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Abstract Data Assimilation is a mathematical framework used in environmental sci-

ences to improve forecasts performed by meteorological, oceanographic or air quality

simulation models. It aims to solve an evolution equation, describing the temporal

dynamics, and an observation equation, linking the state vector and observations. In

this article we use this framework to study a class of ill-posed Image Processing prob-

lems, usually solved by spatial and temporal regularization techniques. An approach

is proposed to convert an ill-posed Image Processing problem in terms of a Data As-

similation system, solved by a 4D-Var method. This is illustrated by the estimation of

optical flow from a noisy image sequence, with the dynamic model ensuring the tem-

poral regularity of the result. The innovation of the paper concerns first, the extensive

description of the tasks to be achieved for going from an image processing problem

to a data assimilation description; second, the theoretical analysis of the covariance

matrices involved in the algorithm; and third a specific discretisation scheme ensuring

the stability of computation for the application on optical flow estimation.

Keywords computer vision, inverse problems, data assimilation, non linear advection,

optical flow.

1 Introduction

In the research field of Image Processing, most problems are ill-posed (according to

Hadamard definition) in the sense that it is not possible to provide a unique solution

[4]. A first cause of ill-posedness is that the equations used to model image properties

are under-determined. An example is given by the famous “aperture problem” occurring
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in the estimation of optical flow: a further constraint is required to compute a unique

field of velocity vectors. As an image processing problem is usually modelled by a

system of equations to be solved, the so-called Image Model, this type of ill-posedness

means that the Image Model is not invertible. A second cause of ill-posedness occurs

when the computation of image features can be obtained by different algorithms. For

example, determining image gradient requires to approximate a differential operator

by a discrete one among several possible finite difference formulations; each one with

a different result.

An usual strategy to solve ill-posed problems is to provide additional informa-

tion to the Image Model. Two options may be considered. 1) Explicit information:

complementary images are used to enlarge the set of input data. However, this is gen-

erally not possible because additional acquisitions, having the requested properties,

are not available. 2) Implicit information such as hypotheses on image properties or

constraints on the solution. A usual way is to restrict the dimension of the space of

admissible solutions. For instance, the result may be searched among the functions

with bounded spatial variations, which is called “Tikhonov regularization method” in

the literature [22]. In the general case, these additional properties or constraints are

expressed as equations, which, combined to the Image Model, lead to a new invertible

model.

Assuming not only one or two images but a whole sequence is available, enhance-

ment may be obtained by taking into account the temporal evolution. Let us illustrate

this on the image segmentation issue, which is a pure static problem. A spatial regu-

larization method, such as Shah-Mumford’s functional [10], produces a segmentation

which is a compromise between a spatially smooth solution and the adequacy to the

input data. If the segmentation process is performed directly on the whole sequence,

following [26], the solution is then seek as a function depending on the spatial and

temporal coordinates. This space-time approach has however several drawbacks. First,

it imposes an arbitrary temporal regularity, which can not deal with complex dynam-

ics. Second, missing data are taken into account in the process and introduce errors

in the final solution. By “missing data”, we refer to pixels’ values displaying a wrong

information due to either a failure of the acquisition system or noise. Third, as the

solution is looked for in the space-time domain, this leads to an high computing com-

plexity compared to a pure spatial model, which is a limiting factor for operational

applications.

As the space-time approach fails in case of missing data, an alternative is to consider

the temporal dynamics of the data. One challenge becomes to write an efficient dynamic

model and to include it in the solution computation. Such information can be inferred,

for instance, from a priori knowledge on the observed phenomena and related images.

Moreover, data quality has to be evaluated in order to ignore missing data in the

process. The first innovation of the paper is thus to use the dynamic model and the

data quality measure to rewrite the image processing problem in a Data Assimilation

system [8] in a generic way.

A Data Assimilation method solves a system of three equations with respect to a

state vector, corresponding to the studied quantities:

– an evolution equation describes the evolution of the state vector over time, using

an operator called the “evolution model”;

– an “observation equation” models the links between the state vector and the ob-

servations provided by the image sequence;
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– the initial condition of the state vector.

Each equation of the system only approximates the reality and a description of the

error is stated in terms of a Gaussian noise characterized by a covariance matrix. For

a given error, such matrix depicts the dependencies between error’s coordinates on the

one hand, and between two different locations in the space-time domain on the other

hand.

We aim to use Data Assimilation as a generic framework to solve ill-posed Image

Processing problems. The spatio-temporal regularization constraint is replaced by an

evolution equation. Image dynamics being correctly approximated by this equation, the

first drawback of the space-time approach is no more occurring. Describing the tasks to

be achieved for going from an ill-posed image processing problem to a data assimilation

system is the first contribution of this paper. A study of covariance matrices and

their impact during the energy minimization has been performed. We show how a

relevant choice allows to deal with missing data and solve the second drawback of

the space-time approach. This is the second contribution of this work. These general

considerations are illustrated on the problem of optical flow estimation. The third

contribution is to propose a robust and innovative numerical scheme to implement the

transport of velocity by itself, used in this paper as evolution equation. We show that

the computation of the state vector can then be done locally in time, with specific

choices for covariance matrices. This allows the algorithm to work on a frame-by-frame

basis, unlike the space-time approach.

This article is organized as follows. Section 2 introduces the concept and difficulties

of ill-posed problems in the Image Processing research field. We give some typical exam-

ples and present a short start-of-the-art of Tikhonov regularization methods. Section 3

describes the variational Data Assimilation method known as the 4D-Var algorithm.

How can Data Assimilation be used to solve ill-posed problems by assimilating images

in an appropriate evolution model is explained in Section 4. Section 5 is then a direct

application describing how to compute optical flow in this framework, using a robust

numerical scheme. It also presents and discusses experimental results. We conclude in

Section 6 and give some scientific perspectives to this research study.

2 Ill-posed problems in Image Processing

Hadamard gave the following definition: a problem is well-posed if 1) it has a unique

solution, 2) the solution depends continuously on the input [4]. A problem which does

not meet these conditions is called ill-posed. Using this definition, optical flow esti-

mation, image registration, curves or surfaces matching, tracking of multiple objects,

segmentation, restoration, deconvolution, denoising and shape from shading are well

known ill-posed image processing problems because the equations used for modeling

them are under-constrained (see the aperture problem of optical flow for instance).

Links between image properties and the solution are modeled as a set of equations

constituting the so-called Image Model. The image, input data, is denoted Y and

depends on the spatial coordinate x in a bounded domain denoted Ω. The solution of

the problem, denoted X, is not necessarily an image: it can be a velocity field, a curve,

etc. To be general, the Image Model is mathematically written as:

■(X,Y)(x) = 0 ∀x ∈ Ω (1)

with ■ a differentiable operator that may be:
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– linear: ■(X,Y) = Y−A(X) with A linear. This is a typically the case for segmen-

tation, restoration, denoising, deconvolution: ■ measures the discrepancy between

the input image and the solution filtered by the operator A.

– non linear. A common situation in image processing is the following: ■(X,Y) =

B(Y(C(X)). The input data Y is only considered on the pixels C(X) depending on

the solution. For example, ■(X,Y)(x) = −‖∇Y(X(x))‖ for the well known active

contour or ■(X, Y1, Y2)(x) = Y2(x + X(x)) − Y1(x) for estimating the optical flow

X between two images Y1 and Y2.

In this section, attention is focused on variational methods: instead of directly

solving (1), an optimization problem is formulated and the solution is obtained by

minimizing E(X) =

Z

Ω

Ψ(‖■(X,Y)‖)dx with Ψ a convex function such as Ψ(0) = 0.

