Commonsense Knowledge Base Population

Yangqiu Song Department of CSE, HKUST, Hong Kong

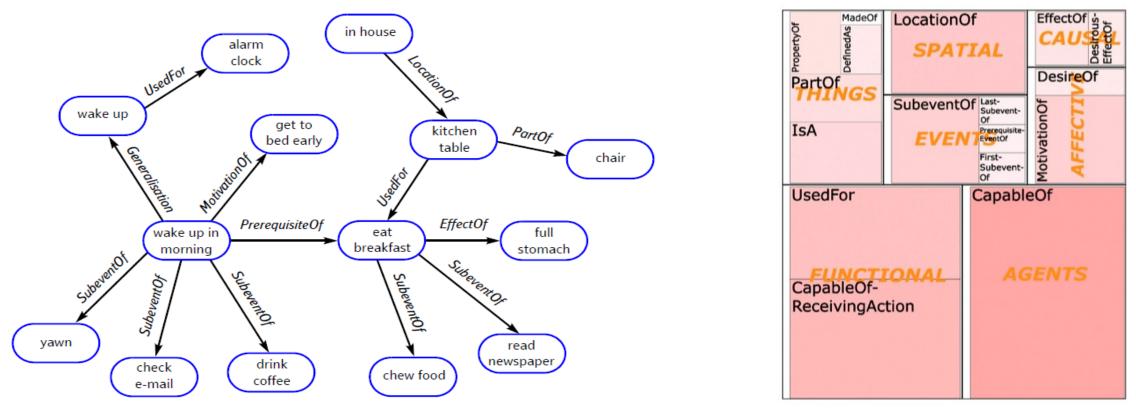
How to Define Commonsense Knowledge? (Liu & Singh, 2004)

- "While to the average person the term 'commonsense' is regarded as synonymous with 'good judgement',"
- "in the AI community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people."
- "Such knowledge is typically omitted from social communications", e.g.,
 - If you forget someone's birthday, they may be unhappy with you.

How to Collect Commonsense Knowledge?

• ConceptNet5 (Speer and Havasi, 2012)

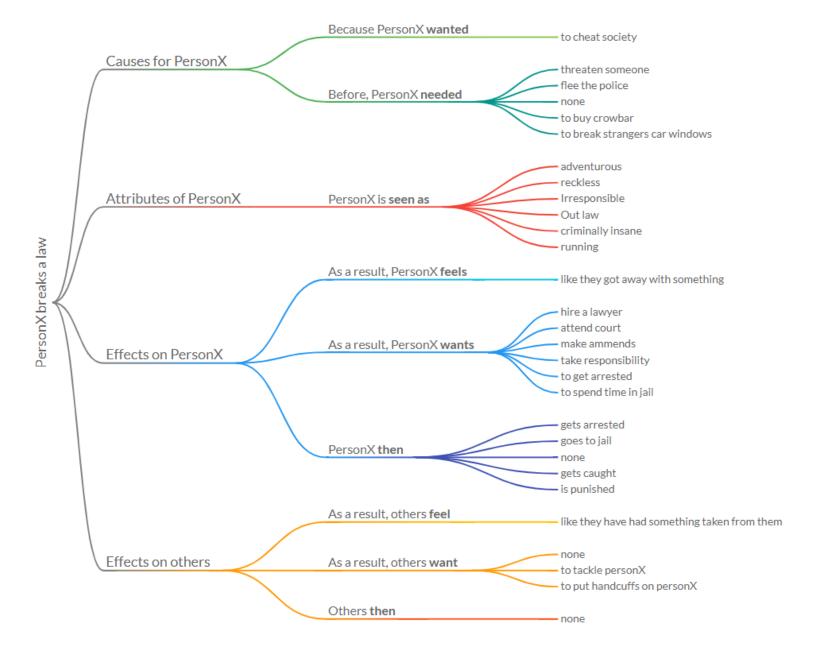
• Core is from Open Mind Common Sense (OMCS) (Liu & Singh, 2004)



• Essentially a crowdsourcing based approach + text mining

ATOMIC

- Crowdsoursing 9 Types of IF-THEN relations
- Arbitrary texts: Human annotation
- All personal entity information has been removed to reduce ambiguity



Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi: ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI, 2019.

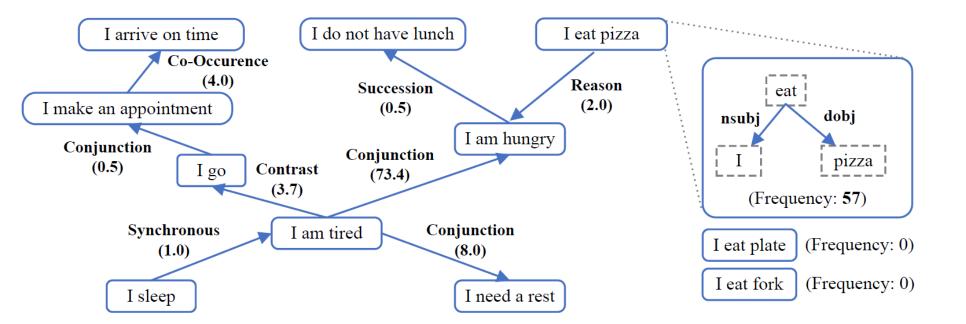
KnowlyWood

- Perform information extraction from free text
 - Mostly movie scripts and novel books
- Four relations: previous, next, parent, similarity
- Only verb+object

Niket Tandon, Gerard de Melo, Abir De, Gerhard Weikum: Knowlywood: Mining Activity Knowledge From Hollywood Narratives. CIKM 2015: 223-232

