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Fig. 1. Illustration of Hu and Wallner’s algorithm and ours: Q 1 and Q 2 are projection points obtained by Hu and Wallner’s algorithm and ours after the
first iteration, respectively. Q 3 is the exact closest point.

et al. (1993) convert the problem into n polynomial equations with n variables expressed in the tensor product Bernstein
basis. The solution is based on subdivision relying on the convex hull property of the n-dimensional Bernstein basis and
minimization techniques. Dyllong and Luther (1999) also apply the subdivision techniques of a NURBS surface and solution
of a nonlinear system. Piegl and Tiller (2001) decompose a NURBS surface into quadrilaterals, project the test point onto
the closest quadrilateral, and then recover the parameter from that quadrilateral. Johnson and Cohen (1998) present an
algorithm framework for minimum distance computation using the common Branch and Bound approach. Ma and Hewitt
(2003) search for the initial value by the subdivision scheme and checking the relationship between the test point and the
control point net of Bézier patches. But their elimination criterion may fail in some cases provided by Chen et al. (2007).
Selimovic (2006) proposes a more practical exclusion criteria for the computation of the initial value.

Furthermore, the Newton–Raphson method quite often gives the wrong result or even fails to converge especially for
points near the boundaries (see Piegl and Tiller, 2001). Even with a quite good initial value, the Newton–Raphson method
still occasionally gives the wrong answer (see Ma and Hewitt, 2003). To avoid such a situation, Piegl and Tiller (2001) resort
to the method of recovering the parameter from the corners of the closest quadrilateral instead of the Newton iteration. Ma
and Hewitt (2003) apply the Newton–Raphson method on the quadrilateral which is a “flat enough” Bézier patch. The pure
algebraic Newton–Raphson method is unsuitable for the problems of point projection and inversion.

Geometric iteration methods, which use only geometric information that is common to all possible parameterization, can
accommodate arbitrary parameterizations in dealing with surfaces (see Hu and Wallner, 2005). The first order geometric
iteration appears in Hoschek and Lasser (1993), Hartmann (1999). Hu and Wallner (2005) propose a second order geometric
iteration method illustrated in Fig. 1, where P is a test point and Q0 is an initial estimate of the projection point. They
create a normal curvature circle C coplanar with P and project P onto C to obtain the next projection point Q1 .

In Hu and Wallner’s (2005) method, the direction of the normal curvature is computed only by the first order information
of the surface. And the local surface geometric information cannot be completely captured by the normal curvature circle.
These characteristics of the method lower the stability and the convergence speed of the iteration. To overcome these
limitations, we improve their method by replacing the circle of normal curvature with a second order osculating torus patch
to the surface, which contains a complete set of local second order geometric information of the surface and is a more
accurate local approximation of the surface.

In this paper, based on our torus patch approximation technique, we provide a novel second order geometric iteration
algorithm for point projection and inversion. Given a test point P, a parametric surface and the initial parameter value of
the roughly estimated projection Q0 , as illustrated in Fig. 1, we need to compute the parameter of the precise projection.
Our algorithm framework can be described in summary as follows.

(1) Compute the geometric information of the surface at the initial parameter value. The geometric information contains
the position Q0 , the normal vector n, the two principal curvatures and the corresponding principal vectors e1 and e2 .

(2) Construct a torus patch T as a second order osculation to the surface at the initial point Q0 using the geometric
information.

(3) Project the test point P onto the torus patch T and compute the new approximate parameter of the projection point
Q2 on the original surface.



X.-M. Liu et al. / Computer Aided Geometric Design 26 (2009) 593–598 595
Fig. 2. A torus and circles associated with it.

(4) Use the new parameter as the initial value and repeat steps (1)–(3) until the parameter satisfies the required preci-
sion.

The rest of this paper is organized as follows. Section 2 presents the technique for surface approximation by the torus
patch. In Section 3, the methods of point projection onto the torus patch and parameter inversion to the original surface are
described. The experimental results including the evaluation of performance data are given in Section 4. Finally, Section 5
concludes the paper.

2. Local surface approximation by the torus patch

2.1. Properties of the torus

The torus can be defined as T(u, v) = ((R +r cos v) cos u, (R +r cos v) sin u, r sin v), where u, v ∈ [−π,π). In the following,
we mainly refer to four characteristic circles related to the torus: major, minor, outer and inner circles, as shown in Fig. 2. We
choose the torus as a local approximation of a parametric surface because the torus has the following important properties.

(1) Though the torus is a quartic surface, it is simple to compute point projection on it. Only two point-to-circle projec-
tions are required.

(2) A patch of a cylinder surface, a plane or a sphere can be regarded as the degenerated form of the torus patch.
(3) The principal curvatures and principal directions of a point on the outer (or inner) circle of the torus can be directly

obtained without complicated computation.

