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Abstract. With remote sensing we can readily observe the
Earth’s surface, but direct observation of the sub-surface re-
mains a challenge. In hydrology, but also in related disci-
plines such as agricultural and atmospheric sciences, knowl-
edge of the dynamics of soil moisture in the root zone of veg-
etation is essential, as this part of the vadose zone is the core
component controlling the partitioning of water into evapora-
tive fluxes, drainage, recharge, and runoff. In this paper, we
compared the catchment-scale soil moisture content in the
root zone of vegetation, computed by a lumped conceptual
model, with the remotely sensed Normalized Difference In-
frared Index (NDII) in the Upper Ping River basin (UPRB)
in northern Thailand. The NDII is widely used to monitor
the equivalent water thickness (EWT) of leaves and canopy.
Satellite data from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) were used to determine the NDII
over an 8-day period, covering the study area from 2001 to
2013. The results show that NDII values decrease sharply
at the end of the wet season in October and reach lowest
values near the end of the dry season in March. The val-
ues then increase abruptly after rains have started, but vary
in an insignificant manner from the middle to the late rainy
season. This paper investigates if the NDII can be used as a
proxy for moisture deficit and hence for the amount of mois-
ture stored in the root zone of vegetation, which is a cru-
cial component of hydrological models. During periods of
moisture stress, the 8-day average NDII values were found
to correlate well with the 8-day average soil moisture con-
tent (Su) simulated by the lumped conceptual hydrological
rainfall–runoff model FLEX for eight sub-catchments in the
Upper Ping basin. Even the deseasonalized Su and NDII (af-

ter subtracting the dominant seasonal signal) showed good
correlation during periods of moisture stress. The results il-
lustrate the potential of the NDII as a proxy for catchment-
scale root zone moisture deficit and as a potentially valuable
constraint for the internal dynamics of hydrological mod-
els. In dry periods, when plants are exposed to water stress,
the EWT (reflecting leaf water deficit) decreases steadily, as
moisture stress in the leaves is connected to moisture deficits
in the root zone. Subsequently, when the soil moisture is re-
plenished as a result of rainfall, the EWT increases without
delay. Once leaf water is close to saturation – mostly during
the heart of the wet season – leaf characteristics and NDII
values are not well correlated. However, for both hydrologi-
cal modelling and water management, the stress periods are
most important, which is why this product has the potential
of becoming a highly efficient model constraint, particularly
in ungauged basins.

1 Introduction

Estimating the moisture content of the soil from remote sens-
ing is one of the major challenges in the field of hydrol-
ogy (e.g. De Jeu et al., 2008; Entekhabi et al., 2010). Soil
moisture is generally seen as the key hydrological state vari-
able determining the partitioning of fluxes (into direct runoff,
recharge, and evaporation) (Liang et. al., 1994), the interac-
tion with the atmosphere (Legates et. al., 2011), and the car-
bon cycle (Porporato et al., 2004). The root zone of ecosys-
tems, being the dynamic part of the unsaturated zone, is the
key part of the soil related to numerous sub-surface processes
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(Shukla and Mintz, 1982). Several remote sensing products
have been developed especially for monitoring soil moisture
(e.g. SMOS, ERS, and AMSR-E) but until now correlations
between remote sensing products and observed soil moisture
at different depths have been modest at best (Parajka et al.,
2006; Ford et al., 2014). There are a few possible explana-
tions. One is that it is not (yet) possible to look into the soil
deep enough to observe soil moisture in the root zone of veg-
etation (Shi et al., 1997; Entekhabi et al., 2010); the second
is that soil moisture observations at certain depths are maybe
not the right indicators for the amount of moisture stored in
the root zone (Mahmood and Hubbard, 2007), which is rather
determined by the vegetation-dependent, spatially variable,
three-dimensional distribution and density of roots.

These mainstream methods to derive soil moisture from
remote sensing have concentrated on direct observation of
soil moisture below the surface. The vegetation, through the
vegetation water content (VWC), perturbs this picture. As
a result, previous studies have tried to determine the VWC
from a linear relationship with the equivalent water thick-
ness (EWT) that is measured by the Normalized Differ-
ence Infrared Index (NDII) (e.g. Yilmaz et al., 2008). The
NDII was developed by Hardisky et al. (1983) using ratios
of different values of near infrared reflectance (NIR) and
short wave infrared reflectance (SWIR), defined by (ρNIR−

ρSWIR) / (ρNIR+ ρSWIR), similar to the NDVI, which is de-
fined by discrete red and near infrared. In addition to deter-
mining the water content of vegetation, the NDII can be ef-
fectively used to detect plant water stress according to the
property of shortwave infrared reflectance, which is nega-
tively related to leaf water content due to the large absorp-
tion by the leaf (e.g. Steele-Dunne et al., 2012; Friesen et al.,
2012; Van Emmerik et al., 2015). Many studies have found
relationships between the EWT and reflectance at the NIR
and SWIR portion of the spectrum used for deriving NDII
(Hardisky et al., 1983; Hunt and Rock, 1989; Gao, 1996;
Ceccato et al., 2002; Fensholt and Sandholt, 2003). Yilmaz et
al. (2008) found a significant linear relationship (R2

= 0.85)
between EWT and NDII. Subsequently, they tried to deter-
mine a relationship between EWT and VWC in order to
be able to correct direct moisture observations from space.
However, these relationships appeared to be vegetation and
crop-type dependent.