ASER: Activities, States, Events, and their Relations

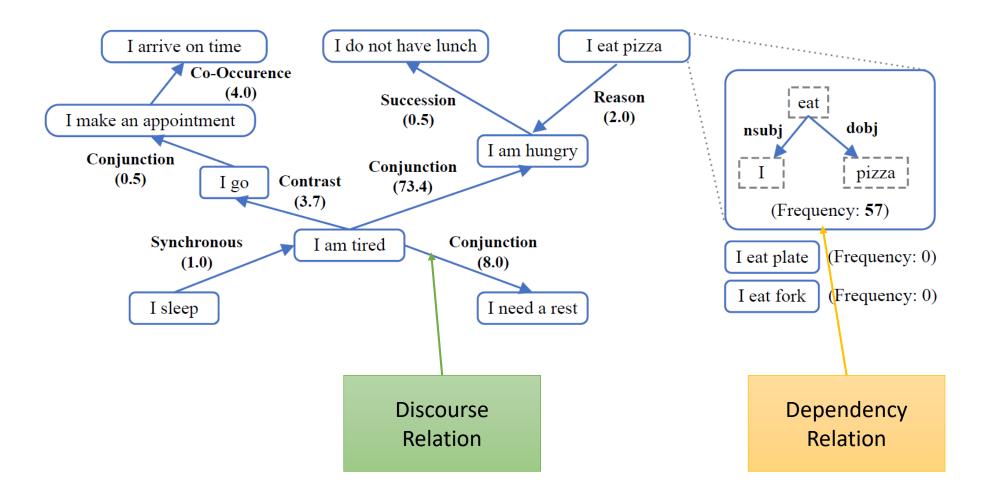
- Use verb-centric patterns from dependency parsing
 - Principle #1: to compare semantics by fixing syntax (Katz and Fodor, 1963)
- Maintain a set of key tags and a set of auxiliary tags
 - Principle #2: to obtain frequent 'partial information' (Wilks, 1975)



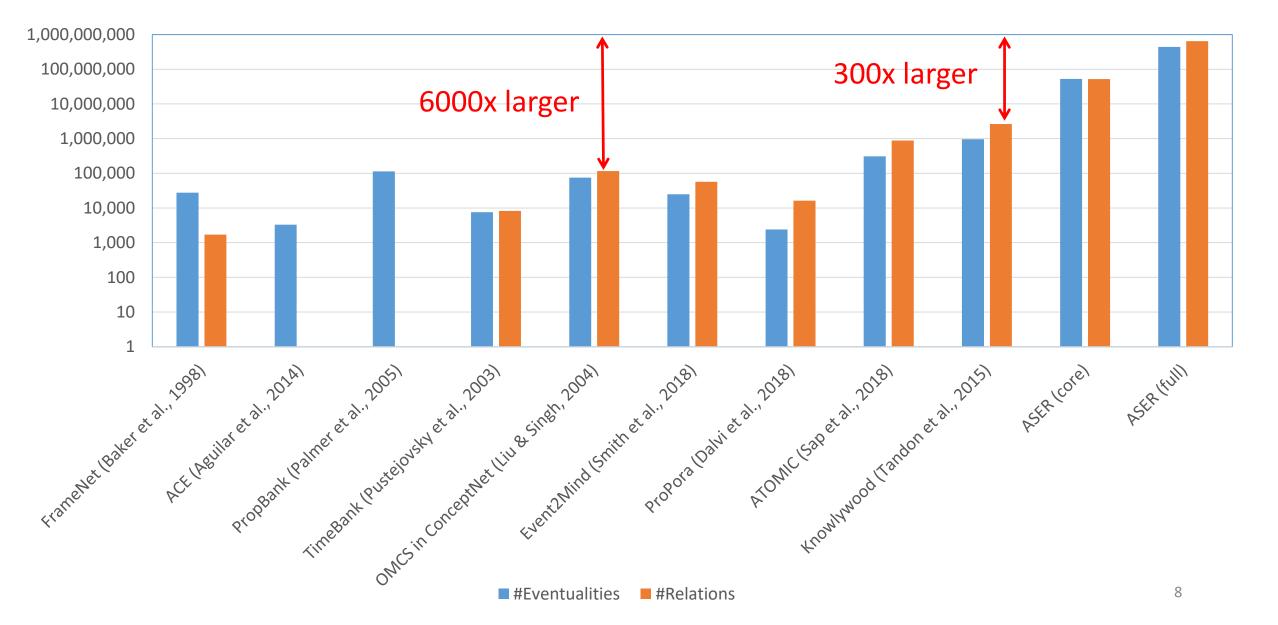
- A hybrid graph of
 Each eventuality is a hyper-edge of words
- Heterogeneous edges among eventualities

Hongming Zhang*, Xin Liu*, Haojie Pan*, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. The Web Conference (WWW). 2020.

ASER is Essentially a Knowledge Graph based on Linguistics



Scales of Verb Related Knowledge Graphs



How and Where to Automatically Collect Commonsense Knowledge?

- "Such knowledge is typically omitted from social communications" (Liu & Singh, 2004)
- Do we really omit or just not realized we have mentioned them in our daily communication?

Is it possible to transfer from linguistic knowledge to existing definition of commonsense knowledge?