As Equation (1) is under-constrained, a possible method to obtain a unique solution is

to use the Tikhonov regularization. This is performed by adding a second term to the

functional E which becomes:

E(X) =

Z

Ω

0

@Ψ(‖■(X,Y)‖) +
X

n≥0

αnΨ

„‚

‚

‚

‚

∂nX

∂xn

‚

‚

‚

‚

«

1

A dx (2)

An usual choice is to set αn = 0 for n 6= 1 ensuring a first order regularization or

αn = 0 for n 6= 1, 2 ensuring a second order regularization. The norm used in the reg-

ularizing term is often the Euclidean norm but other choices are possible: for instance,

to determine optical flow, Nagel uses in [11] an oriented norm driven by the local image

configuration. The regularization performed by the algorithm is then weak on edges

and strong otherwise. The minimization of E is led in the calculus of variation frame-

work: the solution is searched as the zero of the Euler-Lagrange equation associated

to (2):
∂E

∂X
= 0, with

∂E

∂X
denoting the differential of E with respect to X. With a first

order regularization, ∂
∂x

is usually denoted ∇, and

E(X) =
R

(Ψ(‖■(X,Y)‖) + α1Ψ(‖∇X‖)) dx. The general expression of the correspond-

ing Euler-Lagrange equation becomes:

Ψ
′(‖■(X,Y)‖) ∂■

∂X
− α1∇.

„

Ψ
′(‖∇X‖) ∇X

‖∇X‖

«

= 0 (3)

It is discretized by finite differences and the solution is obtained using a Jacobi or

Gauss-Seidel method in the linear case and a method of steepest descent or conjugate

gradient otherwise.

From the beginning of this section, the image Y is considered as only depending

on the spatial coordinate x and the Image Model ■ is then static. In the case of optical

flow computation, at least two frames are required to compute the temporal derivatives,

but the result obtained on one image, using (3), has no link with those obtained on

adjacent frames. An improved solution, when dealing with a temporal sequence, has

been proposed by Weickert et al [26] and consists in minimizing the functional:

E(X) =

Z

Ω

Z

T

0

0

@Ψ(‖■(X,Y)‖) +
X

n≥0

αnΨ

„‚

‚

‚

‚

∂nX

∂xn

‚

‚

‚

‚

,

‚

‚

‚

‚

∂X

∂t

‚

‚

‚

‚

«

1

A dxdt (4)

with X and Y becoming space-time dependent. Such a functional describes accurately

linear dynamics but becomes irrelevant otherwise. Moreover, missing data are taken
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into account during the computation: the method performs a smoothing of these aber-

rant values on the spatio-temporal neighborhood. Last, the time being viewed as an

additional dimension, a consequence is the proportional increase of the problem’s size.

A huge memory is then requested for processing a large sequence.

A partial answer to the problem of dealing with complex dynamics and missing

data is to include a model of the temporal evolution. This implies to be able to solve

simultaneously the Image Model ■ and the evolution equation. This possibility is offered

by the Data Assimilation framework described in the following Section.

3 The Data Assimilation framework

3.1 Mathematical setting

Let X being the state vector depending on the spatial coordinate x and time t. X is

defined on A = Ω× [0, T ], Ω being the spatial domain and [0,T] the temporal domain.

We assume X is evolving in time according to:

∂X

∂t
(x, t) +▼(X)(x, t) = Em(x, t) (5)

▼, named evolution model, is supposed differentiable. As ▼ may describe approxi-

mately the evolution of the state vector, a model error Em is introduced to quantify

the imperfections.

We consider having knowledge on the initial condition of the state vector at t = 0:

X(x, 0) = Xb(x) + Eb(x) (6)

with Xb named the background value and Eb denotes the background error.

Observations Y(x, t) are available at location x and date t and linked to the state

vector through the observation equation:

Y(x, t) = ❍(X)(x, t) + EO(x, t) (7)

Equation (7) is the standard form of the observation equation used in the Data Assim-

ilation literature. However, this formulation is quite restrictive to describe the links,

possibly complex, existing between the observations and the state vector. To be more

general, the following will be used in this paper:

❍(Y,X)(x, t) = EO(x, t) (8)

which includes the previous formulation (7). The observation error EO simultaneously

represents the imperfection of the observation operator ❍ and the measurement errors.

Em, Eb and EO are assumed to be Gaussian and then fully characterized by their

covariance matrices Q, B and R [21]. Let Z denote a Gaussian stochastic vector de-

pending on a space-time coordinate (x, t); Z = Z(x, t) and Z′ = Z(x′, t′) are random

vectors on the two given locations. The covariance matrix Σ, computed for Z and Z′,

measures their dependency and is defined by:

Σ(x, t,x′
, t

′) =

Z

(Z −❊Z)T (Z′ −❊Z′)dPZ,Z′ (9)

with PZ,Z′ the joint distribution of
`

Z,Z′
´

and ❊ denoting the expectation.
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3.2 Variational formulation

In order to solve the system (5), (6) and (8) with respect to X having a maximal

probability, the following functional, to be minimized, is defined:

E(X) =
1

2

Z

A

Z

A

„

∂X

∂t
+▼(X)

«T

(x, t)Q−1(x, t,x′
, t

′)

„

∂X

∂t
+▼(X)

«

(x′
, t

′)dxdtdx′
dt

′

+

Z

A

Z

A

❍(X,Y)T (x, t)R−1(x, t,x′
, t

′)❍(X,Y)(x′
, t

′)dxdtdx′
dt

′

+

Z

Ω

Z

Ω

`

X(x, 0) − Xb(x)
´T

B
−1(x,x′)

`

X(x′
, 0) − Xb(x

′)
´

dxdx′

(10)

As Em, Eb and EO are assumed to be independent, the functional E represents the

log-density of X law [2]. The minimization is carried out by solving the associated

Euler-Lagrange equation. The differential
∂E

∂X
is obtained by computing the derivative

of E with respect to X in direction η:

∂E

∂X
(η) = lim

γ→0

d

dγ
(E(X + γη)) (11)

and by introducing an auxiliary variable λ, called the adjoint variable in the literature

of Data Assimilation:

λ(x, t) =

Z

A

Q
−1(x, t,x′

, t
′)

„

∂X

∂t
+▼(X)

«

(x′
, t

′)dx′
dt

′ (12)

We detail in Appendix A the determination of the Euler-Lagrange equation associated

to (10). This leads to the following so-called Optimality System [9]:

λ(x,T) = 0 (13)

−∂λ

∂t
+

„

∂▼

∂X

«∗

λ = −
Z

A

„

∂❍

∂X

«∗

(x, t)R−1
❍(X,Y)(x′

, t
′)dx′

dt
′ (14)

X(x, 0) =

Z

Ω

Bλ(x′
, 0)dx′ + Xb(x) (15)

∂X

∂t
+▼(X) =

Z

A

Qλ(x′
, t

′)dx′
dt

′ (16)

Because the initial condition for λ is given at time T (13), λ must be computed back-

ward in time using (14). Equation (14) makes use of two adjoint operators denoted
„

∂▼

∂X

«∗

and

„

∂❍

∂X

«∗

. Adjoint operators are also called dual operators in the mathe-

matics literature. For a given operator ❑, we have:

Z

(❑(η))T λdµ =

Z

η
T
❑

∗(λ)dµ (17)

for all integrable functions η and λ. Riesz’s theorem ensures the existence and unique-

ness of the adjoint operator. For clarifying the discussion, let us determine the adjoint
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operator of ❑ =
∂

∂x
in an interval [a, b]:

Z b

a

∂f

∂x
(x)g(x)dx = [f(x)g(x)]x=b

x=a −
Z b

a

f(x)
∂g

∂x
(x)dx

=

Z b

a

f(x)

„

(δ(x − b) − δ(x − a)) g(x) − ∂g

∂x
(x)

«

dx

=

Z b

a

f(x)

„

∂g

∂x

«∗

(x)dx

The adjoint operator of
∂

∂x
in [a, b] is then

„

∂

∂x

«∗

= δ(x − b) − δ(x − a) − ∂

∂x
.

If ❑ is a differential operator, the adjoint operator is then a compact notation for

integration by parts.

3.3 Incremental algorithm

Solving the Optimality System is however not straightforward: the state vector is de-

termined by equations (15,16) using the adjoint variable and the adjoint variable is

determined by equations (13,14) using the state vector. To break this deadlock, an

incremental method is applied. The underlying idea comes from the following lemma:

min
w∈V(w0)

E(w) = min
δw∈V(0)

E(w0 + δw)

where w0 denotes a local minimum of E and V(w0) denotes one neighborhood of w0.