Water is one of the determinant environmental variables
for vegetation growth, especially in water-limited ecosys-
tems during dry periods. From the plant physiology point of
view, water absorption from the root zone is driven by osmo-
sis. Subsequently, water transport from the roots to the leaves
is driven by water potential differences, caused by diffusion
of water out of stomata, called transpiration. This physiolog-
ical relationship supports the correlation between root zone
soil moisture content, moisture tension in the leaves, and the
water content of plants.

Hence, the root zone moisture deficit is connected to the
water content of the canopy/leaves, because soil moisture

suction pressure and moisture content in the leaves are di-
rectly connected (Rutter and Sands, 1958). The NDII was de-
veloped to monitor leaf water content (Hardisky et al., 1983),
so one would expect a direct relation between NDII and root
zone moisture deficit. The deficit again is a direct function of
the amount of moisture stored in the root zone.

So, if leaf water thickness and the suction pressure in the
root zone are connected, then the NDII would directly reflect
the moisture content of the root zone. It would only reflect
the moisture content in the influence zone of roots and not
beyond that. Hence, the NDII could become a powerful indi-
cator for monitoring root zone moisture content, providing an
integrated, depth-independent estimation of how much water
is accessible to roots, available for vegetation. In other words,
the NDII would allow us to see vegetation as a sort of natu-
ral manometer, providing us with information on how much
water is available in the sub-surface for use by vegetation. It
would be an integrated indicator of soil moisture in the root
zone, available directly at the scale of interest.

Thus, the hypothesis is that we can monitor the moisture
content in the root zone from the observed moisture state of
the vegetation by means of the NDII.

In this paper, we tested whether there exists a direct and
functional relationship between a remote sensing product
(the NDII) and the amount of moisture stored in the root
zone, as simulated by a semi-distributed conceptual hydro-
logical model, in which the root zone moisture content is a
key state variable in the short- and long-term dynamics of
the rainfall–runoff signal. Because the NDII is an indicator
for water stress, the index is only expected to show a strong
link with the moisture content of the root zone when there is
a soil moisture deficit. Without water stress occurring within
the leaves, particularly during wet periods, NDII would pos-
sibly not reflect variation in root zone soil moisture content
(Korres et al., 2015).

The analysis was done using data from eight sub-basins
of the Upper Ping River basin (UPRB), a tropical seasonal
evergreen catchment in northern Thailand. This catchment is
adequate for the purpose because it has eight well-gauged
sub-basins with clearly different aridity characteristics and
strong seasonality, providing a good testing ground for the
comparison.

The remotely sensed NDII values have been compared to
the root zone storage as modelled by a semi-distributed con-
ceptual model (semi-distributed meaning that for each sub-
catchment a separate conceptual model has been used). The
different sub-catchments demonstrate a variety of climatic
properties that allow a more rigorous test than a fully lumped
model could provide. In this way, a compromise has been
found between the complexity and data requirements of a
fully distributed model and the simplicity of a completely
lumped model. One could argue that a fully distributed con-
ceptual model would have been a better tool to assess the spa-
tial and temporal pattern obtained by the NDII. This is cor-
rect, but this would have required the availability of more de-
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Figure 1. The UPRB and the locations of the rain-gauge and runoff stations. The numbers indicate the 14 sub-basins of the UPRB.

tailed spatially distributed forcing data (particularly rainfall),
which were not available. Moreover, if a semi-distributed
lumped model, potentially less accurate than a distributed
model, provides a good correlation with NDVI, then this
would be a tougher text than with a fully distributed model.

2 Study site and data

2.1 Study site

The UPRB is situated between latitude 17◦14′30′′ to
19◦47′52′′ N and longitude 98◦ 4′30′′ to 99◦22′30′′ E in
northern Thailand and can be separated into 14 sub-basins
(Fig. 1) (Mapiam, et al., 2014). It has an area of approx-

imately 25 370 km2 in the provinces of Chiang Mai and
Lam Phun. The basin landform ranges from an undulating
to a rolling terrain with steep hills at elevations of 1500–
2000 m, and valleys of 330–500 m (Mapiam and Sriwongsi-
tanon, 2009; Sriwongsitanon, 2010). The Ping River origi-
nates in the Chiang Dao district, north of Chiang Mai, and
flows downstream to the south to become the inflow for the
Bhumibol Dam – a large dam with an active storage capacity
of about 9.7 billion m3 (Sriwongsitanon, 2010). The climate
of the region is controlled by tropical monsoons, with dis-
tinctive dry and wet seasons and free from snow and ice.
The rainy season is influenced by the southwest monsoon
and brings mild to heavy rainfall between May and October.
Annual average rainfall and runoff of the UPRB are approx-
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imately 1170 and 270 mm yr−1, respectively. Avoiding the
influence of other factors, these catchments are ideal cases to
concentrate on the relationship between NDII and root zone
moisture content. The land cover of the UPRB is dominated
by forest (Sriwongsitanon and Taesombat, 2011).

2.2 Data collection

2.2.1 Rainfall data

Data from 65 non-automatic rain-gauge stations covering the
period from 2001 to 2013 were used. A total of 42 stations
are located within the UPRB while 23 stations are situated in
its surroundings. These rain gauges are owned and operated
by the Thai Meteorological Department and the Royal Irri-
gation Department. Quality control of the rainfall data was
performed by comparing them to adjacent rainfall data. For
each sub-basin, daily spatially averaged rainfall, by inverse
distance squared, has been used as the forcing data of the
hydrological model.

