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Abstract

It is well known that high-dimensional nearest-neighbor retrieval is very expensive. Dramatic performance gains are obtained using

approximate search schemes, such as the popular Locality-Sensitive Hashing (LSH). Several extensions have been proposed to

address the limitations of this algorithm, in particular, by choosing more appropriate hash functions to better partition the vector

space. All the proposed extensions, however, rely on a structured quantizer for hashing, poorly fitting real data sets, limiting

its performance in practice. In this paper, we compare several families of space hashing functions in a real setup, namely when

searching for high-dimension SIFT descriptors. The comparison of random projections, lattice quantizers, k-means and hierarchical

k-means reveal that unstructured quantizer significantly improves the accuracy of LSH, as it closely fits the data in the feature space.

We then compare two querying mechanisms introduced in the literature with the one originally proposed in LSH, and discuss their

respective merits and limitations.

1. Introduction

Nearest neighbor search is inherently expensive due to the

curse of dimensionality (Böhm et al., 2001; Beyer et al., 1999).

This operation is required by many pattern recognition appli-

cations. In image retrieval or object recognition, the numer-

ous descriptors of an image have to be matched with those of

a descriptor dataset (direct matching) or a codebook (in bag-

of-features approaches). Approximate nearest-neighbor (ANN)

algorithms are an interesting way of dramatically improving the

search speed, and are often a necessity. Several ad hoc ap-

proaches have been proposed for vector quantization (see Gray

and Neuhoff, 1998, for references), when finding the exact near-

est neighbor is not mandatory as long as the reconstruction

error is limited. More specific ANN approaches performing

content-based image retrieval using local descriptors have been

proposed (Lowe, 2004; Lejsek et al., 2006). Overall, one of

the most popular ANN algorithms is the Euclidean Locality-

Sensitive Hashing (E2LSH) (Datar et al., 2004; Shakhnarovich

et al., 2006). LSH has been successfully used in several multi-

media applications (Ke et al., 2004; Shakhnarovich et al., 2006;

Matei et al., 2006).

Space hashing functions are the core element of LSH. Sev-

eral types of hash functions have recently been proposed to

improve the performance of E2LSH, including the Leech lat-

tices (Shakhnarovich et al., 2006) and E8 lattices (Jégou et al.,

2008a), which offer strong quantization properties, and spheri-

cal hash functions (Terasawa and Tanaka, 2007) for unit-norm
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vectors. These structured partitions of the vector space are reg-

ular, i.e., the size of the regions are of equal size, regardless the

density of the vectors. Their advantage over the original algo-

rithm is that they exploit the vectorial structure of the Euclidean

space, offering a partitioning of the space which is better for the

Euclidean metric than the separable partitioning implicitly used

in E2LSH.

One of the key problems when using such a regular parti-

tioning is the lack of adaptation to real data. In particular the

underlying vector distribution is not taken into account. Be-

sides, simple algorithms such as a k-means quantizer have been

shown to provide excellent vector search performance in the

context of image and video search, in particular when used in

the so-called Video-Google framework of Sivic and Zisserman

(2003), where the descriptors are represented by their quan-

tized indexes. This framework was shown to be equivalent to

an approximate nearest neighbor search combined with a voting

scheme in Jégou et al. (2008b). However, to our knowledge this

k-means based partitioning has never been evaluated in the LSH

framework, where multiple hash functions reduce the probabil-

ity that a vector is missed, similar to what is done when using

randomized trees (Muja and Lowe, 2009).

The first contribution of this paper is to analyze the indi-

vidual performance of different types of hash functions on real

data. For this purpose, we introduce the performance metrics,

as the one usually proposed for LSH, namely the “ε-sensitivity”,

does not properly reflect objective function used in practice. For

the data, we focus on the established SIFT descriptor (Lowe,

2004), which is now the standard for image local description.

Typical applications of this descriptor are image retrieval (Lowe,

2004; Nistér and Stewénius, 2006; Jégou et al., 2008b), stitch-

ing (Brown and Lowe, 2007) and object classification (Zhang

et al., 2007). Our analysis reveal that the k-means quantizer,
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i.e., an unstructured quantizer learned on a vector training set,

behaves significantly better than the hash functions used in the

literature, at the cost of an increased pre-processing cost. Note

that several approximate versions of k-means have been pro-

posed to improve the efficiency of pre-processing the query.

We analyze the performance of one of the popular hierarchical

k-means (Nistér and Stewénius, 2006) in this context.

Second, inspired by state of the art methods that have proved

to increase the quality of the results returned by the original

LSH scheme, we propose two variants of the k-means approach

offering different trade-offs in terms of memory usage, effi-

ciency and accuracy. The relevance of these variants are shown

to depend on the database size. The first one, multi-probe LSH (Lv

et al., 2007), decreases the query pre-processing cost. It is

therefore of interest for datasets of limited size. The second

variant, query-adaptive LSH (Jégou et al., 2008a), improves the

expected quality of the returned vectors at the cost of increased

pre-processing. It is of particular interest when the number of

vectors is huge. In that case, the query preparation cost is neg-

ligible compared to that of post-processing the vectors returned

by the indexing structure.

This paper is organized as follows. Section 2 briefly de-

scribes the LSH algorithm, the evaluation criteria used to mea-

sure the performance of ANN algorithms in terms of efficiency,

accuracy and memory usage, and presents the dataset used in

all performance experiments. An evaluation of individual hash

functions is proposed in Section 3. We finally present the full

k-means LSH algorithm in Section 4, and the two variants for

the querying mechanism.