The state vector is therefore written as Xb + δX where Xb is called the background

variable in the Data Assimilation literature, and δX is the incremental variable. X is

then replaced by Xb + δX in equations (14), (15) and (16). If ▼ and ❍ are non linear

operators, we obtain:

▼(X) ≃ ▼(Xb + δX) =▼(Xb) +
∂▼

∂X

˛

˛

˛

Xb

(δX) (18)

❍(X,Y) ≃ ❍(Xb + δX,Y) = ❍(Xb,Y) +
∂❍

∂X

˛

˛

˛

Xb

(δX) (19)

from a first order Taylor development of ▼ and ❍ at Xb. Equations (18) and (19)

become equalities if ▼ and ❍ are linear. In both cases, (18,19) lead to the following

new system:

λ(x,T) = 0 (20)

−∂λ

∂t
+

„

∂▼

∂X

˛

˛

˛

Xb

«∗

λ = −
Z

A

„

∂❍

∂X

˛

˛

˛

Xb

«∗

R
−1
„

❍(Xb,Y) +
∂❍

∂X

˛

˛

˛

Xb

(δX)

«

dx′
dt

′

(21)

Xb(x, 0) = Xb(x) (22)

∂Xb

∂t
+▼(Xb) = 0 (23)

δX(x, 0) =

Z

Ω

Bλ(x′
, 0)dx′ (24)

∂δX

∂t
+

∂▼

∂X

˛

˛

˛

Xb

(δX) =

Z

A

Qλ(x′
, t

′)dx′
dt

′ (25)
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The background variable Xb is first calculated from equations (22) and (23). The

adjoint variable λ is then obtained from the background variable using equations (20)

and (21). Last, the incremental variable δX is obtained from the adjoint variable using

equations (24) and (25).

If ▼ and ❍ are not linear, equations (20,21,24,25) only produce an approximated

solution Xb + δX due to the first order Taylor development described in (18) and (19).

In this case, the incremental algorithm is applied iteratively until convergence. This

iterative method, indexed by i, is summarized in the following:

1. Initialization (i = 0) :

(a) Compute the background variable Xb from the initial condition of the state

vector at t = 0 in (6):

Xb(x, 0) = Xb(x)

∂Xb

∂t
+▼(Xb) = 0, ∀t ∈ [0,T]

(b) Initialize the incremental variable:

δX(x, t) = 0, ∀t ∈ [0,T]

2. Do i = i + 1 and :

(a) Compute the adjoint variable λ from t = T to t = 0:

λ(x, T ) = 0

−∂λ

∂t
+

„

∂▼

∂X

˛

˛

˛

Xb

«∗

(λ) = −
Z „

∂❍

∂X

˛

˛

˛

Xb,Y

«∗

R
−1

»

❍(Xb,Y) +
∂❍

∂X

˛

˛

˛

Xb,Y
(δX)

–

dx′
dt

′

(b) Update the value of background variable:

Xb(x, t) = Xb(x, t) + δX(x, t)

(c) Compute the incremental variable δX (required for the next iteration) from

t = 0 to t = T :

δX(x, 0) =

Z

B(x,x′)λ(x′
, 0)dx′

∂δX

∂t
+

∂▼

∂X

˛

˛

˛

Xb

(δX) =

Z

Q(x, t,x′
, t

′)λ(x′
, t

′)dx′
dt

′

Back to step 2 until ‖δX‖2 ≤ ǫ.

3. Final result is Xb + δX.

4 Assimilation of images

This section explains how to solve the ill-posed Image Processing problems using the

framework of Data Assimilation and constitutes the core of this research and one main

contribution of the paper. Using Data Assimilation to solve Image Processing problems

is a relatively recent domain. This idea has been described in [5] and the first applica-

tion has been published in [17]. Studies have been done on curve tracking [16,17] and
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determination of optical flow [14,15]. In [14] two evolution models are considered, a first

one describing fluid motion by the transport of vorticity and a second one describing

video motion using the transport of velocity by itself, stabilized by a diffusion process.

In [15] a shallow water model is considered to describe the atmospheric circulation.

In [7], a method is proposed to estimate the ocean surface circulation from SST data:

images are assimilated in a dynamic image model to produce pseudo-observations for

the oceanographic model. In this paper, we restrict to the case of ill-posed problems,

which have been solved in the literature using Tikhonov regularization methods. We

define a method to convert these problems, in a generic way, from the Tikhonov reg-

ularization to the Data Assimilation framework. The proposed method, which is the

first innovation of the paper, rewrites the Image Model and the regularization term

under the form of the system of three equations (5,6,8).

– First, the state and observation vectors have to be defined. Obviously, the obser-

vations will be images or processed images, but the components of the state vector

will strongly depend on the studied problem. For example, segmentation, denoising

and restoration use a state vector which is composed of the result’s values for all

pixels of the input image. Tracking, image registration and motion estimation use

a state vector whose components are the values of the resulting vector field. Active

contours use a curve.

– Second, a suitable equation describing the temporal evolution of the state vector has

to be stated (Subsection 4.2). Next, an observation equation is written expressing

the links between the state vector and the images (Subsection 4.3). Sometimes,

this link is highly indirect. For instance, as it is not possible to deduce the ocean

circulation from surface temperatures with a shallow-water model, a specific system

has to be stated with relevant evolution and observation equations [7].

– Third, the initial condition should be defined.

– Last, the errors, characterized by their covariance matrices, must be chosen for

the three equations. It is therefore crucial to understand the role of these matrices

inside functional (10). The second innovation of the paper is therefore to conduct

a full analysis of the errors and associated covariance matrices and their impact in

term of spatio-temporal regularization (Subsection 4.1).

4.1 Covariance matrix

A covariance matrix Σ being defined by equation (9), its inverse is formally and im-

plicitly defined [13] as:

Z

Σ
−1(x,x′′)Σ(x′′

,x′)dx′′ = δ(x − x′) (26)

We consider three possible choices of covariance and analyze their respective impact

in a functional
RR

FT (Z)Σ−1F (Z)dxdx′ which has to be minimized.

As a first example, let Σ be the Dirac covariance defined by Σ(x,x′) = δ
`

x − x′´.

This covariance expresses a null interaction between two space locations. The Dirac

function, δ (), has the following property:

Z

Ω

δ
`

x
′´

δ
`

x − x
′´

dx
′ = δ (x) (27)
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By identification of (26) and (27), we have Σ−1(x,x′) = δ
`

x − x′´ and:

ZZ

Ω2

F (Z)T (x)Σ−1(x,x′)F (Z)(x′)dxdx′ (28)

=

Z

Ω

F (Z)T (x)F (Z)(x)dx =

Z

Ω

‖F (Z)‖2
dx

A Dirac covariance is therefore acting like a zero-order regularization on F (Z).

More generally, we consider the case of an isotropic covariance which is written as

Σ(x,x′) = s(x − x′). In this case, determining its inverse from (26) is equivalent to

determine its inverse convolution defined by:

s
−1

⋆ s(x) = δ(x) (29)

This is more easily done in the Fourier domain as the latter equation is equivalent to:

ŝ−1 ⋆ s(ω) = 1

Using the convolution theorem, we have:

ds−1(ω)bs(ω) = 1

ds−1(ω) =
1

bs(ω)

and the inverse convolution s−1(x) is obtained by the inverse Fourier transform of
1

bs
.

Let us apply this with the exponential covariance defined by s(x) = exp

„

−|x|
σ

«

.