Commonsense Knowledge Base Population

- Human annotated knowledge bases are usually more accurate
- Traditional knowledge base population includes
 - Entity linking
 - Relation extraction
 - Etc.
- We define a new task of commonsense knowledge population
- How?
 - In fact, different commonsense knowledge bases have different properties

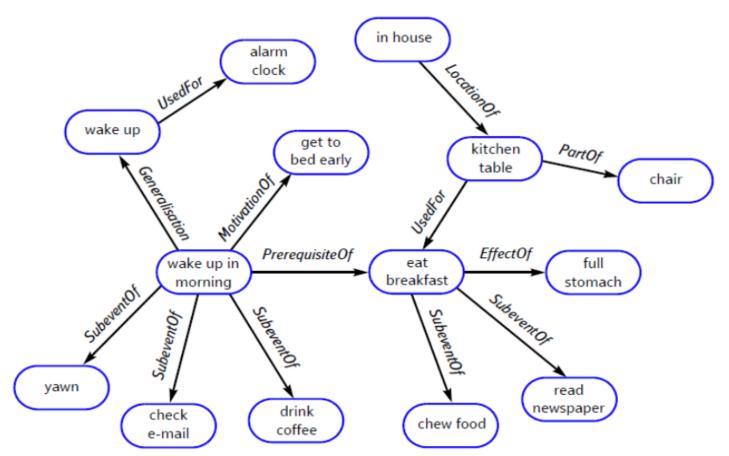
Outline

- ConceptNet Population
 - Selectional preference

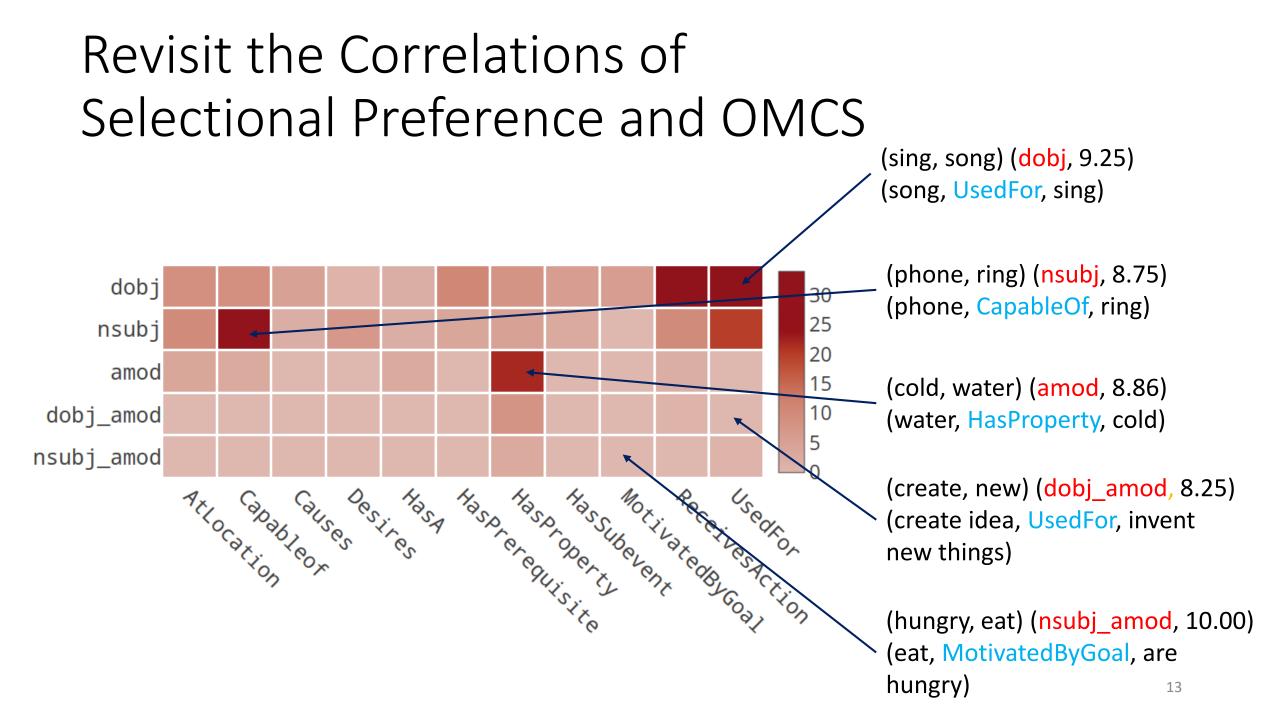
- ATOMIC Population
 - Latent variables (events and states) of commonsense

Core is OMCS (Liu & Singh 2004)

- Commonsense knowledge base
 - Commonsense knowledge about noun-phrases, or entities.



Speer and Havasi. "Representing General Relational Knowledge in ConceptNet 5." *LREC*. 2012.