2. Background

This section first briefly presents the background material

for LSH that is required to understand the remainder of this

paper. We then detail the metrics we are using to discuss the

performance of all approaches. We finally present the dataset

derived from real data that is used to perform the experiments.

2.1. Locality sensitive hashing

Indexing d-dimensional descriptors with the Euclidean ver-

sion E2LSH of LSH (Shakhnarovich et al., 2006) proceeds as

follows. The n vectors of the dataset to index are first projected

onto a set of m directions characterized by the d-dimensional

vectors (ai)1≤i≤m of norm 1. Each direction ai is randomly drawn

from an isotropic random generator.

The n descriptors are projected using m hash functions, one

per ai. The projections of the descriptor x are defined as

hi(x) =

⌊

〈x|ai〉 − bi

w

⌋

, (1)

where w is the quantization step chosen according to the data

(see (Shakhnarovich et al., 2006)). The offset bi is uniformly

generated in the interval [0,w) and the inner product 〈x|ai〉 is

the projected value of the vector onto the direction ai.

The m hash functions define a set H = {hi}1≤i≤m of scalar

hashing functions. To improve the hashing discriminative power,

a second level of hash functions, based on H , is defined. This

level is formed by a family of l functions constructed by con-

catenating several functions from H . Hence, each function gi

of this family is defined as

g j = (h j,1, . . . , h j,d∗ ), (2)

where the functions h j,i are randomly chosen from H . Note

that this hash function can be seen as a quantizer performed on a

subspace of dimension d∗. At this point, a vector x is indexed by

a set of l vector of integers g j(x) = (h j,1(x), · · · , h j,d∗ (x)) ∈ Z
k.

The next step stores the vector identifier within the cell as-

sociated with this vector value g j(x). Note additional steps aim-

ing at avoiding the collision in hash-buckets of distant vectors

are performed, but can be ignored for the remainder of this pa-

per, see (Shakhnarovich et al., 2006) for details.

At run time, the query vector q is also projected onto each

random line, producing a set of l integer vectors {g1(q), · · · , gl(q)}.

From that set, l buckets are determined. The identifiers of all the

vectors from the database lying in these buckets make the result

short-list. The nearest neighbor of q is found by performing an

exact search (L2) within this short-list, though one might pre-

fer using another criterion to adapt a specific problem, as done

in (Casey and Slaney, 2007). For large datasets, this last step is

the bottleneck in the algorithm. However, in practice, even the

first steps of E2LSH can be costly, depending on the parameter

settings, in particular on l.

2.2. Performance Metrics

LSH and its derivatives (Gionis et al., 1999; Terasawa and

Tanaka, 2007; Andoni and Indyk, 2006) are usually evaluated

using the so-called “ε-sensitivity”, which gives a intrinsic the-

oretical performance of the hash functions. However, for real

data and applications, this measure does not reflect the objective

which is of interest in practice: how costly will be the query,

and how likely will the true nearest neighbor of the query point

be in the result? Hereafter, we address these practical concerns

through the use of the following metrics:

Accuracy: recall

Measuring the quality of the results returned by ANN ap-

proaches is central. In this paper, we will be measuring the

impact of various hashing policies and querying mechanisms

on the accuracy of the result.

To have a simple, reproducible and objective baseline, we

solely measure the accuracy of the result by checking whether

the nearest neighbor of each query point is in the short-list or

not. This measure then corresponds to the probability that the

nearest neighbor is found if an exhaustive distance calculation

is performed on the elements of the short-list. From an applica-

tion point of view, it corresponds for instance to the case where

we want to assign a SIFT descriptor to a visual word, as done

in (Sivic and Zisserman, 2003).

The recall of the nearest neighbor retrieval process is mea-

sured, on average, by aggregating this observation (0 or 1) over

a large number of queries. Note that instead, we could have per-

formed a k-nn retrieval for each query. Sticking to the nearest

neighbor avoids choosing an arbitrary value for k.
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Search complexity

Finding out how costly an ANN approach is has major prac-

tical consequences for real world applications. Therefore, it is

key to measure the overall complexity of the retrieval process

in terms of resource consumption. The LSH algorithm, regard-

less of the hashing options, has two major phases, each having

a different cost:

• Phase 1: Query preparation cost. With LSH, some pro-

cessing of the query vector q must take place before the

search can probe the index. The query descriptor must

be hashed into a series of l values. These values identify

the hash-buckets that the algorithm will subsequently an-

alyze in detail. Depending on the hash function type, the

cost of hashing operations may vary significantly. It is a

function of the number of inner products and/or compar-

isons with database vectors to perform in order to even-

tually get the l values. That query preparation cost is

denoted by qpc and is given in Section 3 for several hash

function types.

• Phase 2: Short-list processing cost: selectivity. Depend-

ing on the density of the space nearby q, the number

of vectors found in the l hash-buckets may vary signif-

icantly. For a given q, we can observe the selectivity of

the query, denoted by sel.

Definition: The selectivity sel is the fraction of the data

collection that is returned in the short-list, on average, by

the algorithm.

In other words, multiplying the selectivity by the num-

ber of indexed vectors gives the expected number of el-

ements returned as potential nearest neighbors by the al-

gorithm. The number of memory cells to read and the

cost of processing the short-list are both a linear function

of the short-list length, hence of sel.

In the standard LSH algorithm, it is possible to estimate

this selectivity from the probability mass function of hash

values, as discussed later in the subsection 3.5.