Its Fourier transform is
2σ

1 + σ2ω2
. We have:

ds−1(ω) =
1 + σ2ω2

2σ

s
−1(x) =

1

2σ

“

δ (x) − σ
2
δ
′′(x)

”

We replace the expression of Σ−1(x,x′) by s−1(x − x′) in the functional (28):

ZZ

Ω2

F (Z)T (x)Σ−1(x,x′)F (Z)(x′)dxdx′

=
1

2σ

Z

Ω

F (Z)T (x)

„

F (Z) − σ
2 ∂2F (Z)

∂x2

«

dx

=
1

2σ

Z

Ω

 

‖F (Z)‖2 + σ
2
‚

‚

‚

‚

∂F (Z)

∂x

‚

‚

‚

‚

2
!

dx (30)

Integration by parts is applied for deriving (30), assuming null boundary terms. The

exponential covariance is thus associated to a first-order regularization of F (Z).

Another possibility is the Gaussian covariance defined by s(x) = exp

„

−x2

σ2

«

.

Using the previous technique, the Fourier transform of the Gaussian function is first

established: bs(ω) = σ
√

π exp(−σ2

4
ω

2). The Fourier transform of the inverse covariance
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is thus ds−1(ω) =
1

σ
√

π
exp

„

σ2

4
ω

2
«

, but its inverse Fourier transform can not be

directly computed. Let us replace the exponential by its infinite series:

ds−1(ω) =
1

σ
√

π

X

n≥0

1

n!

„

σ2

4
ω

2
«n

=
1

σ
√

π

X

n≥0

anω
2n (31)

with an =
1

n!

“σ

2

”2n
. Remembering that 1 is the inverse Fourier transform of the Dirac

function and using the theorem of Fourier derivation, equation (31) leads to:

s
−1(x) =

1

σ
√

π

X

n≥0

an(i)2n ∂2n

∂x2n
δ(x)

=
1

σ
√

π

X

n≥0

an(−1)nδ
(2n)(x)

Let us examine the impact of such covariance in the functional (28):

ZZ

F (Z)T (x)Σ−1(x,x′)F (Z)(x′)dxdx′

=
1

σ
√

π

X

n≥0

(−1)nan

Z

F (Z)T (x)

„Z

δ
(2n)(x − x′)F (Z)(x′)dx′

«

dx

=
1

σ
√

π

X

n≥0

(−1)nan

Z

F (Z)T (x)F (2n)(Z)(x)dx

=
1

σ
√

π

Z

X

n≥0

an

‚

‚

‚

‚

∂nF (Z)

∂xn

‚

‚

‚

‚

2

(x)dx

Again, assuming null boundary conditions, we use a series of integration by parts to

derive to the final result. The Gaussian exponential covariance then corresponds to the

Tikhonov regularization at any order of F (Z).

The inversion of a covariance matrix Σ is however non-trivial and usually inaccessible.

Restrictive choices have to be made such as those previously described. In the general

case, it still remains possible to approximate the matrix of covariance using finite

difference operators and to inverse it using numerical techniques. Unfortunately, if the

discrete matrix is large, the inversion is costly and often numerically unstable. For

further details, the reader is referred to [13,21].

4.2 The evolution model

Tikhonov regularization is in fact assuming spatial properties of the result from heuris-

tics on the dynamics. These heuristics, with a better knowledge on the image dynamics,

could be efficiently written as an evolution equation of the state vector X. This evo-

lution law imposes a temporal regularity of X and consequently impacts in specific

spatial configurations.
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A first and simple heuristic about dynamics is to assume X being constant over

time, which is expressed by:
dX

dt
= 0

or:
∂X

∂t
+

∂X

∂x

∂x

∂t
= 0 (32)

This is a transport equation as
∂x

∂t
is a velocity vector. Identifying equation (32)

and (5), the evolution model is ▼(X)(x, t) =
∂X

∂x

∂x

∂t
. An example of using (32) as

evolution equation is given in Section 5 for optical flow estimation.

Another possible heuristic is to express the transport of the state vector as a diffu-

sion process, a physical law applying for chemical species or temperature. The general

formulation is:
∂X

∂t
= ∇T (D∇X) and by identification with equation (5), the evolution

model is▼(X) = −∇T (D∇X). The matrix D is a tensor characterizing simultaneously

the direction and the intensity of the diffusion. If D does not depend on spatial coor-

dinates, the diffusion is linear and equivalent to a smoothing process using a Gaussian

convolution [27]. It is also possible to drive the diffusion according to image character-

istics. A standard example is the Perona & Malik diffusion [18]: the tensor matrix D is

equal to c(‖∇X‖)Id with c a Gaussian function and Id the identity matrix, with the

result of smoothing the image on homogeneous regions and preserving contours. The

tensor matrix D can also take into account the orientation of the image gradient [24,

25] resulting in spatial regularization properties similar to that of Nagel [11].

The two previous definitions of ▼ remain restrictive for image sequences display-

ing complex dynamics. In these cases, the evolution model could be built using prior

information on the observed data. As a first example, dynamics can be approximated

by piecewise linear functions whose parameters are estimated by analyzing the evolu-

tion of the image probability density function with a particule filter method. However,

this issue remains complex and widely open. As a second example, an evolution model

based on a physical law is considered. In [7,15] a shallow-water equation is chosen for

modeling the evolution of apparent motion, which is an advection-diffusion equation

with additional forcing terms. However, this is specific to the ocean surface circulation

and can not be applied to a generic framework.

The covariance matrix Q, associated to the model error Em, is used in func-

tional (10) for regularizing
∂X

∂t
+▼(X). For this reason Q is chosen as Dirac covariance

as explained in Subsection 4.1. In such a way, we are ensuring that the temporal evo-

lution of X is coherent with the heuristics involved in the model ▼.

4.3 The observation equation

As previously pointed out, the observation equation describes the links between the

state vector and the observations. In the standard framework of Image Processing, an

image or a sequence of images provides the observations in the Image Model ■ expressed

in equation (1). The operator ❍, as it appears in equation (8), is then defined as the

image operator ■ i.e. ❍(X,Y) ≡ ■(X,Y).

The observation error EY, characterized by its covariance matrix R, has also to

be specified. R weights the contribution of observations in equation (21). Its inverse
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should then have values close to zero when observations should be discarded, which is

the case for missing data. Using the Dirac covariance, R is then written as:

R(x, t,x′
, t

′) = r(x, t)δ
`

x − x′´
δ
`

t − t
′´

with r a real matrix whose size corresponds to the number of components of ❍ and

the inverse is:

R
−1(x, t,x′

, t
′) = δ

`

x − x′´
δ
`

t − t
′´

r
−1(x, t) (33)

The matrix r−1 characterizes the quality of the observation: a high value indicates

that the observation value is relevant and a value close to zero indicates an irrelevant

observation value, which should not be included in the computation of the solution.

Assuming the availability of a function f measuring the confidence in observation data

(f ∈ [0, 1], f = 0 for no confidence), one possible formulation of r−1 is:

r
−1(x, t) = r0(1 − f(x, t)) + r1f(x, t) (34)

r−1(x, t) will be equal to a “minimal value” r0 if confidence is 0 and equal to a “maximal

value” r1 if confidence is 1. Matrices r0 and r1 are chosen to be constant and invertible.

For completeness, f is modeled as:

f(x, t) = fsensor(x, t)fnoise(x, t)f❍(x, t) (35)

fsensor indicates the availability of observation values: it is equal to 0 if data are not

or wrongly acquired by the sensor. fnoise characterizes data quality: it is close to 0 for

noisy data. f❍ measures the confidence in the observation model; it is close to 0 if the

observation equation is not valid.

With such definition of R, observation values with a low confidence will not be

considered during the computation of the solution of the Image Processing problem.

