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Notation

The following table summarizes the notation used in this thesis.

Lower-case bold: x column vector
Upper-case bold: X matrix
Calligraphic: X set
xn (x(1), x(2), · · · , x(n))
Prob(x) probability of an event x
i.i.d. independent and identically distributed
N (0, 1) Gaussian noise with zero mean and unit variance
Bern(1/2) Bernouli distributed random variable with probability p = 1/2
H(X) discrete entropy of X
h(X) differential entropy of X
Corr(X, Y ) correlation coefficient between X and Y
I(X ; Y ) mutual information between X and Y

⌊x⌋ integer part of x
⌈x⌉ ⌊x⌋ + 1
(x)+ max{0, x}
C(x) 1

2
log(1 + x), x > 0

C+(x) max{0, C(x)}, x > 0
0q zero vector of length q
Iq q × q identity matrix
XT transpose of X

Table 1: Notation table
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Chapter 1

Introduction

Communications continue to play a vital role in our daily life. This significance of
communications has lead to a rapid increase in the number of communication terminals
in use. Consequently, this triggered a dramatic increase in the demand on data rates.
To cover this increasing demand, research groups have recently put much effort on
optimizing network performance and designing new communication systems.

The design of future communication systems is focused on the joint performance en-
hancement of concurrently active nodes within wireless networks. Such networks suffer
from several limitations such as interference and bad connectivity. These limitations
are the focus of a large number of investigations by the research community, in partic-
ular in recent years. Interference can be a major setback in multi-user networks, which
leads to a deterioration in the network performance measured by the achievable rates
of communication. Furthermore, connectivity problems such as physical obstructions
and bad channel quality can significantly decrease the coverage of a wireless network
and thus, have a negative impact on the network performance.

One way to overcome these difficulties is relaying. Relay nodes can be used for
managing interference in a wireless network in a controlled way so that the impact
of this interference is reduced. Moreover, in wireless networks where connectivity is
not always guaranteed, relays can lead to a dramatic improvement in the network
performance by providing alternate connectivity paths. Thus, deploying relay nodes
in a wireless network can improve the network performance. However, how can we
fully exploit the relay benefits in a wireless network? And how can we quantify this
performance improvement?

In order to answer these questions, we consider a wireless network consisting of
two transmit-receive pairs and one dedicated relay node. Due to the broadcast nature
of the wireless channel, the transmit signals interfere with each other and lead to
performance deterioration in comparison to interference free communication. The
relay is installed in order to enhance the performance of the network by countering
this interference. The obtained setup is known as the 2-user interference relay channel
(IRC). This elemental network captures the aforementioned limitations and allows us
to apply our new ideas on a small scale, thus obtaining insights that can be used as
stepping stones towards the understanding of larger networks.

Quantifying the performance improvement obtained by using a relay requires find-
ing tight upper and lower bounds on the network performance. Upper bounds can be
derived using information-theoretic tools. Deriving tight lower bounds requires finding
an intelligent relaying strategy that can serve the goal of interference management in
the IRC. This in turn requires describing the construction of this strategy and mea-
suring its performance in terms of achievable rates. If the upper and lower bounds
match, we obtain the capacity of the network. However, since capacity characteriza-
tion of interference networks is known to be difficult, we resort to an approximative
characterization in order to achieve progress on this front by ‘climbing the ladder one

3



4 Chapter 1 � Introduction

step at a time’. Namely, we follow an approximative characterization which becomes
asymptotically tight at high signal-to-noise ratio. This approximation is supposed to
ease the way to ‘climbing’ the next step, i.e., finding the capacity of the network.

Since our main focus is combating interference, we study an IRC where each trans-
mit signal is received at all receivers with a power which is much larger than the noise
power. In this way, we guarantee that the IRC is in the so-called interference-limited
regime, and also that the noise does not limit the relay’s reception capability. We de-
velop two new relaying strategies for the IRC based on computation at the relay. That
is, the relay decodes a linear combination of the transmit signals of the two users. One
of the strategies allows each destination to extract the interfering signal and remove
it from its received signal, thus reducing the impact of this interference. The other
strategy allows the relay to neutralize interference at the destinations on-the-fly, trans-
forming the IRC into two interference free point-to-point channels. The two strategies
have the following common property: the main task of the relay is interference cancel-
lation. While this might sound sub-optimal at the first glance, we show that this is an
optimal relaying strategy in the IRC.

The proposed strategies have some similarities with network coding. In both pro-
posed strategies, the relay sends a network coded version of the transmit signals to
the destinations. However, an important difference between the two exists. In clas-
sical network coding, the relay node would construct the network code by itself; it
requires knowledge of the source messages or the transmit signals. In our strategies,
the network code is constructed by the physical channel. The relay simply decodes the
network code it is going to send to the destinations, which does not require knowledge
of the source messages or transmit signals at the relay.

The performance of these new strategies is analyzed. It turns out that combining
these new relaying strategies with classical strategies characterizes the approximate
sum-capacity of the IRC for a wide range of channel parameters.

The major milestones of this characterization can be summarized as follows:
Upper Bounds: We establish new upper bounds on the sum-capacity of the IRC

using both novel and classical approaches. As we show later, the given bounds are
tight in the characterized regimes. All the upper bounds we provide are given in closed
form and require no further optimization.

Lower Bounds: We also establish new sum-capacity lower bounds for the IRC
by using novel transmission strategies. The proposed strategies outperform classical
strategies that are commonly used in the IRC.

Approximate Capacity: We study the optimality of the given strategies. For
a wide range of channel parameters, we show that our strategies are asymptotically
optimal, i.e., they provide an asymptotically tight approximation of the sum-capacity
in the limit of high signal-to-noise ratio.

Interestingly, while weak reception at the relay might suggest that the benefits of
the relay are limited, the study shows that the relay can increase the capacity of the
network, even if the channels from the sources to the relay are very weak.

Finally, we explore a new relaying option where the relay does not only relay
signals to the destinations but also relays signals back to the sources. This can be
also interpreted as relay-source feedback. We investigate the benefits of this kind of
feedback, and show that it leads to an increase in the network capacity in certain cases.

In the next chapter, we revisit the history of the IRC and introduce some prelimi-
naries that are required in the following chapters.



Chapter 2

History and Preliminaries

The foundations of information theory were laid down by Shannon [Sha48] in his sem-
inal paper where the capacity of the point-to-point (P2P) channel was characterized.
Here, the capacity is defined as the highest rate of information flow from the transmit-
ter to the receiver measured in bits per channel use. Since then, various information
theoretic models of communication networks have been studied and analyzed based
on this framework (see [EGK11]). Although the capacity of some networks has been
solved, the capacity of many other networks is still an open problem.

The main challenge in larger networks is interference. If several users (transmitter-
receiver (Tx-Rx) pairs) want to establish communication over the same medium, their
signals will inevitably interfere. Since the interfering signals are codewords, they have
some structure which can be exploited in the decoding process at the receivers. There-
fore, treating interfering Tx-Rx pairs as isolated P2P channels is in general not optimal.
The question is then: how can interference be exploited in order to maximize the achiev-
able rates of information flow? This lead to the study of the interference channel (IC)
which is the smallest information theoretic model that captures this effect.

2.1 The Interference Channel

Ahlswede [Ahl71] introduced the interference channel (IC) as an information theoretic
model to capture scenarios where simultaneous transmission of dedicated messages by
multiple sources to their respective destination takes place on a shared channel. Such a
channel is important, for instance, in cellular networks with cell edge users that suffer
from interference caused by base stations in neighbouring cells. The phenomenon of
interference is not limited to cellular networks and occurs in many other networks such
as ad-hoc wireless networks.

The first result on the capacity of the IC appeared in 1975 [Car75] where the
capacity region of the Gaussian IC with very-strong interference was characterized.
Namely, for a Gaussian IC with signal power P and noise power 1, and where the
channel coefficient between Tx j and Rx k is hjk ∈ R (Figure 2.1(b)), if the following
condition holds

h2
jk ≥ h2

jj(1 + h2
kkP ), j, k ∈ {1, 2}, j 6= k, (2.1)

then the IC is said to be in the very-strong interference regime where the capacity
of the IC is equal to the interference free capacity Rj ≤ C(h2

jjP ) with C(x) defined
as C(x) = 1

2
log(1 + x). Note that a much lower rate would be achieved were the IC

treated as two separate P2P channels. This is an example which shows clearly that
exploiting interference can be better than ignoring it. Later on, the capacity of the IC
with strong interference, where h2

jk ≥ hjj, was characterized [Sat81].
The work on the IC then slowed down for a while, until the last decade when several

advances were made on the problem. These advances can be summarized as follows.
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6 Chapter 2 � History and Preliminaries

(a) A discrete memoryless IC. X1 and X2 are
the input random variables and Y1 and Y2 are
the output random variables. The channel has
a transition probability PY1Y2|X1X2

.

(b) A normalized Gaussian IC. The output Y1

for instance is Y1 = h11X1 + h21X2 + Z1. The
noises Z1 and Z2 are independent N (0, 1) and
the transmitters have a power constraint P .

Figure 2.1: In the IC, Tx j wants to send a random message Mj to its receiver
Rx j. It does so by encoding the message into a signal (Xj(1),Xj(2), · · · ,Xj(n))

and sending this signal over the channel to the receiver to decode it.

Genie-aided Bounds: New bounding techniques such as genie-aided bounds [Kra04,
ETW08] were developed. In this approach, the channel is enhanced by giving one of the
receivers (or both) some additional information, designed in such a way that facilitates
the derivation of a computable upper bound.

Metrics: New metrics for the asymptotic characterization of the capacity of a net-
work were developed. One of these metrics is the degrees-of-freedom (DoF) of the
network, which characterizes the scaling of the sum-capacity of a network with respect
to the capacity of the P2P channel at high power. Consider for instance a symmetric
Gaussian IC (Figure 2.1(b)) where the ‘direct channels’ are equal h11 = h22 = hd, the
‘cross channels’ are also equal h12 = h21 = hc, the power constraint is P , and the noise
power is 1. The DoF of this network (also known as multiplexing gain [HMN05]) is
defined as [CJ08]

d = lim
SNR→∞

CΣ(SNR)
1
2
log(SNR)

. (2.2)

where CΣ is the sum capacity of the network, and SNR is the signal-to-noise ratio (here
SNR = h2

dP ). The DoF provide an approximation of the sum-capacity of the network
of the form

CΣ =
d

2
log(SNR) + o(log(SNR)). (2.3)

Another metric which provides a finer approximation of the sum-capacity is the so-
called generalized DoF (GDoF) which was introduced in [ETW08]. The GDoF of the
same symmetric IC introduced above is defined as

d(α) = lim
SNR→∞

CΣ(SNR, INR)
1
2
log(SNR)

, where α =
log(INR)

log(SNR)
, (2.4)

the signal-to-noise ratio is SNR = h2
dP , and the interference-to-noise ratio is INR = h2

cP .
This provides an approximation of the sum-capacity of the IC given by

CΣ(α) =
d(α)

2
log(SNR) + o(log(SNR)), (2.5)
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where the parameter α defined in (2.4) quantifies the INR relative to the SNR on a
logarithmic scale. This approximation is finer than (2.3) which does not distinguish
between IC’s with different interference powers.

Both metrics, DoF and GDoF, are high SNR metrics. The motivation behind using
these metrics is focusing on the impact of interference on a network. In general, the
performance of a network in terms of achievable rates is hindered by noise and by
interference. While at low SNR the network is noise-limited, it is interference-limited
at high SNR. From this point of view, a high SNR analysis aims to marginalize the
impact of noise in order to obtain a clear view on the impact of interference.

Interference Alignment: Another tool which has been developed recently is in-
terference alignment [Jaf11]. In interference alignment, the transmitters send their
signals in such a way that the interference signals ‘cast overlapping shadows’ at the
receiver. That is, the interference signals are aligned in a subspace of the receiver’s
signal space. Thus, the receiver is able to obtain an interference free signal by simply
ignoring this interference subspace. Interference alignment can be accomplished over
spacial dimensions (in MIMO networks) [GJ10,JS08,MAMK08], temporal or frequency
dimensions [CJ08,CJW10], or signal scale (level) dimensions [BPT10].

The development of these techniques, metrics, and tools has lead to new results
in the field of network information theory. For instance, these developments lead
to characterizing the DoF of the IC (along with many other networks) [Jaf11], the
GDoF and the capacity of the IC within 1 bit [ETW08], the sum-capacity of the IC
with noisy interference [AV09, SKC09,MK09], the sum-capacity of the Z-IC (where
h12 = 0) [Sas04] and the IC with mixed interference [WT08], the capacity of classes
of IC’s with more than 2-users [CS11,SKC08], etc. Out of these results, the GDoF of
the IC will be needed in the following chapters. This GDoF is stated in the following
lemma.

Lemma 2.1 (Etkin et al. [ETW08]). The GDoF of the IC is given by

d(α) = min {2max{1− α, α}, 2max{1, α} − α, 2} . (2.6)

2.1.1 The Interference Channel with General Cooperation

Interference channels with cooperation have also been studied recently. Two variants
have been considered, IC’s with non-causal cooperation or the so-called cognitive IC
[RTD12,HJ09], and IC’s with causal cooperation [YT11a,PV11b].

A general IC with causal cooperation is shown in Figure 2.2. In the IC with
causal cooperation, Rx 1 for instance sends a feedback signal X̄1 which is received
by the remaining nodes. This establishes causal cooperation between Rx 1 and all
the remaining nodes. In this case, each node constructs its transmit signal based on
all available information. For instance, at time instant i, Tx 1 sends X1(i) which is
constructed from the message M1 and from the observations of Ȳ1 up to time instant i,
i.e., X1(i) = E1(M1, Ȳ

i−1
1 ) where Ȳ i−1

1 = (Ȳ1(1), · · · , Ȳ1(i−1)) and E1 is the encoder at
Tx 1. Similarly, Rx 1 feeds back X̄1(i) = Ē1(Y i−1

1 ). Based on this feedback information,
the transmission strategy can be improved compared to the IC without cooperation.

For the purpose of this thesis, the IC with cooperation is important since we will
use it in the sequel for deriving upper bounds for the network under consideration (the
interference relay channel). In addition to genie-aided bounding techniques (introduced
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Figure 2.2: An interference channel with general cooperation.

in Section 2.1), another bounding technique that has been used to derive upper bounds
for general networks is based on this IC with general cooperation as follows.

Cooperation bounds: For deriving an upper bound for the capacity of a given
network, one can enhance the network by allowing some nodes to cooperate. Allowing
some nodes to cooperate leads (in some cases) to an IC with general cooperation
similar to the one shown in Figure 2.2. For instance, in a 3-user IC, if we let Tx 3,
Rx 2, and Rx 3 cooperate to form a super node Rx 2 which consists of the set of
nodes {Tx 3, Rx 2, Rx 3}, then the overall cooperative network can be modeled as
a 2-user IC with uni-directional cooperation from Rx 2 to Rx 1 due to the physical
channel between Tx 3 ∈ {Tx 3, Rx 2, Rx 3} and Rx 1. Similar to this example, this
cooperation approach has been used to develop upper bounds for different interference
networks (see [CJ09] for instance). In the next chapters, we are going to use this
approach to develop some upper bounds. Therefore, we introduce the following lemma.

Lemma 2.2 ( [Tun12, YT11b]). The achievable sum-rate in a memoryless IC with
general cooperation is upper bounded by

RΣ ≤ I(X1; Y1, Ȳ2|Y2, X2, X̄1, X̄2) + I(X1, X2, X̄1; Y2|X̄2), (2.7)

RΣ ≤ I(X2; Y2, Ȳ1|Y1, X1, X̄1, X̄2) + I(X1, X2, X̄2; Y1|X̄1). (2.8)

for some distribution PX1X2X̄1X̄2
.

2.2 The Interference Relay Channel

The channel parameters in the IC depend on the environment in which the IC is
deployed. In the most extreme case, the direct link between each transmitter and its
respective receiver might be very weak or even absent due to low coverage or large
obstructing objects. In these cases, simply increasing the power at the transmitters
will not resolve the problem. A possible solution is to use dedicated relay stations to
enable communication.

Relaying has been first studied in conjunction with a P2P channel [CEG79]. Al-
though the capacity has been characterized in some cases, the capacity of the general
case remains an open problem. The relay in this case operates as a helper for the
transmitter to increase the capacity of the channel. Installing a relay in an IC leads
to the so-called interference relay channel (IRC) shown in Figure 2.3(a).

Relaying in interference networks however has a different flavor. A relay can be used
not only for increasing coverage and helping the transmitter, but also for interference
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(a) A discrete memoryless interference relay chan-
nel with input variables X1, X2 and Xr, output
variables Y1, Y2, and Yr, and a transition proba-
bility PY1Y2Yr |X1X2Xr

.

(b) A Gaussian interference relay channel. The
channel output Y1 for instance is given by Y1 =
h11X1 + h21X2 + hr1Xr + Z1. The noises
Z1, Z2, Zr are N (0, 1) and all nodes have power
P .

Figure 2.3: The interference relay channel is an IC with a relay dedicated to
support the communication between the nodes of the IC.

management. Although the optimal relaying function is in general not known, several
attempts have been made to approach the capacity of the IRC. In the past work on
the IRC, several relaying varieties have been studied such as decode-forward where the
relay decodes the transmit signals and forwards them to the receivers, and compress-
forward where the relay compresses its observation and sends the compression index to
the receivers. Additionally, several capacity upper bounds have been developed. For
instance, in [TY11] new capacity upper bounds were developed for the Gaussian IC
with a potent relay, i.e., a relay that has no power constraint. These bounds have been
compared with the achievable rates of compress-forward. The capacities of the strong
interference regime and a sub-regime of the weak interference regime (of the IRC with
a potent relay) were characterized. Since an IRC with a potent relay is more capable
than an IRC with a power constraint at the relay, the capacity of the former is an upper
bound for the capacity of the latter. Therefore, the results of [TY11] can be regarded
as upper bounds for the IRC. In [MDG12], a transmit strategy for the IRC that uses
block-Markov encoding at the sources and decode-forward at the relay was proposed.
In the same paper, the benefits of interference forwarding were shown. In interference
forwarding, the relay attempts to increase the interference at the receivers in such a way
that facilitates interference decoding and then cancellation. Furthermore, the authors
of [MDG12] have derived a capacity upper bound which improves upon the classical
cut-set bounds [CT06], and have studied the strong interference regime of the IRC. As
a result, the capacity of a strong interference regime for the discrete memoryless IRC
was characterized under some degradedness conditions where decode-forward achieves
capacity [MDG12]. In [SE07a], a transmit strategy for the Gaussian IRC (Figure
2.3(b)) based on decode-forward and Carleial’s rate-splitting [Car78] was studied. The
performance of this scheme was analyzed for the case when the source-relay links are
strong, and thus, decoding at the relay does not limit the achievable rates. The IC
with a cognitive relay which serves as a performance upper bound for the IRC has also
been studied [SE07b, SVJS08, RTDG11,RTD11]. In [SSE11a, SES11, SSE11b, TY12],
the IC with an out-of-band relay where the channels from the transmitters to the relay
are orthogonal to the remaining channels was considered.

This network, the IRC, will be the main focus of this thesis.
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Figure 2.4: A Gaussian butterfly network. The locations of Rx 1 and 2 have been
switched for clarity.

2.3 The Butterfly Network

The wireless butterfly network (BFN) is a special case of the IRC which has missing
direct links between each transmitter and its respective receiver. Despite being a
special case of the IRC, studying the BFN is important in its own sake since the BFN
magnifies the impact of relaying in comparison to the IRC. This is true since in the
IRC, desired signals can reach each destination from both the respective transmitter
and the relay. In the BFN however, this is not the case; desired signals reach each
destination only from the relay. Consequently, the BFN provides a more distinct and
visible picture of the impact of relaying.

The wireless BFN is not to be confused with the infamous classical butterfly net-
work with multi-cast messages which was used by Ahlswede et al. in [ACLY00] to
demonstrate the capabilities of network coding. The BFN in [ACLY00] is a wired
network where signals do not interfere with each other. In our case, the BFN is a
wireless one where simultaneous transmissions interfere additively at the receivers as
shown in Figure 2.4.

A wireless BFN with half-duplex nodes was studied by Avestimehr et al. in [AH09].
The authors of [AH09] exploited network coding ideas in order to design transmission
strategies that were shown to be optimal for the linear-deterministic approximation of
the Gaussian BFN at high SNR (see Section 2.4 for an introduction on the deterministic
approximation) and to achieve capacity to within 1.95 bits per channel use at any finite
SNR. In this thesis, we give special attention to the BFN in the aim of obtaining a
better understanding of the IRC.

2.4 The Deterministic Model

The deterministic channel model has been first introduced by El-Gamal and Costa
in [EGC82] where the capacity of a class of deterministic IC’s has be characterized.
Recently, Avestimehr et al. [ADT11] have developed a linear-deterministic (LD) ap-
proximation of Gaussian networks which significantly simplifies the study of interfer-
ence networks. The LD model is a model where transmit and received signals are
binary vectors, and the impact of noise Gaussian is modeled as clipping a number
(determined by the signal-to-noise ratio) of least significant bits of the received binary
vector. Namely, a Gaussian P2P channel with a signal-to-noise ratio SNR is modeled
by an LD-P2P channel with n =

⌈
1
2
log(SNR)

⌉
bit-pipes as shown in Figure 2.5(a). In

this figure, the vertical bar denotes a binary vector, each circle denotes a component
of this binary vector, and each line is a bit-pipe which connects an input bit with an
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(a) A linear-deterministic approximation of
a P2P channel with signal-to-noise ratio
SNR. This example has n =

⌈
1

2
log(SNR)

⌉
=

3 bit pipes; the last bit x14 is ‘sunk’ in noise.

(b) A symmetric linear-deterministic IC with direct
channels n11 = n22 = 2 and cross channels n12 =
n21 = 1. The interference is modeled by a mod2
sum of interfering bits.

Figure 2.5: The linear-deterministic model focuses on the interaction of signals,
while modeling noise as a clipping of the least significant bits.

output bit. In the following chapter, we are going to call each of these circles a ‘signal
level’. From this figure, it can be clearly seen that the LD-P2P channel capacity is n
bits per channel use which is a good high-SNR approximation of the capacity of the
corresponding Gaussian P2P channel given by 1

2
log(1 + SNR).

In multi-user networks, the LD model focuses on the interaction of different signals
over a linear-deterministic channel. For instance, the Gaussian IC shown in Figure
2.1(b) is approximated by an LD-IC with input-output equations

y1 = Sq−n11x1 ⊕ Sq−n21x2, (2.9)

y2 = Sq−n22x2 ⊕ Sq−n12x1, (2.10)

where for j, k ∈ {1, 2} and j 6= k, njk =
⌈
1
2
log(h2

jkP )
⌉
, q = maxjk njk, and xj and yj

are the input and output binary vectors of length q, respectively. Here, the matrix S
is a q × q down-shift matrix

S =

[
0T
q−1 0
Iq−1 0q−1

]
, (2.11)

which models the clipping of the least-significant bits of a binary vector by noise.
This LD-IC is depicted graphically in Figure 2.5(b). Note that the relative strength
of different channels is modeled by a different number of bit-pipes. The weaker the
channel (small njk), the more the bits which will be lost through the channel. In the
following chapters, figures similar to Figure 2.5 will be used to approximate different
networks. The capacity of the LD-IC was given in [BT08]. In the sequel, we are going
to need the sum-capacity of the symmetric LD-IC which is repeated in the following
lemma.

Lemma 2.3 ( [BT08]). The sum-capacity of the LD-IC with direct channels n11 =
n22 = nd and cross channels n12 = n21 = nc is given by

CΣ = min {2max{nd − nc, nc}, 2max{nd, nc} − nc, 2nd} . (2.12)

and is achieved using a deterministic version of the Han-Kobayashi scheme [HK81].

Since we study LD models in the following chapters, we are going to need the
following simple lemmas. Let x1 and x2 be two binary random vectors1 from F

q
2, for

some integer q. Additionally, let n1, n2 ≤ q. Then we have the following lemmata.

1With some abuse of notation, we will use lower-case bold letters to denote random vectors.
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Lemma 2.4. H(Sq−n1x1 ⊕ Sq−n2x2) ≤ m, where m = max{n1, n2}.

Proof. The topmost q−m bits of u = Sq−n1x1⊕Sq−n2x2 are zeros due to the down-shift.
Denote the topmost q −m components of u by v, and the remaining m components
by w = (w1, · · · , wm). Thus

H(u) = H(v,w) (2.13)

(a)
= H(w) (2.14)

(b)
=

m∑

i=1

H(wi|w1, · · · , wi−1) (2.15)

(c)

≤
m∑

i=1

H(wi) (2.16)

(d)

≤ m, (2.17)

where (a) follows since v is deterministic, (b) follows by using the chain rule, (c)
follows since conditioning does not increase entropy, and (d) follows since the Bern(1/2)
distribution maximizes the binary entropy [CT06].

Lemma 2.5. H(Sq−n1x1|Sq−n2x1) ≤ (n1 − n2)
+

Proof. If n2 ≥ n1, then all the bits of Sq−n1x1 are included in the condition Sq−n2x1,
thus the entropy is zero. Otherwise, we can write

H(Sq−n1x1|Sq−n2x2) = H(Sq−n1x1 ⊕Un1−n2Sq−n2x2|Sq−n2x2) (2.18)

≤ H(Sq−n1x1 ⊕Un1−n2Sq−n2x2) (2.19)

where U is an up-shift matrix. Denote Sq−n1x1⊕Un1−n2Sq−n2x2 by u. Then the vector
u = (u1, · · · , uq) has only m = n1 − n2 unknown components since the remaining
components are all zero. The rest of the proof is the same as steps (b), (c), and (d) in
the proof of Lemma 2.4.

2.5 Lattice Codes

Translating results from the language of the LD model briefly explained above to the
language of Gaussian channel usually requires using lattice codes. For this reason, and
due to their desirable linear structure, lattice codes [Loe97] have witnessed increasing
usage in wireless networks [SJV+08, BPT10]. Besides being capacity achieving in
the P2P channel [EZ04], they can also be used for computation, i.e., decoding linear
combinations of codewords [NG11], which makes them perfect candidates for relaying
scenarios. The following lattice preliminaries will be required in the sequel. For more
details on this subject, the reader is referred to [NG11].

An n-dimensional lattice Λ is a subset of Rn such that

λ1, λ2 ∈ Λ ⇒ λ1 + λ2 ∈ Λ, (2.20)

i.e., it is an additive subgroup of Rn. The fundamental Voronoi region V(Λ) of Λ is the
set of all points in R

n whose distance to the origin is smaller that that to any other
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Figure 2.6: An example of a two dimensional nested-lattice consisting of a coarse
lattice (bold) nested in a fine lattice (dashed). The small dots are points in R

2

which belong to the fine lattice, while the big dots are those that belong to the
coarse lattice.

λ ∈ Λ. Thus, by quantizing points in R
n to their closest lattice point, all points in

V(Λ) are mapped to the zero vector.
In this work, we need nested-lattice codes. Two lattices are required for nested-

lattice codes, a coarse lattice Λc which is ‘nested’ in a fine lattice Λf , i.e., Λc ⊂ Λf (see
Figure 2.6). We denote a nested-lattice code using a fine lattice Λf and a coarse lattice
Λc by the pair (Λf ,Λc). The codewords are chosen as the fine lattice points λ ∈ Λf

that lie in V(Λc), i.e., the nested-lattice codewords are λ ∈ Λf ∩ V(Λc). The number
of fine lattice points that lie in V(Λc) is given by the ratio of the volume of V(Λc) to
V(Λf), which consequently determines the rate R of the code. The power of the code
is determined by the second moment of the V(Λc). It is shown that a nested-lattice
code achieves the capacity of the point-to-point AWGN channel [EZ04].

In the sequel, we are going to need the following result from [NWS07]. Suppose that
two nodes A and B, with messages mA andmB, respectively, where both messages have
rate R, are given. The two nodes use the same nested-lattice codebook (Λf ,Λc) with
second moment P , to encode their messages into codewords λA and λB, respectively,
of length n. The nodes then construct their transmit signals xn

A and xn
B as

xn
A = (λA − dA) mod Λc (2.21)

xn
B = (λB − dB) mod Λc, (2.22)

where dA and dB are n-dimensional dither vectors [NG11] uniformly distributed over
V(Λc), known at the relay and nodes A and B2. A relay node receives

ynr = xn
A + xn

B + znr (2.23)

where znr is an N (0, σ2). The following lemmata hold.

Lemma 2.6 ( [NWS07]). The relay can decode the sum (λA + λB) mod Λc from ynr
reliably as long as R ≤ C+

(
P
σ2 − 1

2

)
.

2In the sequel, we will always use λ as a nested-lattice codeword and d as a random dither. Both
λ and d are vectors of length n which can be inferred from the context.
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Lemma 2.7 ( [NWS07]). If node A knows (λA + λB) mod Λc and λA, then it can
extract λB and hence also mB.

These lemmata indicate that nested-lattice codes have the property of linearity.
That is, the sum of two nested-lattice codes (modΛc) is also a nested-lattice code, and
hence can be decoded. This is in contrast to random codes which do not possess this
property. This property make nested-lattice codes an appropriate choice for network
coding [ACLY00] over wireless networks.



Chapter 3

Thesis Objectives

Various metrics can be used to quantify the gain that can be achieved by deploying
a relay in a Gaussian IC. One such metric is the DoF. In [CJ09], it was shown that
relaying, among other factors, can not increase the DoF of an X-network [MAMK08,
JS08], which is an interference network where each transmitter has two independent
messages, each of which is dedicated to one receiver. As the IC is a special case of the
X-channel, relaying also does not increase its DoF. This is a relatively pessimistic result;
it basically says that the relay does not have an impact on the asymptotic performance
of the channel at high SNR. However, we know that relaying can indeed increase the
capacity of the network. In order to quantify this increase, we have to resort to other
metrics than the DoF. One can indeed study the capacity of the IRC directly and
quantify the gain in bits per channel use. However, recalling that even the capacity of
the IC without relay and the capacity of the P2P relay channel without interference
are both unknown, aiming for the capacity of the IRC can be quite difficult. Thus, it
is reasonable to aim for a metric which is coarser than capacity, but also finer than
DoF. A suitable such metric is the GDoF, whose characterization can be seen as an
intermediate step between the DoF characterization and the capacity characterization.
A GDoF characterization thus progresses our knowledge on the IRC one step further
than DoF, and paves the road towards the ultimate goal which is the capacity of the
network.

3.1 Problem Statement

In order to characterize the GDoF of the IRC, one has to identify the optimal relaying
strategy1. For this relaying strategy, the achievable rate has to be quantified leading
to a GDoF lower bound. Then this lower bound has to be compared with GDoF upper
bounds. If the bounds coincide, then the GDoF characterization is obtained.

Thus the main problem that is studied in this thesis can be summarized as follows:

Identifying optimal relaying strategies for the IRC.

This problem is three-fold, and requires answering several questions that can only
be answered in conjunction with one another. While identifying efficient relaying
strategies requires proposing coding schemes and describing their construction, judging
their optimality can only be done by quantifying their achievable rates and comparing
with tight upper bounds. On the other hand, tight upper bound can only be identified
by comparing them with the achievable rates of optimal strategies. One can divide
the problem in general into three steps:

1. Deriving capacity upper bounds.

1Optimal here refers to GDoF-optimality in the Gaussian network, and sum-capacity optimality
in the linear-deterministic one.

15
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2. Deriving capacity lower bounds by proposing transmit strategies and calculating
their achievable rates.

3. Comparing upper and lower bounds.

If the upper and lower bounds coincide, then the transmit strategy can be classified
as being optimal. Otherwise, one or both bounds have to be tightened.

3.2 Motivation

By observing past results on the IRC (see Section 2.2), one can note that despite
all preceeding efforts, the optimal relaying strategy is still open. The past results
focused on improving common classical strategies, such as using rate splitting with
decode-forward [SE07a], or using generalized compress-forward [TY11], etc. A unified
strategy which can be optimal for a wide range of paramters is not known.

Solving this problem would ease the way to characterizing the capacity of the IRC,
or its approximate capacity within a gap of a constant number of bits. Knowing this
capacity, we can know the impact of installing a relay node in a wireless interference
network which suffers from coverage problems, bad channel quality, and high inter-
ference. Assume that some specified target rates are required to be achieved in this
network. Then, knowing the capacity of the IRC allows us to adjust some parameters
at the relay in order to achieve this target rate, such as the relay power and the relay
location. Without knowing the capacity, one can still achieve some improvement by
installing a relay node, but reliable communication can not be guaranteed. Further-
more, knowing the capacity we could decide whether installing a relay node is a good
solution for a given problem or otherwise, where different cooperative strategies would
be sought.

From a theoretical point of view, identifying optimal relaying strategies for the IRC
might help us to develop new coding strategies for networks whose GDoF is still to be
characterized, such as IC’s with multiple relays or IRC’s with more than 2 users.

The partially connected IRC which we also study in this thesis, the so-called wire-
less butterfly network (BFN) is studied with the following motivation. Unlike the IC
where information can only flow from the transmitter to its desired receiver through
the direct channel joining the two nodes, in the IRC information can also flow through
the relay. From this point of view, the optimal scheme for the IRC is expected to be
a mixture of the optimal scheme for the IC and optimal relaying strategies. In order
to separate these two elements, we can consider special cases of the IRC. As our main
goal is to study the usefulness of a relay for interference management and its impact
on the network capacity, it would be helpful to focus on an IRC where the effect of
relaying is magnified in comparison to other effects in the network. To do this, we
can study the BFN which is an IRC whose direct channels are zero, and therefore,
information can only flow via the relay. We expect that studying the BFN will ease
the way to understanding the fully-connected IRC beyond the GDoF characterization.

The linear-deterministic approximation of the Gaussian IRC is also studied with
the following motivation. First, notice the resemblance between Lemmas 2.1 and 2.3
on pages 7 and 11, respectively. This resemblance suggests that in order to study the
GDoF of a network, one can start with the simpler linear-deterministic approximation
of the network, and then use the obtained insights to derive the GDoF of the Gaussian
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network. Therefore, we study the linear-deterministic approximation of the IRC with
the aim of finding optimal relaying strategies for the Gaussian IRC, which is indeed
accomplished in this thesis.