If exhaustive distance calculation is performed on the short-

list returned by LSH, the overall cost for retrieving the ANN of

a query vector is expressed as

ocost = sel × n × d + qpc. (3)

An interesting measure is the acceleration factor ac over

exhaustive search, which is given by

ac =
n × d

ocost
=

1

sel +
qpc

n×d

. (4)

For very large vector collections, the selectivity term is likely to

dominate the query preparation cost in this equation, as hash-

buckets tends to contain many vectors. This is the rationale for

using the selectivity as the main measurement.

Memory usage

The complexity of the search also includes usage of the

main memory. In this paper, we assume that the complete LSH

data structure fits in main memory. Depending on the strategy

for hashing the vectors, more or less main memory is needed.

As the memory occupation has a direct impact on the scala-

bility of search systems, it is worth noticing that in LSH, this

memory usage is proportional to the number of hash functions

considered and to the number of database vectors:

memory usage = O(l × n). (5)

The number of hash functions used in LSH will hence be

used as the main measurement of the memory usage.

2.3. Dataset

Our vector dataset is extracted from the publicly available

INRIA Holidays dataset1, which is composed of high-definition

real Holiday photos. There are many series of images with a

large variety of scene types (natural, man-made, water and fire

effects, etc). Each series contains somehow visually similar im-

ages, differing however due to various rotations, viewpoint and

illumination changes of the same scenes taken by the photogra-

phers.

These images have been described using the SIFT descrip-

tor (Lowe, 2004), for which retrieving the nearest neighbors is

a very computationally-demanding task. SIFT descriptors have

been obtained on these images using the affine co-variant fea-

tures extractor from Mikolajczyk and Schmid (2004). When

using the standard parameters of the literature, the dimension-

ality of SIFT descriptors is d = 128.

The descriptor collection used in this paper is a subsample

of 1 million descriptors randomly picked from the descriptors

of the image dataset. We also randomly picked 10,000 descrip-

tors used as queries, and another set of 1 million vectors ex-

tracted from a distinct image dataset (downloaded from Flickr)

for the methods requiring a learning stage. Finally, we ran ex-

act searches using the Euclidean distance to get the true nearest

neighbor of each of these query descriptors. This ground-truth

will be the one against which ANN searches will be compared.

3. Hash function evaluation

This section first discusses the key design principles behind

four types of hash functions and the key parameters that mat-

ter for evaluating their performance in the context of LSH. We

first recall the original design, where hash functions are based

on random projections. Following recent literature (Andoni

and Indyk, 2006; Jégou et al., 2008a), we then describe high-

dimensional lattices used for spatial hashing. These two types

of hash functions belong to the family of structured quantizers,

and therefore do not capture the peculiarities of the data collec-

tion’s distribution in space. To contrast with these approaches,

we then discuss the salient features of a k-means unstructured

1http://lear.inrialpes.fr/people/jegou/data.php
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quantizer for hashing, as well as one if its popular tree-based

variant. Overall, choosing a hash function in LSH amounts to

modifying the definition of g introduced in Section 2.1.

Enunciated these design methods, we then move to evaluate

how each type of hash function performs on the real data col-

lection introduced above. The performance is evaluated for a

single hash function. This accurately reflects the intrinsic prop-

erties of each hash function, while avoiding to introduce the

parameter l (number of distinct hash functions).

3.1. Random projection based

The foundations of the hash functions used in the original

E2LSH approach have been presented in Section 2.1. Overall,

the eventual quantization of the data space is the result of a

product of unbounded scalar quantizers.

The key parameters influencing the performance of each

E2LSH hash function are:

• the quantization step w ;

• the number d∗ of components used in the second-level

hash functions g j.

As the parameters bi and m are provided to improve the

diversity between different hash functions, they are arbitrarily

fixed, as we only evaluate the performance of a single hash

function. The values chosen for these parameters do not no-

ticeably impact the selectivty, though large values of m linearly

impacts the query preparation cost. This one remains low for

this structured hashing method.

3.2. Hashing with lattices

Lattices have been extensively studied in mathematics and

physics. They were also shown to be of high interest in quanti-

zation (Gray and Neuhoff, 1998; Conway and Sloane, 1982b).

For a uniform distribution, they give better performance than

scalar quantizers (Gray and Neuhoff, 1998). Moreover, finding

the nearest lattice point of a vector can be performed with an

algebraic method (Agrell et al., 2002). This is referred to as

decoding, due to its application in compression.

A lattice is a discrete subset of R
d′ defined by a set of vec-

tors of the form

{x = u1a1 + · · · + udad |u1, · · · , ud ∈ Z} (6)

where a1, · · · , ad are linearly independent vectors of R
d′ , d′ ≥

d. Hence, denoting by A = [a1 · · · ad] the matrix whose columns

are the vectors a j, the lattice is the set of vectors spanned by Au

when u ∈ Z
d. With this notation, a point of a lattice is uniquely

identified by the integer vector u.

Lattices offer a regular infinite structure. The Voronoi re-

gion around each lattice points has identical shape and volume

(denoted byV) and is called the fundamental region.

By using lattice-based hashing, we aim at exploiting their

spatial consistency: any two points decoded to the same lattice

point are separated by a bounded distance, which depends only

on the lattice definition. Moreover, the maximum distance be-

tween points inside a single lattice cell tends to be identical for

(a) (b)

Figure 1: Fundamental regions obtained using random projections (a) and the

lattice A2 (b). The disparity of distances between the furthest possible points

in each region dramatically reduces with dense lattices. This illustrates the

vectorial gain.

some particular lattices. In the rest of this paper, we refer to this

phenomenon as the vectorial gain.