2.2.2 Runoff data

Daily runoff data from 1995 to 2011 at eight stations located
in the UPRB were adequate to be used for FLEX calibration.
These eight stations are operated by the Royal Irrigation De-
partment in Thailand. The locations of these eight stations
and the associated sub-basins are shown in Fig. 1. These
eight stations control the runoff of the eight sub-basins on
which the eight lumped conceptual models were calibrated.
Runoff data at these stations are not affected by large reser-
voirs and have been checked for their reliability by compar-
ing them with rainfall data covering their catchment areas
at the same periods. Catchment characteristics and available
data periods for model calibration of the selected eight sub-
basins are summarized in Table 1.

2.2.3 NDII data

The satellite data used for calculating the NDII is the MODIS
level 3 surface reflectance product (MOD09A1), which is
available at 500 m resolution in an 8-day composite of the
gridded level 2 surface reflectance products. Each product
pixel contains the best possible L2G observation during an
8-day period selected on the basis of high observation cov-
erage, low view angle, absence of clouds or cloud shadow,
and aerosol loading. MOD09 (MODIS Surface Reflectance)
is a seven-band product, which provides an estimate of the
surface spectral reflectance for each band as it would have
been measured at ground level without atmospheric scat-
tering or absorption. This product has been corrected for
the effects of atmospheric gases and aerosols (Vermote et
al., 2011). The available MODIS data covering the UPRB
from 2001 to 2013 were downloaded from ftp://e4ftl01.cr.
usgs.gov/MOLT. The HDF-EOS conversion tool was applied
to extract the desired bands (bands 2 (0.841–0.876 µm) and

6 (1.628–1.652 µm)) and re-projected into Universal Trans-
verse Mercator (zone 47N, WGS84) from the original ISIN
mapping grid.

3 Methods

3.1 Estimating vegetation water content using near
infrared and short wave infrared

Estimates of vegetation water content (the amount of water in
stems and leaves) are of interest to assess the vegetation wa-
ter status in agriculture and forestry and have been used for
drought assessment (Cheng et al., 2006; Gao, 1996; Gao and
Goetz, 1995; Ustin et al., 2004; Peñuelas et al., 1993). Ev-
idence from physically based radiative transfer models and
laboratory studies suggests that changes in water content in
plant tissues have a large effect on the leaf reflectance in sev-
eral regions of the 0.7–2.5 µm spectrum (Fensholt and Sand-
holt, 2003). Tucker (1980) suggested that the spectral interval
between 1.55 and 1.75 µm (SWIR) is the most suitable region
for remotely sensed leaf water content. It is well known that
these wavelengths are negatively related to leaf water content
due to a large absorption by leaf water (Tucker, 1980; Cec-
cato et al., 2002). However, variations in leaf internal struc-
ture and leaf dry matter content also influence the SWIR re-
flectance. Therefore, SWIR reflectance values alone are not
suitable for retrieving vegetation water content. To improve
the accuracy of estimating the vegetation water content, a
combination of SWIR and NIR (0.7–0.9 µm) reflectance in-
formation was utilized because NIR is only affected by leaf
internal structure and leaf dry matter content but not by water
content. A combination of SWIR and NIR reflectance infor-
mation can remove the effect of leaf internal structure and
leaf dry matter content and can improve the accuracy of re-
trieving the vegetation water content (Ceccato et al., 2001;
Yilmaz et al., 2008; Fensholt and Sandholt, 2003).

On the basis of this idea, Hardisky et al. (1983) derived the
NDII:

NDII=
ρ0.85− ρ1.65

ρ0.85+ ρ1.65
, (1)

where ρ0.85 and ρ1.65 are the reflectances at 0.85 and 1.65 µm
wavelengths, respectively. NDII is a normalized index and
the values theoretically vary between −1 and 1. A low NDII
value and especially below zero means that reflectance from
ρ0.85 is lower than the reflectance from ρ1.65, which indicates
canopy water stress.

The 8-day NDII values, as collected from MODIS, were
averaged over each sub-basin to allow comparison to the 8-
day average Su (root zone storage) values extracted from the
FLEX model results at each of the eight runoff stations.

We did not use field observations of soil moisture. One
could argue that field observations should be used to link
NDII to moisture stress. However, besides not being avail-
able, it is doubtful if point observations at fixed depth would
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Figure 2. Model structure of the FLEX.

provide a correct measure for the moisture content in the root
zone. It is more likely that vegetation distributes its roots and
adjusts its root density to the specific local conditions and
that the root density and distribution is not homogeneous in
space and depth.

3.2 The semi-distributed FLEX model

FLEX (Fig. 2) is a conceptual hydrological model with an
HBV-like model structure developed in a flexible modelling
framework (Fenicia et al., 2011; Gao et al., 2014a, b). The
model structure comprises four conceptual reservoirs: the in-
terception reservoir Si (mm), the root zone reservoir repre-
senting the moisture storage in the root zone Su (mm), the
fast response reservoir Sf (mm), and the slow response reser-
voir Ss (mm). It also includes two lag functions representing
the lag time from storm to peak flow (TlagF) and the lag time
of recharge from the root zone to the groundwater (TlagS).
Besides a water balance equation, each reservoir has process
equations that connect the fluxes entering or leaving the stor-
age compartment to the storage in the reservoirs (so-called
constitutive functions). Table 2 shows the 15 equations of
the FLEX model, discussed below. The 11 model parameters
with their distribution values are shown in Table 3, which
have to be determined by model calibration. Forcing data in-
clude the elevation-corrected daily average rainfall (Gao et
al., 2014a), daily average, minimum and maximum air tem-
perature, and potential evaporation derived by the Hargreaves
equation (Hargreaves and Samani, 1985).
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Table 2. Water balance and constitutive equations used in FLEXL.
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Table 3. Parameter ranges of the FLEX model.

