAML 2.0 metadata
XML documents. This was done by enhancing the SimpleSAML Metadata SAMLBuilder
class.

Finally, we modified the base class for SAML 2.0 bindings (SAML2 Binding) and
added support for the HoK SSO Profile binding. The URNs for this binding and the
HoK subject confirmation method were added as constants to the SAML2 Const class.

Identity Provider

First, we introduced a configuration parameter (saml20.hok.assertion) which en-
ables or disables the HoK functionality of the IdP. Figure 5.4 sketches the high-level
processing of the SSP IdP.4 In order to realize HoK support, we had to add or modify
the following IdP components:

• HoK Assertion Generation. A new module that generates HoK assertions,
as specified in [Sca10], was added to the class sspmod saml IdP SAML2. This
module first investigates, if the received <AuhnRequest> asks for a HoK assertion
or the requesting SP ’s metadata instructs to use the HoK Profile. Thereafter,
the module checks if a TLS connection to UA exists. If this is the case, the
TLS interface is called to gain access to the client certificate CertUA provided
by UA. The certificate is extracted and normalized (e.g. removal of linebreaks
and whitespaces). Then, a <SubjectConfirmation> element with the Method
attribute set to urn:oasis:names:tc:SAML:2.0:cm:holder-of-key is created.
The client certificate is placed into a <SubjectConfirmationData> element. An

3http://simplesamlphp.org/docs/trunk/simplesamlphp-changelog#section_5_21
4We knowingly leave out some of the processing details (e.g. XML Signature validation and replay

detection) that are not important for the understanding of the HoK implementation.
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Figure 5.4: IdP HoK processing in SSP.

example of a HoK <SubjectConfirmation> element is shown in Figure 5.5. Fi-
nally, in any event of an error (e.g. no client certificate was provided), the HoK
IdP provides a meaningful error message.

• TLS Interface. An important component of the HoK implementation is the
TLS Interface that exposes the client certificate of the current TLS connection.
This functionality has to be supported on the underlying web server. For ex-
ample, the Apache web server module mod ssl can be configured to provide the
client certificate to the application layer (e.g. PHP) by exporting it into an en-
vironment variable. In Apache this is done with the configuration parameter
SSLOptions +ExportCertData.5 Thereafter, PHP can access CertUA by execut-
ing $ SERVER[’SSL CLIENT CERT’].

• HoK IdP Metadata Generator. The last modification affects the IdP’s meta-
data generator. This module had to be enhanced to additionally offer HoK specific
metadata. For example, a HoK SSO service endpoint has to be announced in the
XML metadata document.

Service Provider

Likewise to the IdP implementation, we added a new configuration parameter to enable
or disable the HoK functionality of the SP. Figure 5.6 sketches the high-level processing
of the SSP SP. In order to realize HoK support, we had to add or modify the following
SP components:

• HoK Assertion Verification. A new module that processes HoK assertions and
verifies the HoK channel binding was added to the class sspmod saml Message.
First, the module analyzes the IdP’s metadata to test if HoK authentication

5Other major web servers, such as Microsoft IIS and Tomcat, provide similar mechanisms to access
the TLS connection’s client certificate.
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<SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key">

<SubjectConfirmationData NotOnOrAfter="2013-05-30T09:20:22Z"
InResponseTo="_db2cffe1fc1">

<KeyInfo>
<X509Data>

<X509Certificate>
MIIDvj..data.omitted..zZey8=

</X509Certificate>
</X509Data>

</KeyInfo>
</SubjectConfirmationData>

</SubjectConfirmation>

Figure 5.5: Holder-of-Key <SubjectConfirmation> element.

must be used. The next condition to be checked is if the SP’s HoK functionality is
enabled. Then, the SP tests the Method attribute of the <SubjectConfirmation>
element. This attribute must be set to the HoK binding URN. If this is the case,
the SP has received a HoK assertion and HoK-based authentication must be used.
Thereafter, the module checks if a TLS connection to UA exists. If this is the case,
the TLS interface is called to gain access to the client certificate CertUA provided
by UA. CertUA is normalized (e.g. removal of linebreaks and whitespaces).
Then, the module checks if one <X509Certificate> element is embedded in the
HoK assertion. Finally, CertUA from the TLS connection and the normalized
certificate from the HoK assertion are compared. If they are equal, the validation
has succeeded and the processing continues with the claim evaluation.

• TLS Interface. The mechanisms used to access the client certificate are the
same as for the HoK IdP described above.

• HoK SP Metadata Generator. The last modification affects the SP’s meta-
data generator. This module had to be enhanced to offer all HoK specific meta-
data needed to establish federations with IdPs supporting HoK. For example,
a new AssertionConsumerService endpoint that processes HoK assertions is
announced in the created XML metadata document (cf. Figure 5.7).

5.6 Improved Holder-of-Key (HoK+)

Although the standard SAML HoK Profile protects against a variety of attacks, it is
still susceptible to the RelayState attack described in Section 4.6. This is due to the
fact, that HoK does not protect the SP’s <AuthnRequest> against a MITM attack.

To additionally mitigate this attack, we propose to enhance the OASIS HoK Profile
and call our novel approach HoK+. In summary, HoK+ additionally binds the SP ’s
<AuthnRequest> message to the client certificate. Therefore, the whole SSO protocol
flow is cryptographically linked to the legitimate UA.
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<md:AssertionConsumerService index="1" isDefault="true"
xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
xmlns:hoksso="urn:oasis:names:tc:SAML:2.0:profiles:holder-of-key:SSO:browser"
hoksso:ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Binding="urn:oasis:names:tc:SAML:2.0:profiles:holder-of-key:SSO:browser"
Location="https://sp.example.org/acs" />

Figure 5.7: HoK specific XML metadata for an AssertionConsumerService endpoint.
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5.6.1 Protocol Overview
Figure 5.8 illustrates the detailed flow of the HoK+ Profile, which consists of the
following steps:

1. UA → SP : User U navigates its user agent UA to SP and requests a restricted
resource R by accessing URIR. This starts a new SSO protocol run. A mutual
authenticated TLS connection is established between UA and SP and thereby
UA sends its client certificate CertUA to SP .

2. SP → UA: SP extracts CertUA from the TLS handshake and issues an authenti-
cation request <AuthnRequest(ID1, SP, CertUA, ACSURL)>, which is then
signed with the SP’s private key K−1

SP . The <AuthnRequest> is sent back to UA,
along with URIR, as HTTP redirect to IdP .

3. UA → IdP : Triggered by the HTTP redirect, a mutual authenticated TLS
connection between UA and IdP is established. UA uses this TLS connection to
transport <AuthnRequest>, along with URIR, to IdP .

4. UA ↔ IdP : IdP verifies the XML signature of the received <AuthnRequest>
with SP ’s public key and then compares CertUA from the authentication request
with Cert′UA of the TLS connection. If they match, IdP authenticates U with
an arbitrary method. Otherwise, the protocol is stopped.

5. IdP → UA: IdP creates an assertion A := (IDA, ID1, IdP, SP, U, CertUA).
CertUA is added to the assertion. Subsequently, A is signed with the IdP’s private
key K−1

IdP . The signed assertion A is embedded into a <Response> message,
together with ID1 and the fresh response identifier ID2, and is sent Base64-
encoded in an HTML form, along with the RelayState=URIR, to UA.

6. UA → SP : A small JavaScript embedded in the HTML form triggers a mutual
authenticated TLS handshake, where UA presents a client certificate Cert′′UA.
Subsequently, UA forwards the assertion A to ACSURL via HTTP POST over
the TLS connection to SP .

7. SP → UA: SP consumes A, and requires that ID1 is included as InResponseTo
attribute in the response message and in the assertion. Additionally, A is only
valid if the contained CertUA is equal to Cert′′UA from the previous TLS hand-
shake (step 6). SP verifies the XML signature, and authenticates user U resulting
in a security context. Finally, SP grants U access to the protected resource R by
redirecting U to URIR (not shown in Figure 5.8).

The reason why HoK+ mitigates the RelayState attack by Armando et al. [ACC+11]
is that no SAML assertion will be issued by IdP , since the authentication request is
bound to the client certificate used by the adversary Adv. Thus we make it impossible
for an adversary to submit a valid SAML assertion to SP .

5.6.2 Implementation
In order to realize the HoK+ Profile in SSP, we could built upon our SAML HoK
Profile implementation (cf. Section 5.5.2). We added code to create, process, and
verify signed HoK+ authentication requests. The TLS client certificate is added in
the same way as for the HoK SAML assertion: a <SubjectConfirmation> element,
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Figure 5.8: The novel HoK+ SSO Profile.

whose Method attribute is set to the HoK binding URN, contains the Base64-encoded
client certificate from the TLS connection. The <SubjectConfirmation> is inserted
into the authentication request’s <Subject> element. For this functionality we ex-
tended the SAML2 AuthnRequest class. It is important to note that the resulting HoK+
<AuthnRequest> is compliant with the SAML standard, as it conforms to the SAML
V2.0 XML schema.

Due to the XML Signature and the additional XML elements, the <AuthnRequest>
is bigger than 2,048 bytes and exceeds the maximum allowed size of an HTTP GET
parameter. Therefore, we had to change the transportation of the authentication re-
quest from HTTP Redirect Binding (i.e. transfer by HTTP GET parameter) to HTTP
POST Binding.

A total of 113 modified or added lines across 3 files in the SSP source code were
required for these SSP modifications.

5.7 Combining HoK+ with Cookie Binding

The channel bindings considered so far are used to strengthen the SSO authentication
process by securing the generated assertion and authentication request against spoofing
and MITM attacks. However, these mechanisms do not grant any further protection for
the HTTP session cookies used to authenticate the user against IdP or SP afterwards.

Our investigation shows that even if one has a secure SSO protocol in place, one
small flaw in a web application can break the whole SSO system (cf. Section 4.5).
Therefore, we propose to extend the usage of the TLS client certificate applied in the
HoK+ Profile to HTTP session cookies.
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Figure 5.9: Two modes of operation for TLS gateways.