Vectorial gain is strongly related to the density of lattices.

The density of a lattice is the ratio between the volume V of

the fundamental region and the volume of its inscribed sphere.

Basically, considering Euclidean lattices, the closer to 1 the

density, the closer to a sphere the fundamental region, and the

greater the vectorial gain. Figure 1 illustrates the vectorial gain

for two 2-d lattices having fundamental region of identical vol-

ume. In other terms, if L2(x, y) is the Euclidean distance be-

tween x and y, and Va (respectively Vb) is the closed domain

of vectors belonging to the region depicted on Figure 1(a) (re-

spectively Figure 1(b)), then:

max
xa∈Va,ya∈Va

L2(xa, ya) ≫ max
xb∈Vb,yb∈Vb

L2(xb, yb) (7)

where
∫

xa∈Va
dxa =

∫

xb∈Vb
dxb (i.e., for identical volumes).

In this paper, we will focus on some particular lattices for

which fast decoding algorithms are known. These algorithms

take advantage of the simplicity of the lattice definition. We

briefly introduce the lattices Dd, D+
d

and Ad. More details can

be found in Conway et al. (1987, chap. 4).

• Lattice Dd is the subset of vectors of Z
d having an even

sum of the components:

Dd = {(x1, · · · , xd) ∈ Z
d :

d
∑

i=1

xi even}, d ≥ 3 . (8)

• Lattice D+
d

is the union of the lattice Dd with the lattice

Dd translated by adding 1
2

to each coordinate of lattice

points. That translation is denoted by 1
2
+ Dd.

D+d = Dd ∪ (
1

2
+ Dd) . (9)

When d = 8, this lattice is also known as E8, which

offers the best quantization performance for uniform 8-

dimensional vectors.

• Lattice Ad is the subset of vectors of Z
d+1 living on the

d-dimensional hyper-plane where the sum of the compo-

nents is null:

Ad = {(x0, x1, · · · , xd) ∈ Z
d+1 :

d
∑

i=0

xi = 0} . (10)
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A vector q belonging to R
d can be mapped to its d + 1-

dimensional coordinates by multiplying it on the right by

the n lines × n + 1 columns matrix:





























−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

· · · · · · · ·

0 0 0 · · · −1 1





























. (11)

For these lattices, finding the nearest lattice point of a given

query vector is done in a number of steps that is linear with its

dimension (Conway and Sloane, 1982a).

The main parameters of a lattice hash function are:

• the scale parameter w, which is similar to the quantization

step for random projections ;

• the number d∗ of components used.

Hashing the data collection using a lattice asks first to ran-

domly pick d∗ components among the original d dimensions—

the natural axes are preserved. Then, given w, the appropri-

ate lattice point is assigned to each database vector. The index

therefore groups all vectors with the same lattice point identifier

into a single bucket.

Remark: The Leech lattice used in Shakhnarovich et al. (2006)

has not been considered here for two reasons. First, it is defined

for d∗ = 24 only, failing to provide any flexibility when opti-

mizing the choice of d∗ for performance. Second, its decoding

requires significantly more operations compared to the others

lattices: 3595 operations per lattice point (Vardy and Be’ery,

1993).2

3.3. k-means vector quantizer

Up to now, we have only considered structured quantizers

which do not take into account the underlying statistics of the

data, except by the choice of the parameters w and d∗. To ad-

dress this problem, we propose to use an unstructured quantizer

learned on a representative set of the vectors to index. Formally,

an unstructured quantizer g is defined as a function

R → [1, . . . , k]

x → g(x) = arg mini=1..k L2 (x, c(i))
(12)

mapping an input vector x to a cell index g(x). The integer k is

the number of possible values of g(x). The vectors c(i), 1 ≤ i ≤

k are called centroids and suffice to define the quantizer.

To construct a good unstructured quantizer, a nice choice is

to use the popular k-means clustering algorithm. In that case,

k corresponds to the number of clusters. This algorithm mini-

mizes3 the overall distortion of reconstructing a given vector of

the learning set using its nearest centroid from the codebook,

hence exploiting the underlying distribution of the vectors. Do-

ing so, the potential of vector quantization is fully beneficial

2Note, however, that this number is small compared to what is needed for

unstructured quantizers.
3This minimization only ensures to find a local minimum.

since it is able to exploit the vectorial gain. Note that, by con-

trast to the structured quantizers, there is no random selection

of the vector components. Hence, the hashing dimension d∗

is equal to the vector dimension d, as the quantizer is learned

directly on the vector space.

However, learning a k-means quantizer may take a long

time when k is large. In practice, bounding the number of it-

erations improves the learning stage without significantly im-

pacting the results. In the following, we have set the maximum

number of iterations to 20 for SIFT descriptors, as higher values

provide comparable results.

3.4. Hierarchical k-means

Approximate variants of the k-means quantizer and the cor-

responding centroid assignment have been proposed (Nistér and

Stewénius, 2006; Philbin et al., 2007) to reduce both the learn-

ing stage and the query preparation costs. We evaluate the hi-

erarchical k-means (HKM) of (Nistér and Stewénius, 2006),

which is one of the most popular approach.

The method consists of computing a k-means with k rel-

atively small, and to recursively computes a k-means for the

internal nodes until obtaining a pre-defined tree height. This

produces a balanced tree structure, where each internal node

is connected to a fixed number of centroids. The search is per-

formed top-down by recursively finding the nearest centroid un-

til a leaf is reached. The method uses two parameters:

• the height ht of the tree ;

• the branching factor bf.