Parameter Range Parameter Range

Si,max (mm) (0.1, 6) Kff (d) (1, 9)
Su,max (mm) (10, 1000) TlagF (d) (0, 5)
β(–) (0, 2) TlagS (d) (0, 5)
Ce (–) (0.1, 0.9) Kf (d) (1, 40)
D (–) (0, 1) Ks (d) (10, 500)
Sf,max (mm) (10, 200)

3.2.1 Interception reservoir

The interception reservoir uses the water balance equation,
Eq. (2), presented in Table 2. The interception evapora-
tion Ei (mm d−1) is calculated by potential evaporation E0
(mm d−1) and the storage of the interception reservoir Si
(mm) (Eq. 3). There is no effective rainfall Pe (mm d−1) as
long as the Si is less than its storage capacitySi,max (mm)
(Eq. 4) (de Groen and Savenije, 2006).

3.2.2 Root zone reservoir

The moisture content in the root zone is simulated by a reser-
voir (Eq. 5) that partitions effective rainfall into infiltration
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Table 4. Average NDII values during the wet season, the dry season,
and the whole year from 2001 to 2013, and their order of moisture
content (range is 1–13; lower values indicate less NDII) for the en-
tire UPRB.

Year Wet season Dry season Annual
(May–October) (November–April)

2001–2002 0.223 (2) 0.119 (7) 0.171 (4)
2002–2003 0.205 (9) 0.149 (1) 0.177 (1)
2003–2004 0.218 (5) 0.091 (12) 0.155 (12)
2004–2005 0.210 (8) 0.088 (13) 0.149 (13)
2005–2006 0.200 (11) 0.128 (3) 0.164 (7)
2006–2007 0.224 (1) 0.111 (10) 0.168 (5)
2007–2008 0.222 (3) 0.130 (2) 0.176 (2)
2008–2009 0.221 (4) 0.123 (5) 0.172 (3)
2009–2010 0.213 (7) 0.101 (11) 0.157 (11)
2010–2011 0.197 (13) 0.128 (4) 0.163 (8)
2011–2012 0.216 (6) 0.116 (9) 0.166 (6)
2012–2013 0.201 (10) 0.118 (8) 0.159 (10)
2013–2014 0.199 (12) 0.123 (6) 0.161 (9)
Average 0.211 0.118 0.165
Maximum 0.224 0.149 0.177
Minimum 0.197 0.088 0.149

and runoff R (mm d−1), and determines the transpiration by
vegetationEt (mm d−1). Being the key partitioning point, the
root zone storage reservoir is the core of the FLEX model.
For the partitioning between infiltration and runoff, we ap-
plied the widely used beta function (Eq. 6) of the Xinanjiang
model (Zhao, 1992; Liang et al., 1992), developed based on
the variable contribution area theory (Hewlett and Hibbert,
1967; Beven, 1979), but which can equally reflect the spa-
tial probability distribution of runoff thresholds. The mois-
ture storage in the root zone reservoir is represented by Su
(mm). The beta function defines the runoff percentage Cr (–)
for each time step as a function of the relative soil moisture
content (Su / Su,max). In Eq. (6), Su,max (mm) is the root zone
storage capacity and β (–) is the shape parameter describ-
ing the spatial distribution of the root zone storage capacity
over the catchment. In Eq. (7), the relative soil moisture and
potential evaporation are used to determine the transpiration
Et (mm d−1); Ce (–) indicates the fraction of Su,max above
which the transpiration is no longer limited by soil moisture
stress (Et = E0−Ei).

3.2.3 Response routine

In Eq. (8), Rf (mm d−1) indicates the flow into the fast re-
sponse routine; D (–) is a splitter to separate recharge from
preferential flow. In Eq. (9), Rs (mm d−1) indicates the flow
into the groundwater reservoir. Equations (10) and (11) are
used to describe the lag time between storm and peak flow.
Rf (t−i+1) is the generated fast runoff from the root zone at
time t−i+1; Tlag is a parameter which represents the time lag
between storm and fast runoff generation; c(i) is the weight
of the flow in i− 1 days before; and Rfl(t) is the discharge
into the fast response reservoir after convolution.

The linear response reservoirs, representing linear rela-
tionships between storages and releases, are applied to con-
ceptualize the discharge from the fast runoff reservoir, and
slow response reservoir. Eq. (12) presents the water balance
of the fast reservoir in which Qff (mm d−1) is the direct sur-
face runoff, with timescale Kff (d), described by Eq. (13),
activated when the storage of fast response reservoir exceeds
the threshold Sf,max (mm), and Qf (mm d−1) is the fast sub-
surface flow, with timescale Kf (d), described by Eq. (14).
The slow groundwater reservoir is described by Eq. (15),
which generates the slow runoffQs (mm d−1) with timescale
Ks (d), described by Eq. (16). Qm (mm d−1) is the total
amount of runoff simulated from the three individual com-
ponents, adding up Qff,Qf, and Qs.

3.2.4 Model calibration

A multi-objective calibration strategy has been adopted in
this study to allow for the model to effectively reproduce dif-
ferent aspects of the hydrological response, i.e. high flow,
low flow, and the flow duration curve. The model was
therefore calibrated to three Kling–Gupta (K–G) efficiencies
(Gupta et al., 2009): (1) the K–G efficiency of flows (IKGE)
measures the performance of hydrograph reproduction, espe-
cially for high flows; (2) the K–G efficiency of the logarithm
of flows emphasizes low flows (IKGL); and (3) the K–G effi-
ciency of the flow duration curve (IKGF) represents the flow
statistics.