4.4 Conclusion

In this Section, we considered the class of ill-posed Image Processing problems which

are usually solved by constraining spatially and/or temporally the solution. We pro-

posed a generic method to convert the Image Model and the spatio-temporal regularity

constraint on the result in term of Data Assimilation components, as expressed in equa-

tions (5,6,8). The Image Model is taken as observation model and the observation error

weights the importance of the observation values in the computation of the state vector:

when data are irrelevant, their values are no more used. Of course, this is only possible

if the quality of the observations can be evaluated. The evolution equation describes

the temporal evolution of the state vector and we proposed two generic choices for the

operator▼. However, both are too restrictive to deal with complex temporal dynamics

and prior knowledge should be included when available. The coherency of the temporal

evolution through the operator ▼ is ensured by the covariance matrix Q and we gave

three examples of regularization. In the next Section, we illustrate how to use Data

Assimilation to determine optical flow by applying these general principles.
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5 Application to optical flow estimation

Let I be a sequence of images on a bounded domain of ❘2, denoted Ω. Let W(x, t) be

the velocity vector of a point x ∈ Ω between t and t + △t, verifying:

I(x + W(x, t)△t, t + △t) = I(x, t) (36)

As this equation is non linear with respect to W, the left member of equation (36) is

often linearized using a first order Taylor development around △t = 0. This provides

the so-called optical flow constraint equation [6]:

∇I
T (x, t)W(x, t) +

∂I

∂t
(x, t) = 0 ∀x ∈ Ω (37)

By identifying (37) with (1), we have X = W, Y = (∇I, It) and ■ = ∇IT (x, t)W(x, t)+
∂I

∂t
(x, t). Estimating apparent motion is an ill-posed problem: the velocity vector has

two components and the optical flow equation is not sufficient to compute both. A solu-

tion could be obtained in the Image Processing context using a Tikhonov regularization

as stated in Section 2, by constraining spatially [6] or spatially and temporally [26] the

solution. Equation (37) is often preferred to (36) because it is linear and the associ-

ated Euler-Lagrange equation can be discretized using an explicit and robust numerical

scheme. However, it is possible to directly use the equation (36) for estimating the op-

tical flow. This has been described in [3] where the resulting Euler-Lagrange equation

has been approximated with a semi-implicit scheme. The advantage of equation (36)

is that W can be estimated even for high velocity norms. Equation (37) is an approx-

imation and only well suited for low velocity except if incremental algorithms [12,19]

or scale-space methods [1] are considered.

In this paper, we choose however to consider the optical flow constraint (37) in

order to illustrate the tasks to be applied for going from an ill-posed Image Processing

problem to a Data Assimilation system, compare it with state-of-the-art methods, and

prove the advantage of Data Assimilation when processing noisy acquisitions including

missing data.

5.1 Observation and evolution models

The optical flow constraint is chosen as image model. As ❍ ≡ ■, the observation model

is:

❍(W, I)(x, t) = ∇I(x, t)T W(x, t) + It(x, t) (38)

With this choice, the field W(x, t) of velocity vectors is now considered as the state

vector X(x, t) and the image gradients (∇I(x, t), It(x, t)) constitutes the observation

vector Y(x, t).

We have to define an appropriate observation error. Equations (33) and (34) are

used to define the inverse of R and to locate the observation values which must be

discarded. The observation model ❍ being scalar, the matrices r0 and r1 are scalars

and respectively set to ǫ and 1 − ǫ with ǫ ≃ 10−6. Equation (35) is used as the

observation confidence. Without any information, fnoise is assumed to be equal to 1.

fsensor is set to 0 if data are not acquired and to 1 otherwise. f❍ is chosen from the

following remark: the spatio-temporal gradient is null on regions of uniform grey level
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values and equation (37) is then degenerated on pixels belonging to them. For avoiding

further considering these points, f❍ is defined by:

f❍(x, t) = 1 − exp(−‖∇3I(x, t)‖2) (39)

where ∇3 denotes the spatio-temporal gradient operator.

The transport of the velocity, equation (32), is taken as evolution equation:

∂W

∂t
+ ∇WT W = 0 (40)

This equation is rewritten as a two-component system:

∂U

∂t
+ UUx + V Uy = 0 (41)

∂V

∂t
+ UVx + V Vy = 0 (42)

and by identification of equation (5) with (40) and (41,42), the evolution model is:

▼(W) =
`

▼1(W) ▼2(W)
´T

=
`

UUx + V Uy UVx + V Vy

´T

W being a two-component vector, the Q matrix is of size 2 × 2 and chosen as:

Q(x, t,x′
, t

′) = q(x − x′
, t − t

′)

„

1 0

0 1

«

(43)

with q(x, t) = exp(− 1
σ (‖x‖+ |t|)) or q(x, t) = δ(x)δ(t). We have tested both covariance

matrices with σ = 1 without noticing significant differences on the results.

The background value at t = 0 (equation (6)) has also to be provided: we make

use of Horn and Schunck’s algorithm [6] to compute the velocity field on the two first

frames of the sequence. We consider the background error B(x,x′) = δ(x − x′) for

measuring the quadratic discrepancy between Xb(x) and X(x, 0).

5.2 Adjoint operators

In order to determine the adjoint operators for ▼ and ❍, the directional derivatives

must first be established.

Using the definition (11), we obtain:

∂▼1

∂W
(η) =

∂▼1

∂U
(η1) +

∂▼1

∂V
(η2) = Uη

1
x + Uxη

1 + V η
1
y + Uyη

2

∂▼2

∂W
(η) =

∂▼2

∂U
(η1) +

∂▼2

∂V
(η2) = Uη

2
x + Vyη

2 + V η
2
y + Vxη

1

with η =
`

η1 η2
´T

and ηx and ηy standing for partial derivate with respect to x

and y. The reader is referred to Appendix B.1 for more details. Using definition (17),
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integration by parts and considering boundary terms equal to zero, the adjoint operator

of ▼ is:
„

∂▼1

∂W

«∗

(λ) = −Uλ
1
x − Vyλ

1 − V λ
1
y + Vxλ

2

„

∂▼2

∂W

«∗

(λ) = −Uxλ
2 − Uλ

2
x − V λ

2
y + Uyλ

1

with λ =
`

λ1 λ2
´T

. Details are reported in Appendix B.2. In a compact form, the

adjoint operator of ▼ is written:

„

∂▼

∂W

«∗

(λ) = −
„

λ1
x λ2

x

λ1
y λ2

y

«T „
U

V

«

−
„

Vy −Uy

−Vx Ux

«T „
λ1

λ2

«

= −
`

∇λ1 ∇λ2
´T

W −
“

∇⊥V −∇⊥U
”T

λ

with ∇⊥U =
`

Uy −Ux

´T
.

The directional derivative of the observation operator is:

∂❍

∂W
(η)(x, t) = ∇I

T (x, t)η(x, t)

and determining the adjoint operator is direct, as described in Appendix B.3:

„

∂❍

∂W

«∗

(λ)(x, t) = ∇I(x, t)λ(x, t)

5.3 Discretization

Using the choices made in Subsection 5.1, differential and adjoint operators values

calculated in Subsection 5.2, the three PDEs (23,21,25) become:

∂W

∂t
+ ∇WT W = 0 (44)

−∂λ

∂t
−∇λ

T W − (∇⊥W)T λ = −∇IR
−1

⋆ L (45)

∂δW

∂t
+ ∇δWT W + ∇WT

δW = Q ⋆ λ (46)

with ∇⊥W =
“

∇⊥V −∇⊥U
”

, and L = It +∇IT (W+ δW). The covariance matrices

Q and R being chosen isotropic, they only depend on x − x′ and t − t′, and the right

members of equations (45) and (46) can then be expressed as a convolution product.

For evaluating these right members at a given date, the knowledge of L and λ over the

whole temporal domain is required. However, choosing a Dirac matrix for Q and R−1

reduces the convolution product to a simple multiplication. In (45) computation of λ(t)

is only depending on values at (t + 1) and in (46) δX(t) is obtained from variables at

(t − 1). The algorithm becomes a frame-by-frame process: the whole sequence of state

and observation vectors, adjoint and incremental variables may be left on the mass

storage, excepted frames implied in the computation.