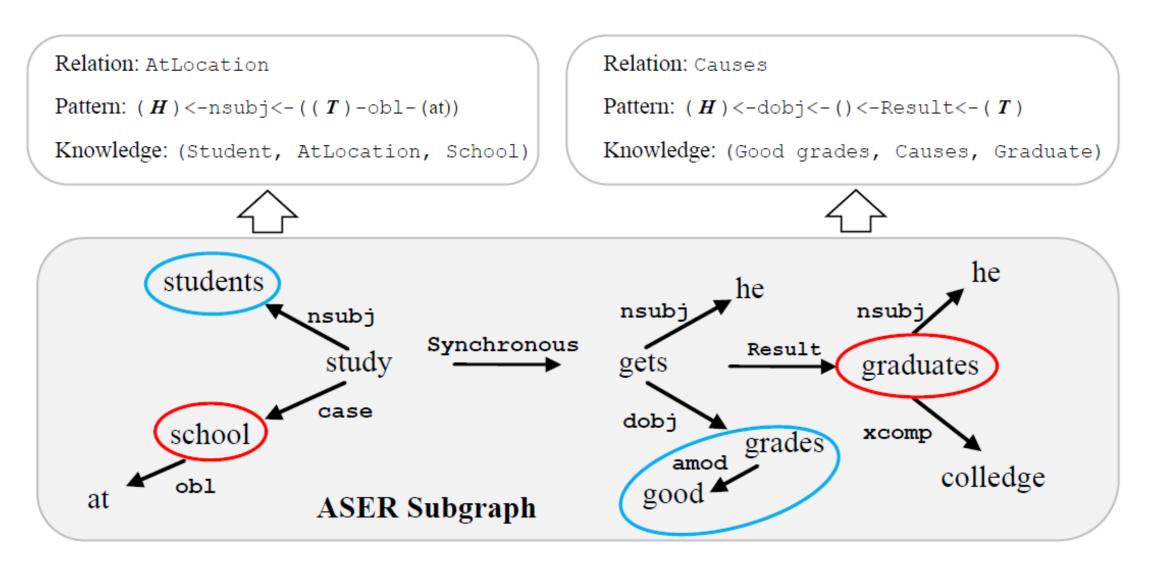


Revisit the Correlations of ASER and OMCS

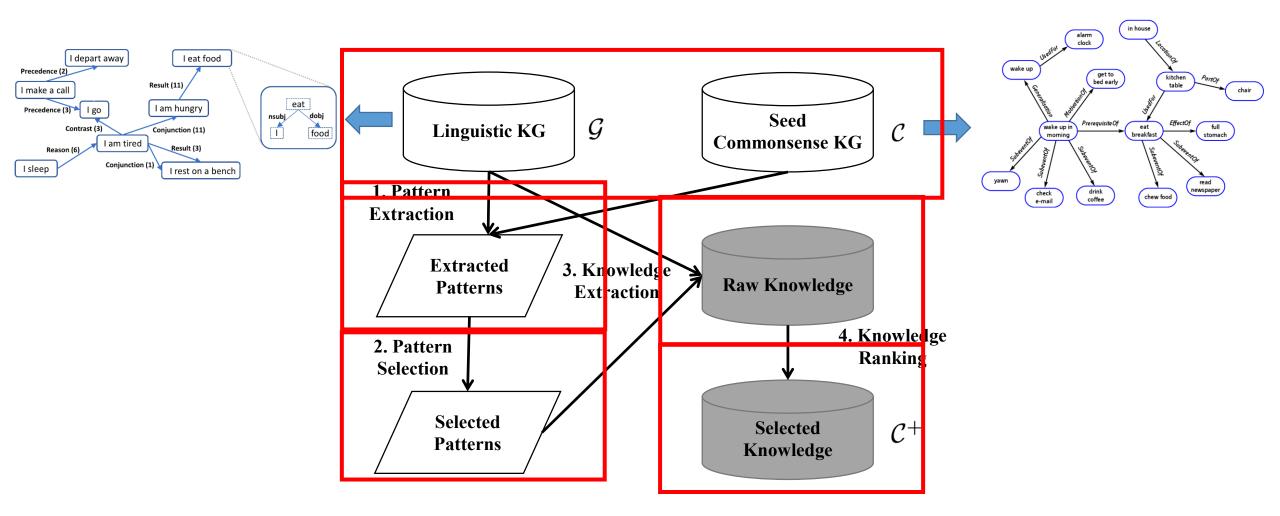
0.06

0.04

TransOMCS

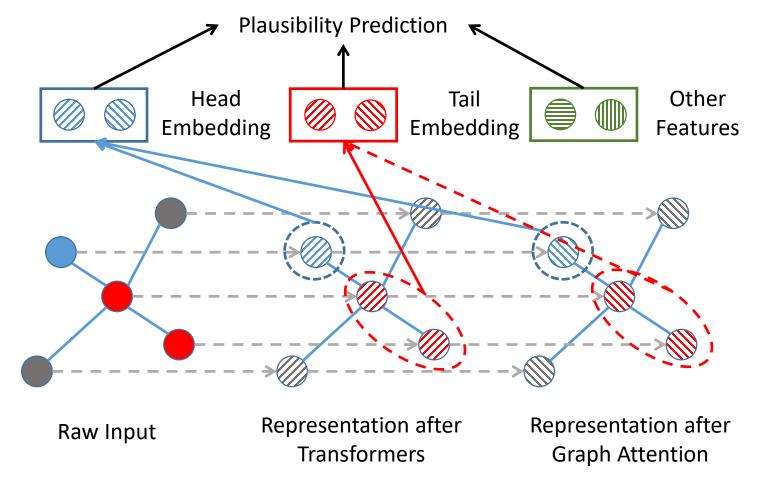


TransOMCS: ASER to OMCS



Knowledge Ranking

- Assigning confidence score to each piece of extracted commonsense
 - Leverage the semantics of the original sentences
 - Leverage the frequency information