The MOSCEM-UA (Multi-Objective Shuffled Complex
Evolution Metropolis-University of Arizona) algorithm
(Vrugt et al., 2003) was used as the calibration algorithm to
find the Pareto-optimal solutions defined by the mentioned
three objective functions. This algorithm requires three pa-
rameters including the maximum number of iterations, the
number of complexes, and the number of random samples
that is used to initialize each complex. To ensure fair com-
parison, the parameters of MOSCEM-UA were set based on
the number of model parameters. Therefore, the number of
complexes is equal to the number of free parameters n; the
number of random samples is equal to n ·n ·10; and the num-
ber of iterations was set to 30 000. The model is a widely
validated model, which is only used here to derive the magni-
tude of the root zone moisture storage. Therefore, validation
is not considered necessary, since the model is merely meant
to compare calibrated values of Su with NDII.

3.3 Deseasonalization

Seasonal signals exist both in the NDII and Su time series.
This can lead to spurious correlation. Therefore, we desea-
sonalized both signals to eliminate this strong signal (Schae-
fli and Gupta, 2007) and subsequently compare the devia-
tions from the seasonal signals of both NDII and Su. Firstly,
the NDII and Su were normalized between 0 and 1. Then,
seasonal patterns of NDII and Su were determined as the av-
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Figure 3. Monthly average NDII values for the UPRB in 2004. The green colour indicates an NDII between 0.15 and 0.30, yellow between 0
and 0.15, orange between−0.15 and 0, and red an NDII <−0.15) representing relatively high, medium, low, and very low root zone moisture
content.

Figure 4. Monthly average NDII values for six sub-basins compared to the basin average in the UPRB. Note that three wettest and three
driest basins are presented in this graph.

erage seasonal signals, after which they were subtracted from
the normalized data.

4 Results

4.1 Spatial and seasonal variation of NDII values over
the UPRB

To demonstrate the spatial and seasonal behaviour of the
NDII over the UPRB, the 8-day NDII values were aggre-
gated to monthly values for 2001–2013. Figure 3 shows ex-
amples of monthly average NDII values for the UPRB in
2004, which is the year with the lowest annual average NDII
value. The figure shows that NDII values are higher during
the wet season (May–October) and lower during the dry sea-
son (November–April). The lower amounts of rainfall be-
tween November and April cause a continuous reduction of

NDII values. On the other hand, higher amounts of rainfall
between May and October result in increasing NDII values.
However, NDII values appear to vary little between July and
October.

The average NDII values during the wet season, the
dry season, and the whole year within the 13 years are
presented in Table 4. The table also shows the order of
the NDII values from the highest (number 1) to the low-
est (number 13). It can be seen that the annual average
NDII value for the whole basin is approximately 0.165,
while the average values during the wet and dry sea-
son are about 0.211 and 0.118, respectively. The highest
mean annual value (NDII= 0.177) occurred in 2002–2003
and the lowest (NDII= 0.149) in 2004–2005. The highest
(NDII= 0.149) and lowest (NDII= 0.088) dry season values
were reported in 2002–2003 and 2004–2005, respectively.
On the other hand, the highest (NDII= 0.224) and lowest
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(NDII= 0.197) wet season values were observed in 2006–
2007 and 2010—2011, respectively. It can be concluded that
a dry season with relatively low moisture content and a wet
season with high moisture content, as specified by NDII val-
ues, do not normally occur in the same year.

The 8-day NDII values were also computed for each of the
14 tributaries within the UPRB from 2001 to 2013. Table 5
shows the monthly averaged NDII values between 2001 and
2013 and the ranking order for each of the 14 tributaries. The
results suggest that the Nam Mae Taeng, Nam Mae Rim, and
Upper Mae Chaem, which have higher mean annual NDII
values, have a higher moisture content than other tributaries,
while Nam Mae Haad, Nam Mae Li, and Ping River sec-
tions 2 and 3, with lower mean annual NDII values, have
lower moisture content than other tributaries. Monthly av-
erage NDII values for these six tributaries are presented in
Fig. 4. It can be seen that during the dry season, NDII val-
ues of the three tributaries with the lowest values are a lot
lower than those of the three with the highest NDII values.
However, NDII values for these two groups are not signif-
icantly different during the wet season. The figure also re-
veals that NDII values tend to continuously increase from
relatively low values in March to higher values in June. The
values slightly fluctuate during the wet season before sharply
falling once again when the rainy season ends, and reach their
minimum values in February.

4.2 FLEX model results

Calibration of FLEX was done on the eight sub-catchments
that have runoff stations. The results are summarized in Ta-
ble 6. The performance of the model was quite good, as
demonstrated in Table 7. In Fig. 5, the flow duration curves
of runoff stations P.20 and P.21 are presented as examples of
model performance. Table 7 shows the average Kling–Gupta
efficiencies values for IKGE, IKGL, and IKGF, which indicate
the performance of high flows, low flows, and flow duration
curve for the eight runoff stations. The results for the flow du-
ration curve appear to be better than those of the high flows
and especially the low flows. However, the overall results are
acceptable and can be used for further analysis in this study.