5.7.1 Concept
According to the ideas introduced in [DCBW12], an unforgeable fusion between the
client certificate and the session cookie can be done as follows:

Cbound := v || HMACk(v || CertUA),

where v is the value of a standard HTTP cookie, CertUA is the client certificate,
and HMAC is a message authentication code computed over v and CertUA with a
symmetric key k only known to the server. “||” denotes a string concatenation. In
this manner, if the cookie gets stolen, it can be used only through a TLS connection
authenticated with CertUA, which in turn is only possible for the party that knows the
private key of the client’s certificate.

However, this technique of strengthening the cookie authentication process leads to
further requirements being imposed on the service responsible for the HTTP session
management. Namely, it must have access to the client certificate applied during the
TLS handshake, causing the need for the service being extended.

We consider two different cases dependent on the applied network architecture. In
the first case, the service itself is the TLS endpoint; in this case, it has direct access
to the TLS parameters and can perform the HMAC computation sketched above. Our
implementation presented in Section 5.7.2 is based on this architecture. The second
case is a server farm where a TLS gateway is used to terminate the TLS connection.
Two different approaches to solve these issues were presented in [DCBW12] and are
outlined below (cf. Figure 5.9):

1. Load Balancer Mode. The TLS gateway extracts the client certificate and
passes it to the backend application along with the incoming HTTP request,
resulting in a situation similar to case 1. However, this approach affects all
running services and leads to modifications for all of them. This mode of operation
could be applied on large-scale services, where scalability and performance are
important aspects.
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function createBindingCookie($rnd, $cert, $key) {
$data = $rnd . $cert;
$appendix = hash_hmac(’sha256’, $data, $key);
$ret = $rnd . ’_’ . $appendix;
return $ret;

}

Figure 5.10: Class method to create cryptographically bound cookies.

function verifyBindingCookie($cookie, $rnd, $cert, $key) {
$nc = createBindingCookie($rnd, $cert, $key);
if ($nc === $cookie) {

return TRUE;
} else {

return FALSE;
}

}

Figure 5.11: Class method to verify cryptographically bound cookies.

2. Legacy Mode. The TLS gateway additionally handles the cookie binding. In
this case, the TLS gateway has to replace the normal cookie value with the
hardened one by using the client certificate for each outgoing HTTP connection.
Similarly, it must validate the incoming cookies, handing off the original value to
the backend. This mode of operation is suitable to transparently harden existing
services without changing the application itself.

5.7.2 Implementation
We introduced a new configuration parameter (session.cookie.binding) to glob-
ally enable or disable cookie binding in the SSP framework. This option affects ses-
sion handling for both IdP and SP functionality. Furthermore, we added two new
methods, createBindingCookie() and verifyBindingCookie(), in the session class
SimpleSAML Session.

The createBindingCookie($rnd, $cert, $key) method creates a cookie bound to
the TLS client certificate, where $rnd is an arbitrary value (e.g. a random session ID),
$cert is the Base64-encoded client certificate of UA, and $key specifies the HMAC
secret key k. We applied the standard PHP 5 HMAC function hash mac() which sup-
ports several hashing algorithms.6 The simplified source code of the class method is
shown in Figure 5.10.

To verify the authenticity, integrity, and binding to the TLS client certificate of
the received cookies, verifyBindingCookie($cookie, $rnd, $cert, $key) was in-
troduced, where $cookie defines the value of the bound session cookie. All other input
parameters have the same purpose as in the createBindingCookie() method. The
simplified source code is shown in Figure 5.11.

Furthermore, we enhanced the two methods doLogin() and getSession() of the
session class SimpleSAML Session. doLogin() is used by SSP to create a new authen-
ticated user session and to set the corresponding session cookie. The getSession()

6http://www.php.net/manual/en/function.hash-algos.php
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method verifies the validity of a received session cookie and matches it to an authenti-
cated user session. We enhanced both class methods with the following functionality:

1. Cookie Binding Usage. First, we test if cookie binding is enabled. If not,
session handling is done by the default mechanisms and no further binding checks
occur.

2. TLS Connection Existence. If cookie binding is enabled, SSP verifies if a TLS
connection with UA is existent.

3. Extract CertUA. Next, we try to extract the client certificate from the TLS
connection by calling the TLS interface.

4. Normalize CertUA. In this step CertUA is normalized (e.g. deletion of line-
breaks and whitespace characters).

5. Verify or Set Bound Cookie. The last step either verifies the channel binding
of a received cookie (getSession()) or creates and sets a new cookie bound to
CertUA (doLogin()).

To mitigate downgrade attacks, where an adversary cuts off the HMAC value from
the cookie, the usage of cookie binding is enforced by the session.cookie.binding
configuration parameter.

These SSP modifications required 97 modified or added lines in the SSP source code.

5.7.3 Performance Analysis

Cookie-based authentication is a performance-critical issue in every web application.
Therefore, we conducted a performance evaluation of our cookie binding implementa-
tion, reporting our findings below.
Test environment. All experiments were performed against an Apache 2.2.2 web
server running on a Windows Vista system with a 3.0 GHz Core 2 Duo CPU and 2 GB
of RAM. The server and the client were connected to a dedicated Gigabit link with
a 0.3 ms roundtrip time. All performance tests were conducted with Apache JMeter
2.9 [Apa13c].
Analysis. In order to demonstrate that the performance impact of adding cookie
binding to web applications is minimal, we have evaluated our SSP implementation.
We considered three different test cases using a special crafted webpage including the
SSP framework:

1. Unauthenticated requests. In order to provide a baseline for comparison, the
webpage is loaded without providing any authentication cookie. Therefore, no
authenticated user session is established.

2. Authentication with cookies. The client sends a valid SSP authentication
cookie to the webpage.

3. Authentication with cookie binding. The client sends a valid SSP authenti-
cation cookie bound to a TLS client certificate to the webpage which triggers the
cookie binding verification.
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Latency (ms)
Test case Average Median Min Max
Unauthenticated 22.48 18 14 230
Authentication with cookies 27.19 27 17 228
Authentication with cookie binding 30.47 30 21 525

Table 5.1: Performance evaluation results.

For each case, we devised a separate test plan in Apache JMeter and made 25,000
successive requests to the webpage using TLS. Test cases 1 and 2 facilitated server-
authenticated channels, while test case 3 dealt with mutually authenticated TLS con-
nections. Additionally, we ensured that for each test case the HTTP response message
had the same size. We used HMAC-SHA256 as the keyed hash message authentication
code function for the cookie binding. The results are shown in Table 5.1. When com-
pared to the standard cookie authentication, our cookie binding implementation was
on average only 12,1% slower.

5.8 Practicability of Client Certificates

The implemented channel bindings (HoK, HoK+, and cookie binding) utilize self-signed
client certificates. The belief that client certificate handling is compile and error prone
results from several unsuccessful attempts to build client-certificate PKIs. However,
[KS10, Section 4.4] states: “. . . there is no requirement for a mutually trusted root
certification authority (CA), distributed OCSP or CRL-based revocation lists, or X.509
certificate path validation . . . ”. The three implemented channel bindings require one
self-signed certificate which could easily be created and automatically imported into
the browser through interaction with a small OpenSSL CA located at the IdP.

Another major concern are usability issues which may come along with client certifi-
cates. All major browsers (including mobile browsers) support client certificates and
provide an appropriate user interface for selecting them. Furthermore, Mozilla Firefox,
Microsoft Internet Explorer, and Google Chrome can be configured to automatically
select a certificate if a web server requests one. Then, no further user interaction is
needed when using the implemented channel bindings. Otherwise, the browser may
present two additional selection dialogues. This is however a minor usability issue.

5.9 Comparison and Conclusion

In this chapter, we investigated channel bindings, a powerful class of holistic counter-
measures, which may prevent a wide range of attacks. In summary, we analyzed three
existing channel bindings (Server-Endpoint, Unique-Session, and Holder-of-Key) and
proposed two novel binding variants (HoK+ and cookie binding). The security proper-
ties and characteristics of each approach are condensed in Table 5.2. Our comparison of
each channel binding revealed that the HoK Profile possesses good security properties
and simultaneously ensures maximum compatibility without breaking current imple-
mentations. The Server-Endpoint Binding is the weakest from the security perspective
and additionally requires changes in existing browsers. The Unique-Session Binding
is more secure but also more complex to implement and depends on changes in TLS
stack, web server, and browser. Therefore, no practical implementation of this binding
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is known to exist. On the other hand, both Server-Endpoint and Unique-Session are
privacy preserving by default. The security of HoK comes along with the maceration
of privacy (in its default variant).

We presented the first practical implementation of the HoK Profile in the widespread
SSP framework. Furthermore, we refined the HoK approach with two enhancements
and therefore fill the existing security gaps of this Profile (cf. Table 5.2).

Our preferred security solution is the HoK+ Profile with cookie binding combin-
ing the ease of SSO with a cryptographically strengthened client authentication. This
high-security countermeasure hardens both the SSO protocol and the session cookies
by establishing strong authenticated channels between the browser and all other partic-
ipating entities (i.e. IdP and SP). This builds a holistic Web authentication layer that
prevents a wide range of threats and attacks (cf. Chapter 4), including MITM, ACS
Spoofing, RelayState and XSS/UI redressing vulnerabilities. The practical feasibility
of our novel approach is shown by two proof-of-concept implementations in the open
source framework SimpleSAMLphp. The accompanied performance analysis demon-
strates that the proposed cookie binding performs well and is viable. No changes of
web browser, web server, and TLS protocol are necessary. Finally, our ideas are generic
and can directly be applied to other SSO protocols (e.g. OAuth or OpenID).
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6 XML Signature Wrapping Attacks on
SAML

In this chapter, we explore a message-level attack on SAML that exploits different
views on the same XML document, depending on the particular processing module.
This new type of attack, called XML Signature Wrapping (XSW), was discovered by
McIntosh and Austel in 2005 [MA05]. XSW attacks completely circumvent the integrity
protection XML Signature provides to SAML assertions. In fact, XSW breaks the whole
security of SAML and may invalidate the transport-level security of the SSO channel
bindings proposed in Chapter 5.