3.3 Contribution and Organization

In this thesis, we show that a relaying strategy which combines rate-splitting and
nested-lattice coding [Loe97,EZ04] at the sources, compute-forward [NG11] at the relay,
and successive decoding at the destinations can achieve the GDoF of IRC for a wide
range of channel parameters. Unlike the classical relaying strategies, in this strategy
named compute-forward (CF) for short, the relay computes a function of the transmit
signals and forwards it to the receivers. This is similar to network coding [ACLY00]
except that the relay does not have to construct the network code, but the physical
channel takes care of this. In other words, the relay decodes a network code which
is constructed by the channel. The receivers decode the relay signal and use it for
interference cancelation. This reduces the impact of interference from the undesired
transmitter, and allows the transmitter to send at higher rates.

We study this relaying strategy for the IRC in Chapter 4. We characterize the
sum-capacity of the linear-deterministic IRC and the GDoF of the Gaussian IRC when
the source-relay channel is weaker than the cross channel. For this characterization,
some new sum-capacity upper bounds for the IRC are developed, and also our novel
CF strategy is described. The performance of this new strategy is compared with
some classical strategies. In order to simplify the exposition, we restrict ourselves to
the study of the symmetric IRC. We briefly comment on the asymmetric case in the
conclusion (Chapter 6).

In Chapter 5, the wireless full-duplex BFN is studied. In the half-duplex BFN
studied in [AH09], the half-duplex constraint allows orthogonal transmissions by Tx 1,
Tx 2, and the relay (in different time slots) in such a way that interference is avoided. In
the full-duplex case which we consider, all nodes can send at the same time and hence
their signals interfere. We study the capacity of the full-duplex BFN. As expected the
study of this network lead to the development of a new relaying strategy for the IRC.
The performance of this new strategy, named ‘cooperative interference neutralizaton’
(CN), is studied in this chapter. In this strategy, each transmitter sends two signals:
a ‘present’ signal destined to the receivers, and a ‘future’ one destined to the relay.
The purpose of the future signal is feeding the relay with the signal to be decoded at
the receivers in the next transmission, which allows the relay to operate as a cognitive
relay [SVJS08]. The relay performs computation of a linear function of the transmit
signals, and forwards a signal designed for interference neutralization. Again, the task
of the relay in the CN strategy is also interference cancellation just as in the CF strategy
above. As a result of Chapter 5, the capacity region of the linear-deterministic BFN
is characterized. The proposed strategy is also extended to the Gaussian BFN.

In the same network, we study the impact of another form of relaying from the relay
to the sources (in addition to the destinations) on the capacity of the network. This
relaying can be interpreted also as relay-source feedback. We assume that there exist
a link from the relay to the sources which establishes a bi-directional relay channel
between the two transmitters and the relay as in [RW05,KDMT08,WNPS10,AAT09].
It is shown that this type of feedback provides a net gain in the sum-capacity of the
network.
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The results of the thesis are finally summarized in Chapter 6.



Chapter 4

The Interference Relay Channel

In this chapter, we study the sum-capacity of the interference relay channel (Figure
2.3(a) on page 9). We propose a novel transmission scheme, and show that it is optimal
under some conditions. We start by analyzing the linear-deterministic approximation
of the IRC, for which we characterize the sum-capacity. Then, we extend our results for
the Gaussian IRC where we approximate the capacity by using the generalized degrees-
of-freedom framework. Before we proceed with the analysis of the sum-capacity, let
us start with a formal definition of the problem at hand.

4.1 System Model of the Interference Relay Chan-

nel (IRC)

Consider the IRC shown in Figure 4.1. In this network, transmitter j (Tx j) has a
message mj which it needs to send to receiver j (Rx j), j ∈ {1, 2}. This message is a
realization of a random variable Mj which is uniformly distributed over the message
set

Mj = {1, · · · , 2⌊nRj⌋}. (4.1)

For reliable communication, the message has to be properly encoded. Thus, the trans-
mitter encodes mj into an n-symbol codeword xn

j = fj(mj), where the ith component
of xn

j , i.e., xj(i), i ∈ {1, · · · , n}, is a realization of a real valued random variable Xj.
This random variable must satisfy a power constraint given by

E[X2
j ] ≤ Pj, j ∈ {1, 2}. (4.2)

Then this codeword is transmitted through the channel. At time instant i, the relay
receives

yr(i) = h1rx1(i) + h2rx2(i) + zr(i). (4.3)

Here, zr(i) is a realization of an i.i.d. N (0, σ2
r) noise, and hjr ∈ R is the channel

coefficient from transmitter j to the relay. Recall that the task of the relay is to
support the transmitters in the communication. In general, the relay can send any
processed version of what it receives. Thus, keeping in mind that the relay is causal,
the relay constructs xr(i) using an encoding function fri as follows

xr(i) = fri(y
i−1
r ). (4.4)

In general, xr(i) can be modeled by a random variable Xr, which must also satisfy a
power constraint given by

E[X2
r ] ≤ Pr. (4.5)

19
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Figure 4.1: The 2-user Gaussian interference relay channel (G-IRC).

As a result, Rx j receives

yj(i) = hjjxj(i) + hkjxk(i) + hrjxr(i) + zj(i), j 6= k, (4.6)

at time instant i, where hjj, hkj, and hrj represent the real valued channel coefficients
from Tx j, Tx k, and the relay to Rx j, respectively, as shown in Figure 4.1, and zj(i)
is a realization of an i.i.d. N (0, σ2

j ) noise.
In order to decode mj , Rx j collects n received symbols which correspond to a

complete length of a codeword. Then, it uses a decoder gj to decode ynj to m̂j , i.e.,
m̂j = gj(y

n
j ). A choice of message sets Mj, encoding functions, and decoding functions

induces an error probability Pj given by

Pj = Prob (m̂j 6= mj) . (4.7)

The overall transmission scheme can be thus characterized by the tuple (n,R1, R2,Pe)
referred to as a code, where Pe = maxj Pj .

We say that a rate pair (R1, R2) is achievable if there exists an (n,R1, R2,Pe) code
for which Pe → 0 as n → ∞ [CT06]. That is, for this rate pair, reliable communication
can be guaranteed by using long codewords. The set of all achievable rate pairs is
known as the capacity region, and henceforth denoted C, and the sum-capacity CΣ is
defined as the maximum achievable sum-rate, i.e.,

CΣ = max
(R1,R2)∈C

RΣ. (4.8)

where RΣ = R1 +R2. This quantity, CΣ, is the main focus of the rest of the chapter.

4.1.1 The Symmetric Gaussian IRC (G-IRC)

The general Gaussian IRC can always be normalized in such a way that P1 = P2 =
Pr = P and σ2

1 = σ2
2 = σ2

r = 1 (see channel normalization in [Car78]). Even after
this normalization, the number of parameters in the general Gaussian IRC is large.
Thus, we resort to a symmetric setup for simplicity of exposition. This simplification
reduces the number of parameters, while preserving the main features of the IRC. In
the symmetric scenario we have

h11 = h22 = hd (direct channel), (4.9)

h12 = h21 = hc (cross channel), (4.10)

hr1 = hr2 = hr (relay-destination channel), (4.11)

h1r = h2r = hs (source-relay channel). (4.12)
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Figure 4.2: A linear-deterministic IRC with (nd, nc, nr, ns) = (2, 1, 3, 3). Only Rx 1
is emphasized for clarity. Here, Rx 1 observes a bit from the relay on the topmost
level, the sum of a bit from the relay and one from Tx 1 on the second level, and
the sum of three bits from the transmitters and the relay at the lowermost level.

The powers of the desired signal, the interfering signal, and the relay signal as
observed at the receivers of the symmetric G-IRC are specified by the quantities hd,
hc, and hr, and the power of the received signal at the relay is specified by hs. This
leaves us with four parameters which completely characterize the network.

4.1.2 The linear-deterministic IRC (LD-IRC)

We introduce here a special case for the IRC described in the previous section. Namely,
the linear-deterministic (LD) channel (see Section 2.4) that is by now customarily used
to approximate a Gaussian noise network at high SNR. In the LD-IRC, the channel
strength is modeled by a positive integer quantity, which specifies the number of ‘bit-
pipes’ between a transmitter and a receiver. For instance, the channel from Tx 1 to
Rx 1 which is characterized by hd in the Gaussian case, is modeled by nd bit-pipes in
the LD case, where nd = ⌈(1/2) log(h2

dP )⌉. All the remaining channels can be modeled
similarly. Thus

nℓ =

⌈
1

2
log(h2

ℓP )

⌉
, ℓ ∈ {d, c, r, s}. (4.13)

These integer quantities specify the number of bit-pipes between the transmitters and
the receivers of the LD-IRC as shown in Figure 4.2. Each transmitter can send one bit
on each such bit-pipe. The receivers receive a mod2 sum of several bits indicated by
the bit-pipes arriving at this receiver. Similarly at the relay. Hence, the input-output
relations of the LD-IRC can be written as

yr = Sq−nsx1 ⊕ Sq−nsx2, (4.14)

y1 = Sq−ndx1 ⊕ Sq−ncx2 ⊕ Sq−nrxr, (4.15)

y2 = Sq−ncx1 ⊕ Sq−ndx2 ⊕ Sq−nrxr, (4.16)

where the vectors x1,x2,xr ∈ F
q
2 are the transmit signals of Tx 1 and 2 and the relay,

respectively, and y1,y2,yr ∈ F
q
2 are the received signals at Rx 1 and 2 and the relay,

respectively. Here q is defined as q = max{nd, nc, nr, ns} and S is the q× q down-shift
matrix

S =

[
0T
q−1 0
Iq 0q−1

]
. (4.17)
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Since the LD model is a high SNR approximation, the noise is neglected. This
is done in order to focus on the interaction of different signals (interference) in the
absence of noise, which provides a good approximation of the network in the so-called
‘interference-limited regime’. Similar to the Gaussian case, the LD-IRC is characterized
by four quantities, nd, nc, nr, and ns. These quantities capture the interaction between
the signals taking their different power levels into account.

In the following sections, we will start with analyzing the sum-capacity of the LD-
IRC which is easier to analyze due to its deterministic nature, and then we will extend
the results to the Gaussian case using the intuitions obtained from the analysis of the
LD-IRC.

4.2 On the Sum-capacity of the LD-IRC

The sum-capacity of the LD-IRC is studied in this section. We derive sum-capacity
bounds that characterize the sum-capacity of the network as long as ns ≤ nc, i.e.,
the source-relay channel is weaker than the cross-channel. The main result can be
summarized in the following theorem.

Theorem 4.1. The sum-capacity of the LD-IRC with ns ≤ nc is given by

CΣ = min





2max{nd, nr}
2max{nd, ns}

max{nd, nc, nr}+max{nd, nc} − nc

2max{nd, nc} − nc + ns

2max{nc, nr, nd − nc}
2max{nc, nd + ns − nc}





. (4.18)

Recall that the sum-capacity of the LD-IC is given by (see Lemma 2.3 on page 11)

CΣ = min





2nd

2max{nd, nc} − nc

2max{nc, nd − nc}



 . (4.19)

By comparing (4.18) and (4.19), the sum-capacity gain due to the relay is obvious.
More precisely, the first two lines in (4.18) are larger than the first line in (4.19), the
third and fourth lines in (4.18) are larger than the second line in (4.19), and the last
two lines in (4.18) are larger than the last one in (4.19). An example showing the
sum-capacity gain is given in Figure 4.3. Interestingly, in this example even though ns

is very weak compared to the other channels, the relay still increases the sum-capacity
compared to the IC.

The converse and the achievability of Theorem 4.1 are given in Sections 4.2.1 and
4.2.2, respectively.

4.2.1 Sum-capacity Upper Bounds

Since the IRC has been studied previously, several upper bounds for its capacity exist
(cf. [MDG12, TY11, CJ09]). For the purpose of this section however, only the cut-
set bounds [CT06] are needed since they are necessary for the pursued sum-capacity
characterization. We start by giving the cut-set bounds for the LD-IRC.
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nc

C
Σ

ns nr0
nd nd

2nd

2nd

Figure 4.3: The sum-capacity of the LD-IRC with nr = 1.1nd, ns = 0.2nd versus
the interference parameter nc. The sum-capacity of the LD-IC is also shown (dotted)

for comparison. The shaded area where nc < ns is not characterized.

4.2.1.1 Cut-set Bounds

The cut-set bound [CT06] can be summarized as follows. For a general network con-
sisting of a set of nodes T with independent messages at each node, an achievable rate
tuple must satisfy

R(S → Sc) ≤ I(X(S); Y (Sc)|X(Sc)), (4.20)

for some joint distribution on the inputs, where S ⊂ T , Sc is the complement of S,
and R(S → Sc) indicates the sum of the rates from the source nodes in S to the
destination nodes in Sc. The cut-set bound can be applied to the LD-IRC to obtain
the following bounds.

Lemma 4.1 (Maric et al. [MDG12]). The achievable rates in the LD-IRC are bounded
by the region

R1 ≤ min{I(x1,xr;y1|x2), I(x1;y1,yr|x2,xr)} (4.21)

R2 ≤ min{I(x2,xr;y2|x1), I(x2;y2,yr|x1,xr)} (4.22)

R1 +R2 ≤ min{I(x1,x2,xr;y1,y2), I(x1,x2;y1,y2,yr|xr)}, (4.23)

maximized over all distributions of the binary vectors x1, x2, and xr with x1 and x2

independent.

The individual rate constraints provided by the cut-set bounds, i.e., (4.21) and
(4.22), are needed to obtain the first two lines in (4.18) given in the following theorem.

Theorem 4.2. The sum-capacity of the LD-IRC is upper bounded by

CΣ ≤ 2min{max{nd, nr},max{nd, ns}}. (4.24)

Proof. Consider the first term in the cut-set bounds (4.21). This can be bounded as
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follows

R1 ≤ I(x1,xr;y1|x2) (4.25)

= H(y1|x2)−H(y1|x1,x2,xr) (4.26)

(a)
= H(Sq−ndx1 ⊕ Sq−nrxr|x2) (4.27)

(b)

≤ H(Sq−ndx1 ⊕ Sq−nrxr) (4.28)

(c)

≤ max{nd, nr}, (4.29)

where (a) follows since y1 is a deterministic function of x1, x2, and x3, (b) follows
since conditioning does not increase entropy, and (c) follows from Lemma 2.4 (page
12). Using similar steps, the second term in (4.21) can be bounded as follows

R1 ≤ I(x1;y1,yr|x2,xr) (4.30)

= H(y1,yr|x2,xr)−H(y1,yr|x1,x2,xr) (4.31)

= H(Sq−ndx1,S
q−nsx1|x2,xr) (4.32)

≤ H(Sq−ndx1,S
q−nsx1) (4.33)

≤ max{nd, ns}. (4.34)

Similarly, we can get the same bounds for R2, which proves the statement of the
theorem.

For the purpose of this work, more bounds are required in addition to the cut-set
bounds in Theorem 4.2. In what follows, we introduce some new upper bounds that
are instrumental for the characterization of the sum-capacity of the LD-IRC.

4.2.1.2 New Upper Bounds

In this subsection, we derive new upper bounds for the sum-capacity of the LD-IRC
using genie-aided approaches and cooperation approaches. The following notation is
used

dn
j = Sq−ndxn

j , cnj = Sq−ncxn
j , snj = Sq−nsxn

j . (4.35)

The upper bounds we derive next are general, in the sense that they do not only apply
for the case where ns ≤ nc. They hold for arbitrary nd, nc, nr, and ns.

Theorem 4.3. The sum-capacity of the LD-IRC is upper bounded by

CΣ ≤ max{nd, nc, nr}+max{nd, nc, ns} − nc. (4.36)

Proof. Consider an enhanced (genie-aided) LD-IRC where a genie gives xn
1 , y

n
r , and

cn2 to Rx 2 as side information. This enhanced channel has a larger capacity than the
original LD-IRC, and hence, the capacity of the former serves as an upper bound for
the capacity of the latter. Starting with Fano’s inequality [CT06], we have

n(RΣ − εn) ≤ I(xn
1 ;y

n
1 ) + I(xn

2 ;y
n
2 ,x

n
1 ,y

n
r , c

n
2 ) (4.37)

(a)
= I(xn

1 ;y
n
1 ) + I(xn

2 ;y
n
2 ,y

n
r , c

n
2 |xn

1 ) (4.38)

= I(xn
1 ;y

n
1 ) +H(yn

2 ,y
n
r , c

n
2 |xn

1 )−H(yn
2 ,y

n
r , c

n
2 |xn

1 ,x
n
2), (4.39)
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where εn → 0 as n → ∞, and where (a) follows since xn
1 and xn

2 are independent. Now
let us consider each term in (4.39) separately. The last term vanishes since

H(yn
2 ,y

n
r , c

n
2 |xn

1 ,x
n
2) = H(yn

r , c
n
2 |xn

1 ,x
n
2 ) +H(yn

2 |xn
1 ,x

n
2 ,y

n
r , c

n
2 ) = 0. (4.40)

Using the chain rule of entropy, the second term in (4.39) can be rewritten as shown
below

H(yn
2 ,y

n
r , c

n
2 |xn

1 ) =
n∑

i=1

H(y2(i),yr(i), c2(i)|xn
1 ,y

i−1
2 ,yi−1

r , ci−1
2 ). (4.41)

Note that given yi−1
r , xi

r can be constructed (see (4.4)). Thus, the contribution of xi
r

can be subtracted from yi
2. Moreover, given xn

1 , its contribution can be subtracted
from yi

2 and yi
r. Thus,

H(yn
2 ,y

n
r , s

n
2 |xn

1 ) =
n∑

i=1

H(d2(i), s2(i), c2(i)|xn
1 ,d

i−1
2 , si−1

2 , ci−1
2 ) (4.42)

=

n∑

i=1

[
H(c2(i)|xn

1 ,d
i−1
2 , si−1

2 , ci−1
2 ) +H(d2(i), s2(i)|xn

1 ,d
i−1
2 , si−1

2 , ci2)
]

(b)

≤
n∑

i=1

[
H(c2(i)|xn

1 ,d
i−1
2 , si−1

2 , ci−1
2 ) +H(d2(i), s2(i)|c2(i))

]
(4.43)

where dn
2 and sn2 are defined in (4.35) and (b) follows since conditioning does not

increase entropy. Further, the first term in (4.39) can be bounded as follows

I(xn
1 ;y

n
1 ) = H(yn

1 )−H(yn
1 |xn

1 ) (4.44)

=

n∑

i=1

[
H(y1(i)|yi−1

1 )−H(y1(i)|xn
1 ,y

i−1
1 )
]

(4.45)

(c)

≤
n∑

i=1

[
H(y1(i))−H(y1(i)|xn

1 ,y
i−1
1 , si−1

2 ,di−1
2 )
]

(4.46)

=

n∑

i=1

[
H(y1(i))−H(c2(i)|xn

1 , c
i−1
2 , si−1

2 ,di−1
2 )
]

(4.47)

where (c) follows since conditioning does not increase entropy. Observing that the
second term in (4.47) is equivalent to the first term in (4.43), we now substitute (4.40),
(4.43), and (4.47) in (4.39) to obtain

n(RΣ − εn) ≤
n∑

i=1

H(y1(i)) +

n∑

i=1

H(d2(i), s2(i)|c2(i)). (4.48)

From Lemma 2.4 (page 12), we get

n∑

i=1

H(y1(i)) ≤ nmax{nd, nc, nr}. (4.49)

On the other hand, assume that nd ≥ ns, then

H(d2(i), s2(i)|c2(i)) = H(d2(i)|c2(i)) +H(s2(i)|c2(i),d2(i)) (4.50)

= H(d2(i)|c2(i)) (4.51)

≤ (nd − nc)
+ (4.52)
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Figure 4.4: A cooperative IC resulting from the cooperation between the relay and
Rx 1.

by Lemma 2.5 (page 12), and if ns ≥ nd, then similarly we have

H(d2(i), s2(i)|c2(i)) ≤ (ns − nc)
+. (4.53)

Thus, we can write

H(d2(i), s2(i)|c2(i)) ≤ max{(nd − nc)
+, (ns − nc)

+} = max{nd, ns, nc} − nc. (4.54)

Substituting (4.49) and (4.54) in (4.48), we obtain

n(RΣ − εn) ≤ n [max{nd, nc, nr}+max{nd, ns, nc} − nc] . (4.55)

By dividing by n and letting n → ∞, we get our desired upper bound.

Notice that if we set ns = nr = 0, then this bound reduces to the one in the second
line in (4.19) which is known as the Z-bound of the IC (or the one sided IC) [ETW08].

Remark 4.1. If we specialize the upper bound for the X-channel with relays given
in [CJ09] to the LD-IRC, we obtain a bound which is a special case of the one in
Theorem 4.3. Namely, the two bounds become the same if nc ≥ nd.

Alternatively, Theorem 4.3 can be shown using a cooperative approach1, i.e., by
allowing some nodes to fully cooperate thus forming a ‘super-node’. Then, we treat
the resulting network as an IC with general cooperation [Tun12, YT11b]. To prove
Theorem 4.3 using this cooperative approach, let the relay and Rx 1 fully cooperate.
The resulting network has four nodes as shown in Figure 4.4. In this case, the super-
node consisting of the relay and Rx 1 receives (y1,yr). If we substitute Ȳ1 = Ȳ2 =
X̄2 = ∅, X̄1 = xr, and Y1 = (y1,yr) in the bound (2.7) in Lemma 2.2 (page 8), we can
write

RΣ ≤ I(x1;y1,yr|y2,x2,xr) + I(x1,x2,xr;y2) (4.56)

= H(y1,yr|y2,x2,xr)−H(y1,yr|y2,x2,xr,x1) +H(y2)−H(y2|x1,x2,xr)

≤ H(y1,yr|y2,x2,xr) +H(y2). (4.57)

where the last step follows since y1, y2, and yr are deterministic functions of x1, x2,
and xr. Now, this bound can be evaluated using the same steps as in (4.49) and (4.54)
to obtain

RΣ ≤ max{nd, nc, nr}+max{nd, ns, nc} − nc. (4.58)

In the next theorem, we state another upper bound for the sum-capacity of the
LD-IRC and we prove it using the cooperative approach.

1The cooperative approach was used in [CJ09] to obtain an upper bound for the X-channel with
relays.
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Theorem 4.4. The sum-capacity of the LD-IRC is upper bounded by

CΣ ≤ 2max{nd, nc} − nc + ns. (4.59)

Proof. Let the relay and Rx 1 fully cooperate to form an IC with uni-directional
cooperation between the super-node (relay,Rx 1) and Rx 2 (cf. Figure 4.4). Using the
bound (2.8) in Lemma 2.2 on page 8, we can write

RΣ ≤ I(x2;y2|y1,yr,x1,xr) + I(x1,x2;y1,yr|xr) (4.60)

= H(y2|y1,yr,x1,xr)−H(y2|y1,yr,x1,xr,x2) +H(y1,yr|xr) (4.61)

−H(y1,yr|xr,x1,x2) (4.62)

= H(y2|y1,yr,x1,xr) +H(y1,yr|xr) (4.63)

where the last step follows since y1, y2, and yr are deterministic functions of x1, x2,
and xr. We proceed as follows

RΣ ≤ H(y2|y1,yr,x1,xr) +H(yr|xr) +H(y1|xr,yr) (4.64)

(a)

≤ H(d2|c2,yr,x1,xr) +H(s1 ⊕ s2|xr) +H(d1 ⊕ c2|xr,yr) (4.65)

(b)

≤ H(d2|c2) +H(s1 ⊕ s2) +H(d1 ⊕ c2) (4.66)

(c)

≤ (nd − nc)
+ + ns +max{nd, nc} (4.67)

= ns + 2max{nd, nc} − nc (4.68)

where (a) follows since H(X|Y ) = H(X − f(Y )|Y ) for some function f , (b) follows
since conditioning does not increase entropy, and (c) from Lemmata 2.4 and 2.5 on
page 8.

Remark 4.2. The same bound can be derived using a genie-aided approach where we
give yn

r to Rx 1 and (yn
r , m1) to Rx 2 as side information [CS12].

The next theorem presents another sum-capacity upper bound which is inspired
from the weak interference upper bound of the IC in [ETW08], but appropriately
adapted for the IRC. It uses the novel idea of giving xr(1) (only the first instant) to
the receivers as side information. Note that xr(1) is independent of the messages m1

and m2 due to the causality of the relay. This fact is used in the proof of the Theorem
4.5. But before we proceed to this new theorem, we need to present the following
lemma.

Lemma 4.2. The following statement holds for an LD-IRC

H(cn1 |xr(1))−H(yn
2 |xr(1), c

n
2 ,x

n
2) = 0 if nc ≥ ns. (4.69)

Proof. Let us first write

H(yn
2 |xr(1), c

n
2 ,x

n
2 ) = H(yn

2 |xr(1),x
n
2) (4.70)

=

n∑

i=1

H(y2(i)|xr(1),x
n
2 ,y

i−1
2 ). (4.71)
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Now, we use the given information in the condition (xr(1),x
n
2 ,y

i−1
2 ) to start a recursion

which produces (xr(2), · · · ,xr(i)) as follows. First, we extract (xr(1),x2(1),y2(1))
from (xr(1),x

n
2 ,y

i−1
2 ). Then we can use this information to calculate c1(1) since

c1(1) = y2(1)⊕ Sq−ndx2(1)⊕ Sq−nrxr(1). (4.72)

Then, since nc ≥ ns, we can extract s1(1) = Sq−nsx1(1) from c1(1). Finally, xr(2) can
be obtained from s1(1) and x2(1) since xr(2) is a function of s1(1) ⊕ s2(1). At this
stage, we know (xr(2),x2(2),y2(2)). This information is used to construct xr(3). This
recursion is continued until xr(i) is produced. Thus, we can write

H(yn
2 |xr(1), c

n
2 ,x

n
2 ) =

n∑

i=1

H(y2(i)|xi
r,x

n
2 ,y

i−1
2 ) (4.73)

(a)
=

n∑

i=1

H(c1(i)|xi
r,x

n
2 , c

i−1
1 ) (4.74)

(b)
=

n∑

i=1

H(c1(i)|xr(1),x
n
2 , c

i−1
1 ) (4.75)

= H(cn1 |xr(1),x
n
2) (4.76)

(c)
= H(cn1 |xr(1)). (4.77)

where (a) follows since H(X|Y ) = H(X − f(Y )|Y ) for some function f , (b) follows
since (xr(2), · · · ,xr(i)) can be constructed from (xr(1),x

n
2 , c

i−1
1 ) as shown above, and

(c) follows since xn
1 , xn

2 , and xr(1) are mutually independent. This completes the
proof.

Now we can derive our new upper bound where Lemma 4.2 is exploited.

Theorem 4.5. The achievable sum-rate of the LD-IRC is upper bounded by

CΣ ≤ 2max {nc, nr, nd −max{nc, ns}}+ 2max{nc, ns} − 2nc. (4.78)

Note that for small nr and ns, this bound has the same behavior as sum-capacity
of the IC with weak interference [ETW08,MK09, SKC09, AV09]. In fact, it will be
shown in the next section that treating the LD-IRC as an IC is optimal in some cases.

Proof. First, assume that nc ≥ ns. A genie gives the signals (cn1 ,xr(1)) and (cn2 ,xr(1))
to receivers 1 and 2, respectively, where cn1 and cn2 are as defined in (4.35). Then, by
using Fano’s inequality, we can write

n(RΣ − εn) ≤ I(xn
1 ;y

n
1 , c

n
1 ,xr(1)) + I(xn

2 ;y
n
2 , c

n
2 ,xr(1)) (4.79)

(a)
= I(xn

1 ; c
n
1 |xr(1)) + I(xn

1 ;y
n
1 |xr(1), c

n
1) + I(xn

2 ; c
n
2 |xr(1)) (4.80)

+ I(xn
2 ;y

n
2 |xr(1), c

n
2) (4.81)

= H(cn1 |xr(1))−H(cn1 |xr(1),x
n
1 ) +H(yn

1 |xr(1), c
n
1) (4.82)

−H(yn
1 |xr(1), c

n
1 ,x

n
1 ) +H(cn2 |xr(1))−H(cn2 |xr(1),x

n
2 ) (4.83)

+H(yn
2 |xr(1), c

n
2)−H(yn

2 |xr(1), c
n
2 ,x

n
2 ), (4.84)



Section 4.2 � On the Sum-capacity of the LD-IRC 29

with εn → 0 as n → ∞, where (a) follows from the independence between xn
1 and xn

2

on the one hand, and xr(1) on the other hand (due to causality (4.4)). Using Lemma
4.2, and since nc ≥ ns by assumption, we obtain

H(cn1 |xr(1))−H(yn
2 |xr(1), c

n
2 ,x

n
2 ) = 0 (4.85)

H(cn2 |xr(1))−H(yn
1 |xr(1), c

n
1 ,x

n
1 ) = 0. (4.86)

Additionally, since cn1 and cn2 are deterministic functions of xn
1 and xn

2 , respectively,
then

H(cn1 |xr(1),x
n
1) = H(cn2 |xr(1),x

n
2 ) = 0. (4.87)

Thus, we can write our upper bound as

n(RΣ − εn) ≤ H(yn
1 |xr(1), c

n
1) +H(yn

2 |xr(1), c
n
2). (4.88)

Consider the first term. This can be bounded as follows

H(yn
1 |xr(1), c

n
1) ≤ H(yn

1 |cn1) (4.89)

=

n∑

i=1

H(y1(i)|cn1 ,yi−1
1 ) (4.90)

≤
n∑

i=1

H(y1(i)|c1(i)), (4.91)

where the last step follows since conditioning does not increase entropy. Knowing c1(i),
the contribution of the first nc components of x1(i) in y1(i) can be subtracted, leaving
(nd−nc)

+ components unknown. As a result, y1(i) has max{nc, nr, nd−nc} unknown
components, whose entropy can be maximized by the Bern(1/2) distribution to obtain

H(yn
1 |cn1 ,xr(1)) ≤ nmax{nc, nr, nd − nc} (4.92)

and similarly

H(yn
2 |cn2 ,xr(1)) ≤ nmax{nc, nr, nd − nc}. (4.93)

Substituting (4.92) and (4.93) in (4.88), dividing by n, and then letting n → ∞, we
get

RΣ ≤ 2max{nc, nr, nd − nc}. (4.94)

Now we consider the case where nc ≤ ns. In this case, let us enhance the receivers
by adding ns − nc levels to each of them (which is equivalent to reducing the noise
power in the corresponding Gaussian IRC). That is, we obtain an enhanced LD-IRC
with a direct channel n̄d, a cross channel n̄c, and a relay-destination channel n̄r given
by2

n̄d = nd + ns − nc, n̄c = ns, n̄r = nr + ns − nc, (4.95)

2The over-bar is used to distinguish the parameters of the enhanced channel from those of the
original one.
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and a source-relay channel n̄s = ns. Since this channel is clearly more capable than
the original one, its capacity provides us with an upper bound. Now notice that the
obtained channel has n̄c = n̄s which satisfies the inequality n̄c ≥ n̄s, and thus, the
bound we derived above in (4.94) applies. Thus, the enhanced channel has an upper
bound

RΣ ≤ 2max{n̄c, n̄r, n̄d − n̄c} (4.96)

= 2max{ns, nr + ns − nc, nd − nc} (4.97)

= 2max{nc, nr, nd − ns}+ 2(ns − nc). (4.98)

This is also an upper bound for the original LD-IRC with nc ≤ ns. By combining
(4.94) and (4.98), we obtain the statement of the theorem.

Finally, the last upper bound that we need to complete the proof of converse of
Theorem 4.1 is presented in the following theorem.

Theorem 4.6. The sum-rate of the LD-IRC is upper bounded by

CΣ ≤ 2max{ns, nc, nd − nc + ns}. (4.99)

Proof. Give the genie side information (cn1 ,y
n
r ) and (cn2 ,y

n
r ) to receivers 1 and 2, re-

spectively, where cn1 and cn2 are as defined in (4.35). Then we bound R1 by using
Fano’s inequality as follows

n(R1 − ε1n) ≤ I(xn
1 ;y

n
1 , c

n
1 ,y

n
r ) (4.100)

= H(yn
1 , c

n
1 ,y

n
r )−H(yn

1 , c
n
1 ,y

n
r |xn

1) (4.101)

= H(cn1 ,y
n
r ) +H(yn

1 |cn1 ,yn
r )−H(yn

1 , c
n
1 ,y

n
r |xn

1 ), (4.102)

where ε1n → 0 as n → ∞. Now consider the third term in (4.102). This can be
expressed as follows

H(yn
1 , c

n
1 ,y

n
r |xn

1 ) = H(yn
r |xn

1 ) +H(yn
1 , c

n
1 |xn

1 ,y
n
r ) (4.103)

(a)
= H(sn2 |xn

1 ) +H(cn2 |xn
1 , s

n
2 ) (4.104)

= H(cn2 , s
n
2 |xn

1 ) (4.105)

= H(cn2 , s
n
2 ) (4.106)

= H(cn2 ,y
n
r )− I(xn

1 ; c
n
2 ,y

n
r ), (4.107)

where (a) follows since knowing yn
r we can construct xn

r . By substituting (4.107) in
(4.102) we obtain

n(R1 − ε1n) ≤ H(cn1 ,y
n
r ) +H(yn

1 |cn1 ,yn
r )−H(cn2 ,y

n
r ) + I(xn

1 ; c
n
2 ,y

n
r ). (4.108)

Similarly we can bound R2 by

n(R2 − ε2n) ≤ H(cn2 ,y
n
r ) +H(yn

2 |cn2 ,yn
r )−H(cn1 ,y

n
r ) + I(xn

2 ; c
n
1 ,y

n
r ), (4.109)

where ε2n → 0 as n → ∞. Next, we add (4.108) and (4.109) to obtain

n(RΣ − ε1n − ε2n) ≤ H(yn
1 |cn1 ,yn

r ) + I(xn
1 ; c

n
2 ,y

n
r ) +H(yn

2 |cn2 ,yn
r ) + I(xn

2 ; c
n
1 ,y

n
r ).