4.3 Relation between NDII and root zone moisture
storage (Su)

The 8-day NDII values were compared to the 8-day average
root zone moisture storage values of the FLEX model. It ap-
pears that during moisture stress periods, the relationship can
be well described by an exponential function for each of the
eight sub-catchments. Table 8 presents the coefficients of the
exponential relationships as well as the coefficients of deter-
mination (R2) for annual, wet season, and dry season values
for each sub-catchment. The coefficients are merely meant
for illustration. They should not be seen as functional rela-
tionships yet. The corresponding scatter plots are shown in Ta
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Figure 5. Examples of flow duration curves and simulated hydrographs using FLEX at runoff stations P.20 and P.21.

Table 6. FLEX parameters calibrated at eight runoff stations located in the UPRB.

Runoff Si,max Su,max Ce β D Kf Ks TlagF TlagS Sf,max Kff
station (mm) (mm) (–) (–) (–) (days) (days) (days) (days) (mm) (days)

P.4A 2.0 463 0.30 0.66 0.77 2.9 42 1.1 49 93 9.1
P.14 2.3 269 0.55 1.16 0.65 4.0 63 1.5 39 155 7.6
P.21 2.3 388 0.31 0.90 0.64 2.1 66 2.4 48 33 2.5
P.20 2.0 324 0.47 0.50 0.79 7.7 103 1.0 25 69 1.7
P.24A 3.2 209 0.77 1.53 0.89 3.2 267 1.5 44 24 4.2
P.76 2.3 486 0.62 0.32 0.89 2.4 191 2.7 3 130 7.4
P.77 4.5 344 0.48 0.27 0.75 1.5 65 1.2 30 164 5.6
P.71 4.3 532 0.34 0.46 0.90 3.5 80 1.8 15 179 6.5
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Table 7. FLEX model performance at eight runoff stations.

Station Data period IKGE IKGL IKGF

P.4A 1995–2009 0.822 0.667 0.963
P.14 1995–2007 0.796 0.442 0.966
P.21 1995–2009 0.814 0.718 0.985
P.20 1995–2011 0.792 0.685 0.964
P.24A 1995–2011 0.623 0.598 0.945
P76 2000–2011 0.539 0.665 0.916
P.77 1999–2011 0.775 0.612 0.970
P.71 1996–2009 0.823 0.714 0.975
Average 0.748 0.638 0.961

Fig. 6. It can be clearly seen that the correlation is much bet-
ter in the dry season than in the wet season. During the wet
season, there may also be short periods of moisture stress,
where the exponential pattern can be recognized, but no clear
relation is found when the vegetation does not experience any
moisture stress.

Examples of deseasonalized and scaled time series of
NDII and root zone storage (Su) values for the sub-
catchments P.20 and P.21 are presented in Fig. 7. The scaled
time series of the NDII and Su values were calculated by
dividing their value by the differences between their max-
imum and minimum values: NDII/(NDIImax-NDIImin) and
Su / (Su,max− Su,min), respectively, while the maximum and
the minimum are the values within the overall considered
time series. Figure 7 shows that the scaled NDII and Su val-
ues are highly correlated during the dry season, but less so
during the wet season. These results confirm the potential
of NDII to effectively reflect the vegetation water content,
which, through the suction pressure exercised by the mois-
ture deficit, relates to the moisture content in the root zone.
During dry periods, or during dry spells in the rainy season,
as soon as the leaves of the vegetation experience suction
pressure, we see high values of the coefficient of determina-
tion.

If the soil moisture in the root zone is above a certain
threshold value, then the leaves are not under stress. In
the UPRB, this situation occurs typically during the middle
and late rainy season. The NDII then does not vary signif-
icantly while the root zone moisture storage may still vary,
albeit above the threshold where moisture stress occurs. This
causes a lower correlation between NDII and root zone stor-
age during wet periods. Interestingly, even during the wet
season dry spells can occur. We can see in Fig. 6, that during
such a dry spell, the NDII and Su again follow an exponential
relationship.

We can see that the Su, derived merely from precipitation
and energy, is strongly correlated to the vegetation water ob-
served by NDII during condition of moisture stress, without
time lag (Fig. 6, and Figs. S1, S2 in the Supplement). Intro-
duction of a time lag resulted in reduction of the correlation
coefficients (see the Supplement). This confirms the direct re-

sponse of vegetation to soil moisture stress, which confirms
that the NDII can be used as a proxy for root zone moisture
content.

The deseasonalized results of dry periods in sub-
catchments P.20 and P.21 are shown in Fig. 7. We found these
variations of deseasonalized NDII and Su to be similar in
these two sub-catchments, with the coefficients of determi-
nation (R2) as 0.32 and 0.18, respectively, in P.20 and P.21.
More important than the coefficient of determination is the
similarity between the deseasonalized patterns. For P.20, the
year 2001 is almost identical, whereas the years 2004 and
2006 are dissimilar. In general, the patterns are well repro-
duced, especially if we take into account the implicit uncer-
tainties of the lumped hydrological model, the uncertainties
in the 8-day derived NDII, and the data of precipitation and
potential evaporation used in the model. The results of other
tributaries can be found in the supplementary materials.

5 Discussion

5.1 Is vegetation a troublemaker or a good indicator
for the moisture content of the root zone?

In bare soil, remote sensors can only detect soil moisture
within a few centimetres below the surface (∼ 5 cm) (En-
tekhabi et al., 2010). Unfortunately, for hydrological mod-
elling, the moisture state of the bare surface is of only lim-
ited interest. What is of key interest for understanding the
dynamics of hydrological systems is the variability of the
moisture content of the root zone, in which the main dynam-
ics take place. This variability determines the rainfall–runoff
behaviour, the transpiration of vegetation, and the partition-
ing between different hydrological fluxes. However, observ-
ing the soil moisture content in the root zone is still a major
challenge (Entekhabi et al., 2010).