6.1 Introduction
In SAML, one fundamental building block is XML, and in XML not only the content
but also the position of the elements decides on their semantics. This important fact
is crucial in the case of XML Signature which protects the integrity and authenticity
of XML documents. While classical cryptographic data formats (e.g. OpenPGP and
PKCS#7) are rigid and implicitly define the (fixed) position of signed data, XML Sig-
nature is, due to its flexibility, much more complex (cf. Section 2.4). To realize signing
of individual elements and arbitrary data from multiple resources, indirect referenc-
ing and a two-step signing/verification process is used. Due to these two mechanisms,
XML Signature cannot detect semantic changes in XML documents based on reloca-
tion. This weakness allows an adversary to inject bogus content into a signed XML
document (e.g. an assertion) which forces the receiving XML application (e.g. an SP)
to verify the original signed content but the application logic processes the malicious
content. Therefore, the adversary overcomes the integrity protection and the origin
authentication of the XML Signature and can execute any arbitrary content. In the
case of SAML, he can authenticate as whoever he wants to be. Furthermore, even
cryptographic channel bindings may be bypassed by a clever adversary.
Contribution. Since the introduction of XSW attacks by McIntosh and Austel [MA05]
in 2005 existing research in this area mostly concentrated on Web Service related stan-
dards (e.g. SOAP, WS*Security) [BFG04, RSR06, GLS07a, GJLS09, JMSS11]. Eight
years after the discovery, only a few examples of successful XSW attacks on real-world
Web Service systems have been published [GL09, SHJ+11]. Till today, the proposed
countermeasures and analyzes are fragmentary or case specific [MA05, BFG04, BKF08,
JMSS11]. Interestingly, no practical evaluation and no formal analysis of this high-
impact attack on critical SAML interfaces exists. We fill this gap and give the following
contributions:

• We present an in-depth analysis of 14 SAML frameworks, services, and systems.
During this analysis, we found critical XSW vulnerabilities in eleven of these
frameworks. This result is alarming given the importance of SAML in practice,
especially since SSO frameworks may become a single point of attack in the near
future. It clearly indicates that the security implications behind SAML and XML
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Signature are not understood yet. Our attacks present new classes of XSW. We
show that these attacks can also be applied if the whole document is signed or if
specific countermeasures are applied.

• Second, these vulnerabilities are exploitable by an adversary with far fewer re-
sources than the classical network based adversary from cryptography [DY83]:
Our adversary may succeed even if he does not control the network. He does not
need real-time eavesdropping capabilities, but can work with SAML assertions
whose lifetime has expired. A single signed SAML assertion is sufficient to com-
pletely compromise a SAML issuer/Identity Provider. Using SSL/TLS to encrypt
SAML assertions on transport-level, and thus to prevent adversaries from learn-
ing assertions by intercepting network traffic, does not help either: The adversary
may e.g. register as a regular customer at the SAML issuer, and may use his own
assertion to impersonate other customers.

• Third, we give the first model for SAML frameworks that takes into account
the interface between SPsig and SPclaims. This model gives a clear definition of
successful attacks on SAML. Besides its theoretical interest, it also enables us
to prove several positive results. These results are new and help to explain why
some of the frameworks were not vulnerable to our attacks, and to give advice on
how to improve the security of the other eleven frameworks.

• Last, we show that XSW vulnerabilities constitute an important and broad class
of attack vectors. There is no easy defense against XSW attacks: Contrary
to common belief, even signing the whole document does not necessarily protect
against them. To set up working defenses, a better understanding of this versatile
attack class is required. A specialized XSW pentesting tool developed during
our research helps to aid this understanding. Its practicability was proven by
discovering a new XSW attack variant on Salesforce SAML interface despite the
fact that specific countermeasures have been applied.

Responsible Disclosure. All vulnerabilities found during our analysis were reported
to the responsible security teams. Accordingly, in many cases, we closely collaborated
with them in order to patch the found issues.
Paper. This chapter is based on the paper “On Breaking SAML: Be Whoever You
Want to Be”, which was presented at the USENIX Security Symposium 2012 [SMS+12].
The coauthors of this paper are Juraj Somorovsky, Jörg Schwenk, Marco Kampmann,
and Meiko Jensen. The idea of attacking SAML-based systems was originated by
Meiko Jensen. My responsibility was, together with Juraj Somorovsky, the compo-
sition of new XSW attack classes and the practical evaluation of SAML frameworks,
services, and systems. In summary, I analyzed and found several XSW attack variants
in Higgins, OIOSAML, the OneLogin Toolkits, OpenAM, SimpleSAMLphp, and WIF.
Additionally, I discovered two new types of implementation flaws (vague XML signing
and XML Signature forgery) in the OneLogin Toolkits and SimpleSAMLphp. Further-
more, the detailed investigation (by source code observation) of the SimpleSAMLphp
security mechanisms is my work. Marco Kampmann investigated the security of IBM
XS40, JOSSO, and WSO2. Additionally, he developed the initial version of the XSW
penetration test tool and used it to reevaluate the security of the SAML interfaces of
WSO2 and Salesforce. All remaining frameworks were analyzed by Juraj Somorovsky.
Jörg Schwenk contributed the formal analysis and the countermeasures. It has to be
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mentioned that in some cases sentences may be literally the same as in the original
paper as our work was not clearly distinguishable.
Outline. In the following, we give an overview on existing related work. Thereafter,
classic XSW attacks, applied on SOAP messages, are explained. Then, the threat
model (Section 6.4) and the attack methodology (Section 6.5) of our investigation are
described. In Section 6.6 we present our practical evaluation on real-world SAML frame-
works, systems, and services. Furthermore, we demonstrate the practical relevance and
the enormous impact of these attacks, given the scenarios in which they are executed.
We present new refined and more sophisticated XSW attack classes. In Section 6.7
we discuss the impact of XSW attacks on channel bindings. In Section 6.8 we present
the first fully automated XSW penetration test tool for SAML. The development of
this tool was motivated by the prevalent existence of XSW attacks in real-world SAML
systems. Section 6.9 gives a formal analysis and derives two countermeasures. Their
practical feasibility is discussed in Section 6.10. Finally, we conclude this chapter in
Section 6.11.

6.2 Related Work
In 2002 Jøsang et al. [JPH02] have demonstrated the difficulties to identify the signed
content in digital documents using data representation standards like XML, ASN.1,
and HTML. The great flexibility those standards offer, can create confusion about
the interpretation and relationship of signature and signed content in semantically
equivalent documents.

Concrete XSW attacks have been first described in [MA05] and [BFG04], which
alternatively named them XML rewriting attacks. McIntosh and Austel [MA05] have
presented several XSW attacks on SOAP messages and discussed (informal) receiver-
sided security policies in order to prevent such exploits. They have presented for each
improved security policy a more sophisticated XSW attack that circumvents the policy.
In summary, they have demonstrated the complexity of XSW attacks but have not given
a definitive solution for this problem.

Bhargavan, Fournet and Gordon [BFG04] have analyzed a formal approach in or-
der to verify Web Services specifications. Later, they have proposed a policy advi-
sor [BFGO05]. This tool uses an abstract language to define the security goals of Web
Service protocols and thereafter generates appropriate security policies. Additionally,
it assists in the identification of common XSW vulnerabilities. This policy-driven ap-
proach helps to thwart XSW attacks in general, but is not efficient and reduces the
flexibility of XML. However, this approach is not directly applicable to SAML.

Rahaman, Schaad and Rits [RSR06] have refrained from policy-driven approaches
and have introduced an inline solution. They aim to detect XSW attacks early in the
validation process to improve performance. The authors have proposed to embed a
<SoapAccount> element into the SOAP header. This element contains fractional infor-
mation about the structure of the SOAP message and the surroundings of the signed
element(s). Thus, this information allows to keep record of structure and hierarchy of
the signed data. In [RMS06] they have extended their approach by additionally con-
sidering XSW attacks on the <SoapAccount> element itself. Some of the same authors
have conducted a detailed performance analysis of the inline approach compared to
the policy-based approach in [RS07]. However, Gajek et al. [GLS07a] have shown that
the inline approach does not prevent XSW attacks. In particular, the main problem of
this countermeasure is that the <SoapAccount> element only records the relationship
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to its surrounding elements (parent and siblings). Therefore, an adversary can pre-
serve the structure in the wrapped element, by additionally copying the neighboring
elements. Benameur, Kadir, and Fenet [BKF08] have enhanced the inline approach
by adding more information about the SOAP message structure (e.g. adding signed
element depth), but suffer from the same vulnerabilities as described in [GLS07a].

XPath and XPath Filter 2 are specified as referencing mechanisms in the XML Sig-
nature standard. However, due to the fact that both standards are very complex, the
WS-Security standard advise not to use these mechanisms, and the SAML standard
mandates to use Id-based referencing instead. Gajek et al. [GJLS09] have evaluated
the effectiveness of XPath and XPath Filter 2 to mitigate XSW attacks in the SOAP
context, by fixing the vertical position of signed elements. For performance reasons
they have proposed a lightweight variant of XPath named FastXPath. The authors
have conducted a performance analysis in a proof of concept implementation and have
shown that this approach has the same performance as Id-based referencing. Neverthe-
less, Jensen et al. [JLS09] have shown that this approach does not completely eliminate
XSW attacks: by clever manipulations of XML namespace declarations within a signed
document, which take into account the processing rules for canonicalization algorithms
in XML Signature, XSW attacks could successfully be mounted even against XPath
referenced resources.

In 2011 Jensen et al. [JMSS11] have analyzed the effectiveness of XML Schema val-
idation in terms of fending XSW attacks in Web Services. Thereby, they have used
manually hardened XML Schemas. The authors have concluded that XML Schema
validation is capable of fending XSW attacks, at the expense of two important dis-
advantages: for each application a specific hardened XML Schema without extension
points must be created carefully. Moreover, validating of a hardened XML Schema
entails severe performance penalties.

The impacts of practical XSW attacks have also been analyzed in [GL09, SHJ+11].
In these works new types of XSW attacks have been applied on SOAP Web Service
interfaces of Amazon and Eucalyptus clouds. The attacks have exploited different XML
processing in distinct modules.

In summary, previous work has mostly concentrated on SOAP-based Web Services,
and the results do not directly apply to all SAML use cases.

6.3 Basic XSW Attacks

XML documents containing XML Signatures are typically processed in two independent
steps: (1) signature validation and (2) function invocation (application/business logic).
If both modules have different views on the data, a new class of vulnerabilities named
XML Signature Wrapping (XSW) attacks [MA05, BFG04] exists. In these attacks the
adversary modifies the message structure by injecting malicious elements, which do
not invalidate the XML Signature. The goal of this modification is to change the
message in such a way that the application logic and the signature verification module
process different parts of the same message. Consequently, the receiver verifies the
XML Signature successfully but the application logic processes the bogus element. The
adversary thus circumvents the integrity protection and the origin authentication of
the XML Signature and can inject arbitrary content.