(4.110)
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Let us write H(yn
1 |cn1 ,yn

r ) as follows

H(yn
1 |cn1 ,yn

r ) = H(dn
1 ⊕ cn2 |cn1 ,yn

r )

which is possible since xn
r can be obtained from yn

r . Now assume that nc ≥ ns. In this
case we get

H(dn
1 ⊕ cn2 |cn1 ,yn

r )
(b)
= H(dn

1 ⊕ cn2 |cn1 , sn2 ) (4.111)

(c)

≤ nmax{0, nd − nc, nc − ns} (4.112)

where (b) follows since for nc ≥ ns, given cn1 we can extract sn1 , and (c) follows from
Lemmata 2.4 and 2.5 on page 12. On the other hand, if nc ≤ ns, then

H(dn
1 ⊕ cn2 |cn1 ,yn

r )
(d)
= H(dn

1 ⊕ cn2 |cn1 , cn2 ,yn
r ) (4.113)

≤ H(dn
1 |cn1 ) (4.114)

(e)

≤ nmax{0, nd − nc} (4.115)

where (d) follows since knowing cn1 , the contribution of the first nc bits of x
n
1 in yn

r can
be subtracted, thus uncovering the first nc bits of x

n
2 which completely specify cn2 , and

(e) follows from Lemma 2.5. By combining both cases nc ≥ ns and nc ≤ ns, we can
write

H(yn
1 |cn1 ,yn

r ) ≤ nmax{0, nd − nc, nc − ns}. (4.116)

Similarly

H(yn
2 |cn2 ,yn

r ) ≤ nmax{0, nd − nc, nc − ns}. (4.117)

Next, we write

I(xn
1 ; c

n
2 ,y

n
r ) = I(xn

1 ; c
n
2 ) + I(xn

1 ;y
n
r |cn2) (4.118)

= I(xn
1 ;y

n
r |cn2) (4.119)

≤ I(xn
1 ,x

n
2 ;y

n
r |cn2) (4.120)

≤ H(yn
r ) (4.121)

≤ n[ns]. (4.122)

Similarly

I(xn
2 ; c

n
1 ,y

n
r ) ≤ n[ns]. (4.123)

By substituting (4.116), (4.117), (4.122), and (4.123) in (4.110), dividing by n, and
letting n → ∞, we obtain the desired upper bound.

To this end, we have presented the upper bounds that are necessary for the sum-
capacity characterization of the LD-IRC with ns ≤ nc. Recall that the presented
bounds are general, in the sense that they hold even if ns ≥ nc. Since our main focus
here is the case ns ≤ nc, we obtain the converse of Theorem 4.1 by writing the bounds
in Theorems 4.2, 4.3, 4.4, 4.5, and 4.6 for this special case. The achievability of the
sum-capacity is shown in the next section.
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4.2.2 Sum-capacity Lower Bounds

The achievability of Theorem 4.1 is proved by using a novel compute-forward (CF)
scheme for the LD-IRC next. CF has been already used in some relaying setups to
perform physical layer network-coding [NG11,Naz12,WNPS10,AAT09]. The core idea
of this scheme is allowing the relay to decode a function of the transmitted signals xn

1

and xn
2 , and then to forward this function. This scheme exhibits several differences

from traditional schemes such as decode-forward (DF) [CEG79,MDG12] and amplify-
forward (AF). In DF , the relay decodes both the source messages m1 and m2. Note
that this decoding imposes a strict rate constraint on the messages, namely, a multiple-
access channel (MAC) type sum-rate constraint resulting from treating the channel
between the users and the relay as a MAC. For the LD-IRC, such a rate constraint
would look like

R1 +R2 ≤ ns. (4.124)

On the other hand, if we construct the transmit signals xn
1 and xn

2 in such a way that
their sum is decodable at the relay, then we have the CF rate constraint

max{R1, R2} ≤ ns (4.125)

which is clearly less restricting than the MAC sum-rate constraint above. This gives
CF an advantage over DF in the ‘decode’ process; it remains to design the ‘forward’
process appropriately which is done in the sequel. On the other hand, one might argue
that this makes CF similar to AF (at least for the deterministic case). However, this
argument is refuted since CF gives the flexibility of re-allocating the bit levels of the
forwarded signal arbitrarily, which is not possible if we use AF . As we shall see next,
this re-allocation is necessary in some cases (see Figure 4.6(b)). Compress-forward
is another common scheme that is used in relay setups [CEG79,TY11], however, its
drawback is the relative complexity of its analysis compared to other schemes.

It is important to note the following: In the LD-IRC, it is not always necessary
to incorporate the relay in the transmission process. For instance, if the channels
nr and ns are both weak, then incorporating the relay would lead in some cases to
unnecessarily binding rate constraints which can be avoided by switching the relay off.
In these cases, one would rather operate the IRC as an IC.

4.2.2.1 A Case where the Relay does not Increase Capacity

The sum-rate given by the following expression

RΣ = min {2max{nd − nc, nc}, 2max{nd, nc} − nc, 2nd} (4.126)

is achievable in the LD-IRC (see (4.19)). This is achieved by switching the relay off
and operating the IRC as an IC. According to the intuition stated above, there might
be cases where this sum-rate is indeed the sum-capacity of the LD-IRC, namely, when
the relay channels are weak. Now let us examine the statement of Theorem 4.1 for
such a case. The converse of this theorem has been shown in Section 4.2.1, and hence,
(4.18) is a valid upper bound. We notice that if in addition to ns ≤ nc, we have
nr ≤ min{nc, nd}, then this upper bound reduces to (4.126). Therefore, the LD-IRC
has the same sum-capacity as the corresponding LD-IC obtained by removing the relay,
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(a) Weak interference: Rx 1 decodes u1(i), ex-
tracts u2(i) from u1(i) ⊕ u2(i) (decoded in
channel use i + 1), subtracts u2(i), and then
decodes u1(i− 1)⊕ u2(i− 1) interference free.

(b) Strong interference: Rx 1 decodes u2(i),
extracts u1(i) from u1(i) ⊕ u2(i) (decoded in
channel use i + 1), subtracts u1(i), and then
decodes u1(i− 1)⊕ u2(i− 1) interference free.

Figure 4.5: The CF strategy in an LD-IRC with ns = 1 (the relay has been re-
positioned for clarity). Due to backward decoding, the relay signal is allowed to
interfere with one of the transmit signals while still being decodable, which allows a

more efficient use of the bit-pipes.

and consequently, the relay does not increase the sum-capacity of the network in this
case.

In what follows, we focus on the remaining cases, where the relay can increase the
capacity of the network. In such cases, it is required to find a unified scheme which
takes care of both scenarios (strong and weak relay channels). Namely, we need to
develop a combination of CF and optimal schemes for the LD-IC, i.e., private and
common signaling with successive decoding [ETW08,BT08]. This combination will be
constructed in the next paragraphs, but before we proceed to the relatively involved
combination of strategies, we describe the CF strategy separately.

4.2.2.2 Compute-forward

The CF strategy works as follows (see Figure 4.5 for an example). Each source sends a
signal uj(i) with rate Ru in the ith channel use where i = 1, · · · , n and j = 1, 2. That
is, user j sends

xj(i) =

[
uj(i)
0q−Ru

]
. (4.127)

The signal uj(i) is allocated at the topmost positions of xj(i) in order to allow the
relay to observe as many bits of uj(i) as possible. The relay decodes the sum

ū(i) = u1(i)⊕ u2(i), (4.128)

which is possible if

Ru ≤ ns. (4.129)

Then, the relay sends ū(i) in the next channel use i + 1 as follows. The vector ū(i)
is split into two parts, ūa(i) and ūb(i) of length Rua and Rub, respectively, where
Ru = Rua +Rub. The purpose of this splitting is to allow different decoding orders at
the receivers as we shall see next. The vector ūa(i) is sent on the topmost Rua levels
at the relay, and ūb(i) is sent on levels {q−nr + ℓb−Rub +1, · · · , q−nr + ℓb} for some
integer ℓb ≤ nr. This parameter ℓb can be seen as a power allocation parameter for
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the signal ūb(i). In fact, ℓb is the level below which ūb(i) is observed at the receivers,
thus, ℓb specifies the power at which ūb(i) is received at the receivers relative to the
power of noise. Using this construction, we can write

xr(i+ 1) =




ūa(i)
0nr−ℓb−Rua

ūb(i)
0ℓb−Rub

0q−nr



, (4.130)

which requires

Ru ≤ nr. (4.131)

Note that due to delay, the relay transmits in channel uses 2, · · · , n + 1. Thus, the
overall transmission takes place in n+ 1 channel uses.

The decoding process at the receivers is performed backwards from channel use
n + 1 till 1. In channel use n + 1, only the relay is active, and the receivers decode
ū(n) which is possible given (4.131). The receivers then proceed backwards to process
the received signal in channel use n. The decoding process at the receivers in time
instants n, · · · , 1 depends on whether the LD-IRC has weak interference (Figure 4.5(a))
or strong interference (Figure 4.5(b)). Let us first consider the weak interference case.

4.2.2.2.1 CF with Weak Interference: Consider the decoding process at Rx 1
in time instant n. First, ūa(n− 1) is decoded while treating the remaining signals as
noise, which requires

Rua ≤ (nr − nd)
+ (4.132)

due to the interference from u1(n). Next, Rx 1 decodes u1(n) bit by bit successively,
while simultaneously canceling interference from u2(n) (see Figure 4.5(a) for an exam-
ple with Ru = 1). This is possible since Rx 1 knows ū(n) = u1(n) ⊕ u2(n) in time
instant n since it was decoded in time instant n+1. After decoding each bit of u1(n),
the corresponding bit of u2(n) is removed, and this continues till all bits of u1(n) are
decoded and thus all bits of u2(n) are removed. Since the only remaining interference
comes from ūb(n− 1), then u1(n) can be decoded as long as it does not overlap with
ūb(n− 1) at the receiver, i.e., we need

Ru ≤ nd − ℓb, (4.133)

with ℓb ≤ nd. Finally, ūb(n− 1) is decoded which is possible if

Rub ≤ ℓb. (4.134)

Now the receiver has obtained ū(n − 1) and it can proceed to the previous channel
use n − 1. The same process is repeated till channel use 1 is reached. By collecting
the rate constraints (4.129), (4.131), (4.132), (4.133), and (4.134), we get the following
achievable rate

Ru ≤ min{ns, nd − ℓb, (nr − nd)
+ + ℓb} (4.135)
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(a) nr ≥ 2nd. (b) nr ≥ nd. (c) nd/2 ≤ nr ≤ nd. (d) nr ≤ nd/2.

Figure 4.6: Signal level diagrams for CF showing the binary vectors whose sum
composes the received signal at Rx 1 at the second channel use.

for some ℓb ≤ min{nd, nr}. The parameter ℓb can be easily optimized to obtain the
achievable sum rate

RΣ ≤ min{2nd, 2nr, 2ns,max{nd, nr}}. (4.136)

Since source transmission takes place in channel uses i = 1, · · · , n while the overall
transmission requires n + 1 channel uses, this incurs a rate loss of a fraction 1/(n+1)

of RΣ. However, this loss will be neglected since it can be made arbitrarily small by
increasing n.

Figure 4.6 shows a signal level diagram for the CF strategy in different scenarios of
an LD-IRC with weak interference. The rectangles indicate the shifted vectors x1(i),
x2(i) and xr(i) at Rx 1 which observes their sum. The reason for splitting the relay
CF signal ū(i) into two parts can be seen in Figures 4.6(a) and 4.6(b). The intuition is
that the topmost (nr−nd)

+ levels of the relay signal can be observed at the Rx without
any interference. In other words, there is no ‘competition’ between the relay and the
transmitters on these levels. Thus, these levels can be exploited by the relay. On the
other hand, the transmitters have to send their CF signals u1(i) and u2(i) on the their
topmost levels so that they are all observed at the relay. In the weak interference
regime (nc ≤ nd), the receiver is required to decode u1(i). Thus the relay signal has to
be designed in such a way that it does not interfere with u1(i) at the receiver. Thus,
the relay sends a block of zeros on the corresponding levels. Finally, the remaining
bits of ū(i) (if any) are sent on the remaining levels. Recall that interference from
u2(i) can be ignored since we subtract it after decoding u1(i) and ū(i). Given ns is
large, the achievable rate by each user is Ru = nr/2 in this case. Figure 4.6(c) shows a
case were nr ≤ nd, in which case each user achieves Ru = nd/2 bits, and Figure 4.6(d)
shows a case where nr ≤ nd/2 where each user achieves nr bits.

4.2.2.2.2 CF with Strong Interference: The strong interference case differs
from the weak interference case in that the receiver decodes the interfering CF sig-
nal and the relay signal (see Figure 4.5(b) for an example with Ru = 1). For instance,
Rx 1 decodes u2 and ū as follows. In time instant n, it starts with decoding ūa(n−1),
which is possible if

Rua ≤ (nr − nc)
+ (4.137)

due to the interference from u2(n) which is treated as noise. Next, it decodes u2(n)
bit by bit. It uses u2(n) and ū(n) (decoded in time instant n + 1) to extract its
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desired signal u1(n) and cancel its interference. Using this decoding process, the only
remaining interference is that from ūb(n− 1). Thus, u2(n) can be decoded if

Ru ≤ nc − ℓb, (4.138)

for some ℓb ≤ nc. Finally, ūb(n− 1) is decoded which requires

Rub ≤ ℓb. (4.139)

The receiver proceeds with backward decoding till channel use 1 is reached. Collecting
the rate constraints (4.129), (4.131), (4.137), (4.138), and (4.139), and maximizing
with respect to ℓb ≤ min{nr, nc}, we get the following achievable sum-rate

RΣ ≤ min{2nc, 2nr, 2ns,max{nc, nr}}. (4.140)

Remark 4.3. Note that in our CF strategy, decoding information from the relay signal
ū requires knowledge of u1 or u2. This is in contrast to classical strategies (such as
decode-forward and compress-forward) where the receivers can obtain some desired
information directly from the relay signal.

4.2.2.3 Combined Schemes

Now, we are ready to present the capacity achieving scheme corresponding to Theorem
4.1. As mentioned earlier, it consists of a combination of CF, common signaling and
private signaling. While common and private signaling are used to recover the sum-
capacity of the LD-IC [BT08], CF is used to exploit the relay gain when possible.
We will describe the encoding and decoding steps required for this scheme, and then
provide the achievable sum-rate in a theorem. We start with the weak interference
case.

4.2.2.3.1 Weak Interference Scheme: In the weak interference (WI) case where
nc ≤ nd, rate splitting is used at the transmitters in order to split each message into
a CF, a common, and a private message. Thus, m1 for instance is split into

• a CF message m1u with rate Ru = Rua +Rub,

• a common (C) message m1v with rate Rv, and

• a private (P) message m1w with rate Rw.

We encode m1u, m1v, and m1w into sequences un
1 , v

n
1 , and wn

1 , where the lengths of
u1(i), v1(i), w1(i) are Ru, ℓv−ℓw (ℓv ≥ ℓw), and ℓw, respectively. Then, Tx 1 sends the
CF signal u1(i) on the topmost levels, the C signal v1(i) on the levels below q−nd+ ℓv,
and the P signal w1(i) on the levels below q − nd + ℓw. Thus, at Rx 1, the CF signal,
the C signal, and the P signal are received below the levels nd, ℓv, and ℓw, respectively,
where

Ru + ℓv ≤ nd. (4.141)
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Figure 4.7: A signal level diagram for the WI-CF scheme showing Rx 1 at channel
use 2. The relay only decodes the sum of u1 and u2. Rx 1 decodes all signals except

w2 which is treated as noise, and u2 which is extracted from u1 and ū.

Time Tx 1 sends
Relay

Decodes Sends
1 u1(1),v1(1),w1(1) ū(1) -
2 u1(2),v1(2),w1(2) ū(2) xr(2) = fr(ū(1))
...

...
...

...
n u1(n),v1(n),w1(n) ū(n) xr(n) = fr(ū(n− 1))

n+1 - - xr(n+ 1) = fr(ū(n))

Table 4.1: The transmit signals of Tx 1 and by the relay in each channel use
i = 1, · · · , n+1. Tx 1 transmits in i = 1, · · · , n where it sends CF, C, and P signals.
The relay decodes the sum ū(i) = u1(i) ⊕ u2(i), then it maps it to xr(i + 1) to be

forwarded in channel use i+ 1.

The overall construction of x1(i) becomes

x1(i) =




u1(i)
0nd−Ru−ℓv

v1(i)
w1(i)
0q−nd




(4.142)

for i = 1, · · · , n (see Figure 4.7). Tx 1 is silent in time instant n+1. A similar splitting
and encoding is used by Tx 2.

In our strategy, the relay is only interested in the sum of the CF signal ū(i). It uses
forward decoding by starting with i = 1 till i = n as shown in Table 4.1. In channel
use i, the relay decodes ū(i). This decoding is possible if the topmost Ru bits of x1(i)
and x2(i) are observed at the relay, i.e.,

Ru ≤ ns. (4.143)

After decoding ū(i), the relay splits it into ūa(i) and ūb(i) of lengths Rua and Rub,
respectively, and then sends xr(i+ 1) as in (4.130) in time slot i+ 1, i = 1, · · · , n, for
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Time Step 1 Step 2 Step 3 Step 4
n+1 ūa(n) - ūb(n) -
n ūa(n− 1) u1(n), u2(n) = ū(n)⊕ u1(n) ūb(n) v1(n), v2(n), w1(n)
...

...
...

...
...

2 ūa(1) u1(2), u2(2) = ū(2)⊕ u1(2) ūb(2) v1(2), v2(2), w1(2)
1 - u1(1), u2(1) = ū(1)⊕ u1(1) - v1(1), v2(1), w1(1)

Table 4.2: Decoding steps at the Rx 1. In step 1, the first part of the relay signal
is decoded. Then the desired CF signal is decoded, and the interference from the
undesired CF signal is removed. Next, the second part of the relay signal is decoded,

and finally, the two common signals and the desired private one are decoded.

some level allocation parameter ℓb ≤ nr. Note that the relay sends nothing in time
instant 1. This construction of the relay signal works if

Ru ≤ nr. (4.144)

Decoding at the receivers proceeds as shown in Table 4.2. The CF signals are
decoded as explained in Section 4.2.2.2.1 with the difference that vj(i) and wj(i) are
treated as noise. The rate constraints remain the same (as (4.129), (4.131), (4.132),
and (4.133)) except the one for decoding ūb(i) (i.e., (4.134)) which becomes

Rub ≤ (ℓb − ℓv)
+, (4.145)

due to the interference from the C and P signals. By combining (4.129), (4.131),
(4.132), and (4.145), we obtain the CF rate constraint as follows

Ru ≤ min{ns, nr, nd − ℓv, nd − ℓb, (nr − nd)
+ + (ℓb − ℓv)

+} (4.146)

for some ℓb ≤ min{nd, nr}, ℓw ≤ ℓv ≤ nd. Since (nr − nd)
+ + (ℓb − ℓv)

+ ≤ nr, we can
simplify this rate constraint to

Ru ≤ min{ns, nd − ℓv, nd − ℓb, (nr − nd)
+ + (ℓb − ℓv)

+}. (4.147)

After decoding the CF signals, their contribution can be removed and only the common
and the private signals remain. The resulting received signal after subtracting the
CF signals is exactly the same as the received signal in a LD-IC with n̄d = ℓv and
n̄c = (ℓv − nd + nc)

+. As is already common in the IC, we set the power level of the P
signal so that it has the same power level as noise at the undesired receiver [ETW08],
i.e., ℓw = nd−nc. Plugging these values of n̄d and n̄c in the the sum-capacity expression
of the LD-IC [BT08, Lemma 4], and using ℓw = nd − nc, we get the achievable rate of
the C and P message as

Rv ≤ min

{
ℓv − nd + nc

2
, (ℓv − 2nd + 2nc)

+

}
(4.148)

Rw ≤ nd − nc. (4.149)

Combining (4.147), (4.148), and (4.149), we get the following theorem for the achiev-
able rate of our WI-CF scheme.



Section 4.2 � On the Sum-capacity of the LD-IRC 39

Theorem 4.7 (WI-CF). The sum-rate given by

RΣ = 2Ru + 2Rv + 2Rw, (4.150)

where Ru, Rv, and Rw satisfy (4.147), (4.148), and (4.149), ℓw = nd − nc, for some
ℓw ≤ ℓv ≤ nd and ℓb ≤ min{nd, nr} is achievable.

Remark 4.4. Note that if we set Ru = 0 and ℓv = nd, then we recover the achievable
sum-capacity of the LD-IC [BT08] with weak interference. Thus, our WI-CF scheme
is at least as good as that in [BT08] in the weak interference regime.

The decoding order given in the WI-CF scheme is fixed so that the CF signals are
decoded first, and the C and P signals last. While different decoding orders can also
be used, we stick to this order because it turns out to be sum-capacity achieving.

4.2.2.3.2 Strong Interference Scheme: In the WI-CF scheme, we have forced
the receiver to decode its desired CF signal and then extract the interfering CF signal
and use it for interference cancellation. Alternatively, the receiver can also start by
decoding the interfering CF signal and then extract its desired CF signal. We call this
scheme the strong interference (SI) CF scheme. As private signaling is not needed for
achieving capacity in the IC with SI, it is also not needed in the LD-IRC with SI. Thus,
we omit the P message part in this scheme. The two remaining messages are the CF

message and the C message. Tx 1 sends

x1(i) =




u1(i)
0nc−Ru−ℓv

v1(i)
0q−nc


 (4.151)

for i = 1, · · · , n, where

Ru ≤ nc − ℓv. (4.152)

Notice the ℓv denotes the level at which v1(i) is observed at Rx 2 (instead of Rx 1 for
the WI-CF scheme). The decoding of the CF message is done as in Section 4.2.2.2.2
with the exception that in this case, the C signals are treated as noise. All the CF rate
constraints remain the same except the one for decoding ūb(i) which becomes

Rub ≤ (ℓb − ℓv)
+. (4.153)

for some ℓb ≤ min{nc, nr} and ℓv ≤ nc. Combining this rate constraint with (4.129),
(4.131), (4.137), (4.138), and (4.154) we get the following achievable CF rate

Ru ≤ min{ns, nc − ℓv, nc − ℓb, (nr − nc)
+ + (ℓb − ℓv)

+}. (4.154)

After decoding the CF signals, the two C signals are decoded jointly as in [BT08, Lemma
4] achieving

Rv ≤ min

{
ℓv
2
, (ℓv + nd − nc)

+

}
. (4.155)

Combining (4.154) and (4.155), we get the following theorem for the achievable rate
of our SI-CF scheme.
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Theorem 4.8 (SI-CF Scheme). The sum-rate given by

RΣ = 2Ru + 2Rv, (4.156)

where Ru and Rv satisfy (4.154) and (4.155) for some ℓv ≤ nc and ℓb ≤ min{nc, nr}
is achievable.

Remark 4.5. Similar to the WI-CF scheme, if we set Ru = 0 and ℓv = nc in the SI-CF

scheme, then we recover the achievable sum-capacity of the LD-IC with SI [BT08].

The given WI-CF and SI-CF schemes achieve the sum-capacity of the LD-IRC. To
show this, one has to carefully choose the parameters ℓb, ℓv, and ℓw, and then compare
the achievable rates to the upper bounds.

4.2.3 Sum-Capacity Characterization

Here, we show that the schemes given in Section 4.2.2.3 achieve the sum-capacity of
the LD-IRC if ns ≤ nc. In order to achieve the sum-capacity, one has to maximize the
expressions (4.150) and (4.156) over ℓb and ℓv. This maximization is not difficult, but
lengthy. In what follows, we give solutions for ℓb and ℓv that achieve the sum-capacity.
The main result of this section is the following theorem.

Theorem 4.9. The achievable sum-rates given in Theorems 4.7 and 4.8 coincide with
the sum-capacity of the LD-IRC with weak interference (nc ≤ nd) and strong interfer-
ence (nc > nd), respectively, as long as ns ≤ nc.

This theorem is proved in the following paragraphs. We also split the analysis here
into two parts, weak interference and strong interference.

4.2.3.1 Weak Interference Sum-capacity

Let us first write the sum-capacity expression of Theorem 4.1, where ns ≤ nc, for the
WI regime where nc ≤ nd. Since we are considering the WI regime, and since ns ≤ nc,
therefore, ns ≤ nd. We get

CΣ = min





max{nd, nr}+ nd − nc

2nd − nc + ns

2max{nc, nr, nd − nc}
2max{nc, nd + ns − nc}





. (4.157)

Recall that the case nr < min{nd, nc} = nc has been discussed in Section 4.2.2.1 where
it was shown that the relay does not provide any sum-capacity gain. Since our WI-CF

scheme is at least as good as the capacity achieving scheme of the LD-IC with WI,
then our scheme achieves the upper bound in this case. Thus it remains to consider
the other case where ns ≤ nc ≤ min{nr, nd}. We will consider three WI sub-regimes.
WI-1: If nr ≤ nd/2, it can be easily shown that the sum-capacity reduces to CΣ =
2nd − 2nc. This sum-capacity can be achieved by the WI-CF scheme since it is also
achievable in the LD-IC.
WI-2: Next, consider the case nd/2 ≤ nr ≤ nd. In this case, we can write the sum-
capacity expression as follows

CΣ = min





2nd − nc

2max{nr, nd − nc}
2max{nc, nd + ns − nc}



 . (4.158)
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Figure 4.8: A signal level diagram for an LD-IRC where we can achieve RΣ =
2nd − nc. The achievable rates of the CF message and the P message are nc/2 and
nd − nc, respectively. Notice that the relay sends some zeros on the topmost levels,
i.e., it does not send at full power. If we increase the power of ūb, then Ru decreases
since we have higher noise when decoding u1 leading to a lower achievable rate.

We will first split this expression into cases where CΣ matches the sum-capacity of the
LD-IC, and other cases where it does not. Namely, we rewrite it as

CΣ =





2nd − 2nc if nc ≤ nd − nr

min{2nd − nc, 2nc} if nc ≥ nd+ns

2

min{2nd − nc, 2nr, 2nd + 2ns − 2nc} if nd − nr ≤ nc ≤ nd+ns

2

(4.159)

The first case (nc ≤ nd − nr) matches the sum-capacity of the LD-IC (treating inter-
ference as noise) and thus it can be achieved by the WI-CF scheme. The second case
also matches the sum-capacity of the LD-IC with nc ≥ nd/2 (see (4.126)), and thus it
can be achieved by the WI-CF scheme (note that in this case nc ≥ (nd+ns)/2 ≥ nd

2
).

In the third case (nd − nr ≤ nc ≤ (nd+ns)/2), CΣ does not match the sum-capacity
of the LD-IC, and is equal to

CΣ =





2nd − nc if 2nd − 2nr ≤ nc ≤ 2ns

2nr if nc ≤ min{2nd − 2nr, nd + ns − nr}
2nd + 2ns − 2nc if nc ≥ max{2ns, nd + ns − nr}

(4.160)

The first case in (4.160) can be achieved by setting ℓb = (2nd−nc)/2 and ℓv = nd − nc.
The second case can be achieved by setting ℓb = nr and ℓv = nd − nc. Finally, the
third case in (4.160) can be achieved by setting ℓb = nd + ns − nc and ℓv = nd − nc.
Therefore, the sum-capacity in the WI-2 regime is achieved by the WI-CF scheme.

Remark 4.6. Interestingly, in some cases, the relay does not have to use its full power
to achieve the sum-capacity of the LD-IRC, e.g., in the first and third cases above where
ℓb < nr (see Figure 4.8).

Remark 4.7. Note that in some cases, the level allocation parameters can be rational.
These can be made integer by considering multiple channel uses. For instance, in the
first case in (4.160), we need ℓb = (2nd−nc)/2. In this case, if we consider two channel
uses, we get an IRC with levels 2(nd, nc, nr, ns) where where ℓb has to be set to 2nd−nc

which is integer.

The level allocation can be interpreted as follows. First the P signal is set in
such a way that it arrives below the noise level at the undesired receiver (as in the
IC [ETW08]). Thus, the P signal occupies the lowest nd − nc levels at the desired
receiver. Now the number of remaining unused levels is nd − (nd − nc) = nc. Our aim
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is to send the CF signal such that we are still able to perform interference cancellation
by proceeding backwards from one channel use to another. Thus, we need to be able
to decode the relay signal and the desired CF signal reliably at the destinations. These
two signals have to be accommodated at the remaining nc levels at the receiver, i.e., on
levels {nd − nc + 1, · · · , nd}. This interval should be optimally divided into two parts,
one for the desired CF signal and the other for the relay signal. At best, we can assign
nc/2 to each of them as shown in Figure 4.8. In this case, the relay signal is below
level (2nd−nc)/2 at the receiver, and hence we need to set ℓb = (2nd−nc)/2. As a result,
we can send nc/2 CF bits if nc/2 ≤ ns for the relay to be able to decode the sum of the
CF signals. Moreover, we must have (2nd−nc)/2 ≤ nr which implies nc/2 ≤ nr − nd + nc.
If these conditions hold, then we can achieve 2nd − nc bits, otherwise, we achieve
2 (nd − nc +min{ns, nr − nd + nc}) = min{2nd + 2ns − 2nc, 2nr} (see the three cases
in (4.160)).
WI-3: In this case we have nd ≤ nr. The sum-capacity in this case is given by

CΣ = min





nr + nd − nc

2nd − nc + ns

2max{nc, nd + ns − nc}



 . (4.161)

Let us first rewrite this expression for convenience as

CΣ ≤





nd + nr − nc, nc ≤ nd + 2ns − nr,
nd+ns

2

2nd + 2ns − 2nc, nd + 2ns − nr < nc ≤ nd+ns

2

min{2nc, nd + nr − nc}, nc >
nd+ns

2
, ns > nr − nd

min{2nc, 2nd + ns − nc}, nc >
nd+ns

2
, ns ≤ nr − nd

(4.162)

The first case in (4.162) can be achieved by setting the parameters of theWI-CF scheme
to ℓb = (3nd−nr−nc)/2 and ℓv = nd − nc, and the second case can be achieved by setting
ℓb = 2nd + ns − nr − nc and ℓv = nd − nc. On the other hand, in the third and last
cases in (4.162), the common messages become necessary. Moreover, in these cases
we do not need ūb(i), i.e., the relay sends ū(i) only on the topmost levels. We set
ℓb = ℓv = 2nd − nr to achieve the third case in (4.162), and we set ℓb = ℓv = nd − ns

to achieve the fourth case.
By this point, we have proved Theorem 4.9 for ns ≤ nc ≤ nd. Next, we consider

the strong interference case where max{ns, nd} ≤ nc.

4.2.3.2 Strong Interference Sum-capacity

Now, we consider the LD-IRC with strong interference (SI) nc ≥ nd and with ns ≤ nc.
We rewrite the sum-capacity expression in Theorem 4.1 for this case as

CΣ = min





2max{nd, nr}
2max{nd, ns}
max{nc, nr}

nc + ns





. (4.163)

In order to simplify the achievability proof of this sum-capacity, we split the SI regime
into two cases.
SI-1: If ns ≤ nc < nr, then we can write CΣ as

CΣ = min





2max{nd, ns}
nr

nc + ns



 . (4.164)
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We write this sum-capacity for convenience as

CΣ ≤
{

min{nr, 2ns}, nd < ns ≤ nc < nr

min{nc + ns, nr, 2nd}, ns ≤ nd < nc < nr
(4.165)

The first case in (4.165) can be achieved by using the SI-CF scheme in Section 4.2.2.3.2
with ℓb = (2nc−nr)/2 and ℓv = 0. The second case can be achieved by setting ℓb = ℓv =
nc −ns to achieve nc+ns if nc ≤ min{nr, 2nd}−ns, and ℓb = ℓv = 2nc −nr to achieve
min{nr, 2nd} otherwise.
SI-2: For the other case where nr ≤ nc, the capacity is given by

CΣ = min





2max{nd, nr}
2max{nd, ns}

nc



 . (4.166)

Let us rewrite this capacity expression as

CΣ ≤





min{nc, 2nd} min{nr, ns} ≤ nd

min{nc, 2ns} nr ≥ ns ≥ nd

min{nc, 2nr} ns ≥ nr ≥ nd

(4.167)

Observe that the capacity expression in the first case of (4.167) is achievable by our
SI-CF scheme since it is achievable in the LD-IC with strong interference (see Section
4.2.2.1). In the second and third cases, we use our SI-CF scheme while setting ℓb =
min{nr, nc/2} and ℓv = 0, which achieves the sum-capacity.

As a result, our WI-CF ans SI-CF schemes achieve the sum-capacity upper bounds
of the LD-IRC with ns ≤ nc. This proves Theorem 4.9 and consequently, the proof of
achievability of Theorem 4.1 is completed.

A legitimate question that could be asked now is whether our schemes achieve
the sum-capacity of the LD-IRC with nc < ns. The answer to this question turns
out to be negative. In Figure 4.9, we plot the achievable sum-rate of our WI-CF

and SI-CF schemes versus the upper bounds. Note that the bounds do not coincide if
nc < ns. In fact for this regime (nc < ns), new schemes such as cooperative interference
neutralization (to be introduced in Chapter 5), and new upper bounds are needed. The
cooperative interference neutralization scheme will be described in the next chapter
for a partially connected IRC.

In the next section, we consider the Gaussian IRC (G-IRC). We translate the upper
and lower bounds developed so far to the Gaussian case and characterize the so-called
generalized degrees of freedom (GDoF) of the network.

4.3 On the Generalized Degrees of Freedom of the

G-IRC

The results we have presented so far for the LD-IRC can be used as stepping stones to
develop upper bounds and lower bounds for the sum-capacity of the Gaussian setting.
However, in the Gaussian setting, one has to take care of the new properties of the
network. For instance, the channel gains are not discrete anymore, but continuous.
Additionally, the Gaussian network is noisy and therefore, one should not only con-
struct coding schemes that combat interference, but also ones that combat noise. All
these aspects and others will be discussed in the following paragraphs. We start with
upper bounds.
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Figure 4.9: Upper bounds and lower bounds for the sum-capacity of the LD-IRC
(all bounds are piecewise-linear). The bounds do not coincide in general if ns > nc.

The sum-capacity of the deterministic IC is shown (dotted) as a benchmark.

4.3.1 Sum-capacity Upper Bounds

Let us start with the cut-set bounds. The expression of the cut-set bounds is the
same as given for the LD-IRC in Lemma 4.1 except for one difference: the signals
are continuous real-valued random variables instead of binary random vectors. The
cut-set bounds for the G-IRC are stated in the following lemma.

Lemma 4.3 ( [MDG12]). The achievable rates in the G-IRC are bounded by the region

R1 ≤ min{I(X1, Xr; Y1|X2), I(X1; Y1, Yr|X2, Xr)} (4.168)

R2 ≤ min{I(X2, Xr; Y2|X1), I(X2; Y2, Yr|X1, Xr)} (4.169)

R1 +R2 ≤ min{I(X1, X2, Xr; Y1, Y2), I(X1, X2; Y1, Y2, Yr|Xr)}, (4.170)

maximized over all distributions of (X1, X2, Xr) satisfying the power constraints E[X
2
j ] ≤

P for j ∈ {1, 2, r}, and with X1 and X2 independent.