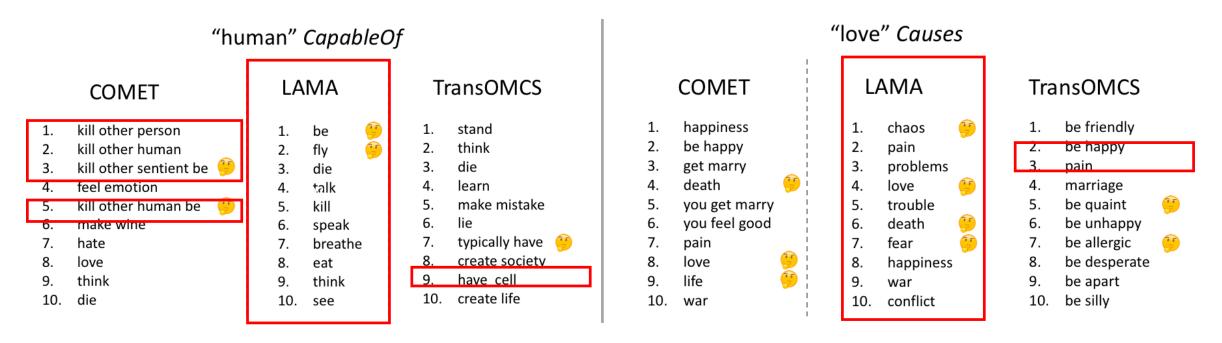
Transferring ASER to ConceptNet

Model	# Vocab	# Tuple	Novel _t	Novel _c	ACC_n	ACC _o
COMET _{Original} (Greedy decoding)	715	1,200	33.96%	5.27%	58%	90%
$COMET_{Original}$ (Beam search - 10 beams)	2,232	12,000	64.95%	27.15%	35%	44%
COMET _{Extended} (Greedy decoding)	3,912	24,000	99.98%	55.56%	34%	47%
$COMET_{Extended}$ (Beam search - 10 beams)	8,108	240,000	99.98%	78.59%	23%	27%
LAMA _{Original} (Top 1)	328	1,200	-	-	-	49%
LAMA _{Original} (Top 10)	1,649	12,000	-	-	-	20%
LAMA _{Extended} (Top 1)	1,443	24,000	-	-	-	29%
LAMA _{Extended} (Top 10)	5,465	240,000	-	-	-	10%
TransOMCS _{Original} (no ranking)	33,238	533,449	99.53%	89.20%	72%	74%
TransOMCS (Top 1%)	37,517	184,816	95.71%	75.65%	86%	87%
TransOMCS (Top 10%)	56,411	1,848,160	99.55%	92.17%	69%	74%
TransOMCS (Top 30%)	68,438	5,544,482	99.83%	95.22%	67%	69%
TransOMCS (Top 50%)	83,823	9,240,803	99.89%	96.32%	60%	62%
TransOMCS (no ranking)	100,659	18,481,607	99.94%	98.30%	54%	56%
OMCS in ConceptNet 5.0	36,954	207,427	-	-	-	92%

Transferability from linguistic knowledge to commonsense knowledge

SP over eventualities can effectively represent interesting commonsense knowledge

Case Study

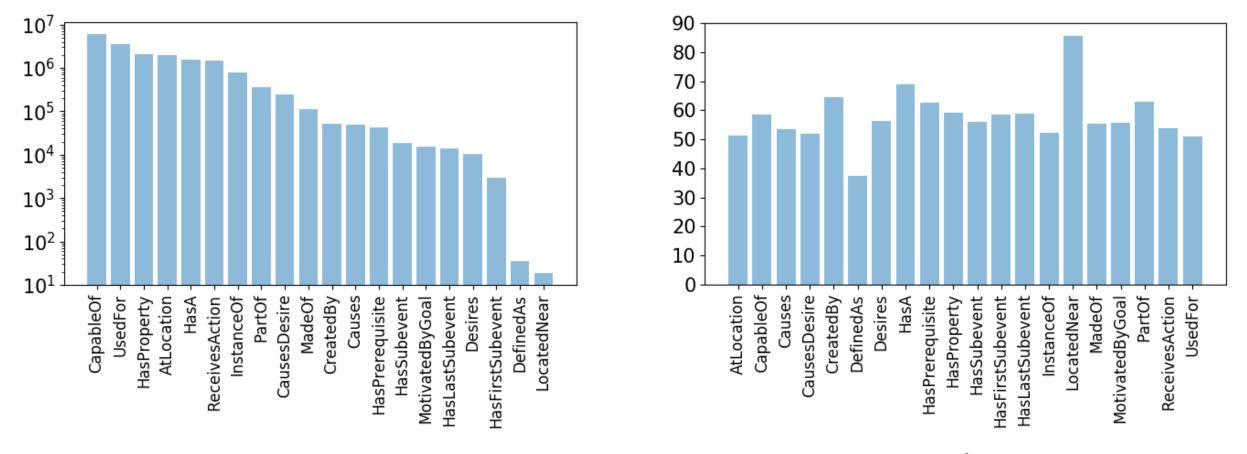


(a) Internal Setting

(b) External Setting

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin Choi. COMET: commonsense transformers for automatic knowledge graph construction. ACL 2919. Fabio Petroni, Tim Rocktaschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H. Miller. Language models as knowledge bases? EMNLP 2019.

Distribution of Relations and Accuracy



Distribution of Relations

Accuracy

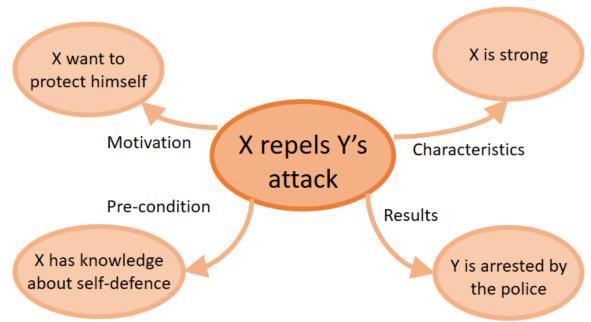
Outline

- ConceptNet Population
 - Selectional preference

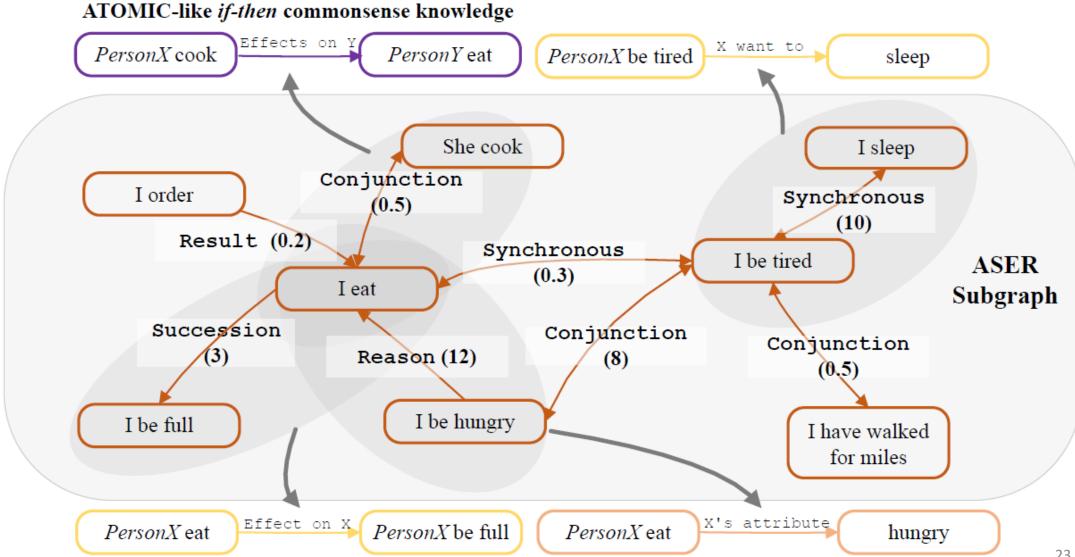
- ATOMIC Population
 - Latent variables (events and states) of commonsense