The total number of centroids (leaves) is then obtained as (bf)
ht .

Remark: The method used in (Philbin et al., 2007) relies on ran-

domized trees. This method was improved in (Muja and Lowe,

2009) by automatic tuning of the parameters. The method was

shown to outperform HKM, leading to results comparable to

that of standard k-means. Therefore, the results we give here for

the k-means give a good approximation of the selectivity/recall

tradeoff that the package of (Muja and Lowe, 2009) would pro-

vide, with a lower query preparation cost, however.

3.5. Experiments and discussion

Figure 2 gives the evaluation of the different types of hash

function introduced in this section. For both random projec-

tion and lattices, the two parameters w and d∗ are optimized.

Figure 2 only presents the optimal ones, which are obtained as

follows. Given a couple of parameters w and d∗, we compute

the nearest neighbor recall at a given selectivity. This process

is repeated for a set of varying couples of parameters, resulting

in a set of tuples associating a selectivity to a nearest neighbor

recall. Points plotted on the curves belong to the roof of the

convex hull of these numbers. Therefore, a point on the figure

corresponds to an optimal parameter setting, the one that gives

the best performance obtained for a given selectivity.

For the k-means hash function, only one parameter has to

be fixed: the number of centroids k, which gives the trade-off
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Figure 2: Evaluation of the different types of hash functions on the SIFT dataset.

between recall and selectivity. This simpler parametrization is

an advantage in practice. HKM is parametrized by two quan-

tities: the branching factor bf and the height ht of the k-means

tree. We evaluate the extremal cases, i.e., :

• a fixed height (ht = 2, 3) with a varying branching factor

• and a binary tree (bf = 2) with a varying tree height.

3.5.1. Vectorial gain

Figure 2 clearly shows that the lattice quantizers provide

significantly better results than random projections, due to the

vectorial gain. These results confirm that the random projec-

tions used in E2LSH are unable to exploit the spatial consis-

tency. Note that this phenomenon was underlined in (Andoni

and Indyk, 2006; Jégou et al., 2008a). However, by contrast to

these works, the lattices we are evaluating are more flexible, as

they are defined for any value of d∗. In particular, the lattice E8

used in (Jégou et al., 2008a) is a special case of the D+ lattice.

Figure 2 also shows that the various types of lattice perform

differently. We observe an improvement of the nearest neighbor

recall with lattices D and D+ compared to random projections

whereas lattice A gives similar performance. The density of D+

is known to be twice the density of D. In high dimensions, the

density of A is small compared to that of D. Overall, density

clearly affects the performance of lattices. However, density is

not the only crucial parameter. The shape of the fundamental

region and its orientation may also be influential, depending on

the distribution of the dataset.

Before discussing the performance of the unstructured quan-

tizers evaluated in this paper and shown on Figure 2, it is nec-

essary to put some emphasis on the behavior of quantization

mechanisms with respect to the distribution of data and the re-

sulting cardinality in Voronoi cells.

3.5.2. Structured vs unstructured quantizers

Hashing with lattices intrinsically defines Voronoi cells that

all have the same size, that of the fundamental region. This is

(a) Random projections (b) A2 lattice

(c) k-means (d) k-means

Uniform distribution Gaussian distribution

Figure 3: Voronoi regions associated with random projections (a), lattice A2 (b)

and a k-means quantizer (c,d).

not relevant for many types of high-dimensional data, as some

regions of the space are quite populated, while most are void.

This is illustrated by Figure 3, which shows how well the k-

means is able to fit the data distribution. Figure 3 depicts the

Voronoi diagram associated with the different hash functions

introduced in this section, and consider two standard distribu-

tions. The dimensions d = d∗ = 2 are chosen for the sake of

presentation.

As mentionned above, by construction the structured quan-

tizers (see Figures 3(a) and 3(b)) introduced above lead to

Voronoi cells of equal sizes. This property is not desirable in

the LSH context, because the number of retrieved points is too

high in dense regions and too small in regions yielding small

vector density.

Considering the k-means quantizer in Figure 3(c), we first

observe that for a uniform distribution, the shape of the cells

is close to the one of the A2 lattice, which is optimal for this

distribution. But k-means is better for other distributions, as

the variable volume of the cells adapts to the data distribution,

as illustrated for a Gaussian distribution in Figure 3(d). The

cell size clearly depends on the vector density. Another obser-

vation is that k-means exploits the prior on the bounds of the

data, which is not the case of the A2 lattice, whose optimality

is satisfied only in the unrealistic setup of unbounded uniform

vectors.

As a result, for structured quantizers, the cell population is

very unbalanced, as shown by Figure 4. This phenomenon pe-

nalizes the selectivity of the LSH algorithm. In contrast to these

quantizers, the k-means hash function exploits both the vec-

torial gain and the empirical probability density function pro-
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means.

vided by the learning set. Because the Voronoi cells are quite

balanced, the variance of the number of vectors returned for a

query is small compared to that of structured quantizers.

Turning back to Figure 2, one can clearly observe the better

performance of the k-means hash function design in terms of

the trade-off between recall and selectivity. For the sake of fair-

ness, the codebook (i.e., the centroids) has been learned on a

distinct set: k-means being an unsupervised learning algorithm,

learning the quantizer on the set of data would overestimate the

quality of the algorithm for a new set of vectors. The improve-

ment obtained by using this hash function construction method

is very significant: the selectivity is about two order of magni-

tude smaller for the same recall.

