Jednadžba pravca
O pravcu se može razmišljati kao o najkraćoj udaljenosti između dviju točaka ili kao o krivulji s beskonačno velikim radijusom zakrivljenosti. Pojmovi kao što su točke i pravci te njihovi jednostavni i složeniji odnosi u prostoru jedan su od temelja Euklidske geometrije, a kasnije i analitičke geometrije kakvu je danas poznajemo.
Razmatramo li jednakost oblika
ustanovit ćemo da postoji beskonačan broj parova x,y koji udovoljavaju jednakosti. Kako svaki uređen par brojeva u kartezijanskom koordinatnom sustavu x0y određuje koordinate jedne točke, grafički prikaz svih točaka daje nam sliku pravca u ravnini, a gore prikazanu jednadžbu nazivamo implicitnom ili općom jednadžbom pravca.
Preuredimo li implicitnu jednadžbu pravca
u drugi oblik kako slijedi
naći ćemo i eksplicitnu jednadžbu pravca koja se može zapisati i u obliku
gdje a i b ovise o A, B i C na način da je
Eksplicitna jednadžba pravca izravno prikazuje koficijent smjera pravca, odn. nagib pravca a te odsječak b koji pravac određuje na y-osi, odn. ordinati.
Preuredimo li sada eksplicitnu jednadžbu pravca
u treći oblik kako slijedi
naći ćemo i jednadžbu pravca u segmentnom obliku gdje su b i -b/a segmenti ili odsječci na y, odn. x-osi. Segmentna jednadžba pravca može se zapisati i u sljedećem obliku
gdje su
Ponekad se implicitna jednadžba pravca iskazuje u obliku
gdje se tada eksplicitna jednadžba pravca prikazuje kao
gdje je k koeficijent smjer pravca, a l odsječak na y-osi.
Pravac je u ravnini određen ili sa zadanom točkom kroz koju prolazi pravac i koeficijentom smjera ili s dvjema zadanim točkama kroz koje pravac prolazi.
Neka je pravac određen točkom i koeficijentom smjera a. Jednadžba pravca se u tom slučaju uobičajeno prikazuje u obliku
- .
Pravac je po definiciji određen dvjema točkama koje nisu jednake, a jednadžba pravca koji prolazi kroz dvije točke i prikazuje se uobičajeno u obliku
- .
Pravac, njegovu grafičku i matematičku interpretaciju nalazimo u brojnim područjima matematike i znanosti. Naime, razmotrimo li eksplicitni oblik jednadžbe pravca
i ako definiramo da je x slobodna promjenljiva veličina, odn. nezavisna varijabla, a y zavisna varijabla gdje će nezavisna varijabla poprimati vrijednosti iz domene realnih brojeva i gdje će se svakom elementu domene pridružiti jedan i samo jedan odgovarajući element kodomene, tada gore prikazani izraz možemo nazvati funkcijom gdje je
Kodomenu nazivamo i područjem vrijednosti funkcije, a u slučaju gdje je funkcija oblika: , funkciju nazivamo i linearnom funkcijom, a pravac grafom ili grafičkim prikazom takve funkcije. Linearna funkcija uključuje i proporcionalnu, odn. razmjernu funkciju oblika
koju slijede brojni prirodni zakoni i pojave u svim područjima znanosti.