Hebbian Continual Representation Learning

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1259

Ending Page

Alternative Title

Abstract

Continual Learning aims to bring machine learning into a more realistic scenario, where tasks are learned sequentially and the i.i.d. assumption is not preserved. Although this setting is natural for biological systems, it proves very difficult for machine learning models such as artificial neural networks. To reduce this performance gap, we investigate the question whether biologically inspired Hebbian learning is useful for tackling continual challenges. In particular, we highlight a realistic and often overlooked unsupervised setting, where the learner has to build representations without any supervision. By combining sparse neural networks with Hebbian learning principle, we build a simple yet effective alternative (HebbCL) to typical neural network models trained via the gradient descent. Due to Hebbian learning, the network have easily interpretable weights, which might be essential in critical application such as security or healthcare. We demonstrate the efficacy of HebbCL in an unsupervised learning setting applied to MNIST and Omniglot datasets. We also adapt the algorithm to the supervised scenario and obtain promising results in the class-incremental learning.

Description

Keywords

Interpretable Machine Learning, interpretable neural network; continual learning; unsupervised learning; hebbian learning

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email [email protected] if you need this content in ADA-compliant format.