The three equations are discretized using a finite difference technique. Let us first

examine equation (44): it is a 2D non linear advection equation. The advection term
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corresponds to the velocity transport. Its direct approximation by a standard Euler

scheme is known as being numerically unstable. This instability has several origins:

the non-linearity of the equation, the multi-dimensionality of the state vector, the

simultaneous occurrence of linear and non linear terms in the equation. For stabilizing

the scheme, a diffusive term is often introduced into the equation:

∂W

∂t
+ ∇WT W = κ∇2W

with κ > 0 having a small value as done in [15]. This is known under the name of Lax-

Wendroff method. Such an equation can then be approximated using an explicit Euler

scheme (with Courant-Friedrich-Levy condition) or an implicit Euler scheme. This has

the drawback of smoothing the solution and not preserving sharp discontinuities. We

propose, in the following, a stable scheme for the advection equation, without adding

this diffusive term, by using a splitting method [23]. As W(x, t) is a vector of ❘2,

equation (44) has two components (41) and (42). The first one combines a term of

linear advection in direction y and non linear one in direction x and is expressed as a

two-equation system using the splitting method:

∂U

∂t
+ UUx = 0 (47)

∂U

∂t
+ V Uy = 0 (48)

Equation (47) is rewritten with the Lax-Friedrich method [20] as
∂U

∂t
+

∂F (U)

∂x
= 0

with F (U) =
1

2
U

2. This new equation is discretized by:

U
k+1
i,j =

1

2
(Uk

i+1,j + U
k
i−1,j) −

△t

2
(F k

i+1,j − F
k
i−1,j)

with Uk
i,j = U(xi, yi, tk), F k

i,j = F (U(xi, yi, tk)) and △t the time step. The term
1
2 (Uk

i+1,j + Uk
i−1,j) stabilizes the scheme by adding a diffusive effect while △t satisfies

the Courant-Friedrich-Levy condition. The linear advection (48) is discretized using an

explicit shock scheme [20]:

U
k+1
i,j = U

k
i,j −△t

“

max(V k
i,j , 0)

“

U
k
i,j − U

k
i,j−1

”

+ min(V k
i,j , 0)

“

U
k
i,j+1 − U

k
i,j

””

In the same way, it can be seen that the second component of (44) contains a linear

advection term in direction x and a non linear one in direction y. The same strategy

is then applied for discretization.

Equation (45) combines a linear advection (∇λT W), a term of reaction ((∇⊥W)T λ)

and a forcing term (∇IR−1 ⋆ L). Its first component is −∂λ1

∂t
− Uλ

1
x − Vyλ

1 − V λ
1
y +

Vxλ
2 =

∂I

∂x
A with A = −R−1 ⋆ L. It is split into two parts. The first part contains

the linear advection in direction x and the reaction term: −∂λ1

∂t
− Uλ

1
x − Vyλ

1 = 0

and is discretized in the same way as (48) with an explicit shock scheme. However, the

equation is retrograde and its initial condition is given at time T :

(λ1)k−1
i,j =

„

1 +
△t

2
(V k

i,j+1 − V
k
i,j−1)

«

(λ1)ki,j +

△t
“

max(Uk
i,j , 0)((λ1)ki,j − (λ1)ki−1,j) + min(Uk

i,j , 0)((λ1)ki+1,j − (λ1)ki,j)
”
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The second part contains the linear advection term in direction y and the forcing term:

−∂λ1

∂t
− V λ

1
y = −Vxλ

2 +
∂I

∂x
A. Again, an explicit shock scheme is used:

(λ1)k−1
i,j = (λ1)ki,j − △t

2

“

V
k
i+1,j − V

k
i−1,j

”

(λ2)ki,j + △t(IxA)ki,j +

△t
“

max(V k
i,j , 0)((λ1)ki,j − (λ1)ki,j−1) + min(V k

i,j , 0)((λ1)ki,j+1 − (λ1)ki,j)
”

Having the same structure, the second component of (45) is discretized with the same

method. The complete numerical scheme is described in Appendix C.2.

The last equation, (46), is similar to equation (45): a linear advection with a reaction

term and a forcing term. We therefore use the same discretization technique. The full

numerical scheme is detailed in Appendix C.3.

5.4 Results

The “taxi” sequence and a synthetic sequence have been chosen for discussing results. In

both cases, image gradients are computed with a convolution method and a derivative

Gaussian kernel whose variance is set to 1. The incremental algorithm (Subsection 3.3)

is iterated 5 times.

The taxi sequence displays several cars moving with a slow and quasi uniform

motion.

In a first experiment, we compute the optical flow using the Data Assimilation method

with image gradients as observations. Horn & Schunk’s method is also applied on the

sequence and both results are displayed for comparison and analysis purposes of our

method. Figures 1 to 3 show the results obtained on three frames of the sequence.

These results are qualitatively similar, illustrating that both methods are equivalent

when observation values are available on the whole sequence. Having chosen Horn &

Schunck or another image processing method does not really matter, because we are

not interested in discussing a quantitative comparison of optical flow methods but in

proving the efficiency of Data Assimilation for dealing with missing data and complex

dynamics. Consequently, a second experiment is designed for analyzing the issue of

missing data. A large region around the white car, denoted ℜ, is set to zero (black

rectangle) on one frame of the sequence to simulate a sensor failure. To indicate the

irrelevance of pixel values inside this region, the function fsensor returns the value 0

inside ℜ and the value 1 outside. The spatio-temporal gradient is then computed on

the modified sequence and provides the observations. Figure 4 shows the results with

Data Assimilation and Horn & Schunk methods. This latter obviously fails to provide

acceptable velocity vectors over ℜ, while Data Assimilation provides a correct result

thanks to the eviction of missing observation in the computation and to the evolution

equation. A similar experiment is performed by setting several small regions to zero

on one frame and flagged them as not acquired with fsensor equal to zero. This lack of

observation also disturbs Horn & Schunk’s algorithm while Data Assimilation provides

a correct result as illustrated by Figure 5. Even a whole frame of the observation

sequence can be missing: we force image gradients to zero on the fifth frame of the taxi

sequence resulting to f❍ = 0 on this frame. In this case, Horn & Schunk’s method can

not provide any result on this frame. Figure 6 is then comparing results obtained by

Data Assimilation with and without observation on frame 5. Results remain similar,
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due to the fact that the evolution model correctly approximates the temporal dynamics

of these data and compensates the missing acquisition.

Fig. 1 Comparison Data Assimilation (left) / Horn-Schunk (right) – frame 3.

Fig. 2 Comparison Data Assimilation (left) / Horn-Schunk (right) – frame 6.

A third experiment is dedicated to prove that using the real dynamics within the

evolution model ensures getting correct estimation of motion. For that purpose, we

built a synthetic sequence displaying one square moving horizontally from the left up

part of the image and one moving vertically from the right bottom part. At the end

of the sequence, the two squares meet each other. Figures 7(b), 8(b) and 9(b) show

the results with Horn & Schunk’s method which fails to estimate a correct velocity

direction when the squares meet. This is due to an over-regularization by the cost

function. Figures 7(a), 8(a) and 9(a) show the results with Data Assimilation: motion

is better estimated because the evolution model correctly describes the dynamics and

avoids the negative effects of spatial regularization.

6 Conclusion

In this paper we proposed a general framework to solve ill-posed Image Processing

problems by Data Assimilation methods. This is an alternative to the space-time ap-
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Fig. 3 Comparison Data Assimilation (left) / Horn-Schunk (right) – frame 9.

(a) Data assimilation (b) Horn-Schunk

Fig. 4 Missing data on a large region in frame 5.

(a) Data assimilation (b) Horn-Schunk

Fig. 5 Missing data on small regions in frame 5.
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(a) Result with image gradients set to 0 on
frame 5

(b) Result with image gradient available

Fig. 6 Missing data on the whole frame 5.

(a) Data Assimilation (b) Horn-Schunk

Fig. 7 Results on synthetic sequence - frame 4.

proach, described in the introduction, which constrains the solution’s variations in

space and time.

If the dynamics is approximately known and expressed as an evolution equation,

we show how this information is used, simultaneously with the observation equation, in

the framework of Data Assimilation, to temporally constrain the solution and obtain a

better result. We extensively describe how to formalize the image processing problem

using the Data Assimilation framework.

The impact of covariance matrices on the energy minimization has been investigated.