Normally, the moisture content of the surface layer is
linked to the total amount of moisture in the root zone.
Knowing the surface soil moisture, the root zone soil mois-
ture can be estimated by an exponential decay filter (Albergel
et al., 2008; Ford et al., 2014) or by models (Reichle, 2008).
However, the surface soil moisture is only weakly related to
root zone soil moisture (Mahmood and Hubbard, 2007); it
only works if there is connectivity between the surface and
deeper layers, and when a certain state of equilibrium has
been reached (when the short-term dynamics after a rain-
fall event has levelled out). It is also observed that the pres-
ence of vegetation prevents the observation of soil moisture
and further deteriorates the results (Jackson and Schmugge,
1991). Avoiding the influence of vegetation in observing soil
moisture (e.g. by SMOS or SMAP) is seen as a challenge by
some in the remote sensing community (Kerr et al., 2001; En-
tekhabi et al., 2010). Several algorithms have been proposed
to filter out the vegetation impact (Jackson and Schmugge,
1991), also based on NDII (e.g. Yilmaz et al., 2008). But is
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Figure 6. Scatter plots between the average NDII and the average root zone moisture storage (Su) for eight sub-basins controlled by runoff
stations. Regression lines are added merely to illustrate the degree of correlation.
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Table 8. Exponential relationships between the average NDII values and simulated root zone moisture storage (Su) in the eight sub-basins
controlled by the eight runoff stations.

Runoff station
Annual relationship Wet season relationship Dry season relationship

a b R2 a b R2 a b R2

P.4A 11.2 12.4 0.66 11.1 12.9 0.53 12.6 11.2 0.90
P.14 21.9 9.8 0.81 19.2 10.8 0.71 24.6 8.5 0.92
P.20 52.3 7.4 0.79 36.2 9.1 0.72 59.7 6.7 0.91
P.21 30.8 9.0 0.68 27.8 9.3 0.53 30.6 9.22 0.86
P.24A 22.1 8.5 0.60 24.2 8.3 0.41 22.4 8.1 0.81
P.71 2.1 19.9 0.77 1.9 20.5 0.65 2.3 19.0 0.87
P.76 10.1 13.6 0.85 8.1 14.4 0.74 10.8 14.6 0.87
P.77 35.4 8.0 0.70 20.7 10.2 0.61 40.6 7.7 0.83
Average – – 0.73 – – 0.61 – – 0.87

Note: Su = aebNDII.

Figure 7. Scaled time series, seasonality, and deseasonalized (dry season) time series of the 8-day averaged NDII values compared to the
8-day averaged simulated root zone moisture storage (Su) in the Nam Mae Rim sub-basin at P.20 (Chiang Dao) and P.21 (Ban Rim Tai)
runoff stations. The coefficients of determination (R2) of the deseasonalized NDII and Su are 0.32 and 0.18, respectively, for P.20 and P.21.
For the results of all the eight sub-basins, please refer to the Supplement.

vegetation a troublemaker, or does it offer an excellent op-
portunity to directly gauge the state of the soil moisture?

In this study, we found that vegetation, rather than becom-
ing a problem, could become key to sensing the storage dy-
namics of moisture in the root zone. The water content in the
leaves is connected to the suction pressure in the root zone
(Rutter and Sands, 1958). If the suction pressure is above
a certain threshold, then this connection is direct and very
sensitive. We found a highly significant correlation between
NDII and Su, particularly during periods of moisture stress.
During dry periods or dry spells in the rainy season, as soon

as the leaves of the vegetation experience suction pressure,
we see high values of the coefficient of determination. Ob-
serving the moisture content of vegetation provides us with
direct information on the soil moisture state in the root zone.
We also found that there is almost no lag time between Su
and NDII. This illustrates the fast response of vegetation to
soil moisture variation, which makes the NDII a sensitive and
direct indicator for root zone moisture content. In fact, the
canopy acts as a kind of manometer for the root zone mois-
ture content.
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5.2 The validity of the hypothesis

In natural catchments, it is not possible to prove a hypothe-
sis by using a calibrated model. There are too many factors
contributing to the uncertainty of results: the processes are
too heterogeneous, the observations are not without error, the
climatic drivers are too uncertain and heterogeneous, and fi-
nally, there is substantial model uncertainty, both in the semi-
distributed hydrological model and in the remote sensing
model used to determine the 8-day NDII product. In this case,
we have selected a lumped conceptual model, which is good
at mimicking the main runoff processes, but which lacks the
detail of distributed models. Distributed models, however,
require detailed and spatially explicit information (which is
missing) and are generally over-parameterized, turning them
highly unreliable in data-scarce environments. On top of this,
there is considerable doubt if they provide the right answers
for the right reasons.

This paper is not a modelling study but a test of the hy-
pothesis whether the observed NDII correlates with the mod-
elled root zone storage. We have seen in Fig. 6 that the cor-
relation is strong during periods of moisture stress, but that
when the root zone is near saturation the correlation is weak.
But we also saw that even in the wet season, during short dry
spells, the correlation is strong. Even when the seasonality is
removed, the patterns between NDII and Su in Fig. 7 are sim-
ilar, although there are two dry seasons when this is less the
case (in 2004 and 2006). So given the implicit uncertainty
of the hydrological model, the uncertainty of the meteoro-
logical drivers, as well as the river discharges to which the
models have been calibrated, and the uncertainty associated
with the relationship between NDII and EWT, the good cor-
respondence between the NDII and the root zone storage of
the model during periods of moisture stress support the po-
tential value of the NDII as a proxy for root zone storage in a
conceptual model. It is in our view even likely that the differ-
ences between the signals of the NDII and the Su are rather
related to model uncertainty, the uncertainty of the climatic
drivers, the uncertainty in the relationship between NDII and
EWT, and the problems of determining accurate NDII es-
timates over 8-day periods, than due to a weak correlation
between the root zone storage and the NDII.