ATOMIC (Sap, Maarten, et al. 2019)

- Everyday if-then (social) commonsense knowledge
- These are day-to-day knowledge that help us understand each other.
 - If a person *X* did something, human beings are able to inference:
 - Motivation: Why person X did this.
 - Pre-conditions: What enables X to do this.
 - Characteristics: What are attributes of X.
 - Result: What will affect X/others



Transform ASER to ATOMIC



Coverage and Implicit Edges

- Most event related commonsense relations are implicit on ASER
 - ConceptNet (Event-related relations), ATOMIC, ATOMIC 2020, and GLUCOSE

	ASER _{norm} Coverage				Avg.	Avg. Degree in C						
	ASEKnorm Coverage					egree	Out-D	Degree	In-Degree		Out-Degree	
	head(%)	tail(%)	edge(%)	#hops	head	tail	head	tail	head	tail	head	tail
ATOMIC	79.76	77.11	59.32	2.57	90.9	61.3	91.2	61.6	4.2	3.4	34.6	1.5
$\operatorname{ATOMIC}_{20}^{20}$	80.39	47.33	36.73	2.65	96.9	66.9	97.3	67.3	4.3	2.9	34.6	1.5
ConceptNet	77.72	54.79	43.51	2.37	210.7	88.9	211.6	88.9	15.1	8.0	26.2	4.1
GLUCOSE	91.48	91.85	81.01	2.37	224.9	246.4	226.6	248.0	7.2	7.7	6.7	5.5

Table 3: The overall matching statistics for the four CSKBs. The *edge* column indicates the proportion of edges where their heads and tails can be connected by paths in ASER. Average (in and out)-degree on $ASER_{norm}$ and C for nodes from the CSKBs is also presented. The statistics in C is different from (Malaviya et al., 2020) as we check the degree on the aligned CSKB C instead of each individual CSKB.

Maarten Sap, et al. ATOMIC: An atlas of machine commonsense for if-then reasoning. AAAI 2019. Jena D Hwang, et al. (Comet-) Atomic 2020: On Symbolic and Neural Commonsense Knowledge Graphs. AAAI 2021. Nasrin Mostafazadeh, et al. Glucose: Generalized and contextualized story explanations. NAACL 2020.

Commonsense Acquisition and Graph based Learning

- Current ways of commonsense acquisition from graphs formalize the problem as a link prediction task:
 - Commonsense Knowledge Base (CKB) Completion (Li, 2016)
 - Add synthetic edges to CSKB for KBC (Malaviya, 2020)
 - Inductive Learning (Wang, 2020)
- In event-centric commonsense, nodes can be arbitrary text instead of structured nodes!

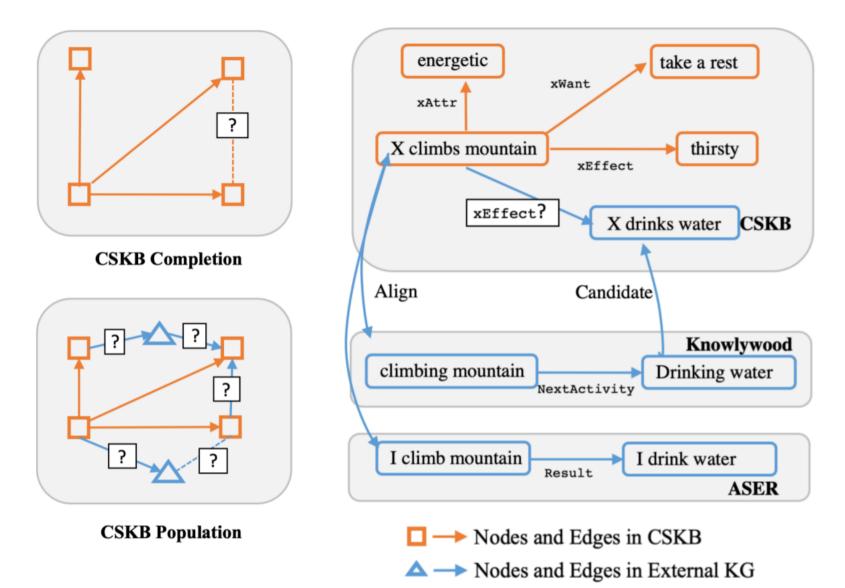
25

• The graph of ATOMIC is almost a bipartite graph.

Li, Xiang, et al. "Commonsense knowledge base completion." ACL. 2016.