Although HKM is also learned to fit the data, it is inferior

to k-means, due to poorer quantization quality. The lower the

branching factor is, the closer the results are compared to those

of k-means. The two extremal cases depicts in Fig. 2, i.e., 1)

a fixed tree height of 2 with varying branching factor and 2)

the binary tree (bf = 2) delimits the regions in which all other

settings lie. As expected, the performance of HKM in terms of

selectivity/recall is the inverse of the one in terms of the query

preparation cost. Therefore, considering Equation 3, the trade-

off between bf and ht appears to be a function of the vector

dataset size.

3.5.3. Query preparation cost

Table 1 shows the complexity of the query preparation cost

qpc associated with the different hash functions we have intro-

duced. Note that this table reflects the typical complexity in

terms of the number of operations. It could clearly be refined

by considering the respective costs of these knowing the archi-

tecture on which the hashing is performed.

Lattices are the most efficient quantizers, even compared

with random projections. Using the k-means hash function is

slower than using random projection for typical parameters.

HKM is a good compromise, as it offers a relatively low query

preparation cost while adapting to the data.

hash function query preparation cost

random projection (E2LSH) m × d + d∗ × l

lattice Dd∗ d∗ × l

lattice D+
d∗

d∗ × l

lattice Ad∗ d∗ × l

k-means k × d × l

HKM bf × ht × l

Table 1: Query preparation cost associated with the different hash functions.

4. Querying mechanisms

In this section, we detail how the k-means approach is used

to build a complete LSH system, and analyze the corresponding

search results. The resulting algorithm is referred to as KLSH

in the following. We then build upon KLSH by proposing and

evaluating more sophisticated strategies, somehow similar in

spirit to those recently introduced in the literature, namely multi-

probing and query adaptive querying.

4.1. KLSH

Indexing d-dimensional descriptors with KLSH proceeds as

follows. First, it is necessary to generate l different k-means

clustering using the same learning set of vectors. This diversity

is obtained by varying initializations4 of the k-means. Note that

it is very unlikely that these different k-means gives the same

solution for k high enough, as the algorithm converges to a lo-

cal minimum only. Once these l codebooks are generated, each

one being represented by its centroids {c j,1, . . . , c j,k}, all the vec-

tors to index are read sequentially. A vector to index is assigned

to the nearest centroid found in one codebook. All codebooks

are used in turn for doing the l assignments for this vector be-

fore moving to the next vector to index. Note this mechanism

replaces the standard E2LSH H and g j hash functions from

Section 2.

At search time, the nearest centroid for each of the l k-

means codebooks is found for the query descriptor. The database

vectors assigned to these same centroids are then concatenated

in the short-list, as depicted by Algorithm 1. From this point,

the standard LSH algorithm takes on for processing the short

list.

The results for KLSH are displayed Figure 5. One can see

that using a limited number of hash functions is sufficient to

achieve high recall. A higher number of centroids leads to the

best trade-off between search quality and selectivity. However,

as indicated section 2.2, the selectivity measures the asymptotic

behavior for large datasets, for which the cost of this qpc stage

is negligible compared to that of treating the set of vectors re-

turned by the algorithm.

For small datasets, the selectivity does not solely reflect the

“practical” behavior of the algorithm, as it does not take into

4This is done by modifying the seed when randomly selecting the initial

centroids from the learning set.
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Algorithm 1 – KLSH, search procedure

Input: query vector q

Output: short-list sl

sl = ∅

for j = 1 to l do

// find the nearest centroid of q from codebook j:

i∗ = arg min
i=1,...,k

L2(q, c j,i)

sl = sl ∪ {x ∈ cluster(c j,i∗)}

end for
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Figure 5: Performance LSH with k-means hash functions for a varying number

l of hash functions.

account qpc. For KLSH, the overall cost is:

ocost = sel × n × d + k × l × d. (13)

The acceleration factor therefore becomes:

ac =
1

sel + k×l
n

. (14)

Figure 6 shows the acceleration factor obtained for a dataset

of one million vectors, assuming that a full distance calculation

is performed on the short-list. This factor accurately represents

the true gain of using the ANN algorithm when the vectors are

stored in main memory. Unlike what observed for asymptoti-

cally large datasets, for which the selectivity is dominant, one

can observe that there is an optimal value of the quantizer size

obtained for k = 512. It offers the best trade-off between the

query preparation cost and the post-processing of the vectors.

Note that this optimum depends on the database size: the larger

the database, the larger should be the number of centroids.

As a final comment, in order to reduce the query prepara-

tion cost for small databases, a approximate k-means quantizer

could advantageously replace the standard k-means, as done

in (Philbin et al., 2007). Such quantizers assign vectors to cell

indexes in logarithmic time with respect to the number of cells

k, against linear time for standard k-means. This significantly

reduces the query preparation cost, which is especially useful

for small datasets.
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Figure 6: Acceleration factor of LSH over exhaustive search. Both the query

preparation cost and the final distance calculation are included.

Algorithm 2 – Multi-probe KLSH, search procedure

Input: query vector q

Output: short-list sl

sl = ∅

for j = 1 to l do

// find the mp nearest centroids of q from codebook j:

(i∗1, . . . , i∗m) = mp- arg min
i=1,...,k

L2(q, c j,i)

sl = sl ∪
⋃

i∗=i∗1,...,i∗m
{x ∈ cluster(c j,i∗)}

end for

4.2. Multi-probe KLSH

Various strategies have been proposed in the litterature to

increase the quality of the results returned by the original LSH

approach. One series of mechanisms extending LSH uses a so-

called multi-probe approach. In this case, at query time, several

buckets per hash function are retrieved, instead of one (see Lv

et al. (2007) and Joly and Buisson (2008)). Probing multiple

times the index increases the scope of the search, which, in turn,

increases both recall and precision.