2.2. Local approximation of a surface by the torus patch

Given a parametric surface S(u, v) and a parameter value (u0, v0) in its domain, we can compute the position Q =
S(u0, v0), the unit normal vector n, the two principal curvatures κ1, κ2 of S at Q, and the two corresponding unit principal
vectors e1 , e2 .

We first preprocess the geometric information as follows. (1) If |κ1| > |κ2|, we exchange both κ1, κ2 and e1 , e2 . (2) If
κ1 > 0, we multiply n, κ1, and κ2 with −1. Thus we assure that |κ1| � |κ2| and κ1 � 0.

After that, we create a torus T: the center at Q + n/κ1, the axis direction e2 , the major and minor radii −1/κ1 + 1/κ2
and 1/|κ2|. It is clear that the torus has the identical principal directions and principal curvatures with S at Q. So they have
second order contact. Note the torus is unique since we have preprocessed the geometric information.

If Q is a parabolic point, i.e. κ1 = 0 and κ2 �= 0, the torus T degenerates to a cylinder surface. For a planar point where
κ1 = κ2 = 0, T degenerates to the tangent plane of S at Q.

In our approach, we only use the torus patch, i.e. a portion of the torus centered at the osculating point Q, to approx-
imate S. The patch is defined by limiting the parameter region to [−0.5,0.5] × [−0.5,0.5]. We experimentally decide the
size of this region in order to avoid slow convergence and false estimation. The major, minor, outer and inner circles of the
whole torus are truncated accordingly to the corresponding circular arcs of the torus patch by the parameter region.

3. Point projection onto the torus patch and parameter inversion

3.1. Point projection onto the torus patch

For the torus patch described in Section 2.2, the point projection can be decomposed into two steps of point projection
onto circular arcs: (1) project the test point on the outer (or inner) circular arc so as to get the minor circle where the
projection is located; (2) project the test point on the minor circular arc to find the projection point we need.
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3.2. Compute the original surface parameter from the projection on the torus

In each iteration, after obtaining the projection point R on the torus, we need to compute its original surface parameter
(u1, v1).

Suppose that the original surface parameter of the osculating point Q is (u0, v0). We need to find a parameter (u1, v1)

which satisfies that S(u1, v1) = R. Let u1 = u0 + �u and v1 = v0 + �v , then the second order Taylor’s expansion gives:

Su · �u + Sv · �v + (
Suu · �u2 + 2Suv · �u · �v + Svv · �v2)/2 = QR, (1)

where Su,Sv,Suu,Svv,Suv are the first order and second order partial derivatives of S at Q. This is an overconstrained
quadratic equation set that contains three equations with two variables �u and �v . In practice, the point on the torus
patch is not exactly on the original surface, hence only an approximate parameter at the original surface can be obtained.
We find the approximate solution of Eq. (1) by the Newton-type iteration method. The initial value for the iteration can be
computed by omitting the second order terms in Eq. (1). Experiments show that the iteration converges fast enough for our
purpose.

3.3. Dealing with parameters beyond the domain of the original surface

Sometimes the parameter obtained in Section 3.2 is beyond the domain of the original surface. We deal with them using
a different approach from that of Piegl and Tiller (1997). Suppose that p0(u0, v0) and p1(u1, v1) are the parameters before
the current iteration and after it, respectively. When p1 is out of the domain, we select the intersection point of the line
segment p0p1 and the boundaries of the domain as the new iteration parameter value. In the next iteration, if the result is
still beyond the domain in the same direction, we apply the point projection method for parametric curves (see Piegl and
Tiller, 1997) to find a projection point parameter on the boundary curve. To verify this result on the surface, we apply one
more iteration on the surface. If the new parameter obtained is still outside the domain in the same direction, the algorithm
terminates with the boundary projection as the final result. Otherwise, some more iterations on the surface are necessary.

4. Experimental results

There are three main criteria for evaluating point projection iteration methods.
(1) Correctness. In our experiments, if the distance between the computed projection and the true closest point satisfies

a given precision, it is treated as a correct solution.
(2) Speed of convergence. We measure the convergence speed by two kinds of experimental data: the number of itera-

tions and the CPU time. We record the average and the worst number of iterations in each computation.
(3) Independence on the initial value. The initial value has a significant impact on the correctness of the Newton-like

iteration algorithms. Bad initial points which are far away from the true projection points often lead to wrong results. We
do not elaborate on the methods of finding a good initial point, which are beyond the scope of this paper. The good initial
values in the experiments of this paper are found by the subdivision method (see Selimovic, 2006; Ma and Hewitt, 2003),
and the bad initial values are obtained by the intuitive method of grid-sampling the surface coarsely and picking the nearest
sample point. The average and maximum differences between the initial parameter values and the parameters of the precise
solutions are listed in Table 3.