In the following, we give a simple example of an XSW attack applied on a SOAP
message exchanged between a brokerage firm and a stock exchange. We assume that
the brokerage firm wants to buy shares in IBM for a customer and therefore sends a
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Figure 6.1: A basic XSW attack on a stock exchange Web Service.

SOAP message to the Web Service of the stock exchange. Figure 6.1 (left image) depicts
the corresponding message. For security reasons, the <Body> element is protected by
an XML Signature and contains the order function. The stock exchange’s Web Service
receiving this message (1) validates the signature and (2) processes the SOAP body
in its business logic. In the original message, both modules process the same <Body>
element. An adversary in possession of the exchanged SOAP message (e.g. through
eavesdropping) is able to execute an XSW attack by sending a modified variant. In
order to create such a message, the adversary moves the original SOAP body containing
the <BuyShares> element to a newly created <Wrapper> element in the SOAP header.
Afterwards, he creates a <Body> element with a new Id="evil" attribute and defines an
arbitrary function. In our example, the adversary inserts a <SellShares> element with
the attribute Symbol="IBM". The resulting attack message is depicted in Figure 6.1
(right image). Then, the adversary submits this malicious message to the vulnera-
ble Web Service of the stock exchange. The message is processed as follows. First,
the signature validation module searches for an element with the Id="42" and finds
<Body> embedded in the <Wrapper> element. As this element was not modified, the
signature verification is successful. In contrast, the business logic module searches for
a <Body> element that is directly placed in the message’s root element (<Envelope>).
In our example, the business logic finds the newly inserted <Body> element with the
Id="evil" attribute and wrongly invokes the function <Sellshares>. Therefore, the
stock exchange sells shares in IBM instead of buying them.

These heterogeneous views on the same XML document result from different ref-
erencing methods. The signature verification module uses Id-based referencing (as
mandated by XML Signature) and the business logic module searches for a function
defined in the /Envelope/Body element.

6.4 Threat Model

As a prerequisite the adversary requires one arbitrary signed SAML message. For
example, this could be a whole document D with an embedded assertion (e.g. a SAML
response) or just a sole assertion A. It is irrelevant, if the assertion was already used
for authentication or if its lifetime has expired.
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We consider two different types of adversaries. Both are weaker than the classical
network-based adversary [DY83]:

1. Adversary Advacc. This adversary registers as a normal user of an Identity
Provider IdP . This allows Advacc to receive a valid SAML assertion A (probably
embedded into a larger document D) which make claims about Advacc through
normal interaction with IdP . Given the low barriers to entry and the large user
base of many IdPs (e.g. Google), this method requires little resources and is easy
to conduct.

2. Adversary Advintc. To retrieve SAML assertions from the Internet, this ad-
versary uses eavesdropping of unprotected networks or accesses transmitted data
in an “offline” manner by analyzing proxy or browser caches. We assume that
Advintc does not have the ability to read encrypted network traffic. Since SAML
assertions normally should be worthless once their lifetime expired, they may even
be posted in technical discussion boards, where Advintc may obtain them.1

After collecting such an assertion A or document D, the adversary modifies it by
injecting malicious content, e.g. an evil assertion EA. This evil assertion may contain
additional claims about any other subject S. Finally, the adversary launches the XSW
attack by submitting the modified assertion A′ or document D′ to SP .

6.5 Attack Methodology
In this section, we describe the attack methodology that underlies our analysis of the 14
SAML frameworks, systems, and services. First, we present the three possible SAML
signing types and the corresponding evil content. Afterwards, we exemplify all XSW
attack permutations for one signing type.2

6.5.1 SAML Signing Types
As described in Section 2.5.3, XML Signatures can be applied to SAML assertions in
various ways and can be placed at different locations. The SAML standard mandates
that the assertion itself or the protocol binding element R (ancestor of the <Assertion>
element), must be signed using an enveloped signature [CKPM05a, Section 5.4.1]. Ad-
ditionally, each signature must contain a single <Reference> element applying Id-based
referencing [CKPM05a, Section 5.4.2]. In this section, we analyze the usage of SAML
assertions and the corresponding XML Signatures in different frameworks. Further-
more, we illustrate the possibilities of injecting malicious content. In general, SAML
assertions and their signatures are implemented in three ways (see Figure 6.2):

1. Signing Type I. The XML Signature SA is embedded as child of the SAML
assertion A and signs the <Assertion> element A. This type is independent of
the use case. It can be applied in different SAML profiles (e.g. web SSO) or in
SOAP messages for Web Service scenarios.

1Our observations revealed that many developers seek technical assistance and post their SAML
assertions in discussion boards. Therefore, it is quite easy for an adversary to obtain assertions –
e.g. through clever chosen Google search queries.

2Please note that from now on we distinguish between the document D and the root element R. This
is to make clear the distinction between the element referenced by the XML signature, and the
document root: Even if the root element R of the original document D is signed, we may transform
this into a new document D′ with a new evil root ER, without invalidating the signature.
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Figure 6.2: Types of signature applications on SAML assertions.

2. Signing Type II. In the second signing type the XML Signature is either placed
into the SAML assertion A itself or into the protocol binding root element R. In
both cases the signature SR covers the whole protocol binding element R as well
as all child elements. This kind of signature is applied in different SAML HTTP
bindings, where the whole SAML <Response> element is signed.

3. Signing Type III. The last signing type is a combination of signing type I
and II and uses more than one XML Signature. The inner signature SA protects
the SAML assertion A. The outer signature SR additionally secures the whole
protocol binding element R. Therefore, the assertion A is protected by two inde-
pendent signatures. We found this kind of signature application for example in
the SimpleSAMLphp framework.

In order to apply XSW attacks to SAML assertions, the basic attack idea stays
the same: The adversary Adv has to create new malicious elements, injects them into
document D, and forces the assertion logic of the receiver to process them, whereas the
signature verification logic verifies the integrity and authenticity of the original content.

In applications of the signing type I, the adversary only has to create a new evil
assertion EA. For SAML messages protected by signing type II and III, the adversary
has to create two elements: the evil root ER including the evil assertion EA.

6.5.2 Attack Permutations

Due to the flexible nature of XML, an adversary Adv has many possibilities to inject
malicious and original content into a document D. In summary, the adversary has to
deal with the following three questions when launching XSW attacks on SAML:

1. Considering Permutations. At which level in the XML message tree should
a) the malicious content and b) the original signed data be included?
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2. Signature Verification Processing. Which <Assertion> element is used for
signature verification?

3. Business Logic Processing. Is <Assertion> element A or EA processed by
the business logic module?

By answering these questions we can define different attack patterns, where the
original and the malicious elements are permuted (cf. Figure 6.3). Therefore, we can
build a complete list of attack vectors, which served as a guideline for our investigations.

For the following explanations we consider signing type I messages as defined in
Figure 6.2. This signing type only protects the <Assertion> element by an XML
Signature. The possible attack permutations, grouped by the XML tree height, are
depicted in Figure 6.3. In addition, we analyze if the resulting attack permutations are
a) SAML standard conformant and b) the signature is still valid:

1. One-Level Permutations. Malicious assertion EA, original assertion A, and
signature element SA are on the same message level. In summary, this kind of
XML message has six permutations. None of them is SAML standard compliant,
since the XML Signature does not sign its parent element (enveloped signature).
The digest value over the signed elements in all messages can be correctly vali-
dated. If the receiving service does not check the SAML conformance, we can use
this type of attack messages.

2. Two-Level Permutations. We use two level messages for the insertion of the
three elements: Message 2-c shows an example of a valid and SAML compliant
document. By constructing message 2-b, the signature element was relocated into
the new evil assertion. Since it still references the original element, it is valid, but
does not conform to the SAML standard. In summary, twelve possible two-level
permutations exist. Two are SAML compliant, eight not SAML conformant, and
two invalidate the XML Signature as they alter the signed content (2-g and 2-k).

3. Three-Level Permutations. All three elements are inserted at different mes-
sage levels, as child elements of each other, which results in six permutations:
Messages 3-a and 3-b show examples of SAML standard conformant and cryp-
tographically valid messages. In both cases the signature element SA references
its parent – the original assertion A. Message 3-c illustrates a message that is
not SAML standard conform as the signature signs its child element (enveloping
signature). Nevertheless, the message is cryptographically valid. Message 3-d
shows an example of an invalid message since the signature would be verified over
both assertions. Generally, if the signature is inserted as the child of the root ele-
ment, the message would also be either invalid or not SAML standard compliant.
However, in three-level permutations, there exist three SAML conformant, two
non standard conformant, and one invalid message permutation.

In summary, there exist 24 permutations for signing type I messages. Five out of them
are SAML standard conformant, 16 are not standard compliant, and three invalidate
the signature of assertion A. It is important to note that given the complexity of SAML
messages and the large number of possible injection elements which reside in R, A, and
SX , there are far more attack permutations possible (see Section 6.8).

The analysis shown above can similarly be applied to messages of the remaining two
signing types (see Figure 6.2). For example, by application of more than one signature
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Figure 6.3: Possible permutations for XSW attacks applied on signing type I messages.
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Framework Platform Application
Apache Axis 2 Java WSO2 Web Services
Guanxi Java Sakai Project (www.sakaiproject.org)
Higgins 1.xa Java Eclipse funded identity project
IBM XS40 – Enterprise XML security gateway
JOSSO Java Motorola, NEC, Redhat
OIOSAML 2.0a Java, .NET Danish eGovernment (e.g. www.virk.dk)
OpenAMa Java Enterprise identity mangement framework
OneLogina Java, Python, PHP, Ruby Joomla, Wordpress, SugarCRM, Drupal
OpenAthens Java, C++ NHS, Philips Research, UK Federation
OpenSAML Java, C++ Shibboleth, SuisseID
Salesforce – Cloud computing and CRM
SimpleSAMLphpa PHP Danish e-ID Federation (www.wayf.dk)
WIFa .NET Microsoft Sharepoint 2010
WSO2 Java WSO2 products (e.g. StratosLive cloud)
a Own work.

Table 6.1: Overview of the analyzed SAML frameworks, systems, and services.