Originally designed for structured quantizers, this multi-

probe approach can equally be applied to our unstructured scheme

with the hope of also improving precision and recall. For the

k-means hash functions, multi-probing can be achieved as fol-

lows. Having fixed the number mp of buckets that we want to

retrieve, for each of the l hash function, we select the mp clos-

est centroids of the unstructured quantizer g j = {c j,1, . . . , c j,k}.

Algorithm 2 briefly presents the procedure.

The vectors associated with the selected mp buckets are then

returned for the l hash functions. Note that choosing mp = 1 is

equivalent to using the basic KLSH approach. The total number

of buckets retrieved is l × mp. Therefore, for a fixed number of

buckets, the number of hash functions is reduced by a factor

mp. The memory usage and the query preparation cost are thus

divided by this factor.

Figure 7 shows the results obtained when using l = 1 and

varying values of mp, i.e. for a single hash function. The re-
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Figure 7: Multi-probe KLSH for a single hash function (l = 1) and varying

numbers of visited cells mp.

sults are reasonably good, especially considering the very low

memory usage associated with this variant. However, compar-

ing Figures 5 and 7, the recall is lower for the same selectivity.

This is not surprising, as in KLSH, the vectors which are re-

turned are localized in the same cell, whereas the multi-probe

variant returns some vectors that are not assigned to the same

centroid.

For small datasets, for which the query preparation cost is

not negligible, this multi-probe variant is of interest. This is

the case for our one million vectors dataset: Figure 8 shows

the better performance of the multi-probe algorithm compared

to the standard querying mechanism (compare to Figure 6).

This acceleration factor compares favorably against state-of-

the-art methods of the literature. In a similar experimental setup

(dataset of 1 million SIFT descriptors), (Muja and Lowe, 2009)

reports, for a recall of 0.90, an acceleration factor lower than

100, comparable to our results but for a higher memory usage:

the multi-probe KLSH structure only uses 4 bytes per descriptor

for mp = 1.

4.3. Query-adaptive KLSH

While multi-probing is one direction for improving the qual-

ity of the original structured LSH scheme, other directions ex-

ist, like the query-adaptive LSH by Jégou et al. (2008a). In a

nutshell, this method adapts its behavior because it picks from

a large pool of existing random hash-functions the ones that are

the most likely to return the nearest neighbors, on a per-query

basis.

As it enhances result quality, this principle can be applied

to our unstructured approach. Here, instead of using a single

k-means per hash function, it is possible to maintain a poll of

independent k-means. At query time, the best k-means can be

selected for each hash-function, increasing the likelyhood of

finding good neighbors.

Before developping the query-Adaptive KLSH, we must de-

scribe the original query-adaptive LSH to facilitate the under-

standing of the remainder. Query-Adaptive LSH as described
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Figure 8: Multi-probe KLSH: Acceleration factor of LSH over exhaustive

search.

in Jégou et al. (2008a) proceeds as follows (this is also summa-

rized in Algorithm 3):

• The method defines a pool l of hash functions, with l

larger than in standard LSH.

• For a given query vector, a relevance criterion λ j is com-

puted for each hash function g j. This criterion is used to

identify the hash functions that are most likely to return

the nearest neighbor(s).

• Only the buckets associated with the p most relevant hash

functions are visited, with5 p ≤ l.

The relevance criterion proposed in (Jégou et al., 2008a)

corresponds, for the E8 lattice, to the distance between the query

point and the center of the Voronoi cell. We use the same crite-

rion for our KLSH variant. For the query vector q, λ is defined

as

λ(g j) = min
i=1,...,k

L2

(

q, c j,i

)

. (15)

It turns out that this criterion is a byproduct of finding the

nearest centroid. Therefore, for a fixed number l of hash func-

tions, the pre-processing cost is the same as in the regular query-

ing method of KLSH. These values are obtained to select the p

best hash function as

p- arg min
j=1,...,l

λ(g j). (16)

The selection process is illustrated by the toy example of

Figure 9, which depicts a structure comprising l = 4 k-means

hash functions. Intuitively, one can see that the location of a de-

scriptor x in the cell has a strong impact on the probability that

its nearest neighbor is hashed in the same bucket. On this ex-

ample, only the second clustering ( j = 2) puts the query vector

and its nearest neighbor in the same cell.

5For p = l, the algorithm is equivalent to the KLSH.
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j = 1 j = 2 j = 3 j = 4

Figure 9: Toy example: hash function selection process in query-adaptive KLSH. The length of the segment between the query vector (circled) and its nearest

centroid corresponds to the relevance criterion λ j ( j = 1..4). Here, for p = 1, the second hash function ( j = 2) is used and returns the correct nearest neighbor

(squared).
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Figure 10: Query-adaptive KLSH: performance when using a single hash func-

tion among of pool of l hash functions, l=1,2,3,5,10,20,25,50,100. For a given

number k of clusters, the selectivity is very stable and close to 1/d: 0.0085 for

k=128, 0.0021 for k=512, 0.00055 for k=2048 and 0.00014 for k=8192.

In order for the query-adaptive KLSH to have interesting

properties, one should use a large number l of hash functions.