This section compares our algorithm with Hu and Wallner (2005) second order algorithm. We apply the convergence
criteria in Piegl and Tiller (1997), which is

∥
∥S(ui, vi) − P

∥
∥ � ε1, (2)

|〈Su(ui, vi),S(ui, vi) − P〉|
‖Su(ui, vi)‖ · ‖S(ui, vi) − P‖ � ε2,

|〈Sv(ui, vi),S(ui, vi) − P〉|
‖Sv(ui, vi)‖ · ‖S(ui, vi) − P‖ � ε2 (3)

or
∥
∥(ui+1 − ui)Su(ui, vi) + (vi+1 − vi)Sv(ui, vi)

∥
∥ � ε1, (4)

where (ui, vi) is the parameter obtained at the ith iteration and ε1, ε2 are two zero tolerances of Euclidean distance and
cosine, respectively. The iteration converges if Eqs. (2), (3), or (4) is satisfied. In our experiments, ε1 = ε2 = 10−10 and the
maximum number of iteration is set to be 10. The data in this paper are obtained using a personal computer with Core Duo
1.8 GHz CPU and 3 GB memory.

4.1. Test a single point projection onto Hu and Wallner (2005) surface

Example 1. We first test Example 3 of Hu and Wallner (2005). Table 1 lists the variations in parameter values during
iteration and the CPU time with the test point (120, 10, 100) and the initial parameter (0.9, 0.6). Table 2 shows the case
that the test point is (−120, 10, 100) and the initial parameter is set to be (0.1, 0.6).

In performance data of Table 1, Hu and Wallner (2005) method iterates 6 times while our method does 4. Our method
consumes 50.4% CPU time of theirs. Table 2 shows that their method can not converge effectively after 10 iterations while
our method iterates only 4 times and save 41.3% of the time consumed.
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Table 1
Data for Example 1. The test point is (120, 10, 100), and (u0, v0) = (0.9,0.6).

Method Step 1 2 3 4 5 6 CPU time (ms)

Hu and �u −3.4e–02 −4.3e–03 3.8e–05 −5.1e–06 9.0e–08 −1.2e–08 0.751
Wallner’s �v −4.8e–02 6.5e–03 2.3e–04 7.3e–08 5.4e–07 2.0e–10

Ours �u −4.3e–02 3.9e–03 1.9e–05 5.1e–10 0.379
�v −4.5e–02 3.8e–03 4.9e–06 1.6e–10

Table 2
Data for Example 1. The test point is (−120,10,100), and (u0, v0) = (0.1,0.6).

Method Step 1 2 3 4 5 10 CPU time (ms)

Hu and �u 3.1e–02 −9.4e–03 7.0e–03 −4.9e–04 7.8e–04 −1.5e–07 0.569
Wallner’s �v 2.9e–02 3.8e–02 1.4e–03 5.5e–03 5.1e–06 2.3e–06

Ours �u 2.4e–02 5.1e–03 2.0e–04 3.0e–07 0.334
�v 7.2e–02 1.6e–03 5.7e–05 8.0e–08

Fig. 3. Illustration of Examples 2 (left) and 3 (right).

Table 3
Data for Examples 2 and 3.

Example Initial value error Method Correct
solutions

Number of iterations Total CPU
time(ms)Average Max Average Worst

Example 2 0.00986 0.0467 H&W’s 515 9.72 10 581
(bad initial value) Ours 625 4.07 7 226

Example 2 0.000495 0.0145 H&W’s 585 9.18 10 532
(good initial value) Ours 625 3.01 5 186

Example 3 0.0131 0.0935 H&W’s 561 6.28 10 247
(bad initial value) Ours 625 3.18 9 150

Example 3 0.00350 0.0795 H&W’s 595 6.03 10 260
(good initial value) Ours 625 2.61 5 133

4.2. Points from a plane project onto surfaces

Examples 2 and 3. As illustrated in Fig. 3, an array of points including 25 columns and 25 rows, evenly sampled from
a plane, are projected onto two surfaces, a spade model (Example 2) and an irregular B-spline surface (Example 3). The
projection trajectories are visualized using solid lines. Table 3 lists the average and maximum differences between initial
parameters and parameters of precise solutions, the number of correct solutions, the average and the worst number of
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iterations in each computation and the total CPU time with bad or good initial values. The experiment of Example 3 shows
that there are 212 projection points lying on the boundary of the surface.

Experimental result shows that our algorithm finds all correct solutions even with bad initial values while the successful
ratios of Hu and Wallner (2005) method are 86.1% and 94.2% fed by the bad and the good initial values, respectively. The
average number of iterations and the average CPU time of our method is only 1/2.43 and 1/2.33 that of theirs, respectively.

5. Conclusion

By taking full advantage of the second order geometric information of a parametric surface point, we propose a novel
local surface approximation technique: torus patch approximation. The approximation torus patch and the original surface
are second order osculating. Based on this, we provide a second order geometric iteration algorithm for point projection
onto parametric surfaces. Experiments show that our algorithm converges at the given precision faster than the second
order algorithm of Hu and Wallner (2005), which approximates the parametric surface with a circle of normal curvature.
Moreover, our algorithm is less dependent on the choice of initial values.
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