(signing type III), the adversary would proceed analogical: First, the adversary could
use XSW attacks to overcome the protection of the outer signature. In a second step,
he could apply XSW on the inner signature which secures the SAML assertion.

6.6 Practical Evaluation

In this section, we first introduce the investigated real-world SAML frameworks, sys-
tems and services. Afterwards, we present the results of our practical evaluation, relying
on the attack methodology defined in Section 6.5.

6.6.1 Investigated Frameworks, Services, and Systems

The practical evaluation presented includes prominent and well-used SAML frame-
works, services, and systems. We observed a wide range of closed source as well as
open source frameworks implemented in various programming languages. Furthermore,
we did penetration tests of real-world systems and special hardware appliances. Our
comprehensive study gives detailed insights into the current state of XSW wrapping
attacks on SAML. A summary of the investigated SAML frameworks, services, and
systems is given in Table 6.1 (see Section 3.5 for more details about them).

6.6.2 Refined XSW Attacks

Ten out of 14 evaluated systems were susceptible to refined XSW attacks. In this
section, we present the detailed results, classified by the three signature application
types defined in Section 6.5.1.
Signing Type I Attacks. In summary, seven SAML-based frameworks applying
signing type I messages were prone to refined XSW attacks. Figure 6.4 depicts the five
found XSW variants in XML tree-based illustration.

First of all, the OneLogin Toolkits were prone to all shown attack variants as they
did not apply XML Schema validation, validated the XML Signature independent of
it’s semantic occurrence, and used a fixed reference to the processed SAML claims
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Figure 6.4: Refined XSW attacks found in type I signature applications.
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Figure 6.5: Refined XSW attacks found in type II signature applications.

(/samlp:Response/saml:Assertion[1]). Higgins was susceptible to the attack vari-
ant I-1 which represents a mutation of the classic XSW attack. Thereby, the adversary
moves the original assertion (including the embedded signature) into a newly created
<Wrapper> element. Subsequently, the adversary injects the evil assertion with a dif-
ferent Id attribute before the wrapped element. This variant is not XML Schema
conform, as the <Wrapper> element is not allowed in SAML response messages. Next,
the attack variants I-2 and I-3 outfoxed Higgins, Apache Axis2, and the IBM XS40
security gateway. In the I-2 variant it was sufficient to inject an evil assertion with a
different Id attribute in front of the original assertion. As the SAML standard allows to
have multiple assertions in one response element, the XML Schema validation still suc-
ceeded. The attack type I-3 embedded the original assertion as a child element into the
evil assertion EA. In all three cases the XML Signature was still standard conform, as
enveloped signatures were applied. This was broken in the case of OIOSAML by using
detached signatures. In variant I-4 the original <Signature> element was moved into
the EA, which was inserted before the legitimate assertion. The last shown permuta-
tion I-5 was applicable to the cloud services of Salesforce and the OpenAM framework.
At this, the genuine assertion was placed into the original <Signature> element. As
both implementations apply XML Schema for validating the schema conformance of
a SAML message, this was done by injecting them into the <Object> element, which
allows arbitrary content. Again, this is not compliant to the SAML standard because
this transforms the enveloped to an enveloping signature.
Signing Type II Attacks. We found three susceptible frameworks, which applied
signing type II messages, where the whole message is protected by an XML Signature.
The attack variants are depicted in Figure 6.5. In attack variant II-1 the legitimate
root element was inserted into the <Object> element of <Signature>. Subsequently,
the <Signature> node was moved into the ER element which also included the new
evil assertion EA. Guanxi and JOSSO were susceptible to this refined XSW variant.
In the case of WSO2, it was sufficient to place the original root element into ER, as
shown in II-2. Naturally, someone would expect that enforcing full document signing
would eliminate XSW completely. Both examples demonstrate that this does not hold
in practice. Again, this highlights the vigilance required when implementing complex
standards such as SAML.
Signing Type III Attacks. Finally, we did not find vulnerable frameworks that
applied signing type III messages, where both the root and the assertion are protected
by different signatures. Indeed, a legitimate reason is that most SAML implementations
do not use signing type III messages. In our practical evaluation, only SimpleSAMLphp
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applied them by default. Nevertheless, this does not proof that XSW is not applicable
to this signing type in practice.

6.6.3 Sophisticated XSW Attacks
In this section, we present three sophisticated XSW attack variants against the Open-
SAML framework and Salesforce.
OpenSAML Vulnerability. The refined XSW attacks described in Section 6.6.2
did not work against the prevalently deployed OpenSAML library. The reason was
that OpenSAML compared the Id used by the signature validation with the Id of the
processed assertion. If both identifiers did not match (based on a string comparison),
the signature validation failed. Furthermore, OpenSAML also rejected XML messages
that included more than one element with the same Id attribute. Both mechanisms are
handled in OpenSAML by using the Apache Xerces [The11] library and its XML Schema
validation method. Nevertheless, it was possible to overcome these countermeasures
with a more sophisticated XSW attack.

In OpenSAML the Apache Xerces library performs a schema validation of every
incoming XML message. Therefore, the Id attribute of each element can be defined by
using the appropriate XML Schema file. This allows the Xerces library to recognize
all included Id elements and to reject messages with Id values which are not unique
(i.e. duplicated). However, a bug in Apache Xerces caused that XML elements defined
with xsd:any content were not processed correctly. More concretely, the content of the
elements defined as <xsd:any processContents="lax"> were not checked using the
defined XML Schema. Therefore, this defect opened the possibility to inject elements
with same Id attributes and arbitrary content in an XML message – a good starting
position for an XSW attack.

To launch a successful XSW attack, we had to deal with the following two questions:

1. Possible Extension Points. Which of the extensible elements, given by the
schema, could be used to inject evil content?

2. Processing Properties. If two or more elements with the same Id exist, which
element is validated by the security module and which element is processed by
the business logic module?

Interestingly, the two existing implementations of Apache Xerces (Java and C++)
handled signature dereferencing differently.

For the C++ implementation, the adversary had to ensure that the original signed
assertion was copied in front of the evil assertion. In the case of Java, the legitimate
assertion had to be placed within or after the evil assertion. In summary, if two or
more elements with the same Id values occurred in an XML message, the XML se-
curity library detected only the first (for C++) or the last (for Java) element. This
property gave the adversary an opportunity to use e.g. the <Extensions> element
for the C++ library, whose XML Schema is defined in Figure 6.6. In the case of the
Java implementation, the adversary could use the <Object> element of <Signature>.
However, these two extension points are not the only possibilities to inject wrapped
content. The schemas of SAML and XML Signature allow several other locations (e.g.
<SubjectConfirmationData> and <Advice> elements of the <Assertion>).

The previously described behavior of the XML schema validation forced OpenSAML
to use the wrapped original assertion for signature validation. On the other hand, the
application logic processed the claims of the evil assertion. Additionally, the duplicate
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<element name="Extensions" type="samlp:ExtensionsType"/>
<complexType name="ExtensionsType">

<sequence>
<any namespace="##other" processContents="lax"

maxOccurs="unbounded"/>
</sequence>

</complexType>

Figure 6.6: XML Schema definition of the <Extensions> element.
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Figure 6.7: Implementation-dependent XSW attacks on OpenSAML library.

Id attributes invalidated the string comparison countermeasure. In Figure 6.7, we
present two concrete attack messages of this novel XSW variant.

The successful attack on OpenSAML shows that countering XSW attacks can become
more complicated than expected. Even when applying several countermeasures, the
developer should still consider vulnerabilities in the underlying libraries. A subtle flaw
in the XML Schema validating library can lead to the execution of a successful XSW
attack.
Salesforce SAML Interface Revisited. The Salesforce security response team,
quickly developed a simple countermeasure against the refined XSW vulnerability pre-
sented in Section 6.6.2. Their fix was to force the Salesforce SAML interface to ex-
clusively accept messages containing one <Assertion> element. This is a proprietary
and not standard conformant countermeasure, as the XML Schema of SAML explicitly
defines that one message can contain several assertions. Therefore, we do not consider
this mitigation variant in our countermeasure analysis in Section 6.9. Nevertheless, a
manual investigation of the fixed SAML interface with hand-crafted messages did not
reveal any new attack vectors. Every message containing more than one <Assertion>
element was automatically rejected. Therefore, we first considered this interface to be
secure.

After Marco Kampmann finished the development of the automated penetration test
tool [Mar11] (cf. Section 6.8), we again reviewed the Salesforce SAML interface with
assistance of this tool. Therefore, we configured the Salesforce SP to accept SAML
messages from the OneLogin IdP and used assertions of this IdP as input for the
test tool. Surprisingly, the scrutinized analysis of the automated penetration test tool
revealed a new successful attack variant. The wrapped message is depicted in Figure 6.8
and has the following two properties:
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Figure 6.8: A novel XSW variant breaking the fixed Salesforce SAML interface.

1. Duplicate Id Attributes. Like in the OpenSAML vulnerability, the evil asser-
tion EA and the original assertion A share the same Id attribute values.

2. Deep Element Nesting. The penetration test tool exposed a deep nested
extension point for the wrapped assertion A. The assertion was inserted into the
<Audience> element. This node typically contains a URI of the intended audience
that can consume the issued assertion. The <Audience> element itself, is a child
of the <Conditions> element, which is a descendant of the <Assertion> element.

This scientifically interesting attack vector stayed unanalyzed as the Salesforce secu-
rity team did not expose any concrete information about their SAML interface. Never-
theless, this sophisticated XSW attack again shows how complex the implementation of
a secure signature wrapping countermeasure is. This motivates for further development
of automated penetration test tools for XSW.

We contacted the Salesforce security team and informed them about the new attack
vector. They developed an improved countermeasure, which successfully mitigates all
tested attack variants. Its details were not revealed.