This yields two limitations for this variant:

• the memory required to store the hash tables is increased;

• the query preparation cost is higher, which means that

this variant is interesting only for very large datasets, for

which the dominant cost is the processing of the vectors

returned by the algorithm.

The selection of the best hash functions is not time consum-

ing since the relevance criterion is obtained as a by-product of

the vector quantization for the different hash functions. How-

ever, this variant is of interest if we use more hash functions

than in regular LSH, hence in practice its query preparation cost

is higher. For a reasonable number of hash functions and a large

dataset, the bottleneck of this query adaptive variant is the last

step of the “exact” LSH algorithm. This is true only when the

Algorithm 3 – Query-adaptive KLSH, search procedure

Input: query vector q

Output: short-list sl

sl = ∅

// select the p hash functions minimizing λ(g j(q)):

( j1, . . . , jp) = p- arg min
j=1,...,l

λ(g j(q))

for j ∈ ( j1, . . . , jp) do

// find the nearest centroid of q from codebook j:

i∗ = arg min
i=1,...,k

L2(q, c j,i)

sl = sl ∪ {x ∈ cluster(c j,i∗)}

end for

dominant cost is the processing cost of the search for the exact

nearest neighbors within the short-list obtained by parsing the

buckets. This is not the case in our experiments on one mil-

lion vectors, in which the acceleration factor obtained for this

variant is not as good as those of KLSH and multi-probe KLSH.

Figure 10 gives the selectivity obtained, using only one vot-

ing hash function (p = 1), for varying sizes l of the set of hash

functions. Unsurprisingly, the larger l, the better the results.

However, most of the gain is attained by using a limited num-

ber of hash functions. For this dataset, choosing l = 10 seems a

reasonable choice.

Now, using several voting hash functions, i.e., for p > 1,

one can observe in Figure 11 that the query-adaptive mecha-

nism significantly outperforms KLSH in terms of the trade-off

between selectivity and efficiency. In this experiment the size

of the pool is fixed to l = 100. However, on our “small” dataset

of one million descriptors, this variant is not interesting for this

large number of hash functions: the cost of the query prepa-

ration stage (k × l × d) is too high with respect to the post-

processing stage of calculating the distances on the short-list.

This contradictory result stems from the indicator: the selectiv-

ity is an interesting complexity measurement for large datasets

only, for which the query preparation cost is negligible com-

pared to that of processing the vectors returned by the algo-

rithm.
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Figure 11: Query adaptive KLSH: performance for a fixed pool of l = 100

k-means hash functions and a varying number p of selected hash functions.

4.4. Discussion

4.4.1. Off-line processing and parametrization

One of the drawbacks of k-means hash functions over struc-

tured quantizers is the cost of creating the quantizer. This is es-

pecially true for the query-adaptive variant, where the number

l of hash functions may be high. However, in many applica-

tions, this is no a critical point, as this clustering is performed

off-line. Moreover, this is somewhat balanced by the fact that

KLSH admits a simpler optimization procedure to find the op-

timal parametrization, as we only have to optimize the parame-

ter k, against two parameters w and d∗ for the structured quan-

tizer. Finally, approximate k-means reduces the cost of both the

learning stage and the query preparation. It is therefore not sur-

prising that the emerging state-of-the-art ANN methods, e.g.,

(Muja and Lowe, 2009), relies on such partitioning methods.

4.4.2. Which querying mechanism should we use?

It appears that each of the querying mechanism proposed in

this section may be the best, depending on the context: dataset

size, vector properties and resource constraints. The less memory-

demanding method is the multi-probe version. For very large

datasets and with no memory constraint, query-adaptive KLSH

gives the highest recall for a fixed selectivity. If, for the fine

verification, the vectors are read from a low-efficiency storage

device, e.g., a mechanical hard drive, then the query-adaptive

version is also the best, as in that case the bottleneck is to read

the vectors from the disk. As a general observation, multi-

probe and query adaptive KLSH offer opposite properties is

terms of selectivity, memory usage and query preparation cost.

The “regular” KLSH is in between, offering a trade-off between

these parameters. Overall, the three methods are interesting, but

for different operating points.

5. Conclusion

In this paper, we have focused on the design of the hash

functions and the querying mechanisms used in conjunction

with the popular LSH algorithm. First, confirming some results

of the literature in a real application scenario, we have shown

that using lattices as stronger quantizers significantly improve

the results compared to the random projections used in the Eu-

clidean version of LSH. Second, we have underlined the lim-

itations of structured quantizers, and show that using unstruc-

tured quantizers as a hash functions offer better performance,

because it is able to take into account the distribution of the

data. The results obtained by k-means LSH are appealing: very

high recall is obtained by using only a limited number of hash

functions. The speed-up over exhaustive distance calculation is

typically greater than 100 on a one million vector dataset for a

reasonable recall. Finally, we have adapted and evaluated two

recent variants of the literature, namely multi-probe LSH and

query-adaptive LSH, which offer different trade-offs in terms

of memory usage, complexity and recall.

Acknowledgements

The authors would like to thank the Quaero project for its

financial support.

References

Agrell, E., Eriksson, T., Vardy, A., Zeger, K., 2002. Closest point search in

lattices. IEEE Trans. on Information Theory 48 (8), 2201–2214.

Andoni, A., Indyk, P., 2006. Near-optimal hashing algorithms for near neigh-

bor problem in high dimensions. In: Proceedings of the Symposium on the

Foundations of Computer Science. pp. 459–468.

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U., August 1999. When is

”nearest neighbor” meaningful? In: Intl. Conf. on Database Theory. pp.

217–235.
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