The given cut-set bound should be maximized over all such distributions of the
triple of input variables (X1, X2, Xr). However, it can be noticed that each of the
cut-set bounds is maximized by a Gaussian distribution. Then, using a Gaussian
distribution for the inputs, evaluating the cut-set bounds, and maximizing them over
the set of covariance matrices of the triple (X1, X2, Xr) satisfying the power constraints,
we obtain the following simple sum-capacity upper bounds.

Theorem 4.10. The sum-capacity of the G-IRC is upper bounded by

CΣ ≤ 2C((|hd|+ |hr|)2P ) (4.171)

CΣ ≤ 2C(h2
dP + h2

sP ). (4.172)

Proof. Consider the first term in the cut-set bound (4.168), given by

R1 ≤ I(X1, Xr; Y1|X2). (4.173)
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This term has the form of a MISO channel bound, and can be maximized as follows

R1 ≤ I(X1, Xr; Y1|X2) (4.174)

= h(Y1|X2)− h(Y1|X1, X2, Xr) (4.175)

(a)

≤ h(hdX1 + hrXr + Z1)− h(Z1) (4.176)

(b)

≤ C(h2
dP + h2

rP + 2hdhrρ1P ) (4.177)

≤ C(h2
dP + h2

rP + 2|hd||hr|P ) (4.178)

= C((|hd|+ |hr|)2P ), (4.179)

where (a) follows since conditioning does not increase entropy, and (b) follows since
the Gaussian distribution X1, Xr ∼ N (0, P ) is a differential entropy maximizer [CT06]
where ρ1 = Corr(X1, Xr) ∈ [−1, 1]. Now consider the second term in (4.168) given by

R1 ≤ I(X1; Y1, Yr|X2, Xr). (4.180)

Similarly, we can maximize this as follows

R1 ≤ I(X1; Y1, Yr|X2, Xr)

= h(Y1, Yr|X2, Xr)− h(Y1, Yr|X1, X2, Xr)

≤ h(hdX1 + Z1, hsX1 + Zr)− h(Z1, Zr)

≤ C(h2
dP + h2

sP ).

Similar bounds can be obtained for R2 which proves the statement of the theorem.

Many other upper bounds have been previously developed for the G-IRC. For
instance, Maric et al. [MDG09] tightened the first sum-rate term in the cut-set upper
bounds (4.170) by giving enough additional information to Rx 1 so that it is able to
construct a less noisy version of the received signal of Rx 2. In this way, it is guaranteed
that the enhanced Rx 1 is able to decode m1 and m2 and thus an upper bound on CΣ

can be obtained. Other upper bounds were derived by Tian et al. [TY11] by using a
potent relay approach (a relay with no power constraint). Clearly, any achievable rate
pair in the G-IRC is achievable in the IC with a potent relay. Thus, the capacity of
the IC with a potent relay serves as an upper bound for the capacity of the G-IRC.
However, for the purpose of this document, we only need the cut-set bounds, and our
new upper bounds that we present next (a Gaussian version of the bounds in Theorems
4.3, 4.4, 4.5, and 4.6).

It is important at this point to remark that Cadambe et al. have shown in [CJ09]
that relaying (among other factors) does not increase the DoF of the X-channel. But
the IC can be viewed as a special case of the X-channel (with the rate of some messages
set to zero). Thus, relaying also does not increase the DoF of the IC. As a result, since
the IC has 1 DoF [HMN05], it follows that the IRC also has 1 DoF. From this point
of view, the cut-set bounds are clearly not tight at high SNR since they provide a
DoF upper bound of 2. Thus, the cut-set bounds are not sufficient for a complete
characterization/approximation of the sum-capacity. In the following theorem, we
introduce an upper bound which matches the DoF of the G-IRC. Before proceeding,
we need to define the following variables

Sn
sj = hsX

n
j + Zn

r , Sn
dj = hdX

n
j + Zn

j , Sn
cj = hcX

n
j + Zn

k , j 6= k. (4.181)
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Theorem 4.11. The sum-capacity of the G-IRC is upper bounded by

CΣ ≤ C

(
P

(
h2
d + h2

c + h2
r + 2|hr|

√
h2
d + h2

c

))
+ C

(
h2
dP

h2
cP + 1

)
(4.182)

+ C

(
h2
sP

1 + max{h2
d, h

2
c}P

)
. (4.183)

Proof. The proof is based on a genie-aided approach similar to that used in the proof of
Theorem 4.3 on page 24, thus, we only highlight the differences here. By constructing
a genie-aided channel as in the proof of Theorem 4.3, we can bound RΣ as follows

n(RΣ − εn) ≤ I(Xn
1 ; Y

n
1 ) + I(Xn

2 ; Y
n
2 , Y

n
r , S

n
c2|Xn

1 ) (4.184)

= I(Xn
1 ; Y

n
1 ) + h(Y n

2 , Y
n
r , S

n
c2|Xn

1 )− h(Y n
2 , Y

n
r , S

n
c2|Xn

1 , X
n
2 ), (4.185)

where εn → 0 as n → ∞. Then, similar to the proof of Theorem 4.3, the first and
second terms in the right hand side of (4.185) can be bounded as

I(Xn
1 ; Y

n
1 ) ≤

n∑

i=1

[
h(Y1(i))− h(Sc2(i)|Xn

1 , S
i−1
c2 , Si−1

d2 , Si−1
s2 )

]
, (4.186)

h(Y n
2 , Y

n
r , S

n
c2|Xn

1 ) ≤
n∑

i=1

[
h(Sc2(i)|Xn

1 , S
i−1
d2 , Si−1

s2 , Si−1
c2 ) + h(Sd2(i), Ss2(i)|Sc2(i))

]
.

(4.187)

Moreover, we can write the third term in (4.185) as

h(Y n
2 , Y

n
r , S

n
c2|Xn

1 , X
n
2 ) =

n∑

i=1

[h(Z2(i)) + h(Zr(i)) + h(Z1(i))] , (4.188)

since the noises are i.i.d. and are mutually independent of each other and of all the
other transmit signals. Plugging (4.186), (4.187), and (4.188) in (4.185), we get

n(RΣ − εn) ≤
n∑

i=1

[h(Y1(i))− h(Z1(i)) + h(Sd2(i)|Sc2(i))− h(Z2(i))]

+
n∑

i=1

[h(Ss2(i)|Sd2(i), Sc2(i))− h(Zr(i))] (4.189)

Now we investigate the terms of (4.189). We have

n∑

i=1

[h(Y1(i))− h(Z1(i))]
(a)

≤ nC
(
P
(
h2
d + h2

c + h2
r + 2hr (hdρ1 + hcρ2)

))
(4.190)

(b)

≤ nC

(
P

(
h2
d + h2

c + h2
r + 2|hr|

√
h2
d + h2

c

))
(4.191)

where (a) follows since the Gaussian distribution of (X1, X2, Xr) maximizes the differ-
ential entropy, with X1, X2, Xr ∼ N (0, P ), ρ1 = Corr(X1, Xr) and ρ1 = Corr(X2, Xr).
Notice that ρ21+ρ22 ≤ 1 has to be fulfilled so that the covariance matrix of (X1, X2, Xr) is
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positive semi-definite. Step (b) follows by maximizing over ρ1, ρ2 such that ρ21+ρ22 ≤ 1.
Similarly we can show that

n∑

i=1

[h(Sd2(i)|Sc2(i))− h(Z2(i))]
(d)

≤ nC

(
h2
dP

1 + h2
cP

)
, (4.192)

which follows since the Gaussian input X2 maximizes the conditional differential en-
tropy under a covariance constraint [Tho87], where the expression can be maximized
by X2 ∼ N (0, P ). Similarly we can show that

n∑

i=1

[h(Ss2(i)|Sd2(i), Sc2(i))− h(Zr(i))] ≤ nC

(
h2
sP

1 + max{h2
d, h

2
c}P

)
. (4.193)

Substituting (4.191), (4.192), and (4.193) in (4.189), and letting n → ∞ we get the
desired bound (4.182).

This bound reflects the DoF of the G-IRC. Namely, it shows that the sum-capacity
of the G-IRC behaves as 1

2
log(P ) + o(log(P )) which captures the fact that the relay

does not increase the DoF of the interference network [CJ09]. The following corollary
gives upper bounds that follow from Theorem 4.11.

Corollary 4.1. In the G-IRC, if h2
d ≤ h2

s then the sum-capacity is bounded by

CΣ ≤ C

(
P

(
h2
d + h2

c + h2
r + 2|hr|

√
h2
d + h2

c

))
+ C

(
h2
sP

h2
cP + 1

)

+ C

(
h2
sP

1 + max{h2
c , h

2
s}P

)
. (4.194)

Moreover, if h2
c ≤ h2

s then

CΣ ≤ C

(
h2
s

h2
c

P

(
h2
d + h2

c + h2
r + 2|hr|

√
h2
d + h2

c

))
+ C

(
h2
dP

h2
sP + 1

)

+ C

(
h2
sP

1 + max{h2
d, h

2
s}P

)
. (4.195)

Proof. If h2
d ≤ h2

s, we can enhance Rx 2 by replacing the noise Z2 by hd

hs
Z2 [PV11b].

What we obtain is an equivalent G-IRC where the channels from Tx 1, Tx 2, and the
relay to Rx 2 are hchs

hd
, hs, and

hrhs

hd
, respectively, and the noise at Rx 2 is N (0, 1).

Proceeding with the same steps as in Theorem 4.11 we obtain (4.194). The bound in
(4.195) is obtained similarly by enhancing Rx 1 where the noise Z1 is replaced by hc

hs
Z1,

where h2
c ≤ h2

s.

It can be noticed that the bounds in Theorem 4.11 and Corollary 4.1 have a similar
structure as the bound of the Z-IC (or the one sided IC) [ETW08]. This kind of bounds
is useful for characterizing the GDoF for the strong interference scenario, and some
sub-regimes of the weak interference scenario (as in the IC) as we shall show in the
sequel. As mentioned earlier in Section 4.2, if h2

c ≥ h2
d, then these bounds become the

same as the X-channel bound in [CJ09] specialized to the G-IRC. Otherwise if h2
c < h2

d,
then our bounds are tighter.

Next, we continue with specializing the bounds derived for the LD-IRC to the
G-IRC.
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Theorem 4.12. The sum-capacity of the IRC is upper bounded by

CΣ ≤ C(2h2
sP ) + C(h2

dP + h2
cP ) + C

(
h2
dP

1 + max{h2
c , h

2
s}P

)
. (4.196)

Proof. Similar to the proof of Theorem 4.4 (page 27), we use Tuninetti’s cooperation
bounds (Lemma 2.2 on page 8) to write

RΣ ≤ I(X2; Y2|Y1, Yr, X1, Xr) + I(X1, X2; Y1, Yr|Xr) (4.197)

≤ h(Y2|Y1, Yr, X1, Xr)− h(Z2) + h(Y1, Yr|Xr)− h(Z1, Zr). (4.198)

Then, we can show that

h(Y2|Y1, Yr, X1, Xr)− h(Z2) ≤ h(Sd2|Sc2, Ss2)− h(Z2) (4.199)

≤ C

(
h2
dP

1 + max{h2
c , h

2
s}P

)
(4.200)

and

h(Y1, Yr|Xr)− h(Z1, Zr) ≤ h(Yr) + h(Y1|Yr, Xr)− h(Z1, Zr) (4.201)

≤ C(2h2
sP ) + C(h2

dP + h2
cP ) (4.202)

using a standard information theoretic approach similar to the steps used in the proof
of Theorem 4.11. Hence the statement of the theorem is proved.

Note that this bound is a refinement of the original bound we derived in [CS12,
Theorem 3] where it has been derived using a genie-aided approach instead of the
cooperation approach that is followed above.

The ‘weak interference’ upper bound derived in Theorem 4.5 for the LD-IRC, which
is inspired from the weak interference upper bound of the IC in [ETW08], is translated
to the G-IRC in the following theorem.

Theorem 4.13. The sum-capacity of the IRC is upper bounded by

CΣ ≤ 2C

(
(|hc|+ |hr|)2P + 4max

{
h2
dP

1 + h2
cP

, h2
rP

})
+ 2C

(
h2
s

h2
c

)
. (4.203)

Proof. The proof uses the same genie-aided approach as in the proof of Theorem 4.5.
Before we proceed with the proof, we introduce the following lemma, which is the
Gaussian version of Lemma 4.2.

Lemma 4.4. The following statement holds for a G-IRC

h(hcX
n
1 + Un

2 |Xr(1))− h(Y n
2 |Xr(1), S

n
c2, X

n
2 ) ≤ 0, (4.204)

where Un
2 is i.i.d. N (0, σ2) with σ2 = h2

c

h2
c+h2

s
, and Sn

c2 is defined in (4.181).

Proof. We need to show that

h(Y n
2 |Xr(1), S

n
c2, X

n
2 ) ≥ h(hcX

n
1 + Un

2 |Xr(1)). (4.205)
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Let Z̃n
r = Zn

r − hs

hc
Zn

2 . Then we use the following sequence of inequalities

h(Y n
2 |Xr(1), S

n
c2, X

n
2 ) = h(Y n

2 |Xr(1), Z
n
1 , X

n
2 ) (4.206)

= h(Y n
2 |Xr(1), X

n
2 ) (4.207)

(a)

≥ h(Y n
2 |Xr(1), X

n
2 , Z̃

n
r ) (4.208)

=
n∑

i=1

h(Y2(i)|Xr(1), X
n
2 , Y

i−1
2 , Z̃n

r ) (4.209)

(b)
=

n∑

i=1

h(Y2(i)|X i
r, X

n
2 , Y

i−1
2 , Z̃n

r ) (4.210)

=

n∑

i=1

h(Sc1(i)|X i
r, X

n
2 , S

i−1
c1 , Z̃n

r ) (4.211)

(b)
=

n∑

i=1

h(Sc1(i)|Xr(1), X
n
2 , S

i−1
c1 , Z̃n

r ) (4.212)

= h(Sn
c1|Xr(1), X

n
2 , Z̃

n
r ) (4.213)

= h(hcX
n
1 + Zn

2 |Xr(1), Z̃
n
r ) (4.214)

(c)
= h(hcX

n
1 + Un

2 |Xr(1)) (4.215)

where (a) follows since conditioning reduces entropy, (b) follows since we can construct

(Xr(2), · · · , Xr(i)) from (Xr(1), X
n
2 , Y

i−1
2 , Z̃n

r ) or (Xr(1), X
n
2 , hcX

i−1
1 + Z i−1

2 , Z̃n
r ) (see

details in the proof of Lemma 4.2 on page 27), and (c) follows by using [AV09, Lemma
6] where Un

2 is i.i.d. N (0, σ2). This concludes the proof of the lemma.

Now, we can proceed with deriving the upper bound. Let V n
1 = hcX

n
1 + Un

2 ,
V n
2 = hcX

n
2 + Un

1 , and let Un
1 and Un

2 be i.i.d. N (0, σ2) noises independent of all
other random variables and mutually independent of each other, with σ2 = h2

c/(h2
c+h2

s).
Similar to the the genie-aided approach used in the proof of Theorem 4.5 on page 28,
we give (Xr(1), V

n
1 ) and (Xr(2), V

n
2 ) as side information to Rx 1 and 2, respectively,

to obtain

n(RΣ − εn) ≤ h(V n
1 |Xr(1))− h(Un

2 ) + h(Y n
1 |Xr(1), V

n
1 )− h(Y n

1 |Xr(1), V
n
1 , X

n
1 )

+ h(V n
2 |Xr(1))− h(Un

1 ) + h(Y n
2 |Xr(1), V

n
2 )− h(Y n

2 |Xr(1), V
n
2 , X

n
2 ),

(4.216)

where εn → 0 as n → ∞. Using Lemma 4.4 above, the following terms are upper
bounded by zero

h(V n
1 |Xr(1))− h(Y n

2 |Xr(1), V
n
2 , X

n
2 ) ≤ 0, (4.217)

h(V n
2 |Xr(1))− h(Y n

1 |Xr(1), V
n
1 , X

n
1 ) ≤ 0. (4.218)

Additionally, we have

h(V n
1 |Xr1, X

n
1 ) = h(Un

2 ) =
n

2
log(2πeσ2), (4.219)

h(V n
2 |Xr1, X

n
2 ) = h(Un

1 ) =
n

2
log(2πeσ2), (4.220)

h(Y n
1 |V n

1 , Xr1) ≤ h(Y n
1 |V n

1 ), (4.221)

h(Y n
2 |V n

2 , Xr1) ≤ h(Y n
2 |V n

2 ). (4.222)
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Thus we can write

n(RΣ − εn) ≤ h(Y n
1 |V n

1 ) + h(Y n
2 |V n

2 )− h(Un
1 )− h(Un

2 ) (4.223)

=
n∑

i=1

[
h(Y1(i)|V n

1 , Y
i−1
1 ) + h(Y2(i)|V n

2 , Y
i−1
2 )− log(2πeσ2)

]
(4.224)

≤
n∑

i=1

[
h(Y1(i)|V1(i)) + h(Y2(i)|V2(i))− log(2πeσ2)

]
, (4.225)

where the last step follows since conditioning does not increase entropy. Notice that a
jointly Gaussian distribution p(x1, x2, xr) which factors as p(x1)p(x2)p(xr|x1, x2) max-
imizes (4.225). Hence, letting n → ∞, we get

RΣ ≤ max
A�0

∑

j,k∈{1,2}
j 6=k

h(hdXjG + hcXkG + hrXrG + Zj |hcXjG + Uk)− log(2πeσ2)

where (X1G, X2G, XrG) is a Gaussian random vector with zero mean and covariance
matrix A given by

A =




P1 0 ρ1
√
P1Pr

0 P2 ρ2
√
P2Pr

ρ1
√
P1Pr ρ2

√
P2Pr Pr


 , (4.226)

and the maximization is over all positive semi-definite matrices A (denoted A � 0)
satisfying P1, P2, Pr ≤ P with correlation coefficients ρ1, ρ2 ∈ [−1, 1]. By evaluating
this bound, we get

RΣ ≤ max
A�0

∑

j∈{1,2}

C (Qj)− log(σ2) (4.227)

where

Qj = h2
cPj + h2

r(1− ρ2k)Pr + 2hchrρj
√
PjPr +

σ2(hd

√
Pk + hrρk

√
Pr)

2

σ2 + h2
cPk

(4.228)

with j 6= k. Finally, we can write

Qj

(d)

≤ h2
cPj + h2

r(1− ρ2k)Pr + 2hchrρj
√

PjPr +
(hd

√
Pk + hrρk

√
Pr)

2

1 + h2
cPk

(4.229)

(e)

≤ h2
cPj + h2

rPr + 2|hc||hr|
√
PjPr +

(
|hd|

√
Pk + |hr|

√
Pr

)2

1 + h2
cPk

(4.230)

≤ (|hc|+ |hr|)2P + 4max

{
h2
dP

1 + h2
cP

, h2
rP

}
, (4.231)

where (d) follows since σ2 ≤ 1 and (e) follows by maximizing over A. As a result, by
substituting (4.231) in (4.227) we obtain the desired bound.

Note the resemblance between this bound and the sum-capacity of the IC with noisy
interference [MK09, SKC09,AV09], particularly when the term h2

d
P/(1+h2

cP ) dominates
this bound.

Finally, the last upper bound that we derive for the G-IRC is presented in the
following theorem. This upper bound is also useful in the weak interference regime.
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Theorem 4.14. The sum-capacity of the G-IRC is upper bounded by

CΣ ≤ 2C

((
1− hd

hc

)2

+
h2
c

h2
s

)
+ 2C(2h2

sP ). (4.232)

Proof. As in the proof of the upper bound for the LD-IRC in Theorem 4.6, a genie
gives (Sn

c1, Y
n
r ) and (Sn

c2, Y
n
r ) to Rx 1 and Rx 2, respectively. We can bound R1 as

n(R1 − ε1n) ≤ I(Xn
1 ; Y

n
1 , S

n
c1, Y

n
r ) (4.233)

= h(Sn
c1, Y

n
r ) + h(Y n

1 |Sn
c1, Y

n
r )− h(Zn

2 )− h(Sn
c2, Y

n
r )

+ I(Xn
1 ;S

n
c2, Y

n
r ) (4.234)

using the same steps as in the proof of Theorem 4.6, and similarly

n(R2 − ε2n) ≤ h(Sn
c2, Y

n
r ) + h(Y n

2 |Sn
c2, Y

n
r )− h(Zn

1 )− h(Sn
c1, Y

n
r )

+ I(Xn
2 ;S

n
c1, Y

n
r ), (4.235)

where ε1n, ε2n → 0 as n → ∞. Then

n(RΣ − ε1n − ε2n) ≤ h(Y n
1 |Sn

c1, Y
n
r )− h(Zn

2 ) + I(Xn
1 ;S

n
c2, Y

n
r ) (4.236)

+ h(Y n
2 |Sn

c2, Y
n
r )− h(Zn

1 ) + I(Xn
2 ;S

n
c1, Y

n
r ).

Now, we proceed as in [PV11b] to obtain

h(Y n
1 |Sn

c1, Y
n
r )

(a)

≤ h

(
Zn

1 +

(
1− hd

hc

)
Zn

2 − hc

hs

Zn
r |hcX

n
1 + Zn

2 , Y
n
r

)

≤ h

(
Zn

1 +

(
1− hd

hc

)
Zn

2 − hc

hs

Zn
r

)

=
n

2
log

(
1 +

(
1− hd

hc

)2

+
h2
c

h2
s

)
+

n

2
log(2πe). (4.237)

where (a) follows since

Zn
1 +

(
1− hd

hc

)
Zn

2 − hc

hs

Zn
r = Y n

1 +

(
1− hd

hc

)
(hcX

n
1 + Zn

2 )−
hc

hs

Y n
r . (4.238)

Similarly

h(Y n
2 |Sn

c2, Y
n
r ) ≤

n

2
log

(
1 +

(
1− hd

hc

)2

+
h2
c

h2
s

)
+

n

2
log(2πe). (4.239)

Next, we have

I(Xn
1 ;S

n
c2, Y

n
r ) = I(Xn

1 ;S
n
c2) + I(Xn

1 ; Y
n
r |Sn

c2) (4.240)

= I(Xn
1 ; Y

n
r |Sn

c2) (4.241)

= h(Y n
r |Sn

c2)− h(Y n
r |Sn

c2, X
n
1 ) (4.242)

≤ h(Y n
r )− h(Y n

r |Sn
c2, X

n
1 , X

n
2 ) (4.243)

≤ C(2h2
sP ) (4.244)
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which is the sum-capacity of the multiple-access channel from both transmitters to the
relay [Ahl71]. And similarly

I(Xn
2 ;S

n
c1, Y

n
r ) ≤ C(2h2

sP ). (4.245)

By plugging (4.237), (4.239), (4.244), and (4.245) in (4.236), and letting n → ∞, we
get the desired upper bound.

So far, we have presented the cut-set upper bounds and our new upper bounds on
the sum-capacity of the G-IRC. These bounds collectively characterize the GDoF of
the IRC with h2

s ≤ h2
c as we show later on in this section. In order to test the tightness

of these upper bounds, we need to compare them with lower bounds obtained by
considering some transmission schemes for the IRC.

4.3.2 Sum-capacity Lower Bounds

Various transmission schemes can be employed in the G-IRC. As a benchmark, an
IC-type Han-Kobayashi [HK81] (HK) scheme (where the relay is ignored) can be used.
By incorporating the relay, a better performance than that of the HK scheme should
be achieved. Therefore, a good scheme for the G-IRC should perform at least as good
as the HK scheme. We expect that the HK scheme can be very close to optimal if the
channels to/from the relay are very weak. Otherwise, if the relay channels are strong,
then better performance might be obtained if we use the relay in a decode-forward or
compress-forward fashion. Moreover, combinations of these schemes can also be used,
leading to numerous possibilities. See for instance schemes that combine cooperative
and non-cooperative strategies in the context of the IC with source or destination
cooperation in [PV11a,PV11b].

Beside these classical schemes, new ideas can be applied to the G-IRC to construct
possibly more capable schemes. Network coding ideas similar to the one used in
Section 4.2.2 for the LD-IRC can be extended to the G-IRC using appropriate coding
strategies. Note that due to the absence of noise in the LD-IRC, it was sufficient to
encode on a symbol-by-symbol basis. The main aim of the constructed code was to
combat interference. However, in the G-IRC, one has to take care of both interference
and noise. Therefore, channel codes which combat noise (in addition to interference)
have to be used. Namely, one can use nested-lattice coding and lattice alignment to
establish a cooperation strategy between the relay and the transmitters as we have
done for the LD-IRC. We refer the reader to Section 2.5 (page 12) for an introduction
on lattice codes.

4.3.2.1 Compute-forward with Nested-lattice Codes

In compute-forward (CF), the relay does not decode the transmitted signals of the
users individually, but rather a linear combination thereof. This is rendered possible
by using nested-lattice codes. Let us now start by describing the weak interference
(WI) variant of our scheme which we call WI-CF .

4.3.2.1.1 Message splitting: Rate splitting is used at the transmitters similar to
our scheme for the LD-IRC in Section 4.2.2.3.1. That is, the message m1 is split into

• a compute-forward (CF) message m1u with rate Ru,
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• a common (C) message m1v with rate Rv, and

• a private (P) message m1w with rate Rw.

The CF message refers to the message used for cooperation with the relay. Moreover,
the CF message is sub-divided into K ∈ N CF sub-messages3 m1u,k, k = 1, · · · , K, with

rate Ru,k where Ru =
∑K

k=1Ru,k. Thus, the set of messages to be sent from the first
transmitter becomes {m1w, m1v, m1u,1, m1u,2, · · · , m1u,K}.

4.3.2.1.2 Encoding: The C and P messages do not benefit from the relay, i.e.,
they are the same as the C and P messages in the IC in [ETW08]. The P message m1w

is encoded into wn
1 using a Gaussian random code with power Pw and rate Rw, i.e., W1

is i.i.d. N (0, Pw). Similarly, the C message m1v is encoded into vn
1 using a Gaussian

code with power Pv and rate Rv.
In order to facilitate the use of CF, i.e., to allow the relay to decode the sum of the

CF signals, the CF messages are encoded using nested-lattice codes that align at the
relay (as in Lemma 2.6 on page 13). Each CF message m1u,k is encoded into un

1,k using

a nested-lattice code (Λf
k ,Λ

c
k) with rate Ru,k and power Pu,k (as in 2.21). Thus

un
1,k = (λ1,k − d1,k) mod Λc

k (4.246)

where λ1,k ∈ Λf
k ∩V(Λc

k) and d1,k is a random dither uniformly distributed over V(Λc
k).

Moreover, in order to satisfy the power constraint, we set

Pw + Pv +
K∑

k=1

Pu,k = P. (4.247)

The same encoding is done at Tx 2, where the same nested-lattices (Λf
k ,Λ

c
k) are used.

Notice that this enables the relay to decode the sum

ūk = (λ1,k + λ2,k) mod Λc
k, (4.248)

with some rate constraint that we specify next. Tx 1 then sends the sum of all
codewords as

xn
1 = wn

1 + vn1 +
K∑

i=1

un
1,k. (4.249)

This encoding process is repeated in transmission blocks b ∈ {1, . . . , B−1}, each block
of length n symbols. The transmitters do not send any messages in block B.

4.3.2.1.3 Relay Processing: Decoding at the relay starts at the end of block
b = 1. In block 1, the relay receives

ynr (1) = hs

2∑

j=1

(
wn

j (1) + vnj (1) +
K∑

i=1

un
j,k(1)

)
+ znr (1), (4.250)

3Recall that in the LD-IRC we have decoded one of the CF signals at the receiver bit by bit
successively while simultaneously canceling interference from other CF signal. In order to mimic this
procedure in the G-IRC, we use CF message splitting. This is justified graphically in Section 4.3.3.2.2
on page 66.
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where the index in the brackets denotes the block index. It decodes the sum ūk(1) =
(λ1,k(1) + λ2,k(1)) mod Λc

k, starting with k = 1 and ending with k = K. Decoding
is done successively (successive compute-forward [Naz12]), where at each decoding
step, the interference from already decoded signals is removed. Decoding this sum of
codewords is possible as long as (see Lemma 2.6 on page 13)

Ru,k ≤ C+

(
h2
sPu,k

1 + 2h2
s(
∑K

i=k+1 Pu,i + Pv + Pw)
− 1

2

)
(4.251)

for all k ∈ {1, · · · , K}. Note that while decoding ūk(1), all the signals w
n
j , v

n
j , and un

j,l

for j = 1, 2 and l > k are treated as noise.

Remark 4.8. The channel between the sources and the relay is similar to the doubly
dirty MAC [PZEK11], except for the fact that the relay does not need to decode the
individual messages but a function thereof. It is thus possible to increase the rate
constraints at the relay if we encode the CF messages against ‘self ’ interference using
the lattice DPC scheme of [PZEK11]. For instance, Tx 1 can encode un

1,k against the
interference caused by u1,l, n for l > k, and similarly at Tx 2 which achieves higher
rates than (4.251). However, this will not be necessary for the purpose of this chapter.

Observe that the set of all possible values of ūk(1) ∈ Uk has size |Uk| = 2nRu,k . The
relay maps all the signals ūk(1), k = 1, · · · , K, into one message mr(1) ∈ Mr, where
the message set Mr has a size which is equal to the size of the Cartesian product of
all Uk, i.e.,

|Mr| = |U1 × U2 × · · · × UK | = 2n
∑K

k=1
Ru,k = 2nRu. (4.252)

This relay message is then split into mr,a(1) and mr,b(1) with rates Rr,a and Rr,b,
respectively, with Ru = Ru,a + Ru,b. These messages are encoded to ūn

a(2) and ūn
b (2),

which are Gaussian codes with power Pr,a and Pr,b, respectively, such that Pr,a+Pr,b ≤
P . These codewords are sent in block 2.

The purpose of this splitting is to allow a flexible decoding order at the destinations
between the relay signals and the desired CF signals. As we shall see next, we stick to
a successive decoding scheme for simplicity. The message mr,b is to be decoded at the
destinations after decoding the desired CF messages, while mr,a is decoded before the
desired CF messages. This allows us to achieve higher rates than if both mr,a and mr,b

are decoded after the desired CF messages in some cases, in particular when h2
r ≥ h2

d

(for a graphical illustration, see Figure 4.6 on page 35). In this successive decoding
framework, this split allows the two decoding orders, the first being the case where
the relay signal is decoded before the desired CF signals at the destinations (by setting
Pr,b = 0), and the second being the opposite case (by setting Pr,a = 0). Moreover, this
splitting allows transitions between these two extreme cases, where part of the relay
signal is decoded before the desired CF signals, and another part afterwards.

Similar processing is done at the relay in blocks 2, · · · , B−1. Due to causality, the
relay transmission takes place in blocks 2, · · · , B, while the relay does not send any
signal in block 1.

4.3.2.1.4 Decoding at the destinations: The receivers use backward decoding,
i.e., the receivers wait until the end of block B where decoding starts. We explain the
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decoding process at Rx 1 only since decoding at Rx 2 is similar. At the end of block
B, Rx 1 receives only

yn1 (B) = hr(ū
n
a(B) + ūn

b (B)) + zn1 , (4.253)

since the transmitters do not send in this block. Then, mr,a(B − 1) and mr,b(B − 1)
are decoded successively in this order, which is possible reliably if

Rr,a ≤ C

(
h2
rPr,a

1 + h2
rPr,b

)
(4.254)

Rr,b ≤ C(h2
rPr,b). (4.255)

Now, Rx 1 has obtained mr(B−1), and hence it can construct (ū1(B−1), · · · , ūK(B−
1)). Now consider block B − 1. The received signal at Rx 1 is given by

yn1 (B − 1) = hdx
n
1 (B − 1) + hcx

n
2 (B − 1) + hrx

n
r (B − 1) + zn1 (4.256)

= hdw
n
1 (B − 1) + hdv

n
1 (B − 1) + hd

K∑

k=1

un
1,k(B − 1)

+ hcw
n
2 (B − 1) + hcv

n
2 (B − 1) + hc

K∑

k=1

un
2,k(B − 1)

+ hrū
n
a(B − 1) + hrū

n
b (B − 1) + zn1 . (4.257)

Rx 1 decodes the messages in this order:

mr,a → m1u,1 → m1u,2 → · · · → m1u,K → mr,b → (m1v, m2v) → m1w.

The message mr,a(B−2) (corresponding to the signal ūn
a(B−2)) is first decoded while

treating the other signals as noise, which leads to the rate constraint

Rr,a ≤ C

(
h2
rPr,a

1 + h2
dP + h2

cP + h2
rPr,b

)
. (4.258)

Next, Rx 1 removes the contribution of ūn
a(B − 1), and decodes m1u,1(B − 1) while

treating the other signals as noise. Thus, we have the following rate constraint

Ru,1 ≤ C

(
h2
dPu,1

1 + h2
d(
∑K

i=2 Pu,i + Pv + Pw) + h2
cP + h2

rPr,b

)
. (4.259)

The next step is to perform interference cancellation. Since Rx 1 now knows both
m1u,1(B − 1) and ū1(B − 1) (decoded in block B), then, it can extract m2u,1(B − 1)
(see Lemma 2.7 on page 14). It thus removes its contribution, hcu

n
2,1(B − 1), from

yn1 (B−1). After canceling the interference of the first interfering CF signal, the second
desired CF signal is decoded while treating the other signals as noise. Next, the second
interfering CF signal is canceled and so on. This continues until all CF messages are
decoded, leading to the rate constraint given by

Ru,k ≤ C

(
h2
dPu,k

1 + (h2
d + h2

c)(
∑K

i=k+1 Pu,i + Pv + Pw) + h2
cPu,k + h2

rPr,b

)
. (4.260)
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At this stage, after removing the contribution of the decoded signals, the received
signal at Rx 1 can be reduced to

ỹ1
n(B − 1) = hdw

n
1 (B − 1) + hdv

n
1 (B − 1)

+ hcw
n
2 (B − 1) + hcv

n
2 (B − 1) + hrū

n
b (B − 1) + zn1 . (4.261)

Now, mr,b(B − 2) (corresponding to the signal ūn
b (B − 2)) is decoded, with the rate

constraint

Rr,b ≤ C

(
h2
rPr,b

1 + (h2
d + h2

c)(Pv + Pw)

)
. (4.262)

The remaining C and P messages are treated as in the IC [ETW08], i.e., m1v(B − 1)
and m2v(B−1) are decoded jointly, and m1w afterwards leading to the rate constraints

Rv ≤ C

(
min{h2

d, h
2
c}Pv

1 + (h2
d + h2

c)Pw

)
(4.263)

2Rv ≤ C

(
h2
dPv + h2

cPv

1 + (h2
d + h2

c)Pw

)
(4.264)

Rw ≤ C

(
h2
dPw

1 + h2
cPw

)
. (4.265)

Notice that the rate constraints (4.258) and (4.262) are more binding than (4.254)
and (4.255), and hence the latter two will be ignored. Now since we have Rr,a+Rr,b =
Ru, we can write

Ru ≤ C

(
h2
rPr,a

1 + h2
dP + h2

cP + h2
rPr,b

)
+ C

(
h2
rPr,b

1 + (h2
d + h2

c)(Pv + Pw)

)
. (4.266)

As long as (4.266) is satisfied, then there exists a split of mr into mr,a and mr,b which
achieves a total CF rate as (4.266). This split is namely corresponding to setting Rr,a

to be equal to the first term in (4.266) and Rr,b to the second one.
Decoding proceeds backwards till block 1 is reached where m1u,k(1) (k = 1, · · · , K),

m1v(1) and m1w(1) are decoded, and as a by-product m2u,k(1) and m2v(1) are also
obtained. This leads to the following sum-capacity lower bound.