6.6.4 Severe Implementation Flaws

During our evaluation, we found three types of critical implementation flaws in several
frameworks. In the following, we present the analysis of them:

• Signature Exclusion Attacks. A trivial attack type is to simply remove the
<Signature> element. This näıve approach relies on poor implementation of the
server’s security logic, which does not enforce the application of XML Signature.
Therefore, the receiving party only checks the signature validity if the signature is
included. If the security logic does not find any <Signature> element, it simply
skips this crucial validation step. The evaluation showed that three SAML-based
frameworks were vulnerable to this attack type. Namely, Apache Axis2, JOSSO,
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Figure 6.9: Vague signing attack message against the OneLogin Toolkits.

and the Java-based implementation of OpenAthens were affected. While JOSSO
and OpenAthens did not enforce the signature validation, Apache Axis2 did not
validate the <Signature> element over the SAML assertion at all, even if it was
included. Apache Axis2 validated only the signature over the SOAP <Body> and
the <Timestamp> element. The signature protecting the SAML assertion, which
is included separately in the <Assertion> element (i.e. signing type I), was
completely ignored.

• Vague XML Signing. While reviewing the OneLogin Toolkits, we discovered
another interesting flaw. The Toolkits did not care about what data was actually
signed. Therefore, any content signed by the IdP was sufficient to launch an
XSW attack. In our case we used the signed and publicly available metadata
of a SimpleSAMLphp IdP3 and created our own hand-crafted response message,
including an evil assertion, to successfully attack the OneLogin Toolkits. The
attack message, including the signed metadata element <EntityDescriptor> is
shown in Figure 6.9. Such an attack message could also be used against interfaces
that check if the incoming message contains only one assertion (e.g. Salesforce).

• XML Signature Forgery. Besides the fact that a SAML system has to check if
and what data is signed, it is also essential to verify by whom the signature was
originally created. In an early version of SimpleSAMLphp, which applied signing
type III messages, we observed that an adversary could forge the outer signature
of the response message with any arbitrary key. In short, the SimpleSAMLphp
SP framework did not verify if the included certificate in the <KeyInfo> element
is trustworthy at all. The key evaluation for the signed assertion was correctly
handled. Therefore, this behavior did not lead to any critical attacks.

Each of the three found types of implementation flaws may allow to completely
circumvent the integrity protection of XML Signature. In fact, we could compromise
the assertions’ integrity, with two of the three attack variants, in real-world SAML
frameworks. This clearly indicates that the security implications behind SAML and
XML Signature are not understood yet.

3The SAML Metadata [CMPM05] describes properties of SAML entities in XML to allow the easy
establishment of federations. Typically, the metadata is signed by the issuer and publicly available.

86



6.7 Impact of XSW on Channel Bindings

6.6.5 Secure Frameworks
In our evaluation the SimpleSAMLphp framework and Microsoft Sharepoint 2010,
which applies the WIF framework, were resistant to all tested attack variants. There-
fore, the following questions arise: (1) How do these systems implement signature
validation? (2) In which way do signature validation and assertion processing work
together? To answer these questions, we considered to analyze the behavior of both
implementations. Unfortunately, Microsoft Sharepoint 2010 is closed source so we were
only able to analyze SimpleSAMLphp.

According to this investigation the main signature validation and claims processing
algorithm of SimpleSAMLphp performs the following five steps to counteract XSW
attacks:

1. XML Schema Validation. The whole message is validated against the applied
XML Schemas.

2. Assertion Extraction. All assertions included in the message are extracted.
Each assertion is saved as a DOM tree in a separate variable. The following steps
are only applied on these segregated assertions.

3. Verify Enveloped Signature Property. SimpleSAMLphp checks, if each as-
sertion is protected by an enveloped signature. In short, the XML node addressed
by the URI attribute of the <Reference> element is compared to the root element
of the assertion. In contrast to OpenSAML this is done by comparing DOM ob-
jects not Id attribute strings. The XML Signature in the assertion is an enveloped
signature if and only if the addressed objects are identical.

4. Signature Validation. Verification of every enveloped signature is exclusively
done on the DOM tree of each corresponding assertion.

5. Assertion Processing. The subsequent assertion processing is solely done with
the extracted and successfully validated assertions.

When not considering the signature exclusion bug found in the OpenAthens imple-
mentation and its Java-based assertions’ processing, this framework was also resistant
to all the described attacks. The analysis of its implementation showed that it processes
SAML assertions similarly to the above described SimpleSAMLphp framework.

6.6.6 Summary
We evaluated 14 different SAML-based frameworks, services, and systems. We found
eleven of them susceptible to XSW, while the majority were prone to refined XSW
attacks. One prevalent used framework (OpenSAML) and one popular cloud service
(Salesforce) were receptive to new and more subtle XSW variants. Furthermore, we dis-
covered three severe types of implementation flaws, namely signature exclusion, vague
signing, and XML Signature forgery. In total, five frameworks were prone to these
flaws. Finally, we found two implementations, which were resistant against all test
cases. The results obtained from our analysis are summarized in Table 6.2.

6.7 Impact of XSW on Channel Bindings
In Chapter 5, we investigated several channel binding variants (e.g. HoK and Unique-
Session) that make use of the integrity protection XML Signature gives to an assertion.
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Apache Axis 2 I X X
Guanxi II X
Higgins 1.x I X
IBM XS40 I X
JOSSO II X X
OIOSAML 2.0 I X
OpenAM I X
OneLogin I X X
OpenAthens (Java) I X
OpenSAML I X
Salesforce I X X
SimpleSAMLphp III Xa X
WIF I X
WSO2 II X
a We do not consider SimpleSAMLphp as broken, because only an early version was

affected (cf. Section 6.6.4).

Table 6.2: Results of our practical evaluation.

However, a successful XSW attack allows to bypass this integrity protection. This
makes the strong cryptographic binding of the assertion to the underlying secure chan-
nel useless.

For example, a clever adversary can build an evil HoK assertion EAHoK by placing
the client certificate of the adversary CertAdv into its <SubjectConfirmationData>
element. The adversary may use EAHoK to authenticate to SP , because he can suc-
cessfully prove possession of the private key belonging to CertAdv. For the same reason
the HoK+ approach is also susceptible. In the case of the Unique-Session Binding,
the adversary establishes a fresh TLS connection with SP , extracts the first Finished
message finAdv

1 of this connection, and includes it into the evil assertion. Clearly, the
Server-Endpoint binding is also susceptible, as it only hampers assertion theft but does
not cryptographically bind the assertion to the underlying secure channel.

The HoK cookie binding approach does not apply XML Signatures. Therefore, XSW
attacks are not directly applicable. However, injection or wrapping attacks may also
be possible if implementations do not pay attention.

6.8 XSW Penetration Test Tool for SAML

Our extensive practical evaluation of SAML-based frameworks exhibited severe find-
ings. Given these alarming results, it is reasonable to assume that there are much
more susceptible implementations deployed. Unfortunately, the complexity of building
hand-crafted malicious messages and the vast amount of possible attack permutations
hinders manual penetration tests by non-experts. Therefore, easy to use XSW test tools
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for developers and penetration testers should exist. This motivated us to build the first
fully automated penetration test tool for XSW attacks in SAML-based frameworks.
The tool was developed by Marco Kampmann [Mar11, SMS+12] and works as follows:
First, it analyzes a given SAML message and then systematically builds a complete
set of XSW attack vectors. Afterwards, it automatically injects these attack messages
while participating on full SAML SSO protocol runs. The tool proved its practical
feasibility by revealing a sophisticated XSW attack on the Salesforce SAML interface
(see Section 6.6.3). This novel attack was not found by manual analysis.

In this section, we briefly describe the basic design decisions for this tool and the two
main components, namely the XSW attack library and the penetration test tool.

6.8.1 XSW Attack Library

The conducted theoretical and practical analysis of a wide range of SAML frameworks
(see Section 6.5 and 6.6), revealed the following general properties about XSW attacks:

• XML Schema Validation. Some of the SAML frameworks (e.g. OpenSAML,
Salesforce, and OpenAM) check, if the message is XML Schema conformant.
Messages which are not compliant to the underlying XML Schemas are rejected.
Therefore, one requirement is that the XSW attack library should find appropriate
XML Schema extension points for placing wrapped content. If the extension
elements are not provided in the message, they have to be explicitly included.

• Position and Order. Inconsistent views of the signature validation and the
business logic module can be forced by varying the position and order of the evil
and the original content. Therefore, the XSW attack library should generate all
possible message permutations.

• Placement of the <Signature> element. The placement of the <Signature>
node is also crucial. This element can reside in the original assertion, be moved
into the evil assertion EA or shifted to any other tree element (cf. the attack
permutations 2-c, 2-a, and 2-e in Figure 6.3). All cases must be considered by
the XSW attack library.

• Id Processing. Several SAML frameworks explicitly check, if the Id in the pro-
cessed assertion is also used in the <Reference> of the XML Signature. Therefore,
the XSW library should consider three test cases: (1) The Id values for original
and evil content are equal, (2) they are different, and (3) the Id of the EA is
missing.

• Signature Exclusion. In three out of 14 frameworks implementation bugs
caused that the signature validation step was omitted. This case should also
be tested by the XSW attack library.

• XML Signature Forging. Signature validation modules must check that the
signature was created with a trustworthy key. Otherwise, the adversary can
forge the signature by any untrusted key. Therefore, the XSW attack library
should create test messages which are signed by an arbitrary untrusted key. The
corresponding certificate should be embedded in the <KeyInfo> element.

• Vague Signing. The XSW library should also create a test case for vague signing
by adding the signed metadata of a trusted IdP to the attack message. This test
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reveals those cases, where the signature validation module does not check what
kind of content is really signed.

Based on this knowledge and requirements, we developed an XSW attack library,
which systematically builds a vast amount of possible attack permutations.

The processing of the library can be summarized in the following steps: A signed
XML document containing a SAML assertion and the underlying XML Schemas are
used as input to initialize the library. The element referenced by the XML Signature is
saved. The original assertion is removed from the message and a new evil assertion is
placed at this position with modified content. For example, the <Conditions> or the
<NameID> element may be altered. This malicious message is the basis for all attack
permutations. Subsequently, the library investigates the underlying XML Schema doc-
uments and searches for possible extension points. The XSW library runs through the
list of extension points and inserts them into the malicious message. For example a new
<Object> element is created and placed into the <Signature> element. Afterwards,
for every attack permutation the saved originally referenced element is embedded into
each node of the malicious message. For every location a combination of different at-
tack vectors is considered. First, the position of the <Signature> element is varied to
create enveloping, enveloped, and all variants of detached signatures. Second, for each
signature location same, different, and removed Id attribute values are used for evil
and signed content. Finally, the XSW library provides test cases for signature exclusion
and XML Signature forgery.4 The extensive list of created attack permutations allows
developers to systematically test the security of their SAML libraries.

