Capacity of and coding for multiple-aperture, wireless, optical communications
Author(s)
Haas, Shane M. (Shane Martin), 1975-
DownloadFull printable version (2.808Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Jeffrey H. Shapiro.
Terms of use
Metadata
Show full item recordAbstract
Refractive index turbulence causes random power fluctuations in optical communication systems, making communication through the atmosphere difficult. This same phenomenon makes the stars twinkle at night, and pavement shimmer on a hot summer day. True to the old adage, "don't put all your eggs in one basket," we examine laser communication systems that use multiple transmit and receive apertures. These apertures provide redundant replicas of the transmitted message to the receiver, each corrupted separately by the atmosphere. Reliable communication occurs when not all of these paths are deeply faded. We quantify the maximum rate of reliable communication, or capacity, and study space-time coding techniques for both direct- and coherent-detection receivers. We also experimentally verify the performance of some simple techniques for optically-preamplified, direct-detection receivers.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003. Includes bibliographical references (p. 243-249). This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Date issued
2003Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.