Theorem 4.15 (WI-CF ). The sum-rate given by RΣ = 2(Rw+Rv+Ru) is achievable,
where the private message rate Rw satisfies (4.265), the common message rate Rv

satisfies (4.263) and (4.264), and the CF message rate satisfies

Ru ≤
K∑

k=1

C+

(
h2
sPu,k

1 + 2h2
s(
∑K

i=k+1 Pu,i + Pv + Pw)
− 1

2

)
, (4.267)

Ru ≤
K∑

k=1

C

(
h2
dPu,k

1 + (h2
d + h2

c)(
∑K

i=k+1 Pu,i + Pv + Pw) + h2
cPu,k + h2

rPr,b

)
, (4.268)

Ru ≤ C

(
h2
rPr,a

1 + h2
rPr,b + h2

dP + h2
cP

)
+ C

(
h2
rPr,b

1 + (h2
d + h2

c)(Pv + Pw)

)
. (4.269)

for some power allocation Pw + Pv +
∑K

k=1 Pu,k = P , Pr,a + Pr,b ≤ P , and K ∈ N.
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(a) WI-CF . (b) SI-CF .

Figure 4.10: Two decoder structures for the CF signals. One can decode the
desired CF signal and then extract the undesired one for interference cancellation,

or vice versa.

Proof. By collecting the bounds (4.251), (4.258)-(4.260) and (4.262)-(4.265) we obtain
the desired achievable rate.

Remark 4.9. Since we have used the same strategy for encoding and decoding the P

and C messages as for the IC in [ETW08], this results in our scheme being at least as
good as that in [ETW08]. Namely, by switching the relay off (Pr,a = Pr,b = 0), and
setting the powers of the CF signals to zero (Pu,k = 0), our scheme reduces to that
of [ETW08].

Remark 4.10. As we shall see next, there are cases where the GDoF of the IRC is
achieved without using the full power at the relay. For this reason, we have preserved
the inequality in the power constraint Pr,a + Pr,b ≤ P .

Note that we have sticked with a specific decoding order in our WI-CF scheme.
Different decoding orders can also be used. However, this order turns out to be GDoF
achieving and thus we restrict our attention to it (recall that this order achieves the
sum-capacity of the LD-IRC (Section 4.2)).

So far, we have forced the receiver to decode its desired CF messages, and then use
the cooperation information mr,a and mr,b to extract the CF signal interference and
cancel it. Alternatively, the receiver can start by decoding the interfering CF signal,
and then, given mr,a and mr,b, extract its desired CF messages (Figure 4.10). This
gives the following alternative achievable rate.

Theorem 4.16 (SI-CF ). The sum-rate given by RΣ = 2(Rv +Ru) is achievable where
the common message rate Rv satisfies

Rv ≤ C
(
min{h2

d, h
2
c}Pv

)
(4.270)

2Rv ≤ C
(
h2
dPv + h2

cPv

)
(4.271)

and the CF message rate Ru satisfies

Ru ≤
K∑

k=1

C+

(
h2
sPu,k

1 + 2h2
s(
∑K

i=k+1 Pu,i + Pv)
− 1

2

)
(4.272)

Ru ≤
K∑

k=1

C

(
h2
cPu,k

1 + (h2
d + h2

c)(
∑K

i=k+1 Pu,i + Pv) + h2
dPu,k + h2

rPr,b

)
(4.273)

Ru ≤ C

(
h2
rPr,a

1 + h2
rPr,b + h2

dP + h2
cP

)
+ C

(
h2
rPr,b

1 + h2
dPv + h2

cPv

)
, (4.274)
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for some power allocation Pv +
∑K

k=1 Pu,k = P , Pr,a + Pr,b ≤ P , and K ∈ N.

Proof. The achievability of these rates can be verified by using the same scheme as
that in Theorem 4.15, with decoding the CF interference first instead of the CF desired
messages.

Notice that we did not include a private message in the SI-CF scheme. The reason
is that this scheme is useful for characterizing the GDoF of the G-IRC in the strong
interference (SI) regime (h2

c ≥ h2
d). Recall that the sum-capacity of the IC with SI can

be achieved without using private messages [Car75, Sat81]. Similarly, we show next
that the GDoF of the G-IRC with SI and with h2

s ≤ h2
c is achieved without private

messages.
To examine the performance of our schemes, one has to carefully choose K and

the power allocations, plug in the rate constraints, and compare to the upper bounds.
This is done in the next section where we discuss the GDoF of the network.

4.3.3 Generalized Degrees-of-Freedom (GDoF) Characteriza-
tion

Due to the complicated nature of the given problem, which combines the IC and the
relay channels, both of which have unknown capacity in general [EGK11], we resort
to an approximative characterization of the sum-capacity. An approximation of the
sum-capacity is provided by the DoF of the network, which is known from previous
results to be 1 [CJ09]. While the DoF provides interesting insights into the behavior
of the system, the GDoF [ETW08] is a much more powerful metric, as it is richer and
captures a large variety of scenarios. Next, we show that the bounds we provided in
Theorems 4.10, 4.11, 4.12, 4.13, and 4.14 and Corollary 4.1 are GDoF-optimal as long
as h2

s ≤ h2
c . Let us first define the GDoF of the G-IRC.

Definition 4.1. Let the following variables represent the strength of the different chan-
nels (similar to [ETW08])

α =
log(h2

cP )

log(h2
dP )

, β =
log(h2

rP )

log(h2
dP )

, γ =
log(h2

sP )

log(h2
dP )

, (4.275)

and define the GDoF d(α, β, γ), or simply d as

d = lim
h2
dP→∞

CΣ(h
2
dP, α, β, γ)

1
2
log(h2

dP )
. (4.276)

The main result of this section is given in the following theorem.

Theorem 4.17. The GDoF of the G-IRC with γ ≤ α is given by

d = min





2max{1, β}
2max{1, γ}

max{1, α, β}+max{1, α} − α
2max{1, α} − α + γ
2max{α, β, 1− α}
2max{α, 1 + γ − α}





. (4.277)

Note that the GDoF expression of the theorem is the same as the sum-capacity ex-
pression in Theorem 4.1 with replacing nd, nc, nr, and ns by 1, α, β, and γ, respectively.
The converse and achievability of this Theorem are given in the next paragraphs.
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4.3.3.1 GDoF Upper Bounds

In order to prove this theorem, we start by transforming the sum-capacity upper
bounds to GDoF upper bounds as follows. Let us start with Theorem 4.10,

CΣ ≤ 2C((|hd|+ |hr|)2P ) (4.278)

CΣ ≤ 2C(h2
dP + h2

sP ). (4.279)

For the first bound, we write

CΣ ≤ 2C((|hd|+ |hr|)2P ) (4.280)

≤ 2C(4max{h2
d, h

2
r}P ) (4.281)

= 2C(4max{h2
dP, (h

2
dP )β}). (4.282)

where in the last step we used the definition of β. Thus

d = lim
h2
d
P→∞

CΣ

1
2
log(h2

dP )
≤ 2max{1, β}. (4.283)

Similarly, the second bound yields

d ≤ 2max{1, γ}. (4.284)

Using similar steps, the bounds in Theorem 4.11 and Corollary 4.1 can be combined
into the following GDoF bound

d ≤ max{1, α, β}+max{1, α, γ} − α. (4.285)

The bounds in Theorems 4.12, 4.13, and 4.14 translate to

d ≤ max{1, α}+max{0, 1− α}+ γ (4.286)

d ≤ 2max{α, β, 1− α}+ 2max{0, γ − α}, (4.287)

d ≤ 2max{0, α− γ, 1− α}+ 2γ. (4.288)

By combining (4.283)-(4.288), we obtain the converse of Theorem 4.17.

4.3.3.2 GDoF Lower Bounds

Before we prove the achievability of Theorem 4.17, we recall the GDoF of the IC
[ETW08] given by (see Lemma 2.1 on page 7)

d = min{2max{1− α, α}, 2max{1, α} − α, 2}. (4.289)

This GDoF is achievable using the Han-Kobayashi (HK) transmission scheme [HK81]
with a fixed decoding order [ETW08]. This scheme can be used to achieve the same
GDoF in the G-IRC. It turns out that this is GDoF-optimal in the IRC in some cases.
For example, if γ ≤ α and β ≤ min{1, α}, then the GDoF in Theorem 4.17 becomes
the same as (4.289) (see Figure 4.11). As a result, if

γ ≤ α and β ≤ min{1, α}, (4.290)

then the relay can be switched off without any impact on the GDoF of the G-IRC.
Alternatively, we can use WI-CF and the SI-CF while setting the power of the CF
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Figure 4.11: The GDoF of the G-IRC for β = 0.5 and γ = 0.4. For α ≥ β, the
GDoF is the same as that of the IC.

signals to zero which also achieves (4.289). As we shall see next, there are more cases
with this property. Consequently, the achievability of Theorem 4.17 is established for
β ≤ min{1, α}.

It remains to show that the GDoF in 4.17 is achievable for

γ ≤ α, and β > min{1, α}. (4.291)

To show this, we use our WI-CF and SI-CF schemes. We express the rate constraints
of these schemes as GDoF constraints using the following definitions.

Definition 4.2. Define δw, δv, and δu,k, k = 1, · · · , K, as

δw =
log(h2

dPw)

log(h2
dP )

, δv =
log(h2

d(Pv + Pw))

log(h2
dP )

, δu,k =
log(h2

d(
∑K

i=k Pu,i + Pv + Pw))

log(h2
dP )

.

(4.292)

Define αw and γw similarly as δw with replacing h2
d in the numerator of (4.292) by h2

c

and h2
s, respectively, and similarly define αv, αu,k, γv, and γu,k. Also define βa and βb

as

βa =
log(h2

r(Pa + Pb))

log(h2
dP )

, βb =
log(h2

rPb)

log(h2
dP )

. (4.293)

With this definition, δu,k, αu,k, and γu,k for instance represent the cumulative re-
ceived power level at Rx 1, Rx 2, and the relay, respectively, of the signals wn

1 , v
n
1 , u

n
1,K ,

un
1,K−1, · · · , un

1,k, relative to h2
dP on a logarithmic scale. Similar interpretation holds

for βa and βb.

Definition 4.3. For m ∈ {u, v, w}, define dm as

dm = lim
h2
d
P→∞

Rm

1
2
log(h2

dP )
. (4.294)

In other words, du for instance is the GDoF achieved by the CF messages only. To
get the achievable GDoF per user, we add du+ dv + dw, and to get the sum GDoF, we
multiply the per user GDoF by 2, i.e., d = 2(du + dv + dw).
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4.3.3.2.1 Weak Interference: For the WI case (α ≤ 1), we need only to consider
γ ≤ α ≤ min{1, β} (cf. (4.291)). Let us express the rate constraints of the WI-CF

scheme as GDoF constraints. We start with (4.267). We write this rate constraint first
using our notation in Definition 4.2. Here comes the first stage of power allocation.
The relay should decode the sum of the CF signals, so their powers have to be stronger
than noise, i.e., h2

sPu,K > 1. On the other hand, the C and P signals do not have to
be decoded at the relay, thus their powers can be below the noise power. We obtain

Ru ≤
K∑

k=1

C+

(
h2
sPu,k

1 + 2h2
s(
∑K

i=k+1 Pu,i + Pv + Pw)
− 1

2

)
(4.295)

=

K−1∑

k=1

[
1

2
log

(
1
2
+ h2

s(Pu,k + Pu,k+1 + · · ·+ Pu,K + Pv + Pw)

1 + 2h2
s(
∑K

i=k+1 Pu,i + Pv + Pw)

)]+

+

[
1

2
log

( 1
2
+ h2

s(Pu,K + Pv + Pw)

1 + 2h2
s(Pv + Pw)

)]+
(4.296)

=
K−1∑

k=1

[
1

2
log

( 1
2
+ (h2

dP )γu,k

1 + 2(h2
dP )γu,k+1

)]+
+

[
1

2
log

( 1
2
+ (h2

dP )γu,K

1 + 2(h2
dP )γv

)]+
(4.297)

By dividing both sides by 1
2
log(h2

dP ) and taking the limit as h2
dP → ∞, we get the

GDoF constraint

du ≤
K−1∑

k=1

(γu,k − γu,k+1)
+ + (γu,K − γ+

v )
+ (4.298)

= γu,1 − γ+
v . (4.299)

Similarly, one can obtain the following GDoF constraints from (4.268) and (4.269)

du ≤
K−1∑

k=1

(δu,k −max{δu,k+1, αu,k, βb})+ + (δu,K −max{δv, αu,K , βb})+, (4.300)

du ≤ (βa − 1)+ + (βb − δ+v )
+. (4.301)

Let us analyze the first GDoF constraint (4.300). Each receiver needs to decode its
desired CF signals before the relay signal ūn

b . Moreover, the kth desired CF signal
should be decoded without interference from the kth undesired CF signal (this is to be
removed after the kth desired CF signal is decoded). Thus, we have to set

αu,k ≤ δu,k+1, k = 1, · · · , K − 1 (4.302)

αu,K ≤ max{δv, βb} (4.303)

βb ≤ δu,K . (4.304)

Consider the second GDoF constraint (4.301). Since the desired C signal has to be
decoded at the desired destination, then we have to set

δv > 0. (4.305)

Moreover, since Pw + Pv +
∑K

k=1 Pu,k = 1, we have δu,1 = 1 and γu,1 = γ. As a result,
the achievable GDoF of the CF message becomes

du ≤ min{γ − γ+
v , 1−max{δv, βb}, (βa − 1)+ + (βb − δv)

+}. (4.306)
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Note the resemblance between this GDoF expression and the achievable CF rate in the
LD-IRC given in (4.147). Similarly, the rate constraints of the C and P messages in
the WI-CF scheme can be expressed as the following GDoF constraints

dv ≤ min

{
αv − δw,

δv − δw
2

}
, (4.307)

dw ≤ δw, (4.308)

where we set δw ≥ 0 and αw ≤ 0. As in the IC [ETW08], we set δw = 1−α so that the
interfering private signal is received at the noise level at the undesired receiver. We
get

dv ≤ min

{
αv − 1 + α,

δv − 1 + α

2

}
, (4.309)

dw ≤ 1− α. (4.310)

The remaining free parameters correspond to the C signals (δv, αv, and γv), and to the
relay signals (βa and βb). This leads to the following achievable GDoF as a corollary
of Theorem 4.15.

Corollary 4.2. The achievable GDoF corresponding to the WI-CF scheme in Theorem
4.15) is given by d = 2(du + dv + dw) where du, dv, and dw satisfy (4.306) and (4.309)
with δv ∈ [1 − α, 1], βb ∈ [0,min{1, β}], and βa ∈ [βb, β], and δv, αv, γv are related as
defined in Definition 4.2.

Note that by setting δv = 1 and βa = βb = 0, we get the same achievable rate as
in (4.289) for the WI regime. Now, we show that the GDoF in Corollary 4.2 coincide
with Theorem 4.17 in the WI regime, i.e., that WI-CF achieves the GDoF of the G-IRC
in the WI regime. The GDoF of the G-IRC given in Theorem 4.17 can be written for
the WI regime as

d ≤ min





max{1, β}+ 1− α
2− α+ γ

2max{α, β, 1− α}
2max{α, 1 + γ − α}





. (4.311)

In order to simplify this WI GDoF bound, we subdivide it into three cases similar to
the LD-IRC.
WI-1: In this case, β ≤ 1

2
and we need only to consider γ ≤ α ≤ β (cf. (4.291)). By

evaluating the WI GDoF bounds (4.311) for this case we get

d ≤ min{2− α, 2max{α, 1− α}}, (4.312)

which is the same as the GDoF of the IC, and hence is achievable by the WI-CF scheme
(see Figure 4.11 on page 60). As a result if γ ≤ α ≤ β ≤ 1

2
, then the relay can be

switched off without any impact on the GDoF of the network.
WI-2: Now we have 1

2
< β ≤ 1. The GDoF upper bound becomes

d ≤ min





2− α
2max{β, 1− α}

2max{α, 1 + γ − α}



 . (4.313)



Section 4.3 � On the Generalized Degrees of Freedom of the G-IRC 63

α

d

γ β2

3
01 1

2

1

2

2β

2 + 2γ − 2α
2α

2− α

2− α

(a) β = 0.8, γ = 0.25
α

d

γ β01 1

2

2

3

2β

1

2

2− α

(b) β = 0.8, γ = 0.35

Figure 4.12: The GDoF of the IRC for β = 0.8 and different values of γ ≤ 1. The
GDoF of the IC is also shown (dotted) as a benchmark.

shown in Figure 4.12. For convenience, we express this upper bound as

d ≤





2− 2α, α ≤ 1− β, 1+γ

2

min{2α, 2− α}, 1− β, 1+γ

2
< α

min{2− α, 2β, 2 + 2γ − 2α}, 1− β < α ≤ 1+γ

2
.

(4.314)

The GDoF of the first and second cases can be achieved by the WI-CF scheme since
it is achievable in the IC (note that in the second case α ≥ 1/2). Finally, we consider
the third case. One can try to maximize the GDoF given in Corollary 4.2 in order to
obtain the optimal GDoF. Instead, we consider an easier method. First, we recall the
level allocation parameters we used in the LD-IRC. There (Section 4.2.3.1), we used

i) (ℓb, ℓv) = (2nd−nc

2
, nd − nc) to achieve 2nd − nc,

ii) (ℓb, ℓv) = (nr, nd − nc) to achieve 2nr, and

iii) (ℓb, ℓv) = (nd + ns − nc, nd − nc) to achieve 2nd + 2ns − 2nc.

This level allocation can be easily translated to a power allocation for the G-IRC. For
example, we can translate the level allocation in case (i) given by (ℓb, ℓv) = (2nd−nc

2
, nd−

nc) to (βb, δv) =
(
2−α
2
, 1− α

)
by replacing nd by 1 and nc by α. Thus, we obtained

the levels βb and δv. Next, we calculate the power allocation corresponding to these
levels. To do this, we write

βb =
2− α

2
⇒ Pr,b =

√
h4
dP

h2
ch

4
r

, (4.315)

ℓv = 1− α ⇒ Pv + Pw =
1

h2
c

. (4.316)

Observing that ℓw = 1− α ⇒ Pw = 1/h2
c, this implies that Pv = 0 and no C message is

needed in this case. Furthermore, we set Pra = 0 since β < 1 in this case, and thus we
can not achieve non-zero GDoF for ūn

a by decoding it before decoding the desired CF

messages. Thus, we need the following power allocation to achieve d = 2− α

Pw =
1

h2
c

, Pu = P − Pw, Pr,b =

√
h4
dP

h2
ch

4
r

(4.317)
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and the remaining signals have zero power. The power Pu has to be split between theK
CF signals, where K is determined next. To find K, we use conditions (4.302)-(4.304)
given by

αu,k ≤ δu,k+1, k = 1, · · · , K − 1 (4.318)

αu,K ≤ max{δv, βb} (4.319)

βb ≤ δu,K . (4.320)

as follows. If we set

Pu,k =

(
h2
c

h2
d

)k−1

P −
(
h2
c

h2
d

)k

P, k = 1, · · · , K − 1 (4.321)

Pu,K =

(
h2
c

h2
d

)K−1

P − Pw, (4.322)

then we satisfy (4.318) and also Pu = P − Pw. Now, we find K such that condition
(4.320) is satisfied. We require

βb ≤ δu,K ⇒
√

h4
dP

h2
c

≤ h2
d

(
h2
c

h2
d

)K−1

P (4.323)

⇒ K − 1 ≤ α

2(1− α)
. (4.324)

From (4.319), noting that δv ≤ βb in this case, we get

βb ≥ αu,K ⇒ K − 1 ≥ α

2(1− α)
− 1. (4.325)

From (4.324) and (4.325), we obtain the desired K

K =

⌈
α

2(1− α)

⌉
. (4.326)

In summary, to achieve d = 2 − α in the third case in (4.314), we set Pw = 1/h2
c,

Pv = Pr,a = 0, Pr,b =
√

h4
d
P

h2
ch

4
r
, and

Pu,K =

(
h2
c

h2
d

)K−1

P − Pw, K =

⌈
α

2(1− α)

⌉
(4.327)

Pu,k =

(
h2
c

h2
d

)k−1

P −
(
h2
c

h2
d

)k

P, k = 1, · · · , K − 1. (4.328)

Note that if α ≤ 2/3, then K = 1, i.e., no splitting of the CF message is required.
Otherwise, splitting the CF message is required. However, if α > 2/3, then CF is not
needed to achieve 2− α since this GDoF can be also achieved in the IC.

Using similar analysis, we can show that the level allocation in (ii) and (iii) lead
to K = 1, Pv = Pr,a = 0, Pw = 1/h2

c, Pu,1 = P − Pw, and Pr,b = P to achieve d = 2β,

and Pr,b =
h2
d
h2
sP

h2
ch

2
r

to achieve d = 2 + 2γ − 2α.
It is notable that in this case the relay does not use its full power to achieve the

GDoF. This is relatively counterintuitive, since one would expect that we should use all
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the relay power to be optimal. Additionally, the common messages are not necessary
in this regime.
WI-3: In this case, the G-IRC has strong relay-destination channels β > 1, and hence,
part of the relay signal can be sent at higher power and decoded first at the destinations
before the desired CF signals. The GDoF in this case is

d ≤ min





1− α + β
2− α + γ

2max{α, 1− α + γ}



 . (4.329)

Let us first rewrite this expression for convenience as

d ≤





1− α+ β, α ≤ 1 + 2γ − β, 1+γ

2

2− 2α+ 2γ, 1 + 2γ − β < α ≤ 1+γ

2

min{2α, 1− α + β}, α > 1+γ

2
, γ > β − 1

min{2α, 2− α + γ}, α > 1+γ

2
, γ ≤ β − 1

(4.330)

Again, using the same analysis as before, we can translate the level allocation of the
LD-IRC in the regime WI-3 to a power allocation policy for the G-IRC. In the first
two cases in (4.330), we set the WI-CF parameters to Pw = 1

h2
c
, Pv = 0,

Pu,K =

(
h2
c

h2
d

)K−1

P − Pw, (4.331)

Pu,k =

(
h2
c

h2
d

)k−1

P −
(
h2
c

h2
d

)k

P, (4.332)

for k = 1, · · · , K − 1, and Pr,a = P − Pr,b, with

K =

⌈
β + α− 1

2(1− α)

⌉
, Pr,b =

√
h6
dP

h6
rh

2
c

(4.333)

to achieve d = 1− α+ β, and

K =

⌈
γ

1− α

⌉
, Pr,b =

h4
dh

2
sP

h4
rh

2
c

(4.334)

to achieve d = 2− 2α+ 2γ.
In the third and last cases in (4.330), we need the common messages. Moreover,

in these cases we do not need ūn
b , i.e., the relay does not split its message, but sends

it using a Gaussian code with power P . We set Pw = 1
h2
c
, Pr,a = P , Pr,b = 0,

Pu,K =

(
h2
c

h2
d

)K−1

P − Pv − Pw, (4.335)

Pu,k =

(
h2
c

h2
d

)k−1

P −
(
h2
c

h2
d

)k

P, (4.336)

for k = 1, · · · , K − 1, with

K =

⌈
β − 1

1− α

⌉
, Pv =

h2
dP

h2
r

− Pw (4.337)
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Figure 4.13: The GDoF of the IRC for β = 0.8 and different values of γ ≤ 1. The
GDoF of the IC is also shown (dotted) for comparison.

to achieve d = min{2α, 1− α + β}, and

K =

⌈
γ

1− α

⌉
, Pv =

1

h2
s

− Pw (4.338)

to achieve d = min{2α, 2− α + γ}.
To this end, we have shown the achievability of the GDoF of the G-IRC with

h2
s ≤ h2

c and with WI h2
c ≤ h2

d. GDoF plots for this case are shown in Figure 4.13. At
this point, we discuss the CF rate splitting used in the WI-2 and WI-3 regimes above
before we prove the GDoF achievability for the strong interference case.

4.3.3.2.2 Why to split the CF message into K parts? A graphical illustra-
tion: In this discussion, we refer to Figures 4.14 and 4.15 which capture the general
idea, and can be extended to other cases. Figure 4.14 shows a scenario where CF split-
ting is not used. In this case, Rx 1 starts by decoding ūa achieving β−1 GDoF, then it
decodes u1,1 achieving du,1 = 1−α GDoF. Next, it performs interference cancellation4

by removing the contribution of u2,1, and decodes ūb achieving 2− α− β GDoF (note
that (β − 1) + (2 − α − β) = 1 − α = du,1). Finally, the P signal is decoded which
achieves dw = 1− α. The total achieved GDoF is then

2(du + dw) = 2min{1− α, (β − 1) + (2− α− β)}+ 2(1− α) = 4− 4α. (4.339)

By looking on the scale on the right edge of Figure 4.14, we can see the wasted
opportunity to achieve some extra GDoF in the interval [3 − 2α − β, α]. Namely,
after decoding u1,1 and removing u2,1, another signal, say u1,2, can be decoded without
decreasing the GDoF of u1,1 as long as its power is higher than w1 (so that it achieves
non-zero GDoF) and lower than u2 (so that it does not decrease the GDoF of u1). At
most, we can choose the power of u1,2 such that δu,2 = αu,1 (which explains (4.318)).

Thus, if we split uj, j = 1, 2, into uj,1 and uj,2 as in Figure 4.15(a) such that
δu,2 = αu,1, we can achieve higher GDoF. In this case, after decoding ūa, the first
desired CF signal u1,1 can be decoded with a GDoF of du,1 = 1 − α as if the only
interference comes from the second interfering CF signal. Once u1,1 is decoded, we
cancel the interference from u2,1 and proceed to decode the u1,2, achieving some extra

4Recall that in block b, Rx 1 knows the sum of the desired and the interfering CF signals from the
decoded relay signal in block b+ 1.
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Figure 4.14: Power levels of transmitted and received signals at Rx 1 in the second
transmission block. No CF message splitting is used in this example.

non-zero GDoF. In this case, du,2 =
3α+β−3

2
(Figure 4.15(b)). Then, ūb is decoded with

a GDoF of 1+α−β

2
, and finally, w1 is decoded with a GDoF of dw = 1−α. This achieves

a total GDoF of 2(du+ dw) = 1+β−α which is clearly larger than 4−4α in this case.
This GDoF is optimal for the example in this figure.

Now we ask ourselves how many such CF messages can we have? In other words,
what is the largest number of CF message splits K that we should choose in order to
maximize the achievable GDoF? This question was answered in our discussion of the
WI-2 case, however, here we explain it graphically. To answer this question, we have
first to choose the power of the relay signal ūb. This is done as follows. As explained
previously for the LD-IRC, the WI-CF is based on decoding two observations of the
same signal, namely, the desired CF signal and the relay signal (which indicates the
sum of the CF signals of the two users). To maximize the GDoF achievable by the CF

messages, we try to divide the interval [1− α, β] (from the received power level of the
private signal to that of the relay signal (see Figure 4.15)) into two equal parts, one
which is assigned to the relay signals, and the other assigned to the desired CF signals.
Since only the relay signal can be received with power level higher than 1 (since in this
case β > 1) the interval [1, β] is allocated to ūa. This allow us to achieve da = β − 1

and it remains to achieve db =
β−(1−α)

2
− (β − 1) = 1+α−β

2
. Thus, the signal ūb must

be received with power level of 3−α−β

2
in order to be able to decode it with a GDoF of

db =
1+α−β

2
while treating the P signal as noise. The power level of the relay signal ūb

given by 3−α−β

2
is equivalent to

log(h2
rPr,b)

log(h2
dP )

=

log

(√
h6
d
P

h2
ch

2
r

)

log(h2
dP )

=

log

(
h2
r

√
h6
d
P

h2
ch

6
r

)

log(h2
dP )

(4.340)

leading to Pr,b =
√

h6
d
P

h2
ch

6
r
(see (4.333)). Now, the Kth CF signal can have non-zero

GDoF if its power level is larger than the power of the relay signal ūb (see Figure
4.15(b) where the power of u1,2 is larger than that of ūb). Thus, it is required that
1− (K − 1)(1−α) ≥ 3−β−α

2
, leading to K − 1 ≤ β+α−1

2(1−α)
. Therefore, the largest K that

we can choose is

K =

⌈
β + α− 1

2(1− α)

⌉
, (4.341)

as given in (4.333). This guarantees that while decoding the Kth desired CF signal,
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(a) Rx 1 decodes ūa followed by u1,1 which achieves da = β−1 and du,1 = 1−α, respectively. Then,
it removes the contribution of u2,1. Note that u1,2 does not decrease the GDoF achieved by u1,1.

(b) Rx 1 then decodes u1,2 achieving du,2 = β+3α−3

2
. Finally, it removes the contribution of

u2,2 and decodes ūb followed by w1 which achieves db =
1−β+α

2
and dw = 1−α, respectively.

Figure 4.15: Power levels of transmitted (with CF message splitting) and received
signals at Rx 1 in the second transmission block. At Rx 1, the interval [1− α, β] is
divided into two parts: the part [3−β−α

2 , 1] is assigned to the desired CF signals, and
the rest to the relay signals. With K = 2 we achieve du = du,1 + du,2 = da + db =
α+β−1

2 and dw = 1 − α for a total of 1+β−α
2 GDoF per user. Notice that although

the interference power is larger than the power of ūb, by splitting the CF message
into two parts we were able to decode it with a GDoF of α+β−1

2 as if there is no CF

interference.

the strongest interferer is the relay signal ūb since this gives α − (K − 1)(1 − α) =
1 +K(1− α) ≤ 3−α−β

2
, which follows from the choice of K.

In summary, K is chosen as the largest integer such that the received power level
of the Kth desired CF signal is larger than the power level of the relay signal ūb which
in turn is larger than the received power level of the Kth interfering CF signal (see
Figure 4.15).

Following these guidelines, we proceed with showing the achievability of Theorem
4.17 for the strong interference G-IRC.

4.3.3.2.3 Strong Interference: Similar to the weak interference case, we start by
expressing the rate constraints of the SI-CF scheme as GDoF constraints to obtain the
following corollary.

Corollary 4.3. The achievable GDoF corresponding to the SI-CF scheme in Theorem
4.16 is given by d = 2(du + dv) where du and dv satisfy

du ≤ min{γ − γ+
v , α−max{αv, βb}, (βa − α)+ + (βb − αv)

+} (4.342)

dv ≤ min
{
δv,

αv

2

}
. (4.343)

for some αv ∈ [0, α], βb ∈ [0,min{α, β}], βa ∈ [βb, β], and δv, αv, γv related as given in
Definition 4.2.
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The conditions for splitting the CF message for the SI case are as follows

δu,k ≤ αu,k+1, k = 1, · · · , K − 1 (4.344)

δu,K ≤ max{αv, βb} (4.345)

βb ≤ αu,K . (4.346)

First, by setting αv = 1 and βa = βb = 0, we recover the GDoF of the IC as in
(4.289) for the SI regime. Additionally, the GDoF given in this corollary coincides
with Theorem 4.17 under the conditions α > 1 and γ ≤ α, given by

d ≤ min





2max{1, β}
2max{1, γ}
max{α, β}

γ + α





. (4.347)

We only need to discuss β ≥ 1 since if β ≤ 1 ≤ α, then the G-IRC has the same GDoF
as the IC (cf. (4.290)). In order to simplify the proof, we split SI into two cases.
SI-1: If γ ≤ α < β, then the GDoF upper bound becomes

d ≤ min





2max{1, β}
2max{1, γ}

β
γ + α





. (4.348)

We rewrite this upper bound for convenience as

d ≤
{

min{β, 2γ}, 1 < γ, β
min{γ + α, β, 2}, γ ≤ 1 < β

(4.349)

Let us start with the first case in (4.349). Here we need to achieve min{β, 2γ}. We
can do this by maximizing the achievable GDoF in Corollary 4.3, or by translating the
level allocation of the LD-IRC to power allocation of the G-IRC. Either way, we get

Pv = 0, Pr,b =
√

h4
cP

h6
r
, Pr,a = P − Pr,b,

Pu,k =

(
h2
d

h2
c

)k−1

P −
(
h2
d

h2
c

)k

P, k = 1, · · · , K − 1, (4.350)

Pu,K =

(
h2
d

h2
c

)K−1

P, (4.351)

and K =
⌈

β

2(α−1)

⌉
. In the second case, we need to achieve min{γ + α, β, 2}, which is

possible by using Pr,a = P , Pr,b = 0,

Pu,k =

(
h2
d

h2
c

)k−1

P −
(
h2
d

h2
c

)k

P k = 1, · · · , K − 1, (4.352)

Pu,K =

(
h2
d

h2
c

)K−1

P − Pv, (4.353)

and setting Pv = 1
h2
s
and K =

⌈
γ

α−1

⌉
to achieve γ + α, and Pv = h2

cP

h2
r

and K =
⌈
β−α

α−1

⌉

to achieve min{β, 2}.
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Figure 4.16: The GDoF of the IRC with strong interference for two different cases.
The GDoF of the IC is also shown (dotted) for comparison. In all cases, the GDoF

gain obtained by using the relay is apparent.