6.8.2 Penetration Test Tool

The above described XSW attack library can only be used to build a list of XSW
attack messages. In order to directly execute the attacks on an SP, we additionally
implemented a penetration test tool for automatic detection of XSW flaws in SAML-
based SSO scenarios. The tool is built upon the developed library and allows convenient
penetration tests of SAML SPs without the need of special expertise.

By using the penetration test tool, the user first configures his IdP and SP test setup.
Thereby, he defines the IdP’s login page, the user credentials, and adds the relevant
parameters of the tested SP (e.g. the ACSURL). In conjunction with the tool, the
user manually executes a successful SSO process, resulting in an authenticated SP user
session. This yields a characteristic SP response. This HTTP response is used as a
template to distinguish a successful from a failed SP login. Afterwards, the penetration
tester defines the content of the evil assertion and executes the automated penetration
test. Subsequently, the tool starts for each attack message a new SSO process: First,
it sends an HTTP request to the SP which creates a fresh <AuthnRequest> message.
This message is then forwarded to the IdP. The IdP issues a valid SAML response
message. Based on this message, the tool creates an attack permutation and sends it to
the SP.5 If the SP reacts with the characteristic HTTP response based on the captured
template, the attack tool has found a successful XSW attack variant.

4Test cases for the vague signing implementation flaw are currently not implemented, as this attack
variant was discovered after the library was implemented.

5The design decision to reimplement the whole SSO process (and not to reuse one SAML response
for creating multiple attack vectors) is based on the fact that some of the tested SPs placed nonces
into their SAML requests. Their occurrence and freshness is explicitly tested in the corresponding
response message. Therefore, the usage of old nonces could cause false negatives.
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The penetration test tool and the XSW attack library are build on a modular basis
and can easily be extended with new functionalities and attack variants.

6.9 Formal Analysis and Countermeasures
In order to define what a successful attack on a SAML implementation is, we have to
define the possibilities of the adversary, and the event that characterizes a successful
attack. We do this in form of a game played between the adversary Adv on one side, and
IdP and SP on the other side. Additionally, we derive two different countermeasures.
Their practical application is described in Section 6.10.

6.9.1 Data Model

A SAML assertion A can be sent to a Service Provider SP either as a stand-alone
XML document, or as part of a larger document D. (D may be a SAML authentication
response, or a complete SOAP message.) To process the SAML assertion(s), the Service
Provider (more specifically, SPclaims) searches for the <Assertion> element and parses
it. We assume that A is signed, either stand-alone, or as part of D.

6.9.2 Identity Provider Model

We define an Identity Provider IdP to be an entity that issues signed SAML asser-
tions, and that has control over a single private key for signing. Thus, companies
like OneLogin or Salesforce may operate several IdP s, e.g. one for each domain of
customers.

An Identity Provider IdP operates a customer database dbIdP and is able to per-
form a secure authentication protocol with any customer contained in this database.
Furthermore, he has control over a private signing key, where the corresponding public
key is trusted by a set of Service Providers SP := {SP1, . . . , SPn}, either directly, or
through means of a Public Key Infrastructure. After receiving a request from one of the
customers registered in dbIdP , and after successful authentication, he may issue a signed
XML document D, where the signed part contains the requested SAML assertion A.

6.9.3 Service Provider Model

We assume that processing of documents containing SAML assertions is split into two
parts: (1) XML Signature verification SPsig, and (2) SAML security claims process-
ing SPclaims (see Figure 6.10). This assumption is justified since both parts differ in
their algorithmic base, and because this separation was found in all frameworks. If
SPclaims accepts, then the application logic SPwork of the Service Provider will deliver
the requested resource to the requestor.

The XML Signature verification module SPsig is configured to trust several Identity
Provider public keys {pk1, . . . , pkr}. Each public key defines a trusted domain within
SP. After receiving a signed XML document D, SPsig searches for a <Signature> ele-
ment. It applies the referencing method described in <Reference> to retrieve the signed
parts of the document, applies the transforms described in <Transforms> to these parts,
and compares the computed hash values with the values stored in <DigestValue>. If
all these values match, signature verification is performed over the whole <SignedInfo>
element, with one of the trusted keys from {pk1, . . . , pkr}. SPsig then communicates
the result of the signature verification (eventually alongside D) to SPclaims.
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Figure 6.10: Overview of the components in our formal model.

The SAML security claims processing module SPclaims may operate a customer
database dbSP , and may validate SAML assertions against this database. In this case,
if the claimed identity is contained in dbSP , the associated rights are granted to the
requestor. As an alternative, SPclaims may rely on authorization data contained in
dbIdP . In this case, the associated rights will be contained in the SAML assertion, and
SPclaims will grant these.

Please note that the definition of the winning event given below does not depend on
the output of the signature verification part SPsig, but on the SAML assertion pro-
cessing SPclaims. This is necessary since in all cases described in this paper, signature
verification was done correctly (as is always the case with XML Signature wrapping).
Therefore, to be able to formulate meaningful statements about the security of a SAML
framework, we must make some assumptions on the behavior of SPclaims.

There are many possible strategies for SPclaims to process SAML assertions: E.g.
use the claims from the first assertion which is opened during parsing, from the first
that is closed during parsing (analogously for the last assertion opened or closed), or
issue an error message if more than one <Assertion> element is read.

6.9.4 Adversarial Model

Please recall the two different types of adversaries we have mentioned in our threat
model in Section 6.4. Advintc is the stronger of the two: He has the ability to partially
intercept network traffic, e.g. by sniffing HTTP traffic on an unprotected WLAN, by
reading past messages from an unprotected log file, or by a chosen ciphertext attack on
TLS 1.0 along the lines of [Bar06]. Please note that already this adversary is strictly
weaker than the classical network based adversary known from cryptography. Advacc,
our weaker adversary, only has access to the IdP and SP , i.e. he may register as a
customer with IdP and may receive SAML assertions issued about himself, and he may
send requests to SP .

We define preconditions and success conditions of an adversary in the form of a game
G. If Adv mounts a successful attack under these conditions, we say that Adv wins the
game. This facilitates some definitions.

During the game G, the adversary has access to a validly signed document D con-
taining a SAML assertion A issued by IdP . He then generates his own (evil) assertion
EA, and combines it arbitrarily with D into an XML document D′. This document is
then sent to SP .
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Definition 1 We say that the adversary (either Advintc or Advacc) wins game G if
SP , after receiving document D′, with non-negligible probability Pr(WinAdv) bases its
authentication and authorization decisions on the security claims contained in EA.

Remark: For all researched frameworks, the winning probability was either negligible
or equal to 1. Within the term “negligible” we include the possibility that Adv crypto-
graphically breaks the employed signature scheme and issues a forged signature, which
we assume to be impossible in practice. If an adversary wins the game against a specific
Service Provider SP , he takes over the trust domain for a specific public key pk within
SP . Advacc may do this for all pk where he is allowed to register as a customer with
the corresponding IdP who controls (sk, pk). Advintc can achieve this for all pk where
he is able to find a single signed SAML assertion A where the signature can (could in
the past) be verified with pk.

6.9.5 Countermeasure I: Only-process-what-is-hashed

We can derive the first countermeasure if we assume that SPsig acts as a filter and only
forwards the hashed parts of an XML document to SPclaims. The hashed parts of an
XML document are those parts that are serialized as an input to a hash function, and
where the hash value is stored in a <Reference> element. This excludes all parts of
the document that are removed before hash calculation by applying a transformation,
especially the enveloped signature transform.

Claim 1 If SPsig only forwards the hashed parts of document D to SPclaims, then
Pr(WinAdv) is negligible.

It is straightforward to see that EA is only forwarded to SPclaims if a valid signature
for EA is available.

Please note that although this approach is simple and effective, it is rarely used in
practice due to a number of subtle implementation problems. A variant of this approach
is implemented by SimpleSAMLphp, where the SP imposes special requirements on
the SAML authentication response, thus limiting interoperability. We discuss these
problems in Section 6.10.

6.9.6 Countermeasure II: Label signed elements

In practice, SPsig only returns a Boolean value, and the whole document D is forwarded
to SPclaims. Since IdP has to serve many different Service Providers, we assume
knowledge about the strategy of SPclaims only for SPsig. One possibility to label
signed elements is to hand over the complete document D from SPsig to SPclaims, plus
a description where the validly signed assertions can be found.

A second possibility that is more appropriate for SAML is that SPsig chooses a
random value r, labels the validly signed elements with an attribute containing r, and
forwards r together with the labeled document. SPclaims can then check if the assertion
processed contains r.

Let us therefore consider the second approach in more detail. For sake of simplicity we
assume that only one complete element (i.e. a complete subtree of the XML document
tree) is signed.

Claim 2 Let Dsig be the signed subtree of D, and let r ∈ {0, 1}l be the random value
chosen by SPsig and attached to Dsig. Then Pr(WinAdv) is bounded by max{breaksig, 2−l}.
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SPclaims (regardless of its strategy to choose an assertion) will only process EA if r
is attached to this element. An adversary can achieve this by either generating a valid
signature for EA (then r will be attached by SPsig), or by guessing r and attaching it
to EA.

6.10 Practical Countermeasures
We analyzed the SAML message processing of SimpleSAMLphp in Section 6.6.5. This
framework (together with the closed-source framework WIF) was resistant against all
tested XSW attacks. Therefore, it is legitimate to ask the following question: Do we
need further countermeasures or is it appropriate to apply the security algorithm of
SimpleSAMLphp in every system?

First, we want to clarify that SimpleSAMLphp offers both critical functionalities,
namely signature validation SPsig and SAML assertion evaluation SPclaims, in one
framework. These two methods are implemented using the same libraries and process-
ing modules. After parsing a document, the elements are stored within a document
tree and can be accessed directly. This allows the security developers to conveniently
access the same elements used in signature validation and assertion evaluation steps.
However, especially in service-oriented architecture (SOA) environments there exist
scenarios, which force the developers to separate these two steps into different modules
or even different systems, e.g.:

• Separate Signature Validation Library. In this case, the developer uses
a separate DOM-based signature library for SPsig, which returns true or false
according to the message validity. Afterwards, the assertion elements of document
D are processed by SPclaims. In this common constellation, the developer does not
exactly know which elements were validated by SPsig. If the assertion evaluation
SPclaims uses a different parsing approach (e.g. streaming-based SAX or StAX
approach) or another DOM-library, the message processing may become error-
prone.