5.3 Implication in hydrological modelling

Simulation of root zone soil moisture is crucial in hydrolog-
ical modelling (Houser et al., 1998; Western and Blöschl,
1999). Using estimates of soil moisture states could increase
model performance and realism, but moreover, it would be
powerful information to facilitate prediction in ungauged
basins (Hrachowitz et al., 2013). However, until now, it has
not been practical (e.g. Parajka et al., 2006; Entekhabi et al.,
2010). Assimilating soil moisture in hydrological models, ei-
ther from top-soil observation by remote sensing, or from the
deeper soil column by models (Reichle, 2008), is still a chal-

lenge. Several studies showed how difficult it is to assimilate
soil moisture data to improve daily runoff simulation (Para-
jka et al., 2006; Matgen et al., 2012).

There are several reasons why we have not compared our
results with soil moisture observations in the field. Firstly,
observations of soil moisture are not widely available. More-
over, it is not straightforward to link classical soil moisture
observations to the actual moisture available in the root zone.
Most observations are conducted at fixed depths and at cer-
tain locations within a highly heterogeneous environment.
Without knowing the details of the root distribution, both
horizontally and vertically, it is hard, if not impossible, to
estimate the water volume accessible to plants through their
root systems. We should realize that it is difficult to observe
root zone soil moisture even at a local scale. But measuring
root zone soil moisture at a catchment scale is even more
challenging. State-of-the-art remote sensing techniques can
observe spatially distributed soil moisture, but what they can
see is only the near-surface layers if not blocked by vegeta-
tion. The top layer moisture may or may not be correlated
with the root zone storage, amongst others, depending on the
vegetation type, but it is definitely not the same.

By observing the moisture content of the leaves, the NDII
represents the soil moisture content of the entire root zone,
which is precisely the information that hydrological models
require as this is the component that controls the occurrence
and magnitude of storage deficits and thereby the moisture
dynamics of a system. This study clearly shows the temporal
correlation between Su and NDII. From the relationship be-
tween NDII and Su, we can directly derive a proxy for the soil
moisture state at the actual scale of interest, which can po-
tentially be assimilated in hydrological models. Being such a
key state variable, the NDII-derived Su could become a po-
tentially powerful and otherwise unavailable constraint for
the soil moisture component of hydrological models. This
would mean a breakthrough in hydrological modelling as it
would allow a robust parameterization of water partitioning
into evaporative fluxes and drainage even in data-scarce en-
vironments. Given the implicit uncertainties in hydrological
modelling, this new and readily available proxy could po-
tentially enhance our implicitly uncertain modelling practice.
More importantly, it would open completely new venues for
modelling ungauged parts of the world and could become
extremely useful for discharge prediction in ungauged basins
(Hrachowitz et al., 2013).

We should, of course, be aware of regional limitations.
The proxy only appears to work for periods of moisture
stress. This study considered a tropical seasonal evergreen
ecosystem, where periods of moisture stress regularly oc-
cur. In ecosystems which shed their leaves or go dormant,
other conditions may apply. We need further investigations
into the usefulness of this approach in catchments with dif-
ferent climates. In addition, the phenology of the ecosystem
is of importance, which should be taken into consideration in
follow-up research. Finally, a comparison with distributed or
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semi-distributed models would be a further test of the value
of the NDII as proxy for the root zone moisture content.

6 Conclusions

The NDII was used to investigate drought for the UPRB from
2001 to 2013. Monthly average NDII values appear to be spa-
tially distributed over the UPRB, in agreement with seasonal
variability and landscape characteristics. NDII values appear
to be lower during the dry season and higher during the wet
season as a result of seasonal differences between precipi-
tation and evaporation. The NDII appears to correlate well
with the moisture content in the root zone, offering a poten-
tial proxy variable for calibration of hydrological models in
ungauged basins.

To illustrate the importance of NDII as a proxy for root
zone moisture content in hydrological models, we applied
the FLEX model to assess the root zone soil moisture stor-
age (Su) of eight sub-catchments of the UPRB controlled by
eight runoff stations. The results show that the 8-day average
NDII values over the study sub-basin correlate well with the
8-day average Su for all sub-catchments during dry periods
(average R2 equals 0.87), and less so during wet spells (av-
erage R2 equals 0.61). The NDII appears to be a promising
proxy for root zone moisture content during dry spells when
leaves are under moisture stress. The natural interaction be-
tween rainfall, soil moisture, and leaf water content can be
visualized by the NDII, making it an important indicator both
for hydrological modelling and drought assessment.

The potential of using the NDII to constrain model pa-
rameters (such as the power of the beta function β, recharge
splitter D, and Ce in the transpiration function) in ungauged
basins is an important new venue, which could potentially fa-
cilitate the major question of prediction in ungauged basins.

7 Data availability

The data set can be found at: https://zenodo.org/record/
60491.

The Supplement related to this article is available online
at doi:10.5194/hess-20-3361-2016-supplement.
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