SI-2: In this case, γ, β ≤ α and the GDoF expression of Theorem 4.17 becomes

d ≤ min





2max{1, β}
2max{1, γ}

α



 . (4.354)

which can be rewritten as

d ≤





α α ≤ 2
2, α > 2, min{β, γ} ≤ 1
min{α, 2γ}, α > 2, β ≥ γ ≥ 1
min{α, 2β}, α > 2, γ ≥ β ≥ 1

(4.355)

Observe that the first and second cases are always achievable in the case of SI since they
are achievable in the IC. In the third and fourth cases, we use SI-CF with Pv = Pr,a = 0,

Pr,b = min
{
P,
√

h2
cP

h4
r

}
, Pu,1 = P , and K = 1, which achieves the upper bound. GDoF

plots for the IRC with strong interference are shown in Figure 4.16.
Thus, our SI-CF scheme achieves the GDoF of the G-IRC with SI and as a result,

this ends the achievability proof of Theorem 4.17. To this end, we have finished the
characterization of the GDoF of the G-IRC with h2

s ≤ h2
c .

4.4 Comparison with classical schemes

Since the GDoF is a high SNR metric, let us see how does our CF schemes perform
at low to moderate SNR in comparison to two classical schemes: decode-forward, and
compress-forward.

4.4.1 Classical Schemes

Designing a transmission scheme for the G-IRC involves not only designing a coding
strategy at the sources and a decoding strategy at the destinations, but also a relaying
strategy at the relay. Therefore, the number of various transmission schemes for the G-
IRC can be enormous. Here we only compare our scheme with the two most common
schemes, namely, decode-forward and compress-forward. We first give the achievable
rates of the decode-forward scheme and the compress-forward scheme.
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4.4.1.1 Decode-forward

We illustrate a decode-forward (DF) scheme which is a restricted version of the DF

scheme in [SE07a]. Namely, we restrict the decoding order, such that the common
messages are decoded before the private message. This scheme achieves the following
sum-rate.

Theorem 4.18 (DF [SE07a]). The sum-rate RΣ = 2Rw +2Rv is achievable where Rw

and Rv satisfy the rate constraints for decoding at the relay:

Rw ≤ min

{
C(h2

sPw),
1

2
C(2h2

sPw)

}
(4.356)

Rv ≤ min

{
C(h2

sPv),
1

2
C(2h2

sPv)

}
(4.357)

Rw +Rv ≤ min

{
C(h2

s(Pw + Pv)),
1

2
C(2h2

s(Pw + Pv))

}
(4.358)

2Rw +Rv ≤ C(2h2
sPw + h2

sPv) (4.359)

Rw + 2Rv ≤ C(h2
sPw + 2h2

sPv) (4.360)

and for decoding at the receivers:

Rv ≤ C

(
(hd

√
P̄v + hr

√
Pr,v)

2

1 + (hd

√
P̄w + hr

√
Pr,w)2 + (hc

√
P̄w + hr

√
Pr,w)2 + h2

cPw

)
(4.361)

Rv ≤ C

(
(hc

√
P̄v + hr

√
Pr,v)

2

1 + (hd

√
P̄w + hr

√
Pr,w)2 + (hc

√
P̄w + hr

√
Pr,w)2 + h2

cPw

)
(4.362)

2Rc ≤ C

(
(hd

√
P̄v + hr

√
Pr,v)

2 + (hc

√
P̄v + hr

√
Pr,v)

2

1 + (hd

√
P̄w + hr

√
Pr,w)2 + (hc

√
P̄w + hr

√
Pr,w)2 + h2

cPw

)
(4.363)

Rp ≤ C

(
(hd

√
P̄w + hr

√
Pr,w)

2

1 + (hc

√
P̄w + hr

√
Pr,w)2 + h2

cPv

)
, (4.364)

for all Pw + Pv + P̄w + P̄v ≤ P and 2Pr,w + 2Pr,v ≤ P .

At high P , where the system is interference limited, the advantage of CF over DF is
obvious. The DF scheme has the problem of the bottleneck at the relay; the achievable
rate is always upper bounded by (4.358), i.e., C(2h2

s(Pw+Pv)) ≤ C(2h2
sP ) which gives

a GDoF constraint of d ≤ γ. Thus, it is not possible to achieve a GDoF higher than
γ, which in contrast is achievable by CF (e.g. the achievability of 2γ in (4.355)). Thus,
CF is clearly superior to DF. Next we briefly describe the DF scheme.

4.4.1.1.1 Transmitter processing: Tx 1 transmits B − 1 messages m1(b), b =
1, · · · , B − 1, in a window of B blocks, where B is some large integer. In block b, the
message of Tx 1 m1(b) is split into 2 messages, a private (P) message m1,w(b) with
rate Rw, to be decoded by Rx 1, and a common (C) message m1,v(b) with rate Rv,
to be decoded by both receivers. These messages are then encoded using a Gaussian
random code into two independent i.i.d. sequences wn

1 (b) and vn1 (b), with powers Pw
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and Pv, respectively. In each block b, the transmit signal xn
1 (b) is constructed in the

following way

xn
1 (b) =

√
P̄v

Pv

un
1 (b− 1) +

√
P̄w

Pw

wn
1 (b− 1) + vn1 (b) + wn

1 (b). (4.365)

Thus, xn
1 (b) is a scaled superposition of private and common codewords from blocks

b and b − 1 (block Markov encoding). At the Tx 2, a similar procedure is done. The
power constraint is satisfied if Pw + Pv + P̄w + Pv ≤ P.

4.4.1.1.2 Relay processing: The relay decodes in a forward manner starting from
block 1 where it decodes wn

1 (1), v
n
1 (1), w

n
2 (1) and vn2 (1). The rate constraint for reliable

decoding at the relay are given in (4.356)-(4.360). After decoding the P and Cmessages,
the relay sends the sum

xn
r (b) =

√
Pr,w

Pw

(wn
1 (b− 1) + wn

2 (b− 1)) +

√
Pr,v

Pv

(vn1 (b− 1) + vn2 (b− 1)) (4.366)

in block b. The power constraint at the relay is satisfied if 2Pr,w + 2Pr,v ≤ P.

4.4.1.1.3 Receiver Processing: As a result, the received signal at Rx 1 in block
b can be written as

yn1 (b) =
1√
Pw

[
(hd

√
P̄w + hr

√
Pr,w)w

n
1 (b− 1) + (hc

√
P̄w + hr

√
Pr,w)w

n
2 (b− 1)

]

+
1√
Pv

[
(hd

√
P̄v + hr

√
Pr,v)v

n
1 (b− 1) + (hc

√
P̄v + hr

√
Pr,v)v

n
2 (b− 1)

]

+ hd(w
n
1 (b) + vn1 (b)) + hc(w

n
2 (b) + vn2 (b)) + zn1 . (4.367)

The receivers use Willems’ backward decoding [Wil82] to decode the signals, start-
ing from the last block B. Each receiver decodes both the C messages and its P

message. Then the decoding proceeds backwards where in each block b, the known P

and C signals at Rx 1 (wn
1 (b), v

n
1 (b), and vn2 (b) decoded in block b+ 1) are subtracted,

and then wn
1 (b − 1), vn1 (b − 1), and vn2 (b − 1) are decoded. This procedure continues

until block 1 is reached. The decoding of P and C messages at each receiver is done in a
similar way as in [ETW08]. Each receiver decodes both the C messages while treating
the other signals as noise. This is possible with arbitrarily small error probability if the
rates of the C message satisfy (4.361)-(4.363). Then, each receiver subtracts both the
decoded C signals, and decodes its own P message treating the remaining interference
as noise. The error probability can be made arbitrarily small if (4.364) is satisfied.
This leads to the achievable rate in Theorem 4.18.

4.4.1.2 Compress-forward

Another cooperative strategy that can be used in relay networks is the compress-
forward strategy. In this strategy, the relay compresses its received observation and
maps it to an index, then it uses a channel code to send this index to the receivers.
This scheme was considered for the relay channel in [CEG79] and for G-IRC in [TY11].
Two variants of this scheme exist, namely, compress-forward with forward decoding
(CFF), and compress-forward with backward decoding (CFB). We start with CFF.
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Theorem 4.19 (CFF). CFF achieves RΣ = 2Rw + 2Rv where

Rv ≤ min{I(V1; Y1, Ŷr|V2), I(V1; Y2, Ŷr|V2)} (4.368)

2Rv ≤ min{I(V1, V2; Y1, Ŷr), I(V1, V2; Y2, Ŷr)} (4.369)

Rw ≤ I(W1; Y1, Ŷr|V1, V2) (4.370)

where Ŷr = Yr + Zf , Zf is a Gaussian noise, independent of all other variables, with
variance

σ2
f =

h2
s(hc − hd)

2(Pw + Pv)
2 + (h2

d + h2
c + 2h2

s)(Pw + Pv) + 1

h2
rPr

, (4.371)

and W1,W2 ∼ N (0, Pw), V1, V2 ∼ N (0, Pv), such that Pw + Pv ≤ P and Pr ≤ P .

The compress-and-forward transmit strategy is performed block-wise as for the
DF strategy. We introduce rate splitting to the compress-forward strategy, i.e., each
transmitter sends a P message and a C message. In block b, Tx j encodes its P and
C messages mj,w(b) and mj,v(b) with rates Rw and Rv, respectively, into codewords
wn

j (b) and vnj (b), respectively, with i.i.d. components such that Wj ∼ N (0, Pw) and
Vj ∼ N (0, Pv), and Pw + Pv ≤ P . Then the signal xn

j (b) = wn
j (b) + vnj (b) is sent.

At the end of block b, the relay compresses its received signal ynr (b) using Wyner-Ziv
coding [WZ76] with rate Rr and assigns it to an index mr(b) and then encodes this
index into xn

r with i.i.d. Xr ∼ N (0, Pr) such that Pr ≤ P . This codeword xn
r is sent

in the next block b+ 1, and hence denoted xn
r (b+ 1).

Now consider blocks 1 and 2. Due to causality, the relay does not send any signal
in the first block 1, thus, the received signals at Rx 1 for instance in these blocks are

yn1 (1) = hdx
n
1 (1) + hcx

n
2 (1) + zn1 (1) (4.372)

yn1 (2) = hdx
n
1 (2) + hcx

n
2 (2) + zn1 (2) + hrx

n
r (2). (4.373)

where xn
r (2) represents the compressed ynr (1). The receiver decodes xn

r (2) first from
yn1 (2) while treating the other signals as noise. Reliable decoding of xn

r (2) is possible
if

Rr ≤
1

2
log

(
1 +

h2
rPr

1 + (h2
d + h2

c)(Pw + Pv)

)
. (4.374)

Same is done at the Rx 1. Now, by applying [HM06, Proposition 1], Rx 1 knowing
mr(1) is able to decompress a noisy version of ynr (1), and thus is able to obtain the
signal given by

yn
f1(1) =

[
yn1 (1)

ynr (1) + znf

]
, (4.375)

where znf is a realization of an i.i.d. Gaussian noise Zn
f representing the compression

noise, which is independent of all other variables. Using (4.374), the variance of Zf

can be written as given in equation (4.371). Similar processing is performed by Rx 2.
By proceeding forward block by block, the received signal in each block can be written
as (4.375). The receivers then proceed by jointly decoding the C messages first from
the equivalent received signal (4.375), and then decoding the P message, successively
in this order while treating the undesired P signal as noise. The achievable rates are
thus bounded by (4.368)-(4.370).

Backward decoding can also be used at the receivers instead of forward decoding.
In this case, we can write the achievable rate as given in the next theorem.
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Theorem 4.20 (CFB). CFB achieves RΣ = 2Rw +2Rv where Rv and Rw are bounded
as in (4.368)-(4.370), with Ŷr = Yr + Zb, Zb ∼ N (0, σ2

b ),

σ2
b =

h2
s(hc − hd)

2(Pw + Pv)
2 + (1 + h2

rPr)(2h
2
s(Pw + Pv) + 1) + (h2

d + h2
c)(Pw + Pv)

h2
rPr

1+h2
cPw

(1 + (h2
d + hc)2(Pw + Pv) + h2

rPr)
,

(4.376)

W1,W2 ∼ N (0, Pw), V1, V2 ∼ N (0, Pv), and Pw + Pv ≤ P and Pr ≤ P .

Decoding in CFB starts from the last blocks B and B + 1 and then proceeds
backwards. Assume that the decoding of the C and P messages in block b + 1 was
successful. Then, the received signal at Rx 1 in blocks b and b+ 1 can be written as

yn1 (b) = hrx
n
r (b) + hdx

n
1 (b) + hcx

n
2 (b) + zn1 (b) (4.377)

yn1 (b+ 1) = hrx
n
r (b+ 1) + hcw

n
2 (b+ 1) + zn1 (b+ 1), (4.378)

where xn
r (b + 1) represents the compressed ynr (b), and where the contribution of the

decoded C and P signals has been removed. The receiver decodes xn
r (b+1) first, decom-

presses mr(b) into a noisy version of ynr (b), and then decodes the common messages and
its private message from its equivalent received signal given by [HM06, Proposition 1]

yn
b1(b) =

[
yn1 (b)

ynr (b) + znb

]
, (4.379)

where znb is a realization of an i.i.d. Gaussian noise Zn
b . Notice that in this case, in

addition to wn
2 (b), x

n
r (b) is also treated as noise. Same is done at the Rx 2. The

resulting constraint for decoding mr is

Rr ≤
1

2
log

(
1 +

h2
rPr

1 + h2
cPw

)
. (4.380)

As a result, using (4.380), the variance of Zb is σ
2
b given in (4.376). Then proceeding

backward, every block can be written as (4.379), and decoding is reliable if (4.368)-
(4.370) hold with Ŷr = Yr + Zb.

Although comparing our CF schemes and compress-forward in both its variants is
a tedious task, we can notice the following difference between the two. In our schemes,
we have forwarding ‘selectivity’ at the relay, in the sense that the relay can select which
part of the received signal to decode and forward. On the other hand, in compress-
forward, the relay forwards a compression index of everything it receives. This gives
our CF schemes an advantage especially in the cases where it is better not to forward
everything at the relay, and thus, more power can be used for forwarding less signals
resulting in a higher power efficiency.

4.4.2 Comparison

With the achievable sum-rates of the two classical schemes and that of our CF schemes
given, we can proceed to compare their performance in terms of sum-rate. We start
with some high P evaluation. Figure 4.17 shows the sum-capacity upper and lower
bounds as a function of α for two cases of an G-IRC with hd = 1, P = 40dB. In
Figure 4.17(a), we show the bounds for weak interference and weak relay channels
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Figure 4.17: The achievable sum-rate for different schemes in comparison with the
sum-capacity upper bound as a function of α.

where (β, γ) ≈ (0.9, 0.2). The achievable rates of WI-CF and SI-CF are shown for two
cases (K = 1 and K = 2). WI-CF achieves rates which are close to the upper bound.
It can be seen that the achievable rate of the WI-CF scheme increases if we increase K.
The SI-CF scheme, which is not designed for the weak interference scenario, achieves
lower rates than WI-CF . Here we can see the effect of the relay bottleneck in the
DF scheme. DF performs very poorly if hs is weak. On the other hand, CFB and
CFF perform better than DF, and furthermore, CFF achieves rates very close to the
upper bound, but still lower than WI-CF . Figure 4.17(b) shows a scenario with strong
interference where and strong relay channels (β, γ) ≈ (1.4, 1.1). Here the performance
SI-CF dominates the others. We can see that SI-CF achieves rates that are also close
to the upper bound, and outperforms the other schemes for a wide range of α. The
WI-CF is inferior to SI-CF in this regime, as its achievable sum-rate saturates to the
very-strong IC sum-capacity when α > 2 (around 13 bits per channel use in this
example), while the sum-rate of SI-CF increases further. A similar statement can be
made about CFF and CFB. Here, although hs is stronger than hd, the DF scheme still
suffers from the relay bottleneck.

A comparison of the achievable schemes at low to moderate P is shown in Figure
4.18 as a function of P . In the first plot, Figure 4.18(a), we show the bounds for
a G-IRC with weak relay and cross channels. In this example, we can see that the
performance is dominated by either WI-CF or CFF. These two schemes have similar
performance at low P , and different performance as P increases. In the second plot,
Figure 4.18(b), we show an example with weak hr and strong hs and hc. The perfor-
mance of DF improves, compared to that in Figure 4.18(a), since hs is larger. However,
its performance is still worse than CF. CF and CFF have nearly the same performance
in this example.
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Figure 4.18: The achievable sum-rate for different schemes in comparison with the
sum-capacity upper bound as a function of P .

4.5 Summary

In this chapter, we have characterized the sum-capacity of the linear-deterministic IRC
and also the GDoF of the Gaussian IRC for all cases where the source-relay channel is
weaker than the interference (cross) channel. Consequently, we have an approximation
of the sum-capacity of the G-IRC of the form

CΣ(α, β, γ) =
d(α, β, γ)

2
log(SNR) + o(log(SNR)) (4.381)

for half5 the space of all channel parameters, where d is the derived GDoF, SNR is
the ratio of the available transmit power to noise power, and the parameters α, β,
and γ quantify the strength of the cross, relay-destination, and source-relay channel,
respectively. For achieving this goal, we developed novel sum-capacity upper bounds
for the network. We have also developed a novel transmission scheme for the IRC
based on compute-forward at the relay. This new optimal scheme achieves a GDoF
in the IRC which is higher than that of the IC. Therefore it shows that while a relay
does not increase the DoF of the IC, it indeed increases its GDoF. By using numerical
examples, we showed that the new scheme outperforms classical decode-forward and
compress-forward schemes.

By proposing a generic and optimal transmission strategy for the IRC, we have an
answer to the main problem of the thesis stated in Chapter 3. This work sheds light
on optimal relaying strategies in interference networks, and methods for interference
management in such networks. It turns out that network coding ideas are very impor-
tant in wireless interference networks. These ideas which can be implemented using
lattice codes outperform classical relaying strategies and can have several implemen-
tations and significant impact in practical wireless networks where interference is a
major setback.

5The remaining regime is discussed in Chapter 6.



Chapter 5

The Butterfly Network

In the previous chapter, we have studied the interference relay channel (IRC), and we
have characterized its sum-capacity (in the linear-deterministic case) and its GDoF
(in the Gaussian case) for the regime where the source-relay channels are weaker than
the cross channels. As seen in Figure 4.9, the bounds do not coincide in the remaining
regime, and thus some new techniques have to be developed for this case. In order to
study new techniques, we resort in this chapter to a special IRC where the relaying
potential of the network is magnified.

First, the network is made more dependent on the relay by removing the direct
channels. Observe that information in the IRC can flow from transmitters to receivers
through the direct channel (between a transmitter and its respective receiver) and
through the relay. If the direct channels are removed, then information can only flow
from transmitters to receivers via the relay. Consequently, the partially connected IRC
where the direct channels have zero capacity is more dependent on the relay, and hence,
the impact of relaying can be studied in isolation of the impact of direct channels. The
gained insights from this partially connected IRC might lead to a better understanding
of the optimal relaying strategy in the fully connected one.

Furthermore, in order to make the relay more capable in this partially connected
network, and thus, put more emphasis on the relaying component of the network, we
explore another relaying possibility. Observe that the relay in the the classical IRC
forwards information only to the destinations. But the relay can also relay information
backwards to the sources. This backward relaying can be thought of as feedback from
the relay to the sources, and can lead to a relevant performance improvement in the
IRC.

In order to study these aspects in this chapter, we consider a full-duplex butterfly
network (BFN) where the relay performs both forward and backward relaying (BFN
with relay-source feedback).

5.1 The Memoryless IRC with Relay-source Feed-

back

Since the BFN is a special case of an IRC, and since we are adding an additional
relaying option, i.e., relay-source feedback, we will start by defining the IRC with
feedback. The reason for doing so is that the general feedback model allows us to
easily describe the proposed outer bounds for the relay-source feedback model which
is the subject of investigation in Section 5.1.2.

77
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Figure 5.1: The general memoryless Interference Relay Channel with Feedback
(IRCF).

5.1.1 Channel Model for the Memoryless IRC with General
Feedback

A memoryless IRC with general feedback (IRCF) is shown in Fig. 5.1. All nodes are
full-duplex and causal. Tx j ∈ {1, 2} has an independent messageMj ∈ {1, . . . , 2⌊nRj⌋},
where n ∈ N is the code-length and Rj ∈ R+ the rate in bits per channel use, to be
sent to Rx j. The operations performed at each node can be described in general as
follows:

• The relay receives YR and sends XR, where the ith symbol of Xn
R is constructed

from Y i−1
R using an encoding function ER,i, i.e., XR(i) = ER,i(Y

i−1
R ).

• Tx 1 receives1 feedback information Ȳ1 and sends X1, where X1(i) is constructed
from the message M1 and from Ȳ i−1

1 using an encoding function E1,i, i.e., X1(i) =
E1,i(M1, Ȳ

i−1
1 ). Similarly at Tx 2, i.e., X2(i) = E2,i(M2, Ȳ

i−1
2 ).

• Rx 1 receives Y1 and feeds back X̄1, where X̄1(i) is constructed from Y i−1
1 using

an encoding function Ē1,i, i.e., X̄1(i) = Ē1,i(Y i−1
1 ). After n channel uses, Rx 1

tries to obtain M1 from Y n
1 using a decoding function D1, i.e., M̂1 = D1(Y

n
1 ).

An error occurs if M1 6= M̂1. Rx 2 similarly feeds back X̄2(i) = Ē2,i(Y i−1
2 ) and

decodes M̂2 = D2(Y
n
2 ). An error occurs if M2 6= M̂2.

The channel has a transition probability PYR,Y1,Y2,Ȳ1,Ȳ2|XR,X1,X2,X̄1,X̄2
and is assumed to

be memoryless, that is, for all i ∈ N the following Markov chain holds

(W1,W2, X
i−1
R , X i−1

1 , X i−1
2 , X̄ i−1

1 , X̄ i−1
2 , Y i−1

R , Y i−1
1 , Y i−1

2 , Ȳ i−1
1 , Ȳ i−1

2 )

→ (XR(i), X1(i), X2(i), X̄1(i), X̄2(i)) → (YR(i), Y1(i), Y2(i), Ȳ1(i), Ȳ2(i)). (5.1)

We use the standard information theoretic definition of a code, probability of error and
achievable rates [CT06]. We aim to characterize the capacity defined as the convex

1Although source nodes are both transmitters and receivers at the same time (due to feedback),
we will still refer to them as transmitters.
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closure of the set of non-negative rate pairs (R1, R2) such that maxj∈{1,2} P[Mj 6=
M̂j ] → 0 as n → ∞.

This model generalizes various well studied channel models. For instance, it models
the classical IC [Car78] (for Ȳ1 = Ȳ2 = YR = XR = X̄1 = X̄2 = ∅), the IC with
cooperation [Tun12] (for YR = XR = ∅), the classical IRC [MDG12] also discussed in
the previous chapter (for Ȳ1 = Ȳ2 = X̄1 = X̄2 = ∅), etc.

5.1.2 Upper Bounds for the Memoryless IRC with Relay-
source Feedback

The memoryless IRC with relay-source feedback is obtained from the IRCF model
in Section 5.1.1 by setting X̄1 = X̄2 = ∅. Next, we derive several upper bounds on
the achievable rate pairs for the general memoryless IRC with relay-source feedback.
We note that the described techniques apply to the general IRCF and do not require
necessarily X̄1 = X̄2 = ∅. We start with the cut-set bound [CT06], and then we adapt
upper bounds for the general memoryless IC with cooperation given in [Tun12] to our
channel model.

5.1.2.1 Cut-set Bounds

The cut-set bound [CT06] which we introduced previously in (4.20) can be applied to
the IRCF to bound R1 as

R1 ≤ I(X1; YR, Ȳ2, Y1|XR, X2) (5.2)

R1 ≤ I(X1, X2; YR, Y1|XR) (5.3)

R1 ≤ I(XR, X1; Ȳ2, Y1|X2) (5.4)

R1 ≤ I(XR, X1, X2; Y1), (5.5)

for some input distribution PXR,X1,X2
. Similarly, we can bound R2 by replacing the

subscripts 1 and 2 with 2 and 1. Also using the cut-set bounds, the sum-rate can be
bounded as

R1 + R2 ≤ I(X1, X2; YR, Y1, Y2|XR) (5.6)

R1 + R2 ≤ I(XR, X1, X2; Y1, Y2), (5.7)

for some input probability distribution PXR,X1,X2
.

5.1.2.2 Cooperation Upper Bounds

As mentioned earlier, the IC with general cooperation is a special case of the IRCF
obtained by setting YR = XR = ∅. An upper bound for the sum-capacity of the IC
with general cooperation was given by Tuninetti in [Tun12] (see Lemma 2.2 on page
8). We restate this bound here, given by

R1 +R2 ≤ I(X1; Y1, Ȳ2|Y2, X2, X̄1, X̄2) + I(X1, X2, X̄1; Y2|X̄2), (5.8)

R1 +R2 ≤ I(X2; Y2, Ȳ1|Y1, X1, X̄1, X̄2) + I(X1, X2, X̄2; Y1|X̄1). (5.9)

for some PX1,X2,X̄1,X̄2
. In the IRCF, if we let the relay perfectly cooperate with one of

the other nodes in the network, then the model again reduces to an IC with general
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cooperation in which one of the nodes has an enhanced input and output. Since
cooperation cannot decrease capacity, any outer bound for the obtained IC with general
cooperation is an upper bound to the capacity of the IRCF. For instance, if Tx 1,
cooperates with the relay, then in Tuninetti’s bounds (5.8) and (5.9), we replace X1

with (X1, XR) and Ȳ1 with (Ȳ1, YR). Since we do not consider feedback from the
receivers, we set X̄1 = X̄2 = ∅ after this substitution. By considering the various
cooperation possibilities, we get the following upper bounds:

1. Full cooperation between Tx 1 and the relay leads to an IC with bi-directional
cooperation between the transmitters where Tx 1 sends (X1, XR) and receives
(Ȳ1, YR):

R1 +R2 ≤ I(X1, XR; Y1, Ȳ2|Y2, X2) + I(X1, XR, X2; Y2), (5.10)

R1 +R2 ≤ I(X2; Y2, Ȳ1, YR|Y1, X1, XR) + I(X1, XR, X2; Y1). (5.11)

Cooperation between Tx 2 and the relay leads to similar bounds.

2. Full cooperation between Rx 1 and the relay leads to an IC with uni-directional
cooperation between Rx 1 and Rx 2 and with feedback from Rx 1 to the trans-
mitters, where Rx 1 sends XR and receives (Y1, YR):

R1 +R2 ≤ I(X1; Y1, YR, Ȳ2|Y2, X2, XR) + I(X1, X2, XR; Y2), (5.12)

R1 +R2 ≤ I(X2; Y2, Ȳ1|Y1, YR, X1, XR) + I(X1, X2; Y1, YR|XR). (5.13)

Cooperation between Rx 2 and the relay leads to similar bounds.

These upper bounds will be used next to upper bound the capacity region of the
BFN with relay-source feedback. As it turns out, these bounds suffice to characterize
the capacity region of the symmetric linear-deterministic BFN.

5.2 The Linear-deterministic Butterfly Network

(LD-BFN)

Similar to the previous chapter, we first consider the linear-deterministic (LD) ap-
proximation [ADT11] of the BFN. Later on, we discuss the Gaussian BFN. We start
with the IRC with a dedicated out-of-band feedback channel between the relay and
the transmitters. For this reason, we write XR as (Xr, Xf) where Xr is the in-band
relay signal to the receivers and Xf is the out-of-band feedback signal to the sources.
Moreover, the input signals of the channels in this case are all binary vectors, thus,
we denote them as yr, y1, y2, ȳ1, and ȳ2 which are elements of the binary field of
length q. As in the previous chapter, we resort to a symmetric setup for simplicity
of exposition. This simplification reduces the number of parameters, and thus leads
to complete analytical, clean, and insightful capacity region characterization. Finally,
since the partially connected BFN has no direct channels, we set nd = 0 in the LD-IRC
with feedback. As a result, the input-output relations of this symmetric LD-BFN with
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Figure 5.2: The linear-deterministic butterfly network with relay-source feedback.
Notice that we have switched the places of receivers 1 and 2 for clarity.

out-of-band relay-source feedback are

yr = Sq−ns(x1 ⊕ x2), (5.14)

ȳ1 = Sq−nfxf , (5.15)

ȳ2 = Sq−nfxf , (5.16)

y1 = Sq−ncx2 ⊕ Sq−nrxr, (5.17)

y2 = Sq−ncx1 ⊕ Sq−nrxr. (5.18)

where yr is the channel output at the relay, ȳ1 and ȳ2 are the received feedback
signal at the transmitters, y1 and y2 are the received signals at the receivers, q =
max{nc, nr, ns, nf}, and S is the q × q down-shift matrix. Here, nc denotes the cross
channel, nr denotes the relay-destination channel, ns denotes the source-relay channel,
and nf denotes the feedback channel (see Figure 5.2).

The main focus of the rest of this chapter is to determine the capacity region of the
network described by (5.14)-(5.18), and thus, identify the optimal relaying strategies in
this setup. In the following subsections, we provide matching upper and lower bounds
for the LD-BFN with feedback thereby completely characterizing the capacity region.
The main result of this section is stated in the following theorem.

Theorem 5.1. The capacity region of the LD-BFN with relay-source feedback is the
set of rate pairs (R1, R2) which satisfy

0 ≤ R1 ≤ min{ns, nr + nf ,max{nc, nr}} (5.19)

0 ≤ R2 ≤ min{ns, nr + nf ,max{nc, nr}} (5.20)

R1 +R2 ≤ max{nr, nc}+ nc (5.21)

R1 +R2 ≤ max{nr, nc}+ (ns − nc)
+ (5.22)

R1 +R2 ≤ ns + nc. (5.23)

Intuitively, these bounds can be explained as follows. Since communication is only
possible via the relay (due to the absence of the direct channel), Tx 1 can not send
more bits per channel use than the relay can receive; thus, we have the bound R1 ≤ ns

in (5.19). Now assume that the channel to the relay is very strong (say of infinite
capacity); in this case, the rate achieved by Tx 1 can not exceed the capacity of the
outgoing channels from the relay, i.e., nr + nf in (5.19). Finally, the rate R1 can
not exceed the amount of information that can be received by Rx 1, which is given
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by max{nc, nr}, and hence the bound R1 ≤ max{nc, nr} in (5.19). Similar reasoning
holds for the bound in (5.20).

Interestingly, the sum-rate bounds in (5.21)-(5.23) do not depend on the feedback
parameter nf . As we shall see in the following sections, given nr > nc, the region in
Theorem 5.1 is the same as for nf = 0, i.e., there is no gain from the availability of a
dedicated relay-source feedback channel. In this case, the relay-destination link is so
strong that the relay can help the receivers resolve their signals without the need of
transmitter cooperation. On the other hand, when nr < nc, relaying can be improved
upon by transmitter cooperation enabled by the presence of feedback. In this case, we
can have a ‘net-gain’ from feedback that is larger than the ‘cost’ of feedback. We will
expand on this idea after we proved the achievability of Theorem 5.1. The proof of
the converse is given in the next subsection.

5.2.1 Upper Bounds for the LD-BFN with Feedback

Here we specialize the general bounds given in Section 5.1.2 to the LD-BFN described
in Section 5.2. We substitute the output definition in (5.14)-(5.18) in the outer bounds
in Section 5.1.2. From the cut-set bound (5.2), if we replace xR by (xr,xf) we get

R1 ≤ I(x1;yr, ȳ2,y1|xr,xf ,x2) (5.24)

= H(yr, ȳ2,y1|xr,xf ,x2)−H(yr, ȳ2,y1|xr,xf ,x2,x1) (5.25)

= H(Sq−nsx1|xr,xf ,x2) (5.26)

≤ H(Sq−nsx1) (5.27)

≤ ns, (5.28)

where the last step follows since the Bern(1/2) distribution maximizes the binary en-
tropy [CT06]. Similarly, the cut-set bounds in (5.4) and (5.5) reduce to

R1 ≤ nr + nf , (5.29)

R1 ≤ max{nc, nr}, (5.30)

respectively. These bounds combined give (5.19). Similarly, the bound in (5.20) for
R2 follows by the symmetry in the network.

The sum-rate cut-set bound in (5.7) becomes

R1 +R2 ≤ I(xr,xf ,x1,x2;y1,y2) (5.31)

= H(y1,y2) (5.32)

= H(y1) +H(y2|y1) (5.33)

≤ H(y1) +H(y2 ⊕ y1) (5.34)

≤ max{nr, nc}+ nc, (5.35)

where the last steps follows by using Lemma 2.4 (page 12). This proves (5.21). These
are the necessary cut-set upper bounds for our problem. The remaining cut-set bounds
are redundant given the cooperation bounds that we derive next, and are thus omitted.

Next, we evaluate the cooperation bounds for the LD-BFN. It turns out that the
bound (5.10) for the LD-BFN with feedback is redundant given (5.35). Thus, we omit
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its derivation. Next, we consider the bound in (5.11), which yields

R1 +R2 ≤ I(x2;y2, ȳ1,yr|y1,x1,xr,xr) + I(x1,xr,x2;y1) (5.36)

= H(y2, ȳ1,yr|y1,x1,xr,xf)−H(y2, ȳ1,yr|y1,x1,xr,xf ,x2) (5.37)

+H(y1)−H(y1|x1,xr,x2) (5.38)

= H(Sq−nsx2|Sq−ncx2,x1,xr,xf) +H(Sq−ncx2 ⊕ Sq−nrxr) (5.39)

≤ (ns − nc)
+ +max{nc, nr}, (5.40)

by using Lemmas 2.4 and 2.5 (page 12). This proves (5.22). Note that this bound can
be tighter than the sum-rate cut-set bound in (5.35). The bound in (5.12) is similar
to (5.11). Finally, the bound in (5.13) becomes

R1 +R2 ≤ I(x2;y2, ȳ1|y1,yr,x1,xr,xf) + I(x1,x2;y1,yr|xr,xf) (5.41)

= H(y2, ȳ1|y1,yr,x1,xr,xf)−H(y2, ȳ1|y1,yr,x1,xr,xf ,x2) (5.42)

+H(y1,yr|xr,xf)−H(y1,yr|xr,xf ,x1,x2) (5.43)

= H(Sq−ncx2,S
q−nsx1 ⊕ Sq−nsx2|xr,xf ) (5.44)

≤ ns + nc. (5.45)

This bound yields (5.23). This completes the proof of the converse of Theorem 5.1.