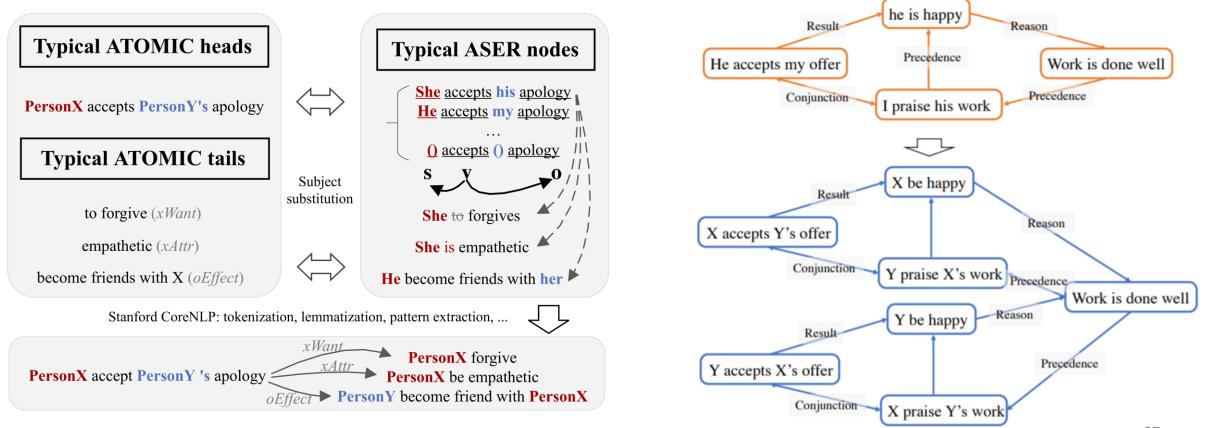
Malaviya, Chaitanya, et al. "Exploiting structural and semantic context for commonsense knowledge base completion." IJCAI 2020. Wang, Bin, et al. "Inductive Learning on Commonsense Knowledge Graph Completion." arXiv preprint (2020).

CKGC (Completion) vs. CKGP (Population)



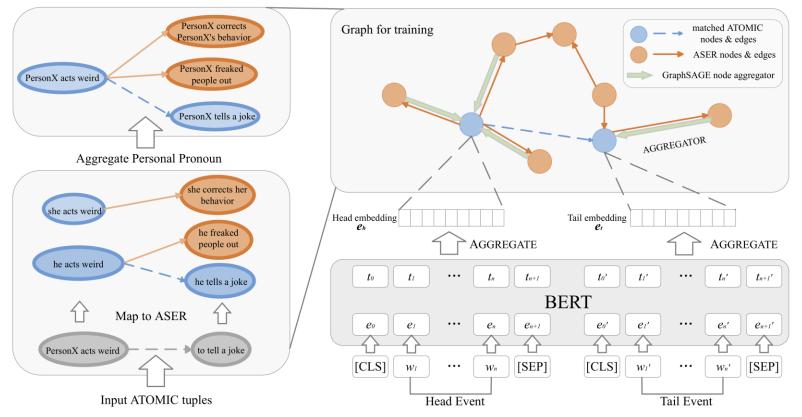
Node Alignment with ASER

- ASER and other CSKB take different forms of representing personal entities
- Develop simple rules for aligning the two resources.



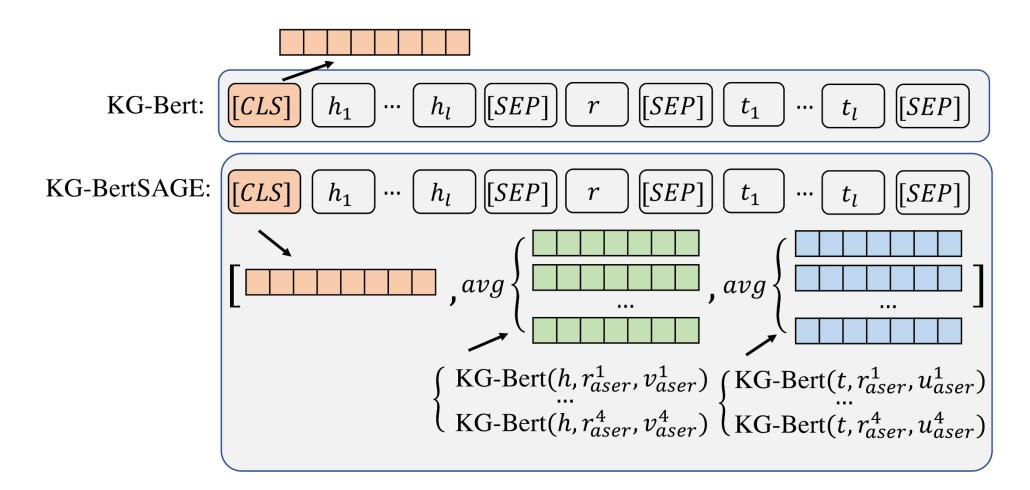
DISCOS (DIScourse to COmmonSense): BertSAGE [WWW 2021]

- Use BERT to encode the eventuality sentences
- Use GraphSAGE (Hamilton 2017) to aggregate the neighboring information in ASER



Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS. 2017. Tianqing Fang, Hongming Zhang, Weiqi Wang, Yangqiu Song, and Bin He. DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge. WWW, 2021.

Another Model: KG-BertSAGE [EMNLP 2021]



Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-Bert: Bert for knowledge graph completion. arXiv preprint arXiv:1909.03193. Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao, Hongming Zhang, Yangqiu Song, and Bin He. Benchmarking Commonsense Knowledge Base Population with an Effective Evaluation Dataset. EMNLP. 2021.