Their regularization properties have been described for three different cases. The knowl-

edge of the temporal dynamics and the choice of relevant covariance matrices make it

possible to handle the problem of missing and noisy data. For that purpose, the ob-

servation error is described by a specific covariance matrix, with high values on pixels

corresponding to missing and noisy data, which are then discarded during the com-
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(a) Data Assimilation (b) Horn-Schunk

Fig. 8 Results on synthetic sequence - frame 7.

(a) Data Assimilation (b) Horn-Schunk

Fig. 9 Results on synthetic sequence - frame 10.

putation process. On these pixels, the solution is mainly obtained by the evolution

equation. Obviously, this is only possible if a confidence measure on observation data

is available.

Due to specific choices of covariances, the 4D-Var algorithm described in the paper

allows a local computation of the state vector, on a frame-by-frame basis. It therefore

has memory management advantages compared to the space-time approach, which re-

quires to include the whole sequence in memory, as the linear system is solved in the

space-time domain.

The general approach has been illustrated on estimation of the optical flow by

assimilating image gradient observations in a model, that describes the evolution of
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velocity by itself. This transport equation is simple and correctly approximates the

dynamics, which is locally translational and uniform. The chosen observation equation

is the optical flow constraint, linearly linking velocity and image brightness gradients.

The discretization leads to an unstable numerical scheme if standard finite difference

methods are used. To overcome this problem, a robust scheme, based on a splitting

method, has been proposed in the paper.

A first perspective of this work is to investigate the evolution equation issue. For

some applications it is possible to use a physically consistent equation: for instance,

ocean surface motion is described with a shallow-water model. If we are concerned with

video sequences of rigid objects, the transport of velocity by itself is relevant for locally

translational displacements, but becomes inadequate for rotational or discontinuous

motion. A solution is to build a parametric model of the image dynamics: the spatio-

temporal domain is first divided in sub-domains and the transport equation is assumed

to correctly describe the dynamics on each of them.

A second perspective is to investigate the spatial regularization of the state vector X

through the observation covariance matrix R.

A last perspective addresses the experimental application chosen in the paper: the

estimation of optical flow. The optical flow equation has been used as observation

equation. This equation has the advantage to be linear but is only an approximation

of the transport of image brightness by velocity. The initial transport equation, even if

non linear, can be used as observation equation. The differential and adjoint operator

of the observation model can be determined if the image brightness is supposed to be

differentiable. The 4D-Var algorithm, described in Subsection 3.3, could then be used

with such observation equation.

A The Euler-Lagrange equation of E (10)

Let us first compute the derivative of E in direction η using definition (11):

E(X + γη) =
1

2

Z

A

Z

A

(Xt + γηt +▼(X + γη))T Q−1 (Xt + γηt +▼(X + γη))T dxdtdx′dt′

+

Z

A

Z

A

❍(X + γη,Y)T R−1
❍(X + γη,Y)dxdtdx′dt′

+

Z

Ω

Z

Ω

(X + γη − Xb)
T B−1(X + γη − Xb)dxdx′

d

dγ
E(X + γη) =

Z

A

Z

A

„

ηt +
d

dγ
▼(X + γη)

«T

Q−1 (Xt + γηt +▼(X + γη)) dxdtdx′dt′

+

Z

A

Z

A

d

dγ

“

❍(X + γη,Y)T
”

R−1
❍(X + γη,Y)dxdtdx′dt′

+

Z

Ω

Z

Ω

ηT B−1(X + γη − Xb)dxdx′

Let us γ tend to zero:

∂E

∂X
(η) =

Z

A

Z

A

„

ηt +
∂▼

∂X
(η)

«T

Q−1 (Xt +▼(X)) dxdtdx′dt′

+

Z

A

Z

A

„

∂❍

∂X
(η)

«T

R−1
❍(X,Y)dxdtdx′dt′

+

Z

Ω

Z

Ω

ηT B−1(X − Xb)dxdx′
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We use integration by parts in order to factorize each term with ηT :

∂E

∂X
(η) =

Z

A

Z

A

ηT

„

δ(t = T) − δ(t = 0) −
∂

∂t
+

„

∂▼

∂X

«

∗
«

Q−1 (Xt +▼(X)) dxdtdx′dt′

+

Z

A

Z

A

ηT

„

∂❍

∂X

«

∗

R−1
❍(X,Y)dxdtdx′dt′

+

Z

Ω

Z

Ω

ηT B−1(X − Xb)dxdx′

Let us introduce the adjoint variable λ in the previous expression and use Fubbini’s theorem:

∂E

∂X
(η) =

Z

Ω

ηT (x,T)λ(x,T)dx −

Z

Ω

ηT (x, 0)λ(x, 0)dx

+

Z

A

ηT (x, t)

„

−
∂λ

∂t
+

„

∂▼

∂X

«

∗

(λ)

«

dxdt

+

Z

A

ηT (x, t)

„Z

A

„

∂❍

∂X

«

∗

R−1
❍(X,Y)dx′dt′

«

dxdt

+

Z

Ω

ηT (x, 0)

„Z

Ω

B−1(X(x′, 0) − Xb(x
′))dx′

«

dx

A solution of
∂E

∂X
(η) = 0 ∀η w.r.t. X verifies the following system:

λ(x,T) = 0 (49)

−λ(x, 0) +

Z

Ω

B−1(X(x′, 0) − Xb(x
′))dx′ = 0 (50)

−
∂λ

∂t
+

„

∂▼

∂X

«

∗

(λ) +

Z

A

„

∂❍

∂X

«

∗

R−1
❍(X,Y)dx′dt′ = 0 (51)

Using the definition of inverse covariance (26), Equation (50) is rewritten as:

X(x, 0) = Xb(x) +

Z

Ω

B(x,x′)λ(x′, 0)dx′ (52)

and the state vector is expressed from λ using (12):

∂X

∂t
+▼(X) =

Z

A

Q(x, t,x′, t′)λ(x′, t′)dx′dt′ (53)

Equations (49), (51), (52) and (53) are the Euler-Lagrange equations.

B Determination of the adjoint operators

B.1 Differential of ▼

The operator ▼ is defined by:

▼(W) = WT
∇W =

„

▼1(W)
▼2(W)

«

=

„

UUx + V Uy

UVx + V Vy

«

The differential of ▼ is formally equal to the following Jacobian matrix:

∂▼

∂W
=

0

B

B

@

∂▼1

∂U

∂▼1

∂V

∂▼2

∂U

∂▼2

∂V

1

C

C

A

(54)



25

Each element of this matrix is obtained using the definition of the directional derivative.

Considering the first element of
∂▼

∂W
, the directional derivative with respect to U in direction

η1 is given by:
„

∂▼1

∂U

«T

η1 = lim
γ→0

d

dγ

`

▼1(U + γη1, V )
´

and we obtain:

∂▼1

∂U

T

η1 = Uη1
x + V η1

y + Uxη1

∂▼1

∂V

T

η2 = Uyη2

∂▼2

∂U

T

η1 = Vxη1

∂▼2

∂V

T

η2 = Uη2
x + V η2

y + Vyη2

∂▼

∂W
=

„

U∂x + V ∂y + Ux Uy

Vx U∂x + V ∂y + Vy

«

In equation (25), the differential of ▼ appears as a directional derivative in direction δW and
it has been defined in such a way (see equation (54)) that the Jacobian matrix does not need
to be transposed to compute the derivative in a given direction. It is therefore evaluated as:

∂▼

∂W
(δW) =

∂▼

∂W
δW =

0

B

B

@

∂▼1

∂U
δU +

∂▼1

∂V
δV

∂▼2

∂U
δU +

∂▼2

∂V
δV

1

C

C

A

=

„

UδUx + V δUy + UxδU + UyδV
UδVx + V δVy + VxδU + VyδV

«

B.2 Adjoint operator of
∂▼

∂W

The adjoint operator of
∂▼

∂W
is formally defined by:

fi

∂▼

∂W
(δW), λ

fl

L2

=

fi

δW,

„

∂▼

∂W

«

∗

(λ)

fl

L2

=

Z „

∂▼

∂W
(δW)

«T

λdx

The directional derivative
∂▼

∂W
(δW) is a column vector and has to be transposed to perform

the scalar product with λ =
`

λ1 λ2
´T

:

Z „

∂▼

∂W
(δW)

«T

λdx =

Z „

UδUx + V δUy + UxδU + UyδV
UδVx + V δVy + VxδU + VyδV

«T „

λ1

λ2

«

dx

=

Z „

−δU∂x(Uλ1) − δU∂y(V λ1) + δUUxλ1 + δV Uyλ1

δUVxλ2
− δV ∂x(Uλ2) − δV ∂y(V λ2) + δV Vyλ2

«

dx

=

Z

`

δU δV
´

„

−Uλ1
x − Vyλ1 − V λ1

y + Vxλ2

−Uxλ2 − Uλ2
x − V λ2

y + Uyλ1

«

dx

=

Z

`

δU δV
´

„

−U∂x − V ∂y − Vy Vx

Uy −U∂x − V ∂y − Ux

« „

λ1

λ2

«

dx
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The adjoint operator of
∂▼

∂W
is:

„

∂▼

∂W

«

∗

=

„

−U∂x − V ∂y − Vy Vx

Uy −U∂x − V ∂y − Ux

«

and its expression in direction λ is:

„

∂▼

∂W

«

∗

(λ) =

„

−Uλ1
x − V λ1

y − Vyλ1 + Vxλ2

Uyλ1 − Uλ2
x − V λ2

y − Uxλ2

«

B.3 Differential of ❍ and adjoint operator

The operator ❍ is defined by:

❍(W, I)(x, t) = ∇I(x, t)T W(x, t) + It(x, t)

The differential of ❍ is:
∂❍

∂W
=

„

∂❍

∂U

∂❍

∂V

«

The first component is given by:

∂❍

∂U
η1 = lim

γ→0

d

dγ
❍(U + γη1, V )

= lim
γ→0

d

dγ

`

Ix(U + γη1) + IyV + It

´

= Ixη1

The same calculus leads for the second component to
∂❍

∂V
η2 = Iyη2 and finally the differential

of ❍ is:
∂❍

∂W
= ∇IT

The adjoint operator is defined by:

fi

∂❍

∂W
(δW), λ

fl

L2

=

fi

δW,

„

∂❍

∂W

«

∗

(λ)

fl

L2

=

Z

∇IT δWλdx

=

Z

δWT
∇Iλdx

And finally, the adjoint operator is:

„

∂❍

∂W

«

∗

= ∇I

C Numerical schemes

C.1 Evolution equation of the background variable

Equation (44) has two components and can be written as:

∂U

∂t
+ UUx + V Uy = 0 (55)

∂V

∂t
+ UVx + V Vy = 0 (56)
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Equation (55) is rewritten and split into the system:

F =
1

2
U2 (57)

∂U

∂t
+ Fx = 0 (58)

∂U

∂t
+ V Uy = 0 (59)

Equations (58) and (59) are now linear advection equations. They can be approximated using
the following schemes:

Uk+1

i,j −
1

2
(Uk

i+1,j + Uk
i−1,j)

△t
= −

1

2
(F k

i+1,j − F k
i−1,j)

Uk+1

i,j − Uk
i,j

△t
= −Sy(V, U)k

i,j

S is the discrete operator approximating the advection operator using a shock filter, defined
in the following in the y direction:

Sy(V, U)i,j = max(Vi,j , 0) (Ui,j − Ui,j−1) + min(Vi,j , 0) (Ui,j+1 − Ui,j)

Equation (56) is rewritten and split into the system:

G =
1

2
V 2

∂V

∂t
+ Gy = 0

∂V

∂t
+ UVx = 0

and then approximated by:

V k+1

i,j −
1

2
(V k

i,j+1
+ V k

i,j−1
)

△t
= −

1

2
(Gk

i,j+1 − Gk
i,j−1)

V k+1

i,j − V k
i,j

△t
= −Sx(U, V )k

i,j

C.2 Evolution equation of the adjoint variable

Equation (45) has two components and can be rewritten as follow:

− λ1
t − Uλ1

x − Vyλ1
− V λ1

y + Vxλ2 = IxA (60)

−λ2
t − Uλ2

x − Uxλ2
− V λ2

y + Uyλ1 = IyA (61)

with A = −R−1 ⋆ L. Equation (60) is split into:

−λ1
t = Uλ1

x + Vyλ1

−λ1
t = V λ1

y − Vxλ2 + IxA

The numerical scheme is retrograde because the initial condition for λ1 is given at time t = T.
We use an explicit Euler scheme:

−
(λ1)k

i,j − (λ1)k−1

i,j

△t
= Sx(U, λ1)k

i,j +
1

2
(V k

i,j+1 − V k
i,j−1)(λ1)k

i,j

−
(λ1)k

i,j − (λ1)k−1

i,j

△t
= Sy(V, λ1)k

i,j −
1

2
(V k

i+1,j − V k
i−1,j)(λ

2)k
i,j + (IxA)k

i,j



28

The numerical scheme is written:

(λ1)k−1

i,j = (λ1)k
i,j + △t

„

Sx(U, λ1)k
i,j +

1

2
(V k

i,j+1 − V k
i,j−1)(λ1)k

i,j

«

(λ1)k−1

i,j = (λ1)k
i,j + △t

„

Sy(V, λ1)k
i,j −

1

2
(V k

i+1,j − V k
i−1,j)(λ

2)k
i,j + (IxA)k

i,j

«

The equation (61) is split into:

−λ2
t = Uλ2

x + Uxλ2

−λ2
t = V λ2

y − Uyλ1 + (IyA)

and the numerical scheme is:

(λ2)k−1

i,j = (λ2)k
i,j + △t

„

Sx(U, λ2)k
i,j +

1

2
(Uk

i+1,j − Uk
i−1,j)(λ

2)k
i,j

«

(λ2)k−1

i,j = (λ2)k
i,j + △t

„

Sy(V, λ2)k
i,j −

1

2
(Uk

i,j+1 − Uk
i,j−1)(λ1)k

i,j + (IyA)k
i,j

«

C.3 Evolution equation of the incremental variable

Equation (46) has two components which are expressed as follow:

δUt + UδUx + V δUy + UxδU + UyδV = Q ⋆ λ1 (62)

δVt + UδVx + V δVy + VxδU + VyδV = Q ⋆ λ2 (63)

Equation (62) is split into:

δUt + UδUx + UxδU = 0

δUt + V δUy + UyδV = Q ⋆ λ1

Again, linear advection terms are approximated using shock filter.

δUk+1

i,j − δUk
i,j

△t
= −Sx(U, δU)k

i,j −
1

2
(Uk

i+1,j − Uk
i−1,j)δUk

i,j

δUk+1

i,j − δUk
i,j

△t
= −Sy(V, δU)k

i,j −
1

2
(Uk

i,j+1 − Uk
i,j−1)δV k

i,j + (Q ⋆ λ1)k
i,j

Equation (63) is split into:

δVt + UδVx + VyδV = 0

δVt + V δVy + VxδU = Q ⋆ λ2

and approximated by:

δV k+1

i,j − δV k
i,j

△t
= −Sx(U, δV )k

i,j −
1

2
(V k

i,j+1 − V k
i,j−1)δV k

i,j

δV k+1

i,j − δV k
i,j

△t
= −Sy(V, δV )k

i,j −
1

2
(V k

i+1,j − V k
i−1,j)δUk

i,j + (Q ⋆ λ2)k
i,j
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26. J. Weickert and C. Schnörr. Variational optic flow computation with a spatio-temporal
smoothness constraint. Journal of Mathematical Imaging and Vision, 14:245–255, 2001.

27. A. P. Witkin. Scale-space filtering. In Proc. 8th Int. Joint Conf. Art. Intell., pages 1019–
1022, Karlsruhe, Germany, August 1983.


	Introduction
	Ill-posed problems in Image Processing
	The Data Assimilation framework
	Assimilation of images
	Application to optical flow estimation
	Conclusion
	The Euler-Lagrange equation of E (10)
	Determination of the adjoint operators
	Numerical schemes