5.2.2 Transmission schemes for the LD-BFN with feedback

Here, we prove the achievability of Theorem 5.1. To do this, we develop an achiev-
able rate region based on a combination of transmission schemes. First, we describe
the different required coding strategies separately, then we prove the achievability of
Theorem 5.1 by using a careful combination of these strategies for different parameter
regimes. We start with a novel relaying strategy.

5.2.2.1 Cooperative Interference Neutralization (CN)

We propose a signaling scheme which we call ‘cooperative interference neutralization’,
or CN for short2. The main idea of CN is to allow the relay to know some information
about future source transmissions, in order to facilitate interference neutralization.
Note that if the relay knows the future source transmissions, then at each transmission
instant, the relay can be treated as a cognitive relay (IC’s with cognitive relay have
been studied in [RTD10, SE07b, SVJS08]). In our case, the relay is causal. However,
the relay can be given access to future source information as follows. Each transmitter
sends two CN signals in the ith channel use, which we call tj(i) and tj(i + 1), each
of which has length Rt, where j ∈ {1, 2} is the transmitter index, and where i is the
channel use index. tj(i) is the CN signal to be decoded by the receiver in the ith
channel use, while tj(i+ 1) is to be decoded in the next channel use i+ 1. Therefore,
the transmitter sends the present and the future CN signals. The future one, tj(i+ 1)
is intended for the relay, and is not decoded at the receivers. The relay attempts to
decode t̄(i+ 1) = t1(i+ 1)⊕ t2(i+ 1) in the ith channel use which requires 2Rt ≤ ns.
Then, t̄(i+ 1) is sent in the next channel use i+ 1, on the same levels where t2(i+ 1)
is observed at Rx 1 (note that t2(i + 1) is interference from the perspective of Rx 1),

2In [MDFT08], an interference neutralization strategy has also been used for a deterministic two
hop network without direct connectivity between source and destination nodes.
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Figure 5.3: A graphical illustration of the CN strategy. Note how the transmitters
pass the future CN signals to the relay without disturbing the receivers.

resulting in interference neutralization since t̄(i+1)⊕t2(i+1) = t1(i+1). This allows
Rx 1 to decode its desired CN signal in channel use i+ 1 as long as Rt ≤ min{nc, nr}.

The relay signal t̄ = t1 ⊕ t2 can be interpreted as a network code [ACLY00].
However, notice that instead of decoding the transmit signals at the relay, and then
constructing this network code which is useful for both receivers, the relay directly
decodes the desired network code. This leads to a more relaxed rate constraints at the
relay. This idea will be extended to Gaussian relay networks in the sequel.

An illustrative example for CN is given in Figure 5.3. Thanks to CN, each receiver
decodes its desired signal interference free. By a careful adjustment of the levels of each
signal, it is possible to pass the future CN signals to the relay without even disturbing
the receivers. From Figure 5.3 we remark that by using CN each transmitter can send
Rt bits per channel use over Rt levels at the receiver while using 2Rt levels at the relay.
Due to this fact, this strategy is preferable when ns is larger than nc.

To realize the CN strategy we use block Markov encoding. Each transmitter sends
n signals in n + 1 channel uses. Starting with an initialization step, the transmitters
send tj(1) in channel use i = 0 while the relay remains silent. Then, each transmitter
sends both tj(i) and tj(i+1) in the ith channel use for i = 1, · · · , n−1 while the relay
sends t1(i)⊕ t2(i). Finally, in the nth channel use, each transmitter sends tj(n) only
and the relay sends t1(n)⊕ t2(n). Each receiver decodes its desired CN signal starting
from i = 1 till i = n. Thus, assuming that tj is a binary vector of length Rt, each
transmitter is able to successfully deliver nRt bits over the span of n+ 1 channel uses
for a total rate of n

n+1
Rt which approaches Rt for large n.

Remark 5.1. A strategy similar to the CN strategy was also used in the interference
channel with generalized feedback in [YT11b], where the transmitters exchanges bits
below the noise floor of the receivers, which are then used in the next slot to zero force
the interference. A half-duplex variant of this scheme also appeared in [AH09].

5.2.2.2 Decode-forward (DF)

Next, we describe the decode-forward (DF) strategy. Although this strategy is well
known [CEG79], we describe it briefly and then highlight a possibility to combine DF

and CN in an effective way afterwards.
In the ith channel use, i = 1, · · · , n, Tx j sends a vector of length R1v +R2v where

the DF signal vj(i) of length Rjv is zero-padded to length R1v +R2v as follows

Tx 1 sends

[
v1(i)
0R2v

]
, Tx 2 sends

[
0R1v

v2(i)

]
. (5.46)
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Figure 5.4: A graphical illustration of the decode-forward strategy. Rx 2 starts
be removing v1(i) (known from the decoding process in channel use i + 1) from its
received signal. Then it decodes v1(i− 1) and v2(i− 1). Using this strategy in this

setup, each transmitter can send 1 bit per channel use.

The relay decodes both v1(i) and v2(i) in the ith channel use, which is possible if
R1v +R2v ≤ ns, and forwards them in channel use i+ 1 (see Figure 5.4).

The receivers start decoding backwards starting from channel use n+1 where only
the relay is active, and they both decode v1(n) and v2(n), which requires R1v +R2v ≤
nr. Decoding proceeds backwards to the nth channel use. In the nth channel use,
the receivers start by removing vj(n) from the received signal (which they know from
channel use n + 1), and then they decode both v1(n− 1) and v2(n − 1). In this way,
the receivers obtain their desired DF signals, R1v bits from Tx 1 and R2v bits from Tx
2. Decoding proceeds backwards till the first channel use is reached. Thus, Tx 1 and
Tx 2 achieve R1v and R2v bits per channel use, respectively, for large n.

5.2.2.3 Superposition of DF and CN

At this point, a remark about the DF strategy as compared to the CN strategy in
Section 5.2.2.1 is in order. Due to backward decoding, the interference caused by the
DF signal, v1(i) at Rx 2 for instance, is not harmful since it can be removed as long as
the decoding of the DF signals was successful in channel use i+ 1. This is the reason
why the relay and the transmitters can send over the same levels at the receivers (as in
Figure 5.4). Therefore, the DF signals vj(i) (from the transmitters) should be received
‘clean’ at the relay but not necessarily so at the receivers. In fact, the DF signals sent
from the transmitters do not have to be received at all at the receivers since they are
decoded from the relay signal.

Now consider the CN signals where an opposite statement holds. Since the relay
decodes t1(i + 1) ⊕ t2(i + 1) in channel use i (in a forward fashion), and since the
transmitters send ‘present’ and ‘future’ CN signals, i.e., tj(i) and tj(i + 1) in the ith
channel use, then the contribution of t1(i)⊕ t2(i) in yr(i) can be removed by the relay
since it is known from the decoding process in time slot i − 1. Thus, if the present
CN signals overlap with other signals at the relay, the latter can still be decoded by
the relay after removing the contribution of the present CN signals. On the other
hand, the present CN signal is important at the receivers, since it is the signal that
participates in the interference neutralization process. We summarize this statement
by saying that the present CN signal must be received ‘clean’ at the receivers but not
necessarily so at the relay. Additionally, the future CN signal must be received ‘clean’
at the relay, but does not have to be received at all at the receivers.

Combining these observations, we can construct a hybrid scheme where both CN

and DF are used, and where the CN signals and the DF signals overlap at the relay and
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Figure 5.5: A combination of DF and CN. The relay can obtain v1(i) and v2(i)
in the ith channel use after removing t1,1(i) ⊕ t2,1(i) and t1,2(i) ⊕ t2,2(i) which it
has decoded in channel use i − 1. Thus, this interference between the CN signal
and the DF signals at the relay is not harmful. In the ith channel use, Rx 1 starts
by removing v2(i) (known from the decoding process in channel use i + 1) from
its received signal. Then it decodes v1(i − 1), v2(i − 1), t1,1(i), and t1,2(i). Using
this strategy each transmitter can send 3 bit per channel use which achieves the

sum-capacity upper bound (cf. Theorem 5.1).

the receivers in a smart way, as illustrated in Figure 5.5. In this figure, Tx 1 allows its
present CN signal t1(i) = [t1,1(i), t1,2(i)]

T to overlap with the DF signal v1(i). And thus
these signals also overlap at the receivers. Nevertheless, the relay is still able to decode
the necessary information and forward it to the receivers which can still recover their
desired information. If we do not use this property, i.e., if we send tj and vj without
overlap, then reliable decoding at the relay for instance requires 2Rt+R1v +R2v ≤ ns.
Otherwise, if we allow the signals to overlap, reliable decoding at the relay requires
Rt + max{Rt, R1v + R2v} ≤ ns. Clearly, this overlap allows a much more efficient
exploitation of the bit-pipes.

In the following, we discuss two variants of feedback, a symmetric bi-directional
variant, and an asymmetric uni-directional variant.

5.2.2.4 Symmetric Feedback

Here both transmitters use the same strategy. This strategy exploits the feedback
channel between the relay and the transmitters to establish cooperation between the
transmitters. The transmitters exchange information among each other as in the LD
bi-directional relay channel in [NWS07,AAT09]. Tx j, j ∈ {1, 2}, sends a feedback (F)
signal sj(i) of length Rs in the ith channel use. The relay decodes the sum s1(i)⊕s2(i)
in the ith channel use, which requires Rs ≤ ns, and feeds it back to the transmitters
in channel use i+ 1. In channel use i+ 1, Tx 1 for instance decodes s1(i)⊕ s2(i) from
the feedback channel, which requires Rs ≤ nf , and then it extracts s2(i) from this sum
using s1(i). Then, Tx 1 sends s2(i) to Rx 2 using its cross channel in channel use i+2,
which allows Rx 2 to to decode s2(i) if Rs ≤ nc. A similar procedure is done at the Tx
2. Figure 5.6 shows an example of this F strategy. Note that both transmitters always
send information to the relay which renders some levels at the transmitters always
occupied. Thus, the transmitters have to use other levels for sending the F signals to
the respective receivers. In general, for each F bit, the symmetric F strategy uses 2
levels at the transmitters and 1 level for feedback.
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Figure 5.6: Symmetric feedback: Tx 1 and Tx 2 exchange their signals as in a bi-
directional relay channel. At the same time, Tx j sends the signal of Tx k acquired
via feedback to Rx k. The dotted lines denote the out-of-band feedback channels.

Note that this scheme incurs a delay of 2 channel uses. Each transmitter sends n F

signals from the first channel use till channel use i = n. The relay feeds these signals
back in the channel uses i = 2, · · · , n + 1. Finally, Tx 1 and 2 send the F signals to
their respective receivers in channel uses i = 3, · · · , n+2. If the F signals sj are vectors
of length Rs, then each transmitter can successfully deliver nRs bits in n + 2 channel
uses. Thus the rate that each transmitter can achieve per channel use approaches Rs

for large n.

Notice from Figure 5.6 that we have sent the F signals on levels that could have
also been used by the relay to send the same amount of bits using CN for instance. As
we shall see, this symmetric F strategy does not increase the capacity if nc ≤ nr which
is the case in Figure 5.6. The F strategy would increase the capacity if nc is larger
than nr, in which case the transmitters would send the F signals to their respective
receivers over levels that are not accessible by the relay, thus not disturbing the relay
transmission while doing so.

5.2.2.5 Asymmetric Feedback

The symmetric F strategy achieves symmetric rates for the F signals, i.e., the rate
achieved by Tx 1 is equal to that of Tx 2. We can also use the F strategy in an
asymmetric fashion as follows. Tx 1 sends s1(i) to the relay in the ith channel use,
the relay decodes this signal and feeds it back to Tx 2 in channel use i + 1, which
sends it to Rx 1 in the channel use i+ 2 on the same level used by Tx 1. This causes
the signals s1(i) and s1(i− 2) to interfere at the relay. However, the relay can always
resolve this interference since it decoded s1(i − 2) in channel use i − 2. If the vector
s1(i) has length Rs, then this strategy achieves the rate point (Rs, 0).

An illustrative example for the asymmetric F strategy is given in Figure 5.7 where
Tx 1 can send 1 bit per channel use to Rx 1, achieving the rate pair (1, 0). Note that
the same rate pair can be achieved using the symmetric F strategy (Figure 5.6) by
setting s2 = 0. But this would be inefficient since it consumes 2 levels at the relay
for reception. The same rate pair can be achieved using the asymmetric F strategy
while using only 1 level at the relay as shown in Figure 5.7. This leaves one level
at the relay unused, providing more flexibility to combine the F strategy with other
strategies. Since our aim is to characterize the capacity region of the LD-BFN with
feedback, we are going to need strategies which achieve asymmetric rates efficiently.
Both the symmetric and the asymmetric F strategies will be used in the sequel.
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Figure 5.7: Asymmetric feedback: Tx 1 sends the s1(i) to Rx 1 via the relay and
Tx 2. The dotted lines denote the out-of-band feedback channels.

5.2.2.6 Compute-forward

The last strategy we need for achieving the capacity region of the LD-BFN is the
compute-forward (CF) strategy. The CF strategy has already been discussed in Sec-
tion 4.2.2.2 (page 33). To avoid repetition, the reader can refer to the previous chapter
for more details. We denote CF signals by uj and their rates by Ru. It can be easily
seen from Section 4.2.2.2 that the CF strategy can deliver Ru bits for each receiver
while using Ru levels at the relay and 2Ru levels at the receivers. For this reason, this
strategy is preferable when the number of levels at the receivers max{nc, nr} is larger
than ns.

In the following sections, we develop capacity achieving schemes for the LD-BFN
with feedback which are based on combinations of the four strategies given above.

5.2.3 Capacity Region of the LD-BFN with Feedback

In this section, we prove that the region given in Theorem 5.1 is achievable. We split
the proof into two cases. First, we consider the case nc ≤ nr where feedback does not
increase the capacity of the LD-BFN. Then we consider the opposite case.

If nc ≤ nr, then the feedback channel nf does not have any contribution in the rate
constraints in Theorem 5.1, which reduces to

0 ≤ R1 ≤ min{ns, nr} (5.47)

0 ≤ R2 ≤ min{ns, nr} (5.48)

R1 +R2 ≤ min{nr + nc, nr + (ns − nc)
+, ns + nc}. (5.49)

This region can be achieved without exploiting the feedback link nf , and thus without
using the F strategy. Hence, in this section we only use the strategies that do not
exploit feedback, i.e., CF, CN, and DF.

Remark 5.2. Note that some rate pairs on the boundary of the capacity region in
(5.47)-(5.49) can have rational components. In this case, this rate pair can be made
integer by considering multiple channel uses. For instance, if we want to achieve a
rate pair (p1/q1, p2/q2), we use q1q2 channel uses to achieve a rate pair (p1q2, p2q1) over
an LD-BFN with q1q2 times the number of levels for each channel. This achieves the
desired rational rate pair in each channel use.

5.2.3.1 A Case where Feedback does not Increase Capacity

This regime where nc ≤ nr is split into two cases. Namely, a case where ns ≤ nc, and
another case where ns > nc. In the first case, CF is better than CN since ns is small,
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and vice versa in the second case.

5.2.3.1.1 Case ns ≤ nc ≤ nr: As discussed in Section 5.2.2, in the first case
we should not use CN since ns is small. Since max{nc, nr} ≥ ns, we use the CF

strategy according to the discussion in Section 5.2.2. Moreover, we use DF for achieving
asymmetric rate tuples. The combination of CF and DF is sufficient for achieving the
capacity region. The following lemma summarizes the result for this regime.

Lemma 5.1. In the LD-BFN with feedback with ns ≤ nc ≤ nr, the following region is
achievable

0 ≤ R1 ≤ ns (5.50)

0 ≤ R2 ≤ ns (5.51)

R1 +R2 ≤ nr, (5.52)

This achievable rate region coincides with the region given in Theorem 5.1. Thus,
this lemma characterizes the capacity region of the LD-BFN with feedback with ns ≤
nc ≤ nr. The sum-capacity given by this lemma is not new, in fact, it was given in
Theorem 4.1 on page 22. However, this lemma characterizes not only the sum-capacity
but also the capacity region. The next paragraphs are devoted for the proof of this
lemma.

Proof. Let us construct x1(i) in the ith channel use as follows

x1(i) =




u1(i)
v1(i)
0R2v

0nc−Ru−R1v−R2v

0q−nc



. (5.53)

Here, the signal v1 is a vector of length R1v, and the signal u1 is a vector of length Ru.
We construct x2(i) similarly, with u1(i), v1(i) and 0R2v

replaced with u2(i), 0R1v
, and

v2(i), respectively.

In the ith channel use, the relay observes the topmost ns bits of x1(i)⊕x2(i). Under
the following condition

Ru +R1v +R2v ≤ ns, (5.54)

the relay is able to observe ū(i) = u1(i)⊕ u2(i), v1(i), and v2(i) and hence to decode
them.

Since in this case nr ≥ nc, the relay can access levels at the receivers above those
that can be accessed by the transmitters. Then, the signal ū(i) to be forwarded by
the relay is split into two parts: ūa(i) and ūb(i) of length Rua and Rub, respectively,
where Ru = Rua +Rub. The first part ūa(i) is sent such that it arrives on levels above
the signals from the transmitters, and the second part ūb(i) is sent below

3. The relay
also sends the DF signals v1(i) and v2(i). Figure 5.8 shows the transmit signals of the

3A similar splitting was used in Section 4.2.2.2.
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Figure 5.8: A graphical illustration of the transmit signals at channel use 2, the
received signal at Rx 1, and the decoding process, using the capacity achieving

scheme of the LD-BFN with feedback with ns ≤ nc ≤ nr.

transmitters and the received signal of Rx 1 (y1(i)). Notice from this figure that the
relay forwards xr(i+ 1) in the next channel use where

xr(i+ 1) =




0nr−nc−Rua

ūa(i)
0Ru

v1(i)
v2(i)
ūb(i)

0nc−Rua−2Rub−R1v−R2v

0q−nr




. (5.55)

This construction requires

Rua + 2Rub +R1v +R2v ≤ nc, (5.56)

Rua ≤ nr − nc. (5.57)

Rx 1 waits until the end of channel use n + 1 where only the relay is active, and
decodes ūa(n) and ūb(n) thereby recovering u1(n) ⊕ u2(n), and it also decodes v1(n)
and v2(n). Then it proceeds backward to the nth channel use. The received signal at
Rx 1 can be written as (see Figure 5.8)

y1(n) =




0q−nr

0nr−nc−Rua

ūa(n− 1)
u2(n)

v1(n− 1)
v2(n)⊕ v2(n− 1)

ūb(n− 1)
0nc−Rua−2Rub−R1v−R2v




. (5.58)

Since Rx 1 knows v2(n), it can remove it from the received signal. Then it proceeds
with decoding ūa(n−1), ūb(n−1), u2(n), v1(n−1), and v2(n−1). Having u2(n) and
u1(n)⊕u2(n) allows Rx 1 to obtain u1(n). Additionally, Rx 1 obtains v1(n−1) which
is a desired signals. Furthermore, v2(n− 1) and ū(n− 1) are obtained which are used



Section 5.2 � The Linear-deterministic Butterfly Network (LD-BFN) 91

in the decoding process in channel use n − 1. Using this process, Rx 1 was able to
recover its desired signals comprising of Ru and R1v bits, respectively. Rx 2 performs
similar operations. The receivers proceed backwards till channel use 1 is reached.

The rate achieved by Tx j is Rj = Ru+Rjv. Collecting the rate constraints (5.54),
(5.56), and (5.57), we get the following constraints on the non-negative rates Rua, Rub,
R1v, and R2v:

Rua +Rub +R1v +R2v ≤ ns (5.59)

Rua + 2Rub +R1v +R2v ≤ nc (5.60)

Rua ≤ nr − nc. (5.61)

Using Fourier-Motzkin’s elimination [EGK11, Appendix D] we get the achievable re-
gion given in Lemma 5.1.

5.2.3.1.2 Case nc ≤ min{ns, nr}: Now we consider the case where the cross chan-
nel is weaker than both the source-relay channel and the relay-destination channel.
Note that this is a regime that was not covered in Chapter 4. Thus, characterizing
the capacity of the LD-BFN in this regime can serve as a stepping stone towards the
capacity of the LD-IRC with nc ≤ ns.

As we have mentioned earlier, if ns ≥ nc, then we can pass some future information
to the relay without the receivers noticing by using the CN strategy. Thus, we use CN
in addition to CF and DF. For this case, we have the following lemma.

Lemma 5.2. The rate region defined by the following rate constraints

0 ≤ R1 ≤ min{ns, nr} (5.62)

0 ≤ R2 ≤ min{ns, nr} (5.63)

R1 +R2 ≤ min{ns + nc, nr + nc, nr + ns − nc}, (5.64)

is achievable in the LD-BFN with feedback with nc ≤ min{ns, nr}.

This achievable region coincides with the region given in Theorem 5.1, and thus
characterizes the capacity of the LD-BFN with feedback with nc ≤ min{ns, nr}. We
provide this capacity achieving scheme next.

Proof. At time instant i, Tx 1 sends the following signal

x1(i) =




0nc−Ru−R1v−R2v−Rt

u1(i)
v1(i)
0R2v

[
t1(i)

0ns−nc−Rt

]
⊕



0ns−nc−R̄1v−R̄2v

v̄1(i)
0R̄2v




t1(i+ 1)
0q−ns




, (5.65)

where t1(i + 1) is the future information passed to the relay. The signals u1, v1, t1,
and v1 are vectors of length Ru, R1v, Rt, and R̄1v, respectively. Notice that this
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Figure 5.9: The transmit signals, received signal at Rx 1, and decoding process
at Rx 1 at channel use 2, for the capacity achieving scheme of the LD-BFN with

feedback with nc ≤ min{ns, nr}. Notice the overlap of v̄2 and t1 at Rx 1.

construction requires that

Ru +R1v +R2v +Rt ≤ nc (5.66)

R̄1v + R̄2v ≤ ns − nc (5.67)

Rt ≤ ns − nc. (5.68)

Tx 2 uses a similar construction, with zeros instead of v1(i) and v̄1(i), and with v2(i)
and v̄2(i) instead of 0R2v

and 0R̄2v
, respectively. Using this construction, there can

be an overlap between t1(i) and t2(i) on one hand, and v̄1(i) and v̄2(i) on the other
hand, at the relay and at the receivers (see Figure 5.9). However, this overlap is not
harmful (similar to the one discussed in Section 5.2.2.2). The overlapping DF signals
are marked with a bar to distinguish them from v1 and v2 which do not overlap with
any signal at the relay.

The received signal at the relay consists of the topmost ns bits of x1(i)⊕x2(i). Let
us write yr(i) as follows

yr(i) =




0q−ns

0nc−Ru−R1v−R2v−Rt

u1(i)⊕ u2(i)
v1(i)
v2(i)

[
t1(i)⊕ t2(i)
0ns−nc−Rt

]
⊕



0ns−nc−R̄1v−R̄2v

v̄1(i)
v̄2(i)




t1(i+ 1)⊕ t2(i+ 1)




. (5.69)

In the ith channel use, the relay knows t̄(i) = t1(i) ⊕ t2(i) from the decoding
process in the channel use i − 1. This allows it to remove t1(i) ⊕ t2(i) from yr(i).
Then, the relay can decode ū(i) = u1(i)⊕ u2(i), v1(i), v2(i), v̄1(i), v̄2(i), and finally
t̄(i+ 1) = t1(i+ 1)⊕ t2(i + 1). At the end of channel use i, the relay constructs the
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following signal

xr(i+ 1) =




0nr−R̄1v−R̄2v−2Ru−R1v−R2v−Rt

v̄1(i)
v̄2(i)
ū(i)
0Ru

v1(i)
v2(i)

t̄(i+ 1)
0q−nr




(5.70)

and sends it in channel use i + 1. The constituent signals of xr(i + 1) in (5.70) fit in
an interval of size nr if

R̄1v + R̄2v + 2Ru +R1v +R2v +Rt ≤ nr. (5.71)

Consider now the processing at Rx 1 (the processing at Rx 2 follows along similar
lines). Rx 1 observes the topmost nc bits of x2(i) and the topmost nr bits of xr(i) at the
ith channel use (Figure 5.9). It uses backward decoding. Assuming that the decoding
process in channel use i+ 1 was successful, Rx 1 can remove the contribution of v̄2(i)
and v2(i) from its received signal. It then proceeds to decode v̄1(i − 1), v̄2(i − 1),
ū(i− 1), u2(i), v1(i− 1), v2(i− 1), and t1(i). Decoding then proceeds backwards till
i = 1.

Collecting the rate constraints (5.66)-(5.68) and (5.71), we conclude that the non-
negative rates R̄1v, R̄2v, R1v, R2v, Ru, and Rt can be achieved if they satisfy

Ru +R1v +R2v +Rt ≤ nc (5.72)

R̄1v + R̄2v ≤ ns − nc (5.73)

Rt ≤ ns − nc (5.74)

R̄1v + R̄2v + 2Ru +R1v +R2v +Rt ≤ nr. (5.75)

Using Fourier Motzkin’s elimination with Rj = Rjv + R̄jv + Ru + Rt, we get the
achievable rate region given in Lemma 5.2.

At this point, we have finished the proof of the achievability of Theorem 5.1 for
nc ≤ nr where feedback does not increase capacity. Next, we consider the opposite
case where feedback indeed increases capacity.

5.2.3.2 A Case where Feedback Increases Capacity

The statement of Theorem 5.1 for the LD-BFN with nc > nr reduces to

R1 ≤ min{ns, nr + nf , nc} (5.76)

R2 ≤ min{ns, nr + nf , nc} (5.77)

R1 +R2 ≤ nc + (ns − nc)
+. (5.78)

In this case, nf contributes to the outer bounds. If the region defined by these upper
bounds is achievable, then feedback has a positive impact on the BFN. This is what we
shall prove next. That is, we show that this region is in fact achievable, and hence that
relay-source feedback increases the capacity of the network if nc > nr when compared
to the case nf = 0.
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5.2.3.2.1 Case max{nr, ns} < nc: We start by stating the achievable region de-
scribed in this subsection in the following lemma.

Lemma 5.3. The rate region defined by the following inequalities

0 ≤ R1 ≤ min{ns, nr + nf} (5.79)

0 ≤ R2 ≤ min{ns, nr + nf} (5.80)

R1 +R2 ≤ nc, (5.81)

is achievable in the LD-BFN with feedback with max{nr, ns} < nc.

Notice that this achievable region matches the region given in Theorem 5.1. There-
fore, the achievability of this region proves the achievability of Theorem 5.1 for the
case max{nr, ns} < nc. We prove this lemma in the rest of this subsection.

Since nc > nr the transmitters can use the upper nc − nr levels at the receivers
which are not accessible by the relay to send feedback information to the receivers.
Thus, in this case we use the F strategy. Since max{nc, nr} > ns in this case, we also
use the CF strategy following the intuition in Section 5.2.2.6. Furthermore, we use DF
to achieve asymmetric rate pairs.

Proof. In the ith channel use, Tx 1 sends the following signal (Figure 5.10)

x1(i) =




u1(i)
v1(i)
0R2v

s1(i)
s2(i− 2)
s̄1(i)

s̄2(i− 2)
0nc−Ru−R1v−R2v−R1s−R2s−2R̄s

0q−nc




. (5.82)

Here, the signal sj , j = 1, 2, is the signal used to establish the asymmetric F strategy,
which is a vector of length Rjs. The signal s2(i− 2) is available at Tx 1 via feedback.
The signal s̄j is the signal used in the symmetric F strategy, and is a vector of length
R̄s. We use both symmetric feedback and asymmetric feedback to achieve all points
in the closure of the region given in Lemma 5.3. The CF signal u1 has length Ru, and
the DF signal v1 has length R1v. Tx 2 sends a similar signal (see Figure 5.10). The
given construction works if

Ru +R1v +R2v +R1s +R2s + 2R̄s ≤ nc. (5.83)

The relay observes the topmost ns bits of x1(i) ⊕ x2(i). We want the relay to
be able to observe u1(i) ⊕ u2(i), v1(i), v2(i), s1(i) ⊕ s1(i − 2), s2(i − 2) ⊕ s2(i), and
s̄1(i)⊕ s̄2(i). This is possible if we choose

Ru +R1v + R2v +R1s +R2s + R̄s ≤ ns. (5.84)

Given this condition is satisfied, the relay starts by removing s1(i−2) and s2(i−2)
(known from past decoding) from yr(i). Next, it decodes the sum of the CF signals
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Figure 5.10: A graphical illustration of the transmit signals and the received signals
at Rx 1 in channel use 3, for an LD-BFN with feedback with max{nr, ns} ≤ nc and

nf > 0.

ū(i) = u1(i)⊕ u2(i), the DF signals v1(i) and v2(i), the F signals s1(i) and s2(i), and
s̄1(i)⊕ s̄2(i). Then it sends the following signals

xr(i+ 1) =




0nr−Ru−R1v−R2v

v1(i)
v2(i)
ū(i)
0q−nr



, xf(i+ 1) =




[
s1(i)

0(R2s−R1s)+

]
⊕
[

s2(i)
0(R1s−R2s)+

]

s̄1(i)⊕ s̄2(i)
0q−max{R1s,R2s}−R̄s


 , (5.85)

over the relay-destination channel and the feedback channel, respectively, in channel
use i+ 1, which requires

Ru +R1v +R2v ≤ nr (5.86)

R1s + R̄s ≤ nf (5.87)

R2s + R̄s ≤ nf . (5.88)

Note that the F signals s1 and s2(i) are network coded at the relay after they are zero
padded to the same length. This allows a more efficient use of the feedback channel.

Tx 1 decodes the feedback signal and extracts s2(i) and s̄2(i). Therefore, in channel
use i+2, Tx 1 knows the F signals of Tx 2 which justifies the transmission of s2(i− 2)
and s̄2(i− 2) in x1(i) in (5.82). A similar processing is performed at Tx 2.

Assume that

2Ru + 2R1v + 2R2v +R1s +R2s + 2R̄s ≤ nc. (5.89)

In this case, Rx 1 for instance is able to observe all the signals sent by Tx 2 and the
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relay. The received signal y1(i) is then

y1(i) =




0q−nc

u2(i)
0R1v

v2(i)
s1(i− 2)
s2(i)
s̄2(i)

s̄1(i− 2)
zvnc−2Ru−2R1v−2R2v−R1s−R2s−2R̄s

v1(i− 1)
v2(i− 1)
ū(i− 1)




. (5.90)

Rx 1 decodes backwards. In each channel use i, it decodes u2(i), s1(i − 2), s̄1(i − 2),
v1(i − 1), and ū(i − 1). Then it extracts the desired CF signal from ū(i) and u2(i).
Similar processing is performed by Rx 2. Collecting the bounds (5.83), (5.84), (5.86),
(5.87), (5.88), and (5.89), we see that a pair Rj with Rj = Ru + Rjv + Rjs + R̄s is
achievable if

Ru + R1v +R2v +R1s +R2s + R̄s ≤ ns (5.91)

Ru +R1v +R2v ≤ nr (5.92)

R1s + R̄s ≤ nf (5.93)

R2s + R̄s ≤ nf (5.94)

2Ru + 2R1v + 2R2v +R1s +R2s + 2R̄s ≤ nc. (5.95)

Solving this set of linear inequalities using the Fourier Motzkin’s elimination, we get
the achievable region given in Lemma 5.3.

5.2.3.2.2 Case nr < nc ≤ ns: In this case, the relay observes more bits than the
receivers since ns ≥ nc. Thus, the transmitters can exploit the additional ns − nc bits
by using the CN strategy of Section 5.2.2.1. Additionally, we use the F strategy for
feedback, and the DF strategy to achieve asymmetric rates. In what follows, we prove
the following lemma.

Lemma 5.4. The region defined by

0 ≤ R1 ≤ min{nr + nf , nc} (5.96)

0 ≤ R2 ≤ min{nr + nf , nc} (5.97)

R1 +R2 ≤ ns, (5.98)

is achievable in the LD-BFN with feedback with nr < nc ≤ ns.

This lemma proves Theorem 5.1 for the case nr < nc ≤ ns since the achievable
region of this lemma matches the region given in the Theorem 5.1.

Proof. In this case, Tx 1 sends a DF signal vector v1(i) of length R1v two CN signal
vectors t1(i) and t1(i + 1) of length Rt each, two F signal vectors s1(i) (asymmetric)
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Figure 5.11: The transmit signals and received signal of Rx 1 at channel use 3 for
an LD-BFN with feedback with nr < nc ≤ ns and nf > 0.

and s̄1(i) (symmetric) of length R1s and R̄s, respectively. Additionally, it sends the F

signals of Tx 2 (acquired through feedback) s2(i− 2) and s̄2(i− 2) of length R2s and
R̄s, respectively, as shown if Figure 5.11.