• XML Security Gateways. Validating and forwarding XML documents are two
main tasks of XML security gateways. Again, if a SAML framework processes a
document validated by an XML security gateway, there is no explicit information
about the position of the signed element(s) available. Synchronization of SPsig on
the XML security gateway and SPclaims on the application server may become
even more complicated in this scenario, if the developer of the framework has
no information about the concrete implementation of the XML security gateway
(e.g. IBM XS40).

These two examples show that a convenient access to the same XML elements is not
always given. Therefore, we present two practical feasible countermeasures, which can
be applied in complex and distributed real-world implementations. Both countermea-
sures result from our formal analysis in Section 6.9.

6.10.1 See-what-is-signed

The core idea of this countermeasure is to forward only those elements to the busi-
ness logic module (SPclaims) that were validated by the signature verification module
(SPsig). This is not trivial as extracting the unsigned elements from the message context
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Figure 6.11: Countermeasure I: The see-what-is-signed approach.

could make the further message processing in some scenarios impossible. Therefore, we
propose a solution that excludes only the unsigned elements which do not contain any
signed descendants. We give an example of such a message processing in Figure 6.11.

This way, the claims and message processing logic would get the whole message
context: In case of SOAP it would see the whole <Envelope> element, by application
of SAML HTTP POST binding it would be able to process the entire <Response>
element. The main advantage of this approach is that the message processing logic does
not have to search for validated elements because all forwarded elements are validated.

We want to stress the fact that by application of this approach all unsigned character
nodes have to be extracted. Otherwise, the adversary may create an evil assertion EA
and insert the signed original assertion A into each element of EA. If SPsig would not
extract the character contents from EA, SPclaims may process the evil claims. However,
by removing the unsigned character nodes, the adversary has no possibility to inject evil
content, since it was excluded in SPsig. Nevertheless, the subsequent XML processing
modules can still access the whole XML tree.

This idea has already been discussed by Gajek et al. [GLS07b]. However, until now
no XML Signature framework implements this countermeasure. It could be applied
especially in the context of SAML HTTP POST bindings because the unsigned elements
within the SAML response do not contain any data needed in SPclaims. We consider
this countermeasure in these scenarios as appropriate because the SAML standard only
allows the usage of Id-based referencing, exclusive canonicalization, and enveloped
transformation. The authors explicitly state that this countermeasure would not work
if XML Signature uses specific XSLT or XPath transformations.

6.10.2 Unique Identification of Signed Data

The second countermeasure represents another variant of the see-what-is-signed ap-
proach and can be used in scenarios where different XML modules have to process
unsigned message elements. The basic idea is to uniquely identify the signed data in
the SPsig module and forward this information to SPclaims. As described in our formal
analysis in Section 6.9, this could be done by generating a random value r which is
attached by SPsig to all signed elements. The random value r is then handed over to
the next processing module. This may be done via communicating r as an additional
parameter or as an attribute in the document root element. We give an example of
this countermeasure in Figure 6.12.

Unique identification is easy to apply and maintains the whole document structure.
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Figure 6.12: Countermeasure II: The unique identification approach.

On the other hand, the main drawback is that the SAML XML Schema does not allow
the inclusion of new attributes. Neither directly into the <Assertion> element nor
into the <Response> binding element. Therefore, the XML Schema validation of the
assertion processing module SPclaims would fail. For general application of this idea
the SAML XML Schema needs to be extended.

Another way to implement this countermeasure is to use XML node types, which do
not violate XML Schema, but are visible to XML processors. For example, processing
instructions [BPSM+08] belong to this group. They can be placed anywhere in the
document, must be passed to the application, but do not invalidate the XML Schema.
Streaming and DOM-based parsers can conveniently find them by processing XML
trees. Therefore, processing instructions are an alternative to XML Schema extensions.

By applying this countermeasure, the probability of successful XSW execution rapidly
reduces since it is equal to guessing the random value r and attaching it to the evil
assertion EA.

6.11 Conclusion

In this chapter, we presented an in-depth analysis of XSW attacks applied on SAML
frameworks, services, and systems based on a systematic attack methodology. We
showed that the vast majority of the evaluated systems exhibit critical security insuffi-
ciencies in their interfaces. Furthermore, we revealed several implementation flaws and
discovered new classes of refined and sophisticated XSW attacks, which allowed us to
even bypass XSW specific countermeasures.

The consequences of a successful XSW attack in SAML-based SSO scenarios are
devastating: An adversary requires only one signed assertion to take over any identity
at any time. Additionally, a clever adversary can apply XSW attacks to render crypto-
graphic bindings between assertion and TLS connection (e.g. HoK and Unique-Session)
useless.

Moreover, we showed that the application of XML Security heavily depends on the
underlying XML processing system (i.e. different XML libraries and parsing types).
The processing modules involved can have inconsistent views on the same secured XML
document. Therefore, it must be guaranteed that all modules have the identical view
on the processed XML message to fend XSW. We suppose that heterogeneous views
can exist in all data formats. In consequence, attacks similar to XSW may be possible
beyond XML.

We proposed a formal model by analyzing the information flow inside the Service
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Provider and presented two countermeasures. The effectiveness of these countermea-
sures depends on the real information flow and the data processing inside SPclaims.
Our research is a first step towards understanding the implications of the information
flow between cryptographic and non-cryptographic components in complex software
environments.

Finally, based on our results and the gained knowledge, we developed the first auto-
mated XSW penetration test tool for SAML. Christian Mainka has integrated this tool
into the WS-Attacker6 framework [Chr12]. WS-Attacker offers automatic penetration
testing for Web Services with SOAP-based endpoints [MSS12]. Non-experts can now
easily test SAML libraries, real-world SSO systems, and Web Services against XSW
attacks.

6http://ws-attacker.sourceforge.net
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7 Conclusions and Outlook

7.1 Conclusions
This thesis investigated the security of web SSO and analyzed a wide range of different
SAML-based frameworks, systems, and services. We chose a threefold approach to
analyze their security. Firstly, we investigated a logical flaw in the SAML standard
that lead to a novel highjacking attack (ACS Spoofing) on several real-world IdPs.
Secondly, we looked beyond web SSO and proved that even if the SSO standard is
considered secure, the prevalent cookie-based client authentication creates an attack-
surface sufficient for identity theft done through XSS and UI redressing. Thirdly, we
systematically analyzed the application of XSW attacks on SAML. We showed that the
large majority of systems exhibit critical insufficiencies in their interfaces. Our results
confirm the significance of these attacks for the security of SSO systems. We proposed
a first formal model by analyzing the information flow inside the Service Provider and
presented two countermeasures. Additionally, we developed the first automated XSW
penetration test tool for SAML.

All attacks show that vulnerabilities in actual SAML-based SSO deployments can be
severely exploited, leading to a complete failure in regards to the security of the IdP
and all federated SPs.

In general, this thesis demonstrates that flexibility and extensibility, as provided by
the SAML standard, may be a breeding ground for security issues. SAML author Scott
Cantor has summarized the dilemma between security and openness with the following
apt quotation:1

“A problem SAML has always faced is that when it says MUST, the “low
end” crowd claims it’s too strict and when it says SHOULD, people attack
the “insecurity” of the standard. Rock, meet hard place.”

The same holds true for the very flexible XML Signature standard, as our severe
findings of XSW attacks on SAML frameworks, systems, and services demonstrated.

In addition, this thesis advanced the field of cryptographic countermeasures to secure
web SSO. We analyzed existing channel bindings that cryptographically bind SAML
messages to an underlying secure channel, proposed a novel binding approach, and im-
plemented various channel binding variants. These countermeasures strengthen SSO
client authentication and mitigate a wide range of attacks (including ACS Spoofing
and XSS/UI redressing). Furthermore, the implementations of the developed counter-
measures are either adopted by the popular open source framework SimpleSAMLphp
or available as a patch therefor.

The presented ideas are generic and can be directly applied to other SSO protocols
(e.g. OAuth or OpenID). This can be seen as one step towards a generic solution to
harden web authentication and SSO holistically. Finally, our preferred countermeasure,
HoK+ combined with cookie binding, is applicable without changing existing Web
infrastructure.

1https://lists.oasis-open.org/archives/security-services/201002/msg00023.html
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7.2 Outlook

The work described in this thesis has influenced many SAML frameworks, systems,
and services which were fixed to mitigate the found attacks. In particular, I cooperated
closely with the following security response teams and developers: Cloudseal [Clo13],
Guanxi [You13], Okta [Okt13], SSOCircle [SSO13], OneLogin [One13a], Higgins [Ecl13],
OIOSAML [Dan13], OpenAM [For13], WSO2 [WSO13b], and SimpleSAMLphp [Sim13].
The investigation of XSW attacks applied on SAML lead to an approved errata of the
SAML V2.0 standard.2

7.2 Outlook
The severe flaws found in SAML-based web SSO systems demonstrate that the practical
application of cryptography alone does not guarantee the absence of real-world security
flaws. It is likely that other SSO standards exhibit similar vulnerabilities. Considerably
more work will need to be done to determine the security level of other SSO standards.
The application of channel bindings has the potential to increase the security of those
standards significantly. This may be subject of future research.

The in-depth analysis of XSW attacks in SAML interfaces showed that the applica-
tion of XML Security heavily depends on the underlying XML processing system (i.e.
different XML libraries and parsing types). The processing modules involved can have
inconsistent views on the same secured XML document, which may result in successful
XSW attacks. Generally, these heterogeneous views can exist in all data formats be-
yond XML. Therefore, future work should consider the analysis of other data formats,
such as JavaScript Object Notation (JSON).

Our research is a first step towards understanding the implications of the information
flow between cryptographic and non-cryptographic components in complex software
environments. Research in this direction could enhance the results, and provide easy-
to-apply solutions for practical frameworks.

In general, we have learned that cryptography is necessary to secure web SSO. How-
ever, practice shows that subtle details are often overlooked in complex scenarios and
may lead to successful attacks. We encourage that cryptographers and security practi-
tioners should work together more closely to narrow this existing “security gap”.

2https://tools.oasis-open.org/issues/browse/SECURITY-14
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