Training and Testing Data

- Training: four commonsense knowledge bases
 - ConceptNet (event-related relations)
 - ATOMIC
 - ATOMIC 2020
 - GLUCOSE
- Graph Data: normalized nodes/edges in ASER
- Testing: ~30K annotated data

	Dev	Test	Train
# Triples	6,217	25,514	1,100,362
% Plausible	51.05%	51.74%	-
% Novel Nodes	67.40%	70.01%	-

Relation	$\operatorname{ATOMIC}_{20}^{20}$	ConceptNet	GLUCOSE
oEffect	21,497	0	7,595
xEffect	61,021	0	30,596
gEffect	0	0	8,577
oWant	35,477	0	1,766
xWant	83,776	0	11,439
gWant	0	0	5,138
oReact	21,110	0	3,077
xReact	50,535	0	13,203
gReact	0	0	2,683
xAttr	89,337	0	7,664
xNeed	61,487	0	0
xIntent	29,034	0	8,292
isBefore	18,798	0	0
isAfter	18,600	0	0
HinderedBy	87,580	0	0
xReason	189	0	0
Causes	0	42	26,746
HasSubEvent	0	9,934	0
Total	578,252	10,165	126,776

Relation	number of edges
Precedence	4,957,481
Succession	1,783,154
Synchronous	8,317,572
Reason	5,888,968
Result	5,562,565
Condition	8,109,020
Contrast	23,208,195
Concession	1,189,167
Alternative	1,508,729
Conjunction	37,802,734
Restatement	159,667
Instantiation	33,840
ChosenAlternative	91,286
Exception	51,502
Co_Occurrence	124,330,714
Total	222,994,594

Main Population Results

• We use AUC as the evaluation metric. The break-down scores for all models are presented below.

Relation	xWnt	oWnt	gWnt	xEfct	oEfct	gEfct	xRct	oRct	gRct	xAttr	xInt	xNeed	Cause	xRsn	isBfr	isAft	Hndr.	HasSubE.	all
Bert	57.7	64.9	66.3	59.1	66.2	60.0	50.6	68.7	72.3	56.2	63.9	56.4	48.3	34.5	59.2	58.0	66.1	73.0	59.4
BERTSAGE	54.7	58.9	58.0	58.0	70.0	54.7	52.8	62.4	76.6	55.0	61.0	57.1	46.2	45.5	66.7	64.9	69.6	80.4	60.0
KG-Bert	63.2	69.8	69.0	68.0	70.6	61.0	57.0	64.0	73.8	59.5	64.9	64.6	47.4	90.9	78.0	77.5	75.9	68.5	66.1
KG-BERTSAGE	66.0	68.9	68.6	68.2	70.8	62.3	60.5	64.6	74.1	59.1	63.0	65.4	50.0	76.4	78.2	77.4	77.5	67.0	67.2
Human	86.2	86.8	83.3	85.2	83.9	79.8	81.1	82.6	76.5	82.6	85.6	87.4	80.1	73.7	89.8	89.9	85.3	85.7	84.4

Error Analysis and Discussion

• Break-down AUC scores for different types of testing edges.

Model	Original	CSKB head	ASER
	Test Set	+ ASER tail	edges
Bert	65.0	47.9	44.6
BertSAGE	67.2	49.4	46.2
KG-Bert	77.8	55.2	50.3
KG-BertSAGE	78.2	57.5	52.3

Models achieve relatively poorer performance on novel edges from ASER

Evaluation Set:

A *diverse* evaluation set, consisting of edges from different domains

(1) Edges from the original test sets (according to the original split in CSKBs)

(2) Edges from ASER, where heads are in CSKBs, while tails are out of CSKBs

(3) Edges from ASER where neither head nor tail is from CSKBs

Case Study

Head	Relation	Tail	Label	Source		
PersonX give PersonY ride	xNeed	xNeedPersonX need to wear proper clothesisAfterPersonX hail a taxi		Triples in CSKBs		
<i>PersonX</i> be wait for taxi	isAfter			(Original Test Set)		
<i>PersonX</i> be diagnose with something	Causes	<i>PersonX</i> be sad	Plau.	(original test ser)		
PersonX feel something	xEffect	PersonX figure	Implau.			
PersonX be patient with ignorance	HinderedBy	<i>PersonY</i> have the right vocabulary	Implau.	Randomly sampled examples		
PersonY grasp PersonY meaning	HasSubEvent	PersonY open it mechanically	Implau.			
PersonX spill coffee	oEffect	PersonY have to server	Plau.			
PersonX care for PersonY	xNeed	xNeedPersonX want to stay togetherHasSubEventPeopleX can not afford something				
<i>PersonX</i> be save money	HasSubEvent			CSKB head + ASER tail		
PersonX decide to order a pizza	xReact	PersonX have just move	Implau.	CSKD neuu + ASLK iui		
it be almost christmas	gReact	PersonX be panic	Implau.			
arm be break	isBefore	PersonY ask	Implau.			
PersonX go early in morning	xEffect	PersonX do not have to deal with crowd	Plau.			
PersonX have take time to think it over PersonX	xReact	PersonX be glad	Plau.			
PersonX have a good work-life balance	xIntent	PersonX be happy	Plau.			
PersonX weight it by value	oWant	PersonY bet	Implau.	ASER edges		
PersonX be hang out on reddit	oReact	PersonY can not imagine	Implau.			
PersonX can get PersonY out shell	xIntent	PersonX just start poach PersonY	Implau.	33		

Conclusions

- We can acquire novel and high-quality commonsense knowledge from linguistic knowledge graph, i.e., ASER
- TransOMCS and DISCOS can also help
 - Mining patterns for commonsense knowledge
 - Completing (_, r, t)
 - Completing (_, r, _)
- Current model make uses of only one-hop neighbors of ASER
 - More ideas need to be tried for reasoning on graphs

Code and data	
https://github.com/HKUST-KnowComp/ASER	Thank you 🙂
https://github.com/HKUST-KnowComp/TransOMCS	
https://github.com/HKUST-KnowComp/DISCOS-commonsense	
https://github.com/HKUST-KnowComp/CSKB-Population	
Project Homepage	34
https://hkust-knowcomp.github.io/ASER/	54