Notice that out of these signals, two do not have to be observed at the receivers,
namely t1(i + 1) and s̄1(i). These two signals have to be decoded at the relay to
establish the F and the CN strategies. Thus, these signals can be sent below the noise
floor of the receivers, i.e., in the lower ns − nc levels observed at the relay. Assume
that these signals do not fit in this interval of length ns − nc, i.e., Rt + R̄s > ns − nc.
In this case, part of these signals is sent below the noise floor, and part above it. For
this reason, we split these signals to two parts:

s̄1(i) =

[
s̄1a(i)
s̄1b(i)

]
, t1(i) =

[
t1a(i)
t1b(i)

]
, (5.99)

where s̄1a, s̄1b, t1a, and t1b have length R̄sa, R̄sb, Rta, and Rtb, respectively, where
R̄sa + R̄sb = R̄s and Rta +Rtb = Rt (this split is not shown in Figure 5.11 for clarity).
As a result, Tx 1 sends

x1(i) =




0nc−R1s−R2s−2R̄sa−R̄sb−R1v−R2v−2Rta−Rtb

s1(i)
s2(i− 2)
s̄2a(i− 2)
s̄2b(i− 2)
s̄1a(i)

t1a(i+ 1)
v1(i)
0R2v

t1a(i)
t1b(i)
s̄1b(i)

t1b(i+ 1)
0ns−nc−R̄sb−Rtb

0q−ns




. (5.100)
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The vectors s̄1a(i) and t1a(i+1) are sent above v1(i), t1a(i), and t1b(i) since that latter
signals have to align with the signals sent from the relay (see Sections 5.2.2.1, 5.2.2.4,
and 5.2.2.5) and the relay can only access lower levels since nr < nc in this case. The
transmit signal of Tx 2 is constructed similarly. This construction requires

R1s +R2s + 2R̄sa + R̄sb + R1v +R2v + 2Rta +Rtb ≤ nc (5.101)

R̄sb +Rtb ≤ ns − nc. (5.102)

The relay receives the topmost ns bits of x1(i)⊕ x2(i). We write yr(i) as

yr(i) =




0q−ns

0nc−R1s−R2s−2R̄sa−R̄sb−R1v−R2v−2Rta−Rtb

s1(i)⊕ s1(i− 2)
s2(i)⊕ s2(i− 2)

s̄1a(i− 2)⊕ s̄2a(i− 2)
s̄1b(i− 2)⊕ s̄2b(i− 2)

s̄1a(i)⊕ s̄2a(i)
t1a(i+ 1)⊕ t2a(i+ 1)

v1(i)
v2(i)

t1a(i)⊕ t2a(i)
t1b(i)⊕ t2b(i)
s̄1b(i)⊕ s̄2b(i)

t1b(i+ 1)⊕ t2b(i+ 1)
0ns−R1s−R2s−2R̄s−R1v−R2v−2Rt




. (5.103)

The relay starts processing this signal by removing the past F signals sj(i − 2) and
s̄j(i − 2) (decoded in channel use i − 2) and the present CN signals tja(i) and tjb(i)
(decoded in channel use i− 1) from yr(i). Then it decodes s1(i), s2(i), s̄1a(i)⊕ s̄2a(i),
s̄1b(i) ⊕ s̄2b(i), v1(i), v2(i), t̄a(i + 1) = t1a(i + 1) ⊕ t2a(i + 1), and t̄b(i + 1) = t1b(i +
1)⊕ t2b(i+ 1). Then, the relay sends

xr(i+ 1) =




0nr−R1v−R2v−Rta−Rtb

v1(i)
v2(i)

t̄a(i+ 1)
t̄b(i+ 1)
0q−nr



, xf(i+ 1) =




[
s1(i)

0(R2s−R1s)+

]
⊕
[

s2(i)
0(R1s−R2s)+

]

s̄1a(i)⊕ s̄2a(i)
s̄1b(i)⊕ s̄2b(i)

0nf−max{R1s,R2s}−R̄sa−R̄sb

0q−nf



.

(5.104)

to the receivers and to the transmitters, respectively, in channel use i + 1. The given
signals fit in the interval of length nr and nf if

R1v +R2v +Rta +Rtb ≤ nr (5.105)

R1s + R̄sa + R̄sb ≤ nf (5.106)

R2s + R̄sa + R̄sb ≤ nf . (5.107)

For efficient use of the feedback channel, the relay adds the signals s1(i) and s2(i)
together after zero-padding them to the same length, and feeds the sum back. Tx 1
at channel use i+ 1 subtracts its own F signals from its received feedback signal, and
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then decodes the F signals of Tx 2, i.e., s2(i), s̄2a(i), and s̄2b(i). These signals are sent
in channel use i+ 2 as seen in (5.100).

In the ith channel use, Rx 1 observes

y1(i) =




0q−nc

0nc−R1s−R2s−2R̄sa−R̄sb−R1v−R2v−2Rta−Rtb

s1(i− 2)
s2(i)

s̄1a(i− 2)
s̄1b(i− 2)
s̄2a(i)

t2a(i+ 1)
v1(i− 1)

v2(i)⊕ v2(i− 1)
t1a(i)
t1b(i)




. (5.108)

Decoding at Rx 1 is done backwards. In the ith channel use, it starts with removing
the already known DF signal v2(i) (decoded in channel use i + 1). Then it proceeds
with decoding each of s1(i− 2), s̄1a(i− 2), s̄1b(i− 2), v1(i− 1), v2(i− 1), t1a(i), and
t1b(i). Rx 2 proceeds similarly.

Collecting the bounds (5.101), (5.102), (5.105), (5.106), and (5.107) we get

R1s +R2s + 2R̄sa + R̄sb +R1v +R2v + 2Rta +Rtb ≤ nc (5.109)

R̄sb +Rtb ≤ ns − nc (5.110)

R1v +R2v +Rta +Rtb ≤ nr (5.111)

R1s + R̄sa + R̄sb ≤ nf (5.112)

R2s + R̄sa + R̄sb ≤ nf , (5.113)

where the rates R1s, R2s, R̄sa, R̄sb, R1v, R2v, Rta, and Rtb are non-negative. Solving
this set of linear inequalities using the Fourier Motzkin’s elimination with Rj = Rjs +
R̄sa + R̄sb +Rjv +Rta +Rtb yields the achievable rate region given in Lemma 5.4.

By this point, we have finished the proof of the achievability of Theorem 5.1, and
hence, we have characterized the capacity region of the LD-BFN with relay-source
feedback. This also shows that the developed relaying strategies are optimal. The
feedback gain is discussed next.

5.2.4 Net Feedback Gain

Relay-source feedback increases the capacity of the BFN with respect to the non-
feedback case. However, is this feedback efficient? In other words, is there a net-gain
when using feedback? In this section, we discuss the net-gain attained by exploiting
feedback and we answer the question above in the affirmative.

First, let us define what we mean by net-gain. Let C0 be the sum-capacity of a BFN
without feedback (nf = 0), and let Cnf

be the sum-capacity with feedback (nf 6= 0),
which is achieved by feeding back rf ≤ nf bits per channel use through the feedback
channel. Let η be defined as the ratio

η =
Cnf

− C0

rf
. (5.114)
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Figure 5.12: The capacity region of the deterministic BFN with (nc, ns, nr) =
(6, 3, 1) with (nf = 1) and without (nf = 0) feedback.

We say that we have a net-gain if the ratio of the sum-capacity increase to the number
of feedback bits is larger than 1, i.e., η > 1. Otherwise, if η ≤ 1, then we have no
net-gain because then Cnf

− C0 ≤ rf , i.e., the gain is less than the cost.
Note that if nc ≤ nr, then there is no feedback gain at all, since in this case, the

capacity region in Theorem 5.1 is the same as nf = 0. Now, consider for sake of
example the case nc > nf with a LD-BFN with (nc, ns, nr) = (6, 3, 1). The capacity
region of this BFN without feedback is shown in Figure 5.12 where the sum-capacity is
C0 = 2 bits per channel use corresponding to the rate pair (R1, R2) = (1, 1). This rate
pair is achieved by using the CF strategy, where Tx 1 sends x1(i) = [u1(i), 0T

5 ]
T and

Tx 2 sends x2(i) = [u2(i), 0
T
5 ]

T , and the relay sends xr(i) = [u1(i−1)⊕u2(i−1), 05]
T .

Now consider the case with nf = 1. In this case, the sum-capacity is C1 = 4 bits per
channel use corresponding to the corner point of the capacity region (R1, R2) = (2, 2)
as shown in Figure 5.12. To achieve this, the transmitters use the same CF strategy
used for nf = 0, which achieves R1 = R2 = 1 bit per channel use. Additionally each
transmitter sends a feedback bit s̄j(i) to the other transmitter via the relay using the
symmetric F strategy. This way, each transmitter acquires the F signal of the other
transmitter, which it forwards then to the respective receiver. This F strategy requires
feeding back only rf = 1 bit, namely s̄1(i)⊕ s̄2(i). With this we have η = (C1−C0)/rf = 2,
i.e., a net-gain: for each feedback bit, we gain 2 bits in the sum-capacity. The reason
for achieving this net gain is the design of the F strategy in which the F signals are
network coded, thereby making each fed back bit useful at both transmitter. In other
words, each fed back bit is worth two bits, one at each transmitter.

The analysis in this section lead to the development of a new scheme, namely,
the cooperative interference neutralization scheme. Next, we extend this idea to the
Gaussian BFN (G-BFN) in order to see how this scheme can be applied in the G-BFN,
and more generally, in the G-IRC.

5.3 The Gaussian BFN (G-BFN) with Feedback

Figure 5.13 shows a real-valued symmetric G-BFN with feedback. This network is sim-
ply a G-IRC (cf. Section 4.1.1 on page 20) with the direct channel set to zero (hd = 0)
with an additional component which is the out-of-band relay-source feedback channels.
We will not repeat the description of the model, but just describe the feedback channel.
The feedback signal xn

f is constructed from the relay received signal ynr . Due to causal-
ity, the ith symbol xf (i) (just like xr(i)) is constructed from (yr(1), · · · , yr(i−1)). The
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Figure 5.13: The Gaussian butterfly network with relay-source feedback (dotted).

feedback signal has a power constraint P . The received feedback at the transmitters
at time instant i can be written as

ȳj(i) = hfxf (i) + z̄j(i), j = 1, 2, (5.115)

where hf is the real valued feedback channel gains, and the noises z̄j are i.i.d. N (0, 1).

5.3.1 Transmission Strategies

We describe here the extension of the transmission strategies we described in Section
5.2.2 to the G-BFN. The extension requires some knowledge of nested-lattice codes.
For the required preliminaries on nested lattice codes, the reader is referred to Section
2.5, and is referred to [EZ04,NG11,NWS07] for more details.

5.3.1.1 Cooperative Interference Neutralization

The following strategy is a forwarding strategy which does not exploit feedback. In
cooperative interference neutralization (CN), the relay sends a signal xn

r in a way such
that the interference at both receivers is removed and ‘replaced’ with the desired signal.
For instance, if Tx 1 sends tn1 (b) in transmission block b, then the received signal at
Rx 2 is yn2 = hct

n
1 (b) + zn2 (b) which contains no desired information. Now if the relay

sends −hc

hr
(tn1 (b)+ tn2 (b)), then yn2 becomes yn2 = −hct

n
2 (b)+zn2 (b). Notice that the relay

replaced the interfering signal tn1 (b) by the desired signal tn2 (b).
This process requires giving the relay access to tn1 (b)+tn2(b) before the block at which

they are decoded at the receivers. If the relay acquires tn1 (b) and tn2 (b) in block b − 1,
then interference neutralization can be performed. To enable this, each transmitter
sends tnj (b) in addition to tnj (b− 1) in block b− 1. This enables the relay to obtain the
sum tn1 (b) + tn2 (b) in block b− 1 by decoding both tn1 (b) and tn2 (b). However, decoding
tn1 (b) and tn2 (b) in block b− 1 leads to several limitations:

(i) Decoding both users’ signals at the relay induces a rate constraint of the type

RΣ ≤ C(2h2
sP ) = (1/2) log(P ) + o(log(P )), (5.116)

which can be a decisive rate constraint and a bottleneck for the performance.

(ii) If the relay wants to send both users’ signals, such as

xn
r (b) = −(hc/hr)(tn1 (b) + tn2 (b)), (5.117)

then the relay power has to be shared between the two signals, e.g., each signal
gets a power P/2, which leads to rate degradation.
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Applying the CN strategy while using nested-lattice codes solves both problems at
once. Let the signal tnj (b), j ∈ {1, 2}, be designed using a nested-lattice code with rate
Rt as t

n
j (b) = (λj(b)−dj(b)) mod Λc, where λj is a codeword of the nested lattice code

with fine lattice Λf and coarse lattice Λc, and dj is a random dither. The power of
this nested-lattice code is chosen to be P . In blocks b = 0, · · · , B, Tx j sends

xn
j (b) = α1t

n
j (b) + α2t

n
j (b+ 1) (5.118)

where tnj (0) and tnj (B + 1) are zero. The power constraint is satisfied at Tx 1 and 2 if
α2
1 + α2

2 ≤ 1. Note that since the channel is symmetric, the same parameters α1 and
α2 will be used by both users.

In block b, the relay receives

ynr (b) =

2∑

j=1

hs(α1t
n
j (b) + α2t

n
j (b+ 1)) + znr (b). (5.119)

Assume that the relay knows tn1 (b) + tn2 (b) in block b, then the relay subtracts the
contribution of this sum from ynr (b), and then decodes the sum (λ1(b + 1) + λ2(b +
1)) mod Λc [NG11]. This decoding is possible if Rt satisfies

Rt ≤ C+

(
h2
sα

2
2P − 1

2

)
. (5.120)

Note that this rate constraint is more relaxed than (5.116), which solves problem (i)
above. In the next transmission block, the relay reconstructs hs(t

n
1 (b+ 1) + tn2 (b+ 1))

from (λ1(b+1)+λ2(b+1)) mod Λc (successive compute-forward [Naz12]) and subtracts
it from ynr (b+ 1). Then it decodes (λ1(b+ 2) + λ2(b+ 2)) mod Λc, and so on.

The decoded modΛc sum has power P as the original nested-lattice code. The re-
lay simply scales this modΛc sum and sends it, which requires less power than (5.117).
This solves problem (ii) above. The relay sends

xn
r (b+ 1) = −hcα1

hr

[(λ1(b+ 1) + λ2(b+ 1)) mod Λc] (5.121)

in block b+1 (here, xn
f = 0). The rate constraint at the relay is satisfied if h2

cα
2
1/h2

r ≤ 1.
Note that the relay does not re-encode the decoded signal, it scales it and forwards it
for the purpose of interference neutralization.

Rx 1 receives

yn1 (b) = hcα1t
n
2 (b)− hcα1 [(λ1(b) + λ2(b)) mod Λc] + hcα1z̃

n
1 (b), (5.122)

where we used the notation

z̃n1 = (1/hcα1)(hcα2t
n
2 (b+ 1) + zn1 ), (5.123)

for brevity. This term will be treated as noise in the decoding process. First, Rx 1
divides yn1 (b) by hcα1, then it adds d2(b), and then it calculates the quantization error
with respect to Λc by using a modΛc operation [NG11]. After these operations, Rx 1
obtains[

yn1 (b)

α1hc

+ d2(b)

]
mod Λc

= [tn2 (b)− (λ1(b) + λ2(b)) mod Λc + z̃n1 (b) + d2(b)] mod Λc (5.124)

= [λ2(b)− d2(b)− λ1(b)− λ2(b) + z̃n1 (b) + d2(b)] mod Λc (5.125)

= [−λ1(b) + z̃n1 (b)] mod Λc, (5.126)
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where we used the property (x mod Λc + y) mod Λc = (x + y) mod Λc [NG11]. This
allows Rx 1 to decode λ1(b) as long as

Rt ≤ C

(
α2
1h

2
cP

1 + α2
2h

2
cP

)
. (5.127)

This rate constraint follows since nested-lattice codes achieve the capacity of the
AWGN channel [EZ04]. A similar procedure is used by Rx 2.

In summary, in the cooperative interference neutralization strategy, the relay de-
codes a sum of codewords, which relaxes the rate constraint at the relay compared
to classical decoded-forward. Furthermore, it neutralizes interference and allows the
receivers to decode the desired signals interference free.

Remark 5.3. The half-duplex CN strategy used in the half-duplex LD-BFN in [AH09]
was extended in the same paper to the Gaussian case using amplify-forward. We extend
our full-duplex CN strategy to the Gaussian case using computation which gives more
flexibility especially when CN is combined with other strategies, and therefore, performs
better than amplify-forward.

5.3.1.2 Feedback

As mentioned earlier, the feedback strategy exploits the bi-directional relay channel
established by the channels hs and hf to exchange signals between the two transmitters.
The feedback process is exactly the same process used for exchanging information in
the bi-directional relay channel [NWS07]. We only briefly describe it here.

The users use a nested-lattice code of power P and rate Rs to construct the feedback
signals (F signals) as snj (b) = (λj(b) − dj(b)) mod Λc where j ∈ {1, 2}, b is the block
index denoting the bth transmission block, λj is the nested-lattice codeword, and dj is
a random dither. Tx 1 sends

xn
1 (b) = α1s

n
1 (b) + α2s

n
2 (b− 2) (5.128)

with α2
1 + α2

2 ≤ 1, i.e., it sends its own F signal and the F signal of Tx 2. The latter is
acquired via feedback as follows. The received signal at the relay in block b is

ynr (b) =

2∑

j=1

hs(α1s
n
j (b) + α2s

n
j (b− 2)) + znr (b). (5.129)

The relay first removes the interference from sn1 (b − 2) + sn2 (b − 2) (assuming that
decoding (λ1(b − 2) + λ2(b − 2)) mod Λc was successful in block b − 2 [Naz12]), and
then it decodes the sum (λ1(b) + λ2(b)) mod Λc. The relay then maps the decoded
sum to a Gaussian codeword xn

f (b+ 1) with average power P and feeds it back to the
transmitters in block b+ 1 (here we use xn

r = 0). Tx 1 gets

ȳn1 (b+ 1) = hfx
n
f (b+ 1) + z̄n1 (b+ 1), (5.130)

from which it decodes xn
f (b + 1) and acquires sn2 (b). The acquired F signal of Tx 2

(sn2 (b)) is sent to Rx 2 in block b+2 after scaling it with α2 (see (5.128)). The received
signal at Rx 2 is then

yn2 (b) = hc(α1s
n
1 (b) + α2s

n
2 (b− 2)) + zn2 (b), (5.131)
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from which sn2 (b − 2) is decoded while treating sn1 (b) as noise. This allows Tx 2 to
send its F signal through both the relay and Tx 1. The rate constraints for reliable
decoding are then

Rs ≤ min

{
C+

(
h2
sα

2
1P − 1

2

)
, C
(
h2
fP
)
, C

(
h2
cα

2
2P

1 + h2
cα

2
1P

)}
. (5.132)

The first constraint corresponds to decoding at the relay, the second to decoding xn
f

at the transmitters, and the last to decoding snj (b− 2) at the receivers.

5.3.1.3 Compute-forward

As the BFN is a special case of the IRC, the compute-forward (CF) strategy of the
IRC (namely the SI-CF strategy) can be used in the BFN in a straightforward way.
For this reason, we do not describe this strategy here in details, the reader is referred
to Section 4.3.2.1 for more on this strategy. The resulting rate constraints when using
CF in the BFN are

Ru ≤ min

{
C+

(
h2
sα

2
1P − 1

2

)
, C

(
h2
cα

2
1P

1 + h2
rα

2
2P

)
, C
(
h2
rα

2
2P
)}

, (5.133)

where α1, α2 ≤ 1. The first constraint corresponds to decoding at the relay, and the
second and third ones corresponds to decoding at the receivers (successively).

Next, we construct combinations of these three schemes and examine their perfor-
mance in the G-BFN in terms of sum-rate.

5.3.2 Achievable Rates in the G-BFN with Feedback

We construct two combinations of the three strategies. Namely, one combination of
CN and F, and another combination of CF and F. Intuitively, we expect the first
combination to perform better when h2

s > h2
c as explained earlier in section 5.2.2.1.

5.3.2.1 Neutralization and Feedback

In this case, Tx j ∈ {1, 2} sends

xn
j (b) = α1t

n
j (b) + α2t

n
j (b+ 1) + α3s

n
j (b) + α4s

n
k(b− 2), (5.134)

where
∑4

ℓ=1 α
2
ℓ ≤ 1, and j 6= k. The relay removes the contribution of tnj (b) and

snk(b − 2) first, then it decodes the sum of the F signals (one from each transmitter)
followed by the sum of the CN signals leading to the rate constraints

Rs ≤ C+

(
h2
sα

2
3P

1 + 2h2
sα

2
2P

− 1

2

)
(5.135)

Rt ≤ C+

(
h2
sα

2
2P − 1

2

)
. (5.136)

The relay feeds back the sum of the F signals to the transmitters. This can be decoded
successfully as long as

Rs ≤ C
(
h2
fP
)
. (5.137)
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The relay also forwards the sum of the CN signals, scaled with −hcα1/hr, which requires
h2
cα

2
1/h2

r ≤ 1. The decoding at the receivers starts with the desired F signal, then
the desired CN signal, while treating the remaining signals as noise, leading to the
constraints

Rs ≤ C

(
h2
cα

2
4P

1 + h2
c(2α

2
1 + α2

2 + α2
3)P

)
(5.138)

Rt ≤ C

(
h2
cα

2
1P

1 + h2
c(α

2
2 + α2

3)P

)
. (5.139)

For a given choice of αℓ, ℓ ∈ {1, . . . , 4}, each user achieves a rate of Rt +Rs (satis-
fying (5.135)-(5.139)) using this combination of the CN strategy and the F strategy.

Proposition 5.1 (CN+F). The combination of the CN strategy and the F strategy
(CN+F) achieves a sum-rate given by

RΣ = 2 max∑
4
ℓ=1

α2
ℓ
≤1,

h2
cα

2
1≤h2

r

Rt +Rs. (5.140)

5.3.2.2 Compute-forward and Feedback

In this case, the users employ the CF and the F strategies. Tx j ∈ {1, 2} sends

xn
j (b) = α1u

n
j (b) + α2s

n
j (b) + α3s

n
k(b− 2), (5.141)

where
∑3

ℓ=1 α
2
ℓ ≤ 1, and j 6= k. The relay removes the contribution of snk(b − 2) first,

and then it decodes the sum of the CF signals followed by the sum of the F signals
leading to the rate constraints

Ru ≤ C+

(
h2
sα

2
1P

1 + 2h2
sα

2
2P

− 1

2

)
(5.142)

Rs ≤ C+

(
h2
sα

2
2P − 1

2

)
. (5.143)

The relay then feeds back the sum of the F signals to the transmitters, which can
decode it if

Rs ≤ C
(
h2
fP
)
. (5.144)

The relay also sends the sum of the CF signals encoded in a signal xn
r (b+1) with power

α2
4P ≤ P . Rx 1 receives

yn1 (b) = hc(u
n
2(b) + sn2 (b) + sn1 (b− 2)) + hrx

n
r (b) + zn1 (b). (5.145)

Rx 1 decodes the interfering CF signal un
2 (b) first, followed by the interfering F signal

sn2 (b), then the desired F signal sn1 (b−2), and finally, the relay signal xn
r (b), successively.

This leads to the following rate constraints

Ru ≤ C

(
h2
cα

2
1P

1 + h2
c(α

2
2 + α2

3)P + h2
rα

2
4P

)
(5.146)

Rs ≤ C

(
h2
cα

2
2P

1 + h2
cα

2
3P + h2

rα
2
4P

)
(5.147)

Rs ≤ C

(
h2
cα

2
3P

1 + h2
rα

2
4P

)
(5.148)

Ru ≤ C
(
h2
rα

2
4P
)
. (5.149)
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Each transmitter achieves a rate of Ru + Rs where Ru and Rs satisfy (5.142)-(5.149),
for a given choice of αℓ, ℓ ∈ {1, . . . , 4}.

Proposition 5.2 (CF+F). The combination of the CF strategy and the F strategy
(CF+F) achieves a sum-rate given by

RΣ = 2 max∑
3
ℓ=1

α2
ℓ
≤1,

α2
4≤1

Ru +Rs. (5.150)

Having derived the achievable sum-rate of the two different combinations (CN+F

and CF+F), we can now compare their performance versus each other, and versus the
sum-capacity upper bounds from Section 5.1.2 which can be easily evaluated for the
Gaussian BFN using the ‘Gaussian maximizes entropy’ principle.

5.3.3 Numerical Analysis and Discussion

Figure 5.14(a) shows the achievable sum-rate for a G-BFN with (hs, hc, hr) = (2, 1, 1/4)
with hf = 4 as a function of SNR (= P ). Additionally, the figure shows sum-capacity
upper bounds as a benchmark for comparison. The upper bound with hf = 0 is
included to show the feedback gain. Without feedback, the achievable rate is at most
equal to the dashed upper bound. The gain from feedback is obvious. This gain is
a result of the alternative paths for information flow created by feedback [SGG12].
For instance, the path Tx 1→Relay→Tx 2→Rx 1 for information flow from Tx 1 to
Rx 1 is enabled by feedback. Although both schemes achieve higher rates than the
no-feedback upper bound, CN+F performs better than CF+F since h2

s ≥ h2
c (see our

discussion in Section 5.2.2.1). Note that in CF+F, the receivers need to decode four
signals as in (5.146)-(5.149). This requires a strong cross channel hc which is not the
case in this example. On the other hand, if the channel to the relay hs is stronger than
the cross channel hc, then the transmitters can send signals weaker than the noise at
the receivers, while still decodable at the relay. This feature can be exploited by the
CN strategy for sending the future CN signals (tnj (b + 1) in block b). Thus, in this
example it is more convenient to use the CN strategy than the CF strategy.

Figure 5.14(b) shows an opposite case, where hc is the stronger channel. In this
case, sending CN signals to the relay for the purpose of interference neutralization
will cause strong interference at the receivers, so the CN strategy should be avoided.
However, since the cross channel is strong, by using the CF strategy, the receiver can
decode the F signals and the CF signals coming from the relay and the transmitters at
a higher rate. This makes the CF strategy preferable in this case.

5.3.3.1 Net Feedback Gain

The form of feedback presented in this chapter provides net-gain. That is, the gain
in sum-rate per feedback bit is larger than 1. To view this net gain, we define G as
G = CCf

− C0 where CCf
is the sum-capacity of the G-BFN with a feedback channel

of capacity Cf = C(h2
fP ), and C0 is the sum-capacity of the same network with no

feedback, i.e., with Cf = 0 or equivalently hf = 0. Let the sum-capacity upper bound
for the no-feedback case (obtained from Section 5.1.2) be denoted C0, i.e., C0 ≤ C0.
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Figure 5.14: Achievable sum-rates and sum-capacity upper bounds for the G-BFN
in two examples. An upper bound for the G-BFN without feedback (hf = 0) is also

shown for comparison.

Then, the gain G can be bounded as follows

G = CCf
− C0 (5.151)

≥ CCf
− C0 (5.152)

≥ RΣ − C0 (5.153)

where RΣ is the sum-rate achieved by our schemes in Propositions 5.1 and 5.2 (the
maximum of the two). This gain G is plotted in Figure 5.15 as a function of Cf .

Starting from the point (0,0), the gain G increases linearly with a slope of 2. This
means that we gain 2 bits in sum-capacity per feedback bit. Since the gain is greater
than the cost, we say that we have net-gain. At some value of Cf (here at 0.6), the
gain saturates to a value determined by the channel parameters hs, hc, and hr. In
conclusion, the sum-capacity gain is double the capacity of the feedback channel, as
long as the network performance is not dominated by its forward coefficients.

5.4 Summary

In this chapter, we have characterized the capacity region of the linear-deterministic
BFN with relay-source feedback. For this purpose, we developed a novel relaying
strategy named cooperative interference neutralization. This strategy turns out to be
essential for achieving the capacity of this network. We developed this new strategy
for the BFN, however, it can be applied in the IRC in a straightforward manner.

By allowing relaying information backward to the sources (relay-source feedback),
the capacity of the BFN can be increased. Our proposed feedback scheme which is
based on bi-directional relaying is an efficient form of feedback since it provides a net
gain. Namely, the increase in the sum-capacity of the network is twice the number of
feedback bits as long as the forward channels are not the bottleneck of the channel
capacity.
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Figure 5.15: The feedback gain versus the capacity of the feedback channel Cf for
a G-BFN with (hs, hc, hr) = (1, 2, 1/4)

We also extended the proposed strategies to the Gaussian BFN using nested-lattice
codes. We compared the performance of these strategies with sum-capacity upper
bounds numerically, where their good performance can be clearly noticed.



Chapter 6

Conclusion

In this thesis, we have studied the capacity of the interference relay channel (IRC). We
used the linear-deterministic (LD) approximation of the IRC as a stepping stone to-
wards the more involved Gaussian IRC. For the LD-IRC, we have developed a compute-
forward (CF) strategy which characterizes the sum-capacity for all cases where the
source-relay channel is weaker than the cross channel. Then we extended this result
to the Gaussian IRC using nested-lattice codes, for which we characterized the GDoF
under the same condition above. By characterizing the GDoF, we have shown that CF
achieves the high SNR asymptotic approximation of the sum-capacity of the G-IRC,
and therefore, CF is optimal from this point-of-view. This characterization covers half
the space of all possible channel parameters. It turns out that while the relay does not
increase the degrees-of-freedom of the IRC [CJ09], it indeed increases its GDoF.

We have also studied the BFN, which is an IRC with no direct channels, and thus,
with more emphasis on the relaying component of the network. We characterized the
capacity region of the LD-BFN where a new strategy named cooperative interference
neutralization (CN) was required. We also extended the developed strategies for the
Gaussian BFN.

These results solve the main problem of the thesis given in Chapter 3, i.e., identi-
fying optimal relaying strategies. The optimality of the proposed strategies is shown
for a wide range of channel parameters. The obtained results are important from both
a theoretical and a practical point of view. From a theoretical point of view, identify-
ing optimal relaying strategies for the IRC might help us to approach the capacity of
this network, and possibly larger interference networks with relays. From a practical
point of view, finding optimal relaying strategies and characterizing the capacity of
interference networks with relays can be very beneficial. For instance, given a wireless
interference network which suffers from coverage problems, bad channel quality, and
high interference, where some specified target rates must be achieved, knowing the
capacity of the network allows us to judge whether the given network limitations can
be overcome by relays (otherwise one would look for another cooperation strategy). If
this turns out to be the case, then the next question would be how to adjust relay
parameters in order to achieve the given target rates. These parameters include the
relay power and the relay location for instance. If these parameters are properly set,
then installing relays does not only overcome the network limitations, but also allows
achieving higher target while still ensuring reliable communication.

By analyzing our strategies, it can be noted that the task of the relay is focused
on interference cancellation, indirectly in the CF strategy, and directly in the CN

strategy. This is in contrast to classical strategies where the relay tries to either
increase the power of the desired signals or the power of interference in an attempt
to increase the achievable rates. Moreover, the relay in our strategies takes care of
specific signals that are constructed especially for the task of relaying. It does not
repeat source transmissions, nor does it decode the source messages. This is also in
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contrast to classical strategies where the relay operates on all the signals transmitted
by the transmitters which do not have any special construction designed for relaying
purposes.

This study also shows the capabilities of structured codes versus random codes
for the purpose of relaying. In our characterization, we were successful in finding the
GDoF if the IRC by using structured (lattice) codes, earlier work focused on random
codes and did not reach such a characterization.

On the other hand, the following similarity can be noted between our strategies and
classical ones. In CF, signals from successive transmission blocks are independent, and
decoding is done by considering two blocks at a time. From this perspective, this is
similar to compress-forward (only from this aspect). On the other hand, in CN, signals
from each two successive transmission blocks are dependent (block Markov encoding),
and decoding is done by considering only one block at a time. Thus, CN shares this
property with decode-forward. Due to the delay at the relay, this structure has to be
used in general in relay networks.

6.1 Summary of Contributions

The main problem whose solution was sought in this thesis is optimal relaying strategies
for the IRC. For achieving this goal, we have started by studying the LD-IRC where:

1. We derived new sum-capacity upper bounds. While we used genie-aided ap-
proaches and cooperative approaches to develop the new upper bounds, some of
the new upper bounds used new ideas that have not been used earlier.

2. We developed a new transmission scheme which recovers the sum-capacity of the
IC, and uses computation at the relay to improve upon this capacity.

3. We have shown that our strategy is sum-capacity achieving for a wide range of
channel parameters.

This establishes the optimality of our scheme for the given parameter regime, thus
giving a solution for the main problem.

We then extended the results to the G-IRC leading to an approximation of its
sum-capacity in the form of a generalized degrees-of-freedom characterization.

1. We first extended the upper bounds to the Gaussian IRC.

2. Then, we translated our transmission scheme to the Gaussian IRC where nested-
lattice codes. We also expressed the achievable sum-rate of the strategy.

3. Finally, we showed that our proposed novel strategy achieves the GDoF of the
Gaussian IRC for a wide range of channel parameters.

As a result, we have shown that our proposed strategy is GDoF optimal.
As for the BFN, we have studied the capacity region of its linear-deterministic

approximation.

1. We used the upper bounds for the IRC in the BFN, but we also developed some
new bounds that are necessary for the capacity characterization.
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2. Then, we developed transmission strategies for this network. To approach the
capacity region, we developed the new CN strategy, which focuses on neutralizing
interference at the receivers. The achievable rate region of a combination of
different strategies is given.

3. Finally, we showed that our proposed strategies achieves the capacity region of
the LD-BFN.

4. We extended the proposed strategies to the Gaussian BFN, and we have discussed
their performance using numerical examples.

6.2 Outlook

This thesis covered half the space of the channel parameters of the IRC, namely, all
cases where the channel to the relay is weaker than the cross channel. For this regime,
CF has been shown to be optimal. The other half-space is left for future work. Notice
that the performance of the CN strategy developed for the BFN has not been studied
in the IRC. Thus, it is interesting to know whether this strategy (in conjunction with
other strategies such as CF) achieves the capacity of the LD-IRC or the GDoF of
the G-IRC in the remaining regime, and thus completes the GDoF characterization
of the IRC. Otherwise, one might try other relaying strategies such as noisy network
coding [EGK11] for instance. It is worth to note that the study of the capacity of the
IRC is still an ongoing process [ZD13,ZD12,Dab12].

In this study, we have focused on symmetric channels for simplicity of exposition.
Results are usually easier to express in a compact form for symmetric channels than for
asymmetric ones. Nevertheless, the developed transmission strategies can be extended
to asymmetric channels as well with some modification. In both the CN and CF

strategies, the relay decodes the sum of the transmit signals in the symmetric case.
Decoding the sum is suitable due to the symmetry of the channel. In the asymmetric
case however, the relay has to decode a weighted sum of the transmitted signals, where
the weights are dictated by the channel. This is possible by using computation [NG11]
which is not limited to decoding sums of codewords, but also weighted sums. The relay
can choose the most suitable linear combination of transmitted signals and compute
it. The optimality of the developed strategies in asymmetric channels is open.

The next step which follows naturally after GDoF characterization is tightening the
results to obtain a capacity characterization. This progressive approach from GDoF
characterization to capacity characterization has has been used for instance in the
IC where the results of [ETW08] (GDoF results) have been used as stepping stones
to obtain a capacity characterization for the noisy IC in [SKC09,MK09,AV09]. Our
results on the GDoF of the IRC can be used similarly as stepping stones towards
characterizing the capacity of the network, which is the ultimate goal in information
theory.

Recall that the elemental network considered in this thesis (the IRC) has 2 users,
whereas practical interference networks are likely to have more users. Although it is
natural to start with a small model that has all the necessary ingredients (interference,
relaying), it is beneficial to extend the results of this model to larger networks. For
instance, in practice one might encounter interference relay networks with more users,
relays, antennas, or a combination thereof. Studying the optimality of our strategies
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(in addition to other new or old strategies) in such networks is important from both
theoretical and practical view points.
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